(Class Libraries Reference

Microsoft

Microsoft. C/C++

Version 7.0

Class Libraries Reference

For MS-DOSe and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree-
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur-
pose other than the licensee’s personal use, without the express written permission of Microsoft
Corporation.

©1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, and CodeView are registered trademarks and Windows is a trademark
of Microsoft Corporation.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.
Smalltalk is a registered trademark of Xerox Corporation.

Document No. LN24776-1291

100 987 654321

Contents Overview

INEPOAUCTION. ... Xi
Part1 Introduction to the Microsoft Foundation Class Library
Chapter 1 Windows Development with

the Microsoft Foundation Classes............eecueevereeneersieneeneenneennnn. 5
Chapter 2 General-Purpose Foundation Classescoccooceevervvercueneennennen. 21
Chapter 3 Macros and Global FUnCtionscccceerereeeienenieniencenenenenns 31
Chapter 4 DiagnostiC SETVICES....cc.eevuiirrieniieiieienireetiernieee e see s 43
Chapter 5 EXception Processingcccceoverveevuerienienicninieneeneeeseeeeeseeienn 59
Chapter 6 Message Map Cross-Referenceccccccoeviniiininincniinnnn, 69
Chapter 7 Structures and Enumerated Values for Windows...........c.cceccueee 77
Part2 The Microsoft Foundation Class Library Reference
Alphabetic Microsoft Foundation Class Library Referencecccccoceeveevenceae 93
Part 3 The Microsoft iostream Class Library Reference
Alphabetic Microsoft iostream Class Library Reference...........cccccecueviercennnnee. 829

Contents

IMBFOAUCTION ...t e e ne e Xi

DocuUmMENt CONVEILIONS .. .coeeiiiiieieiieeeeeeeeeeeeeeeeeiaeeeeeeeeersrrstnaaesseseeesssrsssaneesees Xii

Part1 Introduction to the Microsoft Foundation Class Library

Chapter1 Windows Development with the Microsoft Foundation Classes...........ccccc...... 5
1.1 Class SUMIMATY ...coverueriiriieienttenteeiteete ettt et eieeeetebtebeeresseesneeseesressaeeenenns 5
Main ApPLCAtiON CLASS......ccoviruiiriieiiieeieniesite ettt et 5
WiINAOW CLASSES ...eneieeiieieiieieri ettt ettt ettt e b e st et eeeesneesbeeeae 5
Graphics Device Interface (GDI) CIaSSesc.cecveeeeriineiriiieiiniieieneenceee e 6
Other ClaSSES....ueeueeeiieeeieeiteetecteettet ettt te et e ettesteeeteesteste st esseesaeentebeentanseanseenne 7
Windows Global Functions and MacrosScceeeueerierrienienienieeeeseesienieneeenne 7
1.2 General Class Design PhiloSOphycccoiiiiniiiiiiniiiiiececeeeeeeee, 7
1.3 CH4and WINAOWS....coouiiiiiiieiiiiitieieete et 8
Message-Based Programmingcccceveererriernieneeneenieneeeteneeseesseesiesee e 8
ClIaSS DEIIVALION ...ttt sresre s ese s eae st s nes 10
POLyMOTPRISIN ...ttt e 10
Reduced Programming “Surface Area”.........occcceoiiiiiiiineniiiciiiiiiiniceeees 10
1.4 Windows Class Categories.......cceuruerrureriirieniieieeneeeieeiteseeneeeseesseeseesneenaee 11
The Main Application Class, CWINADPD.....cccceceereeriiiiiiiiniineneeeeecccceeeeennn 11
The Window Classes—CWnd and Its Derived Classes..........ccocceveerveneenenne. 13
Graphics Device Interface (GDI) Classesccccercieriiienieerieeeese e 18
Other WINdOWS CLaSSEScoueuerieuirueieiieteieereeeeeeetceee e 19
Chapter2 General-Purpose Foundation Classes 21
2.1 Class SUMIMATY ...ccuveeureriiniieieritesteeteniteeitesieessee e esesaresstesseesesssesessaeeneeens 21
2.2 CODJECE SETVICES ...cuvererureuienreirenenieiteitestesseseee e s sresse e eaeenesnese e e sneane 23
ODbJECt PETSISIENCEcuveenvieniieiiiierieeiieseee ettt et ettt et sbe e ee s 23
ODbJECt DIAZNOSLICS ..venevieieiieiieiieeieeteeeteseeettesieeseeenteetesatesseesseeaesseeseestessaesseas 24
Run-Time Class INfOrmationcccceeeeieroiereenierieereeieeiestee e 25

Compatibility with Selected Collection Classes...........cccceevecerinicriincinnennns 26

vi

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

2.3 FAIE CLaSSES ..eeuvrereenrieieeiieeieenieete st esaee e ste st et s te s e seresaesaesbeesaesnesnens 26
2.4 COllECtion CIASSES......ceuveruieriieriieieeieeiieiesteeteeteereeressreessesneesseesseesnesaneas 26
LLISES 1ttt ettt sttt ettt ettt et et ae et e bbb e bt e e b e e snneearean 27
ATTAYS .ttt ettt st st a e et a s 27
IMIAPS .o e 27
2.5 Miscellaneous SUPPOTIt CIASSESc.eevuerurerienurenieneenrenrenreeee e enenenes 28
The CString CLaSScoviiiieiiieeeeee e 28
The CTime and CTimeSpan CIassesccccuiivircreniininiiniiiiiccceenes 28
2.6 DiagnostiC SEIVICESceruemiiruieiiriiiiericece e 28
Memory DIagnOSHICSc.oiiiiiiiiiiiiiicicniiii e 29
Diagnostic OULPULc..eeeueiiirieeieteieeteerere ettt e sas s 29
ASSETLIONIS ..eeteeieniteieet ettt et et et e st e s bt et e st e e atesenesebesneesae e beesaeennesmneae 29
2.7 Exception Handlingcccoceevirierienenienieeienieeiceeceie e 29
Exception Classes and MacCIOS.c..cooueeeiiiiiiiiiiiiiinieeieiie e 30
When to Use Exception Handling...........cccceeeererieienennnneniininiencncncceeene 30
Macros and Global Functions 31
3.1 Alphabetical Listing of MaCIOScecuevuerruirsiieriiiiieneereeeneeeeeeeeeieeeeeens 32
3.2 Alphabetical Listing of Global FUunctions............cccceeeeeerviiniinincnenciinnnnn. 34
3.3 Macros and Global Functions Not Documented Elsewhere...................... 36
Diagnostic Services 43
4.1 General Diagnostic MaCTOSc..cecuereereriiernienienieeneeieenreennee e e esneenees 44
4.2 General Diagnostic FUNCIONSccocuerviieinieeiiiiniceeiceeicecce e 44
4.3 Object Diagnostic FUNCLIONSc.coceevrueriiiiiieieieiiininceieececciecns 45
4.4 Global Variables........cccoerieiriieiieieieieieieseeet ettt 46
4.5 Functions and MacCTOS.c..cccuerieririierrienieenteitesieesiee s ere e esieesne v s enee 47
HOOK FUNCHON. ...ttt e 52
Exception Processing 59
5.1 EXCeption MACIOScc.coiiiiiiiiiiiiiciciiiiiteie et 59
5.2 Exception Throwing FUNCHONScccoiiiiiiiiciiiiiniiiiiinciccean 60
5.3 Termination FUNCHONS. ...c..oiieriierienieieeieeieeieeee et 60
5.4 Functions and MaCIOS.........ceeruiiriiirniernieeieeeet ettt et e e saee e 61
Message Map Cross-Reference 69
6.1 How to Use the Cross-Referencecc.ceeveeveeeieenieeieniencnnccneciieienee. 69
6.2 Message Map Function Categoriescocceeveeuereiiiniicniiiienieiiccieenenas 70

6.3 Handlers for WM_COMMAND MEeSSaZESc..eeevveeerreneereeeneeenreereeneennees 70

Contents vii

6.4 Handlers for Child Window Notification Messages.........ccccocvrereeerrerenene 70
Generic Control Notification COdesc.uevvveeeieeiierecieeiiiesreeeeteeecere e esieenes 70
User Button Notification COdes..........ccerueereriieeiesieesiieieereesessesvesseessnesesseas 70
Combo Box Notification Codes..........ceverviririreririenteirnieeeseeieeessestessenseneens 71
Edit Control Notification COdeScoceevereirrreeririneneerienieeeeeeseeseeseessesaeneens 71
List Box Notification COAESeeervererierienienenienieneeieiesteetanieseeseeseseseenes 71

6.5 Handlers for Windows Notification MeSSagesccccuereerurererrerseennennees 72

6.6 User-Defined Message Codesoouurverirrerienienieeneeneeneenieeeeteeeeneeenns 76

Chapter 7 Structures and Enumerated Values for Windows 77

7.1 SETUCTUTES ..o eteeiteeeite et ete ettt e et e et e et e e staeebeesanaeaenteesneesneeeeneeanseannsens 77

7.2 Clipboard Enumerated ValUesccceoereririrniineeieieneneeieeeeeeeeeeees 86

7.3 Mouse Enumerated ValUes...........ccooievuieieniieciinieneeeieeseeneeeneeveeeeenaeeneens 88

Part2 The Microsoft Foundation Class Library Reference

ClASS CATCRIVE ...ttt ettt ettt ta et e saesaessaessessessesenne 93
class CATChIVEEXCEPLION.c.cuivieiiiierie ettt sttt ettt 104
ClaSS CBIIMADveeeiviieiieeeieecieereeetees e esteeeteesreessseesseessseesssaessseesesessssassseenssenns 107
ClasS CBIUSI c..cueeuiiiiiicieeee ettt ettt 118
ClasSS CBULLON ..c..oviiiiiiiiieieeiteteteeetee ettt ettt sbe st et be st s ne e 126
ClasSS CBYLEAITAYcoueeuiitirtirieteteterteste e et e tete st sttt esbestesbesaeeneent e e eneeneen 135
Class CCLENEDIC.......ccoiiiieiiriiiseeeee ettt s et ebe s e se e 137
Class CCOMDOBOXceuiiertiniiriirteteientente et ettt sttt s te e b et eseesteneeneas 139
CLASS CDIC ..ttt ettt ettt sttt e st e sbeeebeesbeesseeteensesenansanns 156
ClaSS CDHALOZcouvemiiiieiieieniieieieetete ettt et ee et see s sttt ebe bt ssteaee et neens 261
Class CDUMPCONIEXLc.eeveriirerieririeieieirt et estete sttt s saeseeeesbe et eseenseneenees 273
ClaSS CDWOTAATTAY ...ccvveeiiiiiieeiiieeiieesieesteeeeessresseeesseessaeasssessesassessssessssesses 280
ClASS CEAIL ...iuviiiiieiieieieeete et ettt ettt sttt et et e bt et e s e e st ennennen 282
Class CEXCEPLON.eouiriiieiirieteeieie ettt et te et s e e bt sreene e essenaesnenes 303
ClASS CIHI.....cutiieiieiieecectcetee ettt et e ettt e e s et e s e sneenesbannaenees 304
€lass CFIEEXCEPIIONocviiiieieiiieierteie ettt et s s 322
ClASS CROML......ooiiiiiieeeteeeteteerte ettt ettt st e e seesaesbe s b saeeseas 329
class CFrameWnd.......c..coeveiiiiiiiniininieceeceieeiteeee ettt sve s 336
ClasS CGAIODBIECEeevieiiiiiiiriieitrieteet ettt ettt sttt st enee s 342
Class CLIStBOXcoteriiriiiieriieiisitetee ettt ettt sttt sre et ns 352
Class CMAPPLITOPLTccueviiieieirietereeente ettt e 373
class CMapPITOWOIAc.coouiriierieniiicieieieeete ettt 375

class CMapSINGTOODc.covviririiiiiiieieeeee ettt 377

viii

Contents

Class CMapSIINGTOPIL........cc.eeciiriiieeieteeie ettt 387
class CMapStringTOSIIINGc..eevvereeriieriereeie ettt ettt 389
class CMapWoOrdTOODcoouereiiiiiiieeieceee et 391
Class CMaPWOTATOPLTc.eoveeuiririniriritee ettt ettt srees 393
class CMDIChildWndccoviiiiiiiiiiiicceeeeeeeee ettt 395
class CMDIFrameWndcoceeoiirriiiirienieeeeieeieeieesie et 401
Class CMEMFILEcoiiiiiiiiitee ettt et e 411
class CMemOIYEXCEPHONccuerierierieienieriereeteeiteseenteee et ereeee et e b s enenae 413
ClASS CIMEMUL......eeuiieiieiieieeie e et ete et eeieeeteeteeetesatesaeenbeenaeeneeensaeneesseenssessanseennes 414
Class CMEtaFIIEDICo.viieeieeeee ettt ettt s 438
class CMOdaIDIalog.ooviereueeiieiieiieteeeeee ettt sttt st 443
class CNOtSUPPOTtEAEXCEPLIONevuveieeieeieeiienite ettt et 449
ClaSS CODAITAYceeveenieeieeieeeee ettt ettt ettt ettt et et e st enseenaesnbeenees 450
ClASS CODJECE ...ttt ettt ettt e be e enesne s ae s saesaeennens 463
ClaASS CODLUISEveeuvietieiieie et ete ettt et ettt et e e b e e b e e ba et eenbessbessaesseseesnsenns 477
€lass CPAINDICcouiiiiiiieee ettt et 498
ClaSS CPAlEIEeouveiiirieiieieicrtere ettt s 501
ClASS CPEIN ...ttt st 508
ClASS CPOINL......ccueetiiieiieieiereeer ettt sttt et sae et e sne s s esne s 512
ClASS CPUTATTAY ...couiieiiiiiiiiete ettt ettt e e et e et e e et e e aeeesaeeeeane 517
ClASS CPLILISE 1.uveentieiieeeieeee et ee ettt ettt et te et e e ae e te e e e seesssenseenseenseensaenseenne 519
ClASS CRECE.eeueeitieit ettt ettt ettt s b et ettt bbb e 521
class CRESOUTCEEXCEPLON.cuccviuieriiiiiieciieiie et 536
ClASS CREM ..ttt et ettt e st e e s eab e e saeeeaseesanes 537
Class CSCIOIIBAL......c..ciitiiiiiieeieeteee ettt ettt ettt ettt et ensaesbeenne 551
ClASS CSUZE .ottt ettt e et e et e bt eae e ste e beesaesaneeneean 558
ClASS CSTALIC .veuvienieeiieeiteeteeteet ettt et e ete et e et esteeseeeaeeeaeenseeatesesesntesnsanseesnnenns 562
ClaSS CSHAIOFILEceveeeieiiieieeeeiee ettt ettt e b e e e eebe b e et e saenseesseens 567
ClASS CSIINE ..ottt ettt ettt e st e e st sabe st e s aneesneen 572
Class CSINGATTAYoevieiieieeiieeiieeiet ettt e e et e b et eab e eabeeabeeneeeareeane 601
Class CSINGLISEcovitieiieticteeeeeee ettt ettt et ettt sae e e eneeas 603
ClASS CTIME ... eueeteieenieietiete ettt ettt s b et nesa e sae s sne e eanes 606
Class CTIMESPAN......c.cuiueririiiiirictrce ettt 618
ClaSS CWINADD ettt ettt ettt ettt ae e 628
€lass CWINAOWDIC.........coiiiiierieieetet ettt eve e 641
classCWnd............ ettt eteatteettetetetebeteteaea sttt aesea s ebeseaeae et et s et ettt s esesenetene 644

ClasS CWOTAAITAYocueieiiiiieiinieeieettet ettt ettt e nsesaae s 823

Contents ix

Part3 The Microsoft iostream Class Library Reference

1OSEIEAM CLASS LISt..uiiiiiiiiiiiiie ettt e e e e eararre e e e e e earareeeeeas 829
ClaSS fILEDULccueiiiiieie e e 831
ClaSS FSIIEAMIL. ... vviieveieieeee et ettt e e e e e e e e e e eetaeeeeaeeeeennne 836
CLASS IFSTIEAIMNvvieeeeiiiceiiee et ete e et e e e et eeesareeeeaaeeeenes 845
ClASS TOS ..t 852
ClaSS TOSIICAMI.... .ottt eette e et e et eeeete e e e e eereeeeeeanreeeeaseeeenes 872
ClasS TOSTICAIM_IMIL ...ecvvveeeeuereeeeeieeeeeiieeeeteeeeteeeetreeeeneeeeeaeeeeeeraeeeesreeeesneeeeennneas 874
ClASS ISTICAIMN......vveeieveeeeeiiee e ettt e ettt ee et e ettt e eetaeeeereeeereeeeteeeeeeesseeeeesseeeeeaseeeenns 875
class istream_WithaSSIZNc.eevieeieeiiieieei ettt et s seeens 887
ClaSS ISIISIICAIMN ... vvveiee e ettt e et e e e et e e eeeenee e e e e e eeesensaraneeeesennreees 890
o BT o £ 5 (=%: 11 1 WO SRR RURRORRR 893
ClaSS OSIICAIMI......eeiiiiee et e et ettt ettt ete e eetb e eeteeeeraeeeeaseeaeeeetsaeeeeesraeeearaeaenns 900
class OStream_ WithaSSIZM......eceeeuieriieriierierie st ettt ettt e et saeesae 908
CLASS OSIISIICAIN......uveieeiriieeeitieeeeettieeeeeieeeeetteeeeeteeeeteeeesaeeeeeaaeeeeeeaeeseeensaesseseeneennens 911
CLaSS SEAIODULeeieiiicceee e e e e et e e et enaeaeens 915
ClasS STATOSIIEAINeeeviieeecieie ettt ettt e et e e eae e e e e eeaae e e eeateeeesaseeeennee 917
Class StrEAMDULoooiiiiiieiee et e et anees 919
ClaSS SITSTICAIM .. .eeiieeeiiiiieeeeeeeciieee e e eeeeeccreeeeeeeeerrteeeeeetsaeeeeeesennabasaeeesensassraaaeeesnnes 939
Class SIISEAMBULooiieiiiieiic e et 943

Introduction

This Class Libraries Reference covers the two class libraries that are included
with Microsofte C/C++. The book is divided into three parts:

Part 1 Introduction to the Microsoft Foundation Class Library
Part2 The Microsoft Foundation Class Reference

Part3 The Microsoft iostream Class Reference

Part 1 contains overview material for the Windows ™ and general-purpose classes
in the Microsoft Foundation Class Library followed by an alphabetical listing of
all global functions and macros. In addition, it contains reference chapters for
Microsoft Foundation Class Library diagnostic services and exception processing.
The last two chapters consist of a Windows message map cross-reference and a
listing of structures and enumerated values for Windows.

Parts 2 and 3 both begin with class hierarchy diagrams for their respective librar-
ies. These hierarchy diagrams, together with the subset diagrams included with
each Foundation class, are useful for locating base classes. Be aware that the class
documentation does not include repeated descriptions of inherited member func-
tions, inherited operators, and overridden virtual member functions. You must al-
ways refer to the base classes depicted in the hierarchy diagrams.

Parts 2 and 3 list classes in alphabetical order. Each class description includes a
member summary by category followed by alphabetical listings of:

Member functions (public, protected, and private intermixed)

Overloaded operators

Data members
= Manipulators (iostream classes only)

Public and protected class members are documented only when they are normally
used in application programs or derived classes. Occasionally, private members
are listed because they override a public or protected member in the base class.
See the class header files for a complete listing of class members.

In Part 2, please note that the “See Also” sections refer to Windows functions by
prefacing them with the scope resolution operator (::). For example, ::EqualRect.

Xii The Class Libraries Reference

More information on these functions can be found in the Windows Programmer’s
Reference, other Windows references, and Help.

Note The term “DOS” refers to both the MS-DOSe and IBM Personal Computer
DOS operating systems. The name of a specific operating system is used when it
is necessary to note features that are unique to that system.

Document Conventions

This book uses the following typographic conventions:

Example Description

STDIO.H Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

char, CObject, Bold type indicates C and C++ keywords, operators,
GetTime, TRACE, language-specific characters, and library routines.
MF_STRING, This includes the classes and member functions of the
CREATESTRUCT, Microsoft class libraries, macros, flags, data

__far structures and their members, and enumerators.

Within descriptions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or a double underscore. These are part of the
name and are mandatory.

expression Words in italics indicate placeholders for information
you must supply, such as a filename.

[[option]| Items inside double square brackets are optional.

#ipragma pack {112} Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([[]]) surround the

braces.
#include <io.h>, Monospace font is used for examples, user input,
MyObject program output, and error messages in text. It is also

used for names of user-derived classes and members.

CL [[option...]| file... Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

Introduction

xiii

Example

Description

while()
{

CTRL+ENTER

“argument”

"C string"”

Color Graphics
Adapter (CGA)

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and ' ' rather than “” and .

The first time an acronym is used, it is usually spelled
out.

Windows Development with the
Microsoft Foundation Classes

This chapter categorizes and describes the classes within the Microsoft Foundation
Class Library that specifically support application development for Microsoft
Windows, version 3.x.

1.1 Class Summary

The following is a list, in functional order, of the Windows-oriented classes in the
Microsoft Foundation Class Library.

Note All classes listed below, except CPoint, CRect, and CSize, are directly or
indirectly derived from the CObject class described in Chapter 2.

Main Application Class

CWinApp is the class that encapsulates the code for the initialization, running,
and termination of the application.

Window Classes

The Microsoft Foundation window classes are the key building blocks in a Win-
dows application. These classes have member functions for processing Windows
notification messages as well as messages from other classes. Some member func-
tions communicate directly with Windows itself. An active C++ window object
contains a Windows HWND.

You will usually derive classes from the frame and child base classes. You can use
most of the other window classes directly.

The Class Libraries Reference

Base Class
CWnd

The base class for all windows.

Frame and Child Windows

CFrameWnd
CMDIFrameWnd

CMDIChildWnd

Dialog Windows
CDialog
CModalDialog

Control Windows
CButton
CComboBox
CEdit

CListBox
CScrollBar
CStatic

Graphics Device Interface (GDI) Classes

The main window base class for the single docu-
ment interface (SDI) frame window.

The base class for the multiple document interface
(MDI) frame window.

The base class for MDI child windows.

The base class for modeless dialog windows.

The base class for modal dialog windows.

Button control windows.
Combo-box control windows.
Edit control windows.
List-box control windows.
Scroll-bar control windows.

Static control windows.

The following classes wrap the Windows device context and drawing tools. They
allow the developer to take maximum advantage of C++ syntax.

Device Contexts
CDC

CClientDC
CMetaFileDC
CPaintDC

CWindowDC

The base class for device contexts, used directly
for whole-display and nondisplay contexts.

Display contexts for client areas of windows.
Metafile device contexts.

Display contexts used in OnPaint member
functions.

Display contexts for entire windows.

Windows Development

GDI Drawing Objects
CGdiObject The base class for GDI drawing tools.
CBitmap GDI physical bitmaps.
CBrush GDI physical brushes.
CFont GDI physical fonts.
CPalette GDI physical palettes.
CPen GDI physical pens.
CRgn GDI physical regions.
Other Classes
CMenu Menu structures.
CPoint Coordinate (x, y) pairs.
CRect Rectangular areas.
CSize Relative positions or coordinate pairs.

Windows Global Functions and Macros

Chapters 3 through 7 of this manual document the elements of the Microsoft Foun-
dation Class Library that are not directly related to individual classes. A complete
summary of macros and global functions, including those for Windows, is pro-
vided in Chapter 3. A message-map reference is given in Chapter 6, and Chapter 7
lists Windows structures and enumerated values.

1.2 General Class Design Philosophy

Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-language Windows application pro-
gramming interface (API), that interface will be maintained for the foreseeable
future. Any C++ Windows interface must therefore be built on top of the proce-
dural C-language API. This guarantees that C++ applications will be able to coex-
ist with C applications.

The Microsoft Foundation Class Library is truly an object-oriented interface to
Windows that has met the following design goals:

= Execution speed comparable to that of the C-language API
= Minimum code size overhead
= The ability to call any Windows C function directly

8

The Class Libraries Reference

= Easy conversion of existing C applications to C++

= The ability to leverage from the existing base of C-language Windows program-
ming experience

= True Windows API for C++ that effectively uses C++ language features
® Solid foundation for future extensions

The single characteristic that sets the Microsoft Foundation classes for Windows
apart from other Windows class libraries is their direct access to the C-language
Windows API. This direct access does not, however, imply that the classes are a
replacement for that API. Developers must still make direct calls to some
Windows functions, GetSystemMetrics, for example. A Windows function is
wrapped by a class member function only if there is a clear advantage to doing so.

Because you often need to make native Windows function calls, you should have
access to the C-language Windows API documentation. This is included with
Microsoft C/C++ as Help. If you require printed documentation, refer to the
Microsoft Windows Programmer’s Reference and the Microsoft Windows Guide to
Programming from Microsoft Press. Another useful book is Programming
Windows by Charles Petzold, also from Microsoft Press. Many of that book’s ex-
amples can be easily converted to the Microsoft Foundation Windows classes.

1.3 C++ and Windows

Many C++ language features are particularly suited to Microsoft Windows. The
Windows-oriented classes in the Microsoft Foundation Class Library make
Windows programming truly systematic. It’s significantly easier to learn Windows
through a C++ interface than through the standard C interface.

Message-Based Programming

Windows is a message-based environment. In the familiar MS-DOS programming
world, your program calls the operating system. In Windows, the operating system
(Windows) sends a message to your program. The “program” is associated with a
particular window, and the message might be “destroy yourself,” “repaint your-
self,” “your child button was pushed,” or something similar.

Your program might also send a message to Windows. These “outbound” mes-
sages are often directed at a child window, such as a button, list box, or edit con-
trol, that has inaccessible code. If, for example, you send a “scroll” message to an
edit control, Windows itself does the work. Your application program cannot inter-
cept these outbound messages once they are sent.

Windows Development 9

The C++ language naturally accommodates the messaging behavior of Windows.
Objects receive messages through the “member functions” of their class, and they
send messages by calling a member function for another object. A C++ object
represents a Windows window, and the member functions of the class process in-
dividual messages. The OnPaint member function of a derived window class, for
example, receives and processes a Windows WM_PAINT message. The
CListBox member function AddString sends an LB_ ADDSTRING message to
Windows.

The real magic of the Windows Foundation classes begins here. There is no longer
any “program logic flow” as in conventional procedural programming. Each win-
dow object is self-sufficient and is responsible for (1) acting on the messages that
are important to it and (2) sending messages to other window objects. It can create
and delete other windows along the way. The interaction among window objects,
and thus the flow of the program, is governed by the actions of the end user rather
than by complex code and data structures.

Message Processing—The Microsoft Foundation Classes vs. Native Windows

In native Windows, the WndProc function processes a particular window’s
incoming messages. The message ID is a WndProc function parameter that
is decoded with a case statement. The ID is compared to a list of expected
codes defined as constants in WINDOWS.H. Each message has two
“message parameters,” wParam (two bytes) and IParam (four bytes), that
are also WndProc parameters. The meaning of wParam and IParam
depends on the message type. These message parameters can be pointers to
structures or functions or they can be composites of flags and fields. The
WndProc program must decode the messages appropriately.

Outbound messages are sent to Windows and to other windows through
several “send message” functions. The WndProc program must encode the
message parameters for these outbound messages.

The Microsoft Foundation classes replace the case statement and parameter
decoding for incoming messages with class member functions. These
member functions are linked to a structure called a “message map” that
governs translation of the message parameters. The message map is
described later in this chapter, in “Notification Messages and the Message
Map,” on page 13.

10 The Class Libraries Reference

Class Derivation

Polymorphism

Programmers often try to exploit existing code to solve new problems. In the C
programming environment, the programmer can “clone” useful code by copying
it and making modifications. In the C++ programming environment, you add
functionality through “class derivation”. The functionality of the base class re-
mains unmodified, but that of the derived class may be added to or changed.
Derivation works well with Windows because you can extend useful window base
classes with new member functions and new data members.

Suppose a frame window base class includes a caption, menu bar, scroll bars, and
so forth. Also suppose that this base window has the ability to get the input focus
in response to activation by the mouse. If you need to add the capability of display-
ing a dialog box in response to an access key, then you can derive a new class
from the frame window base class. You get all the base class functionality without
having to modify its code or worry about its internals.

There are three or more levels of window class derivation in a typical application
built with the Microsoft Foundation classes for Windows. CWnd, the base class
for all windows, contains many member functions that apply to all window
types. Some second-level derived window classes, such as CFrameWnd,
CMDIFrameWnd, and CMDIChildWnd, are designed for further derivation.
Others, such as CDialog, can be used directly or as a base for further derivation.
Finally, the classes that you derive for your own windows provide the third level
of derivation.

Note The CWnd class is useful as a base class for SDI child windows. You do not
need to derive from one of the second-level classes listed above.

In the C-language Windows API, the programming interface of a dialog box is
different from that of a frame window, even though both are defined as windows
and identified by an HWND parameter. The Microsoft Foundation classes make
all window types look similar because all are derived from the CWnd base class.
Microsoft Foundation window classes are truly polymorphic because they give a
common programming interface to dissimilar window types.

Reduced Programming “Surface Area”

C programming with Windows is intimidating because of the complex interrela-
tionship between functions and the proliferation ot messages. The progammer
must write a WndProc function for each type of window and a main program
called WinMain. Each WndProc function processes the window’s messages by
means of a case statement and must be linked to windows and to the application
through an elaborate data structure.

Windows Development 1

The Microsoft Foundation classes for Windows encapsulate most of this complex-
ity while allowing the same flexibility found in the C programming environment.
You don’t need to write the WinMain and WndProc functions because they are
provided for you. However, you can override them if necessary.

1.4 Windows Class Categories

Like any C++ class library, the Microsoft Foundation Class Library encapsulates
its functionality in classes. The important Windows class categories are:

= The main application class, CWinApp

® The window classes—CWnd and its derived classes

= The graphics device interface (GDI) classes, which support device contexts and
drawing tools

® The miscellaneous classes, which support menus, points, and rectangles

The Main Application Class, CWinApp

The main application class encapsulates the initialization, running, and termination
of a Windows application. A Microsoft Foundation Class Library Windows appli-
cation must contain one (and only one) object of a class derived from CWinApp.
This class has several important member functions that you can override:

= InitInstance

Windows allows you to run more than one copy, or “instance,” of the same ap-
plication. InitInstance is called every time a new instance of the program
starts. It must be overridden in order to create a main window and thus start the
application. It is the most important member function of the class.

= InitApplication
This function is called when the first instance of a program starts. The default

version does nothing, but you can override it if you need special processing for
the first instance only.

n ExitInstance

This function is called each time an application instance terminates, usually as a
result of the user quitting the application. You can override ExitInstance if you
need special cleanup processing, such as closing of disk files or deallocating
memory used during program execution.

= Onldle

The default version of Onldle does nothing, but your overridden function can
perform background tasks when no messages are being processed.

12 The Class Libraries Reference

For a typical Windows application, you need only override InitInstance in a class
derived from CWinApp. Then you construct a static object of the CWinApp-
derived class.

Windows Development 13

The Window Classes— CWnd and Its Derived Classes

You will normally override the InitInstance member function of the CWinApp
class to create your application’s main window, an object of a class derived from
CWnd. This window class, together with all the other window classes, have mem-
ber functions for receiving and sending messages.

There are different types of Windows messages. Each type is handled somewhat
differently by the Microsoft Foundation classes.

Notification Messages and the Message Map

A “notification message” is a message sent to a window by Windows itself in re-
sponse to a keystroke, mouse click, window move, control window activity, or
other event. If necessary, your application can force Windows to send a notifica-
tion message. The Microsoft Foundation Class Library has a special mechanism,
called a “message map,” that links Windows notification messages with the mem-
ber functions you have written.

A message map is a table that you include with your window class code. It con-
tains an entry for each Windows notification message that you intend to process
with a custom-written member function. The result is a message-processing sys-
tem that provides all the advantages of virtual functions without the storage
overhead.

Many of the member functions that process notification messages are predefined.
For example, if your class needs to process the Windows WM_CREATE mes-
sage, you must put the following entry in the class’s message map:

ON_WM_CREATE()

and you must declare and implement this exact member function:

afx_msg int OnCreate(LPCREATESTRUCT Tpcs);

Note The afx_msg keyword denotes a notification message declaration or im-
plementation. It is defined as a no-operation in AFXWIN.H and thus documents
the fact that the function behaves like a CWnd virtual function. It must be empha-
sized that message maps depend solely on standard preprocessor macros and not
on any extensions to the C++ language.

A table that shows all permitted message-map entries and the corresponding
member function prototypes is presented in Chapter 6, “Message Map Cross-
Reference.” For a complete example of message-map usage, see Chapter 6 of the
Class Libraries User’s Guide.

14

The Class Libraries Reference

Other notification messages allow you to define your own functions. For example,
if you need to call a function in response to a mouse click on a button whose ID
number is IDD_BUTN1, your message-map entry is:

ON_BN_CLICKED(IDD_BUTN1, OnTopButton)

and your member function declaration looks like this:

afx_msg void OnTopButton();

When you define a message map, you specify the base class in addition to the mes-
sages. This allows the base class to handle messages not handled in the derived
classes.

Windows Control Messages

A Windows control, such as an edit window or list box, is represented by a win-
dow object (of a class derived from CWnd), but the processing is controlled by
Windows rather than by the Microsoft Foundation classes. If you need to update a
control, your application must send a “control message” to Windows. A frame
window object, for example, can send an LB_ADDSTRING message to a list-
box window that is its child. The Microsoft Foundation classes wrap this message
in the CListBox member function AddString. The call looks like this:

CListBox* 1istBoxl; // Object initialized elsewhere
TistBox1->AddString("list-box Tine item”);

In this case the phrase 1ist-box line item is sentdirectly to Windows for dis-
play. The CListBox member functions cannot access the list-box line items unless
they retrieve them directly from Windows.

Other Windows Messages

Other Windows messages do not relate to controls. If, for example, you want to
select a font for future text drawing, you must send the WM_SETFONT message
to the appropriate window. The Microsoft Foundation classes wrap messages like
this with CWnd member functions. In this example, you call the SetFont member
function.

Windows Development 15

C++ Window Objects and the Windows They Represent '

A C++ window obJect is distinct from its corresponding Windows wmdow
but the two are tightly linked. A good understanding of this relationship is
crucial for effective Microsoft Foundation class programming.

The window object is an instance of the C++ CWnd class (or a derived
class). It comes and goes in response to your program’s constructor and
destructor calls. The Windows window, on the other hand, is an internal
Windows data structure that corresponds to a visible (or invisible) window.
A Windows window is identified by a “window handle” (HWND) and i
created when the CWnd object is created, but the window may be destroyed
by either a program call or by a user’s action. « (,

All the window classes provided by the Microsoft Foundation Class lerary
employ “two-phase construction”. The C++ constructor makes an object b
does not create a corresponding Windows window. The Create mem
function makes the Windows window (usually by calling the native
Windows CreateWindow function) and stores its HWIN ‘
object’s public data member m_hWnd.

must use two-phase construction. Suppose, instead, that yoﬁr high
constructor called Create. In that case, the lower-level constructor cre
the Windows w1ndow before the object (and its message—map

messages are then handled by the higher- level class’s mes
functions rather than by those of the Iower—lev,el class.

L1brary prov1des several options. The function Destroy‘Wl d ﬁww :
few public virtual member functions in CWnd, destroys th W" doy
window without destroying the object. Another CWnd m
Detach, prevents the destructor from destroying the Window

You must be careful, particularly with child windows, to
window object when the user closes a Windows windo
destroy these objects, you will not recover their memory.
object destruction is not so critical because the program g
immediately after the main window is closed.

16

The Class Libraries Reference

Some messages are not wrapped by individual member functions. Suppose you
derive a class from CWnd and you need a member function that activates the win-
dow’s nonclient area. The following call accomplishes the task:

SendMessage(WM_NCACTIVATE, TRUE, @);

SendMessage is a CWnd member function, and thus it communicates directly
with your C++ window object that underlies the Windows window. The
SendMessage function sends its message immediately. Another function,
PostMessage, posts the message to the Windows message queue for delayed
processing.

Direct Calls to Windows

In many cases your program interacts with Windows through a direct call rather
than through a sent message. Many of these direct calls are mapped to CWnd
member functions. If you need to set a window’s caption, for example, you simply
call CWnd::SetWindowText.

Control Window Classes

The Microsoft Foundation Class Library includes classes for standard Windows
controls, which are actually special-purpose windows. These controls include:

= Buttons

= Combo boxes
= Edit windows
= List boxes

= Scroll bars

= Static controls

You will seldom need to derive from these classes because most of their function-
ality is determined by Windows itself. If you need a button, for example, you con-
struct an object and then specify one of several predefined styles to the Create
member function.

Buttons, like other controls, are designed to be child windows. When the user
clicks a button, for example, the button object sends a BN_ CLICKED message to
its parent window object. The parent window class must define a message map
and have an appropriate member function to handle the message from the button.

Windows Development 17

Note Do not confuse the scroll-bar control window with the frame window’s built-
in scroll bars. Any frame window can have horizontal and vertical scroll bars if it
is created with the proper parameters. The scroll bars created in a frame window
this way are not actually separate child windows. A true scroll-bar control is a sep-
arate child window that can be sized and placed as required.

Dialog Boxes

A “dialog box” is a special kind of frame window that contains a number of child
window controls, such as buttons and edit fields. It is generally used to collect data
from the user. A “modal” dialog forces the user to complete the requested action
prior to returning to the application’s main window. The “modeless” dialog allows
the user to continue work in the parent window.

Dialog boxes are frequently defined, along with the constituent child windows, in
“resource files” where the child windows have assigned ID numbers. Your pro-
gram must construct an object of class CDialog or CModalDialog (or a derived
class) in order to use a resource-based dialog box. If your dialog box requires only
routine operations, such as detecting button hits and reading input strings from edit
controls, then you do not have to construct child control window objects; instead,
you call member functions of the dialog base class that use child window IDs as
arguments.

If, for example, you need to read the string from an edit window identified as
IDM_DATA, then use the CWnd member function GetDIgltemText as follows:

GetDlgItemText(IDM_DATA, string, 128);

where string is the address of a character buffer and 128 is the maximum
buffer size. You do not need to reference an edit window object.

If you do need to access resource-based dialog child windows as C++ objects, the
Microsoft Foundation classes provide a way. The GetDIgItem dialog class mem-
ber function returns a CWnd pointer that corresponds to a dialog child window ID
number that is defined by the resource. This CWnd pointer refers to an internally
allocated window object that is stored in a temporary table. It allows you to

use the appropriate window class member functions. The IsKindOf and
GetRuntimeClass member functions of CObject can help identify the specific
window class of the object.

If, for example, you need the line count from the edit control introduced pre-
viously, then use CWnd::GetDIlgItemText as follows:

CEdit* pEdit = (CEdit*)GetDlgItem(IDM_DATA);
int count = pEdit->GetLineCount();

18

The Class Libraries Reference

Graphics Device Interface (GDI) Classes

The CWinApp class and the CWnd derivatives are by far the most important
Windows-oriented classes in the library. Most are intended for derivation. The
GDI Windows classes are included as a convenience for the C++ programmer.
Each corresponds almost exactly to a Windows data structure and is generally not
used for derivation.

The Device Context Classes

CDC, CPaintDC, CWindowDC, CClientDC, and CMetaFileDC are “device
context” classes because they are C++ wrappings of the Windows device context.
A device context is a Windows data structure associated with a physical device. It
is the Windows method of rendering graphics in a hardware-independent manner.
In order to draw or print in a window, you must first get access to a display device
context object.

The base class, CDC, can be used directly to access the entire display or a nondis-
play context. A “nondisplay context” is a hardware device, such as a printer or
plotter, that has a Windows driver.

A CWindowDC context is a “display” context that is “clipped” (by Windows) to
include only the area of its associated window. A CClientDC context includes
only the window’s “client” area (exclusive of title bar and scroll bars). A
CPaintDC context is like a CClientDC context except that it is enhanced (by the
Microsoft Foundation Class Library) to work in an OnPaint member function
without the need for the BeginPaint and EndPaint function calls.

The most frequently used device context is CPaintDC. A typical OnPaint mem-
ber function obtains and uses a device context as shown:

void CMainWindow::0nPaint()
{ // BeginPaint function call not required
CPaintDC dc(this); // The device context for this window
dc.TextOut(@, @, "hello™, 5); // Top left of the client rectangle
} // EndPaint function call not required

The GDI Object Classes

The Windows GDI employs various drawing tools, including pens, brushes,
palettes, fonts, bit maps, and regions. Many device context operations, such as
drawing and painting, depend on a specific drawing tool being linked to the device
context. In the native Windows environment, this operation is known as “selecting
a GDI object into a device context.” In the Microsoft Foundation classes, a tool
type is represented by a class derived from CGdiObject.

Windows Development 19

The base class of the device context classes, CDC, has a SelectObject member
function overloaded for each GDI-object-derived class. This function selects a
GDI object to a device context (and returns the previously selected object of that
type). Thus you can attach a brush to a paint display context (and use it) as follows:

// Create a device context for this window
CPaintDC dc(this);

// Construct a crosshatch filling brush
CBrush brush(HS_DIAGCROSS, oL);

// Select the brush into the device context
CBrush* p0l1dBrush = dc.SelectObject(&brush);
// Paint the ellipse with crosshatching
dc.E11ipse(@, 20, 40, 60);

// Restore the original brush

dc.SelectObject(p0Ol1dBrush);

The last statement disconnects brush from dc at the Windows level. This per-
mits the Windows brush to be deleted by the CBrush destructor (when the brush
object goes out of scope). It is very important to delete Windows GDI objects;
otherwise their memory will not be reclaimed, even after the Windows application
terminates. Windows GDI objects cannot be deleted as long as they are selected in
a valid device context.

Other Windows Classes

There are several other classes in the Microsoft Foundation Class Library that
bring C++ syntax to Windows. These classes include CMenu, CPoint, CRect,
and CSize.

The CMenu Class

A Windows menu is a data structure that associates user actions with
WM_COMMAND messages. The CMenu class wraps this menu structure and
provides a constructor for an empty menu. A menu’s list of choices can be altered
dynamically through member functions such as AppendMenu, InsertMenu, and
DeleteMenu. The LoadMenu member function loads a menu object with a menu
definition from a resource file.

You can attach a resource-based menu, identified by a string or resource ID,
directly to a window (through the frame window’s Create member function)
without defining a CMenu object. Alternatively, the window SetMenu member
function associates a CMenu object with the window.

The WM_COMMAND messages that result from menu activity must be pro-
cessed by window class member functions that are declared through message-
map entries.

20 The Class Libraries Reference

The CPoint, CSize, and CRect Classes

CPoint and CSize are simple classes that define absolute and relative (X, y) points
and provide some useful overloaded operators. The CRect class defines rectangu-
lar regions specified by the (left, top) and (right, bottom) coordinates. CPoint and
CRect inherit from the Windows POINT and RECT structures.

Many Microsoft Foundation class functions take POINT structures or pointers to
RECT structures as parameters. Because CPoint and CRect are derived from
these structures, the compiler can accept objects in place of structure instances.

General-Purpose
Foundation Classes

This chapter categorizes and describes the general-purpose classes within the
Microsoft Foundation Class Library. These classes can be used alone in an MS-
DOS application, or they can be combined with the Microsoft Windows classes
described in Chapter 1.

2.1 Class Summary

The following is a list of the Microsoft Foundation Class Library’s general-
purpose classes categorized by function. CObject is the root class in the Microsoft
Foundation class hierarchy.

File Classes

CFile Binary disk files.

CMemFile In-memory files.

CStdioFile Buffered stream disk files, usually text mode.

Object Input and Output

CArchive Persistent storage for objects.
CDumpContext Destinations for diagnostic dumps.
Exceptions

CException Base class for exceptions.
CArchiveException Archive exceptions.
CFileException File-oriented exceptions.

CMemoryException Out-of-memory exceptions.

22

The Class Libraries Reference

CNotSupportedException

CResourceException

Collections
CByteArray
CDWordArray
CObArray
CPtrArray
CStringArray
CWordArray
CObList

CPtrList
CStringList
CMapPtrToWord
CMapPtrToPtr
CMapStringToOb

CMapStringToPtr

CMapStringToString

CMapWordToOb
CMapWordToPtr

Exceptions resulting from the invocation of an
unsupported feature.

Exceptions resulting from a failure to load a
Windows resource (Windows only).

Arrays of bytes.

Arrays of double words.

Arrays of CObject pointers.

Arrays of void (generic) pointers.

Arrays of CString objects.

Arrays of words.

Lists of CObject pointers.

Lists of void (generic) pointers.

Lists of CString objects.

Maps that associate void pointers to words.
Maps that associate void pointers to void pointers.

Maps that associate CString objects to CObject
pointers.

Maps that associate CString objects to void
pointers.

Maps that associate CString objects to CString
objects.

Maps that associate words to CObject pointers.

Maps that associate words to void pointers.

Miscellaneous Support Classes

CString
CTime
CTimeSpan

Character strings.
Absolute time and date values.

Relative time and date values.

General-Purpose 23

Global Functions and Macros

Chapters 3 through 6 of this manual document the elements of the Microsoft Foun-
dation Class Library that are not directly related to individual classes. A complete
summary of macros and global functions is provided in Chapter 3, while diagnos-
tic services, including memory diagnostics and object dump functions, are dis-
cussed in Chapter 4. Exception processing, which uses TRY, CATCH, THROW,
and other macros, is covered in Chapter 5.

2.2 CObject Services

The CObject base class provides the following useful services to objects of its
derived classes:

® QObject persistence

= Object diagnostics

= Run-time class information

= Compatibility with selected collection classes

Some of these services are available only if you use certain macros in derived
class declarations and implementations. In order to make use of the services listed
above, you should seriously consider deriving most of your nontrivial classes from
CObject. Many of the Microsoft Foundation classes are so derived.

Even though CObject is not a true “abstract” base class, you are advised not to
construct objects of this class.

Object Persistence

Class CObject, in conjunction with class CArchive, supports “object persistence”
through a process called “serialization.” Object persistence allows you to save a
complex network of objects in a permanent binary form (usually disk storage) that
persists after those objects are deleted from memory. Later you can load the ob-
jects from persistent storage and “reconstitute” them in memory.

Serialization is not random access, but rather sequential. A group of objects is writ-
ten to an archive, which is associated with an individual CFile object. If the ob-
jects to be serialized are contained in a collection, then a single Serialize call for
the collection object results in the serialization of the whole collection, even if it
contains nested objects or heterogeneous object collections. For a good example of
collection serialization, see the tutorial in the Class Libraries User’s Guide.

24

The Class Libraries Reference

When you create your own serializable CObject-derived class, you must use the
DECLARE_SERIAL macro in the class declaration, and you must use the
IMPLEMENT_SERIAL macro in the class implementation. If you have added
new data members in your derived class, you must override the base class
Serialize member function to store object data to the archive and load object data
from it.

Like the iostream classes, CArchive provides insertion (<<) and extraction (>>)
operators.

Object Diagnostics

The Microsoft Foundation classes provide many diagnostic features, but diagnos-
tic object printing and validity checking are specific services of the CObject class.
For diagnostic features that are not class oriented, see “Memory Diagnostics” later
in this chapter, on page 29.

Diagnostic Dump Context

The CDumpContext class works in conjunction with the Dump member function
of the CObject class to provide formatted diagnostic printing of internal object
data. CDumpContext, like the ostream class (in the iostream library), provides
an insertion (<<) operator that accepts not only CObject pointers but also standard
types and CString and CTime objects.

A predefined CDumpContext object, afxDump, is available in the Debug version
of the Microsoft Foundation classes (#define _DEBUG is required in your source
code). With MS-DOS, the output from afxDump goes to stderr. With Windows,
the output goes to the CodeView® debugger if it is present; otherwise it goes to
device AUX.

Without any programming on your part, the Dump member function of the
CObject class provides a hexadecimal printout of the contents of your derived
object. If you override the base class Dump member function in your derived
class, you can get a formatted dump of your object’s contents. If you have used
the DECLARE_DYNAMIC or DECLARE_SERIAL macros in your derived
class declaration and if you have used the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in your derived class implementation, then
Dump prints your object’s class name even if you supply a generic CObject
pointer.

General-Purpose 25 |

Object Validity Checking

The AssertValid member function of CObject always returns TRUE. If you over-
ride the base class AssertValid member function in your derived class, you can
perform a specific test of your object’s internal consistency.

Run-Time Class Information

The C++ language was designed for speed and efficiency; therefore, binding
among functions and data elements is done at compile and link time. Even the
implementation of virtual functions depends on a data structure (known as the
v-table) that is set up during compilation. Other object-oriented languages, such as
Smalltalk, are designed for flexibility. Their binding is done at run time; objects
send and receive standard-format messages that are processed by an interpreted
language.

The Microsoft Foundation classes offer the developer some optional features usu-
ally associated with a run-time—bound system. If you derive a class from CObject,
you can use member functions to access, at run time, (1) the class name and (2)
the classes above it in the derivation hierarchy. You can also retrieve class infor-
mation for any CObject-derived class declared in your program. This information
allows you to safely cast a generic CObject pointer to a derived class pointer.

Run-time class information is particularly valuable in the Debug environment
because it can be used (1) to detect incorrect casts and (2) to produce object dumps
with class names included.

Run-time class information is, of course, available in the Release environment. If
in Windows, for example, you need to process the children of a frame window,
you can use the frame’s GetWindow member function to return a generic CWnd
pointer for each child window. If you want to know the child’s specific class, then
you can use the CObject member functions IsKindOf or GetRuntimeClass.
During serialization, the runtime class information is stored to the archive along
with object data.

Run-time class testing is not meant to be a substitute for using virtual functions.
Use the run-time type information only when virtual functions are not appropriate,
as in the GetWindow example described above.

In order to access run-time type information, you must use the
DECLARE_DYNAMIC or DECLARE_SERIAL macros in your class
declaration, and you must use the IMPLEMENT_DYNAMIC or
IMPLEMENT_SERIAL macros in your class implementation.

26

The Class Libraries Reference

Compatibility with Selected Collection Classes

The collection classes CObArray, CObList, CMapStringToOb, and
CMapWordToODb accept CObject pointer elements and thus are useful for
storing collections of objects of CObject-derived classes. If such a collection is ar-
chived or sent to a diagnostic dump context, then the element objects are automat-
ically processed. For more about collection classes, see Section 2.4 later in this
chapter.

2.3 File Classes

The CFile family of classes provides a C++ programming interface to operating-
system files. The CFile class itself gives access to low-level binary files, and the
CStdioFile class gives access to buffered “standard I/O” files. CStdioFile files are
often processed in “text mode,” which means that newline characters are con-
verted to carriage return—linefeed pairs on output.

CMemFile supports “in-memory” files. The files behave like disk files except that
bytes are stored in RAM. An in-memory file is a useful means of transferring raw
bytes or serialized objects between independent processes.

Because CFile is the base class for all file classes, it provides a polymorphic pro-
gramming interface. If a CStdioFile file is opened, for example, its object pointer
can be used by the virtual Read and Write member functions defined for the
CFile class.

The CDumpContext and CArchive classes, described previously, depend on the
CFile class for input and output.

2.4 Collection Classes

The Microsoft Foundation Class Library contains a number of ready-to-use lists,
arrays, and maps that are referred to as “collection classes.” A collection is an
extremely useful programming idiom for holding and processing groups of objects
or standard types. C++ makes a collection appear as a single object, so collection
member functions can operate on all elements of the collection.

All collections may be archived or sent to a dump context. The Dump and
Serialize member functions for CObject pointer collections call the correspond-
ing functions for each of their elements.

If you need a list, array, or map that is not included among the 16 standard collec-
tions provided with the Microsoft Foundation classes, then you can use the
Templdef template tool that is included in the sample directory. The disk file

General-Purpose 27

Lists

Arrays

Maps

MFC\DOC\TNOO4.TXT contains a guide to the use of this tool. The hierarchy
chart of the Microsoft Foundation classes shown at the beginning of Part 2 indi-
cates these three collection templates: “CArray<TYPE>,” “CList<TYPE>,” and
“CMap<KEY, VALUE>.”

There are “list” classes for CString objects, CObject pointers, and void pointers.
A list is an ordered grouping of elements. New elements can be added at the head
or tail of the list, or before or after a specified element. The list can be traversed in
forward or reverse sequence, and elements may be removed during the traversal.
Elements can be found by zero-based index or by value, but the find operation
requires a sequential scan of the list.

The Microsoft Foundation Class Library contains “array” classes for bytes, words,
double words, CString objects, CObject pointers, and void pointers. An array is a
dynamically sized grouping of elements that are directly accessible through a zero-
based integer subscript. If a new element is inserted into an array, then the ele-
ments above the insertion point are moved up. If an element above the current
array bound is to be set, then the programmer can specify whether the array is to
grow automatically. The subscript ([]) operator can be used to set or retrieve array
elements.

When growing is not required, array collection access is just as fast as standard C
array access. The added storage overhead is insignificant.

A “map” is a dictionary that maps keys to values. Seven map classes support
CString objects, words, CObject pointers, and void pointers. Consider the
CMapWordToOb class as an example. A WORD variable is used as a key to
find the corresponding CObject pointer. Duplicate key values are not allowed. A
key-pointer pair can be inserted only if the key is not already contained in the map.

Key lookups are fast because they rely on a hashing technique. A map can be
traversed, but the retrieval sequence is indeterminate. It makes sense, then, to it-
erate over all the elements in a map.

28 The Class Libraries Reference

2.5 Miscellaneous Support Classes

The Microsoft Foundation CString, CTime, and CTimeSpan classes are not
derived from CObject. They are discussed below.

The CString Class

The CString class supports dynamic character strings. CString objects can grow
and shrink automatically, and they can be serialized. Member functions and over-
loaded operators add Basic-like string-processing capability. These features make
CString objects easier to use than C-style fixed-length character arrays. Conver-
sion functions allow CString objects to be used interchangeably with C-style
strings. Thus a CString object can be passed to a function that expects a pointer to
a constant string (const char*) parameter.

Like other Microsoft Foundation classes, the CString class allocates memory on
the heap. You must be sure that CString destructors are called at appropriate
times in order to free unneeded memory. There is no automatic “garbage collec-
tion” as there is in Basic.

The CTime and CTimeSpan Classes

The CTime class encapsulates the run-time time_t data type. Thus it represents
absolute time values in the range 1900 to 2036, approximately. There are member
functions that convert a time value to years, months, days, hours, minutes, and sec-
onds. The class has overloaded insertion and extraction operators for archiving
and for diagnostic dumping.

The CTimeSpan class extends time_t by representing relative time values. If two
CTime objects are subtracted, the result is a CTimeSpan object. A CTimeSpan
object can be added to or subtracted from a CTime object. A CTimeSpan value is
limited to the range of + 68 years, approximately.

2.6 Diagnostic Services

Several non-class-related functions and macros that provide diagnostic services
are available. Most of these require the Debug version of the Microsoft Founda-
tion Class Library and thus should not be used in released applications. For a
detailed description of the functions and macros available, see Chapter 4, “Diag-

m ol

Qo "
nosSuc OCIvICES.

General-Purpose 29

Memory Diagnostics

Most applications use the C++ new operator to allocate memory on the heap. The
Microsoft Foundation classes provide a special Debug version of new that inserts
extra control bytes in allocated memory blocks. These control bytes, together with
the run-time class information that results from CObject derivation, allow you to
analyze memory allocation statistics and detect memory block bounds violations.

A memory dump can include the source filename and the line number of the allo-
cated memory, and, in the case of objects from CObject-derived classes, the name
of the class and the output from its Dump function.

Diagnostic Output

Assertions

Most programmers want diagnostic output statements in their programs, particu-
larly during the early stages of development. The TRACE statement acts like
printf except that it has no effect with the Release version of the library. In the
Windows environment, debugging output goes to the CodeView debugger if it is
present; otherwise it goes to device AUX.

You can use the afxDump dump context object for stream-style dumping of stand-
ard types as well as Microsoft Foundation class objects. If you use afxDump, be
sure to bracket references with #ifdef _DEBUG and #endif statements.

In the Debug environment, the ASSERT macro evaluates a specified condition. If
the condition is false, the macro prints the source filename and the line number,
then it terminates the program . In the Release environment, the statement has no
effect.

VERIFY, a companion macro, evaluates the condition in both the Debug and
Release environments. It prints and terminates only in the Debug environment.

With Windows, ASSERT and VERIFY display their messages in a pop-up
dialog box.

2.7 Exception Handling

The Microsoft Foundation Class Library includes an exception-handling mecha-
nism, similar to the one in the proposed ANSI C++ standard, for handling “abnor-
mal conditions.” An abnormal condition is defined as a condition outside the
program’s control that influences the outcome of a function. Abnormal conditions
include low memory, I/O errors, and attempted use of an unsupported feature.

30

The Class Libraries Reference

They do not include programming errors or “normally expected” conditions such
as end of file.

For exception-processing examples and a more detailed explanation of error cate-
gories, see Chapter 12, “Exceptions,” in the Class Libraries User’s Guide. For a
detailed description of the functions and macros available, see Chapter 5 of this
book, “Exception Processing.”

Exception Classes and Macros

Exception handling in the Microsoft Foundation classes relies on “exception ob-
jects” and a group of macros. The process starts with the interruption of normal
program execution in response to a THROW statement (macro invocation). Ex-
ecution resumes at the appropriate CATCH statement leading into code that pre-
sumably deals with the abnormal condition. The exception objects, which are
instances of classes derived from CException, differentiate the various kinds of
exceptions and are used for communication.

This exception-handling scheme eliminates the need for extensive error testing
after every library function call. If, for example, you enclose your entire program
in an exception-handling block, then you don’t have to test for low memory after
each statement that contains the new operator.

If you don’t provide exception-processing code in your classes, then exceptions
will be caught in the Microsoft Foundation code. This results in termination of the
program through the global function AfxTerminate, which normally calls the run-
time function abort. You can use the AfxSetTerminate function to change the
effect of AfxTerminate.

When to Use Exception Handling

Out-of-memory and disk-full conditions could occur any time during program
execution. A TRY/CATCH sequence at the top level of your application can pro-
vide a warning message to the user, followed by a graceful exit.

Routine file exceptions can occur at a lower level in the application. If your pro-
gram attempts to open a nonexistent file, local CATCH logic can inform the user
or take other corrective action. A better alternative, however, might be an explicit
test for the file’s presence.

If you want your program to keep running after the exception, be very careful to
clean up memory by deleting unused cbjects. Don’t forget CString objects that

;;;;; & vaustu Uuj

have been allocated on the stack.

Macros and Global Functions

This chapter briefly describes the macros and global functions available to
simplify your programming with the Microsoft Foundation Class Library. Most
programmers will find that the macros presented here meet most of their needs.
Advanced programmers may wish to use some of the global functions provided
for special needs.

All macros are listed in alphabetical order, followed by all global functions in al-
phabetical order. A few items not documented elsewhere are documented follow-
ing the alphabetical listings.

For easy reference, the following table shows where to find related discussion and
examples in other parts of the Class Libraries Reference and in the Class Libraries

User’s Guide:

Category Reference Chapter User’s Guide Chapter
Diagnostics Chapter 4 Chapter 2

Exceptions Chapter 5 Chapters 2 and 12
Message Map Chapter 6 Chapters 3 and 14
Run-Time Class CObject Chapter 8

Information

Serialization CObject Chapter 10

32

The Class Libraries Reference

3.1 Alphabetical Listing of Macros

To find additional discussion and examples for a macro, see the table above, using
the category specified in the macro description below. Macros documented in this
section, in addition to the locations shown in the table, are indicated by the phrase
“Details follow.”

AND_CATCH
Designates a block of code for catching the second or subsequent exception
from the preceding TRY block.

For additional information, see the Exceptions category in the table.

ASSERT
Prints a message and aborts the application if the specified expression evaluates
to FALSE in the Debug version of the library.

For additional information, see the Diagnostics category in the table.

ASSERT_VALID
Tests the internal validity of an object by calling its AssertValid member func-
tion, typically overridden from CObject.

For additional information, see the Diagnostics category in the table.

BEGIN_MESSAGE_MAP
Sets up the message map for a window class.

For additional information, see the Message Map category in the table.

CATCH
Designates a block of code for catching the first exception from the preceding
TRY block.

For additional information, see the Exceptions category in the table.

DEBUG_NEW
Helps find memory leaks by providing a filename and line number for all object
allocations in Debug mode. Details follow.

For additional information, see the Diagnostics category in the table.

DECLARE_DYNAMIC
Prepares a class so that you can determine its name, the name of its base class,
and other information at run time. Details follow.

For additional information, see the Run-Time Information category in the table.

DECLARE_MESSAGE_MAP
Associates a message map with a window class declaration.

For additional information, see the Message Map category in the table.

Macros and Global Functions 33

DECLARE_SERIAL
Prepares a class to serialize its data to and from persistent storage. Details
follow.

For additional information, see the Serialization category in the table.

END_CATCH
Ends the last CATCH or AND_CATCH block in an exception frame.

For additional information, see the Exceptions category in the table.

END_MESSAGE_MAP
Completes a message-map definition for a window class.

For additional information, see the Message Map category in the table.

IMPLEMENT_DYNAMIC
Enables a class so that you can determine its run-time information. Details
follow.

For additional information, see the Run-Time Information category in the table.

IMPLEMENT_SERIAL
Enables the ability of a class to serialize its data to and from persistent storage.
Details follow.

For additional information, see the Serialization category in the table.

RUNTIME_ CLASS
Returns a CRuntimeClass object from which you can extract run-time informa-
tion about a specified class. Details follow.

For additional information, see the Run-Time Information category in the table.

THROW
Throws a specified exception.

For additional information, see the Exceptions category in the table.

THROW_LAST
Invokes the exception handler in the next outer frame.

For additional information, see the Exceptions category in the table.

TRACE
Provides a printf-like capability in the Debug version of the library.

For additional information, see the Diagnostics category in the table.

TRY
Designates a block of code for exception processing.

For additional information, see the Exceptions category in the table.

VERIFY
Similar to ASSERT but evaluates the expression in the Release version of the
library as well as in the Debug version.

For additional information, see the Diagnostics category in the table.

34 The Class Libraries Reference

3.2 Alphabetical Listing of Global Functions

To find additional discussion and examples for a global function, see the preced-
ing table, using the category specified in the function description below. Functions
that are documented in this section are indicated by the phrase “Details follow.”

AfxAbort
The default function called by AfxTerminate.

For additional information, see the Exceptions category in the table.

AfxCheckMemory
Checks all currently allocated memory for corrupted guard bytes.

For additional information, see the Diagnostics category in the table.

AfxDoForAllClasses
Performs a specified function on all classes derived from CObject that support
run-time type checking and are used by the running program.

For additional information, see the Diagnostics category in the table.

AfxDoForAllObjects
Performs a specified function on all objects derived from CObject that support
run-time type checking and are used by the running program.

For additional information, see the Diagnostics category in the table.

AfxEnableMemoryTracking
Turns memory tracking on and off.

For additional information, see the Diagnostics category in the table.

AfxGetApp
Returns a pointer to the application’s one CWinApp object. Details follow.

AfxGetAppName
Returns a string containing the application’s name. Details follow.

AfxGetInstanceHandle
Returns a HANDLE to the cutrent instance of the application. Details follow.

AfxGetResourceHandle
Returns a HANDLE to the current instance of the application. Use this handle
to access the application’s resources directly. Details follow.

AfxIsMemoryBlock
Verifies that a memory block has been properly allocated.

For additional information, see the Diagnostics category in the table.

AfxIsValidAddress
Verifies that a memory block is within the program’s bounds.

For additional information, see the Diagnostics category in the table.

Macros and Global Functions 35

AfxRegisterWndClass
Registers a Windows window class to supplement those registered automat-
ically by the library. Details follow.

For additional information, see the Class Libraries User’s Guide, Chapter 14,
“Window Management.”

AfxSetAllocHook
Enables the calling of a function on each memory allocation.

For additional information, see the Diagnostics category in the table.

AfxSetAllocStop
Enables the calling of a function on the nth memory allocation.

For additional information, see the Diagnostics catgeory in the table.

AfxSetTerminate
Sets the final destination of calls to AfxTerminate.

For additional information, see the Exceptions category in the table.

AfxTerminate
Called internally if there is no applicable TRY/CATCH frame in effect.

For additional information, see the Exceptions category in the table.

AfxThrowArchiveException
Throws an archive exception.

For additional information, see the Exceptions category in the table.

AfxThrowFileException
Throws a file exception.

For additional information, see the Exceptions category in the table.

AfxThrowMemoryException
Throws a memory exception.

For additional information, see the Exceptions category in the table.

AfxThrowNotSupportedException
Throws a not-supported exception.

For additional information, see the Exceptions category in the table.

AfxThrowResourceException
Throws a Windows resource-not-found exception.

For additional information, see the Exceptions category in the table.

36 The Class Libraries Reference

3.3 Macros and Global Functions Not Documented Elsewhere

Syntax

Remarks

Return Value

AfxGetApp

CWinApp* AfxGetApp();

Returns a pointer to the one and only CWinApp object for the Windows applica-
tion. This pointer is useful for getting access to the main message dispatch code or
the topmost window.

A pointer to a CWinApp object.

Syntax

Remarks

Return Value

AfxGetAppName

const char* AfxGetAppName();

Returns a null-terminated string containing the Windows application’s name. This
string is useful for diagnostic messages or as a root for temporary string names.

A null-terminated string containing the application’s name.

Syntax
Remarks

Return Value

AfxGetlnstanceHandle
HANDLE AfxGetInstanceHandle();
Returns a HANDLE to the current instance of the Windows application.

A HANDLE to the current instance of the application.

Macros and Global Functions 37

Syntax

Remarks

Return Value

AfxGetResourceHandle
HANDLE AfxGetResourceHandle();

Returns a HANDLE to the current instance of the Windows application. Use this
handle to access the application’s resources directly, for example in calls to the
Windows function FindResource.

Note Override and reimplement this function if you wish to load your resources
from a DLL.

A HANDLE to the current instance of the application.

Syntax

Parameters

Remarks

AfxRegisterWndClass

const char* AfxRegisterWndClass(UINT nClasstyle, HCURSOR hCursor = 0,
HBRUSH hbrBackground = 0, HICON hicon =0);

nClasstyle
The Windows class style or combination of styles for the window class. This
parameter can be any valid window style or control style, or a combination of
styles created by using the bitwise-OR (|) operator.

hCursor
A handle to the cursor resource to be installed in each window created from the
window class.

hbrBackground
A handle to the brush resource to be installed in each window created from the
window class.

hlcon
A handle to the icon resource to be installed in each window created from the
window class.

Although the Microsoft Foundation Class Library automatically registers several
standard window classes for you, you can call this function to register your own
window classes. You may also use the function to change the application’s icon,
although a simpler way is discussed in the Class Libraries User’s Guide. For addi-
tional information, see Chapter 14, “Window Management.” See that chapter as
well for more information about using AfxRegisterWndClass, and see Technical
Note 1, in the file TNOO1.TXT on the distribution disks.

38 The Class Libraries Reference

Return Value

A null-terminated string containing the class name. You can pass this class name
to the CWnd::Create member function to create a window. The name is
generated by the Microsoft Foundation Class Library.

Note The return value is stored in a static buffer. To save this string, assign it to a
CString variable.)

Syntax

Remarks

DEBUG_NEW Macro

#define new DEBUG_NEW

Use to assist in finding memory leaks. You can use DEBUG_NEW everywhere
in your program that you would ordinarily use the new operator to allocate heap
storage.

In Debug mode (when the _DEBUG symbol is defined), DEBUG_NEW keeps
track of the filename and line number for each object that it allocates. Then, when
you use the DumpAllObjectsince member function of class CMemoryState,
each object allocated with DEBUG_NEW is shown with the filename and line
number where it was allocated.

To use DEBUG_NEW, insert the define directive shown in the syntax line above
into your source files. Then wherever you use new, the preprocessor will insert
DEBUG_NEW, and the class library does the rest. When you compile a release
version of your program, DEBUG_NEW resolves to a simple new operation, and
the filename and line number information is not generated.

Note In Release mode, DEBUG_NEW is defined to be the standard operator
new, so you can leave DEBUG_NEW in your code.

Syntax

Parameters

DECLARE_DYNAMIC Macro
DECLARE_DYNAMIC(className);

className
The name of the class that you want to be compliant with the ability of class
CObject to supply dynamic run-time class information.

Macros and Global Functions

39

Remarks

See Also

Any class derived from class CObject can supply run-time information about it-
self and its base class, provided you invoke the DECLARE_DYNAMIC and
IMPLEMENT_DYNAMIC macros. This means you can determine the exact
class of an object at run time and also determine the base class from which it was

derived.

Put the DECLARE_DYNAMIC macro in your class declaration. Put the
IMPLEMENT_DYNAMIC macro in your .CPP file. These macros add code to

your class to enable dynamic run-time information.

You can access the dynamic information about a class with the IsKindOf member

function of class CObject and with the RUNTIME_ CLASS macro. This run-
time information is available and valid only for classes that have a single base
class. For more information and examples, see the Class Libraries User’s Guide,

Chapter 8, “The CObject Class.”

IMPLEMENT_DYNAMIC, RUNTIME_ CLASS, CObject

Syntax

Parameters

Remarks

DECLARE_SERIAL Macro

DECLARE_SERIAL(className)

className

The name of the class that is to have serialization capability.

Classes that are derived from CObject can take advantage of the ability of
CObject ability to write its members to a persistent storage medium, such as a

disk file, and to read its persistent data back in.

DECLARE_SERIAL includes dynamic type information as well, so you don’t
need DECLARE_DYNAMIC if you use DECLARE_SERIAL.

To take advantage of this ability, a derived class must use the

DECLARE_SERIAL macro in its class declaration and the corresponding

IMPLEMENT_SERIAL macro in its .CPP file. The class must also override the

Serialize member function of class CObject.

40 The Class Libraries Reference

See Also

Put the DECLARE_SERIAL macro at the beginning of your derived class decla-
ration. For more discussion and examples, see the Class Libraries User’s Guide,
Chapter 2, “Creating a Data Model with the Microsoft Foundation Classes,” and
Chapter 10, “Files and Serialization.”

IMPLEMENT_SERIAL

Syntax

Parameters

Remarks

See Also

IMPLEMENT_DYNAMIC Macro

IMPLEMENT_DYNAMIC(className, baseClassName)

className
The name of the class that you want to be compliant with the ability of class
CObject to supply dynamic run-time information.

baseClassName
The name of the base class of your compliant class.

Use in your .CPP file in conjunction with the DECLARE_DYNAMIC macro in
your .H file to allow your class to supply dynamic run-time information. This al-
lows you to query an object with the IsKindOf member function in class CObject
to determine its class and base class names. For discussion and examples, see the
Class Libraries User’s Guide, Chapter 8, “The CObject Class.”

DECLARE_DYNAMIC, CObject

Syntax

Parameters

IMPLEMENT_SERIAL Macro

IMPLEMENT_SERIAL(className, baseClassName, schemaNumber)

className
The name of the class that is to have the ability to serialize its members to per-
sistent storage.

baseClassName
The name of the base class of the serializable class.

Macros and Global Functions 4

Remarks

See Also

schemaNumber
The version number for objects of this class. If you modify a class, you can
assign it a higher schema. Then, during serialization from storage to memory, if
the schema number of the object on disk does not match that of the class in
memory, an exception is thrown. This prevents you from reading an incorrect
version of an object. The schema number is an integer greater than or equal to O.

Use in your .CPP file to correspond to the DECLARE_SERIAL macro in your
.H file. This macro adds the necessary code to permit a class to serialize its mem-
bers. You must also override the Serialize member function of class CObject.

DECLARE_SERIAL, CObject::Serialize, CObject

Syntax

Parameters

Remarks

See Also

Example

RUNTIME_ CLASS Macro

RUNTIME_ CLASS(className)

className
The name of the class that you want run-time class information.

Use to extract the run-time class information for a specified class derived

from CObject. The macro returns an object of class CRuntimeClass. A
CRuntimeClass structure has member variables containing the class name, object
size, schema number, base class, and other information, which you can access
directly. CRuntimeClass is defined in the file AFX.H. You can also use the
IsKindOf member function of class CObject to query whether an object belongs
to a specified class. For more information and examples, see the Class Libraries
User’s Guide, Chapter 8, “The CObject Class.”

CObject::IsKindOf, CRuntimeClass, CObject

CRuntimeClass* pCls;
pCls = RUNTIME_CLASS(CObject);

Diagnostic Services

This chapter describes a group of macros and global functions that provide diag-
nostic services. All these functions, except as noted, require the Debug version of
the Microsoft Foundation Class Library.

In the Debug library, all allocated memory blocks are bracketed with a series of
“guard bytes.” If these bytes are disturbed by an errant memory write, then the
diagnostic routines can report the problem.

If you include the line

#define new DEBUG_NEW

in your implementation file, then all calls to new will store the filename and line
number where the memory allocation took place. The DumpAllObjectsSince
function of the CMemoryState class will display this extra information, thus
greatly simplifying the identification of memory leaks.

Since many of these diagnostic functions are designed for tracking memory errors,
you should refer to the “Memory Management” section in Chapter 7 of the Class
Libraries User’s Guide for a discussion of memory allocation for both MS-DOS
and Windows while using the Microsoft Foundation Class Library. Refer also to
the class CDumpContext for additional information on diagnostic output. The
cookbook section of the Class Libraries User’s Guide, “Detecting Memory
Leaks” (page 290), illustrates the use of several key memory-diagnostic functions.

For a general discussion of diagnostic facilities, see Chapter 11, “Diagnostics,” in
the Class Libraries User’s Guide.

To use these macros and global functions, add the following directives to the top
of your program:

#define _DEBUG

#include <afx.h>

44 The Class Libraries Reference

4.1 General Diagnostic Macros

The following list describes general diagnostic macros:

ASSERT
Prints a message if the specified expression evaluates to FALSE in the Debug
version of the library, and then aborts the program.

ASSERT_VALID
Tests the internal validity of an object by calling its AssertValid member func-
tion, typically overridden from CObject.

TRACE
Provides printf-like capability in the Debug version of the library.

VERIFY
Similar to ASSERT but evaluates the expression in the Release version of the
library as well as in the Debug version.

4.2 General Diagnostic Functions

The following list describes general diagnostic functions:

afxMemDF
Global variable that controls the behavior of the debugging memory allocator.

AfxCheckMemory
Checks all currently allocated memory for corrupted guard bytes.

AfxEnableMemoryTracking
Turns memory tracking on and off.

AfxIsMemoryBlock
Verifies that a memory block has been properly allocated.

AfxIsValidAddress
Verifies that any memory block is within the program’s bounds.

AfxSetAllocHook
Enables the calling of a function on each memory allocation.

AfxSetAllocStop
Enables the calling of a function on the nth memory allocation.

Checkpoint
A CMemoryState member function that checkpoints a memory state.

CMemoryState
Constructor for a class-like structure that controls memory checkpointing.

Diagnostic Services 45

Difference
A CMemoryState member function that computes the difference between two
checkpointed memory states.

DumpAllObjectsSince
A CMemoryState member function that dumps all currently allocated objects
since the last checkpoint.

DumpStatistics
A CMemoryState member function that prints memory allocation statistics.

4.3 Object Diagnostic Functions

The following list describes object diagnostic functions:

AfxDoForAllClasses
Performs a specified function on all CObject-derived classes that support
run-time type checking by using the DECLARE_DYNAMIC or
DECLARE_SERIAL macros.

AfxDoForAllObjects
Performs a specified function on all CObject-derived objects that support run-
time type checking.

46 The Class Libraries Reference

4.4 Global Variables

Syntax

Remarks

Example

afxMemDF

int afxMemDF;

An integer variable, easily accessible from a debugger, that tunes the allocation
diagnostics. It can have the following values as specified by the enumeration
afxMemDF:

allocMemDF Turns on debugging allocator (default setting
in Debug library).
delayFreeMemDF Delays freeing memory. While your program

frees a memory block.

checkAlwaysMemDF Calls AfxCheckMemory every time memory
is allocated or freed. This will significantly
slow memory allocations and deallocations.

afxMemDF = delayFreeMemDF | checkAlwaysMemDF;

Diagnostic Services 47

4.5 Functions and Macros

Syntax

Remarks

Return Value

AfxCheckMemory

BOOL PASCAL AfxCheckMemory();

Iterates through all memory blocks currently allocated on the heap. These blocks
include those allocated by new, but not those allocated by direct calls to underly-
ing memory allocators such as malloc or ::GlobalAlloc. If any block is found to
have corrupt guard bytes, a message is printed on stderr.

If the block contains an object of a class derived from CObject, then the function
reports an Object, otherwise it reports a Non-Object. It always reports an
address that corresponds to the address printed by DumpAllObjectsSince.

Additionally, the function validates the free memory pool, printing error messages
as required.

If the function detects no memory corruption, it prints nothing.

If you include the line

f#define new DEBUG_NEW

in a program module, then subsequent calls to AfxCheckMemory show the
filename and line number where the memory was allocated.

Note If your module contains one or more implementations of serializable
classes, then you must put the new redefinition statement after the last
IMPLEMENT_SERIAL macro invocation.

TRUE if no memory errors; otherwise FALSE.

48 The Class Libraries Reference

Example CAgex pcage = new CAge(21); // CAge is derived from CObject
Age* page = new Age(22); // Age is NOT derived from CObject
*(((charx) pcage) - 1) = 99; // Corrupt preceding guard byte
(((char) page) - 1) = 99; // Corrupt preceding guard byte
AfxCheckMemory();
/= TYPICAL RESULTS
memory check error at $0067495F = $63, should be $FD
DAMAGE: before Non-Object block at $00674960
Non-Object allocated at file test@2.cxx(48)
Non-Object located at $00674960 is 2 bytes long
memory check error at $00674905 = $63, should be $FD
DAMAGE: before Object block at $00674906
Object allocated at file test@2.cxx(47)
Object located at $00674906 is 4 bytes 1long
*/
Syntax void PASCAL AfxDoForAllClasses(void (*pfin)(const CRuntimeClass* pClass,
void* pContext), void* pContext);
Parameters pfn
A pointer to an iteration function to execute for each class. The function argu-
ments are a pointer to a CRuntimeClass object and an optional void pointer to
extra data that the caller supplies to the function.
pClass
A pointer to a CRuntimeClass object. AfxDoForAllClasses uses this parame-
ter to pass each eligible class in turn to the iteration function.
pContext
A pointer to optional data that the caller can supply to the iteration function.
Remarks Executes the specified iteration function for all CObject-derived classes in

the application’s memory space that support run-time type checking using the
DECLARE_DYNAMIC or DECLARE_SERIAL macros. The pointer passed
to AfxDoForAllClasses in pContext is passed to the specified iteration function
each time it is called.

Note This function only works in the Debug version of the library.

Diagnostic Services 49

AfxDoForAllObjects

Syntax void PASCAL AfxDoForAllObjects(void (*pfin)(CObject* pObject,
void* pContext), void* pContext);

Parameters pfn
A pointer to an iteration function to execute for each object. The function argu-
ments are a pointer to a CObject and an optional veid pointer to extra data that
the caller supplies to the function.

pObject
A pointer to an object of class CObject or a class derived from it.
AfxDoForAllObjects uses this parameter to pass each eligible object in turn to
the iteration function.

pContext
A pointer to optional data that the caller can supply to the iteration function.

Remarks Executes the specified iteration function for all objects derived from CObject in
the application’s memory space. The objects must have been allocated with new;
stack objects are not enumerated. The pointer passed to AfxDoForAllClasses in
pContext is passed to the specified iteration function each time it is called.

Note This function only works in the Debug version of the library.

AfxEnableMemoryTracking
Syntax BOOL PASCAL AfxEnableMemoryTracking(BOOL bTrack);

Parameters bTrack
TRUE turns on memory tracking; FALSE turns it off.

Remarks Diagnostic memory tracking is normally enabled in the Debug version of the
Microsoft Foundation classes. Use this function to disable tracking on sections of
your code that you know are allocating blocks correctly.

Return Value The previous setting of the tracking-enable flag.

50 The Class Libraries Reference

Syntax

Parameters

Remarks

Return Value

Example

See Also

AfxisMemoryBlock

BOOL PASCAL AfxIsMemoryBlock(const void* p, UINT nBytes,
LONG#* plRequestNumber = NULL);

4
A void pointer to the block of memory to be tested.

nBytes
The length of the memory block in bytes.

plRequestNumber
A pointer to a long integer that will be filled in with the memory block’s alloca-
tion sequence number. The variable pointed to by p/RequestNumber will only
be filled in if AfxIsMemoryBlock returns TRUE.

Tests a memory address to make sure it represents a currently active memory
block that was allocated by the diagnostic version of new. It also checks the
specified size against the original allocated size. The allocation sequence number
that is returned in plRequestNumber if the function returns TRUE is the order in
which the block was allocated relative to all other new allocations.

TRUE if the memory block is currently allocated and the length is correct; other-
wise FALSE.

CAge* pcage = new CAge(21); // CAge is derived from CObject
if(AfxIsMemoryBlock(pcage, sizeof(CAge)) != TRUE)
exit(1); // Invalid memory

AfxIsValidAddress

Diagnostic Services 51

Syntax

Parameters

Remarks

Return Value

AfxisValidAddress

BOOL FAR PASCAL AfxIsValidAddress(const void FAR* [p, UINT nBytes,
BOOL bReadWrite = TRUE);

Ip
Points to the block of memory to be tested.

nBytes
Contains the length of the memory block in bytes.

bReadWrite
Specifies whether the memory is both for reading and writing.

Tests any memory block to ensure that it is contained entirely within the pro-
gram’s memory space. The address is not restricted to blocks allocated by new.

Note With MS-DOS real mode, only addresses with null selectors are invalid; all
others are valid. A huge pointer cast to a FAR pointer cannot be used as a parame-
ter to AfxIsValidAddress.

TRUE if the specified memory block is contained entirely within the program’s
memory space; otherwise FALSE.

Example char# pbuf = (char*) malloc(10);

if(AfxIsValidAddress(pbuf, 1@, TRUE) != TRUE)

exit(1); // Invalid memory

See Also AfxIsMemoryBlock

AfxSetAllocHook
Syntax AFX_ALLOC_HOOK AfxSetAllocHook(AFX_ALLOC_HOOK

pfmAllocHook);

Parameters pfmAllocHook

The name of the function to call. The function must return a BOOL value and
accept size_t, BOOL, and long arguments.

52 The Class Libraries Reference

Remarks

Hook Function

Sets a hook that enables calling of the specified function each time memory is
allocated.

The hook function is described below.

The Microsoft Foundation Class Library debug memory allocator can call a user-
defined hook function to allow the user to control whether to permit the allocation.

Allocation hook functions are prototyped as:
BOOL AllocHook(size_t nSize, BOOL bObject, LONG [RequestNumber);

Parameter Description

nSize The size of the proposed memory allocation.
bObject TRUE if the allocation is for a CObject-derived object.

[RequestNumber The memory allocation’s sequence number.

Return Value
TRUE if you want to permit the allocation; otherwise FALSE.

Syntax

Parameters

Remarks

AfxSetAllocStop

void PASCAL AfxSetAllocStop(LONG [RequestNumber);

IRequestNumber
The sequence number of the memory allocation on which the program will halt.

Each memory allocation is assigned a sequential serial number. This function
forces the program to halt (using the INT 3 interrupt) on the specified memory al-
location sequence number. This is useful if you are running the program from
within a debugger. You can obtain the allocation sequence number to pass in
[RequestNumber by calling AfxIsMemoryBlock.

Diagnostic Services 53

Syntax

Parameters

Remarks

Example

See Also

ASSERT Macro

ASSERT(booleanExpression);

booleanExpression
An expression (including pointer values) that evaluates to TRUE or FALSE.

The ASSERT macro evaluates its argument. If the result is FALSE, the macro
prints a diagnostic message and aborts the program. If the condition is TRUE, it
does nothing.

The diagnostic message has the form:

assertion failed in file <name> in Tine <num>

where name is the name of the source file, and num is the line number of the
assertion that failed in the source file.

In the Release environment, ASSERT does not evaluate the expression and thus
will not interrupt the program. If the expression must be evaluated regardless of en-
vironment, use the VERIFY macro in place of ASSERT.

CAge* pcage = new CAge(21); // CAge is derived from CObject
ASSERT(pcage->IsKindOf(RUNTIME_CLASS(CAge)));
// Terminates program only if pcage is NOT a CAgex*

VERIFY

Syntax

Parameters

Remarks

ASSERT VALID Macro

ASSERT_VALID(object);

object
An object of a class derived from CObject and with an overriding version of
the AssertValid member function.

Use to test your assumptions about the validity of an object’s internal state.
ASSERT_ VALID calls the AssertValid member function of the object passed as
its argument. By default, the AssertValid member function of class CObject is
called, but typically you override AssertValid in classes that you derive from
CObject so the overriding version will be called. In your AssertValid override,

54 The Class Libraries Reference

you can test the object’s internal validity. For example, if the object represents a
linked list, you could verify that the head and tail pointers are NULL if the list is
empty and not NULL if the list is not empty.

For more information and examples, see the Class Libraries User’s Guide, Chap-
ters 4 and 11, “Phone Book: A Simple Windows Database,” and “Diagnostics.”

See Also ASSERT, VERIFY, CObject, CObject::AssertValid
CMemoryState::Checkpoint

Syntax void Checkpoint();

Remarks Takes a snapshot summary of memory and stores it in this CMemoryState object.
The CMemoryState member functions Difference and DumpAllObjectsSince
use this snapshot data.

Example See the example for the CMemoryState constructor.
CMemoryState::CMemoryState

Syntax CMemoryState();

Remarks Constructs an empty CMemoryState object that must be filled in by the
Checkpoint or Difference member functions.

Example // Includes all CMemoryState functions

CMemoryState cmOl1d, cmNew, cmDif;
cm01d.Checkpoint();

CAge* pagel = new CAge(21);
CAge* page?2 = new CAge(22);
cm01d.DumpAT10bjectsSince();
cmNew.Checkpoint();
cmDif.Difference(cm01d, cmNew);
cmDif.DumpStatistics();

Diagnostic Services 55

Syntax

Parameters

Remarks

Example

CMemoryState::Difference

BOOL Difference(const CMemoryState& oldState,
const CMemoryState& newState);

oldState
The initial memory state, as defined by a CMemoryState checkpoint.

newState
The new memory state, as defined by a CMemoryState checkpoint.

Compares two checkpointed CMemoryState objects, then stores the difference
into this CMemoryState object. Checkpoint must have been called for each of
the two memory-state parameters.

See the example for the CMemoryState constructor.

Syntax

Remarks

Example

CMemoryState::DumpAllObjectsSince

void DumpAllObjectsSince() const;

Calls the Dump function for all objects of derived CObject classes that
were allocated (and are still allocated) since the last Checkpoint call for this
CMemoryState object.

Use DumpAllObjectsSince in conjunction with AfxCheckMemory to match re-
ported corrupted memory with the contents of the objects contained there.

Calling DumpAllObjectsSince with an uninitialized CMemoryState object will
dump out all objects currently in memory.

See the example for the CMemoryState constructor.

56 The Class Libraries Reference

Syntax

Remarks

Example

CMemoryState::DumpStatistics

void DumpStatistics() const;

Prints, on afxDump, a concise memory statistics report from a CMemoryState
object that is filled by the Difference member function. The report shows the
following:

CObject blocks still allocated on the heap.
Non-CObject blocks still allocated on the heap.

® The maximum memory used by the program at any one time.

The total memory currently used by the program.

For a detailed description of the report, see the Class Libraries User’s Guide sec-
tion “Detecting Memory Leaks,” on page 290.

See the example for the CMemoryState constructor.

Syntax

Parameters

Remarks

Example

TRACE Macro

TRACE(exp);

exp
A variable number of arguments used exactly in the same way as the run-time
function printf uses them.

In the Debug environment, the TRACE macro output goes to afxDump. In the Re-
lease environment, it does nothing. This is a convenient way of generating debug-
ging output that will appear only in the Debug version of your program.

int i = 1;

char sz[] = "one";

TRACE("Integer = %d, String = %s\\n", i, sz);
// Output: 'Integer = 1, String = one'

Diagnostic Services 57

Syntax

Parameters

Remarks

Example

See Also

VERIFY Macro

VERIFY (booleanExpression);

exp
An expression (including pointer values) that evaluates to TRUE or FALSE.

In the Debug version of the Microsoft Foundation Class Library, the VERIFY
macro evaluates its argument. If the result is FALSE, the macro prints a diagnos-
tic message and halts the program. If the condition is TRUE, it does nothing.

The diagnostic message has the form:

assertion failed in file <name> in line <num>

where name is the name of the source file and num is the line number of the
assertion that failed in the source file.

In the Release version of the Microsoft Foundation Class Library, VERIFY evalu-
ates the expression but does not print or interrupt the program. For example, if the
expression is a function call, the call will be made.

CFile f;
VERIFY(f.Open("file.dat", CFile::modeCreate | CFile::modeWrite));
// Terminates program if Open fails; always executes Open

ASSERT

Exception Processing

This chapter describes macros and global functions that relate to exception
processing.

For examples and more details, see the section “Exception Handling” (on page 61
in Chapter 2) and the section “Catching Exceptions” (in Chapter 12, “Excep-
tions”), both in the Class Libraries User’s Guide. Y ou may also wish to refer to
class CException, later in this book.

Note The AfxThrow functions are equivalent to the THROW macro with the ap-
propriate exception class as an argument.

To use these macros and global functions, add the following directive at the top of
your program:

#include <afx.h>

5.1 Exception Macros

TRY
Designates a block of code for exception processing.

CATCH
Designates a block for catching an exception from the preceding TRY block.

AND_CATCH
Designates a block for catching additional exception types from the preceding
TRY block.

END_CATCH
Ends the last CATCH or AND_CATCH block.

60 The Class Libraries Reference

THROW
Throws a specified exception.

THROW_LAST
Invokes the exception handler in the next outer frame.

5.2 Exception Throwing Functions

AfxThrowArchiveException
Throws an archive exception.

AfxThrowFileException
Throws a file exception.

AfxThrowMemoryException
Throws a memory exception.

AfxThrowNotSupported Exception
Throws a not-supported exception.

AfxThrowResourceException
Throws a Windows resource-not-found exception.

9.3 Termination Functions
AfxTerminate
Called internally if there is no applicable TRY/CATCH in effect.

AfxSetTerminate
Sets the final destination of calls to AfxTerminate.

AfxAbort
The default function called by AfxTerminate.

Exception Processing 61

5.4 Functions and Macros

AfxAbort

Syntax void CDECL AfxAbort();
Remarks This is the default termination function supplied by the Microsoft Foundation
classes.
See Also AfxSetTerminate, AfxTerminate
AfxSetTerminate
Syntax AFX_TERM_PROC AfxSetTerminate(AFX_TERM_PROC proc);
Parameters proc

The name of a termination function that will be called by AfxTerminate.
Termination functions must take no arguments and return nothing.

Remarks Links AfxTerminate to the specified function. The default termination function is
AfxAbort. AfxTerminate is called internally by Microsoft Foundation member
functions when there is a fatal error, such as an uncaught exception.

62 The Class Libraries Reference

Example

See Also

void MyTerminateProc() // Called instead of AfxAbort
{

printf("Out of memory!\\n");

exit(1);
}

void main()
{
AfxSetTerminate(MyTerminateProc);

while (1)

{
// new calls AfxTerminate if unsuccessful
BYTE * p = new BYTE[1024]; // Consume memory
printf("consumed memory at $%x\\n", p);

AfxAbort, AfxTerminate

Syntax

Remarks

See Also

AfxTerminate

void CDECL AfxTerminate();

Called internally by Microsoft Foundation member functions when there is a fatal
error, such as an uncaught exception. Normally, AfxTerminate calls AfxAbort,
but you can use AfxSetTerminate to enable the calling of a different function.

You can call AfxTerminate any time you encounter an error from which you can-
not recover.

AfxAbort, AfxSetTerminate

Exception Processing 63

Syntax

Parameters

Remarks

AfxThrowArchiveException
void PASCAL AfxThrowArchiveException(int cause);
cause
An integer that indicates the reason for the exception. For a list of the possible

values, see CArchiveException::m_ cause

Throws CArchiveException. This is a helper function used in the implementation
of the Microsoft Foundation classes.

Syntax

Parameters

Remarks

See Also

AfxThrowFileException

void PASCAL AfxThrowFileException(int cause, LONG [OsError =—1);

cause
An integer that indicates the reason for the exception. For a list of the possible
values, see CFileException::m_ cause.

lOsError
An operating-system-specific reason for the exception, if available. The
[OsError parameter provides more information than cause.

Throws a CFileException. You are responsible for determining the cause based
on the operating system error code. This is a helper function used in the implemen-
tation of the Microsoft Foundation classes.

Call this function when you implement your own low-level file operations in a
derived file class.

CFileException::ThrowOsError

64 The Class Libraries Reference

AfxThrowMemoryException

Syntax void PASCAL AfxThrowMemoryException();

Remarks Throws a CMemoryException. This is a helper function used in the implementa-
tion of the Microsoft Foundation classes.

Call this function if calls to underlying system memory allocators (such as malloc
and ::GlobalAlloc) fail. You do not need to call it for new because new makes the
call internally.

AfxThrowNotSupportedException

Syntax void PASCAL AfxThrowNotSupportedException();

Remarks Throws a CNotSupportedException. This is a helper function used in the im-
plementation of the Microsoft Foundation classes.
AfxThrowResourceException

Syntax void PASCAL AfxThrowResourceException();

Remarks Throws a CResourceException. It is normally called when a Windows resource

cannot be loaded. This is a helper function used in the implementation of the
Microsoft Foundation classes.

Note This function requires the statement #include <afxwin.h>.

Exception Processing 65

AND CATCH Macro

Syntax AND_ CATCH(exception_class, exception_object_pointer_name)
Parameters exception_class
The specific exception type to test for. For a list of standard exception classes,
see CException.
exception_object_pointer_name
A name for an exception object pointer that will be created by the macro.
You can use the pointer name to access the exception object within the
AND_CATCH block.
Remarks Defines a block of code for catching additional exception types thrown in a preced-
ing TRY block. Use the CATCH macro to catch one exception type, then the
AND_CATCH macro to catch each subsequent type.
The exception-processing code can interrogate the exception object, if appropriate,
to get more information about the specific cause of the exception. Invocation of
the THROW_LAST macro within the AND_CATCH block shifts processing to
the next outer exception frame.
Note The AND_CATCH block is defined as a C++ scope (delineated by curly
braces). If you declare variables in this scope, remember that they are accessible
only within that scope.
AND_ CATCH marks the end of the preceding CATCH or AND_CATCH block.
See Also TRY, CATCH, THROW, END_CATCH, THROW_LAST
CATCH Macro
Syntax CATCH(exception_class, exception_object_pointer_name)
Parameters exception_class

The specific exception type to test for. For a list of standard exception classes,
see CException.

exception_object_pointer_name
A name for an exception object pointer that will be created by the macro. You
can use the pointer name to access the exception object within the CATCH
block.

66 The Class Libraries Reference

Remarks Defines a block of code for catching the first exception type thrown in a preceding
TRY block. The exception-processing code can interrogate the exception object, if
appropriate, to get more information about the specific cause of the exception. In-
vocation of the THROW_LAST macro shifts processing to the next outer excep-
tion frame.

Note The CATCH block is defined as a C++ scope (delineated by curly braces).
If you declare variables in this scope, remember that they are accessible only
within that scope.

If exception_class is CException, then all exception types will be caught. You can
use CObject::IsKindOf to determine which specific exception was thrown. A bet-
ter way to catch several kinds of exceptions is to use sequential AND_CATCH
statements, each with a different exception type.

Note The exception object is created by the macro. You do not need to declare it
yourself.

See Also TRY, AND_CATCH, END_CATCH, THROW, THROW_LAST
END_CATCH Macro

Syntax END_CATCH

Remarks Marks the end of the last CATCH or AND_CATCH block.

See Also TRY, CATCH, THROW, AND_CATCH, THROW_LAST
THROW Macro

Syntax THROW(exception_object_pointer);

Parameters exception_object_pointer

Points to an exception object derived from CException.
Remarks Throws the specified exception. It interrupts program execution, passing control to

the associated CATCH block in your program. If you have not provided the

Exception Processing 67

See Also

CATCH block, then control is passed to a Microsoft Foundation Class Library
module that prints an error message and exits.

TRY, CATCH, THROW_LAST, AND_CATCH, END_CATCH

Syntax

Remarks

See Also

THROW _LAST Macro

THROW_LAST();

Rethrows the exception back to the next outer CATCH block. If your code does
not contain an outer block, then the Microsoft Foundation Class Library prints an
appropriate error message and terminates the program, just as it would if you pro-
vided no exception-processing logic.

This allows you to throw a locally created exception. If you try to throw an excep-
tion that you have just caught, it will normally go out of scope and be deleted.
With THROW_LAST, the exception is passed correctly to the next CATCH
handler.

TRY, CATCH, THROW, AND_CATCH, END_CATCH

Syntax

Remarks

See Also

TRY Macro

TRY

Identifies a block of code that might throw exceptions. Those exceptions are
handled in the following CATCH and AND_CATCH blocks. Recursion is al-
lowed: exceptions may be passed to an outer TRY block, either by ignoring them
or by using the THROW_LAST macro.

Note The TRY block is defined as a C++ scope (delineated by curly braces). If

you declare variables in this scope, remember that they are accessible only within
that scope.

THROW, CATCH, AND_CATCH, END_CATCH

Message Map Cross-Reference

This chapter lists all possible CWnd message map entries along with the corre-
sponding member function prototypes.

6.1 How to Use the Cross-Reference

In entries where the term memberFxn is used, you must write your own member
function for a derived CWnd class. You can give these functions any name you
like. Other functions, such as OnActivate, are member functions of the CWnd
base class that, if called, pass the message to the DefWindowProc Windows func-
tion. If you wish to process Windows notification messages, you must override the
corresponding CWnd function in your derived class. Your function should call the
overridden function in your base class so that the base class(es), and Windows,
can operate on the message.

In all cases you must put the function prototype in the CWnd-derived class
header, and you must code the message map entry as shown. See Chapter 14 of
the Class Libraries User’s Guide cookbook for message map examples.

The term id is any user-defined menu item ID (WM_ COMMAND messages) or
control ID (child window notification messages). The terms message and
wNotifyCode are the Windows message IDs as defined in WINDOWS.H. The
term nMessageVariable is the name of a variable that contains the return value
from the RegisterWindowMessage Windows function. It must be declared
NEAR.

70 The Class Libraries Reference

6.2 Message Map Function Categories

The rest of this section is divided into the following categories. Each category rep-
resents a group of Windows messages for which the Microsoft Foundation Class
Library provides handler functions that you can override in your derived window
classes.

= Handlers for WM_COMMAND messages generated by user menu selections
= Handlers for WM_COMMAND messages generated by keys

» Handlers for notification messages from child windows

= Handlers for WM_ messages, such as WM_PAINT

6.3 Handlers for WM_COMMAND Messages

Map Entry Function Prototype

ON_COMMAND(id, memberFxn) afx_msg void memberFxn();

6.4 Handlers for Child Window Notification Messages

Generic Control Notification Codes
Map Entry Function Prototype

ON_CONTROL(wNotifyCode, id, memberFxn) afx_msg void memberFxn();

User Button Naotification Codes

Map Entry Function Prototype

ON_BN_CLICKED(id, memberFxn) afx_msg void memberFxn();
ON_BN_DISABLE(id, memberFxn) afx_msg void memberFxn();
ON_BN_DOUBLECLICKED(id, memberFxn) afx_msg void memberFxn();
ON_BN_HILITE(id, memberFxn) afx_msg void memberFxn();
ON_BN_PAINT(id, memberFxn) afx_msg void memberFxn();

ON_BN_UNHILITE(id, memberFxn) afx_msg void memberFxn();

Message Map Cross-Reference A

Combo Box Notification Codes

Map Entry Function Prototype

ON_CBN_DBLCLK(id, memberFxn)
ON_CBN_DROPDOWN(id, memberFxn)
ON_CBN_EDITCHANGEC(id, memberFxn)
ON_CBN_EDITUPDATE(id, memberFxn)
ON_CBN_ERRSPACE(id, memberFxn)
ON_CBN_KILLFOCUS(id, memberFxn)
ON_CBN_SELCHANGE(id, memberFxn)

afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();

afx_msg void memberFxn();

ON_CBN_SETFOCUS(id, memberFxn)

Edit Control Notification Codes
Map Entry

afx_msg void memberFxn();

Function Prototype

ON_EN_CHANGE(id, memberFxn)
ON_EN_ERRSPACE(id, memberFxn)
ON_EN_HSCROLL(id, memberFxn)
ON_EN_KILLFOCUS(id, memberFxn)
ON_EN_MAXTEXT(id, memberFxn)
ON_EN_SETFOCUS(id, memberFxn)
ON_EN_UPDATEC(id, memberFxn)
ON_EN_VSCROLL(id, memberFxn)

List Box Notification Codes
Map Entry

afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();

afx_msg void memberFxn();

Function Prototype

ON_LBN_DBLCLK(id, memberFxn)
ON_LBN_ERRSPACE(id, memberFxn)
ON_LBN_KILLFOCUS(id, memberFxn)

ON_LBN_SELCHANGE(id, memberFxn)

ON_LBN_SETFOCUS(id, memberFxn)

afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();
afx_msg void memberFxn();

afx_msg void memberFxn();

72 The Class Libraries Reference

6.5 Handlers for Windows Notification Messages

Map Entry

Function Prototype

ON_WM_ACTIVATE()
ON_WM_ACTIVATEAPP()
ON_WM_ASKCBFORMATNAME()

ON_WM_CANCELMODE()
ON_WM_CHANGECBCHAIN()

ON_WM_CHAR()
ON_WM_CHARTOITEM()

ON_WM_CHILDACTIVATE()
ON_WM_CLOSE()
ON_WM_COMPACTING()
ON_WM_COMPAREITEM()

ON_WM_ CREATE()
ON_WM_CTLCOLORC()

ON_WM_DEADCHARC()
ON_WM_DELETEITEM()

ON_WM_DESTROY()
ON_WM_DESTROYCLIPBOARD()
ON_WM_DEVMODECHANGE()
ON_WM_DRAWCLIPBOARD()
ON_WM_DRAWITEM()

ON_WM_ENABLE()
ON_WM_ENDSESSION()
ON_WM_ENTERIDLE()
ON_WM_ERASEBKGND()

afx_msg void OnActivate(UINT, CWnd*, BOOL);
afx_msg void OnActivateApp(BOOL, HANDLE);

afx_msg void OnAskCbFormatName(UINT,
LPSTR);

afx_msg void OnCancelMode();

afx_msg void OnChangeCbChain(HWND,
HWND);

afx_msg void OnChar(UINT, UINT, UINT);

afx_msg int OnCharToltem(UINT, CWnd*,
UINT);

afx_msg void OnChildActivate();
afx_msg void OnClose();
afx_msg void OnCompacting(UINT);

afx_msg int

OnCompareltem(LPCOMPAREITEMSTRUCT);

afx_msg int OnCreate(LPCREATESTRUCT);

afx_msg HBRUSH OnCtlColor(CDC*, CWnd*,
UINT);

afx_msg void OnDead Char(UINT, UINT, UINT);

afx_msg void OnDeleteltem
(LPDELETEITEMSTRUCT);

afx_msg void OnDestroy();

afx_msg void OnDestroyClipboard();
afx_msg void OnDevModeChange(LPSTR);
afx_msg void OnDrawClipboard();

afx_msg void
OnDrawltem(LPDRAWITEMSTRUCT);

afx_msg void OnEnable(BOOL);

afx_msg void OnEndSession(BOOL);
afx_msg void OnEnterIdle(UINT, CWnd*);
afx_msg BOOL OnEraseBkgnd(CDC*);

Message Map Cross-Reference

Map Entry

Function Prototype

ON_WM_FONTCHANGE()
ON_WM_GETDLGCODE()
ON_WM_GETMINMAXINFO()
ON_WM_HSCROLL()

ON_WM_HSCROLLCLIPBOARD()

ON_WM_ICONERASEBKGND()
ON_WMLINITMENU()
ON_WM_ INITMENUPOPUP()

ON_WM_KEYDOWN()
ON_WM_KEYUP()
ON_WM_KILLFOCUS()
ON_WM_LBUTTONDBLCLK()
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()
ON_WM_MBUTTONDBLCLK()
ON_WM_MBUTTONDOWN()
ON_WM_MBUTTONUP()
ON_WM_MDIACTIVATE()

ON_WM_MEASUREITEM()
ON_WM_MENUCHARC()
ON_WM_MENUSELECT()
ON_WM_MOUSEACTIVATE()

ON_WM_MOUSEMOVE()
ON_WM_MOVE()
ON_WM_NCACTIVATE()

afx_msg void OnFontChange();

afx_msg UINT OnGetDlgCode();

afx_msg void OnGetMinMaxInfo(LPPOINT);
afx_msg void OnHScroll(UINT, UINT, CWnd*);

afx_msg void OnHScrollClipboard(CWnd*, UINT,
UINT);

afx_msg void OnlconEraseBkgnd(CDC*);
afx_msg void OnInitMenu(CMenu*);

afx_msg void OnInitMenuPopup(CMenu*, UINT,
BOOL);

afx_msg void OnKeyDown(UINT, UINT, UINT);
afx_msg void OnKeyUp(UINT, UINT, UINT);
afx_msg void OnKillFocus(CWnd*);

afx_msg void OnLButtonDbICIk(UINT, CPoint);
afx_msg void OnLButtonDown(UINT, CPoint);
afx_msg void OnLButtonUp(UINT, CPoint);
afx_msg void OnMButtonDbICIk(UINT, CPoint);
afx_msg void OnMButtonDown(UINT, CPoint);
afx_msg void OnMButtonUp(UINT, CPoint);

afx_msg void OnMDIA ctivate(BOOL, CWnd#*,
CWnd*);

afx_msg void
OnMeasureltem(LPMEASUREITEMSTRUCT);

afx_msg LONG OnMenuChar(UINT, UINT,
CMenu*);

afx_msg void OnMenuSelect(UINT, UINT,
HMENU);

afx_msg int OnMouseActivate(CWnd*, UINT,
UINT);

afx_msg void OnMouseMove(UINT, CPoint);
afx_msg void OnMove(int, int);
afx_msg BOOL OnNcActivate(BOOL);

74 The Class Libraries Reference

Map Entry

Function Prototype

ON_WM_NCCALCSIZE()
ON_WM_NCCREATE()

ON_WM_NCDESTROY()
ON_WM_NCHITTEST()
ON_WM_NCLBUTTONDBLCLK()

ON_WM_NCLBUTTONDOWN()
ON_WM_NCLBUTTONUP()
ON_WM_NCMBUTTONDBLCLK()

ON_WM_NCMBUTTONDOWN()
ON_WM_NCMBUTTONUP()
ON_WM_NCMOUSEMOVE()
ON_WM_NCPAINT()
ON_WM_NCRBUTTONDBLCLK()

ON_WM_NCRBUTTONDOWN()
ON_WM_NCRBUTTONUP()
ON_WM_PAINT()
ON_WM_PAINTCLIPBOARD()

ON_WM_PAINTICON()
ON_WM_PALETTECHANGED()
ON_WM_PARENTNOTIFY()
ON_WM_QUERYDRAGICON()
ON_WM_QUERYENDSESSION()
ON_WM_QUERYNEWPALETTEC()
ON_WM_QUERYOPEN()

afx_msg void OnNcCalcSize(LPRECT);

afx_msg BOOL
OnNcCreate(LPCREATESTRUCT);

afx_msg void OnNcDestroy();
afx_msg UINT OnNcHitTest(CPoint);

afx_msg void OnNcLButtonDbICIk(UINT,
CPoint);

afx_msg void OnNcLButtonDown(UINT, CPoint);
afx_msg void OnNcLButtonUp(UINT, CPoint);

afx_msg void OnNcMButtonDbICIk(UINT,
CPoint);

afx_msg void OnNcMButtonDown(UINT, CPoint);
afx_msg void OnNcMButtonUp(UINT, CPoint);
afx_msg void OnNcMouseMove(UINT, CPoint);
afx_msg void OnNcPaint();

afx_msg void OnNcRButtonDbIClk(UINT,
CPoint);

afx_msg void OnNcRButtonDown(UINT, CPoint);
afx_msg void OnNcRButtonUp(UINT, CPoint);
afx_msg void OnPaint();

afx_msg void OnPaintClipboard(CWnd*,
HANDLE);

afx_msg void OnPaintIcon();

afx_msg void OnPaletteChanged(CWnd*);
afx_msg void OnParentNotify(UINT, LONG);
afx_msg HCURSOR OnQueryDraglcon();
afx_msg BOOL OnQueryEndSession();
afx_msg BOOL OnQueryNewPalette();
afx_msg BOOL OnQueryOpen();

Message Map Cross-Reference

Map Entry

Function Prototype

ON_WM_RBUTTONDBLCLK()
ON_WM_RBUTTONDOWN()
ON_WM_RBUTTONUP()
ON_WNM_RENDERALLFORMATS()
ON_WNM_RENDERFORMAT()
ON_WML_SETCURSOR()

ON_WM_SETFOCUS()
ON_WM_SHOWWINDOW()
ON_WML_SIZE()
ON_WNM_SIZECLIPBOARD()

ON_WNM_SPOOLERSTATUS()
ON_WM_SYSCHAR()
ON_WM_SYSCOLORCHANGE()
ON_WM_SYSCOMMAND()
ON_WNM_SYSDEADCHAR()

ON_WML_SYSKEYDOWN()

ON_WM_SYSKEYUP()
ON_WM_TIMECHANGE()
ON_WM_TIMERC()
ON_WM_VKEYTOITEM()

ON_WML_ VSCROLLY()
ON_WM_ VSCROLLCLIPBOARD()

ON_WM_ WININICHANGE()

afx_msg void OnRButtonDbIClk(UINT, CPoint);
afx_msg void OnRButtonDown(UINT, CPoint);
afx_msg void OnRButtonUp(UINT, CPoint);
afx_msg void OnRenderAllFormats();

afx_msg void OnRenderFormat(UINT);

afx_msg BOOL OnSetCursor(CWnd#*,
UINT, UINT);

afx_msg void OnSetFocus(CWnd*);
afx_msg void OnShowWindow(BOOL, UINT);
afx_msg void OnSize(UINT, int, int);

afx_msg void OnSizeClipboard(CWnd*,
HANDLE);

afx_msg void OnSpoolerStatus(UINT, UINT);
afx_msg void OnSysChar(UINT, UINT, UINT);
afx_msg void OnSysColorChange();

afx_msg void OnSysCommand(UINT, LONG);

afx_msg void OnSysDeadChar(UINT, UINT,
UINT);

afx_msg void OnSysKeyDown(UINT, UINT,
UINT);

afx_msg void OnSysKeyUp(UINT, UINT, UINT);
afx_msg void OnTimeChange();
afx_msg void OnTimer(UINT);

afx_msg int OnVKeyToltem(UINT, CWnd*,
UINT);

afx_msg void OnVScroll(UINT, UINT, CWnd*);

afx_msg void OnVScrollClipboard(CWnd*, UINT,
UINT);

afx_msg void OnWinIniChange(LPSTR);

76 The Class Libraries Reference

6.6 User-Defined Message Codes

Map Entry Function Prototype
ON_MESSAGE(message, memberFxn) afx_msg LONG memberFxn(UINT, LONG);
ON_REGISTERED_MESSAGE afx_msg LONG memberFxn(UINT, LONG);

(nMessageVariable memberFxn)

For more about the DECLARE_MESSAGE_MAP,
BEGIN_MESSAGE_MAP, and END_MESSAGE_MAP macros, see help.

Structures and Enumerated Values
for Windows

This chapter lists data structures used by the Microsoft Foundation Windows
classes, as well as Clipboard and mouse enumerated values.

7.1 Structures

The following data structures are presented in alphabetical order. The structure
definition is followed by a description of each field.

COMPAREITEMSTRUCT

typedef struct tagCOMPAREITEMSTRUCT {
WORD Ct1Type;
WORD Ct11ID;
HWND hwndItem;
WORD itemID1;
DWORD itemDatal;
WORD itemID2;
DWORD itemData?2;
} COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure supplies the identifiers and
application-supplied data for two items in a sorted owner-draw combo box or
list box.

Whenever an application adds a new item to an owner-draw combo or list box
created with the CBS_SORT or LBS_SORT style, Windows sends the owner

a WML_COMPAREITEM message. Override OnCompareltem to compare the
two items and return a value indicating which item sorts before the other.

78 The Class Libraries Reference

Members

CtlType
Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtlID
Is the control ID for the list box or combo box.

hwndItem
Is the window handle of the control.

itemID1
Is the index of the first item in the list box or combo box being compared.

itemDatal
Is application-supplied data for the first item being compared. This value was
passed in the call that added the item to the combo or list box.

itemID2
Is the index of the second item in the list box or combo box being compared.

itemData2
Is application-supplied data for the second item being compared. This value
was passed in the call that added the item to the combo or list box.

CREATESTRUCT

typedef struct tagCREATESTRUCT {
LPSTR TpCreateParams;
HANDLE hlInstance;
HANDLE hMenu;
HWND hwndParent;

int cy;
int CcX;
int Y;
int X;

LONG style;

LPSTR 1pszName;

LPSTR 1pszClass;

DWORD dwExStyle;
} CREATESTRUCT;

The CREATESTRUCT structure defines the parameters used to initialize a

window. When a window is created, it receives a WM_CREATE message with a

pointer to this structure. For more information, see CWnd::OnCreate.

Structures and Enumerated Values 79

Members

IpCreateParams
Points to data to be used for creating the window.

hlnstance
Identifies the module-instance handle of the module that owns the new window.

hMenu
Identifies the menu to be used by the new window.

hwndParent
Identifies the window that owns the new window. This member is NULL if the
new window is a top-level window.

cy

Specifies the height of the new window.
cx

Specifies the width of the new window.

Specifies the y-coordinate of the upper-left corner of the new window. Coordi-
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

Specifies the x-coordinate of the upper-left corner of the new window. Coordi-
nates are relative to the parent window if the new window is a child window.
Otherwise, the coordinates are relative to the screen origin.

style
Specifies the new window’s style.

IpszName
Points to a null-terminated string that specifies the new window’s name.

IpszClass
Points to a null-terminated string that specifies the new window’s Windows
class name.

dwExStyle
Specifies extended style for the new window.

80 The Class Libraries Reference

Members

DELETEITEMSTRUCT

typedef struct tagDELETEITEMSTRUCT {
WORD Ctl1Type
WORD Ct11ID;
WORD 1itemlID;
HWND hwndItem;
DWORD itemData;
} DELETEITEMSTRUCT;

The DELETEITEMSTRUCT structure describes a deleted owner-draw list-box
or combo-box item. When an item is removed from the list box or combo box, or
when the list box or combo box is destroyed, Windows sends the
WM_DELETEITEM message to the owner for each deleted item along with a
pointer to this structure. For more information, see CWnd::OnDeleteItem.

CtlType
Contains ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

CtlID
Contains the control ID for the list box or combo box.

itemID
Contains the index of the item in the list box or combo box being removed.

hwndItem
Contains the window handle of the control.

itemData
Contains the owner-defined value that was assigned to this item when it was
created. :

Structures and Enumerated Values 81

Members

DRAWITEMSTRUCT

typedef struct tagDRAWITEMSTRUCT {

WORD
WORD
WORD
WORD
WORD
HWND
HDC
RECT
DWORD

Ct1Type;
Ct11ID;
itemID;
itemAction;
itemState;
hwndItem;
hDC;
rcltem;
itemData;

} DRAWITEMSTRUCT;

The DRAWITEMSTRUCT structure provides information the owner needs to
determine how to paint an owner-draw control. The owner of the owner-draw con-
trol receives a pointer to this structure with a WM_DRAWITEM message. For
more information, see CWnd::OnDrawltem.

CtiType
Is the control type. The values for control types are as follows:
Value Meaning
ODT_BUTTON Owner-draw button
ODT_COMBOBOX Owner-draw combo box
ODT_LISTBOX Owner-draw list box
ODT_MENU Owner-draw menu

CtlID
Is the control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID

Is the menu-item ID for a menu or the index of the item in a list box or combo
box. For an empty list box or combo box, this member can be —1. This allows
the application to draw only the focus rectangle at the coordinates specified by
the rcItem member even though there are no items in the control. This indi-
cates to the user whether the list box or combo box has input focus. The setting
of the bits in the itemA ction member determines whether the rectangle is to be
drawn as though the list box or combo box has input focus.

82 The Class Libraries Reference

itemA ction

Defines the drawing action required. This will be one or more of the fol-

lowing bits:

Value Meaning

ODA_DRAWENTIRE This bit is set when the entire control needs to
be drawn.

ODA_FOCUS This bit is set when the control gains or loses
input focus. The itemState member should be
checked to determine whether the control has
focus.

ODA_SELECT This bit is set when only the selection status has
changed. The itemState member should be
checked to determine the new selection state.

itemState

Specifies the visual state of the item after the current drawing action takes
place. That is, if a menu item is to be dimmed, the state flag ODS_GRAYED
will be set. The state flags are as follows:

Value Meaning

ODS_CHECKED This bit is set if the menu item is to be checked.
This bit is used only in a menu.

ODS_DISABLFD This bit is set if the item is to be drawn as disabled.
ODS_FOCUS This bit is set if the item has input focus.

ODS_GRAYED This bit is set if the item is to be dimmed. This bit
is used only in a menu.

ODS_SELECTED This bit is set if the item’s status is selected.

hwndItem
Specifies the window handle of the control for combo boxes, list boxes, and but-
tons. It contains the handle of the menu (HMENU) containing the item for
menus.

hDC
Identifies a device context. This device context must be used when performing
drawing operations on the control.

rcltem
Is a rectangle in the device context specified by the hDC member that defines
the boundaries of the control to be drawn. Windows automatically clips any-
thing the owner draws in the device context for combo boxes, list boxes, and
buttons, but does not clip menu items. When drawing menu items, the owner

Structures and Enumerated Values 83

must ensure that the owner does not draw outside the boundaries of the rec-
tangle defined by the rcltem member.

itemData
Contains the owner-defined value that was assigned to this item when it was
created.

Members

MEASUREITEMSTRUCT

typedef struct tagMEASUREITEMSTRUCT {
WORD Ctl1Type;
WORD Ct1ID;
WORD itemID;
WORD itemWidth;
WORD itemHeight;
DWORD 1itemData
} MEASUREITEMSTRUCT;

When an owner-draw control is created, Windows sends the
WM_MEASUREITEM message to the owner of the control, along with a
pointer to a MEASUREITEMSTRUCT data structure.

The MEASUREITEMSTRUCT data structure must be filled in order for
Windows to process user interaction with the control correctly. For more informa-
tion, see CWnd::OnMeasureltem.

The MEASUREITEMSTRUCT data structure informs Windows of the dimen-
sions of an owner-draw control. This allows Windows to correctly process user in-
teraction with the control. The owner of an owner-draw control receives a pointer
to this structure as the [Param parameter of an WM_MEASUREITEM message.
The owner-draw control sends this message to its owner window when the control
is created. The owner then fills in the appropriate members in the structure for the
control and returns. This structure is common to all owner-draw controls.

CtlType
Is the control type. The values for control types are as follows:
Value Meaning
ODT_BUTTON Owner-draw button
ODT_COMBOBOX Owner-draw combo box
ODT_LISTBOX Owner-draw list box

ODT_MENU Owner-draw menu

84 The Class Libraries Reference

Remarks

CtlID
Is the control ID for a combo box, list box, or button. This member is not used
for a menu.

itemID
Is the menu-item ID for a menu or the list-box item ID for a variable-height
combo box or list box. This member is not used for a fixed-height combo box
or list box, or for a button.

itemWidth
Specifies the width of a menu item. The owner of the owner-draw menu item
must fill this member before returning from the message.

itemHeight
Specifies the height of an individual item in a list box or a menu. Before return-
ing from the message, the owner of the owner-draw combo box, list box, or

menu item must fill out this member. The maximum height of a list box item
is 255.

itemData
Contains the owner-defined value that was assigned to this item when it was
created.

Failure to assign values to itemWidth and itemHeight members in the
MEASUREITEMSTRUCT structure will cause improper operation of the
control.

PAINTSTRUCT

typedef struct tagPAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[16];
} PAINTSTRUCT;

The PAINTSTRUCT structure contains information that can be used to paint the
client area of a window.

Structures and Enumerated Values 85

Members hdc

Identifies the display context to be used for painting.

fErase
Specifies whether the background needs to be redrawn. It is not zero if the appli-
cation should redraw the background. The application is responsible for draw-
ing the background if a Windows window class is created without a
background brush (see the description of the hbrBackground member of the
WNDCLASS structure).

rcPaint
Specifies the upper-left and lower-right corners of the rectangle in which the
painting is requested.

fRestore
Reserved member. It is used internally by Windows.

fincUpdate
Reserved member. It is used internally by Windows.

rgbReserved[16]
Reserved member. A reserved block of memory used internally by Windows.

typedef struct tagPOINT {

int x;
int y;
} POINT;
The POINT structure defines the x- and y-coordinates of a point.
Members X

Specifies the x-coordinate of a point.

y

Specifies the y-coordinate of a point.

86 The Class Libraries Reference

Members

Remarks

RECT

typedef struct tagRECT {
int left;
int top;
int right;
int bottom;
} RECT;

The RECT structure defines the coordinates of the upper-left and lower-right

Armare ~AF o wrantansla

COIMicis O1 a Ictialgic.

left
Specifies the x-coordinate of the upper-left corner of a rectangle.

top

Specifies the y-coordinate of the upper-left corner of a rectangle.
right

Specifies the x-coordinate of the lower-right corner of a rectangle.

bottom
Specifies the y-coordinate of the lower-right corner of a rectangle.

Neither the width nor height of the rectangle defined by the RECT structure can
exceed 32,767 units.

7.2 Clipboard Enumerated Values

The following list shows the enumerated values that specify system-defined
Clipboard formats:

Value Meaning

CF_BITMAP The data is a bitmap.

CF_DIB The data is a memory block containing a
BITMAPINFO structure followed by the
bitmap data.

CF_DIF The data is in Data Interchange Format

(Software Arts).

Structures and Enumerated Values 87

Value

Meaning

CF_DSPBITMAP

CF_DSPMETAFILEPICT

CF_DSPTEXT

CF_METAFILEPICT

CF_OEMTEXT

CF_OWNERDISPLAY

CF_PALETTE
CF_SYLK

CF_TEXT

CF_TIFF

The data is a bitmap representation of a private
format. This data is displayed in bitmap format
in lieu of the privately formatted data.

The data is a metafile representation of a private
data format. This data is displayed in metafile-
picture format in lieu of the privately formatted
data.

The data is a textual representation of a private
data format. This data is displayed in text
format in lieu of the privately formatted data.

The data is a metafile (for more information,
see description of METAFILEPICT structure).

The data is an array of text characters in the
OEM character set. Each line ends with a
carriage return—linefeed combination. A null
character signals the end of the data.

The data is in a private format that the
Clipboard owner must display.

The data is a color palette.

The data is in Microsoft Symbolic Link
(SYLK) format.

The data is an array of text characters. Each line
ends with a carriage return—linefeed
combination. A null character signals the end of
the data.

The data is in Tag Image File Format.

Private data formats in the range of CF_PRIVATEFIRST to
CF_PRIVATELAST are not automatically freed when the data is deleted from
the Clipboard. Data handles associated with these formats should be freed upon re-
ceiving a WM_DESTROYCLIPBOARD message.

Private data formats in the range of CF_GDIOBJFIRST to CF_GDIOBJLAST
will be automatically deleted with a call to CGdiObject::DeleteObject when the
data is deleted from the Clipboard.

88 The Class Libraries Reference

7.3 Mouse Enumerated Values

The following enumerated values are passed to the CWnd::OnMessage member
functions that handle mouse messages, such as CWnd::OnMouseActivate and

CWnd::OnNcLButtonDbICIk.

Value Meaning

HTBOTTOM In the lower-horizontal border of the window.

HTBOTTOMLEFT In the lower-left corner of the window border.

HTBOTTOMRIGHT In the lower-right corner of the window border.

HTCAPTION In a caption area.

HTCLIENT In a client area.

HTERROR Same as HTNOWHERE except that default
message processing produces a system beep to
indicate an error.

HTGROWBOX In a size box.

HTHSCROLL In the horizontal scroll bar.

HTLEFT In the left border of the window.

HTMENU In a menu area.

HTNOWHERE On the screen background or on a dividing line
between the windows.

HTREDUCE In a Minimize box.

HTRIGHT In the right border of the window.

HTSIZE Same as HTGROWBOX.

HTSYSMENU In a control-menu box (close box in child
windows).

HTTOP In the upper-horizontal border of the window.

HTTOPLEFT In the upper-left corner of the window border.

HTTOPRIGHT In the upper-right corner of the window border.

HTTRANSPARENT In a window currently covered by another window.

HTVSCROLL In the vertical scroll bar.

HTZOOM In a Maximize box.

CArchive 93

class CArchive

See Also

Preconditions

Public Members

The CArchive class allows you to save a complex network of objects in a perma-
nent binary form (usually disk storage) that “persists” after those objects are de-
leted. Later you can load the objects from persistent storage, “reconstituting” them
in memory. This process of making data persistent is called “serialization.”

You can think of an archive object as a kind of binary stream. Like an input/output
stream, an archive is associated with a file and permits the buffered writing and
reading of data to and from storage. An input/output stream processes sequences
of ASCII characters, but an archive processes binary object data in an efficient,
nonredundant format.

When you construct a CArchive object, you attach it to an object of class CFile
(or a derived class) that represents an open file. You also specify whether the ar-
chive will be used for loading or storing. A CArchive object can process not only
primitive types but also objects of CObject-derived classes designed for serializa-
tion. A serializable class must have a Serialize member function, and it must use
the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described
under class CObject.

The overloaded extraction (>>) and insertion (<<) operators are convenient ar-
chive programming interfaces that support both primitive types and CObject-
derived classes.

#include <afx.h>
CFile, CObject

You must create a CFile object before you can create a CArchive object. In addi-
tion, you must ensure that the archive’s load/store status is compatible with the
file’s open mode. You are limited to one active archive per file.

Construction/Destruction

CArchive Creates a CArchive object.

~CArchive Destroys a CArchive object and flushes unwritten
data.

Close Flushes unwritten data and disconnects from the

CFile.

94 CArchive

Basic Input/OQutput
Flush

operator <<
operator >>

Read

Write

Status
GetFile
IsLoading
IsStoring

Protected Members

Object Input/Output
ReadObject
WriteObject

Flushes unwritten data from the archive buffer.
Stores objects and primitive types to the archive.
Loads objects and primitive types from the archive.
Reads raw bytes.

Writes raw bytes.

Gets the CFile object pointer for this archive.
Determines if the archive is loading.

Determines if the archive is storing.

Calls an object’s Serialize function for loading.

Calls an object’s Serialize function for storing.

CArchive::CArchive 95

Member Functions

Syntax

Parameters

Remarks

CArchive::CArchive

CArchive(CFile* pFile, UINT nMode, int nBufSize = 512,
void FAR* IpBuf = NULL)
throw(CMemoryException, CArchiveException, CFileException);

pFile
A pointer to the CFile object that is the ultimate source or destination of the per-
sistent data.

nMode
A flag that specifies whether objects will be loaded from or stored to the ar-
chive. The nMode parameter must have one of the following values:

Value Meaning
CArchive::load Load data from the archive. Requires only CFile read
permission.
CArchive::store Save data to the archive. Requires CFile write
permission.
nBufSize

An integer that specifies the size of the internal file buffer, in bytes.

Note The default buffer size is 512 bytes. If you routinely archive large objects,
you will improve performance if you use a larger buffer size that is a multiple
of the file buffer size.

IpBuf
An optional FAR pointer to a user-supplied buffer of size nBufSize. If you do
not specify this parameter, the archive allocates a buffer from the local heap
and frees it when the object is destroyed. The archive does not free a user-
supplied buffer.

Constructs a CArchive object and specifies whether it will be used for loading or
storing objects. You cannot change this specification after you have created the
archive.

96 CArchive::~CArchive

You may not use CFile operations to alter the state of the file until you have
closed the archive. Any such operation will damage the integrity of the archive.
You may access the position of the file pointer at any time during serialization by
(1) obtaining the archive’s file object from the GetFile member function and then
(2) using the CFile::GetPosition function. You should call CArchive::Flush
before obtaining the position of the file pointer.

Example extern char* pFileName;
CFile f;
char buf[512];
if(!f.Open(pFileName, CFile::modeCreate | CFile::modeWrite)) {
#ifdef _DEBUG
afxDump << "Unable to open file" << "\\n";
exit(1);
ffendif
}
CArchive ar(&f, CArchive::store, 512, buf);

See Also CArchive::Close, CArchive::Flush, CFile::Close
CArchive::~CArchive

Syntax ~CArchive();

Remarks The CArchive destructor closes the archive if it is not closed already. However,
you should call the member function Close before calling the destructor. After you
have used the CFile object for archiving, you must close and destroy it as you usu-
ally would.

See Also CArchive::Flush, CFile::Close
CArchive::Close

Syntax void Close()
throw(CArchiveException, CFileException);

Remarks Flushes any data remaining in the buffer, closes the archive, and disconnects the

archive from the file. No further operations on the archive are permitted. After you

CArchive::GetFile 97

close an archive, you can create another archive for the same file or you can close
the file.

The member function Close ensures that all data is transferred from the archive to
the file, and it makes the archive unavailable. To complete the transfer from the
file to the storage medium, you must first use CFile::Close and then destroy the
CFile object.

See Also CArchive::Flush
CArchive::Flush

Syntax void Flush()
throw(CFileException);

Remarks Forces any data remaining in the archive buffer to be written to the file.
The member function Flush ensures that all data is transferred from the archive to
the file. You must call CFile::Close to complete the transfer from the file to the
storage medium.

See Also CArchive::Close, CFile::Flush, CFile::Close
CArchive::GetFile

Syntax CFile* GetFile() const;

Remarks Gets the CFile object pointer for this archive. You must flush the archive before
using GetFile.

Return Value A constant pointer to the CFile object in use.

Example extern CArchive ar;

const CFilex fp = ar.GetFile();

98 CArchive::IsLoading

Syntax

Remarks

Return Value

See Also

CArchive::IsLoading
BOOL IsLoading() const;

Determines if the archive is loading data. This member function is called by the
Serialize functions of the archived classes.

TRUE if the archive is currently being used for loading; otherwise FALSE.

int i;
extern CArchive ar;
if(ar.IsLoading())
ar >> i;
else
ar << i;

CArchive::IsStoring

Syntax

Remarks

Return Value

Example

See Also

CArchive::IsStoring
BOOL IsStoring() const;

Determines if the archive is storing data. This member function is called by the
Serialize functions of the archived classes.

If the IsStoring status of an archive is TRUE, then its IsL.oading status is
FALSE, and vice versa.

TRUE if the archive is currently being used for storing; otherwise FALSE.

int i;
extern CArchive ar;
if(ar.IsStoring())
ar << i;
else
ar >> i;

CArchive::IsLoading

CArchive::ReadObject 99

Syntax

Parameters

Remarks

Return Value

Example

CArchive::Read

UINT Read(void FAR* [pBuf, UINT nMax)
throw(CFileException);

IpBuf
A FAR pointer to a user-supplied buffer that is to receive the data read from the
archive.

nMax
An unsigned integer specifying the number of bytes to be read from the archive.

Reads a specified number of bytes from the archive. The archive does not interpret
the bytes.

You can use the Read member function within your Serialize function for reading
ordinary structures that are contained in your objects.

An unsigned integer containing the number of bytes actually read. If the return
value is less than the number requested, the end of file has been reached. No excep-
tion is thrown on the end-of-file condition.

extern CArchive ar;
char pb[100];
UINT nr = ar.Read(pb, 100);

Syntax

Parameters

Remarks

CArchive::ReadObject

Protected:
CObject* ReadObject(const CRuntimeClass* pClass)
throw(CFileException, CArchiveException, CMemoryException);

pClass
A constant pointer to the CRuntimeClass structure that corresponds to the ob-
ject that you expect to read.

Reads object data from the archive and constructs an object of the appropriate
type. If the object contains pointers to other objects, those objects are constructed
automatically.

100 CArchive::Write

Return Value

See Also

This protected function is usually called by the public CArchive extraction (>>)
operator, overloaded for a CObject pointer. ReadObject, in turn, calls the
Serialize function of the archived class.

If you supply a nonzero pClass parameter, which is obtained by the

RUNTIME_ CLASS macro, then the function verifies the run-time class of the ar-
chived object. This assumes you have used the IMPLEMENT_SERIAL macro
in the implementation of the class.

A CObject pointer that must be safely cast to the correct derived class by using
CObject::IsKindOf.

CArchive::WriteObject, CObject::IsKindOf

Syntax

Parameters

Remarks

Example

See Also

CArchive::Write

void Write(const void FAR* IpBuf, UINT nMax)
throw(CFileException);

IpBuf
A pointer to a user-supplied buffer that contains the data to be written to the
archive.

nMax
An integer that specifies the number of bytes to be written to the archive.

Writes a specified number of bytes to the archive. The archive does not format the
bytes.

You can use the Write member function within your Serialize function to write or-
dinary structures that are contained in your objects.

extern CArchive ar;
char pb[100];
ar.Write(pb, 100);

CArchive::Read

CArchive::WriteObject 101

Syntax

Parameters

Remarks

See Also

CArchive::WriteObject

Protected:
void WriteObject(const CObject* pOb)
throw(CFileException, CArchiveException);

pOb
A constant pointer to the object being stored.

Stores the specified CObject to the archive. If the object contains pointers to other
objects, they are serialized in turn.

This protected function is normally called by the public CArchive insertion (<<)
operator, overloaded for CObject. WriteObject, in turn, calls the Serialize func-
tion of the archived class.

You must use the IMPLEMENT_SERIAL macro to enable archiving.
WriteObject writes the ASCII class name to the archive. This class name is vali-
dated later during the load process. A special encoding scheme prevents unneces-
sary duplication of the class name for multiple objects of the class. This scheme
also prevents redundant storage of objects that are targets of more than one pointer.

The exact object encoding method (including the presence of the ASCII class
name) is an implementation detail and could change in future versions of the
library.

Note Finish creating, deleting, and updating all your objects before you begin to

archive them. Your archive will be corrupted if you mix archiving with object
modification.

CArchive::ReadObject

102 CArchive::operator >>

Operators

CArchive::operator >>

Syntax friend CArchive& operator >>(CArchive &ar, CObject *& pOb)
throw(CArchiveException, CFileException, CMemoryException);

friend CArchive& operator >>(CArchive& ar, const CObject *& pOb)
throw(CArchiveException, CFileException, CMemoryException);

LLLP S o L2024 TR LAUAR Jy

CArchive& operator >>(BYTE& by)
throw(CArchiveException, CFileException);

CArchive& operator >>(WORD& w)
throw(CArchiveException, CFileException);

CArchive& operator >>(LONG& /)
throw(CArchiveException, CFileException);

CArchive& operator >>(DWORD& dw)
throw(CArchiveException, CFileException);

Remarks Loads the indicated object or primitive type from the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation,
then the extraction operators overloaded for CObject call the protected
ReadObject function (with a nonzero run-time class pointer). This function, in
turn, calls the Serialize function of the class.

Return Value A CArchive reference that enables multiple insertion operators on a single line.

Example int i;
extern CArchive ar;
if(ar.IslLoading())
ar >> i;

See Also CArchive::ReadObject, CObject::Serialize

CArchive::operator <<

103

Syntax

Remarks

Return Value

Example

See Also

CArchive::operator <<

friend CArchive& operator <<(CArchive& ar, const CObject* pOb)
throw(CArchiveException, CFileException);

CArchive& operator <<(BYTE by)
throw(CArchiveException, CFileException);

CArchive& operator <<(WORD w)
throw(CArchiveException, CFileException);

CArchive& operator <<(LONG /)
throw(CArchiveException, CFileException);

CArchive& operator <<(DWORD dw)
throw(CArchiveException, CFileException);

Stores the indicated object or primitive type to the archive.

If you used the IMPLEMENT_SERIAL macro in your class implementation,
then the insertion operator overloaded for CObject calls the protected
WriteObject. This function, in turn, calls the Serialize function of the class.

A CArchive reference that enables multiple insertion operators on a single line.

Tong 1;

int i;

extern CArchive ar;

if(ar.IsStoring())
ar >> 1 >> i,

CArchive::WriteObject, CObject::Serialize

104 CArchiveException

class CArchiveException : public CException

See Also

Comments

Public Members

A CArchiveException object represents a
serialization exception condition. The
CArchiveException class includes a public data
member that indicates the cause of the exception.

CException !

L} CArchiveException —I

#include <afx.h>
CArchive, AfxThrowArchiveException, Chapter 5, “Exception Processing”

CArchiveException objects are constructed and thrown inside CArchive member
functions. You can access these objects within the scope of a CATCH expression.
The cause code is independent of the operating system.

Data Members
m_cause Indicates the exception cause.

Construction/Destruction
CArchiveException Constructs a CArchiveException object.

CArchiveException::CArchiveException 105

Member Functions

CArchiveException::CArchiveException

Syntax CArchiveException(int cause = CArchiveException::none);

Parameters cause
An enumerated type variable that indicates the reason for the exception. See the
m_ cause data member for a list of the enumerators.

Remarks Constructs a CArchiveException object, storing the cause code in the object. You
can create a CArchiveException object on the heap and throw it yourself or let
AfxThrowArchiveException handle it for you.

Do not use this constructor directly, but call the global function
AfxThrowArchiveException.

106 CArchiveException::m_cause

Data Members

CArchiveException::m_cause

Syntax int m_cause;
Remarks Specifies the cause of the exception. Its values are defined by a
CArchiveException enumerated type. The enumerators are:
Value Meaning
CArchiveException::none No error occurred.
CArchiveException::generic Unspecified error.
CArchiveException::readOnly Tried to write into an archive opened for
loading.
CArchiveException::endOfFile Reached end of file while reading an
object.
CArchiveException::writeOnly Tried to read from an archive opened for
storing.
CArchiveException::badIndex Invalid file format.
CArchiveException::badClass Tried to read an object into an object of
the wrong type.

CArchiveException::badSchema Tried to read an object with a different
version of the class.

Note These CArchiveException cause enumerators are distinct from the
CFileException cause enumerators.

Example extern CFile f; -
TRY
{
CArchive ar(&f, CArchive::store);
}
CATCH(CArchiveException, e)
{
if(e->m_cause == CArchiveException::readOnly)
printf("ERROR: Archive is read-only\\n");
}
END_CATCH

CBitmap 107

class CBitmap : public CGdiObject

The CBitmap class encapsulates a Windows graphical
design interface (GDI) bitmap and provides member
functions to manipulate the bitmap. To use a CBitmap
object, construct the object, install a bitmap handle in
it with one of the initialization member functions, and

CGdiObject |
\—‘ CBitmap E

then call the object’s member functions.

Public Members

Construction/Destruction

CBitmap

Initialization
LoadBitmap

LoadOEMBitmap

CreateBitmap

CreateBitmapIndirect

CreateCompatibleBitmap

CreateDiscardableBitmap

Operations
FromHandle

SetBitmapBits
GetBitmapBits

Constructs a CBitmap object.

Initializes the object by loading a named bitmap re-
source from the application’s executable file and
attaching the bitmap to the object.

Initializes the object by loading a predefined
Windows bitmap and attaching the bitmap to the
object.

Initializes the object with a device-dependent
memory bitmap with a specified width, height, and
bit pattern.

Initializes the object with a bitmap that has the
width, height, and bit pattern (if one is specified)
given in a BITMAP structure.

Initializes the object with a bitmap so that it is com-
patible with a specified device.

Initializes the object with a discardable bitmap that
is compatible with a specified device.

Returns a pointer to a CBitmap object when given
a handle to a Windows HBITMAP bitmap.

Sets the bits of a bitmap to the specified bit values.

Copies the bits of the specified bitmap into the
specified buffer.

108

CBitmap

SetBitmapDimension

GetBitmapDimension

Assigns a width and height to a bitmap in
0.1-millimeter units.

Returns the width and height of the bitmap. The
height and width are assumed to have been set pre-
viously by the SetBitmapDimension member
function.

CBitmap::CreateBitmap 109

Member Functions

CBitmap::CBitmap
Syntax CBitmap();

Remarks Constructs a CBitmap object. The resulting object must be initialized with one of
the initialization member functions.

See Also CBitmap::LoadBitmap, CBitmap::LoadOEMBitmap,
CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::CreateCompatibleBitmap, CBitmap::CreateDiscardableBitmap

CBitmap::CreateBitmap

Syntax BOOL CreateBitmap(int nWidth, int nHeight, BYTE nPlanes,
BYTE nBitcount, LPSTR IpBits);

Parameters nWidth
Specifies the width (in pixels) of the bitmap.

nHeight
Specifies the height (in pixels) of the bitmap.

nPlanes
Specifies the number of color planes in the bitmap.

nBitcount
Specifies the number of color bits per display pixel.

IpBits
Points to a short-integer array that contains the initial bitmap bit values. If it is
NULL, the new bitmap is left uninitialized. For more information, see the de-
scription of the bmBits field in the BITMAP structure in the Windows Soft-
ware Development Kit documentation.

Remarks Initializes a device-dependent memory bitmap that has the specified width, height,
and bit pattern. Although a bitmap cannot be directly selected for a display device,
it can be selected as the current bitmap for a memory device context by using
CDC::SelectObject or CMetaFileDC::SelectObject and copied to any compat-
ible device context by using the CDC::BitBIt function. When an application has

110 CBitmap

::CreateBitmapindirect

Return Value

See Also

finished using the bitmap created by the CreateBitmap function, it should select
the bitmap out of the device context.

TRUE if successful; otherwise FALSE.

CDC::SelectObject, CMetaFileDC::SelectObject, CDC::BitBlt,
::CreateBitmap

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::CreateBitmapindirect
BOOL CreateBitmapIndirect(LPBITMAP IpBitmap);

IpBitmap
Points to a BITMAP structure that contains information about the bitmap.

The BITMAP structure has the following form:

typedef struct tagBITMAP {
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
LPSTR bmBits;

} BITMAP;

Initializes a bitmap that has the width, height, and bit pattern (if one is specified)
given in the structure pointed to by IpBitmap. Although a bitmap cannot be
directly selected for a display device, it can be selected as the current bitmap for
a memory device context by using CDC::SelectObject, or
CMetaFileDC::SelectObject and copied to any compatible device context by
using the CDC::BitBIt function.

When an application has finished using the bitmap initialized by
CreateBitmapIndirect, it should select the bitmap out of the device context.

TRUE if successful; otherwise FALSE.

CDC::SelectObject, CMetaFileDC::SelectObject, CDC::BitBIt,
::CreateBitmapIndirect

CBitmap::CreateCompatibleBitmap 111

CBitmap::CreateCompatibleBitmap
Syntax BOOL CreateCompatibleBitmap(CDC* pDC, int nWidth, int nHeight);

Parameters pDC
Specifies the device context.

nWidth
Specifies the width (in bits) of the bitmap.

nHeight
Specifies the height (in bits) of the bitmap.

Remarks Initializes a bitmap that is compatible with the device specified by pDC. The bit-
map has the same number of color planes or the same bits-per-pixel format as the
specified device context. It can be selected as the current bitmap for any memory
device that is compatible with the one specified by pDC.

If pDC is a memory device context, the bitmap returned has the same format as
the currently selected bitmap in that device context. A “memory device context”
is a block of memory that represents a display surface. It can be used to prepare
images in memory before copying them to the actual display surface of the com-
patible device.

When a memory device context is created, GDI automatically selects a mono-
chrome stock bitmap for it.

Since a color memory device context can have either color or monochrome
bitmaps selected, the format of the bitmap returned by the
CreateCompatibleBitmap function is not always the same; however, the
format of a compatible bitmap for a nonmemory device context is always
in the format of the device.

When you are finished with a CBitmap initialized with
CreateCompatibleBitmap, you must select the bitmap out of the device
context.

Return Value TRUE if successful; otherwise FALSE.

See Also ::CreateCompatibleBitmap

112 CBitmap::CreateDiscardableBitmap

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::CreateDiscardableBitmap

BOOL CreateDiscardableBitmap(CDC* pDC, int nWidth, int nHeight);

pDC
Specifies a device context.

nWidth
Specifies the width (in bits) of the bitmap.

nHeight
Specifies the height (in bits) of the bitmap.

Initializes a discardable bitmap that is compatible with the device context iden-
tified by pDC. The bitmap has the same number of color planes or the same bits-
per-pixel format as the specified device context. An application can select this
bitmap as the current bitmap for a memory device that is compatible with the one
specified by pDC.

Windows can discard a bitmap created by this function only if an application

has not selected it into a display context. If Windows discards the bitmap

when it is not selected and the application later attempts to select it, the
CDC::SelectObject or CMetaFileDC::SelectObject function will return NULL.

When an application has finished using the bitmap created by the
CreateBitmapIndirect function, it should select the bitmap out of the device
context.

TRUE if successful; otherwise FALSE.

::CreateDiscardableBitmap

CBitmap::GetBitmapBits 113

CBitmap::FromHandle
Syntax static CBitmap* FromHandle(HBITMAP ABitmap);

Parameters hBitmap
Specifies a Windows GDI bitmap.

Remarks Returns a pointer to a CBitmap object when given a handle to a Windows GDI
bitmap. If a CBitmap object is not already attached to the handle, a temporary
CBitmap object is created and attached. This temporary CBitmap object is valid
only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

Return Value A pointer to a CBitmap object if successful; otherwise NULL.

CBitmap::GetBitmapBits

Syntax DWORD GetBitmapBits(DWORD dwCount, LPSTR IpBits) const;
Parameters dwCount
Specifies the number of bytes to be copied.
IpBits

Points to the buffer that is to receive the bitmap. The bitmap is an array of
bytes. The bitmap byte array conforms to a structure where horizontal scan
lines are multiples of 16 bits.

Remarks Copies the bit pattern of the CBitmap object into the buffer that is pointed to by
IpBits. The dwCount parameter specifies the number of bytes to be copied to the
buffer. Use GetObject to determine the correct dwCount value for the given
bitmap.

Return Value The actual number of bytes in the bitmap, or 0 if there is an error.

See Also CGdiObject::GetObject, ::GetBitmapBits

114 CBitmap

::GetBitmapDimension

Syntax

Remarks

Return Value

See Also

CBitmap::GetBitmapDimension

CSize GetBitmapDimension() const;

Returns the width and height of the bitmap. The height and width are assumed to
have been set previously by using the SetBitmapDimension function.

The width and height of the bitmap, measured in 0.1-millimeter units. The height
is in the cy member of the CSize object, and the width is in the cx member. If the
bitmap width and height have not been set by using SetBitmapDimension, the re-
turn value is O.

CBitmap::SetBitmapDimension, ::GetBitmapDimension

Syntax

Parameters

Remarks

Return Value

See Also

CBitmap::LoadBitmap

BOOL LoadBitmap(const char FAR* [pBitmapName);
BOOL LoadBitmap(UINT n/DBitmap);

IpBitmapName
Points to a null-terminated string that contains the name of the bitmap resource.

nIDBitmap
Specifies the resource ID number of the bitmap resource.

Loads the bitmap resource named by I[pBitmapName or identified by the ID num-
ber in nIDBitmap from the application’s executable file. The loaded bitmap is at-
tached to the CBitmap object.

If the bitmap identified by [pBitmapName does not exist or if there is insufficient
memory to load the bitmap, the function returns FALSE.

TRUE if successful; otherwise FALSE.

CBitmap::LoadOEMBitmap, ::LoadBitmap

CBitmap::LoadOEMBitmap

115

Syntax

Parameters

Remarks

CBitmap::LoadOEMBitmap

BOOL LoadOEMBitmap(UINT nIDBitmap);

nlDBitmap

ID number of the predefined Windows bitmap. The possible values are listed

below from WINDOWS . H:

OBM_BTNCORNERS
OBM_BTSIZE
OBM_CHECK
OBM_CHECKBOXES
OBM_CLOSE
OBM_COMBO
OBM_DNARROW
OBM_DNARROWD
OBM_DNARROWI
OBM_LFARROW
OBM_LFARROWD
OBM_LFARROWI
OBM_MNARROW
OBM_OLD_CLOSE

OBM_OLD_DNARROW
OBM_OLD_LFARROW

OBM_OLD_REDUCE

OBM_OLD_RESTORE
OBM_OLD_RGARROW
OBM_OLD_UPARROW

OBM_OLD_ZOOM
OBM_REDUCE
OBM_REDUCED
OBM_RESTORE
OBM_RESTORED
OBM_RGARROW
OBM_RGARROWD
OBM_RGARROWI
OBM_SIZE
OBM_UPARROW
OBM_UPARROWD
OBM_UPARROWI
OBM_ZOOM
OBM_ZOOMD

Loads a predefined bitmap used by Windows.

116 CBitmap::SetBitmapBits

Return Value

See Also

Bitmap names that begin with OBM_ OLD represent bitmaps used by Windows
versions prior to 3.0.

Note that the constant OEMRESOURCE must be defined before including
WINDOWS H in order to use any of the OBM_ constants.

TRUE if successful; otherwise FALSE.

CBitmap::LoadBitmap, ::LoadBitmap

Syntax

Parameters

Remarks

Return Value

CBitmap::SetBitmapBits
DWORD SetBitmapBits(DWORD dwCount, LPSTR IpBits);

dwCount
Specifies the number of bytes pointed to by IpBits.

IpBits
Points to the BYTE array that contains the bit values to be copied to the
CBitmap object.

Sets the bits of a bitmap to the bit values given by IpBits.

The number of bytes used in setting the bitmap bits; 0 if the function fails.

See Also ::SetBitmapBits
CBitmap::SetBitmapDimension
Syntax CSize SetBitmapDimension(int nWidth, int nHeight);
Parameters nWidth
Specifies the width of the bitmap (in 0.1-millimeter units).
nHeight

Specifies the height of the bitmap (in 0.1-millimeter units).

CBitmap::SetBitmapDimension 117

Remarks

Return Value

See Also

Assigns a width and height to a bitmap in 0.1-millimeter units. These values are
not used internally by GDI; the GetBitmapDimension function can be used to re-
trieve them.

The previous bitmap dimensions. Height is in the ¢y member variable of the CSize
object, and width is in the cx member variable.

CBitmap::GetBitmapDimension, ::SetBitmapDimension

118 CBrush

class CBrush : public CGdiObject
The CBrush class encapsulates a Windows graphical
CGdiObject

design interface (GDI) brush. To use a CBrush object,
construct a CBrush object and pass it to any CDC
member function that requires a brush.

Ll CBrush I

Brushes can be solid, hatched, or patterned.

See Also CBitmap, CDC

Public Members

Construction/Destruction

CBrush Constructs a CBrush object.

Initialization

CreateSolidBrush Initializes a brush with the specified solid color.

CreateHatchBrush Initializes a brush with the specified hatched pat-
tern and color.

CreateBrushIndirect Initializes a brush with the style, color, and pattern
specified in a LOGBRUSH structure.

CreatePatternBrush Initializes a brush with a pattern specified by a
bitmap.

CreateDIBPatternBrush Initializes a brush with a pattern specified by a
device-independent bitmap (DIB).

Operations

FromHandle Returns a pointer to a CBrush object when given a
handle to a Windows HBRUSH object.

CBrush::CBrush 119

Member Functions
CBrush::CBrush
Syntax CBrush();
CBrush(DWORD crColor)

throw(CResourceException);

CBrush(int nindex, DWORD crColor)
throw(CResourceException);

CBrush(CBitmap* pBitmap)
throw(CResourceException);

Parameters crColor
Specifies the foreground color of the brush as an RGB color. If the brush is
hatched, this parameter specifies the color of the hatching.

nindex
Specifies the hatch style of the brush. It can be any one of the following values:

Value Meaning
HS_BDIAGONAL Downward hatch (left to right) at 45 degrees
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS Crosshatch at 45 degrees
HS_FDIAGONAL Upward hatch (left to right) at 45 degrees
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

pBitmap

Points to a CBitmap object that specifies a bitmap with which the brush paints.

120 CBrush::CreateBrushindirect

Remarks

See Also

Has four overloaded constructors. The constructor with no arguments constructs
an uninitialized CBrush object that must be initialized before it can be used.

If you use the constructor with no arguments, you must initialize the resulting
CBrush object with CreateSolidBrush, CreateHatchBrush,
CreateBrushIndirect, CreatePatternBrush, or CreateDIBPatternBrush. If
you use one of the constructors that takes arguments, then no further initialization
is necessary. The constructors with arguments can throw an exception if errors are
encountered, while the constructor with no arguments will always succeed.

The constructor with a single DWORD parameter constructs a solid brush with
the specified color. The color specifies an RGB value and can be constructed with
the RGB macro in WINDOWS.H.

The constructor with two parameters constructs a hatch brush. The nlndex parame-
ter specifies the index of a hatched pattern. The crColor parameter specifies the
color.

The constructor with a CBitmap parameter constructs a patterned brush. The
parameter identifies a bitmap. The bitmap is assumed to have been created by
using CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap. The min-
imum size for a bitmap to be used in a fill pattern is 8 pixels by 8 pixels.

CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, CBitmap::CreateCompatibleBitmap,
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CBrush::CreateBrushIndirect, CBrush::CreatePatternBrush,
CBrush::CreateDIBPatternBrush, CGdiObject::CreateStockObject

Syntax

Parameters

CBrush::CreateBrushindirect

BOOL CreateBrushIndirect(LPLOGBRUSH IpLogBrush);

IpLogBrush
Points to a LOGBRUSH structure that contains information about the brush.

The LOGBRUSH structure has the following form:

CBrush::CreateDIBPatternBrush 121

Remarks

Return Value

See Also

typedef struct tagLOGBRUSH {
WORD 1bStyle;
COLORREF 1bColor;
short int 1bHatch;

} LOGBRUSH;

Initializes a brush with a style, color, and pattern specified in a LOGBRUSH
structure. The brush can subsequently be selected as the current brush for any
device context.

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn
using the current text and background colors. Pixels represented by a bit set to 0
will be drawn with the current text color. Pixels represented by a bit set to 1 will
be drawn with the current background color.

TRUE if the function is successful; otherwise FALSE.
CBrush::CreateDIBPatternBrush, CBrush::CreatePatternBrush,

CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CGdiObject::CreateStockObject, ::CreateBrushIndirect

Syntax

Parameters

CBrush::CreateDIBPatternBrush

BOOL CreateDIBPatternBrush(GLOBALHANDLE hPackedDIB,
UINT wUsage);

hPackedDIB
Identifies a global-memory object containing a packed device-independent
bitmap.

wUsage
Specifies whether the bmiColors[] fields of the BITMAPINFO data structure
contain explicit RGB values or indexes into the currently realized logical
palette. The parameter must be one of the following values:

Value Meaning
DIB_PAL_COLORS The color table contains literal RGB values.

DIB_RGB_COLORS The color table consists of an array of 16-bit
indexes.

122 CBrush::CreateHatchBrush

Remarks

Return Value

Initializes a brush with the pattern specified by a device-independent bitmap
(DIB). The brush can subsequently be selected for any device context that sup-
ports raster operations.

To obtain a handle to the DIB, you call the Windows GlobalAlloc function to allo-
cate a block of global memory and then fill the memory with the packed DIB. A
packed DIB consists of a BITMAPINFO data structure immediately followed by
the array of bytes that define the pixels of the bitmap.

The BITMAPINFO structure has the following form:

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[17;
} BITMAPINFO;

Bitmaps used as fill patterns should be 8 pixels by 8 pixels.

When an application selects a two-color DIB pattern brush into a monochrome
device context, Windows ignores the colors specified in the DIB and instead dis-
plays the pattern brush using the current text and background colors of the device
context. Pixels mapped to the first color (at offset O in the DIB color table) of the
DIB are displayed using the text color. Pixels mapped to the second color (at off-
set 1 in the color table) are displayed using the background color.

TRUE if successful; otherwise FALSE.

See Also CBrush::CreatePatternBrush, CBrush::CreateBrushIndirect,
CBrush::CreateSolidBrush, CBrush::CreateHatchBrush,
CGdiObject::CreateStockObject, ::CreateDIBPatternBrush, ::GlobalAlloc
CBrush::CreateHatchBrush

Syntax BOOL CreateHatchBrush(int nindex, DWORD crColor);

Parameters nindex

Specifies the hatch style of the brush. It can be one of the following values:

CBrush::CreatePatternBrush 123

Remarks

Return Value

Value Meaning
HS_BDIAGONAL Downward hatch (left to right) at 45 degrees
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS Crosshatch at 45 degrees
HS_FDIAGONAL Upward hatch (left to right) at 45 degrees
HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch

crColor

Specifies the foreground color of the brush as an RGB color (the color of the
hatches).

Initializes a brush with the specified hatched pattern and color. The brush can sub-
sequently be selected as the current brush for any device context.

TRUE if successful; otherwise FALSE.

See Also CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,
CBrush::CreatePatternBrush, CBrush::CreateSolidBrush,
CGdiObject::CreateStockObject, ::CreateHatchBrush
CBrush::CreatePatternBrush

Syntax BOOL CreatePatternBrush(CBitmap* pBitmap);

Parameters pBitmap

Identifies a bitmap.
Remarks Initializes a brush with a pattern specified by a bitmap. The brush can sub-

sequently be selected for any device context that supports raster operations. The
bitmap identified by pBitmap is typically initialized by using the
CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger,
Windows will only use the bits corresponding to the first 8 rows and columns of
pixels in the upper-left corner of the bitmap.

124 CBrush::CreateSolidBrush

Return Value

Sae Algn

vU ruuv

A pattern brush can be deleted without affecting the associated bitmap. This
means the bitmap can be used to create any number of pattern brushes.

A brush created using a monochrome bitmap (1 color plane, 1 bit per pixel) is
drawn using the current text and background colors. Pixels represented by a bit set
to 0 are drawn with the current text color. Pixels represented by a bit set to 1 are
drawn with the current background color.

TRUE if successful; otherwise FALSE.

CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,

CBrush::CreateHatchBrush, CBrush::CreateSolidBrush,
CGdiObject::CreateStockObject, CBitmap::CreateBitmap,
CBitmap::CreateBitmapIndirect, CBitmap::CreateCompatibleBitmap,
CBitmap::LoadBitmap, ::CreatePatternBrush

Syntax

Parameters

Remarks

Return Value

See Also

CBrush::CreateSolidBrush

BOOL CreateSolidBrush(DWORD crColor);

crColor
Specifies the color of the brush. The color specifies an RGB value and can be
constructed with the RGB macro in WINDOWS H.

Initializes a brush with a specified solid color. The brush can subsequently be
selected as the current brush for any device context.

TRUE if successful; otherwise FALSE.
CBrush::CreateBrushIndirect, CBrush::CreateDIBPatternBrush,

CBrush::CreateHatchBrush, CBrush::CreatePatternBrush,
::CreateSolidBrush

CBrush::FromHandle 125

Syntax

Parameters

Remarks

Return Value

CBrush::FromHandle
static CBrush* FromHandle(HBRUSH /Brush);

hBrush
HANDLE to a Windows GDI brush.

Returns a pointer to a CBrush object when given a handle to a Windows
HBRUSH object. If a CBrush object is not already attached to the handle, a tem-
porary CBrush object is created and attached. This temporary CBrush object is
valid only until the next time the application has idle time in its event loop. At this
time, all temporary graphic objects are deleted. Another way of saying this is that
the temporary object is only valid during the processing of one window message.

A pointer to a CBrush object if successful; NULL if not.

126

CButton

class CButton : public CWnd

See Also

The CButton class provides the functionality of Win- CObject
dows button control. A button control is a small, rec- —

tangular child window that can be clicked on and off. CWnd J
Buttons can be used alone or in groups, and can either L|
be labeled or appear without text. A button typically CButton J

changes appearance when the user clicks it.

Typical buttons are the check box, radio button, and push button. A CButton ob-
ject can become any of these, according to the style specified at its initialization by
the Create member function.

You create a button control in two steps. First, call the constructor CButton to con-
struct the CButton object, then call the Create member function to create the Win-
dows button control and attach it to the CButton object.

Construction can be a one-step process in a class derived from CButton. Write a
constructor for the derived class and call Create from within the constructor.

If you want to handle the Windows notification messages sent by a CButton ob-
ject to its parent (usually a class derived from CDialog or CModalDialog), add
the appropriate message-map entries and message-handler member functions to
the parent class to handle the messages you want to process. Potential message-
map entries are:

ON_COMMAND
ON_BN_CLICKED
ON_BN_DOUBLECLICKED

If you create a CButton object within a dialog box (through a dialog resource), the
CButton object is automatically destroyed when the user closes the dialog box.

If you create a CButton object within a window, you may also need to destroy it.
If you create the CButton object on the stack, it is destroyed automatically. If you
create the CButton object on the heap by using the new function, you must call
delete on the object to destroy it when the user closes the Windows button control.

If you allocate any memory in the CButton object, override the CButton destruc-
tor to dispose of the allocations.

CWnd, CComboBox, CEdit, CListBox, CScrollBar, CStatic, CModalDialog,
CDialog

CButton 127

Public Members

Construction/Destruction
CButton

Initialization
Create

Operations
GetState
SetState
GetCheck
SetCheck
GetButtonStyle

SetButtonStyle

Constructs a CButton object.

Creates the Windows button control and attaches it
to the CButton object.

Retrieves the state of a button control.

Sets the highlighting state of a button control.
Retrieves the check state of a button control.
Sets the check state of a button control.

Retrieves information about the button control
style.
Changes the style of a button.

128 CButton::CButton

Member Functions

Syntax
Remarks

See Aiso

CButton::CButton

CButton();
Constructs a CButton object.

CButton::Create

Syntax

Parameters

Remarks

CButton::Create

BOOL Create(const char FAR* [pCaption, DWORD dwStyle,
const RECT& rect, CWnd* pParentWnd, UINT niID);

IpCaption
Specifies the button control’s text.

awStyle
Specifies the button control’s style.

rect
Specifies the button control’s size and position. It can be either a CRect object
or a RECT structure.

pParentWnd
Specifies the button control’s parent window, usually a CDialog or
CModalDialog. It must not be NULL.

niD
Specifies the button control’s resource ID.

You construct a CButton object in two steps. First call the constructor, then call
Create, which creates the Windows button control and attaches it to the CButton
object.

When Create executes, Windows sends the WM_NCCREATE,
WM_CREATE, WM_NCCALCSIZE, and WM_GETMINMAXINFO
messages to the button control.

CButton::Create 129

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base
class. To extend the default message handling, derive a class from CButton, add a
message map to the new class, and override the preceding message-handler mem-
ber functions. Override OnCreate, for example, to perform needed initialization
for a new class.

To handle Windows notification messages that the CButton object sends to its
parent, add any of the following message-map entries that you want to process to
the parent-class message map:

ON_COMMAND
ON_BN_CLICKED
ON_BN_DOUBLECLICKED

If the WS_VISIBLE style is given, Windows sends the button control all the mes-
sages required to activate and show the button.

Apply the following window styles to a button control:

Style Application

WS_CHILD Always.

WS_VISIBLE Usually.

WS_DIABLED Rarely.

WS_GROUP To group controls.

WS_TABSTOP To include the button in the tabbing order.

See CreateEx in the CWnd base class for a full description of these window
styles.

Use any combination of the following button styles for dwStyle:

Value Meaning

BS_AUTOCHECKBOX Same as a check box, except that an X
appears in the check box when the user
selects the box; the X disappears the next
time the user selects the box.

BS_AUTORADIOBUTTON Same as a radio button, except that when
the user selects it, the button automatically
highlights itself and removes the selection
from any other radio buttons with the same
style in the same group.

130 CButton::Create

Value

Meaning

BS_AUTO3STATE

BS_CHECKBOX

BS_DEFPUSHBUTTON

BS_GROUPBOX

BS_LEFTTEXT

BS_OWNERDRAW

BS_PUSHBUTTON

Same as a three-state check box, except that
the box changes its state when the user
selects it. The state cycles through checked,
dimmed, and normal.

Creates a small square that has text
displayed to its right (unless this style is
combined with the BS_ LEFTTEXT style).

Creates a button that has a heavy black
border. The user can select this button by
pressing the ENTER key. This style is useful
for enabling the user to quickly select the
most likely option (the default option).

Creates a rectangle in which other buttons
can be grouped. Any text associated with
this style is displayed in the rectangle’s
upper-left corner.

When combined with a radio-button or
check-box style, the text appears on the left
side of the radio button or check box.

Creates an owner-draw button. The owner
window receives a
WM_MEASUREITEM message when
the button is created and a
WM_DRAWITEM message when a
visual aspect of the button has changed.

Creates a push button that posts a
WM_COMMAND message to the owner
window when the user selects the button.

CButton::GetButtonStyle 131

Return Value

Value Meaning

BS_RADIOBUTTON Creates a small circle that has text
displayed to its right (unless this style is
combined with the BS_ LEFTTEXT
style). Radio buttons are usually used in
groups of related but mutually exclusive
choices.

BS_3STATE Same as a check box, except that the box
can be dimmed as well as checked. The
dimmed state typically is used to show that
a check box has been disabled.

TRUE if successful; otherwise FALSE.

See Also CButton::CButton
CButton::GetButtonStyle

Syntax UINT GetButtonStyle() const;

Remarks Retrieves the window style of CButton. It only returns the BS_ style values, not
any of the other window styles.
See the Create member function for a list of button styles.

See Also ::GetWindowLong, CButton::SetButtonStyle

132 CButton::GetCheck

Syntax
Remarks

Return Value

CButton::GetCheck

int GetCheck() const;
Retrieves the check state of a radio button or check box.
The return value from a button control created with the BS_AUTOCHECKBOX,

BS_AUTORADIOBUTTON, BS_AUTO3STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

Value Meaning

0 Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate (only applies if the button has the

BS_3STATE or BS_AUTO3STATE style).

If the button has any other style, the return value is 0.

See Also CButton::GetState, CButton::SetState, CButton::SetCheck,
BM_GETCHECK
CButton::GetState

Syntax UINT GetState() const;

Return Value

Specifies the current state of the button control. You can use the following masks
against the return value to extract information about the state:

Mask Meaning

0x0003 Specifies the check state (radio buttons and check boxes only). A
0 indicates the button is unchecked. A 1 indicates the button is
checked. A radio button is checked when it contains a dot (.). A
check box is checked when it contains an X. A 2 indicates the
check state is indeterminate (three-state check boxes only). The
state of a three-state check box is indeterminate when it contains
a halftone pattern.

CButton::SetButtonStyle 133

See Also

Mask Meaning

0x0004 Specifies the highlight state. A nonzero value indicates that the
button is highlighted. A button is highlighted when the user
clicks and holds the left mouse button. The highlighting is
removed when the user releases the mouse button.

0x0008 Specifies the focus state. A nonzero value indicates that the
button has the focus.

CButton::GetCheck, CButton::SetCheck, CButton::SetState,
BM_GETSTATE

Syntax

Parameters

Remarks

See Also

CButton::SetButtonStyle

void SetButtonStyle(UINT nStyle, BOOL bRedraw = TRUE);

nStyle
Specifies the button style.

bRedraw
Specifies whether the button is to be redrawn. A value of TRUE redraws the
button. A value of FALSE does not redraw the button. The button is redrawn
by default.

Changes the style of a button. See the Create member function for a list of
possible button styles.

CButton::GetButtonStyle, BM_SETSTYLE

134 CButton::SetCheck

Syntax

Parameters

Remarks

See Also

CButton::SetCheck

void SetCheck(int nCheck);

nCheck
Specifies the check state. This parameter can be one of the following values:

Value Meaning

0 Set the button state to unchecked.
1 Set the button state to checked.

2 Set the button state to indeterminate. This value can only be
used if the button has the BS_3STATE or
BS_AUTO3STATE style.

Sets or resets the check state of a radio button or check box. This member function
has no effect on a push button.

CButton::GetCheck, CButton::GetState, CButton::SetState,
BM_SETCHECK

Syntax

Parameters

Remarks

See Also

CButton::SetState

void SetState(BOOL bHighlight);

bHighlight
Specifies whether the button is to be highlighted. A value of TRUE highlights
the button. A value of FALSE removes any highlighting.

Sets the highlighting state of a button control.

Highlighting affects the exterior of a button control. It has no effect on the check
state of a radio button or check box.

A button control is automatically highlighted when the user clicks and holds the
left mouse button. The highlighting is removed when the user releases the mouse
button.

CButton::GetState, CButton::SetCheck, CButton::GetCheck,
BM_SETSTATE

CByteArray 135

class CByteArray : public CObject

See Also

Public Members

The CByteArray class supports dynamic arrays of
bytes.

CByteArray B

The member functions of CByteArray are similar to
the member functions of class CObArray. Because
of this similarity, you can use the CObArray reference documentation for mem-
ber function specifics. Wherever you see a CObject pointer as a function parame-
ter or return value, substitute a BYTE.

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

BYTE CByteArray::GetAt(int <nIndex>) const;

CByteArray incorporates the IMPLEMENT_SERIAL macro to support serial-
ization and dumping of its elements. If an array of bytes is stored to an archive,
either with the overloaded insertion operator or with the Serialize member func-
tion, each element is, in turn, serialized.

If you need debug output from individual elements in the array, you must set the
depth of the CDumpContext object to 1 or greater.

#include <afxcoll.h>

CObArray

Construction/Destruction

CByteArray Constructs an empty array for bytes.

Bounds

GetSize Gets number of elements in this array.
GetUpperBound Returns the largest valid index.

SetSize Sets the number of elements to be contained in this

array.

CByteArray

Operations

FreeExtra

RemoveAll

Element Access
GetAt
SetAt

ElementAt

Growing the Array
SetAtGrow

Add

Insertion/Removal
InsertAt

RemoveAt

Operators
operator []

Frees all unused memory above the current upper
bound.

Removes all the elements from this array.

Returns the value at a given index.

Sets the value for a given index; array not allowed
to grow.

Returns a temporary reference to the byte within
the array.

Sets the value for a given index; grows the array if
necessary.

Adds an element to the end of the array.

Inserts an element at a specified index.

Removes an element at a specific index.

Sets or gets the element at the specified index.

CClientDC 137

class CClientDC : public CDC

The CClientDC class is derived from CDC and takes
care of calling the Windows functions GetDC at con-

struction time and ReleaseDC at destruction time. This cDC E
means that the device context associated with a L‘ -
CClientDC object is the client area of a window. CClientDC J

See Also CDC

Public Members

Construction/Destruction

CClientDC Constructs a CClientDC object connected to the
CWnd.
~CClientDC Destroys a CClientDC object.

Protected Members

m_hWnd The HWND of the window for which this
CClientDC is valid.

138 CClientDC::CClientDC

Member Functions
CClientDC::CClientDC
Syntax CClientDC(CWnd* pWnd)

throw(CResourceException);

Parameters pWnd
The window whose client area the device context object will access.

Remarks Constructs a CClientDC object that accesses the client area of the CWnd pointed
to by pWnd. The constructor calls the Windows function GetDC.

An exception (of type CResourceException) is thrown if the Windows GetDC
call fails. A device context may not be available if Windows has already allocated
all of its available device contexts. Your application competes for the five com-
mon display contexts available at any given time under Windows.

CClientDC::~CClientDC

Syntax virtual ~CClientDC();

Remarks Destroys a CClientDC object and calls the Windows ReleaseDC function.

Data Members

CClientDC::m_hWnd

Remarks The HWND of the CWnd pointer used to construct the CClientDC object.

CComboBox 139

class CComboBox : public CWnd

The CComboBox class provides the functionality of a
Windows combo box. A combo box consists of an edit
control plus a list box. The list box may be displayed
at all times or may be dropped down when the user Ll

selects a drop-down arrow next to the edit control, CComboBox E
depending on the style of the combo box.

CWnd

v

Depending on the style of the combo box, the user may or may not be able to edit
the contents of the edit control. If the list box is visible, typing characters into the
edit control will cause the first list-box entry that matches the characters typed to

be highlighted. Conversely, selecting an item in the list box displays the selected

text in the edit control.

You create a combo box in two steps. First call the constructor CComboBox to
construct the CComboBox object, then call the Create member function to create
the button control and attach it to the CComboBox object.

Construction can be a one-step process in a class derived from CComboBox.
Write a constructor for the derived class and call Create from within the
constructor.

If you want to handle the Windows notification messages sent by a CComboBox
object to its parent (usually a class derived from CDialog or CModalDialog), add
the appropriate message-map entries and message-handler member functions to
the parent class to handle the messages you want to process. Potential message-
map entries are:

ON_COMMAND
ON_CBN_KILLFOCUS
ON_CBN_SETFOCUS
ON_CBN_DROPDOWN
ON_CBN_DBLCLK
ON_CBN_ERRSPACE
ON_CBN_SELCHANGE
ON_CBN_EDITCHANGE
ON_CBN_EDITUPDATE

If you create a CComboBox object within a dialog box (through a dialog re-
source), the CComboBox is automatically destroyed when the user closes the
dialog box.

140 CComboBox

See Also

Public Members

If you create a CComboBox object within a window, you may also need to de-
stroy it. If you create the CComboBox object on the stack, it is destroyed automat-
ically. If you create the CComboBox object on the heap by using the new
function, you must call delete on the object to destroy it when the user terminates

the Windows combo box.

If you allocate any memory in the CComboBox object, override the CComboBox
destructor to dispose of the allocations.

CWnd, CButton, CEdit, CListBox, CScrollBar, CStatic, CModalDialog,

CDialog

Construction/Destruction
CComboBox

Initialization
Create

General Operations
GetCount

GetCurSel
SetCurSel
GetEditSel
LimitText
SetEditSel
GetltemData

SetItemData

Constructs a CComboBox object.

Creates the combo box and attaches it to the
CComboBox object.

Retrieves the number of items in the list box of a
combo box.

Retrieves the index of the currently selected item,
if any, in the list box of a combo box.

Selects a string in the list box of a combo box.

Gets the starting and ending character positions
of the current selection in the edit control of a
combo box.

Limits the length of the text that the user may enter
into the edit control of a combo box.

Select characters in the edit control of a
combo box.

Retrieves the application-supplied 32-bit value as-
sociated with the specified combo-box item.

Sets the 32-bit value associated with the specified
item in a combo box.

CComboBox 14

GetLBText
GetLBTextLen

ShowDropDown

Clear

Copy

Cut

Paste

String Operations
AddString

DeleteString
InsertString
ResetContent

Dir
FindString

SelectString

Gets a string from the list box of a combo box.

Gets the length of a string in the list box of a
combo box.

Shows or hides the list box of a combo box that
has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

Deletes (clears) the current selection (if any) in the
edit control.

Copies the current selection (if any) onto the
Clipboard in CF_TEXT format.

Deletes (cuts) the current selection (if any) in the
edit control, and copies the deleted text onto the
Clipboard in CF_TEXT format.

Inserts the data from the Clipboard into the edit
control at the current cursor position. Data is in-
serted only if the Clipboard contains data in
CF_TEXT format.

Adds a string to the end of the list in the list box of
a combo box, or at the sorted position for list
boxes with the CBS_SORT style.

Deletes a string from the list box of a combo box.
Inserts a string into the list box of a combo box.

Removes all items from the list box and edit con-
trol of a combo box.

Adds a list of filenames to the list box of a
combo box.

Finds the first string that contains the specified pre-
fix in the list box of a combo box.

Searches for a string in the list box of a combo box
and, if the string is found, selects the string in the
list box and copies the string to the edit control.

142 CComboBox::AddString

Member Functions

Syntax

Parameters

Remarks

Return Value

CComboBox::AddString

int AddString(const char FAR* IpString);

IpString
Points to the null-terminated string that is to be added.

Adds a string to the list box of a combo box. If the list box was not created with
the CBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list, and the list is sorted.

To insert a string into a specific location within the list, use the InsertString
member function.

If the return value is greater than or equal to 0, it is the zero-based index to the
string in the list box. The return value is CB_ERR if an error occurs; the return
value is CB_ ERRSPACE if insufficient space is available to store the new string.

See Also CComboBox::InsertString, CComboBox::DeleteString, CB_ADDSTRING
CComboBox::CComboBox

Syntax CComboBox();

Remarks Constructs a CComboBox object.

See Also CComboBox::Create

CComboBox::Create 143

CComboBox::Clear
Syntax void Clear();
Remarks Deletes (clears) the current selection (if any) in the edit control of the combo box.

To delete the current selection and place the deleted contents onto the Clipboard,
use the Cut member function.

See Also CComboBox::Copy, CComboBox::Cut, CComboBox::Paste, WM_CLEAR

CComboBox::Copy

Syntax void Copy();

Remarks Copies the current selection, if any, in the edit control of the combo box onto the
Clipboard in CF_TEXT format.

See Also CComboBox::Clear, CComboBox::Cut, CComboBox::Paste, WM_COPY

CComboBox::Create

Syntax BOOL Create(DWORD dwStyle, const RECT& rect, CWnd* pParentWnd,
UINT nID);

Parameters dwStyle
Specifies the style of the combo box.

rect
Points to the position and size of the combo box. Can be a RECT structure or a
CRect object.

pParentWnd
Specifies the combo box’s parent window (usually a CDialog or
CModalDialog). It must not be NULL.

nlD
Specifies the combo box’s resource ID.

144

CComboBox::Create

Remarks

You construct a CComboBox object in two steps. First call the constructor, then
call Create, which creates the Windows combo box and attaches it to the
CComboBox object.

When Create executes, Windows sends the WM_NCCREATE,
WML_CREATE, WM_NCCALCSIZE, and WM_GETMINMAXINFO
messages to the combo box.

These messages are handled by default by the OnNcCreate, OnCreate,
OnNcCalcSize, and OnGetMinMaxInfo member functions in the CWnd base
class. To extend the default message handling, derive a class from CComboBox,
add a message map to the new class, and override the preceding message-handler
member functions. Override OnCreate, for example, to perform needed initializa-
tion for a new class.

To handle Windows notification messages sent from a CComboBox object to its
parent, add any of the following message-map entries that you want processed to
the parent-class message map:

ON_COMMAND
ON_CBN_KILLFOCUS
ON_CBN_SETFOCUS
ON_CBN_DROPDOWN
ON_CBN_DBLCLK
ON_CBN_ERRSPACE
ON_CBN_SELCHANGE
ON_CBN_EDITCHANGE
ON_CBN_EDITUPDATE

Apply the following window styles to a combo-box control:

Style Application
WS_CHILD Always.
WS_VISIBLE Usually.

WS_DIABLED Rarely.

WS_VSCROLL For list boxes and combo boxes.
WS_HSCROLL For list boxes and combo boxes.
WS_GROUP To group controls.

WS<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>