
Class Libraries Reference

Q; o en
8 u

Microsoft® C/C++
Version 7.0

Class Libraries Reference

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Infonnation in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the tenns of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or infonnation storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks and Windows is a trademark
of Microsoft Corporation.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.
Smalltalk is a registered trademark of Xerox Corporation.

Document No. LN24776-1291

10 9 8 7 6 5 4 3 2

Contents Overview

Introduction .. xi

Part 1 Introduction to the Microsoft Foundation Class library
Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Windows Development with
the Microsoft Foundation Classes .. 5
General-Purpose Foundation Classes .. 21
Macros and Global Functions 31
Diagnostic Services .. 43
Exception Processing ... 59
Message Map Cross-Reference ... 69
Structures and Enumerated Values for Windows....... 77

Part 2 The Microsoft Foundation Class library Reference
Alphabetic Microsoft Foundation Class Library Reference 93

Part 3 The Microsoft iostream Class library Reference
Alphabetic Microsoft iostream Class Library Reference.................................... 829

Index ... 947

Contents

Introduction .. xi

Document Conventions ... xii

Part 1 Introduction to the Microsoft Foundation Class Library

Chapter 1 Windows Development with the Microsoft Foundation Classes 5
1.1 Class Summary ... 5

Main Application Class ... 5
Window Classes .. 5
Graphics Device Interface (GDI) Classes .. 6
Other Classes ... 7
Windows Global Functions and Macros 7

1.2 General Class Design Philosophy... 7
1.3 C++ and Windows .. 8

Message-Based Programming .. 8
Class Derivation .. 10
Polymorphism ... 10
Reduced Programming "Surface Area" .. 10

1.4 Windows Class Categories....... 11
The Main Application Class, CWinApp... 11
The Window Classes-CWnd and Its Derived Classes 13
Graphics Device Interface (GDI) Classes .. 18
Other Windows Classes. 19

Chapter 2 General-Purpose Foundation Classes .. 21
2.1 Class Summary ... 21
2.2 CObject Services .. 23

Object Persistence ... 23
Object Diagnostics .. 24
Run-Time Class Information .. 25
Compatibility with Selected Collection Classes... 26

vi Contents

2.3 File Classes ... 26
2.4 Collection Classes ... 26

Lists ... 27
Arrays .. 27
Maps .. 27

2.5 Miscellaneous Support Classes.. 28
The CString Class ... 28
The CTime and CTimeSpan Classes .. 28

2.6 Diagnostic Services .. 28
Memory Diagnostics ... 29
Diagnostic Output ... 29
Assertions .. 29

2.7 Exception Handling .. 29
Exception Classes and Macros .. 30
When to Use Exception Handling ... 30

Chapter 3 Macros and Global Functions .. 31
3.1 Alphabetical Listing of Macros .. 32
3.2 Alphabetical Listing of Global Functions .. 34
3.3 Macros and Global Functions Not Documented Elsewhere 36

Chapter 4 Diagnostic Services•.••••....•.......•....................••••.............••..••.•..........•.• 43
4.1 General Diagnostic Macros .. 44
4.2 General Diagnostic Functions .. 44
4.3 Object Diagnostic Functions .. 45
4.4 Global Variables ... 46
4.5 Functions and Macros ... 47

Hook Function ... 52

Chapter 5 Exception Processing ... 59
5.1 Exception Macros ... 59
5.2 Exception Throwing Functions .. 60
5.3 Termination Functions .. 60
5.4 Functions and Macros ... 61

Chapter 6 Message Map Cross-Reference ••..••••••.••••••....••••••.•••..••••..............•.••.•.•••..•.•••••••.• 69
6.1 How to Use the Cross-Reference ... 69
6.2 Message Map Function Categories .. 70
6.3 Handlers for WM_COMMAND Messages ... 70

Contents vii

6.4 Handlers for Child Window Notification Messages 70
Generic Control Notification Codes ... 70
User Button Notification Codes .. 70
Combo Box Notification Codes .. 71
Edit Control Notification Codes ... 71
List Box Notification Codes ... 71

6.5 Handlers for Windows Notification Messages .. 72
6.6 User-Defined Message Codes .. 76

Chapter 7 Structures and Enumerated Values for Windows ... 77
7.1 Structures .. 77
7.2 Clipboard Enumerated Values ... 86
7.3 Mouse Enumerated Values ... 88

Part 2 The Microsoft Foundation Class library Reference
class CArchive ... 93
class CArchiveException ... 104
class CBitmap .. 107
class CBrush .. 118
class CButton ... 126
class CByteArray ... 135
class CClientDC ... 137
class CComboBox ... 139
class CDC .. 156
class CDialog ... 261
class CDumpContext ... 273
class CDWordArray .. 280
class CEdit '" .. 282
class CException .. 303
class CFile .. 304
class CFileException ... 322
class CFont. .. 329
class CFrameWnd .. 336
class CGdiObject ... 342
class CListBox ... 352
class CMapPtrToPtr ... 373
class CMapPtrToWord .. 375
class CMapStringToOb ... 377

viii Contents

class CMapStringToPtr .. 387
class CMapStringToString .. 389
class CMap W ordToOb .. 391
class CMapWordToPtr .. 393
class CMDIChildWnd ... 395
class CMDIFrame Wnd .. 401
class CMemFile ... 411
class CMemoryException .. 413
class CMenu ... 414
class CMetaFileDC .. 438
class CModalDialog ... 443
class CNotSupportedException ... 449
class CObArray .. 450
class CObject ... 463
class CObList ... 477
class CPaintDC .. 498
class CPalette ... 501
class CPen .. 508
class CPoint. ... 512
class CPtrArray .. 517
class CPtrList ... 519
class CRect ... 521
class CResourceException ... 536
class CRgn ... 537
class CScrollBar ... 551
class CSize ... 558
class CStatic ... 562
class CStdioFile ... 567
class CString .. 572
class CStringArray ... 601
class CStringList .. 603
class CTime .. 606
class CTimeSpan .. 618
class CWinApp .. 628
class CWindowDC ... 641
class CWnd : ... 644
class CW ordArray ... 823

Contents ix

Part 3 The Microsoft iostream Class Library Reference
iostream Class List. .. 829
class filebuf .. 831
class fstream ... 836
class ifstream ... 845
class ios .. 852
class iostream ... 872
class Iostream_init ... 874
class istream ... 875
class istream_ withassign ... 887
class istrstream ... 890
class of stream ... 893
class ostream .. 900
class ostream_ withassign ... 908
class ostrstream .. 911
class stdiobuf ... 915
class stdiostream .. 917
class streambuf. .. 919
class strstream .. 939
class strstreambuf .. 943

Index ... 947

Introduction

This Class Libraries Reference covers the two class libraries that are included
with Microsoft® C/C++. The book is divided into three parts:

Part 1 Introduction to the Microsoft Foundation Class Library

Part 2 The Microsoft Foundation Class Reference

Part 3 The Microsoft iostream Class Reference

Part I contains overview material for the Windows ™ and general-purpose classes
in the Microsoft Foundation Class Library followed by an alphabetical listing of
all global functions and macros. In addition, it contains reference chapters for
Microsoft Foundation Class Library diagnostic services and exception processing.
The last two chapters consist of a Windows message map cross-reference and a
listing of structures and enumerated values for Windows.

Parts 2 and 3 both begin with class hierarchy diagrams for their respective librar­
ies. These hierarchy diagrams, together with the subset diagrams included with
each Foundation class, are useful for locating base classes. Be aware that the class
documentation does not include repeated descriptions of inherited member func­
tions, inherited operators, and overridden virtual member functions. You must al­
ways refer to the base classes depicted in the hierarchy diagrams.

Parts 2 and 3 list classes in alphabetical order. Each class description includes a
member summary by category followed by alphabetical listings of:

• Member functions (public, protected, and private intermixed)

• Overloaded operators

• Data members

• Manipulators (iostream classes only)

Public and protected class members are documented only when they are normally
used in application programs or derived classes. Occasionally, private members
are listed because they override a public or protected member in the base class.
See the class header files for a complete listing of class members.

In Part 2, please note that the "See Also" sections refer to Windows functions by
prefacing them with the scope resolution operator (::). For example, ::EquaIRect.

xii The Class libraries Reference

More infonnation on these functions can be found in the Windows Programmer's
Reference, other Windows references, and Help.

Note The term "DOS" refers to both the MS-DOS® and IBM Personal Computer
DOS operating systems. The name of a specific operating system is used when it
is necessary to note features that are unique to that system

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, CObject,
GetTime, TRACE,
MF_STRING,
CREATESTRUCT,
__ far

expression

[option]

#pragma pack {I I 2}

ffinclude <io.h>,
MyObject

CL [option ...] file ...

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
This includes the classes and member functions of the
Microsoft class libraries, macros, flags, data
structures and their members, and enumerators.

Within descriptions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or a double underscore. These are part of the
name and are mandatory.

Words in italics indicate placeholders for infonnation
you must supply, such as a filename.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([]) surround the
braces.

Monospace font is used for examples, user input,
program output, and error messages in text. It is also
used for names of user-derived classes and members.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

Example

whileC)
{

CTRL+ENTER

"argument"

"C string"

Color Graphics
Adapter (CGA)

Introduction xiii

Description

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and . . rather than " " and ' '.

The first time an acronym is used, it is usually spelled
out.

Windows Development with the
Microsoft Foundation Classes

~hl~~r
Jij,

<,))

?-,

This chapter categorizes and describes the classes within the Microsoft Foundation
Class Library that specifically support application development for Microsoft
Windows, version 3.x.

1.1 Class Summary
The following is a list, in functional order, of the Windows-oriented classes in the
Microsoft Foundation Class Library.

Note All classes listed below, except CPoint, CRect, and CSize, are directly or
indirectly derived from the CObject class described in Chapter 2.

Main Application Class

Window Classes

CWinApp is the class that encapsulates the code for the initialization, running,
and termination of the application.

The Microsoft Foundation window classes are the key building blocks in a Win­
dows application. These classes have member functions for processing Windows
notification messages as well as messages from other classes. Some member func­
tions communicate directly with Windows itself. An active C++ window object
contains a Windows HWND.

You will usually derive classes from the frame and child base classes. You can use
most of the other window classes directly.

6 The Class Libraries Reference

Base Class
CWnd

Frame and Child Windows
CFrameWnd

CMDIFrameWnd

CMDIChildWnd

Dialog Windows
CDialog

CModalDialog

Control Windows
CButton

CComboBox

CEdit

CListBox

CScrollBar

CStatic

Graphics Device Interface (GDI) Classes

The base class for all windows.

The main window base class for the single docu­
ment interface (SDI) frame window.

The base class for the multiple document interface
(MOl) frame window.

The base class for MDI child windows.

The base class for modeless dialog windows.

The base class for modal dialog windows.

Button control windows.

Combo-box control windows.

Edit control windows.

List-box control windows.

Scroll-bar control windows.

Static control windows.

The following classes wrap the Windows device context and drawing tools. They
allow the developer to take maximum advantage of C++ syntax.

Device Contexts
CDC

CClientDC

CMetaFileDC

CPaintDC

CWindowDC

The base class for device contexts, used directly
for whole-display and nondisplay contexts.

Display contexts for client areas of windows.

Metafile device contexts.

Display contexts used in OnPaint member
functions.

Display contexts for entire windows.

Other Classes

GDI Drawing Objects
CGdiObject

CBitmap

CBrush

CFont

CPalette

CPen

CRgn

CMenu

CPoint

CRect

CSize

Windows Development 7

The base class for GDI drawing tools.

GDI physical bitmaps.

GDI physical brushes.

GDI physical fonts.

GDI physical palettes.

GDI physical pens.

GDI physical regions.

Menu structures.

Coordinate (x, y) pairs.

Rectangular areas.

Relative positions or coordinate pairs.

Windows Global Functions and Macros
Chapters 3 through 7 of this manual document the elements of the Microsoft Foun­
dation Class Library that are not directly related to individual classes. A complete
summary of macros and global functions, including those for Windows, is pro­
vided in Chapter 3. A message-map reference is given in Chapter 6, and Chapter 7
lists Windows structures and enumerated values.

1.2 General Class Design Philosophy
Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-Ianguage Windows application pro­
gramming interface (API), that interface will be maintained for the foreseeable
future. Any C++ Windows interface must therefore be built on top of the proce­
dural C-Ianguage API. This guarantees that C++ applications will be able to coex­
ist with C applications.

The Microsoft Foundation Class Library is truly an object-oriented interface to
Windows that has met the following design goals:

• Execution speed comparable to that of the C-Ianguage API

• Minimum code size overhead

• The ability to call any Windows C function directly

8 The Class Libraries Reference

• Easy conversion of existing C applications to C++

• The ability to leverage from the existing base of C-Ianguage Windows program­
ming experience

• True Windows API for C++ that effectively uses C++ language features

• Solid foundation for future extensions

The single characteristic that sets the Microsoft Foundation classes for Windows
apart from other Windows class libraries is their direct access to the C-Ianguage
Windows API. This direct access does not, however, imply that the classes are a
replacement for that API. Developers must still make direct calls to some
Windows functions, GetSystemMetrics, for example. A Windows function is
wrapped by a class member function only if there is a clear advantage to doing so.

Because you often need to make native Windows function calls, you should have
access to the C-Ianguage Windows API documentation. This is included with
Microsoft C/C++ as Help. If you require printed documentation, refer to the
Microsoft Windows Programmer's Reference and the Microsoft Windows Guide to
Programming from Microsoft Press. Another useful book is Programming
Windows by Charles Petzold, also from Microsoft Press. Many of that book's ex­
amples can be easily converted to the Microsoft Foundation Windows classes.

1.3 C++ and Windows
Many C++ language features are particularly suited to Microsoft Windows. The
Windows-oriented classes in the Microsoft Foundation Class Library make
Windows programming truly systematic. It's significantly easier to learn Windows
through a C++ interface than through the standard C interface.

Message-Based Programming
Windows is a message-based environment. In the familiar MS-DOS programming
world, your program calls the operating system. In Windows, the operating system
(Windows) sends a message to your program. The "program" is associated with a
particular window, and the message might be "destroy yourself," "repaint your­
self," "your child button was pushed," or something similar.

Your program might also send a message to Windows. These "outbound" mes­
sages are often directed at a child window, such as a button, list box, or edit con­
trol, that has inaccessible code. If, for example, you send a "scroll" message to an
edit control, Windows itself does the work. Your application program cannot inter­
cept these outbound messages once they are sent.

Windows Development 9

The c++ language naturally accommodates the messaging behavior of Windows.
Objects receive messages through the "member functions" of their class, and they
send messages by calling a member function for another object. A C++ object
represents a Windows window, and the member functions of the class process in­
dividual messages. The OnPaint member function of a derived window class, for
example, receives and processes a Windows WM_PAINT message. The
CListBox member function AddString sends an LB_ADDSTRING message to
Windows.

The real magic of the Windows Foundation classes begins here. There is no longer
any "program logic flow" as in conventional procedural programming. Each win­
dow object is self-sufficient and is responsible for (1) acting on the messages that
are important to it and (2) sending messages to other window objects. It can create
and delete other windows along the way. The interaction among window objects,
and thus the flow of the program, is governed by the actions of the end user rather
than by complex code and data structures.

Mpssage~roce,sil1g-The·l\II!icrosoft.Foun.dation:Cla;ssesvs.· Native Windows
ItJ!llatiive Wind~~s,.lhe WndPr.c fun9tion processes a particul~ wllndow's

.. incomillg messages. The inessageID is a Wuc.1Pl1>c function parameter that
is decoded with a.case statement. The ill il:l colinpared to alistiof expe9ted
codes defined as constants in WINDOWS.H. Eachmessage has two
"message parameters,:' wParalD (two bytes) and IParam (four byres)~ that
~e .also. WudP~ parameters. The meaniljlg ~f w~aram~d.lParam
depends on the message type. These message parameters call. be poinfersto
~tructures or functi?ns or theyoan be comJfosites of flags and :nel~s. 1"he .
WndProcpro~rarnmust deco~~ the me~sa~esappr9P:riarely.·

Optbound Ples~age$.ar~.;serittoWindows and t~. other Wiljldows.through
several "send rriess"ge" functiolls. The WndProc prog~~·mul:lt enoode the
message PaFameters~odhese OlJtbound Jllessages. . .

"I ,

. .Tbe Micros~ftFortndationdasses:repl:ace the case .. staternent and! para~ter
4~codtng for i~coJllingp:1el:l~ages with dassmeJllber fqnctions. These

.. member f'qPCtlQljIs are li~edto a strqctnfe caned a r'message map" that
• go~eflls:;tra~slaif9n.·of ~~ m~ssa~e p~raJlleters, Th~.me~sage map ·is. . ..

! .describe.d later iir. thisch@ter.il1~.'Notificati~n :t{IIessagesand the lyiessage
Map:';oiL~age 13.·

10 The Class Libraries Reference

Class Derivation

Polymorphism

Programmers often try to exploit existing code to solve new problems. In the C
programming environment, the programmer can "clone" useful code by copying
it and making modifications. In the c++ programming environment, you add
functionality through "class derivation". The functionality of the base class re­
mains unmodified, but that of the derived class may be added to or changed.
Derivation works well with Windows because you can extend useful window base
classes with new member functions and new data members.

Suppose a frame window base class includes a caption, menu bar, scroll bars, and
so forth. Also suppose that this base window has the ability to get the input focus
in response to activation by the mouse. If you need to add the capability of display­
ing a dialog box in response to an access key, then you can derive a new class
from the frame window base class. You get all the base class functionality without
having to modify its code or worry about its internals.

There are three or more levels of window class derivation in a typical application
built with the Microsoft Foundation classes for Windows. CWnd, the base class
for all windows, contains many member functions that apply to all window
types. Some second-level derived window classes, such as CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd, are designed for further derivation.
Others, such as CDialog, can be used directly or as a base for further derivation.
Finally, the classes that you derive for your own windows provide the third level
of derivation.

Note The CWnd class is useful as a base class for SDI child windows. You do not
need to derive from one of the second-level classes listed above.

In the C-Ianguage Windows API, the programming interface of a dialog box is
different from that of a frame window, even though both are defined as windows
and identified by an HWND parameter. The Microsoft Foundation classes make
all window types look similar because all are derived from the CWnd base class.
Microsoft Foundation window classes are truly polymorphic because they give a
common programming interface to dissimilar window types.

Reduced Programming "Surface Area"
C programming with Windows is intimidating because of the complex interrela­
tionship between functions and the proliferation of messages. The progammer
must write a WndProc function for each type of window and a main program
called WinMain. Each WndProc function processes the window's messages by
means of a case statement and must be linked to windows and to the application
through an elaborate data structure.

Windows Development 11

The Microsoft Foundation classes for Windows encapsulate most of this complex­
ity while allowing the same flexibility found in the C programming environment.
You don't need to write the WinMain and WndProc functions because they are
provided for you. However, you can override them if necessary.

1.4 Windows Class Categories
Like any C++ class library, the Microsoft Foundation Class Library encapsulates
its functionality in classes. The important Windows class categories are:

• The main application class, CWinApp

• The window classes-CWnd and its derived classes

• The graphics device interface (GDI) classes, which support device contexts and
drawing tools

• The miscellaneous classes, which support menus, points, and rectangles

The Main Application Class, CWinApp
The main application class encapsulates the initialization, running, and termination
of a Windows application. A Microsoft Foundation Class Library Windows appli­
cation must contain one (and only one) object of a class derived from CWinApp.
This class has several important member functions that you can override:

• InitInstance

Windows allows you to run more than one copy, or "instance," of the same ap­
plication. lnitInstance is called every time a new instance of the program
starts. It must be overridden in order to create a main window and thus start the
application. It is the most important member function of the class.

• InitApplication

This function is called when the first instance of a program starts. The default
version does nothing, but you can override it if you need special processing for
the first instance only.

• ExitInstance

This function is called each time an application instance terminates, usually as a
result of the user quitting the application. You can override ExitInstance if you
need special cleanup processing, such as closing of disk files or deallocating
memory used during program execution.

• Onldle

The default version of OnIdle does nothing, but your overridden function can
perform background tasks when no messages are being processed.

12 The Class Libraries Reference

For a typical Windows application, you need only override lnitInstance in a class
derived from CWinApp. Then you construct a static object of the CWinApp­
derived class.

Windows Development 13

The Window Classes- CWnd and Its Derived Classes
You will normally override the InitInstance member function of the CWinApp
class to create your application's main window, an object of a class derived from
CWnd. This window class, together with all the other window classes, have mem­
ber functions for receiving and sending messages.

There are different types of Windows messages. Each type is handled somewhat
differently by the Microsoft Foundation classes.

Notification Messages and the Message Map
A "notification message" is a message sent to a window by Windows itself in re­
sponse to a keystroke, mouse click, window move, control window activity, or
other event. If necessary, your application can force Windows to send a notifica­
tion message. The Microsoft Foundation Class Library has a special mechanism,
called a "message map," that links Windows notification messages with the mem­
ber functions you have written.

A message map is a table that you include with your window class code. It con­
tains an entry for each Windows notification message that you intend to process
with a custom-written member function. The result is a message-processing sys­
tem that provides all the advantages of virtual functions without the storage
overhead.

Many of the member functions that process notification messages are predefined.
For example, if your class needs to process the Windows WM_ CREA TE mes­
sage, you must put the following entry in the class's message map:

and you must declare and implement this exact member function:

afx_msg int OnCreate(LPCREATESTRUCT lpcs l;

Note The afLmsg keyword denotes a notification message declaration or im­
plementation. It is defined as a no-operation in AFXWIN.H and thus documents
the fact that the function behaves like a CWnd virtual function. It must be empha­
sized that message maps depend solely on standard preprocessor macros and not
on any extensions to the C++ language.

A table that shows all permitted message-map entries and the corresponding
member function prototypes is presented in Chapter 6, "Message Map Cross­
Reference." For a complete example of message-map usage, see Chapter 6 of the
Class Libraries User's Guide.

14 The Class libraries Reference

Other notification messages allow you to define your own functions. For example,
if you need to call a function in response to a mouse click on a button whose ID
number is IDD_BUTNl, your message-map entry is:

and your member function declaration looks like this:

afx_msg void OnTopButton();

When you define a message map, you specify the base class in addition to the mes­
sages. This allows the base class to handle messages not handled in the derived
classes.

Windows Control Messages
A Windows control, such as an edit window or list box, is represented by a win­
dow object (of a class derived from CWnd), but the processing is controlled by
Windows rather than by the Microsoft Foundation classes. If you need to update a
control, your application must send a "control message" to Windows. A frame
window object, for example, can send an LB_ADDSTRING message to a list­
box window that is its child. The Microsoft Foundation classes wrap this message
in the CListBox member function AddString. The call looks like this:

CListBox* listBoxl; II Object initialized elsewhere
listBoxl-)AddString("list-box line item");

In this case the phrase 1 i st-box 1 i ne i tern is sent directly to Windows for dis­
play. The CListBox member functions cannot access the list-box line items unless
they retrieve them directly from Windows.

Other Windows Messages
Other Windows messages do not relate to controls. If, for example, you want to
select a font for future text drawing, you must send the ~SETFONT message
to the appropriate window. The Microsoft Foundation classes wrap messages like
this with CWnd member functions. In this example, you call the SetFont member
function.

Windows Development 15

c++ WindllwObjects and the Windows They Represent
A c++ window object is distinct from its corresponding Windows window,
but the two are tightly linked. A good understanding of this relationship is
crucial for effective Microsoft Foundation class programming.

The window object is an instance of the C++ CWnd class (or a derived
class). It comes and goes in response to your program's constructor and
destructor calls. The Win<iows window, on the other hand, is an internal
Windows data structure that corresponds to a Visible tor invisible) window;
A Windows window is identifiedbya."window handle". (HWND)andis
created when the CWnd object is created, butthe window may be destroyed
by either a pr(}gramc~n or byauser's .~~ti()n.

Allthe.window clas~~s provided by the Microsoft FOllIl<iati9n G1tssM?r<pJ
employ;'t\Vo-phaseconstruction". TheC++constructormakesan:obj~ctbll~
doe~ not create a corresponding Windows wind?w. TheCrea.~m~tnber
fun:tipntn~es t~~W:in~owswindo~(usllilllyby·c!l· the native
~i.~d(}~l'Cl1la.~~tl}~oW fll~:t')av,<istore~its
obje~t'l'·.PllbHc4~ta rnember·lll.i d.

IfYPll.<ieriv~a wipdow~l tV~t wi!1, iriNp~~·~·lls~d tjrd6Hv~~~~'Y99
~USrllsetWO~phaseco tion;.Suppose, inste~d, ~l;tty?ur
con;~tf1rtctor salli3? ~reat~t~~l~~!l~ cas~,t~~.low~r~le~~l.const
the ~i~d()~swin~ow befotre tp~O?j~c.t (apdit~.Oless{lg
completely .ru:t~~L Theen~1jting~M7 fKEA

nhan?~edbY .. tl;lepigh~~4evel das~
th(lIT bYthos~of the lower-lev.~l

16 The Class Libraries Reference

Some messages are not wrapped by individual member functions. Suppose you
derive a class from CWnd and you need a member function that activates the win­
dow's nonclient area. The following call accomplishes the task:

SendMessage(WM_NCACTIVATE, TRUE, 0);

SendMessage is a CWnd member function, and thus it communicates directly
with your c++ window object that underlies the Windows window. The
SendMessage function sends its message immediately. Another function,
PostMessage, posts the message to the Windows message queue for delayed
processing.

Direct Calls to Windows
In many cases your program interacts with Windows through a direct call rather
than through a sent message. Many of these direct calls are mapped to CWnd
member functions. If you need to set a window's caption, for example, you simply
call CWnd::SetWindowText.

Control Window Classes
The Microsoft Foundation Class Library includes classes for standard Windows
controls, which are actually special-purpose windows. These controls include:

• Buttons

• Combo boxes

• Edit windows

• List boxes

• Scroll bars

• Static controls

You will seldom need to derive from these classes because most of their function­
ality is determined by Windows itself. If you need a button, for example, you con­
struct an object and then specify one of several predefined styles to the Create
member function.

Buttons, like other controls, are designed to be child windows. When the user
clicks a button, for example, the button object sends a BN_ CLICKED message to
its parent window object. The parent window class must define a message map
and have an appropriate member function to handle the message from the button.

Windows Development 17

Note Do not confuse the scroll-bar control window with the frame window's built­
in scroll bars. Any frame window can have horizontal and vertical scroll bars if it
is created with the proper parameters. The scroll bars created in a frame window
this way are not actually separate child windows. A true scroll-bar control is a sep­
arate child window that can be sized and placed as required.

Dialog Boxes
A "dialog box" is a special kind of frame window that contains a number of child
window controls, such as buttons and edit fields. It is generally used to collect data
from the user. A "modal" dialog forces the user to complete the requested action
prior to returning to the application's main window. The "modeless" dialog allows
the user to continue work in the parent window.

Dialog boxes are frequently defined, along with the constituent child windows, in
"resource files" where the child windows have assigned ID numbers. Your pro­
gram must construct an object of class CDialog or CModalDialog (or a derived
class) in order to use a resource-based dialog box. If your dialog box requires only
routine operations, such as detecting button hits and reading input strings from edit
controls, then you do not have to construct child control window objects; instead,
you call member functions of the dialog base class that use child window IDs as
arguments.

If, for example, you need to read the string from an edit window identified as
I OM_ OAT A, then use the CWnd member function GetDIgltemText as follows:

GetDl gItemText(10M_DATA, stri ng, 128);

where stri ng is the address of a character buffer and 128 is the maximum
buffer size. You do not need to reference an edit window object.

If you do need to access resource-based dialog child windows as c++ objects, the
Microsoft Foundation classes provide a way. The GetDIgltem dialog class mem­
ber function returns a CWnd pointer that corresponds to a dialog child window ID
number that is defined by the resource. This CWnd pointer refers to an internally
allocated window object that is stored in a temporary table. It allows you to
use the appropriate window class member functions. The IsKindOf and
GetRuntimeClass member functions of CObject can help identify the specific
window class of the object.

If, for example, you need the line count from the edit control introduced pre­
viously, then use CWnd::GetDIgltemText as follows:

CEdit* pEdit = (CEdit*)GetOlg1tem(10M_DATA);
int count = pEdit-)GetLineCount();

18 The Class Libraries Reference

Graphics Device Interface (GDI) Classes
The CWinApp class and the CWnd derivatives are by far the most important
Windows-oriented classes in the library. Most are intended for derivation. The
GDI Windows classes are included as a convenience for the C++ programmer.
Each corresponds almost exactly to a Windows data structure and is generally not
used for derivation.

The Device Context Classes
CDC, CPaintDC, CWindowDC, CClientDC, and CMetaFileDC are "device
context" classes because they are C++ wrappings of the Windows device context.
A device context is a Windows data structure associated with a physical device. It
is the Windows method of rendering graphics in a hardware-independent manner.
In order to draw or print in a window, you must first get access to a display device
context object.

The base class, CDC, can be used directly to access the entire display or a nondis­
play context. A "nondisplay context" is a hardware device, such as a printer or
plotter, that has a Windows driver.

A CWindowDC context is a "display" context that is "clipped" (by Windows) to
include only the area of its associated window. A CClientDC context includes
only the window's "client" area (exclusive of title bar and scroll bars). A
CPaintDC context is like a CClientDC context except that it is enhanced (by the
Microsoft Foundation Class Library) to work in an OnPaint member function
without the need for the BeginPaint and EndPaint function calls.

The most frequently used device context is CPaintDC. A typical OnPaint mem­
ber function obtains and uses a device context as shown:

void CMainWindow::OnPaintC)
{ II BeginPaint function call not required

CPaintDC dcC this); II The device context for this window
dc.TextOutC 0,0, "hello", 5); II Top left of the client rectangle

} II EndPaint function call not required

The GDI Object Classes
The Windows GDI employs various drawing tools, including pens, brushes,
palettes, fonts, bit maps, and regions. Many device context operations, such as
drawing and painting, depend on a specific drawing tool being linked to the device
context. In the native Windows environment, this operation is known as "selecting
a GDI object into a device context." In the Microsoft Foundation classes, a tool
type is represented by a class derived from CGdiObject.

Windows Development 19

The base class of the device context classes, CDC, has a SelectObject member
function overloaded for each GDI-object-derived class. This function selects a
GDI object to a device context (and returns the previously selected object of that
type). Thus you can attach a brush to a paint display context (and use it) as follows:

II Create a device context for this window
CPaintDC dc(this l;
II Construct a crosshatch filling brush
CBrush brush(HS_DIAGCROSS, 0L l;
II Select the brush into the device context
CBrush* pOldBrush = dc.SelectObject(&brush l;
II Paint the ellipse with crosshatching
dc.Ellipse(0, 20, 40, 60 l;
II Restore the original brush
dc.SelectObject(pOldBrush l;

The last statement disconnects brush from dc at the Windows level. This per­
mits the Windows brush to be deleted by the CBrush destructor (when the brush
object goes out of scope). It is very important to delete Windows GDI objects;
otherwise their memory will not be reclaimed, even after the Windows application
terminates. Windows GDI objects cannot be deleted as long as they are selected in
a valid device context.

Other Windows Classes
There are several other classes in the Microsoft Foundation Class Library that
bring C++ syntax to Windows. These classes include CMenu, CPoint, CRect,
and CSize.

The CMenu Class
A Windows menu is a data structure that associates user actions with
WM_ COMMAND messages. The CMenu class wraps this menu structure and
provides a constructor for an empty menu. A menu's list of choices can be altered
dynamically through member functions such as AppendMenu, InsertMenu, and
DeleteMenu. The LoadMenu member function loads a menu object with a menu
definition from a resource file.

You can attach a resource-based menu, identified by a string or resource ID,
directly to a window (through the frame window's Create member function)
without defining a CMenu object. Alternatively, the window SetMenu member
function associates a CMenu object with the window.

The WM_ COMMAND messages that result from menu activity must be pro­
cessed by window class member functions that are declared through message­
map entries.

20 The Class Libraries Reference

The CPoint, CSize, and CRect Classes
CPoint and CSize are simple classes that define absolute and relative (x, y) points
and provide some useful overloaded operators. The CRect class defines rectangu­
lar regions specified by the (left, top) and (right, bottom) coordinates. CPoint and
CRect inherit from the Windows POINT and RECT structures.

Many Microsoft Foundation class functions take POINT structures or pointers to
RECT structures as parameters. Because CPoint and CRect are derived from
these structures, the compiler can accept objects in place of structure instances.

General-Purpose
Foundation Classes

This chapter categorizes and describes the general-purpose classes within the
Microsoft Foundation Class Library. These classes can be used alone in an MS­
DOS application, or they can be combined with the Microsoft Windows classes
described in Chapter 1.

2.1 Class Summary
The following is a list of the Microsoft Foundation Class Library's general­
purpose classes categorized by function. CObject is the root class in the Microsoft
Foundation class hierarchy.

File Classes
CFile

CMemFile

CStdioFile

Object Input and Output
CArchive

CDumpContext

Exceptions
CException

CArchiveException

CFileException

CMemoryException

Binary disk files.

In-memory files.

Buffered stream disk files, usually text mode.

Persistent storage for objects.

Destinations for diagnostic dumps.

Base class for exceptions.

Archive exceptions.

File-oriented exceptions.

Out-of-memoryexceptions.

22 The Class Libraries Reference

CNotSupportedException Exceptions resulting from the invocation of an
unsupported feature.

CResourceException Exceptions resulting from a failure to load a
Windows resource (Windows only).

Collections
CByteArray

CDWordArray

CObArray

CPtrArray

CStringArray

CWordArray

CObList

CPtrList

CStringList

CMapPtrTo Word

CMapPtrToPtr

CMapStringToOb

CMapStringToPtr

CMapStringToString

CMapWordToOb

CMap WordToPtr

Arrays of bytes.

Arrays of double words.

Arrays of CObject pointers.

Arrays of void (generic) pointers.

Arrays of CString objects.

Arrays of words.

Lists of CObject pointers.

Lists of void (generic) pointers.

Lists of CString objects.

Maps that associate void pointers to words.

Maps that associate void pointers to void pointers.

Maps that associate CString objects to CObject
pointers.

Maps that associate CString objects to void
pointers.

Maps that associate CString objects to CString
objects.

Maps that associate words to CObject pointers.

Maps that associate words to void pointers.

Miscellaneous Support Classes
CString

CTime

CTimeSpan

Character strings.

Absolute time and date values.

Relative time and date values.

General-Purpose 23

Global Functions and Macros
Chapters 3 through 6 of this manual document the elements of the Microsoft Foun­
dation Class Library that are not directly related to individual classes. A complete
summary of macros and global functions is provided in Chapter 3, while diagnos­
tic services, including memory diagnostics and object dump functions, are dis­
cussed in Chapter 4. Exception processing, which uses TRY, CATCH, THROW,
and other macros, is covered in Chapter 5.

2.2 CObject Services
The CObject base class provides the following useful services to objects of its
derived classes:

• Object persistence

• Object diagnostics

• Run-time class information

• Compatibility with selected collection classes

Some of these services are available only if you use certain macros in derived
class declarations and implementations. In order to make use of the services listed
above, you should seriously consider deriving most of your nontrivial classes from
CObject. Many of the Microsoft Foundation classes are so derived.

Even though CObject is not a true "abstract" base class, you are advised not to
construct objects of this class.

Object Persistence
Class CObject, in conjunction with class CArchive, supports "object persistence"
through a process called "serialization." Object persistence allows you to save a
complex network of objects in a permanent binary form (usually disk storage) that
persists after those objects are deleted from memory. Later you can load the ob­
jects from persistent storage and "reconstitute" them in memory.

Serialization is not random access, but rather sequential. A group of objects is writ­
ten to an archive, which is associated with an individual CFile object. If the ob­
jects to be serialized are contained in a collection, then a single Serialize call for
the collection object results in the serialization of the whole collection, even if it
contains nested objects or heterogeneous object collections. For a good example of
collection serialization, see the tutorial in the Class Libraries User's Guide.

24 The Class Libraries Reference

When you create your own serializable CObject-derived class, you must use the
DECLARE_SERIAL macro in the class declaration, and you must use the
IMPLEMENT_SERIAL macro in the class implementation. If you have added
new data members in your derived class, you must override the base class
Serialize member function to store object data to the archive and load object data
from it.

Like the iostream classes, CArchive provides insertion «<) and extraction (»)
operators.

Object Diagnostics
The Microsoft Foundation classes provide many diagnostic features, but diagnos­
tic object printing and validity checking are specific services of the CObject class.
For diagnostic features that are not class oriented, see "Memory Diagnostics" later
in this chapter, on page 29.

Diagnostic Dump Context
The CDumpContext class works in conjunction with the Dump member function
of the CObject class to provide formatted diagnostic printing of internal object
data. CDumpContext, like the ostream class (in the iostream library), provides
an insertion «<) operator that accepts not only CObject pointers but also standard
types and CString and CTime objects.

A predefined CDumpContext object, afxDump, is available in the Debug version
of the Microsoft Foundation classes (#define _DEBUG is required in your source
code). With MS-DOS, the output from afxDump goes to stderr. With Windows,
the output goes to the CodeView® debugger if it is present; otherwise it goes to
device AUX.

Without any programming on your part, the Dump member function of the
CObject class provides a hexadecimal printout of the contents of your derived
object. If you override the base class Dump member function in your derived
class, you can get a formatted dump of your object's contents. If you have used
the DECLARE_DYNAMIC or DECLARE_SERIAL macros in your derived
class declaration and if you have used the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in your derived class implementation, then
Dump prints your object's class name even if you supply a generic CObject
pointer.

General-Purpose 25

Object Validity Checking
The AssertValid member function of CObject always returns TRUE. If you over­
ride the base class AssertValid member function in your derived class, you can
perform a specific test of your object's internal consistency.

Run-Time Class Information
The C++ language was designed for speed and efficiency; therefore, binding
among functions and data elements is done at compile and link time. Even the
implementation of virtual functions depends on a data structure (known as the
v-table) that is set up during compilation. Other object-oriented languages, such as
Smalltalk, are designed for flexibility. Their binding is done at run time; objects
send and receive standard-format messages that are processed by an interpreted
language.

The Microsoft Foundation classes offer the developer some optional features usu­
ally associated with a run-time-bound system. If you derive a class from CObject,
you can use member functions to access, at run time, (1) the class name and (2)
the classes above it in the derivation hierarchy. You can also retrieve class infor­
mation for any CObject-derived class declared in your program. This information
allows you to safely cast a generic CObject pointer to a derived class pointer.

Run-time class information is particularly valuable in the Debug environment
because it can be used (1) to detect incorrect casts and (2) to produce object dumps
with class names included.

Run-time class information is, of course, available in the Release environment. If
in Windows, for example, you need to process the children of a frame window,
you can use the frame's GetWindow member function to return a generic CWnd
pointer for each child window. If you want to know the child's specific class, then
you can use the CObject member functions IsKindOf or GetRuntimeClass.
During serialization, the runtime class information is stored to the archive along
with object data.

Run-time class testing is not meant to be a substitute for using virtual functions.
Use the run-time type information only when virtual functions are not appropriate,
as in the GetWindow example described above.

In order to access run-time type information, you must use the
DECLARE_DYNAMIC or DECLARE_SERIAL macros in your class
declaration, and you must use the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in your class implementation.

26 The Class Libraries Reference

Compatibility with Selected Collection Classes
The collection classes CObArray, CObList, CMapStringToOb, and
CMapWordToOb accept CObject pointer elements and thus are useful for
storing collections of objects of CObject-derived classes. If such a collection is ar­
chived or sent to a diagnostic dump context, then the element objects are automat­
ically processed. For more about collection classes, see Section 2.4 later in this
chapter.

2.3 File Classes
The CFile family of classes provides a c++ programming interface to operating­
system files. The CFile class itself gives access to low-level binary files, and the
CStdioFile class gives access to buffered "standard I/O" files. CStdioFile files are
often processed in "text mode," which means that newline characters are con­
verted to carriage return-linefeed pairs on output.

CMemFile supports "in-memory" files. The files behave like disk files except that
bytes are stored in RAM. An in-memory file is a useful means oftransferring raw
bytes or serialized objects between independent processes.

Because CFile is the base class for all file classes, it provides a polymorphic pro­
gramming interface. If a CStdioFile file is opened, for example, its object pointer
can be used by the virtual Read and Write member functions defined for the
CFile class.

The CDumpContext and CArchive classes, described previously, depend on the
CFile class for input and output.

2.4 Collection Classes
The Microsoft Foundation Class Library contains a number of ready-to-use lists,
arrays, and maps that are referred to as "collection classes." A collection is an
extremely useful programming idiom for holding and processing groups of objects
or standard types. C++ makes a collection appear as a single object, so collection
member functions can operate on all elements of the collection.

All collections may be archived or sent to a dump context. The Dump and
Serialize member functions for CObject pointer collections call the correspond­
ing functions for each of their elements.

If you need a list, array, or map that is not included among the 16 standard collec­
tions provided with the Microsoft Foundation classes, then you can use the
Templdef template tool that is included in the sample directory. The disk file

Lists

Arrays

Maps

General-Purpose 27

MFC\DOC\TN004.TXT contains a guide to the use of this tool. The hierarchy
chart of the Microsoft Foundation classes shown at the beginning of Part 2 indi­
cates these three collection templates: "CArray<TYPE>," "CList<TYPE>," and
"CMap<KEY , VALUE>."

There are "list" classes for CString objects, CObject pointers, and void pointers.
A list is an ordered grouping of elements. New elements can be added at the head
or tail of the list, or before or after a specified element. The list can be traversed in
forward or reverse sequence, and elements may be removed during the traversal.
Elements can be found by zero-based index or by value, but the find operation
requires a sequential scan of the list.

The Microsoft Foundation Class Library contains "array" classes for bytes, words,
double words, CString objects, CObject pointers, and void pointers. An array is a
dynamically sized grouping of elements that are directly accessible through a zero­
based integer subscript. If a new element is inserted into an array, then the ele­
ments above the insertion point are moved up. If an element above the current
array bound is to be set, then the programmer can specify whether the array is to
grow automatically. The subscript ([]) operator can be used to set or retrieve array
elements.

When growing is not required, array collection access is just as fast as standard C
array access. The added storage overhead is insignificant.

A "map" is a dictionary that maps keys to values. Seven map classes support
CString objects, words, CObject pointers, and void pointers. Consider the
CMapWordToOb class as an example. A WORD variable is used as a key to
find the corresponding CObject pointer. Duplicate key values are not allowed. A
key-pointer pair can be inserted only if the key is not already contained in the map.

Key lookups are fast because they rely on a hashing technique. A map can be
traversed, but the retrieval sequence is indeterminate. It makes sense, then, to it­
erate over all the elements in a map.

28 The Class Libraries Reference

2.5 Miscellaneous Support Classes
The Microsoft Foundation CString, CTime, and CTimeSpan classes are not
derived from CObject. They are discussed below.

The CString Class
The CString class supports dynamic character strings. CString objects can grow
and shrink automatically, and they can be serialized. Member functions and over­
loaded operators add Basic-like string-processing capability. These features make
CString objects easier to use than C-style fixed-length character arrays. Conver­
sion functions allow CString objects to be used interchangeably with C-style
strings. Thus a CString object can be passed to a function that expects a pointer to
a constant string (const char*) parameter.

Like other Microsoft Foundation classes, the CString class allocates memory on
the heap. You must be sure that CString destructors are called at appropriate
times in order to free unneeded memory. There is no automatic "garbage collec­
tion" as there is in Basic.

The CTime and CTimeSpan Classes
The CTime class encapsulates the run-time timL t data type. Thus it represents
absolute time values in the range 1900 to 2036, approximately. There are member
functions that convert a time value to years, months, days, hours, minutes, and sec­
onds. The class has overloaded insertion and extraction operators for archiving
and for diagnostic dumping.

The CTimeSpan class extends timL t by representing relative time values. If two
CTime objects are subtracted, the result is a CTimeSpan object. A CTimeSpan
object can be added to or subtracted from a CTime object. A CTimeSpan value is
limited to the range of ± 68 years, approximately.

2.6 Diagnostic Services
Several non-class-related functions and macros that provide diagnostic services
are available. Most of these require the Debug version of the Microsoft Founda­
tion Class Library and thus should not be used in released applications. For a
detailed description of the functions and macros available, see Chapter 4, "Diag­
nostic Services."

General-Purpose 29

Memory Diagnostics
Most applications use the C++ new operator to allocate memory on the heap. The
Microsoft Foundation classes provide a special Debug version of new that inserts
extra control bytes in allocated memory blocks. These control bytes, together with
the run-time class information that results from CObject derivation, allow you to
analyze memory allocation statistics and detect memory block bounds violations.

A memory dump can include the source filename and the line number of the allo­
cated memory, and, in the case of objects from CObject-derived classes, the name
of the class and the output from its Dump function.

Diagnostic Output

Assertions

Most programmers want diagnostic output statements in their programs, particu­
larly during the early stages of development. The TRACE statement acts like
printf except that it has no effect with the Release version of the library. In the
Windows environment, debugging output goes to the CodeView debugger if it is
present; otherwise it goes to device AUX.

You can use the afxDump dump context object for stream-style dumping of stand­
ard types as well as Microsoft Foundation class objects. If you use afxDump, be
sure to bracket references with #ifdef _DEBUG and #endif statements.

In the Debug environment, the ASSERT macro evaluates a specified condition. If
the condition is false, the macro prints the source filename and the line number,
then it terminates the program. In the Release environment, the statement has no
effect.

VERIFY, a companion macro, evaluates the condition in both the Debug and
Release environments. It prints and terminates only in the Debug environment.

With Windows, ASSERT and VERIFY display their messages in a pop-up
dialog box.

2.7 Exception Handling
The Microsoft Foundation Class Library includes an exception-handling mecha­
nism, similar to the one in the proposed ANSI C++ standard, for handling "abnor­
mal conditions." An abnormal condition is defined as a condition outside the
program's control that influences the outcome of a function. Abnormal conditions
include low memory, I/O errors, and attempted use of an unsupported feature.

30 The Class Libraries Reference

They do not include programming errors or "normally expected" conditions such
as end of file.

For exception-processing examples and a more detailed explanation of error cate­
gories, see Chapter 1& "Exceptions," in the Class Libraries User's Guide. For a
detailed description of the functions and macros available, see Chapter 5 of this
book, "Exception Processing."

Exception Classes and Macros
Exception handling in the Microsoft Foundation classes relies on "exception ob­
jects" and a group of macros. The process starts with the interruption of normal
program execution in response to a THROW statement (macro invocation). Ex­
ecution resumes at the appropriate CATCH statement leading into code that pre­
sumably deals with the abnormal condition. The exception objects, which are
instances of classes derived from CException, differentiate the various kinds of
exceptions and are used for communication.

This exception-handling scheme eliminates the need for extensive error testing
after every library function call. If, for example, you enclose your entire program
in an exception-handling block, then you don't have to test for low memory after
each statement that contains the new operator.

If you don't provide exception-processing code in your classes, then exceptions
will be caught in the Microsoft Foundation code. This results in termination of the
program through the global function AfxTerminate, which normally calls the run­
time function abort. You can use the AfxSetTerminate function to change the
effect of AfxTerminate.

When to Use Exception Handling
Out-of-memory and disk-full conditions could occur any time during program
execution. A TRY/CATCH sequence at the top level of your application can pro­
vide a warning message to the user, followed by a graceful exit.

Routine file exceptions can occur at a lower level in the application. If your pro­
gram attempts to open a nonexistent file, local CATCH logic can inform the user
or take other corrective action. A better alternative, however, might be an explicit
test for the file's presence.

If you want your program to keep running after the exception, be very careful to
clean up memory by deleting unused objects. Don't forget CString objects that
have been allocated on the stack.

Macros and Global Functions

This chapter briefly describes the macros and global functions available to
simplify your programming with the Microsoft Foundation Class Library. Most
programmers will find that the macros presented here meet most of their needs.
Advanced programmers may wish to use some of the global functions provided
for special needs.

All macros are listed in alphabetical order, followed by all global functions in al­
phabetical order. A few items not documented elsewhere are documented follow­
ing the alphabetical listings.

For easy reference, the following table shows where to find related discussion and
examples in other parts of the Class Libraries Reference and in the Class Libraries
User's Guide:

Category Reference Chapter User's Guide Chapter

Diagnostics Chapter 4 Chapter 2

Exceptions Chapter 5 Chapters 2 and 12

Message Map Chapter 6 Chapters 3 and 14

Run-Time Class CObject Chapter 8
Information

Serialization CObject Chapter 10

32 Th.e Class Libraries Reference

3.1 Alphabetical Listing of Macros
To find additional discussion and examples for a macro, see the table above, using
the category specified in the macro description below. Macros documented in this
section, in addition to the locations shown in the table, are indicated by the phrase
"Details follow."

AND_CATCH
Designates a block of code for catching the second or subsequent exception
from the preceding TRY block.

For additional information, see the Exceptions category in the table.

ASSERT
Prints a message and aborts the application if the specified expression evaluates
to FALSE in the Debug version of the library.

For additional information, see the Diagnostics category in the table.

ASSERT_ VALID
Tests the internal validity of an object by calling its AssertValid member func­
tion, typically overridden from CObject.

For additional information, see the Diagnostics category in the table.

BEGIN_MESSAGE_MAP
Sets up the message map for a window class.

For additional information, see the Message Map category in the table.

CATCH
Designates a block of code for catching the first exception from the preceding
TRY block.

For additional information, see the Exceptions category in the table.

DEBUG_NEW
Helps find memory leaks by providing a filename and line number for all object
allocations in Debug mode. Details follow.

For additional information, see the Diagnostics category in the table.

DECLARE_DYNAMIC
Prepares a class so that you can determine its name, the name of its base class,
and other information at run time. Details follow.

For additional information, see the Run-Time Information category in the table.

DECLARE_MESSAGE_MAP
Associates a message map with a window class declaration.

For additional information, see the Message Map category in the table.

Macros and Global Functions 33

DECLARE_SERIAL
Prepares a class to serialize its data to and from persistent storage. Details
follow.

For additional information, see the Serialization category in the table.

END_CATCH
Ends the last CATCH or AND_ CATCH block in an exception frame.

For additional information, see the Exceptions category in the table.

END_MESSAGE_MAP
Completes a message-map definition for a window class.

For additional information, see the Message Map category in the table.

IMPLEMENT_DYNAMIC
Enables a class so that you can determine its run-time information. Details
follow.

For additional information, see the Run-Time Information category in the table.

IMPLEMENT_SERIAL
Enables the ability of a class to serialize its data to and from persistent storage.
Details follow.

For additional information, see the Serialization category in the table.

RUNTIME_ CLASS
Returns a CRuntimeClass object from which you can extract run-time informa­
tion about a specified class. Details follow.

For additional information, see the Run-Time Information category in the table.

THROW
Throws a specified exception.

For additional information, see the Exceptions category in the table.

THROW_LAST
Invokes the exception handler in the next outer frame.

For additional information, see the Exceptions category in the table.

TRACE
Provides a printf-like capability in the Debug version of the library.

For additional information, see the Diagnostics category in the table.

TRY
Designates a block of code for exception processing.

For additional information, see the Exceptions category in the table.

VERIFY
Similar to ASSERT but evaluates the expression in the Release version of the
library as well as in the Debug version.

For additional information, see the Diagnostics category in the table.

34 The Class libraries Reference

3.2 Alphabetical Listing of Global Functions
To find additional discussion and examples for a global function, see the preced­
ing table, using the category specified in the function description below. Functions
that are documented in this section are indicated by the phrase "Details follow."

AfxAbort
The default function called by AfxTerminate.

For additional information, see the Exceptions category in the table.

AfxCheckMemory
Checks all currently allocated memory for corrupted guard bytes.

For additional information, see the Diagnostics category in the table.

AfxDoFor AIIClasses
Performs a specified function on all classes derived from CObject that support
run-time type checking and are used by the running program.

For additional information, see the Diagnostics category in the table.

AfxDoFor AIIObjects
Performs a specified function on all objects derived from CObject that support
run-time type checking and are used by the running program.

For additional information, see the Diagnostics category in the table.

AfxEnableMemoryTracking
Turns memory tracking on and off.

For additional information, see the Diagnostics category in the table.

AfxGetApp
Returns a pointer to the application's one CWinApp object. Details follow.

AfxGetAppName
Returns a string containing the application's name. Details follow.

AfxGetlnstanceHandle
Returns a HANDLE to the current instance of the application. Details follow.

AfxGetResourceHandle
Returns a HANDLE to the current instance of the application. Use this handle
to access the application's resources directly. Details follow.

AfxIsMemoryBlock
Verifies that a memory block has been properly allocated.

For additional information, see the Diagnostics category in the table.

AfxIs ValidAddress
Verifies that a memory block is within the program's bounds.

For additional information, see the Diagnostics category in the table.

Macros and Global Functions 35

AfxRegisterW ndClass
Registers a Windows window class to supplement those registered automat­
ically by the library. Details follow.

For additional information, see the Class Libraries User's Guide, Chapter 14,
"Window Management."

AfxSetAllocHook
Enables the calling of a function on each memory allocation.

For additional information, see the Diagnostics category in the table.

AfxSetAllocStop
Enables the calling of a function on the nth memory allocation.

For additional information, see the Diagnostics catgeory in the table.

AfxSetTerminate
Sets the final destination of calls to AfxTerminate.

For additional information, see the Exceptions category in the table.

AfxTerminate
Called internally ifthere is no applicable TRY/CATCH frame in effect.

For additional information, see the Exceptions category in the table.

AfxThrow ArchiveException
Throws an archive exception.

For additional information, see the Exceptions category in the table.

AfxThrowFileException
Throws a file exception.

For additional information, see the Exceptions category in the table.

AfxThrowMemoryException
Throws a memory exception.

For additional information, see the Exceptions category in the table.

AfxThrowN otSupportedException
Throws a not-supported exception.

For additional information, see the Exceptions category in the table.

AfxThrowResourceException
Throws a Windows resource-not-found exception.

For additional information, see the Exceptions category in the table.

36 The Class libraries Reference

3.3 Macros and Global Functions Not Documented Elsewhere

Syntax

Remarks

Return Value

Syntax

Remarks

Return Value

Syntax

Remarks

Return Value

AfxGetApp
CWinApp* AfxGetApp();

Returns a pointer to the one and only CWinApp object for the Windows applica­
tion. This pointer is useful for getting access to the main message dispatch code or
the topmost window.

A pointer to a CWinApp object.

AfxGetAppName
const char* AfxGetAppName();

Returns a null-terminated string containing the Windows application's name. This
string is useful for diagnostic messages or as a root for temporary string names.

A null-terminated string containing the application's name.

AfxGetlnstanceHandle
HANDLE AfxGetlnstanceHandle();

Returns a HANDLE to the current instance of the Windows application.

A HANDLE to the current instance of the application.

Syntax

Remarks

Return Value

Syntax

Parameters

Remarks

Macros and Global Functions 37

AfxGetResourceHandle
HANDLE AfxGetResourceHandle();

Returns a HANDLE to the current instance of the Windows application. Use this
handle to access the application's resources directly, for example in calls to the
Windows function FindResource.

Note Override and reimplement this function if you wish to load your resources
fromaDLL.

A HANDLE to the current instance of the application.

AfxRegisterWndClass
const char* AfxRegisterWndClass(UINT nClasstyle, HCURSOR hCursor = 0,

HBRUSH hbrBaekground = 0, HICON hleon = 0);

nClasstyle
The Windows class style or combination of styles for the window class. This
parameter can be any valid window style or control style, or a combination of
styles created by using the bitwise-OR (I) operator.

hCursor
A handle to the cursor resource to be installed in each window created from the
window class.

hbrBaekground
A handle to the brush resource to be installed in each window created from the
window class.

hIeon
A handle to the icon resource to be installed in each window created from the
window class.

Although the Microsoft Foundation Class Library automatically registers several
standard window classes for you, you can call this function to register your own
window classes. You may also use the function to change the application's icon,
although a simpler way is discussed in the Class Libraries User's Guide. For addi­
tional information, see Chapter 14, "Window Management." See that chapter as
well for more information about using AfxRegisterWndClass, and see Technical
Note 1, in the file TNOO 1. TXT on the distribution disks.

38 The Class Libraries Reference

Return Value

Syntax

Remarks

Syntax

Parameters

A null-terminated string containing the class name. You can pass this class name
to the CWnd::Create member function to create a window. The name is
generated by the Microsoft Foundation Class Library.

Note The return value is stored in a static buffer. To save this string, assign it to a
CString variable.

DEBUG_NEW Macro
#define new DEBUG_NEW

Use to assist in finding memory leaks. You can use DEBUG_NEW everywhere
in your program that you would ordinarily use the new operator to allocate heap
storage.

In Debug mode (when the _DEBUG symbol is defined), DEBUG_NEW keeps
track of the filename and line number for each object that it allocates. Then, when
you use the DumpAllObjectsince member function of class CMemoryState,
each object allocated with DEBUG_NEW is shown with the filename and line
number where it was allocated.

To use DEBUG_NEW, insert the define directive shown in the syntax line above
into your source files. Then wherever you use new, the preprocessor will insert
DEBUG_NEW, and the class library does the rest. When you compile a release
version of your program, DEBUG_NEW resolves to a simple new operation, and
the filename and line number information is not generated.

Note In Release mode, DEBUG_NEW is defined tobe the standard operator
new, so you can leave DEBUG_NEW in your code.

DECLARE_DYNAMIC Macro
DECLARE_DYNAMIC(className);

className
The name of the class that you want to be compliant with the ability of class
CObject to supply dynamic run-time class information.

Remarks

See Also

Syntax

Parameters

Remarks

Macros and Global Functions 39

Any class derived from class CObject can supply run-time information about it­
self and its base class, provided you invoke the DECLARE_DYNAMIC and
IMPLEMENT_DYNAMIC macros. This means you can determine the exact
class of an object at run time and also determine the base class from which it was
derived.

Put the DECLARE_DYNAMIC macro in your class declaration. Put the
IMPLEMENT_DYNAMIC macro in your .CPP file. These macros add code to
your class to enable dynamic run-time information.

You can access the dynamic information about a class with the Is Kind Of member
function of class CObject and with the RUNTIME_CLASS macro. This run­
time information is available and valid only for classes that have a single base
class. For more information and examples, see the Class Libraries User's Guide,
Chapter 8, "The CObject Class."

IMPLEMENT_DYNAMIC, RUNTIME_CLASS, CObject

DECLARE_ SERIAL Macro
DECLARE_SERIAL(className)

className
The name of the class that is to have serialization capability.

Classes that are derived from CObject can take advantage of the ability of
CObject ability to write its members to a persistent storage medium, such as a
disk file, and to read its persistent data back in.

DECLARE_SERIAL includes dynamic type information as well, so you don't
need DECLARE_DYNAMIC if you use DECLARE_SERIAL.

To take advantage of this ability, a derived class must use the
DECLARE_ SERIAL macro in its class declaration and the corresponding
IMPLEMENT_SERIAL macro in its .CPP file. The class must also override the
Serialize member function of class CObject.

40 The Class libraries Reference

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Put the DECLARE_ SERIAL macro at the beginning of your derived class decla­
ration. For more discussion and examples, see the Class Libraries User's Guide,
Chapter 2, "Creating a Data Model with the Microsoft Foundation Classes," and
Chapter 10, "Files and Serialization."

IMPLEMENT_SERIAL

IMPLEMENT_DYNAMIC Macro
IMPLEMENT_DYNAMIC(className, baseClassName)

className
The name of the class that you want to be compliant with the ability of class
CObject to supply dynamic run-time information.

baseClassName
The name of the base class of your compliant class.

Use in your .CPP file in conjunction with the DECLARE_DYNAMIC macro in
your .R file to allow your class to supply dynamic run-time information. This al­
lows you to query an object with the IsKindOf member function in class CObject
to determine its class and base class names. For discussion and examples, see the
Class Libraries User's Guide, Chapter 8, "The CObject Class."

DECLARE_DYNAMIC, CObject

IMPLEMENT_SERIAL Macro
IMPLEMENT_SERIAL(className, baseClassName, schemaNumber)

className
The name of the class that is to have the ability to serialize its members to per­
sistent storage.

baseClassName
The name ofthe base class of the serializable class.

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Example

Macros and Global Functions 41

schemaNumber
The version number for objects of this class. If you modify a class, you can
assign it a higher schema. Then, during serialization from storage to memory, if
the schema number of the object on disk does not match that of the class in
memory, an exception is thrown. This prevents you from reading an incorrect
version of an object. The schema number is an integer greater than or equal to O.

Use in your .CPP file to correspond to the DECLARE_SERIAL macro in your
.R file. This macro adds the necessary code to permit a class to serialize its mem­
bers. You must also override the Serialize member function of class CObject.

DECLARE_SERIAL, CObject::Serialize, CObject

RUNTIME_ CLASS Macro
RUNTIME_ CLASS(className)

className
The name of the class that you want run-time class information.

Use to extract the run-time class information for a specified class derived
from CObject. The macro returns an object of class CRuntimeClass. A
CRuntimeClass structure has member variables containing the class name, object
size, schema number, base class, and other information, which you can access
directly. CRuntimeClass is defined in the file AFX.R. You can also use the
IsKindOf member function of class CObject to query whether an object belongs
to a specified class. For more information and examples, see the Class Libraries
User's Guide, Chapter 8, "The CObject Class."

CObject: :IsKindOf, CRuntimeClass, CObject

CRuntimeClass* pCls;
pCls RUNTIME_CLASS(CObject);

Diagnostic Services

This chapter describes a group of macros and global functions that provide diag­
nostic services. All these functions, except as noted, require the Debug version of
the Microsoft Foundation Class Library.

In the Debug library, all allocated memory blocks are bracketed with a series of
"guard bytes." If these bytes are disturbed by an errant memory write, then the
diagnostic routines can report the problem.

If you include the line

#define new DEBUG_NEW

in your implementation file, then all calls to new will store the filename and line
number where the memory allocation took place. The DumpAllObjectsSince
function of the CMemoryState class will display this extra information, thus
greatly simplifying the identification of memory leaks.

Since many of these diagnostic functions are designed for tracking memory errors,
you should refer to the "Memory Management" section in Chapter 7 of the Class
Libraries User's Guide for a discussion of memory allocation for both MS-DOS
and Windows while using the Microsoft Foundation Class Library. Refer also to
the class CDumpContext for additional information on diagnostic output. The
cookbook section ofthe Class Libraries User's Guide, "Detecting Memory
Leaks" (page 290), illustrates the use of several key memory-diagnostic functions.

For a general discussion of diagnostic facilities, see Chapter 11, "Diagnostics," in
the Class Libraries User's Guide.

To use these macros and global functions, add the following directives to the top
of your program:

#define _DEBUG

#include <afx.h>

44 The Class Libraries Reference

4.1 General Diagnostic Macros
The following list describes general diagnostic macros:

ASSERT
Prints a message if the specified expression evaluates to FALSE in the Debug
version of the library, and then aborts the program.

ASSERT_ VALID
Tests the internal validity of an object by calling its AssertValid member func­
tion, typically overridden from CObject.

TRACE
Provides printf-like capability in the Debug version of the library.

VERIFY
Similar to ASSERT but evaluates the expression in the Release version of the
library as well as in the Debug version.

4.2 General Diagnostic Functions
The following list describes general diagnostic functions:

afxMemDF
Global variable that controls the behavior of the debugging memory allocator.

AfxCheckMemory
Checks all currently allocated memory for corrupted guard bytes.

AfxEnableMemoryTracking
Turns memory tracking on and off.

AfxIsMemoryBlock
Verifies that a memory block has been properly allocated.

AfxIsValidAddress
Verifies that any memory block is within the program's bounds.

AfxSetAllocHook
Enables the calling of a function on each memory allocation.

AfxSetAllocStop
Enables the calling of a function on the nth memory allocation.

Checkpoint
A CMemoryState member function that checkpoints a memory state.

CMemoryState
Constructor for a class-like structure that controls memory checkpointing.

Diagnostic Services 45

Difference
A CMemoryState member function that computes the difference between two
checkpointed memory states.

DumpAllObjectsSince
A CMemoryState member function that dumps all currently allocated objects
since the last checkpoint.

DumpStatistics
A CMemoryState member function that prints memory allocation statistics.

4.3 Object Diagnostic Functions
The following list describes object diagnostic functions:

AfxDoFor AllClasses
Performs a specified function on all CObject-derived classes that support
run-time type checking by using the DECLARE_DYNAMIC or
DECLARE_SERIAL macros.

AfxDoFor AllObjects
Performs a specified function on all CObject-derived objects that support run­
time type checking.

46 The Class libraries Reference

4.4 Global Variables

Syntax

Remarks

Example

afxMemDF
int afxMemDF;

An integer variable, easily accessible from a debugger, that tunes the allocation
diagnostics. It can have the following values as specified by the enumeration
afxMemDF:

allocMemDF

delayFreeMemDF

checkAlwaysMemDF

Turns on debugging allocator (default setting
in Debug library).

Delays freeing memory. While your program
frees a memory block.

Calls AfxCheckMemory every time memory
is allocated or freed. This will significantly
slow memory allocations and deallocations.

afxMemDF = delayFreeMemDF I checkAlwaysMemDF;

Diagnostic Services 47

4.5 Functions and Macros

Syntax

Remarks

Return Value

AfxCheckMemory
BOOL PASCAL AfxCheckMemoryO;

Iterates through all memory blocks currently allocated on the heap. These blocks
include those allocated by new, but not those allocated by direct calls to underly­
ing memory allocators such as malloc or ::GlobaIAlloc. If any block is found to
have corrupt guard bytes, a message is printed on stderr.

If the block contains an object of a class derived from CObject, then the function
reports an Obj ect, otherwise it reports a Non-Obj ect. It always reports an
address that corresponds to the address printed by DumpAllObjectsSince.

Additionally, the function validates the free memory pool, printing error messages
as required.

If the function detects no memory corruption, it prints nothing.

If you include the line

#define new DEBUG_NEW

in a program module, then subsequent calls to AfxCheckMemory show the
filename and line number where the memory was allocated.

Note If your module contains one or more implementations of serializable
classes, then you must put the new redefinition statement after the last
IMPLEMENT_SERIAL macro invocation.

TRUE if no memory errors; otherwise FALSE.

48 The Class Libraries Reference

Example

Syntax

Parameters

Remarks

CAge* pcage = new CAge(21); II CAge is derived from CObject
Age* page = new Age(22); II Age is NOT derived from CObject
«(char) pcage) - 1) = 99; II Corrupt preceding guard byte
«(char) page) - 1) = 99; II Corrupt preceding guard byte
AfxCheckMemory();

1* T Y PIC A L RES U L T S
memory check error at $0067495F = $63, should be $FD
DAMAGE: before Non-Object block at $00674960
Non-Object allocated at file test02.cxx(48)
Non-Object located at $00674960 is 2 bytes long

memory check error at $00674905 = $63, should be $FD
DAMAGE: before Object block at $00674906
Object allocated at file test02.cxx(47)
Object located at $00674906 is 4 bytes long
*1

AfxDoForAIiClasses
void PASCAL AfxDoForAllClasses(void (*pfit)(const CRuntimeClass* pClass,

void* pContext), void* pContext);

pfit
A pointer to an iteration function to execute for each class. The function argu­
ments are a pointer to a CRuntimeClass object and an optional void pointer to
extra data that the caller supplies to the function.

pClass
A pointer to a CRuntimeClass object. AfxDoForAllClasses uses this parame­
ter to pass each eligible class in turn to the iteration function.

pContext
A pointer to optional data that the caller can supply to the iteration function.

Executes the specified iteration function for all CObject-derived classes in
the application's memory space that support run-time type checking using the
DECLARE_DYNAMIC or DECLARE_ SERIAL macros. The pointer passed

to AfxDoForAllClasses in pContext is passed to the specified iteration function
each time it is called.

Note This function only works in the Debug version of the library.

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

Return Value

Diagnostic Services 49

AfxDoForAIiObjects
void PASCAL AfxDoForAllObjects(void (*pfn)(CObject* pObject,

void* pContext), void* pContext);

Pfn
A pointer to an iteration function to execute for each object. The function argu­
ments are a pointer to a CObject and an optional void pointer to extra data that
the caller supplies to the function.

pObject
A pointer to an object of class CObject or a class derived from it.
AfxDoForAlIObjects uses this parameter to pass each eligible object in turn to
the iteration function.

pContext
A pointer to optional data that the caller can supply to the iteration function.

Executes the specified iteration function for all objects derived from CObject in
the application's memory space. The objects must have been allocated with new;
stack objects are not enumerated. The pointer passed to AfxDoForAlIClasses in
pContext is passed to the specified iteration function each time it is called.

Note This function only works in the Debug version of the library.

AfxEnableMemoryTracking
BOOL PASCAL AfxEnableMemoryTracking(BOOL bTrack);

bTrack
TRUE turns on memory tracking; FALSE turns it off.

Diagnostic memory tracking is normally enabled in the Debug version of the
Microsoft Foundation classes. Use this function to disable tracking on sections of
your code that you know are allocating blocks correctly.

The previous setting of the tracking-enable flag.

50 The Class Libraries Reference

Syntax

Parameters

Remarks

Return Value

Example

See Also

AfxlsMemoryBlock
BOOL PASCAL AfxIsMemoryBlock(const void* p, UINT nBytes,

LONG* plRequestNumber = NULL);

p
A void pointer to the block of memory to be tested.

nBytes
The length of the memory block in bytes.

plRequestNumber
A pointer to a long integer that will be filled in with the memory block's alloca­
tion sequence number. The variable pointed to by plRequestNumber will only
be filled in if AfxIsMemoryBlock returns TRUE.

Tests a memory address to make sure it represents a currently active memory
block that was allocated by the diagnostic version of new. It also checks the
specified size against the original allocated size. The allocation sequence number
that is returned in plRequestNumber if the function returns TRUE is the order in
which the block was allocated relative to all other new allocations.

TRUE if the memory block is currently allocated and the length is correct; other­
wise FALSE.

CAge* pcage = new CAge(21); II CAge is derived from CObject
if(AfxIsMemoryBlock(pcage, sizeof(CAge)) != TRUE)

exit(1); II Invalid memory

AfxIs ValidAddress

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

Diagnostic Services 51

AfxlsValidAddress
BOOL FAR PASCAL AfxIsValidAddress(const void FAR* lp, UINT nBytes,

BOOL bReadWrite = TRUE);

lp
Points to the block of memory to be tested.

nBytes
Contains the length of the memory block in bytes.

bReadWrite
Specifies whether the memory is both for reading and writing.

Tests any memory block to ensure that it is contained entirely within the pro­
gram's memory space. The address is not restricted to blocks allocated by new.

Note With MS-DOS real mode, only addresses with null selectors are invalid; all
others are valid. A huge pointer cast to aFAR pointer cannot be used as a parame­
ter to AfxIs ValidAddress.

TRUE if the specified memory block is contained entirely within the program's
memory space; otherwise FALSE.

char* pbuf = (char*) malloc(10);
if(AfxIsValidAddress(pbuf, 10, TRUE) != TRUE)

exit(1); II Invalid memory

AfxIsMemoryBlock

AfxSetAliocHook
AF~ALLOC_HOOK AfxSetAllocHook(AF~ALLOC_HOOK

pfnAliocHook);

pfnAliocHook
The name of the function to call. The function must return a BOOL value and
accept size_ t, BOOL, and long arguments.

52 The Class Libraries Reference

Remarks

Hook Function

Syntax

Parameters

Remarks

Sets a hook that enables calling of the specified function each time memory is
allocated.

The hook function is described below.

The Microsoft Foundation Class Library debug memory allocator can call a user­
defined hook function to allow the user to control whether to permit the allocation.

Allocation hook functions are prototyped as:

BOOL AllocHook(size_t nSize, BOOL bObject, LONG lRequestNumber);

Parameter

nSize

bObject

lRequestNumber

Return Value

Description

The size of the proposed memory allocation.

TRUE if the allocation is for a CObject-derived object.

The memory allocation's sequence number.

TRUE if you want to permit the allocation; otherwise FALSE.

AfxSetAllocStop
void PASCAL AfxSetAllocStop(LONG lRequestNumber);

lRequestNumber
The sequence number of the memory allocation on which the program will halt.

Each memory allocation is assigned a sequential serial number. This function
forces the program to halt (using the INT 3 interrupt) on the specified memory al­
location sequence number. This is useful if you are running the program from
within a debugger. You can obtain the allocation sequence number to pass in
IRe quest Number by calling AfxIsMemoryBlock.

Syntax

Parameters

Remarks

Example

See Also

Syntax

Parameters

Remarks

Diagnostic Services 53

ASSERT Macro
ASSERT(booleanExpression);

booleanExpression
An expression (including pointer values) that evaluates to TRUE or FALSE.

The ASSERT macro evaluates its argument. If the result is FALSE, the macro
prints a diagnostic message and aborts the program. If the condition is TRUE, it
does nothing.

The diagnostic message has the form:

assertion failed in file <name> in line <num>

where name is the name of the source file, and num is the line number of the
assertion that failed in the source file.

In the Release environment, ASSERT does not evaluate the expression and thus
will not interrupt the program. If the expression must be evaluated regardless of en­
vironment, use the VERIFY macro in place of ASSERT.

CAge* pcage = new CAge(21); II CAge is derived from CObject
ASSERT(pcage->IsKindOf(RUNTIME_CLASS(CAge)));
II Terminates program only if pcage is NOT a CAge*

VERIFY

ASSERT_ VALID Macro
ASSERT_ VALID(object);

object
An object of a class derived from CObject and with an overriding version of
the AssertValid member function.

Use to test your assumptions about the validity of an object's internal state.
ASSERT_ VALID calls the AssertValid member function of the object passed as
its argument. By default, the AssertValid member function of class CObject is
called, but typically you override AssertValid in classes that you derive from
CObject so the overriding version will be called. In your AssertValid override,

54 The Class libraries Reference

See Also

Syntax

Remarks

Example

Syntax

Remarks

Example

you can test the object's internal validity. For example, if the object represents a
linked list, you could verify that the head and tail pointers are NULL if the list is
empty and not NULL if the list is not empty.

For more information and examples, see the Class Libraries User's Guide, Chap­
ters 4 and 11, "Phone Book: A Simple Windows Database," and "Diagnostics."

ASSERT, VERIFY, CObject, CObject::AssertValid

CMemoryState::Checkpoint
void CheckpointO;

Takes a snapshot summary of memory and stores it in this CMemoryState object.
The CMemoryState member functions Difference and DumpAIIObjectsSince
use this snapshot data.

See the example for the CMemoryState constructor.

CMemoryState::CMemoryState
CMemoryStateO;

Constructs an empty CMemoryState object that must be filled in by the
Checkpoint or Difference member functions.

II Includes all CMemoryState functions
CMemoryState cmOld, cmNew, cmDif;
cmOld.Checkpoint();
CAge* pagel = new CAge(21);
CAge* page2 = new CAge(22);
cmOld.DumpAllObjectsSince();
cmNew.Checkpoint();
cmDif.Difference(cmOld, cmNew);
cmDif.DumpStatistics();

Syntax

Parameters

Remarks

Example

Syntax

Remarks

Example

CMemorySlale::Difference
BOOL Difference(const CMemoryState& oldState,

const CMemoryState& newState);

oldState

Diagnostic Services 55

The initial memory state, as defined by a CMemoryState checkpoint.

newState
The new memory state, as defined by a CMemoryState checkpoint.

Compares two checkpointed CMemoryState objects, then stores the difference
into this CMemoryState object. Checkpoint must have been called for each of
the two memory-state parameters.

See the example for the CMemoryState constructor.

CMemorySlale::DumpAIIObjeclsSince
void DumpAllObjectsSinceO const;

Calls the Dump function for all objects of derived CObject classes that
were allocated (and are still allocated) since the last Checkpoint call for this
CMemoryState object.

Use DumpAllObjectsSince in conjunction with AfxCheckMemory to match re­
ported corrupted memory with the contents of the objects contained there.

Calling DumpAllObjectsSince with an uninitialized CMemoryState object will
dump out all objects currently in memory.

See the example for the CMemoryState constructor.

56 The Class Libraries Reference

Syntax

Remarks

Example

Syntax

Parameters

Remarks

Example

CMemoryState::DumpStatistics
void DumpStatisticsO const;

Prints, on afxDump, a concise memory statistics report from a CMemoryState
object that is filled by the Difference member function. The report shows the
following:

• CObject blocks still allocated on the heap.

• Non-CObject blocks still allocated on the heap.

• The maximum memory used by the program at anyone time.

• The total memory currently used by the program.

For a detailed description of the report, see the Class Libraries User's Guide sec­
tion "Detecting Memory Leaks," on page 290.

See the example for the CMemoryState constructor.

TRACE Macro
TRACE(exp);

exp
A variable number of arguments used exactly in the same way as the run-time
function printfuses them.

In the Debug environment, the TRACE macro output goes to afxDump. In the Re­
lease environment, it does nothing. This is a convenient way of generating debug­
ging output that will appear only in the Debug version of your program.

int i = 1;
char sz[] = "one";
TRACE("Integer = %d, String = %s\\n", i, sz);
II Output: 'Integer = I, String = one'

Syntax

Parameters

Remarks

Example

See Also

Diagnostic Services 57

VERIFY Macro
VERIFY(booleanExpression);

exp
An expression (including pointer values) that evaluates to TRUE or FALSE.

In the Debug version of the Microsoft Foundation Class Library, the VERIFY
macro evaluates its argument. If the result is FALSE, the macro prints a diagnos­
tic message and halts the program. If the condition is TRUE, it does nothing.

The diagnostic message has the form:

assertion failed in file <name> in line <num>

where name is the name ofthe source file and num is the line number of the
assertion that failed in the source file.

In the Release version of the Microsoft Foundation Class Library, VERIFY evalu­
ates the expression but does not print or interrupt the program. For example, if the
expression is a function call, the call will be made.

CFile f;
VERIFY(f.Open("file.dat", CFile::modeCreate I CFile::modeWrite));
II Terminates program if Open fails; always executes Open

ASSERT

Exception Processing

This chapter describes macros and global functions that relate to exception
processing.

For examples and more details, see the section "Exception Handling" (on page 61
in Chapter 2) and the section "Catching Exceptions" (in Chapter 12, "Excep­
tions"), both in the Class Libraries User's Guide. You may also wish to refer to
class CException, later in this book.

Note The AfxThrow functions are equivalent to the THROW macro with the ap­
propriate exception class as an argument.

To use these macros and global functions, add the following directive at the top of
your program:

#include <afx.h>

5.1 Exception Macros
TRY

Designates a block of code for exception processing.

CATCH
Designates a block for catching an exception from the preceding TRY block.

AND_CATCH
Designates a block for catching additional exception types from the preceding
TRY block.

END_CATCH
Ends the last CATCH or AND_ CATCH block.

60 The Class libraries Reference

THROW
Throws a specified exception.

THROW_LAST
Invokes the exception handler in the next outer frame.

5.2 Exception Throwing Functions
AfxThrow ArchiveException

Throws an archive exception.

AfxThrowFileException
Throws a file exception.

AfxThrowMemoryException
Throws a memory exception.

AfxThrowNotSupportedException
Throws a not-supported exception.

AfxThrow ResourceException
Throws a Windows resource-not-found exception.

5.3 Termination Functions
AfxTerminate

Called internally ifthere is no applicable TRY/CATCH in effect.

AfxSetTerminate
Sets the final destination of calls to AfxTerminate.

AfxAbort
The default function called by AfxTerminate.

Exception Processing 61

5.4 Functions and Macros

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

AfxAbort
void CDECL AfxAbortO;

This is the default termination function supplied by the Microsoft Foundation
classes.

AfxSetTerminate, AfxTerminate

AfxSetTerminate
AF~ TER~PROC AfxSetTerminate(AFX_ TERM_PROC proc);

proc
The name of a termination function that will be called by AfxTerminate.
Termination functions must take no arguments and return nothing.

Links AfxTerminate to the specified function. The default termination function is
AfxAbort. AfxTerminate is called internally by Microsoft Foundation member
functions when there is a fatal error, such as an uncaught exception.

62 The Class libraries Reference

Example

See Also

Syntax

Remarks

See Also

void MyTerminateProc() II Called instead of AfxAbort
{

}

printf("Qut of memoryl\\n");
exit(1);

void maine)
{

AfxSetTerminate(MyTerminateProc);

while (1)
{

II new calls AfxTerminate if unsuccessful
BYTE * P = new BYTE[1024]; II Consume memory
pri ntf("consumed memory at $%x\ \n", p);

AfxAbort, AfxTerminate

AfxTerminate
void CDECL AfxTerminateO;

Called internally by Microsoft Foundation member functions when there is a fatal
error, such as an uncaught exception. Normally, AfxTerminate calls AfxAbort,
but you can use AfxSetTerminate to enable the calling of a different function.

You can call AfxTerminate any time you encounter an error from which you can­
not recover.

AfxAbort, AfxSetTerminate

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

See Also

Exception Processing 63

AfxThrowArchiveException
void PASCAL AfxThrowArchiveException(int cause);

cause
An integer that indicates the reason for the exception. For a list of the possible
values, see CArchiveException: :m_ cause

Throws CArchiveException. This is a helper function used in the implementation
of the Microsoft Foundation classes.

AfxThrowFileException
void PASCAL AfxThrowFileException(int cause, LONG lOsError = -1);

cause
An integer that indicates the reason for the exception. For a list of the possible
values, see CFileException: :m_ cause.

lOsError
An operating-system-specific reason for the exception, if available. The
IOsErrorparameter provides more information than cause.

Throws a CFileException. You are responsible for determining the cause based
on the operating system error code. This is a helper function used in the implemen­
tation of the Microsoft Foundation classes.

Call this function when you implement your own low-level file operations in a
derived file class.

CFileException: : ThrowOsError

64 The Class libraries Reference

Syntax

Remarks

Syntax

Remarks

Syntax

Remarks

AfxThrowMemoryException
void PASCAL AfxThrowMemoryExeeptionO;

Throws a CMemoryExeeption. This is a helper function used in the implementa­
tion of the Microsoft Foundation classes.

Call this function if calls to underlying system memory allocators (such as malloe
and: : GlobalAlloe) fail. You do not need to call it for new because new makes the
call internally.

AfxThrowNotSupportedException
void PASCAL AfxThrowNotSupportedExeeptionO;

Throws a CNotSupportedExeeption. This is a helper function used in the im­
plementation of the Microsoft Foundation classes.

AfxThrowResourceException
void PASCAL AfxThrowResoureeExeeptionO;

Throws a CResoureeExeeption. It is normally called when a Windows resource
cannot be loaded. This is a helper function used in the implementation of the
Microsoft Foundation classes.

Note This function requires the statement #include <afxwin.h>.

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Exception Processing 65

AND_CATCH Macro
AND_ CATCH(exception_class, exception_objectyointer _name)

exception_class
The specific exception type to test for. For a list of standard exception classes,
see CException.

exception_objectyointer _name
A name for an exception object pointer that will be created by the macro.
You can use the pointer name to access the exception object within the
AND_ CATCH block.

Defines a block of code for catching additional exception types thrown in a preced­
ing TRY block. Use the CATCH macro to catch one exception type, then the
AND_ CATCH macro to catch each subsequent type.

The exception-processing code can interrogate the exception object, if appropriate,
to get more information about the specific cause of the exception. Invocation of
the THROW_LAST macro within the AND_CATCH block shifts processing to
the next outer exception frame.

Note The AND_ CATCH block is defined as a c++ scope (delineated by curly
braces). If you declare variables in this scope, remember that they are accessible
only within that scope.

AND_ CATCH marks the end of the preceding CATCH or AND_ CA TCH block.

TRY, CATCH, THROW, END_CATCH, THROW_LAST

CATCH Macro
CATCH(exception_class, exception_objectyointer _name)

exception_class
The specific exception type to test for. For a list of standard exception classes,
see CException.

exception_objectyointer _name
A name for an exception object pointer that will be created by the macro. You
can use the pointer name to access the exception object within the CATCH
block.

66 The Class Libraries Reference

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Defines a block of code for catching the first exception type thrown in a preceding
TRY block. The exception-processing code can interrogate the exception object, if
appropriate, to get more information about the specific cause of the exception. In­
vocation of the THROW_LAST macro shifts processing to the next outer excep­
tion frame.

Note The CATCH block is defined as a C++ scope (delineated by curly braces).
If you declare variables in this scope, remember that they are accessible only
within that scope.

If exception_class is CException, then all exception types will be caught. You can
use CObject::IsKindOfto determine which specific exception was thrown. A bet­
ter way to catch several kinds of exceptions is to use sequential AND_ CA TCH
statements, each with a different exception type.

Note The exception object is created by the macro. You do not need to declare it
yourself.

TRY, AND_ CATCH, END_ CATCH, THROW, THROW_LAST

END_CATCH Macro
END_CATCH

Marks the end of the last CATCH or AND_ CATCH block.

TRY, CATCH, THROW, AND_CATCH, THROW_LAST

THROW Macro
THROW(exception_objectyointer);

exception_objectyointer
Points to an exception object derived from CException.

Throws the specified exception. It interrupts program execution, passing control to
the associated CATCH block in your program. If you have not provided the

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Exception Processing 67

CA TCH block, then control is passed to a Microsoft Foundation Class Library
module that prints an error message and exits.

THROW_LAST Macro
THROW _LASTO;

Rethrows the exception back to the next outer CATCH block. If your code does
not contain an outer block, then the Microsoft Foundation Class Library prints an
appropriate error message and terminates the program, just as it would if you pro­
vided no exception-processing logic.

This allows you to throw a locally created exception. If you try to throw an excep­
tion that you have just caught, it will normally go out of scope and be deleted.
With THROW_LAST, the exception is passed correctly to the next CATCH
handler.

TRY, CATCH, THROW, AND_CATCH, END_CATCH

TRY Macro
TRY

Identifies a block of code that might throw exceptions. Those exceptions are
handled in the following CATCH and AND_ CATCH blocks. Recursion is al­
lowed: exceptions may be passed to an outer TRY block, either by ignoring them
or by using the THROW_LAST macro.

Note The TRY block is defined as a C++ scope (delineated by curly braces). If
you declare variables in this scope, remember that they are accessible only within
that scope.

THROW, CATCH, AND_CATCH, END_CATCH

Message Map Cross-Reference

This chapter lists all possible CWnd message map entries along with the corre­
sponding member function prototypes.

6.1 How to Use the Cross-Reference
In entries where the term memberFxn is used, you must write your own member
function for a derived CWnd class. You can give these functions any name you
like. Other functions, such as OnActivate, are member functions of the CWnd
base class that, if called, pass the message to the DefWindowProc Windows func­
tion. If you wish to process Windows notification messages, you must override the
corresponding CWnd function in your derived class. Your function should call the
overridden function in your base class so that the base class(es), and Windows,
can operate on the message.

In all cases you must put the function prototype in the CWnd-derived class
header, and you must code the message map entry as shown. See Chapter 14 of
the Class Libraries User's Guide cookbook for message map examples.

The term id is any user-defined menu item ID (WM_COMMAND messages) or
controlID (child window notification messages). The terms message and
wNotifyCode are the Windows message IDs as defined in WINDOWS.H. The
term nMessageVariable is the name of a variable that contains the return value
from the RegisterWindowMessage Windows function. It must be declared
NEAR.

70 The Class Libraries Reference

6.2 Message Map Function Categories
The rest of this section is divided into the following categories. Each category rep­
resents a group of Windows messages for which the Microsoft Foundation Class
Library provides handler functions that you can override in your derived window
classes.

• Handlers for WM_ COMMAND messages generated by user menu selections

• Handlers for WM_ COMMAND messages generated by keys

• Handlers for notification messages from child windows

• Handlers for WM_ messages, such as WM_PAINT

6.3 Handlers for WM_ COMMAND Messages
Map Entry Function Prototype

ON_ COMMAND(id, memberFxn) afLllsg void memberFxn();

6.4 Handlers for Child Window Notification Messages

Generic Control Notification Codes
Map Entry

ON_ CONTROL(wNotifyCode, id, memberFxn)

User Button Notification Codes
Map Entry

ON_BN_ CLICKED(id, memberFxn)

ON_BN_DISABLE(id, memberFxn)

ON_BN_DOUBLECLICKED(id, memberFxn)

ON_BN_HILITE(id, memberFxn)

ON_BN_PAINT(id, memberFxn)

ON_BN_ UNHILITE(id, memberFxn)

Function Prototype

afLllsg void memberFxn();

Function Prototype

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afx_llsg void memberFxn();

Combo Box Notification Codes
Map Entry

ON_CBN_DBLCLK(id, memberFxn)

ON_CBN_DROPDOWN(id, memberFxn)

ON_CBN_EDITCHANGE(id, memberFxn)

ON_CBN_EDITUPDATE(id, memberFxn)

ON_CBN_ERRSPACE(id, memberFxn)

ON_ CBN_ KILLFOCUS(id, memberFxn)

ON_ CBN_ SELCHANGE(id, memberFxn)

ON_ CBN_ SETFOCUS(id, memberFxn)

Edit Control Notification Codes
Map Entry

ON_EN_CHANGE(id, memberFxn)

ON_EN_ERRSPACE(id, memberFxn)

ON_EN_HSCROLL(id, memberFxn)

ON_EN_KILLFOCUS(id, memberFxn)

ON_EN_MAXTEXT(id, memberFxn)

ON_EN_SETFOCUS(id, memberFxn)

ON_EN_ UPDATE(id, memberFxn)

ON_EN_ VSCROLL(id, memberFxn)

List Box Notification Codes
Map Entry

ON_LBN_DBLCLK(id, memberFxn)

ON_LBN_ERRSPACE(id, memberFxn)

ON_LBN_KILLFOCUS(id, memberFxn)

ON_LBN_SELCHANGE(id, memberFxn)

ON_LBN_SETFOCUS(id, memberFxn)

Message Map Cross-Reference 71

Function Prototype

afLllsg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afx_llsg void memberFxn();

afLllsg void memberFxn();

Function Prototype

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afLllSg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllSg void memberFxn();

Function Prototype

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

afLllsg void memberFxn();

72 The Class libraries Reference

6.5 Handlers for Windows Notification Messages
Map Entry

ON_ WM_ACTIVATE()

ON_ WM_ACTIVATEAPP()

ON_ W~ASKCBFORMATNAME()

ON_ WM_ CANCELMODE()

ON_ WM_ CHANGECBCHAIN()

ON_ W~CHAR()

ON_ WM_ CHARTOITEM()

ON_ WM_CHILDACTIVATE()

ON_ W~ CLOSE()

ON_ W~COMPACTING()

ON_ WM_ COMPAREITEM()

ON_ W~CREATE()

ON_ WM_ CTLCOLOR()

ON_ WM_DEADCHAR()

ON_ WM_DELETEITEM()

ON_ W~DESTROY()

ON_ WM_DESTROYCLIPBOARD()

ON_ WM_DEVMODECHANGE()

ON_ WM_DRAWCLIPBOARD()

ON_ W~DRAWITEM()

ON_ W~ENABLE()

ON_ W~ENDSESSION()

ON_ WM_ENTERIDLE()

ON_ WM_ERASEBKGND()

Function Prototype

afLmsg void OnActivate(DINT, CWnd*, BOOL);

afLmsg void OnActivateApp(BOOL, HANDLE);

afLmsg void OnAskCbFormatName(DINT,
LPSTR);

afLmsg void OnCancelMode();

afLmsg void OnChangeCbChain(HWND,
HWND);

afLmsg void OnChar(DINT, DINT, DINT);

afLmsg int OnCharToItem(DINT, CWnd*,
DINT);

afLmsg void OnChildActivate();

afLmsg void OnClose();

afLmsg void OnCompacting(DINT);

afLmsgint
OnCompareItem(LPCOMPAREITEMSTRDCT);

afLmsg int OnCreate(LPCREATESTRDCT);

afLmsg HBRDSH OnCtlColor(CDC*, CWnd*,
DINT);

afLmsg void OnDeadChar(DINT, DINT, DINT);

afLmsg void OnDeleteItem
(LPDELETEITEMSTRDCT);

afLmsg void OnDestroy();

afLmsg void OnDestroyClipboard();

afLmsg void OnDevModeChange(LPSTR);

afLmsg void OnDrawClipboard();

afLmsgvoid
OnDrawItem(LPDRAWITEMSTRDCT);

afLmsg void OnEnable(BOOL);

afLmsg void OnEndSession(BOOL);

afLmsg void OnEnterIdle(DINT, CWnd*);

afLmsg BOOL OnEraseBkgnd(CDC*);

Map Entry

ON_ W~FONTCHANGE()

ON_ W~ GETDLGCODE()

ON_ W~ GETMINMAXINFO()

ON_ W~HSCROLL()

ON_ WM_HSCROLLCLIPBOARD()

ON_ W~ICONERASEBKGND()

ON_ WM_INITMENU()

ON_ W~INITMENUPOPUP()

ON_ W~KEYDOWN()

ON_ W~KEYUP()

ON_ W~KILLFOCUS()

ON_ W~LBUTTONDBLCLK()

ON_ W~LBUTTONDOWN()

ON_ W~LBUTTONUP()

ON_ W~MBUTTONDBLCLK()

ON_ W~MBUTTONDOWN()

ON_ W~MBUTTONUP()

ON_ WM_MDIACTIVATE()

ON_ W~MEASUREITEM()

ON_ W~MENUCHAR()

ON_ W~MENUSELECT()

ON_ W~MOUSEACTIVATE()

ON_ W~MOUSEMOVE()

ON_ W~MOVE()

ON_ W~NCACTIVATE()

Message Map Cross-Reference 73

Function Prototype

afLmsg void OnFontChange();

afLmsg UINT OnGetDlgCode();

afLmsg void OnGetMinMaxInfo(LPPOINT);

afLmsg void OnHScroll(UINT, UINT, CWnd*);

afLmsg void OnHScrollClipboard(CWnd*, UINT,
UINT);

afLmsg void OnIconEraseBkgnd(CDC*);

afLmsg void OnInitMenu(CMenu*);

afLmsg void OnInitMenuPopup(CMenu*, UINT,
BOOL);

afLmsg void OnKeyDown(UINT, UINT, UINT);

afLmsg void OnKeyUp(UINT, UINT, UINT);

afLmsg void OnKillFocus(CWnd*);

afLmsg void OnLButtonDblClk(UINT, CPoint);

afLmsg void OnLButtonDown(UINT, CPoint);

afLmsg void OnLButtonUp(UINT, CPoint);

afLmsg void OnMButtonDblClk(UINT, CPoint);

afLmsg void OnMButtonDown(UINT, CPoint);

afLmsg void OnMButtonUp(UINT, CPoint);

afLmsg void OnMDIActivate(BOOL, CWnd*,
CWnd*);

afLmsg void
OnMeasureItem(LPMEASUREITEMSTRUCT);

afLmsg LONG OnMenuChar(UINT, UINT,
CMenu*);

afLmsg void OnMenuSelect(UINT, UINT,
HMENU);

afLmsg int OnMouseActivate(CWnd*, UINT,
UINT);

afLmsg void OnMouseMove(UINT, CPoint);

afLmsg void OnMove(int, int);

afLmsg BOOL OnNcActivate(BOOL);

74 The Class Libraries Reference

Map Entry

ON_ W~NCCALCSIZE()

ON_ WM_NCCREATE()

ON_ W~NCDESTROY()

ON_ W~NCHITTEST()

ON_ W~NCLBUTTONDBLCLK()

ON_ WM_NCLBUTTONDOWN()

ON_ WM_NCLBUTTONUP()

ON_ WM_NCMBUTTONDBLCLK()

ON_ WM_NCMBUTTONDOWN()

ON_ WM_NCMBUTTONUP()

ON_ WM_NCMOUSEMOVE()

ON_ WM_NCPAINT()

ON_ WM_NCRBUTTONDBLCLK()

ON_ WM_NCRBUTTONDOWN()

ON_ WM_NCRBUTTONUP()

ON_ WM_PAINT()

ON_ WM_PAINTCLIPBOARD()

ON_ WM_PAINTICON()

ON_ WM_PALETTECHANGED()

ON_ WM_PARENTNOTIFY()

ON_ WM_QUERYDRAGICON()

ON_ W~ QUERYENDSESSION()

ON_ WM_QUERYNEWPALETTE()

ON_ WM_QUERYOPEN()

Function Prototype

afx_msg void OnNcCalcSize(LPRECT);

afx_msg BOOL
OnNcCreate(LPCREATESTRUCT);

afx_msg void OnNcDestroy();

afx_msg UINT OnNcHitTest(CPoint);

afLmsg void OnNcLButtonDblClk(UINT,
CPoint);

afLmsg void OnNcLButtonDown(UINT, CPoint);

afx_msg void OnNcLButtonUp(UINT, CPoint);

afx_msg void OnNcMButtonDblClk(UINT,
CPoint);

afLmsg void OnNcMButtonDown(UINT, CPoint);

afLmsg void OnNcMButtonUp(UINT, CPoint);

afLmsg void OnNcMouseMove(UINT, CPoint);

afLmsg void OnNcPaint();

afLmsg void OnNcRButtonDblClk(UINT,
CPoint);

afLmsg void OnNcRButtonDown(UINT, CPoint);

afLmsg void OnNcRButtonUp(UINT, CPoint);

afLmsg void OnPaint();

afLmsg void OnPaintClipboard(CWnd*,
HANDLE);

afLmsg void OnPaintIcon();

afLmsg void OnPaletteChanged(CWnd*);

afLmsg void OnParentNotify(UINT, LONG);

afLmsg HCURSOR OnQueryDragIcon();

afLmsg BOOL OnQueryEndSession();

afLmsg BOOL OnQueryNewPalette();

afLmsg BOOL OnQueryOpen();

Map Entry

ON_ W~RBUTTONDBLCLK()

ON_ W~RBUTTONDOWN()

ON_ W~RBUTTONUP()

ON_ W~RENDERALLFORMATS()

ON_ W~RENDERFORMAT()

ON_ W~SETCURSOR()

ON_ W~SETFOCUS()

ON_ W~SHOWWINDOW()

ON_ W~SIZE()

ON_ W~SIZECLIPBOARD()

ON_ W~SPOOLERSTATUS()

ON_ W~SYSCHAR()

ON_ W~SYSCOLORCHANGE()

ON_ W~SYSCOMMAND()

ON_ W~SYSDEADCHAR()

ON_ W~SYSKEYDOWN()

ON_ W~SYSKEYUP()

ON_ W~ TIMECHANGE()

ON_ W~ TIMER()

ON_ W~ VKEYTOITEM()

ON_ W~ VSCROLL()

ON_ W~ VSCROLLCLIPBOARD()

ON_ W~ WININICHANGE()

Message Map Cross-Reference 75

Function Prototype

afLmsg void OnRButtonDblClk(UINT, CPoint);

afLmsg void OnRButtonDown(UINT, CPoint);

afLmsg void OnRButtonUp(UINT, CPoint);

afLmsg void OnRenderAllFormats();

afLmsg void OnRenderFormat(UINT);

afx_msg BOOL OnSetCursor(CWnd*,
UINT, UINT);

afLmsg void OnSetFocus(CWnd*);

afLmsg void OnShowWindow(BOOL, UINT);

afLmsg void OnSize(UINT, int, int);

afLmsg void OnSizeClipboard(CWnd*,
HANDLE);

afLmsg void OnSpoolerStatus(UINT, UINT);

afLmsg void OnSysChar(UINT, UINT, UINT);

afLmsg void OnSysColorChange();

afLmsg void OnSysCommand(UINT, LONG);

afLmsg void OnSysDeadChar(UINT, UINT,
UINT);

afLmsg void OnSysKeyDown(UINT, UINT,
UINT);

afLmsg void OnSysKeyUp(UINT, UINT, UINT);

afLmsg void OnTimeChange();

afLmsg void OnTimer(UINT);

afLmsg int OnVKeyToItem(UINT, CWnd*,
UINT);

afLmsg void OnVScroll(UINT, UINT, CWnd*);

afLmsg void OnVScrollClipboard(CWnd*, UINT,
UINT);

afLmsg void OnWinIniChange(LPSTR);

76 The Class Libraries Reference

6.6 User-Defined Message Codes
Map Entry Function Prototype

ON_MESSAGE(message, memberFxn) afx_IDsg LONG memberFxn(UINT, LONG);

ON_REGISTERED_MESSAGE afLIDsg LONG memberFxn(UINT, LONG);
(nMessageVariable memberFxn)

For more about the DECLARE_MESSAGE_MAP,
BEGIN_MESSAGE_MAP, and END_MESSAGE_MAP macros, see help.

Structures and Enumerated Values
for Windows

This chapter lists data structures used by the Microsoft Foundation Windows
classes, as well as Clipboard and mouse enumerated values.

7.1 Structures
The following data structures are presented in alphabetical order. The structure
definition is followed by a description of each field.

COMPAREITEMSTRUCT
typedef struct tagCOMPAREITEMSTRUCT {

WORD Ct lType;
WORD CtlID;
HWND hwnd Item;
WORD itemID1;
DWORD itemDatal;
WORD itemID2;
DWORD itemData2;

} COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure supplies the identifiers and
application-supplied data for two items in a sorted owner-draw combo box or
list box.

Whenever an application adds a new item to an owner-draw combo or list box
created with the CBS_SORT or LBS_SORT style, Windows sends the owner
a W~ COMP AREITEM message. Override OnCompareItem to compare the

two items and return a value indicating which item sorts before the other.

78 The Class libraries Reference

Members CtlType
Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

Ctlm
Is the control ID for the list box or combo box.

hwndltem
Is the window handle of the control.

itemIDl
Is the index of the first item in the list box or combo box being compared.

itemDatal
Is application-supplied data for the first item being compared. This value was
passed in the call that added the item to the combo or list box.

itemID2
Is the index of the second item in the list box or combo box being compared.

itemData2
Is application-supplied data for the second item being compared. This value
was passed in the call that added the item to the combo or list box.

CREATESTRUCT
typedef struet tagCREATESTRUCT {

LPSTR lpCreateParams;
HANDLE hlnstanee;
HANDLE hMenu;
HWND hwndParent;
int ey;
int ex;
int y;
int x;
LDNG style;
LPSTR lpszName;
LPSTR lpszClass;
DWDRD dwExStyle;

} CREATESTRUCT;

The CREATESTRUCT structure defines the parameters used to initialize a
window. When a window is created, it receives a WM_CREATE message with a
pointer to this structure. For more information, see CWnd::OnCreate.

Members

Structures and Enumerated Values 79

IpCreateParams
Points to data to be used for creating the window.

hlnstance
Identifies the module-instance handle of the module that owns the new window.

hMenu
Identifies the menu to be used by the new window.

hwndParent

ey

ex

y

x

Identifies the window that owns the new window. This member is NULL if the
new window is a top-level window.

Specifies the height of the new window.

Specifies the width of the new window.

Specifies the y-coordinate of the upper-left corner of the new window. Coordi­
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

Specifies the x-coordinate of the upper-left corner of the new window. Coordi­
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

style
Specifies the new window's style.

IpszName
Points to a null-terminated string that specifies the new window's name.

IpszClass
Points to a null-terminated string that specifies the new window's Windows
class name.

dwExStyle
Specifies extended style for the new window.

80 The Class Libraries Reference

Members

DELETEITEMSTRUCT
typedef struct tagDELETElTEMSTRUCT {

WORD CtlType
WORD CtllD;
WORD itemlD;
HWND hwndltem;
DWORD itemData;

} DELETElTEMSTRUCT;

The DELETEITEMSTRUCT structure describes a deleted owner-draw list-box
or combo-box item. When an item is removed from the list box or combo box, or
when the list box or combo box is destroyed, Windows sends the
WM_DELETEITEM message to the owner for each deleted item along with a
pointer to this structure. For more information, see CWnd::OnDeleteItem.

CtiType
Contains ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtlID
Contains the control ID for the list box or combo box.

itemID
Contains the index of the item in the list box or combo box being removed.

hwndItem
Contains the window handle of the control.

itemData
Contains the owner-defined value that was assigned to this item when it was
created.

Members

DRAWITEMSTRUCT
typedef struct tagDRAWITEMSTRUCT {

WORD CtlType;
WORD CtlID;
WORD itemI 0;
WORD itemAction;
WORD itemState;
HWND hwndItem;
HOC hOC;
RECT rcItem;
DWORD itemData;

} DRAWITEMSTRUCT;

Structures and Enumerated Values 81

The DRA WITEMSTRUCT structure provides information the owner needs to
determine how to paint an owner-draw control. The owner of the owner-draw con­
trol receives a pointer to this structure with a ~DRA WITEM message. For
more information, see CWnd: :OnDrawItem.

CtlType
Is the control type. The values for control types are as follows:

Value Meaning

ODT_BUTTON Owner-draw button

ODT_COMBOBOX Owner-draw combo box

ODT_LISTBOX Owner-draw list box

ODT_MENU Owner-draw menu

CtlID
Is the control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID
Is the menu-item ID for a menu or the index of the item in a list box or combo
box. For an empty list box or combo box, this member can be -1. This allows
the application to draw only the focus rectangle at the coordinates specified by
the rcItem member even though there are no items in the control. This indi­
cates to the user whether the list box or combo box has input focus. The setting
of the bits in the itemAction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

82 The Class libraries Reference

itemAction
Defines the drawing action required. This will be one or more of the fol­
lowing bits:

Value

ODA_DRA WENTIRE

itemState

Meaning

This bit is set when the entire control needs to
be drawn.

This bit is set when the control gains or loses
input focus. The itemS tate member should be
checked to determine whether the control has
focus.

This bit is set when only the selection status has
changed. The itemState member should be
checked to determine the new selection state.

Specifies the visual state of the item after the current drawing action takes
place. That is, if a menu item is to be dimmed, the state flag ODS_ GRA YED
will be set. The state flags are as follows:

Value

ODS_ CHECKED

ODS_DISABLFD

ODS_FOCUS

ODS_GRAYED

hwndItem

Meaning

This bit is set if the menu item is to be checked.
This bit is used only in a menu.

This bit is set if the item is to be drawn as disabled.

This bit is set if the item has input focus.

This bit is set if the item is to be dimmed. This bit
is used only in a menu.

This bit is set if the item's status is selected.

Specifies the window handle of the control for combo boxes, list boxes, and but­
tons. It contains the handle of the menu (HMENU) containing the item for
menus.

hDC
Identifies a device context. This device context must be used when performing
drawing operations on the control.

rcItem
Is a rectangle in the device context specified by the hDC member that defines
the boundaries of the control to be drawn. Windows automatically clips any­
thing the owner draws in the device context for combo boxes, list boxes, and
buttons, but does not clip menu items. When drawing menu items, the owner

Members

Structures and Enumerated Values 83

must ensure that the owner does not draw outside the boundaries of the rec­
tangle defined by the rcltem member.

itemData
Contains the owner-defined value that was assigned to this item when it was
created.

MEASUREITEMSTRUCT
typedef struct tagMEASUREITEMSTRUCT {

WORO CtlType;
WORO CtlIO;
WORO iternIO;
WORD iternWidth;
WORD iternHeight;
DWORD iternData

MEASUREITEMSTRUCT;

When an owner-draw control is created, Windows sends the
WM_MEASUREITEM message to the owner of the control, along with a
pointer to a MEASUREITEMSTRUCT data structure.

The MEASUREITEMSTRUCT data structure must be filled in order for
Windows to process user interaction with the control correctly. For more informa­
tion, see CWnd::OnMeasureltem.

The MEASUREITEMSTRUCT data structure informs Windows of the dimen­
sions of an owner-draw control. This allows Windows to correctly process user in­
teraction with the control. The owner of an owner-draw control receives a pointer
to this structure as the lParam parameter of an ~MEASUREITEM message.
The owner-draw control sends this message to its owner window when the control
is created. The owner then fills in the appropriate members in the structure for the
control and returns. This structure is common to all owner-draw controls.

CtlType
Is the control type. The values for control types are as follows:

Value Meaning

ODT_BUTTON Owner-draw button

ODT_COMBOBOX Owner-draw combo box

ODT_LISTBOX Owner-draw list box

ODT_MENU Owner-draw menu

84 The Class Libraries Reference

Remarks

Ctlm
Is the control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID
Is the menu-item ID for a menu or the list-box item ID for a variable-height
combo box or list box. This member is not used for a fixed-height combo box
or list box, or for a button.

itemWidth
Specifies the width of a menu item. The owner of the owner-draw menu item
must fill this member before returning from the message.

itemHeight
Specifies the height of an individual item in a list box or a menu. Before return­
ing from the message, the owner of the owner-draw combo box, list box, or
menu item must fill out this member. The maximum height of a list box item
is 255.

itemData
Contains the owner-defined value that was assigned to this item when it was
created.

Failure to assign values to item Width and itemHeight members in the
MEASUREITEMSTRUCT structure will cause improper operation of the
control.

PAINTSTRUCT
typedef struet tagPAlNTSTRUCT {

HDC hde;
Baal fErase;
RECT rePaint;
Baal fRestore;
Baal flneUpdate;
BYTE rgbReserved[16];

} PAl NTSTRUCT;

The PAINTSTRUCT structure contains information that can be used to paint the
client area of a window.

Members

Members

Structures and Enumerated Values 85

hdc
Identifies the display context to be used for painting.

!Erase
Specifies whether the background needs to be redrawn. It is not zero if the appli­
cation should redraw the background. The application is responsible for draw­
ing the background if a Windows window class is created without a
background brush (see the description of the hbrBackground member of the
WNDCLASS structure).

rePaint
Specifies the upper-left and lower-right comers ofthe rectangle in which the
painting is requested.

!Restore
Reserved member. It is used internally by Windows.

flncUpdate
Reserved member. It is used internally by Windows.

rgbReserved[16]
Reserved member. A reserved block of memory used internally by Windows.

POINT
typedef struct tagPOINT {

int x;
i nt y;

} POINT;

The POINT structure defines the x- and y-coordinates of a point.

x
Specifies the x-coordinate of a point.

y
Specifies the y-coordinate of a point.

86 The Class Libraries Reference

Members

Remarks

RECl
typedef struct tagRECT {

int left;
int top;
int right;
int bottom;

} RECT;

The RECT structure defines the coordinates of the upper -left and lower-right
corners of a rectangle.

left
Specifies the x -coordinate of the upper -left corner of a rectangle.

top
Specifies the y-coordinate of the upper-left corner of a rectangle.

right
Specifies the x-coordinate of the lower-right corner of a rectangle.

bottom
Specifies the y-coordinate of the lower-right corner of a rectangle.

Neither the width nor height of the rectangle defined by the RECT structure can
exceed 32,767 units.

7.2 Clipboard Enumerated Values
The following list shows the enumerated values that specify system-defined
Clipboard formats:

Value Meaning

The data is a bitmap.

The data is a memory block containing a
BITMAPINFO structure followed by the
bitmap data.

The data is in Data Interchange Format
(Software Arts).

Structures and Enumerated Values 87

Value Meaning

CF_DSPBITMAP The data is a bitmap representation of a private
format. This data is displayed in bitmap format
in lieu of the privately formatted data.

CF _DSPMETAFILEPICT The data is a metafile representation of a private
data format. This data is displayed in metafile­
picture format in lieu of the privately formatted
data.

CF_DSPTEXT The data is a textual representation of a private
data format. This data is displayed in text
format in lieu of the privately formatted data.

CF_METAFILEPICT The data is a metafile (for more information,
see description of METAFILEPICT structure).

CF _ OEMTEXT The data is an array of text characters in the
OEM character set. Each line ends with a
carriage return-linefeed combination. A null
character signals the end of the data.

CF_OWNERDISPLAY The data is in a private format that the
Clipboard owner must display.

CF_PALETTE The data is a color palette.

CF_SYLK The data is in Microsoft Symbolic Link
(SYLK) format.

CF _ TEXT The data is an array of text characters. Each line
ends with a carriage return-linefeed
combination. A null character signals the end of
the data.

CF_ TIFF The data is in Tag Image File Format.

Private data formats in the range of CF_PRIV ATEFIRST to
CF _PRIV ATELAST are not automatically freed when the data is deleted from
the Clipboard. Data handles associated with these formats should be freed upon re­
ceiving a WM_DESTROYCLIPBOARD message.

Private data formats in the range of CF _ GDIOBJFIRST to CF _ GDIOBJLAST
will be automatically deleted with a call to CGdiObject::DeleteObject when the
data is deleted from the Clipboard.

88 The Class Libraries Reference

7.3 Mouse Enumerated Values
The following enumerated values are passed to the CWnd::OnMessage member
functions that handle mouse messages, such as CWnd::OnMouseActivate and
CWnd::OnNcLButtonDblClk.

Value

HTBOTTOM

HTBOTTOMLEFT

HTBOTTOMRIGHT

HTCAPTION

HTCLIENT

HTERROR

HTGROWBOX

HTHSCROLL

HTLEFT

HTMENU

HTNOWHERE

HTREDUCE

HTRIGHT

HTSIZE

HTSYSMENU

HTTOP

HTTOPLEFT

HTTOPRIGHT

HTTRANSPARENT

HTVSCROLL

HTZOOM

Meaning

In the lower-horizontal border of the window.

In the lower-left corner of the window border.

In the lower-right corner of the window border.

In a caption area.

In a client area.

Same as HTNOWHERE except that default
message processing produces a system beep to
indicate an error.

In a size box.

In the horizontal scroll bar.

In the left border of the window.

In a menu area.

On the screen background or on a dividing line
between the windows.

In a Minimize box.

In the right border of the window.

Same as HTGROWBOX.

In a control-menu box (close box in child
windows).

In the upper-horizontal border of the window.

In the upper-left corner of the window border.

In the upper-right corner of the window border.

In a window currently covered by another window.

In the vertical scroll bar.

In a Maximize box.

CArchive 93

class CArchive

See Also

Preconditions

Public Members

The CArchive class allows you to save a complex network of objects in a perma­
nent binary form (usually disk storage) that "persists" after those objects are de­
leted. Later you can load the objects from persistent storage, "reconstituting" them
in memory. This process of making data persistent is called "serialization."

You can think of an archive object as a kind of binary stream. Like an input/output
stream, an archive is associated with a file and permits the buffered writing and
reading of data to and from storage. An input/output stream processes sequences
of ASCII characters, but an archive processes binary object data in an efficient,
nonredundant format.

When you construct a CArchive object, you attach it to an object of class CFile
(or a derived class) that represents an open file. You also specify whether the ar­
chive will be used for loading or storing. A CArchive object can process not only
primitive types but also objects of CObject-derived classes designed for serializa­
tion. A serializable class must have a Serialize member function, and it must use
the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described
under class CObject.

The overloaded extraction (») and insertion «<) operators are convenient ar­
chive programming interfaces that support both primitive types and CObject­
derived classes.

#include <afx.h>

CFile, CObject

You must create a CFile object before you can create a CArchive object. In addi­
tion, you must ensure that the archive's load/store status is compatible with the
file's open mode. You are limited to one active archive per file.

Construction/Destruction
CArchive

-CArchive

Close

Creates a CArchive object.

Destroys a CArchive object and flushes unwritten
data.

Flushes unwritten data and disconnects from the
CFile.

94 CArchive

Basic Input/Output
Flush

operator«

operator»

Read

Write

Status
GetFile

IsLoading

IsStoring

Protected Members

Object Input/Output
ReadObject

WriteObject

Flushes unwritten data from the archive buffer.

Stores objects and primitive types to the archive.

Loads objects and primitive types from the archive.

Reads raw bytes.

Writes raw bytes.

Gets the CFile object pointer for this archive.

Determines if the archive is loading.

Determines if the archive is storing.

Calls an object's Serialize function for loading.

Calls an object's Serialize function for storing.

CArchive::CArchive 95

Member Functions

Syntax

Parameters

Remarks

CArchive::CArchive
CArchive(CFile* pFile, UINT nMode, int nBufSize = 512,

void FAR * IpBuJ = NULL)
throw(CMemoryException, CArchiveException, CFileException);

pFile
A pointer to the CFile object that is the ultimate source or destination of the per­
sistent data.

nMode
A flag that specifies whether objects will be loaded from or stored to the ar­
chive. The nMode parameter must have one of the following values:

Value

CArchive::load

CArchive::store

nBufSize

Meaning

Load data from the archive. Requires only CFile read
permission.

Save data to the archive. Requires CFile write
permission.

An integer that specifies the size of the internal file buffer, in bytes.

Note The default buffer size is 512 bytes. If you routinely archive large objects,
you will improve performance if you use a larger buffer size that is a multiple
of the file buffer size.

IpBuJ
An optional FAR pointer to a user-supplied buffer of size nBufSize. If you do
not specify this parameter, the archive allocates a buffer from the local heap
and frees it when the object is destroyed. The archive does not free a user­
supplied buffer.

Constructs a CArchive object and specifies whether it will be used for loading or
storing objects. You cannot change this specification after you have created the
archive.

96 CArchive:: CArchive

Example

See Also

Syntax

Remarks

See Also

Syntax

Remarks

You may not use CFile operations to alter the state of the file until you have
closed the archive. Any such operation will damage the integrity of the archive.
You may access the position of the file pointer at any time during serialization by
(1) obtaining the archive's file object from the GetFile member function and then
(2) using the CFile: : GetPosition function. You should call CArchive: :Flush
before obtaining the position of the file pointer.

extern char* pFileName;
CFile f;
char buf[512];
if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite)) {

ffifdef _DEBUG
afxDump « "Unable to open file" « "\\n";
exit(1);

ffendif

CArchive are &f, CArchive::store, 512, bUf);

CArchive::Close, CArchive::Flush, CFile::Close

CArchive::-CArchive
-CArchiveO;

The CArchive destructor closes the archive if it is not closed already. However,
you should call the member function Close before calling the destructor. After you
have used the CFile object for archiving, you must close and destroy it as you usu­
ally would.

CArchive: : Flush, CFile: :Close

CArchive::Close
void CloseO
throw(CArchiveException, CFileException);

Flushes any data remaining in the buffer, closes the archive, and disconnects the
archive from the file. No further operations on the archive are permitted. After you

See Also

Syntax

Remarks

See Also

Syntax

Remarks

Return Value

Example

CArchive::GetFile 97

close an archive, you can create another archive for the same file or you can close
the file.

The member function Close ensures that all data is transferred from the archive to
the file, and it makes the archive unavailable. To complete the transfer from the
file to the storage medium, you must first use CFile::Close and then destroy the
CFile object.

CArchive: :Flush

CArchive::Flush
void FlushO
throw(CFileException);

Forces any data remaining in the archive buffer to be written to the file.

The member function Flush ensures that all data is transferred from the archive to
the file. You must call CFile::Close to complete the transfer from the file to the
storage medium.

CArchive:: Close, CFile: :Flush, CFile:: Close

CArchive::GetFile
CFile* GetFileO const;

Gets the CFile object pointer for this archive. You must flush the archive before
using GetFile.

A constant pointer to the CFile object in use.

extern CArchive ar;
canst CFile* fp = ar.GetFile();

98 CArchive::lsloading

Syntax

Remarks

Return Value

Example

See Also

Syntax

Remarks

Return Value

Example

See Also

CArchive::lsloading
BOOL IsLoadingO const;

Determines if the arc hi ve is loading data. This member function is called by the
Serialize functions of the archived classes.

TRUE if the archive is currently being used for loading; otherwise FALSE.

i nt i;
extern CArchive ar;
if(ar. IsLoading()

ar » i;
else

ar«i;

CArchive: :IsStoring

CArchive::lsStoring
BOOL IsStoringO const;

Determines if the archive is storing data. This member function is called by the
Serialize functions of the archived classes.

If the IsStoring status of an archive is TRUE, then its IsLoading status is
FALSE, and vice versa.

TRUE if the archive is currently being used for storing; otherwise FALSE.

i nt i;
extern CArchive ar;
if(ar.lsStoring()

ar « i;
else

ar » i;

CArchive: : IsLoading

Syntax

Parameters

Remarks

Return Value

Example

Syntax

Parameters

Remarks

CArchive::Read
UINT Read(void FAR* lpBuf, UINT nMax)
throw(CFileException);

lpBuJ

CArchive::ReadObject 99

AFAR pointer to a user-supplied buffer that is to receive the data read from the
archive.

nMax
An unsigned integer specifying the number of bytes to be read from the archive.

Reads a specified number of bytes from the archive. The archive does not interpret
the bytes.

You can use the Read member function within your Serialize function for reading
ordinary structures that are contained in your objects.

An unsigned integer containing the number of bytes actually read. If the return
value is less than the number requested, the end of file has been reached. No excep­
tion is thrown on the end-of-file condition.

extern CArchive ar;
char pb[100];
UINT nr = ar.Read(pb, 100);

CArchive::ReadObject
Protected:

CObject* ReadObject(const CRuntimeClass* pClass)
throw(CFileException, CArchiveException, CMemoryException);

pClass
A constant pointer to the CRuntimeClass structure that corresponds to the ob­
ject that you expect to read.

Reads object data from the archive and constructs an object of the appropriate
type. If the object contains pointers to other objects, those objects are constructed
automatically.

100 CArchive::Write

Return Value

See Also

Syntax

Parameters

Remarks

Example

See Also

This protected function is usually called by the public CArchive extraction (»)
operator, overloaded for a CObject pointer. ReadObject, in tum, calls the
Serialize function of the archived class.

If you supply a nonzero pClass parameter, which is obtained by the
RUNTIME_ CLASS macro, then the function verifies the run-time class of the ar­
chived object. This assumes you have used the IMPLEMENT_SERIAL macro
in the implementation of the class.

A CObject pointer that must be safely cast to the correct derived class by using
CObject::IsKindOf.

CArchive:: WriteObject, CObject: :IsKindOf

CArchive::Write
void Write(const void FAR* lpBuf, UINT nMax)
throw(CFileException);

lpBuJ
A pointer to a user-supplied buffer that contains the data to be written to the
archive.

nMax
An integer that specifies the number of bytes to be written to the archive.

Writes a specified number of bytes to the archive. The archive does not format the
bytes.

You can use the Write member function within your Serialize function to write or­
dinary structures that are contained in your objects.

extern CArchive ar;
char pb[100];
ar.Write(pb, 100);

CArchive: :Read

Syntax

Parameters

Remarks

See Also

CArchive::WriteObject 101

CArchive::WriteObject
Protected:

void WriteObject(const CObject* pOb)
throw(CFileException, CArchiveException);

pOb
A constant pointer to the object being stored.

Stores the specified CObject to the archive. If the object contains pointers to other
objects, they are serialized in turn.

This protected function is normally called by the public CArchive insertion «<)
operator, overloaded for CObject. WriteObject, in turn, calls the Serialize func­
tion of the archived class.

You must use the IMPLEMENT_SERIAL macro to enable archiving.
WriteObject writes the ASCII class name to the archive. This class name is vali­
dated later during the load process. A special encoding scheme prevents unneces­
sary duplication of the class name for multiple objects of the class. This scheme
also prevents redundant storage of objects that are targets of more than one pointer.

The exact object encoding method (including the presence of the ASCII class
name) is an implementation detail and could change in future versions of the
library.

Note Finish creating, deleting, and updating all your objects before you begin to
archive them. Your archive will be corrupted if you mix archiving with object
modification.

CArchive: :ReadObject

102 CArchive::operator »

Operators

Syntax

Remarks

Return Value

Example

See Also

CArchive::operator »
friend CArchive& operator »(CArchive &ar, CObject *& pOb)
throw(CArchiveException, CFileException, CMemoryException);

friend CArchive& operator »(CArchive& ar, const CObject *& pOb)
throw(CArchiveException; CFileException, CMemoryException);

CArchive& operator »(BYTE& by)
throw(CArchiveException, CFileException);

CArchive& operator »(WORD& w)
throw(CArchiveException, CFileException);

CArchive& operator »(LONG& I)
throw(CArchiveException, CFileException);

CArchive& operator »(DWORD& dw)
throw(CArchiveException, CFileException);

Loads the indicated object or primitive type from the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation,
then the extraction operators overloaded for CObject call the protected
ReadObject function (with a nonzero run-time class pointer). This function, in
turn, calls the Serialize function of the class.

A CArchive reference that enables multiple insertion operators on a single line.

i nt i;
extern CArchive ar;
if(ar.IsLoading()

ar » i;

CArchive: :ReadObject, CObject: : Serialize

Syntax

Remarks

Return Value

Example

See Also

CArchive::operator« 103

CArchive::operalor «
friend CArchive& operator «(CArchive& ar, const CObject* pOb)
throw(CArchiveException, CFileException);

CArchive& operator «(BYTE by)
throw(CArchiveException, CFileException);

CArchive& operator «(WORD w)
throw(CArchiveException, CFileException);

CArchive& operator «(LONG I)
throw(CArchiveException, CFileException);

CArchive& operator «(DWORD dw)
throw(CArchiveException, CFileException);

Stores the indicated object or primitive type to the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation,
then the insertion operator overloaded for CObject calls the protected
WriteObject. This function, in turn, calls the Serialize function of the class.

A CArchive reference that enables multiple insertion operators on a single line.

long 1;
i nt i;
extern CArchive ar;
if(ar.IsStoring()
ar»l»i;

CArchive:: WriteObject, CObject: : Serialize

104 CArchiveException

class CArchiveException : public CException

See Also

Comments

Public Members

A CArchiveException object represents a
serialization exception condition. The
CArchiveException class includes a public data
member that indicates the cause of the exception.

#include <afx.h>

CArchive, AfxThrowArchiveException, Chapter 5, "Exception Processing"

CArchiveException objects are constructed and thrown inside CArchive member
functions. You can access these objects within the scope of a CATCH expression.
The cause code is independent of the operating system.

Data Members
m_cause

Construction/Destruction
CArchiveException

Indicates the exception cause.

Constructs a CArchiveException object.

CArchiveException::CArchiveException 105

Member Functions

Syntax

Parameters

Remarks

CArchiveException::CArchiveException
CArchiveException(int cause = CArchiveException::none);

cause
An enumerated type variable that indicates the reason for the exception. See the
ID_ cause data member for a list of the enumerators.

Constructs a CArchiveException object, storing the cause code in the object. You
can create a CArchiveException object on the heap and throw it yourself or let
AfxThrowArchiveExceptionhandle it for you.

Do not use this constructor directly, but call the global function
AfxThrow ArchiveException

106 CArchiveException::m_cause

Data Members

Syntax

Remarks

Example

CArchiveException::m_ cause

Specifies the cause of the exception. Its values are defined by a
CArchiveException enumerated type. The enumerators are:

Value

CArchiveException: :none

CArchiveException: :generic

CArchiveException: :readOnly

CArchiveException: :endOfFile

CArchiveException: :writeOnly

CArchiveException:: badIndex

CArchiveException:: bad Class

CArchiveException:: badSchema

Meaning

No error occurred.

Unspecified error.

Tried to write into an archive opened for
loading.

Reached end of file while reading an
object.

Tried to read from an archive opened for
storing.

Invalid file format.

Tried to read an object into an object of
the wrong type.

Tried to read an object with a different
version of the class.

Note These CArchiveException cause enumerators are distinct from the
CFileException cause enumerators.

extern CFile f;
TRY
{

CArchive art &f, CArchive::store);

CATCH(CArchiveException, e)
{

}

if(e->m_cause == CArchiveException::readOnly
printf("ERROR: Archive is read-only\\n");

END CATCH

CBitmap 107

class CBitmap : public CGdiObject

Public Members

The CBitmap class encapsulates a Windows graphical
design interface (001) bitmap and provides member
functions to manipulate the bitmap. To use a CBitmap
object, construct the object, install a bitmap handle in

it with one of the initialization member functions, and
then call the object's member functions.

Construction/Destruction
CBitmap

Initialization

Constructs a CBitmap object.

LoadBitmap Initializes the object by loading a named bitmap re­
source from the application's executable file and
attaching the bitmap to the object.

LoadOEMBitmap Initializes the object by loading a predefined
Windows bitmap and attaching the bitmap to the
object.

CreateBitmap Initializes the object with a device-dependent
memory bitmap with a specified width, height, and
bit pattern.

CreateBitmapIndirect Initializes the object with a bitmap that has the
width, height, and bit pattern (if one is specified)
given in a BITMAP structure.

CreateCompatibleBitmap Initializes the object with a bitmap so that it is com­
patible with a specified device.

CreateDiscardableBitmap Initializes the object with a discardable bitmap that
is compatible with a specified device.

Operations
FromHandle

SetBitmapBits

GetBitmapBits

Returns a pointer to a CBitmap object when given
a handle to a Windows HBITMAP bitmap.

Sets the bits of a bitmap to the specified bit values.

Copies the bits of the specified bitmap into the
specified buffer.

108 CBitmap

SetBitmapDimension

GetBitmapDimension

Assigns a width and height to a bitmap in
0.1-millimeter units.

Returns the width and height of the bitmap. The
height and width are assumed to have been set pre­
viously by the SetBitmapDimension member
function.

CBitmap::CreateBitmap 109

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CBitmap::CBitmap
CBitmapO;

Constructs a CBitmap object. The resulting object must be initialized with one of
the initialization member functions.

CBitmap: : LoadBitmap, CBitmap: : LoadOEMBitmap,
CBitmap: :CreateBitmap, CBitmap: :CreateBitmapIodirect,
CBitmap::CreateCompatibleBitmap, CBitmap::CreateDiscardableBitmap

CBitmap: :CreateBitmap
BOOL CreateBitmap(iot nWidth, iot nHeight, BYTE nPlanes,

BYTE nBitcount, LPSTR IpBits);

nWidth
Specifies the width (in pixels) of the bitmap.

nHeight
Specifies the height (in pixels) of the bitmap.

nPlanes
Specifies the number of color planes in the bitmap.

nBitcount
Specifies the number of color bits per display pixel.

IpBits
Points to a short-integer array that contains the initial bitmap bit values. If it is
NULL, the new bitmap is left uninitialized. For more information, see the de­
scription of the bmBits field in the BITMAP structure in the Windows Soft­
ware Development Kit documentation.

Initializes a device-dependent memory bitmap that has the specified width, height,
and bit pattern. Although a bitmap cannot be directly selected for a display device,
it can be selected as the current bitmap for a memory device context by using
CDC::SelectObject or CMetaFileDC::SelectObject and copied to any compat­
ible device context by using the CDC::BitBlt function. When an application has

110 CBitmap::CreateBitmaplndirect

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

finished using the bitmap created by the CreateBitmap function, it should select
the bitmap out of the device context.

TRUE if successful; otherwise FALSE.

CDC: :SelectObject, CMetaFileDC: :SelectObject, CDC: :BitBlt,
::CreateBitmap

CBitmap::CreateBitmaplndirect
BOOL CreateBitmapIndirect(LPBITMAP IpBitmap);

IpBitmap
Points to a BITMAP structure that contains information about the bitmap.

The BITMAP structure has the following form:

typedef struct tagBITMAP {
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
LPSTR bmBits;

} BITMAP;

Initializes a bitmap that has the width, height, and bit pattern (if one is specified)
given in the structure pointed to by IpBitmap. Although a bitmap cannot be
directly selected for a display device, it can be selected as the current bitmap for
a memory device context by using CDC::SelectObject, or
CMetaFileDC::SelectObjectand copied to any compatible device context by
using the CDC::BitBltfunction.

When an application has finished using the bitmap initialized by
CreateBitmapIndirect, it should select the bitmap out of the device context.

TRUE if successful; otherwise FALSE.

CDC: :SelectObject, CMetaFileDC: :SelectObject, CDC: : BitBlt,
: :CreateBitmapIndirect

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::CreateCompatibleBitmap 111

CBitmap::CreateCompatibleBitmap
BOOL CreateCompatibleBitmap(CDC* pDC, int n Width, int nHeight);

pDC
Specifies the device context.

nWidth
Specifies the width (in bits) of the bitmap.

nHeight
Specifies the height (in bits) of the bitmap.

Initializes a bitmap that is compatible with the device specified by pDC. The bit­
map has the same number of color planes or the same bits-per-pixel format as the
specified device context. It can be selected as the current bitmap for any memory
device that is compatible with the one specified by pDC.

If pDC is a memory device context, the bitmap returned has the same format as
the currently selected bitmap in that device context. A "memory device context"
is a block of memory that represents a display surface. It can be used to prepare
images in memory before copying them to the actual display surface of the com­
patible device.

When a memory device context is created, GDI automatically selects a mono­
chrome stock bitmap for it.

Since a color memory device context can have either color or monochrome
bitmaps selected, the format of the bitmap returned by the
CreateCompatibleBitmap function is not always the same; however, the
format of a compatible bitmap for a nonmemory device context is always
in the format of the device.

When you are finished with a CBitmap initialized with
CreateCompatibleBitmap, you must select the bitmap out of the device
context.

TRUE if successful; otherwise FALSE.

: :CreateCompatibleBitmap

112 CBitmap::CreateDiscardableBitmap

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::CreateDiscardableBitmap
BOOL CreateDiscardableBitmap(CDC* pDC, int n Width, int nHeight);

pDC
Specifies a device context.

nWidth
Specifies the width (in bits) ofthe bitmap.

nHeight
Specifies the height (in bits) of the bitmap.

Initializes a discardable bitmap that is compatible with the device context iden­
tified by pDC. The bitmap has the same number of color planes or the same bits­
per-pixel format as the specified device context. An application can select this
bitmap as the current bitmap for a memory device that is compatible with the one
specified by pDC.

Windows can discard a bitmap created by this function only if an application
has not selected it into a display context. If Windows discards the bitmap
when it is not selected and the application later attempts to select it, the
CDC::SelectObject or CMetaFileDC::SelectObjectfunction will return NULL.

When an application has finished using the bitmap created by the
CreateBitmapIndirect function, it should select the bitmap out of the device
context.

TRUE if successful; otherwise FALSE.

:: CreateDiscardableBitmap

Syntax

Parameters

Remarks

Return Value

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::GetBitmapBits 113

CBitmap::FromHandle
static CBitmap* FromHandle(HBITMAP hBitmap);

hBitmap
Specifies a Windows GDI bitmap.

Returns a pointer to a CBitmap object when given a handle to a Windows GDI
bitmap. If a CBitmap object is not already attached to the handle, a temporary
CBitmap object is created and attached. This temporary CBitmap object is valid
only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

A pointer to a CBitmap object if successful; otherwise NULL.

CBitmap::GetBitmapBits
DWORD GetBitmapBits(DWORD dwCount, LPSTR IpBits) const;

dwCount
Specifies the number of bytes to be copied.

IpBits
Points to the buffer that is to receive the bitmap. The bitmap is an array of
bytes. The bitmap byte array conforms to a structure where horizontal scan
lines are multiples of 16 bits.

Copies the bit pattern of the CBitmap object into the buffer that is pointed to by
IpBits. The dwCount parameter specifies the number of bytes to be copied to the
buffer. Use GetObject to determine the correct dwCount value for the given
bitmap.

The actual number of bytes in the bitmap, or 0 if there is an error.

CGdiObject: : GetObject, : : GetBitmapBits

114 CBitmap::GetBitmapDimension

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::GetBitmapDimension
CSize GetBitmapDimensionO const;

Returns the width and height of the bitmap. The height and width are assumed to
have been set previously by using the SetBitmapDimension function.

The width and height of the bitmap, measured in O.l-millimeterunits. The height
is in the cy member of the CSize object, and the width is in the ex member. If the
bit.-nap width and height have not been set by using SetBitmapDimension, the re­
turn value is O.

CBitmap: :SetBitmapDimension, : : GetBitmapDimension

CBitmap::LoadBitmap
BOOL LoadBitmap(const char FAR* lpBitmapName);

BOOL LoadBitmap(UINT nIDBitmap);

IpBitmapName
Points to a null-terminated string that contains the name of the bitmap resource.

nIDBitmap
Specifies the resource ID number of the bitmap resource.

Loads the bitmap resource named by IpBitmapName or identified by the ID num­
ber in nIDBitmap from the application's executable file. The loaded bitmap is at­
tached to the CBitmap object.

If the bitmap identified by IpBitmapName does not exist or if there is insufficient
memory to load the bitmap, the function returns FALSE.

TRUE if successful; otherwise FALSE.

CBitmap: : LoadOEMBitmap, : : LoadBitmap

Syntax

Parameters

Remarks

CBitmap::LoadOEMBitmap 115

CBitmap::LoadOEMBitmap
BOOL LoadOEMBitmap(UINT nIDBitmap);

nIDBitmap
ID number of the predefined Windows bitmap. The possible values are listed
below from WINDOWS.H:

OB~BTNCORNERS
OB~BTSIZE

OB~CHECK

OB~CHECKBOXES
OB~CLOSE

OB~COMBO
OB~DNARROW
OB~DNARROWD

OB~DNARROWI
OB~LFARROW

OB~LFARROWD
OB~LFARROWI
OB~MNARROW
OB~OLD_CLOSE

OB~OLD_DNARROW

OB~OLD_LFARROW

OB~OLD_REDUCE
OB~OLD_RESTORE

OB~OLD_RGARROW
OB~OLD_ UPARROW
OB~OLD_ZOOM

OB~REDUCE

OB~REDUCED

OB~RESTORE

OB~RESTORED
OB~RGARROW
OB~RGARROWD
OB~RGARROWI
OB~SIZE
OB~UPARROW

OB~UPARROWD

OB~UPARROWI

OB~ZOOM
OB~ZOOMD

Loads a predefined bitmap used by Windows.

116 CBitmap::SetBitmapBits

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Bitmap names that begin with OB~OLD represent bitmaps used by Windows
versions prior to 3.0.

Note that the constant OEMRESOURCE must be defined before including
WINDOWS.H in order to use any of the OBM_ constants.

TRUE if successful; otherwise FALSE.

CBitmap::LoadBitmap, ::LoadBitmap

CBitmap: :SetBitmapBits
DWORD SetBitmapBits(DWORD dwCount, LPSTR IpBits);

dwCount
Specifies the number of bytes pointed to by IpBits.

IpBits
Points to the BYTE array that contains the bit values to be copied to the
CBitmap object.

Sets the bits of a bitmap to the bit values given by IpBits.

The number of bytes used in setting the bitmap bits; 0 if the function fails.

: :SetBitmapBits

CBitmap::SetBitmapDimension
CSize SetBitmapDimension(int n Width, int nHeight);

nWidth
Specifies the width ofthe bitmap (in O.I-millimeter units).

nHeight
Specifies the height of the bitmap (in O.I-millimeter units).

Remarks

Return Value

See Also

CBitmap::SetBitmapDimension 117

Assigns a width and height to a bitmap in O.I-millimeter units. These values are
not used internally by GDI; the GetBitmapDimension function can be used to re­
trieve them.

The previous bitmap dimensions. Height is in the ey member variable of the CSize
object, and width is in the ex member variable.

CBitmap::GetBitmapDimension, ::SetBitmapDimension

118 CBrush

class CBrush : public CGdiObject

See Also

Public Members

The CBrush class encapsulates a Windows graphical
design interface (GDI) brush. To use a CBrush object,
construct a CBrush object and pass it to any CDC
member function that requires a brush.

Brushes can be solid, hatched, or patterned.

CBitmap, CDC

Construction/Destruction
CBrush

Initialization
CreateSolidBrush

CreateHatchBrush

CreateBrushlndirect

CreatePatternBrush

CreateDIBPatternBrush

Operations
FromHandle

Constructs a CBrush object.

Initializes a brush with the specified solid color.

Initializes a brush with the specified hatched pat­
tern and color.

Initializes a brush with the style, color, and pattern
specified in a LOGBRUSH structure.

Initializes a brush with a pattern specified by a
bitmap.

Initializes a brush with a pattern specified by a
device-independent bitmap (DIB).

Returns a pointer to a CBrush object when given a
handle to a Windows HBRUSH object.

CBrush::CBrush 119

Member Functions

Syntax

Parameters

CBrush::CBrush
CBrushO;

CBrush(DWORD creolor)
throw(CResourceException);

CBrush(int nlndex, DWORD creolor)
throw(CResourceException);

CBrush(CBitmap* pBitmap)
throw(CResourceException);

creolor
Specifies the foreground color of the brush as an RGB color. If the brush is
hatched, this parameter specifies the color of the hatching.

nlndex
Specifies the hatch style of the brush. It can be anyone of the following values:

Value

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

pBitmap

Meaning

Downward hatch (left to right) at 45 degrees

Horizontal and vertical crosshatch

Crosshatch at 45 degrees

Upward hatch (left to right) at 45 degrees

Horizontal hatch

Vertical hatch

Points to a CBitmap object that specifies a bitmap with which the brush paints.

120 CBrush::CreateBrushlndirect

Remarks Has four overloaded constructors. The constructor with no arguments constructs
an uninitialized CBrush object that must be initialized before it can be used.

See Also

Syntax

Parameters

If you use the constructor with no arguments, you must initialize the resulting
CBrush object with CreateSolidBrush, CreateHatchBrush,
CreateBrushlndirect, CreatePatternBrush, or CreateDIBPatternBrush. If
you use one of the constructors that takes arguments, then no further initialization
is necessary. The constructors with arguments can throw an exception if errors are
encountered, while the constructor with no arguments will always succeed.

The constructor with a single DWORD parameter constructs a solid brush with
the specified color. The color specifies an RGB value and can be constructed with
the RGB macro in WINDOWS.H.

The constructor with two parameters constructs a hatch brush. The nlndex parame­
ter specifies the index of a hatched pattern. The creolor parameter specifies the
color.

The constructor with a CBitmap parameter constructs a patterned brush. The
parameter identifies a bitmap. The bitmap is assumed to have been created by
using CBitmap: :CreateBitmap, CBitmap:: CreateBitmaplndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap. The min­
imum size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels.

CBitmap:: CreateBitmap, CBitmap: :CreateBitmaplndirect,
CBitmap: :LoadBitmap, CBitmap:: CreateCompatibleBitmap,
CBrush:: CreateSolidBrush, CBrush: :CreateHatchBrush,
CBrush: :CreateBrushlndirect, CBrush: :CreatePatternBrush,
CBrush: :CreateDIBPatternBrush, CGdiObject:: CreateStockObject

CBrush::CreateBrushlndirect
BOOL CreateBrushlndirect(LPLOGBRUSH lpLogBrush);

lpLogBrush
Points to a LOGBRUSH structure that contains information about the brush.

The LOGBRUSH structure has the following form:

Remarks

Return Value

See Also

Syntax

Parameters

CBrush::CreateDIBPatternBrush 121

typedef struct tagLOGBRUSH
WORD lbStyle;
COLORREF lbColor;
short int lbHatch;

LOGBRUSH;

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH
structure. The brush can subsequently be selected as the current brush for any
device context.

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn
using the current text and background colors. Pixels represented by a bit set to 0
will be drawn with the current text color. Pixels represented by a bit set to 1 will
be drawn with the current background color.

TRUE if the function is successful; otherwise FALSE.

CBrush: :CreateDIBPatternBrush, CBrush:: CreatePatternBrush,
CBrush: :CreateSolidBrush, CBrush:: CreateHatchBrush,
CGdiObject:: CreateStockObject, : :CreateBrushIndirect

CBrush::CreateDIBPatternBrush
BOOL CreateDIBPatternBrush(GLOBALHANDLE hPackedDIB,

UINT wUsage);

hPackedDIB
Identifies a global-memory object containing a packed device-independent
bitmap.

wUsage
Specifies whether the bmiColors[] fields of the BITMAPINFO data structure
contain explicit RGB values or indexes into the currently realized logical
palette. The parameter must be one of the following values:

Value

DIB_PAL_ COLORS

DIB_RGB_ COLORS

Meaning

The color table contains literal RGB values.

The color table consists of an array of 16-bit
indexes.

122 CBrush::CreateHatchBrush

Remarks Initializes a brush with the pattern specified by a device-independent bitmap
(DIE). The brush can subsequently be selected for any device context that sup­
ports raster operations.

Return Value

See Also

Syntax

Parameters

To obtain a handle to the DIE, you call the Windows GlobalAlloc function to allo­
cate a block of global memory and then fill the memory with the packed DIE. A
packed DIE consists of a BITMAPINFO data structure immediately followed by
the array of bytes that define the pixels of the bitmap.

The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

Bitmaps used as fill patterns should be 8 pixels by 8 pixels.

When an application selects a two-color DIE pattern brush into a monochrome
device context, Windows ignores the colors specified in the DIE and instead dis­
plays the pattern brush using the current text and background colors of the device
context. Pixels mapped to the first color (at offset 0 in the DIE color table) of the
DIE are displayed using the text color. Pixels mapped to the second color (at off­
set 1 in the color table) are displayed using the background color.

TRUE if successful; otherwise FALSE.

CBrush:: CreatePatternBrush, CBrush: :CreateBrushlndirect,
CBrush: :CreateSolidBrush, CBrush: :CreateHatchBrush,
CGdiObject::CreateStockObject, ::CreateDIBPatternBrush, ::GlobaIAlloc

CBrush::CreateHatchBrush
BOOL CreateHatchBrush(int nlndex, DWORD creolor);

nlndex
Specifies the hatch style ofthe brush. It can be one ofthe following values:

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Value

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

crColor

CBrush::CreatePatternBrush 123

Meaning

Downward hatch (left to right) at 45 degrees

Horizontal and vertical crosshatch

Crosshatch at 45 degrees

Upward hatch (left to right) at 45 degrees

Horizontal hatch

Vertical hatch

Specifies the foreground color of the brush as an RGB color (the color of the
hatches).

Initializes a brush with the specified hatched pattern and color. The brush can sub­
sequently be selected as the current brush for any device context.

TRUE if successful; otherwise FALSE.

CBrush:: CreateBrushlndirect, CBrush:: CreateDIBPatternBrush,
CBrush:: CreatePatternBrush, CBrush:: CreateSolidBrush,
CGdiObject: :CreateStockObject, : :CreateHatchBrush

CBrush::CreatePatternBrush
BOOL CreatePatternBrush(CBitmap* pBitmap);

pBitmap
Identifies a bitmap.

Initializes a brush with a pattern specified by a bitmap. The brush can sub­
sequently be selected for any device context that supports raster operations. The
bitmap identified by pBitmap is typically initialized by using the
CBitmap:: CreateBitmap, CBitmap:: CreateBitmaplndirect,
CBitmap: : LoadBitmap, or CBitmap:: CreateCompatibleBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will only use the bits corresponding to the first 8 rows and columns of
pixels in the upper-left comer of the bitmap.

124 CBrush::CreateSolidBrush

Return Value

See A!so

Syntax

Parameters

Remarks

Return Value

See Also

A pattern brush can be deleted without affecting the associated bitmap. This
means the bitmap can be used to create any number of pattern brushes.

A brush created using a monochrome bitmap (1 color plane, 1 bit per pixel) is
drawn using the current text and background colors. Pixels represented by a bit set
to 0 are drawn with the current text color. Pixels represented by a bit set to 1 are
drawn with the current background color.

TRUE if successful; otherwise FALSE.

CBrush::CreateBrushlndirect, CBrush::CreateDIBPatternBrush,
CBrush: :CreateHatchBrush, CBrush:: CreateSolidBrush,
CGdiObject::CreateStockObject, CBitmap::CreateBitmap,
CBitmap:: CreateBitmapIndirect, CBitmap: :CreateCompatibleBitmap,
CBitmap: :LoadBitmap, : :CreatePatteruBrush

CBrush::CreateSolidBrush
BOOL CreateSolidBrush(DWORD crColor);

crColor
Specifies the color of the brush. The color specifies an RGB value and can be
constructed with the RGB macro in WINDOWS.H.

Initializes a brush with a specified solid color. The brush can subsequently be
selected as the current brush for any device context.

TRUE if successful; otherwise FALSE.

CBrush: :CreateBrushIndirect, CBrush: :CreateDIBPatternBrush,
CBrush::CreateHatchBrush, CBrush::CreatePatternBrush,
:: CreateSolidBrush

Syntax

Parameters

Remarks

Return Value

CBrush::FromHandle 125

CBrush::FromHandle
static CBrush* FromHandle(HBRUSH hBrush);

hBrush
HANDLE to a Windows GDI brush.

Returns a pointer to a CBrush object when given a handle to a Windows
HBRUSH object. If a CBrush object is not already attached to the handle, a tem­
porary CBrush object is created and attached. This temporary CBrush object is
valid only until the next time the application has idle time in its event loop. At this
time, all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

A pointer to a CBrush object if successful; NULL if not.

126 CButton

class CButton : public CWnd

See Also

The CButton class provides the functionality of Win­
dows button control. A button control is a small, rec­
tangular child window that can be clicked on and off.
Buttons can be used alone or in groups, and can either
be labeled or appear without text. A button typically
changes appearance when the user clicks it.

Typical buttons are the check box, radio button, and push button. A CButton ob­
ject can become any of these, according to the style specified at its initialization by
the Create member function.

You create a button control in two steps. First, call the constructor CButton to con­
struct the CButton object, then call the Create member function to create the Win­
dows button control and attach it to the CButton object.

Construction can be a one-step process in a class derived from CButton. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle the Windows notification messages sent by a CButton ob­
ject to its parent (usually a class derived from CDialog or CModalDialog), add
the appropriate message-map entries and message-handler member functions to
the parent class to handle the messages you want to process. Potential message­
map entries are:

ON_COMMAND
ON_BN_ CLICKED
ON_BN_DOUBLECLICKED

If you create a CButton object within a dialog box (through a dialog resource), the
CButton object is automatically destroyed when the user closes the dialog box.

If you create a CButton object within a window, you may also need to destroy it.
If you create the CButton object on the stack, it is destroyed automatically. If you
create the CButton object on the heap by using the new function, you must call
delete on the object to destroy it when the user closes the Windows button control.

If you allocate any memory in the CButton object, override the CButton destruc­
tor to dispose of the allocations.

CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic, CModalDialog,
CDialog

Public Members

Construction/Destruction
CButton

Initialization
Create

Operations
GetState

SetState

GetCheck

SetCheck

GetButtonStyle

SetButtonStyle

CButton 127

Constructs a CButton object.

Creates the Windows button control and attaches it
to the CButton object.

Retrieves the state of a button control.

Sets the highlighting state of a button control.

Retrieves the check state of a button control.

Sets the check state of a button control.

Retrieves information about the button control
style.

Changes the style of a button.

128 CButton::CButton

Member Functions

Syntax

Remarks

See Aiso

Syntax

Parameters

Remarks

CButton::CButton
CButtonO;

Constructs a CButton object.

CButton::Create

CButton::Create
BOOL Create(const char FAR* lpCaption, DWORD dwStyle,

const RECT& reet, CWnd* pParentWnd, UINT nID);

lpCaption
Specifies the button control's text.

dwStyle
Specifies the button control's style.

reet
Specifies the button control's size and position. It can be either a CRect object
or a RECT structure.

pParentWnd
Specifies the button control's parent window, usually a CDialog or
CModalDialog. It must not be NULL.

nID
Specifies the button control's resource ID.

You construct a CButton object in two steps. First call the constructor, then call
Create, which creates the Windows button control and attaches it to the CButton
object.

When Create executes, Windows sends the WM_NCCREATE,
WM_CREATE, WM_NCCALCSIZE, and WM_GETMINMAXINFO
messages to the button control.

CButton::Create 129

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base
class. To extend the default message handling, derive a class from CButton, add a
message map to the new class, and override the preceding message-handler mem­
ber functions. Override OnCreate, for example, to perform needed initialization
for a new class.

To handle Windows notification messages that the CButton object sends to its
parent, add any of the following message-map entries that you want to process to
the parent-class message map:

ON_COMMAND
ON_BN_ CLICKED
ON_BN_DOUBLECLICKED

If the WS_ VISIBLE style is given, Windows sends the button control all the mes­
sages required to activate and show the button.

Apply the following window styles 10 a button control:

Style

WS_CHILD

WS_VISIBLE

WS_DIABLED

WS_GROUP

WS_TABSTOP

Application

Always.

Usually.

Rarely.

To group controls.

To include the button in the tabbing order.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination of the following button styles for dwStyle:

Value

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

Meaning

Same as a check box, except that an X
appears in the check box when the user
selects the box; the X disappears the next
time the user selects the box.

Same as a radio button, except that when
the user selects it, the button automatically
highlights itself and removes the selection
from any other radio buttons with the same
style in the same group.

130 CButton::Create

Value

BS_AUT03STATE

BS_ CHECKBOX

BS_DEFPUSHBUTTON

BS_ GROUPBOX

BS_LEFTTEXT

Meaning

Same as a three-state check box, except that
the box changes its state when the user
selects it. The state cycles through checked,
dimmed, and normal.

Creates a small square that has text
displayed to its right (unless this style is
combined with the BS_LEFTTEXT style).

Creates a button that has a heavy black
border. The user can select this button by
pressing the ENTER key. This style is useful
for enabling the user to quickly select the
most likely option (the default option).

Creates a rectangle in which other buttons
can be grouped. Any text associated with
this style is displayed in the rectangle's
upper-left corner.

When combined with a radio-button or
check-box style, the text appears on the left
side of the radio button or check box.

Creates an owner-draw button. The owner
window receives a
WM_MEASUREITEM message when
the button is created and a
WM_DRAWITEM message when a
visual aspect of the button has changed.

Creates a push button that posts a
WM_ COMMAND message to the owner
window when the user selects the button.

Return Value

See Also

Syntax

Remarks

See Also

Value

BS_RADIOBUTTON

CButton::GetButtonStyle 131

Meaning

Creates a small circle that has text
displayed to its right (unless this style is
combined with the BS_LEFTTEXT
style). Radio buttons are usually used in
groups of related but mutually exclusive
choices.

Same as a check box, except that the box
can be dimmed as well as checked. The
dimmed state typically is used to show that
a check box has been disabled.

TRUE if successful; otherwise FALSE.

CButton:: CButton

CButton::GetButtonStyle
UINT GetButtonStyleO const;

Retrieves the window style of CButton. It only returns the BS_ style values, not
any of the other window styles.

See the Create member function for a list of button styles.

: : GetWindowLong, CButton: :SetButtonStyle

132 CButton::GetCheck

Syntax

Remarks

Return Value

See Also

Syntax

Return Value

CButton::GetCheck
int GetCheckO const;

Retrieves the check state of a radio button or check box.

The return value from a button control created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

Value

o
1

2

Meaning

Button state is unchecked.

Button state is checked.

Button state is indeterminate (only applies if the button has the
BS_3STATE or BS_AUT03STATE style).

If the button has any other style, the return value is O.

CButton::GetState, CButton::SetState, CButton::SetCheck,
BM_ GETCHECK

CButton:: G etState
UINT GetStateO const;

Specifies the current state of the button control. You can use the following masks
against the return value to extract information about the state:

Mask

Ox0003

Meaning

Specifies the check state (radio buttons and check boxes only). A
o indicates the button is unchecked. A 1 indicates the button is
checked. A radio button is checked when it contains a dot (.). A
check box is checked when it contains an X. A 2 indicates the
check state is indeterminate (three-state check boxes only). The
state of a three-state check box is indeterminate when it contains
a halftone pattern.

See Also

Syntax

Parameters

Remarks

See Also

Mask

Ox0004

Ox0008

CButton::SetButtonStyle 133

Meaning

Specifies the highlight state. A nonzero value indicates that the
button is highlighted. A button is highlighted when the user
clicks and holds the left mouse button. The highlighting is
removed when the user releases the mouse button.

Specifies the focus state. A nonzero value indicates that the
button has thc focus.

CButton: :GetCheck, CButton: :SetCheck, CButton: :SetState,
BM_GETSTATE

CButton::SetButtonStyle
void SetButtonStyle(UINT nStyle, BOOL bRedraw = TRUE);

nStyle
Specifies the button style.

bRedraw
Specifies whether the button is to be redrawn. A value of TRUE redraws the
button. A value of FALSE does not redraw the button. The button is redrawn
by default.

Changes the style of a button. See the Create member function for a list of
possible button styles.

CButton: :GetButtonStyle, BM_ SETSTYLE

134 CButton::SetCheck

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

CButton: :SetCheck
void SetCheck(int nCheck);

nCheck
Specifies the check state. This parameter can be one of the following values:

Value

o
1

2

Meaning

Set the button state to unchecked.

Set the button state to checked.

Set the button state to indeterminate. This value can only be
used if the button has the BS_3STATE or
BS_AUT03STATE style.

Sets or resets the check state of a radio button or check box. This member function
has no effect on a push button.

CButton: : GetCheck, CButton::GetState, CButton: :SetState,
BM_SETCHECK

CButton::SetState
void SetState(BOOL bHighlight);

bHighlight
Specifies whether the button is to be highlighted. A value of TRUE highlights
the button. A value of FALSE removes any highlighting.

Sets the highlighting state of a button control.

Highlighting affects the exterior of a button control. It has no effect on the check
state of a radio button or check box.

A button control is automatically highlighted when the user clicks and holds the
left mouse button. The highlighting is removed when the user releases the mouse
button.

CButton: :GetState, CButton: :SetCheck, CButton: : GetCheck,
BM_SETSTATE

CByteArray 135

class CByteArray : public CObject

See Also

Public Members

The CByteArray class supports dynamic arrays of
bytes.

The member functions of CByteArray are similar to
the member functions of class CObArray. Because
of this similarity, you can use the CObArray reference documentation for mem­
ber function specifics. Wherever you see a CObject pointer as a function parame­
ter or return value, substitute a BYTE.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

BYTE CByteArray::GetAt(int <nlndex>) canst;

CByteArray incorporates the IMPLEMENT_SERIAL macro to support serial­
ization and dumping of its elements. If an array of bytes is stored to an archive,
either with the overloaded insertion operator or with the Serialize member func­
tion, each element is, in turn, serialized.

If you need debug output from individual elements in the array, you must set the
depth of the CDumpContext object to 1 or greater.

#include <afxcoll.h>

CObArray

Construction/Destruction
CByteArray

Bounds
GetSize

GetUpperBound

SetSize

Constructs an empty array for bytes.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this
array.

136 CByteArray

Operations
FreeExtra

RemoveAll

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the byte within
the array.

Sets the value for a given index; grows the array if
necessary.

Adds an element to the end of the array.

Inserts an element at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CClientDC 137

class CClientDC : public CDC

See Also

Public Members

The CClientDC class is derived from CDC and takes
care of calling the Windows functions GetDC at con­
struction time and ReleaseDC at destruction time. This
means that the device context associated with a
CClientDC object is the client area of a window.

CDC

Construction/Destruction
CClientDC

-CClientDC

Constructs a CClientDC object connected to the
CWnd.

Destroys a CClientDC object.

Protected Members
m_hWnd The HWND of the window for which this

CClientDC is valid.

138 CClientDC::CClientDC

Member Functions

Syntax

Parameters

Remarks

Syntax

Remarks

CCI i entDC:: CCI ientDC
CClientDC(CWnd* pWnd)
throw(CResourceException);

pWnd
The window whose client area the device context object will access.

Constructs a CClientDC object that accesses the client area of the CWnd pointed
to by p Wnd. The constructor calls the Windows function GetDc.

An exception (of type CResourceException) is thrown if the Windows GetDC
call fails. A device context may not be available if Windows has already allocated
all of its available device contexts. Your application competes for the five com­
mon display contexts available at any given time under Windows.

CClientDC::-CClientDC
virtual -CClientDCO;

Destroys a CClientDC object and calls the Windows ReleaseDC function.

Data Members

CClientDC::m_ hWnd
Remarks The HWND of the CWnd pointer used to construct the CClientDC object.

class CComboBox : public CWnd
The CComboBox class provides the functionality of a
Windows combo box. A combo box consists of an edit
control plus a list box. The list box may be displayed
at all times or may be dropped down when the user
selects a drop-down arrow next to the edit control,
depending on the style of the combo box.

CComboBox 139

CComboBox

Depending on the style of the combo box, the user mayor may not be able to edit
the contents of the edit control. If the list box is visible, typing characters into the
edit control will cause the first list-box entry that matches the characters typed to
be highlighted. Conversely, selecting an item in the list box displays the selected
text in the edit control.

You create a combo box in two steps. First call the constructor CComboBox to
construct the CComboBox object, then call the Create member function to create
the button control and attach it to the CComboBox object.

Construction can be a one-step process in a class derived from CComboBox.
Write a constructor for the derived class and call Create from within the
constructor.

If you want to handle the Windows notification messages sent by a CComboBox
object to its parent (usually a class derived from CDialog or CModalDialog), add
the appropriate message-map entries and message-handler member functions to
the parent class to handle the messages you want to process. Potential message­
map entries are:

ON_COMMAND
ON_CBN_KILLFOCUS
ON_ CBN_SETFOCUS
ON_ CBN_DROPDOWN
ON_CBN_DBLCLK
ON_CBN_ERRSPACE
ON_CBN_SELCHANGE
ON_CBN_EDITCHANGE
ON_CBN_EDITUPDATE

If you create a CComboBox object within a dialog box (through a dialog re­
source), the CComboBox is automatically destroyed when the user closes the
dialog box.

140 CComboBox

See Also

Public Members

If you create a CComboBox object within a window, you may also need to de­
stroy it. If you create the CComboBox object on the stack, it is destroyed automat­
ically. If you create the CComboBox object on the heap by using the new
function, you must call delete on the object to destroy it when the user terminates
the Windows combo box.

If you allocate any memory in the CComboBox object, override the CComboBox
destructor to dispose of the allocations.

CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CModalDialog,
CDialog

Constructi on/Destructi on
CComboBox

Initialization
Create

General Operations
GetCount

GetCurSel

SetCurSel

GetEditSel

LimitText

SetEditSel

GetItemData

SetltemData

Constructs a CComboBox object.

Creates the combo box and attaches it to the
CComboBox object.

Retrieves the number of items in the list box of a
combo box.

Retrieves the index of the currently selected item,
if any, in the list box of a combo box.

Selects a string in the list box of a combo box.

Gets the starting and ending character positions
of the current selection in the edit control of a
combo box.

Limits the length of the text that the user may enter
into the edit control of a combo box.

Select characters in the edit control of a
combo box.

Retrieves the application-supplied 32-bit value as­
sociated with the specified combo-box item.

Sets the 32-bit value associated with the specified
item in a combo box.

GetLBText

GetLB TextLen

Show Drop Down

Clear

Copy

Cut

Paste

String Operations
AddString

DeleteString

InsertString

ResetContent

Dir

FindString

SelectString

CComboBox 141

Gets a string from the list box of a combo box.

Gets the length of a string in the list box of a
combo box.

Shows or hides the list box of a combo box that
has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

Deletes (clears) the current selection (if any) in the
edit control.

Copies the current selection (if any) onto the
Clipboard in CF _ TEXT format.

Deletes (cuts) the current selection (if any) in the
edit control, and copies the deleted text onto the
Clipboard in CF _ TEXT format.

Inserts the data from the Clipboard into the edit
control at the current cursor position. Data is in­
serted only if the Clipboard contains data in
CF _ TEXT format.

Adds a string to the end of the list in the list box of
a combo box, or at the sorted position for list
boxes with the CBS_SORT style.

Deletes a string from the list box of a combo box.

Inserts a string into the list box of a combo box.

Removes all items from the list box and edit con­
trol of a combo box.

Adds a list of filenames to the list box of a
combo box.

Finds the first string that contains the specified pre­
fix in the list box of a combo box.

Searches for a string in the list box of a combo box
and, if the string is found, selects the string in the
list box and copies the string to the edit control.

142 CComboBox::AddString

Member Functions

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CComboBox::AddString
int AddString(const char FAR* IpString);

IpString
Points to the null-terminated string that is to be added.

Adds a string to the list box of a combo box. If the list box was not created with
the CBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list, and the list is sorted.

To insert a string into a specific location within the list, use the InsertString
member function.

If the return value is greater than or equal to 0, it is the zero-based index to the
string in the list box. The return value is CB_ERR if an error occurs; the return
value is CB_ERRSPACE if insufficient space is available to store the new string.

CComboBox::lnsertString, CComboBox::DeleteString, CB_ADDSTRING

CComboBox::CComboBox
CComboBoxO;

Constructs a CComboBox object.

CComboBox: :Create

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Parameters

CComboBox::Create 143

CComboBox::Clear
void ClearO;

Deletes (clears) the current selection (if any) in the edit control of the combo box.

To delete the current selection and place the deleted contents onto the Clipboard,
use the Cut member function.

CComboBox::Copy, CComboBox::Cut, CComboBox::Paste, ~CLEAR

CComboBox::Copy
void CopyO;

Copies the current selection, if any, in the edit control of the combo box onto the
Clipboard in CF _ TEXT format.

CComboBox::Clear, CComboBox::Cut, CComboBox::Paste, WM_COPY

CComboBox::Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,

UINT nID);

dwStyle
Specifies the style of the combo box.

reet
Points to the position and size of the combo box. Can be a RECT structure or a
CRect object.

pParentWnd
Specifies the combo box's parent window (usually a CDialog or
CModalDialog). It must not be NULL.

nID
Specifies the combo box's resource ID.

144 CComboBox::Create

Remarks You construct a CComboBox object in two steps. First call the constructor, then
call Create, which creates the Windows combo box and attaches it to the
CComboBox object.

When Create executes, Windows sends the WM_NCCREATE,
WM_CREATE, WM_NCCALCSIZE, and WM_GETMINMAXINFO
messages to the combo box.

These messages are handled by default by the OnNcCreate, On Create,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base
class. To extend the default message handling, derive a class from CComboBox,
add a message map to the new class, and override the preceding message-handler
member functions. Override OnCreate, for example, to perform needed initializa­
tion for a new class.

To handle Windows notification messages sent from a CComboBox object to its
parent, add any of the following message-map entries that you want processed to
the parent-class message map:

ON_COMMAND
ON_CBN_KILLFOCUS
ON_ CBN_SETFOCUS
ON_ CBN_DROPDOWN
ON_CBN_DBLCLK
ON_CBN_ERRSPACE
ON_CBN_SELCHANGE
ON_ CBN_EDITCHANGE
ON_CBN_EDITUPDATE

Apply the following window styles to a combo-box control:

Style

WS_CHILD

WS_ VISIBLE

WS_DIABLED

WS_VSCROLL

WS_HSCROLL

WS_GROUP

WS_TABSTOP

Application

Always.

Usually.

Rarely.

For list boxes and combo boxes.

For list boxes and combo boxes.

To group controls.

To include the combo box in the tabbing order.

See CreateEx in the CWnd base class for a full description of these window
styles.

CComboBox::Create 145

Use any combination of the following combo-box styles fordwStyle:

Style Description

CBS_AUTOHSCROLL Automatically scrolls the text in the
edit control to the right when the user
types a character at the end of the line.
If this style is not set, only text that fits
within the rectangular boundary is
allowed.

CBS_DROPDOWN Similar to CBS_SIMPLE, except that
the list box is not displayed unless the
user selects an icon next to the edit
control.

CBS_DROPDOWNLIST Similar to CBS_DROPDOWN,
except that the edit control is replaced
by a static text item that displays the
current selection in the list box.

CBS_HASSTRINGS An owner-draw combo-box contains
items consisting of strings. The combo
box maintains the memory and pointers
for the strings so the application can
use the GetText member function to
retrieve the text for a particular item.

CBS_ OEM CONVERT Text entered in the combo-box edit
control is converted from the ANSI
character set to the OEM character set
and then back to ANSI. This ensures
proper character conversion when the
application calls the AnsiToOem
Windows function to convert an ANSI
string in the combo box to OEM
characters. This style is most useful for
combo boxes that contain filenames
and applies only to combo boxes
created with the CBS_SIMPLE or
CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED The owner of the list box is responsible
for drawing its contents; the items in
the list box are all the same height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible
for drawing its contents; the items in
the list box are variable in height.

146 CComboBox::Cut

Return Value

See Also

Syntax

Remarks

See Also

Style

CBS_SIMPLE

Description

The list box is displayed at all times.
The current selection in the list box is
displayed in the edit control.

Automatically sorts strings entered into
the list box.

Returns TRUE if successful; otherwise FALSE.

CComboBox: :CComboBox

CComboBox::Cut
void CutO;

Deletes (cuts) the current selection (if any) in the combo-box edit control, and
copies the deleted text onto the Clipboard in CF _ TEXT format.

To delete the current selection without placing the deleted text onto the Clipboard,
call the Clear member function.

CComboBox::Clear, CComboBox::Copy, CComboBox::Paste, W~CUT

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CComboBox::Dir 147

CComboBox::DeleteString
int DeleteString(UINT nlndex);

nlndex
Specifies the index to the string that is to be deleted.

Deletes a string in the list box of a combo box.

If the return value is greater than or equal to 0, then it is a count of the strings re­
maining in the list. The return value is CB_ERR if nlndex specifies an index
greater then the number of items in the list.

CComboBox: :InsertString, CComboBox: :AddString, CB_ DELETE STRING

CComboBox::Dir
int Dir(UINT attr, const char FAR* lpWildCard);

attr
Can be any combination of the enum values from CFile: : GetStatus or any
combination of the following values:

Value

OxOOOO

OxOOOl

Ox0002

Ox0004

OxOOlO

Ox0020

Ox4000

Ox8000

Meaning

File can be read from or written to.

File can be read from, but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name specified by lp WildCard specifies a directory.

File has been archived.

Include all drives that match the name specified by
lp WildCa rd.

Exclusive flag. If the exclusive flag is set, only files of the
specified type are listed. Otherwise, files of the specified type
are listed in addition to "normal" files.

148 CComboBox::FindString

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

lpWildCard
Points to a file-specification string. The string can contain wildcards (for
example, *. *).

Adds a list of filenames and/or drives to the list box of a combo box.

If the return value is greater than or equal to 0, it is the zero-based index of the last
filename added to the list. The return value is CB_ERR if an error occurs; the re­
turn value is CB_ ERRSP ACE if insufficient space is available to store the new
strings.

CWnd::DlgDirList, CB_DIR, CFile::GetStatus

CComboBox::FindString
int FindString(int nStartAfter, const char FAR* lpString) const;

nStartAfter
Contains the zero-based index of the item before the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of
the list box back to the item specified by nStartAfter. If -1, the entire list box is
searched from the beginning.

lpString
Points to the null-terminated string that contains the prefix to search for. The
search is case-independent, so this string may contain any combination of
uppercase and lowercase letters.

Finds, but doesn't select, the first string that contains the specified prefix in the list
box of a combo box.

If the return value is greater than or equal to 0, it is the zero-based index of the
matching item. It is CB_ERR if the search was unsuccessful.

CComboBox: :SelectString, CComboBox: :SetCurSel, CB_FINDSTRING

Syntax

Return Value

See Also

Syntax

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CComboBox::GetEditSel 149

CComboBox::GetCount
int GetCountO const;

The number of items in the list box of a combo box. The returned count is one
greater then the index value of the last item (the index is zero-based). It is
CB_ERR if an error occurs.

CB_GETCOUNT

CComboBox::GetCurSel
int GetCurSelO const;

The zero-based index of the currently selected item in the list box of a combo box,
or CB_ERR if no item is selected.

CComboBox: :SetCurSel, CB_ GETCURSEL

CComboBox::GetEditSel
DWORD GetEditSelO const;

Gets the starting and ending character positions of the current selection in the edit
control of a combo box.

A 32-bit value that contains the starting position in the low-order word and the
position of the first nonselected character after the cnd of the selection in the high­
order word. If this is used on a combo box without an edit control, CB_ERR is
returned.

CComboBox: :SetEditSeL CB_ GETEDITSEL

150 CComboBox: :GetltemData

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CComboBox::GetltemData
DWORD GetltemData(int nlndex) const;

nlndex
Contains the zero-based index of an item in the combo box's list box.

Retrieves the application-supplied 32-bit value associated with the specified
combo-box item. The 32-bit value can be set with the dwltemData parameter of a
SetltemData member function call.

The 32-bit value associated with the item, or CB_ERR if an error occurs.

CComboBox: :SetltemData, CB_ GETITEMDATA

CComboBox::GetLBText
int GetLBText(int nlndex, char FAR* IpText) const;

void GetLBText(int nlndex, CString& rString) const;

nlndex
Contains the zero-based index ofthe list-box string to be copied.List
boxes;combo boxes, getting string from, CComboBox::GetLBText

IpText
Points to a buffer that is to receive the string. The buffer must have sufficient
space for the string and a terminating null character.

rString
A reference to a CString.

Gets a string from the list box of a combo box. The second form of this member
function fills a CString object with the item's text.

The length (in bytes) ofthe string, excluding the terminating null character. If
nlndex does not specify a valid index, the return value is CB_ERR.

CComboBox::GetLBTextLen, CB_ GETLBTEXT

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CComboBox::lnsertString 151

CComboBox::GetLBTextLen
int GetLBTextLen(int nlndex) const;

nlndex
Contains the zero-based index of the list-box string.

Gets the length of a string in the list box of a combo box.

The length of the string in bytes, excluding the terminating null character. If
nlndex does not specify a valid index, the return value is CB_ERR.

CComboBox: : GetLBText, CB_ GETLBTEXTLEN

CComboBox::lnseriString
int InsertString(int nlndex, const char FAR* IpString);

nlndex
Contains the zero-based index to the position in the list box that will receive the
string. If this parameter is -1, the string is added to the end of the list.

IpString
Points to the null-terminated string that is to be inserted.

Inserts a string into the list box of a combo box. Unlike the AddString member
function, the InsertString member function does not cause a list with the
CBS_SORT style to be sorted.

The zero-based index of the position at which the string was inserted. The return
value is CB_ERR if an error occurs. The return value is CB_ERRSPACE if
insufficient space is available to store the new string.

CComboBox: :AddString, CComboBox: : DeleteString,
CComboBox::ResetContent, CB_INSERTSTRING

152 CComboBox::limitText

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CComboBox::LimitText
BOOL LimitText(int nMaxChars);

nMaxChars
Specifies the length (in bytes) ofthe text that the user can enter. If this parame­
ter is 0, the text length is set to 65,535 bytes.

Limits the length in bytes of the text that the user may enter into the edit control of
a combo box.

If the combo box does not have the style CBS_AUTOHSCROLL, setting the
text limit to be larger than the size of the edit control will have no effect.

LimitText only limits the text the user can enter. It has no effect on any text al­
ready in the edit control when the message is sent, nor does it affect the length of
the text copied to the edit control when a string in the list box is selected.

TRUE if successful. If called for a combo box with the style
CBS_DROPDOWNLIST or for a combo box without an edit control, the return
value is CB_ERR.

CB_LIMITTEXT

CCom boBox:: Paste
void PasteO;

Inserts the data from the Clipboard into the edit control of the combo box at the
current cursor position. Data is inserted only if the Clipboard contains data in
CF _ TEXT format.

CComboBox::Clear, CComboBox::Copy, CComboBox::Cut, W~PASTE

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CComboBox::SelectString 153

CComboBox::ResetContent
void ResetContentO;

Removes all items from the list box and edit control of a combo box.

CB_RESETCONTENT

CComboBox::SelectString
int SelectString(int nStartAfter, const char FAR* IpString);

nStartAfter
Contains the zero-based index of the item before the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of
the list box back to the item specified by nStartAfter. If -1, the entire list box is
searched from the beginning.

IpString
Points to the null-terminated string that contains the prefix to search for. The
search is case-independent, so this string may contain any combination of
uppercase and lowercase letters.

Searches for a string in the list box of a combo box, and if the string is found,
selects the string in the list box and copies it to the edit control.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

Note that the SelectString and FindString member functions both find a string,
but the SelectString member function also selects the string.

The zero-based index of the selected item if the string was found. If the search
was unsuccessful, the return value is CB_ERR and the current selection is not
changed.

CComboBox::FindString, CB_SELECTSTRING

154 CComboBox::SetCurSel

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CComboBox::SetCurSel
int SetCurSel(int nSelect);

nSelect
Specifies the zero-based index of the string to select. If -1, any current selec­
tion in the list box is removed and the edit control is cleared.

Selects a string in the list box of a combo box. If necessary, the list box scrolls the
string into view (if the list box is visible). The text in the edit control of the combo
box is changed to reflect the new selection. Any previous selection in the list box
is removed.

The zero-based index of the item selected if the message is successful. The return
value is CB_ERR if nSelect is greater than the number of items in the list or if
nSelect is set to -1, which clears the selection.

CComboBox: : GetCurSel, CB_SETCURSEL

CComboBox::SetEditSel
BOOL SetEditSel(int nStartChar, int nEndChar);

nStartChar
Specifies the starting position. If the starting position is set to -1, then any
existing selection is removed.

nEndChar
Specifies the ending position. If the ending position is set to -1, then all text
from the starting position to the last character in the edit control is selected.

Selects characters in the edit control of a combo box.

The positions are zero-based. To select the first character of the edit control, you
specify a starting position of O. The ending position is for the character just after
the last character to select. For example, to select the first four characters of the
edit control, you would use a starting position of 0 and an ending position of 4.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CComboBox::ShowDropDown 155

TRUE if the member function is successful; otherwise FALSE. It is CB_ERR if
CComboBox has the CBS_DROPDOWNLIST style or doesn't have a list box.

CComboBox: : GetEditSeL CB_ SETEDITSEL

CComboBox: :Setltem Data
int SetItemData(int nlndex, DWORD dwltemData);

nlndex
Contains a zero-based index to the item to set.

dwltemData
Contains the new value to associate with the item.

Sets the 32-bit value associated with the specified item in a combo box.

CB_ERR if an error occurs.

CComboBox: : GetItemData, CB_ SETITEMDATA, CComboBox: :AddString,
CComboBox: : InsertString

CComboBox::ShowDropDown
void ShowDropDown(BOOL bShowlt = TRUE);

bShowlt
Specifies whether the drop-down list box is to be shown or hidden. A value of
TRUE shows the list box. A value of FALSE hides the list box.

Shows or hides the list box of a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style. By default, a combo box ofthis style will show
the list box.

This member function has no effect on a combo box created with the
CBS_SIMPLE style.

CB_SHOWDROPDOWN

156 CDC

class CDC· public CObject

See Also

Public Members

The CDC class defines a class of device-context ob­
jects. The CDC object provides member functions
for working with a device context, such as a display
or printer, as well as members for working with a dis­
play context associated with the client area of a window.

I CObject I

Do all drawing through the member functions of a CDC object. The class provides
member functions for device-context operations, working with drawing tools, type­
safe GDI object selection, and working with colors and palettes. It also provides
member functions for getting and setting drawing attributes, mapping, working
with the viewport, working with the window extent, converting coordinates, work­
ing with regions, clipping, drawing lines, drawing simple shapes, ellipses, and
polygons. Member functions are also provided for drawing text, working with
fonts, using printer escapes, scrolling, and playing metafiles.

To use a CDC object, construct it, and then call its member functions, which paral­
lel Windows functions that use device contexts or display contexts.

For specific uses, the Microsoft Foundation Class Library provides several classes
derived from CDC-in particular class CPaintDC, which encapsulates calls to
BeginPaint and EndPaint. Class CClientDC manages a display context associ­
ated with a window's client area. Class CWindowDC manages a display context
associated with an entire window, including its frame and controls. Class
CMetaFileDC associates a device context associated with a metafile.

CDC supports the Attach/Detach idiom for Windows handles described in CWnd.

CPaintDC, CWindowDC, CClientDC, CMetaFileDC

Construction/Destruction
CDC

-CDC

Constructs a CDC object.

Destroys a CDC object.

In itia I izati on
CreateDC

CreateIC

CreateCompatibleDC

DeleteDC

Device-Context Functions
GetDCOrg

SaveDC

RestoreDC

GetDeviceCaps

Drawing-Tool Functions
GetBrushOrg

SetBrushOrg

EnumObjects

CDC 157

Creates a device context for a specific device.

Creates an information context for a specific de­
vice. This provides a fast way to get information
about the device without creating a device context.

Creates a memory device context that is compat­
ible with another device context. You can use it to
prepare images in memory.

Deletes the Windows DC associated with this
CDC object.

Obtains the final translation origin for the device
context.

Saves the current state of the device context.

Restores the device context to a previous state
saved with SaveDC.

Retrieves a specified kind of device-specific infor­
mation about a given display device's capabilities.

Retrieves the origin of the current brush.

Specifies the origin for the next brush selected into
a device context.

Enumerates the pens and brushes available in a
device context.

Type-Safe Selection Helpers
SelectObject

SelectStockObject

Selects a GDI drawing object, such as a pen.

Selects one of the predefined stock pens, brushes,
or fonts provided by Windows.

158 CDC

Color and Color Palette Functions
GetNearestColor

SelectPalette

RealizePalette

UpdateColors

Retrieves the closest logical color to a specified
logical color that the given device can represent.

Selects the logical palette.

Maps palette entries in the current logical palette to
the system palette.

Updates the client area of the device context by
matching the current colors in the client area to the
system palette on a pixel-by-pixel basis.

Drawing-Attribute Functions
GetBkColor

SetBkColor

GetBkMode

SetBkMode

GetPolyFillMode

SetPolyFillMode

GetROP2

SetROP2

GetStretchBltMode

SetStretchBltMode

GetTextColor

SetTextColor

Mapping Functions
GetMapMode

SetMapMode

Get ViewportOrg

Set ViewportOrg

Offset ViewportOrg

Get ViewportExt

Set ViewportExt

Retrieves the current background color.

Sets the current background color.

Retrieves the background mode.

Sets the background mode.

Retrieves the current polygon-filling mode.

Sets the polygon-filling mode.

Retrieves the current drawing mode.

Sets the current drawing mode.

Retrieves the current bitmap-stretching mode.

Sets the bitmap-stretching mode.

Retrieves the current text color.

Sets the text color.

Retrieves the current mapping mode.

Sets the current mapping mode.

Retrieves the x- and y-coordinates of the viewport
origin.

Sets the viewport origin.

Modifies the viewport origin relative to the coordi­
nates of the current viewport origin.

Retrieves the x- and y-extents ofthe viewport.

Sets the x- and y-extents of the viewport.

Scale ViewportExt

GetWindowOrg

SetWindowOrg

OffsetWindowOrg

GetWindowExt

SetWindowExt

Scale WindowExt

Coordinate Functions
DPtoLP

LPtoDP

Region Functions
FillRgn

FrameRgn

InvertRgn

PaintRgn

Clipping Functions
GetClipBox

SelectClipRgn

ExcludeClipRect

ExcludeUpdateRgn

CDC 159

Modifies the viewport extent relative to the current
values.

Retrieves the x- and y-coordinates of the origin of
the associated window.

Sets the window origin of the device context.

Modifies the window origin relative to the coordi­
nates of thc current window origin.

Retrieves the x- and y-extents of the associated
window.

Sets the x- and y-extents of the associated window.

Modifies the window extents relative to the current
values.

Converts device points or rectangles into logical
points or rectangles.

Converts logical points or rectangles into device
points or rectangles.

Fills a specific region with the specified brush.

Draws a border around a specific region using a
brush.

Inverts the colors in a region.

Fills a region with the selected brush.

Retrieves the dimensions of the tightest bounding
rectangle around the current clipping boundary.

Selects the given region as the current clipping
regIOn.

Creates a new clipping region that consists of the
existing clipping region minus the specified rec­
tangle.

Prevents drawing within invalid areas of a window
by excluding an updated region in the window
from a clipping region.

160 CDC

IntersectClipRect

OffsetClipRgn

PtVisible

RectVisible

line-Output Functions
GetCurrentPosition

MoveTo

LineTo

Arc

Polyline

Simple Drawing Functions
FillRect

FrameRect

InvertRect

Drawlcon

Creates a new clipping region by forming the inter­
section of the current region and a rectangle.

Moves the clipping region of the given device.

Specifies whether the given point is within the clip­
ping region.

Determines whether any part of the given rectangle
lies within the clipping region.

Retrieves the current position of the pen (in logical
coordinates) .

Moves the current position.

Draws a line from the current position up to, but
not including, a point.

Draws an elliptical arc.

Draws a set of line segments connecting the
specified points.

Fills a given rectangle by using a specific brush.

Draws a border around a rectangle.

Inverts the contents of a rectangle.

Draws an icon.

Ellipse and Polygon Functions
Chord

DrawFocusRect

Ellipse

Pie

Polygon

PolyPolygon

Draws a chord (a closed figure bounded by the in­
tersection of an ellipse and a line segment).

Draws a rectangle in the style used to indicate
focus.

Draws an ellipse.

Draws a pie-shaped wedge.

Draws a polygon consisting of two or more points
(vertices) connected by lines.

Creates two or more polygons that are filled using
the current polygon-filling mode. The polygons
may be disjoint or they may overlap.

Rectangle

RoundRect

Bitmap Functions
PatBlt

BitBlt

StretchBlt

GetPixel

SetPixel

FloodFill

ExtFloodFill

Text Functions
TextOut

ExtTextOut

TabbedTextOut

DrawText

GetTextExtent

GetTabbedTextExtent

GrayString

GetTextAlign

SetTextAlign

CDC 161

Draws a rectangle using the current pen and filled
using the current brush.

Draws a rectangle with rounded corners using the
current pen and filled using the current brush.

Creates a bit pattern.

Copies a bitmap from a specified device context.

Moves a bitmap from a source rectangle and de­
vice into a destination rectangle, stretching or com­
pressing the bitmap if necessary to fit the
dimensions of the destination rectangle.

Retrieves the ROB color value of the pixel at the
specified point.

Sets the pixel at the specified point to the closest
approximation of the specified color.

Fills an area with the current brush.

Fills an area with the current brush. Provides more
flexibility than the FloodFill member function.

Writes a character string at a specified location,
using the currently selected font.

Writes a character string within a rectangular re­
gion, using the currently selected font.

Writes a character string at a specified location, ex­
panding tabs to the values specified in an array of
tab-stop positions.

Draws formatted text in the specified rectangle.

Computes the width and height of a line of text,
using the current font to determine the dimensions.

Computes the width and height of a character
string.

Draws dimmed (gray) text at the given location.

Retrieves the text-alignment flags.

Sets the text-alignment flags.

162 CDC

GetTextFace

GetTextMetrics

SetTextJustification

GetTextCharacterExtra

SetTextCharacterExtra

Font Functions
GetCharWidth

SetMapperFlags

GetAspectRatioFilter

Printer Escape Functions
Escape

StartDoc

StartPage

EndPage

SetAbortProc

AbortDoc

EndDoc

Copies the typeface name of the current font into a
buffer as a null-terminated string.

Retrieves the metrics for the current font.

Adds space to the break characters in a string.

Retrieves the current setting for the amount of in­
tercharacter spacing.

Sets the amount of intercharacter spacing.

Retrieves the widths of individual characters in a
consecutive group of characters from the current
font.

Alters the algorithm that the font mapper uses
when it maps logical fonts to physical fonts.

Retrieves the setting for the current aspect-ratio
filter.

Allows applications to access facilities of a particu­
lar device that are not directly available through
GDI. Escape calls made by an application are trans­
lated and sent to the device driver.

Informs the device driver that a new print job is
starting.

Informs the device driver that a new page is
starting.

Informs the device driver that a page is ending.

Sets a programmer-supplied callback function that
Windows calls if a print job must be aborted.

Terminates the current print job, erasing every­
thing the application has written to the device since
the last EndDoc escape.

Ends a print job started by a StartDoc escape.

Scrolling Functions
ScrollDC

Metafile Functions
PlayMetaFile

CDC 163

Scrolls a rectangle of bits horizontally and
vertically.

Plays the contents of the specified metafile on the
given device. The metafile can be played any num­
ber of times.

164 CDC::AbortDoc

Member Functions

Syntax

Remarks

Return Value

CDC::AbortDoc
int AbortDocO;

Terminates the current print job, erasing everything the application has written to
the device since the last call to EndDoc.

This member function is provided as a convenient way to send the ABORTDOC
escape. It allows the application to access facilities of a particular device that are
not directly available through GDI. The escape call is translated and sent to the
device driver.

AbortDoc should be used to terminate:

• Printing operations that do not specify an abort function using SetAbortProc.

• Printing operations that have not yet reached their first NEWFRAME or
NEXTBAND escape call.

If an application encounters a printing error or a canceled print operation, it must
not attempt to terminate the operation by using either the EndDoc or AbortDoc
member functions of class CDC. GDI automatically terminates the operation
before returning the error value.

If the application displays a dialog box to allow the user to cancel the print opera­
tion, it must call AbortDoc before destroying the dialog box.

A positive value if successful, or a negative value if an error has occurred. The fol­
lowing list shows common error values:

See Also

Syntax

Value

SP_ERROR

SP _ OUTOFDISK

SP _ OUTOFMEMORY

SP _ USERABORT

::AbortDoc

CDC::Arc

CDC::Arc 165

Meaning

General error.

Not enough disk space is currently available for
spooling, and no more space will become
available.

Not enough memory is available for spooling.

User terminated the job through the Print
Manager.

BOOL Arc(intxl, intyl, intx2, inty2, intx3, inty3, intx4, inty4);

BOOL Arc(LPRECT IpRect, POINT ptStart, POINT ptEnd);

Parameters xl

yl

x2

y2

Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in
logical units).

Specifies the y-coordinate of the upper-left corner of the bounding rectangle (in
logical units).

Specifies the x-coordinate of the lower-right corner of the bounding rectangle
(in logical units).

Specifies the y-coordinate of the lower-right corner of the bounding rectangle
(in logical units).

166 CDC::Arc

Remarks

Return Value

See Also

x3

y3

x4

y4

Specifies the x-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

Specifies the y-coordinate of the point that defines the arc's starting point (in
logical units). This point does not have to lie exactly on the arc.

Specifies the x-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

Specifies the y-coordinate of the point that defines the arc's endpoint (in logical
units). This point does not have to lie exactly on the arc.

IpRect
Specifies the bounding rectangle (in logical units). You can pass either a
LPRECT or a CRect object for this parameter.

ptStart
Specifies the x- and y-coordinates of the point that defines the arc's starting
point (in logical units). This point does not have to lie exactly on the arc. You
can pass either a POINT structure or a CPoint object for this parameter.

ptEnd
Specifies the x- and y-coordinates of the point that defines the arc's ending
point (in logical units). This point does not have to lie exactly on the arc. You
can pass either a POINT structure or a CPoint object for this parameter.

Draws an elliptical arc. The arc drawn by using the function is a segment of the el­
lipse defined by the specified bounding rectangle.

The actual starting point of the arc is the point at which a ray drawn from the cen­
ter of the bounding rectangle through the specified starting point intersects the el­
lipse. The actual ending point of the arc is the point at which a ray drawn from the
center of the bounding rectangle through the specified ending point intersects the
ellipse. The arc is drawn in a counterclockwise direction. Since an arc is not a
closed figure, it is not filled.

TRUE if the arc is drawn; otherwise FALSE.

CDC::Chord, ::Arc

Syntax

Parameters

CDC::BitBIt 167

CDC::BitBlt
BOOL BitBlt(int x, int y, int n Width, int nHeight, CDC* pSrcDC, int xSrc,

int ySrc, DWORD dwRop);

x

y

Specifies the logical x -coordinate of the upper -left corner of the destination rec­
tangle.

Specifies the logical y-coordinate of the upper-left corner of the destination rec­
tangle.

nWidth
Specifies the width (in logical units) of the destination rectangle and source bit­
map.

nHeight
Specifies the height (in logical units) of the destination rectangle and source bit­
map.

pSrcDC
Pointer to a CDC object that identifies the device context from which the bit­
map will be copied. It must be NULL if dwRop specifies a raster operation that
does not include a source.

xSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

ySrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

dwRop
Specifies the raster operation to be performed. Raster-operation codes define
how the graphics device interface (GDI) combines colors in output operations
that involve a current brush, a possible source bitmap, and a destination bitmap.
The following lists raster-operation codes for dwRop:

Code

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

Description

Turns all output black.

Inverts the destination bitmap.

Combines the pattern and the source bitmap using the
Boolean AND operator.

Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.

168 CDC::BitBIt

Remarks

Code

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

Description

Copies the inverted source bitmap to the destination.

Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern
using the Boolean XOR operator.

Combines the inverted source bitmap with the pattern
using the Boolean OR operator. Combines the result
of this operation with the destination bitmap using the
Boolean OR operator.

Combines pixels of the destination and source
bitmaps using the Boolean AND operator.

Copies the source bitmap to the destination bitmap.

Inverts the desination bitmap and combines the result
with the source bitmap using the Boolean AND
operator.

Combines pixels of the destination and source
bitmaps using the Boolean XOR operator.

Combines pixels of the destination and source
bitmaps using the Boolean OR operator.

Turns all output white.

For a complete list of raster-operation codes, see the Windows Software
Development Kit documentation.

Copies a bitmap from the source device context to this current device context.

The application can align the windows or client areas on byte boundaries to ensure
that the BitBlt operations occur on byte-aligned rectangles. (Set the
CS_BYTEALIGNWINDOWor CS_BYTEALIGNCLIENT flags when you
register the window classes.)

Return Value

See Also

Syntax

Remarks

See Also

CDC::CDC 169

BitBlt operations on byte-aligned rectangles are considerably faster than BitBlt
operations on rectangles that are not byte aligned. If you want to specify class
styles such as byte-alignment or your own device context, you will have to register
a window class rather than relying on the Foundation classes to do it for you. Use
the Foundation global function AfxRegisterWndClass.

GOI transforms nWidth and nHeight, once by using the destination display con­
text, and once by using the source display context. If the resulting extents do not
match, GOI uses the Windows StretchBlt function to compress or stretch the
source bitmap as necessary.

If destination, source, and pattern bitmaps do not have the same color format, the
BitBlt function converts the source and pattern bitmaps to match the destination.
The foreground and background colors of the destination are used in the conver­
sion.

Note that not all device contexts support BitBlt. To check whether a given device
context does support BitBlt, use GetDeviceCaps.

TRUE if the bitmap is drawn; otherwise FALSE.

CDC::GetDeviceCaps, CDC::PatBlt, CDC::SetTextColor, CDC::StretchBlt,
::StretchDIBits, ::BitBlt

CDC::CDC
CDCO;

Constructs a CDC object.

CDC::CreateDC, CDC::CreateIC

170 CDC::-CDC

Syntax

Remarks

See Also

Syntax

CDC::-CDC
virtual-CDCO;

Destroys a CDC object. If a Windows HDC is attached to the CDC object, the de­
structor detaches the HDC and deletes it.

CDC::DeleteDC, ::DeleteDC

CDC::Chord
BOOL Chord(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);

BOOL Chord(LPRECT IpRect, POINT ptStart, POINT ptEnd);

Parameters xl

yl

x2

y2

x3

y3

x4

Specifies the x-coordinate of the upper-left corner of the chord's bounding rec­
tangle (in logical units).

Specifies the y-coordinate of the upper-left corner of the chord's bounding rec­
tangle (in logical units).

Specifies the x-coordinate of the lower-right corner ofthe chord's bounding rec­
tangle (in logical units).

Specifies the y-coordinate of the lower-right corner of the chord's bounding rec­
tangle (in logical units).

Specifies the x-coordinate of the point that defines the chord's starting point (in
logical units).

Specifies the y-coordinate of the point that defines the chord's starting point (in
logical units).

Specifies the x-coordinate ofthe point that defines the chord's endpoint (in logi­
cal units).

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

y4

CDC::CreateCompatibleDC 171

Specifies the y-coordinate of the point that defines the chord's endpoint (in logi­
cal units).

lpRect
Specifies the bounding rectangle (in logical units). You can pass either a
LPRECT or a CRect object for this parameter.

ptStart
Specifies the x- and y-coordinates of the point that defines the chord's starting
point (in logical units). This point does not have to lie exactly on the chord.
You can pass either a POINT structure or a CPoint object for this parameter.

ptEnd
Specifies the x- and y-coordinates ofthe point that defines the chord's ending
point (in logical units). This point does not have to lie exactly on the chord.
You can pass either a POINT structure or a CPoint object for this parameter.

Draws a chord (a closed figure bounded by the intersection of an ellipse and a line
segment). The (xl, yl) and (x2, y2) parameters specify the upper-left and lower­
right corners, respectively, of a rectangle bounding the ellipse that is part of the
chord. The (x3, y3) and (x4, y4) parameters specify the endpoints of a line that in­
tersects the ellipse. The chord is drawn by using the selected pen and filled by
using the selected brush.

TRUE if the chord is drawn; otherwise FALSE.

CDC::Arc, ::Chord

CDC::CreateCompatibleDC
BOOL CreateCompatibleDC(CDC* pDC);

pDC
A pointer to a device context. If pDC is NULL, the function creates a memory
device context that is compatible with the system display.

Creates a memory device context that is compatible with the device specified by
pDC. A memory device context is a block of memory that represents a display sur­
face. It can be used to prepare images in memory before copying them to the ac­
tual device surface of the compatible device.

When a memory device context is created, GDI automatically selects a I-by-l
monochrome stock bitmap for it.

172 CDC::CreateDC

Return Value

See Also

Syntax

Parameters

This function can only be used to create compatible device contexts for devices
that support raster operations. For more information, see the RC_BITBLT raster
capability in the member function GetDeviceCaps. GDJ output functions can be
used with a memory device context only if a bitmap has been created and selected
into that context.

TRUE if successful; otherwise FALSE.

CDC::CDC, CDC::GetDeviceCaps, ::CreateCompatibleDC

CDC::CreateDC
BOOL CreateDC(const char FAR* IpDriverName,

const char FAR* IpDeviceName, const char FAR* IpOutput,
LPSTR IplnitData);

IpDriverName
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, EPSON). You can also pass a
CString object for this parameter.

IpDeviceName
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, EPSON FX-80). The IpDeviceName parameter is
used if the module supports more than one device. You can also pass a CString
object for this parameter.

IpOutput
Points to a null-terminated string that specifies the MS-DOS file or device
name for the physical output medium (file or output port). You can also pass a
CString object for this parameter.

IplnitData
Points to a DEVMODE structure containing device-specific initialization data
for the device driver. The Windows ExtDeviceMode function retrieves this
structure filled in for a given device. The IplnitData parameter must be NULL
if the device driver is to use the default initialization (if any) specified by the
user through the Control Panel.

The DEVMODE structure has the following form:

Remarks

Return Value

See Also

Syntax

Parameters

CDC::CreateIC 173

#include <drvinit.h>

typedef struct _devicemode
char dmDeviceName[32];
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmmembers;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmP ri ntOua 1 ity;
short dmColor;
short dmDuplex;

DEVMODE;

Creates a device context for the specified device. The IpDriverName,
IpDeviceName, and IpOutput parameters specify the device driver, device name,
and physical output medium (file or port), respectively.

The DRVINIT.H header file is required if the DEVMODE structure is used.

TRUE if successful; otherwise FALSE.

: :ExtDeviceMode, :: CreateDC

CDC::CreateIC
BOOL CreateIC(const char :FAR* IpDriverName,

const char FAR* IpDeviceName, const char FAR* IpOutput,
LPSTR IplnitData);

IpDriverName
Points to a null-terminated string that specifies the MS-DOS filename (without
extension) of the device driver (for example, EPSON). You can pass a CString
object for this parameter.

IpDeviceName
Points to a null-terminated string that specifies the name of the specific device
to be supported (for example, EPSON FX-80). The lpDeviceName parameter is

174 CDC::DeleteDC

Remarks

Return Value

See Also

Syntax

Remarks

used if the module supports more than one device. You can pass a CString ob­
ject for this parameter.

lpOutput
Points to a null-terminated string that specifies the MS-DOS file or device
name for the physical output medium (file or port). You can pass a CString ob­
ject for this parameter.

lplnitData
Points to device-specific initialization data for the device driver. The lplnitData
parameter must be NULL if the device driver is to use the default initialization
(if any) specified by the user through the Control Panel. See CreateDC for the
data format for device-specific initialization.

Creates an information context for the specified device. The information context
provides a fast way to get information about the device without creating a device
context.

MS-DOS device names follow MS-DOS conventions; an ending colon (:) is rec­
ommended, but optional. Windows strips the terminating colon so that a device
name ending with a colon is mapped to the same port as the same name without a
colon. The driver and port names must not contain leading or trailing spaces. GDI
output functions cannot be used with information contexts.

TRUE if successful; otherwise FALSE.

CDC::CreateDC, ::CreateIC

CDC::DeleteDC
BOOL DeleteDCO;

In general, do not call this function; the destructor will do it for you. The
DeleteDC member function deletes the Windows function DC attached to the cur­
rent CDC object. If this CDC object is the last active device context for a given
device, the device is notified and all storage and system resources used by the de­
vice are released.

An application must not delete a device context whose handle was obtained by cal­
ling CWnd::GetDC. Instead, it must call CWnd::ReleaseDC to free the device
context. The CClientDC class is provided to wrap this functionality.

The DeleteDC function is generally used to delete device contexts created with
CreateDC, CreateIC, or CreateCompatibleDC.

Return Value

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CDC::DrawFocusRect 175

Specifies whether the device context has been deleted. TRUE if the device context
is successfully deleted (regardless of whether the deleted device context is the last
context for the device). FALSE if an error occurs.

CDC::CDC, CDC::-CDC, ::DeleteDC

CDC::DPtoLP
void DPtoLP(LPPOINT lpPoints, int nCount = 1) const;

void DPtoLP(LPRECT IpRect) const;

IpPoints
Points to an array of POINT structures or CPoint objects.

nCount
Specifies the number of points in the array.

IpRect
Points to a RECT structure or CRect object. This parameter is used for the
simple case of converting one rectangle from device points to logical points.

Converts device points into logical points. The function maps the coordinates of
each point from the device coordinate system into GDI's logical coordinate sys­
tem. The conversion depends on the current mapping mode and the settings of the
origins and extents for the device's window and viewport.

CDC::LPtoDP, ::DPtoLP

CDC:: DrawFocusRect
void DrawFocusRect(LPRECT lpRect);

IpRect
Points to a RECT structure or a CRect object that specifies the coordinates of
the rectangle to be drawn.

Draws a rectangle in the style used to indicate focus.

176 CDC::Drawlcon

See Also

Syntax

Since this is an XOR function, calling this function a second time with the same
rectangle removes the rectangle from the display. The rectaugle drawn by this
function cannot be scrolled. To scroll an area containing a rectangle drawn by this
function, first call DrawFocusRect to remove the rectangle from the display, then
scroll the area, and then call DrawFocusRect again to draw the rectangle in the
new position.

: :DrawFocusRect

CDC::Drawlcon
BOOL DrawIcon(int x, int y, RICON hIeon);

BOOL DrawIcon(POINT point, RICON hIeon);

Parameters x

Remarks

Return Value

See Also

Specifies the logical x-coordinate of the upper-left corner of the icon.

y
Specifies the logical y-coordinate of the upper-left corner of the icon.

hIeon
Identifies the handle of the icon to be drawn.

point
Specifies the logical x- and y-coordinates of the upper-left corner of the icon.
You can pass a POINT structure or a CPoint object for this parameter.

Draws an icon on the device represented by the current CDC object. The function
places the icon's upper-left corner at the location specified by x and y. The loca­
tion is subject to the current mapping mode of the device context.

The icon resource must have been previously loaded by using the functions
CWinApp: :LoadIcon, CWinApp: : LoadStandardIcon, or
CWinApp::LoadOEMIcon. The M~ TEXT mapping mode must be selected
prior to using this function.

TRUE if the function is successful; otherwise FALSE.

CWinApp: :LoadIcon, CWinApp::LoadStandardIcon,
CWinApp::LoadOEMlcon, ::Drawlcon

Syntax

Parameters

CDC::DrawText 177

CDC::DrawText
int DrawText(const char FAR* IpString, int nCount, LPRECT IpRect,

UINT nFormat);

IpString
Points to the string to be drawn. If nCount is -1, the string must be null­
terminated.

nCount
Specifies the number of bytes in the string. If nCount is -1, then IpString is as­
sumed to be a long pointer to a null-terminated string and DrawText computes
the character count automatically.

IpRect
Points to a RECT structure or CRect object that contains the rectangle (in logi­
cal coordinates) in which the text is to be formatted.

nFormat
Specifies the method offormatting the text. It can be any combination of the fol­
lowing values (combine using the bitwise-OR operator):

Value

DT_BOTTOM

DT_CALCRECT

DT_CENTER

DT_EXPANDTABS

Meaning

Specifies bottom-justified text. This value
must be combined with
DT_SINGLELINE.

Determines the width and height of the
rectangle. If there are multiple lines of
text, DrawText will use the width of the
rectangle pointed to by IpRect and extend
the base of the rectangle to bound the last
line of text. If there is only one line of
text, DrawText will modify the right side
of the rectangle so that it bounds the last
character in the line. In either case,
DrawText returns the height of the
formatted text but does not draw the text.

Centers text horizontally.

Expands tab characters. The default
number of characters per tab is eight.

178 GDG::DrawText

Value

DT_EXTERNALLEADING

DT_LEFT

DT_NOCLIP

DT_RIGHT

DT _SINGLELINE

DT_TABSTOP

DT_TOP

DT_VCENTER

DT_ WORDBREAK

Meaning

Includes the font's external leading in the
line height. Normally, external leading is
not included in the height of a line of text.

Aligns text flush-left.

Draws without clipping. DrawText is
somewhat faster when DT_NOCLIP is
used.

Turns off processing of prefix characters.
Normally, DrawText interprets the
ampersand (&) mnemonic-prefix
character as a directive to underscore the
character that follows, and the two­
ampersand (&&) mnemonic-prefix
characters as a directive to print a single
ampersand. By specifiying
DT_NOPREFIX this processing is
turned off.

Aligns text flush-right.

Specifies single line only. Carriage returns
and linefeeds do not break the line.

Sets tab stops. The high-order byte of
nFormat is the number of characters for
each tab. The default number of
characters per tab is eight.

Specifies top-justified text (single line
only).

Specifies vertically centered text (single
line only).

Specifies word-breaking. Lines are
automatically broken between words if a
word would extend past the edge of the
rectangle specified by lpRect. A carriage
return-line feed sequence will also break
the line.

Remarks

Return Value

See Also

Syntax

CDC::Ellipse 179

Note that the values DT_CALCRECT, DT_EXTERNALLEADING,
DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX values cannot be
used with the DT_ TABSTOP value.

Draws formatted text in the rectangle specified by /pRect. It formats text by ex­
panding tabs into appropriate spaces, aligning text to the left, right, or center of the
given rectangle, and breaking text into lines that fit within the given rectangle. The
type of formatting is specified by nFormat.

This member function uses the device context's selected font, text color, and back­
ground color to draw the text. Unless the DT_NOCLIP format is used,
DrawText clips the text so that the text does not appear outside the given rec­
tangle. All formatting is assumed to have multiple lines unless the
DT_SINGLELINE format is given.

If the selected font is too large for the specified rectangle, the DrawText member
function does not attempt to substitute a smaller font.

The height of the text.

::DrawText

CDC::Ellipse
BOOL ElIipse(int xl, int yl, int x2, int y2);

BOOL ElIipse(LPRECT IpRect);

Parameters xl

yl

x2

Specifies the logical x-coordinate of the upper-left corner of the ellipse's bound­
ing rectangle.

Specifies the logical y-coordinate of the upper-left corner of the ellipse's bound­
ing rectangle.

Specifies the logical x-coordinate of the lower-right corner of the ellipse's
bounding rectangle.

180 CDC::EndDoc

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

y2
Specifies the logical y-coordinate of the lower-right corner of the ellipse's
bounding rectangle.

IpRect
Specifies the ellipse's bounding rectangle. You can also pass a CRect object
for this parameter.

Draws an ellipse. The center of the ellipse is the center of the bounding rectangle
specified by xl, yl, x2, and y2, or IpRect. The ellipse is drawn with the current pen
and its interior is filled with the current brush.

If either the width or the height of the bounding rectangle is 0, no ellipse is drawn.

TRUE if the ellipse is drawn; otherwise FALSE.

CDC::Arc, CDC::Chord, ::Ellipse

CDC::EndDoc
int EndDocO;

Ends a print job started by a call to the StartDoc member function.

The member function is provided as a convenient way to send the END DOC
escape. It allows the application to access facilities of a particular device that are
not directly available through GD!. The escape call is translated and sent to the
device driver.

If an application encounters a printing error or a canceled print operation, it must
not attempt to terminate the operation by using either EndDoc or AbortDoc. GDI
automatically terminates the operation before returning the error value.

Positive if the function is successful. Or a negative value if there is an error. The
following list shows common error values:

See Also

Syntax

Remarks

Return Value

Value

SP_ERROR

SP _ OUTOFDISK

SP _ OUTOFMEMORY

SP _ USERABORT

::EndDoc

CDC::EndPage
int EndPageO;

CDC::EndPage 181

Meaning

General error.

Not enough disk space is currently available for
spooling, and no more space will become
available.

Not enough memory is available for spooling.

User terminated the job through the Print
Manager.

Informs the device that the application has finished writing to a page. This mem­
ber function is typically used to direct the device driver to advance to a new page.

The member function is provided as a convenient way to send the NEWFRAME
escape. It allows the application to access facilities of a particular device that are
not directly available through GDI. The escape call is translated and sent to the
device driver.

Positive if successful; otherwise, it is an error value, which can be one of the fol­
lowing:

Value

SP_ERROR

SP _APPABORT

SP _ USERABORT

Meaning

General error.

Job was terminated because the application's abort
function returned zero.

User terminated the job through Print Manager.

182 CDC::EnumObjects

See Also

Syntax

Parameters

Remarks

Value Meaning

SP _OUTOFDISK Not enough disk space is currently available for
spooling, and no more space will become available.

SP _OUTOFMEMORY Not enough memory is available for spooling.

CDC::StartPage, CDC::StartDoc, ::EndPage

CDC::EnumObjects
int EnumObjects(int nObjectType,

int (FAR PASCAL EXPORT* lpfn)(LPSTR, LPSTR), LPSTR lpData);

nObjectType
Specifies the object type. It can have the values OBLBRUSH or OBLPEN.

lpfn
Is the procedure-instance address of the application-supplied callback function.
See the "Remarks" section below.

IpData
Points to the application-supplied data. The data is passed to the callback func­
tion along with the object information.

Enumerates the pens and brushes available in a device context. For each object of
a given type, the callback function that you pass is called with the information for
that object. The system calls the callback function until there are no more objects
or the callback function returns O.

Note that new features of Microsoft C/C++ let you use an ordinary function as the
function passed to EnumObjects. The address passed to EnumObjects is aFAR
pointer to a function exported with __ export and with the Pascal calling conven­
tion. In protect-mode applications, you do not have to create this function with the
Windows MakeProcInstance function or free the function after use with
FreeProclnstance.

CDC::EnumObjects 183

You also do not have to export the function name in an EXPORTS statement in
your application's module-definition file. You can instead use the __ export func­
tion modifier, as in

int FAR PASCAL __ export AFunction(LPSTR, LPSTR);

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a
function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Foundation programs, you'll normally use the /GA and /GEs com­
piler options. The /Gw compiler option is not used with the Foundation classes. (If
you do use MakeProclnstance, you will need to explicitly cast the returned func­
tion pointer from FARPROC to the type needed in this API.) Callback registra­
tion interfaces are now type-safe (you must pass in a function pointer that points to
the right kind of function for the specific callback).

Also note that all callback functions must trap Foundation exceptions before re­
turning to Windows, since exceptions cannot be thrown across callback boundar­
ies. For more information about exceptions, see Chapter 12 in the Class Libraries
User's Guide.

Callback Function
The callback function passed to EnumObjects must use the Pascal calling conven­
tion and must be declared FAR.

int FAR PASCAL __ export ObjectFunc(LPSTR lpLogObject,
LPSTR* lpData);

The ObjectFunc name is a placeholder for the application-supplied function name.
The actual name must be exported as described in the "Remarks" section above.

Parameter

lpLogObject

lpData

Description

Points to a LOGPEN or LOGBRUSH data structure that
contains information about the logical attributes of the
object.

Points to the application-supplied data passed to the
EnumObjects function.

184 CDC::Escape

Return Value

See Also

Syntax

Parameters

Remarks

Return Value
The callback function returns an int. The value of this return is user-defined. If the
callback function returns 0, EnumObjects stops enumeration early.

Specifies the last value returned by the callback function. Its meaning is user­
defined.

: :FreeProcInstance, : :MakeProcInstance, : :EnumObjects

CDC::Escape
int Escape(int nEscape, int nCount, LPSTR lplnData, LPSTR lpOutData);

nEscape
Specifies the escape function to be performed. For a complete list of escape
functions, see the chapter on printer escapes in the Windows Software Develop­
ment Kit documentation.

nCount
Specifies the number of bytes of data pointed to by lplnData.

lplnData
Points to the input data structure required for this escape.

lpOutData
Points to the structure that is to receive output from this escape. The lpOutData
parameter is NULL if no data is returned.

Allows applications to access facilities of a particular device that are not directly
available through GO!. Escape calls made by an application are translated and sent
to the device driver.

The nEscape parameter specifies the escape function to be performed. For
possible values, see the chapter on printer escapes in the Windows Software
Development Kit documentation.

The Microsoft Foundation Class Library provides member functions for some of
the most common escape functions.

Return Value

See Also

Syntax

CDC::ExcludeClipRect 185

Positive if the function is successful, except for the QUERYESCSUPPORT
escape, which only checks for implementation. Or 0 if the escape is not imple­
mented. Or a negative value if there is an error. The following list shows common
error values:

Value

SP_ERROR

SP _ OUTOFDISK

SP _ OUTOFMEMORY

SP _ USERABORT

Meaning

General error.

Not enough disk space is currently available for
spooling, and no more space will become
available.

Not enough memory is available for spooling.

User terminated the job through the Print
Manager.

CDC::StartDoc, CDC::StartPage, CDC::EndPage, CDC::SetAbortProc,
CDC::AbortDoc, CDC::EndDoc, ::Escape

CDC: :Exelu deC I ip Reel
int ExcludeClipRect(int xl, int yl, int x2, int y2);

int ExcludeClipRect(LPRECT IpRect);

Parameters xl

Remarks

Specifies the logical x-coordinate of the upper-left comer ofthe rectangle.

yl
Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2
Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2
Specifies the logical y-coordinate of the lower-right comer of the rectangle.

IpRect
Specifies the rectangle.

Creates a new clipping region that consists of the existing clipping region minus
the specified rectangle.

186 CDC::ExcludeUpdateRgn

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Specifies the new clipping region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

: :ExcludeClipRect

Meaning

The region has overlapping borders.

No region was created.

The region is empty.

The region has no overlapping borders.

CDC::ExcludeUpdateRgn
int ExcludeUpdateRgn(CWnd* pWnd);

pWnd
Points to the window object whose window is being updated.

Prevents drawing within invalid areas of a window by excluding an updated re­
gion in the window from the clipping region associated with the CDC object.

The type of excluded region. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

: :ExcludeUpdateRgn

Meaning

The region has overlapping borders.

No region was created.

The region is empty.

The region has no overlapping borders.

Syntax

Parameters

Remarks

CDC::ExtFloodFili 187

CDC::ExtFloodFili
BOOL ExtFloodFill(int x, int y, DWORD crColor, UINT nFillType);

x
Specifies the logical x-coordinate of the point where filling begins.

y
Specifies the logical y-coordinate of the point where filling begins.

crColor
Specifies the color of the boundary or of the area to be filled. The interpretation
of crColor depends on the value of nFillType.

nFillType
Specifies the type of flood fill to be performed. It must be one of the following
values:

Value

FLOODFILLBORDER

FLOODFILLSURFACE

Meaning

The fill area is bounded by the color
specified by crColor. This style is identical
to the filling performed by FloodFili.

The fill area is defined by the color specified
by crColor. Filling continues outward in all
directions as long as the color is
encountered. This style is useful for filling
areas with multicolored boundaries.

Fills an area of the display surface with the current brush. However, this member
function provides more flexibility than FloodFill. You can specify a fill type in
nFillType.

If nFillType is set to FLOODFILLBORDER, the area is assumed to be
completely bounded by the color specified by crColor. The function begins at the
point specified by x and y and fills in all directions to the color boundary.

If nFillType is set to FLOODFILLSURF ACE, the function begins at the point
specified by x and y and continues in all directions, filling all adjacent areas con­
taining the color specified by crColor.

Only memory-device contexts and devices that support raster-display technology
support ExtFloodFili. For more information see the GetDeviceCaps member
function.

188 CDC::ExtTextOut

Return Value

See Also

Syntax

Parameters

TRUE if the function is successful. FALSE if the filling could not be completed,
if the given point has the boundary color specified by crColor (if
FLOODFILLBORDER was requested), if the given point does not have the
color specified by crColor (if FLOODFILLSURFACE was requested), or if the
point is outside the clipping region.

CDC::FloodFill, CDC::GetDeviceCaps, ::ExtFloodFill

CDC::ExtTextOut
BOOL ExtTextOut(int x, int y, UINT nOptions, LPRECT lpRect,

const char FAR* lpString, UINT nCount, LPINT lpDxWidths);

x

y

Specifies the logical x-coordinate of the character cell for the first character in
the specified string.

Specifies the logical y-coordinate of the character cell for the first character in
the specified string.

nOptions
Specifies the rectangle type. This parameter can be one, both, or neither of the
following values:

Value

ETO_ CLIPPED

ETO_OPAQUE

lpRect

Meaning

Specifies that text is clipped to the rectangle.

Specifies that the current background color fills the
rectangle.

Points to a RECT structure that determines the dimensions of the rectangle.
This parameter can be NULL. You can also pass a CRect object for this para­
meter.

lpString
Points to the specified character string. You can also pass a CString object for
this parameter.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CDC::FiIIRect 189

nCount
Specifies the number of characters in the string.

IpDxWidths
Points to an array of values that indicate the distance between origins of adja­
cent character cells. For instance, IpDxWidths[i] logical units will separate the
origins of character cell i and character cell i + 1. This parameter can be NULL.

Writes a character string within a rectangular region, using the currently selected
font. The rectangular region can be opaque (filled with the current background
color) and it can be a clipping region.

If nOptions is 0 and IpRect is NULL, the function writes text to the device context
without using a rectangular region. By default, the current position is not used or
updated by the function. If an application needs to update the current position
when it calls ExtTextOut, the application can call the CDC member function
SetTextAlign with nFlags set to TA_ UPDATECP. When this flag is set, Win­
dows ignores x and y on subsequent calls to ExtTextOut, using the current posi­
tion instead.

TRUE ifthe function is successful; otherwise FALSE.

CDC::SetTextAlign, CDC::TabbedTextOut, CDC::TextOut, ::ExtTextOut

CDC::FiIiRect
void FillRect(LPRECT IpRect, CBrush* pBrush);

IpRect
Points to a RECT or CRect that contains the logical coordinates of the rec­
tangle to be filled. You can also pass a CRect object for this parameter.

pBrush
Identifies the brush used to fill the rectangle.

Fills a given rectangle by using the specified brush. The function fills the complete
rectangle, including the left and top borders, but does not fill the right and bottom
borders.

190 CDC::FiIiRgn

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

When filling the specified rectangle, FillRect does not include the rectangle's
right and bottom sides. GDI fills a rectangle up to, but does not include, the right
column and bottom row, regardless of the current mapping mode. FillRect com­
pares the values of the top, bottom, left, and right members of the specified rec­
tangle. If bottom is less than or equal to top, or if right is less than or equal to
left, the rectangle is not drawn.

CBrush, : :FillRect

CDC::FiIiRgn
BOOL FillRgn(CRgn* pRgn, CBrush* pBrush);

pRgn
Identifies the region to be filled. The coordinates for the given region are
specified in device units.

pBrush
Identifies the brush to be used to fill the region.

Fills the region specified by pRgn with the brush specified by pBrush.

TRUE if the function is successful or FALSE if an error occurs.

CRgn, CDC::PaintRgn, CBrush, ::FillRgn

CDC::FloodFili
BOOL FloodFill(int x, int y, DWORD crColor);

x
Specifies the logical x-coordinate of the point where filling begins.

y
Specifies the logical y-coordinate of the point where filling begins.

crColor
Specifies the color of the boundary.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CDC::FrameRect 191

Fills an area of the display surface with the current brush. The area is assumed to
be bounded as specified by crColor. The FloodFill function begins at the point
specified by x and y and continues in all directions to the color boundary.

Only memory-device contexts and devices that support raster-display technology
support the FloodFill member function. For information about RC_BITBLT
capability, see the GetDeviceCaps member function.

The ExtFloodFill function provides similar capability but greater flexibility.

TRUE if the function is successful. FALSE if the filling could not be completed,
the given point has the boundary color specified by crColor, or the point is outside
the clipping region.

CDC::ExtFloodFill, CDC::GetDeviceCaps, ::FloodFill

CDC::FrameRect
void FrameRect(LPRECT lpRect, CBrush* pBrush);

lpRect
Points to a RECT or CRect that contains the logical coordinates of the upper­
left and lower-right corners of the rectangle. You can also pass a CRect object
for this parameter.

pBrush
Identifies the brush to be used for framing the rectangle.

Draws a border around the rectangle specified by lpRect. The function uses the
given brush to draw the border. The width and height of the border is always one
logical unit.

If the rectangle's bottom coordinate is less than or equal to top, or if right is less
than or equal to left, the rectangle is not drawn.

CBrush, : :FrameRect

192 CDC::FrameRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CDC::FrameRgn
BOOL FrameRgn(CRgn* pRgn, CBrush* pBrush, int n Width, int nHeight);

pRgn
Points to the CRgn object that identifies the region to be enclosed in a border.
The coordinates for the given region are specified in device units.

pBrush
Points to the CBrush object that identifies the brush to be used to draw the
border.

nWidth
Specifies the width in vertical brush strokes (in logical units).

nHeight
Specifies the height in horizontal brush strokes (in logical units).

Draws a border around the region specified by pRgn, using the brush specified by
pBrush. The n Width parameter specifies the width of the border in vertical brush
strokes; nHeight specifies the height in horizontal brush strokes.

TRUE if the function is successful; otherwise FALSE.

: : FrameRgn, CBrush, CRgn

CDC::GetAspectRatioFilter
CSize GetAspectRatioFilterO const;

Retrieves the setting for the current aspect-ratio filter. The aspect ratio is the ratio
formed by a device's pixel width and height. Information about a device's aspect
ratio is used in the creation, selection, and display of fonts. Windows provides a
special filter, the aspect-ratio filter, to select fonts designed for a particular aspect
ratio from all of the available fonts. The filter uses the aspect ratio specified by
SetMapperFlags.

A CSize object representing the aspect ratio used by the current aspect-ratio filter.

CDC::SetMapperFlags, ::GetAspectRatioFiiter, CSize

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

CDC::GetBrushOrg 193

CDC::GetBkColor
DWORD GetBkColorO const;

Returns the current background color. If the background mode is OPAQUE, the
system uses the background color to fill the gaps in styled lines, the gaps between
hatched lines in brushes, and the background in character cells. The system also
uses the background color when converting bitmaps between color and mono­
chrome device contexts.

An RGB color value.

CDC: : GetBkMode, CDC: :SetBkColor, CDC: :SetBkMode, : :GetBkColor

CDC::GetBkMode
int GetBkModeO const;

Returns the background mode. The background mode defines whether the system
removes existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

Specifies the current background mode. It can be OPAQUE or TRANSPARENT.

CDC::GetBkColor, CDC::SetBkColor, CDC::SetBkMode, ::GetBkMode

CDC::GetBrushOrg
CPoint GetBrushOrgO const;

Retrieves the origin of the brush currently selected for the device context.

The initial brush origin is at (0,0) of the client area. The return value specifies this
point in device units relative to the origin ofthe desktop window.

194 CDC::GetCharWidth

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Specifies the current origin of the brush (in device units) as a CPoint object.

CDC: :SetBrushOrg, CGdiObject:: UnrealizeObject, : :GetBrushOrg

CDC::GetCharWidth
BOOL GetCharWidth(UINT nFirstChar, UINT nLastChar,

LPINT IpBuffer) const;

nFirstChar
Specifies the first character in a consecutive group of characters in the current
font.

nLastChar
Specifies the last character in a consecutive group of characters in the current
font.

IpBuffer
Points to a buffer that will receive the width values for a consecutive group of
characters in the current font.

Retrieves the widths of individual characters in a consecutive group of characters
from the current font. For example, if nFirstChar identifies the letter' a' and
nLastCharidentifies the letter' z' , the function retrieves the widths of all lower­
case characters.

The function stores the values in the buffer pointed to by IpBuffer. This buffer
must be large enough to hold all of the widths. For example, there must be at least
26 entries in the example given in the previous paragraph.

If a character in the consecutive group of characters does not exist in a particular
font, it will be assigned the width value of the default character.

TRUE if the function is successful; otherwise FALSE.

::GetCharWidth

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CDC::GetCurrentPosition 195

CDC::GetClipBox
int GetClipBox(LPRECT IpRect) const;

IpRect
Points to the RECT or CRect that is to receive the rectangle dimensions.

Retrieves the dimensions of the tightest bounding rectangle around the current clip­
ping boundary. The dimensions are copied to the buffer pointed to by IpRect.

The clipping region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

::GetClipBox

Meaning

Clipping region has overlapping borders.

Device context is not valid.

Clipping region is empty.

Clipping region has no overlapping borders.

CDC::GetCurrentPosition
CPoint GetCurrentPositionO const;

Retrieves the current position (in logical coordinates).

The current position as a CPoint object.

CDC: :MoveTo, CPoint, : :GetCurrentPosition

196 CDC::GetDCOrg

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CDC::GetDCOrg
CPoint GetDCOrgO const;

Obtains the final translation origin for the device context. The final translation
origin specifies the offset used by Windows to translate device coordinates into
client coordinates for points in an application's window. The final translation
origin is relative to the physical origin of the screen display.

The final translation origin (in device coordinates) as a CPoint object.

CPoint, ::GetDCOrg

CDC::GetDeviceCaps
int GetDeviceCaps(int nlndex) const;

nlndex
Specifies the item to return. It can be anyone of the following values:

DRIVERVERSION
Version number; for example, OxlOO for 1.0.

TECHNOLOGY
Device technology. It can be anyone of the following values:

Value Meaning

DT_PLOTTER Vector plotter

DT_RASDISPLAY Raster display

DT_RASPRINTER Raster printer

DT_RASCAMERA Raster camera

DT_ CHARSTREAM Character stream

DT_METAFILE Metafile

DT_DISPFILE Display file

HORZSIZE
Width of the physical display (in millimeters).

CDC::GetDeviceCaps 197

VERTSIZE
Height of the physical display (in millimeters).

HORZRES
Width of the display (in pixels).

VERTRES
Height of the display (in raster lines).

LOGPIXELSX
Number of pixels per logical inch along the display width.

LOGPIXELSY
Number of pixels per logical inch along the display height.

BITSPIXEL
Number of adjacent color bits for each pixel.

PLANES
Number of color planes.

NUMBRUSHES
Number of device-specific brushes.

NUMPENS
Number of device-specific pens.

NUMFONTS
Number of device-specific fonts.

NUMCOLORS
Number of entries in the device's color table.

ASPECTX
Relative width of a device pixel as used for line drawing.

ASPECTY
Relative height of a device pixel as used for line drawing.

ASPECTXY
Diagonal width of the device pixel as used for line drawing.

PDEVICESIZE
Size of the PDEVICE internal data structure.

CLIPCAPS
Flag that indicates the clipping capabilities of the device. It is 1 if the device
can clip to a rectangle, 0 if it cannot.

SIZEPALETTE
Number of entries in the system palette. This index is valid only if the device
driver sets the RC_PALETTE bit in the RASTERCAPS index. It is availa­
ble only if the driver version is 3.0 or higher.

198 CDC::GetDeviceCaps

NUMRESERVED
Number of reserved entries in the system palette. This index is valid only if
the device driver sets the RC_PALETTE bit in the RASTERCAPS index
and is available only if the driver version is 3.0 or higher.

COLORRES
Actual color resolution of the device in bits per pixel. This index is valid
only if the device driver sets the RC_PALETTE bit in the RASTERCAPS
index and is available only if the driver version is 3.0 or higher.

RASTERCAPS
Value that indicates the raster capabilities of the device, as shown in the fol­
lowing list:

Capability Meaning

RC_BANDING

RC_BITBLT

RC_BITMAP64

RC_FLOODFILL

RC_ GDI20_ OUTPUT

RC_PALETTE

RC_SCALING

RC_STRETCHBLT

CURVECAPS

Requires banding support

Capable of transferring bitmaps

Capable of supporting bitmaps larger than
64K

Capable of supporting SetDIBits and
GetDIBits

Capable of supporting the
SetDIBitsToDevice function

Capable of performing flood fills

Capable of supporting Windows version 2.0
features

Palette-based device

Capable of scaling

Capable of performing the StretchBIt
function

Capable of performing the StretchDIBits
function

A bitmask that indicates the curve capabilities of the device. The bits have
the following meanings:

CDC::GetDeviceCaps 199

Bit Meaning

o Device can do circles

1 Device can do pie wedges

2 Device can do chord arcs

3 Device can do ellipses

4 Device can do wide borders

5 Device can do styled borders

6 Device can do borders that are wide and styled

7 Device can do interiors

The high byte is O.

LINECAPS
A bitmask that indicates the line capabilities of the device. The bits have the
following meanings:

Bit Meaning

o Reserved

1 Device can do polyline

2 Reserved

3 Reserved

4 Device can do wide lines

5 Device can do styled lines

6 Device can do lines that are wide and styled

7 Device can do interiors

The high byte is O.

200 CDC::GetDeviceCaps

POLYGONAL CAPS
A bitmask that indicates the polygonal capabilities of the device. The bits
have the following meanings:

Bit Meaning

o Device can do alternate fill polygon

1 Device can do rectangle

2 Device can do winding number fill polygon

3 Device can do scanline

4 Device can do wide borders

5 Device can do styled borders

6 Device can do borders that are wide and styled

7 Device can do interiors

The high byte is O.

TEXTCAPS
A bitmask that indicates the text capabilities of the device. The bits have the
following meanings:

Bit Meaning

o Device can do character output precision

1 Device can do stroke output precision

2 Device can do stroke clip precision

3 Device can do 90-degree character rotation

4 Device can do any character rotation

5 Device can do scaling independent of x and y

6 Device can do doubled character for scaling

7 Device can do integer multiples for scaling

8 Device can do any multiples for exact scaling

9 Device can do double-weight characters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

GDG::GetMapMode 201

Bit Meaning

10 Device can do italicizing

11 Device can do underlining

12 Device can do strikeouts

13 Device can do raster fonts

14 Device can do vector fonts

15 Reserved; must be returned 0

Retrieves device-specific information about a given display device. The nlndex
parameter specifies the type of information desired.

The value of the desired item.

: : GetDeviceCaps

CDC::GetMapMode
int GetMapModeO const;

Retrieves the current mapping mode.

See SetMapMode for a description of the mapping modes.

The mapping mode.

CDC: :SetMapMode, : : GetMapMode

202 CDC::GetNearestColor

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

CDC::GetNearestColor
DWORD GetNearestColor(DWORD creolor) const;

creolor
Specifies the color to be matched.

Returns the closest logical color to a specified logical color that the given device
can represent.

An RGB color value that names the solid color closest to the creolor value that
the device can represent.

::GetNearestColor

CDC::GetPixel
DWORD GetPixel(int x, int y) const;

DWORD GetPixel(POINT point) const;

Parameters x

Remarks

Specifies the logical x-coordinate of the point to be examined.

y
Specifies the logical y-coordinate of the point to be examined.

point
Specifies the logical x- and y-coordinates of the point to be examined.

Retrieves the RGB color value of the pixel at the point specified by x and y. The
point must be in the clipping region. If the point is not in the clipping region, the
function has no effect and returns -1.

Not all devices support the GetPixel function. For more information, see the
R C_ BITBL T raster capability under the GetDeviceCaps member function.

The GetPixel member function has two forms. The first takes two coordinate
values; the second takes either a POINT structure or a CPoint object.

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Remarks

Return Value

See Also

CDC::GetROP2 203

For either version of the function, an RGB color value for the color of the given
point. It is -1 if the coordinates do not specify a point in the clipping region.

CDC::GetDeviceCaps, CDC::SetPixel, ::GetPixel

CDC: :GetPolyFi II Mode
int GetPolyFillModeO const;

Retrieves the current polygon-filling mode.

See the SetPolyFillMode member function later in this reference for a description
of the polygon filling modes.

CDC: :SetPolyFillMode, : : GetPolyFillMode

CDC::GetROP2
int GetROP20 const;

Retrieves the current drawing mode. The drawing mode specifies how the colors
of the pen and the interior of filled objects are combined with the color already on
the display surface.

The drawing mode. For a list of the drawing mode values, see SetROP2.

CDC::GetDeviceCaps, CDC::SetROP2, ::GetROP2

204 CDC::GetStretchBltMode

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CDC::GetStretchBltMode
int GetStretchBltModeO const;

Retrieves the current bitmap-stretching mode. The bitmap-stretching mode defines
how information is removed from bitmaps that are stretched or compressed by
using StretchBIt.

The BLACKONWHITE and WHITEONBLACK modes are typically used to
preserve foreground pixels in monochrome bitmaps.

The COLORONCOLOR mode is typically used to preserve color in color
bitmaps.

The current bitmap-stretching mode. It can be WHITEONBLACK,
BLACKONWHITE, or COLORONCOLOR.

CDC: :StretchBlt, CDC: :SetStretchBItMode, : : GetStretchBItMode

CDC: :GetTabbedTextExtent
CSize GetTabbedTextExtent(const char FAR* lpString, int nCount,

int nTabPositions, LPINT lpnTabStopPositions) const;

lpString
Points to a character string. You can also pass a CString object for this
parameter.

nCount
Specifies the number of characters in the string.

nTabPositions
Specifies the number of tab-stop positions in the array pointed to by
lpnTabStopPositions.

lpnTabStopPositions
Points to an array of integers containing the tab-stop positions in pixels. The tab
stops must be sorted in increasing order; back tabs are not allowed.

Computes the width and height of a character string. If the string contains one or
more tab characters, the width of the string is based upon the tab stops specified
by lpnTabStopPositions. The function uses the currently selected font to compute
the dimensions of the string.

Return Value

See Also

Syntax

Remarks

Return Value

CDC::GetTextAlign 205

Since some devices do not place characters in regular cell arrays (that is, they kern
the characters), the sum of the extents of the characters in a string may not be
equal to the extent ofthe string.

If nTabPositions is 0 and IpnTabStopPositions is NULL, tabs are expanded to
eight average character widths.

If nTabPositions is 1, the tab stops will be separated by the distance specified by
the first value in the array to which IpnTabStopPositions points.

If IpnTabStopPositions points to more than a single value, a tab stop is set for each
value in the array, up to the number specified by nTabPositions.

The dimensions of the string (in logical units).

CDC::GetTextExtent, CDC::TabbedTextOut, ::GetTabbedTextExtent

CDC::GetTextAlign
UINT GetTextAlignO const;

Retrieves the status of the text-alignment flags for the device context.

The text-alignment flags determine how TextOut and ExtTextOut align a string
of text in relation to the string's starting point. The text-alignment flags are not
necessarily single-bit flags and may be equal to O. To test whether a flag is set, an
application should follow these steps:

1. Apply the bitwise-OR operator to the flag and its related flags. The following
list shows the groups of related flags:

• TA_LEFT, TA_CENTER, and TA_RIGHT

• TA_BASELINE, TA_BOTTOM, and TA_ TOP

• TA_NOUPDATECPandTA_UPDATECP

2. Apply the bitwise AND operator to the result and the return value.

3. Test for the equality of this result and the flag.

The status of the text-alignment flags. The return value is one or more of the fol­
lowing values:

206 CDC::GetTextCharacterExtra

See Also

Syntax

Remarks

Return Value

See Also

Value

TA_CENTER

TA_NOUPDATECP

TA_UPDATECP

Meaning

Specifies alignment of the x-axis and the
baseline of the chosen font within the bounding
rectangle.

Specifies alignment of the x-axis and the
bottom of the bounding rectangle.

Specifies alignment of the y-axis and the center
of the bounding rectangle.

Specifies alignment of the y-axis and the left
side of the bounding rectangle.

Specifies that the current position is not
updated.

Specifies alignment of the y-axis and the right
side of the bounding rectangle.

Specifies alignment of the x-axis and the top of
the bounding rectangle.

Specifies that the current position is updated.

CDC::ExtTextOut, CDC::SetTextAlign, CDC::TextOut, ::GetTextAlign

CDC::GetTextCharacterExtra
int GetTextCharacterExtraO const;

Retrieves the current setting for the amount of intercharacter spacing. GDI adds
this spacing to each character, including break characters, when it writes a line of
text to the device context.

The amount of the intercharacter spacing.

CDC: :SetTextCharacterExtra, : : GetTextCharacter Extra

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CDC::GetTextExtent 207

CDC::GetTextColor
DWORD GetTextColorO const;

Retrieves the current text color. The text color is the foreground color of charac­
ters drawn by using the GDI text-output functions TextOut, ExtTextOut, and
TabbedTextOut.

The current text color as an RGB color value.

CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode, CDC::SetText­
Color, ::GetTextColor

CDC::GetTextExtent
CSize GetTextExtent(const char FAR* lpString, int nCount) const;

lpString
Points to a string of characters. You can also pass a CString object for this para­
meter.

nCount
Specifies the number of characters in the string.

Computes the width and height of a line of text, using the current font to determine
the dimensions.

Since some devices do not place characters in regular cell arrays (that is, they
carry out kerning), the sum of the extents of the characters in a string may not be
equal to the extent of the string.

The dimensions of the string (in logical units).

CDC: :GetTabbedTextExtent, : : GetTextExtentEx, CDC: :SetTextjustification

208 CDC::GetTextFace

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Return Value

See Also

CDC::GetTextFace
int GetTextFace(int nCount, const char FAR* lpFacename) const;

nCount
Specifies the size of the buffer (in bytes). If the typeface name is longer than
the number of bytes specified by this parameter,. the name is truncated.

lpFacename
Points to the buffer for the typeface name.

Copies the typeface name of the cUrrent font into a buffer. The typeface name is
copied as a null-terminated string.

The number of bytes copied to the buffer. It is 0 if an error occurs.

CDC::GetTextMetrics, CDC::SetTextAlign, CDC::TextOut, ::GetTextFace

CDC::GetTextMetrics
BOOL GetTextMetrics(LPTEXTMETRIC lpMetrics) const;

lpMetrics
Points to the TEXTMETRIC structure that receives the metrics. @HO = Re­
marks

Retrieves the metrics for the current font.

TRUE if the function is successful; otherwise FALSE.

CDC: : GetTextAlign, CDC: :GetTextExtent, CDC: : GetTextFace,
CDC: :SetTextJustification, : : GetTextMetrics

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CDC::GetWindowExt 209

CDC::GetViewporlExt
CSize GetViewportExtO const;

Retrieves the x- and y-extents ofthe device context's viewport.

The x- and y-extents (in device units) as a CSize object.

CSize, ::GetViewportExt

CDC::GetViewporiOrg
CPoint GetViewportOrgO const;

Retrieves the x- and y-coordinates ofthe origin of the viewport associated with the
device context.

The origin of the viewport (in device coordinates) as a CPoint object.

CPoint, ::GetViewportOrg

CDC::GetWindowExt
CSize GetWindowExtO const;

Retrieves the x- and y-extents ofthe window associated with the device context.

The x- and y-extcnts (in logical units) as a CSize object.

CSize, ::GetWindowExt

210 CDC::GetWindowOrg

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CDC::GetWindowOrg
CPoint GetWindowOrgO const;

Retrieves the x- and y-coordinates of the origin of the window associated with the
device context.

The origin of the window (in logical coordinates) as a CPoint object.

CPoint, ::GetWindowOrg

CDC::GrayString
BOOL GrayString(CBrush* pBrush,
BOOL (FAR PASCAL EXPORT* lpjnOutput)(HDC, DWORD, int),

DWORD IpData, int nCount, int x, int y, int n Width, int nHeight);

pBrush
Identifies the brush to be used for dimming (graying).

IpjnOutput
Specifies the procedure-instance address ofthe application-supplied callback
function that will draw the string. For more information, see the description of
the Windows OutputProc callback function below.

If this parameter is NULL, the system uses the Windows TextOut function to
draw the string, and IpData is assumed to be a long pointer to the character
string to be output.

lpData
Specifies a far pointer to data to be passed to the output function. If IpjnOutput
is NULL, IpData must be a long pointer to the string to be output.

nCount

x

Specifies the number of characters to be output. If this parameter is 0,
GrayString calculates the length of the string (assuming that IpData is a
pointer to the string). If nCount is -1 and the function pointed to by IpjnOutput
returns 0, the image is shown but not dimmed.

Specifies the logical x -coordinate of the starting position of the rectangle that
encloses the string.

Remarks

y

CDC::GrayString 211

Specifies the logical y-coordinate of the starting position of the rectangle that
encloses the string.

nWidth
Specifies the width (in logical units) of the rectangle that encloses the string. If
n Width is 0, GrayString calculates the width of the area, assuming IpData is a
pointer to the string.

nHeight
Specifies the height (in logical units) of the rectangle that encloses the string. If
nHeight is 0, GrayString calculates the height of the area, assuming IpData is
a pointer to the string.

Draws dimmed (gray) text at the given location by writing the text in a memory
bitmap, dimming the bitmap, and then copying the bitmap to the display. The func­
tion dims the text regardless of the selected brush and background. The
GrayString member function uses the currently selected font.

If IpFnOutput is NULL, GDI uses the Windows TextOut function, and IpData is
assumed to be a far pointer to the character to be output. If the characters to be out­
put cannot be handled by TextOut (for example, the string is stored as a bitmap),
the application must supply its own output function.

Also note that all callback functions must trap Foundation exceptions before re­
turning to Windows, since exceptions cannot be thrown across callback boundar­
ies. For more information about exceptions, see Chapter 12 in the Class Libraries
User's Guide.

The callback function passed to GrayString must use the Pascal calling conven­
tion, must be exported with __ export, and must be declared FAR.

Callback Function
BOOL FAR PASCAL __ export OutputFunc(HDC hDC, DWORD IpData,

int nCount);

OutputFunc is a placeholder for the application-supplied callback function name.
The actual name must be exported as described in the "Remarks" above. The call­
back function (OutputFunc) must draw an image relative to the coordinates (0,0)
rather than (x, y).

212 CDC::lntersectClipRect

Return Value

See Also

Syntax

Parameter

hDC

IpData

nCount

Return Value

Description

Identifies a memory device context with a bitmap of at
least the width and height specified by n Width and nHeight
to GrayString, respectively.

Points to the character string to be drawn.

Specifies the number of characters to output.

The callback function's return value must be nonzero to indicate success. Other­
wise, it is O.

TRUE if the string is drawn, or FALSE if either the TextOut function or the
application-supplied output function returned FALSE, or there was insufficient
memory to create a memory bitmap for dimming.

::GetSysColor, CDC::SetTextCoior, CDC::TextOut, ::GrayString

CDC::lntersectClipRect
int IntersectClipRect(int xl, int yl, int x2, int y2);

int IntersectClipRect(LPRECT IpRect);

Parameters xl
Specifies the logical x-coordinate of the upper-left comer of the rectangle.

yl
Specifies the logical y-coordinate of the upper-left comer of the rectangle.

x2
Specifies the logical x-coordinate of the lower-right comer of the rectangle.

y2
Specifies the logical y-coordinate of the lower-right comer of the rectangle.

IpRect
Specifies the rectangle. You can pass either a CRect object or a pointer to a
RECT structure for this parameter.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CDC::lnvertRect 213

Creates a new clipping region by forming the intersection of the current region and
the rectangle specified by xl, yl, x2, and y2. ODI clips all subsequent output to fit
within the new boundary.

The new clipping region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

: :IntersectClipRect, CRect

CDC::lnvertRect

Meaning

New clipping region has overlapping borders.

Device context is not valid.

New clipping region is empty.

New clipping region has no overlapping borders.

void InvertRect(LPRECT lpRect);

lpRect
Points to a RECT or CRect that contains the logical coordinates of the rec­
tangle to be inverted. You can also pass a CRect object for this parameter.

Inverts the contents of the given rectangle. On monochrome displays, the function
makes white pixels black, and black pixels white. On color displays, the inversion
depends on how colors are generated for the display. Calling InvertRect twice
with the same rectangle restores the display to its previous colors.

If the rectangle is empty, nothing is drawn.

: :InvertRect, CRect

214 CDC::lnvertRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

CDC::lnvertRgn
BOOL InvertRgn(CRgn* pRgn);

pRgn
Identifies the region to be inverted. The coordinates for the region are specified
in device units.

Inverts the colors in the region specified by pRgn. On monochrome displays, the
function makes white pixels black, and black pixels white. On color displays, the
inversion depends on how the colors are generated for the display.

TRUE if the function is successful; otherwise FALSE.

CRgn, : : InvertRgn

CDC::lineTo
BOOL LineTo(int x, int y);

BOOL LineTo(POINT point);

Parameters x

Remarks

Return Value

See Also

Specifies the logical x -coordinate of the endpoint for the line.

y
Specifies the logical y-coordinate of the endpoint for the line.

point
Specifies the endpoint for the line. You can pass either a POINT structure or a
CPoint object for this parameter.

Draws a line from the current position up to, but not including, the point specified
by x and y (or point). The line is drawn with the selected pen. The current position
is set to x,y or to point.

TRUE if the line is drawn; otherwise FALSE.

CDC::MoveTo, CDC::GetCurrentPosition, ::LineTo

Syntax

Parameters

Remarks

See Also

Syntax

CDC::MoveTo 215

CDC::LPtoDP
void LPtoDP(LPPOINT lpPoints, int nCount = 1) const;

void LPtoDP(LPRECT lpRect) const;

ipPoints
Points to an array of points. Each point in the array is a POINT structure or a
CPoint object.

nCount
Specifies the number of points in the array.

lpRect
Points to a RECT structure or a CRect object. This parameter is used for the
common case of mapping a rectangle from logical to device units.

Converts logical points into device points. The function maps the coordinates of
each point from GDI's logical coordinate system into a device coordinate system.
The conversion depends on the current mapping mode.

::LPtoDP

CDC::MoveTo
CPoint MoveTo(int x, int y);

CPoint MoveTo(POINT point);

Parameters x
Specifies the logical x -coordinate of the endpoint for the line.

y
Specifies the logical y-coordinate of the endpoint for the line.

point
Specifies the endpoint for the line. You can pass either a POINT structure or a
CPoint object for this parameter.

216 CDC::OffsetClipRgn

Remarks Moves the current position to the point specified by x and y (or by point).

Return Value The x- and y-coordinates of the previous position as a CPoint object.

See Also CDC::GetCurrentPosition, CDC::LineTo, ::MoveTo

CDC::OffsetClipRgn
Syntax int OffsetClipRgn(int x, int y);

int OffsetClipRgn(SIZE size);

Parameters x

Remarks

Return Value

See Also

Specifies the number of logical units to move left or right.

y
Specifies the number of logical units to move up or down.

size
Specifies the amount to offset.

Moves the clipping region of the given device by the specified offsets. The func­
tion moves the region x units along the x-axis and y units along the y-axis.

The new region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

: :OfTsetClipRgn

Meaning

Clipping region has overlapping borders.

Device context is not valid.

Clipping region is empty.

Clipping region has no overlapping borders.

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CDC::OffsetWindowOrg 217

CDC::OffsetViewporiOrg
CPoint OtTsetViewportOrg(int nWidth, int nHeight);

nWidth
Specifies the number of device units to add to the current origin's x-coordinate.

nHeight
Specifies the number of device units to add to the current origin's y-coordinate.

Modifies the viewport origin relative to the coordinates of the current viewport
origin.

The previous viewport origin (in device coordinates) as a CPoint object.

CDC: :GetViewportOrg, CDC::OtTsetWindowOrg, CDC::SetViewportOrg,
: :OtTsetViewportOrg

CDC::OffsetWindowOrg
CPoint OtTsetWindowOrg(int nWidth, int nHeight);

nWidth
Specifies the number of logical units to add to the current origin's x -coordinate.

nHeight
Specifies the number of logical units to add to the current origin's y-coordinate.

Modifies the window origin relative to the coordinates of the current window
origin.

The previous window origin (in logical coordinates) as a CPoint object.

CDC: : GetWindowOrg, CDC: :OffsetViewportOrg, CDC::SetWindowOrg,
: :OtTsetWindowOrg

218 CDC::PaintRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CDC::PaintRgn
BOOL PaintRgn(CRgn* pRgn);

pRgn
Identifies the region to be filled. The coordinates for the given region are
specified in device units.

Fills the region specified by pRgn with the selected brush.

TRUE if the function is successful; otherwise FALSE.

CBrush, CDC::SelectObject, CDC::FillRgn, ::PaintRgn

CDC::PatBlt
BOOL PatBlt(int x, int y, int n Width, int nHeight, DWORD dwRop);

x

y

Specifies the logical x-coordinate of the upper-left corner of the rectangle that
is to receive the pattern.

Specifies the logical y-coordinate of the upper-left corner of the rectangle that
is to receive the pattern.

nWidth
Specifies the width (in logical units) of the rectangle that is to receive the
pattern.

nHeight
Specifies the height (in logical units) of the rectangle that is to receive the
pattern.

dwRop
Specifies the raster-operation code. Raster-operation codes (ROPs) define how
GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. This parameter may be one of
the following values:

Remarks

Return Value

See Also

Syntax

CDC::Pie 219

Value Meaning

Copies pattern to destination bitmap. PATCOPY

PATINVERT Combines destination bitmap with pattern using the
Boolean OR operator.

DSTINVERT

BLACKNESS

WHITENESS

Inverts the destination bitmap.

Turns all output black.

Turns all output white.

Creates a bit pattern on the specified device. The pattern is a combination of the
selected brush and the pattern already on the device. The raster-operation code
specified by dwRop defines how the patterns are to be combined. The values of
dwRop for this function are a limited subset of the full 256 ternary raster-operation
codes; in particular, an operation code that refers to a source cannot be used. Not
all devices support the PatBlt function.

For more information, see the RC_BITBLT capability under the GetDeviceCaps
member function.

TRUE if the bit pattern is drawn; otherwise FALSE.

CDC: : GetDeviceCaps, : :PatBlt

CDC::Pie
BOOL Pie(int xl, int yl, int x2, int y2, int x3, int y3, int x4, int y4);

BOOL Pie(LPRECT IpRect, POINT ptStart, POINT ptEnd);

Parameters xl

yl

x2

Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in
logical units).

Specifies the y-coordinate ofthe upper-left corner of the bounding rectangle (in
logical units).

Specifies the x-coordinate of the lower-right corner of the bounding rectangle
(in logical units).

220 CDC::Pie

Remarks

Return Value

See Also

y2

x3

y3

x4

y4

Specifies the y-coordinate of the lower-right comer of the bounding rectangle
(in logical units).

Specifies the x-coordinate of the arc's starting point (in logical units). This
point does not have to lie exactly on the arc.

Specifies the y-coordinate of the arc's starting point (in logical units). This
point does not have to lie exactly on the arc.

Specifies the x-coordinate ofthe arc's endpoint (in logical units). This point
does not have to lie exactly on the arc.

Specifies the y-coordinate ofthe arc's endpoint (in logical units). This point
does not have to lie exactly on the arc.

IpRect
Specifies the bounding rectangle. You can pass either a CRect object or a
pointer to a RECT structure for this parameter.

ptStart
Specifies the starting point of the arc. This point does not have to lie exactly on
the arc. You can pass either a POINT structure or a CPoint object for this para­
meter.

ptEnd
Specifies the endpoint of the arc. This point does not have to lie exactly on the
arc. You can pass either a POINT structure or a CPoint object for this parame­
ter.

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two end­
points are joined by lines. The center of the arc is the center of the bounding rec­
tangle specified by xl, yl, x2, and y2 (or by IpRect). The starting and ending
points of the arc are specified by x3, y3, x4, and y4 (or by ptStart and ptEnd). The
arc is drawn with the selected pen, moving in a counterclockwise direction. Two
additional lines are drawn from each endpoint to the arc's center. The pie-shaped
area is filled with the current brush. If x3 equals x4 and y3 equals y4, the result is
an ellipse with a single line from the center ofthe ellipse to the point (x3, y3), or
(x4, y4).

TRUE if the function is successful; otherwise FALSE.

CDC::Chord, ::Pie

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CDC::Polygon 221

CDC::PlayMetaFile
BOOL PlayMetaFile(HANDLE hMF);

hMF
Identifies the metafile.

Plays the contents of the specified metafile on the given device. The metafile can
be played any number of times.

TRUE if the function is successful; otherwise FALSE.

::PlayMetaFile

CDC::Polygon
BOOL Polygon(LPPOINT ipPoints, int nCount);

ipPoints
Points to an array of points that specify the vertices of the polygon. Each point
in the array is a POINT structure or a CPoint object.

nCount
Specifies the number of vertices given in the array.

Draws a polygon consisting oftwo or more points (vertices) connected by lines.
The system closes the polygon automatically, if necessary, by drawing a line from
the last vertex to the first.

The current polygon-filling mode can be retrieved or set by using
GetPolyFillMode and SetPolyFillMode.

TRUE if the function is successful; otherwise FALSE.

CDC: : GetPolyFillMode, : :PolyLine, CDC: :PolyPolygon,
CDC::SetPolyFillMode, ::Polygon

222 CDC::Polyline

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CDC::Polyline
BOOL Polyline(LPPOINT IpPoints, int nCount);

IpPoints
Points to an array of points to be connected.

nCount
Specifies the number of points in the array. This value must be at least 2.

Draws a set of line segments, connecting the points specified by IpPoints. The
lines are drawn from the first point through subsequent points, using the current
pen. Unlike LineTo, the Polyline function neither uses nor updates the current
position.

TRUE if the function is successful; otherwise FALSE.

CDC::LineTo, CDC::Polygon, ::PolyLine

CDC::PolyPolygon
BOOL PolyPolygon(LPPOINT IpPoints, LPINT IpPolyCounts, int nCount);

IpPoints
Points to an array of POINT structures or CPoint objects that define the ver­
tices of the polygons.

IpPolyCounts
Points to an array of integers, each of which specifies the number of points in
one of the polygons in the IpPoints array.

nCount
The number of entries in the IpPolyCounts array. This number specifies the
number of polygons to be drawn. This value must be at least 2.

Creates two or more polygons that are filled using the current polygon-filling
mode. The polygons may be disjoint or they may overlap.

Each polygon specified in a call to the PolyPolygon function must be closed. Un­
like polygons created by the Polygon member function of CDC, the polygons
created by PolyPolygon are not closed automatically.

Return Value

See Also

Syntax

CDC::PtVisible 223

The function creates two or more polygons. To create a single polygon, an applica­
tion should use the Polygon member function.

The current polygon-filling mode can be retrieved or set by using the
GetPolyFillMode and SetPolyFillMode member functions.

TRUE if the function is successful; otherwise FALSE.

CDC::GetPolyFillMode, CDC::Polygon, CDC::Polyline,
CDC::SetPolyFillMode, ::PolyPolygon

CDC::PtVisible
BOOL PtVisible(int x, int y) const;

BOOL PtVisible(POINT point) const;

Parameters x

Remarks

Return Value

See Also

Specifies the logical x-coordinate of the point.

y
Specifies the logical y-coordinate of the point.

point
Specifies the point to check in logical coordinates. You can pass either a
POINT structure or a CPoint object for this parameter.

Specifies whether the given point is within the clipping region of the device
context.

TRUE if the specified point is within the clipping region; otherwise FALSE.

CPoint, ::PtVisible

224 CDC::RealizePalette

Syntax

Remarks

Return Value

See Also

Syntax

CDC:: Rea I izePa lette
UINT RealizePaletteO;

Takes entries in the logical palette currently selected into a device context and
maps them to the system palette.

A logical color palette acts as a buffer between color-intensive applications and
the system, allowing an application to use as many colors as needed without inter­
fering with its own color display, or with colors displayed by other windows.

When a window has input focus and calls the function, Windows ensures that it
will display all the colors it requests, up to the maximum number simultaneously
available on the display, and displays colors not found in the window's palette by
matching them to available colors.

In addition, Windows matches the colors requested by inactive windows that call
the function as closely as possible to the available colors. This significantly re­
duces undesirable changes in the colors displayed in inactive windows.

Specifies how many entries in the logical palette were mapped to different entries
in the system palette. This represents the number of entries that this function re­
mapped to accommodate changes in the system palette since the logical palette
was last realized.

CPalette, : : RealizePaleUe

CDC::Rectangle
BOOL Rectangle(int xl, int yl, int x2, int y2);

BOOL Rectangle(LPRECT lpRect);

Parameters xl

yl

Specifies the x-coordinate of the upper-left corner of the rectangle (in logical
units).

Specifies the y-coordinate of the upper-left corner ofthe rectangle (in logical
units).

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

x2

y2

CDC::RectVisible 225

Specifies the x-coordinate of the lower-right corner of the rectangle (in logical
units).

Specifies the y-coordinate ofthe lower-right corner ofthe rectangle (in logical
units).

lpRect
Specifies the rectangle in logical units. You can pass either a CRect object or a
pointer to a RECT structure for this parameter.

Draws a rectangle using the current pen. The interior of the rectangle is filled
using the current brush.

TRUE if the function is successful; otherwise FALSE.

::Rectangle, ::PolyLine, CDC::RoundRect

CDC::RectVisible
BOOL RectVisible(LPRECT lpRect) const;

lpRect
Points to a RECT structure or a CRect object that contains the logical coordi­
nates of the specified rectangle.

Determines whether any part of the given rectangle lies within the clipping region
of the current display context.

TRUE if some portion of the given rectangle lies within the clipping region; other­
wise FALSE.

: : RectVisible

226 CDC::RestoreDC

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

CDC::RestoreDC
BOOL RestoreDC(int nSavedDC);

nSavedDC
Specifies the device context to be restored. It must be a value returned by a pre­
vious SaveDC function call. If nSavedDC is -1, the most recent device context
saved is restored.

Restores the Windows device context to the previous state identified by
nSavedDC. RestoreDC restores the device context by copying state information
saved on the Windows internal context stack by earlier calls to the SaveDC mem­
ber function.

The Windows internal context stack can contain the state information for several
device contexts. If the context specified by nSavedDC is not at the top of the stack,
RestoreDC deletes any state information between the device context specified by
nSavedDC and the top of the stack. The deleted information is lost.

TRUE ifthe specified context was restored; otherwise FALSE.

CDC::SaveDC, ::RestoreDC

CDC::RoundRect
BOOL RoundRect(int xl, int yl, int x2, int y2, int x3, int y3);

BOOL RoundRect(LPRECT lpRect, POINT point);

Parameters xl

yl

x2

Specifies the x-coordinate of the upper-left comer of the rectangle (in logical
units).

Specifies the y-coordinate of the upper-left comer of the rectangle (in logical
units).

Specifies the x-coordinate of the lower-right comer of the rectangle (in logical
units).

Remarks

Return Value

See Also

Syntax

Remarks

y2

x3

y3

CDC::SaveDC 227

Specifies the y-coordinate of the lower-right corner of the rectangle (in logical
units).

Specifies the width of the ellipse used to draw the rounded corners (in logical
units).

Specifies the height of the ellipse used to draw the rounded corners (in logical
units).

IpRect
Specifies the bounding rectangle in logical units. You can pass either a CRect
object or a pointer to a RECT structure for this parameter.

point
The x-coordinate of point specifies the width of the ellipse to draw the rounded
corners (in logical units). The y-coordinate of point specifies the height of the
ellipse to draw the rounded corners (in logical units). You can pass either a
POINT structure or a CPoint object for this parameter.

Draws a rectangle with rounded corners, using the current pen. The interior of the
rectangle is filled using the current brush.

TRUE if the function is successful; otherwise FALSE.

CDC: :Rectangle, : : RoundRect

CDC::SaveDC
int SaveDCO const;

Saves the current state of the device context by copying state information (such as
clipping region, selected objects, and mapping mode) to a context stack main­
tained by Windows. The saved device context can later be restored by using
RestoreDC.

SaveDC can be used any number of times to save any number of device-context
states.

228 CDC::ScaleViewportExt

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Specifies the saved device context. It is 0 if an error occurs. This return value is
used on a subsequent call to RestoreDC to restore the device context state.

CDC::RestoreDC, ::SaveDC

CDC::ScaleViewportExt
CSize Scale ViewportExt(int xNum, int xDenom, int yNum, int yDenom);

xNum
Specifies the amount by which to multiply the current x-extent.

xDenom
Specifies the amount by which to divide the current x-extent.

yNum
Specifies the amount by which to multiply the current y-extent.

yDenom
Specifies the amount by which to divide the current y-extent.

Modifies the viewport extents relative to the current values. The formulas are writ­
ten as follows:

xNewVE xOldVE * xNum / xDenom
yNewVE = (yOldVE * yNum / yDenom

The new extent is calculated by multiplying the current extents by the given
numerator and then dividing by the given denominator.

The previous viewport extents (in device units) as a CSize object.

: : Scale ViewportExt

Syntax

Parameters

Remarks

Return Value

See Also

CDC::ScaleWindowExt 229

CDC::ScaleWindowExt
CSize ScaleWindowExt(int xNum, int xDenom, int yNum, int yDenom);

xNum
Specifies the amount by which to multiply the current x-extent.

xDenom
Specifies the amount by which to divide the current x-extent.

yNum
Specifies the amount by which to multiply the current y-extent.

yDenom
Specifies the amount by which to divide the current y-extent.

Modifies the window extents relative to the current values. The formulas are writ­
ten as follows:

xNewVE xOldVE * xNum
yNewVE = (yOldVE * yNum

/ xDenom
/ yDenom

The new extent is calculated by multiplying the current extents by the given
numerator and then dividing by the given denominator.

The previous window extents (in logical units) as a CSize object.

: :Scale WindowExt

230 CDC::ScroIiDC

Syntax

Parameters

Remarks

Return Value

See Also

CDC::ScroIiDC
BOOL ScrollDC(int dx, int dy, LPRECT lpRectScroll, LPRECT lpRectClip,

CRgn* pRgnUpdate, LPRECT lpRectUpdate);

dx
Specifies the number of horizontal scroll units.

dy
Specifies the number of vertical scroll units.

lpRectScroll
Points to the RECT structure or CRect object that contains the coordinates of
the scrolling rectangle.

lpRectClip
Points to the RECT structure or CRect object that contains the coordinates of
the clipping rectangle. When this rectangle is smaller than the original pointed
to by lpRectScroll, scrolling occurs only in the smaller rectangle.

pRgnUpdate
Identifies the region uncovered by the scrolling process. The ScrollDC function
defines this region; it is not necessarily a rectangle.

lpRectUpdate
Points to the RECT structure or CRect object that, upon return, contains the
coordinates of the rectangle that bounds the scrolling update region. This is the
largest rectangular area that requires repainting.

Scrolls a rectangle of bits horizontally and vertically. The IpRectScroll parameter
describes the rectangle to be scrolled, dx specifies the number of units to be
scrolled horizontally, and dy specifies the number of units to be scrolled vertically.

If lpRectUpdate is NULL, Windows does not compute the update rectangle. If
both pRgnUpdate and IpRectUpdate are NULL, Windows does not compute the
update region. If pRgnUpdate is not NULL, Windows assumes that it contains a
valid region pointer to the region uncovered by the scrolling process (defined by
the ScrollDC member function). An application should use the ScrollWindow
member function of class CWnd when it is necessary to scroll the entire client
area of a window. Otherwise, it should use ScrollDC.

TRUE if scrolling is executed; otherwise FALSE.

CWnd::ScrollWindow, ::ScrollDC, CRgn

Syntax

Parameters

Remarks

Return Value

See Also

CDC::SelectClipRgn 231

CDC::SelectClipRgn
int SelectClipRgn(CRgn* pRgn);

pRgn
Identifies the region to be selected.

Selects the given region as the current clipping region for the specified device con­
text. Only a copy of the selected region is used. The region itself can be selected
for any number of other device contexts, or it can be deleted.

The function assumes that the coordinates for the given region are specified in dev­
ice units. Some printer devices support graphics at lower resolutions than text out­
put to increase speed, but at the expense of quality. These devices scale
coordinates for graphics so that one graphics device point corresponds to two or
four true device points. This scaling factor affects clipping. If a region will be used
to clip graphics, its coordinates must be divided down by the scaling factor. If the
region will be used to clip text, no scaling adjustment is needed. The scaling factor
is determined by using the GETSCALINGFACTOR printer escape.

The region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

New clipping region has overlapping borders.

Device context or region handle is not valid.

New clipping region is empty.

New clipping region has no overlapping borders.

CDC::Escape, CRgn, ::SelectClipRgn

232 CDC::SelectObject

Syntax

Parameters

Remarks

CDC::SelectObject
CGdiObject* SeiectObject(CGdiObject* pObject);

CPen* SeiectObject(CPen* pPen);

CBrush* SeiectObject(CBrush* pBrush);

CFont* SeiectObject(CFont* pFont);

CBitmap* SeiectObject(CBitmap* pBitmap);

int SeiectObject(CRgn* pRgn);

pObject
Identifies the object to be selected.

Note that this general version of the SeiectObject member function does not
work for regions. To select regions, see the version of SeiectObject in the next
group that is specialized for regions.

pPen
A pointer to a CPen object to be selected.

pBrush
A pointer to a CBrush object to be selected.

pFont
A pointer to a CFont object to be selected.

pBitmap
A pointer to a CBitmap object to be selected.

pRgn
A pointer to a CRgn object to be selected.

Selects an object into the current device context. Class CDC provides a general
version of SeiectObject and five versions specialized for particular kinds of GDI
objects, including pens, brushes, fonts, bitmaps, and regions.

The newly selected object replaces the previous object of the same type. For ex­
ample, if pObject of the general version of SeiectObject points to a CPen object,
the function replaces the current pen with the pen specified by pObject.

Note that class CMetaFileDC overrides the SeiectObject member function. The
CMetaFileDC class is derived from class CDC specifically for use with meta­
files. For information on object selection in metafiles, see the CMetaFileDC class.

Return Value

See Also

Syntax

Parameters

Remarks

CDC::SelectPalette 233

An application can select a bitmap into memory device contexts only, and into
only one memory device context at a time. The format of the bitmap must either
be monochrome or compatible with the specified device; if it is not, SelectObject
returns an error.

A pointer to a CGdiObject object or to an object of one of the classes derived
from CGdiObject, such as CPen, depending on which version of the function
used. The object pointed to is being replaced by the object specified by the func­
tion's parameter. It is NULL if there is an error.

For the version of the member function that takes a region parameter, pRgn, the re­
turn value is one of the following:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meauing

New clipping region has overlapping borders.

Device context or region handle is not valid.

New clipping region is empty.

New clipping region has no overlapping borders.

CGdiObject: :DeleteObject, CDC: :SelectClipRgn, CDC: :SelectPalette,
: :SelectObject

CDC::SelectPalette
CPalette* SelectPalette(CPalette* pPalette, BOOL bForceBackground);

pPalette
Identifies the logical palette to be selected. This palette must already have been
created with the CPalette member function CreatePalette.

bF orceBackground
Specifies whether the logical palette is forced to be a background palette. If
bForceBackground is TRUE, the selected palette is always a background
palette, regardless of whether the window has input focus. If
bForceBackground is FALSE, the logical palette is a foreground palette when
the window has input focus.

Selects the logical palette specified by pPalette as the selected palette object of the
device context. The new palette becomes the palette object used by GDI to control
colors displayed in the device context and replaces the previous palette.

234 CDC::SelectStockObject

Return Value

See Also

Syntax

Parameters

An application can select a logical palette into more than one device context. How­
ever, changes to a logical palette will affect all device contexts for which it is
selected. If an application selects a palette object into more than one device con­
text, the device contexts must all belong to the same physical device (such as a dis­
play or printer).

A pointer to a CPalette object, identifying the logical palette replaced by the
palette specified by pPalette. It is NULL if there is an error.

CPalette, : :SelectPalette

CDC::SelectStockObject
CGdiObject* SelectStockObject(int nIndex);

nIndex
Specifies the kind of stock object desired. It can be one of the following values:

Value

BLACILBRUSH

DKGRAY_BRUSH

GRAY_BRUSH

HOLLOW_BRUSH

LTGRAY _BRUSH

NULL_BRUSH

WHITE_BRUSH

BLACILPEN

NULL_PEN

WHITE_PEN

ANSLFIXED_FONT

ANSL VAlL FONT

DEVICE_DEFAULT_FONT

OE~FIXED_FONT

Meaning

Black brush.

Dark gray brush.

Gray brush.

Hollow brush.

Light gray brush.

Null brush.

White brush.

Black pen.

Null pen.

White pen.

ANSI fixed system font.

ANSI variable system font.

Device-dependent font.

OEM-dependent fixed font.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Value

SYSTE~FONT

SYSTE~FlXED_FONT

CDC::SetAbortProc 235

Meaning

The system font. By default, Windows
uses the system font to draw menus,
dialog-box controls, and other text. In
Windows versions 3.0 and later, the
system font is proportional width;
earlier versions of Windows use a
fixed-width system font.

The fixed-width system font used in
Windows prior to version 3.0. This
object is available for compatibility
with earlier versions of Windows.

Default color palette. This palette
consists of the 20 static colors in the
system palette.

Selects a CGdiObject object that corresponds to one of the predefined stock pens,
brushes, or fonts.

A pointer to the CGdiObject object that was replaced if the function is successful.
The actual object pointed to is a CPen, CBrush, or CFont object. If the call is un­
successful, the return value is NULL.

CGdiObject::GetObject

CDC::SetAbortProc
int SetAbortProc(short (FAR PASCAL EXPORT* lpfn)(HDC, short»;

lpfn
A pointer to the abort function to install as the abort procedure. For more about
this callback function, see below.

Installs the abort procedure for the print job.

If an application is to allow the print job to be canceled during spooling, it must
set the abort function before the print job is started with the StartDoc member
function or the STARTDOC escape, which are equivalent. Print Manager calls

236 CDC::SetAbortProc

the abort function during spooling to allow the application to cancel the print job
or to process out-of-disk-space conditions. If no abort function is set, the print job
will fail if there is not enough disk space for spooling.

Note that new features of Microsoft C/C++ let you use an ordinary function as the
function passed to SetAbortProc. The address passed to EnumObjects is a FAR
pointer to a function exported with __ export and with the Pascal calling conven­
tion. In protect-mode applications, you do not have to create this function with the
Windows MakeProcInstance function or free the function after use with Free­
ProcInstance.

You also do not have to export the function name in an EXPORTS statement in
your application's module-definition file. You can instead use the __ export func­
tion modifier, as in

short FAR PASCAL __ export AFunction(HDC, short);

to cause the compiler to emit the proper export record for export by name without
aliasing. This works for most needs. For some special cases, such as exporting a
function by ordinal or aliasing the export, you still need to use an EXPORTS
statement in a module-definition file.

For compiling Foundation programs, you'll normally use the /GA and /GEs com­
piler options. The /Gw compiler option is not used with the Foundation classes. (If
you do use MakeProcInstance, you will need to explicitly cast the returned func­
tion pointer from F ARPROC to the type needed in this API.) Callback registra­
tion interfaces are now type-safe (you must pass in a function pointer that points to
the right kind of function for the specific callback).

Also note that all callback functions must trap Foundation exceptions before re­
turning to Windows, since exceptions cannot be thrown across callback boundar­
ies. For more information about exceptions, see Chapter 12 in the Class Libraries
User's Guide.

Callback Function
The callback function must use the Pascal calling convention, must be exported
with __ export, and must be declared FAR.

short FAR PASCAL __ export AbortFunc(HOC hPr, short code);

Return Value

CDC::SetAbortProc 237

The name AbortFunc is a placeholder for the application-supplied function name.
The actual name must be exported as described in the "Remarks" section above.

Parameter

hPr

code

Return Value

Description

Identifies the device context.

Specifies whether an error has occurred. It is 0 if
no error has occurred. It is SP _OUTOFDISK if
Print Manager is currently out of disk space and
more disk space will become available if the
application waits. If code is SP _ OUTOFDISK,
the application does not have to abort the print
job. If it does not, it must yield to Print Manager
by calling the PeekMessage or GetMessage
function.

The return value of the abort-handler function is nonzero if the print job is to con­
tinue, and 0 if it is canceled.

Specifies the outcome of the SetAbortProc function. Some of the following
values are more probable than others, but all are possible.

Value

SP_ERROR

SP _ OUTOFDISK

SP _ OUTOFMEMORY

SP _ USERABORT

Meaning

General error.

Not enough disk space is currently available for
spooling, and no more space will become
available.

Not enough memory is available for spooling.

User terminated the job through the Print
Manager.

238 CDC::SetBkColor

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CDC::SetBkColor
DWORD SetBkColor(DWORD crColor);

crColor
Specifies the new background color.

Sets the current background color to the specified color. If the background mode is
OPAQUE, the system uses the background color to fill the gaps in styled lines,
the gaps between hatched lines in brushes, and the background in character cells.
The system also uses the background color when converting bitmaps between
color and monochrome device contexts.

If the device cannot represent the specified color, the system sets the background
color to the nearest physical color.

The previous background color as an RGB color value. If an error occurs, the re­
turn value is Ox80000000.

CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkMode, ::SetBkColor

CDC::SetBkMode
int SetBkMode(int nBkMode);

nBkMode
Specifies the background mode. This parameter can be either of the following
values:

Value

OPAQUE

TRANSPARENT

Meaning

Background is filled with the current background
color before the text, hatched brush, or pen is
drawn.

Background is not changed before drawing.

Remarks

Return Value

See Also

Syntax

CDC::SetBrushOrg 239

Sets the background mode. The background mode defines whether the system re­
moves existing background colors on the drawing surface before drawing text,
hatched brushes, or any pen style that is not a solid line.

The previous background mode. It can be either OPAQUE or TRANSPARENT.

CDC::GetBkColor, CDC::GetBkMode, CDC::SetBkColor, ::SetBkMode

CDC::SetBrushOrg
CPoint SetBrushOrg(int x, int y);

CPoint SetBrushOrg(POINT point);

Parameters x

Remarks

Return Value

See Also

y

Specifies the x-coordinate (in device units) of the new origin. This value must
be in the range 0-7.

Specifies the y-coordinate (in device units) of the new origin. This value must
be in the range 0-7.

point
Specifies the x- and y-coordinate of the new origin. Each value must be in the
range 0-7. You can pass either a POINT structure or a CPoint object for this
parameter.

Specifies the origin that GDI will assign to the next brush that an application
selects into a device context.

Do not use SetBrushOrg with stock CBrush objects.

The previous origin of the brush in device units (which are relative to the origin of
the desktop window).

CDC: :GetBrushOrg, CDC: : SelectObject, CGdiObject:: UnrealizeObject,
: :SetBrushOrg

240 CDC::SetMapMode

Syntax

Parameters

Remarks

CDC::SetMapMode
int SetMapMode(int nMapMode);

nMapMode
Specifies the new mapping mode. It can be anyone of the following values:

Value

MM_ANISOTROPIC

MM_HIENGLISH

MM_ISOTROPIC

MM_LOENGLISH

MM_TEXT

MM_TWIPS

Meaning

Logical units are mapped to arbitrary units with
arbitrarily scaled axes. The SetWindowExt and
SetViewportExt member functions of class
CDC must be used to specify the desired units,
orientation, and scaling.

Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is up.

Each logical unit is mapped to 0.01 millimeter.
Positive x is to the right; positive y is up.

Logical units are mapped to arbitrary units with
equally scaled axes; that is, one unit along the x­
axis is equal to one unit along the y-axis. The
SetWindowExt and SetViewportExt member
functions of class CDC must be used to specify
the desired units and the orientation of the axes.
GDI makes adjustments as necessary to ensure
that the x and y units remain the same size.

Each logical unit is mapped to 0.01 inch.
Positive x is to the right; positive y is up.

Each logical unit is mapped to 0.1 millimeter.
Positive x is to the right; positive y is up.

Each logical unit is mapped to one device pixel.
Positive x is to the right; positive y is down.

Each logical unit is mapped to one-twentieth of
a printer's point (111440 inch). Positive x is to
the right; positive y is up.

Sets the mapping mode. The mapping mode defines the unit of measure used to
transform logical units into device units, and also defines the orientation of the
device's x- and y-axes. GDI uses the mapping mode to convert logical coordinates
into the appropriate device coordinates. The MM_ TEXT mode allows applica­
tions to work in device pixels, whose size varies from device to device.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CDC::SetMapperFlags 241

The M~HIENGLISH, MM_HIMETRIC, MM_LOENGLISH,
M~LOMETRIC, and M~ TWIPS modes are useful for applications that
need to draw in physically meaningful units (such as inches or millimeters). The
M~ISOTROPIC mode ensures a 1: 1 aspect ratio, which is useful when it is im­
portant to preserve the exact shape of an image. The M~ANISOTROPIC
mode allows the x- and y-coordinates to be adjusted independently.

The previous mapping mode.

CDC::SetViewportExt, CDC::SetWindowExt, ::SetMapMode

CDC::SetMapperFlags
DWORD SetMapperFlags(DWORD dwFlag);

dwFlag
Specifies whether the font mapper attempts to match a font's aspect height and
width to the device. When the first bit is set to 1, the mapper will only select
fonts whose x-aspect and y-aspect exactly match those of the specified device.

Alters the algorithm that the font mapper uses when it maps logical fonts to physi­
cal fonts. When the first bit of dwFlag is set to 1, the mapper will only select fonts
whose x-aspect and y-aspect exactly match those of the specified device. If no
fonts exist with a matching aspect height and width, GDI chooses an aspect height
and width and selects fonts with aspect heights and widths that match the one
chosen by GDI.

The remaining bits of dwFlag must be O.

The previous value ofthe font-mapper flag.

: :SetMapperFlags

242 CDC::SetPixel

Syntax

CDC::SetPixel
DWORD SetPixel(int x, int y, DWORD crColor);

DWORD SetPixel(POINT point, DWORD crColor);

Parameters x

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Specifies the logical x-coordinate of the point to be set.

y
Specifies the logical y-coordinate of the point to be set.

crColor
Specifies the color used to paint the point.

point
Specifies the logical x- and y-coordinates of the point to be set. You can pass
either a POINT structure or a CPoint object for this parameter.

Sets the pixel at the point specified to the closest approximation of the color
specified by crColor. The point must be in the clipping region. If the point is not
in the clipping region, the function is ignored.

Not all devices support the function. For more information, see the RC_BITBLT
capability in the GetDeviceCaps member function.

An RGB color value for the color that the point is actually painted. This value can
be different than that specified by crColor if an approximation of that color is
used. If the function fails (if the point is outside the clipping region), the return
value is-I.

CDC::GetDeviceCaps, CDC::GetPixel, ::SetPixel

CDC::SetPolyFiIiMode
int SetPolyFillMode(int nPolyFillMode);

nPolyFillMode
Specifies the new filling mode. This value may be either ALTERNATE or
WINDING.

Sets the polygon-filling mode.

Return Value

See Also

Syntax

Parameters

CDC::SetROP2 243

When the polygon-filling mode is ALTERNATE, the system fills the area be­
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When­
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line
passes through a counterclockwise line segment, the count is decremented. The
area is filled if the count is nonzero when the line reaches the outside of the figure.

The previous filling mode. It is 0 if there is an error.

CDC: :GetPolyFillMode, CDC: :PolyPolygon, : :SetPolyFillMode

CDC::SetROP2
int SetROP2(int nDrawMode);

nDrawMode
Specifies the new drawing mode. It can be anyone of the following values:

Value

R2_BLACK

R2_WHITE

R2_NOP

R2_NOT

R2_COPYPEN

R2_NOTCOPYPEN

R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

Meaning

Pixel is always black.

Pixel is always white.

Pixel remains unchanged.

Pixel is the inverse of the display color.

Pixel is the pen color.

Pixel is the inverse of the pen color.

Pixel is a combination of the pen color and the
inverse of the display color.

Pixel is a combination of the colors common to
both the pen and the inverse of the display.

Pixel is a combination of the display color and
the inverse of the pen color.

244 CDC::SetROP2

Remarks

Return Value

See Also

Value

R2_MASKNOTPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_NOTXORPEN

Meaning

Pixel is a combination of the colors common to
both the display and the inverse of the pen.

Pixel is a combination of the pen color and the
display color.

Pixel is the inverse of the R2_MERGEPEN
color.

Pixel is a combination of the colors common to
both the pen and the display.

Pixel is the inverse of the R2_MASKPEN
color.

Pixel is a combination of the colors in the pen
and in the display, but not in both.

Pixel is the inverse of the R2_XORPEN color.

Sets the current drawing mode. The drawing mode specifies how the colors of the
pen and the interior of filled objects are combined with the color already on the dis­
play surface.

Drawing modes are binary raster-operation codes, representing all possible
Boolean functions of two variables, using the binary operations AND, OR, and
XOR (exclusive OR), and the unary operation NOT.

The previous drawing mode. It can be anyone of the values given in the Windows
Software Development Kit documentation.

CDC::GetDeviceCaps, CDC::GetROP2, ::SetROP2

Syntax

Parameters

Remarks

See Also

CDC::SetStretchBltMode 245

CDC::SetStretchBltMode
int SetStretchBItMode(int nStretchMode);

nStretchMode
Specifies the new bitmap-stretching mode. It can be one of the following values:

Value

BLACKONWHITE

COLORONCOLOR

WHITEONBLACK

Meaning

Uses the AND operator to combine eliminated
lines with the remaining lines. This mode
preserves black pixels at the expense of colored
or white pixels.

Deletes the eliminated lines. Information in the
eliminated lines is not preserved.

Uses the OR operator to combine eliminated
lines with the remaining lines. This mode
preserves colored or white pixels at the expense
of black pixels.

Sets the bitmap-stretching mode for StretchBlt. The bitmap-stretching mode de­
fines how information is removed from bitmaps that are compressed by using the
function.

The BLACKONWHITE and WHITEONBLACK modes are typically used to
preserve foreground pixels in monochrome bitmaps. The COLORONCOLOR
mode is typically used to preserve color in color bitmaps.

CDC::GetStretchBItMode, CDC::StretchBIt, ::SetStretchBItMode

246 CDC::SetTextAlign

Syntax

Parameters

CDC::SetTextAlign
UINT SetTextAlign(UINT nFlags);

nFlags
Specifies text-alignment flags. The flags specify the relationship between a
point and a rectangle that bounds the text. The point can be either the current
position or coordinates specified by a text-output function. The rectangle that
bounds the text is defined by the adjacent character cells in the text string.

The nFlags parameter can be one or more flags from the following three catego­
ries. Only one flag may be chosen from each category.

The first category affects text alignment in the x direction:

Value

TA_CENTER

Meaning

Specifies alignment of the point and the horizontal
center of the bounding rectangle.

Specifies alignment of the point and the left side of
the bounding rectangle. This is the default setting.

Specifies alignment of the point and the right side of
the bounding rectangle.

The second category affects text alignment in the y direction:

Value

TA_TOP

Meaning

Specifies alignment of the point and the baseline of
the chosen font.

Specifies alignment of the point and the bottom of the
bounding rectangle.

Specifies alignment of the point and the top of the
bounding rectangle. This is the default setting.

The third category determines whether the current position is updated when text
is written:

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Value

TA-NOUPDATECP

TA-UPDATECP

Sets the text-alignment flags.

CDC::SetTextCharacterExtra 247

Meaning

Specifies that the current position is not updated
after each call to a text-output function. This is
the default setting.

Specifies that the current position is updated
after each call to a text-output function.

The functions TextOut and ExtTextOut use these flags when positioning a string
of text on a display or device. The flags specify the relationship between a specific
point and a rectangle that bounds the text. The coordinates of this point are passed
as parameters to the TextOut member function. The rectangle that bounds the text
is formed by the adjacent character cells in the text string.

The previous text-alignment setting. The low-order byte contains the horizontal
alignment and the high-order byte contains the vertical alignment. The return
value is 0 if there is an error.

CDC::ExtTextOut, CDC::GetTextAlign, CDC::TabbedTextOut,
CDC::TextOut, ::SetTextAlign

CDC::SetTextCharacterExtra
int SetTextCharacterExtra(int nCharExtra);

nCharExtra
Specifies the amount of extra space (in logical units) to be added to each charac­
ter. If the current mapping mode is not M~ TEXT, nCharExtra is trans­
formed and rounded to the nearest pixel.

Sets the amount of intercharacter spacing. GDI adds this spacing to each character,
including break characters, when it writes a line of text to the device context.

The amount of the previous intercharacter spacing.

CDC: : GetTextCharacterExtra, : :SetTextCharacterExtra

248 CDC::SetTextColor

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CDC::SetTextColor
DWORD SetTextColor(DWORD crColor);

crColor
Specifies the color of the text as an RGB color value.

Sets the text color to the specified color. The system will use this text color when
writing text to this device context and also when converting bitmaps between
color and monochrome device contexts.

If the device cannot represent the specified color, the system sets the text color to
the nearest physical color. The background color for a character is specified by
SetBkColor and SetBkMode.

An RGB value for the previous text color.

CDC::GetTextColor, CDC::BitBlt, CDC::SetBkColor, CDC::SetBkMode,
: :SetTextColor

CDC::SetTextJustification
int SetTextJustification(int nBreakExtra, int nBreakCount);

nBreakExtra
Specifies the total extra space to be added to the line oftext (in logical units). If
the current mapping mode is not M~ TEXT, the value given by this parame­
ter is converted to the current mapping mode and rounded to the nearest device
unit.

nBreakCount
Specifies the number of break characters in the line.

Remarks

Return Value

See Also

CDC::SetTextJustification 249

Adds space to the break characters in a string. An application can use
GetTextMetrics to retrieve a font's break character.

After calling the SetTextjustification member function, a call to TextOut dis­
tributes the specified extra space evenly among the specified number of break char­
acters. The break character is usually the space character (ASCII 32), but may be
defined by a font as some other character.

The function GetTextExtent is typically used with SetTextjustification.
GetTextExtent computes the width of a given line before justification. This width
is compared to the width of the line after justification to determine how much
space to add to the line.

The SetTextjustification function can be used to justify a line that contains multi­
ple runs in different fonts. In this case, the line must be created piecemeal by justi­
fying and writing each run separately.

Because rounding errors can occur during justification, the system keeps a running
error term that defines the current error. When justifying a line that contains multi­
ple runs, GetTextExtent automatically uses this error term when it computes the
extent of the next run. This allows the text -output function to blend the error into
the new run.

After each line has been justified, this error term must be cleared to prevent it from
being incorporated into the next line. The term can be cleared by calling
SetTextjustification with nBreakExtra set to O.

One if the function is successful; otherwise O.

CDC::GetMapMode, CDC::GetTextExtent, CDC::GetTextMetrics,
CDC: :SetMapMode, CDC: : TextOut, : :SetTextjustification

250 CDC::SetViewportExt

Syntax

CDC::SetViewportExt
CSize SetViewportExt(int x, int y);

CSize SetViewportExt(SIZE size);

Parameters x

Remarks

Return Value

See Also

Specifies the x-extent of the viewport (in device units).

y
Specifies the y-extent of the viewport (in device units).

size
Specifies the x- and y-extents of the viewport (in device units).

Sets the x- and y-extents of the viewport of the device context. The viewport,
along with the device-context window, defines how GDI maps points in the
logical coordinate system to points in the coordinate system of the actual device.
In other words, they define how GDI converts logical coordinates into device
coordinates.

When the following mapping modes are set, calls to SetWindowExt and
SetViewportExt are ignored:

M~HIENGLISH
M~HIMETRIC
M~LOENGLISH
M~LOMETRIC
M~TEXT

M~TWIPS

When M~ISOTROPIC mode is set, an application must call SetWindowExt
before it calls SetViewportExt

The previous extents of the viewport as a CSize object. When an error occurs, the
x- and y-coordinates are both set to O.

CDC::SetWindowExt, ::SetViewportExt

CDC::SetViewportOrg 251

CDC: :SelViewporlOrg
Syntax CPoint SetViewportOrg(int x, int y);

CPoint SetViewportOrg(POINT point);

Parameters x

Remarks

Return Value

See Also

y

Specifies the x-coordinate (in device units) ofthe origin of the viewport. The
value must be within the range of the device coordinate system.

Specifies the y-coordinate (in device units) of the origin of the viewport. The
value must be within the range of the device coordinate system.

point
Specifies the origin of the viewport. The values must be within the range of the
device coordinate system. You can pass either a POINT structure or a CPoint
object for this parameter.

Sets the viewport origin of the device context. The viewport, along with the device­
context window, defines how GDI maps points in the logical coordinate system to
points in the coordinate system of the actual device. In other words, they define
how GDI converts logical coordinates into device coordinates.

The viewport origin marks the point in the device coordinate system to which GDI
maps the window origin, a point in the logical coordinate system specified by
SetWindowOrg. GDI maps all other points by following the same process re­
quired to map the window origin to the viewport origin. For example, all points in
a circle around the point at the window origin will be in a circle around the point
at the viewport origin. Similarly, all points in a line that passes through the win­
dow origin will be in a line that passes through the viewport origin.

The previous origin of the viewport (in device coordinates) as a CPoint object.

CDC::SetWindowOrg, ::SetViewportOrg

252 CDC::SetWindowExt

Syntax

CDC::SetWindowExt
CSize SetWindowExt(int x, int y);

CSize SetWindowExt(SIZE size);

Parameters x

Remarks

Return Value

See Also

Specifies the x-extent (in logical units) of the window.

y
Specifies the y-extent (in logical units) of the window.

size
Specifies the x- and y-extents (in logical units) of the window.

Sets the x- and y-extents ofthe window associated with the device context. The
window, along with the device-context viewport, defines how GDI maps points in
the logical coordinate system to points in the device coordinate system.

When the following mapping modes are set, calls to SetWindowExt and
SetViewportExt functions are ignored:

MM_HIENGLISH
M~HIMETRIC

MM_LOENGLISH
MM_LOMETRIC
M~TEXT
MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the
SetWindowExt member function before calling SetViewportExt.

The previous extents of the window (in logical units) as a CSize object. If an error
occurs, the x- and y-coordinates of the returned CSize object are both set to O.

CDC::SetViewportExt, ::SetWindowExt, CSize

Syntax

CDC::SetWindowOrg
CPoint SetWindowOrg(int x, int y);

CPoint SetWindowOrg(POINT point);

CDC::SetWindowOrg 253

Parameters x

Remarks

Return Value

See Also

Specifies the logical x-coordinate of the new origin of the window.

y
Specifies the logical y-coordinate of the new origin of the window.

point
Specifies the logical coordinates of the new origin of the window. You can pass
either a POINT structure or a CPoint object for this parameter.

Sets the window origin of the specified device context. The window, along with
the device-context viewport, defines how GDI maps points in the logical coordi­
nate system to points in the device coordinate system.

The window origin marks the point in the logical coordinate system from which
GDI maps the viewport origin, a point in the device coordinate system specified
by the SetWindowOrg function. GDI maps all other points by following the same
process required to map the window origin to the viewport origin. For example, all
points in a circle around the point at the window origin will be in a circle around
the point at the viewport origin. Similarly, all points in a line that passes through
the window origin will be in a line that passes through the viewport origin.

The previous origin of the window as a CPoint object.

::SetWindowOrg

254 CDC::StartDoc

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CDC::StartDoc
int StartDoc(const char FAR* pDocName);

pDocName
Pointer to a null-terminated string that specifies the name of the document. The
document name is displayed in the Print Manager window. The maximum
length of this string is 31 characters plus the terminating null character.

Informs the device driver that a new print job is starting and that all subsequent
NEWFRAME escape calls should be spooled under the same job until an
ENDDOC escape call occurs. This ensures that documents longer than one page
will not be interspersed with other jobs.

The value -1 if there is an error such as insufficient memory or an invalid port
specification occurs. Otherwise, a positive value.

CDC::Escape, CDC::EndDoc

CDC::StartPage
int StartPageO;

Prepares the printer driver to receive data.

StartPage supersedes the NEWFRAME and BANDINFO escapes.

For an overview of the sequence of printing calls, see the StartDoc member
function.

CDC::Escape, CDC::EndPage

Syntax

Parameters

CDC::StretchBlt 255

CDC::StretchBlt
BOOL StretchBlt(int x, int y, int n Width, int nHeight, CDC* pSrcDC, int xSrc,

int ySrc, int nSrcWidth, int nSrcHeight, DWORD dwRop);

x

y

Specifies the x-coordinate (in logical units) of the upper-left corner of the desti­
nation rectangle.

Specifies the y -coordinate (in logical units) of the upper-left corner of the desti­
nation rectangle.

nWidth
Specifies the width (in logical units) of the destination rectangle.

nHeight
Specifies the height (in logical units) of the destination rectangle.

pSrcDC
Specifies the source device context.

xSrc
Specifies the x-coordinate (in logical units) ofthe upper-left corner of the
source rectangle.

ySrc
Specifies the y-coordinate (in logical units) of the upper-left corner of the
source rectangle.

nSrcWidth
Specifies the width (in logical units) of the source rectangle.

nSrcHeight
Specifies the height (in logical units) ofthe source rectangle.

dwRop
Specifies the raster operation to be performed. Raster operation codes define
how GDI combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. This parameter may be one of
the following values:

256 CDC::StretchBlt

Code

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

Description

Turns all output black.

Inverts the destination bitmap.

Combines the pattern and the source bitmap using
the Boolean AND operator.

Combines the inverted source bitmap with the
destination bitmap using the Boolean OR operator.

Copies the inverted source bitmap to the
destination.

Inverts the result of combining the destination and
source bitmaps using the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern
using the Boolean XOR operator.

Combines the inverted source bitmap with the
pattern using the Boolean OR operator. Combines
the result of this operation with the destination
bitmap using the Boolean OR operator.

Combines pixels of the destination and source
bitmaps using the Boolean AND operator.

Copies the source bitmap to the destination bitmap.

Inverts the destination bitmap and combines the
result with the source bitmap using the Boolean
AND operator.

Combines pixels of the destination and source
bitmaps using the Boolean XOR operator.

Combines pixels of the destination and source
bitmaps using the Boolean OR operator.

Turns all output white.

Remarks

Return Value

See Also

CDC::StretchBlt 257

Moves a bitmap from a source rectangle into a destination rectangle, stretching or
compressing the bitmap if necessary to fit the dimensions of the destination rec­
tangle. The function uses the stretching mode of the destination device context (set
by SetStretchBItMode) to determine how to stretch or compress the bitmap.

The StretchBIt function moves the bitmap from the source device given by
pSrcDC to the destination device represented by the device-context object whose
member function is being called. The xSrc, ySrc, nSrcWidth, and nSrcHeight
parameters define the upper left comer and dimensions of the source rectangle.
The x, y, n Width, and nHeight parameters give the upper-left comer and dimen­
sions of the destination rectangle. The raster operation specified by dwRop defines
how the source bitmap and the bits already on the destination device are combined.

The StretchBIt function creates a mirror image of a bitmap if the signs of the
nSrcWidth and n Width or nSrcHeight and nHeight parameters differ. If nSrcWidth
and n Width have different signs, the function creates a mirror image of the bitmap
along the x-axis. If nSrcHeight and nHeight have different signs, the function
creates a mirror image of the bitmap along the y-axis.

The StretchBlt function stretches or compresses the source bitmap in memory,
then copies the result to the destination. If a pattern is to be merged with the result,
it is not merged until the stretched source bitmap is copied to the destination. If a
brush is used, it is the selected brush in the destination device context. The destina­
tion coordinates are transformed according to the destination device context; the
source coordinates are transformed &ccording to the source device context.

If destination, source, and pattern bitmaps do not have the same color format,
StretchBIt converts the source and pattern bitmaps to match the destination bit­
maps. The foreground and background colors of the destination are used in the
conversion.

If StretchBit must convert a monochrome bitmap to color, it sets white bits (1) to
background color and black bits (0) to foreground color. To convert color to mono­
chrome, it sets pixels that match the background color to white (1), and sets all
other pixels to black (0). The foreground and background colors of the device con­
text with color are used. Not all devices support the function.

For more information, see the RC_BITBLT capability in GetDeviceCaps mem­
ber function.

TRUE if the bitmap is drawn; otherwise FALSE.

CDC: :BitBlt, CDC: :GetDeviceCaps, CDC: :SetStretchBItMode, : :StretchBIt

258 CDC::TabbedTextOut

Syntax

Parameters

Remarks

CDC::TabbedTextOut
CSize TabbedTextOut(iot x, iot y, coost char FAR* lpString, iot nCount,

iot nTabPositions, LPINT lpnTabStopPositions, iot nTabOrigin);

x
Specifies the logical x -coordinate of the starting point of the string.

y
Specifies the logical y-coordinate of the starting point of the string.

lpString
Points to the character string to draw . You can pass either a coost FAR pointer
to an array of characters or a CStriog object for this parameter.

nCount
Specifies the number of characters in the string.

nTabPositions
Specifies the number of values in the array of tab-stop positions.

lpnTabStopPositions
Points to an array containing the tab-stop positions (in device units). The tab
stops must be sorted in increasing order; the smallest x-value should be the first
item in the array.

nTabOrigin
Specifies the x-coordinate of the starting position from which tabs are expanded
(in logical units).

Writes a character string at a specified location, expanding tabs to the values
specified in an array of tab-stop positions. Text is written in the currently selected
font. If nTabPositions is 0 and lpnTabStopPositions is NULL, tabs are expanded
to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the
first value in the lpnTabStopPositions array.

Return Value

See Also

Syntax

CDC::TextOut 259

If the IpnTabStopPositions array contains more than one value, a tab stop is set for
each value in the array, up to the number specified by nTabPositions.

The nTabOrigin parameter allows an application to call the TabbedTextOut func­
tion several times for a single line. If the application calls the function more than
once with the nTabOrigin set to the same value each time, the function expands all
tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the function. If an appli­
cation needs to update the current position when it calls the function, the applica­
tion can call SetTextAlign with nFlags set to TA_ UPDA TECP. When this flag
is set, Windows ignores x and yon subsequent calls to TabbedTextOut, using the
current position instead.

The dimensions of the string (in logical units) as a CSize.

CDC: : GetTabbedTextExtent, CDC: :SetTextAlign, CDC: :TextOut,
: : TabbedTextOut

CDC::TextOut
BOOL TextOut(int x, int y, const char FAR* IpString, int nCount);

BOOL TextOut(int x, int y, const CString& str);

Parameters x
Specifies the logical x-coordinate of the starting point of the text.

y
Specifies the logical y -coordinate of the starting point of the text.

IpString
The pointer to the characters to write.

nCount

str

Specifies the number of characters to write.

A CString object or null-terminated string that contains the chararacters to
write.

260 CDC::UpdateColors

Remarks Writes a character string at a specified location, using the currently selected font.

Return Value

See Also

Syntax

Remarks

See Also

Character origins are at the upper -left corner of the character cell. By default, the
current position is not used or updated by the function.

If an application needs to update the current position when it calls TextOut, the ap­
plication can call SetTextAlign with nFlags set to TA_ UPDATECP. When this
flag is set, Windows ignores x and yon subsequent calls to TextOut, using the cur­
rent position instead.

TRUE ifthe function is successful; otherwise FALSE.

CDC: :ExtTextOut, CDC: : GetTextExtent, CDC: :SetTextAlign,
CDC::SetTextColor, CDC::TabbedTextOut, ::TextOut

CDC::UpdateColors
void UpdateColorsO;

Updates the client area of the device context by matching the current colors in the
client area to the system palette on a pixel-by-pixel basis. An inactive window
with a realized logical palette may call UpdateColors as an alternative to redraw­
ing its client area when the system palette changes.

For more information on using color palettes, see the Windows Software Develop­
ment Kit documentation.

The Update Colors member function typically updates a client area faster than re­
drawing the area. However, because the function performs the color translation
based on the color of each pixel before the system palette changed, each call to
this function results in the loss of some color accuracy.

CDC: : RealizePalette, CPalette, :: Update Colors

class CDialog : public CWnd
The CDialog class is an abstract class for displaying
dialog boxes on the screen. To get a modeless dialog
box, you must derive your own class from CDialog.
To derive modal dialog boxes, use the CModalDialog
class. The constructors for class CDialog are pro­
tected, so you must derive your own class.

CDialog 261

A modeless dialog box allows the user to display the dialog box and return to
another task without canceling or removing the dialog box. A modal dialog box re­
quires the user to close the dialog box before the application continues.

You can create a modeless dialog in one step or two. To create it in one step, write
the constructor so it calls the object's Create member function. To create it in two
steps, don't include a call to Create in the constructor. Invoke the constructor for
your dialog object, then call the object's Create member function.

A modeless dialog box receives messages from Windows like any other window.
To process messages in your derived dialog-box class, provide message-handler
member functions for the messages the dialog box can process.

Your message-handler member functions specify what happens when the user
works with your dialog box. Typically, you'll override the OnInitDialog member
function when you need to initialize controls (such as setting the initial text of an
edit box).

You'll also override the OnClose member function of your derived dialog class to
call CWnd::DestroyWindow. Instead of calling DestroyWindow, you can call
the C++ delete operator on the this reference, which calls DestroyWindow for
you.

Your derived dialog-box class can also add member variables to store data entered
by the user or data for display to the user. You can add member functions to set or
get these values. A modeless dialog box can also send messages to its parent
window.

Create your dialog box from a dialog-box resource template, as in traditional
Windows. The dialog-box resource specifies a template name or ID, a font to use,
a set of controls, such as buttons and edit boxes, and the window styles that apply
to the dialog box. To create a dialog box from a template, specify the template in
your .Re file and compile it with a resource compiler. The resulting .RES file is
sent to the linker, which incorporates the resource information with your execut­
able program. Specify the name or ID of the template when you call the Create
member function from your dialog-box constructor.

262 CDialog

See Also

Public Members

Instead of creating your dialog box from a compiled resource, you can build the
resource yourself in memory, construct an object of your class derived from
CDialog, and use the CreateIndirect member function to create the dialog box
from the template in memory. The template constructed in memory uses a
DLG TEMPLA TE data structure, as described in the Windows Software
Development Kit documentation.

If the dialog-box template (in a resource file or in memory) specifies the
WS_ VISIBLE style, the dialog-box window appears in its parent window. Other­
wise, you must call the ShowWindow member function, which CDialog inherits
from class CWnd.

After the call to Create, Windows sends a WM_INITDIALOG message to the
dialog box. You can override the OnInitDialog member function to perform
dialog-box initialization chores. For example, if your dialog box displays statistics
about the current font, you can override OnInitDialog to set the current values of
the static text controls in the dialog box to reflect the statistics.

Although the dialog-box template can specify the dialog-box font, you can also
set the font on the fly. If the dialog-box template specifies the DS_SETFONT
style, Windows sends a WM_SETFONT message to the dialog box before creat­
ing the controls. In response to this message, the application calls the OnSetFont
member function. You can override that message-handler function to set the
dialog-box font.

When the user terminates a modeless dialog box, call the DestroyWindow mem­
ber function, which CDialog inherits from class CWnd, to remove the dialog win­
dow and destroy its data structures. You can call DestroyWindow from the
OnOK, OnCancel, or OnClose member functions, which you can override from
class CWnd. If you allocate any memory in the dialog object, override the
CDialog destructor to dispose of the allocations.

CModaIDialog

Operations
MapDialogRect

IsDialogMessage

NextDlgCtri

Converts the dialog-box units of a rectangle to
screen units.

Determines whether the given message is intended
for the modeless dialog box and, if so, processes it.

Moves the focus to the next dialog-box control in
the dialog box.

PrevDlgCtrl

GotoDlgCtri

SetDeflD

GetDeflD

EndDialog

Overridables
OnlnitDialog

OnSetFont

Protected Members

Construction/Destruction
CDialog

Initialization
Create

Createlndirect

CDialog 263

Moves the focus to the previous dialog-box control
in the dialog box.

Moves the focus to a specified dialog-box control
in the dialog box.

Changes the default push button control for a
dialog box to a specified push button.

Gets the ID of the default push button control for a
dialog box.

Terminates a modal dialog box.

Override to augment dialog-box initialization.

Override to specify the font that a dialog-box con­
trol is to use when drawing text.

Constructs a CDialog object.

Initializes the CDialog object. Creates the mode­
less dialog and attaches it to the CDialog object.

Creates a modeless dialog box from a dialog-box
template in memory.

264 CDialog::CDialog

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CDialog::CDialog
CDialogO;

The CDialog constructor is protected because you must derive your own dialog­
box class to implement a dialog.

Construction of a modeless dialog is a two-step process. First invoke the construc­
tor, then call either form of the Create member function. You can combine the
steps by calling Create from within your constructor.

CDialog:: Create, CDialog:: CreateIndirect

CDialog::Create
BOOL Create(const char FAR* ipTemplateName,

CWnd* pParentWnd = NULL);

BOOL Create(UINT nIDTemplate, CWnd* pParentWnd = NULL);

lpTemplateName
Contains a null-terminated string that is the name of a dialog-box resource
template.

pParentWnd
Points to the parent window object (of type CWnd) to which the dialog object
belongs. If it is NULL, the dialog object's parent window is set to the main ap­
plication window, as shown in the following code:

if(pParentWnd == NULL)
pParentWnd = AfxGetApp()->m_pMainWnd;

nIDTemplate
Contains the ID number of a dialog-box resource template.

Call Create when you construct your dialog-box object. You can put the call to
create inside the constructor or call it after the constructor executes.

Return Value

See Also

CDialog::Create 265

Two forms of the Create member function are provided for access to the dialog
template resource either by template name or by template ID number.

For either form, you also pass a pointer to the parent window object. If you don't,
the dialog will be created with its parent window set to the main application win­
dow. Modeless dialogs can use this pointer to send messages to the parent if
needed.

Before the dialog box is displayed, Windows sends the WM_INITDIALOG mes­
sage to the dialog box. If the dialog box has the DS_SETFONT style, Windows
also sends the W~SETFONT message before the control windows are created.
You can override the OnInitDialog and OnSetFont member functions to provide
special handling of these messages.

The Create member function returns immediately after it creates the dialog box.

Use the WS_ VISIBLE style in the dialog template if the dialog box should ap­
pear when the parent window is created. You can also specify other dialog styles
in the template as explained in the Windows Software Development Kit documen­
tation. These include styles that specify:

• The frame around the dialog box.

• Whether the dialog window is a pop-up or child window.

• Whether the dialog box has a border or a Control menu.

• How controls are to be grouped and the tabbing order between them.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
Create function.

A dialog box can contain up to 255 controls.

Both forms return TRUE if dialog creation and initialization was successful; other­
wise FALSE.

CWnd: : DestroyWindow, CDialog: :CreateIndirect, :: CreateDialog,
WM_SETFONT, WM_INITDIALOG

266 CDialog::Createlndirect

Syntax

Parameters

Remarks

CDialog::Createlndirect
Protected:

BOOL CreateIndirect(const BYTE FAR* IpDialogTemplate,
CWnd* pParentWnd = NULL);

IpDialogTemplate
Points to a global memory object that contains a dialog-box template used to
create the dialog box. An application must build the dialog-box template accord­
ing to the guidelines outlined in the description of the application-defined
DLGTEMPLATE data structure.

pParentWnd
Points to the dialog object's parent window object (of type CWnd). If it is
NULL, the dialog object's parent window is set to the main application win­
dow, as shown in the following code:

if(pParentWnd == NULL)
pParentWnd = AfxGetApp()->m_pMainWnd;

Creates a modeless dialog box from a dialog-box template in memory.
CreateIndirect is protected.

Before the dialog box is displayed, Windows sends the WM_INITDIALOG mes­
sage to the dialog box. If the dialog box has the DS_SETFONT style, Windows
also sends the WM_SETFONT message before the control windows are created.
You can override the OnInitDialog and OnSetFont member functions to provide
special handling of these messages.

The CreateIndirect member function returns immediately after it creates the
dialog box.

Use the WS_ VISIBLE style in the dialog-box template ifthe dialog box should
appear in the parent window upon creation. You can also specify other dialog
styles in the template as explained in the Windows Software Development Kit
documentation. These include styles that specify:

• The frame around the dialog box.

• Whether the dialog window is a pop-up or child window.

• Whether the dialog box has a border or a Control menu.

• How controls are to be grouped and the tabbing order between them.

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CDialog::EndDialog 267

Use the CWnd::DestroyWindow function to destroy a dialog box created by the
CreateIndirect function.

A dialog box can contain up to 255 controls.

TRUE if the dialog was created and initialized successfully; otherwise FALSE.

CDialog: : Create, CWnd: :DestroyWindow, WM_INITDIALOG,
WM_SETFONT

CDialog::EndDialog
void EndDialog(int nResult);

nResult
Contains the value to be returned from the dialog box to the member function
that created it.

Used for modal dialog boxes. Modeless dialogs do not use this member function.

The EndDialog member function terminates a modal dialog box and returns the
given result to the function that created the dialog box. The EndDialog function is
required to complete processing whenever a modal dialog box is created and may
not be used for any other purpose.

The dialog function can call EndDialog at any time, even during the processing of
the WM_INITDIALOG message in OnInitDialog. If called during processing of
the WM_INITDIALOG message, the dialog box is terminated before it is shown
or before the input focus is set.

EndDialog does not close the dialog box immediately. Instead, it sets a flag that
directs the dialog box to close as soon as the standard Foundation dialog-box func­
tion (AfxDIgProc) ends. The EndDialog function returns to the dialog-box func­
tion, so it must return control to Windows.

CModalDialog, CDialog:: Create, CDialog:: CreateIndirect,
W~INITDIALOG

268 CDialog::GetDeflD

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CDialog::GetDefID
DWORD GetDeflDO;

Call the GetDefID member function to get the ID of the default push button con­
trol for a dialog box. This is usually an OK button.

A 32-bit value (DWORD). If the default push button has an ID value, the high­
order word contains DC_HASDEFID and the low-order word contains the ID
value. If the default push button does not have an ID value, the return value is O.

CDialog: :SetDeflD

CDialog::GotoDlgCtrl
void GotoDlgCtrl(CWnd* pWndCtrl);

pWndCtrl
Identifies the window (control) that is to receive the focus.

Moves the focus to the specified control in the dialog.

To get a pointer to the control (child window) to pass as pWndCtrl, call the
GetDlgItem member function, which returns the pointer as a pointer to a CWnd
object. This pointer can then be cast to its specific type. GetDlgItem is inherited
from class CWnd.

CWnd: : GetDlgItem, CDialog: :PrevDlgCtrl, CDialog: : NextDlgCtrl

CDialog::lsDialogMessage
BOOL IsDialogMessage(LPMSG lpMsg);

lpMsg
Points to an MSG structure that contains the message to be checked.

Remarks

Return Value

See Also

The MSG structure looks like this:

typedef struct tagMSG
HWND hwnd;
WORD message;
WORD
LONG
DWORD
POINT

MSG;

wParam;
lParam;
time;
pt;

CDialog::lsDialogMessage 269

Determines whether the given message is intended for the modeless dialog box
and automatically processes the message if it is. When the IsDialogMessage func­
tion processes a message, it checks for keyboard messages and converts them to
selection commands for the corresponding dialog box. For example, the TAB key
selects the next control or group of controls, and the DOWN ARROW key selects the
next control in a group.

A message processed by IsDialogMessage must not be passed to the
TranslateMessage or DispatchMessage Windows functions. The message has al­
ready been processed.

IsDialogMessage sends the WM_ GETDLGCODE message to determine which
keys to process.

Specifies whether the given message has been processed. It is TRUE if the mes­
sage has been processed; otherwise FALSE. If the return is FALSE, call the
PreTranslateMessage member function of the base class to process the message.
The code looks like this in an override of the CDialog PreTranslateMessage
member function:

CMyDlg: :PreTranslateMessage(msg
{

if(IsDialogMessage(msg
return TRUE;

else
return CDialog::PreTranslateMessage(msg);

::DispatchMessage, ::TranslateMessage, ::GetMessage,
CWnd: :PreTranslateMessage, WM_ GETDLGCODE

270 CDialog::MapDialogRect

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

CDialog::MapDialogRect
void MapDialogRect(LPRECT lpRect) const;

lpRect
Points to a RECT structure that contains the dialog-box coordinates to be
converted.

Converts the dialog-box units of a rectangle to screen units. Dialog-box units are
stated in tenus of the current dialog base unit derived from the average width and
height of characters in the font used for dialog-box text.

Typically, dialog boxes use the system font, but a different font may be specified
by using the DS_SETFONT style in the resource-definition file. One horizontal
unit is one-fourth of the dialog-box base width unit, and one vertical unit is one­
eighth of the dialog-box base height unit. The Windows function
GetDialogBaseUnits returns the dialog-box base units in pixels.

The MapDialogRect member function replaces the dialog-box units in lpRect
with screen units (pixels), so that the rectangle can be used to create a dialog box
or position a control within a box.

: :GetDialogBaseUnits, CDialog: : Create, CDialog: :Createlndirect,
W~SETFONT

CDialog::NextDlgCtrl
void NextDIgCtrlO const;

Moves the focus to the next control in the dialog box. If the focus is at the last con­
trol in the dialog box, it moves to the first control.

CDialog: :PrevDlgCtrl, CDialog: : GotoDlgCtrl

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CDialog::OnSetFont 271

CDialog::OnlnitDialog
virtual BOOL OnlnitDialogO;

Called in response to the WM_INITDIALOG message. This message is sent
during the Create or Createlndirect call, which occurs immediately before the
dialog box is displayed. Override it if you need to perform special processing
when the dialog box is initialized.

The OnInitDialog function is called via the standard global dialog-box procedure,
AfxDIgProc, common to all Microsoft Foundation Class Library dialogs, rather
than through your message map, so you do not need a message-map entry for this
member function.

Returns TRUE by default, indicating successful dialog initialization.

CDialog: : Create, CDialog: :Createlndirect, WM_INITDIALOG

CDialog::OnSetFont
virtual void OnSetFont(CFont* pFont);

pFont
Specifies a pointer to the font. If this parameter is NULL, the control will draw
text using the default system font.

Specifies which font a dialog-box control is to use when drawing text.

The dialog-box font normally gets set in the .RC resource file as part of the dialog­
box resource template. If you want to set it instead at run time, specify the
DS_SETFONT style in your dialog-box template. With that style set, Windows
sends a W~SETFONT message to the dialog box before creating the controls.
The OnSetFont member function is then called automatically via the standard
dialog-box procedure.

272 CDialog::PrevDlgCtrl

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

The application should call the CGdiObject: :DeleteObject function to delete the
font when it is no longer needed, such as after the control is destroyed. Also call
CGdiObject::DeleteObject to delete the old font before you set the new one.

The size of the control is not changed as a result of receiving this message. To pre­
vent Windows from clipping text that does not fit within the boundaries of the con­
trol, the application should correct the size of the control window before changing
the font.

For more information about dialog resource templates, see the Windows Software
Development Kit documentation.

W~SETFONT

CDialog::PrevDlgCtrl
void PrevDlgCtrlO const;

Sets the focus to the previous control in the dialog box. If the focus is at the first
control in the dialog box, it moves to the last control in the dialog box.

CDialog: :NextDlgCtrl, CDialog: : GotoDlgCtri

CDialog::SetDefID
void SetDeflD(UINT nID);

nID
Specifies the ill of the push button control that will become the default.

Changes the default push button control for a dialog box.

CDialog: : GetDeflD

CDumpContext 273

class CDumpContext

Preconditions

Comments

See Also

The CDumpContext class supports stream-oriented diagnostic output in the form
of human-readable text. You can use afxDump, a predeclared CDumpContext
object, for most of your dumping. The afxDump object is available only in the
Debug version of the Microsoft Foundation Class Library.

Several of the memory diagnostic functions use afxDump for their output.

Before you create your own CDumpContext object, you must create a CFile ob­
ject that serves as the dump destination.

The predefined afxDump object, conceptually similar to the cerr stream, is con­
nected to stderr under MS-DOS. Under the Windows environment, the output is
routed to the debugger via the Windows function OutputDebugString.

The CDumpContext class has an overloaded insertion «<) operator for CObject
pointers that dumps the object's data in hexadecimal form. If you need a custom
dump format for a derived object, override CObject::Dump. Most Microsoft
Foundation classes have a Dump member function defined.

Classes that are not derived from CObject, such as CString, CTime, and
CTimeSpan, have their own overloaded CDumpContext insertion operators, as
do often-used structures such as CFileStatus, CPoint, and CRect.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macros
in the implementation of your class, then CObject: :Dump will print the name of
your CObject-derived class. Otherwise, it will print CObject.

The CDumpContext class is available with both the Debug and Release versions
of the library, but the class Dump functions are defined only in the Debug version.
Use #ifdef _DEBUG I #endif statements to bracket your diagnostic code, includ­
ing your custom Dump member functions.

#define _DEBUG

#include <afx.h>

CFile, CObject

274 CDumpContext

Public Members

Construction/Destruction
CDumpContext

Basic I/O
Flush

operator«

HexDump

Status
GetDepth

SetDepth

Constructs a CDumpContext object.

Flushes any data in the dump context buffer.

Inserts variables and objects into the dump context.

Dumps bytes in hexadecimal format.

Gets an integer corresponding to the depth of
the dump.

Sets the depth of the dump.

CDumpContext::Flush 275

Member Functions

Syntax

Parameters

Remarks

Example

Syntax

Remarks

Example

CDumpContext::CDumpContext
CDumpContext(CFile* pFile)
throw(CMemoryException, CFileException);

pFile
A pointer to the CFile object that is the dump destination.

Constructs an object of class CDumpContext.

The afxDump object is constructed automatically. The output from afxDump is
sent to stderr.

Do not write to the underlying CFile while the dump context is active; otherwise
you will interfere with the dump.

extern ehar* pFileName;
CFile f;

if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite)) {
afxDump « "Unable to open file" « "\\n";
exit(1);

}

CDumpContext de(&f);

CDumpContext::Flush
void FlushO
throw(CFileException);

Forces any data remaining in buffers to be written to the file attached to the dump
context.

afxDump.Flush();

276 CDumpContext::GetDepth

Syntax

Remarks

Return Value

Example

See Also

Syntax

Parameters

Remarks

Example

CDumpContext::GetDepth
iot GetDepthO coost;

Determines if a deep or shallow dump is in process.

The depth of the dump as set by SetDepth.

See the example for SetDepth.

SetDepth

CDumpContext::HexDump
void HexDump(coost char* pszLine, BYTE* pby, iot nBytes, iot nWidth)
throw(CFileExceptioo);

pszLine
A string to output at the start of a new line.

pby
A pointer to a buffer containing the bytes to dump.

nBytes
The number of bytes to dump.

nWidth
Maximum number of bytes dumped per line (not the width of the output line).

Dumps an array of bytes formatted as hexadecimal numbers.

char teste] = "This is a test of CDumpCantext::HexDump\\n";
afxDump. HexDump (".". (BYTE*) test. s i zeaf test. 20);

The output from this program is:

54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 6F 66 20 43 44
75 6D 70 43 6F 6E 74 65 78 74 3A 3A 48 65 78 44 75 6D 70 0A
00

Syntax

Parameters

Remarks

Example

See Also

CDumpContext::SetDepth 277

CDumpContext::SetDepth
void SetDepth(int nNewDepth);

nNewDepth
The new depth value.

Sets the depth for the dump. If you are dumping primitive types or simple
CObjects that contain no pointers to other objects, then a value of 0 is sufficient.
A value greater than 0 specifies a deep dump where all objects are dumped recur­
sively. For example, a deep dump of a collection will dump all elements of the col­
lection. You may use other specific depth values in your derived classes.

Note Circular references are not detected in deep dumps and can result in infinite
loops.

afxDump.SetDepth(1); II specifies deep dump
ASSERT(afxDump.GetDepth() == 1);

CObject: :Dump

278 CDumpContext::operator «

Operators

Syntax

Remarks

CDumpContext::operator «
CDumpContext& operator «(const CObject* pOb)
throw(CFileException);

CDumpContext& operator «(const CObject& ob)
throw(CFileException);

CDumpContext& operator «(const char FAR* lpsz)
throw(CFileException);

CDumpContext& operator «(const void FAR* lp)
throw(CFileException);

CDumpContext& operator «(const void NEAR* np)
throw(CFileException);

CDumpContext& operator «(BYTE by)
throw(CFileException);

CDumpContext& operator «(WORD w)
throw(CFileException);

CDumpContext& operator «(DWORD dw)
throw(CFileException);

CDumpContext& operator «(int n)
throw(CFileException);

CDumpContext& operator «(LONG I)
throw(CFileException);

CDumpContext& operator «(UINT n)
throw(CFileException);

Outputs the specified data to the dump context.

The insertion operator is overloaded for CObject pointers as well as for most
primitive types. A pointer to char results in a dump of string contents; a pointer to
void results in a hexadecimal dump of the address only.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macros
in the implementation of your class, then the insertion operator, through
CObject::Dump, will print the name of your CObject-derived class. Otherwise,

Return Value

Example

CDumpContext::operator« 279

it will print CObj eet. If you override the Dump function of the class, then you can
provide a more meaningful output of the object's contents instead of a hexadeci­
mal dump.

A CDumpContext reference that enables multiple insertions on a single line.

extern CObList li;
CString s = "test";
int i = 7;
long 10 = 1000000000L;

afxDump « "list=" « &li « "string="
« s « "int=" « i « "long=" « 10 « "\\n";

280 CDWordArray

class CDWordArray: public CObject

Public Members

The CDWordArray class supports arrays of 32-bit
double words.

The member functions of CDWordArray are similar
to the member functions of class CObArray. Be-
cause of tbis similarity, you can use the CObArray reference documentation for
member function specifics. Wherever you see a CObject pointer as a function
parameter or return value, substitute a DWORD.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

DWORD CWardArray::GetAt(int <nlndex>) canst;

CDWordArray incorporates the IMPLEMENT_SERIAL macro to support seri­
alization and dumping of its elements. If an array of double words is stored to an
archive, either witb tbe overloaded insertion operator or with tbe Serialize mem­
ber function, each element is, in turn, serialized.

If you need debug output from individual elements in tbe array, you must set tbe
depth of tbe CDumpContext object to 1 or greater.

#include <afxcoll.h>

Construction/Destruction
CDWordArray

-CDWordArray

Bounds
GetSize

GetUpperBound

SetSize

Constructs an empty array for double words.

Destroys a CDWordArray object.

Gets tbe number of elements in this array.

Returns tbe largest valid index.

Sets tbe number of elements to be contained in this
array.

Operations
FreeExtra

RemoveAll

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

CDWordArray 281

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the double word
within the array.

Sets the value for a given index, growing the array
if necessary .

Adds an element to the end of the array.

Inserts an element at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

282 CEdit

class CEdit : public CWnd

See Also

The CEdit class provides the functionality of a
Windows edit control. An edit control is a rectangular
child window in which the user can enter text.

You create an edit control in two steps. First, call the
constructor CEdit to construct the CEdit object, then
call the Create member function to create the
Windows edit control and attach it to the CEdit object.

Construction can be a one-step process in a class derived from CEdit. Write a con­
structor for the derived class and call Create from within the constructor.

If you want to handle the Windows notification messages sent by a CEdit object
to its parent (usually a class derived from CDialog), add the following message­
map entries and message-handler member functions to the parent class:

ON_COMMAND
ON_EN_SETFOCUS
ON_EN_KILLFOCUS
ON_EN_MAXTEXT
ON_EN_CHANGE
ON_EN_UPDATE
ON_EN_HSCROLL
ON_EN_VSCROLL

If you create a CEdit object within a dialog box, the CEdit is automatically de­
stroyed when the user closes the dialog box.

If you create a CEdit object within a window, you may also need to destroy it. If
you create the CEdit object on the stack, it is destroyed automatically. If you cre­
ate the CEdit object on the heap by using the new function, you must call delete
on the object to destroy it when the user terminates the Windows edit control. If
you allocate any memory in the CEdit object, override the CEdit destructor to dis­
pose of the allocations.

CWnd, CButton, CComboBox, CListBox, CScrollBar, CStatic,
CModalDialog, CDialog

Public Members

Construction/Destruction
CEdit

Initialization
Create

Multiple-Line Operations
GetLineCount

GetHandle

SetHandle

FmtLines

LineIndex

SetRect

SetRectNP

SetTabStops

General Operations
CanUndo

GetModify

SetModify

GetRect

GetSel

CEdit 283

Constructs a CEdit control object.

Creates the Windows edit control and attaches it to
the CEdit object.

Retrieves the number of lines in a multiple-line
edit control.

Retrieves a handle to the memory currently allo­
cated for a multiple-line edit control.

Sets the handle to the local memory that will be
used by a multiple-line edit control.

Sets the inclusion of soft line-break characters on
or off within a multiple-line edit control.

Retrieves the character index of a line within a
multiple-line edit control.

Sets the formatting rectangle of a multiple-line edit
control and updates the control.

Sets the formatting rectangle of a multiple-line edit
control without updating the control.

Sets the tab stops in a multiple-line edit control.

Determines if an edit-control operation can be
undone.

Determines if the contents of an edit control have
been modified.

Sets or clears the modification flag for an edit
control.

Gets the formatting rectangle of an edit control.

Gets the starting and ending character positions of
the current selection in an edit control.

284 CEdit

GetLine

EmptyUndoBuffer

LimitText

LineFromChar

LineLength

LineScroll

ReplaceSel

SetPasswordChar

SetSel

Undo

Clear

Copy

Cut

Paste

Retrieves a line of text from an edit control.

Resets (clears) the undo flag of an edit control.

Limits the length of the text that the user may enter
into an edit control.

Retrieves the line number of the line that contains
the specified character index.

Retrieves the length of a line in an edit control.

Scrolls the text of a multiple-line edit control.

Replaces the current selection in an edit control
with the specified text.

Sets or removes a password character displayed in
an edit control when the user enters text.

Selects a range of characters in an edit control.

Reverses the last edit-control operation.

Deletes (clears) the current selection (if any) in the
edit control.

Copies the current selection (if any) in the edit con­
trol to the Clipboard in CF _ TEXT format.

Deletes (cuts) the current selection (if any) in the
edit control, and copies the deleted text to the
Clipboard in CF _ TEXT format.

Inserts the data from the Clipboard into the edit
control at the current cursor position. Data is in­
serted only if the Clipboard contains data in
CF _ TEXT format.

CEdit::Clear 285

Member Functions

Syntax

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

CEdit::CanUndo
BOOL CanUndoO const;

TRUE if the last edit operation can be undone by a call to the Undo member func­
tion; FALSE if it cannot be undone.

CEdit:: Undo, EM_ CANUNDO

CEdit::CEdit
CEditO;

Constructs a CEdit object.

CEdit::Create

CEdit::Clear
void ClearO;

Deletes (clears) the current selection (if any) in the edit control.

The deletion performed by Clear can be undone by calling the Undo member
function.

To delete the current selection and place the deleted contents into the Clipboard,
call the Cut member function.

CEdit::CanUndo, CEdit::Undo, CEdit::Copy, CEdit::Cut, CEdit::Paste,
WM_CLEAR

286 CEdit::Copy

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CEdit::Copy
void CopyO;

Copies the current selection (if any) in the edit control to the Clipboard in
CF _ TEXT format.

CEdit::Clear, CEdit::Cut, CEdit::Paste, WM_COPY

CEdit::Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,

UINT nID);

dwStyle
Specifies the edit control's style.

reet
Specifies the edit control's size and position.

pParentWnd
Specifies the edit control's parent window (usually a CDialog or
CModalDialog). It must not be NULL.

nID
Specifies the edit control's ID.

You construct a CEdit object in two steps. First, call the CEdit constructor, then
call Create, which creates the Windows edit control and attaches it to the CEdit
object.

When Create executes, Windows sends the W~NCCREATE,
WM_NCCALCSIZE, W~CREATE, and WM_GETMINMAXINFO
messages to the edit control.

These messages are handled by default by the OnNcCreate, OnNcCalcSize,
OnCreate, and OnGetMinMaxInfo member functions in the CWnd base class.
To extend the default message handling, derive a class from CEdit, add a message
map to the new class, and override the above message-handler member functions.
Override OnCreate, for example, to perform needed initialization for the new
class.

CEdit::Create 287

To handle Windows notification messages sent from a CEdit object to its parent,
add the following message-map entries to the parent class message map:

ON_COMMAND
ON_EN_SETFOCUS
ON_EN_KILLFOCUS
ON_EN_MAXTEXT
ON_EN_CHANGE
ON_EN_UPDATE
ON_EN_HSCROLL
ON_EN_VSCROLL

Apply the following window styles to an edit control:

Style

WS_CHILD

WS_VISIBLE

WS_DIABLED

WS_GROUP

WS_TABSTOP

Application

Always.

Usually.

Rarely.

To group controls.

To include edit control in the tabbing order.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination of the following edit control styles for dwStyle:

Style

ES_AUTOHSCROLL

ES_AUTOVSCROLL

ES_CENTER

ES_LEFT

ES_LOWERCASE

Meaning

Automatically scrolls text to the right by 10
characters when the user types a character at the
end of the line. When the user presses the ENTER

key, the control scrolls all text back to position O.

Automatically scrolls text up one page when the
user presses ENTER on the last line.

Centers text in a multiline edit control.

Aligns text flush-left.

Converts all characters to lowercase as they are
typed into the edit control.

288 CEdit::Create

Style

ES_ OEMCONVERT

Meaning

Designates a multiple-line edit control. (The
default is single-line.) If the
ES_AUTOVSCROLL style is specified, the edit
control shows as many lines as possible and scrolls
vertically when the user presses the ENTER key. If
ES_AUTOVSCROLL is not given, the edit
control shows as many lines as possible and beeps
if ENTER is pressed when no more lines can be
displayed.

If the ES_AUTOHSCROLL style is specified,
the multiple-line edit control automatically scrolls
horizontally when the caret goes past the right
edge of the control. To start a new line, the user
must press ENTER. If ES_AUTOHSCROLL is not
given, the control automatically wraps words to
the beginning of the next line when necessary; a
new line is also started if ENTER is pressed. The
position of the wordwrap is determined by the
window size. If the window size changes, the
wordwrap position changes, and the text is
redisplayed.

Multiple-line edit controls can have scroll bars. An
edit control with scroll bars processes its own
scroll-bar messages. Edit controls without scroll
bars scroll as described above, and process any
scroll messages sent by the parent window.

Normally, an edit control hides the selection when
the control loses the input focus, and inverts the
selection when the control receives the input focus.
Specifying ES_NOHIDESEL deletes this default
action.

Text entered in the edit control is converted from
the ANSI character set to the OEM character set
and then back to ANSI. This ensures proper
character conversion when the application calls the
AnsiToOem Windows function to convert an
ANSI string in the edit control to OEM characters.
This style is most useful for edit controls that
contain filenames.

Return Value

See Also

Syntax

Remarks

See Also

Style

ES_RIGHT

ES_ UPPERCASE

CEdit::Cut 289

Meaning

Displays all characters as an asterisk (*) as they
are typed into the edit control. An application can
use the SetPasswordChar member function to
change the character that is displayed.

Aligns text flush-right in a multiline edit control.

Converts all characters to uppercase as they are
typed into the edit control.

Create returns TRUE if initialization is successful; FALSE if unsuccessful.

CEdit: :CEdit

CEdit::Cut
void CutO;

Deletes (cuts) the current selection (if any) in the edit control and copies the de­
leted text to the Clipboard in CF _ TEXT format.

The deletion performed by Cut can be undone by calling the Undo member
function.

To delete the current selection without placing the deleted text into the Clipboard,
call the Clear member function.

CEdit::Undo, CEdit::Clear, CEdit::Copy, CEdit::Paste, W~CUT

290 CEdit::EmptyUndoBuffer

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CEdit::EmptyUndoBuffer
void EmptyUndoBufferO;

Resets (clears) the undo flag of an edit control. The edit control will now be un­
able to undo the last operation. The undo flag is set whenever an operation within
the edit control can be undone.

The undo flag is automatically cleared whenever the SetWindowText or
SetHandle member function is called.

CEdit::CanUndo, CEdit::SetHandle, CEdit::Undo, CWnd::SetWindowText,
EMLEMPTYUNDOBUFFER

CEdit::FmtLines
BOOL FmtLines(BOOL bAddEOL);

bAddEOL
Specifies whether soft line-break characters are to be inserted. A value of
TRUE inserts the characters; a value of FALSE removes them.

Sets the inclusion of soft line-break characters on or off within a multiple-line edit
control. A soft line break consists of two carriage returns and a linefeed inserted at
the end of a line that is broken because of word wrapping. A hard line break con­
sists of one carriage return and a linefeed. Lines that end with a hard line break are
not affected by FmtLines.

Windows will only respond if the CEdit object is a multiple-line edit control.

FmtLines only affects the buffer returned by GetHandle and the text returned by
WML GETTEXT. It has no impact on the display of the text within the edit
control.

TRUE if any formatting occurs; otherwise FALSE.

CEdit::GetHandle, CWnd::GetWindowText, EMLFMTLINES

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CEdit::Getline 291

CEdit::GetHandle
HANDLE GetHandleO const;

Retrieves a handle to the memory currently allocated for a multiple-line edit con­
tro I. The handle is a local memory handle and may be used by any of the Local
Windows memory functions that take a local memory handle as a parameter.

GetHandle is only processed by multiple-line edit controls.

Call GetHandle for a multiple-line edit control in a dialog box only if the
dialog box was created with the DS_LOCALEDIT style flag set. If the
DS_LOCALEDIT style is not set, you will still get a nonzero return value,
but you will not be able to use the returned value.

A local memory handle that identifies the buffer that holds the contents of the edit
control. If an error occurs, such as sending the message to a single-line edit con­
trol, the return value is O.

CEdit: :SetHandle, EM_ GETHANDLE

CEdit::Getline
int GetLine(int nlndex, LPSTR IpBuffer) const;

int GetLine(int nlndex, LPSTR IpBuffer, int nMaxLength) const;

nlndex
Specifies the line number to retrieve from a multiple-line edit control. Line
numbers are zero-based; a value of 0 specifies the first line. This parameter is
ignored by a single-line edit control.

IpBuffer
Points to the buffer that receives a copy of the line. The first word of the buffer
must specify the maximum number of bytes that can be copied to the buffer.

nMaxLength
Specifies the maximum number of bytes that can be copied to the buffer.
GetLine places this value in the first word of IpBuffer before making the call
to Windows.

292 CEdit::GetLineCount

Remarks Retrieves a line of text from an edit control and places it in IpBuffer. This call is
not processed for a single-line edit control.

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

The copied line does not contain a null-termination character.

The number of bytes actually copied. The return value is 0 if the line number
specified by nlndex is greater then the number of lines in the edit control.

CEdit: :LineLength, CWnd: : GetWindowText, EM_ GETLINE

CEdit::GetLineCount
int GetLineCountO const;

Retrieves the number oflines in a multiple-line edit control.

GetLineCount is only processed by multiple-line edit controls.

An integer containing the number of lines in the multiple-line edit control. If no
text has been entered into the edit control, the return value is 1.

EM_ GETLINECOUNT

CEdit::GetModify
BOOL GetModifyO const;

Determines if the contents of an edit control have been modified.

Windows maintains an internal flag indicating whether the contents of the edit con­
trol have been changed. This flag is cleared when the edit control is first created,
and may also be cleared by calling the SetModify member function.

Return Value

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

Return Value

See Also

CEdit::GetSel 293

TRUE if the edit -control contents have been modified; FALSE if they have re­
mained unchanged.

CEdit: :SetModify, E~ GET MODIFY

CEdit::GetRect
void GetRect(LPRECT IpRect) const;

IpRect
Points to the RECT structure that receives the formatting rectangle.

Gets the formatting rectangle of an edit control. The formatting rectangle is the
limiting rectangle of the text, which is independent of the size of the edit-control
window.

The formatting rectangle of a multiple-line edit control can be modified by the
SetRect and SetRectNP member functions.

CEdit: :SetRect, CEdit: :SetRectNP, E~ GETRECT

CEdit::GetSel
DWORD GetSelO const;

Gets the starting and ending character positions of the current selection (if any) in
an edit control.

A 32-bit value that contains the starting position in the low-order word and the
position of the first nons elected character after the end of the selection in the high­
order word.

CEdit: :SetSel, EM_ GETSEL

294 CEdit::LimitText

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CEdit::limitText
void LimitText(int nChars = 0);

nChars
Specifies the length (in bytes) of the text that the user can enter. If this parame­
ter is 0, the text length is set to 65,535 bytes. This is the default behavior.

Limits the length of the text that the user may enter into an edit control.

LimitText only limits the text the user can enter. It has no effect on any text al­
ready in the edit control when the message is sent, nor does it affect the length of
the text copied to the edit control by the SetWindowText member function in
CWnd.

CWnd::SetWindowText, EM_LIMITTEXT

CEdit::lineFromChar
int LineFromChar(int nlndex = -1) const;

nlndex
Contains the zero-based index value for the desired character in the text of the
edit control, or contains -1. If nlndex is -1, it specifies the current line, i.e., the
line that contains the caret.

Retrieves the line number of the line that contains the specified character index. A
character index is the number of characters from the beginning of the edit control.

This member function is only used by multiple-line edit controls.

The zero-based line number of the line containing the character index specified by
nlndex. If nlndex is -1, the number of the line that contains the first character of
the selection is returned. If there is no selection, the current line number is
returned.

CEdit::Linelndex, EM_LINEJ<'ROMCHAR

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CEdit::Linelength 295

CEdit::Linelndex
int Linelndex(int nUne = -1) const;

nUne
Contains the index value for the desired character in the text of the edit control,
or contains -1. If nLine is -1, it specifies the current line, i.e., the line that con­
tains the caret.

Retrieves the character index of a line within a multiple-line edit control. The char­
acter index is the number of characters from the beginning of the edit control to
the specified line.

This member function is only processed by multiple-line edit controls.

The character index of the line specified in nUne, or -1 if the specified line num­
ber is greater then the number of lines in the edit control.

CEdit: :LineFromChar, EM_ LINEINDEX

CEd it:: Li ne Le ngth
int LineLength(int nUne = -1) const;

nLine
Specifies the character index of a character in the line whose length is to be re­
trieved. If this parameter is -1, the length of the current line (the line that con­
tains the caret) is returned, not including the length of any selected text within
the line.

When LineLength is called for a single-line edit control, this parameter is
ignored.

Retrieves the length of a line in an edit control.

Use the Linelndex member function to retrieve a character index for a given line
number within a multiple-line edit control.

296 CEdit::lineScroll

Return Value

See Also

Syntax

Parameters

Remarks

See Also

When LineLength is called for a multiple-line edit control, the return value is the
length (in bytes) of the line specified by nLine. When LineLength is called for a
single-line edit control, the return value is the length (in bytes) ofthe text in the
edit control.

CEdit::Linelndex, EM_LINELENGTH

CEdit::lineScroll
void LineScroll(int nLines, int nChars = 0);

nLines
Specifies the number of lines to scroll vertically.

nChars
Specifies the number of character positions to scroll horizontally.

Scrolls the text of a multiple-line edit control.

This member function is only processed by multiple-line edit controls.

The edit control will not scroll vertically past the last line of text in the edit con­
trol. If the current line plus the number of lines specified by nLines exceeds the
total number of lines in the edit control, the value will be adjusted such that the
last line of the edit control is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

A call to this member function will be ignored if the multiple-line edit control was
not created with the ES_LEFT style.

EM_LINESCROLL

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CEdit::SetHandle 297

CEdit::Paste
void PasteO;

Inserts the data from the Clipboard into the edit control at the current cursor posi­
tion. Data is inserted only if the Clipboard contains data in CF _ TEXT format.

CEdit::Clear, CEdit::Copy, CEdit::Cut, WM_PASTE

CEdit::ReplaceSel
void ReplaceSel(const char FAR* IpNewText);

IpNewText
Points to a null-terminated string containing the replacement text.

Replaces the current selection in an edit control with the text specified by
IpNewText.

Replaces only a portion of the text in an edit control. If you want to replace all of
the text, use the CWnd::SetWindowText member function.

If there is no current selection, the replacement text is inserted at the current cursor
location.

CWnd::SetWindowText, E~REPLACESEL

CEdit::SetHandle
void SetHandle(HANDLE hBuffer);

hBuffer
Contains a handle to the local memory. This handle must have been cre-
ated by a previous call to the LocalAlloc Windows function using the
LMEM_MOVEABLE flag. The memory is assumed to contain a null­
terminated string-if this is not the case, the first byte of the allocated memory
should be set to O.

298 CEdit::SetModify

Remarks Sets the handle to the local memory that will be used by a multiple-line edit con­
trol. The edit control will then use this buffer to store the currently displayed text
instead of allocating its own buffer.

See Also

This member function is only processed by multiple-line edit controls.

Before an application sets a new memory handle, it should use the GetHandle
member function to get the handle to the current memory buffer and free that
memory using the Windows LocalFree function.

SetHandle clears the undo buffer (the CanUndo member function then returns
FALSE) and the internal modification flag (the GetModify member function then
returns FALSE). The edit-control window will be redrawn.

You may use this member function in a multiple-line edit control in a dialog box
only if you have created the dialog box with the DS_LOCALEDIT style flag set.

CEdit::CanUndo, CEdit::GetHandle, CEdit::GetModify, ::LocaIAlloc,
::LocaIFree, EM_SETHANDLE

---//

Syntax

Parameters

Remarks

See Also

CEdit::SetModify
void SetModify(BOOL bModified = TRUE);

bModified
A value of TRUE indicates that the text has been modified, and a value of
FALSE indicates it is unmodified. By default, the modify flag is set.

Sets or clears the modification flag for an edit control. The modification flag indi­
cates whether or not the text within the edit control has been modified. It is auto­
matically set whenever the user changes the text. Its value may be retrieved with
the GetModify member function.

CEdit: : GetModify, EM_ SETMODIFY

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CEdit::SetRect 299

CEdit::SetPasswordChar
void SetPasswordChar(char ch);

ch
Specifies the character to be displayed in place of the character typed by the
user. If ch is 0, the actual characters typed by the user are displayed.

Sets or removes a password character displayed in an edit control when the user
enters text. When a password character is set, that character is displayed for each
character the user types in.

This member function has no effect on a multiple-line edit control.

When the SetPasswordChar member function is called, CEdit will redraw all
visible characters using the character specified by ch.

If the edit control is created with the ES_PASSWORD style, the default pass­
word character is set to an asterisk (*). This style is removed if SetPasswordChar
is called with ch set to O.

E~SETPASSWORDCHAR

CEd it: :SetRect
void SetRect(LPRECT IpRect);

IpRect
Points to the RECT or CRect that specifies the new dimensions of the format­
ting rectangle.

Sets the dimensions of a rectangle using the specified coordinates. This call is only
processed by a multiline edit control.

Use SetRect to set the formatting rectangle of a multiple-line edit control. The for­
matting rectangle is the limiting rectangle of the text, which is independent of the

300 CEdit::SetRectNP

See Also

Syntax

Parameters

Remarks

See Also

size of the edit-control window. When the edit control is first created, the format­
ting rectangle is the same as the client area of the edit-control window. By using
the SetRect member function, an application can make the formatting rectangle
larger or smaller then the edit-control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, ifthe format­
ting rectangle is made larger than the window.

When SetRect is called, the edit control's text is also reformatted and redisplayed.

CRect::CRect, CRect::CopyRect, CRect::operator =, CRect::SetRectEmpty,
CEdit::GetRect, CEdit::SetRectNP, E~SETRECT

CEdit::SetRectNP
void SetRectNP(LPRECT lpRect);

lpRect
Points to a RECT or CRect that specifies the new dimensions of the rectangle.

Sets the formatting rectangle of a multiple-line edit control. The formatting rec­
tangle is the limiting rectangle of the text, which is independent of the size of the
edit-control window. When the edit control is ftrst created, the formatting rec­
tangle is the same as the client area ofthe edit-control window. By calling the
SetRectNP member function, an application can make the formatting rectangle
larger or smaller then the edit-control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, if the format­
ting rectangle is made larger than the window.

SetRectNP is identical to the SetRect member function except that the edit­
control window is not redrawn.

This member is only processed by multiple-line edit controls.

CRect::CRect, CRect::CopyRect, CRect::operator =, CRect::SetRectEmpty,
CEdit::GetRect, CEdit::SetRect, E~SETRECT

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CEdit::SetTabStops 301

CEdit::SetSel
void SetSel(DWORD dwSelection);

void SetSel(int nStartChar, int nEndChar);

dwSelection
Specifies the starting position in the low-order word and the ending position in
the high-order word. If the low-order word is 0 and the high-order word is -1,
all the text in the edit control is selected. If the low-order word is -1, any cur­
rent selection is removed.

nStartChar
Specifies the starting position. If nStartChar is 0 and nEndChar is -1, all the
text in the edit control is selected. If nStartChar is -1, any current selection is
removed.

nEndChar
Specifies the ending position.

Selects a range of characters in an edit control. The edit control does not display
the selection set by this member function as it does when the user makes a
selection.

CEdit::GetSel, CEdit::ReplaceSel, E~SETSEL

CEd it: :SetTabStops
BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

void SetTabStopsO;

BOOL SetTabStops(int cxEachStop);

nTabStops
Specifies the number of tab stops contained in rgTabStops. If this parameter is
greater then 1, then rgTabStops points to an array oftab stops.

rgTabStops
Points to an array of unsigned integers specifying the tab stops in dialog units.
If nTabStops is 1, this parameter points to an unsigned integer containing the
distance between all tab stops (in dialog units).

302 CEdit::Undo

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

cxEachStop
Specifies that tab stops are to be set at every cxEachStop dialog units.

Sets the tab stops in a multiple-line edit control. When text is copied to a multiple­
line edit control, any tab character in the text will cause space to be generated up
to the next tab stop.

If nTabStops is 0, rgTabStops is ignored and default tab stops are set at every 32
dialog units.

This member function is only processed by multiple-line edit controls.

SetTabStops does not automatically redraw the edit window. If the application is
changing the tab stops for text already in the edit control, it needs to call
CWnd::InvalidateRect to redraw the edit window.

TRUE if the tabs were set; otherwise FALSE.

::GetDialogBaseUnits, CWnd::InvalidateRect, E~SETTABSTOPS

CEdit::Undo
BOOL UndoO;

Use to undo the last edit-control operation.

An undo operation can also be undone. For example, you can restore deleted text
with the first call to Undo, and remove the text again with a second call to Undo
as long as there is no intervening edit operation.

For a single-line edit control, the return value is always TRUE. For a multiple-line
edit control, the return value is TRUE if the undo operation is successful, or
FALSE if the undo operation fails.

CEdit::CanUndo, E~ UNDO

CException 303

class CException : public CObject

Comments

Derivation

CException is the base class for all exceptions in the
Microsoft Foundation Class Library. The derived
classes are listed below:

Class

CMemoryException

CNotSupportedException

CArchiveException

CFileException

CResourceException

Description

Out-of-memoryexception

Request for an unsupported operation

Archive-specific exceptions

File-specific exceptions

Windows resource not found or not creatable

These exceptions are intended to be used with the THROW, THROW_LAST,
TRY, CATCH, AND_ CATCH, and END_ CATCH macros. For more informa­
tion on exception processing, see Chapter 5, "Exception Processing." Also see the
cookbook in the Class Libraries User's Guide.

#include <afx.h>

Use the derived classes to catch specific exceptions. Use CException if you need
to catch all types of exceptions (and then use CObject::IsKindOfto differentiate
among classes derived from CException.) All derived CException classes use the
IMPLEMENT_DYNAMIC macro.

CException objects are deleted automatically. Do not delete them yourself.

Because CException is an abstract base class, you cannot create CException ob­
jects; you must create objects of derived classes. If you need to create your own
CException type, use one of the derived classes listed above as a model.

304 CFile

class CFile : public CObjecl

See Also

Public Members

CFile is the base class for Foundation class files. It
directly provides unbuffered, binary disk input/out­
put services, and it indirectly supports text files and
memory files through its derived classes. CFile

I CObject I
q CFile

works in conjunction with the CArchive class to support archiving of Foundation
objects.

The hierarchical relationship between this class and its derived classes allows your
program to operate on all file objects through the polymorphic CFile interface. A
memory file, for example, behaves like a disk file.

Use CFile and its derived classes for general-purpose disk I/O. Use of stream or
other I/O stream classes for formatted text sent to a disk file.

Normally, a disk file is opened automatically on CFile construction and closed on
destruction. Static member functions permit you to interrogate file status without
opening the file.

#include <afx.h>

CStdioFile, CMemFile

Data Members
DLhFile

Construction/Destruction
CFile

-CFile

Duplicate

Open

Close

Usually contains the operating-system file handle.

Constructs a CFile object from a path or file
handle.

Destroys the object, closing the file if it is open.

Constructs a duplicate object based on this file.

Safely opens a file with an error-testing option.

Closes a file and deletes the object.

Input/Output
Read

Write

Flush

Position
Seek

SeekToBegin

SeekToEnd

GetLength

SetLength

locking
LockRange

UnlockRange

Status
GetPosition

GetStatus

Static
Rename

Remove

GetStatus

SetStatus

CFile 305

Reads (unbuffered) data from a file at the current
file position.

Writes (unbuffered) data in a file to the current file
position.

Flushes any data yet to be written.

Positions the current file pointer.

Positions the current file pointer at the beginning
of the file.

Positions the current file pointer at the end of the
file.

Obtains the length of the file.

Changes the length of the file.

Locks a range of bytes in a file.

D nlocks a range of bytes in a file.

Gets the current file pointer.

Obtains the status of this open file.

Renames the specified file (static function).

Deletes the specified file (static function).

Obtains the status of the specified file (static, vir­
tual function).

Sets the status of the specified file (static, virtual
function).

306 CFile::CFile

Member Functions

Syntax

CFile::CFile
CFile();

CFile(int hFile);

CFile(const char* pszFileName, UINT wOpenFlags)
throw(CFileException);

Parameters hFile
The handle of a file that is already open.

pszFileName
A string that is the path to the desired file. The path may be relative or absolute.

wOpenFlags
Sharing and access mode. Specifies the action to take when opening the file.
You can combine options listed below by using the bitwise-OR (I) operator.
One access permission and one share option are required; the mode Create and
modeNolnherit modes are optional.

Value

CFile: :modeCreate

CFile: :modeRead

CFile: :modeReadWrite

CFile::modeWrite

CFile: :modeNolnherit

CFile: :shareDenyNone

CFile: :shareDenyRead

Meaning

Directs the constructor to create a new file. If
the file exists already, it is truncated to 0
length.

Opens the file for reading only.

Opens the file for reading and writing.

Opens the file for writing only.

Prevents the file from being inherited by
child processes.

Opens the file without denying other
processes read or write access to the file.
Create fails if the file has been opened in
compatibility mode by any other process.

Opens the file and denies other processes
read access to the file. Create fails if the file
has been opened in compatibility mode or
for read access by any other process.

Remarks

Value

CFile::shareDenyWrite

CFile::shareExciusive

CFile: :shareCompat

CFile: : type Text

CFile:: typeBinary

CFile::CFile 307

Meaning

Opens the file and denies other processes
write access to the file. Create fails if the file
has been opened in compatibility mode or
for write access by any other process.

Opens the file with exclusive mode, denying
other processes both read and write access to
the file. Construction fails if the file has been
opened in any other mode for read or write
access, even by the current process.

Opens the file with compatibility mode,
allowing any process on a given machine to
open the file any number of times.
Construction fails if the file has been opened
with any of the other sharing modes.

Sets text mode with special processing for
carriage returu-linefeed pairs (used in
derived classes only).

Sets binary mode (used in derived classes
only).

The default constructor does not open a file, but rather sets m_hFile to
CFile::hFileNull. Because this constructor does not throw an exception, it does
not make sense to use TRY/CATCH logic. Use the Open member function, then
test directly for exception conditions. For a discussion of exception processing
strategy, see the cookbook in the Class Libraries User's Guide.

The constructor with one argument creates a CFile object that corresponds to an
existing operating-system file identified by hFile. No check is made on the access
mode or file type.

The constructor with two arguments creates a CFile object and opens the corre­
sponding operating-system file with the given path. This constructor combines the
functions of the first constructor and the Open member function. It throws an ex­
ception if there is an error while opening the file. Generally this means that the
error is unrecoverable and that the user should be alerted.

308 CFile:: ... CFile

Example cha r* pFil eName = "test. dat";
TRY

Syntax

Remarks

Syntax

Remarks

See Also

{
CFile f(pFileName, CFile::modeCreate I CFile::modeWrite);

}

CATCH(CFileException, e)
{

f/ifdef DEBUG
afxDump « "File could not be opened" « e->m_cause « "\\n";

1tendif

CFile::-CFile
virtual -CFileO;

This destructor closes the operating-system file if it is open.

CFile::Close
virtual void CloseO
throw(CFileException);

Closes the file associated with this object and makes the file unavailable for read­
ing or writing. If you have not closed the file before destroying the object, the de­
structor closes it for you.

If you used new to allocate the CFile object on the heap, then you must delete it
after closing the file. Close sets DLhFile to CFile::hFileNull.

CFile::Open

Syntax

Remarks

Example

Syntax

Remarks

Syntax

Remarks

Return Value

See Also

CFile::Duplicate
virtual CFile* DuplicateO const
throw(CFileException);

CFile::GetLength 309

Constructs a duplicate CFile object for a given file. This is equivalent to the C run­
time function dup.

extern CFile* cfilel;
CFile* cfile2 = cfilel->Duplicate();

CFile::Flush
virtual void FlushO
throw(CFileException);

Forces any data remaining in the file buffer to be written to the file.

The use of Flush does not guarantee flushing of CArchive buffers. If you are
using an archive, call CArchive::Flush first.

CFile::Getlength
virtual DWORD GetLengthO const
throw(CFileException);

Obtains the current logical length of the file in bytes, not the amount physically
allocated.

The length of the file.

CFile: :SetLength

310 CFile::GetPosition

Syntax

Remarks

Return Value

Example

Syntax

Parameters

CFile::GetPosition
virtual DWORD GetPositionO const
throw(CFileException);

Obtains the current value of the file pointer, which can be used in subsequent calls
to Seek.

The file pointer as a 32-bit double word.

extern CFile cfile;
DWORD dwPosition = cfile.GetPosition();

CFile::GetStatus
virtual BOOL GetStatus(CFileStatus& rStatus) const;

static BOOL GetStatus(const char* pszFileName,
CFileStatus& rStatus) const;

rStatus
A reference to a user-supplied CFileStatus structure that will receive the status
information. The CFileStatus structure has the following fields:

Field

CTime IlL ctime

CTime IlLmtime

CTime llLatime

Meaning

The date and time the file was
created

The date and time the file was
last modified

The date and time the file was
last accessed for reading

The logical size in bytes of the
file, as reported by the MS-DOS
commanddir

Remarks

Return Value

Field

BYTE DLattribute

char DLszFullName[_MALPATH]

pszFileName

CFile::GetStatus 311

Meaning

The MS-DOS attribute byte of
the file

The absolute filename
(_MAL PATH is defined in
stdlib.h)

A string that is the path to the desired file. The path may be relative or absolute,
but may not contain a network name.

The virtual version of GetStatus retrieves the status of the open file associated
with this CFile object. It does not insert a value into the m_szFullName structure
member.

The static version gets the status of the named file and copies the filename to
DLszFullName. This function obtains the file status from the directory entry
without actually opening the file. It is useful for testing the existence and access
rights of a file.

The DLattribute is the MS-DOS file attribute. The Microsoft Foundation classes
provide an enum type attribute so that you can specify attributes symbolically:

enum Attribut {
normal = 0x00,
readOnly 0x01,
hidden 0x02,
system = 0x04,
volume = 0x0S,
directory 0x10,
archive 0x20
} ;

TRUE if no error, in which case rStatus is valid; otherwise FALSE. FALSE indi­
cates that the file does not exist.

312 CFile::lockRange

Example

See Also

Syntax

Parameters

Remarks

CFileStatus status;
extern CFile cfile;
if(cfile.GetStatus(status)

{

ih fdef _ DEBUG

II virtual member function

afxDump « "File size "« status.m size « "\\n";
#endif

cha r* pFi 1 eName "test. dat";
if(CFile: :GetStatus(pFileName, status)) II static function

{

#ifdef _DEBUG
afxDump « "Full fi 1 e name "« status .m_szFull Name « "\ \n";

#endif

CFile: :SetStatus

CFile::lockRange
virtual void LockRange(DWORD dwPos, DWORD dwCount)
throw(CFileException);

dwPos
The byte offset of the start of the byte range to lock.

dwCount
The number of bytes in the range to lock.

Locks a range of bytes in an open file, throwing an exception if the file is already
locked. Locking bytes in a file prevents access to those bytes by other processes.
You can lock more than one region of a file, but no overlapping regions are
allowed.

When you unlock the region, using the UnockRange member function, the byte
range must correspond exactly to the region that was previously locked. The
LockRange function does not merge adjacent regions; if two locked regions are
adjacent, you must unlock each region separately.

Example

See Also

Syntax

Parameters

Remarks

Return Value

CFile::Open 313

Under MS-DOS, you must load SHARE.EXE; otherwise, the function throws a
CFileException object.

Note This function is not available for the CMemFile-derived class.

extern DWORD dwPos;
extern DWORD dwCount;
extern CFile cfile;
cfile.LockRange(dwPos, dwCount l;

CFile:: UnlockRange

CFile::Open
virtual BOOL Open(const char* pszFileName, UINT wStyleFlags,

CFileException* pError = NULL);

pszFileName
A string that is the path to the desired file. The path may be relative or absolute,
but may not contain a network name.

wStyleFlags
A WORD that defines the file's sharing and access mode. It specifies the ac­
tion to take when opening the file. You can combine options by using the
bitwise-OR (I) operator. One access permission and one share option are re­
quired; the modeCreate and modeNoInherit modes are optional. See the
CFile constructor for a list of mode options.

pError
A pointer to an existing file-exception object that indicates the completion
status of the open operation.

Open is designed for use with the default CFile constructor. The two functions
form a "safe" method for opening a file where a failure is a normal, expected con­
dition. The constructor is guaranteed to succeed, and Open returns (a pointer to)
an exception object, bypassing the THROW/TRY/CATCH mechanism. Thus
there is no possibility of a memory leak due to a failing constructor.

TRUE if the open was successful; otherwise FALSE. The pError parameter is
only meaningful if FALSE is returned.

314 CFile::Read

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

CFile f;
CFileException e;
char* pFileName "test.dat";
if(!f.Open(pFileName, CFile::modeCreate I CFile::modeWrite, &e))

{

/fi fdef _DEBUG
afxDump « "File could not be opened" « e.m_cause « "\\n";

/fend if

CFile::CFile, CFile::Close

CFile::Read
virtual UINT Read(void FAR* lpBuJ, UINT nCount)
throw(CFileException);

lpBuJ
Pointer to the user-supplied buffer that is to receive the data read from the file.

nCount
The maximum number of bytes to be read from the file. For text-mode files,
carriage return-linefeed pairs are counted as single characters.

Reads data into a buffer from the file associated with the CFile object.

The number of bytes transferred to the buffer.

Note For all CFile classes, the return value may be less than nCount if the end of
file was reached.

extern CFile cfile;
char pbuf[100];
WORD nBytesRead = cfile.Read(pbuf, 100);

CFile: : Write

Syntax

Parameters

Remarks

Example

Syntax

Parameters

Remarks

CFile::Remove
static void Remove(const char* pszFileName)
throw(CFileException);

pszFileName

CFile::Rename 315

A string that is the path to the desired file. The path may be relative or absolute,
but may not contain a network name.

This static function deletes the file specified by the path. It will not remove a
directory.

The Remove member function throws an exception if the file is connected to an
existing open file or if the file cannot be removed. This is equivalent to the
MS-DOS del command.

char* pFileName = "test.dat";
TRY
{

CFile::Remove(pFileName);
}
CATCH(CFileException, e)
{

#ifdef _DEBUG
afxDump « "File" « pFileName « " not found\\n";

#endif

CFile::Rename
static void Rename(const char* pszOldName, const char* pszNewName)
throw(CFileException);

pszOldName
The old path.

pszNewName
The new path.

This static function renames the specified file. Directories cannot be renamed.
This is equivalent to the MS-DOS ren command.

316 CFile::Seek

Example extern cha r* pOl dName;
extern char* pNewName;
TRY

Syntax

Parameters

Remarks

{

CFile::Rename(pOldName, pNewName);
}
CATCH(CFileException, e)
{

ffifdef _DEBUG
afxDump « "File" « pOldName « " not found, cause

« e->m_cause « "\\n";
ffendif

CFile::Seek
virtual LONG Seek(LONG lOff, UINT wFrom)
throw(CFileException);

lOff
Number of bytes to move the pointer.

wFrom
Pointer movement mode. Must be one of the following:

Value

CFile::begin

CFile: : current

CFile::end

Meaning

Move the file pointer lOffbytes forward from the
beginning of the file.

Move the file pointer lOffbytes from the current
position in the file.

Move the file pointer lOffbytes from the end of the
file.

Repositions the pointer in a previously opened file. The Seek function permits ran­
dom access to a file's contents by moving the pointer a specified amount, abso­
lutely or relatively. No data is actually read during the seek.

When a file is opened, the file pointer is positioned at offset 0, the beginning of
the file.

Return Value

Example

Syntax

Remarks

Example

Syntax

Remarks

Return Value

Example

See Also

CFile::SeekToEnd 317

If the requested position is legal, Seek returns the new byte offset from the begin­
ning of the file. Otherwise, the return value is undefined, and a CFileException
object is thrown.

extern CFile cfile;
LONG lOffset = 1000, lActual;
lActual = cfile.Seek(lOffset, CFile::begin);

CFile::SeekToBegin
void SeekToBeginO
throw(CFileException);

Sets the value of the file pointer to the beginning of the file. SeekToBeginO is
equivalent to Seek(OL, CFile::begin).

extern CFile cfile;
cfile.SeekToBegin();

CFile::SeekToEnd
DWORD SeekToEndO
throw(CFileException);

Sets the value of the file pointer to the logical end of the file. SeekToEndO is
equivalent to CFile::Seek(OL, CFile::end).

The length of the file in bytes.

extern CFile cfile;
DWORD dwActual = cfile.SeekToEnd();

CFile: : GetLength, CFile: :Seek, CFile: :SeekToBegin

318 CFile::Setlength

Syntax

Parameters

Remarks

Example

Syntax

Parameters

Remarks

CFile::SetLength
virtual void SetLength(const DWORD dwNewLen)
throw(CFileException);

dwNewLen
Desired length of the file in bytes. This value may be larger or smaller than the
current length of the file. The file will be extended or truncated as appropriate.

Changes the length of the file.

Note With CMemFile, this function could throw a CMemoryException object.

extern CFile cfile;
DWORD dwNewLength = 10000;
cfile.SetLength(dwNewLength l;

CFile::SetStatus
static void SetStatus(const char* pszFileName, const CFileStatus& status)
throw(CFileException);

pszFileName
A string that is the path to the desired file. The path may be relative or absolute,
but may not contain a network name.

status
The buffer containing the new status information. Call GetStatus to prefill the
CFileStatus structure with current values, then make changes as required. If a
value is 0, then the corresponding status item is not updated. See GetStatus for
a description of the CFileStatus structure.

Sets the status of the file associated with this file location.

Under MS-DOS, all times in the CFileStatus structure contain the same value.

To set the time, modify the m_mtime field of status.

The SetStatus function will throw an exception under MS-DOS if the file's read­
only attribute is set.

Example

See Also

Syntax

Parameters

Remarks

Example

See Also

char* pFileName = "test.dat";
extern BYTE newAttribute;
CFileStatus status;
CFile::GetStatus(pFileName, status);
status.m_attribute = newAttribute;
CFile::SetStatus(pFileName, status);

CFile: : GetStatus

CFile::UnlockRange

CFile::UnlockRange 319

virtual void UnlockRange(const DWORD dwPos, const DWORD dwCount)
throw(CFileException);

dwPos
The byte offset of the start of the byte range to unlock.

dwCount
The number of bytes in the range to unlock.

Unlocks a range of bytes in an open file. See the description of LockRange for
details.

Under MS-DOS, you must load SHARE.EXE; otherwise, the function throws a
CFileException object.

Note This function is not available for the CMemFile-derived class.

extern DWORD dwPos;
extern DWORD dwCount;
extern CFile cfile;
cfile.UnlockRange(dwPos, dwCount);

CFile: : LockRange

320 CFile::Write

Syntax

Parameters

Remarks

Example

See Also

CFile::Write
virtual void Write(const void FAR* IpBuJ, UINT nCount)
throw(CFileException);

IpBuJ
A pointer to the user-supplied buffer that contains the data to be written to
the file.

nCount
The number of bytes to be transferred from the buffer. For text-mode files,
carriage return-linefeed pairs are counted as single characters.

Writes data from a buffer to the file associated with the CFile object.

Write throws an exception in response to several conditions, induding the disk­
full condition.

extern CFile cfile;
char pbuf[100];
cfile.Write(pbuf, 100);

CFile::Read, CStdioFile:: WriteString

CFile::m_ hFile 321

Data Members

Syntax

Remarks

CFile::m_ hFile
UINT m_hFile;

Contains the operating-system file handle for an open file. It contains
CFile: :m_ hFileNuli (an operating -system-independent empty file indicator) if the
handle has not been assigned.

Usage ofm_hFile is not recommended because the member's meaning depends
on the derived class. m_hFile is made a public member to conveniently support
nonpolymorphic use of the class.

322 CFileException

class CFileException : public CException

See Also

Comments

Public Members

A CFileException object represents a file-related ex­
ception condition. The CFileException class includes
public data members that hold the portable cause code
and the operating-system-specific error number. The
class also provides static member functions for throw­
ing file exceptions and for returning cause codes for
both operating-system errors and C run-time errors.

#include <afx.h>

CFile, Chapter 5, "Exception Processing"

CFileException objects are constructed and thrown in CFile member functions
and in member functions of derived classes. You can access these objects within
the scope of a CATCH expression. For portability, use only the cause code to get
the reason for an exception.

Data Members

ID_IOsError

Construction/Destruction
CFileException

Code Conversion
OsErrorToException

ErrnoToException

Contains portable code corresponding to the excep­
tion cause.

Contains the related operating-system error
number.

Constructs a CFileException object.

Returns a cause code corresponding to an
MS-DOS error code.

Returns cause code corresponding to a run-time
error number.

Helper Functions
ThrowOsError

ThrowErrno

CFileException 323

Throws a file exception based on an operating­
system error number.

Throws a file exception based on a run-time error
number.

324 CFileException::CFileException

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

CFileException::CFileException
CFileException(int cause = CFileException::none, LONG IOsError = -1);

cause
An enumerated type variable that indicates the reason for the exception. See
CFileException: :m_ cause for a list of the possible values.

IOsError
An operating-system-specific reason for the exception, if available. The
IOsError parameter provides more information than cause provides.

Constructs a CFileException object that stores the cause code and the operating­
system code in the object.

Do not use this constructor directly, but rather call the global function
AfxThrowFileException.

Note The variable IOsErmr ilpplies only to CFHe and CS!dioFile objects. The
CMemFile class does not handle this error code. More information specifically
about the operating system is available through the run-time function _dosexterr
(MS-DOS only).

AfxThrowFileException

CFileException::ErrnoToException
static int ErrnoToException(int nErrno);

nErrno
An integer error code as defined in the run-time include file errno.h.

This static function converts a given run-time library error value to a
CFileException enumerated error value. See CFileException: :m_ cause for a list
of the possible enumerated values.

Enumerated value that corresponds to a given run-time library error value.

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

Remarks

CFileException::ThrowErrno 325

#include <errno.h>
ASSERT(CFileException::ErrnoToException(EACCES)

CFileException: :accessDenied);

CFileException: :OsErrorToException

CFileException::OsErrorToException
static int OsErrorToException(LONG LOsError);

LOsError
An operating-system-specific error code.

This static function returns an enumerator that corresponds to a given IOsError
value. If the error code is unknown, then the function returns
CFileException: : generic.

Enumerated value that corresponds to a given operating-system error value.

ASSERT(CFileException::OsErrorToException(5) ==
CFileException: :accessDenied);

CFileException: :ErrnoToException

CFileException::ThrowErrno
static void ThrowErrno(int nErrno);

nErrno
An integer error code as defined in the run-time include file errno.h.

This static function constructs a CFileException object corresponding to a given
nErrno value, then throws the exception.

326 CFileException: :ThrowOsError

Example

See Also

Syntax

Parameters

Remarks

Example

See Also

#include <errno.h>
CFileException::ThrowErrno(EACCES); II "access denied"

CFileException::ThrowOsError

CFileException::ThrowOsError
static void ThrowOsError(LONG lOsError);

lOsError
An operating-system-specific error code.

This static function throws a CFileException corresponding to a given lOsError
value. If the error code is unknown, then the function throws an exception coded
as CFileException::generic.

CFileException::ThrowOsError(5); II "access denied"

CFileException: : ThrowErrno

CFileException::m_cause 327

Data Members

Syntax

Remarks

CFileException::m_ cause

Contains values defined by a CFileException enumerated type. The enumer­
ators are:

Value

CFileException:: none

CFileException:: generic

CFileException::fileNotFound

CFileException:: badPath

CFileException: :tooManyOpenFiles

CFileException: :accessDenied

CFileException:: invalidFile

CFileException: :removeCurrentDir

CFileException: :directoryFull

CFileException:: badSeek

CFileException:: hardIO

CFileException: : sharing Violation

CFileException:: lock Violation

CFileException: :diskFull

CFileException: :endOfFile

Meaning

No error occurred.

An unspecified error occurred.

The file could not be located.

All or part of the path is invalid.

The permitted number of open files
was exceeded.

The file could not be accessed.

There was an attempt to use an
invalid file handle.

Current working directory cannot be
removed.

There are no more directory entries.

There was an error trying to set the
file pointer.

There was a hardware error.

SHARE.EXE was not loaded, or
shared region was locked.

There was an attempt to lock a
region that was already locked.

The disk is full.

The end of file was reached.

Note These CFileException cause enumerators are distinct from the
CArchiveException cause enumerators.

328 CFileException::m_IOsError

Example extern char* pFileName;
TRY

Syntax

Remarks

{

CFile f(pFileName, CFile::modeCreate I CFile::modeWrite);

CATCH(CFileException, e)
{

if(e->m_cause == CFileException::fileNotFound
printf("ERROR: File not found\\n");

END CATCH

CFileException::m_IOsError
LONG ffi_lOsError;

Contains the operating-system error code for this exception. See your operating­
system technical manual for a listing of error codes.

CFont 329

class CFont : public CGdiObject

Public Members

The CFont class encapsulates a Windows graphical
design interface (GDI) font and provides member func­
tions for manipulating the font. To use a CFont object,
construct a CFont object and attach a Windows font to
it with CreateFont or CreateFontIndirect, and then
use the object's member functions to manipulate
the font.

Construction/Destruction
CFont

Initialization
CreateFontIndirect

CreateFont

Operations
FromHandle

Constructs a CFont object.

Initializes a CFont object with the characteristics
given in a LOGFONT structure.

Initializes a CFont with the specified charac­
teristics.

Returns a pointer to a CFont object when given a
Windows HFONT.

330 CFont: :CFont

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

CFont::CFont
CFontO;

Constructs a CFont object. The resulting object must be initialized with
CreateFont or CreateFontlndirect before it can be used.

CFont:: CreateFontlndirect, CFont:: CreateFont, : :EnumFonts

CFont::CreateFont
BOOL CreateFont(int nHeight, int nWidth, int nEscapement, int nOrientation,

int n Weight, BYTE bltalic, BYTE bUnderline, BYTE cStrikeOut,
BYTE nCharSet, BYTR nnutPrl'cision; BYTE nClipPrecision, BYTE nQuaiity,
BYTE nPitchAndFamily, const char FAR* lpFacename);

nHeight
Specifies the desired height (in logical units) of the font. The font height can be
specified in three ways.

Height

Greater than 0

Equal to 0

Less than 0

Result

Height is transformed into device units and matched
against the cell height of the available fonts.

A reasonable default size is used.

Height is transformed into device units and the absolute
value is matched against the character height of the
available fonts.

For all height comparisons, the font mapper looks for the largest font that does
not exceed the requested size. Then, if there is no such font, it looks for the
smallest font available.

CFont::CreateFont 331

nWidth
Specifies the average width (in logical units) of characters in the font. If n Width
is 0, the aspect ratio of the device will be matched against the digitization
aspect ratio of the available fonts to find the closest match, which is determined
by the absolute value of the difference.

nEscapement
Specifies the angle (in O.l-degree units) between the escapement vector and the
x-axis of the display surface. The escapement vector is the line through the
origins of the first and last characters on a line. The angle is measured counter­
clockwise from the x-axis.

nOrientation
Specifies the angle (in O.l-degree units) between the baseline of a character and
the x-axis. The angle is measured counterclockwise from the x-axis.

nWeight
Specifies the font weight (in inked pixels per 1000). Although n Weight can be
any integer value from 0 to 1000, the common values are as follows:

Value

400

700

Meaning

Normal

Bold

These values are approximate; the actual appearance depends on the typeface.
If n Weight is 0, a default weight is used.

bltalic
Specifies whether the font is italic.

bUnderline
Specifies whether the font is underlined.

cStrikeOut
Specifies whether characters in the font are struck out. Specifies a strikeout font
if set to a nonzero value.

nCharSet
Specifies the font's character set. The following values are predefined:

ANSL CHARSET
OE~CHARSET
SYMBOL_ CHARSET

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. An application that uses
a font with an unknown character set must not attempt to translate or interpret
strings that are to be rendered with that font. Instead, the strings should be
passed directly to the output device driver.

332 CFont: :CreateFont

nOutPrecision
Specifies the desired output precision. The output precision defines how closely
the output must match the requested font's height, width, character orientation,
escapement, and pitch. It can be anyone ofthe following values:

OUT_ CHARACTER_PRECIS
OUT_DEFAULT_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS

nClipPrecision
Specifies the desired clipping precision. The clipping precision defines how to
clip characters that are partially outside the clipping region. It can be anyone of
the following values:

CLIP _ CHARACTE~PRECIS
CLIP _DEFAULT_PRECIS
CLIP _STROKE_PRECIS

nQuality
Specifies the font's output quality, which defines how carefully GDI must at­
tempt to match the logical-font attributes to those of an actual physical font. It
can be one of the following values:

Value

DEFAULT_QUALITY

DRAFT_ QUALITY

PROOF_ QUALITY

nPitchAndF amily

Meaning

Appearance of the font does not matter.

Appearance of the font is less important than
when PROOF_QUALITY is used. For GDI
raster fonts, scaling is enabled. Bold, italic,
underline, and strikeout fonts are synthesized
if necessary.

Character quality of the font is more
important than exact matching of the logical­
font attributes. For GDI raster fonts, scaling
is disabled and the font closest in size is
chosen. Bold, italic, underline, and strikeout
fonts are synthesized if necessary.

Specifies the pitch and family of the font. The two low-order bits specify the
pitch of the font and can be anyone of the following values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

The four high-order bits of the member specify the font family and can be one
of the following values:

Remarks

Return Value

See Also

Value

FF _DECORATIVE

FF_DONTCARE

FF_MODERN

FF_SCRIPT

FF_SWISS

CFont::CreateFont 333

Meaning

Novelty fonts. Old English, for example.

Don't care or don't know.

Fonts with constant stroke width (fixed-pitch),
with or without serifs. Fixed-pitch fonts are
usually modern. Pica, Elite, and Courier New
are examples.

Fonts with variable stroke width (proportionally
spaced) and with serifs. Times New Roman and
Century Schoolbook are examples.

Fonts designed to look like handwriting. Script
and Cursive are examples.

Fonts with variable stroke width (proportionally
spaced) and without serifs. MS Sans Serif is an
example.

An application can specify a value for nPitchAndFamily by using the Boolean
OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for
specifying fonts when the exact typeface desired is not available.

lpFacename
A CString or pointer to a null-terminated string that specifies the typeface
name ofthe font. The length of this string must not exceed 30 characters. The
Windows EnumFonts function can be used to enumerate all currently available
fonts. If lpFacename is NULL, GDI uses a default typeface.

Initializes a CFont object with the specified characteristics. The font can sub­
sequently be selected as the font for any device context.

The CreateFont function does not create a new Windows GDI font. It merely
selects the closest match from the fonts available in GDI's pool of physical fonts.

TRUE if successful; otherwise FALSE.

CFont::CreateFontIndirect, ::CreateFont, ::EnumFonts

334 CFont::CreateFontindirect

Syntax

Parameters

Remarks

Return Value

See Also

CFont::CreateFontlndirect
BOOL CreateFontlndirect(LPLOGFONT lpLogFont);

lpLogFont
Points to a LOGFONT structure that defines the characteristics of the
logical font.

The LOGFONT structure has the following form:

typedef
int
int
int
int
int
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

struct tagLOGFONT
lfHeight;
lfWidth;
1 fEscapement;
lfOrientation;
lfWeight;
lfItalic;
lfUnderline;
lfStrikeOut;
1 fCha rSet;
lfOutPrecision;
lfClipPrecision;
1 fQual ity;
l+D;+-,..hA-Ic~l'Y'I;l" ..
I I I I 1,..\...11" .. Ut UII., 'J,

BYTE lfFaceName[LFJACESIZE];
LOGFONT;

Initializes a CFont object with the characteristics given in a LOGFONT structure
pointed to by lpLogFont. The font can subsequently be selected as the current font
for any device.

This font has the characteristics specified in the LOGFONT structure. When the
font is selected by using the CDC::SelectObject or CMetaFileDC::SelectObject
functions, GDI's font mapper attempts to match the logical font with an existing
physical font. If it fails to find an exact match for the logical font, it provides an al­
ternative whose characteristics match as many of the requested characteristics as
possible.

TRUE if successful; otherwise FALSE.

CFont: :CreateFont, CDC: :SelectObject, CMetaFileDC: :SelectObject,
:: CreateFontlndirect

Syntax

Parameters

Remarks

Return Value

CFont::FromHandle 335

CFont::FromHandle
static CFont* FromHandle(HFONT hFont);

hFont
An HFONT handle to a Windows font.

Returns a pointer to a CFont object when given an HFONT handle to a Windows
GDI font object. If a CFont object is not already attached to the handle, a tem­
porary CFont object is created and attached. This temporary CFont object is valid
only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

A pointer to a CFont object if successful; otherwise NULL.

336 CFrameWnd

class CFrameWnd : public CWnd

See Also

Public Members

The CFrameWnd class provides the functionality of a
Windows (SDI) overlapped or pop-up frame window.

To create a useful frame window for your application,
derive a class from CFrameWnd. Add member varia­
bles to the derived class to store data specific to your
application. Implement message-handler member func-
tions and a message map in the derived class to specify what happens when mes­
sages are directed to the window.

You create a frame window in two steps. First, call the constructor CFrame Wnd
to construct the CFrameWnd object, then call the Create member function to cre­
ate the frame window and attach it to the CFrameWnd object.

Construction can be a one-step process in a derived class. Write a constructor for
the derived class and call Create from within the constructor.

When the user terminates your frame window, destroy the CFrameWnd object or
call the DestroyWindow member function, which CFrameWnd inherits from
class CWnd, to remove the window and destroy its data structures. If you allocate
any memory iiI the CFramevVnu object, override the CFrameWnd destructor to
dispose of the allocations.

CWnd, CMDIFrameWnd, CMDIChildWnd

Data Members
rectDefault

Constructi on/D estructi on
CFrameWnd

-CFrameWnd

Pass this static CRect as a parameter when creat­
ing a CFrameWnd object to allow Windows to
choose the window's size and position.

Constructs a CFrameWnd object.

Destroys a CFrameWnd object and the frame win­
dow, frees the accelerator table, and posts an appli­
cation quit message.

Initialization
Create

LoadAccelTable

Operations
GetChildFrame

GetParentFrame

Protected Members
m_ hAccelTable

CFrameWnd 337

Creates and initializes the Windows frame window
associated with the CFrameWnd object.

Loads an accelerator table.

An overridable member function that simply re­
turns this. A derived class should provide this func­
tion for access to the active child.

An overridable member function that simply re­
turns this. A derived class should provide this func­
tion for access to the parent frame.

Contains the command accelerator table for this
frame window.

338 CFrameWnd::CFrameWnd

Member Functions

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Parameters

CFrameWnd ::CFrameWnd
CFrameWndO;

Constructs a CFrameWnd object. The frame window is not created until the
Create member function is called.

CFrameWnd::Create, CFrameWnd::-CFrameWnd

CFrameWnd: :-CFrameWnd
virtual-CFrameWndO;

Destroys a CFrameWnd object and the frame window, frees the accelerator table
if loaded, and posts a WM_ QUIT message to terminate the application.

CFrameWnd::Create, CFrameWnd::CFrameWnd

CFrameWnd::Create
BOOL Create(const char FAR* IpClassName,

const char FAR* IpWindowName,
DWORD dwStyle = WS_ OVERLAPPEDWINDOW,
const RECT& reet = rectDefault, const CWnd* pParentWnd = NULL,
const char FAR* lpMenuName = NULL);

lpClassName
Points to a null-terminated character string that names the Windows class (a
WNDCLASS struct). The class name can be any name registered with the
afxRegisterWndClass function or any of the predefined control-class names.
If NULL, uses the predefined default CFrame Wnd attributes.

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CFrameWnd::GetChiidFrame 339

lpWindowName
Points to a null-terminated character string that represents the window name.
Used as text for the title bar.

dwStyle
Specifies the window style attributes. See the CreateEx member function in the
CWnd class for a full list of window styles.

reet
Specifies the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new CFrameWnd object.

pParentWnd
Specifies the parent window of this frame window. This parameter should be
NULL for top-level frame windows.

lpMenuName
Identifies the name ofthe menu resource to be used with the window. Use
MAKEINTRESOURCE if the menu has an integer ID instead of a string.
This parameter can be NULL.

Construct a CFrameWnd object in two steps. First invoke the constructor, which
constructs the CFrameWnd object, then call Create, which creates the Windows
frame window and attaches it to the CFrameWnd object. Create initializes the
window's class name and window name and registers default values for its style,
parent, and associated menu.

TRUE if initialization is successful; otherwise FALSE.

CFrameWnd::CFrameWnd, CFrameWnd::-CFrameWnd, CWnd::CreateEx

CFrameWnd::GetChildFrame
virtual CFrameWnd* GetChiidFrameO;

An overridable member function that simply returns this. A derived class should
override this function to provide access to the active child.

Returns this.

CMDIFrameWnd::GetChiidFrame

---- -------- ----- - -- ----------

340 CFrameWnd::GetParentFrame

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CFrameWnd::GetParentFrame
virtual CFrameWnd* GetParentFrameO;

An overridable member function that simply returns this. A derived class should
override this function to provide access to the parent frame.

Returns this.

CMDIChildWnd::GetParentFrame

CFrameWnd::LoadAcceITable
BOOL LoadAccelTable(const char FAR* IpAccelTableName);

IpAccelTableName
Identifies the name of the accelerator resource. Use MAKEINTRESOURCE
if the resource is identified with an integer ID.

Loads the specified accelerator table. The member function stores the table handle
in DLhAccelTable. Only one table may be loaded at a time.

TRUE if the accelerator table was successfully loaded; otherwise FALSE.

: : LoadAccelerators

CFrameWnd::rectDefault 341

Data Members

Remarks

Remarks

See Also

CFrameWnd::m_ hAccelTable
A protected variable of type HANDLE, this data member specifies the command
accelerator table for the frame window. If the frame window doesn't have an accel­
erator table, this data member's value is NULL. The default
PreTranslateMessage function uses the accelerator table to translate the appro­
priate keys into commands.

CFrameWnd::rectDefault
Pass this static CRect as a parameter when creating a window to allow Windows
to choose the window's size and position.

CW _ USEDEFAULT

342 CGdiObject

class CGdiObjecl : public CObjecl

See Also

Public Members

The CGdiObject class provides a base class for
various kinds of Windows graphical design interface
(GDI) objects such as bitmaps, regions, brushes,
pens, palettes, and fonts. You never create a
CGdiObject directly. Rather, you create an object from one of its derived classes,
such as CPen or CBrush.

CBitmap, CBrush, CFont, CPalette, CPen, CRgn

Data Members
m_hObject

Construction/Destruction
CGdiObject

-CGdiObject

Operations
GetSafeHandle

FromHandle

Attach

Detach

DeleteObject

DeleteTempMap

A HANDLE containing the HBITMAP,
HPALETTE, HRGN, HBRUSH, HPEN, or
HFONT attached to this object.

Constructs a CGdiObject object.

Destroys a CGdiObject object.

Returns IlLhObject unless this is NULL, in
which case NULL is returned.

Returns a pointer to a CGdiObject object given a
handle to a Windows GDI object.

Attaches a Windows GDI object to a CGdiObject
object.

Detaches a Windows GDI object from a
CGdiObject object and returns a handle to the
Windows GDI object.

Deletes the Windows GDI object attached to the
CGdiObject object from memory by freeing all
system storage associated with the object.

Deletes any temporary CGdiObject objects
created by FromHandle.

GetObject

CreateStockObject

UnrealizeObject

CGdiObject 343

Fills a buffer with data that describes the Windows
GDI object attached to the CGdiObject object.

Retrieves a handle to one of the Windows pre­
defined stock pens, brushes, or fonts.

Resets the origin of a brush or resets a logical
palette.

344 CGdiObject::Attach

Member Functions

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CGdiObject::Attach
BOOL Attach(HANDLE hObject);

hObject
A HANDLE to a Windows GDI object (for example, HPEN or HBRUSH).

Attaches a Windows GDI object to a CGdiObject object.

TRUE if attachment is successful; otherwise FALSE.

CGdiObject: : Detach

CGdiObject::CGdiObject
CGdiObjectO;

Constructs a CGdiObject object. You never create a CGdiObject directly.
Rather, you create an object from one of its derived classes, such as CPen or
CBrush.

CPen, CBrush, CFont, CBitmap, CRgn, CPalette

Syntax

Remarks

See Also

Syntax

Parameters

CGdiObject::CreateStockObject 345

CGdiObject::-CGdiObject
virtual -CGdiObjectO;

Destructor for the CGdiObject class. Calls DeleteObject to delete the attached
Windows GDI object and then deallocates the CGdiObject object. If you don't
want to delete the attached Windows GDI object when deleting a CGdiObject ob­
ject, call Detach before deleting the CGdiObject object.

CGdiObject: : Detach, CGdiObject: :DeleteObject

CGdiObject::CreateStockObject
BOOL CreateStockObject(int nlndex);

nlndex
A constant specifying the type of stock object desired. It can be one of the fol­
lowing values:

Value

BLAClLBRUSH

DKGRAY_BRUSH

GRAY_BRUSH

HOLLOW_BRUSH

LTGRAY_BRUSH

NULL_BRUSH

WHITE_BRUSH

BLAClLPEN

NULL_PEN

WHITE_PEN

ANSLFIXED_FONT

ANSL VAJLFONT

DEVICE_DEFAULT_FONT

Meaning

Black brush.

Dark gray brush.

Gray brush.

Hollow brush.

Light gray brush.

Null brush.

White brush.

Black pen.

Null pen.

White pen.

ANSI fixed system font.

ANSI variable system font.

Device-dependent font.

346 CGdiObject::DeleteObject

Remarks

Return Value

See Also

Syntax

Remarks

Value

OE~FIXED_FONT

SYSTE~FONT

Meaning

OEM-dependent fixed font.

The system font. By default, Windows
uses the system font to draw menus,
dialog-box controls, and other text. In
Windows versions 3.0 and later, the
system font is proportional width;
earlier versions of Windows use a
fixed-width system font.

The fixed-width system font used in
Windows prior to version 3.0. This
object is available for compatibility
with earlier versions of Windows.

Default color palette. This palette
consists of the 20 static colors in the
system palette.

Retrieves a handle to one of the predefined stock Windows GDI pens, brushes, or
fonts, and attaches the GDI object to the CGDIObject object. Call this function
with one of the derived classes that corresponds to the Windows GDI object type,
such as CPen for a stock pen.

Returns TRUE if the function is successful; otherwise FALSE.

CPen::CPen, CBrush::CBrush, CFont::CFont, CPalette::CPalette

CGdiObject::DeleteObject
void DeleteObjectO;

Deletes the attached Windows GDI object from memory by freeing all system
storage associated with the Windows GDI object. The storage associated with the
C++ CGdiObject object is not affected by this call. An application should not call
DeleteObject on a CGdiObject object that is currently selected into a device
context.

See Also

Syntax

Remarks

See Also

Syntax

Remarks

Return Value

See Also

CGdiObject::Detach 347

When a pattern brush is deleted, the bitmap associated with the brush is not de­
leted. The bitmap must be deleted independently.

CGdiObject: :Detach

CGdiObject::DeleteTempMap
static void DeleteTempMapO;

Called automatically by the CWinApp idle time handler, DeleteTempMap
deletes any temporary CGdiObject objects created by FromHandle.
DeleteTempMap detaches the Windows GDI object attached to a temporary
CGdiObject object before deleting the CGdiObject object.

CGdiObject: :Detach, CGdiObject: : FromHandle

CGdiObject::Detach
HANDLE DetachO;

Detaches a Windows GDI object from a CGdiObject object and returns a handle
to the Windows GDI object.

A HANDLE to the Windows GDI object detached, or NULL if no GDI object is
attached.

CGdiObject: :Attach

348 CGdiObject::FromHandle

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CGdiObject::FromHandle
static CGdiObject* FromHandle(HANDLE hObject);

hObject
A HANDLE to a Windows GDI object.

Returns a pointer to a CGdiObject object given a handle to a Windows GDI ob­
ject. If a CGdiObject object is not already attached to the Windows GDI object, a
temporary CGdiObject object is created and attached.

This temporary CGdiObject object is only valid until the next time the applica­
tion has idle time in its event loop, at which time all temporary graphic objects are
deleted. Another way of saying this is that the temporary object is only valid
during the processing of one window message.

A pointer to a CGdiObject that may be temporary or permanent.

CGdiObject: : DeleteTempMap

CGd i Object: :GetOb ject
int GetObject(int nCount, LPSTR lpObject) const;

nCount
Specifies the number of bytes to copy into the lpObject buffer.

lpObject
Points to a user-supplied buffer that is to receive the information.

Fills a buffer with data that defines a specified object. The function retrieves a
data structure whose type depends on the type of graphic object, as shown by the
following list:

Return Value

See Also

Syntax

Remarks

Return Value

CGdiObject::GetSafeHandle 349

Object Buffer type

CPen LOG PEN

CBrush LOGBRUSH

CFont LOG FONT

CBitmap BITMAP

CPalette int

CRgn Not supported

If the object is a CBitmap object, GetObject returns only the width, height, and
color format information of the bitmap. The actual bits can be retrieved by using
CBitmap: : GetBitmapBits.

If the object is a CPalette object, GetObject retrieves an integer that specifies the
number of entries in the palette. The function does not retrieve the
LOGPALETTE structure that defines the palette. An application can get informa­
tion on palette entries by calling CPalette::GetPaletteEntries.

The number of bytes retrieved, or 0 if an error occurs.

CBitmap: : GetBitmapBits, CPalette: : GetPaletteEntries

CGdiObject::GetSafeHandle
HANDLE GetSafeHandleO const;

Returns m_hObject unless this is NULL, in which case NULL is returned. This
is part of the general handle interface paradigm and is useful when NULL is a
valid or special value for a handle.

A HANDLE to the attached Windows GDI object, or NULL if no object is
attached.

350 CGdiObject::UnrealizeObject

Syntax

Remarks

Return Value

See Also

CGd i Object:: U nrea I izeOb ject
BOOL UnrealizeObjectO;

Resets the origin of a brush or resets a logical palette. While UnrealizeObject is a
member function of the CGdiObject class, it should be invoked only on CBrush
or CPaiette objects.

For CBrush objects, UnrealizeObject directs the system to reset the origin of the
given brush the next time it is selected into a device context. If the object is a
CPaiette object, UnrealizeObject directs the system to realize the palette as
though it had not previously been realized. The next time the application calls the
CDC::RealizePaiette function for the specified palette, the system completely re­
maps the logical palette to the system palette.

The UnrealizeObject function should not be used with stock objects. The
UnrealizeObject function must be called whenever a new brush origin is set (by
means of the CDC: :SetBrushOrg function). The UnrealizeObject function must
not be called for the currently selected brush or currently selected palette of any
display context.

TRUE if successful; otherwise FALSE.

CDC: : RealizePaiette, CDC: :SetBrushOrg

CGdiObject::m_hObject 351

Data Members

Remarks

CGdiObject::m_ hObject
A HANDLE containing the HBITMAP, HRGN, HBRUSH, HPEN,
HPALETTE, or HFONT attached to this object.

352 CListBox

class ClistBox : public CWnd
The CListBox class provides the functionality of a
Windows list box. A list box displays a list of items,
such as filenames, that the user can view and select.

In a single-selection list box, the user can only select
one item. In a multiple-selection list box, a range of
items can be selected. When the user selects an item, it
is highlighted and the list box sends a notification message to the parent window.

The list box itself automatically displays horizontal or vertical scroll bars if the list
within the box is too large for the list-box window.

You create a list-box control in two steps. First, call the constructor CListBox to
construct the CListBox object, then call the Create member function to create the
Windows list-box control and attach it to the CListBox object.

Construction can be a one-step process in a class derived from CListBox. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle the Windows notification messages sent by a CListBox ob­
ject to its parent (usually a class derived from CDialog or CModalDialog), add
the appropriate message-map entries and message-handler member functions to
the parent class to handle the messages you want to process. Potential message­
map entries are:

ON_COMMAND
ON_LBN_DBLCLK
ON_LBN_ERRSPACE
ON_LBN_KILLFOCUS
ON_LBN_SELCHANGE
ON_LBN_SETFOCUS

If you create a CListBox object within a dialog box (through a dialog resource),
the CListBox is automatically destroyed when the user closes the dialog box.

If you create a CListBox object within a window, you may also need to destroy it.
If you create the CListBox object on the stack, it is destroyed automatically. If
you create the CListBox object on the heap by using the new function, you must
call delete on the object to destroy it when the user terminates the Windows list
box.

If you allocate any memory in the CListBox object, override the CListBox
destructor to dispose of the allocations.

See Also

Public Members

CListBox 353

CWnd, CButton, CComboBox, CEdit, CScrollBar, CStatic, CModalDialog,
CDialog

Construction/Destruction
CListBox

Initialization
Create

General Operations
GetCount

GetHorizontalExtent

SetHorizontalExtent

GetToplndex

SetToplndex

GetItemData

SetItemData

GetItemRect

GetSel

GetText

GetTextLen

SetColumn Width

SetTabStops

Constructs a CListBox object.

Creates the Windows list box and attaches it to the
CListBox object.

Returns the number of strings in a list box.

Returns the width in pixels that a list box can be
scrolled horizontally.

Sets the width in pixels that a list box can be
scrolled horizontally.

Returns the index of the first visible string in a list
box.

Sets the zero-based index of the first visible string
in a list box.

Returns the 32-bit value associated with the list­
box item.

Sets the 32-bit value associated with the list-box
item.

Returns the bounding rectangle of the list-box item
as it is currently displayed.

Returns the selection state of a list-box item.

Copies a list-box item into a buffer.

Returns the length in bytes of a list-box item.

Sets the column width of a multi column list box.

Sets the tab-stop positions in a list box.

354 CListBox

Single Selection Operations
GetCurSel

SetCurSel

Returns the zero-based index of the currently
selected string in a list box.

Selects a list-box string.

Multiple Selection Operations
SetSel

GetSelCount

GetSelItems

SelItemRange

String Operations
AddString

DeleteString

InsertString

ResetContent

Dir

FindString

SelectString

Selects or deselects a list box item in a multiple­
selection list box.

Returns the number of strings currently selected in
a multiple-selection list box.

Returns the indices of the strings currently selected
in a list box.

Selects or deselects a range of strings in a multiple­
selection list box.

Adds a string to a list box.

Deletes a string from a list box.

Inserts a string at a specific location in a list box.

Clears all the entries from a list box.

Adds filenames from the current directory to a
list box.

Searches for a string in a list box.

Searches for and selects a string in a single­
selection list box.

CListBox::CListBox 355

Member Functions

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

ClistBox: :AddStri ng
int AddString(const char FAR* lpltem);

lpltem
Points to the null-terminated string that is to be added.

Adds a string to a list box. If the list box was not created with the LBS_SORT
style, the string is added to the end of the list. Otherwise, the string is inserted into
the list, and the list is sorted.

Use InsertString to insert a string into a specific location within the list box.

The zero-based index to the string in the list box. The return value is LB_ERR if
an error occurs; the return value is LB_ERRSPACE if insufficient space is avail­
able to store the new string.

CListBox::lnsertString, LB_ADDSTRING

ClistBox: :ClistBox
CListBoxO;

You construct a CListBox object in two steps. First call the constructor CListBox,
then call Create, which initializes the Windows list box and attaches it to the
CListBox.

CListBox: : Create

356 CListBox::Create

Syntax

Parameters

Remarks

CListBox::Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,

UINT nID);

dwStyle
Specifies the sty Ie of the list box.

reet
Specifies the list-box size and position. Can be either a CRect object or a
RECT structure.

pParentWnd
Specifies the list box's parent window (usually a CDialog or CModalDialog
object). It must not be NULL.

nID
Specifies the list box's resource ID.

You construct a CListBox object in two steps. First call the constructor, then call
Create, which initializes the Windows list box and attaches it to the CListBox
object.

When Create executes, Windows sends the WM_NCCREATE,
WM_CREATE, WM_NCCALCSIZE, and WM_GETMINMAXINFO
messages to the list-box control.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base
class. To extend the default message handling, derive a class from CListBox, add
a message map to the new class, and override the preceding message-handler mem­
ber functions. Override OnCreate, for example, to perform needed initialization
for a new class.

To handle Windows notification messages sent from a CListBox object to its
parent, add any of the following message-map entries that you want to process to
the parent class message map:

ON_COMMAND
ON_LBN_DBLCLK
ON_LBN_ERRSPACE
ON_LBN_KILLFOCUS
ON_LBN_SELCHANGE
ON_LBN_SETFOCUS

Apply the following window styles to a list-box control:

Style

WS_CHILD

WS_VISIBLE

WS_DISABLED

WS_VSCROLL

WS_HSCROLL

WS_GROUP

WS_TABSTOP

Application

Always.

Usually.

Rarely.

CListBox::Create 357

Adds a vertical scroll bar.

Adds a horizontal scroll bar.

To group controls.

To allow tabbing to this control.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination ofthe following list-box styles for dwStyle:

Style

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

Meaning

The user can select multiple items
using the SHIFf key and the mouse or
special key combinations.

Specifies an owner-draw list box that
contains items consisting of strings.
The list box maintains the memory
and pointers for the strings so the
application can use the GetText
member function to retrieve the text
for a particular item.

Specifies a multicolumn list box that
is scrolled horizontally. The
Set Column Width member function
sets the width of the columns.

String selection is toggled each time
the user clicks or double-clicks the
string. Any number of strings can be
selected.

The size of the list box is exactly the
size specified by the application when
it created the list box. Usually,
Windows sizes a list box so that the
list box does not display partial items.

358 CListBox::Create

Style

LBS_NOREDRAW

LBS_ OWNERDRAWFIXED

LBS_ OWNERDRA WVARIABLE

LBS_STANDARD

LBS_ USETABSTOPS

Meaning

List-box display is not updated when
changes are made. This style can be
changed at any time by sending a
WM_SETREDRAW message.

Parent window receives an input
message whenever the user clicks or
double-clicks a string.

The owner of the list box is
responsible for drawing its contents;
the items in the list box are the same
height.

The owner of the list box is
responsible for drawing its contents;
the items in the list box are variable
in height.

Strings in the list box are sorted
alphabetically.

Strings in the list box are sorted
alphabetically, and the parent window
receives an input message whenever
the user clicks or double-clicks a
string. The list box contains borders
on all sides.

Allows a list box to recognize and
expand tab characters when drawing
its strings. The default tab positions
are 32 dialog units. (A dialog unit is a
horizontal or vertical distance. One
horizontal dialog unit is equal to one­
fourth of the current dialog base
width unit. The dialog base units are
computed based on the height and
width of the current system font. The
GetDialogBaseUnits Windows
function returns the current dialog
base units in pixels.)

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Style

LBS_ WANTKEYBOARDINPUT

TRUE if successful; otherwise FALSE.

CListBox:: CListBox

CListBox::DeleteString
int DeleteString(UINT nlndex);

nlndex

CListBox::DeleteString 359

Meaning

The owner of the list box receives
WM_ VKEYTOITEM or
WM_ CHARTOITEM messages
whenever the user presses a key when
the list box has input focus. This
allows an application to perform
special processing on the keyboard
input.

Specifies the zero-based index of the string to be deleted.

Deletes an item in a list box.

A count of the strings remaining in the list. The return value is LB_ERR if the
nlndex specifies an index greater then the number of items in the list.

LB_DELETESTRIN G, CListBox: :AddString, CListBox:: InsertString

360 CListBox::Dir

Syntax

Parameters

Remarks

Return Value

See Also

ClistBox::Dir
int Dir(DINT attr, const char FAR* lpWildCard);

attr
Can be any combination of the CFile: : GetStatus enum flags, or any combina­
tion of the following values:

Value

OxOOOO

OxOOOI

Ox0002

Ox0004

OxOOIO

Ox0020

Ox4000

Ox8000

lpWildCard

Meaning

File can be read from or written to.

File can be read from, but not written to.

File is hidden and does not appear in a directory listing.

File is a system file.

The name specified by lp WildCard specifies a directory.

File has been archived.

Include all drives that match the name specified by
lp WildCard.

Exclusive flag. If the exclusive flag is set, only files of the
specified type are listed. Otherwise, files of the specified type
are listed in addition to "normal" files.

Points to a file-specification string. The string can contain wildcards (for
example, *. *).

Adds a list of filenames and/or drives to a list box.

The zero-based index of the last filename added to the list. The return value is
LB_ERR if an error occurs; the return value is LB_ERRSPACE if insufficient
space is available to store the new strings.

CWnd::DlgDirList, LB_DIR, CFile::GetStatus

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CListBox::GetCount 361

CListBox::FindString
int FindString(int nStartAfter, const char FAR* lpltem) const;

nStartAfte r
Contains the zero-based index of the item before the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of
the list box back to the item specified by nStartAfter. If nStartAfter is -1, the
entire list box is searched from the beginning.

lpltem
Points to the null-terminated string that contains the prefix to search for. The
search is case-independent, so this string may contain any combination of
uppercase and lowercase letters.

Finds the first string in a list box that contains the specified prefix without chang­
ing the list-box selection. Use the SelectString member function to both find and
select a string.

The zero-based index of the matching item, or LB_ERR if the search was
unsuccessful.

CListBox: :SelectString, CListBox: :AddString, CListBox: :InsertString,
LB_FINDSTRING

CListBox::GetCount
int GetCountO const;

Retrieves the number of items in a list box.

The returned count is one greater then the index value of the last item (the index is
zero-based).

The number of items in the list box, or LB_ERR if an error occurs.

LB_GETCOUNT

362 CListBox::GetCurSel

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CListBox: :GetCurSel
int GetCurSelO const;

Retrieves the zero-based index of the currently selected item, if any, in a single­
selection list box.

GetCurSel should not be called for a multiple-selection list box.

The zero-based index of the currently selected item. It is LB_ERR if no item is
currently selected or if the list box is a multiple-selection list box.

LB_ GETCURSEL, CListBox: :SetCurSel

CListBox::GetHorizontaIExtent
int GetHorizontalExtentO const;

Retrieves from a list box the width in pixels by which the list box can be scrolled
horizontally if the list box has horizontal scroll bars.

To respond to GetHorizontalExtent, the list box must have been defined with the
WS_HSCROLL style.

The scrollable width of the list box, in pixels.

CListBox: :SetHorizontalExtent, LB_ GETHORIZONT ALEXTENT

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CListBox::GetltemRect 363

CListBox::GetltemData
DWORD GetItemData(int nlndex) const;

nlndex
Specifies the zero-based index of the item in the list box.

Retrieves the application-supplied 32-bit value associated with the specified list­
box item.

The 32-bit value was the lpltem parameter of a SetltemData call.

The 32-bit value associated with the item, or LB_ERR if an error occurs.

CListBox: :AddString, CListBox: :InsertString, CListBox: :SetItemData,
LB_ GETITEMDATA

CListBox::GetltemRect
int GetltemRect(int nlndex, LPRECT lpRect) const;

nlndex
Specifies the zero-based index of the item.

lpRect
Specifies a long pointer to a RECT data structure that receives the list-box
client coordinates of the item.

Retrieves the dimensions of the rectangle that bounds a list-box item as it is cur­
rently displayed in the list-box window.

LB_ERR if an error occurs.

LB_GETITEMRECT

364 CListBox::GetSel

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CListBox::GetSel
int GetSel(int nlndex) const;

nlndex
Specifies the zero-based index of the item.

Retrieves the selection state of an item. This member function works with both
single and multiple-selection list boxes.

A positive number if the specified item is selected; otherwise, it is O. The return
value is LB_ERR if an error occurs.

LB_ GETSEL, CListBox: :SetSel

CListBox::GetSeICount
int GetSelCountO const;

Retrieves the total number of selected items in a multiple-selection list box.

The count of selected items in a list box. If the list box is a single-selection list
box, the return value is LB_ERR.

CListBox::SetSel, LB_GETSELCOUNT

CListBox::GetSelltems
int GetSelItems(int nMaxltems, LPINT rglndex) const;

nMaxltems
Specifies the maximum number of selected items whose item numbers are to be
placed in the buffer.

rglndex
Specifies a long pointer to a buffer large enough for the number of integers
specified by nMaxltems.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CListBox::GetText 365

Fills a buffer with an array of integers that specifies the item numbers of selected
items in a multiple-selection list box.

The actual number of items placed in the buffer. If the list box is a single-selection
list box, the return value is LB_ERR.

LB_ GETSELITEMS

CL istBox:: G etText
int GetText(int nlndex, char FAR* IpBuffer) const;

void GetText(int nlndex, CString& rString) const;

nlndex
Specifies the zero-based index of the string to be retrieved.

IpBuffer
Points to the buffer that receives the string. The buffer must have sufficient
space for the string and a terminating null character. The size of the string can
be determined ahead of time by calling the GetTextLen member function.

rString
A reference to a CString object.

Gets a string from a list box. The second form of this member function fills a
CString object with the string text.

The length (in bytes) of the string, excluding the terminating null character. If
nlndex does not specify a valid index, the return value is LB_ERR.

CListBox: :GetTextLen, LB_ GETTEXT

366 CListBox::GetTextLen

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

ClistBox::GetTextlen
int GetTextLen(int nlndex) const;

nlndex
Specifies the zero-based index of the string.

Gets the length of a string in a list box item.

The length of the string in bytes, excluding the terminating null character. If
nlndex does not specify a valid index, the return value is LB_ERR.

CListBox: : GetText, LB_ GETTEXTLEN

ClistBox::GetToplndex
int GetTopIndexO const;

Retrieves the zero-based index of the first visible item in a list box. Initially, item
o is at the top of the list box, but if the list box is scrolled, another item may be at
the top.

The zero-based index of the first visible item in a list box.

CListBox: :SetTopIndex, LB_ GETTOPINDEX

ClistBox::lnsertString
int InsertString(int nlndex, const char FAR* lpltem);

nlndex
Specifies the zero-based index of the position to insert the string. If this parame­
ter is -1, the string is added to the end of the list.

lpltem
Points to the null-terminated string that is to be inserted.

Remarks

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

ClistBox::SelectString 367

Inserts a string into the list box. Unlike the AddString member function,
InsertString does not cause a list with the LBS_SORT style to be sorted.

The zero-based index of the position at which the string was inserted. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if in­
sufficient space is available to store the new string.

CListBox::AddString, LB_INSERTSTRING

ClistBox::ResetContent
void ResetContentO;

Removes all items from a list box.

LB_RESETCONTENT

ClistBox::SelectString
int SelectString(int nStartAfter, const char FAR* lpltem);

nStartAfter
Contains the zero-based index of the item before the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of
the list box back to the item specified by nStartAfter. If nStartAfter is -1, the en­
tire list box is searched from the beginning.

lpltem
Points to the null-terminated string that contains the prefix to search for. The
search is case-independent, so this string may contain any combination of up­
percase and lowercase letters.

Searches for a list-box item that matches the specified string, and if a matching
item is found, it selects the item.

The list box is scrolled, if necessary, to bring the selected item into view.

368 CListBox::SelltemRange

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

This member function cannot be used with a list box that has the
LBS_MUL TIPLESEL style.

An item is selected only if its initial characters (from the starting point) match the
characters in the string specified by lpltem.

Use the FindString member function to find a string without selecting the item.

The index of the selected item if the search was successful. If the search was un­
successful, the return value is LB_ERR and the current selection is not changed.

CListBox: :FindString, LB_ SELECTSTRING

CListBox::SelltemRange
int SeIItemRange(BOOL bSelect, int nFirstltem, int nLastltem);

bSelect
Specifies how to set the selection. If bSelect is TRUE, the string is selected and
highlighted; if FALSE, the highlight is removed and the string is no longer
selected.

nFirstltem
Specifies the zero-based index of the first item to set.

nLastltem
Specifies the zero-based index of the last item to set.

Selects one or more consecutive items in a multiple-selection list box.

Use this member function only with multiple-selection list boxes.

LB_ERR if an error occurs.

LB_SELlTEMRANGE, CListBox::GetSeIItems

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CListBox::SetCurSel 369

CListBox::SetColumnWidth
void SetColumnWidth(int cxWidth);

cxWidth
Specifies the width in pixels of all columns.

Sets the width in pixels of all columns in a multi column list box (created with the
LBS_MULTICOLUMN style).

LB_SETCOLUMNWIDTH

CListBox:: SetCu rSe I
int SetCurSel(int nSelect);

nSelect
Specifies the zero-based index of the string to be selected. If nSelect is -1, the
list box is set to have no selection.

Selects a string and scrolls it into view, if necessary. When the new string is
selected, the list box removes the highlight from the previously selected string.

Use this member function only with single-selection list boxes. It cannot be used
to set or remove a selection in a multiple-selection list box.

LB_ERR if an error occurs.

LB_SETCURSEL, CListBox: :GetCurSel

370 CListBox::SetHorizontaIExtent

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CListBox::SetHorizontaIExtent
void SetHorizontalExtent(int cxExtent);

cxExtent
Specifies the number of pixels by which the list box can be scrolled
horizontally.

Sets the width, in pixels, by which a list box can be scrolled horizontally. If the
size of the list box is smaller than this value, the horizontal scroll bar will horizon­
tally scroll items in the list box. If the list box is as large or larger than this value,
the horizontal scroll bar is hidden.

To respond to a call to SetHorizontalExtent, the list box must have been defined
with the WS_HSCROLL style.

CListBox: : GetHorizontalExtent, LB_ SETHORIZONT ALEX TENT

CListBox::SetltemData
int SetItemData(int nlndex, DWORD dwltemData);

nlndex
Specifies the zero-based index of the item.

dwltemData
Specifies the value to be associated with the item.

Sets a 32-bit value associated with the specified item in a list box.

LB_ERR if an error occurs.

CListBox: : GetItemData, LB_SETITEMDATA

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CListBox::SetTabStops 371

CListBox::SetSel
int SetSel(int nlndex, BOOL bSelect = TRUE);

nlndex
Contains the zero-based index of the string to be set. If -1, the selection is
added to or removed from all strings, depending on the value of bSelect.

bSelect
Specifies how to set the selection. If bSelect is TRUE, the string is selected and
highlighted; if FALSE, the highlight is removed and the string is no longer
selected. The specified string is selected and highlighted by default.

Selects a string in a multiple-selection list box.

Use this message only with multiple-selection list boxes.

LB_ERR if an error occurs.

CListBox: : GetSeL LB_SETSEL

CListBox: :SetTabStops
BOOL SetTabStops(int nTabStops, LPINT rgTabStops);

void SetTabStopsO;

BOOL SetTabStops(int cxEachStop);

nTabStops
Specifies the number of tab stops to have in the list box.

rgTabStops
Points to the first member of an array of integers containing the tab-stop posi­
tions in dialog units. (A dialog unit is a horizontal or vertical distance. One hori­
zontal dialog unit is equal to one-fourth of the current dialog base width unit,

372 CListBox::SetToplndex

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

and one vertical dialog unit is equal to one-eighth of the current dialog base
height unit. The dialog base units are computed based on the height and width
of the current system font. The GetDialogBaseUnits Windows function returns
the current dialog base units in pixels.) The tab stops must be sorted in increas­
ing order; back tabs are not allowed.

cxEachStop
Tab stops are set at every cxEachStop dialog units.

Sets the tab-stop positions in a list box.

If SetTabStopsO is called, nTabStops is 0, rgTabStops is NULL, and the default
tab stop is 2 dialog units.

If nTabStops is 1, tab stops will be separated by the distance specified by
rgTabStops.

If rgTabStops points to more than a single value, then a tab stop will be set for
each value in rgTabStops, up to the number specified by nTabStops.

To respond to a call to the SetTabStops member function, the list box must have
been created with the LBS_ USETABSTOPS style.

TRUE if all the tabs were set; otherwise FALSE.

LB_SETTABSTOPS, : : GetDialogBaseUnits

CListBox::SetToplndex
int SetToplndex(int nlndex);

nlndex
Specifies the zero-based index of the list-box item.

Ensures that a particular list-box item is visible.

The system scrolls the list box until either the list-box item appears at the top of
the list box or the maximum scroll range has been reached.

LB_ERR if an error occurs.

CListBox::GetToplndex, LB_SETTOPINDEX

CMapPtrToPtr 373

class CMapPtrToPtr : public CObject

Public Members

The CMapPtrToPtr class supports maps of
void pointers keyed by void pointers.

The member functions of CMapPtrToPtr
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value, sub­
stitute a pointer to void. Wherever you see a CString or a const pointer to char as
a function parameter or return value, substitute a pointer to void.

BOOl CMapStringToOb::lookup(canst char* <key>, CObject*& <rValue>)
canst;

for example, translates to

BOOl CMapPtrToPtr::lookup(void* <key>, void*& <rValue>) canst;

CMapPtrToPtr incorporates the IMPLEMENT_DYNAMIC macro to support
run-time type access and dumping to a CDumpContext object. If you need a
dump of individual map elements (pointer values), you must set the depth of the
dump context to 1 or greater.

Pointer-to-pointer maps may not be serialized.

When a CMapPtrToPtr object is deleted, or when its elements are removed, only
the pointers are removed, not the entities they reference.

#include <afxcoll.h>

Construction/Destruction
CMapPtrToPtr

-CMapPtrToPtr

Constructs a collection that maps void pointers to
void pointers.

Destroys a CMapPtrToPtr object.

374 CMapPtrToPtr

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Looks up a void pointer, based on the void pointer
key. The pointer value is used for the key compari­
son, not the entity it points to.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map-operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapPtrToWord 375

class CMapPtrToWord : public CObject

Public Members

The CMapPtrToWord class supports maps of
16-bit words keyed by void pointers.

The member functions of CMapPtrToWord
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value, sub­
stitute WORD. Wherever you see a CString or a const pointer to char as a func­
tion parameter or return value, substitute a pointer to void.

BOOl CMapStringTaOb::laakup(canst char* <key>. CObject*& <rValue>)
canst;

for example, translates to

BOOl CMapPtrTaWard::laakup(canst vaid* <key>. WORD& <rValue>) canst;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to sup­
port run-time type access and dumping to a CDumpContext object. If you need a
dump of individual map elements, you must set the depth of the dump context to 1
or greater.

Pointer-to-word maps may not be serialized.

When a CMapPtrToWord object is deleted, or when its elements are removed,
the pointers and the words are removed. The entities referenced by the key point­
ers are not removed.

#include <afxcoll.h>

Construction/Destruction
CMapPtrToWord

-CMapPtrTo Word

Constructs a collection that maps void pointers to
16-bit words.

Destroys a CMapPtrToWord object.

376 CMapPtrToWord

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Returns a WORD, using a void pointer as a key.
The pointer value is used for the key comparison,
not the entity it points to.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map-operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToOb 317

class CMapStringToOb : public CObject

See Also

Derivation

CMapStringToOb is a dictionary collection class
that maps unique CString objects to CObject point­
ers. Once you have inserted a CString-CObject*
pair (element) into the map, you can efficiently re­
trieve or delete the pair using a string or a CString value as a key. You can also
iterate over all the elements in the map.

A variable of type POSITION is used for alternate entry access in all map varia­
tions. You can use a POSITION to "remember" an entry and to iterate through
the map. You might think that this iteration is sequential by key value; it is not.
The sequence of retrieved elements is indeterminate.

CMapStringToOb incorporates the IMPLEMENT _SERIAL macro to support
serialization and dumping of its elements. If a map is stored to an archive, either
with the overloaded insertion operator or with the Serialize member function,
each element is, in tum, serialized.

If you need a diagnostic dump of the individual elements in the map (the CString
value and the CObject contents), you must set the depth of the dump context to 1
or greater.

When a CMapStringToOb object is deleted, or when its elements are removed,
the CString objects and the CObject pointers are removed. The objects refer­
enced by the CObject pointers are not destroyed.

#include <afxcoll.h>

CMapPtrToPtr, CMapPtrTo Word, CMapStringToPtr,
CMapStringToString, CMapWordToOb, CMapWordToPtr

Map class derivation is similar to list derivation. See the tutorial in the Microsoft
Class Library User's Guide for an illustration of the derivation of a special­
purpose list class.

378 CMapStringToOb

Public Members

Construction/Destruction
CMapStringToOb

-CMapStringToOb

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Constructs a collection that maps CString values
to CObject pointers.

Destroys a CMapStringToOb object.

Returns a CObject pointer, based on a CString
value.

Inserts an element into the map; replaces an ex­
isting element if a matching key is found.

Inserts an element into the map-operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToOb::-CMapStringToOb 379

Member Functions

Syntax

Parameters

Remarks

Example

Syntax

Remarks

CMapStringToOb::CMapStringToOb
CMapStringToOb(int nBlockSize = 10);

nBlockSize
The memory-allocation granularity for extending the map.

Constructs an empty CString-to-CObject* map. As the map grows, memory is al­
located in units of nBlockSize entries.

See CObList::CObList for a listing of the CAge class used in all collection ex­
amples.

CMapStringToOb map(20); II Map on the stack with blocksize of 20

CMapStringToOb* pm = new CMapStringToOb; II Map on the heap
II with default blocksize

CMapStri ngToOb: :-CMapStri ngToOb
-CMapStringToObO;

Destroys a CMapStringToOb object, including all CString key objects contained
in the map, but does not destroy the CObject objects.

380 CMapStringToOb::GetCount

Syntax

Return Value

Example

See Also

Syntax

Parameters

Remarks

CMapStringToOb::GetCount
int GetCountO const;

The number of elements in this map.

CMapStringToOb map;

map.SetAt("Bart", new CAge(13));
map.SetAt("Homer", new CAge(36));
ASSERT(map.GetCount() == 2);

CMapStringToOb::IsEmpty

CMapStringToOb::GetNextAssoc
void GetNextAssoc(POSITION& rNextPosition, CString& rKey,

CObject*& rValue) const;

rN extPosition
A reference to a POSITION value returned by a previous GetNextAssoc or
GetStartPosition call.

rKey
The returned key of the retrieved element (a string).

rValue
The returned value of the retrieved element (a CObject pointer).

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to
the next element in the map. This function is most useful for iterating through all
the elements in the map. Note that the position sequence is not necessarily the
same as the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition
is set to NULL.

Example

See Also

Syntax

Remarks

Example

CMapStringToOb map;
POSITION pas;
CString key;
CAge* pa;

CMapStringToOb::GetStartPosition 381

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
II Iterate through the entire map, dumping both name and age
fore pas = map.GetStartPosition(); pas != NULL;)
{

map.GetNextAssoc(pas, key, pa);
Ififdef _DEBUG

Ifendif
}

afxDump « key « " : " « pa « "\\n";

The results from this program are as follows:

Lisa: a CAge at $4724 11
Marge : a CAge at $47A8 35
Homer : a CAge at $4766 36
Bart : a CAge at $4504 13

CMapStringToOb::GetStartPosition

CMapSlringToOb::GeISlartPosilion
POSITION GetStartPositionO const;

Starts a map iteration by returning a POSITION value that can be passed to a
GetNextAssoc call. The iteration sequence is not predictable; therefore the "first
element in the map" has no special significance.

See the example for the function GetNextAssoc.

382 CMapStringToOb::lsEmpty

Syntax

Return Value

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

CMapStringToOb::lsEmpty
BOOL IsEmptyO const;

TRUE if this map contains no elements; otherwise FALSE.

See the example for RemoveAll.

CMapStringToOb::GetCount

CMapStringToOb::Lookup
BOOL Lookup(const char* key, CObject*& rValue) const;

key
The string key that identifies the element to be looked up.

rValue
The returned value from the looked-up element.

Lookup uses a hashing algorithm to quickly find the map element with a key that
matches exactly (CString value).

TRUE ifthe element was found; otherwise FALSE.

CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
ASSERT(map.Lookup("Lisa", pa)); II Is "Lisa" in the map?
ASSERT(*pa == CAge(11)); II Is she II?

CMapStringToOb::operator []

Syntax

Rem'at:ks

Example

See Also

Syntax

Parameters

Remarks

Return Value

CMapStringToOb::RemoveKey 383

CMapSlringToOb::RemoveAII
void RemoveAlIO;

Removes all the elements from this map and destroys the CString key objects.
The CObject objects referenced by each key are not destroyed. The RemoveAll
function can cause memory leaks if you do not ensure that the referenced CObject
objects are destroyed.

The function works correctly if the map is already empty.

{

CMapStringToOb map;

CAge age1(13); II Two objects on the stack
CAge age2(36);
map.SetAt("Bart", &age1);
map.SetAt("Homer", &age2 1;
ASSERT(map.GetCount() == 2);
map.RemoveAll(); II CObject pointers removed; objects not removed
ASSERT(map.GetCount() == 0);
ASSERT(map.IsEmpty());

} II The two CAge objects are deleted when they go out of scope

CMapStringToOb: : RemoveKey

CMapSlringToOb::RemoveKey
BOOL RemoveKey(const char* key);

key
The string used for map lookup.

Looks up the map entry corresponding to the supplied key; then, if the key is
found, removes the entry. This can cause memory leaks if the CObject object is
not deleted elsewhere.

TRUE if the entry was found and successfully removed; otherwise FALSE.

384 CMapStringToOb::SetAt

Example CMapStri ngToOb map;

See Also

Syntax

Parameters

Remarks

map.SetAt("Bart", new CAge(13));
map.SetAt("Lisa", new CAge(11));
map.SetAt("Homer", new CAge(36));
map.SetAt("Marge", new CAge(35));
map. RemoveKey("Lisa"); II memory leak: age object not deleted

1fi fdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "RemoveKey example: " « &map « "\\n";

1fendif

The results from this program are as follows:

RemoveKey example: A CMapStringToOb with 3 elements
[Marge] = a CAge at $49A0 35
[Homer] = a CAge at $495E 36
[Bart] = a CAge at $4634 13

CMapStringToOb: : RemoveAll

CMapStringToOb::SelAt
void SetAt(const char* key, CObject* newValue)
throw(CMemoryException);

key
The string that is the key of the new element.

newValue
The CObject pointer that is the value of the new element.

The primary means to insert an element in a map. First, the key is looked up. If the
key is found, then the corresponding value is changed; otherwise, a new key-value
element is created.

Example

See Also

CMapStringToOb map;
CAge* pa;

map.SetAt("Bart", new CAge(13);

CMapStringToOb::SetAt 385

map.SetAt("Lisa", new CAge(11); II Map contains 2 elements
!ti fdef _ DEBUG

afxDump.SetDepth(1);
afxDump « "before Lisa's birthday: " « &map « "\\n";

!tend if
if(map.Lookup("Lisa", pa))
{ II CAge 12 pointer replaces CAge 11 pointer

map.SetAt("Lisa", new CAge(12));
delete pa; II Must delete CAge 11 to avoid memory leak

}

lfoifdef _ DEBUG
afxDump « "after Lisa's birthday: " « &map « "\\n";

lfoendi f

The results from this program are as follows:

before Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $493C 11
[Bart] = a CAge at $4654 13

after Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] a CAge at $49C0 12
[Bart] = a CAge at $4654 13

CMapStringToOb: : Lookup, CMapStringToOb: : operator []

386 CMapStringToOb::operator []

Operators

Syntax

Remarks

Example

See Also

CMapStringToOb::operator []
CObject*& operator [](const char* key);

This operator is a convenient substitute for the SetAt member function. Thus it
can be used only on the left side of an assignment statement (an I-value). If there is
no map element with the specified key, then a new element is created.

There is no "right side" (r-value) equivalent to this operator because there is a
possibility that a key may not be found in the map. Use the Lookup member func­
tion for element retrieval.

CMapStringToOb map;

map["Bart"] = new CAge(13);
map["L i sa"] = new CAge(11);

#ifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "Operator [] exampl e: " « &map « "\ \n";

fiend if

The results from this program are as follows:

Operator [] example: A CMapStringToOb with 2 elements
[Lisa] a CAge at $4A02 11
[Bart] = a CAge at $497E 13

CMapStringToOb: :SetAt, CMapStringToOb: : Lookup

CMapStringToPtr 387

class CMapStringToPtr : public CObject

Public Members

The CMapStringToPtr class supports maps of
void pointers keyed by CString objects.

The member functions of CMapStringToPtr
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value,
substitute a pointer to void.

BOOl CMapStringToOb;;loakupC canst char* <key>, CObject*& <rValue>)
const;

for example, translates to

BOOl CMapStringToPtr;;laokupC canst char* <key>, vaid*& <rValue>)
canst;

CMapStringToPtr incorporates the IMPLEMENT_DYNAMIC macro to sup­
port run-time type access and dumping to a CDumpContext object. If you need a
dump of individual map elements, you must set the depth of the dump context to
1 or greater.

String-to-pointer maps may not be serialized.

When a CMapStringToPtr object is deleted, or when its elements are removed,
the CString key objects and the words are removed.

#include <afxcoll.h>

Construction/Destruction
CMapStringToPtr

-CMapStringToPtr

Constructs a collection that maps CString objects
to void pointers.

Destroys a CMapStringToPtr object.

388 CMapStringToPtr

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Returns a void pointer, based on a CString value.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map-operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapStringToString 389

class CMapSlringToSlring : public CObjecl

Public Members

The CMapStringToString class supports maps of
CString objects keyed by CString objects.

The member functions of CMapStringToString
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a return value or 'output' function parame­
ter, substitute a pointer to char. Wherever you see a CObject pointer as an 'input'
function parameter, substitute a pointer to char.

BOOl CMapStringTaOb::laakup(canst char* <key>, CObject*& <rValue>)
canst;

for example, translates to

BOOl CMapStringToString::laakup(canst char* <key>, CString& <rValue>)
canst;

CMapStringToString incorporates the IMPLEMENT_SERIAL macro to sup­
port serialization and dumping of its elements. If a map is stored to an archive,
either with the overloaded insertion operator or with the Serialize member func­
tion, each element is, in turn, serialized.

If you need a dump of individual CString-CString elements, you must set the
depth of the dump context to 1 or greater.

When a CMapStringToString object is deleted, or when its elements are re­
moved, the CString objects are removed as appropriate.

#include <afxcoll.h>

Construction/Destruction
CMapStringToString

-CMapStringToString

Constructs a collection that maps CString objects
to CString objects.

Destroys a CMapStringToString object.

390 CMapStringToString

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Returns a CString, using a CString value as a key.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map--operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapWordToOb 391

class CMapWordToOb : public CObject

Public Members

The CMapWordToOb class supports maps of
CObject pointers keyed by 16-bit words.

The member functions of CMapWordToOb
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CString or a const pointer to char as a function parameter or
return value, substitute WORD.

BOOl CMapStringToOb::lookup(const char* <key>, CObject*& <rValue>)
const;

for example, translates to

BOOl CMapWordToOb::lookup(WORD <key>, CObject*& <rValue>) const;

CMapWordToOb incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If a map is stored to an archive, either
with the overloaded insertion operator or with the Serialize member function,
each element is, in turn, serialized.

If you need a dump of individual WORD-CObject elements, you must set the
depth of the dump context to I or greater.

When a CMapWordToOb object is deleted, or when its elements are removed,
the CObject objects are deleted as appropriate.

#include <afxcoll.h>

Construction/Destruction
CMapWordToOb

-CMapWordToOb

Constructs a collection that maps words to
CObject pointers.

Destroys a CMapWordToOb object.

392 CMapWordToOb

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Returns a CObject pointer, using a word value as
a key.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map-operator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMapWordToPtr 393

class CMapWordToPlr : public CObjecl

Public Members

The CMapWordToPtr class supports maps of
void pointers keyed by 16-bit words.

The member functions of CMapWordToPtr
are similar to the member functions of class
CMapStringToOb. Because of this similarity, you can use the
CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value, sub­
stitute a pointer to void. Wherever you see a CString or a const pointer to char as
a function parameter or return value, substitute WORD.

BOOl CMapStringTaOb::laakup(canst char* <key>. CObject*& <rValue>)
canst;

for example, translates to

BOOl CMapWardTaPtr::laakup(WORD <key>. vaid*& <rValue>) canst;

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to sup­
port run-time type access and dumping to a CDumpContext object. If you need a
dump of individual map elements, you must set the depth of the dump context to
1 or greater.

Word-to-pointer maps may not be serialized.

When a CMapWordToPtr object is deleted, or when its elements are removed,
the words and the pointers are removed. The entities referenced by the pointers are
not removed.

#include <afxcoll.h>

Construction/Destruction
CMapWordToPtr

-CMapWordToPtr

Constructs a collection that maps words to void
pointers.

Destroys a CMapWordToPtr object.

394 CMapWordToPtr

Operations
Lookup

SetAt

operator []

RemoveKey

RemoveAll

GetStartPosition

GetNextAssoc

Status
GetCount

IsEmpty

Returns a void pointer, using a word value as a key.

Inserts an element into the map; replaces an
existing element if a matching key is found.

Inserts an element into the map-<:>perator
substitution for SetAt.

Removes an element specified by a key.

Removes all the elements from this map.

Returns the position of the first element.

Gets the next element for iterating.

Returns the number of elements in this map.

Tests for the empty-map condition (no elements).

CMDlChildWnd 395

class CMDIChildWnd : public CFrameWnd

See Also

Public Members

The CMDIChildWnd class provides the functionality
of a Windows multiple document interface (MOl)
child window, along with data and methods to manip­
ulate the window. An MDI child window looks much
like a typical application window, except that the MOl
child window lacks a menu. The menu on the main
application window applies to MDI child windows.

To create a useful MDI child window for your application, derive a class from
CMDIChildWnd. Add member variables to the derived class to store data
specific to your application. Implement message-handler member functions and a
message map in the derived class to specify what happens when messages are
directed to the window.

You create an MDI child window in two steps. First, call the constructor
CMDIChildWnd to construct the CMDIChildWnd object, then call the Create
member function to create the MDI child window and attach it to the
CMDIChildWnd object.

Construction can be a one-step process in a derived class. Write a constructor for
the derived class and call Create from within the constructor.

When the user terminates your MDI child window, destroy the CMDIChildWnd
object, or call the DestroyWindow member function, which CMDIChildWnd
inherits from class CWnd, to remove the CMDIChildWnd and destroy its data
structures. If you allocate any memory in the CMDIChildWnd object, override
the CMDIChildWnd destructor to dispose of the allocations.

CWnd, CFrameWnd, CMDIFrameWnd

Construction/Destruction
CMDIChildWnd Called when a CMDIChildWnd object is

constructed.

396 CMDlChildWnd

Initialization
Create

Operations
MDIDestroy

MDIActivate

MDIMaximize

MDIRestore

GetParentFrame

Protected Members

Data Members
IILpMDIFrameWnd

Creates the Windows MDI child window as­
sociated with the CMDIChildWnd object.

Destroys this MDI child window.

Activates this MDI child window.

Maximizes this MDI child window.

Restores this MDI child window from maximized
or minimized size.

Returns the parent MDI frame.

Points to the parent CMDIFrameWnd of this
CMDIChildWnd.

CMDIChildWnd::Create 397

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

CMDIChildWnd::CMDIChildWnd
CMDIChildWndO;

Called when a CMDIChildWnd object is constructed. The Windows MDI child
window is not created until the Create member function is called.

CMDIChildWnd::Create

CMDIChildWnd::Create
BOOL Create(const char FAR* lpClassName,

const char FAR* lpWindowName, DWORD dwStyle = 0,
const RECT& reet = rectDefault, CMDIFrameWnd* pParentWnd = NULL);

lpClassName
Points to a null-terminated character string that names the Windows class (a
WNDCLASS struct). The class name can be any name registered with the
afxRegisterWndClass function or any of the predefined control-class names.
Should be NULL for a standard CMDIChildWnd.

lpWindowName
Points to a null-terminated character string that represents the window name.
Used as text for the title bar.

dwStyle
Specifies the window style attributes. See the CreateEx member function in the
CWnd class for a full list of window styles.

reet
Contains the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new CMDIChildWnd.

pParentWnd
Specifies the window's parent. If NULL, the main application window is used.

398 CMDlChildWnd::GetParentFrame

Remarks Creates the Windows MOl child window and attaches it to the CMDIChildWnd
object.

Return Value

See Also

Syntax

Remarks

Syntax

Remarks

See Also

TRUE if successful; otherwise FALSE.

CMDIChildWnd::CMDIChildWnd

CMDICh i IdWnd: :GetParentFrame
virtual CFrameWnd* GetParentFrameO;

Returns the parent MDI frame. The actual parent, as returned by the GetParent
member function, is a special, invisible window of type MDICLIENT.

CMDIChildWnd::MDIActivate
void MDIActivateO;

An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated will be
activated as well.

CMDIFrameWnd::MDIGetActive, CWnd::OnNcActivate,
CMDIFrameWnd::MDINext, W~MDIACTIVATE

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

CMDlChildWnd::MDlRestore 399

CMDIChildWnd::MDIDestroy
void MDIDestroyO;

Destroys this MDI child window.

Removes the title of the child window from the frame window and deactivates the
child window.

W~MDIDESTROY, CMDIChildWnd::Create

CMDIChildWnd::MDIMaximize
void MDIMaximizeO;

Maximizes this MDI child window. When a child window is maximized, Win­
dows resizes it to make its client area fill the client window. Windows places the
child window's Control menu in the frame's menu bar so that the user can restore
or close the child window, and adds the title of the child window to the frame­
window title.

W~MDIMAXIMIZE, CMDIChildWnd::MDIRestore

CMDIChildWnd::MDIRestore
void MDIRestoreO;

Restores this MDI child window from maximized or minimized size.

CMDIChildWnd::MDIMaximize, WM_MDIRESTORE

400 CMDlChildWnd::m_pMDIFrameWnd

Data Members

CMDIChildWnd::m_pMDIFrameWnd
Remarks

See Also

Points to the parent CMDIFrameWnd of this CMDIChildWnd.

CMDIChildWnd:GetParentFrame, CMDIFrameWnd

CMDlFrameWnd 401

class CMDIFrameWnd : public CFrameWnd

See Also

Public Members

The CMDIFrameWnd class provides the functional­
ity of a Windows multiple document interface (MOl)
frame window, and also provides members for manag­
ing the window.

To create a useful MDI frame window for your appli­
cation, derive a class from CMDIFrameWnd. Add
member variables to the derived class to store data specific to your application.
Implement message-handler member functions and a message map in the derived
class to specify what happens when messages are directed to the window.

You create an MDI frame window in two steps. First, call the constructor
CMDIFrameWnd to construct the CMDIFrameWnd object, then call the
Create member function to create the MDI frame window and attach it to the
CMDIFrameWnd object.

Construction can be a one-step process in a derived class. Write a constructor for
the derived class and call Create from within the constructor.

When the user terminates your MDI frame window, destroy the
CMDIFrameWnd object, or call the DestroyWindow member function, which
CMDIFrameWnd inherits from class CWnd, to remove the CMDIFrameWnd
and destroy its data structures. If you allocate any memory in the
CMDIFrameWnd object, override the CMDIFrameWnd destructor to
dispose of the allocations.

CWnd, CFrameWnd, CMDIChildWnd

Construction/Destruction
CMDIFrameWnd

In itia lizati on
Create

Create Client

Constructs a CMDIFrameWnd.

Creates and attaches the Windows MDI frame win­
dow associated with the CMDIFrameWnd object.

Fills out a CLIENTCREATESTRUCT and
creates a Windows MDICLIENT window for this
CMDIFrameWnd. Called by the OnCreate mem­
ber function.

402 CMDlFrameWnd

Operations
MDIActivate

MDICascade

MDIGetActive

MDIIconArrange

MDIMaximize

MDINext

MDIRestore

MDISetMenu

MDITile

GetChildFrame

Data Members
IlLh WndMDIClient

Activates a different MDI child window.

Arranges all child windows in a cascade format.

Retrieves the current active MDI child window,
along with a flag indicating whether the child is
maximized or not.

Arranges all minimized document child windows.

Maximizes an MDI child window.

Activates the child window immediately behind
the currently active child window and places the
currently active child window behind all other
child windows.

Restores an MDI child window from maximized
or minimized size.

Replaces the menu of an MDI frame window, the
Window pop-up menu, or both.

Arranges all child windows in a tiled format.

Returns the active MDI child.

The HWND for the MDI client window.

CMDIFrameWnd::Create 403

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

CM 01 FrameWnd: :CM OIFrameWnd
CMDIFrame WndO;

Constructs a CMDIFrameWnd object. The Windows MDI frame window is not
created and attached to the CMDIFrameWnd object until the Create member
function is called.

CMDIFrameWnd::Create

CMOIFrameWnd::Create
BOOL Create(const char FAR* IpClassName,

const char FAR* IpWindowName, DWORD dwStyle, const RECT& reet,
const CWnd* pParentWnd, const char FAR* IpMenuName);

lpClassName
Points to a null-terminated character string that names the Windows class (a
WNDCLASS struct). The class name can be any name registered with the
afxRegisterWndClass function or any of the predefined control-class names.
If NULL, uses the predefined default CMDIFrame Wnd attributes.

lp WindowName
Points to a null-terminated character string that represents the window name.
Used as text for the title bar.

dwStyle
Specifies the window style attributes. See the CreateEx member function in the
CWnd class for a full list of window styles.

reet
Contains the size and position ofthe window. The rectDefault value allows
Windows to specify the size and position of the new CMDIFrame Wnd.

404 CMDlFrameWnd::CreateClient

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

pParentWnd
Specifies the parent window ofthis MDI frame window. This parameter should
be NULL for top-level MDI frame windows.

IpMenuName
Identifies the name of the menu resource to be used with the window. Use
MAKEINTRESOURCE if the menu has an integer ID instead of a string.
This parameter can be NULL.

Creates the Windows MDI frame window and attaches it to the
CMDIFrameWnd object.

TRUE if successful; otherwise FALSE.

CMDIFrameWnd: :CMDIFrame Wnd

CM DI Fra me Wnd:: CreateCI ient
virtual BOOL CreateClient(LPCREATESTRUCT IpCreateStruct,

CMenu* pWindowMenu);

IpCreateStruct
Pointer to a CREATESTRUCTstructure.

pWindowMenu
Pointer to the window pop-up menu.

Creates the MDI client window that manages the CMDIChildWnds and fills out
a CLIENTCREATESTRUCT.

CreateClient should be called if you override the OnCreate member function.

TRUE if successful; otherwise FALSE.

CMDIFrameWnd::CMDIFrameWnd, CMDIFrameWnd::Create

Syntax

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CMDIFrameWnd::MDlActivate 405

CMDIFrameWnd::GetChildFrame
virtual CFrame Wnd * GetChiidFrameO;

Returns the active MDI child if successful. Returns a pointer to the
CMDIFrame Wnd if unsuccessful.

CMDIFrameWnd::MDIGetActive

CMDIFrameWnd::MDIActivate
void MDIActivate(CWnd* pWndActivate);

pWndActivate
Points to the MDI child window to be activated.

Activates a different MDI child window. The W~MDIACTIVATE message
is sent to both the child window being activated and the child window being
deactivated.

An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated is sent a
W~NCACTIV ATE message to draw an active window frame and caption bar,
but it does not receive another W~MDIACTIV ATE message.

CMDIFrameWnd::MDIGetActive, CMDIFrameWnd::MDINext,
WM_ACTIVATE, WM_NCACTIV ATE

406 CMDlFrameWnd::MDlCascade

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CMDIFrameWnd::MDICascade
void MDICascadeO;

Arranges all the MDI child windows in a cascade format.

CMDIFrameWnd::MDIIconArrange, CMDIFrarneWnd::MDITile,
~MDICASCADE

CMD I FrameWnd::M DIGetActive
CMDIChildWnd* MDIGetActive(BOOL* pbMaximized = NULL) const;

pbMaximized
Set to TRUE on return if the window is maximized; otherwise FALSE.

Retrieves the current active MDI child window, along with a flag indicating
whether the child window is maximized.

A pointer to the active MDI child window.

CMDIFrarneWnd: :MDIActivate, WM_MDIGETACTIVE

CMDIFrameWnd::MDllconArrange
void MDIIconArrangeO;

Arranges all minimized document child windows. It does not affect child windows
that are not minimized.

CMDIFrarneWnd::MDICascade, CMDIFrarneWnd::MDITile,
WMLMDIICONARRANGE

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

CMDIFrameWnd::MDINext 407

CMDIFrameWnd::MDIMaximize
void MDIMaximize(CWnd* pWnd);

pWnd
Points to the window to maximize.

Maximizes an MDI child window. When a child window is maximized, Windows
resizes it to make its client area fill the client window. Windows places the child
window's Control menu in the frame's menu bar so that the user can restore or
close the child window, and adds the title ofthe child window to the frame­
window title.

W~MDIMAXIMIZE, CMDIFrameWnd::MDIRestore

CMDIFrameWnd::MDINext
void MDINextO;

Activates the child window immediately behind the currently active child window
and places the currently active child window behind all other child windows.

Ifthe currently active MDI child window is maximized, restores the currently ac­
tive child and maximizes the newly activated child.

CMDIFrameWnd::MDIActivate, CMDIFrameWnd::MDIGetActive,
W~MDINEXT

408 CMDlFrameWnd::MDlRestore

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CMDIFrameWnd::MDIRestore
void MDIRestore(CWnd* pWnd);

pWnd
Points to the window to restore.

Restores an MDI child window from maximized or minimized size.

CMDIFrameWnd::MDIMaximize, W~MDIRESTORE

CMDIFrameWnd::MDISetMenu
CMenu* MDISetMenu(CMenu* pFrameMenu, CMenu* pWindowMenu);

pFrameMenu
Specifies the menu of the new frame-window menu. If NULL, the menu is not
changed.

pWindowMenu
Specifies the menu of the new Window pop-up menu. If NULL, the menu is
not changed.

Replaces the menu of an MDI frame window, the Window pop-up menu, or both.

After calling MDISetMenu, an application must call the DrawMenuBar member
function to update the menu bar.

If this call replaces the Window pop-up menu, MDI child-window menu items are
removed from the previous Window menu and added to the new Window pop-up
menu.

If an MDI child window is maximized and this call replaces the MDI frame­
window menu, the Control menu and restore controls are removed from the
previous frame-window menu and added to the new menu.

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CMDlFrameWnd::MDlTile 409

A pointer to the frame-window menu replaced by this message. The pointer may
be temporary, and should not be stored for later use.

CWnd::DrawMenuBar, W~MDISETMENU

CMDIFrameWnd::MDITile
void MDlTileO;

void MDlTile(int nType);

nType
Specifies a tiling flag. This parameter can be one of the following flags:

Value Meaning

MDITILE_HORIZONTAL Tiles MOl child windows horizontally
(one window appears beside another).

MDITILE_SKIPDISABLED Prevents disabled MDI child windows
from being tiled.

MDITILE_ VERTICAL Tiles MOl child windows vertically
(one window appears above another).

Arranges all child windows in a tiled format.

CMDIFrameWnd::MDICascade, CMDIFrameWnd::MDIIconArrange,
WM_MDITILE

410 CMDlFrameWnd::m_hWndMDlClient

Data Members

CMDIFrameWnd::m_hWndMDIClient
Remarks The HWND for the MDI client window owned by CMDIFrameWnd.

CMemFile 411

class CMemFile : public CFile

Comments

Derivation

Public Members

CMemFile is the CFile-derived class that supports
in-memory files. These in-memory files behave like
binary disk files except that bytes are stored in RAM.
An in-memory file is a useful means of transferring
raw bytes or serialized objects between independent
processes.

Contiguous memory is automatically allocated in specified increments, and it is de­
leted when the object is destroyed. You can access this memory through a pointer
supplied by a member function.

#include <afx.h>

The following CFile functions are not implemented for CMemFile:

• Duplicate

• LockRange

• UnlockRange

If you call these functions on a CMemFile object, you will get a
CNotSupportedException.

The data member CFile::m_hFile is not used and has no meaning.

If you derive a class from CMemFile, you must use the protected memory­
allocation functions listed above, overriding them as necessary. If you need global
memory access from the Windows medium model, for example, derive a class
with the four protected functions overridden. Your replacement functions should
call the Windows GlobalAlloc family of functions.

Construction/Destruction
CMemFile

-CMemFile

Constructs a memory file using internally allocated
memory.

Closes the memory file, freeing allocated memory.

412 CMemFile::CMemFile

Member Functions

Syntax

Parameters

Remarks

Example

Syntax

Remarks

CMemFile::CMemFile
CMemFile(UINT nGrowBytes = 1024)
throw (CFileException, CMemoryException);

nGrowBytes
The memory-allocation increment in bytes.

This constructor allocates memory and opens an empty memory file.

CMemFile f; II ready to use - no Open necessary

CMemFile::-CMemFile
virtual-CMemFileO;

This destructor frees all allocated memory associated with this memory file, effec­
tively closing it.

CMemoryException 413

class CMemoryException : public CException

Public Members

A CMemoryException object represents an out-of­
memory exception condition. No further qualification
is necessary or possible. Memory exceptions are
thrown automatically by new. If you write your own
memory functions, using malloc, for example, then
you are responsible for throwing memory exceptions.

#include <afx.h>

Construction/Destruction
CMemoryException Constructs a CMemoryException object.

Member Functions

Syntax

Remarks

See Also

CMemoryException::CMemoryException
CMemoryExceptionO;

Constructs a CMemoryException object. Do not use this constructor directly, but
rather call the global function AfxThrowMemoryException This global function
can succeed in an out-of-memory situation because it constructs the exception ob­
ject in previously allocated memory.

Chapter 5, "Exception Processing," AfxThrowMemoryException

414 CMenu

class CMenu : public CObject

See Also

Public Members

The CMenu class is an encapsulation of the
Windows HMEND. It provides member functions
for creating, tracking, updating, and destroying
menus. When you create a CMenu object, you

I CObject I
q CMenu

associate it with a handle to a menu resource. Then you can use the class member
functions to manage the menu.

CObject

Construction/Destruction
CMenu

-CMenu

Initialization
Attach

Detach

CreateMenu

CreatePopupMenu

LoadMenu

LoadMenulndirect

DestroyMenu

Constructs a CMenu object.

Destroys a CMenu object.

Attaches a Windows menu handle to a CMenu
object.

Detaches a Windows menu handle from a CMenu
object and returns the handle.

Creates an empty menu and attaches it to a
CMenu object.

Creates an empty pop-up menu and attaches it to a
CMenu object.

Loads a menu resource from the executable file
and attaches it to a CMenu object.

Loads a menu from a menu template in memory
and attaches it to a CMenu object.

Destroys the menu attached to a CMenu object
and frees any memory that the menu occupied.

Menu Operations
DeleteMenu

TrackPopupMenu

Menu Item Operations
AppendMenu

CheckMenuItem

EnableMenuItem

GetMenuItemCount

GetMenuItemID

GetMenuState

GetMenuString

GetSubMenu

InsertMenu

ModifyMenu

RemoveMenu

SetMenuItemBitmaps

CMenu 415

Deletes a specified item from the menu. If the
menu item has an associated pop-up menu, de­
stroys the handle to the pop-up menu and frees the
memory used by it.

Displays a floating pop-up menu at the specified
location and tracks the selection of items on the
pop-up menu.

Appends a new item to the end of this menu.

Places check marks next to or removes check
marks from menu items in the pop-up menu.

Enables, disables, or dims (grays) a menu item.

Determines the number of items in a pop-up or top­
level menu.

Obtains the menu-item identifier for a menu item
located at the specified position.

Returns the status of the specified menu item or
the number of items in a pop-up menu.

Retrieves the label of the specified menu item.

Retrieves a pointer to a pop-up menu.

Inserts a new menu item at the specified position,
moving other items down the menu.

Changes an existing menu item at the specified
position.

Deletes a menu item with an associated pop-up
menu from the specified menu.

Associates the specified check-mark bitmaps with
a menu item.

416 CMenu::AppendMenu

Member Functions

Syntax

Parameters

Remarks

CMenu::AppendMenu
BOOL AppendMenu(UINT nFlags, UINT nIDNewItem = 0,

const char FAR* lpNewItem = NULL);

BOOL AppendMenu(UINT nFlags, UINT nIDNewItem,
const CBitmap* pBmp);

nFlags
Specifies information about the state of the new menu item when it is added to
the menu. It consists of one or more of the values listed in the Remarks section.

nIDNewItem
Specifies either the command ID of the new menu item or, if nFlags is
set to MF_POPUP, the menu handle (HMENU) of a pop-up menu. The
nIDNewItem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

lpNewItem
Specifies the content of the new menu item. The interpretation of lpNewItem
depends on the setting of nFlags as shown below:

nFlags

MF_OWNERDRAW

MF_STRING

Interpretation of IpNewItem

Contains an application-supplied 32-bit value
that the application can use to maintain addi­
tional data associated with the menu item. This
32-bit value is available to the application when
it processes W~MEASUREITEM and
W~DRAWITEM messages.

Contains a pointer to a null-terminated string.
This is the default interpretation.

The lpNewItem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

pBmp
Points to a CBitmap object that will be used as the menu item.

Appends a new item to the end of a menu. The application can specify the state of
the menu item by setting values in nFlags. When nIDNewItem specifies a pop-up
menu, it becomes part of the menu to which it is appended. If that menu is de­
stroyed, the appended menu will also be destroyed. An appended menu should be
detached from a CMenu object to avoid conflict.

CMenu::AppendMenu 417

Note MF_STRING and MF_OWNERDRAW are not valid for the bitmap ver­
sion of AppendMenu.

The following list describes the flags that may be set in nFlags:

Value Interpretation of nFlags

MF_CHECKED Acts as a toggle in conjunction with
MF_ UNCHECKED to place the default check
mark next to the item. When the application
supplies check-mark bitmaps (see
SetMenuItemBitmaps), the "check mark on"
bitmap is displayed.

MF_DISABLED Disables the menu item so that it cannot be
selected, but does not dim it.

MF _ ENABLED Enables the menu item so that it can be selected,
and restores it from its dimmed state.

MF_GRAYED Disables the menu item so that it cannot be
selected, and dims it.

MF _ MENUBARBREAK Places item on a new line in static menus or in a
new column in pop-up menus. The new pop-up
menu column will be separated from the old
column by a vertical dividing line.

MF _ MENUBREAK Places item on a new line in static menus or in a
new column in pop-up menus. No dividing line is
placed between the columns.

MF_OWNERDRAW Specifies that the item is an owner-draw item.
When the menu is displayed for the first time, the
window that owns the menu receives a
~MEASUREITEM message, which
retrieves the height and width of the menu item.
The WM_DRAWITEM message is the one sent
whenever the owner must update the visual
appearance of the menu item. This option is not
valid for a top-level menu item.

MF_POPUP Specifies that the menu item has a pop-up menu
associated with it. The ID parameter specifies a
handle to a pop-up menu that is to be associated
with the item. This is used for adding either a top­
level pop-up menu or a hierarchical pop-up menu
to a pop-up menu item.

418 CMenu::AppendMenu

Return Value

See Also

Value

MF_SEPARATOR

MF_STRING

MF_UNCHECKED

Interpretation of nFlags

Draws a horizontal dividing line. Can only be used
in a pop-up menu. This line cannot be dimmed,
disabled, or highlighted. Other parameters are
ignored.

Specifies that the menu item is a character string.

Acts as a toggle in conjunction with
MF _ CHECKED to remove a check mark next to
the item. When the application supplies check­
mark bitmaps (see SetMenuItemBitmaps), the
"check mark off' bitmap is displayed.

Each of the following groups lists flags that are mutually exclusive and cannot be
used together:

MF_STRING, MF_OWNERDRA W, MF_SEPARATOR, and the bitmap
version

MF_MENUBARBREAK and MF _MENUBREAK

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application should call CWnd: :DrawMenuBar.

TRUE if the function is successful; otherwise FALSE.

CWnd: :DrawMenuBar, CMenu: : InsertMenu, CMenu: : RemoveMenu,
CMenu: :SetMenuItemBitmaps, CMenu: :Detach, CMenu: :-CMenu,
::AppendMenu

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CMenu::CheckMenultem 419

CMenu::Attach
BOOL Attach(HMENU hMenu);

hMenu
Specifies a handle to a Windows menu.

Attaches an existing Windows menu to a CMenu object. This function should not
be called if a menu is already attached to the CMenu object. The menu handle is
stored in the m_hMenu data member.

TRUE if the operation was successful; otherwise FALSE.

CMenu::Detach, CMenu::CMenu

CMenu::CheckMenultem
UINT CheckMenuItem(UINT nIDCheckltem, UINT nCheck);

nIDCheckltem
Specifies the menu item to be checked, as determined by nCheck.

nCheck
Specifies how to check the menu item and how to determine the item's position
in the menu. The nCheck parameter can be a combination of MF _ CHECKED
or MF_UNCHECKED with MF_BYPOSITION or MF_BYCOMMAND
flags. These flags can be combined by using the bitwise OR operator. They
have the following meanings:

Value

MF_BYCOMMAND

MF _BYPOSITION

Interpretation of nCheck

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF _BYCOMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

420 CMenu::CMenu

Remarks

Return Value

See Also

Syntax

Remarks

See Also

Value

MF_CHECKED

MF_UNCHECKED

Interpretation of nCheck

Acts as a toggle in conjunction with
MF_UNCHECKED to place the default check
mark next to the item. When the application
supplies check-mark bitmaps (see
SetMenuItemBitmaps), the "check mark on"
bitmap is displayed.

Acts as a toggle in conjunction with
MF _ CHECKED to remove a check mark next
to the item. When the application supplies check­
mark bitmaps (see SetMenultemBitmaps), the
"check mark off' bitmap is displayed.

Adds check marks to or removes check marks from menu items in the pop-up
menu. The nIDCheckltem parameter specifies the item to be modified.

The nIDCheckltem parameter may identify a pop-up menu item as well as a menu
item. No special steps are required to check a pop-up menu item. Top-level menu
items cannot be checked. A pop-up menu item must be checked by position since
it does not have a menu-item identifier associated with it.

The previous state of the item: MF _ CHECKED or MF _ CHECKED, or -1 if
the menu item did not exist.

CMenu: :GetMenuState, ::CheckMenuItem

CMenu::CMenu
CMenuO;

The menu is not created until you call one of the create or load member functions.

CMenu: :CreateMenu, CMenu: :CreatePopupMenu, CMenu: : LoadMenu,
CMenu: : LoadMenuIndirect, CMenu: :-CMenu, CMenu: :Attach

Syntax

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

CMenu::CreatePopupMenu 421

CMenu::NCMenu
virtual -CMenuO;

Destroys the attached menu. If the ill_hMenu data member was appended or in­
serted into another menu, it should be detached from this CMenu object before
the destructor destroys it.

CMenu::CMenu, CMenu::DestroyMenu, CMenu::Detach

CMenu::CreateMenu
BOOL CreateMenu{};

Creates a menu and attaches it to the CMenu object.

The menu is initially empty. Menu items can be added by using the AppendMenu
or InsertMenu member functions.

If the menu is assigned to a window, it is automatically destroyed when the win­
dow is destroyed.

TRUE if the menu was created successfully; otherwise FALSE.

CMenu:: CMenu, CMenu: : DestroyMenu, CMenu: :InsertMenu,
CWnd::SetMenu, ::CreateMenu

CMenu::CreatePopupMenu
BOOL CreatePopupMenuO;

Creates a pop-up menu and attaches it to the CMenu object.

The menu is initially empty. Menu items can be added by using the AppendMenu
or InsertMenu member functions. The application can add the pop-up menu to an
existing menu or pop-up menu. TrackPopupMenu may be used to display this
menu as a floating pop-up menu.

422 CMenu::DeleteMenu

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

If the menu is assigned to a window, it is automatically destroyed when the win­
dow is destroyed. If the menu is added to an existing menu, it is automatically de­
stroyed when that menu is destroyed.

TRUE if the pop-up menu was successfully created; otherwise FALSE.

CMenu::CreateMenu, CMenu::InsertMenu, CWnd::SetMenu,
CMenu: : TrackPopupMenu, : :CreatePopupMenu

CMenu::DeleteMenu
BOOL DeleteMenu(UINT nPosition, UINT nFlags);

nPosition
Specifies the menu item that is to be deleted, as determined by nFlags.

nFlags
The following list shows how nFlags is used to interpret nPosition.

nFlags

MF_BYCOMMAND

MF _BYPOSITION

Interpretation of nPosition

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

Deletes an item from the menu. If the menu item has an associated pop-up menu,
DeleteMenu destroys the handle to the pop-up menu and frees the memory used
by the pop-up menu.

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application must call CWnd::DrawMenuBar.

TRUE if the function is successful; otherwise FALSE.

CWnd::DrawMenuBar, ::DeleteMenu

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CMenu::EnableMenultem 423

CMenu::DestroyMenu
BOOL DestroyMenuO;

Destroys the menu and any Windows system resources that were used. The menu
is detached from the CMenu object before it is destroyed. The Windows
DestroyMenu function is automatically called in the CMenu destructor.

TRUE if the menu is destroyed; otherwise FALSE.

CMenu::-CMenu, ::DestroyMenu

CMenu::Detach
HMENU DetachO;

Detaches a Windows menu from a CMenu object and returns the handle. The
J1LhMenu data member is set to NULL.

The handle, of type HMENU, to a Windows menu, if successful; otherwise
NULL.

CMenu: :-CMenu, CMenu: :Attach

CMenu::EnableMenultem
UINT EnableMenuItem(UINT nIDEnableltem, UINT nEnable);

nIDEnableItem
Specifies the menu item to be enabled, as determined by nEnable.

nEnable
Specifies the action to take. It can be a combination ofMF_DISABLED,
MF_ENABLED, or MF_GRAYED, with MF_BYCOMMAND or
MF_BYPOSITION. These values can be combined by using the bitwise-OR
operator. These values have the following meanings:

424 CMenu::GetMenultemCount

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Value Interpretation of nEnable

MF_BYCOMMAND Specifies that the parameter gives the command
lD of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

MF _BYPOSITION Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

MF_DISABLED Disables the menu item so that it cannot be
selected, but does not dim it.

MF_ENABLED Enables the menu item so that it can be selected,
and restores it from its dimmed state.

MF_GRAYED Disables the menu item so that it cannot be
selected, and dims it.

Enables, disables, or dims a menu item.

Previous state (MF_DISABLED, MF_ENABLED, orMF_GRAYED) or-1 if
not valid.

CMenu: : GetMenuState, : : EnableMenuItem

CMenu::GetMenultemCount
UINT GetMenuItemCountO

Determines the number of items in a pop-up or top-level menu.

The number of items in the menu if the function is successful; otherwise -1.

CWnd: : GetMenu, CMenu: : GetMenuItemID, CMenu: : GetSubMenu,
: : GetMenuItemCount

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CMenu::GetMenuState 425

CMenu::GetMenultemID
UINT GetMenuItemID(int nPos) const;

nPos
Specifies the position (zero-based) of the menu item whose ID is being re­
trieved.

Obtains the menu-item identifier for a menu item located at the position defined
by nPos.

The item ID for the specified item in a pop-up menu if the function is successful.
If the specified item is a pop-up menu (as opposed to an item within the pop-up
menu), the return value is -1. If nPos corresponds to a SEPARATOR menu item,
the return value is O.

CWnd::GetMenu, CMenu: : GetMenuItemCount, CMenu: :GetSubMenu,
: : GetMenuItemID

CMenu::GetMenuState
UINT GetMenuState(UINT nID, UINT nFlags) const;

nID
Specifies the menu item ID, as determined by nFlags.

nFlags
Specifies the nature of nID. It can be one of the following values:

Value

MF_BYCOMMAND

MF _BYPOSITION

Interpretation of nFlags

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF _BY COMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

Returns the status of the specified menu item or the number of items in a pop-up
menu.

426 CMenu::GetMenuState

Return Value

See Also

The value -1 if the specified item does not exist. If nld identifies a pop-up menu,
the high-order byte contains the number of items in the pop-up menu and the low­
order byte contains the menu flags associated with the pop-up menu. Otherwise
the return value is a mask (Boolean OR) of the values from the following list (this
mask describes the status of the menu item that nld identifies):

Value Meaning

MF_CHECKED Acts as a toggle in conjunction with
MF_ UNCHECKED to place the default check
mark next to the item. When the application
supplies check-mark bitmaps (see
SetMenuItemBitmaps), the "check mark on"
bitmap is displayed.

MF_DISABLED Disables the menu item so that it cannot be
selected, but does not dim it.

MF _ENABLED Enables the menu item so that it can be selected,
and restores it from its dimmed state.

MF _ GRAYED Disables the menu item so that it cannot be
selected, and dims it.

MF _MENUBARBREAK Places item on a new line in static menus or in a
new column in pop-up menus. The new pop-up
menu column will be separated from the old
column by a vertical dividing line.

MF_MENUBREAK Places item on a new line in static menus or in a
new column in pop-up menus. No dividing line is
placed between the columns.

MF_SEPARATOR Draws a horizontal dividing line. Can only be
used in a pop-up menu. This line cannot be
dimmed, disabled, or highlighted. Other
parameters are ignored.

MF_UNCHECKED Acts as a toggle in conjunction with
MF _ CHECKED to remove a check mark next
to the item. When the application supplies check­
mark bitmaps (see SetMenuItemBitmaps), the
"check mark off" bitmap is displayed.

: : GetMenuState, CMenu: :CheckMenuItem, CMenu: : EnableMenuItem

Syntax

Parameters

Remarks

Return Value

See Also

CMenu::GetMenuString 427

CMenu::GetMenuString
int GetMenuString(UINT nIDltem, LPSTR IpString, int nMaxCount,

UINT nFlags) const;

nIDltem
Specifies the integer identifier of the menu item or the offset of the menu item
in the menu, depending on the value of nFlags.

IpString
Points to the buffer that is to receive the label. You can pass a CString object
for this parameter.

nMaxCount
Specifies the maximum length (in bytes) of the label to be copied. If the label is
longer than the maximum specified in nMaxCount, the extra characters are trun­
cated.

nFlags

nFlags Interpretation ofnIDItem

MF_BYCOMMAND Specifies that the parameter gives the command
ill of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position
of the existing menu item (the first item is at
position 0).

Copies the label of the specified menu item to the specified buffer.

The nMaxCount parameter should be one larger than the number of characters in
the label to accommodate the null character that terminates a string.

Specifies the actual number of bytes copied to the buffer, not including the null
terminator.

CWnd: : GetMenu, CMenu: : GetMenuItemID, : : GetMenuString

428 CMenu::GetSubMenu

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CMenu::GetSubMenu
CMenu* GetSubMenu(int nPos) const;

nPos
Specifies the position of the pop-up menu contained in the menu. Position
values start at 0 for the first menu item.

Retrieves the CMenu object of a pop-up menu.

A pointer to a CMenu object whose m_hMenu member contains a handle to the
pop-up menu if a pop-up menu exists at the given position; otherwise NULL. If a
CMenu object does not exist, then a temporary one is created. The CMenu
pointer returned should not be stored.

: : GetSubMenu

CMenu::lnseriMenu
BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

const char FAR* IpNewltem = NULL);

BOOL InsertMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem,
const CBitmap* pBmp);

nPosition
Specifies the menu item before which the new menu item is to be inserted. The
interpretation of nPosition depends on the setting of nFlags, as shown in the fol­
lowing list:

nFlags

MF_BYCOMMAND

MF_BYPOSITION

nFlags

CMenu::lnsertMenu 429

Interpretation of nPosition

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF _BYCOMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

If nPosition is -1, the new menu item is
appended to the end of the menu.

Specifies how nPosition is interpreted and information about the state of the
new menu item when it is added to the menu. For a list of the flags that may be
set, see the AppendMenu member function. To specify more than one value,
use the bitwise OR operator to combine them with the MF_BYCOMMAND
or MF_BYPOSITION flag.

nIDNewltem
Specifies either the command ID of the new menu item or, if nFlags is set to
MF_POPUP, the menu handle (HMENU) of the pop-up menu. nIDNewltem is
ignored (not needed) ifnFlags is set to MF_SEPARATOR.

IpNewltem
Specifies the content of the new menu item. The interpretation of IpNewltem
depends on the setting of nFlags as shown below:

nFlags

MF_OWNERDRAW

Interpretation of IpN ewltem

Contains an application-supplied 32-bit value that
the application can use to maintain additional
data associated with the menu item. This 32-bit
value is available to the application when it
processes W~MEASUREITEM and
WM_DRAWITEM messages.

Contains a long pointer to a null-terminated
string. This is the default interpretation.

The IpNewltem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

pBmp
Points to a CBitmap object that will be used as the menu item.

430 CMenu::LoadMenu

Remarks Inserts a new menu item at the position specified by nPosition and moves other
items down the menu. The application can specify the state of the menu item by
setting values in nFlags.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application should call CWnd::DrawMenuBar.

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which
it is inserted. If that menu is destroyed, the inserted menu will also be destroyed.
An inserted menu should be detached from a CMenu object to avoid conflict.

TRUE if the function is successful; otherwise FALSE.

CMenu::AppendMenu, CWnd: :DrawMenuBar,
CMenu::SetMenuItemBitmaps, CMenu::Detach, CMenu::-CMenu,
::InsertMenu

CMenu::LoadMenu
BOOL LoadMenu(const char FAR* IpMenuName);

BOOL LoadMenu(UINT nIDMenu);

IpMenuName
Points to a null-terminated string that contains the name of the menu resource
to load.

nIDMenu
Specifies the menu ID of the menu resource to load.

Loads a menu resource from the application's executable file and attaches it to the
CMenu object.

TRUE if the menu resource was loaded successfully; otherwise FALSE.

CMenu: :AppendMenu, CMenu::DestroyMenu, CMenu::LoadMenulndirect,
: : LoadMenu.

Syntax

Parameters

Remarks

Return Value

See Also

CMenu::LoadMenulndirect 431

CMenu::LoadMenulndirect
BOOL LoadMenulndirect(const BYTE FAR* lpMenuTemplate);

lpM enuTemplate
Points to a menu template (which is a single
MENUITEMTEMPLATEHEADER structure and a collection
of one or more MENUITEMTEMPLATE structures).

The MENUITEMTEMPLATEHEADER structure has the following generic
form:

typedef struct {
WORD versionNumber;
WORD offset;

} MENUITEMTEMPLATEHEADER;

The MENUITEMTEMPLA TE structure has the following generic form:

typedef struct {
WORD mtOption;
WORD mtID;
char mtString;

} MENUITEMTEMPLATE[l];

Loads a resource from a menu template in memory and attaches it to the CMenu
object. A menu template is a header followed by a collection of one or more
MENUITEMTEMPLATE structures, each of which may contain one or more
menu items and pop-up menus.

The version number should be O.

The mtOption flags should include MF_END for the last item in a pop-up list and
for the last item in the main list. See AppendMenu for other flags. The mtId mem­
ber must be omitted from the MENUITEMTEMPLATE structure when
MF_POPUP is specified in mtOption.

The space allocated for the MENUITEMTEMPLATE structure must be large
enough for mtString to contain the name of the menu item as a null-terminated
string.

TRUE if the menu resource was loaded successfully; otherwise FALSE.

CMenu::DestroyMenu, CMenu: : LoadMenu, ::LoadMenulndirect

432 CMenu::ModifyMenu

Syntax

Parameters

CMenu::ModifyMenu
BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem = 0,

const char FAR* IpNewltem = NULL);

BOOL ModifyMenu(UINT nPosition, UINT nFlags, UINT nIDNewltem,
const CBitmap* pBmp);

nPosition
Specifies the menu item to be changed. The interpretation of nPosition depends
on the setting of nFlags as shown in the following list:

nFlags Interpretation of nPosition

MF_BYCOMMAND Specifies that the parameter gives the command
1D of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

nFlags
Specifies how nPosition is interpreted and gives information about the changes
to be made to the menu item. For a list of flags that may be set, see the
AppendMenu member function.

nIDNewltem
Specifies either the command 1D of the modified menu item or, if nFlags is set
to MF_POPUP, the menu handle (HMENU) of a pop-up menu. The
nIDNewltem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

IpNewltem
Specifies the content of the new menu item. The interpretation of IpNewltem
depends on the setting of nFlags as shown below:

Remarks

Return Value

See Also

nFlags

MF_OWNERDRAW

CMenu::ModifyMenu 433

Interpretation of IpNewItem

Contains an application-supplied 32-bit value that
the application can use to maintain additional
data associated with the menu item. This 32-bit
value is available to the application when it
processes MF _MEASUREITEM and
MF_DRAWITEM.

Contains a long pointer to a null-terminated
string or to a CString.

The lpNewltem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR

pBmp
Points to a CBitmap object that will be used as the menu item.

Changes an existing menu item at the position specified by nPosition. The applica­
tion specifies the new state of the menu item by setting values in nFlags. If this
function replaces a pop-up menu associated with the menu item, it destroys the old
pop-up menu and frees the memory used by the pop-up menu.

When nIDNewltem specifies a pop-up menu, it becomes part of the menu in which
it is inserted. If that menu is destroyed, the inserted menu will also be destroyed.
An inserted menu should be detached from a CMenu object to avoid conflict.

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application should call CWnd::DrawMenuBar. To change the
attributes of existing menu items, it is much faster to use the CheckMenuItem
and EnableMenuItem functions.

TRUE if the function is successful; otherwise FALSE.

CMenu: : AppendMenu, CMenu: : InsertMenu, CMenu: :CheckMenuItem,
CWnd: :DrawMenuBar, CMenu: :EnableMenuItem,
CMenu: :SetMenuItemBitmaps, CMenu: :Detach, CMenu::-CMenu,
: :ModifyMenu

434 CMenu::RemoveMenu

Syntax

Parameters

Remarks

Return Value

See Also

CMenu::RemoveMenu
BOOL RemoveMenu(UINT nPosition, UINT nFlags);

nPosition
Specifies the menu item to be removed. The interpretation of nPosition depends
on the setting of nFlags as shown in the following list:

nFlags

MF_BYCOMMAND

MF_BYPOSITION

nFZags

Interpretation of nPosition

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

Specifies how nPosition is interpreted.

Deletes a menu item with an associated pop-up menu from the menu. It does not
destroy the handle for a pop-up menu, allowing the menu to be reused. Before
calling this function, the application may call GetSubMenu to retrieve the pop-up
CMenu object for reuse.

Whenever a menu that resides in a window is changed (whether or not the window
is displayed), the application must call CWnd::DrawMenuBar.

TRUE if the function is successful; otherwise FALSE.

CWnd::DrawMenuBar, CMenu::GetSubMenu, ::RemoveMenu

Syntax

Parameters

Remarks

CMenu::SetMenultemBitmaps 435

CMenu::SetMenultemBitmaps
BOOL SetMenuItemBitmaps(UINT nPosition, UINT nFZags,

const CBitmap* pBmpUnchecked, const CBitmap* pBmpChecked);

nPosition
Specifies the menu item to be changed. The interpretation of nPosition depends
on the setting of nFZags as shown in the following list:

nFlags

MF_BYCOMMAND

MF _BYPOSITION

nFZags

Interpretation of nPosition

Specifies that the parameter gives the command
ID of the existing menu item. This is the default
if neither MF_BYCOMMAND nor
MF_BYPOSITION is set.

Specifies that the parameter gives the position of
the existing menu item (the first item is at
position 0).

Specifies how nPosition is interpreted.

pBmpUnchecked
Specifies the bitmap to use for menu items that are not checked.

pBmpChecked
Specifies the bitmap to use for menu items that are checked.

Associates the specified bitmaps with a menu item. Whether the menu item is
checked or unchecked, Windows displays the appropriate bitmap next to the menu
item.

If either pBmpUnchecked or pBmpChecked is NULL, then Windows displays
nothing next to the menu item for the corresponding attribute. If both parameters
are NULL, Windows uses the default check mark when the item is checked and re­
moves the check mark when the item is unchecked. When the menu is destroyed,
these bitmaps are not destroyed. It is the responsibility of the application to de­
stroy them.

436 CMenu::TrackPopupMenu

Return Value

See Also

Syntax

Parameters

The Windows ::GetMenuCheckMarkDimensionsfunction retrieves the dimen­
sions of the default check mark used for menu items. The application uses these
values to determine the appropriate size for the bitmaps supplied with this func­
tion. Get the size, create your bitmaps, then set them.

TRUE if the function is successful; otherwise FALSE.

::GetMenuCheckMarkDimensions, ::SetMenultemBitmaps

CMenu::TrackPopupMenu
BOOL TrackPopupMenu(UINT nFlags, int x, int y, const CWnd* pWnd,

LPRECT IpRectReserved = 0);

nFlags

x

Specifies a screen-position flag and a mouse-button flag. The screen-position
flag can be one of the following:

Value

TP~CENTERALIGN

TP~LEFTALIGN

TP~RIGHTALIGN

Meaning

Centers the pop-up menu horizontally relative
to the coordinate specified by x.

Positions the pop-up menu so that its left side
is aligned with the coordinate specified by x.

Positions the pop-up menu so that its right side
is aligned with the coordinate specified by x.

The mouse-button flag can be one of the following:

Value

TPM_LEFTBUTTON

TP~RIGHTBUTTON

Meaning

Causes the pop-up menu to track the left
mouse button.

Causes the pop-up menu to track the right
mouse button.

Specifies the horizontal position in screen coordinates of the left side of the
menu on the screen.

Remarks

Return Value

See Also

y

CMenu::TrackPopupMenu 437

Specifies the vertical position in screen coordinates of the top of the menu on
the screen.

pWnd
Identifies the window that owns the pop-up menu. This window receives all
WM-.COMMAND messages from the menu.

IpRectReserved
Points to a RECT structure or CPoint object that contains the screen coordi­
nates of a rectangle within which the user can click without dismissing the pop­
up menu. If this parameter is NULL, the pop-up menu is dismissed if the user
clicks outside the pop-up menu. This must be NULL for Windows version 3.0.

Displays a floating pop-up menu at the specified location and tracks the selection
of items on the pop-up menu. A floating pop-up menu can appear anywhere on the
screen.

TRUE ifthe function is successful; otherwise FALSE.

CMenu: :CreatePopupMenu, CMenu: : GetSubMenu, : : TrackPopupMenu

438 CMetaFileDC

class CMetaFileDC : public CDC

See Also

Public Members

A Windows metafile contains a sequence of GDI com­
mands that can be replayed to create a desired image
or text.

To implement a Windows metafile, first create a
CMetaFileDC object.

You create a CMetaFileDC in two steps. First, call the constructor CMetaFileDC
to construct the CMetaFileDC object, then call the Create member function,
which creates a Windows metafile device context and attaches it to the
CMetaFileDC object.

After the CMetaFileDC object is created, send a sequence of CDC GDI com­
mands to the metafile device context. Use only those GDI commands that create
output, such as MoveTo and LineTo.

Then call the Close member function, which closes the metafile device context
and returns a metafile handle. Use the CMetaFileDC destructor to destroy the
CMetaFileDC object.

CDC::PlayMetaFile can then use the metafile handle to play the metafile re­
peatedly, and the metafile can also be manipulated by Windows functions such as
CopyMetaFile, which copies a metafile to disk.

When the metafile is no longer needed, delete it from memory with the
DeleteMetaFile Windows function.

CDC

Construction/Destruction
CMetaFileDC

Initialization
Create

Constructs a CMetaFileDC object.

Creates the Windows metafile device context and
attaches it to the CMetaFileDC object.

Operations
Close

SelectObject

SelectStockObject

CMetaFileDC 439

Closes the device context, and creates a metafile
handle.

Selects a GDI drawing object into the specified
device context, which replaces the previous object
of the same type.

Retrieves one of the predefined stock pens,
brushes, or fonts and causes the stock object to be­
come the currently selected object of its type.

440 CMetaFileDC::Close

Member Functions

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CMetaFileDC::Close
HANDLE CloseO;

Closes the metafile device context and creates a Windows metafile handle that can
be used to play the metafile by using the CDC::PlayMetaFile function and also
used to manipulate the metafile with Windows functions such as CopyMetaFile.

The metafile should be deleted after use by calling the Windows DeleteMetaFile
function.

A valid HANDLE to a metafile if the function is successful. Otherwise, it is
NULL.

CDC: :PlayMetaFile, : :CloseMetaFile, : : GetMetaFileBits, : :CopyMetaFile,
: :DeleteMetaFile

CMetaFileDC::CMetaFileDC
CMetaFileDC();

Construction of a CMetaFileDC object is a two-step process. First, call
CMetaFileDC, then call Create, which creates the Windows metafile device con­
text and attaches it to the CMetaFileDC object.

CMetaFileDC: : Create

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CMetaFileDC::SelectObject 441

CMetaFileDC::Create
BOOL Create(const char FAR* lpFilename = NULL);

lpFilename
Points to a null-terminated character string. Names an existing metafile on disk
to load. If lpFilename is NULL, a new in-memory metafile is created.

You construct a CMetaFileDC object in two steps. First, call the constructor
CMetaFileDC, then call Create, which creates the Windows metafile device con­
text and attaches it to the CMetaFileDC object.

TRUE ifthe function is successful; otherwise FALSE.

CMetaFileDC: :CMetaFileDC, : :CreateMetaFile

CMetaFileDC::SelectObject
BOOL SelectObject(CGdiObject* pObject);

pObject
Identifies the object to be selected into the CMetaFileDC. The selected object
can be one of the following:

CBitmap
CBrush
CFont
CPen
CRgn
CPalette

Selects an object into the CMetaFileDC.

CMetaFileDC performs its own object cleanup, so an application does not have to
reselect default objects when recording a metafile.

442 CMetaFileDC::SelectStockObject

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

TRUE if the function is successful; otherwise FALSE.

CGdiObject: :DeleteObject, CDC: :SelectClipRgn, CDC: :SelectPalette,
: : SelectObject

CMetaFileDC::SelectStockObject
BOOL SelectStockObject(int nlndex);

nlndex
Specifies the type of stock object desired. See CDC::SelectObject for a list of
the possible stock objects.

Selects one of the predefined stock pens, brushes, or fonts into the CMetaFileDC.

TRUE if the function is successful; otherwise FALSE.

CDC: :SelectStockObject

class CModalDialog : public CDialog
The CModalDialog class provides modal
dialog boxes. In this type of dialog box, the
user must respond before any processing out­
side the dialog box is possible. This is untrue
for modeless dialog boxes.

Except in the most trivial cases, such as an
About dialog box, you must derive your own
modal dialog class from CModalDialog.

CModalDialog 443

In your derived class, you can add member variables and member functions to
specify the behavior of the dialog box. Add member variables to store data entered
by the user via the dialog box controls or to store data for display through the con­
trols. Add member functions to set and get this data. Add message-handler mem­
ber functions to process messages for the controls in the dialog box.

Like other classes derived from class CWnd, classes derived from CModalDialog
need their own message maps. If you declare any message-handler member func­
tions, you must also provide a message map that connects the Windows messages
with your handlers.

Note The three most common functions, OnInitDialog, OnOK, and OnCancel,
do not need message-map entries.

Create a modal dialog object by constructing it. To do this, create a dialog object
using the CModalDialog constructor, as shown in the example below.

Once the dialog object has been constructed, call its DoModal member function to
run the dialog box. For example, to construct a modal dialog object of class
CMyModa 1 and run the dialog box, use the following coding:

CMyModa 1 myModa 101 g;
myModa101g.0oModa1();

When the user clicks one of the dialog-box push buttons, such as OK or Cancel,
the dialog box closes and it is removed from the screen.

After the user closes the dialog box, its member variables are accessed through the
member functions that you defined to get information entered by the user.

For example, for a modal dialog box that has an editable text control, you can
override the OnOK message-handler function in your derived modal dialog
class so that when the user clicks the OK button, OnOK retrieves the text entered
in the control and stores it in a data member of the dialog object. Later, after

444 CModalDialog

See Also

Public Members

DoModal returns, you can call a member function of the dialog object to retrieve
the stored text.

You are responsible for supplying the member variables and member functions
needed to access the dialog's data. Declare them in the class you derive from
CModalDialog.

CDialog::EndDialogis called automatically in OnOK and OnCancel when the
user closes the dialog box.

If the dialog box requires some initialization, override the CDialog: :OnInitDialog
member function to perform the initialization. For example, if an edit field in the
dialog box is to display a default value that the user can accept or replace, override
OnlnitDialog to initialize the default text in the edit field. OnInitDialog is called
automatically while the dialog is being created before the dialog box appears on
the screen.

CModalDialog: :DoModal, CDialog: :EndDialog, CWnd: :MessageBox,
CModalDialog::OnOK, CModaiDialog::OnCancel, W~INITDIALOG,
WM_CLOSE, ~SETFONT

Construction/Destruction
CModalDialog

Initialization
Createlndirect

Operations
DoModai

Constructs a CModalDialog object and stores the
parameters for use when the member function
DoModal is called.

Initializes a CModalDialog object as the second
phase of indirect dialog-box creation (nonresource
based). The parameters are stored until the func­
tion DoModal is called.

Invokes the dialog box and returns when done.

Overridables
OnOK

OnCancel

CModalDialog 445

Override this member to perform the OK button
action. The default terminates the dialog box, and
DoModal will return IDOK.

Override this member to perform the Cancel but­
ton action. The default terminates the dialog box,
and DoModal will return IDCANCEL.

446 CModalDialog::CModaIDialog

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CModaIDialog::CModaIDialog
CModalDialog(const char FAR* lpTemplateName,

CWnd* pParentWnd = NULL);

CModalDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);

lpTemplateName
Contains a string that is the name of a dialog-box resource template.

pParentWnd
Points to the parent window object (of type CWnd) of the dialog object. If it is
NULL, the dialog object's parent window is set to the main application win­
dow, as shown in the following code:

if(pParentWnd == NULL)
pParentWnd = AfxGetApp()->m_pMainWnd;

nIDTemplate
Contains a dialog resource template ill number.

Provides two public constructors, with different argument signatures, to permit the
construction of CModaiDialog objects directly or from resource templates.

When you construct the dialog object to be used with Createlndirect, pass
NULL for the first parameter because there is no resource file template to be used
in this case.

CModalDialog:: Createlndirect

CModaIDialog::Createlndirect
BOOL Createlndirect(HANDLE hDialogTemplate);

hDialogTemplate
Contains a resource handle to global memory containing a dialog-box resource
template. The template data structure is of type DLGTEMPLATE, which iden­
tifies the block of memory used as a dialog-box template.

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CModalDialog::DoModal 447

This member function uses a dialog resource constructed in memory to initialize a
modal dialog object. The resource has the form of a DLGTEMPLATE structure.
For more information on this structure, see the Windows Software Development
Kit documentation.

To create a modal dialog indirectly, first create a DLG TEMPLATE structure in
memory and retain a HANDLE to it. Then call the CModalDialog constructor to
construct the dialog object. In this case, pass NULL for the first parameter to the
constructor. Next, call Createlndirect to store your handle to the in-memory
dialog template. The Windows dialog is created and displayed later, when the
DoModal member function runs.

TRUE if the dialog object was created and initialized successfully; otherwise
FALSE.

WM_INITDIALOG, DS_SETFONT, DLGTEMPLATE,
CWnd: : DestroyWindow, CModalDialog: :CModalDialog

CModaIDialog::DoModal
int DoModaIO;

Invokes the dialog box and returns the dialog box result when done. This member
function handles all interaction with the user while the dialog box is active. This is
what makes the dialog box modal; that is, the user cannot interact with other win­
dows until the dialog box is closed.

If the user clicks one of the push buttons in the dialog box, such as OK or Cancel,
a message-handler member function, such as OnOK or OnCanceI, is called to
attempt to close the dialog box. The default OnOK and OnCancel member func­
tions will end the dialog with results IDOK and IDCANCEL, respectively. You
can override these message-handler functions to alter this behavior.

An int value that specifies the value of the nResult parameter that was passed to
the EndDialog member function, which is used to terminate the dialog box. The
return value is -1 if the function could not create the dialog box.

: :DialogBox

448 CModalDialog::OnCancel

Syntax

Remarks

See Also

Syntax

Remarks

See Also

CModaIDialog::OnCancel
virtual void OnCancelO;

Override this member function to perform Cancel button action. The default
simply terminates the dialog box and causes DoModal to return IDCANCEL.

CModalDialog::OnOK, WM_ COMMAND

CModaIDialog::OnOK
virtual void OnOKO;

Override this member function to perform OK button action. The default simply
terminates the dialog box and causes DoModal to return IDOK.

CModalDialog: : On Cancel, WM_ COMMAND

CNotSupportedException 449

class CNotSupportedException : public CException

Public Members

A CNotSupportedException object represents
an exception that is the result of a request for an
unsupported feature. No further qualification is
necessary or possible.

#include <afx.h>

CNotSupportedException Constructs a CNotSupportedException object.

Member Functions

Syntax

Remarks

See Also

CNotSupportedException
::CNotSupportedException
CNotSupportedExceptionO;

Constructs a CNotSupportedException object.

Do not use this constructor directly, but rather call the global function
AfxThrowNotSupportedException

Chapter 5, "Exception Processing," AfxThrowNotSupportedException

450 CObArray

class CObArray : public CObjecl

See Also

Derivation

The CObArray class supports arrays of CObject
pointers. These object arrays are similar to C arrays,
but they can dynamically shrink and grow as
necessary.

Array indexes always start at position O. You can decide whether to fix the upper
bound or allow the array to expand when you add elements past the current bound.
Memory is allocated contiguously to the upper bound, even if some elements
are null.

The elements of a CObArray object must fit in one 64K segment together with ap­
proximately 100 allocation overhead bytes. If CObject pointers are 16-bit near
pointers (as they are in the small and medium memory models), then an array size
limit is about 32,000 elements, but because there is only one data segment, the ob­
jects themselves will probably exhaust memory before the array does. If CObject
pointers are 32-bit far pointers (as they are in the compact and large memory mod­
els), then an array size limit is about 16,000 elements.

As with a C array, the access time for a CObArray indexed element is constant
and is independent of the array size.

CObArray incorporates the IMPLEMENT_SERIAL macro to support serializa­
tion and dumping of its elements. If an array of CObject pointers is stored to an ar­
chive, either with the overloaded insertion operator or with the Serialize member
function, each CObject element is, in tum, serialized along with its array index.

If you need a dump of individual CObject elements in an array, you must set the
depth of the CDumpContext object to 1 or greater.

When a CObArray object is deleted, or when its elements are removed, only the
CObject pointers are removed, not the objects they reference.

#include <afxcoll.h>

CStringArray, CPtrArray, CByteArray, CWordArray, CDWordArray

Array class derivation is similar to list derivation. For details on the derivation of a
special-purpose list class, see the tutorial in the Class Library User's Guide.

Note You must use the IMPLEMENT_SERIAL macro in the implementation of
your derived class if you intend to serialize the array.

Public Members

Construction/Destruction
CObArray

-CObArray

Bounds
GetSize

GetUpperBound

SetSize

Operations
FreeExtra

RemoveAll

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

CObArray 451

Constructs an empty array for CObject pointers.

Destroys a CObArray object.

Gets the number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this
array.

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the element
pointer within the array.

Sets the value for a given index; grows the array if
necessary.

Adds an element to the end of the array; grows the
array if necessary.

452 CObArray

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Inserts an element (or all the elements in another
array) at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CObArray::Add 453

Member Functions

Syntax

Parameters

Remarks

Return Value

Example

See Also

CObArray: :Add
int Add(CObject* newElement)
throw(CMemoryException);

newElement
The CObject pointer to be added to this array.

Adds a new element to the end of an array, growing the array by 1. If SetSize has
been used with an nGrowBy value greater than 1, then extra memory may be allo­
cated. However the upper bound will increase by only 1.

The index of the added element.

CObArray array;

array.Add(new CAge(21); II Element 0
array.Add(new CAge(40); II Element 1

#ifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "Add example: .. « &array « "\\n";

flendif

The results from this program are as follows:

Add example: A CObArray with 2 elements
[0] a CAge at $442A 21
[1] = a CAge at $4468 40

CObArray: :SetAt, CObArray: :SetAtGrow, CObArray: : InsertAt,
CObArray::operator []

454 CObArray::CObArray

Syntax

Remarks

Example

See Also

Syntax

Remarks

Syntax

Parameters

Remarks

CObArray::CObArray
CObArrayO;

Constructs an empty CObject pointer array. The array grows one element at a
time.

See the COb List constructor for a listing of the CAge class used in all collection ex­
amples.

CObArray array; II Array on the stack

CObArray* parray = new CObArray; II Array on the heap

CObList constructor

CObArray::-CObArray
-CObArrayO;

Destroys a CObArray object but does not destroy the CObject objects that are
referenced in the array.

CObArray::ElementAt
CObject*& ElementAt(int nlndex);

nlndex
An integer index that is greater than or equal to 0 and less than or equal to
GetUpperBoundO.

Returns a temporary reference to the element pointer within the array. It is used to
implement the left-side assignment operator for arrays.

Note This is an advanced function that should be used only to implement special
array operators.

Return Value

See Also

Syntax

Remarks

Syntax

Parameters

Remarks

Return Value

Example

See Also

CObArray::GetAt 455

A reference to a CObject pointer.

CObArray::operator []

CObArray:: FreeExtra
void FreeExtraO;

Frees any extra memory that was allocated while the array was grown. This fllllC­
tion has no effect on the size or upper bound of the array.

CObArray::GetAt
CObject* GetAt(int nlndex) const;

nlndex
An integer index that is greater than or equal to 0 and less than or equal to
GetUpperBoundO.

Returns the array element at the specified index.

The CObject pointer element currently at this index; NULL if no element is
stored at the index.

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(*(CAge*) array.GetAt(0) == CAge(21));

CObArray::SetAt, CObArray::operator []

456 CObArray::GetSize

Syntax

Remarks

See Also

Syntax

Remarks

Example

See Also

Syntax

CObArray::GeISize
int GetSizeO const;

Returns the size of the array. Since indexes are zero-based, the size is 1 greater
than the largest index.

CObArray::GetUpperBound, CObArray::SetSize

CObArray::GeIUpperBound
int GetUpperBoundO const;

Returns the current upper bound of this array. Because array indexes are zero­
based, this function returns a value 1 less than GetSize.

The condition GetUpperBoundO = -1 indicates that the array contains no ele­
ments.

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
ASSERT(array.GetUpperBound() == 1); II Largest index

CObArray: :GetSize, CObArray: :SetSize

CObArray::lnsertAI
void InsertAt(int nlndex, CObject* newElement, int nCount = 1)
throw(CMemoryException);

void InsertAt(int nStartlndex, CObArray* pNewArray)
throw(CMemoryException);

Parameters

Remarks

Example

See Also

CObArray::lnsertAt 457

nlndex
An integer index that may be greater than GetUpperBoundO.

newElement
The CObject pointer to be placed in this array. A newElement of value NULL
is allowed.

nCount
The number of times this element should be inserted (defaults to 1).

nStartIndex
An integer index that may be greater than GetUpperBoundO.

pNewArray
Another array that contains elements to be added to this array.

The first version ofInsertAt inserts one element (or multiple copies of an ele­
ment) at a specified index in an array. In the process, it shifts up (by incrementing
the index) the existing element at this index, and it shifts up all the elements
above it.

The second version inserts all the elements from another CObArray collection,
starting at the nStartlndex position.

The SetAt function, in contrast, replaces one specified array element and does not
shift any elements.

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1 (will become 2)
array.lnsertAt(I, new CAge(30)); II New element 1

#ifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "InsertAt exampl e: " « &array « "\ \n";

/Fendif

The results from this program are as follows:

InsertAt example: A CObArray with 3 elements
[0] a CAge at $45C8 21
[1] a CAge at $4646 30
[2] a CAge at $4606 40

CObArray: :SetAt, CObArray: : RemoveAt

458 CObArray::RemoveAII

Syntax

Remarks

Example

Syntax

Parameters

Remarks

CObArray::RemoveAIi
void RemoveAllO;

Removes all the pointers from this array but does not actually delete the CObject
objects. If the array is empty already, the function still works.

The RemoveAll function frees all memory used for pointer storage.

CObArray array;
CAge* pal;
CAge* pa2;

array.Add(pal = new CAge(21)); II Element 0
array.Add(pa2 = new CAge(40)); II Element 1
ASSERT(array.GetSize() == 2);
array.RemoveAll(); II Pointers removed but objects not deleted
ASSERT(array.GetSize() == 0);
delete pal;
delete pa2; II Cleans up memory

CObArray::RemoveAt
void RemoveAt(int nlndex, int nCount = 1);

nlndex
An integer index that is greater than or equal to 0 and less than or equal to
GetUpperBoundO.

nCount
The number of elements to remove.

Removes one or more elements starting at a specified index in an array. In the
process, it shifts down all the elements above the removed element(s). It decre­
ments the upper bound of the array but does not free memory.

If you try to remove more elements than are contained in the array above the re­
moval point, then the Debug version of the library asserts.

The RemoveAt function removes the CObject pointer from the array, but it does
not delete the object itself.

Example

See Also

Syntax

Parameters

Remarks

CObArray array;
CObject* pa;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
if((pa = array.GetAt(0)) != NULL)
{

CObArray::SetAt 459

array.RemoveAt(0); II Element 1 moves to 0
delete pa; II Delete the original element at 0

}

iIi fdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "RemoveAt example: " « &array « "\\n";

ilendif

The results from this program are as follows:

RemoveAt example: A CObArray with 1 elements
[0] = a CAge at $4606 40

CObArray::SetAt, CObArray::SetAtGrow, CObArray::lnsertAt

CObArray::SetAt
void SetAt(int nlndex, CObject* newElement);

nlndex
An integer index that is greater than or equal t6 0 and less than or equal to
GetUpperBoundO.

newElement
The object pointer to be inserted in this array. A NULL value is allowed.

Sets the array element at the specified index. SetAt will not cause the array to
grow. Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it
is out of bounds, then the Debug version of the library asserts.

460 CObArray::SetAtGrow

Example CObArray array;
CObject* pa;

See Also

Syntax

Parameters

Remarks

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
if((pa = array.GetAt(0)) != NULL)
{

}

array.SetAt(0, new CAge(30 »; II Replace element 0
delete pa; II Delete the original element at 0

ffifdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &array « "\\n";

ftendif

The results from this program are as follows:

SetAt example: A CObArray with 2 elements
[0] a CAge at $47E0 30
[1] = a CAge at $47A0 40

CObArray::GetAt, CObArray::SetAtGrow, CObArray::ElementAt,
CObArray: :operator []

CObArray: : SetAtG row
void SetAtGrow(int nlndex, CObject* newElement)
throw(CMemoryException);

nlndex
An integer index that is greater than or equal to O.

newElement
The object pointer to be added to this array. A NULL value is allowed.

Sets the array element at the specified index. The array grows automatically if nec­
essary (that is, the upper bound is adjusted to accommodate the new element).

Example

See Also

Syntax

Parameters

Remarks

CObArray array;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1

CObArray::SetSize 461

array.SetAtGrow(3, new CAge(65)); II Element 2 deliberately
II skipped

1tifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "SetAtGrow example: " « &array « "\\n";

1tendif

The results from this program are as follows:

SetAtGrow
[0]
[1]
[2]
[3]

example: A CObArray
a CAge at $47C0 21
a CAge at $4800 40
NULL
a CAge at $4840 65

with 4 elements

CObArray::GetAt, CObArray::SetAt, CObArray::ElementAt,
CObArray::operator []

CObArray::SetSize
void SetSize(int nNewSize, int nGrowBy = -1)
throw(CMemoryException);

nNewSize
The new array size (number of elements). Must be greater than or equal to O.

nGrowBy
The minimum number of element slots to allocate if a size increase is necessary.

Establishes the size of an empty or existing array; allocates memory if necessary.

If the new size is smaller than the old size, then the array is truncated and all un­
used memory is released.

The nGrowBy parameter affects internal memory allocation while the array is
growing. Its use never affects the array size as reported by GetSize and
GetUpperBound.

462 CObArray::operator [1

Operators

Syntax

Remarks

Example

See Also

CObArray::operator [1
CObject*& operator [](int nlndex);

CObject* operator [](int nlndex) const;

These subscript operators are a convenient substitute for the SetAt and GetAt
functions.

The first operator, invoked for arrays that are not const, may be used on either the
right (r-value) or the left (I-value) of an assignment statement. The second, in­
voked for const arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right
side of an assignment statement) is out of bounds.

CObArray array;
CAge* pa;

array.Add(new CAge(21)); II Element 0
array.Add(new CAge(40)); II Element 1
pa = (CAge*)array[0]; II Get element 0
ASSERT(*pa == CAge(21)); II Get element 0
array[0] = new CAge(30); II Replace element 0
delete pa;
ASSERT(*(CAge*) array[0] == CAge(30)); II Get new element 0

CObArray::GetAt, CObArray::SetAt

CObject 463

class CObjecl

Derivation

CObject is the principal base class for the Microsoft Foundation Class Library. It
serves as the root not only for library classes such as CFile and CObList, but also
for the classes that you write. CObject provides basic services, including:

• Serialization support

• Run-time class information

• Object diagnostic output

• Compatibility with collection classes

Refer to Part 1 for a detailed description of these features.

Note CObject does not support multiple inheritance. Your derived classes can
have only one CObject base class, and that CObject must be leftmost in the hier­
archy. It is permissible, though, to have structures and non-CObject-derived
classes in right-hand multiple-inheritance branches.

~,

#include <afx.h>

~
You will realize major benefits from CObject derivation if you use some of the
optional macros in your class implementation and declarations.

The first-level macros, DECLARE_DYNAMIC and
IMPLEMENT_DYNAMIC, permit run-time access to the class name and its
position in the hierarchy. This, in turn, allows meaningful diagnostic dumping.

The second-level macros, DECLARE_SERIAL and IMPLEMENT_SERIAL,
include all the functionality of the first-level macros, and they enable an object to
be serialized to and from an archive.

For important information about deriving Microsoft Foundation classes and C++
classes in general, see "How to Derive a Class from CObject" in Chapter 8 of the
Class Libraries User's Guide.

464 CObject

Public Members

Construction/Destruction
-CObject

operator new

operator delete

Diagnostics
AssertValid

Dump

Serialization
IsSerializable

Serialize

Miscellaneous
GetRuntimeClass

IsKindOr

Construct

Protected Members
CObject

Private Members
CObject

operator =

Virtual destructor.

Special new operator.

Special delete operator.

Validates this object's integrity.

Produces a diagnostic dump of this object.

Tests to see if this object can be serialized.

Loads or stores an object from/to an archive.

Returns the CRuntimeClass structure correspond­
ing to this object's class.

Tests this object's relationship to a given class.

An internal function that must be public-do
not use.

Default constructor.

Copy constructor.

Assignment operator.

Macros
RUNTIME_CLASS

DECLARE_DYNAMIC

IMPLEMENT_DYNAMIC

DECLAILSERIAL

Returns the CRuntimeClass
structure corresponding to the
named class.

CObject 465

Permits access to run-time class
information (used in each class
declaration).

Permits access to run-time class
information (used once in the class
implementation).

Permits serialization and access to
run-time class information (used in
each class declaration).

Permits serialization and access to
run-time class information (used
once in the class implementation).

466 CObject::AssertValid

Member Functions and Macros

Syntax

Remarks

Example

CObject::AssertValid
virtual void AssertValidO const;

AssertValid performs a validity check on this object by checking its internal state.
In the Debug version of the library, AssertValid may assert and thus terminate the
program with a message that lists the line number and filename where the asser­
tion failed.

When you write your own class, you should override the AssertValid function to
provide diagnostic services for yourself and other users of your class. The overrid­
den AssertValid usually calls the AssertValid function of its base class before
checking data members unique to the derived class.

Because AssertValid is a const function, you are not permitted to change the ob­
ject state during the test. Your own derived class AssertValid functions should not
throw exceptions but rather should assert if they detect invalid object data.

The definition of "validity" depends on the object's class. As a rule, the function
should perform a "shallow check." That is, if an object contains pointers to other
objects, it should check to see if the pointers are not null, but should not perform
validity testing on the objects referred to by the pointers.

See CObList::CObList for a listing of the CAge class used in all CObject
examples.

void CAge::AssertValid() const
{

CObject::AssertValid();
ASSERT((m_years > 0) && (m_years < 105));

Syntax

Parameters

Remarks

Syntax

Remarks

CObject:: ... CObject 467

CObject::CObject
CObjectO;

CObject(const CObject& objectSrc);

objectSrc
A reference to another CObject.

These functions are the standard CObject constructors. The default version is auto­
matically called by the constructor of your derived class.

If your class is serializable (it incorporates the IMPLEMENT_SERIAL macro),
then you must have a default constructor (a constructor with no arguments) in your
class declaration. If you don't need a default constructor, declare a private or pro­
tected "empty" constructor. For more information, see "How to Derive a Class
from CObject" in Chapter 8 of the Class Libraries User's Guide.

The standard C++ default class copy constructor does a member-by-member copy.
The presence of the private CObject copy constructor guarantees a compiler error
message if the copy constructor of your class is needed but not available. You
must, therefore, provide a copy constructor if your class requires this capability.

CObject::-CObject
virtual -CObjectO

This function is the standard CObject destructor. If your derived class must
free allocated memory or do other cleanup work, you must provide your own
destructor. Because -CObject is a virtual destructor, C++ ensures that
CObject: :-CObject is automatically called as part of the destructor of your class.

Note Your destructor should not throw exceptions or allocate objects.

468 DECLARE_DYNAMIC Macro

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

DECLARE_DYNAMIC Macro

class_name
The actual name of the class (without quotes).

DECLARE_DYNAMIC generates the c++ header code necessary for a
CObject-derived class with accessible run-time information. Use the
DECLARE_DYNAMIC macro in a .H module, then include that module in all
.CPP modules that need access to objects of this class. For more information, see
"How to Derive a Class from CObject" in Chapter 8 of the Class Libraries User's
Guide.

If DECLARE_DYNAMIC is included in the class declaration, then
IMPLEMENT_DYNAMIC must be included in the class implementation.

The DECLARE_SERIAL macro includes all the functionality of
DECLARE_DYNAMIC but adds the ability to serialize the object.

DECLARE_SERIAL, IMPLEMENT_DYNAMIC

DECLARE_ SERIAL Macro

class_name
The actual name of the class (without quotes).

DECLARE_SERIAL generates the C++ header code necessary for a
CObject-derived class that can be serialized. Use the DECLARE_SERIAL
macro in a.H module, then include that module in all.CPP modules that need
access to objects of this class. For more information, see "How to Derive a Class
from CObject," in Chapter 8 of the Class Libraries User's Guide.

See Also

Syntax

Parameters

Remarks

CObject::Dump 469

If DECLARE_ SERIAL is included in the class declaration, then
IMPLEMENT_SERIAL must be included in the class implementation.

The DECLARE_SERIAL macro includes all the functionality of
DECLARE_DYNAMIC.

DECLARE_DYNAMIC, IMPLEMENT_SERIAL

CObject::Dump
virtual void Dump(CDumpContext& de) const;

de
The diagnostic dump context for dumping, usually afxDump.

Dumps the contents of your object to a CDumpContext object.

When you write your own class, you should override the Dump function to pro­
vide diagnostic services for yourself and other users of your class. The overridden
Dump usually calls the Dump function of its base class before printing data mem­
bers unique to the derived class. CObject::Dump prints the class name if your
class uses the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro.

Note Your Dump function should not print a newline at the end of its output.

Dump calls make sense only in the Debug version of the Microsoft Foundation
library. Bracket calls, function declarations, and function implementations with
#ifdef _DEBUG/#endif statements for conditional compilation.

Since Dump is a const function, you are not permitted to change the object state
during the dump.

The CDumpContext operator « calls Dump when a CObject pointer is
inserted.

470 CObject::GetRuntimeClass

Example

Syntax

Remarks

Return Value

Dump permits only "acyclic" dumping of objects. You can dump a list of objects,
for example, but if one of the objects is the list itself, you will eventually overflow
the stack.

{

}

void CAge::Dump(CDumpContext &dc) canst

CObject::Dump(de);
de « m_yea rs;

CObject::GetRuntimeClass
virtual CRuntimeClass* GetRuntimeClassO const;

There is one CRuntimeClass structure for each CObject-derived class. The struc­
ture members are as follows:

const char* IlL pszClassName
A null-terminated string containing the ASCII class name.

int IILnObjectSize
The actual size of the object. If the object has data members that point to allo­
cated memory, the size of that memory is not included.

WORD IlL wSchema
The schema number (-1 for nonserializable classes). See the
IMPLEMENT_SERIAL macro for a description of schema number.

void (*lILpfnConstruct)(void* p)
A pointer to the default constructor of your class (valid only if the class is
serializable).

CRuntimeClass* m_ pBaseClass
A pointer to the CRuntimeClass structure that corresponds to the base class.

This function requires use ofthe IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in the class implementation. You will get
incorrect results otherwise.

A pointer to the CRuntimeClass structure corresponding to this object's class;
never NULL.

Example

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

IMPLEMENT_SERIAL Macro 471

CAge a(21);
CRuntimeClass* prt = a.GetRuntimeClassC);
ASSERT(strcmpC prt-)m_pszClassName, "CAge"

CObject: : IsKindOf, RUNTIME_ CLASS

IMPLEMENT_DYNAMIC Macro

class_name
The actual name ofthe class (without quotes).

base_class_name
The name of the base class (without quotes).

o);

Generates the C++ code necessary for a dynamic CObject-derived class with
run-time access to the class name and position within the hierarchy. Use the
IMPLEMENT_DYNAMIC macro in a .CPP module, then link the resulting
object code only once. For more information, see "How to Derive a Class from
CObject," in Chapter 8 ofthe Class Libraries User's Guide.

IMPLEMENT_SERIAL

IMPLEMENT_SERIAL Macro
IMPLEMENT_SERIAL(class_name, base_class_name, wSchema)

class_name
The actual name of the class (without quotes).

base_class_name
The name of the base class (without quotes).

wSchema
Placeholder for future implementation. The class schema number must not be
-1. This is a version number that will be encoded in the archive to enable a
de serializing program to identify and handle data created by earlier program
versions.

472 CObject::lsKindOf

Remarks Generates the c++ code necessary for a dynamic CObject-derived class with
run-time access to the class name and position within the hierarchy. Use the
IMPLEMENT_SERIAL macro in a .CPP module; then link the resulting object
code only once. For more information, see "How to Derive a Class from CObject"
in Chapter 8 of the Class Libraries User's Guide.

See Also IMPLEMENT_DYNAMIC

Syntax

Parameters

Remarks

Return Value

Example

See Also

CObject::lsKindOf
BOOL IsKindOf(const CRuntimeClass* pClass) const;

pClass
A pointer to a CRuntimeClass structure associated with your CObject-derived
class.

IsKindOf tests this object to see if (1) it is an object of the specified class or (2) if
it is an object of a class derived from the specified class. This function only works
for classes declared with the DECLARE_DYNAMIC or DECLARE_SERIAL
macros.

Do not use this function extensively because it defeats the C++ polymorphism
feature. Use virtual functions instead.

TRUE if the object corresponds to the class; otherwise FALSE.

CAge a(21); II must use IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL
ASSERT(a.IsKindOf(RUNTIME_CLASS(CAge)));

CObject::GetRuntimeClass, RUNTIME_ CLASS

Syntax

Remarks

Return Value

Example

See Also

Syntax

Parameters

Remarks

CObject::Serialize 473

CObject::lsSerializable
BOOL IsSerializableO const;

IsSerializable tests whether this object is eligible for serialization. For a class to
be serializable, its declaration must contain the DECLARE_SERIAL macro, and
the implementation must contain the IMPLEMENT_SERIAL macro.

Note Do not override this function.

TRUE if this object can be serialized; otherwise FALSE.

CAge a(21);
ASSERT(a.IsSerializable());

CObject: : Serialize

CObject::Serialize
virtual void Serialize(CArchive& ar)
throw(CMemoryException, CArchiveException, CFileException);

ar
A CArchive object to serialize to or from.

Serialize reads or writes this object from or to an archive.

You must override Serialize for each class that you intend to serialize. The over­
ridden Serialize must first call the Serialize function of its base class.

You must also use the DECLARE_ SERIAL macro in your class declaration, and
you must use the IMPLEMENT_SERIAL macro in the implementation.

Use CArchive::IsLoading or CArchive::IsStoring to determine whether the ar­
chive is loading or storing.

Serialize is called by CArchive::ReadObject and CArchive::WriteObject
These functions are associated with the CArchive insertion operator «<) and ex­
traction operator (»).

474 RUNTIME_ CLASS Macro

Example

Syntax

Parameters

Remarks

Example

See Also

For serialization examples, refer to both the cookbook and the tutorial in the Class
Libraries User's Guide.

{

}

void CAge::Serialize(CArchive& ar)

CObject::Serialize(ar);
if(ar.IsStoring())

else

RUNTIME_ CLASS Macro

class_name
The actual name of the class (without quotes).

RUNTIME_ CLASS returns a pointer to a CRuntimeClass structure for the class
specified by class_name.

CRuntimeClass* prt = RUNTIME_CLASS(CAge);
ASSERT(strcmp(prt-)m_pszCl assName, "CAge") == 0);

DECLARE_DYNAMIC, CObject: : GetRuntimeClass,
IMPLEMENT_DYNAMIC

Operators

Syntax

Remarks

Syntax

Remarks

See Also

Syntax

Remarks

CObject::operator new 475

CObject::operator =
void operator =(const CObject& src);

The standard C++ default class assignment behavior is a member-by-member
copy. The presence of this private assignment operator guarantees a compiler error
message if you assign without the overridden operator. You must, therefore, pro­
vide an assignment operator in your derived class if you intend to assign objects of
your derived class.

CObject::operator delete
void operator delete(void* p);

For the Release version of the library, delete simply frees the memory allocated
by new. In the Debug version, delete participates in an allocation-monitoring
scheme designed to detect memory leaks.

Note If you override new and delete, you forfeit the diagnostic capability.

CObject::operator new

CObject::operator new
void* operator new(size_t nSize)
throw(CMemoryException);

void* operator new(size_t nSize, const char FAR* IpszFileName, int nLine)
throw(CMemoryException);

For the Release version of the library, new performs an optimal memory alloca­
tion in a manner similar to malloc. In the Debug version, new participates in an
allocation-monitoring scheme designed to detect memory leaks.

476 CObject::operator new

See Also

If you use the code line:

#define new DEBUG_NEW

before any of your implementations in a .CPP file, then the second version of new
will be used, storing the filename and line number in the allocated block for later
reporting. You do not have to worry about supplying the extra parameters; a
macro takes care of that for you.

Even if you don't use DEBUG_NEW in Debug mode, you still get leak detection,
but without the source file line number reporting described above.

Note If you override this operator, you must also override delete. Do not use the
standard library _ new_handler function.

CObject: :operator delete

CObUst 477

class CObList : public CObject

See Also

Derivation

The CObList class supports ordered lists of non­
unique CObject pointers accessible sequentially or
by pointer value. CObList lists behave like doubly
linked lists.

A variable of type POSITION is a kind of key for the list. You can use a
POSITION variable as an iterator to sequentially traverse a list and as a book­
mark to hold a place. A position is not the same as an index, however.

Element insertion is very fast at the list head, at the tail, and at a known
POSITION. A sequential search is necessary in order to look up an element by
value or index. This search can be slow if the list is long.

CObList incorporates the IMPLEMENT_SERIAL macro to support serializa­
tion and dumping of its elements. If a list of CObject pointers is stored to an ar­
chive, either with the overloaded insertion operator or with the Serialize member
function, each CObject element is, in turn, serialized.

If you need a dump of individual CObject elements in the list, you must set the
depth of the dump context to 1 or greater.

When a CObList object is deleted, or when its elements are removed, only the
CObject pointers are removed, not the objects they reference.

#include <afxcoll.h>

CStringList, CPtrList

The tutorial in the Class Library User's Guide illustrates the derivation of a
CPerson List class from CObList. This new list class, designed to hold pointers
to CPerson objects, adds a new data member and new member functions. Note
that the resulting list is not strictly "type safe" because it allows insertion of any
CObject pointer.

Note You must use the IMPLEMENT_SERIAL macro in the implementation of
your derived class if you intend to serialize the list.

478 CObUst

Public Members

Construction/Destruction
CObList

-CObList

Head/Tail Access
GetHead

GetTaii

Operations
RemoveHead

RemoveTail

AddHead

AddTaii

RemoveAll

Iteration
GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification
GetAt

SetAt

RemoveAt

Constructs an empty list for CObject pointers.

Destroys a CObList object.

Returns the head element of the list (cannot be
empty).

Returns the tail element of the list (cannot be
empty).

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another
list) to the head of the list (makes a new head).

Adds an element (or all the elements in another
list) to the tail of the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by
position.

Insertion
InsertBefore

InsertAfter

Searching
Find

Findlndex

Status
GetCount

IsEmpty

CObUst 479

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by
pointer value.

Gets the position of an element specified by a zero­
based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

480 COblist::AddHead

Member Functions

Syntax

Parameters

Remarks

Return Value

Example

See Also

COblist::AddHead
POSITION AddHead(CObject* newElement)
throw(CMemoryException);

void AddHead(CObList* pNewList)
throw(CMemoryException);

newElement
The CObject pointer to be added to this list.

pNewList
A pointer to another CObList list. The elements in pNewList will be added to
this list.

Adds a new element or list of elements to the head of this list. The list may be
empty before the operation.

The first version returns the POSITION value of the newly inserted element.

CObList list;

list.AddHead(new CAge(21 l; II 21 is now at head
list.AddHead(new CAge(40 l; II 40 replaces 21 at head

iii fdef _ DEBUG
afxDump.SetDepth(1 l;
afxDump « "AddHead example: " « &list « "\\n";

ilendif

The results from this program are as follows:

AddHead example: A CObList with 2 elements
a CAge at $44A8 40
a CAge at $442A 21

CObList::GetHead, CObList::RemoveHead

Syntax

Parameters

Remarks

Return Value

Example

See Also

COblist::AddTaii
POSITION AddTail(CObject* newElement)
throw(CMemoryException);

void AddTail(CObList* pNewList)
throw(CMemoryException);

newElement
The CObject pointer to be added to this list.

pNewList

CObList::AddTaii 481

A pointer to another CObList list. The elements in pNewList will be added to
this list.

Adds a new element or list of elements to the tail of this list. The list may be
empty before the operation.

The first version returns the POSITION value of the newly inserted element.

CObList list;
list.AddTail(new CAge(21);
list.AddTail(new CAge(40); II List now contains (21, 40)

iti fdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "AddTail example: " « &list « "\\n";

/tendif

The results from this program are as follows:

AddTail example: A CObList with 2 elements
a CAge at $444A 21
a CAge at $4526 40

CObList: : GetTail, CObList: : RemoveTaii

482 CObList::CObList

Syntax

Parameters

Remarks

Example

CObList::CObList
CObList(int nBlockSize = 10);

nBlockSize
The memory-allocation granularity for extending the list.

Constructs an empty CObject pointer list. As the list grows, memory is allocated
in units of nBlockSize entries. If a memory allocation fails, a CMemoryException
is thrown.

Below is a listing of the CObject-derived class CAge used in all the collection ex­
amples:

II Simple CObject-derived class for COblist examples
class CAge: public CObject
{

DEClARE_SERIAl(CAge)
private:

i nt m_yea rs;
public:

CAge() { m_years = 0; }
CAge(int age) { m_years = age; }
CAge(const CAge& a) { m_years = a.m_years; } II Copy constructor
void Serialize(CArchive& ar);
void AssertValid() const;
const CAge& operator=(const CAge& a)
{

m_years = a.m_years; return *this;

BOOl operator==(CAge a)
{

}

#ifdef _DEBUG
void Dump(CDumpContext& dc) const
{

}

#endif
} ;

CObject::Dump(dc);
dc « m_years;

Syntax

Remarks

Syntax

Parameters

Remarks

Return Value

COblist::Find 483

Below is an example of COb List constructor usage:

CObList list(20); II List on the stack with blocksize = 20

CObList* plist = new CObList; II List on the heap with default blocksize

CObList::-CObList
-CObListO;

Destroys a CObList object but does not destroy the CObject objects that are refer­
enced in the list.

CObList::Find
POSITION Find(CObject* search Value,

POSITION startAfter = NULL) const;

search Value
The object pointer to be found in this list.

startAfter
The start position for the search.

Searches the list sequentially to find the first CObject pointer matching the
specified CObject pointer. Note that the pointer values are compared, not the con­
tents of the objects.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the object is not found.

484 CObList::Findlndex

Example CObL i st 1 i st;
CAge* pal;
CAge* pa2;
POSITION pos;

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40, 21)
if((pos = list.Find(pal)) != NULL) II Hunt for pal,
{ II starting at head by default

ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));
}

CObList::GetNext, CObList::GetPrev

COblist::Findlndex
POSITION FindIndex(int nIndex) const;

nIndex
The zero-based index of the list element to be found.

Uses the value of nIndex as an index into the list. It starts a sequential scan from
the head of the list, stopping on the nth element.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if nIndex is negative or too large.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pos = list.FindIndex(0)) != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));

CObList::Find, CObList::GetNext, CObList::GetPrev

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Remarks

Return Value

CObList::GetCount 485

CObList::GetAt
CObject*& GetAt(POSITION position);

CObject* GetAt(POSITION position) const;

position
A POSITION value returned by a previous BeginIterate or Find member
function call.

A variable of type POSITION is a kind of "key" for the list. It is not the same as
an index, and you cannot operate on a POSITION value yourself. GetAt retrieves
the CObject pointer associated with a given position.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the library asserts.

See the return value description for GetHead.

See the example for FindIndex

CObList::Find, CObList::SetAt, CObList::GetNext, CObList::GetPrev,
CObList: : GetHead

CObList::GetCount
int GetCountO const;

Gets the number of elements in this list.

An integer value containing the element count.

486 COblist::GetHead

Example CObList list;

See Also

Syntax

Remarks

Return Value

Example

list.AddHead(new CAge(21));
list.AddHead(new CAgeC 40)); II List now contains (40, 21)
ASSERT(list.GetCount() 2);

CObList::IsEmpty

COblist::GetHead
CObject*& GetHeadO;

CObject* GetHeadO const;

Gets the CObject pointer that represents the head element of this list.

You must ensure that the list is not empty before calling GetHead. If the list is
empty, then the Debug version ofthe library asserts. Use IsEmpty to verify that
the list contains elements.

If the list is accessed through a pointer to a const CObList, then GetHead returns
a CObject pointer. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CObList, then GetHead re­
turns a reference to a CObject pointer. This allows the function to be used on
either side of an assignment statement and thus allows the list entries to be
modified.

The following example illustrates the use of GetHead on the left side of an assign­
ment statement.

const CObList* cplist;

CObList* plist = new CObList;
CAge* pagel new CAge(21);
CAge* page2 new CAge(30);
CAge* page3 = new CAge(40);

See Also

Syntax

Remarks

Return Value

Example

See Also

CObList::GetHeadPosition 487

plist->AddHead(pagel);
plist->AddHead(page2); II List now contains (30, 21)
II The following statement REPLACES the head element
plist->GetHead() = page3; II List now contains (40, 21)
ASSERT(*(CAge*) plist->GetHead() == CAge(40));

cplist = plist; II cplist is a pointer to a const list
II cplist->GetHead() = page3; II Does not compile!

ASSERT(*(CAge*) plist->GetHead() == CAge(40)); II OK

delete pagel;
delete page2;
delete page3;
delete plist; II Cleans up memory

COb List: : GetTaiL cObList: : GetTailPosition, cObList: : AddHead,
cObList: :RemoveHead

CObList::GetHeadPosition
POSITION GetHeadPositionO const;

Gets the position of the head element of this list.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pos = list.GetHeadPosition(» != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));
}

cObList::GetTailPosition

488 COblist::GetNext

Syntax

Parameters

Remarks

Return Value

Example

COblist::GetNext
CObject*& GetNext(POSITION& rPosition);

CObject* GetNext(POSITION& rPosition) const;

rPosition
A reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other member function call.

GetNext gets the list element identified by rPosition, then sets rPosition to the
POSITION value of the next entry in the list. You can use GetNext in a forward
iteration loop if you establish the initial position with a call to GetHeadPosition
or Find.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the library asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set
to NULL.

It is possible to remove an element during an iteration. See the example for
RemoveAt.

See the return value description for GetHead.

CObList list;
POSITION pas;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
II Iterate through the list in head-to-tail order
fore pas = list.GetHeadPosition(); pas != NULL;)
{

#i fdef _ DEBUG

#endif
}

afxDump « list.GetNext(pas) « "\\n";

See Also

Syntax

Parameters

Remarks

Return Value

Example

The results from this program are as follows:

a CAge at $479C 40
a CAge at $46C0 21

CObList::GetPrev 489

CObList: :Find, CObList: : GetHeadPosition, CObList: : GetTailPosition,
CObList::GetPrev, CObList::GetHead

CObList::GetPrev
CObject*& GetPrev(POSITION& rPosition);

CObject* GetPrev(POSITION& rPosition) const;

rPosition
A reference to a POSITION value returned by a previous GetPrevor other
member function call.

GetPrev gets the list element identified by rPosition, then sets rPosition to the
POSITION value of the previous entry in the list. You can use GetPrev in a
reverse iteration loop if you establish the initial position with a call to
GetTailPosition or Find.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the library asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set
to NULL.

See the return value description for GetHead.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
II Iterate through the list in tail-to-head order
for(pos = list.GetTailPosition(); pos 1= NULL;)
{

1/ifdef _ DEBUG

flendif
}

afxDump « list.GetPrev(pos) « "\n";

490 CObList::GetTaii

See Also

Syntax

Remarks

Return Value

Example

See Also

The results from this program are as follows:

a CAge at $421C 21
a CAge at $421C 40

CObList: :Find, CObList: : GetTailPosition, CObList: : GetHeadPosition,
CObList::GetNext, CObList::GetHead

COblist::GetTaii
CObject*& GetTailO;

CObject* GetTailO const;

Gets the CObject pointer that represents the tail element of this list.

You must ensure that the list is not empty before calling GetTail. If the list is
empty, then the Debug version of the library asserts. Use IsEmpty to verify that
the list contains elements.

See the return value description for GetHead.

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
ASSERT(*(CAge*) list.GetTail() CAge(21));

CObList: : GetTail, CObList: :AddHead, CObList: : RemoveHead,
CObList: : GetHead

Syntax

Remarks

Return Value

Example

See Also

Syntax

Parameters

Remarks

Example

CObList::lnsertAfter 491

CObList::GetTaiIPosition
POSITION GetTailPositionO const;

Gets the position of the tail element of this list; NULL if the list is empty.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pos = list.GetTailPosition()) != NULL)
{

ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));
}

CObList: : GetHeadPosition, CObList: : GetTail

CObList::lnsertAfter
POSITION InsertAfter(POSITION position, CObject* newElement);
throw (CMemoryException);

position
A POSITION value returned by a previous GetNext, GetPrev, or Find mem­
ber function call.

newElement
The object pointer to be added to this list.

Adds an element to this list' after' the element at the specified position.

CObList list;
POSITION pos1, pos2;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pos1 = list.GetHeadPosition()) != NULL)
{

492 CObList::lnsertBefore

See Also

Syntax

Parameters

Remarks

Return Value

Example

pos2 = list.InsertAfter(posl, new CAge(65));
}

ifi fdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "InsertAfter example: " « &list « "\\n";

ifendi f

The results from this program are as follows:

InsertAfter example: A CObList with 3 elements
a CAge at $4A44 40
a CAge at $4A64 65
a CAge at $4968 21

CObList: : Find, CObList: :InsertBefore

CObList::lnsertBefore
POSITION InsertBefore(POSITION position, CObject* newElement)
throw (CMemoryException);

position
A POSITION value returned by a previous GetNext, GetPrev, or Find mem­
ber function call.

newElement
The object pointer to be added to this list.

Adds an element to this list 'before' the element at the specified position.

A POSITION value that can be used for iteration or object pointer retrieval;
NULL if the list is empty.

CObList list;
POSITION pos1, pos2;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pos1 = list.GetTailPosition()) != NULL
{

pos2 = list.InsertBefore(posl, new CAge(65));
}

See Also

Syntax

Remarks

Return Value

Example

See Also

Syntax

Remarks

Ififdef _DEBUG
afxDump.SetDepth(1);

CObList::RemoveAIi 493

afxDump « "InsertBefore example: " « &list « "\\n";
Ifendif

The results from this program are as follows:

InsertBefore example: A CObList with 3 elements
a CAge at $4AE2 40
a CAge at $4B02 65
a CAge at $49E6 21

CObList::Find, CObList::lnsertAfter

CObList::lsEmpty
BOOL IsEmptyO const;

Indicates if this list contains no elements.

TRUE if this list is empty; FALSE otherwise.

See the example for RemoveAll.

CObList::GetCount

CObList::RemoveAIi
void RemoveAllO;

Removes all the elements from this list and frees the associated CObList memory.
No error is generated if the list is already empty.

When you remove elements from a CObList, you remove the object pointers from
the list. It is your responsibility to delete the objects themselves.

494 CObList::RemoveAt

Example CObL i st 1 i st;
CAge* pal;
CAge* pa2;

Syntax

Parameters

Remarks

Example

ASSERT(list.IsEmpty(»; II Yes it is
list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40, 21)
ASSERT(! 1 i st. IsEmpty(»; I I No it i sn' t
list.RemoveAll(); II CAge's aren't destroyed
ASSERT(list.IsEmpty(»; II Yes it is
delete pal; II Now delete the CAge objects
delete pa2;

CObList::RemoveAt
void RemoveAt(POSITION position);

position
The position of the element to be removed from the list.

Removes the specified element from this list.

When you remove an element from a CObList, you remove the object pointer
from the list. It is your responsibility to delete the objects themselves.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the library asserts.

Be careful when removing an element during a list iteration. The following ex­
ample shows a removal technique that guarantees a good POSITION value for
GetNext:

CObList list;
POSITION pos1, pos2;
CObject* pa;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40));
list.AddHead(new CAge(65)); II List now contains (65 40, 21)
fore pos1 = list.GetHeadPosition(); (pos2 = pos1) != NULL;)
{

Syntax

Remarks

Return Value

Example

See Also

COblist::RemoveHead 495

if(*(CAge*) list.GetNext(pos1) == CAge(40))
{

}

}

pa = list.GetAt(pos2); II Save the old pointer for deletion
list.RemoveAt(pos2);
delete pa; II Deletion avoids memory leak

/tifdef _DEBUG
afxDump.SetDepth(1);
afxDump « "RemoveAt example: " « &list « "\\n";

Ifendif

The results from this program are as follows:

RemoveAt example: A CObList with 2 elements
a CAge at $4C1E 65
a CAge at $4B22 21

CObList::RemoveHead
CObject* RemoveHeadO;

Removes the element from the head of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveHead. If the list
is empty, then the Debug version of the library asserts. Use IsEmpty to verify that
the list contains elements.

The CObject pointer previously at the head of the list.

CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21));
list.AddHead(pa2 = new CAge(40)); II List now contains (40, 21)
ASSERT(*(CAge*) list.RemoveHead() CAge(40 »; II Old head
ASSERT(*(CAge*) list.GetHead() == CAge(21 »; II New head
delete pal;
delete pa2;

CObList::GetHead, CObList::AddHead

496 CObList::RemoveTaii

Syntax

Remarks

Return Value

Example

See Also

Syntax

Parameters

Remarks

CObList::RemoveTaii
CObject* RemoveTailO;

Removes the element from the tail of the list and returns a pointer to it.

You must ensure that the list is not empty before calling RemoveTail. If the list is
empty, then the Debug version of the library asserts. Use IsEmpty to verify that
the list contains elements.

A pointer to the object that was at the tail of the list.

CObList list;
CAge* pal;
CAge* pa2;

list.AddHead(pal = new CAge(21)
list.AddHead(pa2 = new CAge(40)
ASSERT(*(CAge*) list.RemoveTail()
ASSERT(*(CAge*) list.GetTail()
delete pal;
delete pa2; II Clean up memory

) ;
); II List now contains (40, 21)

CAge(21)); II Old tail
CAge(40)); II New tail

CObList: : GetTail, CObList: :AddTail

CObList::SetAt
void SetAt(POSITION pos, CObject* newElement);

pos
The POSITION of the element to be set.

newElement
The CObject pointer to be written to the list.

A variable of type POSITION is a kind of "key" for the list. It is not the same as
an index, and you cannot operate on a POSITION value yourself. SetAt writes
the CObject pointer to the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list.
If it is invalid, then the Debug version of the library asserts.

Example

See Also

CObList list;
CObject* pa;
POSITION pas;

list.AddHead(new CAge(21));

CObList::SetAt 497

list.AddHead(new CAge(40)); II List now contains (40, 21)
if((pas = list.GetTailPosition(» != NULL)
{

}

pa = list.GetAt(pas); II Save the old pointer for deletion
list.SetAt(pas, new CAge(65 »; II Replace the tail element
delete pa; II Deletion avoids memory leak

Ilifdef _ DEBUG
afxDump.SetDepth(1);
afxDump « "SetAt example: " « &list « "\\n";

11endif

The results from this program are as follows:

SetAt example: A CObList with 2 elements
a CAge at $4D98 40
a CAge at $4DB8 65

CObList::Find, CObList::GetAt, CObList::GetNext, CObList::GetPrev

498 CPaintDC

class CPaintDC : public CDC

See Also

Public Members

The CPaintDC class is a device-context class derived
from CDC. It performs a BeginPaint at construction
time and EndPaint at destruction time.

A CPaintDC object can only be used when respond­
ing to a WM_PAINT message, usually in your
OnPaint message-handler member function.

CDC

Data Members
IILpS

Construction/Destruction
CPaintDC

-CPaintDC

Contains the PAINTSTRUCT used to paint the
client area.

Constructs a CPaintDC connected to the specified
CWnd.

Destroys a CPaintDc.

Protected Members
IILhWnd The HWND to which this CPaintDC object is

attached.

CPaintDC:: ... CPaintDC 499

Member Functions

Syntax

Parameters

Remarks

Syntax

Remarks

CPaintDC::CPaintDC
CPaintDC(CWnd* pWnd)
throw(CResourceException);

pWnd
Points to the CWnd object to which the CPaintDC object belongs.

Constructs a CPaintDC object, prepares the application window for painting, and
stores the PAINTSTRUCT structure in the m_ps member variable.

An exception (of type CResourceException) is thrown if the Windows GetDC
call fails. A device context may not be available if Windows has already allocated
all of its available device contexts. Your application competes for the five com­
mon display contexts available at any given time under Windows.

CPaintDC::-CPaintDC
virtual -CPaintDCO

Destroys a CPaintDC object and marks the end of painting the application win­
dow. In the process, the destructor destroys the paint structure.

500 CPaintDC::m_hWnd

Data Members

Remarks

Remarks

CPaintDC::m_ hWnd
The HWND to which this CPaintDC object is attached. DLhWnd is a protected
variable of type HWND.

CPaintDC::m_ ps
m_ ps is a public member variable of type PAINTSTRUCT. It is the
PAINTSTRUCT that is passed to and filled out by CWnd::BeginPaint

The PAINTSTRUCT contains information that the application uses to paint the
client area of the window associated with a CPaintDC object.

The PAINTSTRUCT structure looks like this:

typedef struct tagPAlNTSTRUCT {
HDC hdc;
BOOl fErase;
RECT rcPaint;
BOOl fRestore;
BOOl fIncUpdate;
BYTE rgbReserved[16];

} PAl NTSTRUCT;

Note You can access the device-context handle through the PAINTSTRUCT.
However, you can access the handle more directly through the DLhDC member
variable, which CPaintDC inherits from CDC.

CPalette 501

class CPaieHe : public CGdiObject

Public Members

The CPalette class encapsulates a Windows color
palette. A palette provides an interface between an
application and a color output device (such as a dis­
play device). The interface allows the application to
take full advantage of the color capabilities of the out­
put device without severely interfering with the colors
displayed by other applications. Windows uses the application's logical palette (a
list of needed colors) in conjunction with the system palette (which defines availa­
ble colors) to determine the colors used.

A CPalette object provides member functions for manipulating the palette re­
ferred to by the object. Construct a CPaiette object and use its member functions
to create the actual palette (a GDI object) and to manipulate its entries and other
properties.

Construction/Destruction
CPalette

Initialization
CreatePalette

Operations
FromHandle

GetPaletteEntries

Constructs a CPalette object with no attached
Windows palette. You must initialize the CPalette
object with one of the other member functions
before it can be used.

Initializes a CPalette object by creating a
Windows color palette and attaching the palette to
the CPalette object.

Returns a pointer to a CPalette object when given
a handle to a Windows palette object. If a
CPalette object is not already attached to the
Windows palette, a temporary CPaiette object is
created and attached.

Retrieves a range of palette entries in a logical
palette.

502 CPalette

SetPaletteEntries

AnimatePalette

GetNearestPaletteIndex

ResizePalette

Sets RGB color values and flags in a range of en­
tries in a logical palette.

Replaces entries in the logical palette identified by
the CPalette object. The application does not have
to update its client area because Windows maps
the new entries into the system palette immediately.

Returns the index of the entry in the logical palette
that most closely matches a color value.

Changes the size of the logical palette specified by
the CPalette object to the specified number of
entries.

CPalette::CPaleHe 503

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

CPalette::AnimatePalette
void AnimatePalette(UINT nStartlndex, UINT nNumEntries,

LPPALETTEENTRY lpPaletteColors);

nStartlndex
Specifies the first entry in the palette to be animated.

nNumEntries
Specifies the number of entries in the palette to be animated.

lpPaletteColors
Points to the first member of an array of PALETTEENTRY structures to
replace the palette entries identified by nStartlndex and nNumEntries.

Replaces entries in the logical palette attached to the CPalette object. When an
application calls AnimatePalette, it does not have to update its client area because
Windows maps the new entries into the system palette immediately.

The AnimatePalette function will only change entries with the PC_RESERVED
flag set in the corresponding palPaletteEntry member of the LOGPALETTE
structure that is attached to the CPalette object.

CPalette:: CreatePalette, : :AnimatePalette

CPalette::CPalette
CPaletteO;

Constructs a CPalette object. The object has no attached palette until you call
CreatePalette to attach one.

CPalette: :CreatePalette

504 CPalette::CreatePalette

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

CPa I ette:: Create Pa I ette
BOOL CreatePalette(LPLOGPALETTE lpLogPalette);

lpLogPalette
Points to a LOGPALETTE structure that contains information about the
colors in the logical palette.

The LOGPALETTE structure has the following form:

typedef struct tagLOGPALETTE {
WORD palVersion;
WORD palNumEntries;
PALETTE ENTRY palPalEntry[l];

} LOGPALETTE;

Initializes a CPalette object by creating a Windows logical color palette and
attaching it to the CPaiette object.

TRUE if successful; otherwise FALSE.

: :CreatePalette

CPalette::FromHandle
static CPalette* FromHandle(HPALETTE hPalette);

hPalette
A handle to a Windows GDI color palette.

Returns a pointer to a CPalette object when given a handle to a Windows palette
object. If a CPalette object is not already attached to the Windows palette, a tem­
porary CPalette object is created and attached. This temporary CPalette object is
valid only until the next time the application has idle time in its event loop, at
which time all temporary graphic objects are deleted. In other words, the tem­
porary object is only valid during the processing of one window message.

A pointer to a CPalette object if successful; otherwise NULL.

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CPalette::GetPaleHeEntries 505

CPalette::GetNearestPalettelndex
UINT GetNearestPaletteIndex(DWORD crColor) const;

crColor
Specifies the color to be matched.

Returns the index of the entry in the logical palette that most closely matches the
specified color value.

The index of an entry in a logical palette. The entry contains the color that most
nearly matches the specified color.

: : GetNearestPaletteIndex

CPa I ette:: G etPa I etteEntri es
UINT GetPaietteEntries(UINT nStartIndex, UINT nNumEntries,

LPPALETTEENTRY lpPaletteColors) const;

nStartlndex
Specifies the first entry in the logical palette to be retrieved.

nNumEntries
Specifies the number of entries in the logical palette to be retrieved.

lpPaletteColors
Points to an array of PALETTEENTRY data structures to receive the palette
entries. The array must contain at least as many data structures as specified by
nNumEntries.

Retrieves a range of palette entries in a logical palette.

The number of entries retrieved from the logical palette, or 0 if the function failed.

: : GetPaietteEntries

506 CPalette::ResizePalette

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CPalette::ResizePaleHe
BOOL ResizePalette(UINT nNumEntries);

nNumEntries
Specifies the number of entries in the palette after it has been resized.

Changes the size of the logical palette attached to the CPalette object to the num­
ber of entries specified by nNumEntries. If an application calls ResizePalette to
reduce the size of the palette, the entries remaining in the resized palette are un­
changed. If the application calls ResizePalette to enlarge the palette, the additional
palette entries are set to black (the red, green, and blue values are all 0) and the
flags for all additional entries are set to O.

TRUE if the palette was successfully resized; otherwise FALSE.

: : ResizePalette

CPalette::SetPaletteEntries
UINT SetPaletteEntries(UINT nStartlndex, UINT nNumEntries,

LPPALETTEENTRY lpPaletteColors);

nStartlndex
Specifies the first entry in the logical palette to be set.

nNumEntries
Specifies the number of entries in the logical palette to be set.

lpPaletteColors
Points to an array of PALETTE ENTRY data structures to receive the palette
entries. The array must contain at least as many data structures as specified by
nNumEntries.

Remarks

Return Value

See Also

CPalette::SetPaletteEntries 507

Sets ROB color values and flags in a range of entries in a logical palette.

If the logical palette is selected into a device context when the application calls
SetPaletteEntries, the changes will not take effect until the application calls
CDC: : RealizePalette.

The number of entries set in the logical palette, or 0 if the function failed.

CDC: : RealizePalette, :: SetPaletteEntries

508 CPen

class CPen : public CGdiObject

Public Members

The CPen class encapsulates a Windows graphical
design interface (GDI) pen.

Constructi on/Destructi on
CPen

Initialization
CreatePen

CreatePenlndirect

Operations
FromHandle

Constructs a CPen object.

Initializes a pen with the specified style, width, and
color.

Initializes a pen with the style, width, and color
given in a LOGPEN structure.

Returns a pointer to a CPen object when given a
Windows HPEN.

CPen::CPen 509

Member Functions

Syntax

Parameters

Remarks

CPen::CPen
CPenO;

CPen(int nPenStyle, int n Width, DWORD crColor)
throw(CResourceException);

nPenStyle
Specifies the pen style. This parameter can be one of the following values:

Value

PS_DASHDOTDOT

PS_NULL

PS_INSIDEFRAME

nWidth

Meaning

Creates a solid pen.

Creates a dashed pen. Valid only whcn the pen
width is 1.

Creates a dotted pen. Valid only when the pen
width is 1.

Creates a pen with alternating dashes and dots.
Valid only when the pen width is 1.

Creates a pen with alternating dashes and double­
dots. Valid only when the pen width is 1.

Creates a null pen.

Creates a pen in which a line is drawn inside the
frame of ellipses and rectangles produced by
using the Ellipse, Rectangle, and RoundRect
Windows functions.

Specifies width (in pixels) ofthe pen.

crColor
Contains an RGB color for the pen.

If you use the constructor with no arguments, you must initialize the resulting
CPen object with CreatePen, CreatePenIndirect, or CreateStockObject. If you
use the constructor that takes arguments, then no further initialization is necessary.

510 CPen::CreatePen

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

The constructor with arguments can throw an exception if errors are encountered,
while the constructor with no arguments will always succeed.

CPen:: CreatePen, CPen: :CreatePenIndirect,
CGdiObject::CreateStockObject

CPen::CreatePen
BOOL CreatePen(int nPenStyle, int n Width, DWORD crColor);

nPenStyle
Specifies the style for the pen. For a list of possible values, see the nPenStyle
parameter to the CPen constructor.

nWidth
Specifies the width of the pen (in logical units).

crColor
Contains an RGB color for the pen.

Initializes a pen with the specified style, width, and color. The pen can be sub­
sequently selected as the current pen for any device context.

Pens that have a width greater than 1 pixel should always have either the
PS_NULL, PS_SOLID, or PS_INSIDEFRAME style.

TRUE if the function is successful; otherwise FALSE.

CPen:: CreatePenIndirect, CPen:: CPen

CPen:: CreatePenl nd i reet
BOOL CreatePenIndirect(LPLOGPEN IpLogPen);

IpLogPen
Points to the Windows LOGPEN structure that contains information about the
pen.

The LOG PEN structure has the following form:

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

CPen::FromHandle 511

typedef struct tagLOGPEN
WORD lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

Initializes a pen that has the style, width, and color given in the structure pointed
to by IpLogPen.

Pens that have a width greater than 1 pixel should always have either the
PS_NULL, PS_SOLID, or PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color
in the logical color table, the pen is drawn with a dithered color. The
PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less than
or equal to 1.

TRUE if the function is successful; otherwise FALSE.

CPen::CreatePen, CPen::CPen

CPen::FromHandle
static CPen* FromHandle(HPEN hPen);

hPen
HPEN handle to Windows GDI pen.

Returns a pointer to a CPen object given a handle to a Windows GDI pen object.
If a CPen object is not attached to the handle, a temporary CPen object is created
and attached. This temporary CPen object is valid only until the next time the ap­
plication has idle time in its event loop, at which time all temporary graphic ob­
jects are deleted. In other words, the temporary object is only valid during the
processing of one window message.

A pointer to a CPen object if successful; otherwise NULL.

512 CPoint

class CPoint : public tagPOINT

See Also

Public Members

The CPoint class is similar to a Windows POINT structure and also includes
member functions to manipUlate CPoint and POINT structures.

A CPoint object can be used wherever a POINT structure is used.

CRect, CSize

Construction/Destruction
CPoint

Operations
Offset

operator==

operator !=

operator+=

operator-=

Constructs a CPoint.

Adds separate values to the x and y members of
the CPoint.

Checks for equality between two points.

Checks for inequality between two points.

Offsets a CPoint by a size.

Subtracts a size from the CPoint.

Operators Returning CPoint Values
operator +

operator-

Returns a CPoint offset by a size.

Returns a CPoint offset by a negative size.

Operators Returning CSize Values
operator- Returns the size difference between two points.

CPoint::Offset 513

Member Functions

Syntax

Parameters

Remarks

Syntax

Parameters

CPoint::CPoint
CPointO;

CPoint(int initX, int initY);

CPoint(POINT initPt);

CPoint(SIZE initSize);

initX
Sets the x member for the CPoint.

initY
Sets the y member for the CPoint.

initPt
Windows POINT structure used to initialize CPoint.

initSize
Sets the x and y member equal to the corresponding values in ex and ey values
in initSize.

Constructs a CPoint object. If no arguments are given, x and y members are not
initialized.

CPo i nt:: Offset
void Offset(int xOjfset, int yOjfset);

void Offset(POINT point);

void Offset(SIZE initSize);

xOjfset
Specifies the amount to offset the x member of the CPoint.

yOjfset
Specifies the amount to offset the y member of the CPoint.

514 CPoint::Offset

point
Specifies the amount to offset the CPoint.

initSize
Specifies the amount to offset the CPoint.

Remarks Adds separate values to the x and y members of the CPoint.

Return Value A CPoint offset by a POINT, CPoint, or Size.

CPoint::operator += 515

Operators

CPoint::operator ==

Syntax BOOL operator ==(POINT point) const;

Parameters point
Contains a POINT or CPoint.

Remarks Checks for equality between two points.

Return Value TRUE if the points are equal; otherwise FALSE.

CPoint::operator !=

Syntax BOOL operator !=(POINT point) const;

Parameters point
Contains a POINT or CPoint.

Remarks Checks for inequality between two points.

Return Value TRUE if the points are not equal; otherwise FALSE.

CPoint::operator +=
Syntax void operator +=(SIZE size);

Parameters size
Contains a SIZE or a CSize.

Remarks Offsets a CPoint by a size.

516 CPoint::operator -=

Syntax

Parameters

Remarks

Syntax

Parameters

Return Value

Syntax

Parameters

Return Value

CPoint::operator -=

void operator - =(SIZE size);

size
Contains a SIZE or a CSize.

Subtracts a size from the CPoint.

CPoint::operator +

CPoint operator +(SIZE size) const;

size
Contains a SIZE or a CSize.

A CPoint that is offset by a size.

CPoint::operator -
CSize operator - (POINT point) const;

CPoint operator - (SIZE size) const;

point
Contains a POINT or CPoint.

size
Contains a SIZE or CSize.

A CSize that is the difference between two points, or returns a CPoint that is nega­
tively offset by a size.

CPtrArray 517

class CPtrArray : public CObject

Public Members

The CPtr Array class supports arrays of void
pointers.

The member functions of CPtrArray are similar to
the member functions of class CObArray Because
of this similarity, you can use the CObArray reference documentation for mem­
ber function specifics. Wherever you see a CObject pointer as a function parame­
ter or return value, substitute a pointer to void.

CObject* CObArray: :GetAt(int <nlndex>) canst;

for example, translates to

vaid* CPtrArray::GetAt(int <nlndex>) canst;

CPtrArray incorporates the IMPLEMENT_DYNAMIC macro to support run­
time type access and dumping to a CDumpContext object. If you need a dump of
individual pointer array elements, you must set the depth of the dump context to 1
or greater.

Pointer arrays may not be serialized.

When a pointer array is deleted, or when its elements are removed, only the point­
ers are removed, not the entities they reference.

#include <afxcoll.h>

Construction/Destruction
CPtrArray

-CPtrArray

Bounds
GetSize

GetUpperBound

SetSize

Constructs an empty array for void pointers.

Destroys a CPtrArray object.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this
array.

518 CPtrArray

Operations
FreeExtra

RemoveAIl

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the element
pointer within the array.

Sets the value for a given index, growing the array
if necessary.

Adds an element to the end of the array; grows the
array if necessary.

Inserts an element (or all the elements in another
array) at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CPtrList 519

class CPtrList : public CObject

Public Members

The CPtrList class supports lists of void pointers.

The member functions of CPtrList are similar to the
member functions of class COb List Because of this
similarity, you can use the CObList reference docu-
mentation for member function specifics. Wherever you see a CObject pointer as
a function parameter or return value, substitute a pointer to void.

CObject*& CObList: :GetHead() canst;

for example, translates to

vaid*& CPtrList: :GetHead() canst;

CPtrList incorporates the IMPLEMENT_DYNAMIC macro to support run­
time type access and dumping to a CDumpContext object. If need a dump of in­
dividual pointer list elements, you must set the depth of the dump context to I or
greater.

Pointer lists may not be serialized.

When a CPtrList object is deleted, or when its elements are removed, only the
pointers are removed, not the entities they reference.

#include <afxcoll.h>

Construction/Destruction
CPtrList

-CPtrList

Head/Tail Access
GetHead

GetTaii

Constructs an empty list for void pointers.

Destroys a CPtrList object.

Returns the head element of the list (cannot be
empty).

Returns the tail element of the list (cannot be
empty).

520 CPtrList

Operations
RemoveHead

RemoveTaii

AddHead

AddTail

RemoveAll

Iteration
GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification
GetAt

SetAt

RemoveAt

Insertion
InsertBefore

InsertAfter

Searching
Find

Findlndex

Status
GetCount

IsEmpty

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another
list) to the head of the Jist (makes a new head).

Adds an element (or all the elements in another
list) to the tail of the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list, specified by
position.

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by
pointer value.

Gets the position of an element specified by a zero­
based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

CRect 521

class CRect : public tagRECT

See Also

Public Members

The CRect class is similar to a Windows RECT structure, and also includes mem­
ber functions to manipulate a CRect and Windows RECT structures.

A CRect object can be passed as a function parameter wherever a LPRECT or
RECT structure can be passed.

A CRect contains member variables that define the top-left and bottom-right
points of a rectangle. The width or height of the rectangle defined by CRect must
not exceed 32,767 units.

When specifying a CRect, you must be careful to construct it so that the top-left
point is above and to the left of the bottom-right point in the Windows coordinate
system; otherwise, the CRect will not be recognized by some functions. For ex­
ample, a top left of (lO,lO) and bottom right of (20,20) defines a valid rectangle; a
top left of (20,20) and bottom right of (10, lO), an invalid rectangle.

When using overloaded CRect operators, the first operator must be a CRect; the
second can be either a RECT or a CRect.

CPoint, CSize

Construction/Destruction
CRect

Operations
Width

Height

Size

Top Left

BottomRight

IsRectEmpty

IsRectNull

Constructs a CRect object.

Calculates the width of CRect.

Calculates the height of CRect.

Calculates the size of CRect.

Returns a reference to the top-left point of CRect.

Returns a reference to the bottom-right point of
CRect.

Determines whether CRect is empty. CRect is
empty if the width and/or height are O.

Determines if the top, bottom, left, and right
member variables are all equal to O.

522 CRect

PtInRect

SetRect

SetRectEmpty

CopyRect

EqualRect

InflateRect

OffsetRect

IntersectRect

UnionRect

Operators
operator LPRECT

operator =

operator==

operator !=

operator+=

operator-=

operator &=

operator 1=

operator +

operator-

operator &

operator 1

Determines whether the specified point lies within
CRect.

Sets the dimensions of CRect.

Sets CRect to an empty rectangle (all coordinates
equal to 0).

Copies the dimensions of a source rectangle to
CRect.

Determines whether CRect is equal to the given
rectangle.

Increases or decreases the width and height of
CRect.

Moves CRect by the specified offsets.

Sets CRect equal to the intersection of two rectan­
gles.

Sets CRect equal to the union of two rectangles.

Converts a CRect to a LPRECT.

Copies the dimensions of a rectangle to CRect.

Determines whether CRect is equal to a rectangle.

Determines whether CRect is not equal to a rec­
tangle.

Adds the specified offsets to CRect.

Subtracts the specified offsets from CRect.

Sets CRect equal to the intersection of CRect and
a rectangle.

Sets CRect equal to the union of CRect and a rec­
tangle.

Adds the given offsets to CRect and returns the re­
sulting CRect.

Subtracts the given offsets from CRect and returns
the resulting CRect.

Creates the intersection of CRect and a rectangle,
and returns the resulting CRect.

Creates the union of CRect and a rectangle, and re­
turns the resulting CRect.

CRect::CopyRect 523

Member Functions

CRect::BottomRight
Syntax CPoint& BottomRightO;

Remarks Returns a reference to the bottom-right point of CRect.

Return Value POINT&, a reference to a POINT.

CRect::CopyRect
Syntax void CopyRect(LPRECT lpSrcRect);

Parameters lpSrcRect
Points to the RECT or CRect whose dimensions are to be copied.

Remarks Copies the lpSrcRect rectangle to the CRect.

See Also ::CopyRect, CRect::operator =

524 CRect::CRect

Syntax

Parameters

Remarks

See Also

CRect::CRect
CRectO;

CRect(int I, int t, int r, int b);

CRect(const RECT& srcRect);

CRect(LPRECT lpSrcRect);

CRect(POINT point, SIZE size);

Specifies the left position of the CRect.

t
Specifies the top of the CRect.

r
Specifies the right position of the CRect.

b
Specifies the bottom of the CRect.

srcRect
Refers to the RECT structure with the dimensions for the CRect object.

lpSrcRect
Points to the RECT structure with the dimensions for the CRect object.

point
Specifies the origin point for the rectangle to be constructed. Corresponds to the
top-left comer.

size
Specifies the displacement from the top-left comer to the bottom-right comer of
the rectangle to be constructed.

Constructs a CRect object.

The CRect(const RECT &) and CRect(LPRECT) member functions perform
a CopyRect. The other constructors initialize the member variables of the object
directly.

CRect: :SetRect, CRect: :CopyRect, CRect: :operator =

Syntax

Parameters

Return Value

See Also

Syntax

Remarks

Return Value

Syntax

CRect::lnflateRect 525

CRect::EquaIRect
BOOL EqualRect(LPRECT IpRect) const;

IpRect
Points to a RECT or CRect that contains the upper-left and lower-right corner
coordinates of a rectangle.

TRUE if the two rectangles have the same top, left, bottom, and right values;
otherwise FALSE.

::EquaIRect

CRect::Height
int HeightO const;

Calculates the height of CRect by subtracting the top value from the bottom value.
The resulting value may be negative.

The height of CRect.

CRect:: InflateRect
void InflateRect(int x, int y);

void InflateRect(SIZE size);

Parameters x

y

Specifies the amount to increase or decrease CRect's width. It must be negative
to decrease the width.

Specifies the amount to increase or decrease CRect's height. It must be nega­
tive to decrease the height.

526 CRect::lntersectRect

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

size
Contains a SIZE or CSize that specifies x and y amounts to add to the CRect's
height and width.

InflateRect's parameters are signed values; positive values inflate the CRect, and
negative values deflate it.

When inflated, CRect's width is increased by two times x, and its height is in­
creased by two times y.

: : InflateRect

CRect::lntersectRect
int IntersectRect(LPRECT IpRectl, LPRECT IpRect2);

IpRectl
Points to a RECT or CRect that contains a source rectangle.

IpRect2
Points to a RECT or CRect that contains a source rectangle.

Makes the CRect equal to the intersection of two existing rectangles. The intersec­
tion is the largest rectangle contained in both existing rectangles.

TRUE if the intersection of the two rectangles is not empty. It is FALSE if the in­
tersection is empty.

::IntersectRect, CRect::operator &=, CRect::operator &

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

CRect::OffsetRect 527

CRect:: IsRectEmpty
BOOL IsRectEmptyO const;

Determines if CRect is empty. A rectangle is empty if the width and/or height are
o or negative. Differs from IsRectNull, which determines if the rectangle is
NULL.

TRUE if CRect is empty . FALSE if CRect is not empty.

: :IsRectEmpty, CRect: : IsRectNull

CRect:: IsRectNu II
BOOL IsRectNullO const;

Determines if the top, left, bottom, and right values of the CRect are all equal to O.
Differs from IsRectEmpty, which determines if the rectangle is empty.

TRUE if CRect's top, left, bottom, and right values are all equal to 0; otherwise
FALSE.

CRect: :IsRectEmpty

CRect::OffsetRect
void OffsetRect(int x, int y);

void OffsetRect(POINT point);

void OffsetRect(SIZE size);

Parameters x
Specifies the amount to move left or right. It must be negative to move left.

y
Specifies the amount to move up or down. It must be negative to move up.

~-~- ~~--~ ----

528 CRect::PtlnRect

Remarks

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

point
Contains a POINT or CPoint specifying both dimensions by which to move.

size
Contains a SIZE or CSize specifying both dimensions by which to move.

Moves CRect by the specified offsets. Moves CRect x units along the x-axis and y
units along the y-axis. The x and y parameters are signed values, so CRect can be
moved left or right, and up or down.

CRect::PtlnRect
BOOL PtInRect(POINT point) const;

point
Contains a POINT or CPoint.

Determines whether the specified point lies within CRect. A point is within
CRect if it lies on the left or top side, or is within all four sides. A point on the
right or bottom side is outside CRect.

TRUE if the point lies within CRect; otherwise FALSE.

::PtInRect

CRect::SetRect
void SetRect(int xl, int yl, int x2, int y2);

xl
Specifies the x-coordinate of the upper-left corner.

yl
Specifies the y-coordinate of the upper-left corner.

x2
Specifies the x-coordinate of the lower-right corner.

y2
Specifies the y-coordinate of the lower-right corner.

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Return Value

Syntax

Return Value

CRect::TopLeft 529

Sets the dimensions of CRect to the specified coordinates.

CRect::CRect, CRect::SetRectEmpty, ::SetRect

CRect: :SetRectEmpty
void SetRectEmptyO;

Creates a NULL rectangle (all coordinates equal to 0).

: :SetRectEmpty

CRect::Size
CSize SizeO const;

The CRect width and height encapsulated as the ex and ey member variables of a
CSize object.

CRect::TopLeft
CPoint& TopLeftO;

A reference to the top-left point of CRect.

-- ----- - ---

530 CRect::UnionRect

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

CRect::UnionRect
int UnionRect(LPRECT IpRectl, LPRECT IpRect2);

IpRectl
Points to a RECT or CRect that contains a source rectangle.

IpRect2
Points to a RECT or CRect that contains a source rectangle.

Makes the dimensions of CRect equal to the union of the two source rectangles.
The union is the smallest rectangle that contains both source rectangles.

Windows ignores the dimensions of an empty rectangle; that is, a rectangle that
has no height or has no width.

TRUE if the union is not empty; FALSE if the union is empty.

::UnionRect, CRect::operator 1=, CRect::operator I

CRect::Width
int Wid thO const;

Calculates the width of CRect by subtracting the left value from the right value.
The width may be negative.

The width of CRect.

Operators

Syntax

Remarks

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CRect::operator == 531

CRect::operator LPRECT
operator LPRECTO;

Converts a CRect to a LPRECT, with no need for the AND (&) operator.

CRect::operator =
void operator =(const RECT& sreReet);

sreReet
Refers to a source rectangle.

Copies the dimensions of sreReet to CRect.

CRect: :SetRect, : :CopyRect

CRect::operator ==
BOOL operator ==(const RECT& reet) const;

reet
Refers to a source rectangle.

Determines if reet is equal to CRect by comparing the coordinates of their upper­
left and lower-right corners.

If the values of these coordinates are equal, returns TRUE; otherwise FALSE.

: : EqualRect

532 CRect::operator !=

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CRecl::operalor !=
BOOL operator !=(const RECT& reef) const;

reef
Refers to a source rectangle.

Determines if reef is not equal to CRect by comparing the coordinates of their
upper-left and lower-right comers.

TRUE if not equal; otherwise FALSE.

CRect: : operator ==

CRecl::operalor +=

void operator +=(POINT poinf);

poinf
Contains a POINT or CPoint.

Moves CRect by the specified offsets. Moves CRect x units along the x-axis and y
units along the y-axis. The x and y parameters are added to CRect.

CRect: :OffsetRect

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CRect::operator 1= 533

CRect::operator -=

void operator - =(POINT point);

point
Contains a POINT or CPoint.

Moves CRect by the specified offsets. Moves CRect x units along the x -axis and y
units along the y-axis. The x and y parameters are subtracted from CRect.

CRect: :OtTsetRect

CRect::operator &=
void operator &=(const RECT& reet);

reet
Contains a RECT or CRect.

Sets CRect equal to the intersection of CRect and reet. The intersection is the
largest rectangle contained in both rectangles.

CRect: : IntersectRect

CRect::operator 1=
void operator 1=(const RECT& reet);

reet
Contains a CRect or RECT.

Sets CRect equal to the union of CRect and reet. The union is the smallest rec­
tangle that contains both source rectangles.

534 CRect::operator +

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Windows ignores the dimensions of an empty rectangle; that is, a rectangle that
has no height or has no width.

CRect:: UnionRect

CRect::operator +

CRect operator +(POINT point) const;

point
Contains a POINT or CPoint.

Returns a new CRect that is equal to CRect displaced by point. Moves the CRect
point.x units along the x-axis and point.y units along the y-axis. The x and y para­
meters are added to CRect's position.

The CRect resulting from the offset by point.

CRect: :OffsetRect

CRect::operator -
CRect operator - (POINT point) const;

point
Contains a POINT or CPoint.

A new CRect that is equal to CRect displaced by -point. Moves the Rect -point.x
units along the x-axis and -point.y units along the y-axis. The x and y parameters
are subtracted from CRect's dimensions.

The CRect resulting from the offset by point.

CRect: :OffsetRect

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

CRect::operator I 535

CRect::operator &
CRect operator &(const RECT & rect2) const;

rect2
Contains a RECT or CRect.

A CRect that is the intersection of CRect and rect2. The intersection is the largest
rectangle contained in both rectangles.

CRect: :IntersectRect

CRect::operator I
CRect operator I(const RECT & rect2) const;

rect2
Contains a RECT or CRect.

A CRect that is the union of CRect and rect2. A union is the smallest rectangle
that contains both source rectangles.

Windows ignores the dimensions of an empty rectangle, that is, a rectangle that
has no height or has no width.

CRect:: UnionRect

536 CResourceException

class CResourceException : public CException

Public Members

A CResourceException object is generated when
Windows cannot find or allocate a requested resource.
No further qualification is necessary or possible.

#include <afxwin.h>

CResourceException Constructs a CResourceException object.

Member Functions

Syntax

Remarks

See Also

CResourceException::CResourceException
CResourceExceptionO;

Constructs a CResourceException object.

Do not use this constructor directly, but rather call the global function
AfxThrowResourceException

Chapter 5, "Exception Processing," AfxThrowResourceException

eRgn 537

class CRgn : public CGdiObject

Public Members

The CRgn class encapsulates a Windows graphical
design interface (GDI) region. A region is an elliptical
or polygonal area within a window. To use regions,
you use the member functions of class CRgn in con­
junction with the clipping functions defined as mem­
bers of class CDC.

The member functions of CRgn create, alter, and retrieve information about the re­
gion object for which they are called.

Construction/Destruction
CRgn

Initialization

Constructs a CRgn object.

CreateRectRgn Initializes a CRgn object with a rectangular region.

CreateRectRgnIndirect Initializes a CRgn object with a rectangular region
defined by a RECT structure.

CreateEllipticRgn Initializes a CRgn object with an elliptical region.

CreateEllipticRgnlndirect Initializes a CRgn object with an elliptical region
defined by a RECT structure.

CreatePolygonRgn Initializes a CRgn object with a polygonal region.
The system closes the polygon automatically, if
necessary, by drawing a line from the last vertex to
the first.

CreatePolyPolygonRgn Initializes a CRgn object with a region consisting
of a series of closed polygons. The polygons may
be disjoint or they may overlap.

CreateRoundRectRgn Initializes a CRgn object with a rectangular region
with rounded corners.

CombineRgn Initialize a CRgn object so that it is equivalent to
the union of two specified CRgn objects.

CopyRgn Initializes a CRgn object so that it is a copy of a
specified CRgn object.

538 eRgn

Operations
EqualRgn

FromHandle

GetRgnBox

OffsetRgn

PtlnRegion

RectlnRegion

SetRectRgn

Checks two CRgn objects to determine whether
they are equivalent.

Returns a pointer to a CRgn object when given a
handle to a Windows region.

Retrieves the coordinates of the bounding rec­
tangle of a CRgn object.

Moves a CRgn object by the specified offsets.

Determines whether a specified point is in the
region.

Determines whether any part of a specified rec­
tangle is within the boundaries of the region.

Sets the CRgn object to the specified rectangular
region.

CRgn::CombineRgn 539

Member Functions

Syntax

Parameters

Remarks

CRgn::CombineRgn
int ComhineRgn(CRgn* pRgnl, CRgn* pRgn2, int nCombineMode);

pRgnl
Identifies an existing region.

pRgn2
Identifies an existing region.

nCombineMode
Specifies the operation to be performed when combining the two source re­
gions. It can be anyone of the following values:

Value

RGN_AND

RGN_COPY

RGN_DIFF

Meaning

Uses overlapping areas of both regions (intersection).

Creates a copy of region 1 (identified by pRgnl).

Creates a region consisting of the areas of region 1
(identified by pRgnl) that are not part of region 2
(identified by pRgn2).

Combines both regions in their entirety (union).

Combines both regions but removes overlapping areas.

Creates a new GDI region by combining two existing regions. The regions are
combined as specified by nCombineMode.

The two specified regions are combined, and the resulting region handle is stored
in the CRgn object. Thus, whatever region is stored in the CRgn object is re­
placed by the combined region.

Note Use CopyRgn to simply copy one region into another region.

540 CRgn::CopyRgn

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Specifies the type of the resulting region. It can be one of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

New region has overlapping borders.

No new region created.

New region is empty.

New region has no overlapping borders.

CRgn::CopyRgn, ::CombineRgn

CRgn::CopyRgn
int CopyRgn(CRgn* pRgnSrc);

pRgnSrc
Identifies an existing region.

Copies the region defined by pRgnSrc into the CRgn object. The new region re­
places the region formerly stored in the CRgn object. This function is a special
case of CombineRgn.

Specifies the type of the resulting region. It can be one of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

New region has overlapping borders.

No new region created.

New region is empty.

New region has no overlapping borders.

CRgn: :CombineRgn, : :CombineRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CRgn::CreateEllipticRgnlndirect 541

CRgn::CreateEllipticRgn
BaaL CreateEllipticRgn(int xl, int y 1, int x2, int y2);

xl

yl

x2

y2

Specifies the x-coordinate ofthe upper-left corner of the bounding rectangle of
the ellipse.

Specifies the y-coordinate of the upper-left corner of the bounding rectangle of
the ellipse.

Specifies the x-coordinate of the lower-right corner of the bounding rectangle
of the ellipse.

Specifies the y-coordinate of the lower-right corner of the bounding rectangle
of the ellipse.

Creates an elliptical region. The region is defined by the bounding rectangle
specified by xl, y 1, x2, and y2. The region is stored in the CRgn object.

TRUE if the operation succeeded; otherwise FALSE.

CRgn:: CreateEllipticRgnIndirect, :: CreateEllipticRgn

CRgn::CreateEllipticRgnlndirect
BaaL CreateEllipticRgnIndirect(LPRECT IpRect);

IpRect
Points to a RECT structure or CRect object that contains the coordinates of the
upper-left and lower-right corners of the bounding rectangle of the ellipse.

Creates an elliptical region. The region is defined by IpRect and is stored in the
CRgn object.

542 CRgn::CreatePolygonRgn

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

TRUE if the operation succeeded; otherwise FALSE.

CRgn:: CreateEllipticRgn, : :CreateEllipticRgnIndirect

CRgn::CreatePolygonRgn
BOOL CreatePolygonRgn(LPPOINT IpPoints, int nCount, int wMode);

IpPoints
Points to an array of POINT structures or an array of CPoint objects. Each
structure specifies the x- and y-coordinate of one vertex of the polygon.

nCount
Specifies the number of POINT structures or CPoint objects in the array
pointed to by IpPoints.

nMode
Specifies the filling mode for the region. This parameter may be either
ALTERNATE or WINDING.

Creates a polygonal region. The system closes the polygon automatically, ifneces­
sary, by drawing a line from the last vertex to the first. The resulting region is
stored in the CRgn object.

When the polygon-filling mode is ALTERNATE, the system fills the area be­
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When­
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line
passes through a counterclockwise line segment, the count is decremented. The
area is filled if the count is nonzero when the line reaches the outside of the figure.

TRUE if the operation succeeded; otherwise FALSE.

CRgn: :CreatePolyPolygonRgn, : :CreatePolygonRgn

Syntax

Parameters

Remarks

Return Value

See Also

CRgn::CreatePolyPolygonRgn 543

CRgn::CreatePolyPolygonRgn
BOOL CreatePolyPolygonRgn(LPPOINT IpPoints, LPINT IpPolyCounts,

int nCount, int nPolyFillMode);

IpPoints
Points to an array of POINT structures or an array of CPoint objects that de­
fine the vertices of the polygons. Each polygon must be explicitly closed be­
cause the system does not close them automatically. The polygons are specified
consecutively.

IpPolyCounts
Points to an array of integers. The first integer specifies the number of vertices
in the first polygon in the IpPoints array, the second integer specifies the num­
ber of vertices in the second polygon, and so on.

nCount
Specifies the total number of integers in the IpPolyCounts array.

nPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or
WINDING.

Creates a region consisting of a series of closed polygons. The resulting region is
stored in the CRgn object.

The polygons may be disjoint or they may overlap.

When the polygon-filling mode is ALTERNA TE, the system fills the area be­
tween odd-numbered and even-numbered polygon sides on each scan line. That is,
the system fills the area between the first and second side, between the third and
fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in
which a figure was drawn to determine whether to fill an area. Each line segment
in a polygon is drawn in either a clockwise or a counterclockwise direction. When­
ever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line
passes through a counterclockwise line segment, the count is decremented. The
area is filled if the count is nonzero when the line reaches the outside of the figure.

TRUE if the operation succeeded; otherwise FALSE.

CRgn: :CreatePolygonRgn, CDC: :SetPoly FillMode, : :CreatePolyPolygonRgn

544 CRgn::CreateRectRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CRgn::CreateRectRgn
BOOL CreateRectRgn(int xl, int y I, int x2, int y2);

xl
Specifies the x-coordinate of the upper-left corner of the region.

yl
Specifies the y-coordinate of the upper-left corner of the region.

x2
Specifies the x-coordinate of the lower-right corner of the region.

y2
Specifies the y-coordinate of the lower-right corner of the region.

Creates a rectangular region that is stored in the CRgn object.

TRUE if the operation succeeded; otherwise FALSE.

CRgn:: CreateRectRgnIndirect, CRgn:: CreateRoundRectRgn,
::CreateRectRgn

CRgn::CreateRectRgnlndirect
BOOL CreateRectRgnIndirect(LPRECT lpRect);

lpRect
Points to a RECT structure or CRect object that contains the coordinates of the
upper-left and lower-right corners of the region.

Creates a rectangular region that is stored in the CRgn object.

TRUE if the operation succeeded; otherwise FALSE.

CRgn:: CreateRectRgn, CRgn: :CreateRoundRectRgn,
: :CreateRectRgnIndirect

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

CRgn::CRgn 545

CRgn::CreateRoundRectRgn
BOOL CreateRoundRectRgn(int xl, int yl, int x2, int y2, int x3, int y3);

xl
Specifies the x-coordinate ofthe upper-left corner of the region.

yl
Specifies the y-coordinate of the upper-left corner of the region.

x2
Specifies the x-coordinate of the lower-right corner of the region.

y2
Specifies the y-coordinate of the lower-right corner of the region.

x3
Specifies the width of the ellipse used to create the rounded corners.

y3
Specifies the height of the ellipse used to create the rounded corners.

Creates a rectangular region with rounded corners that is stored in the CRgn
object.

TRUE if the operation succeeded; otherwise FALSE.

CRgn:: CreateRectRgn, CRgn:: CreateRectRgnIndirect,
:: CreateRoundRectRgn

CRgn::CRgn
CRgnO;

Constructs a CRgn object. The m_hObject data member does not contain a valid
Windows GDI region until the object is initialized with one or more of the other
CRgn member functions.

546 CRgn::EquaIRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

CRgn::EquaIRgn
BOOL EqualRgo(CRgo* pRgn) coost;

pRgn
Identifies a region.

Checks the given region to determine whether it is equivalent to the region stored
in the CRgo object.

TRUE if the two regions are equivalent; otherwise FALSE.

::EquaIRgo

CRgn::FromHandle
static CRgo* FromHaodle(HRGN hRgn);

hRgn
Specifies a handle to a Windows region.

Returns a pointer to a CRgo object when given a handle to a Windows region. If a
CRgo object is not already attached to the handle, a temporary CRgo object is
created and attached. This temporary CRgo object is valid only until the next time
the application has idle time in its event loop, at which time all temporary graphic
objects are deleted. Another way of saying this is that the temporary object is only
valid during the processing of one window message.

A pointer to a CRgo object. If the function was not successful, the return value is
NULL.

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

CRgn::OffsetRgn 547

CRgn::GetRgnBox
int GetRgnBox(LPRECT lpRect) const;

lpRect
Points to a RECT structure or CRect object to receive the coordinates of the
bounding rectangle.

Retrieves the coordinates of the bounding rectangle of the CRgn object.

Specifies the region's type. It can be any of the following values:

Value

COMPLEXREGION

NULLREGION

ERROR

SIMPLEREGION

::GetRgnBox

CRgn::OffsetRgn

Meaning

Region has overlapping borders.

Region is empty.

CRgn object does not specify a valid region.

Region has no overlapping borders.

int OffsetRgn(int x, int y);

int OffsetRgn(POINT point);

Parameters x

Remarks

Specifies the number of units to move left or right.

y
Specifies the number of units to move up or down.

point
The x-coordinate of point specifies the number of units to move left or right.
The y-coordinate of point specifies the number of units to move up or down.
The point parameter may be either a POINT structure or a CPoint object.

Moves the region stored in the CRgn object by the specified offsets. The function
moves the region x units along the x-axis and y units along the y-axis.

548 CRgn::PtlnRegion

Return Value

See Also

Syntax

Specifies the new region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

::OffsetRgn

Meaning

Region has overlapping borders.

Region handle is not valid.

Region is empty.

Region has no overlapping borders.

CRgn::PtlnRegion
BOOL PtInRegion(int x, int y) const;

BOOL PtInRegion(POINT point) const;

Parameters x

Remarks

Return Value

See Also

Specifies the x -coordinate of the point to test.

y
Specifies the y-coordinate of the point to test.

point
The x- and y-coordinate of point specify the x- and y-coordinate of the point to
test the value of. The point parameter can either be a POINT structure or a
CPoint object.

Checks whether the point given by x and y is in the region stored in the CRgn
object.

TRUE if the point is in the region; otherwise FALSE.

: :PtInRegion

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

CRgn::SetRectRgn 549

CRgn::RectlnRegion
BOOL RectInRegion(LPRECT IpRect) const;

IpRect
Points to a RECT structure or CRect object.

Determines whether any part of the rectangle specified by IpRect is within the
boundaries of the region stored in the CRgn object.

TRUE if any part of the specified rectangle lies within the boundaries of the re­
gion; otherwise FALSE.

: : RectInRegion

CRgn::SetRectRgn
void SetRectRgn(int xl, int y I, int x2, int y2);

void SetRectRgn(LPRECT IpRect);

Parameters xl
Specifies the x-coordinate of the upper-left corner of the rectangular region.

yl
Specifies the y-coordinate of the upper-left corner of the rectangular region.

x2
Specifies the x-coordinate of the lower-right corner of the rectangular region.

y2
Specifies the y-coordinate of the lower-right corner of the rectangular region.

IpRect
Specifies the rectangular region. Can be either a pointer to a RECT structure or
a CRect object.

550 CRgn::SetRectRgn

Remarks Creates a rectangular region. Unlike CreateRectRgn, however, it does not allo­
cate any additional memory from the local Windows application heap. Instead, it
uses the space allocated forthe region stored in the CRgn object. This means that
the CRgn object must already have been initialized with a valid Windows region
before calling SetRectRgn. The points given by xl, yl, x2, andy2 specify the min­
imum size of the allocated space.

See Also

Use this function instead of the CreateRectRgn function to avoid calls to the local
memory manager.

CRgn: :CreateRectRgn, : :SetRectRgn

CScroliBar 551

class CScroliBar : public CWnd

See Also

Public Members

The CScrollBar class provides the functionality of a
Windows scroll-bar control.

You create a scroll-bar control in two steps. First,
call the constructor CScrollBar to construct the
CScrollBar object, then call the Create member func­
tion to create the scroll-bar control and attach it to the
CScrollBar object.

If you create a CScrollBar object within a dialog box (through a dialog resource),
the CScrollBar is automatically destroyed when the user closes the dialog box.

If you create a CScrollBar object within a window, you may also need to destroy
it. If you create the CScrollBar object on the stack, it is destroyed automatically.
If you create the CScrollBar object on the heap by using the new function, you
must call delete on the object to destroy it when the user terminates the Windows
scroll bar.

If you allocate any memory in the CScrollBar object, override the CScrollBar de­
structor to dispose of the allocations.

CWnd, CButton, CComboBox, CEdit, CListBox, CStatic, CModalDialog,
CDialog

Construction/Destruction
CScrollBar

In itia I izati on
Create

Constructs a CScrollBar object.

Creates the Windows scroll bar and attaches it to
the CScrollBar object.

552 CScroliBar

Operations
GetScrollPos

SetScrollPos

GetScrollRange

SetScrollRange

Retrieves the current position of a scroll box.

Sets the current position of a scroll box.

Retrieves the current minimum and maximum
scroll-bar positions for the given scroll bar.

Sets minimum and maximum position values for
the given scroll bar.

CScroIlBar::Create 553

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CScroIIBar::CScroIIBar
CScrollBarO;

Constructs a CScrollBar object. After constructing the object, call the Create
member function to create and initialize the Windows scroll bar.

CScrollBar:: Create

CScroIlBar::Create
BOOL Create(DWORD dwStyle, const RECT& reet, CWnd* pParentWnd,

UINT nID);

dwStyle
Specifies the scroll bar's style.

reet
Specifies the scroll bar's size and position. Can be either a RECT structure or a
CRect object.

pParentWnd
Specifies the scroll bar's parent window, usually a CDialog or CModalDialog
object. It must not be NULL.

nID
The scroll bar's resource ID.

You construct a CScrollBar object in two steps. First call the constructor, which
constructs the CScrollBar object, then call Create, which creates and initializes
the associated Windows scroll bar and attaches it to the CScrollBar object.

Apply the following window styles to a scroll bar:

554 CScroIlBar::Create

Style

WS_CHILD

WS_ VISIBLE

WS_DIABLED

WS_GROUP

WS_TABSTOP

Application

Always.

Usually.

Rarely.

To group controls.

To allow tabbing to reach this
scroll bar control.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination of the following scroll bar styles for dwStyle:

SBS_BOTTOMALIGN
Used with the SBS_HORZ style. The bottom edge of the scroll bar is aligned
with the bottom edge of the rectangle specified in Create. The scroll bar has
the default height for system scroll bars.

SBS_HORZ
Designates a horizontal scroll bar. If neither the SBS_BOTTOMALIGN nor
SBS_ TOPALIGN style is specified, the scroll bar has the height, width, and
position given in the Create member function.

SBS_LEFTALIGN
Used with the SBS_ VERT style. The left edge of the scroll bar is aligned with
the left edge of the rectangle specified in the Create member function. The
scroll bar has the default width for system scroll bars.

SBS_RIGHTALIGN
Used with the SBS_ VERT style. The right edge of the scroll bar is aligned
with the right edge of the rectangle specified in the Create member function.
The scroll bar has the default width for system scroll bars.

SBS_SIZEBOX
Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is specified, the size box has the
height, width, and position given in the Create member function.

SBS_SIZEBOXBOTTOMRIGHTALIGN
U sed with the SBS_ SIZEBOX style. The lower-right comer of the size box is
aligned with the lower-right comer of the rectangle specified in the Create
member function. The size box has the default size for system size boxes.

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CScroIlBar::GetScroIiPos 555

SBS_SIZEBOXTOPLEFTALIGN
Used with the SBS_SIZEBOX style. The upper-left corner of the size box is
aligned with the upper-left corner ofthe rectangle specified in the Create mem­
ber function. The size box has the default size for system size boxes.

SBS_ TOPALIGN
Used with the SBS_HORZ style. The top edge ofthe scroll bar is aligned with
the top edge of the rectangle specified in the Create member function. The
scroll bar has the default height for system scroll bars.

SBS_VERT
Designates a vertical scroll bar. If neither the SBS_RIGHTALIGN nor
SBS_LEFTALIGN style is specified, the scroll bar has the height, width, and
position given in the Create member function.

TRUE if successful; otherwise FALSE.

CScrollBar:: CScrollBar

CScroIIBar::GetScroIIPos
int GetScrollPosO const;

Retrieves the current position of a scroll box. The current position is a relative
value that depends on the current scrolling range. For example, if the scrolling
range is 100 to 200 and the scroll box is in the middle of the bar, the current posi-
tion is 150. .

Specifies the current position of the scroll box.

CScrollBar:: SetScrollPos, : : GetScrollPos

556 CScroIlBar::GetScroIiRange

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CScroIIBar::GetScroIIRange
void GetScrollRange(LPINT lpMinPos, LPINT lpMaxPos) const;

lpMinPos
Points to the integer variable that is to receive the minimum position.

lpMaxPos
Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given
scroll bar to the locations specified by lpMinPos and lpMaxPos.

The default range for a scroll-bar control is empty (both values are 0).

: : GetScrollRange, CScrollBar: :SetScrollRange

CScroIIBar::SetScroIIPos
int SetScrollPos(int nPos, BOOL bRedraw = TRUE);

nPos
Specifies the new position for the scroll bar thumb. It must be within the scrol­
ling range.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the new position.
If bRedraw is TRUE, the scroll bar is redrawn. If it is FALSE, it is not red­
rawn. The scroll bar is redrawn by default.

Sets the current position of a scroll box to that specified by nPos and, if specified,
redraws the scroll bar to reflect the new position.

Set bRedraw to FALSE whenever the scroll bar will be redrawn by a subsequent
call to another function to avoid having the scroll bar redrawn twice within a short
interval.

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CScroIlBar::SetScroIiRange 557

Specifies the previous position of the scroll box.

CScrollBar: : GetScrollPos, : :SetScrollPos

CScroIIBar::SetScroIIRange
void SetScrollRange(int nMinPos, int nMaxPos, BOOL bRedraw = TRUE);

nMinPos
Specifies the minimum scrolling position.

nMaxPos
Specifies the maximum scrolling position.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the change. If
bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn. It is
redrawn by default.

Sets minimum and maximum position values for the given scroll bar. Set nMinPos
and nMaxPos to 0 to hide or show standard scroll bars.

Do not call this function to hide a scroll bar while processing a scroll-bar notifica­
tion message.

If a call to SetScrollRange immediately follows a call to the SetScrollPos mem­
ber function, set bRedraw to SetScrollPos to 0 to prevent the scroll bar from being
redrawn twice.

The difference between the values specified by nMinPos and nMaxPos must not
be greater than 32,767.

CScrollBar: :SetScrollPos, CScrollBar: : GetScrollRange, : :SetScrollRange

558 CSize

class CSize : public tagSIZE

See Also

Public Members

The CSize class is similar to the Windows SIZE structure, which implements a
relative coordinate or position.

A SIZE structure has the following form:

typedef struet tagSIZE {
int ex;
int ey;

} SIZE;

The ex and ey members of CSize are public. In addition, CSize implements mem­
ber functions to manipulate the SIZE structure.

Because CSize derives from tagSIZE, CSize objects may be used as SIZE
structures.

CReet, CPoint

Construction/Destruction
CSize

Operations
operator==

operator !=

operator+=

operator-=

Constructs a CSize object.

Checks for equality between CSize and a size.

Checks for inequality between CSize and a size.

Adds a size to CSize.

Subtracts a size from CSize.

Operators Returning CSize Values
operator +

operator-

Adds the two sizes.

Subtracts the two sizes.

CSize::CSize 559

Member Functions

Syntax

Parameters

Remarks

CSize::CSize
CSizeO;

CSize(iot initCX, iot initCY);

CSize(SIZE initSize);

CSize(POINT initPt);

initCX
Sets the ex member for the CSize.

initCY
Sets the ey member for the CSize.

initSize
Windows SIZE structure used to initialize CSize.

initPt
Windows POINT structure used to initialize CSize.

Constructs a CSize object. If no arguments are given, ex and ey members are not
initialized.

560 CSize::operator ==

Operators

CSize::operator ==
Syntax BOOL operator ==(SIZE size) const;

Parameters size
A Windows SIZE structure.

Remarks Checks for equality between two sizes.

Return Value TRUE if the sizes are equal; otherwise FALSE.

CSize::operator !=
Syntax BOOL operator !=(SIZE size) const;

Parameters size
A Windows SIZE structure.

Remarks Checks for inequality between two sizes.

Return Value TRUE if the sizes are not equal; otherwise FALSE.

CSize::operator +=
Syntax void operator +=(SIZE size);

Parameters size
A Windows SIZE structure.

Remarks Adds a size to a CSize.

CSize::operator - 561

CSize::operator -=

Syntax void operator -=(SIZE size);

Parameters size
A Windows SIZE structure.

Remarks Subtracts a size from a CSize.

CSize::operator +
Syntax CSize operator +(SIZE size) const;

Parameters size
A Windows SIZE structure.

Return Value Returns a CSize that is the sum of two sizes.

CSize::operator -
Syntax CSize operator -(SIZE size) const;

Parameters size
A Windows SIZE structure.

Return Value Returns a CSize that is the difference between two sizes.

562 CStatic

class CStatic : public CWnd

See Also

Public Members

The CStatic class provides the functionality of a
Windows static control. A static control is a simple
text field, box, or rectangle that can be used to label,
box, or separate other controls. A static control takes
no input and provides no output.

You create a static control in two steps. First, call the
constructor CStatic to construct the CStatic object, then call the Create member
function to create the static control and attach it to the CStatic object.

If you create a CStatic object within a dialog box (through a dialog resource), the
CStatic object is automatically destructed when the user closes the dialog box.

If you create a CStatic object within a window, you may also need to destroy it. A
CStatic object created on the stack within a window is automatically destroyed. If
you create the CStatic object on the heap by using the new function, you must call
delete on the object to destroy it when the user terminates the Windows static
control.

CWnd, CButton, CComboBox, CEdit, CListBox, CScrollBar, CModalDialog,
CDialog

Construction/Destruction
CStatic

Initialization
Create

Constructs a CStatic object.

Creates the Windows static control and attaches it
to the CStatic object.

CStatic::Create 563

Member Functions

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CStatic::CStatic
CStaticO;

Constructs a CStatic object.

CStatic:: Create

CStatic:: Create
BOOL Create(const char FAR* lpText, DWORD dwStyle, const RECT& reet,

CWnd* pParentWnd, UINT nID = Oxffff);

lpText
Specifies the text to place in the control. If NULL, no text will be visible.

dwStyle
Specifies the static control's window style.

reet
Specifies the position and size of the static control. It can be either a RECT
structure or a CRect object.

pParentWnd
Specifies the CStatic parent window, usually a CDialog or CModaiDialog
object. It must not be NULL.

nID
Specifies the static control's resource ID.

You construct a CStatic object in two steps. First call the constructor CStatic,
then call Create, which creates the Windows static control and attaches it to the
CStatic object.

564 CStatic::Create

Apply the following window styles to a static control:

Style

WS_CHILD

WS_VISffiLE

WS_DIABLED

Application

Always.

Usually.

Rarely.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination of the following static control styles for dwStyle:

Style

SS_BLACKFRAME

SS_CENTER

SS_GRAYFRAME

SS_GRAYRECT

Meaning

Specifies a box with a frame drawn with the
same color as window frames. The default is
black.

Specifies a rectangle filled with the color
used to draw window frames. The default is
black.

Designates a simple rectangle and displays
the given text centered in the rectangle. The
text is formatted before it is displayed.
Words that would extend past the end of a
line are automatically wrapped to the
beginning of the next centered line.

Specifies a box with a frame drawn with the
same color as the screen background
(desktop). The default is gray.

Specifies a rectangle filled with the color
used to fill the screen background. The
default is gray.

Designates an icon displayed in the dialog
box. The given text is the name of an icon
(not a filename) defined elsewhere in the
resource file. The nWidth and nHeight
parameters are ignored; the icon
automatically sizes itself.

Style

SS_LEFTNOWORDWRAP

SS_RIGHT

SS_ USERITEM

CStatic::Create 565

Meaning

Designates a simple rectangle and displays
the given text flush-left in the rectangle. The
text is formatted before it is displayed.
Words that would extend past the end of a
line are automatically wrapped to the
beginning of the next flush-left line.

Designates a simple rectangle and displays
the given text flush-left in the rectangle.
Tabs are expanded, but words are not
wrapped. Text that extends past the end of a
line is clipped.

Unless this style is specified, Windows will
interpret any ampersand (&) characters in
the control's text to be accelerator prefix
characters. In this case, the ampersand (&) is
removed and the next character in the string
is underlined. If a static control is to contain
text where this feature is not wanted,
SS_NOPREFIX may be added. This static­
control style may be included with any of
the defined static controls.

You can combine SS_NOPREFIX with
other styles by using the bitwise-OR
operator. This is most often used when
filenames or other strings that may contain
an ampersand (&) need to be displayed in a
static control in a dialog box.

Designates a simple rectangle and displays
the given text flush-right in the rectangle.
The text is formatted before it is displayed.
Words that would extend past the end of a
line are automatically wrapped to the
beginning of the next flush-right line.

Designates a simple rectangle and displays a
single line oftext flush-left in the rectangle.
The line of text cannot be shortened or
altered in any way. (The control's parent
window or dialog box must not process the
WM_ CTLCOLOR message.)

Specifies a user-defined item.

566 CStatic::Create

Style

SS_ WHITEFRAME

SS_ WIDTERECT

Meaning

Specifies a box with a frame drawn with the
same color as window backgrounds. The
default is white.

Specifies a rectangle filled with the color
used to fill window backgrounds. The
default is white.

Return Value TRUE if successful; otherwise FALSE.

See Also CStatic:: CStatic

CStdioFile 567

class CStdioFile : public CFile

Comments

Public Members

A CStdioFile object represents a C run-time stream
file as opened by the fopen function. Stream files are
buffered and can be opened in either text mode (the
default) or binary mode.

Text mode provides special processing for carriage
return-linefeed pairs. When you write a newline char-
acter (OxOA) to a text-mode CStdioFile object, the byte pair (OxOA, OxOD) is sent
to the file. When you read, the byte pair (OxOA, OxOD) is translated to a single
OxOA byte.

#include <afx.h>

The following CFile functions are not implemented for CStdioFile.

• Duplicate

• LockRange

• U nlockRange

If you call these functions on a CStdioFile, you will get a
CNotSupportedException

Data Members
m_pStream

Construction/Destruction
CStdioFile

-CStdioFile

Text Read/Write
ReadString

WriteString

A data member containing a pointer to an open file.

Constructs a CStdioFile object from a path or file
pointer.

Destroys the object and closes the file if it is open.

Reads a single line of text.

Writes a single line of text.

568 CStdioFile::CStdioFile

Member Functions

Syntax

Parameters

Remarks

Example

CStdioFile::CStdioFile
CStdioFileO;

CStdioFile(FILE* pOpenStream);

CStdioFile(const char *pszFileName, UINT nOpenFlags)
throw(CFileException);

pOpenStream
Specifies the file pointer returned by a call to the C run-time function fopen.

pszFileName
Specifies a string that is the path to the desired file. The path can be relative or
absolute.

nOpenFlags
Specifies the action to take when the file is opened. You can combine options
by using the bitwise-OR (I) operator. One access permission and a text-binary
specifier are required; the create and noInherit modes are optional. See
CFile::CFile for a list of mode options. The share flags do not apply.

The default version of the constructor works in conjunction with the CFile::Open
member function to test errors.

The one-parameter version constructs a CStdioFile object from a pointer to a file
that is already open. Allowed pointer values include the predefined input/output
file pointers stdin, stdout, or stderr.

The two-parameter version constructs a CStdioFile object and opens the corre­
sponding operating-system file with the given path.

CFileException is thrown if the file cannot be opened or created.

char- pFileName = "test.dat";
CStdi oFi 1 e f1;
if(!fl.Open(pFileName,

}

CFile::modeCreate I CFile::modeWrite I CFile::typeText)) {
f/ifdef _DEBUG

afxDump « "Unable to open file" « "\\n";
flendif
exit(1);

CStdioFile f2(stdout);

Syntax

Remarks

Syntax

Parameters

Remarks

TRY
{

CStdioFile f3(pFileName,

CStdioFile::ReadString 569

CFile: :modeCreate I CFile::modeWrite I CFile::typeText);
}

CATCH(CFileException, e)
{

Ifi fdef _ DEBUG
afxDump « "File could not be opened" « e->m_cause « "\\n";

Ifendif

CStdioFile::-CStdioFile
virtual-CStdioFileO;

Usually, this destructor closes the operating-system file associated with the
CStdioFile object. However, if the CStdioFile object was constructed by passing
in a handle to an opened file using CStdioFile(int), the operating-system file will
not be closed. You must close the operating-system file yourself.

CStdioFile::ReadString
virtual char FAR* ReadString(char FAR* lpsz, UINT nMax)
throw(CFileException);

lpsz
Specifies a pointer to a user-supplied buffer that will receive a null-terminated
text string.

nMax
Specifies the maximum number of characters to read. Should be one less than
the size of the lpsz buffer.

Reads text data into a buffer, up to a limit of nMax-l characters, from the file as­
sociated with the CStdioFile object. Reading is stopped by a carriage return­
linefeed pair. If, in that case, fewer than nMax-l characters have been read, a

570 CStdioFile::WriteString

Return Value

Example

Syntax

Parameters

Remarks

Example

newline character is stored in the buffer. A null character (' \0 ') is appended in
either case.

CFile::Read is also available for text-mode input, but it does not terminate on a
carriage return-linefeed pair.

The buffer containing the text data.

extern CStdioFile f;
char buf[100];

f.ReadString(buf, 100);

CStdioFile::WriteString
virtual void WriteString(const char FAR* lpsz)
throw(CFileException);

lpsz
Specifies a pointer to a buffer containing a null-terminated text string.

Writes data from a buffer to the file associated with the CStdioFile object. The ter­
minating null character (' \0') is not written to the file. A newline character is writ­
ten as a carriage return-linefeed pair.

WriteString throws an exception in response to several conditions, including the
disk-full condition.

This is a text-oriented write function available only to CStdioFile and its descend­
ents. CFile::Write is also available, but rather than terminating on a null charac­
ter, it writes the requested number of bytes to the file.

extern CStdioFile f;
char buf[] = "test string";

f.WriteString(bUf);

CStdioFile::m_pStream 571

Data Members

Syntax

Remarks

CStdioFile::m_ pStream
FILE* m_ pStream;

The m_ pStream data member is the pointer to an open file as returned by the C
run-time function Copen. It is NULL if the file has never been opened or has been
closed.

572 CString

class CString

Comments

A CString object consists of a variable-length sequence of characters. The
CString class provides a variety of functions and operators that manipulate
CString objects using a syntax similar to that of Basic. Concatenation and com­
parison operators, together with simplified memory management, make CString
objects easier to use than ordinary character arrays. The increased processing over­
head is not significant. The CString "Application Notes" section (starting on page
598) offers useful information on:

• CString Exception Cleanup

• CString Argument Passing

The maximum size of a CString object is MAXINT (32,767) characters.

The const char* operator gives direct access to the characters in a CString object,
which makes it look like a C-Ianguage character array. Unlike a character array,
however, the CString class has a built-in memory-allocation capability. This al­
lows string objects to grow as a result of concatenation operations.

No attempt is made to "fold" CString objects (if you make two CString objects
containing Chi cago, for example, the characters in Chi cago are stored in two
places).

The CString class is not implemented as a Microsoft Foundation collection class,
although CString objects can certainly be stored as elements in collections.

The overloaded const char* conversion operator allows CString objects to be
freely substituted for character pointers in function calls. The CString(const
char* psz) constructor allows character pointers to be substituted for CString
objects.

Use the GetBuffer and ReleaseBuffer member functions when you need to
directly access a CString as a nonconstant pointer to char (char* instead of a
const char*).

CString objects follow "value semantics." A CString object represents a unique
value. Think of a CString as an actual string not as a pointer to a string.

Where possible, allocate CString objects on the frame rather than on the heap.
This saves memory and simplifies parameter passing.

#include <afx.h>

Public Members

Construction/Destruction
CString

-CString

The String as an Array
GetLength

IsEmpty

Empty

GetAt

operator []

SetAt

operator const char* 0

CString 573

Constructs CString objects in various ways.

Destroys a CString object.

Returns the number of characters in a CString
object.

Tests whether the length of a CString object is O.

Forces a string to have 0 length.

Returns the character at a given position.

Returns the character at a given position.

Sets a character at a given position.

Directly accesses characters stored in a CString
object.

Assignment/Concatenation
operator =
operator +

operator+=

Comparison
operator ==, <, etc.

Compare

CompareNoCase

Collate

Assigns a new value to a CString object.

Concatenates two strings and returns a new string.

Concatenates a new string to the end of an existing
string.

Comparison operators (ASCII, case sensitive).

Compares two strings (ASCII, case sensitive).

Compares two strings (ASCII, case insensitive).

Compares two strings with proper language­
dependent ordering.

574 CString

Extraction
Mid

Left

Right

Spanlncluding

SpanExciuding

Other Conversions
MakeUpper

MakeLower

MakeReverse

Searching
Find

ReverseFind

FindOneOf

Archive/Dump
operator«

operator»

Buffer Access
GetBuffer

GetBufferSetLength

ReleaseBuffer

Extracts the middle part of a string (like the Basic
MID$ command).

Extracts the left part of a string (like the Basic
LEFT$ command).

Extracts the right part of a string (like the Basic
RIGHT$ command).

Extracts a substring that contains only the charac­
ters in a set.

Extracts a substring that contains only the charac­
ters not in a set.

Converts all the characters in this string to upper­
case characters.

Converts all the characters in this string to lower­
case characters.

Reverses the characters in this string.

Finds a character or substring inside a larger string.

Finds a character inside a larger string; starts from
the end.

Finds the first matching character from a set.

Inserts a CString object to an archive or dump
context.

Extracts a CString object from an archive.

Returns a pointer to the characters in the CString.

Returns a pointer to the characters in the CString,
truncating to the specified length.

Yields control of the buffer returned by GetBuffer.

Windows-Specific
LoadString

AnsiToOem

OemToAnsi

CString 575

Loads an existing CString object from a Windows
resource.

Makes an in-place conversion from the ANSI char­
acter set to the OEM character set.

Makes an in-place conversion from the OEM char­
acter set to the ANSI character set.

576 CString::AnsiToOem

Member Functions

Syntax

Remarks

Example

See Also

Syntax

Parameters

Remarks

Return Value

CString::AnsiToOem
void AnsiToOemO;

Converts all the characters in this CString object from the ANSI character set to
the OEM character set. See the IBM PC Extended Character Set table and the
ANSI table in the Microsoft Windows Programmer's Reference.

This function is available only in the Windows compiled version of the Microsoft
Foundation Class Library, and it is declared in AFX.H only if _ WINDOWS is
defined.

CString s('\\265'); II Octal ANSI code for '1/2'
s .AnsiToOem();
ASSERT(s == "\\253"); II Octal oem code for '1/2'

CString::OemToAnsi

CString::Coliate
int Collate(const char* psz) const;

psz
The other string used for comparison.

Performs a locale-specific comparison of two strings; uses the run-time function
strcoll. Compare performs a faster, ASCII-only comparison.

A CString object can be used as the argument because the class provides the ap­
propriate conversion operator.

o The strings are identical.

-1 This CString object is less than psz.

1 This CString object is greater than psz.

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

CString sl("abc");
CString s2("abd");
ASSERT(sl.Collate(s2) == -1);

CString::CompareNoCase 577

CString:: Compare, CString: :CompareNoCase

CString::Compare
int Compare(const char* psz) const;

psz
The other string used for comparison.

Compares this CString object with another string, character by character; uses the
run-time function strcmp. If you need a language-specific comparison, use the
Collate member function.

o The strings are identical.

-} This CString object is less than psz.

1 This CString object is greater than psz.

CString sl("abc");
CStri ng s2("abd");
ASSERT(sl.Compare(s2) == -1); II Compare with another CString
ASSERT(sl.Compare("abe") -1); II Compare with a char * string

CString: :CompareNoCase, CString: : Collate

CString::CompareNoCase
int CompareNoCase(const char* psz) const;

psz
The other string used for comparison.

578 CString::CString

Remarks Compares this CString object with another string, character by character; uses the
run-time function stricmp. The algorithm for deciding case applies only to ASCII
characters: (, A' == 'a' -> 'Z' == ' z ').

Return Value

Example

See Also

Syntax

If you need a language-specific comparison, use the Collate member function.

o The strings are identical (ignoring case).

-1 This CString object is less than psz (ignoring case).

1 This CString object is greater than psz (ignoring case).

CStri ng sl("abc");
CString s2("ABO");
ASSERT(sl.CompareNoCase(s2) -1); II Compare with a CString
ASSERT(sl.Compare("ABE") == -1); II Compare with a char * string

CString: : Compare, CString:: Collate

CString::CString
CStringO;

CString(const CString& stringSrc)
throw(CMemoryException);

CString(const char* psz)
throw(CMemoryException);

CString(char ch, int nRepeat = 1)
throw(CMemoryException);

CString(const char* pch, int nLength)
throw(CMemoryException);

CString(const char FAR* lpsz)
throw(CMemoryException);

CString(const char FAR* lpch, int nLength)
throw(CMemoryException);

Parameters

Remarks

Example

See Also

CString::CString 579

stringSrc
An existing CString object to be copied into this CString object.

psz
A null-terminated string to be copied into this CString object.

ch
A single character to be repeated nRepeat times.

nRepeat
The repeat count for ch.

pch
A pointer to an array of characters of length nLength, not null-terminated.

nLength
A count of the number of characters in pch.

lpsz
A far pointer to a null-terminated ASCII string.

lpch
A far pointer to an array of characters of length nLength.

Each of these constructors initializes a new CString object with the specified data.

Because the constructors copy the input data into new allocated storage, you
should be aware that memory exceptions may result.

Note that some of these constructors act as "conversion functions." This allows
you to substitute, for example, a char* where a CString object is expected.

(String s 1 ; II Empty string
(String s2("cat") ; II From a (string literal
(String s3 = s2; II (opy constructor
(String s4(s2 + " " + s3) ; II From a string expression

(String s5('x') ; II s5 "x"
(String s6('x I, 6) ; II s6 "xxx xxx"

(String city = "Philadelphia"; II NOT the assignment operator

CString::operator =, "CString Exception Cleanup" on page 598

580 CString::-CString

Syntax

Remarks

Syntax

Remarks

Example

See Also

Syntax

CString: :-CString
-CStringO;

This CString destructor releases allocated memory used to store the string's char­
acter data.

CString::Empty
void EmptyO;

Makes this CString object an empty string, and frees memory as appropriate.

CString sl("abc");
CString s2;
sl. Empty();
ASSERT(sl == s2);

CString::lsEmpty, "CString Exception Cleanup" on page 598

CString::Find
int Find(char ch) const;

int Find(const char* pszSub) const;

Parameters ch

Remarks

A single character to search for.

pszSub
A substring to search for.

Searches this string for the first match of a substring. The function is overloaded to
accept both single characters (similar to the run-time function strchr) and strings
(similar to strstr).

Return Value

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

CString::GetAt 581

The zero-based index of the first character in this CString object that matches the
requested substring or characters; -1 if the substring or character is not found.

CString s("abcdef");
ASSERT(s.Find('c') == 2);
ASSERT(s.Find("de") == 3);

CString: :ReverseFind, CString: :FindOneOf

CString::FindOneOf
int FindOneOf(const char* pszCharSet) const;

pszCharSet
String containing characters for matching.

Searches this string for the first character that matches any character contained in
pszCharSet.

The zero-based index of the first character in this string that is also in pszCharSet;
-1 if there is no match.

CString s("abcdef");
ASSERT(s.FindOneOf("xd"

CString: :Find

CString::GetAt
char GetAt(int nlndex) const;

nlndex

3); /I'd' is first match

Zero-based index of the character in the CString object. The nlndex parameter
must be greater than or equal to 0 and less than GetLengthO. The Debug ver­
sion of the Microsoft Foundation Class Library validates the bounds of nlndex;
the Release version will not.

582 CString::GetBuffer

Remarks You can think of a CString object as an array of characters. The GetAt member
function returns a single character specified by an index number. The overloaded
subscript ([]) operator is a convenient alias for GetAt.

Return Value

Example

See Also

Syntax

Parameters

Remarks

Return Value

A char containing the character at the specified position in the string.

CString s("abcdef");
ASSERT(s.GetAt(2) == 'c');

CString::SetAt, CString::GetLength, CString::operator []

CStri ng:: G etBuffe r
char* GetBuffer(int nMinBufLength)
throw(CMemoryException);

nMinBufLength
The minimum size of the CString character buffer in bytes. You do not need to
allow space for a null terminator.

Returns a pointer to the internal character buffer for the CString object. The re­
turned pointer to char is not const and thus allows direct modification of CString
contents.

If you use the pointer returned by GetBuffer to change the string contents, you
must call ReleaseBuffer before using any other CString member functions.

The address returned by GetBuffer is invalid after the call to ReleaseBuffer or
any other CString operation.

The buffer memory will be freed automatically when the CString object is de­
stroyed.

Note If you keep track of the string length yourself, you need not append the ter­
minating null byte. You must, however, specify the final string length when you
release the buffer with ReleaseBuffer, or you can pass -1 for the length and
ReleaseBuffer will perform a strlen on the buffer to determine its length.

A char pointer to the object's (usually null-terminated) ASCII character buffer.

Example

See Also

Syntax

Parameters

Remarks

CString::GetBufferSetLength 583

CString s;
char* p = s.GetBuffer(10); II Allocate space for 10 characters
s = "abcdefg"; II p is still valid because length of s is 7

characters
p[l] = 'B'; II Change 'b' to 'B'

Hi fdef _ DEBUG
afxDump « "char* p " « (void*) p « ":" « p « "\\n";

Hendif
char* q = s.GetBuffer(12); II Get a new, larger buffer
II q is a different address than p, but the string is the same.

#ifdef _DEBUG
afxDump « "char* q " « (void*) q « ":" « q « "\\n";

#endif
s += "hij"; II String length is still smaller than 12

#ifdef _DEBUG
afxDump « "char* q " « (void*) q « ":" « q « "\\n";

#endif
s += "klmnop"; II Now it is larger than 12, so the characters

II Are moved, and q is no longer valid
#ifdef _DEBUG

afxDump « "char* q " « (void*) q « ":" « q « "\\n";
afxDump « "CStri ng s " « s « "\ \n"; I I s contai ns

"aBcdefghijklmnop"
#endif

s.ReleaseBuffer();

CString: : GetBufferSetLength, CString: :ReleaseBuffer

CString::GetBufferSetlength
char* GetBufferSetLength(int nNewLength)
throw(CMemoryException);

nNewLength
The exact size of the CString character buffer in bytes.

Returns a pointer to the internal character buffer for the CString object, truncating
or growing its length if necessary to exactly match the length specified in
nNewLength. The returned pointer to char is not const and thus allows direct
modification of CString contents.

If you use the pointer returned by GetBuffer to change the string contents, you
must call ReleaseBuffer before using any other CString member functions.

584 CString::Getlength

Return Value

See Also

Syntax

Remarks

Example

See Also

Syntax

Remarks

Return Value

The address returned by GetBuffer is invalid after the call to ReleaseBuffer or
any other CString operation.

The buffer memory will be freed automatically when the CString object is
destroyed.

Note If you keep track of the string length yourself, you need not append the ter­
minating null byte. You must, however, specify the final string length when you
release the buffer with ReleaseBuffer, or you can pass -1 for the length and
ReleaseBuffer will perform a strlen on the buffer to determine its length.

A char pointer to the object's (usually null-terminated) ASCII character buffer.

CString: : GetBuffer, CString: : ReleaseBuffer

CString::Getlength
int GetLengthO const;

Returns a count of the characters in this CString object. The count does not in­
clude a null terminator.

CString s("abcdef");
ASSERT(s.GetLength() 6 l;

CString: :IsEmpty

CStri ng:: Is Em ply
BOOL IsEmptyO const;

Tests a CString object for the empty condition.

TRUE if the CString object has 0 length; otherwise FALSE.

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

(String S;
ASSERT(s.IsEmpty());

CString: : GetLength

CStri n g:: left
CString Left(int nCount) const
throw(CMemoryException);

nCount

CString::LoadString 585

The number of characters to extract from this CString object.

Extracts the first (that is, leftmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then
the entire string is extracted.

Left is similar to the Basic LEFT$ command (except that indexes are zero-based).

A CString object containing a copy of the specified range of characters.

Note The returned CString object may be empty.

CString s("abcdef");
ASSERT(s.Left(3) == "abc");

CString::Mid, CString::Right

CStri n g:: loa d Stri ng
BOOL LoadString(UINT nID)
throw(CMemoryException);

nID
A Windows string resource ID.

586 CString::MakeLower

Remarks Reads a Windows string resource, identified by nID, into an existing CString ob­
ject. The maximum string size is 255 characters.

Return Value

Example

Syntax

Remarks

Example

See Also

Syntax

Remarks

Example

This function is declared in AFX.H only if _ WINDOWS is defined. Its use re­
quires the Windows compiled version of the Microsoft Foundation classes, and it
is normally used with AFXWIN.H.

TRUE if resource load was successful; otherwise FALSE.

#define IDS_FILENDTFOUND 1
CString s;
s.LoadString(IDS_FILENOTFOUND);

CString::MakeLower
void MakeLowerO;

Converts this CString object to a lowercase string.

CString s("ABC");
s .MakeLower();
ASSERT(s == "abc");

CString: :Make Upper

CString::MakeReverse
void MakeReverseO;

Reverses the order of the characters in this CString object.

CString s("abc");
s.MakeReverse();
ASSERT(s == Reba");

Syntax

Remarks

Example

See Also

Syntax

Parameters

Remarks

Return Value

CString::MakeUpper
void MakeUpperO;

Converts this CString object to an uppercase string.

CString s("abc");
s.MakeUpper();
ASSERT(s == "ABC");

CString: : MakeLower

CString::Mid
CString Mid(int nFirst) const
throw(CMemoryException);

CString Mid(int nFirst, int nCount) const
throw(CMemoryException);

nFirst

CString::Mid 587

The zero-based index of the first character in this CString object that is to be in­
cluded in the extracted substring.

nCount
The number of characters to extract from this CString object. If this parameter
is not supplied, then the remainder of the string is extracted.

Extracts a substring of length nCount characters from this CString object, starting
at position nFirst (zero-based). The function returns a copy of the extracted sub­
string.

Mid is similar to the Basic MID$ command (except that indexes are zero-based).

A CString object that contains a copy of the specified range of characters.

Note The returned CString object may be empty.

588 CString::OemToAnsi

Example CStri ng s ("abcdef");
ASSERT(s.Mid(2, 3) == "cde");

See Also CString: : Left, CString: : Right

Syntax

Remarks

Example

See Also

Syntax

Parameters

Remarks

CString::OemToAnsi
void OemToAnsiO;

Converts all the characters in this CString object from the OEM character set to
the ANSI character set. See the IBM PC Extended Character Set table and the
ANSI table in the Microsoft Windows Programmer's Reference.

This function is available only in the Windows compiled library of the Microsoft
Foundation classes and is declared in AFX.H only if _ WINDOWS is defined.

CString s('\\253'); II Octal oem code for '1/2'
s.OemToAnsi();
ASSERT(s == "\\265"); II Octal ANSI code for '1/2'

CString: :AnsiToOem

CString::ReleaseBuffer
void ReleaseBuffer(int nNewLength = -1);

nNewLength
The new length of the string in characters, not counting a null terminator. If the
string is null-terminated, the -1 default value sets the CString size to the cur­
rent length of the string.

Use ReleaseBuffer to end use of a buffer allocated by GetBuffer.

If you know that the string in the buffer is null-terminated, you can omit the
nNewLength argument. If your string is not null-terminated, then use nNewLength
to specify its length.

Example

See Also

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Parameters

CString::Right 589

The address returned by GetBuffer is invalid after the call to ReleaseBuffer or
any other CString operation.

CString S;
char* p = s.GetBuffer(1024);
s = "abc";
ASSERT(s.GetLength() == 3); II String length = 3
s.ReleaseBuffer(); II Surplus memory released, p is now invalid
ASSERT(s.GetLength() == 3); II Length still 3

CString: : GetBuffer

CString::ReverseFind
int ReverseFind(char ch) const;

ch
The character to search for.

Searches this CString object for the last match of a substring. The function is simi­
lar to the run-time function strrchr.

The index of the last character in this CString object that matches the requested
character; -1 if the character is not found.

CString s("abcabc");
ASSERT(s.ReverseFind('b') == 4);

CString: : Find, CString: :FindOneOf

CString::Right
CString Right(int nCount) const
throw(CMemoryException);

nCount
The number of characters to extract from this CString object.

590 CString::SetAt

Remarks Extracts the last (that is, rightmost) nCount charall:ters from this CString object
and returns a copy of the extracted substring. If nCount exceeds the string length,
then the entire string is extracted.

Return Value

Example

See Also

Syntax

Parameters

Remarks

See Also

Right is similar to the Basic RIGHT$ command (except that indexes are zero­
based).

A CString object that contains a copy of the specified range of characters.

Note The returned CString object may be empty.

CString s("abcdef");
ASSERT(s.Right(3) == "def");

CString: : Mid, CString: : Left

CString::SetAt
void SetAt(int nlndex, char ch);

nlndex

ch

Zero-based index of the character in the CString object. The nlndex parameter
must be greater than or equal to 0 and less than GetLength. The Debug version
of the Microsoft Foundation classes will validate the bounds of nlndex; the
Release version will not.

The character to insert. Must not be '\0' .

You can think of a CString object as an array of characters. The SetAt member
function overwrites a single character specified by an index number. SetAt will
not enlarge the string if the index exceeds the bounds of the existing string.

CString::GetAt, CString::operator []

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CString::Spanlncluding 591

CString::SpanExcluding
CString SpanExciuding(const char* pszCharSet) const
throw(CMemoryException);

pszCharSet
A string interpreted as a set of characters.

Extracts the largest substring that excludes only the characters in the specified set
pszCharSet; starts from the first character in this CString object.

If the first character of the string is included in the character set, then
SpanExciuding returns an empty string.

A copy of the substring that contains only characters not in pszCharSet.

CString: :Spanlncluding

CString::Spanlncluding
CString Spanlncluding(const char* pszCharSet) const
throw(CMemoryException);

pszCharSet
A string interpreted as a set of characters.

Extracts the largest substring that contains only the characters in the specified set
pszCharSet; starts from the first character in this CString object.

If the first character of the string is not in the character set, then Spanlncluding re­
turns an empty string.

A copy of the substring that contains only characters in pszCharSet.

CString: :SpanExciuding

592 CString::operator =

Operators

Syntax

Remarks

Example

See Also

Syntax

Remarks

CString::operator =
const CString& operator =(const CString& stringSrc)
throw(CMemoryException);

const CString& operator =(const char* psz)
throw(CMemoryException);

const CString& operator =(char ch)
throw(CMemoryException);

The CString assignment operator (=) reinitializes an existing CString object with
new data. If the destination string (that is, the left side) is already large enough to
store the new data, no new memory allocation is performed.

You should be aware that memory exceptions may occur whenever you use the as­
signment operator because new storage is often allocated to hold the resulting
CString object.

CString sl, s2;

sl "cat";
s2 sl;
sl "the" + sl;
sl 'x I;

CString:: CString

II Empty CString objects

II sl = "cat"
II sl and s2 each = "cat"
II Or expressions
II Or just individual characters

CString::operator const char* 0
operator const char* 0 const;

This useful casting operator provides an efficient method to access the null­
terminated C string contained in a CString object. No characters are copied; only
a pointer is returned.

Return Value

Syntax

Remarks

Example

CString::operators «, » 593

Be careful with this operator. If you change a CString object after you have ob­
tained the character pointer, you may cause a reallocation of memory that invali­
dates the pointer.

A character pointer if the cast was successful; otherwise a null pointer.

CString::operators «, »
friend CArchive& operator «(CArchive& ar, const CString& string);
throw(CArchiveException);

friend CArchive& operator »(CArchive& ar, CString& string);
throw(CArchiveException);

friend CDumpContext& operator «(CDumpContext& dc,
const CString& string);

The CString insert «<) operator supports diagnostic dumping and storing to an
archive. The extract (») operator supports loading from an archive.

The CDumpContext operators are valid only in the Debug version of the
Microsoft Foundation Class Library.

II Operator « » example
extern CArchive ar;
CString s("abc");

iii fdef _ DEBUG
afxDump «s; II Prints the value (abc)
afxDump «&s; II Prints the address

ilendif

if(ar. IsLoading()
ar » s;

else
ar « s;

594 CString::operator +

Syntax

Remarks

Return Value

Example

See Also

CString::operator +
friend CString operator +(const CString& stringl, const CString& string2)
throw(CMemoryException);

friend CString operator +(const CString& string, char ch)
throw(CMemoryException);

friend CString operator +(char ch, const CString& string)
throw(CMemoryException);

friend CString operator +(const CString& string, const char* psz)
throw(CMemoryException);

friend CString operator +(const char* psz, const CString& string)
throw(CMemoryException);

The + concatenation operator joins two strings and returns a CString object. One
of the two argument strings must be a CString object. The other can be a charac­
ter pointer or a character.

You should be aware that memory exceptions may occur whenever you use the
concatenation operator since new storage may be allocated to hold temporary data.

You must ensure that the maximum length limit is not exceeded. The Debug ver­
sion of the Microsoft Foundation Class Library asserts when it detects strings that
are too long.

A CString object that is the temporary result of the concatenation. This return
value makes it possible to combine several concatenations in the same expression.

CString sl("abc" l;
CString s2("def" l;
ASSERT((sl + s2 1 == "abcdef" l;

CString s3;
s3 CString("abc" 1 + "def" ; II Correct

II s3 = "abc" + "def"; II Wrong! One of the arguments must be a CString

CString::operator +=

Syntax

Remarks

Example

See Also

CString::operator +=

void operator +=(const CString& string)
throw(CMemoryException);

void operator +=(char ch)
throw(CMemoryException);

void operator +=(const char* psz)
throw(CMemoryException);

CString::operator += 595

The += concatenation operator joins characters to the end of this string. The opera­
tor accepts another CString object, a character pointer, or a single character.

You should be aware that memory exceptions may occur whenever you use this
concatenation operator because new storage may be allocated for characters added
to this CString object.

You must ensure that the maximum length limit is not exceeded. The Debug ver­
sion of the Microsoft Foundation Class Library asserts when it detects strings that
are too long.

CString s("abc");
ASSERT((s += "def"

CString::operator +

"abcdef");

596 CString Comparison Operators

Syntax

Remarks

CString Comparison Operators
BOOL operator ==(const CString& sl, const CString& s2);

BOOL operator ==(const CString& sl, const char* s2);

BOOL operator ==(const char* sl, const CString& s2);

BOOL operator !=(const CString& sl, const CString& s2);

BOOL operator !=(const CString& sl, const char* s2);

BOOL operator !=(const char* sl, const CString& s2);

BOOL operator « const CString& sl, const CString& s2);

BOOL operator « const CString& sl, const char* s2);

BOOL operator « const char* sl, const CString& s2);

BOOL operator >(const CStrlng& sl, const CString& s2);

BOOL operator >(const CString& sl, const char* s2);

BOOL operator >(const char* sl, const CString& s2);

BOOL operator <=(const CString& sl, const CString& s2);

BOOL operator <=(const CString& sl, const char* s2);

BOOL operator <=(const char* sl, const CString& s2);

BOOL operator >=(const CString& sl, const CString& s2);

BOOL operator >=(const CString& sl, const char* s2);

BOOL operator >=(const char* sl, const CString& s2) ;

These comparison operators compare two CString objects, and they compare a
CString object with an ordinary null-terminated C string. The operators are a con­
venient substitute for the case-sensitive Compare member function.

Return Value

Example

Syntax

Remarks

Example

See Also

CString::operator [] 597

TRUE if the strings meet the comparison condition; otherwise FALSE.

CString sl("abc");
CString s2("abd");
ASSERT(sl < s2); II Operator is overloaded for both
ASSERT("ABC" < sl); II CString and char.
ASSERT(s2 > "abe");

CString::operator []
char operator [](int nlndex) const;

You can think of a CString object as an array of characters. The subscript ([])
operator returns a single character specified by the zero-base index in nlndex. This
operator is a convenient substitute for the GetAt member function.

You can use the subscript ([]) operator on the right side of an expression (r-value
semantics), but you cannot use it on the left side of an expression (I-value seman­
tics). That is, you can use this operator to get characters in a CString, but you can­
not use it to set characters in the CString.

CString s("abc");
ASSERT(s[1] == 'b');

CString: : GetAt, CString: :SetAt

598 CString Exception Cleanup

Application Notes

Memory Leaks

Example

CString Exception Cleanup
If you notice that the Microsoft Foundation diagnostic memory allocator is re­
porting leaks for non-CObject memory blocks, check your exception-processing
logic to see if CString objects are being cleaned up properly.

The CString class is typical in that its constructor and member functions allocate
memory that must be freed by the destructor. CString is unique, however, in that
instances are often allocated on the frame rather than on the heap. When a frame­
allocated CString object goes out of scope, its destructor is called "invisibly"
without need for a delete statement.

Whether you explicitly destroy an object or not, you must be sure that the destruc­
tor call isn't bypassed by uncaught exceptions. For frame-allocated (and heap­
allocated) CString objects, use a CATCH statement to channel execution through
the end of the function that contains the CString allocation.

This is an example of incorrect programming.

void TestFunction1()
{

}

CString sl = "test";
OtherFunction(); II OtherFunction may raise an exception

II This point not passed if an exception occurred.
II sl's destructor called here (frees character storage for

"test")

You must add TRY/CATCH code to free the string character data in response to
memory exceptions.

CString Argument Passing 599

Now the program has been improved to properly handle exceptions.

void TestFunction2()
{

CString 51;
TRY
{

51 = "test";
OtherFunction(); II OtherFunction may raise an exception

}

}

CATCH(CException, e)
{

51. Empty();
THROW_ LAST ()

II Frees up associated data

CString Argument Passing

Argument-Passing Conventions
When you define a class interface, you must determine the argument-passing con­
vention for your member functions. There are some standard rules for passing and
returning CString objects. If you follow these rules, you will have efficient, cor­
rect code.

Strings as Function Inputs
If a string is an input to a function, in most cases it is best to declare the string
function parameter as const char*. Convert to CString object as necessary within
the function, using constructors and assignment operators. If the string contents
are to be changed by a function, declare the parameter as a nonconstant CString
reference (CString&).

600 CString Argument Passing

Example

Strings as Function Outputs
Normally you can return CString objects from functions since CStrings follow
value semantics like primitive types. To return a read-only string, use a constant
CString reference (const CString&).

class CName : public CObject
{
private:

CString m_firstName;
char m_middlelnit;
CString m_lastName;

publ ic:

} ;

}

CName () {}
void SetData(canst char* fn, canst char mi, canst char* In)
{

}

m_firstName = fn;
m_middlelnit = mi;
m_lastName = In;

void GetData(CString& cfn, char mi, CString& cln)
{

}

cfn = m_firstName;
mi = m_middlelnit;
cln = m_lastName;

CString GetLastName()
{

return m_lastName;
}

CName name;
CString last, first;
char middle;

name.SetData("John", 'Q', "Public");
ASSERT(name.GetLastName() == "Public");
name.GetData(first, middle, last);
ASSERT((first == "John") && (last == "Public"));

return 0;
}

CStringArray 601

class CStringArray : public CObject

Public Members

The CStringArray class supports arrays of CString
objects.

The member functions of CStringArray are similar
to the member functions of class CObArray. Be-
cause of this similarity, you can use the CObArray reference documentation for
member function specifics. Wherever you see a CObject pointer as a return value,
substitute a CString. Wherever you see a CObject pointer as a function parame­
ter, substitute a const pointer to char.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

CString CStringArray::GetAt(int <nlndex>) canst;

and

void SetAt(int <nlndex>, CObject* <newElement>)

translates to

void SetAt(int <nlndex>, canst char* <newElement>)

CStringArray incorporates the IMPLEMENT_SERIAL macro to support
serialization and dumping of its elements. If an array of CStrings is stored to an
archive, either with the overloaded insertion operator or with the Serialize mem­
ber function, each element is, in tum, serialized.

If you need a dump of individual string elements in the array, you must set the
depth of the dump context to 1 or greater.

When a CString array is deleted, or when its elements are removed, string
memory is freed as appropriate.

#include <afxcoll.h>

Construction/Destruction
CStringArray

-CStringArray

Constructs an empty array for CString objects.

Destroys a CStringArray object.

602 CStringArray

Bounds
GetSize

GetUpperBound

SetSize

Operations
FreeExtra

RemoveAll

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this
array.

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the element
pointer within the array.

Sets the value for a given index, growing the array
if necessary.

Adds an element to the end of the array; grows the
array if necessary.

Inserts an element (or all the elements in another
array) at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

class CStringList : public CObject
The cStringList class supports lists of cString ob­
jects. All comparisons are done 'by value', meaning
that the characters in the string are compared instead
of the addresses of the strings.

CStringList 603

The member functions of cStringList are similar to the member functions of
class COb List Because of this similarity, you can use the cObArray reference
documentation for member function specifics. Wherever you see a cObject
pointer as a return value, substitute a cString. Wherever you see a cObject
pointer as a function parameter, substitute a const pointer to char.

CObject*& CObList::GetHead() canst;

for example, translates to

CString& CStringList: :GetHead() canst;

and

POSITION AddHead(CObject* <newElement>);

translates to

POSITION AddHead(canst char* <newElement>);

cStringList incorporates the IMPLEMENT_SERIAL macro to support seriali­
zation and dumping of its elements. If a list of cStrings is stored to an archive,
either with the overloaded insertion operator or with the Serialize member func­
tion, each cString element is, in turn, serialized.

If you need a dump of individual cString elements, you must set the depth of the
dump context to 1 or greater.

When a cStringList object is deleted, or when its elements are removed, the
cString objects are deleted as appropriate.

#include <afxcoll.h>

604 CStringList

Public Members

Construction/Destruction
CStringList

-CStringList

Head/Tail Access
GetHead

GetTaii

Operations
RemoveHead

RemoveTaii

AddHead

AddTaii

RemoveAll

Iteration
GetHeadPosition

GetTailPosition

GetNext

GetPrev

Retrieval/Modification
GetAt

SetAt

RemoveAt

Constructs an empty list for CString objects.

Destroys a CStringList object.

Returns the head element of the list (cannot be
empty).

Returns the tail element ofthe list (cannot be
empty).

Removes the element from the head of the list.

Removes the element from the tail of the list.

Adds an element (or all the elements in another
list) to the head of the list (makes a new head).

Adds an element (or all the elements in another
list) to the tail of the list (makes a new tail).

Removes all the elements from this list.

Returns the position of the head element of the list.

Returns the position of the tail element of the list.

Gets the next element for iterating.

Gets the previous element for iterating.

Gets the element at a given position.

Sets the element at a given position.

Removes an element from this list as specified by
position.

Insertion
InsertBefore

InsertAfter

Searching
Find

FindIndex

Status
GetCount

IsEmpty

CStringList 605

Inserts a new element before a given position.

Inserts a new element after a given position.

Gets the position of an element specified by string
value.

Gets the position of an element specified by a zero­
based index.

Returns the number of elements in this list.

Tests for the empty list condition (no elements).

606 Clime

class Clime

See Also

Derivation

Public Members

A CTime object represents an absolute time and date. The CTime class incor­
porates the ANSI timL t data type and its associated run-time functions, including
the ability to convert to and from a Gregorian date and 24-hour time.

CTime values are based on universal coordinated time (UCT), which is equivalent
to Greenwich mean time (GMT). The local time zone is controlled by the TZ en­
vironment variable.

See the Run-Time Library Reference for more information on the timL t data type
and the run-time functions that are used by CTime.

A companion class, CTimeSpan, represents a time interval-the difference
between two CTime objects.

#include <afx.h>

Run-time functions: asctime, _ftime, gmtime, localtime, strftime, time

The CTime and CTimeSpan classes are not designed for derivation. Because
there are no virtual functions, the size of CTime and CTimeSpan objects is ex­
actly 4 bytes. Most member functions are inline.

Construction/Destruction
CTime

GetCurrentTime

Extraction
GetTime

GetYear

GetMonth

GetDay

Constructs CTime objects in various ways.

Creates a CTime object that represents the current
time (static member function).

Returns a timL t that corresponds to this CTime
object.

Returns the year that this CTime object represents.

Returns the month that this CTime object repre­
sents (l through 12).

Returns the day that this CTime object represents
(l through 31).

GetHour

GetMinute

GetSecond

GetDayOfW eek

Conversion
GetGmtTm

GetLocalTm

Format

FormatGmt

Operators
operator =

operator +, -

operator +=, -=

operator ==, < , etc.

Archive/Dump
operator«

operator»

CTime 607

Returns the hour that this CTime object represents
(0 through 23).

Returns the minute that this CTime object repre­
sents (0 through 59).

Returns the second that this CTime object repre­
sents (0 through 59).

Returns the day of the week (l for Sunday, 2 for
Monday, and so forth).

Breaks down a CTime object into components­
based on UCT.

Breaks down a CTime object into components­
based on the local time zone.

Converts a CTime object into a formatted string­
based on the local time zone.

Converts a CTime object into a formatted string­
based on UCT.

Assigns new time values.

Adds and subtracts CTimeSpan and CTime
objects.

Adds and subtracts a CTimeSpan object to and
from this CTime object.

Compare two absolute times.

Outputs a CTime object to CArchive or
CDumpContext.

Inputs a CTime object from CArchive.

608 CTime::CTime

Member Functions

Syntax

Parameters

Remarks

CTime::CTime
CTimeO;

CTime(coost CTime& timeSrc);

CTime(timL t time);

CTime(iot nYear, iot nMonth, iot nDay, iot nHour, iot nMin, iot nSec);

timeSrc
Indicates a CTime object that already exists.

time
Indicates a time value.

nYear, nMonth, nDay, nHour, nMin, nSec
Indicate year, month, day, hour, minute, and second.

All these constructors create a new CTime object initialized with the specified ab­
solute time, based on the current time zone.

Each constructor is described below:

CTimeO;
Constructs a CTime object with a zero (illegal) value.

Note Zero is an invalid time. This constructor is provided to allow the defini­
tion of CTime object arrays. You should initialize such arrays with valid times
prior to use.

CTime(coost CTime&);
Constructs a CTime object from another CTime value.

CTime(timLt);
Constructs a CTime object from a time_ t type.

CTime(iot, iot, etc.);
Constructs a CTime object from local time components with each component
constrained to the following ranges:

Example

Syntax

Parameters

Remarks

Return Value

CTime::Format 609

Component Range

nYear 1900-2036

nMonth 1-12

nDay 1-31

nHour 0-23

nMin 0-59

nSec 0-59

This constructor makes the appropriate conversion to UCT.

The Debug version of the Microsoft Foundation Class Library asserts if one or
more of the time-day components is out of range. It is your responsibility to
validate the arguments prior to calling.

time_t osBinaryTime; II C run-time time (defined in <time.h»)
time(&osBinaryTime) II get the current time from the operating

II system
CTime timel; II empty CTime (0 is illegal time value)
CTime time2 = timel; II copy constructor
CTime time3(osBinaryTime); II CTime from C run-time time
CTime time4(1999, 3, 19, 22, 15, 0) ; II 10:15PM March 19, 1999

CTime::Format
CString Format(const char* pFormat);

pFormat
Specifies a formatting string similar to the printf formatting string. See the run­
time function strftime for details.

Generates a formatted string that corresponds to this CTime object. The time
value is converted to local time.

A CString that contains the formatted time.

610 CTime::FormatGmt

Example CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
CString s = t.Format("%A, %8 %d, %Y");
ASSERT(s == "Tuesday, March 19, 1999");

See Also CTime::FormatGmt

Syntax

Parameters

Remarks

Return Value

Example

See Also

Syntax

Remarks

Example

CTime::FormatGmt
CString FormatGmt(const char* pFormat);

pFormat
A formatting string similar to the printf formatting string. See the run-time
function strftime for details.

Generates a formatted string that corresponds to this CTime object. The time
value is not converted and thus reflects VeT.

A CString that contains the formatted time.

See the example for Format.

CTime: :Format

CTime::GetCurrentTime
static CTime GetCurrentTimeO;

Returns a CTime object that represents the current time.

CTime t CTime::GetCurrentTime();
ASSERT(t.GetYear() >= 1999) && (t.GetYear() <= 2000));

Syntax

Remarks

Example

See Also

Syntax

Remarks

Syntax

Parameters

Remarks

CTime::GetGmtTm 611

CTime::GetDay
int GetDayO const;

Returns the day of the month, based on local time, in the range 1 through 31.

CTime t(1999, 3,19,22,15,0); II 10:15PM March 19,1999
ASSERT(t.GetDay() == 19);
ASSERT(t.GetMonth() == 3);
ASSERT(t.GetYear() == 1999);

CTime: :GetDayOfW eek

CTime::GetDayOfWeek
int GetDayOfWeekO const;

Returns the day ofthe week based on local time. 1 = Sunday, 2 = Monday, ...
7 = Saturday.

CTime::GetGmtTm
struct tm* GetGmtTm(struct tm* ptm = NULL) const;

ptm
Points to a buffer that will receive the time data. If this pointer is NULL, an in­
ternal, statically allocated buffer is used. The data in this default buffer is over­
written as a result of calls to other CTime member functions.

Gets a struct tm that contains a decomposition of the time contained in this
CTime object. GetGmtTm returns UCT.

612 CTime::GetLocaITm

Return Value

Example

Syntax

Parameters

Remarks

Return Value

A pointer to a filled-in struct tm as defined in the include file TIME.H. The mem­
bers are as follows:

Field Value Stored

tIlL sec Seconds

tIlL min Minutes

tIlL hour Hours (0-23)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)

tm_year Year (actual year minus 1900)

tllLwday Day of week (1-7; Sunday = 1)

tm_yday Day of year (0-365; January 1 = 0)

tm_isdst Always 0

Note The year in struct tm is in the range -1 to l36; the year in the CTime inter­
face is in the range 1900 to 2036 (inclusive).

See the example for GetLocalTm.

CTime::GetLocaITm
struct tm* GetLocalTm(struct tm* ptm) const;

ptm
Points to a buffer that will receive the time data. If this pointer is NULL, an in­
ternal, statically allocated buffer is used. The data in this default buffer is over­
written as a result of calls to other CTime member functions.

Gets a struct tm containing a decomposition of the time contained in this CTime
object. GetLocalTm returns local time.

A pointer to a filled-in struct tm as defined in the include file TIME.R. See
GetGmtTm for the structure layout.

Example

Syntax

Remarks

Example

Syntax

Remarks

Example

Syntax

Remarks

Example

CTime::GetMonth 613

CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
struct tm* osTime; II a pointer to a structure containing time elements
osTime = t.GetLocalTm(NULL);
ASSERT(osTime->tm_mon == 2); II note zero-based month!

CTime::GetHour
int GetHourO const;

Returns the hour, based on local time, in the range 0 through 23.

CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
ASSERT(t.GetSecond() == 0);
ASSERT(t.GetMinute() == 15);
ASSERT(t.GetHour() == 22);

CTime::GetMinute
int GetMinuteO const;

Returns the minute, based on local time, in the range 0 through 59.

See the example for GetHour.

CTime::GetMonth
int GetMonthO const;

Returns the month, based on local time, in the range 1 through 12 (1 = January).

See the example for GetDay.

614 CTime::GetSecond

Syntax

Remarks

Example

Syntax

Remarks

Example

See Also

Syntax

Remarks

Example

CTime::GetSecond
int GetSecondO const;

Returns the second, based on local time, in the range 0 through 59.

See the example for GetHour.

CTime::GetTime
time_ t GetTimeO const;

Returns a timL t value for the given CTime object.

CTime t(1999,3,19,22,15,0); II 10:15PM March 19,1999
time_t osBinaryTime = t.GetTime(); II time_t defined in <time.h>
printf("time_t = %ld\ \n", osBinaryTime);

CTime constructors

CTime::GetYear
int GetYearO;

Returns the year, based on local time, in the range 1900 to 2036.

See the example for GetDay.

Operators

Syntax

Remarks

Example

See Also

Syntax

Remarks

CTime::operator +, - 615

CTime::operator =
const CTime& operator =(const CTime& timeSrc);

const CTime& operator =(time_t t);

These overloaded assignment operators copy the source time into this CTime
object.

The internal time storage in a CTime object is independent of time zone. Time ..
zone conversion is not necessary during assignment.

time_t osBinaryTime; II (run-time time (defined in <time.h»
(Time tl osBinaryTime; II assignment from time t
(Time t2 = tl; II assignment from (Time

CTime constructors

CTime::operator +, -

CTime operator +(CTimeSpan timeS pan) const;

CTime operator - (CTimeSpan timeSpan) const;

CTimeSpan operator - (CTime time) const;

CTime objects represent absolute time. CTimeSpan objects represent relative
time. The first two operators allow you to add and subtract CTimeSpan objects to
and from CTime objects. The third allows you to subtract one CTime object from
another to yield a CTimeSpan object.

616 CTime::operators +=, -=

Example

Syntax

Remarks

Example

Syntax

Remarks

CTime tl(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
CTime t2(1999, 3, 20, 22, 15, o); II 10:15PM Ma rch 20, 1999
CTimeSpan ts = t2 - t1; II subtract 2 CTimes
ASSERT(ts.GetTotalSeconds() == 86400L) ;
ASSERT((t1 + ts) t2) ; II add a CTimeSpan to a CTime
ASSERT((t2 - ts) == t1) ; II subtract a CTimeSpan from a CTime

Clime::operator +=, -=

const CTime& operator +=(CTimeSpan timeS pan);

const CTime& operator -=(CTimeSpan timeS pan);

These operators allow you to add and subtract a CTimeSpan object to and from
this CTime object.

CTime t(1999,3,19,22,15,0); II 10:15PM March 19,1999
t += CTimeSpan(0, 1, 0, 0); II one hour exactly
ASSERT(t.GetHour() == 23);

Clime Comparison Operators
BOOL operator ==(CTime time) const;

BOOL operator !=(CTime time) const;

BOOL operator « CTime time) const;

BOOL operator >(CTime time) const;

BOOL operator <=(CTime time) const;

BOOL operator >=(CTime time) const;

These operators compare two absolute times and return TRUE if the condition is
true; otherwise FALSE.

Example

Syntax

Remarks

Example

See Also

CTime t1 = CTime::GetCurrentTime();
CTime t2 = t1 + CTimeSpan(0, 1, 0, 0);
ASSERT(t1!= t2);
ASSERT(t1 < t2);
ASSERT(t1 <= t2);

CTime::operators «, »

CTime::operators «, » 617

II 1 hour later

friend CDumpContext& operator «(CDumpContext& dc, CTime time);

friend CArchive& operator «(CArchive& ar, CTime time);

friend CArchive& operator »(CArchive& ar, CTime& rtime);

The CTime insert «<) operator supports diagnostic dumping and storing to an ar­
chive. The extract (») operator supports loading from an archive.

When you send a CTime object to the dump context, the local time is displayed in
readable date-time format.

CTime t(1999, 3, 19, 22, 15, 0); II 10:15PM March 19, 1999
afxDump « t « "\\n"; II prints 'CTime("Tue Mar 19 22:15:00 1999")'

extern CArchive ar;
if(ar.lsLoading())

ar » t;
else

ar « t;

CArchive, CDumpContext

618 CTimeSpan

class CTimeSpan

See Also

Derivation

Public Members

A CTimeSpan object represents a relative time span. The CTimeSpan class incor­
porates the ANSI timL t data type and its associated run-time functions. These
functions convert seconds to various combinations of days, hours, minutes, and
seconds.

A CTimeSpan object keeps time in seconds. Because the CTimeSpan object is
stored as a signed number in 4 bytes, the maximum allowed span is ± 68 years,
approximately.

A companion class, CTime, represents an absolute time. A CTimeSpan is the
difference between two CTimes.

#include <afx.h>

Run-time functions: asctime, _ftime, gmtime, localtime, strftime, time

The CTime and CTimeSpan classes are not designed for derivation. Because
there are no virtual functions, the size of both CTime and CTimeSpan objects is
exactly 4 bytes. Most member functions are inline.

Construction/Destruction
CTimeSpan

Extraction
GetDays

GetHours

GetTotalHours

GetMinutes

Constructs CTimeSpan objects in various ways.

Returns the number of complete days in this
CTimeSpan.

Returns the number of hours in the current day
(-23 through 23).

Returns the total number of complete hours in this
CTimeSpan.

Returns the number of minutes in the current hour
(-59 through 59).

GetTotalMinutes

GetSeconds

GetTotalSeconds

Conversion
Format

Operators
operator =
operator +, -

operator +=, -=

operator ==, <, etc.

Archive/Dump
operator«

operator»

CTimeSpan 619

Returns the total number of complete minutes in
this CTimeSpan.

Returns the number of seconds in the current
minute (-59 through 59).

Returns the total number of complete seconds in
this CTimeSpan.

Converts a CTimeSpan into a formatted string.

Assigns new time-span values.

Adds and subtracts CTimeSpan objects.

Adds and subtracts a CTimeSpan object to and
from this CTimeSpan.

Compare two relative time values.

Outputs a CTimeSpan object to CArchive or
CDumpContext.

Inputs a CTimeSpan object from CArchive.

620 CTimeSpan::CTimeSpan

Member Functions

Syntax

Parameters

Remarks

CTimeSpan::CTimeSpan
CTimeSpanO;

CTimeSpan(const CTimeSpan& timeSpanSrc);

CTimeSpan(time_t time);

CTimeSpan(LONG /Days, int nHours, int nMins, int nSecs);

timeSpanSrc
Indicates a CTimeSpan object that already exists.

time
Indicates a time_ t time value.

Zl)ays,nHours, nMins, nSecs
Indicate days, hours, minutes, and seconds.

All these constructors create a new CTimeSpan object initialized with the
specified relative time. Each constructor is described below:

CTimeSpanO;
Constructs an uninitialized CTimeSpan object.

CTimeSpan(const CTimeSpan&);
Constructs a CTimeSpan object from another CTimeSpan value.

CTimeSpan(time_ t);
Constructs a CTimeSpan object from a time_ t type. This value should be the
difference between two absolute time_ t values.

CTimeSpan(LONG, int, int, int);
Constructs a CTimeSpan object from components with each component con­
strained to the following ranges:

Component

/Days

nHours

nMins

nSecs

Range

0-25,000 (approximately)

0-23

0-59

0-59

Example

Syntax

Parameters

Remarks

CTimeSpan::Format 621

Note The Debug version of the Microsoft Foundation Class Library asserts if
one or more of the time-day components is out of range. It is your responsi­
bility to validate the arguments prior to calling.

CTimeSpan ts1; II Uninitialized time value
CTimeSpan ts2a(ts1); II Copy constructor
CTimeSpan ts2b = ts1; II Copy constructor again
CTimeSpan ts3(100); II 100 seconds
CTimeSpan ts4(0, 1, 5, 12); II 1 hour, 5 minutes, and 12 seconds

eli meSpan:: Format
CString Format(const char* pFormat);

pFormat
Indicates a formatting string similar to the printf formatting string. Formatting
codes, preceded by a percent (%) sign, are replaced by the corresponding
CTimeSpan component. Other characters in the formatting string are copied
unchanged to the returned string.

The formatting codes for Format are listed below:

Value Meaning

%D Total days in this CTimeSpan

%H Hours in the current day

%M Minutes in the current hour

%S Seconds in the current minute

%% Percent sign

Generates a formatted string that corresponds to this CTimeSpan.

The Debug version of the library checks the formatting codes and asserts if the
code is not in the table above.

622 CTimeSpan::GetDays

Return Value

Example

Syntax

Remarks

Example

Syntax

Remarks

Example

A CString object that contains the formatted time.

CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
CString s = tS.Format("Total days: %D, hours: %H, min: %M, sec: %S");
ASSERT(s == "Total days: 3, hours: 01, min: 05, sec: 12");

CTimeSpan::GetDays
LONG GetDaysO const;

Returns the number of complete days. This value may be negative if the time span
is negative.

CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetDays() == 3);

CTimeSpan::GetHours
int GetHoursO const;

Returns the number of hours in the current day. The range is -23 through 23.

CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetHours() == 1);
ASSERT(ts.GetMinutes() 5);
ASSERT(tS.GetSeconds() == 12);

Syntax

Remarks

Example

Syntax

Remarks

Example

Syntax

Remarks

Example

CTimeSpan::GetTotaIHours 623

CTimeSpan::GetMinutes
int GetMinutesO const;

Returns the number of minutes in the current hour. The range is -59 through 59.

See the example for GetHours.

CTi meSpan:: GetSeconds
int GetSecondsO const;

Returns the number of seconds in the current minute. The range is -59 through 59 ..

See the example for GetHours.

CTimeSpan::GetTotaIHours
LONG GetTotalHoursO const;

Returns the total number of complete hours in this CTimeSpan.

CTimeSpan ts(3, I, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetTotalHours() == 73);
ASSERT(ts.GetTotalMinutes() 4385);
ASSERT(ts.GetTotalSeconds() == 263112);

624 CTimeSpan::GetTotaIMinutes

Syntax

Remarks

Example

Syntax

Remarks

Example

CTimeSpan::GetTotaIMinutes
LONG GetTotalMinutesO const;

Returns the total number of complete minutes in this CTimeSpan.

See the example for GetTotalHours.

CTimeSpan::GetTotaISeconds
LONG GetTotalSecondsO const;

Returns the total number of complete seconds in this CTimeSpan.

See the example for GetTotalHours.

Operators

Syntax

Remarks

Example

See Also

Syntax

Remarks

Example

CTimeSpan::operator +, - 625

CTimeSpan::operator =
const CTimeSpan& operator =(const CTimeSpan& timeSpanSrc);

The overloaded assignment operator copies the source CTimeSpan timeSpanSrc
object into this CTimeSpan object.

CTimeSpan ts1;
CTimeSpan ts2(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ts1 = ts2;
ASSERT(ts1 == ts2);

CTimeSpan constructors

CTimeSpan::operator +, -

CTimeSpan operator -(CTimeSpan timeSpan) const;

CTimeSpan operator +(CTimeSpan timeSpan) const;

These two operators allow you to add and subtract CTimeSpans to and from each
other.

CTimeSpan ts1(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
CTimeSpan ts2(100); II 100 seconds
CTimeSpan ts3 = ts1 + ts2;
ASSERT(ts3.GetSeconds() == 52); II 6 min, 52 sec

626 CTimeSpan::operator +=, -=

Syntax

Remarks

Example

Syntax

Remarks

Example

CTimeSpan::operator +=, -=

const CTimeSpan& operator +=(CTimeSpan timeSpan);

const CTimeSpan& operator -=(CTimeSpan timeS pan);

These operators allow you to add and subtract a CTimeSpan to and from this
CTimeSpan.

CTimeSpan ts1(10); II 10 seconds
CTimeSpan ts2(100); II 100 seconds
ts2 -= ts1;
ASSERT(ts2.GetTotalSeconds() == 90);

CTimeSpan Comparison Operators
BOOL operator ==(CTimeSpan timeSpan) const;

BOOL operator !=(CTimeSpan timeSpan) const;

BOOL operator « CTimeSpan timeS pan) const;

BOOL operator >(CTimeSpan timeS pan) const;

BOOL operator <=(CTimeSpan timeSpan) const;

BOOL operator >=(CTimeSpan timeS pan) const;

These operators compare two relative time values. They return TRUE if the condi­
tion is true; otherwise FALSE.

CTimeSpan ts1(100);
CTimeSpan ts2(110);
ASSERT((ts1 != ts2) && (ts1 < ts2) && (ts1 <= ts2));

Syntax

Remarks

Example

CTimeSpan::operators «, » 627

CTimeSpan::operators «, »
friend CDumpContext& operator «(CDumpContext& dc,

CTimeSpan timeSpan);

friend CArchive& operator «(CArchive& ar, CTimeSpan timeSpan);

friend CArchive& operator »(CArchive& ar, CTimeSpan& rtimeSpan);

The CTimeSpan insert «<) operator supports diagnostic dumping and storing to
an archive. The extract (») operator supports loading from an archive.

When you send a CTimeSpan object to the dump context, the value is displayed
in a human-readable format that shows days, hours, minutes, and seconds.

CTimeSpan ts(3, 1, 5, 12); II 3 days, 1 hour, 5 min, and 12 sec
ffifdef _DEBUG
afxDump « ts « "\\n";
ffendif
II prints 'CTimeSpan(3 days, 1 hours, 5 minutes and 12 seconds)'

extern CArchive ar;
if(ar.lsLoading(»

ar » ts;
else

ar « ts;

628 CWinApp

class CWinApp : public CObject
Use the CWinApp class to create a Windows appli­
cation object. An application object provides member
functions for initializing the application (and each in­
stance of it) and for running the application.

Each application that uses the Foundation classes can only contain one CWinApp
object. This object is constructed when other C++ global objects are constructed
and is already available when Windows calls the WinMain function, which is sup­
plied by the Foundation class library. Declare your CWinApp object at the global
level or statically.

Typically, you will derive an application class from CWinApp and override the
InitInstance member function to create your application's main window object.

The Microsoft Foundation Class Library provides a number of global functions
that you can use to access your CWinApp object, as shown by the following list.
These functions are available from C or C++.

Function

AfxGetApp

AfxGetInstanceHandle

AfxGetResourceHandle

AfxGetAppName

Purpose

Obtain a pointer to the CWinApp object.

Obtain a handle to the current application
instance.

Obtain a handle to the application's resources.

Obtain a pointer to a string containing the
application's name.

Note Most users of the Foundation classes will use the default WinMain provided
by the Foundation class library. If you provide your own version of Win Main,
you must call AfxWinInit before using a Foundation class to attach your
CWinApp object to the Microsoft Foundation Class Library.

Public Members

Data Members
m_ pszAppName

m_hlnstance

m_ hPrevlnstance

IILnCmdShow

m_pMainWnd

Construction/Destruction
CWinApp

Operations
LoadCursor

LoadStandardCursor

LoadOEMCursor

Loadlcon

LoadStandardlcon

LoadOEMlcon

CWinApp 629

Specifies the name of the application.

Corresponds to the hlnstance parameter passed by
Windows to WinMain.

Corresponds to the hPrevlnstance parameter
passed by Windows to WinMain.

Corresponds to the IpCmdLine parameter passed
by Windows to WinMain.

Corresponds to the nCmdShow parameter passed
by Windows to WinMain.

Holds a pointer to the application's main window.
See InitInstance for an example of how to initial­
ize m_pMainWnd.

Constructs a CWinApp object.

Loads a cursor resource, or a resource handle if the
resource has been loaded previously.

Loads a Windows predefined cursor specified by
IDC_ constants from WINDOWS.H.

Loads a Windows OEM predefined cursor speci­
fied by OCR- constants from WINDOWS.H.

Loads an icon resource, or a resource handle if the
resource has been loaded previously.

Loads a Windows predefined icon specified by
IDL constants from WINDOWS.H.

Loads a Windows OEM predefined icon specified
by OIC_ constants from WINDOWS.H.

630 CWinApp

Overridables
InitApplication

InitInstance

Run

Onldle

ExitInstance

PreTranslateMessage

Protected Members
m_msgCur

Performs any application-level initialization when
overridden. (Sometimes override.)

Performs Windows instance initialization, such as
creating your window objects when overridden.
(Always override.)

Runs the default message loop. Override to cus­
tomize the message loop. (Seldom override.)

Overrride to perform application-specific idle-time
processing. (Sometimes override.)

Override to clean up when your application termi­
nates. (Sometimes override.)

Filters messages before they are dispatched to the
Windows functions TranslateMessage and
DispatchMessage. (Seldom override.)

Specifies the last window message retrieved by
Run; only useful if the message is currently being
processed.

CWinApp::lnitApplication 631

Member Functions

Syntax

Parameters

Remarks

Syntax

Remarks

Return Value

Syntax

Remarks

CWinApp::CWinApp
CWinApp(const char* pszAppName = NULL);

pszAppName
A null-terminated string containing the Windows application name for your
application. If this argument is not supplied or is NULL, CWinApp uses the
filename of the executable file by default.

Constructs a CWinApp object and passes pszAppName to be stored as the
application name. This constructor is invoked by your global application object
definition. You can have only one CWinApp object in your application. The con­
structor stores a pointer to the CWinApp object in a Microsoft Foundation­
defined global variable. This is so the WinMain can call the object's member
functions to initialize and run the application.

CWinApp::Exitlnstance
virtual int ExitlnstanceO;

Override this function to clean up when your application terminates.

Exitlnstance is called by the default Run member function.

The application's exit code, where 0 indicates no errors and values greater than 0
indicate an error. This value is used as the return value from WinMain.

CWinApp::lnitApplication
virtual BOOL InitApplicationO;

Windows allows several copies of the same program to be running at the same
time. Thus, application initialization is conceptually divided into two sections: one­
time application initialization that is done the first time the program runs and

632 CWinApp::lnitinstance

Return Value

See Also

Syntax

Remarks

Return Value

See Also

instance initialization that runs each time a copy of the program runs, including the
first time. This function is called by the Foundation library version of WinMain.
Override InitApplication if your application needs one-time initialization such as
Windows class registration.

TRUE if initialization is successful; otherwise FALSE.

CWinApp: : InitInstance

CWinApp::lnitinstance
virtual BOOL InitInstanceO;

Windows allows several copies of the same program to be running at the same
time. Thus, application initialization is conceptually divided into two sections: one­
time application initialization that is done the first time the program runs and in­
stance initialization that runs each time a copy of the program runs, including the
first time. This function is called by the Foundation library implementation of
WinMain. Override Initlnstance to provide initialization for each new instance
of your application running under Windows. Typically, you override InitInstance
to construct your main window object and set ill_ pMain Wnd to point to that win­
dow, as shown here.

BOOl COerivedApp::lnitlnstance()
{

}

m_pMainWnd = new CDerivedWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();

return TRUE;

TRUE if initialization is successful; otherwise FALSE.

CWinApp: : InitApplication

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CWinApp::Loadlcon 633

CWinApp::LoadCursor
HCURSOR LoadCursor(LPSTR lpCursorName);

HCURSOR LoadCursor(IDNT nIDCursor);

lpCursorName
Points to a null-terminated string that contains the name of the cursor resource.
You can use a CString in place of an LPSTR.

nIDCursor
ID number of the resource.

Loads the cursor resource named by lpCursorName or specified by nIDCursor
from the current executable file. LoadCursor loads the cursor into memory only
if it has not been previously loaded.

Use the LoadStandardCursor or LoadOEMCursor member functions to access
the predefined Windows cursors.

A handle to a cursor resource. If unsuccessful, returns NULL.

CWinApp: : LoadStandardCursor, CWinApp: :LoadOEMCursor,
::LoadCursor

CWinApp::Loadlcon
HICON LoadIcon(LPSTR lplconName);

HICON LoadIcon(UINT nIDlcon);

lplconName
Points to a null-terminated string that contains the name of the icon resource.
You can also use a CString for this argument.

nIDlcon
ID number of the resource.

Loads the icon resource named by lplconName or specified by nIDlcon from the
executable file. LoadIcon loads the icon only if it has not been previously loaded.

634 CWinApp::loadOEMCursor

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

You can use the LoadStandardIcon or LoadOEMIcon member functions to
access the predefined Windows icons.

A handle to an icon resource. If unsuccessful, returns NULL.

CWinApp::LoadStandardIcon, CWinApp::LoadOEMIcon, ::LoadIcon

CWinApp::LoadOEMCursor
HCURSOR LoadOEMCursor(UINT nIDCursor);

nIDCursor
An OC~ manifest constant identifier that specifies a predefined Windows cur­
sor. You must have #define OEMRESOURCE in your source file to get
access to the OC~ constants in WINDOWS.H.

Loads the Windows predefined cursor resource specified by nIDCursor.

Use LoadOEMCursor or the LoadStandardCursor member function to access
the predefined Windows cursors.

A handle to a cursor resource. If unsuccessful, returns NULL.

CWinApp: : LoadCursor, CWinApp: : LoadStandardCursor, : :LoadCursor

CWinApp::LoadOEMlcon
HICON LoadOEMIcon(UINT nIDlcon);

nIDlcon
An OIC_ manifest constant identifier that specifies a predefined Windows
icon. You must have #define OEMRESOURCE in your source file to get
access to the OIC_ constants in WINDOWS.H.

Remarks

Return Value

See Also

Syntax

Parameters

CWinApp::LoadStandardCursor 635

Loads the Windows predefined icon resource specified by nIDlcon.

Use LoadOEMIcon or the LoadStandardIcon member function to access the
predefined Windows icons.

A handle to an icon resource. If unsuccessful, returns NULL.

CWinApp: : LoadStandardIcon, CWinApp: :LoadIcon, : :LoadIcon

CWinApp::LoadStandardCursor
HCURSOR LoadStandardCursor(LPSTR IpCursorName);

ipCursorName
An IDC_ manifest constant identifier that specifies a predefined Windows cur­
sor. These identifiers are defined in WINDOWS.H. The following list shows
the possible predefined values for IpCursorName:

Value

IDC_ARROW

IDC_IBEAM

IDC_WAIT

IDC_CROSS

IDC_ UPARROW

IDC_SIZE

IDC_ICON

IDC_ SIZENWSE

IDC_SIZEWE

IDC_SIZENS

Meaning

Standard arrow cursor

Standard text-insertion cursor

Hourglass cursor used when Windows performs a
time-consuming task

Cross-hair cursor for selection

Arrow pointing straight up

Cursor to use when resizing a window

Cursor to use when dragging a file

Two-headed arrow with ends at upper left and lower
right

Two-headed arrow with ends at upper right and
lower left

Horizontal two-header arrow

Vertical two-headed arrow

636 CWinApp::LoadStandardlcon

Remarks Loads the Windows predefined cursor resource specified by IpCursorName.

Return Value

See Also

Syntax

Parameters

Remarks

Use LoadStandardCursor or the LoadOEMCursor member function to access
the predefined Windows cursors.

A handle to a cursor resource. If unsuccessful, returns NULL.

CWinApp::LoadOEMCursor, CWinApp::LoadCursor, ::LoadCursor

CWinApp::loadStandardlcon
HICON LoadStandardIcon(LPSTR IpIconName);

IpIconName
A manifest constant identifier that specifies a predefined Windows icon. These
identifiers are defined in WINDOWS.H. The following list shows the possible
predefined values for IpIconName:

Value

IDLAPPLICATION

IDLHAND

IDLQUESTION

IDLEXCLAMATION

IDLASTERISK

Meaning

Default application icon

Hand-shaped icon used in serious warning
messages

Question mark shape used in prompting
messages

Exclamation point shape used in warning
messages

Asterisk shape used in informative messages

Loads the Windows predefined icon resource specified by IpIconName.

Use LoadStandardIcon or the LoadOEMIcon member function to access the
predefined icons used by Windows.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

CWinApp::Onldle 637

A handle to an icon resource (a bitmap defining the icon). If unsuccessful, returns
NULL.

CWinApp: : LoadOEMlcon, CWinApp: : LoadIcon, : : Loadlcon

CWinApp::Onldle
virtual BOOL Onldle(LONG ICount);

ICount
A counter incremented each time GetMessage finds the message queue empty.
This count is reset to 0 each time a new message is processed. ICount can be
used to determine relatively how long the application has been idling without
processing a message.

Override this member function to perform idle-time processing. Onldle is called
when the application's message queue is empty. Use your override to call your
own idle-handler members for such tasks as background recalculation in a spread­
sheet, background repagination in a word processor, file backup, and the like.

The ICount parameter is incremented each time GetMessage finds the queue
empty and reset to 0 each time a new message is processed. You can call your
different idle routines based on this count.

Do not perform lengthy tasks during Onldle because your application cannot
process user input until Onldle returns.

Note The default implementation of Onldle performs internal data structure
cleanup. Therefore, if you override Onldle, you must explicitly call
CWinApp::Onldle in your overridden version to get the default processing.

TRUE to receive more idle processing time; FALSE if no more idle time is
needed.

638 CWinApp::PreTranslateMessage

Syntax

Parameters

Remarks

Return Value

Syntax

Remarks

Return Value

CWinApp::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

pMsg
A pointer to a MSG structure containing the message to process.

Override this function to filter window messages before they are dispatched to
the Windows functions TranslateMessage and DispatchMessage. The default
implementation performs access-key translation, so you must call
PreTranslateMessage in your overridden version.

TRUE if the message was fully processed in PreTranslateMessage and should
not be passed to the Windows functions TranslateMessage and
DispatchMessage. FALSE if the message should be processed in the normal way.

CWinApp::Run
virtual int RunO;

Provides a default message loop. Run acquires and dispatches Windows messages
until a WM_QUIT message is received. If the application's message queue cur­
rently contains no messages, Run calls OnIdle to perform idle-time processing. In­
coming messages are passed to PreTranslateMessage for special processing, then
passed to the Windows function TranslateMessage for standard keyboard transla­
tion, and finally DispatchMessage is called.

Run is rarely overridden, but you can override it to provide special behavior.

An int value that is returned by WinMain.

CWinApp::m_msgCur 639

Data Members

Remarks

Remarks

Remarks

Remarks

CWinApp::m_ hlnstance
Corresponds to the hInstance parameter passed by Windows to WinMain. The
m_hlnstance data member is a handle to the current instance of the application
running under Windows. This is returned by AfxGetInstanceHandle.

CWinApp::m_ hPrevlnstance
Corresponds to the hPrevlnstance parameter passed by Windows to WinMain.
The IlLhPrevlnstance data member has the value NULL if this is the first in­
stance of the application that is running.

CWinApp::m_lpCmdline
Corresponds to the IpCmdLine parameter passed by Windows to WinMain. Use
m_IpCmdLine to access any command-line arguments entered when the applica­
tion was started.

CWinApp::m_ msgCur
Corresponds to the last window message retrieved by Run; only useful if the mes­
sage is currently being processed.

640 CWinApp::m_nCmdShow

Remarks

Remarks

Remarks

CWinApp::m_ nCmdShow
Corresponds to the nCmdShow parameter passed by Windows to WinMain. If
m_nCmdShow is TRUE, the first call to CWnd::ShowWindow makes the main
window visible. You can pass m_nCmdShow as an argument when you call
ShowWindow for your application's main window.

CWinApp::m_ pMainWnd
Use this data member to store a pointer to your application's main window object.
The Foundation class library will automatically terminate your application when
the window referred to by m_pMainWnd is closed. If you don't store a valid
CWnd pointer here, you must explicitly call the Windows function
PostQuitMessage to terminate your application.

CWinApp::m_ pszAppName
Specifies the name of the application (optionally provided to the constructor or ex­
tracted from .EXE name if not provided).

Returned by AfxGetAppName.

CWindowDC 641

class CWindowDC : public CDC

See Also

Public Members

The CWindowDC class is derived from CDC. It calls
the Windows functions GetWindowDC at construc­
tion time and ReleaseDC at destruction time. This
means that a CWindowDC object accesses the entire
screen area of a CWnd-both client and nonclient
areas.

CDC

CWindowDC

Construction/Destruction
CWindowDC

-CWindowDC

Constructs a CWindowDC object.

Destroys the CWindowDC object.

Protected Members
m_hWnd The HWND to which this CWindowDC is

attached.

642 CWindowDC::CWindowDC

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

CWindowDC::CWindowDC
CWindowDC(CWnd* pWnd)
throw(CResourceException);

pWnd
The window whose client area the device context object will access.

Constructs a CWindowDC object that accesses the entire screen area (both client
and nonclient) of the CWnd object pointed to by p Wnd. The constructor calls the
Windows function GetDC.

An exception (of type CResourceException) is thrown if the Windows GetDC
call fails. A device context may not be available if Windows has already allocated
all of its available device contexts. Your application competes for the five com­
mon display contexts available at any given time under Windows.

CDC, CClientDC, CWnd

CWindowDC::-CWindowDC
virtual -CWindowDCO;

Destroys a CWindowDC object and calls the Windows ReleaseDC function.

CDC, CClientDC, CWnd, ::ReleaseDC

Data Members

CWindowDC::m_hWnd

CWindowDC::m_hWnd 643

Remarks The HWND of the CWnd pointer used to construct the CWindowDC object.

644 CWnd

class CWnd : public CObject
The CWnd class provides the base functionality of
all window classes in the Microsoft Foundation Class
Library.

A CWnd object is actually distinct from a Windows

I CObjecf I
qcwnd

window, but the two are tightly linked. A CWnd object is created or destroyed by
the CWnd constructor and destructor. The Windows window, on the other hand,
is a data structure internal to Windows that is created by the CreateEx member
function and destroyed by the CWnd virtual destructor. The DestroyWindow
function, one of the few public virtual CWnd member functions, destroys the
Windows window without destroying the object.

The CWnd class and the message-map mechanism hide the WndProc function.
Incoming Windows notification messages are automatically routed through the
message map to the proper OnMessage CWnd member functions. You override
the OnMessage member function to handle that member's particular message in
your derived classes.

The CWnd class also provides the functionality of a Windows child window.

To create a useful child window for your application, derive a class from CWnd.
Add member variables to the derived class to store data specific to your applica­
tion. Implement message-handler member functions and a message map in the
derived class to specify what happens when messages are directed to the window.

You create a child window in two steps. First, call the constructor CWnd to con­
struct the CWnd object, then call the Create member function to create the child
window and attach it to the CWnd object.

Construction can be a one-step process in a derived class. Write a constructor for
the derived class and call Create from within the constructor.

When the user terminates your child window, destroy the CWnd object, or call the
DestroyWindow member function to remove the window and destroy its data
structures. If you allocate any memory in the CWnd object, override the CWnd
destructor to dispose of the allocations.

See Also

Public Members

CWnd 645

Within the Microsoft Foundation Class Library, further classes are derived from
CWnd to provide specific window types. Three of these classes, CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd, contain further window functionality
and are designed for further derivation. The control classes derived from CWnd,
such as CDialog and CButton, can be used directly, or can also be used for
further derivation of classes.

CDialog, CModalDialog, CStatic, CButton, CEdit, CListBox, CComboBox,
CScrollBar, CFrameWnd, CMDIFrameWnd, CMDIChildWnd

Data Members
m_hWnd

wndTop

wndBottom

Construction/Destruction
CWnd

-CWnd

DestroyWindow

Initialization
Create

GetStyle

Attach

Detach

FromHandle

Indicates the HWND attached to this CWnd.

Indicates a static CWnd to use with the
SetWindowPos member function to indicate that
CWnd should be moved to the top of the window
list.

Indicates a static CWnd to use with the
SetWindowPos member function to indicate that
CWnd should be moved to the bottom of the win­
dow list.

Constructs a CWnd object.

Destroys a CWnd object and destroys the attached
window.

Destroys the attached Windows window.

Creates and initializes the child window associated
with the CWnd object.

Returns the current window style.

Attaches a Windows handle to a CWnd object.

Detaches a Windows handle from a CWnd object
and returns the handle.

Returns a pointer to a CWnd object when given a
handle to a window. If a CWnd object is not

646 CWnd

DeleteTempMap

GetSafeHwnd

Message Functions
SendMessage

PostMessage

Window Text Functions
Set WindowText

GetWindowText

GetWindowTextLength

SetFont

GetFont

CMenu Functions
GetMenu

SetMenu

DrawMenuBar

GetSystemMenu

HiliteMenuItem

Child Window Attributes
GetDlgCtrlID

attached to the handle, a temporary CWnd object
is created and attached.

Called automatically by the CWinApp idle-time
handler and deletes any temporary CWnd objects
created by FromHandle.

Returns m_ h Wnd, or NULL if this is NULL.

Sends a message to the CWnd object and does not
return until it has processed the message.

Places a message in the CWnd object's applica­
tion queue, then returns without waiting for the ob­
ject to process the message.

Sets the CWnd text or caption title (if one exists)
to the specified text.

Copies the CWnd text or caption title (if it has
one) into a buffer.

Returns the length of the CWnd text or caption
title.

Sets the current font.

Retrieves the current font.

Retrieves a pointer to the menu.

Sets the menu to the specified menu.

Redraws the menu bar.

Allows the application to access the Control menu
for copying and modification.

Highlights or removes the highlighting from a top­
level (menu-bar) menu item.

If the CWnd is a child window, calling this func­
tion returns its ID value.

Window Size and Position
Close Window

OpenIcon

IsIconic

IsZoomed

MoveWindow

SetWindowPos

ArrangeIconic Windows

BringWindowToTop

GetWindowRect

GetClientRect

CWnd 647

Minimizes CWnd.

Activates and restores a minimized (iconic) CWnd.

Determines whether CWnd is minimized (iconic).

Determines whether CWnd is maximized.

Changes the position and/or dimensions of CWnd.

Changes the size, position, and ordering of child,
pop-up, and top-level windows.

Arranges all the minimized (iconic) child windows.

Brings CWnd to the top of a stack of overlapping
windows.

Gets the screen coordinates of CWnd.

Gets the dimensions of the CWnd client area.

Coordinate Mapping Functions
ClientToScreen

ScreenToClient

Update/Painting Functions
BeginPaint

EndPaint

GetDC

GetWindowDC

ReleaseDC

UpdateWindow

SetRedraw

GetUpdateRect

Converts the client coordinates of a given point or
rect on the display to screen coordinates.

Converts the screen coordinates of a given point
or rect on the display to client coordinates.

Prepares CWnd for painting and fills a
PAINTSTRUCT data structure with information
about the painting.

Marks the end of painting.

Retrieves a display context for the client area.

Retrieves the display context for the whole win­
dow, including the caption bar, menus, and scroll
bars.

Releases common and window device contexts,
freeing them for use by other applications.

Updates the client area.

Allows changes in CWnd to be redrawn or pre­
vents changes from being redrawn.

Retrieves the coordinates of the smallest rectangle
that completely encloses the CWnd update region.

648 CWnd

GetUpdateRgn

Invalidate

InvalidateRect

InvalidateRgn

ValidateRect

ValidateRgn

ShowWindow

IsWindowVisible

ShowOwnedPopups

Timer Functions
SetTimer

KillTimer

Window State Functions
IsWindowEnabled

Enable Window

GetActive Window

SetActiveWindow

GetCapture

SetCapture

GetFocus

SetFocus

SetSysModalWindow

GetSysModalWindow

GetDesktop Window

Retrieves the CWnd update region.

Invalidates the entire client area.

Invalidates the client area within the given rec­
tangle by adding that rectangle to the update region.

Invalidates the client area within the given region
by adding it to the current update region.

Validates the client area within the given rectangle
by removing the rectangle from the update region.

Validates the client area within the given region
by removing the region from the current update
region.

Shows or hides CWnd.

Determines if the window is visible.

Shows or hides all pop-up windows associated
with the window.

Installs a system timer that sends a WM_ TIMER
message when triggered.

Kills a system timer.

Determines if the window is enabled for mouse
and keyboard input.

Enables or disables mouse and keyboard input.

Retrieves the active window.

Activates the window.

Retrieves the CWnd that has the mouse capture.

Causes all subsequent mouse input to be sent to the
CWnd.

Retrieves the CWnd that currently has the input
focus.

Assigns the input focus.

Makes CWnd a system-modal window.

Retrieves the system-modal CWnd if there is one.

Retrieves the Windows desktop window.

CWnd 649

Dialog-Box Item Functions
CheckDlgButton

CheckRadioButton

GetCheckedRadioButton

DlgDirList

DlgDirListComboBox

DlgDirSelect

DlgDirSelectComboBox

GetDlgltem

GetDlgltemlnt

GetDlgltemText

GetNextDlgGroupltem

GetNextDlgTabltem

IsDlgButtonChecked

SendDlgltemMessage

SetDlgltemlnt

SetDlgltemText

Places a check mark next to or removes a check
mark from a button control, or dims the button.

Checks the specified radio button and removes the
check mark from all other radio buttons in the
specified group of buttons.

Returns the ID of the currently checked radio but­
ton in a group of buttons.

Fills a list box with a file or directory listing.

Fills the list box of a combo box with a file or
directory listing.

Retrieves the current selection from a list box.

Retrieves the current selection from the list box of
a combo box.

Retrieves the handle of a control contained in the
specified dialog box.

Translates the text of a control in the given dialog
box to an integer value.

Retrieves the caption or text associated with a
control.

Searches for the previous (or next) control within a
group of controls.

Retrieves the first control that has the
WS_ TABS TOP style and precedes (or follows)
the specified control.

Determines whether a button control has a check
mark next to it, and whether a three-state button
control is dimmed, checked, or neither.

Sends a message to the specified control.

Sets the text of a control to the string that repre­
sents an integer value.

Sets the caption or text of a control in the specified
dialog box.

650 CWnd

Scrolling Functions
GetScrollPos

GetScrollRange

ScrollWindow

SetScrollPos

SetScrollRange

ShowScrollBar

Window Access Functions
ChiidWindow FromPoint

FindWindow

GetNextWindow

GetTopWindow

GetWindow

GetLastActivePopup

IsChiid

GetParent

SetParent

WindowFromPoint

Retrieves the current position of a scroll box.

Copies the current minimum and maximum scroll­
bar positions for the given scroll bar.

Scrolls CWnd.

Sets the current position of a scroll box and, if
specified, redraws the scroll bar to reflect the new
position.

Sets minimum and maximum position values for
the given scroll bar.

Displays or hides a scroll bar.

Determines which, if any, of the child windows
contains the specified point.

Returns the handle of the window, which is iden­
tified by its window name and class.

Searches for the next (or previous) window in the
window-manager's list.

Searches for a top-level child window that belongs
to the CWnd.

Searches for the specified window from the win­
dow-manager's list.

Determines which pop-up window owned by
CWnd was most recently active.

Indicates whether CWnd is a child window or
other direct descendant of the specified window.

Retrieves the parent window of CWnd (if any).

Changes the parent window.

Identifies the window that contains the given point.

Alert Functions
Flash Window

MessageBox

Clipboard Functions
Change Clipboard Chain

SetClipboardViewer

Open Clipboard

GetClipboardOwner

GetClipboardViewer

Caret Functions
Create Caret

CreateSolidCaret

CreateGrayCaret

GetCaretPos

SetCaretPos

HideCaret

Show Caret

CWnd 651

Flashes the window once.

Creates and displays a window that contains an
application-supplied message and caption.

Removes CWnd from the chain of Clipboard
viewers.

Adds CWnd to the chain of windows that are
notified whenever the contents of the Clipboard
are changed.

Opens the Clipboard. Other applications will not
be able to modify the Clipboard until the
Close Clipboard Windows function is called.

Retrieves a pointer to the current owner of the
Clipboard.

Retrieves a pointer to the first window in the chain
of Clipboard viewers.

Creates a new shape for the system caret and gets
ownership of the caret.

Creates a solid block for the system caret and gets
ownership of the caret.

Creates a gray block for the system caret and gets
ownership of the caret.

Retrieves the client coordinates of the caret's cur­
rent position.

Moves the caret to a specified position.

Hides the caret by removing it from the display
screen.

Shows the caret on the display at the caret's cur­
rent position. Once shown, the caret begins flash­
ing automatically.

652 CWnd

Message Handlers
(require entry in Message Map)
OnCommand

OnActivate

OnActivateApp

OnCancelMode

OnChildActivate

OnClose

OnCreate

OnCtlColor

OnDestroy

OnEnable

OnEndSession

OnEnterIdle

OnEraseBkgnd

OnGetMinMaxlnfo

OnlconEraseBkgnd

Called when the user selects an item from a menu,
when a control calls its parent's message handler,
or when an access keystroke is translated.

Called when CWnd is being activated or
deactivated.

Called when CWnd is about to be activated and
CWnd belongs to a different task than the cur­
rently active window.

Called to allow CWnd to cancel any internal
modes, such as mouse capture, if CWnd has the
focus when a dialog box or message box is dis­
played.

Called whenever the size or position of CWnd
changes if CWnd is a child window.

Called as a signal that CWnd or an application
will terminate.

Called when an application requests that CWnd be
created.

Called when the control or message box is about to
be drawn if CWnd is the parent of a system­
defined control class or a message box.

Called when CWnd is being destroyed.

Called when an application changes the enabled
state of CWnd.

Called when the session is ending.

Called to inform an application's main window
procedure that a modal dialog box or a menu is en­
tering an idle state.

Called when the background needs erasing.

Called whenever Windows needs to know the max­
imized position or dimensions, or the minimum or
maximum tracking size.

Called when CWnd is being minimized (made
iconic) and the background of the icon must be
filled before painting the icon.

OnKillFocus

OnMenuChar

OnMenuSelect

OnMove

OnPaint

OnPaintIcon

OnParentNotify

OnQueryDragIcon

OnQueryEndSession

OnQueryNewPalette

OnQueryOpen

OnSetFocus

OnShowWindow

OnSize

Nonclient-Area Functions
OnNcActivate

OnNcCalcSize

OnNcCreate

OnNcDestroy

CWnd 653

Called immediately before CWnd loses the input
focus.

Called when the user presses a menu mnemonic
character that doesn't match any of the predefined
mnemonics in the current menu.

Called when the user selects a menu item.

Called after the position of CWnd has been
changed.

Called when Windows or an application makes a
request to repaint a portion of the window.

Called when CWnd is minimized (iconic) and the
icon is to be painted.

Called when a CWnd child window is created or
destroyed, or when the user clicks a mouse button
while the cursor is over the child window.

Called when a minimized (iconic) CWnd is about
to be dragged by the user (if CWnd does not have
an icon defined for its class).

Called when the user chooses to end the Windows
session, or when an application calls the
ExitWindows Windows function.

Informs CWnd that it is about to receive the input
focus.

Called when CWnd is an icon, and the user re­
quests that the icon be opened.

Called after CWnd gains the input focus.

Called when CWnd is to be hidden or shown.

Called after the size of CWnd has changed.

Called when the nonclient area needs to be
changed to indicate an active or inactive state.

Called when the size of the client area needs to be
calculated.

Called prior to OnCreate when the nonclient area
is being created.

Called when the nonclient area is being destroyed.

654 CWnd

OnNcHitTest

OnNcLButtonDblClk

OnNcLButtonDown

OnNcLButtonUp

OnNcMButtonDblClk

OnNcMButtonDown

OnNcMButtonUp

OnNcMouseMove

OnNcPaint

OnNcRButtonDblClk

OnNcRButtonDown

OnNcRButtonUp

Called by Windows every time the mouse is
moved if CWnd contains the cursor, or has cap­
tured mouse input with SetCapture.

Called when the user double-clicks the left mouse
button while the cursor is within a nonclient area
ofCWnd.

Called when the user presses the left mouse button
while the cursor is within a nonclient area of
CWnd.

Called when the user releases the middle mouse
button while the cursor is within a nonclient area
ofCWnd.

Called when the user double-clicks the middle
mouse button while the cursor is within a nonclient
area of CWnd.

Called when the user presses the middle mouse
button while the cursor is within a nonclient area
ofCWnd.

Called when the user releases the middle mouse
button while the cursor is within a nonclient area
ofCWnd.

Called when the cursor is moved within a non­
client area of CWnd.

Called when the nonclient area needs painting.

Called when the user double-clicks the right mouse
button while the cursor is within a nonclient area
ofCWnd.

Called when the user presses the right mouse but­
ton while the cursor is within a nonclient area of
CWnd.

Called when the user releases the right mouse but­
ton while the cursor is within a nonclient area of
CWnd.

System Message Handlers
OnSysChar

OnSysCommand

Called when a keystroke translates to a system
character.

Called when the user selects a command from the
Control menu, or when the user selects the Maxi­
mize or Minimize button.

OnSysDeadChar

OnSysKeyDown

OnSysKeyUp

OnCompacting

OnDevModeChange

OnFontChange

OnPaietteChanged

OnSpoolerStatus

OnSysColorChange

OnTimeChange

On WinIniChange

Input Message Handlers
OnChar

OnDeadChar

OnHScroll

OnKeyDown

OnKeyUp

CWnd 655

Called when a keystroke translates to a system
dead character (such as accent characters).

Called when the user holds down the ALT key and
then presses another key.

Called when the user releases a key that was
pressed while the ALT key was held down.

Called when Windows detects that system memory
is low.

Called for all top-level windows when the user
changes device-mode settings.

Called when the pool of font resources changes.

Called to allow windows that don't have the input
focus and use a color palette to realize their logical
palettes and update their client areas.

Called from Print Manager whenever a job is
added to or removed from the Print Manager
queue.

Called for all top-level windows when a change is
made in the system color setting.

Called for all top-level windows after the system
time changes.

Called for all top-level windows after the
Windows initialization file, WIN.INI, is changed.

Called when a keystroke translates to a nonsystem
character.

Called when a keystroke translates to a nonsystem
dead character (such as accent characters).

Called when the user clicks the horizontal scroll
barofCWnd.

Called when a nonsystem key is pressed. A nonsys­
tern key is a keyboard key that is pressed when the
AL T key is not pressed, or a keyboard key that is
pressed when CWnd has the input focus.

Called when a nonsystem key is released. A non­
system key is a keyboard key that is pressed when
the ALT key is not pressed, or a keyboard key that
is pressed when CWnd has the input focus.

656 CWnd

OnLButtonDblClk

OnLButtonDown

OnLButtonUp

OnMButtonDblClk

OnMButtonDown

OnMButtonUp

OnMouseActivate

OnMouseMove

OnRButtonDblClk

OnRButtonDown

OnRButtonUp

OnSetCursor

OnTimer

OnVScroll

Called when the user double-clicks the left mouse
button.

Called when the user presses the left mouse button.

Called when the user releases the left mouse
button.

Called when the user double-clicks the middle
mouse button.

Called when the user presses the middle mouse
button.

Called when the user releases the middle mouse
button.

Called when the cursor is in an inactive window
and the user presses a mouse button.

Called when the mouse cursor moves.

Called when the user double-clicks the right mouse
button.

Called when the user presses the right mouse
button.

Called when the user releases the right mouse
button.

Called if mouse input is not captured and the
mouse causes cursor movement within a window.

Called after each interval specified in SetTimer.

Called when the user clicks the window's vertical
scroll bar.

Initialization Message Handlers
OnInitMenu

OnInitMenuPopup

Called when a menu is about to become active.

Called when a pop-up menu is about to become
active.

Clipboard Message Handlers
OnAskCbFormatName

OnChangeCbChain

Called by a Clipboard viewer application when a
Clipboard owner will display the Clipboard con­
tents.

Notifies that a specified window is being removed
from the chain.

OnDestroyClipboard

OnDrawClipboard

OnHScroliClipboard

OnPaintClipboard

OnRender AllFormats

OnRenderFormat

OnSizeClipboard

On VScroliClipboard

CWnd 657

Called when the Clipboard is emptied through a
call to the EmptyClipboard Windows function.

Called when the contents of the Clipboard change.

Called when a Clipboard owner will scroll the
Clipboard image, invalidate the appropriate sec­
tion, and update the scroll-bar values.

Called when the client area of the Clipboard
viewer needs repainting.

Called when the owner application is being de­
stroyed and needs to render all its formats.

Called for the Clipboard owner when a particular
format with delayed rendering needs to be ren­
dered.

Called when the size of the client area of the
Clipboard-viewer window has changed.

Called when the owner should scroll the Clipboard
image, invalidate the appropriate section, and up­
date the scroll-bar values.

Control Message Handlers
OnCharToltem

OnCompareltem

OnDeleteltem

OnDrawltem

OnGetDlgCode

Called by a child list box with the
LBS_ W ANTKEYBOARDINPUT style in
response to a ~ CHAR message.

Called to determine the relative position of a new
item in a sorted owner-draw combo or list box.

Called when an owner-draw list box or combo box
is destroyed or when items are removed from the
control by calls to CComboBox: :DeleteString or
CComboBox::ResetContent

Called when a visual aspect of an owner-draw but­
ton control, combo box control, list box control, or
menu needs to be drawn.

Called for a control so the control can process
ARROW key and TAB key input itself, although
Windows normally handles this input.

658 CWnd

(}rU\leasurelte~

(}n VKeyToIte~

MOl Message Handlers
(}nMDIActivate

Protected Members

Initialization
CreateEx

Operations
GetCurrentMessage

GetSuperWndProcAddr

PreTranslateMessage

WindowProc

Default

DetwindowProc

Called for an owner-draw button, combo box, list
box, or menu item when the control is created.
CWnd informs Windows of the dimensions of the
control.

Called by a list box owned by CWnd in response
to a ~KEYD(}WN message.

Called when an MDI child window is activated or
deactivated.

Creates a Windows overlapped, pop-up, or child
window and attaches it to a CWnd object.

Returns a pointer to the message this window is
currently processing. Should only be called when
in an (}nMessage message handler member
function.

Accesses the original WndProc address of a sub­
classed window, and is used for translating
Windows messages in the main message handler.

Used by CWinApp to filter window messages
before they are dispatched to TranslateMessage
and DispatchMessage.

Provides a window procedure for a CWnd. The de­
fault dispatches messages through the message
map.

Calls the default window procedure, which pro­
vides default processing for any window messages
that an application does not process.

Calls the default window procedure, which pro­
vides default processing for any window messages
that an application does not process.

CWnd::Attach 659

Member Functions

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::ArrangelconicWindows
UINT ArrangeIconicWindowsO;

Arranges all the minimized (iconic) child windows.

This member function also arranges icons on the desktop window, which covers
the entire screen. The GetDesktop Window member function retrieves a pointer to
the desktop window object.

To arrange iconic MDI child windows in an MDI client window, call
CMDIFrame Wnd::MDIIconArrange.

The height of one row of icons, or 0 if there were no icons.

CWnd: : GetDesktop Window, CMDIFrame Wnd: :MDIIconArrange,
: :ArrangeIconic Windows

CWnd::Attach
BOOL Attach(HWND hWndNew);

hWndNew
Specifies a handle to a Windows window.

Attaches a Windows window to a CWnd object.

TRUE if the operation was successful; otherwise FALSE.

CWnd::Detach, CWnd::-CWnd, CWnd::m_hWnd

660 CWnd::BeginPaint

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::BeginPaint
CDC* BeginPaint(LPPAINTSTRUCT lpPaint);

lpPaint
Points to the PAINTSTRUCT structure that is to receive painting information.

Prepares CWnd for painting and fills a PAINTSTRUCT data structure with infor­
mation about the painting.

The paint structure contains a RECT data structure that has the smallest rectangle
that completely encloses the update region, and a flag that specifies whether the
background has been erased.

The update region is set by the Invalidate, InvalidateRect, or InvalidateRgn
member functions and by the system after sizing, moving, creating, scrolling, or
any other operation that affects the client area. If the update region is marked for
erasing, BeginPaint sends an WM_ ONERASEBKGND message.

Do not call the BeginPaint member function except in response to a
WM_PAINT message. Each call to the BeginPaint member function must have a
matching call to the EndPaint member function. If the caret is in the area to be
painted, the BeginPaint member function automatically hides the caret to prevent
it from being erased.

Identifies the device context for CWnd. The pointer may be temporary, and
should not be stored beyond the scope of EndPaint.

CWnd::EndPaint, CWnd::Invalidate, CWnd::InvalidateRgn, ::BeginPaint,
CPaintDC

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::CheckDlgButton 661

CWnd::BringWindowToTop
void BringWindowToTopO;

Brings CWnd to the top of a stack of overlapping windows. In addition,
BringWindowToTop activates pop-up and top-level windows. The
BringWindowToTop member function should be used to uncover any window
that is partially or completely obscured by any overlapping windows.

: :BringWindowToTop

CWnd::ChangeClipboardChain
BOOL ChangeClipboardChain(HWND hWndNext);

hWndNext
Identifies the window that follows CWnd in the Clipboard-viewer chain.

Removes CWnd from the chain of Clipboard viewers and makes the window
specified by h WndNext the descendant of the CWnd ancestor in the chain.

TRUE if CWnd is removed; otherwise FALSE.

CWnd: :SetClipboardViewer, : : Change Clipboard Chain

CWnd::CheckDlgButton
void CheckDlgButton(int nIDButton, UINT nCheck);

nIDButton
Specifies the button control to be modified.

nCheck
Specifies the action to take. If nCheck is nonzero, the CheckDlgButton mem­
ber function places a check mark next to the button; if 0, the check mark is re­
moved. For three-state buttons, if nCheck is 2, the button is dimmed; if nCheck
is 1, it is checked; if nCheck is 0, the check mark is removed.

662 CWnd::CheckRadioButton

Remarks Places a check mark next to or removes a check mark from a button control, or,
for a three-state button, may dim the button.

See Also CWnd::IsDlgButtonChecked, ::CheckDlgButton

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

CWnd::CheckRadioButton
void CheckRadioButton(int nIDFirstButton, int nIDLastButton,

int nIDCheckButton);

nID FirstButton
Specifies the integer identifier of the first radio button in the group.

nID LastButton
Specifies the integer identifier of the last radio button in the group.

nIDCheckButton
Specifies the integer identifier of the radio button to be checked.

Checks the radio button specified by nIDCheckButton and removes the check
mark from all other radio buttons in the group of buttons specified by
nIDFirstButton and nIDLastButton. Checking a radio button turns the radio button
on or off.

CWnd: : GetCheckedRadioButton, : :CheckRadioButton

CWnd::ChildWindowFromPoint
CWnd* ChiidWindowFromPoint(POINT point) const;

point
Specifies the client coordinates of the point to be tested.

Determines which, if any, of the child windows belonging to CWnd contains the
specified point.

Identifies the child window that contains the point. It is NULL if the given point
lies outside of the client area. If the point is within the client area but is not con­
tained within any child window, CWnd is returned.

See Also

Syntax

Parameters

Remarks

See Also

CWnd::ClientToScreen 663

This member function will return a hidden or disabled child window that contains
the specified point.

The CWnd* that is returned may be temporary, and should not be stored beyond
its immediate use.

CWnd:: WindowFromPoint, ::ChildWindowFromPoint

CWnd::ClientToScreen
void ClientToScreen(LPPOINT lpPoint) const;

void ClientToScreen(LPRECT lpRect) const;

lpPoint
Points to a POINT structure or CPoint that contains the client coordinates to
be converted.

lpRect
Points to a RECT structure or CRect that contains the client coordinates to be
converted.

Converts the client coordinates of a given point or rectangle on the display to
screen coordinates. The ClientToScreen member function uses the client coordi­
nates in the POINT or RECT structure, or CPoint or CRect pointed to by lpPoint
or lpRect, to compute new screen coordinates; it then replaces the coordinates in
the structure with the new coordinates. The new screen coordinates are relative to
the upper-left corner of the system display.

The ClientToScreen member function assumes that the given point or rectangle is
in client coordinates.

CWnd: :ScreenToClient, : :ClientToScreen

664 CWnd::CloseWindow

Syntax

Remarks

See Also

Syntax

Parameters

CWnd::CloseWindow
void CloseWindowO;

Minimizes CWnd. If CWnd is an overlapped window, it is minimized by remov­
ing the client area and caption of the open window from the display screen and
moving its icon into the icon area of the screen.

This member function has no effect if CWnd is a pop-up or child window.

CWnd::OpenIcon, ::CloseWindow

CWnd::Create
BOOL Create(const char FAR* lpClassName,

const char FAR* lpWindowName, DWORD dwStyle, const RECT& reet,
const CWnd* pParentWnd, UINT nID);

lpClassName
Points to a null-terminated character string that names the Windows class (a
WNDCLASS struct). The class name can be any name registered with the
AfxRegisterWndClass function or any of the predefined control-class names.
If NULL, uses the default CWnd attributes. See CreateEx for a description of
the possible values.

lpWindowName
Points to a null-terminated character string that contains the window name.

dwStyle
Specifies the window style attributes. See CreateEx for a description of the
possible values.

reet
The size and position of the window, in client coordinates of pParentWnd.

pParentWnd
The parent window.

nID
The 10 of the child window.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CWnd::CreateCaret 665

Creates a Windows child window and attaches it to the CWnd object.

You construct a child window in two steps. First, invoke the constructor, which
constructs the CWnd object, then call Create, which creates the Windows child
window and attaches it to CWnd. Create initializes the window's class name and
window name, and registers values for its style, parent, and ID.

TRUE if initialization is successful; otherwise FALSE.

CWnd::CWnd, CWnd::CreateEx

CWnd::CreateCaret
void CreateCaret(CBitmap* pBitmap);

pBitmap
Identifies the bitmap that defines the caret shape.

Creates a new shape for the system caret and claims ownership of the caret.

The bitmap must have previously been created by using the
CBitmap::CreateBitmapmember function, CreateDIBitmap Windows func­
tion, or the CBitmap::LoadBitmap member function.

Automatically destroys the previous caret shape, if any, regardless of which win­
dow owns the caret. Once created, the caret is initially hidden. To show the caret,
the Show Caret member function must be called. The system caret is a shared re­
source. CWnd should create a caret only when it has the input focus or is active. It
should destroy the caret before losing the input focus or becoming inactive.

CBitmap:: CreateBitmap, :: CreateDIBitmap, : :DestroyCaret,
CBitmap::LoadBitmap, CWnd::ShowCaret, ::CreateCaret

666 GWnd::GreateEx

Syntax

Parameters

CWnd::CreateEx
Protected:

BOOL CreateEx(DWORD dwExStyle, const char FAR* IpClassName,
const char FAR* IpWindowName, DWORD dwStyle, intx, inty, int nWidth,
int nHeight, HWND hwndParent, HMENU nIDorHMenu);

dwExStyle
Specifies the extended style of the CWnd being created. It may be one of the
following values:

Style Meaning

WS_EX_DLGMODALFRAME Designates a window with a double
border that may optionally be created
with a title bar by specifying the
WS_CAPTION style flag in dwStyle.

WS_EX_NOPARENTNOTIFY Specifies that a child window created
with this style will not send the
WM_PARENTNOTIFY message to
its parent window when the child
window is created or destroyed.

WS_EX_ TOPMOST Specifies that a window created with
this style should be placed above all
nontopmost windows and stay above
them even when CWnd is deac­
tivated. An application can use the
SetWindowPos member function to
add or remove this attribute.

IpClassName
Points to a null-terminated character string that names the Windows class (a
WNDCLASS struct). The class name can be any name registered with the
AfxRegisterWndClass function or any of the predefined control-class names.
It must not be NULL.

lp WindowName
Points to a null-terminated character string that contains the window name.

Remarks

CWnd::CreateEx 667

dwStyle
Specifies the Windows style of CWnd.

x
Specifies the initial x-position of the CWnd window.

y
Specifies the initial top position of the CWnd window.

nWidth
Specifies the width (in device units) ofthe CWnd window.

nHeight
Specifies the height (in device units) ofthe CWnd window.

hwndParent
Identifies the parent or owner window of the CWnd window being created.
Use NULL for top-level windows.

nIDorHMenu
Identifies a menu or a child-window identifier. The meaning depends on the
style of the window.

Creates an overlapped, pop-up, or child window with the extended style specified
in dwExStyle.

The CreateEx parameters specify the WNDCLASS, window title, window style,
and (optionally) initial position and size ofthe window. CreateEx also specifies
the window's parent (if any) and ID.

When CreateEx executes, Windows sends the WM_ GETMINMAXINFO,
WM_NCCREATE, WM_NCCALCSIZE, and W~CREATE messages to
the window.

To extend the default message handling, derive a class from CWnd, add a mes­
sage map to the new class, and provide member functions for the above messages.
Override OnCreate, for example, to perform needed initialization for a new class.

Override further OnMessage message handlers to add further functionality to your
derived class.

If the WS_ VISIBLE style is given, Windows sends the window all the messages
required to activate and show the window. If the window style specifies a title bar,
the window title pointed to by the IpWindowName parameter is displayed in the
title bar.

668 CWnd::CreateEx

The dwStyle parameter can be any combination of the following window styles.

Style

DS_LOCALEDIT

DS_MODALFRAME

DS_SYSMODAL

WS_BORDER

WS_CAPTION

WS_CIDLD

WS_CHILDWINDOW

WS_CLIPCIDLDREN

Meaning

Specifies that edit controls in the dialog
box will use memory in the application's
data segment. By default, all edit controls
in dialog boxes use memory outside the
application's data segment. This feature
may be suppressed by adding the
DS_LOCALEDIT flag to the Style
command for the dialog box. If this flag is
not used, E~GETHANDLE and
E~ SETHANDLE messages must not be
used since the storage for the control is not
in the application's data segment. This
feature does not affect edit controls created
outside of dialog boxes.

Creates a dialog box with a modal dialog­
box frame that can be combined with a title
bar and Control menu by specifying the
WS_CAPTION and WS_SYSMENU
styles.

Suppresses W~ENTERIDLE messages
that Windows would otherwise send to the
owner of the dialog box while the dialog
box is displayed.

Creates a system-modal dialog box.

Creates a window that has a border.

Creates a window that has a title bar
(implies the WS_BORDER style). This
style cannot be used with the
WS_DLGFRAME style.

Creates a child window. Cannot be used
with the WS_POPUP style.

Same as the WS_CHILD style.

Excludes the area occupied by child
windows when drawing within the parent
window. Used when creating the parent
window.

Style

WS_ CLIPSIBLINGS

WS_DISABLED

WS_DLGFRAME

WS_GROUP

WS_ICONIC

WS_MAXIMIZE

WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_OVERLAPPED

CWnd::CreateEx 669

Meaning

Clips child windows relative to each other;
that is, when a particular child window
receives a paint message, the
WS_ CLIPSIBLINGS style clips all other
overlapped child windows out of the region
of the child window to be updated. (If
WS_ CLIPSIBLINGS is not given and
child windows overlap, it is possible, when
drawing within the client area of a child
window, to draw within the client area of a
neighboring child window.) For use with
the WS_CIDLD style only.

Creates a window that is initially disabled.

Creates a window with a double border but
no title.

Specifies the first control of a group of
controls in which the user can move from
one control to the next by using the ARROW

keys. All controls defined with the
WS_GROUP style after the first control
belong to the same group. The next control
with the WS_ GROUP style ends the style
group and starts the next group (that is, one
group ends where the next begins). Only
dialog boxes use this style.

Creates a window that has a horizontal
scroll bar.

Same as the WS_MINIMIZE style.

Creates a window of maximum size.

Creates a window that has a maximize box.

Creates a window that is initially
minimized. For use with the
WS_OVERLAPPED style only.

Creates a window that has a minimize box.

Creates an overlapped window. An
overlapped window has a caption and a
border.

670 CWnd::CreateEx

Style

WS_OVERLAPPEDWINDOW

WS_POPUPWINDOW

WS_SIZEBOX

WS_SYSMENU

WS_TABSTOP

WS_ THICKFRAME

WS_TILED

WS_ TILEDWINDOW

WS_VISIBLE

WS_VSCROLL

Meaning

Creates an overlapped window having the
WS_OVERLAPPED, WS_ CAPTION,
WS_SYSMENU, WS_ THICKFRAME,
WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles.

Creates a pop-up window. Cannot be used
with the WS_ CHILD style.

Creates a pop-up window that has the
WS_BORDER,WS_POPUP,and
WS_SYSMENU styles. The
WS_ CAPTION style must be combined
with the WS_POPUPWINDOW style to
make the Control menu visible.

Same as the WS_ THICKFRAME style.

Creates a window that has a Control-menu
box in its title bar. Used only for windows
with title bars.

Specifies one of any number of controls
through which the user can move by using
the TAB key. The TAB key moves the user to
the next control specified by the
WS_ TABSTOP style. Only dialog boxes
use this style.

Creates a window with a thick frame that
can be used to size the window.

Same as the WS_ OVERLAPPED style.

Same as the
WS_OVERLAPPEDWINDOW style.

Creates a window that is initially visible.
This applies to overlapped and pop-up
windows.

Creates a window that has a vertical scroll
bar.

Return Value TRUE if the CWnd window is created; otherwise FALSE.

See Also ::CreateWindowEx

Syntax

Parameters

Remarks

See Also

CWnd::CreateGrayCaret 671

CWnd::CreateGrayCaret
void CreateGrayCaret(int nWidth, int nHeight);

nWidth
Specifies the width of the caret (in logical units). If this parameter is 0, the
width is set to the system-defined window-border width.

nHeight
Specifies the height of the caret (in logical units). If this parameter is 0, the
height is set to the system-defined window-border height.

Creates a gray rectangle for the system caret and claims ownership of the caret.
The caret shape can be a line or a block.

The parameters n Width and nHeight specify the caret's width and height (in logi­
cal units); the exact width and height (in pixels) depend on the mapping mode.

The Create Gray Caret member function automatically destroys the previous caret
shape, if any, regardless of which window owns the caret. Once created, the caret
is initially hidden. To show the caret, the ShowCaret member function must be
called.

The system caret is a shared resource. CWnd should create a caret only when it
has the input focus or is active. It should destroy the caret before losing the input
focus or becoming inactive.

The system's window-border width or height can be retrieved by using the
GetSystemMetrics Windows function with the SM_ CXBORDER and
S~ CYBORDER indexes. Using the window-border width or height ensures
that the caret will be visible on a high-resolution display.

::DestroyCaret, ::GetSystemMetrics, CWnd::ShowCaret, ::CreateCaret

672 CWnd::CreateSolidCaret

Syntax

Parameters

Remarks

See Also

CWnd::CreateSolidCaret
void CreateSolidCaret(int n Width, int nHeight);

nWidth
Specifies the width of the caret (in logical units). If this parameter is 0, the
width is set to the system-defined window-border width.

nHeight
Specifies the height of the caret (in logical units). If this parameter is 0, the
height is set to the system-defined window-border height.

Creates a solid rectangle for the system caret and claims ownership of the caret.
The caret shape can be a line or block.

The parameters nWidth and nHeight specify the caret's width and height (in logi­
cal units); the exact width and height (in pixels) depend on the mapping mode.

The CreateSolidCaret member function automatically destroys the previous caret
shape, if any, regardless of which window owns the caret. Once created, the caret
is initially hidden. To show the caret, the ShowCaret member function must be
called.

The system caret is a shared resource. CWnd should create a caret only when it
has the input focus or is active. It should destroy the caret before losing the input
focus or becoming inactive.

The system's window-border width or height can be retrieved by using the
GetSystemMetrics Windows function with the SM...- CXBORDER and
SM...- CYBORDER indexes. Using the window-border width or height ensures
that the caret will be visible on a high-resolution display.

::DestroyCaret, ::GetSystemMetrics, CWnd::ShowCaret, ::CreateCaret

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Remarks

Return Value

See Also

CWnd::Default 673

CWnd::CWnd
CWndO;

Constructs a CWnd object. The Windows window is not created and attached
until the CreateEx or Create member function is called.

CWnd::CreateEx, CWnd::Create, CWnd::-CWnd

CWnd::-CWnd
virtual-CWndO;

Destroys a CWnd object and destroys the attached window.

CWnd::CWnd, CWnd::DestroyWindow

CWnd::Default
protected: LONG DefaultO;

Calls the default window procedure. The default window procedure provides de­
fault processing for any window message that an application does not process.
This member function is used to ensure that every message is processed. All
CWnd OnMessage member functions call this member function.

Depends on the message that was passed to this function.

: : DeIDIgProc, CWnd: : DefWindowProc, : : DefWindowProc

674 CWnd::DefWindowProc

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

CWnd::DefWindowProc
Protected:

virtual LONG DetWindowProc(UINT message, UINT wParam,
LONG IParam);

message
Specifies the Windows message to be processed.

wParam
Specifies 16 bits of additional message-dependent information.

IParam
Specifies 32 bits of additional message-dependent information.

Calls the default window procedure, which provides default processing for any
window message that an application does not process. This member function is
used to ensure that every message is processed. It should be called with the same
parameters as those received by the window procedure.

The source code for the DetWindowProc function is provided on the Windows
Software Development Kit disks.

Dependent on the message that was passed to this function.

: :DeIDIgProc, CWnd: : Default, : : DetWindowProc

CWnd::DeleteTempMap
static void DeleteTempMapO;

Called automatically by the idle time handler of CWinApp, and deletes any tem­
porary CWnd objects created by FromHandle.

CWnd: :FromHandle

Syntax

Remarks

Return Value

See Also

CWnd::DestroyWindow 675

CWnd::DestroyWindow
virtual BOOL DestroyWindowO;

Destroys the Windows window attached to CWnd. The DestroyWindow member
function sends appropriate messages to CWnd to deactivate it and remove the
input focus. It also destroys CWnd's menu, flushes the application queue, de­
stroys outstanding timers, removes Clipboard ownership, and breaks the
Clipboard-viewer chain if CWnd is at the top of the viewer chain. It sends
WM_DESTROY and WM_NCDESTROY messages to the window. It
does not destroy the CWnd object.

If CWnd is the parent of any windows, these child windows are automatically de­
stroyed when the parent window is destroyed. The DestroyWindow member func­
tion destroys child windows first, and then CWnd itself.

The DestroyWindow member function also destroys modeless dialog boxes
created by the CreateDialog Windows function.

If the CWnd being destroyed is a child window and does not have the
WS_NOPARENTNOTIFY style set, then the WM_PARENTNOTIFY
message is sent to the parent.

Specifies whether the window is destroyed. It is TRUE if the window is de­
stroyed; otherwise FALSE.

::CreateDialog, CWnd::OnDestroy, CWnd::Detach, ::DestroyWindow

676 CWnd::Detach

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CWnd:: Detach
HWND DetachO;

Detaches a Windows handle from a CWnd object and returns the handle.

A HWND to the Windows object.

CWnd::Attach

CWnd::DlgDirList
int DIgDirList(const char FAR* IpPathSpec, int nIDListBox, int nIDStaticPath,

UINT nFileType);

IpPathSpec
Points to a path string, must be a CString or a null-terminated character string.

nIDListBox
Specifies the identifier of a list box control. If nIDListBox is 0, DlgDirList
assumes that no list box exists and does not attempt to fill one.

nIDStaticPath
Specifies the identifier of the static-text control used for displaying the current
drive and directory. If nIDStaticPath is 0, DIgDirList assumes that no such text
control is present.

nFileType
Specifies the attributes of the files to be displayed. It can be any combination of
the following values:

Value

OxOOOO

OxOOOl

Ox0002

Ox0004

OxOOlO

Ox0020

Meaning

Read/write data files with no additional attributes.

Read-only files.

Hidden files.

System files.

Subdirectories.

Archives.

Remarks

Return Value

See Also

Value

Ox2000

Ox4000

Ox8000

CWnd::DlgDirlist 677

Meaning

LB_DIR flag. If the LB_DIR flag is set, Windows places
the messages generated by DlgDirList in the application's
queue; otherwise they are sent directly to the dialog function.

Drives.

Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed. Otherwise, files of the specified
type are listed in addition to normal files.

Fills a list box control with a file or directory listing. It fills the list box specified
by nIDListBox with the names of all files matching the path given by IpPathSpec.

The DlgDirList member function shows subdirectories enclosed in square brack­
ets ([]), and shows drives in the form [-x-], wherexis the drive letter.

The IpPathSpec parameter has the following form:

[drive:] [[\u]directory[\idirectory] ... \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard character. The
wildcard characters are a question mark (?), meaning match any character, and an
asterisk (*), meaning match any number of characters.

If you specify a zero-length string for IpPathSpec or specify only a directory name
but do not include any file specification, the string will be changed to "*. *".

If IpPathSpec includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is
filled. The text control identified by nIDStaticPath is also updated with the new
drive and/or directory name.

After the list box is filled, IpPathSpec is updated by removing the drive and/or
directory portion of the path.

DlgDirList sends LB_RESETCONTENT and LB_DIR messages to the list box.

Specifies the outcome of the function. It is nonzero if a listing was made, even an
empty listing. A 0 return value implies that the input string did not contain a valid
search path.

CWnd: :DlgDirListComboBox, : :DlgDirList

678 CWnd::DlgDirListComboBox

Syntax

Parameters

Remarks

CWnd::DlgDirLisfComboBox
int DlgDirListComboBox(const char FAR* lpPathSpec, int nlDComboBox,

int nIDStaticPath, UINT nFileType);

lpPathSpec
Points to a path string, must be a CString or a null-terminated character string.

nlDComboBox
Specifies the identifier of a combo box control in a dialog box. If
nlDComboBox is 0, DlgDirListComboBox assumes that no combo box exists
and does not attempt to fill one.

nlDStaticPath
Specifies the identifier of the static-text control used for displaying the current
drive and directory. If nlDStaticPath is 0, DlgDirListComboBox assumes that
no such text control is present.

nFileType
Specifies DOS file attributes of the files to be displayed. It can be any combina­
tion of the following values:

Value

OxOOOO

OxOOOl

Ox0002

Ox0004

OxOOlO

Ox0020

Ox2000

Ox4000

Ox8000

Meaning

Read/write data files with no additional attributes.

Read-only files.

Hidden files.

System files.

Subdirectories.

Archives.

CB_DIR flag. If the CB_DIR flag is set, Windows places the
messages generated by DlgDirListComboBox in the
application's queue; otherwise they are sent directly to the
dialog function.

Drives.

Exclusive bit. If the exclusive bit is set, only files of the
specified type are listed. Otherwise, files of the specified type
are listed in addition to normal files.

Fills the list box of a combo box control with a file or directory listing. It fills the
list box of the combo box specified by nIDComboBox with the names of all files
matching the path given by lpPathSpec.

Return Value

See Also

Syntax

Parameters

CWnd::DlgDirSelect 679

The DlgDirListComboBox member function shows subdirectories enclosed in
square brackets ([]), and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:

[drive:] [[\u]directory[\idirectory] ... \u] [filename]

In this example, drive is a drive letter, directory is a valid directory name, and
filename is a valid filename that must contain at least one wildcard character. The
wildcard characters are a question mark (?), meaning match any character, and an
asterisk (*), meaning match any number of characters.

If you specify a zero-length string for IpPathSpec or if you specify only a
directory name but do not include any file specification, the string will be changed
to H*. *".

If IpPathSpec includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is
filled. The text control identified by nIDStaticPath is also updated with the new
drive and/or directory name.

After the combo box list box is filled, IpPathSpec is updated by removing the
drive and/or directory portion of the path.

DlgDirListComboBox sends CB_ RESET CONTENT and CB_ DIR messages
to the combo box.

Specifies the outcome of the function. It is nonzero if a listing was made, even an
empty listing. A 0 return value implies that the input string did not contain a valid
search path.

CWnd: :DlgDirList, CWnd: :DlgDirSelect, : :DlgDirListComboBox

CWnd::DlgDirSelect
BOOL DlgDirSelect(LPSTR IpString, int nIDListBox);

IpString
Points to a buffer that is to receive the current selection in the list box.

nIDListBox
Specifies the integer ID of a list box control in the dialog box.

680 CWnd::DlgDirSelectComboBox

Remarks Retrieves the current selection from a list box. It assumes that the list box has been
filled by the DIgDirList member function and that the selection is a drive letter, a
file, or a directory name.

Return Value

See Also

Syntax

Parameters

Remarks

The DIgDirSelect member function copies the selection to the buffer given by
IpString. If the current selection is a directory name or drive letter, DIgDirSelect
removes the enclosing square brackets (and hyphens, for drive letters) so that the
name or letter is ready to be inserted into a new path. If there is no selection,
IpString does not change.

DIgDirSelect sends LB_ GETCURSEL and LB_ GET TEXT messages to the
list box.

The DIgDirSelect member function does not allow more than one filename to be
returned from a list box.

The list box must not be a multiple-selection list box. If it is, this function will not
return a 0 value and IpString will remain unchanged.

Specifies the status of the current list box selection. It is TRUE if the current selec­
tion is a directory name; otherwise FALSE.

CW nd: : DIgDirList, CWnd: :DlgDirListComboBox,
CWnd: :DIgDirSelectComboBox, : :DlgDirSelect

CWnd::DlgDirSelecIComboBox
BOOL DIgDirSelectComboBox(LPSTR lpString, int nIDComboBox);

IpString
Points to a buffer that is to receive the selected path.

nIDComboBox
Specifies the integer ID of the combo box control in the dialog box.

Retrieves the current selection from the list box of a combo box. It assumes that
the list box has been filled by the DlgDirListComboBox member function and
that the selection is a drive letter, a file, or a directory name.

The DIgDirSelectComboBox member function copies the selection to the
specified buffer. If the current selection is a directory name or drive letter,
DIgDirSelectComboBoxremoves the enclosing square brackets (and hyphens, for

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::EnableWindow 681

drive letters) so that the name or letter is ready to be inserted into a new path. If
there is no selection, the contents of the buffer are not changed.

DlgDirSelectComboBox sends CB_ GETCURSEL and CB_ GETLBTEXT
messages to the combo box.

The DIgDirSelectComboBox member function does not allow more than one
filename to be returned from a combo box.

Specifies the status of the current combo box selection. It is TRUE if the current
selection is a directory name; otherwise FALSE.

CWnd: :DIgDirListComboBox, : :DlgDirSelectComboBox

CWnd::DrawMenuBar
void DrawMenuBar();

Redraws the menu bar. If a menu bar is changed after Windows has created the
window, call this function to draw the changed menu bar.

::DrawMennBar

CWnd: :EnableWindow
BOOL EnableWindow(BOOL bEnable = TRUE);

bEnable
Specifies whether the given window is to be enabled or disabled. If this parame­
ter is TRUE, the CWnd will be enabled. If this parameter is FALSE, the
CWnd will be disabled.

Enables or disables mouse and keyboard input. When input is disabled, input such
as mouse clicks and keystrokes is ignored. When input is enabled, the window
processes all input.

If the enabled state is changing, the ~ENABLE message is sent before this
function returns.

682 CWnd::EndPaint

Return Value

See Also

Syntax

Parameters

Remarks

See Also

If disabled, all child windows are implicitly disabled, although they are not sent
W~ENABLE messages.

CWnd must be enabled before it can be activated. For example, if an application
is displaying a modeless dialog box and has disabled its main window, the main
window must be enabled before the dialog box is destroyed. Otherwise, another
window will get the input focus and be activated. If a child window is disabled, it
is ignored when Windows tries to determine which window should get mouse
messages.

Initially, all windows are enabled by default. EnableWindow must be used to dis­
able CWnd explicitly.

Indicates the state before the EnableWindow member function was called. The re­
turn value is TRUE if CWnd was previously enabled. The return value is FALSE
if CWnd was previously disabled or an error occurred.

: : EnableWindow

CWnd::EndPaint
void EndPaint(LPPAINTSTRUCT IpPaint);

IpPaint
Points to a PAINTSTRUCT structure that contains the painting information re­
trieved by the BeginPaint member function.

Marks the end of painting in the given window. The EndPaint member function is
required for each call to the BeginPaint member function, but only after painting
is complete.

If the caret was hidden by the BeginPaint member function, EndPaint restores
the caret to the screen.

CWnd::BeginPaint, ::EndPaint, CPaintDC

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CWnd::FlashWindow 683

CWnd::FindWindow
static CWnd* FindWindow(const char FAR* IpClassName,

const char FAR* IpWindowName);

IpClassName
Points to a null-terminated string that specifies the window's class name. If
IpClassName is NULL, all class names match (a WNDCLASS struct).

IpWindowName
Points to a null-terminated string that specifies the window name (the window's
text caption). If lp WindowName is NULL, all window names match.

Returns the CWnd whose class is given by IpClassName and whose window
name, or caption, is given by IpWindowName. This function does not search child
windows.

Identifies the window that has the specified class name and window name. It is
NULL if no such window is found.

The CWnd* may be temporary and should not be stored for later use.

::FindWindow

CWnd::FlashWindow
BOOL FlashWindow(BOOL blnvert);

blnvert
Specifies whether the CWnd is to be flashed or returned to its original state.
The CWnd is flashed from one state to the other if blnvert is TRUE. If blnvert
is FALSE, the window is returned to its original state (either active or inactive).

Flashes the given window once. Flashing the CWnd means changing the appear­
ance of its caption bar as if the CWnd were changing from inactive to active sta­
tus, or vice versa. (An inactive caption bar changes to an active caption bar; an
active caption bar changes to an inactive caption bar.)

684 CWnd::FromHandle

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Typically, a CWnd is flashed to inform the user that it requires attention, but that
it does not currently have the input focus.

FlashWindow flashes the window only once; for successive flashing, create a sys­
tem timer and repeatedly call Flash Window.

The blnvert parameter should be FALSE only when CWnd is getting the input
focus and will no longer be flashing; it should be TRUE on successive calls while
waiting to get the input focus.

This function always returns TRUE for iconic windows. If CWnd is iconic,
Flash Window will simply flash the icon; blnvert is ignored for iconic windows.

Specifies the state before the call to the Flash Window member function. It is
TRUE if CWnd was active before the call; otherwise FALSE.

: :Flash Window

CWnd::FromHandle
static CWnd* FromHandle(HWND h Wnd);

hWnd
A HWND of a Windows window.

Returns a pointer to a CWnd object when given a handle to a window. If a CWnd
object is not attached to the handle, a temporary CWnd object is created and at­
tached.

The pointer may be temporary, and should not be stored beyond immediate use.

CWnd::DeleteTempMap

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CWnd::GetCapture 685

CWnd::GetActiveWindow
static CWnd* GetActiveWindowO;

Retrieves a pointer to the active CWnd. The active CWnd is either the window
that has the current input focus, or the window explicitly made active by the
SetActive Window member function.

The active window, or NULL if no window was active at the time of the call. The
pointer may be temporary, and should not be stored beyond immediate use.

CWnd: :SetActiveWindow, : : GetActive Window

CWnd::GetCapture
static CWnd* GetCaptureO;

Retrieves the CWnd that has the mouse capture. Only one window has the mouse
capture at any given time. This window receives mouse input whether or not the
cursor is within its borders.

The CWnd receives the mouse capture when the SetCapture member function is
called.

Identifies the window that has the mouse capture. It is NULL if no window has
the mouse capture.

The return value may be temporary, and should not be stored for later use.

CWnd::SetCapture, ::GetCapture

686 CWnd::GetCaretPos

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::GetCaretPos
static CPoint GetCaretPosO;

Retrieves the client coordinates of the caret's current position, and copies them to
a CPoint structure.

The caret position is given in the client coordinates of the CWnd window.

CPoint containing the coordinates of the caret's position.

: :GetCaretPos

CWnd::GetCheckedRadioButton
int GetCheckedRadioButton(int nIDFirstButton, int nIDLastButton);

nID FirstButton
Specifies the integer identifier of the first radio button in the group.

nIDLastButton
Specifies the integer identifier of the last radio button in the group.

This function retrieves the ID of the currently checked radio button in the
specified group.

ID of the checked radio button.

CWnd::CheckRadioButton

CWnd::GetClientRect
void GetClientRect(LPRECT IpRect) const;

IpRect
Points to a RECT structure or a CRect to receive the client coordinates.

Remarks

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CWnd::GetClipboardViewer 687

Copies the client coordinates of the CWnd client area into the structure pointed to
by lpRect. The client coordinates specify the upper-left and lower-right corners of
the client area. Since client coordinates are relative to the upper-left corners of the
CWnd client area, the coordinates of the upper-left corner are (0,0).

CWnd: : GetWindowRect, : :GetClientRect

CWnd::GetClipboardOwner
static CWnd* GetClipboardOwnerO;

Retrieves the current owner of the Clipboard.

The Clipboard can still contain data even if the Clipboard is not currently owned.

Identifies the CWnd that owns the Clipboard. It is NULL if the Clipboard is not
owned.

The returned pointer may be temporary and should not be stored for later use.

CWnd: : GetClipboardViewer, : : GetClipboardOwner

CWnd::GetClipboardViewer
static CWnd* GetClipboardViewerO;

Retrieves the first window in the Clipboard-viewer chain.

Identifies the window currently responsible for displaying the Clipboard. It is
NULL if there is no viewer.

The returned pointer may be temporary, and should not be stored for later use.

CWnd: : GetClipboardOwner, : : GetClipboardViewer

688 CWnd::GetCurrentMessage

Syntax

Return Value

Syntax

Remarks

Return Value

See Also

CWnd::GetCurrentMessage
Protected:

static const MSG* GetCurrentMessage();

Returns a pointer to the message the window is currently processing. Should only
be called when in an OnMessage handler.

CWnd::GetDC
CDC* GetDCO;

Retrieves a pointer to a display context for the client area. The display context can
be used in subsequent GDI functions to draw in the client area.

Retrieves a common, class, or private display context depending on the class style
specified for the CWnd. For common display contexts, GetDC assigns default at­
tributes to the context each time it is retrieved. For class and private contexts,
GetDC leaves the previously assigned attributes unchanged.

Unless the display context belongs to a window class, the ReleaseDC member
function must be called to release the context after painting. Since only five com­
mon display contexts are available at any given time, failure to release a display
context can prevent other applications from accessing a display context.

A display context belonging to the CWnd class is returned by the GetDC member
function if CS_CLASSDC, CS_OWNDC, or CS_PARENTDC were specified
as a style in the WNDCLASS structure when the class was registered.

Identifies the display context for the CWnd client area if the function is success­
ful. The return value is NULL if the function is unsuccessful. The pointer may be
temporary, and should not be stored for later use.

CWnd::ReleaseDC, ::GetDC, CClientDC

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::GetDlgltem 689

CWnd::GetDesktopWindow
static CWnd* GetDesktopWindowO;

Returns the Windows desktop window. The desktop window covers the entire
screen and is the area on top of which all icons and other windows are painted.

Identifies the Windows desktop window. This pointer may be temporary, and
should not be stored for later use.

: : GetDesktop Window

CWnd::GetDlgCtrIID
int GetDIgCtrlIDO const;

Returns the CWnd's ill value if CWnd is a child window.

Since top-level windows do not have an ID value, the return value of this function
is invalid if the CWnd is a top-level window.

The numeric identifier of the CWnd child window if the function is successful. If
the function fails, the return value is NULL.

: : GetDlgCtrlID

CWnd::GetDlgltem
CWnd* GetDIgltem(int nID) const;

nID
Specifies the integer ID of the item to be retrieved.

690 CWnd::GetDlgltemlnt

Remarks Retrieves a pointer to the specified control in a dialog box.

Return Value

See Also

Syntax

Parameters

Remarks

Can be used with any parent-child pair, not just a dialog box, as long as the child
window has a unique ID (as specified by the nID parameter in the Create member
function that created the child window).

The pointer returned is usually cast to the type of control identified by nID.

A pointer to the given control. If no control with the integer ID given by the nID
parameter exists, the value is NULL.

The returned pointer may be temporary, and should not be stored.

CWnd::Create, CWnd::GetWindow, ::GetDlgltem

CWnd::GetDlgltemlnt
UINT GetDlgltemInt(int nID, BOOL* lpTrans = NULL,

BOOL bSigned = TRUE) const;

nID
Specifies the integer identifier of the dialog-box item to be translated.

lpTrans
Points to the Boolean variable that is to receive the translated flag.

bSigned
Specifies whether the value to be retrieved is signed.

Translates the text of the specified control in the given dialog box into an integer
value.

Retrieves the text of the control identified by nID. It translates the text by stripping
any extra spaces at the beginning of the text and converting decimal digits, stop­
ping the translation when it reaches the end of the text or encounters any non­
numeric character.

If bSigned is TRUE, GetDlgltemInt checks for a minus sign (-) at the beginning
of the text and translates the text into a signed number. Otherwise, it creates an un­
signed value.

Sends a WM_ GETTEXT message to the control.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::GetDlgltemText 691

Specifies the translated value of the dialog-box item text. Since 0 is a valid return
value, lpTrans must be used to detect errors. If a signed return value is desired,
cast it as an int type.

Zero if the translated number is greater than 32,767 (for signed numbers) or
65,535 (for unsigned).

When errors occur, such as encountering nonnumeric characters and exceeding the
given maximum, GetDIgltemInt copies 0 to the location pointed to by lpTrans. If
there are no errors, lpTrans receives a nonzero value. If lpTrans is NULL,
GetDlgltemInt does not warn about errors.

CWnd: : GetDlgltemText, : : GetDlgltemInt

CWnd::GetDlgltemText
int GetDlgltemText(int nID, LPSTR lpStr, int nMaxCount) const;

nID
Specifies the integer identifier of the dialog-box item whose caption or text is to
be retrieved.

lpStr
Points to the buffer to receive the text.

nMaxCount
Specifies the maximum length (in bytes) of the string to be copied to lpStr. If
the string is longer than nMaxCount, it is truncated.

Retrieves the caption or text associated with a control in a dialog box. The
GetDlgltemText member function copies the text to the location pointed to by
lpStr and returns a count of the number of bytes it copies.

Specifies the actual number of bytes copied to the buffer. The value is 0 if no text
is copied.

CWnd::GetDIgltem, CWnd::GetDlgltemInt, ::GetDlgltemText,
W~GETTEXT

692 CWnd::GetFocus

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

CWnd::GetFocus
static CWnd* GetFocusO;

Retrieves a pointer to the CWnd that currently has the input focus.

A pointer to the window that has the current focus, or NULL if there is no focus
window or an error occurred.

The pointer may be temporary, and should not be stored for later use.

CWnd::GetActiveWindow, CWnd::GetCapture, CWnd: :SetFocus,
::GetFocus

CWnd::GetFont
CFont* GetFontO;

Gets the current font.

A pointer to the current font.

The pointer may be temporary and should not be stored for later use.

CWnd::SetFont, WM_ GETFONT, CFont

CWnd::GetLastActivePopup
CWnd* GetLastActivePopupO const;

Determines which pop-up window owned by CWnd was most recently active.

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::GetNextDlgGroupltem 693

Identifies the most recently active pop-up window. The return value will be the
CWnd itself if any of the following conditions are met:

• CWnd itself was most recently active.

• CWnd does not own any pop-up windows.

• CWnd is not a top-level window or is owned by another window.

The pointer may be temporary, and should not be stored for later use.

: : GetLastActivePopup

CWnd::GetMenu
CMenu* GetMenuO const;

Retrieves a pointer to the CWnd's menu. This function should not be used for
child windows because they do not have a menu.

Identifies the menu. The value is NULL if CWnd has no menu. The return value
is undefined if CWnd is a child window.

The returned pointer may be temporary, and should not be stored for later use.

::GetMenu

CWnd::GetNextDlgGroupltem
CWnd* GetNextDlgGroupItem(CWnd* pWndCtI,

BOOL bPrevious = FALSE) const;

pWndCtl
Identifies the control to be used as the starting point for the search.

bPrevious
Specifies how the function is to search the group of controls in the dialog box.
If this parameter is TRUE, the function searches for the previous control in the
group. If this parameter is FALSE, the function searches for the next control in
the group.

694 CWnd::GetNextDlgTabltem

Remarks Searches for the previous (or next) control within a group of controls in a dialog
box. A group of controls begins with a control that was created with the
WS_GROUP style and ends with the last control that was not created with

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

the WS_GROUP style.

By default, the GetNextDlgGroupItem member function returns a pointer to the
next control in the group. If p WndCtl identifies the first control in the group and
bPrevious is TRUE, GetNextDlgGroupItem returns a pointer to the last control
in the group.

Pointer to the previous (or next) control in the group.

The returned pointer may be temporary, and should not be stored for later use.

CWnd::GetNextDlgTabItem, ::GetNextDlgGroupItem

CWnd::GetNextDlgTabltem
CWnd* GetNextDlgTabItem(CWnd* pWndCtl,

BOOL bPrevious = FALSE) const;

pWndCtl
Identifies the control to be used as the starting point for the search.

bPrevious
Specifies how the function is to search the dialog box. If this parameter is
TRUE, the function searches for the previous control in the dialog box. If this
parameter is FALSE, the function searches for the next control in the
dialog box.

Retrieves a pointer to the first control that was created with the WS_ TABSTOP
style and precedes (or follows) the specified control.

The return value is the previous (or next) control that has the WS_ TABSTOP
style.

The returned pointer may be temporary, and should not be stored for later use.

CWnd::GetNextDlgGroupItem, ::GetNextDlgTabItem

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::GeINexIWindow 695

CWnd::GetNextWindow
CWnd* GetNextWindow(UINT nFlag = GW _HWNDNEXT) const;

nFlag
Specifies whether the function returns a pointer to the next window or the pre­
vious window. It can be either of the following values:

Value

GW_HWNDNEXT

GW_HWNDPREV

Meaning

Returns the window that follows the CWnd object
on the window-manager's list.

Returns the previous window on the window­
manager's list.

Searches for the next (or previous) window in the window-manager's list. The
window manager's list contains entries for all top-level windows, their associated
child windows, and the child windows of any child windows.

If CWnd is a top-level window, the function searches for the next (or previous)
top-level window; if CWnd is a child window, the function searches for the next
(or previous) child window.

Identifies the next (or the previous) window in the window-manager's list.

The returned pointer may be temporary, and should not be stored for later use.

: : GetNextWindow

696 CWnd::GetParent

Syntax

Remarks

Return Value

See Also

Syntax

Return Value

Syntax

Parameters

CWnd::GetParent
CWnd* GetParentO const;

Retrieves the parent window (if any).

Identifies the parent window. The value is NULL ifthe CWnd has no parent
window.

The returned pointer may be temporary, and should not be stored for later use.

: : GetParent

CWnd::GetSafeHwnd
HWND GetSafeHwndO const;

Returns m_h Wnd, or NULL if this is NULL.

CWnd::GetScroIiPos
int GetScrollPos(int nBar) const;

nBar
Specifies the scroll bar to examine. The parameter can take one of the following
values:

Value

SB_CTL

SB_HORZ

SB_VERT

Meaning

Retrieves the position of a scroll-bar control.

Retrieves the position of the CWnd horizontal scroll bar.

Retrieves the position of the CWnd vertical scroll bar.

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

GWnd::GetScroIiRange 697

Retrieves the current position of a scroll box. The current position is a relative
value that depends on the current scrolling range. For example, if the scrolling
range is 50 to 100 and the thumb is in the middle of the bar, the current position
is 75.

Specifies the current position of the scroll box.

: : GetScrollPos

CWnd::GetScroIIRange
void GetScrollRange(int nBar, LPINT IpMinPos, LPINT IpMaxPos) const;

nBar
Specifies the scroll bar to examine. The parameter can take one of the following
values:

Value

SB_CTL

SB_HORZ

SB_VERT

IpMinPos

Meaning

Retrieves the position of a scroll-bar control.

Retrieves the position of the CWnd horizontal scroll bar.

Retrieves the position of the CWnd vertical scroll bar.

Points to the integer variable that is to receive the minimum position.

IpMaxPos
Points to the integer variable that is to receive the maximum position.

Copies the current minimum and maximum scroll-bar positions for the given
scroll bar to the locations specified by lpMinPos and lpMaxPos. If CWnd
does not have standard scroll bars or is not a scroll-bar control, then the
GetScrollRange member function copies 0 to lpMinPos and lpMaxPos.

The default range for a standard scroll bar is 0 to 100. The default range for a
scroll-bar control is empty (both values are 0).

: : GetScrollRange

698 CWnd::GeISlyle

Syntax

Return Value

See Also

Syntax

Return Value

Syntax

Remarks

Return Value

See Also

CWnd::GetStyle
DWORD GetStyleO const;

The window's style.

::GetWindowLong, CWnd::CreateEx

CWnd::GetSuperWndProcAddr
protected: virtual FARPROC* GetSuperWndProcAddrO;

The original WndProc address of a subclassed window.

CWnd::GetSysModaIWindow
static CWnd* GetSysModalWindowO;

Returns the system-modal window, ifthere is one.

Identifies the system-modal window, if one is present. If no such window is pre­
sent, the return value is NULL.

The returned pointer may be temporary, and should not be stored for later use.

: : GetSysModalWindow, CWnd::SetSysModaIWindow

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::GetSystemMenu 699

CWnd::GetSystemMenu
CMenu* GetSystemMenu(BOOL bRevert) const;

bRevert
Specifies the action to be taken.

If bRevert is FALSE, GetSystemMenu returns a handle to a copy of the Con­
trol menu currently in use. This copy is initially identical to the Control menu,
but can be modified.

If bRevert is TRUE, GetSystemMenu resets the Control menu back to the de­
fault state. The previous, possibly modified, Control menu, if any, is destroyed.
The return value is undefined in this case.

Allows the application to access the Control menu for copying and modification.

Any window that does not use GetSystemMenu to make its own copy of the Con­
trol menu receives the standard Control menu.

The pointer returned by GetSystemMenu member function can be used with the
CMenu::AppendMenu, CMenu::lnsertMenu, or CMenu::ModifyMenu func­
tions to change the Control menu.

The Control menu initially contains items identified with various ID values such
as SC_CLOSE, SC_MOVE, and SC_SIZE. Menu items on the Control
generate W~SYSCOMMAND messages. All predefined Control-menu items
have ID numbers greater than OxFOOO. If an application adds items to the Control
menu, it should use ID numbers less than FOOO.

Windows automatically dims items on the standard Control menu, depending on
the situation. CWnd can carry out its own checking or dimming by responding to
the W~INITMENU messages, which are sent before any menu is displayed.

Identifies a copy of the Control menu if bRevert is FALSE. If bRevert is TRUE,
the return value is undefined.

The returned pointer may be temporary, and should not be stored for later use.

CMenu: : AppendMenu, CMenu: : InsertMenu, CMenu: :ModifyMenu,
::GetSystemMenu

----- --_ _---

700 CWnd::GetTopWindow

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CWnd::GetTopWindow
CWnd* GetTopWindowO const;

Searches for the top-level child window that belongs to CWnd. If CWnd has no
children, this function returns NULL.

Identifies the top-level child window in a CWnd linked list of child windows. If
no child windows exist, the value is NULL.

The returned pointer may be temporary, and should not be stored for later use.

: : GetTop Window

CWnd::GetUpdateRect
BOOL GetUpdateRect(LPRECT IpRect, BOOL bErase = FALSE);

IpRect
Points to a CRect or RECT structure that is to receive the client coordinates of
the update enclosing the update region.

bErase
Specifies whether the background in the update region is to be erased.

Retrieves the coordinates of the smallest rectangle that completely encloses the up­
date region. If CWnd was created with the CS_ OWNDC style and the mapping
mode is not M~ TEXT, the GetUpdateRect member function gives the rec­
tangle in logical coordinates. Otherwise, GetUpdateRect gives the rectangle in
client coordinates. If there is no update region, GetUpdateRect sets the rectangle
to be empty (sets all coordinates to 0).

The bErase parameter specifies whether GetUpdateRect should erase the back­
ground of the update region. If bErase is TRUE and the update region is not
empty, the background is erased. To erase the background, GetUpdateRect sends
the W~ERASEBKGND message.

The update rectangle retrieved by the BeginPaint member function is identical to
that retrieved by the GetUpdateRect member function.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::GetUpdateRgn 701

The BeginPaint member function automatically validates the update region, so
any call to GetUpdateRect made immediately after a call to BeginPaint retrieves
an empty update region.

Specifies the status of the update region. The value is TRUE if the update region
is not empty; otherwise FALSE.

CWnd::BeginPaint, ::GetUpdateRect

CWnd::GetUpdateRgn
int GetUpdateRgn(CRgn* pRgn, BOOL bErase = FALSE};

pRgn
Identifies the update region.

bErase
Specifies whether the background will be erased and nonclient areas of child
windows will be drawn. If the value is FALSE, no drawing is done.

Retrieves the update region into a region identified by pRgn. The coordinates of
this region are relative to the upper-left corner (client coordinates).

The BeginPaint member function automatically validates the update region, so
any call to GetUpdateRgn made immediately after a call to BeginPaint retrieves
an empty update region.

Specifies a short-integer flag that indicates the type of resulting region. The value
can take anyone of the following:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

The region has overlapping borders.

No region was created.

The region is empty.

The region has no overlapping borders.

CWnd: :BeginPaint, : : GetUpdateRgn

702 CWnd::GetWindow

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::GetWindow
CWnd* GetWindow(UINT nCmd) const;

nCmd
Specifies the relationship between CWnd and the returned window. It can take
one of the following values:

Value

GW_CHILD

GW _HWNDFIRST

GW _HWNDLAST

GW _HWNDNEXT

GW _HWNDPREV

GW_OWNER

Meaning

Identifies CWnd's first child window.

If CWnd is a child window, returns the first
sibling window. Otherwise, it returns the first top­
level window in the list.

If CWnd is a child window, returns the last sibling
window. Otherwise, it returns the last top-level
window in the list.

Returns the next window on the window­
manager's list.

Returns the previous window on the window­
manager's list.

Identifies CWnd's owner.

Searches the window manager's list for a window. The window-manager's list
contains entries for all top-level windows, their associated child windows, and the
child windows of any child windows. The nCmd parameter specifies the relation­
ship between CWnd and the returned window.

Identifies a window. The value is NULL if the function reaches the end ofthe
window-manager's list or if nCmd is invalid.

The returned pointer may be temporary, and should not be stored for later use.

CWnd::GetDlgItem, ::GetWindow

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::GetWindowRect 703

CWnd::GetWindowDC
CDC* GetWindowDCO;

Retrieves the display context for the entire window, including caption bar, menus,
and scroll bars. A window display context permits painting anywhere in CWnd,
since the origin of the context is the upper-left corner of CWnd instead of the
client area.

Assigns default attributes to the display context each time it retrieves the context.
Previous attributes are lost.

Intended to be used for special painting effects within the CWnd nonclient area.
Painting in non client areas of any window is not recommended.

The GetSystemMetrics Windows function can be used to retrieve the dimensions
of various parts of the nonclient area, such as the caption bar, menu, and scroll
bars.

After painting is complete, the ReleaseDC member function must be called to re­
lease the display context. Failure to release the display context will seriously affect
painting requested by applications due to limitations on the number of device con­
texts that can be open at the same time.

Identifies the display context for the given window if the function is successful;
otherwise, the value is NULL.

The returned pointer may be temporary, and should not be stored for later use.

::GetSystemMetrics, CWnd::ReleaseDC, ::GetWindowDC, CWnd::GetDC,
CWindowDC

CWnd::GetWindowRect
void GetWindowRect(LPRECT IpRect) const;

IpRect
Points to a CRect or a RECT structure that will receive the screen coordinates
of the upper-left and lower-right corners.

704 CWnd::GetWindowText

Remarks Copies the dimensions of the bounding rectangle of the CWnd object to the struc­
ture pointed to by IpRect. The dimensions are given in screen coordinates, relative
to the upper-left comer of the display screen. The dimensions of the caption,
border, and scroll bars, if present, are included.

See Also CWnd::GetClientRect, CWnd::MoveWindow, CWnd::SetWindowPos,
: : GetWindowRect

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

CWnd::GetWindowText
int GetWindowText(LPSTR IpString, int nMaxCount) const;

IpString
Points to the buffer that is to receive the copied string of the Window's title.

nMaxCount
Specifies the maximum number of characters to be copied to the buffer. If the
string is longer than the number of characters specified in nMaxCount, it is trun­
cated.

Copies CWnd's caption title (if it has one) into the buffer pointed to by IpString.
If the CWnd object is a control, the GetWindowText member function copies the
text within the control instead of copying the caption.

Specifies the length of the copied string. It is 0 if CWnd has no caption or if the
caption is empty.

CWnd: :SetWindowText, CWnd: :GetWindowText, W~ GETTEXT

CWnd: :GetWindowTextLength
int GetWindowTextLengthO const;

Returns the length of the CWnd object caption title. If CWnd is a control, the
GetWindowTextLength member function returns the length of the text within the
control instead of the caption.

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Parameters

CWnd::HiliteMenultem 705

Specifies the text length, not including any null-tennination character. The value is
o if no such text exists.

: : GetWindowTextLength

CWnd::HideCaret
void HideCaretO;

Hides the caret by removing it from the display screen. Although the caret is no
longer visible, it can be displayed again by using the ShowCaret member func­
tion. Hiding the caret does not destroy its current shape.

Hiding is cumulative. If HideCaret has been called five times in a row, the
Show Caret member function must be called five times before the caret will be
shown.

CWnd: :ShowCaret, : : HideCaret

CWnd:: H i lite Menu Ite m
BOOL HiliteMenuItem(CMenu* pMenu, UINT nIDHiliteltem, UINT nHilite);

pMenu
Identifies the top-level menu that contains the item to be highlighted.

nIDHiliteltem
Specifies the integer identifier of the menu item or the offset of the menu item
in the menu, depending on the value of the nHilite parameter.

706 CWnd::lnvalidate

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

nHilite
Specifies whether the menu item is highlighted or the highlight is removed. It
can be a combination of MF _ HILITE or MF _ UNHILITE with
MF_BYCOMMAND or MF_BYPOSITION. The values can be combined
using the bitwise OR operator. These values have the following meanings:

Value

MF_BYCOMMAND

MF _BYPOSITION

MF_HILITE

MF _ UNHILITE

Meaning

Interprets nIDHiliteItem as the menu-item ID (the
default interpretation).

Interprets nIDHiliteltem as an offset.

Highlights the item. If this value is not given,
highlighting is removed from the item.

Removes highlighting from the item.

Highlights or removes the highlighting from a top-level (menu-bar) menu item.

Specifies whether the menu item was highlighted. TRUE if the item was
highlighted; otherwise FALSE.

CMenu: : ModifyMenu, : : HiliteMenuItem

CWnd::lnvalidate
void Invalidate(BOOL bErase = FALSE);

bErase
Specifies whether the background within the update region is to be erased.

Invalidates the entire client area of CWnd. The client area is marked for painting
when the next WM_PAINT message occurs. The region can also be validated
before a WM_ PAINT message occurs by using the ValidateRect or
ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is
to be erased when the update region is processed. If bErase is TRUE, the back­
ground is erased when the BeginPaint member function is called; if bErase is
FALSE, the background remains unchanged. If bErase is TRUE for any part of
the update region, the background in the entire region is erased, not just in the
given part.

See Also

Syntax

Parameters

Remarks

See Also

CWnd::lnvalidateRect 707

Windows sends WM_PAINT whenever the CWnd update region is not empty
and there are no other messages in the application queue for that window.

CWnd::BeginPaint, CWnd::ValidateRect, CWnd::ValidateRgn,
: : InvalidateRect

CWnd::lnvalidateRect
void InvalidateRect(LPRECT IpRect, BOOL bErase = FALSE);

IpRect
Points to a CRect or a RECT structure that contains the rectangle (in client
coordinates) to be added to the update region. If IpRect is NULL, the entire
client area is added to the region.

bErase
Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given rectangle by adding that rectangle to
the CWnd update region. The invalidated rectangle, along with all other areas in
the update region, is marked for painting when the next WM_PAINT message is
sent. The invalidated areas accumulate in the update region until the region is
processed when the next W~PAINT call occurs, or the region is validated by
using the ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is
to be erased when the update region is processed. If bErase is TRUE, the back­
ground is erased when the BeginPaint member function is called; if bErase is
FALSE, the background remains unchanged. If bErase is TRUE for any part of
the update region, the background in the entire region is erased, not just in the
given part.

Windows sends WM_PAINT whenever the CWnd update region is not empty
and there are no other messages in the application queue for that window.

CWnd: : BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRect

708 CWnd::lnvalidateRgn

Syntax

Parameters

Remarks

See Also

CWnd::lnvalidateRgn
void InvalidateRgn(CRgn* pRgn, BOOL bErase = FALSE);

pRgn
Identifies the region to be added to the update region. The region is assumed to
have client coordinates.

bErase
Specifies whether the background within the update region is to be erased.

Invalidates the client area within the given region by adding it to the current up­
date region of CWnd. The invalidated region, along with all other areas in the up­
date region, is marked for painting when the W~PAINT message is next sent.
The invalidated areas accumulate in the update region until the region is processed
when WM_PAINT is next sent, or the region is validated by using the
ValidateRect or ValidateRgn member function.

The bErase parameter specifies whether the background within the update area is
to be erased when the update region is processed. If bErase is TRUE, the back­
ground is erased when the BeginPaint member function is called; if bErase is
FALSE, the background remains unchanged. If bErase is TRUE for any part of
the update region, the background in the entire region is erased, not just in the
given part.

Windows sends WM_PAINT whenever the CWnd update region is not empty
and there are no other messages in the application queue for that window.

The given region must have been previously created by using one of the region
functions.

CWnd: :BeginPaint, CWnd:: ValidateRect, CWnd:: ValidateRgn,
: : InvalidateRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::lsDlgButtonChecked 709

CWnd::lsChiid
BOOL IsChild(CWnd* pWnd) const;

pWnd
Identifies the window to be checked.

Indicates whether the window specified by p Wnd is a child window or other direct
descendant of CWnd. A child window is the direct descendant of CWnd if the
CWnd object is in the chain of parent windows that leads from the original pop­
up window to the child window.

Specifies the outcome of the function. The value is TRUE if the window iden­
tified by p Wnd is a child window of CWnd; otherwise FALSE.

::IsChiid

CWnd::lsDlgButtonChecked
UINT IsDlgButtonChecked(int nIDButton) const;

nIDButton
Specifies the integer identifier of the button control.

If the CWnd object is a button control, the IsDlgButtonChecked member func­
tion determines whether it has a check mark next to it. If it is a three-state button
control, it determines if it is dimmed, checked, or neither.

Nonzero if the given control is checked, and 0 if it is not checked. For three-state
buttons, the return value is 2 if the button is dimmed, 1 if the button is checked,
and 0 if it is unchecked.

: : IsDlgButtonChecked

710 CWnd::lslconic

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CWnd::lslconic
BOOL IsIconicO const;

Specifies whether CWnd is minimized (iconic).

Specifies whether the CWnd object is minimized. It is TRUE if CWnd is min­
imized; otherwise FALSE.

::IsIconic

CWnd::lsWindowEnabled
BOOL IsWindowEnabledO const;

Specifies whether CWnd is enabled for mouse and keyboard input.

Specifies whether CWnd is enabled. The value is TRUE if it is enabled; other­
wise FALSE.

: :Is WindowEnabled

CWnd::lsWindowVisible
BOOL IsWindowVisibleO const;

Returns TRUE any time an application has made CWnd visible by using the
ShowWindow member function (even if CWnd is completely covered by another
child or pop-up window, the return value is TRUE).

Specifies whether a given window exists on the screen. It is TRUE if it exists on
the screen; otherwise FALSE.

CWnd::ShowWindow, ::IsWindowVisible

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::MessageBox 711

CWnd::lsZoomed
BOOL IsZoomedO const;

Determines whether CWnd has been maximized.

Specifies whether CWnd is maximized. The value is TRUE if it is maximized;
otherwise FALSE.

::IsZoomed

CWnd::KiIiTimer
BOOL KillTimer(int nIDEvent);

nIDEvent
The value of the timer event passed to SetTimer.

Kills the timer event identified by nIDEvent from the earlier call to SetTimer.
Any pending WM_ TIMER messages associated with the timer are removed from
the message queue.

Specifies the outcome of the function. The value is TRUE if the event was killed.
It is FALSE if the KillTimer member function could not find the specified timer
event.

CWnd::SetTimer, ::KillTimer

CWnd::MessageBox
int MessageBox(const char FAR* IpText, const char FAR* IpCaption = NULL,

UINT nType = MB_OK);

IpText
Points to a CString or null-terminated string containing the message to be dis­
played.

712 CWnd::MessageBox

lpCaption
Points to a CString or null-terminated string to be used for the message-box
caption. If lpCaption is NULL, the default caption "Error" is used.

nType
Specifies the contents of the message box. It can be a combination of the follow­
ing values:

Value Meaning

MB_ABORTRETRYIGNORE Message box contains three push
buttons: Abort, Retry, and Ignore.

MB_APPLMODAL The user must respond to the message
box before continuing work in the
CWnd. However, the user can move to
the windows of other applications and
work in those windows.
MB_APPLMODAL is the default if
MB_SYSTEMMODAL is not
specified.

MB_DEFBUTTONI First button is the default. Note that the
first button is always the default unless
MB_DEFBUTTON2 or
MB_DEFBUTTON3 is specified.

MB_DEFBUTTON2 Second button is the default.

MB_DEFBUTTON3 Third button is the default.

MB_ICONEXCLAMATION An exclamation-point icon appears in
the message box.

MB_ICONINFORMATION An icon consisting of a lowercase "i" in
a circle appears in the message box.

MB_ICONQUESTION A question-mark icon appears in the
message box.

MB_ICONSTOP A stop-sign icon appears in the message
box.

MB_ OK Message box contains one push button:
OK.

MB_OKCANCEL Message box contains two push buttons:
OK and Cancel.

MB_RETRYCANCEL Message box contains two push buttons:
Retry and Cancel.

Remarks

Return Value

CWnd::Message8ox 713

Value Meaning

MB_SYSTEMMODAL All applications are suspended until the
user responds to the message box.
Unless the application specifies
MB_ICONSTOP, the message box
does not become modal until after it is
created; consequently, the parent
window and other windows continue to
receive messages resulting from its
activation. System-modal message
boxes are used to notify the user of
serious, potentially damaging errors that
require immediate attention (for
example, running out of memory).

MB_YESNO Message box contains two push buttons:
Yes and No.

MB_ YESNOCANCEL Message box contains three push
buttons: Yes, No, and Cancel.

Creates and displays a window that contains an application-supplied message and
caption, plus a combination of the predefined icons and push buttons described in
the preceding list.

When a system-modal message box is created to indicate that the system is low on
memory, do not take the strings passed as IpText and IpCaption from a resource
file, since an attempt to load the resource may fail.

When an application calls the MessageBox member function and specifies the
MB_ICONSTOP and MB_SYSTEMMODAL flags for nType, Windows will
display the resulting message box regardless of available memory. When these
flags are specified, Windows limits the length of the message-box text to one line.

Specifies the outcome of the function. It is 0 if there is not enough memory to cre­
ate the message box. Otherwise, it is one of the following menu-item values re­
turned by the message box:

Value

IDABORT

IDCANCEL

IDIGNORE

IDNO

Meaning

Abort button pressed

Cancel button pressed

Ignore button pressed

No button pressed

714 CWnd::MoveWindow

See Also

Syntax

Value

IDOK

IDRETRY

IDYES

Meaning

OK button pressed

Retry button pressed

Yes button pressed

If a message box has a Cancel button, the IDCANCEL value will be returned if
either the ESC key or the Cancel button is pressed. If the message box has no
Cancel button, pressing the ESC key has no effect.

: :MessageBox

CWnd::MoveWindow
void MoveWindow(int x, int y, int nWidth, int nHeight,

BOOL bRepaint = TRUE);

void MoveWindow(LPRECT IpRect, BOOL bRepaint = TRUE);

Parameters x

Remarks

Specifies the new position of the left side of the window.

y
Specifies the new position of the top of the window.

nWidth
Specifies the new width of the window.

nHeight
Specifies the new height ofthe window.

bRepaint
Specifies whether the window is to be repainted. If this parameter is TRUE, the
window is repainted. This is set by default.

lpRect
The CRect or RECT structure specifying the new size and position.

Changes the position and dimensions.

For a top-level CWnd object, the x and y parameters are relative to the upper-left
corner of the screen. For a child CWnd object, they are relative to the upper-left
corner of the parent window's client area.

See Also

Syntax

Parameters

Remarks

See Also

CWnd::OnActivate 715

The MoveWindow function sends WM_ GETMINMAXINFO. This gives
CWnd the opportunity to modify the default values for the largest and smallest
possible windows. If the parameters to the MoveWindow member function
exceed these values, the values will be replaced by the minimum or maximum
values specified in the WM_ GETMINMAXINFO message.

CWnd::SetWindowPos, ::MoveWindow

CWnd::OnActivate
afLIDSg void OnActivate(UINT nState, CWnd* pWndOther,

BOOL bMinimized);

nState
Indicates the minimized state of the window being activated or deactivated. A
nonzero value indicates that the CWnd object is minimized.

pWndOther
Pointer to the CWnd being activated or deactivated. The pointer can be NULL,
and it may be temporary.

bMinimized
If TRUE, the CWnd is being activated; otherwise deactivated.

Called when a CWnd object is being activated or deactivated. First, the main win­
dow being deactivated has OnActivate called, and then the main window being ac­
tivated has OnActivate called.

If the CWnd object is activated with a mouse click, it will also receive an
OnMouseActivate member function call.

This message-handler member function calls the Default member function. Over­
ride this member function in your derived class to handle the W~ACTIV ATE
message.

W~MOUSEACTIVATE, W~NCACTIVATE, CWnd::Default,
W~ACTIVATE

716 CWnd::OnActivateApp

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnActivateApp
afLmsg void OnActivateApp(BOOL bActive, HANDLE hTask);

bActive
Specifies whether the CWnd is being activated or deactivated. TRUE means
the CWnd is being activated. FALSE means the CWnd is being deactivated.

hTask
Specifies a task handle. If bActive is TRUE, the handle identifies the task that
owns the CWnd being deactivated. If bActive is FALSE, the handle identifies
the task that owns the CWnd being activated.

Called when CWnd is about to be activated and CWnd belongs to a different task
than the currently active window. OnActivateApp is called for all top-level win­
dows of the task being activated, and for all top-level windows of the task being
deactivated.

This message-handler member function calls the Default member function. Over­
ride this member function in your derived class to handle the
W~ACTIVATEAPP message.

CWnd::Default, WM_ACTIVATEAPP

CWnd::OnAskCbFormatName
afLmsg void OnAskCbFormatName(UINT nMaxCount, LPSTR lpString);

nMaxCount
Specifies the maximum number of bytes to copy.

lpString
Points to the buffer where the copy of the format name is to be stored.

Called when the Clipboard contains a data handle for the
CF _ OWNERDISPLA Y format (that is, when the Clipboard owner will display
the Clipboard contents) and the Clipboard owner should provide a name for
its format.

Override this member function and copy the name of the
CF _ OWNERDISPLAY format into the specified buffer, not exceeding
the maximum number of bytes specified.

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnChangeCbChain 717

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ASKCBFORMATNAME message.

CWnd::Default, WM_ASKCBFORMAINAME

CWnd::OnCanceIMode
af~msg void OnCancelModeO;

If the CWnd object has the focus, its OnCancelMode member function is called
when a dialog box or message box is displayed. This gives the CWnd the opportu­
nity to cancel modes such as mouse capture.

Calls the Default member function, which responds by calling the
ReleaseCapture Windows function. The Default member function does not can­
cel any other modes.

Override this member function in your derived class to handle the
WM_ CANCELMODE message.

CWnd::Default, ::ReleaseCapture, WM_CANCELMODE

CWnd::OnChangeCbChain
af~msg void OnChangeCbChain(HWND hWndRemove, HWND hWndAfter);

hWndRemove
Specifies the window handle that is being removed from the Clipboard-viewer
chain.

hWndAfter
Specifies the window handle that follows the window being removed from the
Clipboard-viewer chain.

Called for each window in the Clipboard-viewer chain to notify it that a window is
being removed from the chain.

718 CWnd::OnChar

See Also

Syntax

Parameters

Each CWnd object that receives an OnChangeCbChain call should use the
SendMessage Windows function to send the ~ CHANGECBCHAIN mes­
sage to the next window in the Clipboard-viewer chain (the handle returned by
SetClipboardViewer). If h WndRemove is the next window in the chain, the win­
dow specified by h WndAfter becomes the next window, and Clipboard messages
are passed on to it.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ CHANGECBCHAIN message.

CWnd: : Change Clipboard Chain, : :SendMessage, CWnd: :Default

CWnd::OnChar
aCLmsg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Contains the value ofthe key.

nRepCnt
Contains the repeat count.

nFlags
Contains the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0-7

8

11-12

13

14

15

Description

Scan code (OEM-dependent value).

Extended key, such as a function key or a key on the numeric
keypad (l if it is an extended key).

U sed internally by Windows.

Context code (l if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the call, 0 ifthe
key is up).

Transition state (l if the key is being released, 0 if the key is
being pressed).

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnCharToltem 719

Called before the OnKeyUp member function and after the OnKeyDown mem­
ber function are called. OnChar contains the value of the keyboard key being
pressed or released.

Since there is not necessarily a one-to-one correspondence between keys pressed
and OnChar calls generated, the information in nFlags is generally not useful to
applications. The information in nFlags applies only to the most recent call to the
OnKeyUp member function or the OnKeyDown member function that precedes
the call to OnChar.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the left of the
numeric keypad; and the slash (/) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the ~ CHAR
message.

CWnd::Default, ~CHAR, WM_KEYDOWN, WM_KEYUP

CWnd::OnCharToltem
afLmsg int OnCharToltem(UINT nChar, CWnd* pListBox, UINT nlndex);

nChar
Specifies the value of the key pressed by the user.

pListBox
Specifies a pointer to the list box. It may be temporary.

nlndex
Specifies the current caret position.

A list box with the LBS_ W ANTKEYBOARDINPUT style sends its owner a
WM_ CHARTOITEM message in response to a W~ CHAR message.
W~ CHARTOITEM is handled by default by OnCharToltem.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ CHARTOITEM message.

720 CWnd::OnChiidActivate

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Specifies the action that the application performed in response to the call. A return
value of -2 indicates that the application handled all aspects of selecting the item
and wants no further action by the list box. A return value of -1 indicates that the
list box will perform the default action in response to the keystroke. A return value
of 0 or greater specifies the index of an item in the list box and indicates that the
list box will perform the default action for the keystroke on the given item.

CWnd::Default, ~CHAR, W~CHARTOITEM

CWnd:: OnCh i IdActivate
afLmsg void OnChildActivateO;

If the CWnd object is a child window, OnChildActivate is called whenever the
size or position of the window changes.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ CHILDACTIV ATE message.

CWnd::SetWindowPos, CWnd::OnClose, W~ CHILDACTIV ATE,
CWnd::Default

CWnd::OnClose
afLmsg void OnCloseO;

Called as a signal that the CWnd or an application is to terminate. An application
can prompt the user for confirmation and destroy the CWnd object by calling the
DestroyWindow member function only if the user confirms the choice.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the WM_ CLOSE
message.

CWnd::DestroyWindow, ::PostQuitMessage, W~CLOSE, CWnd::Default

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::OnCommand 721

CWnd::OnCommand
virtual BOOL OnCommand(UINT wParam, LONG IParam);

wParam
Identifies the menu item or control.

lParam
Specifies additional information. If the message is from a menu, the low-order
word and the high-order word are both O. If the message is from an accelerator,
the low-order word is 0 and the high-order word is 1. If the message is from a
control, the low-order word is the handle of the window sending the message
and the high-order word is the notification code.

Called when the user selects an item from a CWnd menu, when a child control
sends a notification message to CWnd, or when an access keystroke is translated.

Access keystrokes that are defined to select items from the Control menu are trans­
lated to W~SYSCOMMAND messages.

If an access keystroke that corresponds to a menu item occurs when the CWnd is
minimized, OnCommand is not called. However, if an access keystroke that does
not match any of the items on the CWnd menu or on the Control menu occurs,
OnCommand is called, even if CWnd is minimized.

OnCommand processes the message map for control notification and
ON_ COMMAND entries, and calls the appropriate member function.

Override this member function in your derived class to handle the
~ COMMAND message. An override will not process the message map
unless the base class OnCommand is called.

An application returns TRUE if it processes this message; otherwise FALSE.

WM_SYSCOMMAND, W~COMMAND

722 CWnd::OnCompacting

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnCompacting
a~msg void OnCompacting(UINT nCpuTime);

nCpuTime
Specifies the ratio of CPU time currently spent by Windows compacting
memory. For example, 8000h represents 50 percent of CPU time.

Called for all top-level windows when Windows detects that more than 12.5 per­
cent of system time over a 30- to 60-second interval is being spent compacting
memory. This indicates that system memory is low.

When a CWnd object receives this call, it should free as much memory as
possible, taking into account the current level of activity of the application and the
total number of applications running in Windows. The application can call the
GetNumTasks Windows function to determine how many applications are
running.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ COMPACTING message.

::GetNumTasks, CWnd::Default, ~COMPACTING

CWnd::OnCompareltem
afLmsg int OnCompareItem(LPCOMPAREITEMSTRUCT

lpCompareltemStruct);

lpCompareltemStruct
Contains a long pointer to a COMPAREITEMSTRUCT data structure that
contains the identifiers and application-supplied data for two items in the
combo or list box.

Override this member function in your derived class to handle the
WM_ COMPAREITEM message.

Use the overridden member function to specify the relative position of a new item
in a sorted owner-draw combo or list box.

Members

CWnd::OnCompareltem 723

If a combo or list box is created with the CBS_SORT or LBS_SORT style,
Windows sends the combo-box or list -box owner a WM_ COMPAREITEM
message whenever the application adds a new item.

The IpCompareItemStruct parameter is a long pointer to a
COMPAREITEMSTRUCT data structure that contains the identifiers and appli­
cation-supplied data for two items in the combo or list box. OnCompareItem
should return a value indicating which of the items should appear before the other.
Typically, Windows makes this call several times until it determines the exact
position for the new item.

A COMPAREITEMSTRUCT data structure has this form:

typedef struct tagCOMPAREITEMSTRUCT
WORD CtlType;
WORD CtlID;
HWND hwndltem;
WORD itemIDl;
DWORD itemDatal;
WORD itemID2;
DWORD itemData2;

COMPAREITEMSTRUCT;

CtlType
ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtlID
The control ID for the list box or combo box.

hwndItem
The window handle of the control.

itemIDl
The index of the first item in the list box or combo box being compared.

itemDatal
Application-supplied data for the first item being compared. This value was
passed in the call that added the item to the combo or list box.

itemID2
Index of the second item in the list box or combo box being compared.

itemData2
Application-supplied data for the second item being compared. This value was
passed in the call that added the item to the combo or list box.

This message-handler member function calls the Default member function.

724 CWnd::OnCreate

Return Value

See Also

Syntax

Parameters

Remarks

Indicates the relative position of the two items. It may be any of the following
values:

Value Meaning

-1

o
1

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

COMPAREITEMSTRUCT, WM_COMPAREITEM, CWnd::Default

CWnd::OnCreate
afLmsg int OnCreate(LPCREATESTRUCT IpCreateStruct);

IpCreateStruct
Points to a CREATESTRUCT structure containing information about the
CWnd object being created.

Called when an application requests that the CWnd object be created by calling
the Create or CreateEx member function. The new CWnd object receives this
call after the CWnd object is created but before it becomes visible. OnCreate is
called before the Create or CreateEx member function returns.

Override this member function to perform any needed initialization of a derived
class.

The CREATESTRUCT structure contains copies of the parameters used to create
the window.

Members

CWnd::OnCreate 725

A CREATESTRUCT structure has the following form:

typedef struet tagCREATESTRUCT
LPSTR lpCreateParams;
HANDLE hlnstanee;
HANDLE hMenu;
HWND hwndParent;
int ey;
int ex;
int y;
int x;
LONG style;
LPSTR lpszName;
LPSTR lpszClass;
DWORO dwExStyle;

} CREATESTRUCT;

IpCreateParams
Points to data to be used for creating the window.

hInstanee
Identifies the module-instance handle of the module that owns the new window.

hMenu
Identifies the menu to be used by the new window. If a child window, contains
the integer ID.

hwndParent

ey

ex

y

x

Identifies the window that owns the new window. This member is NULL if the
new window is a top-level window.

Specifies the height of the new window.

Specifies the width of the new window.

Specifies the y-coordinate ofthe upper-left corner of the new window. Coordi­
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

Specifies the x-coordinate of the upper-left corner of the new window. Coordi­
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

726 CWnd::OnCtIColor

Return Value

See Also

Syntax

Parameters

style
Specifies the new window's style.

IpszName
Points to a null-terminated string that specifies the new window's name.

IpszClass
Points to a null-terminated string that specifies the new window's Windows
class name (a WNDCLASS struct).

dwExStyle
Specifies the extended style for the new window.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ CREATE message.

OnCreate must return 0 to continue the creation of the CWnd object. If the appli­
cation returns -1, the CWnd will be destroyed.

CWnd::CreateEx, CWnd::OnNcCreate, W~CREATE, CWnd::Default,
CWnd::FromHandle

CWnd::OnCtIColor
afLmsg HBRUSH OnCtlColor(CDC* pDC, CWnd* pWnd,

UINT nCtIColor);

pDC
Contains a pointer to the display context for the child window. May be tem­
porary.

pWnd
Contains a pointer to the child CWnd. May be temporary.

nCtlColor
Contains one of the following values, specifying the type of control:

Value

CTLCOLOLBTN

CTLCOLOLDLG

CTLCOLOLEDIT

Meaning

Button control

Dialog box

Edit control

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::OnDeadChar 727

Value Meaning

CTLCOLOlLLISTBOX List box control

CTLCOLOlLMSGBOX Message box

CTLCOLOlLSCROLLBAR Scroll-bar control

CTLCOLOlLSTATIC Static control

Called when a child system-defined control class or a message box is about to be
drawn. The following controls call OnCtlColor:

Combo boxes

Edit controls

List boxes

Buttons

Static controls

Scroll bars

To change the background color of a single-line edit control, you must set the
brush handle in both the CTLCOLOlLEDIT and CTLCOLOlLMSGBOX
message codes, as well as calling the SetBkColor function in response to the
CTLCOLOlLEDIT code.

The return value from the function has no effect on a button with the
BS_PUSHBUTTON or BS_DEFPUSHBUTTON style.

This message-handler member function calls the Default member
function. Override this member function in your derived class to handle the
W~CTLCOLOR message.

OnCtlColor must return a handle to the brush that is to be used for painting the
control background, or it must return NULL.

CDC::SetBkColor, W~CTLCOLOR, CWnd::Default

CWnd::OnDeadChar
afx...msg void OnDeadChar(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the dead-key character value.

nRepCnt
Specifies the repeat count.

728 CWnd::OnDeadChar

Remarks

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (l if it is an extended key, 0 otherwise).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (l ifthe key is down before the call, 0 if the
key is up).

Transition state (1 if the key is being released, 0 if the key is
being pressed).

Called when the OnKeyUp member function and the OnKeyDown member func­
tions are called. This member function can be used to specify the character value
of a dead key. A dead key is a key, such as the umlaut (double-dot) character, that
is combined with other characters to form a composite character. For example, the
umlaut -0 character consists of the dead key, umlaut, and the 0 key.

An application typically uses OnDeadChar to give the user feedback about each
key pressed. For example, an application can display the accent in the current char­
acter position without moving the caret.

Since there is not necessarily a one-to-one correspondence between keys pressed
and OnDeadChar calls, the information in nFlags is generally not useful to appli­
cations. The information in nFlags applies only to the most recent call to the
OnKeyUp member function or the OnKeyDown member function that precedes
the OnDeadChar call.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INS, DEL,

HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the left of the
numeric keypad; and the slash (I) and ENTER keys in the numeric keypad. Some
other keyboards may support the extended-key bit in nFlags.

See Also

Syntax

Parameters

Remarks

Members

GWnd::OnDeleteltem 729

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_DEADCHAR message.

CWnd::Default, W~DEADCHAR

CWnd::OnDeleteltem
afx_msg void OnDeleteltem(LPDELETEITEMSTRUCT lpDeleteltemStruct);

lpDeleteltemStruct
Specifies a long pointer to a DELETEITEMSTRUCT data structure that con­
tains information about the deleted list box item.

Called to inform the owner of an owner-draw list box or combo box that the
list box or combo box is destroyed or that items are removed by
CComboBox: :DeleteString, CListBox: : DeleteString,
CComboBox: : ResetContent, or CListBox: : ResetContent

A DELETEITEMSTRUCT data structure has this form:

typedef struct tagDELETEITEMSTRUCT {
WORD Ct Hype
WORD CtlID;
WORD itemID;
HWND hwndItem;
DWORD itemData;

} DELETEITEMSTRUCT;

CtlType
Contains ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtlID
Contains the control ID for the list box or combo box.

itemID
Contains the index of the item in the list box or combo box being removed.

hwndItem
Contains the window handle of the control.

730 CWnd::OnDestroy

See Also

Syntax

Remarks

See Also

itemData
Contains the value passed to the control by CComboBox::AddString,
CComboBox: : InsertString, CListBox: : AddString or
CListBox: :InsertString.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~DELETEITEM message.

CComboBox: :DeleteString, CListBox: :DeleteString,
CComboBox: : ResetContent, CListBox: : ResetContent, CWnd: :Defauit,
WM_DELETEITEM

CWnd::OnDestroy
afLmsg void OnDestroyO;

Called to inform the CWnd that it is being destroyed. OnDestroy is called after
the CWnd object is removed from the screen.

OnDestroy is called first for the CWnd being destroyed, then for the child win­
dows of CWnd as they are destroyed. It can be assumed that all child windows
still exist while OnDestroy runs.

If the CWnd is the main window (CWinApp's IlL pMain Wnd) then OnDestroy
calls PostQuitMessage.

If the CWnd object being destroyed is part of the Clipboard-viewer chain (set by
calling the SetClipboardViewer member function), the CWnd must remove itself
from the Clipboard-viewer chain by calling the Change Clipboard Chain member
function before returning from the OnDestroy function.

CWnd: : Change Clipboard Chain, CWnd: :DestroyWindow,
: :PostQuitMessage, CWnd: :SetClipboardViewer, W~DESTROY

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

CWnd::OnDrawClipboard 731

CWnd::OnDestroyClipboard
afLmsg void OnDestroyClipboardO;

Called for the Clipboard owner when the Clipboard is emptied through a call to
the EmptyClipboard Windows function.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~DESTROYCLIPBOARD message.

::EmptyClipboard, CWnd::Default, WM_DESTROYCLIPBOARD

CWnd::OnDevModeChange
afLmsg void OnDevModeChange(LPSTR IpDeviceName);

IpDeviceName
Points to the device name specified in the Windows initialization file, WIN.INI.

Called for all top-level CWnds when the user changes device-mode settings.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_DEVMODECHANGE message.

CWnd::Default, WM_DEVMODECHANGE

CWnd::OnDrawClipboard
afLmsg void OnDrawClipboardO;

Called for each window in the Clipboard-viewer chain when the contents of the
Clipboard change. Only applications that have joined the Clipboard-viewer chain
by calling the SetClipboardViewer member function need to respond to this call.

732 GWnd::OnDrawltem

See Also

Syntax

Parameters

Remarks

Each window that receives an OnDrawClipboard call should call the
SendMessage Windows function to pass a WM_DRA WCLIPBOARD message
on to the next window in the Clipboard-viewer chain. The handle of the next win­
dow is returned by the SetClipboardViewer member function; it may be mod­
ified in response to an OnChangeCbChain member function call.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_DRA WCLIPBOARD message.

: :SendMessage, CWnd: :SetClipboardViewer, WM_ CHANGECBCHAIN,
CWnd: :Default

CWnd::OnDrawltem
afLmsg void OnDrawltem(LPDRAWITEMSTRUCT IpDrawltemStruct);

IpDrawltemStruct
Specifies a long pointer to a DRA WITEMSTRUCT data structure that con­
tains information about the item to be drawn and the type of drawing required.

Called for the owner of an owner-draw button control, combo-box control, list-box
control, or menu when a visual aspect of the control or menu has changed.

The itemAction member of the DRA WITEMSTRUCT structure defines the
drawing operation that is to be performed. The data in this member allows the
owner of the control to determine what drawing action is required.

Before returning from processing this message, an application should ensure that
the device context identified by the hDC member of the DRA WITEMSTRUCT
structure is restored to the default state.

Members

CWnd::OnDrawltem 733

A DRA WITEMSTRUCT structure has this form:

typedef struct tagDRAWITEMSTRUCT
WORD Ct lType;
WORD CtlID;
WORD itemID;
WORD itemAction;
WORD itemState;
HWND hwndltem;
HOC hOC;
RECT rcltem;
DWORD itemData;

DRAWITEMSTRUCT ;

CtlType
Is the control type. The values for control types are as follows:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT_LISTBOX

ODT_MENU

CtlID

Meaning

Owner-draw button.

Owner-draw combo box.

Owner-draw list box.

Owner-draw menu.

The control IO for a combo box, list box, or button. This member is not used
for a menu.

itemID
The menu-item 10 for a menu or the index of the item in a list box or combo
box. For an empty list box or combo box, this member can be -1. This allows
the application to draw only the focus rectangle at the coordinates specified by
the rcItem member even though there are no items in the control. This indi­
cates to the user whether the list box or combo box has input focus. The setting
of the bits in the itemAction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

734 CWnd::OnDrawltem

itemAction
Defines the drawing action required. This will be one or more of the following
bits:

Value

ODA_DRA WENTIRE

itemState

Meaning

This bit is set when the entire control needs to
be drawn.

This bit is set when the control gains or loses
input focus. The itemS tate member should be
checked to determine whether the control has
focus.

This bit is set when only the selection status
has changed. The itemS tate member should be
checked to determine the new selection state.

Specifies the visual state of the item after the current drawing action takes
place. That is, if a menu item is to be dimmed, the state flag ODS_ GRAYED
will be set. The state flags are:

Value

ODS_ CHECKED

ODS_DISABLED

ODS_FOCUS

ODS_GRAYED

hwndltem

Meaning

This bit is set if the menu item is to be checked.
This bit is used only in a menu.

This bit is set if the item is to be drawn as
disabled.

This bit is set if the item has input focus.

This bit is set if the item is to be dimmed. This
bit is used only in a menu.

This bit is set if the item's status is selected.

For combo boxes, list boxes and buttons, this member specifies the window
handle of the control; for menus, it contains the handle of the menu (HMENU)
containing the item.

hDC
Identifies a device context; this device context must be used when performing
drawing operations on the control.

rcltem
A rectangle in the device context specified by the hDC member that defines the
boundaries of the control to be drawn. Windows automatically clips anything
the owner draws in the device context for combo boxes, list boxes, and buttons,

See Also

Syntax

Parameters

Remarks

CWnd::OnEnable 735

but does not clip menu items. When drawing menu items, the owner must en­
sure that the owner does not draw outside the boundaries of the rectangle de­
fined by the rcItem member.

itemData
For a combo box or list box, this member contains the value that was passed to
the list box by one of the following:

CComboBox: :AddString
CComboBox: :InsertString
ListBox: : AddString
ListBox: : InsertString

For a menu, this member contains the value that was passed to the menu by one
of the following:

CMenu::AppendMenu
CMenu: : InsertMenu
CMenu::ModifyMenu

This message-handler member function calls Default. Override this member
function in your derived class to handle the W~DRAWITEM message.

DRA WITEMSTRUCT, CWnd::Default, WM_DRA WITEM,
CWnd: :FromHandle, : : FromHandle

CWnd::OnEnable
afLmsg void OnEnable(BOOL bEnable);

bEnable
Specifies whether the CWnd has been enabled or disabled. This parameter is
TRUE if the CWnd has been enabled; it is FALSE if the CWnd has been dis­
abled.

Called when an application changes the enabled state of CWnd. It is sent to
the CWnd whose enabled state is changing. OnEnable is called before the
EnableWindow member function returns, but after the window enabled state
(WS_DISABLE style bit) has changed.

736 CWnd::OnEndSession

See Also

Syntax

Parameters

Remarks

See Also

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ENABLE message.

CWnd::EnableWindow, CWnd::Default, WM_ENABLE

CWnd::OnEndSession
afLmsg void OnEndSession(BOOL bEnding);

bEnding
Specifies whether or not the session is being ended. It is TRUE if the session is
being ended; otherwise, it is FALSE.

Called after the CWnd has returned TRUE from a OnQueryEndSession member
function call. The OnEndSession call informs the CWnd whether the session is
actually ending.

If bEnding is TRUE, Windows can terminate any time after all applications have
returned from processing this call. Consequently, have an application perform all
tasks required for termination within OnEndSession.

CWnd does not need to call the DestroyWindow member function or
PostQuitMessage Windows function when the session is ending.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ENDSESSION message.

CWnd: :DestroyWindow, : :ExitWindows, : :PostQuitMessage,
WM_QUERYENDSESSION, CWnd::Default, WM_ENDSESSION

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnEraseBkgnd 737

CWnd::OnEnterldle
afLmsg void OnEnterIdle(UINT nWhy, CWnd* pWho);

nWhy
Specifies whether the message is the result of a dialog box or a menu being dis­
played. This parameter can be one of the following values:

Value

MSGF _DIALOGBOX

pWho

Description

The system is idle because a dialog box is being
displayed.

The system is idle because a menu is being
displayed.

Specifies a pointer to the dialog box (if nWhy is MSGF_DIALOGBOX), or
the window containing the displayed menu (if n Why is MSGF _MENU). This
pointer may be temporary, and should not be stored for later use.

A call to OnEnterIdle informs an application's main window procedure that a
modal dialog box or a menu is entering an idle state. A modal dialog box or menu
enters an idle state when no messages are waiting in its queue after it has
processed one or more previous messages.

This message-handler member function calls the Default member function. Over­
ride this member function in your derived class to handle the WM_ENTERIDLE
message.

CWnd::Default, WM_ENTERIDLE

CWnd::OnEraseBkgnd
afLmsg BOOL OnEraseBkgnd(CDC* pDC);

pDC
Specifies the device-context object.

Called when the CWnd background needs erasing (for example, when resized). It
is called to prepare an invalidated region for painting.

738 CWnd::OnFontChange

Return Value

See Also

Syntax

Remarks

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ERASEBKGND message.

The Default and DefWindowProc member functions erase the background using
the class background brush specified by the hbrbackground member of the class
structure.

If the hbrbackground member is NULL, OnEraseBkgnd should erase the back­
ground color. OnEraseBkgnd should align the origin of the intended brush with
the CWnd coordinates by first calling the UnrealizeObject Windows function for
the brush, and then selecting the brush.

Windows assumes the background should be computed by using the MM_ TEXT
mapping mode. If the device context is using any other mapping mode, the area
erased may not be within the visible part of the client area.

OnEraseBkgnd should return TRUE to erase the background; otherwise, it
should return FALSE.

::UnrealizeObject, WM_ICONERASEBKGND, CWnd::Default,
WM_ERASEBKGND, CBrush::FromHandle

CWnd::OnFontChange
afLmsg void OnFontChangeO;

All top-level windows in the system receive an OnFontChange call after the ap­
plication changes the pool of font resources.

An application that adds or removes fonts from the system (for example, through
the AddFontResource or RemoveFontResource Window function) should send
the WM_FONTCHANGE message to all top-level windows.

To send the WM_FONTCHANGE message to all top-level windows, an applica­
tion can use the SendMessage Windows function to send the
WM_FONTCHANGE message with the h Wnd parameter set to OxFFFF.

See Also

Syntax

Remarks

Return Value

GWnd::OnGetDlgGode 739

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_FONTCHANGE message.

: :AddFontResource, : : RemoveFontResource, : :SendMessage,
CWnd::Default, W~FONTCHANGE

CWnd::OnGetDlgCode
afLmsg UINT OnGetDlgCodeO;

Normally, Windows handles all DIRECTION-key and TAB-key input to a CWnd con­
trol. When OnGetDlgCode is called, a CWnd control can choose a particular
type of input to process itself.

Although the Default and DefWindowProc member functions always return 0 in
response to the WM_ GETDLGCODE message, the OnGetDlgCode functions
for the predefined control classes return a code appropriate for each class.

OnGetDlgCode's returned values are useful only with user-defined dialog con­
trols or standard controls modified by subclassing.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ GETDLGCODE message.

One or more of the following values, indicating which type of input the applica­
tion processes:

Value

DLGC_DEFPUSHBUTTON

DLGC_HASSETSEL

DLGC_PUSHBUTTON

DLGC_RADIOBUTTON

DLGC_WANTALLKEYS

DLGC_ WANTARROWS

DLGC_ WANTCHARS

Meaning

Default push button.

EM_SETSEL messages.

Pushbutton.

Radio button.

All keyboard input.

DIRECTION keys.

WM_ CHAR messages.

740 CWnd::OnGetMinMaxlnfo

See Also

Syntax

Parameters

Remarks

Value Meaning

DLGC_ WANTMESSAGE All keyboard input (the application passes
this message on to control).

DLGC_ WANTTAB TAB key.

CWnd::DefauIt, WM_GETDLGCODE

CWnd::OnGetMinMaxlnfo
afx_msg void OnGetMinMaxInfo(LPPOINT IpPoints);

IpPoints
Points to an array of five POINT structures that contain the following
information:

Value

apt[O]

apt[l]

apt[2]

apt[3]

apt[4]

Meaning

This value is reserved for internal use.

Specifies the maximized width (point.x) and the maximized
height (point.y) of the CWnd.

Specifies the position of the left side of the maximized window
(point.x) and the position of the top of the maximized window
(point.y).

Specifies the minimum tracking width (point.x) and the
minimum tracking height (point.y) of the CWnd.

Specifies the maximum tracking width (point.x) and the
maximum tracking height (point.y) of the CWnd.

Called whenever Windows needs to know the maximized position or dimensions,
or the minimum or maximum tracking size. The maximized size is the size of the
window when its borders are fully extended. The maximum tracking size of the
window is the largest window size that can be achieved by using the borders to
size the window. The minimum tracking size of the window is the smallest win­
dow size that can be achieved by using the borders to size the window.

Windows fills in an array of points specifying default values for the various posi­
tions and dimensions. The application may change these values in
OnGetMinMaxInfo.

See Also

Syntax

Parameters

Remarks

GWnd::OnHScroll 741

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ GETMINMAXINFO message.

CWnd: : Default, WM_ GETMINMAXINFO

CWnd::OnHScroll
afLmsg void OnHScroll(UINT nSBCode, UINT nPos, CWnd* pScrollBar);

nSBCode
Specifies a scroll-bar code that indicates the user's scrolling request. This
parameter can be one of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_ THUMBPOSITION

nPos

Description

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to the absolute position. The current
position is provided in nPos.

Scroll to upper left.

Specifies the scroll box position if the scroll-bar code is
SB_ THUMBPOSITION; otherwise, not used.

pScrollBar
If the control is a scroll bar, contains a pointer to the control. If the user clicked
a pop-up window's scroll bar, this parameter is not used.

Called when the user clicks a window's horizontal scroll bar.

The SB_ THUMB TRACK notification code typically is used by applications that
give some feedback while the scroll box is being dragged.

742 CWnd::OnHScroIiClipboard

See Also

Syntax

Parameters

If an application scrolls the contents controlled by the scroll bar, it must also reset
the position of the scroll box by using the SetScrollPos member function.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_HSCROLL message.

CWnd::SetScrollPos, W~ VSCROLL, W~HSCROLL, CWnd::Default

CWnd::OnHScroIIClipboard
afLmsg void OnHScrollClipboard(CWnd* pClipAppWnd, UINT nSBCode,

UINT nPos);

pClipApp Wnd
Specifies a pointer to a Clipboard-viewer window. The pointer may be tem­
porary, and should not be stored for later use.

nSBCode
Specifies one of the following scroll-bar codes in the low-order word:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_ THUMBPOSITION

nPos

Description

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to the absolute position. The current
position is provided in nPos.

Scroll to upper left.

Contains the scroll box position if the scroll-bar code is
SB_ THUMB POSITION; otherwise, not used.

Remarks

See Also

Syntax

Parameters

Remarks

See Also

GWnd::OnlconEraseBkgnd 743

The Clipboard owner's OnHScrollClipboard member function is called by the
Clipboard viewer when the Clipboard data has the CF_ OWNERDISPLAY for­
mat and there is an event in the Clipboard viewer's horizontal scroll bar. The
owner should scroll the Clipboard image, invalidate the appropriate section, and
update the scroll-bar values.

The Clipboard owner should use the Invalidate or InvalidateRect member func­
tions, or repaint as desired. The scroll-bar position should also be reset.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_HSCROLLCLIPBOARD message.

CWnd: :Invalidate, CWnd: :On VScrollClipboard, CWnd: : InvalidateRect,
CWnd::Default, WM_HSCROLLCLIPBOARD

CWnd::OnlconEraseBkgnd
afLmsg void OnIconEraseBkgnd(CDC* pDC);

pDC
Specifies the device-context object of the icon. May be temporary, and should
not be stored for later use.

Called for a minimized (iconic) CWnd when the background of the icon must
be filled before painting the icon. CWnd receives this call only if a class icon is
defined for the window; otherwise, the W~ERASEBKGND message is sent
instead.

The DefWindowProc member function fills the icon background with the back­
ground brush of the parent window.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ICONERASEBKGND message.

CWnd::Default, WM_ERASEBKGND, WM_ICONERASEBKGND

744 CWnd::OnlnitMenu

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnlnitMenu
afLmsg void OnInitMenu(CMenu* pMenu);

pMenu
Specifies the menu to be initialized. May be temporary, and should not be
stored for later use.

Called when a menu is about to become active. The call occurs when the user
clicks an item on the menu bar or presses a menu key. Override this member func­
tion in order to modify the menu before it is displayed.

OnInitMenu is only called when a menu is first accessed; OnInitMenu is called
only once for each access. This means, for example, that moving the mouse across
several menu items while holding down the button does not generate new calls.
This call does not provide information about menu items.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_INITMENU message.

CWnd::OnInitMenuPopup, CWnd::Default, WM_INITMENU

CWnd::OnlnitMenuPopup
afx_msg void OnInitMenuPopup(CMenu* pPopupMenu, UINT nlndex,

BOOL bSysMenu);

pPopupMenu
Specifies the menu object of the pop-up menu. May be temporary, and should
not be stored for later use.

nlndex
Specifies the index of the pop-up menu in the main menu.

bSysMenu
TRUE if the pop-up menu is the system menu; otherwise FALSE.

Called when a pop-up menu is about to become active. This allows an application
to modify the pop-up menu before it is displayed, without changing the
entire menu.

See Also

Syntax

Parameters

CWnd::OnKeyDown 745

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_INITMENUPOPUP message.

CWnd::OnInitMenu, CWnd::Default, WM_INITMENUPOPUP

CWnd::OnKeyDown
afLmsg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the virtual-key code of the given key.

nRepCnt
Repeat count (the number of times the keystroke is repeated as a result of the
user holding down the key).

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value).

Extended key, such as a function key or a key on the numeric
keypad (1 if it is an extended key).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the call, 0 if the
key is up).

Transition state (1 if the key is being released, 0 if the key is
being pressed).

For a WM_KEYDOWN message, the key-transition bit (bit 15) is 0 and the
context-code bit (bit 13) is O.

746 CWnd::OnKeyUp

Remarks Called when a nonsystem key is pressed. A nonsystem key is a keyboard key that
is pressed when the ALT key is not pressed, or a keyboard key that is pressed when
CWnd has the input focus.

See Also

Syntax

Parameters

Because of auto-repeat, more than one OnKeyDown call may occur before an
OnKeyUp member function call is made. The bit indicating the previous key state
can be used to determine whether the OnKeyDown call indicates the first down
transition or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INSERT,

DELETE, HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the
left of the numeric keypad; and the slash (/) and ENTER keys in the numeric key­
pad. Some other keyboards may support the extended-key bit in nFlags.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~KEYDOWN message.

WM_CHAR, WM_KEYUP, CWnd::Default, WM_KEYDOWN

CWnd::OnKeyUp
afLmsg void OnKeyUp(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the virtual-key code of the given key.

nRepCnt
Repeat count (the number of times the keystroke is repeated as a result of the
user holding down the key).

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0-7

8

9-10

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (l if it is an extended key; 0 otherwise).

Not used.

Remarks

See Also

Syntax

Parameters

Value

11-12

13

14

15

CWnd::OnKiliFocus 747

Description

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the call, 0 if the
key is up).

Transition state (1 if the key is being released, 0 if the key is
being pressed).

For a W~KEYUP message, the key-transition bit (bit 15) is 1 and the con­
text-code bit (bit 13) is o.

Called when a nonsystem key is released. A nonsystem key is a keyboard key that
is pressed when the ALT key is not pressed, or a keyboard key that is pressed when
the CWnd has the input focus.

For mM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INSERT,

DELETE, HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the
left of the numeric keypad; and the slash (I) and ENTER keys in the numeric key­
pad. Some other keyboards may support the extended-key bit in nFlags.

This message-handler member function calls the Default member function. Over­
ride this member function in your derived class to handle the WM_KEYUP
message.

W~CHAR, W~KEYUP, CWnd::Default, W~KEYDOWN

CWnd::OnKiIiFocus
afLmsg void OnKillFocus(CWnd* pNewWnd);

pNewWnd
Specifies a pointer to the window that receives the input focus (may be NULL
or may be temporary).

748 CWnd::OnLButtonDbIClk

Remarks Called immediately before losing the input focus.

See Also

Syntax

Parameters

Remarks

If the CWnd object is displaying a caret, the caret should be destroyed at this
point.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_KILLFOCUS message.

CWnd::SetFocus, CWnd::Default, WM_KILLFOCUS

CWnd::OnLButtonDbIClk
a.f'Lmsg void OnLButtonDblClk(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left comer of the window.

Called when the user double-clicks the left mouse button.

Only windows that have the CS_DBLCLKS WNDCLASS style will receive
OnLButtonDblClk calls. This is the default for Microsoft Foundation Class win­
dows. Windows calls OnLButtonDblClk when the user presses, releases, and
then presses the left mouse button again within the system's double-click time
limit. Double-clicking the left mouse button actually generates four events:
~LBUTTONDOWN, W~LBUTTONUP messages, the
WM_LBUTTONDBLCLK call, and another ~LBUTTONUP
message when the button is released.

See Also

Syntax

Parameters

Remarks

See Also

CWnd::OnLBuHonDown 749

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_LBUTTONDBLCLK message.

CWnd: :OnLButtonDown, CWnd: :OnLButtonUp, CWnd: : Default,
WM_LBUTTONDBLCLK

CWnd: :OnlButtonDown
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFf key is down.

Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of CWnd.

Called when the user presses the left mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~LBUTTONDOWN message.

CWnd::OnLButtonDbIClk, CWnd::OnLButtonUp,
W~LBUTTONDOWN, CWnd::Default

750 CWnd::OnLButtonUp

Syntax

Parameters

Remarks

See Also

CWnd::OnLButtonUp
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CON1ROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left comer of CWnd.

Called when the user releases the left mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~LBUTTONUP message.

CWnd::OnLButtonDbIClk, CWnd::OnLButtonDown, WM_LBUTTONUP,
CWnd: : Default

Syntax

Parameters

Remarks

See Also

CWnd::OnMButtonDbIClk 751

CWnd::OnMButtonDbIClk
afLmsg void OnMButtonDblClk(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinates ofthe cursor. These coordinates are always
relative to the upper-left comer of CWnd.

Called when the user double-clicks the middle mouse button.

Only windows that have the CS_DBLCLKS WNDCLASS style will receive
OnMButtonDblClk calls. This is the default for all Microsoft Foundation Class
Library windows. Windows generates a OnMButtonDblClk call when the user
presses, releases, and then presses the middle mouse button again within the sys­
tem's double-click time limit. Double-clicking the middle mouse button actually
generates four events: WM_MBUTTONDOWN and WM_MBUTTONUP mes­
sages, the W~MBUTTONDBLCLK call, and another WM_MBUTTONUP
message.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_MBUTTONDBLCLK message.

CWnd: : Default, CWnd: :OnMButtonDown, CWnd: :OnMButtonUp,
W~MBUTTONDBLCLK

752 CWnd::OnMButtonDown

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::OnMButtonDown
afLIDsg void OnMButtonDown(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of CWnd.

Called when the user presses the middle mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~MBUTTONDOWN message.

CWnd: :OnMButtonDbIClk, CWnd: :OnMButtonUp, CWnd: : Default,
WM_MBUTTONDOWN

CWnd::OnMButtonUp
afLIDsg void OnMButtonUp(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Remarks

See Also

Syntax

Parameters

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

CWnd::OnMDlActivate 753

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIff key is down.

Specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left comer of CWnd.

OnMButtonUp is called when the user releases the middle mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_MBUTTONUP message.

CWnd: :OnMButtonDbIClk, CWnd: :OnMButtonDown, CWnd: : Default,
WM_MBUTTONUP

CWnd::OnMDIActivate
afX_IDSg void OnMDIActivate(BOOL bActivate, CWnd* pActivatedWnd,

CWnd* pDeactivatedWnd);

bActivate
When the client window calls a child window's OnMDIActivate member func­
tion, bActivate is TRUE if the child is being activated and FALSE if it is being
deactivated.

pActivatedWnd
When the application calls its MOl client window's OnMDIActivate member
function, pActivatedWnd contains a pointer to the MOl child window to be acti­
vated. When received by an MOl child window, pActivatedWnd contains a
pointer to the child window being activated. This pointer may be temporary,
and should not be stored for later use.

754 CWnd::OnMeasureltem

Remarks

See Also

Syntax

Parameters

Remarks

pDeactivatedWnd
When received by an MDI child window, pDeactivatedWnd contains a pointer
to the child window being deactivated. This pointer may be temporary, and
should not be stored for later use.

An application calls the multiple document interface (MDI)
CMDIFrame Wnd: :MDIActivate member function to activate a different MDI
child window. The OnMDIActivate member function is called for the child win­
dow being deactivated and the child window being activated.

An MDI child window is activated independently of the MDI frame window.
When the frame becomes active, the child window that was last activated with
a OnMDIActivate call receives a WM_NCACTIVATE message to draw an
active window frame and caption bar, but it does not receive another
OnMDIActivate call.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~MDIACTIV ATE message.

CMDIFrame Wnd: :MDIGetActive, CMDIFrame Wnd: :MDINext,
CMDIFrame Wnd: :MDIActivate, WM_MDIACTIV ATE, CWnd: : Default

CWnd::OnMeasureltem
afx_msg void OnMeasureltem

(LPMEASUREITEMSTRUCT lpMeasureltemStruct);

lpMeasureltemStruct
Specifies a long pointer to a MEASUREITEMSTRUCT data structure that
contains the dimensions ofthe owner-draw control.

Called for the owner of an owner-draw button, combo box, list box, or menu
item when the control is created. When the owner receives the call, the owner
should fill in the MEASUREITEMSTRUCT data structure pointed to by
lpMeasureltemStruct and return; this informs Windows of the dimensions of the
control and allows Windows to process user interaction with the control correctly.

If a list box or combo box is created with the LBS_ OWNERDRA WV ARIABLE
or CBS_ OWNERDRA WV ARIABLE style, this function is called for the owner
for each item in the control; otherwise, this function is called once.

Members

CWnd::OnMeasureltem 755

Windows calls OnMeasureItem for the owner of combo boxes and list
boxes created with the OWNERDRAWFIXED style before sending the
WM_INITDIALOG message. As a result, when the owner receives this call,
Windows has not yet determined the height and width of the font used in the con­
trol; function calls and calculations requiring these values should occur in the main
function of the application or library.

A MEASUREITEMSTRUCT data structure has the following form:

typedef struct tagMEASUREITEMSTRUCT
WORD CtlType;
WORD CtlID;
WORD itemID;
WORD itemWidth;
WORD itemHeight;
DWORD itemData

MEASUREITEMSTRUCT;

CtlType
Is the control type. The values for control types are as follows:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT_LISTBOX

ODT_MENU

cmD

Meaning

Owner-draw button.

Owner-draw combo box.

Owner-draw list box.

Owner-draw menu.

Is the control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID
Is the menu-item ID for a menu or the list box item ID for a variable-height
combo box or list box. This member is not used for a fixed-height combo box
or list box, or for a button.

itemWidth
Specifies the width of a menu item. The owner of the owner-draw menu item
must fill this member before returning from the message.

itemHeight
Specifies the height of an individual item in a list box or a menu. Before return­
ing from the message, the owner of the owner-draw combo box, list box, or
menu item must fill out this member. The maximum height of a list box item
is 255.

756 CWnd::OnMenuChar

Comments

See Also

Syntax

Parameters

Remarks

itemData
For a combo box or list box, this member contains the value that was passed to
the list box by one of the following:

CComboBox: :AddString
CComboBox::InsertString
ListBox: :AddString
ListBox: :InsertString

For a menu, this member contains the value that was passed to the menu by one
of the following:

CMenu: :AppendMenu
CMenu: :InsertMenu
CMenu: :ModifyMenu

Failure to fill out the proper members in the MEASUREITEMSTRUCT struc­
ture will cause improper operation of the control.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_MEASUREITEM message.

WM_INITDIALOG, CWnd::Default, WM_MEASUREITEM

CWnd::OnMenuChar
afLmsg LONG OnMenuChar(UINT nChar, UINT nFlags, CMenu* pMenu);

nChar
Specifies the ASCII character that the user pressed.

nFlags
Contains the MF_POPUP flag if the menu is a pop-up menu. It contains the
MF _ SYSMENU flag if the menu is a Control menu.

pMenu
Contains a pointer to the selected CMenu. The pointer may be temporary, and
should not be stored.

Called when the user presses a menu mnemonic character that doesn't match any
of the predefined mnemonics in the current menu. It is sent to the CWnd that
owns the menu.

Return Value

See Also

Syntax

Parameters

CWnd::OnMenuSelect 757

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
~MENUCHAR message.

The high-order word of the return value should contain one of the following com­
mandcodes:

Value Description

o

1

2

Tells Windows to discard the character that the user pressed, and
creates a short beep on the system speaker.

Tells Windows to close the current menu.

Informs Windows that the low-order word of the return value
contains the menu item-number for a specific item. This item is
selected by Windows.

The low-order word is ignored if the high-order word contains 0 or 1. Applications
should process this message when accelerators are used to select bitmaps placed in
a menu.

CWnd::Default, W~MENUCHAR

CWnd::OnMenuSelect
afLmsg void OnMenuSelect(UINT nltemID, UINT nFlags,

HMENU hSysMenu);

nltemID
Identifies the item selected. If the selected item is a menu item, nltemID con­
tains the menu-item ID. If the selected item contains a pop-up menu, nltemID
contains the pop-up menu handle.

nFlags
Contains a combination of the following menu flags:

Flag

MF_BITMAP

MF_CHECKED

MF_DISABLED

Description

Item is a bitmap.

Item is checked.

Item is disabled.

758 CWnd::OnMouseActivate

Remarks

See Also

Syntax

Parameters

Flag

MF_GRAYED

MF_MOUSESELECT

MF_OWNERDRAW

MF_POPUP

MF_SEPARATOR

MF_SYSMENU

hSysMenu

Description

Item is dimmed.

Item was selected with a mouse.

Item is an owner-draw item.

Item contains a pop-up menu.

Item is a menu-item separator.

Item is contained in the Control menu.

Identifies the menu associated with the message, if nFlags contains
MF_SYSMENU.

If the CWnd is associated with a menu, OnMenuSelect is called when the user
selects a menu item.

If nFlags contains -1 and hSysMenu contains 0, Windows has closed the menu be­
cause the user pressed ESC or clicked outside the menu.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~MENUSELECT message.

CWnd::Default, ~MENUSELECT, CMenu::FromHandle

CWnd::OnMouseActivate
afLmsg int OnMouseActivate(CWnd* pFrameWnd, UINT nHitTest,

UINT message);

pFrameWnd
Specifies a pointer to the topmost parent window of the window being acti­
vated. The pointer may be temporary, and should not be stored.

nHitTest
Specifies the hit-test area code. A hit test is a test that determines the location of
the cursor.

message
Specifies the message number.

Remarks

Return Value

See Also

CWnd::OnMouseActivate 759

Called when the cursor is in an inactive window and the user presses a mouse
button.

If the child window passes the message to the Default or DefWindowProc mem­
ber function, Default or DefWindowProc passes this message to the CWnd
parent window before any processing occurs. If the parent window returns TRUE,
processing is halted.

For a description of the individual hit-test area codes, see the OnNcHitTest mem­
ber function.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_MOUSEACTIVATE message.

Specifies whether to activate the CWnd and whether to discard the mouse event.
It must be one of the following values:

Value

MA-ACTIVATE

MA-NOACTIVATE

MA-ACTIVATEANDEAT

MA-NOACTIVATEANDEAT

Meaning

Activate CWnd.

Do not activate CWnd.

Activate CWnd and discard the mouse
event.

Do not activate CWnd and discard the
mouse event.

CWnd::OnNcHitTest, CWnd::Default, W~MOUSEACTIVATE

760 CWnd::OnMouseMove

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::OnMouseMove
afx_msg void OnMouseMove(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

point
Specifies the x- and y-coordinates ofthe cursor. These coordinates are always
relative to the upper-left comer of the window.

Called when the mouse cursor moves. If the mouse is not captured, the
W~MOUSEMOVE is sent to the CWnd beneath the mouse pointer; other­
wise, the message goes to the mouse-capture window.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_MOUSEMOVE message.

CWnd::SetCapture, CWnd::OnNCHitTest, WM_MOUSEMOVE,
CWnd: : Default

CWnd::OnMove
afLmsg void OnMove(int x, int y);

x
Specifies the new x-coordinate location of the upper-left comer of the client
area. This new location is given in screen coordinates for overlapped and pop­
up windows, and parent-client coordinates for child windows.

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

y

CWnd::OnNcActivate 761

Specifies the new y-coordinate location of the upper-left comer of the client
area. This new location is given in screen coordinates for overlapped and pop­
up windows, and parent-client coordinates for child windows.

Called after CWnd has been moved.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the WM_MOVE
message.

CWnd::Default, WM_MOVE

CWnd::OnNcActivate
afLmsg BOOL OnNcActivate(BOOL bActive);

bActive
Specifies when a caption bar or icon needs to be changed to indicate an active
or inactive state. The bActive parameter is TRUE if an active caption or icon is
to be drawn. It is FALSE for an inactive caption or icon.

Called when the nonclient area needs to be changed to indicate an active or inac­
tive state.

The Default member function draws the appropriate caption bar.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM....NCACTIVATE message.

TRUE if activation should proceed; FALSE if activation should be aborted.

CWnd::Default, WM....NCACTIVATE

762 CWnd::OnNcCalcSize

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnNcCalcSize
afLmsg void OnNcCalcSize(LPRECT IpRect);

IpRect
Points to a RECT data structure that contains the screen coordinates of the
CWnd rectangle (including client area, borders, caption, scroll bars, and so on).

Called when the size of the client area needs to be calculated.

The Default member function calculates the size of the client area based on the
window characteristics (presence of scroll bars, menu, and so on), and places the
result in IpRect.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~NCCALCSIZE message.

CWnd::Default, W~NCCALCSIZE

CWnd::OnNcCreate
afLmsg BOOL OnNcCreate(LPCREATESTRUCT IpCreateStruct);

IpCreateStruct
Points to the CREATESTRUCT data structure for CWnd.

Called prior to the W~ CREATE message when the CWnd is first created.

By default, scroll bars are initialized (the scroll-bar position and range are set) and
the CWnd text is set. Memory used internally to create and maintain the window
is allocated.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~NCCREATE message.

Return Value

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

GWnd::OnNcHitTest 763

TRUE if the nonclient area is created. It is FALSE if an error occurs; the Create
function will return NULL in this case.

CWnd::CreateEx, WM_NCCREATE, CWnd::Default

CWnd: :OnNcDestroy
afLmsg void OnNcDestroyO;

Called when the nonclient area is being destroyed. The DestroyWindow member
function sends W~NCDESTROY.

The Default member function frees any memory internally allocated for the
Windows window.

The OnNcDestroy member function is the last member called when the Windows
window is being destroyed. OnNcDestroy can call delete this to free the CWnd
object that was dynamically allocated with new.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCDESTROY message.

CWnd::DestroyWindow, CWnd::OnNcCreate, WM_NCDESTROY,
CWnd: : Default

CWnd::OnNcHitTest
afLmsg UINT OnNcHitTest(CPoint point);

point
Contains the x- and y-coordinates of the cursor. These coordinates are always
screen coordinates.

Called for the CWnd that contains the cursor (or the CWnd that used the
SetCapture member function to capture the mouse input) every time the mouse is
moved.

764 CWnd::OnNcHitTest

Return Value

See Also

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ NCHITTEST message.

One of the following values:

Value

HTBOTTOM

HTBOTTOMLEFT

HTBOTTOMRIGHT

HTCAPTION

HTCLIENT

HTERROR

HTGROWBOX

HTHSCROLL

HTLEFT

HTMENU

HTNOWHERE

HTREDUCE

HTRIGHT

HTSIZE

HTSYSMENU

HTTOP

HTTOPLEFT

HTTOPRIGHT

HTTRANSPARENT

HTVSCROLL

HTZOOM

Meaning

In the lower horizontal border of the window.

In the lower-left corner of the window border.

In the lower-right corner of the window border.

In a caption area.

In a client area.

Same as HTNOWHERE except that the
DefWindowProc member function produces a
system beep to indicate an error.

In a size box.

In the horizontal scroll bar.

In the left border of the window.

In a menu area.

On the screen background or on a dividing line
between windows.

In a Minimize button.

In the right border of the window.

Same as HTGROWBOX.

In a Control-menu box (close box in child windows).

In the upper horizontal border of the window.

In the upper-left corner of the window border.

In the upper-right corner of the window border.

In a window currently covered by another window.

In the vertical scroll bar.

In a Maximize button.

CWnd::Default, CWnd::GetCapture, WM_NCHITTEST

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnNcLButtonDown 765

CWnd::OnNclButtonDbIClk
afLmsg void OnNcLButtonDblClk(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the user double-clicks the left mouse button while the cursor is within
a nonclient area of CWnd.

If appropriate, the WM_SYSCOMMAND message is sent.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCLBUTTONDBLCLK message.

CWnd: :Default, W~NCLBUTTONDBLCLK, CWnd::OnNcHitTest

CWnd::OnNclButtonDown
afLmsg void OnNcLButtonDown(UlNT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the user presses the left mouse button while the cursor is within a
nonclient area of CWnd.

If appropriate, the W~SYSCOMMAND is sent.

766 CWnd::OnNcLButtonUp

See Also

Syntax

Parameters

Remarks

See Also

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
~NCLBUTTONDOWN message.

CWnd::OnNcHitTest, CWnd::OnNcLButtonDbIClk,
CWnd: :OnNcLButtonUp, CWnd::OnSysCommand,
~NCLBUTTONDOWN, CWnd::Default

CWnd::OnNcLButtonUp
afx_msg void OnNcLButtonUp(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit -test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the user releases the left mouse button while the cursor is within a
non client area.

If appropriate, WM....SYSCOMMAND is sent.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
~NCLBUTTONUP message.

CWnd::OnNcHitTest, CWnd::OnNcLButtonDown,
CWnd::OnSysCommand, CWnd::Default, ~NCLBUTTONUP

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::OnNcMButtonDown 767

CWnd::OnNcMButtonDbIClk
afLmsg void OnNcMButtonDblClk(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the user double-clicks the middle mouse button while the cursor is
within a nonclient area.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCMBUTTONDBLCLK message.

CWnd: :OnNcHitTest, CWnd: :OnNcMButtonDown,
CWnd::OnNcMButtonUp, W~NCMBUTTONDBLCLK, CWnd::Default

CWnd::OnNcMButtonDown
afLmsg void OnNcMButtonDown(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

768 CWnd::OnNcMButtonUp

Remarks Called when the user presses the middle mouse button while the cursor is within a
non client area.

See Also

Syntax

Parameters

Remarks

See Also

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCMBUTTONDOWN message.

CWnd: :OnNcHitTest, CWnd: :OnNcMButtonUp,
WM_NCMBUTTONDOWN, CWnd::Default

CWnd::OnNcMButtonUp
afLmsg void OnNcMButtonUp(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the user releases the left mouse button while the cursor is within a
non client area.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCMBUTTONUP message.

CWnd: :OnNcHitTest, CWnd: :OnN cMButtonDblClk,
CWnd: :OnNcMButtonDown, WM_NCMBUTTONUP, CWnd: :Default

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

CWnd::OnNcPaint 769

CWnd::OnNcMouseMove
afLmsg void OnNcMouseMove(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left comer of the
screen.

Called when the cursor is moved within a nonclient area.

If appropriate, the ~SYSCOMMAND message is sent.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~NCMOUSEMOVE message.

CWnd::OnNcHitTest, CWnd::OnSysCommand, ~NCMOUSEMOVE,
CWnd: :Default

CWnd::OnNcPaint
afLmsg void OnNcPaintO;

Called when the nonclient area needs to be painted.

An application can override this call and paint its own custom window frame. The
clipping region is always rectangular, even if the shape of the frame is altered.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~NCPAINT message.

CWnd::Default, WM_NCPAINT

770 CWnd::OnNcRButtonDbIClk

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::OnNcRButtonDbIClk
afLmsg void OnNcRButtonDblClk(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left corner of the
screen.

Called when the user double-clicks the right mouse button while the cursor is
within a nonclient area of CWnd.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCRBUTTONDBLCLK message.

CWnd: :OnNcHitTest, CWnd: :OnNcRButtonDown,
CWnd: :OnNcRButtonUp, CWnd: : Default, WM_NCRBUTTONDBLCLK

CWnd::OnNcRButtonDown
afLmsg void OnNcRButtonDown(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location of the
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left corner of the
screen.

Remarks

See Also

Syntax

Parameters

Remarks

See Also

CWnd::OnNcRButtonUp 771

Called when the user presses the right mouse button while the cursor is within a
nonclient area.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_NCRBUTTONDOWN message.

CWnd: :OnNcHitTest, CWnd: :OnNcRButtonDbIClk,
CWnd::OnNcRButtonUp, CWnd::Default, WM_NCRBUTTONDOWN

CWnd::OnNcRButtonUp
afLmsg void OnNcRButtonUp(UINT nHitTest, CPoint point);

nHitTest
Specifies the hit-test code. A hit test is a test that determines the location ofthe
cursor.

point
Specifies a CPoint that contains the x and y screen coordinates of the cursor
position. These coordinates are always relative to the upper-left corner ofthe
screen.

Called when the user releases the right mouse button while the cursor is within a
non client area.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~NCRBUTTONUP message.

CWnd: :OnNcHitTest, CWnd: :OnNcRButtonDbIClk,
CWnd::OnNcRButtonDown, CWnd::Default, WM_NCRBUTTONUP

772 CWnd::OnPaint

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnPaint
afLllsg void OnPaintO;

Called when Windows or an application makes a request to repaint a portion of the
CWnd.

The WM_PAINT message is sent to this member function when the
UpdateWindow member function is called, or when the update region is not
empty and there are no pending messages.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the WM_PAINT
message.

CWnd::UpdateWindow, CPaintDC, CWnd::Default, WM_PAINT

CWnd::OnPaintClipboard
afLmsg void OnPaintClipboard(CWnd* pClipAppWnd,

HANDLE hPaintStruct);

pClipApp Wnd
Specifies a pointer to the Clipboard-application window. The pointer may be
temporary, and should not be stored for later use.

hPaintStruct
Identifies a PAINTSTRUCT data structure that defines what part of the client
area to paint.

A Clipboard owner's OnPaintClipboard member function is called by a Clip­
board viewer when the owner has placed data on the Clipboard in the
CF _ OWNERDISPLA Y format and the Clipboard viewer's client area needs
repainting.

To determine whether the entire client area or just a portion of it needs repainting,
the Clipboard owner must compare the dimensions of the drawing area given in
the repaint member of the PAINTSTRUCT structure to the dimensions given in
the most recent OnSizeClipboard member function call.

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnPaletteChanged 773

OnPaintClipboard should use the GlobalLock Windows function to lock the
memory that contains the PAINTSTRUCT data structure, and unlock that
memory by using the GlobalUnlock Windows function before it exits.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_PAINTCLIPBOARD message.

: : GlobalLock, : :GlobalUnlock, CWnd: :OnSizeClipboard,
WM_PAINTCLIPBOARD, CWnd::Default

CWnd::OnPaintlcon
afLmsg void OnPaintIconO;

Called by a minimized (iconic) CWnd when the icon is to be painted.

A window receives this call only if a class icon is defined for the window; other­
wise, the OnPaint member function is called instead. OnPaintIcon permits
Windows to paint the icon with the class icon.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~PAINTICON message.

CWnd::OnPaletteChanged
afLmsg void OnPaletteChanged(CWnd* pFocusWnd);

pFocusWnd
Specifies a pointer to the window that caused the system palette to change. The
pointer may be temporary, and should not be stored.

Called after the window with input focus has realized its logical palette, thereby
changing the system palette. This call allows windows without the input focus that
use a color palette to realize their logical palettes and update their client areas.

774 CWnd::OnParentNotify

See Also

Syntax

Parameters

Remarks

To avoid creating a loop, CWnd shouldn't realize its palette unless it determines
that pFocusWnd does not contain a pointer to itself.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_PALETTECHANGED message.

::RealizePalette, WM_PALETTECHANGED, CWnd::Default

CWnd::OnParentNotify
afLIDsg void OnParentNotify(UINT message, LONG lParam);

message
Specifies the event for which the parent is being notified. It can be any of these
values:

Value

W~CREATE

W~DESTROY

W~LBUTTONDOWN

W~MBUTTONDOWN

WM_RBUTTONDOWN

lParam

Description

The child window is being created.

The child window is being destroyed.

The user has placed the mouse cursor over
the child window and clicked the left
mouse button.

The user has placed the mouse cursor over
the child window and clicked the middle
mouse button.

The user has placed the mouse cursor over
the child window and clicked the right
mouse button.

Specifies the window handle of the child window in the low-order word and the
identifier of the child window in the high-order word if message is
W~CREATE or WM_DESTROY; otherwise, lParam contains the x- and
y-coordinates of the cursor. The x-coordinate is in the low-order word and the
y-coordinate is in the high-order word.

A parent's OnParentNotify member function is called when its child window is
created or destroyed, or when the user clicks a mouse button while the cursor is

See Also

Syntax

Remarks

Return Value

CWnd::OnQueryDraglcon 715

over the child window. When the child window is being created, the system calls
OnParentNotify just before the Create member function that creates CWnd
returns. When the child window is being destroyed, the system calls
OnParentNotify before any processing takes place to destroy CWnd.

OnParentNotify is called for all ancestor windows of the child window, including
the top-level window.

All child windows except those that have the WS_E)LNOPARENTNOTIFY
style send this message to their parent windows. By default, child windows in a
dialog box have the WS_EX_NOPARENTNOTIFY style unless the child win­
dow was created without this style by calling the CreateEx member function.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_PARENTNOTIFY message.

CWnd::CreateEx, CWnd::OnCreate, CWnd::OnDestroy,
CWnd: :OnLButtonDown, CWnd: :OnMButtonDown,
CWnd: :OnRButtonDown, W~PARENTNOTIFY, CWnd: : Default

CWnd::OnQueryDraglcon
afx_msg HCURSOR OnQueryDraglconO;

Called by a minimized (iconic) CWnd if it is about to be dragged by the user and
it does not have an icon defined for its class. The system makes this call to obtain
the cursor to display while the user drags the minimized window.

If an application returns an icon handle, the system converts the icon to a black­
and-white cursor.

If an application returns a handle, the handle must identify a monochrome cursor
or icon compatible with the display driver's resolution. The application can call
the CWinApp::LoadCursor or CWinApp::Loadlcon member functions to load
a cursor or icon from the resources in its executable file and to obtain this handle.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_QUERYDRAGICON message.

Returns a cursor or icon handle. If NULL is returned, the system displays the de­
fault cursor. The default return value is NULL.

776 CWnd::OnQueryEndSession

See Also CWinApp::LoadCursor, CWinApp::Loadlcon, WM_QUERYDRAGICON,
CWnd::Default

Syntax

Remarks

Return Value

See Also

CWnd::OnQueryEndSession
afx_msg BOOL OnQueryEndSessionO;

Called when the user chooses to end the Windows session or when an application
calls the ExitWindows Windows function. If any application returns FALSE, the
Windows session is not ended. Windows stops calling OnQueryEndSession as
soon as one application returns FALSE, and sends the WM_ENDSESSION mes­
sage with a parameter value of FALSE for any applications that have already re­
turned TRUE.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ QUERYENDSESSION message.

An application should return TRUE if it can be conveniently shut down; other­
wise FALSE.

CWnd::Default, ::ExitWindows, CWnd::OnEndSession,
WM_ QUERYENDSESSION

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

CWnd::OnQueryOpen 777

CWnd::OnQueryNewPalette
afLmsg BOOL OnQueryNewPaletteO;

Called when the CWnd is about to receive the input focus. If the CWnd realizes
its logical palette when it receives the input focus, it should return TRUE; other­
wise, it should return FALSE.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ QUERYNEWPALETTE message.

TRUE if the CWnd realizes its logical palette; otherwise FALSE.

CWnd::Default, WM_QUERYNEWPALETTE

CWnd::OnQueryOpen
afLmsg BOOL OnQueryOpenO;

Called when the CWnd is iconized and the user requests that the CWnd be
opened into a window.

While in OnQueryOpen, CWnd should not perform any action that would cause
an activation or focus change (for example, creating a dialog box).

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~QUERYOPEN message.

TRUE if the icon can be opened, or FALSE to prevent the icon from being
opened.

CWnd::Default, WM_ QUERYOPEN

778 CWnd::OnRButtonDbIClk

Syntax

Parameters

Remarks

See Also

CWnd::OnRButtonDbIClk
afLIDsg void OnRButtonDblClk(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinates of the cursor. These coordinates are always
relative to the upper-left corner.

Called when the user double-clicks the right mouse button.

Only windows that have the CS_DBLCLKS class style can receive
OnRButtonDblClk calls. This is the default for windows within the Microsoft
Foundation Class Library. Windows calls OnRButtonDblClk when the user
presses, releases, and then presses the right mouse button again within the sys­
tem's double-click time limit. Double-clicking the right mouse button actually
generates four events: a WM_RBUTTONDOWN and WM_RBUTTONUP
message, the OnRButtonDblClk call, and another W~RBUTTONUP message
when the button is released.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~RBUTTONDBLCLK message.

CWnd: :OnRButtonDown, CWnd: :OnRButtonUp,
WM_RBUTTONDBLCLK, CWnd::Default

Syntax

Parameters

Remarks

See Also

CWnd::OnRButtonDown 779

CWnd::OnRBuHonDown
afLmsg void OnRButtonDown(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CONTROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIff key is down.

Specifies the x- and y-coordinates of the cursor. These coordinates are always
relative to the upper-left comer.

Called when the user presses the right mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~RBUTTONDOWN message.

CWnd::OnRButtonDbIClk, CWnd::OnRButtonUp,
WM_RBUTTONDOWN, CWnd::Default

780 CWnd::OnRButtonUp

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

CWnd::OnRButtonUp
afLmsg void OnRButtonUp(UINT nFlags, CPoint point);

nFlags
Indicates whether various virtual keys are down. This parameter can be any
combination of the following values:

Value

MIL CONTROL

MILLBUTTON

MILMBUTTON

MILRBUTTON

MIL SHIFT

point

Description

Set if CON1ROL key is down.

Set if left mouse button is down.

Set if middle mouse button is down.

Set if right mouse button is down.

Set if SHIFT key is down.

Specifies the x- and y-coordinates ofthe cursor. These coordinates are always
relative to the upper-left corner.

Called when the user releases the right mouse button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~RBUTTONUP message.

CWnd::OnRButtonDbIClk, CWnd::OnRButtonDown, W~RBUTTONUP,
CWnd::Default

CWnd::OnRenderAIIFormats
afLmsg void OnRenderAIIFormatsO;

The Clipboard owner's OnRender AliFormats member function is called when
the owner application is being destroyed.

The Clipboard owner should render the data in all the formats it is capable of
generating and pass a data handle for each format to the Clipboard by calling the
SetClipboardData Windows function. This ensures that the Clipboard contains

See Also

Syntax

Parameters

Remarks

See Also

CWnd::OnRenderFormat 781

valid data even though the application that rendered the data is destroyed. The ap­
plication should call the Open Clipboard member function before calling the
SetClipboardData Windows function, and call the CloseClipboard Windows
function afterward.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~RENDERALLFORMATS message.

::CloseClipboard, CWnd::OpenClipboard, ::SetClipboardData,
CWnd::OnRenderFormat, WM_RENDERALLFORMATS,
CWnd: : Default

CWnd::OnRenderFormat
afLmsg void OnRenderFormat(UINT nFormat);

nFormat
Specifies the Clipboard format.

The Clipboard owner's OnRenderFormat member function is called when a par­
ticular format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the Clipboard by calling the
SetClipboardData Windows function.

Do not call the Open Clipboard member function or the CloseClipboard
Windows function from within OnRenderFormat.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_RENDERFORMAT message.

: : Close Clipboard, CWnd: :OpenClipboard, : :SetClipboardData,
WM_RENDERFORMA T, CWnd::Default

782 CWnd::OnSetCursor

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::OnSetCursor
afLmsg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest,

UINT message);

pWnd
Specifies a pointer to the window that contains the cursor. The pointer may be
temporary, and should not be stored for later use.

nHitTest
Specifies the hit-test area code. The hit test determines the cursor's location.

message
Specifies the mouse message number.

OnSetCursor is called if mouse input is not captured and the mouse causes cursor
movement within the CWnd.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SETCURSOR message.

By default, OnSetCursor calls the parent window's OnSetCursor before pro­
cessing. If the parent window returns TRUE, further processing is halted. Calling
the parent window gives the parent window control over the cursor's setting in a
child window.

By default, OnSetCursor also sets the cursor to an arrow if it is not in the client
area, or to the registered-class cursor if it is. If nHitTest is HTERROR and
message is a mouse button-down message, the MessageBeep member function is
called.

The message parameter is 0 when CWnd enters menu mode.

The return value is ignored by Windows, but is used by the Default member func­
tion when it calls the parent to determine if the parent handled the message.
TRUE means that the message was handled; otherwise FALSE.

CWnd::OnNcHitTest, CWnd::Default, WM_SETCURSOR

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnShowWindow 783

CWnd::OnSetFocus
afLmsg void OnSetFocus(CWnd* pOldWnd);

pOldWnd
Contains the CWnd that loses the input focus (may be NULL). The pointer
may be temporary, and should not be stored for later use.

Called after gaining the input focus. To display a caret, CWnd should call the ap­
propriate caret functions at this point.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SETFOCUS message.

CWnd::Default, WM_SETFOCUS

CWnd::OnShowWindow
afLmsg void OnShowWindow(BOOL bShow, UINT nStatus);

bShow
Specifies whether a window is being shown. It is TRUE if the window is being
shown; it is FALSE if the window is being hidden.

nStatus
Specifies the status of the window being shown. It is 0 if the message is sent be­
cause of a ShowWindow member function call; otherwise, nStatus is one of the
following values:

Value Description

Parent window is closing (being made
iconic) or a pop-up window is being hidden.

Parent window is opening (being displayed)
or a pop-up window is being shown.

Called when the CWnd is about to be hidden or shown. A window is hidden or
shown when the ShowWindow member function is called, when an overlapped
window is maximized or restored, or when an overlapped or pop-up window is

784 CWnd::OnSize

See Also

Syntax

Parameters

Remarks

closed (made iconic) or opened (displayed on the screen). When an overlapped
window is closed, all pop-up windows associated with that window are hidden.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
~SHOWWINDOW message.

CWnd::Default, W~SHOWWINDOW

CWnd::OnSize
afLmsg void OnSize(UINT nType, int ex, int ey);

nType

ex

ey

Specifies the type of resizing requested. This parameter can be one of the fol­
lowing values:

Value

SIZEFULLSCREEN

SIZEICONIC

SIZENORMAL

SIZEZOOMHIDE

SIZEZOOMSHOW

Description

Window has been maximized.

Window has been minimized.

Window has been resized, but neither
SIZEICONIC nor SIZEFULLSCREEN
applies.

Message is sent to all pop-up windows when
some other window is maximized.

Message is sent to all pop-up windows when
some other window has been restored to its
former size.

Specifies the new width of the client area.

Specifies the new height of the client area.

Called after the size has changed.

If the SetScrollPos or Move Window member function is called for a child win­
dow from OnSize, the bRedraw parameter should be nonzero to cause the CWnd
to be repainted.

See Also

Syntax

Parameters

Remarks

See Also

CWnd::OnSizeClipboard 785

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the WM_ SIZE
message.

CWnd::MoveWindow, CWnd::SetScrollPos, CWnd::Default, WM_SIZE

CWnd::OnSizeClipboard
afLmsg void OnSizeClipboard(CWnd* pClipAppWnd, HANDLE hRect);

pClipApp Wnd
Identifies the Clipboard-application window. The pointer may be temporary
and should not be stored.

hRect
Identifies a handle to a global memory object. The memory object contains a
RECT data structure that specifies the area for the Clipboard owner to paint.

The Clipboard owner's OnSizeClipboard member function is called by the Clip­
board viewer when the Clipboard contains data with the CF _ OWNERDISPLA Y
attribute and the size of the Clipboard-viewer window's client area has changed.

The OnSizeClipboard member function is called with a null rectangle (0,0,0,0) as
the new size when the Clipboard application is about to be destroyed or min­
imized. This permits the Clipboard owner to free its display resources.

Within OnSizeClipboard, an application must use the GlobalLock Windows
function to lock the memory that contains the RECT data structure. Have the ap­
plication unlock that memory by using the GlobalUnlock Windows function
before it yields or returns control.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SIZECLIPBOARD message.

::GlobaILock, ::GlobalUnlock, ::SetClipboardData,
CWnd::SetClipboardViewer, CWnd::Default, WM_SIZECLIPBOARD

786 CWnd::OnSpoolerStatus

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::OnSpoolerStatus
afLIDsg void OnSpoolerStatus(UINT nStatus, UINT nJobs);

nStatus
Specifies the SP _JOBSTATUS flag.

nJobs
Specifies the number of jobs remaining in the Print Manager queue.

Called from Print Manager whenever a job is added to or removed from the Print
Manager queue.

This call is for informational purposes only.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SPOOLERSTATUS message.

CWnd::Default, ~SPOOLERSTATUS

CWnd::OnSysChar
afLIDsg void OnSysChar(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the ASCII-character key code of a Control-menu key.

nRepCnt
Specifies the repeat count (the number of times the keystroke is repeated as a re­
sult of the user holding down the key).

nFlags
The nFlags parameter can have these values:

Value

0-7

8

9-10

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (1 if it is an extended key, 0 otherwise).

Not used.

Remarks

See Also

Value

11-12

13

14

15

CWnd::OnSysChar 787

Description

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (l if the key is down before the message is
sent, 0 if the key is up).

Transition state (1 if the key is being released, 0 if the key is
being pressed).

Called if CWnd has the input focus and the WM_SYSKEYUP or
WM_SYSKEYDOWN message is received. It specifies the virtual-key code of
the Control-menu key.

When the context code is 0, WM_SYSCHAR can pass the WM_SYSCHAR
message to the TranslateAccelerator Windows function, which will handle it as
though it were a normal key message instead of a system-key message. This al­
lows accelerator keys to be used with the active window even if the active window
does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INSERT,

DELETE, HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the
left of the numeric keypad; and the slash (I) and ENTER keys in the numeric key­
pad. Some other keyboards may support the extended-key bit in nFlags.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ SYSCHAR message.

::TranslateAccelerator, WM_SYSKEYDOWN, WM_SYSKEYUP,
CWnd::Default, WM_SYSCHAR

788 CWnd::OnSysColorChange

Syntax

Remarks

See Also

Syntax

Parameters

CWnd::OnSysColorChange
afLmsg void OnSysColorChangeO;

Called for all top-level windows when a change is made in the system color
setting.

Windows calls OnSysColorChange for any window that is affected by a system
color change.

Applications that have brushes that use the existing system colors should delete
those brushes and re-create them by using the new system colors.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_SYSCOLORCHANGE message.

::SetSysColors, WM_PAINT, CWnd::Default, WM_SYSCOLORCHANGE

CWnd::OnSysCommand
afLmsg void OnSysCommand(UINT nID, LONG IParam);

nID
Specifies the type of system command requested. This parameter can be one of
the following values:

Value

SC_CLOSE

SC_HOTKEY

SC_HSCROLL

SC_KEYMENU

Description

Close CWnd.

Activate the CWnd associated with the
application-specified hot key.

Scroll horizontally.

Retrieve a menu through a keystroke.

Remarks

Value

SC_MAXIMIZE
(or SC_ZOOM)

SC_ MINIMIZE
(or SC_ICON)

SC_MOUSEMENU

SC_MOVE

SC_NEXTWINDOW

SC_PREVWINDOW

SC_RESTORE

SC_SCREENSAVE

SC_SIZE

SC_ TASKLIST

SC_ VSCROLL

lParam

CWnd::OnSysCommand 789

Description

Maximize CWnd.

Minimize CWnd.

Retrieve a menu through a mouse click.

MoveCWnd.

Move to the next window.

Move to the previous window.

Checkpoint (save the previous coordinates).

Executes the screen-save application
specified in the Desktop section of the
Control Panel.

Size CWnd.

Executes or activates the CWnd Task
Manager application.

Scroll vertically.

Contains the cursor coordinates if a Control-menu command is chosen with the
mouse. The low-order word contains the x-coordinate, and the high-order word
contains the y-coordinate. Otherwise, this parameter is not used.

Called when the user selects a command from the Control menu or when the user
selects the Maximize or Minimize button.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_SYSCOMMAND message.

By default, OnSysCommand carries out the Control-menu request for the pre­
defined actions specified above.

Applications that modify the Control menu must process WM_SYSCOMMAND
messages, and any WM_SYSCOMMAND messages not handled by the applica­
tion must be passed on to OnSysCommand. Any command values added by an
application must be processed by the application and cannot be passed to
OnSysCommand.

790 CWnd::OnSysDeadChar

See Also

Syntax

Parameters

Remarks

An application can carry out any system command at any time by passing a
WM_ SYSCOMMAND message to OnSysCommand.

Access (sometimes called "accelerator") keystrokes that are defined to select items
from the Control menu are translated into OnSysCommand calls; all other access
keystrokes are translated into WM_ COMMAND messages.

CWnd::Default, W~SYSCOMMAND

CWnd::OnSysDeadChar
afLmsg void OnSysDeadChar(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the dead-key character value.

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0-7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (l if it is an extended key, 0 otherwise).

Not used.

U sed internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the call, 0 if the
key is up).

Transition state (l if the key is being released, 0 if the key is
being pressed).

Called if CWnd has the input focus when the OnSysKeyUp or OnSysKeyDown
member functions are called. It specifies the character value of a dead key.

See Also

Syntax

Parameters

CWnd::OnSysKeyDown 791

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SYSDEADCHAR message.

CWnd: :OnSysKeyDown, CWnd: :OnSysKeyUp, CWnd: : Default,
W~SYSDEADCHAR, CWnd::OnDeadChar

CWnd::OnSysKeyDown
afLmsg void OnSysKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the virtual-key code of the key being pressed.

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Value

0--7

8

9-10

11-12

13

14

15

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (1 if it is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the message is
sent, 0 if the key is up).

Transition state (1 ifthe key is being released, 0 if the key is
being pressed).

For OnSysKeyDown calls, the key-transition bit (bit 15) is O. The context-code
bit (bit 13) is 1 if the ALT key is down while the key is pressed; it is 0 if the mes­
sage is sent to the active window because no window has the input focus.

792 CWnd::OnSysKeyUp

Remarks If the CWnd has the input focus, the OnSysKeyDown member function is called
when the user holds down the ALT key and then presses another key. If no window
currently has the input focus, the active window's OnSysKeyDown member func­
tion is called. The CWnd that receives the message can distinguish between these
two contexts by checking the context code in nFlags.

See Also

Syntax

Parameters

When the context code is 0, the WM_SYSKEYDOWN message received by
OnSysKeyDown can be passed to the TranslateAccelerator Windows function,
which will handle it as though it were a normal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even
if the active window does not have the input focus.

Because of auto-repeat, more than one OnSysKeyDown call may occur before the
WM_SYSKEYUP message is received. The previous key state (bit 14) can be
used to determine whether the OnSysKeyDown call indicates the first down transi­
tion or a repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT
and the right CONTROL keys on the main section of the keyboard; the INSERT,

DELETE, HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the
left of the numeric keypad; and the slash (/) and ENTER keys in the numeric key­
pad. Some other keyboards may support the extended-key bit in nFlags.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SYSKEYDOWN message.

: : TranslateAccelerator, WM_ SYSKEYUP, CWnd: :Default,
W~SYSKEYDOWN

CWnd::OnSysKeyUp
afLmsg void OnSysKeyUp(UlNT nChar, UINT nRepCnt, UINT nFlags);

nChar
Specifies the virtual-key code of the key being pressed.

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition code, previous key state, and context
code, as shown in the following list:

Remarks

Value

0-7

8

9-10

11-12

13

14

15

CWnd::OnSysKeyUp 793

Description

Scan code (OEM-dependent value). Low byte of high-order
word.

Extended key, such as a function key or a key on the numeric
keypad (l if it is an extended key; otherwise 0).

Not used.

Used internally by Windows.

Context code (l if the ALT key is held down while the key is
pressed, 0 otherwise).

Previous key state (1 if the key is down before the message is
sent, 0 ifthe key is up).

Transition state (I if the key is being released, 0 if the key is
being pressed).

For OnSysKeyUp calls, the key-transition bit (bit 15) is 1. The context-code bit
(bit 13) is 1 if the ALT key is down while the key is pressed; it is 0 ifthe mes­
sage is sent to the active window because no window has the input focus.

If the CWnd has the focus, the OnSysKeyUp member function is called when the
user releases a key that was pressed while the ALT key was held down. If no win­
dow currently has the input focus, the active window's OnSysKeyUp member
function is called. The CWnd that receives the call can distinguish between these
two contexts by checking the context code in nFlags.

When the context code is 0, the WM_ SYSKEYUP message received by
OnSysKeyUp can be passed to the TranslateAccelerator Windows function,
which will handle it as though it were a normal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even
if the active window does not have the input focus.

For IBM Enhanced 101- and l02-key keyboards, enhanced keys are the right ALT

and the right CONTROL keys on the main section of the keyboard; the INSERT,

DELETE, HOME, END, PAGE UP, PAGE DOWN, and ARROW keys in the clusters to the
left of the numeric keypad; and the slash (/) and ENTER keys in the numeric key­
pad. Some other keyboards may support the extended-key bit in nFlags.

794 CWnd::OnTimeChange

See Also

Syntax

Remarks

See Also

For non-USA Enhanced 102-key keyboards, the right ALT key is handled as a CON­

TROL-ALT key. The following shows the sequence of messages and calls that result
when the user presses and releases this key:

Sequence

1.

2.

3.

4.

Function accessed

W~KEYDOWN

W~KEYDOWN

W~KEYUP

W~SYSKEYUP

Message passed

VILCONTROL
VILMENU
VILCONTROL
VILMENU

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~SYSKEYUP message.

: : TranslateAccelerator, WM_SYSKEYDOWN, CWnd: :Default,
WM_SYSKEYUP

CWnd::OnTimeChange
afLmsg void OnTimeChangeO;

Called after the system time is changed.

Have any application that changes the system time send this message to all top­
level windows. To send the W~ TIME CHANGE message to all top-level win­
dows, an application can use the SendMessage Windows function with the h Wnd
parameter set to OxFFFF.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ TIME CHANGE message.

: :SendMessage, CWnd: :Default, WM_ TIME CHANGE

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

CWnd::OnVKeyToltem 795

CWnd::OnTimer
afLmsg void OnTimer(UINT nIDEvent);

nIDEvent
Specifies the identifier of the timer.

Called after each interval specified in the SetTimer member function used to in­
stall a timer.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the WM_ TIMER
message.

CWnd::SetTimer, W~ TIMER, CWnd::Default

CWnd::OnVKeyToltem
afLmsg int OnVKeyToItem(UINT nKey, CWnd* pListBox, UINT nlndex);

nKey
Specifies the virtual-key code of the key that the user pressed.

pListBox
Specifies a pointer to the list box. The pointer may be temporary.

nlndex
Specifies the current caret position.

If the CWnd owns a list box with the LBS_ W ANTKEYBOARDINPUT style,
the list box will send the W~ VKEYTOITEM message in response to a
WM_KEYDOWN message.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ VKEYTOITEM message.

796 CWnd::OnVScroll

Return Value

See Also

Syntax

Parameters

Specifies the action that the application performed in response to the message. A
return value of -2 indicates that the application handled all aspects of selecting the
item and wants no further action by the list box. A return value of -1 indicates that
the list box should perform the default action in response to the keystroke. A re­
turn value of 0 or greater specifies the index of an item in the list box and indicates
that the list box should perform the default action for the keystroke on the given
item.

WM_KEYDOWN, WM_ VKEYTOITEM, CWnd::Default

CWnd::OnVScroll
afLIDsg void OnVScroll(UINT nSBCode, UINT nPos, CWnd* pScrollBar);

nSBCode
Contains a scroll-bar code that specifies the user's scrolling request. This para­
meter can be one of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_ THUMBPOSITION

SB_ THUMBTRACK

nPos

Description

Scroll to bottom.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to the absolute position. The current
position is provided in nPos.

Drag scroll box to specified position. The
current position is provided in nPos.

Scroll to top.

Contains the scroll-box position if the scroll-bar code is
SB_ THUMB POSITION; otherwise, not used.

Remarks

See Also

Syntax

Parameters

CWnd::OnVScroIiClipboard 797

pScrollBar
If the message is sent by a scroll-bar control, pScrollBar identifies the control.
If the message is sent as a result of the user clicking a pop-up window's scroll
bar, pScrollBaris not used. The pointer may be temporary.

Called when the user clicks a vertical scroll bar.

OnVScroll typically is used by applications that give some feedback while the
scroll box is being dragged.

If On VScroll scrolls the contents of CWnd, it must also reset the position of the
scroll box by using the SetScrollPos member function.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
W~ VSCROLL message.

CWnd::SetScrollPos, CWnd::OnHScroll, WM_ VSCROLL, CWnd::Default

CWnd::OnVScroIIClipboard
afx_msg void OnVScrollClipboard(CWnd* pClipAppWnd, UINT nSBCode,

UINT nPos);

pClipApp Wnd
Specifies a pointer to a Clipboard-viewer window. The pointer may be tem­
porary.

nSBCode
Specifies one of the following scroll-bar codes:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

Description

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

798 CWnd::OnWinlniChange

Remarks

See Also

Syntax

Parameters

Remarks

Value

SB_ THUMBPOSITION

nPos

Description

Scroll to the absolute position. The current
position is provided in nPos.

Scroll to upper left.

Contains the scroll box position if the scroll-bar code is
SB_ THUMB POSITION; otherwise, nPos is not used.

If the CWnd owns the Clipboard, the On VScrollClipboard member function is
called by the Clipboard viewer when the Clipboard data has the
CF _ OWNERDISPLA Y format and there is an event in the Clipboard viewer's
vertical scroll bar. On VScrollClipboard should scroll the Clipboard image, invali­
date the appropriate section, and update the scroll-bar values.

The Clipboard owner should use the Invalidate or InvalidateRect member func­
tion or repaint as desired. The scroll-bar position should also be reset.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ VSCROLLCLIPBOARD message.

CWnd: :Invalidate, CWnd: :OnHScrollClipboard, CWnd: : InvalidateRect,
WM_ VSCROLLCLIPBOARD, CWnd::Default

CWnd::OnWinlniChange
afLIDsg void OnWinIniChange(LPSTR IpSection);

IpSection
Points to a string that specifies the name of the section that has changed (the
string does not include the square brackets).

Called after a change has been made to the Windows initialization file, WIN.INI.

To send the WM_ WININICHANGE message to all top-level windows, an appli­
cation can use the SendMessage Windows function with the h Wnd parameter set
to OxFFFF.

If an application changes many different sections in WIN.INI at the same time, the
application should send one WM_ WININICHANGE message with IpSection set

See Also

Syntax

Remarks

Return Value

See Also

CWnd::OpenClipboard 799

to NULL. Otherwise, an application should send WM_ WININICHANGE each
time it makes a change to WIN.lNI.

If an application receives an OnWinlniChange call with IpSection set to NULL,
the application should check all sections in WIN.INI that affect the application.

This message-handler member function calls the Default member function.
Override this member function in your derived class to handle the
WM_ WININICHANGE message.

::SendMessage, ::SystemParameterslnfo, W~ WININICHANGE,
CWnd: :Default

CWnd::OpenClipboard
BOOL OpenClipboardO;

Opens the Clipboard. Other applications will not be able to modify the Clipboard
until the Close Clipboard Windows function is called.

The current CWnd object will not become the owner of the Clipboard until the
EmptyClipboard Windows function is called.

TRUE if the Clipboard is opened via CWnd, or FALSE if another application or
window has the Clipboard opened.

:: Close Clipboard, : :EmptyClipboard, : :OpenClipboard

800 CWnd::Openlcon

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CWnd::Openlcon
BOOL OpenlconO;

Activates and displays a minimized (iconic) window. Windows restores the win­
dow to its original size and position.

TRUE if the function is successful; otherwise FALSE.

::OpenIcon, CWnd::CloseWindow

CWnd::PostMessage
BOOL PostMessage(UINT message, UINT wParam = 0, LONG lParam = 0);

message
Specifies the message to be posted.

wParam
Specifies additional message information. The content of this parameter de­
pends on the message being posted.

lParam
Specifies additional message information. The content of this parameter de­
pends on the message being posted.

Places a message in the current CWnd object's message queue, and then returns
without waiting for the corresponding window to process the message. Messages
in a message queue are retrieved by calls to the GetMessage or PeekMessage
Windows functions.

An application should never use the PostMessage member function to send a mes­
sage to a control; it should use SendDigItemMessage.

The Windows PostMessage function can be used to access another application.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

CWnd::ReleaseDC 801

TRUE if the message is posted; otherwise FALSE.

: : GetMessage, : :PeekMessage, : :PostMessage, : :PostAppMessage,
CWnd: :SendMessage, CW nd: :SendDlgltemMessage

CWnd::PreTranslateMessage
Protected:

virtual BOOL PreTranslateMessage(MSG* pMsg);

pMsg
Points to a MSG structure that contains the message to process.

U sed by class CWinApp to translate window messages before they are dispatched
by the DispatchMessage Windows function.

TRUE if the message is translated and should not be dispatched; FALSE if the
message was not translated and should be dispatched.

: :TranslateMessage, : :IsDialogMessage, CWinApp: :PreTranslateMessage

CWnd::ReleaseDC
int ReleaseDC(CDC* pDC);

pDC
Identifies the device context to be released.

Releases a device context, freeing it for use by other applications. The effcct of the
ReleaseDC member function depends on the device-context type. It only frees
common and window device contexts. It has no effect on class or private device
contexts.

802 CWnd::ScreenToClient

Return Value

See Also

Syntax

Parameters

Remarks

See Also

The application must call the ReleaseDC member function for each call to the
GetWindowDC member function and for each call to the GetDC member func­
tion that retrieves a common device context.

Specifies whether the device context is released. It is 1 if the device context is re­
leased; otherwise o.

CWnd: :GetDC, CWnd: :GetWindowDC, : : ReleaseDC

CWnd::ScreenToClient
void ScreenToClient(LPPOINT IpPoint) const;

void ScreenToClient(LPRECT IpRect) const;

IpPoint
Points to a CPoint or POINT structure that contains the screen coordinates to
be converted.

IpRect
Points to a CRect or RECT structure that contains the screen coordinates to be
converted.

Converts the screen coordinates of a given point or rect on the display to client
coordinates.

The ScreenToClient member function uses CWnd and the screen coordinates
given in IpPoint or IpRect to compute client coordinates, and then replaces the
screen coordinates with the client coordinates. The new coordinates are relative to
the upper-left comer of the CWnd client area.

The Screen To Client formula assumes the given point is in screen coordinates.

CWnd: :ClientToScreen : : Screen To Client

Syntax

Parameters

Remarks

CWnd::ScroIiWindow 803

CWnd: :ScrollWindow
void ScrollWindow(int xAmount, int yAmount, LPRECT IpRect = NULL,

LPRECT IpClipRect = NULL);

xAmount
Specifics the amount (in device units) to scroll in the x-axis direction.

yAmount
Specifies the amount (in device units) to scroll in the y-axis direction.

IpRect
Points to a CRect or RECT structure that specifies the portion of the client area
to be scrolled. If IpRect is NULL, the entire client area is scrolled.

IpClipRect
Points to a CRect or RECT structure that specifies the clipping rectangle to be
scrolled. Only bits inside this rectangle are scrolled. If IpClipRect is NULL, the
entire window is scrolled.

Scrolls the current CWnd object by moving the contents of the window's client
area the number of units specified by xAmount along the screen's x-axis and the
number of units specified by yAmount along the y-axis. The scroll moves right if
xAmount is positive and left if it is negative. The scroll moves down if yAmount is
positive and up if it is negative.

If the caret is in the CWnd being scrolled, ScrollWindow automatically hides the
caret to prevent it from being erased, then restores the caret after the scroll is
finished. The caret position is adjusted accordingly.

The area uncovered by the ScrollWindow member function is not repainted, but is
combined into the current CWnd object's update region. The WM_PAINT mes­
sage will be sent, notifying it that the region needs repainting. To repaint the un­
covered area at the same time the scrolling is done, call the Update Window
member function immediately after calling ScrollWindow.

If IpRect is NULL, the positions of any child windows in the window are offset by
the amount specified by xAmount and yAmount, and any invalid (unpainted) areas
in the CWnd are also offset. ScrollWindow is faster when IpRect is NULL.

804 CWnd::SendDlgltemMessage

See Also

Syntax

Parameters

Remarks

Return Value

See Also

If lpRect is not NULL, the positions of child windows are not changed, and in­
valid areas in CWnd are not offset. To prevent updating problems when lpRect is
not NULL, call the UpdateWindow member function to repaint CWnd before
calling Scroll Window.

CWnd::UpdateWindow, ::ScrollWindow

CWnd::SendDlgltemMessage
LONG SendDlgItemMessage(int nID, UINT message, UINT wParam = 0,

LONG lParam = 0);

nID
Specifies the integer identifier of the dialog item that is to receive the message.

message
Specifies the message value.

wParam
Specifies additional message information. The content of this parameter de­
pends on the message being sent.

lParam
Specifies additional message information. The content of this parameter de­
pends on the message being sent.

Sends a message to the specified control.

The SendDIgItemMessage member function does not return until the message has
been processed.

Using SendDIgItemMessageis identical to obtaining a CWnd* to the given con­
trol and calling the SendMessage member function.

Specifies the value returned by the control's window procedure, or 0 if the control
identifier is not valid.

CWnd: :SendMessage, : :SendDIgItemMessage

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

CWnd::SetActiveWindow 805

CWnd::SendMessage
LONG SendMessage(UINT message, UINT wParam = 0, LONG IParam = 0);

message
Specifies the message to be sent.

wParam
Specifies additional message information. The content of this parameter de­
pends on the message being sent.

IParam
Specifies additional message information. The content of this parameter de­
pends on the message being sent.

Sends a message to a window or windows. The SendMessage member function
calls the window procedure for the current CWnd object and does not return until
that window procedure has processed the message. This is in contrast to the
PostMessage member function which places the message into the CWnd message
queue and returns immediately.

The result returned by the invoked window procedure; its value depends on the
message being sent.

: :InSendMessage, CWnd: :PostMessage, CWnd: :SendDlgItemMessage,
: :SendMessage

CWnd::SetActiveWindow
CWnd* SetActiveWindowO;

Makes CWnd the active window.

The SetActiveWindow member function should be used with care since it
allows an application to arbitrarily take over the active window and input focus.
Normally, Windows takes care of all activation.

806 CWnd::SetCapture

Return Value

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

The identity of the window that was previously active.

The returned pointer may be temporary, and should not be stored.

: :SetActive Window, CWnd: : GetActive Window

CWnd::SetCapture
CWnd* SetCaptureO;

Causes all subsequent mouse input to be sent to the current CWnd object, regard­
less of the position of the cursor.

When CWnd no longer requires all mouse input, the application should call the
ReleaseCapture Windows function so that other windows can receive mouse
input.

A pointer to the window object that previously received all mouse input. It is
NULL if there is no such window. The returned pointer may be temporary, and
should not be stored.

::ReleaseCapture, ::SetCapture, CWnd::GetCapture

CWnd::SetCaretPos
static void SetCaretPos(POINT point);

point
Specifies the new logical x- and y-coordinates of the caret.

Moves the caret to the position given by logical coordinates specified by point.
Logical coordinates are relative to the client area and are affected by the mapping
mode, so the exact position in pixels depends on this mapping mode.

See Also

Syntax

Remarks

Return Value

See Also

CWnd::SetClipboardViewer 807

The SetCaretPos member function moves the caret only if it is owned by a win­
dow in the current task. SetCaretPos moves the caret whether or not the caret is
hidden.

The caret is a shared resource. A CWnd should not move the caret if it does not
own the caret.

CWnd::GetCaretPos, ::SetCaretPos

CWnd::SetClipboardViewer
HWND SetClipboardViewerO;

Adds CWnd to thc Clipboard-viewer chain and returns a handle to the next win­
dow in the chain.

A CWnd that is part of the Clipboard-viewer chain must respond to
WM_DRA WCLIPBOARD, WM_CHANGECBCHAIN, and
W~DESTROY messages, and pass the message to the next window in the
chain.

This member function sends a WM_DRAWCLIPBOARD message to the
CWnd. Since the handle to the next window in the Clipboard-viewer chain has
not yet been returned, the application should be careful to not pass on the
W~DRA WCLIPBOARD message that it receives during the call to
SetClipboardViewer.

If an application wishes to remove itself from the Clipboard-viewer chain, it must
call the Change Clipboard Chain member function.

A handle to the next window in the Clipboard-viewer chain. This handle should be
saved in static memory and used to pass on Clipboard-viewer chain messages.

CWnd:: Change Clipboard Chain, : :SetClipboardViewer

808 CWnd::SetDlgltemlnt

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

CWnd::SetDlgltemlnt
void SetDlgItemInt(int nID, UINT n Value, BOOL bSigned = TRUE);

nID
Specifies the integer ID of the control to be modified.

nValue
Specifies the value to be set.

bSigned
Specifies whether or not the integer value is signed.

Sets the text of a control to the string that represents the integer value given by
n Value. The SetDlgItemInt member function converts n Value to a string that con­
sists of decimal digits, and then copies the string to the control.

If bSigned is TRUE, n Value is assumed to be signed. If n Value is signed and less
than 0, the function places a minus sign before the first digit in the string.

CWnd::GetDlgItemInt, ::SetDlgItemInt, WM_SETTEXT

CWnd::SetDlgltemText
void SetDlgItemText(int nID, const char FAR* IpString);

nID
Specifies the integer ID of the control whose text is to be set.

IpString
Points to a CString or null-terminated string that is to be copied to the control.

Sets the caption or text of a control owned by CWnd.

::SetDigItemText, W~SETTEXT, CWnd::GetDigItemText

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

See Also

CWnd::SetFont 809

CWnd::SetFocus
CWnd* SetFocusO;

Claims the input focus. The input focus directs all subsequent keyboard input to
CWnd. The window, if any, that previously had the input focus loses it.

The SetFocus member function sends a W~KILLFOCUS message to the
CWnd that loses the input focus and a WM_SETFOCUS message to the CWnd
that receives the input focus. It also activates either the CWnd or its parent.

If the current CWnd is active but doesn't have the focus (that is, no window has
the focus), any key pressed will produce the messages WM_SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP.

A pointer to the window object that previously had the input focus. It is NULL if
there is no such window. The returned pointer may be temporary and should not
be stored.

: :SetFocus, CWnd: : GetFocus

CWnd::SetFont
void SetFont(CFont* pFont, BOOL bRedraw = TRUE);

pFont
Specifies the new font.

bRedraw
If TRUE, redraw the CWnd; otherwise FALSE.

Sets the CWnd current font to CFont. If bRedraw is TRUE, CWnd will also be
redrawn.

CWnd::GetFont, WM_SETFONT

810 CWnd::SetMenu

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

CWnd::SetMenu
BOOL SetMenu(CMenu* pMenu);

pMenu
Identifies the new menu. If this parameter is NULL, the current menu is
removed.

Sets the current menu to the specified menu.

SetMenu will not destroy a previous menu. An application should call the
CMenu::DestroyMenu member function to accomplish this task.

TRUE if the menu is changed; otherwise FALSE.

CMenu::DestroyMenu, CMenu::LoadMenu, ::SetMenu, CWnd::GetMenu

CWnd::SetParent
CWnd* SetParent(CWnd* pWndNewParent);

p WndNewParent
Identifies the new parent window.

Changes the parent window of a child window.

If the CWnd is visible, Windows performs the appropriate redrawing and
repainting.

A pointer to the previous parent window object. The returned pointer may be
temporary.

::SetParent, CWnd::GetParent

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::SetScroIiPos 811

CWnd::SetRedraw
void SetRedraw(BOOL bRedraw = TRUE);

bRedraw
Specifies the state of the redraw flag. If this parameter is TRUE, the redraw
flag is set; if FALSE, the flag is cleared.

An application calls SetRedraw to allow changes to be redrawn, or to prevent
changes from being redrawn.

This member function sets or clears the redraw flag. While the redraw flag is
cleared, the contents will not be updated after each change, and will not be re­
painted until the redraw flag is set. For example, an application that needs to add
several items to a list box can clear the redraw flag, add the items, then set the re­
draw flag. Finally, the application can call the Invalidate or InvalidateRect mem­
ber function to cause the list box to be repainted.

CWnd::SetScroIiPos
int SetScrollPos(int nBar, int nPos, BOOL bRedraw = TRUE);

nBar
Specifies the scroll bar to be set. It can be one of the following values:

Value

SB_CTL

nPos

Meaning

Sets the position of a scroll-bar control. In this case, the
CWnd must be a scroll-bar control.

Sets the CWnd horizontal scroll-bar position.

Sets the CWnd vertical scroll-bar position.

Specifies the new position. It must be within the scrolling range.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the new position.
If bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn.

812 CWnd::SetScroIiRange

Remarks Sets the current position of a scroll box to that specified by nPos and, if specified,
redraws the scroll bar to reflect the new position.

Return Value

See Also

Syntax

Parameters

Remarks

Setting bRedraw to FALSE is useful whenever the scroll bar will be redrawn by a
subsequent call to another function.

The previous position of the scroll box.

: :SetScrollPos, CWnd: : GetScrollPos

CWnd::SetScroIIRange
void SetScrollRange(int nBar, int nMinPos, int nMaxPos,

BOOL bRedraw = TRUE);

nBar
Specifies the scroll bar to be set. It can be one of the following values:

Value

SB_CTL

nMinPos

Meaning

Sets the position of a scroll-bar control. In this case, the
CWnd must be a scroll-bar control.

Sets the CWnd horizontal scroll-bar position.

Sets the CWnd vertical scroll-bar position.

Specifies the minimum scrolling position.

nMaxPos
Specifies the maximum scrolling position.

bRedraw
Specifies whether or not the scroll bar should be redrawn to reflect the change.
If bRedraw is TRUE, the scroll bar is redrawn; if FALSE, it is not redrawn.

Sets minimum and maximum position values for the given scroll bar. It can also
be used to hide or show standard scroll bars by setting nMinPos and nMaxPos to O.

An application should not call this function to hide a scroll bar while processing a
scroll-bar notification message.

See Also

Syntax

Remarks

Return Value

See Also

Syntax

Parameters

CWnd::SetTimer 813

If SetScrollRange immediately follows the SetScrollPos member function, the
bRedraw parameter in the SetScrollPos member function should be set to FALSE
to prevent the scroll bar from being drawn twice.

The difference between the values specified by nMinPos and nMaxPos must not
be greater than 32,767.

CWnd: :SetScrollPos, : :SetScrollRange, CWnd: : GetScrollRange

CWnd::SetSysModaIWindow
CWnd* SetSysModalWindowO;

Makes the CWnd a system-modal window.

If another window is made the active window (for example, the system-modal win­
dow creates a dialog box that becomes the active window), the active window be­
comes the system-modal window. When the original window becomes active
again, it is system modal. To end the system-modal state, destroy the system­
modal window.

A pointer to the window object that was previously the system-modal window.
The returned pointer may be temporary.

::SetSysModaIWindow, CWnd: : GetSysModalWindow

CWnd::SetTimer
UINT SetTimer(int nIDEvent, UINT nElapse,

UINT (FAR PASCAL EXPORT* IpjhTimer)(HWND, UINT, int, DWORD));

nIDEvent
Specifies a nonzero timer identifier.

nElapse
Specifies the time-out value, in milliseconds.

814 CWnd::SetWindowPos

Remarks

Return Value

See Also

Syntax

Parameters

lpfnTimer
Specifies the address of the application-supplied TimerProc callback function
that processes the ~ TIMER messages. If this parameter is NULL, the
W~ TIMER messages are handled by the CWnd.

Installs a system timer. A time-out value is specified, and every time a time-out oc­
curs, the system posts a W~ TIMER message to the installing application's mes­
sage queue or passes the message to an application-supplied TimerProc callback
function.

Timers are a limited global resource; therefore, it is important that an application
check the value returned by the SetTimer member function to verify that a timer
is actually available.

The lpfnTimer callback function need not be named TimerProc, but it must be de­
fined as follows, and return o.
UINT FAR PASCAL EXPORT TimerProc(

HWNO hWnd, Ilhandle of CWnd that called SetTimer
UINT nMsg, IIWM_TIMER
int nIOEvent Iitimer identification
OWORO dwTime Iisystem time

) ;

The timer identifier to use in KillTimer if the function is successful; otherwise O.

WM_ TIMER, CWnd::KillTimer, ::SetTimer, CWnd::FromHandle

CWnd::SetWindowPos
void SetWindowPos(const CWnd* p WndlnsertAfter, int x, int y, int ex, int ey,

UINT nFlags);

p WndlnsertAfter

x

Identifies a CWnd in the window-manager's list that will precede the posi­
tioned window.

Specifies the x-coordinate of the new upper-left comer.

Remarks

CWnd::SetWindowPos 815

y
Specifies the y-coordinate of the new upper-left comer.

ex
Specifies the new window's width.

ey
Specifies the new window's height.

nFlags
Specifies sizing and positioning options. It can be a combination of the follow­
ing values:

Value

SWP _DRAWFRAME

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOMOVE

SWP _NOREDRAW

SWP_NOSIZE

SWP _SHOWWINDOW

Meaning

Draws a frame (defined in the CWnd class
description) around the window.

Hides the CWnd.

Does not activate the CWnd.

Retains current position (ignores the x and y
parameters).

Does not redraw changes.

Retains current size (ignores the ex and ey
parameters).

Retains current ordering (ignores
pWndlnsertAfter).

Displays the CWnd.

Changes the size, position, and ordering of child, pop-up, and top-level windows.
Child, pop-up, and top-level windows are ordered according to their appearance
on the screen; the topmost window receives the highest rank, and it is the first win­
dow in the list. This ordering is recorded in a window list.

If the SWP _NOACTIV ATE flag is not specified, the p WndlnsertAfter parameter
is ignored and CWnd is activated and placed at the top of the Z order, in front of
any other windows.

If the SWP _NOZORDER flag is not specified, Windows places CWnd in the
position following the window identified by p WndlnsertAfter. If p WndlnsertAfter
is &wndTop, Windows places CWnd at the top of the list. If p WndlnsertAfter is
set to &wndBottom, Windows places CWnd at the bottom of the list.

816 CWnd::SetWindowText

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flag is set, CWnd
cannot be moved or sized.

All coordinates for child windows are relative to the upper-left comer of the parent
window's client area.

: :DeferWindowsPos, : :SetWindowPos

CWnd::SetWindowText
void SetWindowText(const char FAR* lpString);

lpString
Points to a CString or null-terminated string.

Sets the caption title (if one exists) to the specified text. If the CWnd is a control,
the SetWindowText member function sets the text within the control instead of
within the caption. This function sends a WM_SETTEXT message to CWnd.

CWnd: : GetWindowText, ::SetWindowText

CWnd::ShowCaret
void ShowCaretO;

Shows the caret on the display at the caret's current position. Once shown, the
caret begins flashing automatically.

The ShowCaret member function shows the caret only if it has a current shape
and has not been hidden two or more times in a row. If the caret is not owned by
CWnd, the caret is not shown.

Hiding the caret is accumulative. If the HideCaret member function has been
called five times in a row, ShowCaret must be called five times to show the caret.

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

CWnd::ShowScroIiBar 817

The caret is a shared resource. The CWnd should show the caret only when it has
the input focus or is active.

CWnd::HideCaret, ::ShowCaret

CWnd: :ShowOwnedPopups
void ShowOwnedPopups(BOOL bShow = TRUE);

bShow
Specifies whether pop-up windows are hidden. It is TRUE if all hidden pop-up
windows should be shown; it is FALSE if all visible pop-up windows should
be hidden.

Shows or hides all pop-up windows associated with the current CWnd object.

: :ShowOwnedPopups

CWnd::ShowScroIiBar
void ShowScrollBar(UINT nEar, BOOL bShow = TRUE);

nEar
Specifies whether the scroll bar is a control or part of a window's nonclient
area. If it is part of the nonclient area, nEar also indicates whether the scroll bar
is positioned horizontally, vertically, or both. It must be one of the following
values:

Value

SB_BOTH

SB_CTL

SB_HORZ

SB_VERT

Meaning

Specifies the CWnd's horizontal and vertical scroll bars.

Specifies that the CWnd is a scroll-bar control.

Specifies the CWnd's horizontal scroll bar.

Specifies the CWnd's vertical scroll bar.

818 CWnd::ShowWindow

Remarks

See Also

Syntax

Parameters

bShow
Specifies whether or not Windows hides the scroll bar. If bShow is FALSE, the
scroll bar is hidden. Otherwise, the scroll bar is displayed.

Displays or hides a scroll bar, depending on the value of bShow. If bShow is
TRUE, the scroll bar is displayed; if FALSE, the scroll bar is hidden.

::ShowScrollBar

CWnd::ShowWindow
BOOL ShowWindow(int nCmdShow);

nCmdShow
Specifies how the CWnd is to be shown. It must be one of the following values:

Value

SW_RESTORE

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

SW_SHOWNA

Meaning

Hides CWnd and passes activation to
another window.

Minimizes CWnd and activates the
top-level window in the window­
manager's list.

Same as SW_SHOWNORMAL.

Activates CWnd and displays it in its
current size and position.

Activates CWnd and displays it as a
maximized window.

Activates CWnd and displays it as a
minimized (iconic) window.

Displays CWnd as minimized (iconic)
window. The window that is currently
active remains active.

Displays CWnd in its current state.
The window that is currently active
remains active.

Remarks

Return Value

See Also

Syntax

Remarks

See Also

Value

SW _SHOWNOACTIVATE

SW _SHOWNORMAL

CWnd::UpdateWindow 819

Meaning

Displays CWnd in its most recent size
and position. The window that is
currently active remains active.

Activates and displays CWnd. If
CWnd is minimized or maximized,
Windows restores it to its original size
and position.

Displays or removes the CWnd, as specified by nCmdShow.

ShowWindow must be called only once per program with
CWinApp::m_nCmdShow. Subsequent calls to ShowWindow must use one of
the values listed above, instead of the one specified by m_nCmdShow.

Specifies the previous state of the CWnd. It is TRUE if the CWnd was pre­
viously visible; FALSE if the CWnd was previously hidden.

::ShowWindow

CWnd::UpdateWindow
void UpdateWindowO;

Updates the client area by sending a WM_PAINT message if the update region is
not empty. The UpdateWindow member function sends a WM_PAINT message
directly, bypassing the application queue. If the update region is empty,
WM_PAINT is not sent.

::UpdateWindow

820 CWnd::ValidateRect

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

CWnd::ValidateRect
void ValidateRect(LPRECT IpRect);

IpRect
Points to a CRect or RECT structure that contains the rectangle (in client
coordinates) to be removed from the update region.

Validates the client area within the given rectangle by removing the rectangle from
the update region of the given window. If IpRect is NULL, the entire window is
validated.

The BeginPaint member function automatically validates the entire client area.
Neither the ValidateRect nor ValidateRgn member function should be called if a
portion of the update region needs to be validated before WM_ PAINT is next
sent.

Windows continues to send WM_PAINT messages until the current update re­
gion is validated.

CWnd: :BeginPaint, :: ValidateRect, CWnd:: ValidateRgn

CWnd::ValidateRgn
void ValidateRgn(CRgn* pRgn);

pRgn
Identifies a region that defines the area to be removed from the update region.

Validates the client area within the given region by removing the region from the
current update region of the given window. If pRgn is NULL, the entire window is
validated.

The given region must have been created previously by a region function. The re­
gion coordinates are assumed to be client coordinates.

:: ValidateRgn

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

CWnd::WindowProc 821

CWnd::WindowFromPoint
static CWnd* WindowFromPoint(POINT point);

point
Specifies a CPoint or POINT data structure that defines the point to be
checked.

Identifies the window that contains the given point; point must specify the screen
coordinates of a point on the screen.

A pointer to the window object in which the point lies. It is NULL if no window
exists at the given point. The returned pointer may be temporary.

:: WindowFromPoint, CWnd::ChiidWindowFromPoint

CWnd::WindowProc
protected: virtual LONG WindowProc(UINT message, UINT wParam,

LONG lParam);

message
Specifies the Windows message to be processed.

wParam
Provides additional information used in processing the message. The parameter
value depends on the message.

lParam
Provides additional information used in processing the message. The parameter
value depends on the message.

Provides a Windows procedure (WindowProc) for a CWnd object. It dispatches
messages through the window's message map.

The return value depends on the message.

822 CWnd::m_hWnd

Data Members

Remarks

See Also

Remarks

See Also

Remarks

See Also

CWnd::m_hWnd
The handle ofthe Windows window attached to this CWnd. The DLhWnd data
member is a public variable of type HWND.

CWnd::Attach, CWnd::Detach, CWnd::FromHandle

CWnd::wndBottom
This is a special static CWnd that has an HWND of 1. It is only used with the
p WndlnsertAfter parameter of the SetWindowPos member function to indicate
that the CWnd being operated on should be moved to the bottom of the window
list. wndBottom is a public variable of type static const CWnd.

CWnd::SetWindowPos

CWnd::wndTop
This is a special static CWnd that has an HWND of O. It is only used with the
pWndlnsertAfterparameter of the SetWindowPos member function to indicate
that the CWnd being operated on should be moved to the top of the window list.
wndTop is a public variable of type static const CWnd.

CWnd: :SetWindowPos

CWordArray 823

class CWordArray : public CObject

Public Members

The CWordArray class supports arrays of 16-bit
words.

The member functions of CWordArray are similar
to the member functions of class CObArray. Be­
cause of this similarity, you can use the CObArray reference documentation for
member function specifics. Wherever you see a CObject pointer as a function
parameter or return value, substitute a WORD.

CObject* CObArray::GetAt(int <nlndex>) canst;

for example, translates to

WORD CWardArray::GetAt(int <nlndex>) canst;

CWordArray incorporates the IMPLEMENT_SERIAL macro to support serial­
ization and dumping of its elements. If an array of words is stored to an archive,
either with the overloaded insertion operator or with the Serialize member func­
tion, each element is, in turn, serialized.

If you need a dump of individual elements in the array, you must set the depth of
the dump context to 1 or greater.

#include <afxcoll.h>

Construction/Destruction
CWordArray

-CWordArray

Bounds
GetSize

GetUpperBound

SetSize

Constructs an empty array for words.

Destroys a CWordArray object.

Gets number of elements in this array.

Returns the largest valid index.

Sets the number of elements to be contained in this
array.

824 CWordArray

Operations
FreeExtra

RemoveAll

Element Access
GetAt

SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the element
pointer within the array.

Sets the value for a given index, growing the array
if necessary.

Adds an element to the end of the array; grows the
array if necessary.

Inserts an element (or all the elements in another
array) at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

iostream Class List 829

iostream Class list

Abstract Stream Base Class
ios

Input Stream Classes
istream

ifstream

istream_ withassigll

istrstream

Output Stream Classes
ostream

of stream

ostream_ withassigll

ostrstream

Stream base class.

General-purpose input stream class and base class
for other input streams.

Input file stream class.

Input stream class for cill.

Input string stream class.

General-purpose output stream class and base class
for other output streams.

Output file stream class.

Output stream class for COllt, cerr, and clog.

Output string stream class.

Input/Output Stream Classes
iostream

fstream

strstream

stdiostream

General-purpose input/output stream class and
base class for other input/output streams.

Input/output file stream class.

Input/output string stream class.

Input/output class for standard I/O files.

830 iostream Class list

Stream Buffer Classes
streambuf

filebuf

strstreambuf

stdiobuf

Abstract stream buffer base class.

Stream buffer class for disk files.

Stream buffer class for strings.

Stream buffer class for standard 110 files.

Predefined Stream Initia/izer Class
Iostream_init Predefined stream initializer class.

filebuf 831

class filebuf : public streambuf

See Also

Public Members

The filebuf class is a derived class of streambufthat is specialized for buffered
disk file I/O. The buffering is managed entirely within the Microsoft iostream
Class Library. filebufmember functions call the run-time low-level 110 routines
(the functions declared in 10.H) such as _sopen, _read, and _ write.

The file stream classes, of stream, ifstream, and fstream, use filebuf member
functions to fetch and store characters. Some of these member functions are virtual
functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class de­
scription. The put area and the get area are always the same for filebuf objects.
Also, the get pointer and put pointers are tied; when one moves so does the other.

#include <fstream.h>

ifstream, of stream, streambuf, strstreambuf, stdiobuf

Construction/Destruction
filebuf

-filebuf

Operations
open

close

setmode

attach

Status/I nformati on
fd

iLopen

Constructs a filebuf object.

Destroys a filebuf object.

Opens a file and attaches it to the filebuf object.

Flushes any waiting output and closes the attached
file.

Sets the file's mode to binary or text.

Attaches the filebuf object to an open file.

Returns the stream's file descriptor.

Tests whether the file is open.

832 filebuf::attach

Member Functions

Syntax

Parameters

Remarks

Return Value

Syntax

Remarks

See Also

filebuf::attach
filebuf* attach(filedescfd);

fd
A file descriptor as returned by a call to the run-time function _open or
_ sopen. filedesc is a typedef equivalent to int.

Attaches this filebuf object to the open file specified by fd.

NULL when the stream is already attached to a file; otherwise it returns its own
address.

filebuf::close
filebuf* closeO;

This function flushes any waiting output, closes the file, and disconnects the file
from the filebuf object. If an error occurs, the function returns NULL and leaves
the filebuf object in a closed state. If there is no error, the function returns the
address of the filebuf object and clears its error state.

filebuf: :open

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

filebuf::filebuf 833

filebuf::fd
filed esc fdO const;

Returns the file descriptor associated with the filebuf object; filedesc is a typedef
equivalent to int. Its value is supplied by the underlying file system. The function
returns EOF if the object is not attached to a file.

filebuf: : attach

filebuf::filebuf
filebufO;

filebuf(filedescjd);

filebuf(filedescjd, char* pr, int nLength);

jd
A file descriptor as returned by a call to the run-time function _sopen. filedesc
is a typedef equivalent to int.

pr
Pointer to a previously allocated reserve area of length nLength.

nLength
The length (in bytes) of the reserve area.

The three filebuf constructors are described as follows:

Constructor

filebufO

filebuf(filedesc)

filebuf(filedesc, char*, int)

Description

Constructs a filebuf object without attaching
it to a file.

Constructs a filebuf object and attaches it to
an open file.

Constructs a filebuf object, attaches it to an
open file, and initializes it to use a specified
reserve area.

834 filebuf:: filebuf

Syntax

Remarks

Syntax

Remarks

See Also

Syntax

Parameters

filebuf::-filebuf
-fiIebufO;

Closes the attached file only if that file was opened by the open member function.

filebuf::is_ open
int iLopenO const;

Returns a nonzero value if this filebuf object is attached to an open disk file iden­
tified by a file descriptor; otherwise O.

filebuf: : open

filebuf::open
filebuf* open(const char* szName, int nMode, int nProt = filebuf: :openprot);

szName
The name of the file to be opened during construction.

nMode
An integer containing mode bits defined as ios enumerators that can be com­
bined with the OR (I) operator. See the of stream constructor for a list of the
enumerators.

nProt
The file protection specification; defaults to the static integer filebuf::openprot
that is equivalent to filebuf::sh_compat. The possible nProt values are as
follows:

Value

filebuf::slLcompat

filebuf::sh_none

Meaning

Compatibility share mode.

Exclusive mode-no sharing.

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Value

filebuf: :sh_ read

filebuf::sh_ write

Meaning

Read sharing allowed.

Write sharing allowed.

filebuf::setmode 835

The filebuf::sh_read and filebuf::sh_ write modes can be combined with the
logical OR (I) operator.

Opens a disk file and attaches it with this filebuf object. If the file is already open,
or if there is an error while opening the file, the function returns NULL; otherwise
it returns the filebuf address.

filebuf: :iL open, filebuf: : close, filebuf: :filebuf

filebuf::setmode
int setmode(int nMode = filebuf::text);

nMode
An integer that must be one of the static filebuf constants, as follows:

Value

filebuf: :text

filebuf:: binary

Meaning

Text mode (newline characters translated to and
from carriage return-linefeed pairs).

Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object.

The previous mode if there is no error; otherwise O.

ios binary manipulator, ios text manipulator

836 fstream

class fstream : public iostream
Description

See Also

Public Members

The fstream class is an iostream derivative specialized for combined disk file
input and output. Its constructors automatically create and attach a filebufbuffer
object.

The filebuf class documentation describes the get and put areas and their as­
sociated pointers. Although the filebuf object's get and put pointers are theoreti­
cally independent, the get area and the put area cannot both be active at the same
time. Therefore, when the stream's mode changes from input to output, the get
area is emptied and the put area is reinitialized. When the mode changes from out­
put to input, the put area is flushed and the get area is reinitialized.

#include <fstream.h>

ifstream, of stream, strstream, stdiostream, filebuf

Constructi on/Destructi on
fstream

-fstream

Operations
open

close

setbuf

setmode

attach

Constructs an fstream object.

Destroys an fstream object.

Opens a file and attaches it to the filebuf object
and thus to the stream.

Flushes any waiting output and closes the
stream's file.

Attaches the specified reserve area to the stream's
filebuf object.

Sets the stream's mode to binary or text.

Attaches the stream (through the filebuf object) to
an open file.

Status/Information
rdbuf

fd

iLopen

fstream 837

Gets the stream's filebuf object.

Returns the file descriptor associated with the
stream.

Tests whether the stream's file is open.

838 fstream::attach

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

fstream::attach
void attach(filedescfd);

fd
A file descriptor as returned by a call to the run-time function _open or
_sopen; filedesc is a typedef equivalent to int.

Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios: :failbit in the
stream's error state.

filebuf: : attach, fstream: :fd

fstream::close
void c1oseO;

Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf: :c1ose fails.

filebuf::c1ose, fstream::open, fstream::iLopen

Syntax

Remarks

See Also

Syntax

Parameters

fstream::fstream 839

fstream::fd
filed esc fdO const;

Returns the file descriptor associated with the stream. filedesc is a typedef equiv­
alent to int. Its value is supplied by the underlying file system.

filebuf::fd, fstream::attach

fstream::fstream
fstreamO;

fstream(const char* szName, int nMode, int nProt = filebuf::openprot);

fstream(filedesc jd);

fstream(filedescjd, char* pch, int nLength);

szName
The name of the file to be opened during construction.

nMode
An integer that contains mode bits defined as ios enumerators that can be com­
bined with the bitwise-OR (I) operator:

Value

ios::app

ios::ate

Meaning

The function performs a seek to the end of file. When
new bytes are written to the file, they are always
appended to the end, even if the position is moved with
the ostream::seekp function.

The function performs a seek to the end of file. When
the first new byte is written to the file, it is appended to
the end, but when subsequent bytes are written, they are
written to the current position.

840 fstream::fstream

Value

ios::in

ios::out

ios::trunc

ios::nocreate

ios::noreplace

ios::binary

Meaning

The file is opened for input. The original file (if it
exists), will not be truncated.

The file is opened for output.

If the file already exists, its contents are discarded. This
mode is implied if ios: :out is specified and ios: :ate,
ios::app, and ios:in are not specified.

If the file does not already exist, the function fails.

If the file already exists, the function fails.

Opens the file in binary mode (the default is text mode).

Note that there is no ios::in or ios::out default mode for fstream objects. You
must specify both modes if your fstream object must both read and write files.

nProt

fd

The file protection specification; defaults to the static integer filebuf: :openprot
that is equivalent to filebuf::sh_compat. The possible nProt values are as
follows:

Value

filebuf::sh_compat

filebuf: :slL none

filebuf::slLread

filebuf::sh_ write

Meaning

Compatibility share mode.

Exclusive mode-no sharing.

Read sharing allowed.

Write sharing allowed.

The filebuf::sh_read and filebuf::slL write modes can be combined with the
logical OR (I) operator.

A file descriptor as returned by a call to the run-time function _open or
_sopen. filedesc is a typedefequivalent to int.

pch
Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength
The length (in bytes) of the reserve area (0 = unbuffered).

Remarks

Syntax

Remarks

fstream:: fstream 841

The four fstream constructors are described as follows:

Constructor

fstreamO

fstream(const char*, int, int)

fstream(filed esc)

fstream(filedesc, char*, int)

Description

Constructs an fstream object without
opening a file.

Contructs an fstream object, opening the
specified file.

Constructs an fstream object that is
attached to an open file.

Constructs an fstream object that is
associated with a filebuf object. The
filebuf object is attached to an open file
and to a specified reserve area.

All fstream constructors construct a filebuf object. The first three use an inter­
nally allocated reserve area, but the fourth uses a user-allocated area. The user­
allocated area is not automatically released during destruction.

fstrea m: : fstrea m
-fstreamO;

Flushes the buffer, then destroys an fstream object, along with its associated
filebuf object. The file is closed only if it was opened by the constructor or by the
open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

842 fstream::is_ open

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

fstream::is_ open
int is_openO const;

Returns a nonzero value if this stream is attached to an open disk file identified by
a file descriptor; otherwise O.

filebuf::iLopen, fstream::open, fstream::c1ose

fstream::open
void open(const char* szName, int nMode, int nProt = filebuf::openprot);

szName
The name of the file to be opened during construction.

nMode
An integer containing mode bits defined as ios enumerators that can be com­
bined with the OR (I) operator. See the fstream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt
The file protection specification; defaults to the static integer
filebuf::openprot. See the fstream constructor for a list of the other allowed
values.

Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object
is already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If
the file is not found, then the ios: :failbit is set only if the ios: :nocreate mode
was used.

filebuf: : open, fstream: :fstream, fstream: : close, fstream: :is_ open

Syntax

Remarks

Syntax

Parameters

Remarks

fstream::setbuf 843

fstream::rdbuf
filebuf* rdbufO const;

Returns a pointer to the filebufbuffer object that is associated with this stream.
(Note that this is not the character buffer; the filebuf object contains a pointer to
the character area.)

fstream::setbuf
streambuf* setbuf(char* pch, int nLength);

pch
A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength
The length (in bytes) of the reserve area. A length of 0 indicates an unbuffered
stream.

Attaches the specified reserve area to the stream's filebuf object. If the file is open
and a buffer has already been allocated, the function returns NULL; otherwise it
returns a pointer to the filebuf cast as a streambuf. The reserve area will not be re­
leased by the destructor.

844 fstream::setmode

Syntax

Parameters

Remarks

Return Value

See Also

fstream::setmode
int setmode(int nMode = filebuf::text);

nMode
An integer that must be one of the static filebuf constants, as follows:

Value

filebuf::text

filebuf:: binary

Meaning

Text mode (newline characters translated to and from
carriage return-linefeed pairs).

Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be
called only after the file is opened.

The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

ios binary manipulator, ios text manipulator

ifstream 845

class ifstream : public istream
Description

See Also

Public Members

The ifstream class is an istream derivative specialized for disk file input. Its con­
structors automatically create and attach a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their as­
sociated pointers. Only the get area and the get pointer are active for the ifstream
class.

#include <fstream.h>

filebuf, streambuf, of stream, fstream

Construction/Destruction
ifstream

-ifstream

Operations
open

close

setbuf

setmode

attach

Status/Information
rdbuf

fd

iLopen

Constructs an ifstream object.

Destroys an ifstream object.

Opens a file and attaches it to the filebuf object
and thus to the stream.

Closes the stream's file.

Associates the specified reserve area to the
stream's filebuf object.

Sets the stream's mode to binary or text.

Attaches the stream (through the filebuf object) to
an open file.

Gets the stream's file buf 0 bj ect.

Returns the file descriptor associated with the
stream.

Tests whether the stream's file is open.

846 ifstream::attach

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

ifstream::attach
void attach(filedescfd);

fd
A file descriptor as returned by a call to the run-time function _open or
_ sop en; filed esc is a typedef equivalent to int.

Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios::failbit in the
stream's error state.

filebuf: : attach, ifstream: :fd

ifstream::close
void closeO;

Calls the close member function for the associated filebuf object. This function, in
turn, closes the file and disconnects the file from the filebuf object. The filebuf ob­
ject is not destroyed.

The stream's error state is cleared unless the call to filebuf::close fails.

filebuf::close, ifstream::open, ifstream::iLopen

Syntax

Remarks

See Also

Syntax

Parameters

ifstream::ifstream 847

ifstream::fd
filed esc fdO const;

Returns the file descriptor associated with the stream; filedesc is a typedef equiv­
alent to int. Its value is supplied by the underlying file system.

filebuf: :fd, ifstream: : attach

ifstrea m:: ifstrea m
ifstreamO;

ifstream(const char* szName, int nMode = ios::in,
int nProt = filebuf::openprot);

ifstream(filedescjd);

ifstream(filedescjd, char* pch, int nLength);

szName
The name of the file to be opened during construction.

nMode
An integer that contains mode bits defined as ios enumerators that can be com­
bined with the bitwise-OR (I) operator:

Value

ios::in

ios: :nocreate

ios::binary

Meaning

The file is opened for input (default).

If the file does not already exist, the function fails.

Opens the file in binary mode (the default is text mode).

Note that the ios::nocreate flag is necessary if you intend to test for the file's
existence (the usual case).

nProt
The file protection specification; defaults to the static integer filebuf::openprot
that is equivalent to filebuf::slLcompat. The possible nProt values are as
follows:

848 ifstream::ifstream

Remarks

fd

Value

filebuf: :slL compat

filebuf::sh_none

filebuf::sh_read

filebuf::sh_ write

Meaning

Compatibility share mode.

Exclusive mode-no sharing.

Read sharing allowed.

Write sharing allowed.

The filebuf::sh_read and filebuf::sh_ write modes can be combined with the
logical OR (I) operator.

A file descriptor as returned by a call to the run-time function _open or
_sopen; filedesc is a typedef equivalent to int.

pch
Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength
The length (in bytes) of the reserve area (0 = unbuffered).

The four jfstream constructors are described as follows:

Constructor

ifstreamO

ifstream(const char*, int, int)

ifstream(filedesc)

ifstream(filedesc, char*, int)

Description

Constructs an ifstream object
without opening a file.

Contructs an ifstream object,
opening the specified file.

Constructs an ifstream object that is
attached to an open file.

Constructs an ifstream object that is
associated with a filebuf object. The
filebuf object is attached to an open
file and to a specified reserve area.

All ifstream constructors construct a filebuf object. The first three use an inter­
nally allocated reserve area, but the fourth uses a user-allocated area.

Syntax

Remarks

Syntax

. Remarks

See Also

Syntax

Parameters

ifstream::open 849

ifstrea m: :-ifstrea m
-ifstreamO;

Destroys an ifstream object along with its associated filebuf object. The file is
closed only if was opened by the constructor or by the open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

ifstream::is_ open
int iLopenO const;

Returns a nonzero value if this stream is attached to an open disk file identified by
a file descriptor; otherwise O.

filebuf::iLopen, ifstream::open, ifstream::close

ifstream::open
void open(const char* szName, int nMode = ios::in,

int nProt = filebuf::openprot);

szName
The name of the file to be opened during construction.

nMode
An integer containing bits defined as ios enumerators that can be combined
with the OR (I) operator. See the ifstream constructor for a list of the enumera­
tors. The ios::in mode is implied.

nProt
The file protection specification; defaults to the static integer
filebuf: :openprot. See the ifstream constructor for a list of the other
allowed values.

850 ifstream::rdbuf

Remarks Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object
is already attached to an open file, or if a filebuf call fails, the ios: :failbit is set. If
the file is not found, then the ios: :failbit is set only if the ios: :nocreate mode
was used.

See Also filebuf::open, ifstream::ifstream, ifstream::close, ifstream::iLopen

Syntax

Remarks

Syntax

Parameters

Remarks

ifstream::rdbuf
filebuf* rdbufO const;

Returns a pointer to the filebuf buffer object that is associated with this stream.
(Note that this is not the character buffer; the filebuf object contains a pointer to
the character area.)

ifstrea m : :setb uf
streambuf* setbuf(char* pch, int nLength);

pch
A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength
The length (in bytes) of the reserve area. A length of 0 indicates an unbuffered
stream.

Attaches the specified reserve area to the stream's filebuf object. If the file is open
and a buffer has already been allocated, the function returns NULL; otherwise it
returns a pointer to the filebuf, which is cast as a streambuf. The reserve area will
not be released by the destructor.

Syntax

Parameters

Remarks

Return Value

See Also

ifstream::setmode 851

ifstream::setmode
int setmode(int nMode = filebuf::text);

nMode
An integer that must be one of the static filebuf constants, as follows:

Value

filebuf: :text

filebuf:: binary

Meaning

Text mode (newline characters translated to and from
carriage retum-linefeed pairs).

Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be
called only after the file is opened.

The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

ios binary manipulator, ios text manipulator

852 ios

class ios

See Also

Public Members

As the iostream class hierarchy diagram shows, the ios class is the base class for
all the input/output stream classes. While ios is not technically an abstract base
class, you will not usually construct ios objects, nor will you derive classes
directly from ios. Instead, you will use the derived classes istream and ostream
or other derived classes.

Even though you will not use ios directly, you will be using many of the inherited
member functions and data members described here. Remember that these in­
herited member function descriptions are not duplicated for derived classes.

#include <iostream.h>

istream, ostream

Data Members (static)
basefield

adjustfield

floatfield

Construction/Destruction
ios

-ios

Mask for obtaining the conversion base flags (dec,
oct, or hex).

Mask for obtaining the field padding flags (left,
right,orinternal).

Mask for obtaining the numeric format (scientific
or fixed).

Constructor for use in derived classes.

Virtual destructor.

Flag and Format Access Functions
flags

setf

unsetf

fill

precision

width

Sets or reads the stream's format flags.

Manipulates the stream's format flags.

Clears the stream's format flags.

Sets or reads the stream's fill character.

Sets or reads the stream's floating-point format dis­
play precision.

Sets or reads the stream's output field width.

Status-Testing Functions
good

bad

eof

fail

rdstate

clear

Indicates good stream status.

Indicates a serious I/O error.

Indicates end of file.

ios 853

Indicates a serious I/O error or a possibly recover­
able 110 formatting error.

Returns the stream's error flags.

Sets or clears the stream's error flags.

User-Defined Format Flags
bitalloc

xalloc

iword

pword

Other Functions
delbuf

rdbuf

sync_ witlLstdio

tie

Operators
operator void*O

operator !O

Protected Members
init

Provides a mask for an unused format bit in the
stream's private flags variable (static function).

Provides an index to an unused word in an array re­
served for special-purpose stream state variables
(static function).

Converts the index provided by xalloc to a refer­
ence (valid only until the next xalloc).

Converts the index provided by xalloc to a pointer
(valid only until the next xalloc).

Controls the connection of streambuf deletion
with ios destruction.

Gets the stream's streambuf object.

Synchronizes the predefined objects dn, cout,
cerr, and clog with the standard 110 system.

Ties a specified ostream to this stream.

Converts a stream to a pointer that can be used
only for error checking.

Returns a nonzero value if a stream I/O error has
occurred.

Associates a streambuf object with this stream.

854 iDS

Manipulators

ios Manipulators
dec

hex

oct

binary

text

Causes the interpretation of subsequent fields in
decimal format (the default mode).

Causes the interpretation of subsequent fields in
hexadecimal format.

Causes the interpretation of subsequent fields in
octal format.

Sets the stream's mode to binary (stream must
have an associated filebufbuffer).

Sets the stream's mode to text-the default mode
(stream must have an associated filebufbuffer).

Parameterized Manipulators
(#include <iomanip.h> required)

setiosflags

resetiosflags

setfill

setprecision

setw

Sets the stream's format flags.

Resets the stream's format flags.

Sets the stream's fill character.

Sets the stream's floating-point display precision.

Sets the stream's field width (for the next field
only).

ios::bitalloc 855

Member Functions

Syntax

Remarks

See Also

Syntax

Remarks

See Also

ios::bad
int badO const;

Returns a nonzero value to indicate a serious 110 error. This condition corresponds
to the bad bit error state being set. Do not continue I/O operations on the stream in
this situation.

ios::good, ios::fail, ios::rdstate

ios::bitalloc
static long bitailocO;

The ios class currently defines 15 format flag bits accessible through flags and
other member functions. These bits reside in a 32-bit private ios data member and
are accessed through enumerators such as ios: :left and ios: :hex.

The bitalloc member function provides a mask for a previously unused bit in the
data member. Once you obtain the mask, you can use it to set or test the corre­
sponding custom flag bit in conjunction with the ios member functions and
manipulators listed below under "See Also."

ios::flags, ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags
manipulator

856 ios::clear

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

ios::clear
void clear(int nState = 0);

nState
If 0, all error bits are cleared; otherwise bits are set according to the following
masks (ios enumerators) that can be combined using the bitwise-OR (I)
operator:

Value

ios::goodbit

ios::eotbit

ios::failbit

ios::badbit

Meaning

No error condition (no bits set)

End of file reached

A possibly recoverable formatting or conversion error

A severe 110 error

Sets or clears the error-state flags. The rdstate function can be used to read the
current error state.

ios::rdstate, ios::good, ios::bad, ios::eof

ios::delbuf
void delbuf(int nDelFlag);

int delbufO const;

nDelFlag
A nonzero value indicates that -ios should delete the stream's attached
streambuf object. A 0 value prevents deletion.

The first overloaded delbuffunction assigns a value to the stream's buffer­
deletion flag.

The second function returns the current value of the flag.

See Also

Syntax

Remarks

Syntax

Remarks

See Also

Syntax

ios::fill 857

This function is public only because it is accessed by the Iostream_init class.
Treat it as protected.

ios::rdbuf, ios::-ios

ios::eof
int eofO const;

Returns a nonzero value if end of file has been reached. This condition corre­
sponds to the eofbit error flag being set.

ios::fail
int failO const;

Returns a nonzero value if any I/O error (not end of file) has occurred. This condi­
tion corresponds to either the bad bit or failbit error flag being set. If a call to bad
returns 0, you can assume that the error condition is nonfatal and that you can
probably continue processing after you clear the flags.

ios::bad, ios::clear

ios::fill
char fill(char cFill);

char fillO const;

Parameters cFill
The new fill character to be used as padding between fields.

858 ios::flags

Remarks The first overloaded function sets the stream's internal fill character variable to
cFill and returns the previous value. The default fill character is a space.

See Also

Syntax

Parameters

The second fill function returns the stream's fill character.

ios setfill manipulator

ios::flags
long flags(long IFlags);

long flagsO const;

IFlags
The new format flag values for the stream. The values are specified by the fol­
lowing bit masks (ios enumerators) that can be combined using the bitwise-OR
(I) operator:

Value

ios::skipws

ios::left

ios::right

ios: : internal

ios::dec

ios::oct

ios::hex

ios: :showbase

Meaning

Skip white space on input.

Left-align values; pad on the right with the fill character.

Right-align values; pad on the left with the fill character
(default alignment).

Add fill characters after any leading sign or base
indication, but before the value.

Format numeric values as base 10 (decimal) (default
radix).

Format numeric values as base 8 (octal).

Format numeric values as base 16 (hexadecimal).

Display numeric constants in a format that can be read
by the C++ compiler.

Remarks

See Also

Syntax

Remarks

See Also

Value

ios: :showpoint

ios: :uppercase

ios::showpos

ios: :scientific

ios::fixed

ios: :unitbuf

ios::stdio

ios::good 859

Meaning

Show decimal point and trailing zeros for floating-point
values.

Display uppercase A through F for hexadecimal values
and E for scientific values.

Show plus signs (+) for positive values.

Display floating-point numbers in scientific format.

Display floating-point numbers in fixed format.

Cause ostream::osfx to flush the stream after each
insertion. By default, cerr is unit buffered.

Cause ostream::osfx to flush stdout and stderr after
each insertion.

The first overloaded flags function sets the stream's internal flags variable to
lFlags and returns the previous value.

The second function returns the stream's current flags.

ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags manipulator,
ios: :adjustfield, ios:: basefield, ios: :floatfield

ios::good
int goodO const;

Returns a nonzero value if all error bits are clear. Note that the good member func­
tion is not simply the inverse of the bad function.

ios::bad, ios::fail, ios::rdstate

860 ios::ios

Syntax

Parameters

Remarks

Syntax

Remarks

Syntax

Parameters

Remarks

See Also

ios::ios
ios(streambuf* psb);

psb
A pointer to an existing streambuf object.

Constructor for ios. You will seldom need to invoke this constructor except in
derived classes. Generally, you will be deriving classes not from ios but from
istream, ostream, and iostream.

ios::-ios
virtual-iosO;

Virtual destructor for ios.

ios::iword
long& iword(int nlndex) const;

nlndex
An index into a table of words that are associated with the ios object.

The xalloc member function provides the index into the table of special-purpose
words. The iword function converts that index to a reference to a 32-bit word.

ios::xalloc, ios::pword

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

ios::pword 861

ios::precision
int precision(int np);

int precisionO const;

np
An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

The first overloaded precision function sets the stream's internal floating-point
precision variable to np and returns the previous value. The default precision is six
digits. If the display format is scientific or fixed, then the precision indicates the
number of digits after the decimal point. If the format is automatic (neither float­
ing point nor fixed), then the precision indicates the total number of significant
digits.

The second function returns the stream's current precision value.

ios setprecision manipulator

ios::pword
void*& pword(int nlndex) const;

nlndex
An index into a table of words that are associated with the ios object.

The xalloc member function provides the index into the table of special-purpose
words. The pword function converts that index to a reference to a pointer to a 32-
bit word.

ios::xalloc, ios::iword

862 ios::rdbuf

Syntax

Remarks

Syntax

Remarks

See Also

ios::rdbuf
streambuf* rdbufO const;

Returns a pointer to the streambuf object that is associated with this stream. The
rdbuf function is useful when you need to call streambuf member functions.

ios::rdstate
int rdstateO const;

Returns the current error state as specified by the following masks (ios
enumerators):

Value

ios::goodbit

ios::eotbit

ios::failbit

ios::badbit

Meaning

No error condition

End of file reached

A possibly recoverable formatting or conversion error

A severe I/O error or unknown state

The returned value can be tested against a mask with the AND (&) operator.

ios::clear

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

ios::sync_ with_stdio 863

ios::setf
long setf(long IFlags);

long setf(long IFlags, long IMask);

IFlags
Format flag bit values. See the flags member function for a list of format flags.
These flags can be combined by using the bitwise-OR (I) operator.

IMask
Format flag bit mask.

The first overloaded setf function turns on only those format bits that are specified
by 1 s in IFlags. It returns a long that contains the previous value of all the flags.

The second function alters those format bits specified by Is in IMask. The new
values ofthose format bits are determined by the corresponding bits in IFlags. It
returns a long that contains the previous value of all the flags.

ios::flags, ios::nnsetf, ios setiosflags manipulator

ios::sync_ with_ stdio
static void sync with_stdioO;

Synchronizes the C++ streams with the standard 110 system. The first time this
function is called, it resets the predefined streams (dn, cont, cerr, clog) to use a
stdiobnf object rather than a filebnf object. After that, I/O using these streams can
be freely mixed with I/O using stdin, stdont, and stderr. Some performance
decrease will result because there is buffering both in the stream class and in the
standard I/O file system.

After the call to sync with_stdio, the ios::stdio bit is set for all affected prede­
fined stream objects, and cont is set to unit buffered mode.

864 ios::tie

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

See Also

ios::tie
ostream* tie(ostream* pos);

ostream* tieO const;

pos
A pointer to an ostream object.

The first overloaded tie function ties this stream to the specified ostream and re­
turns the value of the previous tie pointer (NULL if this stream was not previously
tied). A stream tie enables automatic flushing of the ostream in response to (1) a
need for more characters or (2) the presence of characters to be consumed.

By default, dn is initially tied to cout so that attempts to get more characters from
standard input may result in flushing standard output. In addition, cerr and clog
are tied to cout by default.

The second function returns the value of the previous tie pointer (NULL if this
stream was not previously tied).

ios::unsetf
long unsetf(long IFlags);

IFlags
Format flag bit values. See the flags member function for a list of format flags.

Clears the format flags specified by Is in IFlags. It returns a long that contains the
previous value of all the flags.

ios: :flags, ios: :setf, ios resetiosflags manipulator

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

ios::xalloc 865

ios::width
int width(int nw);

int widthO const;

nw
The minimum field width in characters.

The first overloaded width function sets the stream's internal field width variable
to nw. When the width is 0 (the default), inserters insert only as many characters
as necessary to represent the inserted value. When the width is not 0, the inserters
pad the field with the stream's fill character, up to nw. If the unpadded repre­
sentation of the field is larger than nw, the field is not truncated. Thus nw is a min­
imum field width.

The internal width value is reset to 0 after each insertion or extraction.

The second overloaded width function returns the current value of the stream's
width variable.

ios setw manipulator

ios::xalloc
static int xallocO;

Provides extra ios object state variables without the need for class derivation. It
does so by returning an index to an unused 32-bit word in an internal array. This
index can be subsequently converted into a reference or pointer by using the
iword or pword member functions.

Any call to xalloc invalidates values returned by previous calls to iword and
pword.

ios::iword, ios::pword

866 ios::operator void* 0

Operators

Syntax

Remarks

See Also

Syntax

Remarks

See Also

ios::operator void* ()
operator void* 0 const;

An operator that converts a stream to a pointer that can be compared to O. The con­
version returns 0 if either failbit or badbit is set in the stream's error state. See
rdstate for a description of the error state masks. A nonzero pointer is not meant
to be dereferenced.

ios::good, ios::fail

ios::operator !()
int operator !O const;

Returns a nonzero value if either failbit or badbit are set in the stream's error
state. See rdstate for a description of the error state masks.

ios: :good, ios: : fail

ios::floatfield 867

Data Members

Syntax

Remarks

Example

See Also

Syntax

Remarks

Example

See Also

Syntax

Remarks

Example

See Also

ios::adjustfield
static const long adjustfield;

A mask that can be used to obtain the padding flag bits (left, right, or internal).

extern ostream os;
if((os.flags() & ios::adjustfield) ios::left)

ios::flags

ios::basefield
static const long basefield;

A mask that can be used to obtain the current radix flag bits (dec, oct, or hex).

extern ostream os;
if((os.flags() & ios::basefield) ios::hex)

ios::flags

ios::floatfield
static const long floatfield;

A mask that can be used to obtain floating-point format flag bits (scientific or
fixed).

extern ostream os;
if((os.flags() & ios::floatfield) ios::scientific)

ios::flags

868 ios& binary

Manipulators

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

ios& binary
binary

#include <fstream.h>

Sets the stream's mode to binary. The default mode is text.

The stream must have an associated filebuf buffer.

ios text manipulator, ofstream::setmode, ifstream::setmode, filebuf::setmode

ios& dec
dec

Sets the format conversion base to 10 (decimal).

ios hex manipulator, ios oct manipulator

ios& hex
hex

Sets the format conversion base to 16 (hexadecimal).

ios dec manipulator, ios oct manipulator

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Syntax

setfill 869

ios& oct
oct

Sets the format conversion base to 8 (octal).

ios dec manipulator, ios hex manipulator

reseti osfl a gs
SMANIP(long) resetiosflags(long IFlags);

#include <iomanip.h>

IFlags
Format flag bit values. See the flags member function for a list of format flags.
These flags can be combined by using the OR (I) operator.

This parameterized manipulator clears only the specified format flags. This setting
remains in effect until the next change.

setfill
SMANIP(int) setfill(int nFill);

#include <iomanip.h>

Parameters nFill

Remarks

The new fill character to be used as padding between fields.

This parameterized manipulator sets the stream's fill character. The default is a
space. This setting remains in effect until the next change.

870 setiosflags

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

setiosflags
SMANIP(long) setiosflags(long IFlags);

#include <iomanip.h>

IFlags
Format flag bit values. See the flags member function for a list of format flags.
These flags can be combined by using the OR (I) operator.

This parameterized manipulator sets only the specified format flags. This setting
remains in effect until the next change.

setprecision
SMANIP(int) setprecision(int np);

#include <iomanip.h>

np
An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

This parameterized manipulator sets the stream's internal floating-point precision
variable to np. The default precision is six digits. If the display format is scientific
or fixed, then the precision indicates the number of digits after the decimal point.
If the format is automatic (neither floating point nor fixed), then the precision indi­
cates the total number of significant digits.

This setting remains in effect until the next change.

Syntax

Parameters

Remarks

Syntax

Remarks

See Also

ios& text 871

setw
SMANIP(int) setw(int nw);

#include <iomanip.h>

nw
The field width in characters.

This parameterized manipulator sets the stream's internal field width parameter.
See the width member function for more information. This setting remains in ef­
fect only for the next insertion.

ios& text
text

#include <fstream.h>

Sets the stream's mode to text (the default mode).

The stream must have an associated filebuf buffer.

ios binary manipulator, ofstream::setmode, ifstream::setmode,
filebuf: :setmode

872 iostream

class iostream : public istream, public ostream

Derivation

See Also

Public Members

The iostream class provides the basic capability for sequential and random-access
I/O. It inherits functionality from both the istream and ostream classes.

The iostream class works in conjunction with classes derived from streambuf
(for example, filebut). In fact, most of the iostream "personality" comes from its
attached streambuf class. You can use iostream objects for sequential disk I/O if
you first construct an appropriate filebuf object. More often, you will use objects
of classes fstream and strstream.

For derivation suggestions, see the istream and ostream classes.

#incIude <iostream.h>
//'

istrean(ostream, fstream, strstream, stdiostream

iostream

-iostream

Constructs an iostream object that is attached to
an existing streambuf object.

Destroys an iostream object.

Protected Members
iostream Constructs an iostream object.

iostream:: ... iostream 873

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

i ostream:: i ostrea m
Public:

iostream(streambuf* psb);

Protected:
iostream();

psb
A pointer to an existing streambuf object (or an object of a derived class).

Constructs an object of type iostream.

ios::init

iostream: :-iostream
virtual -iostreamO;

Virtual destructor for the iostream class.

874 iostream init

class lostream_ init

Public Members

The Iostream_init class is a static class that initializes the predefined stream ob­
jects cin, cont, cerr, and clog. A single object of this class is constructed "invis­
ibly" in response to the reference of any of the predefined objects. The class is
documented for completeness only. You will not normally construct objects of this
class.

#inclnde <iostream.h>

Iostream_ init

-Iostream_init

A constructor that initializes cin, cont, cerr,
and clog.

The destructor for the Iostream_init class.

Member Functions

Syntax

Remarks

Syntax

Remarks

lostream_ init::lostream_ init
IostreaIlL initO;

Iostream_init constructor that initializes cin, cont, cerr, and clog. For internal
use only.

lostream_ init::-Iostream_ init
- Iostream_ initO;

Iostream_init destructor. For internal use only.

istream 875

class istream : virtual public ios

Derivation

See Also

Public Members

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two
classes work together; the istream class does the formatting, and the streambuf
class does the low-level buffered input.

You can use istream objects for sequential disk input if you first construct an ap­
propriate filebuf object. More often, you will use the predefined stream object dn
(which is actually an object of class istreaIlL withassign), or you will use objects
of classes ifstream (disk file streams) and istrstream (string streams).

It is not always necessary to derive from istream in order to add functionality to a
stream; consider deriving from streambuf instead, as illustrated in Chapter 19 of
the Class Libraries User's Guide. The ifstream and istrstream classes are ex­
amples of istream-derived classes that construct member objects of predetermined
derived streambuf classes.

You can add manipulators without deriving a new class.

If you add new extraction operators for a derived istream class, then the rules of
C++ dictate that you must reimplement all the base class extraction operators. See
the "Derivation" section of class ostream for an efficient reimplementation tech­
nique.

#include <iostream.h>

streambuf, ifstream, istrstream, istream_ withassign

Construction/Destruction
istream

-istream

PrefiX/Suffix Functions
ipfx

isfx

Constructs an istream object attached to an
existing object of a streambuf-derived class.

Destroys an istream object.

Check for error conditions prior to extraction
operations (input prefix function).

Called after extraction operations (input suffix
function).

876

Input Functions
get

getline

read

ignore

peek

gcount

eatwhite

Other Functions
putback

sync

seekg

tellg

Operators
operator»

Protected Members
istream

Manipulators
ws

Extracts characters from the stream up to, but not
including, delimiters.

Extracts characters from the stream (extracts and
discards delimiters).

Extracts data from the stream.

Extracts and discards characters.

Returns a character without extracting it from the
stream.

Counts the characters extracted in the last unfor­
matted operation.

Extracts leading white space.

Puts characters back to the stream.

Synchronizes the stream buffer with the external
source of characters.

Changes the stream's get pointer.

Gets the value of the stream's get pointer.

Extraction operator for various types.

Constructs an istream object.

Extracts leading white space.

istream::gcount 877

Member Functions

Syntax

Remarks

See Also

Syntax

Remarks

See Also

istream::eatwhite
void eatwhiteO;

Extracts white space from the stream by advancing the get pointer past spaces
and tabs.

istream ws manipulator

istream::gcount
int gcountO const;

Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset
this number.

istream::get, istream::getline, istream::ignore, istream::read

878 istream::get

Syntax

Parameters

Remarks

istream::get
int getO;

istream& get(char* pch, int nCount, char delim = . \n');

istream& get(unsigned char* puch, int nCount, char delim = • \n');

istream& get(signed char* psch, int nCount, char de lim = . \n');

istream& get(char& rch);

istream& get(unsigned char& ruch);

istream& get(signed char& rsch);

istream& get(streambuf& rsb, char de lim = • \n');

pch, puch, psch
A pointer to a character array.

nCount
The maximum number of characters to store, including the terminating NULL.

delim
The delimiter character (defaults to newline).

rch, ruch, rsch
A reference to a character.

rsb
A reference to an object of a streambuf-derived class.

These functions extract data from an input stream as follows:

Variation

getO;

get(char*, int, char);

Description

Extracts a single character from the stream and
returns it.

Extracts characters from the stream until either
delim is found, the limit nCount is reached, or
the end of file is reached. The characters are
stored in the array followed by a null terminator.

See Also

Syntax

Parameters

Variation

get(char&);

get(streambuf&, char);

istream::getline 879

Description

Extracts a single character from the stream and
stores it as specified by the reference argument.

Gets characters from the stream and stores them
in a streambuf object until the delimiter is
found or the end of the file is reached. The
ios: :failbit flag is set if the streambuf output
operation fails.

In all cases, the delimiter is neither extracted from the stream nor returned by the
function. The getline function, in contrast, extracts the delimiter but does not
store it.

istream: :getline, istream: :read, istream: : ignore, istream: :gcount

istream::getline
istream& getline(char* pch, int nCount, char delim = I \n I);

istream& getline(unsigned char* puch, int nCount, char delim = I \n I);

istream& getline(signed char* psch, int nCount, char delim = I \n I);

pch, puch, psch
A pointer to a character array.

nCount
The maximum number of characters to store, including the terminating NULL.

delim
The delimiter character (defaults to newline).

880 istream::ignore

Remarks Extracts characters from the stream until either the delimiter delim is found, the
limit nCount-l is reached, or end of file is reached. The characters are stored in
the specified array followed by a null terminator. If the delimiter is found, it is ex­
tracted but not stored.

See Also

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

The get function, in contrast, neither extracts nor stores the delimiter.

istream: : get, istream: : read

istream::ignore
istream& ignore(int nCount = 1, int de lim = EOF);

nCount
The maximum number of characters to extract.

delim
The delimiter character (defaults to EOF).

Extracts and discards up to nCount characters. Extraction stops if the delimiter
delim is extracted or the end offile is reached. If delim = EOF (the default), then
only the end of file condition causes termination. The delimiter character is
extracted.

istream::ipfx
int ipfx(int need = 0);

need
Zero if called from formatted input functions; otherwise the minimum number
of characters needed.

This input prefix function is called by input functions prior to extracting data from
the stream. Formatted input functions call ipfx(0), while unformatted input func­
tions usually call ipfx(1).

Any ios object tied to this stream is flushed if need = 0 or if there are fewer than
need characters in the input buffer. Also, ipfx extracts leading white space if
ios::skipws is set.

Return Value

See Also

Syntax

Remarks

Syntax

Parameters

Remarks

See Also

istream::istream 881

A nonzero return value if the operation was successful; 0 if the stream's error state
is nonzero, in which case the function does nothing.

istream: :isfx

istream::isfx
void isfxO;

This input suffix function is called at the end of every extraction operation. In the
current implementation, it does nothing, but it may be used in future versions of
the class library.

istream::istream
Public:

istream(streambuf* psb);

Protected:
istream();

psb
A pointer to an existing object of a streambuf-derived class.

Constructs an object of type istream.

ios::init

882 istream:: ... istream

Syntax

Remarks

Syntax

Remarks

Syntax

Parameters

Remarks

Syntax

istream::-istream
virtual-istreamO;

Virtual destructor for the istream class.

istream::peek
int peekO const;

Returns the next character without extracting it from the stream. Returns EOF if
the stream is at end of file or if the ipfx function indicates an error.

istream::putback
istream& putback(char ch);

ch
The character to put back; must be the character previously extracted.

Puts a character back into the input stream. The putback function may fail and set
the error state. If ch does not match the character that was previously extracted,
then the result is undefined.

istream::read
istream& read(char* pch, int nCount);

istream& read(unsigned char* puch, int nCount);

istream& read(signed char* psch, int nCount);

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

See Also

istream::seekg 883

pch, puch, psch
A pointer to a character array.

nCount
The maximum number of characters to read.

Extracts bytes from the stream until the limit nCount is reached or until the end of
file is reached. The read function is useful for binary stream input.

istream: : get, istream: :getline, istream: :gcount, istream: :ignore

islream::seekg
istream& seekg(streampos pos);

istream& seekg(streamoff off, ios::seelLdir dir);

pos
The new position value; streampos is a typedef equivalent to long.

off
The new offset value; streamoff is a typedef equivalent to long.

dir
The seek direction. Must be one of the following enumerators:

Value

ios::beg

ios::cur

ios::end

Meaning

Seek from the beginning of the stream.

Seek from the current position in the stream.

Seek from the end of the stream.

Changes the get pointer for the stream. Not all derived classes of istream need
support positioning; it is most often used with file-based streams.

istream::tellg, ostream::seekp, ostream::tellp

884 istream::sync

Syntax

Remarks

Return Value

See Also

Syntax

Remarks

Return Value

See Also

istrea m: :sync
int sync();

Synchronizes the stream's internal buffer with the external source of characters.
This function calls the virtual streambuf::sync function so you can customize its
implementation by deriving a new class from streambuf.

EOF to indicate errors.

streambuf: :sync

istream::tellg
streampos tellgO;

Gets the value for the stream's get pointer.

A streampos type, corresponding to a long.

istream::seekg, ostream::tellp, ostream::seekp

Operators

Syntax

Remarks

istream::operator »
istream& operator »(char* psz);

istream& operator »(unsigned char* pusz);

istream& operator »(signed char* pssz);

istream& operator »(char& rch);

istream& operator »(unsigned char& ruch);

istream& operator »(signed char& rsch);

istream& operator »(short& s);

istream& operator »(unsigned short& us);

istream& operator »(int& n);

istream& operator »(unsigned int& un);

istream& operator »(long& 1);

istream& operator »(unsigned long& ul);

istream& operator »(float&f);

istream& operator »(double& d);

istream& operator »(long double& ld);

istream& operator »(streambuf* psb);

istream::operator » 885

istream& operator »(istream& (*fcn)(istream&));

istream& operator »(ios& (*fcn)(ios&));

These overloaded operators extract their argument from the stream. The last two
variations allow the use of manipulators that are defined for both istream and ios.

886 istream& ws

Manipulators

Syntax

Remarks

See Also

istream& ws
ws

Extracts leading white space from the stream by calling the eatwhite function.

istream: :eatwhite

istream_ withassign 887

class istream_ withassign : public istream
The istream_ withassign class is a variant of istream that allows object assign­
ment. The predefined object cin is an object of this class and thus may be reas­
signed at run time to a different istream object.

A program that normally expects input from stdin, for example, could be tem­
porarily directed to accept its input from a disk file.

Predefined Objects The cin object is a predefined object of class ostream_ withassign. It is connected
to stdin (standard input, file descriptor 0).

See Also

Public Members

The objects cin, cerr, and clog are tied to cout so that use of any of these may
cause cout to be flushed.

#include <iostream.h>

ostream_ withassign

Construction/Destruction
istream_ withassign

-istream_ withassign

Operators
operator =

Constructs an istream_ withassign object.

Destroys an istream_ withassign object.

Indicates an assignment operator.

888 istream_ withassign::istream_ withassign

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

istream_ withassign::istream_ withassign
istream_ withassign(streambuf* psb);

istream_ withassignO;

psb
A pointer to an existing object of a streambuf-derived class.

The first constructor creates a ready-to-use object of type istream_ withassign,
complete with attached streambuf object.

The second constructor creates an object but does not initialize it. You must sub­
sequently use the second variation of the istream_ withassign assignment opera­
tor to attach the streambuf object, or you must use the first variation to initialize
this object to match the specified istream object.

istream_ withassign: : operator =

istream_ withassign::-istream_ withassign
-istreaIlL withassignO;

Destructor for the istream_ withassign class.

Operators

Syntax

Remarks

Example 1

Example 2

See Also

istream_ withassign::operator = 889

istream_ withassign::operator =
istream& operator ==(const istream& ris);

istream& operator ==(streambuf* psb);

The first overloaded assignment operator assigns the specified istream object to
this istream_ withassign object.

The second operator attaches a streambuf object to an existing
istream_ withassign object, and it initializes the state of the istream_ withassign
object. This operator is often used in conjunction with the void-argument
constructor.

char buffer[100];
class xistream; II A special-purpose class derived from istream
extern xistream xin; II An xi stream object constructed elsewhere

cin = xin; II cin is reassigned to xin
cin » buffer; II xin used instead of cin

char buffer[100];
extern filedesc fd; II A file descriptor for an open file
filebuf fb(fd); II Construct a filebuf attached to fd

cin = &fb; II fb associated with cin
cin » buffer; II cin now gets its intput from the fb file

istream_ withassign::istreallL withassign, dn

890 istrstream

class istrstream : public istream

See Also

Public Members

The istrstream class supports input streams that have character arrays as a source.
You must allocate a character array prior to the construction of an istrstream ob­
ject. All the istream operators and functions (including seeking) can then be used
on this character data.

You must be aware that there is a get pointer working behind the scenes in the
attached strstreambuf class. This pointer advances as you extract fields from
the stream's array. The only way you can make it go backwards is to use the
istream: :seekg function. If the get pointer reaches the end of the string (and
sets the ios::eofflag), then you must call clear before seekg.

#include <strstrea.h>

strstreambuf, streambuf, strstream, ostrstream

Construction/Destruction
istrstream

-istrstream

Other Functions
rdbuf

str

Constructs an istrstream object.

Destroys an istrstream object.

Returns a pointer to the stream's associated
strstreambuf object.

Returns a character array pointer to the string
stream's contents.

istrstream::-istrstream 891

Member Functions

Syntax

Parameters

Remarks

Syntax

Remarks

istrstrea m:: istrstrea m
istrstream(char* psz);

istrstream(char* pch, int nLength);

psz
A null-terminated character array (string).

pch
A character array that is not necessarily null terminated.

nLength
The size (in characters) of pch. If 0, then pch is assumed to point to a null­
terminated array; if less than 0, then the array is assumed to have unlimited
length.

The first constructor uses the specified psz buffer to make an istrstream object
with length corresponding to the string length.

The second constructor makes an istrstream object out of the first nLength charac­
ters of the pch buffer.

Both constructors automatically construct a strstreambuf object that manages the
specified character buffer.

istrstream::-istrstream
-istrstream();

Destroys an istrstream object and its associated strstreambuf object. The charac­
ter buffer is not released because it was allocated by the user prior to istrstream
construction.

892 istrstream::rdbuf

Syntax

Remarks

See Also

Syntax

Remarks

See Also

istrstream::rdbuf
strstreambuf* rdbufO const;

Returns a pointer to the strstreambufbuffer object that is associated with this
stream. Note that this is not the character buffer itself; the strstreambuf object
contains a pointer to the character area.

istrstream: :str

istrstream::str
char* strO;

Returns a pointer to the string stream's character array. This pointer corresponds
to the array used to construct the istrstream object.

istrstream:: istrstream

of stream 893

class ofstream : public ostream

See Also

Public Members

The of stream class is an ostream derivative specialized for disk file output. All of
its constructors automatically create and associate a filebufbuffer object.

The filebuf class documentation describes the get and put areas and their as­
sociated pointers. Only the put area and the put pointer are active for the of stream
class.

#include <fstream.h>

filebuf, streambuf, ifstream, fstream

Construction/Destruction
of stream

-of stream

Operations
open

close

setbuf

setmode

attach

Status/I nformati on
rdbuf

fd

iLopen

Constructs an of stream object.

Destroys an of stream object.

Opens a file and attaches it to the filebuf object
and thus to the stream.

Flushes any waiting output and closes the
stream's file.

Associates the specified reserve area to the
stream's filebuf object.

Sets the stream's mode to binary or text.

Attaches the stream (through the filebuf object) to
an open file.

Gets the stream's filebuf object.

Returns the file descriptor associated with the
stream.

Tests whether the stream's file is open.

894 ofstream::attach

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

ofstream::attach
void attach(filedescfd);

fd
A file descriptor as returned by a call to the run-time function _open or
_ sopen; filedesc is a typedef equivalent to int.

Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios: :failbit in the
stream's error state.

filebuf: : attach, of stream: :fd

ofstream::close
void closeO;

Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream's error state is cleared unless the call to filebuf: :close fails.

filebuf::close, ofstream::open, ofstream::iLopen

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

ofstream::ofstream 895

ofstream::fd
filedesc fdO const;

Returns the file descriptor associated with the stream. filedesc is a typedef equiv­
alent to int. Its value is supplied by the underlying file system.

filebuf: :fd, of stream: :attach

ofstream::is_ open
int iL openO const;

Returns a nonzero value if this stream is attached to an open disk file identified by
a file descriptor; otherwise O.

filebuf: :iL open, of stream: : open, of stream: :close

ofstream::ofstream
ofstreamO;

ofstream(const char* szName, int nMode = ios::out,
int nProt = filebuf::openprot);

ofstream(filedesc fd);

ofstream(filedesc fd, char* pch, int nLength);

896 ofstream::ofstream

Parameters szName
The name of the file to be opened during construction.

nMode
An integer that contains mode bits defined as ios enumerators that can be com­
bined with the bitwise-OR (I) operator:

Value

ios::app

ios::ate

ios::in

ios::out

ios::trunc

ios: :nocreate

ios::noreplace

ios::binary

nProt

Meaning

The function performs a seek to the end of file. When
new bytes are written to the file, they are always
appended to the end, even if the position is moved with
the ostream::seekp function.

The function performs a seek to the end of file. When
the first new byte is written to the file, it is appended to
the end, but when subsequent bytes are written, they are
written to the current position.

If this mode is specified, then the original file (if it
exists), will not be truncated.

The file is opened for output (implied for all of stream
objects).

If the file already exists, its contents are discarded. This
mode is implied if ios::out is specified and ios::ate,
ios::app, and ios:in are not specified.

If the file does not already exist, the function fails.

If the file already exists, the function fails.

Opens the file in binary mode (the default is text mode).

The file protection specification; defaults to the static integer filebuf::openprot
that is equivalent to filebuf: :sh_ compat. The possible nProt values are:

Value

filebuf: :slL com pat

filebuf::sh_none

filebuf:: sh_ read

filebuf: :slL write

Meaning

Compatibility share mode.

Exclusive mode; no sharing.

Read sharing allowed.

Write sharing allowed.

The filebuf::sh_read and filebuf::sh_ write modes can be combined with the
logical OR (I) operator.

Remarks

Syntax

Remarks

ofstream::-ofstream 897

fd
A file descriptor as returned by a call to the run-time function _open or
_ sopen. filed esc is a typedef equi valent to int.

pch
Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength
The length (in bytes) of the reserve area (0 = unbuffered).

The four of stream constructors are described as follows:

Constructor

ofstreamO

ofstream(const char*, int, int)

ofstream(filedesc)

ofstream(filedesc, char*, int)

Description

Constructs an of stream object without
opening a file.

Contructs an of stream object, opening
the specified file.

Constructs an of stream object that is
attached to an open file.

Constructs an of stream object that is
associated with a filebuf object. The
filebuf object is attached to an open
file and to a specified reserve area.

All of stream constructors construct a filebuf object. The first three use an inter­
nally allocated reserve area, but the fourth uses a user-allocated area. The user­
allocated area is not automatically released during destruction.

ofstream::-ofstream
-ofstreamO;

Flushes the buffer, then destroys an of stream object along with its associated
filebuf object. The file is closed only if was opened by the constructor or by the
open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

898 ofstream::open

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

Example

ofstream::open
void open(const char* szName, int nMode = ios::out,

int nProt = filebuf::openprot);

szName
The name of the file to be opened during construction.

nMode
An integer containing mode bits defined as ios enumerators that can be com­
bined with the OR (I) operator. See the of stream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt
The file protection specification; defaults to the static integer
filebuf: :openprot. See the of stream constructor for a list of the other allowed
values.

Opens a disk file and attaches it to the stream's filebuf object. If the filebuf object
is already attached to an open file, or if a filebuf call fails, the ios: :failbit is set. If
the file is not found, then the ios::failbit is set only if the ios::nocreate mode was
used.

filebuf: :open, of stream: : of stream, of stream: :close, of stream: :iL open

ofstream::rdbuf
filebuf* rdbufO const;

Returns a pointer to the filebufbuffer object that is associated with this stream.
(Note that this is not the character buffer; the filebuf object contains a pointer to
the character area.)

extern of stream ofs;
int fd = ofs.rdbuf()->fd(); II Get the file descriptor for ofs

Syntax

Parameters

Remarks

Syntax

Parameters

Remarks

Return Value

See Also

ofstream::setmode 899

ofstream::setbuf
streambuf* setbuf(char* pch, int nLength);

pch
A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength
The length (in bytes) of the reserve area. A length of 0 indicates an unbuffered
stream.

Attaches the specified reserve area to the stream's filebuf object. If the file is open
and a buffer has already been allocated, the function returns NULL; otherwise it
returns a pointer to the filebuf cast as a streambuf. The reserve area will not be re­
leased by the destructor.

of stream: :setmode
int setmode(int nMode = filebuf::text);

nMode
An integer that must be one of the static filebuf constants, as follows:

Value

filebuf: :text

filebuf:: binary

Meaning

Text mode (newline characters translated to and from
carriage return-linefeed pairs).

Binary mode (no translation).

This function sets the binary/text mode of the stream's filebuf object. It may be
called only after the file is opened.

The previous mode; -1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

ios binary manipulator, ios text manipulator

900 ostream

class ostream : virtual public ios

Derivation

See Also

The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf
class does the low-level buffered output.

You can use ostream objects for sequential disk output if you first construct an
appropriate filebuf object. (The filebuf class is derived from streambuf.) More
often, you will use the predefined stream objects cout, cerr, and clog (actually ob­
jects of class ostreallL withassign), or you will use objects of classes of stream
(disk file streams) and ostrstream (string streams).

All of the ostream member functions write unformatted data; formatted output is
handled by the insertion operators.

It is not always necessary to derive from ostream to add functionality to a stream;
consider deriving from streambufinstead, as illustrated in Chapter 19 of the Class
Libraries User's Guide. The of stream and ostrstream classes are examples of
ostream-derived classes that construct member objects of predetermined derived
streambuf classes.

You can add manipulators without deriving a new class.

If you add new insertion operators for a derived ostream class, then the rules of
C++ dictate that you must reimplement all the base class insertion operators. If,
however, you reimplement the operators through inline equivalence, no extra code
will be generated. For example,

class xstream : public ostream
{

public:

} ;

II Constructors, etc.
I I
inline xstream& operator « (char ch l II insertion for char
{

return (xstream&lostream::operator « (ch l;
}

I I
II Insertions for other types

#include <iostream.h>

streambuf, of stream, ostrstream, cout, cerr, clog

Public Members

Manipulators

Construction/Destruction
ostream

-ostream

Prefix/Suffix Functions
opfx

osfx

Unformatted Output
put

write

Other Functions
flush

seekp

tellp

Operators
operator«

endl

ends

flush

ostream 901

Constructs an ostream object that is attached to an
existing streambuf object.

Destroys an ostream object.

Output prefix function, called prior to insertion
operations to check for error conditions, and so
forth.

Output suffix function, called after insertion opera­
tions; flushes the stream's buffer if it is unit
buffered.

Inserts a single byte into the stream.

Inserts a series of bytes into the stream.

Flushes the buffer associated with this stream.

Changes the stream's put pointer.

Gets the value of the stream's put pointer.

An insertion operator for various types.

Inserts a newline sequence and flushes the buffer.

Inserts a null character to terminate a string.

Flushes the stream's buffer.

902 ostream::flush

Member Functions

Syntax

Remarks

See Also

Syntax

Remarks

Return Value

Syntax

Remarks

ostrea m: :fl ush
ostream& flushO;

Flushes the buffer associated with this stream. The flush function calls the sync
function of the associated streambuf.

ostream flush manipulator, streambuf::sync

ostream::opfx
int opfxO;

This output prefix function is called before every insertion operation. If another
ostream object is tied to this stream then the opfx function flushes that stream.

If the ostream object's error state is not 0, opfx returns 0 immediately; otherwise
it returns a nonzero value.

ostrea m:: osfx
void osfxO;

This output suffix function is called after every insertion operation. It flushes
the ostream object if ios::unitbuf is set. It flushes stdout and stderr ifios::stdio
is set.

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

Syntax

Parameters

Remarks

ostream::ostream
Public:

ostream(streambuf* psb);

Protected:
ostream();

psb

ostream::put 903

A pointer to an existing object of a streambuf-derived class.

Constructs an object of type ostream.

ios::init

ostream::-ostream
virtual-ostreamO;

Destroys an ostream object. The output buffer is flushed as appropriate. The at­
tached streambuf object is destroyed only if it was allocated internally within the
ostream constructor.

ostream::put
ostream& put(char ch);

ch
The character to insert.

This function inserts a single character into the output stream.

904 ostream::seekp

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

ostream::seekp
ostream& seekp(streampos pos);

ostream& seekp(stream off off, ios: :seelL dir dir);

pos
The new position value; streampos is a typedef equivalent to long.

off
The new offset value; streamoff is a typedef equivalent to long.

dir
The seek direction specified by the enumerated type ios::seek_dir, as follows:

Value

ios::beg

ios::cur

ios::end

Meaning

Seek from the beginning of the stream.

Seek from the current position in the stream.

Seek from the end of the stream.

Changes the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the begin­
ning of the file; for string streams, it is the byte offset from the beginning of the
string.

ostream::tellp, istream::seekg, istream::teIIg

ostream::tellp
streampos teIIpO;

Gets the position value for the stream. Not all derived classes of ostream need sup­
port positioning. For file streams, the position is the byte offset from the beginning
of the file; for string streams, it is the byte offset from the beginning of the string.
Gets the value for the stream's put pointer.

Return Value

See Also

Syntax

Parameters

Remarks

ostream::write 905

A streampos type that corresponds to a long.

ostream: :seekp, istream: :tellg, istream: :seekg

ostrea m: :write
ostream& write(const char* pch, int nCount);

ostream& write(const unsigned char* puch, int nCount);

ostream& write(const signed char* psch, int nCount);

pch, puch, psch
A pointer to a character array.

nCount
The number of characters to be written.

Inserts a specified number of bytes from a buffer into the stream. If the underlying
file was opened in text mode, additional carriage return characters may be in­
serted. The write function is useful for binary stream output.

906 ostream::operator «

Operators

Syntax

Remarks

ostream::operator «
ostream& operator «(char ch);

ostream& operator «(unsigned char uch);

ostream& operator «(signed char sch);

ostream& operator «(const char* psz);

ostream& operator «(const unsigned char *pusz);

ostream& operator «(const signed char *pssz);

ostream& operator «(short s);

ostream& operator «(unsigned short us);

ostream& operator «(int n);

ostream& operator «(unsigned int un);

ostream& operator «(long I);

ostream& operator «(unsigned long ul);

ostream& operator «(float!);

ostream& operator «(double d);

ostream& operator «(long double ld);

ostream& operator «(void* pv);

ostream& operator «(streambuf* psb);

ostream& operator «(ostream& (*fcn)(ostream&));

ostream& operator «(ios& (*fcn)(ios&));

These overloaded operators insert their argument into the stream. The last two var­
iations allow the use of manipulators that are defined for both ostream and ios.

ostream& flush 907

Manipulators

Syntax

Remarks

Syntax

Remarks

Syntax

Remarks

See Also

ostream& endl
endl

This manipulator, when inserted into an output stream, inserts a newline character
and then flushes the buffer.

ostream& ends
ends

This manipulator, when inserted into an output stream, inserts a null-terminator
character. It is particularly useful for ostrstream objects.

ostream& flush
flush

This manipulator, when inserted into an output stream, flushes the output buffer
by calling the streambuf::sync member function.

ostream: : flush, streambuf: :sync

908 ostream_ withassign

class ostream_ withassign : public ostream

Predefined
Objects

See Also

Public Members

The ostream_ withassign class is a variant of ostream that allows object assign­
ment. The predefined objects coot, cerr, and clog are objects of this class and thus
may be reassigned at run time to a different ostream object.

A program that normally sends output to stdoot, for example, could be tem­
porarily directed to send its output to a disk file.

There are three predefined objects of class ostream_ withassign. They are con­
nected as follows:

coot
Standard output (file descriptor 1).

cerr
Unit buffered standard error (file descriptor 2).

clog
Fully buffered standard error (file descriptor 2).

Unit buffering, as used by cerr, means that characters are flushed after each inser­
tion operation. The objects cin, cerr, and clog are tied to coot so that use of any of
these will cause coot to be flushed.

#inclode <iostream.h>

istream_ withassign

Constructi on/Destructi on
ostream_ withassign

-ostream_ withassign

Operators
operator =

Constructs an ostream_ withassign object.

Destroys an ostream_ withassign object.

Assignment operator.

ostream_ withassign:: ostream_ withassign 909

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

ostream_ withassign::ostream_ withassign
ostream_ withassign(streambuf* psb);

ostream_ withassignO;

psb
A pointer to an existing object of a streambuf-derived class.

The first constructor makes a ready-to-use object of type ostream_ withassign,
complete with an attached streambuf object.

The second constructor makes an object but does not initialize it. You must sub­
sequently use the streambuf assignment operator to attach the streambuf object,
or you must use the ostream assignment operator to initialize this object to match
the specified object.

ostream_ withassign::operator =

ostream_ withassign::-ostream_ withassign
-ostreallL withassignO;

Destructor for the ostream_ withassign class.

910 ostream_ withassign::operator =

Operators

Syntax

Remarks

Example

See Also

ostream_ withassign::operator =
ostream& operator =(ostream& ros);

ostream& operator =(streambuf* sbp);

The first overloaded assignment operator assigns the specified ostream object to
this ostreallL withassign object.

The second operator attaches a streambuf object to an existing
ostream_ withassign object, and it initializes the state of the ostream_ withassign
object. This operator is often used in conjunction with the void-argument
constructor.

filebuf fbI "test.dat" 1; II Filebuf object attached to "test.dat"
cout = &fb; II fb associated with cout
cout « "testing"; II Message goes to "test.dat" instead of stdout

ostream_ withassign::ostream_ withassign, COllt

ostrstream 911

class ostrstream : public ostream

See Also

Public Members

The ostrstream class supports output streams that have character arrays as a desti­
nation. You can allocate a character array prior to construction, or the constructor
can internally allocate an expandable array. All the ostream operators and func­
tions can then be used to fill the array.

You must be aware that there is a put pointer working behind the scenes in the
attached strstreambuf class. This pointer advances as you insert fields into the
stream's array. The only way you can make it go backwards is to use the
ostream: :seekp function. If the put pointer reaches the end of user-allocated
memory (and sets the ios::eofflag), then you must call clear before seekp.

#include <strstrea.h>

strstreambuf, streambuf, strstream, istrstream

Construction/Destruction
ostrstream

-ostrstream

Other Functions
peount

rdbuf

str

Constructs an ostrstream object.

Destroys an ostrstream object.

Returns the number of bytes that have been stored
in the stream's buffer.

Returns a pointer to the stream's associated
strstreambuf object.

Returns a character array pointer to the string
stream's contents and freezes the array.

912 ostrstream::ostrstream

Member Functions

Syntax

Parameters

Remarks

ostrstrea m:: ostrstrea m
ostrstreamO;

ostrstream(char* pch, int nLength, int nMode = ios::out);

pch
A character array that is large enough to accommodate future output stream
activity.

nLength
The size (in characters) of pch. If 0, then pch is assumed to point to a null­
terminated array and strlen(pch) is used as the length; if less than 0, then the
array is assumed to have infinite length.

nMode
The stream-creation mode. Must be one of the following enumerators as de­
fined in class ios:

Value

ios::out

ios::ate

ios::app

Meaning

Default; storing begins at pch

The pch parameter is assumed to be a null-terminated array;
storing begins at the NULL character

Same as ios: :ate

The first constructor makes an ostrstream object that uses an internal, dynamic
buffer.

The second constructor makes an ostrstream object out of the first nLength char­
acters of the pch buffer. The stream will not accept characters once the length
reaches nLength.

Syntax

Remarks

See Also

Syntax

Remarks

Syntax

Remarks

See Also

ostrstream::rdbuf 913

ostrstream::Nostrstream
-ostrstreamO;

Destroys an ostrstream object and its associated strstreambuf object, thus releas­
ing all internally allocated memory. If you used the void-argument constructor,
then the internally allocated character buffer is released; otherwise, you must re­
lease it yourself.

An internally allocated character buffer will not be released if it was previously
frozen by an str or strstreambuf: :freeze function call.

ostrstream: :str, strstreambuf: :freeze

ostrstream::pcount
int pcountO const;

Returns the number of bytes that have been stored in the buffer. This information
is especially useful when you have stored binary data in the object.

ostrstream::rdbuf
strstreambuf* rdbufO const;

Returns a pointer to the strstreambufbuffer object that is associated with this
stream. Note that this is not the character buffer; the strstreambuf object contains
a pointer to the character area.

ostrstream: :str

914 ostrstream::str

Syntax

Remarks

See Also

ostrstream: :str
char* strO;

Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send charac­
ters to a frozen stream, and you are responsible for deleting the array. You can,
however, subsequently unfreeze the array by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, then the
pointer contains the same address as the array used to construct the ostrstream
object.

ostrstream: :ostrstream, ostrstream: :rdbuf, strstreambuf: :freeze

stdiobuf 915

class stdiobuf : public streambuf

See Also

Public Members

The run-time library supports three conceptual sets of I/O functions: iostreams
(C++ only), standard 110 (the functions declared in STOIO.H), and low-level
110 (the functions declared in 10.H). The stdiobuf class is a derived class of
streambuf that is specialized for buffering to and from the standard 110 system.

Because the standard I/O system does its own internal buffering, the extra buffer­
ing level provided by stdiobufmay reduce overall input/output efficiency. The
stdiobuf class is useful when you need to mix iostream I/O with standard I/O
(printf and so forth).

You can avoid use of the stdiobuf class if you use the filebuf class. You must also
use the stream class's ios::flags member function to set the ios::stdio format flag
value.

#include <stdiostr.h>

stdiostream, filebuf, strstreambuf, ios::flags

Construction/Destruction
stdiobuf

-stdiobuf

Other Functions
stdiofile

Constructs a stdiobuf object from a FILE pointer.

Destroys a stdiobuf object.

Gets the file that is attached to the stdiofile object.

916 stdiobuf::stdiobuf

Member Functions

Syntax

Parameters

Remarks

Syntax

Remarks

Syntax

Remarks

stdiobuf::stdiobuf
stdiobuf(FILE* fp);

fp
A standard 1/0 file pointer (can be obtained through an fopen or _fsopen call).

Objects of class stdiobuf are constructed from open standard 1/0 files, including
stdin, stdout, and stderr. The object is unbuffered by default.

stdiobuf: :-std iobuf
-stdiobufO;

Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf::stdiofile
FILE* stdiofileO;

Returns the standard 1/0 file pointer associated with a stdiobuf object.

stdiostream 917

class stdiostream : public iostream

See Also

Public Members

The stdiostream class makes I/O calls (through the stdiobuf class) to the standard
110 system, which does its own internal buffering. Calls to the functions declared
in STOIO.H, such as printf, can be mixed with stdiostream 110 calls.

This class is included for compatibility with earlier stream libraries. You can avoid
use of the stdiostream class if you use the ostream or istream class with an as­
sociated filebuf class. You must also use the stream class's ios: : flags member
function to set the ios::stdio format flag value.

The use of the stdiobuf class may reduce efficiency because it imposes an extra
level of buffering. Do not use this feature unless you need to mix iostream library
calls with standard I/O calls for the same file.

#include <stdiostr.h>

stdiobuf, ios: : flags

Construction/Destruction
stdiostream

-stdiostream

Other Functions
rdbuf

Constructs a stdiostream object that is associated
with a standard I/O FILE pointer.

Destroys a stdiostream object (virtual).

Gets the stream's stdiobuf object.

918 stdiostream::rdbuf

Member Functions

Syntax

Remarks

Syntax

Parameters

Remarks

Example

Syntax

Remarks

stdiostream::rdbuf
stdiobuf* rdbufO const;

Returns a pointer to the stdiobuf buffer object that is associated with this stream.
The rdbuf function is useful when you need to call stdiobuf member functions.

std i ostrea m: :std i ostrea m
stdiostream(FILE* fp);

fp
A standard I/O file pointer (can be obtained through an fopen or _fsopen call).
Could be stdin, stdout, or stderr.

Objects of class stdiostream are constructed from open standard I/O files. An un­
buffered stdiobuf object is automatically associated, but the standard 110 system
provides its own buffering.

stdiostream myStream(stdout);

stdiostream::-stdiostream
virtual-stdiostreamO;

This destructor destroys the stdiobuf object associated with this stream; however,
the attached file is not closed.

streambuf 919

class streambuf

Public Members

All the iostream classes in the ios hierarchy depend on an attached streambuf
class for the actual 110 processing. This class is an abstract class, but the iostream
class library contains the following derived buffer classes for use with streams:

filebuf
Buffered disk file I/O.

strstreambuf
Stream data held entirely within an in-memory byte array.

stdiobuf
Disk 110 with buffering done by the underlying standard 110 system.

All streambuf objects, when configured for buffered processing, maintain a fixed
memory buffer, called a reserve area, that can be dynamically partitioned into a
get area for input and a put area for output. These areas mayor may not overlap.
Protected member functions allow access and manipulation of a get pointer for
character retrieval and a put pointer for character storage. The exact behavior of
the buffers and pointers depends on the implementation of the derived class.

The capabilities of the iostream classes can be extended significantly through the
derivation of new streambuf classes. The ios class tree supplies the programming
interface and all formatting features, but the streambuf class does the real work.
The ios classes call the streambuf public members, including a set of virtual
functions.

The streambuf class provides a default implementation of certain virtual member
functions. The "Default Implementation" section for each such function suggests
function behavior for the derived class.

#include <iostream.h>

Character Input Functions
ilL avail

sgetc

snextc

sbumpc

Returns the number of characters in the get area.

Returns the character at the get pointer, but does
not move the pointer.

Advances the get pointer, and then returns the next
character.

Returns the current character, and then advances
the get pointer.

920 streambuf

stossc

sputbackc

sgetn

Moves the get pointer forward one position, but
does not return a character.

Attempts to move the get pointer back one position.

Gets a sequence of characters from the streambuf
object's buffer.

Character Output Functions
ouLwaiting

sputc

sputn

Diagnostic Functions
dbp

Virtual Functions
sync

setbuf

seekoff

seekpos

overflow

underflow

pbackfail

Protected Members

Construction/Destruction
streambuf

-streambuf

Returns the number of characters in the put area.

Stores a character in the put area and advances the
put pointer.

Stores a sequence of characters in the streambuf
object's buffer and advances the put pointer.

Prints buffer statistics and pointer values.

Empties the get area and the put area.

Attempts to attach a reserve area to the streambuf
object.

Seeks to a specified offset.

Seeks to a specified position.

Empties the put area.

Fills the get area if necessary.

Augments the sputbackc function.

Constructors for use in derived classes.

Virtual destructor.

streambuf 921

Other Protected Member Functions
base

ebuf

bIen

pbase

pptr

epptr

eback

gptr

egptr

setp

setg

pbump

gbump

setb

unbuffered

allocate

doallocate

Returns a pointer to the start of the reserve area.

Returns a pointer to the end of the reserve area.

Returns the size of the reserve area.

Returns a pointer to the start of the put area.

Returns the put pointer.

Returns a pointer to the end of the put area.

Returns the lower bound of the get area.

Returns the get pointer.

Returns a pointer to the end of the get area.

Sets all the put area pointers.

Sets all the get area pointers.

Increments the put pointer.

Increments the get pointer.

Sets up the reserve area.

Tests or sets the streambufbuffer state variable.

Allocates a buffer, if needed, by calling doalloc.

Allocates a reserve area (virtual function).

922 streambuf::allocate

Member Functions

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

streambuf::allocate
Protected:

iut allocateO;

Calls the virtual function doallocate to set up a reserve area. If a reserve area al­
ready exists or if the streambuf object is unbuffered, allocate returns O. If the
space allocation fails, allocate returns EOF.

streambuf: :doallocate, streambuf: :uubuffered

streambuf::base
Protected:

char* baseO coust;

Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

streambuf::ebuf, streambuf::setb, streambuf::bleu

streambuf::blen
Protected:

iut bleuO coust;

Returns the size, in bytes, of the reserve area.

streambuf::base, streambuf::ebuf, streambuf::setb

Syntax

Remarks

Syntax

Remarks

Default
Implementation

See Also

streambuf::doallocate 923

streambuf::dbp
void dbpO;

Writes ASCII debugging information directly on stdout. Treat this function as
part of the protected interface.

Some sample output follows:

STREAMBUF DEBUG INFO: this = 00E7:09DC, fAlloc=l
base()=00E7:0A0C, ebuf()=00E7:0C0C, blen()=512

pbase()=00E7:0A0C, pptr()=00E7:0A22, epptr()=00E7:0C0C
eback()=0000:0000, gptr()=0000:0000, egptr()=0000:0000

streambuf::doallocate
Protected:

virtual int doallocateO;

Called by allocate when space is needed. The doallocate function must allocate a
reserve area, then call setb to attach the reserve area to the streambuf object. If
the reserve area allocation fails, doallocate returns EOF.

Attempts to allocate a reserve area using operator new.

streambuf: : allocate, streambuf: :setb

924 streambuf::eback

Syntax

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Remarks

See Also

streambuf::eback
Protected:

char* ebackO const;

Returns the lower bound of the get area. Space between the eback and gptr point­
ers is available for putting a character back to the stream.

streambuf: :sputbackc, streambuf: :gptr

streambuf::ebuf
Protected:

char* ebufO const;

Returns a pointer to the byte after the last byte of the reserve area. The reserve
area consists of space between the pointers returned by base and ebuf.

streambuf::base, streambuf::setb, streambuf::blen

streambuf::egptr
Protected:

char* egptrO const;

Returns a pointer to the byte after the last byte of the get area.

streambuf: :setg, streambuf: :eback, streambuf: :gptr

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

streambuf::gptr 925

streambuf::epptr
Protected:

char* epptrO const;

Returns a pointer to the byte after the last byte of the put area.

streambuf: :setp, streambuf: :pbase, streambuf: :pptr

streambuf::gbump
Protected:

void gbump(int nCount);

nCount
The number of bytes to increment the get pointer. May be positive or negative.

Increments the get pointer. No bounds checks are made on the result.

streambuf: :pbump

streambuf::gptr
Protected:

char* gptrO const;

Returns a pointer to the next character to be fetched from the streambuf buffer.
This pointer is known as the get pointer.

streambuf: :setg, streambuf: :eback, streambuf: :egptr

926 streambuf::in avail

Syntax

Remarks

Syntax

Remarks

Syntax

Parameters

Remarks

streambuf::in_ avail
int iILavailO const;

Returns the number of characters in the get area that are available for fetching.
These characters are between the gptr and egptr pointers and may be fetched with
a guarantee of no errors.

streambuf::out_ waiting
int ouL waitingO const;

Returns the number of characters in the put area that have not been sent to the final
output destination. These characters are between the pbase and pptr pointers.

strea m buf:: ove rfl OW

virtual int overflow(int nCh = EOF) = 0;

nCh
EOF or the character to output.

The virtual overflow function, together with the sync and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class
might implement overflow differently, but the interface with the calling stream
class is the same.

The overflow function is most frequently called by public streambuffunctions
like sputc and sputn when they sense that the put area is full, but other classes, in­
cluding the stream classes, can call overflow anytime.

The function "consumes" the characters in the put area between the pbase and
pptr pointers and then reinitializes the put area. The overflow function must also
consume nCh (if nCh is not EOF), or it might choose to put that character in the
new put area so that it will be consumed on the next call.

Default
Implementation

Return Value

See Also

Syntax

Parameters

Remarks

Default
Implementation

Return Value

See Also

streambuf::pbackfail 927

The definition of "consume" varies among derived classes. The filebuf class, for
example, writes its characters to a file. The strsteambuf class, on the other hand,
keeps them in its buffer and (if the buffer is designated as dynamic) expands the
buffer in response to a call to overflow. This expansion is achieved by freeing the
old buffer and replacing it with a new, larger one. The pointers are adjusted as
necessary.

No default implementation. Derived classes must define this function.

EOF to indicate an error.

streambuf: :pbase, streambuf: :pptr, streambuf: :setp, streambuf: :sync,
streambuf: :underflow

streambuf::pbackfail
virtual int pbackfail(int nCh);

nCh
The character used in a previous sputbackc call.

This function is called by sputbackc if it fails, usually because the eback pointer
equals the gptr pointer. The pbackfail function should deal with the situation, if
possible, by such means as repositioning the external file pointer.

Returns EOF.

The nCh parameter if successful; otherwise EOF.

streambuf: :sputbackc

928 streambuf::pbase

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

See Also

streambuf::pbase
Protected:

char* pbaseO const;

Returns a pointer to the start of the put area. Characters between the pbase pointer
and the pptr pointer have been stored in the buffer but not flushed to the final out­
put destination.

streambuf: :pptr, streambuf: :setp, streambuf: :ouL waiting

streambuf::pbump
Protected:

void pbump(int nCount);

nCount
The number of bytes to increment the put pointer. May be positive or negative.

Increments the put pointer. No bounds checks are made on the result.

streambuf: :gbump, streambuf: :setp

streambuf::pptr
Protected:

char* pptrO const;

Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf object.

streambuf: :epptr, streambuf: :pbase, streambuf: :setp

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Default
Implementation

streambuf::seekoff 929

streambuf::sbumpc
int sbumpcO;

Returns the current character, and then advances the get pointer. Returns EOF if
the get pointer is currently at the end ofthe sequence (equal to the egptr pointer).

streambuf: :epptr, streambuf: :gbump

streambuf::seekoff
virtual streampos seekoff(streamoff off, ios::seelLdir dir,

int nMode = ios::in I ios::out);

off
The new offset value; streamoff is a typedef equivalent to long.

dir
The seek direction specified by the enumerated type seelLdir, as follows:

Value

ios::beg

ios::cur

ios::end

nMode

Meaning

Seek from the beginning of the stream.

Seek from the current position in the stream.

Seek from the end of the stream.

An integer that contains a bitwise-OR (I) combination of the enumerators
ios::in and ios::out.

Changes the position for the streambuf object. Not all derived classes of
streambuf need to support positioning; however, the filebuf, strstreambuf, and
stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output posi­
tion values. The nMode parameter determines which value(s) is set.

Returns EOF.

930 streambuf::seekpos

Return Value

See Also

Syntax

Parameters

Remarks

Default
Implementation

Return Value

See Also

The new position value. This is the byte offset from the start of the file (or string).
If both ios::in and ios::out are specified, then the function returns the output
position. If the derived class does not support positioning, then the function
returns EOF.

streambuf: :seekpos

strea m buf: :seekpos
virtual streampos seekpos(streampos pas, int nMade = ios::in I ios::out);

pas
The new position value; streampos is a typedef equivalent to long.

nMade
An integer that contains mode bits defined as ios enumerators that can be com­
bined with the OR (I) operator. See of stream: : of stream for a listing of the
enumerators.

Changes the position, relative to the beginning of the stream, for the streambuf
object. Not all derived classes of streambufneed to support positioning; however,
the filebuf, strstreambuf, and stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output posi­
tion values. The nMade parameter determines which value(s) is set.

Calls seekoff((streamoff) pas, ios::beg, nMade). Thus, to define seeking in a
derived class, it is usually necessary to redefine only seekoff.

The new position value. If both ios: :in and ios: :out are specified, then the func­
tion returns the output position. If the derived class does not support positioning,
then the function returns EOF.

streambuf: :seekoff

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Remarks

streambuf::setbuf 931

streambuf::setb
Protected:

void setb(char* pb, char* peb, iut nDelete = 0);

pb
The new value for the base pointer.

peb
The new value for the ebufpointer.

nDelete
Flag that controls automatic deletion. If nDelete is not 0, then the reserve area
will be deleted (1) when the base pointer is changed by another setb call or (2)
when the streambuf destructor is called.

Sets the values of the reserve area pointers. If both pb and peb are NULL, then
there is no reserve area. If pb is not NULL and peb is NULL, then the reserve area
has a length of 0.

streambuf:: base, streambuf: :ebuf

streambuf::setbuf
virtual streambuf* setbuf(char* pr, iut nLength);

pr
A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength
The length (in bytes) of the reserve area. A length of ° indicates an unbuffered
stream.

Attaches the specified reserve area to the streambuf object. Derived classes may
or may not use this area.

932 streambuf::setg

Default
Implementation

Return Value

Syntax

Parameters

Remarks

See Also

Syntax

Parameters

Accepts the request if there is not a reserved area already.

A streambuf pointer if the buffer is accepted; otherwise NULL.

streambuf::setg
Protected:

void setg(char* peb, char* pg, char* peg);

peb
The new value for the eback pointer.

pg
The new value for the gptr pointer.

peg
The new value for the egptr pointer.

Sets the values for the get area pointers.

streambuf: :eback, streambuf: :gptr, streambuf: :egptr

streambuf::setp
Protected:

void setp(char* pp, char* pep);

pp
The new value for the pbase and pptr pointers.

pep
The new value for the epptr pointer.

Remarks

See Also

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

streambuf::sgetn 933

Sets the values for the put area pointers.

streambuf: :pptr, streambuf: :pbase, streambuf: :epptr

streambuf::sgetc
int sgetcO;

Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.

streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc, streambuf: :stossc

streambuf::sgetn
int sgetn(char* pch, int nCount);

pch
A pointer to a buffer that will receive characters from the streambuf object.

nCount
The number of characters to get.

Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf ob­
ject, sgetn fetches whatever characters remain. The function repositions the get
pointer to follow the fetched characters.

The number of characters fetched.

streambuf: :sbumpc, streambuf: :sgetc, streambuf: :snextc, streambuf: :stossc

934 streambuf::snextc

Syntax

Remarks

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Parameters

Remarks

strea m buf: :snextc
int snextcO;

First tests the get pointer, then returns EOF if it is already at the end of the get
area. Otherwise, it moves the get pointer forward one character and returns the
character that follows the new position. It returns EOF if the pointer has been
moved to the end of the get area.

streambuf: :sbumpc, streambuf: :sgetc, streambuf: :sgetn, streambuf: :stossc

strea mbuf: :sputbackc
int sputbackc(char ch);

ch
The character to be put back to the streambuf object.

Moves the get pointer back one position. The ch character must match the charac­
ter just before the get pointer.

EOF on failure.

streambuf: :sbumpc, streambuf: :pbackfail

streambuf::sputc
int sputc(int nCh);

nCh
The character to store in the streambuf object.

Stores a character in the put area and advances the put pointer.

Return Value

See Also

Syntax

Parameters

Remarks

Return Value

See Also

Syntax

Remarks

See Also

streambuf::stossc 935

This public function is available to code outside the class, including the classes
derived from ios. A derived streambuf class can gain access to its buffer directly
by using protected member functions.

The number of characters successfully stored; EOF on error.

streambuf: :sputn

streambuf::sputn
int sputn(const char* pch, int nCount);

pch
A pointer to a buffer that contains data to be copied to the streambuf object.

nCount
The number of characters in the buffer.

Copies nCount characters from pch to the streambuf buffer following the put
pointer. The function repositions the put pointer to follow the stored characters.

The number of characters stored. This number is usually nCount but could be less
if an error occurs.

streambuf: :sputc

strea mbuf: :stossc
void stosscO;

Moves the get pointer forward one character. If the pointer is at the end of the get
area already, the function has no effect.

streambuf: :sbumpc, streambuf: :sgetn, streambuf: :snextc, streambuf: :sgetc

936 streambuf::streambuf

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

strea mbuf: :strea m buf
Protected:

streambufO;

Protected:

pr

streambuf(char* pr, int nLength);

A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength
The length (in bytes) of the reserve area. A length of 0 indicates an unbuffered
stream.

The first constructor makes an uninitialized streambuf object. This object is not
suitable for use until a setbuf call is made. A derived class constructor usually
calls setbuf or uses the second constructor.

The second constructor initializes the streambuf object with the specified reserve
area or marks it as unbuffered.

streambuf: :setbuf

streambuf::-streambuf
Protected:

virtual -streambufO;

The streambuf destructor flushes the buffer if the stream is being used for output.

Syntax

Remarks

Default
Implementation

Return Value

See Also

Syntax

Parameters

Remarks

See Also

streambuf::unbuffered 937

streambuf::sync
virtual int syncO;

The virtual sync function, together with the overflow and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class
might implement sync differently, but the interface with the calling stream class is
the same.

The sync function flushes the put area. It also empites the get area and, in the
process, sends any unprocessed characters back to the source, if necessary.

Returns 0 if the get area is empty and there are no more characters to output; other­
wise, it returns EOF.

EOF if an error occurs.

streambuf: : overflow

streambuf::unbuffered
Protected:

void unbuffered(int nState);

Protected:
int unbufferedO const;

nState
The value of the buffering state variable; 0 = buffered, nonzero = unbuffered.

The first overloaded unbuffered function sets the value of the streambuf object's
buffering state. This variable's primary purpose is to control whether the allocate
function automatically allocates a reserve area.

The second function returns the current buffering state variable.

streambuf: : allocate, streambuf: :doallocate

938 streambuf::underflow

Syntax

Remarks

Default
Implementation

streambuf::underflow
virtual int underflowO = 0;

The virtual underflow function, together with the sync and overflow functions ,
defines the characteristics of the streambuf-derived class. Each derived class
might implement underflow differently, but the interface with the calling stream
class is the same.

The underflow function is most frequently called by public streambuffunctions
like sgetc and sgetn when they sense that the get area is empty, but other classes,
including the stream classes, can call underflow anytime.

The underflow function supplies the get area with characters from the input
source. If the get area contains characters, then underflow returns the first charac­
ter. If the get area is empty, then it fills the get area and returns the next character
(which it leaves in the get area). If there are no more characters available, then
underflow returns EOF and leaves the get area empty.

In the strstreambuf class, underflow adjusts the egptr pointer to access storage
that was dynamically allocated by a call to overflow.

No default implementation. Derived classes must define this function.

strstream 939

class strstream : public iostream

See Also

Public Members

The strstream class supports lIO streams that have character arrays as a source
and destination. You can allocate a character array prior to construction, or the con­
structor can internally allocate a dynamic array. All the input and output stream
operators and functions can then be used to fill the array.

You must be aware that there is a put pointer and a get pointer working inde­
pendently behind the scenes in the attached strstreambuf class. The put pointer
advances as you insert fields into the stream's array, and the get pointer advances
as you extract fields. The ostream::seekp function moves the put pointer, and the
istream: :seekg function moves the get pointer. If either pointer reaches the end of
the string (and sets the ios::eofflag), then you must call clear before seeking.

#include <strstrea.h>

strstreambuf, streambuf, istrstream, ostrstream

Construction/Destruction
strstream

-strstream

Other Functions
pcount

rdbuf

str

Constructs a strstream object.

Destroys a strstream object.

Returns the number of bytes that have been stored
in the stream's buffer.

Returns a pointer to the stream's associated
strstreambuf object.

Returns a pointer to the string stream's character
buffer and freezes it.

940 strstream::pCDunt

Member Functions

Syntax

Remarks

Syntax

Remarks

See Also

Syntax

Remarks

See Also

strstream::pcount
int pcountO const;

Returns the number of bytes that have been stored in the buffer. This information
is especially useful when you have stored binary data in the object.

strstream::rdbuf
strstreambuf* rdbufO const;

Returns a pointer to the strstreambuf buffer object that is associated with this
stream. Note that this is not the character buffer; the strstreambuf object contains
a pointer to the character area.

strstream: :str

strstream::str
char* strO;

Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send charac­
ters to a frozen stream, and you are responsible for deleting the array. You can un­
freeze the the stream by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, then the
pointer contains the same address as the array used to construct the ostrstream
object.

strstreambuf: : freeze, strstream: :rdbuf

Syntax

Parameters

Remarks

strstream::strstream 941

strstrea m : :strstrea m
strstreamO;

strstream(char* pch, int nLength, int nMode);

pch
A character array that is large enough to accommodate future output stream
activity.

nLength
The size (in characters) of pch. If 0, then pch is assumed to point to a null­
terminated array; if less than 0, then the array is assumed to have infinite length.

nMode
The stream creation mode. Must be one of the following enumerators as de­
fined in class ios:

Value

ios::in

ios::out

ios::ate

ios::app

Meaning

Retrieval begins at the beginning of the array.

By default, storing begins at pch.

The pch parameter is assumed to be a null-terminated array;
storing begins at the NULL character.

Same as ios::ate.

The use of the ios: :in and ios: :out flags is optional for this class; both input and
output are implied.

The first constructor makes an strstream object that uses an internal, dynamic
buffer that is initially empty.

The second constructor makes an strstream object out of the first nLength charac­
ters of the psc buffer. The stream will not accept characters once the length
reaches nLength.

942 strstream::-strstream

Syntax

Remarks

See Also

strstrea m:: -strstream
-strstreamO;

Destroys a strstream object and its associated strstreambuf object, thus releasing
all internally allocated memory. If you used the void-argument constructor, then
the internally allocated character buffer is released; otherwise, you must release it
yourself.

An internally allocated character buffer will not be released if it was previously
frozen by calling rdbuf->freeze(0).

strstream::rdbuf

strstreambuf 943

class strstreambuf : public streambuf

See Also

Public Members

The strstreambuf class is a derived class of streambufthat manages an in­
memory character array.

The file stream classes, ostrstream, istrstream, and strstream, use strstreambuf
member functions to fetch and store characters. Some of these member functions
are virtual functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class de­
scription. For strsteambuf objects, the put area is the same as the get area, but the
get pointer and the put pointer move independently.

#include <strstrea.h>

istrstream, ostrstream, filebuf, stdiobuf

Construction/Destruction
strstreambuf

-strstreambuf

Other Functions
freeze

str

Constructs a strstreambuf object.

Destroys a strstreambuf object.

Freezes a stream.

Returns a pointer to the string.

944 strstreambuf::freeze

Member Functions

Syntax

Parameters

Remarks

See Also

Syntax

Remarks

strstreambuf::freeze
void freeze(int n = 1);

n
A 0 value permits automatic deletion of the current array and also its automatic
growth (if it is dynamic); a nonzero value prevents deletion.

If a strstreambuf object has a dynamic array, then memory is usually deleted on
destruction and size adjustment. The freeze function provides a means of prevent­
ing that automatic deletion. Once an array is frozen, no further input or output is
permitted. The results of such operations are undefined.

The freeze function can also unfreeze a frozen buffer.

strstreambuf: :str

strstreambuf::str
char* strO;

Returns a pointer to the object's internal character array. If the strstreambuf
object was constructed with a user-supplied buffer, then that buffer address is
returned. If the object has a dynamic array, then str freezes the array. You must
not send characters to a frozen strstreambuf object, and you are responsible for
deleting the array. If a dynamic array is empty, then str returns NULL.

You can use the freeze function with a 0 parameter to unfreeze a frozen
strstreambuf object.

See Also strstreambuf::freeze

Syntax

Parameters

strstreambuf::strstreambuf 945

strstreambuf::strstreambuf
strstreambufO;

strstreambuf(int nBytes);

strstreambuf(char* pch, int n, char* pstart = 0);

strstreambuf(unsigned char* puch, int n, unsigned char* pustart = 0);

strstreambuf(signed char* psch, int n, signed char* psstart = 0);

strstreambuf(void* (*jaUoc)(long), void (*ffree)(void*));

nBytes
The initial length of a dynamic stream buffer.

pch, puch, psch

n

A pointer to a character buffer that will be attached to the object. The get
pointer is initialized to this value.

An integer parameter with the following meanings:

Value

positive

o

negative

Meaning

n bytes, starting atpch, is used as a fixed-length stream buffer.

The pch parameter points to the start of a null-terminated
string that constitutes the stream buffer (terminator excluded).

The pch parameter points to a stream buffer that continues
indefinitely.

pstart, pustart, psstart
The initial value of the put pointer.

jaUoc
A memory-allocation function with the prototype void* falloc(long). The
default is new.

ffree
A function that frees allocated memory with the prototype void ffree(void*).
The default is delete.

-- ---------- -------- ------ ----

946 strstreambuf:: ... strstreambuf

Remarks The four streambuf constructors are described as follows:

Syntax

Remarks

Constructor

strstreambufO

strstreambuf(int)

strstreambuf(char*,
int, char*)

strstreambuf(
void*(*), void(*))

Description

Constructs an empty strstreambuf object with
dynamic buffering. The buffer is allocated internally
by the class and grows as needed, unless it is frozen.

Constructs an empty strstreambuf object with a
dynamic buffer n bytes long to start with. The buffer
is allocated internally by the class and grows as
needed, unless it is frozen.

Constructs a strstreambuf object from already­
allocated memory as specified by the arguments.
There are constructor variations for both unsigned
and signed character arrays.

Constructs an empty strstreambuf object with
dynamic buffering. The falloc function is called for
allocation. The long parameter specifies the buffer
length and the function returns the buffer address. If
the falloc pointer is NULL, then operator new is
used. The ffree function frees memory allocated by
falloc. If the ffree pointer is NULL, the operator
delete is used.

strstreambuf::Nstrstreambuf
-strstreambufO;

Destroys a strstreambuf object and, in the process, releases all internally allo­
cated dynamic memory unless the object is frozen. The destructor does not release
user-allocated memory.

Index

!= (inequality operator)
CRect class, 532

& (intersection operator)
CRect class, 535

&= (assignment of intersection operator)
CRect class, 533

+ (addition operator)
CRect class, 534
CString class, 594
CTime class, 615-616
CTimeSpan class, 625

+= (assignment of addition operator)
CRect class, 532
CString class, 595
CTime class, 616
CTimeSpan class, 626

16-bit words
CWordArray class described, 823

32-bit
double words, CDWordArray class described, 280
values, retrieving combo-box item,

CComboBox::GetltemData,150
= (assignment operator)

CRect class, 531
CSize class, 560
CString class, 592
CTime class, 615
CTimeSpan class, 625
istream class, 889
ostream class, 910

= = (equality operator)
CRect class, 531

« (insertion operator)
CArchive class, 103
CDumpContext class, 278-279
CString class, 593
ostream class, 906

» (extraction operator)
CArchive class, 102
CString class, 593
CTime class, 617
CTimeSpan class, 627
istream class, 885

[] (subscript operator)
CMapStringToOb class, 386
CString class, 597

1 (union operator)
CRect class, 535

1= (assignment of union operator)
CRect class, 533-534

- (subtraction operator)
CRect class, 534
CTimeSpan class, 625

- = (assignment of subtraction operator)
CRect class, 533

A
AbortDoc member function

CDC class, 164-165
Aborting

CDC: :AbortDoc, 164
default termination function, AfxAbort, 61
print job installing procedure, 235-237

Accelerator key translation, 638
Add member function

CObArray class, 453
AddHead member function

CObList class, 480
Adding

CWnd to Clipboard viewer chain, 807
element to array, 453
elements to lists, 481
filenames

to list box of combo box, 147
to list boxes, 360

lists or elements to lists, 480
menu items, 428-430
size to CSize, 560
strings

to list box of combo box, 142, 151
to list boxes, 355, 366

time spans
CTimeSpan::operator +,-,625
CTimeSpan: : operator +=,-=, 626

948 Index

Addition operator
CRect class, 534
CString class, 594
CTime class, 615-616
CTimeSpan class, 625

AddString member function
CComboBox class, 142
CListBox class, 355

AddTail member function
CObList class, 481

adjustfield data member
ios class, 867

AfxAbort, 61
AfxCheckMemory,47
AfxDoForAllClasses,48
AfxDoForAllObjects,49
AfxEnableMemoryTracking, 49
AfxGetApp, 36
AfxGetAppName, 36
AfxGetlnstanceHandle, 36
AfxGetResourceHandle, 37
AfxIsMemoryBlock,50
AfxIs ValidAddress, 51
afxMemDF,46
AfxRegisterWndClass,37
AfxSetAllocHook, 51
AfxSetAllocStop, 52
AfxSetTerminate, 61
AfxTerminate, 62
AfxThrow ArchiveException, 63
AfxThrowFileException, 63
AfxThrowMemoryException,64
AfxThrowNotSupportedException,64
AfxThrowResourceException,64
allocate member function

streambuf class, 922
ALTkey

called when pressed with another key, 791-792
called with release of key pressed

with ALT, 792-794
AND_CATCH macro, 65
AnimatePalette member function

CPa1ette class, 503
ANSI

converting characters to OEM character set, 576
AnsiToOem member function

CString class, 576
Appending menu items, 416-418
AppendMenu member function

CMenu class, 416-418
CWnd::GetSystemMenu, 699

Applications
accessing device facilities unavailable through

GDI, 184-185
allowing access to Control menu for copying and

modification, 699
called when creating CWnd object, 724-726
creating and displaying messages, 711-714
CWnd,735-736
fonts, called upon changing, 738-739
list boxes, returning on application response, 720
main class described, 5
owner's, called when destroyed, 780-781
redrawing or preventing redrawing of changes, 811
returning handle to current instance

AfxGetInstanceHand1e, 36
AfxGetResourceHandle, 37

returning name, AfxGetAppName, 36
sessions, ending, called to inform CWnd, 736
specifying the action performed in response to

message, 795-796
specifying whether given window is visible, 710
Windows

accessing command-line arguments entered at
start, 639

cleaning up at termination, 631
constructor, 631
CWinApp class described, 628
filtering messages, 638
handle to current instance, 639
handle to previous instance, 639
idle-time processing, 637
instance initializing, 632
last message retrieved, 639
loading cursor resource, 633
loading predefined cursor resource, 634, 635
loading predefined icon resource, 634, 636
loading specified icon resource, 633
making main window visible, 640
name, 640
one-time initializing, 632
providing default message loop, 638
storing pointer to main window object, 640

Arc member function
CDC class, 165-166

Archives
CArchive class described, 93-94
CArchiveException class described, 104
data

determining if loading, 98
determining if storing, 98

Archives (continued)
flushing buffer to file, 97
getting CFile pointer, 97
loading object or primitive type, 102
reading

from object data, 99
from specified number of bytes, 99

serialization exceptions, constructing objects, 105
specifying cause, 106
storing

object or primiti ve type, 103
objects, 101

writing, specified number of bytes to, 100
Arcs, elliptical, drawing, 165-166
Argument passing conventions

CString class, 599
Arguments

evaluating
ASSERT macro, 53
VERIFY macro, 57

inserting into streams, 906
returning variable number as printf uses them,

TRACE macro, 56
ArrangeIconicWindows member function

CWnd class, 659
Arranging minimized document child windows, 406
Array classes described, 27
Arrays

16-bit words, CWordArray class described, 823
adding element to, 453
bytes, dumping hexadecimally formatted, 276
classes described, 27
CObject pointers, CObArray class described, 450
CString objects, CStringArray class described, 601
destroying, 454
double words, CDWordArray class described, 280
dynamic, of bytes, CByteArray class, 135-136
elements

adding at end, 453
inserting in specified index, 457
removing elements, 458-459
returning at specified index, 455
returning reference to pointer, 454-455
setting at specified index, 459-460
setting at specified index, 460-461

establishing size, 461
freeing extra memory, 455
indexes, setting elements to specified, 459-460
internal character, returning pointer to, 914

Arrays (continued)
removing pointers from, 458
returning size of, 456
returning upper bound, 456

Index 949

returns reference to element pointer, 454-455
strstreambuf objects, preventing memory

deletion, 944
subscript operators, 462
void pointers, CPtrArray class described, 517

Aspect-ratio filter, retrieving setting, 192
ASSERT macro, 53
ASSERT_VALID macro, 53
AssertValid member function

CObject class, 466
Assignment of addition operator

CRect class, 532
CString class, 595
CTime class, 616
CTimeSpan class, 626

Assignment of intersection operator
CRect class, 533

Assignment of subtraction operator
CRect class, 533

Assignment of union operator
CRect class, 533-534

Assignment operator
CRect class, 531
CSize class, 560-561
CString class, 592
CTime class, 615
CTimeSpan class, 625
istream class, 889
ostream class, 910

Attach member function
CGdiObject class, 344
CMenu class, 419
CWnd class, 659
filebuf class, 832
fstream class, 838
ifstream class, 846
of stream class, 894

Attaching
filebuf objects to specified open file, 832
stream to specified open file, 838
streams

to already open file, 894
to specified open file, 846

Windows GDI object to CGdiObject, 344

950 Index

B
Background

CWnd, called when needing erasing, 737-738
mode, getting, 193

bad member function
ios class, 855

base member function
streambuf class, 922

basefield data member
ios class, 867

BeginPaint member function
CWnd class, 660

CPaintDC::m_ps,500
Binary/text mode, setting

filebuf objects, 835
stream's filebuf object, 851
streams, 868, 899

Binding, done when, 25
Bit patterns, creating for specified device, 218-219
bitalloc member function

ios class, 855
BitBlt member function

CDC class, 167-169
CBitmap: : CreateB itmap , 110
CBitmap::CreateBitmapIndirect, 110

Bitmaps
associating with menu items, 435-436
constructing CBitmap objects, 109
copying

to current device context, 167-169
bit pattern to buffer, 113

GDI, CBitmap class described, 107-108
initializing

compatible with device specified by pDC, 111
device-dependent memory bitmap, 109-110
discardable, 112
having IpBitmap structure, 110

moving, 255-257
predefined, loading, 115-116
resource, loading, 114
returning pointer to CBitmap object, 113
setting bits to specified values, 116
stretching mode, retrieving, 204
width, height, getting, 114
width, specifying, 116-117

BLACKRECT structure, 564

bIen member function
streambuf class, 922

Borders, drawing
around rectangles, 191
around regions, 192

BottomRight member function
CRect class, 523

Boxes, setting highlighting, 134
Boxes, buttons

getting
check state, 132
current state, 132

setting check state, 134
BringWindowToTop member function

CWnd class, 661
Brushes

available in device context, enumerating, 182-184
CBrush class described, 118
CBrush object, returning pointer to, 125
constructing uninitialized, 119-120
current, retrieving origin, 193
initializing

DIB-specified pattern, 121-122
hatch pattern and color, 122-124
LOGBRUSH-specified pattern, 120-121
pattern specified by bitmap, 123
solid color, 124

predefined
retrieving handle to, 345-346
selecting, 442

resetting CGdiObject::UnrealizeObject, 350
setting origin for GDI assignment, 239

Buffer-deletion flags, assigning value for stream,
856

Buffering
setting state for streambuf object, 937

Buffers
archive, flushing

CArchive::Close,97
CArchive::Flush,97

filling with data that defines object, 348
flushing

files, 309
to dump context, 275

internal character, returning pointer for CString
object, 582-583

streams, flushing, 902
writing data to CFile object file, 320

Button control
calling owner when visual aspect of control or

menu changes, 732-735
check-marking, dimming, 661
detennining check-marking, 709

Buttons
as child windows, 16
check-marking, 662
creating

constructor ,128
control, 128-131

styles
changing, 33
getting, 131

Buttons, boxes
called when control created, 754-756
calling owner when visual aspect of control or

menu changes, 732-735
check-marked, getting ID of radio button, 686

Bytes, dumping array of hexadecimally fonnatted,

c

276
dynamic array support, 135-136
extracting from streams, 883
file length, 309
locking range in open file, 312
writing to streams, 905

c++
accommodates Windows messaging, 9
and Windows, 8
constructors, 15
Windows objects, constructing, 15

c++ header code
generating for CObject class

serializable, 468
with run-time information, 468

generating for dynamic CObject-derived class with
run-time access to class name and position, 471

CALCRECT structure, 177-179
Calculating

height of CRect, 525
nonclient area, 762
width of CRect, 530

Callback function, 183,211,236
Cancel button, overriding in dialog boxes, 448
CanUndo member function

CEdit class, 285

Captions
dialog boxes, retrieving, 691
setting to specified text, 816

CArchive class
described, 93-94
member functions

CArchive, 95-96
-CArchive, 96
Close, 96-97
Flush, 96-97, 309
GetFile,97
IsLoading, 98, 473
IsStoring, 98, 473
Read,99
RcadObject, 99-100, 473
Write, 100
WriteObject, 101,473

object persistence described, 23
operators, 102-103

CArchive constructor, 95-96
CArchive destructor, 96
CArchive object

Index 951

closing and disconnecting from file, 97
creating, 95
destroying, 96

CArchiveException class
data members

m_cause, 106
described, 104
member functions

CArchiveException, 105
CArchiveException constructor, 105
Carets

coordinates, retrieving, 686
displaying

after gaining input focus, 783
at current position, 816-817

gray, creating, 671
hiding, 705
moving to position specified by point, 806-807
solid, creating, 672
system, creating new shape, 665

Casting operator, 592
CATCH macro, 65
CBitmap class

described, 107-108
member functions

CBitmap, 109
CreateBitmap, 109-110, 120, 123,665

952 Index

CBitmap class (continued)
member functions (continued)

CreateBitmapIndirect, 110, 120, 123
CreateCompatibleBitmap, 111, 120, 123
CreateDiscardableBitmap, 112
FromHandle, 113
GetBitmapBits, 113,349
GetBitmapDimension, 114
LoadBitmap, 114, 120, 123,665
LoadOEMBitmap, 115-116
SetBitmapBits, 116
SetBitmapDimension, 116-117

CBitmap constructor, 109
CBrush::CBrush,120

CBitmap object
copying bit pattern to buffer, 113
creating, 109
returning pointer, 113

CBitmap, width, height, getting, 114
CBrush class

described, 118
member functions

CBrush,119-120
CreateBrushIndirect, 120-121
CreateDIBPatternBrush, 121-122
CreateHatchBrush, 122-123
CreatePatternBrush, 123-124
CreateSolidBrush, 124
FromHandle, 125
UnrealizeObject, 738

CBrush constructor, 119-120
CBrush object, creating uninitialized, 119-120
CButton class

described, 126-127
member functions

CButton, 128
Create, 128-13 1
GetButtonStyle, 131
GetCheck, 132
GetState, 132-133
SetButtonStyle, 133
SetCheck, 134
SetState, 134

setting highlight state, 134
CButton constructor, 128
CButton object

control, 128-131
creating, 128

CByteArray class, described, 135-136

CClientDC class
data members

m_hWnd,138
described, 137
member functions

CClientDC, 138
-CClientDC, 138

CClientDC constructor, 138
CClientDC destructor, 138
CClientDC objects

creating, 138
destroying, 138
handles, 138

CComboBox class
described, 139-141
edit control

copies current selection to Clipboard, 143
deleting selection, 143
inserting Clipboard data into, 152
selecting characters in, 154
text, limiting length, 152

items
getting number of, 149
retrieving associated application-supplied 32-bit

value, 150
setting associated with 32-bit value, 155

list box
adding string to, 142
removing all items from, 153
searching for string in, 153
selecting string in, 154
showing or hiding specified, 155

member functions
AddString, 142
CComboBox, 142
Clear, 143
Copy, 143
Create, 143-146
Cut, 146
DeleteString, 147, 729
Dir, 147-148
FindString, 148
GetCount, 149
GetCurSel, 149
GetEditSel,149
GetItemData, 150
GetLBText, 150
GetLBTextLen, 151
InsertString, 151

CComboBox class (continued)
member functions (continued)

LimitText, 152
Paste, 152
ResetContent, 153,729
SelectString, 153
SetCurSel, 154
SetEditSel, 154-155
SetItemData, 155
ShowDropDown,155

CComboBox constructor, 142
CComboBox object

creating, 143-144, 146
ending print job page, 181
printing, terminating job, 180

CDC class
allowing applications to access device facilities,

184-185
bit pattern, creating, 218-219
bitmaps, moving, 255, 257
bitmap-stretching mode, retrieving, 204
COdiObject object, selecting, 234-235
character strings

computing width and height, 204-205
writing, with tab stops, 258-259

clipping region
creating, 185
selecting given region as current, 231

colors
retrieving current text,207
retrieving ROB value of specified pixel, 202
returning closest to device capability, 202
setting background, 238
setting text, 248
updating client area with current, 260

converting logical to device points, 215
copying bitmap, 167-169
creating

bit pattern on device, 218-219
clipping region, 212

current position, retrieving, 195
described, 156-163
device contexts

creating for specified device, 172-173
deleting, 174
obtaining final translation origin, 196
saving current state, 227

display device, getting information on, 196,201
drawing

dimmed text, 210-212
ellipses, 179-180

CDC class (continued)
drawing (continued)

elliptical arcs, 165-166
filled polygons, 222
icons, 176
line segments, 222
lines to points, 214
pie-shaped wedge, 219-220

Index 953

polygons consisting of points, 221
rectangles in focus style, 175
rectangles with current pen, 224
rectangles with rounded corners, 226-227
setting current mode, 243-244

drawing mode, retrieving, 203
dynamic run-time checking supported, 156
filling

display area with current brush, 187-188, 190
rectangle using specified brush, 189-190
specified region with brush, 218

fonts
altering mapper, 241
copying typeface name into buffer, 208
retrieving character widths, 194
retrieving metrics for current, 208

information contexts, creating, 173
intercharacter spacing setting, 206
mapping mode, retrieving, 201
mapping point coordinates, 175
member functions

AbortDoc, 164-165
Arc, 165-166
BitBlt, 110, 167-169
CDC, 169
-CDC, 170
Chord, 170-171
CreateCompatibleDC, 171-172
CreateDC, 172-173
CreateIC, 173-174
DeleteDC,174-175
DPtoLP,175
DrawFocusRect,175-176
Drawlcon, 176
DrawText, 177-179
Ellipse, 179-180
EndDoc, 180-181
EndPage, 181-182
EnumObjects,182-184
Escape, 184-185
ExcludeClipRect, 185-186
ExcludeUpdateRgn, 186

954 Index

CDC class (continued)
member functions (continued)

ExtFloodFill,187-188
ExtTextOut,188-189
FillRect, 189-190
FillRgn, 190
FloodFill, 190-191
FrameRect, 191
FrameRgn, 192
GetAspectRatioFilter, 192
GetBkColor,193
GetBkMode, 193
GetBrushOrg, 193-194
GetCharWidth, 194
GetCIipBox, 195
GetCurrentPosition, 195
GetDCOrg, 196
GetDeviceCaps, 196-201
GetMapMode,201
GetNearestColor,202
GetPixel, 202-203
GetPolyFillMode,203
GetROP2, 203
GetStretchBltMode, 204
GetTabbedTextExtent,204-205
GetTextAlign, 205-206
GetTextCharacterExtra, 206
GetTextColor,207
GetTextExtent, 207
GetTextFace, 208
GetTextMetrics, 208
GetViewportExt, 209
GetViewportOrg, 209
GetWindowExt,209
GetWindowOrg,210
GrayString,21O-212
IntersectClipRect,212-213
InvertRect,213
InvertRgn,214
LineTo,214
LPtoDP,215
MoveTo,215-216
OffsetClipRgn, 216
OffsetViewportOrg,217
OffsetWindowOrg,217
PaintRgn, 218
PatBlt,218-219
Pie, 219-220
PlayMetaFile, 221, 440

CDC class (continued)
member functions (continued)

Polygon, 221
Polyline, 222
Poly Polygon, 222-223
PtVisible, 223
RealizePalette, 224, 350, 507
Rectangle, 224-225
RectVisible, 225
RestoreDC, 226
RoundRect,226-227
SaveDC,227-228
Scale ViewportExt, 228
ScaleWindowExt,229
ScrollDC, 230
SelectClipRgn, 231
SelectObject, 110, 112, 232-233, 334
SelectPalette, 233-234
SelectStockObject, 234-235
SetAbortProc,235-237
SetBkColor, 238
SetBkMode,238-239
SetBrushOrg, 239, 350
SetMapMode,240-241
SetMapperFlags, 241
SetPixel, 242
SetPolyFillMode, 242-243
SetROP2, 243-244
SetStretchBltMode, 245
SetTextAlign,246-247
SetTextCharacterExtra, 247
SetTextColor,248
SetTextJustification,248-249
SetViewportExt,250
SetViewportOrg,251
SetWindowExt,252
SetWindowOrg, 253
StartDoc, 254
StartPage, 254
StretchBlt, 255-257
TabbedTextOut, 258-259
TextOut, 259-260
UpdateColors,260

metafile, playing on device, 221
modifying

viewport extents, 228
window origin, 217
windows extents, 229

CDC class (continued)
moving clipping region, 216

mapping entries to system palette, 224
selecting, 233

pens, brushes available, enumerating, 182-184
pixels, setting at specified point, 242
polygon-filling mode

retrieving, 203
setting, 242

position, current, moving to point, 215
print job, informing device driver of new, 254
printer driver, preparing to receive data, 254
printing

installing abort procedure for job, 235-237
terminating current job, 164

rectangles
bounding, retrieving dimensions around clipping

195
determining if within clipping region, 225
drawing borders around, 191
drawing text in, 177-179
drawing with rounded corners, 226-227
inverting contexts, 213
scrolling, 230

regions
drawing border around, 192
filling with specified brush, 190,218
inverting contents, 214
preventing drawing within invalid area, 186
writing character strings within, 188-189

restoring Windows device context to previous
state, 226

retrieving
aspect-ratio filter setting, 192
current brush origin, 193
window origin coordinates, 210

returning
background mode, 193
current background color, 193

selecting object into current device context,
232-233

setting
background mode, 238
bitmap-stretching mode, 245
current drawing mode, 243-244
intercharacter spacing, 247
mapping mode, 240-241

specifying next brush origin, 239
terminating print job

CDC::AbortDoc, 164
CDC::EndDoc, 180

CDC class (continued)
text

computing line dimensions, 207
setting alignment flags, 246-247
setting color, 248

Index 955

setting justification, 248-249
text-alignment flag status, retrieving, 205
viewports

modifying origin, 217
retrieving device contexts' extents, 209
retrieving origin coordinates associated with

device context, 209
setting origins of device context, 251
setting x- and y-extents of device context, 250

windows, 253
retrieving coordinates associated with device

context, 209
setting x- and y-extents, 252

writing character strings at specified location, 259
CDC constructor, 169
CDC destructor, 170
CDC objects

creating and attaching memory device context, 171
constructor, 169
destroying, 170

CDialog class
described, 261-263
focus control

CDialog::GotoDlgCtrl,268
CDialog::NextDlgCtrl,270
previous, 272

font control, 262
CDialog::OnSetFont, 271

member functions
CDialog, 264
Create, 264-265
CreateIndirect, 266-267
EndDialog, 267
GetDeflD,268
GotoDlgCtrl, 268
IsDialogMessage, 268-269
MapDialogRect, 270
NextDlgCtrl,270
OnInitDialog, 271
OnSetFont, 271-272
PrevDlgCtrl, 272
SetDeflD, 272

message-checking, 268-269
message-handler member functions, 261
mode1ess dialog box, creating, 264
pushbutton control, default, 272

956 Index

CDialog class (continued)
screen unit conversion control, 270
standard dialog box procedure, 271
standard Foundation dialog box procedure, 267

CDialog constructor, 264
CDumpContext class

described,273-274
member functions

CDumpContext, 275
Flush,275
GetDepth,276
HexDump, 276
SetDepth, 277

operators, 278-279
CDumpContext constructor, 275
CDumpContext objects, creating, 275
CDWordArray class

described, 280-281
CEdit class

described, 282-284
member functions

CanUndo, 285
CEdit, 285
Clear, 285
Copy, 286
Create, 286-289
Cut, 289
EmptyUndoBuffer, 290
FmtLines, 290
GetHandle, 291
GetLine, 291-292
GetLineCount, 292
GetModify, 292-293
GetRect, 293
GetSel,293
LimitText, 294
LineFromChar, 294
Linelndex, 295
LineLength, 295-296
LineScroll, 296
Paste, 297
ReplaceSel,297
SetHandle, 297-298
SetModify, 298
SetPasswordChar, 299
SetRect, 299-300
SetRectNP, 300
SetSel,301
SetTabStops, 301-302
Undo, 302

CEdit constructor, 285
CEdit object

creating
attaching, 286-289
constructor, 285

cerr, predefined stream object, 900
CException class

described, 303
CFile class

data members
m_hFile, 321

described,304-305
family described, 26
member functions

CFile, 306-308
-CFile, 308
Close, 97, 308
Duplicate, 309
Flush,309
GetLength, 309
GetPosition, 96, 310
GetStatus, 310-312
LockRange,312-313
Open, 313-314, 568
Read, 314, 570
Remove, 315
Rename, 315-316
Seek,316-317
SeekToBegin, 317
SeekToEnd, 317
SetLength, 318
SetStatus, 318-319
UnlockRange, 319
Write, 320, 570

CFile constructor, 306-308
CArchive::CArchive,96
CStdioFile::CStdioFile, 568

CFile destructor, 308
CFile objects

closing associated file, 308
creating

constructor, 306
safe method, 313

destroying, 308
duplicating, 309
reading data into buffer, 314
retrieving file status, 310-311

CFileException class
data members

m_cause,327-328
m_lOsError, 328

described, 322-323
enumerators, 327
member functions

CFileException, 324
ErrnoToException,324-325
OsErrorToException, 325
ThrowErrno,325-326
ThrowOsError, 326

operating system error codes, 325
CFileException object

creating
and throwing exception,
constructor, 324

CFont class
described, 329
member functions

CFont,330
CreateFont,330-333
CreateFontIndirect, 334
FromHandle,335

described, 329
CFont objects

creating, 330
handle to, 335
i ni tializing

LOGFONT -specified characteristics, 334
specified characteristics, 330-333

CFrameWnd
accelerator table, loading, 340
overridable member function, 340

CFrameWnd class
data members

m_hAccelTable, 341
rectDefault, 341

described, 336-337
member functions

CFrameWnd,338
-CFrameWnd,338
Create, 338-339
GetChildFrame, 339
GetParentFrame, 340
LoadAccelTable, 340

CFrameWnd constructor, 338
CFrameWnd destructor, 338

CFrameWnd object
creating

attaching, 338-339
constructor, 338

destroying, 338
CGdiObject class

data members
m_hObject, 351

described,342-343
member functions

Attach, 344
CGdiObject, 344
-CGdiObject, 345
CreateStockObject, 345-346
DeleteObject, 272, 346-347
DeleteTempMap, 347
Detach, 347
FromHandle, 348
GetObject, 348-349
GetSafeHandle, 349
UnrealizeObject, 350

Index 957

resetting brush origin or logical palette, 350
CGdiObject constructor, 344
CGdiObject destructor, 345
CGdiObject objects

brushes, resetting, 350
creating, 344
deleting

objects, 346
temporary, 347

destroying, 345
detaching Windows GDI object from, 347
filling buffer with data definition, 348
handles, 351
palettes, resetting, 350
retrieving handle to, 345-346
returning handle to, 349
returning pointer with GDI object handle, 348
selecting, 232-235

ChangeClipboardChain member function
CWnd class, 661
CWnd object position and dimensions, changing,

714-715
fonts called when, 738-739
menu items, 432-433
position

relative to stream beginning, 930
streambuf objects, 929
stream's, 904

958 Index

Chaining
file length, 318

Character sets
ANSI, converting to OEM, 576
OEM, converting to ANSI, 588

Character arrays
returning pointer to string stream's, 892

Characters
dead-key, returning value, 727-729
edit control, getting starting, ending character

positions, 293
extracting

from stream and discarding, 880
putting back into stream, 882

fill, setting for stream, setfill, 869
index

of line, retrieving within multiple-line edit
control, 295

retrieving line number from multiple-line edit
control, 294

inserting into output stream, 903
mnemonic, called when user presses, 756-757
newline, inserting into output streams, 907
null-terminator, inserting into output streams, 907
number of positions to scroll horizonally, 296
passwords, setting or removing in edit control, 299
retrieving current font width, 194
returning count of characters in CString object, 584
returning without extracting, 882
searching for first match in string, 581
selecting

combo box edit control, 154
setting

intercharacter spacing, 247
range in edit control, 301
retrieving intercharacter spacing, 206

soft line-break, inserting in multiple-line edit, 290
streams, returning number extracted by last

unformatted input function, 877
strings

computing width, height, 204-205
returning character specified by index, 581

writing
strings to regions, 188-189
strings to specified location,

CDC::TabbedTextOut,258-259
CDC::TextOut,259

Check boxes
getting check state, 132
setting check state, 134

Check marks, adding or removing in pop-up menu,
419-420

CheckDlgButton member function
CWnd class, 661-662

Checking
equality between sizes, 560
inequality between sizes, 560

Check-mark control, CWnd button control, 709
Check-marking, button control, 661
CheckMenultem member function

CMenu class, 419-420
CheckRadioButton member function

CWnd class, 662
Child windows

activating next child, 407
buttons as, 16
called on activation or deactivation, 753-754
called on creation or destruction, 774-775
called when about to be drawn, 726-727
called when changing size or position, 720
changing

parent, 810
size, position, ordering, 814-816

classes (list), 6
CMDIChildWnd class described, 395
creating

and attaching, 397
constructor, 397

determining which contains specified point,
662-663

flashing once, 683-684
handling activation message, 398
identifying, 709
MDI

activating, 405
arranging in cascade, 406
arranging in tiled format, 409
destroying, 399
maximizing, 399, 407
restoring, 399, 408
returning active child, 405
returning current, 406

minimized, arranging, 659
returning parent MDI frame, 398
top-level, searching for, 700
Windows, creating

attaching to CWnd object, 664-665
constructor, 673

ChildWindowFromPoint member function
CWnd class, 662-663

Chord member function
CDC class, 170-171

Chords, drawing, 170-171
cin, predefined stream object, 875
Classes

derivation, 10
general purpose, categorized by function (list), 21
run-time information, supplying, 38-39
Windows

described, 5
registering, 37

Clear member function
CComboBox class, 143
CEdit class, 285

clear member function
ios class, 856

Clearing
edit control

selection, 285
undo flag, 290

error-bits, 856
format flags

ios::unsetf, 864
streams, 869

Client areas
called after size changed, 784-785
called when needing repainting, 772-773
called when size changed and Clipboard contains

data, 785
calling windows, CClientDC class, 137
CClientDC class described, 137
converting screen coordinates of point or rect to

client coordinates, 802
CWnd, copying client coordinates into specified

structure, 686-687
device contexts

creating, 138
destroying, 138

invalidating
CWnd::Invalidate,706
entire, 707
within given rectangle, 707
within given region, 708

painting
information, 84-85
window associated with CPaintDC object, 500

scrolling, 803-804
updating

CWnd::UpdateWindows,819
matching colors, 260

validating within given region, 820

Client coordinates, converting to screen
coordinates, 663

CLIENTCREATESTRUCT structure
CMDIFrame Wnd: :CreateClient, 404

ClientToScreen member function
CWnd class, 663

Clipboard
called for each window in viewer

Index 959

chain when contents change, 731-732
calling owner when emptied, 731
combo box edit control

copying current selection to, 143
copying deleted selection to, 146
inserting data, 152

copying edit control selection to, 286
CWnd, called with event in vertical scroll bar,

797-798
format, specifying, 781
formats (list), 86-87
opening, 799
owner

called when application is destroyed, 780-781
retrieving, 687

Clipboard viewers
called for displaying Clipboard contents, 716-717
called for each window in chain when Clipboard

contents change, 731-732
called when client area needs repainting, 772-773
called when client area size changed, 785
chain

adding current CWnd to, 807
retrieving first window in, 687

horizontal scrolling, 742-743
removing CWnd from chain, 661
removing windows from chain, 717-718

Clipping region
creating

CDC::IntersectClipRect,212
CDC::ExcludeClipRect,185

device contexts, specifing whether point is within,
223

moving, 216
rectangles, determining if within, 225
selecting given region as current, 231
smallest bounding rectangle dimensions, 195

CListboxes
setting

tab-stop positions, 371
CListBox class

adding strings, 355
bounding rectangle, retrieving dimensions, 363

960 Index

CListBox class (continued)
described, 352-354
getting string length, 366
items

deleting, 359
ensuring visibility, 372
removing, 367
retrieves zero-based index of currently selected,

362
retrieving index of first visible, 366
retrieving index of, 363
retrieving number of, 361
retrieving selection state, 364
retrieving total selected, 364
searching for matching, 367
selecting consecutive, , 368
setting associated 32-bit values, 370

member functions
AddString, 355
CListBox, 355
Create, 356-359
DeleteString, 359,729
Dir,360
FindString,361
GetCount,361
GetCurSel, 362
GetHorizontalExtent, 362
GetItemData, 363
GetItemRect, 363
GetSel,364
GetSelCount, 364
GetSelItems, 364-365
GetText, 365
GetTextLen, 366
GetToplndex, 366
InsertString, 366-367
ResetContent, 367, 729
SelectString,367-368
SelItemRange, 368
SetColumn Width, 369
SetCurSel, 369
SetHorizontalExtent, 370
SetItemData, 370
SetSel,371
SetTabStops, 371-372
SetTopIndex,372

multi column list box, selecting width, 369
retrieving horizontal scroll event, 362

CListBox class (continued)
scrolling

selected strings, 369
setting width, 370

selecting strings in multiple-selection, 371
CListBox constructor, 355
CListBox objects, creating

constructor, 355
spccifying style, 356-359

clog, predefined stream object, 900
Close member function

CArchive class, 96-97
CFile class, 308

CArchive::Flush,97
CMetaFileDC class, 440

close member function
filebuf class, 832
fstream class, 838
ifstream class, 846
of stream class, 894

Close Window member function
CWnd class, 664

Closing
file associated with filebuf object, 838
files

associated with filebuf object, 894
attached to filebuf object, 832
CFile object, 308
filebuf objects, 846
memory, 412

operating system file, 308
CMapPtrToPtr class

described, 373-374
CMapPtrToWord class

described, 375-376
CMapStringToOb class

described, 377-378
member functions

CMapStringToOb, 379
-CMapStringToOb, 379
GetCount, 380
GetNextAssoc,380-381
GetStartPosition, 381
IsEmpty,382
Lookup, 382
RemoveAll, 383
RemoveKey,383-384
SetAt,384-385

operators, 386

CMapStringToOb constructor, 379
CMapStringToOb destructor, 379
CMapStringToOb objects

constructing, 379
destroying, 379

CMapStringToPtr class
described,387-388

CMapStringToString class
described,389-390

CMapWordToOb class
described,391-392

CMapWordToPtr class
described,393-394

CMDIChildWnd class
data members

m_pMDIFrameWnd,400
described,395-396
member functions

CMDIChildWnd, 397
Create, 397-398
GetParentFrame, 398
MDIActivate, 398
MDIDestroy,399
MDIMaximize, 399
MDIRestore, 399

CMDIChildWnd constructor, 397
CMDIFrameWnd class

data members
m_hWndMDIClient,41O

described, 401--402
member functions

CMDIFrameWnd,403
Create, 403--404
Create Client, 404
GetChildFrame, 405
MDIActivate, 405, 754
MDICascade, 406
MDIGetActive, 406
MDlIconArrange, 406, 659
MDIMaximize, 407
MDINext,407
MDIRestore, 408
MDISetMenu, 408-409
MDITile, 409

CMDIFrameWnd constructor, 403
CMDIFrameWnd objects

creating
CMDIFrameWnd::CMDIFrameWnd,403
Windows MDI frame window for, creating, 403

CMemFile class
described, 411
member functions

CMemFile, 412
-CMemFile, 412

CMemFile constructor, 412
CMemFile destructor, 412
CMemoryException class

described, 413
member functions

Index 961

CMemoryException,413
CMemoryException constructor, 413
CMemoryException objects, creating, 413
CMemoryState objects

comparing two, 55
creating, 54

CMemoryState: :DumpAllObjectsSince, 54
CMemoryState: :DumpStatistics, 54
CMenu class

described, 19,414-415
member functions

AppendMenu,416--418,699
Attach,419
CheckMenuItem, 419-420
CMenu,420
-CMenu,421
CreateMenu,421
CreatePopupMenu, 421--422
DeleteMenu,422
DestroyMenu, 423,810
Detach, 423
EnableMenuItem, 423-424
GetMenuItemCount, 424
GetMenuItemlD,425
GetMenuState, 425--426
GetMenuString, 427
GetSubMenu,428
InsertMenu, 428--430, 699
LoadMenu, 430
LoadMenulndirect,431
ModifyMenu, 432-433, 699
RemoveMenu, 434
SetMenuItemBitmaps, 435--436
TrackPopupMenu,436-437

CMenu constructor, 420
CMenu destructor, 421
CMenu object

creating, 420
destroying menus, 423
detaching menus, 423

962 Index

CMenu object (continued)
loading, 430
retrieving from pop-up, 428

CMetaFileDC class
described,438-439
member functions

Close, 440
CMetaFileDC, 440
Create, 441
SelectObject, 110, 112,334,441-442
SelectStockObject, 442

CMetaFileDC constructor, 440
CMetaFileDC object

creating
constructor, 440
device context,441

CModalDialog class
Cancel button action, overriding, 448
described, 443-444
invoking dialog box and returning result, 447
member functions

CModalDialog, 446
Createlndirect, 446-447
DoModal,447
OnCancel, 448
OnOK,448

OK button, overriding in dialog boxes, 448
CModalDialog constructor, 446
CModalDialog objects

creating
constructor, 446
indirectly, 446-447

CNotSupportedException class
described, 449
member functions

CNotSupportedException, 449
CNotSupportedException object, creating, 449
CObArray class

described, 450-452
member functions

Add, 453
CObArray, 454
-CObArray, 454
ElementAt, 454-455
FreeExtra, 455
GetAt,455
GetSize, 456
GetUpperBound,456
InsertAt,456-457
operator, 462
RemoveAll, 458

CObArray class (continued)
member functions (continued)

RemoveAt, 458-459
SetAt, 459-460
SetAtGrow,460-461
SetSize, 461

COb Array constructor, 454
COb Array destructor, 454
CObject

validity checking, 466
CObject class

described, 463-465
executing specified iteration function for derived

objects, 49
getting run-time structure, 470
giving serialization capability, 39-40
member functions

AssertValid,466
CObject, 467
-CObject, 467
Dump, 279, 469-470
GetRuntimeClass, 470-471
IsKindOf, 100,472
IsSerializable,473
Serialize, 473

object diagnostics, 24
operators, 475-476
performing optimal memory allocation, 475
persistence described, 23
run-time class information, 25
services provided, 23-26
validity checking, 25

CObject constructor, 467
CObject destructor, 467
CObject objects

creating, 467
destroying, 467
dumping to, 469-470
reading or writing to archive, 473-474
testing

for class, 472
if eligible for serialization, 473

CObject pointer lists
adding element after specified position, 491-492
adding element before specified position, 492
creating, 482-483
destroying, 483
getting number of elements in, 485
getting pointer representing head element, 486-487
getting position of head element, 487
getting position of next element, 488

CObject pointer lists (continued)
getting position of previous element, 489
getting tail element position, 491
getting tail element, 490
indicating if containing no elements, 493
removing all elements from, 493
removing head element from, 495
removing specified element from, 494
removing tail element from, 496
retrieving pointer to given position, 485
searching for first matching pointer, 483
writing pointer to specified position, 496

CObject pointers
arrays

adding element to end of, 453
constructing empty, 454
destroying, 454

CObArray class described, 450
lists. See Lists

CObList class
described,477-479
member functions

AddHead, 480
AddTail, 481
CObList, 379, 466, 482-483
-CObList, 483
Find, 483-484
Findlndex, 484
GetAt, 485
GetCount, 485-486
GetHead, 486-487
GetHeadPosition, 487
GetNext, 488-489
GetPrev, 489-490
GetTail,490
GetTailPosition, 491
InsertAfter, 491-492
InsertBefore, 492-493
IsEmpty, 493
RemoveAll, 493-494
RemoveAt, 494-495
RemoveHead, 495
RemoveTail, 496
SetAt, 496-497

CObList constructor, 482-483
CMapStringToOb::CMapStringToOb,379
CObject::AssertValid,466

CObList destructor, 483
Collate member function

CString class, 576-577

Collection classes
array classes described, 27
described,26-27
list classes described, 27
maps classes described, 27

Index 963

storing objects of CObject-derived classes, 26
Colors

background
returning current for device context, 193
setting, 238

brushes, creating, 124
called when child-system control class about to be

drawn, 726-727
inverting in specified region, 214
matching current to update client area, 260
palettes, setting RGB values and flags in logical

palette, 506
retrieving, RGB value of specified pixels, 202
returning, closest to specified logical color, 202
system setting, called when change made, 788
text

retrieving current, 207
setting, 248

CombineRgn member function
CRgn class, 539-540

Combo boxes
called when control created, 754, 756
CComboBox class described, 139-140
comparing items in, 722, 724
control, calling owner when visual aspect or menu

changes, 732-735
control, filling with directory listing, 678-679
creating

attaching, 143-146
constructor, 142

describing deleted item, 80
destroying, 729-730
edit control

deleting selection and copying to Clipboard, 146
deleting selection, 143
getting position of current selection, 149
inserting Clipboard data into, 152
limiting text length, 152
selecting characters in, 154

items
retrieving associated application-supplied 32-bit

value, 150
setting associated with 32-bit value, 155

list boxes
adding list of filenames to, 147
adding string to, 142

964 Index

Combo boxes (continued)
list boxes (continued)

deleting string in, 147
finds first string containing specified prefix, 148
getting string from, 150
inserting string into, 151
items in, getting number, 149
returning selected items, 149
searching for string in, 153
selecting string in, 154
showing or hiding specified, 155

listing all items from, 153
retrieving current selection from list box, 680-681
supplying identifiers for two items in, 77-78

Compare member function
CString class, 577

COMPAREITEMSTRUCT structure, 77-78
CWnd::OnCompareltem,722-723

CompareNoCase member function
CString class, 577-578

Comparing
absolute time, 616
CMemoryState objects, 55
items in combo boxes, 722, 724
strings

CString::Collate,576
CString::Compare,577
CString::CompareNoCase,577-578

time, two relative values, CTimeSpan comparison
operators, 626

Comparison operators
CString class, 596

Compatibility, with special collection classes, 26
Computing

string's width, height, 204-205
text's line width, height, 207

Concatenation operator
CString::operator +,594
CString::operator +==,595

const char *0 operator
CString class, 592-593

Construction of objects, two-phase, 15
Constructors

CArchive, 95-96
CArchiveException, 105
CBitmap, 109
CBrush, 119-120
CButton, 128
CClientDC, 138
CComboBox,142
CDC, 169

Constructors (continued)
CDialog, 264
CDumpContext, 275
CEdit,285
CFile, 306-308
CFileException, 324
CFont,330
CFrameWnd,338
CGdiObject, 344
CListBox, 355
CMapStringToOb, 379
CMDIChildWnd, 397
CMDIFrameWnd,403
CMemFile, 412
CMemoryException,413
CMenu,420
CMetaFileDC, 440
CModalDialog, 446
CObArray,454
CObject,467
CObList, 482-483
CPaintDC, 499
CPalette, 503
CPen,509-51O
CPoint,513
CRect,524
CResourceException, 536
CRgn,545
CScrollBar,553
CSize,559
CStatic, 563
CStdioFile,568-569
CString, 578-579
CTime, 608-609
CTimeSpan, 620-621
CWinApp, 631
CWnd,673
filebuf, 833
fstream,839-841
ifstream, 847-848
ios,860
iostream, 873
Iostream_init,874
istream,881
istream_ withassign, 888
istrstream,891
of stream, 895-897
ostream, 903
ostream_ withassign, 909
ostrstream,912
stdiobuf, 916

Constructors (continued)
stdiostream,918
streambuf, 936
strstream, 941
strstreambuf,945-946

Control messages, 14
Control menu

allowing application access to, 699
called when user selects command from, 788-790

Control Windows classes
described, 16
list, 6

Converting
characters from ANSI to OEM character set, 576
characters from OEM to ANSI character set, 588
client coordinates to screen coordinates, 663
CString object to lowercase, 586
CString object to uppercase, 587
dialog units of rectangle to screen units, 270
error codes, run-time library to CFileException, 324
logical to device points, 215
points, device into logical, 175
rectangles between CRect and LPRECT, 531

Coordinates, carets, retrieving, 686
Copy member function

CComboBox class, 143
CEdit class, 286

Copying
See also Duplicating
allowing application access to Control menu for,

699
bitmaps, to current device context, 167-169
CTimeSpan object, 625
CWnd's caption title into specified buffer, 704
dimensions of bounding rectangle of CWnd object,

703-704
edit control selection to Clipboard, 286
fonts, current, typeface name into buffer, 208
menu item label to buffer, 427
rectangles

scrRect to CRect, 531
to CRect, 523

regions into CRgn object, 540
scroll bar position range, 697
scroll-bar position to specified location, 556
time source into CTime object, 615
to Clipboard, combo box edit control selection, 143

CopyRect member function
CRect class, 523

CopyRgn member function
CRgn class, 540

cout, predefined stream object, 900
Counting

bytes stored in stream buffers, 913
elements in lists, 485
items in list box, 361
number of elements in maps, 380

CPaintDC class
data member

m_hWnd,500
m_ps,500

described, 498
member functions

CPaintDC, 499
-CPaintDC, 499

CPaintDC constructor, 499
CPaintDC destructor, 499
CPaintDC objects

creating, 499
destroying, 499
painting client area, 500

CPalette class
described, 501-502
member functions

AnimatePalette, 503
CPalette, 503
CreatePalette, 504
FromHandle, 504
GetNearestPaletteIndex,505
GetPaletteEntries, 349, 505
ResizePalette, 506
SetPaletteEntries, 506-507

CPalette constructor, 503
CPalette objects

creating, initializing, 504

Index 965

resizing logical palette attached to, 506
returning pointer to, 504

CPen class
described, 508
member functions

CPen,509-51O
CreatePen, 510
CreatePenIndirect, 510-511
FromHandle, 511

CPen constructor, 509-510
CPen objects

creating
constructor, 509
initializing, 510

returning pointer to, 511

966 Index

CPoint class
adding separate values to x and y members, 513
described, 20, 512
member functions

CPoint,513
Offset, 514
operators, 515-516

CPoint constructor, 513
CPoint objects, creating, 513
CPtrArray class, described, 517-518
CPtrList class, described, 519-520
Create member function

CButton class, 128-131
CComboBox class, 143-146
CDialog class, 264-265
CEdit class, 286-289
CFrameWnd class, 338-339
CListBox class, 356-359
CMDIChildWnd class, 397-398
CMDIFrameWnd class, 403-404
CMetaFileDC class, 441
CScrollBar class, 553-555
CStatic class, 563-566
CWnd class, 664-665

CreateBitmap member function
CBitmap class, 109-110

CBrush::CreatePatternBrush,123
CWnd::CreateCaret, 665

CreateBitmapIndirect member function
CBitmap class, 110

CBrush::CreatePatternBrush,123
CreateBrushIndirect member function

CBrush class, 120-121
CreateCaret member function

CWnd class, 665
CreateClient member function

CMDIFrameWnd class, 404
CreateCompatibleBitmap member function

CBitmap class, 111
CBrush::CreatePatternBrush, 123

CreateCompatibleDC member function
CDC class, 171-172

CreateDC member function
CDC class, 172-173

CreateDIBPatternBrush member function
CBrush class, 121-122

CreateDiscardableBitmap member function
CBitmap class, 112

CreateEllipticRgn member function
CRgn class, 541

CreateEllipticRgnIndirect member function
CRgn class, 541-542

CreateEx member function
CWnd class, 666-670

CreateFont data member
CFont class, 330-333

CreateFontIndirect data member
CFont class, 334

CreateGrayCaret member function
CWnd class, 671

CreateHatchBrush member function
CBrush class, 122-123

CreateIC member function
CDC class, 173-174

CreateIndirect member function
CDialog class, 266-267
CModalDialog class, 446-447

CreateMenu member function
CMenu class, 421

CreatePalette member function
CPalette class, 504

CreatePatternBrush member function
CBrush class, 123-124

CreatePen member function
CPen class, 510

CreatePenIndirect member function
CPen class, 510-511

CreatePolygonRgn member function
CRgn class, 542

CreatePolyPolygonRgn member function
CRgn class, 543

CreatePopupMenu member function
CMenu class, 421-422

CreateRectRgn member function
CRgn class, 544

CreateRectRgnIndirect member function
CRgn class, 544

CreateRoundRectRgn member function
CRgn class, 545

CreateSolidBrush member function
CBrush class, 124

CreateSolidCaret member function
CWnd class, 672

CreateStockObject member function
CGdiObject class, 345-346
CREATESTRUCT structure, 78-79
CMDIFrame Wnd: :CreateClient, 404
CWnd::OnCreate, 724-725
CWnd::OnNcCreate,762

Creating
bitmaps

device-compatible, 111
device-dependent memory, 109-110
discardable, 112
specified structure, 110

Creating (continued)
brushes

uninitialized object, 119-120
with bitmap-specified pattern, 123
with DIB-specified pattern, 121-122
with hatch style, 122-124
with specified structure, 120-121

CArchive objects, 95
CArchiveException objects, 105
carets

gray, 671
new shape, 665
solid,672

CBitmap objects, 109
CBrush objects, 119-120
CButton objects

constructor, 128
control, 128-129, 131

CClientDC objects, 138
CComboBox objects, 142
CDC objects, 169
CDumpContext objects, 275
CEdit objects

CEdit::CEdit, 285
CEdit::Create, 286, 289
CFile::CFile, 306
opening file, 313

CFileException objects, 324
CFrameWnd objects, 338-339
CGdiObject objects, 344
child windows, constructor, 397
CListBox objects

CListBox::CListBox, 355
specifying style, 356-357,359

CMDIChildWnd objects, creating and
attaching, 397

CMDIFrameWnd objects, 403
CMemoryException objects, 413
CMemoryState objects, 54
CMenu objects, constructor, 420
CMetaFileDC objects

constructor, 440
device context, 441

Index 967

Creating (continued)
CModalDialog objects

constructor, 446
indirectly, 446-447

CNotSupportedException objects, 449
CObject objects, 467
CObject pointer arrays, 454
CObject pointer lists, 482-483
combo boxes, 146
CPaintDC objects, 499
CPalette objects, 504
CPen objects

constructor, 509
initializing, 510

CPoint objects, 513
CRect objects, 524
CResourceException objects, 536
CRgn objects constructor, 545
CSize objects, 559
CStatic objects

attaching, 563-564
constructor, 563

CStdioFile objects, 568
CString objects, 579
CString-to-CObject map objects, 379
CTime objects, 608-609
CTimeSpan object, 620-621
CWinApp objects, constructor, 631
CWindowDC objects, 642
CWnd objects called when, 724-726
device contexts, 172-173
dialog box objects, 264-265
dialog boxes

modeless from template, 266-267
modeless, 264

elliptical regions
CRgn::CreateEllipticRgn, 541
CRgn: :CreateEllipticRgnlndirect, 541

filebuf objects, 833
fonts

constructor, 330
initializing with given structure, 334
initializing with specified

characteristics, 330-333
frame windows for CMDIFrameWnd object, 403
fstream objects, 839, 841
ifstream objects, 847-848
istream objects, 881
Iostream_init objects, 874
istream_ withassign objects, 888
istrstream objects, 891

968 Index

Creating (continued)
MDI client window, 404
menus

empty, 421
pop-up, 421

of stream objects, 896-897
ostream objects, 873
ostream objects, 903
ostream_ withassign objects, 909
ostrstream objects, 912
pens with specified structure, 510
rectangles, NULL, 529
regions

by combination, 539-540
polygonal, 542
rectangular, 544
rectangular, indirect, 545
series of polygonal, 543

scroll bars
constructor, 553
initializing, 553-555

stdiobuf objects, 916
stdiostream objects, 918
streambuf objects, 936
strstream objects, 941
strstreambuf objects, 945
Window Edit control, CEdit class, 282
Windows child windows

constructor, 673
attaching to CWnd object, 664-665

windows with extended style, 666-667, 670
CRect class

creating NULL rectangle, 529
described, 20, 521-522
dimensions, setting, 528
member functions

BottomRight, 523
CopyRect,523
CRect,524
EqualRect,525
Height, 525
InflateRect,525-526
IntersectRect, 526
IsRectEmpty,527
IsRectNull,527
OffsetRect,527-528
PtlnRect,528
SetRect, 528-529
SetRectEmpty,529
Size, 529
TopLeft, 529

CRectClass (continued)
member functions (continued)

UnionRect, 530
Width, 530

operators, 531-535
CRect constructor, 524
CRect objects, creating, 524
CResourceException class

described, 536
member functions

CResourceException, 536
CResourceException constructor, 536
CResourceException objects, creating, 536
CRgn class

described, 537-538
member functions

CombineRgn,539-540
CopyRgn, 540
CreateEllipticRgn, 541
CreateEllipticRgnIndirect, 541-542
CreatePolygonRgn,542
CreatePolyPolygonRgn,543
CreateRectRgn, 544
CreateRectRgnIndirect, 544
CreateRoundRectRgn, 545
CRgn,545
EqualRgn, 546
FromHandle, 546
GetRgnBox, 547
OffsetRgn,547-548
PtlnRegion, 548
RectInRegion, 549
SetRectRgn, 549-550

CRgn constructor, 545
CRgn objects

checking
equivalent, 546
if coordinates are within, 548
if specified rectangle is within, 549

copying region into, 540
creating

by combination, 539-540
constructor, 545

handles, 546
moving stored region, 547
retrieving bounding rectangle coordinates, 547

CScrollBar class
described, 551-552
member functions

Create, 553-555
CScrollBar,553

CScrollBar class (continued)
member functions (continued)

GetScrollPos, 555
GetScrollRange, 556
SetScrollPos, 556-557
SetScrollRange, 557

CScrollBar constructor, 553
CScrollBar objects, creating

constructor, 553
initializing, 553-555

CSize class
described, 20, 558
member functions

CSize, 559
operators, 560-561

CSize constructor, 559
CSize objects, creating, 559
CStatic class

described, 562
member functions

Create, 563-566
CStatic, 563

CStatic constructor, 563
CStatic objects, creating

attaching, 563-564
constructor, 563

CStdioFile class
data members

m_pStream, 571
described, 567
member functions

CStdioFile, 568-569
-CStdioFile, 569
ReadString, 569-570
WriteString, 570

CStdioFile constructor, 568-569
CStdioFile destructor, 569
CStdioFile objects

creating, 568
destroying, 569
reading text into buffer from associated file,

569-570
writing data from buffer to associated file, 570

CString class
argument passing conventions, 599
assignment operator, 592
casting operator, 592
comparison operators, 596
concatenation operators

CString::operator +, 594
CString::operator +=,595

CString class (continued)
described, 28, 572-575

Index 969

diagnostic dumping and storing to archive, 593
exception cleanup, 598
insertion operator, 593
member functions

AnsiToOem, 576
Collate, 576-577
Compare, 577
CompareNoCase, 577-578
CString, 578-579
-CString, 580
Empty, 580
Find,580-581
FindOneOf, 581
GetAt, 581-582
GetBuffer, 582-583
GetBufferSetLength,583-584
GetLength,584
IsEmpty, 584-585
Left,585
LoadString, 585-586
MakeLower, 586
MakeReverse, 586
MakeUpper, 587
Mid,587-588
OemToAnsi,588
ReleaseBuffer, 588-589
ReverseFind, 589
Right, 589-590
SetAt, 590
SpanExcluding, 59]
SpanIncluding, 591

operators, 592-600
strings as function inputs, 599
subscript operator [], 597

CString constructor, 578-579
CString destructor, 580
CString objects

arrays, CStringArray class described, 601
converting characters from ANSI to OEM

character set, 576
converting characters from OEM to ANSI

character set, 588
converting to lowercase, 586
converting to uppercase, 587
creating, 579
destroying, 580

970 Index

CString objects (continued)
extracting

first characters from and returning copy, 585
largest substring excluding specified

characters, 591
last characters and returning copy, 589-590
substring of specified length and returning

copy, 587
keyed to CString objects, 389
list, CStringList class described, 603
making empty string, 580
maps to CObject pointers, 377
overwriting specified character, 590
reading Windows string resource into, 586
reinitializing with new data, 592
returning

count of characters in, 584
pointer to internal character buffer and matching

length,583-584
reversing character order in, 586
searching for last substring match, 589
terminating use of buffer, 588
testing for empty condition, 584

CStringArray class, described, 601-602
CStringList class, described, 603-605
CTime class

described, 28, 606-607
member functions

Ctime, 608
Format, 609
FormatGmt, 610
GetCurrentTime, 610
GetDay, 611
GetDayofWeek,611
GetGmtTm, 611
GetHour, 612
GetLocalTm, 613
GetMinute, 613
GetMonth, 613
GetSecond,614
GetTime, 614
GetYear, 614

operators, 608-617
CTime object

adding and subtracting CTimeSpan object, 616
creating, 608-609
getting stmct tm, returning local time, 612
getting stmct tm, returning UCT, 611
getting time_t value, 614
returning current time, 610

CTimeSpan class
described, 28, 618-619
member functions

CTimeSpan, 620-621
Format, 621-622
GetDays, 622
GetHours, 622
GetMinutes, 623
GetSeconds, 623
GetTotalHours, 623
GetTotalMinutes, 624
GetTotalSeconds, 624

operators, 620-627
CTimeSpan objects, creating, 620-621
Current position

carets
displaying, 816-817
getting, 686

scroll bars
getting, 696-697
setting, 811-812

Cursors
called on press of mouse button, 758-759
called when moved within nonclient area, 769
loading, predefined Windows applications,

CWinApp::LoadOEMCursor, 634
CWinApp: :LoadStandardCursor, 635

specified, loading in Windows applications, 633
Cut member function

CComboBox class, 146
CEdit class, 289

Cutting, Windows Edit control selection, 289
CWinApp class

data members
m_hInstance, 639
m_hPrevInstance, 639
m_lpCmdLine, 639
m_msgCur, 639
m_nCmdShow, 640, 819
m_pMainWnd,640
m_pszAppName,640

described, 11,628-630
member functions

CWinApp, 631
Exitlnstance, 631
InitApplication, 632
Initlnstance, 632
LoadCursor, 633, 775
LoadIcon, 176,633-634,775

CWinApps class (continued)
member functions (continued)

LoadOEMCursor,634
LoadOEMIcon, 176, 634-635
LoadStandardCursor,635-636
LoadStandardIcon, 176, 636-637
Onldle,637
PreTranslateMessage,638
Run, 638

overridable member functions, 11
CWinApp constructor, 631
CWinApp objects

creating, 631
returning pointer to, 36

CWindowDC class
data members

m_hWnd,643
described, 641
member functions

CWindowDC,642
-CWindowDC, 642

CWindowDC objects
creating, 642
destroying, 642

CWnd
Clipboard, opening, 799
dialog boxes, searching for previous or next

control, 693-694
handles, getting safe, 696
mouse button, right, 778-780
nonclient area

calculating size, 762
called when destroyed, 763

CWndclass
applications, 737

called when destroyed, 780-781
confirming choice to terminate, 720
redrawing or preventing redrawing of

changes, 811
attaching HWND, 822
buttons, 732-735
buttons, boxes, called when control created,

754, 756
called for displaying Clipboard contents, 716-717
called for mouse capture, 763-764
called when device-mode settings changed, 731
called when sessions end, 736
caption titles

copying into specified buffer, 704
returning length, 704

CWnd class (continued)
carets

displaying, 816-817

Index 971

moving to position specified by point, 806-807
client areas

called after size changed, 784-785
invalidating, 706
retrieving pointer to display context, 688
updating, 819
validating within rectangle, 820

Clipboard viewers, called with event in vertical
scroll bar, 797-798

combo boxes, comparing items in, 722, 724
Control menu, called when Maximize or Minimize

button selected, 788, 790
control, specifying input type, 739-740
converting

client coordinates to screen coordinates, 663
screen coordinates of point or rect to client

coordinates, 802
copying caption into specified buffer, 704
cursor

called on press of mouse button, 758-759
called when moved within nonclient area, 769

CWinApp message translator, 801
data members

m_hWnd,822
wndBottom, 822
wndTop, 822

described,644-658
determining maximization, 711
device contexts, releasing, 801-802
enabling or disables mouse or keyboard input,

681-682
fonts, setting, 809
input focus

called after gaining, 783
called when ALT and another key

pressed, 791-792
called with release of key pressed with ALT,

792-794
claiming, 809
specifying character value of dead key, 790-791
specifying virtual-key code of Control menu key,

786-787
invalidating client area, 707
keyboard, enabling or disabling input, 681-682
key, returning active, 718-719

972 Index

CWnd class (continued)
list boxes

called with keyboard input, 795-796
retrieving current selection, 679-680
returning application response, 719-720

member functions
ArrangeIconicWindows, 659
Attach,659
BeginPaint, 500, 660
BringWindowToTop, 661
ChangeClipboardChain, 661
CheckDlgButton, 661-662
CheckRadioButton, 662
ChildWindowFromPoint, 662-663
ClientToScreen, 663
CloseWindow, 664
Create, 664-665
Create Caret, 665
CreateEx, 666-670
CreateGrayCaret, 671
CreateSolidCaret, 672
CWnd,673
-CWnd,673
Default, 673
DefWindowProc, 674
DeleteTempMap, 674
DestroyWindow, 265, 267, 675
Detach,676
DlgDirList, 676-677
DlgDirListComboBox, 678-679
DlgDirSelect, 679-680
DlgDirSelectComboBox, 680-681
DrawMenuBar, 418, 422, 430, 433-434, 681
Enable Window, 681-682
EndPaint, 682
FindWindow, 683
FlashWindow, 683-684
FromHandle, 684
GetActiveWindow, 685
GetCapture, 685
GetCaretPos, 686
GetCheckedRadioButton, 686
GetClientRect, 686-687
GetClipboardOwner, 687
GetClipboardViewer, 687
GetCurrentMessage, 688
GetDC, 174,688
GetDesktopWindow, 689
GetDlgCtrlID, 689
GetDlgItem, 689-690
GetDlgItemInt, 690-691

CWnd class (continued)
member functions (continued)

GetMenu, 693
GetDlgItemText, 691
GetFocus, 692
GetFont, 692
GetLastActivePopup, 692-693
GetNextDlgGroupItem, 693-694
GetNextDlgTabItem, 694
GetNextWindow, 695
GetParent, 696
GetSafeHwnd, 696
GetScrollPos, 696-697
GetScrollRange, 697
GetStyle, 698
GetSuperWndProcAddr, 698
GetSysModalWindow, 698
GetSystemMenu, 699
GetTopWindow, 700
GetUpdateRect, 700-701
GetUpdateRgn, 701
GetWindow, 702
GetWindowDC, 703
GetWindowRect, 703-704
GetWindowText, 704
GetWindowTextLength, 704-705
HideCaret, 705
HiliteMenuItem, 705-706
Invalidate, 706-707
InvalidateRect, 302, 707
InvalidateRgn, 708
IsChild, 709
IsDlgButtonChecked, 709
IsIconic,710
IsWindowEnabled,71O
IsWindowVisible,71O
IsZoomed, 711
KillTimer, 711
MessageBox, 711-714
MoveWindow, 714-715
OnActivate, 715
OnActivateApp, 716
OnAskCbFormatName, 716-717
OnCancelMode, 717
OnChangeCbChain, 717-718
OnChar, 718-719
OnCharToltem, 719-720
OnChildActivate, 720
OnClose, 720
OnCommand, 721
OnCompacting, 722

CWnd class (continued)
member functions (continued)

OnCompareItem, 722-724
OnCreate, 724-726
OnCtiColor, 726-727
OnDeadChar,727-729
OnDeleteItem, 729-730
OnDestroy, 730
OnDestroyClipboard, 731
OnDevModeChange, 731
OnDrawClipboard,731-732
OnDrawItem, 732-735
OnEnable,735-736
OnEndSession, 736
OnEnterldle, 737
OnEraseBkgnd, 737-738
OnFontChange,738-739
OnGetDlgCode,739-740
OnGetMinMaxlnfo, 740-741
OnHScroll,741-742
OnHScrollClipboard,742-743
OnlconEraseBkgnd,743
OnlnitMenu, 744
OnlnitMenuPopup, 744-745
OnKeyDown, 745-746
OnKeyUp,746-747
OnKillFocus,747-748
OnLButtonDbIClk,748-749
OnLButtonDown, 749
OnLButtonUp,750
OnMButtonDblClk,751
OnMButtonDown, 752
OnMButtonUp, 752-753
OnMDIActivate, 753-754
OnMeasureItem, 754-756
OnMenuChar, 756-757
OnMenuSelect,757-758
OnMouseActi vate, 758-759
OnMouseMove,760
OnMove, 760-761
OnNcActivate, 761
OnNcCalcSize, 762
OnNcCreate,762-763
OnNcDestroy,763
OnNcHitTest,763-764
OnNcLButtonDblClk,765
OnNcLButtonDown, 765-766
OnNcLButtonUp, 766
OnNcMButtonDblClk,767
OnNcMButtonDown,767-768
OnNcMButtonUp, 768

CWnd class (continued)
member functions (continued)

OnNcMouseMove,769
OnNcPaint, 769
OnNcRButtonDbIClk,770
OnNcRButtonDown, 770-771
OnNcRButtonUp,771
OnPaint, 772
OnPaintClipboard, 773
OnPaintClipboard, 772-773
OnPaintIcon, 773
OnPaletteChanged,773-774
OnParentN otify, 774-77 5
OnQueryDragIcon, 775-776
OnQueryEndSession, 776
OnQueryNewPalette,777
OnQueryOpen,777
OnRButtonDblClk, 778
OnRButtonDown, 779
OnRButtonUp, 780
OnRenderAllFormats, 780-781
OnRenderFormat, 781
OnSetCursor, 782
OnSetFocus, 783
OnShowWindow, 783-784
OnSize, 784-785
OnSizeClipboard, 785
OnSpoolerStatus, 786
OnSysChar, 786-787
OnSysColorChange,788
OnSysCommand, 788-790
OnSysDeadChar, 790-791
OnSysKeyDown,791-792
OnSysKeyUp,792-794
OnTimeChange, 794
OnTimer, 795
OnVKeyToItem, 795-796
OnVScroll,796-797
On VScrollClipboard, 797-798
OnWinlniChange, 798-799
OpenClipboard, 799
OpenIcon, 800
PostMessage, 800-801
PreTranslateMessage, 801
ReleaseDC, 174,801-802
ScreenToClient, 802
ScrollWindow, 803-804
SendDlgItemMessage, 804
SendMessage,805
SetActiveWindow, 805-806
SetCapture, 806

Index 973

974 Index

CWnd class (continued)
member functions (continued)

SetCaretPos, 806-807
SetClipboardViewer, 807
SetDlgItemlnt, 808
SetDlgItemText, 808
SetFocus, 809
SetFont, 809
SetMenu, 810
SetParent, 810
SetRedraw,811
SetScrollPos, 811-812
SetScrollRange, 812-813
SetSysModalWindow,813
SetTimer,813-814
SetWindowPos,814-816
SetWindowText, 297, 816
ShowCaret, 816-817
ShowOwnedPopups, 817
ShowScrollBar,817-818
ShowWindow, 640, 818-819
UpdateWindow,819
ValidateRect, 820
ValidateRgn, 820
WindowFromPoint,821
WindowProc,821

menu item, called when control created, 754, 756
menu mnemonic character, called when user

presses, 756-757
menus, setting current to specified, 810
message handling upon selection of item, 721
messages, sending to specified control, 804
minimizing, 664
mouse button, left

called when double-clicked in nonclient area, 765
called when pressed, 749
called when pressed in nonclient area, 765-766
called when released, 750

mouse button, middle
called when double-clicked, 751
called when double-clicked in nonclient area, 767
called when pressed, 752
called when pressed in nonclient area, 767-768
called when released, 752-753
called when released in nonclient area, 766-768

mouse button, right
called when double-clicked within nonclient

area, 770
called when pressed within nonclient

area, 770-771
called when released within nonclient area, 771

CWnd class (continued)
mouse capture, retrieving, 685
mouse cursor

called when input isn't captured, 782
called when moved, 760

mouse enumerated values (list), 88
mouse input, causing all subsequent to be sent to

current object, 806
mouse, enabling or disabling input, 681-682
nonclient area, called when needing painting, 769
nonsystem key

called on input, 745-746
called on release, 746-747

painting
called when repainting, 772
preparing for, 660

Print Manager, called when job added or deleted
from queue, 786

removing windows from Clipboard viewer chain,
717-718

returning specified class, 683
scroll bars

hiding, 817-818
setting range of position values, 812-813
vertical, called when clicked, 796-797

scroll boxes, setting to specified position, 811-812
setting

control text owned by CWnd, 808
control text to specified integer value, 808

system time, called after change, 794
window-manager's list, searching for windows, 702
windows

containing given point, identifying, 821
making active, 805-806
specifying memory compaction time, 722

Windows initialization file, called after change
made, 798-799

Windows windows
attaching to CWnd object, 659
returning maximized position or

dimensions, or tracking size range, 740-741
windows, child

called on activation or deactivation, 753-754
changing parent, 810
constructor, 673
creating and attaching to object, 664-665
creating with extended style, 666-670

windows, pop-up, showing or hiding, 817
WS_TABSTOP style control, retrieving

pointer to, 694
CWnd constructor, 673

CWnd destructor, 673
CWnd objects

button control, determining if check-marked, 709
called after CW nd moved, 760-761
called when about to be shown or hidden, 783-784
called when activating for different task, 716
called when activating or deactivating, 715
called when application creates, 724-726
called when background needs erasing, 737-738
called when enabled state is changed, 735-736
changing position and dimensions, 714-715
copying dimensions of bounding

rectangle, 703-704
creating, called prior to WM_CREATE

message, 762-763
deleting temporary, CWnd::DeleteTempMap, 674
destroying

CWnd::-CWnd,673
called to inform, CWnd::OnDestroy, 730

detaching Windows handle, 676
displaying CWnd, 818-819
enabling for mouse and keyboard input, 710
iconized, called when user requests open

window, 777
ID, returning, 689
input focus, called before losing, 747-748
making into system-modal window, 813
menu items, called when user selects, 757-758
messages, placing in queue, 800
minimized, called when background must be filled

before painting, 743
minimizing, 710
moving to end of window list, 822
moving to top of window list, 822
providing Windows procedure for, 821
returning pointer to when given handle to window,

684
scrolling, 803-804
with focus, displaying dialog or message boxes, 717

called when double-clicked, 748-749
CWordArray class, described, 823-824

D
Data

archive
determining if loading, 98
determining if storing, 98

extracting from streams, 878, 880

Days
of month, 611
of week, 611
hours in current, getting, 622
span, getting, 622

Index 975

dbp member function, streambuf class, 923
Dead keys

defined, 728
returning character value, 727-729
specifying character value, 790-791

Debug environment, assertions, 29
Debugging

controlling memory allocator, afxMemDF
variable, 46

DEBUG_NEW macro, 38
Debugging (continued)

diagnostic memory tracking, 49
diagnostic services described, 28
tuning allocation diagnostics, 46
writing ASCII information on stdout, 923

DEBUG_NEW macro, 38
DECLARE_DYNAMIC macro, 38-39, 468
DECLARE_SERIAL macro, 39-40,468
Default member function

CWnd class, 673
DefWindowProc member function

CWnd class, 674
delbuf member function

ios class, 856-857
DeleteDC member function

CDC class, 174-175
DELETEITEMSTRUCT structure, 80

CWnd::OnDeleteItem,729
DeleteMenu member function

CMenu class, 422
DeleteObject member function

CGdiObject class, 346-347
CDialog::OnSetFont,272

DeleteString member function
CComboBox class, 147

CWnd::OnDeleteItem,729
CListBox class, 359

CWnd::OnDeleteItem,729
DeleteTempMap member function

CGdiObject class, 347
CWnd class, 674

Deleting
CGdiObject object, 346
CGdiObject, temporary, 347
combo boxes, edit control selection, 143, 146
device contexts attached to CDC object, 174

976 Index

Deleting (continued)
files specified by path, 315
items from list or combo boxes, called

when, 729-730
menu items, 422
strings

from list boxes, 359
list box in combo box, 147

temporary CWnd objects, 674
Windows DC attached to CDC object, 174

Derivation of classes, 10
Design philosophy, Foundation class library, 7-8
Desktop window, returning, 689
Destroying

CArchive objects, 96
CClientDC objects, 138
CDC objects, 170
CFrameWnd objects, 338
CGdiObject objects, 345
CMapStringToOb objects, 379
CMenu objects, 421
CObject objects, 467
CObject pointer array, 454
CObject pointer lists, 483
CPaintDC objects, 499
CStdioFile objects, 569
CString objects, 580
CWindowDC objects, 642
CWnd objects, called to inform,

CWnd::OnDestroy,730
CWnd::-CWnd,673
fstream objects, 841
ifstream objects, 849
iostream objects, 873
Iostream_init objects, 874
istream objects, 882
istream_ withassign objects, 888
istrstream objects, 891
list or combo box, called to inform owner, 729-730
MDI child windows, 399
menus, 423
of stream objects, 897
ostream objects, 903
ostream_ withassign objects, 909
ostrstream objects, 913
stdiobuf objects, 916
stdiostream objects, 918
streambuf objects, 936
strstream objects, 942
strstreambuf objects, 946
Windows windows, attached to CWnd, 675

DestroyMenu member function
CMenu class, 423

CWnd::SetMenu,81O
DestroyWindow member function

CWnd class, 675
CDialog::Create,265
CDialog: :CreateIndirect, 267

Destructors
CArchive, 96
CClientDC,138
CDC, 170
CFile,308
CFrameWnd, 338
CGdiObject,345
CMapStringToOb, 379
CMemFile,412
CMenu,421
CObArray,454
CObject, 467
CObList, 483
CPaintDC, 499
CStdioFile, 569
CString,580
CWnd,673
filebuf, 834
fstream, 841
ifstream, 849
ios,860
iostream,873-874
istream, 882, 888-889
istrstream, 891
of stream, 897
ostream, 903, 909
ostrstream, 913
stdiobuf,916
stdiostream,918
streambuf, 936
strstream,942
strstreambuf, 946

Detach member function
CGdiObject class, 347
CMenu class, 423
CWnd class, 676

Detaching
Windows GDI object, 347
Windows menu from CMenu object, 423

Device contexts
bit pattern, creating, 218-219
brushes, retrieving orign of current, 193
checking BitBlt support, 169

Device contexts (continued)
classes generally, 18
classes (list), 6
client areas

CClientDC class described, 137
retrieving pointer to, 688

clipping region, specifying whether point is
within, 223

copying bitmap to current, 167, 169
CPaintDC class described, 498
creating CDC objects, 171

CDC::CreateDC, 172-173
CWindowDC class described, 641
informing of new print job, 254
metafile, closing and creating handle to play, 440
objects, CDC class described, 156
operations described, 156
palettes, selecting logical, 233
pens, brushes, enumerating available, 182-184
releasing, 801-802
retrieving x- and y-coordinates

of associated window, 209
viewport origin, 209
windows origin, 210

saving current state, 227
selecting GDI object into, 18
selecting object into, 232-233
setting viewport origins, 251
setting window origin, 253
text-alignment flags, retrieving status, 205
translation origin, obtaining, 196
viewports

retrieving x- and y-extents, 209
setting x- and y-extents, 250

Windows, restoring to previous state, 226
Devices

applications, allowing access to, 184-185
contexts, creating, 172-173
creating

information context for, 173
memory device context, 171

Diagnostic dump context described, 24
Diagnostic dumping

and storing to archive 617
time spans, 627

Diagnostic output
stream-oriented, human readable, CDumpContext

class described, 273
Diagnostic services

ASSERT macro, 53
assertions, 29

Diagnostic services (continued)
checking for corrupt guard bytes, 47
described,28-29

Index 977

executing specified iteration, function for
CObject-derived classes, 48, 49

forcing program halt on specified sequence
numbers, 52

macros and global functions
described, 43, 46-49, 51-57

output, 29
printing memory statistics report, 56
setting hook for memory allocation, 51
testing

ensuring memory block is contained in
program's memory space, 51

memory address, 50
tracking memory, 49
tuning allocation diagnostics, 46

Diagnostics, memory, described, 29
Dialog box objects, constructing, 264--265
Dialog boxes

called to inform main window when entering idle
state, 737

construction and use, 17
control

returning pointer to specified, 689-690
converting units of rectangle to screen units, 270
creating

building resource, 262
from resource template, 261

CWnd, called to cancel other modes, 717
defined,17
defining in resource files, 17
described, 261
focus control

CDialog::GotoDlgCtrl,268
CDialog::NextDlgCtrl,270
previous, 272

fonts
for drawing text, 271
setting on the fly, 262

invoking and returning result, 447
message-checking, 268-269
modal

Cancel button action overriding, 448
CModalDialog class described, 443-444
constructor, 446
creating indirect, 446-447
explained, 17
invoking and returning result, 447

978 Index

Dialog boxes (continued)
modal (continued)

OK button, overriding, 448
terminating, 267

modeless
constructor, 264
creating, 261
creating, 266-267
described, 261
explained, 17

overriding member functions, 261
push button control, getting ID, 268
retrieving associated caption or text, 691
searching for previous or next control, 693-694
standard procedure, 271
translating text of specified control into integer

value, 690-691
Dialog, windows, classes (list), 6
Dir member function

CComboBox class, 147-148
CListBox class, 360

Directories
adding to list boxes, 360
putting

in combo boxes, 678-679
in list boxes, 676-677

Disk file input, ifstream class described, 845
Display

contexts, retrieving for entire window, 703
devices, returning information about, 196,201

DlgDirList member function
CWnd class, 676-677

DlgDirListComboBox member function
CWnd class, 678-679

DlgDirSelect member function
CWnd class, 679-680

DlgDirSelectComboBox member function
CWnd class, 680-681

doallocate member function
streambuf class, 923

DoModal member function
CModalDialog class, 447

DPtoLP member function
CDC class, 175

Dragging minimized CWnd, 775
DrawFocusRect member function

CDC class, 175-176
Drawlcon member function

CDC class, 176

Drawing
borders

around rectangles, 191
around regions, 192

chords, 170-171
ellipses, 179-180
elliptical arcs, 165-166
formatted text in rectangle, 177-179
icons on CDC device, 176
line segments, 222
lines, 214
pie-shaped wedges, 219-220
polygons

CDC::Polygon,22l
CDC::PolyPolygon,222

preventing in invalid window area, 186
rectangles

CDC::Rectangle,224
style indicating focus, 175
with rounded corners, 226-227

retrieving current mode, 203
setting mode, 243-244
text

dimmed, 210-212
setting font in dialog boxes, 271

DRAWITEMSTRUCTstructure,81-83
CWnd::OnDrawItem,732-733

DrawMenuBar member function
CWnd class, 681

CMenu: :AppendMenu, 418
CMenu::DeleteMenu,422
CMenu::InsertMenu,430
CMenu::ModifyMenu,433
CMenu::RemoveMenu,434

DrawText member function
CDC class, 177-179

Drives, adding to list boxes, 360
Dump member function

CObject class, 469-470
CDumpContext::operator «, 278-279
CObject::Dump,469

Dumping
array of hexadecimal-formatted bytes, 276
depth

getting, 276
setting, 277

flushing data to file attached to dump context, 275
matching reported corrupted memory with

contents, 55
objects to CObject objects, 469-470

Duplicate member function
CFile class, 309

Duplicating CFile object, 309
Dynamic character strings, CString class

described, 28

E
eatwhite member function

istream class, 877
eback member function

streambuf class, 924
ebuf member function

streambuf class, 924
Edit control

See also Multiple-line edit control
characters, selecting range, 30 I
combo boxes, getting position of current selection,

149
current selection

getting starting, ending character positions, 293
replacing with text, 297

determining if contents modified, 292
getting formatting rectangle, 293
line length, retrieving, 295
maximum text length, specifying, 294
modification flag setting, clearing, 298
multiple-line. See Multiple-line edit control
password character, setting, removing, 299
pasting data to, 297
undoing last operation, 302

Edit operations, undoing, 285
egptr member function

streambuf class, 924
ElementAt member function

COb Array class, 454-455
Ellipse member function

CDC class, 179-180
Ellipses

creating region, 541
drawing, 179-180

Elliptical arcs, drawing, 165-166
Empty member function

CString class, 580
EmptyUndoBuffer member function

CEdit class, 290
EnableMenultem member function

CMenu class, 423-424
EnableWindow member function

CWnd class, 681-682
Enabling menu items, 423-424

END_CATCH macro, 66
EndDialog member function

CDialog class, 267
EndDoc member function

CDC class, 180-181
Ending session, called when, 776
EndPage member function

CDC class, 181-182
EndPaint member function

CWnd class, 682
EnumObjects member function

CDC class, 182-184
eof member function

ios class, 857
epptr member function

streambuf class, 925
Equa1Rect member function

CRect class, 525
EqualRgn member function

CRgn class, 546
ErrnoToException data member

CFileException class, 324-325
Error bits

setting or clearing, 856
testing if clear, 859

Error testing, I/O, 857
Errors

converting run-time library values to
CFileException values, 324

I/O, testing for serious, 855
operating system, 328

Escape member function
CDC class, 184-185

Evaluating, arguments
ASSERT macro, 53
VERIFY macro, 57

Exception handling
described,30

Index 979

exception classes and macros described, 30
when to use, 30

Exception processing, 59, 67
AfxAbort, 61
AfxSetTerminate,61
AfxTerminate, 62
AfxThrow ArchiveException, 63
AfxThrowMemoryException,64
AfxThrowNotSupportedException,64
AfxThrowResourceException, 64
AND_CATCH macro, 65
CNotSupportedException class described, 449

980 Index

Exception processing (continued)
defining block of code for catching

additional exception types,
AND_CATCH macro, 65

first exception type, CATCH macro, 65
END_CATCH macro, 66
marking end of last CATCH block,

END_CATCH macro, 66
termination

default function, 61
fatal error, 62
linking to specified function, 61

THROW macro, 66
throwing

CArchiveException, 63
CFileException, 63
CMemoryException,64
CNotSupportedException,64
CResourceException, 64
identifying code that might, 67
rethrowing back to next outer CATCH block, 67
specified exception, 66

TRY macro, 67
Exceptions

throwing
CMemoryException,64
CResourceException, 64

CException class described, 303
CFileException

class described, 322
objects, creating, 324

CNotSupportedException class described, 449
macros and global functions described, 59-67
memory, CMemoryException objects, 413
resources, CResourceException class

described, 536
throwing

CArchiveException, 63
CFileException::ThrowOsError, 326
CFileException, AfxThrowFileException, 63
CNotSupportedException,64

ExcludeClipRect member function
CDC class, 185-186

ExcludeUpdateRgn member function
CDC class, 186

Exitlnstance member function
CWinApp class, 631

Exitlnstance, overridable member function, 11
ExtFloodFill member function

CDC class, 187-188
Extracting white space from streams, 886

Extraction operator
CArchive class, 102
CString class, 593
CTime class, 617
CTimeSpan class, 627
istream class, 885

ExtTextOut member function
CDC class, 188-189

F
fail member function

ios class, 857
fd member function

filebuf class, 833
fstream class, 839
ifstream class, 847
of stream class, 895

File classes described, 26
File descriptors

associated with streams, returning, 839, 847
returning for filebuf object, 833
streams, returning, 895

File pointers
current position, obtaining, 310
repositioning, 316-317
setting value

to beginning of file, 317
to logical end of file, 317

filebuf class
consume defined, 927
described, 831
member functions

attach,832
close, 832, 838, 846, 894
fd,833
fi1ebuf, 833
-filebuf, 834
is_open, 834
open, 834-835
setmode, 835

ilebuf constructor, 833
filebuf destructor, 834
filebuf objects

attaching specified reserve area to stream's, 850
buffer associated with stream, returning pointer to,

850
calling closing associated file, 838
closing and disconnecting, 846
closing connected file, 834

filebuf objects (continued)
connecting to specified open file, 832
constructor, 847-848
creating, 833
destroying, 849
disconnecting file from and flushing, 832
fstream constructor, 839, 841
opening disk file for stream, 849
opening file and connecting, 834-835
reserve area, attaching, 843
returning associated file descriptor, 833
setting binary/text mode, 835
setting binary/text mode, 844
streams, 898

attaching specified reserve area, 899
closing, 894
opening file for attachment, 898

testing for connection to open disk file, 834
Filenames, adding to list box of combo box, 147
Files

beginning, setting file pointers to, 317
buffers, flushing, 309
CFile class described, 304
closing

associated with CFile object, 308
filebuf objects, 834
operating system, 308

creating, 306
deleting specified by path, 315
directories, putting in combo boxes, 678-679

putting in list boxes, 678-677
disconnecting from filebuf object, 832
duplicating CFile object, 309
end of

setting file pointers to, 317
testing, 857

length
changing, 318
obtaining in bytes, 309

locking range of bytes, 312
memory

closing, 412
opening, 412

open
testing for attachment to stream, 842, 849, 895

opening
for attachment to stream's filebuf object, 842
for CFile objects, 313
for connection to filebuf objects, 834-835

operating system handle, 321

Files (continued)
operating system, closing, 308
pointers

getting current position, 310
repositioning, 316-317

Index 981

setting value to beginning of file, 317
setting value to logical end of file, 317

reading data into buffers, 314
renaming, 315
run-time stream, CStdioFile class described, 567
status

CFile object, 310-311
setting, 318

testing for connection to open, 834
unlocking range of bytes, 319
writing, associated with CFile object, 320

fill member function
ios class, 857-858

FillRect member function
CDC class, 189-190

FillRgn member function
CDC class, 190

Find member function
CObList class, 483--484
CString class, 580-581

FindIndex member function
CObList class, 484

Finding strings in list boxes, 361
FindOneOf member function

CString class, 581
FindString member function

CComboBox class, 148
CListBox class, 361

FindWindow member function
CWnd class, 683

Flags
buffer-deletion, assigning value for stream, 856
edit control undo, resetting, 290
error-state, setting or clearing, 856
format

clearing, 864
flag bits, defining, 855

setting specified format bits, 863
stream's internal variable, setting, 858-859
text -alignment

retrieving status for device context, 205
specifying, 246-247

undo. See Undo Flags.
flags member function

ios class, 858-859

982 Index

Flashing
carets, 816-817
window once, 683-684

Flash Window member function
CWnd class, 683-684

floatfield data member
ios class, 867

Floating point
format flag bits, obtaining, 867
precision variable

setting for stream, 870
setting, 861

FloodFill member function
CDC class, 190-191

Flush member function
CArchive class, 97

CFile::Flush,309
CDumpContext class, 275
CFile class, 309

flush member function
ostream class, 902

Flushing
buffers to dump context, 275
file buffers, 309
output buffers, 907
stream buffers, 902

FmtLines member function
CEdit class, 290

Focus control of dialog boxes
moving to specified control, 268
next, 270
previous, 272

Fonts
aspect-ratio filter, 192
called upon change, 738-739
CFont class described, 329
copying typeface name into buffer, 208
creating, 330
current, retrieving, 692
dialog boxes, 271
dialog boxes, setting on the fly, 262
initializing

LOGFONT-specified characteristics, 334
specified characteristics, 330-333

mapper, altering, 241
predefined, retrieving handle to, 345-346

selecting, 442
retrieving character widths, 194
retrieving metrics for current, 208
returning pointer to CFont object, 335

setting CWnd, 809

Format
conversion base, setting to 10, 868
conversion base, setting to 16, 868
conversion base, setting to 8, 869
flag bits, defining, 855

Format bits, setting, 863
Format flags

clearing, 864
streams

clearing specified, 869
setting, 870

Formats
Clipboard (list), 86-87
Clipboard, called for delayed rendering, 781

Formatting rectangles, edit control
getting, 293
setting, 299

Foundation class library design philosophy, 7-8
Foundation classes

collection classes described, 26-27
derivation, 10
general purpose, described, 21-30
message processing, vs. native Windows, 9
miscellaneous support classes described, 28
polymorphism, 10
special WinMain version, 12
vs. native Windows program initialization, 12

Frame windows
CFrameWnd class described, 336
child, getting, 339
classes (list), 6
creating

attaching, 338-339
constructor, 338
MDI client window, 404
MDI constructor, 403

destroying, 338
loading accelerator table, 340
replacing menu of MDI, 408--409
returning active MDI child, 405

FrameRect member function
CDC class, 191

FrameRgn member function
CDC class, 192

FreeExtra member function
CObArray class, 455

freeze member function
strstreambuf class, 944

FromHandle data member
CFont class, 335

FromHandle member function
CBitmap class, 113
CBrush class, 125
CGdiObject class, 348
CPalette class, 504
CPen class, 511
CRgn class, 546
CWnd class, 684

fstream class
described, 836-837
member functions

attach, 838
close, 838
fd,839
fstream, 839-841
-fstream,841
is_open, 842
open, 842
rdbuf,843
setbuf,843
setmode, 844

fstream constructor, 839-841
fstream destructor, 841
fstream objects, creating, 839-841

G
gbump member function

streambuf class, 925
gcount member function

istream class, 877
GDI

classes
described, 18
list, 6-7

device contexts
classes (list), 6
specifying origin for next brush assignment, 239

drawing objects classes (list), 6
object classes described, 18
raster-operation codes (list), 167-168

GDIbitmaps
CBitmap class described, 107-108

GDI objects
attaching, 344
CGdiObject class described, 342

get areas
returning lower bound, 924
returning number of characters available for

fetching, 926

Index 983

get areas (continued)
returning pointer to byte after last, 924
setting pointer values, 932

get member function
istream class, 878-879

Get pointers
advancing after returning current character, 929
following fetched characters, 933
getting value of, 884
incrementing, 925
moving back, 934
moving forward one character, 935
returning character at, 933
returning to next character to be fetched from, 925
testing, 934

GetActiveWindow member function
CWnd class, 685

GetAspectRatioFilter member function
CDC class, 192

GetAt member function
CObArray class, 455
CObList class, 485
CString class, 581-582

GetBitmapBits member function
CBitmap class, 113

CGdiObject::GetObject,349
GetBitmapDimension member function

CBitmap class, 114
GetBkColor member function

CDC class, 193
GetBkMode member function

CDC class, 193
GetBrushOrg member function

CDC class, 193-194
GetBuffer member function

CString class, 582-583
GetBufferSetLength member function

CString class, 583-584
GetButtonStyle member function

CButton class, 131
GetCapture member function

CWnd class, 685
GetCaretPos member function

CWnd class, 686
GetCharWidth member function

CDC class, 194
GetCheck member function

CButton class, 132
GetCheckedRadioButton member function

CWnd class, 686

984 Index

GetChildFrame member function
CFrameWnd class, 339
CMDlFrameWnd class, 405

GetClientRect, 687
CWndclass

CWnd::GetClientRect,687
GetClientRect member function

CWnd class, 686-687
GetClipboardOwner member function

CWnd class, 687
GetClipboardViewer member function

CWnd class, 687
GetClipBox member function

CDC class, 195
GetCount member function

CComboBox class, 149
CListBox class, 361
CMapStringToOb class, 380
CObList class, 485-486

GetCurrentMessage member function
CWnd class, 688

GetCurrentPosition member function
CDC class, 195

GetCurSel member function
CComboBox class, 149
CListBox class, 362

GetDayOfWeek member function
CTime class, 611

GetDC member function
CWnd class, 688

CDC::DeleteDC, 174
GetDCOrg member function

CDC class, 196
GetDeflD member function

CDialog class, 268
GetDepth member function

CDumpContext class, 276
GetDesktopWindow member function

CWnd class, 689
GetDeviceCaps member function

CDC class, 196-201
GetDlgCtrlID member function

CWnd class, 689
GetDlgltem member function

CWnd class, 689-690
GetDlgltemlnt member function

CWnd class, 690-691
GetDlgltemText member function

CWnd class, 691
GetEditSel member function

CComboBox class, 149

GetFile member function
CArchive class, 97

GetFocus member function
CWnd class, 692

GetFont member function
CWnd class, 692

GetHandle member function
CEdit class, 291

GetHead member function
CObList class, 486-487

GetHeadPosition member function
CObList class, 487

GetHorizontalExtent member function
CListBox class, 362

GetItemData member function
CComboBox class, 150
CListBox class, 363

GetItemRect member function
CListBox class, 363

GetLastActivePopup member function
CWnd class, 692-693

GetLBText member function
CComboBox class, 150

GetLBTextLen member function
CComboBox class, 151

GetLength member function
CFile class, 309
CString class, 584

GetLine member function
CEdit class, 291-292
istream class, 879-880

GetLineCount member function
CEdit class, 292

GetMapMode member function
CDC class, 201

GetMenu member function
CWnd class, 693

GetMenultemCount member function
CMenu class, 424

GetMenultemID member function
CMenu class, 425

GetMenuState member function
CMenu class, 425-426

GetMenuString member function
CMenu class, 427

GetModify member function
CEdit class, 292-293

GetNearestColor member function
CDC class, 202

GetNearestPalettelndex member function
CPalette class, 505

GetNext member function
CObList class, 488-489

GetNextAssoc member function
CMapStringToOb class, 380-381

GetNextDlgGroupltem member function
CWnd class, 693-694

GetNextDlgTabltem member function
CWnd class, 694

GetNextWindow member function
CWnd class, 695

GetObject member function
CGdiObject class, 348-349

GetPaletteEntries member function
CPalette class, 505

CGdiObject::GetObject, 349
GetParent member function

CWnd class, 696
GetParentFrame member function

CFrameWnd class, 340
CMDIChildWnd class, 398

GetPixel member function
CDC class, 202-203

GetPolyFillMode member function
CDC class, 203

GetPosition member function
CFile class, 310

GetPrev member function
CObList class, 489-490

GetRect member function
CEdit class, 293

GetRgnBox member function
CRgn class, 547

GetROP2 member function
CDC class, 203

GetRuntimeClass member function
COhject class, 470-471

GetSafeHandle member function
CGdiObject class, 349

GetSafeHwnd member function
CWnd class, 696

GetScrollPos member function
CScrollBar class, 555
CWnd class, 696-697

GetScrollRange member function
CScrollBar class, 556
CWnd class, 697

GetSel member function
CEdit class, 293
CListBox class, 364

GetSelCount member function
CListBox class, 364

GetSelItems member function
CListBox class, 364-365

GetSize member function
CObArray class, 456

GetStartPosition member function
CMapStringToOb class, 381

GetState member function
CButton class, 132-133

GetStatus member function
CFile class, 310-312

GetStretchBltMode member function
CDC class, 204

GetSty1e member function
CWnd class, 698

GetSubMenu member function

Index 985

CMenu class, 428
GetSuperWndProcAddr member function

CWnd class, 698
GetSysModalWindow member function

CWnd class, 698
GetSystemMenu member function

CWnd class, 699
GetTabbedTextExtent member function

CDC class, 204-205
GetTail member function

CObList class, 490
GetTailPosition member function

CObList class, 491
GetText member function

CListBox class, 365
GetTextAlign member function

CDC class, 205-206
GetTextCharacterExtra member function

CDC class, 206
GetTextCo1or member function

CDC class, 207
GetTextExtent member function

CDC class, 207
GetTextFace member function

CDC class, 208
GetTextLen member function

CListBox class, 366
GetTextMetrics member function

CDC class, 208
Getting streams' position, 904
GetToplndex member function

CListBox class, 366

986 Index

GetTopWindow member function
CWnd class, 700

GetTotalSeconds member function
CTimeSpan class, 624

GetUpdateRect member function
CWnd class, 700-701

GetUpdateRgn member function
CWnd class, 701

GetUpperBound member function
COb Array class, 456

GetViewportExt member function
CDC class, 209

GetViewportOrg member function
CDC class, 209

GetWindow member function
CWnd class, 702

GetWindowDC member function
CWnd class, 703

GetWindowExt member function
CDC class, 209

GetWindowOrg member function
CDC class, 210

GetWindowRect member function
CWnd class, 703-704

GetWindowText member function
CWnd class, 704

GetWindowTextLength member function
CWnd class, 704-705

Global functions
AfxGetApp, 36
AfxGetAppName,36
AfxGetlnstanceHandle, 36
AfxRegisterWndClass, 37
diagnostic services, described, 43-57
exception processing, 59, 67
(list), 34-35

Global variables
afxMemDF, 46

good member function
ios class, 859

GotoDlgCtrl member function
CDialog class, 268

gptr member function
streambuf class, 925

Graphics Device Interface. See GDI.
GRA YRECT structure

CStatic::Create,564
GrayString member function

CDC class, 210-212

H
Handlers

message, 70-75
WM_COMMAND messages, 69

Handles
CClientDC objects, 138
GDI objects

attaching, 344
detaching, 347

operating system file, 321
retrieving to stock Windows GDI objects, 345-346
returning to

current instance of Windows application for
accessing resources, 37

current instance of Windows application, 36
specifying to Windows menu, 419
Windows applications

current instance, 639
previous instance, 639

Windows GDI objects, attaching
CGdiObject: :FromHandle, 348
CGdiObject: :GetSafeHandle, 349
CGdiObject::m_hObject,351

Windows, detaching from CWnd object, 676
Height member function

CRect class, 525
HexDump member function

CDumpContext class, 276
HideCaret member function

CWnd class, 705
Hiding

carets, 705
CWnd, called when, 783-784
list box of combo box, 155
scroll bars, 817-818

Highlighting
button control,

getting, 132
setting, 134

top-level menu items, 705-706
HiliteMenuItem member function

CWnd class, 705-706
Hours

getting minutes in current, 623
getting total, 623
getting, 613
in current day, getting, 622

I/O
buffered disk file, filebuf class described, 831
called before insert operations, 902
clearing format flags, 864
error testing, 857
errors

determining if error bits are set, 866
returning current specified error state, 862
testing for serious, 855
testing if error bits are clear, 859

extracting from streams, 880
bytes, 883
characters, 80
data, 878, 880
extraction operators, 885
white space, 877

filebuf class described, 831
filebuf objects, 838
fill character, setting, 869
format flags

clearing specified, 869
setting, 870

fstream class described, 836
getting value of get pointer, 884
insert operations, called after, 902
iostream class described, 872, 874
Iostream_init objects

constructor, 874
destructor, 874

istream class described, 875
masks, padding flag bits, 867
obtaining

floating-point format flag bits, 867
radix flag bits, 867

of stream class described, 893
ostream objects, 873
ostream_withassign class described, 908
ostrstream class described, 911
putting extracted character back into stream, 882
returning character without extracting, 882
setting

floating-point precision variable, 861
internal field width variable, 865
internal floating-point precision variable, 870

specified format bits, 863
stream's mode to text, 871

stdiobuf class described, 915
stdiostr class described, 917

Index 987

I/O (continued)
stream buffers, returning number of bytes

stored in, 913
streambuf class described, 919
streams

assigning istream object to istream_ withassign
object, 889

called after extraction operations, 881
called prior to extraction operations, 880
changing get pointer, 883
synchronizing C++ with standard C stdio, 863
synchronizing internal buffer with external

character source, 884
strstream class described, 939
strstreambuf class described, 943
testing for end of file, 857
virtual overflow function, 926-927

Icons
activating and displaying, 800
called if about to be dragged by user, 775
called when background must be filled before

painting, 743
called when painting, 773
called when user requests open window, 777
drawing on CDC device, 176
minimized document child windows, arranging, 406

Identifying child windows, 709
Idle state, called to inform main window, 737
Idle-time processing, Windows applications, 637
ifstream class

described, 845
member functions

attach,846
close, 846
fd,847
ifstream, 847-848
-ifstream, 849
is_open, 849
open, 849-850
rdbuf,850
setbuf,850
setmode, 851

ifstream constructor, 847-848
ifstream destructor, 849
ifstream objects

creating, 847-848
destroying, 849

ignore member function
istream class, 880

IMPLEMENT_DYNAMIC macro, 40, 471
IMPLEMENT_SERIAL macro, 471

988 Index

in_avail member function
streambuf class, 926

Inequality operator
CRect class, 532

InflateRect member function
CRect class, 525-526

Inflating rectangles, 525
Information contexts, creating for specified

device, 173
InitApplication member function

CWinApp class, 632
InitApplication, CWinApp overridable member

function, 11
Initialization, Foundation classes vs. native

Windows, 12
Initializing

menus, called when about to become active, 744
modal dialog objects, 446--447
Windows applications

instance, 632
one-time, 632

InitInstance member function
CWinApp class, 632

InitInstance, overridable member function, 11
In-memory files, CMemFile class described, 411
Input

sequential and random-access, istream class
described, 875

Input control, specifying for CWnd, 739-740
Input focus

called after gaining, 783
called after window has realized logical palette,

773-774
called before losing, 747-748
called when ALT and another key pressed,

791-792
called when CWnd about to receive, 777
called with release of key pressed with ALT,

792-794
claiming, 809
specifying

character value of dead key, 790-791
virtual-key code of Control menu key, 786-787

Insert operator, 593
InsertAfter member function

CObList class, 491--492
InsertAt member function

CObArray class, 456--457
InsertBefore member function

CObList class, 492--493

Inserting
arguments into streams, 906
characters, into output stream, 903
Clipboard data into edit control, 297
element in array, 457
new menu items, 428--430

Insertion operator
CArchive class, 103
CDumpContext class, 278-279
CString class, 593
ostream class, 906

InsertMenu member function
CMenu class, 428--430

CWnd::GetSystemMenu, 699
InsertString member function

CComboBox class, 151
CListBox class, 366-367

Integers, translating dialog box control
text into, 690-691

Internal character arrays
returning pointer from stream, 914
strstream class, returning pointer to, 940

Internal field width variable, setting, 865
Internal fill character variable, setting, 857
IntersectClipRect member function

CDC class, 212-213
Intersection operator

CRect class, 535
IntersectRect member function

CRect class, 526
Invalidate member function

CWnd class, 706-707
InvalidateRect member function

CWnd class, 707
CEdit::SetTabStops, 302

InvalidateRgn member function
CWnd class, 708

Invalidating
client areas

entire, 706-707
within given rectangle, 707
within given region, 708

Inverting
rectangle contents, 213
region colors, 214

InvertRect member function
CDC class, 213

InvertRgn member function
CDC class, 214

ios class
constructor, 860
data members

adjustfield, 867
basefield, 867
floatfield, 867
operator, 866

described, 852-854
manipulators

ios& binary, 868
ios& dec, 868
ios& hex, 868
ios& oct, 869
ios& text, 871
resetiosflags, 869
setfill, 869
setiosflags, 870
setprecision, 870
setw,871

member functions
bad, 855
bitalloc, 855
clear, 856
delbuf, 856-857
eof,857
fail, 857
fill, 857-858
flags, 858-859
good, 859
hex, 855
in, 930
ios,860
-ios,860
iword,860
left, 855
out, 930
precision, 861
pword,861
rdbuf,862
rdstate, 862
setf,863
stdio, 863, 902
sync_ with_stdio, 863
tie, 864
unitbuf, 902
unsetf,864
width, 865
xalloc,865

operators, 867
virtual destructor, 860

ios constructor, 860
ios destructor, 860
ios enumerators, 862
iostream class

described, 872-873
member functions

iostream, 873
-iostream, 873

iostream constructor, 873
iostream destructor, 873
iostream objects, 873
Iostream_init class

described, 874
member functions

Iostream_init,874
- Iostream_init, 874

Iostream_init constructor, 874
Iostream_init destructor, 874
ipfx memberfunction

istream class, 880-881
IsChild member function

CWnd class, 709
IsDialogMessage member function

CDialog class, 268-269
IsDlgButtonChecked member function

CWnd class, 709
IsEmpty member function

CMapStringToOb class, 382
CObList class, 493
CString class, 584-585

isfx member function
istream class, 881

IsIconic member function
CWnd class, 710

IsKindOf member function
CObject class, 472

CArchive::ReadObject, 100
IsLoading member function

CArchive class, 98
CObject::Serialize,473

is_open member function
filebuf class, 834
fstream class, 842
ifstream class, 849
of stream class, 895

IsRectEmpty member function
CRect class, 527

IsRectNull member function
CRect class, 527

IsSerializable member function
CObject class, 473

Index 989

990 Index

IsStoring member function
CArchive class, 98
CObject::Serialize, 473

istream class
described, 875-876, 887
extraction operators, 885
manipulator, 886
member functions

eatwhite, 877
gcount,877
get, 878-879
getline, 879-880
ignore, 880
ipfx, 880-881
isfx, 881
istream, 881
-istream, 882
peek,882
putback, 882
read, 882-883
seekg, 883
sync, 884
tellg, 884

operators, 885, 889
istream constructor, 881
istream destructor, 882, 888-889
istream objects

assigning to istream_withassign object, 889
creating, 881
destroying, 882

istream_ with assign class
described, 887
member functions

istream_ withassign, 888
-istream_ withassign, 888

istream_ withassign constructor, 888
istream_ withassign destructor, 888
istream_ withassign objects

creating, 888
destroying, 888

istrstream class
described, 890
member functions

istrstream, 891
-istrstream, 891
rdbuf,892
str, 892

istrstream constructor, 891
istrstream destructor, 891

istrstream objects
creating, 891
destroying, 891

IsWindowEnabled member function
CWnd class, 710

IsWindowVisible member function
CWnd class, 710

IsZoomed member function
CWnd class, 711

iword member function
ios class, 860

J
Justification, text, setting, 248-249

K
Key lookups, 27
Keyboard

input
enabling or disabling, 681
returning active key, 718-719
specifying whether CWnd is enabled for, 710

Keys, nonsystem
called on input, 745-746
called on release, 746-747

Kill Timer member function
CWnd class, 711

l
Left member function

CString class, 585
ios class

ios::bitalloc, 855
Length

files
changing, 318
getting in bytes, 309

LimitText member function
CComboBox class, 152
CEdit class, 294

Line, numbers, retrieving from multiple-line edit
control,291-292

LineFromChar member function
CEdit class, 294

Linelndex member function
CEdit class, 295

LineLength member function
CEdit class, 295-296

Lines
drawing from current position, 214
length in edit control, 295
numbers, retrieving from edit control, 294

LineScroll member function
CEdit class, 296

LineTo member function
CDC class, 214

Lisl boxes
adding filenames to, 360
called when control created, 754-756
called with keyboard input, 795-796
CListbox class described, 352
comparing items in, 722-724
creating

constructor, 355
specifying style, 356-359

describing deleted item, 80
destroying, 729-730
filling wilh directory listing, 676-677
finding specified string, 361
getting string from, 365
items

deleting, 359
ensuring visibility, 372
removing, 367
retrieves zero-based index of currently selected, 362
retrieving index of first visible, 363
retrieving index of first visible, 366
retrieving number of, 361
retrieving selection state, 364
searching for match to string, 367
selecting consecutive, 368
setting associated 32-bit values, 370
total selected, 364

multicolumn, selecting width, 369
multiple-selection, selecting strings in, 371
of combo boxes

retrieving current selection, 680-681
returning selected items, 149

retrieving
bounding rectangle dimensions, 363
current selection, 679-680
horizontal scrolling event, 362

returning on application response, 719-720
scrolling

selected strings, 369
setting width, 370

List boxes (continued)
strings

adding, 355
getting length, 366
getting, 365
inserting, 366

Index 991

supplying identifiers for two items in, 77-78
List classes, 27
Lists

adding element or list to tail, 480-481
classes described, 27
COblist class described, 477
CPtrList class described, 519
creating, 482-483
CString objects, CStringList class described, 603
elements, 486-487

adding after specified position, 491
adding before specified position, 492
getting number of, 485
head, getting position, 487
indicating if empty, 493
next, getting position, 488
previous, getting position, 489
removing all, 493
removing head, 495
removing specified, 494
removing tail, 496
scanning index for, 484
tail, getting position, 491
tail, getting, 490
writing pointer to specified position, 496

retrieving pointer to given position, 485
scanning index for specified element, 484
searching for first matching CObject pointer, 483

LoadAccelTable member function
CFrameWnd class, 340

LoadBitmap member function
CBitmap class, 114

CBrush::CreatePatternBrush,123
CWnd::CreateCaret,665

LoadCursor member function
CWinApp class, 633

CWnd::OnQueryDragIcon,775
LoadIcon member function

CWinApp class, 633-634
CDC::DrawIcon, 176
CWnd::OnQueryDragIcon,775

992 Index

Loading
accelerator tables, 340
bitmap resources, 114
menu resources, 430
object or primitive type from archive, 102
predefined cursor resources

CWinApp: :LoadStandardCursor, 635
CWinApp::LoadOEMCursor,634
icon resource, predefined, 633, 634, 536
specified cursor resource, 633

LoadMenu member function
CMenu class, 430

LoadMenuIndirect member function
CMenu class, 431

LoadOEMBitmap member function
CBitmap class, 115-116

LoadOEMCursor member function
CWinApp class, 634

LoadOEMIcon member function
CWinApp class, 634-635

CDC::DrawIcon,176
LoadStandardCursor member function

CWinApp class, 635-636
LoadStandardIcon member function

CWinApp class, 636-637
CDC::DrawIcon,176

LoadString member function
CString class, 585-586

Locking
range of bytes in open file, 312

LockRange member function
CFile class, 312-313

Logical palettes. See Palettes
Lookup member function

CMapStringToOb class, 382
LPRECT operator

CRect class, 531
LPRECT structure

CDC::Arc, 166
CDC::Chord,171
CRect::CRect,524
CRect: :operatorLPRECT, 531

LPtoDP member function
CDC class, 215

M
m_cause data member

CArchiveException class, 106
CFileException class, 327-328

CFileException: :ErrnoToException, 324
m_hAcce1Table data member

CFrameWnd class, 341
m_hFile data member

CFile class, 321
m_hInstance data member

CWinApp class, 639
m_hObject data member

CGdiObject class, 351
m_hPrevInstance data member

CWinApp class, 639
m_hWnd data member

CClientDC class, 138
CPaintDC class, 500
CWindowDC class, 643
CWnd class, 822

m_hWndMDIClient data member
CMDIFrameWnd class, 410

m_10sError data member
CFileException class, 328

m_lpCmdLine data member
CWinApp class, 639

m_msgCur data member
CWinApp class, 639

m_nCmdShow data member
CWinApp class, 640

CWnd::ShowWindow,819
m_pMain Wnd data member

CWinApp class, 640
m_pMDIFrameWnd data member

CMDIChildWnd class, 400
m_ps data member

CPaintDC class, 500
m_pStream data member

CStdioFile class, 571
m_pszAppName data member

CWinApp class, 640
Macros

AND_CATCH, 65
ASSERT, 53

Macros (continued)
ASSERT_VALID, 53
DEBUG_NEW,3R
DECLARE_DYNAMIC, 38-39, 468
DECLARE_SERIAL, 39-40, 468
diagnostic services, described, 49-52, 55, 57
END _CATCH, 66
exception processing, 59, 67
exception-handling, 30
IMPLEMENLDYNAMIC,471
IMPLEMENT_SERIAL, 471
(list), 32-33
RUNTIME_CLASS, 474
THROW, 66
THROW_LAST, 67
TRACE, 56
TRY, 67
VERIFY, 57

Main application class, CWinApp
described, 11

MakeLower member function
CString class, 586

MakeReverse member function
CString class, 586

MakeUpper member function
CString class, 587

Manipulators
ios class, 868-871
istream class, 886
ostream class, 907

MapDialogRect member function
CDialog class, 270

Mapping
device contexts, logical palettes to system

palettes, 224
fonts, logical to physical, 241
mode, retrieving current, 201
point coordinates, 175
setting mode, 240-241

Maps
l6-bit words keyed to void pointers, 375
classes described, 27
CMapPtrToPtr class described, 373
CMapPtrToWord class described, 375
CMapStringToOb class described, 377
CMapStringToPt class described, 387
CMapStringToString class described, 3R9
CMapWordToOb class described, 391
CMapWordToPtr class described, 393
CObject pointers keyed by 16-bit words, 391
constructing CString-to-CObject, 379

Index 993

Maps (continued)
CString objects keyed to CString objects, 389
CString objects to CObject pointers, 377
defined, 27
finding element with matching key, 382
getting number of elements, 380
inserting elements

CMapStringToOb::operator[],386
CMapStringToOb::SetAt,384

interation, starting, 381
iterating through all elements, 380-381
looking up entry corresponding to supplied

key, 83-384
message cross-reference, 69
message, defined, 13
removing elements and destroying CString key

objects, 383
testing if empty, 382
to void pointers keyed by void pointers, 373
void pointers

keyed by 16-bit words, 393
keyed by CString objects, 387

Masks
current radix flag bits, 867
floating-point format flag bits, 867
padding flag bits, 867

Maximization, CWnd, determining, 711
Maximizing MDI child windows, 399
MDI

client window handle, 410
client windows, arranging in cascade, 406
window, child, activating, 405

MDIActivate member function
CMDIChildWnd class, 398
CMDIFrameWnd class, 405

CWnd::OnMDIActivate, 754
MDICascade member function

CMDIFrameWnd class, 406
MDIDestroy member function

CMDIChildWnd class, 399
MDIGetActive member function

CMDIFrameWnd class, 406
MDIIconArrange member function

CMDIFrameWnd class, 406
CWnd::ArrangeIconicWindows, 659

MDIMaximize member function
CMDIChildWnd class, 399
CMDIFrameWnd class, 407

MDINext member function
CMDIFrameWnd class, 407

994 Index

MDIRestore member function
CMDIChildWnd class, 399
CMDIFrameWnd class, 408

MDISetMenu member function
CMDIFrameWnd class, 408--409

MDlTile member function
CMDIFrameWnd class, 409

MEASUREITEMSTRUCT structure, 83-84
CWnd::OnMeasureltem,754-755

Member functions
CArchive class, 95-101
CArchiveException class, 105
CBitmap class, 109-117
CBrush class, 119-125
CButton class, 128-134
CClientDC class, 138
CComboBox class, 142-155
CDC class, 164-260
CDialog class, 264-272
CDumpContext class, 275-277
CEdit class, 285-302
CFile class, 306-320
CFileException class, 324-326
CFrameWnd class, 338-340
CGdiObject class, 344-350
CListBox class, 355-372
CMapStringToOb class, 379-385
CMDIChildWnd class, 397-399
CMDIFrameWnd class, 403-409
CMemFile class, 412
CMemoryException class, 413
CMenu class, 416--437
CMetaFileDC class, 440-442
CModalDialog class, 446--448
CNotSupportedException class, 449
COb Array class, 453--462
CObject class, 466--476
CObList class, 480--497
CPaintDC class, 499-500
CPalette class, 503-507
CPen class, 509-511
CPoint class, 5l3-516
CRect class, 523-530
CResourceException class, 536
CRgn class, 539-550
CScrollBar class, 553-557
CSize class, 559
CStatic class, 563-566
CStdioFile class, 568-570
CString class, 576-591

Member functions (continued)
CTime class, 608
CTimeSpan class, 620-624
CWindowDC class, 642
CWinApp class, 631-638
CWnd class, 659-821
filebuf class, 832-835
fstream class, 838-844
ifstream class, 846-851
ios class, 855-865
iostream class, 873
Iostream_init class, 874
istream class, 877-889
istream_withassign class, 888
istrstream class, 891-892
of stream class, 894-899
ostream class, 902-909
ostream_ withassign class, 909
ostrstream class, 912-914
stdiostream class, 918
stdiobuf class, 916
stdiostream class, 918
streambuf class, 922-938
strstream class, 940-942
strstreambuf class, 944-946

Memory
compaction, specifying time currently spent in, 722
corrupted, matching with contents, 55
diagnostics described, 29
exceptions, CMemoryException objects, 413
files

closing, 412
opening, 412

finding leaks, 38
handles, retrieving for multiple-line edit

control, 291
in-memory files, CMemFile class described, 411
leaks, testing CObject objects, 598
low, detecting, 722
taking snapshot, 54
testing address, 50

Memory allocation
arrays, freeing extra memory, 455
checking for corrupt guard bytes, 47
CObject class, optimizing allocation, 475
debugging

forcing program halt on specified sequence
numbers, 52

tuning allocation diagnostics, 46
freeing memory, 475

Memory allocation (continued)
memory files

closing, 412
opening, 412

multiple-line edit control, handles, retrieving, 291
preventing memory deletion for strstreambuf object

with dynamic array, 944
setting

handle to local memory, 297
hook,51

testing to ensure memory blocks are contained in
program's memory space, 51

Menu bars, redrawing, 681
Menus

bars, redrawing, 681
called when about to become active, 744
calling owner when menu changes, 732-735
CMenu class described, 414
Control

allowing application access, 699
called when Maximize or Minimize button

selected,788-790
called when item selected, 721

creating
empty, 421
pop-up, 421

CWnd
retrieving pointer to, 693

deleting items, 422
destroying

CMenu::-CMenu, 421
specified, CMenu::DestroyMenu, 423

detaching from, CMenu object, 423
highlighting, activating or removing from top-level

items, 705-706
items

adding, 428-430
appending new, 416-418
associating bitmaps with, 435-436
called when user selects, 757-758
changing, 432-433
copying label to, 427
determining number, 424
enabling, 423-424
removing, 434
specifying items to be checked, 419-420
specifying position of active, 425
specifying status, 425-426

Index 995

Menus (continued)
MDI, replacing menu of, 408-409
mnemonic character, called when user presses,

756-757
pop-up

called when about to become active, 744-745
check mark control, 419-420
creating, 421
determining number of items, 424
displaying floating, 436-437
replacing, 408-409
retrieving CMenu object, 428
resources, loading and attaching to CMenu

object, 430
loading from menu template and attaching to

CMenu object, 431
setting current to specified, 810
template, loading resource and attaching to CMenu

object, 431
Windows, specifying handle to, 419

Message boxes, called when about to be
drawn, 726-727

Message maps
cross-reference, 69
function categories, 70

Message processing, Foundation classes vs. native
Windows, 9
MessageBox member function

CWnd class, 711-714
Messages

applications, creating and displaying, 711-714
boxes, called with displaying, 717
called when CWnd first created, 762-763
calling default window procedure

CWnd::Default,673
CWnd::DefWindowProc, 674

control, 14
cross-reference map, 69
CWnd, placing message in queue, 800
determining whether intended for modeless dialog

box,268-269
direct calls to Windows, 16
handlers, 70-75
idle-time processing, 637
map defined, 13
notification, 13-14
providing Windows procedure for, 821
returning pointer to current, 688

996 Index

Messages (continued)
sending to specified control, 804
sending to window, 805
used to translate CWinApp window messages, 801
Windows applications

filtering, 638
providing default loop, 638

Messaging, Windows, 8
Metafiles

closing device context and creating handle to
play, 440

CMetafileCD class described, 438
playing on given device, 221
selecting object into CMetaFileDC, 441
selecting predefined stock of pens, brushes,

fonts, 442
Mid member function

CString class, 587-588
Minimizing CWnd, 664
Minutes

getting total, 624
getting, 613
in current hour, getting, 623

Modification flag, setting for edit control, 298
Modifying

menu items, 432-433
viewport extents, 228
window extents, 229

ModifyMenu member function
CMenu class, 432-433

CWnd::GetSystemMenu,699
Months, getting, 613
Mouse

capture
called by CWnd, 763-764
retrieving CWnd, 685

cursor
called on press of button, 758-759
called when input isn't captured, 782
called when moved, 760

enumerated values (list), 88
input

causing all subsequent to be sent to current CWnd
object, 806

enabling or disabling, 681-682
specifying whether CWnd is enabled for, 710

Mouse button
called when clicked over child window, 774-775
tracking pop-up menu item selection, 436-437

Mouse button, left
called when double-clicked in nonclient

area, 765, 767
called when double-clicked, 748-749
called when pressed in nonclient area, 765-766
called when pressed, 749
called when released, 750

Mouse button, middle
called when double-clicked, 751
called when pressed in nonclient area, 767-768
called when pressed, 752
called when released in nonclient area, 768
called when released, 752-753

Mouse button, right
called when double-clicked within nonclient

area, 770
called when double-clicked, 778
called when pressed within nonclient area, 770-771
called when pressed, 779
called when released within nonclient area, 771
called when released, 780

MoveTo member function
CDC class, 215-216

MoveWindow member function
CWnd class, 714-715

Moving
clipping region, 216
current point position, 215
CWnd, called when, 760-761
rectangles, 527, 533
regions, 547

MS-DOS, device names, conventions, 174
Multiple document interface. See MDI
Multiple-line edit control

character index, retrieving line number, 294
character line index, retrieving, 295
formatting rectangle

setting, 299
setting new dimensions, 300

line numbers, retrieving, 291-292
number of lines, retrieving, 292
retrieving local memory handle, 291
scrolling text, 296
setting

handle to local memory, 297
tab stops, 301

soft line-break characters, inserting, 290

N
new operator

CObject class, 475
NextDlgCtrl member function

CDialog class, 270
Nonclient areas

calculating size, 762
called when destroyed, 763
called when mouse button pressed in, 765-766
called when needing painting, 769

Nonsystem key

o

called when pressed, 745-746
called when released, 746-747

Object diagnostics
class-oriented, 24
described, 24
dump context, 24
validity checking, 25

Object persistence described, 23
Objects

CObject class described, 463
creating, 467
destroying, 467
dumping to CObject objects, 469-470
getting run-time structure, 470
reading or writing to archive, 473-474
testing

for class, 472
if eligible for serialization, 473

validity checking, 466
OEM, converting characters to ANSI character

set, 588
OemToAnsi member function

CString class, 588
Offset member function

CPoint class, 514
OffsetClipRgn member function

CDC class, 216
OffsetRect member function

CRect class, 527-528
OffsetRgn member function

CRgn class, 547-548
OffsetViewportOrg member function

CDC class, 217
OffsetWindowOrg member function

CDC class, 217

of stream class
described, 893
member functions

attach,894
close, 894
fd,895
is_open, 895
of stream, 895-897
-of stream, 897
open,898
rdbuf,898
setbuf,899
setmode, 899

of stream constructor, 895-897
of stream destructor, 897
of stream objects

creating, 896-897
destroying, 841, 897

Index 997

OK button, overriding in dialog boxes, 448
OnActivate member function

CWnd class, 715
OnActivateApp member function

CWnd class, 716
OnAskCbFormatName member function

CWnd class, 716-717
OnCancel member function

CModalDialog class, 448
OnCancelMode member function

CWnd class, 717
OnChangeCbChain member function

CWndclass, 717-718
OnChar member function

CWnd class, 718-719
OnCharToItem member function

CWnd class, 719-720
OnChildActivate member function

CWnd class, 720
OnClose member function

CWnd class, 720
OnCommand member function

CWnd class, 721
OnCompacting member function

CWnd class, 722
OnCompareItem member function

CWnd class, 722-724
OnCreate member function

CWnd class, 724-726
OnCtlColor member function

CWnd class, 726-727

998 Index

OnDeadChar member function
CWnd class, 727-729

OnDe1eteltem member function
CWnd class, 729-730

OnDestroy member function
CWnd class, 730

OnDestroyClipboard member function
CWnd class, 731

OnDevModeChange member function
CWnd class, 731

OnDrawClipboard member function
CWnd class, 731-732

OnDrawltem member function
CWnd class, 732-735

OnEnab1e member function
CWnd class, 735-736

OnEndSession member function
CWnd class, 736

OnEnterld1e member function
CWnd class, 737

OnEraseBkgnd member function
CWnd class, 737-738

OnFontChange member function
CWnd class, 738-739

OnGetDlgCode member function
CWnd class, 739-740

OnGetMinMaxInfo member function
CWnd class, 740-741

OnHScroll member function
CWnd class, 741-742

OnHScrollClipboard member function
CWnd class, 742-743

OnIconEraseBkgnd member function
CWnd class, 743

Onld1e member function
CWinApp class, 637
overridab1e member function, 11

OnInitDia1og member function
CDia10g class, 271

OnInitMenu member function
CWnd class, 744

OnInitMenuPopup member function
CWnd class, 744-745

OnKeyDown member function
CWnd class, 745-746

OnKeyUp member function
CWnd class, 746-747

OnKillFocus member function
CWnd class, 747-748

OnLButtonDb1C1k member function
CWnd class, 748-749

OnLButtonDown member function
CWnd class, 749

OnLButtonUp member function
CWnd class, 750

OnMButtonDb1Clk member function
CWnd class, 751

OnMButtonDown member function
CWnd class, 752

OnMButtonUp member function
CWnd class, 752-753

OnMDIActivate member function
CWnd class, 753-754

OnMeasureltem member function
CWnd class, 754-756

OnMenuChar member function
CWnd class, 756-757

OnMenuSe1ect member function
CWnd class, 757-758

OnMouseActivate member function
CWnd class, 758-759

OnMouseMove member function
CWnd class, 760

OnMove member function
CWnd class, 760-761

OnNcActivate member function
CWnd class, 761

OnNcCa1cSize member function
CWnd class, 762

OnNcCreate member function
CWnd class, 762-763

OnNcDestroy member function
CWnd class, 763

OnNcHitTest member function
CWnd class, 763-764

OnNcLButtonDb1C1k member function
CWnd class, 765

OnNcLButtonDown member function
CWnd class, 765-766

OnNcLButtonUp member function
CWnd class, 766

OnNcMButtonDb1C1k member function
CWnd class, 767

OnNcMButtonDown member function
CWnd class, 767-768

OnNcMButtonUp member function
CWnd class, 768

OnNcMouseMove member function
CWnd class, 769

OnNcPaint member function
CWnd class, 769

OnNcRButtonDblClk member function
CWnd class, 770

OnNcRButtonDown member function
CW nd class, 770-771

OnNcRButtonUp member function
CWnd class, 771

OnOK member function
CModalDialog class, 448

OnPaint member function
CWnd class, 772

OnPaintClipboard member function
CWnd class, 772-773

OnPaintIcon member function
CWnd class, 773

OnPaletteChanged member function
CWnd class, 773-774

OnParentNotify member function
CWnd class, 774-775

OnQueryDragIcon member function
CWndclass, 775-776

OnQueryEndSession member function
CWnd class, 776

OnQueryNewPalette member function
CWnd class, 777

OnQueryOpen member function
CWnd class, 777

OnRButtonDblClk member function
CWnd class, 778

OnRButtonDown member function
CWnd class, 779

OnRButtonUp member function
CWnd class, 780

OnRenderAllFormats member function
CW nd class, 780-781

OnRenderFormat member function
CWndclass, 781

OnSetCursor member function
CWnd class, 782

OnSetFocus member function
CWnd class, 783

OnSetFont member function
CDialog class, 271-272

OnShowWindow member function
CWnd class, 783-784

OnSize member function
CWnd class, 784-785

OnSizeClipboard member function
CWnd class, 785

OnSpoolerStatus member function
CWnd class, 786

OnSysChar member function
CWnd class, 786-787

OnSysColorChange member function
CWnd class, 788

OnSysCommand member function
CWnd class, 788-790

OnSysDeadChar member function
CWnd class, 790-79\

OnSysKeyDown member function
CWndclass, 791-792

OnSysKeyUp member function
CWnd class, 792-794

OnTimeChange member function
CWnd class, 794

OnTimer member function
CWnd class, 795

On VKeyToItem member function
CWnd class, 795-796

On VScroll member function
CWnd class, 796-797

On VScrollClipboard member function
CWnd class, 797-798

OnWinlniChange member function
CWnd class, 798-799

Open member function
CFile class, 313-314

open member function
filebuf class, 834-835
fstream class, 842
ifstream class, 849-850
of stream class, 898

Open Clipboard member function
CWnd class, 799

OpenIcon member function
CWnd class, 800

Opening
Clipboard, 799
files

CFile: :Open, 313

Index 999

for attachment to stream's filebuf object, 842
for attachment to stream's filebuf object, 849
for attachment to stream's filebuf, 898
for connection to filebuf objects, 834-835
memory, 412

Operating system
error codes

CFileException::CFileException, 324
CFileException::m_l0sError, 328
CFileException::OsErrorToException, 325
CFileException::ThrowOsError, 326

handle for open file, 321

1000 Index

Operators
addition operator

CRect class, 534
CString class, 594
CTime class, 615-616
CTimeSpan class, 625

assignment of addition operator
CRect class, 532
CString class, 595
CTime class, 616
CTimeSpan class, 626

assignment of intersection operator
CRect class, 533

assignment of subtraction operator
CRect class, 533

assignment of union operator
CRect class, 533-534

assignment operator
CRect class, 531
CSize class, 560-561
CString class, 592
CTime class, 615
CTimeSpan class, 625
istream class, 889
ostream class, 910

const char *0 operator
CString class, 592-593

equality operator
CRect class, 531

extraction
CArchive class, 102
CString class, 593
CTime class, 617
CTimeSpan class, 627
istream class, 885

inequality operator, CRect class, 532
insertion

CArchive class, 103
CDumpContext class, 278-279
ostream class, 906

intersection operator
CRect class, 535

lookup operator
CMapStringtoOb class, 386

LPRECT operator
CRect class, 531

new operator
CObject class, 475

Operators (continued)
subscript operator

CString class, 597
subtraction operator

CRect class, 533-534
union operator

CRect class, 531, 535
void* operator

ios class, 867
opfx member function

ostream class, 902
OsErrorToException data member

CFileException class, 325
osfx member function

ostream class, 902
ostream, tying stream to, ios::tie, 864
ostream class

described, 900-901, 908
manipulators

&endl,907
&ends, 907
&flush,907

member functions
flush,902
opfx, 902
osfx, 902
ostream, 903
-ostream, 903
put, 903
seekp, 904
tellp, 904-905
write, 905

operators, 906, 910
ostream constructor, 903
ostream destructor, 903, 909
ostream objects

assigning to ostream_ withassign object, 910
ostream_ withassign class

described, 908
member functions

ostream_ withassign, 909
-ostream_ withassign, 909

operator, 910
ostream_ withassign constructor, 908
ostream_ withassign destructor, 908
ostream_ withassign objects

assigning specified ostream object to, 910
creating, 909
destroying, 909

ostrstream class
described, 911
member functions

ostrstream, 912
-ostrstream, 913
pcount, 913
rdbuf,913
str, 914

returning pointer to internal character array, 914
ostrstream constructor, 912
ostrstream destructor, 913
ostrstream objects

creating, 912
destroying, 913

Output
diagnostic, 29
sequential and random-access, ostream class

described, 900
ouC waiting member function

streambuf class, 926
overflow member function

streambuf class, 926-927

p
Painting

called to prepare invalidated region, 737-738
called when repainting CWnd, 772
client area associated with CPaintDC object, 500
client area of window, 84-85
CPaintDC class described, 498
CWnd, called when client area needs

repainting, 772-773
icon background, 743
icons, called when painting, 773
nonclient areas, called when needing, 769
preparing CWnd for, 660
windows, marking end, 682

PaintRgn member function
CDC class, 218

PAINTSTRUCT structure, 84-85
CPaintDC::CPaintDC, 499
CPaintDC::m_ps, 500
CWnd::BeginPaint, 660
CWnd::EndPaint, 682
CWnd::OnPaintClipboard,772-773

Palettes
CPalette class described, 501
creating CPalette objects, 504
CWnd, called when receiving input focus, 777

Index 1001

Palettes (continued)
logical

mapping entries to system palette, 224
replacing entries, 503
retrieving closest matching entry, 505
retrieving range of entries, 505
setting RGB color values and flags, 506

resetting, 350
resizing, 506
returning pointer to CPalette object, 504
selecting logical, 233
system, called after change, 773-774

Parent windows
called when child window created or

destroyed,774-775
changing parent of child, 810
retrieving, 696

Password character, setting or removing in edit
control, 299

Paste member function
CComboBox class, 152
CEdit class, 297

Pasting Clipboard data into edit control, 297
PatBlt member function

CDC class, 218-219
pbackfail member function

streambuf class, 927
pbase member function

streambuf class, 928
pbump member function

streambuf class, 928
pcount member function

ostrstream class, 913
strstream class, 940

peek member function
istream class, 882

Pens
available in device context, enumerating, 182-184
CPen class described, 508
creating

constructor, 509
initializing 510
initializing with specified structure, 510

handles, 511
predefined

retrieving handle to, 345-346
selecting, 442

setting drawing mode, 243-244
Pie member function

CDC class, 219-220
Pie-shaped wedges, creating, 219-220

1002 Index

Pixels
retrieving RGB color values, 202
setting at specified point, 242

PlayMetaFile member function
CDC class, 221

CMetaFileDC::Close,440
POINT structure, 85

CDC::Arc, 166
CDC::Chord,l71
CDC::DPtoLP,175
CDC::DrawIcon,176
CDC::GetPixel,202
CDC::LineTo,214
CDC::LPtoDP,215
CDC::MoveTo,215
CDC::Pie,220
CDC::Polygon,221
CDC::PolyPolygon,222
CDC::PtVisible,223
CDC: :RoundRect, 227
CDC::SetBrushOrg,239
CDC::SetPixel,242
CDC: :SetViewportOrg, 251
CDC::SetWindowOrg,253
CDialog: :IsDialogMessage, 269
CPen: :CreatePenIndirect, 511
CPoint: :CPoint, 513
CPoint::Offset,514
CPoint::operator,515-516
CRect::BottomRight,523
CRect::OffsetRect,528
CRect::operator +,534
CRect::operator +=,532
CRect::operator -,534
CRect::operator - =,533
CRect::PtlnRect,528
CRgn::CreatePolygonRgn,542
CRgn::CreatePolyPolygonRgn,543
CRgn::OffsetRgn,547
CRgn::PtlnRegion,548
CSize::CSize,559
CWnd::ClientToScreen,663
CWnd::OnGetMinMaxInfo,740
CWnd::ScreenToClient,802
CWnd::WindowFromPoint,821

Pointers
arrays, removing all from, 458
CFile object, getting for archive, 97
CMDlChildWnd to parent CMDlFrameWnd, 400

Pointers (continued)
CObject

lists, COblist class described, 477
maps to CString objects, 377

CWnd

get

object when given handle to window, 684
retrieving to active, 685

advancing past spaces and tabs, 877
changing for stream, 883
getting value, 884
incrementing, 925

put, incrementing, 928
repositioning external file pointer, 927
returning, display context for client area, 688
void

16-bit words keyed by, 375
CPtrArray class described, 517
CPtrList class described, 519
keyed by void pointers, 373
maps keyed by l6-bit words, 393
maps keyed by CString objects, 387

Pointers, file. See File pointers
Points

adding separate values to x and y members, 513
checking

equality between two, 515
if within region, 548
inequality between two, 515

converting, logical to device, 215
CPoint class described, 512
defining x- and y-coordinates of, 85
determining if within rectangles, 528
identifying window containing given, 821
mapping coordinates from device to logical

system, 175
offsetting by a size, 515-516
offsetting negatively by a size, 516
rectangles

referencing bottom right, 523
referencing top left, 529

specified, determining which child window
contains, 662-663

subtracting a size, 516
Polygon member function

CDC class, 221
Polygons

creating multiple filled, 222
drawing, 221
filling mode, retrieving current, 203

Polygons (continued)
regions

creating series of, 543
creating, 542

setting, filling mode, 242
Polyline member function

CDC class, 222
Polymorphism among Foundation classes, 10
PolyPolygon member function

CDC class, 222-223
Pop-up menus

called when about to become active, 744-745
determining number of items, 424
displaying floating, with item tracking, 436-437
obtaining item identifier, 425
retrieving CMenu object, 428
specifying status of items, 425-426

Pop-up windows, determining most recently
active, 692-693

Position, retrieving current, 195
PostMessage member function

CWnd class, 800-801
pptr member function

streambuf class, 928
precision member function

ios class, 861
Predefined stream objects

cerr,900
cin,875
clog, 900
cout,900

PreTranslateMessage member function
CWinApp class, 638
CWnd class, 801

PrevDlgCtrl member function
CDialog class, 272

Printing
aborting current job, 164
ending

job, 80
page, 181

informing device driver of new job, 254
installing abort procedure in job, 235-237
job, called when adding or deleting from queue, 786
memory statistics report, 56
preparing printer driver to receive data, 254

Private assignment operator, 475
PtInRect member function

CRect class, 528
PtInRegion member function

CRgn class, 548

PtVisible member function
CDC class, 223

Pushbutton control, dialog boxes
changing default, 272
getting default ID, 268

put areas
returning

first byte of, , 928

Index 1003

number of characters available for fetching, 926
pointer to byte after last, 925
pointer to start of, 928

setting pointer values, 932
storing character, 934

put member function
ostream class, 903

Put pointers
following stored characters, 935
incrementing, 928

putback member function
istream class, 882

pword member function
ios class, 861

R
Radio buttons

check-marking, 662
CWnd, retrieving ID of check-marked, 686
getting check state, 132
setting

check state, 134
highlighting control, 132

Raster operations, 172
Raster-operation codes (list), 167-168
rdbuf member function

fstream class, 843
ifstream class, 850
ios class, 862
istrstream class, 892
of stream class, 898
ostrstream class, 913
stdiostream class, 918
strstream class, 940

rdstate member function
ios class, 862

Read member function
CArchive class, 99
CFile class, 314
CStdioFile: :ReadString, 570

read member function
istream class, 882-883

1004 Index

Reading
archives

object data, 99
specified number of bytes, 99

data in CFile object file buffers, 314
object to archive, 473-474
text data into buffer from file

associated with CStdioFile object, 569-570
ReadObject member function

CArchive class, 99-100
CObject::Serialize,473

ReadString member function
CStdioFile class, 569-570

RealizePalette member function
CDC class, 224

CPalette::SetPaletteEntries,507
RECT structure, 86

CButton::Create,128
CComboBox::Create,143
CDC::DPtoLP, 175
CDC::DrawFocusRect, 175
CDC: :DrawText, 177
CDC::ExtTextOut, 188
CDC: :FillRect, 189
CDC::FrameRect,191
CDC::GetClipBox, 195
CDC::lntersectClipRect,212
CDC::lnvertRect,213
CDC::LPtoDP,215
CDC: :Pie, 220
CDC::Rectangle,225
CDC::RectVisible,225
CDC::RoundRect,227
CDC::ScrollDC,230
CDialog: :MapDialogRect, 270
CEdit::GetRect,293
CEdit::SetRect,299
CEdit::SetRectNP,300
CListBox::Create,356
CListBox: : GetItemRect, 363
CMenu: :TrackPopupMenu, 437
CRect::CopyRect,523
CRect::CRect,524
CRect::EqualRect,525
CRect: :IntersectRect, 526
CRect::operator &,535
CRect::operator &=,533
CRect::operator 1,535
CRect::operator 1=, 533
CRect::UnionRect,530
CRgn: :CreateEllipticRgnlndirect, 541

RECT structure (continued)
CRgn: :CreateRectRgnlndirect, 544
CRgn::GetRgnBox,547
CRgn::RectInRegion,549
CRgn::SetRectRgn,549
CScrollBar::Create,553
CStatic::Create,563
CWnd::BeginPaint,660
CWnd::ClientToScreen,663
CWnd::GetClientRect,686
CWnd::GetUpdateRect,700
CWnd::GetWindowRect,703
CWnd::lnvalidateRect,707
CWnd::MoveWindow,714
CWnd::OnNcCalcSize,762
CWnd::OnSizeClipboard,785
CWnd::ScreenToClient,802
CWnd::ScrollWindow,803
CWnd::ValidateRect,820

Rectangle member function
CDC class, 224-225

Rectangles
bounding

copying dimensions, 703-704
list boxes, retrieving dimensions, 363
of CRgn object, retrieving, 547
retrieving dimensions around clipping

boundary, 195
calculating width of CRect, 530
checking if within region, 549
converting between CRect and LPRECT, 531
copies dimensions of scrRect to CRect, 531
copying to CRect, 523
creating

CRect object, 524
new clipping region, 185
NULL, 529

CRect class described, 521
CWnd, validating client area, 820
defining upper-left and lower-right comer

coordinates, 86
determining

equality between two, 525
equality to CRect, 531
if empty, 527
if top, left, bottom, and right values equal 0, 527
if within clipping region, 225
inequality, 532
size, 529
whether specified point lies within, 528

Rectangles (continued)
drawing

borders, 191
style indicating focus, 175
text in, 177-179
with current pen, 224
with rounded corners, 226-227

enclosing update region, retrieving
coordinates, 700-701

filling with specified brush, 189-190
formatting. See Formatting rectangle
gray, creating for system caret, 672
height, calculating, 525
inflating or deflating, 525
intersecting CRect with rect2

CRect::operator &, 535
CRect::operator I, 535

invalidating client areas within, 707
inverting contents, 213
making CRect equal to intersection of two

rectangles, 526
making dimensions equal to union of two

rectangles, 530
moving bitmaps from source to

destination, 255-257
moving

CRect::OffsetRect, 527
CRect::operator +=,532
CRect::operator -=,533

RECT structure, 86
referencing

bottom-right point, 523
top-left point, 529

regions, creating
CRgn::CreateRectRgn, 544
CRgn::SetRectRgn, 549-550
indirect, 545

returning new rect equal to CRect plus point
CRect::operator +,534
CRect: : operator -, 534

scrolling, 230
setting dimensions

CRect::SetRect, 528
CRect to equal intersection with rect, 533
equal to union with rect, 533
multiple-line edit control, 299

structure, copying client coordinates of CWnd
client area into, 686-687

rectDefault data member
CFrameWnd class, 341

RectInRegion member function
CRgn class, 549

RectVisible member function
CDC class, 225

Redrawing
allowing or preventing changes, 811
menu bars, 681

Reduced programming surface area, 10
Regions

checking
equivalent, 546
if coordinates are within, 548

Index 1005

if rectangle within CRgn object, 549
clipping. See Clipping region
combining, 540
copying, 540
creating

by combination, 539-540
constructor, 545
rectangular, 544
rectangular, indirect, 545
series of polygonal, 543

CRgn class described, 537
drawing borders around, 192
elliptical, creating

CRgn::CreateEllipticRgn, 541
CRgn: :CreateEllipticRgnlndirect, 541

filling
with brush, 218
with specified brush, 190

handles, 546
invalidating client areas within, 708
moving, 547
polygonal, creating, 542
preventing drawing within areas, 186
rectangular, creating, 549-550
retrieving bounding rectangle coordinates, 547
update

retrieving coordinates of smallest rectangle that
encloses, 700-70 I

retrieving into specified region, 701
writing character strings within, 188-189

Registering Windows classes, 12,37
ReleaseBuffer member function

CString class, 588-589
ReleaseDC member function

CWnd class, 801-802
CDC::DeleteDC,174

Releasing, device contexts, 801-802
Remove member function

CFile class, 315

1006 Index

RemoveAll member function
CMapStringToOb class, 383
COb Array class, 458
CObList class, 493-494

RemoveAt member function
CObArray class, 458-459
CObList class, 494-495

RemoveHead member function
CObList class, 495

RemoveKey member function
CMapStringToOb class, 383-384

RemoveMenu member function
CMenu class, 434

RemoveTail member function
CObList class, 496

Removing
elements from arrays, 458-459
items from list boxes, 367
menu items, 434
pointers from arrays, 458

Rename member function
CFile class, 315-316

Renaming files, 315
ReplaceSel member function

CEdit class, 297
Replacing text in edit control, 297
Repositioning file pointers, 316-317
Reserve areas

allocating when needed, 923
attaching to stream's filebuf object, 850
attaching to streambuf object, 931
returning pointer to byte after last, 924
returning pointer to, 922
returning size in bytes, 922
setting position values with, 931
setting up, 922

ResetContent member function
CComboBox class, 153

CWnd::OnDeleteItem,729
CListBox class, 367

CWnd::OnDeleteItem,729
Resetting edit control undo flag, 290
ResizePalette member function

CPalette class, 506
Resizing logical palettes, 506
Resources, CResourceException class

described, 536
RestoreDC member function

CDC class, 226

Restoring
MDI child window, 408
Windows device context to previous state, 226

Retrieving
character line index, 295
Clipboard owner, 687
scroll-bar thumb current position, 555

ReverseFind member function
CString class, 589

Right member function
CString class, 589-590

RoundRect member function
CDC class, 226-227

Run member function
CWinApp class, 638

Run-time
class structure, returning for specified class, 474
returning file pointer associated with stdiobuf

object, 916
stream file, CStdioFile class described, 567
structures, getting for CObject-derived class, 470

Run-time information
supplying, 38-39
supplying dynamic, 40

RUNTIME_CLASS macro, 474

s
SaveDC member function

CDC class, 227-228
Saving device context current state, 227
sbumpc member function

streambuf class, 929
Scale ViewportExt member function

CDC class, 228
ScaleWindowExt member function

CDC class, 229
ScreenToClient member function

CWnd class, 802
Scroll bars

copying
current minimum and maximum positions, 697
position to specified locations, 556

creating
constructor, 553
initializing, 553-555

CScrollBar class described, 551
displaying, 817-818
hiding, 817-818

Scroll bars (continued)
horizontal

called when event occurs in Clipboard
viewer's, 742-743

called when user clicks, 741-742
in frame windows, 17
setting position range

CScrollBar::SetScrollRange,556-557
CWnd::SetScroIlRange,812-813

thumb, retrieving current position, 555
vertical

called when clicked, 796-797
called with event in, 797-798

Scroll boxes
retrieving current position, 696-697
setting to specified position, 811-812

ScrollDC member function
CDC class, 230

Scrolling
CWnd,803-804
horizontally, called when user clicks on

bar, 741-742
list boxes

retrieving event, 362
setting width, 370

text, 296
ScrollWindow member function

CWnd class, 803-804
Searching

dialog box controls, previous or next
control, 693-694

for first matching CObject pointer, 483
for specified window, 683
for strings

list box of combo box, 148, 153
first character match, 581
first substring match, 580-581

window manager's list for next or previous
window, 695

Seconds
getting, 614
in current hour, getting, 623

Seek member function
CFile class, 316-317

seekg member function
istream class, 883

seekoff member function
streambuf class, 929-930

seekp member function
ostream class, 904

seekpos member function
streambuf class, 930

SeekToBegin member function
CFile class, 317

SeekToEnd member function
CFile class, 317

SelectClipRgn member function
CDC class, 231

Selecting
consecutive items in list box, 368
object into CMetaFileDC, 441

Index 1007

predefined stock pens, brushes, fonts, 442
SelectObject member function

CDC class, 232-233
CBitmap::CreateBitmap,11O
CBitmap::CreateBitmaplndirect,110
CBitmap::CreateDiscardableBitmap, 112
CFont: :CreateFontIndirect, 334

CMetaFileDC class, 441-442
CBitmap::CreateBitmap,110
CBitmap::CreateBitmapIndirect,110
CBitmap::CreateDiscardableBitmap, 112
CFont::CreateFontlndirect, 334

SelectPalette member function
CDC class, 233-234

SelectStockObject member function
CDC class, 234-235

CDC::SelectStockObject,235
CMetaFileDC class, 442

SelectString member function
CComboBox class, 153
CListBox class, 367-368

SelItemRange member function
CListBox class, 368

SendDlgItemMessage member function
CWnd class, 804

Sending messages to windows, 805
SendMessage member function

CWnd class, 805
Serialization

collection, 23
DECLARE_SERIAL macro, 39-40
described, 23
exceptions

constructing objects, 105
specifying cause, 106

testing objects for eligibility, 473
Serialize member function

CObject class, 473
Services

CObject class, 23-26

1008 Index

Sessions
called to inform CWnd of end, 736
called when ending, 776

SetAbortProc member function
CDC class, 235-237

SetActiveWindow member function
CWnd class, 805-806

SetAt member function
CMapStringToOb class, 384-385
COb Array class, 459-460
CObList class, 496-497
CString class, 590

SetAtGrow member function
CObArray class, 460-461

setb member function
streambuf class, 931

SetBitmapBits member function
CBitmap class, 116

SetBitmapDimension member function
CBitmap class, 116-117

SetBkColor member function
CDC class, 238

SetBkMode member function
CDC class, 238-239

SetBrushOrg member function
CDC class, 239

CGdiObject::UnrealizeObject,350
setbuf member function

fstream class, 843
ifstream class, 850
of stream class, 899
streambuf class, 931-932

SetButtonStyle member function
CButton class, 133

SetCapture member function
CWnd class, 806

SetCaretPos member function
CWnd class, 806-807

SetCheck member function
CButton class, 134

SetClipboardViewer member function
CWnd class, 807

SetColumn Width member function
CListBox class, 369

SetCurSel member function
CComboBox class, 154
CListBox class, 369

SetDeflD member function
CDialog class, 272

SetDepth member function
CDumpContext class, 277

SetDlgItemInt member function
CWnd class, 808

SetDlgItemText member function
CWnd class, 808

SetEditSel member function
CComboBox class, 154-155

setf member function
ios class, 863

SetFocus member function
CWnd class, 809

SetFont member function
CWnd class, 809

setg member function
streambuf class, 932

SetHandlc member function
CEdit class, 297-298

SetHorizontalExtent member function
CListBox class, 370

SetltemData member function
CComboBox class, 155
CListBox class, 370

SetLength member function
CFile class, 318

SetMapMode member function
CDC class, 240-241

SetMapperFlags member function
CDC class, 241

SetMenu member function
CWnd class, 810

SetMenuItemBitmaps member function
CMenu class, 435-436

setmode member function
filebuf class, 835
fstream class, 844
ifstream class, 851
of stream class, 899

SetModify member function
CEdit class, 298

setp member function
streambuf class, 932~933

SetPaletteEntries member function
CPalette class, 506-507

SetParent member function
CWnd class, 810

SetPasswordChar member function
CEdit class, 299

SetPixel member function
CDC class, 242

SetPolyFillMode member function
CDC class, 242-243

SetRect member function
CEdit class, 299-300
CRect class, 528-529

SetRectEmpty member function
CRect class, 529

SetRectNP member function
CEdit class, 300

SetRectRgn member function
CRgn class, 549-550

SetRedraw member function
CWnd class, 811

SetROP2 member function
CDC class, 243-244

SetScrollPos member function
CScrollBar class, 556-557
CWndclass, 811-812

SetScrollRange member function
CScrollBar class, 557
CWnd class, 812-8l3

SetSel member function
CEdit class, 301
CListBox class, 371

SetSize member function
CObArray class, 461

SetState member function
CButton class, l34

SetStatus member function
CFile class, 318-319

SetStretchBltMode member function
CDC class, 245

SetSysModalWindow member function
CWnd class, 813

SetTabStops member function
CEdit class, 301-302
CListBox class, 371-372

SetTextAlign member function
CDC class, 246-247

SetTextCharacterExtra member function
CDC class, 247

SetTextColor member function
CDC class, 248

SetTextJustification member function
CDC class, 248-249

SetTimer member function
CWnd class, 813-814

Setting
background mode, 238
binary/text mode

filebuf objects, 835
stream's filebuf object, 844, 851
streams, 868, 899

Setting (continued)
bitmap bits to values, 116
bitmap-stretching mode, 245
characters' range in edit control, 301
colors

background, current, 238
text, 248

CWnd control caption or text, 808

Index 1009

device contexts, x- and y-extents for associated
windows, 252

drawing mode, 243-244
dump depth, 276-277
error-bits, 856
files' status, 318
fonts, CWnd, 809
format flags in streams, 870
formatting rectangle of multiple-line edit

control,299-300
intercharacter spacing, 247
mapping mode, 240-241
menus, current to specified, 810
passwords, 299
pixels at specified point, 242
polygon-filling mode, 242
scroll bar position range

CScroIlBar::SetScrollRange, 557
CW nd: :SetScrollRange, 812-813

scroll-bar thumb position, 556
streambuf object's buffering state, 937
stream's

fill character, 869
format conversion base to 10, 868
format conversion base to 16, 868
format conversion base to 8, 869
internal field width parameter, 871
internal field width variable, 865
internal flags, 858-859
internal floating-point precision variable, 870

system timer, 8l3-814
windows

size, position, ordering, 814-816
SetTopIndex member function

CListBox class, 372
SetViewportExt member function

CDC class, 250
SetViewportOrg member function

CDC class, 251
SetWindowExt member function

CDC class, 252
SetWindowOrg member function

CDC class, 253

1010 Index

SetWindowPos member function
CWnd class, 814-816

SetWindowText member function
CWnd class, 816

CEdit::ReplaceSe1,297
sgetc member function

streambuf class, 933
sgetn member function

streambuf class, 933
ShowCaret member function

CWnd class, 816-817
ShowDropDown member function

CComboBox class, 155
Showing, list box of combo box, 155
ShowOwncdPopups member function

CWndclass,817
ShowScrollBar member function

CWnd class, 817-818
Show Window member function

CWndclass,818-819
CWinApp: :m_nCmdShow, 640

Size
adding to CSize, 560
arrays

establishing, 461
returning, 456

checking
equality between sizes, 560
inequality between sizes, 560

creating CSize object, 559
CSize class described, 558
returning difference between two sizes, 561
returning sum of two sizes, 561
subtracting, 561

Size member function
CRect class, 529

Snapshots, memory, taking, 54
snextc member function

streambuf class, 934
Spacing, intercharacter, retrieving setting, 206
SpanExcluding member function

CString class, 591
Spanlncluding member function

CString class, 591
Special-purpose words table, indexing

ios::iword,860
ios::pword,861

sputbackc member function
streambuf class, 934 .

sputc member function
streambuf class, 934-935

sputn member function
streambuf class, 935

StartDoc member function
CDC class, 254

StartPage member function
CDC class, 254

Static control
creating

attaching, 563-564
constructor, 563

CStatic class described, 562
Status

files
getting, 310-311
setting, 318

menu items, specifying, 425-426
stdio member function

ios class
ios::sync_with_stdio,863
ostream::osfx,902

stdiobuf class
described, 915
member functions

stdiobuf, 916
-stdiobuf,916
stdiofile, 916

stdiobuf constructor, 916
stdiobuf destructor, 916
stdiobuf objects

creating, 916
destroying, 916
returning C run-time file pointer, 916
returning pointers to, 918

stdiofile member function
stdiobuf class, 916

stdiostream class
described, 917
member functions

rdbuf,918
stdiostream,918
-stdiostream,918

stdiostream constructor, 918
stdiostream destructor, 918
stdiostream objects

creating, 918
destroying, 918

Stock objects, retrieving handle to, 345-346
Storing

archives
object or primitive type, 103
specified object to, 101

stossc member function
streambuf class, 935

str member function
istrstream class, 892
ostrstream class, 914
strstream class, 940
strstreambuf class, 944

Stream objects, predefined
cerr,900
cin, 875
clog, 900
cout, 900

streambuf class
consume defined, 927
defining characteristics of derived class

streambuf::overflow, 926
streambuf::sync,937
streambuf::underflow,938

described, 919-921
get area

returning lower bound, 924
returning number of characters available for

fetching, 926
returning pointer to byte after last, 925
setting pointer values, 932

get pointers
following fetched characters, 933
incrementing, 925
moving back, 934
moving forward one character, 934, 935
returning character at, 933
returning to next character to be fetched, 925
testing, 934

member functions
allocate, 922
base, 922
bien, 922
dbp,923
doallocate, 923
eback,924
ebuf,924
egptr, 924
epptr, 925
gbump,925
gptr,925
in_avail, 926
ouC waiting, 926
overflow, 926-927
pbackfail, 927
pbase,928

streambuf class (continued)
member functions (continued)

pbump,928
pptr,928
sbumpc,929
seekoff, 929-930
seekpos, 930
setb,93l
setbuf, 931-932
setp, 932-933
sgetc,933
sgetn, 933
snextc,934
sputbackc, 934
sputc, 934-935
sputn, 935
stossc, 935
streambuf, 936
-streambuf, 936
sync, 884,907,937
unbuffered, 937
underflow, 938

put area
returning first byte of, 928
returning pointer to start of, 928
setting pointer values, 932
storing character, 934

put pointer
following stored characters, 935
incrementing, 928

Index 1011

repositioning external file pointer, 927
attaching to object, 931

reserve area
returning pointer to byte after last, 924
returning pointer to, 922
returning size in bytes, 922
setting position values, 931
setting up, 922

returning current character and advancing get
pointer, 929

returning number of characters available for
fetching, 926

returning pointer to byte after last, 924
virtual overflow function, 926-927
virtual sync function, 937
virtual underflow function, 938
writing ASCII debugging information on

stdout,923
streambuf constructor, 936
streambuf destructor, 936

1012 Index

streambuf objects
associated with stream, returning pointer to, 862
changing position for, 929-930
changing position relative to stream beginning, 930
creating, 936
reserve area, allocating when needed, 923
setting buffering state, 937
virtual destructor, 936

Streams
assigning istream object to istream_ with assign

object, 889
attaching

to already open file, 894
to specified open file, 846

buffer-deletion flag, assigning value to, 856
buffers

flushing, 902
returning number of bytes stored in, 913
returning pointer to strstreambuf buffer object, 913

C++, synchronizing with standard C stdio
streams, 863

changing, position value, 904
characters

inserting into output, 903
returning next without extracting, 882
returning number extracted by last unformatted

input function, 877
synchronizing internal buffer with external

character source, 884
clearing format flags, 864
determining if error bits are set, 866
diagnostic output, human-readable text, 273
errors

determining if error bits are clear, 859
determining if error bits are set, 866
returning current specified error state, 862

extracting
characters and discarding, 880
data, 878, 880
white space, 877, 886

extraction operations
called after, 881
called prior to, 880
operators, 885
specified number of bytes, 883

file descriptor, returning, 895
filebuf class described, 831

Streams (continued)
filebuf objects

attaching specified reserve area, 843, 850,899
closing, 894
opening file and attaching, 842
opening file for attachment, 898
returning pointer to associated, 898
returning pointer to, 850
setting binary/text mode, 899

flushing output buffer, 907
fstream class described, 836
get pointers

changing, 883
getting value, 884

getting position value, 904
ifstream class described, 845
input, putting character back into, 882
insert operations

called after, 902
called before, 902

inserting
arguments into, 906
bytes, 905
newline character and flushing buffer, 907
null-terminator character, 907

internal flags variable, setting, 858-859
ios class described, 852
iostream class described, 872
Iostream_init class described, 874
istream class described, 875
istream objects

creating, 881
destroying, 882

istream_ withassign class described, 887
istrstream class described, 890
masks

current radix flag bits, 867
floating-point format flag bits, 867

object state variables, providing without class
derivation, 865

of stream class described, 893
opening file and attaching to filebuf object, 849
ostream class described, 900
ostream_ withassign class described, 908
ostrstream class described, 91 I
padding flag bits, obtaining, 867
returning associated file descriptor

fstream::fd, 839
ifstream::fd,847

Streams (continued)
returning pointer to associated filebuf buffer

object, 843
setting

binary/text mode, 851
fill character, 869
floating-point precision variable, 861
format conversion base to 8, 869
format conversion base to 10, 868
format conversion base to 16, 868
internal field width parameter, 871
internal field width variable, 865
internal fill character variable, 857
internal floating-point precision variable, 870
mode to text, 871
specified format bits, 863
text to binary mode, 868

special-purpose words table, indexing
ios::iword, 860
ios::pword,861

stdiobuf class described, 915
stdiostr class described, 917
streambuf class described, 919
streambuf objects, returning pointer to, 862
strstream class described, 939
strstreambuf buffer object, returning pointer to, 892
strstreambuf class described, 943
synchronizing internal buffer with external

character source, 884
testing

end-of-file, 857
for attachment to open file, 849
for attachment to specified open disk file, 842
for attachment to specified open file, 895
for serious I/O errors, 855

tying to ostream, 864
virtual overflow function, 926-927

StretchBlt member function
CDC class, 255-257

Strings
adding

list boxes, 355
to list boxes, 366

character
to list box of combo box, 142
retrieving width, height, 204--205

comparing two
CString::Collate, 576
CString::Compare,577
CString::CompareNoCase, 577-578

Index 1013

Strings (continued)
converting

characters from ANSI to OEM character set, 576
characters from OEM to ANSI character set, 588
CString object to lowercase, 586
CString object to uppercase, 587

corresponding to CTimeSpan, generating, 621
CString class described, 572
CTime object, corresponding to

converted,609
unconverted,610

deleting
from list boxes, 359
from list box in combo box, 147

extracting first characters from CString object and
returning copy, 585

extracting from CString object the largest substring
excluding specified characters, 591

extracting last characters from CString object and
returning copy, 589-590

extracting substring of specified length and
returning copy, 587

finding in list boxes, 361
getting from list box of combo box, 150
inserting list box of combo box, 151
justifying, 248-249
list boxes

getting length, 366
getting, 365
scrolling selected, 369
searching for matching, 367
selecting, 371

lists of objects, CStringList class described, 603
making CString object an empty string, 580
menu items, copying, 427
objects arrays, CStringArray class described, 601
overwriting specified character, 590
reading specified Windows string resource, 586
returning

character specified by index, 581
count of characters in CString object, 584
pointer to internal character buffer and matching

length,583-584
pointer to internal character buffer for CString

object, 582-583
reversing character order in CString object, 586
searching

CString object for last substring match, 589
for in list box of combo box, 148, 153
first character match, 581
first substring match, 580-581

1014 Index

Strings (continued)
setting to specified integer value, 808
streams, returning pointer to character array, 892
terminating use of buffer, 588
testing CString object for empty condition, 584
writing

at specified location, 259
tabbed text, 258-259
to regions, 188-189

strstream buffer objects, returning pointer to, 892
strstream class

buffer, returning number of bytes in, 940
described, 939
member functions

pcount, 940
rdbuf,940
str, 940
strstream, 941
-strstream, 942

returning
number of bytes in buffer, 940
pointer to internal character array, 940
pointer to strstreambuf object, 940

strstream constructor, 941
strstream destructor, 942
strstream objects

creating, 941
destroying, 942
returning pointer to, 940

strstreambuf class
described, 943
member functions

freeze, 913, 944
str, 944
strstreambuf, 945-946
-strstreambuf, 946

preventing automatic memory deletion, 944
returning pointer to internal character array, 944

strstreambuf constructor, 945-946
strstreambuf objects

creating, 945
destroying, 946
returning pointer

from associated stream, 913
to internal character array, 944

Structures
COMPAREITEMSTRUCT,77-78
CREATESTRUCT,78-79
DELETEITEMSTRUCT,80
DRAWITEMSTRUCT,81-83

Structures (continued)
MEASUREITEMSTRUCT,83-84
PAINTSTRUCT,84-85
POINT,85
RECT,86

Styles, button
changing, 133
getting, 131
windows, retrieving, 698

Subscript operators
CObArray::operator[], 462
CString class, 597

Subtracting
rectangles, 533-534
sizes, 561
time spans

CTimeSpan::operator +,-, 625
CTimeSpan::operator +=,-=,626

sync member function
istream class, 884
streambuf class, 937
used by ostream flush operator, 907

Synchronizing C++ streams with standard C stdio
streams, 863

sync_with_stdio member function
ios class, 863

System time, called after change, 794

T
Tab stops

setting in edit control, 301
setting in list boxes, 371

TabbedTextOut member function
CDC class, 258-259

tellg member function
istream class, 884

tellp member function
ostream class, 904-905

Terminating
default function, 61
dialog boxes, modal, 267
linking to specified function, 61
on fatal errrors, 62

Testing
objects for class derivation, 472
validity of object's internal state, 53

Text
alignment flags, retrieving status, 205
caption titles, returning length, 704

Text (continued)
colors

retrieving current, 207
setting, 248

computing line dimensions, 207
CWnd, setting, 808
dialog boxes, retrieving, 691
drawing dimmed, 210-212
formatted, drawing in rectangle, 177, 179
getting from list boxes, 365
lines, retrieving number of, 292
replacing current selection in edit control, 297
scrolling in multiple-line edit control, 296
setting

alignment flags,246-247
caption title to specified, 816
justification, 248-249
to specified integer value, 808

specifying length in an edit control, 294
streams, setting mode to, 871
window captions, copying into specified buffer, 704
writing string at specified location,

CDC::TabbedTextOut, 258-259
CDC::TextOut, 259

TextOut member function
CDC class, 259-260

32-bit values, setting, combo-box item, 155
THROW macro, 66
ThrowErrno data member

CFileException class, 325-326
THROW_LAST macro, 67
ThrowOsError data member

CFileException class, 326
tie member function

ios class, 864
Time

absolute, representing, 615
adding and subtracting CTimeSpan object, 616
comparing absolute, CTime comparison

operators, 616
creating CTime object, 608-609
CTime class described, 606
current, 610
day

of month, 611
of week, 611

diagnostic dumping and storing to archive, 617

Time (continued)
generated formatted string

converted, 609
unconverted, 610

getting struct tm with local time
decomposition, 612

Index 1015

getting struct tm with UCT decomposition, 611
getting time_t value for CTime object, 614
hours, getting, 613
minutes, getting, 613
months, getting, 613
seconds, getting, 614
source, copying into CTime object, 615
span

adding and subtracting, 625
comparing two relative time values, CTimeSpan

comparison operators, 626
copying source object, 625
creating CTimeSpan object, 620-621
CTimeSpan class described, 618
days, getting, 622
diagnostic dumping and storing to archive, 627
generating formatted string corresponding to

CTimeSpan, 621
hours in current day, 622
hours, total, 623
minutes in current hour, 623
minutes, total, 624
seconds in current minute, 623
seconds, total, 624

system, called after change, 794
years, getting, 614

Timers
called at specified intervals, 795
killing specified event, 711
system, installing, 813-814

Top Left member function
CRect class, 529

TRACE macro, 56
TrackPopupMenu member function

CMenu class, 436
Translating

CWinApp messages before dispatched to
DispatchMessage function, 801

text of specified dialog box control into
integer, 690-691

TranslatorAccelerator Windows function, 787
TRY macro, 67

1016 Index

u
unbuffered member function

streambuf class, 937
underflow member function

streambuf class, 938
Undo flags

clearing, resetting, 290
returning edit operations status, 285

Undo member function
CEdit class, 302

Undoing, last operation in edit control, 302
Union operator

CRect class, 531, 535
UnionRect member function

CRect class, 530
Unlocking, range of bytes in file, 319
UnlockRange member function

CFile class, 319
UnrealizeObject member function

CBrush class
CWnd::OnEraseBkgnd,738

CGdiObject class, 350
unsetf member function

ios class, 864
Update region

retrieving coordinates of smallest rectangle that
encloses, 700-701

retrieving into specified region, 701
UpdateColors member function

CDC class, 260
Update Window member function

CWnd class, 819
Updating, client areas, 819

v
ValidateRect member function

CWnd class, 820
ValidateRgn member function

CWnd class, 820
Validating client area

within given rectangle, 820
within given region, 820

Validity checking of objects, 466
Variables

floating-point precision, setting, 861
internal field width, setting, 865
internal fill character, setting, 857
object state, providing without class derivation, 865

VERIFY macro, 57
Viewports

modifying extents, 228
modifying origin, 217
retrieving device contexts' extents, 209
retrieving origin coordinates associated with device

context, 209
setting

origin of device context, 251
x- and y-extents, 250

Virtual sync function
streambuf class

streambuf::sync, 937
Virtual underflow function

streambuf class, streambuf::underflow, 938
Void pointers

16-bit words keyed by, 375
arrays, CPtrArray class described, 517
CPtrList class described, 519
keyed to void pointers, 373
maps keyed by 16-bit words, 393
maps keyed by CString objects, 387

void* 0 operator
ios class, 866

W
Weeks, getting days of, 611
WHITERECT structure

CStatic: : Create, 566
Width

internal field variable, setting, 865
streams, setti ng internal field parameter, setw, 871

Width member function
CRect class, 530
ios class, 865

WIN.INI, called after change made, 798-799
Window classes (list), 6
WindowFromPoint member function

CWnd class, 821
WindowProc member function

CWnd class, 821
Windows

activating or deactivating, 715
active CWnd object, returning pointer to, 685
applications. See Windows applications
base class (list), 6
bitmaps, loading, 115-116
C++ language features, 8

Windows (continued)
called when

activating for different task, 716
Clipboard contents emptied, 731
device-mode settings changed, 731

caption titles, copying into specified buffer, 704
returning length, 704

carets, getting current position, 686
changing

position and dimensions, 714-715
size, position, ordering, 814-816

classes
categories, 11-20
described, 5
registering, 12,37

Clipboard
called for each window in viewer chain when

contents change, 731-732
viewer, getting first window in, 687

closing, signaling confirmation, 720
CMenu class described, 19
colors, called when change made, 788
containing given point, identifying, 821
controls, 16
creating, containing application-supplied

message, 711-714
CWnd

displaying, 818-819
making active, 805-806
retrieving current font, 692

default procedure, calling
CWnd::Default,673
CWnd::DefWindowProc, 674

defining parameters for initialization, 78-79
dialog classes (list), 6
display context, retrieving, 703
displaying, 818-819
edit control. See Windows edit control
enabling for mouse and keyboard input, 710
flashing once, 683-684
fonts, called when changing, 738-739
frame

See also Frame windows
CFrameWnd class described, 336
classes (list), 6

GDI objects
See also GDI objects
attaching, 344
CGdiObject class described, 342

Windows (continued)
GDI objects (continued)

deleting from memory, 346
detaching, 347
retrieving handle to, 345-346

global functions described, 7
handles

Index 1017

detaching from CWnd object, 676
getting, CWnd object, 676

hiding, called when, 783-784
iconic, specifying, 710
initialization file, called after change

made, 798-799
input control, 739-740
macros described, 7
making CWnd into system-modal, 813
manager's list, searching for next or previous

window, 695
MDI

activating different child window, 405
creating client window, 404

memory compacting specification, 722
menus

returning pointer to CWnd's, 693
specifying handle to, 419

message processing, 12
message-based environment, 8
messages

calling default procedure
CWnd::Default,673
CWnd::DefWindowProc,673
direct calls, 16
noncontrol, 14
sending, 805

minimized, called if about to be dragged, 775
minimizing, 664
modifying extents, 229
nonclient area, called when needing change to

indicate active or inactive state, 761
notification messages, 13-14
open, called when user requests, 777
origin

modifying, 217
retrieving coordinates, 210

overlapping, bringing CWnd to top of stack, 661
owner-draw control, creating, 666
overlapping

informing of dimensions, 83-84
painting information, 81-83

painting, marking end, 682
palettes, called after changed, 773-774

1018 Indel

Windows (continued)
pop-up

changing size, position, ordering, 814, 816
creating with extended style, 666-670
determining most recently active, 692-693

procedure, providing, 821
removing from Clipboard viewer chain, 717-718
restoring minimized to original size and

position, 800
retrieving

coordinates associated with device context, 209
pointer to CWnd with input focus, 692

scrolling, 803-804
searching

for name-specified, 683
for next or previous on manager's list, 695
window manager's list for, 702

setting
caption title to specified text, 816
origin of device context, 253
x- and y-extents, 252

static control, 562
style, returning, 698
subclassed, original WndProc address, 698
system-modal, returning, 698
validating client area, 820
visibility, determining, 710

Windows applications
accessing command-line arguments entered at

start, 639
cleaning up at termination, 631
constructor, 631
CWinApp class described, 628
handle

to current instance, 639
to previous instance, 639

icon resource,
loading specified, 633

loading predefined, 634, 636
idle-time processing, 637
instance initializing, 632
loading cursor resources

CWinApp::LoadCursor,633
CWinApp: :LoadOEMCursor, 634
CWinApp: :LoadStandardCursor, 635

making main window visible, 640
messages

creating and displaying, 711-714
filtering, 638

Windows applications (continued)
messages (continued)

last retrieved, 639
providing default loop, 638

name, 640
one-time initializing, 632
overridable member functions, 11
storing pointer to main window object, 640

Windows edit control
creating and attaching to CEdit object, 286-289
creating, CEdit class, 282
current selection

clearing, 285
copying, 286
cutting, deleting, 289

described, 282
undo flags, resetting, 290

Windows windows
attaching, to CWnd object, 659
called to know maximized position of

dimensions, 740-741
desktop, returning, 689
destroying, 675

Windows, child
accessing overridable member functions

CFrameWnd::GetChildFrame,339
CFrameWnd::GetParentFrame,340

activating, next child, 407
active MDI, returning, 405
arranging

in tiled format, 409
minimized, 659

buttons as, 16
called on activation or deactivation, 753-754
called on creation or destruction, 774-775
called when about to be drawn, 726-727
called when changing size or position, 720
changing

parent, 810
size, position, ordering, 814-816

classes (list), 6
creating

and attaching, 397
attaching to CWnd object, 664-665
constructor, 397

CWnd, returning JD, 689
determining which contains specified

point, 662-663
handling activation message, 398
identifying, 709

Windows, child (continued)
MDI

activating, 405
arranging in cascade, 406
client, handle for, 410
destroying, 399
maximizing, 399, 407
restoring, 399
returning current, 406
returning parent MDI frame, 398

minimized, arranging, 406
restoring, 408

searching for top-level, 700
Windows, frame

creating, 403
replacing menu of MDI, 408-409

Windows, parent, retrieving, 696
Windows, pop-up, associated with CWnd object,

showing or hiding, 817
WM_CHANGECBCHAIN message

CWnd::OnChangeCbChain message handler, 718
CWnd::SetClipboardViewer, 807

WM_CHAR message
CWnd: :OnCharToItem message handler, 719
CWnd::OnGetDlgCode message handler, 739

WM_CHARTOITEM message
CListBox: :Create, 359

WM_CHILDACTIVATE message
CWnd::OnChildActivate message handler, 720

WM_COMMAND message
CButton::Create, 130
CWnd::OnCommand message handler, 721
CWnd::OnSysCommand message handler, 790

WM_COMPAREITEM message
CWnd::OnCompareItem message handler, 722

WM_CREATE message
CButton::Create, 128
CComboBox::Create, 144
CEdit::Create, 286
CListBox::Create, 356
CWnd::CreateEx, 667
CWnd::OnNcCreate message handler, 762

WM_CTLCOLOR message
CStatic: : Create, 565
CWnd::OnCtlColor message handler, 727

WM_DESTROY message
CWnd::DestroyWindow, 675
CWnd::SetClipboardViewer,807

WM_DESTROYCLIPBOARD message
CWnd::OnDestroyClipboard message handler, 731

Index 1019

WM_DEVMODECHANGE message
CWnd::OnDevModeChange message handler, 731

WM_DRA WCLIPBOARD message
CWnd::OnDrawClipboard message handler, 732
CWnd: :SetClipboardViewer, 807

WM_DRA WITEM message
CButton::Create, 130
CMenu: :AppendMenu, 417

WM_ENABLE message
CWnd::EnableWindow, 681

WM_ENDSESSION message
CWnd::OnQueryEndSession message handler, 776

WM_ENTERIDLE message
CWnd::CreateEx, 668

WM_ERASEBKGND message
CWnd::GetUpdateRect, 700
CWnd::OnEraseBkgnd message handler, 738
CWnd::OnIconEraseBkgnd message handler, 743

WM_FONTCHANGE message
CWnd::OnFontChange message handler, 738

WM_GETDLGCODE message
CDialog: :IsDialogMessage, 269
CWnd::OnGetDlgCode message handler, 739

WM_GETMINMAXINFO message
CButton::Create, 128
CComboBox::Create, 144
CEdit::Create, 286
CListBox::Create, 356
CWnd::CreateEx, 667

WM_GETTEXT message
CEdit::FmtLines, 290
CWnd::GetDlgltemlnt, 690

WM_INITDIALOG message
CDialog: :Create, 265
CDialog: :Createlndirect, 266
CDialog::OnlnitDialog message handler, 271
CWnd::OnMeasureItem message handler, 755

WM_INITMENU message
CWnd::GetSystemMenu, 699

WM_KEYDOWN message
CWnd::OnSysKeyUp message handler, 794
CWnd::OnVKeyToItem message handler, 795

WM_KEYUP message
CWnd::OnSysKeyUp message handler, 794

WM_KILLFOCUS message
CWnd::SetFocus, 809

WM_LBUTTONDBLCLK message
CWnd::OnLButtonDbIClk message handler, 748

WM_LBUTTONDOWN message
CWnd::OnLButtonDbIClk message handler, 748

1020 Index

WM_MBUTTONDBLCLK message
CWnd::OnMButtonDbIClk message handler, 751

WM_MBUTTONDOWN message
CWnd::OnMButtonDbIClk message handler, 751

WM_MDIACTIV ATE message
CMDIFrameWnd::MDIActivate, 405

WM_MEASUREITEM message
CButton::Create, 130
CMenu: :AppendMenu, 417

WM_MENUCHAR message
CWnd::OnMenuChar message handler, 757

WM_MOUSEACTIV ATE message
CWnd::OnMouseActivate message handler, 759

WM_MOUSEMOVE message
CWnd::OnMouseMove message handler, 760

WM_NCACTIV ATE message
CMDIFrameWnd::MDIActivate, 405
CWnd::OnMDIActivate message handler, 754
CWnd::OnNcActivate message handler, 761

WM_NCCALCSIZE message
CButton::Create, 128
CComboBox::Create, 144
CEdit::Create, 286
CListBox::Create, 356
CWnd::CreateEx, 667

WM_NCCREATE message
CButton::Create, 128
CComboBox::Create, 144
CEdit::Create, 286
CListBox::Create, 356
CWnd::CreateEx, 667
CWnd::OnNcCreate message handler, 762

WM_NCDESTROY message
CWnd::DestroyWindow, 675
CWnd::OnNcDestroy message handler, 763

WM_NCHITTEST message
CWnd::OnNcHitTest message handler, 764

WM_ONERASEBKGND message
CWnd::BeginPaint, 660

WM_OTHERWINDOWDESTROYED message
CWnd::DestroyWindow, 675

WM_P AINT message
CWnd::BeginPaint, 660
CWnd::OnPaint message handler, 772
CWnd::ScrollWindow,803
CWnd::ValidateRect, 820

WM_PARENTNOTIFY message
CWnd::DestroyWindow, 675

WM_QUERYDRAGICON message
CWnd::OnQueryDragIcon message handler, 775

WM_QUERYENDSESSION message
CWnd::OnQueryEndSession message handler, 776

WM_QUERYNEWPALETTE message
CWnd::OnQueryNewPalette message handler, 777

WM_ QUERYOPEN message
CWnd::OnQueryOpen message handler, 777

WM_ QUIT message
CFrameWnd::-CFrameWnd,338
CWinApp::Run, 638

WM_RBUTTONDBLCLK message
CWnd::OnRButtonDbIClk message handler, 778

WM_RBUTTONDOWN message
CWnd: :OnRButtonDblClk message handler, 778

WM_SETCURSOR message
CWnd::OnSetCursor message handler, 782

WM_SETFOCUS message
CWnd::SetFocus, 809

WM_SETFONT message
CDialog: :Create, 265
CDialog: :CreateIndirect, 266
CDialog::OnSetFont message handler, 271

WM_SETREDRA W message
CListBox::Create, 358

WM_SYSCHAR message
CWnd::SetFocus, 809

WM_SYSCOMMAND message
CWnd::GetSystemMenu, 699
CWnd::OnCommand message handler, 721
CWnd: :OnNcLButtonDblClk message handler, 765
CWnd::OnNcLButtonDown message handler, 765
CWnd::OnNcLButtonUp message handler, 766
CWnd::OnNcMouseMove message handler, 769
CWnd::OnSysCommand message handler, 789

WM_SYSKEYDOWN message
CWnd::OnSysChar message handler, 787
CWnd::OnSysKeyDown message handler, 792
CWnd::SetFocus, 809

WM_SYSKEYUP message
CWnd::OnSysChar message handler, 787
CWnd::OnSysKeyDown message handler, 792
CWnd::OnSysKeyUp message handler, 793
CWnd::SetFocus, 809

WM_TIMECHANGE message
CWnd::OnTimeChange message handler, 794

WM_ TIMER message
CWnd::KillTimer, 711
CWnd::SetTimer, 814

WM_ VKEYTOITEM message
CListBox::Create, 359
CWnd::OnVKeyToltem message handler, 795

WM_ WININICHANGE message
CWnd::OnWinIniChange message handler, 798

wndBottom static data member
CWnd class, 822

wndTop static data member
CWnd class, 822

Words
16-bit, CWordArray class described, 823

Write member function
CArchive class, 100
CFile class, 320

CStdioFile:: WriteString, 570
write member function

ostream class, 905
WriteObject member function

CArchive class, 101
CObject::Serialize,473

WriteString member function
CStdioFile class, 570

Writing

x

bytes to streams, 905
character strings to regions, 188-189
data from buffer

to CFile object-associated file, 320
to file associated with CStdioFile object, 570

object to archive, 473-474
to archives, 100

xalloc member function
ios class, 865

y
Years, getting, 614

Index 1021

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 24776

