
Environment and Tools

~ o
en
8 u

Microsoft® C/C++
Version 7.0

Environment and Tools

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software andlor databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software andlor databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
andlor databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, CodeView, QuickC, and XENlX are registered trademarks and
QuickBasic, QBasic, QuickPascal, and Windows are trademarks of Microsoft Corporation.

OS/2 and Operating System/2 are registered trademarks licensed to Microsoft Corporation.

U.S. Patent No. 4955066

UNIX is a registered trademark of American Telephone and Telegraph Company.
Intel is a registered trademark of Intel Corporation.
BRIEF is a registered trademark of SDC Software Partners II L. P.

Document No. LN24778-1291
10 9 8 7 6 5 4 3 2

Contents Overview

Introduction .. xxiii

Part 1 The Programmer's WorkBench
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Introducing the Programmer' s WorkBench...... 5
Quick Start ... 9
Managing Multimodule Programs 41
User Interface Details............. 65
Advanced PWB Techniques 85
Customizing PWB .. 119
Programmer' s WorkBench Reference............................ 141

Part 2 The CodeView Debugger
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Getting Started with Code View ... 321
The CodeView Environment....................... 345
Special Topics .. 377
Using Expressions in CodeView .. 399
CodeView Reference .. 417

Part 3 Compiling and Linking
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17

CL Command Reference.................... 485
Linking Object Files with LINK .. 561
Creating Overlaid DOS Programs.. 597
Creating Module-Definition Files .. 607
Using EXEHDR ... 629

Part 4 Utilities
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Managing Projects with NMAKE........ 645
Managing Libraries with LID 697
Creating Help Files with HELPMAKE 709
Browser Utilities .. 731
Using Other Utilities .. 743

Part 5 Using Help
Chapter 23

Appendixes
Appendix A
AppendixB

Using Help ... 755

Regular Expressions ... 777
Decorated Names ... 789

iv Contents Overview

AppendixC
AppendixD
AppendixE

United States ASCII Character Chart (Code Page 437) 793
Multilingual ASCII Character Chart (Code Page 850).............. 797
Key Codes 799

Glossary .. 803

Index ... 819

Contents

Introduction .. xxiii

Scope and Organization of This Book ... xxiv
Document Conventions ... xxv

Part 1 The Programmer's WorkBench

Chapter 1 Introducing the Programmer's WorkBench ... 5

1.1 What's in Part 1 .. 6
1.2 Using the Tutorial. .. 6

Conventions in the Tutorial .. 7

Chapter 2 Quick Start .. 9
2.1 The PWB Environment .. 9

The Microsoft Advisor .. 10
Entering Text. .. 12
Saving a File .. 13
Indenting Text with PWB ... 13
Copying, Pasting, and Deleting Text.. .. 15
Opening an Existing File.................. .. 18

2.2 Single-Module Builds ... 19
Setting Build Options .. 19
Setting Other Options ... 22
Building the Program .. 23
Fixing Build Errors ... 24
Running the Program .. 27

2.3 Debugging the Program ... 28
Using CodeView to Isolate an Error ... 29
Testing Conditions in the Watch Window ... 32

2.4 Formatting Text .. 34
Indenting Lines of Code .. 35
Searching for Text ... 38

2.5 Where to Go from Here .. 39

vi Contents

Chapter 3 Managing Multimodule Programs .. 41
3.1 Multimodule Program Example ... 41

Creating the Project ... 42
Contents of a Project ... 43
Dependencies in a Project ... 45
Building a Multimodule Program ... 45
Running the Program .. 46
Project Maintenance .. 47
Using Existing Projects ... 49
Adding a File to the Project .. 50
Changing Compiler Options ... 52
Changing Options for Individual Modules 54

3.2 The Program Build Process .. 56
Extending a PWB Project ... 58
Using a Non-PWB Makefile ... 61

3.3 Where to Go from Here .. 63

Chapter 4 User Interface Details .. 65
4.1 Starting PWB .. 65

From the Command Line .. 65
Using the Windows Program Manager.. ... 66
Using the Windows File Manager .. 67

4.2 The PWB Screen .. 67
4.3 PWB Menus .. 72

File ... 72
Edit .. 73
Search .. 73
Project. ... 74
Run .. 74
Options .. 75
Browse ... 76
Window ... 77
Help ... 78

4.4 Executing Commands ... 78
4.5 Choosing Menu Commands ... 78

Shortcut Keys .. 79
Buttons .. 80
Dialog Boxes ... 80

Contents vii

Chapter 5 Advanced PWB Techniques ... 85
5.1 Searching with PWB .. 85

Searching by Visual Inspection .. 86
Using the Find Command ... 87
Using Regular Expressions ... 90
U sing the Source Browser .. 96

5.2 Executing Functions and Macros ... 106
Executing Functions and Macros by Name .. 108

5.3 Writing PWB Macros ... 109
When Is a Macro Useful? ... 109
Recording Macros .. 109
Flow Control Statements ... 112
User Input Statements ... 114

Chapter 6 Customizing PWB ... 11 9
6.1 Changing Key Assignments.......................... 119
6.2 Changing Settings ... 122
6.3 Customizing Colors .. 124
6.4 Adding Commands to the Run Menu 125
6.5 How PWB Handles Tabs .. 127
6.6 PWB Configuration .. 130

Autoloading Extensions .. 131
The TOOLS.lNI File ... 131
TOOLS.INI Statement Syntax .. l34
Environment Variables ... 137
Current Status File CURRENT.STS ... l38
Project Status Files .. 138

Chapter 7 Programmer's WorkBench Reference .. 141
7.1 PWB Command Line.................. 141
7.2 PWB Menus and Keys ... 142
7.3 PWB Default Key Assignments ... 146

Note on Available Keys .. 149
7.4 PWB Functions ... 150

Cursor-Movement Commands .. 154
7.5 Predefined PWB Macros .. 222

viii Contents

7.6 PWB Switches .. 263
Extension Switches ... 265
Filename-Parts Syntax .. 265
Boolean Switch Syntax ... 266
Browser Switches .. 309
C and C++ Switches .. 310
Help Switches .. 313

Part 2 The CodeView Debugger

Chapter 8 Getting Started with CodeView ...•.••••.••••••.•••••.••••• 321
8.1 Preparing Programs for Debugging .. 321

General Programming Considerations .. 322
Compiling and Linking ... 323

8.2 Debugging Strategies .. 325
Identifying the Bug ... 325
Locating the Bug ... 326

8.3 Setting up CodeView .. 327
Code View Files ... 328

8.4 Configuring CodeView with TOOLS.INI.. .. 329
CodeView TOOLS.INI Entries ... 330

8.5 Memory Management and CodeView .. 336
8.6 The Code View Command Line .. 336

Leaving CodeView .. 337
Command-Line Options .. 338

8.7 The CURRENT.STS State File .. 343

Chapter 9 The CodeView Environment .. 345
9.1 The CodeView Display .. 345

The Menu Bar .. 346
The Window Area ... 346
The Status Bar ... 347

9.2 CodeView Windows ... 347
How to Use Code View Windows ... 347
The Source Windows .. 350
The Watch Window .. 350
The Command Window .. 351
The Local Window .. 354

Contents ix

The Register Window ... 354
The 8087 Window ... 355
The Memory Windows ... 356
The Help Window ... 357

9.3 CodeView Menus ... 358
The File Menu ... 358
The Edit Menu .. 360
The Search Menu .. 361
The Run Menu .. 362
The Data Menu .. 364
The Options Menu .. 368
The Calls Menu ... 372
The Windows Menu .. 373
The Help Menu .. 374

Chapter 10 Special Topics .. 377
10.1 Debugging in Windows .. 377

Comparing CVW with CV ... 377
Preparing to Run CVW ... 378
Starting a Debugging Session ... 378
CVW Commands .. 382
CVW Debugging Techniques ... 386

10.2 Debugging P-Code ... 389
Requirements .. 389
Preparing Programs ... 390
P-Code Debugging Techniques .. 391
P-Code Debugging Limitations .. 392

10.3 Remote Debugging ... 393
Requirements .. 393
Remote Monitor Command-Line Syntax ... 396
Starting a Remote Debugging Session....................................... 397

Chapter 11 Using Expressions in CodeView ... 399
11.1 Common Elements ... 399

Line Numbers .. 400
Registers .. 400
Addresses .. 401
Address Ranges ... 402

11.2 Choosing an Expression Evaluator 403

x Contents

11.3 U sing the C and C++ Expression Evaluators ... 404
Additional Operators ... 405
Unsupported Operators ... 405
Restrictions and Special Considerations ... 405
The Context Operator .. 406
Numeric Constants .. 407
String Literals .. 408
Symbol Formats .. 408

11.4 Using C++ Expressions .. 409
Access Control ..•... 409
Ambiguous References ... 410
Inheritance ... 410
Constructors, Destructors, and Conversions. 410
Overloading ... 411
Operator Functions .. 412

11.5 Debugging Assembly Language .. 412
Memory Operators .. 412
Register Indirection ... 414
Register Indirection with Displacement........ 414
Address of a Variable .. 414
PTR Operator .. 414
Strings .. 415
Array and Structure Elements ... 415

Chapter 12 CodeView Reference •••••••.•••••.••••••..••••••...••••..•••.••....•••••.•.•••••.••••••.•..•••..•...••••.••.•• 417
12.1 Command-Window Command Format... ... 417
12.2 CodeView Expression Reference ... 417
12.3 CodeView Command Overview ... 422
12.4 Code View Command Reference .. 424

Part 3 Compiling and Linking

Chapter 13 Cl Command Reference .. 485
13.1 The CL Command Line .. 485
13.2 How the CL Command Works ... 486
13.3 CL Options ... 488

fA Options (Memory Models) .. 488
!batch (Compile in Batch Mode) ... 490
fBm (Increasing Compiler Capacity) .. 490

Contents xi

Ic (Compile Without Linking) .. 491
IC (Preserve Comments During Preprocessing)... 491
/D (Define Constants and Macros) ... 491
IE (Copy Preprocessor Output to Standard Output) 493
IEP (Copy Preprocessor Output to Standard Output) 494
IF (Set Stack Size) ... 494
If (Fast Compile) ... 494
/Fo, /Fe, IFs, /Fa, /FI, /Fc, IFm, /Fp, IFr, /FR (Set Alternate Output Files).... 495
/FP Options (Select Floating-Point-Math Package) 508
100,/01,/02,/03,/04 (Oenerate Processor-Specific Instructions) 514
lOA, 10D (Optimize EntrylExit Code for Protected-Mode Windows) 515
10E (Customize Windows EntrylExit Code) .. 515
10c, 10d (Use FORTRANlPascal or C Calling Convention) 516
10e, lOs (Turn Stack Checking On or Off) .. 518
lOr (Register Calling Convention) ... 520
IOn (Remove P-Code Native Entry Points) .. 520
lOp (Specifying Entry Tables) .. 521
10q (Real-Mode Windows EntrylExit Code) ... 521
lOt (Set Data Threshold) ... 522
lOw, lOW (Oenerate EntrylExit Code for Real-Mode Windows Functions) 522
lOx (Assume That Data Is Near) .. 523
lOy (Enable Function-Level Linking) .. 524
IH (Restricts Length of External Names) ... 525
IHELP (List the Compiler Options) .. 525
II (Search Directory for Include Files) .. 525
IJ (Change Default char Type) .. 526
fLd, fLw (Control Library Selection) .. 527
llink (Linker-Control Options) .. 527
fLn (Link Without C Run-Time Startup Code) .. 528
fLr (Real Mode Default Library) .. 528
/MA (Macro Assembler Options) ... 528
/Mq (QuickWin Support) .. 528
IND,!NM !NQ, INT, !NV (Name the Data or Code Segments) 528
Inologo (Suppress Display of Sign-On Banner) .. 530
10 Options (Optimize Program) ... 530
IP (Create Preprocessor-Output File) .. 540
Iqc (Quick Compile) ... 540
lSI, ISp, ISs, 1St (Source-Listing Format Options) ... 541
lTc, ITp, Ta (Specify C, C++ Source File, or Assembly Language) 541
IU, lu (Remove Predefined Names) .. 542

xii Contents

IV (Set Version String) ... 544
IW, Iw (Set Warning Level) .. 544
IX (Ignore Standard Include Directory) .. 545
/Fp (Specify Precompiled Header Filename) ... 546
IY c, IY d, IYu (Precompiled Header Options) .. 546
IZe, IZa (Enable or Disable Language Extensions) .. 550
IZc (Specify Pascal Naming) .. 552
IZg (Generate Function Prototypes) .. 552
IZi, IZd (Compile for Debugging) .. 553
IZI (Remove Default-Library Name from Object File) 553
IZp (Pack Structure Members) .. 554
IZf (Accept __ far Keyword) ... 555
IZn (Tum Off SBRPACK Utility) .. 555
IZr (Check Pointers) .. 556
IZs (Check Syntax Only) ... 557
Specifying Options with the CL Environment Variable 557

Chapter 14 linking Object Files with LINK .. 561
14.1 New Features .. 561
14.2 Overview ... 563
14.3 LINK Output Files .. 563
14.4 LINK Syntax and Input .. 564

The objfiles Field .. 565
The exefile Field .. 566
The mapfile Field .. 567
The libraries Field ... 567
The deffile Field .. 570
Examples ... 571

14.5 Running LINK .. 572
Specifying Input with LINK Prompts ... 572
Specifying Input in a Response File ... 573

14.6 LINK Options ... 575
Specifying Options .. 575
The/ALIGNOption .. 576
The !BATCH Option ... 576
The ICO Option ... 577
The ICPARM Option .. 577
The IDOSSEG Option ... 578
The /DSALLOC Option .. 579
The /DYNAMIC Option ... 579

Contents xiii

The IEXEPACK Option .. 580
The IFARCALL Option .. 580
The IHELP Option .. 581
The IHIGH Option .. 581
The IINFO Option ... 582
The !LINE Option ... 582
The !MAP Option .. 583
The INOD Option .. 583
The INOE Option .. 584
The INOFARCALL Option .. 584
The INOGROUP Option ... 584
The INOI Option ... 585
The INOLOGO Option ... 585
The INONULLS Option ... 585
The INOPACKC Option ... 586
The INOPACKF Option ... 586
The IOLDOVERLA Y Option ... 586
The IONERROR Option ... 586
The IOV Option .. 587
The!PACKC Option ... 587
The !P ACKD Option ... 588
The !P ACKF Option ... 589
The !PAUSE Option ... 589
The !PM Option .. 590
The IQ Option ... 590
The Ir Option ... 591
The ISEG Option ... 591
The 1ST ACK Option ... 592
The /TINY Option ... 592
The ffl Option .. 593
The I? Option ... 593

14.7 Setting Options with the LINK Environment Variable 593
Setting the LINK Environment Variable.. 593
Behavior of the LINK Environment Variable 594
Clearing the LINK Environment Variable... 594

14.8 LINK Temporary Files ... 595
14.9 LINK Exit Codes .. 596

xiv Contents

Chapter 15 Creating Overlaid DOS Programs ... 597
15.1 Overview .. 597
15.2 How to Create an Overlaid Program ... 598

Compiling for Overlays ... 599
Creating the Module-Definition File ... 600
Linking the Overlaid Program ... 601

15.3 How MOVE Works .. 602
Memory Allocation .. 602
Limits and Requirements .. 603

15.4 Dynamic and Static Overlays .. 604
Specifying Overlays on the Command Line .. 604
U sing the Static Overlay Manager ... 605
Advantages of MOVE ... 605

Chapter 16 Creating Module-Definition Files ... 607
16.1 New Features .. 607

Overlays .. 607
DOS Programs .. 607
Statements ... 608

16.2 Overview ... 608
16.3 Module Statements ... 609

Syntax Rules .. 610
Reserved Words .. 611

16.4 The NAME Statement .. 611
16.5 The LIBRARY Statement .. 612
16.6 The DESCRIPTION Statement... ... 613
16.7 The STUB Statement. ... 614
16.8 The APPLOADER Statement .. 615
16.9 The EXETYPE Statement .. 615
16.10 The PROTMODE Statement... ... 616
16.11 The REALMODE Statement... ... 617
16.12 TheSTACKSIZEStatement .. 617
16.13 The HEAPSIZE Statement.. ... 617
16.14 The CODE Statement ... 618
16.15 The DATA Statement... .. 618
16.16 The SEGMENTS Statement ... 619
16.17 CODE, DATA, and SEGMENTS Attributes ... 620
16.18 The OLD Statement .. 622

Contents xv

16.19 The EXPORTS Statement... ... 623
16.20 The IMPORTS Statement .. 624
16.21 The FUNCTIONS Statement.. ... 625
16.22 The INCLUDE Statement.. .. 627

Chapter 17 Using EXEHDR .. 629
17.1 Running EXEHD R ... 629

The EXEHDR Command Line ... 629
EXEHDR Options ... 630

17 .2 Executable-File Format .. 631
17.3 EXEHDR Output: DOS Executable File ... 632
17.4 EXEHDR Output: Segmented Executable File 634

DLL Header Differences ... 635
Segment Table ... 635
Exports Table .. 636

17.5 EXEHDR Output: Verbose Output... ... 637
DOS Header Information .. 637
New .EXE Header Information .. 637
Tables .. 638

Part 4 Utilities

Chapter 18 Managing Projects with NMAKE ... 645
18.1 New Features .. 645
18.2 Overview .. 646
18.3 Running NMAKE ... 647

Command-Line Options ... 647
NMAKE Command File ... 650
The TOOLS.lNI File ... 652

18.4 Contents of a Makefile ... 653
Using Special Characters as Literals .. 653
Wildcards .. 653
Comments ... 654
Long Filenames ... 654

18.5 Description Blocks ... 655
Dependency Line .. 655
Targets ... 656
Dependents .. 659

xvi Contents

18.6 Commands .. 660
Command Syntax .. 660
Command Modifiers ... 661
Exit Codes from Commands ... 662
Filename-Parts Syntax .. 663
Inline Files ... 664

18.7 Macros .. 667
User-Defined Macros .. 668
Using Milcros .. 671
Special Macros .. 671
Substitution Within Macros .. 677
Substitution Within Predefined Macros .. 678
Environment-Variable Macros .. 678
Inherited Macros ... 679
Precedence Among Macro Definitions... 680

18.8 Inference Rules ... 680
Inference Rule Syntax ... 681
Inference Rule Search Paths ... 682
User-Defined Inference Rules ... 682
Predefined Inference Rules ... 684
Inferred Dependents .. 685
Precedence Among Inference Rules ... 686

18.9 Directives .. 687
Dot Directives ... 687
Preprocessing Directives ... 688

18.10 Sequence ofNMAKE Operations .. 692
18.11 A Sample NMAKE Makefile ... 694
18.12 NMAKE Exit Codes ... 696

Chapter 19 Managing Libraries with LIB ... 697
19.1 Overview ... 697
19.2 Running LIB ... 698

The LIB Command Line ... 698
LIB Command Prompts .. 698
The LIB Response File ... 699

19.3 Specifying LIB Fields ... 699
The Library File .. 700
LIB Options ... 700

Contents xvii

LIB Commands ... 702
The Cross-Reference Listing .. 705
The Output Library ... 706
Examples ... 707

19.4 LIB Exit Codes ... 708

Chapter 20 Creating Help Files with HELPMAKE••••.•.....•..•••.•...••.....••.•......•.•.•..........•...• 709
20.1 Overview .. 710
20.2 Running HELPMAKE ... 711

Encoding ... 711
Decoding ... 713
Getting Help .. 714
Other Options .. 715

20.3 Source File Formats .. 716
20.4 Elements of a Help Source File .. 716

Defining a Topic ... 716
Creating Links to Other Topics .. 717
Formatting Topic Text .. 721
Dot Commands ... 722

20.5 Other Help Text Formats .. 725
Rich Text Format .. 725
Minimally Formatted ASCII ... 728

20.6 Context Prefixes ... 729

Chapter 21 Browser Utilities ... 731
21.1 Overview of Database Building ... 732

Preparing to Build a Database .. 732
How BSCMAKE Builds a Database .. 732
Methods for Increasing Efficiency ... 733

21.2 BSCMAKE ... 734
System Requirements for BSCMAKE ... 734
The BSCMAKE Command Line .. 735
BSCMAKE Options ... 736
Using a Response File ... 738
BSCMAKE Exit Codes .. 739

21.3 SBRPACK .. 739
Overview of SBRPACK ... 739
The SBRPACK Command Line ... 740
SBRPACKExitCodes .. 741

xviii Contents

Chapter 22 Using Other Utilities ... 743
22.1 CVPACK .. 743

Overview ofCVPACK ... 744
The CVPACK Command Line ... 744
CVPACKExitCodes .. 745

22.2 IMPLIB ... 745
About Import Libraries .. ~ 746
The IMPLm Command Line .. 746
Options .. 747

22.3 RM, UNDEL, and EXP .. 747
Overview of the Backup Utilities ... 747
The RM Utility .. 748
The UNDEL Utility ... 749
The EXP Utility ... 750

Part 5 Using Help

Chapter 23 Using Help ... 755
23.1 Structure of the Microsoft Advisor .. 755
23.2 Navigating Through the Microsoft Advisor ... 756

Using the Help Menu .. 757
Using the Mouse and the Fl Key .. 757
Using Hyperlinks .. 759
Using Help Windows and Dialog Boxes .. 760
Accessing Different Types ofInformation ... 762
Using Different Help Screens ... 764

23.3 Using Help in PWB .. 765
Opening a Help File .. 765
Global Search .. 766

23.4 Using QuickHelp .. 768
Using the IHeip Option ... 768
Using the QH Command ... 768

23.5 Managing Help Files .. 771
Managing Many Help Files ... 772

Contents xix

Appendixes

Appendix A Regular Expressions .. 777
A.I Regular-Expression Summaries ... 778
A.2 UNIX Regular-Expression Syntax ... 781
A.3 Tagged Regular Expressions .. 782

Tagged Expressions in Build:Message ... 784
A.4 Justifying Tagged Expressions ... 785
A.5 Predefined Regular Expressions .. 785
A.6 Non-UNIX Regular-Expression Syntax ... 786

Non-UNIX Matching Method .. 788

Appendix B Decorated Names ... 789
B.1 Overview .. 789

Format of a Decorated Name .. 789
Viewing Decorated Names ... 790

B.2 Getting and Specifying a Decorated Name .. 790

Appendix C United States ASCII Character Chart (Code Page 437) 793

Appendix D Multilingual ASCII Character Chart (Code Page 850) 797

Appendix E Key Codes .. 799

Glossary ... 803

Index ... 819

Figures and Tables

Figures
Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 9.1
Figure 17.1
Figure 18.1
Figure 23.1
Figure 23.2
Figure 23.3
Figure 23.4
Figure 23.5
Figure 23.6

Tables
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 7.10

PWB Display :.: .. 10
PWB Build Options .. 22
The COUNT Project .. 42
The PWB Build Process ... 57
User Interface Elements... 68
Window Elements ... ~{)9
Status Bar Elements ... 70
PWB Menu Elements.......... ... 71
Dialog Box Elements ... 81
Key Box and Check Box .. 82
Regular Expression Example... 91
Complex Regular Expression Example....................................... 92
How PWB Displays Tabs .. 128
Arranged Windows .. 227
Cascaded Windows .. 231
Vertical Tiling .. 299
Horizontal Tiling .. 300
CodeView Display ... 346
Format for a Segmented Executable File 632
NMAKE Description Block ... 655
Microsoft Advisor Global Contents Screen 756
Microsoft Advisor Global Index Screen 757
Help on the PWB Cut Command ... 758
Help for printf in a PWB Window ; 763
PWB Index ... 765
The QuickHelp Window .. 770

File Menu and Keys... 143
Edit Menu and Keys ... 143
Search Menu and Keys ... 144
Project Menu and Keys................................... 144
Run Menu and Keys... 144
Browse Menu and Keys ... 145
Window Menu and Keys .. 145
Help Menu and Keys..... 146
PWB Default Key Assignments... 146
PWB Functions .. 151

Table 7.11
Table 7.12
Table 7.13
Table 7.14
Table 8.1
Table 8.2
Table 9.1
Table 11.1
Table 12.1
Table 12.2
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table 13.7
Table 13.8
Table 13.9
Table 13.10
Table 16.1
Table 18.1
Table 18.2
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 20.5
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8

Contents xxi

Cursor-Movement Commands ... 155
PWB Macros .. 222
PWB Color Names ... 271
PWB Color Values ... 273
CodeView TOOLS.INI Entries .. 330
CodeView Command-Line Options ... 338
Moving Around with the Keyboard... 349
Registers ... 401
Register Names .. 419
CodeView Command Summary .. 422
Memory Models ... 488
Customized Memory Model Codes... 490
Optional File Types .. 495
Floating-Point Options................... 508
CL Options and Default Libraries ... 514
Using the check_stack Pragma .. 519
Segment-Naming Conventions.......... 529
Inline Expansion Control ... 532
Predefined Names ... 543
Using the pack Pragma .. 555
Module Statements ... 609
Predefined Inference Rules.. 684
Binary Operators for Preprocessing ... 691
Formatting Attributes ... 721
Dot Commands .. 722
RTF Formatting Codes .. 727
Microsoft Product Context Prefixes... 730
Standard h. Contexts .. 730
UNIX Regular-Expression Summary .. 778
UNIX Predefined Expressions..... .. 778
CodeView Regular Expressions......... .. 779
Non-UNIX Regular-Expression Summary 780
Non-UNIX Predefined Expressions .. 780
UNIX Regular-Expression Syntax .. 781
Predefined Regular Expressions and Definitions 785
Non-UNIX Regular Expression Syntax 786

Introduction

Microsoft C/C++ includes a full set of development tools-editor, compiler, link­
er, debugger, and browser-for writing, compiling, and debugging your programs.
You can work within the Microsoft Programmer's WorkBench (PWB) integrated
environment, or you can use the tools separately to develop your programs.

Environment and Tools describes the following development tools:

• The Programmer's WorkBench (PWB). PWB is a comprehensive tool for appli­
cation development. Within its environment is everything you need to create,
build, browse, and debug your programs. Its macro language gives you control
over not only editing but also build operations and other PWB functions.

• The Microsoft CodeView debugger. This is a diagnostic tool for finding errors
in your programs. Two versions of Code View are described: one for DOS pro­
grams and one for Microsoft Windows. Each Code View version has specialized
commands for its operating environment, as well as other commands for exam­
ining code and data, setting breakpoints, and controlling your program's
execution.

• CL, the Microsoft C/C++ Compiler. CL compiles and links your source code.

• LINK, the Microsoft Segmented Executable Linker. The linker combines object
files and libraries into an executable file, either an application or a dynamic-link
library (DLL).

• EXEHDR, the Microsoft EXE File Header Utility. EXEHDR displays and mod­
ifies the contents of an executable-file header.

• NMAKE, the Microsoft Program Maintenance Utility. NMAKE simplifies pro­
ject maintenance. Once you specify which project files depend on others, you
can use NMAKE to automatically execute the commands that will update your
project when any file has changed.

• LIB, the Microsoft Library Manager. LIB creates and maintains standard librar­
ies. With LIB, you can create a library file and add, delete, and replace modules.

• HELPMAKE, the Microsoft Help File Maintenance Utility. HELPMAKE
creates and maintains Help files. You can use HELPMAKE to create a Help file
or to customize the Microsoft Help files.

• BSCMAKE, the Microsoft Browser Database Maintenance Utility, and
SBRP ACK, the Microsoft Browse Information Compactor. BSCMAKE creates
browser files for use with the PWB Source Browser. SBRP ACK compresses
the files that are used by BSCMAKE.

xxiv Environment and Tools

Environment and Tools also describes these special purpose utilities:

• CVPACK, the Microsoft Debugging Information Compactor. CVPACK com­
presses the size of debugging information in an executable file.

• IMPLIB, the Microsoft Import Library Manager. IMPLID creates an import
library that resolves external references from a Windows application to a DLL.

• RM, the Microsoft File Removal Utility; UNDEL, the Microsoft File Undelete
Utility; and EXP, the Microsoft File Expunge Utility. These utilities manage,
delete, and recover backup files.

Scope and Organization of This Book
This book has five parts and five appendixes to give you complete information
about PWB, CodeView, CL, and the utilities included with C/C++.

Part 1 is a brief PWB tutorial and comprehensive reference. The first three chap­
ters introduce PWB and provide a tutorial that describes the features of the inte­
grated environment and how to use them. Chapters 4, 5, and 6 contain detailed
information on the interface, advanced PWB techniques, and customization. Chap­
ter 7 contains a complete reference to PWB' s default keys and all functions, prede­
fined macros, and switches.

Part 2 provides full information on the Microsoft CodeView debugger. Chapter 8
tells how to prepare programs for debugging, how to start CodeView, and how to
customize CodeView's interface and memory usage. Chapter 9 describes the en­
vironment, including the CodeView menu commands and the format and use of
each CodeView window. Chapter 10 explains how to use expressions, including
the C and C++ expression evaluators. Chapter 11 describes techniques for debug­
ging Windows programs and p-code. Chapter 12 contains a complete reference to
CodeView commands.

The chapters in Parts 3 and 4 describe the compiler and utilities. These chapters
are principally for command-line users. Even if you're using PWB, however, you
may find the detailed information in Parts 3 and 4 helpful for a better under­
standing of how each tool contributes to the program development process.

Part 3 provides information about compiling and linking your program. Chapter
13 describes the command-line syntax and options for the CL compiler. LINK
command-line syntax and options are covered in Chapter 14. Chapter 15 describes
how to overlay a DOS program. The contents and use of module-definition files
are explained in Chapter 16. Chapter 17 describes how to use EXEHDR to ex­
amine the file header of a program.

Part 4 presents the other utilities.·NMAKE, the utility for automating project man­
agement, is described in Chapter 18. Chapter 19 covers LID, the utility to use in

Introduction xxv

managing standard libraries. Procedures for using HELPMAKE to create and
maintain Help files are in Chapter 20. The tools for creating a browser database
are discussed in Chapter 21. Finally, Chapter 22 describes how to use the follow­
ing special purpose utilities: CVPACK, IMPLlB, RM, UNDEL, and EXP.

Part 5 presents the Microsoft Advisor Help system and the QuickHelp program. It
describes the structure of the Help files, how to navigate through the Help system,
and how to manage Help files.

The appendixes provide supplementary information. Appendix A describes regu­
lar expressions for use in PWB and CodeView. Appendix B explains a procedure
for getting the decorated name of a C++ function. Appendix C lists United States
ASCII codes, Appendix D lists multilingual ASCII codes, and Appendix E lists
key codes.

Document Conventions
This book uses the following typographic conventions:

Examples

README. TXT, COPY,
LINK,/CO

printf, IMPORT

expression

[option]

{choicel I choice2}

CL ONE.C TWO.C

Repeating elements ...

while(
{

}

Description

Uppercase (capital) letters indicate filenames, DOS com­
mands, and the commands to run the tools. Uppercase is
also used for command-line options, unless the option
must be lowercase.

Bold letters indicate keywords, library functions, re­
served words, and CodeView commands. Keywords are
required unless enclosed in double brackets as explained
below.

Words in italic are placeholders for information that you
must supply (for example, a function argument).

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice between two
or more items. You must choose one of the items unless
all the items are also enclosed in double square brackets.

This font is used for program examples, user input, pro­
gram output, and error messages within the text.

Three horizontal dots following an item indicate that
more items having the same form may follow.

Three vertical dots following a line of code indicate that
part of the example program has intentionally been
omitted.

xxvi Environment and Tools

FI, ALT+A

Arg Meta Delete
(ALT +A ALT +A SHIFT +DEL)

"defined term"

dynamic-link library (DLL)

Small capital letters indicate the names of keys and key
sequences, such as ENTER and CTRL+C. A plus (+) in­
dicates a combination of keys. For example, CTRL+E
means to hold down the CTRL key while pressing the
Ekey.

The cursor-movement keys on the numeric keypad are
called ARROW keys. Individual ARROW keys are referred
to by the direction of the arrow on the top of the key
(LEFT, RIGHT, UP, DOWN). Other keys are referred to by
the name on the top of the key (PGUP, PGDN).

A bold series of names followed by a series of keys indi­
cates a sequence of PWB functions that you can use in a
macro definition, type in a dialog box, or execute direct­
ly by pressing the sequence of keys. In this book, these
keys are the default keys for the corresponding func­
tions. Some functions are not assigned to a key, and the
word "Unassigned" appears in the place of a key. In
PWB Help, the current key that is assigned to the func­
tion is shown.

Quotation marks usually indicate a new term defined in
the text.

Acronyms are usually spelled out the first time they are
used.

Introducing the Programmer's
WorkBench

The Microsoft Programmer's WorkBench (PWB) is a powerful tool for applica­
tion development. PWB combines the following features:

• A full-featured programmer's text editor.

• An extensible "build engine" which allows you to compile and link your pro­
grams using the PWB environment. The build engine can be extended to sup­
port any programming tool.

• Error-message browsing. Once a build completes, you can step through the
build messages, fixing errors in your source programs.

• A Source Browser. When working with large systems, it is often difficult to
remember where program symbols are accessed and defined. The Source
Browser maintains a database that allows you to go quickly to where a given
variable, function, type, class, or macro is defined or referenced.

• An extensible Help system. The Microsoft Advisor Help system provides a
complete reference on using PWB, your programming language, and the other
components of Microsoft C/C++. You can also write new Help files and seam­
lessly integrate them into the Help system to document your own library
routines or naming conventions.

• A macro language that can control editing functions, program builds, and other
PWB operations.

For increased flexibility, you can write extensions to PWB. These extensions can
perform tasks that are inconvenient in the PWB macro language. For example, you
can write extensions to perform file translations, source-code formatting, textjusti­
fication, and so on. As with the macro language, PWB extensions have full access
to most PWB capabilities. For information about how to write PWB extensions,
see the Microsoft Advisor Help system (choose "PWB Extensions" from the main
Help table of contents).

6 Environment and Tools

1.1 What's in Part 1
This part of the book introduces you to the fundamentals of PWB. Chapter 2,
"Quick Start," shows you how to use the PWB editor and build a simple single­
module program from PWB. Chapter 3, "Managing Multimodule Programs," ex­
pands upon the information you learned in Chapter 2. It teaches you how to build
a more complicated program that consists of several modules. You should be able
to work through these two chapters in less than three hours.

As you work through these chapters, you may want to refer to Chapter 4, "User
Interface Details," which explains options for starting PWB, briefly describes all
of the menu commands, and summarizes how menus and dialog boxes work. The
user interface information is presented in one chapter for easy access.

Chapter 5, "Advanced PWB Techniques," shows how to use the PWB search
facilities (including searching with regular expressions), how to use the Source
Browser, how to execute functions and macros, and how to write PWB macros.

Chapter 6, "Customizing PWB," describes how to redefine key assignments,
change PWB settings, add commands to the PWB menu, and use the TOOLS.lNI
initialization file to store startup and configuration information for PWB.

Chapter 7, "PWB Reference," contains an alphabetical reference to PWB menus,
keys, functions, predefined macros, and switches. It contains the essential informa­
tion you need to know to take the greatest advantage of PWB' s richly customiz­
able environment.

Chapters 4 and 5 are not as tutorial as Chapters 2 and 3. Chapters 6 and 7 describe
advanced features that you probably don't need to learn right away. You may want
to come back to these chapters after you are comfortable with PWB.

1.2 Using the Tutorial
You probably want to get right to work with Microsoft C/C++. The tutorial chap­
ters 2 and 3 can help you become productive very quickly. To get the most out of
this material, here are a few recommendations:

• Follow the steps presented in the tutorial. It is always tempting to explore the
system and find out more about the product through independent research. How­
ever, just as programming requires an orderly sequence of steps, some aspects
of PWB also require sequenced actions.

• If you complete a step and something seems wrong-for example, if your
screen doesn't match what is in the book-back up and try to find out what's
wrong. Troubleshooting tips will help you take corrective actions.

Introducing the Programmer's WorkBench 7

• When working through this tutorial, consider how you might use these tech­
niques in your own work. PWB is like a full tool chest. You probably won't
learn (or even want to learn) all of PWB' s capabilities right away. But as time
goes on, you'll have uses for many of the tools you don't use immediately.

Conventions in the Tutorial

n Tips like this
are useful tidbits of
information, such as
a keyboard shortcut.

To help you move through the tutorial quickly, there are two navigation aids: the
tip and the procedure heading.

Tips
Information that is handy but not essential is included in the left margin. Tips offer
additional information to help you make the most efficient use of PWB. They
should not be confused with margin summaries, which appear in other sections of
this book and are used to summarize information presented in the text.

Procedure Headings
Procedure headings are denoted by a triangular symbol. These headings always
precede a list of steps. For example:

~ To open a file:

1. From the File menu, choose Open.

PWB displays the Open File dialog box.

2. In the File List list box, select the file that you want to open.

3. Choose OK.

In procedures, the heading gives you a capsule summary of what the steps will
accomplish. Each numbered step is an action you take to complete the procedure.
Some steps are followed by an explanation, an illustration, or both.

Quick Start

This chapter gets you started with PWB. You '11 learn the basics by building and
debugging a program that calculates payments on a loan given the principal, inter­
est rate, and term.

To start PWB in Windows for this tutorial, click the PWB icon in the Microsoft
C/C++ Program Group.

In DOS, type

PWB

at the prompt.

~ To leave PWB at any time:

• From the File menu, choose Exit, or press ALT+F4.

2.1 The PWB Environment
If this is the first time you have used PWB, you see the menu bar, the status bar,
and an empty desktop. If you have used PWB before, it opens the file you last
worked with.

PWB uses a windowed environment to present information, get information from
you, and allow you to edit programs. The environment has the following com­
ponents:

• An editor for writing and revising programs

• A "build engine" -the part of PWB that helps you compile, link, and execute
your programs from within the environment

• A source-code browser

10 Environment and Tools

• Commands for program execution and debugging

• The Microsoft Advisor Help system

The browser and the Help system are dynamically loaded extensions to the PWB
platform. Microsoft languages and the utilities are also supported in PWB by
extensions. Other extensions are available, such as the Microsoft Source Profiler.
PWB presents all of these components through menus and dialog boxes.

Before continuing, look at the following figure, which introduces some parts of
the PWB interface.

File Edit Search Project Run Options Browse .,tnnnnnw Help

Figure 2.1 PWB Display

• arch Results
I' int Results
I' cord

lipboard
lp

Brolser Output

New
Close
Close All
I'bve
Size

Restore
Minimize
Maximize

Cascade
Tile
Arrange

Windows

Ctrl+F4

Ctrl+F?
Ctrl+F8

CtrI +FS
CtrI +F9

Ctrl+F1fl

FS
Shift+FS

Alt+FS

Untitled.eel Alt+l
Untitled.eaz Alt+2

P 1'1 f)f)f)f)l.eel

Chapter 4, "User Interface Details," contains a thorough description of these ele­
ments and the rest of the PWB environment. Refer to this chapter when you need
specific information about an unfamiliar interface element.

The Microsoft Advisor
PWB makes programming easier by providing the Microsoft Advisor Help sys­
tem, which contains comprehensive information about:

• PWB editing functions

• PWB advanced features

• PWB menus and dialog boxes

a To get immediate
help on any subject,
point to the item in
question and press the
right mouse bulton.

Quick Start 11

• CodeView debugger

• C and c++ languages

• C and C++ compiler options

• C run-time library

• P-code

• Microsoft utilities (such as NMAKE, LINK, and so on)

• Windows API (application programming interface)

• Microsoft class libraries

The Advisor provides context-sensitive Help and general Help. Context-sensitive
Help provides information about the menu, dialog box, or language element at the
cursor. To see context-sensitive Help, press the Fl key. PWB displays the Help
window to show the requested information. You can also get context-sensitive
Help and more general Help by using the Help menu.

To answer questions of a less specific nature, you can access the Contents screen
by choosing Contents from the Help menu or by pressing SHIFT +Fl. From the
Advisor contents, you can access Help on any other subject in the database.

~ To get started using the Microsoft Advisor:

• From the Help menu, choose the Help on Help command.

Help on Help teaches you how to use the Microsoft Advisor Help system. For
more information on using Help, see Chapter 23.

~ To close the Help window:

• Click the upper-left corner of the Help window (the Close box), press ESC,

choose Close from the File menu, or press CTRL+F4.

Note Click the Close box, choose Close from the File menu, or press CTRL+F4 to
close any open window in PWB.

The following sections explain basic editing procedures. If you're already familiar
with these, you can skip to "Opening an Existing File" on page 18.

12 Environment and Tools

Entering Text

a Press the
highlighted key in a
menu or command
name to open the
menu or execute the
command.

a Press
CTRL+HOME to move
the cursor to the
beginning of a file.
Press CTRL+ENO to
move to the end of
the file.

In this section, you'll learn basic PWB procedures by entering a simple C pro­
gram, ANNUITY.C.

~ To start a new file:

1. Move the mouse cursor ("point") to the File menu on the menu bar and click
the left button.

PWB opens the File menu.

2. Point to the New command and click the left button.

You can also do this from the keyboard:

1. Press AL T +F to open the File menu.

2. Press N to choose New.

PWB opens a window with the title Unti tl ed. 00l.

Starting with your cursor in the upper-left comer of the edit window, type the fol­
lowing comments:

II
II annuity.c - Program to generate a simple annuity table
II

Your screen should appear as follows:

//
// annuity.c - Program to generate a simple annuity table
//

Saving a File

Quick Start 13

Now that you've entered some of your program, save your work before
proceeding.

~ To save a file:

• From the File menu, choose Save, or press SHlFT+F2.

PWB displays the Save As dialog box.

~~~i l~e-;l'1;;;;all"e~: -;[llmiijulD'rmm. ill~,;lloU~.:-: .. ~ .. sa,:" As -. -.. -. -.. -. -.. -.-.. -.-. -.. -. -.. -. -.. -.-.. -.-. -.. -'] 

File !list: ilJrives / Dirs: 

t 
[-A-l I 

E~=~ ~I 

I OH I {Cancel> (~lp > 

This dialog box has several options that you use to pass information to PWB. 
PWB indicates the active option-in this case, the File Name text box-by 
highlighting the area in which you can enter text. For more information about 
dialog boxes, see Chapter 4, "User Interface Details." 

Because you have not yet saved the file, it still has the name Unti tl ed. 001. Type 
ANNUITY. C in the File Name text box. Then click OK or press ENTER to save the 
file. 

Note Now that you have named your file, choosing Save from the File menu 
does not bring up a dialog box. Your file is immediately saved to disk. 

Indenting Text with PWB 
Type the following program fragment: 

#include <stdio.h> 
#include <math.h> 
maine) 
{ 

float pv, rate, pmt, fv, ratepct; 
int nper, actnper; 



14 Environment and Tools 

II get input from the user 
printf( "Enter present value:\n" l; 
scanf( "If", &pv l; 
printf( "Enter interest rate in percent:\n" l; 
scanf( "%f", &rate l; 
printf( "Enter number of periods in years:\n" l; 
scanf( "Ii", &nper l; 

Often you will add several lines indented to the same column. PWB saves you 
time by automatically indenting new lines when you press the ENTER key. 

When the PWB C extension is loaded, PWB automatically indents new lines in C 
and C++ source files as appropriate for the C and C++ languages. When the lan­
guage extension is not loaded (or the extension's autoindentation is turned off), 
PWB uses its default indentation rules as follows: 

• If there is no line or a blank line immediately below the new line, PWB 
matches the indentation of the line above it. 

• If there is a line immediately below the new line, PWB matches the indentation 
of the line below it. 

You'll now type some text after the last scanf statement. 

~ To insert space for a new line: 

1. Position the mouse cursor anywhere past the end of the scanf statement. Precise 
positioning of the cursor is not critical because (by default) PWB trims trailing 
spaces from the end of your lines. 

2. Click the left mouse button. 

3. Press ENTER to make a new line. 

If you are in overtype mode, change to insert mode by pressing the INS key. 
Otherwise, pressing ENTER simply moves the cursor to the beginning of the next 
line. PWB displays the letter 0 on the status bar and shows the cursor as an un­
derscore to signal that you are in overtype mode. 

~ To insert the new line using the keyboard: 

1. Move the cursor to the scanf statement just above the closing brace by pressing 
the UP ARROW key. 

2. Press END to move the cursor to the end of the line. 

3. Press ENTER to make a new line. 



l1li To move the 
cursor directly to the 
first column, press F9, 

HOME. 

Type the following lines: 

ratepct = rate I 1200.0; 
actnper = nper * 12; 

II calculate the payment amount 
pmt = pv * (ratepct I (1.0- (1.0 I 

(pow((1.0 + ratepct), actnper »»); 
printf( "Principal: %f\n", pv ); 
printf( "Interest rate: %f\n", rate ); 

Quick Start 15 

When you enter the forward slash for the first comment line (the third line of this 
section), PWB's automatic indentation feature positions the cursor in column 5. 
To move the cursor to column 1, use the LEFT ARROW key or the BACKSPACE key. 

Copying, Pasting, and Deleting Text 

IlII You can use the 
keys CTRl+INS for Copy 
and SHIFT+INS for Paste. 

The remainder of the program consists of the following p r i n t f statements. Don't 
type them in yet. You will copy and paste to enter these lines. 

printf( "Number of years: %i\n", nper ); 
printf( "Monthly Payment: %f\n", pmt); 
printf( "Total Payments: %f\n", pmt * nper * 12.0); 
printf( "Total Interest: %f\n", pmt * nper * 12.0 - pv ); 

Since these lines are similar, you can save time by typing only the first one, then 
copying and pasting text using PWB's clipboard (a temporary storage place for 
text). 

~ To copy and paste text: 

1. Place the cursor on the line: 

printf( "Interest rate: %f\n", rate ); 

2. From the Edit menu, choose Copy. This action places the entire line on the clip­
board for later reference. 

3. To insert the copied line, choose Paste from the Edit menu. 

4. Paste the same line three more times to create enough printf statements for the 
remainder of the program. 



16 Environment and Tools 

Your screen should look like the following figure: 

} 

// yet input from the user 
printf( "Enter present value:'n" ); 
seanr( "%f"J lI:pv ); 
printf( "Enter interest rate in percent:'n" ); 
scanf ( "%f", /l;rate ); 
printf( "Enter number of periods in years:'n" ); 
scanf( "%i", /l;nper ); 

ratepct = rate / 1200.8; 
actnper = nper * 12; 
// calculate the payment amount 
prnt = pv * (ratepct / (1.8- (1.8 / 

(pow((1.8 + ratepct), actnper ))))); 
printf ( "Principal: %f'n", pv ); 
printf( "Interest rate: %f'n", rate ); 
printf ( "Interest rate: :..:r'n", rate ); 
printf( "Interest rate: %f'n", rate ); 
printf ( "Interest rate: %f'n", rate); 
printf( "Interest rate: %f'n", rate ); 

I 

.. 
l=HeJp> <AJt=Menu> <F6=Window> M N 00827.827 

There are now five copies of the same printf statement. Next, you'll modify the 
printf statements so that each corresponds to the preceding example. The cursor 
should be on the first copy of the printf statement. 

Before you modify the text, you must select what you are going to modify. 

~ To select text: 

1. Point to the I in "Interest Rate" in the second printf statement. 

2. While holding down the left mouse button, drag the mouse until it is over the 
colon. 



IDI Double-click 
a word to select it. 

Quick Start 17 

i Ie Edit Sear 
=[ 1] 

} 

// get input from the user 
pr i ntf ( "Enter present va lue : 'n" ); 
scanf ( "%f", /lpv ); 
pr i ntf ( "Enter interest rate in percent: 'n" ); 
scanf ( "%f", /Irate ); 
printf ( "Enter number of periods in years :'n" ); 
scanf( "%i" , /lnper ); 

ratepct = rate / 1200.0; 
actnper = nper * 12; 
// calculate the payment amount 
prot = pv * (ratepct / (1.0- (1.0 / 

(pow((1.0 + ratepct), actnper ))))); 
printf ( "Principal: %f'n", pv ); 
printf( "Interest rate: %f'n", rate ); 
printf( u,maa44in!G: %f\n u

J rate ); 
printf( "Interest rate: %f'n", rate ); 
printf( "Interest rate: %f'n", rate ); 
printf( "Interest rate: %f'n", rate ); 

>+ 

1=Help> <Alt=Menu> <F6=Window> M tI 00027.02 

The text Interest Rate is now selected and highlighted on your screen. 

~ To select this text with the keyboard: 

1. Move the cursor to the first character of text you want to select. 

2. Press SHIFT +RIGHT ARROW until the cursor is on the colon. 

I 

Now that the text is selected, type: Number of Years. When you type the first char­
acter, you'll notice that the selected text is deleted. 

Important If you select an area of text and type, PWB replaces the selected text 
and does not save it on the clipboard. You can recover the text by choosing Undo 
from the Edit menu. 

Now change the variable rate on the same line to nper, as follows: 

1. Select the word rat e and press DEL. 

The word is removed from the file and placed on the clipboard. Pressing DEL is 
a direct way to delete text. 

2. Type the word nper 

Use the techniques you've learned to make the rest ofthe corrections, and then 
save the file by choosing Save from the File menu. 



18 Environment and Tools 

Note You can turn on automatic file saving by setting the Autosave switch to 
yes with the Editor Settings command on the Options menu. When Autosave is 
turned on, PWB automatically saves your file before executing certain commands 
such as running your program or switching to another file. For example, if you run 
a program that is not yet stabilized, PWB ensures that your file is stored safely in 
case you have to reboot. 

Opening an Existing File 

l1li If you know the 
name of the file, you 
can type it into the File 
Name text box. 

The remainder of this chapter uses another program, ANNUITY1.C, which you 
can now open in PWB. This program is a slightly different version of the program 
you just entered. It has several errors you will correct as you follow the tutorial. 

~ To open ANNUITYl.C: 

1. From the File menu, choose Open (press ALT+F, 0). 

PWB displays the Open File dialog box. 

,------------ Open File ----------, 
~ile /tame: [CIEl······································ ...... ] 

D:\C70e\SOURCE\SAMPLES\PWBTUTOR 

Fi Ie !list: 

ANNUI1Y . BAX 
A/t/tUI1Y.C 
ANNUI1Yl.C 
C/tT.mX 

[ ] ijseudof i Ie 
[X] :ilew Window 

COU/tT.C 
COUNT.H 
COU/tTBUF.C 
COUNTCH.C 

ilJrives / Dirs: 

[-A-] 
[-B-] 

[-C-] 
[-D-] 

~ OX I <Cancel> < ~Ip > 

t 

I 

~I 

PWB uses *. * as the default filename. This causes PWB to display all files in 
the current directory in the File List box. 

2. If you are not in the directory where the sample programs are located, press 
the TAB key twice to move to the DriveslDirs box. The example files are in 
\C700\SOURCE\SAMPLES\PWBTUTOR if you accepted the default direc­
tory suggested by SETUP. 

You'll notice that the cursor is a blinking underline. That means that although 
you have activated the list box, you haven't yet selected an item. 



a Double-click 
the drive or directory 
to move to that 
location. 

a Double-click 
the filename to open 
the file. 

Quick Start 19 

3. Use the arrow keys to move to the drive or directory where the files are located. 

As you press the arrow keys, you'll notice that the cursor changes to a bar that 
highlights the whole selection. This is called the "selection cursor." The text of 
the selected item also appears in the File Name box. 

4. When you have highlighted the drive or directory you want, press ENTER to 
move there. 

5. Use the TAB key to move to the File List box. 

6. Use the arrow keys to move to ANNUITY1.C. 

7. When you have highlighted ANNU ITYl. C, press ENTER or click OK to accept 
your selection and open the file. 

PWB opens ANNUITYl.C for editing. 

2.2 Single-Module Builds 
Now that you have opened your file, you probably want to compile and run it to 
see if it works. Compiling the source files and linking them with the run-time li­
braries is called "building the project." It results in an executable file. A project 
build can also: 

• Create and update the browser database. 

• Create a Windows dynamic-link library (DLL). 

• Build a library of routines. 

Setting Build Options 
Before you build a program, you must tell PWB what sort of file to create by using 
the commands on the Options menu. Use the commands from the Options menu to 
specify: 

• The run-time support for your program. This is important for mixed-language 
program development, where you have some source files in C and some in 
another language. With Basic, for example, the run-time support must be 
Basic's run-time support. 

The run-time support you choose determines the run-time libraries that are used 
and the types of target environments that can be supported. 

• Project template. The template describes in detail how PWB is to build a pro­
ject for a specific type of file (.EXE, .COM, .DLL, .LIB) and the operating en­
vironment for the target file (DOS, Windows, and so on). 

• Either a debug or release build. Debug options normally specify low levels of 
optimization and the inclusion of CodeView debugging information. Release 
options specify higher levels of optimization and no Code View information. 



20 Environment and Tools 

• A build directory. PWB builds your object and executable files in your current 
directory unless you specify otherwise. (This option is reserved for projects that 
use explicit project files, which are described in Chapter 3.) 

~ To set the project template for ANNUITY1.C: 

1. From the Options menu, choose Set Project Template from the Project 
Templates cascaded menu. 

min". 
Environment Uariables ... 
Key Assignments .. . 
Editor Settings .. . 
Colors ... 

...------------------.iJd Options ... 
Set Project Template ... 

Etomize Project Template .. . 
S Custom Project Template .. . 
i· move Custom Project Temp lates ... 

age Options 

• e Options ... 

Note that the actual order ofthe menu items may differ from the illustration 
because PWB' s extensions can be loaded in any order. 

2. PWB displays the Set Project Template dialog box. 

,------------- Set Project Template -----------, 
Runtime i-tpport: 

None I ~ .. 
Project Oemplates with Runtime Support for: None 

Generic Options t 
~~ I 

~~~ ~~:!:i~~XE ~I 
Current Runtime Support: None
Current Project Template:

I OK • <Cancel> < ~lp >

Quick Start 21

This dialog box typically has the entries None, C, and c++ in the Runtime Sup­
port list box. If you have installed other languages, their names appear as well.

If the current run-time support is not C, you need to choose C as the run-time
support, and you must also select a project template.

3. Click C, or press the DOWN ARROW key until C is highlighted.

4. Move to the Project Templates list box by clicking in the box, pressing the TAB
key the appropriate number of times, or by pressing ALT + T.

5. Select DOS EXE.

6. Choose OK to set the new project template.

~ To set the build options for ANNUITY1.C:

1. From the Options menu, choose Build Options.

PWB displays the Build Options dialog box.

,--------- Build Options --------,

I () Use jilebug Options I
(.) Use ijJelease Options J

[I Build Directory: [- I

I OK ~ <Cancel> < Delp >

2. Tum on Use Debug Options by clicking the option button or by pressing ALT+D.

This option tells PWB that you are building a debugging version of the pro­
gram. PWB uses debug options when you build or rebuild until you use the
Build Options dialog box to choose Use Release Options.

3. Choose OK.

PWB saves all the options that you specify. You don't have to respecify them each
time you work on your project.

Figure 2.2 shows the three sets of options that PWB maintains for each project.
Global options are used for every build. Debug options are used when Use Debug
Options is turned on in the Build Options dialog box. Release options are used
when Use Release Options is turned on.

22 Environment and Tools

Project Options

Global Debug Release
Options Options Options

Use
Debug Selected Options ~ Build 1-

Options

~I Current Build Options

Figure 2.2 PWB Build Options

Use
Rete ase

ons Opti

I

Options Menu

Language Options

Link Options

~ Build Options ~L-___ -------'

You can set compiler and linker options for both types of builds by using the Lan­
guage Options commands and the LINK Options command. These commands do
not determine which set of options are used when you build the project. Only the
Build Options command determines which set of options (debug or release) are
used when you build the project or compile a file in the project.

Global options typically include settings for warning level, memory model, and
language variant. These are options that do not change between debug and release
versions of a project. The debug and release sets control options that differ be­
tween the two types of builds, such as the level of optimization and the inclusion
of CodeView debugging information. Debug options normally specify low levels
of optimization and the inclusion of debugging information. Release options usu­
ally specify high levels of optimization and no debugging information.

Setting Other Options
The Options menu also contains commands that allow you to describe the desired
project build more completely. You don't need to use any of these options to build
ANNUITY1.C because the default values supplied by the template are correct for
the type of program you choose.

Quick Start 23

The Options menu contains the following commands:

• C Compiler Options and C++ Compiler Options in the Language Options cas­
caded menu. These commands let you specify compiler options specific to
either debug or release builds and general options common to both types of
builds. Use the Compiler Options command to customize the options given by
your project template. You can specify memory model, warning level, proces­
sor type, and so on.

If you have more languages installed, their Compiler Options commands also
appear in the Languages Options cascaded menu.

• LINK Options. This command parallels the Compiler Options commands. You
can specify options specific to debug or release builds and general options com­
mon to both debug and release builds.

Use LINK Options to specify items such as stack size and additional libraries.
You can also select different libraries for debug and release builds. This is
handy if you have special libraries for debugging and fast libraries for release
builds.

• NMAKE Options. This command lets you specify NMAKE command-line
options for all builds. This option is particularly useful if you have an existing
makefile that was not created by PWB or if you have modified your PWB pro­
ject makefile. For more information about these subjects, see "Using a Non­
PWB Makefile" on page 61.

• CodeView Options. This command allows you to set options for the CodeView
debugger.

Building the Program
Now that you've set your options, you can build the program. Note that the sample
program contains intentional errors that you will correct.

.. To start the project build:

1. From the Project menu, choose Build.

PWB tells you that your build options have changed and asks if you want to
Rebuild All.

24 Environment and Tools

2. Choose Yes to rebuild your entire project.

After the build is completed, PWB displays the following dialog box:

r--------c--- Build Operation COMplete --------,

Rebuild all

6 Errors~warnings

lIiew Results. <Run Program) <Debug Program) <Cancel) < ~lp)

You can choose one of several actions in this dialog box:

• View the complete results of the build by opening the Build Results window.

• Run the program if building in DOS. You can run a DOS program right away if
the build succeeds. If the build fails, you should fix the errors before you at­
tempt to run the program.

To run a successfully built Windows program, you must return to the Program
Manager and use the Run command on the File menu.

• Debug the program if building in DOS. If the build succeeds but you already
know the program is not producing the intended results, you can debug your
DOS program using CodeView.

To debug a Windows program, you must return to the Program Manager and
start CodeView for Windows from the Microsoft C/C++ Program Group.

• Get Help by choosing the Help button or by pressing FI (as in every PWB
dialog box).

• Cancel the dialog box. This returns you to normal editing.

Choose Cancel to dismiss the dialog box (press ESC). PWB keeps the results of the
build so that you can view the build messages later or step through them to view
the location of each error. The next section describes how to do this.

Fixing Build Errors
For each build, PWB keeps a complete list of build errors and messages in the
Build Results window. The ANNUITYl.C program that you just built contains
several errors that you'll identify and fix in this section.

Quick Start 25

~ To go to the first error:

• From the Project menu, choose Next Error, or press SHIFT+F3.

PWB positions the cursor on the location of the first error or warning in your pro­
gram; in this case, the keyword int is misspelled. The message from the compiler
is displayed on the last line of the window .

• [1] D:\C78e\SOURCE\SAMPLES\PWDTUTOR\AHHUITV1.C
//

// AHHUITV1.C - Generate annuity table.
// Contains intentional errors for use with the PWD TUtorial
//

Uinclude <stdio.h>
Uinclude <math.h>

void maine void)
{

float Principal, Rate, Pmt, RatePct, Per Interest, PerPrin;
int Hper;
int ActHper;
ont Period;

//

// Get input from the user.
//

printf("\nEnter Present Value: ");
scanf ("%f", &Principal);

AHHUITY1.C(13) : error Cl8&5: 'ont' : undeclared identifier

1 t
D

,.
l=Help> <Error Help> <F6=Window> H EO:l13.EX'l5

Whenever a message is displayed on the bottom line of the window, you can
get Help on that message by clicking the Help button on the status bar or by
pressing FI.

~ To get Help on a message that is not currently displayed:

1. Press ALT +A. This executes the PWB function Arg to begin a text argument.

2. Type the error number with its alphabetic prefix. In this example it would be
C2065. For the C and C++ compiler, be sure to use the exact letter case of the
message number.

3. Press FI.

26 Environment and Tools

When you use one of these techniques to get Help on the message, PWB opens the
Help window and displays information about the error.

_U_C".4M'QIiWY4 .• i§'MUli'Mlm.UJ'&Wai·"'*'WnIRWltpi .
• [3] Help: C2065 [286] Illt

~Up~ ~Contents~ ~Inde~ ~Back~ D

Compiler error C2065

, ident if ier' : undec lared ident ifier

The specified identifier was not declared.

float Principal, Rate, Pm!, RatePct, Per Interest , PerPrin;
int tlper;
int Acttlper;
ont Period;

//

// Get input from the user.
//

printf("'nEnter Present Value: ");
scanf ("xf", IIPrincipal);

AtltlUITY1.C(13) : error C2065: 'ont' : undeclared identifier

<Fl=Help> <Error Help> <F6=Window> P N 0I'i031.001

When you are finished reading the Help, close the Help window by clicking the
close box in the upper-left corner of the Help window, by pressing ESC, or by
pressing CTRL+F4.

Correct the first error by changing ant to i nt.

The compiler reports two additional errors that are side effects of the misspelling
of int. You could continue choosing Next Error to skip these additional messages,
but there is another way to go directly to a selected error in Build Results.

~ To go to a selected error:

1. From the Window menu, open the PWB Windows cascaded menu and choose
Build Results.

Quick Start 27

PWB opens the Build Results window, which contains the complete results of
the build.

File Edit Search Project Run Options Browse Window Help
[11 D : \C700\SOURCE\SAMPLES\PWD11J1llR\AI'II'IU I1Y1 . C ------....

//

// AI'II'IUITY1.C - Generate annuity table.
// Contains intentional errors for use with the PWD TUtorial
//

UincIude <stdio.h>
Uinclude <math.h>

'-'lid maine '-'lid)
{

float Principal, Rate, Pmt, RatePct, Per Interest , PerPrin;
.~[3] Build Results ------=====lIJ.lt

+++ PWD [D:\C700\SOURCE\SAMPLES\PWD11J1llR] Rebuild all D
I'lMAKE /a /f c:\temp\PWDeB993.mak all

Microsoft (R) Program Maintenance Utility Uersion 1.20.0953
Copyright (c) Microsoft Corp 1988-91. All rights reserved.

cl /c /WZ /BATCH /qc /Gi.\AI'II'IUITY1.mdt /Zr /Zi /Od /Fo.\AI'II'IUITY1.obj
Microsoft (R) C/C++ Optimizing Compiler Uersion 7.00.252

(c) Microsoft 1984-1991. All r reserved.

2. Find the next message that is not a side effect of the first error, and move the
cursor to that line in the Build Results window.

Move the cursor to the message:

error C2001: newline in constant.

3. From the Project menu, choose Goto Error.

PWB jumps to the location of the second error in the program.

Correct the second error in the program (an unterminated string) by adding the
missing double quotation mark (") one space beyond the colon (:) in the prompt
string.

Running the Program
Now that all the errors are corrected, you can run the program.

~ To run the program:

1. From the Run menu, choose Execute.

PWB detects that you've changed the source and displays a dialog box with the
following options:

28 Environment and Tools

,------- Dependent f ile(s) have changed! --------,

Do you want to Build/Rebuild current target?

EWuild Target~ <Webuild All> <Run ~ogram> <Cancel> < Delp >

Option

Build Target

Rebuild All

Run Program

Cancel

Description

Build the program by compiling only the modified files. For more
information about building specific targets, see "Using Non-PWB
Makefiles" on page 61.

Build the program by compiling all program files. For this single­
module program, Build Target and Rebuild All are equivalent.

Run the program without rebuilding it.

Cancel the Execute command.

Since you've corrected errors, you want to build the target.

2. Choose Build Target to build the program.

When the build completes, PWB displays the following dialog box where you can
choose Run Program to run the finished program.

,...-------- Build Operation Complete ----------,

Rebui Id all

o Errors/Warnings

<!iew Results> <Wun Program> <~bug Program> acancel~ < Delp >

The following sections describe debugging with the Microsoft CodeView debug­
ger. If you're already familiar with CodeView, you can skip ahead to "Formatting
Text" on page 34 or go directly to Chapter 3, "Managing a Multimodule Program."

2.3 Debugging the Program
PWB integrates several Microsoft tools to produce a complete development en­
vironment. Among those tools are NMAKE, a program maintenance utility, and
Code View , a symbolic debugger. You saw how PWB uses NMAKE to build pro­
grams; now you can use PWB as a gateway to CodeView.

Earlier, you chose Use Debug Options in the Build Options dialog box. A debug
build typically includes the compiler options that generate Code View information.
Therefore, the program is ready to debug with the CodeView debugger.

Quick Start 29

Using CodeView to Isolate an Error

• You can always
return to PWB from
CodeView by choosing
Exit from CodeView's
File menu.

In addition to the typographical errors that you just corrected, ANNUITY1.C con­
tains a logic error: when the program prints the annuity table, the year numbers
start at 0 instead of 1. You can use Code View to isolate the errors in program logic.

This program calculates the payment on a loan, so you can use the following test
case:

Present Value:

Interest Rate:

Period:

$14,500

14%

5 Years

The expected result is a monthly payment of $337.39.

~ To start CodeView:

• From the Run menu, choose Debug .

If anything in your program is out-of-date, PWB asks if you want to build or re­
build the current target. If you modified the source file to correct errors or change
text, PWB considers it out-of-date relative to the executable file that you built ear­
lier. If this happens, build the program and choose Debug from the Run menu.

CodeView starts, showing you the source line of the program's starting point. In
this case, the starting point is the opening brace of the function rna in.

local

[3]-------- source1 CS:IP AtltlUI1Y1.C ----------,
4:
5:
6:
7:
B:
9:
10:
11:
12:
13:
14:

//

Binclude <stdio.h>
Binclude <math.h>

'-"lid maine '-"lid)
{

float Principal. Rate. Pm!. RatePct. Per Interest. PerPrin;
int tlper;
int Acttlper;
int Period;

[91~corrrnand=

>

,.!1

<FB=Trace> <F10=Step> <F5=Go> <F3=Src1 Fmt> DEC

30 Environment and Tools

Ii!I Click the right
mouse button on line
32 Drtype G.32 to
continue execution to
line 32.

Ii!I You can resize
the window with the
mouse by dragging the
lower-right corner to
the desired location.

The first step in debugging a program is to verify input values. You will know
what values have been supplied after the last scanf statement has executed, so run
the program up to that point as follows:

1. If the Source window (the window displaying your program) is not the active
window, press F6 until it is. You can tell that a window is active when the title
bar is highlighted and it has scroll bars.

2. Move the cursor to line 32, RatePct = Rate / 1200.0

3. Press F7 (continue execution to cursor).

The program runs, asking for input. Supply the values you are using as a test
case:

Present Value: 14500

14 Interest:

Number of Periods: 5

CodeView stops your program at line 32.

Fi Ie Edit Search Run Data Options Calls Windows Help
.~[l]= local =It

[BP-ea86] float PerPrin = 1.56184e-988
[BP-008A] float Rate = 14.008e
[BP-000E] float Per Interest = 4.85925e-038
[BP-0010] short Period = -32557
[BP-0012] short Nper = 5
[BP-0016] float Pmt = 4.62134e-041
[BP-001A] float Principal = 14500.0
[BP-001E] float RatePct = 2.41561e+007

28:
29:
30:
31:
32:
33:
34:

// number of periods in months (ActNperl. Then, calculate
// the monthly payment (Pmtl.
//

RatePct = Rate / 1200.0;
ActNper = Nper * 12;
Pmt = Principal * (RatePct / (1.0 - (1.0 / L'91------------ command ---------------,

<F8=Trace) <F10=Step) <F5=Go) <F3=Srcl Fmt) <ENTER=Expand> DEC

4. Resize the Local window until you can see all the variables:

a. Press F6 until the Local window is active. (The active window is the window
with the scroll bar.)

b. From the Window menu, choose Size.

c. Use the DOWN ARROW key to enlarge the Local window.

When the window is the desired size, press ENTER to accept that size.

d. Press F6 to move back to the Source window.

n The CodeView
interface and menu
commands are similar
to PWB, so techniques
you use in PWB are
often useful in
CodeView.

n You can type
P 3 in the
Command window
to step three
statements.

Quick Start 31

Now you can verify that the initial data used by your program is correct by ex­
amining the values of Pv, Rate, and Nper. They should have the values 14500, 14,
and 5, respectively.

Note For case-insensitive languages such as Basic or FORTRAN, CodeView dis­
plays all variables, subroutine names, and function names in uppercase.

The next step is to execute the program until the initial calculations are done. The
calculations are complete prior to the for loop. If you let the program execute that
far, the program produces some screen output that's useful for debugging.

~ To execute to the for loop:

1. From the Search menu, choose Find.

2. Type for in the Find Text box.

3. Press ENTER to move the cursor to the for statement.

Although your cursor is now on line 62, the program has not executed the state­
ments between where it stopped (on line 32) and the current cursor position.

4. Press F7 to execute all code up to but not including this location.

Your program has now displayed the summary information on the screen. To
switch to the output screen, press F4. To switch back to the CodeView screen,
press F4 again (or any key).

On the output screen, you should observe the following results:

Monthly Payment:

Total Payments:

Total Interest:

337.39
20243.38

5743.38

These results are correct. You know that the program works properly up to the
beginning of the for loop. Therefore, you can ignore all code up to this point and
focus on discovering why the year number is incorrect.

~ To step through one cycle of the loop and examine your data:

1. Press FlO three times to step three lines.

This calculates values for Per Interest (interest for the current period) and
PerPri n (contribution to principal for the current period).

2. Examine the values of PerInterest and Prin in the Local window to see if
they are correct. The formula for simple interest is:

Interest = Outstanding Principal * Periodic Interest Rate

Similarly, the formula for the contribution principal is:

Contribution = Payment - Interest

32 Environment and Tools

In the test case, the correct values for PerInterest and PerPrin are 169.167
and 168.223, respectively. These values should appear on your screen.

3. Press FlO again to step one more program statement-the printfstatement.

4. Press F4 to examine the screen output. The year number is still incorrect.

You have reduced the problem to the arithmetic in the printf call itself. The ar­
gument list for printf contains the expression Per i 0 d / 12. Integer truncation
causes all values of Peri od that are less than 12 to yield the result O.

Now that you have identified the apparent bug, you can test the solution. The
proposed solution to this problem is to replace the expression Peri od / 12 with
Peri od / 12 + 1. You can testthis solution by using the CodeView expression
evaluator.

~ To test the new expression:

1. Activate the Command window.

2. Type the Display Expression (?) command with the test expression:

? Period / 12 + 1

CodeView evaluates the expression and prints 1, the correct result.

Testing Conditions in the Watch Window

n You can use
CTRL+W to add a watch
expression quickly.

You know the solution works for one iteration of the loop but not if it works for
other conditions. You can test a larger range of possible conditions by using break­
points and the Watch window-a window in which you can view the value of
selected data or expressions during a debugging session.

~ To test conditions using the Watch window:

1. From the Data menu, choose Add Watch.

2. Type the proposed expression:

Period / 12 + 1

3. Choose OK to put this expression in the Watch window.

,------- Add Watch --------,

~ression: [Period / 12 + 1

I OK I <Cancel> < ~lp >

a Toseta
breakpoint on a line,
double-click the line.

a The status bar
reminds you about
commonly used
actions and keys. You
can click the buttons
with the mouse to
carry out the actions.

Quick Start 33

Now you can see the results of the expression as your program executes, but you
have to stop the program at places where the results of this expression are informa­
tive. You do this by setting breakpoints. A breakpoint is a location to stop execu­
tion or a condition when you want your program to stop.

1. Move to the Source window by clicking it or by using the F6 key.

2. Move the cursor to the printf statement and press F9 to set a breakpoint there.

[BP-8986] float PerPrin = 1.
[BP-eaBA] float Rate = 14.eeea
[BP-ee9E] float Per Interest = 4.

[3]-------- source1 CS:IP AttttUI1Y1.C ----------,
61:
62:
63:
64:
65:
66:
67:
68:
69:
78:
71: }

fore Period = 1; Period (= Actttper; Period++)
{

Per Interest = Principal * RatePct;
PerPrin = Pmt - Per Interest;
printf("%6d %6d %9.2£ %9.2£'n".

Period. Period / 12. PerPrin. Per Interest);
Principal = Principal - PerPrin;
}

L'''----------- cOlllllilnd ---------------,

<F8=Trdce) <F10=Step) <F5=Go) <F3=Srcl Fmt> <EttTER=Expdnd) DEC

This breakpoint stops execution and returns control to Code View each time the
printf statement is about to be executed. You can then examine the values of
the variables in the Local window and the results of your expression in the
Watch window.

3. Press F5 to run the program.

Now each time you press F5, the program executes all statements up to but not
including the printf statement. Repeat this until Pe r i od equals 12. At this point,
you are in the last month of the first year. Notice that the expression you specified
does not handle this boundary condition correctly. It changes from 1 to 2 one
period too early.

~ To adjust for the boundary condition:

1. Add the following expression to the Watch window:

(Period - 1) / 12 + 1

2. Restart the program by choosing Restart from the Run menu.

34 Environment and Tools

IIIiI CodeView
numbers watch
expressions starting
at zero. To remove
this expression, you
can type WC0 in the
Command window.

3. Press F5 to start execution.

The program asks for input again. These values are:

Present Value: 14500

Interest: 14
Number of Periods: 5

Your program stops at the breakpoint you set on the printf statement.

On the first iteration, you'll notice that the watch expression from the last run,
Peri od / 12 + 1, is still in the Watch window.

~ To remove the incorrect expression:

1. From the Data menu, choose Delete Watch.

2. Select the expression you want to delete.

3. Press ENTER to delete the Watch expression from the window.

Run your test; press F5 to step through the loop one iteration at a time. This time,
you should get the correct results.

~ To switch from Code View back to PWB:

• Choose Exit from the Code View File menu.

Now that you've built and debugged your program, you may want to reformat
your code to make it easier to read. The following section describes how to do this
using PWB' s editing functions.

2.4 Formatting Text
Well-formatted code is more readable and easier to maintain. ANNUITY1.C is not
very well formatted, but PWB can help you indent blocks of code to make them
more readable. For example, the printf statement at line 41 is continued across
multiple lines. Indenting continued lines of a statement lends clarity to the code.

Quick Start 35

Indenting Lines of Code

~ To indent lines:

IiII The line and
column of the cursor
appear in the status bar.

1. Go to the statement where you want to indent text (on line 41). Press ALT+A,

type 41, then press CTRL+M to jump to line 41.

This sequence of keystrokes is pronounced "Arg 41 Mark." The PWB function
Arg begins an argument (41) that is passed to the Mark function. When you
pass a number to Mark, PWB moves the cursor to that line.

You can also do this from the menu by typing the line number in the Goto
Mark dialog box from the Search menu.

2. Move the cursor to the double quotation mark (") in column 5.

3. Hold down the SHIFf key and press the RIGHT ARROW key eight times so that the
cursor is in column 13, under the opening double quotation mark in the printf
statement.

~~ Print a summary of the annuity
~~

printf ("\n\n"
'P,iliii!Jal: %13.2f\n"
"Interest Rate: %13.2f\n"
"l'Iumber of Years: %13i\n"
"rtmthly Payment: %13 .2f\n"
"Total Payments: %13.2f\n"
"Total Interest: %13.2f\n\n\n",
Principal, Rate, I'Iper, Pmt,
Pmt * (float)l'Iper * 12.8,
Pmt * (float)l'Iper * 12.8 - Principal);

~~

~~ Print headings of the amortization table.
~~

printf ("Period Year Principal Interest\n"
u _____________________________ \nu);

~~

~~ Loop on the number of periods, printing the period, year,
~

eneral Help> <Fl=Help> <Alt=Menu> N ElXH1.81

4. Press SHIFf +DOWN eight times to select the rest of the statement.

36 Environment and Tools

File Ed it Search Project Run opt ions ; • !j;i-

1] D:\C799\SOURCE\SAMPLES\PWBTUTOR\AHHUITY1.C
// Print a summary of the annuity

//
// Print headings of the amortization table.
//
printf ("Period Year Principal Interest\n"

"------ ------ --------- --------\n");

//
// Loop on the number of periods. printing the period. year.

~

,ener" I Help> <Fl-Help> <lilt=Menu> N OC049.81

By default, the editor starts in stream selection mode. This mode allows selec­
tion to begin at any point and selects all characters in a stream between the
beginning and end of a selection, as shown above. You will need to change the
selection mode to perform the block indent.

The Edit menu lets you choose from three selection modes:

• Stream mode. The default, as explained previously.

• Line mode allows you to select complete lines of text.

//
// Print headings of the amortization table.
//

printf("Period Year Principal Interest\n"
"------ ------ --------- --------\n");

//
// Loop on the number of periods. printing the period. year.

~ "
,eneral Help> <Fl=Help> <lilt=Menu> N OC049.813

n Tochange
selection modes with the
mouse, click the right
button while holding
down the left button.

Quick Start 37

• Box mode allows you to select a rectangular section of text.

File Ed it Search Project Run Opt ions Browse Wi ndow H~ 1 P
1=[11 D:'C700..SDURCE'SAMPLES'PWBnJllIR'AItItU['lY1.C =====~l t

// Print a summary of the annuity

nprincip.
"Interes
"Number •
"11:mthIy '.
"Total P.
"Total I

;(13.2f'n"
;(13.2f'n"
;(13i'n"
;(13.2f'n"
;(13.2f'n"
;(13.2f'n'n'n",

rincipa
mt (f

mt * (f

Itper, Pmt,
lOa·,,,n·per * 12.8,
lOa·,,,n·per * 12.8 - Principal);

//
// Print headings of the amortization table.
//
printf ("Period Year Principal Interest'n"

,,------ ------ --------- --------\n");

When the starting column of the selection is the same as the ending column,
PWB selects the range of lines, just as it does for line selection mode.

S. Choose Box Mode from the Edit menu. Your screen should look like the pre­
ceding picture.

6. Press CTRL+N to indent the lines.

Pressing CTRL+N executes the Linsert function. When you have a box selected,
Linsert inserts spaces into the selected area. With no selection, Linsert inserts
a line above the cursor.

Now the printfformat string and arguments are neatly aligned.

38 Environment and Tools

•• - I ; • wse Window Help
1=[11 D : ,C?86\SOURCE,SAMPLESWWlITIJ1UR,AItItU 11Y1. C =======Il t

Searching for Text

// Print a summary of the annuity
//
printf(u\n\nu

//

"Principal: ~13 .2f'n"
"Interest Rate: ~13.2f'n"
"ltumber of Years: ~13i'n"
"I'k:mthly Payment: ~13.2f'n"
"Total Payments: ~13.2f'n"
"Total Interest: ~13.2f'n'n'n".
Principal. Rate. Itper. Pmt.
Pmt * (float)ltper * 12.0.
Pmt * (float)ltper * 12.0 - Principal);

// Print headings of the amortization table.
//
printf ("Period Year Principal Interest'n"

,,------ ------ --------- --------\n'·);

//
// Loop on the number of periods. printing the period. year.

,eneral Help> <Fl=Help> <Alt=Nenu> M It ~1.
..

You can improve readability by indenting statements within loops. You'll now use
PWB's search menu to find a for loop and indent it.

~ To find the for loop:

1. From the Search menu, choose Find.

PWB displays the Find dialog box.

2. Type for in the Find Text text box.

Find
!lind Text: [for- -]

[] j!og Search , illirection -
(.) ~ward

[] Match !ase () I; ckward
[] ~gular Expression WItIX) () Find ~Il
[] Vap Around

<Files ... >

I OJ(I <Cancel> < IJelp >

3. Click OK or press ENTER to locate the for statement.

4. You're still in box selection mode, so select the area between the for and the
terminating brace. Make the selection four characters wide.

5. Indent the block by pressing CTRL+N to execute the Linsert function.

Quick Start 39

For more information on searching, see "Searching with PWB," on page 85.

You've now learned the basics of editing and reformatting text. PWB has
many more commands for manipulating text. See Chapter 7, "Programmer's
WorkBench Reference," for details on all PWB functions.

2.5 Where to Go from Here
Now that you've created, built, and debugged a simple program, you've begun to
discover the power of PWB. In Chapter 3, "Managing Multimodule Programs,"
you learn how to create and manage projects with more than one source file.

Managing Multimodule Programs

This chapter expands on the work you did in Chapter 2 and explains how to build
and maintain multimodule programs using PWB' s integrated project -management
facilities. PWB offers a new, more efficient way to manage complex projects. You
organize and build your project entirely within PWB, using convenient menus and
dialog boxes instead of makefiles or batch files.

PWB stores the information needed to build and manage your program in two
files, the project makefile and the project status file. These are called the "project."
When you open the project, PWB automatically configures itself to build your pro­
gram. To move from one project to another, you close one project and open
another.

3.1 Multimodule Program Example
In this chapter, you'll learn to set up a multimodule project in PWB by building
COUNT.EXE, a three-module program. The COUNT program analyzes text files
and produces a statistical profile of the text.

The following modules make up COUNT.EXE:

Module

COUNT.C

COUNTBDF.C

COUNTCH.C

Fuuction

Program driver; contains main and calls all other routines.

Analyzes text in the input buffer.

Analyzes a character.

The program also contains a common header file COUNT.H in addition to these
three source modules. Figure 3.1 shows the components of COUNT and how they
combine to build the executable file. Later in the tutorial, you will add the
SETARGV.OBJ object file.

42 Environment and Tools

COUNT.H

_ .. --------I(SLlBCE.LlB)

.--------,
..... - - - - - - - - - - - - - _...I SETARGV.OBJ 1 1 _________ 1

Figure 3.1 The COUNT Project

To build COUNT.EXE, you need to compile the three source files and link the cor­
rect libraries. You also need to specify various options, such as the target operat­
ing environment. All this information is contained in the COUNT project.

Creating the Project

III The executable
file you create takes on
the base name of the
project.

Start by creating a new project for COUNT. (If you have not started PWB, do so
now.)

~ To create a new project:

1. From the Project menu, choose New Project.

PWB displays the New Project dialog box.

r---------- Hew Project -----------,
~oject Hame: [...]

Current Runtime Support: Hone
Current Project Template: Generic Options

<let Project Template ... >

I OK I <Cancel> < melp >

2. Type COUNT in the Project Name text box.

3. Choose Set Project Template.

PWB displays the Set Project Template dialog box.

4. Select the following options:

• Runtime Support: C.

Managing Multimodule Programs 43

• Project Template: DOS EXE.

At this point, the Set Project Template dialog box should appear as follows:

,------------- Set Project Template ----------,
Runtime ~pport:

Project Uemplates with Runtime Support for: C

Generic Options t
DOS EXE

Current Runtime Support: None
Current Project Template: Generic Options

I OK ~ <Cancel> < ~lp >

This initial specification tells PWB what you intend to build and is saved as
part ofthe project.

5. Choose OK to return to the New Project dialog box, and then choose OK.

PWB displays the Edit Project dialog box for adding files to your new project.

The next section describes the types of files that can be added to the project. The
tutorial then continues by listing the example files to add to the list.

Contents of a Project
A project file list can contain the following files:

• Source code files (.C, .CPP).

• Object files (.OBl).

• Library files (.LIB).

• Module-definition files (.DEF).

• Resource-compiler source files (.RC).

These file types are all that are needed to create most DOS and Windows applica­
tions. Include files, such as STDIO.H, are not put in a project because they are not
primary components of a program build. PWB automatically adds the necessary
include files to your project. For more information on include files, see "Depen­
dencies in a Project" on page 45.

44 Environment and Tools

ImI To add the
files in one step,
type co-. c in the
File Name text box
and press ENTER.

Then choose Add All.

ImI Double-click a
file to add or remove it
from the list.

When you select the type of run-time support, PWB automatically specifies stan­
dard library files such as SLIBCE.LIB. Therefore, you do not need to add standard
library files to the project list.

~ To add the COUNT files to your project:

1. Choose the files you want to add to the project from the File List box. In this
case, you'll add COUNT.C, COUNTBUF.C, and COUNTCR.C. These files
are located in the \C700\SOURCE\SAMPLES\PWBTUTOR directory. If you
installed Microsoft C/C++ in a directory other than C700, adjust the path
accordingly.

Edit Project
ijile Ifame: [!!I!IIII:I!I ..]

File !list: D:\C70e\SOURCE\SAMPLES\PWBTUTOR D~ives / Dirs:

COUIfT.C .. f
COUIfTBUF.C [-A-] I
COUIfTCH.C [-B-] mi

[-C-] ...

iir'oject: ... \SAMPLES\PWBTUTOR\count.mak

COUIfT.C I ~d / Delete I
COUIfTBUF.C < UP Top of List >
COUIfTCH.C < ilear List >

< ADd All >

[X] S:gt [nclude Dependencies [X] DDnore System [nclude Files

<i!lave List> <Cancel> <]lelp >

You can scroll the File List box by clicking the scroll bars or by pressing the
arrow keys. For more information about using list boxes and other elements of
the PWB interface, see Chapter 4, "User Interface Details."

2. For each file, select it and choose Add / Delete to add the file to the Project list
box.

3. Choose Save List when you have added all three files.

PWB uses the rules in the project template along with the list of files that you
just specified to scan the sources for include dependencies and to create the pro­
ject makefile. This process is described in the next section.

Now your project completely describes what you want to build (the project tem­
plate), the component source files, and the commands used to build the project.

Managing Multimodule Programs 45

Dependencies in a Project
When you save the project, PWB generates a makefile from the project template,
files, and options you specified. This file also contains a list of instructions that are
interpreted by NMAKE. In addition, PWB generates the project status file, which
saves the project template, the editor state, and the build environment for the pro­
ject. For more information on the project status file, see "Project Status Files" on
page 138.

When you build the project, NMAKE examines the build rules in the project make­
file. These are rules that specify targets (such as an object or an executable file)
and the commands required to build them. For example, a rule for making a .OBI
file from a .C file can be expressed as follows:

.e.obj:
CL Ie $<

To reduce the amount of time builds take, NMAKE compiles or links only the
targets that are out-of-date with respect to their corresponding source file. This
process is simple if there is a one-to-one correspondence between sources and
targets. However, most programs use the #include directive to include definitions
or other program text. The object files must be made dependent not only on the
source file but also on the files that are used by the source file.

In the preceding section, you learned that you don't add include (.H) files to your
project. When you save the project, PWB scans your source files looking for
#include directives and builds dependencies on these files. Therefore, NMAKE
recompiles a source file if you change a file that it includes.

Scanning for include files can take some time, especially when using the Windows
include files. Because these system include files rarely change, you can turn on the
Ignore System Include Files check box in the Edit Project dialog box. This pre­
vents PWB from scanning these include files for dependencies.

Building a Multimodule Program
Now that the project files are complete, you can build the program in the same
way you built the single-module program.

~ To build a multimodule program:

1. You are starting on a new project, so you will want to use debug options for
the initial builds. Turn on the Use Debug Options option button in the Build
Options dialog box, as you did in "Setting Build Options" on page 19.

46 Environment and Tools

2. From the Project menu, choose Build.

PWB displays a dialog box to inform you that build information has changed
because you altered the build options.

3. Choose Yes to rebuild your entire project.

As the program is built, PWB shows status messages about the progress of the
build. When the build completes, a dialog box displays a summary of any errors
encountered during the build process.

Note The Next Error command on the Project menu works the same for a multi­
module build as for a single-module build. Because errors in a multimodule build
can occur in different files, PWB automatically switches to the file that contains
the error.

In some cases, you will want to force a complete rebuild of your project by choos­
ing Rebuild All from the Project menu. The difference between Build and Rebuild
All is that Build compiles and links only out-of-date targets and Rebuild All com­
piles all targets, regardless of whether they are current.

Running the Program
Now that your program is built, you can test it from inside PWB.

~ To run COUNT:

1. From the Run menu, choose Program Arguments.

2. Type the name of a text file to pass to the COUNT program. The COUNT.C
source file is a good file to use.

3. Choose OK to set the program arguments. PWB saves the arguments so that
you can run or debug the program many times with the same command line.

4. From the Run menu, choose Execute.

Managing Multimodule Programs 47

The results look like this:

File statistics for extra.txt

Bytes: 1029
Characters: 770
Letters: 649
Vowels: 233
Consonants: 416
Words: 141
Lines: 45
Sentences: 13

Words per sentence: 10.8
Letters per word: 4.6
Estimated symbols per word: 1.8

Press ENTER to return to PWB.

You have successfully created a multimodule project, built the program, and run
it, all from within the Programmer's WorkBench. You can now leave PWB.

~ To leave PWB:

• From the File menu, choose Exit or press ALT+F4.

PWB saves your project and returns to the operating-system prompt. If you ran
PWB from Windows, PWB returns to Windows.

Creating a PWB project is an important first step. However, most of the time you
will be maintaining projects. The next section provides an overview of project
maintenance. The tutorial then continues with the COUNT project.

Project Maintenance
Once you have created a project, you may have to change it to reflect the changes
in your project organization. You can:

• Add new file-inclusion directives to your source files.

• Add new source, object, or library files.

• Delete obsolete files.

• Move modules within the list.

• Change compiler and linker options.

• Change options for individual modules.

48 Environment and Tools

When you add a new include directive to a source file, you add a new dependency
between files. For the most accurate builds, you need to regenerate include depen­
dencies for the project.

~ To regenerate include dependencies:

1. From the Project menu, choose Edit Project.

2. Turn on the Set Include Dependencies check box.

3. Choose Save List.

PWB regenerates the include dependencies for the entire project and rewrites
the project makefile.

~ To add new files to an existing project:

1. From the Project menu, choose Edit Project.

2. For each file that you want to add to the project:

a. Select the file from the File List box, or type the name of the file in the File
Name text box.

b. Choose the Add / Delete button to add the file.

3. Choose Save List to rewrite the project makefile, set up the dependencies, and
add the commands for the new files.

To see how to add the SETARGV.OBJ file to the COUNT project, see "Adding a
File to the Project" on page 50.

~ To delete files from a project:

1. From the Project menu, choose Edit Project.

2. For each file that you want to remove from the project:

a. Select the file from the File List box, or type the name of the file in the File
Name text box.

b. Choose the Add / Delete button to remove the file from the list.

3. Choose Save List.

With most programming languages, you won't need to move modules within a pro­
ject. However, some languages or custom projects require files to be in a specific
order. If you're programming in Basic, for example, you must place the main mod­
ule of your program at the top of the list. Unlike other languages, Basic does not
define an explicit name where execution begins. Entry to a Basic program is de­
fined by the first file in the list.

Managing Multimodule Programs 49

~ To move a file to the top of the project file list:

1. From the Project menu, choose Edit Project.

2. Select the file you want to move to the top of the list.

3. Choose the To Top of List button.

Using Existing Projects

n To automatically
reopen the last project
whenever you start PWB,
set the Lastproject switch
to yes.

You'll now use the COUNT project that you just created for further work.

During a PWB session, the project you open remains open unless you explicitly
change it. If you have not already started PWB, you should do so now. In
Windows, click the PWB icon in the Microsoft C/C++ program group.

If you are not compiling from within Windows, you can start PWB and open the
COUNT project from the operating-system command line by typing the command:

PWB /PP COUNT

If the COUNT project is the last project you had open in PWB, type the following
command:

PWB /PL

If you have already started PWB, open the project now.

~ To open the project from within PWB:

1. From the Project menu, choose Open Project.

2. Choose COUNT.MAK from the File List box or type COUNT in the Project
Name text box.

Open Project
iiroject Narre: [COUNT .11'11< - - - - - - - --- - - - - - - - - -- . --- - _.- - -]

D:\C708\SOURCE\SAMPLES\PWDTUTOR

File !!list: !!lrives / Dirs:

CNT.11'I1< .. f
11I1II1;@I;)1: [-A-] I

EXTRA.11'I1< [-B-]

IIII O'lllER.11'I1< [-C-]
[-D-] l

[] ~e as a Non-PWD M<tkef i Ie
[X] I' store Window Layout

I 01< I <Cancel> < Jlelp >

50 Environment and Tools

3. ChooseOK

When you open the project, PWB restores the project's environment, including:

• The window layout with the window style, size, and position for each window.

• The file history-a list of open files for each window and the last cursor posi-
tion in each file.

• The last find string.

• The last replace string.

• The options that you used for the last find or find-and-replace operation, such
as regular expressions. See "Using Regular Expressions" on page 90 for more
information about regular expressions.

• The project template (for example, DOS EXE) and any customizations you have
made to the template such as changing the build type or a compiler or linker op­
tion.

• The command-line arguments for your program.

• All environment variables, including PATH, INCLUDE, LIB, and HELPFILES.

Note that you can customize the way PWB handles environment variables by
changing the Envcursave and Envprojsave switches. For more information,
see "Environment Variables" on page 137.

Note When you turn off the Restore Window Layout option, PWB does not re­
store the window layout, the find strings and options, or the file history. PWB
opens the project but keeps the same editor state as it had before you opened the
project.

Adding a File to the Project
As you develop a project, you will occasionally add new modules. For example,
you can add the object file SETARGV.OBJ to the COUNT project so that the
COUNT program accepts wildcards on the command line.

~ To add SETARGV.OBJ to your project:

1. From the Project menu, choose Edit Project.

The file and directory navigation lists in this dialog box work in exactly the
same way as those in the Open File dialog box. Choose the parent directory
symbol (..) in the Drives / Dirs list box to move up the directory tree. To move
down the tree, choose the destination directory.

l1li To specify a
directory listed in an
environment variable
such as LI B, type
$ LI B: in the File Name
text box and press
ENTER.

Managing Multimodule Programs 51

2. Change to the directory that contains your C libraries.

,..---------- Edit Project ----------,
~ile Name: [D:'C78e\LIB,SETARGU.OBJ··

File ~ist: D:'C78e\LIB

LNOCRTW.LIB MOUE.LIB ROMAH.FOH
MGRAPHFA.LIB MOUETR.LIB SCRIPT.FON
MGRAPHFP.LIB OLDNAMES.LIB SDLLCEW.LIB
MODERN.FON PGCHART.LIB

~oject: ... 'SAMPLES'PWBTUTOR'COUNT.MAK

COUNT.C
COUNTBUF.C
COUNTCH.C

................]

D~ives / Dirs:

[-A-]

[-B-]
[-C-]

a ~d / Delete a
< UP Top of List >
< !lear List >
< A!Jd All >

[] S!t Include Dependencies [X] Ignore System Include Files

<~ve List> <Cancel> < ~lp >

Notice that the directory displayed after the label F i 1 eLi s t reflects the
directory change.

3. Make sure the File Name text box contains *. * or *. OBJ.

4. Select SETARGV.OBJ in the File List box.

5. Choose the Add / Delete button to add the file to the project.

6. Since SETARGV.OBJ is not a source file and cannot have include dependen­
cies, you can tum off the Set Include Dependencies check box. If this check
box is left on, PWB regenerates the dependencies for all the files in the project.

7. Choose Save List.

SETARGY.OBJ is now part of the project. However, if you build the program
now, the linker displays the message:

error L2044: __ setargv : symbol multiply defined, use INOE

The linker produces this error because SETARGV.OBJ redefines entry points in
the standard run-time library. You must change linker options to disable extended
dictionary searching (that is, use the /NOE option).

~ To change the linker options:

1. From the Options menu, choose LINK Options.

2. Choose Additional Global Options.

3. Tum on the No Extended Dictionary Search in the Library check box.

52 Environment and Tools

4. Choose OK to close the Additional Global LINK Options dialog box.

5. Choose OK to close the LINK Options dialog box and use the new options.

You are now ready to build COUNT with the new command-line processing.

~ To build the modified project:

1. From the Project menu, choose Rebuild All.

PWB displays the message:

Current directory is not the project directory.
Change to project directory?

You received this message because you changed the current directory to the
directory with the C libraries when you added SETARGV.OBJ.

2. Choose OK to switch to the project directory and build the project.

You can run the COUNT program as before by choosing Execute from the Run
menu. To see how the program works with the new command-line processing, you
can specify *. C as the argument.

Changing Compiler Options
Up to this point, you have used PWB's default build options for all the examples.
These options are sufficient for many cases, but occasionally you will want to ad­
just them.

Suppose you decide to optimize the COUNT program for size to get the smallest
code possible regardless of the execution speed. Ordinarily, you don't consider op­
timizations until your code has stabilized and you are ready to try a release build.
(A release build is normally a build with optimizations turned on and debugging
information turned off.)

~ To specify a release build:

1. From the Options menu, choose Build Options.

PWB displays the Build Options dialog box.

2. Choose Use Release Options.

3. Choose OK to accept your choice.

When you specify a release build, PWB does not change your debug options. For
more information on global options, debug options, and release options, see "Set­
ting Build Options" on page 19.

Managing Multimodule Programs 53

Now that you have chosen a release build, you can set specific options that PWB
uses to create a release version of the program.

~ To change compiler options to optimize for space:

1. From the Language Options cascaded menu on the Options menu, choose C
Compiler Options.

The C Compiler Options dialog box displays the following options that are com­
mon to both the release and debug builds (Global Options):

• Memory model

• Processor (type of CPU)

• Calling convention

• Warning level

,---------- C Compiler Options -------------,

,---------- Global Options -------------,
r Memory :Lode I -;! I, iir'ocessor -;! r :to. II i ng Convent ion -;!
L[miDll- ------I~ 0 80286 - - - - -I~ L[C- ----------------I~
,---- !arning Level ------,

I ~L~~k~-~~~i~~-~~~~~-F~t~i -Il I < Additional ~Iobal Options ... >

Global Options: /WZ /GZ /BATCH

() ~bug Options (.) Welease Options

r-rN~~:Ug_Dnformationl~ < DPtimizations ... >

< Ddditional Release Options ... >
Release Options: /Ot /01 /Og /Oe /Oi /Gs

~ OH ~ <Cancel> < ~Ip >

At the bottom of the dialog box is a panel that shows options that are specific to
the current type of build. In this case, release options are being used. The de­
fault settings for a build were determined when you chose the project template.

Note You can choose the Debug Options button to view and set the options for
debug builds. However, this does not change the type of build that is performed
when you build the project. To set the type of build, choose Build Options from
the Options menu.

54 Environment and Tools

IiII Press ALl +0 to
choose Optimizations.

1. Choose Optimizations.

PWB displays a dialog box in which you can specify release optimizations.

,..-------- Release Optimization Options ----------,
,..---- General ------,
() Optimize for Dime
(.) Optimize for ~ace
() ~isable Optimization

r---- Inlining ------,
() SDPpress Inlining
(.) Allow E~licit Inlining
() ~llow Automatic Inlining

r---- Aliasing ------,
() Assume IP Aliasing
() Aliasing Only Across !aIls
(.) AII~ Aliasing

,..---- Specif ic -----,
IX] !oop Code Optimization
IX] Merge ~Iobal Expressions
I] ierge Local Expressions
I] Improve ~Ioat Consistency
IX] Global ~gister Allocation
I] Generate Dntrinsic Functions

a OR ~ <Cancel> < ~Ip >

2. Tum on the Optimize for Space option. PWB automatically turns off the
Optimize for Time option.

3. Choose OK to return to the C Compiler Options dialog box.

4. Choose OK to set the new options that you have selected.

The procedure you have just completed causes PWB to build an executable file
that is optimized for space the next time you choose Build or Rebuild from the
Project menu.

Changing Options for Individual Modules
Most of the modules in your system use the same build options. However, you
will occasionally need to modify the options for a single module. For example, if
the code size is critical on most modules but one module needs to be optimized for
speed, you can set your compiler options to optimize for space, which handles the
predominant case. You can then modify the options for the module that you want
to optimize for speed.

The example that follows shows how to customize your project to change the com­
piler options to optimize only COUNTCH.C for speed.

Managing Multimodule Programs 55

First, set the compiler options for the most general case. For COUNT in this ex­
ample, the most general case is to optimize for space. (If you have been following
the tutorial, you did this in the previous section.)

Once you have set the options for the general case, you have to customize the pro­
ject to compile only COUNTCH.C with optimizations for time. To do this, you
manually edit the instructions in the project makefile for compiling COUNTCH.C.

~ To open COUNT.MAK for editing:

1. If the COUNT project is open, choose Close Project from the Project menu.

This step is important because you cannot edit a PWB makefile for a project
that is currently open.

2. Choose the Open command from the File menu and open the COUNT.MAK
file in the editor.

Find the rule for compiling COUNTCH.C:

COUNTCH.obj : COUNTCH.C
! IF $(DEBUG)

$(CC) Ic $(CFLAGS_G) $(CFLAGS_D) IFoCOUNTCH.obj COUNTCH.C
!ELSE

$(CC) Ic $(CFLAGS_G) $(CFLAGS_R) IFoCOUNTCH.obj COUNTCH.C
!ENDIF

This rule contains a conditional statement with two commands. The first command
is for debug builds, and the second command is for release builds. You will edit
the second (release) command. The release command uses the following macros
defined earlier in the makefile:

Macro

CC

CFLAGS_G

CFLAGS_R

Definition

The name of the C compiler

Global options for C compiles

Release options for C compiles

To optimize only COUNTCH.C for time, place the lOt compiler option after
$ (C F LAGS_ R). The resulting command is:

$(CC) Ic $(CFLAGS_G) $(CFLAGS_R) lOt IFoCOUNTCH.obj CQUNTCH.C

56 Environment and Tools

There is no way to predict if the C option macros contain the lOs option, which
would turn off lOt, or if they contain any other option. To handle this potential
problem, the new option must be placed at the end because the option specified
last takes precedence. The compiler options, such as lOt, and NMAKE macros,
such as CFLAGS_G, are case sensitive and must appear exactly as shown.

Warning After this modification, PWB can still understand this makefile as a
PWB makefile. However, if you make changes beyond adding options to in­
dividual command lines, PWB may no longer recognize the file as a PWB make­
file. If this happens, you can delete the makefile and re-create it, or you can use it
as a non-PWB makefile. For more information on using non-PWB makefiles, see
"Using a Non-PWB Makefile" on page 61.

Save your changes to the makefile by choosing Save from the File menu. You can
now reopen the project and rebuild COUNT with the custom options.

3.2 The Program Build Process
This section explains the correspondence between projects and makefiles. This
process is relatively automatic. If you do nothing out of the ordinary, you will
never have to modify its default operation.

Most programmers encounter situations that require customized build options.
Read this section to understand how the utilities work with PWB. You can return
to this material when you have special requirements that are not handled by
PWB's default build rules.

Figure 3.2 illustrates the PWB build process.

Managing Multimodule Programs 57

PWB

1 - -- 1 C Extension 1------------------------"
1 1

1 1 - ____ 1
1 1 Project Template 1

Utilities Extension 1 I - - - - - - - -
1 1 - - - - - I
1

1 1

i 1 _____ J
1 - ------- --------- - -- Browse Extension

t ------------
L

1
(Run Debug Run Execute (Project Build)

I
PROJECTSTS arguments PROJECTMAK I I Environment I Build Results

I
CodeView Project.EXE NMAKE

T- I Include I
I Compiler J
I I

I Object II Browse Information I
1 1

~T
I ProjectEXE II Browser Database I

I

Figure 3.2 The PWB Build Process

When you save your project by choosing the Save button in the Edit Project dialog
box, PWB uses the list of files along with the rules in the selected project template
to scan for dependencies and write the project makefile.

58 Environment and Tools

When you choose the Build or Rebuild All command from the Project menu,
PWB releases as much memory as possible and passes the makefile to NMAKE,
which builds the project.

NMAKE stops at the end of the first build step that produces an error (as opposed
to a warning) or at the end of a successful build. In either case, NMAKE returns
the results of the build to PWB along with a log of any errors and warnings. For
more information about NMAKE, see Chapter 18, "Managing Projects with
NMAKE."

PWB saves the output of the build for you to view in the Build Results window
or to step through when you choose the Next Error (SHIFT+F3), Previous Error
(SHIFT+F4), and Goto Error commands on the Project menu. You can run the pro­
gram, set program arguments, and debug the program by choosing commands in
the Run menu.

If you have turned on the generation of browser information, PWB builds the
browser database when you build the program. Once you have a browser database,
you can use the commands in the Browse menu to navigate your program's source
files and examine the structure of your program. For more information, see "Using
the Source Browser" on page 96.

Extending a PWB Project
Makefiles that are not written by PWB often contain utility targets that are not
used in the process of building the project itself. These targets are used to clean
up intermediate files, perform backups, process documentation, or automate other
tasks related to the project. You can extend a PWB makefile to perform these
kinds of tasks by adding new rules. These additional rules must be placed in a
special section of the project makefile.

In the following example you will add a section that creates a file with information
about the project. This file has the same base name as the project and the extension
.LST. It lists the files in the project and the major options used for the build. This
example section can be used with any PWB project.

Use the COUNT project to see how to add a custom section. If you have been fol­
lowing the tutorial, this project is already open in PWB.

~ To add a custom section to the PWB makefile:

1. From the Project menu, choose Close Project.

This step is crucial because PWB disables modification of the project makefile
until the project is closed or a different project is opened. (This restriction does
not apply to non-PWB project makefiles.)

ImI You can copy this
line from help. Type
ALT+A US! F1, and then
copy and paste into the
makefile.

ImI This section
is in the example file
EXTRA.TXT.

Managing Multimodule Programs 59

2. From the File menu, choose the Open command and open the COUNT.MAK
file in the editor.

3. Press CTRL+END to move the cursor to the end of the makefile.

4. Type this comment line exactly as shown:

« User_supplied_information »

You must put the number sign (#) in column one and type the contents of the
line exactly as shown, including capitalization. Failing to type this line accu­
rately will make the project unrecognizable to PWB or allow PWB to change
your custom build information in unexpected ways.

NMAKE requires space between rules. Therefore, you should separate this line
from the lines above it by one blank line. Similarly, you should leave at least
one line between the separator and your custom build rules. For more informa­
tion about NMAKE and the syntax of makefiles, see Chapter 18, "Managing
Projects with NMAKE."

This comment line is used by PWB as a separator. Anything above this com­
ment is regarded as belonging to PWB, and you should not edit the information
there. The exception is to add options to individual command lines, as de­
scribed in "Changing Options for Individual Modules" on page 54. Anything in
the makefile after the separator is your information, and PWB ignores it.
NMAKE, however, processes the entire file.

Now that you have a separator to show PWB where your custom information
starts, you can add the custom information. The separator and custom section is in­
cluded in the following text:

« User_supplied_information »

Example 'user section' for PWB project makefiles,
used in the PWB Tutorial.

NOTE: This is not a standalone makefile.
Append this file to makefiles created by PWB.

This user section adds a new target to build a project
listing that shows the build type, options, and a list
of files in the project.

! I FNDEF PROJ
!ERROR Not a standalone makefile.
!ENDIF

60 Environment and Tools

l1li If PWB fails to
recognize your
customized project,
you may have typed
the separator
comment incorrectly.

!IF $(DEBUG)
BUILD_TYPE debug
!ELSE
BUILD_TYPE release
! ENDIF

Project files and information-list target
If
$(PROJ).lst : $(PROJFILE)

@echo < Project Name: $(PROJ)
Build Type: $(BUILD_TYPE)
Program Arguments: $(RUNFLAGS)
Project Files

$(FILES: =A

)

C Compiler Options
Global: $(CFLAGS_G)
Debug: $(CFLAGS_D)
Release: $(CFLAGS_R)

Link Options
Global:
Debug:
Release:
Debug
Release

«KEEP

$ (LFLAGS_ G)
$ (LFLAGS_ D)
$ (LFLAGS_ R)

Libraries: $(LLIBS_D)
Libraries: $(LLIBS_R)

The custom section of a PWB makefile can use any of the information defined by
PWB. This example takes advantage of many macros defined by PWB. For ex­
ample, the PROJFILE macro, which contains the name of the project makefile, is
used as the dependent of the listing file so that the listing is rebuilt whenever the
project makefile changes.

In addition, this custom section uses many features of NMAKE induding macros,
macro substitution, preprocessing directives, and inline files. For more informa­
tion about NMAKE and make files , see Chapter 18, "Managing Projects with
NMAKE."

~ To rebuild using the custom options:

1. Choose Open Project from the Project menu and reopen the COUNT project.

2. From the Project menu, choose Build Target.

3. Type the name of the new target COUNT. LST in the Target text box, and then
choose OK.

PWB informs you that the build options have changed and asks if you want to
rebuild everything.

4. Choose Yes to confirm that you want to rebuild everything.

l1li To open a file
from the list, put the
cursor on the first
character of the name
and type ALT+A FlO.

Managing Multimodule Programs 61

The project information file that is created shows the project name, indicates
whether the build is a debug or release build, lists the files in the project, and lists
the compiler and linker options used for the build.

Using a Non-PWB Makefile
PWB makefiles are highly structured and stylized makefiles that are generated
from the rules in the project template and a list of files that you supply. Many pro­
jects have existing makefiles that PWB can't read because they do not have this
stylized structure. These makefiles are called non-PWB or "foreign" makefiles.

You can still take advantage of many of PWB' s project features with non-PWB
makefiles. The features that cannot be used are shown as unavailable menu items.
Note that a PWB makefile is not required to use the Source Browser-all you
need to have is a browser database. For information on building a browser
database, see "Building Databases for Non-PWB Projects" on page 104 and Chap­
ter 21.

Before continuing, consider the following makefile, which builds a version of the
COUNT project:

if
if CNT.MAK - A simple non-PWB makefile for building
if the PWB tutorial example program COUNT.EXE
if
if
if
if
if

if

NOTE: The LIBS macro assumes the default
library name. If you have installed with different
names, you must change the LIBS macro.

if Macros
if
CC = cl
CFLAGS IOc Iqc
LFLAGS INOD:SLIBCE.LIB INOE INOI IEXE IFAR IPACKC
LINKER link
OBJS COUNT.OBJ COUNTBUF.OBJ COUNTCH.OBJ
STDOBJS = SETARGV.OBJ
LIBS = SLIBCE

if
if The "all" target.
if Building 'all' builds COUNT.EXE.
if
all: COUNT.EXE

62 Environment and Tools

If
If The file suffixes NMAKE needs to "know" about
If for this project.
if

.SUFFIXES:

.SUFFIXES: .obj .c

if

If An inference rule to make an object file from a
If C source fi 1 e.
If
.c.obj

$(CC) Ic $(CFLAGS) IFo$@ $<

11
If The description block for building COUNT.EXE
If from the object files and libraries.
If
COUNT.exe : $(OBJS)

$(LINKER) $(LFLAGS) $(OBJS) $(STDOBJS),$@,,$(LIBS);

if The 'clean' target. Delete intermediate files
If that might be clutter after a release build
If
clean:

-del *.obj
-del *.bak
-del *.tmp
-del *.map

This makefile is written for NMAKE. Even though PWB cannot read it as a PWB
makefile, you can use CNT.MAK as a project makefile in PWB without having to
change it.

CNT.MAK defines two primary targets, a 11 and cl ean. By default, NMAKE
builds the first target in your makefile. The first target is commonly called all
and is used to build the main targets of a project. Other targets in the makefile are
used to build the all targets or describe additional functionality. For example,
the cl ean target in this makefile deletes some intermediate files from disk.

~ To use CNT.MAK in PWB:

1. From the Project menu, choose Open Project.

2. Select CNT.MAK.

3. Tum on the Use as a Non-PWB Makefile check box.

The Open Project dialog box appears.

4. Choose OK.

Managing Multimodule Programs 63

Note A PWB makefile cannot be edited or modified when it is the open project.
However, PWB does not disable modification ofnon-PWB makefiles. You can
edit a non-PWB makefile, even when it belongs to the currently open project.

The LI BS macro in CNT.MAK assumes the default library name. If you have
installed with different names, or you want to use a different library, you must
change the L I BS macro to contain the name of the library you are using.

You can now use the Build, Rebuild All, and Build Target commands from the
Project menu. The Build and Rebuild All commands work as they do with a PWB
makefile by building the first target. However, the Language Options commands
and the LINK Options command on the Options menu are unavailable. You set
options by editing the makefile.

~ To build the c1 ean target:

1. From the Project menu, choose Build Target.

PWB displays the Build Target dialog box where you can specify the target
name(s).

2. Type c1 ean in the Targettext box.

3. Choose Build.

PWB builds the c 1 e a n target instead of the first target in the makefile (in this
case, all).

When you close a non-PWB project, PWB saves the environment, window layout,
and file history just as it does for a PWB project.

3.3 Where to Go from Here
This concludes the PWB tutorial section of this manual. If you wish, you can leave
PWB by choosing Exit from the File menu (or by pressing ALT+F4).

Chapter 4, "User Interface Details," explains how to start PWB, describes the ele­
ments of the user interface, and gives you an overview of the menus.

Chapter 5, "Advanced PWB Techniques," explains search techniques (including
regular-expression searching), describes how to use the browser, and shows how
to write PWB macros.

Chapter 6, "Customizing PWB," describes how to change the behavior ofPWB to
suit your needs.

Chapter 7, "PWB Reference," contains an alphabetical reference to PWB menus,
keys, functions, predefined macros, and switches.

User Interface Details

This chapter summarizes the PWB user interface. It contains:

• General information on starting PWB.

• Instructions on how to use elements of the PWB screen.

• A description of the indicators on the status bar.

• A summary of every PWB menu command.

• Instructions on how to use menus and dialog boxes.

4.1 Starting PWB
You can start PWB in either of the following ways:

• From the Windows Program Manager

• From the operating-system command line

From the Command Line

~ To start PWB from the command line:

• At the operating-system prompt, type:

PWB [options] [filename]

PWB starts with its default startup sequence.

For a complete list of PWB options and their meanings, see "PWB Command
Line" on page 141. Sometimes, you will want to modify the default startup
sequence. The following procedures are examples of how you can start PWB to
accommodate different circumstances.

66 Environment and Tools

~ To start PWB with an existing PWB project:

• Type PWB IPP project.mak

PWB opens the specified project and the files that you were working on with
the project.

~ To start PWB with the project you used in your last session:

• Type PWB IPL

As with the previous option, the IPL option opens a project and arranges your
screen as it was when you left PWB.

~ To start PWB quickly for editing a file such as CONFIG.SYS:

• Type PWB IDAS It CDNFIG.SYS

This command suppresses autoloading of extensions and status files (/DAS). It
also tells PWB not to remember CDN FIG. SY S for the next PWB session (It
CONFIG.SYS).

USing the Windows Program Manager
Microsoft Windows offers features that can enhance program development, partic­
ularly if you plan to develop Windows applications. You can edit and build your
application in a "DOS Box" and then immediately run it under Windows.

When you install Microsoft CIC++ on a computer running Windows, the SETUP
program provides a PWB icon in the Microsoft CIC++ 7.0 Program Group and a
.PIF file for running PWB successfully under Windows. These files, PWB.ICO
and PWB.PIF, are located in the \C700\BIN directory (assuming you accepted the
default root directory name supplied by SETUP).

To start PWB under Windows, double-click the PWB icon.

You can add a Program Item to the Program Manager for each project you are
working on. Use the PIF editor to open PWB.PIF, and then choose Save As on the
File menu to create a .PIF file with the same base name as your project. Next, use
the Optional Parameters text box to specify the IPF or IPP options and the name of
the project makefile.

User Interface Details 67

Using the Windows File Manager
When programming, you are often concentrating on which file or project you want
to work on and would prefer that the computer provide the right tool for the job.
With the Windows File Manager, you can associate certain types of files with the
commands that operate on those files. Therefore, when you double-click the file­
name in the File Manager, the right tool starts with the correct command-line
options.

You can associate project makefiles (.MAK files) with the PWB .PIF file. Double­
clicking a project makefile then starts PWB and opens that project, source files
and all.

~ To associate PWB with .MAK files:

1. Select any file in the File Manager with the extension .MAK.

2. From the File menu, choose Associate.

3. Type the command PWB. PI F /PP in the dialog box. (Make sure that your
PWB.PIF file specifies a question mark (?) in the Optional Parameters text box.)

Now when you double-click a project makefile, the File Manager automatically
starts PWB, and PWB opens that project.

Note Be sure you have set your PATH, INIT, and TMP environment variables
prior to starting Windows so PWB can find all its files.

4.2 The PWB Screen
Figure 4.1 shows the PWB display. The table which follows it describes each of
the user interface elements.

68 Environment and Tools

Menu bar Menu Window Desktop

Search Project Run Options Browse Window Help

MP OCIt (')f)f)fE. fXill

Scroll bars

Figure 4.1 User Interface Elements

Name

Menu bar

Menu

Desktop

Icon

Window

Scroll bars

Status bar

Description

Lists available menus.

Lists PWB commands.

Background area.

Displays a window in compact fonn.

Contains source code; displays Help, browser results, build results, or
error messages.

Change position in file or list.

Shows command buttons for the mouse and shortcut keys;
summarizes commands and file and keyboard status.

User Interface Details 69

Figure 4.2 shows a PWB window. The table which follows it describes each of a
window's elements.

Close box
Window number

,L.
Window title

I

Minimize box

Maximize/restore box
,

Scroll up arrow

Page up area

Scroll box

Page down area

1_1--- Scroll down arrow

Size area

Window border

Figure 4.2 Window Elements

Name

Window border

Close box

Window number

Window title

Minimize box

MaximizelRestore box

Scroll up arrow

Page up area

Scroll box

Page down area

Scroll down arrow

Size area

Move bar

Description

Moves window. Drag to move the window.

Closes the window. Click to close the window.

Identifies window. Press ALT +number to move to that
window.

Indicates window contents, a filename, or pseudofile title.

Shrinks window to an icon. Click to minimize the window.

Enlarges window to maximum size or restores window to its
original size.

Scrolls up by lines. Click to scroll up.

Scrolls up by pages. Click to page up.

Indicates relative position in the file. Drag to change
position.

Scrolls down by pages. Click to page down.

Scrolls down by lines. Click to scroll down.

Sizes window. Drag to size the window.

Moves window. Drag to move the window.

70 Environment and Tools

Figure 4.3 shows the PWB status bar. The table which follows it describes each of
the status bar's elements.

Message Area Status Location
,,,-______L.I ______ ---., ,,-----L..I -----..,,,.....-L...
<Fl=HeJp> <AJt=Menu> <F6=Window> TRLMPAX DCII eeeas. eel , ~

TX,umn
I

Command buttons

Line and Noise

Figure 4.3 Status Bar Elemeuts

Name Description

Message area Shows command buttons for the mouse and shortcut keys,
and summarizes commands.

Status Indicates current file, editor, and keyboard status, as
described in the following table.

Location

Command buttons

Shows the location of the cursor in the file.

Show common commands and shortcut keys. Click the
button or press the key to execute the command.

Line

Column

Indicates the line at the cursor. When scanning a file during
a search or when loading a file, PWB displays the current
line in the line indicator as specified by the Noise switch.

Indicates the column at the cursor.

The status area of the status bar displays one of the following letters to indicate the
corresponding status.

Letter

T

R

L

M
P

A

X

o
C

N

Description

File is temporary and is not recorded in the PWB status file.

File is no-edit (read-only); modification is disabled.

Line endings in the file are linefeed characters only.

File is modified.

File is a pseudofile.

Meta prefix (F9) is active.

Macro recording is turned on.

Overtype mode is enabled. In insert mode, no indicator appears.

CAPS LOCK is on.

NUM LOCK is on.

User Interface Details 71

Figure 4.4 shows the Window menu with the PWB Windows cascaded menu
pulled down. The table which follows it describes each element of a menu.

Selection cursor

Cascaded menu

Access key

-

'"

I '.
~earch Results
~rint Results
I'ecord
~liPboard

Ip
Bro!ser Output

Hew I Close Ctrl+F1
Close All
I'bve Ctrl+F7 L Size Ctrl+FB

Restore Ctrl+F5-

Menu

Menu command

Shortcut key
Minimize Ctrl+F9
Maximize Ctrl+F10

Cascade FS
Tile Shift+FS
Arrange Alt+FS

I . -

Figure 4.4 PWB Menu Elements

Name

Menu

Menu command

Shortcut key

Cascaded menu

Access key

Selection cursor

Description

Displays a list of commands.

Executes the command. When the command is dimmed, it is
unavailable.

Executes the command directly and bypasses the use of the
menu. Press the key to execute the command.

Lists a group of related commands. The command for a
cascaded menu has a small right arrow after the command.
To open a cascaded menu, click the command or move the
selection cursor to the command and press the RIGHT
ARROW key. To close an open cascaded menu, press the
LEFT ARROW key.

Executes the command. Press the highlighted letter key to
execute the command.

Indicates the selected command. Press the UP ARROW and
DOWN ARROW keys to move the selection cursor. Press
ENTER to execute the command.

72 Environment and Tools

4.3 PWB Menus

File

PWB commands are organized into menus; the menu names appear along the
menu bar at the top of the screen. When a menu or command is selected, PWB dis­
plays a brief description of the selected menu on the status bar. To get more infor­
mation about a menu or command, point the mouse cursor to the name and click
the right mouse button, or highlight the name by using the arrow keys and then
press Flo

The File menu provides commands to open, close, and save files. You can switch
to any open PWB file or find a specific file on your disk. You can also print a
selection, a file, or a list of files.

Command

New
Open
Find
Merge
Next
Save
Save As

Save All

Close
Print
DOS Shell

All Files

Exit

Description

Start a new file

Open an existing file

Locate a file or list of files on disk

Merge one or more files into the current file

Open the next file in the list of files specified on the command line

Save the current file

Save the current file with a different name

Save all modified files

Close the current file

Print a selection, the current file, or a list of files

Temporarily exit to the operating-system

List all open files in PWB

LeavePWB

Edit

Search

User Interface Details 73

The Edit menu provides commands to manipulate text, set the selection mode, and
record macros.

Command

Undo
Redo

Repeat

Cut

Copy

Paste

Delete

Set Anchor

Select To Anchor

Stream Mode

Box Mode

Line Mode

Read Only

Set Record

Record On

Description

Reverse the effect of your recent edit

Reverse the effect of the last Undo

Repeat the last edit

Delete selected text and copy it to the clipboard

Copy selected text to the clipboard

Insert text from the clipboard

Delete selected text without copying it to the clipboard

Save the current cursor position

Select text from the anchor to the cursor

Set stream selection mode

Set box selection mode

Set line selection mode

Toggle the PWB no-edit state (to prevent accidental
modification or to allow modification)

Define a macro name and its shortcut key

Record commands for a macro

The Search menu provides commands to perform single-file and multifile text and
regular-expression searches. You can do single-file and multifile find-and-replace
operations. You can define and jump to marks or go to specific lines.

Command

Find

Replace

Log
Next Match

Previous Match

Goto Match

GotoMark

Define Mark

Set Mark File

Description

Search for an occurrence of a text string or pattern

Search for a string or pattern and replace it with another

Turn multifile searching on and off

Move to the next match

Move to the previous match

Go to the match at the cursor in the Search Results window

Move to a mark or line number

Set a mark at the cursor

Open or create a mark file

74 Environment and Tools

Project

Run

The Project menu provides commands to open and create projects, build a project
or selected targets in the project, and determine the location of build errors and
messages.

Command

Compile File
Build

Rebuild All
Build Target
New Project
Open Project
Edit Project
Close Project

Next Error
Previous Error
GotoError

Description

Compile the current source file

Build the project

Build all files in the project (even those that have not been modified)

Build specific targets in the project

Create a new project

Open an existing project

Change the list of files in the project

Remove the current project from memory without changing its
contents

Move to the next error

Move to the previous error

Move to the error at the cursor in the Build Results window

The Run menu provides commands to set arguments for the project's program, run
and debug the program, run operating-system commands, and add or run custom
Run menu commands.

Command

Execute
Program Arguments

Debug

Run DOS Command
Customize Run Menu

Description

Run the current program

Specify commands passed to your program for Execute or
Debug

Run Code View for the current program

Perform any single DOS task without exiting PWB

Add commands to the Run menu

The custom commands that you add to the Run menu appear after the Customize
Run Menu command.

Options

User Interface Details 75

The Options menu provides commands to set environment variables for use within
PWB, customize the look and behavior of PWB, and assign keys to commands.
For projects, you can set the build type, customize the project template, and set
compiler and utility options.

Command

Environment Variables

Key Assignments

Editor Settings

Colors

Bnild Options

Project Templates

Language Options

Description

View and modify environment variables

Assign keys that invoke functions and macros

Change the setting of any PWB switch

Change screen colors
Specify whether the program is built as a debug or
release version; specify a build directory

Cascaded menu of commands for project templates

Cascaded menu of compiler options commands

The Project Templates cascaded menu provides the following commands to man­
age project templates:

Command Description

Set Project Template Changes the run-time support and project template

Customize Project Template Modify the current project template

Save Custom Project Save the current template as a new, custom template
Template

Remove Custom Project Delete custom project templates
Template

The Language Options cascaded menu provides the following commands for
setting compiler options:

Command

C Compiler Options

C++ Compiler Options

Description

Set C compiler options

Set C++ compiler options

Note Additional languages are listed when their PWB extension is loaded.

76 Environment and Tools

Browse

The following commands appear when the utilities extension (PWBUTILS) is
loaded:

Command

LINK Options

NMAKE Options

CodeView Options

Description

Set linker options for your project

Set options for NMAKE when it builds the project

Set options for CodeView when debugging the project

The following command appears when the browser extension (PWBROWSE) is
loaded:

Command Description

Browse Options Define the way the Source Browser database is built

The Browse menu provides the commands for the PWB Source Browser. You can
select a browser database. You can jump to specific definitions or symbols in your
project and view complex relationships among program symbols. You can also
view your program as an outline, function-call tree, or class-inheritance tree.

Command

Open Custom

Goto Definition
Goto Reference

View Relationship

List References

Call Tree (Fwd/Rev)

Function Hierarchy

Module Outline

Which Reference?

Class Tree (Fwd/Rev)

Class Hierarchy

Next
Previous
Match Case

Description

Open a custom browser database, open the project database,
or save the current database

Locate the definition of any symbol in your source code

Locate the references to any name in the browser database

Query the browser database

Display a list of functions that call each function and show
the use of each variable, type, macro, or class

View which functions call other functions

Display a program outline

Display an outline of program modules

Display a list of possible references for the ambiguous
reference at the cursor

View the class inheritance tree

View the hierarchy of classes

Find the next definition or reference

Find the previous definition or reference

Define whether or not browse queries are case sensitive

Window

User Interface Details 77

The Window menu provides commands to manipulate and navigate windows in
PWB.

Command

New
Close

Close All

Move

Size
Restore
Minimize

Maximize

Cascade
Tile

Arrange

PWBWindows

1 window}

Swindow5

All Windows

Description

Duplicate the active window

Close the active window

Close all windows

Start window-moving mode for the active window

Start window-sizing mode for the active window

Restore a minimized or maximized window to normal size

Shrink the active window to an icon

Enlarge windows to maximum size

Arrange windows to show all their titles

Arrange windows so that none overlap

Organize windows in a useful configuration for viewing Help,
source code, and Build Results

Cascaded menu that lists the following special PWB windows:

PWBWindow

Build Results

Search Results

Print Results

Record
Clipboard
Help

Browser Output

Move to window n.

Description

View the results of builds

View the results of logged searches

View the results of print operations

View, edit, save recorded macros

View the PWB clipboard

Access the Help system

View the results of browser queries

View a list of all open windows

The All Windows command does not appear until the full list of open windows is
too long to fit on the menu.

78 Environment and Tools

Help
The Help menu contains commands to access the Microsoft Advisor Help system.
You can see the index or table of contents for the system, get context-sensitive
Help, and perform global plain-text searches in the Help.

Command

Index
Contents

Topic

Help on Help
Next

Global Search

Search Results
About

Description

Display a list of available indexes

Display a table of contents for each component of the Help
system

Display Help about the item or keyworu al lhe cursor

Display information on how to use Help

Display the next Help screen that has the same name as the topic
you last viewed

Search all open Help files for a string or regular expression

View the results of the last global Help search

Display the PWB copyright and version number

4.4 Executing Commands
PWB commands appear in menus and as "buttons." You can execute these com­
mands in two ways:

• With a Microsoft Mouse or any fully compatible pointing device

You perform mouse operations by "clicking" -moving the mouse cursor to the
specified item and briefly pressing the left mouse button. "Double-click" by
pressing the left button twice, quickly. Always use the left mouse button unless
specifically instructed otherwise.

• With the keyboard

4.5 Choosing Menu Commands
~ To choose a menu command with the mouse:

1. Click the menu name to open the menu.

2. Click the command.

~ To choose a menu command from the keyboard:

1. Press the ALT key to activate the menu bar.

2. Press the highlighted character in the menu name (such as F for File).

Shortcut Keys

User Interface Details 79

An alternative is:

1. Press the ALT key to activate the menu bar.

2. Use the RIGHT ARROW and LEFT ARROW keys to select a menu.

3. Press ENTER to open the menu.

4. Press the highlighted character in the command name (such as S for Save in the
File menu), or use the UP ARROW and DOWN ARROW keys to select the command
and then press ENTER.

There are several ways to close an open menu without executing a command.

~ To close a menu without executing a command:

• Click outside of the menu.

• Press ESC.

• Press ALT twice.

When a menu command is dimmed (rather than black), it is unavailable. For ex­
ample, when no windows are open, the Close command on the File menu is un­
available. If a command you want to use is unavailable, you must perform some
other action or complete a pending action before you can invoke that command.

Some commands are followed by the names of keys or key combinations. Press
the shortcut key to execute the command immediately. You don't have to go
through the menu. For example, press SHIFT+F2 to execute the Save command,
which saves the current file.

All menu commands with shortcut keys and many other menu commands invoke
predefined PWB macros to carry out their action. You can change the key or add
new shortcut keys for these commands by assigning a key to the predefined
macro. For a complete list of predefined macros and their corresponding menu
commands, see "Predefined PWB Macros" on page 222. For more information
on assigning keys, see "Changing Key Assignments" on page 119.

Many PWB functions have been assigned to keys besides those listed on the
menus. Choose the Key Assignments command on the Options menu to view a
list of functions and macros and their assigned keys.

80 Environment and Tools

Buttons

Dialog Boxes

You can often execute commands by using buttons or boxes, which are areas of
the screen that perform an action when you click them or select them from the key­
board. For example, the rectangle at the upper-left comer of a window is the
"close box." Clicking this box with the mouse closes the window.

A command name surrounded by angle brackets « » appearing on the status bar
or in a dialog box is a button. The following buttons are on the status bar when
you first start PWB:

<General Help> <Fl=Help> <Alt=Menu>

The General Help button brings up a screen that explains how to use the Help sys­
tem. The other two buttons remind you of PWB functions: Fl summons Help, and
ALT activates the menu bar. Clicking one of these buttons with the mouse performs
the same function as pressing the key.

When you have opened more than one window, PWB displays the following
buttons:

<Fl=Help> <Alt=Menu> <F6=Window>

Click the Window button or press F6 to move to the next window.

When a menu is selected or a dialog box is displayed, an informative message ap­
pears on the status bar. While PWB displays this message, no buttons are available
and clicking the status bar does nothing.

When a menu command is followed by an ellipsis (•••), PWB needs more informa­
tion before executing the command. You enter this information in a dialog box
that appears when you choose the command.

Dialog boxes can contain any of the items in Figure 4.5.

User Interface Deta ils 81

I Textbox

.. 1 Editor Settings

r- Option buttons

..J

[
- Combo box

~itch: [.

"If'[-PWII-.-.. -.-.. -.-.. -.-. Switch !).mer: -----.. -H"I S itch ~e
(.) ~olean
() i'meric
() uext

Switch ilist:

v
/

askexit:no
askrtn:yes
autoload:yes
autosave:yes
beep:yes
case:no

<Sale· .. >

- List box '- Command button

Figure 4. 5 Dialog Box Elements

Option Button

t
I

~
<S!itch Help>

< OK > <Cancel> < Delp >

A button that you select from a list of mutually exclusive choices. Click the one
you want, press its highlighted letter, or use the arrow keys to move among the
choices.

Text Box
An area in which you can type text. You can move the cursor within the text
box by clicking the location with the mouse or by pressing the LEFT ARROW and
RIGHT ARROW keys. You can toggle between insert and overtype mode by
pressing the INS key. To select text for deletion, click and drag the mouse over
the text or press SHIFT plus an arrow key. Press DEL to delete the text, or type
new text to replace the highlighted text.

List Box
A box displaying a list of information (such as the contents of the current disk
directory). If the number of items exceeds the visible area, click the scroll bar to
move through the list or press PGUP, PGDN, or the arrow keys. You can move to
the next item in the list that starts with a particular letter by typing that letter.

Combo Box
The combination of a text box and a drop-down list box. You can type the name
of an item in the text box or you can select it from the list.

To open the list, click the highlighted arrow, or press ALT+DOWN ARROW or
ALT+UP ARROW. You can then click the item or press the arrow keys to select the
item you want. You can also press the first letter of an item to select it. When

82 Environment and Tools

you have selected an item, click the highlighted arrow or press ALT+DOWN

ARROW or ALT+UP ARROW to close the list.

Command Button
A button within angle brackets « » that invokes a command. Choose the OK
button to accept the current options, or choose the Cancel button to exit the
dialog box without changing the current options. Choose the Help button to see
Help on the dialog box.

If one of the command buttons in a dialog box is highlighted, press ENTER to
execute that command. You can also click a command button to execute that
command. If a button contains an ellipsis (_,), it indicates that another dialog
box will appear when you choose it.

CheckBox
An on/off switch. If the box is empty, the option is turned off. If it contains the
letter X, the option is turned on. Click the box with the mouse, or press the
SPACEBAR or the UPARROW and DOWN ARROW keys to toggle a check box on
and off.

Key Box
A pair of braces ({ }) that allows you to enter a key by pressing the key. The
key box is always followed by a text box where you can type the name of the
key.

When the cursor is in the key box (between the braces), most keys lose their
usual meaning, including ESC, FI, and the dialog box access keys. The key you
press is interpreted as the key to be specified. Only TAB, SHlFT+TAB, ENTER, and
NUMENTER retain their usual meaning. To specify one of these keys, type the
name in the text box.

~,[.a;fe;-_ --------1'

~y Assignment: { }[---------- ---I

[Xl !lear First

I O~ m <Cancel> < ~lp >

- Checkbox

Figure 4.6 Key Box and Check Box

Clicking a dialog-box item either selects it (a text box, for example) or toggles its
value (a check box or option button). You can also move among items with the
TAB and SHIFT+TAB keys.

User Interface Details 83

Dialog boxes usually contain access keys, identified by highlighted letters.
Pressing an access key is equivalent to clicking that item with the mouse or
moving to it by pressing TAB or SHIFT+TAB, and then pressing ENTER. Although
some access keys are uppercase and others lowercase, dialog boxes are not case
sensitive. Therefore, you can type either an uppercase or a lowercase character.

Note When the cursor is in a text box, access keys are interpreted as text. You
must press ALT along with the highlighted letter. Pressing ALT is also required in
list boxes because typing a letter by itself moves the cursor to the next item that
starts with that letter.

'" ,

Advanced PWB Techniques
"If! "Cha1Jfer

This chapter introduces you to some of the powerful features in the Programmer's
WorkBench. It is not an exhaustive discussion of all the ways to use PWB. How­
ever, it can provide a starting point for you to begin your own investigation of
PWB using the information in the Microsoft Advisor and in Chapter 7, "Program­
mer's WorkBench Reference."

This chapter contains:

• Find and search-and-replace techniques, including marks and regular expres­
sions.

• How to use the PWB Source Browser.

• How to execute PWB functions and macros.

• An overview of PWB macros, macro recording, and the macro language.

5.1 Searching with PWB
PWB offers the following ways to search your files for information:

• Visually inspecting code, moving with the cursor or the PGUP and PGDN keys.
This method is most effective either when you are familiarizing yourself with
some old code or after you have switched from CodeView back to PWB and
want to examine the local impact of a proposed change.

• Searching with text strings. When you have a specific string in mind (for ex­
ample, Fi 1 eName), you can find, in sequence, all the references to the name in
your file.

• Searching with regular expressions. Regular expressions describe patterns of
text. This is useful when you have a number of similarly named program sym­
bols and you'd like to see them all in succession.

For example, Windows API (application programming interface) names are
made up of multiple words; the start of each new word is shown as a capital
letter (for example, GetTextMetrics). With this in mind, you might search for

86 Environment and Tools

a string optionally starting with spaces and the letters "GetText" followed by
any uppercase letter. This is expressed with a regular expression such as
*GetText[A-ZJ, which means zero or more spaces (using the * operator after
a space), followed by GetText, followed by any uppercase letter (using a char­
acter class).

• Searching multiple files with text strings or regular expressions. A multifile
search is called a "logged search." Instead of finding one match, PWB finds all
matches in one operation. You can then browse the results of the search.

• Using the Source Browser. The Source Browser enables you to perform faster
and more sophisticated searches than plain text searches because it maintains a
complete database of relationships between program symbols. For example, to
find all occurrences of Fi 1 eName in your entire program (regardless of the num­
ber of files in the program), you can use the View References command from
the Browse menu.

The Source Browser has many more capabilities than just finding symbols. It
can also produce call trees and perform sophisticated queries on the use-and­
definition relationships among functions, variables, and classes in your program.

These searching techniques are discussed in detail in the following sections.

Searching by Visual Inspection

Ii!I You can also use
marks when you are
writing new code and
want to come back and
fill in sections.

If you think you're close to the text you want to see, don't try a fancy search-use
the PGUP or PGDN key. It's often faster. One trick you can use to speed up this
method of searching is to leave a trail in the form of marks (names associated with
file locations).

Using Marks
PWB lets you set named marks at any location in your file by using the Define
Mark command from the Search menu or by using the Mark function. You can
access these locations by name using the Goto Mark command or the Mark
function.

For example, if you are revising a preexisting program and don't fully understand
all the algorithms, you might leave a mark at each location in the code you want to
examine more closely. That way, you can revise the sections of the program that
you do understand, get a feel for the flow of the program, and then come back to
the marked areas for further research.

To save marks between PWB sessions, create a mark file using the Set Mark File
command from the Search menu.

Advanced PWB Techniques 87

Using the Find Command

n The searching
functions are named
Psearch (F3) and
Msearch (F4).

n The multifile
searching function is
named Mgrep (not
assigned).

The Find command on the Search menu allows you to search a file using text
strings and regular expressions.

Find can help you locate any string of text in any file you specify. PWB usually
searches the file you are currently editing. However, it can also search a list of
files. This is particularly useful for finding all occurrences of a string in an entire
project.

The results of a multifile search are logged-that is-put into the Search Results
window. To see the logged results of a search, choose Search Results from the
PWB Windows cascaded menu. There are two ways to use the information that
PWB puts into Search Results:

• You can look at the matches in sequence by choosing Next Match and Previous
Match from the Search menu.

• You can go directly to a specific match by moving the cursor to the match
listed in the Search Results window and choosing Goto Match from the Search
menu. PWB then jumps to the location of the match.

The Match commands on the Search menu work with the Search Results window
in exactly the same way that the Project menu's Next Error, Previous Error, and
Goto Error commands work with the Build Results window. These Project menu
commands are described in "Fixing Build Errors" on page 24.

To illustrate the logged-search technique, suppose you want to locate all functions
returning an int in the COUNT project's source files.

~ To search all the source files in this project:

1. From the Search menu, choose Find.

PWB brings up the Find dialog box.

2. Tum on Log Search check box.

3. Type i nt in lowercase.

4. Select the Match Case check box to exclude uppercase or mixed case occur­
rences of the word.

5. Choose the Files button.

PWB brings up the Search In Selected Files dialog box.

88 Environment and Tools

IiJI To specify a path
from your environment,
such as INCLUDE,
specify $INCLUDE: (the
environment variable
must be in all caps.)

,--------- Search in selected files ---------,
!iile Ha : [:m:EI- - - - - - - - - ---- - - - -]

File !ist: D:\C788\SOURCE\SAMPLES\PWBTUTOR ~ives / Dirs:

COUHT.C
COUHTBUF .C
COUHTCH.C

File(s) §elected:

t
[-A-]
[-B-]
[-C-]

[-D-]
[-E-]

I

mild / Delete.

<!lear List>

<Add iiattern>

~

< OK > <Cance]> < Delp >

6. Type CO*. C in the File Name text box.

This wildcard specifies all filenames beginning with co and having the . C
extension.

7. Choose the Add Pattern button to add the wildcard to the file list.

8. Return to the File Name text box by clicking the box or by pressing ALT+F.

9. Type COUNT.H in the File Name text box.

Because the default button is Add / Delete, you can press ENTER to add
COUNT.H to the file list.

10. Add COUNT.H to the list.

11. Choose OK to start the search.

When PWB finishes the search, it displays the Log Search Complete dialog box.

l1li Open the
Search Results
window to see an
overview of all
matches from the
search.

Advanced PWB Techniques 89

,------------- Log Search Complete ----------,

Search for "int"

27 occurrences found

B!iew Results! <Cancel> < Delp >

From this dialog box you can:

• Choose View Results to open the Search Results window.

• Choose Cancel to close the dialog box.

Choose Cancel now (you will open the Search Results window later).

~ To go to the first match:

• From the Search menu, choose Next Match.

You can step sequentially through all occurrences of the string using the Next
Match command. Choose Previous Match to move to the previous occurrence of
the string. When you reach the end of Search Results, PWB displays the following
message:

End of Search Results

Sometimes, you cannot focus the search narrowly enough to make a sequential
scan of Search Results profitable. In this example, you wanted only functions re­
turning int, but PWB found many more occurrences of into In these cases, you can
examine the results of the search and skip the matches that aren't relevant.

~ To view the Search Results:

• From the PWB Windows cascaded menu on the Window menu, choose Search
Results. PWB opens the Search Results window.

In this window, PWB displays the file, line, and column where the string was lo­
cated. It also shows as much of the matching line as will fit in the window.

90 Environment and Tools

• I . ; I ~-

• [2] Search Results ~

'C7El6'\SOURCE,SAI'IPLES,PWBWllIR] Search i nt
CE'SAI'IPLES'PWBWllIR'COUHTBUF.C 6 33: // (A character is defined as printable A
CE'SAI'IPLES'PWBWllIR'COUHTBUF.C 1131: FLAG CountWords(FLAG InWord, int nChars
CE'SAI'IPLES'PWBWllIR'COUHTBUF.C 13 5: int Scan;
CE'SAI'IPLES'PWBWllIR'COUHT.C 25 1: int maine int argc, char *drgv[]);
CE'SAI'IPLES'PWBWllIR'COUHT.C 25 11: int maine int argc, char *drgv[]);
CE'SAI'IPLES'PWBWllIR'COUHT.C 26 1: int CountFile(char *name);
CE'SAI'IPLES'PWBWllIR'COUHT.C 29 1: int maine int argc, char *drgv[])
CE'SAI'IPLES'PWBWllIR'COUHT.C 29 11: int maine int argc, char *drgv[])
CE'SAI'IPLES'PWBWllIR'COUHT.C 32 5: int curArg;
CE'SAI'IPLES'PWBWllIR,COUHT. C 54 11: pr i ntf("'n'nEnter file name: ");
CE'SAI'IPLES'PWBWllIR'COUHT.C 64 1: int CountFile(char *name)
CE'SAI'IPLES'PWBWllIR'COUHT.C 67 5: int nNax;
CE'SAMPLES'PWBWllIR,COUHT.C 73 11: printf("'nCan't open %s'n", name)
CE'SAMPLES'PWBWllIR'COUHT.C 82 24: // Calculate and print the results.
CE'SAI'IPLES'PWBWllIR'COUHT.C 83 7: printf("'n'nFile statistics for %s'n'n"
CE'SAI'IPLES'PWBWllIR'COUHT.C 84 7: printf("'tBytes: %6Id'n", Bytes);
CE'SAMPLES'PWBWllIR'COUHT . C 85 7: pr i ntf ("'tCharacters: %6Id'n", Characte
CE'SAI'IPLES'PWBWllIR'COUHT.C 86 7: printf("'tLetters: %6Id'n", Letters
CE'SAI'IPLES'PWBWllIR'COUHT.C 87 7: printf(",tU:n.els: %6Id'n", Uowels)
CE'SAI'IPLES'PWBWllIR'COUHT.C 88 7: printf("'tConsonants: %6Id'n", Letters ..

<F1=Help> <Alt=Menu) <F6=Window) R MP H 00)31.02

For example, ifthe declaration you want is the one that declares CountWords, you
can jump directly to that location.

~ To jump directly to a match:

1. Put the cursor on the match.

2. From the Search menu, choose Set Match.

PWB opens the correct file if it is not already open and positions the cursor on
the text you located.

You can use multifile searching regardless of whetller the files that you want to
search are open in PWB. For example, you can search $ INCLUDE: *. H (all tile head­
ers on the INCLUDE path) for a particular prototype.

Using Regular Expressions
The PWB searching capabilities that you have used so far are useful when you
know the exact text you are looking for. Sometimes, however, you have only part
of the information that you want to match (for example, the beginning or end of
the string), or you want to find a wider range of information. In such cases, you
can use regular expressions.

Regular expressions are a notation for specifying patterns of text, as opposed to
exact strings of characters. The notation uses literal characters and metacharacters.
Every character that does not have special meaning in the regular-expression syn­
tax is a literal character and matches an occurrence of that character. For example,

Advanced PWB Techniques 91

letters and numbers are literal characters. A metacharacter is an operator or
delimiter in the regular-expression syntax. For example, the backslash (\) and
the asterisk (*) are metacharacters.

PWB supports two syntaxes for regular expressions: UNIX and non-UNIX. Each
syntax has its own set of metacharacters. The UNIX metacharacters are . \ [] HA $.

The non-UNIX metacharacters are ? \ [] HA $@#() {}. Because it uses fewer meta­
characters, the UNIX form is a little more verbose. However, it is more familiar to
programmers who have experience with UNIX tools such as awk and grep. This
book uses the UNIX syntax, but any expression that can be written with this syn­
tax can also be written with the non-UNIX syntax.

The regular-expression syntax used by PWB depends on the setting ofthe Unixre
switch (UNIX is the default). You can change the Unixre switch by using the Edi­
tor Settings dialog box.

Note PWB switches that take regular expressions always use UNIX syntax. They
are independent from the Unixre switch.

Finding Text
In the multifile searching example, you learned how to locate every occurrence of
int in the COUNT project. In a large project, finding every int would yield too
many matches. To narrow the search, you can use a regular expression.

For this example, you want to match declarations of functions returning int. You
can specify this with a regular expression. This expression matches text that:

• Begins at the start of the line

• Followed by the keyword int

• Followed by white space

• Followed by an identifier

• Followed by any text within parentheses

The syntax for this regular expression is shown in Figure 5.1.

2 3 4

Figure 5.1 Regular Expression Example

92 Environment and Tools

It illustrates the following important features of regular expressions:

1. Regular expressions can contain literal text. In this example, in t is literal text
and is matched exactly.

2. Regular expressions can contain predefined regular expressions. Here, \: b is
shorthand for a pattern that matches one or more spaces or tabs (that is, white
space). For a complete list of predefined regular expressions, see Appendix A.

3. You can use classes of characters in regular expressions. A class matches any
one character in the class. For example, the class [a - zA- Z0-9_ J is the class of
characters that contains all lowercase and uppercase letters and all digits plus
the underscore. The dash (-) defines a range of characters in a class.

4. The plus sign (+) after the class instructs PWB to look for one or more occur­
rences of any of the characters in the class. This is the key to regular expres­
sions. You don't have to know exactly what appears between i nt and the left
parenthesis; all you have to do is describe what can be there.

The pattern Ai nt \: b [a - zA- Z0-9_ J+(. *) matches strings such as

int CountWords(void)
int 2BadCldentifiers()

but not the strings

int (char *t
integer(val)

Figure 5.2 shows a more detailed way to write an expression that matches the dec­
laration of a function returning an int.

1 2 3 4 5 6 78910

Figure 5.2 Complex Regular Expression Example

This expression is close to the C-language definition for the syntax of the declara­
tion. It is more precise than most searches require, but it is useful as an illustration
of how to write a complex regular expression.

You can interpret this expression as follows:

1. Start at beginning of line, which is specified by a caret (A) at the beginning of
the regular expression.

n To match a C
identifier, use the\:i
predefined expression.

Advanced PWB Techniques 93

2. Skip leading optional spaces. To specify optional items, this expression
matches zero or more occurrences by using the asterisk (*) operator. The
expression" *" means "match zero or more spaces."

3. Look for the int keyword as literal text.

4. Skip white space. There must be at least one space or tab.

5. Look for exactly one alphabetic character or underscore.

6. Look for any characters that are alphabetic, numeric, an underscore (_), or a
dollar sign ($). This and the previous part of the expression guarantee that the
identifier conforms to the Microsoft C definition of an identifier.

7. Skip optional spaces.

8. Look for a left parenthesis.

9. Skip zero or more of any character.

10. Look for a right parenthesis.

This expression is exact to the point that it takes longer to write than the time it
saves. The key to using regular expressions effectively is determining the minimal
characteristics that make the text qualify as a match. For example, it's probably
not necessary that the text between the space and the left parenthesis be a valid C
identifier to qualify as a match. Any sequence of alphanumeric characters or under­
scores is usually sufficient.

~ To find all function declarations that return an int:

1. From the Search menu, choose Find.

2. In the Find Text box, type Ai nt\: b\: i (.

3. Select the Regular Expression check box.

4. Choose the Files button.

5. Add the pattern CO*.C and the file COUNT.H to the file list.

6. Choose OK to start the search.

When the search is complete, choose View Results. You can see in the Search
Results window that PWB matched only the function declarations.

Replacing Text
You can use regular expressions when changing text to achieve some extremely
powerful results. A regular expression replacement can be a simple one-to-one
replacement, or it can use "tagged" expressions. A tagged expression marks part
of the matched text so that you can copy it into the replacement text.

94 Environment and Tools

ImI A simpler
way to get a I ist of
files is to type Arg
wildcard Openfile
(ALl+A wildcard FlO).

ImI Any time you
need a quick reference
to regular expressions,
type ALl +A regex Fl.

For example, you can manipulate lists of files easily using regular expressions.
This exercise shows how to get a clean list of files that is stripped of the size and
time-stamp information.

~ To get a clean list of C files in the current directory:

1. From the File menu, choose New.

This gives you a new file for the directory listing.

2. Execute the function sequence Arg Arg ! d i r *. c Paste.

The default key sequence for this command is to press ALT+A twice, type
! di r *. c, then press SHIFT+INS.

Arg Arg introduces a text argument to the Paste function with an Arg count
of two. The exclamation point (!) designates the text argument to be run as
an operating-system command. Without the exclamation point, the text is the
name of a file to be merged. If only one Arg is used, PWB inserts the text
argument.

PWB runs the DIR command and captures the output. When the DIR com­
mand is complete, PWB prompts you to press a key. When you press a key,
PWB then inserts the results of the command at the cursor. For more informa­
tion about this and other forms of the Paste function, see "Paste" in Chapter 7,
"Programmer's WorkBench Reference."

3. From the Search menu, choose Replace.

4. In the Find Text box, type \: b\: z \: z-. *$

This pattern means:

• White space followed by

• A number followed by

• Exactly one space followed by

• A number followed by

• A dash (-) followed by

• Any sequence of characters, then

• End of the line

This string must be tied to the end of the line to prevent the search from finding
anything too close to the beginning of the line.

5. Make sure there are no characters in the Replace Text text box.

6. Choose Replace All.

PWB prompts you to verify that you want to replace text with an empty string.

7. Choose OK to confirm that you want to perform the empty replacement.

Advanced PWB Techniques 95

All the file-size, date, and time-stamp information is removed. Because you did
not reuse any of the original text in the replacement, this is a simple regular expres­
sion replacement.

Choose Close from the File menu to discard the text you created in the previous
exercise.

A more complicated task is backing up the C files to a directory called LAST,
which is assumed to be a subdirectory of the current directory. A batch file makes
this easier. You can create such a batch file using regular expressions.

~ To create a batch file that copies the C files to a subdirectory:

l1li To type a literal
tab character in a dialog
box, use the Quote
function by pressing
CTRL+PTAB.

1. Create a list of C files in the current directory as described in the previous
example, but do not remove the file sizes, dates, and times.

2. Delete the heading printed by the DIR command.

3. From the Search menu, choose Replace.

4. In the Find Text text box, type:

A\([A]+\)[]+\([A]+\).*

5. This expression finds a string that starts at the beginning ofthe line (A). Placing
parts of the expression inside the delimiters \ (and \) is called "tagging."

The first tagged expression (\([A J+\)) matches one or more characters that are
not spaces. A leading caret in a class means "not."

The pattern then matches one or more spaces ([J+), followed by the second
tagged expression which matches one or more characters that are not spaces.

The remainder of the line is matched by the wildcard (.), which matches any
character, and the repeat operator (*). Matching the rest of the line is important
because that is how this pattern removes everything after the filename. It dis­
cards these portions of the matched text.

6. In the Replace Text text box, type

COpy \1.\2 .\\LAST

7. Select Replace All and click OK to begin the find-and-replace operation.

PWB transforms each directory entry into a command to copy the file to the LAST
subdirectory .

96 Environment and Tools

.U"I'UI Search 'Hp.Fi@M_h",_.m".".hp .. A"M,,. ... A.',..,
1=[2] Untitled.882
copy COUHTBUF.C .'LAST
copy COUHTCH.C .'LAST
copy COUHT.C .'LAST
copy AHHUITV1.C .'LAST

1 file(s) 6137 bytes
20635618 bytes free

, ~

1 ~He I p Enter Ese =Ca nee I Tab =Next Fie I d MP N ~1. 001

The word COpy is inserted literally. The text matched in the first tagged expres­
sion (the base name) replaces the expression \1. The period is inserted literally.
The text matched by the second tagged expression (the filename extension)
replaces the expression \2. The space is inserted literally. The text . \ \ LAST is
inserted as . \ LAST. Be sure to use two backslashes to indicate a literal backslash;
otherwise, PWB expects a reference to a tagged expression such as \ 1 and dis­
plays an error message.

You'll notice that the last two lines of the file are not useful in your batch file.
They are the remnants of the summary statistics produced by the DIR command.
Delete these two lines and you have a finished batch file.

Using the Source Browser
Another search technique is "browsing." Browsing uses information generated by
the compiler to help you find pieces of code quickly. This section introduces you
to some of the capabilties of the Source Browser. The browser is a handy tool for
moving about in projects, large and small.

In addition to navigating through your program, you can use the browser to ex­
plore the relationships between parts of the project. The browser database contains
full information about where each symbol is defined and used and about the rela­
tionships among modules, constants, macros, variables, functions, and classes.
Note that the browser files can be very large.

Advanced PWB Techniques 97

Note This section uses the COUNT project you created in Chapter 3. If you did
not create this project or if you have since deleted it, you must create it now. For
instructions on how to create the COUNT project, see "Creating the Project," on
page 42.

Creating a Browser Database
Before you can use the PWB Source Browser, you must build a browser database.
PWB helps you maintain this database automatically as a part of a normal project
build.

~ To build a browser database:

1. Open the COUNT project using the Open Project command from the Project
menu.

2. From the Options menu, choose Browse Options.

PWB displays the Browse Options dialog box.

r----------- Browse Options ------------,

[X] Generate wrowse Information

[] Exclude ~.acro Expanded Symbols
[] Exclude. stem Include Files
[] Include referenced Symbols
[X] ~ck .SBR files

:i}ld i tiona I Opt ions [-]

< Exclude ~iles ... >

I OX I <Cancel> < ~Ip >

3. Turn on the Generate Browse Information check box.

4. Choose OK.

The browser changes the project makefile to build the project. It adds compiler
options for creating browser information (.SBR files). It includes a BSCMAKE
command which combines the .SBR files and creates a browser database (a
.BSC file).

5. From the Project menu, choose Rebuild All.

Rebuilding the entire project ensures that the database contains up-to-date infor­
mation for all files in your program.

98 Environment and Tools

When the build completes, the following new files are on your disk:

• COUNT.BSC, the browser database

• COUNTBUF.SBR, a zero-length "placeholder" for COUNTBUF.

• COUNTCH.SBR, a placeholder for COUNTCH.

• COUNT.SBR, a placeholder for COUNT.

After adding each .SBR file's contribution to the database, BSCMAKE truncates
it and leaves the empty .SBR file on disk to provide an up-to-date target for later
builds. Leaving these files on the disk ensures that a browser database is not re­
built unless it is out-of-date with respect to its source files.

A PWB project is not required to create a browser database (although it is con­
venient). For information on how to build a browser database for non-PWB pro­
jects, see "Building Databases for Non-PWB Projects" on page 104.

Finding Symbol Definitions
When you are working on a program, it's easy to forget where a particular varia­
ble, constant, or function is defined. You can use the Find command to locate oc­
currences of a symbol, but that offers little information about which one is the
definition. To make such searches easier, you can choose Goto Definition from the
Browse menu to jump directly to the definition of any symbol in your program.

The following procedure uses the COUNT project to demonstrate how powerful
the browser can be.

~ To go to the definition of CountWords:

1. From the Window menu, choose Close All.

2. Open COUNT.C.

3. Move the cursor to the CountWords call on line 80.

4. From the Browse menu, choose Goto Definition.

PWB displays the Goto Definition dialog box.

Advanced PWB Techniques 99

~AIa~""~: [~iiii.'iii'lllil~,niil!!l-.-:-.:-: .. -:-.:-: .. ~.~ .. ~.~ ... ~~~~ .~~~~~~~~~~ .-. -.. -.-.. -.-.. -.-. -.. -.-.. -.-.. -.-.. -.-. -.. -.-.. -0]

File:

COllntWords
curArg
curChar
curCode
cUowels
cl.brds
FACTOR
FALSE
fclose
FILE
File

D!fined in:

t COUHTBUF.C (12) t

IIII
III!

I OK I <Cancel> < melp >

Notice that CountWords is highlighted and the defining file's name is displayed
in the list box to the right. More than one defining file is listed if a name is de­
fined in several scopes.

5. Choose OK.

PWB opens COUNTBUF.C and shows the definition of Count Words.

Showing the Call Tree
Often when analyzing an existing program's flow, or when looking for opportu­
nities for optimization, it's useful to refer to a "call tree." A call tree is a view of
your program that provides, for each function, a list of other functions called.

~ To generate a call tree of COUNT:

1. From the Browse menu, choose Call Tree.

PWB displays the Display Tree dialog box.

100 Environment and Tools

l1li To jump directly
to the definition of a
name, place the cursor
on the name and
choose Goto Definition
from the Browse menu.

,----------- Display Tree ------------,
:&]ame: [- -]

iodules:

COUtlT.C
COUtlTBUF.C
COUtlTCH.C
<Unknown>

t

I
:il;

1111

iii!

I

!imct ions:

CountFile
main
Syllables

t

[] !lleuerse Tree I OK I <Cancel> < ~lp >

2. Choose COUNT.C from the Modules list box.

Notice that the Functions list box changes to show only the functions in
COUNT.C.

3. Choose OK to see the call tree.

The call tree for COUNT.C is as follows:

CountFile
+-fopen?
+-pri ntf[13]?
+-fread?
+-CountWords
I +-Analyze[2]
I +-strchr[3]?
+-fclose?
main
+-CountFile[2] ...
+-pri ntf?
+-gets?
Syll ab 1 es

Three kinds of annotations appear in the call tree:

?

[n]

A symbol followed by a question mark is used by your program but not defined
in any of the program files in the browse database. These are often library func­
tions.

The number n between square brackets shows symbols that are used more than
once. In the preceding example, CountFi 1 e is shown as:

CountFile[2]

Advanced PWB Techniques 101

This means that there are two references to Co un tF il e in m a in .

.. . (ellipsis)
The ellipsis means that the full information for the function appears elsewhere
in the call tree.

Finding Unreferenced Symbols
As you write your program, you will occasionally remove function calls or refer­
ences to global variables. This can leave unused code in your program or make the
program's data larger than it needs to be. The browser database contains informa­
tion about where every function and variable is referenced, so you can easily find
the ones that are not used.

The COUNT project that you have been working with contains an unused function
and an unreferenced global variable. This section shows how to use the Source
Browser to find and remove the extra code and data.

The system include files define many more functions than many programs use.
Therefore, unreferenced functions in your program are easiest to find when using
a browser database that does not contain the system include files. This example
begins by building a browser database for COUNT that does not contain informa­
tion defined by system include files.

~ To build the COUNT browser database:

1. Make sure that debug options are turned on. Debug options select the fast com­
piler and do not generate intrinsic functions. If you perform a release build
which generates intrinsics, you will find many unused intrinsic functions de­
fined by the compiler. For information on how to select debug options, see
"Setting Build Options" on page 19.

2. From the Options menu, choose Browse Options.

PWB displays the Browse Options dialog box.

3. In the Browse Options dialog box, turn on the Exclude System Include Files
and the Include Unreferenced Symbols check boxes.

4. Choose OK.

Now that the browse options are set, rebuild the project and browser database by
choosing Rebuild All from the Project menu. With the updated browser database,
you can obtain a list of references for functions and variables.

102 Environment and Tools

~ To get a list of references for function and variables:

1. From the Browse menu, choose List References.

PWB displays the List References dialog box.

List References

Show only: [Xl ~nctions
[Xl lariables
[1 ~pes
[1 ,acros
[1 III asses

I OK ~ <Cancel> < ~lp >

2. Turn on the Functions and Variables options, and then choose OK.

PWB opens the Browser Output window and creates the list of references. Each
name is followed by a colon and a list of functions that refer to the name.

FUNCTION CALLED BY LIST
-------- --------------

Analyze: CountWords[2]
CountFile: main[2]
CountWords: CountFile
fclose: CountFil e
fopen: CountFil e
fread: CountFile
gets: main
main:
printf: main CountFi 1 e[13]
strchr: Analyze[3]
Syllables:

~ To find an unreferenced symbol:

• Search for the regular expression : $ (colon, dollar sign).

This pattern specifies a colon at the end of the line. It finds names that are fol­
lowed by an empty list of references.

PWB positions you at the first unreferenced name (mai n) in the Browser Output
window. The function rna i n must be kept in the program, so you want the next
unreferenced name.

To find all unreferenced items with one search, you can perform a logged search
and add only <browse> (the Browser Output pseudofile) to the file list. This is
especially useful for large projects. Because there are only two unused symbols in
the COUNT project, it is simpler to repeat the search.

Advanced PWB Techniques 103

~ To find the next unreferenced symbol:

• Execute the Psearch function (press F3) to repeat the regular-expression search.

PWB finds the Syll abl es function.

~ To go to the definition of Syllables in the source:

1. From the Browse menu, choose Goto Definition.

Because the cursor is on Sy 11 a b 1 e s in the Browser Output window, PWB auto­
matically selects the definition.

2. Choose OK.

PWB jumps to the definition of Syll abl es in COUNT.C where you can remove
the unused function. Now you can remove the unused variable by following the
same steps.

~ To find the unused variable:

1. Return to the Browser Output window.

2. Press F3 to find the next unreferenced variable Consonants.

3. Choose Goto Definition, and then choose OK.

PWB jumps to the definition of Consonants.

You can delete the line to remove the definition of the extra variable. The only
remaining cleanup is to remove the declarations for Syll abl es and Consonants
from the COUNT.H file.

Advanced Browser Database Information
In the previous sections, you learned the basics of building a browser database and
some useful applications of the Source Browser. In this section, you will find infor­
mation on what goes into a browser database and how to estimate the disk require­
ments to build one. You will also learn how to build a database for non-PWB
projects and how to build a single database for related projects.

Estimating .SBR and .BSe File Size When you build a browser database, you
first create an .SBR file for each source file in the project. Each of these files con­
tains the following information:

• The name of the source file and the files it includes.

• Every symbol defined in the source file and the files it includes.

These symbols are the names of all functions, types (including the names of all
classes, structures, and enumerations and their members), macros (including

104 Environment and Tools

symbols in the expanded macro), and variables in the file. These symbols also
include all parameters and local variables for the functions.

For C++, the names are the decorated names (names with encoded type infor­
mation), which can take up about half of the .SBR file size. For more informa­
tion on decorated names, see Appendix B.

• The location of all symbol definitions in the files.

• The location of all references to every symbol in the files.

• Linkage information.

This is a tremendous amount of information about your program and can therefore
occupy a large quantity of disk space. The benefit is that the Source Browser pro­
vides fast, sophisticated access to this database of know ledge about your program.

For C source files, the .SBR file is typically half the size of the preprocessed
source file (that is, the source file with comments removed, all files included, and
all macros expanded).

For C++, the expansion of the .SBR file is from approximately 2 to 20 times the
size of the source file. This dramatic expansion occurs because:

• More information is defined in C++ include files than in C include files.

• The database contains decorated symbol names.

Intuitively, you might assume that the resulting browser database (.BSC file) is
approximately the sum of all the .SBR files. However, the browser database is the
union of the information in the component .SBR files. This means that the .BSC
file is not extrememly large. Much of the information in the .sBR files is defined
in include files, which are common to many modules in the project. The union of
the .SBR files is relatively small because most of the include-file information is
duplicated in each .SBR file.

A 400K .BSC file is common for a modestly sized program. At the time this book
was written, the largest known browser database was about four megabytes.

Building Databases for Non-PWB Projects The simplest way to build a
browser database for non-PWB projects is to build the browser database separately
from the project. You can use a makefile or a batch file for this purpose. The
process requires only two steps:

1. Create an .SBR file for each module. The simplest way to do this is to run the
compiler with the options to produce an .SBR file and no other files. For ex­
ample, the CL command line:

CL IZs Iwa IFr *.c

Advanced PWB Techniques 105

specifies that the compiler processes all.C files in the current directory, checks
syntax only (IZs) and issues no warnings (IW0). Therefore, no object files
are produced. However, browser information (.SBR files) are generated
(IFr).

2. Combine the .SBR files into a browser database.

The syntax for this command is:

BSCMAKE options loproject.BSC *.sbr

For complete information on BSCMAKE options and syntax, see Chapter 21.

The process of creating a browser database changes little between projects. There­
fore, you could use a batch file for many projects similar to the following example:

ECHO OFF
REM Require at least one command-line option
IF %1.==. GOTO USAGE

REM Compile to generate only .SBR files
CL IZs IW0 IFr *.c

REM Build the browser database
BSCMAKE %2 %3 %4 %5 %6 %7 %8 lo%l.BSC *.sbr
GOTO END

:USAGE
REM Print instructions
ECHO -Usage: %0 project [optionJ ...
ECHO - project Base name of browser database
ECHO - [optionJ ... List of BSCMAKE options
:END

This batch file assumes that all the project sources are in the current directory. It
requires that you specify the name of the browser database and allows BSCMAKE
options. You may want to change this file to specify different BSCMAKE or com­
piler options.

If your project's sources are distributed across several directories, you must write
a custom batch file or make file to build the database. For more information on the
BSCMAKE utility, see Chapter 21.

~ To use a custom browser database in PWB:

1. From the Browse menu, choose Open Custom.

2. Choose the Use Custom Database button.

3. Select your custom browser database and choose OK.

If you want to save this database name permanently, choose Save Current
Database.

106 Environment and Tools

4. Choose OK.

The PWB Source Browser opens your custom database.

You can now browse your non-PWB project.

If you are using a makefile to build your project, you can choose Open Project
from the Project menu and open it as a non-PWB project makefile. If the project
makefile has the same base name as the browser database and resides in the same
directory, PWB automatically opens the database when you open the project. For
more information on using a non-PWB makefile for a project in PWB, see "Using
a Non-PWB Makefile" on page 61.

Building Combined Databases If you have two or more closely related pro-
jects, you can combine the browser databases for the projects. For example, if two
large programs differ only in one or two modules so that most of the sources are
shared between the two projects, it can be useful to browse both projects with a
single browser database.

~ To build a combined browser database:

1. Generate the .SBR files for both projects.

2. Pass all of the .SBR files to BSCMAKE to build the combined database.

The resulting database is the inclusive-OR of the information in the two projects.

5.2 Executing Functions and Macros
The menus and dialog boxes in PWB provide access to almost everything you
need to do to develop your projects. You can edit, search, and browse your source
files. You can build, run, and debug your project, and you can view Help for the
entire system. However, the visible display provides access to only part of the
capabilities available in PWB. Behind the menu commands lie functions with
many more options than you can access from the menus. Many functions and
macros are not assigned to keys by default.

The sophisticated PWB user learns how to use the functions and predefined mac­
ros to perform the precisely correct action. Each function has several forms that
are invoked with the combinations of the Arg and Meta prefixes. These two func­
tions are used to introduce arguments and modify the action of PWB functions.

Arg (ALT+A)

The fundamental function in PWB. You use Arg to begin selecting text, intro­
duce text and numeric function arguments, or modify the action of functions by
increasing the Arg count.

l1li lastlext (CTRL+O)

recovers the previous
text argument and
displays it in the Text
Argument dialog box.

l1li A selection is also
a text argument.

Advanced PWB Techniques 107

To pass a text argument to a function, for example, press ALT+A, and then type
the text. The text you type doesn't go into your file. The Text Argument dialog
box appears when you type the first letter of the text.

,----------- Text Argument -----------,
Arg[l1

[Ambidextrous··· ..]

<Cancel> < ~lp >

You can then edit the text. PWB displays the current argument count and Meta
state in the dialog box.

Notice that there is no OK button in this dialog box. Instead of choosing OK,
press the key for the function you want to execute with this argument. Choose
the Cancel button if you do not want to execute a function.

Meta (P9)
Modifies the action of a function in different ways from the various argument
types. It generally toggles an aspect ofthe function's action.

For example, the text-deletion functions usually move the deleted text to the
clipboard. However, when modified with Meta, they clear the text without
changing the clipboard.

The combination of Arg and Meta greatly increases the number of variations
available to each function. For example, the Psearch function can perform differ­
ent search operations depending on how it is executed. Psearch can:

• Repeat the previous search (Psearch).

• Search for text (Arg text Psearch).

• Perform a case-sensitive text search (Arg Meta text Psearch).

• Search for a regular expression (Arg Arg text Psearch).

• Search for a case-sensitive regular expression (Arg Arg Meta text Psearch).

Because you can reassign keys to your preference, the PWB documentation cannot
assume that a specific key executes a given function or macro. Therefore, the
PWB documentation gives a sequence of functions or macros by name, followed
by the same sequence of actions by key name. In this book, the key is the default
key. In PWB Help, the displayed key is the one currently assigned to that function.
When no key is assigned, PWB displays unass i gned.

108 Envi ronment and Tools

For example, to insert the definition of a macro at the cursor, you pass the name of
the macro to the Tell function and modify Tell's action with the Meta prefix. This
sequence of actions is expressed as follows:

• Execute the function sequence Arg Meta macroname Tell
(ALT+A F9 macroname CTRL+T).

If the Tell function is assigned to a different key, Help displays that key in place
ofcTRL+T.

Chapter 7, "Programmer's WorkBench Reference," contains complete descrip­
tions of all forms of each function in PWB.

Executing Functions and Macros by Name
The most frequently used functions and macros are assigned to certain keys by
default. For example, the Paste function is assigned to SHIFT+ENTER, Linsert is as­
signed to CTRL+N, and so on. Sometimes, however, you want to use a function or
macro that is not assigned to a key. You can always assign a key by using the Key
Assignments command or by using the Assign function. However, that is a lot of
trouble for something you need only once. PWB allows you to execute a function
or macro by name, rather than by pressing a key.

~ To execute a function or macro by name:

• Perform the function sequence Argfunction Execute
(ALT+Afunction F7).

In other words, press ALT+A (execute the Arg function), type the name of the func­
tion or macro, and then press F7 (invoke the Execute function).

The argument to Execute doesn't have to be a single function or macro name. It
can be a list of functions and macros. The argument is really a temporary, name­
less macro. This means that you can do anything in an argument to Execute that
you can do in a macro. PWB follows the rules for macro syntax and execution.
You can define labels, test function results, and loop.

Warning When executed from a macro, PWB functions that display a yes-or-no
prompt assume a "Yes" response. To restore the prompt, use the macro prompt
directive «). For more information, see "Macro Prompt Directives" in PWB Help.

Advanced PWB Techniques 109

5.3 Writing PWB Macros
The Programmer's WorkBench, like other editors designed for programmers, pro­
vides a macro language so that you can customize and extend the editor or auto­
mate common tasks. You can create macros in one of the following ways:

• By recording actions you perform. The recording mechanism allows you to per­
form a procedure once, while PWB is recording. After you've recorded it, you
can execute the macro to repeat the recorded procedure.

• By manually writing macros. This technique is less automatic but does allow
you to write more powerful macros.

These two techniques are not mutually exclusive. You can start by recording a
macro that approaches the steps you want to perform, then edit it to expand its
functionality or handle different situations.

When Is a Macro Useful?
Macros are useful for automating procedures you perform frequently. You may
also write macros that automate tedious one-time tasks.

Of course, not every task is a good candidate for automation. It might take longer
to write the macro than to do the task by hand. If you don't expect to perform a
task often, don't automate it. Also, automated editing procedures introduce an ele­
ment of risk. You might not foresee situations that your macro can encounter. In­
correct macros can sometimes be destructive.

A little experience with macros and some careful testing will enable you to create
a good set of macros for your own use.

Recording Macros
Recording actions you perform with the mouse or at the keyboard can be a power­
ful way to write a macro. You turn on recording and perform the actions that you
want the macro to execute. You can concentrate on the task that you want to auto­
mate, instead of concentrating on the syntax of the macro language.

For example, if you occasionally reverse characters when you type quickly, a
macro to switch them back is useful. Before recording a macro to transpose charac­
ters, you should think about what you are going to do while recording the macro.
To transpose characters, you will select the character at the cursor, cut it onto the
clipboard, move over one character, and then paste the character you cut.

110 Environment and Tools

~ To record a macro that transposes characters:

1. From the Edit menu, choose Set Record.

PWB brings up the Set Macro Record dialog box.

,----- Set Macro Record -----,
~rre : [i!Il!:!!lm1l. I

~y Assignrrent: { }[.. ·········-1

[XI !lear First

a OK ~ <Cancel> < ~lp >

2. In the Name text box, type Transpose.

3. Click the mouse in the key box (between the braces { }), or press TAB until the
cursor is in the key box.

4. Press CTRL+SHIFr+T (for transpose).

PWB automatically fills in the name of the key you pressed.

,------- Set Macro Record ------,
~rre: [Transpose· I

~y Assignrrent: { }[Shift+Ctrl+T· ··-1

[XI !lear First

a OK ~ <Cancel> < ~lp >

5. Press TAB to leave the key box, and then choose OK.

PWB closes the Set Macro Record dialog box. When you tum on macro record­
ing, PWB records a macro called Transpose and associates it with SHIFT +CTRL+ T.

Important The Set Macro Record command does not start the macro recorder.
It only specifies the name and key association for the macro you are going to
record.

6. From the Edit menu, choose Record On.

When you choose Record On, the macro recorder starts. To indicate that the
macro recorder is running, PWB displays the letter X on the status bar. Notice
that the Project, Options, and Help menus are unavailable while PWB is record­
ing a macro.

7. Select the character at the cursor by holding down the SHIFT key and pressing
the RIGHT ARROW key.

8. Press SHIFT+DEL to cut the character onto the clipboard.

Advanced PWB Techniques 111

9. Press the RIGHT ARROW key to move the cursor to the new location for the char­
acter.

10. Press SHIFT+INS to paste the character from the clipboard back into the text.

11. From the Edit menu, choose Record On to stop the macro recorder.

Press SHIFT+CTRL+T to switch the character at the cursor with the character to the
right. You can now use the new macro and key assignment for the rest of the PWB
session.

~ To edit the macro:

• From the Window menu, choose Record from the PWB Windows cascaded
menu.

PWB opens the Record window.

·U.,".iti'P·Wm[QY_ijihw.m,i.i,.Bg·w-a*,nmr.iRHjrp"
• [21 Record
Transpose:= select right delete right paste cancel

..
1=Help) <Alt=Menu) <F6=Window) MP N 00001.08

The Record window shows the definition of the T ran s p 0 s e macro that you just
recorded. You can edit the definition to change the way the macro works. For ex­
ample, you decide that the macro should reverse the character at the cursor with
the character to the left, instead of the character to the right.

~ To redefine the macro:

1. Change the macro to read as follows:

Transpose:=select left delete left paste

2. Move the cursor to the macro definition.

112 Environment and Tools

ImI You can find a
complete list of PWB
functions in Chapter
7 and in PWB Help.

3. Press ALT+=, the default key for the Assign function.

Assigning the macro replaces the previous definition of Transpose with the
new definition.

4. Return to the file you were originally viewing.

Up to this point, the macro exists only in memory. To use your recorded macro for
subsequent PWB sessions, you must save the definition of the macro to disk.

~ To save the macro:

1. If the Record window is not open, choose Record from the PWB Windows cas­
cadedmenu.

PWB opens the Record window.

2. From the File menu, choose Save.

PWB inserts the macro definition and the key assignment into your TOOLS.INI
file for future sessions. When you leave PWB, you are prompted to save
TOOLS.INI. Your changes are not permanent until you actually save
TOOLS.INI.

Flow Control Statements
Recorded macros have the inherent limitation of playing back one fixed sequence
of commands. Often you need a macro to execute repeatedly until some condition
is satisfied. This requires that you use flow control statements to govern the ac­
tions your macro takes.

All editor functions return a true or false value. The macro flow control operators
that use these values are:

Operator

+>label

->label

=>label

:>label

Meaning

Branch to label if last function yields JRUE

Branch to label if last function yields FALSE

Branch unconditionally to label

Define label

These rudimentary operators are not as sophisticated as a high-level language's IF
statement or FOR loop. They are more like an assembly language's conditional
jump instruction. However, they provide the essential capabilities needed for writ­
ing loops and other conditional constructs.

Advanced PWB Techniques 113

Flow Control Example
If you frequently perform multiple-window editing, a macro that restores the dis­
play to a single window can be helpful. Such a macro requires the following logic:

1. Switch to the next window.

2. If the switch is not successful (meaning that only one window is present), end
the macro.

3. If the switch is successful (another window is present), close that window and
go back to step one.

This macro will be called CloseWindows and assigned to SHIFT+CTRL+W.

~ To create the CloseWindows macro:

1. From the File menu, choose All Files.

PWB displays the All Files dialog box.

Notice that your TOOLS.INI file is in the list of open files, even though you did
not explicitly open it. PWB opens TOOLS.INI to load its configuration informa­
tion (unless when you specify IDT on the PWB command line).

2. Select TOOLS.INI file in the list of open files.

3. Choose OK.

PWB opens a window and displays your TOOLS.INI file.

4. Find the section of TOOLS.INI that begins with [pwb]. This is the section
where PWB keeps its startup configuration information.

5. In the PWB section, type the following two new lines:

CloseWindows:= :>Loop Openfile -> Meta Window Window =>Loop
CloseWindows: SHIFT+CTRL+W

If you want these definitions to take effect immediately, select both lines and
press ALT += to execute the Assign function. You can also assign the definitions
one at a time.

6. Choose Save from the File menu to make this macro and key assignment part
of your TOOLS.INI file.

The next time you start PWB, the CloseWindows macro is defined and as­
signed to the SHIFT+CTRL+W key.

The first line you typed uses the := operator to associate the macro definition with
the name "CloseWindows." After the operator is the list of functions and macro
operators that specify what the macro is to do. The second line is a separate state­
ment that uses the: operator to assign the macro to the sHIFT+cTRL+wkey.

114 Environment and Tools

The Close Windows macro works as follows:

1. : > La a p defines a label called La a p. There cannot be a space between the : >
operator and the label name.

2. Openfi 1 e switches to the window under the active window.

3. The -> operator examines the return value from the Openfile function. If the
function returns false because there is no other window, the -> operator exits
the macro.

4. The phrase Meta Wi ndow closes the active window.

5. Wi ndow returns to the window you started from.

6. =>Loop unconditionally transfers control back to the Loop label and starts the
sequence again.

When this macro is defined, you can press SHIFT +CTRL+W whenever you want to
close all windows except the active window.

User Input Statements
PWB macros can prompt for input. This helps you write more general macros. For
example, you might keep a history of the changes you make to a file at the top in a
format similar to the following:

11** Revision History **
1115-Nov-1991:IAD:Add return value for DoPrint
1131-0ct-1991:IAD:lmplement printing primitives

To facilitate entering the revision history in reverse chronological order and to
make it easy to keep track of where you were in the source file, you can write a
macro to perform the following steps:

1. Set a mark at the cursor for future reference.

2. Insert a revision history header at the beginning of the file if one is not present.

3. Insert the current date.

4. Prompt for initials and insert them just below the header.

5. Prompt for comments and insert them after the initials.

6. Return to the saved position in the file.

Note that while this macro is executing, you can choose the Cancel button in the
dialog boxes that prompt for initials and comments. The macro must handle these
cases and gracefully back out of the changes to the file.

Advanced PWB Techniques 115

~ To enter this macro in TOOLS.INI:

1. Open TOOLS.lNI for editing.

2. Type the following macros and key assignment in the [pwb] section of
TOOLS.lNI:

LineComment:="jj
RevHead:= " •• Revision History •• "
RevComment:= \

Arg Arg "Start" Mark \
Begfile Arg RevHead Psearch +>Found \
Linsert LineComment RevHead \

:>Found \
Down Linsert Begline LineComment Curdate " C" \
Arg "Initials" Prompt ->Ouit Paste Endline ")" \
Arg "Comment" Prompt ->Ouit Paste =>End \

:>Ouit Meta Ldelete \
:>End Arg "Start" Mark
RevComment:Ctrl+H

There are at least two spaces before the backslash at the end of each line. The
backslashes are line-continuation characters. They allow you to write a macro
that is more than one line long. In this case, line continuations format the macro
in a readable way. To further assist in readability, you can indent the parts of
the macro which define the actual keystrokes, as in the preceding example.

3. Choose Save from the File menu to save your changes.

4. To reinitialize PWB, execute the Initialize function by pressing SHIFT+PS.

PWB discards all of its current settings and rereads the PWB section of
TOOLS.lNI. The same effect can be achieved by quitting and restarting PWB.

The following discussion analyzes the workings of the definitions you added to
TOOLS.lNI. It repeats one or two lines from the text you typed and describes how
each line works. You may want to refer to the full definition as you follow along.

The first two lines

LineComment:="jj"
RevHead:= " •• Revision History •• "

define two utility macros that are used by the main RevComment macro. They
define strings that are used several times in RevComment.

The third line

RevComment:= \

declares the name of the macro. The succeeding lines define the action of the
RevComment macro.

116 Environment and Tools

The first line of the definition

Arg Arg "Start" Mark \

sets a mark named "Start" at the cursor so that the macro can restore the cursor
position after inserting the comments at the beginning of the file.

The next line

Begfile Arg RevHead Psearch +>Found \

moves to the beginning of the file (Begfile), then searches forward for the revision­
history header. If the header is found, PWB branches to the Found label; other­
wise, it executes the next line.

Linsert LineComment RevHead \

If the macro is here, the header was not located in the file. The Linsert function
creates a new line, and PWB types the revision-history header. The macro con­
tinues with the line:

:>Found \

This line defines the Found label. At this point in the macro, the cursor is on the
line with the header. The next lines insert the new revision information, starting
with the following line:

Down Linsert Begline LineComment Curdate "e" \

PWB moves the cursor down one line (Down), inserts a new line (Linsert),
moves to the beginning of the line (Begline), and calls the LineComment macro
to designate the line as a comment. PWB then types the current date (Curdate)
and an open parenthesis.

The macro prompts for initials:

Arg "Initials" Prompt ->Quit Paste Endline")" \

The macro uses the Prompt function to get your initials. If you choose the Cancel
button, the function returns false, so the macro branches to the label Qui t. If you
choose the OK button, the text you typed in the dialog box is passed to the Paste
function, which inserts the text. The macro moves the cursor to the end of the line
(Endline) and types a closing parenthesis.

The code on this line explicitly handles the case when you cancel the prompt (the
false condition). The phrase - >Qu it causes PWB to skip to the label Qu it when
Prompt returns false.

Advanced PWB Techniques 117

If you use the Prompt function and you do not handle the false condition, a null
argument (a text string with zero length) is passed to the next function. Therefore,
a phrase like Arg "Que?" Prompt Paste pastes either the input or nothing, depend­
ing on whether you choose the OK or Cancel button. Passing a null argument to
Paste is harmless, but some functions require an argument. In these cases, you can
use the -> operator to terminate the macro.

The RevComment macro uses an explicit label so that it can end the macro with­
out an error when you choose the Cancel button. The next line of the macro is
almost the same as the previous line in the macro.

Arg "Comment" Prompt ->Quit Paste =>End \

On this line, if the paste is carried out, an unconditional branch is taken to the
label End and passes over the Quit branch, which is defined on the next line.

:>Quit Meta Ldelete \

The Quit branch is taken when you cancel a prompt. The macro has to clean up
the text already inserted by the macro. The Meta Ldelete function deletes the
incomplete line that would have been the revision-history entry. The next line de­
fines the last step of the macro.

:>End Arg "Start" Mark

The End label defines the entry point for the common cleanup code. This line
restores the cursor to the initial position when you invoked the macro. Because
this line does not end in a line-continuation character (\), it is the end of the
RevComment macro.

The last line that you typed is not part of the RevComment macro. It is a separate
TOOLS.lNI entry.

RevComment:Ctrl+H

This line assigns the CTRL+H key to the RevCommeht macro.

You can polish this macro by adding Arg "Start" Meta Mark to the end of the
macro. This phrase deletes the mark. A better alternative is to use the Savecur and
Restcur functions instead of named marks. However, this example uses named
marks to illustrate how to use them in a macro.

Customizing PWB

PWB is a completely customizable development environment. You can modify
PWB in the following ways:

• Changing mapping of keystrokes to actions.

• Changing default behavior of PWB (for example, how tabs are handled or if
PWB automatically saves files).

• Changing the colors of parts of the PWB display.

• Adding new commands to the Run menu.

• Programming new editor actions (macros).

You can find instructions on how to write macros in "Writing PWB Macros"
on page 109.

In addition to the customizations that you can make by using the commands in the
Options menu, you can also customize PWB by editing the TOOLS.INI file.

Note Another category of customization that is not covered in this book is how
to write PWB extensions. An extension is a dynamically loaded module that can
access PWB's internal functions. Extensions can do much more than macros. To
learn more about writing PWB extensions, see the Microsoft Advisor Help system
(choose "PWB Extensions" from the main Help table of contents).

6.1 Changing Key Assignments
PWB maps actions (functions and macros) to keys. You can assign any of these
actions to keys other than the default keys.

For example, Exit is a PWB function. Its default key assignment is F8. A BRIEF
user may prefer to use ALT+X to leave the editor.

120 Environment and Tools

~ To make ALT+X execute the Exit function:

I. From the Options menu, choose Key Assignments.

PWB displays the Key Assignments dialog box.

,------------ Key Assignments ------------,
iacro/Funct ion Hame: [exit· -]

Hew ~y: { }[- - - - -- - - - -- - -- -- - - -] Assigned To:

Macro/Function !ist: lurrent Keys:

emacsnewl
endfile
end line
environment

1'---re ----" t

I

!
execute
exit
graphic
home
initial ize

l'i']ssignl <;Dnassign>

Uiltssigned Keys:

I"'" Alt+"
Alt+1I

<Sale·· .> <ji.tnction Help>

< OK > <Cancel> < ~lp >

2. Select Exit in the MacrolFunction List box, or type exi t in the Macro/
Function Name text box.

3. Move the cursor to the New Key box between the braces ({}) by clicking
between the braces or by pressing ALT+K.

4. Press ALT+X.

PWB types AL T +x in the text box after the braces and displays the name of the
macro or function that ALT+X is currently assigned to. With the default settings,
you can see that ALT+X is assigned to the Unassigned function. Pressing a key
in the key box is a quick way to find out the name of the function assigned to
the key.

Note When the cursor is in the key box (between the braces), most keys lose
their usual meaning, including ESC, FI, and the dialog box access keys. The key
you press is interpreted as the key to be assigned. Only TAB, SHIFT+TAB, ENTER,

and NUMENTER retain their usual meaning. To assign one of these keys, type the
name of the key in the text box.

5. Press TAB to move the cursor out of the key box.

6. Choose Assign.

PWB assigns Exit to the ALT+X key. Note that Exit is still assigned to the F8

key. Functions can be assigned to many keys.

7. Choose OK.

ImI Key assignments
can be temporary.

Customizing PWB 121

Important To change a key, you must choose the Assign button. The OK button
dismisses only the dialog box. It does not perform any other action. This design
allows you to assign many keys in one session with the dialog box.

The change remains in effect for the duration of the session.

~ To make a permanent key assignment:

1. From the Options menu, choose Key Assignments.

2. Choose Save.

PWB displays the Save Key Assignments dialog box, which lists all of the un­
saved assignments that you have made during the PWB session by using the
Key Assignments dialog box.

3. Delete any settings that you do not want to save.

4. Choose OK.

PWB writes your new settings into the [PWB] section of TOOLS.INI for sub­
sequent sessions. When you exit PWB, you are prompted to save TOOLS.INI.
Your changes are not permanent until you actually save the file to disk.

If you already know the function name, you can make a quick assignment for the
current session by using the Assign function instead of going through the Key
Assignments dialog box.

~ To assign a key using the Assign function:

• Execute the function sequence:

Arg function:key Assign (ALT+A function: key ALT+=).

For example, to assign Exit to ALT+X:

1. Press ALT+A to execute Arg.

2. Type exit:ALT+X

3. Press ALT+= to execute Assign.

The assignment is in effect for the rest of the PWB session.

The key assignments you make by using the Assign function are not listed in the
Save Key Assignments dialog box.

To discover the name of the function or macro that is currently assigned to a key,
use the Key Assignments dialog box (as previously described) or use the Tell
function.

122 Environment and Tools

~ To find a current key assignment using Tell:

1. Press CTRL+ T to execute Tell.

PWB displays the prompt:

Press a key to tell about

2. Press the key you want to find out about.

If you press FlO, PWB displays the function assigned to the FlO key (Openfile).

,---- Tell -

openf i Ie :F18

The Tell function has many other uses in addition to displaying key assignments.
For more information on Tell, see page 216.

6.2 Changing Settings

n To see a list of
PWB switches in
Help, type ALT+A

switches Fl.

When you first use PWB, you don't have to specify the tab stops, whether the edi­
tor starts in insert or overtype mode, and so on. These settings (called "switches")
are all covered by defaults. PWB' s default behavior can be extensively customized
by changing the values of PWB switches.

Switches fall into three categories:

• Boolean switches. True/false or on/off switches that can also be specified as
yes/no or 0/1. An example of a Boolean switch is Autosave, which governs
whether PWB saves a file when you switch to a different one.

• Numeric switches. An example of a numeric switch is Undocount, which deter­
mines the maximum number of editing actions you can undo.

• Text switches. Examples of a text switch are Markfile, the name of the file in
which to store marks, Tabstops, a list of tab-stop intervals, and Readonly, the
operating-system command for PWB to run when saving a read-only file.

~ To change the setting for Tabstops:

1. From the Options menu, choose Editor Settings.

PWB displays the Editor Settings dialog box.

ImII Choose Switch
Help to determine what
a switch does and the
syntax to spcify its
value.

Customizing PWB 123

2. Tabstops is a text switch (not a numeric switch as you might expect), so select
the Text option button.

3. Select Tabstops in the Switch List box.

PWB shows the current setting for Tabstops in the Switch text box at the top of
the dialog box.

4. Move to the Switch text box by clicking in the box or by pressing ALT+S.

PWB selects only the switch value, instead of the entire text.

5. Type the new setting:

347 8

This setting defines a tab stop at columns 4,8, 15, and every eight columns
thereafter. At this point, the Editor Settings dialog box should look like:

r---------- Editor Settings -----------,
~itch: ltabstops:3 -I 7 8- --------------------------J

I [PWB _____________ Swi tch _!).ner: ________________ ul Switch 11Jpe
() ijpolean
() i'neric
(.) uext

Switch !Jist:

fastfunc:up on
markfile:
printcrnd:
readonly:

.11;aiu,;ii

t

<Sa!e ...) <S!itch Help)

< OK) <Cancel) < Delp)

6. Choose the Set Switch button to change the setting of the Tabstops switch.

7. Choose OK.

Important To change a setting you must choose the Set Switch button. The OK
button only dismisses the dialog box. It does not perform any other action. This
design allows you to set many switches in one session with the dialog box.

The new tab stops you set are used for the current session. If you want to use this
setting permanently, you must choose the Save button in the Editor Settings dialog
box. This changes your TOOLS.lNI file in the same way as for key assignments.

124 Environment and Tools

IiIiII You can set
temporary switch
settings.

You can make temporary switch assignments for the current session by using the
Assign function. You do this in the same way as for a key assignment by typing
Arg switch: value Assign (ALT+A switch:value ALT+=).

You may be curious about the Switch Owner box that you did not use in this ex­
ample. The Switch Owner is either PWB or a PWB extension such as PWBHELP
(the extension that provides the Microsoft Advisor in PWB). Type or select a
switch owner to set switches for that extension. Each extension has its own section
in TOOLS.INI.

Note When you choose Set Switch, most switch settings take effect immediately.
However, changes to the Height switch do not take effect until you choose OK.

6.3 Customizing Colors
You can change the color of almost any item in the PWB interface. For a table
showing the names and meanings of PWB' s color settings, see the "Programmer's
WorkBench Reference" on page 271.

Some displays show a brilliant green for the left and right triangular symbols sur­
rounding buttons in Help.

~ To change the light green to light cyan:

1. From the Options menu, choose Colors.

PWB displays the Colors dialog box.

r---------- Colors -----------,
!olor:

desktop
pwbwi ndowtext
pwbwindowborder
rressage
location
helpnorm
helpbold

'mamA"
he Ipunder Ii ne
he lpwarning

Examp Ie: iimttItilSU

t

I
!»reground:

Black
Blue

t

I
11U!~Gr~:~'~iin •• 11111

i~:ta Ii

iiJackground:

Black
1;lili-

Green
Cyan
Red
Magenta
Brown
White

t

[I Bright F~e [1 Bright B~k

&!let Colora <SaZe·· .>

< OM > <Cancel> < Delp >

Customizing PWB 125

2. Select Helpitalic in the Color list box.

3. Select Cyan in the Foreground list box.

4. Choose Set Color.

To verify your change, press Fl. The green symbols in help are now light cyan.
While you are viewing Help, you can find out what parts of PWB the rest of the
color names determine. To leave Help, click the Cancel button or press ESC. PWB
returns you to the Colors dialog box.

The Bright Fore and Bright Back check boxes determine if the given color is the
usual version of the color or the bright version of the color. Bright black, for ex­
ample, is usually a dark gray color.

If you want to save your new colors for subsequent sessions, choose the Save but­
ton. PWB displays the Save Colors dialog box where you can delete modifications
that you don't want to save. When you choose OK in the Save Colors dialog box,
PWB modifies TOOLS.lNI to record your changes.

6.4 Adding Commands to the Run Menu
You can add up to six commands to the Run menu to integrate your own utilities
into PWB. A command is the name of any executable (.EXE or .COM) file, batch
(.BAT) file, or built-in operating-system command such as DIR or COPY.

Suppose you use an outline processor to keep project notes. You can start the out­
line processor from PWB' s Run menu.

~ To add a command to the Run menu:

1. From the Run menu, choose Customize Run Menu.

2. Choose the Add button.

PWB displays the Add Custom Run Menu Item dialog box for you to describe
your custom menu item:

126 Environment and Tools

.----- Add Custom Run Menu Item ------,
ienu Text: IProject -Notes····························]

~th Name: [.....]

~guments : [..............]

~tput File Name: [..........]

[Initial Directory: [..................................]

Help !line: [..]

[] Use ~ialog Box for Arguments and Output File

[X] Prompt Before Weturning [] Execute in Background

Shortcut Key: (.) :lJone () Alt+ij[··]

I OK a <Cancel> < Delp >

3. Type Project ~Notes ... in the Menu Text box.

The tilde (~) before the letter N indicates the highlighted access letter for the
menu command. The ellipsis (...) uses the standard convention to indicate that
the command will require more information before it is completed. An ellipsis
is commonly associated with a dialog box command but can be used in this con­
text as well.

4. Specify the full path to the outlining program, OUTLINE.EXE, in the Path
Name text box. (The program name OUTLINE.EXE is for example purposes
only. Substitute the name of your own outliner or other program in its place.)

5. Specify tlJe arguments you want to pass to the outliner in tlJe Arguments text
box: % I dpfF. log.

This example illustrates a powerful feature ofPWB: its ability to extract parts
of the filename to form a new name for customized menu items. The specifica­
tion % I dpfF extracts the drive (d), path (p), and base name (f) ofthe current
file. Anything after F is added to the end of the name.

For example, ifthe current file is C:\SOURCE\COUNT.C, the argument that
PWB passes to the program is C:\SOURCE\COUNT.LOG.

6. In tlJe Help Line text box, type the explanatory message that appears on tlJe
status bar when you browse this menu item:

Run the OUTLINE program

7. Choose OK to confirm your entries.

PWB adds the command to your Run menu and modifies TOOLS.INI to save the
new item. You can now access your outline processor directly from the Run menu.

.. -
[11

Run I

Execute:
Program :Wguments ...
Debug:

~1l1 DOS Corrrna nd ...
ilstomize Run Menu, ..

Project Hotes

Customizing PWB 127

1 ~

Ii

..
n the OUTL I NE Program P N 0c001. EX'I5

Note You can add other text processing or word processing programs to the Run
menu. If you change the current file using another program, PWB prompts you to
update the file or to ignore the changes made by the other program.

6.5 How PWB Handles Tabs
The following functions and switches control how PWB handles tabs:

Name Type Description

Realtabs Switch Determines if PWB preserves tabs on modified lines

Entab Switch The white space translation method

Tabalign Switch The alignment of the cursor within a tab field

Filetab Switch The width of a tab field

Tabdisp Switch The fill-character for displaying tab fields

Tab Function Moves the cursor to the next tab stop

Backtab Function Moves the cursor to the previous tab stop

Tabstops Switch Tab positions for Tab and Backtab

For detailed information on each function and switch, see Help or the "Program­
mer's WorkBench Reference." For instructions on how to set a switch see "Chang­
ing Settings" on page 122. For instructions on how to assign a function to a key,
see "Changing Key Assignments" on page 119.

128 Environment and Tools

To understand how PWB handles tabs, you need to know only a few facts:

• The Tab (TAB) and Backtab (SHIFI'+TAB) cursor-movement functions and the
Tabstops switch have nothing to do with tab characters. They affect cursor
movement, rather than the handling of tab characters, and are not discussed
further here. For more information on these items, see the "Programmer's
WorkBench Reference."

• PWB never changes any line in your file unless you explicitly modify it (lines
longer than PWB's limit of 250 characters are the exception).

Some text editors translate white space (that is, entab or detab) when they read
and write the file. PWB does not translate white space when it reads or writes a
file. This is to be compatible with source-code control systems that would de­
tect the translated lines as changed lines.

• PWB translates white space according to the Entab switch only when you mod-
ify a line.

• Tabalign has an effect only when Realtabs is set to yes.

• A "tab break" occurs every Filetab columns.

• When PWB displays a tab in the file, it fills from the tab character to the next
tab break with the Tabdisp character.

Figure 6.1 illustrates how PWB displays tabs.

1 8 16 24 32 (Filetab: 8)

91T.:xxxxxx~x;:xx;

Text l Tab field, shown as Tabdisp:46

Physical tab character

Figure 6.1 How PWB Displays Tabs

• When translating white space, PWB preserves the exact spacing of text as it is
displayed on screen.

To set the width of displayed tabs, change the setting of the Filetab switch.

To tell PWB to translate white space on lines that you modify, set the Realtabs
switch to no and the Entab switch to a nonzero value, according to the translation
method that you want to use. The Entab switch takes one of the following values:

Customizing PWB 129

Entab Translation Method

Translate white space to space characters o
1

2

Translate white space outside of quotation-mark pairs to tabs

Translate white space to tabs

To preserve white space exactly as you type it, set the Realtabs switch to yes and
the Entab switch to o.

When Realtabs is yes, the Tabalign switch comes into effect. When Tabalign
is set to yes, PWB automatically repositions the cursor onto the physical tab char­
acter in the file, similar to the way a word processor positions the cursor. When
Tabalign is set to no, PWB allows the cursor to be anywhere in the tab field.

If you want the TAB key to type a tab character, assign the TAB key to the Graphic
function. Note that when a dialog box is displayed, the TAB key always moves to
the next option. You can always use the following method to type a tab character,
whether you are in a dialog box or an editing window.

~ To type a literal tab character in your text or in a dialog box:

1. Execute the Quote function (press CTRL+P).

2. Press TAB.

Examples
The following example sets up tabs so that they act the same as in other Microsoft
editors, such as QuickC or Word:

realtabs :yes
tabalign:yes
graphic:tab
trail space:yes
entab:0

The Trailspace switch is needed so that the TAB key will have an effect on other­
wise blank lines.

To save your file so that it does not include any actual tab characters (ASCII 9),
use the following settings:

realtabs:no
entab:0
tabstops:3

The Tabstops value determines the number of spaces inserted for each press of
the tab key.

130 Environment and Tools

Another example of a common tab configuration is one in which the TAB key in­
serts a tab in insert mode but moves over text to the next tab stop when the editor
is in overtype mode.

First, use the following tab settings:

realtabs:yes
tabalign:yes

Then insert the following macro into the PWB section of your TOOLS.INI:

;Insert mode and overtype mode tabbing
TabIO:- Insertmode +>over Insertmode "\t" -> \

:>over Insertmode Tab
TabIO:TAB

For more information on PWB macros see "Writing PWB Macros" on page 109.

6.6 PWB Configuration
PWB keeps track of three kinds of information between sessions in these three
files:

File

TOOLS.INI

CURRENT.STS

project.STS

Information Saved

Configuration and customizations, such as key assignments,
colors, and macro definitions

The editing environment used most recently

The editing and building environment for a project

TOOLS.INI is described in the next section: "The TOOLS.INI File" on page
131. For more information about CURRENT.STS, see "Current Status File
CURRENT.STS" on page 138, and for more information about the project.STS
files, see "Project Status Files" on page 138.

When you start PWB, it reads the TOOLS.INI file, loads PWB extensions, and
reads the CURRENT.STS or project status file in the following order:

1. PWB reads the [PWB] section of TOOLS.INI (except when PWB is started
using the ID or IDT command-line options). For more information on tagged
sections, see "TOOLS.INI Section Tags" on page 132.

If the [PWB] section contains Load switches, PWB loads the specified exten­
sion when each switch is encountered. When PWB loads an extension, it also
reads the extension's tagged section of TOOLS.INI, if any. For example, when
the Help extension is loaded, PWB reads the [PWB-PWBHELP] section of
TOOLS.INI.

Customizing PWB 131

2. PWB autoloads extensions (except when the ID or IDA option is used to start
PWB).

The automatic loading of PWB extensions is described in the next section,
"Autoloading Extensions."

3. PWB reads the TOOLS.INI operating-system tagged section (except when ID
or IDT is used).

4. PWB reads the CURRENT.STS status file (except when ID or IDS is used to
startPWB).

5. PWB reads the TOOLS .INI tagged section for the file extension of the current
file (except when ID or IDT is used to start PWB).

6. PWB runs the Autostart macro if it is defined in TOOLS.INI (except when ID
or IDT is used).

Autoloading Extensions
PWB automatically loads extensions if they follow a specific naming convention
and reside in a certain directory. For extensions that follow the convention, it is
not necessary to put load statements in TOOLS.INI.

PWB searches the directory where the PWB executable file is located for file­
names with the following pattern:

PWB* .MXT

PWB loads as many extensions with names of this form as it finds. When PWB
loads an extension, it also loads the extension's tagged section of TOOLS.INI.

To suppress extension autoloading, use the IDA option on the PWB command line.

Important Do not rename editor extensions. PWB and some extensions may
assume the predefined filename.

The TOOlS.lNI File
PWB, like other Microsoft tools, stores information in a file called TOOLS.INI.
This file retains information about how you want PWB to work under various cir­
cumstances. PWB expects to find this file in the directory specified by your INIT
environment variable.

TOOLS.INI is a text file. You can edit it using PWB or any other text editor. PWB
also can store information directly to TOOLS.INI when, for example, you choose
the Save Colors button in the Colors dialog box. PWB modifies this file when you
save a recorded macro, a changed switch, a new key assignment, a custom
browser database, or a custom project template.

132 Environment and Tools

ImI Toopen
TOOLS.INI, choose it
in the All Files dialog
box. TOOLS.INI is
always open.

TOOLS.INI Section Tags
The TOOLS.lNI file is divided into sections, separated by "tags." These tags are
specified in the form:

[tagname]

The tagname is the base name of an executable file, such as NMAKE, CVW, or
PWB. The tag defines the start of a TOOLS.lNI section that contains settings for
the indicated tool.

PWB extends this simple syntax to enable you to take different action depending
on the operating system or the current file's extension. The extended syntax is:

[PWB-modifler]

The modifier can be the base name of a PWB extension, an operating system's
identifier, or a filename extension for files that you edit.

Operating-System Tags
The following table lists the operating-system tags for various operating environ­
ments. If you are running Windows, use the tag for the version of DOS that you
are running.

Tag

[PWB-4.0]

[PWB-S.O]

Operating Environment

MS-DOS versions 4.0 and 4.01

MS-DOS version S.O

Be sure to use the correct version number for your operating system.

Filename-Extension Tags
The operating-system tags are read only once at startup. PWB reads the filename­
extension tagged sections each time you switch to a file with that extension. For
example, suppose that you want the tab stops for C and c++ files to be every four
columns, and every eight columns for text files.

~ To set tab options based on filename extension:

1. Open your TOOLS.lNI file in an editing window.

2. Create a C and C++ section by typing the tag:

[PWB-.C PWB-.H PWB-.CPP PWB-.HPP]

l1li The default
extension tag is
IPWB-.. J.

3. Create a text file section by typing the tag:

[PWB-. TXT]

Customizing PWB 133

4. Put the appropriate Tabstops, Entab, and Realtabs switches in each section.
The lines that begin with a semicolon are comments.

[PWB-.C PWB-.H PWB-.CPP PWB-.HPP]
; Set the tab stops for C and C++ to 4
tabs tops : 4
; Translate white space to tabs
entab 1
realtabs : no

[PWB-.TXT]
; Set the tab stops for text files to 8
tabs tops : 8
; Translate white space to spaces
entab 0
realtabs : no

Depending on whether the current file is a C (.C or .H) file or a text (.TXT) file,
the tab stops are set at 4 or 8 columns, respectively.

PWB reads multiple sections and applies the appropriate settings. You can use this
to your advantage by storing all your general settings in the [PWB] section and
storing differences in separate tagged sections.

Filename-extension tagged sections are useful for the kinds of files you edit most
frequently. However, it's impossible to define settings for every conceivable exten­
sion. To handle this case, PWB provides a special extension (..) that means "all
extensions not defined elsewhere in TOOLS.IN!."

For example, to set tab stops to 8 for all files except C and C++ files, modify the
preceding example to use the [PWB- ..] tag in place of [PWB-. TXT].

Note When you choose the Save button in the Key Assignments, Editor Settings,
and Colors dialog boxes, and when you save a recorded macro or custom Run
menu command, PWB saves the setting in the main section. If the setting is for a
PWB extension, it is saved in that extension's tagged section. PWB never modi­
fies or writes settings in a filename-extension or operating-system section.

Named Tags
You can define tagged sections of TOOLS.INI that you load manually. Use
manually loaded sections to make special key assignments, to load complex or
rarely used macros, or to use a special PWB configuration under a particular
circumstance.

134 Environment and Tools

The syntax for a manually-loaded section tag is:

[PWB-name]

Where name is the name of the tagged section. A single section of TOOLS.INI
can be given several tag names. These tags have the form:

[PWB-namel PWB-name2 •••]

When you want to use the settings defined in one of these named sections, pass the
name of the section to the Initialize function (SHIFT+FS).

~ To read a tagged section of TOOLS.INI:

• Execute Arg name Initialize (ALT+A name SHIFT+FS)

You can use this method to read any tagged section, including the automatically
loaded sections.

Note When you execute Initialize with no arguments, PWB clears all the current
settings before reading the [PWBJ section, including settings that you have made
for specific PWB extensions. PWB does not reread the operating-system or other
additional sections of TOOLS.INI. To reread the main section without clearing
other settings that you want to remain in effect, label the main PWB section with
the tag [PWB PWB-rnai nJ. You can then use Arg rnai n Initialize to recover your
startup settings, instead of using Initialize with no arguments.

TOOLS.lNI Statement Syntax
Within each TOOLS.INI section you place a series of comments or statements.
Each statement is a macro definition, key assignment, or switch setting, and must
be stated on a single logical line. Statements can be continued across lines by
using line-continuations.

General Macro Syntax
The general syntax for a macro definition is:

name := definition

PWB does not reserve any names. Therefore, be careful not to redefine a PWB
function. For more information about how to write macros, see "Writing PWB
Macros" on page 109.

Customizing PWB 135

General Key Syntax
The general syntax for a key assignment is:

name: key

The name is the name of a function or macro, and the key is the name of a key. To
see how to write a given key, use the Tell function as described in "Changing Key
Assignments" on page 119.

Note that certain keys have fixed meanings when the cursor is in a dialog box or in
the Help window. You can assign one of these keys to a function or macro, but the
fixed meaning is used in a dialog box or the Help window.

The following keys have fixed meanings:

Key

ESC

Fl

TAB

SHIFT+TAB

SPACEBAR

ENTER,

SHIFT +ENTER,

NUMENTER,

SHIFT +NUMENTER

Dialog Box

Choose Cancel

See Help on the dialog box
(choose Help)

Move to the next option

Move to the previous option

Toggle the setting of the
current option

Choose the default action

Help Window

Close the Help window

See Help on the current item

Move to the next hyperlink

Move to the previous
hyperlink

Activate the current hyperlink

Activate the current hyperlink

Note The Windows operating environment or a terminate-and-stay-resident
(TSR) program may override PWB' s use of specific keys. PWB has no knowledge
of keys that are reserved by these external processes. PWB lists these keys as avail­
able keys in the Key Assignments dialog box and allows you to assign functions to
these keys, but you may not be able to use them. See the documentation for your
operating environment to see what keys are reserved by the system.

General Switch Syntax
The general syntax for a switch setting is:

switch: value

The exact syntax for the switch value depends on the switch. See Chapter 7,
"PWB Reference," for more information about each switch.

136 Environment and Tools

line Continuation
All statements in TOOLS.lNI must be stated on a single logical line. A logical line
can be written on several physical lines by using the TOOLS.lNI line-continuation
character, the backs lash (\).

The backslash must be preceded by a space to be treated as a line-continuation
character. Precede the backslash by two spaces if you want the concatenated state­
ment to contain a space at that location. If the backslash is preceded by a tab, PWB
treats the tab as if it were two spaces. The backslash should be the last character
on the line except for spaces or tabs.

The backslash in the following statement is not a line continuation.

Qreplace:CTRL+\

However, the backslash at the end of the first line below is a line continuation.

findtag:=Arg Arg "A\\[[A\\JJ+\\J" Psearch ->nf \
Arg Setwindow => :>nf Arg "no tag" Message

In this example, the backslash is preceded by two spaces. The first space is in­
cluded to separate -> n f from A r 9 in the concatenated macro definition. The sec­
ond space identifies the backslash that follows it as the line-continuation character.

Comments
In the TOOLS.lNI file, PWB treats the text that follows a semicolon (;) up to the
end of the line as a comment. To specify the beginning of a comment, you must
place the semicolon at the beginning of a line or following white space.

For example, the first semicolon in the following statement is part of a command,
and the second semicolon begins a comment.

Printcmd:lister -t4 %s -c; ;Print using lister program

In the following example, the first semicolon is a key name, and the second semi­
colon begins a comment.

Sinsert:CTRL+; ;Stream insertion: CTRL plus semicolon

Semicolons inside a quoted string do not begin a comment.

Customizing PWB 137

Environment Variables
The INIT environment variable tells PWB where to find the TOOLS.INI file and
where to store the CURRENT.STS file. The proper setting of these variables­
INIT, TMP, LIB, INCLUDE, HELPFILES, and PATH-governs whether your
development environment works smoothly.

~ To set the INIT environment variable from the command line:

• Type SET INIT=C:\INIT

The operating-system SET command sets the environment variable to contain the
string C: \ I NIT. This example presumes that you want to store your initialization
files in C:\INIT. You could use any other directory. Make sure that the INIT en­
vironment variable lists a single directory. Multiple directories in INIT can cause
inconsistent behavior.

The following list outlines how the environment works:

• The environment is always inherited from the parent process. The parent is
the process that starts the current process. In DOS, the parent is often
COMMAND.COM or Windows.

• Inheritance of environment variables is a one-way process. A child inherits
from its parent. You can make changes to the environment in a child (when you
use the Environment Variables command in PWB, for example), but they are
not passed back to the parent. This means that any changes to environment vari­
ables that you make while shelled out are lost when you return to PWB.

• Each DOS session under Windows inherits its environment from Windows.
Changes made to the environment in one session do not affect any other session.

The best way to make sure your environment is set properly is to explicitly set it in
one of your startup files. These are:

• CONFIG.SYS

• AUTOEXEC.BAT

PWB can save the complete table of environment variables for each project. You
can then use the Environment Variables command from the Options menu to
change environment variables for individual projects.

If you prefer that PWB save the environment variables for all PWB sessions or
use the current operating-system environment when it starts up, change the
Envcursave and Envprojsave switches. For more information on these switches,
see the "Programmer's WorkBench Reference" on pages 279 and 280.

138 Environment and Tools

Current Status File CURRENISTS
The first time you run PWB or CodeView, it creates a CURRENT.STS (current
status) file in your INIT directory. If there is no INIT directory, PWB and
CodeView create the file in the current directory.

CURRENT.STS keeps track of the following items for PWB:

• Open windows, including their size and position and the list of open files in
each window

• Screen height

• Window style

• Find string

• Replace string

• The options used in a find or find-and-replace operation, such as the use of regu­
lar expressions

• Optionally, all environment variables

PWB and CodeView share the current location and filename for the active win­
dow. When you leave Code View after a debugging session and return to PWB,
PWB positions the cursor at the place where you stopped debugging. For more
information on the items that CodeView saves in CURRENT.STS, see "The
CURRENT.STS State File" on page 343.

The next time you run PWB, it reads CURRENT.STS and restores the editing en­
vironment to what it was when you left PWB. For more information on how PWB
uses environment variables, see "Environment Variables" on page 137.

The status files are plain text files. You can load one into an editor and read it.
However, you might corrupt the file if you try to modify it. There is no need to
modify it because PWB keeps it updated for you. No harm occurs if you delete
CURRENT.STS. However, you will have to manually reopen the files you were
working on.

Project Status Files
For each project, PWB creates a project status file. PWB stores this file in the pro­
ject directory and gives it the name project.sTS, where project is the base name of
the project.

Project status files contain the same kind of information that CURRENT.STS
contains, except on a per-project basis. This scheme allows PWB to keep track of
your screen layout, file history, and environment variables for each project. The
project status files also contain the current project template, language and utility
options, build directory, and the program's run-time arguments.

Customizing PWB 139

The main difference between the two status files is that the CURRENT.STS file
supplies default status information-settings that PWB uses when you have not
set a project. PWB uses the project's status file when you open that project.

By default, PWB saves a project's environment variables in the project status file.
For more information on how PWB uses environment variables, see "Environment
Variables" on page 137.

Important While it is harmless to delete CURRENT.STS, you should not delete
project status files. They contain important information for building and updating
your project. If you delete a project status file, you may need to delete the project
makefile and start over.

Programmer's WorkBench
Reference

7.1 PWB Command Line
Syntax PWB [options] [/t]files

Options Use the following case-insensitive options when starting PWB:

ID[SITIA] ...
Disables PWB loading the initialization files or PWB extensions as indicated
by the following letters:

Letter Meaning

S Disable reading the status file CURRENT.sTS

T Disable reading TOOLS.lNI

A Disable PWB extension autoload

The ID option alone disables loading all the PWB extension and initialization
files. See: Autoload.

Note If you start PWB with the IDT option, this means that PWB options you
change during the session cannot be saved.

/PP makefile
Opens the specified PWB project.

IPF makefile
Opens the specified non-PWB project (foreign makefile).

/PL
Resets the last project. Use this option to start PWB in the same state you last
left it. You can set this option as the default by setting the Lastproject switch
to yes.

142 Environment and Tools

IE command

IR

Executes the given command or sequence of commands as a macro upon
startup.

If command contains a space, command should be enclosed in double quotation
marks ("). A single command need not be quoted. If command uses literal quo­
tation marks, place a backslash (\) before each mark. To use a backs lash, pre­
cede it with another backslash.

PWB starts in no-edit mode. You cannot modify files in this mode. See: Noedit.

1M {mark I line}

PWB starts at the specified location. See: Mark.

[[IT] file] ...
Tells PWB to load the given files on startup. If you specify a single file, PWB
loads it. If you specify multiple files, PWB loads the first file; then when you
use File Next or the Exit function, PWB loads the next file in the list.

If a IT precedes a filename or wildcard, PWB loads each file as a temporary
file. PWB does not include temporary files in the list of files saved between
sessions.

Note No other options can follow IT on the PWB command line. You must
specify IT for each file you want to be temporary.

7.2 PWB Menus and Keys
Many PWB menu commands activate PWB functions or predefined macros. The
menu commands that are attached to functions and macros are listed in the tables
that follow. To assign a shortcut key for one of these menu commands, use the
Key Assignments command on the Options menu and assign a key to the corre­
sponding function or macro. For details on using the Key Assignments dialog box,
see "Changing Key Assignments" on page 119.

Names beginning with an underscore Cpwb ...) are macros. Names without an un­
derscore are functions.

Programmer's WorkBench Reference 143

Table 7.1 File Menu and Keys

Menu Command Macro or Function Default Keys

New _pwbnewfile Unassigned

Close _pwbclosefile Unassigned

Next _pwbnextfile Unassigned

Save _pwbsavefile SHIFf+F2

Save All _pwbsaveall Unassigned

DOS Shell _pwbshell Unassigned

nfile _pwbfilen Unassigned

Exit _pwbquit ALT+F4

Table 7.2 Edit Menu and Keys

Menu Command Macro or Function Default Keys

Undo _pwbundo Unassigned

Redo _pwbredo Unassigned

Repeat _pwbrepeat Unassigned

Cut Delete SHIFf+DEL, SHIFf+NUM-

Copy Copy CTRL+INS, SHIFf +NUM*

Paste Paste SHIFf+INS, SHIFf+NUM+

Delete _pwbclear DEL

Set Anchor Savecur Unassigned

Select To Anchor Selcur Unassigned

Stream Mode _pwbstreammode Unassigned

Box Mode _pwbboxmode Unassigned

Line Mode _pwblinemode Unassigned

Record On _pwbrecord Unassigned

144 Environment and Tools

Table 7.3 Search Menu and Keys

Menu Command Macro or Function Default Keys

Log _pwblogsearch Unassigned

Next Match (Logging on) _pwbnextlogmatch SHIFT +CTRL+F3

Next Match (Logging off) _pwbnextmatch Unassigned

Previous Match (Logging on) _pwbpreviouslogmatch SHIFT +CTRL+F4

Previous Match (Logging off) _pwbpreviousmatch Unassigned

Goto Match _pwbgotomatch Unassigned

Table 7.4 Project Menu and Keys

Menu Command Macro or Function Default Keys

Compile File _pwbcompile Unassigned

Build _pwbbuild Unassigned

Rebuild All _pwbrebuild Unassigned

Close _pwbcloseproject Unassigned

Next Error _pwbnextmsg SHIFT+F3

Previous Error _pwbprevmsg SHIFT+F4

Goto Error _pwbsetmsg Unassigned

Table 7.5 Run Menu and Keys

Menu Command Macro or Function Default Keys

command1 _pwbuserl [ALT+Fn]

command2 _pwbuser2 [ALT+Fn]

command3 _pwbuser3 [ALT+Fn]

command4 _pwbuser4 [ALT+Fn]

command5 _pwbuser5 [ALT+Fn]

command6 _pwbuser6 [ALT+Fn]

command7 _pwbuser7 [ALT+Fn]

command8 _pwbuser8 [ALT+Fn]

command9 _pwbuser9 [ALT+Fn]

Programmer's WorkBench Reference 145

Table 7.6 Browse Menu and Keys

Menu Command Macro or Function

Goto Definition Pwbrowsegotodef

Goto Reference Pwbrowsegotoref

View Relationship Pwbrowseviewrel

List References Pwbrowselistref

Call Tree (Fwd/Rev) Pw browsecalltree

Function Hierarchy Pwbrowsefuhier

Module Outline Pwbrowseoutline

Which Reference Pwbrowsewhref

Class Tree (FwdlRev) Pwbrowsecltree

Class Hierarchy Pwbrowseclhier

Next Pwbrowsenext

Previous Pwbrowseprev

Table 7.7 Window Menu and Keys

Menu Command Macro or Function

New _pwbnewwindow

Close _pwbclose

Close All _pwbcloseall

Move _pwbmove

Size _pwbresize

Restore _pwbrestore

Minimize _pwbminirnize

Maximize _pwbmaximize

Cascade _pwbcascade

Tile _pwbtile

Arrange _pwbarrange

nfile _pwbwindown

Default Keys

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

CTRL+NUM+

CTRL+NUM-

Default Keys

Unassigned

CTRL+F4

Unassigned

CTRL+F7

CTRL+F8

CTRL+FS

CTRL+F9

CTRL+FlO

FS

SHIFT+FS

ALT+FS

ALT+n

146 Environment and Tools

Table 7.8 Help Menu and Keys

Menu Command Macro or Function Default Keys

Index _pwbhelp_index Unassigned

Contents _pwbhelp_contents SHIFT+FI

Topic _pwbhelp_context FI

Help on Help _pwbhelp-zeneral Unassigned

Next _pwbhelp_again Unassigned

Search Results _pwbhelp_searchres Unassigned

7.3 PWB Default Key Assignments

Key

$

%

&

*
+

o

2

3

4

5

Plain

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

Graphic

PWB's default keys assignments are shown in table 7.9. In each position having
the text Unassi gned, you can assign a function or macro to that key without taking
away a default keystroke. You cannot assign keys for positions that are empty.
These can usually be expressed in a different way. For example, CTRL+{ is ex­
pressed as SHIFT+CTRL+[.

Table 7.9 PWB Default Key Assignments

SHIFT ALT CTRL CTRL+SHIFT

Unassigned

Unassigned Unassigned

Unassigned Unassigned

Unassigned Unassigned

Unassigned Unassigned

_pwbwindowl Unassigned

_pwbwindow2 Unassigned

_pwbwindow3 Unassigned

_pwbwindow4 Unassigned

_pwbwindow5 Unassigned

Programmer's WorkBench Reference 147

Table 7.9 (continued)

Key Plain SHIFT ALT CTRL CTRL+SHIFT

6 Graphic _pwbwindow6 Unassigned

7 Graphic _pwbwindow7 Unassigned

8 Graphic _pwbwindow8 Unassigned

9 Graphic _pwbwindow9 Unassigned

Graphic Unassigned Unassigned

Graphic Unassigned Unassigned

< Graphic Unassigned Unassigned

Graphic Assign Unassigned

> Graphic Unassigned Unassigned

? Graphic Unassigned Unassigned
@ Graphic Unassigned

A Graphic Graphic Arg Mword Unassigned

B Graphic Graphic (Browse menu) Unassigned Unassigned

C Graphic Graphic Unassigned Ppage Unassigned

D Graphic Graphic Unassigned Right Unassigned

E Graphic Graphic (Edit menu) Up Unassigned

F Graphic Graphic (File menu) Pword Unassigned

G Graphic Graphic Unassigned Cdelete Unassigned

H Graphic Graphic (Help menu) Unassigned Unassigned

Graphic Graphic Unassigned Unassigned Unassigned

J Graphic Graphic Unassigned Sinsert Unassigned

K Graphic Graphic Unassigned Unassigned Unassigned

L Graphic Graphic Unassigned Replace Unassigned

M Graphic Graphic Unassigned Mark Unassigned

N Graphic Graphic Unassigned Linsert Unassigned

0 Graphic Graphic (Options menu) Lasttext Unassigned
p Graphic Graphic (Project menu) Quote Unassigned

Q Graphic Graphic Unassigned Unassigned Unassigned

R Graphic Graphic (Run menu) Mpage Record

S Graphic Graphic (Search menu) Left Sethelp

T Graphic Graphic Unassigned Tell Unassigned

U Graphic Graphic Unassigned Lastselect Unassigned

V Graphic Graphic Unassigned Insertmode Unassigned

W Graphic Graphic (Window menu) Mlines Unassigned

X Graphic Graphic Unassigned Down Unassigned
y Graphic Graphic Unassigned Ldelete Unassigned

Z Graphic Graphic Unassigned Plines Unassigned

148 Environment and Tools

Table 7.9 (continued)

Key Plain SHIFT ALT CTRL CTRL+SHlFT

Graphic Unassigned Pbal Unassigned

Graphic Unassigned Qreplace Unassigned

Graphic Unassigned Setwindow Unassigned
A Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned

Graphic Unassigned Unassigned

Fl _pwbhelp- _pwbhelp- _pwbhelp_back Pwbhelpnext Unassigned
context contents - -

F2 Setfile _pwbsavefile Unassigned Unassigned Unassigned

F3 Psearch _pwbnextmsg Unassigned Compile _pwbnext-
logmatch

F4 Msearch _pwbprevmsg _pwbquit _pwbclose _pwbprevious-
logmatch

F5 _pwbcascade _pwbtile _pwbarrange _pwbrestore Unassigned

F6 Selwindow _pwb- Unassigned Winstyle Unassigned
prevwindow

F7 Execute Refresh Unassigned _pwbmove Unassigned

F8 Exit Initialize Unassigned _pwbresize Unassigned

F9 Meta Shell Unassigned _pwbminimize Unassigned

FlO Openfile Unassigned Unassigned _pwbmaximize Unassigned

FII Unassigned Unassigned Unassigned Unassigned Unassigned

F12 Unassigned Unassigned Unassigned Unassigned Unassigned

F13 Unassigned Unassigned Unassigned Unassigned Unassigned

F14 Unassigned Unassigned Unassigned Unassigned Unassigned

F15 Unassigned Unassigned Unassigned Unassigned Unassigned

F16 Unassigned Unassigned Unassigned Unassigned Unassigned

LEFT Left Select Unassigned Mword Select

RIGHT Right Select Unassigned Pword Select

UP Up Select Unassigned Mlines Unassigned

DOWN Down Select Unassigned Plines Unassigned

INS Insertmode Paste Unassigned Copy Unassigned

DEL _pwbclear Delete Unassigned Unassigned Unassigned

HOME Begline Select Unassigned Begfile Select

END Endline Select Unassigned Endfile Select

Programmer's WorkBench Reference 149

Table 7.9 (continued)

Key Plain SHIFT ALT CTRL CTRL+SHlFT

ENTER Emacsnewl Newline Unassigned Unassigned Unassigned

BKSP Emacscdel Emacscdel Undo Unassigned Undo

ESC Cancel Unassigned Unassigned Unassigned Unassigned

GOTO Home Unassigned Unassigned Unassigned Unassigned

NUM* Graphic Copy Unassigned Unassigned Unassigned

NUM+ Graphic Paste Unassigned Pwbrowsenext Unassigned

NUM- Graphic Delete Unassigned Pwbrowseprev Unassigned

NUM/ Graphic Unassigned Unassigned Unassigned

NUM- Emacsnewl Newline Unassigned Unassigned Unassigned
ENTER

PGUP Mpage Select Unassigned Unassigned Select

PGDN Ppage Select Unassigned Unassigned Select

TAB Tab Backtab Unassigned Unassigned Unassigned

Note on Available Keys
PWB allows you to assign functions and macros to almost any key combination.
However, some keys have a fixed meaning in certain circumstances or operating
environments. PWB lists these key as available keys in the Key Assignments
dialog box, and PWB allows you to assign a command to the key. However, when
the circumstance holds, or you are running PWB in a specific environment, certain
keys have a fixed meaning that overrides any assignment that you make.

Help Window
In the Help window, the following keys have a fixed meaning:

Key Meaning

ESC Close the Help window

TAB Move to next hyperlink

SHIFT+TAB Move to previous hyperlink

ENTER Activate current hyperlink

NUMENTER Activate current hyperlink

SHIFT +ENTER Activate current hyperlink

SHIFT +NUMENTER Activate current hyperlink

SPACE Activate current hyperlink

150 Environment and Tools

Dialog Boxes
In dialog boxes, all keys have predetermined meanings. Your assignments have no
effect when a dialog box is displayed. In particular, note the following keys:

Key

ESC

ENTER

Fl

TAB

SHIFT+TAB

SPACE

CTRL+P

Meaning

Choose Cancel

Choose the active command button

Choose Help

Move to the next option or command

Move to the previous option or command

Toggle active option

When used in a text box, inserts the next key as a literal value. Use this
key to type a literal tab character.

The Text Argument dialog box is an exception. All keys except ESC (Cancel) and
Fl (Help) have their assigned meaning.

Microsoft Windows
When running PWB under Windows, some keys are reserved for use by Win­
dows. You can override Windows' use of these keys by setting options in a PIF
file.

Key

ALT+ESC

CTRL+ESC

ALT+TAB

ALT+SPACE

ALT+ENTER

7.4 PWB Functions

Default Meaning in Windows

Switch to the next window in Windows

Switch to the Windows Task Manager

Switch to the next application

Activate the current window's system menu

Shift application between full screen and window

PWB provides a rich variety of editing, searching, and project-management capa­
bilites in the form of functions. Most of PWB' s menus and dialogs call these func­
tions (or macros that use these functions) to perform their actions. You can write
your own macros that use these capabilities in ways that precisely suit your needs.
You can also execute every function directly, either by pressing a key or by using
the Execute function.

Table 7.10 summarizes PWB functions. Most functions can be executed in differ­
ent ways to perform related actions. Complete details are given in the A-to-Z refer­
ence that follows the table.

Programmer's WorkBench Reference 151

Table 7.10 PWB Functions

Function Description Keys

Arg Begin a function argument ALT+A

Arrangewindow Arrange windows or icons Unassigned

Assign Define a macro or assign a key ALT+=

Backtab Move to previous tab stop SHIFT+TAB

Begfile Move to beginning of file CTRL+HOME

Begline Move to beginning of line HOME

Cancel Cancel arguments or current operation ESC

Cancel search Cancel background search Unassigned

Cdelete Delete character CTRL+G

Clearrnsg Clear Build Results Unassigned

Clearsearch Clear Search Results Unassigned

Closefile Close current file Unassigned

Compile Compile and build CTRL+F3

Copy Copy selection to the clipboard CTRL+INS,
SHIFT+NUM*

Curdate Today's date (dd-Mmm-yyyy) Unassigned

Curday Day of week (Tue) Unassigned

Curtime Current time (hour:minute:second) Unassigned

Delete Delete selection SHIFT+DEL,
SHIFT+NUM-

Down Move down one line CTRL+X, DOWN

Emacscdel Delete character BKSP, SHIFT+BKSP

Emacsnewl Start a new line ENTER, NUMENTER

Endfile Move to end of file CTRL+END

Endline Move to end of line END

Environment Set or insert environment variable Unassigned

Execute Execute macros and functions by F7
name

Exit Advance to next file or leave PWB F8

Graphic Type character (many)

Home Move to window comer GOTO

Information (Obsolete)

Initialize Reinitialize SHIFT+F8

Insert Insert spaces or lines Unassigned

Insertmode Toggle insert/overtype mode CTRL+V, INS

Lastselect Recover last selection CTRL+U

Lasttext Recover last text argument CTRL+O

152 Environment and Tools

Table 7.10 (continued)

Fuuction Description Keys

Ldelete Delete lines CTRL+Y

Left Move left CTRL+S,LEFf

Linsert Insert lines or indent line CTRL+N

Logsearch Toggle search logging Unassigned

Mark Set, clear, or go to a mark or line CTRL+M
number

Maximize Enlarge window to full size Unassigned

Menukey Activate menu ALT

Message Display a message or refresh the Unassigned
screen

Meta Modify the action of a function F9

Mgrep Search across files for text or pattern Unassigned

Minimize Shrink window to an icon Unassigned

Mlines Scroll down by lines CTRL+up, CTRL+W

Movewindow Move window Unassigned

Mpage Move up one page CTRL+R, POUP

Mpara Move up one paragraph Unassigned

Mreplace Multifile replace with confirmation Unassigned

Mreplaceall Multifile replace Unassigned

Msearch Search backward for pattern or text F4

Mword Move back one word CTRL+A,CTRL+LEFf

Newfile Create a new pseudofile Unassigned

Newline Move to the next line SHIff +ENTER,
SHIff +NUMENTER

Nextmsg Go to build message location Unassigned

Nextsearch Go to search match location Unassigned

Noedit Toggle the no-edit restriction Unassigned

Openfile Open a new file FlO

Paste Insert file or text from clipboard SHIFf+INS,
SHIFf+NUM+

Pbal Balance paired characters CTRL+[

Plines Scroll up by lines CTRL+DOWN,CTRL+Z

Ppage Move down one page CTRL+C, PODN

Ppara Move down one paragraph Unassigned

Print Print file or selection Unassigned

Project Set or clear project Unassigned

Prompt Request text argument Unassigned

Programmer's WorkBench Reference 153

Table 7.10 (continued)

Function

Psearch

Pwbhelp

Pwbhelpnext

Pwbhelpsearch

Pwbrowse I stdef

Pwbrowse I stref

Pwbrowsecalltree

Pwbrowseclhier

Pwbrowsecltree

Pwbrowsefuhier

Pwbrowsegotodef

Pwbrowsegotoref

Pwbrowselistref

Pwbrowsenext

Pwbrowseoutline

Pwbrowsepop

Pwbrowseprev

Pwbrowseviewrel

Pwbrowsewhref

Pwbwindow

Pword

Qreplace

Quote

Record

Refresh

Repeat

Replace

Resize

Restcur

Right

Saveall

Savecur

Sdelete

Searchall

Selcur

Description

Search forward for pattern or text

Help topic lookup

Relative help topic lookup

Global full-text help search

Go to first definition

Go to first reference

Browse Call Tree (Fwd/Rev)

Browse Class Hierarchy

Browse Class Tree (Fwd/Rev)

Browse Function Hierarchy

Browse Goto Definition

Browse Goto Reference

Browse List References

Browse Next

Browse Module Outline

Go to previously browsed location

Browse Previous

Browse View Relationship

Browse Which Reference?

Open a PWB window

Move forward one word

Replace with confirmation

Insert literal key

Toggle macro recording

Reread or discard file

Repeat the last editing operation

Replace pattern or text

Resize window

Restore saved position

Move right

Save all modified files

Save cursor position

Delete streams

Highlight occurrences of pattern or
text

Select to saved position

Keys

F3

Unassigned

CTRL+FI

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

CTRL+NUM+

Unassigned

Unassigned

CTRL+NUM­

Unassigned

Unassigned

Unassigned

CTRL+F, CTRL+RIGHT

CTRL+\

CTRL+P

SHIFT+CTRL+R

SHIFT+F7

Unassigned

CTRL+L

Unassigned

Unassigned

CTRL+D, RIGHT

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

154 Environment and Tools

Table 7.10 (continued)

Function Description Keys

Select Select text SHIFf+PGUP,
SHIFf+CTRL+PGUP,
SHIFf+PGDN,
SHIff +CTRL+PGDN,
SHIFf+END,
SHIff +CTRL+END,
SHIff +HOME,
SHIff +CTRL+HOME,
SHIFf+LEFf,
SHIFf +CTRL+LEFf,
SHIFf+UP,
SHIFf+RIGHT,
SHIff +CTRL+RIGHT,
SHIFf+DOWN

Selmode Change selection mode: box Unassigned

Selwindow Move to window F6

Setfile Open or change files F2

Sethelp Opens, closes, and lists help files SHIff +CTRL+S

Setwindow Adjust file in window CTRL+J

Shell Start a shell or run a system command SHIFf+F9

Sinsert Insert a stream of blanks or break line CTRL+J

Tab Move to the next tab stop TAB

Tell Show key assignment or macro CTRL+T
definition

Unassigned Remove a function assignment from (All unassigned keys)
a key

Undo Undo and redo editing operations ALT+BKSP,
SHIFf +CTRL+BKSP

Up Move up CTRL+E, UP

Usercmd Execute a custom Run menu Unassigned
command

Window Move to next or previous window Unassigned

Winstyle Add or remove scroll bars CTRL+F6

Cursor-Movement Commands
PWB provides the following commands to navigate through text. In addition to the
commands in the PWB editor, the Source Browser provides powerful commands
to navigate through the source of your programs.

Programmer's WorkBench Reference 155

Table 7.11 Cursor-Movement Commands

Cursor Movement Command Keys

Up one line Up UP

Down one line Down DOWN

Left one column Left LEFT

Right one column Right RIGHT

Upper-left comer of window Home GOTO

Top of window Meta Up F9UP

Bottom of window Meta Down F9DOWN

Leftmost column in window Meta Left F9 LEFT

Rightmost column in window Meta Right F9 RIGHT

Lower-right comer of window Meta Home F9 GOTO

Up one window Mpage PGUP

Down one window ppage PGDN

Column one Meta Begline F9HOME

One column past window width Meta Endline F9END

Back one word Mword CTRL+LEFT

Forward one word Pword CTRL+RIGHT

Beginning of line Begline HOME

End of line Endline END

Next paragraph Ppara Unassigned

Previous paragraph Mpara Unassigned

End of paragraph MetaPpara F9 Unassigned

End of previous paragraph Meta Mpara F9 Unassigned

Beginning of file Begfile CTRL+HOME

End of file Endfile CTRL+END

To specific line number Arg number Mark ALT +A number CTRL+M

Position before last scroll Arg Mark ALT+A CTRL+M

Saved position Restcur Unassigned

Named mark Arg name Mark ALT+A name CTRL+M

Scroll window down one line Mlines CTRL+UP

Scroll window up one line Plines CTRL+DOWN

Scroll window so cursor at top Arg Plines ALT +A CTRL+DOWN

Scroll window so cursor at Arg Mlines ALT+A CTRL+UP

bottom

Scroll window so cursor at Arg Setwindow ALT+A CTRL+J
home

156 Environment and Tools

Arg
Key

Examples

ALT+A

Arg
Begin an argument to a function or begin a selection.

After you execute Arg, PWB displays Arg[l] on the status bar. Each time you
execute Arg, PWB increments the Arg count.

PWB functions perform variations of their action depending on the Arg count and
the "Meta state." You can use the Meta and Arg function prefixes in any order.
See: Meta.

~ To select text or create a function argument:

1. Execute Arg (ALT+A).

2. Execute a cursor-movement function.

Or hold down the SHIFT key and click the left mouse button.

PWB creates a stream, box, or line selection based on the current selection mode.
A selection in each of these modes creates a function argument called "streamarg,"
"boxarg," or "linearg," respectively.

~ To create a text argument:

1. Execute Arg (ALT+A).

2. Type the text of the argument.

When you type the first character of the argument, PWB displays the Text Argu­
ment dialog box where you can enter the textarg without modifying your file. The
Text Argument dialog box does not have an OK button; instead, you execute the
function to which you are passing the text argument. Choose Cancel to save the
text and do nothing.

~ To "pick up" text from a window:

1. Select the text that you want to use in the Text Argument dialog box.

2. Execute Lasttext (CTRL+O).

PWB copies the selected text into the text argument dialog box.

~ To cancel an argument or selection:

• Execute Cancel (ESC).

Programmer's WorkBench Reference 157

Returns The return value of Arg cannot be tested.

See Cancel, Lastselect, Lasttext, Meta, Prompt

Arrangewindow
Key

Returns

Assign
Key

Unassigned

Arrangewindow
Cascades all unminimized windows on the desktop. Does not affect minimized
windows. See: _ pwbcascade.

Arg Arrangewindow (ALT+A Unassigned)
Arranges all unminimized windows on the desktop. Does not affect minimized
windows. See: _ pwbarrange.

Meta Arrangewindow (F9 Unassigned)
Tiles up to 16 unminimized windows. Does not affect minimized windows.
See: _ pwbtile.

Meta Arg Arrangewindow (F9 ALT+A Unassigned)
Arranges all icons (minimized windows) on the desktop.

True Windows or icons arranged.

False Nothing to arrange, or more than 16 windows open.

ALT+=

The Assign function assigns a function to a keystroke, defines a macro, or sets a
PWB switch. You can also assign keys and set switches by using the commands in
the Options menu. To see the current assignment for a key or the definition of a
macro, use Options Keys Assignments or the Tell function (CTRL+ T). See: Tell.

Assign
Performs the assignment using the text on the current line. If the line ends with
a line continuation, PWB uses the next line, and so on for all continued lines.

Arg Assign (ALT+A ALT+=)

Same as Assign, except uses text starting from the cursor.

158 Environment and Tools

Returns

Example

Update

Arg textarg Assign (ALT+A textarg ALT+=)

Performs the assignment using the specified textarg.

Arg mark Assign (ALT+A mark ALT+=)

Performs the assignment using the text from the line at the cursor to the speci­
fied mark. The mark argument can be either a line number or a previously
defined mark name. See: Mark.

Arg boxarg I linearg I streamarg Assign (ALT +A boxarg I linearg I streamarg ALT +=)

Performs the assignment using the selected text. Ignores blank and comment
lines.

True

False

Assignment successful.

Assignment invalid.

~ To set the Tabstops switch to 8:

1. Execute Arg (ALT+A).

2. Type the following switch assignment:

tabstops:8

3. Execute Assign (ALT+=).

Assign
ArgAssign

With PWB l.x, Assign and Arg Assign do not recognize line continuations.
With PWB 2.00, they use all continued lines for the assignment.

Arg streamarg Assign
With PWB l.x, a streamarg is not allowed. With PWB 2.00, Assign accepts a
streamarg.

Arg? Assign
With PWB l.x, this form of the Assign function displays the current assign­
ments for all functions, switches, and macros in the "<ASSIGN>Current As­
signments and Switch Settings" pseudofile.

With PWB 2.00, the <ASSIGN> pseudofile does not exist; therefore, this form
of the Assign function is obsolete. If you use this command or execute a macro
that executes this command, PWB issues the error:

Missing ':' in '?'

PWB is expecting an assignment or definition using the name ?, which is a
legal macro name.

Programmer's WorkBench Reference 159

Bacldab
Key SHIFT+TAB

Backtab
Moves the cursor to the previous tab stop on the line.

Returns True Cursor moved.

False Cursor is at left margin.

Update PWB 2.0 supports variable tab stops. PWB Lx supports only fixed-width tab stops.

See Tab, Tabstops

Begfile
Key CTRL+HOME

Begfile
Moves the cursor to the beginning of the file.

Returns True Cursor moved.

False Cursor not moved; the cursor is already at the beginning of the file.

See Endfile

Begline
Key HOME

Begline
Places the cursor on the first nonblank character in the line.

Meta Begline (F9 HOME)

Places the cursor in the first character position ofthe line (column one).

160 Environment and Tools

Returns

Example

Example

See

Cancel
Key

True Cursor moved.

False Cursor not moved; the cursor is already at the destination.

The following macro moves the cursor to column one, then toggles between
column one and the first nonblank character of the line.

toggle_begline := Left ->x Meta :>x Begline

The result of the Left function is tested to determine if the cursor is already in
column one. If the cursor is in column one, PWB skips the Meta and executes
Begline to move to the first nonblank character. If the cursor is not in column one,
PWB executes Meta Begline to move there.

This macro mimics the behavior of the BRIEF HOME key:

bhorne:= Meta Begline +> Home +> Begfile

The result of Meta Begline (go to column 1 on the line) is tested to determine if
the cursor moved. If the cursor moved, the test (+» succeeds and the macro exits.
If the cursor did not move, the cursor is already in column 1, so the macro ad­
vances to the home position with Home. If the cursor did not move going to the
home position, the macro advances to the beginning of the file with Begfile.

Left, Meta

ESC

Cancel
Cancels the current selection, argument, or operation. If a message appears on
the status bar, the Cancel function restores the original contents of the status
bar.

If a dialog box or menu is open, Cancel closes the dialog box or menu and
takes no further action. If Help on a dialog box, menu, or message box is being
displayed, Cancel closes the Help dialog box.

Programmer's WorkBench Reference 161

Returns Cancel always returns true.

See Arg

Cancelsearch
Key

Returns

See

Cdelete
Key

Unassigned

Cancelsearch
Cancels a background search.

The Search Results window contains the partial results of the aborted search
and is not flushed. You can browse matches listed in the Search Results by
using the Next Match, Previous Match, and Goto Match commands from the
Search menu and by using the Nextsearch function (Unassigned).

Cancelsearch applies only to multithreaded environments.

True Background search was canceled.

False No background search in progress.

N extsearch, _ pwbnextlogmatch, _ pwbpreviouslogmatch, _ pwbgotomatch

CTRL+G

Cdelete
Deletes the previous character, excluding line breaks. If the cursor is in column
1, Cdelete moves the cursor to the end of the previous line.

In insert mode, Cdelete deletes the previous character, reducing the line length
by 1.

In overtype mode, Cdelete deletes the previous character and replaces it with a
space character. If the cursor is beyond the end of the line, the cursor moves to
the immediate right of the last character on the line.

Emacscdel is similar to Cdelete. However, in insert mode, Emacscdel deletes
line breaks; in overtype mode beyond the end of the line, it does not automat­
ically move to the end of the line.

162 Environment and Tools

Returns

See

Clearmsg
Key

Returns

See

Clearsearch
Key

Returns

See

True Cursor moved.

False Cursor not moved.

Delete, Emacscdel, Ldelete, Sdelete

Unassigned

Clearmsg
Clears the contents of the Build Results window.

Arg Clearmsg (ALT+A Unassigned)
Clears the current set of messages in the Build Results window.

True
False

Cleared a message set or the contents of Build Results.

The Build Results window is empty.

Nextmsg, _ pwbnextmsg, _ pwbprevmsg, _ pwbsetmsg

Unassigned

Clearsearch
Clears the contents of the Search Results window.

Arg Clearsearch (ALT+A Unassigned)
Clears the current set of matches in the Search Results window.

True
False

Cleared a match set or the contents of Search Results.

The Search Results window is empty.

Clearmsg, Logsearch, _ pwbnextlogmatch, _ pwbpreviouslogmatch,
_ pwbgotomatch

Closefile
Key

Returns

See

Compile
Key

Unassigned

Closefile

Programmer's WorkBench Reference 163

Closes the file in the active window. If no files remain in the window's file his­
tory, the window is also closed.

Arg Closefile (ALT+A Unassigned)
Closes the file named by the text at the cursor.

Arg linearg I boxarg I streamarg Closefile
(ALT+A linearg I boxarg I streamarg Unassigned)

Closes the file named by the selected text.

Arg textarg Closefile (ALT+A textarg Unassigned)
Closes the specified file.

True The file was closed.

False No file was closed.

Refresh, _ pwbclosefile

CTRL+F3

The Compile function compiles and builds targets in the project or runs external
commands, capturing the result of the operation in the Build Results window.
Under multithreaded environments the commands run in the background.

Arg Compile (ALT+A CTRL+F3)

Compiles the current file. This is equivalent to Project Compile File. Arg
Compile fails if no project is open. See: _ pwbcompile.

Arg textarg Compile (ALT+A textarg CTRL+F3)

Builds the target specified by textarg. This is equivalent to Build Target com­
mand on the Project menu. Arg textarg Compile fails if no project is open.

To build the current project, execute Arg a 11 Compile.

Arg Meta textarg Compile (ALT+A textarg F9 CTRL+F3)

Rebuilds the specified target and its dependents. See: _pwbrebuild.

164 Environment and Tools

Returns

Copy
Keys

Menu

This command is equivalent to specifying the NMAKE fa option. Note that you
can also include NMAKE command-line macro definitions in the text you pass
to the Compile function.

Arg Meta Compile (ALT+A F9 CTRL+F3)

Aborts the background compile after prompting for confirmation. Also clears
the queue of pending background operations (if any).

ArgArg textarg Compile (ALT+A ALT+A textarg CTRL+F3)

Runs the program or operating-system command specified by textarg. The out­
put is displayed in the Compile Results window.

Under multithreaded environments, the program runs in the background, and
the Compile Results window is updated as the program executes. Several pro­
grams can be queued for background execution.

Do not use this command to execute an interactive program. The program is
able to change the display but may not receive input. To run an interactive pro­
gram, use the Shell function (SHIFT+F9).

True Operation successfully initiated.

False Operation not initiated.

CTRL+INS, SHIFT+NUM*

Edit menu, Copy command

Copy
Copies the current line to the clipboard.

Arg Copy (ALT+A CTRL+INs)

Copies text from the cursor to the end of the line. The text is copied to the clip­
board, but the line break is not included.

Arg boxarg I linearg I streamarg Copy
(ALT+A boxarg Ilinearg I streamarg CTRL+INs)

Copies the selected text to the clipboard.

Arg textarg Copy (ALT+A textarg CTRL+INS)

Copies the specified textarg to the clipboard.

Arg mark Copy (ALT+A mark CTRL+INS)

Copies the text from the cursor to the mark. The text is copied to the clipboard.
The mark argument can be either a line number or a previously defined mark.
See: Mark.

Returns

See

Curdate
Key

Returns

See

Curday
Key

Programmer's WorkBench Reference 165

The text is copied as a boxarg or linearg depending on the relative positions of
the cursor and the mark. If the cursor and the mark are in the same column, the
text is copied as a linearg. If the cursor and the mark are in different columns,
the text is copied as a boxarg.

Arg number Copy (ALT+A number CTRL+INS)

Copies the specified number of lines to the clipboard, starting with the current
line. For example, Arg 5 Copy copies five lines to the clipboard.

Copy always returns true.

Delete, Ldelete, Sdelete, Paste

Unassigned

Curdate
Types the current date at the cursor in the format day-month-year, for example:
17 -Apr-1999.

True Date typed.

False Typing the date would make the line too long.

Curday, CuriUe, Curfilenam, Curfileext, Curtime

Unassigned

Curday
Types the three-letter abbreviation for the current day of the week, as follows:
Man Tue Wed Thu Fri Sat Sun.

166 Environment and Tools

Returns

See

Curtime
Key

Returns

See

Delete
Keys

Menu

True

False

Day typed.

Typing the day would make the line too long.

Curdate, Curtile, Curtilenam, Curtileext, Curtime

Unassigned

Curtime
Types the current time in the fonnat hours:minutes:seconds, for example,
17:08:32.

True

False

Time typed.

Typing the time would make the line too long.

Curdate, Curday, CuriUe, Curfilenam, Curfileext

Edit menu, Cut command

Delete
Deletes the single character at the cursor, excluding line breaks. It does not
copy the deleted character onto the clipboard. Note that the Delete function can
delete more than one character, depending on the current selection mode.

Arg Delete (ALT+A SHIFf+DEL)
Deletes from the cursor to the end of the line. The deleted text is copied onto
the clipboard. In stream selection mode, the deletion includes the line break and
joins the current line to the next line.

Arg boxarg llinearg I streamarg Delete
(ALT+A boxarg llinearg I streamarg SHIFf+DEL)

Deletes the selected text. The text is copied on to the clipboard.

Returns

Down
Keys

Returns

See

Emacscdel
Keys

Programmer's WorkBench Reference 167

Meta ... Delete (F9 ... SHIFT +DEL)

As above but discards the deleted text. The contents of the clipboard are not
changed.

Delete always returns true.

DOWN, CTRL+X

Down
Moves the cursor down one line. If a selection has been started, it is extended
by one line. If this movement results in the cursor moving out of the window,
the window is adjusted downward as specified by the Vscroll switch.

Meta Down (F9 DOWN)

Moves the cursor to the bottom of the window without changing the column
position.

True Cursor moved.

False Cursor did not move; the cursor is at the destination.

Up

BKSP, SHIFT+BKSP

Emacscdel
Deletes the previous character. If the cursor is in column 1, Emacscdel moves
the cursor to the end of the previous line.

In insert mode, Emacscdel deletes the previous character, reducing the length
of the line by 1. If the cursor is in column one, Emacscdel deletes the line
break, joining the current line to the previous line.

In overtype mode, Emacscdel deletes the previous character and replaces it
with a space character. If the cursor is in column 1, Emacscdel moves the cur­
sor to the end of the previous line and does not delete the line break.

168 Environment and Tools

Returns

See

Emacsnewl
Keys

Returns

Update

See

Endfile
Key

Emaesedel is similar to Cdelete, but Cdelete never deletes line breaks; in over­
type mode beyond the end of the line, Cdelete automatically moves to the end
of the line.

True Cursor moved.

False Cursor not moved.

Cdelete, Delete, Ldelete, Sdelete

ENTER,NUMENTER

Emaesnewl
In insert mode, starts a new line. In overtype mode, moves the cursor to the
beginning of the next line. PWB automatically positions the cursor on the new
line, depending on the setting of the Softer switch.

Emaesnewl always returns True.

In PWB l.x, PWB performs special automatic indentation for C files. In PWB
2.00, language-specific automatic indentation is handled by language extensions
if the feature is enabled. Otherwise, PWB uses its default indentation rules.

Newline, Softer, C_Softer

CTRL+END

Endfile
Places the cursor at the end of the file.

Returns

See

Endline
Key

Returns

See

Environment
Key

Programmer's WorkBench Reference 169

True Cursor moved.

False Cursor did not move; the cursor is at the end of the file.

Begfile

END

Endline
Moves the cursor to the immediate right of the last character on the line.

Meta Endline (F9 END)

Moves the cursor to the column that is one column past the active window
width.

True Cursor moved.

False Cursor did not move; the cursor is at the destination.

Begline, Traildisp, Trailspace

Unassigned

Environment
Executes the current line as an environment-variable setting.

For example, if the current line contains the following text when you execute
Environment:

PATH=C:\UTIL;C:\OOS

PWB adds this setting to the current environment table. The effect is the same
as the operating-system SET command. PWB uses the new environment vari­
able for the rest of the session (including shells).

Depending on the settings of the Envcursave and Envprojsave switches,
PWB saves the environment table for PWB sessions and/or projects.
See: Envcursave, Envprojsave.

170 Environment and Tools

Returns

Update

Execute
Key

Arg textarg Environment (ALT+A textarg Unassigned)
Executes the argument as an environment-variable setting.

Arg linearg I boxarg Environment (ALT+A iinearg I boxarg Unassigned)
Executes each selected line or line fragment as an environment-variable setting.

Meta Environment (F9 Unassigned)
Performs environment-variable substitutions for all variables on the current
line, replacing each variable with its value.

The syntax for an environment variable is

$(ENV) I $ENV:

where ENV is the uppercase name of the environment variable.

Arg Meta Environment (ALT+A F9 Unassigned)
Performs environment-variable substitutions (described above) for the text
from the cursor to the end of the line.

Arg boxarg llinearg I streamarg Meta Environment
(ALT+A boxarg llinearg I streamarg F9 Unassigned)

Performs environment-variable substitutions for the selected text.

True Environment variable successfully set or substituted.

False Syntax error or line too long.

Because the <ENVIRONMENT> pseudofile no longer exists, this form of the
Environment function is obsolete; it is replaced by the Environment command
on the Options menu.

F7

The Execute function executes PWB functions and macros by name. It allows you
to execute commands that are not assigned to a key or execute a sequence of com­
mands in one step.

The Execute function executes the commands by the same rules as macros. Func­
tion prompts are suppressed, and you can use the macro flow-control and macro
prompt directives. You do not need to define a macro to use these features.

Arg Execute (ALT+A F7)

Executes the text from the cursor to the end of the line as a PWB macro.

Returns

Exit
Key

Returns

See

Programmer's WorkBench Reference 171

Arg linearg I textarg Execute (ALT+A linearg I textarg F7)

Executes the specified text as a PWB macro.

True Last executed function returned true.

False Last executed function returned false.

FS

Exit
If you specified multiple files on the PWB command line, PWB advances to the
next file. Otherwise, PWB quits and returns control to the operating system.

If the Autosave switch is set to yes, the file is saved if it has been modified. If
Autosave is no and the file is modified, PWB prompts for confirmation to save
the file.

Meta Exit (F9 FS)

Performs like Exit with the Autosave switch set to no, independent of the cur­
rent setting of Autosave. If you have changed any files, PWB asks for confir­
mation to save before exiting.

Arg Exit (ALT+A FS)

Like Exit, except PWB quits immediately without advancing to the next file (if
any).

Arg Meta Exit (ALT+A F9 FS)

Like Meta Exit, except PWB quits immediately without advancing to the next
file.

No return value.

_pwbquit

172 Environment and Tools

Graphic
Keys

Returns

See

Home
Key

Returns

See

Initialize
Key

Assigned to most alphanumeric and punctuation keys.

Graphic
Types the character corresponding to the key that you pressed.

True The character is typed.

False Typing the character would make the line too long.

Assign, Quote

GOTO (Numeric-keypad 5)

Home
Places the cursor in the upper-left corner of the window.

Meta Home (F9 GOTO)

Places the cursor in the lower-right corner of the window.

True Cursor moved.

False Cursor not moved; it is already at the destination.

Begline, Endline, Left, Right

SHIFT+F8

Initialize
Discards all current settings, including extension settings, then reads the state­
ments from the [PWB] section of TOOLS.INI.

Arg Initialize (ALT+A SHIFT+F8)

Reads the statements from a tagged section of TOOLS.INI. The tag name is
specified by the continuous string of nonblank characters starting at the cursor.

Example

Example

Returns

Information
Update

Insert
Key

Programmer's WorkBench Reference 173

Arg textarg Initialize (ALT+A textarg SHlFT+FS)

Reads the statements from the TOOLS.INI tagged section specified by textarg.

The section tagged with

[PWB-name]

is initialized by the command

Arg name Initialize

To reload the main section of TOOLS.INI without clearing other settings that
you want to remain in effect, label the main section of TOOLS.INI with the tag:

[PWB PWB-main]

then use Arg ma in Initialize to recover your main settings instead of using
Initialize with no arguments.

True Initialized tagged section in TOOLS.INI.

False Did not find tagged section in TOOLS.INI.

(obsolete)

The PWB l.x Information function and its associated pseudofile
<INFORMATION-FILE> are obsolete; they do not exist in PWB 2.00.

Unassigned

Insert
Inserts a single-space character at the cursor, independent of the insert/overtype
mode.

Arg Insert (ALT+A Unassigned)
Breaks the line at the cursor.

174 Environment and Tools

Returns

Example

See

Insertmode
Keys

Returns

Arg boxarg Ilinearg I streamarg Insert
(ALT+A boxarg Ilinearg I streamarg Unassigned)

Inserts space characters into the selected area.

True Spaces or line break inserted.

False Insertion would make a line too long.

If paragraphs in your file consist of a sequence of lines beginning in the same
column and are separated from other paragraphs by at least one blank line, the
following macro indents a paragraph to the next tab stop:

para_indent:=_pwbboxmode Meta Mpara Down Begline Arg \
Meta Ppara Up Begline Tab Insert

This macro starts with the predefined PWB macro _pwbboxmode to set box selec­
tion mode, then creates a box selection from the beginning of the paragraph to the
end, one tab stop wide. The Insert function inserts spaces in the selection.

Sinsert, Linsert

INS, CTRL+V

Insertmode
Toggles between insert mode and overtype mode. If overtype mode is on, the
letter 0 appears on the status bar. The cursor can also change shape, depending
on the Cursormode switch. See: Cursormode.

In insert mode, each character you type is inserted at the cursor. This insertion
shifts the remainder of the line one position to the right.

In overtype mode, the character you type replaces the character at the cursor.

True PWB is in insert mode.

False PWB is in overtype mode.

Lastselect
Key

See

Lasttext
Key

Returns

Programmer's WorkBench Reference 175

CTRL+U

Lastselect
Duplicates the last selection.

The Arg count and Meta state that were previously in effect are not duplicated­
only the selection. The new Arg count is one, and the Meta state is the current
Meta state. To use a higher Arg count, execute Arg (ALT+A). To toggle the
Meta state, execute Meta (F9).

The re-created selection uses the same pair of line:column coordinates as the
previous selection. Thus, different text can be selected if you have made addi­
tions or deletions to the file since the last selection.

Arg, Lasttext, Meta

CTRL+O

Lasttext
Displays the last text argument in the Text Argument dialog box. You can edit
the text and then execute any PWB function that accepts a text argument, or
you can cancel the dialog box.

If you edit the text and then cancel the dialog box, PWB retains the modified
text. Thus, when you execute Lasttext again, the new text appears in the dialog
box.

Arg [Arg] ... [Meta] Lasttext (ALT+A [ALT+A] ... [F9] CTRL+O)

Displays the last text argument in the Text Argument dialog box with the speci­
fied Arg count and Meta state.

Arg [Arg] ... linearg I boxarg I streamarg [Meta] Lasttext
(ALT+A [ALT+A] ... linearg I boxarg I streamarg [F9] CTRL+O)

Displays the first line of the selection in the Text Argument dialog box with the
specified Arg count and Meta state.

The return value of Lasttext cannot be tested.

176 Environment and Tools

Example The Openlncl ude macro that follows opens an include file named in the next
#include directive. The macro demonstrates a technique using the Lasttext func­
tion to pick up text from the file and modify it without modifying the file or the
clipboard.

Example

See

Ldelete
Key

Openlnclude:= \
Up Meta Begline Arg Arg ""[\t]*#[\t]*include" Psearch -> \
Arg Arg "[<>\"]" Psearch -> Right Savecur Psearch -> \
Selcur Lasttext Begline "$INCLUDE:" Openfile <n +> \
Lastselect Openfile <

In the fourth line, Lasttext pulls the selected filename into the Text Argument
dialog box. The text argument is modified to prepend $INCLUDE: before passing
it to the Openfile function.

In some macro-programming situations, you don't want to use the text immedi­
ately. Instead, you need to pick up some text, do some other processing, then use
the text. In this situation, use the phrase:

(make selection) Lasttext Cancel ...

This picks up the text, then cancels the Text Argument dialog box. The selected
text remains in the Lasttext buffer for later use. To reuse the text, call Lasttext
again.

Arg, Lastselect, Meta, Prompt

CTRL+Y

Ldelete
Deletes the current line and copies it to the clipboard.

Arg Ldelete (ALT+A CTRL+Y)

Deletes text from the cursor to the end of the line and copies it to the clipboard.

Arg mark Ldelete (ALT+A mark CTRL+Y)

Deletes the text from the line at the cursor to the line specified by mark and
copies it to the clipboard. The mark cannot be a line number.

Arg number Ldelete (ALT+A number CTRL+Y)
Deletes the specified number of lines starting from the line at the cursor and
copies them to the clipboard.

Returns

See

Left
Keys

Returns

See

Linsert
Key

Programmer's WorkBench Reference 177

Arg boxarg Ilinearg Ldelete (ALT+A boxarg llinearg CTRL+Y)

Deletes the specified text and copies it to the clipboard. The argument is a
linearg or boxarg regardless of the current selection mode. The argument is a
linearg if the starting and ending points are in the same column.

Meta ... Ldelete (F9 ... CTRL+Y)

As above but discards the deleted text. The clipboard is not changed.

Ldelete always returns true.

Cdelete, Delete, Emacscdel, Sdelete

LEFT,CTRL+S

Left
Moves the cursor one character to the left. If this movement results in the cur­
sor moving out of the window, the window is adjusted to the left as specified by
the Hscroll switch.

Meta Left (F9 LEFT)

Moves the cursor to the first column in the window.

True Cursor moved.

False Cursor not moved; the cursor is in column one.

Begline, Down, Endline, Home, Right, Up

CTRL+N

Linsert
Inserts one blank line above the current line.

Arg Linsert (ALT+A CTRL+N)

Inserts or deletes blanks at the beginning of a line to move the first nonblank
character to the cursor.

178 Environment and Tools

Returns

See

Logsearch
Key

Returns

Mark
Key

Arg boxarg llinearg Linsert (ALT+A boxarg llinearg CTRL+N)

Inserts blanks within the specified area.

The argument is a linearg or boxarg regardless of the current selection mode.
The argument is a linearg if the starting and ending points are in the same
column.

Arg mark Linsert (ALT+A mark CTRL+N)

Like boxarg llinearg except the specified area is given by the cursor position
and the position of the specified mark. The mark argument must be a named
mark: it cannot be a line number. See: Mark.

Linsert always returns true.

Insert, Sinsert

Unassigned

Logsearch
Toggles the search-logging state.

The default search-logging mode when PWB starts up is determined by the
Enterlogmode switch.

True

False

CTRL+M

Search logging turned on.

Search logging turned off.

The Mark function moves the cursor to a mark or specific location, defines marks,
and deletes marks. Note that you cannot set a mark at specific text in a PWB win­
dow such as Help; PWB marks only the window position.

If you want to save marks between sessions, assign a filename to the Markfile
switch or use the Set Mark File command on the Search menu.

Returns

See

Maximize
Key

Programmer's WorkBench Reference 179

Mark (CTRL+M)

Moves the cursor to the beginning of the file.

Arg Mark (ALT+A CTRL+M)

Restores the cursor to its location prior to the last window scroll. Use Arg
Mark to return to your previous location after a search or other large jump.

Arg number Mark (ALT+A number CTRL+M)

Moves the cursor to the beginning of the line specified by number in the current
file. Line numbering starts at 1.

Arg textarg Mark (ALT+A textarg CTRL+M)

Moves the cursor to the specified mark.

Arg Arg textarg Mark (ALT+A ALT+A textarg CTRL+M)

Defines a mark at the cursor position. The name of the mark is specified by
textarg.

Arg Arg textarg Meta Mark (ALT+A ALT+A textarg F9 CTRL+M)

Deletes the specified mark. This form of the Mark function always returns true.

True Move, definition, or deletion successful.

False Invalid argument or mark not found.

Markfile, Restcur, Savecur, Selcur

Unassigned

Maximize
Expands the window to its maximum size. If the window is already maximized,
the window is restored.

When the window is maximized and scroll bars are turned off by using the
Winstyle function, PWB turns off the window borders. This is the "clean
screen" look.

Meta Maximize (F9 Unassigned)
Restores the window to its original size.

180 Environment and Tools

Returns

See

Menukey
Key

Returns

Message
Key

Returns

Example

True Window is maximized.

False Window is restored.

Minimize, Winstyle

ALT

Menukey
Activates the menu bar. Unlike other PWB functions, Menukey can be
assigned to only one key. It cannot be assigned to a combination of keys.

You cannot test the return value of Menukey.

Unassigned

Message
Clears the status bar.

Arg Message (ALT+A Unassigned)
Displays the text from the cursor to the end of the line on the status bar.

Arg textarg Message (ALT+A textarg Unassigned)
Displays textarg on the status bar.

Meta ... Message (F9 ... Unassigned)
As above and also repaints the screen.

Message always returns true.

The following macro is useful when writing new macros (the is the macro
name):

! := Meta Message

With this definition you can place an exclamation point in your macros wherever
you want a screen update. If you also want to display a status-bar message at the
time of the update, use the phrase:

See

Meta
Key

Returns

See

Mgrep
Key

Programmer's WorkBench Reference 181

... Arg "text of message " ! ...

Prompt

F9

Meta
Modifies the action of the function it prefixes.

When the Meta state is turned on, the letter A (for "Alternate") appears in the
status bar. You can use the Meta and Arg function prefixes in any order.

True Meta state turned on.

False Meta state turned off.

Arg, Lasttext, Lastselect

Unassigned

The Mgrep function searches all the files listed in the Mgreplist macro. PWB
places all matches in the Search Results window. Under multithreaded environ­
ments, PWB performs the search in the background.

To browse the list of matches, use _pwbnextlogmatch (CTRL+SHIFT+F3),

_pwbpreviouslogmatch (CTRL+SHIFT+F4), and the Nextsearch function
(Unassigned).

Mgrep (Unassigned)
Searches for the previously searched string or pattern.

Arg Mgrep (ALT+A Unassigned)
Searches for the string specified by the characters from the cursor to the first
blank character.

Arg textarg Mgrep (ALT+A textarg Unassigned)
Searches for textarg.

182 Environment and Tools

Returns

Update

Minimize
Key

Arg Arg Mgrep (ALT+A ALT+A Unassigned)
Searches for the regular expression specified by the characters from the cursor
to the first blank character.

Arg Arg textarg Mgrep (ALT+A ALT+A textarg Unassigned)
Searches for the regular expression specified by textarg.

Meta ... Mgrep (F9 ... Unassigned)
As above except that the value of the Case switch is reversed for the search.

True
With MS-DOS, indicates that a match was found. With multithreaded environ­
ments, indicates that a background search was successfully initiated.

False
No matches, no search pattern specified, search pattern invalid, or search termi­
nated by CTRL+BREAK.

In PWB 2.00, search and build results and their browsing functions are separate.
A background build operation and a background search can be performed
simultaneously.

In PWB l.x, search and build results appear in the same window, and are browsed
with the same commands. A background build operation and a multifile search
cannot be performed at the same time in PWB l.x.

Unassigned

Minimize
Shrinks the active window to an icon (a minimized window). Ifthe window is
already minimized, restores the window.

Arg Minimize (ALT+A Unassigned)
Minimizes all open windows.

Meta Minimize (F9 Unassigned)
Restores the window to its unminimized state.

Returns

See

Mlines
Keys

Returns

See

Programmer's WorkBench Reference 183

True Window minimized: the window is an icon.

False Window restored: the window is not an icon.

Maximize

CTRL+UP,CTRL+W

Mlines
Scrolls the window down as specified by the Vscroll switch.

Arg Mlines (ALT+A CTRL+UP)

Scrolls the window so the line at the cursor moves to the bottom of the window.

Arg number Mlines (ALT+A number CTRL+UP)

Scrolls the window down by number lines.

True Window scrolled.

False Invalid argument.

Plines

Movewindow
Key Unassigned

Movewindow
Enters window-moving mode. In window-moving mode, only the following
actions are available:

Action Key

Move up one row UP

Move down one row DOWN

Move left one column LEFT

Move right one column RIGHT

Accept the new position ENTER

Cancel the move ESC

184 Environment and Tools

Returns

Mpage
Keys

Returns

See

Mpara
Key

Arg number Movewindow (ALT+A number Unassigned)
Moves the upper-left corner of the window to the screen row specified by
number.

Meta Arg number Movewindow (F9 ALT+A number Unassigned)
Moves the upper-left corner of the window to the screen column specified by
number.

True Window moved.

False Window not moved.

PGUP,CTRL+R

Mpage
Moves the cursor backward in the file by one window.

True Cursor moved.

False Cursor not moved.

Ppage

Unassigned

Mpara
Moves the cursor to the beginning of the first line of the current paragraph. If
the cursor is already on the first line of the paragraph, it is moved to the begin­
ing of the first line of the preceding paragraph.

Meta Mpara (F9 Unassigned)
Moves the cursor to the first blank line preceding the current paragraph.

Returns

See

Mreplace
Key

Returns

See

Mreplaceall
Key

Programmer's WorkBench Reference 185

True Cursor moved.

False Cursor not moved; no more paragraphs in the file.

Ppara

Unassigned

Mreplace
Performs a find-and-replace operation across multiple files, prompting for
the find-and-replacement strings and for confirmation at each occurrence.
Mreplace searches all the files listed in the special macro Mgreplist.

Arg Arg Mreplace (ALT+A ALT+A Unassigned)
Performs the same action as Mreplace but uses regular expressions.

Meta ... Mreplace (F9 ... Unassigned)
As above except reverses the sense of the Case switch for the operation.

True At least one replacement made.

False No replacements made or operation aborted.

Mgrep, Mreplaceall, Qreplace, Replace

Unassigned

Mreplaceall
Performs a find-and-replace operation across multiple files, prompting for the
find-and-replacement strings. Mreplaceall searches all the files listed in the
special macro Mgreplist.

Arg Arg Mreplaceall (ALT+A ALT+A Unassigned)
Performs the same action as Mreplaceall but uses regular expressions.

Meta ... Mreplaceall (F9 ... Unassigned)
As above except reverses the sense of the Case switch for the operation.

186 Environment and Tools

Returns

See

Msearch
Key

Returns

See

True At least one replacement made.

False No replacements made or operation aborted.

Mgrep, Mreplace, Qreplace, Replace

F4

Msearch
Searches backward for the previously searched string or pattern.

Arg Msearch (ALT+A F4)

Searches backward for the string specified by the text from the cursor to the
first blank character.

Arg textarg Msearch (ALT+A textarg F4)

Searches backward for the specified text.

Arg Arg Msearch (ALT+A ALT+A F4)

Searches backward for the regular expression specified by the text from the cur­
sor to the first blank character.

Arg Arg textarg Msearch (ALT+A ALT+A textarg F4)

Searches backward for the regular expression defined by textarg.

Meta ... Msearch (F9 ... F4)
As above except reverses the sense of the Case switch for the search.

True String found.

False Invalid argument, or string not found.

Mgrep, Psearch

Mword
Keys

Returns

See

Newfile
Key

CTRL+LEFT,CTRL+A

Mword

Programmer's WorkBench Reference 187

Moves the cursor to the beginning of the current word, or if the cursor is not in
a word or at the beginning of the word, moves the cursor to the beginning of the
previous word. A word is defined by the Word switch.

Meta Pword (F9 CTRL+RlGHT)

Moves the cursor to the immediate right of the previous word.

True Cursor moved.

False Cursor not moved; there are no more words in the file.

Pword

Unassigned

The Newfile function creates a new pseudofile. If the Newwindow switch is set to
yes, it opens a new window for the file.

Newfile (Unassigned)
Creates a new untitled pseudofile. The new pseudofile is given a unique name
of the form:

<Untitled.nnn>Untitled.nnn

where nnn is a three-digit number starting with 001 at the beginning of each
PWB session. The window title shows Untitl ed. 001. Use the pseudofile name
< Un tit 1 ed . 001> to refer to the file in a text argument or dialog box.

Arg Newfile (ALT+A Unassigned)
Creates a new pseudofile with the name specified by the text from the cursor to
the end of the line. The resulting full pseudofile name is:

"<Text on the line>Text on the line"

Arg textarg Newfile (ALT+A textarg Unassigned)
Creates a new pseudofile with the name specified by textarg. The resulting full
pseudofile name is:

"<textarg> textarg"

188 Environment and Tools

Returns

Newline
Keys

Returns

Update

See

Nextmsg
Key

If you want to use a different short name and window title, use the full name
as an argument to the Setfile or Openfile functions. For example, Arg
n<temp>Tempora ry Fil en Openfile opens a pseudofile in a new window that
has the title Temporary File.

True Successfully created the pseudofile.

False Unable to create the pseudofile.

SHIFT +ENTER, SHIFT +NUMENTER

Newline
Moves the cursor to a new line.

If the Softer switch is set to yes, PWB automatically indents to an appropriate
position based on the type of file you are editing.

Meta Newline (F9 SHIFT+ENTER)

Moves the cursor to column I of the next line.

Newline always returns true.

In PWB I.x, PWB performs special automatic indentation for C files. In PWB
2.00, language-specific automatic indentation is handled by language extensions
if the feature is enabled. Otherwise, PWB uses its default indentation rules.

Emaesnewl

Unassigned

Nextmsg
Advances to next message in the Build Results window.

Arg number Nextmsg (ALT+A number Unassigned)
Moves to the nth message in the current set of messages, where n is specified
by number.

Returns

Update

See

Nextsearch
Key

Programmer's WorkBench Reference 189

To move relative to the current message, use a signed number. For example,
when number is + 1, PWB moves to the next message, and when it is -1, PWB
moves to the previous message.

Arg Nextmsg (ALT+A Unassigned)
Moves to the next message in the current set of messages that does not refer to
the current file.

Meta Nextmsg (F9 Unassigned)
Advances to the next set of messages.

Arg Arg Nextmsg (ALT+A ALT+A Unassigned)
Sets the message at the cursor as the current message. This works only when
the cursor is on a message in the Build Results window.

True Message found.

False No more messages found.

In PWB 1.x, Nextmsg also browses the results of searches. In PWB 2.00, search
results are browsed with the Nextsearch function.

Meta Nextmsg
In PWB l.x, deletes the current set of messages and advances to the next set. In
PWB 2.00, Meta Nextmsg does not delete the set. To delete sets of messages
in PWB 2.00, use the Clearmsg function.

Meta Arg Arg Nextmsg
In PWB l.x, closes the Compile Results window. In PWB 2.00, it behaves like
Arg Arg N extmsg.

Clearmsg

Unassigned

Nextsearch
Advances to the next match in the Search Results window.

Arg number Nextsearch (ALT+A number Unassigned)
Moves to the nth match in the current set of matches, where n is specified by
number.

To move relative to the current match, use a signed number. For example, when
number is + I, PWB moves to the next match, and when it is 1, PWB moves to
the previous match.

190 Environment and Tools

Update

See

Noedit
Key

Returns

Arg Nextsearch (ALT+A Unassigned)
Moves to the next match in the current set of matches that does not refer to the
current file.

Meta Nextsearch (F9 Unassigned)
Advances to the next set of matches.

Arg Arg Nextsearch (ALT+A ALT+A Unassigned)
Sets the match at the cursor as the current match. This works only when the cur­
sor is on a match in the Search Results window.

In PWB l.x, the results of searches are browsed using the Nextmsg function.

Clearsearch

Unassigned

The Noedit function toggles the no-edit state of PWB or the current file. When
the no-edit state is turned on, PWB displays the letter R on the status bar and dis­
allows modification of the file.

Noedit
Toggles the no-edit state. If you started PWB with the IR (read-only) option,
Noedit removes the no-edit limitation.

Meta Noedit (F9 Unassigned)
Toggles the no-edit state for the current file. This form of the Noedit command
works only for disk files and has no effect on pseudofiles.

If you have the Editreadonly switch set to no, PWB turns on the no-edit state
for files that are marked read-only on disk. This function toggles the no-edit
state for the file so that you can modify it.

True File or PWB in no-edit state; modification disallowed.

False File or PWB not in no-edit state; modification allowed.

Openfile
Key

Returns

See

Paste
Keys

Menu

Programmer's WorkBench Reference 191

FlO

The Openfile function opens a file in a new window, ignoring the Newwindow
switch.

Arg Openfile (ALT+A FlO)

Opens the file at the cursor in a new window. The name of the file is specified
by the text from the cursor to the first blank character.

Arg textarg Openfile (ALT+A textarg FlO)

Opens the specified file in a new window.

If the argument is a wildcard, PWB creates a pseudofile containing a list of files
that match the pattern. To open a file from this list, position the cursor at the
beginning of the name and use Arg Openfile or Arg Setfile.

True File and window successfully opened.

False No argument specified, or file did not exist and you did not create it.

Newfile, Setfile

SHIFT+INS, SHIFT+NUM+

Edit menu, Paste command

Paste (SHIFT+INS)

Copies the contents of the clipboard to the file at the cursor. The text is always
inserted independent of the insertlovertype mode.

If the clipboard contents were copied to the clipboard as a linearg, PWB inserts
the contents of the clipboard above the current line. Otherwise, the contents of
the clipboard are inserted at the cursor.

Arg boxarg I linearg I streamarg Paste
(ALT+A boxarg Ilinearg I streamarg SHIFT+INS)

Replaces the selected text with the contents of the clipboard.

Arg Paste (ALT+A SHIFT+INS)

Copies the text from the cursor to the end of the line. The text is copied to the
clipboard and inserted at the cursor.

192 Environment and Tools

Returns

Example

Pbal
Key

Arg textarg Paste (ALT+A textarg SHIFT+INs)

Copies textarg to the clipboard and inserts it at the cursor.

Arg Argfilename Paste (ALT+A ALT+Afilename SHIFT+INs)

Copies the contents of the file specified by textarg to the current file above the
current line.

Arg Arg !textarg Paste (ALT+A ALT+A !filename SHIFT+INs)

Runs textarg as an operating-system command, capturing the command's out­
put to standard output. The output is copied to the clipboard and inserted above
the current line.

You must enter the exclamation mark as shown.

True

False

Paste always returns true except for the following cases.

Tried Arg Argfilename Paste and file did not exist, or the pasted text
ould make a line too long.

The following command copies a sorted copy of the file SAMPLE.TXT to the cur­
rent file: Arg Arg ! SORT <SAMPLE. TXT Paste (ALT+A ALT+A ! SORT <SAMPLE. TXT
SHIFT+INS).

CTRL+[

Pbal
Scans backward through the file, balancing parentheses «)) and brackets ([D.
The first unmatched parenthesis or bracket is highlighted when found.

If an unbalanced parenthesis or bracket is found, it is highlighted and the corre­
sponding character is inserted at the cursor. If no unbalanced characters are
found, PWB displays a message box.

The search does not include the cursor position and looks for more opening
brackets or parentheses than closing ones.

Arg Pbal (ALT +A CTRL+[)

Like Pbal except that it scans forward through the file and searches for right
brackets or parentheses lacking opening partners.

Meta Pbal (P9 CTRL+[)

Like Pbal but does not insert the unbalanced character. If no unbalanced charac­
ters are found, moves to the matching character.

Update

Returns

See

Plines
Keys

Returns

See

Programmer's WorkBench Reference 193

Arg Meta Pbal (ALT+A F9 CTRL+O

Like Arg Pbal but does not insert the character. If no unbalanced characters are
found, moves to the matching character.

In PWB l.x, the messages appear on the status bar. In PWB 2.00, they appear in a
message box.

True Balance successful.

False Invalid argument, or no unbalanced characters found.

Infodialog

CTRL+DOWN, CTRL+Z

Plines
Scrolls the text up as specified by the V scroll switch.

Arg Plines (ALT +A CTRL+DOWN)

Scrolls the text such that the line at the cursor is moved to the top of the
window.

Arg number Plines (ALT+A number CTRL+DOWN)

Scrolls the text up by number lines.

True Text scrolled.

False Invalid argument.

Mlines

194 Environment and Tools

Ppage
Keys

Returns

See

Ppara
Key

Returns

See

Print
Key

PGDN,CTRL+C

Ppage
Moves the cursor forward in the file by one window.

True

False

Mpage

Unassigned

Ppara

Cursor moved.

Cursor not moved.

Moves the cursor to the beginning of the first line of the next paragraph.

Meta ppara (F9 Unassigned)
Moves cursor to the beginning of the first blank line after the current paragraph.
If the cursor is not on a paragraph, moves the cursor to the first blank line after
the next paragraph.

True

False

Mpara

Unassigned

Cursor moved.

Cursor not moved; no more paragraphs in the file.

The Print function prints files or selections. If the Printcmd switch is set, PWB
uses the command line given in the switch. Otherwise, PWB copies the file or
selection to PRN. Under multithreaded environments, PWB runs the print com­
mand in the background.

Returns

Update

Project
Key

Print (Unassigned)
Prints the current file.

Programmer's WorkBench Reference 195

Arg textarg Print (ALT+A textarg Unassigned)
Prints all the files listed in textarg. Use a space to separate each name from the
preceding name. You can use environment variables to specify paths for the
files.

Arg boxarg I linearg I streamarg Print
(ALT+A boxarg llinearg I streamarg Unassigned)

Prints the selected text.

Arg Meta Print (ALT +A F9 Unassigned)
Cancels the current background print.

True Print successfully submitted.

False Could not start print job.

In PWB l.x there is no way to cancel a background print.

Unassigned

Project
Open the last project.

Arg Project (ALT+A Unassigned)
Open the project makefile at the cursor as a PWB project. The name of the pro­
ject is specified by the text from the cursor to the first blank character.

Arg textarg Project (ALT+A textarg Unassigned)
Open the project makefile specified by textarg as a PWB project.

Arg Arg Project (ALT+A ALT+A Unassigned)
Close the current project.

Arg Meta Project (ALT+A F9 Unassigned)
Open the project makefile at the cursor as a non-PWB project (foreign
makefile).

Arg textarg Meta Project (ALT+A textarg F9 Unassigned)
Open the project makefile specified by textarg as a non-PWB project.

196 Environment and Tools

Returns

See

Prompt
Key

Returns

Example

True

False

Lastproject

Unassigned

A project is open.

A project is not open.

The Prompt function displays the Text Argument dialog box where you can enter
a text argument. You can use this function interactively, but because it is mainly
useful in macros, it is not assigned to a key by default. You usually use Lasttext
or Arg to directly enter a text argument.

Prompt
Displays the Text Argument dialog box without a title. See: Lasttext

Arg Prompt (ALT+A Unassigned)
Uses the text of the current line from the cursor to the end of the line as the title.

Arg textarg Prompt (ALT+A textarg Unassigned)
Uses textarg as the title.

Arg boxarg llinearg I streamarg Prompt
(ALT+A boxarg llinearg I streamarg Unassigned)

Uses the selected text as the title. If the selection spans more than one line, the
title is the first line of the selected text.

True

False

Textarg entered; the user chose the OK button.

The dialog box was canceled.

With the following macro, PWB prompts for a Help topic:

QueryHelp := Arg "Help Topic to Find:" Prompt -) Pwbhelp
QueryHelp : Ctrl+Q

See

Psearch
Key

Returns

Programmer's WorkBench Reference 197

When you press CTRL+Q, PWB displays a dialog box with the string Hel p Topi c
to Fi nd: as the title and waits for a response. PWB passes your response to the
Pwbhelp function as if the command Arg textarg Pwbhelp had been executed.
If you cancel the dialog box, Prompt returns false and the macro conditional ->
terminates the macro without executing Pwbhelp.

Assign

F3

Psearch
Searches forward for the previously searched string or pattern.

Arg Psearch (ALT+A F3)

Searches forward in the file for the string specified by the text from the cursor
to the first blank character.

Arg textarg Psearch (ALT+A textarg F3)
Searches forward for the specified text.

Arg Arg Psearch (ALT+A ALT+A F3)

Searches forward in the file for the regular expression specified by the text
from the cursor to the first blank character.

Arg Arg textarg Psearch (ALT+A ALT+A textarg F3)

Searches forward for the regular expression defined by textarg.

Meta ... Psearch (F9 ... F3)

As above but reverses the value of the Case switch for one search.

True String found.

False Invalid argument, or string not found.

198 Environment and Tools

Pwbhelp
Key

Returns

Pwbhelpnext
Key

Unassigned

Pwbhelp
Displays the default Help topic.

Arg Pwbhelp (ALT+A Unassigned)
Displays Help on the topic at the cursor. Equivalent to the macro
_pwbhelp_context (Fl).

Arg textarg Pwbhelp (ALT+A textarg Unassigned)
Displays Help on the specified text argument.

Arg streamarg Pwbhelp (ALT+A streamarg Unassigned)
Displays Help on the selected text. The selection cannot include more than one
line.

Meta Pwbhelp (F9 Unassigned)
Prompts for a key, then displays Help on the function or macro assigned to the
key you press.

If you press a key that is not assigned to a function or macro, PWB displays
help on the Unassigned function. If you press a key that PWB does not recog­
nize, the prompt remains displayed until you press a key that PWB recognizes.

True

False

CTRL+Fl

Help topic found.

Help topic not found.

Pwbhelpnext
Displays the next physical topic in the current Help database.

Meta Pwbhelpnext (F9 CTRL+Fl)
Displays the previous Help topic on the backtrace list. This is the Help topic
that you previously viewed. Up to 20 Help topics are retained in the backtrace
list.

Equivalent to the Back button on the Help screens and the macro
_pwbhelp_back (ALT+Fl).

Arg Pwbhelpnext (ALT+A CTRL+Fl)
Displays the next occurrence of the current Help topic within the Help system.

Returns

Programmer's WorkBench Reference 199

Equivalent to the macro _ pwbhelp_again (Unassigned).

Use this command when the Help topic appears several times in the set of open
Help databases.

True Help topic found.

False Help topic not found.

Pwbhelpsearch
Key

Returns

Unassigned

The Pwbhelpsearch function performs a global search of the Help system. The
search is case insensitive unless you use the Meta form of Pwbhelpsearch, which
uses the setting of the Case switch to determine case sensitivity.

Pwbhelpsearch (Unassigned)
Displays the results of the last global Help search.

Equivalent to the predefined macro _ pwbhelp_searchres (Unassigned).

Arg Pwbhelpsearch (ALT+A Unassigned)
Searches Help for the word at the cursor.

Arg textarg Pwbhelpsearch (ALT+A textarg Unassigned)
Searches Help for the selected text.

Arg Arg Pwbhelpsearch (ALT+A ALT+A Unassigned)
Searches Help using the regular expression at the cursor.

Arg Arg textarg Pwbhelpsearch (ALT+A ALT+A textarg Unassigned)
Searches Help for the selected regular expression.

Meta ... Pwbhelpsearch (F9 '" Unassigned)
As above except the search is case sensitive if the Case switch is set to yes.

True At least one match found.

False No matches found, or search canceled.

200 Environment and Tools

Pwbrowse Functions
Most of the Pwbrowse ... functions provided by the PWBROWSE Source Browser
extension display one of the Source Browser's dialog boxes. The Source Browser
functions attached to Browse menu commands are listed in the following table.

Function Browse Menu Command Key

Pwbrowsecalltree Call Tree (FwdlRev) Unassigned

Pwbrowseclhier Class Hierarchy Unassigned

Pwbrowsecltree Class Tree (FwdlRev) Unassigned

Pwbrowsefuhier Function Hierarchy Unassigned

Pwbrowsegotodef Goto Definition Unassigned

Pwbrowsegotoref Goto Reference Unassigned

Pwbrowselistref List References Unassigned

Pwbrowsenext Next CTRL+NUM+

Pwbrowseoutline Module Outline Unassigned

Pwbrowseprev Previous CTRL+NUM-

Pwbrowseviewrel View Relationship Unassigned

Pwbrowsewhref Which Reference Unassigned

The browser functions in the following table do not correspond to a Browse menu
command.

Function

Pwbrowse1stdef

Pwbrowse1 stref

Pwbrowsepop

Description

Go to 1st definition

Go to 1st reference

Go to previously browsed location

Key

Unassigned

Unassigned

Unassigned

Pwbwindow
Key

Returns

Pword
Keys

Returns

See

Programmer's WorkBench Reference 201

Unassigned

The Pwbwindow function opens PWB windows. If the specified window is
already open, PWB switches to that window.

Arg Pwbwindow (ALT+A Unassigned)
Opens the PWB window with the name at the cursor. The name is specified
by the text from the cursor to the first blank character.

Arg textarg Pwbwindow (ALT+A textarg Unassigned)
Opens the specified PWB window.

Arg Meta Pwbwindow (ALT +A F9 Unassigned)
Closes the PWB window specified by the name at the cursor.

Arg textarg Meta Pwbwindow (ALT+A textarg F9 Unassigned)
Closes the specified PWB window.

True

False

The specified window was opened.

The window could not be opened.

CTRL+RIGHT, CTRL+F

Pword
Moves the cursor to the beginning of the next word. A word is defined by the
Word switch.

Meta Pword (F9 CTRL+RIGHT)

Moves the cursor to the immediate right of the current word, or if the cursor is
not in a word, moves it to the right of the next word.

True Cursor moved.

False Cursor not moved; there are no more words in the file.

Mword

202 Environment and Tools

Qreplace
Key

Returns

See

CTRL+\

The Qreplace function performs a find-and-replace operation on the current file,
prompting for find-and-replacement strings and confirmation at each occurrence.

Qreplace (CTRL+\)

Performs the replacement from the cursor to the end of the file, wrapping
around the end of the file if the Searchwrap switch is set to yes.

Arg boxarg Ilinearg I streamarg Qreplace
(ALT+A boxarg llinearg I streamarg CTRL+\)

Performs the replacement over the selected area.

Note that PWB does not adjust the selection at each replacement for changes in
the length of the text. For boxarg and streamarg, PWB may replace text that
was not included in the original selection or miss text included in the original
selection.

Arg mark Qreplace (ALT+A mark CTRL+\)

Performs the replacement on text from the cursor to the specified mark. Re­
places over text as if it were selected, according to the current selection mode.
The mark argument cannot be a line number. See: Mark.

Arg number Qreplace (ALT+A number CTRL+\)

Performs the replacement for the specified number of lines, starting with the
line at the cursor.

ArgArg '" Qreplace (ALT+A ALT+A .,. CTRL+\)

As above except using regular expressions.

Meta ... Qreplace (P9 ... CTRL+\)

As above except the sense of the Case switch is reversed for the operation.

True

False

At least one replacement was performed.

String not found, or invalid pattern.

Mreplace, Replace, Search wrap

Quote
Key

Returns

Record
Key

Programmer's WorkBench Reference 203

CTRL+P

Quote
Reads one key from the keyboard and types it into the file or dialog box. In a
dialog box, the key is always CTRL+P, no matter what function or macro you
may have assigned to CTRL+P for the editor.

This is useful for typing a character (such as TAB or CTRL+L) whose keystroke is
assigned to a PWB function.

True

False

Quote always returns true except in the following case.

Character would make line too long.

SIllFT +CTRL+R

The Record function toggles macro recording. While a macro is being recorded,
PWB displays the letter X on the status bar, and a bullet appears next to the Re­
cord On command from the Edit menu. If a menu command cannot be recorded, it
is disabled while recording.

When macro recording is stopped, PWB assigns the recorded commands to the
default macro name Playback. During the recording, PWB writes the name of
each command to the definition of Playback in the Record window, which can
be viewed as it is updated.

Macro recording in PWB does not record changes in cursor position accomplished
by clicking the mouse. Use the keyboard if you want to include cursor movements
in a macro.

Record (SIllFT +CTRL+R)

Toggles macro recording on and off.

Arg textarg Record (ALT+A textarg SIllFT+CTRL+R)

Turns on recording if it is off and assigns the name specified in the text argu­
ment to the recorded macro. Turns off recording if it is turned on.

Meta Record (F9 SIllFT+CTRL+R)

Toggles macro recording. While recording, no editing commands are executed
until recording is turned off. Use this form of the function to record a macro
without modifying your file.

204 Environment and Tools

Returns

Update

Refresh
Key

Arg Record (ALT+A SHIFT+CTRL+R)

ArgArg textarg Record (ALT+A ALT+A textarg SHIFT+CTRL+R)

Arg Arg Meta Record (ALT+A ALT+A F9 SHIFT+CTRL+R)

As above but if the target macro already exists, the commands are appended to
the end of the macro.

True Recording turned on.

False Recording turned off.

In PWB 2.00, more menu commands can be recorded than with PWB l.x.

SHIFT+F7

Refresh
Prompts for confirmation and then rereads the file from disk, discarding its
Undo history and all modifications to the file since the file was last saved.

Returns

True

False

Condition

File reread.

Prompt canceled

Arg Refresh (ALT+A SHIFT+F7)

Prompts for confirmation and then removes the file from the active window and
the window's file history. If the active window is the last window that has the
file in its history, the file is discarded from memory without saving changes,
and the file is closed.

Returns

True

False

Condition

File removed from the window.

Prompt canceled, or bad argument. The file is not removed from
the window.

Repeat
Key

Returns

Replace
Key

Unassigned

Repeat

Programmer's WorkBench Reference 205

Repeats the last editing action relative to the current cursor position. The
Repeat function considers the following types of operations to be editing
actions:
• Typing a contiguous stream of characters without entering a command or

moving the cursor

• Deleting text

• Pasting from the clipboard

Repeat does not repeat macros or cursor movements.

Arg number Repeat (ALT+A number Unassigned)
Performs the last action the number of times specified by number.

True Action repeated and returned true.

False Action repeated and returned false, or no action to repeat.

CTRL+L

The Replace function performs a find-and-replace operation on the current file,
prompting for find and replacement strings. Replace substitutes all matches of the
search pattern without prompting for confirmation.

Replace (CTRL+L)

Performs the replacement from the cursor to the end of the file, wrapping
around the end of the file if the Searchwrap switch is on.

Arg boxarg I linearg I streamarg Replace
(ALT+A boxarg llinearg I streamarg CTRL+L)

Performs the replacement over the selected area.

Note that PWB does not adjust the selection at each replacement for changes in
the length of the text. For boxarg and streamarg, PWB may replace text that
was not included in the original selection or miss text included in the original
selection.

206 Environment and Tools

Returns

See

Example

Arg mark Replace (ALT+A mark CTRL+L)

Performs the replacement on text from the cursor to the specified mark. It
searches the range of text as if it were selected, according to the current selec­
tion mode. The mark argument cannot be a line number.

Arg number Replace (ALT+A numbercTRL+L)
Performs the replacement over the specified number of lines, starting with the
current line.

Arg Arg ... Replace (ALT+A ALT+A '" CTRL+L)

As above except using regular expressions.

Meta ... Replace (F9 ... CTRL+L)

As above except the sense of the Case switch is reversed for the operation.

True At least one replacement was performed.

False String not found, or invalid pattern.

Qreplace, Search wrap

To use the replace function in a macro, use the phrase:

... Replace "pattern" Newline "replacement" Newline +>found ...

Enter the replies to the prompts as you would when executing Replace interac­
tively. This example also shows where to place the conditional to test the result
of Replace.

You can specify special characters in the find-and-replacement strings by using
escape sequences similar to those in the C language. Note that backslashes in the
macro string must be doubled.

To restore the usual prompts, use the phrase:

... Replace <

To use an empty replacement text (replace with nothing), use the following phrase:

... Replace "pattern" Newline" " Cdelete Newline ...

If you find that you write many macros with empty replacements, the common
phrase can be placed in a macro, as follows:

nothing := " " Cdelete Newline

Resize
Key

See

Programmer's WorkBench Reference 207

In addition, macro definitions can be more readable with the following definition:

with := Newl ine

With these definitions, you can write:

... Repl ace "pattern" with nothi ng

Unassigned

Resize
Enters window-resizing mode. When in window-resizing mode, only the fol­
lowing actions are available:

Action Key

Shrink one row UP

Expand one row DOWN

Shrink one column LEFT

Expand one column RIGHT

Accept the new size ENTER

Cancel the resize ESC

Arg number Resize (ALT+A number Unassigned)
Resizes the window to number rows high.

Arg number Meta Resize (ALT+A number F9 Unassigned)
Resizes the window to number columns wide.

Movewindow

208 Environment and Tools

Restcur
Key

Returns

See

Right
Keys

Returns

Example

See

Unassigned

Restcur
Moves the cursor to the last position saved with the Savecur function (Unas­
signed, Set To Anchor command, Edit menu). Restcur always clears the saved
position.

True Position restored.

False No saved position to restore.

Seleur

RIGHT, CTRL+D

Right
Moves the cursor one character to the right. If this action causes the cursor to
move out of the window, PWB adjusts the window to the right according to the
Hscroll switch.

Meta Right (P9 RIGHT)

Moves the cursor to the rightmost position in the window.

True Cursor on text in the line.

False Cursor past text on the line.

In a macro, the return value of the Right function can be used to test if the cursor
is on text in the line or past the end of the line.

The following macro tests the return value to simulate the Endline function:

MyEndline := Begline :>loop Right +>loop

Begline, Endfile, Endline, Home, Left

Saveall
Key

Returns

Savecur
Key

Menu

Returns

Sdelete
Key

Unassigned

Saveall

Programmer's WorkBench Reference 209

Saves all modified disk files. Pseudofiles are not saved.

Saveall always returns true.

Unassigned

Edit menu, Set Anchor command

Savecur
Saves the cursor position (sets an anchor).

To restore the cursor to the saved position, use the Restcur function (Unas­
signed). To select text from the current position to the saved position, use
the Select To Anchor command from the Edit menu or the Selcur function
(Unassigned).

Savecur always returns true.

Unassigned

Sdelete
Deletes the character at the cursor. Does not copy the character to the clipboard.

Arg Sdelete (ALT+A Unassigned)
Deletes text from the cursor to the end of the line, including the line break. The
deleted text is copied to the clipboard.

210 Environment and Tools

Returns

Searchall
Key

Returns

Arg streamarg I boxarg I linearg Sdelete
(ALT+A streamarg I boxarg llinearg Unassigned)

Deletes the selected stream of text from the starting point of the selection to the
cursor and copies it to the clipboard. Always deletes a stream, regardless of the
current selection mode.

Meta ... Sdelete (F9 ... Unassigned)
As above but discards the deleted text. The contents of the clipboard are
unchanged.

Sdelete always returns true.

Unassigned

Searchall
Highlights all occurrences of the previously searched string or pattern. Moves
the cursor to the first occurrence in the file.

Arg Searchall (ALT+A Unassigned)
Highlights all occurrences of the string specified by the text from the cursor to
the first blank character.

Arg textarg Searchall (ALT+A textarg Unassigned)
Highlights all occurrences of textarg.

Arg Arg Searchall (ALT+A ALT+A Unassigned)
Highlights all occurrences of the regular expression defined by the characters
from the cursor to the first blank character.

Arg streamarg Searchall (ALT+A streamarg Unassigned)
Highlights all occurrences of streamarg.

Arg Arg textarg Searchall (ALT +A ALT +A textarg Unassigned)
Highlights all occurrences of a regular expression defined by textarg.

Meta ... Searchall (F9 ... Unassigned)
As above but reverses the value of the Case switch for one search.

True String or pattern found.

False No matches found.

Selcur
Key

Menu

Returns

Select
Keys

Selmode
Key

Unassigned

Edit menu, Select To Anchor command

Selcur

Programmer's WorkBench Reference 211

Selects text from the cursor to the position saved using the Set Anchor com­
mand from the Edit menu or the Savecur function (Unassigned). If no position
has been saved, Selcur selects text from the cursor to the beginning of the file.

Selcur always returns true.

SHIFT +PGUP, SHIFT +CTRL+PGUP, SHIFT +PGDN, SHIFT +CTRL+PGDN, SHIFT +END,

SHIFT+CTRL+END, SHIFT+HOME, SHIFT+CTRL+HOME, SHIFT+LEFT, SHIFT+CTRL+LEFT,

SHIFT+UP, SHIFT+RIGHT, SHIFT+CTRL+RIGHT, SHIFT+DOWN

Select
Causes a shifted key to take on the cursor-movement function associated with
the unshifted key and begins or extends a selection.

To see the key combinations currently assigned to this function, use the Key
Assignments command from the Options menu.

Unassigned

Selmode
Advances the selection mode between stream, line, and box modes, starting
with the current mode.

212 Environment and Tools

Returns

See

Selwindow
Key

Returns

Setfile
Key

True New mode is stream mode.

False New mode is box mode or line mode.

_ pwbstreammode, _ pwbboxmode, _ pwblinemode

F6

Selwindow
Moves the focus to the next window.

Arg Selwindow (ALT+A F6)

Moves the focus to the next unminimized window. Minimized windows (icons)
are skipped.

Arg number Selwindow (ALT+A number F6)

Moves the focus to the specified window.

Meta Selwindow (F9 F6)

Moves the focus to the previous window.

Arg Meta Selwindow (ALT+A F9 F6)

Moves the focus to the previous unminimized window.

True Focus moved to another window.

False No other windows are open.

F2

Setfile
Switches to the first file in the active window's file history. If there are no
files in the file history, PWB displays the message No al ternate fi 1 e. When
the Autosave switch is set to yes, PWB saves the current file if it has been
modified.

Setfile does not honor the Newwindow switch. To open a new window when
you open a file, use Openfile.

Returns

See

Sethelp
Key

Programmer's WorkBench Reference 213

Arg Setfile (ALT+A F2)

Switches to the filename that begins at the cursor and ends with the first blank
character.

Arg textarg Setfile (ALT+A textarg F2)

Switches to the file specified by textarg. If the file is not already open, PWB
opens it. You can use environment-variable specifiers in the argument.

If the argument is a drive or directory name, PWB changes the current drive or
directory to the specified one and displays a message to confirm the change.
See: Infodialog.

Arg !number Setfile (ALT +A !numbe r F2)

If the argument has the form !number, PWB switches to the file with that
number in the file history. The number can be from 1 to 9, inclusive. See:
_pwbfilen.

Arg wildcard Setfile (ALT+A wildcardF2)
If the argument is a wildcard, PWB creates a pseudofile containing a list of files
that match the pattern. To open a file from this list, position the cursor at the
beginning ofthe name and execute Arg Openfile (ALT+A FlO) or Arg Setfile
(ALT+A F2).

Meta ... Setfile (F9 ... F2)

As above but does not save the changes to the current file.

Arg Arg Setfile (ALT+A ALT+A F2)

Saves the current file.

Arg Arg textarg Setfile (ALT+A ALT+A textarg F2)

Saves the current file under the name specified by textarg.

True File opened successfully.

False No alternate file, the specified file does not exist, and you did not wish
to create it; or the current file needs to be saved and cannot be saved.

Newfile

SHIFT +CTRL+S

The Sethelp function opens and closes single Help files. The Sethelp function can
also display the current list of open Help files. Sethelp affects only the current
PWB session.

214 Environment and Tools

Returns

See

Setwindow
Key

Returns

Shell
Key

Arg Sethelp (ALT+A SHIFT+CTRL+S)

Opens the Help file specified by the filename at the cursor.

Arg streamarg I textarg Sethelp (ALT+A streamarg I textarg SHIFf+CTRL+S)

Opens the Help file specified by the selected filename.

Meta .. , Sethelp (F9 ALT+A SHIFT+CTRL+S)

As above except the specified Help file is closed.

Arg? Sethelp (ALT+A? SHIFT+CTRL+S)
Lists all currently open Help files.

True Help file opened or closed, or list of Help files displayed.

False The specified file could not be opened or closed, or the list of files
could not be displayed.

Helpfiles

CTRL+J

Setwindow
Redisplays the contents of the active window.

Meta Setwindow (F9 CTRL+j)

Redisplays the current line.

Arg Setwindow (ALT+A CTRL+j)

Adjusts the window so that the cursor position becomes the home position
(upper-left corner).

Setwindow always returns true.

SHIFT+F9

Shell
Runs an operating-system command shell. To return to PWB, type exi t at the
operating-system prompt.

Returns

See

Sinsert
Key

Returns

Programmer's WorkBench Reference 215

Warning Do not start terminate-and-stay-resident (TSR) programs in a shell.
This causes unpredictable results.

Arg Shell (ALT+A SHIFT+F9)

Runs the text from the cursor to the end of the line as a command to the shell,
and returns to PWB.

Arg boxarg llinearg Shell (ALT+A boxarg Ilinearg SHIFT+F9)

Runs each selected line as a separate command to the shell, and returns to PWB.

Arg textarg Shell (ALT +A textarg SHIFT +F9)

Runs textarg as a command to the shell, and returns to PWB.

Meta ... Shell (F9 ... SHIFT+F9)

Runs a shell, ignoring the Autosave switch. Modified files are not saved to
disk, but they are retained in PWB's virtual memory.

True Shell ran successfully.

False Invalid argument, or error starting the operating-system command
processor.

Askrtn, Restart, Savescreen

CTRL+J

Sinsert
Inserts a space at the cursor.

Arg Sinsert (ALT+A CTRL+J)

Inserts a line break at the cursor, splitting the line.

Arg streamarg llinearg I boxarg Sinsert
(ALT+A streamarg Ilinearg I boxarg CTRL+J)

Inserts a stream of blanks between the starting point of the selection and the cur­
sor. The insertion is always a stream, regardless of the current selection mode.

True Spaces or line break inserted.

False Insertion would make a line too long.

216 Environment and Tools

Example The following macro inserts a stream of spaces up to the next tab stop, regardless
of the current selection mode:

See

Tab
Key

Returns

Update

See

Tell
Key

InsertTab := Arg Tab Sinsert

Insert, Linsert

TAB

Tab
Moves the cursor to the next tab stop. If there are no tab stops to the right of the
cursor, the cursor does not move. Tab stops are defined by the Tabstops switch.

True Cursor moved.

False Cursor not moved.

In PWB 1.x, tab stops appear at fixed intervals. In PWB 2.00, tab stops can be at
variable or fixed intervals.

Backtab

CTRL+T

Tell
Displays the message Press a key to tell about and waits for a keystroke.
After you press a key or combination of keys, Tell brings up the Tell dialog
box showing the name of the key and its assigned function in TOOLS.lNI key­
assignment format.

The key-assignment format is:

function:key

If the key is not assigned a function, Tell displays unass i gned for the function
name. See: Unassigned.

Returns

Update

Remarks

Programmer's WDrkBench Reference 217

If you press a combination of keys, but Tell still shows the Pres s a key
prompt (when you press SCROLL LOCK, for example), PWB is unable to recog­
nize that combination of keys and you cannot use it as a key assignment.

Arg Tell (ALT+A CTRL+T)

Prompts for a key, then displays the name of the function or macro assigned to
the key in one of these formats:

function:key
macroname:=definition

Arg textarg Tell (ALT+A textarg CTRL+T)

Displays the definition of the macro named by textarg. If you specify a PWB
function, Tell displays:

functionjunction

Meta ... Tell (F9 ... CTRL+T)

As above except Tell types the result into the current file rather than displaying
it in a dialog box. This is how to discover the definition of any macro, including
PWB macros.

True Assignment displayed or typed.

False No assignment for the key or the specified name.

In PWB l.x, the prompt and results appear on the status bar; in PWB 2.00, the
prompt and results appear in dialog boxes.

Meta Tell is a convenient and reliable way of writing a key assignment when you
are configuring PWB.

For example, if you want to execute the Curdate function (type today's date)
when you press the CTRL, SHIFT, and D keys simultaneously, perform the following
steps:

1. Go to an empty line in the [PWB] section of TOOLS.lNI.

2. Execute Meta Tell (F9 CTRL+T).

Tell displays the message: Press a key to tell about.

3. Press the D, SHIFT, and CTRL keys simultaneously.

If you have not already assigned a function to this combination, Tell types:

unassigned:Shift+Ctrl+D

4. Selecttheword unassigned andtype curdate.

5. If you want the assignment to take effect immediately, move the cursor to the
line you've just entered and execute the Assign function (ALT+=).

218 Environment and Tools

See

Unassigned
Keys

Returns

See

Undo
Keys

Returns

See

You can use Meta Arg textarg Tell to recover the definition of a predefined PWB
macro or a macro that you have not saved or entered into a file.

Assign, Record

Assigned to all available keys.

Unassigned
Displays a message for keys that do not have a function assignment.

All unassigned keys are actually assigned the Unassigned function. Thus, to
remove a function assignment for a key, assign the Unassigned function to the
key. The Unassigned function is not useful in macros.

The Unassigned function always returns false.

Assign, Tell

ALT+BKSP, SHIFr+CTRL+BKSP

Undo
Reverses the last editing operation. The maximum number of times this can be
performed for each file is set by the Undocount switch.

Meta Undo (F9 ALT+BKSP)

Performs the operation previously reversed with Undo. This action is often
called "redo."

True

False

Operation undone or redone.

Nothing to undo or redo.

_ pwbundo, _ pwbredo, Repeat

Up
Keys

Returns

See

Usercmd
Key

Returns

See

See

Programmer's WorkBench Reference 21 9

UP,CTRL+E

Up
Moves the cursor up one line. If a selection has been started, it is extended by
one line. If this movement results in the cursor moving out of the window, the
window is adjusted upward as specified by the Vscroll switch.

Meta Up (F9 up)
Moves the cursor to the top of the window without changing the column
position.

True

False

Down

Unassigned

Cursor moved.

Cursor not moved; the cursor is already at the destination.

The Usercmd function executes a custom command added to the Run menu by
using Customize command from the Run menu or setting the User switch.

Arg number Usercmd (ALT+A number Unassigned)
Executes the given custom Run menu command. The number can be in the
range 1-9.

True Command exists.

False Command does not exist, or invalid argument.

_pwbusern

Assign, Record

220 Environment and Tools

Window
Key

Update

See

Unassigned

Window
Switch to the next window.

Returns

True
False

Condition

Switched to next window.

No next window to switch to: zero or one window open.

Arg [Arg] Window (ALT+A [ALT+A] Unassigned)
Open a new window.

Returns

True
False

Condition

Opened a new window.

Window not opened.

Meta Window (F9 Unassigned)
Close the active window.

Returns

True
False

Condition

Window closed.

No open window to close.

Meta Arg Window (ALT+A F9 Unassigned)
Switch to the previous window.

Returns

True
False

Condition

Switched to previous window.

No previous window to switch to: zero or one window open.

In PWB l.x, Arg Window and Arg Arg Window split the window at the cursor.
In PWB 2.00, these forms of Window open a new window.

Selwindow, Setwindow

Winstyle
Key

Default

Returns

Update

See

Programmer's WorkBench Reference 221

CTRL+F6

Winstyle
Advances through the following series of window styles, starting from the cur­
rent style:

Horizontal Scroll Bar

No

No

Yes

Yes

Vertical Scroll Bar

No

Yes

No

Yes

When the horizontal scroll bar is not shown, a maximized window does not
show its bottom border. Similarly, when the vertical scroll bar is not shown, a
maximized window does not show its left and right borders. PWB always dis­
plays the title bar.

To get the "clean-screen" look, maximize the window and advance the window
style until the borders disappear.

Set the default window style with the Defwinstyle switch.

True Changed window style.

False No windows open.

The no-border state in PWB l.x is not available in PWB 2.00. In PWB 2.00, when
a window is maximized and no scroll bars are present, PWB displays the window
without borders.

Maximize

222 Environment and Tools

7.5 Predefined PWB Macros
PWB predefines a number of macros, most of which correspond to a command in
the PWB menus. You can define a shortcut key for a menu command by assigning
the key to the corresponding macro. Note that some menu commands such as the
Open command from the File menu do not correspond to a macro, and some mac­
ros do not correspond to a menu command.

Table 7.12 PWB Macros

Macro

Curfile

Curfileext

Curfilenam

_pwbarrange

_pwbboxmode

_pwbbuild

_pwbcancelbuild

_pwbcancelprint

_pwbcancelsearch

_pwbcascade

_pwbclear

_pwbclose

_pwbcloseall

_pwbclosefile

_pwbcloseproject

_pwbcompile

_pwbfilen

_pwbgotomatch

_pwbhelp_again

_pwbhelp_back

_pwbhe1p_contents

_pwbhelpJontext

_pwbhelp_general

_pwbhelp_index

_pwbhelpnl

_pwbhe1p_searchres

_pwblinemode

_pwblogsearch

Description

Current file's full path

Current file's extension

Current file's name

Arrange command, Window menu

Box Mode command, Edit menu

Build command, Project menu

Cancel Build command, Project menu

Cancel Print command, File menu

Cancel Search command, Search menu

Cascade command, Window menu

Delete command, Edit menu

Close command, Window menu

Close All command, Window menu

Close command, File menu

Close command, Project menu

Compile command, Project menu

nfile, File menu

Goto Match command, Search menu

Next command, Help menu

Previous Help topic

Contents command, Help menu

Topic command, Help menu

Help on Help command, Help menu

Index command, Help menu

Display the message:
Online Help Not Loaded

Search Results command, Help menu

Line Mode command, Edit menu

Log command, Search menu

Key

Unassigned

Unassigned

Unassigned

ALT+FS

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

FS

DEL

CTRL+F4

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

Unassigned

ALT+Fl

SHIFT+FI

FI

Unassigned

Unassigned

Fl when Help
extension not
loaded

Unassigned

Unassigned

Unassigned

Programmer's WorkBench Reference 223

Table 7.12 (continued)

Macro

_pwbmaximize

_pwbminimize

_pwbmove

_pwbnewfile

_pwbnewwindow

_pwbnextfile

_pwbnextlogmatch

_pwbnextmatch

_pwbnextmsg

_pwbpreviouslogmatch

_pwbpreviousmatch

_pwbprevmsg

_pwbprevwindow

_pwbquit

_pwbrebuild

_pwbrecord

_pwbredo

_pwbrepeat

_pwbresize

_pwbrestore

_pwbsaveall

_pwbsavefile

_pwbsetmsg

_pwbshell

_pwbstreammode

_pwbtile

_pwbundo

_pwbusern

_pwbviewbuildresults

_pwbviewsearchresults

_pwbwindown

Description

Maximize command, Window menu

Minimize command, Window menu

Move command, Window menu

New command, File menu

New command, Window menu

Next command, File menu

Next Match command, Search menu

Next Match command, Search menu

Next Error command, Project menu

Previous Match command, Search menu

Previous Match command, Search menu

Previous Error command, Project menu

Move to previous window

Exit command, File menu

Rebuild All command, Project menu

Record command, Edit menu

Redo command, Edit menu

Repeat command, Edit menu

Resize command, Window menu

Restore command, Window menu

Save All command, File menu

Save command, File menu

Goto Error command, Project menu

DOS Shell command, File menu

Stream Mode command, Edit menu

Tile command, Window menu

Undo command, Edit menu

command n, Run menu

View build results button

View search results button

n file, Window menu

Key

CTRL+FlO

CTRL+F9

CTRL+F7

Unassigned

Unassigned

Unassigned

SHIFT +CTRL+F3

Unassigned

SHIFT+F3

SHIFT +CTRL+ F4

Unassigned

SHIFT+F4

SHIFT+F6

ALT+F4

Unassigned

Unassigned

Unassigned

Unassigned

CTRL+F8

CTRL+F5

Unassigned

SHIFT+F2

Unassigned

Unassigned

Unassigned

SHIFT+F5

Unassigned

ALT+Fn

Unassigned

Unassigned

ALT+n

224 Environment and Tools

Autostart
Key

Definition

Curfile
Key

Definition

PWB continually redefines the following macros to reflect the current file's name:

Macro Description

Curfile Full path

Curfileext File extension

Curfilenam File base name

PWB uses the following special-purpose macros:

Macro

Autostart

Mgreplist

Playback

Restart

Description

Executed on startup while reading TOOLS.INI

List of files for logged searches, multifile replace, Mgrep, and
Mreplace

Default name of recorded macros

(Obsolete)

By default, these macros are undefined.

Unassigned

The special PWB macro Autostart is executed after PWB finishes all initializa­
tion at startup. If used, it must be defined in the [PWB] section of TOOLS.lNI.

By default, Autostart is not defined.

Unassigned

The Curfile macro types the full path of the current file. This macro is redefined
each time you switch to a new file.

curfile := "pathname"

Example

See

Curfileext
Key

Definition

Example

See

Curfilenam
Key

Definition

Programmer's WorkBench Reference 225

The following macro copies the full path of the current file to the clipboard for
later use:

Path2clip := Arg Curfile Copy

Arg, Copy, Curdate, Curday, Curfilenam, Curfileext, Curtime

Unassigned

The Curfileext macro types the filename extension of the current file. This macro
is redefined each time you switch to a new file.

curfileext := "extension"

The following macro copies the base name plus the extension of the current file to
the clipboard for later use:

Filename2clip := Arg Curfilenam Curfileext Copy

Arg, Copy, Curdate, Curday, Cudile, Curfilenam, Curtime

Unassigned

The Curfilenam macro types the base name of the current file. This macro is rede­
fined each time you switch to a new file.

curfilenam:= "basename"

226 Environment and Tools

Example The following macro copies the base name of the current file to the clipboard for
later use:

See

Mgreplist
Key

Definition

See

Name2clip :~ Arg Curfilenam Copy

Arg, Copy, Curdate, Curday, CurfiIe, Curfileext, Curtime

Unassigned

The special PWB macro Mgreplist is used by the Find and Replace commands on
the Search menu, Mgrep, Mreplace, and Mreplaceall to specify the list of files to
search.

When you create a list of files to search using the Files button in either the Find or
Replace dialog box, PWB redefines the Mgreplist macro with the specified list of
files.

To see the current list of files, choose the Files button in the Replace dialog box.
You can change the list in this dialog box, and either choose OK to perform the
find-and-replace operation, or choose Cancel to cancel the replace and accept the
changes to Mgreplist.

You can also insert the definition of Mgreplist into the current file by using the
phrase: Arg Meta Mgrepl i st Tell (ALT+A F9 Mgrepl i st CTRL+T).

You can edit the macro, then redefine it by using the Assign function (ALT+=).

Mgreplist:= "list"

list Space-separated list of filenames

The filenames can use the operating-system wildcards (* and ?), and can use
environment-variable specifiers. Note that backslashes (\) must be doubled in the
macro string.

Assign, Tell, Mgrep, Mreplace, Mreplaceall

Restart
Key

Update

Programmer's WorkBench Reference 227

Unassigned

In PWB Lx, the special PWB macro Restart is executed whenever PWB returns
from a shell, build, or other external operation.

In PWB 2.00, the Restart macro is never executed automatically and has no
special meaning; it is an ordinary macro.

_ pwbarrange
Key

Menu

Definition

ALT+PS

Window menu, Arrange command

The _ pwbarrange macro arranges all unminimized windows on the desktop. The
following illustration shows a typical desktop after execution of _ pwbarrange:

[5J--- Help ------,

U
[3]--- Source C ir[2]-- Source B -------,
l[[1]-- Source A

[4J- Build Results ~

Figure 7.1 Arranged Windows

_pwbarrange:=cancel arg arrangewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

228 Environment and Tools

See

Arg Arrangewindow

<

Arranges all unminimized windows on the desktop.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow

_pwbboxmode
Key

Menu

Definition

See

Unassigned

Edit menu, Box Mode command

The _ pwbboxmode macro sets the selection mode to box selection mode.

_pwbboxmode := :>more selmode ->more selmode

:>more
Defines the label more.

Selmode
Advances to the next selection mode.

->more
Branches to the label more if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to line.
Selmode returns true when the mode is stream mode. The macro executes the
Selmode function until it returns true (sets stream mode), then advances the selec­
tion mode once to set box selection mode.

Enterselmode, Selmode

_pwbbuild
Key

Menu

Definition

See

Programmer's WorkBench Reference 229

Unassigned

Project menu, Build command

The _ pwbbuild macro builds the "all" target of the current PWB project. The
"all" pseudotarget in a PWB project lists all the targets in the project.

For non-PWB projects, _pwbbuild builds the targets that were last specified
by using the Build Target command from the Project menu. PWB redefines
_ pwbbuild each time you use Build Target. If no target has been specified,
NMAKE builds the first target listed in the project makefile.

_pwbbuild:= cancel arg "all" compile <

Cancel
Establishes a uniform "ground state" by cancelling any selection or argument.

Arg "all" Compile

<

Builds the all pseudotarget in the current project.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, Compile

_ pwbcancelbuild
Key

Menu

Definition

Unassigned

Project menu, Cancel Build command

The _ pwbcancelbuild macro terminates the current background build or compile
and flushes any queued build operations.

_pwbcancelbuild := cancel arg meta compile

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

230 Environment and Tools

Arg Meta Compile
Terminates the background build process.

See Arg, Cancel, Compile, Meta

_ pwbcancelprint
Key

Definition

See

Unassigned

The _ pwbcancelprint macro terminates all background print operations.

_pwbcancelprint := cancel arg meta print

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Meta Print
Terminate background print operations.

Arg, Cancel, Meta, Print

_ pwbcancelsearch
Key

Menu

Definition

Unassigned

Search menu, Cancel Search command

The _ pwbcancelsearch macro cancels the current background search. PWB per­
forms logged searches in the background under multithreaded environments.

_pwbcancelsearch := cancel cancelsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Cancelsearch
Cancels the current background search.

See

<

Programmer's WorkBench Reference 231

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Cancelsearch, Logsearch

_ pwbcascade
Key

Menu

Definition

F5

Window menu, Cascade command

The _ pwbcascade macro arranges all unminimized windows in cascaded fashion
so that all of their titles are visible. Up to 16 unminimized windows can be
cascaded.

File Edit Search Project Run Options Browse Window Help
[3) D : \C7EX'l'\SOURCE\SAMPLES\PWBWIDR\COUtlTCH . C ---------,

[Z) D : \C7EX'l'\SOURCE\SAMPLES\PWBWIDR\COUtlTBUF . C ---------,1
F[1] D: \C7EX'l'\SOURCE\SAMPLES\PWBWIDR\COUtlT. C -----~Ill t
// COUtlT.C - Generate text statistics for text file. D
// I'ltlti....,dule example program used in the PWB tutorial.
//

Binclude (stdio.h>
Binclude (string.h>
Uinclude ·'count.h·'

// Conditional operator prevents divide by zero
Bdef ine tlOtlZERO(vail (val? val : 1)

// Uowels per syllable in typical English text
Bdefine FACIDR 1.1

char Buffer[BUFFSlZE);
long Bytes = 8;
long Characters = 8;
long Words = 8;
I L· 8

Help> (Alt=Menu> (F6=Window> tI 00001.

Figure 7.2 Cascaded Windows

_pwbcascade := cancel arrangewindow <

Cancel

,.

Establishes a uniform "ground state" by canceling any selection or argument.

232 Environment and Tools

See

_pwbclear
Key

Menu

Definition

See

Arrangewindow

<

Cascades all unminimized windows.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel

DEL

Edit menu, Delete command

The _ pwbclear macro removes the selected text from the file. If there is no selec­
tion, PWB removes the current line.

The selection or line is not copied to the clipboard. It can be recovered only by
using the Undo command from the Edit menu or Undo (ALT+BKSP).

_pwbclear := meta delete

Meta Delete
Removes the selection or the current line from the file without modifying the
clipboard.

Delete, Meta

_pwbcloseall
Key Unassigned

Menu Window menu, Close All command

The _pwbcloseall macro closes all open windows.

Definition _pwbcloseall := cancel arg arg meta window <

See

Programmer's WorkBench Reference 233

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Meta Window
Closes all windows.

<
Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arg, Cancel, Meta, Window

_ pwbclosefile
Key

Menu

Definition

See

Unassigned

File menu, Close command

The _ pwbclosefile macro closes the current file. If no files remain in the win­
dow's file history, the window is closed.

_pwbclosefile := cancel closefile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Closefile

<

Closes the current file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Cancel, Closefile

_ pwbcloseproject
Key Unassigned

Menu Project menu, Close Project command

234 Environment and Tools

Definition

See

The _ pwbcloseproject macro closes the current project.

_pwbcloseproject := cancel arg arg project <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Project

<

Closes the current project.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed within a macro.

Arg, Cancel, Project

_ pwbcompile
Key

Menu

Definition

See

Unassigned

Project menu, Compile File command

The _ pwbcompile macro compiles the current file.

_pwbcompile := cancel arg compile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

ArgCompile

<

Compiles the current file.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, Compile

Programmer's WorkBench Reference 235

_ pwbgotomatch
Key

Menu

Definition

See

_pwbhelpnl

Definition

See

Unassigned

Search menu, Goto Match command

The _ pwbgotomatch macro sets the match listed at the current location in the
Search Results pseudo file as the current match and moves the cursor to the loca­
tion specified by that match.

_pwbgotomatch := cancel arg arg nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg N extsearch

<

Goes to the current match.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, Nextsearch

The _ pwbhelpnl macro displays a message indicating the Help extension is not
loaded. The Help keys are assigned this macro until the Help extension is loaded.

_pwbhelpnl := cancel arg "OnLine Help Not Loaded" message

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "OnLine Help Not Loaded" Message
Displays the message on the status bar.

Arg, Cancel, Load, Message

236 Environment and Tools

_ pwbhelp_ again
Key

Menu

Definition

See

Unassigned

Help menu, Next command

The _ pwbhelp_ again displays the next occurrence of the last topic for which you
requested Help. If no other occurrences of the topic are defined in the open files,
PWB redisplays the current topic.

The topic that PWB looks up when you use this command is displayed after the
Next command on the Help menu, as follows:

Next: topic key

topic Topic string used for the command.

key Current key assignment for _pwbhelp_again (if any).

_pwbhelp_again:=cancel arg pwbhelp.pwbhelpnext <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg
Sets the Arg prefix for the Pwbheipnext function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpnext

<

Displays the next occurrence of the previously requested topic.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Pwbhelpnext

Programmer's WorkBench Reference 237

_ pwbhelp_ back
Key

Definition

See

ALT+Fl

The _ pwbhelp_ back macro displays the previously viewed Help topic. Up to 20
topics are kept in the Help backtrace list.

_pwbhelp_back:=cancel meta pwbhelp.pwbhelpnext <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta
Sets the meta prefix for the function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpnext

<

Displays the previously viewed Help topic.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Pwbhelpnext

_ pwbhelp_ contents
Key

Menu

Definition

SHIFT+Fl

Help menu, Contents command

The _pwbhelp_contents macro opens the Help window and displays the top­
level contents of the Help system.

Within the Help system, most Help topics have a Contents button at the top of the
window. This button also takes you to the top-level contents.

_pwbhelp_contents:=cancel arg "advisor.hlp!h.contents" pwbhelp.pwbhelp <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

238 Environment and Tools

See

Arg "advisor. hlp !h.contents"
Defines a text argument with the topic name for the general table of contents.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic h. contents in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

_ pwbhelp_ context
Key

Menu

Definition

See

Fl

Help menu, Topic command

The _pwbhelp_context macro looks up Help on the topic at the cursor, the cur­
rent selection, or the specified text argument.

_pwbhelp_context:=arg pWbhelp.pwbhelp <

Arg
Sets the Arg prefix for the Pwbhelp function.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Displays Help on the topic at the cursor. When text is selected, displays Help
on the selected text. When you have entered an argument in the Text Argument
dialog box, displays Help on the topic specified by the text argument.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Pwbhelp

Programmer's WorkBench Reference 239

_ pwbhelp_ general
Key

Menu

Definition

See

Unassigned

Help menu, Help on Help command

The _ pwbhelp_general macro opens the Help window and displays information
about using the Help system.

_pwbhelp_general:=cancel arg "advisor.hlp!h.default" pWbhelp.pwbhelp <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "advisor. hlp !h.default"
Defines a text argument with the topic name for default Help.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic "h. default" in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Pwbhelp

_ pwbhelp_ index
Key

Menu

Definition

Unassigned

Help menu, Index command

The _pwbhelp_index macro opens the Help window and displays the top-level
table of indexes in the Help system.

Within the Help system, most Help topics have an Index button at the top of the
window. This button also takes you to the top-level table of indexes.

_pwbhelp_index:=cancel arg "advisor.hlp!h.index" pwbhelp.pwbhelp <

240 Environment and Tools

See

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "advisor.hlp!h.index"
Defines a text argument with the topic name for the Help index.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelp

<

Looks up the topic "h.index" in the ADVISOR.HLP Help file.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelp

_ pwbhelp_ searchres
Key

Menu

Definition

See

Unassigned

Help menu, Search Results command

The _pwbhelp_searchres macro opens the Help window and displays the list of
matches found during the last global Help search.

_pwbhelp_searchres:=cancel pwbhelp.pwbhelpsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Pwbhelp.
Specifies that the function is the PWBHELP extension function.

Pwbhelpsearch

<

Opens the Help window and displays the results of the last global Help search.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Pwbhelpsearch

Progrnmme~sWo~B~chR~e~n~ 2~

_ pwblinemode
Key

Menu

Definition

See

Unassigned

Edit menu, Line Mode command

The _ pwblinemode macro sets the selection mode to line selection mode.

_pwblinemode := :>more selmode ->more selmode selmode

:>more
Defines the label more.

Selmode
Advances to the next selection mode.

->more
Branches to the label mo re if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to line.
Selmode returns true when the mode is stream mode. The macro executes the
Selmode function until it returns true (sets stream mode), then advances the selec­
tion mode twice to set line selection mode.

Enterselmode, Selmode

_ pwblogsearch
Key

Menu

Definition

Unassigned

Search menu, Log command

The _ pwblogsearch macro toggles search logging on and off.

When search logging is turned on, PWB displays a bullet next to the Log
command on the Search menu. The Next Match command executes the
_pwbnextlogmatch macro, and the Previous Match command executes
the _ pwbpreviouslogmatch macro. When search logging is turned off, no
bullet appears and the Next Match and Previous Match commands execute
_ pwbnextmatch and _ pwbpreviousmatch.

_pwblogsearch := cancellogsearch <

242 Environment and Tools

See

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Logsearch

<

Toggles the logging of search results on and off.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Logsearch

_ pwbmaximize
Key

Menu

Definition

See

CTRL+FlO

Window menu, Maximize command

The _ pwhmaximize macro enlarges the active window to its largest possible size,
showing only the window, the menu bar, and the status bar on the PWB screen.

_pwbmaximize := cancel maximize <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Maximize

<

Enlarges the active window to full size.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Minimize

Programmer's WorkBench Reference 243

_ pwbminimize
Key

Menu

Definition

CTRL+F9

Window menu, Minimize command

The _ pwbminimize macro minimizes the active window, reducing the window to
an icon. The following illustration shows an open Source window and two icons:

File Edit Search Project Run Options Browse Window Help

/ COUHT.C - Generate text statistics for text file.
// Mllitimodule example prograM used in the PWD tutorial.
//

Binclude <stdio.h>
IIIl"ClUOe <str i ng . h>

"count.h"

Conditional operator prevents divide by zero
ine HOHZERO(vall (val "1 val : 1)

in typical English text

To restore a window to its original size, double-click in the box or use the Restore
command (CTRL+FS) on the Window menu.

_pwbminimize := cancel minimize <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Minimize
Shrinks the window to an icon.

244 Environment and Tools

See

_pwbmove
Key

Menu

Definition

See

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Maximize, Minimize

CTRL+F7

Window menu, Move command

The _pwbmove macro starts window-moving mode for the active window. In
window-moving mode, you can only do the following:

Action Key

Move up one row UP

Move down one row DOWN

Move left one column LEFT

Move right one column RIGHT

Accept the new position ENTER

Cancel the move ESC

To move the window in larger increments, you can use a numeric argument with
the Movewindow function.

_pwbmove := cancel movewindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Movewindow

<

Starts window-moving mode.

Restores the function's prompt (if any). By default, function prompts are
suppressed while a macro is running.

Arrangewindow, Cancel, Maximize, Minimize, Resize

_ pwbnewfile
Key

Menu

Definition

See

Programmer's WorkBench Reference 245

Unassigned

File menu, New command

The _pwbnewfile macro creates a new pseudofile.

New pseudofiles are given a unique name of the form:

< U ntitled.nnn>U ntitled.nnn

where <nnn> is a three-digit number starting with 001 at the beginning of each
PWB session. The window title shows Untitled.nnn. The file may be referred to
by the name <Untitled.nnn>.

When the Newwindow switch is set to yes, or the active window is a PWB win­
dow, a new window is opened for the file. Otherwise, the file is opened in the
active window, and the previous file is placed in the window's file history.

_pwbnewfile := cancel newfile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Newfile

<

Creates a new untitled pseudo file.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Setfile

_ pwbnewwindow
Key

Menu

Unassigned

Window menu, New command

The _ pwhnewwindow macro opens a new window, which shows the current file.
The new window has the complete file history as the original window.

246 Environment and Tools

Definition

See

_pwbnewwindow := cancel arg window

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

ArgWindow
Opens a new window on the current file

Arg, Cancel, Window

_ pwbnextfile
Key

Menu

Definition

See

Unassigned

File menu, Next command

The _ pwbnextfile macro moves to the next file in the list of files specified on the
PWB command line. If no more files remain in the list, this macro ends the PWB
session.

When the Newwindow switch is set to yes, or the active window is a PWB win­
dow, a new window is opened for the file. Otherwise, the file is opened in the
active window, and the previous file is placed in the window's file history.

_pwbnextfile := cancel exit <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Exit

<

Moves to the next file specified on the command line.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Exit, Askexit, Cancel, PWB Command Line

Programmer's WorkBench Reference 247

_ pwbnextlogmatch
Key

Menu

Definition

See

SHIFT +CTRL+F3

Search menu, Next Match command

The _ pwbnextlogmatch macro advances the cursor to the next match listed in the
Search Results pseudofile.

The Next Match command on the Search menu executes this macro when search
log;;~ng is turned on. When search logging is turned off, Next Match executes the
_ pwbnextmatch macro.

_pwbnextlogmatch := cancel nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Nextsearch

<

Advances to the next match in Search Results.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, N extsearch

_ pwbnextmatch
Key

Menu

Definition

Unassigned

Search menu, Next Match command

The _pwbnextmatch macro searches forward in the file using the last search pat­
tern and options. The search options are Match Case, Wrap Around, and Regular
Expression.

The Next Match command on the Search menu executes this macro when search
logging is turned off. When search logging is turned on, Next Match executes the
_ pwbnextlogmatch macro.

_pwbnextmatch := cancel psearch <

248 Environment and Tools

See

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Psearch

<

Searches forward in the file for the next occurrence of the last search string or
pattern.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Psearch

_ pwbnextmsg
Key

Menu

Definition

See

SHIFT+F3

Project menu, Next Error command

The _ pwbnextmsg macro moves the cursor to the next message in Build Results.

_pwbnextmsg := cancel nextmsg <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Nextmsg

<

Goes to the next message in Build Results.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Nextmsg

_ pwbpreviouslogmatch
Key SHIFT +CTRL+F4

Menu Search menu, Previous Match command

Definition

See

Programmer's WorkBench Reference 249

The _ pwbpreviouslogmatcb macro moves the cursor to the previous match listed
in the Search Results pseudofile.

The Previous Match command on the Search menu executes this macro when
search logging is turned on. When search logging is turned off, Previous Match
executes the _ pwbpreviousmatch macro.

_pwbpreviouslogmatch := cancel arg "-1" nextsearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "-1" N extsearch

<

Moves to the previous match listed in Search Results.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, Nextsearch

_ pwbpreviousmatch
Key

Menu

Definition

Unassigned

Search menu, Previous Match command

The _ pwbpreviousmatch macro searches backward in the file, using the last
search pattern and options. The search options are Match Case, Wrap Around,
and Regular Expression.

The Previous Match command on the Search menu executes this macro when
search logging is turned off. When search logging is turned on, Previous Match
executes the _ pwbpreviouslogmatch macro.

_pwbpreviousmatch := cancel msearch <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Msearch
Searches backward in the file for the last search string or pattern.

250 Environment and Tools

See

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Msearch

_ pwbprevmsg
Key

Menu

Definition

See

SHIFT+F4

Project menu, Previous Error command

The _ pwbprevmsg macro moves the cursor to the previous message in the Build
Results pseudofile.

_pwbprevmsg := cancel arg "-1" nextmsg <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "-1" Nextmsg

<

Goes to the previous message in Build Results.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, N extmsg

_ pwbprevwindow
Key

Definition

SHIFT+F6

The _ pwbprevwindow macro moves the focus to the previous window. That is,
PWB sets the previously active window as the active window. This action moves
among the open windows in the reverse order of Selwindow (F6).

_pwbprevwindow:=cancel meta selwindow <

See

_pwbquit
Key

Menu

Definition

See

Programmer's WorkBench Reference 251

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Selwindow

<

Moves the focus to the previous window.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Meta, Selwindow

ALT+F4

File menu, Exit command

The _ pWbquit macro leaves PWB immediately. Any specified files on the PWB
command line that have not been opened are ignored.

_pwbquit := cancel arg exit <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Exit
LeavesPWB.

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Askexit, Cancel, Exit, Savescreen

252 Environment and Tools

_pwbrebuild
Key

Menu

Definition

See

_pwbrecord
Key

Menu

Definition

Unassigned

Project menu, Rebuild All command

The _ pwbrebuild macro forces a rebuild of everything in the current project.

For non-PWB projects, _pwbrebuild rebuilds the targets that were last specified
by using the Build Target command on the Project menu. PWB redefines
_ pwbrebuild each time you use Build Target. If no target has been specified,
NMAKE rebuilds the first target listed in the project makefile.

_pwbrebuild:= cancel arg meta "all" compile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Meta "all" Compile
Rebuilds the all pseudotarget.

<
Restores the function's prompt (if any). By default, function prompts are sup-
pressed while a macro is running. .

Arg, Cancel, Compile, Meta

Unassigned

Edit menu, Record On command

The _ pwbrecord macro toggles macro recording on and off. If you have not set
the recorded macro name and key, PWB displays the Set Macro Record dialog
box so you can set them. Execute _ pwbrecord again to start recording.

_pwbrecord := cancel record <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

See

_pwbredo
Key

Menu

Definition

See

_pwbrepeat
Key

Menu

Programmer's WorkBench Reference 253

Record
Toggles macro recording on and off.

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Record

Unassigned

Edit menu, Redo command

The _ pwbredo macro restores the last modification that was reversed using Edit
Undo or Undo (ALT+BKSP).

_pwbredo := cancel meta undo <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Undo

<

Restores the last "undone" modification.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Meta, Undo

Unassigned

Edit menu, Repeat command

The _ pwbrepeat macro repeats the last editing operation once.

254 Environment and Tools

Definition

See

_pwbresize
Key

Menu

Definition

_pwbrepeat := cancel repeat <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Repeat
Repeats the last operation one time.

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Repeat

CTRL+F8

Window menu, Size command

The _pwbresize macro starts window-sizing mode for the active window. When
in window-resizing mode, only the following actions are available:

Action Key

Shrink one row UP

Expand one row DOWN

Shrink one column LEFT

Expand one column RIGHT

Accept the new size ENTER

Cancel the resize ESC

To size the window in larger increments, you can use the numeric forms of the
Resize function.

_pwbresize := cancel resize <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Resize
Starts window-sizing mode.

See

_ pwbrestore
Key

Menu

Definition

See

_ pwbsavea II
Key

Menu

Definition

Programmer's WorkBench Reference 255

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arrangewindow, Cancel, Maximize, Minimize, Movewindow

CTRL+P5

Window menu, Restore command

The _pwbrestore macro restores the active window to its size before it was maxi­
mized or minimized.

_pwbrestore := cancel meta maximize

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Meta Maximize
Restores the window to its previous size.

Cancel, Maximize, Meta, Minimize

Unassigned

File menu, Save All command

The _ pwbsaveall macro saves all modified disk files. Modified pseudofiles are
not saved.

_pwbsaveall := cancel saveall <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

256 Environment and Tools

See

Saveall

<

Writes all modified files to disk.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, Saveall

_ pwbsavefile
Key

Menu

Definition

See

SHIFT+F2

File menu, Save command

The _ pwbsavetile macro saves the current file to disk.

If the current file is a pseudofile (an untitled file), PWB displays the Save As
dialog box so you can give the file a more meaningful name.

_pwbsavefile := cancel arg arg setfile <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg SeHile

<

Writes the current file to disk.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed when a macro is running.

Arg, Cancel, Settile

_pwbsetmsg
Key

Menu

See

Definition

See

_pwbshell
Key

Menu

Definition

Programmer's WorkBench Reference 257

Unassigned

Project menu, Goto Error command

The _pwbsetmsg macro sets the message listed at the current location in the Build
Results pseudofile as the current message and moves the cursor to the location
specified by that message.

Nextmsg

_pwbsetmsg := cancel arg arg nextmsg <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg Arg Nextmsg

<

Goes to the current message.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arg, Cancel, Nextmsg

Unassigned

File menu, DOS Shell command

The _pwbshell macro temporarily leaves PWB, starting a new operating-system
shell. To return to PWB, type ex it at the operating-system prompt.

_pwbshell := cancel shell <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Shell
Starts an operating-system shell.

258 Environment and Tools

See

<
Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Askrtn, Cancel, Savescreen, Shell

_ pwbstreammode
Key

Menu

Definition

See

_pwbtile
Key

Menu

Unassigned

Edit menu, Stream Mode command

The _ pwbstreammode macro sets the selection mode to stream selection mode.

_pwbstrearnmode := :>more selmode ->more

:>more
Defines the label more.

Selmode
Advances to the next selection mode.

->more
Branches to the label more if Selmode returns false.

The Selmode function advances the selection mode from box, to stream, to
line. Selmode returns true when the mode is stream mode. The macro executes
Selmode until it returns true (sets stream selection mode).

Enterselmode, Selmode

SHIFT+F5

Window menu, Tile command

The _pwbtile macro tiles all unminimized windows on the desktop so that no win­
dows overlap and the desktop is completely covered. Up to 16 unminimized win­
dows can be tiled.

Definition

See

_pwbundo
Key

Menu

Definition

See

_pwbtile := cancel meta arrangewindow <

Cancel

Programmer's WorkBench Reference 259

Establishes a uniform "ground state" by canceling any selection or argument.

Meta Arrangewindow

<

Tiles all unminimized windows.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Arrangewindow, Cancel, Meta

Unassigned

Edit menu, Undo command

The _ pwbundo macro reverses the last modification made to the current file. The
maximum number of modifications that can be undone for each file is determined
by the Undocount switch.

_pwbundo := cancel undo <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Undo

<

Reverses the last modification.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Cancel, _ pwbredo

260 Environment and Tools

_pwbusern

Menu

Definition

Example

See

Macro

_pwbuserl

_pwbuser2

_pwbuser3
_pwbuser4

_pwbuserS

_pwbuser6

_pwbuser7
_pwbuserS

_pwbuser9

Run command

Description

Run custom Run menu command 1

Run custom Run menu command 9

command Title of custom Run menu item.

Key

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

[ALT+Fn]

The _ pwbusern macros execute custom commands in the Run menu.

To add a new command to the Run menu, use the Customize Run Menu command
or assign a value to the User switch.

_pwbusern := cancel arg "n" usercmd <

Cancel
Establishes a uniform "ground state" canceling any selection or argument.

Arg "n" Usercmd

<

Executes custom run menu item number n.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

_pwbuserl := cancel arg "1" usercmd <

This macro executes custom Run menu command number 1.

Arg, Cancel, Usercmd

Programmer's WorkBench Reference 261

_ pwbviewbuildresults
Key

Button

Definition

See

Unassigned

The View Results button in the Build Operation Complete dialog box.

The _pwbviewbuildresults macro opens the Build Results window.

PWB executes this macro when you choose the View Results button in the Build
Operation Complete dialog box.

You can redefine this macro to change the behavior of the View Results button.
For example, if you want to move to the first message in the log and arrange win­
dows, add _pwbnextmsg _ pwba rrangewi ndow to the end of the macro definition.

_pwbviewbuildresults:=cancel arg "<COMPILE>" pwbwindow

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "<COMPILE>" Pwbwindow
Opens the Build Results window.

Pwbwindow

_ pwbviewsearchresu Its
Key

Button

Definition

Unassigned

The View Results button in the Search Operation Complete dialog box.

The _ pwbviewSearchresults macro opens the Search Results window.

PWB executes this macro when you choose the View Results button in the Search
Operation Complete dialog box.

You can redefine this macro to change the behavior of the View Results button.
For example, if you want to move to the first location in the log and arrange win­
dows, add _ pwbnextsea rch pwba rrangewi ndow to the end of the macro definition.

_pwbviewsearchresults:=cancel arg "<SEARCH>" pwbwindow

262 Environment and Tools

See

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "<SEARCH>" Pwbwindow
Opens the Search Results window.

Pwbwindow

_pwbwindown

Menu

Definition

Macro

_ pwbwindowl

_ pwbwindow2

_ pwbwindow3

_pwbwindow4

_ pwbwindowS

_ pwbwindow6

_ pwbwindow7

_ pwbwindow8

_ pwbwindow9

Window n file

Description

Switch to window 1

Switch to window 9

n Window number

file Current file in the window

Key

ALT+l

ALT+2

ALT+3

ALT+4

ALT+5

ALT+6

ALT+7

ALT+8

ALT+9

The _pwbwindown macros each set a specific numbered window as the active
window.

_pwbwindown := cancel arg "n" selwindow <

Cancel
Establishes a uniform "ground state" by canceling any selection or argument.

Arg "n" Selwindow

<

Moves to window number n.

Restores the function's prompt (if any). By default, function prompts are sup­
pressed while a macro is running.

Programmer's WorkBench Reference 263

Example _pwbwindowl := cancel arg "1" selwindow <

This macro sets window number I as the active window.

See Arg, Cancel, Selwindow

7.6 PWB Switches
PWB provides the following switches to customize its behavior. You set switches
by adding entries to the TOOLS.INI file or by using the Editor Settings, Key
Assignments, and Colors commands on the Options menu.

Switch

Askexit

Askrtn

Autoload

Auto save

Backup

Beep

Build

Case

Color

Cursonnode

Dblclick

Deflang

Defwinstyle

Editreadonly

Enablealtgr

Entab

Enterinsmode

Enterlogmode

Enterselmode

Envcursave

Envprojsave

Factor

Fastfunc

Filetab

Description

Prompt before leaving PWB

Prompt before returning from a shell

Load PWB extensions automatically

Save files when switching

File backup mode

Issue audible or visible alerts

Rules and definitions for the build process

Make letter case significant in searches

Color of interface elements

Block or underline cursor state

Double-click threshold

Default language

Default window style

Allow editing of files marked read-only on disk

Enable the ALTGR key on non-US keyboards

Tab translation mode while editing

Enter PWB in insert mode

Enter PWB with search logging turned on

Enter PWB in specified selection mode

Save environment variables for PWB sessions

Save environment variables for projects

Auto-repeat factor

Functions for fast auto-repeat

Width of tab characters in the file

264 Environment and Tools

Switch

Friction

Height

Hike

Hscroll

Infodialog

Keepmem

Lastproject

Load

Markfile

Mousemode

Msgdialog

Msgflush

Newwindow

Noise

Printcmd

Readonly

Realtabs

Restorelayout

Rmargin

Savescreen

Searchdialog

Searchflush

Searchwrap

Shortnames

Softcr

Tabalign

Tabdisp

Tabstops

Tilemode

Timersave

Tmpsav

Traildisp

Traillines

Traillinesdisp

Trailspace

Undelcount

Undocount

Unixre

Description

Delay between repetitions of fast functions

Height of the display

Window adjustment factor

Horizontal scrolling factor

Set of information dialogs displayed

XMSIEMS memory kept during shell, build, and compile

Set the last project on startup

PWB extension to load

N arne of the current mark file

Mouse configuration; disabled or swapped buttons

Display a dialog box for build results

Keep only one set of build results

Create a new window when opening a file

Line counting interval

Command for printing files

Command for saving disk read-only files

Preserve tab characters in the file

Restore the window layout when a project is set

Right margin for word wrap

Preserve the operating-system screen

Display a dialog box for search results

Keep only one set of search results

Make searches wrap around the end of the file

Allow access to loaded files by base name

Perform automatic indenting

Align the cursor in tab fields

Character for displaying tab characters

Variable tab stops

Window tiling style

Timer interval for saving files

Number of files kept in file history

Character for displaying trailing spaces

Preserve trailing lines

Character for displaying trailing lines

Preserve trailing spaces

Maximum number of file backups

Maximum number of edits per file to undo

Use UNIX regular-expression syntax

Switch

User

Vscroll

Width

Word

Wordwrap

Description

Custom Run menu item

Vertical scrolling factor

Width of the display

Definition of a word

Programmer's WorkBench Reference 265

Wrap words as they are entered

Extension Switches
The standard PWB extensions define additional switches to control their behavior.
You set these switches in tagged sections of TOOLS.INT specific to that extension.

PWB Extension

PWBROWSE.MXT

PWBC.MXT

PWBHELP.MXT

Description

Source Browser

C/C++ Language

Microsoft Advisor Help

TOOLS.INI Section Tag

[PWB-PWBROWSEj

[PWB-PWBCj

[PWB-PWBHELPj

The PWBROWSE switches are described in "Browser Switches" on page 309.
The PWBC switches are described in "C and C++ Switches" on page 310. The
PWBHELP switches are described in "Help Switches" on page 3l3.

Filename-Parts Syntax

Syntax

Syntax

Syntax

The filename-parts syntax is used by PWB to pass the name of the current file
to external programs or operating-system commands. You use this syntax in the
Printcmd, Readonly, and User switches.

%%
A literal percent sign (%).

%s
The fully qualified path of the current file. If the current file is a pseudofile, % s
specifies the name of a temporary disk file created for the external command to
operate on. The temporary file is destroyed before returning to PWB and is
never accessible to the editor.

%1 [d][p][t][e]F
Parts of the current filename. The parts of the name are drive, path, filename,
and extension. If the current file is a disk file named:

C:\SCRATCH\TEST.TXT

or the pseudofile:

266 Environment and Tools

See

"(COMPILE)Build Results"

the given syntax yields:

Syntax Disk File

%IF C:\SCRATCIDTEST.TXT

%ldF C:

%lpF \SCRATCH

% IfF TEST

%leF .TXT

%lpfF \SCRATCIDTEST

%s C:\SCRATCH\TEST.TXT

%% %

Pseudofde

<COMPILE>

<COMPILE>

<COMPILE>

C:\TMP\PWBOOO31.ROO

%

The title of a pseudofile cannot be specified with the filename-parts syntax, but
it is accessible to macros by using the Cumle predefined macro.

Warning The %IF syntax always specifies the name of the current file in the
active window. For some commands, such as the command specified in the
Readonly switch, this may not be the desired file. Use %s for the Readonly
switch.

Printcmd, Readonly, User

Boolean Switch Syntax
You can use either one of the following syntaxes to set Boolean switches in PWB:

Syntax 1 switch: [yes I no I on I otT I 1 I 0]

switch
The name of a PWB switch.

yes, on, 1
Enable the feature controlled by switch.

no, off, 0
Disable the feature controlled by switch.

Syntax 2 [no]switch :

switch
Enable the feature controlled by switch.

noswitch
Disable the feature controlled by switch.

Askexit
Type

Syntax

Default

See

Askrtn
Type

Syntax

Default

See

Programmer's WorkBench Reference 267

Boolean

The Askexit switch determines if PWB prompts for confirmation before returning
to the operating system.

Askexit: { yes I no }

yes Prompt for confirmation before leaving PWB.

no Do not prompt before leaving PWB.

Askexit:no

Exit

Boolean

The Askrtn switch determines if PWB prompts before returning to PWB after run­
ning a shell or external command.

Askrtn: { yes I no }

yes

no

Prompt for confirmation before returning to PWB. This setting allows you to re­
view the contents of the operating-system screen before returning to the editor.

Do not prompt before returning to PWB.

Askrtn:yes

Shell

268 Environment and Tools

Autoload
Type

Syntax

Default

Update

Boolean

The Autoload switch determines if PWB automatically loads its extensions on
startup.

When the Autoload switch is yes, PWB automatically loads extensions whose
names begin with "PWB" and are found in the same directory as PWB.EXE. PWB
always loads extensions named in a Load switch.

If you disable automatic extension loading, you can load extensions as you need
them by assigning a value to the Load switch as follows:
Arg load: pwbextension Assign (ALT+A load :pwbextension ALT+=).

The pwbextension is the path of the extension's executable file. PWB automat­
ically assumes the filename extension .MXT. You can specify an environment­
variable path by using an environment-variable specifier.

Autoload: { yes I no }

yes

no

Automatically load PWB extensions on startup.

Do not automatically load PWB extensions on startup. Load only those exten­
sions named in Load switches in TOOLS.lNI.

Autoload:yes

PWB l.x extensions are not compatible with PWB 2.0. They are refused when
you request that they be loaded. Old extensions must be recompiled with the new
extension-support libraries and header files. In some cases, old extensions must
also be modified for use with PWB 2.00.

Updated Microsoft PWB l.x extensions not included with this product are avail­
able by contacting Microsoft Product Support Services in the United States or
your local Microsoft subsidiary.

Autosave
Type

Syntax

Default

Update

See

Backup
Type

Syntax

Programmer's WorkBench Reference 269

Boolean

The Autosave switch determines if PWB automatically saves the current file
without prompting whenever you move to another file, exit PWB, or execute an
external operation such as a shell, build, or compile.

When the Autosave switch is set to no, PWB maintains the contents of files in
memory for internal operations, and prompts to save modified files on exit or for
external operations such as a build. With this setting, PWB never saves a file
unless you explicitly save it.

Autosave: { yes I no }

yes Automatically save files.

no Do not automatically save files.

Autosave:no

In PWB l.x, the default value of Autosave is yes.

Shell, Timersave

Text

The Backup switch determines what happens to the old copy of a file before the
new version is saved to disk.

Backup: [undell bak]

(none)
No backup: PWB overtypes the file.

undel
PWB moves the old file to a hidden directory so you can retrieve it with the
UNDEL utility. The number of copies saved is specified by the Undelcount
switch.

270 Environment and Tools

Default

Beep
Type

Syntax

Default

Case
Type

Syntax

bak
The extension of the previous version of the file is changed to .BAK.

Backup:bak

Boolean

The Beep switch determines PWB' s alerting method. When set to yes, PWB
issues an audible sound. When no, PWB flashes the menu bar-a visual "beep."

Beep: { yes I no }

yes Generate an audible beep.

no Flash the menu bar.

Beep:yes

Boolean

The Case switch determines if letter case is distinguished in searches.

The search functions that use the Case switch have "meta" forms that temporarily
reverse the sense of the Case switch.

The Unixre and Case switches have no effect on the syntax of regular expressions
used by the Build or Word switches. These switches always use case-sensitive
UNIX regular expressions.

Case:{ yes I no }

yes
Case is significant in searches. Uppercase letters in search patterns do not
match lowercase letters in text.

Default

See

Color
Type

Syntax

Programmer's WorkBench Reference 271

no
Case is not significant in searches. Uppercase letters match lowercase letters.

Case:no

Meta, Mgrep, Mreplace, Msearch, Psearch, Replace.

Text

The Color switch specifies color of various parts of the PWB display.

Color:name value

name
Identifies the part of PWB affected by the color value.

value
Two hexadecimal digits specifying the foreground and background color of the
indicated item.

Color Names
PWB uses the following color names and default color values for the various parts
ofthe PWB display:

Table 7.13 PWB Color Names

Name

Alert

Background

Border

Builderr

Buttondown

Desktop

Dialogaccel

Dialogaccelbor

Dialogbox

Disabled

Elevator

Default Value Description

70
07
07
40
07
80
7F
7F
70
78
07

Message box

(Not visible)

Window borders

Build message line in active window

Button while it is down

Desktop

Dialog box accelerator

Dialog box accelerator border

Dialog box

Disabled items in menus and dialogs

Scroll box

272 Environment and Tools

Table 7.13 (continued)

Name

Enabled

Greyed

Helpbold*

Helpitalic*

Helpnorm*

Helpunderline*

Helpwaming*

Highlight

Hilitectrl

Info

Itemhilitesel

Listbox

Location

Menu

Menubox

Menuhilite

Menuhilitesel

Menuselected

Message

Pushbutton

Pwbwindowborder

Pwbwindowtext

Scratch

Scrollbar

Selection

Shadow

Status

Text

Default Value

70
78

8F

8A

87

8C

70
IF
07
3F

OF
70
70
70
70
7F

OF
07
70
70
07
87

07
70
71

08

7F

17

Description

Available items in menus and dialogs

(Not visible)

Bold Help text

Italic Help text and the characters

Plain Help text

Emphasized Help text

Current hyperlink

Highlighted text; text found by searches

Highlighted control item

Special information

Highlighted character in selected item

List box within a dialog box

Location indicator in status bar

Menu bar

Menu

Highlighted character in menu

Highlighted character in selected menu

Selected menu

Message area of status bar

Button that is not pressed

PWB window borders

PWB window text

(Not visible)

Gray area and arrows in scroll bar

Current selection

Shadows

Indicator area of status bar

Text in a window

* Defined by the Help extension. Define these settings in the [PWB-PWBHELPj section of TOOLS.IN!.

Color Values
Color values for the Color switch are two hexadecimal digits that specify the color
of the item. The first digit specifies the background color and the second digit spec­
ifies the foreground color, according to the following table:

Cursormode
Type

Default

See

Programmer's WorkBench Reference

Table 7.14 PWB Color Values

Color Digit Color Digit

Black a Dark Gray 8

Blue Bright Blue 9

Green 2 Bright Green A

Cyan 3 Bright Cyan B
Red 4 Bright Red C
Magenta 5 Bright Magenta D
Brown 6 Yellow E

White 7 Bright White F

For example, a setting of 3E displays a cyan background (3) and a yellow fore­
ground (E).

Note that only color displays support all the colors listed. If you have a mono­
chrome adapter or monochrome monitor, the only available colors are black (0),
white (7), and bright white (F). All other colors are displayed as white.

Numeric

The Cursormode switch determines the shape of the cursor when PWB is in in­
sert and overtype mode, according to the following table:

Cursormode Value Insert Mode Cursor Overtype Mode Cursor

a Underscore Underscore
Block Block

2 Block Underscore
3 Underscore Block

Cursormode:2

Status Bar

273

274 Environment and Tools

Dblclick
Type

Default

See

Deflang
Type

Syntax

Default

Numeric

The Dblclick switch sets the double-click threshold for the mouse (the maximum
time between successive clicks of the mouse button). The units for the Dblclick
switch are 1118 of a second.

Dblclick: 10

Mousemode

Text

The Deflang switch determines the default file extension for file lists in PWB
dialog boxes.

Deflang:language

language One of the following settings:

Setting Extension

NONE *
Asm .ASM

Basic .BAS

C .C

C++ .CPP

CXX .CXX

COBOL .CBL

FORTRAN .FOR

LISP .LSP

Pascal .PAS

Defiang:NONE

Defwinstyle
Type

Default

See

Editreadonly
Type

Syntax

Programmer's WorkBench Reference 275

Numeric

The Defwinstyle switch sets the default window style. The possible values for
Defwinstyle are:

Value Style

No scroll bars

3 Vertical scroll bar

5 Horizontal scroll bar

7 Both scroll bars

You can change the active window style by using the Winstyle function (CTRL+F6).

Defwinstyle:7

Maximize

Boolean

The Editreadonly switch determines if PWB allows you to edit a file marked read­
only on disk.

Editreadonly: { yes I no }

yes
Allow modification of files that are marked read-only on disk. When PWB at­
tempts to save the modified file, PWB informs you that the file is marked read­
only. It also prompts you to confirm that the command specified by the
Readonly switch is to be run. If you decline to run the command, PWB gives
you the opportunity to save the file with a different name.

276 Environment and Tools

Default

Enablealtgr
Type

Syntax

Default

Entab
Type

no
Disallow modification of read-only files. For files that cannot be modified,
PWB displays the letter R on the status bar. You can reenable modification of a
read-only file by using the Read Only command on the Edit menu or the
Noedit function.

Editreadonly:yes

Boolean

The Enablealtgr switch determines if PWB recognizes the ALTGR key (the right
ALT key) on international keyboards as ALTGR (Graphic Alt) or ALT.

When ALTGR is enabled, pressing ALTGR+key produces the corresponding
graphic character. ALTGR is never recognized as a key name for use in PWB
key assignments.

Enablealtgr: { yes I no }

yes Recognize the right ALT key as ALTGR.

no Recognize the right ALT key as ALT.

Enablealtgr:no

Numeric

The Entab switch controls how PWB converts white space on modified lines.
PWB converts white space only on the lines that you modify.

When the Realtabs switch is set to yes, tab characters are converted. When set to
no, tab characters are not converted.

The Entab switch can have the following values:

Default

See

Programmer's WorkBench Reference 217

Value Meaning

o Convert all white space to space (ASCII 32) characters.

Convert white space outside quoted strings to tabs.

A quoted string is any span of characters enclosed by a pair of single
quotation marks or a pair of double quotation marks. PWB does not
recognize escape sequences because they are language-specific.

For well-behaved conversions with this setting, make sure that you use a
numeric escape sequence to encode quotation marks in strings or character
literals.

2 Convert white space to tabs.

With settings 1 and 2, if the white space being considered for conversion to a tab
character occupies an entire tab field or ends at the boundary of a tab field, it is
converted to a tab (ASCII 9) character. The width of a tab field is specified by the
Filetab switch.

In all conversions, PWB maintains the text alignment as it is displayed on screen.

Entab:l

Filetab, Realtabs, Tabalign

Enterinsmode
Type Boolean

The Enterinsmode switch determines if PWB is to start in insert mode or over­
type mode. You can toggle the current mode by using the Insertmode function
(INs).

When the current mode is overtype mode, the letter 0 appears on the status bar.
Depending on the setting of the Cursormode switch, the shape of the cursor re­
flects the current mode.

278 Environment and Tools

Syntax Enterinsmode: { yes I no }

yes Start PWB in insert mode.

no Start PWB in overtype mode.

Default Enterinsmode:yes

Enterlogmode
Type

Syntax

Default

Boolean

The Enterlogmode switch determines if search logging is turned on or off when
PWB starts up. The current search-logging mode can be changed at any time using
the Log command on the Search menu or the Logsearch function (Unassigned).

Enterlogmode: { yes I no }

yes Start PWB with search logging on.

no Start PWB with search logging off.

Enterlogmode:no

Enterselmode
Type Text

The Enterselmode switch determines the selection mode when PWB starts up.

Syntax Enterselmode: { stream I box I line }

stream
Starts PWB in stream selection mode.

box
Starts PWB in box selection mode.

line
Starts PWB in line selection mode.

Default

See

Envcursave
Type

Syntax

Default

Programmer's WorkBench Reference 279

Enterselmode:stream

Selmode

Boolean

The Envcursave switch determines if PWB saves and restores the current environ­
ment table for PWB sessions.

You can change environment variables by using the Environment command on the
Options menu or the Environment function (Unassigned).

If you always want to use the operating-system environment, set both Envcursave
and Envprojsave to no.

Envcursave: { yes I no }

yes

no

Save and restore environment variables for PWB sessions. Use this setting if
you want to use an environment that is specific to PWB. The PWB environ­
ment overrides the operating-system environment.

Do not save environment variables between PWB sessions.

Envcursave:no

Update:

In PWB l.x, the INCLUDE, LIB, and HELPFILES environment variables were al­
ways saved for PWB sessions and projects.

280 Environment and Tools

Envprojsave
Type

Syntax

Default

Update

Factor
Type

Syntax

Boolean

The Envprojsave switch determines if PWB saves and restores the environment
table for each project. A project's environment overrides both the PWB environ­
ment and the external (operating-system) environment.

If you always want to use the operating -system environment table, set both
Envcursave and Envprojsave to no. You can change environment variables
by using the Environment command on the Options menu or the Environment
function (Unassigned).

Envprojsave: { yes I no }

yes

no

Save environment variables for the project. Use this setting if you want to set
project-specific environments.

Do not save environment variables for the project.

Envprojsave:yes

In PWB l.x, the INCLUDE, LIB, and HELPFILES environment variables were
always saved for PWB sessions and projects.

Text

The Factor switch, together with the Friction switch, controls how quickly PWB
executes a fast function. A fast function is a PWB function whose action repeats as
rapidly as possible while you hold down the associated keystroke.

Factor:{ %percent I-constant} [count]

percent
Percentage between 0 and 100 to reduce friction.

constant
Constant value between 0 and 65,535 to reduce friction.

Default

Example

See

Fastfunc
Type

Syntax

Programmer's WorkBench Reference 281

count
Interval between reductions of friction.

PWB reduces friction by percent percent or constant every count repetition of a
keystroke, until friction is zero.

Factor:%50 10

If you hold down the RIGHT ARROW key with the settings:

Right :RIGHT
Fastfunc: Ri ght
Friction:1000
Factor :%75 7

PWB moves the cursor at the current speed until it has moved seven characters to
the right. Then PWB changes the friction to 250 (75 percent reduction of the initial
friction of 1000). When the cursor has moved 14 characters, the friction changes
to 188 (75 percent reduction of the friction of 250). The cursor moves faster the
longer you hold down the RIGHT ARROW key.

Fastfunc

Text

The Fastfunc switch specifies functions whose action is rapidly repeated by PWB
as you hold down the associated key combination.

The Friction and Factor switches control the repeat speed and acceleration of fast
functions.

Fastfunc:function { on I off}

function PWB function to repeat.

on Enable fast repeat for function.

off Disable fast repeat for function.

282 Environment and Tools

Default Fastfunc:Down on
Fastfunc:Left on
Fastfunc:Mlines on
Fastfunc:Mpage on
Fastfunc:Mpara on
Fastfunc:Mword on
Fastfunc:Plines on
Fastfunc:Ppage on
Fastfunc:Ppara on
Fastfunc:Pword on
Fastfunc:Right on
Fastfunc:Up on

Filetab
Type

Default

See

Friction
Type

Numeric

The Filetab switch determines the width of a tab field for displaying tab (ASCII
9) characters in the file. The width of a tab field determines how white space is
translated when the Realtabs switch is set to no. The Filetab switch does not
affect the cursor-movement functions Tab (TAB) and Backtab (SHIFT+TAB).

Filetab:8

Entab, Realtabs, Tabdisp

Numeric

The Friction switch, together with the Factor switch, controls how quickly PWB
executes a fast function. A fast function is a PWB function whose action repeats
rapidly when you hold down the associated key.

The value of the Friction switch is a decimal number between 0 and 65,535 and
specifies the delay between repetitions of a fast function. As the function is re­
peated, the delay is reduced according to the setting of the Factor switch.

Default

See

Height
Type

Default

See

Hike
Type

Programmer's WorkBench Reference 283

Friction:40

Factor, Fastfunc

Numeric

The Height switch determines the number of lines on the PWB screen. The
Height switch can have one of these values: 25, 43, 50, or 60. The last setting
of this switch is saved and restored across PWB sessions and for each project.

Height first screen height

When you start PWB for the first time, PWB uses the current screen height. There­
after, PWB restores the previous setting until you explicitly assign a new value to
the Height switch.

Note that when you change the setting for Height in the Editor Settings dialog
box, the change does not take effect until you choose OK. Other switches takes
effect immediately when you choose Set Switch.

Assign

Numeric

The Hike switch determines the number of lines from the cursor to the top of the
window after you move the cursor out of the window by more than the number of
lines specified by the Vscroll switch.

The minimum value is 1. When the window occupies less than the full screen, the
value is reduced in proportion to the window size.

284 Environment and Tools

Default Hike:4

See Hscroll

Hscroll
Type

Default

See

Infodialog
Type

Syntax

Numeric

The Hscroll switch controls the number of columns that PWB scrolls the text left
or right when you move the cursor out of the window. When the.window does not
occupy the full screen, the amount scrolled is in proportion to the window size.

Text is never scrolled in increments greater than the size of the window.

Hscroll:lO

Vscroll

numeric

The Infodialog switch determines which information dialog boxes are displayed.

Infodialog:hh

hh
Two hexadecimal digits specifying a set of flags to indicate which information
dialog boxes should be displayed. When a bit is on (1), the corresponding
dialog box is displayed. When a bit is off (0), the corresponding dialog box is
not displayed.

To set the value of Infodialog, add up the hexadecimal numbers listed in the table
below for the dialog boxes you want to display.

Default

Keepmem
Type

Default

Lastproject
Type

Value Information Dialog

01 n occurrences found
n occurrences replaced

02 End of Build Results
End of Search Results

04 . pattern' not found

08 No unbalanced characters found

10 Changed directory to directory
Changed drive to drive

Infodialog:OF

Programmer's WorkBench Reference 285

The default value of Infodialog tells PWB to display all information dialog boxes
except for the "Changed ... " dialog boxes.

numeric

The Keepmem switch specifies the amount of extended (XMS) memory or
expanded (EMS) memory kept by PWB during a shell, compile, build, or other
external command. Specify the value in units of kilobytes (1024 bytes).

A larger number means that shelling is faster and leaves less memory for tools
that use extended or expanded memory. A smaller number means that shelling is
slower and leaves more memory for tools. If the number you specify is not large
enough, PWB uses no extended or expanded memory.

Keepmem:2048

Boolean

The Lastproject switch determines if PWB automatically opens the last project
on startup. The lPN, IPP, IPL, and IPF command-line options override the setting
of the Lastproject switch.

286 Environment and Tools

Syntax Lastproject: { yes I no }

Default

See

Load
Type

Syntax

See

yes On startup, open the last project that was open.

no Do not open the last project on startup.

Lastprojectno

Project

Text

The Load switch specifies the filename of a PWB extension to load.

When this switch is assigned a value, PWB loads the specified extension. The in­
itialization specified in the extension is performed, and the functions and switches
defined by the extension become available in PWB.

The extension can be loaded during initialization of a TOOLS.INI section. You
can also interactively load an extension by using the Editor Settings command on
the Options menu or by using the Assign function to assign a value to the Load
switch.

Load: [path]basename[.ext]

path
Can be a path or an environment-variable specifier.

basename
Base name of the extension executable file.

ext
Normally you do not specify a filename extension.

Autoload

Markfile
Type

Syntax

Default

See

Update

Programmer's WorkBench Reference 287

Text

The Markfile switch specifies the name of the file PWB uses to save marks.

When no mark file is open, marks are kept in memory, and they are lost when
you exit PWB. When you open a mark file, marks in memory are saved in the
mark file, unless a mark file is already open. When a mark file is already open,
the marks in memory are saved in the open file.

To open a mark file, use the Set Mark File command on the Search menu or
assign a value to the Markfile switch by using the Editor Settings command on
the Options menu or the Assign function. To close a mark file without opening a
new one, assign an empty value to the Markfile switch. That is, use the setting:

Markfile:

To set a permanent mark file that is used for every PWB session, place a Markfile
definition in the [PWB] section of TOOLS.lNI.

Markfile: filename

filename The name of the file containing mark definitions.

Markfile:

The Markfile switch has no default value and is initially undefined.

Assign, Mark

Mark File Format
A mark file is a text file containing mark definitions of the form:

markname filename line column

The mark markname is defined as the location given by line and column in the file
filename. The markname cannot contain spaces and cannot be a number.

With PWB l.x, when you open a mark file and no mark file is currently open, the
marks in memory are lost. With PWB 2.00, the marks are saved in the new mark
file.

288 Environment and Tools

Mousemode
Type

Default

See

Msgdialog
Type

Syntax

Default

See

Numeric

The Mousemode switch enables or disables the mouse and sets the actions of the
left and right mouse buttons.

Value

o

2

Description

The mouse is disabled and the mouse pointer is not visible.

Normal mouse control.

Exchanges the actions of the left and right mouse buttons.

Mousemode: 1

Dblclick

Boolean

The Msgdialog switch determines if PWB brings up a dialog box summarizing
build results or only beeps when a build is complete.

Msgdialog: { yes I no }

yes Display a dialog box summarizing build results when a build is complete.

no Beep when a build is complete.

Msgdialog:yes

Beep, Compile, Searchdialog

Msgflush
Type

Syntax

Default

See

Newwindow
Type

Programmer's WorkBench Reference 289

Boolean

The Msgflush switch determines if previous build results are retained in the Build
Results window or flushed when a new build is started.

Msgflush: { yes I no }

yes Flush previous build results when a new build is started.

no Save previous build results.

Msgflush:yes

N extmsg, Searchflush

Boolean

The Newwindow switch determines if certain PWB functions open a file in a new
window or in the active window. The Newwindow switch provides the default
state of the New Window check box in the Open File dialog box. This check box
does not change the value of the Newwindow switch.

When Newwindow is set to yes, PWB behaves like a Multiple Document Inter­
face (MDI) application. That is, when you open a new file, PWB opens a new win­
dow for the file, except in certain situations as noted below.

When Newwindow is set to no, PWB behaves like PWB l.x. In this case, PWB
opens files into the active window, creating a file history for that window. This
mode is useful when working with large numbers of files.

Some functions use the Newwindow switch to detennine if a new window is
created when opening a file.

The following functions ignore the Newwindow switch, and either create a new
window or open the file into the active window:

290 Environment and Tools

Syntax

Default

See

Noise
Type

Default

Function

Mreplace

Openfile

Setfile

Nextmsg

Nextsearch

Creates a New Window

No

Yes
No

No

No

When the active window is a PWB window, PWB always creates a new window.
You cannot open a file into a PWB window.

Newwindow:{ yes I no}

yes

no

Open a new window when a new file is opened. This setting makes PWB be­
have like other MDI applications such as Microsoft Word 5.5 and Microsoft
Works.

Open files into the active window, adding the previous file to the window's file
history. This setting makes PWB behave like PWB l.x.

Newwindow:yes

Exit, Mark, Mreplace, Newfile, Nextmsg, Nextsearch, Openfile, Setfile

Numeric

The Noise switch specifies the number of lines counted at a time as PWB traverses
a file while reading, writing, or searching. PWB displays the line counter on the
right side of the status bar, in the area which usually shows the current line.

Set Noise to 0 to tum off the display of scanned lines.

Noise:50

Printcmd
Type

Syntax

Default

See

Readonly
Type

Syntax

Programmer's WorkBench Reference 291

Text

The Printcmd switch specifies a program or operating system command that
PWB starts when you choose the Print command from the File menu or execute
the Print function (Unassigned).

Printcmd: command_line

command_line An operating-system command line.

To pass the filename of the current file, specify %s in the command line. Specify
% % to pass a literal percent sign. You can extract parts of the full filename using
a special PWB syntax. See "Filename-Parts Syntax" on page 265.

Printcmd:COPY %s PRN

Print

Text

The Readonly switch specifies the operating-system command invoked when
PWB attempts to write to a read-only file.

When PWB attempts to overtype a file that is marked read-only on disk, PWB
informs you that the file is read-only. It also prompts you to confirm that the
command specified in the Readonly switch is to be run. If you decline to run
the Readonly command, PWB gives you the opportunity to save the file with a
different name.

Readonly: [command]

command Operating-system command line.

If no command is specified, PWB prompts you to enter a new filename to save the
file.

To pass the filename of the current file to the command, specify %s in the com­
mand line. Specify % % to pass a literal percent sign. You can extract parts of the
full path using a special PWB syntax. See "Filename-Parts Syntax" on page 265.

292 Environment and Tools

Default

Example

See

Realtabs
Type

Syntax

Default

See

Note that only %s is guaranteed to give the name ofthe read-only file. The %IF
syntax gives the current filename (the file displayed in the active window), even
when PWB is saving a different file.

Readonly:

The default value specifies that PWB should run no command and should prompt
for a different filename.

The Readonly switch setting

Readonly:Attrib -r %s

removes the read-only attribute from the file on disk so PWB can overtype it.

Editreadonly, Noedit

Boolean

The Realtabs switch determines if PWB preserves tab (ASCII 9) characters or
translates white space according to the Entab switch when a line is modified.
Realtabs also determines if the Tabalign switch is in effect.

Realtabs: { yes I no }

yes Preserve tab characters when editing a line.

no Translate tab characters when editing a line.

Realtabs:yes

Entab, Filetab, Tabalign

Programmer's WorkBench Reference 293

Restorelayout
Type

Syntax

Default

See

Rmargin
Type

Default

Update

Boolean

The Restorelayout switch determines if PWB restores the saved window layout
and file history from the project status file when you open a project or retains the
active window layout and file history.

This switch provides the default state of the Restore Window Layout check box in
the Open Project dialog box.

Restorelayout: { yes I no }

yes

no

Restore a project's saved window layout and file history when the project is
opened.

Do not restore the project's windows and file history.

Restorelayoutyes

Project

Numeric

The Rmargin switch sets the right margin for word wrapping. It has an effect only
when word wrapping is turned on.

Rmargin:78

In PWB Lx, Rmargin sets the beginning of a six-character "probation" zone
where typing a space wraps the line. After the zone, typing any character wraps
the current word. This behavior is similar to that of a typewriter. PWB 2.00 uses
a word-processor's style of wrapping.

294 Environment and Tools

See

Savescreen
Type

Syntax

Default

To maintain the same margins as PWB 1.x, increase your Rmargin settings by 6.

Softer, Wordwrap

Boolean

The Savesereen switch determines if PWB preserves the operating-system screen
image and video mode.

Savesereen: { yes I no }

yes

no

Save the operating-system screen when starting PWB, and restore it when
leaving PWB.

Do not preserve the operating-system screen. When you leave PWB, the
operating-system screen is blank, and the video mode is left in PWB's last
video mode.

Savescreen:yes

Searchdialog
Type

Syntax

Boolean

The Searehdialog switch determines if PWB brings up a dialog box that sum­
marizes logged search results or only beeps when a logged search is complete.
The Searehdialog switch has an effect only while logging search results.

Searehdialog:{ yes I no }

yes

no

Display a dialog box summarizing search results when a logged search is
complete.

Beep when a logged search is complete.

Default

See

Searchflush
Type

Syntax

Default

See

Searchwrap
Type

Syntax

Programmer's WorkBench Reference 295

Searchdialog:yes

Beep, Enterlogmode, Logsearch, Msgdialog

Boolean

The Searchflush switch determines if previous logged search results are flushed
or retained when you start a new logged search.

This switch has an effect only when PWB performs a logged search.

Searchflush: { yes I no }

yes

no

Flush the previous search results from the Search Results window when a new
search is begun.

Preserve previous search results in the Search Results window.

Searchflush:yes

Logsearch,Mgrep

Boolean

The Searchwrap switch determines if search commands and replace commands
wrap around the ends of a file.

Searchwrap:{ yes I no }

yes Searches wrap around the beginning and end of the file.

no Searches stop at the beginning and end of the file.

296 Environment and Tools

Default Searchwrap:no

See Mseareh, Pseareh, Replace.

Shortnames
Type

Syntax

Default

See

Softer
Type

Syntax

Boolean

The Shortnames switch detennines if currently loaded files can be accessed by
their short names (base name only).

Shortnames: { yes I no }

yes

no

You can switch to a file currently loaded into PWB by specifying only the base
name to the Setfile (F2) or Openfile (FlO) functions.

You must specify the extension as well as the base name to switch to a file.

Shortnames:yes

Openfile, Setfile

Boolean

The Softer switch controls indentation of new lines based on the format of
surrounding text when you execute the Emaesnewl (ENTER) and Newline
(SHIFT+ENTER) functions.

Softer: { yes I no }

yes
Indent new lines.

Default

Tabalign
Type

Syntax

Default

Tabdisp
Type

no

Programmer's WorkBench Reference 297

Do not indent new lines. After executing Emacsnewl or Newline, the cursor is
placed in column 1.

Softcr:yes

Boolean

The Tabalign switch determines the positioning of the cursor when it enters a tab
field. A tab field is the area of the screen representing a tab character (ASCII 9) in
the file. The width of a tab field is specified by the Filetab switch.

The Tabalign switch takes effect only when the Realtabs switch is set to yes.

Tabalign: { yes I no }

yes

no

PWB aligns the cursor to the beginning of the tab field when the cursor enters
the tab field. The cursor is placed on the actual tab character in the file.

PWB does not align the cursor within the tab field.

You can place the cursor on any column in the tab field. When you type a char­
acter at this position, PWB inserts enough leading blanks to ensure that the char­
acter appears in the same column.

Tabalign:no

Numeric

The Tabdisp switch specifies the decimal ASCII code of the character used to
display tab (ASCII 9) characters in your file. If you specify 0 or 255, PWB uses
the space (ASCII 32) character.

298 Environment and Tools

Default

See

Tabslops
Type

Syntax

Default

Update

Example

It is sometimes useful to set Tabdisp to the code for a graphic character so that
tabs can be distinguished from spaces.

Tabdisp:32

The default value 32 specifies the ASCII space character.

Filetab, Realtabs, Traildisp, Traillinesdisp

Text

The Tabstops switch specifies variable tab stops used by the Tab and Backtab
functions. Tab moves the cursor to the next tab stop; Backtab moves the cursor
to the previous tab stop.

Note that the Tabstops switch has no effect on the handling of tab (ASCII 9) char­
acters in a file.

Tabstops: [tabwidth] ... repeat

tabwidth
The width of a tab stop. You can repeat tabwidth for as many tab stops as will
fit on a PWB line (250 characters).

repeat
The width of every tab stop after the explicitly listed tab stops.A value of 0 for
repeat specifies that there are no tab stops after the list of tabwidth settings.
When the cursor is past the last tab stop, the Tab function does nothing.

Tabstops:4

In PWB l.x, Tabstops is a numeric switch specifying a single value, equivalent to
the repeat value in PWB 2.0. The default PWB 2.00 Tabstops setting mimics the
default behavior of PWB l.x.

The Tabstops switch setting

Tabstops:4

sets a tab stop every four columns.

Example

Example

See

Tilemode
Type

Programmer's WorkBench Reference 299

The setting

Tabstops:3 4 7 8

sets a tab stop at columns 4,8, 15, and every eight columns thereafter.

The setting

Tabstops:3 4 7 25 25 0

sets a tab stop at columns 4,8, 15,40, and 65. When the cursor is past column 65,
the Tab function does nothing.

Backtab, Entab, Filetab, Realtabs, Tab

Numeric

The Tilemode switch specifies the window tiling style. It can take one of the
values below:

Value

o

Tiling Style

The first three windows are stacked one above the other.

The top two windows are tiled side-by-side.

When four or more windows are open, the tiling is the same in the two styles.

In stacked style (Ti 1 emode: 0), the top windows are placed one above the other, as
shown in gray.

1 2 3 4

Figure 7.3 Vertical Tiling

300 Environment and Tools

Default

See

Timersave
Type

Default

See

Tmpsav
Type

In side-by-side style (Ti 1 emode: 1), the top two windows are tiled next to each
other, as shown in Figure 7.3. This arrangement is good for comparing two files.

1 2 3 4

Figure 7.4 Horizontal Tiling

Tilemode:O

Arrangewindow

Numeric

The Timersave switch sets the interval in seconds between automatic file saves.
The value must be in the range 0-65,535.

Set Timersave to 0 to turn off time-triggered autosave.

Timersave:O

Autosave

Numeric

The Tmpsav switch determines the maximum number of files kept in the file his­
tory between sessions.

Default

Traildisp
Type

Default

See

Traillines
Type

Syntax

Programmer's WorkBench Reference 301

When Tmpsav is 0, PWB lets the file history grow without limit; all files loaded
into PWB appear in this list until you delete the CURRENT.STS file or change the
value of the Tmpsav switch.

Tmpsav:20

Numeric

The Traildisp switch specifies the decimal ASCII code for the character used to
display trailing spaces on a line. If you specify 0 or 255, PWB uses the space
(ASCII 32) character.

Traildisp:O

Traillines, Trailspace, Traillinesdisp

Boolean

The Traillines switch determines if PWB preserves or removes empty trailing
lines in a file when the file is written to disk.

You can make trailing lines visible by setting the Traillinesdisp switch to a value
other than 0 or 32.

Traillines: { yes I no }

yes Preserve trailing blank lines in the file.

no Remove trailing blank lines from the file.

302 Environment and Tools

Default Traillines:no

See Traildisp, Trailspace

Traillinesdisp
Type

Default

See

Trailspace
Type

Syntax

Default

See

Numeric

The Traillinesdisp switch specifies the decimal ASCII code for the character
displayed in the first column of blank lines at the end of the file. If you specify
o or 255, PWB uses the space (ASCII 32) character.

Traillinesdisp: 32

Traillines, Traildisp, Trailspace

Boolean

The Trailspace switch determines if PWB preserves or removes trailing spaces
from modified lines.

You can make trailing spaces visible by setting the Traildisp switch to a value
other than 0 or 32.

Trailspace: { yes I no }

yes Preserve trailing spaces on lines as they are changed.

no Remove trailing spaces from lines as they are changed.

Trailspace:no

Traillines, Traillinesdisp

Undelcount
Type

Default

Undocount
Type

Default

Unixre
Type

Programmer's WorkBench Reference 303

Numeric

The Undelcount switch determines the maximum number of backup copies of a
given file saved by PWB.

This switch is used only when the Backup switch is set to undel.

Undelcount:32767

Numeric

The Undocount switch sets the maximum number of edits per file that you can
reverse with Undo (ALT+BKSP).

Undocount:30

Boolean

The Unixre switch determines ifPWB uses UNIX regular-expression syntax or
PWB's non-UNIX regular-expression syntax for search-and-replace commands.

The Unixre and Case switches have no effect on the syntax of regular expressions
used by the Build and Word switches. These switches always use case-sensitive
UNIX regular-expression syntax.

304 Environment and Tools

Syntax Unixre: { yes I no }

Default

User
Type

Syntax

yes Use UNIX regular-expression syntax when searching.

no Use non-UNIX regular-expression syntax when searching.

Unixre:yes

Text

The User switch adds a custom menu item to the PWB Run menu.

User: title,path, [arg], [out], [dir], [help], [prompt], [ask], [back], [key]

If any argument to the User switch contains spaces, it must be enclosed in double
quotation marks.

title
Menu title for the program to be added. No other command can have the same
title. Prefix the character to be highlighted as the access key with a tilde (-) or
ampersand (&). If you do not specify an access key, the first letter of the title is
used.

path
Full path of the program. If the program is on the PATH environment variable,
you can specify just the filename of the program.

arg
Command-line arguments for the program. To pass the name of the current file
to the program, specify %s in the command line. Default: no arguments.

out
Name of a file to store program output. If no file is specified and the program is
run in the foreground, the current file in PWB receives the output. Default: no
output file.

dir
Current directory for the program. Default: PWB's current directory.

help
Text that appears on the status bar when the menu item is selected. Default: no
help text.

Default

Example

Programmer's WorkBench Reference 305

prompt
Determines if PWB prompts for command-line arguments. The value of arg is
the default response. Specify Y to prompt or any other character to run the pro­
gram without prompting for arguments. Default: no prompt.

ask
Determines ifPWB is to prompt for a keystroke before returning to PWB.
Specify Y to prompt or any other character to return to PWB immediately after
running the program. Default: return without prompting.

back
Determines if the program is run in the background under a multithreaded en­
vironment. Specify Y to run the program in the background or any other charac­
ter to run it in the foreground. If you run the program in the background, you
must also specify output. Default: run the program in the foreground.

key
A single digit from 1 to 9, specifying a key from ALT+Pl to ALT+P9 as the short­
cut key for the command. Default: no shortcut key.

By default, no custom menu commands are defined.

The User switch setting

User : "~Print", XPRINT, "/2 %s", LPTl, , \
"Print the current file with XPRINT", y, n, n, 8

specifies the following custom Run menu command:

Option

title

path

arg

out

dir

help

prompt

ask

back

key

Description

The menu title is P r i n t with the accelerator P.

The XPRINT program is expected to be on the PATH.

The default command line specifies the 12 option and the current filename.

The program output is redlrected to the LPTl device.

The XPRINT program is run in the current directory.

TheHelplineis Print the current file with XPRINT.

PWB prompts for additional arguments.

PWB doesn't prompt before returning from XPRINT.

The XPRINT program is to run in the foreground.

ALT +PS runs the XPRINT program after prompting.

306 Environment and Tools

See

Vscroll
Type

Default

See

Width
Type

Default

See

The backslash at the end of the first line of the definition is a TOOLS .INI line
continuation.

Printcmd, _pwbusern, Usercmd

Numeric

The V scroll switch controls the number of lines scrolled up or down when you
move the cursor out ofthe window. When the window is smaller than the full
screen, the amount scrolled is in proportion to the window size.

The minimum value for Vscroll is 1. Text is never scrolled in increments greater
than the size of the window.

The Mlines and Plines functions also scroll according to the value ofthe Vscroll
switch.

Vscroll:l

Hscroll

Numeric

The Width switch controls the width of the display. Only an 80-column display is
supported.

Width:80

Height

Word
Type

Syntax

Default

Examples

Text

Word: "regular_expression"

"regular_expression"

Programmer's WorkBench Reference 307

A macro string specifying a UNIX-syntax regular expression that matches a
word.

The Word switch specifies a case-sensitive UNIX regular expression that matches
a word. The Unixre and Case switches are ignored.

The Word switch accepts a TOOLS.INI macro string. The string can use escape
sequences to represent nonprintable ASCII characters. Note that backslashes <\)
must be doubled within a macro string.

The Word switch is used by functions that operate on words: Mword, Pword,
Pwbhelp, right-clicking the mouse for Help, and double-clicking the mouse to
select a word.

Word: "[a-zA-ZO-9_$]+"

The default value mimics the behavior of PWB l.x.

The Word switch can be used to change the definition of a word. The following
examples show some useful word definitions.

The following setting works the same way as the default setting, except that
Pword and Mword stop at the end of a line:

Word:"\\{[a-zA-Z0-9_$]+\\!$\\}"

The default setting of the Word switch matches Microsoft C/C++ identifiers and
unsigned integers. To restrict the definition of a word to match the ANSI C stan­
dard for identifiers, you would use the setting:

Another useful setting is to define a word as a contiguous stream of nonspace
characters:

308 Environment and Tools

Wordwrap
Type

Syntax

Default

Update

The following Word setting defines a word as an identifier or unsigned integer, a
stream of white space, a stream of other characters, or the beginning or end of the
line. This causes the word-movement functions to stop at each boundary, and al­
lows a double-click to select white space.

Word:"\ \{[a-zA-Z0-9_$J+\ \! [J+\ \! [Aa-zA-Z0-9_$J+\ \! $\ \! A\ \}"

Boolean

The Wordwrap switch determines ifPWB performs automatic word wrap as you
enter text.

When word wrapping is turned on and you type a nonspace character past the
column specified by Rmargin, PWB brings the current word down to a new line.
A word is defined by the Word switch.

Wordwrap:{ yes I no}

yes Wrap words as you enter text.

no Do not wrap.

Wordwrap:no

See Rmargin

Programmer's WorkBench Reference 309

Browser Switches

Browcase
Type

Syntax

Default

Browdbase

The PWBBROWSE extension provides the following switches to control the be­
havior of the Source Browser in PWB.

Numeric

The Browcase switch determines the initial case sensitivity of the browser when
a database is opened. The browser consults this switch only when it opens the
database.

This switch must appear in the [PWB-PWBROWSE] tagged section of
TOOLS.INI.

A dot appears next to the Match Case command on the Browse menu when the
browser matches case. Choose Match Case to turn case-sensitive browsing on and
off. Changing the current state does not affect the value of the Browcase switch.

Browcase:{ 01112 }

o

1

2

Use the case sensitivity stored in the database by BSCMAKE. The default case
sensitivity matches the case sensitivity of the source language.

Match case for browse queries.

Ignore case for browse queries.

Browcase:O

Text

The Browdbase switch specifies the browser database to use. When this switch
is not set, or the setting is empty, the browser uses the database for the current

310 Environment and Tools

Syntax

project (if any). You set this switch by using the Save Current Database command
in the Custom Database Management dialog box.

This switch must appear in the [PWB-PWBROWSE] tagged section of
TOOLS.lNI.

Browdbase: database

database
The full filename of the browser database (.BSC file) to use. When database is
not specified, the browser uses the database for the open project.

C and C++ Switches
The PWBC extension provides the following switches to control the behavior of
the C/C++ language extension.

PWBC library Switches
Type Text

The PWBC library switches specify whether specific libraries have been installed
and, if installed, whether they have default or explicit names.

The setting for this switch appears in the [PWB-PWBC] tagged section in
TOOLS.lNI. To set any PWBC switch, choose PWBC from the Switch Owner
box in the Editor Settings dialog box.

Switch

Doslibs

Winlibs

Windlllibs

Os2libs

Dlllibs

Mtlibs

Libraries

MS-DOS libraries

Windows libraries

Windows DLL libraries

OS/2 libraries

OS/2 DLL libraries

OS/2 multithread libraries

The library switches allow PWB to specify the appropriate library name at link
time.

Syntax

Default

Programmer's WorkBench Reference 311

You should set the switch according to the naming convention you selected when
setting up. The SETUP program allows you to select one of the following formats
for library names:

• Default names of the form xLIBCy.LIB, where x specifies the memory model
(S for small, M for medium, C for compact, or L for large) and y specifies the
floating-point math package (E for emulator, 7 for 8087, or A for alternate
math). The default name for a dynamic-link library (DLL) is xDLLCy.LIB,
where y is either E or A. The default Windows DLL library names have the
form xDLLCyW.LIB. The default QuickWin library names have the form
xLIBCyWQ.LIB.

• Explicit names of the form xLIBCyo.LIB, where x specifies the memory model,
y specifies the floating-point math package, and 0 indicates that the library is
for a specific operating-mode: R for MS-DOS and W for Windows.

SETUP places the correct settings for these switches in the [PWB-PWBC] section
of the TOOLS.PRE file.

switch: { none I default I explicit}

switch
One of the switch names listed in the preceding table.

none
Specifies that the library is not installed. PWB asks you to choose between de­
fault and explicit names when you select a project template that requires the
library.

default
Specifies that the library has the default name. Note that this setting is not rec­
ommended for the Windows DLL libraries (xDLLcyW.LIB), OS/2 DLL library
(LLIBCDLL.LIB), or OS/2 multithread library (LLIBCMT.LIB). Use explicit
names for these libraries.

explicit
Specifies that the library has the explicit (fully qualified) name.

switch: explicit

If the switch is not present in TOOLS.INI, the PWBC extension assumes default
names for all libraries.

312 Environment and Tools

C_Softcr
Type

Syntax

Default

See

C_suffixes
Type

Syntax

Boolean

The C_ Softer switch determines if PWBC handles automatic indentation for files
with the extensions listed in the C_suffixes switch. This switch is used only when
the PWB Softer switch is set to yes.

The setting for this switch appears in the [PWB-PWBC] tagged section in
TOOLS.INI. To set any PWBC switch, choose PWBC from the Switch Owner
box in the Editor Settings dialog box.

C_ Softer: { yes I no }

yes Turns on indentation performed by the PWBC extension.

no Turns off indentation performed by the PWBC extension.

C_suffixes

Text

The C_suffixes switch specifies the list of filename extensions for which to per­
form C auto-indentation. Indentation performed by the PWBC extension is en­
abled when the C_Softer switch is set to yes, and the PWB Softer switch is also
set to yes.

The setting for this switch appears in the [PWB-PWBC] tagged section in
TOOLS.INI. To set any PWBC switch, choose PWBC from the Switch Owner
box in the Editor Settings dialog box.

C_suffixes: [.ext] ...

[.ext] ...
List of filename extensions of files that use C automatic indentation.

Default

Help Switches

Programmer's WorkBench Reference 313

You can specify as many extensions as you want. Separate extensions with
spaces. You must include the period C.) in each extension.

C_suffixes: .c .h .cxx .hxx .cpp .hpp

The PWBHELP extension provides the following switches to control the behavior
of the Help system in PWB.

Color (Help Colors)

Helpautosize

The PWBHELP extension defines the following Color switches to set the colors
for items displayed in the Help window. These switches must appear in the
[PWB-PWBHELP] tagged section of TOOLS.lNI. When you choose OK in the
Save Colors dialog box, PWB automatically writes the new settings to the cor­
rectly tagged section of TOOLS.INI.

Name Default Value Description

Color: Helpnorm 87 Plain Help text

Color: Helpbold 8F Bold Help text

Color: Helpitalic 8A Italic Help text and the characters

Color: Helpunderline 8C Emphasized Help text

Color: Helpwarning 70 Current hyperlink

For a complete description of the Color switch, see Color.

Boolean

The Helpautosize switch determines if PWB displays the Help window according
to the size of the current topic or displays Help with its previous size and position.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.INI.

314 Environment and Tools

Syntax Helpautosize: { yes I no }

yes

Default

Update

Helpfiles
Type

Syntax

Default

no

When displaying a new topic, automatically resize the Help window to the size
of the topic.

Do not automatically resize the Help window. The Help window is displayed
with its previous size and position.

Helpautosize:no

In PWB 1.x, the Help window is always automatically resized. In PWB 2.00, the
Help window is not resized by default.

Text

The Helpfiles switch lists Help files or directories containing Help files that PWB
should open in addition to the Help files listed in the HELPFILES environment
variable.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.INI.

Helpfiles: [file] [;file] ...

file
The filename of a Help file to open or the name of a directory. If a directory
name is used, all Help files in the directory are opened. Eachfile can contain
wildcards or environment-variable specifiers.

Helpfiles:

By default, PWB uses only the Help files in the current directory and those listed
in the HELPFILES environment variable.

Helplist
Type

Syntax

Default

Helpwindow

Programmer's WorkBench Reference 315

Boolean

The Helplist switch determines if PWB searches every Help file when you request
Help or displays the first occurrence of the topic that it finds.

This switch must appear in the [PWB-PWBHELP] tagged section of TOOLS.lNI.

Helplist: { yes I no }

yes

no

Displays a list of Help files that contain the topic you requested Help on when
the topic is defined more than once.

Does not display a list of topics. PWB displays the first Help associated with
the requested topic. To see the other Help screens that define the topic, use the
Next command on the Help menu.

Helplist: yes

(obsolete)

The PWB l.x Helpwindow switch is obsolete and does not exist in PWB 2.00.
PWB 2.00 always displays Help in the Help window.

Getting Started with CodeView

Microsoft CodeView is a window-oriented debugging tool that helps you find and
correct errors in Microsoft C/C++ and Macro Assembler (MASM) programs. With
CodeView, you can examine source-level code and the corresponding compiled
code at the same time. You can execute your code in increments and view and
modify data in memory as your program runs.

Microsoft C/C++ includes CodeView for MS-DOS (CV.EXE) and CodeView for
Windows (CVW.EXE). The names "CodeView," "CodeView debugger," and "the
debugger" refer to both versions unless the discussion indicates otherwise.

This chapter shows you how to:

• Write programs to make debugging easier.

• Formulate a debugging strategy.

• Compile and link your programs to include Microsoft Symbolic Debugging
Information.

• Set up the files CodeView needs.

• Configure CodeView with TOOLS.INL

• Start CodeView and load a program.

• Use the CodeView command-line options.

• Use or disable the CURRENT.STS state file.

8.1 Preparing Programs for Debugging
You can use CodeView to debug any MS-DOS or Windows executable file pro­
duced from Microsoft C/C++ or Macro Assembler source code. "Compiling"
means producing object code from source files. All references to compiling also
apply to assembling unless stated otherwise.

322 Environment and Tools

General Programming Considerations
This section describes programming practices that make debugging with
CodeView easier and more efficient.

Multiple Statements on a Line
CodeView treats each source-code line as a unit. For this reason, you cannot trace
and set a breakpoint on more than one statement per line. You can change from
Source display mode to Mixed or Assembly display mode (see "The Source Win­
dows" on page 350) and then set breakpoints at individual assembly instructions.
If a single statement is broken across multiple lines, you may be able to set break­
points on only the starting or ending line of the statement.

Macros and Inline Code
Microsoft C, C++, and MASM support macro expansion. Microsoft C and C++
also support inline code generation. These features pose a debugging problem be­
cause a macro or an inlined function is expanded where it is used, and Code View
has no information about the source code. This means that you cannot trace or set
breakpoints in a macro or inlined function when debugging at the source level.

To work around this condition, you can:

• Manually expand the macro to its corresponding source code.

• Rewrite the macro as a function.

• Suppress inline code generation with the lObO compiler option.

You can often rewrite macros as inline functions, then selectively disable inlining
with a compiler option or pragma so that you can step and trace the routine. Re­
writing macros as inlined functions can have additional benefits such as argument
type checking. However, in some cases the best solution for debugging macros or
inline code is to use Assembly or Mixed display mode.

Segment Ordering and Naming
For assembly-language programs, you must declare your segments according to
the standard Microsoft high-level language format. MASM versions 5.10 and later
provide directives to specify the standard segment order and naming.

Programs that Alter the Environment
Programs that run under CodeView can read the environment table, but they can­
not permanently change it. When you exit CodeView, changes to the environment
are lost.

Getting Started with CodeView 323

Programs that Access the Program Segment Prefix
CodeView processes the command line in the program segment prefix (PSP) the
same way as the C/C++ run-time library does. Quotation marks are removed, and
exactly one space is left between command-line arguments. As a result, a program
that accesses the PSP directly cannot expect the command line to appear exactly as
typed.

Compiling and Linking
After you compile and link your program into a running executable file, you can
begin debugging with CodeView. To take full advantage of CodeView, however,
you must compile and link with the options that generate CodeView Symbolic De­
bugging Information. This book refers to this information as "CodeView informa­
tion," "debugging information," or "symbolic information."

The CodeView information tells CodeView about:

• All program symbols, including locals, globals, and publics

• Data types

• Line numbers

• Segments

• Modules

Without this information, you cannot refer to any source-level names, and you can
view the program only in Assembly display mode. When CodeView loads a mod­
ule that does not contain symbolic information, Code View starts in Assembly
mode and displays the message:

CV0101 Warning: No symbolic information for PROGRAM.EXE

You get this message if you try to debug an executable file that you did not com­
pile and link with CodeView options, if you use a compiler that does not generate
CodeView information, or if you link your program with an old version of the
linker. If you retain an old linker version and it is first in your path, the proper in­
formation may not be generated for CodeView.

You can specify CodeView compiler and linker options from the command line, in
a makefile, or from within the Microsoft Programmer's Workbench (PWB). To
compile and link your program with CodeView options from PWB, choose Build
Options from the Options menu, and turn on Use Debug Options. By default, all
project templates enable the generation of CodeView information for debug builds.

324 Environment and Tools

Compile with /Zi
lor full CodeView
information.

Compile with /Zd
to save space.

Disable optimizations
with lad.

Link with ICO.

Compiler Options
You can specify CodeView options when you compile a source file of a program
you want to debug. Specify the IZi option on the command line or in a makefile to
instruct the compiler to include line-number and complete symbolic information in
the object file.

Symbolic information takes up a large amount of space in the executable file and
in memory while debugging. If you do not need full symbolic information in some
modules, compile those modules with the IZd option. The IZd option specifies that
only line numbers and public symbols are included in the object file. In such mod­
ules you can view the source file and examine and modify global variables, but
type information and names with local scope are not available.

You can also limit the amount of debugging information included in your program
by using precompiled headers that do not include debugging information. For
more information on generating and using precompiled headers, see Chapter 2 of
the Programming Techniques manual.

For modules that are compiled with the IZd option, all names in that module are
displayed and can only be referred to using their "decorated name." The decorated
name is the form of the name in the object code produced by the compiler. With
full debugging information, CodeView can translate between the source form of
the name and the decorated name.

Name decoration encodes additional information into a symbol's name by adding
prefixes and suffixes. For example, the C compiler prefixes the names of functions
that use the C calling convention with an underscore. You often see decorated
names for library routines in disassembly or output from the Examine Symbols
(X) command. For more information on decorated names, see "Symbol Formats"
on page 408 and Appendix B.

All Microsoft high-level language compilers are optimizing compilers that may
rearrange and remove source code. As a result, optimizations destroy the corre­
spondence between source lines and generated machine code, which can make
debugging especially difficult. While you are debugging, you should disable op­
timizations with the IOd compiler option. When you finish debugging, you can
compile a final version of your program with full optimizations.

Note The IOd option does not pertain to MASM.

Linker Options
When you are using Microsoft CIC++, you must use the Microsoft Segmented
Executable Linker (LINK) version 5.30 or later to generate an executable file with
Code View information. If you include debugging options when you compile, the
compiler automatically invokes the linker with the appropriate options. In turn,
LINK runs the CVPACK utility, which compresses the symbolic information.

Examples

Getting Started with CodeView 325

When compiling, you can specify the compile-only (lc) option to disable running
LINK. To include debugging information when you link the object modules sepa­
rately, specify the LINK ICO option. LINK automatically runs CVPACK when
you specify ICO.

If you link with the /EXEPACK option, you must execute the program's startup
code before setting breakpoints in the program. If you set breakpoints in a packed
executable file before the startup code has executed, CodeView behavior is
unpredictable.

An executable file that includes debugging information can be executed from the
command line like any other program. However, to minimize the size of the final
version of the program, compile and link without the CodeView options.

The following command sequence assembles and links two files:

ML IC lZi MODI
ML IC IZd MOD2
LINK ICO MODI MOD2

This example produces the object file MOD1.0BJ, which contains line-number
and complete symbolic information, and the object file MOD2.0BJ, containing
only line-number and public-symbol information. The object files are then linked
to produce a smaller file than the file that is produced when both modules are as­
sembled with the IZi option.

The following commands produce a mixed-language executable file:

CL IZi PROG.CPP
CL lZi 10d Ie IAL SUB1.C
ML IC IZi IMX SUB2.ASM
LINK ICO PROG SUBI SUB2

You can use Code View to trace through C, C++, and MASM source files in the
same session.

8.2 Debugging Strategies
The process of debugging a program varies from programmer to programmer and
program to program. This section offers some guidelines for detecting bugs. If you
are familiar with symbolic, source-level debuggers, you can skip this section.

Identifying the Bug
If your program crashes or yields incorrect output, it has a bug. There are times,
however, when a program runs correctly with some input but produces incorrect

326 Environment and Tools

Locating the Bug

output or crashes with different input. You can assume a bug exists, but finding it
may be difficult.

You may not need to use CodeView to find bugs in simple programs. For more
complex programs, however, using CodeView can save you debugging time and
effort.

Setting Breakpoints
When you debug with CodeView, you usually cycle between two activities:

• Running a small part of the program

• Stopping the program to check its status

You use breakpoints to switch between these tasks. CodeView runs your program
until it reaches a breakpoint. At that time, CodeView gives you control. You can
then enter CodeView commands in the Command window or use the menus and
shortcut keys to proceed.

To find an error, try the following:

• Set breakpoints around the place you think the bug might be. Execute the pro­
gram with the Go command so that it runs at full speed until it reaches the area
that you suspect harbors the bug. You can then execute the program step by
step with the Program Step and Trace commands to see if there is a program
execution error.

• Set breakpoints when certain conditions become true. You can, for example, set
a breakpoint to check a range of memory starting at DS:OO, the base of your pro­
gram's data. If your program writes to memory using a null pointer, the break­
point is taken, and you can see what statement or variables within the statement
are in error.

Setting Watch Expressions
Watch expressions constantly display the values of variables in the Watch win­
dow. By setting a Watch expression, you can see how a variable or an expression
changes as your program executes.

Try using watch expressions as follows:

• Set a Watch expression on an important variable. Then step through a part of
the program where you suspect there is a bug. When you see a variable in the
Watch window take on an unexpected value, you know that there is probably a
bug in the line you just executed.

Getting Started with CodeView 327

• Explore Watch expressions. A bug can appear when your program builds com­
plex data structures. Both the Watch window and the Quick Watch dialog box
allow you to explore the data structure by expanding arrays and pointers. Use
this feature to make sure the program creates the data structure correctly. As
soon as you execute code that destroys the structure, you have probably found
a bug.

Arranging Your Display
Your display can be more effective if you arrange your windows so that they dis­
play the information you need. You will need at least one Source window. You
can open a second Source window to see each assembly-language instruction.

You may also need one or more Memory windows to examine ranges of memory
in various formats. You may want to change values in memory. For example, a
program that does its own dynamic-memory allocation may need an initialized
block of memory. You can edit memory directly in the Memory window or fill
the block with zeros using the Memory Fill command. If a certain value is re­
quired for a mathematical function, you can type over values displayed in the
Memory window or assign the value in the Command window. If you expect a
value to appear at a certain location and it does not, you can use the Memory
Search command to find it.

Use the Register window to see the CPU registers and the Local and Watch win­
dows to keep track of changing variable values. Open the Calls menu to examine
your program's stack to see what routines have been called.

You can set up CodeView's windows to display the information you want to
see by using keyboard commands or the commands in the Window menu. For
example, when you press SHIFT +FS or choose Tile from the Windows menu,
CodeView arranges all open windows to fill the entire window area. When the
windows are tiled, you can press ALT+FS or choose Arrange from the Windows
menu. This allows you to move your open windows with a mouse so that you can
view several or all of them at once.

8.3 Setting up CodeView
The Microsoft C/C++ SETUP program installs all the necessary Code View files
and correctly configures Code View for your selected environment. Make sure that
all ofthe CodeView executable files (.EXE and .DLL files) are in a directory listed
in the PATH environment variable.

In addition, it is highly recommended that you merge the entries in the
TOOLS.PRE file with your TOOLS.INI file. SETUP creates TOOLS.PRE in the

328 Environment and Tools

CodeView Files

INIT directory that you specify when you run SETUP. If you do not already have
a TOOLS.INI file, rename TOOLS.PRE as TOOLS.INI.

This file contains the recommended settings to run CodeView for MS-DOS and
CodeView for Windows. For more information on the entries in TOOLS.INI, see
"Configuring CodeView with TOOLS.INI" on page 329.

CodeView version 4.0 introduces a new, flexible architecture for the debugger.
CodeView is made up of a main executable program: CV.EXE (Code View for
MS-DOS) or CVW.EXE (Code View for Windows) and a collection of dynarnic­
link libraries (DLLs). Each DLL implements an aspect of the debugging process.

The following table summarizes CodeView's component DLLs:

TOOLS.INI Entry Component Required Example

Eval Expression evaluator Required C or C++

Model Additional nonnative Optional P-code
execution model

Native Native execution model Required MS-DOS or Windows

Symbolhandler Symbol handler Required MS-DOS or Windows

Transport Transport layer Required Local or remote

This architecture allows for the implementation of such improbable debugging
configurations as a Windows-hosted debugger that debugs interpreted Macintosh
programs across a network. The existing CVW.EXE could be used with new trans­
port, symbol handling, and execution model DLLs. Instead of creating completely
different programs for each combination of host and target, all that is needed is the
appropriate set ofDLLs.

CodeView for Windows and Code View for MS-DOS use several additional files.
One of these is the executable program file that you are debugging. Code View re­
quires one executable (.EXE) file to load for debugging.

program.EXE
An .EXE-format program to debug. CodeView assumes the .EXE extension
when you specify the program to load for debugging.

source.ext
A program source file. Your program may consist of more than one source file.
When CodeView needs to load a source file for a module at startup or when you
step into a new module, it searches directories in the following order:

1. The "compiled directory." This is the source-file path specified when you
invoke the compiler.

2. The directory where the program is located.

Getting Started with CodeView 329

If CodeView cannot find the source file in one of these directories, it prompts
you for a directory. You can enter a new directory or press ENTER to indicate
that you do not want a source file to be loaded for the module. If you do not
specify a source file, you can debug only in Assembly mode.

CY.HLP
ADVISOR.HLP

Help files for CodeView and the Microsoft Advisor. These two files are the
minimum set of files required to use Help during a CodeView session. They
must be in a directory listed in the HELPFILES environment variable or in the
Helpfiles entry of TOOLS.lNI. You may also want to use the programming
language and p-code help files.

TOOLS.lNI
Specifies paths for CodeView .DLL files and other files that Code View uses.
The Microsoft C/C++ SETUP program creates the file TOOLS.PRE in the dir­
ectory specified in your INIT environment variable. TOOLS.PRE provides a
template for the settings you must use in your TOOLS.lNI file to run CodeView
in your operating environment.

If CodeView cannot find the modules it needs in its own directory, it looks for
entries in TOOLS.INI that specify paths for the modules it needs. You can in­
clude other settings for Code View in TOOLS.lNI.

TOOLHELP.DLL
System support .DLL for CVW.

Remote debugging requires additional files and a different configuration. The
files and configuration required for remote debugging are described in "Remote
Debugging" in Chapter 10.

8.4 Configuring CodeView with TOOLS.lNI
You can configure CodeView and other Microsoft tools including the Microsoft
Programmer's WorkBench (PWB) and NMAKE by specifying entries in the
TOOLS.INI file. You must have separate sections in TOOLS.INI for each tool.
TOOLS.INI sections begin with a "tag"-a line containing the base name of the
executable file enclosed in brackets (m. The tag must appear in column one. The
CV and CVW section tags look like this:

[CV]
MS-DOS CodeView entries

[CVW]
Windows CodeView entries

In the TOOLS.IN! file, a line beginning with a semicolon (;) is a comment.

330 Environment and Tools

Code View looks for certain entries following the tag. Each entry may be preceded
by any number of spaces, but the entire entry must fit on one line. You may want
to indent each entry for readability.

CodeView TOOLS.lNI Entries

Syntax

Example

You may want to specify or change entries in TOOLS.lNI to customize
CodeView. Table 8.1 summarizes the TOOLS.lNI entries.

Table 8.1 CodeView TOOLS.INI Entries

Entry

Autostart

Color
Cvdllpath

Eval
HelpbutTer
Helpfiles
Model
Native
Printfile
StatefIleread
Symbolhandler
Transport

Autostart

Description

Commands to execute on startup

Screen colors

Path to Code View .DLL files

Expression evaluator

Size of help buffer

List of help files

Additional execution model (such as p-code)

Native execution model

Default name for print command or file

Read or ignore CURRENT.STS state file

Symbol handler

Transport layer

The Autostart entry specifies a list of Command-window commands that
CodeView executes on startup.

Autostart:command[;command] ...

command
A command for Code View to execute at startup. Separate multiple commands
with a semicolon (;).

The following entry automatically executes the program's run-time startup code. It
specifies that Code View always starts with the Screen Swap option off and the
Trace Speed option set to fast.

Autostart:OF-;TF;Gmain

Syntax

Syntax

Getting Started with CodeView 331

Color
The Color entry is retained only for compatibility with previous versions of
CodeView. You should set screen colors with the Colors command on the Options
menu.

Cvdllpath
The Cvdllpath entry specifies the default path for CodeView's dynamic-link
libraries (DLLs). CodeView searches this path when it cannot find its DLLs in
CodeView's directory or along the PATH environment variable. This entry is
recommended.

Cvdllpath:path

path
The path to the CodeView .DLL files.

Eva I
The Eval entry specifies an expression evaluator. The expression evaluator looks
up symbols, parses, and evaluates expressions that you enter as arguments to
CodeView commands. If there is no Eval entry in TOOLS.INI, CodeView loads
the C++ expression evaluator by default. CodeView uses the specified expression
evaluator when you are debugging modules with source files ending in the speci­
fied extensions.

Eval: [path\]EEhost evaluator.DLL extension ...

path
The path to the specified expression evaluator.

host
The host environment.

Specifier

D1

WO

evaluator

Operating Environment

MS-DOS

Windows

The source language expression evaluator.

Specifier

CAN

CXX

Source Language

CorMASM

C, C++, or MASM

332 Environment and Tools

Example

Syntax

extension
A source-file extension. CodeView uses the specified expression evaluator
when it loads a source file with the given extension. You can list any number of
extensions.

The following example loads both the C and C++ expression evaluators for the
MS-DOS CodeView:

Eval :C:\C700\DLL\EEDICAN.DLL .C .ABC .ASM .H
Eval :C:\C700\DLL\EEDICXX.DLL .CPP .CXX .XYZ .HXX

With the entries in this example, when you trace into a module whose source file
has the extension . C, . ABC, or . ASM, CodeView uses the C expression evaluator.
When you trace into a source file with a . C X x, . C P P, or . X Y Z extension,
CodeView switches to the C++ expression evaluator. Note that the C++ expression
evaluator alone is sufficient for most C, C++, and MASM programs.

You can load expression evaluators after CodeView has started by using the Load
command from the Run menu. You can override CodeView's automatic choice of
expression evaluator by using the Language command on the Options menu or the
USE command in the Command window.

For more information about choosing an appropriate expression evaluator and how
to use expressions in CodeView, see Chapter 11, "Using Expressions in
CodeView."

Helpbuffer
The Helpbuffer entry specifies the size of the buffer CodeView uses to decom­
press help files. You can set Helpbuffer to 0 to disable Help and maximize the
amount of memory available for debugging. Otherwise, specify a value between
1 and 256.

Helpbuffer:size

size
The number of kilobytes (K) of memory to use for decompressing help files.
The default help buffer size is 24K. Specify 0 to disable help.

The following table shows values you can specify and the actual size of the
buffer that is allocated:

Value Specified

1-24

25-128
129-256

Help Buffer Size

24K

128K
256K

Syntax

Syntax

Example

Syntax

Getting Started with CodeView 333

The smallest buffer size is 24K, and the largest is 256K.

Helpfiles
The Helpfiles entry lists help files for Code View to load. These files are loaded
before any files listed in the HELPFILES environment variable.

Helpfiles:file[;file] ...

file
A directory or help file. If you list a directory, CodeView loads all files with the
.HLP extension in that directory. Separate multiple files or directories with a
semicolon (;).

Model
The Model entry specifies an additional execution model that Code View uses
when you are debugging nonnative code such as p-code. The execution model han­
dles tasks specific to the type of executable code that you are debugging.

Model: lJpath\]NMhost model.DLL

path
The path to the specified file.

host
The host environment must be one of the following:

Specifier

D1

WO

model

Operating Environment

MS-DOS

Windows

A nonnative execution model. The p-code execution model (PCD) is required if
you plan to debug p-code.

Model :NMDIPCD.DLL

Native
The Native entry specifies the native execution model. This DLL handles tasks
that are specific to the machine and operating system on which you are running
(the host) and specific to the native code (the target).

Native: lJpath\]EMhost target.DLL

334 Environment and Tools

Syntax

Syntax

path
The path to the specified native execution model.

host
The host environment must be one of the following:

Specifier

D1

WO

target

Operating Environment

MS-DOS

Windows

The target environment must be one of the following:

Specifier

D1

WO

Printfile

Operating Environment

MS-DOS

Windows

The Printfile entry lists the default device name or filename used by the Print
command on the File menu. This can be a printer port (for example, LPTl or
COM2) or an output file. If Printfile is omitted, CodeView prints to a file named
CODEVIEW.LST in the current directory. This entry is ignored by CVW, which
does not have the Print command.

Printfile:path

path
The path to the specified output file or the name of a device.

Statefileread
The Statefileread entry tells CodeView to read or ignore the CodeView state file
(CURRENT.STS) on startup. You can toggle this setting from the command line
using the rrSF (Toggle State File) option. These options have no effect on writing
CURRENT.STS. CodeView always saves its state on exit.

Statefileread:[y I nn

y (yes)
CodeView reads CURRENT.STS on startup.

n (no)
CodeView ignores CURRENT.STS on startup.

Syntax

Syntax

Getting Started with CodeView 335

Symbolhandler
The Symbolhandler entry specifies a symbol handler. The symbol handler man­
ages the CodeView symbol and type information.

Symbolhandler: [path\] SHhost.DLL

path
The path to the symbol handler.

host
The host environment must be one of the following:

Specifier

D1

WO

Transport

Operating Environment

MS-DOS

Windows

The Transport entry specifies a transport layer. A transport layer provides the
data link for communication between the host and target during debugging.

Transport:path\TLhost transport.DLL

path
The path to the specified transport layer.

host
The host environment must be one of the following:

Specifier

D1

WO

transport

Operating Environment

MS-DOS

Windows

Specifies a transport layer.

Specifier

LOC

COM

Transport Layer

Local transport layer

Serial remote transport layer

You specify the local transport layer (LOC) when the debugger and the program
you are debugging are running on the same machine. With the appropriate trans­
port layer, CodeView can support remote debugging across serial lines or net­
works. For more information on remote debugging, see Chapter 10.

336 Environment and Tools

Example

The following example specifies the transport layer for debugging a program that
is running on the same machine.

Transport:C:\C700\DLL\TLW0LOC.DLL

8.5 Memory Management and CodeView
CodeView for MS-DOS (CV) requires at least two megabytes of memory. The
memory must be managed by a Virtual Control Program Interface (VCPI) server,
DOS Protected-Mode Interface (DPMI) server, or extended memory (XMS) man­
ager. These drivers manage memory at addresses above 1 megabyte on an 80286,
80386, or 80486 machine. CodeView loads itself and the debugging information
for the program into high memory. In this way, Code View uses only approxi­
mately 17K of conventional MS-DOS memory.

CodeView can use the following memory managers:

• A VCPI server such as EMM386.EXE or EMM386.syS. With a VCPI server,
your program is also able to use EMS memory. To use this memory manager
you must have a command in your CONFIG.SYS file such as:

DEVICE=C:\DOS\EMM386.EXE ram

• A DPMI server such as MSDPMLEXE. This server is installed by the Micro­
soft C/C++ SETUP.

• An Extended Memory Standard (XMS) driver such as HIMEM.SYS. To use
this memory manager you must have a command in your CONFIG.SYS file
such as:

DEVICE=C:\DOS\HIMEM.SYS

For more information about using memory managers, see your memory manager's
documentation. When you make new entries in your CONFIG.SYS file, remember
to reboot your system so that your changes take effect.

8.6 The CodeView Command Line

Syntax

You can specify CV or CVW options when you start them from the command
line. You can also specify commands from within the CodeView environment to
modify these startup arguments.

CV[W] [options] [program [arguments]]
CV[W] @file [program [arguments]]

Getting Started with CodeView 337

w
Indicates the Windows version of Code View.

options
One or more options. The CodeView options are described in the "Command­
Line Options" section on page 338.

program
Program to be debugged. Specifies the name of an executable file to be loaded
by the debugger. If you specify program as a filename with no extension,
CodeView searches for a file with the extension .EXE. If you do not specify a
program, CodeView starts up and displays the Load dialog box where you can
specify a program and its command-line arguments.

arguments
The program's command-line arguments. All remaining text on the Code View
command line is passed to the program you are debugging as its command line.
If the program you are debugging does not accept command-line arguments,
you do not need to specify any. Once you've started debugging, you can change
the program's command-line arguments.

@file
File of command-line arguments. You can also specify arguments in a text file.
The file contains a list of arguments, one per line. An argument file lets you
specify a large number of arguments without exceeding the operating-system
limit on the length of a command line. This is especially useful when starting a
session that uses many DLLs.

After CodeView loads its DLLs, processes the debugging information, and loads
the source file, the CodeView display appears. If you do not specify a program to
debug or Code View cannot find all of its required DLLs, CodeView prompts for
the necessary files.

After starting up, CodeView is at the beginning of the program startup code, and
you are ready to start debugging. At this point, you can enter an execution com­
mand (such as Trace or Program Step) to execute through the startup code to the
beginning of your program.

Leaving CodeView
To exit CodeView at any time, choose the Exit command from the File menu. You
can also press ALT+F4, or type Q (for "Quit") in the Command window.

At this point, you may want to skip ahead to the next chapter, "The Code View
Environment" for information on CodeView' s menus and windows. The rest of
this chapter describes each command-line option in detail, then continues with a
description of how PWB and CodeView use the CURRENT.STS file.

338 Environment and Tools

Command-line Options

Option

Option

CV and CVW accept some of the same options for debugging. Table 8.2 sum­
marizes the CodeView command line options.

Table 8.2 CodeView Command-Line Options

Option CV CVW Description

12 Yes Yes Use two displays

18 No Yes Use 8514 and VGAdisplays

125,/43,/50 Yes Yes Set 25-line, 43-line, or 50-line mode

IE Yes Yes Use black-and-white display

ICcommands Yes Yes Execute commands
IF Yes No Flip video pages

IG Yes Yes Control snow on CGA displays

11[0 I 1] Yes Yes Trap NMIs and 8259 interrupts

ILdll No Yes Load DLL or application symbols

1M Yes Yes Disable mouse
/N[O 11] Yes Yes Trap nonmaskable interrupts

IS Yes No Swap video buffers

ITSF Yes Yes Read or ignore state file

The remainder of this section describes each option in detail.

Use Two Displays (CV, CVW)

/2

The /2 option permits the use of two monitors. The program display appears on the
default monitor, while CodeView displays on the secondary monitor. You must
have two monitors and two adapters to use the /2 option. The secondary display
must be a monochrome adapter.

If you are debugging a Windows application and have an IBM PS/2 with an 8514
primary display and a Video Graphics Adapter (VGA) secondary display, use the
/8 option.

Use 8514 and VGA Displays (CVW)

/8

Options

Option

Getting Started with CodeView 339

If your system is an IBM PS/2, you can configure it with an 8514 as the primary
display and a VGA as the secondary display. To use this configuration, specify the
/8 (8514) option on the CVW command line.

If your VGA monitor is monochrome, it is recommended to use the /B (black-and­
white) option. The 8514 serves as the Windows screen and the VGA as the debug­
ging screen.

By default, the debugging screen operates in 50-line mode in this configuration. If
you specify the /8 option, you can specify /25 or /43 for 25-line or 43-line mode
on the debugging screen.

Warning Results are unpredictable if you attempt to run non-Windows applica­
tions or the DOS shell while you are running CVW with the /8 option.

Set line-Display Mode (CV, CVW)

125
143
150

If you have the appropriate display adapter and monitor, you can display 25, 43,
or 50 lines when you are running CV, and 25 or 50 lines when you are running
CVW. The mode you specify is saved in the CURRENT.STS file so that it is still
in effect the next time you run CodeView.

If you specify a mode that is not supported by your adapter and your monitor,
CodeView displays 25 lines. For example, only the 25-line display mode is avail­
able when you are running CVW with an Enhanced Graphics Adapter (EGA).

Use Black-and-White Display (CV, CVW)

IB

When you start CodeView, it checks the kind of display adapter that is installed in
your computer. If the debugger detects a monochrome adapter, it displays in black
and white; if it finds a color adapter, it displays in color. The /B option tells
CodeView to display in black and white even if it detects a color adapter.

If you use a monochrome display or laptop computer that simulates a color dis­
play, you many want to disable color. These displays may be difficult to read with
CodeView's color display.

You can also customize CodeView's colors by choosing the Colors command
from the Options menu. For more information, see "Colors" on page 370.

340 Environment and Tools

Option

Examples

Execute Commands (CV, CVW)

tCcommands

You type commands in the CodeView Command window. You can also specify
Command-window commands when you start CodeView. The IC option allows
you to specify one or more CodeView Command-window commands to be ex­
ecuted upon startup. If you specify more than one command, you must separate
each one with a semicolon (;).

If the commands contain spaces or redirection symbols « or », enclose the
entire option in double quotation marks ("). Otherwise, the debugger interprets
each argument as a separate CodeView command-line argument rather than as
a Command-window command.

For complete information on CodeView Command-window commands, see
Chapter 12, "CodeView Reference."

The following example loads CV with CALCPR as the executable file and Ip
TST. DAT as the program's command line:

CV ICGmain CALCPR Ip TST.DAT

Upon startup, CV executes the high-level language startup code with the com­
mand Gma in. Since no space is required between the command (G) and its argu­
ment (ma in), there is no need to enclose the option in double quotation marks.

The next example loads CV with CALCPR as the executable file and Ip TST. DAT
as the program's command line. It starts CodeView with a long list of startup
commands.

CV "/C VS &;G signa1_1pd;MDA print_buffer L 20" CALCPR Ip TST.DAT

CodeView starts with the Source window displaying in Mixed mode (VS &). Then
it executes up to the function signa 1_ 1 pd with the command G signa 1_ 1 pd. Next,
it dumps 20 characters starting at the address of p r in t_ buff e r with the command
MDA pri nt_buffer L 20. Since some of the commands use spaces, the entire IC
option is enclosed in quotation marks.

In this example, the command directs CV to take Command-window input from
the file SCRIPT.TXT rather than from the keyboard:

CV "/C<SCRIPT.TXT" CALCPR TST.DAT

Although the option does not include any spaces, you must enclose it in quotation
marks so that the less-than symbol «) is read by CodeView rather than by the
operating-system command processor.

Options

Option

Options

Getting Started with CodeView 341

Set Screen-Exchange Method (CV)

IF
IS

CodeView allows you to move between the output screen, which contains your
program display output, and the CodeView screen, which contains the debugging
display. In MS-DOS, CodeView can perform this screen exchange in two ways:
screen flipping or screen swapping. The IF (flipping) and IS (swapping) options
allow you to choose the method from the command line. These two methods are:

Flipping
Flipping is the default for a computer with a graphics adapter. CodeView uses
the graphic adapter's video-display pages to store each screen of text. Flipping
is faster than swapping and uses less memory, but it cannot be used with a mon­
ochrome adapter or to debug programs that use graphic video modes or the
video-display pages. CodeView ignores the IF option if you have a mono­
chrome adapter.

Swapping
Swapping is the default for computers with monochrome adapters. It has none
of the limitations of flipping, but it is slower than flipping and requires more
memory. To swap screens, CodeView creates a buffer in memory and uses it
to store the screen that is not displayed. When you request the other screen,
CodeView swaps the screen in the display buffer for the one in the storage
buffer. When you use screen swapping, the buffer is 16K bytes for all adapters.
The amount of memory CodeView uses is increased by the size of the buffer.

Suppress Snow (CV, CVW)

IG

The /G option suppresses snow that can appear on some CGA displays. Use this
option if your Code View display is unreadable because of snow.

Specify Interrupt Trapping (CV, CVW)

11[011]
IN[O 11]

The II option tells CV whether to handle nonmaskable-interrupt (NMI) and 8259-
interrupt trapping. The IN option controls only CodeView's handling of NMls and
does not affect handling of interrupts generated by the 8259 chip. The following
table summarizes the options and their effects:

342 Environment and Tools

Option

Example

Option

Option

110

m,1l

INO

INl, IN

Effect

Trap NMIs and 8259 interrupts

Do not trap NMIs or 8259 interrupts

Trap NMIs

Do not trap NMIs

You may need to force CodeView to trap interrupts with /10 on computers that
CodeView does not recognize as IBM compatible. Using /10 enables the CTRL+C

and CTRL+BREAK interrupts on such computers.

load Other Files (CVW)

ILdll
ILexe

To load symbolic information from a dynamic-link library (DLL) or from another
application, use the IL option when you start CodeView. Specify IL for each DLL
or application that you want to debug.

When you place a module in a DLL, neither code nor debugging information for
that module is stored in an application executable (.EXE) file. Instead, the code
and symbols are stored in the library and are not linked to the main program until
run time. The same is true for symbols in another application running with Win­
dows. Thus, CVW needs to search the DLL or other application for symbolic infor­
mation. Because the debugger does not automatically know which libraries to look
for, use the IL option to preload the symbolic information.

The following command starts CodeView for Windows:

cvw ILPRIORITY.DLL ILCAPPARSE.DLL PRINTSYS

CVW is used to debug the program PRINTSYS.EXE. CVW loads symbolic infor­
mation for the dynamic-link libraries PRIORITY.DLL and CAPPARSE.DLL, as
well as the file PRINTSYS.EXE.

Disable Mouse (CV, CVW)

1M

If you have a mouse installed on your system, you can tell CodeView to ignore it
by using the 1M option. You may need to use this option if you are debugging a
program that uses the mouse and there is a usage conflict between the program
and CodeView.

Option

Option

Option

Getting Started with CodeView 343

Nonmaskable-Interrupt Trapping (CV, CVW)

IN

For information on the IN option, see "Specify Interrupt Trapping" on page 341.

Set Screen Swapping (CV)

IS

The IS option sets the CodeView screen-exchange method to swapping. For
complete information on CodeView screen-exchange methods, see "Set Screen­
Exchange Method" on page 341.

Toggle State-File Reading

ITSF

The Toggle State File (lTSF) option either reads or ignores CodeView's state file
and color files, depending on the Statefileread entry in the CodeView sections of
TOOLS.INI. The ITSF option reverses the effect of the Statefileread entry. The
Statefileread entry is set to yes by default.

These options have no effect on writing the files. CodeView always saves its state
on exit.

The effect of different combinations of Statefileread and /TSF are summarized in
the following table:

ITSF Statefileread CodeView Result

Specified y (or omitted) Do not read files

Specified n Read files

Not specified y (or omitted) Read files

Not specified n Do not read files

The state file is CURRENT.STS. The color files are CLRFlLE.CV4 for CV and
CLRFlLE.CVW for CVW.

8.7 The CURRENT.STS State File
CodeView and PWB save settings and state information in the CURRENT.STS
file. The file contains information about the current state of the two environments.

344 Environment and Tools

When you restart CodeView or PWB, they read CURRENT.STS and restore their
previous state. Code View uses additional files to save your most recent color set­
tings. These files are CLRFILE.CV 4 for CV and CLRFILE.CVW for CVW.

CodeView and PWB search for these files in the directory that the INIT environ­
ment variable specifies. If no INIT environment variable exists, Code View and
PWB search the current directory. If no state file is found, new CURRENT.STS
and CLRFILE.CV 4 or CLRFILE.CVW files are created in the INIT directory or
the current directory if no INIT variable is set.

Information about CodeView stored in CURRENT.STS includes:

• Window layout

• Breakpoints

• Watch expressions

• Source, Local, and Memory display options

• Global CodeView options such as case sensitivity, screen exchange method,
radix, and expression evaluator

You can set CodeView options in TOOLSJNI or on the command line and then
modify them during a session. They are saved in CURRENT.STS when you exit
CodeView. During each CodeView session, these features are set in the following
order:

1. From TOOLS.INI

2. From the Code View command line

3. From CURRENT.STS

4. During the debugging session

The following items are not saved between sessions:

• The current location (CS:IP).

• The expansion state of watch expressions.

All watch expressions and their format specifiers are restored, but they appear
in their contracted state.

• Absolute-address breakpoints.

Breakpoints set at an absolute segment:offset address are not saved. Code View
saves breakpoints only at specific line numbers or symbols.

• Memory window addresses.

Each memory window is restored with its display type and options, but
CodeView does not save the starting address. Instead, Memory windows show
the start of the data segment (address DS:OO).

The CodeView Environment

CodeView provides a powerful environment in which to debug programs and
dynamic-link libraries (DLLs). Its rich set of commands helps you track program
execution and changing data values.

In CodeView you can "point-and-click" your source code to start and stop execu­
tion or modify bytes in memory. You can also use more traditional keyboard com­
mands. You can use function keys to execute common commands, such as tracing
and stepping through a program. When you quit CodeView, it remembers your
breakpoints, window arrangement, watch expressions, and option settings.

This chapter describes the CodeView display, shows you how to use the menu
commands, and how to interact with the different types of windows.

9.1 The CodeView Display
The CodeView screen is divided into three parts:

• The menu bar across the top of the screen

• The window area between the menu bar and status bar

• The removable status bar across the bottom of the screen

Figure 9.1 shows a typical CodeView screen with several open windows. The fig­
ure shows selected elements of the display, which are described in the sections
that follow.

346 Environment and Tools

The Menu Bar

[BP+0fX')4]+char *name = 0x'I500:flxllC6 "extra.txt"
[BP-08eZ] short nMax = 16112
[BP-0fX')4]+_iobuf near *File = 0x'I500:0x0B68
[BP-0806] short InWord = 0

InWord = FALSE;

// Calculate and print the results.
intf("\n\nFile statistics for %s\n\n"

]------ co nd --------,
1) E "{,COUItT.C,count.EXE} .56"
2) E "{,COUItTBUF.C,count.EXE} .16"
>

Figure 9.1 CodeView Display

The menu bar displays the names of the CodeView menus. To open a menu, use
one of the following methods:

• Click a menu title with the mouse.

• Press ALT plus the menu title's highlighted letter.

• Press and release ALT, use the arrow keys to select a menu, and then press DOWN

ARROW or ENTER to open it.

Eacn command in a menu has a highlighted letter. To choose that command, press
the highlighted letter. Many commands also list a shortcut key that you can press
at any time instead of opening a menu and choosing a command.

A command that does not apply to a particular situation is dimmed on the menu.
When you press the corresponding shortcut key, no action is performed.

The Window Area
Most of your debugging takes place in the window area, where you can open,
close, move, size, and overlap the various types of CodeView windows. Although
each window serves a different function for debugging, the windows have a num­
ber of common features. The Close, Maximize, Restore, and Minimize boxes work
in the same way as they do in PWB. The scroll bars also work the same as in

The Status Bar

The CodeView Environment 347

PWB. For information on the window border controls, see Chapter 4, "User Inter­
face Details."

Only one window can be active at a time. You always use the currently active win­
dow, which appears with a highlighted border and a shadow on the screen. The
text cursor always appears in the active window.

The status bar contains information about the active window. It usually includes a
row of buttons you can click to execute commands. You can also use the shortcut
keys shown on the buttons.

To remove the status bar and gain an extra line for the window area, choose Status
Bar from the Options menu, or type the OA- command in the Command window.
To restore the status bar, choose Status Bar from the Options menu, or type the
OA+ command in the Command window. For more information on this command,
see the "Options" command on page 445.

9.2 CodeView Windows
CodeView windows organize and display information about your program. This
section describes each CodeView window, the information you can display, and
how you can change information and enter commands in the Command window.
It also explains how to move among the windows and manipulate them.

How to Use CodeView Windows
Each CodeView window has a different function and operates independently of
the others. Only one window can be active at a time. Commands you choose from
the menus or by using shortcut keys affect the active window. The following list
briefly describes each window's function:

Source
Displays the source or assembly code for the program you are debugging. You
can open a second Source window to view an include file or any ASCII text file.

Command
Accepts debugging commands from the keyboard. CodeView displays the re­
sults, including error messages, in the Command window. When you enter a
command in a dialog box, CodeView displays any resulting errors in a pop-up
window.

348 Environment and Tools

Watch
Displays the values of variables and expressions you select. You can modify
the value of watched variables, browse the contents of structures and arrays,
and follow pointers through memory.

Local
Lists the values of all variables local to the current scope. You can set Local
window options to show other scopes. You can modify the values of variables
displayed in the Local window.

Memory
Displays the contents of memory . You can open a second Memory window to
view a different section of memory. You can set Memory window options to
select the format and address of displayed memory. You can directly change
the displayed memory by typing in the Memory window.

Register
Displays the contents of the machine's registers and t1ags. You can directly edit
the values in the registers, and you can toggle t1ags with a single keystroke or
mouse click.

8087
Displays the registers of the hardware math coprocessor or the software
emulator.

Help
Displays the Microsoft Advisor Help system.

The first time you run CodeView, it displays three windows. The Local window is
at the top, the Source window fills the middle of the screen, and the Command
window is at the bottom. The Local window is empty until you trace into the main
part of the program.

You can open or close any CodeView window. However, at least one Source win­
dow must remain open. When you exit CodeView, it records which windows are
open and how they are positioned, along with their display options. These settings
become the default the next time you run CodeView.

To open a window, choose a window from the Windows menu. Some operations,
such as setting a watch expression or requesting help, open the appropriate win­
dow automatically.

You can change how CodeView displays information in the Source, Memory, and
Local windows. Choose the appropriate window options command from the Op­
tions menu. When the cursor is in one of these windows, you can press CTRL+O to
display that window's options dialog box.

CodeView automatically updates the windows as you debug your program. To
interact with a particular window (such as entering a command or modifying a

The CodeView Environment 349

variable), you must select it. The selected window is the "active" window. The
active window is marked in the following ways:

• The window's frame is highlighted.

• The window casts a shadow over other windows.

• The cursor appears in the window.

• The horizontal and vertical scroll bars move to the window.

To make a window active, click anywhere in the window or in the window frame.
You can also press F6 or SHIFT+F6 to cycle through the open windows, making each
one active in turn. You can also choose a window from the Windows menu or
press ALT plus a window number. In addition, some Code View commands make a
certain window active.

Moving Around in CodeView Windows
To move the cursor to a specific window location, click that location. You can also
use the keyboard to move the cursor as shown in Table 9.1.

Table 9.1 Moving Around with the Keyboard

Action Keyboard

Move cursor up, down, left, and right

Move cursor left and right by words

Move cursor to beginning of line

Move cursor to end of line

Page up and down

Page left and right

Move cursor to beginning of window

Move cursor to end of window

Move to next window

Move to previous window

Restore window

Move window

Size window

Minimize window

Maximize window

Close window

Tile windows

Arrange windows

UP ARROW, DOWN ARROW, LEFT ARROW,
RIGHT ARROW

CTRL+LEFT,CTRL+RIGHT

HOME

END

PAGE UP, PAGE DOWN

CTRL+PAGE UP, CTRL+PAGE DOWN

CTRL+HOME

CTRL+END

F6

SHIFT+F6

CTRL+FS

CTRL+F7

CTRL+F8

CTRL+F9

CTRL+FlO

CTRL+F4

SHIFT+FS

ALT+FS

350 Environment and Tools

The Source Windows
The Source windows display the source code. You can open a second Source win­
dow to view other source files, header files, the same source file at a different loca­
tion, or any ASCII text file. To open a Source window, use one of the following
methods:

• From the Windows menu, choose Source I or Source 2.

• In the Command window, type the View Source (VS) command.

• Press ALT+3 to open Source window 1.

• Press ALT+4 to open Source window 2.

You cannot edit source code in CodeView, but you can temporarily modify the ma­
chine code in memory using the Assemble (A) command. For more information
on the Assemble command, see page 424.

Source windows can display three different views of your program code in three
different modes:

• Source mode shows your source file with numbered lines.

• Assembly mode shows a disassembly of your program's machine code.

• Mixed mode shows each numbered source line followed by a disassembly of
the machine code for each line.

Note When you are debugging p-code while Native mode is off, CodeView dis­
plays p-code instructions rather than disassembled machine instructions. See the
"Options" command on page 445. For more information on p-code, see "Debug­
ging P-code" on page 389.

CodeView automatically switches to Assembly mode when you trace into routines
for which no source is available, such as library or system code. The debugger
switches back to the original display mode when you continue tracing into code
for which source code is available.

For more information on setting display modes, see the "View Source" command
on page 457. For detailed information about the Source window display options,
see page 368.

The Watch Window
The Watch window displays the value of program variables or the value of expres­
sions you specify in a high-level language. For each expression or variable, you
can change the format of the data that is displayed. You can expand aggregate
variables, such as structures and arrays, to show all the elements of an aggregate
and contract them to save space in the Watch window. You can follow chains of

Type new values for
variables in the
Watch window.

The CodeView Environment 351

pointers to display and help debug more complex structures, such as linked lists or
binary trees.

To open a Watch window, use one ofthe following methods:

• From the Windows menu, choose Watch.

• In the Command window, type the Add Watch (W?) command followed by the
variable or expression name.

• Press ALT+2.

To add expressions to the Watch window, use the Add Watch command from the
Data menu or the Quick Watch dialog box (SlllFT+F9). You can also add watch ex­
pressions using the Add Watch (W?) and Quick Watch (??) commands.

Note Do not edit a string in the Watch window.

To change the value of any variable displayed in the Watch window, move the cur­
sor to the value, delete the old value, and type the new value. To change the for­
mat in which a variable is displayed or to specify a new format, move the cursor to
the end of the variable name and type a new format specifier.

To toggle between insert and overtype modes, press the INS key.

For information on expanding and contracting aggregate types and following
pointers, see the "Quick Watch" command on page 478. For detailed information
on specifying and using watch expressions, see the "Codeview Expression Refer­
ence" on page 417 and Chapter 11, "Using Expressions in CodeView."

The Command Window
You type CodeView commands in the Command window to execute code, set
breakpoints, and perform other debugging tasks. You can use the menus, mouse,
and keyboard for many debugging tasks, but you can use some CodeView com­
mands only in the Command window.

When you first start the debugger, the Command window is active, and the cursor
is at the Code View prompt (». To return to the Command window after you make
another window active, click the command window, or press ALT+9.

Using the Command window is similar to using an operating-system prompt, ex­
cept that you can scroll back to view previous results and edit or reuse previous
commands or parts of commands.

352 Environment and Tools

You can type
commands when
the Source window
or the Command
window is active.

Example

Example

How to Enter Commands and Arguments
You enter commands in the Command window at the CodeView prompt when the
Command window is active. Type the command followed by any arguments and
press ENTER. Some commands, such as the Assemble (A) command, prompt for an
indefinite series of arguments until you enter an empty response. Code View may
display errors, warnings, or other messages in response to commands you enter in
the Command window.

If a Source window is active and the Command window is open, you can still type
Command-window commands. When you begin typing, the cursor moves to the
Command window and remains there until you press ENTER. The cursor returns to
the Source window, and CodeView executes the command. If you have begun typ­
ing but do not want to execute a command, press ESC to clear the text and place the
cursor at the prompt. After you press ESC, the Command window becomes active.

Command Format
The format for Code View commands is as follows:

command [arguments] [;command2]

The command is the command name, and arguments are control options or ex­
pressions that represent values or addresses to be used by the command. The first
argument can usually be placed immediately after command with no intervening
spaces. Arguments may be separated by spaces or commas, depending on the com­
mand. For more information, see Chapter 12, "Code View Reference."

To specify additional commands on the same line, separate each command with a
semicolon (;).

Commands are always one, two, or three characters long. They are not case sen­
sitive, so you can use any combination of uppercase and lowercase letters. Argu­
ments to commands may be case sensitive, depending on the command.

The following example shows three commands separated by semicolons:

MOB 100 L 10 ; G .178 ; MOB 100 L 10

The first command (MOB 100 L 10) dumps 10 bytes of memory starting at address
100. The second command (G .178) executes the program up to line 178 in the cur­
rent module. The third command is the same as the first and is used to see if the ex­
ecuted code changed memory.

This example demonstrates the Comment (*) command:

U extract_velocity ;* Unassemble at this routine

Copy and paste text
instead of retyping.

Press TAB to visit
previous commands.

The CodeView Environment 353

The first command is the Unassemble (U) command, given the argument
extracL vel acity. The next command is the Comment command. Comment
commands are used throughout the CodeView examples in this book.

How to Copy Text for Use with Commands
Text that appears in any CodeView window can be copied and used in a com­
mand. For example, an address that is displayed in a Memory window or the Reg­
ister window can be copied and used in a breakpoint command.

~ To copy and use text:

1. Select the text with the mouse or the keyboard.

To select text with the mouse, move the mouse pointer to the beginning of the
desired text, hold down the left mouse button, and drag the mouse. When you
have selected the desired text, release the button.

To select text with the keyboard, move the cursor to the desired text, hold down
the SHIFT key, and move the cursor with the ARROW keys.

2. Choose the Copy command from the Edit menu or press CTRL+INS.

3. Move the cursor to the location where you want to use the text and choose the
Paste command from the Edit menu, or press SHIFT+INS.

4. Edit the command if desired, and press ENTER to execute the command.

Because all input to CodeView windows is line oriented, you cannot copy more
than a single line. If you select more than a single line, the Copy command in the
Edit menu is unavailable, and CTRL+INS has no effect. However, you can still select
more than one line for use with the Print command on the File menu. For more
information about the Print command, see "Print" on page 359.

When editing a command, you can toggle between insert and overtype modes by
pressing the INS key.

How to Use the Command Buffer
CodeView keeps the last several screens of commands and output in the Command
window. You can scroll the Command window to view the commands you entered
earlier in the session. This is particularly useful for viewing the output from com­
mands, such as Memory Dump (MD) or Examine Symbols (X), whose output
exceeds the size of the window.

The TAB key provides a convenient way to move among the previously entered
commands. Press TAB to move the cursor to the beginning of the next command,
and press SHIFT+TAB to move to the beginning of the previous command. If the cur­
sor is at the beginning or the end of the command buffer, the cursor wraps around

354 Environment and Tools

to the other end. To return to the current command prompt, you can press
CTRL+END or press TAB repeatedly.

You can also reuse any command that appears in the Command window without
copying and pasting. Move the cursor to the command or press TAB, edit the com­
mand if desired, and press ENTER to execute it. When you press ENTER, CodeView
restores the original command, copies the new command to the current prompt,
and executes the command. If you make a mistake while editing a command, press
ESC to restore the line.

The Local Window
You can enter new
values for variables in
the Local window.

The Local window shows all local variables in the current scope. The Local win­
dow is similar to the Watch window, except that the variables that are displayed
change as the local scope changes. A variable in the Local window is always
shown in its default type format. When you edit in the Local window, you can
toggle between insert and overtype modes by pressing the INS key.

You can expand and contract pointers, structures, and arrays the same way you do
in the Watch window. You can also change the values ofthe variables as in the
Watch window.

The keyboard shortcut to open or switch to the Local window is ALT + 1.

You can see the local variables of each active routine in the stack by selecting the
routine from the Calls menu. For more information on this feature, see "The Calls
Menu" on page 372.

By default, the Local window shows the addresses of the local variables on the left
side of the window. You can turn this address display on or off using the Options
(0) command. For more information on the Options command, see page 445.

The Register Window
The Register window displays the names and current values of the native CPU reg­
isters and flags. When you are debugging p-code, it displays names and values of
the p-code registers and flags. You can change the value of any register or flag
directly in the Register window.

To open the Register window, choose Register from the Windows menu, press
ALT + 7, or F2. You can also view and modify registers by using the Register (R)
command. For more information about the Register command, see page 450.

When a register value changes after a program step or trace, CodeView highlights
the new value so you can see how your program uses the CPU registers. Depend­
ing on the current instruction, the Register window also displays the effective

The CodeView Environment 355

address at the bottom of the window. This display shows the location of an oper­
and in physical memory and its value.

If you are debugging on an 80386 or 80486 machine, you can view and modify the
32-bit registers. To turn on the 32-bit Registers option, choose the 386 command
from the Options menu or use the 03+ command. The 32-bit registers are avail­
able if you are debugging on an 80386 or 80486 machine.

When you are debugging p-code, CodeView displays the p-code registers: DS, SS,
CS, IP, SP, BP, PQ, TH, and TL.

If your program has taken an unexpected turn, you may be able to compensate for
the problem and continue debugging if you change the value of a register or a flag.
You can change a flag value before a dump or looping instruction to test a differ­
ent branch of code, for example. You can change the instruction pointer (CS:IP) to
jump to any code in your program or to execute code you have assembled else­
where in memory.

To change the value of any register, move the cursor to the register value you want
to change and overtype the old value with the new value. The cursor automatically
moves to the next register.

Although you cannot change the value of the flag register numerically in the Regis­
ter window, you can conveniently toggle the values of each flag using either the
mouse or the keyboard:

• To toggle a flag with the mouse, double-click the flag.

• To toggle a flag using the keyboard, move the cursor to the flag and press any
key except ENTER, TAB, or ESC. After toggling a flag, CodeView moves the cur­
sor to the next flag.

To restore the value of the last flag or register that you changed, choose Undo
from the Edit menu or press ALT+BACKSPACE. If you happen to lose the cursor
somewhere in the register window, press TAB. The TAB key moves the cursor to
the next register or flag that can be changed.

The 8087 Window
The 8087 window displays the current status of the math coprocessor's registers
and flags. If you are debugging a program that uses the software-emulated co­
processor, the emulated registers are displayed. To open the 8087 window, choose
8087 from the Windows menu or press ALT+8.

The display in the 8087 window is the same as the display produced by the 8087
(7) command, except that the window is continually updated to show the current
status of the math coprocessor. For more information about the display, see the
"8087" command on page 473.

356 Environment and Tools

If your program uses floating-point libraries provided by several Microsoft lan­
guages, or if your program does not use floating-point arithmetic, the 8087 win­
dow and 8087 command display the message:

Floating point not loaded

CodeView displays this message until at least one floating-point instruction has
been executed.

The Memory Windows
Memory windows display memory in a number of formats. CodeView allows two
Memory windows to be open at the same time. You can open a Memory window
in several ways:

• From the Windows menu, choose Memory I or Memory 2.

• From the Options menu, choose Memoryl Window when no Memory windows
are open.

• In the Command window, enter the View Memory (VM) command.

• At the keyboard, press ALT+5 or ALT+6.

By default, memory is displayed as bytes or as the last type specified by a Mem­
ory Enter (ME), Memory Dump (MD), or View Memory (VM) command. The
byte display shows hexadecimal byte values followed by an ASCII representation
of those byte values. For values that are outside the range of printable ASCII char­
acters (decimal 32 to 127), CodeView displays a period (.).

How to Change Memory Display Format
It is not always most convenient to view memory as byte values. If an area of
memory contains character strings or floating-point values, you might prefer to
view them in a directly readable form.

To change the display format of a Memory window, choose Memoryl Window
or Memory2 Window from the Options menu. Code View displays a dialog box
where you can choose from a variety of display options. When the cursor is in a
Memory window, you can presss CTRL+O to display the corresponding Memory
Window Options dialog box. You can also set memory display options using the
View Memory (VM) command. For detailed information about the display op­
tions, see "View Memory" on page 455.

To cycle through the display formats, click the <Sh+F3=MemlFmt> or
<Sh+F3=Mem2 Fmt> buttons on the status bar, or press SHIFT+F3. Pressing
CTRL+SHIFT+F3 displays the cycle in reverse order.

The CodeView Environment 357

When you first open the Memory window, it displays memory starting at address
DS:OO. To change the starting address, use one of the commands to set Memory
window options. You can specify the starting address or enter an expression to use
as the starting address.

You can also type over the segment:offset addresses shown in the left column of
the Memory window to change the displayed addresses. Move the cursor to an
address in the window, or repeatedly press TAB until the cursor is on an address,
and type a new address.

How to Change Memory Directly
To change the values in memory, overtype the value you want to change. To move
quickly from field to field in the Memory window, press TAB. You can change
memory by entering new values for the format that is displayed or by typing over
the raw bytes in the window. CodeView ignores the input if you press a key that
does not make sense for the current format (for example, if you type the letter X in
anything but ASCII format).

To undo a change to memory, choose Undo from the Edit menu, or press
ALT+BACKSPACE.

How to View Memory at a Dynamic Address
Live expressions make it easy for you to watch a dynamic view of an array or
pointer in the Memory window. "Live" means that the starting address of memory
in the window changes to reflect the current value of an address expression.

To create a live expression, choose the Memory! Window or Memory2 Window
command from the Options menu. In the Memory Window Options dialog box,
type in an address expression, then tum on the Re-evaluate Expression Always
(Live) option.

It is usually more convenient to view an item in the Watch window than in the
Memory window. However, some items are more easily viewed using live expres­
sions. For example, you can examine what is currently on top of the stack by enter­
ing SS:SP as the live expression.

The Help Window
In CodeView, you can request Help:

• From the Help menu.

• By pressing PI when the cursor is on the keyword, menu, or dialog box for
which you want Help.

358 Environment and Tools

• By clicking the right mouse button on a Help keyword.

• Using the Help (H) command.

• By choosing Help from the Windows menu. You can also press ALT +0 for Help
on CodeView windows.

The Microsoft Advisor Help window is displayed whenever you request Help for
Code View . For information about getting the most out of the Microsoft Advisor
Help system, see Chapter 23.

9.3 CodeView Menus

The File Menu

Many commands that you are likely to use frequently are in the Code View menus.
This section describes the menus and the commands or options in each menu. Not
all commands are available in both versions of the CodeView debugger. When ap­
plicable, the menu descriptions discuss command availability.

The File menu contains commands to load source files and other ASCII text files
into the Source window, print from the active window, start an operating-system
shell, and end the debugging session. Only the Open Source, Open Module, and
Exit commands are available in CVW.

The following table summarizes the commands on the File menu:

Command

Open Source

Open Module

Print

DOS Shell

Exit

Open Source

Purpose

Opens a source, include, or other text file

Opens a source file for a module in the program

Prints all or part of the active window

Goes to the operating-system prompt temporarily

Exits Code View

The Open Source command displays the Open Source File dialog box. You can
select the name of the source file, include file, or other text file to display in the
active Source window.

Open Module
The Open Module command displays the Open Module dialog box. This dialog
box provides an easy way to load the source file for any module in your program.

The CodeView Environment 359

The dialog box lists the source files that make up the modules in the program you
are debugging. Only those modules that include line-number or full symbolic infor­
mation are listed.

Code View displays the source file you choose in the active Source window.

Print
In CodeView for MS-DOS only, the Print command displays the Print dialog box,
which offers several options to write information in the active window to a device
or a file. You can print text in the active window in the following ways:

• Window view, which prints text that currently appears in the active window

• Complete window contents, which prints the contents ofthe active window, in­
cluding what has scrolled out of the window

To print to a file, specify a filename in the dialog box. To append the printed text
to the end of the file, select Append. To overwrite a file that already exists, select
Overwrite. If you specify a device instead of a file, you can choose either Append
or Overwrite.

To print directly to a printer, specify the name of the printer port such as LPTI or
COM2. You must specify a filename or a device name. CodeView reports an error
if you omit the name.

DOS Shell
In MS-DOS only, you can use the DOS Shell command to leave CodeView tem­
porarily and go to the operating-system prompt.

When you choose the Shell command, CodeView starts a second copy of the com­
mand processor specified by the COMSPEC environment variable. If there is not
enough memory to open a new shell, a message appears. Even if you do have
enough memory to start a command shell, you may not have enough memory to
execute large programs from the shell.

While in the shell, do not start any terrninate-and-stay-resident (TSR) programs,
such as MSHERC.COM, and do not delete files you are working on during your
debugging session. Also, do not delete any files used by CodeView, such as the
CURRENT.STS file.

To return to CodeView, type ex; t at the operating-system prompt to close the
shell. For more information about starting a shell, see the "Shell Escape" com­
mand on page 468.

360 Environment and Tools

The Edit Menu

Exit
The Exit command saves the current Code View environment and returns to the
program that called CodeView, such as COMMAND. COM, PWB, or another edi­
tor. CodeView saves the window arrangement, watch expressions, option settings,
and most breakpoints in the state file, CURRENT.STS. It saves current color set­
tings in CLRFILE.CV 4 if you are using CV and in CLRFILE.CVW if you are
usingCVW.

When you start the debugger at a later time, CodeView restores these settings. To
prevent Code View from restoring the information it stores in CURRENT.STS,
start the debugger with the ITSF option or use the StatefIleread entry in your
TOOLS.INI file.

The Edit menu contains commands to undo changes to window's fields, copy
selected text to the clipboard, and paste the contents of the clipboard into a win­
dow. For more details on editing in CodeView's windows, see "Code View Win­
dows" on page 347.

The following table summarizes the commands on the Edit menu:

Command

Undo

Copy

Paste

Undo

Purpose

Reverses the last editing change

Copies the selected text to the clipboard

Inserts the contents of the clipboard at the cursor

The Undo command (ALT+BACKSPACE) reverses the last editing action.

Copy
The Copy command (CTRL+INs) copies selected text to the clipboard. Because
input to CodeView is restricted to single lines, you can copy only a single line of
text. If you select more than a single line of text, the Copy command is disabled
and pressing CTRL+INS has no effect.

Paste
The Paste command (SHIFf+INS) inserts text from the clipboard at the cursor in the
Command window.

The CodeView Environment 361

The Search Menu
The Search menu provides commands to find strings and regular expressions in
source files and to locate the definitions of labels and routines.

The following table summarizes the commands on the Search menu:

Command Purpose

Find Searches for a text string or pattern in the source file

Selected Text Searches for the selected text in the source file

Repeat Last Find Repeats the last text search

LabelIFunction Searches for a label or function definition in the program

Find
The Find command displays the Find dialog box. In the Find What text box, type
the text or pattern you want to find. You can also select text in a window and then
choose Find. The text you selected is shown in the dialog box.

You can select options in the dialog box to modify the way CodeView searches for
text. The following options are available:

Whole Word
CodeView matches the text only when it occurs as a word by itself. For ex­
ample, when you search for the pattern pri nt with the Whole Word option,
Code View finds pri nt ("eeep"), but not e r ro r _ p ri nt ("eeep").

Match Case
CodeView matches the text when each letter in the pattern has the same case
as the source file. For example, the pattern fi sh matches fi sh, but not Fi sh.

Regular Expression
CodeView treats the text as a regular expression. Regular expressions provide
a powerful way to specify patterns that match several different sections of text.
For more information about regular expressions, see Appendix A.

To search for a regular expression in the active Source window using the Com­
mand window, you can type the Search (I) command followed by the string.
CodeView searches the file starting at the current position. CodeView places the
cursor on the next occurrence of the search pattern. If the end of the file is reached
without finding a match, CodeView wraps around and continues searching from
the beginning of the file.

Selected Text
The Selected Text command (CTRL+\) searches for the next occurrence of the
selected text in the Source window.

362 Environment and Tools

The Run Menu

Repeat Last Find
The Repeat Last Find command (ALT +/) searches for the next occurrence of the
search pattern, including search options, you last specified.

Label/Function
The Label/Function command lets you search the program's symbolic information
for the definition of a label or routine. When you choose Label/Function, the Find
Label/Function dialog box appears. The currently selected text or the word at the
cursor comes up in the Label/Function Name text box. You can search for this
name or type in a different label or routine name.

When you choose OK, CodeView searches the symbolic information in the pro­
gram for the name. When the label or routine name is found, Code View positions
the cursor at the name in the source file.

To view the current program location after searching, choose the first item in the
Calls menu or type the Current Location (.) command in the Command window.

The Run menu consists of commands to restart the program, animate the program
in slow motion, change the program's arguments, load a new program, or con­
figure the modules CodeView is using.

The following table summarizes the commands on the Run menu:

Command

Restart

Set Runtime
Arguments

Animate

Load

Restart

Purpose

Restarts the program

Changes the program's run-time arguments and restarts the
program

Executes the program in slow motion

Loads a new program to debug, sets run-time arguments, and
configures CodeView's modules

The Restart command resets execution to start at the beginning of the program.
After you issue the command, CodeView:

• Initializes all program variables.

• Resets the pass counts for all breakpoints.

The CodeView Environment 363

• Preserves existing breakpoints, watch expressions, and the program's
command-line arguments.

You can use Restart any time after execution stops: at a breakpoint, while stepping
or tracing, or when your program ends. If your program redefines interrupts, Re­
start may not work correctly because it does not execute any cleanup or exit-list
code in the program. If your program requires this code to be executed, let the pro­
gram run to the end before restarting, or use the Display Expression (?) command
in the Command window to call the cleanup routines. For more information on
calling program routines, see "Display Expression" on page 477.

Set Runtime Arguments
The Set Runtime Arguments command lets you change your program's command­
line arguments. When you set new arguments, CodeView restarts the program.

Animate
The Animate command executes your program in slow motion. Code View high­
lights each statement in the Source window as your program executes. This allows
you to see the flow of execution. To stop animation, press any key.

You can set the animation speed with the Trace Speed command from the Options
menu or with the Trace Speed (T) Command-window command.

Load
The Load command displays the Load dialog box, which you can use to:

• Load executable (.EXE or .DLL) files.

• Change the program's command-line arguments.

• Specify different CodeView components from those specified in TOOLS.lNI,
such as a different expression evaluator or the p-code execution model.

Loading Programs or DLLs To load program or DLL symbols into the debug­
ger, type a filename in the File to Debug text box, or use the mouse or keyboard
to select a file from the File List box. Use the Drives/Dirs list box to change to a
different drive or directory.

Set Command-Line Arguments Use the Arguments text box to change the
command-line arguments to the program you are debugging or to set entirely new
arguments. Type the arguments to your program as you would on the command
line.

364 Environment and Tools

The Data Menu

Configure CodeView Modules CodeView uses a default setting for an execution
model, transport layer, and expression evaluator if any of these is not specified in
TOOLS.INI. Click the Configure button to load different Code View DLLs. The
Configure dialog box lists the DLLs that CodeView has loaded. CodeView loads
several DLLs that are required to debug your programs. These DLLs include:

• Expression evaluators for various languages and environments.

• Execution models for various operating systems.

• Execution models for p-code.

• Transport layers.

To load new DLLs, click the Change buttons on the right side of the dialog box.

The Data menu provides commands to add and delete watch expressions and
breakpoints. Watch expressions allow you to observe how variables change as
your program executes and also to expand arrays and dereference pointers. Break­
points allow you to stop execution of your program to check the values of your
variables, determine execution flow, and change how your program executes.

For more information about watch expressions, see Chapter 11, "Using Expres­
sions in CodeView" and the "Add Watch Expression" command on page 460.

The following table summarizes the commands on the Data menu:

Command Purpose

Add Watch Adds an expression to the Watch window

Delete Watch Deletes an expression from the Watch window

Set Breakpoint Sets a breakpoint in the program

Edit Breakpoints Modifies or removes existing breakpoints
Quick Watch Displays a quick view of a variable or expression

Add Watch
The Add Watch command (CTRL+W) displays the Add Watch dialog box, which
shows the selected text or the word at the cursor in the Expression text box. You
can enter a different expression or add a format specifier to the expression. When
you choose OK, the expression is added to the end of the Watch window.

The CodeView Environment 365

Delete Watch
The Delete Watch command (CTRL+U) displays the Delete Watch dialog box,
which displays a list of the watch expressions in the Watch window. Select the
expression you want to delete from the list and choose OK. Click the Clear All
button to remove all expressions from the Watch window.

You can also delete expressions directly from the Watch window. Use the mouse
or the cursor keys to move the cursor to the expression you want removed, and
press CTRL+ Y.

Set Breakpoint
The Set Breakpoint command displays the Set Breakpoint dialog box, which
allows you to select from several kinds of breakpoints and set options for each
type. The following list describes the breakpoints you can set:

Break at Location
This is the simplest type of breakpoint. You specify an address or a line number
where you want execution to pause. To specify a line number, precede it with a
period (.); otherwise, Code View will interpret it as an address. When your pro­
gram's execution reaches the breakpoint location, your program stops tempor­
arily, and you can enter CodeView commands.

Break at Location if Expression is True
You specify a location and an expression. Whenever execution reaches that
location, CodeView checks the expression. If the expression is true (nonzero),
the breakpoint is taken. Otherwise, execution continues.

Break at Location if Expression has Changed
You specify a location and an expression that represents a variable or any por­
tion of memory. To specify a range of memory, enter the length of the range in
the Length text box. CodeView checks the variable or the range of memory
when execution reaches the breakpoint location. If the value of any byte has
changed since the last time CodeView checked, the breakpoint is taken. Other­
wise, execution continues.

Break When Expression is True
This breakpoint is taken whenever the expression becomes true. CodeView
evaluates the expression after every line or every instruction, instead of only
at a certain location. As a result, this type of breakpoint can greatly slow your
program's execution.

Break When Expression has Changed
CodeView checks the variable or the range of memory as each line or each in­
struction is executed. You can also specify a range with the Length text box.
This type of breakpoint can also slow your program's execution.

366 Environment and Tools

Each breakpoint is numbered, beginning with O. For each type of breakpoint, you
can set several options. If you try to use an option that does not apply to a certain
breakpoint, CodeView displays NI A in the edit box and ignores that option. The
options are:

Location
Specifies where CodeView should evaluate the breakpoint.

Expression
Specifies an expression that causes a break when it becomes true or a location
that is to be watched for changes.

Length
Specifies a range of memory (starting at the address in the Expression text box)
to watch for changes.

Pass Count
Specifies the number of times to pass over the breakpoint when it otherwise
would be taken. For example, a pass count of 10 tells CodeView to ignore the
breakpoint ten times.

Commands
Specifies a list of Command-window commands, separated by semicolons, that
are executed when the breakpoint is taken. If several breakpoints with com­
mands are taken, the commands are queued and executed in first-in, first-out
order.

As shortcuts, you can also set simple (break at location) breakpoints with the fol­
lowing methods:

• Double-click the line in the Source window.

• Move the cursor to the breakpoint location in the Source window and press F9.

A line with a breakpoint is highlighted. In the Mixed and Assembly modes, an
assembly-language comment that displays the breakpoint number appears. For
example:

0047:0b30 57 push di ;BK0

In this example, breakpoint number 0 is set at the address 0047: 0B30.

You can also set breakpoints with the Breakpoint Set (BP) command. See the
"Breakpoint Set" command on page 429.

Edit Breakpoints
The Edit Breakpoints command displays the Edit Breakpoints dialog box, where
you can add, remove, change, enable, and disable breakpoints. Select a breakpoint
from the list of breakpoints, then choose one of the command buttons on the right
side of the dialog box.

The CodeView Environment 367

The list of breakpoints in the Edit Breakpoints dialog box shows the current state
of each breakpoint in your program. For more information on the format of the
breakpoint list, see the "Breakpoint List" command on page 429.

The command buttons in the Edit Breakpoints dialog box are described in the fol­
lowing table:

Button

Add

Remove

Modify

Enable

Disable

Clear All

Description

Adds a new breakpoint

Removes the selected breakpoint

Modifies the same breakpoint

Activates a disabled breakpoint

Disables an active breakpoint

Removes all breakpoints

If you select the Modify button, Code View displays the Set Breakpoint dialog box
with the appropriate options set for the breakpoint you selected. You can then
modify the options and set the breakpoint just as you do with the Set Breakpoint
command.

When you disable a breakpoint by selecting the Disable button, Code View does
not evaluate the breakpoint. Program execution continues as if the breakpoint was
never set.

You may encounter several occasions where it is useful to disable a breakpoint.
Sometimes a certain breakpoint is not practical when you are debugging a routine
nested deeply in your program. You can reenable the breakpoint later when you re­
ally need it. Also, conditional breakpoints are evaluated at every program step and
can slow execution. You can disable some conditional breakpoints in areas of your
program where you're certain you won't need them.

Quick Watch
The Quick Watch command (SHIFT+F9) displays the Quick Watch dialog box,
which shows the variable at the cursor position or the selected expression. The
Quick Watch dialog box is similar to the Watch window. However, you mainly
use Quick Watch for a quick exploration of the current values in an array or a
pointer-based data structure, rather than as a method to constantly display the
values.

The Quick Watch dialog box automatically expands structures, arrays, and point­
ers to their first level. You can expand or contract an element just as you can in the
Watch window. If the expanded item needs more lines than the Quick Watch
dialog box can display, you can scroll the view up and down.

368 Environment and Tools

Choose the Add Watch button to add a Quick Watch item to the Watch window.
Expanded items appear in the Watch window as they are displayed in the Quick
Watch dialog box.

For complete information on using the Quick Watch dialog box, see the "Quick
Watch" command on page 478.

The Options Menu
The Options menu contains commands to change the default behavior of
Code View commands and the display status of CodeView windows. You can also
set display options with various Command-window commands. When the cursor
is in one of the Source, Memory, or Local windows, you can press CTRL+O to dis­
play the window's Options dialog box.

For menu items that are toggles, a bullet appears to the left of the item when the
option is turned on. No bullet appears when it is turned off.

The following table summarizes the commands on the Options menu:

Command

Source1 Window

Source2 Window

Memoryl Window

Memory2 Window

Local Options

Trace Speed

Language

Horizontal Scrollbars

Vertical Scrollbars

Status Bar

Colors

Screen Swap

Case Sensitivity

32-Bit Registers

Native

Source Window

Purpose

Sets Source window 1 display options

Sets Source window 2 display options

Sets Memory window 1 display options

Sets Memory window 2 display options

Sets Local window display options

Sets animation speed

Sets the expression evaluator

Toggles horizontal scroll bars on windows

Toggles vertical scroll bars on windows

Toggles the status bar display

Changes colors of CodeView screen elements

Toggles screen exchange

Toggles case sensitivity of symbols

Toggles display of 32-bit registers

Toggles display of p-code or machine code instructions

The Source Window command displays the Source Window Options dialog box.
In this dialog box, you can set the source display mode and other options for the
current Source window. These options are as follows:

Option

Follow CS:IP
thread of control

Source

Mixed Source and
Assembly

Assembly

Tab Length

Show Machine
Code

Show Symbolic
Name

Memory Window

The CodeView Environment 369

Description

Keeps the current program location visible in the active Source
window.

Displays the source code for the program.

Displays each source line followed by the disassembly of the
code generated for that line.

Displays a disassembly of the machine code in your program.

Sets the number of spaces to which tab characters expand in the
source file.

Shows the address and hexadecimal representation of the
machine code in Mixed and Assembly modes.

Shows the symbol name in assembly-language displays instead
of the numeric value of the symbol.

The Memory Window command displays the Memory Window Options dialog
box, where you can set the starting address and display format of the active
Memory window. For details, see "The Memory Windows" on page 356 and the
"View Memory" command on page 455.

local Options
You can specify the scope of variables to be displayed in the Local window. When
you select Local Options from the Options menu, a dialog box appears in which
you can select any combination of lexical, function, module, executable, and
global scopes. You can also toggle the display of addresses in the Local window
from the Local Options dialog box. When you turn Show Addresses on, the BP­
relative address of each local variable is shown in the Local window. Otherwise,
the Local window shows only the names of the variables.

You can also use the Options (OL) command in the Command window to specify
the scope of variables to be displayed in the Local window. For information about
the Options command, see page 445.

Trace Speed
The Trace Speed command displays the Trace Speed dialog box, which presents a
list of three speeds from which you can select.

When you use the Animate command to run your program in slow motion,
CodeView pauses execution between each step. The duration of the pause is set
with the Trace Speed command. Slow pauses for 112 second. Medium pauses for

370 Environment and Tools

1/4 second. Fast runs the program as fast as possible while still updating
CodeView windows and evaluating breakpoints and watch expressions.

language
The Language command displays the Language dialog box, which presents a list
of the expression evaluators that CodeView has loaded, plus the Auto option.

In your TOOLS.lNI file, you can configure CodeView to load a number of differ­
ent expression evaluators. You can also load expression evaluators by choosing
Load from the Run menu. Only one expression evaluator can be active at a time.

The Auto setting is the default. It tells Code View to set the expression evaluator
automatically based on the extension of the source file you are debugging in the
current Source window. For more information on expression evaluators, see "Con­
figuring CodeView with TOOLS.lNI" on page 329.

For more information on using expression evaluators, see Chapter 11, "Using
Expressions in CodeView."

Horizontal Scrollbars
The Horizontal Scrollbars command toggles the horizontal scroll bars on and off.
When scroll bars are off, you can drag the bottom window frame, as well as the
size box, to resize the window.

Vertical Scrollbars
The Vertical Scrollbars command toggles the vertical scroll bars on and off. When
scroll bars are off, you can drag the right window frame, as well as the size box, to
resize the window.

Status Bar
The Status Bar command toggles the status bar on and off. When the status bar is
off, you gain an extra line of space for windows.

Colors
The Colors command displays a dialog box that lets you change the colors of
Code View screen elements. The Item list box displays all the elements of the de­
bugging screen. The Foreground and Background list boxes show the current color
settings for the highlighted element in the Item list box.

The CodeView Environment 371

To change the color of a screen element, choose an element in the Item list box,
then choose foreground and background colors. When you are done, click the OK
button. Your new color settings take effect as soon as you exit the dialog box.

If you make a number of changes and want to go back to your previous color set­
tings, click the Reset button. You can then start changing colors again. To close
the dialog box without making any changes, click the Cancel button. To reset to
the standard Code View colors, click the Use Default button.

When you specify colors using the Colors command in CodeView, the colors
are saved in CLRFILE.CVW if you are using CodeView for Windows and in
CLRFILE.CV 4 if you are using CodeView for DOS. CodeView saves these files
in the directory specified by the INIT environment variable or in the current direc­
tory if no INIT environment variable is set. These settings become the new default
colors.

Screen Swap
The Screen Swap command toggles screen exchange on or off. By default,
CodeView switches to your program's output screen whenever you execute code
in the program. CodeView uses either screen flipping or screen swapping, depend­
ing on the command-line options you used to start the debugger. See "Set Screen­
Exchange Method" on page 341.

If your program sends no output to the screen, you'll probably want to tum Screen
Swap off. This setting continuously displays CodeView's screen while your pro­
gram executes.

If Screen Swap is off and your program writes to the screen, a portion of the
CodeView display may be overwritten. If this happens, type the Refresh (@)
command in the Command window.

Case Sensitivity
The Case Sensitivity command toggles case sensitivity on or off. When Case Sen­
sitivity is on, CodeView treats symbol names as case sensitive (that is, a lowercase
letter is different from its corresponding uppercase letter). This option affects only
commands that deal with symbols in your program; it does not affect the text­
searching commands.

32-Bit Registers
The 32-Bit Registers command toggles 386 mode on and off. When 386 mode is
on, a bullet appears next to the command on the menu, and CodeView displays the
32-bit registers in the Register window. In this mode, CodeView can also assemble
instructions that use 32-bit registers or memory operands.

372 Environment and Tools

The Calls Menu

To step out of deeply
nested code, choose
a routine and then
press F7.

Native
When you are debugging a program that uses p-code, you use the Native com­
mand to toggle between p-code instructions and native machine instructions. With
Native mode on, Code View displays your program's native CPU instructions.
With Native mode off, CodeView displays the instructions in p-code.

For more information on debugging p-code, see page 389.

The Calls menu shows what routines have been called into your program during
debugging. Its contents change to reflect their current status. The current routine
is at the top of the menu; the routine that called it appears just below. Routines are
listed in the reverse order in which they were called. At the bottom of the list is
your program's main routine. In C, for example, main appears at the bottom.
When you are debugging a Windows application, winmain is at the bottom of
the list.

The Calls menu is empty until the program enters at least one routine that creates
a stack frame. Listed with each routine name are the arguments to each routine in
parentheses. The menu's width expands to accommodate the widest entry. Argu­
ments are shown in the current radix, except for pointers, which are always shown
in hexadecimal.

When you choose a routine from the Calls menu, CodeView displays the source
code for that routine and updates the Local window to show the local variables in
that routine. The cursor moves to the return location to show the next line or in­
struction that will be executed when control returns to that routine.

Choosing a routine from the Calls menu does not affect program execution; it pro­
vides you with a convenient way to view a routine's source code and local varia­
bles. However, since the cursor is positioned at the return location, you can press
F7 to execute through the stack of nested calls to that line. This is especially con­
venient when you find you've accidentally traced into a deeply nested set of rou­
tines which you know to be bug-free. Rather than continue a tedious trace until
you work your way out of the stack of routines, you can choose a routine from the
Calls menu and press F7. CodeView executes through the nested routines until con­
trol returns to the point you chose.

A routine may not be visible in the Calls menu under the following circumstances:

• You have traced only startup or termination routines from the run-time library.

• Routine calls are nested so deeply that not all routines appear on the menu.

• The stack has been corrupted.

The CodeView Environment 373

• CodeView cannot trace through the stack frame because the BP register is
overwritten.

The Windows Menu
If you get lost among
your windows, try the
Arrange command.

The Windows menu contains commands that activate, open, close, tile, arrange,
and manipulate CodeView windows. There is also a command to view your pro­
gram's output screen. A bullet appears to the left of the active window when you
open this menu.

All the windows are numbered. You can quickly open or switch to a window by
pressing ALT plus the window's number.

The following table summarizes the commands on the Windows menu and the
corresponding shortcut keys:

Command Shortcut Key Purpose

Restore CTRL+FS Restores the active window to its size and position
before it was maximized or minimized

Move CTRL+F7 Moves the active window using the keyboard

Size CTRL+F8 Sizes the active window using the keyboard

Minimize CTRL+F9 Shrinks the active window to an icon

Maximize CTRL+FlO Enlarges the active window to full screen

Close CTRL+F4 Closes the active window

Tile SHlFT+FS Arranges all open windows to fill the entire window area

Arrange ALT+FS Arranges all open windows to an effective layout for
debugging

Help ALT+O Opens or switches to the Help window

Local ALT+l Opens or switches to the Local window

Watch ALT+2 Opens or switches to the Watch window

Source 1 ALT+3 Opens or switches to Source window 1

Source 2 ALT+4 Opens or switches to Source window 2

Memory 1 ALT+S Opens or switches to Memory window 1

Memory 2 ALT+6 Opens or switches to Memory window 2

Register ALT+7 Opens or switches to the Register window

8087 ALT+8 Opens or switches to the 8087 window

Command ALT+9 Opens or switches to the Command window

View F4 Swaps the CodeView screen for the program's output
Output screen

374 Environment and Tools

The Help Menu

Source and Memory Windows
You can open as many as two Source and two Memory windows. At least one
Source window must be open at all times. To close a window, use the Close com­
mand (CTRL+F4).

Help, local, Watch, Register, 8087, and Command Windows
CodeView can display one of each of these windows. The Register window has an
additional shortcut key (F2) you can use to open or close it.

When you open the Help window, CodeView displays the last Help screen you
viewed. If you have not yet viewed Help during the session, CodeView displays
the top-level contents in the Microsoft Advisor.

View Output
To view your program's output screen, choose View Output or press ALT+F4.

Code View displays the output screen until you press a key.

The Help menu contains commands to access the Microsoft Advisor Help system.
When you choose a Help command, CodeView opens the Help window if it is not
already open and displays the appropriate part of the Microsoft Advisor.

When the Help window is open, you can browse through Help with mouse and
keyboard commands. All Microsoft environments provide the same mouse and
keyboard commands to access the Microsoft Advisor. For more information on
getting the most out of Help, see Chapter 23.

The following table summarizes the commands on the Help menu:

Command

Index

Contents

Topic

Help on Help

About

Index

Purpose

Displays the table of Microsoft Advisor indexes

Displays the Microsoft Advisor contents screen

Displays Help on the current word

Displays Help on using the Microsoft Advisor

Displays Code View copyright and version information

The Index command displays a table of available indexes. Each part of the Help
system has its own index.

The CodeView Environment 375

Contents
The Contents command (SHIFT+Fl) displays the contents for the entire Help sys­
tem. This screen lists the table of contents for each Help system component.

Topic
The Topic command (FI) displays help on the word at the cursor or the selected
text. When you open the Help menu, CodeView displays the topic in the menu.
When you choose the Topic command, CodeView displays information on the
indicated topic in the Help window.

Help on Help
The Help on Help command displays information on the Microsoft Advisor itself.
It describes how the system is organized, how the mouse and keyboard commands
are used to browse through Help, and how to use the various kinds of buttons you
encounter.

About
The About command displays the CodeView copyright and version information in
a dialog box.

Special Topics

10.1 Debugging in Windows
The Microsoft Code View for Windows debugger (CVW) is a powerful tool for an­
alyzing the behavior of Microsoft Windows programs. With CVW, you can test
the execution of your application and examine your application's data. You can
isolate problems quickly because you can display any combination of variables­
global or local-while you halt or trace your application's execution.

Comparing CVW with CV
The CVW windows, menus, and commands are used in the same way as for CV.
See Chapter 9, "The CodeView Environment," for details on the format of
CodeView windows and how to use the windows and menus. Like the MS-DOS
CodeView, CVW allows you to display and modify any program variable, section
of addressable memory, or processor register. However, CodeView for Windows
differs from CV in the following ways:

• Because Windows has a special use for the ALT +1 key combination used by CV
to repeat a search, CVW uses CTRL+R.

• CVW tracks your application's segments and data as Windows moves them in
memory. Thus, when you refer to an object by name, CVW always supplies the
correct address.

CVW also provides six additional Command-window commands for Windows de­
bugging, which are summarized in the following list:

Windows Display Global Heap (WDG)
Displays memory objects in the global heap.

Windows Display Local Heap (WDL)
Displays memory objects in the local heap.

Windows Dereference Local Handle (WLH)
Dereferences a local heap handle to a pointer.

378 Environment and Tools

Windows Dereference Global Handle (WGH)
Dereferences a global heap handle to a pointer.

Windows Display Modules (WDM)
Displays a list of the application and DLL modules currently loaded in
Windows.

Windows Kill Application (WKA)
Terminates the task that is currently executing by simulating a fatal error.

For details on using these commands, see "cvw Commands" on page 382.

The following CV features are not available in CVW.

• The Print command from the File menu.

• The DOS Shell command from the File menu and the corresponding Shell (!)
Command-window command.

• The Screen Swap command from the Options menu and the corresponding
Options (OF) Command-window command.

Preparing to Run CVW
Before beginning a CVW debugging session, you must ensure that your system is
configured correctly and the Windows application you are going to debug is com­
piled and linked with the options that generate CodeView debugging information.

For information on setting up your system and configuring CodeView, see "Set­
ting up CodeView" on page 327. For information on preparing programs for use
with Code View, see "General Programming Considerations" on page 322 and
"Compiling and Linking" on page 323.

Starting a Debugging Session
Like most Windows applications, CVW can be started in several ways. You can
double-click the CVW icon and respond to CVW's prompts for arguments, or you
can run CVW by using the Run command from the Program Manager File menu.

To specify CVW options, choose the Run command from the Program Manager
File menu. Windows displays a dialog box where you can enter the appropriate
options for your debugging session. For specific information on Code View
command-line syntax and options, see "The CodeView Command Line" on
page 336.

You can run CVW to perform the following tasks:

• Debug a single application

• Debug multiple instances of an application

Special Topics 379

• Debug multiple applications

• Debug dynamic-link libraries (DLLs)

This section describes the methods you use to perform these tasks and summarizes
the syntax of the CVW command line for each task.

Starting CVW for a Single Application
After you start CVW from Windows, CodeView displays the Load dialog box.

~ To start debugging a single application:

1. Type the name of the application in the File to Debug text box.

CVW assumes the .EXE filename extension if you do not include an extension
for the application name. You can also pick the program that you want to debug
by choosing it from the Files List box.

2. If you want to specify command-line arguments, move the cursor to the Argu­
ments text box and type the program's command line.

3. Choose OK.

CVW loads the application and displays the source code for the application's
WinMain routine.

4. Set breakpoints in the code if you desire.

5. Use the Go (G) command (FS) to begin executing the application.

~ To avoid the startup dialog boxes:

1. Choose the Run command from the Windows File menu.

2. Type the application name and arguments on the CVW command line. Use the
following syntax to start debugging a single application:

CVW [options] appname[.EXE] [arguments]

3. Choose OK.

Starting CVW for Multiple Instances of an Application
Windows can run multiple instances of an application, which can cause problems.
For example, each instance of an application might corrupt the other's data. To
help you solve such problems, CVW allows you to debug multiple instances of
an application. The breakpoints you set in your application apply to all of the in­
stances. To determine which instance of the application has the focus in CVW,
examine the DS register.

380 Environment and Tools

~ To debug multiple instances of an application:

1. Start CVW as usual for one instance of your application.

2. Run additional instances of your application by choosing the Run command
from the Windows File menu.

You cannot specify the application name more than once on the CVW com­
mand line. Any additional application names are passed as arguments to the first
application.

Starting CVW for Multiple Applications
You can debug two or more applications at the same time, such as a dynamic data
exchange (DDE) client and server.

~ To debug several applications at the same time:

1. Start CVW as usual for a single application.

2. Choose Load from the Run menu and choose other applications that you also
want to debug.

3. Set breakpoints in either or both applications. You can use the Open Module
command from the CVW File menu to display the source code for the different
modules. If you know the module and the location or function name, you can
use the context operator ({ }) to directly set breakpoints in the other applications.

4. Use the Go (G) command (ps) to start running the first application.

5. Choose the Run command from the Windows File menu to start running the
second application.

You can also use the IL option on the CVW command line to load the symbols for
additional applications, as shown in this example:

CVW ILsecond.exe ILthird.exe first

The IL option and name of each additional application must precede the name of
the first application on the command line. You must specify the .EXE filename ex­
tension for the additional applications. Repeat the IL option for each application to
be included in the debugging session.

Once CVW starts, choose the Run command from the Windows File menu to start
executing the additional applications.

Note Global symbols with the same name in several applications (such as
Wi nMa in) may not be distinguished. You can use the context operator to specify
the exact instance of a symbol.

Special Topics 381

Starting CVW for Dlls
You can debug one or more DLLs while debugging an application.

~ To debug a DLL at the same time as an application:

1. Start CVW as usual for the application.

2. Choose Load from the Run menu and type the name of the DLL.

3. Set breakpoints in the application or DLL. You can use the Open Module com­
mand from the CVW File menu to display the source code for the different
modules.

4. Use the Go (G) command (ps) to continue executing the application.

You can also use the IL option on the CVW command line to specify the DLLs, as
shown in this example:

CVW ILappdll appname

The IL option must precede the name of the application. Repeat the IL option for
each DLL you want to debug.

Debugging the LibEntry DLL Initialization Routine cvw allows you to debug
the LibEntry initialization routine of a DLL. If your application implicitly loads
the library, however, a special technique is required to debug the LibEntry
routine.

An application implicitly loads a DLL if the library routines are imported in the
application's module-definition (.DEF) file or if your application imports library
routines through an import library when you link the application. An application
explicitly loads a DLL by calling the LoadLibrary routine.

If your application implicitly loads the DLL and you specify the application in the
Command Line dialog box, Windows automatically loads the DLL and executes
the LibEntry routine when it loads the application. This gives you no opportunity
to debug the LibEntry routine since it is executed when the application is loaded
and before CVW gains control.

To gain control before the LibEntry routine is executed, you must set a break­
point in the LibEntry routine before the DLL is loaded.

~ To set this breakpoint:

1. In the CVW Load dialog box, provide the name of a "dummy" application
that does not load the library instead of the name of your application. The
WINSTUB.EXE program is provided for this purpose.

2. Load the DLL by using the Load command from the Run menu.

382 Environment and Tools

3. Choose the Open Module command from the CVW File menu and select the
module containing the LibEntry routine.

4. Set at least one breakpoint in the LibEntry routine.

5. Use the Go (G) command (F5) to start the dummy application.

6. Run your application using the Run command from the Windows File menu.
CVW resumes control when the breakpoint in the LibEntry routine is taken.

You can also specify the dummy application and the DLL on the CVW command
line.

~ To begin a DLL debugging session from the command line:

1. Type the command line:

CVW ILmydll winstub

2. After CVW starts, follow steps 3 through 6 above to begin debugging.

CVW Commands

Syntax

CVW recognizes several commands for Windows debugging in addition to the
Command-window commands recognized by CV.

These commands allow you to inspect objects in the Windows global and local
heaps, list the currently loaded modules, trace and set breakpoints on the occur­
rence of Windows messages, and terminate the currently executing task.

Windows Display Global Heap
The Windows Display Global Heap (WDG) command lists the memory objects in
the Windows global heap.

WDG [ghandle]

If ghandle is specified, WDG displays the first five global memory objects that
start at the object specified by ghandle. The ghandle argument must be a valid
handle to an object allocated on the global heap.

If ghandle is not specified, WDG displays the entire global heap in the Command
window.

Global memory objects are displayed in the order in which Windows manages
them, which is typically not in ascending handle order. The output has the follow­
ing format:

Format

Syntax

Format

Special Topics 383

handle address size PDB locks type owner

Any field may not be present if that field is not defined for the block.

Field

handle

address

size
PDB

locks

type

owner

Description

Value of the global memory block handle.

Address of the global memory block.

Size of the block in bytes.

Block owner. If present, indicates that the task's Process Descriptor Block
is the owner of the block.

Count of locks on the block.

The memory-block type.

The block owner's module name.

Windows Display local Heap
The Windows Display Local Heap (WDL) command displays the entire Windows
heap of local memory objects. This command's syntax takes no arguments.

WDL

The output has the following format:
C7-----

handle address size flags locks type heaptype blocktype

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

flags

locks

type

heaptype

blocktype

Description

Value of the global memory block handle

Address of the block

Size of the block in bytes

The block's flags

Count of locks on the block

The type of the handle.

The type of heap where the block resides

The block's type

Windows Display Modules
The Windows Display Modules (WDM) command displays a list of all the DLL
and task modules that Windows has loaded. To see a list of known modules, type
the WDM command in the Command window.

384 Environment and Tools

Syntax WDM

Syntax

Each entry in the list is displayed with the following fonnat:

handle refcount module path

Field

handle

refcount

module

path

Description

The module handle

The number of times the module has been loaded

The name of the module

The path of the module's executable file

Watching Windows Messages
You can trace the occurrence of a Windows message or an entire class of Win­
dows messages by using the Breakpoint Set (BP) command. You can stop at each
message, or you can execute continuously and display the messages in the Com­
mand window as they are received.

To trace a Windows message or message class, set a breakpoint using the follow­
ing options:

BP winproc 1M {msgnamelmsgclass} [ID]

winproc
Symbol name or address of a window function.

msgname
The name of a Windows message, such as WM_PAINT. The msgname is case
sensitive.

msgclass
A case-insensitive string of characters that identifies one or more classes of
messages to watch. Use the following characters to indicate the class of Win­
dows message:

Class Type of Windows Message

m Mouse

w Window management

n Input

s System

Initialization

c Clipboard

d DDE

z Nonclient

Syntax

ID

Special Topics 385

When specified, CodeView displays the message in the command window, but
your program continues executing. The message is displayed similar to the fol­
lowing example:

HWND:1c00 wParm:0000 1Parm:000000 msg:000F WM_PAINT

For each matching message that is sent to the specified winproc, CVW lists the
hexadecimal values of the window handle (HWND), word parameter (wParm), long
parameter (1 Pa rm), and message (msg) arguments, along with the name of the
message.

You can also specify a pass count and commands to be executed when the break­
point is taken. For details on the full Breakpoint (BP) command syntax, see "BP
(Breakpoint Set)" on page 429. Note that you can also use the Breakpoint Set com­
mand from the Data menu to set all types of breakpoints.

Windows Kill Application
The Windows Kill Application (WKA) command terminates the currently execut­
ing task by simulating a fatal error. Since a fatal error terminates the application
without performing any of the normal program exit processing, use WKA with
caution.

To terminate your application, type the following command in the Command
window:

WKA

As a result of the simulated fatal error, Windows displays an Unexpected Applica­
tion Error message box. After you close this message box, Windows may not
release subsequent mouse input messages from the system queue until you press
a key.

If this happens, the mouse pointer moves on the Windows screen but Windows
does not respond to the mouse. After you press any key, Windows responds to the
queued mouse events.

The currently executing task is not necessarily your application, so you should use
the WKA command only when your application is the currently executing task.
You can be sure that your application is the currently executing task when CVW
shows the current location at a breakpoint in your application.

For more information on using the WKA command, see "Terminating Your Pro­
gram" on page 387.

386 Environment and Tools

CVW Debugging Techniques
Debugging Windows programs can be a challenging experience. Objects move
around in memory. The thread of execution can be a twisting maze where it is dif­
ficult to know what code is executing or to control what code in your program is
executed.

This section describes the WLH and WGH commands that you use to examine
movable memory objects by their handles. It also describes ways to control your
application's execution, how to interrupt and resume debugging your application,
how to handle abnormal termination from fatal errors and general protection
faults, and how to resume debugging your application after a normal termination.

Dereferencing Memory Handles
In a Windows application, the LocalLock and GlobalLock routines are used to
lock memory handles so that they can dereference them into near or far pointers.

In a debugging session, you may know the memory object's handle. However,
you may not know what near or far address the handle references unless you are
debugging in an area where the program has just completed a LocalLock or
GlobalLock routine call. To get the near and far pointer addresses for unlocked
local and global handles, use the WLH and WGH commands.

For detailed information on the WLH and WGH commands, see "WGH (Win­
dows Dereference Global Handle)" on page 463 and "WLH (Windows Derefer­
ence Local Handle)" on page 466.

Controlling Application Execution
In CVW, all of the Code View execution commands (Go, Program Step, Trace, and
Animate) can be used to control your application's execution. However, you
should keep these restrictions in mind while using CVW:

• Attempting to use the Program Step or Trace commands to execute Windows
startup code in Assembly mode causes unpredictable results. To step through
your application in Assembly mode, first set a breakpoint at the WinMain
routine and begin stepping through the program only after the breakpoint is
taken.

• Directly calling a Windows application procedure or dialog routine in the
Watch window, in the Quick Watch dialog box, or with the Display Expression
(?) command can have unpredictable results.

The rest of this section describes techniques and special considerations for control­
ling program execution in CVW.

Don't step or trace
system code.

Use the WOG
command to find
out which task
terminated.

Special Topics 387

Interrupting Your Program There may be times when you want to halt your pro­
gram immediately. You can interrupt your program by pressing CTRL+ALT+SYSREQ.

After you press CTRL+ALT+SYSREQ, CVW gains control and displays code corre­
sponding to the current CS:IP location. You then have the opportunity to examine
registers and memory, set breakpoints and watch expressions, and modify vari­
ables. To resume execution, use one of the CodeView program execution
commands.

You should take care when you interrupt execution. If you interrupt execution
while Windows code or other system code is executing, attempting to use the
Program Step or Trace commands can produce unpredictable results. When you
interrupt execution, it is safest to set breakpoints in your code and then resume
continuous execution with the Go command, rather than using the Program Step,
Trace, or Animate commands.

For example, an infinite loop in your code presents a special problem. Since you
should avoid using the Program Step or Trace commands after interrupting your
application, you should try to locate the loop by setting breakpoints in places you
suspect are in the loop, then resume continuous execution. When one of these
breakpoints is taken, you can be sure that the currently executing code is your
application code.

Terminating Your Program At times (such as when your application is execut­
ing an infinite loop), you may have to terminate the application. The Windows
Kill Application (WKA) command terminates the currently executing task. Since
this task is not necessarily your application, you should use the WKA command
only when your application is the currently executing task.

If your application is the currently executing task and is executing a module con­
taining CodeView information, the Source window highlights the current line or
instruction. However, if your application contains modules that are compiled with­
out CodeView information, it is more difficult to determine whether the assembly­
language code displayed in the Source window belongs to your application or to
another task.

In this case, use the Windows Display Global Heap (WDG) command with the
value in the CS register as the argument. CVW displays a listing that indicates
whether the code segment belongs to your application.

If the current code is in your application, you can safely use the WKA command
without affecting other tasks. However, the WKA command does not perform all
the cleanup tasks associated with the normal termination of a Windows applica­
tion. For example, global objects created during program execution but not de­
stroyed before you terminated the program remain allocated in the system-wide
global heap. This reduces the amount of memory available during the rest of the
Windows session. For this reason, you should use the WKA command to termi­
nate the application only if you cannot terminate it normally.

388 Environment and Tools

Note The WKA command simulates a fatal error in your application, causing
Windows to display an Unexpected Application Error message box. After you
close this message box, Windows may not release subsequent mouse input mes­
sages from the system queue until you press a key.

If this happens, the mouse pointer moves on the Windows screen, but Windows
does not respond to the mouse. After you press any key, Windows responds to the
queued mouse events.

Handling Abnormal Termination of the Application Your application can
terminate abnormally in one of two ways while you are debugging it with CVW.
It can cause a fatal exit, or it can cause a general protection fault. In both cases,
CVW gains control, giving you the opportunity to examine the state of the system
when your application terminated. CVW allows you to view registers, display the
global and local heaps, display memory, and examine your source code.

Handling a General Protection Fault
If the abnormal termination is caused by a general protection fault (GPF) while
executing your application code, CVW displays the line of code where the error
occurred. Also, the Command window displays the following message:

Trap 13 (0DH) -- General Protection Fault.

If the general protection fault occurred while executing Windows code, the CVW
Command window displays a stack trace that is useful for finding the error in your
source code.

Restarting a Debugging Session
You can terminate your application without leaving CVW. Windows notifies
CVW that it is terminating the application, and CVW displays the following
message:

Program terminated normally (0)

The value in parentheses is the return value of the WinMain routine. This value
is usually the wParam parameter of the WM_QUIT message, which in tum is the
value of the nExitCode parameter passed to the PostQuitMessage routine.

You can then use the Go command to continue the debugging session for addi­
tional DLLs or applications. You can also restart the application by using the
Restart command on the Run menu.

Special Topics 389

10.2 Debugging P-Code

Requirements

Certain Microsoft compilers can generate space-saving p-code instead of machine
code. P-code cannot be run by the processor itself because it is not native machine
code. However, when you compile a program into p-code, LINK and the Make
P-Code (MPC) utility add an interpreter to your program that reads and interprets
p-code instructions.

The interpreter implements a "stack machine." The p-code instructions generally
assume operands on the stack rather than take explicit registers or addresses. Be­
cause p-code instructions do not explicitly specify operands, they are extremely
small. The trade-off for compact code is reduced execution speed. You use p-code
when saving space is more important than speed.

Code View allows you to debug p-code in the same way you debug native code. At
the source level, debugging works the same way for p-code as it does for native
code. With CodeView's p-code execution model, you can view p-code instructions
in Mixed and Assembly modes just as you view native machine instructions. The
Register window displays the p-code registers and the top eight entries of the
p-code stack. If your program contains both p-code routines and native routines,
Code View automatically switches between p-code display and native display. You
can also force Code View to stay in Native mode when you want to view the native
machine code of the p-code interpreter itself.

The rest of this section describes:

• How to configure Code View to use the p-code execution model.

• How to prepare p-code programs for debugging.

• Techniques for debugging p-code.

• Limitations while debugging p-code.

To debug a program that contains p-code, make sure you set up Code View with
the p-code execution model. To do so, you will need a Model entry under the
Code View tag in TOOLS.INI.

The p-code execution model gives CodeView information about p-code instruc­
tions, addressing modes, registers, and so forth, which you need to debug p-code.
With this execution model, you can debug p-code just as you can debug native
machine code. Without the p-code execution model, you cannot view the source
lines for p-code routines, unassemble p-code instructions, or view the p-code regis­
ters or stack. For information on the syntax of the Model entry, see page 333.

390 Environment and Tools

There is a dynamic-link library (DLL) for each p-code execution model, depend­
ing on the operating environment. The following list shows the filenames of the
DLLs and the environment with which they run:

Filename Description

NMDIPCD.DLL Execution model for MS-DOS p-code

NMWOPCD.DLL Execution model for Windows p-code

Specify the appropriate filename in the Model entry. For example, if you are de­
bugging a Windows application that contains p-code, add an entry to the [CVW]
section of TOOLS.lNI such as:

Model :NMW0PCD.DLL

The exact syntax can vary, depending on your system configuration and other set­
tings in TOOLS.IN!.

Preparing Programs

Turn off quoting with
the 101 option.

Turn off frame sorting
with the IOv- option.

To debug an application that contains p-code, you must first successfully compile,
link, and run the MPC utility on the application. Chapter 3 in the Programming
Techniques manual explains how to build p-code applications and how to mix
p-code with native machine code.

During compilation into p-code, the compiler saves space by using p-code quot­
ing. P-code quoting reduces program size by minimizing repeated sequences of
instructions. It replaces all but one of the sequences with a special quote instruc­
tion which calls the retained sequence.

Quoting makes debugging difficult because each routine jumps to other routines
that contain the quoted instructions. When you compile a program for debugging,
specify the 10f option to turn quoting off. When you build a release version of the
program, specify 10f to tum quoting back on so that the compiler can generate the
smallest possible code.

By default, the compiler sorts local variables by frequency of use. It arranges them
on the stack so that the program can access the most frequently used variables
with the shortest instructions. This optimization is called frame sorting.

Frame sorting can make debugging more difficult because local variables do not
appear on the stack in the order in which you declared them. You should turn off
frame sorting by specifying the 10v- option to the compiler. When you build a re­
lease version, specify 10v to tum frame sorting on so that the compiler generates
the smallest possible code.

Special Topics 391

P-Code Debugging Techniques

Native mode on

Native mode off

Debugging p-code is like debugging native machine code. If you are examing your
program at the instruction level, you should be familiar with the machine's opera­
tion. With p-code, this is the stack machine implemented by the p-code interpreter.

For general information on the interpreter and p-code instructions, see Chapter 3,
"Reducing Program Size with P-Code" in Programming Techniques. For informa­
tion on the p-code instruction set, choose the P-Code Help button from the Micro­
soft Advisor's top-level contents. Help is available on each p-code instruction.

When you are debugging native code, you normally view two levels of execution:
source code and machine code. P-code introduces another level between the two.
You can debug at any of these levels by setting the right combination of Source,
Mixed, Assembly, and Native display modes.

The next section shows how to choose the different levels and describes what hap­
pens when you trace between native and p-code.

The Native Command
The Native command from the Options menu toggles CodeView's display of na­
tive machine code and p-code. When Native mode is turned on, a bullet appears to
the left of the command on the menu.

With Native mode turned on, CodeView displays native machine instructions in
the Source and Mixed display modes. The Register window and the Register com­
mand show the native CPU registers.

With Native mode turned off, Code View displays:

• Native machine instructions in those parts of your program that contain native
code.

• P-code instructions in those parts of your program that contain p-code.

Also, the Register window and the Register command show the native CPU regis­
ters when debugging a native routine, and they display the p-code interpreter's reg­
isters when debugging a p-code routine.

The distinction between Native mode on and off becomes important when you
trace from a native routine into a p-code routine or from a p-code routine to a na­
tive routine. Generally, you tum Native mode off to view p-code instructions.
Tum Native mode on when you want to see the action ofthe p-code interpreter.

Tracing From Native Code to P-Code With Native mode turned off, tracing
into a p-code routine causes CodeView to display p-code instructions. You can

392 Environment and Tools

animate, step, and trace each p-code instruction in your program. You can also set
breakpoints at individual p-code instructions. When tracing p-code, the Register
window displays the registers and stack of the p-code machine.

With Native mode turned on, tracing into a p-code routine causes Code View to
display the native machine code of the p-code interpreter. Because the p-code inter­
preter is a library module that does not contain debugging information, Code View
switches to Assembly mode.

Tracing From P-Code to Native Code With Native mode turned off, tracing
from a p-code routine to a native routine causes CodeView to display native ma­
chine instructions. The Register window displays native CPU registers.

With Native mode turned on, you don't trace from p-code to native code. You
trace out of the p-code interpreter and into your program's native code.

Unassembling P-Code
You can use the View Source and Unassemble commands to display p-code in­
structions in the Source window. With the View Source command, change to
Mixed or Assembly display mode. The Unassemble command automatically dis­
plays p-code instructions when Native mode is turned off.

CodeView can display p-code and native code in the Source window at the same
time. If you use the View Source or Unassemble commands in an area with both
p-code and native code, CodeView displays both types of instructions. This com­
monly occurs when you view a routine with a native entry point as well as a
p-code entry point. The different sections of code are separated by the assembly­
language Data directive.

If you try to unassemble p-code with Native mode turned on, CodeView interprets
p-code as native code and displays meaningless instructions.

P-Code Debugging Limitations
While CodeView makes debugging p-code as similar to debugging native machine
code as possible, there are some limitations. The following list describes the com­
mands that you cannot use with p-code:

• You cannot assemble p-code instructions.

The Assemble command allows you to assemble instructions at any location in
your program, but it accepts only native machine mnemonics. It does not recog­
nize p-code mnemonics. If you accidentally overwrite p-code, use the Restart
command. The Restart command restores your progam' s code.

• You cannot call p-code functions.

Special Topics 393

With native code, you can use the Display Expression command to call any
function. However, the Display Expression command cannot call p-code
functions.

10.3 Remote Debugging

Requirements

Microsoft CodeView versions 4.00 and later support remote debugging. This
allows you to debug using two machines. CodeView runs on your development
machine (the host), and the program you are debugging runs on another machine
(the target). You run a remote monitor program on the target machine to control
the program you are debugging. The monitor communicates with CodeView
through a serial connection.

Remote debugging isolates CodeView from the program being debugged so that
errors in the program do not affect the debugger, and the debugger does not affect
the target system. If the program crashes the remote system, your development
system continues to run.

The remote monitor demands fewer system resources than the full debugger and
has fewer dependencies on the hardware and operating system. It does not use the
display, the keyboard, extended memory, or expanded memory. After starting and
loading the program to be debugged, it does not use the file system. Therefore, the
monitor has no effect on these resources that can change your program's behavior.

You can debug large programs or programs that destabilize the operating system.
You can also debug programs on older hardware or smaller systems such as lap­
tops that cannot support the full debugger. Some bugs that you cannot reproduce
while running under the full debugger appear under the remote monitor.

The process of debugging a program on a remote machine is almost the same as
for local debugging. The only difference is in how you start the session. The fol­
lowing sections describe the hardware and files required for remote debugging and
how to configure the debugger components on the host and target machines. Also
included are the command-line syntax for the remote monitor and the steps you
take to start a remote debugging session.

Remote debugging requires two computers. The host system must support the
Microsoft C/C++ development system. The target system needs only enough
resources to run the remote monitor and your program. You run the MS-DOS
CodeView on the host system, and you run either the MS-DOS remote monitor
or the Windows remote monitor, according to the type of program you are
debugging.

394 Environment and Tools

You connect the host and target machines with a null-modem cable plugged into
the serial ports on the two machines. A null modem is a serial cable that connects
the transmitting line at each end to the receiving line at the opposite end. For
CodeView, you can tie all control lines to a TRUE signal. Note that such a cable
may not be suitable for use with other software. You cannot use an extension cable
with "straight-through" connections.

Any good computer store can assemble a null-modem cable for you with the cor­
rect wiring and the appropriate connectors for your host and target machines.

CodeView's serial transport layers use interrupt-driven input and output, which is
supported in MS-DOS only with the COMI and COM2 ports. Therefore, your ma­
chines must be connected using the COMI or COM2 ports. You can use different
ports on the two machines.

If you plan to debug with two machines, you must have the correct files in the
correct locations on the host and target. You can start a remote session with a
TOOLS.lNI file that configures CodeView for local debugging. However, it is rec­
ommended that you configure CodeView for remote debugging in TOOLS.lNI.

MS-DOS Host Files
For remote debugging, you must have the CodeView debugger CV.EXE and its
associated DLLs on the host machine. The SETUP program copies all the required
files when you install the development system.

You configure CodeView for remote debugging by setting entries in the
TOOLS.lNI configuration file. The settings for Code View appear in the [CV]

tagged section of TOOLS.lNI. Your settings should specify the DLLs for remote
debugging. Most of the entries are the same for local and remote debugging. The
only differences are the Native and Transport entries.

The remote debugging configuration is described in the following table:

Entry Value

Symbolhandler SHDl.DLL

Eval EEDllang.DLL

Model NMD1 PCD.DLL

Description

MS-DOS symbol handler.

Expression evaluator. You must load at
least one expression evaluator. Use
EEDICAN.DLLforCorMASM. Use
EEDICXX.DLLfor C++, C, orMASM.

P-code execution model. To debug p-code,
you must load the p-code nonnative execution
model. Specify this entry only if you are
debugging p-code.

Entry

Transport

Native

Value

TLD 1 COM.DLL

EMDlDl.DLL
EMDlWO.DLL

Special Topics 395

Description

The serial transport layer. (For local debug­
ging, use TLDlLOC.DLL.)

Execution model. The execution model
that you use depends on the target. Use
EMDIDl.DLL for MS-DOS targets or
EMDI WO.DLL for Windows targets.

For more information on configuring CodeView, see "Configuring CodeView
with TOOLS.lNI" on page 329.

You must have your program's executable file on both the host and target ma­
chines. The program must have the same path on the host and target machines,
including drive letter and all directories. The filenames must be identical. For
Windows applications, you must also have your application's DLLs (if any). The
DLLs that you want to debug must also have the same path on the host and target
machines.

MS-DOS Target Files
For remote debugging of an MS-DOS program, you need the MS-DOS remote
monitor RCVCOM.EXE on the target machine along with your program's execu­
table file. The program must have the same path on the host and target machines,
including drive letter and all directories. The filenames must be identical.

You can set default parameters for the remote monitor in the [RCVCOM] section of
a TOOLS.INI file on the target machine. For more information, see "Remote
Monitor Settings in TOOLS.INI" on page 396.

Windows Target Files
For remote debugging of a Windows application, you need the Windows remote
monitor RCVWCOM.EXE and its support DLLs on the target machine along with
your application's executable files. The application and DLL files that you are de­
bugging must have the same path on the host and target machines, including drive
letter and all directories. The filenames must be identical.

The Windows remote monitor (RCVWCOM.EXE) and its support DLLs
(TOOLHELP.DLL and DMWO.DLL) must be in a directory listed in the PATH
environment variable.

You can set default parameters for the remote monitor in the [RCVWCOM] section
of a TOOLS.INI file on the target machine. For more information, see "Remote
Monitor Settings in TOOLS.IN!" on page 396.

396 Environment and Tools

Remote Monitor Command-Line Syntax

Syntax

Example

Syntax

{RCVCOM I RCVWCOM} [/Pport:[rate]] [IR]

Option

RCVCOM

RCVWCOM

IP

port:

rate

IR

Description

Remote monitor for MS-DOS.

Remote monitor for Windows.

Parameters. The specified settings override any settings made in
TOOLS.INI.

Communications port. Must be COMl: or COM2:. The default setting
is COMl:.

Bit rate. Specifies the rate at which to drive the port, up to 19,200 bits
per second (bps). To specify a rate, you must also specify a port.
There can be no space between port: and rate. You must specify the
same bit rate for the host and target.

The default rate is 9600 bits per second. The possible rates are 50, 75,
110,150,300,1200,1600,1800,2000,2400,3600,4800,7200,
9600, and 19,200 bps.

Resident. The monitor stays running when the host debugger exits.
When IR is not specified, the monitor terminates when the host
debugger exits.

To start the remote monitor for several MS-DOS debugging sessions that use the
COM2 port at 2400 bits per second, type the command:

RCVCOM /P COMl:2400 IR

Remote Monitor Settings in TOOLS.lNI
You can set default parameters for the MS-DOS and Windows remote monitors
in TOOLS.INI. If you do not specify parameters on the command line, the moni­
tors look for TOOLS.INI in the directory specified by the INIT environment vari­
able. You must place the settings for the remote monitors in tagged sections of
TOOLS.IN!. Settings for RCVCOM appear in the [RCVCOM] tagged section; set­
tings for RCVWCOM appear in the [RCVWCOM] tagged section.

The remote monitors recognize a single Parameters entry. The syntax for this
entry is:

Parameters: [port: [rate]]

You specify the port and rate as for the IP command-line option. The command­
line option overrides the TOOLS.INI settings.

Special Topics 397

Starting a Remote Debugging Session
After the CodeView components are in their locations and properly configured,
you can begin a remote debugging session.

~ To start a remote debugging session:

1. Transfer your program and its DLLs to the target machine.

You can copy the files to a floppy disk, transfer them across a network, or trans­
fer them across the serial line using communications software or serial file­
transfer software.

Make sure that the full path of the program on the target machine exactly
matches the full path of the program on your host machine. The directory struc­
tures for your program's files on the host and target machines must also match
exactly. If the paths of the files do not match, the remote monitor is unable to
locate the program.

2. Start the remote monitor. If you are debugging a Windows application, double­
click the Windows remote monitor icon or use the Run command from the Pro­
gram Manager File menu. For an MS-DOS program, start the monitor from the
command line.

The remote monitor starts and begins polling the communications port. It waits
for the host debugger to initiate the debugging session.

3. Start CodeView on the host machine. How you start CodeView depends on
your settings in TOOLS.INI.

If you have configured CodeView for remote debugging in TOOLS .INI, you
can specify a program on the CodeView command line or use the Load com­
mand on the Run menu to load the program. You have already configured the
transport layer and execution model.

If you have configured CodeView for local debugging, you can start a remote
session as described in the following section, "Starting CodeView for a Differ­
ent Configuration."

CodeView starts, loads your program, and initiates communication with the re­
mote monitor. You are now ready to debug.

Once the debugging session is started, you can use CodeView just as you would
for a local debugging session. When you quit CodeView, the remote monitor quits
(unless you specified IR when you started the monitor).

If your system has trouble maintaining the communications link between the host
and target machines, reduce the bit rate.

398 Environment and Tools

Starting CodeView for a Different Configuration
If you have CodeView configured for local debugging in TOOLS.INI, start
CodeView without specifying a program on the command line. This allows you
to change CodeView's configuration before it loads your program. It is recom­
mended that you configure CodeView for remote debugging.

~ To start a remote session from a local configuration:

1. Transfer your program and its DLLs to the target machine.

2. Start the remote monitor on the target machine.

3. On the host machine's command line, start CodeView with the following
syntax:

CV [options]

Do not specify the program's filename or arguments.

CodeView starts and displays the Load dialog box. Instead of specifying a
program and its arguments, you must first reconfigure CodeView for remote
debugging.

4. Choose Configure Remote. CodeView displays the Configure Remote dialog
box. Load the remote transport layer and target execution model, as follows:

a. Choose the TLDICOM.DLL transport layer.

Select the communications port and bit rate for the session. Make sure that
the bit rate is the same on the host and target machines.

b. Choose the execution model for the appropriate target:

• EMDIDl.DLL for debugging an MS-DOS program.

• EMD I WO.DLL for debugging a Windows application.

c. Choose OK.

CodeView returns to the Load dialog box.

5. Type the name of your program in the File to Debug text box, or select the
name in the Files List box. Type your program's command-line arguments in
the Arguments text box.

6. Choose OK.

Co de View starts and initiates the remote session.

Using Expressions in CodeView

The arguments to most CodeView commands are expressions. A source-level ex­
pression is a reference to a variable or a function call or one or more operations in­
volving constants, variables, addresses, or function calls. A physical location is a
register, a memory address or range, or a source-code line number that CodeView
maps to an address.

To interpret expressions while maintaining its own programming language inde­
pendence, CodeView uses dynamic-link libraries (DLLs) to look up symbols,
parse, and evaluate expressions. These DLLs are called "expression evaluators."
This release of CodeView has two expression evaluators-one for source-level ex­
pressions in Microsoft and ANSI C and the other that handles C++. If you do not
specify an expression evaluator, Code View uses the C++ expression evaluator by
default.

The C and C++ expression evaluators recognize most C operators and provide ad­
ditional debugging operators that are not part of the languages. The C++ expres­
sion evaluator places certain restrictions on C++ expressions. Although there is no
expression evaluator for the Microsoft Macro Assembler (MASM), the C and C++
expression evaluators support operators that simulate essential assembly-language
operations. You use one of these expression evaluators when debugging MASM
code.

11.1 Common Elements
When debugging, you use a few common elements in arguments to CodeView
commands that are independent of the source language or the current expression
evaluator. You often refer to line numbers in source files, and, less often, to lines
in text files. You also specify registers and addresses. Some CodeView commands
such as Memory Fill (MF) accept address ranges.

This section presents the ways to specify line numbers, refer to objects in memory,
and use values stored in the processor registers. It also describes the syntax for
memory ranges.

400 Environment and Tools

Line Numbers

Syntax

Registers

Syntax

Line numbers are useful for source-level debugging. In Source mode, you see a
program displayed with each line numbered consecutively. CodeView allows you
to use line numbers to specify the address of code generated for a line or to specify
a certain line in a text file.

[context] .linenumber
[context] @linenumber

The optional context is the context operator used to specify a certain file. When
it is omitted, CodeView assumes that the line is in the current source file. The
linenumber specifies the line in the file (numbered starting at 1). Some commands,
such as the Breakpoint Set (BP) command, display an error message if the com­
piler does not generate code for the specified line. For more information on the
context operator, see "The Context Operator" on page 406.

With most CodeView commands, the two forms are interchangeable because
CodeView automatically maps between source lines and code addresses. The
.linenumber form specifies a line offset from the beginning of a file. Use this form
with the View Source (VS) command to display any text file, including files that
are not source files for the program you are debugging. The @linenumber form
specifies the address of the beginning of the code generated by the compiler for
the specified line. Use this form with the Breakpoint Set (BP) command.

Examples
The following example uses the Go (G) command to execute the program from
the current location up to line 100. Since no file is indicated, Code View assumes
the current source file.

>G @100

The following commands use the View Source (VS) command to display text files
at specific lines as follows: line 10 of the current file, line 301 of EXAMPLE.CPP,
and line 22 ofTESTFILE.TXT.

>VS .10
>VS {.EXAMPLE.CPP}.301
>VS {.TESTFILE.TXT}.22

[@]register

The register is the name of a CPU or p-code register. You can specify a register
name if you want to use the current value stored in the register. Registers are

Addresses

Syntax

Using Expressions in CodeView 401

rarely needed in source-level debugging. However, they are frequently used for
lower-level debugging.

When you specify an identifier, CodeView first checks the program's symbol table
for the name. If the debugger does not find the name, it checks to see if the name
is a register. If you want the identifier to name a register regardless of any name in
the symbol table, use an at sign (@) before the register name.

For example, if your program has a symbol called AX, specify @AX to refer to the
AX register. You can avoid this conflict by making sure that your program does
not use register names as identifiers.

Table 11.1 lists the registers known to CodeView. The p-code registers are avail­
able when you are debugging p-code. The 32-bit registers are available on 80386
and 80486 machines when you turn the 386 option on.

Table 11.1 Registers

Register Type

8-hit high byte

8-bit low byte

16-bit general purpose

16-bit segment

16-bit pointer

16-bit index

16-bit high word*

16-bit low word*

Quoting*

32-bit general purposet

32-bit pointert

32-bit indext

Register Names

AH, BH, CH, DH

AL, BL, CL, DL

AX, BX, CX, DX

CS, DS, SS, ES

SP, BP, IP

SI, DI

TH
TL
PQ

EAX, EBX, ECX, EDX

ESP,EBP

ESI, EDI

* Available only when debugging p-code

t Available only when 386 option is turned on

[context] [symbol]

The context is the context operator and specifies the point at which to begin search­
ing for symbol. If context is omitted, the current location is used. The symbol is a
label, variable, or function name.

402 Environment and Tools

Syntax [context][@linenumber]

Syntax

Address Ranges

Syntax

The linenumber is the number of a line in the specified file. If context is omitted,
Code View assumes the current file. Line numbers start at 1.

[segment:] offset

A full address is a segment and an offset, separated by a colon. The segment and
offset can be numeric expressions, symbols, or register names. A partial address
has only an offset; Code View assumes a default segment address, depending on
the command. Commands that refer to data (Memory Dump, Memory Enter, for
example) assume the value of the data segment (DS) register. Commands that
refer to code (such as Assemble, Breakpoint Set, and Go) assume the value of the
code segment (CS) register.

In source-level debugging, full segment:offset addresses are seldom necessary.
Occasionally they may be convenient for referring to addresses outside the pro­
gram, such as display memory.

Examples
In the following example, the Memory Dump Bytes (MDB) command dumps
memory starting at offset address 100. Since no segment is given, the data seg­
ment (the default for Memory Dump commands) is assumed.

>MDB 100

In the following example, the MDB command dumps memory starting at the
address ofthe element array[COUNT].

>MDB array[count]

In the following example, the Unassemble (U) command shows a disassembly of
memory starting at a point 10 bytes beyond the symbol 1 abel.

>U 1 abel+10

In this example, the MDB command dumps memory at the address having the
segment value in the ES register and the offset address 200 in the current radix.

>MDB E5:200

start [end]

A range is a pair of addresses that defines the boundary of a sequence of contigu­
ous memory locations. You can specify a range by giving the starting address and

Syntax

Using Expressions in CodeView 403

the ending address. In this case, the range covers start to end, inclusively. If a
command takes a range but you do not supply a second address, Code View dis­
plays enough data to fill the current size of the window.

start L length

You can also specify a range by giving its starting point and the number of objects
you want included in the range. This type of range is called a "length range." In a
length range, start is the address of the first object, L indicates that this is a length
range, and length specifies the number of objects in the range.

The size of the object is the size taken by the command. For example, the Memory
Dump Bytes (MDB) command dumps bytes, the Memory Dump Words (MDW)
command dumps words, the Unassemble (U) command unassembles instructions
(which can vary in size), and so on.

Examples
The following example dumps a range of memory starting at the b u f fer symbol.
Since the end of the range is not given, the default size is assumed (128 bytes for
the Memory Dump Bytes (MDB) command in this example).

>MDB buffer

The following example dumps a range of memory starting at buffer and ending
at buffer+20 (the point 20 bytes beyond buffer).

>MDB buffer buffer+20

The following example uses a length range to dump the same range of memory as
in the previous example.

>MDB buffer L 20

The following example uses the Memory Fill (MF) command to fill memory with
dollar sign ($) characters starting 30 bytes before rig h L hal f and continuing to
ri ght_half.

>MF right_half-30 right_half '$'

11.2 Choosing an Expression Evaluator
CodeView loads all the expression evaluators that you specify with Eval entries in
TOOLS.INI. However, you need to load only one expression evaluator for most
debugging tasks. This section discusses how to choose the appropriate one for
your debugging environment.

404 Environment and Tools

If you place more than one Eval setting in TOOLS.INI, CodeView loads all the
expression evaluators. You can specify the active evaluator by using the Language
command on the Options menu or with the USE command. By default, Code View
automatically selects the appropriate expression evaluator based on the current
source file's extension. For more information on the Language command, see
page 370. For details on the USE command, see page 452. For information on the
Eval entry and complete instructions for configuring CodeView, see "Setting Up
CodeView" on page 327.

When you are debugging C or MASM source code, you can normally use either
the C or the C++ expression evaluator. c++ is mostly a superset of C at the expres­
sion level, and both evaluators support operators for debugging MASM code.
Therefore, CodeView loads the C++ expression evaluator by default when no
other expression evaluators are specified.

However, you might want to use only the C expression evaluator. If you are debug­
ging C or MASM source code, it is recommended that you specify only the C ex­
pression evaluator. If your C program uses C++ keywords as variable, function, or
label names, you must use the C expression evaluator. C variable names that are
C++ keywords are not recognized as variables by the C++ expression evaluator.
The C++ expression evaluator requires more memory than the C evaluator. There­
fore, load only the C expression evaluator when running Code View in an environ­
ment with limited memory.

You must use the C++ expression evaluator to debug C++ because the C evaluator
does not recognize C++ expressions or keywords and cannot translate the deco­
rated names produced by the C++ compiler. If you try to debug a C++ application
with the C expression evaluator, C++ expressions generate an error, and you must
use the decorated symbol names. For more information on decorated names, see
AppendixB.

11.3 Using the C and C++ Expression Evaluators
When you specify the C or C++ expression evaluator, you can use most Microsoft
or ANSI C and many Microsoft C++ expressions as arguments to Code View
commands.

CodeView evaluates C and C++ expressions according to the same rules as the
compiler, including operator associativity and order of precedence. There are,
however, a few additional operators and some exceptions to the standard syntax.
See the C Language Reference and c++ Language Reference for descriptions of
C and C++ expression syntax.

Using Expressions in CodeView 405

Additional Operators
Both expression evaluators support the following additional operators:

• The "context" operator ({ }) to specify the context of a symbol.

• The colon operator C:) to form addresses. The colon operator has the same pre­
cedence as the multiplication, division, and remainder operators.

• The memory operators (BY, WO, and DW) to access memory. Each of the
memory operators has the same precedence, which is the lowest of any operator
recognized by the expression evaluators.

The colon and memory operators are used mostly to debug assembly-language
code. For information about the colon operator, see "Addresses" on page 401. The
memory operators are described in "Memory Operators" on page 412. For more in­
formation about using the context operator, see "The Context Operator" on page
406.

Unsupported Operators
The comma operator (,) and the conditional (?:) operator are not supported by
the C and C++ expression evaluators. The C++ operators. * and ->* are also
unsupported.

The ampersand (&) is not supported as a bitwise AND operator. However, both
expression evaluators recognize the ampersand (&) as an address-of operator. The
C++ expression evaluator also recognizes the ampersand in type casts to create a
reference type. For example, (int &)curlndex casts the curlndex variable to an
int reference type.

Restrictions and Special Considerations
When you are debugging C and C++ programs, the following general restrictions
apply:

• When you use an expression as an argument to a CodeView command that
takes multiple arguments, such as the Memory Fill (MF) command, the
expression cannot contain spaces. For example, &count+6 is allowed, but
&count + 6 is interpreted as three separate arguments. Some commands,
such as the Display Expression (?) command, permit spaces in expressions.

• CodeView command names are not case sensitive, but C and C++ identifiers
are case sensitive unless you turn off case sensitivity with the commands on
the Options menu or the Options (0) command.

• You cannot call an intrinsic function or an inlined function in a CodeView ex­
pression unless it appears at least once as a normal function.

406 Environment and Tools

• CodeView limits casts of pointer types to one level of indirection. For example,
(cha r *) sym is accepted, but (cha r **) sym is not. An expression such as
char far *(far *) is also not supported.

• The C++ scope operator (::) has lower precedence in CodeView expressions
than in the C++ language. In CodeView, its precedence falls between the base
(:» and postfix (++, --) operators and the unary operators (!, &, *, for ex­
ample). In C++, it has the highest precedence.

CodeView imposes additional restrictions on C++ expressions. These restrictions
and other special considerations when debugging C++ are described in "Using
C++ Expressions" on page 409.

The Context Operator
The context operator ({ }) is unique to CodeView.1t is not part of the C or C++
languages. You use it to specify the exact context of an expression or line number
that appears in more than one place in your source code. For example, you might
use this operator to specify a symbol defined in an include file when the file is
included more than once or to specify a name in an outer scope that is otherwise
hidden by a local name.

When you use a symbol in a CodeView expression, the C and C++ expression
evaluators search for that symbol in the following order:

1. Lexical scope outward. The expression evaluator searches for the symbol
starting with the current block (a series of statements enclosed in curly braces)
and continuing with the enclosing block. The current block is the code contain­
ing the current location (CS:IP address).

2. Function scope. The expression evaluator searches for the symbol in the current
function.

3. Class scope. If debugging C++ and within the scope of a member function, the
expression evaluator searches symbols of that member function's class and all
its base classes. The C++ expression evaluator uses the normal dominance rules.

4. Current module. The expression evaluator searches all symbols in the current
module.

5. Global symbols. The expression evaluator searches all global symbols in the
program.

6. Other modules. The expression evaluator searches the global symbols in all
other modules in the program.

7. Public symbols in the program.

If the name is not found in any of these places, and the name is not the name of a
register, CodeView displays an error message.

Syntax

Using Expressions in CodeView 407

The context operator lets you specify the starting point of the search and bypass
the current location. Note that you cannot specify a block because a block has no
name. You cannot specify a class, but you can specify a member function of the
class and let the expression evaluator search outward.

{[function],[module],[dllexe]} [object]

function
The name of a function in the program.

module
The name of a source file. You must specify a source file if the function is
outside the current scope. Ifthe file is not in the current directory, you must
specify the path.

dllexe
The path of a program's DLL or .EXE file.

object
A line number or symbol.

The context operator has the same precedence and associativity as the type-cast
operator. You can omit function, module, or dllexe, but you must specify all lead­
ing commas. You can omit trailing commas. If a name contains a comma, you
must enclose the name in parentheses.

Example
The following example displays the value of the variable Pos, which is local to the
function rna ke_ box, which is defined in the source file DRAWBOX. c. Assuming that
there is more than one source file called DRAWBOX. c, the third parameter specifies
that the source file containing the function rna ke_ box is the one used by
DISPTXT.DLL.

? {rnake_box,C:\TREEl\DRAWBOX.C,C:\TREE2\DISPTXT.DLL}Pos

Numeric Constants
Numbers used in CodeView commands represent integer constants. They are
expressed in octal, hexadecimal, or decimal radix; the default is the current radix.
The default input radix for the C expression evaluator is decimal. However, you
can use the Radix eN) command to specify a different radix, as explained on
page 444. CodeView displays the current radix in the lower-right corner of the
status bar.

To override the current radix, you can use the C and C++ syntax for entering a con­
stant of a different radix. In addition, Code View supports the Ondigits syntax to
specify decimal numbers independently of the current radix.

408 Environment and Tools

The following table summarizes the syntax for different radixes:

Syntax

digits

Odigits

Ondigits
Oxdigits

Radix

Current radix
Octal (base 8)

Decimal (base 10)

Hexadecimal (base 16)

Symbols take priority When hexadecimal is the current radix, it is possible to enter a value that could be
over numbers. either a symbol or a hexadecimal number. CodeView resolves the ambiguity by

first searching for a symbol with that name. If no symbol is found, the value is a
number. If you want to enter a number that is the same as a symbol in your pro­
gram, use the explicit hexadecimal format (Oxdigits).

String Literals

Syntax

Symbol Formats

For example, if the program contains a variable named abc and you enter abc,
CodeView interprets the argument as the symbol. If you want to enter it as a num­
ber, enter it as 0xabc.

"string"

Strings can be specified as expressions in the C format. You can use all ANSI C
escape sequences within strings. For example, double quotation marks within a
string are specified with the escape sequence \".

A string that you specify in a CodeView command is volatile, and you cannot rely
on its existence for longer than the execution of the command. This means that
you can pass a string to a function, but you cannot assign a string to a character
pointer variable. For example, the command:

? pChar = "string"

is not valid. However, you can change a pointer to refer to a different string in
your program. Also, if the pointer addresses a section of memory large enough to
accommodate the string, you can use the Memory Enter (ME) command to fill the
memory with a new string.

For modules that are compiled with full Code View debugging information (/Zi),
the expression evaluators automatically translate the decorated names into source
form. You specify and view names as they appear in your source. Therefore,
debugging is easier when all modules in the program are compiled with full

Using Expressions in CodeView 409

CodeView debugging information. For large programs, however, you may need to
compile some modules to include only line numbers and public symbols (/Zd).

CodeView accepts and displays public symbol names as "decorated" names. The
decorated name is the form of the name in the object code produced by the com­
piler. Public symbols are names in library routines or names in modules compiled
without Code View information (that is, compiled with the IZd option, or compiled
without any line or symbolic information and linked with the ICO option).

To get a listing of all names in their decorated and undecorated forms, specify the
LINK IMAP:FULL option.

Name decoration is the mechanism used to enforce type-safe linkage. This means
that only the names and references with precisely matching spelling, case, calling
convention, and type are linked together.

Names declared with the C calling convention (either implicitly or explicitly using
the _cdecl keyword) begin with an underscore (_). For example, the function
ma in can be displayed as _ ma in. Pascal names are converted to uppercase and
have no prefix. Names declared as _fastcall are converted to uppercase and begin
with an at sign (@).

For C++, the decorated name encodes the type of the symbol in addition to the cal­
ling convention. This form of the name can be long and difficult to read. The name
begins with at least one question mark (?). For C++ functions, the decoration in­
cludes the function's scope, the types of the function's parameters, and the func­
tion's return type.

For more information on decorated names, see Appendix B.

11.4 Using C++ Expressions

Access Control
All class members
are accessible.

The C++ expression evaluator accepts almost all C++ expressions, with some re­
strictions and some additions. This section describes these special considerations.

You can examine any member of a class object including base classes and embed­
ded member objects. In CodeView, all members are available without regard to
access control (public, protected, or private visibility). For example, if myDate

has a private data member named month, you can examine it with the following
command:

>? myDate.month
3

410 Environment and Tools

Ambiguous References

Inheritance

If an expression makes an ambiguous reference to a member name, you must use
the class name to qualify it. For example, suppose that class C inherits from both
class A and class B, and that A and B define a member function named expand. If
Cth i ng is an instance of class C, the following expression is ambiguous:

Cthing.expand()

The following expression resolves the ambiguity and uses B's expand function:

Cthing.B::expand()

The c++ expression evaluator applies normal dominance rules regarding member
names to resolve ambiguities.

When you display a class object that has virtual base classes, the members of the
virtual base class are displayed for each inheritance path, even though only one
instance of those members is stored. You can access members of an object through
a pointer to the object, and you can call virtual functions through a pointer.

For example, when the Emp 1 oyee class defines a virtual function that is named
compute Pay, which is redefined in the class that inherits from Employee, you can
call compute Pay through a pointer to Employee and have the proper function
executed:

>? empPtr->computePay()

You can cast a pointer to a derived class object into a pointer to a base class ob­
ject; the reverse conversion is not permitted. For example, if the class List is
derived from the class Collection,thecast (Collection *)pListCustomer is
valid,butthecast (List *)pCollectClients isillegal.

Constructors, Destructors, and Conversions
You can set a breakpoint on a class's constructor or a destructor (unless they
are inline functions). The breakpoint is taken whenever an object of that class is
created or destroyed. You can specify a breakpoint that halts execution so that
you can examine your program's status. You can also specify a breakpoint that
executes a command, such as displaying a message in the Command window or
incrementing a counter, and then continues execution. This technique is especially
useful for monitoring the creation and destruction of temporary objects created by
the compiler.

Overloading

Using Expressions in CodeView 411

You cannot call a constructor or destructor for an object, either explicitly or impli­
citly, by using an expression that calls for construction of a temporary object. For
example, the following illegal command explicitly calls a constructor and results
in an error message:

>? Date(2, 3, 1985)

You cannot call a conversion function if the destination of the conversion is a class
because such a conversion involves the construction of an object. For example,
suppose that my Fra ct i on is an instance of the Fract i on class, which defines the
conversion function operator Fi xed Poi nt. The following command results in an
error:

>? (FixedPoint)myFraction

However, you can call a conversion function if the destination of the conversion is
a built-in type. For example, suppose that the Fraction class defines a conversion
function named operator fl oat. The following command is legal:

>? (float)myFraction

You can also call functions that return an object or that declare local objects.

You cannot call the new or delete operators. The command

? pDate = new Date(2,3,1985)

is illegal and CodeView displays an error message.

You can call overloaded functions as long as there exists an exact match or a
match that does not require a conversion involving the construction of an object.
For example, if the ca 1 c function takes a Fracti on object as a parameter, and
the Fracti on class defines a single-argument constructor that accepts an integer,
the following command results in an error:

>? calc(23)

Even though a legal conversion exists to convert the integer into the Fracti on
object that the ca 1 c function expects, such a conversion involves the creation of
an object and is not supported.

412 Environment and Tools

Operator Functions
Operator functions for a class can be invoked implicitly or explicitly. For example,
suppose that myFracti on and yourFracti on are instances of a class that defines
operator+. You can display the sum of those two objects using expression syntax:

>7 myFraction + yourFraction

You can also use the functional notation to call an operator function:

>7 myFraction.operator+(yourFraction)

If an operator function is defined as a friend, you can call it implicitly using the
same syntax as for a member function, or you can invoke it explicitly, as follows:

>7 operator+(myFraction, yourFraction)

Note that operator functions, like ordinary functions, cannot be called with argu­
ments that require a conversion involving the construction of an object.

11.5 Debugging Assembly Language
The Microsoft Macro Assembler (MASM) versions 5.0 and later provide type and
size information for CodeView. With this information, Code View can correctly
evaluate expressions derived from assembly code (except for arrays, which require
a different syntax, as discussed later in this section).

You can use either the C or C++ expression evaluators for debugging assembly
language; CodeView does not have an assembly-language expression evaluator.
The C and C++ expression evaluators provide special operators to simulate essen­
tial MASM operations.

You cannot always specify an expression in Code View exactly as it would appear
in assembly-language source code. You have to write an equivalent CodeView ex­
pression. This section describes the CodeView equivalents for MASM expressions.

Memory Operators

Syntax

A memory operator is a unary operator that returns the result of a direct memory
operation. The memory operators are BY, WO, and DW. The C and C++ expres­
sion evaluators add the memory operators to the operators in the C and C++ lan­
guages. The memory operators are used mainly to debug assembly-language code.

{BY I WO I DW} address

Using Expressions in CodeView 413

The BY operator returns a short integer that contains the first byte at address. This
operator simulates BYTE PTR.

The WO operator returns a short integer that contains the value of the word (two
bytes) at address. This operator simulates the Microsoft Macro Assembler
WORD PTR operation. The DW operator returns a long integer that contains the
value of the first four bytes at address. This operator simulates DWORD PTR.

The examples that follow use the Display Expression (?) command, which is de­
scribed on page 477. The x format specifier used in some of these examples
causes the result to be displayed in hexadecimal.

Examples
The following example displays the first byte at the address of the variable sum.

>? BY sum
101

The following example displays the byte pointed to by the BP register with a dis­
placement of 6.

>? BY bp+6,x
0042

The following example displays the first word at the address of the variable
new_set.

>? WO new_set
13120

The following example displays the word pointed to by the stack pointer (the last
word pushed onto the stack). Because the stack pointer (SP) offset register is used
with no segment address, the stack segment (SS) register is assumed.

>? wo sp,X
2F38

The following example displays the doubleword at the address of sum.

>? ow sum
132120365

The following example displays the doubleword pointed to by the SI register. Be­
cause the SI index register is used without specifying a segment address, the DS
register is assumed.

>? ow si,x
3F880000

414 Environment and Tools

Register Indirection
The C expression evaluator does not recognize brackets ([]) to indicate a memory
location pointed to by a register. Instead, you use the BY, WO, and DW operators
to reference the corresponding byte, word, or doubleword values.

MASM Expression

BYTE PTR [bx]
WORD PTR [bp]
DWORD PTR [bp]

CodeView Equivalent

BY bx
WO bp
OW bp

Register Indirection with Displacement
To perform based, indexed, or based-indexed indirection with a displacement, use
the BY, WO, and DW operators with addition.

MASM Expression

BYTE PTR [di+6]
BYTE PTR Test[bx]
WORD PTR [si][bp+6]
DWORD PTR [bx][si]

CodeView Equivalent

BY di+6
BY &Test+bx
WO si+bp+6
OW bx+si

Address of a Variable

PTR Operator

Use the C address-of operator (&) instead of the MASM OFFSET operator.

MASM Expression CodeView Equivalent

OFFSET Var &Var

Use type casts or the BY, WO, and DW operators with the address-of operator
(&) to replace the assembly-language PTR operator.

Strings

Using Expressions in CodeView 415

MASM Expression CodeView Equivalents

BYTE PTR Var BY &Var
(unsigned char)&Var

WORD PTR Var WO &Var
*(unsigned *)&Var

DWORD PTR Var OW &Var
(unsigned long)&Var

Add the string format specifier ,s after the variable name.

MASM Expression CodeView Equivalent

String String,s

Because C strings end with a null (ASCII 0) character, CodeView displays all
characters from the first byte of the variable up to the next null byte in memory
when you request a string display. If you intend to debug an assembly-language
program, and you want to view strings in the Watch window or with the Display
Expression (?) command, you should delimit string variables with a null character.
You can also view null-terminated or unterminated strings in a Memory window
or with the Memory Dump ASCII (MDA) command.

Array and Structure Elements
Prefix an array name with the address-of operator (&) and add the desired offset.
The offset can be an expression, number, register name, or variable.

The following examples (using byte, word, and doubleword arrays) show how to
do this.

MASM Expression

String[12]

aWords[bx+di]

aDWords[bx+4]

CodeView Equivalents

BY &String+12
*(&String+12)
WO &aWords+bx+di
(unsigned)(&aWords+bx+di)
OW &aDWords+bx+4
(unsigned long)(&aDWords+bx+4)

CodeView Reference

This chapter describes the Code View Command-window command format,
explains the common items in CodeView expressions, and summarizes all
Command-window commands in a convenient table. The final section describes
each command in detail. The nonalphabetic commands appear at the end of the
chapter.

12.1 Command-Window Command Format
Syntax command [arguments]] [; command [arguments]]]]

Parameters

Remarks

command
A command name. The command is not case sensitive; any combination of up­
percase and lowercase letters can be used.

arguments
Expressions that represent values or addresses used by the command. Source­
level expressions used as arguments mayor may not be case sensitive, depend­
ing on the current expression evaluator. The first argument can be placed
immediately after command with no space separating the two fields.

If a command takes more than one argument, you must separate the arguments
with spaces.

Additional commands may be specified on the same line. A semicolon (;) must
separate each command from the next.

12.2 CodeView Expression Reference
When debugging, you use a few common elements in arguments to CodeView
commands that are independent of the source language or the current expression
evaluator. You often refer to line numbers in source files and, less often, to lines

418 Environment and Tools

in text files. You also specify registers and addresses. Some Code View commands
such as Memory Fill (MF) accept address ranges.

This section presents the ways to specify line numbers, refer to objects in memory,
and use values stored in the processor registers. It also describes the syntax for
memory ranges. Moreover, the context operator, which you use to specify the
point at which to begin searching for a symbol, is summarized. For detailed infor­
mation on the context operator and Code View expressions, see Chapter 11.

Line Numbers
Syntax

Description

Examples

[context]@linenumber
[context].linenumber

Line numbers are useful for source-level debugging. They correspond to the lines
in source-code files. In source mode, a program is displayed with each line num­
bered sequentially. The CodeView debugger allows you to use these numbers to
access parts of a program.

The memory address of the code corresponding to a source-line number is
specified as:

@linenumber

The actual file line number is:

[context].linenumber

Code View assumes that the source line is in the current source file. To specify a
source line in a different file, you must specify the line's context using the context
operator:

{.file}@ linenumber

Code View displays an error message ifjile does not exist or no source line exists
for linenumber.

The following example uses the View Source (VS) command to display code
starting at source line 100. Since no file is indicated, the current source file is
assumed.

>VS @100

This next example uses VS to display source code starting at line 301 of the file
DEMO.C.

>VS {,demo.c}.301

Registers
Syntax

Addresses
Syntax

Description

CodeView Reference 419

[@]register

A register name represents the current value stored in the register. Table 12.1 sum­
marizes the register names known to the CodeView debugger.

Table 12.1 Register Names

Register Type Register Names

8-bit high byte AH, BH, CH, DH

8-bit low byte AL, BL, CL, DL

16-bit general purpose AX, BX, CX, DX

16-bit segment CS, DS, SS, ES

16-bit pointer SP, BP,IP

16-bit index SI,DI

16-bit high word* TH

16-bit low word* TL

Quoting* PQ

32-bit general purposet EAX, EBX, ECX, EDX

32-bit pointert ESP,EBP

32-bit indext ESI,EDI

* Available only when debugging p-code

t Available only when 386 option turned on

To force a symbol to represent a register, prefix the symbol with an at sign (@).
For example, to make AX represent a register rather than a variable, use @AX.

[context] @linenumber
[context] [segment:] offset
register: offset
[context]function
[context] symbol

If only an offset is specified, the segment is determined by the command in which
the address appears. Commands that refer to data (Memory Dump, Memory Enter)

420 Environment and Tools

use the segment in the DS register. Commands that refer to code (Assemble,
Breakpoint Set, Go, Unassemble, and View Source) use the segment in the CS
register.

The Display Expression (?) and Add Watch Expression (W?) commands interpret
numeric arguments as constants rather than as offsets. However, if you cast the ar­
gument to a pointer, as in

W? (char *)0

the argument is treated as an offset from DS.

Address Ranges
Syntax

Description

Examples

start end
start L count

An address range is a pair of memory addresses that specify the higher and lower
boundaries of contiguous memory. You can specify a range in two ways:

• Give the starting and ending addresses:

start end

The range covers start to end, inclusively. If you don't supply an ending
address, Code View assumes the default range. Each command has its own de­
fault range; the most common default range is 128 bytes.

• Give the starting address and the number of objects you want included in the
range:

start L count

This type of range is called an "object range." The starting address is the ad­
dress of the first object in the list, and count specifies the number of objects in
the range. The way the size of an object is measured depends on the command.
For example, the Memory Dump Bytes (MDB) command has byte objects, the
Memory Dump Words (MDW) command has words, the Unassemble (U) com­
mand has instructions, and so on.

This example dumps a range of memory starting at the symbol buffer. Since the
end of the range is not given, the default size (128 bytes for the Memory Dump
Bytes command) is assumed.

MOB buffer

CodeView Reference 421

The following example dumps 21 bytes starting at buffer and ending at
buffer+20 (the point 20 bytes beyond buffer).

MDB buffer buffer+20

The following example uses an object range to dump a range of memory. The L
indicates that the range is an object range, and 20 indicates the number of objects
in the range.

MDB buffer L 20

Here, each object has a size of 1 byte since that is the size of objects dumped by
the Memory Dump Bytes (MDB) command.

Context Operator (U)
Syntax

Parameters

Description

{ [fUnction] , [module] , [dUexe] } [object]

function
The name of a function or procedure in the program. Case is significant for
case-sensitive languages.

module
The name of a source file. If the file is not in the current directory, you must
specify the path.

dUexe
The full path of a dynamic-link library (DLL) in the program or the program's
.EXEfile.

object
A variable name, line number, or expression.

The context operator specifies the exact starting point to search for a symbol or
line. You apply it the same way as a type cast is applied in C. When you do not
use the context operator, the current context (CS:IP) is used.

You can omit function, module, or dU, but all leading commas must be given.
Trailing commas can be omitted. If a name contains a comma, the name must be
enclosed in parentheses.

For complete information on the context operator, see "The Context Operator" on
page 406.

422 Environment and Tools

Example This example displays the value of the variable Pos, which is local to the function
rna ke_ box defined in the source file BOXDRA W.C.

? {rnake_box,C:\PROJ\boxdraw.c}Pos

12.3 CodeView Command Overview
Table 12.2 summarizes the CodeView Command-window commands. The next
section describes each command in detail.

Table 12.2 Code View Command Summary

Command Name Description

A Assemble Inserts assembly-language instructions

BC Breakpoint Clear Clears one or more breakpoints

BD Breakpoint Disable Disables one or more breakpoints

BE Breakpoint Enable Enables one or more breakpoints

BL Breakpoint List Lists all breakpoints

BP Breakpoint Set Sets a breakpoint

E Animate Executes the program in slow motion

G Go Executes the program

H Help Provides Help information

I Port Input Reads a byte from a hardware port

K Stack Trace Displays active routines K command

L Restart Restarts the program

MC Memory Compare Compares two blocks of memory byte by byte

MD Memory Dump Displays sections of memory in the Command
window in various formats

ME Memory Enter Modifies memory

MF Memory Fill Fills a block of memory

MM Memory Move Copies one block of memory to another

MS Memory Search Scans memory for specified byte values

N Radix Changes current radix for entering arguments
and displaying values

0 Options Views or sets options

0 Port Output Outputs a byte to a hardware port

P Program Step Executes the current line and steps over
functions

CodeView Reference 423

Table 12.2 (continued)

Command Name Description

Q Quit Terminates CodeView

R Register Displays the values of registers and flags and
optionally changes them

T Trace Executes the current line and traces into
functions

T Trace Speed Specifies speed for the Animate command

U Unassemble Displays assembly-language instructions

USE Use Language Specifies the active expression evaluator

VM View Memory Displays sections of memory in a Memory
window in various formats

VS View Source Displays source code in varying formats in a
Source window

W? Add Watch Sets an expression to be watched

WC Delete Watch Deletes one or more watch expressions

WDG Windows Display Displays memory objects in the global heap
Global Heap

WDL Windows Display Displays memory objects in the local heap
Local Heap

WDM Windows Display Displays a list of the applications and DLL
Modules modules known by Windows

WGH Windows Dereference Dereference a global handle
Global Handle

WKA Windows Kill Terminates the current task by simulating a fatal
Application error

WL List Watch Lists current watch expressions

WLH Windows Dereference Dereference a local handle
Local Handle

X Examine Symbols Displays the addresses and types of symbols

Shell Escape Runs an MS-DOS shell

" Pause Interrupts execution of redirected commands
and waits for keystroke

Tab Set Sets number of spaces for each tab character

* Comment Displays explanatory text during redirection

Current Location Displays the current location

/ Search Searches for a regular expression in the source

7 8087 Shows the values of the 8087 or emulator
registers and flags

Delay Delays execution of redirected commands

424 Environment and Tools

Table 12.2 (continued)

Command Name

< Redirect Input

> Redirect Output

= Redirect Input and
Output

? Display Expression

?? Quick Watch

@ Redraw

\ Screen Exchange

Description

Reads input from specified device

Sends output to specified device

Sends output and reads input from specified
device

Evaluates and displays expressions or symbols

Displays variables and data structures in a
dialog box

Redraws the screen

Exchanges the CodeView and output screens

12.4 CodeView Command Reference
The rest of this chapter is an alphabetical reference to all CodeView Command­
window commands. Nonalphabetic commands such as the Pause (") command
are listed after the alphabetic reference.

A (Assemble)
Syntax

Parameter

Description

A [address]

address
Begins assembly at this address. If address is not given, assembly begins at the
current assembly address (see below).

The Assemble (A) command assembles 8086-farnily (8086/87/88,801861286,
80287/387, and 80286/386/486 unprotected) instruction mnemonics and places
the resulting instruction code into memory at a specified address. The only 8086-
family mnemonics that cannot be assembled are 80386/486 protected-mode
mnemonics. In addition, the CodeView debugger can assemble 80286 instruc­
tions that use the 32-bit 386/486 registers.

If address is specified, the assembly starts at that address; otherwise, the current
assembly address is assumed.

Entering
Instructions

Remarks

CodeView Reference 425

The assembly address is normally the current address or the address pointed to by
CS:IP. However, when you use the Assemble command, the assembly address is
set to the address immediately following the last assembled instruction.

When you enter any command that executes code (Trace, Program Step, Go, or
Animate), the assembly address is reset to the current address.

Use the following procedure to assemble instructions:

1. Type the Assemble (A) command in the command window and press ENTER.

CodeView displays the assembly address and waits for you to enter a new
instruction.

2. Type a mnemonic and press ENTER. CodeView assembles the instruction into
memory and displays the next available address. If an instruction you enter con­
tains a syntax error, CodeView displays the message:

A Syntax error

Then CodeView redisplays the current assembly address and waits for you to
enter a correct instruction. The caret (A) in the message points to the first char­
acter that CodeView could not interpret.

3. Continue entering new instructions until you have assembled all the instructions
you want.

4. Press ENTER without entering any mnemonic to conclude assembly and return to
the CodeView prompt.

Consider the following principles when you enter instruction mnemonics:

• The far-return mnemonic is RETF.

• String mnemonics must explicitly state the string size. For example, MOVSW
must be used to move word strings and MOVSB must be used to move byte
strings.

• CodeView automatically assembles short, near, or far jumps and calls, depend­
ing on byte displacement to the destination address. These may be overridden
with the NEAR or FAR prefix. The NEAR prefix can be abbreviated to NE, but
the FAR prefix cannot be abbreviated.

• CodeView cannot determine whether some operands refer to a word memory
location or to a byte memory location. In these cases, the data type must be ex­
plicitly stated with the prefix WORD PTR or BYTE PTR. Acceptable
abbreviations are WO and BY.

• CodeView cannot determine whether an operand refers to a memory location
or to an immediate operand. CodeView uses the convention that operands en­
closed in brackets ([]) refer to memory.

• CodeView supports all forms of indirect register instructions.

426 Environment and Tools

Example

• All instruction-name synonyms are supported. If you assemble instructions and
then examine them with the Unassemble (U) command, CodeView may show
synonymous instructions, rather than the ones you have assembled.

• Do not assemble and execute 8087/287 instructions if your system is not
equipped with a math coprocessor chip.

The effects of the Assemble command are temporary. Any instructions that you
assemble are lost as soon as you exit the program.

The instructions you assemble are also lost when you restart the program with the
Restart command. The original code is reloaded, possibly writing over parts of
memory that you have changed.

This example places two new instructions in a program, replacing any instructions
already there.

>a 0x47:0xb3e
0001:0B3E mav aX,bx
0001:0B40 mav si,0x9ce
0001:0043

You can modify a portion of code for testing, as in the example, but you cannot
save the modified program. You must modify your source code and recompile.

BC (Breakpoint Clear)
Syntax

Parameters

Description

BC [list I start-end I *]

list
List of breakpoints to be removed, with breakpoint numbers separated by
spaces. A number identifies each breakpoint. You can use the Breakpoint List
(BL) command to display currently set breakpoints and their numbers.

start-end

*

Range of breakpoints to clear. The command clears breakpoints numbered from
start to end, inclusive.

Removes all currently set breakpoints.

The Breakpoint Clear (BC) command permanently removes one or more pre­
viously set breakpoints.

Mouse and
Keyboard

Examples

CadeView Reference 427

In addition to typing the Be command, you can clear breakpoints with the follow­
ing shortcuts:

• From the Data menu, choose Edit Breakpoints.

• Double-click the line containing the breakpoint.

• Using the keyboard, move to the line containing the breakpoint, and press F9.

The following example removes breakpoints 0, 4, and 8:

>BC 0 4 8

The following example removes all breakpoints:

>BC *

The following example removes breakpoints 4,5,6, and 7:

>BC 4-7

BD (Breakpoint Disable)
Syntax

Parameters

Description

BD [list I start-end I *]

list
List of breakpoints to be disabled, with breakpoint numbers separated by
spaces. A number identifies each breakpoint. You can use the Breakpoint List
(BL) command to display currently set breakpoints and their numbers.

start-end

*

Range of breakpoints to disable. The command disables breakpoints numbered
from start to end, inclusive.

Disables all currently set breakpoints.

The Breakpoint Disable (BD) command temporarily disables one or more existing
breakpoints. The breakpoints are not deleted; they can be restored at any time
using the Breakpoint Enable (BE) command.

A disabled breakpoint can be cleared using the Breakpoint Clear (BC) command.

In the Source window, enabled breakpoints are highlighted. However, the high­
lighting disappears once the breakpoint is disabled.

428 Environment and Tools

Mouse and
Keyboard

Examples

As an alternative to typing the BD command, choose Edit Breakpoints from the
Data menu. There is no keyboard shortcut.

The following example temporarily disables breakpoints 0, 4, and 8:

>BD 0 4 8

The following example temporarily disables all breakpoints:

>BD *

The following example disables breakpoints 4, 5, 6, and 7:

>BD 4-7

BE (Breakpoint Enable)
Syntax

Parameters

Description

Mouse and
Keyboard

Examples

BE [list I start-end I *TI

list
List of breakpoints to be enabled, with breakpoint numbers separated by spaces.
A number identifies each breakpoint. You can use the Breakpoint List (BL)
command to display currently set breakpoints and their numbers.

start-end

*

Range of breakpoints to enable. The command enables breakpoints numbered
from start to end, inclusive.

Enables all currently disabled breakpoints.

The Breakpoint Enable (BE) command enables breakpoints that have been tem­
porarily disabled with the Breakpoint Disable (BD) command.

In addition to typing the BE command, you can also enable breakpoints from the
Data menu by choosing Edit Breakpoints. There is no keyboard shortcut.

The following example reenables breakpoints 0, 4, and 8:

>BE 0 4 8

The following example enables all disabled breakpoints:

>BE *

CodeView Reference 429

The following example enables breakpoints 4,5,6, and 7:

>BE 4-7

BL (Breakpoint List)
Syntax

Description

Mouse and
Keyboard

BL

The Breakpoint List (BL) command lists current information about all breakpoints.

For each breakpoint, the command displays the following:

• The breakpoint number.

• The breakpoint status, where "E" is for enabled, "D" is for disabled, and "V" is
for "virtual." A virtual breakpoint is a breakpoint set in an overlay or a DLL
that is not currently loaded. A virtual breakpoint may be enabled or disabled.

• The address, function, file, and line number where the breakpoint is set.

• The expression, pass count, and break commands, if set.

In addition to typing the BL command, you can also list breakpoints from the Data
menu by choosing Edit Breakpoints. There is no keyboard shortcut.

BP (Breakpoint Set)
Syntax

Parameters

BP [address] [[=expression [/Rrange]] I [?expression]] [/Ppasscount]
[/C"commands"] [/Mmsgnamelmsgclass [/D]]

address
An expression giving the address at which to set the breakpoint. If omitted, sets
a breakpoint on the current line, unless =expression is also specified.

=expression
Breaks program execution when the value of expression changes. If address is
given, the expression is checked for changes only at that address. The expres­
sion is usually the name of a variable.

IRrange
Watches all addresses in the given range for changes. The range is determined
by multiplying range with the size of expression.

430 Environment and Tools

Description

?expression
Breaks program execution when expression becomes true (nonzero). If address
is given, the breakpoint expression is evaluated only at that address. You cannot
specify both =expression and ?expression in the same breakpoint. Also, you
cannot have more than one local context in expression. If the expression con­
tains spaces, it must be enclosed in double quotation marks ("expression").

IPpasscount
Specifies the first time the breakpoint is to be taken. For example, if pass count
is 5, the breakpoint will be ignored the first four times it is encountered and
taken the fifth time. From that point on, the breakpoint is always taken until the
program is restarted.

IC"commands"
A list of command-window commands to be executed when the breakpoint is
encountered. The commands must be enclosed in double quotation marks (" It)
and separated by semicolons (;).

IMmsgname
(CVW only) Breaks program execution whenever the specified message is re­
ceived. When ID is also specified, the message received is displayed, but the
breakpoint is not taken.

IMmsgclass
(CVW only) Breaks program execution whenever a message belonging to one
of the specified classes is received. When ID is also specified, the message re­
ceived is displayed but the breakpoint is not taken. Can be one or more of the
following:

Message Class

ill

w
n

s

c

d

z

Type of Windows Message

Mouse

Window management

Input

System

Initialization

Clipboard

DDE

Nonclient

The Breakpoint Set (BP) command creates a breakpoint at a specified address.
Whenever a breakpoint is encountered during program execution, the program
halts and waits for a new command.

You can set breakpoints at source lines, functions, explicit addresses, or labels in
any module of a program. If no arguments are given, BP sets a breakpoint at the
current line.

Mouse and
Keyboard

CodeView Reference 431

Windows Breakpoints
In CodeView for Windows (CVW) use of the 1M options requires that address be
the name or address of a window function ("winproc").

When the ID option is specified, CVW displays each message in the Command
window as it is sent to the application's window function. The message is dis­
played in the following format:

HWND:wh wParm:wp IParm:lp msg:msgnum msgname

where wh is the window handle, wp is the message's word-sized parameter, lp
is the message's long-sized parameter, msgnum is is the message number, and
msgname is the name of the message. The following is a typical display:

HWND:lc00 wParm:0000 lParm:000000 msg:000F WM_PAINT

Windows breakpoints appear in the list of breakpoints and may be enabled, dis­
abled, and cleared with the usual CodeView breakpoint commands.

Breakpoint Options
For any breakpoint, you can also specify:

• A pass count to tell Code View how many times to pass over the breakpoint.

• Commands to be executed after the program reaches the breakpoint.

Breakpoints are numbered, beginning with the number O. Each new breakpoint is
assigned the next available number. Breakpoints remain in memory until you expli­
citly delete them. Breakpoints are saved in the CURRENT.STS file when you exit
CodeView and are restored the next time you debug the program.

Types of Breakpoints
You can set breakpoints to break execution when any of the following conditions
are true:

• The program reaches a given source line, function, label, or address.

• An expression becomes true (nonzero). The CodeView expression evaluator
evaluates this type of expression based on the the currently visible function.

• The value of an expression or memory range changes. CodeView references
this type of expression by memory location. As a result, the original value of
the expression is checked no matter which function is currently visible.

In addition to typing the BP command, you can also set a breakpoint with the fol­
lowing shortcuts:

432 Environment and Tools

Examples

E (Animate)
Syntax

Description

• From the Data menu, choose Set Breakpoint.

• Double-click a source line.

• Move the cursor to a source line, and press F9.

Command

BP @47

BP 0x23f0:3c84

Action

Set a breakpoint at line 47 of the currently
executing module.

Set a breakpoint at address 23FO:3C84.

Halt execution whenever the value in
curr_sum changes.

B P =my i n t I R8 Halt execution whenever a change occurs in
the range of eight integers that begins at
myi nt. If myi nt is a 2-byte value, the range
is 16 bytes in size.

BP @47 =int_array[0J IR20 Set a breakpoint at line 47 of the currently
executing module. The breakpoint will be
taken at that line if any 20 elements of the
array int_array changes. Since
i n L a r ray is a 2-byte value, the range is
40 bytes in size.

BP {, mymod}@47 ?myptr==0 Set a breakpoint at line 47 of the module
mymod. The breakpoint is taken only if
myptr is zero.

BP stats IP10 IC"?counter+=l" Set a breakpoint at the address of the
function s tat s but ignore the breakpoint
the first nine times the function is executed.
On the tenth and later call to stats, stop
execution, and use the Display Expression
(?) command to increment the value of
counter. If counter is set to 0 when the
breakpoint is set, counter can be used to
count the number of times the breakpoint is
taken.

E

The Animate (E) command traces through a program one step at a time, with a
user-selectable pause between each step, beginning at the current instruction. In

Mouse and
Keyboard

G (GO)
Syntax

Parameters

Description

Mouse and
Keyboard

CodeView Reference 433

the Source mode, CodeView pauses after each line of source text. In the Mixed or
Assembly-only mode, CodeView pauses after each instruction. The Animate com­
mand allows you to see how execution proceeds in your program.

You can set the time the command pauses with the Trace Speed (T) command or
by choosing Trace Speed from the Options menu.

To begin animating, you can also choose Animate from the Run menu. There is no
keyboard shortcut.

G [address]

address
Address at which to stop execution.

The Go (G) command starts execution at the current address. If address is given,
CodeView executes the program until it reaches that address. If the specified ad­
dress is never reached, the program executes until it terminates. If no address is
given, CodeView executes the program until it terminates, until it reaches a break­
point, or until you interrupt execution.

When CodeView reaches the end of the program in MS-DOS, it displays a mes­
sage with the format:

Program terminated normally (nunIber)

The nUnIber is the program's return value (also known as the "exit" or "errorlevel"
code). This is the value in the AX register at the time your program terminates.
For example, the C function call

exit(1);

places 1 in the AX register and terminates the program.

In addition to typing the G command, you can start execution using the following
shortcuts:

• Click the < F5=Go> button in the status bar.

• Press F5.

To execute up to a certain location, you can use the following shortcuts:

434 Environment and Tools

Example

H (Help)
Syntax

Parameter

Description

Mouse and
Keyboard

I (Port Input)
Syntax

Parameter

• Click the right mouse button on the source line.

• Move the cursor to the source line and press F7.

The following example executes up to the label pan i C ex i t in the main function.
Because labels are always local to a procedure, you must specify the context (pro­
cedure or function name) if the label is not in the current function.

>G {main}panic_exit

H [topic]

topic
Provides help on topic, which can be a command-window command. If no
topic is given, the table of contents is displayed.

The Help (H) command displays help information in a separate window. You can
get help on Code View commands, CodeView error messages, and any other topic
within the Microsoft Advisor Help system.

In addition to typing the H command, you can get help using the following short­
cuts:

• With the right mouse button, click the keyword to display the corresponding
Help topic. This method works in all Code View windows except the Source,
Memory, and 8087 windows.

• Move the cursor to a topic and press Fl to display the corresponding Help topic.

• Choose one of the commands on the Help menu.

I port

port
A 16-bit port address.

Description

Example

CodeView Reference 435

The Port Input (I) command reads and displays a byte from a specified hardware
port. The specified port can be any 16-bit address. CodeView displays the byte
read in the Command window.

This command is often used in conjunction with the Port Output (0) command.
Use this command to write and debug hardware-specific programs in Assembly
mode.

Note This command may affect the status of the hardware using the port.

The following example reads the input port numbered 2F8 and displays the result,
E8. You can enter the port address using any radix, but the result is always dis­
played in current radix.

>I 2F8 ;* hexadecimal radix assumed
E8

K (Stack Trace)
Syntax

Description

K

The Stack Trace (K) command displays functions that have been called during pro­
gram execution, including their arguments in the Command window. It also dis­
plays the address of the instruction that will be executed when control returns to
each function.

Output from the Stack Trace command gives you the following information:

• Functions listed in the reverse order in which they were called.

• Arguments to each function, listed in parentheses.

• The address or line number of the next instruction to be executed when control
returns to that function.

Thus, the current function is listed first, and the address of the next instruction to
be executed is the current CS:IP address. At the bottom is the main function of
your program and the address of the next instruction to be executed when execu­
tion returns to the main function.

For each function, the command shows argument values in the current radix in
parentheses after the function name.

436 Environment and Tools

Mouse and
Keyboard

Remarks

Example

l (Restart)
Syntax

Parameter

You can use the address displayed for each line of the stack trace as an argument
to the View Source (VS) or Unassemble (U) commands to see the code at the
point where each function is called.

In addition to typing the (K) command, you can use the Calls menu to see the
stack trace.

The term "stack trace" is used because as each function is called, its address and
arguments are stored on or pushed onto the program stack. CodeView traces
through the program stack to find out which functions were called. With C pro­
grams, the function main is always at the bottom of the stack.

The Stack Trace (K) command does not display anything until the program ex­
ecutes the beginning of the main function. The main function sets up the stack
trace through frame pointers (the BP register), which Code View uses to locate
parameters, local variables, and return addresses.

If the main module is written in assembly language, the program must execute at
least to the beginning of the first procedure called. In addition, your procedures
must follow the standard Microsoft calling conventions.

The following example shows the functions executed in a program so far, where
hexadecimal is the current radix under CodeView:

>K
convert(0x3:0x17FC,1,2) address l:ada
make_header(0x3:0x17FC) address 1:314
main(4,0x3:0x181E) address 1:c98
>

Here, convert is the currently executing function, at address ADA. It is
passed three parameters: a pointer and two integers. When it returns control
to make_header, the program is executing at address 314. When make_header
returns, the program is executing at address C98.

L [arguments]

arguments
New arguments to the program. No other CodeView commands may be spec­
ified after the Restart command. They are interpreted as additional progr4tm
arguments.

Description

Mouse and
Keyboard

Remarks

CodeView Reference 437

The Restart (L) command resets execution to the beginning of the program and
optionally sets a new program command line.

After you issue the Restart command:

• The program's variables are reinitialized.

• The program's instructions are reset. Any modifications you may have made to
the code with the Assemble (A), Memory Enter (ME), Memory Fill (MF), or
View Memory (VM) commands are lost.

• Any existing breakpoints or watch statements are retained. The pass counts for
all breakpoints are reset.

Used alone, the Restart command keeps the previous command-line arguments
specified for your program. You can change the command-line arguments using
the Restart command followed by any new arguments to your program.

You can use Restart any time execution has stopped: at any kind of breakpoint,
while single-stepping, or when execution is complete.

In addition to typing the L command, you can also restart from the Run menu by
choosing Restart. To set a new command line and restart the program, choose Set
Runtime Arguments from the Run menu. There is no keyboard shortcut.

The Restart command does not reset system resources, such as open files or video
mode, and does not free allocated system objects. If the application redefines inter­
rupts, the system may no longer work correctly.

MC (Memory Compare)
Syntax

Parameters

Description

Me range address

range
Range of first block of memory.

address
Starting address of second block of memory.

The Memory Compare (MC) command compares the bytes in a given range of
memory with the corresponding bytes beginning at another address. If one or more
pairs of corresponding bytes do not match, the command displays each pair of mis­
matched bytes.

438 Environment and Tools

Examples

You can enter arguments to the Memory Compare (MC) command in any radix,
but the output of the command is always in hexadecimal.

The following example compares the block of memory from 100 to IFF with the
block from 300 to 3FF. CodeView reports that the third and ninth bytes differ in
the two ranges.

>MC 100 IFF 300 ;* hexadecimal radix assumed
004E:0102 0A 00 004E:0302
004E:0108 0A 01 004E:0308
>

The following example compares the 100 bytes starting at the address of a r r 1 [0]

with the 100 bytes starting at the address of a r r 2 [0].

>MC arr1[0] L 100 arr2[0] ;* decimal radix assumed
>

Because CodeView produced no output, the first 100 bytes of each array are
identical.

MD (Memory Dump)
Syntax MD[format] [address I range]

Parameters format
Specifies the format to dump data. The format can be one of the following:

Specifier Format

A ASCII characters

B Byte (hexadecimal)

C Code (instructions)

I Integer (2-byte decimal)

IV Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LU Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (lO-byte float)

Description

Examples

CodeView Reference 439

IfJormat is not given, the Memory Dump command defaults to the format last
used. If never used before, it defaults to an 8-bit dump.

address
Starting address of memory to be dumped. This can be any expression that eval­
uates to an address. The amount of memory dumped depends on the format
specified. If address is omitted, the Memory Dump command defaults to the
byte immediately following the last byte in the previous dump command. If the
Memory Dump command was never used before, it defaults to DS:OOOO.

range
Range of memory to be dumped. Maximum range is 32K.

The Memory Dump (MO) command displays the contents of memory in the com­
mand window, using the format you specify. This command can be used with the
Redirection commands to send the contents of memory to another device. Use the
View Memory (VM) command to display the contents of memory in a separate
window.

The Memory Dump Code (MOC) command is like the Unassemble (U) com­
mand, except that MOC displays instructions in the Command window instead of
the active Source window. Although you normally specify a range with the L char­
acter, you can also use the I character with MOC to specify a range of instructions
rather than bytes.

The following example displays 12 instructions starting from the address at line
number 32 in the source code:

>mdc .32 I 12

The following example displays the byte values in the range between DS:O and
DS: lB. The data segment is assumed when no segment is given. ASCII characters
are shown on the right.

>mdb 0x0 0x1b
0087:0000 00 00 00 00 00 00 00 00 40 53 20 52 75 6E MS Run
0087:000E 20 54 69 60 65 20 4C 69 62 72 61 72 79 20 -Time Library
>

The following example displays seven elements of floaLarray as four-byte real
values:

440 Environment and Tools

>mdr float_array[0]
0087:0056 DC 0F 49 40 +3.141593E+000
0087:005A A0 17 CE 3F +1.610096E+000
0087:005E 66 66 58 C2 -5.485000E+001
0087:0062 00 00 C0 3F +1.500000E+000
0087:0066 FF FF IF 41 +9.999999E+000
0087:006A 00 00 00 00 +0.000000E+000
0087:006E 00 00 00 00 +0.000000E+000
>

ME (Memory Enter)
Syntax

Parameters

MEtype address [list]

type
Specifies the type of the data to be entered into memory.

Specifier Type

A ASCII characters

B Byte (hexadecimal)

I Integer (2-byte decimal)

IV Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LV Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (IO-byte float)

If no type is given, the command defaults to the last type used by a Memory
Enter (ME), a Memory Dump (MD), or a View Memory (VM) command. If
no such commands were used, it defaults to byte-sized data.

address
Indicates where the data will be entered. If no segment is given in the address,
the data segment (DS) is assumed.

list
List of data to enter into memory at address. These expressions must evaluate
to data of the size specified by type. If list is not given, CodeView prompts for
new values.

Description

Mouse and
Keyboard

Example

CodeView Reference 441

The Memory Enter (ME) command enters one or more byte values into memory
at a given address.

The command may include a list of expressions separated by spaces. The expres­
sions are evaluated and entered in the current radix. If an invalid value appears in
the list, CodeView refuses to enter the invalid value and ignores remaining values.
If no list is given, CodeView prompts for new values.

Because it can modify any part of your program's memory, the Memory Enter
command can change your program's instructions. The Assemble (A) command,
however, is better suited to that purpose.

There is no keyboard shortcut to enter items into memory. You can use the
Memory window, however, to alter items in memory.

Entering Values
If you do not give a list of expressions in a Memory Enter (ME) command,
CodeView prompts for a new value at the address you specify by displaying the
address and its current value. At this point, you can do one of the following:

• Replace the value by typing a new value.

• Skip to the next value by pressing the SPACEBAR. Once you have skipped to the
next value, you can change its value or skip again. CodeView will automatically
prompt with new addresses as necessary.

• Return to the preceding value by typing a backslash (\). When you return to the
preceding value, CodeView starts a new display line and prompts with the
address and current value.

• Stop entering values and return to the command prompt by pressing ENTER.

The following example replaces the byte at DS:256 (DS:0100 hexadecimal) with
66 (42 hexadecimal).

>MEB 256
3DA5:0100 41 A. 66
>

MF (Memory Fill)
Syntax MF range list

Parameters range
Specifies the range of memory to be filled.

442 Environment and Tools

Description

Examples

list
List of byte values used to fill range.

The Memory Fill (MF) command fills the addresses in the specified range with
the byte values specified in the argument list. You can enter byte values using any
radix.

The values in the list are repeated until the whole range is filled. Thus, if you spec­
ify only one value, the entire range is filled with that same value. If the list has
more values than the number of bytes in the range, the command ignores any extra
values.

The Memory Fill command provides an efficient way to fill up a block of memory
with any values you specify. You can use it to initialize large data areas, such as
arrays or structures. Because it can modify any part of your program's memory,
the Memory Fill command can change your program's instructions. However, the
Assemble (A) command is better suited to that purpose.

The following example fills 255 (100 hexadecimal) bytes of memory starting at
DS:OlOO with the value 0; hexadecimal radix is assumed. This command could be
used to reinitialize the program's data without having to restart the program.

>MF 100 L 100 0
>

This next example fills the 100 (64 hexadecimal) bytes starting at tabl e with
the following hexadecimal byte values: 42,79, 74. These three values are repeated
(42,79,74,42,79,74, ...) until an 100 bytes arefilled; hexadecimal radix is
assumed.

>MF table L 64 42 79 74
>

MM (Memory Move)
Syntax MM range address

Parameters range
Specifies the range of memory to copy.

address
Destination address to copy the range.

Description

Examples

CodeView Reference 443

The Memory Move (MM) command copies all the values in one block of memory
directly to another block of memory of the same size. All data in the source block
is guaranteed to be copied completely over the destination block, even if the two
blocks overlap.

When the source is at a higher address than the destination, the Move Memory
command copies data starting at the source block's lowest address. When the
source is at a lower address, the Memory Move command copies data beginning
at the source block's highest address.

You use the Memory Move command to program in Assembly mode (to copy
function fragments, for example) or to copy large amounts of data.

In the following example, the block of memory to copy begins with the first ele­
ment of a r r ay 1 and is a r ray _ s i z e bytes long. It is copied directly to a block of
the same size, beginning at the address ofthe first element of a rray2.

>MM arrayl[0] L array_size array2[0]
>

MS (Memory Search)
Syntax

Parameters

Description

MS range list

range
The range of memory to search.

list
A list of byte values separated by spaces or commas or an ASCII string
delimited by quotation marks.

The Memory Search (MS) command scans a range of memory for specific byte
values. Use this command to test for the presence of certain values within a range
of data.

You can specify any number of byte values to the Memory Search command. U n­
less the list is an ASCII string, each byte value must be separated by a space or a
comma.

If the list contains more than one byte value, the Memory Search command looks
for a series of bytes that precisely match the order and value of bytes in the list. If

444 Environment and Tools

Examples

N (Radix)
Syntax

Parameter

Description

Remarks

the command finds such a series of bytes, it displays the beginning address of that
series.

The following example displays the address of each memory location containing
the string error. The command searched the first 1,500 bytes at the address
specified by the variable buffer. CodeView found the string at three addresses.

)MS buffer L 1500 "error"
2BBA:0404
2BBA:05E3
2BBA:0604
)

The following example displays the address of each memory location that contains
the byte value OA in the range DS:0100 to DS:0200; hexadecimal is assumed to be
the default radix. CodeView found the value at two addresses.

)MS DS:100 200 A ;* hexadecimal radix assumed
3CBA:0132
3CBA:01C2
)

N [radix]

radix
New radix while running CodeView. Can be 8 (octal), 10 (decimal), or 16 (hex­
adecimal). If omitted, the command displays the current radix.

The Radix (N) command changes the current radix for entering arguments and dis­
playing the values of expressions. The new radix number can be 8 (octal), 10 (deci­
mal), or 16 (hexadecimal). Binary and other radixes are not allowed. With no
arguments, the command displays the current operating radix.

Note Changing the radix does not convert the I-value of displayed expressions,
only the r-value.

When you start up CodeView, the default radix is 10 (decimal), unless your main
program is written with the Microsoft Macro Assembler (MASM). In this case, the
default radix is 16 (hexadecimal).

The following conditions are not affected by the Radix command:

Example

o (Options)
Syntax

Parameters

CodeView Reference 445

• The radix for entering a new radix is always decimal.

• Format specifiers given with the Display Expression (?) command override the
current radix.

• Addresses are always shown in hexadecimal.

• In Assembly mode, all values are shown in hexadecimal.

• The display radix for the Memory Dump (MD) and Breakpoint Set (BP) com­
mands is always hexadecimal if the size is bytes, words, or doublewords; it is
always decimal if the size is integers, unsigned integers, short reals, long reals,
or lO-byte reals.

• The input radix for the Memory Enter (ME) command's prompt is always hex­
adecimal if the size is bytes, words, or doublewords; it is always decimal if the
size is integers, unsigned integers, short reals, long reals, or lO-byte reals.

• The current radix is used for all values given as part of a list, except real num­
bers, which must be entered in decimal.

• The register display is always in hexadecimal.

The following example shows the decimal equivalents of the number 14 in octal
and in hexadecimal.

>N8
>? 14, i
12
>N16
>? 14, i
213
>

Here, the Display Expression (?) command uses the i format specifier, which
prints a number in decimal regardless of the current radix.

O[option[+I-]]
OL[[scope] [+1-]]

option
Character indicating the option to be turned on or off.

446 Environment and Tools

Description

Specifier Option

A Show Status Bar

B Bytes Coded

C Case Sense

F Flip/Swap

H Horizontal Scroll Bar

L Show Address

N Native Mode

S Symbols

3 386

V Vertical Scroll Bar

scope

+

For the OL command, you can specify a scope of variables to display in Local
window using one or more of the following:

Specifier Scope

L Lexical

F Function

M Module

E Executable

G Global

* All of the above

Turns option(s) on.

Turns option(s) off.

The Options (0) command allows you to view or set the state of the following
CodeView options:

Letter Option

A

B

C

F

Show Status Bar

Bytes Coded

Case Sense

Flip/Swap

Display

If on, the status bar appears at the bottom of the
screen. If off, the bottommost line becomes part of
the window area.

If on, instruction addresses and machine code are
displayed for assembly instructions.

If on, symbols are case-sensitive; if off, they are not.

If on, CodeView flips the program and output screens
as the program executes. If off, no screen flipping is
performed.

Mouse and
Keyboard

Remarks

Example

Letter Option

H Horizontal Scroll Bar

L Show Address

N Native Mode

S Symbols

3 386

V Vertical Scroll Bar

CodeView Reference 447

Display

If on, windows have a horizontal scroll bar.

If on, addresses relative to BP for all local variables
are displayed in the Local window.

If on, instructions are displayed in the native
processor format. If off, p-code instructions are
displayed.

If on, symbols in assembly instructions appear in
symbolic form. If off, they appear as addresses.

If on, registers appear in wide 80386 format, and you
can assemble and execute instructions that reference
32-bit registers and memory.

If on, windows have a vertical scroll bar.

The Local window always displays variables local to the current routine. You can
specify a scope of additional variables to display in the Local window with OL
form of the Options command. Using OL with no options displays the current
scope setting for the Local window.

The 0 form of the command (all options) takes no arguments; it displays the state
of all options. The other forms of the command (OF, OB, OC, OS, OL, 03, OA,
ON, OH, and OV) can be used as follows:

• With no arguments. The state of the option is displayed.

• With the + or - argument. The + argument turns the option on; the - argument
turns the option off.

As an alternative to typing the 0 command, you can view and set options on the
Options menu.

Use the Options (0) command to set options when you first start CodeView. You
can set these options in the following ways:

• Give one or more 0 commands with the /C option on the CodeView command
line or include a similar command line in the Code View response file.

• Give one or more 0 commands as the Autostart entry in the TOOLS.INI file.

In the following example, the 0 command is used to display current option set­
tings. Then, the 03 and OF commands are used to display and set options for 386
mode and for screen flip/swap mode. Finally, the OL command turns on symbol
addresses in the Local window and displays not only local variables but global
variables as well.

448 Environment and Tools

>0
Flip/Swap On
Bytes Coded On
Case Sense On
Show Symbol Address On
Symbol s Off
Vertical scroll bar On
Horizontal scroll bar On
Status bar On
>03
386 Off
>03+
386 On
>OF
Flip/Swap On
>OF­
Flip/Swap Off
>OLG+

o (Port Output)
Syntax

Parameters

Description

Example

o port byte

port
A 16-bit port address.

byte
Byte to send to port.

The Port Output (0) command sends a byte value to a hardware port. You use this
command to debug a program that interacts directly with hardware.

The Port Output command is often used with the Port Input (I) command.

In the following example, the byte value 4F hexadecimal is sent to output port 2F8.

>0 2F8 4F ;* hexadecimal radix assumed
>

CodeView Reference 449

P (Program Step)
Syntax

Parameters

Description

Mouse and
Keyboard

Q (Quit)
Syntax

Description

Mouse and
Keyboard

P [count]

count
Repeat stepping count times.

The Program Step (P) command executes the current line (in Source mode) or
instruction (in Mixed or Assembly mode), stepping over functions. To trace into
functions, use the Trace (T) command. If a value for count is specifed, Code View
steps through count lines or instructions. If not, only the current line or instruction
is executed.

In Source mode, if the current source line contains a function call, CodeView
executes the entire function and is ready to execute the line after the call.

In Mixed or Assembly Mode, if the current instruction is CALL, INT, or REP,
CodeView executes the entire procedure, interrupt, or repeated string sequence.

In addition to typing the P command, you can step through a program using the
following shortcuts:

• Click the <F10=Step> button in the status bar to step once.

• Press FlO to step once.

Q

The Quit (Q) command terminates CodeView and returns control to the environ­
ment from which Code View was invoked: Programmer's WorkBench (PWB),
Windows, or the operating system.

Code View always saves state information on exit.

As an alternative to typing the Q command, choose Exit from the File menu.
There is no keyboard shortcut.

450 Environment and Tools

R (Register)
Syntax

Parameters

Description

Changing
Registers

R [register [[=]expression]]

register
Change the contents of the given register. If omitted, displays the values of all
registers and flags and the current machine instruction.

[=]expression
Assign the value of the expression to the specified register. The equal sign (=)
is optional; a space has the same effect.

The Register (R) command displays and changes the values in the CPU registers.
To display register contents without changing them, type the Register (R) com­
mand without any arguments. This form of the command shows the current values
of all registers and flags. Flags are shown symbolically. It also shows the current
instruction at the address given by CS:IP.

If an operand of the instruction contains memory expressions or immediate data,
CodeView evaluates the operand and indicates the value to the right of the instruc­
tion. This value is referred to as the "effective address" and is also displayed at the
bottom of the Register window.

You can use the R command to change the values in CPU registers. Also, you can
change the bits in the flag register symbolically without having to compute a value
of the register.

Changing Register Values
To change the value in a register:

1. Type the command letter R followed by the name of a register. The register
name can be any of the following: AX, BX, CX, DX, CS, DS, SS, ES, SP, BP,
SI, DI, IP, or FL (for flags). If you have a 80386/486-based machine and the
386 option is turned on, the register name can be one of the 32-bit register
names: EAX, EBX, ECX, EDX, ESP, EBP, ESI, or EDI.

Note CodeView allows you to load different execution models which may
specify a certain set of registers. For example, the valid registers in the p-code
model are DS, SS, CS, IP, SP, BP, PQ, TH, and TL.

2. CodeView displays the current value of the register and prompts for a new
value with a colon (:).

• If you only want to examine the value, press ENTER.

• If you want to change the value, type an expression (in the current radix) for
the value and press ENTER.

Mouse and
Keyboard

CodeView Reference 451

• As an alternative, you can use the Display Expression (?) command to
change the value in a register:

?register=expression

Changing Flag Values
To change a flag value:

1. Type the command letter R followed by the letters FL.

2. The command displays the value of each flag as a two-letter name. At the end
of the list of values, the command prompts for new flags with a dash (-).

3. Type the new values after the dash for the flags you wish to change, then press
ENTER.

• You can enter flag values in any order. If you do not enter a new value for a
flag, it remains unchanged.

• If you do not want to change any flags, press ENTER.

Note If you enter an illegal flag name, CodeView displays an error message. The
flags preceding the error are changed; flags at and following the error are not
changed.

The flag values are:

Flag Set Symbol Clear Symbol

Overflow OV NY
Direction DN UP
Interrupt EI DI

Sign NG PL
Zero ZR NZ
Auxiliary carry AC NA
Parity PE PO
Carry CY NC

As an alternative to typing the R command, you can use the Register window to
display CPU values. To change CPU values with the Register window, type over
the old values.

452 Environment and Tools

Example In the following example, the R command displays the current registers and CPU
flags. Then the R command changes the value in the AX register.

T (Trace)
Syntax

Parameters

Description

>R
AX=0005 BX=299E CX=0000 OX=0000 5P=3800 BP=380E 5I=0070 OI=4001
05=5067 E5=5067 55=5067 C5=4684 IP=014F
NV UP EI PL NZ NA PO NC
0047:014F 8B5E06 lea di .[BP+06] ss:ff38=299E
>R AX
AX 0005
:3
>

T [count]

count
Repeat tracing count times. If omitted, trace once.

The Trace (T) command executes the current line (in Source mode) or instruction
(in Assembly or Mixed mode), tracing into functions or assembly-language CALL
instructions. Use the Program Step (P) command to execute function calls without
tracing into them.

In Source mode, the Trace command traces into functions whose source code is
available and executes through those functions whose source is unavailable.

In Assembly or Mixed mode, CodeView always traces into functions. If the cur­
rent instruction is CALL or INT, CodeView executes the first instruction of the
procedure or interrupt. If the current instruction is REP, Code View executes one
iteration of the repeated string sequence.

CodeView executes MS-DOS function calls without tracing into them. CodeView
can trace through BIOS calls in Assembly or Mixed mode.

Since the Trace command uses the hardware trace mode of the 8086 family of pro­
cessors, you can also trace instructions stored in read-only memory (ROM). How­
ever, the Program Step command does not work in ROM; in this case, it has the
same effect as the Go (G) command.

Mouse and
Keyboard

CodeView Reference 453

In addition to typing the T command, you can trace once with the following
shortcuts:

• Clickthe <F8=Trace> button in the status bar.

• Press F8.

T (Trace Speed)
Syntax

Parameter

Description

Mouse and
Keyboard

T{SIMIF}

{SIMIF}
Specifies the trace speed for the Animate (E) command. You can specify the
following speeds:

Specifier Speed

S Slow (112 second between steps)
M Medium (114 second between steps; default)

F Fast (no wait between steps)

The Trace Speed command controls the speed at which Code View executes a pro­
gram with the Animate (E) command.

In addition to typing the TS, TM, or TF commands, you can also set the trace
speed from the Options menu. There is no keyboard shortcut.

U (Unassemble)
Syntax

Parameters

Description

U [context][address]

context
Any legal context operator.

address
Shows unassembled instructions starting at this address. If omitted, unassemble
at the current CS:IP address.

The Unassemble (U) command displays assembly-language code beginning at
the specified address in the active Source window. If you omit an address, the

454 Environment and Tools

Mouse and
Keyboard

Example

command uses the current CS:IP address. The command changes the Source win­
dow to Assembly mode.

Setting the Source window display mode to Assembly and giving the Unassemble
command with no arguments causes the code to scroll to the next page of
assembly-language instructions.

Note If you specify an address that is within an instruction or within program
data, CodeView will still attempt to disassemble and display instructions. Instruc­
tions that CodeView cannot disassemble are shown as ???

As an alternative to typing the U command, you can display assembly-language
instructions using the following shortcuts:

• Click the <F3=Srcl Fmt> or <F3=Src2 Fmt> buttons until the active Source
window is in Assembly mode.

• Press F3 until the Source window is in Assembly mode.

• From the Options menu, choose Source Window. Then set the display mode to
Assembly.

Note that with these shortcuts, you cannot specify an address to start showing unas­
sembled instructions.

The following example sets the mode of the Source window to Assembly and dis­
plays assembly-language instructions beginning at address Ox7:0xll.

>u 0x7 :0xll
>

USE (Use Language)
Syntax

Parameter

Description

USE evaluator

evaluator
Selects the specified expression evaluator. If omitted, the command displays the
currently selected expression evaluator. You can specify AUTO for the evalua­
tor. With this setting, Code View selects the appropriate expression evaluator
based on the extension of the source file.

The USE command specifies which expression evaluator Code View is to use
while debugging.

Mouse and
Keyboard

Remarks

CodeView Reference 455

As an alternative to typing the USE command, choose the Language command
from the Options menu. There is no keyboard shortcut.

When you switch expression evaluators, CodeView displays expressions in the
Local and Watch windows with the nearest equivalent type in the new language. If
the new language does not have an equivalent type, the results are unpredictable.

VM (View Memory)
Syntax

Parameters

VM[window] [type] [address] [options]

window
Specifies the memory window to display or change (1 or 2). If a value for
window is omitted, the command defaults to the active Memory window or
Memory window 1 if no Memory windows are open.

type
Specifies the data-type format of the window's display.

Value Format

A ASCII characters

B Byte (hexadecimal)

I Integer (2-byte decimal)

IV Integer unsigned (2-byte decimal)

IX Integer hex (2-byte hexadecimal)

L Long (4-byte decimal)

LU Long unsigned (4-byte decimal)

LX Long hex (4-byte hexadecimal)

R Real (4-byte float)

RL Real long (8-byte float)

RT Real ten-byte (lO-byte float)

Ifformat is omitted, the command defaults to the last type used by a View
Memory (VM) command or to byte-display format if the VM command was
never used.

address
Starting address of memory to display or any expression that evaluates to an
address. If address is omitted, the command defaults to the current address in
the active Memory window or DS:OO if no Memory windows are open.

456 Environment and Tools

Description

options
Specifies how to display and update the Memory window's contents.

IR[+I-]
Raw data display

Option Description

+ CodeView displays formatted data along with the corresponding
bytes in hexadecimal format.

- (default) CodeView displays only formatted data.

IL[+I-]
Live expression

Option Description

+ Dynamic: CodeView evaluates address at each step and adjusts the
Memory window accordingly.

- (default) Static: Code View evaluates address only when the command is
entered.

/F[*llength]
Fixed-width data display

Option Description

* (default) CodeView displays as many items as will fit in the window.

length CodeView displays a fixed number of items on each line. Must be
in the range 1-125.

The View Memory (VM) command displays the contents of memory in a Memory
window using the type and format you specify. The Memory window is updated
whenever you execute a command. You can modify memory in the window direct­
ly by typing over the displayed memory.

If you enter the VM command with no arguments and no Memory windows are
open, CodeView opens Memory window 1 in the default display format (variable­
width byte display at a static address). If you enter the VM command with no argu­
ments and at least one Memory window is open, CodeView displays the current
settings for the Memory windows in the Command window.

You can directly modify memory using the Memory window. Type over the
values displayed in the active Memory window.

To display the contents of memory in the Command window, use the Memory
Dump (MD) command.

Mouse and
Keyboard

Examples

CodeView Reference 457

In addition to typing the VM command, you can open and manipulate Memory
windows with the following shortcuts:

• To open a Memory window from the Windows menu, choose Memory 1 or
Memory 2.

• To set display format and enter expressions for a Memory window, choose
Memory Window from the Options menu.

You can cycle through the display formats with the following shortcuts:

• Click the <SH+F3=Meml Fmt> or <SH+F3=Mem2 Fmt> buttons in the status bar.

• Press SHIFT+F3 to cycle forwards.

• Press CTRL+SHIFT+F3 to cycle backwards.

• When the cursor is in the Memory window, press CTRL+O to display the
Memory Window Options dialog box.

The following example opens Memory window 2 and displays memory in integer
format plus the raw bytes that make up the integers, beginning at the address of
the variable myi nt.

>VM21 IR myi nt

The following example specifies ASCII format for the current Memory window.
The memory displayed begins at the string referred to by element i of the array
a rg v. The expression is live, so the display is updated as i changes.

>VMA IL *argv[i]

VS (View Source)
Syntax

Parameters

VS[window] [format] [address] [/option[+I-]] ...

window
Specifies the Source window (1 or 2) to open or make active.

format
Specifies the way to display source code as one of the following:

Specifier Format

+ Display source lines from the source file

Display assembly-language instructions

& Display both source lines and assembly-language instructions

458 Environment and Tools

Description

address
Address or line number at which to start displaying source code. The address
must fall within the executable portion of your program.

[/option[+1-]] ...
Zero or more source display options. The option can be any of the following
specifiers:

Specifier Option

a Address

When turned on (fa [+]), displays the address of each instruction.
When turned off (fa-), does not display addresses.

b Bytes coded

When turned on (fb[+]), displays the hexadecimal form of the
instructions. Wnen turned off (fb-), does not display the encoded
bytes.

c Case of disassembly

When turned on (lc[+]), displays instruction mnemonics and
registers in uppercase. When turned off (fc-), displays instruction
mnemonics and registers in lowercase.

Line-oriented display

When turned on (fl[+]), displays mixed source and assembly in
source-line order. When turned off (fl-), displays mixed source and
assembly in instruction-code order.

s Symbols in disassembly

When turned on (fs[+]), symbols in instructions appear in
symbolic form. If turned off (ls-), they appear as addresses.

Track current location (CS:IP)

When turned on (ft[+]), the Source window follows the thread of
execution (CS:IP). When turned off (ft-), the Source window does
not automatically scroll to follow the current location.

CodeView can display two Source windows at the same time. At least one source
window must always be open. You can type the VS 1 or VS 2 command to make
Source window 1 or 2 active. If the Source window you request is not open,
CodeView opens it and makes it active.

The Source windows can show code in a number of display modes:

Source
CodeView displays the lines from your program's source files.

Assembly
CodeView displays the assembly instructions that make up your program.

Mouse and
Keyboard

CodeView Reference 459

Mixed
CodeView displays each line of your program's source file, followed by the
assembly instructions for that line. This ordering can be reversed by turning
the Line-Oriented Display option off (/1-).

Source and Mixed modes are available only if the executable file contains debug­
ging information.

Note Programs that do not contain debugging information are always displayed in
Assembly mode.

In the Source and Mixed modes, tracing into a function for which no source lines
are available, such as a library function, switches the Source window to Assembly
mode. Once program execution returns to an area where source lines are available
again, CodeView automatically switches back to Source or Mixed mode.

If you specify a line number or an address with the VS command, CodeView
draws the Source window so that the source line corresponding to the given ad­
dress appears in the middle of the Source window. If the address is in another file,
CodeView loads that file into the Source window. If you specify an address for
which there is no corresponding source text (in your program's data, for example),
CodeView will respond with an error message.

You can scroll the contents of the active Source window down a page by typing
the VS command with no arguments. You can also use the Source window scroll
bars.

To make a Source window active or to open a Source window:

• Click anywhere in an open Source window to make it active.

• Press ALT+3 or ALT+4 to activate or open Source window 1 or 2.

• From the Windows menu, choose Source 1 or Source 2.

To change the source display mode:

• Click the <F3=Srcl Fmt> or <F3=Src2 Fmt> buttons in the status bar to cycle
through the three modes.

• Press F3 to cycle forward.

• Press CTRL+F3 to cycle backward.

• From the Options menu, choose Source Window to open the Source Window
Options dialog box. Under Display Mode, select one of the option buttons.

• When the cursor is in the Source window, press CTRL+O to display the Source
Window Options dialog box.

460 Environment and Tools

Examples The following example opens Source window 2 in the mixed mode. The display
will start at the function toss_ token.

>VS 2 & toss_token

The next example changes the display format in Source window 2 to source lines
only.

>VS 2 +

W? (Add Watch Expression)
Syntax

Parameters

Description

Mouse and
Keyboard

W? expression [,format]

expression
Expression to add to the Watch window.

format
A CodeView format specifier that indicates the format in which expression is
displayed.

The Add Watch Expression (W?) command displays one or more specified values
in the Watch window. Watch expressions allow you to watch how a variable
changes as your program executes. CodeView updates the Watch window each
time the value of the watch expression changes during program execution.

The Watch window shows variables in the default format for their types. To dis­
playa watch expression in a different format, type a comma after the expression,
followed by a CodeView format specifier. You can also cast the expression to the
format you want to use.

CodeView always evaluates watch expressions according to the current radix and
reevalutes watch expressions if the radix changes.

For relational expressions, the Watch window shows 0 if the expression is false
and 1 if the expression is true.

As an alternative to typing the W? command, choose the Add Watch command
from the Data menu. There is no keyboard shortcut.

Examples
Command

W? n

W? high * 100

W? (char *l 0

CodeView Reference 461

Action

Display the value of the variable n in the Watch window.

Display the value of 100 times the variable hi g h in the
Watch window.

Display the byte at DS:O. Because a is explicitly cast to a
pointer type, CodeView treats it as an offset rather than a
constant.

we (Delete Watch Expression)
Syntax

Parameters

Description

Mouse and
Keyboard

Examples

we numberl*

number
Deletes the watch expression with this number.

*
Deletes all watch expressions.

The Delete Watch Expression (We) command removes a watch expression from
the Watch window.

When you set a watch expression, CodeView automatically assigns it a number,
starting with 0 for the first watch expression in the window. Use the List Watch
(WL) command to view the numbers of current watch statements.

In addition to typing the we command, you can use the following shortcuts to
delete watch expressions:

• From the Data menu, choose Delete Watch.

• Select the Watch window, move the cursor to the watch expression, and press
CTRL+Y.

The following example deletes watch expression 2 from the Watch window:

>WC 2

The following example deletes all watch expressions from the Watch window:

>WC *

462 Environment and Tools

WDG (Windows Display Global Heap)
Syntax

Parameter

Description

format

WDG [ghandle]

ghandle
A handle to a global memory object. The WDG command displays the five
memory objects in the global heap, starting at the specified object. The ghandle
must be a valid handle to an object allocated on the global heap. If ghandle is
not specified, WDG displays the entire global heap.

Global memory objects are displayed in the order in which Windows manages
them, which is typically not in ascending handle order. The output from the WDG
command has the following format:

handle address size PDB locks type owner

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

PDB

locks

type

owner

Description

Value of the global memory block handle.

Address of the global memory block.

Size of the block in bytes.

Block owner. If present, indicates that that task's Process Descriptor Block
is the owner of the block.

Count of locks on the block.

The memory-block type.

The block owner's module name.

WDl (Windows Display local Heap)
Syntax WDL

The output from the WDL command has the following format:

format handle address size flags locks type heap type blocktype

Any field may not be present if that field is not defined for the block.

Field

handle

address

size

flags

locks

type

heaptype

blocktype

Description

Value of the global memory block handle

Address of the block

Size ofthe block in bytes

The block's flags

Count of locks on the block

The type of the handle

The type of heap the block resides in

The block's type

CodeView Reference 463

WDM (Windows Display Modules)
Syntax

Description

Format

WDM

The WDM command displays a list of all DLL and application modules loaded by
Windows. Each line of the display has the following format:

handle refcount module path

Field

handle

refcount

module

path

Description

The module handle

The number of times the module has been loaded

The name of the module

The path of the module's executable file

WGH (Windows Dereference Global Handle)
Syntax

Parameter

Description

WGHhandle

handle
Global memory handle of memory object to convert.

To convert a global memory handle to a pointer, use the WGH command. WGH
converts a global memory handle into a near or a far pointer. Use WLH to convert
local memory handles.

464 Environment and Tools

Example

The WDG and WDL commands convert the handle into a pointer and display the
value of the pointer in segment: offset fonnat. You can then use that value to access
the memory.

In a Windows program, the GlobalLock function is used to convert memory han­
dles into near or far pointers. You may know the handle of the memory object, but
you might not know what near or far address it refers to unless you are debugging
in an area where the program has just called GlobalLock.

You use the WGH command at any time to find out what the pointer addresses
are for global memory handles.

The following example is used to display a string in Window's global heap. First,
the following code sets up the string:

HANDLE hGlobalMem;
LPSTR lpstr;

hGlobalMem = GlobalAlloc(GMEM_MOVEABLE, 10L)
lpstr = GlobalLock(hGlobalMem);
lstrcpy(lpstr, "ABCDEF");
GlobalUnlock(hGlobalMem);

You can display the contents of the string with the following sequence of
commands:

>wgh hGlobalMem
0192:6E30
>? *(char far*) 0x0192:0x6E30,s

WKA (Windows Kill Application)
Syntax

Description

WKA

The Windows Kill Application (WKA) command terminates the current task by
simulating a fatal error.

There may be times when you want to halt your program immediately . You can
force an immediate interrupt of a CVW session by pressing CTRL+ALT+SYSREQ.

You then have the opportunity to change debugging options, such as setting break­
points and modifying variables. To resume continuous execution, press F5; to
single-step, press FlO.

CodeView Reference 465

You should take care when you interrupt the CVW session. For example, if you
interrupt the session while Windows code or other system code is executing, using
the Step or Trace functions produces unpredictable results. When you interrupt the
CVW session, it is usually safest to set breakpoints in your code and then resume
continuous execution rather than using Step or Trace.

If the current code is in your application, you can safely use the WKA command
without affecting other tasks. However, the WKA command does not perform all
the cleanup tasks associated with the normal termination of a Windows application.

For example, global objects created during the execution of the program but not
destroyed before you terminated the program remain allocated in the global heap.
This reduces the amount of memory available during the rest of the Windows ses­
sion. For this reason, you should use the WKA command to terminate the applica­
tion only if you cannot terminate it normally.

For more information on using the Windows Kill Application (WKA) command,
see Chapter 10.

Wl (list Watch Expressions)
Syntax

Description

Mouse and
Keyboard

Example

WL

The List Watch Expressions (WL) command lists all currently set watch expres­
sions along with their numbers and values.

As an alternative to typing the WL command, you can use the Watch window to
view the current watch expressions.

The following example displays watch expressions and their values:

>WL
0) code 17
1) (float)letters/words 4.777778
2) lines==ll 0
>

In the example, three watch expressions are set:

466 Environment and Tools

1. The variable code, which is 17.

2. The arithmetic expression 1 etters divided by words as a floating point
number, currently 4.777778

3. The conditional expression 1 i nes==ll, currently false (zero).

WlH (Windows Dereference local Handle)
Syntax

Parameter

Description

Example

WLHhandle

handle
Local memory handle of memory object to convert.

To convert a local memory handle to a pointer, use the Dereference Local Handle
(WLH) command. WLH converts a local memory handle into a near or a far
pointer. Use WGH to convert global memory handles.

The WDG and WDL commands convert the handle into a pointer and display the
value of the pointer in segment: offset format. You can then use that value to access
the memory.

In a Windows program, the LocalLock function is used to convert memory han­
dles into near or far pointers. You may know the handle of the memory object, but
you might not know what near or far address it refers to unless you are debugging
in an area where the program has just called LocalLock.

You use the WLH command to find out at any time what the pointer addresses are
for local memory handles.

The following example uses WLH to refer to an array during a debugging session.
First, the following code sets up the array:

{

HANDLE hLocalMem;
int near * pnArray;
hLocalMem LocalAllocC LMEM_MOVEABLE, 100);
pnArray = LocalLockC hLocalMem);

/* load values into the array */

LocalUnlockC hLocalMem);

CodeView Reference 467

Now, after setting a breakpoint immediately after the call to LocalLock, the fol­
lowing command displays the array location:

>mdw pnArray

Outside of this fragment, though, you cannot rely on the value of the pnArray
variable since the actual data in the memory object may move. Therefore, use
the following sequence to display the correct array location:

>wlh hLocalMem
0192:100A
>mdw 0192:100A

X (Examine Symbols)
Syntax

Parameters

Description

Xscope [context][regex]

scope
Specifies the scope in which to search for symbols. Can be one or more of the
following:

Specifier Scope

L Lexical

F Function

M Module

E Executable

P Public

G Global

* All of the above

context
Specifies context under which to search with the context operator.

regex
Specifies a CodeView regular expression.

The Examine Symbols (X) command displays the names and addresses of sym­
bols and the names of modules defined within a program. You can specify the
scope in which to search and a regular expression against which to match symbols.
You can further specify a context using the context operator.

For more information on regular expressions, see Appendix A.

468 Environment and Tools

Examples The following example shows all the symbols and their addresses in the current
lexical scope. The command uses the regular expression . * to match any symbol.

>XL .*

The following example displays all symbols and their addresses in the program
that start with s_:

! (Shell Escape)
Syntax

Parameter

Description

![[!]command]

command
Executes the given program or operating-system command without leaving
CodeView. Use the second exclamation point to return to CodeView immedi­
ately after completing command.

The Shell Escape (!) command (CV only) allows you to exit from the CodeView
debugger to an MS-DOS shell. You can execute MS-DOS commands or programs
from within the debugger, or you can exit from Code View to MS-DOS while re­
taining your current debugging context.

If you want to exit to MS-DOS and execute several commands or programs, enter
the Shell Escape command with no arguments (!). After the MS-DOS screen ap­
pears, you can run internal system commands or programs. When you are ready to
return to CodeView, type the command exit (in any combination of uppercase and
lowercase letters). The debugging screen appears with the same status it had when
you left it.

If you want to execute a program or an internal system command from within
CodeView, enter the Shell Escape command followed by the name of the com­
mand or program you want to execute, as in:

!command

The output screen appears, and Code View executes the command or program.
When the output from the command or program is finished, the message

Press any key to continue ...

appears at the bottom of the screen. Press a key to make the debugging screen
reappear with the same status it had when you left it. To suppress this prompt and

Mouse and
Keyboard

Remarks

Example

CodeView Reference 469

return directly to CodeView after the command is executed, use two exclamation
points (!!) for the Shell Escape command.

The Shell Escape command works by executing a second copy of
COMMAND.COM.

In addition to typing the! command, you can also invoke a command shell from
the File menu.

Opening a shell requires a significant amount of free memory since the following
are all resident in memory:

• CodeView

• The debugging information

• The system's command processor

• The program being debugged

If your machine does not have enough memory, an error message appears. Even if
there is enough memory to start a new shell, there may not be enough memory left
to execute large programs from the shell.

In order for you to use the Shell Escape commands, the executable file being de­
bugged must release unneeded memory. Programs created with Microsoft com­
pilers release memory during startup.

Side effects of commands executed while in a shell, such as a change in the work­
ing directory, may not be seen when you return to CodeView.

In the following example, the shell command DIR is executed with the argument
A: *. OBJ. The directory listing will be followed by the prompt that asks you to
press any key:

!OIR A:*.OBJ

In the following example, the COpy command is executed and control returns to
CodeView. No prompt appears.

!!copy output.txt d:\backup

470 Environment and Tools

.. (Pause)
Syntax

Description

Example

(Tab Set)
Syntax

Parameter

Description

II

The Pause (") command interrupts the execution of commands from a redirected
file and waits for the user to press a key. Execution of the redirected commands
begins as soon as a key is pressed.

The following example is from a text file redirected to the CodeView debugger. A
Comment (*) command is used to prompt the user to press a key. The Pause (")
command is then used to halt execution until the user responds.

* Press any key to continue

#number

number
Number of characters for new tab stops. The valid range for number is 1-19.

The Tab Set (#) command sets the width in spaces that the Code View debugger
fills for each tab character. The default tab is eight spaces. You can specify values
in the range 1-19.

You may want to set a smaller tab size if your source code has so many levels of
indentation that source lines extend beyond the edge of the screen.

This command has no effect if your source code contains no tab characters.

CodeView Reference 471

* (Comment)
Syntax

Description

Example

*comment

The Comment command is an asterisk (*) followed by text. The CodeView debug­
ger echoes the text of the comment to the screen or other output device. Use this
command in combination with the redirection commands when you are:

• Saving a commented session.

• Writing a commented session that will be redirected to the debugger.

In the following example, the user is sending a copy of a CodeView session to the
file OUTPUT.TXT. Comments are added to explain the purpose of the command.
The text file will contain commands, comments, and command output.

> T>OUTPUT. TXT
> * Dump first 20 bytes of screen buffer
> MOB 0xB800:0 L 20
B800:0000 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17
B800:0010 6E 17 20 17
> >CON

. (Current location)
Syntax

Description The Current Location (.) command displays the source line or assembly-language
instruction corresponding to the current program location. It puts the current pro­
gram location in the center of the active Source window.

Use this command if you have scrolled the current source line or assembly instruc­
tion out of the active Source window.

The Current Location (.) command is equivalent to the command:

vs .

472 Environment and Tools

/ (Search)
Syntax

Parameter

Description

Mouse and
Keyboard

1 [regexp]

regexp
Searches for the first line containing this regular expression. If omitted, the
command searches for the next occurrence of the last regular expression given.

The Search (I) command searches for a regular expression in a source file.

"Regular expressions" are patterns of characters that may match one or many dif­
ferent strings. The use of patterns to match more than one string is similar to the
MS-DOS method of using wild card characters in filenames.

Code View , s regular expressions use a subset of the UNIX syntax supported by the
Programmer's WorkBench (PWB). For complete information on regular expres­
sions in PWB and CodeView, see Appendix A.

When you enter the Search command with a regular expression, CodeView
searches the source file for the first line containing the expression. If you do not
give a regular expression, CodeView searches for the next occurrence of the last
regular expression specified.

Even if you do not understand regular expressions, you can still use the Search
command with plain text strings, since text strings are the simplest form of regular
expressions. For example, you can enter

>1 COUNT

to search for the word COUNT in the source file.

To find strings containing a special regular expression character (. \ A $ * []), you
must precede the character with a backs lash (\); this cancels their special mean­
ings. For example, use the command:

>1 x*y

to find the string x * y .

In Source windows, CodeView starts searching at the current cursor position and
places the cursor at the line containing the regular expression. The search wraps to
the beginning of the file if necessary.

In addition to typing the 1 command, you can also search for regular expressions
by choosing Find from the Search menu.

Remarks

7 (8087)
Syntax

Description

Example

line 1

CodeView Reference 473

When you search for the next occurrence of a regular expression, CodeView
searches to the end of the file, then wraps around and begins again at the start of
the file. This search can have unexpected results if the expression occurs only
once. For example, when you give the command repeatedly, there is no activity
on the screen. Actually, CodeView is repeatedly wrapping around and finding the
same expression each time.

The Case Sensitivity command on the Options menu and the Options Case Sense
(Oe) command affect regular expression searches.

If you want to find a label in your source code, you can also use the View Source
(VS) command.

7

The 8087 (7) command dumps the contents of the math processor registers. If you
do not have an 8087 or equivalent math processor chip, this command dumps the
contents of the software-emulated registers.

The following example shows and describes the output from the 7 command:

cControl 037F (Closure=Projective Round=nearest, Precision=64-bit
IEM=0 PM=l UM=l OM=l ZM=l OM=l IM=l

cStatus
Tag
Stack
cST(3)
cST(2)
cST(1)

cST(0)

6004 cond=1000 top=4 PE=0 UE=0 OE=0 ZE=l OE=0 IE=0
A1FF instruction=59380 operand=59360 op-code=09EE

Exp Mantissa Value
special 7FFF 8000000000000000 + Infinity
special 7FFF 0101010101010101 + Not A Number
valid 4000 C90FOAA22168C235 +3.141592265110390E+000
zero 0000 0000000000000000 +0.000000000000000E+000

Here, the lowercase c that precedes several lines of the output indicates that the
coprocessor is in use. If this command had been used with an emulated coproces­
sor, an e would precede the lines. The following is a line-by-line description of
the output from the 7 command:

This line shows the value in the control register, 037F. The rest of the line inter­
prets the bits represented by the number in the control register:

474 Environment and Tools

Line 2

Line 3

Line 4

Lines 5-9

• The closure method, which can be projective or affine.

• The rounding method, which can be nea rest (even), down, up, or chop (trun­
cate to zero).

• The precision, which can be 64,53, or 24 bits.

This line lists the status of the exception-mask bits, described in the following
table:

Name Description

IEM Interrupt enable

PM Precision

UM Underflow

OM Overflow

ZM Zero divide

DM Denormalized operand

1M Invalid operation

This line lists the value in the status register (6004 hexadecimal), the condition
code (1000 binary), and the top of stack register (4 decimal). It then lists the excep­
tion flags, described in the following table:

Flag Meaning

PE Precision

UE Underflow

OE Overflow

ZE Zero divide

DE Denormalized operand

IE Invalid operation

This line lists the 20-bit address of the tag register, the offset of the instruction,
the offset of the operand, and the offset of the op-code, all in hexadecimal. When
using software-emulated coprocessor routines, this line does not appear.

The rest of the output from the 8087 command lists the contents of the stack regis­
ter. In this example, 5T (3) contains the value infinity, 5T (2) contains a value
that cannot be interpreted as any number, 5T (1) contains a real number, and
5T (0) contains zero.

: (Delay)
Syntax

Description

Example

CodeView Reference 475

The Delay (:) command interrupts execution of commands from a redirected file
and waits about half a second before continuing. You can put multiple Delay com­
mands on a single line to increase the length of delay. The delay is the same length
regardless of the processing speed of the computer.

In the following example, the Delay (:) command is used to slow execution of the
redirected file into CodeView.

: ;* That was a short delay ...
::::: ;* That was a longer delay ...

< (Redirect CodeView Input)
Syntax

Parameter

Description

Example

<device

device
Device or file from which to read commands.

The Redirect Input «) command causes CodeView to read all subsequent com­
mand input from a file or device.

The following example redirects command input from the file INFILE. TXT to
CodeView. Use this method to run "scripts" of CodeView commands that you
have prepared in advance.

> <INFILE.TXT

You can also start up CodeView with redirected input by typing the following at
the operating-system prompt:

CV /C"<infile.txt"

476 Environment and Tools

> (Redirect CodeView Output)
Syntax

Parameter

Description

Example

[T]>[>] device

device
Device or file to which to write output.

The Redirect Output (» command causes CodeView to write all subsequent com­
mand output to a device, such as another terminal, a printer, or a file. The term
"output" includes not only output from commands but also the command charac­
ters that are echoed as you type them.

The optional T indicates that the output should be echoed to the CodeView screen.
If you do not give a T, Code View echoes only commands that you enter. Use the
T option if you are redirecting output to a file to see output from the commands
that you are typing.

Note If you are redirecting output to another terminal, you may not want to see the
output on the CodeView terminal.

If you specify an existing file, CodeView truncates the file and then starts writing
output. To preserve the contents of the file, use a second greater-than symbol (»),
which appends output to the file.

In the following example, output is redirected to the device designated as COM!
(for example, a remote terminal). Enter this command when you are debugging a
graphics program and you want CodeView commands to be displayed on a remote
terminal while the program display appears on the originating terminal.

> >COMI

In the following example, output is redirected to the file OUTFILE.TXT. Use this
command to keep a permanent record of a CodeView session.

> DOUTFILE. TXT

> >CON

Note The optional T is used so that the session is echoed to the CodeView screen
as well as to the file. After redirecting some commands to a file, use the command
>CON to return output to the terminal.

CodeView Reference 477

= (Redirect CodeView Input and Output)
Syntax

Parameter

Description

= device

device
Device to which to redirect input and output. Specify >CON for the CodeView
Command window.

The Redirect Input and Output (=) command causes the CodeView debugger to
read all subsequent command input from the device and write all subsequent out­
put to the device. You cannot redirect both input and output to a file.

To reset the input and output for CodeView after you have entered one of the other
redirection commands, use the command:

>= con

? (Display Expression)
Syntax

Parameters

Description

? expression[,fonnat]

expression
The expression to display. This can be any valid CodeView expression.

,format
A CodeView format specifier that indicates the format in which to display
expression.

The Display Expression (?) command displays the value of a Code View expres­
sion. The simplest form of expression is a symbol representing a single variable or
function. An expression may also call functions that are part of the executable file.

The Display Expression command can also set values. For example, with the C or
C++ expression evaluator, you can increment the variable n by using an assign­
ment expression:

? n=n+l

The command displays the value after incrementing n.

You can specify the format in which the values of expressions are displayed by the
Display Expression command. After the expression, type a comma, followed by a
CodeView format specifier.

478 Environment and Tools

Example The following example displays the value stored in the variable amount, an in­
teger. This value is first displayed in the system radix (in this case, decimal), then
in hexadecimal, then in 4-byte hexadecimal, and then in octal.

>? amount
500
>? amount,x
0lf4
>? amount, 1 x
000001f4
>? amount,o
764
>

?? (Quick Watch)
Syntax

Parameter

Description

?? symbol

symbol
Displays the given variable, array, or structure in the Quick Watch dialog box.

The Quick Watch (??) command displays the value of any selected expression in
the Quick Watch dialog box. You can use Quick Watch to quickly check the value
of a variable or structure and expand or contract items in a structure.

Expanding/Contracting Items
The Quick Watch dialog box allows you to:

• Expand or contract nested structures and arrays.

• View variables, structures, or arrays addressed by pointers.

• Add any structure or array to the Watch window.

Expandable items appear with a plus sign (+) in the Quick Watch dialog box.
Once expanded, an item appears with a minus sign (-).

Expanding an item has the following effects:

Mouse and
Keyboard

@ (Redraw)
Syntax

Description

Item

Nested structure

Pointer

Array

CodeView Reference 479

Action

Expands the structure so that the dialog box displays each
member of the nested structure.

Dereferences the pointer; that is, displays the data that the
pointer addresses.

Expands the array so that the dialog box displays each
element of the array.

Contracting an item reverses the effects of expanding described above.

Note You can add any expression in the Quick Watch dialog box to the Watch
window by choosing the Add Watch button.

After opening the Quick Watch dialog, you can expand or contract an item using
the following methods:

• Double-click the left mouse button on the item.

• Select the item, then choose the Expand/Contract button at the bottom of the
dialog box.

• Use the arrow keys to select the item, and press ENTER.

@

The Redraw (@) command redraws the CodeView screen. Use this command if
the output of the program being debugged disturbs the Code View display.

\ (Screen Exchange)
Syntax

Description

\

The Screen Exchange (\) command allows you to switch temporarily from the de­
bugging screen to the output screen. The CodeView debugger uses either screen
flipping or screen swapping to store the output and debugging screens.

To return to the CodeView screen, press any key.

CL Command Reference

This chapter describes the CL command, which you use to compile and link C and
C++ programs. It explains the rules for giving input on the CL command line and
describes the CL options in alphabetical order.

The chapter provides reference material for programmers who are familiar with
the Microsoft C Compiler in general and the CL command in particular.

13.1 The CL Command Line
The CL command line has the following format:

CL [option ...] file ... [option!file] ... [lib ...] [/link link-opt ...]

The following list describes input to the CL command:

Entry

option

file

lib

link-opt

Meaning

One or more CL options; see "CL Options" on page 488 for descriptions.

The name of one or more source files, object files, or libraries. You must
specify at least one filename. CL compiles source files and passes the
names of the object files and libraries to the linker.

One or more library names. CL passes the names of these libraries to the
linker for processing.

One or more of the linker options described in Chapter 14, "Linking Object
Files with LINK." The CL command passes these options to the linker for
processing.

You can specify any number of options, filenames, and library names, as long as
the length of the command line does not exceed the limit dictated by the operating
system.

A filename can contain any combination of uppercase and lowercase letters, hy­
phens, underscores, and a period. Any filename can include a full or partial path.

486 Environment and Tools

A full path includes a drive name of the fonn D: and one or more directory names
separated by backslashes (\). A partial path omits the drive name, which CL as­
sumes to be the current drive. If you don't specify any path, CL assumes the file is
in the current directory.

CL determines how to process each file depending on its filename extension, as
follows:

Extension

.C

.CXX, .CPP

. OBI

.LIB

.ASM

.DEF

Any other extension
or no extension

Processing

CL assumes the file is a C source file and compiles it.

CL assumes the file is a C++ source file and compiles it.

CL assumes the file is an object file and passes its name to the
linker.

CL assumes the file is a library and passes its name to the
linker. The linker links this library with the object files CL
created from source files and the object files given on the
command line.

CL assumes the file is an assembly file and invokes MASM
(ML.EXE) to assemble it.

CL assumes the file is a definition file and passes its name to
the linker.

CL assumes the file is an object file and passes its name to the
linker.

13.2 How the CL Command Works
The CL command uses the following procedure to create an executable file from
one or more C source files:

1. CL compiles each source file, creating an object file for each. CL automatically
includes the options listed in the CL environment variable. In each object file,
CL places the name of the appropriate standard combined library. The library's
name reflects both the memory model and the floating-point math package used
to compile the program. See "J A Options" on page 488 for more infonnation on
the library names.

2. CL invokes the linker, passing the names of the object files it has created plus
the name of any object files or libraries given on the command line. CL auto­
matically includes the options listed in the LINK environment variable. If you
use /link to specify linker options on the CL command line, these options apply
as well. If conflicts occur, options that follow /link override those in the LINK
environment variable.

Cl Command Reference 487

3. The linker links the object files and libraries named by CL to create a single ex­
ecutable file.

Before it creates the executable file, the linker resolves "external references"
in the object files. An external reference is a function call in one object file that
refers to a function defined in another object file or in a library. To resolve an
external reference, the linker searches for the called function in the following
locations in the following order:

a. The object files passed by CL

b. The libraries given on the CL command line, if any

c. The libraries named in the object files

Example
Assume that you are compiling three C source files: MAIN.C, MOD1.C, and
MOD2.C. Each file includes a call to a function defined in a different file:

• MAIN.C calls the function named funcl in MOD1.C and the function named
func2 in MOD2.C.

• MOD I.C calls the standard library functions printf and scanf.

• MOD2.C calls graphics functions named myline and mycircle, which are de­
fined in a library named MYGRAPH.LIB.

First, compile with a command line of the following form:

CL MAIN.C MODl.C MOD2.C MYGRAPH.LIB

CL first compiles the C source files and creates the object files MAIN.OBJ,
MODI.OBJ, and MOD2.0BJ. The compiler places the name ofthe standard
library SLIBCE.LIB in each object file.

Next, CL passes the names of the C source files to the linker. Finally, the linker
resolves the external references as follows:

1. In MAIN.OBJ, the reference to the function funcl is resolved using the defini­
tion in MODI.OBJ; the reference to the function func2 is resolved using the
definition in MOD2.0BJ.

2. In MODI.OBJ, the references to printf and scanf are resolved using the defini­
tions in SLIBCE.LIB. The linker uses this library because it finds the library
name within MOD1.0BJ.

3. In MOD2.0BJ, the references to myl i ne and myci rcl e are resolved using
the definitions in MYGRAPH.LIB.

488 Environment and Tools

13.3 CL Options
Options to the CL command consist of either a forward slash (I) or a dash (-) fol­
lowed by one or more letters. Certain CL options take arguments; in some of these
options, a space is required between the option and the argument; in others, no
space is allowed. The spacing rules for the options are given in their descriptions.

Note CL options (except for the IHELP option) are case sensitive. For example,
IC and Ic are different options.

Except for If, Igc, and 109, options can appear anywhere on the CL command
line-these three must appear first. With two exceptions (/c, /Fe), each CL option
applies to the files that follow it on the command line and does not affect files pre­
ceding it on the command line.

You can also define CL options in the CL environment variable; these options are
used every time you invoke CL. See "Specifying Options with the CL Environ­
ment Variable" on page 557.

The remainder of this section describes all the CL options in alphabetical order. If
an option can take one or more arguments, its format is shown under an "Option"
heading before its description.

fA Options (Memory Models)
Every program's code and data are stored in blocks called "segments." The mem­
ory model of the program determines the organization of these segments. (See
Chapter 16 for more information on segments.) The memory model also deter­
mines what kind of executable file is generated. All models except tiny produce an
.EXE file. The tiny model produces a .COM file. Any version of CL that targets a
32-bit system offers only the small memory model (lAS). CL offers the memory­
model options described in Table 13.1.

Table 13.1 Memory Models

CL Memory Data Code Long
Option Model Segments Segments Form

IAT Tiny One segment for both data One segment for none
and code both data and code

lAS Small One One IAsnd

lAM Medium One One code segment IAlnd
per module

lAC Compact Multiple data segments; data One IAsfd
items must be smaller than
64K

Cl Command Reference 489

Table 13.1 (continued)

CL Memory Data Code Long
Option Model Segments Segments Form

fAL Large Multiple data segments; data One code segment fAlfd
items must be smaller than per module
64K

fAH Huge Multiple data segments; One code segment fAlhd
arrays can be larger than 64K per module

By default, the compiler uses the small memory model.

For programs that target 16-bit processors, memory models with multiple code
segments can accommodate larger programs than can memory models with one
code segment. Memory models with multiple data segments can accommodate
more data-intensive programs than can memory models with one data segment.
Programs with multiple code or data segments, however, are slower than programs
with a single code or data segment. A program destined to be a Windows DLL can
use only a single data segment.

For 32-bit target code, memory is no longer partitioned into hardware-defined 64K
segments. The compiler still partitions each program into one code segment and
one data segment; the size of the segments is limited only by the amount of mem­
ory addressable by a 32-bit pointer-about 4 gigabytes.

It is more efficient to compile with the smallest possible memory model and use
the __ near, __ far, __ huge, and __ based keywords to override the default ad­
dressing conventions for any data items or functions that cannot be accommodated
in that model. For more information, see Chapter 4 in the Programming Tech­
niques manual.

CL also supports customized memory models, in which different features from
standard memory models are combined. You specify a customized memory model
with the / Astring option, where string is composed of three letters that specify the
code pointer size, the data pointer size, and the stack and data segment setup, re­
spectively. All three letters must be present, but they can appear in any order. The
allowable letters appear in Table 13.2.

490 Environment and Tools

Table 13.2 Customized Memory Model Codes

Group

Code pointers

Data pointers

Segment setup

Code

s
1

n
f
h

d

Description

Small
Large

Near
Far
Huge

SS ==DS
u SS != DS; DS loaded for each function entry
w SS != DS; DS not loaded at function entry

As examples, the customized representations of the standard memory models ap­
pear in the Long Form column of Table 13.1.

The segment setup codes can also be given as separate options when used to mod­
ify a standard memory model. For example, the options 1 ASu specify the small
model and force DS to be loaded at function entry.

The memory-model and math options used to compile the program determine the
library the linker searches to resolve external references. The library name is
mLIBCf.LIB, where the memory-model option determines m: S for small (default)
or tiny model, M for medium model, C for compact model, or L for large or huge
model, and the math option determines! E for emulator (default), A for alternate
math, or 7 for 8087/80287. For example, the following specifies a small-model
library with coprocessor support:

MUBe? LIB

For more information on the math options, see "IFP Options" on page 508.

/batch (Compile in Batch Mode)
The !batch option assumes that CL is being executed from a batch file. Usually, if
CL cannot find one of the compiler pass files (for instance, Cl.EXE or C2.EXE)
or one of the utilities (such as LINK.EXE or CVPACK.EXE), it displays a prompt
requesting the appropriate full-path filename. If you specify the !batch option, CL
simply terminates compilation with an error.

IBm (IncreaSing Compiler Capacity)

Option IBmmemavailable

Use the IBm option to increase the amount of memory that is available to the com­
piler during its second pass. Use of this option is necessary only if you encounter

CL Command Reference 491

the "Function too large to optimize" error message. The default memory limit that
the compiler works within is 2048K. The memavailable argument accepts the new
amount (in kilobytes) of memory; thus a memavailable value of 4096 makes 4
megabytes of memory available. A space between IBm and memavailable is
optional.

Ie (Compile Without Linking)
The Ic option instructs CL to compile all C source files given on the command
line, creating object files; it does not link the object files. When you specify the
Ic option, CL does not produce an executable file. Regardless of its position on
the command line, this option applies to all source files on the command line.

Example

CL Ie FIRST.C SECOND.C THIRD.OBJ

This example compiles FIRST.C, creating the object file FIRST.OBJ, and then
compiles SECOND.C, creating the object file SECOND.OBJ. No processing is
performed with THIRD.OBJ because CL skips the linking step.

IC (Preserve Comments During Preprocessing)
The IC (for "comment") option preserves comments during preprocessing with
the IE, IP, or IEP options. If you do not specify the IC option, the preprocessor
does not pass source-file comments to its output file.

This option is valid only if the IE, IP, or IEP option is also used. These CL options
are described later in this chapter.

Example

CL IP IC SAMPLE.C

This example produces a listing named SAMPLE.I. The listing file contains the
original source file, including comments, with all preprocessor directives ex­
panded or replaced.

/D (Define Constants and Macros)

Option lDidentifier[=1# [{ stringlnumber}]]

Use the ID option to define constants or macros for your source file.

492 Environment and Tools

The identifier is the name of the constant or macro. It can be defined as a string or
as a number. No space can separate ID and the identifier. Enclose the string in
quotes if it includes spaces.

Note that with Microsoft CIC++, you can substitute a number sign (#) for an equal
sign (=) when setting the identifier to string I number. From either the DOS com­
mand line or from a batch file, you cannot set an environment variable, such as
CL, to a string that contains an equal sign. Environment variables do, however,
accept the number sign. Now that the CL driver allows the substitution of "#" for
"=," you can use the CL environment variable to define preprocessor constants:

SET CL="/OTEST#0"

If you omit both the equal sign and the string or number, the identifier is assumed
to be defined, and its value is set to 1. For example, entering 10SET defines a
macro named SET with a value of 1. Note that the identifier argument is case sen­
sitive. For example, the preceding ID option would have no effect on a constant
named set that is defined in the source file.

Use the ID option in combination with either the #if or #ifdef directive to compile
source files conditionally.

You can replace a keyword, identifier, or a numeric constant with no text in a
source file. To do so, use the ID option with a keyword, identifier, or a numeric
constant and append an equal sign followed by a space. For example, Use the fol­
lowing command to remove all occurrences of RELEASE from TEST.C:

CL IORELEASE= TEST.C

Similarly, use the following command to remove all occurrences of the keyword
__ far in TEST.C:

CL 10 far= TEST.C

Defining macros and constants with the ID option has the same effect as using a
#define preprocessor directive at the beginning of your source file. The identifier
is defined until either an #undef directive in the source file removes the definition
or until the compiler reaches the end of the file.

If an identifier defined in a ID option is also defined within the source file, CL
uses the definition on the command line until it encounters the redefinition of the
identifier in the source file.

Example

#if !defined(RELEASE)
__ nheapchk();

fIend if

CL Command Reference 493

This code fragment calls a function to check the near heap unless the constant
RELEASE is defined. While developing the program, you can leave RELEASE unde­
fined and perform heap checking to find bugs. Assuming the program name is
BIG.C, you would compile with the following command:

CL BIG.C

After you have found all of the bugs in the program, you can define RELEASE in a
ID option so the program runs faster, as follows:

CL IDRELEASE BIG.C

IE (Copy Preprocessor Output to Standard Output)
The IE option preprocesses the C source file and copies preprocessor output to the
standard output device (usually your terminal). The IE option adds #line directives
to the output. The #line directives are placed at the beginning and end of each in­
cluded file and around lines removed by preprocessor directives that specify condi­
tional compilation. You can use the IEP option, discussed below, to suppress the
addition of #line to the output.

The output that the IE option generates is identical to the original source file ex­
cept that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. You usually use the IE option with the IC
option (see "/c (Compile Without Linking)" on page 491), which preserves com­
ments in the preprocessed output. You can use DOS redirection to save the output
in a disk file.

Use this option when you want to resubmit the preprocessed listing for compila­
tion. The #line directives renumber the lines of the preprocessed file so that errors
generated during later stages of processing refer to the line numbers of the original
source file rather than to the preprocessed file.

The IE option suppresses compilation. It also suppresses production of the alter­
nate output files that the !Fa, !Fc, !Fm, or !Fo options generate.

Example

CL IE IC ADD.C > PREADD.C

This command creates a preprocessed file with inserted #line directives from the
source file ADD.C. The output is redirected to the file PREADD.C.

Note Precompiled headers do not work with the IE option.

494 Environment and Tools

/EP (Copy Preprocessor Output to Standard Output)
The IEP option is similar to the IE option: it preprocesses the C source file and
copies preprocessor output to the standard output device. Unlike the IE option,
however, the IEP option does not add #line directives to the output. You can use
the IEP option with the IP option, discussed later in this chapter, to suppress
adding #line directives to the output.

Preprocessed output is identical to the original source file except that all prepro­
cessor directives are carried out, macro expansions are performed, and comments
are removed. You can use the IEP option with the IC option (see "/c (Compile
Without Linking)" on page 491), which preserves comments in the preprocessed
output.

The IEP option suppresses compilation; CL does not produce an object file or a
map file, even if you specify the IFo or IFm option on the CL command line. Also,
it will not produce the output files specified by the !Fa or the !Fc options.

Example

CL IEP IC ADD.C

This command creates a preprocessed file from the source file ADD.C. It pre­
serves comments but does not insert #line directives. The output appears on the
screen.

IF (Set Stack Size)

Option

If (Fast Compile)

!F number

The!F option sets the program stack size to number bytes, where number is a hex­
adecimal number in the range 0001 to FFFF. A space is required between the op­
tion and number. Decimal and octal numbers are not allowed. If you don't specify
this option, a stack size of 2K is used by default.

You may want to increase the stack size if your program gets stack -overflow diag­
nostic messages. If your program uses little stack space, you may want to decrease
the size of your program by reducing the stack size. In general, if you modify the
stack size, do not use the IGs option to suppress stack checking until you are sure
the new stack size is large enough.

Use the If option to compile source files without any default optimizations. It
generates the _FAST preprocessor constant. Programs compiled with If are

CL Command Reference 495

slower and larger but compile in less time than the optimizing compiler requires;
this option is useful during the development process. If used, the If option must be
the first option on the command line. The Fast Compile option does not support
initialized static huge data.

Note that with Microsoft CIC++, the If option supersedes the Iqc option.

!Fo, !Fe, IFs, IFa, IFI, !Fe, !Fm, IFp, !Fr, !FR (Set Alternate Output Files)

Option lFo filename
lFe filename
IFs [filename]
lFa fIJilename]
1F1 fIJilename]
IFc fIJilename]
IFm fIJilename]
IFp fIJilename]
IFr fIJilename]
IFR fIJilename]

Use these options to specify alternate names for output files. Table 13.3 sum­
marizes the purpose of each option. This section begins with information that is
true for all of the IF options and ends with information specific to each individual
option.

Table 13.3 Optional File Types

Option File Type Default File Name Default Extension

!Fo Object Base name of source .OBJ
file plus .OBJ

!Fe Executable Base name of source .EXE
file plus .EXE

!Fs Source listing Base name of source .LST
file plus .LST

lFa Assembly listing Base name of source .ASM
file plus .ASM

IFI Assembler- and machine- Base name of source .COD
code listing file plus .COD

IFc Source-, assembler-, and Base name of source .COD
machine-code listing file plus .COD

IFm Linker map Base name of source .MAP
file plus .MAP

!Fp Precompiled header Base name of source .PCH
file plus .PCH

496 Environment and Tools

Table 13.3 (continued)

Option

IFr

IFR

File Type

PWB Source Browser
database-ignores local
variables

PWB Source Browser
database

Default File Name

Base name of source
file plus .SBR

Base name of source
file plus .SBR

Default Extension

.SBR

.SBR

Path Specifications and Extensions
If used, the filename argument must follow the option with no intervening space.
It can be a file specification, a drive name, or a path specification. Iffilename is
a drive name or path specification, the CL command creates the specified file or
files in the given location; the default name is the base name of the first file plus
the default extension. Ifthefilename argument is a path without a filename (i.e.,
a directory), end the path with a backslash (\) or CL cannot differentiate the path
from a filename.

You can give any name and extension you want forJilename. If you give a file­
name without an extension, CL automatically appends the default extension.

Since you can process more than one file at a time with the CL command, the or­
der in which you give listing options and the kind of argument you give for each
option affect the result. Only one kind of object or assembly listing can be pro­
duced for each source file. The following list summarizes the effects of each op­
tion with each type of argument.

Argument

Filename

Drive Name or
Path

None

Effect

Creates a listing for the next source file on the command line; uses
default extension if no extension is given

Creates listings in the given location for every source file listed after
the option on the command line; uses default names

Creates listings in the current directory for every source file listed
after the option on the command line; uses default names

Interactions Between Options
The following list summarizes the interactions between the options.

Option

IFc

Effect

Overrides !Fa and IFI

IFI overrides lFa

Produces combined listing

Linking is suppressed; IFm is ignored

Linking is suppressed; IFe is ignored

CL Command Reference 497

lFa and IFI

lFa and IFs

IFm and Ic

IFe and Ic

IFs and IFI Produces combined source-, assembler-, and machine-code listing

DOS Device Names
You can append the MS-DOS device names AUX, CON, PRN, and NUL to the al­
ternate output-file options and direct the resulting listing files to your terminal or
printer. There can be no space between the option and the device name. For in­
stance, the following command line generates assembler code for TEST.C and
directs the output to the console:

CL IFaCON TEST.C

The following list summarizes the result when a device name is appended to an
option:

Device Name

AUX

CON

PRN

NUL

Result

Sends the listing file to an auxiliary device

Sends the listing file to the console

Sends the listing file to a printer

No file is created

Note Do not append a colon (:) to the device names when you use them as argu­
ments to the listing options. For example, use CON instead of CON: and PRN
instead ofPRN:.

Examples

CL IFsHELLO.SRC IFcHELLO.CMB HELLO.CPP

In the first example, CL produces a source listing called HELLO.SRC and a com­
bined source and assembly listing called HELLO.CMB. The object file has the
default name HELLO.OBJ.

CL IFsHELLO.SRC IFsHELLO.LST IFcHELLO.CMB HELLO.CXX

The second example produces a source listing called HELLO.LST rather than
HELLO.SRC, since the name associated with the rightmost option determines
the resulting filename. This example also produces a combined source-code,

498 Environment and Tools

Option

assembler-code, and machine-code listing file called HELLO.CMB. The object
file has the default name HELLO.OBJ.

CL IFsPRN HELLO.CXX

In this example, CL sends a source listing to the printer.

/Fo (Rename Object File)

!Fofilename

By default, CL gives each object file it creates the base name of the corresponding
source file plus the extension .OBJ. The!Fo option lets you give different names
to object files or create them in a different directory. No space is allowed between
the option andfilename.

If you are compiling more than one source file, you can use the !Fo option with
each source file to rename the corresponding object file. You can also use the !Fo
option with a directory name to place all of the object files in a different directory.
Note that the!Fo option requires afilename argument.

You can give any name and extension you want for filename. However, it is rec­
ommended that you use the conventional .OBJ extension since the linker and the
LIB library manager use .OBJ as the default extension when processing object
files.

Examples

CL IFoB:\OBJECT\ THIS.C

In this example, CL compiles the source file THIS.C and gives the resulting object
file the name THIS.OBJ by default. The directory specification B: \OBJECT\ tells
CL to create THIS.OBJ in the directory named \OBJECT on drive B.

CL Ie IFo\ASM\ THIS.C THAT.C IFo\SRC\NEWTHOSE.OBJ THOSE.C

In this example, the Ie option tells CL to run the compiler and not the linker.
The first!Fo option tells the compiler to generate two object files, THIS.OBJ
and THAT.OBJ, from THIS.C and THAT.C and place them in the \ASM
directory. The second!Fo option tells the compiler to create the object file
NEWTHOSE.OBJ (generated from THOSE.C) in the \SRC directory. Note that
any path appended to an option must end with a backslash (\ASM must be \ASM\).

Option

Option

CL Command Reference 499

/Fe (Rename Executable File)

!Fe filename

By default, CL names the executable file with the base name of the first file
(source or object) on the command line plus the extension .EXE. The !Fe option
lets you give the executable file a different name or create it in a different direc­
tory. Note that the !Fe option requires afilename argument.

Because CL creates only one executable file, you can type the !Fe option any­
where on the command line. If you enter more than one !Fe option, CL gives the
executable file the name specified in the last !Fe option on the command line.

The !Fe option applies only in the linking stage. If you specify the Ic option to
suppress linking, !Fe has no effect.

Examples

CL IFeC:\BIN\PROCESS *.c

This example compiles and links all source files with the extension .C in the
current directory. The resulting executable file is named PROCESS.EXE and
is created in the directory C:\BIN.

CL IFeC:\BIN\ *.C

This example is similar to the first example except that the executable file is
given the same base name as the first file compiled instead of being named
PROCESS.EXE. The executable file is created in the directory C:\BIN.

/Fs (Create Source-File Listing)

!Fs[filename]

The !Fs option produces a file that contains an annotated listing of the source file.
This file lists and numbers every line in the source file, including lines of code,
comment lines, and blank lines. The line numbers begin with 1. The file also lists
the local and global symbols and classifies them by name, class, type, size, and off­
set. If the symbol is a register variable, the file notes the register used. Finally, the
file lists the size of the data segments and whether any errors were detected. You
can use the lSI, ISp, 1St, and ISs options (described in this chapter) with the!Fs op­
tion to specify a source listing's line width and page length and to provide a title
and subtitle.

Note that the!Fs option is not supported by the Fast Compile option (If).

500 Environment and Tools

A fragment of a sample source-file listing follows:

83 if(result == NULL)
84 pri ntf(" Val ue %u not found\n", key);
85 else
86 printf(" Value %u found in element %u\n",
87 key, result - array + 1);
88

main Loca 1 Symbols

Name Class Type Size Offset Register

elements. auto -0004
key auto -0002
i auto *** si
result. auto *** di

cmpe Local Symbols

Name Class Type Size Offset Register

key
tableentry.

Global Symbols

Name

array
bsearch
cmpe ..
cmpgle.
lfi nd .
ma in. .
pri ntf.
qsort
rand.
srand
time.

Code size
Data size
Bss size

01ee (494)
011a (282)
0000 (0)

No errors detected

param
param

Class

common
extern
global
global
extern
global
extern
extern
extern
extern
extern

Type

struct/array
nea r function
near function
near function
near function
near function
near function
near function
near function
near function
near function

Size

2000

0004
0006

Offset

01cc
0196

0000

Option

CL Command Reference 501

Examples

CL IFsQSORT QSORT.C

This example compiles and links the source file QSORT.C and generates a source­
listing file named QSORT.LST.

/Fa (Create Assembly-File Listing)

/Fa [filename]

The /Fa option translates your C or C++ source code to assembly language. Unless
you name the resulting file with the optional filename argument, it is given the
base name of the C or C++ source file specified on the CL command line with an
.ASM extension.

A fragment of a sample assembly-language listing follows:

main PROC NEAR
Line 28

push bp
mav bp,sp
mav aX,8
call aNchkstk
i = -4
result = -8
elements = -2
key = -6

Line 29
mav WORD PTR [bp-2],1000 ;elements
mav WORD PTR [bp-6],500 ;key

Line 32
xar aX,ax
push ax
call time
add sp,2
push ax
call srand
add sp,2

Line 35
mav aX,OFFSET DGROUP:$SG330
push ax
call _printf
add sp,2

Line 36
mav WORD PTR [bp-4],0 ; i

502 Environment and Tools

Option

$FC332:
Line 37

call rand
may cX,1000
cwd
idiy ex
inc dx
may bX,WORD PTR [bp-4] ;i
shl bX,1
may WORD PTR _array[bx],dx
inc WORD PTR [bp-4] ;i
cmp WORD PTR [bp-4],cx ;i
j b $FC332

Example

CL IFaOSORT OSORT.C

This example compiles and links the source file QSORT.C and generates an
assembly-listing file named QSORT.ASM.

IFI (Combined Assembly- and Machine-Code Listing)

IFI[filename]

The IFl option translates your C or c++ source code to a combined assembly-
and machine-code listing. Unless you name the resulting file with the optional
filename argument, it is given the base name of the C or c++ source file specified
on the CL command line with a .COD extension.

A fragment of a sample assembly- and machine-code listing follows:

main PROC NEAR
Line 28

*** 000000 55 push bp
*** 000001 8b ec may bp,sp
*** 000003 b8 08 00 may aX,8
*** 000006 e8 00 00 ca 11 aNchkstk
i = -4
result = -8
elements = -2
key = -6

Option

CL Command Reference 503

Line 29
*** 000009 c7 46 fe e8 03 mov WORD PTR [bp-2],1000 ;elements
*** 00000e c7 46 fa f4 01 mov WORD PTR [bp-6],500 ;key

Line 32
*** 000013 33 c0 xor aX,ax
*** 000015 50 push ax
*** 000016 e8 00 00 ca 11 time
*** 000019 83 c4 02 add sp,2
*** 00001c 50 push ax
*** 00001d e8 00 00 ca 11 srand
*** 000020 83 c4 02 add sp,2

Line 35
*** 000023 b8 00 00 mov aX,OFFSET DGROUP:$SG330
*** 000026 50 push ax
*** 000027 e8 00 00 ca 11 _printf
*** 00002a 83 c4 02 add sp,2

Line 36
*** 00002d c7 46 fc 00 00 mov WORD PTR [bp-4],0 ;i

$FC332:
Line 37

*** 000032 e8 00 00 ca 11 rand
*** 000035 b9 e8 03 mov cx,1000
*** 000038 99 cwd
*** 000039 f7 f9 idiv cx
*** 00003b 42 inc dx
*** 00003c 8b 5e fc mov bX,WORD PTR [bp-4] ; i

*** 00003f d1 e3 shl bX,1
*** 000041 89 97 00 00 mov WORD PTR _array[bx],dx
*** 000045 ff 46 fc inc WORD PTR [bp-4] ;i
*** 000048 39 4e fc cmp WORD PTR [bp-4],cx ; i

*** 00004b 72 e5 jb $FC332

/Fc (Combined Source-, Assembly-, and Machine-Code Listing)

!Fc[filename]

The !Fc option translates your C or C++ source code to a combined source-code,
assembly-code, and machine-code listing. The file numbers and lists every line
contained in your C or C++ source file and follows each line of source code with
the code the compiler generates. Unless you name the resulting file with the op­
tionalfilename argument, it is given the base name of the C or C++ source file
specified on the CL command line with a .COD extension.

Following is a fragment of a combined source-code, assembly-code, and machine­
code listing:

504 Environment and Tools

main PROC NEAR
*** 1* QSORT.C illustrates randomizing, sorting, and searching. Functions
*** * illustrated include:
*** *
*** *
*** *

srand
1 fi nd

rand
lsearch

qsort
bsearch

*** * The lsearch function is not specifically shown in the program, but
*** * its use is the same as lfind except that, if it does not find the
*** * element, it inserts it at the end of the array rather than failing.
*** *1

*** #include <search.h>
*** #include <stdlib.h>
*** #include <string.h>
*** #include <stdio.h>
*** #include <time.h>

*** #define ASIZE 1000
*** unsigned array[ASIZE];

*** 1* Macro to get a random integer within a specified range *1
*** #define getrandom(min, max) «rand() % (int)«(max)+l) - (min») +

(min))
; 1 ***
; 1 ***
; 1 ***
; 1 ***
; 1 ***

1* Must be declared before call *1
int cdecl cmpgle(unsigned *elem1, unsigned *elem2);
int cdecl cmpe(unsigned *key, unsigned *tableentry);

;1*** void main()
; 1 *** {

Line 28
*** 000000
*** 000001
*** 000003
*** 000006
i = -4

55 push bp

result = -8

8b ec
b8 08 00
e8 00 00

elements = -2
key = -6

mov bp,sp
mov aX,8
call aNchkstk

;1*** unsigned i, *result, elements = ASIZE, key = ASIZE I 2;
Line 29

*** 000009 c7 46 fe e8 03 mov WORO PTR [bp-2],1000 ;elements

; 1 ***
; 1***
; 1 ***

00000e c7 46 fa f4 01 mov WORO PTR [bp-6],500 ;key

1* Seed the random number generator with current time. *1
srand((unsigned)time(NULL»;

Option

Cl Command Reference 505

Line 32

000013 33 c0 xor aX,ax
000015 50 push ax
000016 e8 00 00 call time
000019 83 c4 02 add sp,2
00001c 50 push ax
00001d e8 00 00 ca 11 s rand
000020 83 c4 02 add sp,2

Example

CL IFcQSORT QSORT.C

This example compiles and links the source file QSORT.C and also generates
a combined source-code, assembly-code, and machine-code listing file named
QSORT.COD.

/Fm (Create Map File)

IFm[filename]

The IFm option produces a map file. The map file contains a list of segments in
order of their appearance within the load module.

A fragment of a sample map file follows:

Start Stop Length Name
00000H 01E9FH 01EA0H _TEXT
01EA0H 01EA0H 00000H C_ETEXT

Class
CODE
ENDCODE

The information in the Sta rt and Stop columns shows the 20-bit address (in hex­
adecimal) of each segment, relative to the beginning of the load module. The load
module begins at location zero. The Length column gives the length of the seg­
ment in bytes. The Name column gives the name of the segment, and the Cl ass
column gives information about the segment type. The starting address and name
of each group appear after the list of segments. A sample group listing follows:

Origin Group
0IEA:0 DGROUP

506 Environment and Tools

In this example, DGROUP is the name of the data group. DGROUP is used for
all near data (that is, all data not explicitly or implicitly placed in their own data
segment) in Microsoft C/C++ programs.

The following map file contains two lists of global symbols: the first list is sorted
in ASCII-character order by symbol name, and the second is sorted by symbol
address. The notation Abs appears next to the names of absolute symbols (sym­
bols containing 16-bit constant values that are not associated with program
addresses).

Address

0IEA:0096
0000:1086
0IEA: 0480
0IEA:0910

0IEA:00EC
0IEA: 009C
0IEA:00EC
0000:9876 Abs
0000:9876 Abs

0IEA: 0240
01EA:0242

Address

0000:0010
0000:0047
0000:000A
0000: 0113
0000:0129
0000:01C5

Publics

STKHQQ
brkctl
edata
end

__ abrkp
abrktb

by Name

abrktbe
__ acrtmsg

acrtused

___ argc
___ argv

Publics by Value

main
htoi

_exp16
chkstk
astart
cintOIV

Global symbols in a map file usually have one or more leading underscores be­
cause the compiler adds an underscore to the beginning of variable names. Many
of the global symbols that appear in the map file are symbols used internally by
the compiler and the standard libraries.

The addresses of the external symbols show the location of the symbol relative to
zero (the beginning ofthe load module).

Option

Option

CL Command Reference 507

Following the lists of symbols, the map file gives the program entry point, as
shown in the following example:

Program entry point at 0000:0129

/Fp (Specify Precompiled Header Filename)

IFPfilename

Option (lFp)

Use the IFp option to specify the name of the desired .PCH file in cases where the
.PCH filename specified with the /Y c option is different than the filename of the
associated include file or source file. For example, if you want to create a precom­
piled header file for a debugging version of your program, you can specify a com­
mand such as:

CL IDDEBUG IYcPROG IFcDPROG PROG.CPP

This command creates a precompilation of all header files up to and including
PROG.H, and stores it in a file called DPROG.PCH. If you need a release version
in parallel, change the compilation command to:

CL IYcPROG IFpRPROG PROG.CPP

This command creates a separate precompilation of the header files up to and in­
cluding PROG.H and stores it in RPROG.PCH.

For more information on precompiled headers, see Chapter 2 in the Programming
Techniques manual. The related options /Y c, /Y d, and /Yu are described later in
this chapter.

/FR, /Fr (Generate PWB Browser Files from el)

IFR[fzlename]

IFr[filename]

These options are part of the process you must follow to use the PWB Source
Browser. Both options create a file with an .SBR extension; only one option is re­
quired. The BSCMAKE utilIty uses an .SBR file to generate a database file with a
.BSC extension. This is the file used by the Source Browser.

508 Environment and Tools

An .SBR file contains symbolic information about your program. The IFR option
generates complete symbolic information in the .SBR file. The IFr option gener­
ates symbolic information without information on local variables. Both IFR and
IFr use the SBRPACK utility to compact the .SBR file by removing unreferenced
definitions. As the BSCMAKE utility uses .SBR files to produce output for the
PWB Source Browser, a smaller .SBR file gives BSCMAKE greater effective
capacity and can also increase the speed of producing .BSC files. Smaller .SBR
files save disk space.

By default, both options generate a filename that uses the source file's base name
and appends an .SBR extension. Use the filename argument to provide a name
other than the default; an .SBR extension is required. No space is allowed between
either the IFR or the IFr option and the filename argument.

The IZn option, described later in this chapter, suppresses the CL driver's call to
SBRPACK. The IZn option is required if you want to use BSCMAKE' s IIu option.

For information about using the PWB Source Browser to look for code in a pro­
ject, to see where functions are invoked or where variables and types are used, or
to generate call trees and cross-reference tables, see Chapter 21, "Browser
Utilities."

Example

CL IFRNEWSORT OSORT.C

This example compiles and links the source file QSORT.C and generates a file
named NEWSORT.SBR. The SBRPACK utility then compacts the .SBR file, and
the BSCMAKE utility uses it to generate a .BSC file that you can examine with
the PWB Source Browser.

/FP Options (Select Floating-Point-Math Package)
The lFPa, IFPc, IFPc87, IFPi, and IFPi87 options specify how your program han­
dles floating-point-math operations. The following table summarizes the different
options:

Table 13.4 Floating-Point Options

Generated Default Link-Time
Code Library Possibilities Comments

!FPa Function calls to mLIBCALIB mLIBCE.LIB (4,5)
mLIBCALIB mLIBC7.LIB

!FPc Function calls to mLIBCE.LIB mLIBCA.LIB (5)
mLIBCE.LIB mLIBC7.LIB

CL Command Reference

Table 13.4 (continued)

Generated Default Link-Time
Code Library Possibilities

IFPc87 Function calls to mmIBC7.LIB mLIBCALIB
mLIBC7.LIB mLIBCE.LIB

IFPi Software mLIBCE.LIB mLIBCE.LIB
interrupts mLIBC7.LIB

IFPi87 Inline 80x87 mLIBC7.LIB mLIBCE.LIB
instructions

1 Requires a math coprocessor if program is linked with mLIBC7 .LIB.

2 The executable file interacts with the N087 environment variable allowing
run-time selection of using either the emulator library or a math coprocessor.

3 Produces the smallest, fastest code if a coprocessor is available.

4 Produces the fastest code if no coprocessor is available.

5 Libraries that are compiled with this option can later be linked with any
Microsoft floating-point library.

/FPa (Alternate Math Package)

Comments

(1,5)

(2)

(1,3)

509

This option generates floating-point calls and selects the alternate math library for
the current memory model (mLIBCA.LIB). Calls to this library provide the fastest
and smallest code if you do not have an 80x87 coprocessor. This library provides
full IEEE 64-bit precision using doubles and 32-bit precision using floats. Long
doubles are not supported.

At link time, you can specify an emulator library (mLIBCE.LIB) or an 80x87
library (mLIBC7.LIB). These libraries provide 80-bit precision.

Note that neither the Fast Compile option (If) nor the p-code option (lOq) support
the !FPa option.

/FPc (Coprocessor)
The !FPc option generates floating-point calls to the emulator library and places
the name of an emulator library (mLIBCE.LIB) in the object file.

At link time, you can specify an 80x87 library (mLIBC7.LIB) or alternate math
library (mLIBCA.LIB) instead. The !FPc option gives you flexibility in your
choice of libraries for linking.

510 Environment and Tools

This option is recommended if you compile modules that:

• Perform floating-point operations (when you plan to include these modules in a
library).

• Link with libraries other than the libraries provided with this compiler.

Note that certain optimizations are not performed when /FPc is used. This may re­
duce the efficiency of your code. The /FPc option is not supported with either the
Fast Compile option (If) or the p-code option (lOq).

/FPc87 (8Ox87 Calls)
This option generates function calls to routines in the 80x87 library (mLIBC7.LIB)
in order to perform the corresponding 80x87 instructions.

You must have an 80x87 coprocessor installed to run programs compiled with the
IFPc87 option and linked with an 80x87 library. Otherwise, the program fails and
an error message is displayed.

If an 80x87 coprocessor is unavailable, you can specify an emulator library
(mLIBCE.LIB) or the appropriate alternate math library (mLIBCA.LIB) at link
time.

Note that certain optimizations are not performed when /FPc87 is used. This may
reduce the efficiency of your code. The IFPc87 option is not supported with either
the Fast Compile option (If) or the p-code option (lOq).

/FPi (Emulator)
Use the /FPi option if you do not know whether a math coprocessor will be avail­
able at run time. Programs compiled with /FPi work as follows:

• If a coprocessor is present at run time, the program uses the coprocessor.

• If no coprocessor is present or if the N087 environment variable has been set,
the program uses the emulator.

The /FPi option generates inline instructions for an 80x87 coprocessor and places
the name of the emulator library (mLIBCE.LIB) in the object file. At link time,
you can specify an 80x87 library (mLIBC7.LIB) instead. If you do not choose a
floating-point option, CL uses the /FPi option by default.

This option works whether or not a coprocessor is present because the compiler
does not generate "true" inline 80x87 instructions. Instead, it generates software
interrupts to library code. The library code, in turn, adds fixups to the interrupts to
select either the emulator or the coprocessor, depending on whether a coprocessor
is present.

CL Command Reference 511

/FPi87 (Coprocessor)
The lFPi87 option includes the name of an 80x87 library (mLIBC7.LIB) in the ob­
ject file. At link time, you can override this option and specify an emulator library
(mLIBCE.LIB) instead so that the program runs on computers without coproces­
sors.

If you use the lFPi87 option and link with mLIBC7.LIB, an 8087 or 80287 copro­
cessor must be present at run time; otherwise, the program fails and the following
error message is displayed:

run-time error R6002
- floating point not loaded

If you compile with lFPi87 and link with mLIBCE.LIB, you can set the N087 en­
vironment variable to suppress the use of the coprocessor.

Compiling with the IFPi87 option results in the smallest, fastest programs possible
for handling floating-point arithmetic.

Library Considerations for Floating-Point Options
You may want to use libraries in addition to the default library for the floating­
point option you have chosen on the CL command line. For example, you may
want to create your own libraries or object files, then link them at a later time with
object files that you have compiled using different CL options.

You must be sure that you use only one standard combined C library when you
link. You can control which library the linker uses in one of two ways:

• Make sure the first object file passed to the linker has the name of the desired
library. For example, if you want to use an 80x87 library, give the IFPi87 op­
tion before the first source-file name on the CL command line. You can also
give the name of an object file compiled with 1FPi87 as the first filename on
the command line. All floating-point calls in this object file refer to the 80x87
library.

• Give the /NOD (no default-library search) option after the /link option on the
CL command line. Then specify the name of the library you want to use on the
CL command line. The /NOD option overrides the library names embedded in
the object files. Because the linker searches libraries given on the command
line before it searches libraries named in object files, all floating-point calls
refer to the libraries you specify.

Another complication might arise if you create your own libraries: usually, each
module in the library you create contains a standard-library name, and the linker
tries to search the standard libraries named in the modules when it links with your
library.

512 Environment and Tools

The safest course, especially when you are distributing libraries to others, is to use
the IZI option when you compile the object files that make up your libraries. The
IZI option tells the compiler not to put library names in the object files. Later,
when you link other object files with your library, the standard library used for
linking depends only on the floating-point and memory-model options used to
compile those object files.

Examples

CL CALC.C ANOTHER SUM

In this example, no floating-point option is given, so CL compiles the source file
CALC.C with the default floating-point option, lFPi. The lFPi option generates
inline instructions and selects the small-model-emulator combined library
(SLIDCE.LIB), which is the default.

CL IFPi87 CALC.C ANOTHER.OBJ SUM.OBJ SLIBCE.LIB Ilink INOO

In this example, CL compiles CALC.C with the IFPi87 option, which selects the
SLIBC7.LIB library. The /link option, however, overrides the default library speci­
fication: the /NOD option suppresses the search for the default library, and the
emulator library (SLIBCE.LID) is specified. LINK uses SLIBCE.LID when it
creates the resulting executable file, CALC.EXE.

Compatibility Between Floating-Point Options
Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files to produce an executable program file,
you are responsible for ensuring that floating-point operations are handled in a
consistent way.

Example

CL lAM CALC.C ANOTHER SUM Ilink MLIBC7.LIB INOO

This example compiles the program CALC.C with the medium-model option
(lAM). Because no floating-point option is specified, the default (/FPi) is used.
The /FPi option generates inline 80x87 instructions and specifies the emulator
library MLIBCE.LIB in the object file. The /link field specifies the /NOD option
and the name of the medium-model 80x87 library, MLIDC7.LID. Specifying the
80x87 library forces the program to use an 8087 coprocessor; the program fails
if a coprocessor is not present.

CL Command Reference 513

The N087 Environment Variable
Programs compiled with the IFPi option automatically use an 80x87 coprocessor at
run time if one is installed. You can override this and force the use of the emulator
instead by setting an environment variable named N087.

If N087 is set to any value when the program is executed, the program uses the
emulator even if a coprocessor is present. When this occurs, the N087 setting is
displayed on the standard output device as a message. The message is displayed
only if a coprocessor is present and its use is suppressed; if no coprocessor is pre­
sent, no message appears. If you want to force use of the emulator but don't want
a message to appear, set N087 equal to one or more spaces. The variable is still
considered to be defined.

Note that the presence or absence of the N087 definition determines whether use
of the coprocessor is suppressed. The actual value of the N087 setting is used only
for the message.

The N087 variable takes effect with any program linked with an emulator library
(mLIBCE.LIB). It has no effect on programs linked with 8087/80287 libraries
(mLIBC7.LIB).

Examples

SET N087=Use of coprocessor suppressed

This example causes the message Use of coprocessor suppressed to appear
when a program that would use an 80x87 coprocessor is executed on a computer
that has such a coprocessor.

SET N087=space

This example sets the N087 variable to the space character. Use of the coproces­
sor is still suppressed, but no message is displayed.

Standard Combined libraries
Table l3.5 shows each combination of memory-model and floating-point options
and the corresponding library name that CL embeds in the object file.

514 Environment and Tools

Table 13.5 CL Options and Default Libraries

Floating-Point Option Memory-Model Option

1FPi87

IFPi

IATor/AS

lAM

lAC

IALor IAH

IATor/AS

lAM

lAC

IALor/AH

Default Library

SLIBC7.Lm

MLmC7.L1B

CLmC7.Lm

LLmC7.Lm
SLmCE.Lm
MLmCE.LIB

CLmCE.Lm

LLIBCE.Lm

IGO, /G1, IG2, IG3, IG4 (Generate Processor-Specific Instructions)
Ify6u are writing programs for a machine with an 8086/8088, 80186/80188,
80286,80386, or 80486 processor, you can use the /GO, /Gl, /G2, /G3, or /G4 op­
tion, respectively, to enable the instruction set for those processors. When you use
/G2 and /G3 options, the compiler automatically defines the appropriate M_I286
or M_I386 identifier.

Although it is sometimes advantageous to enable the appropriate instruction set,
you may not always want to do so. If you have an 80286 processor, for example,
but you want your program to be able to run on an 8086/8088, do not compile with
the /G2 option.

The /GO option enables the instruction set for the 8086/8088 processor. You do
not have to specify this option explicitly because CL uses the 8086/8088 instruc­
tion set by default. Programs compiled with /GO also run on machines with
80186/80188,80286,80386, and 80486 processors but do not take advantage of
any processor-specific instructions. When you specify the /GO option, the com­
piler automatically defines the identifier ~I8086.

If your program includes inline assembler code that uses a mnemonic instruction
supported only by the 80186/87, 80286/87, 80386/87, or 80486 processors, you
must compile with the /G 1, /G2, /G3, or the /G4 option, respectively; compiling
with /GO results in an error. Note that you cannot use 80186, 80286, 80386, or the
80486 mnemonics as labels, even if you are compiling for an 8086/8088.

CL Command Reference 515

These options apply to all filenames that follow on the command line until another
/GO, /Gl, /G2, /G3, or /G4 option appears.

Note The /GO, /Gl, and /G2 options work only with the 16-bit compiler; the IG3
and /G4 options work only with the 32-bit compiler.

Command-line drivers that produce 16-bit code (CL3216) generate warnings if
they encounter either the /G3 or the /G4 option.

IGA, /GD (Optimize Entry/EXit Code for Protected-Mode Windows)
For protected-mode Windows applications, use the /GA option to optimize the
entry/exit code of all far functions explicitly marked as __ export.

For Windows dynamic-link libraries (DLLs) designed for protected mode, use the
/GD option to optimize the entry/exit code of all far functions explicitly marked as
__ export.

When used instead of either the /GW or the /Gw option, both the /GA option and
the /GD option save 10 bytes and 7 instructions for each function call. For /GA,
use of __ export adds an additional 6 bytes and 4 instructions to a function call;
/GD with __ export adds an additional 6 bytes and 7 instructions to a function
call. The code generated in all four cases is smaller than that generated by /Gw or
/GW. Note that in all four cases, you can also use the Generate 80286 Code option
(lG2) to save an additional 4 bytes.

Both the /GA and /GD options define the _ WINDOWS constant, and the /GD
option defines the _ WINDLL constant. The /GA option specifies use of both
mLIBCjW.LIB and the Windows API library. The /GD option specifies use of
both mDLLCjW.LIB and the Windows API library. You cannot specify the /Gw,
/GW, or /Gq options with either the /GA or the /GD options.

IGE (Customize Windows Entry/Exit Code)

Option /GE[string]

The /GE option gives you control over the entry/exit code that the compiler pro­
duces for windows functions. It can only be used with the /GA and the /GD op­
tions. The string argument, which cannot be separated from /GE by a space, is one
or more letters, with no intervening spaces, from the following table:

516 Environment and Tools

Letter

IGEr

IGEm

IGEf

IGEa, IGEd, IGEs

IGEe

Optimizing Procedure

Generates real-mode entry/exit code: IGw code for functions
marked as __ export and IGW code for all other far functions.
The IGEr option cannot be combined with any other IGE option.

Specify generation of code to mark the far frame.

Treat all far functions as if they were explicitly marked as
__ export.

Load DS from AX (a), DGROUP (d), or SS (s). Specify only one
letter.

Force emission of linker EXPDEF records.

/Gc, /Gd (Use FORTRAN/Pascal or C Calling Convention)
The __ fortran, __ pascal, and __ cdecl keywords and the IGc and IGd options
allow you to control the function-calling and naming conventions so that your C
programs can call and be called by functions that are written in FORTRAN or
Pascal.

Because functions in C programs can take a variable number of arguments, C must
handle function calls differently from languages such as Pascal and FORTRAN.
Pascal and FORTRAN usually push actual parameters to a function in left-to-right
order so that the last argument in the list is the last one pushed onto the stack. In
contrast, because C functions do not always know the number of actual parame­
ters, they must push their arguments from right to left, so that the first argument in
the list is the last one pushed.

In C programs, the calling function must remove the arguments from the stack. In
Pascal and FORTRAN programs, the called function must remove the arguments.
If the code for removing arguments is in the called function (as in Pascal and
FORTRAN), it appears only once; if it is in the calling function (as in C), it ap­
pears every time there is a function call. Because a typical program has more func­
tion calls than functions, the PascallFORTRAN method results in slightly smaller,
more efficient programs. The compiler can generate the Pascal/FORTRAN calling
convention in several ways.

Using __ pascal and __ fortran Keywords
You can use the __ pascal and __ fortran keywords with functions or pointers to
functions to specify a function that uses the PascallFORTRAN calling convention.
In the following example, sort is declared as a function using the alternative call­
ing convention:

short pascal sort(char *. char *);

Cl Command Reference 517

The __ pascal and __ fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected functions only.

!Gc (Use the Pascal/FORTRAN Calling Convention)
If you use the /Gc option, the entire module is compiled using the Pascal!
FORTRAN calling convention. You might use this method to make it possible to
call all the functions in a C module from another language or to gain the perform­
ance and size improvement provided by this calling convention.

When you use /Gc to compile a module, the compiler assumes that all functions
called from that module use the PascallFORTRAN calling convention, even if the
functions are defined outside that module. Therefore, using /Gc would usually
mean that you cannot call or define functions that take variable numbers of para­
meters and that you cannot call functions such as the C library functions that use
the C calling sequence. In addition, if you compile with the /Gc option, either you
must declare the main function in the source program with the __ cdecl keyword,
or you must change the startup routine so that it uses the correct naming and call­
ing conventions when calling main.

!Gd (Use the C Calling Convention)
The /Gd option has the same effect as the __ cdecl keyword. It specifies that the
entire module should use the C calling convention. This option is on by default.

The __ cdecl keyword in C is the inverse of the __ fortran and __ pascal key­
words. When applied to a function or function pointer, __ cdecl indicates that the
associated function is to be called using the usual C calling convention. This al­
lows you to write C programs that take advantage of the more efficient Pascal!
FORTRAN calling convention while still having access to the entire C library,
other C objects, and even user-defined functions that accept variable-length argu­
ment lists. The __ cdecl keyword takes precedence over the /Gc option.

For convenience, the __ cdecl keyword has already been applied to run-time­
library function declarations in the include files distributed with the compiler.
Therefore, your C programs can call the library functions freely, no matter which
calling conventions you compile with. Make sure to use the appropriate include
file for each library function the program calls.

Naming Conventions
Use of the __ pascal and __ fortran keywords or the /Gc option also affects the
naming convention for the associated item (or, in the case of /Gc, all items): the
name is converted to uppercase letters, and the leading underscore that C usually
prefixes is not added. The __ pascal and __ fortran keywords can be applied to
data items and pointers, and also to functions; when applied to data items or

518 Environment and Tools

pointers, these keywords force the naming convention described previously for
that item or pointer.

The __ fastcall naming convention uses the function name preceded by an at sign
(@). No case translation is done. When using this convention, make sure to use
the standard include files. Otherwise, you get unresolved external references.

The __ pascal, __ fortran, __ fastcall, and __ cdecl keywords, like the __ based,
__ near, __ far, and __ huge keywords, are disabled by use of the /Za option. If
this option is given, these names are treated as ordinary identifiers, rather than
keywords.

Examples

int cdecl var_print(char*, ...);

In this example, va r _ p r i ntis declared with a variable number of arguments
using the usual right-to-Ieft C function-calling convention and naming conven­
tions. The __ cdecl keyword overrides the left-to-right calling sequence set by the
/Gc option if the option is used to compile the source file in which this declaration
appears. If this file is compiled without the /Gc option, __ cdecl has no effect
since it produces the same result as the default C convention.

float __ pascal nroot(number, root);

This example declares nroot to be a function returning a pointer to a value of
type float. The function n root uses the default calling sequence (left-to-right)
and naming conventions for Microsoft FORTRAN and Pascal programs.

/Ge, /Gs (Turn Stack Checking On or Off)
The /Ge option, which applies to all source files that follow it on the command
line, enables "stack probes." A "stack probe" is a short routine called on entry to
a function to verify that the program stack has enough room to allocate local
variables required by the function. The stack-probe routine is called at every func­
tion-entry point. Ordinarily, the stack-probe routine generates a stack-overflow
message if the required stack space is not available. When stack checking is turned
off, the stack-probe routine is not called, and stack overflow can occur without
being diagnosed (that is, no stack-overflow message is printed).

The compiler uses stack probes to guard against possible execution errors. These
stack probes are used whenever the /Ge option (the default) is in effect. You can
remove the stack probes by using either the /Gs option or the checlLstack
pragma, which reduces the size of a program and speeds up execution slightly.
Note that the /Gs option and the checlLstack pragma have no effect on standard
C library routines; they affect only the functions you compile.

Cl Command Reference 519

Use the /Gs option when you want to turn off stack checking for an entire module
and you know the program does not exceed the available stack space. For ex­
ample, stack probes may not be needed for programs that make very few function
calls or that have only modest local-variable requirements. In the absence of the
/Gs option, stack checking is on. Use the /Gs option with great care. Although it
can make programs smaller and faster, it can also make the program unable to
detect overflow of the program stack.

Use the checlLstack pragma when you want to turn stack checking on or off only
for selected routines, leaving the default (as determined by the presence or absence
of the /Gs option) for the rest. When you want to turn off stack checking, put the
following line before the definition of the function you don't want to check:

#pragma check_stack (off)

Note that the preceding line disables stack checking for all routines that follow it
in the source file, not just the routines on the same line. To reinstate stack check­
ing, insert the following line:

#pragma check_stack (on)

If you don't give an argument for the checlLstack pragma, stack checking reverts
to the behavior specified on the command line: disabled if the /Gs option is given
or enabled if it is not. The interaction of the checlL stack pragma with the /Gs op­
tion is summarized in Table 13.6.

Table 13.6 Using the checlLstack Pragma

Syntax

#pragma checlL stack()

#pragma checlLstack()

#pragma checlL stack(on)

#pragma checlL stack(oft)

Compiled with
IGs Option?

Yes

No

Yes or no

Yes or no

Action

Turns off stack checking for
routines that follow

Turns on stack checking for
routines that follow

Turns on stack checking for
routines that follow

Turns off stack checking for
routines that follow

Note For older versions of Microsoft C, the checlL stack pragma had a different
format: checlLstack(+) enabled stack checking and checlLstack(-) disabled
stack checking. The Microsoft C/C++ compiler no longer accepts this format.

Example

CL /Gs FILE.C

520 Environment and Tools

This example optimizes the file FILE.C by removing stack probes with the IGs op­
tion. If you want stack checking for only a few functions in FILE.C, you can use
the checlL stack pragma before and after the definitions of functions you want to
check.

IGr (Register Calling Convention)
Usually, your program passes parameters to functions on the stack. The IGr option
causes your program to pass parameters in registers instead. Typically, this calling
convention decreases execution time, but it gives no advantage if you compile
with the Fast Compile (If) option. Therefore, use the IGr option only for final com­
pilations that require the full optimizing capabilities of Microsoft C/C++.

Passing parameters in registers is not appropriate for all functions. The IGr option
enables register passing for all eligible functions, and the __ fastcall keyword en­
ables it on a function-by-function basis. You cannot use the __ fastcall keyword
with the __ pascal, __ fortran, or __ cdecl keywords.

Because the 80x86 processor has a limited number of registers, only the first three
parameters are passed in registers; the remaining parameters are passed using the
FORTRANlPascal calling convention (see the IGc option).

Note that the compiler allocates different registers for variables declared as
register and for passing arguments using the register calling convention. Passing
arguments in registers does not conflict with any register variables that you may
have declared.

Important Be careful when using the register calling convention for any function
written in inline assembly language. Your use of registers in assembly language
could conflict with the compiler's use of registers for storing parameters.

IGn (Remove P-Code Native Entry Points)
The IGn option lets you remove the native-code entry point from the beginning of
a p-code function that does not require it, saving about four bytes for each func­
tion. This option must be used in conjunction with the IOq option.

Native-code entry points are a short series of machine code instructions placed at
the beginning of a function compiled into p-code. They are generated by the com­
piler in programs that mix p-code and machine code.

You can only use the IGn option to remove the native-code entry point from func­
tions called by other functions that you plan to compile into p-code.

CL Command Reference 521

You can control the removal of native-code entry points from within your source
file using the nativLcaller pragma. This pragma takes "on" or "off' as an argu­
ment.

For example, to turn off native-code entry point generation for a p-code function,
enter the following line prior to the beginning of the function:

#pragma native_caller (off)

Then turn the native_ caller pragma back on after the end of the function by
entering:

#pragma native_caller (on)

/Gp (Specifying Entry Tables)

Option IGpnumber

Use the IGp option to specify the maximum number of entry tables for your pro­
gram. A space between IGp and number is optional. Like the other options for fine­
tuning p-code described in Chapter 3 of the Programming Techniques manual, the
IGp option must be used in conjunction with the IOq option.

An entry table is needed for every segment that contains a p-code function or a
function called by a p-code function. One entry table can describe up to 256 such
functions. If a segment contains more than that, the Make P-Code utility (MPC)
creates additional entry tables.

Note The MPC utility is invoked automatically when you specify the IOq option
on the CL command line.

Specify IGpnumber when you compile your source file. When the MPC utility
processes the resulting .EXE file, it creates up to number entry tables. MPC re­
turns an error if the program needs more than number entry tables.

If you do not specify the IGp option, number is assigned the default value of 255.
In addition to the space that the actual entry tables take up, there is a four-byte
overhead for each possible entry table.

/Gq (Real-Mode Windows Entry/Exit Code)
The IGq option is provided to maintain functional compatibility with earlier ver­
sions of the IGW option. It generates entry/exit code for real-mode Windows
functions not explicitly marked __ export. The IGq option affects an entire

522 Environment and Tools

compilation module; use the /Gw option (described later in this chapter) instead of
the /Gq option if a module contains functions marked as __ export.

The entry/exit code that the /Gq option generates does not save the calling func­
tion's data segment (DS). Use the new /GW option (which does save DS) ifDS
might change during the time a function is on the call stack. The /GW option is
described later in this chapter.

/Gt (Set Data Threshold)

Option /Gt[number]

The /Gt option causes all data items other than constant data whose size is greater
than or equal to number bytes or that are assumed to be far (data items that are not
initialized or are marked as extern are assumed to be far) to be allocated in a new
data segment. For related information, see the /Gx option on page 523.

If you specify number, it must follow the /Gt option immediately with no interven­
ing spaces. If you use /Gt without a number, the default threshold value is 256. If
you don't use the /Gt option, the default threshold value is 32,767.

Use this option with programs that have more than 64K of initialized static and
global data in small data items.

By default, the compiler allocates all static and global data items within the default
data segment in the tiny, small, and medium memory models. In compact-, large-,
and huge-model programs, only initialized static and global data items are as­
signed to the default data segment.

Note You can use the /Gt option only if you are creating a compact-, large-, or
huge-model program because tiny-, small-, and medium-model programs have
only one data segment.

/Gw, /GW (Generate Entry/Exit Code for Real-Mode Windows Functions)
Use the /Gw option when compiling real-mode Windows modules containing far
functions marked as __ export. The /Gw option instructs the compiler to generate
entry/exit code sequences for real-mode Windows call-back functions.

Use the /GW option when compiling real-mode Windows modules containing
only functions not marked as __ export. The /GW option is similar to the /Gw
option, but generates a more efficient entry sequence for real-mode windows func­
tions that are not callback functions.

CL Command Reference 523

See the Microsoft Windows Software Development Kit for more information.
Both options define the _ WINDOWS constant, declared in the Windows version
ofSTDlO.H.

Note The /GW option has been improved for Microsoft C/C++. Use the /Gq op­
tion, described earlier in this chapter, if you need the entry/exit code generated by
previous versions of /GW.

The /GA, /GD, and /GE options, described earlier in this chapter, perform
entry/exit code that will run only under standard- or enhanced-mode Windows.
Use of these options can save up to 10 bytes and 7 instructions for each function
call.

/Gx (Assume That Data Is Near)
Under the compact, large, or huge memory model, the compiler allocates initial­
ized data items as near if they are smaller than or equal in size to the threshold
value set by the /Gt option. The /Gx option extends this initialized data allocation
rule to data that is uninitialized and data that is marked as extern.

Without the /Gx option, the compiler makes no assumptions about where the
linker places uninitialized or external data. All references to those data items are
done with far addressing, in case they are placed in a far segment.

Near data offers two benefits:

• The compiler can generate more efficient code to reference data it knows is
near.

• You can achieve multiple instances of a single Windows application when all
data is near.

The /Gx option works only if the memory-model specification for each individual
data declaration (and its definition) is consistent across compilation modules. That
is, an individual data item is either __ near everywhere, __ far everywhere, or its
memory model is not specified anywhere.

To ensure that all data is near, mark unsized arrays as __ near, make sure that no
data is marked as __ far, and that the data-size threshold set with the /Gt option
does not force anything far. For more information on the data-size threshold, see
the /Gt option earlier in this chapter.

The /Gx option does not affect pointers. Pointers remain far by default, and the
dynamic allocation functions still return far pointers.

Use the /Gx option with either the / AC, the / AL, or the / AH option to modify the
compact, large, or huge memory model, respectively. With /Gx, all three memory

524 Environment and Tools

models still offer multiple code and data segments. For more information on
memory models, see Chapter 4 of the Programming Techniques manual. For
more information on referencing declarations, see Chapter 3 in the C Language
Reference.

Examples

CL /AL /Gx ONE.C TWO.C

This example compiles and links two modules, ONE.C and TWO.C, using the
large memory model. Assume that ONE.C contains an external declaration of data
(for example, extern struct strr;), and TWO.C defines struct strr as __ near. In
this case, specifying lOx allows the compiler to safely generate more efficient
code than would be possible if the compiler had to assume that struct strr might
be far.

CL /AL /Gx /GtS ONE.C TWO.C

This example compiles and links two modules, ONE.C and TWO.C, using the
large memory model. Because the lOt option sets a data threshold size of 8 bytes,
the compiler assumes that all data items smaller than 8 bytes and either uninitial­
ized or marked as extern are near.

Note If you reference a data item with near addressing but declare it with __ far in
another module, your program will produce unpredictable results.

/Gy (Enable Funclion-levellinking)
The lOy option enables linking on a function-by-function basis by creating pack­
aged functions. A packaged function is visible to the linker in the form of a
COMDAT record. Packaged functions have several uses:

• You can exclude unreferenced packaged functions from the executable file by
specifying the linker's IPACKF option. For more information on IPACKF, see
page 589.

• You can place packaged functions in a specified order in the executable file by
using a FUNCTIONS statement in a module-definition (.DEF) file. For more
information on FUNCTIONS, see page 625.

• You can assign individual packaged functions to a specified segment by using a
FUNCTIONS statement.

• You can place individual packaged functions in a specified overlay in a DOS
program by using a FUNCTIONS statement. For more information on overlaid
programs, see Chapter 15.

For C++, member functions are automatically packaged; other functions are not,
and lOy is required to compile them as packaged functions.

CL Command Reference 525

/H (Restricts length of External Names)

Option IHnumber

The IH option restricts the length of external (public) names. The number field
accepts an integer specifying the maximum number of significant characters; the
compiler considers only the first number characters of external names in the pro­
gram. The program can contain external names longer than number characters,
but the extra characters are ignored.

Without the IH option, the default for C names is 32 characters; this includes any
compiler-generated leading underscore (_) or at sign (@). (The compiler adds a
leading underscore to names modified by __ cdecl (default) calling conventions
and a leading at sign to names modified by __ fastcall calling conventions.) You
can use the IH option to restrict C names to values less than the 32-character de­
fault, or you can specify the acceptance of C names up to a limit of 247.

The IH option is ignored for C++ names. Names from C++ programs have no
added leading characters. C++; other decorated names have 247 significant
characters.

You may find IH useful when creating mixed-language or portable programs.

/HELP (list the Compiler Options)

Option lHELP

/help

Calls the QuickHelp utility. If the QuickHelp program is not available, CL dis­
plays the most commonly used options to the standard output.

Unlike all other CL options, IHELP is not case sensitive. Any combination of up­
percase and lowercase letters is acceptable. For example, IhELp is a valid form of
this option. The option has no abbreviation.

/I (Search Directory for Include Files)

Option IIdirectory

You can add to the list of directories searched for include files by using the II (for
"include") option. The space between II and directory is optional.

526 Environment and Tools

The search process for included files can involve three stages and begins with the
#include directive. If the file specified to the #include directive contains a com­
plete drive and path specification, that file is included without searching any direc­
tories. If the specified file is enclosed in double quotation marks, the directory of
the file containing the #include directive is searched. If the current file is also an
include file, the directory of the parent file is searched until the original source
file's directory is searched.

The second stage uses the II option. If the file is still not found or if it is specified
to the #include directive in angle brackets, a directory specified by an II command­
line option is searched. To search more than one directory, give additional II op­
tions on the CL command line-one II option for each directory. Use a space to
separate multiple II options. Multiple directories are searched in order of their ap­
pearance on the command line. The directories are searched only until the speci­
fied include file is found.

The third and final stage involves the INCLUDE environment varible. If the file is
not found in a directory specified by an II option, a directory or path specified in
the INCLUDE environment variable is used. This enables you to give a particular
file special handling without changing the compiler environment you usually use.
If the include file is not found, the compiler prints an error message and stops pro­
cessing. When this occurs, you must restart compilation with a corrected directory
specification.

Examples

CL II \INCLUOE II\MY\INCLUOE MAIN.C

In this example, CL looks for the include files requested by MAIN.C in the follow­
ing order: first in the directory \INCLUDE, then in the directory \My\INCLUDE,
and finally in the directory or directories assigned to the INCLUDE environment
variable.

CL IX II \ALT\INCLUOE MAIN.C

In this example, the compiler looks for include files only in the directory
\AL T\INCLUDE. The IX option, described later in this chapter, tells CL to con­
sider the list of standard places empty; then the II option specifies one directory
to be searched.

/J (Change Default char Type)
The IJ option changes the default char type from signed to unsigned. This option
is useful when working with character data that will eventually be translated into a
language other than English. If a char value is explicitly declared signed, the IJ
option does not affect it, and the value is sign-extended when widened to int type.
The char type is zero-extended when widened to int type.

CL Command Reference 527

When you specify IJ, the compiler automatically defines the identifier
_ CHAIL UNSIGNED, which is used with #ifndef in the LIMITS.H include
file to define the range of the default char type.

Neither ANSI C nor C++ requires a specific implementation of the char type.

/Ld, /Lw (Control library Selection)
Use the /Ld option to link with both mDLLCjW.LIB and with the Windows API
library. This option is implied by the IOD option; you cannot use it with either the
lOA or the /Mq option.

/link (linker-Control Options)

Option llink [option]

This option passes to LINK the linker options, nondefault library names, and li­
brary search paths specified by the option argument. These options must appear
after any source or object filenames and CL options. A space is required between
\link and option.

The following CL options also affect the linker.

Option

/F
hexnum

/Fm

/FPa

/FPc

/FPc87

/FPi

/FPi87

ILd

ILr

ILw

Effect

Resets stack size to specified hexadecimal number. This option is the same
as passing the STACK option to LINK.

Produces a map file.

Specifies the alternate math library and places the name of the library for
the current memory model in the object file.

Generates floating-point calls to the emulator library and places the name
of the library for the current memory model in the object file.

Generates function calls to the 80x87 library and places the name of the
library for the current memory model in the object file.

Uses the math emulator library.

Uses the coprocessor and places the name of the 80x87 library for the cur­
rent memory model in the object file. You can specify an emulator library
at link time with an object file that was linked with /FPi87 so that the
resulting program runs in a system without a coprocessor.

Links with mDLLCjW.LIB and the Windows API library.

Appends "r" (for real mode) to the default library name in the generated
object files.

Links with mLIBCjW.LIB and the Windows API library.

528 Environment and Tools

/Ln (Link Without C Run-Time Startup Code)
If you are using the tiny memory model (see the fAT option for CL), you will be
creating a .COM file (see the /TINY option for LINK). Usually, CL tells LINK to
link tiny-model programs with CRTCOM.LIB; this file contains startup code
needed by any .COM program written in C. Programs written in assembly lan­
guage do not need this code. Use the ILn option to keep LINK from linking with
this startup code.

/lr (Real Mode Default Library)
The fLr option appends "r" (for real mode) to the default library name in the
generated object files.

/MA (Macro Assembler Options)

Option IMA[option]

This option passes the specified option to the Microsoft Macro Assembler
(MASM). The option must follow immediately after IMA, without an intervening
space, slash (/), or hyphen (-).

For example, IMAZi passes the Zi option to MASM.

Files listed on the command line with the extension .ASM automatically cause
MASM to be invoked. All MASM-supported options are accepted.

/Mq (OuickWin Support)
DOS programs compiled with the IMq compiler option have a limited Windows
user interface, including a standard menu bar, standard Help (for the QuickWin
features), and a client (or application) window with a child (document) window
for the C input/output streams, stdin, stdout, and stderr. The IMq compiler option
defines the _ WINDOWS constant, declared in the Windows version of STDIO.H.
For more information, see Chapter 8 in the Programming Techniques manual.

/NO, /NM /NO, /NT, /NV (Name the Data or Code Segments)

Options INDdatase gment

INMmodulename

INQpcodesegment

CL Command Reference 529

INTcodesegment

INV vtablesegment

These options allow you to name or rename existing data and text segments,
or to name a temporary p-code segment or a segment for far C++ virtual tables
(v-tables). All options take an argument that names or renames the affected seg­
ment. The new name can include any combination of letters and digits. The space
between the option and the name is optional.

The compiler places code and data into separate segments in the object file. Every
segment in every object file has a name. The linker uses these names to determine
which segments are combined during linking, and how the segments are ultimately
grouped in the executable file.

The compiler usually creates the code and data segment names. The default names
depend on the memory model chosen for the program. For example, in small­
model programs the code segment is named _ TEXT and the data segment is
named_DATA.

Table l3.7 summarizes the naming conventions for code and data segments.

Table 13.7 Segment-Naming Conventions

Model Code Data

Tiny _TEXT _DATA

Small _TEXT _DATA

Medium name_TEXT _DATA

Compact _TEXT _DATA

Large name_TEXT _DATA

Huge name_TEXT _DATA

The IND option renames the default data segment of your code. This option is use­
ful mainly for shared data segments. When compiled with IND, the program as­
sumes that the data register (DS) contains the address of this new segment so that
it can access the segment's contents using near pointers instead of far. In doing so,
your program no longer assumes that the address in the stack segment register
(SS) is the same as the address in the data register (DS). You must therefore use
the __ loadds modifier for function declarations or the I Au segment setup option
to ensure that DS is loaded on entry to a function.

Note that the C run-time system stores important data in its default data segment
(DGROUP). To use the run-time system, DS must contain the address of this data
segment. A call to the run-time system will fail if DS currently points to the data
segment named with IND. A safer and a more flexible way to place data into a

530 Environment and Tools

special segment is to use the __ based keyword with a segment variable in your C
code instead of the /ND option on the command line.

The INM and /NT options are similar; they rename the default code segment. The
/NM option sets the name of a module used in naming the _ TEXT segment of
medium-, large-, or huge-model programs. It appends _ TEXT to the specified
module name to create a new code segment, modulename_ TEXT. The /NM op­
tion is included in Microsoft CIC++ for compatibility with previous versions.

The /NT option gives the code segment the specified name. In general, you should
not use the /NT option with the tiny, small and compact memory models. Doing so
may cause overflow errors at link time.

The /NQ option sets the name of a temporary segment for the p-code compiler; the
temporary segment is removed before the program is run. This option can only be
used with the 10q (p-code optimization) option. During its operation, the p-code
compiler generates several temporary segments. If you encounter LINK error
1049 ("too many segments"), use INQ to combine these temporary segments into
one temporary segment.

The /NV option sets the name of a segment for far v-tables. All far v-tables in a
C++ program are grouped in the specified segment.

/nologo (Suppress Display of Sign-On Banner)
The Inologo option suppresses the display of the sign-on banner when CL is
invoked.

/0 Options (Optimize Program)

Option 10 string

The 10 options give you control over the optimizing procedures that the compiler
performs. The string argument is one or more letters, with no intervening spaces,
from the following table:

Letter

lOa

law

IObn

lac

lag

lad

Optimizing Procedure

Assume no aliasing

Assume aliasing across function calls

Control inline expansion, where n is a digit from 0 through 2

Enable block-level common subexpression optimization (default)

Enable global-level common subexpression optimization

Tum off all optimization

Letter

10e

IOf

IOf-

10i

101

IOn

10z

100

100-

lOp

10q

lOr

lOs

10, lOt

10v

10v­

lOx

CL Command Reference 531

Optimizing Procedure

Ignore register keyword and allow compiler to perform global register
allocation

Tum on p-code quoting (default)

Tum off p-code quoting

Generate intrinsic functions

Enable loop optimization

Tum off potentially unsafe loop optimizations

Tum on potentially unsafe loop optimizations

Tum on post code-generation optimizing (default)

Tum off post code-generation optimizing

Improve float consistency

Tum on p-code optimization

Enable single exit point from functions (useful when debugging with
CodeView)

Minimize executable file size

Minimize execution speed (default)

Sort local variables by frequency of use, p-code only (default)

Sort local variables in the order that they occur, p-code only

Maximize optimization

With the exception of the minus switches, 10f-, 100-, and 10v-, the letters follow­
ing the la, including bn, can appear in a continuous series in any order. When
there is a conflict, the compiler uses the last 10 option given. Each option applies
to all source files following it on the command line.

Note If you are using the debugger, you may want to set the lad option. If you
don't specify lad, some forms of the compiler perform code-movement optimiza­
tions, possibly making it difficult for you to follow your program in the debugger.

lOa and law (Assuming No Aliasing)
An "alias" is a name used to refer to a memory location already referred to by a
different name. Because a memory access requires more time than is required to
access the CPU's registers, the compiler tries to store frequently used variables in
registers. Aliasing, however, reduces the extent to which a compiler can keep vari­
ables in registers.

The lOa option tells the compiler to ignore the possibility of multiple aliases for a
memory location. In the list that follows, the term "reference" means read or write;
that is, whether a variable is on the left side of an assignment statement or the right
side, you are still referring to it. In addition, any function calls that use a variable
as a parameter are references to that variable. When you tell the compiler to

532 Environment and Tools

assume that you are not doing aliasing, it expects that the following rules are being
followed for any variable not declared as volatile:

• If a variable is used directly, no pointers are used to reference that variable.

• If a pointer is used to refer to a variable, that variable is not referred to directly.

• If a pointer is used to modify a memory location, no other pointers are used to
access the same memory location.

Both the lOa and law options tell the compiler that you have not used aliases in
your code. When you use lOa, you specify that you will not be doing any aliasing
(which allows the compiler to perform significant optimizations that might not
otherwise have been possible), and that function calls are safe. When you use the
law option, you specify that aliasing might occur across function calls. Therefore,
after each function call, pointer variables must be reloaded from memory. For
more information on the lOa and law options and aliasing, see the Programming
Techniques manual.

Aliasing bugs most frequently show up as corruption of data. If you find that
global or local variables are being assigned seemingly random values, take the fol­
lowing steps to determine if you have a problem with optimization and aliasing:

• Compile the program with lad (disable optimizations).

• If the program works when compiled with the lad option, check your normal
compile options for the lOa option (assume no aliasing).

• If you were using the lOa option, fix your compile options so that lOa is not
specified.

Note You can instruct the compiler to disable unsafe optimizations with code that
does aliasing by using the optimize pragma with the a or w option.

IObn (Controllnline Expansion)
Use the lab option to control the inline expansion of functions, where n is a digit
from 0 though 2. The following table describes the action of each digit.

Table 13.8 Inline Expansion Control

Digit Action

o Disables inline expansion (default with lad)

Only expand functions marked as inline or __ inline or in a C++ member
function defined within a class declaration (default without lad)

2 Expand functions marked as inline or __ inline and any other function that the
compiler chooses (expansion occurs at compiler discretion)

CL Command Reference 533

10c and 109 (Enable Common Subexpression Optimization)
Use of either the lac or the lag option allows the compiler to calculate the value
of a common subexpression once. For example, b + C is common to the follow­
ing code. If the values of band c do not change between the three expressions,
the compiler can calculate the value of b + c once, assign the calculation to a tem­
porary variable, and substitute the variable as appropriate.

a b + C;
d b + C;
e b + C;

When you use the lac option (default common subexpression optimization), the
compiler examines short sections of code (basic blocks) for common subexpres­
sions. When you use the lag option (enable global common subexpression optimi­
zation), the compiler searches entire functions for common subexpressions. You
can disable the default common subexpression optimization with the lad option.
For more information about common subexpression optimization, see Chapter I in
the Programming Techniques manual.

Note You can enable or disable block-scope common subexpression optimization
on a function-by-function basis using the optimize pragma with the c option. You
can enable or disable global common subexpression optimization on a function-by­
function basis using the optimize pragma with the g option.

10d (Turn Off Optimization)
The lad option tells the compiler to turn off all optimizations in the program,
which speeds compilation. Use the lad option when you compile with the IZi op­
tion (described on page 553) to include debugging information. The lad option
does not reorganize code, making it easier to debug.

10e (Global Register Allocation)
The IOe option instructs the compiler to ignore the register keyword and to allo­
cate registers based on how often they are used. This allows the compiler to store
frequently used variables and subexpressions in registers.

IOf (Turn On and Turn Off P-Code Quoting)
The IOf option (p-code only) enables the compiler to find duplicate sections of
code and then create a single instance of that code. This process is known as
"quoting." With quoting enabled (lOf), the duplicate code is replaced with the
p-code equivalent of a function call to produce smaller code than is produced
when quoting is disabled (lOf-).

534 Environment and Tools

Quoting enabled (lOt) is the default. However, quoting makes code difficult to
read; use the 10f- option to disable quoting while debugging. Quoting is espe­
cially useful for a final product.

/Oi (Generate Intrinsic Functions)
The 10i option instructs the compiler to replace the following function calls with
their inline forms:

Target Target
Function 16 bit 32 bit Function 16 bit 32 bit

_alloca no yes _outpw yes yes
_disable yes yes _rotl yes yes
_enable yes yes _rotr yes yes
_fmemcmp yes no _setjmp no yes
_fmemcpy yes no _strset yes yes
_fmemset yes no abs yes yes
_fstrcat yes no fabs yes yes
_fstrcmp yes no labs yes yes
_fstrcpy yes no memcmp yes yes
_fstrlen yes no memcpy yes yes
_fstrset yes no memset yes yes
_inp yes yes strcat yes yes
_inpw yes yes strcmp yes yes
_lrotl yes yes strcpy yes yes
_lrotr yes yes strlen yes yes
_outp yes yes

Programs that use intrinsic functions are faster because they do not include the
overhead associated with function calls. However, they may be larger due to the
additional code generated.

Intrinsic versions of the memset, memcpy, and memcmp functions in compact­
and large-model programs cannot handle huge arrays or huge pointers. To use
huge arrays or huge pointers with these functions, you must compile your program
with either the huge memory model from PWB or with the I AH option on the
command line.

With 10i, you cannot link to an alternate math library. Also, the following floating­
point functions do not have true intrinsic forms; they do have versions that pass
arguments directly to the floating-point chip instead of pushing them onto the
usual normal argument stack:

Cl Command Reference

Target Target

Function 16 bit 32 bit Function 16 bit 32 bit

acos yes yes _acosl yes no
asin yes yes _asinl yes no

atan yes yes _atanl yes no

atan2 yes yes _atan21 yes no
ceil yes no _ceill yes no
cos yes yes _cosl yes no
cosh yes yes _coshl yes no

exp yes yes _expl yes no
floor yes no _floorl yes no
fmod yes yes _fmodl yes no
log yes yes _logl yes no
log10 yes yes _loglOl yes no

pow yes yes _powl yes no
sin yes yes _sinl yes no

sinh yes yes _sinhl yes no

sqrt yes yes _sqrtl yes no

tan yes yes _tanl yes no
tanh yes yes _tanhl yes no

For more information on intrinsic functions, see Chapter 1 in the Programming
Techniques manual.

/01 (Optimize loops)
The /01 option enables a set of loop optimizations that move or rewrite code so
that it executes more quickly. Because loops involve sections of code that are
executed repeatedly, they are targets for optimization.

535

The /01 option removes invariant code. An optimal loop contains only expressions
whose values change through each execution of the loop. Any subexpression
whose value is constant should be evaluated before the body of the loop is exe­
cuted. Unfortunately, these subexpressions are not always readily apparent. The
optimizer can remove many of these expressions from the body of a loop at com­
pile time. This example illustrates invariant code in a loop:

i = -100;
whil e (i < 0)
{

i += X + y;
}

536 Environment and Tools

In the preceding example, the expression x + y does not change in the loop body.
Loop optimization removes this subexpression from the body of the loop so that it
is only executed once, not every time the loop body is executed. The optimizer
changes the code to the following:

i = -100;
t = x + y;
while(i < 0
{

i += t;
}

Loop optimization is much more effective when the compiler can assume no alias­
ing. While you can use loop optimization without the lOa or law option, use lOa
to ensure that the most options possible are used.

Here is a code fragment that could have an aliasing problem:

i = -100;
wh i 1 e (i < 0)
{

}

i += X + y;
*p = i;

If you do not specify the lOa option for the preceding code, the compiler must
assume that either x or y could be modified by the assignment to *p. Therefore,
the compiler cannot assume the subexpression x + y is constant for each loop
iteration. If you specify that you are not doing any aliasing (with the lOa option),
the compiler assumes that modifying * p cannot affect either x or y, and that the
subexpression is indeed constant and can be removed from the loop, as in the pre­
vious example.

Note All loop optimizations specified by the 101 option are safe optimizations. To
enable aggressive loop optimizations, you must use the enable aggressive optimi­
zations (/Oz) option. While the optimizations enabled by the combination of 101
and 10z are not safe for all cases, they do work properly for most programs.

/00, /00- (Enable and Disable Post-Code-Generation Optimizing)
The lao option allows the compiler to perform the following optimizations after
code generation has occurred:

• Peepholes

• Code motion

• Dead code removal

• Unused locals removal

CL Command Reference 537

• Register reloading removal

• Exit sequence

• Branch shortening

The 100- option disables the optimizations. The following table shows the default
state of the lao option and its state with the p-code option (lOq) and the Fast Com­
pile option (If):

Compiler Default

Optimizing On

P-Code On

Fast Compile Off

IOn (Turn Off Potentially Unsafe loop Optimizations)
The Ian option disables unsafe loop optimizations by preventing some constant
expressions in a loop from being moved out of the loop. Since the 101 option auto­
matically implies lan, you do not need to specify Ian explicitly; it is provided for
compatibility with earlier versions of Microsoft C.

10z (Turn On Maximum loop Optimization)
The 10z option aggressively removes as many invariant expressions as possible
from a loop. If you do not specify 10z, the 101 option removes only the invariant
expressions guaranteed to be executed in every iteration of the loop. Do not use
10z if you suspect that a loop optimization has caused an error.

lOp (Improve Float Consistency)
The primary use of the lap option is to improve the consistency of tests for equal­
ity and inequality. Without the lap option, the compiler usually uses coprocessor
registers to hold the intermediate results of floating-point calculations. Such op­
timization increases program speed and decreases program size.

The coprocessor has 80-bit registers; the memory representation can be 32, 64, or
80 bits. Therefore, storing intermediate results in registers can provide a greater
degree of precision than storing them in memory.

When you use the lap option, the compiler loads data from memory prior to each
floating-point operation and, if assignment occurs, writes the results back to mem­
ory upon completion. Loading the data prior to each operation guarantees that the
data does not retain any significance greater than the capacity of its type.

538 Environment and Tools

A program compiled with lap may be slower and larger than one compiled
without lap.

10q (Turns On P-Code Optimization)
The 10q option optimizes your code for size by compiling the program into an
alternate form called "p-code." P-code produces much smaller programs than
machine code, but your machine cannot execute them directly. Programs compiled
into p-code are executed by a small run-time interpreter incorporated into your
executable file. P-code does not support initialized static huge data.

You can also directly control aspects of p-code optimization. You can control
which sections of the program get compiled into p-code using the optimize
pragma and the 10q option together.

For example,

#pragma optimize ("q", on)
II Functions compiled into p-code
#pragma optimize ("q", off)
II Remaining functions compiled into machine code

These pragmas are ignored if the program is not compiled with the 10q option.

Since p-code runs more slowly than machine language, you may want to have the
speed-critical sections of your program compiled into machine language.

Note The 10q option is not compatible with any of the following options: IFPa,
!FPc, !FPc87, !Fs, IGr, lSI, ISp, ISs, or 1St.

lOr (Common Function-Exit Sequence)
This option causes all returns within a function to use a common exit sequence at
the end of the function. This allows you to set a CodeView breakpoint on the clos­
ing brace (}) of the function rather than on every return statement within the func­
tion. This can be used, for example, to quickly get to the end of a function you
wish to bypass.

Note The lOr option is useful only when using CodeView; do not use it when
generating code for a finished product.

lOs (Minimize Executable File Size)
The las option minimizes the size of executable files; it produces smaller but
possibly slower code. If you do not select this option, code is larger but may be
faster.

Cl Command Reference 539

10 and lOt (Minimize Execution Time)
When you do not use any of the 10 options, the CL command automatically op­
timizes for program execution speed. The 10 and lOt options have the same effect
as this default.

Wherever the compiler has a choice between producing smaller (but perhaps
slower) and larger (but perhaps faster) code, the compiler generates faster code.
For example, when you specify the lOt option, the compiler generates either
library calls to the operating system or inline code to perform shift operations
on long operands.

10v, 10v- (Specify Type of Frame Sorting)
The compiler reduces the size of p-code programs by using I-byte opcodes to
reference local variables. These opcodes are frame-relative addresses, and only a
limited number of them are available for each function. The optimizer uses one of
two algorithms to determine which variables receive the available opcodes.

Option

IOv

IOv-

Description

Sorts the local variables by frequency of use (default)

Sorts the local variables in the order that they occur (lexical order)

lOx (Use Maximum Optimization)
The lax option is a shorthand way to combine optimizing options to produce the
fastest possible program. Its effect is the same as using the following options on
the same command line:

IOblcegilnot IGs

Example
CL lOx FILE.C

This command tells the compiler to use the optimizing compiler to compile
FILE.C with the following options:

Option

lObI

lac
IOe

lag

IOi

Description

Expand functions marked as inline or __ inline or those in a c++
member function defined within a class declaration

Enable local common sUbexpression elimination

Allow global register allocation

Enable global common subexpression elimination

Generate intrinsic functions

540 Environment and Tools

Option

101

Ian

lao

lOt

IGs

Description

Perform loop optimizations

Turn off potentially unsafe loop optimizations

Enable post code-generation optimizing

Favor execution time over code size

Remove stack probes

!P (Create Preprocessor-Output File)
The IP option writes preprocessor output to a file with the same base name as the
source file but with the .I extension. This option adds #line directives to the output
file. They are placed at the beginning and end of each included file and around
lines removed by preprocessor directives that specify conditional compilation.

The preprocessed listing file is identical to the original source file except that all
preprocessor directives are carried out and macro expansions are performed. You
usually use the IP option with the IC option (discussed on page 491), which pre­
serves comments in the preprocessed output.

The IP option suppresses compilation; CL does not produce an object file or list­
ing, even if you specify the !Fo or !Fm option on the CL command line.

The IP option is similar to both the IE and the IEP options, which are described
earlier in this chapter. Use of IEP with IP suppresses placement of #line directives
in the output file.

Example

CL IP MAIN.C

This example creates the preprocessed file MAIN.I from the source file MAIN.C.

/qc (Quick Compile)
The Quick Compile (/qc) option is supported for compatibility with Microsoft C
version 6.0. The Fast Compile (If) option supersedes the Iqc option in Microsoft
CIC++. CL defines the _QC constant for the Iqc option.

CL Command Reference 541

lSI, /Sp, ISs, 1St (Source-Listing Format Options)

Option IFs ISlnumber

IFs ISpnumber

IFs ISsstring

IFs IStstring

When combined with the IFs option, the lSI, ISp, ISs, and 1St options set the fol­
lowing source-listing attributes:

Option

1St

ISs

lSI

ISp

Attribute

Title; enclose argument in quotes if spaces or tabs are present.

Subtitle; enclose argument in quotes if spaces or tabs are present.

Line width; argument must be an integer between 79 and 132; default is
79.

Page length; argument must be an integer between 15 and 255; default is
63.

An option applies to the arguments that follow it on the command line or until the
next occurrence of the option. A space between 1St, ISs, lSI, or ISp and number is
optional. A space is required between IFs and any of these four options.

If the source file compiles with no errors more serious than warning errors, the
source listing includes tables of local symbols, global symbols, and parameter sym­
bols for each function.

None of the IS options are supported by the Fast Compile option (If) or by the
p-code option (lOq).

{fc, {fp, Ta (Specify C, C++ Source File, or Assembly Language)

Options rrcfilename

rrpfilename

rrafilename

542 Environment and Tools

The fTc option specifies that filename is a C source file, even if it doesn't have the
extension .C. The fTp option specifies that filename is a C++ source file, even if it
doesn't have the extension .CPP or .CXX. The fTa option specifies thatfilename is
an assembly language file, even if it doesn't have the extension .ASM. You must
have installed the Microsoft Macro Assembler in order to use the fTa option. This
option causes CL to invoke the Macro Assembler to assemble the file. For all three
options, the space between the option and the filename argument is optional.

If this option does not appear, CL assumes that files with the .C extension are C
source files, files with the .CPP or the .CXX extension are C++ source files, and
files with the .ASM extension are assembly language files.

If you need to specify more than one source file with an extension other than the
default (.C, .CPP, .ASM) you must specify each file with the appropriate com­
mand line option (lTc, ITp fTa).

Example
Inthe following example, the CL command compiles the three source files
MAIN.C, TEST.PRG, and COLLATE.PRG.

CL MAIN.C ITc TEST.PRG ITc COLLATE.PRG PRINT.PRG

Because the file PRINT.PRG is given without a fTc option, CL treats it as an ob­
ject file. Therefore, after compiling the three source files, CL links the object files
MAIN. OBI, TEST.OBJ, COLLATE.OBI, and PRINT.PRG.

IU,/u (Remove Predefined Names)

Options IUname

lu

The IU (for "undefine") option turns off the definition of the specified defined
name. The lu option turns off every defined name. The IU and the lu options apply
both to predefined names and to names that you define.

These names are useful in writing portable programs. For instance, they can be
used with compiler directives to conditionally compile parts of a program, depend­
ing on the processor and operating system being used. The predefined identifiers
and their meanings are listed in Table 13.9.

One or more spaces can separate IU and name. You can specify more than one IU
option on the same command line.

CL Command Reference 543

Table 13.9 Predefined Names

Syntax

_CHAR-UNSIGNED

_DLL
_FAST
~I86,_~I86

~I86mM,
_~I86mM

MSDOS, _MSDOS

_QC

_PCODE
__ STDC __

_WINDLL

_WINDOWS

Purpose

Specifies that the char type is
unsigned by default.

Specifies a DLL run-time library.

Specifies Fast Compile.

Specifies target machine as a
member of the Intel family.

Specifies memory model, where
m is either T (tiny model), S
(small model), C (compact
model), M (medium model), L
(large model), or H (huge model).
IT huge model is used, both
_~I86LM and _~I86HM
are defined.

Specifies target machine as an
8086.

Specifies target machine as an
80286.

Specifies target machine as an
80386.

Specifies version of Microsoft C
currently supported. Equal to 700.

Specifies target operating system
as MS-DOS.

Specifies Quick Compile

Specifies p-code.

Specifies full conformance with
the ANSI C standard.

Specifies protected-mode
dynamic-linked library

Specifies protected-mode
Windows

When Defined

When IJ is given

When IMD is given

When If is given

Always

Always

When 100 is given
and by default

When 101 or 102 is
given

When 103 is given

Always

Always

When Iqc is selected

When IOq is selected

When /Za is selected

When 10D is selected

When lOA, 10E,
IOn, lOW, IMq, and
10D are selected

Note If a predefined identifier has two forms, one with and one without an under­
score, the command-line driver defines both if you specify the /Ze option (compile
for Microsoft extensions). It defines only the leading underscore form if you
specify the /Za option (compile for ANSI compatibility).

You can define 30 identifiers.

544 Environment and Tools

Example

CL /UMSDOS /UM_I86 WORK.C

This example removes the definitions of two predefined names. Note that the /U
option must be given twice to do this.

N (Set Version String)

Option Nstring

The N option embeds a text string in the object file. This string can label an object
file with a version number or a copyright notice. If the specified string contains
White-space characters, it must be enclosed in double quotation marks (" "). A
backslash must precede any embedded double quotation marks. A space between
N and string is optional.

/W, /W (Set Warning Level)

Options !W{011121314IX}

/w

You can control the number of warning messages produced by the compiler by
using the /w, !WO, !WI, !W2, !W3, !W4, or!WX option. A space between!W and
0, 1,2,3,4, or X is optional. Compiler warning messages are any messages begin­
ning with C4; see the Comprehensive Index and Errors Reference for a complete
list of these messages.

Warnings indicate potential problems (rather than actual coding errors) with state­
ments that may not compile as you intend.

The !W options affect only source files named on the command line; they do not
apply to object files.

The following table describes the warning-level options. WI warnings are the
most serious and W4 warnings are the least serious:

Option Action

/w Turns off all warning messages. Use this option when you compile programs
that deliberately include questionable statements. The /w option applies to
the remainder of the command line or until the next occurrence of a /w
option on the command line. !WO and !W are the same as /w.

!WI Default. Displays severe warning messages.

CL Command Reference 545

Option Action

1W2 Displays an intermediate level of warning messages. Level 2 includes
warnings such as the following:

• Use of functions with no declared return type.

• Failure to put return statements in functions with nonvoid return types.

• Data conversions that would cause loss of data or precision.

1W3 Displays a less severe level of warning messages, including warnings about
function calls that precede their function prototypes in the source code.

IW 4 Displays the least severe level of warning messages, including warnings
about the use of non-ANSI features and extended keywords.

IWX Treats all warnings as errors. If there are any warning messages, an error
message is emitted and compilation continues.

Note The descriptions of the warning messages in the Comprehensive Index and
Errors Reference indicate the warning level that must be set (that is, the number
for the appropriate fW option) for the message to appear.

Example

CL /W4 CRUNCH.C PRINT.C

This example enables all possible warning messages when the source files
CRUNCH.C and PRINT.C are compiled. Microsoft C/C++ provides a pragma to
control warning messages. For more information on #pragma warning, see Chap­
ter 7, "Preprocessor Dircectives and Pragmas," in the C Language Reference.

IX (Ignore Standard Include Directory)
You can prevent the compiler from searching the standard places for include files
by using the IX (for "exclude") option. When CL sees the IX option, it does not
search the current directory or any directories specified in the INCLUDE environ­
ment variable.

You can use this option with the 11 option to define the location of include files
that have the same names as include files found in other directories but that con­
tain different definitions. See the II option, described earlier in this chapter, for an
example of IX used with 11.

546 Environment and Tools

/Fp (Specify Precompiled Header Filename)

Option IFPfilename

Option (/Fp)

Use the /Fp option to specify the name of the desired .PCH file in cases where the
.PCH filename specified with the IY c option is different from the filename of the
associated include file or source file. You can use the /Fp option with both the IY c
and the lYu options. For example, if you want to create a precompiled header file
for a debugging version of your program, you can specify a command such as:

CL IDDEBUG IYcPROG.H IFpDPROG.PCH PROG.CPP

This command creates a precompilation of all header files up to and including
PROG.H, and stores it in a file called DPROG.PCH. If you need a release version
in parallel, you simply change the compilation command to:

CL IYcPROG.H IFpRPROG.PCH PROG.CPP

This command creates a separate precompilation of the header files up to and in­
cluding PROG.H and stores it in RPROG.PCH.

You can use the /Fp option with the lYu option to specify the name of the .PCH
file if the name is different from either the filename argument to IY c or the base
name of the source file:

CL IYuPROG.H IFpZPROG.PCH PROG.CPP

This command specifies a precompiled header file named ZPROG.PCH. The com­
piler uses the contents of ZPROG.H to restore the precompiled state of all header
files up to and including PROG.H. The compiler then compiles the code that oc­
curs after the PROG.H include statement.

For more information on precompiled headers, see Chapter 2 in the Programming
Techniques manual. The related options IY c, IY d, and /Yu are described in the sec­
tions that follow.

IYc, IYd, /Yu (Precompiled Header Options)
With the IY c, /Y d, lYu, and /Fp options and the hdrstop pragma, Microsoft
C/C++ provides the ability to precompile code. Precompilation, especially when
used the fast compile (If) option, can dramatically reduce compile time for code
that is frequently compiled without modification.

Option

CL Command Reference 547

You can precompile a stable body of code, which can be header files and all or
part of source files-including inline code. Precompilation works with both C and
c++.

This process saves the state of a compilation (including CodeView information) in
a precompiled header file with a .PCH extension. In later compilations, the com­
piler simply restores the saved compilation state from a precompiled header file.

Creation or use of precompiled headers is governed by the compilation options
described in the next three sections. In many cases, the behavior dictated by these
options is affected by the hdrstop pragma. For more information on both precom­
piled headers and the hdrstop pragma, see "Using Precompiled Headers" in the
Programming Techniques manual. The related option to specify precompiled
header filenames (/Fp) is described earlier in this chapter.

lYe (Create Precompiled Header)

N c[filename]

The "create precompiled header" option (N c) instructs the compiler to create a
precompiled header (.PCH) file that represents the state of compilation at a certain
point. No space is allowed between Nc and filename.

Using lYe with a Filename
If you specify a filename with the N c option, it instructs the compiler to create a
precompiled header in which to save the state of the compilation up to and includ­
ing the preprocessing of the named include file. Consider the following code:

'include <afxwin.h> II Include header for class library
'include "resource.h" II Include resource definitions
ffinclude "myapp.h" II Include information specific to this app.

When compiled with the command

CL IYcMYAPP.H PROG.CPP

the compiler saves all the preprocessing for AFXWIN.H, RESOURCE.H, and
MY APP.H in a precompiled header file called MY APP .PCH.

Using lYe Without a Filename
If you specify the N c option with no filename, the entire source file-including
every included header file-is compiled. The state of the compilation is saved to a
file with the base name of the source file and a .PCH extension.

548 Environment and Tools

Option

Because precompilation is most useful for compiling a stable body of code for use
with a body of code that is under development, you will want to focus the precom­
pilation process by using /Y c with its filename argument or by putting a hdrstop
pragma in your source file.

The hdrstop Pragma

#pragma hdrstop[("filename")]

If a C or a C++ file contains a hdrstop pragma, the compiler saves the state of the
compilation up to the location of the pragma. The compiled state of any code that
follows the pragma is not saved.

The hdrstop pragma cannot occur inside a header file. It must occur in the source
file at the file level; that is, it cannot occur within any data or function declaration
or definition.

The hdrstop pragma is ignored unless either /Yu or /Y cis specifed without a
filename.

Using hdrstop with a Filename
Use filename to name the precompiled header file in which the compiled state is
saved. Thefilename must be a string (enclose it in quotation marks), and it must
be enclosed in parentheses. A space between hdrstop and filename is optional.
Note that you can also use the /Fp option to name the precompiled header file. If
filename is not specified, the resulting filename is given the base name of the
source file with a .PCR extension. The /Fp option is discussed earlier in this
chapter.

Using hdrstop Without a Filename
If no filename is given with the hdrstop pragma, the name of the precompiled
header file is derived from the base name of the source file with a .PCR extension.

IYd (Include Debugging Information)
The "include debugging information" (/Y d) option instructs the compiler to place
a precompiled header file's debugging information (symbols and type informa­
tion) into the precompiled header instead of the object file. The option takes no ar­
gument and has effect only if both the create precompiled header (/Y c) and the
generate Code View information (/Zi) options are in effect.

By default, any debugging information for a precompiled header is saved in the ob­
ject file for which the precompiled header is created rather than in the precompiled

Option

Cl Command Reference 549

header. In subsequent inclusions of this precompiled header, the compiler does not
insert symbol information in the object file; rather, it inserts cross-references to the
original object file. Therefore, no matter how many times the header is included in
compilations, the debugging information exists only in one object file.

Although this default behavior results in faster compilation and reduces disk-space
demands, it can be undesirable if you are distributing a debugging library. The IY d
option overrides this behavior so that complete debugging information is included
in each object file.

!Yu (Use Precompiled Header)

lYulTfilename]

The "use precompiled header" option (lYu) instructs the compiler to restore its
state from a previous compilation using a precompiled header file. No space is
allowed between the option and the filename.

Using !Yu with a Filename
Iffilename is specified, it must correspond to one of the header files included in
the source file using the #inclnde preprocessor directive. The compiler skips to
the specified #include directive, restores the compiled state from the precompiled
header file, and then compiles only code that follows filename.

Unless the /Fp option is used, the compilation state is restored from a file that has
the same base name as the include file and a .PCR extension. Consider the follow­
ing code:

#include <afxwin.h> II Include header for class library
#include "resource.h" II Include resource definitions
#include "myapp.h" II Include information specific to this app.

When compiled with the command line

CL IYuMYAPP.H PROG.CPP

the compiler does not process the three #include statements but restores its state
from the precompiled header MY APP.PCR, thereby saving the time involved in
preprocessing all three of the files (and any files they might include).

You can use the /Fp option with the lYu option to specify the name of the .PCR
file if the name is different from either the filename argument to IY c or the base
name of the source file.

CL IYuMYAPP.H IFpMYPCH.PCH PROG.CPP

550 Environment and Tools

This command specifies a precompiled header file named MYPCH.PCH. The
compiler uses its contents to restore the precompiled state of all header files up to
and including MYAPP.H. The compiler then compiles the code that occurs after
the MY APP.H include statement.

Using /Yu Without a Filename
When you specify the /Yu option without a filename, your source program must
contain a hdrstop pragma that specifies the filename. The compiler skips to the lo­
cation of that pragma, restores the compiled state from the precompiled header file
specified by the pragma, and then compiles only code that follows the pragma. If
the hdrstop pragma does not specify a filename, the compiler looks for a file with
a name derived from the base name of the source file, with the .PCH extension.

If you specify the Nu option without a filename and fail to specify a hdrstop
pragma, an error message is generated and the compilation is unsuccessfuL

/le, /la (Enable or Disable Language Extensions)
Microsoft C/C++ supports the ANSI C standard. In addition, it offers a number of
features beyond those specified in the ANSI C standard. These features are en­
abled when the /Ze (default) option is in effect and disabled when the /Za option
is in effect. They include the following:

• The __ based, __ cdecl, __ far, __ fastcall, __ fortran, __ huge, __ near,
__ pascal, __ stdcall, __ syscall, and __ interrupt keywords.

• Use of casts to produce I-values:

int *p;
« long *) P)++;

The preceding example could be rewritten to conform with the ANSI C
standard as follows:

p = (int *)« long *)p + 1);

• Redefinitions of extern items as static:

extern int foot);
static int foot)
{}

• Use of trailing commas (,) rather than an ellipsis (...) in function declarations to
indicate variable-length argument lists:

int printf(char *.);

• Use of benign typedefredefinitions within the same scope:

typedef int INT;
typedef int INT;

CL Command Reference 551

• Use of mixed character and string constants in an initializer:

char arr[5] = {'a', 'b', "cde"};

• Use of bit fields with base types other than unsigned int or signed int.

• Use of single-line comments, which are introduced with two slash characters:

II This is a single-line comment.

• Casting of a function pointer to a data pointer:

int (* pfunc) ();
int *pdata;

pdata = (int *) pfunc;

To perform the same cast while maintaining ANSI compatibility, you must cast
the function pointer to an int before casting it to a data pointer:

pdata = (int *) (int) pfunc;

• Function declarators have file scope:

voi d func1 ()
{

extern int func2(double);
}

void maine void
{

func2(4);
}

II IZe passes 4 as type double
II IZa passes 4 as type int

• Use of declarators without either a storage class or a type:

x· ,

void maine void)
{

x = 1;
}

• Use of zero-sized arrays as last field in structures and union:

struct zero
{

char *c;
int zarray[];

} ;

552 Environment and Tools

• Use of block scope variables initialized with nonconstant expressions:

int foot int);
int bare int);

void maine void
{

int array[2] {foo(2), bare 4) };
}

int foot int x
{

return x;
}

int bare int x
{

return x;
}

• Previous function declarator specifies a variable number of arguments, but the
function definition provides a type instead:

void myfunc(int x, ...);

void myfunc(int x, char * c)
{ }

Use the /Za option if you plan to port your program to other environments. The
/Za option tells the compiler to treat extended keywords as simple identifiers and
to disable the other extensions listed above.

When you specify /Za, the compiler automatically defines the __ STDC __ iden­
tifier. In the include files provided with the C run-time libraries, this identifier is
used with #ifndef to control use of the __ cdecl keyword on library function proto­
types. For an example of this conditional compilation, see the file STDIO.H.

ac (Specify Pascal Naming)
This option ignores case at the source level for any name declared with the
__ pascal keyword.

ag (Generate Function Prototypes)
The /Zg option generates a function prototype for each function defined in the
source file but does not compile the source file.

CL Command Reference 553

The function prototype includes the function return type and an argument-type list.
The argument-type list is created from the types of the formal parameters of the
function. Any function prototypes already present in the source file are ignored.

The generated list of prototypes is written to the standard output. You may find
this list helpful to verify that actual arguments and formal parameters of a function
are compatible. You can save the list by redirecting standard output to a file. Then
you can use #include to make it a part of your source file as function prototypes.
Doing so causes the compiler to perform argument type checking.

If you use the /Zg option and your program contains formal parameters that have
structure, enumeration, or union type (or pointers to such types), the prototype for
each structure, enumeration, or union type must have a tag.

ai, ad (Compile for Debugging)
The /Zi option produces an object file containing line numbers and full symbolic­
debugging information for use with the CodeView window-oriented debugger.
This symbolic information is a map of your source code that the debugger uses. It
includes such things as variable names and their types, function names and their re­
turn types, and the number and names of all of the program's segments. The object
file also includes full symbol-table information and line numbers.

The /Zd option produces an object file containing only global and external symbol
information and line number information. Use this option when you want to re­
duce the size of an executable file that you will be debugging with the CodeView
debugger. You can also use /Zd when you do not need to use the expression evalu­
ator during debugging.

Example

CL Ie lZi TEST.C

This command produces an object file named TEST.OBJ that contains line num­
bers corresponding to the lines in TEST.C.

al (Remove Default-Library Name from Object File)
Ordinarily, CL puts the name of the default library (mLIBCE.LIB) in the object
file so the linker can automatically find the correct library to link with the object
file.

The /Zl option tells the compiler not to place the default-library name in the object
file. As a result, the object file is slightly smaller. The option affects all files that
follow it on the command line.

554 Environment and Tools

Use the IZI option when you are using the LID utility (described in Chapter 19) to
build a library. You can use IZI to compile the object files you plan to put in your
library, thereby omitting the default-library names from your object modules. Al­
though the IZI option saves only a small amount of space for a single object file,
the total amount of space saved is significant in a library containing many object
modules.

Example

CL ONE.C IZl TWO.C

This example creates the following two object files:

• An object file named ONE.OBJ that contains the name of the C library
SLIBCE.LID

• An object file named TWO.OBJ that contains no default-library information

When ONE,OBJ and TWO.OBJ are linked, the default-library information in
ONE.OBJ causes the default library to be searched for any unresolved references
in either ONE.OBJ or TWO.OBJ.

n.p (Pack Structure Members)

Option IZp[{11214}]

When storage is allocated for structures, structure members are ordinarily stored
as follows:

• Items of type char or unsigned char, or arrays containing items of these types,
are byte aligned.

• Structures are word aligned; structures of odd size are padded to an even num­
ber of bytes.

• All other types of structure members are word aligned.

To conserve space or to conform to existing data structures, you may want to store
structures more or less compactly. The IZp option and the pack pragma control
how structure data are packed into memory.

Use the IZp option to specify the same packing for all structures in a module.
When you give the IZpn option, where n is 1, 2, or 4, each structure member after
the first is stored on n-byte boundaries depending on the option you choose. If you
use the IZp option without an argument, structure members are packed on one­
byte boundaries. No space is allowed between IZp and its argument.

Cl Command Reference 555

On some processors, the /Zp option may result in slower program execution be­
cause of the time required to unpack structure members when they are accessed.
For example, on an 8086 processor, this option can reduce efficiency if members
with int or long type are packed in such a way that they begin on odd-byte
boundaries.

Use the pack pragma in your source code to pack particular structures on boundar­
ies different from the packing specified on the command line. Give the pack(n)
pragma, where n is 1,2, or 4, before structures that you want to pack differently.
To reinstate the packing given on the command line, give the packO pragma with
no arguments.

Table 13.10 shows the interaction of the /Zp option with the pack pragma.

Table 13.10 Using the pack Pragma

Syntax

#pragma pack()

#pragma pack()

#pragma pack(n)

Example

CL /Zp PROG.C

Compiled with
/Zp Option?

Yes

No

Yes or no

Action

Reverts to packing specified on the
command line for structures that follow

Reverts to default packing for structures
that follow

Packs the following structures to the given
byte boundary until changed or disabled

This command causes all structures in the program PROG.C to be stored without
extra space for alignment of members on int boundaries.

at (Accept __ tar Keyword)
When you use the JZf option, the compiler ignores every instance ofthe __ far
keyword in your source code. This option is useful when porting code written for
the segmented memory models of 16-bit computers to the flat memory model of
32-bit computers.

an (Turn Off SBRPACK Utility)
Use the JZn option, with either the IFR or the IFr option, to turn off the SBRP ACK
utility. This option is only required when you have used the JIu BSCMAKE option
to keep unreferenced definitions in your code. The SBRP ACK utility removes

556 Environment and Tools

unreferenced definitions from the .SBR file produced by the IFR and the IFr op­
tions. As the BSCMAKE utility uses .SBR files to produce output for the PWB
Source Browser, this smaller .SBR file gives BSCMAKE greater effective capac­
ity and can also increase the speed of producing .BSC files. Also, smaller .SBR
files save disk space.

Use of either the IFR or the IFr option is part of the process you must follow in
order to use the PWB Source Browser. Both options are described earlier in this
chapter.

For information on using the PWB Source Browser to look for code in a project,
to see where functions are invoked or where variables and types are used, or to
generate call trees and cross-reference tables, see Chapter 21, "Browser Utilities."

Example

CL IFR IZn QSORT.C

This example compiles and links the source file QSORT.C and generates a file
with an .SBR extension. The IZn option ensures that the SBRPACK utility does
not compact the .SBR file. The BSCMAKE utility uses the file to generate a .BSC
file that you can examine with the PWB Source Browser.

ar (Check Pointers)
The IZr option checks for null or out-of-range pointers in your program. A run­
time error occurs if you try to run a program with such pointers. The IZr option is
only available with the fast compile (If) option.

If you compile with the IZr option, you can use the checlL pointer pragma within
your source file to turn checking on or off only for selected pointers, leaving the
default (see below) for the remaining pointers in the program. When you want to
tum on pointer checking, put the following line before the usage of the pointer you
want to check:

#pragma checlL pointer (on)

This line turns on pointer checking for all pointers that follow it in the source file,
not just the pointers on the following line. To turn off pointer checking, insert the
following line at the location you want pointer checking turned off:

#pragma checlL pointer (off)

If you don't give an argument for the checlL pointer pragma, pointer checking re­
verts to the behavior specified on the command line: turned on if the IZr option is
given or turned off otherwise.

CL Command Reference 557

Example

CL fZr PROG.C

This command causes CL to check for null or out-of-range pointers in the
file PROG.C. All pointers in the file are checked except those to which a
checlL pointer(off) pragma applies.

as (Check Syntax Only)
The /Zs option tells the compiler to check only the syntax of the source files that
follow the option on the command line. This option provides a quick way to find
and correct syntax errors before you try to compile and link a source file.

When you give the /Zs option, the compiler does not generate code or produce ob­
ject files, object listings, or executable files. The compiler, however, does display
error messages if the source file has syntax errors.

Example

CL IZs TEST*.C

This command causes the compiler to perform a syntax check on all source files in
the current working directory that begin with TEST and end with the.C extension.
The compiler displays messages for any errors found.

Specifying Options with the CL Environment Variable
Use the CL environment variable to specify files and options without giving them
on the command line. The environment variable has the following format:

SET CL=[[option] ... [file] ...] [/link [link-libinfo]]

The CL environment variable is useful if you often give a large number of files
and options when you compile. Ordinarily, DOS limits the command line to 128
characters. The files and options that you define with the CL environment varia­
ble, however, do not count toward this limit. Therefore, you can define the files
and options you use most often with the CL variable and then give only the files
and options you need for specific purposes on the command line.

The information defined in the CL variable is treated as though it appeared before
the information given on the CL command line.

Note that if you have given an option in the CL environment variable, you gener­
ally cannot tum off or change the option from the command line. You must reset

558 Environment and Tools

the CL environment variable and omit the file or option that you do not want
to use.

With DOS, you cannot use CL to set options that use an equal sign (for example,
the lDidentifier= string option) With Microsoft C/C++, the define constants and
macro option (ID) accept the number sign (#) as an equal sign (=). You can now
use the CL environment variable to define preprocessor constants and macros (for
example, ID identifier string).

You cannot use wildcards in filenames to specify multiple files with CL.

Examples
In the following example, the CL environment variable tells the CL command to
use the IZp, lOx, and /I options during compilation and then to link with the object
file \LIB\BINMODE.OBJ.

SET CL=IZp2 lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ
CL INPUT.C

With CL defined as shown, the preceding CL command has the same effect as the
command line:

CL IZp2 lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C

That is, both specify structure packing on two-byte boundaries; perform maximum
optimizations; search for include files in the \INCLUDE\MYINCLS directory; and
suppress translation of carriage-retum-linefeed character combinations for the
source file INPUT.C.

In the following example, the CL environment variable instructs the CL command
to compile and link the source files FILE1.C and FILE2.C.

SET CL=FILEl.C FILE2.C
CL FILE3.0BJ

The CL preceding command line has the same effect as the command line:

CL FILEl.C FILE2.C FILE3.0BJ

The following example illustrates how to tum off the effects of a CL option
defined in the environment:

SET CL=/Za
CL FILEl.C IZe FILE2.C

Cl Command Reference 559

In this example, the CL environment variable is set to the /Za option, which tells
the compiler not to recognize Microsoft extensions to the C language. This option
causes Microsoft-specific keywords to be treated as ordinary identifiers rather than
as reserved words. The CL command specifies the inverse option, /Ze, which tells
the compiler to treat language extensions as reserved words. The effect is the same
as compiling with the command line:

CL IZa FILE1.C IZe FILE2.C

Therefore, FILEl.C is compiled with language extensions turned off, and FILE2.C
is compiled with language extensions enabled.

Linking Object Files with LINK
J, •

Chaptet"

'1+'~~4J ;;' ',I<,

, Jffi

"

~ jP '. ,

I
J 11

This chapter describes the Microsoft Segmented Executable Linker (LINK) ver­
sion 5.30. LINK combines compiled or assembled object files into an executable
file. This chapter explains LINK's input syntax and fields and tells how to use op­
tions to control LINK.

LINK is distributed in the form ofLINK.EXE for DOS. LINK is DOS-extended
and uses extended memory if available.

When you link for debugging using the ICO option, LINK calls the CVPACK util­
ity. CVPACK version 4.00 must be available on the path. For more information,
see "CVPACK" on page 743.

This version of LINK does not support the Microsoft Incremental Linker (ILINK).
To allow existing makefiles to remain compatible, a file called ILINK.EXE is pro­
vided. This version of ILINK always invokes a full link. The LINK options for
incremental linking are no longer supported. If IINCR, /p ADC, or /p ADD is speci­
fied, LINK issues a warning and ignores the option.

14.1 New Features
This version of LINK has several new or changed features. This section sum­
marizes changes in options. Module-definition statements are discussed in Chapter
16. An improved way to create overlaid DOS programs is described in Chapter 15.

The following options are new or changed in this version of LINK:

!DOSS [EG]
The minimum unique abbreviation for IDOSSEG option has changed from !DO
to IDOSS. (See page 578.)

IDY[NAMIC] [:number]
The new !DYNAMIC option lets you change the limit of interoverlay calls in
an overlaid DOS program. (See page 579.)

562 Environment and Tools

IINC[REMENTAL]
The IINCR option is no longer supported.

IINF[ORMATION]
The IINFO option gives more detailed output. One new use is to get the number
of interoverlay calls needed to specify with the IDYNAMIC option. (See
page 582.)

!M[AP] [:maptype]
The !MAP option has been enhanced. You can get more or less detail in the
map file by specifying an optional qualifier. (See page 583.)

INOPACKC[ODE]
The minimum unique abbreviation for !NOPACKC has changed from !NOP to
INOPACKC to distinguish it from the new !NOPACKF option. (See page 586.)

!NOPACKF[UNCTIONS]
The new !NOPACKF option keeps unreferenced packaged functions. (See
page 586.)

10L[DOVERLAY]
The new 10LDOVERLA Y option links an overlaid DOS program using the
Static Overlay Manager instead of the MOVE library. This option may not be
supported in future versions of LINK. (See page 586.)

10N[ERROR]:N[OEXE]
The 10NERROR:NOEXE option prevents LINK from creating the program out­
put if an error occurs. (See page 586.)

10V[ERLAYINTERRUPT]
The minimum unique abbreviation for this option has changed from 10 to 10V,
to distinguish it from the new IOLDOVERLAY option. (See page 587.)

IPACKF[UNCTIONS]
The new IP ACKF option removes unreferenced packaged functions. (See
page 589.)

IPADC[ODE]
The IP ADC option is no longer supported.

IPADD[ATA]
The IP ADD option is no longer supported.

IPM[TYPE]

Ir

The default for the IPM option has changed from NOVIO to PM. (See
page 590.)

The new Ir option tells the linker not to use extended memory. (See page 591.)

linking Object Files with LINK 563

14.2 Overview

Use EXEHDR to
examine the
finished file.

Other programs
can call LINK
automatically.

LINK combines 80x86 object files into either an executable file or a dynamic-link
library (DLL). The object-file format is the Microsoft Relocatable Object-Module
Format (OMF), which is based on the Intel 8086 OMF. LINK uses library files in
Microsoft library format.

LINK creates "relocatable" executable files and DLLs. The operating system can
load and execute relocatable files in any unused section of memory. LINK can cre­
ate DOS executable files with up to 1 megabyte of code and data (or up to 16 meg­
abytes when using overlays). It can create segmented executable files with up to
16 megabytes.

For more information on the OMF, the executable-file format, and the linking
process, see the MS-DOS Encyclopedia.

When the file (either executable or DLL) is created, you can examine the informa­
tion that LINK puts in the file's header by using the Microsoft EXE File Header
Utility (EXEHDR). For more information on EXEHDR, see Chapter 17.

The Microsoft Programmer's WorkBench (PWB) invokes LINK to create the final
executable file or DLL. Therefore, if you develop your software with PWB, you
might not need to read this chapter. However, the detailed explanations of LINK
options might be helpful when you use the LINK Options dialog box in PWB.
This information is also available in Help.

The compiler or assembler supplied with your language (CL with C, FL with
FORTRAN, ML with MASM) also invokes LINK. You can use most of the LINK
options described in this chapter with the compiler or assembler. The Microsoft
Advisor has more information about the compilers and assembler; select Help for
the appropriate language from the Command Line box of the Help Contents screen.

Note Unless otherwise noted, all references to "library" in this chapter refer to a
static library. This can be either a standard library created by the Microsoft Library
Manager (LIB) or an import library created by the Microsoft Import Library
Manager (IMPLIB), but not a DLL.

14.3 LINK Output Files
LINK can create executable files for DOS or Windows. The kind of file produced
is determined by the way the source code is compiled and the information supplied
to LINK. LINK's output is either an executable file or a DLL. For simplicity, this
chapter sometimes refers to this output as the "program" or "main output." LINK
creates the appropriate file according to the following rules:

564 Environment and Tools

Map files list the
segments and
symbols in a program.

LINK produces other
files when certain
options are used.

• If a .DEF file is specified, LINK creates a segmented executable file. The type
is determined by the EXETYPE and LIBRARY statements.

• If a .DEF file is not specified, LINK creates a DOS program.

• If an overlay number is specifed in a SEGMENTS or FUNCTIONS statement,
LINK creates an overlaid DOS program. This overrides a conflicting .DEF file
specification.

• If /DYNAMIC or IOLDOVERLA Y is specified, or if parentheses are used in
the objects field, LINK creates an overlaid DOS program. This overrides a
conflicting .DEF file specification.

• If an object file or library module contains an export definition (an EXPDEF
record), LINK creates a segmented executable file. This overrides an overlay
specification. The __ export keyword creates an EXPDEF record in a C pro­
gram. Microsoft C libraries for protect mode contain EXPDEF records, so link­
ing with a protect-mode default library creates a segmented executable file.

• If an import library is specified, LINK creates a segmented executable file.

LINK can also create a "map" file, which lists the segments in the executable file
and can list additional information. The /LINE and !MAP options control the con­
tent of the map file.

Other options tell LINK to create other kinds of output files. LINK produces a
.COM file instead of an .EXE file when the /TINY option is specified. The combi­
nation of ICO and ITINY puts debugging information into a .DBG file. A Quick
library results when the IQ option is specified. For more information on these and
other options, see "LINK Options" on page 575.

14.4 LINK Syntax and Input
The LINK command has the following syntax:

LINK objfiles[, [exefile] [, [mapfile][, [libraries][, [dejfile]]]]] [;]

The LINK fields perform the following functions:

• The objfiles field is a list of the object files that are to be linked into an execu­
table file or DLL. It is the only required field.

• The exefile field lets you change the name of the output file from its default.

• The mapfile field creates a map file or gives the map file a name other than its
default name.

• The libraries field specifies additional (or replacement) libraries to search for
unresolved references.

• The deffile field gives the name of a module-definition (.DEF) file.

Linking Object Files with LINK 565

Fields are separated by commas. You can specify all the fields, or you can leave
one or more fields (including obJfiles) blank; LINK then prompts you for the
missing input. (For information on LINK prompts, see "Running LINK" on page
572.) To leave a field blank, enter only the field's trailing comma.

Options can be specified in any field. For descriptions of each of LINK's options,
see "LINK Options" on page 575.

The fields must be entered in the order shown, whether they contain input or are
left blank. A semicolon (;) at the end of the LINK command line terminates the
command and suppresses prompting for any missing fields. LINK then assumes
the default values for the missing fields.

If your file appears in or is to be created in another directory or device, you must
supply the full path. Filenames are not case sensitive. If the filename contains a
space (supported on some installable file systems), enclose the name in single or
double quotation marks (' or ").

The next five sections explain how to use each of the LINK fields.

The objfiles Field
The obJfiles field specifies one or more object files to be linked. At least one filen­
ame must be entered. If you do not supply an extension, LINK assumes a default
.OBJ extension. If the filename has no extension, add a period (.) to the end of its
name.

If you name more than one object file, separate the names with a plus sign (+) or a
space. To extend obJfiles to the following line, type a plus sign (+) as the last char­
acter on the current line, then press ENTER, and continue. Do not split a name
across lines.

How LINK Searches for Object Files
When it searches for object files, LINK looks in the following locations in the
order specified:

1. The directory specified for the file (if a path is included). If the file is not in that
directory, the search ends.

2. The current directory.

3. Any directories specified in the LIB environment variable.

If LINK cannot find an object file, and a floppy drive is associated with that object
file, LINK pauses and prompts you to insert a disk that contains the object file.

566 Environment and Tools

The exefile Field

load libraries
If you specify a library in the objfiles field, it becomes a "load library." LINK
treats a load library like any other object file. It does not search for load libraries
in directories named in the libraries field. You must specify the library's filename
extension; otherwise, LINK assumes an .OBJ extension.

LINK puts every object module from a load library into the executable file, regard­
less of whether a module resolves an external reference. The effect is the same as
if you had specified all the library's object-module names in the objfiles field.

Specifying a load library can create an executable file or DLL that is larger than it
needs to be. (A library named in the libraries field adds only those modules re­
quired to resolve external references.) However, loading an entire library can be
useful when:

• Repeatedly specifying the same group of object files.

• Placing a library in an overlay.

• Debugging so you can call library routines that would not be included in the
release version of the program.

Overlays
A special syntax for the objfiles field lets you assign the contents of object files to
specific overlays in a DOS program. To place one or more object files in an over­
lay, enclose the filenames in parentheses. This syntax may not be supported in
future versions of LINK. For more information about overlays, see Chapter 15.

The exefile field is used to specify a name for the main output file. If you do not
supply an extension, LINK assumes a default extension, either .EXE, .COM
(when using the ITINY option), .DLL (when using a module-definition file con­
taining a LIBRARY statement), or .QLB (when using the IQ option).

If you do not specify an exefile, LINK assigns a default name to the main output.
This name is the base name of the first file listed in the objfiles field, plus the ex­
tension appropriate for the type of executable file being created.

LINK creates the main file in the current directory unless you specify an explicit
path with the filename.

Linking Object Files with LINK 567

The mapfile Field
The mapfile field is used to specify a filename for the map file or to suppress the
creation of a map file. A map file lists the segments in the executable file or DLL.

You can specify a path with the filename. The default extension is .MAP. Specify
NUL to suppress the creation of a map file. The default for the mapfile field is one
of the following:

• If this field is left blank on the command line or in a response file, LINK
creates a map file with the base name of the exefile (or the first object file if no
exefile is specified) and the extension .MAP. If the field contains a dot (.), the
map file is given the base name without an extension.

• When using LINK prompts, LINK assumes either the default described pre­
viously (if an empty map file field is specified) or NU L. MAP, which suppresses
creation of a map file.

To add line numbers to the map file, use the ILINE option. To add public symbols
and other information, use the !MAP option. Both /LINE and !MAP force a map
file to be created unless NUL is explicitly specified in mapfile.

The libraries Field
You can specify one or more standard or import libraries (not DLLs) in the
libraries field. If you name more than one library, separate the names with a plus
sign (+) or a space. To extend libraries to the following line, type a plus sign (+)
as the last character on the current line, press ENTER, and continue. Do not split a
name across lines. If you specify the base name of a library without an extension,
LINK assumes a default .LIB extension.

If no library is specified, LINK searches only the default libraries named in the
object files to resolve unresolved references. If one or more libraries are specified,
LINK searches them in the order named before searching the default libraries.

You can tell LINK to search additional directories for specified or default libraries
by giving a drive name or path specification in the libraries field; end the specifi­
cation with a backslash (\). (If you don't include the backslash, LINK assumes
that the specification is for a library file instead of a directory.) LINK looks for
files ending in .LIB in these directories.

You can specify a total of 32 paths or libraries in the field. If you give more than
32 paths or libraries, LINK ignores the additional specifications without warning
you.

568 Environment and Tools

You might need to specify library names to:

• Use a default library that has been renamed.

• Specify a library other than the default named in the object file (for example,
a library that handles floating-point arithmetic differently from the default
library).

• Search additional libraries.

• Find a library that is not in the current directory and not in a directory specified
by the LIB environment variable.

Default libraries
Most compilers insert the names of the required language libraries in the object
files. LINK searches for these default libraries automatically; you do not need to
specify them in the libraries field. The libraries must already exist with the name
specified in the object file. Default-library names usually refer to combined librar­
ies built and named during setup; consult your compiler documentation for more
information about default libraries.

To make LINK ignore the default libraries, use the !NOD option. This leaves unre­
solved references in the object files. Therefore, you must use the libraries field to
specify the alternative libraries that LINK is to search.

Import libraries
You can specify import libraries created by the IMPLIB utility anywhere you can
specify standard libraries. You can also use the LIB utility to combine import
libraries and standard libraries. These combined libraries can then be specified in
the libraries field. For more information on LIB, see Chapter 19. For information
on IMPLIB, see page 745.

How LINK Resolves References
LINK searches static libraries to resolve external references. A static library is
either a standard library created by the LIB utility or an import library created by
the IMPLIB utility.

LINK searches object files and libraries for a definition of each external reference.
When LINK finds a needed definition in a module in a library, LINK adds the en­
tire module (but not necessarily all modules in the library) to the program.

linking Object Files with LINK 569

You provide a library to LINK in the following ways:

• Specify the name of a library in the libraries field.

• Specify the name of a library as a load library in the objects field. A load library
adds all its modules to the program. For more information, see "Load Librar­
ies" on page 566.

• Compile a program that uses definitions provided in a default library for that
compiler. The compiler places a library comment record in the object file.
LINK uses the library named in this record.

• Embed a library comment record in the object file by using the comment
pragma in a C program. This record precedes a record for a default library
placed in the object file by the compiler; therefore, LINK looks in this library
before it searches a default library named in the same object file.

LINK first looks for a definition in files specified in the objects field, then it looks
in libraries specified in the libraries field. The search order is the order in which
the files are specified in the fields. LINK then looks in libraries specified in com­
ment records in the object files, again in the specified order.

If LINK cannot find a needed definition, it issues an error message:

unresolved external

If a reference is defined in more than one library, LINK uses the first definition
it finds as it searches the libraries in order. A duplicate definition may not be a
problem if the later definition is in a module that is not linked into the program.
However, if the duplicate definition is in a module that contains another needed
definition, that module is linked into the program, and the duplicate definition
causes an error:

symbol defined more than once

Multiple definitions can also cause a problem if LINK is using extended dictionar­
ies in libraries. An extended dictionary is a summary of the definitions contained
in all modules of a library. LINK uses this summary to speed the process of search­
ing libraries. If LINK finds a previously resolved reference listed in an extended
dictionary, it assumes that a duplicate definition exists and issues an error message:

symbol multiply defined, use INOE

If this error occurs, link your program using the /NOE option.

570 Environment and Tools

The deffile Field

How LINK Searches for Library Files
When searching for a library, LINK looks in the following locations in this order:

1. The directory specified for the file, if a path is included. (The default libraries
named in object files by Microsoft compilers do not include path specifications.)

2. The current directory.

3. Any directories specified in the libraries field.

4. Any directories specified in the LIB environment variable.

If LINK cannot locate a library file, it prompts you to enter the location. The
!BATCH option disables this prompting.

Example
The following is a specification in the libraries field:

C:\TESTLIB\ NEWLIBV3 C:\MYLIBS\SPECIAL

LINK searches NEWLIBV3.LIB first for unresolved references. Since no direc­
tory is specified for NEWLIBV3.LIB, LINK looks in the following locations in
this order:

1. The current directory

2. The C:\TESTLIB\ directory

3. The directories in the LIB environment variable

If LINK still cannot find NEWLIBV3.LIB, it prompts you with the message:

Enter new file spec:

Enter either a path to the library or a path and filename for another library.

If unresolved references remain after LINK searches NEWLIBV3.LIB, it then
searches the library C:\MYLIBS\SPECIAL.LIB. If LINK cannot find this library,
it prompts you as described previously for NEWLIBV3.LIB. If there are still unre­
solved references, LINK searches the default libraries.

Use the deffile field to specify a module-definition file. A module-definition file
is required for an overlaid DOS program or a DLL. It is optional for a Windows
application. If you specify a base name with no extension, LINK assumes a .DEF
extension. If the filename has no extension, put a period (.) at the end of the name.

Examples

Linking Object Files with LINK 571

By default, LINK assumes that a deffile needs to be specified. If you are linking
without a .DEF file, use a semicolon to terminate the command line before the
deffile field (or accept the default NUL.DEF atthe Definitions File prompt).

How LINK Searches for Module-Definition Files
LINK searches for the module-definition file in the following order:

1. The directory specified for the file (if a path is included). If the file is not in that
directory, the search terminates.

2. The current directory.

For information on module-definition files, see Chapter 16.

The following examples illustrate various uses of the LINK command line.

Example 1

LINK FUN+TEXT+TABLE+CARE, , FUNLIST, FUNPRDG.LIB;

This command line links the object files FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and
CARE.OBJ. By default, the executable file is named FUN.EXE because the base
name of the first object file is FUN and no name is specified for the executable file.
The map file is named FUNLIST.MAP. LINK searches for unresolved external
references in the library FUNPROG.LIB before searching in the default libraries.
LINK does not prompt for a .DEF file because a semicolon appears before the
deffile field.

Example 2

LINK FUN, ,

This command produces a map file named FUN.MAP because a comma appears
as a placeholder for the mapfile field on the command line.

Example 3

LINK FUN, ;
LINK FUN;

Neither ofthese commands produces a map file because commas do not appear as
placeholders for the mapfile field. The semicolon (;) ends the command line and
accepts all remaining defaults without prompting; the prompting default for the
map file is not to create one.

572 Environment and Tools

Example 4

LINK MAIN+GETDATA+PRINTIT, , GETPRINT.LST;

This command links the files MAIN.OBJ, GETDATA.OBJ, and PRINTIT.OBJ.
No module-definition file is specified, so LINK creates a DOS file if the real­
mode default combined libraries are provided or a segmented executable file if the
protect-mode libraries are provided. The map file GETPRINT.LST is created.

Example 5

LINK GETDATA+PRINTIT, , , , GETPRINT.DEF

This command links GETDATA.OBJ and PRINTIT.OBJ, using the information in
GETPRINT.DEF. LINK creates a map file named GETDATA.MAP.

14.5 Running LINK
The simplest use of LINK is to combine one or more object files with a run-time
library to create an executable file. You type LIN K at the command-line prompt,
followed by the names of the object files and a semicolon (;). LINK combines the
object files with any language libraries specified in the object files to create an ex­
ecutable file. By default, the executable file takes the name of the first object file
in the list.

To interrupt LINK and return to the operating-system prompt, press CTRL+C at any
time.

LINK has five input fields, all optional except one (the obJfiles field). There are
several ways to supply the input fields LINK expects:

• Enter all the required input directly on the command line.

• Omit one or more of the input fields and respond when LINK prompts for the
missing fields.

• Put the input in a response file and enter the response-file name (preceded by
@) in place of the expected input.

These methods can be used in combination. The LINK command line was dis­
cussed on page 564. The following sections explain the other two methods.

Specifying Input with LINK Prompts
If any field is missing from the LINK command line and the line does not end
with a semicolon, or if any of the supplied fields are invalid, LINK prompts you

linking Object Files with LINK 573

for the missing or incorrect information. LINK displays one prompt at a time and
waits until you respond:

Object Modules [.OBJ]:
Run File [basename.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:
Definitions File [NUL.DEF]:

The LINK prompts correspond to the command-line fields described earlier in this
chapter. If you want LINK to prompt you for every input field, including objfiles,
type the command LI N K by itself.

Options can be entered anywhere in any field, before the semicolon if it is
specified.

Defaults
The default values for each field are shown in brackets. Press ENTER to accept the
default, or type in the filename(s) you want. The basename is the base name of the
first object file you specified. To select the default responses for all the remaining
prompts and terminate prompting, type a semicolon (;) and press ENTER.

If you specify a filename without giving an extension, LINK adds the appropriate
default extension. To specify a filename that does not have an extension, type a
period (.) after the name.

Use a space or plus sign (+) to separate multiple filenames in the objfiles and
libraries fields. To extend a long objfiles or libraries response to a new line, type
a plus sign (+) as the last character on the current line and press ENTER. You can
continue entering your response when the same prompt appears on a new line. Do
not split a filename or a path across lines.

Specifying Input in a Response File
You can supply input to LINK in a response file. A response file is a text file con­
taining the input LINK expects on the command line or in response to prompts.
You can use response files to hold frequently used options or responses or to over­
come the I 28-character limit on the length of a DOS command line.

Usage
Specify the name of the response file in place of the expected command-line input
or in response to a prompt. Precede the name with an at sign (@), as in:

@responsefile

574 Environment and Tools

You must specify an extension if the response file has one; there is no default ex­
tension. You can specify a path with the filename.

You can specify a response file in any field (either on the command line or after a
prompt) to supply input for one or more consecutive fields or all remaining fields.
Note that LINK assumes nothing about the contents of the response file; LINK
simply reads the fields from the file and applies them in order to the fields for
which it has no input. LINK ignores any fields in the response file or on the com­
mand line after the five expected fields are satisfied or a semicolon (;) appears.

Example
The following command invokes LINK and supplies all input in a response file,
except the last input field:

LINK @input.txt, mydefs

Contents of the Response File
Each input field must appear on a separate line, or separated from other fields on
the same line by a comma. You can extend a field to the following line by adding
a plus sign (+) at the end of the current line. A blank field can be represented by
either a blank line or a comma.

Options can be entered anywhere in any field, before the semicolon if it is
specified.

If a response file does not specify all the fields, LINK prompts you for the rest.
Use a semicolon (;) to suppress prompting and accept the default responses for all
remaining fields.

Example

FUN TEXT TABLE+
CARE
IMAP
FUNLIST
GRAF. LIB

If the preceding response file is named FU N • LN K, the command

LINK @FUN.LNK

causes LINK to:

• Link the four object files FUN.GBJ, TEXT.GBJ, TABLE.GBJ, and CARE.GBJ
into an executable file named FUN.EXE.

• Include public symbols and addresses in the map file.

linking Object Files with LINK 575

• Make the name of the map file FUNLIST.MAP.

• Link any needed routines from the library file GRAF.LIB.

• Assume no module-definition file.

14.6 LINK Options
This section explains how to use options to control LINK's behavior and modify
LINK's output. It contains a brief introduction on how to specify options followed
by a description of each option.

Specifying Options
The following paragraphs discuss rules for using options.

Syntax
All options begin with a slash (I). (A dash, -, is not a valid option specifier for
LINK.) You can specify an option with its full name or an abbreviation, up to the
shortest sequence of characters that uniquely identifies the option (except for
IDOSSEG). The description for each option shows the minimum legal abbrevia­
tion with the optional part enclosed in double brackets. No gaps or transpositions
of letters are allowed. For example,

!B[ATCH]

indicates that either IB or IBATCH can be used, as can !BA, IBAT, or IBATC.
Option names are not case sensitive (except for Ir), so you can also specify !batch
or !Batch. This chapter uses meaningful yet legal forms of the option names. If an
option is followed by a colon (:) and an argument, no spaces can appear before or
after the colon.

Usage
LINK options can appear on the command line, in response to a prompt, or as part
of a field in a response file. They can also be specified in the LINK environment
variable. (For more information, see "Setting Options with the LINK Environment
Variable" on page 593.) Options can appear in any field before the last input, ex­
cept as noted in the descriptions.

If an option appears more than once (for example, on the command line and in the
LINK variable), the effect is the same as if the option was given only once. If two
options conflict, the most recently specified option takes effect. This means that a
command-line option or one given in response to a prompt overrides one specified

576 Environment and Tools

in the LINK environment variable. For example, the command-line option
ISEG:512 cancels the effect of the environment-variable option/SEG:256.

Numeric Arguments
Some LINK options take numeric arguments. You can enter numbers either in
decimal format or in standard C-Ianguage notation.

The /ALIGN Option

Option
I A [LIGNMENT] :size

The IALIGN option aligns segments in a segmented executable file at the boundar­
ies specified by size. LINK ignores I ALIGN for DOS programs.

The alignment size is in bytes and must be an integer power of two. LINK rounds
up to the next power of two if another value is specified. The default alignment is
512 bytes.

This option reduces the size of the file as it is stored on disk by reducing the size
of gaps between segments. It has no effect on the size of the file when loaded in
memory. The size of an executable file is limited to 64K times the alignment.

The /BATCH Option

Option
!B[ATCH]

The !BATCH option suppresses prompting for libraries or object files that LINK
cannot find. By default, the linker prompts for a new path whenever it cannot find
a library it has been directed to use. It also prompts you if it cannot find an object
file that it expects to find on a floppy disk. When IBATCH is used, the linker gen­
erates an error or warning message (if appropriate). The !BATCH option also sup­
presses the LINK copyright message and echoed input from response files.

Using this option can cause unresolved external references. It is intended primarily
for users who use batch files or makefiles for linking many executable files with a
single command and who wish to prevent linker operation from halting.

Note This option does not suppress prompts for input fields. Use a semicolon (;)
at the end of the LINK input to suppress input prompting.

The ICO Option

Option
ICO[DEVIEW]

linking Object Files with LINK 517

The ICO option adds Microsoft Symbolic Debugging Information to the execu­
table file. Debugging information can be used with the Microsoft CodeView de­
bugger. If the object files do not contain debugging information (that is, if they
were not compiled or assembled using either IZi or IZd), this option places only
public symbols in the executable file.

You can run the resulting executable file outside CodeView; the debugging data
in the file is ignored. However, it increases file size. You should link a separate
release version without the ICO option after the program has been debugged.

When ICO is used with the /TINY option, debugging information is put in a sepa­
rate file with the same base name as the .COM file and with the .DBG extension.

The ICO option is not compatible with the IEXEPACK option for DOS executable
files.

The ICPARM Option

Option
ICP[ARMAXALLOC]:number

The ICP ARM option sets the maximum number of 16-byte paragraphs needed by
the program when it is loaded into memory. DOS uses this value to allocate space
for the program before loading it. This option is useful when you want to execute
another program from within your program and you need to reserve memory for
the program. The ICP ARM option is valid only for DOS programs.

LINK normally requests DOS to set the maximum number of paragraphs to
65,535. Since this is more memory than DOS can supply, DOS always denies the
request and allocates the largest contiguous block of memory it can find. If the
ICP ARM option is used, DOS allocates no more space than the option specified.
Any memory in excess of that required for the program loaded is free for other
programs.

The number can be any integer value in the range 1 to 65,535. If number is less
than the minimum number of paragraphs needed by the program, LINK ignores
your request and sets the maximum value equal to the minimum value. This min­
imum is never less than the number of paragraphs of code and data in the program.
To free more memory for programs compiled in the medium and large models,
link with ICPARM: 1. This leaves no space for the near heap.

578 Environment and Tools

Note You can change the maximum allocation after linking by using the
EXEHDR utility, which modifies the executable-file header. For more infor­
mation on EXEHDR, see Chapter 17.

The JDOSSEG Option

Option
/DOSS [EG]

The /DOSSEG option forces segments to be ordered as follows:

1. All segments with a class name ending in CODE

2. All other segments outside DGROUP

3. DGROUP segments in the following order:

a. Any segments of class BEGDATA. (This class name is reserved for
Microsoft use.)

b. Any segments not of class BEGDATA, BSS, or STACK.

c. Segments of class BSS.

d. Segments of class STACK.

In addition, the /DOSSEG option defines the following two labels:

edata DGROUP BSS
end = DGROUP : STACK

The variables __ edata and __ end have special meanings for Microsoft com­
pilers. It is recommended that you do not define program variables with these
names. Assembly-language programs can reference these variables but should
not change them.

The IDOSSEG option also inserts 16 null bytes at the beginning of the _TEXT
segment (if this segment is defined); unassigned pointers point to this area. This
behavior of the option is overridden by the INONULLS option when both are
used; use INONULLS to override the DOSSEG comment record commonly found
in standard Microsoft libraries.

This option is principally for use with assembly-language programs. When you
link high-level-language programs, a special object-module record in the Micro­
soft language libraries automatically enables the /DOSSEG option. This option is
also enabled by assembly modules that use Microsoft Macro Assembler (MASM)
directive .DOSSEG.

Note The minimum abbreviation allowed for this option is /DOSS.

linking Object Files with LINK 579

The /DSALLOC Option

Option
IDS [ALLOCATE]

The IDSALLOC option tells LINK to load all data starting at the high end of the
data segment. At run time, the data segment (DS) register is set to the lowest data­
segment address that contains program data.

By default, LINK loads all data starting at the low end of the data segment. At run
time, the DS register is set to the lowest possible address to allow the entire data
segment to be used.

The IDSALLOC option is most often used with the IHIGH option to take advan­
tage of unused memory within the data segment. These options are valid only for
assembly-language programs that create DOS .EXE files.

The /DYNAMIC Option

Option
IDY[NAMIC] :number

The IDYNAMIC option changes the limit on the number of interoverlay calls in
an overlaid DOS program. (For more information on overlays, see Chapter 15.)
The default limit is 256. The number is a decimal integer from 1 to 10,922.
Specify a higher number to raise the limit if LINK issues the error too many
i nterover 1 ay ca 11 s. Lower the limit to create a smaller table of interoverlay
calls, saving space in your program.

To determine the most efficient number, run LINK using the IINFO option. The
displayed information contains the line

NUMBER OF INTEROVERLAY CALLS: requested number; generated calls

The number of interoverlay calls requested is the number set by IDYNAMIC or
the default of 256. The calls number reports the number of interoverlay calls actu­
ally generated. For maximum efficiency, run LINK using !INFO, then relink using
IDYNAMIC:calls.

580 Environment and Tools

The /EXEPACK Option

Option
IE [XEPACK]

The IEXEPACK option directs LINK to remove sequences of repeated bytes (usu­
ally null characters) and to optimize the load-time relocation table before creating
the executable file. (The load-time relocation table is a table of references relative
to the start of the program, each of which changes when the executable image is
loaded into memory and an actual address for the entry point is assigned.)

The IEXEPACK option does not always produce a significant saving in disk space
and may sometimes actually increase file size. Programs that have a large number
of load-time relocations (about 500 or more) and long streams of repeated charac­
ters are usually shorter if packed. LINK issues a warning if the packed file is
larger than the unpacked file. The time required to expand a packed file may cause
it to load more slowly than a file linked without this option.

You cannot debug packed DOS files with CodeView because the unpacker that
IEXEPACK appends to a DOS program is incompatible with CodeView. In a
Windows program, the unpacker is in the loader, and there is no conflict with
CodeView.

The IEXEP ACK option is not compatible with the IHIGH or IQ option.

The /FAR CALL Option

FAR CAll optimizes
by creating more
efficient code.

Option
IF[ARCALLTRANSLATION]

The IF ARCALL option directs the linker to optimize far calls to procedures that
lie in the same segment as the caller. This can result in slightly faster code; the
gain in speed is most apparent on 80286-based machines and later.

The IFARCALL option is on by default for overlaid DOS programs and programs
created with the ITINY option. It is off by default for other programs. If an en­
vironment variable (such as LINK or CL) includes IF ARCALL, you can use the
/NOF ARCALL option to override it. The IPACKC option is not recommended
when linking Windows applications with IF ARC ALL.

A program that has multiple code segments may make a far call to a procedure in
the same segment. Since the segment address is the same (for both the code and
the procedure it calls), only a near call is necessary. Far calls appear in the reloca­
tion table; a near call does not require a table entry. By converting far calls to near
calls in the same segment, the IFARCALL option both reduces the size of the relo­
cation table and increases execution speed because only the offset needs to be

In rare cases,
IFARCALL should be
used with caution.

linking Object Files with LINK 581

loaded, not a new segment. The IFARCALL option has no effect on programs that
make only near calls since there are no far calls to convert.

When IF ARCALL is specified, the linker optimizes code by removing the instruc­
tion call FAR 1 abe 1 and substituting the following sequence:

nap
push cs
call NEAR 1 abel

During execution, the called procedure still returns with a far-return instruction.
However, because both the code segment and the near address are on the stack, the
far return is executed correctly. The nap (no-op) instruction is added so that ex­
actly five bytes replace the five-byte far-call instruction.

There is a small risk with the IF ARCALL option. If LINK sees the far-call opcode
(9A hexadecimal) followed by a far pointer to the current segment, and that seg­
ment has a class name ending in CODE, it interprets that as a far call. This problem
can occur when using __ based (__ segname ("_CODE")) in aCprogram. Ifa
program linked with IF ARCALL fails for no apparent reason, try using
/NOFARCALL.

Object modules produced by Microsoft high-level languages are safe from this
problem because little immediate data is stored in code segments. Assembly­
language programs are generally safe for use with the IF ARC ALL option if they
do not involve advanced system-level code, such as might be found in operating
systems or interrupt handlers.

The /HELP Option

Option
IHE[LP]

The IHELP option calls the QuickHelp utility. If LINK cannot find the Help file
or QuickHelp, it displays a brief summary of LINK command-line syntax and op­
tions. Do not give a filename when using the IHELP option.

The /HIGH Option

Option
!HI [GH]

At load time, the executable file can be placed either as low or as high in memory
as possible. The !HIGH option causes DOS to place the executable file as high as
possible in memory. Without the IHIGH option, DOS places the executable file as

582 Environment and Tools

low as possible. This option is usually used with the JDSALLOC option. These op­
tions are valid only for assembly-language programs that create DOS .EXE files.

The /INFO Option

The /LINE Option

Option
IINF[ORMATION]

The JINFO option displays to the standard output information about the linking
process, including the phase of linking, the object files being linked, and the
library modules used. This option is useful for determining the locations of the
object files and modules, the number of segments, and the order in which they
are linked.

An important use of JINFO is to get the number of interoverlay calls generated.
You can then specify this number with the JDYNAMIC option.

Option
!LI [NENUMB ERS]

The !LINE option adds the line numbers and associated addresses from source
files to the map file. The object file must contain line-number information for it to
appear in the map file. If the object file has no line-number information, the JUNE
option has no effect. (Use the JZd or JZi option with Microsoft compilers such as
CL, FL, and ML to add line numbers to the object file.) If you also want to add
public symbols or other information to the map file, use the !MAP option. For
more information on the map file, see the description of JMAP.

The JUNE option causes a map file to be created even if you did not explicitly tell
the linker to do so. LINK creates a map file when a filename is specified in the
map file field or when the default map-file name is accepted. (The !MAP option
also forces creation of a map file.) For more information, see the description of
map file on page 567.

By default, the map file is given the same base name as the executable file with
the extension .MAP. You can override the default name by specifying a new
map-file name in the mapfile field or in response to the Lis t F i 1 e prompt.

The /MAP Option

The INOD Option

Option
!M[AP][:{maptype}]

Linking Object Files with LINK 583

The !MAP option controls the information contained in the map file. The !MAP
option causes a map file to be created even if you did not explicitly tell the linker
to do so.

LINK creates a map file when a filename is specified in the mapfile field or when
the default map-file name is accepted. (The ILINE option also forces creation of a
map file.) For more information, see the description of map file on page 567.

A map file by default contains only a list of segments. A map file created with
!MAP contains public symbols sorted by name and by address, in addition to the
segments list. Symbols in C++ appear in the form of decorated names. To add or
omit information, specify !MAP followed by a colon (:) and a map type qualifier:

[ADDRESS]
Omits the list of public symbols sorted by name.

[FULL]
Adds information about each object file's contribution to a segment. Adds un­
decorated names following the decorated names for C++ symbols in the listings
by name and by address.

If you also want to add line numbers to the map file, use the !LINE option.

By default, the map file is given the same base name as the executable file with
the extension .MAP. You can override the default name by specifying a new map
filename in the mapfile field or in response to the List Fi 1 e prompt.

Under some circumstances, adding symbols slows the linking process. If this is a
problem, do not use IMAP.

Option
!NOD [EFAULTLIBRARYSEARCH] [:libraryname]

The !NOD option tells LINK not to search default libraries named in object files.
Specify libraryname to tell LINK to exclude only libraryname from the search.
If you want LINK to ignore more than one library, specify !NOD once for each
library. To tell LINK to ignore all default libraries, specify !NOD without a
libraryname. For more information, see "Default Libraries" on page 568.

584 Environment and Tools

The /NOE Option

High-level-language object files usually must be linked with a run-time library to
produce an executable file. Therefore, if you use the !NOD option, you must also
use the libraries field to specify an alternate library that resolves the external refer­
ences in the object files. If you compile a program using Microsoft C 7.0 or later
and you specify !NOD, you must also specify OLDNAMES.LIB.

Option
!NOE[XTDICTIONARY]

The INOE option prevents the linker from searching extended dictionaries when
resolving references. An extended dictionary is a list of symbol locations in a
library created with LIB. The linker consults extended dictionaries to speed up
library searches. Using !NOE slows the linker.

When LINK uses extended dictionaries, it gives an error if a duplicate definition is
found. Use this option when you redefine a symbol and an error occurs. For more
information, see "How LINK Resolves References" on page 568.

The /NOFARCALL Option

Option
!NOF[ARCALLTRANSLATION]

The !NOFARCALL option turns offfar-call optimization (translation). Far-call
optimization is off by default. However, if an environment variable (such as LINK
or FL) includes the IFARCALL option, you can use !NOFARCALL to override
IFARCALL.

The /NOGROUP Option

Option
!NOG[ROUPASSOCIATION]

The INOGROUP option ignores group associations when assigning addresses to
data and code items. It is provided primarily for compatibility with previous ver­
sions of the linker (2.02 and earlier) and early versions of Microsoft compilers.
This option is valid only for assembly-language programs that create DOS .EXE
files.

The /NOI Option

Option
INOI[GNORECASE]

Linking Object Files with LINK 585

This option preserves case in identifiers. By default, LINK treats uppercase and
lowercase letters as equivalent. Thus ABC, Abc, and abc are considered the same
name. When you use the INOI option, the linker distinguishes between uppercase
and lowercase and considers these identifiers to be three different names.

In most high-level languages, identifiers are not case sensitive, so this option has
no effect. However, case is significant in C.It's a good idea to use this option with
C programs to catch misnamed identifiers.

The /NOLOGO Option

Option
INOL[OGO]

The INOLOGO option suppresses the copyright message displayed when LINK
starts. This option has no effect if not specified first on the command line or in the
LINK environment variable.

The /NONULLS Option

Option
INON[ULLSDOSSEG]

The INONULLS option arranges segments in the same order they are arranged
by the IDOSSEG option. The only difference is that the IDOSSEG option inserts
16 null bytes at the beginning of the _TEXT segment (if it is defined), but
INONULLS does not insert the extra bytes.

If both the IDOSSEG and INONULLS options are given, the INONULLS option
takes precedence. Therefore, you can use INONULLS to override the DOSSEG
comment record found in run-time libraries. This option is for segmented execu­
table files.

586 Environment and Tools

The JNOPACKC Option

Option
/NOPACKC[ODE]

This option turns off code-segment packing. Code-segment packing is on by de­
fault for segmented executable files and for DOS programs created with overlays
or with the ffINY option. It is off by default for other DOS programs. If an en­
vironment variable (such as LINK or CL) includes the IPACKC option to turn on
code-segment packing, you can use /NOPACKC to override IP ACKC. For more
information on packing, see "The IPACKC Option" on page 587.

NOTE The minimum unique abbreviation for /NOPACKC has changed from
/NOP to /NOPACKC.

The JNOPACKF Option

Option
/NOPACKF[UNCTIONS]

This option prevents the removal of unreferenced packaged functions. Removal of
such definitions (the IPACKF option) is usually on by default. Use /NOPACKF to
preserve these definitions. For example, you may want to keep unreferenced code
in a debugging version of your program. For more information on IP ACKF and
packaged functions, see page 589.

The /OLDOVERLAY Option

Option
IOL[DOVERLAY]

This option links an overlaid DOS program using the Static Overlay Manager in­
stead of the MOVE library. This option may not be supported in future versions
of LINK. For information about overlays, see Chapter 15.

The /ONERROR Option

Option
ION[ERROR]:N[OEXE]

The IONERROR option tells LINK what to do if an error occurs. By default, if
certain errors occur, LINK writes an executable file to disk and overwrites any

The IOV Option

Linking Object Files with LINK 587

existing file having the same name. The resulting executable file has the error
bit set in its header. Specify 10NERROR:NOEXE to prevent such a file from
being written to disk and preserve any existing file having the same name. The
10NERROR option can be useful in makefiles.

Option
10V[ERLAYINTERRUPT] :number

This option sets an interrupt number for passing control to overlays. By default,
the interrupt number used for passing control to overlays is 63 (3F hexadecimal).
The 10V option allows you to select a different interrupt number. This option is
valid only when linking overlaid DOS programs.

The number can be any number from 0 to 255, specified in decimal format or in
C-Ianguage notation. Numbers that conflict with DOS interrupts can be used; how­
ever, their use is not advised. You should use this option only when you want to
use overlays with a program that reserves interrupt 63 for some other purpose.

Note The minimum unique abbreviation for 10V has changed from 10 to 10V.

The IPACKC Option

Option
IPACKC[ODE] [:number]

The IP ACKC option turns on code-segment packing. Code-segment packing is on
by default for segmented executable files and for DOS programs created with over­
lays or with the /TINY option. It is off by default for other DOS programs. You
can use the /NOP ACKC option to override IP ACKC.

The linker packs physical code segments by grouping neighboring logical code
segments that have the same attributes. Segments in the same group are assigned
the same segment address; offset addresses are adjusted accordingly. All items
have the same physical address whether or not the IP ACKC option is used. How­
ever, IPACKC changes the segment and offset addresses so that all items in a
group share the same segment.

The number specifies the maximum size of groups formed by IP ACKC. The linker
stops adding segments to a group when it cannot add another segment without
exceeding number. It then starts a new group. The default segment size without
IP ACKC (or when IP ACKC is specified without number) is 65,500 bytes (64K-
36 bytes).

588 Environment and Tools

Use caution when
packing assembly­
language programs.

The IP ACKC option produces slightly faster and more compact code. It affects
only programs with multiple code segments.

Code-segment packing provides more opportunities for far-call optimization
(which is enabled with the IF ARCALL option). The IF ARCALL and IP ACKC
options together produce faster and more compact code. However, this combina­
tion is not recommended for Windows applications.

Object code created by Microsoft compilers can safely be linked with the IP ACKC
option. This option is unsafe only when used with assembly-language programs
that make assumptions about the relative order of code segments. For example, the
following assembly code attempts to calculate the distance between CSEGI and
CS EG2. This code produces incorrect results when used with IP ACKC because
IPACKC causes the two segments to share the same segment address. Therefore,
the procedure would always return zero.

CSEGI SEGMENT PUBLIC 'CODE'

CSEGI ENDS

CSEG2 SEGMENT PARA PUBLIC 'CODE'
ASSUME cs:CSEG2

; Return the length of CSEGI in AX

codesize PROC
mov
sub
mov
shl

codesize ENOP

CSEG2 ENDS

NEAR
ax, CSEG2
ax, CSEGI
cx, 4
ax, cl

Load para address of CSEGI
Load para address of CSEG2
Load count
Convert distance from paragraphs

to bytes

The /PACKD Option

Option
IPACKD[ATA] [:number]

The IP ACKD option turns on data-segment packing. The linker considers any seg­
ment definition with a class name that does not end in CODE as a data segment. Ad­
jacent data-segment definitions are combined into the same physical segment. The
linker stops adding segments to a group when it cannot add another segment with­
out exceeding number bytes. It then starts a new group. The default segment size

Linking Object Files with LINK 589

without IP ACKD (or when IP ACKD is specified without number) is 65,536 bytes
(64K).

The IP ACKD option produces slightly faster and more compact code. It affects
only programs with multiple data segments and is valid only for segmented exe­
cutable files. It might be necessary to use the IP ACKD option to get around the
limit of 254 physical data segments per executable file imposed by an operating
system. Try using IP ACKD if you get the following LINK error:

L1073 file-segment limit exceeded

This option may not be safe with other compilers that do not generate fixup re­
cords for all far data references.

The IPACKF Option

Option
IPACKF[UNCTIONS]

The IP ACKF option removes unreferenced "packaged functions." This behavior is
the default. However, if an environment variable (such as LINK or CL) includes
the INOPACKF option, you can use IP ACKF to override INOPACKF.

A packaged function is visible to the linker in the form of a COMDAT record.
Packaged functions are created when you use the /Gy option on the CL command
line (or, in PWB, when you choose Enable Function Level Linking in the Addi­
tional Global Options dialog box, which is available from the C or C++ Compiler
Options dialog boxes). Member functions in a C++ program are automatically
packaged.

If a packaged function is defined but not called, this option removes the function
definition from the executable file. IP ACKF is not recursive; LINK does not re­
move any external definitions brought in by the unused packaged function.

The /PAUSE Option

Option
IPAU[SE]

The IP AUSE option pauses the session before LINK writes the executable file or
DLL to disk. This option is supplied for compatibilty with machines that have two
floppy drives but no hard disk. It allows you to swap floppy disks before LINK
writes the executable file.

590 Environment and Tools

The /PM Option

The /0 Option

If you specify the IP A USE option, LINK displays the following message before it
creates the main output:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter is the current drive. LINK resumes processing when you press ENTER.

Do not remove a disk that contains either the map file or the temporary file. If
LINK creates a temporary file on the disk you plan to remove, end the LINK ses­
sion and rearrange your files so that the temporary file is on a disk that does not
need to be removed. For more information on how LINK determines where to put
the temporary file, see "LINK Temporary Files" on page 595.

Option
/PM [TYPE] : type

This option specifies the type of Windows application being generated. The /PM
option is equivalent to including a type specification in the NAME statement in a
module-definition file.

The type field can take one of the following values:

PM
The default. Windows application. The application uses the API provided by
Windows and must be executed in the Windows environment. This is equiv­
alent to NAME WINDOW API.

VIO
Character-mode application to run in a text window in the Windows session.
This is equivalent to NAME WINDOWCOMPAT.

NOVIO
Character-mode application that must run full screen in Windows. This is equiv­
alent to NAME NOTWINDOWCOMPAT.

Option
IQ[UICKLIBRARY]

The IQ option directs the linker to produce a "Quick library" instead of an execut­
able file. A Quick library is similar to a standard library because both contain
routines that can be called by a program. However, a standard library is linked

The /r Option

The /SEG Option

Linking Object Files with LINK 591

with a program at link time; in contrast, a Quick library is linked with a program at
run time.

When IQ is specified, the exefile field refers to a Quick library instead of an appli­
cation. The default extension for this field is then .QLB instead of .EXE.

Quick libraries can be used only with programs created with Microsoft Quick­
Basic or early versions of Microsoft QuickC. These programs have the special
code that loads a Quick library at run time.

Option
Ir

Prevents LINK from using extended memory under DOS. The Ir option must
appear first in the options field on the command line and cannot appear in a re­
sponse file or the LINK environment variable. LINK.EXE is extender-ready and
uses extended memory if it exists. This option forces LINK to use only conven­
tional memory. The option name is case sensitive.

For LINK to run in DOS-extended mode, sufficient extended memory must be
available. The memory must be provided by one of the following:

• A DOS Protected-Mode Interface (DPMI) server, such as that provided in a
DOS box in Windows enhanced mode

• A Yirtual Control Program Interface (YCPI) server, such as Microsoft's
EMM386.EXE

• An XMS driver, such as Microsoft's HIMEM.SYS

Option
ISE[GMENTS] [:number]

The ISEG option sets the maximum number of program segments. The default
without ISEG or number is 128. You can specify number as any value from 1 to
16,384 in decimal format or C-Ianguage notation. However, the number of seg­
ment definitions is constrained by available memory.

LINK must allocate some memory to keep track of information for each segment;
the larger the number you specify, the less free memory LINK has to run in. A
relatively low segment limit (such as the 128 default) reduces the chance that
LINK will run out of memory. For programs with fewer than 128 segments, you

592 Environment and Tools

can minimize LINK's memory requirements by setting number to reflect the
actual number of segments in the program. If a program has more than 128
segments, however, you must set a higher value.

If the number of segments allocated is too high for the amount of memory avail­
able while linking, LINK displays the error message:

L1054 requested segment limit too high

When this happens, try linking again after setting ISEG to a smaller number.

The /STACK Option

Option
IST[ACK]:number

The 1ST ACK option lets you change the stack size from its default value of 2048
bytes. The number is any positive even value in decimal or C-language notation
up to 64K-2. If an odd number is specified, LINK rounds up to the next even
value. Do not specify 1ST ACK for a DLL.

Programs that pass large arrays or structures by value or with deeply nested sub­
routines may need additional stack space. In contrast, if your program uses the
stack very little, you might be able to save space by decreasing the stack size. If a
program fails with a stack-overflow message, try increasing the size of the stack.

The /TINY Option

Note You can also use the EXEHDR utility to change the default stack size by
modifying the executable-file header. For more information on EXEHDR, see
Chapter 17.

Option
IT [INY]

The /TINY option produces a .COM file instead of an .EXE file. The default exten­
sion of the output file is .COM. When the ICO option is used with /TINY, debug
information is put in a separate file with the same base name as the .COM file and
with the .DBG extension.

Not every program can be linked in the .COM format. The following restrictions
apply:

The /W Option

The /? Option

Linking Obiect Files with LINK 593

• The program must consist of only one physical segment. You can declare more
than one segment in assembly-language programs; however, the segments must
be in the same group.

• The code must not use far references.

• Segment addresses cannot be used as immediate data for instructions. For ex­
ample, you cannot use the following instruction:

mav ax, CODESEG

• Windows programs cannot be converted to a .COM format.

Option
/w[ARNFIXUP]

The /W option issues the L4000 warning when LINK uses a displacement from
the beginning of a group in determining a fixup value. This option is provided
because early versions of the Windows linker (LINK4) performed fixups without
this displacement. This option is for linking segmented executable files.

Option
I?

The I? option displays a brief summary of LINK command-line syntax and options.

14.7 Setting Options with the LINK Environment Variable
You can use the LINK environment variable to set options that will be in effect
each time you link. (Microsoft compilers such as CL, FL, and ML also use the
options in the LINK environment variable.)

Setting the LINK Environment Variable
You set the LINK environment variable with the following operating-system
command:

SET LINK=options

594 Environment and Tools

LINK expects to find options listed in the variable exactly as you would type them
in fields on the command line, in response to a prompt, or in a response file. It
does not accept values for LINK's input fields; filenames in the LINK variable
cause an error.

Example

SET LINK=/NOI ISEG:256 leo
LINK TEST;
LINK INDO PROG;

In the preceding example, the commands are specified at the system prompt. The
fileTEST.OBJislinkedusingtheoptions INOI, ISEG:256,and leo. The file
PROG.OBJisthenlinkedwiththeoption INDO, in addition to INOI, ISEG:256,
and leo.

Behavior of the LINK Environment Variable
You can specify options in the LINK input fields and in the LINK environment
variable. LINK reads the options set in the LINK environment variable before it
reads options specified in LINK input fields. This priority has the following
effects:

• The option LINK considers to be first is the first one in the LINK environment
variable, if set. The INOLOGO option behaves differently depending on
whether or not it is first. However, the Ir option cannot be specified in the
LINK variable and must be specified first on the command line.

• An option specified multiple times with different values will get the last value
read by LINK. For example, if ISEG:512 is set in an input field, it overrides a
setting of ISEG:256 in the LINK variable.

• For some options, if an option appears in the LINK variable and a conflicting
option appears in an input field, the input-field option overrides the environ­
ment-variable option. For example, the input-field option INOPACKC over­
rides the environment-variable optionlPACKC.

Clearing the LINK Environment Variable
You must reset the LINK environment variable to prevent LINK from using its
options. To clear the LINK variable, use the operating-system command:

SET LINK=

Linking Object Files with LINK 595

To see the current setting of the LINK variable, type SET at the operating-system
prompt.

14.8 LINK Temporary Files
LINK uses available memory during the linking session. If LINK runs out of
memory, it creates a disk file to hold intermediate files. LINK deletes this file
when it finishes.

When the linker creates a temporary disk file, you see the following message:

Temporary fi 1 e temp file has been created.
Do not change diskette in drive, letter.

In the preceding message, temp file is the name of the temporary file, and letter is
the drive containing the temporary file. (The second line appears only for a floppy
drive.)

After this message appears, do not remove the disk from the drive specified by
letter until the link session ends. If the disk is removed, the operation of LINK is
unpredictable, and you might see the following message:

Unexpected end-of-file on scratch file

If this happens, run LINK again.

Location of the Temporary File
If the TMP environment variable defines a temporary directory, LINK creates tem­
porary files there. If the TMP environment variable is undefined or the temporary
directory doesn't exist, LINK creates temporary files in the current directory.

Name of the Temporary File
When running under DOS version 3.0 or later, LINK asks the operating system to
create a temporary file with a unique name in the temporary-file directory.

Under DOS versions earlier than 3.0, LINK creates a temporary file named
VM.TMP. Do not use this name for your files. LINK generates an error message if
it encounters an existing file with this name.

596 Environment and Tools

14.9 LINK Exit Codes
LINK returns an exit code (also called return code or error code) that you can use
to control the operation of batch files or makefiles.

Code Meaning

o No error.

2 Program error. Commands or files given as input to the linker produced the
error.

4 System error. The linker:

• Ran out of space on output files.

• Was unable to reopen the temporary file.

• Experienced an internal error.

• Was interrupted by the user.

Creating Overlaid DOS Programs

This chapter describes how to create a DOS program that uses overlays. An over­
laid program can run in conventional memory that would be insufficient for a pro­
gram that doesn't use overlays.

The tools for creating overlaid programs are LINK 5.30 and the Microsoft Over­
laid Virtual Environment (MOVE). MOVE is provided in the library MOVE.LIB,
which is a component of the combined libraries for medium and large models pro­
vided with Microsoft eversion 7.0 and later.

The MOVE method of creating overlays is a successor to the Microsoft Static
Overlay Manager supported by earlier versions of LINK. For a comparison of the
two methods and a discussion of the features still supported, see "Dynamic and
Static Overlays" on page 604.

MOVE provides ways to customize your overlaid program. These advanced fea­
tures are discussed in the MOVEAPLTXT file provided on disk.

15.1 Overview
LINK can create DOS programs with up to 2047 "overlays." Overlays are sections
of a program that are loaded into memory only as needed. With overlays, you can
run a DOS program that would otherwise be too large to fit into available memory.
Under DOS, available memory is the portion of conventional memory that is not
taken up by system or other programs. An overlaid program can fit into available
memory if the size of its root (the part of the program that always remains in mem­
ory) and the memory needed for the overlay area do not exceed the size of availa­
ble memory.

An overlaid program consists of one .EXE file. The file remains open during pro­
gram execution. MOVE reads this file when it needs to load an overlay. Overlays
are loaded on call; initially, only the root of the program is loaded into memory.

598 Environment and Tools

Overlays occupy a heap located in the remaining available memory that is not oc­
cupied by the root. More than one overlay can be in memory at a time. When the
program calls a function contained in an overlay that is not already in memory, the
overlay is copied into the overlay heap from the executable file. If the overlay
heap does not have enough room for the new overlay, an existing overlay is dis­
carded. MOVE uses a form of a least recently used (LRU) algorithm to determine
which overlay to discard.

If expanded or extended memory is available, MOVE can cache the discarded
overlays in this memory. Caching saves time when a discarded overlay is needed
again because copying an overlay from expanded or extended memory to conven­
tional memory takes less time than reading it in from the disk. If the cache is too
small to hold all discarded overlays, MOVE uses a form of an LRU algorithm to
decide which overlay to overwrite. If neither extended nor expanded memory is
available, MOVE must open the executable file and read in each overlay as it is
needed.

Overlaid programs execute more slowly than nonoverlaid programs because of the
time needed to swap overlays. You can optimize your program by grouping func­
tions that call each other into the same overlay or into overlays that are in memory
at the same time.

Only code segments can be put into overlays. Data segments must go into the root.
To swap data to disk or to expanded or extended memory, use virtual memory.
See "Using the Virtual Memory Manager" in Chapter 4, "Managing Memory in
C," in the Programming Techniques manual.

15.2 How to Create an Overlaid Program
To create a program that uses overlays, first decide how you want to organize your
code. All code not explicitly or implicitly assigned to an overlay is placed in the
root. You can use both compiler and linker features to specify the organization of
your code. MOVE uses a module-definition (.DEF) file to describe overlays.

LINK automatically creates an overlaid DOS program when you provide a
module-definition file in which a SEGMENTS or FUNCTIONS statement speci­
fies an overlay number. (LINK also creates an overlaid program when it detects
parentheses in the objects field on the command line; see "Dynamic and Static
Overlays" on page 604.)

The sections that follow describe overlay-related compiler features, module­
definition statements, and LINK options.

Creating Overlaid DOS Programs 599

Compiling for Overlays
You need to be aware of the following when you write and compile a C program
that will be overlaid:

Memory Models
An overlaid program must be in either a medium or large model. Only the medium
and large combined libraries in C 7.0 contain the MOVE library. Code references
in an overlaid program must be far.

Packaged Functions
An individual function can be assigned to an overlay independently from other
functions in the same segment only if it is a "packaged function." A packaged
function is visible to the linker in the form of a COMDAT record. To compile a
C function as a packaged function, use the /Gy option on the CL command line (or
in the Microsoft Programmer's WorkBench, choose Enable Function Level Link­
ing from the Additional Global Options dialog box, which is available from the C
or C++ Compiler Options dialog boxes). In a C++ program, member functions are
automatically packaged.

If an object file is compiled without /Gy, relocation information is not available to
the linker. A function that is not packaged cannot be assigned to an overlay; how­
ever, the segment in which it resides can be placed in an overlay.

Explicit Allocation
An explicitly allocated function is one that is assigned to a segment at compile
time. Its behavior is described in "Creating the Module-Definition File" on page
600. The following methods of explicit allocation are available:

• In C source code, the __ based keyword (or its predecessor, the alloc_ text
pragma) specifies the segment where an individual function is to reside.

• On the CL command line, the /NT option specifies the segment where all func­
tions in an object file are to reside.

Anonymous Allocation
A function not explicitly allocated to a segment is sometimes referred to as an
anonymous function. In programs compiled in medium and large models, anony­
mous functions are allocated to a segment that has a name in the form:

objfilc TEXT

600 Environment and Tools

where objfile is the name of the object file containing the functions.

MOVE library Routines
The MOVE library provides several routines for use in advanced techniques of
overlay programming. These routines are described in the MOVEAPI.TXT file
distributed with Microsoft C version 7.0. Some uses of these routines are dis­
cussed in "Memory Allocation" on page 602.

Creating the Module-Definition File
To specify the organization of your overlaid program, write a "module-definition
file." A module-definition (.DEF) file is a text file that describes a program's char­
acteristics. This information is used by LINK. Valid statements in a .DEF file for
an overlaid program are SEGMENTS, FUNCTIONS, and INCLUDE. LINK ig­
nores other module-definition statements when linking an overlaid DOS program.
Chapter 16 describes all the features of .DEF files.

Note The predecessor to MOVE, the Microsoft Static Overlay Manager, uses
parentheses in the command-line syntax to place entire object files into overlays.
This method of specifying overlays is still supported; however, conflicts may arise
if you also use a module-definition file. A .DEF file is the preferred method and
gives more control in assigning code to overlays.

The FUNCTIONS and SEGMENTS Statements
The FUNCTIONS and SEGMENTS statements place code in overlays. Use the
FUNCTIONS statement to assign an individual function to either an overlay or to
a segment. Use the SEGMENTS statement to assign a segment an overlay. The
SEGMENTS statement is described on page 619; the FUNCTIONS statement is
described on page 625.

Valid overlay numbers are from 1 through 65,535; to place code in the root, spec­
ify o. The space allocated for overlay information is determined by the highest
overlay number, whether or not every intermediate number is actually used. For
the most efficient use of space, it is recommended that you use a continuous
sequence of numbers beginning with 1.

You can use the FUNCTIONS and SEGMENTS statements to organize overlays
in the following ways:

• To place an entire segment into an overlay, use the SEGMENTS statement
specified with an overlay number. For example, the following statement places
the segment called myseg into the second overlay:

SEGMENTS myseg OVL:2

Creating Overlaid DOS Programs 601

• To place individual functions into an overlay, use the FUNCTIONS statement
specified with an overlay number. The functions must be compiled as packaged
functions (see "Compiling for Overlays" on page 599). The following statement
places three functions into the second overlay:

FUNCTIONS:2 myfuncl myfunc2 myfunc3

If the function is explicitly allocated, it cannot be assigned to a different overlay
from the segment that contains the function. Explicit allocation is described in
"Compiling for Overlays" on page 599.

• To place individual functions into a segment and then place the segment into an
overlay, use the FUNCTIONS statement specified with a segment name and
the SEGMENTS statement specified with the segment name and an overlay
number. The functions must be compiled as packaged functions. An explicitly
allocated function cannot be assigned to a segment different from the one to
which it was allocated. The following statements assign myseg to the second
overlay and place three functions into myseg:

SEGMENTS myseg OVL:2
FUNCTIONS:myseg myfuncl myfunc2 myfunc3

• To assign an explicitly allocated function to an overlay, use the FUNCTIONS
statement specified with an overlay number, and do not assign its segment or
any other functions in that segment to an overlay. The FUNCTIONS state­
ment, in this case, implicitly assigns the entire segment to the overlay. For ex­
ample, if myfunc is explicitly allocated to the segment myseg, and myseg and
its other functions are not assigned to an overlay, the following statement impli­
citly places all code in myseg into the second overlay:

FUNCTIONS:2 myfunc

The INCLUDE Statement
The INCLUDE statement inserts a specified text file at the place where it is spec­
ified in a .DEF file. The INCLUDE statement behaves the same way in .DEF files
for all program types. This statement is described on page 627. For example, the
following statement tells LINK to read SEGMENTS.TXT before it processes the
rest of the .DEF file:

INCLUDE segments.txt

Linking the Overlaid Program
LINK automatically creates an overlaid program when overlays are specified; no
special option is required. However, you can use the IDYNAMIC and IINFO op­
tions to make your program more efficient.

602 Environment and Tools

The /DYNAMIC option sets the limit on the number of interoverlay calls; the
default is 256. LINK creates table space in multiples of this limit. You can save
space in your program by setting a lower limit. Use the !INFO option to get the
actual number of calls generated. Raise the limit if LINK issues the error
too many interoverlay calls.

The /DYNAMIC and IINFO options are described in Chapter 14.

Note The predecessor to MOVE, the Microsoft Static Overlay Manager, is still
available. To link using static overlays, specify the IOLDOVERLA Y option. For
more information, see "Using the Static Overlay Manager" on page 605.

15.3 How MOVE Works
This section describes how memory management is handled under MOVE and the
restrictions you need to be aware of when creating an overlaid program.

Memory Allocation
MOVE allocates a heap in conventional memory for overlays in use. MOVE can
also allocate a cache in extended and expanded memory. The following sections
describe how allocations are performed.

The Overlay Heap
The overlay heap is allocated in available conventional memory at run time. The
minimum size of the heap allocated by MOVE is the size of the largest overlay,
and the maximum is the sum of the sizes of the three largest overlays. You can
change these defaults by rewriting the _ moveinit routine so that different values
are passed to the _movesetheap routine. These and other MOVE routines are de­
scribed in the MOVEAPLTXT file on your distribution disks. The _moveinit
routine is provided in the MOVEINIT.C file, and all MOVE routines are defined
in the MOVEAPLH include file.

The Overlay Cache
The cache for discarded overlays is allocated at run time in extended and ex­
panded memory. The amount of memory available in each affects whether the
cache is allocated in either extended memory or expanded memory or both. The
_moveinit routine calls the _movesetcache routine to set how much of each kind
of memory is used. You can rewrite _moveinit to change the values that are
passed to _movesetcache.

Creating Overlaid DOS Programs 603

If your program spawns another program that requires expanded or extended
memory, you can use the _ movepause and _ moveresume routines to release
the cache memory temporarily and subsequently restore it.

Limits and Requirements
The following sections describe various MOVE requirements and restrictions.

Compatibility
Overlaid programs created by MOVE require DOS version 3.0 or later.

MOVE can make use of expanded memory and extended memory. Expanded
memory must conform to the LotuslIntellMicrosoft (LIM) EMS version 4.0 or
later. Extended memory must conform to the XMS provided in a memory
manager such as HIMEM.SYS.

The Microsoft CodeView debugger version 4.0 is compatible with overlaid pro­
grams created with MOVE. CodeView version 4.0 does not support the Static
Overlay Manager.

Space Restrictions
An overlaid program takes up more space on disk than the same program created
without overlays. Each overlay contains an executable-file header with the fixups
for that overlay; an overlay header occupies a multiple of 512 bytes. The root con­
tains the overlay manager and a segment that holds information on each function
in each overlay.

The amount of conventional memory the program requires is the sum of:

• The size of the root. The root includes the overlay manager (about 5K), the seg­
ment that contains information on overlays, and all functions and segments that
are not placed into overlays. To determine this size, run the EXEHDR utility on
the overlaid program and read the value in the Memory needed: field.

• The size of the overlay heap. The minimum heap allocated by MOVE is equal
to the size of the largest overlay.

The Overlaid Program
You can use overlays only in programs with multiple code segments because sepa­
rate segment names are needed for overlays. Far call and return instructions are re­
quired between overlays.

604 Environment and Tools

Up to 2047 overlays can be specified. The program can define up to 16,375 logical
segments (segments with different names).

The entry point to the program must be in the root.

Only code segments are overlaid, not data. Data segments become part of the root
and are always in memory. Code linked in from the run-time libraries is placed in
the root.

Note An advanced technique can be used to place data into an overlay. You can
create a source file that declares a code segment containing data and assign this
segment to an overlay. In a Microsoft C program, you can do this by using
__ based C_segname("_ CODE")); you can also use assembly language. Because an
overlay may be discarded and changes in data may be lost, this method is useful
only for large data items that do not change and are not frequently accessed.

An Individual Overlay
An overlay size is limited to 64K. The optimal size is around 4K. An overlay can
contain one or more segments.

Programming Considerations
You cannot jump between overlays using the setjmp and longjmp C library func­
tions. You can use long jumps from an overlay to the root. It is possible but not
recommended to use long jumps within an overlay.

You cannot use the same public name in different overlays.

The interrupt number used by MOVE is 63 (3F hexadecimal). You can use
LINK's IOV option to change the interrupt number.

Do not place MOVE.LIB into an overlay.

15.4 Dynamic and Static Overlays
MOVE, the Microsoft Overlaid Virtual Environment, differs from its predecessor,
the Microsoft Static Overlay Manager, in several ways. This section discusses
some of these differences.

Specifying Overlays on the Command line
The syntax for the Static Overlay Manager is supported by MOVE, with caution.
In this syntax, static overlays are specified in parentheses on the command line.

Creating Overlaid DOS Programs 605

For details about this syntax, consult the documentation for an earlier version of
LINK. This syntax may not be supported by future versions of MOVE and LINK.

It is recommended that you replace the parentheses specification with a module­
definition file that specifies the desired organization. If both parentheses and a
.DEF file are used, and a conflict occurs, the .DEF file statements take precedence.
Overlays specified with parentheses are assigned overlay numbers sequentially
beginning with 1.

Using the Static Overlay Manager
You can still link with the Static Overlay Manager instead of MOVE. Specify
parentheses in the command-line syntax, and then link using the /OLDOVERLA Y
option. For information on /OLDOVERLA Y, see page 586. This option may not
be supported by future versions of LINK.

Advantages of MOVE
A program created with MOVE can have multiple overlays in memory at one
time. The Static Overlay Manager permits only one overlay in memory at a time.

MOVE permits interoverlay calls through pointers to functions. Overlays created
with the Static Overlay Manager cannot call each other in this way.

MOVE can cache discarded overlays in expanded and extended memory; this pro­
vides quick access if an overlay is called again. The Static Overlay Manager has to
reopen the executable file each time an overlay is called.

The maximum number of overlays allowed by MOVE is 2047. The Static Overlay
Manager allows only 255 overlays.

Creating Module-Definition Files

This chapter describes the contents of a module-definition (.DEF) file. It begins
with a brief overview of the purpose of .DEF files. The rest of the chapter dis­
cusses each statement in a module-definition file and describes syntax rules, argu­
ment fields, attributes, and keywords for each statement.

The statements in this chapter are supported by the following utilities:

• Microsoft Segmented Executable Linker (LINK) version 5.30

• Microsoft Import Library Manager (IMPLIB) version 1.30

• Microsoft EXE File Header Utility (EXEHDR) version 2.02

16.1 New Features

Overlays

DOS Programs

The latest version of the linker and other utilities support the statements and key­
words described in this chapter. The following sections introduce features that are
new with these versions.

A new overlay manager, the Microsoft Overlay Virtual Environment (MOVE), re­
places the Microsoft Static Overlay Manager. For information on creating overlaid
DOS programs using MOVE, see Chapter 15.

You can now use a module-definition file when you link a DOS application. LINK
creates a DOS executable file instead of a segmented executable file if the .DEF
file contains any of the following:

• An EXETYPE statement that specifies the type DOS

• A SEGMENTS statement that specifies an overlay number

608 Environment and Tools

Statements

• A FUNCTIONS statement that specifies an overlay number

Other conditions also determine the type of executable file that LINK creates;
for details, see "LINK Output Files" on page 563. The only valid statements in a
.DEF file for a DOS program are EXETYPE, SEGMENTS, FUNCTIONS, and
INCLUDE. All other statements are ignored.

New statements and changes to existing statements described in this chapter are:

• The NAME statement's default apptype is now WINDOW API (formerly
NOTWINDOWCOMPAT). (See page 611.)

• The EXETYPE statement's default is now WINDOWS. (See page 615.)

• EXETYPE WINDOWS now assumes PROTMODE by default. (See page
616.)

• The EXETYPE statement has a new type argument, DOS. (See page 615.)

• The new SECTIONS and OBJECTS keywords are synonyms for the
SEGMENTS statement. (See page 619.)

• The SEGMENTS statement accepts a new argument, OVL:number. This argu­
ment specifies the overlay in which the segment belongs in an overlaid DOS
program. (See page 619.)

• The new FUNCTIONS statement specifies the order in which functions appear
in the executable file. It can also assign functions to a specific segment. In an
overlaid DOS program, FUNCTIONS can specify the overlay in which func­
tions belong. (See page 625.)

• The new INCLUDE statement inserts module statements from a separate text
file. (See page 627.)

16.2 Overview
A module-defmition (.DEF) file is a text file that describes the name, attributes, ex­
ports, imports, system requirements, and other characteristics of an application or
dynamic-link library (DLL). This file is required for DLLs and overlaid DOS pro­
grams. It is optional (but desirable) for other segmented executable files, such as
Windows applications, and is usually not necessary for other DOS programs. For
information on using .DEF files for overlays, see Chapter 15.

You use module-defmition files in the following two situations:

• You can specify a module-definition file in LINK's deffile field. The module­
definition file gives the LINK utility the information that is necessary for link-

Creating Module-Definition Files 609

ing the program. For specific information on using a .DEF file when linking,
see page 570.

• You can use the Microsoft Import Library Manager utility (IMPLIB) to create
an import library from a module-definition file for a DLL (or from the DLL
created by a module-definition file). You then specify the import library in
LINK's libraries field when linking an application that uses functions and data
in the DLL. For information on IMPLIB, see page 745.

Note The term "function" as used in this chapter refers to any routine for the pro­
gramming language being used: function, procedure, or subroutine.

16.3 Module Statements
A module-definition file contains one or more "module statements." Each module
statement defines an attribute of the executable file, such as its name, the attributes
of program segments, and the number and names of exported and imported func­
tions and data. Table 16.1 summarizes the purpose ofthe module statements and
shows the order in which they are discussed in this chapter.

Table 16.1 Module Statements

Statement

NAME

LffiRARY
DESCRIPTION

STUB

APPLOADER

EXETVPE
PROTMODE
REALMODE

STACKSIZE

HEAPSIZE
CODE

DATA

SEGMENTS

OLD
EXPORTS

IMPORTS
FUNCTIONS

INCLUDE

Purpose

Names the application (no library created)

Names the DLL (no application created)

Embeds text in the application or DLL

Adds a DOS executable file to the beginning of the file

Replaces the default Windows loader with a custom loader

Identifies the target operating system

Specifies a protected-mode Windows program

Specifies a real-mode Windows program

Sets stack size in bytes

Sets local heap size in bytes

Sets default attributes for all code segments

Sets default attributes for all data segments

Sets attributes for specific segments

Preserves ordinals from a previous DLL

Defines exported functions

Defines imported functions

Specifies function order and location

Inserts a file containing module statements

610 Environment and Tools

Syntax Rules
The syntax rules in this section apply to all statements in a module-definition file.
Other rules specific to each statement are described in the sections that follow.

• Statement and attribute keywords are not case sensitive. User-specified identifi­
ers are case insensitive by default; however, they can be made case sensitive by
using LINK's (or IMPLIB's)!NO! option.

• Use one or more spaces, tabs, or newline characters to separate a statement key­
word from its arguments and to separate statements from each other. A colon
(:) or equal sign (=) that designates an argument is surrounded by zero or more
spaces, tabs, or newline characters.

• A NAME or LIBRARY statement, if used, must precede all other statements.

• Most statements appear at most once in a file and accept one specification of
parameters and attributes. The specification follows the statement keyword on
the same or subsequent line(s). If the statement is repeated with a different
specification later in the file, the later statement overrides the earlier one.

• The INCLUDE statement can appear more than once in the file. Each state­
ment takes one filename specification.

• The SEGMENTS, EXPORTS, IMPORTS, and FUNCTIONS statements can
appear more than once in the file. Each statement can take multiple specifica­
tions, which must be separated by one or more spaces, tabs, or newline charac­
ters. The statement keyword must appear once before the first specification and
can be repeated before each additional specification.

• Comments in the file are designated by a semicolon (;) at the beginning of each
comment line. A comment cannot share a line with part or all of a statement,
but it can appear between lines of a multiline statement.

• Numeric arguments can be specified in decimal or in C-Ianguage notation.

• If a string argument matches a reserved word it must be enclosed in double quo­
tation marks (").

Example
The following module-definition file gives a description for a DLL. This sample
file includes one comment and five statements.

; Sample module-definition file
LIBRARY FIRSTLIB WINDDWAPI
EXETYPE WINDOWS 3.0
CODE PRELOAD MOVABLE DISCARDABLE
DATA PRELOAD SINGLE
HEAPSIZE 1024

Reserved Words

Creating Module-Definition Files 611

The following words are reserved by the linker for use in module-definition files.
These names can be used as arguments in module-definition statements only if the
name is enclosed in double quotation marks (If).

ALIAS INITGLOBAL OVERLAY
APPLOADER INITINSTANCE OVL
BASE INVALID PERMANENT
CLASS IOPL PHYSICAL
CODE LIBRARY PRELOAD
CONFORMING LOADONCALL PRIVATELIB
CONSTANT LONGNAMES PROTMODE
CONTIGUOUS MACINTOSH PURE
DATA MAXVAL READONLY
DESCRIPTION MIXED1632 READWRITE
DEV386 MOVABLE REALMODE
DEVICE MOVEABLE RESIDENT
DISCARDABLE MULTIPLE RESIDENTNAME
DOS NAME SECTIONS
DYNAMIC NEWFILES SEGMENTS
EXECUTE-ONLY NODATA SHARED
EXECUTEONLY NOEXPANDDOWN SINGLE
EXECUTE READ NOIOPL STACKSIZE
EXETYPE NONAME STUB
EXPANDDOWN NONCONFORMING SUBSYSTEM
EXPORTS NONDISCARDABLE SWAPPABLE
FIXED NONE TERMINSTANCE
FUNCTIONS NONPERMANENT UNKNOWN
HEAPSIZE NONSHARED VERSION
HUGE NOTWINDOWCOMPAT VIRTUAL
IMPORTS NULL WINDOWAPI
IMPURE OBJECTS WINDOWCOMPAT
INCLUDE OLD WINDOWS

16.4 The NAME Statement
The NAME statement identifies the executable file as an application (rather
than a DLL). It can also specify the name and application type. The NAME or
LffiRARY statement must precede all other statements. If NAME is specified,
the LIBRARY statement cannot be used. If neither is used, the default is NAME,
and LINK creates an application.

Syntax
NAME [appname] [apptype] [NEWFILES]

612 Environment and Tools

Remarks
The fields can appear in any order.

If appname is specified, it becomes the name of the application as it is known by
the operating system. This name can be any valid filename. If appname contains a
space (allowed under some installable file systems), begins with a nonalphabetic
character, or is a reserved word, enclose appname in double quotation marks. The
name cannot exceed 255 characters (not including the surrounding quotation
marks). If appname is not specified, the base name of the executable file becomes
the name of the application.

If apptype is specified, it defines the type of application. This information is kept
in the executable-file header. The apptype field can take one of the following
values:

WINDOWAPI
The default. Creates a Windows application. The application uses the API pro­
vided by Windows and must be executed in the Windows environment. This is
equivalent to the LINK option IPM:PM.

WINDOWCOMPAT
Creates a character-mode application to run in a text window in the Windows
session. This is equivalent to the LINK option IPM:VIO.

NOTWINDOWCOMPAT
Creates a character-mode application that must run full screen and cannot run in
a text window in Windows. This is equivalent to the LINK option IPM:NOVIO.

The NEWFILES keyword sets a bit in the file header to notify the loader that the
application may be using an installable file system. The synonym LONGNAMES
is supported for compatibility.

Example
The following example assigns the name ca 1 enda r to an application that can run
in a text window in Windows:

NAME calendar WINDOWCOMPAT

16.5 The LIBRARY Statement
The LIBRARY statement identifies the executable file as a DLL. It can also spec­
ify the .DLL filename. The LIBRARY or NAME statement must precede all
other statements. If LIBRARY is specified, the NAME statement cannot be used.
If neither is used, the default is NAME.

Creating Module-Definition Files 613

Syntax
LIBRARY [libraryname] [PRIVATELIB]

Remarks
The fields can appear in any order.

If libraryname is specified, it becomes the base name of the .DLL file. This name
can be any valid filename. LINK assumes a .DLL extension whether or not an ex­
tension is specified. If libraryname contains a space (allowed under some install­
able file systems), begins with a nonalphabetic character, or is a reserved word,
enclose it in double quotation marks (tI). The name cannot exceed 255 characters.

The libraryname filename overrides a name specified in LINK's exefile field.

Specify PRIV A TELm to tell Windows that only one application may use the
DLL.

Example
The following example assigns the name ca 1 end a r to the DLL being defined.

LIBRARY calendar

16.6 The DESCRIPTION Statement
The DESCRIPTION statement inserts specified text into the application or DLL.
This statement is useful for embedding source-control or copyright information
into a file.

Syntax
DESCRIPTION 'text'

Remarks
The text is a string of up to 255 characters enclosed in single or double quotation
marks (' or tI). To include a literal quotation mark in the text, either specify two
consecutive quotation marks of the same type or enclose the text with the alternate
type of quotation mark. If a DESCRIPTION statement is not specified, the de­
fault text is the name of the main output file as specified in LINK's exefile field.

You can view this string by using the EXEHDR utility. The string appears in the
Descri pti on: field. For more information, see Chapter 17.

The DESCRIPTION statement is different from a comment. A comment is a line
that begins with a semicolon (;). LINK does not place comments into the program.

614 Environment and Tools

Example
The following example inserts the text Tester's Version, Test "A", which con­
tains a literal single quotation mark and a pair of literal double quotation marks,
into the application or DLL:

DESCRIPTION "Tester's Version, Test A

16.7 The STUB Statement
The STUB statement adds a DOS executable file to the beginning of a segmented
executable file. The stub is invoked whenever the file is executed under DOS.
Usually, the stub displays a message and terminates execution. However, the
program can be of any size and may perform other actions. By default, LINK
adds a standard stub for this purpose; the default message is different if the
EXETYPE WINDOWS statement is used.

Use the STUB statement when creating a dual-mode program.

Syntax
STUB { 'filename' I NONE}

Remarks
The filename specifies the DOS executable file to be added. LINK searches for
filename first in the current directory and then in directories specified with the
PATH environment variable. If you specify a path with filename, LINK looks only
in that location. The filename must be enclosed in single or double quotation
marks (' or ").

The alternate specification NONE prevents LINK from adding a default stub. This
saves space in the application or DLL. However, the resulting file will hang the
system if loaded under DOS.

Example
The following example inserts the DOS executable file STOPIT.EXE at the begin­
ning of the application or DLL:

STUB 'STOPIT.EXE'

The file STOPIT.EXE is executed when you attempt to run the application or DLL
under DOS.

Creating Module-Definition Files 615

16.8 The APPLOADER Statement
The APPLOADER statement tells the linker to replace the default Windows
loader with a custom loader. Use APPLOADER when you want your Windows
program to be loaded by a different loader from the one Windows calls automat­
ically at load time. This statement applies only to Windows programs.

Syntax
APPLOADER [']loadername[']

Remarks
The loadername is an identifier for an externally defined loader. The name is op­
tionally enclosed in single or double quotation marks (' or "). The identifier is an
external reference that must be resolved at link time in an object file or static
library. It is not case sensitive unless the /NO! option is used with the linker.

When APPLOADER appears in a module-definition file, LINK sets a bit in the
header of the executable file to tell Windows that a custom loader is present. At
load time, Windows loads only the first segment of the program and transfers con­
trol to that segment.

At link time, LINK creates a new logical segment called LOADElLloadername
and makes it the first physical segment of the program. LINK places the
loadername function in this segment. Nothing else is contained in
LOADElLloadername; the IPACKC option does not affect this segment.

Example
The following statement replaces the default loader with a loader called
__ MSLANGLOAO, which is defined in the Microsoft FORTRAN run-time libraries:

APPLOAOER MSLANGLOAD

Windows programs that use huge arrays will fail unless loaded by the custom
loader provided in the default FORTRAN libraries. This statement appears in the
default .DEF file used for FORTRAN QuickWin programs.

16.9 The EXETYPE Statement
The EXETYPE statement specifies under which operating system the program is
to run. This statement provides an additional degree of protection against the pro­
gram's being run under an incorrect operating system.

Syntax
EXETYPE [descriptor]

616 Environment and Tools

Remarks
The descriptor sets the target operating system. EXETYPE sets bits in the header
which can be checked by operating systems. The descriptor field can accept one
of the following values:

WINDOWS [version]
The default. Creates a Windows program. If a STUB statement is not specified,
WINDOWS changes the default message to one that is the same as is provided
in WINSTUB.EXE. The version is optional; for a description, see the next sec­
tion, "Windows Programming."

DOS
Creates a nonsegmented executable file. This statement is not required for an
overlaid DOS program; LINK assumes EXETYPE DOS. For information on
creating an overlaid program, see Chapter 15. For information on how LINK
determines the type of executable file, see "LINK Output Files" on page 563.

UNKNOWN
Creates a segmented executable file but sets no bits in the header.

Windows Programming
The WINDOWS descriptor takes an optional version number. Windows reads this
number to determine the minimum version of Windows needed to load the applica­
tion or DLL. For example, if 3.0 is specified, the resulting application or DLL can
run under Windows versions 3.0 and higher. If version is not specified, the default
is 3.0. The syntax for version is:

number[.[number]]

where each number is a decimal integer.

In Windows programming, use the EXETYPE statement with a REALMODE
statement to specify an application or DLL that runs under either real-mode or
protected-mode Windows.

Example
The following statement combination defines an application that runs under
Windows 3.0 in any mode:

EXETYPE WINDOWS 3.0
REALMODE

16.10 The PROTMODE Statement
The PROTMODE statement specifies that the application or DLL runs only
under Windows in protected mode (either standard mode or 386 enhanced mode).
PROTMODE lets LINK optimize to reduce both the size of the file on disk and

Creating Module-Definition Files 617

its loading time. PROTMODE is assumed by EXETYPE WINDOWS. To de­
fine a program that runs under any Windows mode, specify REALMODE.

Syntax
PROTMODE

16.11 The REALMODE Statement
The REALM ODE statement specifies that the application runs under Windows
either in real mode or protected mode. By default, EXETYPE WINDOWS as­
sumes PROTMODE.

Syntax
REALMODE

16.12 The STACKSIZE Statement
The STACKSIZE statement specifies the size of the stack in bytes. It performs
the same function as LINK's /STACK option. If both of these are specified, the
STACKSIZE statement overrides the /STACK option. Do not specify the
STACKSIZE statement for a DLL.

Syntax
STACKSIZE number

Remarks
The number must be a positive integer, in decimal or C-Ianguage notation, up to
64K-2. If an odd number is specified, LINK rounds up to the next even value.

Example
The following example allocates 4096 bytes of stack space:

STACKSIZE 4096

16.13 The HEAPSIZE Statement
The HEAPSIZE statement defines the size of the application or DLL's local heap
in bytes. This value affects the size of the default data segment (DGROUP). The
default without HEAPSIZE is that no local heap is created.

618 Environment and Tools

Syntax
HEAPSIZE {bytes I MAXVAL}

Remarks
The bytes field accepts a positive integer in decimal or C-Ianguage notation. The
limit is MAXV AL; if bytes exceeds MAXV AL, the excess is not allocated.

MAXV AL is a keyword that sets the heap size to 64K minus the size of
DGROUP.

Example
The following example sets the local heap to 4000 bytes:

HEAPsrZE 4000

16.14 The CODE Statement
The CODE statement defines the default attributes for all code segments within
the application or DLL. The SEGMENTS statement can override this default for
one or more specific segments.

Syntax
CODE [attributes]

Remarks
The attributes field accepts one or more optional attributes: discard, executeonly,
load, movable, and shared. Each can appear once, in any order. These attributes
are described in "CODE, DATA, and SEGMENTS Attributes" on page 620.

Example
The following example sets defaults for the program's code segments:

CODE PRELOAD MOVABLE DrSCARDABLE

16.15 The DATA Statement
The DATA statement defines the default attributes for all data segments within the
application or DLL. The SEGMENTS statement can override this default for one
or more specific segments.

Syntax
DATA [attribute ...]

Creating Module-Definition Files 619

Remarks
The attributes field accepts one or more optional attributes: instance, load,
movable, readonly, and shared. Each can appear once, in any order. These
attributes are described in "CODE, DATA, and SEGMENTS Attributes" on
page 620. By default, all data segments have the following attributes:

SHARED LoADoNCALL READWRITE FIXED

Example
The following example defines the application's data segment so that it cannot be
shared by multiple copies of the program and it cannot be written to. By default,
the data segment can be read and written to, and a new DGROUP is created for
each instance of the application.

DATA NON SHARED READoNLY

16.16 The SEGMENTS Statement
The SEGMENTS statement defines the attributes of one or more individual seg­
ments in the application or DLL. The attributes specified for a specific segment
override the defaults set in the CODE and DATA statements (except as noted).
The total number of segment definitions cannot exceed the number set using
LINK's /SEG option. (The default without /SEG is 128.)

The SEGMENTS keyword marks the beginning of a section of segment defini­
tions. Multiple definitions must be separated by one or more spaces, tabs, or new­
line characters. The SEGMENTS statement must appear once before the first
definition (on the same or preceding line) and can be repeated before each addi­
tional definition. SEGMENTS statements can appear more than once in the file.

Syntax
SEGMENTS
[']segmentname['] [CLASS 'classname'] [attributes]

or

[']segmentname['] [CLASS 'classname'] [OVL:overlaynumber]

Remarks
Each segment definition begins with segmentname and is optionally enclosed in
single or double quotation marks (' or "). The quotation marks are required if
segmentname is a reserved word.

620 Environment and Tools

The CLASS keyword optionally specifies the class of the segment. Single or
double quotation marks (' or ") are required around classname. If you do not
use the CLASS argument, the linker assumes that the class is CODE.

The attributes field applies to segmented executable files. This field accepts one
or more optional attributes: discard, executeonly, load, movable, readonly, and
shared. Each can appear once, in any order. These attributes are described in the
next section, "CODE, DATA, and SEGMENTS Attributes." LINK ignores
attributes if OVL is specified.

The OVL keyword tells LINK to create a DOS program that contains overlays.
If OVL is used, LINK assumes EXETYPE DOS. An alternate keyword is
OVERLAY. The overlaynumber specifies the overlay in which the segment is to
be placed. The value 0 represents the root, and positive decimal numbers through
65,535 represent overlays. By default, a segment is assigned to the root. For more
information on overlays, see Chapter 15, "Creating Overlaid DOS Programs."

Example
The following example specifies segments named csegl, cseg2, and dseg. The
first segment is assigned the class mycode; the second is assigned CODE by de­
fault. Each segment is given different attributes.

SEGMENTS
csegl CLASS 'mycode'
cseg2 EXECUTEONLY PRELOAD
dseg CLASS 'data' LOADONCALL READONLY

16.17 CODE, DATA, and SEGMENTS Attributes
The following attribute fields apply to the CODE, DATA, and SEGMENTS state­
ments described previously. Refer to "Remarks" in each of the previous sections
for the attribute fields used by each statement. Most fields are used by all three
statements; others are used as noted. Each field can appear once, in any order.

Listed with each attribute field are keywords that are legal values for the field.
The fields and keywords are described, and the defaults are noted. If two segments
with different attributes are combined into the same group, LINK makes decisions
to resolve any conflicts and assumes a set of attributes.

discard
{DISCARDABLE I NONDISCARDABLE}

U sed for CODE and SEGMENTS statements only. Determines whether a
code segment can be discarded from memory to fill a different memory request.
If the discarded segment is accessed later, it is reloaded from disk. The default
is NONDISCARDABLE.

execute only
{EXECUTEONLYIEXECUTEREAD}

Creating Module-Definition Files 621

Used for CODE and SEGMENTS statements only. Determines whether a
code segment can be read as well as executed.

EXECUTEONLY specifies that the segment can only be executed. The key­
word EXECUTE-ONLY is an alternate spelling.

EXECUTEREAD (the default) specifies that the segment is both executable
and readable. This attribute is necessary for a program to run under the
Microsoft CodeView debugger.

instance
{NONE I SINGLE I MULTIPLE}

Used for the DATA statement only. Affects the sharing attributes of the default
data segment (DGROUP). This attribute interacts with the shared attribute.

NONE tells the loader not to allocate DGROUP. Use NONE when a DLL has
no data and uses an application's DGROUP.

SINGLE (the default for DLLs) specifies that one DGROUP is shared by all
instances of the DLL or application.

MULTIPLE (the default for applications) specifies that DGROUP is copied
for each instance of the DLL or application.

load
{PRELOAD I LOADONCALL}

Used for CODE, DATA, and SEGMENTS statements. Determines when a
segment is loaded.

PRELOAD specifies that the segment is loaded when the program starts.

LOADONCALL (the default) specifies that the segment is not loaded until
accessed and only if not already loaded.

movable
{MOVABLE I FIXED}

Used for CODE, DATA, and SEGMENTS statements. Determines whether a
segment can be moved in memory. This attribute is valid only for a Windows
DLL or a real-mode Windows application. FIXED is the default. An alternative
spelling for MOVABLE is MOVEABLE.

readonly
{READONLY I READWRITE}

Used for DATA and SEGMENTS statements only. Determines access rights
to a data segment.

READONL Y specifies that the segment can only be read.

READWRITE (the default) specifies that the segment is both readable and
writeable.

622 Environment and Tools

shared
{SHARED I NONSHARED}

Used for real-mode Windows only. Determines whether all instances of the pro­
gram can share EXECUTEREAD and READ WRITE segments.

SHARED (the default for D LLs) specifies that one copy of the segment is
loaded and shared among all processes that access the application or DLL. This
attribute saves memory and can be used for code that is not self-modifying. An
alternate keyword is PURE.

NONSHARED (the default for applications) specifies that the segment must be
loaded separately for each process. An alternate keyword is IMPURE.

This attribute and the instance attribute interact for data segments. The instance
attribute has the keywords NONE, SINGLE, and MULTIPLE. If OAT A

S1 NGLE is specified, LINK assumes SHARED; if DATA MULTIPLE is specified,
LINK assumes NONSHARED. Similarly, DATA SHARED forces SINGLE, and
DATA NONSHARED forces MULTIPLE.

16.18 The OLD Statement
The OLD statement directs the linker to search another DLL for export ordinals.
This statement preserves ordinal values used from older versions of a DLL. For
more information on ordinals, see the following sections on the EXPORTS and
IMPORTS statements.

Exported names in the current DLL that match exported names in the old DLL are
assigned ordinal values from the earlier DLL unless

• The name in the old module has no ordinal value assigned, or

• An ordinal value is explicitly assigned in the current DLL.

Only one DLL can be specified; ordinals can be preserved from only one DLL. If
an export in the DLL was specified with the NONAME attribute, the exported
name is not available and its ordinal cannot be preserved. The OLD statement has
no effect on applications.

Syntax
OLD 'filename'

Remarks
Thefilename specifies the DLL to be searched. It must be enclosed in single or
double quotation marks (' or It).

Creating Module-Definition Files 623

16.1 9 The EXPORTS Statement
The EXPORTS statement defines the names and attributes of the functions and
data made available to other applications and DLLs. It also defines the names and
attributes of the functions that run with I/O privilege. By default, functions and
data are hidden from other programs at run time. A definition is required for each
function or data item being exported.

The EXPORTS keyword marks the beginning of a section of export definitions.
Multiple definitions must be separated by one or more spaces, tabs, or newline
characters. The EXPORTS keyword must appear once before the first definition
(on the same or preceding line) and can be repeated before each additional defini­
tion. EXPORTS statements can appear more than once in the file.

Some languages offer a way to export without using an EXPORTS statement. For
example, in C the __ export keyword makes a function available from a DLL.

Syntax
EXPORTS
entryname[=internalname] [@ord[nametable]] [NODATA]

Remarks
The entryname defines the function or data-item name as it is known to other pro­
grams. If the function or data item is in a C++ module, the entryname must be
specified as a decorated name. For specific information on decorated names, see
Appendix B.

The optional internalname defines the actual name of the exported function or data
item as it appears within the exporting program; by default, this name is the same
as entryname.

The optional ord field defines a function's ordinal position within the module­
definition table as an integer from 1 to 65,535. If ord is specified, the function can
be called by either entryname or ord. The use of ord is faster and can save space.

The name table is one of two optional keywords that determine what happens to
entryname. By default, with or without ord, the entryname is placed in the nonresi­
dent names table. If the ord number is followed by RESIDENTNAME, the name
is placed in the resident names table. If NONAME is specified after ord, the
entryname is discarded from the DLL being created, and the item is exported only
by ordinal.

The optional keyword NODA TA specifies that there is no static data in the
function.

624 Environment and Tools

Example
The following EXPORTS statement defines the three exported functions
Samp 1 eRead, St ri ng I n, and Cha rTest. The first two functions can be called either
by their exported names or by an ordinal number. In the application or DLL where
they are defined, these functions are named read2bi nand strl, respectively.

EXPORTS
SampleRead read2bin @8
Stringln strl @4 RESIDENTNAME
CharTest

16.20 The IMPORTS Statement
The IMPORTS statement defines the names and locations of functions and data
items to be imported (usually from a DLL) for use in the application or DLL. A
definition is required for each function or data item being imported. This statement
is an alternative to resolving references through an import library created by the
IMPLIB utility; functions and data items listed in an import library do not require
an IMPORTS definition.

The IMPORTS keyword marks the beginning of a section of import definitions.
Multiple definitions must be separated by one or more spaces, tabs, or newline
characters. The IMPORTS keyword must appear once before the first definition
on the same or preceding line and can be repeated before each additional defini­
tion. IMPORTS statements can appear more than once in the file.

Syntax
IMPORTS

[internalname=]modulename.entry

Remarks
The internalname specifies the function or data-item name as it is used in the im­
porting application or DLL. Thus, internalname appears in the source code of the
importing program, while the function may have a different name in the program
where it is defined. By default, internalname is the same as the entry name. An
internalname is required if entry is an ordinal value.

The modulename is the filename of the exporting application or DLL that contains
the function or data item.

The entry field specifies the name or ordinal value of the function or data item
as defined in the modulename application or DLL. If entry is an ordinal value,
internalname must be specified. (Ordinal values are set in an EXPORTS state­
ment.) If the function or data item is in a C++ modeule, entry must be specified
as a decorated name. For information on decorated names, see Appendix B.

Creating Module-Definition Files 625

Note A given symbol (function or data item) has a name for each of three differ­
ent contexts. The symbol has a name used by the exporting program (application
or DLL) where it is defined, a name used as an entry point between programs, and
a name used by the importing program where the symbol is used. If neither pro­
gram uses the optional internalname field, the symbol has the same name in all
three contexts. If either of the programs uses the internalname field, the symbol
may have more than one distinct name.

Example
The IMPORTS statement that follows defines three functions to be imported:
Sampl eRead, Sampl eWrite, and a function that has been assigned an ordinal value
of 1. The functions are found in the Samp 1 e, Samp 1 eA, and Read applications or
DLLs, respectively. The function from Read is referred to as ReadChar in the im­
porting application or DLL. The original name of the function, as it is defined in
Read, mayor may not be known and is not included in the IMPORTS statement.

IMPORTS
Sample.SampleRead
SampleA.SampleWrite

ReadChar Read.l

16.21 The FUNCTIONS Statement
The FUNCTIONS statement places functions in a specified physical order and
assigns functions to segments or overlays. For more information on overlays, see
Chapter 15, "Creating Overlaid DOS Programs."

Syntax
FUNCTIONS[:{segmentname I overlaynumber}]

functionname

Remarks
The FUNCTIONS keyword marks the beginning of a section of functions.
FUNCTIONS statements can appear more than once in the .DEF file.

FUNCTIONS can be followed by a colon (:) and a destination specifier, which
is either segmentname or overlaynumber.

The segmentname specifies a defined segment in which a function is to be placed.
The segmentname does not have to be previously defined in a SEGMENTS
statement. LINK assumes the segment definition, using the class CODE; a later
SEGMENTS statement can redefine the segment.

The overlaynumber specifies the overlay in which a function is to be placed. Valid
overlay numbers are from 0 through 65,535. The number 0 represents the root.

626 Environment and Tools

Thefunctionname is the identifier for a "packaged function." A packaged function
is visible to the linker in the form of a COMDAT record. To compile a C function
as a packaged function, use the /Gy option on the CL command line (or in PWB,
choose Enable Function Level Linking in the Additional Global Options dialog
box, which is available from the C or C++ Compiler Options dialog boxes.) Only
packaged functions can be specified in a FUNCTIONS statement. You can spec­
ify one or more function names, separated by one or more spaces, tabs, or newline
characters. If the function is in a C++ module,Junctionname must be specified as a
decorated name. For specific information on decorated names, see Appendix B.

Ordering Functions
You can use FUNCTIONS to specify a list of ordered functions. LINK places
ordered functions into a segment in the physical order that you specify before un­
ordered functions in the same segment. You can let LINK choose the segment, or
you can specify the segment. If LINK makes the decision, it places ordered func­
tions in segments called COMDAT _SEGn, where n is one of a sequence of num­
bers beginning with O. As LINK places ordered functions in these segments, it
creates a new segment when the current one reaches 64K-36. You can specify the
destination segment in one of two ways:

• Specify the segment using "explicit allocation." In explicit allocation, a func­
tion is assigned to a segment at compile time, either in the source code or when
compiling. In C source code, you can use the __ based keyword (or its prede­
cessor, the alloc_ text pragma) to specify the segment where an individual func­
tion is to reside. When compiling with the CL compiler, you can use the !NT
option to specify the segment where all functions in an object file are to reside.
A function not explicitly allocated to a segment is sometimes referred to as an
anonymous function.

• Specify the segment after the FUNCTIONS keyword. The segment must al­
ready have been defined, either in a SEGMENTS statement or at compile time.
An explicitly allocated function cannot be placed in a different segment from
the one to which it was allocated.

LINK accumulates multiple specifications and treats them as one list of ordered
functions. If segments or overlays are specified, LINK accumulates the functions
with other functions that have the same destination.

The following statement places three functions in a specified order within the seg­
ment called My S e g:

FUNCTIONS:MySeg
Funcl
Func2
Func3

Creating Module-Definition Files 627

Creating Overlays
You can use FUNCTIONS to place a packaged function in an overlay. By default,
a function is assigned to the root.

If a function is explicitly allocated (see the previous section), it can be placed in
an overlay only if its segment and any other functions in that segment are not also
assigned to an overlay. In this case, the FUNCTIONS statement implicitly assigns
the entire segment to the specified overlay. An explicitly allocated function cannot
be placed in a different overlay from the segment to which it is allocated.

For examples of how to use the FUNCTIONS statement to create overlays, see
"The FUNCTIONS and SEGMENTS Statements" in Chapter 15.

16.22 The INCLUDE Statement
The INCLUDE statement inserts the contents of a specified text file where it is
specified in the .DEF file. The inserted file must contain module statements as
they would appear in the .DEF file in which they are being inserted.

Syntax
INCLUDE ['llfilename[']

Remarks
You can specify a path with the filename. Wildcards are not permitted. Iffilename
contains a space (allowed under some installable systems), begins with a nonalpha­
betic character, or is a reserved word, enclose it in single or double quotation
marks (' or ").

Multiple INCLUDE statements can appear in a .DEF file; each specifies a single
insertion. INCLUDE statements can be nested up to 10 levels deep.

Using EXEHDR

The Microsoft EXE File Header Utility (EXEHDR) version 3.00 displays the
contents of an executable-file header and can be used to alter some fields in the
header. You can display or alter headers of DOS programs and segmented execu­
table files (applications or DLLs). Some header fields have a different meaning
in a Windows file; see your Windows documentation for more information. Ex­
amples of EXEHDR usage include:

• Determining whether a file is an application or a dynamic-link library (DLL).

• Viewing the attributes set by the module-definition file.

• Viewing the number and size of code and data segments.

• Setting a new stack allocation.

Many of the header fields contain information that was set in the module­
definition file or as input options when the LINK utility created the file. This
chapter assumes you are familiar with LINK and module-definition files. For
information about LINK, see Chapter 14. For information about module­
definition (.DEF) files, see Chapter 16. Many of the terms and keywords used
in this section are explained in these chapters.

17.1 Running EXEHDR
This section describes the EXEHDR command line and the options available for
controlling EXEHDR.

The EXEHDR Command Line
To run EXEHDR, use the following command line:

EXEHDR [options] filenames

630 Environment and Tools

EXEHDR Options

The options field specifies options used to modify EXEHDR output or change the
file header. Options are described in the next section.

The filenames field specifies one or more applications or DLLs. If you do not pro­
vide an extension, EXEHDR assumes .EXE. You can specify a path with the
filename.

Option names are not case sensitive and can be abbreviated to the shortest unique
name. This section uses meaningful yet legal forms of the option names. Specify
number arguments to options in decimal format or C-language notation. EXEHDR
has the following options:

IHEA[P] :number
Sets the heap allocation field to number bytes. This option is only for seg­
mented executable files.

IHEL[P]
Calls the QuickHelp utility. If EXEHDR cannot locate the Help file or
QuickHelp, it displays a brief summary of EXEHDR command-line syntax.

!MA[X] :number
Sets the maximum memory allocation to number l6-byte paragraphs. The
memory allocation fields tell DOS the maximum memory needed to load and
run the program. The number must equal or exceed the minimum allocation.
This option is equivalent to LINK's ICPARM option and applies only to DOS
programs.

!MI[N] :number
Sets the minimum memory allocation to number 16-byte paragraphs. See the
!MAX option for more information.

INE[WFILES]
Sets a bit in the header to notify the loader that the program may be using an
installable file system.

INO[LOGO]
Suppresses the EXEHDR copyright message.

IP[MTYPE] : type
Sets the type of application. The type is one of the keywords for either LINK's
IPM option or the NAME statement in a .DEF file. The keywords are PM (or
WINDOWAPI), VIO (orWINDOWCOMPAT), and NOVIO (or
NOTWINDOWCOMPAT).

Using EXEHDR 631

IR[ESETERROR]
Clears the error bit in the header of a segmented executable file. LINK sets the
error bit when it finds an unresolved reference or duplicate symbol definition.
The operating system does not load a program if this bit is set. EXEHDR dis­
plays the message Error in i mage if it finds the error bit set. This option al­
lows you to run a program that contains LINK errors and is useful during
application development.

IS [TACK] :number
Sets the stack allocation to number bytes. The 1ST ACK option is equivalent to
LINK's 1ST ACK option.

IV[ERBOSE]

I?

Provides more information about segmented executable files. The additional
information includes the default flags in the segment table, all run-time reloca­
tions, and additional fields from the header. For more information, see
"EXEHDR Output: Verbose Output" on page 637.

Displays a brief summary of EXEHDR command-line syntax.

17.2 Executable-File Format
DOS applications have a simple format, which consists of a single header fol­
lowed by a relocation table and the load module. Segmented executable files have
two headers. The first header, usually called the DOS header, has a simple format.
The second header, sometimes called the new .EXE header, has a more detailed
format. Figure 17.1 shows the arrangement of the headers in a segmented execut­
able file. When the executable file runs under DOS, the operating system uses the
old header to load the file. Otherwise, the system ignores the DOS (or "old")
header and uses the new header.

The listing generated by EXEHDR shows the contents of the file header and infor­
mation about each segment in the file. The type of listing generated reflects the
structure of the header for the kind of file being checked. (For more information
about the structure of DOS applications and segmented executable files, see the
MS-DOS Encyclopedia.)

632 Environment and Tools

OOh
3Ch

40h

DOS INIT CS:IP
xxh

DOS (or old) header

Offsetto new .EXE header

DOS Family-API library

Initial stub-loader code

New .EXE header

Segment table

Resource table

Resident names table

Module reference table

Imported names table

Entry table

Nonresident names table

Segment#1 data
Segment#1 relocations

Segment #n data
Segment #n relocations

r--

End ofloadfi/e -~----------t
Run-time copy of stub loader

End of allocated memory -~----------'

Figure 17.6 Format for a Segmented Executable File

17.3 EXEHDR Output: DOS Executable File

Header

The EXEHDR output for a DOS executable file appears as follows:

.EXE size (bytes)
Packed .EXE file
Magic number:
Bytes on last page:
Pages in file:
Relocations:
Paragraphs in header:
Extra paragraphs needed:
Extra paragraphs wanted:
Initial stack location:
Word checksum:
Entry point:
Relocation table address:
Memory needed:

The meaning of each field is described in the following list:

.EXE size (bytes)
Gives the size of the file on disk.

Packed .EXE file
Is displayed only if the file is packed.

Magic number:
Tells the operating-system loader the format of the header.

Bytes on last page:

Using EXEHDR 633

Tells the loader how much data exists in the last page on disk.

Pages in file:
Gives the number of whole 512-byte pages in the file on disk. If the program
contains overlays, this field shows the number of pages in the root.

Relocations:
Tells the loader the number of entries in the relocation table.

Paragraphs in header:
Gives the size of the header in 16-byte paragraphs. This represents the offset
of the load image within the file.

Extra paragraphs needed:
Tells the loader the required minimum number of paragraphs of memory in
addition to the image size. The image size is equal to Bytes on 1 ast page +
(Pages in file x 512).

Extra paragraphs wanted:
Tells the loader the number of paragraphs of memory above the size on disk re­
quested for loading the program. This value is set by LINK's /CPARM option.

Initial stack location:
Gives the address (SS :SP) of the DOS program's stack.

Word checksum:
Confirms for the loader that the file is a valid executable file.

Entry point:
Gives the start address.

Relocation table address:
Gives the location of the table of relocation pointers as an offset from the begin­
ning of the file.

Memory needed:
Tells the loader the total memory needed to load the application. The value in
thisfieldisequalto (Extra paragraphs needed x 16) + .EXE size (bytes).

634 Environment and Tools

17.4 EXEHDR Output: Segmented Executable File
The first part of the EXEHDR output for a segmented executable file appears as
follows:

Module:
Description:
Data:
Initial CS:IP:
Initial SS:SP:
Extra stack allocation:
DGROU P:

The meaning of each field is described in the following list:

Module:
Gives the name of the application as specified in the NAME statement of the
.DEF file used to create the file or the name assumed by default.

Description:
Gives the text of the DESCRIPTION statement of the .DEF file or the descrip­
tion assumed by default.

Data:
Indicates the program's default data segment (DGROUP) type: SHARED,
NONSHARED, or NONE. This type can be specified in a .DEF file.

Initial CS:IP:
Gives the application's starting address.

Initial SS:SP:
Gives the value of the initial stack pointer, which gives the location of the ini­
tial stack.

Extra stack allocation:
Gives the size in bytes of the stack, specified in hexadecimal.

DGROUP:
Gives the segment number of DGROUP in the program's object files. Segment
numbers start with the number 1.

At the end of the list of fields, EXEHD R displays any module flags that were set
for every segment in the module. For example, PROTMODE may appear.

The message Err 0 r i n i rna 9 e may appear at the end of the list of fields. If a
LINK error (such as "unresolved external") occurs when the file is created, LINK
sets the error bit in the header. This prevents the file from being loaded. You can
clear the error bit with the IRESET option, described on page 631.

Using EXEHDR 635

DLL Header Differences

Segment Table

For a DLL, the output differs slightly and appears as

Library:
Description:
Data:
Initialization:
Initial CS:IP:
Initial SS:SP:
DGROUP:

The meaning of each field is described in the following list:

Library:
Gives the name of the library as specified in the LIBRARY statement in the
module-definition file (or the default name).

Description:
Data:

Same as for other segmented executable files.

Initi al i zati on:
Gives the type of initalization as specified in the LIBRARY statement in the
module-definition file (or the default initialization).

Initi al cs: IP:
Gives the address of the initialization routine. If the DLL has no initialization
routine, the start address is zero.

Initial SS:SP:
May be zero for a DLL.

DGROUP:
May not appear for a DLL.

After the header fields for a segmented executable file, EXEHDR displays the
segment table. All values appear in hexadecimal except for the segment index
number. An example of this table is:

no. type address file mem flags
1 CODE 00000400 00efb 00efb
2 DATA 00001400 00031 0007d
3 DATA 00001600 0003c 00040 SHARED

636 Environment and Tools

Exports Table

The following list describes each heading in the segment table:

no.
Segment index number (in decimal), starting with l.

type
Identification of the segment as a code or data segment.

address
A seek offset for the segment within the file.

fil e
Size in bytes of the segment in the file on disk.

mem
Size in bytes of the segment in memory. If mem is greater than fi 1 e, the operat­
ing system pads the extra space with zero values at load time.

flags
Segment attributes. If the IV option is not used, only nondefault attributes are
listed. Attributes that are meaningful only to Windows are displayed in lower­
case and in parentheses.

Following the segment table, EXEHDR displays a table of exports if they exist.
An example of this table is:

Exports:
ord seg offset

1 3 0000
19 3 032e
21 35 0000

5 30 0264
8 33 0000

name
HELPWNDPROC exported
ICONWNDPROC exported
PATHWNDPROC exported
ANNOUPDATEDLG exported
BOOKMARKDLG exported

The following list describes each heading in the Exports table:

ord
The ordinal number as specified in the @ordfield in an EXPORTS statement
in a module-definition file. If ord was not specified, this column entry is blank.

seg
The index of the segment where the exported name is defined.

offset
The offset in the segment where the exported name is defined.

name
The exported name of the routine plus all flags applied to the exported routine,
as specified in the EXPORTS statement in the module-definition file.

Using EXEHDR 637

17.5 EXEHDR Output: Verbose Output
The IV option provides more extensive information about a segmented executable
file. The verbose output more closely reflects the file's header structure. (For an
illustration of this structure, see Figure 17.1, earlier in this chapter.)

DOS Header Information
EXEHDR begins by displaying the DOS fields described on page 632, with the
addition of two fields:

Reserved words:
Displays the contents of space in a DOS header that is normally unused.

New .EXE header address:
Holds the starting location of the part of the header describing the segmented
executable file.

New .EXE Header Information
EXEHDR then displays the header fields for the segmented executable file. In ad­
dition to the default fields described on page 634, the verbose output includes
many other fields.

A field called Operati ng system: follows the Descri pti on: field. This field
tells the system under which the program is to run.

The following fields are then displayed:

Linker version:
32-bit Checksum:
Segment Table:
Resource Table:
Resident Names Table:
Module Reference Table:
Imported Names Table:
Entry Table:
Non-resident Names Table:
Movable entry points:
Segment sector size:
Heap allocation:
Application type:
Other module flags:

638 Environment and Tools

Tables

The meaning of each field is described in the following list:

Linker version:
Tells which version of LINK was used to create the segmented executable file.

32-bit Checksum:
Confirms for the loader that the file is a valid executable file. (See the Word
checksum: field for DOS executable files.)

Segment Table:
Resource Table:
Resident Names Table:
Module Reference Table:
Imported Names Table:
Entry Table:
Non-resident Names Table:

Describe various tables in the segmented executable file. Each description gives
the table name, its address within the file, and its length in hexadecimal and in
decimal.

Movable entry points:
Gives the number of entries to segments that have the MOVABLE attribute.
This field is used only by Windows.

Segment sector size:
Gives the alignment set by the IALIGN option or the default of 512. This field
equals the sector size on disk.

Heap allocation:
Gives the size of the heap. This field is displayed only if a HEAPSIZE state­
ment appeared in the module-definition file.

Application type:
Gives the type as specified in the PMTYPE statement of the module-definition
file used to create the file being examined, or as specified with LINK's /PM op­
tion, or assumed by default. For a DLL, a 0 is always displayed.

Other module flags:
Gives other attributes of the file; if none, this field is not displayed.

At the end of the list of fields, EXEHDR displays any module flags that were set
for every segment in the module. For example, PROTMODE may appear.

Following the header fields, EXEHDR displays the segment table with complete
attributes, not just the nondefault attributes. Attributes that are meaningful only to
Windows are displayed in lowercase and in parentheses. In addition to the attri­
butes specified in the module-definition file (described in "CODE, DATA, and
SEGMENTS Attributes" on page 620) or assumed by default, the verbose output
includes the following two attributes:

Using EXEHDR 639

• The reloes attribute is displayed for each segment that has address reloca­
tions. Relocations occur in each segment that references objects in other seg­
ments or makes dynamic-link references.

• The iterated attribute is displayed for each segment that has iterated data.
Iterated data consist of a special code that packs repeated bytes.

EXEHDR then displays the Exports table if exports exist.

Relocations
Following the tables, EXEHDR displays descriptions of relocations. Each has a
heading in the following form:

type offset target
BASE eff4 seg 1 offset 0000
BASE f204 seg 2 offset 0000
OFFSET effl seg 1 offset e96S
OFFSET 314e seg 1 offset 32ea
BASE e0fl seg 3 offset 0000
OFFSET d397 seg 1 offset ef70
PTR ed3e imp DOSCALLS.137
OFFSET bIaS seg 1 offset ae7e
PTR f57e imp KBDCALLS .13

The following list describes each heading:

number
The segment number, as given earlier in the segments table.

type
Relocation type, which gives the kind of address information requested.

offset
The location of the requested address change in the source segment.

target
The requested relocation address.

Each relocation table ends by stating the total number of relocations.

Managing Projects with NMAKE

This chapter describes the Microsoft Program Maintenance Utility (NMAKE)
version 1.20. NMAKE is a sophisticated command processor that saves time and
simplifies project management. Once you specify which project files depend on
others, NMAKE automatically builds your project without recompiling files that
haven't changed since the last build.

If you are using the Microsoft Programmer's WorkBench (PWB) to build your
project, PWB automatically creates a makefile and calls NMAKE to run the file.
You may want to read this chapter if you intend to build your program outside of
PWB, if you want to understand or modify a makefile created by PWB, or if you
want to use a foreign makefile in PWB.

NMAKE can swap itself to expanded memory, extended memory, or disk to leave
room for the commands it spawns. (For more information, see the description of
the 1M option on page 649.)

18.1 New Features
This version ofNMAKE offers the following new features:

• New options: IB, IK, 1M, N (see pages 648-650)

• Addition of .CPP and .CXX to the .SUFFIXES list (see page 688)

• Predefined macros for c++ programs: CPP, CXX, CPPFLAGS, CXXFLAGS
(see pages 676)

• Predefined inference rules for C++ programs (see page 684)

• The !MESSAGE directive (see page 689)

• Two preprocessing operators: DEFINED, EXIST (see page 691)

• Three keywords for use with the !ELSE directive: IF, IFDEF, IFNDEF (see
page 688)

• New directives: lELSEIF, !ELSEIFDEF, !ELSEIFNDEF (see page 688)

646 Environment and Tools

18.2 Overview

NMAKE follows the
instructions you
specify in a makefile.

NMAKE works by looking at the "time stamp" of a file. A time stamp is the time
and date the file was last modified. Time stamps are assigned by most operating
systems in 2-second intervals. NMAKE compares the time stamps of a "target"
file and its "dependent" files. A target is usually a file you want to create, such as
an executable file, though it could be a label for a set of commands you wish to ex­
ecute. A dependent is usually a file from which a target is created, such as a source
file. A target is "out-of-date" if any of its dependents has a later time stamp than
the target or if the target does not exist. (For information on how the 2-second in­
terval affects your build, see the description of the /B option on page 648.)

Warning For NMAKE to work properly, the date and time setting on your system
must be consistent relative to previous settings. If you set the date and time each
time you start the system, be careful to set it accurately. If your system stores a set­
ting, be certain that the battery is working.

When you run NMAKE, it reads a "makefile" that you supply. A makefile (some­
times called a description file) is a text file containing a set of instructions that
NMAKE uses to build your project. The instructions consist of description blocks,
macros, directives, and inference rules. Each description block typically lists a tar­
get (or targets), the target's dependents, and the commands that build the target.
NMAKE compares the time stamp on the target file with the time stamp on the de­
pendent files. If the time stamp of any dependent is the same as or later than the
time stamp of the target, NMAKE updates the target by executing the commands
listed in the description block.

It is possible to run NMAKE without a makefile. In this case, NMAKE uses prede­
fined macros and inference rules along with instructions given on the command
line or in TOOLS.INI.

NMAKE's main purpose is to help you build programs quickly and easily. How­
ever, it is not limited to compiling and linking; NMAKE can run other types of
programs and can execute operating system commands. You can use NMAKE to
prepare backups, move files, and perform other project-management tasks that you
ordinarily do at the operating-system prompt.

This chapter uses the term "build," as in building a target, to mean evaluating the
time stamps of a target and its dependent and, if the target is out-of-date, executing
the commands associated with the target. The term "build" has this meaning
whether or not the commands actually create or change the target file.

Managing Projects with NMAKE 647

18.3 Running NMAKE
You invoke NMAKE with the following syntax:

NMAKE [options]] [macros]] [targets]]

The options field lists NMAKE options, which are described in the following sec­
tion, "Command-Line Options."

The macros field lists macro definitions, which allow you to change text in the
makefile. The syntax for macros is described in "User-Defined Macros" on
page 668.

The targets field lists targets to build. NMAKE builds only the targets listed on the
command line. If you don't specify a target, NMAKE builds only the first target in
the first dependency in the makefile. (You can use a pseudotarget to tell NMAKE
to build more than one target. See "Pseudotargets" on page 658.)

NMAKE uses the following priorities to determine how to conduct the build:

1. If the IF option is used, NMAKE searches the current or specified directory for
the specified makefile. NMAKE halts and displays an error message if the file
does not exist.

2. If you do not use the IF option, NMAKE searches the current directory for a file
named MAKEFILE.

3. If MAKEFILE does not exist, NMAKE checks the command line for target
files and tries to build them using inference rules (either defined in TOOLS.INI
or predefined). This feature lets you use NMAKE without a makefile as long as
NMAKE has an inference rule for the target.

4. If a makefile is not used and the command line does not specify a target,
NMAKE halts and displays an error message.

Example
The following command specifies an option (/ S) and a macro definition
("program=sampl e") and tells NMAKE to build two targets (sort. exe and
sea rch. exe). The command does not specify a makefile, so NMAKE looks for
MAKEFILE or uses inference rules.

NMAKE /S "program=sample" sort.exe search.exe

Command-Line Options
NMAKE accepts options for controlling the NMAKE session. Options are not
case sensitive and can be preceded by either a slash (I) or a dash (-).

648 Environment and Tools

You can specify some options in the makefile or in TOOLS.INI. For information
on TOOLS.INI, see page 652. For information on specifying options with the
!CMDSWITCHES directive, see page 688.

IA

IB

IC

ID

IE

Forces NMAKE to build all evaluated targets, even if the targets are not out-of­
date with respect to their dependents. This option does not force NMAKE to
build unrelated targets.

Tells NMAKE to execute a dependency even if time stamps are equal. Most
operating systems assign time stamps with a resolution of 2 seconds. If your
commands execute quickly, NMAKE may conclude that a file is up-to-date
when in fact it is not. This option may result in some unnecessary build steps
but is recommended when running NMAKE on very fast systems.

Suppresses default NMAKE output, including nonfatal NMAKE error or warn­
ing messages, time stamps, and the NMAKE copyright message. If both IC and
IK are specified, IC suppresses the warnings issued by !K.

Displays information during the NMAKE session. The information is inter­
spersed in NMAKE's default output to the screen. NMAKE displays the time
stamp of each target and dependent evaluated in the build and issues a message
when a target does not exist. Dependents for a target precede the target and are
indented. The ID and /P options are useful for debugging a makefile.

To set or clear ID for part of a makefile, use the !CMDSWITCHES directive;
see "Preprocessing Directives" on page 688.

Causes environment variables to override macro definitions in the makefile.
See "Macros" on page 667.

IF filename
Specifies filename as the name of the makefile. Zero or more spaces or tabs
precede filename. If you supply a dash (-) instead of a filename, NMAKE gets
makefile input from the standard input device. (End keyboard input with either
F6 or CTRL+Z.) NMAKE accepts more than one makefile; use a separate IF speci­
fication for each makefile input.

If you omit IF, NMAKE searches the current directory for a file called
MAKEFILE (with no extension) and uses it as the makefile. IfMAKEFILE
doesn't exist, NMAKE uses inference rules for the command-line targets.

/HELP
Calls the QuickHelp utility. If NMAKE cannot locate the Help file or
QuickHelp, it displays a brief summary of NMAKE command-line syntax.

II

IK

Managing Projects with NMAKE 649

Ignores exit codes from all commands listed in the makefile. NMAKE pro­
cesses the whole makefile even if errors occur. To ignore exit codes for part of
a makefile, use the dash (-) command modifier or the .IGNORE directive; see
"Command Modifiers" on page 661 and "Dot Directives" on page 687. To set
or clear II for part of a makefile, use the !CMDSWITCHES directive; see "Pre­
processing Directives" on page 688. To ignore errors for unrelated parts of the
build, use the IK option; II overrides IK if both are specified.

Continues the build for unrelated parts of the dependency tree if a command ter­
minates with an error. By default, NMAKE halts if any command returns a non­
zero exit code. If this option is specified and a command returns a nonzero exit
code, NMAKE ceases to execute the block containing the command. It does not
attempt to build the targets that depend on the results of that command; instead,
it issues a warning and builds other targets. When IK is specified and the build
is not complete, NMAKE returns an exit code of 1. This differs from the II op­
tion, which ignores exit codes entirely; II overrides IK if both are specified. The
IC option suppresses the warnings issued by /K.

1M

IN

Swaps NMAKE to disk to conserve extended or expanded memory under DOS.
By default, NMAKE leaves room for commands to be executed in low memory
by swapping itself to extended memory (if enough space exists there) or to ex­
panded memory (if there is not sufficient extended memory but there is enough
expanded memory) or to disk. The 1M option tells NMAKE to ignore any ex­
tended or expanded memory and to swap only to disk.

Displays but does not execute the commands that would be executed by the
build. Preprocessing commands are executed. This option is useful for debug­
ging makefiles and checking which targets are out-of-date. To set or clear IN
for part of a makefile, use the !CMDSWITCHES directive; see "Preprocessing
Directives" on page 688.

INOLa GO

IP

IQ

Suppresses the NMAKE copyright message.

Displays NMAKE information to the standard output device, including all
macro definitions, inference rules, target descriptions, and the .SUFFIXES list,
before running the NMAKE session. If IP is specified without a makefile or
command-line target, NMAKE displays the information and does not issue an
error. The IP and ID options are useful for debugging a makefile.

Checks time stamps of targets that would be updated by the build but does not
run the build. NMAKE returns a zero exit code if the targets are up-to-date and
a nonzero exit code if any target is out-of-date. Only preprocessing commands

650 Environment and Tools

IR

IS

IT

in the makefile are executed. This option is useful when running NMAKE from
a batch file.

Clears the .SUFFIXES list and ignores inference rules and macros that are de­
fined in the TOOLS.INI file or that are predefined.

Suppresses the display of all executed commands. To suppress the display of
commands in part of a makefile, use the @ command modifier or the .SILENT
directive; see "Command Modifiers" on page 661 and "Dot Directives" on page
687. To set or clear IS for part of a makefile, use the !CMDSWITCHES direc­
tive; see "Preprocessing Directives" on page 688.

Changes time stamps of command-line targets (or first target in the makefile if
no command-line targets are specified) to the current time and executes prepro­
cessing commands but does not run the build. Contents of target files are not
modified.

N
Causes all macros to be inherited when recursing. By default, only macros de­
fined on the command line and environment-variable macros are inherited
when NMAKE is called recursively. This option makes all macros available to
the recursively called NMAKE session. See "Inherited Macros" on page 679.

IX filename

/?

Sends all error output (from both NMAKE and the executed commands) to
filename, which can be a file or a device. Zero or more spaces or tabs precede
filename. If you supply a dash (-) instead of a filename, error output is sent to
the standard output device. By default, NMAKE sends errors to standard error.

Displays a brief summary ofNMAKE command-line syntax and exits to the
operating system.

Example
The following command line specifies two NMAKE options:

NMAKE IF sample.mak Ie targl targ2

The IF option tells NMAKE to read the makefile SAMPLE.MAK. The IC option
tells NMAKE not to display nonfatal error messages and warnings. The command
specifies two targets (targl and targ2) to update.

NMAKE Command File
You can place a sequence of command-line arguments in a text file and pass the
file's name as a command-line argument to NMAKE. NMAKE opens the com­
mand file and reads the arguments. You can use a command file to overcome the

Managing Projects with NMAKE 651

limit on the length of a command line in the operating system (128 characters
in DOS).

To provide input to NMAKE with a command file, type

NMAKE @commandfile

The command file is the name of a text file containing the information NMAKE ex­
pects on the command line. Precede the name of the command file with an at sign
(@). You can specify a path with the filename.

NMAKE treats the file as if it were a single set of arguments. It replaces each line
break with a space. Macro definitions that contain spaces must be enclosed in quo­
tation marks; see "Where to Define Macros" on page 669.

You can split input between the command line and a command file. Specify
@commandfile on the command line at the place where the file's information is
expected. Command-line input can precede and/or follow the command file. You
can specify more than one command file.

Example 1
If a file named UPDATE contains the line

/S "program = sample" sort.exe search.exe

you can start NMAKE with the command

NMAKE @update

The effect is the same as if you entered the following command line:

NMAKE /S "program = sample" sort.exe search.exe

Example 2
The following is another version of the UPDATE file:

/S "program \
= sample" sort.exe search.exe

The backslash (\) allows the macro definition to span two lines.

Example 3
If the command file called UPDATE contains the line

/S "program = sample" sort.exe

you can start NMAKE with the command

NMAKE @update search.exe

652 Environment and Tools

The TOOlS.INI File
You can customize NMAKE by placing commonly used information in the
TOOLS.lNI initialization file. Settings for NMAKE must follow a line that begins
with the tag [NMAKE]. The tag is not case sensitive. This section ofthe initializa­
tion file can contain any makefile information. NMAKE uses this information in
every session, unless you run NMAKE with the IR option. NMAKE looks for
TOOLS.lNI first in the current directory and then in the directory specified by the
INIT environment variable.

You can use the !CMDSWITCHES directive to specify command-line options in
TOOLS.lNI. An option specified this way is in effect for every NMAKE session.
This serves the same purpose as does an environment variable, which is a feature
available in other utilities. For more information on !CMDSWITCHES, see
page 688.

Macros and inference rules appearing in TOOLS.lNI can be overridden. See "Pre­
cedence among Macro Definitions" on page 680 and "Precedence among Infer­
ence Rules" on page 686.

NMAKE reads information in TOOLS.INI before it reads makefile information.
Thus, for example, a description block appearing in TOOLS.lNI acts as the first
description block in the makefile; this is true for every NMAKE session, unless IR
is specified.

To place a comment in TOOLS.lNI, specify the comment on a separate line begin­
ning with a semicolon (;). You can also specify comments with a number sign (#)
as you can in a makefile; for more information, see "Comments" on page 654.

Example
The following is an example of text in a TOOLS.lNI file:

[NMAKE]
; macros
CC qcl
CFLAGS = IGc IGs IW3 IOat
; inference rule
.c.obj:

$(CC) IZi Ic $(CFLAGS) $*.c

NMAKE reads and applies the lines following [NMAKE]. The example redefines
the macro CC to invoke the Microsoft QuickC Compiler, defines the macro
CFLAGS, and redefines the inference rule for making .OBJ files from .C sources.
These NMAKE features are explained throughout this chapter.

Managing Projects with NMAKE 653

18.4 Contents of a Makefile
An NMAKE makefile contains description blocks, macros, inference rules, and
directives. This section presents general information about writing makefiles. The
rest of the chapter describes each of the elements of makefiles in detail.

Using Special Characters as Literals

Wildcards

You may need to specify as a literal character one of the characters that NMAKE
uses for a special purpose. These characters are:

; 4{ ($ \ { } ! @

To use one of these characters without its special meaning, place a caret (A) in
front of it. NMAKE ignores carets that precede characters other than the special
characters listed previously. A caret within a quoted string is treated as a literal
caret character.

You can also use a caret at the end of a line to insert a literal newline character
in a string or macro. The caret tells NMAKE to interpret the newline character
as part of the macro, not a line break. Note that this effect differs from using a
backslash (\) to continue a line in a macro definition. A newline character that
follows a backslash is replaced with a space. For more information, see "User­
Defined Macros" on page 668.

In a command, a percent symbol (%) can represent the beginning of a file speci­
fier. (See "Filename-Parts Syntax" on page 663.) NMAKE interprets %s as a file­
name, and it interprets the character sequence of %1 followed by d, e, f, p, or F as
part or all of a filename or path. If you need to represent these characters literally
in a command, specify a double percent sign (% %) in place of a single one. In all
other situations, NMAKE interprets a single % literally. However, NMAKE al­
ways interprets a double %% as a single %. Therefore, to represent a literal %%,
you can specify either three percent signs, %%%, or four percent signs, %%%%.

To use the dollar sign ($) as a literal character in a command, you must specify
two dollar signs ($$); this method can also be used in other situations where A$
also works.

For information on literal characters in macro definitions, see "Special Characters
in Macros" on page 668.

You can use DOS wildcards (* and ?) to specify target and dependent names.
NMAKE expands wildcards that appear on dependency lines. A wildcard
specified in a command is passed to the command; NMAKE does not expand it.

654 Environment and Tools

Comments

Long Filenames

Example
In the following description block, the wildcard * is used twice:

project.exe : *.c
cl *.c IFeproject.exe

NMAKE expands the *. c in the dependency line and looks at all files having the
.C extension in the current directory. If any .C file is out-of-date, the CL command
expands the *. c and compiles and links all files.

To place a comment in a makefile, precede it with a number sign (#). NMAKE
ignores all text from the number sign to the next newline character. You can use
comments in the following situations:

Comment on line by itself

OPTIONS IMAP # Comment on macro definition line

all.exe one.obj two.obj # Comment on dependency line
link one.obj two.obj;

Comment in commands block
copy one.exe \release

.obj.exe: # Comment in inference rule

Command lines cannot contain comments; this is true even for a command that is
specified on the same line as a dependency line or inference rule. However, a com­
ment can appear between lines in a commands block; the # must appear at the
beginning of the line.

To specify a literal #, precede it with a caret (A), as in the following:

DEF = A#define #Macro representing a C preprocessing directive

Comments can also appear in a TOOLS.INI file. TOOLS.INI allows an additional
form of comment using a semicolon (;). See "The TOOLS.INI File" on page 652.

You can use long filenames if they are supported by your file system. However,
you must enclose the name in double quotation marks, as in the following depen­
dency line:

all : "VeryLongFileName.exe"

Managing Projects with NMAKE 655

18.5 Description Blocks
Description blocks form the heart of the makefile. Figure 18.1 illustrates a typical
NMAKE description block. The following sections discuss dependencies, targets,
and dependents. The contents of a commands block are described in "Commands"
on page 660.

Targets Dependents

~ l~ ______ ~
myapp.exe : 'myapp.obj another.obj myapp.ctet')-Dependencyline

1 ink my a p pan 0 the r, , NUL, my 1 i b, my a p p }- C d
copy myapp.exe c:\project amman s

Figure 18.1 NMAKE Description Block

Dependency Line
A description block begins with a "dependency line." A dependency line specifies
one or more "target" files and then lists zero or more "dependent" files. If a target
does not exist, or if its time stamp is earlier than that of any dependent, NMAKE
executes the commands block for that target. Figure 18.1 illustrates a dependency
line.

The dependency line must not be indented (it cannot start with a space or tab).
The first target must be specified at the beginning of the line. Targets are sep­
arated from dependents by a single colon, except as described in "Using Targets
in Multiple Description Blocks" on page 656. The colon can be preceded or fol­
lowed by zero or more spaces or tabs. The entire dependency must appear on one
line; however, you can extend the line by placing a backslash (\) after a target or
dependent and continuing the dependency on the next line.

Before executing any commands, NMAKE moves through all dependencies and
applicable inference rules to build a "dependency tree" that specifies all the steps
required to fully update the target. NMAKE checks to see if dependents them­
selves are targets in other dependency lists, if any dependents in those lists are tar­
gets elsewhere, and so on. After it builds the dependency tree, NMAKE checks
time stamps. If it finds any dependents in the tree that are newer than the target,
NMAKE builds the target.

The dependency line in Figure 18.1 tells NMAKE to rebuild the MYAPP.EXE tar­
get whenever MYAPP.OBJ, ANOTHER.OBJ, or MYAPP.DEF has changed more
recently than MY APP.EXE.

656 Environment and Tools

Targets
The targets section of the dependency line lists one or more target names. At least
one target must be specified. Separate multiple target names with one or more
spaces or tabs. You can specify a path with the filename. Targets are not case sen­
sitive. A target (including path) cannot exceed 256 characters.

If the name of the last target before the colon (:) is a single character, you must put
a space between the name and the colon; otherwise, NMAKE interprets the letter­
colon combination as a drive specifier.

Usually a target is the name of a file to be built using the commands in the descrip­
tion block. However, a target can be any valid filename, or it can be a pseudotar­
get. (For more information, see "Pseudotargets" on page 658.)

NMAKE builds targets specified on the NMAKE command line. If a command­
line target is not specified, NMAKE builds the first target in the first dependency
in the makefile.

The example in Figure 18.1 tells NMAKE how to build a single target file called
MYAPP.EXE if it is missing or out-of-date.

Using Targets in Multiple Description Blocks
A target can appear in only one description block when specified as shown in Fig­
ure 18.1. To update a target using more than one description block, specify two
consecutive colons (::) between targets and dependents. One use for this feature
is for building a complex target that contains components created with different
commands.

Example
The following makefile updates a library:

target.lib :: one.asm two.asm three.asm
ML one.asm two.asm three.asm
LIB target -+one.obj -+two.obj -+three.obj;

ta rget. 1 i b :: fou r. e fi ve. e
CL Ie four.e five.e
LIB target -+four.obj -+five.obj;

If any of the assembly-language files have changed more recently than the library,
NMAKE assembles the source files and updates the library. Similarly, if any of
the C-language files have changed, NMAKE compiles the C files and updates the
library.

Be careful when
specifying the same
target in different
dependencies in the
makefile.

Managing Projects with NMAKE 657

Accumulating Targets in Dependencies
Dependency lines are cumulative when the same target appears more than once in
a single description block. For example,

bounce.exe : jump.obj
bounce.exe : up.obj

echo Building bounce.exe ...

is evaluated by NMAKE as

bounce.exe : jump.obj up.obj
echo Building bounce.exe ...

This evaluation has several effects. Since NMAKE builds the dependency tree
based on one target at a time, the lines can contain other targets, as in:

bounce.exe leap.exe : jump.obj
bounce.exe climb.exe : up.obj

echo Building bounce.exe ...

NMAKE evaluates a dependency for each of the three targets as if each were
specified in a separate description block. If bo u n ce . exe or c 1 i mb . exe is out -of­
date, NMAKE runs the given command. If 1 eap. exe is out-of-date, the given
command does not apply, and NMAKE tries to use an inference rule.

If the same target is specified in two single-colon dependency lines in different
locations in the makefile, and if commands appear after only one of the lines,
NMAKE interprets the dependency lines as if they were adjacent or combined.
This can cause an unwanted side effect: NMAKE does not invoke an inference
rule for the dependency that has no commands (see "Inference Rules" on page
680). Rather, it assumes that the dependencies belong to one description block
and executes the commands specified with the other dependency.

The following makefile is interpreted in the same way as the preceding examples:

bounce.exe : jump.obj
echo Building bounce.exe ...

bounce.exe : up.obj

This effect does not occur if the colons are doubled (::) after the duplicate targets.
A double-colon dependency with no commands block invokes an inference rule,
even if another double-colon dependency containing the same target is followed
by a commands block.

658 Environment and Tools

Pseudotargets
A "pseudotarget" is a target that doesn't specify a file but instead names a label for
use in executing a group of commands. NMAKE interprets the pseudotarget as a
file that does not exist and thus is always out-of-date. When NMAKE evaluates a
pseudotarget, it always executes its commands block. Be sure that the current
directory does not contain a file with a name that matches the pseudotarget.

A pseudotarget name must follow the syntax rules for filenames. Like a filename
target, a pseudotarget name is not case sensitive. However, if the name does not
have an extension (that is, it does not contain a period), it can exceed the 8-
character limit for filenames and can be up to 256 characters long.

A pseudotarget can be listed as a dependent. A pseudotarget used this way must
appear as a target in another dependency; however, that dependency does not need
to have a commands block.

A pseudotarget used as a target has an assumed time stamp that is the most recent
time stamp of all its dependents. If a pseudotarget has no dependents, the assumed
time stamp is the current time. NMAKE uses the assumed time stamp if the pseu­
dotarget appears as a dependent elsewhere in the makefile.

Pseudotargets are useful when you want NMAKE to build more than one target
automatically. NMAKE builds only those targets specified on the NMAKE com­
mand line, or, when no command-line target is specified, it builds only the first
target in the first dependency in the makefile. To tell NMAKE to build multiple
targets without having to list them on the command line, write a description block
with a dependency containing a pseudotarget and list as its dependents the targets
you want to build. Either place this description block first in the makefile or spec­
ify the pseudotarget on the NMAKE command line.

Example 1
In the following example, UPDATE is a pseudotarget.

UPDATE: *.*
lCOPY $** a:\product

If UPDATE is evaluated, NMAKE copies all files in the current directory to the
specified drive and directory.

Example 2
In the following makefile, the pseudotarget all builds both PROJECTI.EXE and
PROJECT2.EXE if either a 11 or no target is specified on the command line. The
pseudotarget setenv changes the LIB environment variable before the .EXE files
are updated:

Dependents

all : setenv project1.exe project2.exe

projectl.exe : projectl.obj
LINK projectl;

project2.exe : project2.obj
LINK project2;

setenv :
set LIB=\project\lib

Managing Projects with NMAKE 659

The dependents section of the dependency line lists zero or more dependent
names. Usually a dependent is a file used to build the target. However, a depen­
dent can be any valid filename, or it can be a pseudotarget. You can specify a path
with the filename. Dependents are not case sensitive. Separate each dependent
name with one or more spaces or tabs. A single or double colon (: or ::) separates
it from the targets section.

Along with dependents you explicitly list in the dependency line, NMAKE can as­
sume an "inferred dependent." An inferred dependent is derived from an inference
rule. (For more information, see "Inference Rules" on page 680.) NMAKE con­
siders an inferred dependent to appear earlier in a dependents list than explicit de­
pendents. It builds inferred dependents into the dependency tree. It is important to
note that when an inf~rred dependent in a dependency is out-of-date with respect
to a target, NMAKE invokes the commands block associated with the dependency,
just as it does with an explicit dependent.

NMAKE uses the dependency tree to make sure that dependents themselves are
updated before it updates their targets. If a dependent file doesn't exist, NMAKE
looks for a way to build it; if it already exists, NMAKE looks for a way to make
sure it is up-to-date. If the dependent is listed as a target in another dependency, or
if it is implied as a target in an inference rule, NMAKE checks that the dependent
is up-to-date with respect to its own dependents; if the dependent file is out-of­
date or doesn't exist, NMAKE executes the commands block for that dependency.

The example in Figure 18.1 lists three dependents after MY APP.EXE:

myapp.exe : myapp.obj another.obj myapp.def

Specifying Search Paths for Dependents
You can specify the directories in which NMAKE should search for a dependent.
The syntax for a directory specification is:

{directory[;directory ...] }dependent

660 Environment and Tools

Enclose one or more directory names in braces ({ }). Separate multiple directories
with a semicolon (;). No spaces are allowed. You can use a macro to specify part
or all of a search path. NMAKE searches the current directory first, then the direc­
tories in the order specified. A search path applies only to a single dependent.

Example
The following dependency line contains a directory specification:

forward.exe : {\src\alpha;d:\proj}pass.obj

The target FORW ARD.EXE has one dependent, PASS.OBJ. The directory list
specifies two directories. NMAKE first searches for PASS.OBJ in the current
directory. IfPASS.OBJ isn't there, NMAKE searches the \ SRC \ ALPHA
directory, then the D:\ PROJ directory.

18.6 Commands
The commands section of a description block or inference rule lists the commands
that NMAKE must run if the dependency is out -of-date. You can specify any com­
mand or program that can be executed from a DOS command line (with a few ex­
ceptions, such as PATH). Multiple commands can appear in a command block.
Each appears on its own line (except as noted in the next section). If a description
block doesn't contain any commands, NMAKE looks for an inference rule that
matches the dependency. (See "Inference Rules" on page 680.) The example in
Figure 18.1 shows a single command following a dependency line.

NMAKE displays each command line before it executes it, unless you specify the
IS option (described on page 650), the .SILENT directive (described on page
687), the !CMDSWITCHES directive (described on page 688), or the @ modi­
fier (described on the following page).

Command Syntax

A command can be
continued over more
than one line.

A command line must begin with one or more spaces or tabs. NMAKE uses this
indentation to distinguish between a dependency line and a command line.

Blank lines cannot appear between the dependency line and the commands block.
However, a line containing only spaces or tabs can appear; this line is interpreted
as a null command, and no error occurs. Blank lines can appear between command
lines.

A long command can span several lines if each line ends with a backslash (\). A
backslash at the end of a line is interpreted as a space on the command line. For ex­
ample, the command shown in Figure 18.1 can be expressed as:

A command can
appear on a
dependency line.

Managing Projects with NMAKE 661

link myapp\
another, , NUL, myl ib, myapp

NMAKE passes the continued lines to the operating system as one long command.
A command continued with a backslash must still be within the operating system's
limit on the length of a command line. If any other character, such as a space or
tab, follows the backslash, NMAKE interprets the backslash and the trailing char­
acters literally.

You can also place a single command at the end of a dependency line, whether or
not other commands follow in the indented commands block. Use a semicolon (;)
to separate the command from the rightmost dependent, as in:

projeet.obj : projeet.e projeet.h ; el Ie projeet.e

Command Modifiers
Command modifiers provide extra control over the commands in a description
block. You can use more than one modifier for a single command. Specify a com­
mand modifier preceding the command being modified, optionally separated by
spaces or tabs. Like a command, a modifier cannot appear at the beginning of a
line. It must be preceded by one or more spaces or tabs.

The following describes the three NMAKE command modifiers.

@command
Prevents NMAKE from displaying the command. Any results displayed by
commands are not suppressed. Spaces and tabs can appear before the com­
mand. By default, NMAKE echoes all makefile commands that it executes.
The IS option (described on page 650) suppresses display for the entire make­
file; the .SILENT directive (described on page 687) suppresses display for
part ofthe makefile.

-[number] command
Turns off error checking for the command. Spaces and tabs can appear before
the command. By default, NMAKE halts when any command returns an error
in the form of a nonzero exit code. This modifier tells NMAKE to ignore errors
from the specified command. If the dash is followed by a number, NMAKE
stops if the exit code returned by the command is greater than that number. No
spaces or tabs can appear between the dash and the number; they must appear
between the number and the command. (For more information on using this
number, see "Exit Codes from Commands" on page 662.) The II option (de­
scribed on page 649) turns off error checking for the entire makefile; the
.IGNORE directive (described on page 687) turns off error checking for part
of the makefile.

662 Environment and Tools

!command
Executes the command for each dependent file if the command preceded by
the exclamation point uses the predefined macros $** or $? (See "Filename
Macros" on page 672.) Spaces and tabs can appear before the command. The
$** macro represents all dependent files in the dependency line. The $? macro
refers to all dependent files in the dependency line that have a later time stamp
than the target.

Example 1
In the following example, the at sign (@) suppresses display of the ECHO com­
mandline:

sort.exe : sort.obj
@ECHO Now sorting ...

The output of the ECHO command is not suppressed.

Example 2
In the following description block, ifthe program sampl e returns a nonzero exit
code, NMAKE does not halt; if sort returns an exit code that is greater than 5,
NMAKE stops:

light.lst : light.txt
-sample light.txt
-5 sort light.txt

Example 3
The description block

print: one.txt two. txt three.txt
!print $** lptl:

generates the following commands:

print one.txt lptl:
print two. txt lptl:
print three.txt lptl:

Exit Codes from Commands
NMAKE stops execution if a command or program executed in the makefile en­
counters an error and returns a nonzero exit code. The exit code is displayed in an
NMAKE error message.

You can control how NMAKE behaves when a nonzero exit code occurs by using
the II or IK option, the .IGNORE directive, the !CMDSWITCHES directive, or
the dash (-) command modifier.

Managing Projects with NMAKE 663

Another way to use exit codes is during preprocessing. You can run a command or
program and test its exit code using the !IF preprocessing directive. For more in­
formation, see "Executing a Program in Preprocessing" on page 692.

Filename-Parts Syntax
NMAKE provides a syntax that you can use in commands to represent com­
ponents of the name of the first dependent file. This file is generally the first file
listed to the right of the colon in a dependency line. However, if a dependent is
implied from an inference rule, NMAKE considers the inferred dependent to be
the first dependent file, ahead of any explicit dependents. If more than one infer­
ence rule applies, the .SUFFIXES list determines which dependent is first. The
filename components are the file's drive, path, base name, and extension as you
have specified it, not as it exists on disk.

You can represent the complete filename with the following syntax:

%s

For example, if a description block contains

sample.exe : c:\project\5ample.obj
LINK %5;

NMAKE interprets the command as

LINK c:\project\5ample.obj;

You can represent parts of the complete filename with the following syntax:

% I [!parts]F

where parts can be zero or more of the following letters, in any order:

Letter Description

No letter Complete name

d Drive

p Path

f File base name

e File extension

U sing this syntax, you can represent the full filename specification by % I F or by
% I dpfeF, as well as by %5.

664 Environment and Tools

Inline Files

Example
The following description block uses filename-parts syntax:

sample.exe : c:\project\sample.obj
LINK %s, a:%lpfF.exe;

NMAKE interprets the first representation as the complete filename of the depen­
dent. It interprets the second representation as a filename with the same path and
base name as the dependent but on the specified drive and with the specified exten­
sion. It executes the following command:

LINK c:\project\sample.obj, a:\project\sample.exe;

Note For another way to represent components of a filename, see "Modifying
Filename Macros" on page 672.

NMAKE can create "inline files" in the commands section of a description block
or inference rule. An inline file is created on disk by NMAKE and contains text
you specify in the makefile. The name of the inline file can be used in commands
in the same way as any filename. NMAKE creates the inline file only when it ex­
ecutes the command in which the file is created.

One way to use an inline file is as a response file for another utility such as LINK
or LIB. Response files avoid the operating system limit on the maximum length of
a command line and automate the specification of input to a utility. Inline files
eliminate the need to maintain a separate response file. They can also be used to
pass a list of commands to the operating system.

Specifying an Inline File
The syntax for specifying an inline file in a command is:

«fJfilename]

Specify the double angle brackets «<) on the command line at the location where
you want a filename to appear. Because command lines must be indented (see
page 660), the angle brackets cannot appear at the beginning of a line. The angle
bracket syntax must be specified literally; it cannot be represented by a macro
expansion.

When NMAKE executes the description block, it replaces the inline file specifica­
tion with the name of the inline file being created. The effect is the same as if a
filename was literally specified in the commands section.

Managing Projects with NMAKE 665

The filename supplies a name for the inline file. It must immediately follow the
angle brackets; no space is permitted. You can specify a path with the filename.
No extension is required or assumed. If a file by the same name already exists,
NMAKE overwrites it; such a file is deleted if the inline file is temporary. (Tem­
porary inline files are discussed in the next section.)

A name is optional; if you don't specify filename, NMAKE gives the inline file
a unique name. Iffilename is specified, NMAKE places the file in the directory
specified with the name or in the current directory if no path is specified. If
filename is not specified, NMAKE places the inline file in the directory specified
by the TMP environment variable or in the current directory if TMP is not defined.
You can reuse a previous inline filename; NMAKE overwrites the previous file.

Creating an Inline File
The instructions for creating the inline file begin on the first line after the com­
mand. The syntax to create the inline file is:

inlinetext

«[KEEP I NOKEEP]

The set of angle brackets marking the end of the inline file must appear at the
beginning of a separate line in the makefile. All inlinetext before the delimiting
angle brackets is placed in the inline file. The text can contain macro expansions
and substitutions. Directives and comments are not permitted in an inline file;
NMAKE treats them as literal text. Spaces, tabs, and newline characters are
treated literally.

The inline file can be temporary or permanent. To retain the file after the end of
the NMAKE session, specify KEEP immediately after the closing set of angle
brackets. If you don't specify a preference, or if you specify NOKEEP (the de­
fault), the file is temporary. KEEP and NOKEEP are not case sensitive. The
temporary file exists for the duration of the NMAKE session.

It is possible to specify KEEP for a file that you do not name; in this case, the
NMAKE-generated filename appears in the appropriate directory after the
NMAKE session.

666 Environment and Tools

Example
The following makefile uses a temporary inline file to clear the screen and then
display the contents of the current directory:

COMMANDS = cls "
dir
showdir :

«showdir.bat
$(COMMANDS)
«

In this example, the name of the inline file serves as the only command in the de­
scription block. This command has the same effect as running a batch file named
SHOWDIR.BAT that contains the same commands as those listed in the macro
definition.

Reusing an Inline File
After an inline file is created, you can use it more than once. To reuse an inline
file in the command in which it is created, you must supply afilename for the file
where it is defined and first used. You can then reuse the name later in the same
command.

You can also reuse an inline file in subsequent commands in the same description
block or elsewhere in the makefile. Be sure that the command that creates the in­
line file executes before all commands that use the file. Regardless of whether you
specify KEEP or NOKEEP, NMAKE keeps the file for the duration of the
NMAKE session.

Example
The following makefile creates a temporary LIB response file named LIB.LRF:

OBJECTS = add.obj sub.obj mul.obj div.obj
math.lib : $(OBJECTS)

LIB math.lib @«lib.lrf
-+$(?: = &"
-+)
listing;
«

copy lib.lrf \projinfo\lib.lrf

The resulting response file tells LIB which library to use, the commands to ex­
ecute, and the name of the listing file to produce:

-+add.obj &
-+sub.obj &
-+mul.obj &
-+div.obj
listing;

The same command
can use more than
one inline file.

Managing Projects with NMAKE 667

The second command in the descripton block tells NMAKE to copy the response
file to another directory.

Using Multiple Inline Files
You can specify more than one inline file in a single command line. For each in­
line specification, specify one or more lines of inline text followed by a closing
line containing the delimiter. Begin the second file's text on the line following the
delimiting line for the first file.

Example
The following example creates two inline files:

target.abc : depend.xyz
copy «filel + «file2 both.txt

I am the contents of filel.
«
I am the contents of file2.
«KEEP

This is equivalent to specifying

copy filel + file2 both.txt

to concatenate two files, where FILEI contains

I am the contents of filel.

and FILE2 contains

I am the contents of file2.

The KEEP keyword tells NMAKE not to delete FILE2. After the NMAKE ses­
sion, the files FILE2 and BOTH.TXT exist in the current directory.

18.7 Macros
Macros offer a convenient way to replace a particular string in the makefile with
another string. You can define your own macros or use predefined macros. Macros
are useful for a variety of tasks, such as:

• Creating a single makefile that works for several projects. You can define a
macro that replaces a dummy filename in the makefile with the specific
filename for a particular project.

• Controlling the options NMAKE passes to the compiler or linker. When you
specify options in a macro, you can change options throughout the makefile in
a single step.

668 Environment and Tools

• Specifying paths in an inference rule. (For an example, see Example 3 in "User­
Defined Inference Rules" on page 682.)

This section describes user-defined macros, shows how to use a macro, and dis­
cusses the macros that have special meaning for NMAKE. It ends by discussing
macro substitutions, inherited macros, and precedence rules.

User-Defined Macros
To define a macro, use the following syntax:

macroname=string

The macroname can be any combination of letters, digits, and the underscore (_)
character, up to 1024 characters. Macro names are case sensitive; NMAKE inter­
prets MyMacro and MYMACRO as different macro names. The macroname can con­
tain a macro invocation. If macroname consists entirely of an invoked macro, the
macro being invoked cannot be null or undefined.

The string can be any sequence of zero or more characters up to 64K-25 (65,510
bytes). A string of zero characters is called a "null string." A string consisting only
of spaces, tabs, or both is also considered a null string.

Other syntax rules, such as the use of spaces, apply depending on where you spec­
ify the macro; see "Where to Define Macros" on page 669. The string can contain
a macro invocation.

Example
The following specification defines a macro named 0 I R and assigns to it a string
that represents a directory.

DIR=c:\objects

Special Characters in Macros
Certain characters have special meaning within a macro definition. You use these
characters to perform specific tasks. If you want one of these characters to have a
literal meaning, you must specify it using a special syntax.

• To specify a comment with a macro definition, place a number sign (#) and the
comment after the definition, as in:

LINKCMD = link ICO # Prepare for debugging

NMAKE ignores the number sign and all characters up to the next newline char­
acter. To specify a literal number sign in a macro, use a caret (A), as in A#.

Spaces in the
makefile and in
TOOLS.INI ...

Managing Projects with NMAKE 669

• To extend a macro definition to a new line, end the line with a backslash (\).
The newline character that follows the backslash is replaced with a space when
the macro is expanded, as in the following example:

LINKCMO = link myapp\
another, , NUL, myl i b, myapp

When this macro is expanded, a space separates myapp and another.

To specify a literal backslash at the end of the line, precede it with a caret (A),
as in:

exepath = e:\binA\

You can also make a backslash literal by following it with a comment speci­
fier (#). NMAKE interprets a backslash as literal if it is followed by any other
character.

• To insert a literal newline character into a macro, end the line with a caret (A).
The caret tells NMAKE to interpret the newline character as part of the macro,
not as a line break ending the macro definition. The following example defines
a macro composed of two operating-system commands separated by a newline
character:

CMOS = elsA
dir

For an illustration of how this macro can be used, see the first example under
"Inline Files" on page 664.

• To specify a literal dollar sign ($) in a macro definition, use two dollar signs
($$). NMAKE interprets a single dollar sign as the specifier for invoking a
macro; see "Using Macros" on page 671.

For information on how to handle other special characters literally, regardless of
whether they appear in a macro, see "Using Special Characters as Literals" on
page 653.

Where to Define Macros
You can define macros in the makefile, on the command line, in a command file,
or in TOOLS.lNI. (For more information, see "Precedence among Macro Defini­
tions" on page 680.) Each macro defined in the makefile or in TOOLS.lNI must
appear on a separate line. The line cannot start with a space or tab.

When you define a macro in the makefile or in TOOLS.lNI, NMAKE ignores any
spaces or tabs on either side of the equal sign. The string itself can contain embed­
ded spaces. You do not need to enclose string in quotation marks (if you do, they
become part of the string). The macro name being defined must appear at the

670 Environment and Tools

... are notthe same
as spaces on the
command line.

beginning of the line. Only one macro can be defined per line. For example, the
following macro definition can appear in a makefile or TOOLS.INI:

LINKCMD = LINK IMAP

Slightly different rules apply when you define a macro on the NMAKE command
line or in a command file. The command-line parser treats spaces and tabs as argu­
ment delimiters. Therefore, spaces must not precede or follow the equal sign. If
string contains embedded spaces or tabs, either the string itself or the entire macro
must be enclosed in double quotation marks (II). For example, either form of the
following command-line macro is allowed:

NMAKE "LINKCMD = LINK IMAP"
NMAKE LINKCMD="LINK IMAP"

However, the following form of the same macro is not permitted. It contains
spaces that are not enclosed by quotation marks:

NMAKE LINKCMD = "LINK IMAP"

Null Macros and Undefined Macros
An undefined macro is not the same thing as a macro defined to be null. Both
kinds of macros expand to a null string. However, a macro defined to be null is
still considered to be defined when used with preprocessing directives such as
!IFDEF. (See "Preprocessing Directives" on page 688). A macro name can be
"undefined" in a makefile by using the !UNDEF preprocessing directive.

To define a macro to be null:

• In a makefile or TOOLS.INI, specify zero or more spaces between the equal
sign (=) and the end ofthe line, as in the following:

LINKOPTIONS =

• On the command line or in a command file, specify zero or more spaces en­
closed in double quotation marks (""), or specify the entire null definition
enclosed in double quotation marks, as in either of the following:

LINKOPTIONS=""
"LINKOPTIONS ="

To undefine a macro, use !UNDEF, as in:

!UNDEF LINKOPTIONS

Using Macros

An undefined macro
is replaced by a null
string.

Special Macros

Managing Projects with NMAKE 671

To use a macro (defined or not), enclose its name in parentheses preceded by a
dollar sign ($), as follows:

$(macroname)

No spaces are allowed. For example, you can use the LINKCMD macro defined as

LINKCMD = LINK Imap

by specifying

$ (LI NKCMD)

NMAKEreplacesthespecification $(LINKCMD) with LINK Imap.

If the name you use as a macro has never been defined, or was previously defined
but is now undefined, NMAKE treats that name as a null string. No error occurs.

The parentheses are optional if macroname is a single character. For example, $ L
is equivalent to $ (L). However, parentheses are recommended for consistency and
to avoid possible errors.

Example
The following makefile defines and uses three macros:

program sample
L LINK
OPTIONS

$(program).exe : $(program).obj
$(L) $(OPTIONS) $(program).obj;

NMAKE interprets the description block as

sample.exe : sample.obj
LINK sample.obj;

NMAKE replaces every occurrence of $ (program) with sampl e, every instance
of $(L) with LINK,andeveryinstanceof $(OPTIONS) with a null string.

NMAKE provides several special macros to represent various filenames and com­
mands. One use for these macros is in the predefined inference rules. (For more
information, see "Predefined Inference Rules" on page 684.) Like user-defined
macro names, special macro names are case sensitive. For example, NMAKE
interprets CC and cc as different macro names.

672 Environment and Tools

Filename macros
conveniently
represent filenames
from the dependency
line.

The following sections describe the four categories of special macros. The file­
name macros offer a convenient representation of filenames from a dependency
line. The recursion macros allow you to call NMAKE from within your makefile.
The command macros and options macros make it convenient for you to invoke
the Microsoft language compilers.

Filename Macros
NMAKE provides macros that are predefined to represent filenames. The file­
names are as you have specified them in the dependency line and not the full speci­
fication of the filenames as they exist on disk. As with all one-character macros,
these do not need to be enclosed in parentheses. (The $$@ and $** macros are ex­
ceptions to the parentheses rule for macros; they do not require parentheses even
though they contain two characters.)

$@
The current target's full name (path, base name, and extension), as currently
specified.

$$@

$*

The current target's full name (path, base name, and extension), as currently
specified. This macro is valid only for specifying a dependent in a dependency
line.

The current target's path and base name minus the file extension.

$**

$?

$<

All dependents of the current target.

All dependents that have a later time stamp than the current target.

The dependent file that has a later time stamp than the current target. You can
use this macro only in commands in inference rules.

Example 1
The following example uses the $? macro, which represents all dependents that
have changed more recently than the target. The! command modifier causes
NMAKE to execute a command once for each dependent in the list. As a result,
the LIB command is executed up to three times, each time replacing a module
with a newer version.

trig.lib : sin.obj cos.obj arctan.obj
!LIB trig.lib -+$?;

Macro modifiers
specify parts of the
predefined filename
macros.

Managing Proiects with NMAKE 673

Example 2
In the next example, NMAKE updates a file in another directory by replacing it
with a file of the same name from the current directory. The $@ macro is used to
represent the current target's full name.

File in objects directory depends on version in current directory
DIR = c:\objects
$(DIR)\a.obj : a.obj

COPY a.obj $@

Modifying Filename Macros
You can append one of the modifiers in the following table to any of the filename
macros to extract part of a filename. If you add one of these modifiers to the ma­
cro, you must enclose the macro name and the modifier in parentheses.

Modifier

D

B

F

R

Example 1

Resulting Filename Part

Drive plus directory

Base name

Base name plus extension

Drive plus directory plus base name

Assume that $@ represents the target C:\SOURCE\PROG\SORT.OBJ. The fol­
lowing table shows the effect of combining each modifier with $@:

Macro Reference Value

$(@D)

$(@F)

$(@B)

$(@R)

C:\SOURCE\PROG

SORT.OBI

SORT

C:\SOURCE\PROG\SORT

If$@ has the value SORT.OBJ without a preceding directory, the value of$(@R)
is SORT, and the value of$(@D) is a period (.) to represent the current directory.

Example 2
The following example uses the F modifier to specify a file of the same name in
the current directory:

Files in objects directory depend on versions in current directory
DIR = c:\objects
$(DIR)\a.obj $(DIR)\b.obj $(DIR)\c.obj : $$(@F)

COpy $(@F) $@

Note For another way to represent components of a filename, see "Filename-Parts
Syntax" on page 663.

674 Environment and Tools

Recursion macros let
you use NMAKE to
call NMAKE.

Recursion Macros
There are three macros that you can use when you want to call NMAKE recur­
sively from within a makefile. These macros can make recursion more efficient.

MAKE
Defmed as the name which you specified to the operating system when you ran
NMAKE; this name is NMAKE unless you have renamed the utility file. Use this
macro to call NMAKE recursively. The IN command-line option to prevent ex­
ecution of commands does not prevent this command from executing. It is rec­
ommended that you do not redefine MAKE.

MAKEDIR
Defined as the current directory when NMAKE was called.

MAKEFLAGS
Defmed as the NMAKE options currently in effect. This macro is passed auto­
matically when you call NMAKE recursively. However, specification of this
macro when invoking recursion is harmless; thus, you can use older makefiles
that specify this macro. You cannot redefine MAKEFLAGS. To change the
ID, II, IN, and IS options within a makefile, use the preprocessing directive
!CMDSWITCHES. (See "Preprocessing Directives" on page 688.) To add
other options to the ones already in effect for NMAKE when recursing, specify
them as part of the recursion command.

Calling NMAKE Recursively
In a commands block, you can specify a call to NMAKE itself. Either invoke the
MAKE macro or specify NMAKE literally. When you call NMAKE recursively
by macro rather than by literally specifying the command NMAKE, NMAKE does
not run a new copy of itself. Instead, it uses its own stack for the recursive parts of
the build. This saves space in memory.

The following NMAKE information is available to the called NMAKE session
during recursion:

• Environment-variable macros (see "Inherited Macros" on page 679). To cause
all macros to be inherited, specify the N option.

• The MAKEFLAGS macro. If .IGNORE (or !CMDSWITCHES +1) is set,
MAKEFLAGS contains an I when it is passed to the recursive call. Likewise,
if .SILENT (or !CMDSWITCHES +S) is set, MAKEFLAGS contains an S
when passed to the call.

• Macros specified on the command line for the recursive call.

• All information in TOOLS.IN!.

Inference rules defined in the makefile are not passed to the called NMAKE ses­
sion. Settings for .SUFFIXES and .PRECIOUS are also not inherited. However,
you can make .SUFFIXES, .PRECIOUS, and all inference rules available to the
recursive call either by specifying them in TOOLS.INl or by placing them in a file

Command macros
are shortcut calls to
Microsoft compilers.

Managing Projects with NMAKE 675

that is specified in an !INCLUDE directive in the makefile for each NMAKE
session.

Example
The MAKE macro is useful for building different versions of a program. The fol­
lowing makefile calls NMAKE recursively to build targets in the \vERSI and
\vERS2 directories.

all : versl vers2

versl
cd \versl
$(MAKE)
cd ..

vers2 :
cd \vers2
$(MAKE) IF vers2.mak
cd •.

If the dependency containing versl as a target is executed, NMAKE performs the
commands to change to the \vERS 1 directory and call itself recursively using the
MAKEFILE in that directory. If the dependency containing ve r 52 as a target is
executed, NMAKE changes to the \ VERS2 directory and calls itself using the file
VERS2.MAK in that directory.

Note Deeply recursive builds can exhaust NMAKE's run-time stack, causing an
error. If this occurs, use the EXEHDR utility to increase NMAKE's stack. See
Chapter 17, "Using EXEHDR."

Command Macros
NMAKE predefines several macros to represent commands for Microsoft prod­
ucts. You can use these macros as commands in either a description block or an in­
ference rule; they are automatically used in NMAKE's predefined inference rules.
(See "Inference Rules" on page 680.) You can redefine these macros to represent
part or all of a command line, including options.

AS
Defined as ml, the command to run the Microsoft Macro Assembler

BC
Defined as bc, the command to run the Microsoft Basic Compiler

CC
Defined as c 1 , the command to run the Microsoft C Compiler

COBOL
Defined as cabo 1, the command to run the Microsoft COBOL Compiler

676 Environment and Tools

Options macros pass
preset options to
Microsoft compilers.

CPP
Defined as c 1, the command to run the Microsoft C++ Compiler

CXX
Defined as c 1 , the command to run the Microsoft C++ Compiler

FOR
Defined as fl, the command to run the Microsoft FORTRAN Compiler

PASCAL
Defined as p 1 , the command to run the Microsoft Pascal Compiler

RC
Defined as re, the command to run the Microsoft Resource Compiler

Options Macros
The following macros represent options to be passed to the commands for invok­
ing the Microsoft language compilers. These macros are used automatically in the
predefined inference rules. (See "Predefined Inference Rules" on page 684.) By
default, these macros are undefined. You can define them to mean the options you
want to pass to the compilers, and you can use these macros in commands in de­
scription blocks and inference rules. As with all macros, the options macros can
be used even if they are undefined; a macro that is undefined or defined to be a
null string generates a null string where it is used.

AFLAGS
Passes options to the Microsoft Macro Assembler

BFLAGS
Passes options to the Microsoft Basic Compiler

CFLAGS
Passes options to the Microsoft C Compiler

COBFLAGS
Passes options to the Microsoft COBOL Compiler

CPPFLAGS
Passes options to the Microsoft C++ Compiler

CXXFLAGS
Passes options to the Microsoft C++ Compiler

FFLAGS
Passes options to the Microsoft FORTRAN Compiler

PFLAGS
Passes options to the Microsoft Pascal Compiler

RFLAGS
Passes options to the Microsoft Resource Compiler

Managing Projects with NMAKE 677

Substitution Within Macros
Just as macros allow you to substitute text in a makefile, you can also substitute
text within a macro itself. The substitution applies only to the current use of the
macro and does not modify the original macro definition. To substitute text within
a macro, use the following syntax:

$(macroname:string] =string2)

Every occurrence of string] is replaced by string2 in the macro macroname. Do
not put any spaces or tabs before the colon. Spaces that appear after the colon are
interpreted as part of the string in which they occur. If string2 is a null string, all
occurrences of string] are deleted from the macroname macro.

Macro substitution is literal and case sensitive. This means that the case as well as
the characters in string] must match the target string in the macro exactly, or the
substitution is not performed. This also means that string2 is substituted exactly
as it is specified. Because substitution is literal, the strings cannot contain macro
expansions.

Example 1
The following makefile illustrates macro substitution:

SOURCES = project.c one.c two.c

project.exe : $(SOURCES:.c=.obj)
LINK $**;

The predefined macro $** stands for the names of all the dependent files (See
"Filename Macros" on page 672.) When this makefile is run, NMAKE executes
the following command:

LINK project.obj one.obj two.obj;

The macro substitution does not alter the SOURCES macro definition; if it is used
again elsewhere in the makefile, SOURCES has its original value as it was defined.

Example 2
If the macro OBJS is defined as

OBJS = ONE.OBJ TWO.OBJ THREE.OBJ

you can replace each space in the defined value of OBJS with a space, followed by
a plus sign, followed by a newline character, by using

$(OBJS: = +"
)

678 Environment and Tools

The caret (A) tells NMAKE to treat the end of the line as a literal newline charac­
ter. The expanded macro after substitution is:

ONE.OBJ +
TWO.OBJ +
THREE.OBJ

This example is useful for creating response files.

Substitution Within Predefined Macros
You can also substitute text in any predefined macro (except $$@) using the same
syntax as for other macros.

The command in the following description block makes a substitution within the
predefined macro $@, which represents the full name of the current target. Note
that although $@ is a single-character macro, when it is used in a substitution, it
must be enclosed in parentheses.

target. abc : depend.xyz
echo $(@:targ=blank)

NMAKE substitutes bl ank for targ in the target, resulting in the string
bl anket. abc. If dependent depend .xyz has a later time stamp than target
ta rget . a bc, then NMAKE executes the command

echo blanket.abc

Environment-Variable Macros
When NMAKE executes, it inherits macro definitions equivalent to every environ­
ment variable that existed before the start of the NMAKE session. If a variable
such as LIB or INCLUDE has been set in the operating-system environment, you
can use its value as if you had specified an NMAKE macro with the same name
and value. The inherited macro names are converted to uppercase. Inheritance oc­
curs before preprocessing. The IE option causes macros inherited from environ­
ment variables to override any macros with the same name in the makefile.

You can redefine environment-variable macros the same way that you define or
redefine other macros. Changing a macro does not change the corresponding en­
vironment variable; to change the variable, use a SET command. Also, using the
SET command to change an environment variable in an NMAKE session does not
change the corresponding macro; to change the macro, use a macro definition.

If an environment variable has not been set in the operating-system environment,
it cannot be set using a macro definition. However, you can use a SET command
in the NMAKE session to set the variable. The variable is then in effect for the rest

Managing Projects with NMAKE 679

of the NMAKE session unless redefined or cleared by a later SET command. A
SET definition that appears in a makefile does not create a corresponding macro
for that variable name; if you want a macro for an environment variable that is
created during an NMAKE session, you must explicitly define the macro in addi­
tion to setting the variable.

Warning If an environment variable contains a dollar sign ($), NMAKE interprets
it as the beginning of a macro invocation. The resulting macro expansion can
cause unexpected behavior and possibly an error.

Example
The following makefile redefines the environment-variable macro called LI B:

LIB = c:\tools\lib

sample.exe : sample.obj
LINK sample;

No matter what value the environment variable LIB had before, it has the value
c: \ too 1 s \ 1 i b when NMAKE executes the LINK command in this description
block. Redefining the inherited macro does not affect the original environment
variable; when NMAKE terminates, LIB still has its original value.

If LIB is not defined before the NMAKE session, the LIB macro definition in the
preceding example does not set a LID environment variable for the LINK com­
mand. To do this, use the following makefile:

Inherited Macros

sample.exe : sample.obj
SET LIB=c:\tools.lib
LINK sample;

When NMAKE is called recursively, the only macros that are inherited by the
called NMAKE are those defined on the command line or in environment vari­
ables. Macros defined in the makefile are not inherited when NMAKE is called
recursively. There are several ways to pass macros to a recursive NMAKE
session:

• Run NMAKE with the N option. This option causes all macros to be inherited
by the recursively called NMAKE. You can use this option on the NMAKE
command for the entire session, or you can specify it in a command for a recur­
sive NMAKE call to affect just the specified recursive session.

• Use the SET command before the recursive call to set an environment variable
before the called NMAKE session.

680 Environment and Tools

• Define a macro on the command line for the recursive call.

• Define a macro in the TOOLS.INI file. Each time NMAKE is recursively
called, it reads TOOLS.IN!.

Precedence Among Macro Definitions
If you define the same macro name in more than one place, NMAKE uses the
macro with the highest precedence. The precedence from highest to lowest is as
follows:

1. A macro defined on the command line

2. A macro defined in a makefile or include file

3. An inherited environment-variable macro

4. A macro defined in the TOOLS.INI file

5. A predefined macro, such as CC and AS

The IE option causes macros inherited from environment variables to override any
macros with the same name in the makefile. The !UNDEF directive in a makefile
overrides a macro defined on the command line.

18.8 Inference Rules
Inference rules are templates that define how a file with one extension is created
from a file with another extension. NMAKE uses inference rules to supply com­
mands for updating targets and to infer dependents for targets. In the dependency
tree, inference rules cause targets to have inferred dependents as well as explicitly
specified dependents; see "Inferred Dependents" on page 685. The .SUFFIXES
list determines priorities for applying inference rules; see "Dot Directives" on
page 687.

Inference rules provide a convenient shorthand for common operations. For in­
stance, you can use an inference rule to avoid repeating the same command in
several description blocks. You can define your own inference rules or use pre­
defined inference rules. Inference rules can be specified in the makefile or in
TOOLS.IN!.

Inference rules can be used in the following situations:

• If NMAKE encounters a description block that has no commands, it checks the
.sUFFIXES list and the files in the current or specified directory and then
searches for an inference rule that matches the extensions of the target and an
existing dependent file with the highest possible .SUFFIXES priority.

Managing Projects with NMAKE 681

• If a dependent file doesn't exist and is not listed as a target in another descrip­
tion block, NMAKE looks for an inference rule that shows how to create the
missing dependent from another file with the same base name.

• If a target has no dependents and its description block has no commands,
NMAKE can use an inference rule to create the target.

• If a target is specified on the command line and there is no makefile (or no men­
tion of the target in the makefile), inference rules are used to build the target.

If a target is used in more than one single-colon dependency, an inference rule
might not be applied as expected; see "Accumulating Targets in Dependencies" on
page 657.

Inference Rule Syntax

An inference rule
applies to a single
target and dependent.

Inference rules apply
only to files with
extensions listed in
.SUFFIXES.

To define an inference rule, use the following syntax:

Jromext.toext:
commands

The first line lists two extensions:fromext represents the extension of a dependent
file, and to ext represents the extension of a target file. Extensions are not case sen­
sitive. Macros can be invoked to representfromext and to ext; the macros are ex­
panded during preprocessing.

The period (.) precedingfromext must appear at the beginning of the line. The
colon (:) can be preceded by zero or more spaces or tabs; it can be followed only
by spaces or tabs, a semicolon (;) to specify a command, a number sign (#) to
specify a comment, or a newline character. No other spaces are allowed.

The rest of the inference rule gives the commands to be run if the dependency is
out-of-date. Use the same rules for commands in inference rules as in description
blocks. (See "Commands" on page 660.)

An inference rule can be used only when a target and dependent have the same
base name. You cannot use a rule to match multiple targets or dependents. For
example, you cannot define an inference rule that replaces several modules in a
library because all but one of the modules must have a different base name from
the target library.

Inference rules can exist only for dependents with extensions that are listed in the
.SUFFIXES directive. (For information on .SUFFIXES, see "Dot Directives" on
page 687.) If an out-of-date dependency does not have a commands block, and if
the .SUFFIXES list contains the extension of the dependent, NMAKE looks for
an inference rule matching the extensions of the target and of an existing file in the
current or specified directory. If more than one rule matches existing dependent
files, NMAKE uses the order of the .SUFFIXES list to determine which rule to

682 Environment and Tools

Inference rules can
make a makefile
unnecessary .

invoke. Priority in the list descends from left to right. NMAKE may invoke a rule
for an inferred dependent even if an explicit dependent is specified; for more infor­
mation, see "Inferred Dependents" on page 685.

Inference rules tell NMAKE how to build a target specified on the command line
if no makefile is provided or if the makefile does not have a dependency contain­
ing the specified target. When a target is specified on the command line and
NMAKE cannot find a description block to run, it looks for an inference rule to
tell it how to build the target. You can run NMAKE without a makefile if the infer­
ence rules that are predefined or defined in TOOLS.INI are all you need for your
build.

Inference Rule Search Paths
The inference-rule syntax described previously tells NMAKE to look for the
specified files in the current directory. You can also specify directories to be
searched by NMAKE when it looks for files. An inference rule that specifies
paths has the following syntax:

{frompath } .fromext {topath} .toext:
commands

No spaces are allowed. Thefrompath directory must match the directory specified
for the dependent file; similarly, topath must match the target's directory specifi­
cation. For NMAKE to apply an inference rule to a dependency, the paths in the
dependency line must match the paths specified in the inference rule exactly. For
example, if the current directory is called PRO], the inference rule

{ .. \proj}. exe{ .. \proj}. obj:

does not apply to the dependency

projectl.exe : projectl.obj

If you use a path on one extension in the inference rule, you must use paths on
both. You can specify the current directory by either a period (.) or an empty pair
of braces (U).

You can specify only one path for each extension in an inference rule. To specify
more than one path, you must create a separate inference rule for each path.

Macros can be invoked to representfrompath and topath; the macros are expanded
during preprocessing.

User-Defined Inference Rules
The following examples illustrate several ways to write inference rules.

Managing Projects with NMAKE 683

Example 1
The following makefile contains an inference rule and a minimal description block:

.e.obj:
el Ie $<

sample.obj :

The inference rule tells NMAKE how to build a .OBJ file from a.C file. The pre­
defined macro $< represents the name of a dependent that has a later time stamp
than the target. The description block lists only a target, SAMPLE.OBJ; there is
no dependent or command. However, given the target's base name and extension,
plus the inference rule, NMAKE has enough information to build the target.

After checking to be sure that . e is one of the extensions in the .SUFFIXES list,
NMAKE looks for a file with the same base name as the target and with the .C ex­
tension. If SAMPLE.C exists (and no files with higher-priority extensions exist),
NMAKE compares its time to that of SAMPLE.OBJ. If SAMPLE.C has changed
more recently, NMAKE compiles it using the CL command listed in the inference
rule:

el Ie sample.e

Example 2
The following inference rule compares a .C file in the current directory with the
corresponding .OBJ file in another directory:

{.}.e{e:\objeets}.obj:
el Ie $<;

The path for the .C file is represented by a period. A path for the dependent exten­
sion is required because one is specified for the target extension.

This inference rule matches a dependency line containing the same combination of
paths, such as:

e:\objeets\test.obj : test.e

This rule does not match a dependency line such as:

test.obj : test.e

In this case, NMAKE uses the predefined inference rule for .c.obj when building
the target.

Example 3
The following inference rule uses macros to specify paths in an inference rule:

684 Environment and Tools

COIR = projlsre
OBJ_OIR = projlobj
{$(C_OIR)}.e{$(OBJ_OIR)}.obj:

el Ie $

If the macros are redefined, NMAKE uses the definition that is current at that
point during preprocessing. To reuse an inference rule with different macro defini­
tions, you must repeat the rule after the new definition:

C_OIR = projlsre
OBJ_OIR = projlobj
{$(C_OIR)}.e{$(OBJ_OIR)}.obj:

el Ie $<
C_OIR = proj2sre
OBJ_OIR = proj2obj
{$(C_OIR)}.e{$(OBJ_OIR)}.obj:

el Ie $<

Predefined Inference Rules
NMAKE provides predefined inference rules containing commands for creating
object, executable, and resource files. Table 18.1 describes the predefined infer­
ence rules.

Table lS.l Predefined Inference Rules

Rule Command Default Action

.asm.exe $(AS) $(AFLAGS) $*.asm ML$*.ASM

.asm.obj $(AS) $(AFLAGS) Ie $*.asm ML/c $*.ASM

.c.exe $(CC) $(CFLAGS) $*.c CL$*.C

.c.obj $(CC) $(CFLAGS) Ic $*.c CLlc $*.C

.cpp.exe $(CPP) $(CPPFLAGS) $*.cpp CL$*.CPP

.cpp.obj $(CPP) $(CPPFLAGS) Ic $*.cpp CLlc $*.CPP

.cxx.exe $(CXX) $(CXXFLAGS) $* .cxx CL$*.CXX

.cxx.obj $(CXX) $(CXXFLAGS) Ic $*.cxx CLle$*.CXX

.bas.obj $(BC) $(BFLAGS) $*.bas; BC$*.BAS;

.cbLexe $(COBOL) $(COBFLAGS) $*.cbl, $*.exe; COBOL $* .CBL, $* .EXE;

.cbl.obj $(COBOL) $(COBFLAGS) $*.cbl; COBOL $*.CBL;

.for.exe $(FOR) $(FFLAGS) $*.for FL$*.FOR

.for.obj $(FOR) Ie $(FFLAGS) $*.for FL/C $*.FOR

.pas.exe $(PASCAL) $(PFLAGS) $*.pas PL $*.PAS

.pas.obj $(PASCAL) Ie $(PFLAGS) $* .pas PL/c $*.PAS

.fC.res $(RC) $(RFLAGS) Ir $* RC Ir$*

Managing Projects with NMAKE 685

For example, assume you have the following makefile:

sample.exe :

This description block lists a target without any dependents or commands.
NMAKE looks at the target's extension (.EXE) and searches for an inference
rule that describes how to create an .EXE file. Table 18.1 shows that more than
one inference rule exists for building an .EXE file. NMAKE uses the order of the
extensions appearing in the .SUFFIXES list to determine which rule to invoke.
It then looks in the current or specified directory for a file that has the same base
name as the target sa mp 1 e and one of the extensions in the .SUFFIXES list; it
checks the extensions one by one until it finds a matching dependent file in the
directory.

For example, if a file called SAMPLE.FOR exists, NMAKE applies the. for. exe
inference rule. If both SAMPLE.C and SAMPLE.FOR exist, and if . c appears
before . for in the .SUFFIXES list, NMAKE instead uses the . c. exe inference
rule to compile SAMPLE.C and links the resulting file SAMPLE.OBJ to create
SAMPLE.EXE.

Note By default, the options macros such as CFLAGS are undefined. As ex­
plained in "Using Macros" on page 671, this causes no problem; NMAKE re­
places
an undefined macro with a null string. Because the predefined options macros are
included in the inference rules, you can define these macros and have their as­
signed values passed automatically to the predefined inference rules.

Inferred Dependents
NMAKE can assume an "inferred dependent" for a target if there is an applicable
inference rule. An inference rule is applicable if:

• The to ext in the rule matches the extension of the target being evaluated.

• The fromext in the rule matches the extension of a file that has the same base
name as the target and that exists in the current or specified directory.

• The fromext is in the .SUFFIXES list.

• No otherfromextin a matching rule is listed in .SUFFIXES with a higher
priority.

• No explicitly specified dependent has a higher priority extension.

If an existing dependent matches an inference rule and has an extension with a
higher .SUFFIXES priority, NMAKE does not infer a dependent.

NMAKE does not necessarily execute the commands block in an inference rule
for an inferred dependent. If the target's description block contains commands,
NMAKE executes the description block's commands and not the commands in the

686 Environment and Tools

inference rule. The effect of an inferred dependent is illustrated in the following
example:

project.obj ;
cl IZi Ic project.c

If a make file contains this description block and if the current directory contains a
file named PROJECT.C and no other files, NMAKE uses the predefined inference
rule for . c. obj to infer the dependent proj ect. c. It does not execute the prede­
fined rule's command, cl I c proj ect. c. Instead, it runs the command specified
in the makefile.

Inferred dependents can cause unexpected side effects. In the following examples,
assume that both PROJECT.ASM and PROJECT.C exist and that .SUFFIXES
contains the default setting. If the makefile contains

project.obj : project.c

NMAKEinfers the dependent project.asm ahead of project.c because
.SUFFIXES lists . asm before . c and because a rule for . asm. obj exists. If
either PROJECT.ASM or PROJECT.C is out-of-date, NMAKE executes the
commands in the rule for . asm. obj.

However, if the dependency in the preceding example is followed by a commands
block, NMAKE executes those commands and not the commands in the inference
rule for the inferred dependent.

Another side effect occurs because NMAKE builds a target if it is out-of-date with
respect to any of its dependents, whether explicitly specified or inferred. For ex­
ample, if PROJECT.OBJ is up-to-date with respect to PROJECT.C but not with
respect to PROJECT.ASM, and if the makefile contains

project.obj : project.c
cl IZi Ic project.c

NMAKE infers the dependent proj ect. asm and updates the target using the com­
mand specified in this description block.

Precedence Among Inference Rules
If the same inference rule is defined in more than one place, NMAKE uses the rule
with the highest precedence. The precedence from highest to lowest is as follows:

1. An inference rule defined in the makefile. If more than one rule is defined, the
last rule applies.

2. An inference rule defined in the TOOLS.INI file. If more than one rule is de­
fined, the last rule applies.

Managing Projects with NMAKE 687

3. A predefined inference rule.

User-defined inference rules always override predefined inference rules. NMAKE
uses a predefined inference rule only if no user-defined inference rule exists for a
given target and dependent.

If two inference rules match a target's extension and a dependent is not specified,
NMAKE uses the inference rule whose dependent's extension appears first in the
.SUFFIXES list.

18.9 Directives

Dot Directives

NMAKE provides several ways to control the NMAKE session through dot direc­
tives and preprocessing directives. Directives are instructions to NMAKE that are
placed in the makefile or in TOOLS.INI. NMAKE interprets dot directives and
preprocessing directives and applies the results to the makefile before processing
dependencies and commands.

Dot directives must appear outside a description block and must appear at the
beginning of a line. Dot directives begin with a period (.) and are followed by
a colon (:). Spaces and tabs can precede and follow the colon. These directive
names are case sensitive and must be uppercase .

. IGNORE :
Ignores nonzero exit codes returned by programs called from the makefile. By
default, NMAKE halts if a command returns a nonzero exit code. This directive
affects the makefile from the place it is specified to the end of the file. To turn
it off again, use the !CMDSWITCHES preprocessing directive. To ignore the
exit code for a single command, use the dash (-) command modifier. To ignore
exit codes for an entire file, invoke NMAKE with the II option .

. PRECIOUS : targets
Tells NMAKE not to delete targets if the commands that build them are inter­
rupted. This directive has no effect if a command is interrupted and handles the
interrupt by deleting the file. Separate the target names with one or more spaces
or tabs. By default, NMAKE deletes the target if building was interrupted by
CTRL+C or CTRL+BREAK. Multiple specifications are cumulative; each use of
.PRECIOUS applies to the entire makefile .

. SILENT:
Suppresses display of the command lines as they are executed. By default,
NMAKE displays the commands it invokes. This directive affects the makefile
from the place it is specified to the end of the file. To turn it off again, use the
!CMDSWITCHES preprocessing directive. To suppress display of a single

688 Environment and Tools

command line, use the @ command modifier. To suppress the command dis­
play for an entire file, invoke NMAKE with the IS option .

• SUFFIXES : list
Lists file suffixes (extensions) for NMAKE to try to match when it attempts to
apply an inference rule. (For details about using .SUFFIXES, see "Inference
Rules" on page 680.) The list is predefined as follows:

.SUFFIXES : .exe .obj .asm .c .cpp .cxx .bas .cbl .for .pas .res .rc

To add additional suffixes to the end of the list, specify

.SUFFIXES : suffix list

where suffixlist is a list of the additional suffixes, separated by one or more
spaces or tabs. To clear the list, specify

.SUFFIXES :

without extensions. To change the list order or to specify an entirely new list,
you must clear the list and specify a new setting. To see the current setting, run
NMAKE with the IP option.

Preprocessing Directives
NMAKE preprocessing directives are similar to compiler preprocessing directives.
You can use several of the directives to conditionally process the makefile. With
other preprocessing directives you can display error messages, include other files,
undefine a macro, and turn certain options on or off. NMAKE reads and executes
the preprocessing directives before processing the makefile as a whole.

Preprocessing directives begin with an exclamation point (!), which must appear at
the beginning of the line. Zero or more spaces or tabs can appear between the ex­
clamation point and the directive keyword; this allows indentation for readability.
These directives (and their keywords and operators) are not case sensitive.

!CMDSWITCHES {+I-}opt ...
Turns on or off one or more options. (For descriptions of options, see page
647.) Specify an operator, either a plus sign (+) to turn options on or a minus
sign (-) to turn options off, followed by one or more letters representing op­
tions. Letters are not case sensitive. Do not specify the slash (/). Separate the
directive from the operator by one or more spaces or tabs; no space can appear
between the operator and the options. To turn on some options and turn off
other options, use separate specifications of the !CMDSWITCHES directives.

Managing Projects with NMAKE 689

All options with the exception of IF, IHELP, INOLOGO, IX, and I? can appear
in !CMDSWITCHES specifications in TOOLS.INI. In a makefile, only the let­
ters D, I, N, and S can be specified. If !CMDSWITCHES is specified within a
description block, the changes do not take effect until the next description
block. This directive updates the MAKEFLAGS macro; the changes are in­
herited during recursion.

!ERRORtext
Displays text to standard error in the message for error U 1 050, then stops the
NMAKE session. This directive stops the build even if IK, II, .IGNORE,
!CMDSWITCHES, or the dash (-) command modifier is used. Spaces or tabs
before text are ignored.

!MESSAGE text
Displays text to standard output, then continues the NMAKE session. Spaces or
tabs before text are ignored.

!INCLUDE [<]filename[>]
Reads and evaluates the file filename as a makefile before continuing with the
current makefile. NMAKE first looks for filename in the current directory if
filename is specified without a path; if a path is specified, NMAKE looks in the
specified directory. Next, ifthe !INCLUDE directive is itself contained in a file
that is included, NMAKE looks forfilename in the parent file's directory; this
search is recursive, ending with the original makefile's directory. Finally, if
filename is enclosed by angle brackets « », NMAKE searches in the directo­
ries specified by the INCLUDE macro. The INCLUDE macro is initially set to
the value of the INCLUDE environment variable.

!IF constantexpression
Processes the statements between the !IF and the next !ELSE or !ENDIF if
constantexpression evaluates to a nonzero value.

!IFDEF macroname
Processes the statements between the !IFDEF and the next !ELSE or !ENDIF
if macroname is defined. NMAKE considers a macro with a null value to be
defined.

!IFNDEF macroname
Processes the statements between the !IFNDEF and the next !ELSE or
!ENDIF if macroname is not defined.

!ELSE [IF constantexpressionlIFDEF macronamelIFNDEF macroname]
Processes the statements between the !ELSE and the next !ENDIF if the pre­
ceding !IF, !IFDEF, or !IFNDEF statement evaluated to zero. The optional
keywords give further control of preprocessing.

690 Environment and Tools

!ELSEIF
Synonym for !ELSE IF.

!ELSEIFDEF
Synonym for !ELSE IFDEF.

!ELSEIFNDEF
Synonym for !ELSE IFNDEF.

!ENDIF
Marks the end of an !IF, !IFDEF, or !IFNDEF block. Anything following
!ENDIF on the same line is ignored.

!UNDEF macroname
Undefines a macro by removing macroname from NMAKE's symbol table.
(For more information, see "Null Macros and Undefined Macros" on page 670.

Example
The following set of directives

! IF
!ELSE

IF
ENDIF

!ENDIF

is equivalent to the set of directives

! IF
!ELSE IF
!ENDIF

Expressions in Preprocessing
The constantexpression used with the !IF or !ELSE IF directives can consist of in­
teger constants, string constants, or program invocations. You can group expres­
sions by enclosing them in parentheses. NMAKE treats numbers as decimals
unless they start with 0 (octal) or Ox (hexadecimal).

Expressions in NMAKE use C-style signed long integer arithmetic; numbers are
represented in 32-bit two's-complement form and are in the range -2147483648 to
2147483647.

Two unary operators evaluate a condition and return a logical value of true (1) or
false (0):

Managing Projects with NMAKE 691

DEFINED (macroname)
Evaluates to true if macroname is defined. In combination with the !IF or
!ELSE IF directives, this operator is equivalent to the !IFDEF or !ELSE
IFDEF directives. However, unlike these directives, DEFINED can be used
in complex expressions using binary logical operators.

EXIST (path)
Evaluates to true if path exists. EXIST can be used in complex expressions
using binary logical operators. If path contains spaces (allowed in some file
systems), enclose it in double quotation marks.

Integer constants can use the unary operators for numerical negation (-), one's
complement (-), and logical negation (!).

Constant expressions can use any binary operator listed in Table 18.2. To compare
two strings, use the equality (==) operator and the inequality (!=) operator. En­
close strings in double quotation marks.

Table 18.2 Binary Operators for Preprocessing

Operator

+

*
I
%

&

A

&&
II

«
»

!=

<
>
<=
>=

Example

Description

Addition

Subtraction

Multiplication

Division

Modulus

Bitwise AND

Bitwise OR

BitwiseXOR

Logical AND

Logical OR

Left shift

Right shift

Equality

Inequality

Less than

Greater than

Less than or equal to

Greater than or equal to

The following example shows how preprocessing directives can be used to control
whether the linker inserts debugging information into the .EXE file:

692 Environment and Tools

NMAKE can run
programs before
processing the
makefile.

!INCLUDE <infrules.txt>
!CMDSWITCHES +D
winner.exe : winner.obj
!IF DEFINED(debug)

!ELSE

IF "$(debug)"=="y"
LINK ICO winner.obj;

ELSE
LINK winner.obj;

ENDIF

ERROR Macro named debug is not defined.
!ENDIF

In this example, the !INCLUDE directive inserts the INFRULES.TXT file into
the makefile. The !CMDSWITCHES directive sets the ID option, which displays
the time stamps of the files as they are checked. The !IF directive checks to see if
the macro debug is defined. If it is defined, the next !IF directive checks to see if
it is set to y. If it is, NMAKE reads the LINK command with the ICO option;
otherwise, NMAKE reads the LINK command without ICO. If the debug macro
is not defined, the !ERROR directive prints the specified message and NMAKE
stops.

Executing a Program in Preprocessing
You can invoke a program or command from within NMAKE and use its exit
code during preprocessing. NMAKE executes the command during preprocessing,
and it replaces the specification in the makefile with the command's exit code. A
nonzero exit code usually indicates an error. You can use this value in an expres­
sion to control preprocessing.

Specify the command, including any arguments, within brackets ([]). You can
use macros in the command specification; NMAKE expands the macro before ex­
ecuting the command.

Example
The following part of a makefile tests the space on disk before continuing the
NMAKE session:

!IF [c:\util\checkdsk] != 0
ERROR Not enough disk space; NMAKE terminating.

!ENDIF

18.10 Sequence of NMAKE Operations
When you write a complex makefile, it can be helpful to know the sequence in
which NMAKE performs operations. This section describes those operations and
their order.

NMAKE first looks for
a makefile.

Macro definitions
follow a priority.

Inference rules also
follow a priority.

Managing Projects with NMAKE 693

When you run NMAKE from the command line, NMAKE's first task is to find the
makefile:

1. If the IF option is used, NMAKE searches for the filename specified in the op­
tion. If NMAKE cannot find that file, it returns an error.

2. If the IF option is not used, NMAKE looks for a file named MAKEFILE in the
current directory. If there are targets on the command line, NMAKE builds
them according to the instructions in MAKEFILE. If there are no targets on the
command line, NMAKE builds only the first target it finds in MAKEFILE.

3. If NMAKE cannot find MAKEFILE, NMAKE looks for target files on the com­
mand line and attempts to build them using inference rules (either defined by
the user in TOOLS.lNI or predefined by NMAKE). If no target is specified,
NMAKE returns an error.

NMAKE then assigns macro definitions with the following precedence (highest to
lowest):

1. Macros defined on the command line

2. Macros defined in a make file or include file

3. Inherited macros

4. Macros defined in the TOOLS.lNI file

5. Predefined macros (such as CC and RFLAGS)

Macro definitions are assigned first in order of priority and then in the order in
which NMAKE encounters them. For example, a macro defined in an include file
overrides a macro with the same name from the TOOLS.lNI file. Note that a ma­
cro within a makefile can be redefined; a macro is valid from the point it is defined
until it is redefined or undefined.

NMAKE also assigns inference rules, using the following precedence (highest to
lowest):

1. Inference rules defined in a makefile or include file

2. Inference rules defined in the TOOLS.lNI file

3. Predefined inference rules (such as .c.obj)

You can use command-line options to change some of these priorities.

• The IE option allows macros inherited from the environment to override macros
defined in the makefile.

• The IR option tells NMAKE to ignore macros and inference rules that are de­
fined in TOOLS.lNI or are predefined.

694 Environment and Tools

NMAKE preprocesses
directives before
running the makefile
commands.

NMAKE updates
targets in the
makefile.

Errors usually stop
the build.

Next, NMAKE evaluates any preprocessing directives. If an expression for condi­
tional preprocessing contains a program in brackets ([]), the program is invoked
during preprocessing and the program's exit code is used in the expression. If an
!INCLUDE directive is specified for a file, NMAKE preprocesses the included
file before continuing to preprocess the rest of the makefile. Preprocessing deter­
mines the final makefile that NMAKE reads.

NMAKE is now ready to update the targets. If you specified targets on the com­
mand line, NMAKE updates only those targets. If you did not specify targets on
the command line, NMAKE updates only the first target in the makefile. If you
specify a pseudotarget, NMAKE always updates the target. If you use the IA op­
tion, NMAKE always updates the target, even if the file is not out-of-date.

NMAKE updates a target by comparing its time stamp to the time stamp of each
dependent of that target. A target is out -of-date if any dependent has a later time
stamp; if the IB option is specified, a target is out-of-date if any dependent has a
later or equal time stamp.

If the dependents of the targets are themselves out-of-date or do not exist,
NMAKE updates them first. If the target has no explicit dependent, NMAKE
looks for an inference rule that matches the target. If a rule exists, NMAKE up­
dates the target using the commands given with the inference rule. If more than
one rule applies to the target, NMAKE uses the priority in the .SUFFIXES list
to determine which inference rule to use.

NMAKE normally stops processing the makefile when a command returns a non­
zero exit code. In addition, if NMAKE cannot tell whether the target was built
successfully, it deletes the target. The /l command-line option, .IGNORE direc­
tive, !CMDSWITCHES directive, and dash (-) command modifier all tell
NMAKE to ignore error codes and attempt to continue processing. The IK option
tells NMAKE to continue processing unrelated parts of the build if an error oc­
curs. The .PRECIOUS directive prevents NMAKE from deleting a partially
created target if you interrupt the build with CTRL+C or CTRL+BREAK. You can
document errors by using the !ERROR directive to print descriptive text. The
directive causes NMAKE to print some text, then stop the build.

18.11 A Sample NMAKE Makefile
The following example illustrates many of NMAKE' s features. The makefile
creates an executable file from C-language source files:

Managing Projects with NMAKE 695

, This makefile builds SAMPLE.EXE from SAMPLE.C,
, ONE.C, and TWO.C, then deletes intermediate files.

CFLAGS
LFLAGS
CODEVIEW

Ic IAL 10d $(CODEVIEW) 'controls compiler options
ICO , controls linker options
IZi , controls debugging information

OBJS = sample.obj one.obj two.obj

all : sample.exe

sample.exe : $(OBJS)
link $(LFLAGS) @«sample.lrf

$(OBJS: =+A
)

sample.exe
sample.map;
«KEEP

sample.obj : sample.c sample.h common.h
CL $(CFLAGS) sample.c

one.obj : one.c one.h common.h
CL $(CFLAGS) one.c

two.obj : two.c two.h common.h
CL $(CFLAGS) two.c

clean:
-del *. obj
-del *.map
-del *.lrf

Assume that this makefile is named SAMPLE.MAK. To invoke it, enter

NMAKE IF SAMPLE.MAK all clean

NMAKE builds SAMPLE.EXE and deletes intermediate files.

Here is how the makefile works. The CFLAGS, CODEVIEW, and LFLAGS macros de­
fine the default options for the compiler, linker, and inclusion of debugging infor­
mation. You can redefine these options from the command line to alter or delete
them. For example,

NMAKE IF SAMPLE.MAK CODEVIEW= CFLAGS= all clean

creates an .EXE file that does not contain debugging information.

The OBJS macro specifies the object files that make up the executable file
SAMPLE.EXE, so they can be reused without having to type them again. Their
names are separated by exactly one space so that the space can be replaced with

696 Environment and Tools

a plus sign (+) and a carriage return in the link response file. (This is illustrated in
the second example in "Substitution Within Macros" on page 677.)

The all pseudotarget points to the real target, samp1 e. exe.lfyou do not specify
any target on the command line, NMAKE ignores the c1 ean pseudotarget but still
builds a 11 because a 11 is the first target in the makefile.

The dependency line containing the target samp1 e. exe makes the object files
specified in OBJS the dependents of samp1 e. exe. The command section of the
block contains only link instructions. No compilation instructions are given since
they are given explicitly later in the file. (You can also define an inference rule to
specify how an object file is to be created from a C source file.)

The 1 ink command is unusual because the LINK parameters and options are not
passed directly to LINK. Rather, an inline response file is created containing these
elements. This eliminates the need to maintain a separate link response file.

The next three dependencies define the relationship of the source code to the ob­
ject files. The .H (header or include) files are also dependents since any changes to
them also require recompilation.

The c1 ean pseudotarget deletes unneeded files after a build. The dash (-) com­
mand modifier tells NMAKE to ignore errors returned by the deletion commands.
If you want to save any of these files, don't specify c 1 ea n on the command line;
NMAKE then ignores the c1 ean pseudotarget.

18.12 NMAKE Exit Codes
NMAKE returns an exit code to the operating system or the calling program. A
value of 0 indicates execution of NMAKE with no errors. Warnings return exit
codeO.

Code Meaning

o No error

Incomplete build (issued only when IK is used)

2 Program error, possibly due to one of the following:

• A syntax error in the makefile

• An error or exit code from a command

• An interruption by the user

4 System error-out of memory
255 Target is not up-to-date (issued only when IQ is used)

Managing Libraries with LIB

This chapter describes the Microsoft Library Manager (LIB) version 3.20. LIB
creates and manages standard libraries, which are used to resolve references to
external routines and data during static linking.

19.1 Overview

There is a difference
between an objectlile
and an object module.

LIB creates, organizes, and maintains standard libraries. Standard libraries are col­
lections of compiled or assembled object modules that provide a common set of
useful routines and data. You use these libraries to provide your program with the
routines and data at link time; this is called static linking. After you have linked a
program to a library, the program can use a routine or data item exactly as if it
were included in the program.

With LIB you can create a library file, add modules to a library, and delete or re­
place them. You can combine libraries into one library file and copy or move a
module to a separate object file. You can also produce a listing of all public sym­
bols in the library modules.

LIB works with the following kinds of files:

• Object files in the Microsoft Relocatable Object-Module Format (OMF), which
is based on the Intel 8086 OMF

• Standard libraries in Microsoft library format

• Import libraries created by the Microsoft Import Library Manager (IMPLIB)

• 286 XENIX archives and Intel-style libraries

This chapter distinguishes between an "object file" and an "object module." An
object file is an independent file that can have a full path and extension (usually
.OBJ). An object module is an object file that has been incorporated into a library.
Object modules in the library have only base names. For example, SORT is an
object-module name, while B:\RUN\SORT.OBJ is an object-file name.

698 Environment and Tools

19.2 Running LIB
To run LIB, type LI B at the operating system prompt and press ENTER. You can
provide input to LIB in three ways, separately or in combination:

• Specify input on the command line.

• Respond to the prompts that LIB displays.

• Specify a response file that contains the expected input.

The LIB Command Line
You can run LIB and specify all the input it needs from the command line. The
LIB command line has the following form:

LIB oldlibrary [options] [commands] [, [lisifUe] [, [newlibrary]]] [;]

Fields must appear in order but can be left blank (except for oldlibrary). A semi­
colon (;) after any field terminates the command; LIB assumes defaults for any re­
maining fields. The fields are described in "Specifying LIB Fields," which begins
on page 699.

To terminate the session at any time, press CTRL+C.

The following example instructs LIB to combine the object files FIRST.OBJ and
SECOND.OBJ and to name the combined library THIRD.LIB:

LIB FIRST +SECDND, , THIRD

For a more detailed example of running LIB from the command line, see page 707.

LIB Command Prompts
If you do not specify all expected input on the command line and do not end the
line with a semicolon, LIB asks you for the missing input by displaying four
prompts. LIB waits for you to respond to each prompt and then asks for the next
input. The responses you give to the LIB command prompts correspond to the
fields on the LIB command line. The following list shows these correspondences:

Library name: oldlibrary [options]
Operations: commands
List file: listfile
Output library: newlibrary

You can select default responses to the remaining prompts at any time by typing a
single semicolon (;) followed immediately by a carriage return. The defaults for
prompts are the same as the defaults for the corresponding command-line fields.

Managing Libraries with LIB 699

The following example specifies TH I RD as the output library-file name at the
prompt:

Output library: THIRD

For a more detailed example of how to use the LIB prompts, see page 707.

The LIB Response File
To run LIB without typing the full command line or responses to prompts, you
can use a response file. You must first create a response file, which is a text file
containing the command-line information; you can write and edit this file in PWB
or use another editor. Then invoke LIB using the following command:

LIB @ response file

The response file is the name of a text file containing some or all ofthe input ex­
pected by LIB. You can specify a full path with the filename. Precede it with an
at sign (@).

You can also enter the name of the response file at any position in a command line
or after any of LIB's prompts. The input from the response file is treated exactly
as if it had been entered in the command line or after prompts. When you run LIB
with a response file, LIB displays prompts followed by the input from the re­
sponse file. If the response file does not contain all expected input and does not
end with a semicolon, LIB prompts for the remaining responses.

Each input field in the response file must appear on a separate line or must be
separated from other fields on the same line by a comma. A carriage-return and
linefeed combination is equivalent to pressing ENTER in response to a prompt or
to entering a comma in a command line. Input must appear in the same order as
in the command-line fields or at the LIB prompts.

The following response file tells LIB to add the object files CURSOR.OBJ and
HEAP.OBJ as the last two modules in LIBFOR.LIB:

LIBFOR
+CURSOR +HEAP;

19.3 Specifying LIB Fields
For all three methods of input, LIB expects information to be specified in a defi­
nite order and organized into fields. This section describes the input fields in the
order required by LIB. The fields are oldlibrary, options, commands, listfile, and
new library.

700 Environment and Tools

The Library File

LIB Options

The oldlibrary field specifies the name of an existing library or a library to be
created. If you omit the extension, LIB assumes an extension of .LIB. You can
specify a full path with the filename.

Important The path and filename cannot contain a dash character (-). LIB inter­
prets the dash as the LIB "delete" operator.

Creating a library File
To create a new library file, give the name of the library file you want to create in
the oldlibrary field of the command line or at the Lib r a r y n a me: prompt. LIB
supplies the .LIB extension.

The name of the new library file must not be the name of an existing file. If it is,
LIB assumes that you want to change the existing file. When you give the name of
a library file that does not currently exist, LIB displays the following prompt:

Library file does not exist. Create?

Press y to create the file or N to terminate the library session. If the library name
is followed immediately by commands, a comma, or a semicolon, LIB suppresses
the message and assumes Y.

Performing Consistency Checks
If oldlibrary is followed immediately by a semicolon (;), LIB performs a consis­
tency check on the specified library to see if all the modules in the library are in
usable form. LIB prints a message only if it finds an invalid object module; no
message appears if all modules are intact. LIB puts the message in the listing file
if one is created; otherwise, it writes the message to the standard output.

The following example causes LIB to perform a consistency check of the library
file FOR.LIB if the library file exists.

LIB FOR;

No other action is performed. LIB displays any consistency errors it finds and
ends the session. If FOR.LIB does not exist, LIB creates an empty library file with
that name.

Options are not case sensitive and can appear only between the oldlibrary and
commands fields on the command line or at the Libra ry Name: prompt following

Managing libraries with LIB 701

the oldlibrary specification. The option name must be preceded by a forward slash
(I) as the option specifier. (Do not use a dash, as the option specifier. LIB inter­
prets a dash as the "delete" operator.) Options can be abbreviated to the shortest
unique name; the brackets show the optional part of the name. This chapter uses
meaningful yet legal forms of the option names, which may be longer than the
shortest unique names. LIB has the following options:

IH[ELP]
Calls the QuickHelp utility. If LIB cannot find the Help file or QuickHelp, it
displays a brief summary of LIB command-line syntax.

II [GNORECASE]
Tells LIB to ignore case when comparing symbols. LIB does this by default.
Use the /NOI option to create a library that is marked as case sensitive.

Use IIGN when combining a case-sensitive library with others that are not case
sensitive to create a new library that is not case sensitive. (See the /NOI option
for more information.)

/NOE[XTDICTIONARY]
Prevents LIB from creating an extended dictionary of cross-references between
modules. LINK uses the extended dictionary to speed up a library search.
(LINK also has an option called /NOE, where /NOE means "do not read an ex­
tended dictionary.")

Creating an extended dictionary requires more memory. If LIB reports the error
message no more vi rtua 1 memory, either use /NOE or build the library with
fewer modules.

/NOI[GNORECASE]
Tells LIB to preserve case when comparing symbols. By default, LIB ignores
case. Use /NOI when you have symbols that are the same except for case.
(When LINK uses the library, it ignores case unless LINK's /NOI option is
specified.)

If a library is built with /NOI, the library is internally marked to indicate that
case sensitivity is in effect. (Libraries for case-sensitive languages such as Care
built with /NOI.) If you combine multiple libraries and anyone of them is case
sensitive, LIB marks the output library as case sensitive. To override this, use
the IIGN option.

/NOL[OGO]
Suppresses the LIB copyright message.

JP[AGESIZE]:number
Specifies the page size of a new library or changes the page size of an existing
library. The number specifies the new page size in bytes. It must be an integer
power of 2 between 16 and 32,768. The default page size is 16 bytes for a new
library or the current page size for an existing library. Combined libraries take
the largest component page size.

702 Environment and Tools

LIB Commands

/?

The page size of a library sets the alignment of modules stored in the library.
Modules start at locations that are a multiple of the page size from the begin­
ning of the file. When creating a library, LIB builds a dictionary, which holds
the locations of each name in each module. Each location value represents the
number of pages in the file. Because of this addressing method, a library with a
large page size can hold more modules than a library with a smaller page size.

The page size also determines the maximum possible size of the .LIB file. This
limit is number * 64K. For example, / PAGE: 32 limits the .LIB file to 2 mega­
bytes (32 * 65,536 bytes). However, for each module in the library, an average
of numberl2 bytes of storage space is wasted. In most cases, a small page size is
advantageous; you should use a small page size unless you need to put a very
large number of modules in a library.

Displays a brief summary of LIB command-line syntax.

The commands field specifies five operations for performing library-management
tasks with LIB and manipulating modules: add, delete, replace, copy, and move.
These commands can be used on the command line or in a response file in re­
sponse to the Operati ons: prompt. To use this field, type a command operator
followed immediately by a module name or an object-file name. You can specify
more than one operation in this field in any order. If you leave the commands field
blank, LIB does not make any changes to oldlibrary.

If you have many operations to perform during a library session, you can use an
ampersand (&) to extend the operations line. Type the ampersand after a module
name or filename; do not put the ampersand between an operator and a name. Im­
mediately after the ampersand, press ENTER and then continue to type the rest of
the command line. You can use this technique on the command line or in response
to a prompt. When the ampersand is entered at a prompt, it tells LIB to repeat the
Ope rat ions: prompt. In a response file, begin a new line of commands after the
ampersand. See the examples at the end of this chapter for an illustration of the use
of the ampersand.

You can perform one or more library-management functions during a LIB session.
For each session, LIB determines whether a new library is being created or an ex­
isting library is being examined or modified. It then processes commands in the
following order:

1. Deletion and move commands. LIB does not actually delete modules from the
existing library file. Instead, it marks the selected modules for deletion, creates
a new library file, and copies only the modules not marked for deletion into the
new library file. If there are no deletion or move commands, LIB creates the
new file by copying the original library file. (The newlibrary field, described on
page 706, controls what happens to the existing library.)

Managing Libraries with LIB 703

2. Addition commands. Like deletions, additions are not performed on the original
library file. Instead, the additional modules are appended to the end of the new
library file.

As LIB carries out these commands, it reads the object modules in the library and
checks them for validity. It then builds a dictionary, an extended dictionary (unless
/NOE is specified), and a listing file (if a listfile is specified). The listing file con­
tains a list of all public symbols and the names of the modules in which they are
defined.

Important Paths and filenames specified with these commands cannot contain a
dash character (-). LIB interprets the dash as the LIB "delete" operator.

The Add Command (+)
Use the add command to create a library file, to add a module, or to combine li­
braries. The command has the form:

+ name

where name is the name of the object file or library file. If no extension is spec­
ified, LIB assumes .OBJ. You can specify a path with the filename.

Creating a New Library Use the add command to create a new library from one
or more object files. Specify the name of the new library in the oldlibrary field,
then specify each object file's name preceded by a plus sign. In the following ex­
ample, LIB is instructed to create the library file FIRST.LIB containing the object
module called MORE:

LIB FIRST +MORE;

Adding Library Modules Use the add command to add an object module to a
library. Give the name of the object file to be added immediately following the
plus sign. LIB adds object modules to the end of a library file.

LIB strips the drive, path, and extension from the object-file name and leaves only
the base name. This becomes the name of the object module in the library. For ex­
ample, if the object file B:\CURSOR.OBJ is added to a library file, the name of
the corresponding object module is CURSOR.

In the following example, LIB is instructed to add the module MORE to the al­
ready existing library file FIRST.LIB:

LIB FIRST +MORE;

704 Environment and Tools

Combining Libraries To combine the contents oftwo libraries, supply the name
of a library instead of an object file. In addition to standard libraries, LIB lets you
combine import libraries (created by IMPLIB), 286 XENIX archives, and Intel­
format libraries.

Specify the plus sign followed by the name of the library whose contents you wish
to add to the original library . You must include the .LID extension of the library
name. Otherwise, LIB assumes that the file is an object file and looks for the file
with an .OBJ extension.

LIB adds the modules of the new library to the end of the original library. Note
that the added library still exists as an independent library. LID copies the modules
without deleting them.

Once you have added the contents of a library or libraries, you can save the new,
combined library under a new name by giving a new name in the newlibrary field.
If you omit this field, LIB saves the combined library under the name of the origi­
nallibrary, that is, the name given in the oldlibrary field. The original library is
saved with the same base name and the extension .BAK.

The following example combines DRA W.LIB and CHART.LID into a library
with the filename GRAPHICS.LIB: LIB;commands

LIB DRAW +CHART.LIB, ,GRAPHICS

The Delete Command (-)
Use the delete command to delete an object module from a library. The command
has the form:

-name

where name is the name of the module to be deleted. A module name does not
have a path or extension; it is simply a name, such as CURSOR.

The following example tells LIB to delete the FLOAT module from the
MATH.LIB library:

LIB MATH -FLOAT;

The Replace Command (-+)
Use the replace command to replace a module in the library. The command has the
form:

-+name

Managing Libraries with LIB 705

where name is the name of the module to be replaced. A module name has no path
and no extension. LIB deletes the given module and then appends the object file
having the same name as the module. The object file is assumed to have an .OBJ
extension and to reside in the current directory.

The following three examples of command lines are equivalent. All three instruct
LIB to replace the HEAP module in the library LANG.LIB. LIB deletes the HEAP
module from the library and then appends the object file HEAP.OBJ as a new
module in the library. Delete operations are always carried out before add opera­
tions, regardless of the order in which they are specified.

LI B LANG -+H EAP ;
LIB LANG -HEAP +HEAP;
LIB LANG +HEAP -HEAP;

The Copy Command (*)
Use the copy command to copy a module from the library file into a newly created
object file of the same name. The command has the following form:

*name

where name is the name of the module to be copied. The module remains in the
library file. LIB names the object file by using the base name of the module and
adding an .OBJ extension. It then puts it in the current directory. You cannot over­
ride this filename or location; however, you can later rename the file and copy or
move it to any location. LIB writes the full name of the object file (including
drive, path to the current directory, base name, and extension) into the header of
the object file.

The Move Command (-*)
Use the move command to move an object module from the library file to an ob­
ject file. The command has the form:

-*name

where name is the name of the module to be moved. This operation is equivalent
to copying the module to an object file using the copy command (*) and then delet­
ing the module from the library using the delete command (-).

The Cross-Reference Listing
A cross-reference listing contains two lists in the following order:

1. An alphabetical list of all public symbols in the library. Each symbol name is
followed by the name of the module in which it is defined.

706 Environment and Tools

2. A list of the modules in the library with the location and size of each. Under
each module name is an alphabetical listing of the public symbols defined in
that module.

Create a cross-reference listing by giving a name for the listing file in the listflle
field of the command line or at the List fi 1 e: prompt. To create it in a directory
other than the current one, specify a full path for the listing file. LIB does not
supply a default extension if you omit the extension. When you do not specify a
filename, the default is the special file named NUL, which tells LIB not to create
a listing.

The following example creates a listing called LCROSS.PUB. It does nothing else
except perform a consistency check of the library file LANG.LIB.

LIB LANG, LCROSS.PUB;

The Output Library
The new library field specifies a name for a changed library file. You can specify a
full path with the filename. LID does not supply a default extension if you omit the
extension.

You can change an existing library file by giving the name of the library file at the
Library name: prompt. All operations you specify in the commands field of the
command line or at the Operati ons: prompt are performed on that library.

LIB keeps both the unchanged library file and the newly changed version; it
copies the library and makes changes to the copy. (This prevents the loss of your
original file if you terminate LID before the session is finished.) It names the two
versions as follows:

• If you specify the name of a new library file in the new library field, the mod­
ified library is stored under that name, and the original library is preserved
under its own name.

• If you leave the field blank, LIB replaces the original library file with the
changed version of the library and saves the original library file with the exten­
sion .BAK. Either way, at the end of a session you have two library files: the
changed version and the original version.

Note You need enough space on your disk for both the original library file and the
copy.

Examples

Managing libraries with LIB 707

All the following examples instruct LIB to:

• Suppress the creation of an extended dictionary of cross-references.

• Delete the module HEAP from the library.

• Move the module STUFF from the library FIRST.LIB to an object file called
STUFF.OBJ; the module STUFF is deleted from the library.

• Copy the module MORE from the library to an object file called MORE.OBJ;
the module MORE remains in the library.

• Name the revised library SECOND.LIB. The new library contains all the mod­
ules in FIRST.LIB except STUFF and HEAP.

• Leave the original library, FIRST.LIB, unchanged.

• Create a cross-listing file called CROSSLST.

Command-Line Example

LIB FIRST INOE -*STUFF *MORE &
-HEAP, CROSSLST, SECOND

LIB Prompt Example

Library Name: FIRST INOE
Operations: -*STUFF *MORE &
Operations: -HEAP
List File: CROSSLST
Output file: SECOND

Response-File Example

FIRST INOE
-*STUFF *MORE &
-HEAP
CROSSLST
SECOND

708 Environment and Tools

19.4 LIB Exit Codes
LIB returns an exit code (also called return code or error code) to the operating sys­
tem or the calling program. You can use the exit code to control the operation of
batch files or makefiles.

Code Meaning

o No error.

2 Program error. Commands or files given as input to the utility produced
the error.

4 System error. The library manager encountered one of the following
problems:

• There was insufficient memory.

• An internal error occurred
• The user interrupted the session.

Creating Help Files with
HELPMAKE

This chapter describes how to create and modify Help files using the Microsoft
Help File Maintenance Utility (HELPMAKE) version 1.08. A "Help file" is a file
that can be read by the Microsoft Advisor Help system and QuickHelp. If you've
used the Programmer's WorkBench (PWB) or one of the Microsoft Quick lan­
guages, you already know the advantages of the Microsoft Advisor. HELPMAKE
extends these advantages by allowing you to customize the Microsoft Help files or
create your own Help files.

HELPMAKE translates Help source files to a Help database accessible within the
following environments:

• Microsoft Programmer's WorkBench (PWB)

• Microsoft QuickHelp utility

• Microsoft CodeView debugger

• Microsoft Editor version 1.02

• Microsoft QuickC compiler versions 2.0 and later

• Microsoft QuickBasic versions 4.5 and later

• Microsoft QuickPascal version 1.0

• Microsoft Word version 5.5

• MS-DOS EDIT version 5.0

• MS-DOS QBasic version 5.0

Warning The PWB editor breaks lines longer than about 250 characters. Some
Help sources contain lines longer than this. To edit files that have long lines, you
must either use an editor (such as Microsoft Word) that does not restrict line
length or extend long lines using the backslash (\) line-continuation character.

710 Environment and Tools

20.1 Overview
HELPMAKE creates a Help file by encoding a source file. A Help file contains in­
formation that can be read by a Help reader (sometimes referred to in this chapter
as an application). Examples of Help readers are the Microsoft Advisor or Micro­
soft QuickHelp. Help files have an .HLP extension.

Source files for HELPMAKE are text files that contain topic text along with attri­
butes and commands that tell HELPMAKE how to process the file. HELPMAKE
encodes text files written in the following formats: QuickHelp, rich text format
(RTF), and minimally formatted ASCII.

Encoding compresses the text and translates the commands into information for
the Help reader. You can control the amount of compression and other aspects of
encoding.

HELPMAKE can also decode an existing Help file. Decoding decompresses the
text into ASCII format. Attributes and commands can be preserved or omitted
during decoding. You can modify an existing Help file by using HELPMAKE to
decode the file and then rebuild it into a different Help file. You can even modify
a Microsoft help file by decompressing it and then encoding it with your changes.
Regardless of the source format, HELPMAKE always decodes a Help file into the
QuickHelp format.

The basic unit of Help is the database. A Help database is an individual file
created by HELPMAKE. At the time it is created, it is given an internal name that
is the same as the filename on disk. If the file is later renamed, the database retains
this internal name as it is known by HELPMAKE and the Help reader.

A Help system consists of one or more physical Help files that are available to a
Help reader. A physical Help file is a file on disk with an .HLP extension. It can
contain a single database (with either the same or a different filename) or multiple
databases. To create a physical Help file that contains several Help databases, use
the DOS COPY command. Specify the /b modifier to combine them as binary
files. You can merge several databases into one physical Help file, combine two or
more physical Help files, or append a Help database to an existing physical Help
file. For example, the following command concatenates three individual Help
databases into a new physical Help file:

COPY helpl.hlp /b + help2.hlp /b + help3.hlp /b myhelp.hlp

The next example merges the database yourhel p. hl p with the existing Help file
utils.hlp:

COPY utils.hlp /b + yourhelp.hlp /b

Creating Help Files with HELPMAKE 711

It is recommended that you back up existing Help files before running the COPY
command. You may need to concatenate Help files if you reach a limit on physical
files imposed by your system or the Help reader.

You can use HELPMAKE to deconcatenate, or split, a physical Help file that con­
tains multiple databases. If you want to decompress such a Help file, you must
first split it and then decompress each database.

When designing a Help system, it is important to know that a single database is
more efficient to search than multiple databases or physical Help files.

20.2 Running HELPMAKE

Encoding

The following sections describe HELPMAKE syntax and options for encoding
a Help file, decoding or deconcatenating a Help file, and getting Help on
HELPMAKE.,Some options apply only to encoding, others apply only to decod­
ing, and a few apply to both.

The following are some general rules for syntax:

• Options are not case sensitive. Precede each option with either a forward slash
(I) or a dash (-).

• You can specify a path with a filename. Separate multiple filenames with
spaces or tabs. Where multiple files can be specified, you can use wildcard
characters (* and ?).

To create a Help file, use the following syntax:

HELPMAKE lE[n] IOoutfile options source files

The IE option encodes a Help source file and creates a compressed Help database.
The n is a decimal number that specifies the type of compression. If n is omitted,
HELPMAKE compresses the file as much as possible (about 50 percent). The
value of n is in a range from 0 through 15, which represents the following com­
pression techniques:

Value

o
1
2

4

8

Technique

No compression

Run-length compression

Keyword compression

Extended keyword compression

Huffman compression

712 Environment and Tools

You can add these values to combine compression techniques. For example, spec­
ify /E3 to get run-length and keyword compression. Use /EO to create the database
quickly during the testing stages of database creation when you are not yet con­
cerned with size.

The 10 option specifies a filename for the database. This option is required when
encoding.

Additional options are discussed in the next section and in "Other Options" on
page 715.

The source files field specifies one or more text files that contain Help source
information.

Options for Encoding
The following options control encoding:

lAc

IC

Specifies c as a control character for the Help database. A control character
marks a line that contains special information for internal use by the Help
reader. Control characters differ for each Help reader. For example, the Micro­
soft Advisor uses a colon (:) to indicate a command, so you must specify I A:
when building a Help file for use with the Advisor. HELPMAKE assumes I A:
if the IT option is specified.

Makes context strings case sensitive.

IKfilename
Optimizes keyword compression by supplying a list of characters to act as word
separators. The filename is a text file that contains a list of separator characters.

HELPMAKE can apply "keyword compression" to words that occur often
enough to justify replacing them with shorter character sequences. A "word" is
any series of characters that do not appear in the separator list. The default sepa­
rator list includes all ASCII characters from 0 to 32, ASCII character 127, and
the following characters:

!"#&"O*+-,/:;<=>?@[\]A_{I}-

You can improve keyword compression by designing a separator list tailored to
a specific Help file. For example, a number sign (#) is treated as a separator by
default. However, in a Help file about the C language, you might want to have
HELPMAKE treat each directive such as #include as a keyword instead of as a
separator followed by a word. To encode #include and other directives as key­
words, create a separator list that omits the number sign:

!" &"()*+_,/:;<=>?@[\]A_{I}_

Decoding

IL

Creating Help Files with HElPMAKE 713

ASCII characters in the range from 0 through 31 are always separators, so
you do not need to list them. However, a customized list must include all other
separators, including the space (ASCII character 32). If you omit the space,
HELPMAKE will not use spaces as word separators.

Locks the Help file so that it cannot be decoded later.

ISn

rr

Specifies the type of input file, according to the following n values:

Option File Type

lSI

IS2

IS3

Rich text fonnat (RTF)

QuickHelp (the default)

Minimally fonnatted ASCII

Translates dot commands into internal format. If your source file contains dot
commands other than .context and .comment, you must supply this option. The
rr option is required if you want to use commands in the QuickHelp dot format.
Dot commands are described on page 722. HELPMAKE assumes the I A: op­
tion if rr is specified.

IWwidth
Sets the fixed width of the resulting Help text in number of characters. The
width is a decimal number in a range from 11 through 255. If IW is omitted, the
default width is 76. When encoding an RTF source (lSI), HELPMAKE wraps
the text to width characters. When encoding QuickHelp (lS2) or minimally for­
matted ASCII (lS3) files, HELPMAKE truncates lines to this width.

Example
The following example invokes HELPMAKE with the IV, IE, and 10 options:

HELPMAKE IE IV IOmy.hlp my.txt > my. log

HELPMAKE reads input from the source file my. txt and creates the compressed
Help database my. hl p. The IE option, without a compression specification, maxi­
mizes compression. The DOS redirection symbol (» sends a log of HELPMAKE
diagnostic information to the file my.l og. You may want to redirect the output to
a file when using IV because the verbose mode can generate a lengthy log.

To decode a Help file, use the following syntax:

HELPMAKE /D[c] [/Oouifile] options source files

714 Environment and Tools

Getting Help

The ID option decodes a Help file or splits a concatenated file into its component
databases. The ID option can take a qualifying character c, which is either S or U.

Specify ID without a qualifying character to fully decode a database into a text file
that is in QuickHelp format, with all links and formatting information intact. If the
physical Help file contains concatenated databases, only the first database is de­
coded.

Specify IDU to decompress the database and remove all screen formatting and
links. If the physical Help file contains concatenated databases, only the first data­
base is decoded.

Specify IDS to split (deconcatenate) a physical Help file that contains one or more
databases. HELPMAKE creates a physical Help file for each database in the origi­
nal Help file. The Help file is not decompressed. HELPMAKE names the decon­
catenated files using the names of the databases. The deconcatenated files are
placed in the current directory. If a database in the file has a name that matches the
name of the original physical Help file, HELPMAKE issues an error. In this case,
rename the physical Help file, or run HELPMAKE in another directory and spec­
ify a path with the source file. Do not use the /0 option with IDS.

The /0 option specifies a filename for the decoded file. If /0 is not specified,
HELPMAKE sends the text to standard output. This option is not valid when
using IDS.

There is one option available to control decoding. The IT option translates com­
mands from internal format to dot-command format. This option applies only
when using ID. It is recommended to always use this option to make the resulting
source file more readable.

Additional options are discussed in "Other Options" on page 715.

The source files field specifies one or more physical Help files.

Example
The following example decodes the Help file my. hlp into the source file my. s rc:

HELPMAKE ID IT IOmy.src my.hlp

To get help on HELPMAKE, use the following syntax:

HELPMAKE {/H[ELP] II?}

The following are the options for Help:

Other Options

Creating Help Files with HELPMAKE 715

I?
Displays a brief summary of the HELPMAKE command-line syntax and exits
without encoding or decoding any files. All other information on the command
line is ignored.

/H[ELP]
Calls the QuickHelp utility and displays Help about HELPMAKE. If
HELPMAKE cannot find QuickHelp or the Help file, it displays the same
information as with the I? option. No files are encoded or decoded. All other
information on the command line is ignored.

The following options apply whether encoding or decoding.

The /NOLOGO option
The INOLOGO option suppresses the HELPMAKE copyright message.

TheN option
The N option controls the verbosity of diagnostic and informational output.
HELPMAKE sends this information to standard output. The syntax for N is:

N[n]

Specify N without n to get a full output. The decimal number n controls the
amount of information produced. Numbers in a range from 0 through 3 are valid
only for decoding. The values of n are:

Option

N

NO
Nl

N2

N3

N4

N5

N6

Output

Maximum diagnostic output

No diagnostic output and no banner

HELPMAKE banner only

Pass names

Context strings encountered on first pass

Context strings encountered on each pass

Any intermediate steps within each pass

Statistics on Help file and compression

716 Environment and Tools

20.3 Source File Formats
You can create Help source files for HELPMAKE in any of three formats. The
QuickHelp format is the default format for encoding. When Help databases are de­
coded, the resulting text files are always in QuickHelp format. The discussion that
follows uses QuickHelp format to describe how to create a Help source file. Later
sections describe the two other formats: rich text format (RTF) and minimally for­
matted ASCII.

Rich text format is a Microsoft word-processing format that is supported by
several word processors, including Microsoft Word version 5.0 and later and
Microsoft Word for Windows. For more information, see "Rich Text Format"
on page 725.

Minimally formatted ASCII files define contexts and their topic text. They cannot
contain formatting commands or explicit links. For more information, see "Mini­
mally Formatted ASCII" on page 728.

In addition to these three formats, you can link to unformatted ASCII files from
within a Help database. Unformatted ASCII files are text files with no formatting
commands, context definitions, or special information. You do not process unfor­
matted ASCII files with HELPMAKE. An unformatted ASCII file does not be­
come a database or part of a physical Help file. The file's name is used as the
object of a link. For example, you can create a link to an include file or a program
example. Any word that is an implicit link in other Help files is also an implicit
link in unformatted ASCII files.

A Help system can use any combination of files with different format types.

20.4 Elements of a Help Source File

Defining a Topic

The following sections describe how to create the fundamental elements of a Help
file.

A Help source file is a text file that consists of a sequence of topics. A topic is the
fundamental unit of Help information. It is usually a screen of information about a
particular subject.

Each topic begins with one or more consecutive .context statements or definitions.
The topic consists of all subsequent lines up to the next .context statement. A con­
text definition associates the topic with a "context string," which is the word or
phrase for which you want to be able to request Help. When Help is requested on

Creating Help Files with HELPMAKE 717

a context string, the Help reader displays the topic. A context definition has the fol­
lowing form:

.context string

The .context command defines a context string for the topic that follows it. A con­
text string can contain one word or several words depending on the Help reader
and the delimiters it understands. For example, because Microsoft QuickBasic con­
siders spaces to be delimiters, a context string in a QuickBasic Help file is limited
to a single word. Other applications, such as PWB, can handle context strings that
span several words. In either case, the application hands the context string to an in­
ternal "Help engine" that searches the database for a topic that is marked with the
requested context string.

For example, the following line introduces Help for the #include directive:

.context #include

A topic can be associated with more than one context string. For example, the
C-language functions strtod, strtol, _strtold, and strtoul are described in a
single topic, and each is defined in a separate .context command for that topic,
as follows:

.context strtod

.context _strtold

.context strtol

.context strtoul

Warning HELPMAKE warns you if it encounters a duplicate context definition
within a given Help source file. Each context string must be unique within a
database. You cannot associate a single context string with several topics in a
single database.

A context string can be global or local. The string for a local context is preceded
by an at sign (@). For more information, see "Local Contexts" on page 720.

Creating Links to Other Topics
A topic can contain a link to another topic. Links let you navigate a Help database.
When a topic is displayed, you can ask for Help on links contained in the topic.
These links can be associated with other contexts in the same Help database, con­
texts in other Help databases, or even ASCII files on disk. You can view the cross­
referenced material immediately by activating the link without having to search
the Help system's indexes and tables of contents for the topic.

The keystroke that activates a link depends on the application. Consult the docu­
mentation for each product for the various ways to get Help on a link. In Microsoft

718 Environment and Tools

language products, use ENTER, SPACEBAR, or Fl. Ifthe file that contains the link's
destination is not already open, the Help reader finds it and opens it.

The topic text can present the link in various ways, depending on how you want to
design your Help system. The link can appear as a "See:" cross-reference, for ex­
ample, or as a button that contains a title surrounded by special characters. It can
even be undistinguished from surrounding text.

A link is either explicit (coded) or implicit (available without coding). It is asso­
ciated with either a global context (visible throughout the Help system) or a local
context (visible only in one database). The following sections discuss these fea­
tures of links.

Explicit links
An explicit link is a word or phrase coded with invisible text that provides the con­
text to which the link refers or the action which the Help reader is to take. Use the
\ v formatting attribute to delimit the invisible text. Format the explicit link in the
source file using the following syntax:

string\vtext\v

If string consists of more than one word, you must anchor the string with the \ a
formatting attribute as follows:

\astring\vtext\v

An anchored link must be specified entirely on one line.

The \ v attributes surround the invisible text, which is one of the following com­
mands to the Help reader:

contextstring
Display the topic associated with contextstring when the link is activated. The
context string must be available either as a local context in the same Help data­
base or as a global context anywhere in the Help system. For a discussion of
global and local contexts, see "Local Contexts" on page 720.

help file ! contextstring
Search help file for contextstring and display the topic associated with it. Only
the specified Help database or physical Help file is searched for the context.
Since helpfile is not in the local database, contextstring must be a global con­
text. Use this specification to confine the search to a single database if a context
is contained in more than one database and you want only one of the topics to
be found.

filename!
Display filename as a single topic. The specified file must be a text file no
larger than 64 K.

Creating Help Files with HElPMAKE 719

!command
Execute the command specified after the exclamation point (!). The command
is case sensitive. Commands are application-specific. For example, in the
Microsoft Advisor and QuickHelp, the command !B represents the previously
accessed topic.

In the following example, the word Exampl e is an explicit link:

\bSee also:\p Example\vopen.ex\v

The \v formatting attribute marks the explicit link in the Help text. The \b and \p
are formatting attributes that mark See a 1 so: as bold text. (Formatting attributes
are described on page 721.) The link refers to open. ex. On the screen, this line ap­
pears as follows:

See also: Example

If you select any letter in Examp 1 e and request Help, the Help reader displays the
topic whose context is open. ex.

To create an explicit link that contains more than one word, you must use an an­
chor, as in the following example:

\bSee also:\p \aExample l\vopen.exl\v, \aExample 2\vopen.ex2\v

The \ a attribute creates an anchor for the explicit link. The phrase following the
\ a attribute refers to the context specified in the invisible text. The first \v attribute
marks both the end of the anchored string and the beginning of the invisible text.
The second \v attribute ends the invisible text. The anchored link must fit on one
line.

Implicit links
An implicit link is a single word for which a global context exists somewhere in
the Help system. Any word that appears as a global context is implicitly linked.
You do not code the word to create the link. When you ask for Help on a word that
exists as an implicit link, the Help reader displays the topic that has a .context
string that matches the selected word.

For example, suppose that the Help database contains a screen that starts with:

.context open

If you ask for Help on the word "open" (using the features for requesting Help that
are available in your Help reader), the topic that begins with . context open is dis­
played. An explicit link to the topic is not necessary. For example, in PWB you
can place the cursor on the word "open" as it appears in your source file or in a

720 Environment and Tools

displayed Help topic, then click the right mouse button or press FI. Thus, every
occurrence of "open" is a potential implicit link.

local Contexts
A "local context" is a context string that begins with an at sign (@). Local con­
texts use less file space and speed access. However, a local context has meaning
only within the database in which it appears.

HELPMAKE encodes a local context as an internally generated number rather
than a context string. This saves space in the database. Unlike a global context
(a context string that is specified without the preceding @), a local context is not
stored as a string. Thus, topics headed by local contexts can only be accessed
using explicit links and cannot be accessed from another database. Local contexts
are not restored as strings when a database is decompressed.

The following source file contains two topics, one marked with a global context
and one marked with a local context:

.context Global
This is a topic that is marked with a global context.
It is accessed using the context string "Global". It
contains a link to a topic marked with a local context.
See: \aA Local Topic\v@Local\v

.context @Local
This topic can be reached only by the explicit link in
the previous topic (or by sequentially browsing the file).

The text A Loca 1 Topi c is explicitly linked to @l oca 1, which is a local context.
If the user asks for Help on the text or scrolls through the Help file, the Help
reader displays the topic text that follows the context definition for @l oca 1. This
topic cannot be accessed any other way (except by sequentially browsing the
database).

If you want a topic to be accessible in both local and global contexts, mark the
topic text with both global and local .context statements:

.context Global

.context @Local
This is a topic that is marked with a global context and
a local context. It can be accessed using the context
string "Global" (as an explicit or implicit link) or the
context string "@Local" (as an explicit link only). (It
can also be reached by sequentially browsing the file).

Both .context statements must appear together, immediately before the topic text
they are to be associated with.

To create a context that begins with a literal @, precede it with a backs lash (\).

Creating Help Files with HElPMAKE 721

Formatting Topic Text
You can use formatting attributes to control the appearance of the text on the
screen. Using these attributes, you can make words appear in various colors, in­
verse video, and so forth, depending on the application and the capabilities of your
display. This is useful, for example, to distinguish explicit links in the text.

Each formatting attribute consists of a backslash (\) followed by a character.
Table 20.1 lists the formatting attributes.

Table 20.1 Formatting Attributes

Formatting Attribute

\a

\ b, \B

\ i, \ I

\ p, \P

\ u, \U

\ v, \V

\\

Action

Anchors text for explicit links

Turns bold on or off

Turns italics on or off

Turns off all attributes

Turns underlining on or off

Turns invisibility on or off (hides explicit links)

Inserts a single backslash in text

On color monitors, text labeled with the bold, italic, and underline attributes is
translated by the application into suitable colors, depending on the user's default
color selections. On monochrome monitors, the text's appearance depends on the
application.

The \ b, \ i, \ u, and \ v options are toggles; they tum their respective attributes on or
off. You can use several of these on the same text. Use the \ p attribute to tum off
all attributes except \v. Use the \v attribute to hide explicit links in the text. Expli­
cit links are discussed on page 718.

Only visible characters count toward the character-width limit specified with the
/W command-line option. Lines that begin with an application-specific control
character are truncated to 255 characters regardless of the width specification. For
more information on truncation and application-specific control characters, see
"Options for Encoding" on page 712.

In the following example, \ b initiates bold text for Example 1, and \ p changes the
remaining text to plain text:

\bExample l\p This is a bold head for the first example.

722 Environment and Tools

Dot Commands
Dot commands identify topics and convey other topic-related information to the
Help reader.

The most important dot command is the .context command, described in "Defin­
ing a Topic" on page 716. Every topic begins with one or more .context com­
mands. Each .context command defines a context string for the topic. You can
define more than one context for a single topic, as long as you do not place any
topic text between the context definitions.

Most dot commands have an equivalent colon command, which consists of a
colon (:) followed by a character. If you decode a database without using IT, com­
mands in the database are shown as colon commands. You can use both colon
commands and dot commands in the same source file. If you use any dot com­
mands other than .context or .comment, you must supply the IT option when
encoding.

Table 20.2 lists the dot commands. Some commands are not supported by all Help
readers.

Table 20.2 Dot Commands

Dot
Command

.category string

. command

.comment string
•• string

.context string

.end

.execute

. freeze numlines

Colon
Command Action

:c Lists the category in which the current topic
appears and its position in the list of topics.
The category name is used by the QuickHelp
Categories command, which displays the list
of topics. Supported only by QuickHelp.

:x Indicates that the topic cannot be displayed .
Use this command to hide command topics
and other internal information.

none The string is a comment that appears only in
the source file. Comments are not inserted in
the database and are not restored during
decoding.

none The string defines a context.

:e Ends a paste section. See the .paste command.
Supported only by QuickHelp.

:y Executes the specified command. For ex­
ample, . execute Pmark context represents a
jump to the specified context at the specified
mark. See the .mark command .

:z Locks the first numlines lines at the top of the
screen. These lines do not move when the text
is scrolled.

Creating Help Files with HELPMAKE 723

Table 20.2 (continued)

Dot Colon
Command Command Action

.length topiclength :1 Sets the default window size for the topic in
topiclength lines .

. line number none Tells HELPMAKE to reset the line number to
begin at number for subsequent lines of the in-
put file. Line numbers appear in HELPMAKE
error messages. See .source. The .line com-
mand is not inserted in the Help database and
is not restored during decoding .

. list :1 Indicates that the current topic contains a list
of topics. Help displays a highlighted line; you
can choose a topic by moving the highlighted
line over the desired topic and pressing
ENTER. If the line contains a coded link, Help
looks up that link. If it does not contain a link,
Help looks within the line for a string
terminated by two spaces or a newline
character and looks up that string. Otherwise,
Help looks up the first word .

. mark name [column] :m Defines a mark immediately preceding the
following line of text. The marked line shows
a script command where the display of a topic
begins. The name identifies the mark. The
column is an integer value specifying a
column location within the marked line.
Supported only by QuickHelp.

.next context :> Tells the Help reader to look up the next topic
using context instead of the topic that
physically follows it in the file. You can use
this command to skip large blocks of
.command or .popup topics.

.paste pastename :p Begins a paste section. The pastename appears
in the QuickHelp Paste menu. Supported only
by QuickHelp.

.popup :g Tells the Help reader to display the current
topic as a pop-up window instead of as a
normal, scrollable topic. Supported only by
QuickHelp .

. previous context :< Tells the Help reader to look up the previous
topic using context instead of the topic that
physically precedes it in the file. You can use
this command to skip large blocks of
.command or .popup topics.

724 Environment and Tools

Table 20.2 (continued)

Dot Colon
Command

.raw

. ref topic[, topic] ...

.source filename

. topic text

Example

Command Action

:u Turns off special processing of certain charac­
ters by the Help reader .

:r Tells the Help reader to display the topic in
the Reference menu. You can list multiple
topics; separate each additional topic with a
comma. A .ref command is not affected by the
fW option. If no topic is specified, QuickHe1p
searches the line immediately following for a
See or See Also reference; if present, the refer­
ence must be the first word on the line. Sup­
ported only by QuickHelp.

(none) Tells HELPMAKE that subsequent topics
come from filename. HELPMAKE error
messages contain the name and line number
of the input file. The .source command tells
HELPMAKE to use filename in the message
instead of the name of the input file and to
reset the line number to 1. This is useful when
you concatenate several sources to form the
input file. See .line. The .source command is
not inserted in the Help database and is not
restored during decoding .

:n Defines text as the name or title to be dis­
played in place of the context string if the ap­
plication Help displays a title. This is always
the first line in the context unless you also use
the .length or .freeze commands.

The following example is in QuickHelp format:

.context Sample

.context @Sample

.topic Sample Help Topic

.1 ength 20

.freeze 3
\i\p\aBack\v!B\v\i\p

Help can contain text with three attributes:

\bAttribute\p \bQuickHelp Code\p

Creating Help Files with HELPMAKE 725

\iltalic\p \\i
\bBold\p \\b
\uUnderline\p \\u

The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.

\bSee:\p

Coding, Expressions, Grammar, Keywords, Syntax
\i\p\aFlow Control\v@flow\v\i\p
\i\p\aRelease Notes\v$DOC:README.DOCl\v\i\p

.context @flow

.topic Sample Help: Flow Control

.length 8

.freeze 3
\i\p\aBack\vlB\v\i\p

Here's another sample help screen.

This is an explicit link: \i\p\aSample\v@Sample\v\i\p
This is an implicit link: Sample

20.5 Other Help Text Formats

Rich Text Format

There are two other Help text formats you can use to create a Help database: rich
text format (RTF) and minimally formatted ASCII. These formats are described in
the next two sections.

Rich text format (RTF) is a Microsoft word-processing format supported by sev­
eral word processors, including Microsoft Word version 5.0 and later and Micro­
soft Word for Windows. RTF is an intermediate format that allows documents to
be transferred between applications without loss of formatting. You can use RTF
to simplify the transfer of help files from one format to another. Like QuickHelp
files, RTF files can contain formatting attributes and links.

As with the other text formats, each topic in an RTF source file consists of one or
more context strings followed by topic text. The Help delimiter (») at the begin­
ning of any paragraph marks the beginning of a new Help entry. The text that fol­
lows on the same line is defined as a context for the topic. If the next paragraph
also begins with the Help delimiter, it also defines a context string for the same

726 Environment and Tools

topic. You can define any number of contexts for one topic. The topic text com­
prises all subsequent paragraphs up to the next paragraph that begins with the Help
delimiter.

All QuickHelp dot commands, except .context and .length, can be used in RTF
files. Each command must appear in a separate paragraph.

There are two ways to create an RTF file. The easiest way is to use a RTF word
processor. RTF files usually contain additional information that is not visible to
the user; HELPMAKE ignores this extra information.

You can also use an ordinary text editor to insert RTF codes manually. Utility pro­
grams exist that convert text files in other formats to RTF format. For more infor­
mation on RTF, see the your Microsoft Word for Windows documentation.

Using a Word Processor
In an RTF-compatible word processor, enter the text and format it as you want it
to appear: bold, underlined, hidden, and italic. You can also format paragraphs by
selecting body and first-line indenting. Choose a monospace font and set the mar­
gin to the IW value you plan to encode the database with. The only item you need
to insert into an RTF file manually is the Help delimiter (») followed by the con­
text string that starts each entry. If you use dot commands, place each in its own
paragraph.

When you have entered and formatted the text, save it in RTF format. In Microsoft
Word version 5.5, for example, choose Save As from the File menu, then select
RTF under Format.

You cannot see the RTF formatting codes when you load an RTF file into a com­
patible word processor. The word processor displays the text with the specified
attributes. However, you can view these codes by loading an RTF file into a text
editor or word processor.

Manually Inserting RTF Formatting Codes
RTF uses braces ({ }) for nesting. Thus, the entire file is enclosed in braces, as is
each specially formatted text item.

When you manually insert RTF codes, you must delimit each dot command with
the \par code. (An RTF editor or word processor inserts" \par" at the beginning
and end of a paragraph.) For example, to use the .popup command, write:

\par.popup\par

HELPMAKE recognizes the subset of RTF codes listed in Table 20.3.

Creating Help Files with HELPMAKE 727

Table 20.3 RTF Formatting Codes

RTF Code

\b

\ fin

\i

\ lin

\ line

\ par

\ pard

\ plain

\tab

\ul

\v

Action

Bold. The Help reader decides how to display this; often it is intensified
text.

Paragraph first-line indent, n twips. *
Italic. The application decides how to display this; often it is reverse
video.

Paragraph indent from left margin, n twips. *
New line (not new paragraph).

End of paragraph.

Default paragraph formatting.

Default attributes. On most screens, this is nonblinking normal intensity.

Tab character.

Underline. The application decides how to display this attribute; some
adapters that do not support underlining display it as blue text.

Hidden text. Hidden text is used for explicit links; it is not displayed.

* A "twip" is 1120 of a point or 111440 of an inch. One space is approximately 180 twips.

Encoding RTF with HElPMAKE
When HELPMAKE compresses an RTF file, it formats the text to the width given
by the /W option and ignores the paragraph formats.

When HELPMAKE encodes RTF, any text between an RTF code and invisible
text becomes an explicit link. This is illustrated in the following example:

{\b Formatting table}{\v prinf.ex}

The string Forma tt in g ta b 1 e is displayed in bold and is part of an explicit link to
pri ntf. ex.

Example
The following example is in RTF format:

{\rtfl
\pard\plain »Sample
\par >@Sample
\par .topic Sample Help Topic
\par .freeze 3
\par \pard \li8000 {\i }{\b Back}{\v !B}{\i }
\par \pard --
\par

728 Environment and Tools

\par \pard \li360 Help can contain text with three attributes:
\par \pard
\par \pard \li360 {\b Attribute}
\par \pard
\par \pard
\par \pard
\par \pard
\par \pard

\li360 {\i Italic}
\li360 {\b Bold}
\li360 {\ul Underline}

{\b QuickHelp Code}

\\i
\\b
\\u

\par \pard \li360\ri720 The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.
\par \pard
\par \pard \li360 {\b See:}
\par \pard
\par \pard \li360 Coding, Expressions, Grammar, Keywords, Syntax
\par \pard \li360 {\i }{\b Flow Control}{\v @flow}{\i }
\par {\i }{\b Release Notes}{\v $OOC:REAOME.OOC!}{\i }
\par \pard >@flow
\par .topic Sample Help: Flow Control
\par .freeze 3
\par \pard \li8000 {\i }{\b Back}{\v !B}{\i }
\par \pard --
\par
\par \pard \li360 Here's another sample help screen.
\par
\par \pard \li360 This is an explicit link: {\i }{\b Sample}{\v
@Sample}{\i }
\par \pard \li360 This is an implicit link: Sample
\par
}

Minimally Formatted ASCII
Minimally formatted ASCII files define contexts and their topic text. The Help
information is displayed exactly as it appears in the file. A minimally formatted
ASCII file cannot contain screen-formatting commands or explicit links. Any for­
matting codes are treated as ASCII text. Minimally formatted ASCII files have a
fixed width.

A minimally formatted ASCII file contains a sequence of topics, each preceded by
one or more context definitions. Each context definition must be on a separate line
that begins with a help delimiter (»). The topic consists of all subsequent lines up
to the next context definition.

Implicit links work the same way they do in the other formats. A word in the Help
text is an implicit link if it exists as a context somewhere in the Help system.

Creating Help Files with HElPMAKE 729

There are two ways to use a minimally formatted ASCII file. You can compress it
with HELPMAKE and create a Help database, or a Help reader can access the un­
compressed file directly. A Help reader can search a minimally formatted ASCII
file faster if it has been compressed.

The following example coded in minimally formatted ASCII shows the same text
as the QuickHelp and RTF examples presented elsewhere in this chapter:

»Sample
--------------[Sample Help Topic J------------------­

Help can contain text with three attributes:

Attribute

Ita 1 i c
Bold
Underline

QuickHelp Code

\i
\b
\u

The visual appearance of each attribute
or combination of attributes is determined
by the application that displays the help.

See:

Coding, Expressions, Grammar, Keywords, Syntax

»Coding
-[Sample Help: Coding J------------------

Here's another sample help screen.

20.6 Context Prefixes

Context prefixes are
used internally by
Microsoft.

Microsoft Help databases use several context prefixes. A context prefix is a single
letter followed by a period. It appears before a context string and has a predefined
meaning. You may see these contexts in the resulting text file when you decode a
Microsoft help database.

The context prefixes shown in Table 20.4 are used by Microsoft to mark product­
specific features. They appear in decompressed databases. However, you do not
need to add them to the files you write.

730 Environment and Tools

Table 20.4 Microsoft Product Context Prefixes

Prefix

d.

e.

h.

m.

n.

Purpose

Dialog box. The context string for the Help on a dialog box is d. fol­
lowed by the number assigned to that dialog box.

Error number. If a product supports the error numbering used by
Microsoft languages, it displays Help for each error using this prefix.

Help item. The context string for miscellaneous Help is h. followed
by an assigned string. These strings are described in Table 20.5. For
example, most Help readers look for the context string h. contents
when Contents is chosen from the Help menu.

Menu item. The strings that can follow h. are defined by the access
keys for the product's menu items. For example, the Exit command on
the File menu is accessed by ALT +F, X. The context string for Help on
the command is m. f . x.

Message number. The context string for the Help on a message box is
n. followed by the number assigned to that message box.

You can use the h. prefix, shown in Table 20.5, to identify standard Help-file con­
texts. For instance, h.default identifies the default Help screen (the screen that usu­
ally appears when you select top-level Help).

Table 20.S Standard h. Contexts

Context Description

h.contents The table of contents for the Help file. You should also define the
string "contents" for direct reference to this context.

h.default The default Help screen, typically displayed when the user presses
SHIFf +Fl to get the "top level" in some applications.

h.index The index for the Help file. You can also define the string "index" for
direct reference to this context.

h.pgl The Help text that is logically first in the file. This is used by some
applications in response to a "go to the beginning" request made
within the Help window.

h.title The title of the Help database.

Browser Utilities

Read this chapter to
understand the
Browse Option
choices in PWB ...

... or to learn how to
build or maintain a
browser database out­
side of PWB.

This chapter describes two utilities:

• Microsoft Browser Database Maintenance Utility (BSCMAKE) version 2.00

• Microsoft Browse Information Compactor (SBRP ACK) version 2.00

These utilities build a browser database for use with the Microsoft Source
Browser, a feature of the Microsoft Programmer's Workbench (PWB). As a navi­
gation tool, the browser gives you the means to move around quickly in a large
project and find pieces of code in your source and include files. As an interactive
program database, the browser can answer questions about where functions are
invoked or where variables and types are used. The browser can also generate use­
ful outlines, call trees, and cross-reference tables.

When you tell PWB to create a browser database (.BSC file) for the program you
are building, PWB automatically calls BSCMAKE. You do not need to know how
to run BSCMAKE to create your database in PWB. However, you may want to
read this chapter to understand the PWB options available to modify the database.
For information on how to create and use a browser database in PWB, see "Using
the Source Browser" in Chapter 5.

If you build your program outside of PWB, you can still create a custom browser
database that you can examine with the Browser in PWB. Run the BSCMAKE
utility to build the database from .SBR files created during compilation. You
might need to run SBRP ACK to provide more efficiency during the build. This
chapter describes how to use both these utilities to create your browser database.
For further information, see "Building Databases for Non-PWB Projects" in
Chapter 5.

Note BSCMAKE is the successor to the Microsoft PWBRMAKE Utility. To al­
low existing makefiles to remain compatible, a file called PWBRMAKE.EXE is
provided with BSCMAKE. This version of PWBRMAKE calls BSCMAKE using
the arguments and options specified on the PWBRMAKE command line.

732 Environment and Tools

21.1 Overview of Database Building
BSCMAKE can build a new database from newly created .SBR files. It can also
maintain an existing database using .SBR files for object files that have changed
since the last build. The following sections describe how .SBR files are created,
what you need to know to build a database, and how you can make the database­
building process more efficient.

Preparing to Build a Database
The input files for BSCMAKE are .SBR files that you create when you compile or
assemble your source files. When you build or update your browser database, all
.SBR files for your project must be available on disk. To create an .SBR file, spec­
ify the appropriate command-line option to the compiler or assembler (shown in
parentheses below). The following products generate .SBR files:

• Microsoft C Compiler version 6.00 or later (IFR or IFr)

• Microsoft MASM version 6.00 or later (IFR or IFr)

• Microsoft FORTRAN version 5.10 or later (IFR or IFr)

• Microsoft Basic version 7.10 or later (IFBr or IFBx)

• Microsoft COBOL version 4.00 or later (BROWSE)

The options IFR, IFBx, and BROWSE put all possible information into the .SBR
file. The options IFr and IFBr omit local symbols from the .SBR file. (If the .SBR
file was created with all possible information, you can still omit local symbols by
using BSCMAKE's lEI option; see page 736.)

Database building can be more efficient if the .SBR files are first packed by
SBRPACK. The Microsoft C Compiler version 7.00 automatically calls
SBRP ACK when it creates an .SBR file. (If you want to prevent packing, specify
the /Zn option.) Before you run BSCMAKE, you may want to run SBRPACK on
any .SBR files that were not previously packed. See "SBRPACK" on page 739.

You can create an .SBR file without performing a full compile. For example, you
can specify CL's /Zs option to perform a syntax check and still generate an .SBR
file if you specify IFR or IFr.

How BSCIW\KE Builds a Database
BSCMAKE builds or rebuilds a database in the most efficient way it can. To avoid
some potential problems, it is important to understand the database-building
process.

BSCMAKE changes
.SBR files to zero­
length files.

BSCMAKE attempts
an incremental build
before it runs a full
build.

Browser Utilities 733

When BSCMAKE builds a database, it truncates the .SBR files to zero length.
During a subsequent build of the same database, a zero-length (or empty) .SBR
file tells BSCMAKE that the .SBR file has no new contribution to make. It lets
BSCMAKE know that an update of that part of the database is not required and an
incremental build will be sufficient. During every build (unless the In option is
specified), BSCMAKE first attempts to update the database incrementally by
using only those .SBR files that have changed.

BSCMAKE looks for a .BSC file that has the name specified with the 10 option
(described on page 736); if 10 is not specified, BSCMAKE looks for a file that has
the base name of the first .SBR file and a .BSC extension. If the database exists,
BSCMAKE performs an incremental build of the database using only the con­
tributing .SBR files. If the database does not exist, BSCMAKE performs a full
build using all .SBR files.

Requirements for a Full Build
For a full build to succeed, all specified .SBR files must exist and must not be
truncated. If any .SBR file is truncated, you must first rebuild it (by recompiling)
before running BSCMAKE.

Requirements for an Incremental Build
For an incremental build to succeed, the .BSC file must exist. All contributing
.SBR files, even empty files, must exist and must be specified on the BSCMAKE
command line. If you omit an .SBR file from the command line, BSCMAKE re­
moves its contribution from the database.

Methods for Increasing Efficiency
The database-building process can require large amounts of time, memory, and
disk space. However, there are several ways to reduce these requirements.

Managing Memory Under DQS
Building a database uses a lot of memory. Large projects benefit the most from
use of the Source Browser, but under DOS their large size can cause BSCMAKE
to run out of memory. There are several ways to run BSCMAKE under DOS that
make use of virtual memory and extended memory. The commands to run these
forms of BSCMAKE are described in "System Requirements for BSCMAKE" on
page 734.

734 Environment and Tools

Making a Smaller Database
Smaller databases take less time to build, use up less space on disk, have a lower
risk of causing BSCMAKE to run out of memory, and run faster in the browser.
The following list gives some methods of making a smaller database:

• Use BSCMAKE options to exclude information from the database. These op­
tions are described on page 736.

• Omit local symbols in one or more .SBR files when compiling or assembling.

• If an object file does not contain information that you need for your current
stage of debugging, omit its .SBR file when rebuilding the database.

Saving Build Time and Disk Space
Unreferenced definitions cause .SBR files to take up more disk space and cause
BSCMAKE to run less efficiently. The SBRPACK utility removes unreferenced
definitions from .SBR files. For more information, see "SBRPACK" on page 739.

21.2 BSCMAKE
The Microsoft Browser Database Maintenance Utility (BSCMAKE) converts
.SBR files created by a compiler or assembler into database files that can be read
by the PWB Source Browser. The filename of the resulting browser database has
the extension .BSC. For more information on the browser, see "Using the Source
Browser" in Chapter 5.

System Requirements for BSCMAKE
BSCMAKE exists as two executable files. The form of BSCMAKE that you run
is determined by your computer's memory. The following executable files are dis­
cussed in this section:

• BSCMAKE.EXE for DOS; can use only extended memory

• BSCMAKEV.EXE for DOS; can use virtual and extended memory

BSCMAKE can use either virtual memory or extended memory (or both) to avoid
running out of memory. BSCMAKE.EXE uses extended memory if available. If
extended memory is unavailable, BSCMAKE runs under DOS in real mode. The
command to invoke this version of BSCMAKE.EXE is:

BSCMAKE

Browser Utilities 735

followed by the rest of the command line. For best results, the sum of available
conventional and extended memory should be at least around half of the size of
the finished database on disk.

If your computer does not have extended memory or if it is insufficient for your
database, you can use virtual memory. BSCMAKEV.EXE uses extended memory
if it is available. If extended memory is unavailable or insufficient, BSCMAKEV
uses virtual memory, copying information to your disk as needed during the data­
base build. Swapping to disk is slower but can overcome a shortage of memory.
The command to invoke this form of BSCMAKE is:

BSCMAKEV

followed by the rest of the command line.

To prevent BSCMAKE or BSCMAKEV from using extended memory, specify
the Ir option as the first option on the command line.

The BSCMAKE Command Line
To run BSCMAKE, use the following command line:

BSCMAKE [options] sbrfiles

This syntax applies to all forms of BSCMAKE. Specify either BSCMAKE or
BSCMAKEV in the first position on the command line.

Options can appear only in the options field on the command line. If the Ir option
is used, it must be first.

The sbifiles field specifies one or more .SBR files created by a compiler or assem­
bler. If you specify more than one file, separate the names with spaces or tabs.
You must specify the extension; there is no default. You can specify a path with
the filename, and you can use operating-system wildcards (* and ?).

During an incremental build, you can specify new .SBR files that were not part of
the original build. If you want all contributions to remain in the database, you must
specify all.SBR files (including truncated files) that were originally used to create
the database. If you omit an .SBR file, that file's contribution to the database is
removed.

Do not specify a truncated .SBR file for a full build. A full build requires contribu­
tions from all specified .SBR files. Before you perform a full build, recompile and
create a new .SBR file for each empty file.

736 Environment and Tools

Example
The following command runs BSCMAKE to build a file called MAIN.BSC from
three .SBR files:

BSCMAKE main.sbr filel.sbr file2.sbr

BSCMAKE Options
This section describes the options available for controlling BSCMAKE. Several
options control the content of the database by telling BSCMAKE to exclude or
include certain information. The exclusion options can allow BSCMAKE to run
faster and may result in a smaller .BSC file. Option names are case sensitive (ex­
cept for !HELP and INOLOGO).

lEi filename
lEi (filename ...)

Excludes the contents of the specified include files from the database. To spec­
ify multiple files, separate the names with spaces and enclose the list in paren­
theses. Use lEi along with the IEs option to exclude files not excluded by IEs.

lEI
Excludes local symbols. The default is to include local symbols in the database.
For more information about local symbols, see "Preparing to Build a Database"
on page 732.

IEm
Excludes symbols in the body of macros. Use IEm to include only the names of
macros in the database. The default is to include both the macro names and the
result of the macro expansions.

IErsymbol
IEr (symbol ...)

Excludes the specified symbols from the database. To specify multiple symbol
names, separate the names with spaces and enclose the list in parentheses.

IEs
Excludes from the database every include file specified with an absolute path
or found in an absolute path specified in the INCLUDE environment variable.
(Usually, these are the system include files, which contain a lot of information
that you may not need in your database.) This option does not exclude files
specified without a path or with relative paths or found in a relative path in
INCLUDE. You can use the lEi option along with IEs to exclude files that IEs
does not exclude. If you want to exclude only some of the files that IEs ex­
cludes' use lEi instead of IEs and list the files you want to exclude.

!HELP
Calls the QuickHelp utility. If BSCMAKE cannot find the Help file or Quick­
Help, it displays a brief summary of BSCMAKE command-line syntax.

/Iu

In

Browser Utilities 737

Includes unreferenced symbols. By default, BSCMAKE does not record any
symbols that are defined but not referenced. If an .SBR file has been processed
by SBRP ACK, this option has no effect for that input file because SBRP ACK
has already removed the unreferenced symbols.

Forces a nonincremental build. Use In to force a full build of the database
whether or not a .BSC file exists and to prevent .SBR files from being trun­
cated. See "Requirements for a Full Build" on page 733.

/NOLO GO
Suppresses the BSCMAKE copyright message.

10 filename

Ir

Specifies a name for the database file. By default, BSCMAKE assumes that the
database file has the base name of the first .SBR file and a .BSC extension.

Prevents BSCMAKE from using extended memory under DOS. The Ir option
must appear first in the options field on the command line and cannot appear in
a response file. BSCMAKE.EXE and BSCMAKEV.EXE are extender-ready
and use extended memory if it exists. This option forces BSCMAKE to use
only conventional memory and forces BSCMAKEV to use conventional mem­
ory and virtual memory. For more information, see "System Requirements for
BSCMAKE" on page 734.

IS filename
IS (filename ...)

Iv

/?

Tells BSCMAKE to process the specified include file the first time it is en­
countered and to exclude it otherwise. Use this option to save processing time
when a file (such as a header, or .H, file for a .C source file) is included in sev­
eral source files but is unchanged by preprocessing directives each time. You
may also want to use this option if a file is changed in ways that are unimpor­
tant for the database you are creating. To specify multiple files, separate the
names with spaces and enclose the list in parentheses. If you want to exclude
the file every time it is included, use the lEi or IEs option.

Provides verbose output, which includes the name of each .SBR file being
processed and information about the complete BSCMAKE run.

Displays a brief summary of BSCMAKE command-line syntax.

Example
The following command line tells BSCMAKE to use virtual memory and con­
ventional memory (but not extended memory) to do a full build of MAIN.BSC

738 Environment and Tools

from three .SBR files. It also tells BSCMAKE to exclude duplicate instances of
TOOLBOX.H:

BSCMAKEV Ir In IS toolbox.h 10 main.bsc filel.sbr file2.sbr file3.sbr

Using a Response File
You can provide part or all of the command-line input in a response file, which is
a text file that contains options and/or filenames.

Specify the response file using the following syntax:

BSCMAKE @responsefile

This syntax applies to all forms of BSCMAKE; you can specify BSCMAKE or
BSCMAKEV in the first position on the command line. Only one response file is
allowed. You can specify a path with response file. Precede the filename with an at
sign (@). BSCMAKE does not assume an extension. You can specify additional
sbifiles on the command line after response file. If you use Ir, you must specify it
on the command line before the response file.

In the response file, specify the input to BSCMAKE in the same order as you
would on the command line. Separate the command-line arguments with one or
more spaces, tabs, or newline characters.

Example
The following command calls BSCMAKE using a response file:

BSCMAKE @progl.txt

Example
The following is a sample response file:

In Iv 10 main.bsc IEl
IS (
toolbox.h
verdate.h c:\src\inc\screen.h
)

IEr (HWND HpOfSbIb
LONG LPSTR
NEAR NULL
PASCAL
VOID
WORD
)

filel.sbr file2.sbr file3.sbr file4.sbr

Browser Utilities 739

BSC~KE Exit Codes
BSCMAKE returns an exit code (also called return code or error code) to the oper­
ating system or the calling program. You can use the exit code to control the opera­
tion of batch files or makefiles.

Code Meaning

o No error
Command-line error

4 Fatal error during database build

21.3 SBRPACK
The Microsoft Browse Information Compactor (SBRP ACK) removes unrefer­
enced symbols from .SBR files before they are processed by BSCMAKE. This
can result in smaller .SBR files, which allow BSCMAKE to run faster. Smaller
.SBR files also save space on disk.

Packing .SBR files is optional. The Microsoft C Compiler version 7.0 (CL) auto­
matically calls SBRP ACK when you specify either IFR or !Fr to create an .SBR
file. If you specify!FRn or !Frn, CL does not call SBRPACK to pack the .SBR
file. Other compilers and assemblers do not pack .SBR files. You may want to use
SBRP ACK to pack an .SBR file that was created without packing.

SBRPACK.EXE runs under real-mode DOS. It does not use virtual memory, ex­
panded memory, or extended memory.

Overview of SBRPACK
When symbols such as functions or data are defined but not referenced, you can
use SBRPACK to remove them from the .SBR files before the files are processed
by BSCMAKE. A common source of unreferenced symbols is an include, or
header, file. When a source file includes a header file, it often brings in a large
number of unreferenced definitions. Therefore, the .SBR file that results from
compiling this source file can contain a large amount of unneeded information.
The time or disk space saved by SBRPACK is directly related to the number of
unreferenced symbols in the .SBR files.

If SBRPACK is not used, BSCMAKE will remove the same information (unless
you specify BSCMAKE's!Iu option to preserve this information). However,
BSCMAKE can run more efficiently if the .SBR files are first processed by
SBRP ACK. The time it takes to run both utilities can be less than if BSCMAKE is
used alone, especially under real-mode DOS or under extended DOS using virtual
memory.

740 Environment and Tools

You can run SBRP ACK every time you create an .SBR file, or you can run it just
once before running BSCMAKE. If you need to save room on your disk, run
SBRP ACK after every compilation. The .SBR files will then be stored in a more
compact form. If you need to accelerate your program-build process, run
SBRP ACK only as needed, just before running BSCMAKE. The example in the
following section shows how to run SBRP ACK to perform each kind of efficiency.

The SBRPACK Command Line
To run SBRP ACK, use the following command line:

SBRPACK [option] sbifiles

Options names are not case sensitive. Only the /NOLO GO option applies to a
packing session; the other options provide help and then halt SBRPACK.

The sbifiles field specifies one or more .SBR files created by a compiler or assem­
bler. If you specify more than one file, separate the names with spaces or tabs.
You must specify the extension; there is no default. You can specify a path with
the filename, and you can use operating-system wildcards (* and ?).

You do not specify a name for the resulting files; SBRP ACK saves the changed
files under their original name. If you want to preserve the original files, copy
them to another name before running SBRP ACK.

SBRP ACK has the following options:

!HELP
Calls the QuickHelp utility. If SBRPACK cannot find the Help file or Quick­
Help, it displays a brief summary of SBRPACK command-line syntax.

/NOLOGO
Suppresses the SBRP ACK copyright message.

/?
Displays a brief summary of SBRPACK command-line syntax.

Example
The following commands compile a file using the Microsoft C Optimizing Com­
piler (CL), assemble a file using the Microsoft Macro Assembler (ML), and build
a browser database using both SBRP ACK and BSCMAKE:

CL IFR Ie progl.e
ML IFR Ie prog2.asm
SBRPACK prog2.sbr

BSCMAKE *.sbr

Browser Utilities 741

These commands run SBRP ACK every time an .SBR file is created. A separate
SBRPACK command isn't needed for PROGl.SBR because CL calls SBRPACK
automatically. Later in the program-building session, BSCMAKE builds a data­
base and names it PROG 1.BSC. This combination of commands saves space on
disk during the program-building session.

The same commands can be configured to create the same database but save run­
ning time. In the following example, SBRP ACK is called only when BSCMAKE
is about to run. If these commands are in a makefile, time is saved if the program­
building sequence stops before a database is built.

CL IFR IZn Ie progl.e
ML IFR Ie prog2.asm

SBRPACK *.sbr
BSCMAKE *.sbr

SBRPACK Exit Codes
SBRP ACK returns an exit code (also called return code or error code) to the
operating system or the calling program. You can use the exit code to control
the operation of batch files or makefiles.

Code Meaning

o No error
1-4 Fatal SBRPACK error

Each fatal error generates a specific exit code. See "SBRP ACK Error Messages"
in the Comprehensive Index and Errors Reference for individual exit codes as­
sociated with each error.

Using Other Utilities

This chapter explains how to use the following utilities:

• CVPACK (Microsoft Debugging Information Compactor) version 4.00

Prepares executable files for use with the CodeView debugger by reducing the
size of debugging information within the files.

• IMPLIB (Microsoft Import Library Manager) version 1.30

Creates an import library for use in resolving external references from a
Windows program to a dynamic-link library (DLL).

• RM (Microsoft File Removal Utility) version 2.00
UNDEL (Microsoft File Undelete Utility) version 2.00
EXP (Microsoft File Expunge Utility) version 2.00

Manage, delete, and recover backup files.

22.1 CVPACK

Run CVPACK only
if you want to use
CodeView on a file
linked with another
linker.

This section describes the Microsoft Debugging Information Compactor
(CVPACK) version 4.00. This version is a major revision of the CVPACK utility.
CVPACK 4.00 prepares an executable file for use with the Microsoft CodeView
debugger version 4.00. If your executable file contains debugging information for
an earlier version of CodeView, you can use CVPACK to convert it for use with
Code View 4.00.

CVPACK is automatically called by LINK version 5.30 when you specify LINK's
ICO option. It is also called by ILINK if the file was originally linked with ICO.
You do not need to run CVPACK as a separate step. However, if you want to use
CodeView 4.00 to debug a file that was built by another linker (either an earlier
Microsoft linker or a third-party linker), you must run CVPACK to convert the ex­
ecutable file to the later CodeView format. Be sure that the executable file has not
been packed by an earlier version of CVP ACK; if it has, you must relink the file.

744 Environment and Tools

Overview of CVPACK
An executable file to be run under CodeView 4.00 must first be packed by
CVP ACK 4.00. The debugging information in the file must be in the form given
in the Microsoft Symbolic Debugging Information specification. This is the format
supported by current Microsoft compilers and linkers.

Earlier formats of debugging information and CVPACK-packing are not compat­
ible with CodeView 4.00. If an executable file contains debugging information in
an earlier format but has not been packed, packing with CVP ACK 4.00 is all that
is needed for the file to run in CodeView 4.00. However, if the executable file has
been packed with an earlier version of CVP ACK, you must relink the file.

Executable files packed using CVPACK 4.00 are not compatible with earlier
versions of Code View. The debugging information produced by the Microsoft C
Compiler version 7.00 and packed by CVPACK 4.00 is for use with CodeView
4.00 and is not compatible with earlier versions of CodeView.

CVPACK compresses debugging information by removing duplicate type defini­
tions. To be removed by CVP ACK, the definitions must be absolutely identical.
For example, if a structure defined in two modules contains a pointer to another
structure, but the second structure is defined in only one module, the pointer size
is unknown in the other module. In this case, CVP ACK cannot pack the duplicate
structure definitions in the same way, which causes less efficient compression.

CVPACK can pack an executable that is in .COM format. The linker puts debug­
ging information for a .COM file into a file with the same base name as the execu­
table file and with a .DBG extension. When you specify a .COM file to be packed,
CVPACK looks for a .DBG file with the same base name and in the same location
as the .COM file.

The CVPACK Command Line
To run CVPACK, use the following command line:

CVPACK [option] exeflle

The exeflle specifies a single executable file to be packed. You can specify a path
with the filename. If you do not specify an extension, CVP ACK assumes the
default extension .EXE.

CVPACK Options
CVPACK has the following options; the option names are not case sensitive:

Using Other Utilities 745

IH[ELP]
Calls the QuickHelp utility. If CVPACK cannot find the help file or QuickHelp,
it displays a brief summary of CVPACK command-line syntax.

/M[INIMUM]
Preserves only public symbols and line numbers. All other debugging informa­
tion is removed from the executable file.

IN[OLOGO]

I?

The INOLOGO option suppresses the copyright message displayed when
CVP ACK starts.

Displays a brief summary of CVPACK command-line syntax.

Note The fP option is not a valid option for the current version of CVPACK.
Using this option causes an error.

Example
The following command packs the file PROJECT.EXE, located in the directory
\TEST on the current drive:

CVPACK \TEST\PROJECT.EXE

CVPACK Exit Codes
CVPACK returns an exit code (also called return code or error code) to the operat­
ing system or the calling program. You can use the exit code to control the opera­
tion of batch files or makefiles.

Code Meaning

o No error

1 Program error caused by commands or files given as input to CVPACK

22.2 IMPllB
This section describes the Microsoft Import Library Manager (IMPLIB) version
1.30. This utility creates an import library from one or more module-definition
(.DEF) files and dynamic-link libraries (DLLs) for use in resolving external refer­
ences from a Windows program to a DLL. IMPLIB version 1.30 is designed to use
.DEF files and DLLs that work with the Microsoft Segmented Executable Linker
version 5.30. IMPLIB.EXE runs under real-mode DOS.

746 Environment and Tools

About Import Libraries
An "import library" is a static library (usually with a .LIB extension) that can be
read by the LINK utility. You specify the import library to LINK in the same ways
you specify standard libraries created by the LIB utility. You can use LIB to com­
bine an import library with other static libraries, either standard or import. For
more information on LINK, see Chapter 14. For more information on LIB, see
Chapter 19.

Import libraries are recommended for resolving references from applications to
DLLs. Without an import library, an external reference to a dynamic-link routine
must be either declared in an IMPORTS statement in the application's .DEF file
or explicitly coded in your program.

This section assumes you are familiar with import libraries, dynamic linking, and
module-definition files. For information on module-definition files, see Chapter
16. For information on dynamic linking and import libraries, see the C for Win­
dows manual.

IMPLIB uses only the following statements from a module-definition file and
ignores other text in the .DEF file:

• LmRARY

• EXPORTS

• INCLUDE

The IMPLIB Command Line
To run IMPLIB, use the following command line:

IMPLIB [options] implibname {dllfile ... I deffile ... }

The options field specifies IMPLIB options, which are explained in the next
section.

The implibname field specifies the name for the new import library. You can spec­
ify a path with the filename.

The dllfile field specifies the name of a DLL. You can use the deffile field to spec­
ify a module-definition file for the DLL rather than the DLL itself. You can enter
multiple dllfile and deffile specifications. When you specify a DLL, IMPLIB puts
all exports from the DLL into the import library. To include only a subset of the
DLL's exported items in the import library, specify a module-definition file that
contains only those exports.

IMPLIB does not assume default extensions for any field. You must specify the
full names of input and output files and include the file extensions.

Options

Using Other Utilities 747

Example

IMPLIB mylib.lib mylib.dll

This command creates the import library named MYLIB.LIB from the dynarnic­
link library MYLIB.DLL.

Options names are not case sensitive and can be abbreviated to the shortest unique
name. IMPLIB has the following options:

IH[ELP]
Calls the QuickHelp utility. If IMPLIB cannot find the help file or QuickHelp,
it displays a brief summary of IMPLIB command-line syntax.

INOI[GNORECASE]
Preserves case sensitivity in exported and imported names.

INOL[OGO]
Suppresses the IMPLIB copyright message.

/?
Displays a brief summary of IMPLIB command-line syntax.

22.3 RM, UNDEL, and EXP
This sections describes the following utilities:

• Microsoft File Removal Utility (RM) version 2.00

• Microsoft File Undelete Utility (UNDEL) version 2.00

• Microsoft File Expunge Utility (EXP) version 2.00

You can use these utilities to create hidden backup files, recover the files when
needed, and delete them when no longer needed. You can also use them to manage
the backup files created by the Microsoft Programmer's WorkBench (PWB).

RM, UNDEL, and EXP run under real-mode DOS.

Be sure to use matching versions ofthe RM, EXP, and UNDEL utilities. You can
check version numbers by running each utility with the /? option.

Overview of the Backup Utilities
The RM, UNDEL, and EXP utilities help you create backup files and manage
those files. RM ("remove") moves a file into a hidden subdirectory named

748 Environment and Tools

The RM Utility

DELETED. UNDEL ("undelete") makes the file visible again by moving it into
DELETED's parent directory. EXP ("expunge") deletes the DELETED directory
and all files contained within; after being expunged, these files cannot be restored
byUNDEL.

You can use RM, UNDEL, and EXP to manage the backup files created by PWB.
PWB stores backup files in a DELETED directory when its Backup switch is set
to Undel.

The RM utility moves one or more files to a hidden directory named DELETED.
DELETED is a subdirectory of the directory that contains the file being deleted.
Thus RM may create many DELETED directories on your drives or floppy disks.
RM creates a DELETED subdirectory of a given directory if one does not already
exist. Run RM using the following command line:

RM [options] [files]

The files field specifies the files to be deleted. You can name more than one file,
and you can use operating-system wildcards (* and ?). You can specify a path
with the filename. RM prompts for permission before removing a read-only file
unless IF is specified.

RM has the following options; the option names are not case sensitive:

IF
Deletes read-only files without prompting for permission.

!HELP

/I

Calls the QuickHelp utility. IfRM cannot find the help file or QuickHelp, it
displays a brief summary ofRM command-line syntax.

Inquires for permission before deleting any file.

/K
Keeps read-only files without deleting or prompting.

IR directory

/?

Recurses into subdirectories of directory and moves all files into corresponding
DELETED directories.

Displays a brief summary of RM command-line syntax.

Example

RM IR \PROJECT

Using Other Utilities 749

This command line tells RM to delete all files in the directory tree whose root is
the directory named PROJECT. The PROJECT directory lies in the root directory
on the current drive. RM moves all files in this tree to hidden directories named
DELETED, each of which is created as a subdirectory of a directory that contains
the file to be deleted.

The UNDEL Utility
The utility restores one or more deleted files by moving them from a hidden
DELETED subdirectory to the parent directory. Run UNDEL using the following
command line:

UNDEL [{ option I files}]]

The files field specifies the files to be restored. If you specify more than one
file, separate the names with spaces. You cannot use operating-system wildcards
(* and ?). You can specify a path with the filename. If more than one file in
DELETED has the specified name, UNDEL lists the versions and prompts for
which file to restore. If a file with the same name already exists in the parent
directory, UNDEL moves it to the DELETED directory before restoring the
specified file.

To list all files in the current directory's DELETED subdirectory, specify the
UNDEL command alone. However, you cannot list files in a remote directory;
UNDEL does not accept a path without a filename.

UNDEL has the following options; the option names are not case sensitive:

!HELP

/?

Calls the QuickHelp utility. IfUNDEL cannot find the help file or QuickHelp,
it displays a brief summary of UNDEL command-line syntax.

Displays a brief summary of UN DEL command-line syntax.

Example

UNDEL \PROJECT\WORK\REPORT.TXT

This command line tells UNDEL to restore the file called REPORT. TXT in the
directory \PROJEC1\WORK on the current drive. If a file called REPORT. TXT
already exists in that directory, UNDEL changes the file to a backup file in
\PROJEC1\WORK\DELETED before restoring REPORT.TXT. If more than
one file called REPORT. TXT exists in \PROJEC1\WORK\DELETED, UNDEL
prompts for which version to restore.

750 Environment and Tools

The EXP Utility
The EXP utility removes a hidden DELETED directory and all files contained
within. To run EXP, use the following command line:

EXP [options] [directories]

The directories field specifies one or more directories containing DELETED
directories to be expunged. If no directory is specified, EXP deletes the current
directory's DELETED subdirectory.

EXP has the following options; the option names are not case sensitive:

IHELP

IQ

IR

/?

Calls the QuickHelp utility. If EXP cannot find the help file or QuickHelp, it
displays a brief summary ofEXP command-line syntax.

Suppresses display of the names of deleted files.

Recurses into subdirectories of the current or specified directory and expunges
all DELETED directories and files.

Displays a brief summary of EXP command-line syntax.

Example

EXP IR \PROJECT\WORK

This command line tells EXP to:

• Delete the hidden directory \PROJEC1\WORK\DELETED along with any files
in the directory.

• Recurse through the tree whose root is \PROJEC1\WORK and delete any
DELETED directories and associated files.

Using Help

Microsoft C/C++ offers two systems for accessing Help:

• The Microsoft Advisor, found within the Programmer's WorkBench (PWB)
and CodeView

• QuickHelp, the standalone Help program

Both systems provide the same information on important topics and utilities
provided with the development system, which include the language, run-time
libraries, PWB, and CodeView.

The first part of this chapter, "Structure of the Microsoft Advisor," outlines the
structure and contents of Help. The second section, "Navigating Through the
Microsoft Advisor," takes you on a quick tour of the system. The third section
shows how to use some of PWB' s advanced Help features. The next section,
"Using QuickHelp," explains how to use the QuickHelp program and how it
differs from the Microsoft Advisor. The final section discusses how to manage
your Help files.

23.1 Structure of the Microsoft Advisor
The Microsoft Advisor can be compared to a librarian managing a collection of
books. Each book, or Help file, has its own table of contents, index, and pages
of information. The Advisor organizes the Help files with a global contents and
index. All of the files are listed, and their specific tables of contents and indexes
can be accessed through the global references. The global contents screen is
shown in Figure 23.1.

756 Environment and Tools

Z] Help: Microsoft Advisor ~, [I'lit
~~ ~Back~ D

---Microsoft Advisor

r-EdiVDebug r-Languages ,--classes. APIs

~Programmer's WorkBench~ ~C/C++ Language~ ~MS Foundation Classes~
~CodeUiew Debuggers~ ~C Libraries~ ~Windows API~
~Profiler~ ~Asselnbly~

~BASIC~ ~iostrea~
~P-Code Help~ ~COBOL~
~Errors Help~ ~FORTRA"~ ~PWB Extensions~

~icrosoft Utilities----- ,--coMMand Line-

~LI"K~ ~QH~ ~C/C++ COMpiler~ ~Using Help~
~"MAKE~ ~Macro Asselnbler~
~HELPMAKE~ ~BASIC COMpiler~ ~ASCII Table~
~LIB~ ~COBOL Syste~
~Misce llaneous~ ~FORTRA" COMpiler~

-+-

-=
Figure 23.1 Microsoft Advisor Global Contents Screen

You can access a variety of information from the Help system. Information is
available on the languages, run-time libraries, errors, and the Help system itself.

23.2 Navigating Through the Microsoft Advisor
You request information about a topic in a window by moving the cursor to it and
pressing Fl or by clicking it with the right mouse button. The Help system then
searches through the Help files for information about the topic. If it finds the topic,
the Help system displays information in the Help window. If Help cannot be found
for a particular word or symbol, a message informs you that no information is
associated with the topic.

Sometimes, a topic with the same name occurs in several Help files. When you
request Help in PWB for one of these names, PWB displays a dialog box in which
you can select the context ofthe topic. The Next command on the Help menu
takes you to the next occurrence. When you are using QuickHelp, the first topic
is displayed. You can then press E to go to the next occurrence.

Note CodeView does not use the right mouse button for Help in the Source win­
dow. Clicking the right button on a line in the Source window executes the pro­
gram to that line. However, the right mouse button activates Help in the other
CodeView windows.

Using Help 757

Using the Help Menu
The simplest method for accessing Help is by using the commands found in the
PWB and CodeView Help menus. These commands present information in the
Help window.

Command

Index

Contents

Topic: topic

Help on Help

• [ZI

Description

Displays the global index of categories (see Figure 23.2).

Displays the global Help contents screen.

Provides information about the topic at the cursor. If information
about the topic is available, the topic's name is appended to the Topic
command. Otherwise, this command is dimmed.

Displays information about using Help itself.

Help: Microsoft Advisor Indexes

---Microsoft Advisor

Edit/Debug Indexes

Language Indexes

Command Line Indexes

I; Uti Ii ties Indexes

~Programmer's WbrkBench~
~CodeUiew Debuggers~
~Profiler~
~P-Code~

~C/C++ Language and Libraries~
~Assembler~
~BASIC~
~FORTRAI't~
~COBOL~

~C/C++ Compiler~
~Macro Assembler~
~BASIC Compiler~
~FORTRAI't Compiler~
~COBOL Compiler~

~LII'tK and EXEHDR~

Figure 23.2 Microsoft Advisor Global Index Screen

PWB and QuickHelp provide additional commands to access Help. These com­
mands are described in the program-specific sections at the end of this chapter.

Using the Mouse and the F1 Key
You can use the mouse and the FI key to get information about any menu com­
mand or dialog box, as well as information on keywords, operators, and run-time
library functions.

758 Environment and Tools

Help on Menu Commands

~ To view information about a menu item:

1. Open the menu.

2. Drag the mouse to the command and click the right mouse button.
-or-
Use the ARROW keys to select the command and press FI.

The information on the selected command is displayed in a Help dialog box. Fig­
ure 23.3 shows the Help information for the Cut command on PWB's Edit menu.

~ ~Contents~ ~Inde~ ~Back~
Progra.....,r's I-kJrkBench,-------------------

Edit menu, Cut command (Shift+Del)

Function ~Delete~

Choose Cut to delete the selected text from the actiue window and
copy it to the clipboard. If no text is selected, PWB deletes the
character at the cursor and does not modify the clipboard.

To insert the deleted text, use the Paste command or the Paste
function (Shift+lns).
See: Paste ~Edit menu, Paste~

To delete text without copying it to the clipboard, use the Delete
command or the meta forms of the delete functions.
See: Delete, Ldelete, Sdelete ~Edit menu, Delete~

Figure 23.3 Help on the PWB Cut Command

Help on Dialog Boxes

~ To view information about a dialog box:

1. Open the dialog box.

2. Click the Help button.
-or-
Press FI.

<Cancel>

The information on the dialog box is displayed in a Help dialog box.

Using Help 759

Using Hyperlinks
Hyperlinks are cross-references that connect related information.

Hyperlinks enclosed by the <4 and ~ characters are called "buttons." Navigate
through the Help system by using these buttons.

You can press TAB to move to the next hyperlink button within the Help window.
Pressing SHIFT+TAB moves to the previous button. In PWB and CodeView, typing
any letter moves the cursor to the next button that begins with that letter; holding
down SHIFT and typing a letter moves the cursor backward.

The Microsoft Advisor also recognizes language keywords, library functions, con­
stants, and similar identifiers as hyperlinks, but these are not marked. Unmarked
hyperlinks are recognized by the Microsoft Advisor wherever they appear in the
Help text or in your source code. However, an unmarked hyperlink is not delim­
ited with the <4 and ~ characters, and you can't move to it with the TAB key.

An unmarked hyperlink can be executed only by pointing to it with the mouse and
clicking the right mouse button or by placing the cursor on it and pressing FJ. In
QuickHelp, press the S key and then type the text of the hyperlink in the dialog
box. In CodeView, use the Help (H) Command-window command.

~ To activate a hyperlink with the mouse:

1. Move the mouse pointer to the hyperlink.

2. Click the right mouse button.
-or-
Click the left mouse button twice (double-click). Double-clicking works only in
the Help window.

~ To activate a hyperlink with the keyboard:

1. Press TAB, SHIFT+TAB, or the ARROW keys to move the cursor to the hyperlink.
When you move the cursor to a hyperlink button, the entire button is selected.

2. Press Fl, ENTER, or SPACEBAR.

Any of these actions displays information about the topic at the cursor. If the topic
isn't a hyperlink, a message informs you that no information on the topic could be
found.

Note CodeView uses the right mouse button differently in the Source window.
Clicking the right button in the Source window executes the program to the line
where the mouse was clicked. However, once the Help window is displayed, the
right mouse button can be used to activate hyperlinks.

760 Environment and Tools

Using Help Windows and Dialog Boxes
The Microsoft Advisor displays information in windows or dialog boxes. Help
windows and dialog boxes function in the same way as other windows and dialog
boxes found in PWB and CodeView. For a complete description of windows and
dialog boxes, see Chapter 4, "User Interface Details."

Using the Help Window
The Help window displays various contents, indexes, and information about
selected topics. Some screens of information are larger than the Help window;
information beyond the window borders can be viewed by using the scroll bars
or the cursor-movement keys. The -+- symbol indicates the end of information
in the Help window.

Navigating with Hyperlinks At the top of most Help windows is a row of hyper­
link buttons that are useful for moving through the Help system:

Button

"'Up~

Description

Moves upward in the hierarchy of Help screens. Since information is
ordered in a logical way, moving from the general to the specific, this
command is useful for moving up the information tree.

Displays the global contents screen. This command is useful because
it returns you to a known point in the Help hierarchy. For some Help
databases, the Contents button goes to that database's contents.

Displays the global index list. Selecting an item from the list displays
the index for that category. When you are viewing an index for a par­
ticular category, the letters on the bar across the top of the screen are
hyperlinks. For some Help databases, the Index button goes to that
database's index.

Moves you to the last Help you saw.

The Contents and Index commands on the Help menu always display the global
Contents and Index screens.

Screens on a particular topic are frequently grouped together in a Help file. You
can press CTRL+Fl to display information about the next physical topic in the Help
file.

Viewing the Previous Help The Microsoft Advisor remembers the last 20 Help
screens you've accessed. To return to a previous screen, use the "Back~ button or
press ALT+Fl as many times as necessary to return to the screen you want to see.
The Help screen that appears is active; you can ask for Help on any of its hyper­
links or topics.

Using Help 761

You can always return to the global Contents screen by choosing Contents from
the Help menu or by pressing SHIFT+Fl.

Copying and Pasting Help Any text that appears in the PWB Help window can
easily be copied to another window. For example, to test an example program
from the Help window, you only have to copy it to a new file and compile it. You
select and copy text in the Help window just as you do for any other window in
PWB.

If you are using QuickHelp, you cannot cut and paste directly into your text editor.
However, you can use the commands in the QuickHelp Paste menu to extract pre­
determined portions of the Help screen to a file. To change the name of the paste
file, choose Rename Paste File from the File menu.

Closing the Help Window Once you're through working with the Help system,
you can close the active Help window.

~ To close the Help window:

• Click the Close button in the upper left corner of the window.
-or-
Press ESC.

Using Help Dialog Boxes
Help dialog boxes provide information about menu commands and dialog boxes.
A Help dialog box appears over the windows on the desktop. Unlike the Help
window, a Help dialog box must be closed before you can continue. The Cancel
button closes the Help dialog box.

~ To view information about a dialog box:

• Click the Help button in the dialog box.
-or-
Press Fl.

~ To close a Help dialog box:

• Click the Cancel button.
-or-
Press ESC.

762 Environment and Tools

Accessing Different Types of Information
This section presents some strategies for accessing the different types of informa­
tion available within Help system.

Keyword Information
The Help system contains information about all keywords, operators, symbolic
constants, and library functions in the development system. If you know the exact
name of a keyword, you can type it in a window and click it with the right mouse
button or press Flo For operators that do not have an alphabetic name, you must
select the operator before activating Help. You can also use the index for the
appropriate category of Help.

~ To get Help using the index:

1. From the Help menu, choose Index.
-or-
Choose the Index button on any Help screen.

2. Choose the appropriate category of Help from the list of indexes.

Each index has a row of letters across the top.

3. Choose the keyword's first letter from the row ofletters. If you want Help for
a nonalphabetic operator, choose the asterisk (*).

4. Scroll down the list of entries and choose the topic's hyperlink.

In PWB, you can get Help on a keyword or operator by using the Arg function,
typing the keyword in the Text Argument dialog box, then pressing Flo Assuming
that Arg is assigned to ALT+A (the default assignment), the following procedure
displays Help for the printf function.

~ To get Help using the Arg function in PWB:

1. Press ALT+A

PWB displays the message Arg[1] on the status bar.

2. Type printf.

When you type the first letter of the keyword, PWB displays the Text Argu­
ment dialog box. Continue typing the keyword.

3. Press FI.

PWB displays the Help for the printf function.

Using Help 763

~ To get Help on a topic in QuickHelp:

1. Choose Search from the View menu or press the s key.

QuickHelp displays a dialog box where you can type the topic name.

2. Type the keyword.

3. Click OK or press ENTER.

Figure 23.4 shows a PWB window with the information for printf.

~Iu¥i;'i'iin]j'" ~Example"
Help: printf Illt

~Up~ ~Contents~ ~Inde~ ~Back~ 0
• [Zl

Include: (stdio.h>

Syntax: int printf(char *format[. argumentl ...);

Returns: the number of characters printed.

See also: scanf. fprintf. sprintf. vprintf
~printf Formatting Table~ ~Escape Sequences~

-+-

Figure 23.4 Help for printf in a PWB Window

When information about a programming-language keyword or function is shown
in the Help window, two additional hyperlink buttons are displayed.

~Description~
Provides a detailed explanation of the function. When the description informa­
tion is displayed, the button changes to ~ Summary~. Click this button to return
to the summarized information about the function.

~Example~
Displays source code that provides an example of how the function is used.

Topical Information
The Help system is useful when you want an overview of the available reference
topics or when you only have a general idea of what information you need. Start
with the global contents screen, and then select any hyperlinks that relate to the
topic. You can traverse the hyperlinks until you locate the necessary information.

764 Environment and Tools

Menu and Dialog-Box Help
You can get information about any menu command or dialog box by pressing Fl

when the menu command is highlighted or the dialog box is displayed. This is
Helpful when you are first learning to use the development system and you are not
completely familiar with all of the features.

Error Help
The Microsoft Advisor provides information about compiler and linker error
messages. Whenever a message is displayed on the bottom line of the window
in PWB, press Fl to see Help on that error.

You can also get Help for any error in the Build Results window.

~ To find the meaning of an error message using the mouse:

1. Position the mouse pointer on the error number in the Build Results window.

2. Click the right mouse button.

~ To find the meaning of an error message using the keyboard:

1. Move the cursor to the Build Results window.

2. Position the cursor on the error number.

3. Press Fl.

Help on error messages is also available directly by executing the Arg function,
typing the error number and its alphabetic prefix, and then pressing Fl. Make sure
that you type the number exactly-case is significant.

Using Different Help Screens
In addition to the global screens and the topic screens that have already been
described in this chapter, the Microsoft Advisor contains some other types of
screens that you use in special ways.

Using Index Screens
An index screen has a bar of letters at the top of the screen, below the row of hy­
perlink buttons. Each letter on the bar is a hyperlink to that letter's list of index
entries. The asterisk (*) at the end of the bar is also a hyperlink. This screen lists
the nonalphabetic entries. Click the right mouse button on the letter to see that part
of the index.

Using Help 765

.~[Zl Help: Programmer's WOrkBench Index Illt
~~ ~Contents~ ~lnde~ ~Back~ D

-Programmer's WOrkBench lndex-----------------

'A'
About
adding to the Run menu
Alert
All Fi les
'all' pseudotarget
ALTGR
Anchor

Figure 23.5 PWB Index

~Meta Function~
~Help menu, About command~
~Run menu, Customize Run Menu command~
~Color Names~
~File menu, All Files command~
~Build:all Switch~
~Enablealtgr Switch~
~Edit menu, Set Anchor command~
~Edit menu, Select To Anchor command~

Figure 23.5 shows the PWB index screen for the A category. Below the row of
alphabet hyperlinks is a list of index entries. Each entry is a hyperlink to the indi­
cated topic.

Using TopiC lists
Some topics are not a screen of text with fixed hyperlink buttons at the top. In­
stead, they are a list of topics in which each line is a hyperlink. The entire line is
highlighted at a time. You can point to the line and click the right mouse button to
activate the hyperlink. You can also use the UP ARROW and DOWN ARROW keys to
select a topic, and then press F 1 or ENTER to go to that topic.

23.3 Using Help in PWB
PWB provides additional Help features to help you find the information you need.

Opening a Help File
You can open Help files temporarily in PWB by using the SetHelp function. If
you keep rarely used Help files in a directory that is not listed in the HELPFILES
environment variable, you can still open the files when you need them.

~ To open another Help file in PWB:

1. Execute the Arg function (press ALT+A).

2. Type the name of the Help file to open. PWB Displays the Text Argument
dialog box when you type the first letter of the filename.

766 Environment and Tools

Global Search

3. Execute the SetHelp function (press SHIFT+CTRL+S).

To close a Help file, execute Arg Metafile SetHelp. That is, press ALT+A, F9, type
the filename, then press SHIFT +CTRL+S.

The Global Search command on the Help menu in PWB lets you search all open
Help files for a string of text or a regular expression. All text in the Help files is
searched, not just the topic names. A global search results in a list of topics, each
of which contains text that matches the search string. QuickHelp can also perform
global Help searches but does not offer regular-expression matching.

Searching all the Help can take a long time. Therefore, it is recommended that you
use the Global Search command only after you have tried other methods of finding
the information you need.

Running a Global Search
When you choose the Global Search command, PWB displays the Global Search
dialog box where you can specify options for the search. Enter the string or pattern
you want to locate in the Find Text box. If you want the search to be case sensi­
tive, turn on the Match Case option. To match a regular expression rather than
literal text, turn on the Regular Expression option.

Regular expressions allow you to specify general patterns of text or several alterna­
tive strings to match. The current regular-expression syntax is displayed in paren­
theses after the Regular Expression option. For more information about searching
with regular expressions, see Chapter 5, "Advanced PWB Techniques," and
Appendix A.

When you choose OK, PWB starts searching for the specified string or regular
expression. The search begins with the Help file that was opened most recently.
Because the search can take a long time, it is recommended that you choose a
likely category of Help from the global Contents screen before starting a global
search.

When you start a global search, PWB displays a dialog box that shows the pro­
gress of the search. Choose the Stop Search button at any time to stop the search
and view the partial results. When the search ends, PWB displays a list of match­
ing topics.

Using Search Results
When the search is finished, or when you halt the search by choosing Stop Search,
PWB displays a list of the topics that contain text that matches the specified string.

Using Help 767

Each topic is represented by its title if it has one, followed by the name of the
database that contains the topic, and sometimes followed by the topic name.

~ To select a topic from the list:

• Click the right mouse button on the line.
-or-
Press the UP ARROW and DOWN ARROW keys until the topic is highlighted, and
then press ENTER or FI.

PWB displays the selected topic. If that topic does not supply the information that
you need, go back to the list and select another topic.

~ To go back to the list:

• Choose Search Results from the Help menu.
-or-
Press ALT+Fl until the list is displayed.

Restricting the Search
By default, PWB performs a global search in all open databases. There are several
ways to control which databases are searched:

• Before the search, display Help from the database that is most likely to contain
the information you want. When you run the search, choose Stop Search when
the dialog box indicates that the first database has been searched.

• Close some databases by using the Meta form of the SetHelp function.

• Set the HELPFILES environment variable to the file or files to be searched by
using the Environment Variables command on the Options menu. The list of
files cannot exceed the MS-DOS limit of 128 characters.

Note that the changes you make to HELPFILES may be restored the next time
you start PWB or use the project, depending on the settings of the Envcursave
and Envprojsave switches.

• Choose the Editor Settings command from the Options menu. Then select
PWBHELP as the Switch Owner and Text as the switch type. Assign a value
to the Helpfiles switch to open other Help files in addition to the ones listed in
the HELPFILES environment variable.

To see a list of all open Help files and databases, execute the Arg ? SetHelp com­
mand. The default keystrokes for this are ALT+A, ?, SH1Ff+CTRL+S. The resulting list
of physical Help files and Help databases is displayed in the Help window.

768 Environment and Tools

23.4 Using QuickHelp
QuickHelp is a separate application that provides access to any Help file. It uses
the same Help files as the Microsoft Advisor and presents information about top­
ics in the same way. QuickHelp is designed for the developer who prefers using
command-line utilities or another editor and doesn't have access to the Microsoft
Advisor through PWB.

Major utilities that come with Microsoft C/C++ invoke QuickHelp and display
related information when you use the /Help option. You can also use QuickHelp
from the command line, as explained in the following sections.

Using the /Help Option
You can get immediate information on major components of Microsoft C/C++
by using the /Help option. The following procedures use the LIB utility as an
example. However, you can use these methods for all command-line utilities in
the development system.

~ To learn about the LIB utility:

• At the operating-system command line, type:

LIB IHelp

LIB starts QuickHelp which displays information about LIB.

Using the QH Command
You can also run QuickHelp from the MS-DOS command line or by double­
clicking the QuickHelp - Microsoft Advisor icon in the Windows Program
Manager.

~ To get Help on the LIB utility:

• At the operating-system command line, type:

QH LIB.EXE

You can type the name of any Microsoft utility instead of LIB.

~ To start QuickHelp to view the Advisor Contents screen:

• At the operating-system command line, type:

QH Advisor

Using Help 769

In addition to information about programs, QuickHelp can also display informa­
tion about compiler and run-time errors. Type OH and the error number with its
alphabetic prefix on the command line.

Opening and Closing Help Files
When you run QuickHelp, it looks for the environment variable HELPFILES and
opens all listed .HLP files. If the HELPFILES variable isn't defined, QuickHelp
opens all .HLP files in directories specified by the PATH environment variable.

Warning Windows Help files are not compatible with QuickHelp. Make sure that
Windows Help files are not listed in the HELPFILES environment variable.

Choose the List Database command on the File menu to view a list of all the open
Help files.

.. To open additional Help files:

• Choose the Open Database command from the File menu.

• Type the name of the Help file to be opened in the dialog box that appears. You
can specify all Help files in a directory by typing *. HLP.

• Press ENTER or click the OK button with the left mouse button.

.. To close an open Help file:

1. Choose the Close Database command from the File menu.

The File menu changes to a list of open Help files.

2. Choose the Help file to close.

Displaying a Topic
You can view information about a topic by using the Search command on the
View menu. When topic information is displayed, it is shown in the same format
as information presented by the Microsoft Advisor .

.. To display a topic from any of the open Help files:

1. Choose the Search command from the View menu.

2. Type the topic you want information about in the dialog box.

3. Click the OK button or press ENTER.

QuickHelp searches for the topic in the open Help files. If the topic cannot be
found, a dialog box informs you that the search failed. If the search is successful,
information about the topic is displayed in the QuickHelp window.

770 Environment and Tools

Navigating Through Topics
A series of commands on the View menu allow you to display selected topics.
These commands include the following:

Command Description

View History Displays a list of all the topics that have recently been displayed. See
"Using Topic Lists" on page 765 for infonnation on using the list.

View Last

View Next

View Back

Displays the last topic you looked at.

Displays the next topic in the Help file.

Moves backward one topic in the Help file.

Using the QuickHelp Window
The QuickHelp window shown in Figure 23.6 is similar to the Microsoft Advisor
Help window. Information that doesn't fully fit in a window can be scrolled, and
hyperlinks are used to display additional information. The main difference is that
information presented in QuickHe1p cannot be copied selectively.

tegorlFs efprences . stc I tions

~Inde~ ~Back~ t
--tticrosoft Advisor'-------------------- U::

t~1
ivDebug------,

~rogrammer's WDrkBench~
~odeView Debuggers~
~rofil~

~P-Code Help~
~Errors Help~

icrosoft Utilities

~LI"K~ ~QH~
~"mKE~
~HELpmKE~
~LIB~
.1iscellil.ne~

Languages:-----,

~C/C++ Language~

~c Libraries~
~Assembly~
~BASIC~
~COBOL~
~FORTR_

olllllilnd Line

</C++ CoMJIile~
-4'1acro Assemb l~
~ASIC Compiler~
~OL Syste~
-4F0RTRA" Compiler~

-+-

Figure 23.6 The QuickHelp Window

lasses. APIs-----, lill

~MS Foundation Classes~ lill

::::~ I
~CII Table~

~ L--______ -' I
,

Using Help 771

Copying and Pasting in OuickHelp
To transfer information from QuickHelp to another program, specify a file with
the Rename Paste File command in the File menu. Once the file is specified,
choose the Current Window or the Current Topic command in the Paste menu to
transfer the text to that file. Be sure to specify a new file when you paste because
QuickHelp overwrites the existing file by default. To append to an existing file,
choose the Paste Mode command from the Options menu. The default filename is
PASTE.QH in the directory specified by the TMP environment variable.

More About OuickHelp
In addition to the features mentioned previously, QuickHelp has a variety of other
options such as changing the appearance of the Help window, searching for text
within topics, and controlling the function of the right mouse button.

~ To learn more about QuickHelp's features:

1. Make sure the QH.HLP file is open.

2. To view QuickHelp's Help, press Flo

-or-
To get information about a menu command, click it with the right mouse
button, or highlight the command and press Flo

23.5 Managing Help Files
When you run the SETUP program for Microsoft C/C++, you are given a choice
of whether to install the Help files. If you choose to install Help, SETUP copies
the Help files to the directory that you specify. By default, this is the C700llielp
directory.

Several other Microsoft products contain a Microsoft Advisor Help system. If you
have more than one of these products, you can use all the files as one system by
copying all.HLP files to a common directory. However, make sure that Windows
Help files are separate from the Advisor Help files.

Some Help files, such as UTILS.HLP, exist in other Microsoft language products.
When an existing Help file has the same filename as a MicrosoftC/C++ Help file,
use the most recent file. Note that the files RC.HLP and UTILERR.HLP are obso­
lete and should be deleted or moved to another directory.

The HELPFILES environment variable tells the Advisor where to find Help
files. You usually set this variable in AUTOEXEC.BAT. If you move the Help
files, make sure to change the SET command in AUTOEXEC.BAT to point
HELPFILES to the new location.

772 Environment and Tools

Managing Many Help Files
If you have a large number of Help files, you may reach a limit on the number of
physical Help files or Help databases that can be open at one time. QuickHelp,
PWB, and CodeView display a message when you have too many Help files. If
this is the case, you must do one or more of the following:

• Delete all obsolete Help files.

• Move rarely used Help files to another directory. You can then open these files
as you need them.

• Concatenate some Help files.

It is recommended that you always keep ADVISOR.HLP. Moreover, for Help on
error messages, you must use the Help file for the tool that issues the error. It is
recommended that you save backup copies of all Help files before concatenating,
splitting, or deleting any files.

To open and close Help files in PWB, use the SetHelp function. To open and
close Help files in QuickHelp, choose the Open Database and Close Database
commands from the File menu.

You can get a listing of the open Help files in PWB and QuickHelp. These lists
show the open Help files, the Help databases contained in the files, and the title
for each database if it has one. To get a list of open Help files in PWB, execute the
function sequence Arg? SetHelp. With the default keystrokes, press ALT+A, type
a question mark (?), then press SHIFf+CTRL+S. To get a list of open Help files in
QuickHelp, choose the List Databases command from the File menu. Once you
have created the list of Help files, you can print it for later reference.

Concatenating Help Files
To concatenate two or more physical Help files, use the MS-DOS COpy com­
mand. The syntax for using the COPY command to combine Help files is:

COPY file /b [+ file /b] ... newfile

Use a plus sign (+) between the filenames of the original Help files. Specify the
Ib option to copy the files as binary files. If you don't specify a new filename, the
resulting file takes the name of the first file and the original file is overwritten.

You can use this command to combine two Microsoft Advisor Help files. For
example, to create a physical Help file named ADVISOR.HLP that contains
ADVISOR.HLP and QH.HLP, use the following command:

COPY ADVISOR. HLP /b + OH.HLP /b

Using Help 773

You can also combine your own Help file (created using HELPMAKE) with
Microsoft Help files.

Splitting Help Files
To split a physical Help file into its component databases, use the HELPMAKE
utility. The syntax for using HELPMAKE to split a Help file is:

HELPMAKE IDS file

Specify the IDS option when splitting a Help file. For more information on the
IDS option, as well as other uses of HELPMAKE, see Chapter 20. HELPMAKE
creates individual physical files with the name of the original Help database. The
resulting files are created in the current directory.

For example, the following command extracts the component Help databases from
the UTILS.HLP file:

HELPMAKE IDS UTILS.HLP

The UTILS.HLP file itself is not changed. You can delete the unneeded com­
ponent files and then concatenate the remaining files to create a new version of
UTILS.HLP.

Regular Expressions

A regular expression (sometimes called a "pattern") is a find string that uses
special characters to match patterns of text. You can use regular expressions to
find patterns such as five-digit numbers or strings in quotation marks. Selected
portions of found text can be used in a replacement.

In PWB you can specify regular expressions in two ways: UNIX syntax and non­
UNIX syntax. UNIX regular expressions have a syntax similar to regular expres­
sions in the UNIX and XENIX operating systems. CodeView uses a subset of the
UNIX regular-expression syntax. Non-UNIX regular-expression syntax has the
features of UNIX regular expressions but includes additional features and uses a
more compact syntax.

The Unixre switch determines whether PWB uses UNIX or non-UNIX regular
expressions in searches. PWB switches that accept regular expressions, such as
Build and Word, always use UNIX syntax.

778 Environment and Tools

A.1 Regular-Expression Summaries
The following table summarizes PWB' s UNIX regular-expression syntax.

Table A.1 UNIX Regular-Expression Summary

Syntax

\c

A

$

[class]

[Aclass]

x*

x+

\{x\}

\{x\!y\!z\}

\-x
\(x\)

\n
\:e

Description

Escape: literal character c

Wildcard: any character

Beginning of line

End of line

Character class: anyone character in set

Inverse class: anyone character not in set

Repeat: zero or more occurrences of x

Repeat: one or more occurrences of x

Grouping: group subexpression for repetition

Alternation: match one from the set

"Not": fail if x at this point

Tagged expression

Reference to tagged expression number n
Predefined expression

The following table summarizes the UNIX predefined expressions.

TableA.2 UNIX Predefined Expressions

Syntax Description

\:a Alphanumeric character

\:b White space

\:c Alphabetic character

\:d Digit

\:f Part of a filename

\:h Hexadecimal number

\:i Microsoft C/C++ identifier

\:n Unsigned number

\:p Path

\:q Quoted string

\:w English word

\:z Unsigned integer

Regular Expressions 779

Code View uses a subset of the UNIX regular-expression syntax. You can use regu­
lar expressions as arguments to the Search (I) command and Examine Symbols
(X) command. The following table summarizes CodeView regular expressions.

Table A.3 CodeView Regular Expressions

Character

Backslash

Period

Caret

Dollar sign

Asterisk

Brackets

Syntax Meaning

\c

A

$

c*
[... J

Matches a literal character c. (Escape)

Matches any single character. (Wildcard)

Matches the beginning of a line. The caret must appear at the
beginning of the pattern.

Matches the end of a line. The dollar sign must appear at the
end of the pattern.

Matches zero or more occurrences of c.

Matches anyone character in the set of the characters within
the brackets.

Within the brackets, you can specify a negated set and ranges of characters by
using the following notation:

Character

Dash

Caret

Syntax Meaning

A

Specifies a range of characters in the ASCII order between
the characters on either side, inclusive. For example, [a - z]
matches the lowercase alphabet.

Matches anyone character not within the brackets. The caret
must be the first character within the brackets. For example,
[A 0 - 9] matches any character except a digit.

780 Environment and Tools

The following table summarizes the non-UNIX regular-expression syntax.

Table A.4 Non-UNIX Regular-Expression Summary

Syntax

\c
?
A

$
[class]

[-class]

x*

x+
x@

x#

(x)

(x!y!z)

{x}

$n
:e

Description

Escape: literal character c

Wildcard: any character

Beginning of line

End ofline

Character class: anyone character in set

Inverse class: anyone character not in set

Repeat: zero or more occurrences of x

Repeat: one or more occurrences of x

Repeat: maximal zero or more occurrences of x

Repeat: maximal one or more occurrences of x

Grouping: group subexpression for repetition

Alternation: match one from the set

"Not": fail if x at this point

"Power": match n copies of x

Tagged expression

Reference to tagged expression number n

Predefined expression

The following table summarizes the non-UNIX predefined expressions.

Table A.S Non-UNIX Predefined Expressions

Syntax

:a
:b
:c
:d
:f

:h
:i

:n
:p
:q
:w
:z

Description

Alphanumeric character

White space

Alphabetic character

Digit

Part of a filename

Hexadecimal number

Microsoft C/C++ identifier

Unsigned number

Path

Quoted string

English word

Unsigned integer

Regular Expressions 781

A.2 UNIX Regular-Expression Syntax
PWB uses the following UNIX-style regular-expression syntax:

Table A.6 UNIX Regular-Expression Syntax

Syntax

\c

A

$

[class]

x*

x+

\(x\)

\n

\{x\}

\{x\!y\!z\}

Description

Escape: matches a literal occurrence of the character c and ignores any
special meaning of c in a regular expression. For example, the expression
\? matches a question mark (?), \" matches a caret (A), and \ \ matches
a backslash (\).

Wildcard: matches any single character. For example, the expression a. a
matches aaa and a0a.

Beginning ofline. For example, the expression "The matches the word
The only when it occurs at the beginning of a line.

End ofline. For example, the expression end$ matches the word end
only when it occurs at the end of a line.

Character class: matches anyone character in the class. Use a dash (-) to
specify a range of characters. Within a class, all characters except ,,- \]
are treated literally. For example, [a - zA - Z 0 - 9] matches any character or
digit,and [abc] matches a, b,or c.

Inverse of character class: matches any character not specified in the class.
For example, [" 0 - 9] matches any character that is not a digit.

Repeat operator: matches zero or more occurrences of x, where x is a single
character, a character class, or a grouped expression. For example, the
regular expression ba*b matches baaab, bab, and bb. This operator
always matches as many characters as possible.

Repeat operator (shorthand for xx*): matches one or more occurrences of x.
For example, the regular expression b a +b matches b a a b and b a b but
not bb.

Tagged expression: marked text, which you can refer to as \n elsewhere in
the find or replacement string. Within a find string, PWB finds text that con­
tains the previously tagged text. Within a replacement string, PWB reuses
the matched text in the replacement.

References the characters matched by a tagged expression, where n is a
one-digit number and indicates which expression. The first tagged expres­
sion is \1, the second is \2, and so on. The entire expression is repre­
sented as \0.

Grouping. Groups a regular expression so that you can use a repeat opera­
tor on the subexpression. For example, the regular expression \ {T est \}+
matches Test and TestTest.

Alternation: matches one from a set of alternate patterns. The alternates are
tried in left-to-right order. The next alternate is tried only when the rest of
the pattern fails. For example, \ { + \ ! $ \} matches a sequence of blanks
or the end of a line.

782 Environment and Tools

Examples

Table A.6 (continued)

Syntax

\-x

\:e

Description

"NOT" function: matches nothing but checks to see whether the text
matches x at this point and fails if it does. For example, A \ - \ { \! $ \} . *
matches all lines that do not begin with white space or end of line.
Predefined regular expression, where e is a letter specifying the regular
expression.

In PWB, to find the next occurrence of a number (a string of digits) that begins
with the digit 1 or 2:

1. Execute Arg Arg (ALT+A ALT+A)

2. Type [12][0-9]*

3. Execute Psearch (F3)

The special characters in regular expression syntax are most powerful when they
are used together. For example, the following combination ofthe wildcard (.) and
repeat (*) characters

. *

matches any string of characters. This expression is useful when it is part of a
larger expression, such as

B.*ing

which matches any string beginning with B and ending with i n g.

A.3 Tagged Regular Expressions
Tagged expressions are regular expressions enclosed by the delimiters \ and \
(UNIX) or {and} (non-UNIX). Use tagged expressions to match repeated ele­
ments and to mark substrings for use in a replacement. Note that a tagged expres­
sion is not the same as a grouped expression.

When you specify a regular expression with tagged subexpressions, PWB finds
text that matches the regular expression and marks each substring matching a
tagged subexpression.

Example

Example

The UNIX regular expression

\«\)\([A>]+\)\(>\)

matches the string

<bracketed>

and tags the < , bracketed, and> substrings.

Regular Expressions 783

To refer to tagged text in a find or replacement pattern, use \n (UNIX) or $n (non­
UNIX), where n is the number of a tagged subexpression from 1 to 9. In a find
pattern, this reference matches another occurrence of the previously matched text,
not another occurrence of the regular expression. In a replacement, PWB uses the
matched text.

The entire match is implicitly tagged for use in replacement text. Use \0 (UNIX)
or $0 (non-UNIX) to refer to the entire match. For example, the UNIX find pattern

A\([A]+\) +\([A]+\).*

with the replace pattern

\2 \1 (\0)

matches lines without leading spaces and at least two words. It replaces them
with lines that consist of the transposed words followed by the original line in
parentheses.

The tagged expressions:

UNIX Non-UNIX

\([A-Za-z]+\)==\l {[A-Za-z]+}==$l

match one or more letters followed by two equal signs (==) and a repetition of the
letters. They match the first two strings below, but not the third:

ABCxyz==ABCxyz
i ==i
ABCxyz==KBCxjj

784 Environment and Tools

The following example finds one or more hexadecimal digits followed by the
letter H. Each matching string is replaced by a string that consists of the original
digits (which were tagged so they could be reused) and the prefix 16#.

1. Find strings of the form hexdigitsH with the UNIX and non-UNIX patterns:

UNIX Non-UNIX

\([0-9a-fA-F]+\)H {[0-9a-fA-F]+}H

These patterns can also be expressed by using the predefined pattern for hex­
adecimal digits:

UNIX Non-UNIX

{:h}H

2. Replace with the patterns:

UNIX Non-UNIX

16#\1 16#$1

Tagged Expressions in Build:Message
PWB uses tagged UNIX regular expressions to find the location of errors and
warnings displayed in the Build Results window. The tagged portions of the mes­
sage indicate the file and the location or token in error.

To define new messages for PWB to recognize, add a new Build:message switch
definition to the [PWB] section of TOOLS.INI. The syntax for this switch is:

Build:message "pattern" [file [line [column]] I token]

The pattern is a macro string that specifies a tagged UNIX regular expression. The
file, line, col, and token keywords indicate the meaning of each tagged subexpres­
sion.

For example, if the messages you want to match look like:

Error: Missing ';' on line 123 in SAMPLE.XYZ

Place the following setting in TOOLS.INI:

Build:message "AError: .* on line \\(\\:z\\) in \\(\\:p\\)" \
fi 1 eli ne

Note that each backslash in the regular expression is doubled within the macro
string. This pattern uses the predefined expressions for integer (\:z) and path (\:p).

Regular Expressions 785

A.4 Justifying Tagged Expressions
To justify a tagged regular expression, use the following syntax in the replacement
string:

UNIX Non-UNIX

\(width,n) $(width,n)

The width is the field size (negative for left justification), and n is the number of
the tagged expression to justify.

PWB justfies the tagged text according to the following rules:

• If width is greater than the length of the tagged text, PWB right-justifies the
tagged expression within the field and pads the field with leading spaces.

• If width is negative and its magnitude is greater than the length of the text,
PWB left-justifies the expression and pads the field with trailing spaces.

• If width is less than or equal to the length of the text, PWB uses the whole text
and does not pad the field. PWB never truncates justified text.

A.5 Predefined Regular Expressions
PWB predefines several regular expressions. The definitions in the following table
are listed in quoted non-UNIX syntax, as they would appear in a PWB macro. Use
a predefined expression by entering \:e (UNIX) or :e (non-UNIX).

Table A.7 Predefined Regular Expressions and Definitions

:e Description
Definition (non-UNIX)

:a Alphanumeric character
"[a-zA-Z0-9]"

:b White space
"([\t]#)"

:c Alphabetic character
"[a-zA-Z]"

:d Digit
"[0-9]"

:f Part of a filename
"([-/\\\\ \\\"\\[\\]\\: +=;,.]if! .. !.)"

:h Hexadecimal number
"([0-9a-fA-F]if)"

786 Environment and Tools

Table A.7 (continued)

:e Description
Definition (non-UNIX)

:i Microsoft C/C++ identifier
"([a-zA-Z_S][a-zA-Z0-9_S]@)"

:n Unsigned number
"([0-9]#.[0-9]@l[0-9]@.[0-9]#l[0-9]#)"

:p Path
"(([A - Za - z] \ \ : l)(\ \ \ \ l I!)(: f (. : f l) (\ \ \ \ l !))@: f (. : fl. l))"

:q Quoted string
"(\"[-\"]@\"l'[-']@')"

:w English word
"([a-zA-Z]#)"

:z Unsigned integer
"([0-9]#)"

A.6 Non-UNIX Regular-Expression Syntax
PWB uses the following non-UNIX regular-expression syntax:

Table A.8 Non-UNIX Regular Expression Syntax

Syntax

\c

?

A

$

[class]

[-class]

x*

Description

Escape: matches a literal occurrence of the character c and ignores any spe­
cial meaning of c in a regular expression. For example, the expression \?
matches a question mark ?, \A matches a caret A, and \ \ matches a
backslash \.

Wildcard: matches any single character. For example, the expression a? a
matches aaa and ala but not aBBBa.

Beginning of line. For example, the expression AThe matches the word
The only when it occurs at the beginning of a line.

End of line. For example, the expression endS matches the word end only
when it occurs at the end of a line.

Character class: matches anyone character in the class. Use a dash (-) to
specify a range of characters. Within a class, all characters except -- \] are
treated literally. For example, [a - zA- Z*] matches any alphabetic character
or asterisk, and [a b c] matches a single a, b, or c.

Inverse of character class: matches any single character not in the class. For
example, [-0 - 9] matches any character that is not a digit.

Minimal matching: matches zero or more occurrences of x, where x is a
single character or a grouped expression. For example, the expression ba*b
matches baaab, bab, and bb.

Examples

Regular Expressions 787

Table A.8 (continued)

Syntax Description

x+ Minimal matching plus (shorthand for xx*): matches one or more occur­
rences of x. For example, the expression ba+b matches baab and bab
but not bb.

x@ Maximal matching: identical to x*, except that it matches as many occur­
rences as possible.

x# Maximal matching plus: identical to X+, except that it matches as many
occurrences as possible.

(x!y!z) Alternation: matches one from a set of alternate patterns. The alternates are
tried in left-to-right order. The next alternate is tried only when the rest of the
pattern fails. For example, the expression (ww! xx! xxyy) zz matches xxzz
on the second alternative and xxyyzz on the third.

(x) Grouping. Groups an expression so that you can use a repeat operator with
the expression. For example, the expression (T est) + matches T est and
TestTest.

-x "NOT" function: matches nothing but checks to see if the text matches x at
this point and fails if it does. For example, A_(if! whi 1 e) ?*$ matches all
lines that do not begin with if or whi 1 e.

xlln Power function: matches n copies of x. For example, wA4 matches wwww,
and (a?)A3 matches a1faba5.

{x} Tagged expression: marked text, which you can refer to as $n elsewhere in
the find or replacement string. Within a find string, PWB finds text that con­
tains the previously tagged text. Within a replacement string, PWB reuses the
matched text in the replacement.

$n Reference to text matched by a tagged expression. The specific substring is
indicated by n. The first tagged substring is indicated as $1, the second as
$2, and so on. A $0 represents the entire match.

:e Predefined regular expression, where e is a letter that specifies the regular
expression.

In PWB, to find the next occurrence of a number (a string of digits) that begins
with the digit 1 or 2:

1. Execute Arg Arg (ALT+A ALT+A).

2. Type [12][0-9J*

3. Execute Psearch (F3).

Regular expressions are most powerful when they are used together. For example,
the combination of the wildcard (?) and repeat (*) operators

788 Environment and Tools

matches any string of characters. This expression is useful when it is part of a
larger expression, such as

which matches any string beginning with B and ending with i n g.

Non-UNIX Matching Method

Example

The type of non-UNIX matching method is significant only when you use a find­
and-replace command. "Matching method" refers to the technique used to match
repeated expressions. For example, does the expression a* match as few or as
many characters as it can? The answer depends on the matching method.

PWB supports two matching methods in non-UNIX regular expressions:

• "Minimal matching" matches as few characters as possible to find a match.
For example, a+ matches only the first character in aaaaa. However, ba+b
matches the entire string baaaab because it is necessary to match every a
to match both occurrences of b.

• "Maximal matching" matches as many characters as possible. For example,
aft matches the entire string aaaaaa.

If a+ (minimal matching plus) is the find string and EE is the replacement string,
PWB replaces a a a a a with E E E E E E E E E E because at each occurrence of a, PWB
immediately replaces it with EE.

However, if aft (maximal matching plus) is the find string, PWB replaces the
same string with E E because it matches the entire string a a a a a at once and re­
places that string with E E.

Decorated Names

This appendix discusses decorated names for functions in C++ programs. You
must use a decorated name when you need to specify a C++ function name as it is
known internally by the linker.

B.1 Overview
Functions in C++ programs are known internally by their decorated names. A dec­
orated name is created by the compiler during compilation of the function defini­
tion or prototype. In most circumstances, you do not need to know the decorated
name of a function. However, some uses of function names require you to specify
the decorated name of a C++ function. For example, the EXPORTS, IMPORTS,
and FUNCTIONS statements in a module-definition (.DEF) file require decorated
names for C++ functions. These and other .DEF file statements are described in
Chapter 16.

Format of a Decorated Name
A decorated name is a string generated by the compiler. It contains the following
information:

• The function name.

• The class that the function is a member of, if it is a member function. This may
include the class that encloses the function's class, and so on.

• The types ofthe function's parameters.

• The calling convention.

• The return type of the function.

790 Environment and Tools

The function and class names are expressed literally in the string. The rest of the
string is a code that has internal meaning only for the compiler and linker.

Note The decoration for a C identifier, in contrast to a C++ identifier, consists
only of a leading underscore.

Viewing Decorated Names

Examples

The decorated name of a function is not generated until compilation. After the pro­
gram is compiled, the linker uses the decorated form of the name. Use the LINK
IMAP option to create a map file that shows decorated names. You can control the
map output as follows:

• Specify (MAP with no qualifier to get a map file that contains public symbols
listed by name and by address. The map file gives the decorated form of C++
function names in each of these lists.

• Specify IMAP:ADDRESS to get the same map file that !MAP creates but
without the list of symbols sorted by name.

• Specify !MAP:FULL to add the undecorated form of each name to the map
file produced by !MAP. The undecorated form is given after the decorated
name. This option also adds the contributions of object files to segments.

To see the undecorated form of the decorated name, you must use !MAP:FULL.
Note that inline functions do not generate entries in a map file. For more informa­
tion on LINK and the !MAP option, see Chapter 14.

The following are examples of decorated names and their undecorated versions:

?calc@@YAHH@Z
int near cdecl calc(int)

?getMonth@Date@@QACHXZ
public: int __ near __ pascal Date: :getMonth(void) __ near

These names are from the map file that is produced when !MAP:FULL is specified
to the linker.

B.2 Getting and Specifying a Decorated Name
Some uses of C++ function names require that you specifyJhe name in its deco­
rated form. Decorated names are required in the FUNCTIONS, EXPORTS, and
IMPORTS statements in a .DEF file. This section descrioes how to get and use a
decorated name.

Decorated Names 791

For example, the FUNCTIONS statement in a .DEF file accepts one or more
names of functions that are to be placed in a specified order or assigned to a seg­
ment or an overlay. To assign a C++ function using the FUNCTIONS statement,
you must give the function's decorated name. However, the decorated name is
not known until after compilation. Therefore, you must use the following proce­
dure to get and use decorated names in a .DEF file:

1. Compile the object files for your program.

2. Create a .DEF file that does not yet specify the C++ functions.

3. Link your program using a form of the !MAP option.

4. Examine the map file to learn the decorated names of the functions.

5. Specify the decorated names in the places where you want to use the functions
in the .DEF file.

6. Relink your program.

Warning If you change the function name, class, calling convention, any parame­
ter, or the return type, the old decorated name is no longer valid. You must repeat
this procedure and use the new version of the decorated name everywhere it is
specified.

United States ASCII Character Chart
(Code Page 437)

794 Environment and Tools

ASCII Codes

Ctrl Dec Hex Char Code Dec HexChar Dec HexChar Dec HexChar
· @ 000 NUL 32 20 64 40 @ 96 60 \

· A g SOH 1 01 33 21 t 65 41 A 97 61 a
· B 202 e STX 34 22 II 66 42 B 98 62 h · C 3 03 , ETX 35 23 • 67 43 C 99 63 C
· D 404 • EOT 36 24 $ 68 44 D 100 64 d
· E 5 05 f ENQ 37 25 Yo 69 45 E 101 65 e
· F 6 06 t ACK 38 26 a 70 46 F 102 66 r · G 707 • BEL 39 27 I 71 47 G 103 67 g
· H 808 D BS 40 28 (72 48 H 104 68 h
· 909 0 I HT 41 29) 73 49 I 105 69 i · J 10 OA ~ LF 42 2A * 74 4A J 106 6A j
· K 11 OB " VT 43 2B + 75 4B K 107 6B k · L 12 OC V FF 44 2C I 76 4C L 108 6C 1 · M 13 OD r CR 45 2D - 77 4D M 109 6D M
· N 14 OE " SO
· 0 15 OF ~ SI

46 2E I

47 2F I
78 4E N
79 4F 0

110 6E n
111 6F 0

· P 16 10 .. DLE 48 30 ra 80 50 P 112 70 P · Q ~ 17 11 DCI 49 31 1 81 51 Q 113 71 q
· R 18

*
DC2 12 50 32 2 82 52 R 114 72 I'

· S 19 13 !! DC3 51 33 3 83 53 S 115 73 S
· T 20 1ft DC4 14 52 34 4 84 54 I 116 74 t
· U 21 f NAK 15 53 35 5 85 55 U 117 75 U
· V 22 16 • SYN 54 36 6 86 56 U 118 76 IJ
· W 23 1 ETB 17
· X 24 t CAN 18

55 37 7
56 38 8

87 57 W
88 58 X

119 77 II
120 78 X · Y 25 19 ~ EM 57 39 9 89 59 V 121 79 Y · Z 26 i SUB IA 58 3A I

I 90 SA Z 122 7A Z
· [27 ~ ESC IB 59 3B I

I 91 5B [123 7B {
· \ 28 IC L FS 60 3C (92 5C \ 124 7C I

I · .. .1. 29 ID GS
30 IE • RS

61 3D --
62 3E)

93 5D]
94 5E A

125 7D }
126 7E -· 31 US - IF • 63 3F ? 95 SF - 127 7F ot

t ASCII code 127 has the code DEL. Under OOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL + BKSP key combination.

United States ASCII Character Chart (Code Page 437) 795

Dec HexChar Dec Hex Char Dec HexChar Dec Hex Char

128 80 ~
129 81 u

160 AO a
161 Al i

192 CO L
193 CI .1.

224 EO «
225 EI ,

130 82 e 162 A2 Ii 194 C2 T 226 E2 r
131 83 1 163 A3 Ii 195 C3 ~ 227 E3 1J
132 84 a 164 A4 ii 196 C4 - 228 E4 E
133 85 a 165 AS N 197 C5 + 229 E5 r
134 86 ! 166 A6 ! 198 C6 ~ 230 E6 JI
135 87 Ii
136 88 , 167 A7 !

168 A8 i.
199 C7 I~
200 C8 I!

231 E7 T
232 E8 I

137 89 e 169 A9 ,. 201 C9 Ii 233 E9 e
138 8A e 170 AA , 202 CA :!! 234 EA n
139 8B 1 171 AB ~ 203 CB i 235 EB 6
140 8C Y
141 80 i
142 8E ~

172 AC ~
173 AO . I

174 AE «

204 CC I~
205 CO =
206 CE JI

11

236 EC •
237 EO -238 EE E

143 8F
.
A 175 AF » 207 CF :!: 239 EF n

144 90 i 176 BO ~m 208 00 .I 240 FO -
145 91 i 177 BI I 209 01 ;: 241 FI ±
146 92 II 178 B2 I 210 D2 11 242 F2 1
147 93 " 0 179 B3 I 211 03 11 243 F3 !
148 94 ii 180 B4 ~ 212 04 I: 244 F4 r
149 95 0 181 B5 ~ 213 05 F 245 F5 J
ISO 96 " u 182 B6 I 214 06 If 246 F6 f
lSI 97 U.
152 98 !j
153 99 "0

183 B7 '11

184 B8 ~
185 B9 ~I

215 07 I
216 08 ~
217 09 J

247 F7 · · 248 F8 •
249 F9 · 154 9A ii 186 BA II 218 OA r 250 FA

ISS 9B ¢ 187 BB ;'I 219 OB I 251 FB of
156 9C r. 188 BC :!I 220 OC • 252 FC I
157 90 ¥ 189 BO .II 221 00 I 253 FO 2
158 9E 1\
159 9F !

190 BE :t
191 BF , 222 OE I

223 OF •
254 FE I

255 FF

Multilingual ASCII Character Chart
(Code Page 850)

798 Environment and Tools

o
1 19
2 e
3 •

4 •

5 ~

6 +
7 •

8 a
9 0

10 1
11 ~

12 ~

13 r
14 IJ

15 *
16 ~

17 ~

18 t

19 !!
20 11
21 §

22 -

23 t
24 t
25 J.
26 -i>

27 ~

28 L

29 #

30 ...

31 •

32

33 !
34 "

35 U

36 $
37 %

38 a
39 •

40 (

41)

42 *
43 ..

44 •

45

46

47 ,/

48 0
49 1
50 2
51 3
52 "I
53 5
54 6
55 7
56 8
57 9
58

59

60 <
61 =
62 >
63 ?

64 @

65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 0
80 P
81 Q
82 R
83 S
84 T
85 U
86 IJ
87 W
88 X
89 'I
90 2
91 [

92

93]

94 A

95

96 '

97 a
98 b
99 C

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 1
109 I'll

110 n
111 0

112 P
113 q
114 r
115 S

116 t
117 U

118 U

119 W

120 X

121 Y
122 Z

123 {

124

125 }

126 -

127 a.

128 ~

129 li
130 e
J31 a
132 d
133d
134 .a
135 ~

136 e
137e
138 e
139 "i
140 t
141 1
142 A
143 A
144 E
145 02

146 fI
147 0
148 i:i
149 0
150 0.
151 U
152 ij
153 jj

154 U
155 H

156 [

157 .(J

158 x

159 f

160 d
161 i
162 6
163 U
164 ii
165 N
166 !!

167 !!!

168 (,

169 ®
170 ,

171 ~

172 ~
173i
174 «

175 »

176 mi
177 Ii
178 III
179 I
180 1
181 A
182 A
183 A
184 ©

185 il
186 "
187 11
188 !I

189 ¢

190 ¥
191 1

192 L

193 1-

194 T

195 ~
196

197 t
198 a
199 A
200 I!

201 If
202 !!

203 If
204 It
205

206 it
207 0
208 (j

209 D
A

210 E

211 E
212 E
213 I

214 f
215 i
216 "i
217 J

218 r
219 I
220 •

221

222 i
223 •

224 6
225 B
226 0
227 0
228 0

229 i'i
230 P
231 ~

232 fI
233 (j
234 0
235 U
236 Y
237 Ii
238

239 '

240

241 .:!:.

242 =
243 %
244 11
245 §
246

247 -

248 0

249 ••

250

251 I

252)

253 z

254 •

255

Key Codes

800 Environment and Tools

Key Codes

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extended+ Extended+ Extended+ Extended+

with SHIFT withCTRL withALT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
ESC I 01 27 IB ESC 27 IB ESC 27 IB ESC I 01 NUL§
I! 2 02 49 31 1 33 21 ! 120 78 NUL
2@ 3 03 50 32 2 64 40 @ 3 03 NUL 121 79 NUL
3# 4 04 51 33 3 35 23 # 122 7A NUL
4$ 5 05 52 34 4 36 24 $ 123 7B NUL
5% 6 06 53 35 5 37 25 % 124 7C NUL
6 A 7 07 54 36 6 94 5E A 30 IE RS 125 7D NUL
7& 8 08 55 37 7 38 26 & 126 7E NUL

8 • 9 09 56 38 8 42 2A * 127 7F NUL
9(10 OA 57 39 9 40 28 (128 80 NUL
0) II OB 48 30 0 41 29) 129 81 NUL

12 OC 45 2D - - 95 SF - 31 IF US 130 82 NUL
=+ 13 OD 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F 14 OE NUL§
TAB IS OF 9 09 IS OF NUL 148 94 NUL§ IS AS NUL§
Q 16 10 113 71 q 81 51 Q 17 II DCI 16 10 NUL
W 17 II 119 77 w 87 57 w 23 17 ETB 17 II NUL
E 18 12 101 65 e 69 45 E 5 05 ENQ 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 DC2 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 SO 20 14 NUL
Y 21 IS 121 79 y 89 59 y 25 19 EM 21 IS NUL
U 22 16 117 75 u 85 55 U 21 IS NAK 22 16 NUL
I 23 17 105 69 i 73 49 I 9 09 TAB 23 17 NUL
0 24 18 III 6F 0 79 4F 0 IS OF SI 24 18 NUL
P 25 19 112 70 p 80 50 p 16 10 DLE 25 19 NUL
[{ 26 IA 91 5B [123 7B { 27 IB ESC 26 IA NUL§
1 } 27 IB 93 5D 1 125 7D) 29 lD GS 27 IB NUL§
ENTER 28 IC 13 OD CR 13 OD CR 10 OA LF 28 IC NUL§
ENTER£ 28 IC 13 OD CR 13 OD CR 10 OA LF 166 A6 NUL§
LCTRL 29 lD
RCTRU 29 lD
A 30 IE 97 61 a 65 41 A I 01 SOH 30 IE NUL
S 31 IF ll5 73 s 83 53 s 19 13 DC3 31 IF NUL
D 32 20 100 64 d 68 44 D 4 04 EOT 32 20 NUL
F 33 21 102 66 f 70 46 F 6 06 ACK 33 21 NUL
G 34 22 103 67 9 71 47 G 7 07 BEL 34 22 NUL
H 35 23 104 68 h 72 48 H 8 08 BS 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA LF 36 24 NUL
K 37 25 107 6B k 75 4B K II OB VT 37 25 NUL
L 38 26 108 6C 1 76 4C L 12 OC FF 38 26 NUL .. 39 27 59 313 ; 58 3A : 39 27 NUL§ ,.
'" 40 28 39 27 , 34 22 n 40 28 NUL§
- 41 29 96 60 126 7E ~ 41 29 NUL§

LSHIFT 42 2A
\1 43 2B 92 5C \ 124 7C I 28 IC FS
Z 44 2C 122 7A z 90 SA Z 26 IA SUB 44 2C NUL
X 45 2D 120 78 x 88 58 X 24 18 CAN 45 2D NUL
C 46 2E 99 63 c 67 43 C 3 03 ETX 46 2E NUL
V 47 2F 118 76 v 86 56 V 22 16 SYN 47 2F NUL
B 48 30 98 62 b 66 42 B 2 02 STX 48 30 NUL
N 49 31 110 6E n 78 4E N 14 OE SO 49 31 NUL
M 50 32 109 6D m 77 4D M 13 OD CR 50 32 NUL
,< 51 33 44 2C , 60 3C < 51 33 NUL§
.> 52 34 46 2E 62 3E > 52 34 NUL§
I? 53 35 47 2F I 63 3F ? 53 35 NUL§
GRAY 1£ 53 35 47 2F I 63 3F ? 149 95 NUL 164 A4 NUL

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extendedt Extended t Extendedt Extendedt

with SHIFT withCTRL with ALT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
R SHIFT 54 36
• PRTSC 55 37 42 2A * PRTSC tt 114 72 0
LALT 56 38
RALT£ 56 38
SPACE 57 39 32 20 SPC 32 20 SPC 32 20 SPC 32 20 SPC
CAPS 58 3A
FI 59 38 59 38 NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL 107 68 NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL 108 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 6D NUL
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 42 NUL 91 58 NUL 101 65 NUL III 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL
FlO 68 44 68 44 NUL 93 50 NUL 103 67 NUL 113 71 NUL
FII£ 87 57 133 85 EO 135 87 EO 137 89 EO 139 88 EO
F12£ 88 58 134 86 EO 136 88 EO 138 8A EO 140 8C EO
NUM 69 45
SCROLL 70 46
HOME 71 47 71 47 NUL 55 37 7 119 77 NUL
HOME£ 71 47 71 47 EO 71 47 EO 119 77 EO 151 97 NUL
UP 72 48 72 48 NUL 56 38 8 141 80 NUL§
UP£ 72 48 72 48 EO 72 48 EO 141 8D EO 152 98 NUL
PGUP 73 49 73 49 NUL 57 39 9 132 84 NUL
PGUP£ 73 49 73 49 EO 73 49 EO 132 84 EO 153 99 NUL
GRAY- 74 4A 45 20
LEFT 75 48 75 48 NUL 52 34 4 115 73 NUL
LEFT£ 75 48 75 48 EO 75 48 EO 115 73 EO 155 98 NUL
CENTER 76 4C 53 35 5
RIGHT 77 4D 77 40 NUL 54 36 6 116 74 NUL
RIGHT£ 77 4D 77 4D EO 77 40 EO 116 74 EO 157 9D NUL
GRAY + 78 4E 43 28 +
END 79 4F 79 4F NUL 49 31 1 117 75 NUL
ENO£ 79 4F 79 4F EO 79 4F EO 117 75 EO 159 9F NUL
DOWN 80 50 80 50 NUL 50 32 2 145 91 NUL§
OOWN£ 80 50 80 50 EO 80 50 EO 145 91 EO 160 AD NUL
PGON 81 51 81 51 NUL 51 33 3 118 76 NUL
PGDN£ 81 51 81 51 EO 81 51 EO 118 76 EO 161 AI NUL
INS 82 52 82 52 NUL 48 30 0 146 92 NUL§
INS£ 82 52 82 52 EO 82 52 EO 146 92 EO 162 A2 NUL
DEL 83 53 83 53 NUL 46 2E 147 93 NUL§
OEU 83 53 83 53 EO 83 53 EO 147 93 EO 163 A3 NUL

t Extended codes return 0 (NUL) or EO (decimal 224) as the initial
character. This is a signal that a second (extended) code is available in
the keystroke buffer.

§ These key combinations are only recognized on extended keyboards.
£ These keys are only available on extended keyboards. Most are in the

Cursor/Control cluster. If the raw scan code is read from the keyboard port
(60h), it appears as two bytes (EOh) followed by the normal scan code.
However, when the keypad ENTER and / keys are read through the BIOS
interrupt 16h, only EOh is seen since the interrupt only gives one-byte
scan codes.

tt Under DOS, SHIFT +PRTSCR causes interrupt 5, which prints the screen.

Key Codes 801

Glossary

386 enhanced mode A mode in Windows that
runs on the 80386 and 80486 processors. It pro­
vides access to extended memory and the ability
to run non-Windows applications. This and stan­
dard mode are both referred to as protected mode
in Windows and offer more capability than Win­
dows real mode.

8086 family of processors All processors in the
Intel 8086 family, including the 8086, 80286,
80386, and 80486 CPU chips.

8087 family of math processors All math proces­
sors (also called math coprocessors) in the Intel
8087 family, including the 8087, 80287, and
80387 chips. These processors perform high­
speed floating-point and binary-coded-decimal
number processing. The 80486 chip includes a
math processor.

8087 window The CodeView window in which
the floating-point math processor's registers are
displayed. This window remains empty until a
math processor instruction is executed. If the pro­
gram uses the Microsoft math processor emulator
library, the contents of the emulated math proces­
sor's registers are displayed.

A
actual parameter See "argument."

adapter A printed-circuit card that plugs into a
computer and controls a device, such as a video
display or a printer.

address The memory location of a data item or
procedure, or an expression that evaluates to an
address. In CodeView, the expression can repre­
sent just the offset (a default segment is as­
sumed), or it can be in segment:offset format.

address range A range of memory bounded by
two addresses.

anonymous allocation Assignment to a segment
at link time.

ANSI (American National Standards Institute) The
institute responsible for defining programming­
language standards to promote portability of lan­
guages between different computer systems.

ANSI character set An 8-bit character set that
contains 256 characters. See "ASCII character
set."

API (application programming interface) A set of
system-level routines that can be used in an appli­
cation program for tasks such as input, output,
and file management. In a graphics-oriented oper­
ating environment like Microsoft Windows, high­
level support for video graphics output is part of
the API.

argc The conventional name for the first argu­
ment to the main function in a C source program
(an integer specifying the number of arguments
passed to the program from the command line).

argument A value passed to a routine or spec­
ified with an option in the command line for a
utility. Also called an actual parameter. See also
"parameter. "

argv The conventional name for the second ar­
gument to the main function in a C source pro­
gram (a pointer to an array of strings). The first
string is the program name, and each following
string is an argument passed to the program from
the command line.

array A set of elements of the same type.

804 Glossary

ASCII character set The American Standard
Code for Information Interchange 8-bit character
set, consisting of the first 128 (0 to 127) charac­
ters of the ANSI character set. The term ASCII
characters is sometimes used to mean all 256
characters defined for a particular system, includ­
ing the extended ASCII characters. ASCII values
represent letters, digits, special symbols, and
other characters. See also "extended ASCII."

ASCII file See "text file."

. ASM The extension for an assembly-language
source file.

Assembly mode The mode in which CodeView
displays the assembly-language equivalent of the
machine code being executed. CodeView disas­
sembles the executable file in memory to obtain
the code.

automatic data segment See "DGROUP."

available memory The portion of conventional
memory not used by system software, TSR utili­
ties, or other programs.

B
. BAK The extension that is often used to indi­
cate a backup file.

. BAS The extension for a Basic language source
file.

base name The part of a filename before the
extension, usually 1 to 8 characters. For example,
README is the base name of the filename
README. TXT.

. BAT The extension for a DOS batch file.

batch file A file containing operating-system
commands that can be run from the command
line. Also called a command file.

binary file A file that contains numbers in bina­
ry, machine-readable form. For example, an ex­
ecutable file is a binary file.

binary operator An operator that takes two oper­
ands.

BIOS (basic input/output system) The code built
into system memory that provides hardware inter­
face routines for programs. You can trace into the
BIOS with Code View when using Assembly
mode .

.BMP The extension for a bitmap file.

breakpoint A specified address where program
execution halts. Code View interrupts execution
when the program reaches the address where a
breakpoint is set. See also "conditional break­
point."

. BSC The extension for a database file for use
with the Source Browser. A .BSC file is created
by BSCMAKE.

buffer An area in memory that holds data tem­
porarily, most often during input/output opera­
tions .

c
.C The extension for a C source file .

call gate A special descriptor-table entry that
describes a subroutine entry point rather than a
memory segment. A far call to a call gate selector
transfers to the entry point specified in the call
gate. This is a feature of the 80286-80486 hard­
ware and is typically used to provide a transition
from a lower privilege state to a higher one .

case sensitivity The distinction made between
uppercase and lowercase letters. For example,
"MyFile" and "MYFILE" are considered to be
different strings in a case-sensitive situation but
are understood to be the same string if case is not
sensitive.

CGA (color graphics adapter) A video adapter
capable of displaying text characters or graphics
pixels in low resolution in up to 16 colors.

character string A sequence of bytes treated as a
set of ASCII letters, numbers, and other symbols.
A character string is often enclosed in single quo­
tation marks (, ,) or double quotation marks
(" ").

child process A process created by another pro­
cess (its parent process).

click To press and release quickly one of the
mouse buttons (usually the left button) while
pointing the mouse pointer to an object on the
screen.

clipboard A temporary storage area for text.
The clipboard is used for cut, copy, and paste
operations .

. COB The extension for a COBOL source file.

code symbol The address of a routine.

. COM The extension for a DOS executable file
that contains a single segment. Tiny-model pro­
grams have a .COM extension. See also "tiny
memory model."

command An instruction you use to control a
computer program, such as an operating system
or application.

command file A file containing operating­
system commands that can be run from the com­
mand line. If the file's extension is .BAT, the
command file contains DOS commands. Also
called a batch file.

command file (in NMAKE) A text file containing
input expected by utilities such as NMAKE.

compact memory model A program with one
code segment and multiple data segments.

Glossary 805

compile To translate programming language
statements into a form that can be executed by
the computer.

conditional breakpoint A breakpoint that is taken
when a specified expression becomes nonzero
(true). A conditional breakpoint is evaluated after
every instruction is executed unless an address is
also specified. Formerly called tracepoint and
watchpoint.

constant A value that does not change during
program execution.

constant expression Any expression that evalu­
ates to a constant. It may include integer con­
stants, character constants, floating-point
constants, enumeration constants, type casts to
integral and floating-point types, and other con­
stant expressions. It cannot include a variable
or function call.

conventional memory The first 640K (or some­
times 1MB) of memory under MS-DOS. Also
called low memory .

coprocessor See "8087 family of math
processors."

.CPP The extension for a C++ source file.

CPU (central processing unit) The main processor
in a computer. For example, the CPU that re­
ceives and carries out instructions in the PC/AT
is an 80286 processor. See also "8086 family of
processors."

CS:IP The address of the current program loca­
tion. This is the address of the next instruction to
be executed. CS is the value of the Code Segment
register, and IP is the value of the Instruction
Pointer register.

cursor The thin blinking line or other character
that represents the location of typed input or
mouse activity.

806 Glossary

.cxx The extension for a c++ source file.

o
.DAT The extension that is often used to indi­
catea data file.

data symbol The address of a global or static
data object. The concept of data symbol includes
all data objects except local (stack-allocated) or
dynamically allocated data.

. DBG The extension for a file that is created by
LINK when the ICO and /TINY options are used.
The file contains symbolic debugging informa­
tion.

debugger A program that allows the program­
mer to execute a program one line or instruction
at a time. The debugger displays the contents of
registers and memory to help locate the source
of problems in the program. An example is the
Microsoft CodeView debugger.

debugging information Symbolic information
used by a debugger, especially information in the
Microsoft Symbolic Debugging Information for­
mat that is used by the Microsoft CodeView
debugger.

.OEF The extension for a module-definition file.

default data segment See "DGROUP."

default library A standard library that contains
routines and data for a language. The language's
compiler embeds the name of the default library
in the object file in a COMMENT record. The
embedded name tells LINK to search the default
library automatically.

OGROUP The group that contains the segments
called _DATA (initialized data), CONST (con­
stant data), _BSS (uninitialized data), and
STACK (the program's stack). Also called de­
fault (or automatic) data segment.

dialog box A box that appears when you choose
a command that requires additional information.

disassemble To translate binary machine code
into the equivalent assembly-language represen­
tation. Also called unassemble.

disassembly The assembly-language represen­
tation of machine code, obtained by disassem­
bling the machine code.

.OLL The extension for a dynamic-link library .

OLL A dynamic-link library.

.DOC The extension that is often used to indi­
cate a document file.

DOS application A program that runs only under
DOS. A DOS executable file contains a header
and one contiguous block of segments.

DOS-extended An application that is able to be
run by the DOS Extender in extended or expand­
edmemory.

DOS Extender A program that lets an application
run in extended or expanded memory.

DOS session Under Windows, a full-screen
emulation of the MS-DOS environment started
using the DOS Prompt in the Program Manager
Main Group. The DOS Prompt program item
starts a copy of the MS-DOS command interpre­
ter (COMMAND.COM).

double precision A real (floating-point) numeric
value that occupies eight bytes of memory.
Double-precision values are accurate to 15 or 16
digits.

DPMI A server that provides extended or ex­
panded memory. Examples of DPMI servers
include a DOS session under Windows and
Microsoft's MSDPMI.EXE.

drag To move the mouse while holding down
one of its buttons.

dump To display the contents of memory at a
specified memory location.

dynamic link A method of postponing the resolu­
tion of external references until load time or run
time. A dynamic link allows the called routines
to be created, distributed, and maintained inde­
pendently of their callers.

dynamic-link library A file, usually with a .DLL
extension, that contains the binary code for rou­
tines and data that are linked to a program at run
time.

E
EGA (enhanced graphics adapter) A video adapter
capable of displaying all the modes of the color
graphics adapter (CGA) plus additional modes in
medium resolution in up to 64 colors.

EMM386.EXE An example of a VCPI server.
EMM386.EXE simulates expanded memory
in extended memory for an 80386 or higher
processor.

EMS Expanded Memory Specification. See
"expanded memory."

emulator A floating-point math package that
provides software emulation of the operations
of a math processor.

environment strings A series of user-definable
and program-definable strings associated with
each process. The initial values of environment
strings are established by a process's parent.

environment table The memory area, defined by
the operating system, that stores environment
variables and their values.

environment variable A string associated with
an identifier and stored by the operating system.

Glossary 807

Environment variables are defined by the SET
command. The identifier and the string as­
sociated with it can be used by a program.

.ERR The extension for a file of error-message
text or error output.

error code See "exit code."

escape sequence A specific combination of an
escape character (often a backslash) followed by
a character, keyword, or code. Escape sequences
often represent white space, nongraphic charac­
ters, or literal delimiters within strings and char­
acter constants.

.EXE One of the extensions for an executable
file, which is a file that can be loaded and ex­
ecuted by the operating system.

executable file A program ready to be run by an
operating system, usually with one of the exten­
sions .EXE, .COM, or .BAT. When the name of
the file is typed at the system prompt, the state­
ments in the file are executed.

exit code An integer returned by a program to
the operating system or the program's caller after
completion to indicate the success, failure, or sta­
tus of the program. Also called a return code or
error code.

Exit code also refers to the executable code that
a compiler places in every program to terminate
execution of the program. This code typically
closes open files and performs other housekeep­
ing chores. When a program terminates in
CodeView, the current line is in the exit code. No
source code is shown since none is available. See
also "startup code."

expanded memory Memory above 640K made
available to real-mode programs and controlled
through paging by an expanded memory
manager.

808 Glossary

expanded memory emulator A device driver that
allows extended memory on computers with an
80286 or later processor to behave like expanded
memory.

expanded memory manager (EMM) A device
driver for controlling expanded memory.

explicit allocation Assignment to a segment at
compile time.

expression A combination of operands and oper­
ators that yields a single value.

extended ASCII ASCII codes between 128 and
255. The meanings of extended ASCII codes dif­
fer depending on the system.

extended dictionary A summary of the defini­
tions contained in all modules of a standard li­
brary. LINK uses extended dictionaries to search
libraries faster.

extended memory Memory above either 640K
or 1 megabyte made available to protected-mode
programs on computers with an 80286 or later
processor. Extended memory is used by Win­
dows in standard mode or 386 enhanced mode.

extended memory manager A device driver for
controlling extended memory, for example,
HIMEM.SYS for Windows.

extender-ready See "DOS-extended."

extension One, two, or three characters that ap­
pear after a period (.) following the base name in
a filename. For example, .TXT is the extension
of the filename README. TXT. A filename does
not necessarily have an extension. Sometimes the
extension is considered to include the preceding
period.

external reference A routine or data item de­
clared in one module and referenced in another.

F
far address A memory location specified by
using a segment (location of a 64K block) and
an offset from the beginning of the segment.
Far addresses require four bytes-two for the
segment and two for the offset. Also called a
segmented address. See also "address" and
"near address."

FAT (file allocation table) The standard file sys­
tem for MS-DOS.

fatal error An error that causes a program to ter­
minate immediately.

.FD The extension for a declaration file (a type
of include file) in FORTRAN.

.FI The extension for an interface file (a type of
include file) in FORTRAN.

file handle A value returned by the operating
system when a file is opened and used by a pro­
gram to refer to the file when communicating to
the system. Under MS-DOS, COMMAND.COM
opens the first five file handles as stdin, stdont,
stderr, stdaux, and stdprn.

filename A string of characters identifying a
file on disk, composed of a base name optionally
followed by a period (.) and an extension. A
filename may be preceded by a path. For ex­
ample, in the filename README. TXT, .TXT is
the extension and README is the base name.

fixup The linking process that resolves a refer­
ence to a relocatable or external address.

flags register A register that contains individual
bits, each of which signals a condition that can be
tested by a machine-level instruction. In other
registers, the contents of the register are consid­
ered as a whole, while in the flags register only
the individual bits have meaning. In CodeView,
the current values of the most commonly used

bits of the flags register are shown at the bottom
of the Register window.

flat memory model A nonsegmented memory
model that can address up to four gigabytes of
memory.

flipping A screen-exchange method that uses
the video pages of the CGA or EGA to store both
the debugging and output screens. When you re­
quest the other screen, the two video pages are
exchanged. See also "screen exchange" and
"swapping. "

. FOR The extension for a FORTRAN source
file.

formal parameter See "parameter."

frame The segment, group, or segment register
that specifies the segment part of an address.

full-screen application A program that runs
under Windows but cannot run in a window.

function A routine that returns a value.

function call An expression that invokes a func­
tion and passes arguments (if any) to the function.

G
gigabyte (G8) 1024 megabytes or 1,073,741,824
bytes (2 to the power of 30).

global symbol A symbol that is available
throughout the entire program. In CodeView,
function names are always global symbols.
See also "local symbol."

grandparent process The parent of a process that
created a process.

group A collection of segments having the same
segment base address.

Glossary 809

H
.H The extension for an include (or header) file
inC.

HELPFILES The environment variable used by a
program to find .HLP files.

hexadecimal The base-16 numbering system
whose digits are 0 through F. The letters A
through F represent the decimal numbers 10
through 15. Hexadecimal is easily converted to
and from binary, the base-2 numbering system
the computer itself uses .

highlight To select an area in a text box, win­
dow, or menu as a command or as text to be de­
leted or copied. A highlight is shown in reverse­
video or a bright color.

high memory Memory between the 640K of con­
ventional memory and the 1MB limit of a PC's
address space.

HIMEM.SYS An example of an XMS server.
HIMEM.SYS manages extended memory for
an 80286 or higher processor.

.HLP The extension for a help file created by
HELPMAKE.

HPFS (high-performance file system) An instal­
lable file system that uses disk caching and that
allows filenames to be longer and to contain cer­
tain nonalphanumeric characters.

huge memory model A program with multiple
code and data segments, and data items that can
exceed64K.

identifier A name that identifies a register or a
location in memory and usually represents a pro­
gram element such as a constant, variable, type,
or routine. The terms identifier and symbol are
used synonymously in most documentation.

810 Glossary

IEEE format (Institute for Electrical and Electronic
Engineers) A standard for representing floating­
point numbers, performing math with them, and
handling underflow/overflow conditions. The
8087 family of math processors and the Micro­
soft emulator library implement this format.

import library A library, created by IMPLIB,
that contains entry points in DLLs. It does not
contain the actual code for routines and data. An
import library is used to resolve references at
link time in the same way as a standard library;
each is a type of static library. See "dynamic-link
library" and "standard library."

.INC The extension for an include file in
Microsoft Macro Assembler.

include file A file that is merged into a pro­
gram's source code with a file-inclusion com­
mand. In C, this command is the #include
preprocessor directive. In FORTRAN, it is the
INCLUDE keyword or the $INCLUDE meta­
command. In Microsoft Macro Assembler, the
equivalent command is the INCLUDE directive.
In a .DEF file, the INCLUDE statement per­
forms this action. In an NMAKE makefile, it is
the !INCLUDE directive.

.INI The extension for an initialization file.

INIT The environment variable usually used by
a program to find an initialization file.

installable file system A file system that exists in
addition to the FAT file system.

integer In CodeView and the C language, a
whole number represented as a 16-bit two's
complement binary number that has a range
from -32,768 through +32,767. See also "long
integer."

interoverlay call A call from a function in one
overlay to a function in another overlay, repre­
sented internally by an entry in a thunk table.

interrupt call A machine-level procedure that
can be called to execute a BIOS, DOS, or other
function. You can trace into BIOS interrupt­
service routines with CodeView, but not into
the DOS interrupt (Ox21).

1/0 privilege mechanism A facility that allows
a process to ask a device driver for direct access
to the device's 110 ports and any dedicated or
mapped memory locations it has. The 110 privi­
lege mechanism can be used directly by an appli­
cation or indirectly by a dynamic-link library.

K
kilobyte (K) 1024 bytes (2 to the power of 10) .

L
label An identifier representing an address.

large memory model A program with multiple
code and data segments.

LIB The environment variable used by LINK to
find default libraries.

.LlB The extension for a static library.

library A collection of routines or data made
available to one or more programs through static
or dynamic linking.

LIM EMS LotuslIntellMicrosoft Expanded Mem­
ory Specification.

LINK The environment variable used by LINK
for command-line options.

linking The process in which the linker resolves
all external references by searching the run-time
and user libraries and then computes absolute off­
set addresses for these references. The linking
process results in a single executable file.

list file A text file of information produced by a
utility such as LIB. See "map file."

listing A generic term for a map, list, or cross­
reference file.

.LNK The extension that is often used to indi­
cate a response file.

load library A static library specified to the
linker as an object file, causing all modules in the
library to be linked into the program. See "static
library."

local symbol An identifier that is visible only
within a particular routine. See "global symbol."

Local window The CodeView window in which
the local variables for the current routine are
displayed.

logical segment A segment defined in an object
module. Each physical segment other than
DGROUP contains exactly one logical segment,
except when you use the GROUP directive in a
Microsoft Macro Assembler module. (Linking
with the fP ACKC option can also create more
than one logical segment per physical segment.)

long integer In CodeView and the C language,
a whole number represented by a 32-bit two's
complement value. Long integers have a range of
-2,147,483,648 to +2,147,483,647. See "integer."

low memory See "conventional memory."

. LRF The extension that is often used to indicate
a response file. PWB creates response files with
the .LRF extension.

. LST The extension that is often used to indicate
a list file.

I-value An expression (such as a variable name)
that refers to a single memory location and is
required as the left operand of an assignment
operation or the single operand of a unary opera­
tor. For example, Xl is an I-value, but Xl +X2 is
not.

Glossary 811

M
machine code A series of binary numbers that a
processor executes as program instructions. See
also "disassemble."

macro A block of text or instructions that has
been assigned an identifier. For example, you can
create a macro that contains a set of functions
that you perform repeatedly and assign the macro
to a single keystroke.

.MAK The extension that is often used to indi­
cate a makefile or description file.

.MAP The extension for a map file.

map file A text file of information produced by
a utility such as LINK. Also called a list file or
listing.

math coprocessor See "8087 family of math
processors."

MB Megabyte.

MDI Multiple Document Interface.

medium memory model A program with multiple
code segments and one data segment.

megabyte (MB) 1024 kilobytes or 1,048,576
bytes (2 to the power of 20) .

memory model A convention for specifying the
number of code and data segments in a program.
Memory models include tiny, small, medium,
compact, large, huge, and flat.

memory-resident program See "terminate-and­
stay-resident."

menu bar The bar at the top of a display contain­
ingmenus.

Mixed mode The CodeView source display
mode that shows each source line of the program

812 Glossary

being debugged, followed by a disassembly of
the machine code generated for that source line.
This mode combines Source mode and Assembly
mode.

modification time See "time stamp."

module A discrete group of statements. Every
program has at least one module (the main mod­
ule). In most cases, each module corresponds to
one source file.

module (in LIB) See "object module."

module-definition file A text file, usually with a
.DEF extension, that describes characteristics of
a program. A module-definition file is used by
LINK and by IMPLIB.

monochrome adapter A video adapter capable
of displaying only in medium resolution in one
color. Most monochrome adapters display text
only; individual graphics pixels cannot be
displayed.

mouse pOinter The reverse-video or colored
square that moves to indicate the current position
of the mouse. The mouse pointer appears only if
a mouse is installed.

MS32EM87. DLL A DLL required by the DOS
Extender. The SYSTEM environment variable
must be set to the directory that contains this file.

MS32KRNL.DLL A DLL required by the DOS
Extender. The SYSTEM environment variable
must be set to the directory that contains this file.

MSDPMI An example of a DPMI server.
MSDPMI supports 32-bit interrupt services.

MSDPMLlNI The initialization file used by
MSDPMI.

multitasking operating system An operating sys­
tem in which two or more programs or threads
can execute simultaneously.

N
NAN An acronym for "not a number." The math
processors generate NANs when the result of an
operation cannot be represented in IEEE format.

near address A memory location specified by
only the offset from the start of the segment. A
near address requires only two bytes. See also
"address" and "far address."

newline character The character used to mark
the end of a line in a text file, or the escape
sequence (\n in C language) used to represent
this character.

null character The ASCII character whose value
is 0, or the escape sequence (\0 in C language)
used to represent this character.

null pointer A pointer to nothing, expressed as
the integer value O.

o
.OBJ The extension for an object file produced
by a compiler or assembler.

object file A file produced by compiling or
assembling source code, containing relocatable
machine code.

object module A group of routines and data
items stored in a standard library, originating
from an object file. See also "standard library."

object module format The specification for the
structure of object files. Microsoft languages
conform to the Microsoft Relocatable Object­
Module Format (OMF), which is based on the
Intel 8086 aMp.

offset The number of bytes from the beginning
of a segment or other address to a particular byte.

OMF Object module format.

Output screen The CodeView screen that con­
tains program output. To switch to this screen,
choose the Output command from the View
menu or press F4.

overlay A program component loaded into
memory only when needed.

p
packaged function A function that exists in an
object file as a COMDAT record. Packaged func­
tions allow function-level linking. Functions that
are not packaged can be linked only at the object
level.

parameter A data item expected by a routine or
information expected in the command line for a
utility. Also called a formal parameter. See also
"argument."

parent process A process that creates another
process, called the child process.

. PAS The extension for a Pascal source file.

path A specification of the location of a
file or a directory. A path consists of one or
more directory names and may include a drive
(or device) specification. For example,
C:\PROJEC1\PROJLIBS is the path to a sub­
directory called PROJLIBS in a directory called
PROJECT that is located on the C drive. Some­
times "path" refers to multiple path specifica­
tions, each separated by a semicolon (;). In
certain circumstances, a path specification must
include a trailing backslash; for example, specify
C:\PROJEC1\PROJLIBS\ to tell LINK the loca­
tion of the PROJLIBS directory containing addi­
tionallibraries.

. PCH The extension for a precompiled C header
(or include) file.

physical segment A segment listed in the execu­
table file's segment table. Each physical segment
has a distinct segment address, whereas logical

Glossary 813

segments may share a segment address. A physi­
cal segment usually contains one logical seg­
ment, but it can contain more.

PID (process identification number) A unique
code that the operating system assigns to a
process when the process is created. The PID
may be any value except O.

pointer A variable containing an address or
offset.

pop-up menu A menu that appears when you
click the menu title with the mouse or press the
AL T key and the first letter of the menu at the
same time.

port The electrical connection through which
the computer sends and receives data to and from
devices or other computers.

precedence The relative position of an operator
in the hierarchy that determines the order in
which expressions are evaluated .

privileged mode A special execution mode (also
known as ring 0) supported by the 80286-80486
hardware. Code executing in this mode can ex­
ecute restricted instructions that are used to
manipulate system structures and tables. Device
drivers run in this mode.

procedure A routine that does not return a value.

procedure call A call to a routine that performs a
specific action.

process Generally, any executing program or
code unit. This term implies that the program or
unit is one of a group of processes executing
independently .

processor See "CPU (central processing unit)."

program step To trace the next source line in
Source mode or the next instruction in Mixed
mode or Assembly mode. If the source line or

814 Glossary

instruction contains a function, procedure, or
interrupt call, the call is executed to the end and
the CodeView debugger is ready to execute the
instruction after the call. See also "trace."

protected mode The operating mode of the
80286-80486 processors that allows the operat­
ing system to protect one application from
another.

protected mode (in Windows) Either of two
modes in Windows 3.0: standard mode or 386
enhanced mode. See also "standard mode" and
"386 enhanced mode."

Q
. OLB The extension for a Quick library.

R
radix The base of a number system. In
CodeView, numbers can be entered in three
radixes: 8 (octal), 10 (decimal), or 16 (hexa­
decimal). The default radix is 10.

RAM Random access memory. Usually refers to
conventional memory.

. Re The extension for a resource script file. An

.RC file defines resources for an application such
as icons, cursors, menus, and dialog boxes. The
Microsoft Windows Resource Compiler compiles
an .RC file to create an .RES file.

real mode The operating mode ofthe 80286-
80486 processors that runs programs designed
for the 8086/8088 processor. All programs for
the DOS environment run in real mode.

real mode (in Windows) An operating mode that
provides compatibility with versions of Windows
applications prior to 3.0. Real mode is the only
mode of Windows 3.0 available for computers
with less than 1 megabyte of extended memory.

redirection The process of causing a command
or program to take its input from a file or device
other than the keyboard (standard input), or
causing the output of a command or program
to be sent to a file or device other than the dis­
play (standard output). The operating-system
redirection symbols are the greater-than (» and
less-than «) signs.

The same symbols are used in the CodeView
Command window to redirect input and output of
the debugging session. In addition, the equal sign
(=) can be used to redirect both input and output.

Register window The CodeView window in
which the CPU registers and the bits of the flags
register are displayed .

registers Memory locations in the processor that
temporarily store data, addresses, and logical
values. See also "flags register."

regular expression A text expression that speci­
fies a pattern of text to be matched (as opposed
to matching specific characters). CodeView sup­
ports a subset of the regular-expression charac­
ters used in the XENIX and UNIX operating
systems. PWB supports both the full UNIX syn­
tax and an extended Microsoft syntax for regular
expressions .

relocatable Not having an absolute address.

.RES The extension for a file produced by the
Microsoft Windows Resource Compiler from an
.RCfile.

response file A text file containing input ex­
pected by utilities such as LINK and LIB. Com­
monly used extensions for response files include
.LRF, .LNK, and .RSP.

return code See "exit code."

ROM Read-only memory.

root In an overlaid DOS program, the part of
the program that always remains in memory.
Also called the root overlay.

routine A generic term for a procedure, func­
tion, or subroutine.

.RSP The extension that is often used to indi­
cate a response file.

RTF Rich text format.

run-time error A math or logic error that occurs
during execution of a program. A run-time error
often results in termination of the program.

s
.SBR The extension for a file used by
BSCMAKE to create a .BSC file.

scope The parts of a program in which a given
symbol has meaning. The scope of an item may
be limited to the file, function, block, or function
prototype in which it appears.

screen exchange The method by which both the
output screen and the debugging screen are kept
in memory so that both can be updated simul­
taneously and either viewed at the user's con­
venience. The two screen-exchange modes are
flipping and swapping. See also "flipping" and
"swapping."

scroll To move text up, down, left, and right in
order to see parts that cannot fit on the screen.

segment A section of memory containing code
or data, limited to 64K for 16-bit segments or 4
gigabytes for 32-bit segments. Also refers to the
starting address of that memory area.

segmented executable file The executable file
format of a Windows application or DLL. A seg­
mented executable file contains a DOS header, a
new .EXE header, and multiple relocatable
segments.

Glossary 815

semaphore A software flag or signal used to
coordinate the activities of two or more threads.
A semaphore is commonly used to protect a criti­
cal section.

shell To gain access to the operating-system
command line without actually leaving the PWB
or CodeView environment or losing the current
context. You can execute operating-system com­
mands and then return to the environment.

single precision A real (floating-point) value
that occupies four bytes of memory. Single­
precision values are accurate to six or seven
decimal places.

small memory model A program with one code
segment and one data segment.

SMARTDRV.SYS A driver that creates a disk
cache in extended or expanded memory.

source file A text file containing the high-level
description that defines a program.

Source mode The mode in which CodeView
displays the source code that corresponds to the
machine code being executed.

stack A dynamically expanding and shrinking
area of memory in which data items are stored in
consecutive order and removed on a last-in, first­
out basis. The stack is most commonly used to
store information for function and procedure
calls and for local variables.

stack frame A portion of a program's stack that
contains a routine's local and temporary vari­
ables, arguments, and control information.

stack trace A symbolic representation of the
functions that have been executed to reach the
current instruction address. As a function is ex­
ecuted, the function address and any function ar­
guments are pushed on the stack. A trace of the
stack shows the currently active functions and

816 Glossary

the values of their arguments. See also "stack
frame."

standard error The device to which a program
sends error messages. COMMAND. COM opens
standard error with a file handle named stderr.
The default device is the display (CON). Stan­
dard error cannot be redirected.

standard input The device from which a pro­
gram reads input. COMMAND.COM opens
standard input with a file handle named stdin.
The default device is the keyboard (CON). Stan­
dard input can be redirected using a redirection
symbol «).

standard library A library created by LIB that
contains compiled routines and data. It is used to
resolve references at link time.

standard mode The normal Windows 3.0 operat­
ing mode that runs on the 80286-80486 proces­
sors. This and 386 enhanced mode are both
referred to as protected mode in Windows and
offer more capability than Windows real mode.

standard output The device to which a program
sends output. COMMAND.COM opens standard
output with a file handle named stdout. The de­
fault device is the display (CON). Standard out­
put can be redirected using a redirection symbol.

startup code The code placed at the beginning of
a program to control execution of the program
code. When CodeView is loaded, the first source
line executed runs the entire startup code. If you
switch to Assembly mode before executing any
code, you can trace through the startup code. See
also "exit code."

static library A library used for resolving refer­
ences at link time. A static library can be either a
standard library or an import library. See also
"standard library" and "import library."

static linking The combining of multiple object
and library files into a single executable file with
all external references resolved at link time.

status bar The bar at the bottom of the
CodeView or PWB display containing status
information and command buttons or a short
description of the dialog or menu item currently
displayed.

stderr See "standard error."

stdin See "standard input."

stdout See "standard output."

string A contiguous sequence of characters,
often identified by a symbolic name as a constant
or variable.

structure A set of elements which may be of dif­
ferent types, grouped under a single name. See
also "user-defined type."

structure member One of the elements of a
structure.

stub file A DOS executable file added to the
beginning of a segmented executable file. The
stub is invoked if the file is executed under DOS.

subroutine A unit of FORTRAN code termi­
nated by the RETURN statement. Program con­
trol is transferred to a subroutine with a CALL
statement.

swapping A screen-exchange method that uses
buffers to store the CodeView display and pro­
gram output screens. When you request the other
screen, the two buffers are exchanged. See also
"flipping" and "screen exchange."

symbol See "identifier."

symbolic debugging information See "debugging
information."

.SYS The extension for a system file or device
driver.

SYSTEM An environment variable used by the
DOS Extender to find the files MS32EM87.DLL
and MS32KRNL.DLL.

T
TEMP The environment variable usually used
by a program to find the directory in which to cre­
ate temporary files. Other programs use the TMP
variable in a similar way.

temporary file A file that is created for use by a
command while it is running. The file is usually
deleted when the command is completed. Most
programs create temporary files in the directory
indicated by the TMP or TEMP environment
variable.

terminate-and-stay-resident (TSR) A DOS pro­
gram that remains in memory and is ready to
respond to an interrupt.

ternary operator An operator that takes three
operands. For example, the C-Ianguage ?
operator.

text file A file containing only ASCII characters
in the range of 1 to 127.

thread An operating-system mechanism that al­
lows more than one path of execution through the
same instance of a program.

thread ID The name or handle of a particular
thread within a process.

thread of execution The sequence of instructions
executed by the CPU in a single logical stream.
In DOS, there is only one thread of execution.

thunk An interoverlay call in an overlaid DOS
program.

Glossary 817

time stamp The time of the last write operation
to the file. Sometimes the term time stamp refers
to the combination of the date and time of the last
write operation. Also called modification time.

tiny memory model A program with a single seg­
ment holding both code and data, limited to 64K,
with the extension .COM.

TMP The environment variable usually used by
a program to find the directory in which to create
temporary files. Other programs use the TEMP
variable in a similar way.

.TMP The extension that is often used to indi­
cate a temporary file.

toggle A feature with two states. Often used to
describe a command that turns a feature on if it
is off, and off if it is on. When used as a verb,
"toggle" means to reverse the state of a feature.

TOOLS.INI A file that contains initialization
information for Microsoft tools such as PWB,
Code View , and NMAKE.

trace To execute a single line or instruction.
The next source line is traced in Source mode
and the next instruction is traced in Assembly
mode. If the source line or instruction contains
a function, procedure, or interrupt call, the first
source line or instruction of the call is executed.
CodeView is ready to execute the next instruc­
tion inside the call. See also "program step."

tracepoint (obsolete) A breakpoint that is taken
when an expression, variable, or range of mem­
ory changes. This is now a type of conditional
breakpoint. See also "conditional breakpoint."

TSR See "terminate-and-stay-resident."

. TXT The extension for a text file.

type cast An operation in which a value of one
type is converted to a value of a different type.

818 Glossary

type casting Including a type specifier in paren­
theses in front of an expression to indicate the
type of the expression's value.

u
unary operator An operator that takes a single
operand.

unassemble To translate binary machine code
into the equivalent assembly-language repre­
sentation. Also called disassemble.

unresolved external A reference to a global or ex­
ternal variable or function that cannot be found
either in the modules being linked or in the librar­
ies linked with those modules. An unresolved ref­
erence causes a fatal link error.

user-defined type A data type defined by the
user. See also "structure."

v
variable A value that may change during pro­
gram execution.

VCPI Virtual Control Program Interface

VCPI server A server that provides expanded
memory. An example of a VCPI server is
Microsoft's EMM386.EXE.

VGA (video graphics adapter) A video adapter
capable of displaying both text and graphics at
medium to high resolution in up to 256 colors.

virtual memory A memory management system
that provides more memory to a program than is
actually in the system. Virtual memory can con­
sist of a file on disk, extended memory, or ex­
panded memory.

w
watchpoint (obsolete) A breakpoint that is taken
when an expression becomes true (nonzero). This

is now a type of conditional breakpoint. See also
"conditional breakpoint."

wildcard A character that represents one or
more matching characters. DOS wildcards (* and
?) in a filename specification are expanded by
COMMAND. COM.

Windows application A program that runs only
under Windows.

x
XMS Extended Memory Standard (or Specifica­
tion). See "extended memory."

XMS server A server that provides extended
memory. An example of an XMS server is
Microsoft's HIMEM.SYS.

Index

! (exclamation point)
command modifiers, NMAKE, 662
HELPMAKE command, 719
preprocessing directives, NMAKE, 688
replacing text, PWB, 94
Shell Escape command, CodeView, 423, 468-469

! command, CodeView, 423, 468-469
"command, CodeView, 423, 470
" (quotation marks)

character strings, 805
Code View syntax, 340
LINK syntax, 565
long filenames, NMAKE, 654
module statement syntax, 610-611
Pause command, CodeView, 423, 470

(number sign)
custom builds, 59
HELPMAKE syntax, 712-713
inference rules, NMAKE, 681
makefile comments, NMAKE, 654
substituting for equal sign, CL, 492
Tab Set command, CodeView, 423, 470
TOOLS.INI file syntax, 652
user-defined macros, NMAKE, 669

command, CodeView, 423, 470
$ (dollar sign)

environment variables, NMAKE, 679
filename macros, NMAKE, 672-673
literal characters, NMAKE, 653
regular expressions, PWB, 93
user-defined macros, NMAKE, 669

% (percent sign)
file specifier, NMAKE, 653
Filename-Parts Syntax, PWB, 265-266

& (ampersand)
C address operator, 414-415
CodeView, 405
operations line, extending, 702

() (parentheses)
balancing, PWB, 192-193
searching, PWB, 91

* (asterisk)
Comment command, CodeView, 423, 471
Copy command, LIB, 705
deleting watch expressions, CodeView, 461

* (asterisk) (continued)
filename macros, NMAKE, 672-673
hyperlink, Microsoft Advisor, 764
regular expressions, PWB, 93
SBRPACK syntax, 740
wildcard operator

HELPMAKE syntax, 711
NMAKE,653-654
UNDEL syntax, 749

* command, CodeView, 423, 471
+ (plus sign)

Add command, LIB, 703-704
concatenating help files, 772
LINK syntax, 565, 567
searching, PWB, 92

, (comma)
argument separator, CodeView, 352-353
Code View operator, 405
field separation, LIB, 699
LINK syntax, 565
with context operator, CodeView, 421-422

- (dash)
character classes, PWB, 92
CL syntax, 488
command modifier, NMAKE, 647, 661
Delete command, LIB, 700, 704
HELPMAKE options, 711

- (minus sign), NMAKE options, 688-689
-* Move command, LIB, 705
-+ Replace command, LIB, 704-705
. command, CodeView, 423, 471
. (period)

Current Location command, Code View, 423, 471
dot directives, NMAKE, 687
inference rules, NMAKE, 681
line number specifier, CodeView, 365
LINK syntax, 565

... (ellipsis)
call tree, PWB, 101
menu commands, PWB, 80, 82, 126

/ command, CodeView, 423, 472-473
/ (slash)

CL syntax, 488
command line, NMAKE, 647
HELPMAKE options, 711

820 Index

/ (slash) (continued)
LINK syntax, 575
Search command, CodeView, 361, 423, 472-473

/2 option, CodeView, 338
/25 option, CodeView, 338-339
386 enhanced mode defined, 803
/43 option, CodeView, 338-339
/50 option, Code View, 339
7 command, CodeView, 423, 473-474
/8 option, CodeView, 338
8086 instruction mnemonics, assembling, 424-426
8086 processors defined, 803
8087 command, Code View, 373-374, 423, 473-474
8087 processors defined, 803
8087 window, CodeView

defined, 803
function, 355-356
opening, 374
overview, 348

8259 interrupt trapping, 341-342
8514 display, specifying, CodeView, 338-339
: (colon)

appending device names, CL, 497-498
CodeView operator, 405
Delay command, CodeView, 423, 475
dependency, NMAKE, 656--657
dot directives, NMAKE, 687
HELPMAKE commands, 722
inference rules, NMAKE, 681
macro substitution, NMAKE, 677
module statement syntax, 610
target separator, NMAKE, 655

: command, CodeView, 423, 475
:: (scope operator), CodeView precedence, 406
:< (base operator), Code View precedence, 406
:< command, HELPMAKE, 723
:> command, HELPMAKE, 723
= command, CodeView, 424, 477
= (equal sign)

module statement syntax, 610
Redirect Input and Output command, CodeView,

424,477
substituting for number sign, CL, 492

? command, CodeView, 424, 477-478
? (question mark)

call tree, PWB, 100
decorated names, C++, 409
Display Expression command, CodeView, 424,

477-478

? (question mark) (continued)
filename macros, NMAKE, 672-673
SBRPACK syntax, 740
wildcard operator

HELPMAKE syntax, 711
NMAKE, 653-654
UNDEL,749

I? option
BSCMAKE,737
CVPACK,745
EXEHDR,631
EXP, 750
HELPMAKE,715
IMPLIB,747
LIB, 702
LINK, 593
NMAKE,650
RM,748
SBRPACK,740
UNDEL,749

?: (conditional operator), CodeView, 405
?? command, CodeView, 424, 478-479
\ (backs lash)

HELPMAKE syntax, 720-721
line continuation character, NMAKE, 655, 660, 669
line continuation character, PWB, 115-117, 136
LINK syntax, 567
regular expressions, PWB, 96
Screen Exchange command, CodeView, 424, 479

\ command, CodeView, 424, 479
\\\ formatting attributc, HELPMAKE, 721
@ (at sign)

BSCMAKE syntax, 738
command files, NMAKE, 651
command modifier, NMAKE, 661
filename macros, NMAKE, 672-673
LINK syntax, 573
local contexts, HELPMAKE, 720
naming registers, CodeView, 401, 419
Redraw command, Code View, 424, 479

@ command, CodeView, 424, 479
< (less than operator), Redirect Input command,

CodeView, 340, 475
< > (angle brackets)

command buttons, PWB, 80, 82
inline files, NMAKE, 664-665

< command, CodeView, 340, 475
[] (brackets)

balancing, PWB, 192-193
call tree, PWB, 100

> (DOS redirection symbol), HELPMAKE syntax,
713

> (greater than operator), Redirect Output
command, CodeView, 340,424,476

> command, CodeView, 340, 424, 476
»(help delimiter), HELPMAKE, 726, 728
; (semicolon)

comments, PWB, 136
LINK syntax, 565, 571
TOOLS.lNI file syntax, 652

A (caret)
literal characters, NMAKE, 653
regular expressions, PWB, 92, 95
user-defined macros, NMAKE, 669

_ (underscore)
macros, NMAKE, 668
regular expressions, PWB, 93
symbol format, CodeView, 409

{ } (braces)
context operator, CodeView, 405-407, 421-422
key box, PWB, 120
RTF formatting codes, 726
specifying search path, NMAKE, 660

- (tilde), menu command, PWB, 126

A
A command, CodeView, 422, 424-426, 436-437
\a formatting attribute, HELPMAKE, 718, 721
I A option, NMAKE, 648
About command

Code View, 374-375
PWB,78

lAC option
CL, described, 488-490
HELPMAKE,712

Access control, CodeView, 409
Activating, windows, PWB, 262-263
Actual parameters. See Arguments
Adapters defined, 803
Add command, LIB, 703-704
Add Watch command, CodeView, 364, 423
Add Watch dialog box, Code View, 364
Add Watch Expression command, CodeView, 460
Adding

breakpoints, CodeView, 367
commands, PWB Run menu, 125-127
custom sections, PWB, 58-59

Adding (continued)
files, PWB, 44, 47-48,50
Program Item, PWB, 66

Index 821

watch expressions, CodeView, 364, 460
Address ranges

Code View expressions, 402-403, 420-421
defined, 803

Addresses
Code View expressions, 401-402, 419-420
defined, 803
variables, debugging assembly code, 414

AFLAGS options macro, NMAKE, 676
I AH option, CL, 488-490
AH register, Code View syntax, 419, 450
IAL option, CL, 488-490
AL register, CodeView syntax, 419, 450
Aliasing, optimization, CL options, 531-532, 536
Aligning tabs, PWB, 297
All Files command, PWB, 72
All Windows command, PWB, 77
alloctext pragma, 599, 626
Allocated functions, overlaid DOS programs, 599
Allocating

memory, MOVE, 602--603
registers, CL options, 533
space, LINK, 577-578

Alphabetic characters, predefined expression
syntax, 778, 780, 785

Alphanumeric characters, predefined expression
syntax, 778, 780, 785

Alternation, regular expression syntax, 778,
780-781,787

ALTGR key, enabling, 276
I AM option, CL, 488-490
Ampersand (&)

C address operator, 414-415
Code View, 405
operations line, extending, 702

Angle brackets « »
command buttons, PWB, 80, 82
inline files, NMAKE, 664-665

Animate command, CodeView, 362-363, 369, 422,
432-433,453

ANNUITY1.C sample program, 29
Anonymous allocation defined, 803
ANSI

additional C features, 550-552
defined, 803

822 Index

ANSI escape sequence, CodeView expressions, 408
API defined, 803
Appending DOS device names, CL option, 497-498
Application programming interface defined, 803
Applications

inserting text, module-definition files, 613-614
specifying

module-definition files, 611-612
protected mode, 617
real mode, 617

APPLOADER statement, module-definition files,
609,615

Arg function, PWB, 151, 156-157
executing, 106-108
getting Help, 762
replacing text, 94

argc defined, 803
Arguments

CodeView
entering, 352
format, 352-353
setting, 363-364

command line, 337
defined, 803
functions, PWB, 156-157
module statement syntax, 610
numeric in LINK, 576

argv defined, 803
Arrange command

CodeView, 373-374
PWB,77,145

Arrangewindow function, PWB, 151, 157
Arrays

debugging assembly language, 415
expanding and contracting, CodeView, 367-368,

478-479
AS command macro, NMAKE, 675
/ AS option, CL, 488-490
ASCII

HELPMAKE format, 728
memory format, CodeView, 356-357

ASCII characters defined, 804
Askexit switch, PWB, 263, 267
Askrtn switch, PWB, 263, 267
.ASM files defined, 804
Assemble command, CodeView, 422, 424-426,

436-437
Assembling, 8086 instruction mnemonics, 424-426
Assembly files, creating listing, CL, 501-505

Assembly language
debugging,412-415
specifying, CL option, 542
translating source code, CL, 501-505

Assembly mode defined, 804
Assign function, PWB

described, 151, 157-158
executing, 108
key assignment, changing, 121
switch settings, changing, 124

Asterisk (*)
Comment command, CodeView, 423, 471
Copy command, LIB, 705
deleting watch expressions, CodeView, 461
filename macros, NMAKE, 672-673
hyperlink, Microsoft Advisor, 764
match character, regular expression syntax, 779
regular expressions, PWB, 93
SBRPACK syntax, 740
wildcard operator

HELPMAKE syntax, 711
NMAKE,653-654
UNDEL syntax, 749

/ AT option, CL, 488-490
At sign (@)

BSCMAKE syntax, 738
command files, NMAKE, 651
command modifier, NMAKE, 661
filename macros, NMAKE, 672-673
LINK syntax, 573
local contexts, HELPMAKE, 720
naming registers, CodeView, 401, 419
Redraw command, CodeView, 424, 479

Attributes
formatting in HELPMAKE, 718, 721
segment, defining with module statements, 618-619

Auto option, Language command, CodeView, 370
AUTOEXEC.BAT

HELPFILES environment variable, 771
PWB configuration, 137

Autoload switch, PWB, 263, 268
Automatic indentation, PWBC switches, 312
Autosave switch, PWB, 122,263,269
Autostart entry, TOOLS.lNI file, CodeView, 330
Autostart macro, PWB, 224
AUX, CL options, appending to, 497-498
Available memory

defined, 804
overlaid DOS programs, 597

AX register, CodeView syntax, 419, 450

B
\b formatting attribute, HELPMAKE, 719, 721, 727
IB option

CodeView, 338-339
LINK, 576
NMAKE,648

Backing up files, PWB, 95, 303, 747-750
Backslash (\)

escape, regular expression syntax, 780, 786
HELPMAKE syntax, 720-721
line continuation character

NMAKE, 655, 660, 669
PWB, 115-117, 136

LINK syntax, 567
match character, regular expression syntax, 779
regular expressions, PWB, 96
Screen Exchange command, CodeView, 424, 479

Backtab function, PWB, 127-128, 151, 159
Backup files, 95,303,747-750
Backup switch, PWB, 263, 269-270
.BAK files defined, 804
.BAS files defined, 804
Base names

Curfilenam predefined macro, PWB, 225
defined, 804
Shortnames switch, PWB, 296

Base operator (:<), CodeView precedence, 406
__ based keyword

I A options, CL, 489
allocated functions, 599
enabling, CL options, 550
ordering functions, module-definition files, 626
segmenting data, CL option, 530

Basic Compiler, NMAKE macros, 675-676
.BAT files defined, 804
Batch files

backing up C files, PWB, 95
building browser database, PWB, 104-105
defined, 804
executing CL, 490

!batch option, CL, 490
IBATCH option, LINK, 576
BC command macro, NMAKE, 675
BC command, CodeView, 422, 426-427
BD command, CodeView, 422, 427-428
BE command, CodeView, 422, 428-429
Beep switch, PWB, 263, 270
Begfile function, PWB, 151, 159
Begline function, PWB, 151, 159-160
BFLAGS options macro, NMAKE, 676

BH register, CodeView syntax, 419, 450
Binary files defined, 804
Binary operators defined, 804
BIOS defined, 691, 804
Bit rate, remote debugging, 396
BL command, CodeView, 422, 429
BL register, CodeView, 419, 450
Black, color value, 273

Index 823

Blank lines, command lines, NMAKE, 660
Blue, color value, 273
IBm option, CL, 491
.BMP files defined, 804
Bold text, HELPMAKE formatting

QuickHelp, 721
rich text format, 726

Boolean switches, PWB, 122, 266
Box Mode command, PWB, 73, 143
Boxes, command execution, PWB, 80
BP command, CodeView, 384-385, 422, 429-432

display radix, 444-445
line numbers, 400

BPregister, CodeView syntax, 419, 450
Braces ({ })

context operator, CodeView, 405-407, 421-422
key box, PWB, 120
RTF formatting codes, 726
specifying search path, NMAKE, 660

Brackets ([])
balancing, PWB, 192-193
call tree, PWB, 100
character class, regular expression syntax, 778,

780-781,786
match character, regular expression syntax, 779

Breakpoint Clear command, CodeView, 422,
426-427

Breakpoint Disable command, CodeView, 422,
427-428

Breakpoint Enable command, CodeView, 422,
428-429

Breakpoint List command, CodeView, 422, 429
Breakpoint Set command, CodeView, 384-385,

422,429-432,444-445
Breakpoints

CodeView
clearing, 426-427
disabling, 427-428
enabling,428-429
listing, 429
saving, 344
setting, 326, 365-366, 384-385,429-432

defined, 804

824 Index

Bright Back check box, PWB, customizing colors,
125

Bright Fore check box, PWB, customizing colors,
125

Browcase switch, PWB, 309
Browdbase switch, 309-310
Brown, color value, 273
Browse menu, PWB, 76,145,200
BROWSE option, BSCMAKE, 732
Browse Options command, PWB, 75
Browser Database Maintenance Utility. See

BSCMAKE
Browser database, PWB

building
BSCMAKE,731-734
combined, 106
described, 58, 101
non-PWB projects, 104-106

creating, 97-98
estimating file size, 103-104
finding symbol definitions, 10 1-1 03
makefiles,61
menu commands, 76
overview, 731
specifying switches, 310

Browser Information Compactor. See SBRPACK
Browser information files, PWB

browser database, 97-98
building browser database, non-PWB, 105
estimating size, 103-104

Browser Output command, PWB, 77,102
Browser, source. See Source browser
.BSC files

defined, 804
PWB, 97, 103-104

BSCMAKE
building a database, 731-734
command line, 735-738
options, 732, 736-737
overview, 731
response files, 738
syntax, 735
system requirements, 734

BSCMAKE command
non-PWB,105
PWB,97-98

BSCMAKE.EXE,734
BSCMAKEV.EXE,734

Buffers
CodeView command window, 353
decompression, specifying size, 332
defined, 804

Bugs. See Debugging
Build command, PWB, 74,144
Build Results command, PWB, 77
Build Results window, PWB

clearing, 162
described, 261
Nextmsg function, 188-189
retaining results, 289

Build switch, PWB, 263
Build:message switch, tagged expressions, 784
Building

browser database, PWB
BSCMAKE,731-734
combined, 106
creating, 97-98
described, 58, 101
non-PWB projects, 104-106

canceling, _pwbcancelbuild macro, 229-230
customized PWB projects, 58-61
described, PWB, 56-58
menu commands, PWB, 74
multimodule programs, PWB, 45--46
programs, NMAKE, 646
_pwbbuild macro, 229
targets

NMAKE,648
PWB,163-164

Buttons
command execution, PWB, 80-82
hyperlinks

index screens, 764
navigating with, 759-761

BX register, CodeView syntax, 419, 450
BY operator, CodeView, 405, 414--415
Bytes, displaying, CodeView, 356-357

c
:c command, HELPMAKE, 722
C Compiler Options command, PWB, 75
C Compiler, NMAKE macros, 675-676
C expression evaluator

choosing, 403--404
defined, 399
overview, 399
using, 404--407

.C files defined, 804
/C option

CL, 325,491
CodeView, 338, 340
HELPMAKE,712
NMAKE,648

/c option, CL
described,491
option interactions, 496--497

C++ Compiler Options command, PWB, 75
c++ Compiler, NMAKE command macro, 676
C++ expression evaluator

choosing, 403--404
overview, 399
using, 404--415

Caches, overlaid DOS programs, 598, 602-603
Call gates defined, 804
Call Tree command, PWB, 76,145
Call trees, PWB, 86, 99-101
Calling conventions, CL options, 516-520
Calling functions, CodeView expressions, 405
Calls menu, CodeView, 372-373
Cancel function, PWB, 151, 160
Canceling

background search, _pwbcancelsearch macro,
230-231

builds, _pwbcancelbuild macro, 229-230
print operations, _pwbcancelprint macro, 230

Cancelsearch function, PWB, 151, 161
Caret (A)

character ranges, regular expression syntax, 779
line beginning, regular expression syntax,

778-781,786
literal characters, NMAKE, 653
regular expressions, PWB, 92, 95
user-defined macros, NMAKE, 669

Cascade command, PWB
described, 77
predefined macros, 145

Cascading window arrangements, _pwbcascade
macro, 231

Case sensitivity
browser database, 309
CodeView

commands, 368, 371,417
expression evaluators, 405
options, 445-447
search option, 361

defined, 804
global searches, in Microsoft Advisor, 766
IMPLIB,747

Case sensitivity (continued)
LIB options, 701
PWB

options, 141-142
search functions, 270-271

Case switch, PWB, 263, 270-271
.category command, HELPMAKE, 722
CC command macro, NMAKE, 675
__ cdecl keyword

Index 825

calling conventions, CL options, 516-518
enabling, CL options, 550
symbol format, CodeView, 409

Cdelete function, PWB, 151, 161
CFLAGS options macro, NMAKE, 676
CGA defined, 805
CGA displays, suppressing snow, Code View

option, 341
CH register, CodeView syntax, 419, 450
Character range, regular expression syntax, 779
Character strings defined, 805
Characters

ASCII, defined, 804
case distinction, LINK option, 585
changing type, CL option, 526-527
classes

PWB,92
regular expression syntax, 778, 780-781, 786-787

controlling, HELPMAKE, 712
deleting, PWB, 161, 167-168,209-210
inserting, PWB, 173-174
makefiles, NMAKE, 653
matching, regular expression syntax, 779
predefined expression syntax, 778, 785
searching, 91
special, NMAKE, 668

Check box, PWB, 82
check_pointer pragma, /ZR option, CL, 556-557
check_stack pragma, removing stack probes,

518-520
Child process defined, 805
CL

batch files, executing, 490
calling conventions, 516-518, 520
command line, 485--486
compiling without linking, 491
constants, defining, 491--493
data allocation, 523-524
data threshold, setting, 522
debugging, 553
DOS device names, 497--498
entry/exit codes, optimizing, 515, 522-523

826 Index

CL (continued)
environment variables

N087,513
specifying options, 557-559

filename extensions
processing, 486
specifying, 496

files
assembly, listing, 501-503, 505
browser, generating, 507-508
executable, creating, 486--487
machine-code, listing, 502-503, 505
map, creating, 505-507
optimizing size, 538
renaming, 498--499
source, listing, 501

floating-point math operations, 508-513
function-level linking, 524
function prototypes listing, 552-553
intrinsic functions, generating, 534-535
language specification, 542
linker-control options, 527
macros, defining, 491-493
memory capacity, increasing, 491
naming conventions, 518

Pascal, 552
segments, 528-529

optimizing
aliasing, 531-532
execution time, 539
exit sequence, 538
file size, 538
float consistency, 537-538
frame sorting, 539
inline expansion control, 532
intrinsic function generation, 534-535
loops, 535-537
maximum, 539
p-code quoting, 533
post-code generation, 536-537
register allocation, 533
subexpressions, 533
turning off, 533

options, 323-324, 488-557
output files, setting alternates, 495
p-code, removing entry points, 520-521, 533
paths, specifying, 496
preprocessing

copying output, 493--494
output file, creating, 540
preserving comments, 491

CL (continued)
processor-specific instructions, 514-515
segments, 529-530
specifying entry tables, 521
stacks

checking, 518-520
size, setting, 494

syntax, 488, 557
warning level, setting, 544-545

CL register, CodeView syntax, 419, 450
Class Hierarchy command, PWB

described, 76
function, 145

CLASS keyword, module-definition files, 619-620
Class Tree command, PWB, 76,145
Classes

characters, regular expression syntax, 778,
780-781,786-787

CodeView accessibility, 409-411
Clearing breakpoints in Code View, 367,426--427
Clearmsg function, PWB, 151, 162
Clearsearch function, PWB, 151, 162
Click defined, 805
Clipboard defined, 805
Clipboard Results command, PWB, 77
Close All command, PWB

described, 77
predefined macros, 145

Close command
CodeView, 373-374
PWB, 72,77,142-145

Close Project command, PWB, 74
Closefile function, PWB, 151, 163
Closing

files, PWB, 72, 233
Help files

PWB,213-214
QuickHelp, 769

menus, PWB, 79
projects, PWB, 234
windows, PWB, 220, 232-233

CLRFILE.CV4, CodeView, 343-344, 360, 370-371
CLRFILE.CVW, Code View, 343-344, 360,

370-371
!CMDSWITCHES preprocessing directive,

NMAKE, 688-689
ICO option, LINK, 324-325,577,743
.COB files defined, 805
COBFLAGS options macro, NMAKE, 676
COBOL command macro, NMAKE, 675
COBOL Compiler, NMAKE macros, 675-676

Code
inline, debugging, 322
inserting, HELPMAKE rich text format, 726
invariant, removing, 535-536
memory model, 489--490
p-code

native entry points, 520-521
optimizing, 538
quoting, 533
specifying, 521
tracing to native code, 391-392

searching, PWB, 85
source, displaying, 350,457--460

Code links, HELPMAKE, 718
Code pointers, memory model codes, CL options,

489--490
Code segments

defining attributes, module-definition files, 618,
620

memory models, CL options, 488--490
naming, CL option, 528-530
overlaid DOS programs, 598, 603-605

CODE statement, module-definition files, 609,
618,620

Code symbols defined, 805
CodeView

access control, 409
animating, 432--433
arguments

entering, 352
format, 352
setting, 363-364

breakpoints
clearing, 426--427
disabling, 427--428
editing, 367
enabling, 428--429
listing, 429
setting, 326, 365-366, 384-385, 429--432

case sensitivity
commands, 371
expression evaluators, 405
options, 445--447

CL options, 553
command line, 336-343
commands

copying text, 353
described,460
entering, 352
executing, 340,433--434

compacting files with CVPACK, 743-744

Code View (continued)
compatibility, MOVE, 603
configuring, 329-330

Index 827

contracting elements, 367-368, 478--479
CURRENT.STS, PWB, 138
CVW

commands, 382-385
compared to CV, 377-382
multiple applications, 380-382
multiple instances, 379-380
running, 378-379
techniques, 386-388

debugging
p-code, 389-393
assembly language, 412--415
PWB programs, 28-34

displays
black-and-white, 339
line-display mode, 339
overview, 345-347
redrawing, 479
screen exchange, 341, 371,445--447,479
specifying, 338-339
suppressing snow, 341

dynamic-link libraries, loading, 328, 342, 363-364
editing, 360
execution

controlling, 386
speed of, 453
terminating, 387-388

expanding elements, 367-368, 478--479
expression evaluators

choosing, 403--404, 454--455
defined, 399
listing, 370
numbers, 407--408
operators, 405--407
string literals, 408
symbol format, 409

expressions
See also Expressions
address ranges, 403, 420--421
addresses, 401--402, 420
C++,409--415
line numbers, 400, 418
overview, 399
registers, 401

flags, changing values, 450--452
functions

listing, 435--436
tracing, 452--453

828 Index

CodeView (continued)
Help

See also Microsoft Advisor
getting, 756-765
structure, 755

Help menu, 757
identifying bugs, 325-326
installing, 327-329
interrupt trapping, 341-342
interrupting execution, 387
LINK option, 577
loading symbolic information, 342
locating bugs, 326
memory

comparing, 437--438
dumping, 438--439
entering data, 440--441
filling, 441--442
format, 356-357
managemento~336
moving blocks of, 442-443
searching, 443--444
viewing, 455-457

menus
Calls menu, 372-373
Data menu, 364-368
Edit menu, 360
File menu, 358-360
Help menu, 374-375
Options menu, 368-372
Run menu, 362-364
Search menu, 361-362
Windows menu, 373-374

module statement keywords, 621
modules

configuring, 363-364
listing, 463

mouse, disabling, 342
options,338-344,396,445--447
preparing programs, 321-325
printing, 359
PWB menu commands, 74
quitting, 360
radix, 444--445
registers, changing values, 450-452
remote debugging

overview, 393
requirements, 393-395
starting a session, 397-398
syntax, 396

restarting, 362,436--437

CodeView (continued)
searching, 361-362
shell escape, 468--469
slow motion execution, 363, 369
source code, displaying, 457--460
source files

loading, 359
opening, 358

state file
overview, 344
toggling status, 343

syntax, 336-343
CVW commands, 382-385
expressions, 400--403, 417--421
regular expressions, 779
TOOLS.lNI file entries, 330-336

TOOLS.lNI file entries, 330-336
trace speed, 453
variables

listing, 369
local,354
program, 351

viewing output, 374
watch expressions

adding, 364, 460
deleting, 365, 461
listing, 465--466
setting, 326-327

windows
8087 window, 355-356
Command window, 351-354, 417
described, 350
Help window, 357-358
Local window, 354
Memory windows, 356-357
navigation, 349
opening, 373
overview, 347-349
Register window, 354-355
Source windows, 350
Watch window, 350-351

/CODEVIEW option, LINK, 577
Code View Options command, PWB, 75
Colon (:)

appending device names, CL, 497-498
Code View operator, 405
Delay command, Code View, 423, 475
dependency, NMAKE, 656-657
dot directives, NMAKE, 687
HELPMAKE commands, 722
inference rules, NMAKE, 681

Colon (:) (continued)
macro substitution, NMAKE, 677
module statement syntax, 610
target separator, NMAKE, 655

Color entry, TOOLS.INI file, Code View, 330-331
Color graphics adapter defined, 805
Color switch, PWB, 263, 271-273
Colors

customizing, PWB, 124-125
setting, CodeView, 370-371
specifying, PWB, 271-273, 313
values, 272

Colors command
Code View, 368, 370-371
PWB,75

Colors dialog box, CodeView, 370-371
.COM files defined, 805
Combining libraries, 704
Combo box, PWB, 81-82
Comma(,)

argument separator, Code View, 352-353
Code View operator, 405
field separation, LIB, 699
LINK syntax, 565
with context operator, CodeView, 421-422

!command
Code View, 452
HELPMAKE,719

Command buffer, using CodeView, 353
Command button, PWB, 82
Command command, CodeView, 373-374
.command command, HELPMAKE, 722
Command files

defined, 805
NMAKE,651

Command lines
BSCMAKE,735-738
CL,485-486
CodeView, 336-343
CVPACK,744
EXEHDR, 629-631
EXP, 750
IMPLIB,746-747
LIB,698
LINK, 564-572
MOVE, 604-605
NMAKE

command file, 651
commands, 660
described, 647

Command lines (continued)
NMAKE (continued)

macros, defining, 669-670
suppressing, 688

PWB,141-l42
RM,748-749
SBRPACK,740-741
UNDEL,749

Index 829

Command modifiers, NMAKE, 661-662
Command shell, DOS Shell command, Code View ,

359
Command window, Code View

command format, 417
function, 351-353
opening, 374
overview, 347

COMMAND.COM file handles, 808
Command-line arguments, NMAKE, 651
Commands

Code View
copying text for, 353
CVW, 382-385
Data menu, 364-368
described,424-479
Edit menu, 360-362
entering, 352
executing, 340,433-434
File menu, 358-360
for Windows applications, 377
format, 352-353
Help menu, 374
Options menu, 368-372
Run menu, 362-363
Windows menu, 373

defined,805
HELPMAKE, 713-714, 722-724
LIB,702-705
NMAKE

displaying, 649
exit codes, 662-664
inline files, 664-667
macros, 675
modifiers, 661-662
predefined inference rules, 684-685
suppressing display, 650
syntax, 660-661

PWB
choosing, 78-79
cursor movement, 154-155
Edit menu, 73
executing, 78-82,142,170,219

830 Index

Commands (continued)
PWB (continued)

File menu, 72
Help menu, 78
Options menu, 75
predefined, 142-146
Project menu, 74
Run menu, 74, 125, 127
Search menu, 73
Window menu, 77

QuickHelp, 770
Comment command, Code View, 423, 471
.comment command, HELPMAKE, 722
Comment line, custom builds in PWB, 59
Comments

makefiles, 654
preserving, CL, 491
TOOLS.INI file, 136,329-330

Common expressions, optimizing, CL option, 533
Compact memory model defined, 805
Compacting files, CVPACK, 743-744
Compatibility, floating-point math operations, 512
Compile command, PWB, 144
Compile File command, PWB, 74
Compile function, PWB, 150, 163-164
Compiler options

changing, PWB, 52-56
debugging considerations, 323-324
listing, 525

Compilers
changing options, PWB, 52-56
increasing capacity, CL, 491
menu commands, PWB, 75
optimizing, CL options, 531-539
options, 56

Compiling
debugging considerations, 323
defined, 805
files, PWB, 234
for debugging, CL option, 553
overlays, 599-600
without linking, CL, 491

Compressing
help database, 711-712
keywords, HELPMAKE option, 712-713

CON, CL options, appending to, 497-498
Concatenating help files, 772
Conditional breakpoints defined, 805
Conditional operator (?:), CodeView, 405

CONFIG.SYS
editing, PWB, 66
memory management, CodeView, 336
PWB configuration, 137

Configuring CodeView
modules, 363-364
TOOLS.INI,329-330

Consistency checks, LIB, 700
Constant expressions defined, 805
Constants

defined, 805
defining, CL, 492-493

Constructors, using C++ expressions, 410-411
Contents command

CodeView,374-375
PWB, 78, 146, 757

.context command, HELPMAKE, 716-717, 720,
722,726

Context operator ({ }), CodeView, 405-407,
421-422

Context prefixes, HELPMAKE, 729
contextstring command, HELPMAKE, 718-719
Contracting, elements in CodeView, 367-368,

478-479
Control characters, specifying, HELPMAKE, 712
Control library, selecting, CL options, 527
Conventional memory

browser database, 733-734, 737
defined, 805

Conventions
CLoptions

calling, 516, 520
naming, 518, 529, 552

document, xxv
Conversion functions, using C++ expressions,

410-411
Coprocessors

defined, 803
displaying registers, CodeView, 355-356
floating-point math, 509-511, 513

Copy command
CodeView, 360
LIB,705
PWB,73,143
MS-DOS

concatenating help databases, 710-711
concatenating help files, 772

Copy function, PWB, 151, 164-165
Copying

files, PWB, 95
object modules, 705

Copying (continued)
preprocessor output,CL, 493--494
text

Code View commands, 353
Microsoft Advisor, 761
QuickHelp,771

Copyright message, suppressing. See INOLOGO
option

COUNT sample program, PWB, 41-63, 97-103
/CP option, LINK, 577-578
/CPARM option, LINK, 577-578
/CPARMAXALLOC option, LINK, 577-578
CPP command macro, NMAKE, 676
.CPP files defined, 805
CPPFLAGS options macro, NMAKE, 676
CPU defined, 805
CRC command macro, NMAKE, 676
Creating

backup files, 747-750
browser database, PWB, 97-98
call tree, PWB, 99-101
executable files, CL, 486--487
import libraries, IMPLIB, 745-746
inline files, NAME, 665
library files, 700, 703
map files

CL,505-507
LINK, 582-583

module-definition files, 600-601
overlaid programs

LINK, 598-601
module-definition files, 619--620
MOVE, 598-601

packaged functions, CL options, 524
preprocessor-output files, 540
projects, PWB, 42
pseudofiles, in PWB, 187-188,245
segmented files, LINK, 564

Cross-reference listing, LIB, 705-706
CS command, CodeView, 422
CS register, Code View syntax, 419, 450
CS:IP

defined, 805
saving, CodeView, 344

C_Softcr switch, PWB, 312
C_suffixes switch, PWB, 312-313
Curdate function, PWB, 151, 165
Curday function, PWB, 151, 165
Curfile predefined macro, PWB, 222, 224-225
Curfileext predefined macro, PWB, 222, 225-226
Curfilenam predefined macro, PWB, 222, 225-226

Index 831

Current date, PWB, 165
Current Location command, CodeView, 423, 471
CURRENT.STS

Code View
overview, 344
saving, 360
toggling status of, 343

PWB,138
Cursor

defined, 805
PWB commands, 154--155
shape of, in PWB, 273

Cursormode switch, PWB, 263, 273
Curtime function, PWB, 151, 166
Customize Project Template command, PWB, 75
Customize Run Menu command, PWB, 74
Cut command, PWB, 73

predefined macros, 143
CV. See CodeView
Cvdllpath entry, TOOLS.INI file, Code View,

330-331
CVPACK

command line, 744
exit codes, 745
Help, 745
options, 744
overview, 743-744
syntax, 744

CVW
See also Code View
commands, 382-385
compared to CV, 377
debugging techniques, 386--388
multiple applications, debugging, 379-382
running, 378-379

CX register, Code View syntax, 419, 450
CXX command macro, NMAKE, 676
.CXX files defined, 806
CXXFLAGS options macro, NMAKE, 676
Cyan, color value, 272

D
ID option

CL, 429--432, 492--493
HELPMAKE,714
NMAKE,648
PWB,141

d. context prefix, HELPMAKE, 729
IDA option, PWB, 141
Dark gray, color value, 273

832 Index

Dash (-)
character classes, PWB, 92
character ranges, regular expression syntax, 779
CL syntax, 488
command line, NMAKE, 647
command modifier, NMAKE, 661
Delete command, LIB, 700, 704
HELPMAKE options, 711

.DAT files defined, 806
Data

dumping, CodeView, 438-439
entering, Code View, 440-441
exporting, module-definition files, 623
importing, module-definition files, 624-625
moving blocks, CodeView, 442-443

Data allocation, CL options, 523-524
Data menu, Code View, 364-368
Data pointers, memory model codes, CL options,

489-490
Data segment register, LINK, 579
Data segments

defining attributes, module-definition files,
618-620

loading data, LINK, 579
memory models, CL options, 488-490
naming, CL option, 528-530
overlaid DOS programs, 598, 603-605
packing, LINK, 588-589

DATA statement, module-definition files, 609,
618-620

Data symbol defined, 806
Data threshold, setting, CL option, 522
Database

browser. See Browser database
help

context prefixes, 729
creating, 711-712
decoding, 713-714
overview, 710-711

Date, current in PWB, 165
.DBG files defined, 806
Dblclick switch, PWB, 263, 274
Debug command, PWB, 74
Debug options, finding symbols, PWB, 101
Debuggerdefined,806
Debugging

See also Code View
assembly language, 412-415
CL options, 553
Code View options, 338-344

Debugging (continued)
CVW

commands, 382-385
compared to CV, 377-382
multiple applications, 380-382
multiple instances, 378-380
techniques, 386-388

identifying bugs, 326
locating bugs, 326
makefiles, NMAKE, 648-649
p-code, 389-393
programs

preparing,321-325
PWB,28-34

remote
bit rate, 396
options, 396
overview, 393
requirements, 393-395
starting a session, 397-398
syntax, 396

specifying libraries, LINK, 566
syntax, TOOLS.lNI file entries, 330-336
watch expressions, 326-327

Debugging information
See also Symbolic Debugging Information
Compactor. See CVPACK

Decoding, HELPMAKE options, 713-714
Decompressing

help database, 714
help files, 332

Decorated names
debugging considerations, 324
overview, 789-790
specifying, 790-791

.DEF files. See Module-definition files
Default keys, 142-150
Default libraries

defined,806
LINK, 568, 583-584

Default values, LINK, 573
deffile field, LINK, 570-572
Define Mark command, PWB, 73
DEFINED operator, NMAKE, 690-691
Defining

constants, CL, 492-493
macros, CL, 492-493

Deflang switch, PWB, 263, 274
Defwinstyle switch, PWB, 263, 275
Delay command, Code View, 423, 475

Delete command
LIB, 700, 704
PWB

described,73
predefined macros, 143

Delete function, PWB, 151, 166
Delete Watch command, CodeView, 364-365,423
Delete Watch dialog box, CodeView, 365
Delete Watch Expressions command, CodeView,

461
DELETED directory, backup utilities, 747-748
Deleting

breakpoints, CodeView, 367
characters, PWB, 161, 167-168,209-210
files

during debugging session, 359
EXP, 750
PWB,48
RM,748-749

lines, PWB, 176-177
marks, PWB, 178-179
object modules, 704
text, PWB, 166,232
watch expressions, CodeView, 365, 461

Delimiters
help (»), 726, 728
regular expressions, PWB, 91

Dependencies
executing, NMAKE, 648
PWB programs, 45, 48

Dependency lines
defined, 655
dependents, NMAKE, 659-660

Dependency tree
building, NMAKE, 655
updating dependents, NMAKE, 659

Dependent files
defined, 646
dependency lines, NMAKE, 655

Dependents
dependency lines, NMAKE, 659-660
inferred, NMAKE, 659, 685-686

Dereference Global Handle command, CodeView,
463--464

Dereference Local Handle command, Code View,
466--467

Dereferencing memory handles, CodeView, 386
Description blocks

dependency lines, 655
NMAKE,656-660

Index 833

DESCRIPTION statement, module-definition files,
609,613--614

Destructors, using C++ expressions, 410--411
DGROUP defined, 806
DH register, Code View syntax, 419, 450
DI register, Code View syntax, 419, 450
Dialog boxes

Code View, getting Help, 761
defined, 806
HELPMAKE context prefix, 729
PWB

default key assignments, 150
displaying, 284-285, 288, 294
function, 80-82
getting Help, 761
Help, 758, 764

Dictionaries, extended, suppressing, in LIB, 701
Digits, predefined expression syntax, 778, 780, 785
DIR command, PWB, 94-95
Directives

dot, NMAKE, 687-688
preprocessing, NMAKE, 688, 690-692

Directories
ignoring, CL option, 545
listing C files, PWB, 94
searching, CL options, 525-526

Disable Mouse in Code View option, 342
Disabling

breakpoints, CodeView, 367,427--428
mouse, CodeView option, 342

Disassembling defined, 806, 818
DISCARDABLE keyword, module-definition files,

620
Display

CodeView
black-and-white display, 339
line-display mode, 339
arranging, 327
memory format, 356-357
overview, 345-347
redrawing, 479
screen exchange, 341, 343, 371, 445--447, 479
specifying, 338-339
suppressing snow, 341

PWB
height, 283
screen, 67--68
specifying color, 271-273
width,306

Display Expression command, Code View, 424,
477--478

834 Index

Display modules, listing, Code View, 383
DL register, Code View syntax, 419, 450
.DLLfiles

See also Dynamic-link library
defined, 806

Dlllibs switch, PWB, 310-311
.DOC files defined, 806
Dollar sign ($)

end of line, regular expression syntax, 778,
780-781,786

environment variables, NMAKE, 679
filename macros, NMAKE, 672-673
literal characters, NMAKE, 653
match line end, regular expression syntax, 779
reference to tagged expressions, regular expression

syntax, 780, 787
regular expressions, PWB, 93
user-defined macros, NMAKE, 669

DOS
device names, appending, 497-498
Help, getting, 768-769
managing memory, browser database, 733-734
overlays, LINK, 566
session defined, 806

DOS applications
defined, 806
module-definition files, 607-608
overlaid

LINK, 597-601
MOVE, 597-603

DOS executable files, EXEHDR output, 632-633
DOS Extender defined, 806
DOS Protected-Mode Interface server, Code View,

336
DOS redirection symbol (», HELPMAKE syntax,

713
DOS Shell

command
CodeView,358-359
PWB,72,142-143

creating,PWB,214-215,257-258
DOS-extended defined, 806
Doslibs switch, PWB, 310-311
IDOSS option, LINK, 561, 578
IDOSSEG option, LINK, 561, 578
Dot commands, HELPMAKE, 713-714, 722-724
Dot directives, NMAKE, 687-688
Double precision defined, 806
Down function, PWB, 151, 167
DPMI defined, 806

DPMI server. See DOS Protected-Mode Interface
server

Dragging defined, 807
IDS option

HELPMAKE, 714, 773
LINK, 579
PWB,141

DS register
CodeView syntax, 419, 450
LINK, 579

IDSALLOC option, LINK, 579
IDSALLOCATE option, LINK, 579
IDT option, PWB, 141
lDu option, HELPMAKE, 714
Dumping

defined, 807
math registers, Code View, 473-474
memory, CodeView, 438-439

DWoperator, CodeView, 405, 414-415
DX register, CodeView syntax, 419, 450
IDY option, LINK, 561, 579
Dynamic address, viewing memory, CodeView, 357
Dynamic Data Exchange, debugging, 379-382
Dynamic links defined, 807
IDYNAMIC option, LINK, 561, 579, 601-602
Dynamic overlays, MOVE, 604-605
Dynamic-link libraries

E

debugging p-code, 389-390
default names, PWB switches, 310-311
defined, 807
EXEHDR output, 635
initialization routine, debugging, 381-382
LINK object files, 563
listing modules, CodeView, 383,463
loading symbolic information, Code View, 342
loading, CodeView, 363-364
module-definition files, LINK, 570, 613-614
optimizing entry/exit codes, CL options, 515
protected mode, specifying, 617
real mode, specifying, 617
searching, module statements, 622
specifying, module-definition files, 612-613
values, CodeView, 328

E command, Code View, 422, 433, 453
:e command, HELPMAKE, 722
e. context prefix, HELPMAKE, 729

IE option
CL,493
HELPMAKE,711-712
LINK, 580
NMAKE, 648, 678, 680
PWB,142

EAX register, CodeView syntax, 419, 450
EBP register, CodeView syntax, 419, 450
EBX register, CodeView syntax, 419, 450
ECX register, CodeView syntax, 419, 450
__ edata, LINK, 578
EDI register, CodeView syntax, 419, 450
Edit Breakpoints command, CodeView, 364, 367
Edit Breakpoints dialog box, CodeView, 367
Edit menu

CodeView, 360
PWB

described, 73
functions, 143
predefined macros, 143

Edit Project command, PWB, 74
Editing

breakpoints, CodeView, 367
CONFIG.SYS, PWB, 66
files, Editreadonly switch, PWB, 275-276
macros, PWB, 111
Noedit function, PWB, 190
projects, PWB, 47-49, 55
repeat function, PWB, 205
text, menu commands, PWB, 73

Editor, PIF, starting PWB, 66
Editor Settings command, PWB, 75, 767
Editreadonly switch, PWB, 263, 275
EDX register, CodeView syntax, 419, 450
EGA defined, 807
lEi option, BSCMAKE, 736
lEI option, BSCMAKE, 736
Ellipsis (...)

call tree, PWB, 101
menu command, PWB, 80, 82, 126

!ELSE preprocessing directive, NMAKE, 689
!ELSEIF preprocessing directive, NMAKE, 690
!ELSEIFDEF preprocessing directive, NMAKE,

690
!ELSEIFNDEF preprocessing directive, NMAKE,

690
IEm option, BSCMAKE, 736
Emacscdel function, PWB, 151, 167-168
Emacsnewl function, PWB, 151, 168

Embedding text strings, CL option, 544
EMM386.EXE

Code View, 336, 338
defined, 807

EMM.386.SYS, CodeView, 336, 338

Index 835

Emulator library, floating-point math, CL options,
509-514

Emulators defined, 807
Enablealtgr switch, PWB, 263, 276
Enabling breakpoints, CodeView, 367,428-429
Encoding, HELPMAKE options, 712-713, 727
__ end, LINK, 578
.end command, HELPMAKE, 722
Endfile function, PWB, 151, 168
!ENDIF preprocessing directive, NMAKE, 690
Endline function, PWB, 151, 169
English word, predefined expression syntax, 778,

780, 785
Enhanced graphics adapter defined, 807
Entab switch

PWB, 263, 276-277
white space, 127-128

Enterinsmode switch, PWB, 263, 277-278
Enterlogmode switch, PWB, 263, 278-279
Enterselmode switch, PWB, 263, 278
Entry codes

optimizing, 515
Windows functions

customizing, 515
generating, 522-523

Entry tables, specifying, CL option, 521
Envcursave switch, PWB, 137,263,279
Environment function, PWB, 151, 169-170
Environment strings defined, 807
Environment tables

defined, 807
saving, in PWB, 279-280

Environment variables
defined, 807
HELPFILES

defined, 809
Help file location, 771
opening Help files, 769
restricting global search, 767

INCLUDE, BSCMAKE, 736
INIT

defined, 810
remote debugging, 396

LIB, 810

836 Index

Environment variables (continued)
LINK

clearing, 594
defined, 810
setting, 593-594

macros, NMAKE, 678
menu commands, PWB, 75
N087,513
PATH, installing CodeView, 327
PWB

function, 169-170
starting, 67
TOOLS.INI file, 137

specifying options, CL, 557-559
SYSTEM, 817
TEMP, 817
TMP,817

Environment Variables command, PWB, 75
Envprojsave switch, PWB, 137,263,280
IEP option, CL, 494
Equal sign (=)

module statement syntax, 610
Redirect Input and Output command, CodeView,

424,477
substituting for number sign, 492

IEr option, BSCMAKE, 736
.ERR files defined, 807
Error bit, LINK, clearing with EXEHDR, 631,

634-636
Error checking, turning off, NMAKE, 661
Error codes

CVPACK,745
defined, 807
LIB, 708
LINK, 596
NMAKE

described, 696
from commands, 662-663
ignoring, 649, 687

SBRPACK,741
Windows applications, optimizing, 515
Windows functions

customizing, 515
generating, 522-523

Error messages, Help, 764
Error numbers, HELPMAKE context prefix, 729
Error output, NMAKE, 650
!ERROR preprocessing directive, NMAKE, 689
Errors

building a PWB program, 46, 50
defined, 815

Errors (continued)
Help, getting, 764
menu commands, PWB, 74
resolving references, LINK, 569
simulating in CodeView, 385, 464--465

IEs option, BSCMAKE, 736
ES register, CodeView syntax, 419, 450
Escape sequence

CodeView expressions, 408
defined, 807

Escapes, regular expression syntax, 778, 780-781,
786-787

ESI register, CodeView syntax, 419, 450
ESP register, Code View syntax, 419, 450
Eval entry, TOOLS.INI file

CodeView, 328-331,403-404
remote debugging, 393-395

Examine Symbols command, CodeView, 423,
467-468

Exception-mask bits, 8087 command, CodeView,
473-474

Exclamation point (!)
command modifiers, NMAKE, 662
HELPMAKE command, 719
preprocessing directives, NMAKE, 688
replacing text, PWB, 94
Shell Escape command, Code View, 423, 468-469

.EXEfiles
defined, 807
overlaid DOS programs, 597

Executable files
adding to, module-definition files, 614
creating, CL, 486-487
defined, 807
EXEHDR output, 632-636
format, 631
Header Utility. See EXEHDR
LINK, 563
renaming, CL, 499

.execute command, HELPMAKE, 722
Execute command, PWB, 74
Execute Commands option, Code View, 340
Execute function, PWB, 108, 151, 170
EXECUTEONL Y keyword, module-definition

files, 621
EXECUTEREAD keyword, module-definition

files, 621
Executing

commands, PWB, 78-82, 142,219
functions,PWB, 106-108, 170
macros, PWB, 106-108

Execution
controlling, CodeView, 386
model, specifying, Code View, 333
time, optimizing, CL option, 539

exefile field, LINK, 566
EXEHDR

application type, setting, 630
command line, 629-631
DLL output, 635
error bits, clearing, 631, 634-636
executable-file format, 631
exports tables, 636, 638
heap allocation, 630
Help, 630
memory allocation, 630
output

DOS executable files, 632-633
segmented executable files, 634-636
verbose output, 637-639

overview, 629
relocations, 639
segment tables, 635-638
syntax, 629-631

IEXEP ACK option, LINK
debugging considerations, 325
described, 580

EXETYPE statement
module-definition files, 609, 615-616
segmented files, LINK, 564

EXIST operator, NMAKE, 690-691
Exit codes

CVPACK,745
defined, 807
LIB, 708
LINK, 596
NMAKE

described, 696
from commands, 662-663
ignoring, 649, 687

SBRPACK,741
Windows

applications, optimizing, 515
functions, customizing, 515

Exit command
Code View, 358, 360
PWB,72, 142-143

Exit function, PWB, 151, 171
Exit sequence, optimizing, CL option, 538
Exiting

Code View, 360
PWB,47, 171,251

EXP
command line, 750
options, 750
overview, 743, 747-748
syntax, 750

Expanded memory
defined, 807
overlaid DOS programs, 598

Expanded memory
emulator defined, 808
manager defined, 808

Index 837

Expanding elements in CodeView, 367-368,
478-479

Expansion, inline, controlling, CL option, 532
Explicit allocation

defined, 808
ordering functions, module-definition files, 626

Explicit links, HELPMAKE, 718
Explicitly allocated functions, overlaid DOS

programs, 599
__ export keyword, entry/exit code

generating, 522-523
optimizing, 515

Export ordinals, searching for, module-definition
files, 622

EXPORTS statement, module-definition files,
decorated names, 609, 623, 790-791

Exports tables, EXEHDR output, 636, 638
Expression evaluators, Code View

choosing, 403-404, 454-455
defined, 399
listing, 370
numbers, 407-408
operators, 404-407
specifying, 331
string literals, 408
symbol format, 409

Expressions
address ranges, 402-403, 420-421
addresses, 401-402, 420
C++, in CodeView, 409-411
constant, defined, 805
defined, 808
displaying, Code View, 477-478
editing, CodeView, 351
line number, 400, 418
live, creating, 357
overview, CodeView, 399
predefined. See Predefined expressions
preprocessing directives, NMAKE, 690-692
registers, 401, 419

838 Index

Expressions (continued)
regular. See Regular expressions
setting breakpoints, Code View , 365
tagged. See Tagged expressions
watch. See Watch expressions

Expunging files. See EXP
Extended ASCII defined, 808
Extended dictionaries

defined, 808
resolving references, LINK, 584
suppressing, in LIB, 701

Extended libraries, resolving references, LINK, 569
Extended memory

browser database, 733-737
defined, 808
Keepmem switch, PWB, 285
overlaid DOS programs, 598

Extended memory manager
CodeView,336
defined, 808

Extending operations line, 702
Extension switches, PWB, 265
Extensions

autoloading, PWB, 131,268
Curfileext predefined macro, PWB, 225
default

CL,495
PWB,274

defined, 808
IMPLIB,746
language, CL options, 550-552
LINK, 565-567
loading, PWB, 286
processing, CL, 486
specifying, CL, 496

External names, restricting length, CL option, 525
External references defined, 808

F
/f option, CL, 494-495
IF option

CL,494,527
CodeView, 338, 341
LINK, 580-581
NMAKE,648
RM,748

F1 key, Help, 757
lFa option, CL

option interactions, 495-497
translating source code, 501-502

Factor switch, PWB, 263, 280-281
Far address defined, 808
Far calls

LINK, 584, 587-588
overlaid DOS programs, 603-604

Far functions, optimizing entry/exit codes, CL
options, 515

__ far keyword, CL
/ A options, 489
accepting, 555
data allocation, 523-524
enabling options, 550

IFARCALL option, LINK, 580-581
IFARCALLTRANSLATION option, LINK,

580-581
Fast functions, PWB switches, 280
__ fastcall keyword

calling conventions, CL options, 520
enabling, 550
naming conventions, 518
symbol format, Code View, 409

Fastfunc switch, PWB, 263, 281-282
FAT defined, 808
Fatal errors

defined, 808
simulating, Code View, 385,464-465

IFBr option, BSCMAKE, 732
IFBx option, BSCMAKE, 732
IFc option, CL

option interactions, 496-497
output files, 495
translating source code, 503-505

.FD files defined, 808
lFe option, CL

option interactions, 496
rename executable file, 499
specifying output files, 495

FFLAGS options macro, NMAKE, 676
.PI files defined, 808
\fi formatting code, HELPMAKE, 726
Fields

BSCMAKE, syntax, 735
LIB, specifying, 699-705
LINK

deffile, 570
exefile, 566
libraries, 567-570
mapfile, 567
objfiles, 565
overview, 564---572

SBRPACK, syntax, 740

File allocation table defined, 808
File Expunge Utility. See EXP
File handle defined, 808
File Header Utility. See EXEHDR
File history

maximum files, setting, 300
PWB,72

File menu
CodeView,358-360
PWB

described, 72
predefined macros, 142

File Removal Utility. See RM
File Undelete Utility. See UNDEL
filename! command, HELPMAKE, 718
Filename extensions

autoloading, PWB, 268
Curfileext predefined macro, PWB, 225
default

CL,495
PWB,274

defined, 808
IMPLIB,746
LINK, 565-567
loading, PWB, 286
processing, CL, 486

Filename macros, NMAKE, 672-673
Filename-extension tags, TOOLS.INI file, PWB,

132-133
Filename-Parts Syntax, PWB switches, 265-266
Filenames

alternate, setting, CL, 495
base names

Curfilenam predefined macro, PWB, 225
defined, 804
Shortnames switch, PWB, 296

defined, 808
macros, NMAKE, 672-673
path specification, CL, 496
precompiled headers, 546
predefined expression syntax, 778, 780, 785
specifying

HELPMAKE,712-714
LINK, 566-567
NMAKE,648

syntax

Files

LINK, 565
NMAKE,663-664

adding, PWB, 44, 48, 50
assembly. See Assembly files

Files (continued)
backup, 95,303, 747-750
batch, executing CL, 490

Index 839

browser, generating from CL, 507-508
closing, 72, 163,233
Code View requirements, 328-329
command

defined, 805
NMAKE,651

compacting for CodeView, CVPACK, 743-744
compiling, PWB, 234
creating, PWB, 245
deleting

during debugging session, 359
PWB,48
RM,748-749

editing, Editreadonly switch, PWB, 275
estimating size, PWB, 103-104
executable. See Executable files
expunging, 750
finding, PWB, 72
Help. See Help files
include. See Include files
inline, NMAKE, 664-667
inserting, module statements, 627
library. See Library files
listing, PWB, 94
loading, PWB, 142
machine-code, creating listing, CL, 502-505
makefiles. See Makefiles
map

creating, CL, 505-507
LINK, 582-583

module-definition. See Module-definition files
moving

PWB,49
RM,748-749

naming, SBRPACK, 740
object. See Object files
opening,PWB,72, 141, 191,289-290
optimizing size, CL option, 538
output

alternate, CL, 495
LINK, 566

packing, SBRPACK, 739-740
preprocessing output, creating, 540
printing

CodeView,359
PWB,194-195

project file list, PWB, 43--44
relocatable, LINK, 563

840 Index

Files (continued)
remote debugging, 393-395
removing library name, CL option, 553-554
response

BSCMAKE,738
LINK,573-575

restoring, UNDEL, 749
saving

Autosave switch, PWB, 269
PWB,72,209,255-256,300

searching, PWB, 86-90
segmented. See Segmented executable files
source. See Source files
specifying type, HELPMAKE, 713
startup, PWB, 137
state. See State file
status, PWB, 138-139
temporary, LINK, 595
truncated, BSCMAKE, 733-735

Filetab switch, PWB, 127-128,263,282
Find command

CodeView, 361
PWB,72-73, 87-90

Find Dialog box, CodeView, 361
Finding

files, PWB, 72
symbol definitions, PWB, 98-103
text in PWB, 91-93

Mreplace function, 185
Mreplaceall function, 185-186
Qreplace function, 202
Replace function, 205-207

FIXED keyword, module-definition files, 621
Fixup defined, 808
IFI option, CL

combined listing, 502-503
option interactions, 496
output file, 495

Flags
8087 command, CodeView, 473-474
changing values, CodeView, 450-452
displaying value, CodeView, 354--355
register defined, 809

Flat memory model defined, 809
Flipping screen exchange

CodeView, 341, 445-447
defined, 809

Float consistency
improving, CL options, 537-538
optimizing, CL option, 537-538

Floating-point math
compatibility between, 512
intrinsic functions, generating, 534--535
library selection, CL options, 509-514
specifying, CL options, 508

Flow control statements, 112-114
IFm option, CL

mapfile, 505-507, 527
option interactions, 496
output file, 495

IFo option, CL, 495, 498
FOR command macro, NMAKE, 676
.FOR files defined, 809
Foreign makefiles in PWB, 61--63
Format

commands, Code View, 352-353, 417
decorated names, 789
executable files, 631
HELPMAKE

described, 716
QuickHelp, 716--724
rich text format, 725-727

memory, changing, 356-357
Formatting attributes, HELPMAKE, 718, 721
Formatting codes, rich text format, HELPMAKE,

726
Formatting text, HELPMAKE topics, 721
FORTRAN Compiler, NMAKE macros, 676
__ fortran keyword, CL

calling conventions, 516--518
enabling, 550

IFp option, CL, 495, 546
IFPa option, CL, 508-509, 527
IFPc option, CL, 508-509, 527
IFPc87 option, CL, 508-510, 527
IFPi option, CL, 508-513, 527
IFPi87 option, CL, 508-513, 527
/FRoption

BSCMAKE,732
CL,495-496,507-508

IFr option
BSCMAKE,732
CL,495-496,507-508

Frame sorting, CL option, 539
Frames defined, 809
.freeze command,HELPMAKE, 722
Friction switch, PWB, 264, 282-283
IFs option, CL

described,495,501
option interactions, 496-497

Full build, building a database, BSCMAKE, 733,
735

Full-screen application defined, 809
Function calls

defined, 809
replacing, CL option, 534--535

Function Hierarchy command, PWB
described, 76
function, 145

Functions
allocated, overlaid DOS programs, 599
calling, CodeView expressions, 405
defined, 809
exporting, module-definition files, 623
importing, module-definition files, 624-625
intrinsic, CL options, 534-535
listing, CodeView, 435-436
far, optimizing entry/exit codes, 515
ordering, module-definition files, 626-627
packaged

CL options, 524
overlaid DOS programs, 599

prototypes, listing, CI option, 552-553
PWB

Arg, 94, 106-108
Assign, 108, 121-122, 124
Backtab, 127-128
call tree, 99-10 1
closing, 220
cursor-movement commands, 154-156
executing, 106-108
functions, 150-154, 170-221
Linsert, 108
listing references, 102
mark, 86
menu commands, 142, 144--146
Meta, 107-108
Mgrep,87
modifying, 181
Msearch,87
Paste, 94, 108
Prompt, 116-117
Psearch, 87, 107
tabs, 127-129
Tell, 108

tracing, CodeView, 452-453
FUNCTIONS statement

module-definition files, 609, 626-627, 790-791
overlaid DOS programs, 600-601
overlay number, LINK, 564, 598

G
G command, CodeView, 422, 433-434
:g command, HELPMAKE, 723
/G option, CodeView, 338, 341
/GO option, CL, 514--515
/Gl option, CL, 514-515
/G2 option, CL, 514--515
/G3 option, CL, 514-515
/G4 option, CL, 514-515
/GA option, CL, 515
/Gc option, CL, 516-518
/GD option, CL, 515
/Gd option, CL, 516-518
/GE option, CL, 515-516
/Ge option, CL, 518-520
/GEa option, CL, 515
/GEd option, CL, 515
/GEe option, CL, 515
/GEf option, CL, 515
/GEm option, CL, 515
/GEr option, CL, 515
/GEs option, CL, 515
Gigabyte defined, 809

Index 841

Global contexts, help files, linking, 719-720
Global heaps, listing memory objects, CodeView,

382,462-463
Global memory handles, converting to pointers,

463-464
Global Search command, PWB, 78, 766-767
Global symbols

defined, 809
searching for, CodeView, 406-407

GlobalLock routine, locking memory handles, 386
/Gn option, CL, 520-521
Go command, Code View, 422, 433-434
Goto command, PWB, predefined macros, 144
Goto Definition command, PWB

described, 76
finding symbols, 98-99
function, 145

Goto Error command, PWB, 74
Goto Mark command, PWB, 73
Goto Match command, PWB

described, 73
predefined macros, 144

Goto Reference command, PWB, 76, 145
/Gp option, CL, 521
/Gq option, CL, 521-522
/Gr option, CL, 520
Grandparent process defined, 809

842 Index

Graphicfunction, PWB, 151, 172
Gray, dark, color value, 273
Greater-than operator (», Redirect Input

command, CodeView, 340, 424, 476
Green, color value, 273
Group defined, 809
IGs option, CL, 518-520
IGt option, CL, 522
IGW option, CL, 522-523
IGw option, CL, 522-523
IGx option, CL, 523-524
IGy option, CL, 524, 599

H
H command, CodeView, 422, 434
.H files defined, 809
IH option

CL,525
CVPACK,745
IMPLIB,747
LIB,701

Handlers, symbol, specifying, 334-336
IHE option, LINK, 581
IHEA option, EXEHDR, 630
Header files, unreferenced symbols, packing files,

739
Headers. See EXEHDR
Heap allocation, setting in EXEHDR, 630
IHEAP option, EXEHDR, 630
Heaps

global, listing memory objects, 382, 462-463
local, listing memory objects, 383
overlaid DOS programs, 598, 602
size, specifying, 617-618

HEAPSIZE statement, module-definition files,
609,617-618

Height switch, PWB, 264, 283
IHEL option, EXEHDR, 630
Help

See also CodeView; Help files; Microsoft Advisor;
QuickHelp

displaying in PWB, 198,237,239
getting

CodeView, 756-765
HELPMAKE,714

index table, PWB, 239-240
load state, PWB, 235
next topic, PWB, 198-199,236
previous topic, PWB, 237

Help (continued)
searching, PWB, 199,240
structure, Code View, 755
switches, 313-315
topic selection, PWB switch, 315
topic, PWB, 238

Help command
CodeView, 373-374,422,434
PWB,77

Help database
compressing, 711-712
context prefixes, 729
creating, 711-712
decoding, 713-714
decompressing, 714
overview, 710-711

Help delimiters (»), HELPMAKE, 726, 728
Help File Maintenance Utility. See HELPMAKE
Help files

closing
PWB,213-214
QuickHelp, 769

concatenating, 772
creating, 711-712
decoding, 713-714
decompressing, specifying buffer size, 332
formats

described, 716
minimally formatted ASCII, 728
QuickHelp, 719-724
rich text format, 725-727

listing
CodeView, 333
PWB, 314, 772
QuickHelp, 772

locking, 713
managing, 771-773
opening

Microsoft Advisor, 765-766
PWB,213-214
QuickHelp, 769

overview, 710-711
requirements, CodeView, 328-329
specifying, 713
splitting, 773
topics, defining, 716-717

Help menu
CodeView, 374, 757
PWB,78,146,757

Help on Help command
CodeView,374-375
PWB

described, 78, 758
predefined macros, 146

/HELP option
BSCMAKE,736
CL,525
CVPACK,745
EXEHDR,630
EXP,750
HELPMAKE,715
IMPLIB,747
LIB, 701
LINK, 581
NMAKE,648
RM, 748
SBRPACK,740
UNDEL,749
using, 768

Help window
CodeView

function, 357-358
opening, 374
overview, 348
using, 760-761

PWB
default key assignments, 149
using, 760-761

setting size, 313-314
Helpautosize switch, PWB, 313-314
Helpbuffer entry, TOOLS.INI file, CodeView, 330,

332
helpfile! contextstring command, HELPMAKE,

718
Helpfiles entry, TOOLS.INI file, CodeView, 330,

333
HELPFll..ES environment variable

defined, 809
Help file location, 771
opening Help files, 769
restricting global search, 767

Helpfiles switch, PWB, 314, 767
Helplist switch, PWB, 315
HELPMAKE

compatibility, 709
context prefixes, 729
decoding, 713-714
defining topics, 716-717
dot commands, 722-724
encoding, 711-713, 727

HELPMAKE (continued)
formats

described, 716
minimally formatted ASCII, 728
QuickHelp, 716-724
rich text, 725-726
rich text format, 726-727
specifying, 713

formatting attributes, 718-721
formatting text, 721
getting Help, 714
global contexts, 719-720
local contexts, 720
options

decoding, 713-714
encoding, 712-713

overview, 710-711
syntax, 711-715

Helpwindow switch, PWB, 315
Hexadecimal numbers

Index 843

predefined expression syntax, 778, 785
predefined expressions syntax, 780

Hexadecimal defined, 809
/HI option, LINK, 581
High memory defined, 809
/HIGH option, LINK, 581-582
Highlight defined, 809
Highlighting search strings in PWB, 210
Hike switch, PWB, 264, 283-284
HlMEM.SYS

Code View, 336
defined, 809

.HLP files defined, 809
Home function, PWB, 151, 172
Horizontal Scrollbars command, Code View, 368,

370
HPFS defined, 809
Hscroll switch, PWB, 264, 284
__ huge keyword, CL

fA options, 489
enabling, 550

Huge memory model defined, 809
Hyperlinks, Microsoft Advisor

index screens, 764
navigating with, 759-761

I command, CodeView, 422, 434-435
:i command, HELPMAKE, 723
\i formatting attribute, HELPMAKE, 721

844 Index

\i fonnatting code, HELPMAKE, 726
II option

CL,525-526
CodeView, 338, 341-342
LIB, 701
NMAKE,649
RM,748

Icons, screen display, PWB, 68
Identifiers

case distinction, LINK option, 585
C/C++, predefined expression syntax, 778, 780, 785
defined, 809
searching, PWB, 93

IEEE format defined, 810
!IF preprocessing directive, NMAKE, 689
!IFDEF preprocessing directive, NMAKE, 689
!IFNDEF preprocessing directive, NMAKE, 689
.IGNORE dot directive, NMAKE, 687
IIGNORECASE option, LIB, 701
IMPLIB

case sensitivity, 747
command lines, 746-747
LINK import libraries, 568
module-definition files, 609
options, 747
overview, 743, 745-747
syntax, 746-747

Implicit links, HELPMAKE, 719-720
Import libraries

combining, 704
creating, IMPLIB, 745-747
defined, 810
linking, 568

Import Library Manager. See IMPLIB
IMPORTS statement, module-definition files, 609,

624--625,790-791
Improving float consistency, CL options, 537-538
.INC files defined, 810
#include directive, PWB project dependencies, 45
INCLUDE environment variable, BSCMAKE, 736
Include files

browser database, PWB, 104
BSCMAKE,737
defined, 810
finding symbols, PWB, 101
project dependencies, PWB, 45, 48
search directory, CL option, 525-526
unreferenced symbols, packing files, 739

!INCLUDE preprocessing directive, NMAKE, 689

INCLUDE statement
module-definition files, 609, 627
overlaid DOS programs, 600-601

Incremental build, building a database,
BSCMAKE,733-735

Indenting
automatic, PWBC switches, 312
command line, NMAKE, 660
dependency lines, NMAKE, 655
text

HELPMAKE,726
PWB,296

Index command
CodeView,374
PWB, 78, 146,757

Index screens, Microsoft Advisor, 762, 764
Indirection register, debugging assembly language,

414
IINF option, LINK, 582
Inference rules, NMAKE

commands, 660
inferred dependents, 685-686
precedence, 686-687
predefined, 684-685
search paths, 682
syntax, 680-682
user-defined, 682-684

Inferred dependents, NMAKE
dependency line, 659
inference rules, 685-686

Infinite loops, terminating execution, 387-388
!INFO option, LINK, 562, 582, 601-602
Infodialog switch, PWB, 264, 285-286
Infonnation function, PWB, 151, 173
!INFORMATION option, LINK, 562, 582
Inheritance, using C++ expressions, 410
Inherited macros, NMAKE, 679-680
.INI files defined, 810
INIT environment variable

defined, 810
PWB, starting, 67
remote debugging, 396

INIT environment variable, PWB, 137
Initialization routine, debugging, 381-382
Initialize function, PWB, 151, 172-173
Inline code, debugging, 322
Inline expansion, control, CL option, 532
Inline files, NMAKE

creating, 664--666
multiple, NMAKE, 667
reusing, 666-667

Input
LINK, 564-572
redirecting, CodeView, 475, 477

Insertfunction,PWB, 151, 173-174
Insert mode, toggling, in PWB, 174,277
Inserting

characters, PWB, 173-174
files, module statements, 627
lines, PWB, 177-178
RTF formatting codes, HELPMAKE, 726
space,PWB,215-216

Insertmode function, PWB, 151, 174
Installable file system defined, 810
Installing Code View, 327-329
Instruction sets, generating, CLoption, 514-515
int, searching, PWB, 91-93
Integers defined, 810
Interoverlay calls

defined, 810
limiting, LINK, 579

Interrupt call defined, 810
__ interrupt keyword, CL, enabling, 550
Interrupt number, MOVE, 604
Interrupting, CodeView, 387,470,475
Interrupts, trapping, CodeView, 341-342
Intrinsic functions, calling, CodeView expressions,

405
Invariant code, removing, CL option, 535-536
110 privilege mechanism defined, 810
Italics, HELPMAKE formatting

QuickHelp format, 721
rich text format, 726

/lu option, BSCMAKE, 737

J
IJ option, CL, 526-527
Justifying tagged expressions, 785

K
K command, CodeView, 435--436
IKoption

HELPMAKE, 712-713
NMAKE,649
RM,748

KEEP, inline files, NMAKE, 665
Keepmem switch, PWB, 264, 285
Key assignments, PWB

cursor movement commands, 154-155
default, 146-150
described, 107, 119-121, 134-135

Key assignments (continued)
Graphic function, 172
menu commands, 142-146
Unassigned function, 218

Key Assignments command, PWB, 75

Index 845

Key box, assigning key function, PWB, 120
Keyboard

choosing commands, 78
executing PWB commands, 78-79
hyperlinks, activating, 759
navigation in Code View, 349
shortcut keys, PWB, 79

Keys
shortcut, PWB, 79
TOOLS.INI syntax, PWB, 135

Keywords
I A options, CL, 489
compressing, HELPMAKE option, 712-713
Help, getting, 762-763
specific keyword, 489

Kilobyte defined, 810

L
L command, Code View, 422, 436--437
:1 command, HELPMAKE, 723
IL option

CL,380-382
Code View, 338
HELPMAKE,713

IL options, CodeView, 342
Label defined, 810
LabellFunction command, Code View, 361-362
Language command, CodeView, 368, 370
Language dialog box, CodeView, 370
Language extensions, enabling, CL options,

550-552
Language Options command, PWB, 75
Large memory model defined, 810
Lastproject switch, PWB, 141,264,285-286
Lastselect function, PWB, 151, 175
Lasttextfunction,PWB, 151, 175-176
ILd option, CL, 527
Ldelete function, PWB, 152, 176-177
Least-recently-used (LRU) algorithm, overlaid

DOS programs, 598
Leaving

CodeView,360
PWB, 171,251

Left function, PWB, 152, 177
.length command, HELPMAKE, 723, 726

846 Index

Less than operator «), Redirect Output command,
CodeView, 340, 475

\Ii formatting code, HELPMAKE, 726
/LI option, LINK, 582
LIB

case sensitivity, 701
combining libraries, 704
command line, 698
commands, 702-705
consistency checks, 700
cross-reference listing, 705-706
error codes, 708
extended dictionaries, suppressing, 701
fields, specifying, 699-705
file compatibility, 697-698
Help, 701
library files, 700, 703
LINK import libraries, 568
object modules

adding, 703
copying, 705
deleting, 704
distinguishing, 698
moving, 705
replacing, 704-705

options, 700--701
output library, 706-707
overview, 697-698
page size, 701-702
prompts, 698--699
response file, 699
syntax, 699-705

LIB environment variable defined, 810
.LIB files defined, 810
LibEntry routine, debugging, 381-382
Libraries

See also LIB
combining, 704
default

defined,806
LINK, 568, 583-584

defined, 810
import. See Import libraries
load, defined, 811
managing, with LIB, 697--698
math operations, CL options, 508-513
MOVE,600
output, 706
quick, LINK, 590--591
removing name, CL options, 553-554
searching for files, LINK, 570, 583-584

Libraries (continued)
selecting, CL options, 527
specifying, LINK, 566-570
standard, defined, 816
static, defined, 816
switches, 310--312

libraries field, LINK, 567-570
Library files

creating, 700, 703
PWB,43-44

Library Manager. See LIB
Library modules. See Object modules
Library routines, overlaid DOS programs, 600
LIBRARY statement

file extension, LINK, 566
module-definition files, 609
segmented files, LINK, 564

LIM EMS defined, 810
.line command, HELPMAKE, 723
Line continuation character

NMAKE, 655, 660, 669
PWB, 115, 117, 136

#line directives, CL
adding to output, 493-494
preprocessor-output files, 540

\line formatting code, HELPMAKE, 727
Line Mode command, PWB, 73, 143
Line numbers, Code View expressions, 400, 418
/LINE option, LINK, 582
Line selection mode, setting in PWB, 241
Line-display mode, setting, CodeView, 339
LINENUMBERS option, LINK, 582
Lines

blank in NMAKE, command line, 660
deleting, PWB, 176-177
inserting, PWB, 177-178
multiple statements, debugging, 322
trailing, display mode, in PWB, 301-302

LINK
case distinction, 585
CL linking options, 527-528
command line, 564-568,570--572
data segments loading, 579
debugging, 577
decorated names, 790
defaults, 573
deffile field, 570
environment variable, 593-594,810
error bits, clearing with EXEHDR, 631, 634--636
exefile field, 566
exit codes, 596

LINK (continued)
far calls, 580-581, 584
Help, 581
interoverlay calls, limiting, 579
invoking, from CL, 486
libraries, 567-570
libraries field, 567-570
map files, 582-583
mapfile field, 567
module-definition files, 600-601, 609
new features, 561-562
objfiles field, 565
optimizing relocation table, 580
options

debugging considerations, 323-325
described,575-576

ordering functions, module-definition files,
626--627

ordering segments, 578, 585
output files, 563-564
overlaid programs, 597-602
overview, 563
packing

code segments, 587-588
data segments, 588-589

prompts, 573-576
PWB menu commands, 75
response files, 573-575
running, 572
searching

for object files, 565
libraries, 583-584

space allocation, 577-578
syntax, 564-572, 575
temporary files, 595

LINK environment variable, 593-594, 810
/link option, CL, 527
LINK Options command, PWB, 75
Linker. See LINK
Linking

debugging considerations, 323-325
defined, 810, 816
function-level, CL options, 524
topics, HELPMAKE, 717-719

Link-time possibilities, CL options, 508
Linsert function, PWB, 108, 152, 177-178
List box, PWB, 81
I. 1st command, HELPMAKE, 723
List files defined, 810
List References command, PWB, 76,145
List Watch command, CodeView, 423

Index 847

List Watch Expressions command, CodeView,
465--466

Listing
assembly files, CL, 501-503, 505
C files, PWB, 94
CodeView, breakpoints, 429
compiler options, 525
cross references, in LIB, 705-706
defined, 811
expression evaluators, Code View, 370
function prototypes, CL option, 552-553
functions, CodeView, 435--436
Help files, 333, 772
machine-code file, CL, 502-505
Microsoft Advisor topics, 765
modules, Code View, 463
project files, PWB, 43--44
references, PWB, 102
source files, CL, 501
watch expressions, CodeView, 365, 465--466

Literal characters
makefiles, NMAKE, 653
searching, PWB, 91

Live expressions, Code View, 357
ILn option, CL, 528
.LNK files defined, 811
Load command, CodeView, 362-364
Load dialog box, CodeView, 363-364
Load libraries

defined, 811
specifying, LINK, 566

Load Other Files option, CodeView, 342
Load switch, PWB, 264, 286
__ loadds keyword, naming conventions, CL

option, 528-529
Loader, replacing, module-definition files, 615
Loading

data, LINK, 579
source files, CodeView, 359
symbolic information, CodeView, 342

LOADONCALL keyword, module-definition files,
621

Load-time relocation table, optimizing, LINK, 580
Lac. See local transport layer
Local command, Code View, 373-374
Local contexts, help files, linking, 720
Local heaps, listing memory objects, CodeView,

383,462
Local memory handles, converting to pointers,

466--467
Local Options command, CodeView, 368-369

848 Index

Local Options dialog box, CodeView, 369
Local symbols

building a database, BSCMAKE, 732, 736
defined, 811

Local variables, listing, CodeView, 354, 369
Local window, Code View

defined, 811
function, 354
opening, 374
overview, 348

LocalLock routine, locking memory handles, 386
Locking

help files, 713
memory handles, 386

Log command, PWB
described, 73
predefined macros, 144

Log Search Complete dialog box, PWB, 88
Loggedsearch,PWB,86,178,241-242,278
Logical segment defined, 811
Logsearch function, PWB, 152, 178
Long filenames, NMAKE, 654
Long integer defined, 811
Long jumps, MOVE programs, 604
longjump function, MOVE programs, 604
Loops

infinite, terminating execution, 387-388
optimizing, CL options, 535-537

Low memory defined, 811
ILr option (CL), 528
.LRF files defined, 811
LRU algorithm, overlaid DOS programs, 598
.LST files defined, 811
I-value defined, 811
ILw option, CL, 527

M
:m command, HELPMAKE, 723
m. context prefix, HELPMAKE, 729
1M option

CL,429-432
Code View, 338, 342
CVPACK,745
LINK, 583
NMAKE,649
PWB,142

IMA option
CL,528
EXEHDR,630

Machine code
defined, 811
translating source code, CL, 502-505

Macro Assembler, NMAKE options macro, 676
Macros

changing key assignment, PWB, 119-121, 135
commands, NMAKE, 675
debugging, programming considerations, 322
defined, 811
defining

CL,492-493
PWB,157-158

environment variables, NMAKE, 678
executing,PWB, 106-108, 170
filename, NMAKE, 672-673
flow control statements, PWB, 112-114
inherited, NMAKE, 679-680
inheriting, NMAKE, 650
key assignments, PWB, 146-150
null, NMAKE, 670
options, NMAKE, 676
overview

NMAKE,667-668
PWB,109

precedence,NMAKE,680
predefined, PWB, 142-146,222-263
recording, PWB, 109-112,203-204,252-253
recursion, NMAKE, 674-675
.SBR files, PWB, 104
shortcut keys, PWB, 79
special, NMAKE, 671-672
substitution, NMAKE, 677-678
TOOLS.lNl syntax, PWB, 134
undefined

NMAKE,670
PWB, 224, 226

user input statements, PWB, 114-117
user-defined, NMAKE, 668-670
using, NMAKE, 671

macros field, NMAKE, 647
Magenta, color value, 273
main function, calling conventions, CL options, 517
.MAKfiles

See also Makefiles
defined, 811

MAKE recursion macro, NMAKE, 674
MAKEDIR recursion macro, NMAKE, 674
Makefiles

association with .PIF files, 67
build process, 56, 58

Makefiles (continued)
building browser database, non-PWB projects,

104-105
contents, 653-654
customizing, 58-61
debugging, 648-649
defined, 646
dependency lines, 655
loading, PWB, 142
non-PWB,61-63
opening, 141
sample, 694-696
sequence of operations, 692-694

MAKEFLAGS recursion macro, NMAKE, 674
Map files

creating
CL,505-507
LINK,582-583

defined, 811
/MAP option, LINK, 562, 583
mapfile field, LINK, 567
.mark command, HELPMAKE, 723
Mark file, PWB menu commands, 73
Mark function, PWB, 86, 152, 178-179
Markfile switch, PWB, 122,264,287
Marks

manipulating, in PWB, 178-179
saving, in PWB, 287

MASM
CL options, 528
debugging assembly language, 412-415
radix, 444-445

Match case, search option, CodeView, 361
Match Case command, PWB, 76
Matches, searching, PWB, 87-90
Matching

characters, regular expression syntax, 779
regular expressions, 307-308, 788

Math coprocessors
defined, 803
displaying registers, Code View, 355-356
dumping register contents, 473-474

Math, floating-point operations, CL options,
508-512

/MAX option, EXEHDR, 630
Maximize command

Code View, 373-374
PWB

described, 77
predefined macros, 145

Maximize function, PWB, 152, 179-180

Index 849

Maximizing windows, PWB, 179-180, 242
MAXV AL keyword, module-definition files,

617-618
MC command, Code View, 422, 437-438
MD command, CodeView, 422, 438-439, 444-445
MDC command, Code View , 439
ME command, CodeView

described,422,440-441
input radix, 444-445
Restart command, and, 436-437

Medium memory model defined, 811
Megabyte defined, 811
Memory

CodeView
comparing,437-438
displaying, 356-357
dumping data, 438-439
entering data, 440-441
filling, 441-442
moving data, 442-443
searching, 443-444
viewing, 455-457

expression evaluator requirements, 403-404
extended

defined, 808
Keepmem switch, PWB, 285
LINK options, 591

format, changing, 356-357
high, defined, 809
increasing capacity, CL, 491
managing

CodeView, 336
DOS, 733-734

models, MOVE library, 599
NMAKE, running, 649
overlaid DOS programs, 597
space allocation

LINK, 577-578
MOVE, 602-603

Memory 1 command, Code View, 373-374
Memory 2 command, Code View, 373-374
Memory allocation, setting in EXEHDR, 630
Memory Compare command, CodeView, 422,

437-438
Memory Dump Code command, Code View, 439
Memory Dump command, Code View, 422,

438-439,444-445
Memory Enter command, CodeView

described, 422,440-441
input radix, 444-445
Restart command, and, 436-437

850 Index

Memory Fill command, CodeView, 422, 436--437,
441-442

Memory handles
converting objects to pointers, 462-464, 466--467
dereferencing, CodeView, 386

Memory models
defined, 811
floating-point options, 513-514
segmenting, CL options, 488-490

Memory Move command, CodeView, 422, 442-443
Memory objects, listing, CodeView, 382-383, 462
Memory operators

CodeView, 405
debugging assembly language, 412-415

Memory Search command, CodeView, 422
Memory Window command, CodeView, 369
Memory Window Options dialog box, CodeView,

369
Memory windows, Code View

described, 327
function, 356-357
opening, 374
overview, 348
saving addresses, 344
specifying, 455-457

Memory1 Window command, CodeView, 368
Memory2 Window command, CodeView, 368
Menu bars .

CodeView, overview, 346
defined, 811
PWB

activating, 180
screen display, 67--68

Menu commands
adding, PWB, 125-127
Browse menu, PWB, 76, 145,200
choosing, PWB, 78-79
Data menu, Code View, 364-368
Edit menu

CodeView, 361-362
PWB,73

executing,PWB,78-79
File menu

CodeView, 358-360
PWB,72,142

Help menu
CodeView, 374
PWB,78,146

Help, getting, 764

Menu commands (continued)
Options menu

CodeView, 368-372
PWB,75

predefined macros, PWB, 142-146
Project menu, PWB, 74,144
Run menu

CodeView, 362-363
PWB,74,144

Search menu, PWB, 73,144
Window menu, PWB, 77,145
Windows menu, CodeView, 373

Menu items
adding, PWB Run menu, 304-306
custom, PWB, 260
Help, getting, 758
HELPMAKE context prefix, 729

Menukey function, PWB, 152, 180
Menus

Browse menu, PWB, 76,145,200
Calls menu, CodeView, 372-373
closing, PWB, 79
Data menu, Code View, 364--368
Edit menu

CodeView,360
PWB, 73,143

File menu
CodeView, 358-360
PWB,72,142

Help menu
CodeView, 374, 757
PWB, 78, 146, 757

menu bars, CodeView, 346
Options menu

CodeView, 368-372
PWB,75

Project menu, PWB, 74, 144
Run menu

CodeView, 362-363
PWB,74,144,260,304--306

screen display, PWB, 67-68
Search menu

CodeView,361-362
PWB,73,144

Window menu, PWB, 77, 145
Windows menu, CodeView, 373

Merge command, PWB, 72
Message classes, Code View options, 429-432
Message function, PWB, 152, 180
Message numbers, HELPMAKE context prefix, 729

!MESSAGE preprocessing directive, NMAKE, 689
Messages, Windows types and class, 384-385
Meta function, PWB, 107-108, 152, 181
Metacharacters, searching, PWB, 91
MF command, CodeView, 422, 436-437, 441-442
Mgrep function, PWB, 87,152, 181-182

. Mgreplist macro, PWB, 224, 226
MI option, EXEHDR, 630
Microsoft Advisor

copying text, 761
error Help, 764
global searches, 766-767
help files

concatenating, 772
listing, 772
managing, 771-773
opening, 765-766
splitting, 773

Help menus, 757
Help, getting, 756-765
hyperlinks, 759-761
index, 762
keyword Help, 762-763
menu items, 757
mouse functions, 757
pasting text, 761
Pwbhelp function, 198
structure, 755

Microsoft Basic Compiler, NMAKE macros,
675-676

Microsoft Browser Database Maintenance Utility.
See BSCMAKE

Microsoft Browser Information Compactor. See
SBRPACK

Microsoft C Compiler, NMAKE macros, 675-676
Microsoft COBOL Compiler, NMAKE macros,

675-676
Microsoft Debugging Information Compactor. See

CVPACK
Microsoft EXE File Header Utility. See EXEHDR
Microsoft File Expunge Utility. See EXP
Microsoft File Removal Utility. See RM
Microsoft File Undelete Utility. See UNDEL
Microsoft FORTRAN Compiler, NMAKE macros,

676
Microsoft Import Library Manager. See IMPLIB
Microsoft Library Manager. See LIB
Microsoft Macro Assembler

CL options, 528
NMAKE macros, 675-676

Index 851

Microsoft Overlaid Virtual Environment. See
MOVE

Microsoft Pascal Compiler, NMAKE macros, 676
Microsoft Program Maintenance Utility. See

NMAKE
Microsoft Programmer's Workbench. See PWB
Microsoft Relocatable Object-Module Format

(OMF), LINK, 563
Microsoft Resource Compiler, NMAKE macros,

676
Microsoft Segmented Executable Linker. See LINK
Microsoft Static Overlay Manager, 600, 604-605
Microsoft Symbolic Debugging Information. See

Symbolic Debugging Information
Microsoft Windows. See Windows
Microsoft Word, rich text format, HELPMAKE,

725-726
!MIN option, EXEHDR, 630
Minimally formatted ASCII, HELPMAKE, 713,

716,728
Minimize command

Code View, 373-374
PWB

described, 77
predefined macros, 145

Minimize function, PWB, 152, 182-183
Minimizing windows in PWB, 243-244
!MINIMUM option, CVPACK, 745
Minus sign (-), NMAKE, 688-689
Mixed mode defined, 812
Mlines function, PWB, 152, 183
MM command, CodeView, 422, 442-443
Mnemonics, assembling, 424-426
Model entry, TOOLS.lNI file

Code View, 327-332
debugging p-code, 389-390
remote debugging, 393-395

Models, memory. See Memory models
Modes, specifying, module-definition files, 617
Module Outline command, PWB

described,76
function, 145

Module statements, module-definition files
adding to executable files, 614
exporting functions, 623
files, specifying, 612-613
heap size, 617-618
importing functions, 624-625
inserting files, 627
inserting text, 613-614
mode, specifying, 617

852 Index

Module statements, module-definition files
(continued)

operating system, specifying, 615-616
ordering functions, 626-627
purpose, 609
replacing loader, 615
reserved words, 611
searching DLLs, 622
segment attributes, 618-620
specifying files, 611-612
stack size, 617
syntax, 610

Module-definition files
defined, 806, 812
LTINK,564,570,598-601
module statements

adding to executable files, 614
exporting functions, 623
files, specifying, 612-613
heap size, 617-618
importing functions, 624-625
inserting files, 627
inserting text, 613-614
mode, specifying, 617
operating system, specifying, 615-616
ordering functions, 626-627
purpose, 609
replacing loader, 615
reserved words, 611
searching DLLs, 622
segment attributes, 618-620
specifying files, 611-612
stack size, 617
syntax, 610

MOVE, 598, 604
new features, 607-608
overview, 608
PWB,43

Modules
configuring, Code View, 363-364
defined,812
listing, CodeView, 383,463
naming, CL option, 528-530
object

adding, in LIB, 703
distinguishing, 698

Monitors
CodeView

black-and-white display, 339
line-display mode, 339
redrawing, 479

Monitors (continued)
Code View (continued)

screen exchange, 341-343, 371, 445-447, 479
specifying, 338-339
suppressing snow, 341

PWB, specifying color, 271-273
remote debugging, 396

Monochrome adapter defined, 812
Mouse

choosing commands, 78
disabling, Code View option, 342
enabling, PWB, 288
executing PWB commands, 78-79
Help, getting, 756-757
hyperlinks, activating, 759

Mouse pointer defined, 812
Mousemode switch, PWB, 264, 288
MOVABLE keyword, module-definition files, 621
MOVE

advantages, 605
dynamic and static overlays, 604-605
library, 599
library routines, 600
overlaid programs, 597-601

compatibility, 603
memory allocation, 602-603
segments, 603-604

Move command
CodeView, 373-374
LIB,705
PWB,77,145

_moveinit routine, 602-603
_movepauseroutine, 602-603
_moveresume routine, 602-603
_movesetcache routine, 602-603
_movesetheap, 602
Movewindow function, PWB, 152, 183-184
Moving

files
PWB,49
RM,748-749

memory blocks, CodeView, 442-443
object modules, 705
windows, PWB, 183-184,244

Mpage function, PWB, 152, 184
Mparafunction, PWB, 152, 184-185
MPC, debugging p-code, 390
IMq option, CL, 528
Mreplace function, PWB, 152, 185,289-290
Mreplaceall function, PWB, 152, 185-186
MS command, CodeView, 443-444

MS32EM87.DLL defined, 812
MS32KRNL.DLL defined, 812
MS-DOS. See DOS
MSDPMI defined, 812
MSDPMI.EXE, Code View, 336
MSDPMI.INI defined, 812
Msearch function, PWB, 87,152,186
Msgdialog switch, PWB, 264, 288
Msgflush switch, PWB, 264, 289
Mtlibs switch, PWB, 310--311
Multimodule programs, PWB

building, 45--46
compiler options, 53-56
creating projects, 42
editing, 47--49, 55
extending projects, 58-61
non-PWB makefiles, 61-63
overview, 41--42
project contents, 43--44
project dependencies, 45, 48
using existing projects, 49

Multiple applications, debugging, 379-382
MULTIPLE keyword, module-definition files, 621
Multitasking operating system defined, 812
Mword function, PWB, 152, 187

N
N command, CodeView, 422, 444--445
:n command, HELPMAKE, 724
n. context prefix, HELPMAKE, 729
IN option

CodeView, 338, 341-343
CVPACK,745
NMAKE,649

In option, BSCMAKE, 737
Name decorations

debugging considerations, 324, 409
overview, 789-790
specifying, 790--791

NAME statement, module-definition files,
609-612,630

Named tags, TOOLS.INI file, PWB, 133-134
Names

decorated
overview, 789-790
specifying, 790--791

removing, CL option, 542-544
restricting length, CL option, 525

Naming
files, SBRPACK, 740
libraries, 706-707
segments, 322, 528-530

Naming conventions
CL options, 518
Pascal naming, CL option, 552
segments, CL option, 528-529

NAN defined, 812

Index 853

Native command, Code View, 368, 372, 391-392
Native entry

points, p-code, removing, 520--521
TOOLS.INl file

CodeView,329-336
remote debugging, 393-395

Native execution model, specifying, CodeView, 333
native_caller pragma, p-code entry points,

removing, 520--521
Navigation

Code View windows, 349
cursor movement commands, PWB, 154-155
Microsoft Advisor, 756-765
QuickSearch, 770
windows, menu commands, PWB, 77

IND option, CL, 528-530
INE option, EXEHDR, 630
Near address defined, 812
__ near keyword, CL

I A options, 489
data allocation, 523-524
enabling, 550

Negated set, regular expression syntax, 779
Nested structures, expanding and contracting, 479
New command, PWB, 72, 77,142-145
New line, starting, PWB, 168
New Project command, PWB, 74
Newfile function, PWB, 152, 187-188
NEWFILES keyword, NAME statement,

module-definition files, 611-612
INEWFILES option, EXEHDR, 630
Newline character

defined, 812
module statement syntax, 610

Newline function, PWB, 152, 188
Newwindow switch, PWB, 264, 289-290
.next command, HELPMAKE, 723
Next command, PWB

described, 72, 76, 78
function, 145
predefined macros, 142-143, 146

854 Index

Next Error command, PWB
described, 74
multimodule builds, 46
predefined macros, 144

Next Match command, PWB
described, 73
predefined macro, 144
searching, 89

Nextmsg function, PWB, 152, 188-189,289-290
Nextsearch function, PWB, 152, 189-190,289-290
INM option, CL, 528-530
NMAKE

building projects, 45, 58-60
command file, 650-651
command line

command file, 650-651
described, 647
macros, defining, 669-670
suppressing, 688

commands
exit codes, 662-664
inline files, 664-667
macros, 675
modifiers, 661-662
syntax, 660

description blocks
dependency lines, 655
dependents, 659-660
overview, 655
targets, 656-658

directives
dot, 687-688
preprocessing, 688, 690-692

exit codes
commands, 662-664
described, 696
ignoring, 649, 687

inference rules
inferred dependents, 685-686
overview, 680-681
precedence, 686-687
predefined, 684-685
search paths, 682
syntax, 681-682
user-defined, 682-684

macros
commands, 675
environment variables, 678
filename, 672-673
inherited, 679-680

NMAKE (continued)
macros (continued)

null, 670
options, 676
overview, 667-668
precedence, 680
recursion, 674-675
special, 671
substitution, 677-678
undefined, 670
user-defined, 668-670
using, 671

makefiles
contents, 653-654
PWB,62-63

new features, 645
options

macros, 676
turning on, 688-689

overview, 646
running, 647
sample makefile, 694-696
sequence of operations, 692-694
TOOLS.INI file, 652

NMAKE Options command, PWB, 75
NMDlPCD.DCC,389-390
NMWOPCD.DCC,389-390
/NO option, EXEHDR, 630
N087 environment variable, CL, 513
/NOD option, LINK, 583-584
NODAT A keyword, module-definition files, 623
/NODEFAULTLIBRARYSEARCH option, LINK,

583-584
/NOE option

LIB, 701
LINK, 584

Noedit function, PWB, 152, 190
/NOEXTDICTIONARY option, LINK, 584
/NOEXTDICTIONARY option, LIB, 701
/NOF option, LINK, 584
/NOFARCALL option, LINK, 584
/NOFARCALLTRANSLA TION option, LINK,

584
/NOG option, LINK, 584
/NOGROUP option, LINK, 584
/NOGROUP ASSOCIATION option, LINK, 584
/NOI option

IMPLIB,747
LIB, 701
LINK, 585

/NOIGNORECASE option
IMPLIB,747
LIB,701
LINK,585

Noise switch, PWB, 264, 290
NOKEEP, inline files, NMAKE, 665
/NOL option

IMPLIB,747
LIB,701
LINK, 585, 594

INOLOGO option
BSCMAKE,737
CL,530
CVPACK,745
EXEHDR,630
HELPMAKE, 715
IMPLIB,747
LIB,701
LINK, 585, 594
NMAKE,649
SBRPACK,740

/NON option, LINK, 585
Non-UNIX regular expression syntax, setting in

PWB, 303-304
NONDISCARDABLE keyword, module-definition

files, 620
NONE keyword, module-definition files, 621
Nonmaskable-interrupt, Code View option, 341-342
Nonmaskable-Interrupt Trapping option,

CodeView, 343
NONSHARED keyword, module-definition files,

622
/NONULLS option, LINK, 585
/NONULLSDOSSEG option, LINK, 585
Non-UNIX predefined expressions, syntax, 780
Non-UNIX regular expressions

matching method, 788
syntax, 780, 786

/NOPACKC option, LINK, 562, 586
/NOPACKCODE option, LINK, 562, 586
INOPACKF option, LINK, 562, 586
/NOPACKFUNCTIONS option, LINK, 562, 586
/NQ option, CL, 528-530
INT option, CL, 528-530
NUL, CL options, appending to, 497-498
Null character defined, 812
Null macros, NMAKE, 670
Null pointer defined, 812
Null strings, user-defined macros, NMAKE, 668

Number sign (#)
custom builds, 59
HELPMAKE syntax, 712-713
inference rules, NMAKE, 681
makefile comments, NMAKE, 654
substituting for equal sign, CL, 492

Index 855

Tab Set command, CodeView, 423, 470
TOOLS.INI file syntax, 652
user-defined macros, NMAKE, 669

Numbers, predefined expression syntax, 778, 785
Numeric arguments, LINK, 576
Numeric constants, CodeView expression

evaluators, 407-408
Numeric switches, PWB, 122
INV option, CL, 528-530

o
o command, CodeView, 422, 445-448
10 option

CL, 530-531, 539
HELPMAKE, 712, 714

10 option, BSCMAKE, 733, 737
03 command, CodeView, 445-447
OA command, CodeView, 347,445-447
lOa option, CL, 530-532
OB command, CodeView, 445-447
lOb option, CL, 530, 532
.OBI files defined, 812
Object files

defined,812
object modules, distinguishing, 698
output files, LINK, 563-564
overview, 563
PWB,43
renaming, CL, 498
specifying, LINK, 565

Object modules
adding, 703
copying, 705
defined, 698, 812
deleting, 704
format defined, 563, 812
moving, 705
replacing, 704-705

objfiles field, LINK, 565
OC command, CodeView, 445-447
10c option, CL, 530, 533
10d option, CL, 324, 530, 533
10e option, CL, 531, 533

856 Index

OF command, CodeView, 445-447
IOf option, CL, 531, 533-534
IOf- option, CL, 390, 531
Offset defined, 812
OFFSET operator, MASM, 414
109 option, CL, 531, 533
OH command, CodeView, 445-447
10i option, CL, 531, 534-535
OL command, CodeView, 445-447
10L option, LINK, 586
101 option, CL, 531, 535-536
OLD statement, module-definition files, 609, 622
10LDOVERLA Y option, LINK, 562, 586
ON command, CodeView, 445-447
IOn option, CL, 531
100 option, CL, 531, 536-537
100- option, CL, 531, 536-537
lOp option, CL, 531, 537-538
Opcodes, frame sorting, CL option, 539
Open command, PWB, 72
Open Custom command, PWB, 76
Open Module command, CodeView, 358-359
Open Module dialog box, CodeView, 359
Open Project command, PWB, 74
Open Source command, CodeView, 358
Open Source File dialog box, CodeView, 358
Openfile function, PWB, 152, 191,289-290
Opening

files, PWB, 72, 141, 191,289-290
Help files

Microsoft Advisor, 765-766
PWB,213-214
QuickHelp,769

projects
automatically, 285-286
PWB,49-50,195-196

source files, CodeView, 358
source windows, CodeView, 350
windows

CodeView,373
PWB,201,220,245-246

Operating system
prompt, DOS Shell command, 359
specifying in module-definition files, 615-616
tags, TOOLS.INI file, PWB, 132

Operations line, extending, 702
Operations, regular expressions, PWB, 94
Operators

flow control, PWB, 112-114
functions, using c++ expressions, 412
regular expressions, PWB, 91-93, 95

optimize pragma
p-code optimization, 538
subexpression optimization, 533
unsafe optimizations, CL option, 532

Optimizing
assuming no aliasing, CL option, 531-532
common expressions, CL option, 533
compiler options, PWB, 52-56
debugging considerations, 324
entry codes, CL options, 515
execution time, CL option, 539
exit codes, CL options, 515
exit sequence, CL options, 538
far calls, LINK, 580-581, 584, 587-588
file size, CL option, 538
frame sorting, CL option, 539
inline expansion control, CL option, 532
intrinsic function generation, CL option, 534-535
load-time relocation table, LINK, 580
loops, CL option, 537
maximum optimization, CL, 539
p-code, CL option, 533, 538
post-code generation, CL option, 536-537
register allocation, CL option, 533
space, SBRPACK, 739-740
turning off, CL, 533

Option button, PWB, 81
Options

BSCMAKE, 732, 736-737
CL,323-324,488-559
CodeView, 338-344, 396, 445-447
compiler

changing in PWB, 53-56
debugging considerations, 323-324

CVPACK,744
debug, finding symbols, PWB, 101
EXP,750
HELPMAKE

decoding, 713-714
encoding, 712-713

IMPLIB,747
LIB, 701
LINK

debugging considerations, 323-325
described, 575-576
new features, 561-562

NMAKE
macros, 676
turning on, 688-689

PWB,141-142
RM,748

Options (continued)
SBRPACK,740
UNDEL,749

Options command, CodeView, 422, 445-447
options field

BSCMAKE, 735
NMAKE,647
SBRPACK,740

Options menu
CodeView, 368-372
PWB,75

10q option, CL, 531, 538
lOr option, CL, 531,538
Ordering segments, debugging considerations, 322
OS command, CodeView, 445-447
lOs option, CL, 531, 538
OS2INIT.CMD, PWB configuration, 137
OS21ibs switch, PWB, 310-311
lOt option, CL, 531, 539
Output

redirecting, CodeView, 476-477
viewing, CodeView, 374

Output files
alternate, setting, 495
LINK,563-566
preprocessing, creating, 540

Output libraries, LIB, 706-707
Output screen defined, 813
OV command, CodeView, 445-447
10Voption

CL, debugging p-code, 390
LINK, 562, 587

10v option, CL, 531, 539
10v- option, CL, 531, 539
Overlaid programs

compatibility, MOVE, 603
creating

LINK, 598-601
module-definition files, 619-620
MOVE,598-601

interoverlay calls, limiting with LINK, 579
linking, 601-602
memory allocation, MOVE, 602-603
module-definition files, 607-608
overlays, 604-605
overview, 597
segments, 603-604
space restrictions, 603
specifying, LINK, 570

Overlaid Virtual Environment. See MOVE

Index 857

Overlay caches, overlaid DOS programs, 598,
602-603

Overlay heaps, overlaid DOS programs, 598, 602
OVERLAY keyword, module-definition files,

619-620
Overlay manager, overlaid DOS programs, 603
Overlay number, LINK, 564
10VERLA YINTERRUPT option, LINK, 562, 587
Overlays

compiling, 599-600
defined, 813
DOS programs, linking, 566
module-definition files, 607-608
specifying, MOVE, 604

Overloaded functions, using C++ expressions, 411
OVL keyword, module-definition files, 619-620
lOw option, CL, 530-532
lOx option, CL, 531, 539
10z option, CL, 531, 537-538

p
P command, CodeView, 422, 449, 452-453
:p command, HELPMAKE, 723
\p formatting attribute, HELPMAKE, 719, 721
IP option

CL,540
CodeView, 396
CVPACK,745
EXEHDR,630
LIB,701-702
NMAKE,649

P register, Code View syntax, 419, 450
pack pragma data structure, 554-555
Packaged functions

creating, CL options, 524
defined, 813
ordering, module-definition files, 626-627
overlaid DOS programs, 599

Packaged INCLUDE, ordering, module-definition
files, 627

IPACKC option, LINK, 587-588
IPACKCODE option, LINK, 587-588
IPACKD option, LINK, 588-589
IPACKDATA option, LINK, 588-589
IPACKF option, LINK, 562, 589
IPACKFUNCTIONS option, LINK, 562, 589
Packing

files
CVPACK,743-744
SBRPACK,739-740

858 Index

Packing (continued)
preventing, BSCMAKE, 732
structure members, CL options, 554-555

Page size, specifying, with LIB, 701-702
/PAGESIZE option, LIB, 701-702
\par formatting code, HELPMAKE, 727
Paragraphs, setting number, LINK, 577-578
Parameters defined, 813
Parent process defined, 813
Parentheses ()

balancing, in PWB, 192-193
searching, PWB, 91, 93

.P AS files defined, 813
PASCAL command macro, NMAKE, 676
Pascal Compiler, NMAKE macros, 676
__ pascal keyword, CL

calling conventions, 516-518
enabling, 550

Paste command
CodeView,360
PWB

described, 73
predefined macros, 143

.paste command, HELPMAKE, 723
Paste function, PWB

described, 152, 191-192
executing, 108
replacing text, 94

Pasting text
Microsoft Advisor, 761
QuickHelp,771

PATH environment variable
CodeView, installing, 327
starting PWB, 67

Paths
Curfile predefined macro, PWB, 224
defined, 813
predefined expression syntax, 778, 780, 786
search, NMAKE, 660, 682
specifying, 88,496

Patterns. See Regular expressions
/PAU option, LINK, 589-590
Pause command, CodeView, 423, 470
/PAUSE option, LINK, 589-590
Pausing, Trace Speed command, CodeView, 369
Pbal function, PWB, 152, 192-193
.PCH files defined, 813
P-code

debugging, 372, 389-393
entry tables, specifying, 521
native entry points, removing, 520-521

P-code (continued)
optimizing, CL option, 538
quoting, CL option, 533
registers, displaying, 355

Percent sign (%)
file specifier, NMAKE, 653
Filename-Parts Syntax, PWB, 265-266

Period (.)
Current Location command, CodeView, 423, 471
dot directives, NMAKE, 687
inference rules, NMAKE, 681
line number specifier, CodeView, 365
LINK syntax, 565
match character, regular expression syntax, 779
wildcard character, regular expression syntax, 778,

781
/PF option, PWB, 141
PFLAGS options macro, NMAKE, 676
Physical segments defined, 813
PID defined, 813
PIF files, association with Makefiles, 67
/PL option, PWB, 141
\plain formatting code, HELPMAKE, 727
Playback macro, PWB, 224
Plines function, PWB, 152, 193
Plus sign (+)

Add command, LIB, 703-704
concatenating help files, 772
LINK syntax, 565, 567
options, NMAKE, 688-689
searching, PWB, 92

/PM option, LINK, 562, 590, 630
/PMTYPE option

EXEHDR,630
LINK, 562, 590

/PN option, PWB, 141
Pointers

checking, CL option, 556-557
converting global memory handles, 463-464
converting local memory handles, 466-467
defined, 813
expanding and contracting, CodeView, 367-368,

478-479
.popup command, HELPMAKE, 723
Pop-up menu defined, 813
Port defined, 813
Port Input command, Code View, 422, 434-435
Port Output command, CodeView, 422, 448
port: option, CodeView, 396
Postfix operator, CodeView precedence, 406

Pound sign (#)
custom builds, 59
HELPMAKE syntax, 712-713
inference rules, NMAKE, 681
makefile comments, NMAKE, 654
Tab Set command, CodeView, 423, 470
TOOLS.INI file syntax, 652
user-defined macros, NMAKE, 669

Power, regular expression syntax, 780, 787
/PP option, PWB, 141
Ppage function, PWB, 152, 194
Ppara function, PWB, 152, 194
PQ register, CodeView, 419, 450
Pragmas

alloctext, 599, 626
check_pointer, 556-557
check_stack, 518-520
native_caller, 520-521
optimize

subexpression optimization, 538
unsafe optimizations, 532

pack, 554-555
Precedence

defined, 813
inference rules, NMAKE, 686-687
macros, NMAKE, 680

.PRECIOUS dot directive, NMAKE, 687
Predefined expressions syntax

non-UNIX, 780
UNIX, 778, 785

Predefined inference rules, NMAKE, 684-685
Predefined macros, PWB, 142-150,222-224,

227-263
Predefined names, removing, CL option, 542-544
Prefixes

context, HELPMAKE, 729
program segments, 323

PRELOAD keyword, module-definition files, 621
Preprocessing

copying output, CL, 493-494
preserving comments, CL, 491

Preprocessing directives, NMAKE, 688-690-692
.previous command, HELPMAKE, 723
Previous command, PWB

described, 76
function, 145

Previous Error command, PWB
described, 74
predefined macros, 144

Previous match command, PWB
described, 73
predefined macros, 144
searching, 89

Print command
CodeView,358-359
PWB,72

Print dialog box, CodeView, 359
Print function, PWB, 152, 194-195
Print Results command, PWB, 77
Printcmd switch, PWB, 264-266, 291

Index 859

Printfile entry, TOOLS.INI file, CodeView, 330,
334

Printing
canceling, _pwbcancelprint macro, 230
files

CodeView,359
PWB,194-195

specifying program, PWB, 291
PRIVATELIB keyword, LIBRARY statement,

module-definition files, 612-613
Privileged mode defined, 813
PRN, CL options, appending to, 497-498
Procedure call defined, 813
Procedure defined, 813
Process defined, 813
Process Descriptor Block, command field,

CodeView, 382
Process identification number defined, 813
Program Arguments command, PWB, 74
Program Item, adding, PWB, 66
Program segment prefixes, debugging

considerations, 323
Program Step command, CodeView

controlling execution, 386
described, 422, 449, 452

Program step defined, 814
Programmer's Workbench. See PWB
Programs

building, 56, 58
debugging, preparing for, 321-325
overlaid

creating, 619-620
LINK, 570, 579, 597-601
module-definition files, 607-608
MOVE, 597-605

PWB
building, 45-46
debugging, 29
editing, 47-49,55

860 Index

Programs (continued)
PWB (continued)

multimodule, 41-42
non-PWB makefiles, 61-63
project dependencies, 45, 48
running, 46-47

Project dependencies, PWB, 45
Project function, PWB, 152, 195-196
Project menu, PWB

described,74
predefined macros, 144

Project Templates command, PWB, 75
Projects

opening automatically, 285-286
PWB

adding files, 44, 48, 50
closing, 234
contents, 43-44
creating, 42
defined,41
deleting files, 48
dependencies, 45,48
editing, 47-49
extending, 58-61
makefiles, 56, 58
menu commands, 74
moving files, 49
opening, 195-196
status files, 138-139

using, 49
Prompt function, PWB, 116-117, 152, 196-197
Prompts

Askexit switch, PWB, 267
Askrtn switch, PWB, 267
LIB, 698-699
LINK, 573-576

Protected mode
defined, 803, 814
module-definition files, specifying, 617
optimizing entry/exit codes, 515

PROTMODE statement, module-definition files,
609,617

Psearch function, PWB, 87,107,153,197
Pseudofiles

creating, in PWB, 187-188,245
Saveall function, PWB, 209

Pseudotargets, NMAKE, 658
PTR operator, debugging assembly language,

414-415

Public names
overlaid DOS programs, 604
restricting length, CL option, 525

Public symbols, searching, CodeView, 406-407
PWB

Browse menu
described,76
functions, 145,200

browser database. See Browser database
command line, 141-142
commands

choosing, 78-79
cursor movement, 154-155
executing, 78-82, 142, 170,219

configuration
autoloading, 131
environment variables, 137
overview, 130-131

customizing colors, 124-125
Edit menu

described, 73
predefined macros, 143

File menu
described, 72
predefined macros, 142

files
adding, 48, 50
deleting, 48
estimating size, 103-1 04
moving ,49

functions
Assign, 121-124
Backtab,127-128
described, 150-221
executing, 106-108
modifying, 181
Prompt, 116-117
Set Switch, 123
Tab, 127-128

Help menu
described, 78, 757
predefined macros, 146

Help
copying and pasting, 761, 771
getting, 756-765
global searches, 766-767
keywords, 762
managing files, 772-773
opening files, 765-766
structure, 755

HELPMAKE restrictions, 709

PWB (continued)
key assignments, 146-150
macros

changing key assignments, 119-121, 135
executing, 106-108, 170
flow control statements, 112-114
overview, 109
recording, 109-112
user input statements, 114-117

makefiles
loading, 142
opening, 141

multimodule programs, 45, 49
Options menu, 75
options, 141-142
predefined macros, 142-146,222-224,227-263
programs

adding files, 44, 50
build process, 56-58
creating projects, 42
described, 45-46, 53-56
editing, 47-49, 55
extending projects, 58-61
non-PWB makefiles, 61-63
overview, 41-42
project contents, 43-44
project dependencies, 48
running, 46-47

project file list, 43
Project menu, 74,144
prompt

Askexit switch, 267
Askrtn switch, 267

quitting, 47, 171,251
regular expressions syntax, 303-304
Run menu

adding commands, 125-127
described,74
predefined macros, 144

screen display, 67-68
Search menu

described, 73
predefined macros, 144

searching
find command, 87-90
mark function, 86
overview, 85-86
regular expressions, 90-93

single-module programs, debugging, 29

PWB (continued)
source browser

browser database, 61
building database, 101
call tree, showing, 99-10 1
CL options, 507-508
combined database, 106
creating database, 97-98
described, 200
estimating file size, 103-104

Index 861

finding symbols, 98,101,103
non-PWB project database, 104-106

starting, 65-67
status files, 138-139

changing, 122, 124
Filename-Parts syntax, 265-266
Help, 313-315
library, 310-312
source browser, 309-310

syntax, 141-142,265-266
tabs, 127-130, 132-133
text, replacing, 93-96
TOOLS.lNI file, 113, 115, 132-136
undefined macros, 224, 226
View menu, 770
Window menu

described, 77
predefined macros, 145

PWB Windows command, PWB, 77
_pwbarrange predefined macro, 222, 227-228
_pwbboxmode predefined macro, 222, 228
_pwbbuild predefined macro, 222, 229
PWBC library switches, 310-312
_pwbcancelbuild predefined macro, 222, 229-230
_pwbcancelprint predefined macro, 222, 230
_pwbcancelsearch predefined macro, 222, 230-231
_pwbcascade predefined macro, 222, 231-232
_pwbclear predefined macro, 222, 232
_pwbclose predefined macro, 222
_pwbcloseall predefined macro, 222, 232-233
_pwbclosefile predefined macro, 222, 233
_pwbcloseproject predefined macro, 222, 233-234
_pwbcompile predefined macro, 222, 234
_pwbfile predefined macro, 222
_pwbgotomatch predefined macro, 222, 235
Pwbhelp function, 153, 198
_pwbhelp_again predefined macro, 222, 236
_pwbhelp_back predefined macro, 222, 237
_pwbhelp30ntents predefined macro, 222,

237-238

862 Index

_pwbhelp30ntext predefined macro, 222, 238
_pwbhelp~eneral predefined macro, 222, 239
_pwbhelp_index predefined macro, 222, 239-240
_pwbhelpnl predefined macro, 222
Pwbhelpnext function, 153, 198-199
_pwbhelpnl predefined macro, 235
Pwbhelpsearch function, 153, 199
_pwbhelp_searchres predefined macro, 222, 240
_pwblinemode predefined macro, 222, 241
_pwblogsearch predefined macro, 222, 241-242
_pwbmaximize predefined macro, 223, 242
_pwbminimize predefined macro, 223, 243-244
_pwbmove predefined macro, 223, 244
_pwbnewfile predefined macro, 223, 245
_pwbnewwindow predefined macro, 223, 245-246
_pwbnextfile predefined macro, 223, 246
_pwbnextlogmatch predefined macro, 223, 247
_pwbnextmatch predefined macro, 223, 247-248
_pwbnextmsg predefined macro, 223, 248
_pwbpreviouslogmatch predefined macro, 223,

248-249
_pwbpreviousmatch predefined macro, 223,

249-250
_pwbprevmsg predefined macro, 223, 250
_pwbprevwindow predefined macro, 223, 250
_pwbquit predefined macro, 223, 251
_pwbrebuild predefined macro, 223, 252
_pwbrecord predefined macro, 223, 252-253
_pwbredo predefined macro, 223, 253
_pwbrepeat predefined macro, 223, 253-254
_pwbresize predefined macro, 223, 254-255
_pwbrestore predefined macro, 223, 255
PWBRMAKE.EXE,731-734
Pwbrowselstdeffunction, 153,200
Pwbrowselstreffunction, 153,200
Pwbrowsecalltree function, 153,200
Pwbrowseclhier function, 153, 200
Pwbrowsecltree function, 153, 200
Pwbrowsefuhier function, 153, 200
Pwbrowsegotodef function, 153,200
Pwbrowsegotoreffunction, 153,200
Pwbrowselistreffunction, 153,200
Pwbrowsenext function, 153,200
Pwbrowseoutline function, 153,200
Pwbrowsepop function, 153,200
Pwbrowseprev function, 153,200
Pwbrowseviewrel function, 153,200
Pwbrowsewhreffunction, 153,200
_pwbsaveall predefined macro, 223, 255-256
_pwbsavefile predefined macro, 223, 256
_pwbsetmsg predefined macro, 223, 257

_pwbshell predefined macro, 223, 257-258
_pwbstreammode predefined macro, 223, 258
_pwbtile predefined macro, 223, 258-259
_pwbundo predefined macro, 223, 259
_pwbusem predefined macro, 223, 260
PWBUTILS, PWB Options menu, 75
_pwbviewbuildresults predefined macro, 223, 261
_pwbviewsearchresults predefined macro, 223,

261-262
Pwbwindow function, 153,201
_pwbwindow predefined macro, 223, 262-263
Pword function, PWB, 153,201

Q
Q command, CodeView, 423, 449
/Q option

EXP, 750
LINK,590-591
NMAKE, 649-650

/qc option, CL, 540
QH command, MS-DOS, 768-769
.QLB files defined, 814
Qreplace function, PWB, 153,202
Question mark (?)

call tree, PWB, 100
decorated names, C++, 409
Display Expression command, Code View, 424,

477--478
filename macros, NMAKE, 672-673
Quick Watch command, CodeView, 424, 478--479
SBRPACK syntax, 740
wildcard character

HELPMAKE syntax, 711
NMAKE, 653-654
regular expression syntax, 780, 786
UNDEL,749

Quick Compile option, CL, 540
Quick Watch command, CodeView, 364, 367-368,

424,478--479
Quick Watch dialog box, CodeView

described, 367-368
displaying, 478--479
exploring watch expressions, 327

QuickHelp
BSCMAKE option, 736
CL option, 525
commands, 770
copying text, 771
CVPACK option, 745
EXEHDR option, 630

QuickHelp (continued)
EXP option, 750
format

defining topics, 716-717
described, HELPMAKE, 716
dot commands, 722-724
formatting attributes, 718-719, 721
global contexts, 719-720
linking topics, 717-719
local contexts, 720

Help files, opening and closing, 769
IHELP option, 768
HELPMAKE option, 715
IMPLIB option, 747
LIB option, 701
LINK option, 581
NMAKE option, 648
pasting text, 771
QH command, MS-DOS, 768-769
SBRPACK option, 740
specifying format, HELPMAKE, 713
topics

displaying, 769
navigation, 770
selecting, 763

UNDEL option, 749
IQUICKLIBRARY option, LINK, 590-591
QuickWin CL option, 528
Quit command, Code View, 423, 449
Quitting

CodeView, 360
PWB, 47,171,251

Quotation marks (")
character strings, 805
CodeView syntax, 340
LINK syntax, 565
long filenames, NMAKE, 654
module statement syntax, 610-611
Pause command, CodeView, 423, 470

Quote function, PWB, 153,203
Quoted string, predefined expression syntax, 778,
780,786

R
R command, CodeView, 423
:r command, HELPMAKE, 724
IR option

CodeView, 396
EXEHDR,631
EXP, 750

IR option (continued)
NMAKE,650
PWB,142
RM,748

Ir option
BSCMAKE, 737
CL,562

Radix

Index 863

changing in Code View , 444--445
CodeView expression evaluators, 407--408
defined, 814

Radix command, CodeView, 422, 444--445
RAM defined, 814
Random access memory defined, 814
rate option, CodeView, 396
.raw command, HELPMAKE, 724
.RC files defined, 814
RC.HLP file, 771
RCVCOM option, CodeView, 396
RCVCOM.EXE file, remote debugging, 395
RCVWCOM option, CodeView, 396
Read Only command, PWB, 73
READ ONLY keyword, module-definition files, 621
Readonly switch, PWB, 122,264-266,291-292
READWRITE keyword, module-definition files,

621
Real mode

defined, 814
specifying, module-definition files, 617

REALM ODE statement, module-definition files,
609,617

Realtabs switch, PWB, 127-128,264,292
Rebuild All command, PWB, 144
Rebuilding, _pwbrebuild macro, 252
Record function, PWB, 153,203-204
Record On command, PWB

described, 73
predefined macros, 143

Record Results, PWB, 77
Recording macros, PWB, 109-112, 203-204,

252-253
Recursion macros, NMAKE, 674--675
Red, color value, 273
Redirect Input command, CodeView, 340, 475, 477
Redirect Output command, CodeView, 340, 424,

476--477
Redirection defined, 814
Redo command, PWB, 73, 143
Redraw command, CodeView, 424, 479
.ref command, HELPMAKE, 724
Refresh function, PWB, 153,204

864 Index

Register command, CodeView, 373-374, 391-392,
423

Register indirection, debugging assembly
language, 414

Register names, CodeView recognition, 400-401,
419

Register window
CodeView

described, 327
function, 354-355
opening, 374
overview, 348
debugging p-code, 391-392

defined, 814
Registers

allocating, CL options, 533
calling conventions, CL options, 520
changing values, CodeView, 450-452
CodeView expressions, 400-401, 419
defined, 814
display radix, 444-445
displaying value, Code View, 354-355
flags, defined, 809
math coprocessors, dumping registers, 473-474

Regular expressions
defined, 814
finding, Code View, 361
global searches, in Microsoft Advisor, 766
matching

non-UNIX, 788
PWB,307-308

predefined. See Predefined expressions
replacing text, PWB, 93-96
searching for, CodeView, 472-473
searching, PWB, 85-86, 90-93
syntax

Code View, 779
non-UNIX, 780, 786
PWB,92
UNIX, 777-781, 785

tagged. See Tagged expressions
Relocatable defined, 814
Relocatable files, LINK, 563
Relocatable Object-Module Format, LINK, 563
Relocation table, optimizing, LINK, 580
Relocations, EXEHDR, 639
Remote debugging

bit rate, 396
options, 396
overview, 393
requirements, 393-395

Remote debugging (continued)
starting a session, 397-398
syntax, 396

Remove Custom Project Templates command,
PWB,75

Removing
breakpoints, CodeView, 367
invariant code, CL option, 535-536
library name, CL option, 553-554
p-code entry points, 520-521
predefined names, CL option, 542-544
status bar, CodeView, 347

Renaming files
executable, CL, 499
object, CL, 498

Repeat command, PWB, 73,143
Repeat function, PWB, 153, 205
Repeat Last Find command, CodeView, 361-362
Repeat, regular expression syntax, 778-787
Repeating function actions, in PWB, 281-282
Replace command

LIB, 704-705
PWB,73

Replace function, PWB, 153,205-207
Replacing

object modules, 704-705
text

Mreplace function, PWB, 185
Mreplaceall function, PWB, 185-186
Qrep1ace function, PWB, 202
Replace function, PWB, 205-207

.RES files defined, 814
/RESERERROR option, EXEHDR, 631
Reserved words, module statements, 611
Resetting

CodeView command, 436-437
PWB,141

Resident option, CodeView, 396
Resize function, PWB, 153
Resizing windows, PWB, 254-255
Resource Compiler, NMAKE macros, 676
Resource-compiler source file, PWB, 43
Response files

BSCMAKE,738
defined, 814
LIB, 699
LINK, 573-575

Restart command, CodeView, 362, 422, 436-437
Restart macro, PWB, 224, 227
Restcur function, PWB, 153,208

Restore command
CodeView,373-374
PWB

described, 77
predefined macros, 145

Restorelayout switch, PWB, 264, 293
Restoring

files, UNDEL, 749
status bar, CodeView, 347
windows, PWB, 255-256

Return codes
CVPACK,745
defined, 807
LINK, 596
NMAKE,696

from commands, 662-663
ignoring, 649, 687

SBRPACK,741
Windows applications, optimizing, 515
Windows functions

customizing, 515
generating, 522-523

Return instructions, overlaid DOS programs,
603-604

RFLAGS options macro, NMAKE, 676
Rich text format, HELPMAKE

described, 716, 725-726
encoding, 727
formatting codes, 726
specifying, 713

Right function, PWB, 153,208
RM

command line, 748-749
options, 748
overview, 743, 747-748
syntax, 748-749

Rmargin switch, PWB, 264, 293-294
Root defined, 815
Routines

defined, 815
listing in CodeView, 372-373

.RSP files defined, 815
RTF. See Rich text format
Rules, inference, NMAKE

commands, 660
inferred dependents, 685-686
precedence, 686-687
search paths, 682
syntax, 680-682
user-defined, 682-685

Run DOS Command, PWB, 74

Run menu
CodeView,362-363
PWB

Index 865

adding menu items, 125, 127,304-306
custom items, 260
described, 74
predefined macros, 144

Run OS/2 Command command, PWB, 74
Running

LINK, 572
NMAKE,647
programs, PWB, 46-47

Run-time error defined, 815
Run-time startup code, CL linking options, 528

s
IS option

BSCMAKE,737
Code View, 338, 341, 343
EXEHDR,631
NMAKE,650

Sample programs
ANNUITY I.e, 29
COUNT, 41-63,97-103

Save All command, PWB, 72, 142-143
Save As command, PWB, 72
Save command, PWB, 72,142-143
Save Custom Project Template command, PWB, 75
Saveall function, PWB, 153, 209
Savecur function, PWB, 153,209
Savescreen switch, PWB, 264, 294
Saving

Code View environment, 360
files

Autosave switch, PWB, 269
PWB,72,209,255-256,300

macros, PWB, 112
marks, PWB, 287

.SBR files
building browser database, 97-98, 105
defined, 815
estimating size, 103-104

s brfiles field
BSCMAKE,735
SBRPACK,740

SBRPACK
command line, 740-741
exit codes, 741
options, 740
overview, 731, 739-740

866 Index

SBRPACK (continued;
suppressing, CL options, 507-508
syntax, 740
turning off, CL option, 555-556

Scope
defined, 815
specifying, searching for symbols, 467-468

Scope operator (::), Code View precedence, 406
Screen exchange

CodeView options, 341-343, 371, 445-447
defined, 815

Screen Exchange command, CodeView, 424, 479
Screen Swap command, CodeView, 368, 371
Screen, PWB display, 67-68
Scroll bars

CodeView
options, 445-447
toggling options, 370

PWB
screen display, 68
window styles, 221, 275

Scrolling
defined, 815
Mlines function, PWB, 183
Plines function, 193
switches, PWB, 284
Vscroll switch, PWB, 306

Sde1ete function, PWB, 153,209-210
Search command

CodeView, 423, 472-473
QuickHelp, 769

Search logging, PWB, 178,241-242
Search Memory command, Code View, 443-444
Search menu

CodeView,361-362
PWB

described, 73
predefined macros, 144

Search paths
inference rules, NMAKE, 682
specifying, NMAKE, 660

Search Results command, PWB
described, 77-78
predefined macros, 146

Search Results dialog box, PWB, 89
Search Results window, PWB

clearing, 162
described, 261-262
Mgrep function, 181-182
Nextsearch function, 189-190

Searchall function, PWB, 153,210

Searchdialog switch, PWB, 264, 294
Searchflush switch, PWB, 264, 295
Searching

backwards, PWB, 186
canceling, _pwbcascade macro, 161,230-231
CodeView, in, 361-362
directories, CL option, 525-526
Find command, PWB, 87-90
global, Microsoft Advisor, 766-767
Help system, in PWB, 199
highlighting search strings, PWB, 210
library files, LINK, 570, 583-584
logging searches in PWB, 178, 241-242, 278
mark function, PWB, 86
memory, CodeView, 443-444
Mgrep function, PWB, 181-182
Mgreplist macro, PWB, 226
module-definition files, LINK, 571
object files, LINK, 565
overview, PWB, 85-86
regular expressions

CodeView,472-473
PWB,90-93

symbol definitions, PWB, 98-103
symbols, CodeView, 406-407, 421-422, 467-468
text, PWB, 197

Searchwrap switch, PWB, 264, 295-296
Section tags, TOOLS.INI file, PWB, 132
/SEG option, LINK, 591-592
Segment tables, EXEHDR output, 635-638
Segmented executable files

defined, 815
EXEHDR output, 634-636
format, 631
heap allocation, setting in EXEHDR, 630
information, providing in EXEHDR, 631

Segmented Executable Linker. See LINK
Segmented files

adding to, module-definition files, 614
creating, LINK, 564
packing code segments, LINK, 587-588

Segments
defined, 815
defining attributes, module-definition files,

618-620
memory models, CL options, 488-490
naming, CL option, 528-530
ordering

debugging considerations, 322
LINK, 578, 585

overlaid DOS programs, 598, 603-604

Segments (continued)
packing code, LINK, 587-588
setting number, LINK, 591-592

ISEGMENTS option, LINK, 591-592
SEGMENTS statement

module-definition files, 609, 619-620
overlaid DOS programs, 600-601
overlay number, LINK, 564, 598

Selcur function, PWB, 153,211
Select function, PWB, 154,211
Select To Anchor command, PWB, 73,143
Selected text command, CodeView, 361
Selecting in PWB

selection mode, 211-212, 241, 258, 278
text, 211
windows, 212

Selection modes, PWB
changing, 211-212,241,258,278
setting, 73

Selmode function, PWB, 154,211-212
Selwindow function, PWB, 154,212
Semaphores defined, 815
Semicolon (;)

command separator, CodeView, 340, 352-353
comments, PWB, 136
LINK syntax, 565, 571
prompt defaults, LIB, 699
terminating commands, LIB, 698
TOOLS.INI file syntax, 329-330

Semicolon (;), TOOLS.INI file syntax, 652
Separator, custom builds in PWB, 59
Sequence, NMAKE operations, 692-694
Sessions

defined, 806
remote debugging, starting, 397-398

Set Anchor command, PWB
described,73
predefined macros, 143

Set Breakpoint command, CodeView
described, 364-366
line numbers, 400

Set Breakpoint dialog box, CodeView, 365-366
SET command, environment variables in NMAKE,

678
Set Line-Display Mode option, Code View, 339
Set Mark File command, PWB, 73
Set Project Templates command, PWB, 75
Set Record command, PWB, 73
Set Runtime Arguments command, CodeView,

362-363
Set Screen Swapping option, CodeView, 343

Index 867

Set Screen-Exchange Method option, CodeView,
341,445-447

Set Switch function, PWB, changing settings, 123
SETARGV.OBJ file, adding, PWB, 50
Setfile function, PWB, 154,212-213,289-290
Sethelp function, PWB, 154,213-214,765-766
setjmp function, MOVE programs, 604
SETUP program

CodeView, installing, 327-329
Help files, installing, 771

Setwindow function, PWB, 154,214
SHARED keyword, module-definition files, 622
Shell Escape command, CodeView, 423, 468-469
Shell function, PWB, 154,214-215
Shells

defined,815
DOS Shell command, 359

Shortcut keys
CodeView, 346-347
PWB,79

Shortnames switch, PWB, 264, 296
Showing call tree, PWB, 99-101
SI register, Code View syntax, 419, 450
.SILENT dot directive, NMAKE, 687-688
SINGLE keyword, module-definition files, 621
Single precision defined, 815
Sinsert function, PWB, 154,215-216
Size

heaps, specifying, 617-618
stacks, specifying, 617

Sizc command
CodeView, 373-374
PWB

described,77
predefined macros, 145

lSI option, CL, 541
Slash (I)

CL syntax, 488
command line, NMAKE, 647
HELPMAKE options, 711
LINK syntax, 575
Search command, CodeView, 361,423,472-473

Slow motion, CodeView execution, 363, 369
Small memory model defined, 815
SMARTDRV.SYS defined, 815
ISn option, HELPMAKE, 713
Snow, suppressing, CodeView option, 341
Softcr switch, PWB, 264, 296-297
Sorting frames, CL option, 539
Source 1 command, CodeView, 373-374
Source 2 command, CodeView, 373-374

868 Index

Source browser
browser database, PWB

building, 101-102, 106
case sensitivity, 309
combined, 106
creating, 97-98
described, 731
estimating file size, 103-104
finding symbols, 103
makefiles, 61
non-PWB projects, 104-105
specifying, 310

CL options, 507-508
makefiles, PWB, 61
menu commands, PWB, 76
Pwbrowse functions, 200
searching, PWB, 86
switches, 309-310

Source code, displaying, CodeView, 350,457-460
.source command, HELPMAKE, 724
Source files

creating listing, CL, 501
decoding, HELPMAKE, 713-714
defined, 815
format options, CL, 541
HELPMAKE formats

minimally formatted ASCII, 728
QuickHelp, 716-724
rich text format, 725-726

loading, CodeView, 359
opening, CodeView, 358
PWB project file list, 43
specifying type, HELPMAKE, 713

Source mode defined, 815
Source window, CodeView

arranging display, 327
displaying, 457-460
function, 350
getting Help, 756
opening, 374
overview, 347-348
setting mode, 453-454

Source1 Window command, Code View, 368
Source2 Window command, Code View, 368
/Sp option, CL, 541
SP register, Code View syntax, 419, 450
Space

allocation, LINK, 577-578
inserting, PWB, 215-216

Space (continued)
optimizing

PWB,52-54
SBRPACK,739-740

Spaces
CodeView expression evaluators, 405
trailing, display mode, 301-302

Special characters, NMAKE
makefiles, 653
user-defined macros, 668

Special macros, NMAKE, 671-672
Specifiers

Code View Options command, 445-447
displaying source code, 457-460
memory format

dumping memory, 438-439
entering data, 440-441
viewing memory, 455-457

scope, searching for symbols, 467-468
Specify Interrupt Trapping option, CodeView,

341-342
Specifying

color, PWB display, 271-273
decorated names, 790-791
entry tables, CL option, 521
environment variables, CL, 557-559
execution model, CodeView, 333
expression evaluators, CodeView, 331
file type, HELPMAKE, 713
filename

HELPMAKE, 712, 714
LINK,566-567

floating-point math package, CL options, 508
inline files, NMAKE, 664
interrupt trapping, Code View, 341-342
LIB fields, 699-705
libraries, LINK, 566-570
module-definition files, LINK, 570
object files, LINK, 565
options, LINK, 575-576
page size, with LIB, 701-702
paths, CL, 496
response files, LINK, 573-575
search path, NMAKE, 660
symbol handlers, CodeView, 334-335

Speed
execution

CodeView, 453
PWB switches, 280, 282

Speed (continued)
optimizing

LINK, 580-581
PWB,54

Splitting help files, 773
ISs option, CL, 541
SS register, CodeView syntax, 419, 450
1ST option, LINK, 592
1St option, CL, 541
Stack allocation, setting in EXEHDR, 631
Stack frame defined, 815
Stack machine, debugging p-code, 389
1ST ACK option

EXEHDR,631
LINK, 592

Stack probes defined, 518-520
Stack trace defined, 816
Stack Trace command, CodeView, 422, 435-436
Stacks

defined, 815
size, specifying, 494, 617
stack-probe routines, CL options, 518-520

ST ACKSIZE statement, module-definition files,
609,617

Standard error defined, 816
Standard input defined, 816
Standard library defined, 816
Standard mode defined, 816
Standard output defined, 816
Starting PWB

from command line, 65--66
from Windows Program Manager, 66

Startup code
CL linking options, 528
defined, 816

Startup files, PWB configuration, 137
STARTUP.CMD, PWB configuration, 137
State file, Code View

overview, 344
toggling status, 343

Statefileread entry, TOOLS.INI file, CodeView,
330,334,343

Statements
flow control, PWB, 112-114
module-definition files, 608--627
multiple, debugging, 322
overlaid DOS programs, 600-601
specifying file type, LINK, 564
TOOLS.lNI syntax, PWB, 134-135
user input, PWB, 114-117

Static library defined, 816

Index 869

Static linking , defined, 697-698,816
Static Overlay Manager, 586, 600, 604-605
Status bar

defined, 816
overview, CodeView, 347
showing, Code View option, 445-447

Status Bar command, CodeView, 368, 370
Status files, PWB, 138-139
__ stdcall keyword, enabling, CL options, 550
Stream Mode command, PWB, 73, 143
Stream selection mode, setting in PWB, 258
String literals, Code View expression evaluators,

408
Strings

CodeView expression evaluators, 408
debugging assembly language, 415
defined, 816
embedding, CL option, 544
searching, PWB, 85-90
user-defined macros, NMAKE, 668

Structure member defined, 816
Structures

debugging assembly language, 415
defined, 816
expanding and contracting, CodeView, 367-368,

478-479
nested, expanding and contracting, 479
storage allocation, CL options, 554-555

Stub file defined, 816
STUB statement, module-definition files, 609, 614
Subdirectories, copying files to, PWB, 95
Subexpressions, optimizing, CL option, 533
Subroutine defined, 816
.SUFFIXES dot directive, NMAKE

clearing, 650
described, 688
inference rules, 680--682, 685

Suppress Snow option, Code View, 341
Swapping

defined, 816
screen exchange, CodeView, 341-343, 371,

445-447
Switches, PWB

Boolean switch syntax, 266
changing, 122, 124
described,263-308
Filename-Parts syntax, 265-266
Help, 313-315
library, 310-312
source browser, 309-310
syntax, TOOLS.INI file, 135

870 Index

Switches, PWB (continued)
tabs, 127-129
unixre,91

Switching Window function, PWB, 220
Symbol handler, specifying, CodeView, 334-335
Symbolhandler entry, TOOLS.lNI file

CodeView, 328, 330, 335
remote debugging, 393-395

Symbolic Debugging Information
compressing, 324-325
defined, 323, 806
LINK, 577
loading, 342
memory requirements, 324
preserving, with CVPACK, 745
searching, 362

Symbols
defined, 805-806, 811
format, Code View , 408-409
local, building a database, 732, 736
PWB, defined, 98-99,101-103
.SBR files, PWB, 104
searching for, CodeView, 421-422, 467-468
unreferenced, packing files, 739

Syntax. See specific command or utility
.SYS files defined, 817
__ syscall keyword, enabling, CL options, 550
SYSTEM environment variable defined, 817
System include files, finding symbols, PWB, 101

T
T command, CodeView, 423, 433, 452-453
IT option

HELPMAKE, 713-714, 722
LINK, 592-593
NMAKE,650
PWB,142

ITa option, CL, 541-542
\tab formatting code

HELPMAKE,727
Tab function, PWB, 127-128, 154,216
Tab Set command, CodeView, 423, 470
Tabalign switch, PWB, 127-129,264,297
Tabdisp switch, PWB, 127-128,264,297-298
Tables, EXEHDR output, 635-636, 638
Tabs

HELPMAKE syntax, 711
hyperlinks, navigating with, 759-761
module statement syntax, 610

Tabs (continued)
PWB

aligning switches, 297
handling, 127-129
line continuation, 136
preserving, 292
previous, 159
setting, 298-299
width, 282

regular expressions, PWB, 93
setting, CodeView, 470

Tabstops switch, PWB, 122, 127,264,298-299
Tagged expressions

Build:message switch, 784
justifying, 785
overview, 782-784
regular expression syntax, 778-781, 787
replacing text, PWB, 93-96

Tags, TOOLS.lNI file, 132-134,329-330
Target files, NMAKE

defined, 646
dependency lines, 655-658

Targets
building, NMAKE, 648
compiling, PWB, 163-164
function, PWB, 58-61
makefiles, PWB, 62-63

targets field, NMAKE, 647
ITc option, CL, 541-542
Tell dialog box, PWB, 216-218
Tell function, PWB

changing key assignment, 122
described, 154,216-218
executing, 108

TEMP environment variable defined, 817
Temporary files

defined, 817
LINK,595

Terminate-and-stay-resident programs
defined, 817
DOS Shell command, 359
Shell function, PWB, 214-215

Terminating, CodeView execution, 387-388
Ternary operator defined, 817
Text

Arg function, PWB, 106-108
copying

CodeView commands, 353
Microsoft Advisor, 761
QuickHelp,771

deleting, PWB, 166,232

Text (continued)
editing, menu commands, PWB, 73
finding, PWB, 91-93
formatting, HELPMAKE topics, 721
indenting, PWB, 296
pasting

Microsoft Advisor, 761
QuickHe1p,771

replacing
PWB,93-96
Qreplace function, PWB, 202
Replace function, PWB, 205-207

searching, PWB, 85-90,197
selecting, PWB, 211

Text argument, Arg function, PWB, 106-108
Text Argument dialog box, PWB

default key assignments, 150
Lasttext function, 175-176
Prompt function, 196-197

Text box, PWB, 81
Text files

See also Files
defined, 817

Text strings
embedding, CL option, 544
searching, PWB, 85-90

Text switches, PWB, 122
TH register, Code View syntax, 419, 450
Thread defined, 817
Thread ID defined, 817
Thread of execution defined, 817
Threshold data, setting with CL option, 522
Thunk defined, 817
Tilde (-), menu command, PWB, 126
Tile command

Code View, 373-374
PWB

described, 77
predefined macros, 145

Tilemode switch, PWB, 264, 299-300
Tiling windows, PWB, 258-259, 299-300
Time

current, PWB, 166
optimizing, PWB, 54-55

Time stamps
changing, NMAKE, 650
defined, 646, 817
displaying, NMAKE, 648

Timersave switch, PWB, 265, 300
Tiny memory model defined, 817
fl'INY option, LINK, 592-593

TL register, Code View syntax, 419, 450
TMP environment variable

defined, 817
starting PWB, 67

. TMP files defined, 817
Tmpsav switch, PWB, 265, 300-301

Index 871

Toggle State-File Reading option, CodeView, 343
Toggling defined, 817
TOOLS.lNl file

Code View
configuring, 329-330
entries, 330-336
installing, 328-329
remote debugging, 393-395
setting options, 344

defined, 817
NMAKE,652
PWB

autoloading extensions, 131
comments, 136
extension switches, 265
filename-extension tags, 132-133
Initialize function, 172-173
line continuation, 136
macros, 113, 115
named tags, 133-134
operating-system tags, 132
sections tags, 132
switch syntax, 135

TOOLS.PRE file, Code View, installing, 328
Topic command

Code View, 374-375
HELPMAKE,724
PWB, 78, 146

.topic command, HELPMAKE, 724
Topic lists, Microsoft Advisor, 765
Topic: command, PWB, 757
Topics, help files, linking, 716-719
Trace command, CodeView, 386,423,452
Trace speed command, Code View, 368-369, 423,

433,453
Tracepoint defined, 817
Tracing

defined, 817
functions, CodeView, 452-453

Trai1disp switch, PWB, 265, 301
Trailing lines, display mode, in PWB, 301-302
Trailing spaces, display mode, in PWB, 301-302
Traillines switch, PWB, 265, 301-302
Traillinesdisp switch, PWB, 265, 302
Trailspace switch, PWB, 265, 302

872 Index

Translating
source code

to assembly code, CL, 501-503, 505
to machine-code, CL, 502-503, 505

white space, PWB, 128
Transport entry, TOOLS.lNI file

CodeView, 328, 330,335-336
remote debugging, 393-395

Transport layer, specifying, Code View, 335-336
Trapping, interrupting, Code View, 341-342
Truncated files, building a database, 733, 735
TSF option, Code View, 338, 343
TSR

See also Terminate-and-stay-resident programs
defined, 817

Tutorial, PWB, 7
Twips defined, 726
ITx option, CL, 541-542
. TXT files defined, 817
Type casting defined, 817

u
U command, CodeView, 423, 453-454
:u command, HELPMAKE, 724
\u formatting attribute, HELPMAKE, 721
IU option, CL, 542-544
lu option, CL, 542-544
\ul formatting code, HELPMAKE, 727
Unary operators

Code View precedence, 406
defined, 818
preprocessing directives, NMAKE, 690--691

Unassemble command, Code View, 423, 453-454
Unassembling

defined, 806, 818
p-code,392

Unassigned function, PWB, 154,218
lUNDEF preprocessing directive, NMAKE, 680,

690
Undefined macros

NMAKE,670
PWB,224

UNDEL
command line, 749
options, 749
overview, 743, 747-748
syntax, 749

Unde1count switch, PWB, 265, 303
Underlining, HELPMAKE code, 726

Underscore CJ
macros, NMAKE, 668
regular expressions, PWB, 93
symbol format, Code View, 409

Undo command
CodeView, 360
PWB

described, 73
predefined macros, 143

Undo function, PWB, 154, 218
Undocount switch, PWB, 122, 265, 303
UNIX

predefined expression syntax, 778, 785
regular expression syntax, 303-304, 777-778, 781

Unixre switch
PWB,264,303-304
regular expression syntax, 91, 777

Unresolved external defined, 818
Unsigned numbers, predefined expression syntax,

778, 780, 786
Up function, PWB, 154,219
Use 8514 Displays option, Code View, 339
Use Black-and-White Display option, CodeView,

339
USE command, CodeView, 423, 454-455
Use Language command, CodeView, 423, 454-455
Use Two Displays option, CodeView, 338
Use VGA Displays option, CodeView, 339
User input statements, 114-117
User switch, PWB, 265-266, 304-306
Usercmd function, PWB, 154,219
User-defined inference rules, writing, NMAKE,

682--684
User-defined macros, NMAKE

creating, 668
special characters, 668
where to define, 669--670

User-defined type defined, 818
UTILERR.HLP file, 771
Utilities extension, PWB Options menu, 75
UTILS.HLP file, 771, 773

v
\v formatting attribute, HELPMAKE, 718, 721
\v formatting code, HELPMAKE, 727
N option

CL,544
EXEHDR, 631, 635--639
HELPMAKE,715
NMAKE, 650, 679

Iv option, BSCMAKE, 737
Values, entering, CodeView, 440-441
Variables

addresses, debugging assembly code, 414
defined, 818
editing, CodeView, 351
environment. See Environment variables
local, CodeView, 354
.SBR files, PWB, 104
scope, CodeView, 445-447

VCPI server
See also Virtual Control Program Interface server
defined, 818

NERBOSE option, EXEHDR, 631, 635-639
Verbose output

BSCMAKE,737
DOS header information, 637
HELPMAKE option, 715
OS/2 header information, 637-638

Vertical Scrollbars command, CodeView, 368, 370
VGA

defined, 818
specifying, CodeView, 339

Video graphics adapter defined, 818
View Back command, QuickHelp, 770
View History command, QuickHelp, 770
View Last command, QuickHelp, 770
View Memory command, Code View, 423,

436-437,455-457
View menu, PWB, 770
View Next command, QuickHelp, 770
View Output command, CodeView, 373-374
View References command, PWB, searching, 86
View Relationship command, PWB, 76,145
View Source Command, CodeView, 400, 423,

457-460
Virtual Control Program Interface server, 336
Virtual memory

browser database, 733-734
defined, 818

VM command, Code View, 423, 436-437, 455-457
VS command, CodeView, 400, 423, 457-460
Vscroll switch, PWB, 265, 306
V-tables, naming, CL option, 528-530

w
/W option

CL,544-545
HELPMAKE, 713, 721
LINK, 593

W? command, CodeView, 423, 460
/W ARNFIXUP option, LINK, 593

Index 873

Warning level, setting, CL options, 544-545
Watch command, CodeView, 373-374
Watch expressions

adding, 364, 460
deleting, 461
listing, 365, 465-466
saving, 344
setting, 326-327

Watch window, CodeView
exploring watch expressions, 327
function, 351
opening, 374
overview, 348

Watchpoint defined, 818
WC command, CodeView, 423, 461
WDG command, Code View, 377, 382, 387-388,

423,462
WDL command, CodeView, 377, 383, 423, 462
WDM command, CodeView, 383,423,464
WGH command, CodeView, 377, 386,423,

463-464
Which Reference command, PWB

described, 76
function, 145

White space
converting, PWB, 276-277
predefined expression syntax, 778, 780, 785
searching, PWB, 91, 93
tab switches, PWB, 127-128
translating, PWB, 292

White, color value, 273
Width switch, PWB, 265, 306
Width, HELPMAKE text, 713
Wildcards

defined, 818
HELPMAKE syntax, 711
listing files, PWB, 94
makefile names, NMAKE, 653-654
regular expression syntax, 778, 780-781, 786
SBRPACK,740
SETARGV.OJB files, PWB, 50

Windlllibs switch, PWB, 310-311
Window function, PWB, 154,220
Window menu, PWB, 77, 145
Windows

Code View
8087 window, 355-356
Command window, 351-353, 417
Help window, 357-358

874 Index

Windows (continued)
Code View (continued)

Local window, 354
Memory windows, 356-357
navigation, 349
opening, 373
overview, 347-348
Register window, 354-355
Source windows, 350
Watch window, 351

debugging, 377-382
File Manager, starting PWB, 67
functions, entry/exit codes, customizing, 515
Program Manager

Help, getting, 768-769
starting in PWB, 66

PWB
activating, 262-263
cascade arrangement, 231
closing, 232-233
default key assignments, 150
maximizing, 179-180,242
minimizing, 182-183,243-244
moving, 183-184,244
opening, 201, 220, 245-246
resizing, 254--255
restoring, 255-256
screen display, 67-68
selecting, 212
styles, in PWB, 221, 275
tiling, 258-259,299-300

Windows Dereference Global Handle command,
CodeView, 377, 386,423

Windows Dereference Local Handle command,
CodeView, 377, 386,423

Windows Display Global Heap command,
CodeView, 377, 382,423,462-463

Windows Display Local Heap command,
CodeView, 377, 383, 423, 462

Windows Display Modules command, CodeView,
377,383,423,463

Windows Kill Application command, CodeView,
385,387-388,423,464-465

Windows menu, CodeView, 373
Winlibs switch, PWB, 310-311
Winstyle function, PWB, 154,221
WKA command, Code View, 377, 385, 464-465
WL command, CodeView, 423, 465-466
WLH command, CodeView, 377, 386, 423,

466-467
WO operator, CodeView, 405, 414-415

Word processor
formatting HELPMAKE text, 726
rich text format, HELPMAKE, 725-726

Word switch, PWB, 265, 307-308
Word wrapping, PWB switches, 265, 293, 308
Words

English, regular expression syntax, 778, 780, 785
finding in CodeView, 361

Wordwrap switch, PWB, 265, 308

x
X command, Code View, 423, 467-468
:x command, HELPMAKE, 722
IX option

CL,545
NMAKE,650

/x option, LINK, 562, 591, 594
XMS

See also Extended memory manager
defined,818
Keepmem switch, PWB, 285

XMS server defined, 818

y
:y command, HELPMAKE, 722
Wc option, CL, 546-548
Wd option, CL, 546, 548-549
Wu option, CL, 546, 549-550
Yellow, color value, 273

z
:z command, HELPMAKE, 722
/Za option, CL, 550-552
/ZC option, CL, 552
/Zd option, CL, 324, 409, 553
/Ze option, CL, 550-552
/zf option, CL, 555
/Zg option, CL, 552-553
/Zioption,CL,324,409,553
/Zloption,CL,553-554
/Zn option

BSCMAKE,732
CL,555-556

/Zp option, CL, 554--555
/Zroption, CL, 556-557
/Zs option

BSCMAKE,732
CL,557

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 24778

