
Mixed-Languag ,
Progr, · Guide

Aficlosofl

M IXED-LANGUAGE

PROGRAMMING GUIDE

FOR THE MS-DOS® OPERATING SYSTEM

Information in this document is subject to change without notice and does not
,represent a commitment on the part of Microsoft Oorporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying and recording,
for any purpose other than the purchaser's personal use without the written per­
mission of Microsoft Oorporation.

c Oopyright Microsoft Oorporation;., 1987. All rights reserved.
Simultaneously published in the U.::>. and Oanada.

Microsoft@, MS-DOS@, and CodeView@ are registered trademarks and QuickCTM is a trade­
mark of Microsoft Corporation.

Document No. 410840031-500-ROl-1287

=

Introduction

Part 1 0 Mixed-Language Interfaces

1 Elements
of Mixed-Language Programming 5

1.1 Making :Mixed-Language Calls 7
1.2 Naming Convention Requirement 9
1.3 Calling Convention Requirement 12
1.4 Parameter-Passing Requirement 13
1.5 Compiling and Linking .. 15

1.5.1 Compiling with Proper Memory Models 15
1.5.2 Linking with Language Libraries 16

2 BASIC Calls
to High-Level Languages 17

2.1 The BASIC Interface to Other Languages 19
2.1.1 The DECLARE Statement 19
2.1.2 Using ALIAS•.................... 20
2.1.3 Using the Parameter List 21

2.2 Alternative BASIC Interfaces 22
2.3 BASIC Calls to C ... 23

2.3.1 Calling C from BASIC-No Return Value 23
2.3.2 Calling C from BASIC-Function CaI1.. 24

iii

2.4 BASIC Calls to FORTRAN 26
2.4.1 Calling FORTRAN from BASIC-

Subroutine Call ... 26
204,2 Calling FORTRAN from BASIC-

Function Call .. 27
2.5 BASIC Calls to PascaL .. 29

2.5.1 Calling Pascal from BASIC-
Proced ure Call ... 29

2.5.2 Calling Pascal from BASIC-
Function Call .. 30

2.6 Restrictions on Calls from BASIC 31
2.6.1 Memory Allocation ... 31
2.6.2 Incompatible Functions 32

3 C Calls
to High-Level Languages 33

3.1 The C Interface to Other Languages 35
3.2 Alternative C Interfaces ... 37
3.3 C Calls to BASIC ... 37
3.4 C Calls to FORTRAN40

3.4.1 Calling FORTRAN from C-
Subroutine Call ... 40

3.4.2 Calling FORTRAN from C-
Function Call .. 41

3.5 C Calls to Pascal .. 42
3.5.1 Calling Pascal from C-Procedure Call42
3.5.2 Calling Pascal from C-Function Call44

4 FORTRAN Calls
to High-Level Languages45

4.1 The FORTRAN Interface to Other Languages47
4.1.1 The INTERFACE Statement47
4.1.2 Using ALIAS ... 49

4.2 Alternative FORTRAN Interface to C49

iv

FORTRAN Calls to BASIC 50
FORTRAN Calls to C .. 52
4.4.1 Calling C from FORTRAN-

No Return Value ... 52
4.4.2 Calling C from FORTRAN-

Function Call .. 54
4.5 FORTRAN Calls to Pascal 55

4.5.1 Calling Pascal from FORTRAN-
Procedure Call. .. 55

4.5.2 Calling Pascal from FORTRAN-
Function Call .. 56

5 Pascal Calls
to High-Level Languages 59

5.1 The Pascal Interface to Other Languages 61
5.2 Alternative Pascal Interface to C 62
5.3 Pascal Calls to BASIC .. 62
5.4 Pascal Calls to C .. 65

5.4.1 Calling C from Pascal-No Return Value 65
5.4.2 Calling C from Pascal-Function Call 66

5.5 Pascal Calls to FORTRAN 67
5.5.1 Calling FORTRAN from Pascal-

Subroutine Call ... 67
5.5.2 Calling FORTRAN from Pascal-

Function Call ..•... 68

6 Assembly-to-High-Levellnterface .. 71
6.1 Writing the Assembly Procedure 73

6.1.1 Setting Up the Procedure 73
6.1.2 Entering the Procedure 74
6.1.3 Allocating Local Data (Optional) 75
6.1.4 Preserving Register Values 75
6.1.5 Accessing Parameters 76
6.1.6 Returning a Value (Optional) 78
6.1.7 Exiting the Procedure 80

v

6.2 Calls from B.ASIC ... 81
6.3 Calls from C ... 83
6.4 Calls from FORmAN ... 85
6.5 Calls from Pascal ... 88

6. 6 ~~~nx!~~l:.~~~. ~.~~~~~~ 90
6.7 The :Microsoft Segment Model 91

Part 2 0 Data Handling Reference

7 Passing by Reference or Value 99
7.1 B.ASIC Arguments .. 101
7.2 C Arguments .. 102

7.3 FORTRA.N Arguments .. 104
7.4 Pascal Arguments ... 105

8 Numerical, Logical,
and String Data ... 107

8.1 Integer and Real Numbers 109
8.2 FORTRA.N C01VIPLEX Types 109
8.3 FORTRA.N LOGICAL Type 111
8.4 Strings .. 111

8.4.1 String Formats .. 111
8.4.2 Passing BASIC Strings 114
8.4.3 Passing C Strings ... 117
8.4.4 Passing FORTRAN Strings•................ 118
8.4.5 Passing Pascal Strings 120

9 Special Data Types 123
9.1 Arrays .. 125

9.1.1 Passing Arrays from BASIC 125
9.1.2 Array Declaration and Indexing 127

vi

Structures, Records, and
User-defined Types ... 129
&ternal Data ... 130

9.4 Pointers and Address Variables 132
9.5 Common Blocks ... 132

9.5.1 Passing the Address
of the Common Block 133

9.5.2 Accessing Common Blocks Directly 134
9.6 Using a Varying Number of Parameters 134

Index ... 137

vii

Figures
Figure 1.1 Mxed-Language Call 8
1"igure 1.2 Naming COnvention 11
Figure 3.1 C Call to BASIC .. 38
Figure 4.1 FORTRAN Call to BASIC 52
Figure 5.1 Pascal Call to BASIC 63
Figure 6.1 The Stack Frame ... 77
Figure 6.2 FORTRAN/Pascal Long Return Values 79
Figure 6.3 BASIC Stack Frame 82
Figure 6.4 C Stack Frame ... 84
Figure 6.5 FORTRAN Stack Frame 87
Figure 6.6 Pascal Stack Frame 89
Figure 6.7 Assembly Call to C .. 91
Figure 8.1 FORTRAN COMPLEX Data Format 111
Figure 8.2 BASIC String Descriptor Format 112
Figure 8.3 C String Format ... 112
Figure 8.4 FORTRAN String Format 113
Figure 8.5 Pascal String Format 114
Figure 9.1 Structure and Record Storage 129

viii

Table 1.1
Table 1.2
Table 6.1

Table 8.1
Table 9.1

Language Equivalents for Routine Calls 9
Parameter-Passing Defaults 15
Default Segments and _Types
for Standard Memory Moaels 92
Equivalent Numeric Data Types 110
Equivalent Array Declarations 128

ix

INTRODUCTION

Mixed-language programming is the process of creating programs from
two or more source languages. This capability allows you to combine the
unique strengths of Microsoft® BASIC, C, FORTRAN, Pascal, and Macro
Assembler. Anyone of these languages (in their recent versions) can call
any of the others. Virtually all of the routines from all extensive language
libraries are available to a mixed-language program.

For example, mixed-language programming helps you effectively use as­
sembly language. You can develop the majority of your program quickly
with Microsoft C or QuickBASIC, then call assembly for those few routines
that are executed many times and must run with utmost speed.

Mixed-language programming also facilitates the transition from one lan­
guage to another . You may have a large FORTRAN program which you
are converting to C. You can replace your FORTRAN subroutines, one by
one, with corresponding C functions. C-generated code can come on-line as
soon as each function is written.

Finally, mixed-language programming is particularly valuable if you are
marketing your own libraries. With the techniques presented here, you can
produce libraries for any of the languages mentioned above, often with
little change.

How to Use this Manual

This manual focuses on the concepts, syntax, and programming methods
necessary to write mixed-language programs. The manual assumes that
you have a basic understanding of the languages you wish to combine and
that you already know how to write, compile, and link multiple-module
programs with these languages. The manual does not attempt to teach the
basics of programming in any particular language.

Mixed-language programming is not particularly difficult, but it does
require that you understand certain basic issues. This manual first
presents these issues in some detail. Once you understand the basics, you
ca!l proceed to the sections that are relevant to the languages you are
usmg.

xi

Microsoft Mixed-Language Programming Guide

The manual is divided into two parts; each part has a different orientation
and purpose:

• Part 1. Mixed-Language Interfaces.

Part 1 shows how to establish an interface between any two
languages (of those listed above). It does not assume you have any
background in mixed-language programming, and extensively uses
examples with simple parameter lists.

• Part 2. Data Handling Reference.

Part 2 shows how to pass different kinds of data. This part of the
manual assumes you already know the basics of mixed-language
programming. It focuses on the particular programming considera­
tions for passing strings, arrays, common blocks, etc.

Depending on your current level of knowledge, you may not need to start
reading this manual at the beginning. The manual is structured so that
you can easily turn to the section that would be most helpful:

1. For an introduction to mixed-language concepts, read Chapter 1, "Ele­
ments of Mixed-Language Programming."

2. Depending on the high-level language of your main program, read
either Chapter 2, 3, 4, or 5. The opening section of each of these
chapters describes mixed-language syntax in detail. For quick refer­
ence, turn directly to the section in Chapters 2-5 most relevant to
your combination of languages.

3. To find out about calls to assembly language, read Chapter 6,
"Assembly-to-High-Level Interface."

4. After you have learned how to pass simple arguments (such as
integers) between languages, use Part 2 as a reference for passing more
complex kinds of data, such as strings and arrays.

Definitions

The notational conventions used in this manual are consistent with the
conventions described in the user's guide for each Microsoft language.
However, the following terms are used in specialized ways:

Term

Routine

xii

Definition

Any function, subprogram, subroutine, or procedure
that can be called from another language.

The concept is similar to that of a procedure in assem­
bly language; however, the term "routine" is used in
most contexts to avoid confusion with the Pascal key­
word procedure.

Parameter

Interface

Formal
parameter

A piece of data passed directly between two routines.
(External data are shared by all routines, but cannot
he said to be passed.)

Although elsewhere the term "argument" is sometimes
used interchangeably with "parameter," in this
manual, "argument" is used to refer to the particular
values or expressions given for parameters.

A method for providing effective communication
between different formats. With high-level languages,
an interface is often established by some kind of for­
mal declaration.

A formal parameter is a dummy parameter declared in
an interface statement or declaration. C uses parame­
ter type declarations rather than formal parameters.

xiii

..........-

PARTl

IXED­
ANGUAGE

NTERFACES

· PaBI..!O M~~I~

Part 1 of the Mixed-Language Programming
Guide explains how to establish an interface
between modules written in Microsoft BASIC, C,
FORTRAN, Pascal, and Macro Assembler. This
part of the manual extensively uses examples;
however, these examples feature only integer
parameters, which are relatively easy to pass.
Sharing other kinds of data (such as strings and
arrays) presents special problems, and is dealt
with in Part 2.

3

CHAPTER
ELEMENTS OF
MIXED-~GUAGE
pROGRAMMING

1.1 Making :Mixed-Language Calls 7
1.2 Naming Convention Requirement 9
1.3 Calling Convention Requirement 12
1.4 Parameter-Passing Requirement 13
1.5 Compiling and Linking ... 15

1.5.1 Compiling with Proper Memory Models 15
1.5.2 Linking with Language Libraries 16

Elements of MIXed-Language Programming

Microsoft languages have special keywords that facilitate mixed-language
programming (described in Chapters 2-5). However, in order to use these
keywords, you first need to understand the basic issues involved.

This chapter describes the elements of mixed-language programming: how
languages differ and how to resolve these differences. If you understand the
principles described in the next few paragraphs, then you may want to
turn directly to other chapters in this manual. Nevertheless, you still may
find it helpful to refer to this chapter occasionally.

Section 1.1 presents the basic context of a mixed-language call, when and
how you make such a call.

Sections 1.2-1.4 present the three fundamental mixed-language program­
ming requirements:

• Naming convention requirement

• Calling convention requirement

• Parameter-passing requirement

Section 1.5 presents the compile-time and link-time issues, including use of
memory models.

1.1 Making Mixed-Language Calls

Mixed-language programming always involves a call; specifically, it in­
volves a function, procedure, or subroutine call. For example, a BASIC
main module may need to execute a specific task that you would like to
program separately. Instead of calling a BASIC subprogram, however, you
decide to call a C function.

Mixed-language calls necessarily involve multiple modules (at least with
Microsoft languages). Instead of compiling all of your source modules with
the same compiler, you use different compilers. In the example mentioned
above, you would compile the main-module source file with the BASIC
compiler, another source file (written in C) with the C compiler, and then
link together the two object flIes.

7

Microsoft Mixed-Language Programming Guide

Figure 1.1 illustrates how the syntax of a mixed-language call works, using
the example mentioned above.

DECLARE SUB Prn CDECL()

void prn() {

Figure 1.1 Mixed-Language Call

In the illustration above, the BASIC call to C is CALL Prn, similar to a
call to a BASIC subprogram. However, there are two differences between
this mixed-language call and a call between two BASIC modules: 1) the
subprogram Prn is actually implemented in C, using standard C syntax;
and 2) the implementation of the call in BASIC is affected by DECLARE
statement, which uses the CDECL keyword in order to create compatibil­
ity with C. The DECLARE statement (which is discussed in detail in
Chapter 2) is an example of a mixed-language "interface" statement. Each
language provides its own form of interface.

Despite syntactic differences, functions, procedures, and FORTRAN sub­
routines are all similar. The principal difference is that some kinds of rou­
tines return values, and others do not. You can interchange routines that
have a return value, and you can interchange routines that have no return
value. (Note that in this manual, "routine" refers to any function, pro­
cedure or subroutine that can be called from another module.)

8

Elements of Mixed-Language Programming

Table 1.1 shows the correspondence between routine calls in different
languages.

Table 1.1

Language Equivalents for Routine Calls

Language Return value No return value

BASIC FUNCTION subprogram
procedure

C function (void) function

FORTRAN function subroutine

Pascal function procedure

Macro AsseIIlbler procedure procedure

For example, a BASIC module can make a subprogram call to a FOR­
TRAN subroutine. BASIC should make a FUNCTION call in order to
call a FORTRAN function; otherwise, the call can be made, but the return
value will be lost.

Note

BASIC DEF FN functions and GOSUB subroutines cannot be called
from another language.

1.2 Naming Convention Requirement

The term "naming convention" refers to the way that a compiler alters the
name of the routine before placing it into an object file.

It is important that you adopt a compatible naming convention when you
issue a mixed-language call. If the name of the called routine is stored
differently in each object file, then the linker will not be able to find a
match. It will instead report an unresolved external.

Microsoft compilers place machine code into object files; but they also
place there the names of all routines and variables which need to be

9

Microsoft Mixed-Language Programming Guide

accessed publicly. That way, the linker can compare the name of a routine
called in one module to the name of a routine defined in another module,
and recognize a match. Names are stored in ASCII (American Standard
Code for Information Interchange) format. You can see precisely how they
are stored if you use the DEBUG utility to dump an object file's bytes.

BASIC, FORTRAN, and Pascal use roughly the same naming convention.
They translate each letter to uppercase. BASIC type declaration charac­
ters (%, &, !, #, $) are dropped.

However, each language recognizes a different number of characters. FOR­
TRAN recognizes the first 6 characters of any name, Pascal the first 8, and
BASIC the first 40. If a name is longer than the language will recognize,
additional characters are simply not placed in the object file.

C uses a quite different convention; the C compiler does not translate any
letters to uppercase, but inserts a leading underscore (_) in front of the
name of each routine. C recognizes the first 31 characters of a name.

Differences in naming conventions are taken care of for you automatically
by mixed-language keywords, as long as you follow two rules:

1. If you are using any FORTRAN routines, all names should be 6
characters or less in length.

2. Do not use the /NOIGNORE linker option (which causes the
linker to distinguish between Prn and prn). With C modules,
this means that you will have to be careful not to rely upon
differences between uppercase and lowercase letters.

The CL driver and Microsoft QuickC," automatically use the
/NOIGNORE option when linking. To solve the problems
created by this behavior, either link separately with the LINK
utility, or use all lowercase letters in your C modules.

Figure 1.2 illustrates a complete mixed-language development example,
showing how naming conventions enter into the process.

10

Elements or Mixed-Language Programming

Figure 1.2 Naming Convention

11

Microsoft Mixed-Language Programming Guide

In the example above, note that the BASIC compiler inserts a leading
underscore in front of Prn as it places the name into the object file,
because the CDECL keyword directs the BASIC compiler to use the C
naming convention. BASIC will also convert all letters to lowercase when
this keyword is used. (Strictly speaking, converting letters to lowercase is
not part of the C nammg convention; however, it is consistent with the
programming style of most C programs.)

1.3 Calling Convention Requirement

The term "calling convention" refers to the way that a language imple­
ments a call. The choice of calling convention affects the actual machine
instructions that a compiler generates in order to execute (and return
from) a function, procedure, or subroutine call.

The calling convention is a low-level protocol. It is crucial that the two
rou tines concerned (the routine issuing a call and the routine being called)
recognize the same protocol. Otherwise, the processor may receive incon­
sistent instructions, thus causing the system to crash.

The use of a calling convention affects programming in two ways:

1. The calling routine uses a calling convention to determine in what
order to pass arguments (parameters) to another routine. This con­
vention can usually be specified in a mixed-language interface.

2. The called routine uses a calling convention to determine in what
order to receive the parameters that were passed to it. In most
languages, this convention can be specified in the routine's head­
ing. BASIC, however, always uses its own convention to receive
parameters.

In other words, each call to a routine uses a certain calling convention, and
each routine heading specifies or assumes some calling convention. The two
conventions must be compatible. With each language except BASIC, it is
possible to change either calling convention. Usually, however, it is sim­
plest to adopt the convention of the called routine. For example, a C func­
tion would use its own convention to call another C function, and use the
Pascal convention to call Pascal.

BASIC, FORTRAN, and Pascal use the same standard calling convention.
C, however, uses a quite different convention.

12

Elements or Mixed-Language Programming

Note

The next few paragraphs discuss some of the details of calling conven­
tions. It is not crucial for a high-level language programmer to under­
stand these details; the programmer only needs to know that the dif­
ferent conventions are not compatible with each other.

The Microsoft BASIC, FORTRAN and Pascal calling conventions each
push parameters onto the stack in the order in which they appear in the
source code. For example, the BASIC statement CALL Calc (A, B)
pushes the argument A onto the stack before it pushes B. These conven­
tions also specify that the stack is restored by the called routine, just
before returning control to the caller. (The stack is restored by removing
parameters.)

The C calling convention pushes parameters onto the stack in the reverse
order in which they appear in the source code. For example, the C function
call calc (a, b) ; pushes b onto the stack before it pushes a. In con­
trast with the other high-level languages, the C calling convention specifies
that a calling routine always restores the stack immediately after the
called routine returns control.

The BASIC, FORTRAN, and Pascal conventions produce slightly less
object code. However, the C convention makes calling with a variable
number of parameters possible. (Because the first parameter is always the
last one pushed, it is always on the top of the stack; therefore it has the
same address relative to the frame pointer, regardless of how many param­
eters were actually passed.)

1.4 Parameter-Passing Requirement

Section 1.3 discussed the overall protocol (the calling convention) that two
routines use to communicate with each other; this section concerns how an
individual piece of data (a parameter) is actually sent.

If your routines do not agree on how a parameter is to be sent, then a
called routine will receive bad data. It is also possible that the program
could cause the system to crash.

13

Microsoft Mixed-La.nguage Progra.mming Guide

Microsoft compilers support three methods for passing a parameter:

Method

By near reference

By far reference

By value

Description

Passes a variable's near (offset) address.

This method gives the called routine direct
access to the variable itself. Any change the rou­
tine makes to the parameter will be reflected in
the calling routine.

Passes a variable's far (segmented) address.

This method is similar to passing by near refer­
ence, except that a longer address is passed.
This method is slower than passing by near
reference but is necessary when you pass data
that is outside of the default data segment.
(This is not an issue in BASIC or Pascal, unless
you have specifically requested far memory.)

Passes only the variable's value, not address.

With this method, the called routine knows the
value of the parameter, but has no access to the
original variable. Changes to a value parameter
have no affect on the value of the parameter in
the calling routine, once the routine terminates.

The fact that there are different parameter-passing methods has two
implications for mixed-language programming.

First, you need to make sure that the called routine and the calling rou­
tine use the same method for passing each parameter (argument). In most
cases, you will need to check the parameter-passing defaults used by each
language, and possibly make adjustments. Each language has keywords or
language features that allow you to change parameter-passing methods.

Second, you may want to use a particular parameter-passing method
rather than using the defaults of any language. (In fact, the examples in
Chapters 2-5 specifically require one particular method or another,
because of program logic.)

Table 1.2 summarizes the parameter-passing defaults for each language.

14

Elements of Mixed-Language Programming

Table 1.2

Parameter-Passing Defaults

Language Near reference

BASIC all

Far reference By value

C near arrays far arrays non-arrays

FORTRAN all alII

Pascal VAR, CONST VARS, CONSTS other params

I When a PASCAL or C attribute is applied to a FORTRAN routine, pass by value becomes
the default.

Each language has methods for overriding these defaults, which are listed
in Chapter 7.

1.5 Compiling and Linking

Mter you have written your source files and resolved the issues raised in
Sections 1.2-1.4, you are ready to compile individual modules and then
link them together.

1.5.1 Compiling with Proper Memory Models

With Microsoft BASIC, FORTRAN, and Pascal, no special options are
required to compile source files that are part of a mixed-language program.

With Microsoft C, however, you need to be aware that not all memory
models will be compatible with other languages. BASIC, FORTRAN, and
Pascal use only far (segmented) code addresses. Therefore, you must al­
ways compile C modules in medium, large, or huge model, because these
models also use far code addresses. Compiling in small or compact model
will cause the mixed-language program to crash, as soon as a call is made
to or from C. (This problem can be averted if you apply the far keyword
to a C function definition, in order to specify that the function uses a far
call and return.)

15

Microsoft Mixed-Language Programming Guide

The paragraph above concerns the size of code addresses. Differences in
the size of data addresses can be resolved through compile options or in
the source code. Choice of memory model affects the default data pointer
size in C and FORTRAN, although this default can be overriden with
near and far. Choice of memory model, with C and FORTRAN, also
affects whether data objects are located in the default data segment; if a
data object is not located in the default data segment, it cannot be
directly passed by near reference.

1.5.2 Linking with Language Libraries

In many cases, linking modules compiled with different languages can be
done easily. Any of the following measures will ensure that all of the
required libraries are linked in the correct order:

• Put all language libraries in the same directory as the source files.

• List directories containing all needed libraries in the Lm environ­
ment variable.

• Let the linker prompt you for libraries.

In each of the above cases, the linker finds libraries in the order that it
requires them. If you enter the libraries on the command line, then they
must be entered in a particular order.

However, if you are using Version 4.0 of FORTRAN to produce one
of your modules, then you need to link with /NOD (no default libraries),
and specify all the libraries you need directly on the link command line.
You can also specify these libraries with an automatic-response file (or
batch file), but you cannot use a default-library search.

If your program uses both FORTRAN and C, then specify the library for
the most recent of the two language products first. If you use C 4.0 with
FORTRAN 4.0 or later, specify the FORTRAN library first. If you use C
5.0 or later, specify the C library first. In addition, make sure that you
chose a C-compatible library when you installed FORTRAN.

If you are listing BASIC libraries on the LINK command line, the BASIC
libraries must precede all others.

• Example

LINK /NOD modl mod2",GRAFX+LLIBCE+LLIBFORE

The example above links two object modules with the C 5.1 and FOR­
TRAN 4.0 large-model libraries. In addition, the example links in an extra
library, GRAFX.

16

CHAPTER
BASIC CALLS
W HIGH-LEVEL LANGUAGES

2.1 The BASIC Interface to Other Languages 19
2.1.1 The DECLARE Statement 19
2.1.2 Using Al-IAS .. 20
2.1.3 Using the Parameter List 21

2.2 Alternative BASIC Interfaces 22
2.3 BASIC Calls to C .. 23

2.3.1 Calling C from BASIC- No Return Value 23
2.3.2 Calling C from BASIC- Function Call 24

2.4 BASIC Calls to FORTRAN 26
2.4.1 Calling FORTRAN from BASIC-

Subroutine Call .. 26
2.4.2 Calling FORTRAN from BASIC-

Function Call 27
2.5 BASIC Calls to Pascal .. 29

2.5.1 Calling Pascal from BASIC-
Procedure Call ... 29

2.5.2 Calling Pascal from BASIC-
Function Call ... 30

2.6 Restrictions on Calls from BASIC 31
2.6.1 Memory Allocation 31
2.6.2 Incompatible Functions 32

BASIC Calls to High-Level Languages

Microsoft BASIC supports calls to routines written in Microsoft C, FOR­
TRAN, and Pascal. This chapter describes the necessary syntax for calling
these other languages, and then gives examples for each combination of
BASIC with another language. Only integers are used as parameters in
these examples.

The chapter ends with a section that lists restrictions on the use of func­
tions from the C standard library. Consult this section if you are using any
memory allocation or system library functions.

For information on how to pass specific kinds of data, consult Part 2,
"Data Handling Reference."

2.1 The BASIC Interface to Other Languages

The BASIC DECLARE statement provides a flexible and convenient
interface to other languages. It is available with Microsoft QuickBASIC,
Versions 4.0 and later. Versions that do not provide the DECLARE
statement do not provide libraries that are compatible with other lan­
guages, either. These earlier versions have limited use in mixed-language
programs, as they cannot successfully call a C, FORTRAN, or Pascal rou­
tine that makes any use of a library.

The syntax of the DECLARE statement is summarized below.

2.1.1 The DECLARE Statement

When you call a function, the DECLARE statement syntax is as follows:

DECLARE FUNCTION name [CDECL] [ALIAS "aliasname"][(parameter-list)]

When you call a subprogram, the statement syntax is as follows:

DECLARE SUB name [CDECL][ALIAS "aliasname"][(parameter-l£st)]

The name field is the name of the function or subprogram procedure you
wish to call, as it appears in the BASIC source file. Here are the recom­
mended steps for using the DECLARE statement to call other languages:

1. For each distinct interlanguage routine you plan to call, put a
DECLARE statement in the BASIC source file before the routine
is called.

For example, your program may call the subprogram Maxparam
five different times, each time with different arguments. However,
you need to declare Maxparam just once. Ideally, DECLARE
statements should be placed near the beginning of the source file.

19

Microsoft Mixed-Language Programming Guide

2. If you are calling a routine from a C module, use CDECL in the
DECLARE statement (unless the C routine is declared with the
pascal or fortran keyword).

CDECL directs BASIC to use the C naming and calling conven­
tions during each subsequent call to name. No similar keywords
are provided for Pascal or FORTRAN, because they each use the
same calling convention as BASIC.

3. If you are calling a FORTRAN routine with a name longer than six
characters, or a C or Pascal routine with a name longer than eight
characters, use the ALIAS feature. The use of ALIAS is explained
in the section below.

4. Use the parameter list to determine how each parameter is to be
passed. The use of the parameter list is explained below, in the sec­
tion immediately after the information on ALIAS.

5. Once the routine is properly declared, call it just as you would a
BASIC subprogram or function.

The other fields are explained in the following discussion.

2.1.2 Using ALIAS

As noted above, the use of ALIAS may be necessary because FORTRAN
places only the first 6 characters of a name into an object file, whereas C
and Pascal each place the first 8, but BASIC will place up to 40 characters
of a name into an object file.

Note

You do not need the ALIAS feature to remove type declaration char­
acters (%, &, !, #, $). BASIC automatically removes these characters
when it generates object code. Thus, Fact% in BASIC matches Fact
in Pascal.

The ALIAS keyword directs BASIC to place aliasname into the object file,
instead of name. The BASIC source file still contains calls to name. How­
ever, these calls are interpreted as if they were actually calls to aliasname .

• Example

DECLARE FUNCTION Quadratic% ALIAS "QUADRA" (a, b, c)

20

BASIC Ca.11s to High-Level La.ngua.ges

In the example above, QUADRA, the aliasname, contains the first six char­
acters of Quadratic%, the name. This causes BASIC to place QUADRA
into the object code, thereby mimicking FORTRAN's behavior.

2.1.3 Using the Parameter List

The parameter list syntax is displayed below, followed by explanations of
each field. Note that you can use BYV AL or SEG, but not both.

• Syntax

[BYVAL I SEG] variable [AS type] ... ,

Use the BYV AL keyword to declare a value parameter. In each subse­
quent call, the corresponding argument will be passed by value (the
default method for C and Pascal modules).

Note

BASIC provides two ways of "passing by value." The usual method of
passing by value is to use an extra set of parentheses, as in:

CALL Holm ((A))

This method actually creates a temporary value, whose address is
passed. BYV AL provides a true method of passing by value, because
the value itself is passed, not an address. Only by using BYV AL will a
BASIC program be compatible with a non-BASIC routine that expects
a value parameter.

Use the SEG keyword to declare a far reference parameter. In each subse­
quent call, the far (segmented) address of the corresponding argument will
be passed (the default method for FORTRAN modules).

You can choose any legal name for variable; but only the type associated
with the name has any significance to BASIC. As with other variables, the
type can be indicated with a type declaration character (%, &, !, #, $) or
by implicit declaration.

You can use the AS type clause to override the type declaration of
variable. The type field can be INTEGER, LONG, SINGLE,
DOUBLE, STRING, a user-defined type, or ANY, which directs BASIC
to permit any type of data to be passed as the argument.

21

Microsoft Mixed-Language Programming Guide

• Examples

DECLARE FUNCTION Calc2! CDECL (BYVAL a%, BYVAL b%, BYVAL c!)

In the example above, Calc2 is declared as a C routine that takes three
arguments: the first two are integers passed by value, and the last is a
single-precision real number passed by value.

DECLARE SUB Maxout (SEG varl AS INTEGER, BYVAL var2 AS DOUBLE)

This example declares a subprogram Maxout that takes an integer passed
by far reference, and a double-precision real number passed by value.

2.2 Alternative BASIC Interfaces

Though the DECLARE statement provides a particularly convenient
interface, there are other methods of implementing mixed-language calls.

Instead of modifying the behavior of BASIC with CDECL, you can
modify the behavior of C by applying the pascal or fortran keyword to
the function definition heading. (These two keywords are functionally
equivalent). Or you can compile the C module with the /Gc option, which
specifies that all C functions, calls, and public symbols use the conventions
of BASIC/FORTRAN/Pascal.

For example, the following C function uses the BASIC/FORTRAN/Pascal
conventions to receive an integer paramter:

int pascal funl(n)
int n;

You can specify parameter-passing methods without using a DECLARE
statement or by using a DECLARE statement and omitting the parame­
ter list.

• You can make the call with the CALLS statement. The CALLS
statement causes each parameter to be passed by far reference.

• You can use the BYV AL and SEG keywords in the actual param­
eter list when you make the call:

CALL Fun2(BYVAL Terml, BYVAL Term2, SEG Sum);

In the example above, BYV AL and SEG have the same meaning that
they have in a BASIC DECLARE statement. When you use BYV AL and
SEG this way, however, you need to be careful because neither the type
nor the number of parameters will be checked as they would be in a
DECLARE statement.

22

BASIC Calls to IDgh-Level Langua.ges

2.3 BASIC Calls to C

This section applies the steps outlined in Section 2.1 to two example pro­
grams. An analysis of programming considerations follows each example.

2.3.1 Calling C from BASIC-No Return Value

The example below demonstrates a BASIC main module calling a C func­
tion, maxparam. The function maxparam returns no value, but adjusts
the lower of two arguments to equal the higher argument .

• Example

, BASIC source file - calls C function returning no value ,
DECLARE SUB Maxparam CDECL (A AS INTEGER, B AS INTEGER) ,
, DECLARE as subprogram, since there is no return value
, CDECL keyword causes Maxparam call to be made w/ C conventions
, Integer parameters passed by near reference (BASIC default) ,

X% = 5
y% = 7
PRINT USING "X% = ## y%
CALL Maxparam(X%, y%)

= ##";X% ;y% , X% and y% before call
, Call C function

PRINT USING "X% = ## y% = ##" ;X% ;y% , X% and y% after call
END

/* C source file */
/* Compile in MEDIUM or LARGE memory model */
/* Maxparam declared VOID because no return value */

p2) void maxparam(pl,
int near *pl; /* Integer params received by near ref. */
int near *p2; /* NEAR keyword not needed in MEDIUM model */
{

if (*pl > *p2)
*p2 = *pl;

else
*pl = *p2;

}

Naming conventions: The CDECL keyword causes Maxparam to be
called with the C naming convention (as _maxparam). Note that word
length is not an issue because maxparam does not exceed eight charac­
ters.

23

Microsoft Mixed-Language Programming Guide

Calling conventions: The CDECL keyword causes Maxparam to be
called with the C calling convention, which pushes parameters in the re­
verse order to how they appear in the source code.

Parameter-passing methods: Since the C function maxparam may
alter the value of either parameter, both parameters must be passed by
reference. In this case, near reference was chosen; this method is the de­
fault for BASIC (so neither BYV AL nor SEG is used) and is specified in
C by using near pointers.

Far reference could have been specified by applying SEG to each argu­
ment in the DECLARE statement. In that case, the C parameter decla­
rations would use far pointers.

2.3.2 Calling C from BASIC--Function Call

The example below demonstrates a BASIC main module calling a C func­
tion, fact. This function returns the factorial of an integer value .

• Example

, BASIC source file - calls C function with return value ,
DECLARE FUNCTION Fact% CDECL (BYVAL N AS INTEGER) ,
, DECLARE as function returning integer (%)
, CDECL keyword causes Fact% call to be made w/ C conventions
, Integer parameter passed by value ,

X% = 3
Y% = 4
PRINT USING "The factorial of X% is ####"; Fact%(X%)
PRINT USING "The factorial of y% is ####"; Fact%(y%)
PRINT USING "The factorial of X%+y% is ####"; Fact%(X%+y%)
END

/* C source file */
/* Compile in MEDIUM or LARGE model */
/* Factorial function, returning integer */

int fact (n)
int n; /* Integer passed by value, the C default */
{

}

24

int result = 1;

while (n > 0)
result *= n--; /* Parameter n modified here */

return(result);

BASIC Ca.IIs to High-Level La.nguages

Naming conventions: The CDECL keyword causes Fact to be called
with the C naming convention (as _fact). Note that word length is not
an issue because fact does not exceed eight characters.

Calling conventions: The CDECL keyword causes fact to be called
with the C calling convention, which pushes parameters in reverse order
and specifies other low-level differences.

Parameter-passing methods: The C function above should receive the
parameter by value. Otherwise the function will corrupt the parameter's
value in the calling module. True passing by value is achieved in BASIC
only by applying BYV AL to the parameter in the DECLARE statement;
in C, passing by value is the default (except for arrays).

25

Microsoft Mixed-Language Programming Guide

2.4 BASIC Calls to FORTRAN

This section applies the steps outlined in Section 2.1 to two example pro­
grams. An analysis of programming considerations follows each example.

2.4.1 Calling FORTRAN from BASIC--­
Subroutine Call

The example below demonstrates a BASIC main module calling a FOR·
TRAN subroutine, MAXPARAM. The subroutine returns no value, but
adjusts the lower of two arguments to equal the higher argument .

• Example

, BASIC source file - calls FORTRAN subroutine ,
DECLARE SUB Maxparam ALIAS "MAXPAR" (A AS INTEGER, B AS INTEGER) ,
, DECLARE as subprogram, since there is no return value
, ALIAS needed because FORTRAN recognizes only first 6 letters
, Integer parameters passed by near reference (BASIC default) ,

X% = 5
Y% = 7
PRINT USING "X% = ## y% = ##";X% ;y%
CALL Maxparam (X%, y%)
PRINT USING "X% = ## y% = ##";X% ;y%
END

, X% and y% before call
, Call FORTRAN function
, X% and y% after call

C FORTRAN source file, subroutine MAXPARAM
C

C

SUBROUTINE MAXPARAM (I, J)
INTEGER*2 I [NEAR]
INTEGER*2 J [NEAR]

C I and J received by near reference, because of NEAR attribute
C

IF (I .GT. J) THEN
J = I

ELSE

ENDIF
END

I = J

Naming conventions: By default, BASIC places all eight characters of
Maxparam into the object file, yet FORTRAN places only the first six.
This conflict is resolved with the ALIAS feature: both modules place
MAXPAR into the object file.

26

BASIC Calls to High-Level Languages

Calling conventions: BASIC and FORTRAN use the same convention
for calling.

Parameter-passing methods: Since the subprogram Maxparam may
alter the value of either parameter, both arguments must be passed by
reference. In this case, near reference was chosen; this method is the de­
fault for BASIC (so neither BYV AL nor SEG is used) and is specified in
FORTRAN by applying the NEAR attribute to each of the parameter
declarations.

Far reference could have been specified by applying SEG to each argu­
ment in the DECLARE statement. In that case, the NEAR attribute
would not be used in the FORTRAN code.

2.4.2 Calling FORTRAN from BASIC-­
Function Call

The example below demonstrates a BASIC main module calling a FOR­
TRAN function, FACT. This function returns the factorial of an integer
value .

• Example

, BASIC source file - calls FORTRAN function ,
DECLARE FUNCTION Fact% (BYVAL N AS INTEGER) ,
, DECLARE as function returning integer(%)
, Integer parameter passed by value ,

X% == 3
Y% = 4
PRINT USING "The fa.ctorial of X% is ####"; Fact%(X%)
PRINT USING "The factorial of Y% is ####"; Fact%(Y%)
PRINT USING "The factorial of X%+Y% is ####"; Fact%(X%+Y%)
END

C FORTRAN source file - factorial function
C

C

INTEGER*2 FUNCTION FACT (N)
INTEGER*2 N [VALUE]

C N is received by value, because of VALUE attribute
C

INTEGER*2 I
FACT = 1
DO 100 I = 1, N

FACT = FACT * I
100 CONTINUE

RETURN
END

27

Microsoft Mixed-Language Programming Guide

Naming conventions: There are no conHicts with naming conventions
because the function name, FACT, does not exceed six characters. The
type declaration character (%) is automatically dropped by BASIC.

Calling conventions: BASIC and FORTRAN use the same convention
for calling.

Parameter-passing methods: When a parameter is passed that should
not be changed, it is generally safest to pass the parameter by value. True
passing by value is specified in BASIC by applying BYV AL to an argu­
ment in the DECLARE statement; in FORTRAN, passing by value is
achieved by applying the VALUE attribute to a parameter declaration.

28

BASIC Calls to Illgh-Level Languages

2.5 BASIC Calls to Pascal

This section applies the steps outlined in Section 2.1 to two example pro­
grams. An analysis of programming considerations follows each example.

2.5.1 Calling Pascal from BASIC­
Procedure Call

The example below demonstrates a BASIC main module calling a Pascal
procedure, Maxparam. Maxparam returns no value, but adjusts the
lower of two arguments to equal the higher argument .

• Example

, BASIC source file - calls Pascal procedure ,
DECLARE SUB Maxparam (A AS INTEGER, B AS INTEGER) ,
, DECLARE as subprogram, since there is no return value
, Integer parameters passed by near reference (BASIC default) ,

X% = 5
y% = 7
PRINT USING "X% = ## y% = ##";X% ;y%
CALL Maxparam(X%, Y%)
PRINT USING "X% = ## y% = ##";X% ;y%
END

, X% and y% before call
, Call Pascal function
, X% and y% after call

{ Pascal source code - Maxparam procedure. }

module Psub;
procedure Maxparam(var a:integer; var b:integer);

{ Two integer parameters are received by near reference. }
{ Near reference is specified with the VAR keyword. }

begin
if a > b then

b := a
else

end;
end.

a := b

Naming conventions: Note that word length is not an issue because
Maxparam does not exceed eight characters.

Calling conventions: BASIC and Pascal use the same calling convention.

29

Microsoft Mixed-Language Programming Guide

Parameter-passing methods: Since the procedure Maxparam may
alter the value of either parameter, both parameters must be passed by
reference. In this case, near reference was chosen; this method is the de­
fault for BASIC (so neither BYV AL nor SEG is used) and is specified in
Pascal by declaring parameters as V AR.

Far reference could have been specified by applying SEG to each argu­
ment in the DECLARE statement. In that case, the V ARS keyword
would be required instead of V AR.

2.5.2 Calling Pascal from BASIC-­
Function Call

The example below demonstrates a BASIC main module calling a Pascal
function, Fact. This function returns the factorial of an integer value .

• Example

, BASIC source file - calls Pascal function ,
DECLARE FUNCTION Fact% (BYVAL N AS INTEGER) ,
, DECLARE as function returning integer (%)
, Integer parameter passed by value ,

X% = 3
YOlo = 4
PRINT USING "The factorial of X% is ####"; Fact%(X%)
PRINT USING "The factorial of y% is ####"; Fact%(y%)
PRINT USING "The factorial of X%+y% is ####"; Fact% (X%+YOIo)
END

{ Pascal source code - factorial function. }

module Pfun;
function Fact (n : integer) : integer;

{ Integer parameters received by value, the Pascal default. }

begin
Fact := 1;
while n > 0 do

begin

end;

Fact := Fact * n;
n := n - 1;

end;
end.

30

{ Parameter n altered here. }

BASIC Calls to High-Level Languages

Naming conventions: Note that word length is not an issue because
fact does not exceed eight characters.

Calling conventions: BASIC and Pascal use the same calling convention.

Parameter-passing methods: The Pascal function above should receive
a parameter by value. Otherwise the function will corrupt the parameter's
value in the calling module. True passing by value is achieved in BASIC
only by applying BYV AL to the parameter; in Pascal, passing by value is
the default.

2.6 Restrictions on Calls from BASIC

BASIC has a much more complex environment and initialization procedure
than C, FORTRAN, or Pascal (all of which use a similar environ men t).
Interlanguage calling between BASIC and these other languages is possible
only because BASIC intercepts a number of library function calls from the
other languages and handles them in its own way. In other words, BASIC
creates a host environment in which the C, FORTRAN, and Pascal library
routines can function.

However, BASIC is limited in its ability to handle some C function calls.
This section considers two kinds of limitations: C memory-allocation func­
tions, which may require a special declaration, and C library functions,
which cannot be called at all.

2.6.1 Memory Allocation

If your C module is medium model and you do dynamic memory allocation
with mallocO, or if you execute explicit calls to _ nmallocO with any
memory model, then you need to include the following lines in your BASIC
source code before you call C:

DIM mallocbuf%(2048)
COMMON SHARED /NMALLOC/ mallocbuf%()

The array can have any name; only the size of the array is significant.
However, the name of the common block must be NMALLOC. In the
QuickBASIC, Version 4.0, in-memory environment, you need to put this
declaration in a module that you load into a resident Quick library.

The example above has the effect of reserving 4k bytes of space in the com­
mon block NMALLOC. When BASIC intercepts C malloc calls, BASIC
allocates space out of this common block.

31

Microsoft Mixed-Language Programming Guide

Warning

When you call the BASIC intrinsic function CLEAR, all space allo­
cated with near malloe calls will be lost. If you use CLEAR at all, use
it only before any calls to malloe.

When you make far memory requests in mixed-language programs, you
may find it useful to first call the BASIC intrinsic function SETMEM.
This function can be used to reduce the amount of memory BASIC is
using, thus freeing up memory for far allocations.

2.6.2 Incompatible Functions

The following C functions are incompatible with BASIC and should be
avoided:

• All forms of spawnO and exeeO

• systemO

• getenvO

• putenvO

In addition, you should not link with the xV ARSTK.OBJ modules
(where x is a memory model), which C provides to allocate memory from
the stack.

32

CHAPTER
CCALLS
1D HIGH- LEVEL ~GUAGES

3.1 The C Interface to Other Languages 35
3.2 Alternative C Interfaces .. 37
3.3 C Calls to BASIC .. 37
3.4 C Calls to FORTRAN .. .40

3.4.1 Calling FORTRAN from C-
Subroutine Call .. 40

3.4.2 Calling FORTRAN from C-
Function Call ... 41

3.5 C Calls to Pascal .. 42
3.5.1 Calling Pascal from C- Procedure Call. 42
3.5.2 Calling Pascal from C- Function Call 44

C Ca.lls to High-Level Languages

:Microsoft C supports calls to routines written in :Microsoft FORTRAN and
Pascal. Also, if the main program is in BASIC, then a C routine can call a
BASIC routine. This chapter describes the necessary syntax for calling
these other languages, and then gives examples for each language. Only
simple parameter lists are used in this chapter.

For information on how to pass particular kinds of data, consult Part 2,
"Data Handling Reference."

3.1 The C Interface to Other Languages

The C interface to other languages utilizes the standard C extern state­
ment, combined with the special fortran or pascal keyword. Using either
of these keywords causes the routine to be called with the naming and cal­
ling conventions of FORTRAN/Pascal/BASIC. Here are the recommended
steps for using this statement to execute a mixed-language call from C:

1. Write an extern statement for each mixed-language routine called.

The extern statement should precede all calls to the routine. The
exact rules of syntax for using the fortran and pascal keywords
with the extern statement are presented below.

Instead of using the fortran or pascal keyword, you can simply
compile with /Gc. The /Gc option causes all functions in the
module to use the BASIC/FORTRAN/Pascal naming and calling
conventions, except where you apply the cdecl keyword.

2. Use parameter type declarations within the extern statement.

This step is essential if you are going to specify pointers that are
not the default size. (Near pointers are the default for medium
model; far pointers are the default for large model.)

3. To pass an argument by reference, pass a pointer to the object.

C automatically translates array names into addresses. Therefore,
arrays are automatically passed by reference.

4. Once a routine has been properly declared with an extern state­
ment, call it just as you would call a C function.

5. Always compile the C module in medium or large model.

35

Microsoft Mixed-Language Programming Guide

• Using fortran and pascal Keywords

There are two rules of syntax that apply when you use the fortran or
pascal keyword:

1. The fortran and pascal keywords modify the item immediately to
the right.

2. The special near and far keywords can be used with the fortran
and pascal keywords in declarations. The sequences fortran far
and far fortran are equivalent.

The keywords pascal and fortran actually have the same effect on the
program; the use of one or the other makes no difference except for docu­
mentation purposes. Use either keyword to declare a BASIC routine.

The following examples demonstrate the syntax rules presented above .

• Examples

extern short pascal thing (short, short); /* Example 1 */

Example 1 declares thing to be a BASIC, Pascal, or FORTRAN function
taking two short parameters and returning a short value.

extern void (fortran *thing) (long); /* Example 2 */

Example 2 declares thing to be pointer to a BASIC, Pascal, or FOR­
TRAN routine that takes a long parameter and returns no value. The key­
word void is appropriate when the called routine is a BASIC subprogram,
Pascal procedure, or FORTRAN subroutine, since it indicates that no
return value is required.

extern short near pascal thing(double *); /* Example 3 */

Example 3 declares thing to be a near BASIC, Pascal, or FORTRAN
routine. The routine receives a double parameter by reference (because it
expects a pointer to a double) and returns a short value.

extern short pascal near thing(double *); /* Example 4 */

Example 4 is equivalent to Example 3 (pascal near is equivalent to
near pascal).

36

C Calls to High-Level Languages

3.2 Alternative C Interfaces

When you call BASIC, you must use the BASIC/FORTRAN/Pascal con­
ventions to make the call. When you call FORTRAN or Pascal, however,
you have a choice. You can make C adopt the appropriate conventions (as
described in the previous section), or you can make the FORTRAN or Pas­
cal routine adopt the C conventions.

To make a FORTRAN or Pascal routine adopt the C conventions, simply
put the C attribute in the heading of the routine's definition. The follow­
ing example demonstrates the syntax for the C attribute in a FORTRAN
subrou tine-definition heading:

SUBROUTINE FFROMC [C] (N)
INTEGER*2 N

The following example demonstrates the syntax for the C attribute in a
Pascal procedure-definition heading:

module Pmod:
procedure Pfromc (n : integer) [C]:
begin

3.3 C Calls to BASIC

No BASIC routine can be executed unless the main program is in BASIC,
because a BASIC routine requires the environment to be initialized in a
way that is unique to BASIC. No other language will perform this special
initialization.

However, it is possible for a program to start up in BASIC, call a C func­
tion that does most of the work of the program, and then call BASIC sub­
programs and function procedures as needed. Figure 3.1 illustrates how
this can be done.

The following rules are recommended when you call BASIC from C:

1. Start up in a BASIC main module. You will need to use Quick­
BASIC, Version 4.0 or later, and the DECLARE statement to

37

Microsoft Mixed-Language Programming Guide

provide an interface to the C module. (See Chapter 2, "BASIC
Calls to High-Level Languages," for more information.)

2. Once in the C module, declare the BASIC routine as extern, and
include type information for parameters. Use either the fortran or
pascal keyword to modify the routine itself.

3. Make sure that all data are passed as a near pointer. BASIC can
pass data in a variety of ways, but is unable to receive data in any
form other than near reference.

With near pointers, the program assumes that the data are in the
default data segment. If you want to pass data that are not in the
default data segment (this is only a consideration with large-model
programs), then first copy the data to a variable that is in the
default data segment.

4. Compile the C module in medium or large model.

(BASIC start-up)

CALL Csub ______ _

END csub() {

(BASIC termination)

SUB Btest STATIC

END SUB

Figure 3.1 C Call to BASIC

The example below demonstrates a BASIC program that calls a C func­
tion. The C function then calls a BASIC function that returns twice the
number passed it and a BASIC subprogram that prints two numbers.

38

C Calls to lllgh-Level Languages

• Example

, BASIC source ,
DEFINT A-Z
DECLARE SUB Cprog CDECL()
CALL Cprog
END ,
FUNCTION Dbl(N) STATIC

Dbl = N*2
END FUNCTION ,
SUB Printnum(A,B) STATIC

PRINT liThe first number is ";A
PRINT liThe second number is "; B

END SUB

/* C source; compile in medium or large model */

extern int fortran dbl(int near *);
extern void fortran printnum(int near *, int near *);

void cprog ()
{

int near a = 5;
int near b = 6;

/* NEAR guarantees that the data */
/* will be placed in default */
/* data segment (DGROUP) */

printf("Twice of 5 is %d\n", dbl(&a»;
printnum(&a, &b);

}

In the example above, note that the addresses of a and b are passed,
since BASIC expects to receive addresses for parameters. Also note that
the keyword near is used to declare each pointer; this keyword would be
unnecessary if we knew the C module was compiled in medium model
rather than large.

Calling and naming conventions are resolved by the CDECL keyword in
BASIC's declaration of Cprog, and by fortran in C's declaration of dbl
and pr intnum.

Note

QuickBASIC 4.0 provides a number of "user-entry points," which are
BASIC system-level functions that may be called directly from C.
These functions provide memory management, G-string services, and
I/0 procedures. Check the README file provided with QuickBASIC
4.0 for further information.

39

Microsoft Mixed-Language Programming Guide

3.4 C Calls to FORTRAN

This section applies the steps outlined in Section 3.1 to two examples of
C-FORTRAN programs. A brief analysis follows each example.

3.4.1 Calling FORTRAN from C-­
Subroutine Call

The example below demonstrates a C main module calling a FORTRAN
subroutine, maxpar. This subroutine adjusts the lower of two arguments
to equal the higher argument .

• Example

/* C source file - calls FORTRAN subroutine */
/* Compile in MEDIUM or LARGE model */

extern void fortran maxpar (int near *, int near *);

/*. Declare as VOID, because there is no return value */
/* FORTRAN keyword causes C to use BASIC/FORTRAN/pascal

calling and naming conventions */
/* Two integer params, passed by near reference */

main 0
{

}

int a = 5;
int b = 7;

printf(lta = %d,
maxpar(&a, &b);
printf (Ita = %d,

b = %dlt , a, b) ;

b = %dlt , a, b) ;

C FORTRAN source file, subroutine MAXPARAM
C

C

SUBROUTINE MAXPARAM (I, J)
INTEGER*2 I [NEAR]
INTEGER*2 J [NEAR]

C I and J received by near reference, because of NEAR attribute
C

40

IF (I .GT. J) THEN
J = I

ELSE

ENDIF
END

I = J

C Calls to High-Level Languages

Naming conventions: The fortran keyword directs C to call maxl?ar
with the BASIC/FORTRAN/Pascal naming convention (as MAXPAR).
Note that maxpar is six letters long; it cannot be any longer because
FORTRAN only recognizes the first six characters of any name.

Calling conventions: The fortran keyword directs C to call maxpar
with the BASIC/FORTRAN/Pascal calling convention.

Parameter-passing methods: Since the FORTRAN subroutine maxpar
may alter the value of either parameter, both parameters must be passed
by reference. In this case, near reference was chosen; this method is spec­
ified in C by the use of near pointers, and in FORTRAN by applying the
NEAR keyword to the parameter declarations.

Far reference could have been specified by using far pointers in C. In that
case, the FORTRAN subroutine would not use the NEAR attribute (and
would require the FAR attribute if compiled with medium memory model
available with FORTRAN, Version 4.0).

3.4.2 Calling FORTRAN from C­
Function Call

The example below demonstrates a C main module calling a FORTRAN
function, fact. This function returns the factorial of an integer value .

• Example

/* C source file - calls FORTRAN function */
/* Compile in MEDIUM or LARGE model */

extern int fortran fact (int);

/* FORTRAN keyword causes C to use BASIC/FORTRANjPascal
calling and naming conventions */

/* Integer parameter passed by value, the C default */

main ()
{

}

int x = 3;
int y = 4;

printf("'!he factorial of x is %4d" , fact(x»;
printf("'!he factorial of y is %4d" , fact(y»;
printf ("'!he factorial of x+y is %4d", fact (x+y» ;

41

Microsoft Mixed-Language Programming Guide

C FORTRAN source file - factorial function
C

C

INTEGER*.2 FUNCTION FACT (N)
INTEGER*.2 N [VALUE]

C N is received by value, because of VALUE attribute
C

INTEGER*.2 I
FACT = 1
DO 100 I = 1, N

FACT = FACT * I
100 CONTINUE

RETURN
END

Naming conventions: The fortran keyword directs C to call fact with
the BASIC,FORTRAN/Pascal naming convention (as FACT). Note that
word lengt is not an issue because FACT does not exceed six characters.

Calling conventions: The fortran keyword directs C to call fact with
the BASIC/FORTRAN/Pascal calling convention.

Parameter-passing methods: When a parameter is passed that should
not be changed, it is generally safest to pass the parameter by value. Pass­
ing by value is the default method in C, and is specified in FORTRAN by
applying the VALUE attribute to the parameter declaration.

3.5 C Calls to Pascal

This section applies the steps outlined in Section 3.1 to two examples of
C-Pascal programs. A brief analysis follows each example.

3.5.1 Calling Pascal from C-Procedure Call

The example below demonstrates a C main module calling a Pascal pro­
cedure, maxpar. This procedure adjusts the lower of two arguments to
equal the higher argument .

• Example

/* C source file - calls Pascal procedure */

42

C Calls to High-Level Languages

/* Compile in MEDIUM or LARGE model */

extern void pascal maxparam (int near *, int near *);

/* Declare as YOID, because there is no return value */
/* PASCAL keyword causes C to use BASIC/FORTRANjPascal

calling and naming conventions */
/* Two integer params, passed by near reference */

main ()
{

}

int a = 5;
int b = 7;

printf(lta = %d, b = %d lt , a, b);
maxparam(&a, &b);
printf (Ita = %d, b = %d lt , a, b);

{ Pascal source code - Maxparam procedure. }

module Psub;
procedure Maxparam(var a:integer; var b:integer);

{ Two integer parameters are received by near reference. }
{ Near reference is specified with the YAR keyword. }

begin
if a > b then

b := a
else

end;
end.

a := b

Naming conventions: The eascal keyword directs C to call Maxparam
with the BASIC/FORTRAN/Pascal naming convention (as MAXPARAM).

Calling conventions: The pascal keyword directs C to call Maxparam
with the BASIC/FORTRAN/Pascal naming convention.

Parameter-passing methods: Since the procedure Maxparam may
alter the value of either parameter, both parameters must be passed by
reference. In this case, near reference is used; this method is specified in C
by the use of near pointers, and in Pascal with the V AR keyword.

Far reference could have been specified by using far pointers in C. In that
case, the V ARS keyword would be required instead of VARin Pascal.

43

Microsoft Mixed-Language Programming Guide

3.5.2 Calling Pascal from C-Function Call

The example below demonstrates a C main module calling a Pascal func­
tion, fact. This function returns the factorial of an integer value .

• Example

/* C source file - calls Pascal function */
/* Compile in MEDIUM or LARGE model */

extern int pascal fact (int);

/* PASCAL keyword causes C to use BASIC/FORTRAN/pascal
calling and naming conventions */

/* Integer parameter passed by value, the C default */

main 0
{

}

int x = 3;
int y = 4;

printf("The factorial of x is %4d", fact(x»;
printf("The factorial of y is %4d", fact(y»;
printf("The factorial of x+y is %4d", fact(x+y»;

{ Pascal source code - factorial function. }

module Pfun;
function Fact (n : integer) : integer;

{Integer parameters received by value, the Pascal default. }

begin
Fact := 1;
while n > 0 do

begin

end;
end.

end;

Fact := Fact * n;
n := n - 1; {Parameter n modified here.}

Naming conventions: The pascal keyword directs C to call fact with
the BASIC/FORTRAN/Pascal naming convention (as FACT).

Calling conventions: The pascal keyword directs C to call fact with
the BASIC/FORTRAN/Pascal calling convention.

Parameter-passing methods: The Pascal function above should receive
a parameter by value. Otherwise, the Pascal function will corrupt the
parameter's value in the calling module. Passing by value is the default
method for both C and Pascal.

44

CHAPTER
FORTRAN CALLS
m HIGH-LEVEL ~GUAGES

4.1 The FORTRAN Interface to Other Languages47
4.1.1 The INTERFACE Statement47
4.1.2 Using ALIAS .. 49

4.2 Alternative FORTRAN Interface to C49
4.3 FORTRAN Calls to BASIC 50
4.4 FORTRAN Calls to C ... 52

4.4.1 Calling C from FORTRAN-
No Return Value .. 52

4.4.2 Calling C from FORTRAN-
Function Call ... 54

4.5 FORTRAN Calls to Pascal 55
4.5.1 Calling Pascal from FORTRAN-

Procedure Call ... 55
4.5.2 Calling Pascal from FORTRAN-

Function Call ... 56

FORTRAN Calls to High-Level Languages

Microsoft FORTRAN supports calls to routines written in Microsoft C and
Pascal. Also, if the main program is in BASIC, then a FORTRAN routine
can call a BASIC routine. This chapter describes the necessary syntax for
calling other languages from FORTRAN, and then gives examples for each
language. Only simple parameter lists are used in this chapter.

For information on how to pass particular kinds of data, consult Part
2, "Data Handling Reference." Chapter 9 describes how to use the
VARYING attribute with FORTRAN to pass a variable number of
parameters.

4.1 The FORTRAN Interface to Other
Languages

To call another language routine from within a FORTRAN function, first
write an interface to the routine with the INTERFACE statement. This
statement allows you to use special keywords (attributes) that affect how
FORTRAN carries out calls. These keywords allow you to adjust naming
conventions, calling conventions, and parameter-passing methods so that
you can make rou tines from other languages compatible with FORTRAN.

4.1.1 The INTERFACE Statement

Here are the recommended rules for writing correct interfaces to routines
from other languages:

1. Write an INTERFACE statement for each routine you call.

Write the interface to a FUNCTION if the routine returns a
value, or to a SUBROUTINE if the routine does not return a
value. The INTERFACE statement should precede any calls to
the routine.

2. Apply the C attribute to the routine if it is written in C (unless the
C module is compiled with /Gc or is modified with the fortran or
pascal keyword).

The C attribute causes the routine to be called with the C naming
and calling conventions. It also changes the default parameter­
passing method for all parameters to pass by value. To apply the C
attribute, type [C] immediately after the name of the routine.

3. If the routine is called from Pascal, you may want to apply the
PASCAL attribute to the routine; this keyword does not change
calling or naming conventions, but changes the default parameter­
passing method for all parameters to pass by value.

47

Microsoft Mixed-Language Programming Guide

To apply the PASCAL attribute, type [pASCAL] immediately
after the name of the routine.

4. If the name of the routine is longer than six characters, use the
ALIAS attribute. The use of ALIAS is explained in Section 4.1.2.

5. Adjust parameter-passing methods by applying the VALUE,
NEAR, FAR, and REFERENCE attributes to parameter
declarations.

The REFERENCE attribute can be useful because the C and
PASCAL keywords automatically change the default parameter­
passing method to passing by value. For any given parameter,
REFERENCE changes the method back to passing by reference.
(By default, FORTRAN passes by far reference unless you are
using medium memory model which is available with FORTRAN,
Versions 4.0 and later.)

To apply an attribute to a parameter declaration, put the attribute
in brackets, along with any other attributes that modify the same
object, and place the attribute(s) and brackets immediately after
the parameter. (Refer to the examples below.)

6. Once the proper interface is set up, call the routine just as you
would call any FORTRAN function or subroutine.

• Examples

In the examples below, the variables N, I, and J are not significant,
except for their types and attributes.

INTERFACE TO SUBROUTINE TEST [PASCAL] (N)
INTEGER*2 N [NEAR, REFERENCE]
END

The first example declares the subroutine TEST with the PASCAL attri­
bute. This subroutine takes one argument, N, which has both the NEAR
and REFERENCE attributes. N is passed by near reference.

INTERFACE TO FUNCTION REAL*8 CFUN [C] (I,J)
REAL*8 I [REFERENCE]
REAL*8 J
END

The second example declares a C function, CFUN, which returns a value of
type REAL*8. The argument I is passed by far reference because of the
REFERENCE attribute; the argument J is passed by value because the
C attribute changes the default.

48

FORTRAN Ca.lls to High-Level La.nguages

4.1.2 Using ALIAS

The ALIAS attribute is used with the following syntax

ALIAS: ' aiiasname '

where aliasname is the name that FORTRAN will actually place in the
object code whenever the declared routine is called. When you use this
feature, al£asname is precisely what FORTRAN will place in the object
code; therefore, if you are linking to a C routine, be sure to type a leading
underscore (_) before the name.

The ALIAS feature is necessary when the name of a routine is longer than
6 characters. Without ALIAS, FORTRAN would place only the first 6
characters into the object file, while the other language would place 7 or 8
characters into the other object file (or up to 40 in the case of BASIC).
This difference would prevent the linker from finding a match .

• Example

INTERFACE TO PRINTNUM [C, ALIAS:'_printnum'J (N)
INTEGER*2 N
END

In the example above, ALIAS is used because PRINTNUM is longer than
six characters. Note that the leading underscore should be used only when
linking to a routine that uses the C naming convention.

4.2 Alternative FORTRAN Interface to C

Instead of modifying the behavior of FORTRAN with the C attribute, you
can modify the behavior of C by ap£lying the pascal or fortran keyword
to the function definition heading. tThese two keywords are functionally
equivalent). Or you can compile the C module with the JGc option, which
specifies that all C functions, calls, and public symbols use the
BASIC/FORTRAN/Pascal conventions.

For example, the following C function uses the BASIC/FORTRAN/Pascal
conventions to receive an integer parameter:

int fortran funl(n)
int n;

49

Microsoft Mixed-Language Progra.mming Guide

4.3 FORTRAN Calls to BASIC

Calls to BASIC from FORTRAN programs are not directly supported. No
BASIC routine can be executed unless the main program is in BASIC,
because a BASIC routine requires the environment to be initialized in a
way that is unique to BASIC. No other language will perform this special
initialization.

However, it is possible for a program to start up in BASIC, call a FOR­
TRAN function that does most of the work of the program, and then call
BASIC subprograms and function procedures as needed. Figure 4.1 illus­
trates how this can be done.

Here are the recommended rules for calling BASIC from FORTRAN:

1. Start up in a BASIC main module. You will need to use Quick­
BASIC, Version 4.0 or later, and may want to use the DECLARE
statement to write an interface to the principal FORTRAN rou­
tine. (See Chapter 2, "BASIC Calls to High-Level Languages," for
more information.)

2. Write an interface in FORTRAN for each BASIC routine you plan
to call. Since BASIC and FORTRAN use the same basic calling
convention, no special keyword is required to make FORTRAN
compatible with BASIC.

3. Make sure that all data are passed as a near pointer. BASIC can
pass data in a variety of ways, but is unable to receive data in any
form other than near reference.

With near pointers, the program assumes that the data are in the
default data segment. If you want to pass data that are not in the
default data segment (this is only a consideration with large model
programs), then first copy the data to a variable that is in the
default data segment .

• Example

The example below demonstrates a BASIC program which calls a FOR­
TRAN subroutine. The FORTRAN subroutine then calls a BASIC func­
tion that returns twice the number passed it, and a BASIC subprogram
that prints two numbers.

50

FORTRAN Calls to Ingh-Level Languages

, BASIC source ,
DEFINT A-Z
DECLARE SUB Fprog 0
CALL Fprog
END ,
FUNCTION Dbl(N) STATIC

Dbl = N*2
END FUNCTION ,
SUB Printnum (A, B) STATIC

PRINT "The first number is ";A
PRINT "The second number is ";B

END SUB

C FORTRAN subroutine
C Calls a BASIC function that receives one integer,
C and a BASIC subprogram that takes two integers.
C

C

INTERFACE TO INTEGER*2 FUNCTION DBL (N)
INTEGER*2 N [NEAR]
END

C ALIAS attribute necessary because BASIC recognizes more
C than six characters of the name "Printnum"
C

INTERFACE TO SUBROUTINE PRINTN [ALIAS:'Printnum'] (Nl, N2)
INTEGER*2 Nl [NEAR]
INTEGER*2 N2 [NEAR]
END .

C
C Parameters must be declared NEAR in the parameter
C declarations; BASIC receives ONLY 2-byte pointers
C

SUBROUTINE FPROG
INTEGER*2 DBL
INTEGER*2 A, B
A = 5
B = 6
WRITE (*,*) 'Twice of 5 is
CALL PRINTN(A,B)
END

DBL(A)

In the example above, note that the NEAR attribute is used in the FOR­
TRAN routines, so that near addresses will be passed to BASIC instead of
far addresses.

51

Microsoft Mixed-Language Programming Guide

(BASIC termination)

SUB Btest STATIC

END SUB

SUBROUTINE FSUB

BTEST

RETURN
END

Figure 4.1 FORTRAN Call to BASIC

4.4 FORTRAN Calls to C

Writing FORTRAN interfaces to C is fairly straightforward; however, if
you are using Version 4.0 of FORTRAN, then linking requires some addi­
tional steps, which are described in Chapter 1.

This section applies the steps outlined in Section 4.1 to two examples of
FORTRAN-C programs. A brief analysis follows each example.

4.4.1 Calling C from FORTRAN­
No Return Value

The example below demonstrates a FORTRAN main module calling a C
function, maxparam. This function returns no value but adjusts the lower
of two parameters to equal the higher argument.

52

FORTRAN Calls to Ingh-Level Languages

• Example

C FORTRAN SOURCE FILE - CALLS C FUNCTION, NO RETURN VALUE
C

INTERFACE TO SUBROUTINE MAXPARAM[C,ALIAS:'_maxparam'] (I,J)
INTEGER*2 I [NEAR, REFERENCE]
INTEGER*2 J [NEAR, REFERENCE]
END

C
C C ATTRIBUTE DIRECTS FORTRAN TO USE C CONVENTIONS
C ALIAS NECESSARY BECAUSE 'MAXPARAM' LONGER THAN 6 CHARS.
C EACH PARAMETER PASSED BY NEAR REFERENCE
C

INTEGER*2 I,J
1=5
J = 7
WRITE (* , *) 'I = ',I,' J =' J
CALL MAXP ARAM (I , J)
WRITE (*, *) 'I = ',I,' J = " J
END

/* C source file */
/* Compile in MEDIUM or LARGE memory model */
/* Maxparam declared VOID because no return value */

p2) void maxparam(pl,
int near *pl; /* Integer params received by near ref. */
int near *p2; /* NEAR keyword not needed in MEDIUM model */
{

if (*pl > *p2)
*p2 = *pl;

else
*pl = *p2;

}

Naming conventions: By default, FORTRAN only places the first six
characters of MAXPARAM into the object file, whereas C places all eight.
This conflict is resolved with the ALIAS attribute: both modules place
_maxparam (consistent with the C naming convention) into an object file.

Calling conventions: The C attribute (in the INTERFACE statement)
causes MAXPARAM to be called with the C calling convention, which
pushes parameters in reverse order and specifies other lower-level
differences.

Parameter-passing methods: Since the function maxparam may alter
the value of either parameter, both must be passed by reference. Near
reference is implemented in FORTRAN with the NEAR and REFER­
ENCE attributes, and in C by using near pointers. The REFERENCE

53

Microsoft Mixed-Language Programming Guide

attribute is necessary in FORTRAN because the C keyword changes the
default passing method to pass by value.

Far reference could have been specified by leaving off the NEAR keyword
from the FORTRAN parameter declarations. In that case, the C module
would need to use far pointers.

4.4.2 Calling C from FORTRAN­
Function Call

The example below demonstrates a FORTRAN main module calling a C
function, fact. This function returns the factorial of an integer value .

• Example

C FORTRAN SOURCE FILE - CALLS C FUNCTION
C

C

INTERFACE TO INTEGER*2 FUNCTION FACT [C) (N)
INTEGER*2 N
END

C C ATTRIBUTE DIRECTS FORTRAN TO USE C CONVENTIONS
C PARAMETER PASSED BY VALUE, WHICH IS DEFAULT WHEN
C C ATTRIBUTE IS IN USE
C

INTEGER*2 FACT
INTEGER*2 I,J
1=3
J = 4
WRITE (*,*) 'The factorial of I is ',FACT(I)
WRITE (*,*) 'The factorial of J is ',FACT(J)
WRITE (*,*) 'The factorial of I+J is ',FACT(I+J)
END

/* C source file */
/* Compile in MEDIUM or LARGE model */
/* Factorial function, returning integer */

int fact (n)
int n; /* Integer received by value, the C default */
{

}

int result = 1;

while (n)
result *= n--; /* Parameter n modified here */

return (result);

Naming conventions: The C attribute (in the INTERFACE state­
ment) causes FACT to be called with the C naming convention (as _fact).
Word length is not a concern; fact does not exceed six characters.

54

FORTRAN Calls to High-Level Languages

Calling conventions: The C attribute (in the INTERFACE statement)
causes FACT to be called with the C calhng convention, which pushes
parameters in reverse order and specifies other lower-level differences.

Parameter-passing methods: The C function above should receive the
parameter by value. Otherwise, the function will corrupt the parameter's
value in the calling module. Passing by value is the default method for C;
it is also the default method for FORTRAN whenever the C attribute is in
use.

4.5 FORTRAN Calls to Pascal

Calling Pascal from FORTRAN is usually fairly simple, because the P AS­
CAL attribute causes FORTRAN to use the Pascal default of passing
data by value.

This section applies the steps outlined in Section 4.1 to two examples of
FORTRAN-Pascal programs. A brief analysis follows each example.

4.5.1 Calling Pascal from FORTRAN­
Procedure Call

The example below demonstrates a FORTRAN main module calling a Pas­
cal procedure, Maxparam. This procedure adjusts the lower of two
parameters to equal the higher argument .

• Example

C FORTRAN SOURCE FILE - CALLS PASCAL PROCEDURE
C

INTERFACE TO SUBROUTINE MAXPARAM [ALIAS: 'MAXPARAM'] (I,J)
INTEGER*2 I [NEAR]
INTEGER*2 J [NEAR]
END

C
C ALIAS NECESSARY BECAUSE 'MAXPARAM' LONGER THAN 6 CHARS.
C EACH PARAMETER PASSED BY NEAR REFERENCE
C

INTEGER*2 I,J
1=5
J = 7
WRITE (*, *) 'I = ',I,' J = " J
CALL MAXPARAM(I,J)
WRITE (*, *) 'I = ',I,' J = " J
END

55

Microsort Mixed-Language Programming Guide

{ Pascal source code - Maxparam procedure. }

module Psub;
procedure Maxparam(var a:integer; var b:integer);

{ Two integer parameters are received by near reference. }
{ Near reference is specified with the VAR keyword. }

begin
if a > b then

b := a
else

end;
end.

a := b

Naming conventions: By default, FORTRAN only places the first six
characters of MAXPARAM into the object file, whereas Pascal places all
eight. The ALIAS attribute resolves this conflict: both modules place
MAXPARAM into an object file.

Calling conventions: FORTRAN and Pascal use the same convention for
calling.

Parameter-passing methods: Since the procedure Maxparam may alter
the value of either parameter, both must be passed by reference. Near ref­
erence was implemented in FORTRAN with the NEAR attributes, and in
Pascal with the V AR keyword. The PASCAL attribute is not used here
because no parameter is being passed by value.

Far reference could have been specified by leaving off the NEAR keyword
from the FORTRAN parameter declarations. In that case, the Pascal mod­
ule would use V ARS instead of V AR.

4.5.2 Calling Pascal from FORTRAN­
Function Call

The example below demonstrates a FORTRAN main module calling a Pas­
cal function, Fact. This function returns the factorial of an integer value .

• Example

C FORTRAN SOURCE FILE - CALLS PASCAL FUNCTION
C

56

INTERFACE TO INTEGER*2 FUNCTION FACT [PASCAL] (N)
INTEGER*2 N
END

FORTRAN Calls to IDgh-Level Languages

C
C PARAMETER PASSED BY VALUE, WHICH IS DEFAULT WHEN
C PASCAL ATI'RIBUTE IS IN USE
C

INTEGER*2 FACT
INTEGER*2 I,J
1=3
J = 4
WRITE (*,*) 'The factorial of I is ',FACT(I)
WRITE (*,*) 'The factorial of J is ',FACT(J)
WRITE (*, *) 'The factorial of I +J is ',FACT (I+J)
END

{ Pascal source code - factorial function. }

module Pfun;
function Fact (n : integer) : integer;

{Integer parameters received by value, the Pascal default. }

begin
Fact := 1;
while n > 0 do

begin
Fact := Fact * n;
n := n - 1; {Parameter n modified here.}

end;
end.

end;

Naming conventions: FORTRAN and Pascal use a similar naming con­
vention. The ALIAS attribute is not necessary because the function name
does not exceed six characters.

Calling conventions: FORTRAN and Pascal use the same calling con­
vention.

Parameter-passing methods: The Pascal function above should receive
the parameter by value. Otherwise, the function will corrupt the
parameter's value in the calling module. Passing by value is the default
method for Pascal; it is also the default method for FORTRAN whenever
the PASCAL attribute is in use.

57

CHAPTER
PASCAL CALLS
m HIGH-LEVEL LANGUAGES

5.1 The Pascal Interface to Other Languages 61
5.2 Alternative Pascal Interface to C 62
5.3 Pascal Calls to BASIC .. 62
5.4 Pascal Calls to C .. 65

5.4.1 Calling C from Pascal- No Return Value 65
5.4.2 Calling C from Pascal- Function Call 66

5.5 Pascal Calls to FORTRAN 67
5.5.1 Calling FORTRAN from Pascal-

Subroutine Call .. 67
5.5.2 Calling FORTRAN from Pascal-

Function Call ... 68

Pascal Calls to High-Level Languages

Microsoft Pascal supports calls to routines written in Microsoft FOR­
TRAN and C. Also, if the main program is in BASIC, then a Pascal rou­
tine can call a BASIC routine. This chapter describes the necessary syntax
for calling these other languages, and then gives examples for each
language. Only simple parameter lists are used in this chapter.

For information on how to pass particular kinds of data, consult Part 2,
"Data Handling Reference." Chapter 9 describes how to use the V ARY­
ING attribute with Pascal to pass a varying number of parameters.

5.1 The Pascal Interface to Other Languages

You can provide an interface from Pascal to a routine in a different pro­
gramming language. This interface is created by writing an extern func­
tion or procedure declaration. This declaration informs Pascal that the
routine is to be found in another module; furthermore, you can use special
keywords with the declaration to affect how Pascal makes calls to the rou­
tine. These keywords allow you to adjust naming conventions, calling con­
ventions, and parameter-passing methods, so that the other language rou­
tines will be compatible with Pascal.

Here are the recommended steps for writing an extern declaration:

1. Declare a function (for routines that return values) or a procedure
(for routines that do not); all normal rules of Pascal syntax apply
to the heading. Instead of writing a procedure body(however, sim­
ply type the word extern, followed by a semicolon ;).

The extern can be placed in the procedure declaration section of
any Pascal function or procedure that needs to call the different
language routine.

2. If you are calling a C function, attach the C attribute to the
declaration. To use this attribute, type C in brackets, at the very
end of the function or procedure heading (immediately before the
semicolon).

This attribute directs Pascal to use the C naming and calling con­
ventions. There is no similar keyword for FORTRAN or BASIC;
they use the same naming and calling conventions used by Pascal.

3. Decide how you want to pass each parameter. By default Pascal
passes parameters by value. The V AR keyword, applied to indivi­
dual parameters, specifies passing by near reference, and the
V ARS keyword specifies passing by far reference.

4. Once the routine is properly declared, call it just as though it were
a Pascal function or procedure.

61

Microsoft Mixed-Language Programming Guide

• Examples

procedure Calc(var i:integer; x:real) [C]; extern;

In the example above, the C attribute directs Pascal to use the C calling
and naming conventions.

function Quadratic(a,b,c : integer) : real [C]; extern;

In this example also, the C attribute directs Pascal to use the C calling
and naming conventions.

procedure Total (a,b,c : integer, var sum : integer); extern;

The third example, by default, uses the BASIC/FORTRAN/Pascal stan­
dard naming and calling conventions.

5.2 Alternative Pascal Interface to C

Instead of modifying the behavior of Pascal with the C attribute, you can
modify the behavior of C by applying the pascal or fortran keyword to
the function definition heading. (These two keywords are functionally
equivalent.) You can also compile the C module with the /Gc option,
which seeclfies that all C functions, calls, and public symbols use the
BASIC/FORTRAN/Pascal conventions .

• Example

int pascal funl(n)
int n;

In the example above, the C function uses the BASIC/FORTRAN/Pascal
conventions to receive an integer parameter.

5.3 Pascal Calls to BASIC

Calls to BASIC from Pascal programs are not directly supported. No
BASIC routine can be executed unless the main program is in BASIC
because a BASIC routine requires the environment to be initialized in a
unique way. No other language will perform this special initialization.

62

Pascal Calls to High-Level Languages

However, it is possible for a program to start up in BASIC, call a Pascal
routine that does most of the work of the program, and then call BASIC
subprograms and function procedures as needed. The following diagram
illustrates how this can be done:

(BASIC termination)

SUB Btest STATIC

END SUB

Figure 5.1 Pascal Call to BASIC

Observe the following steps when calling BASIC from Pascal:

1. Start up in a BASIC main module. You will need to use Quick­
BASIC, Version 4.0 or later, and may want to use the DECLARE
statement to write an interface to the principal Pascal routine. (See
Chapter 2, "BASIC Calls to High-Level Languages," for additional
information.)

2. Once in Pascal code, declare each BASIC routine you plan to call,
in an extern procedure or function declaration.

3. Make sure that all data are passed as a near pointer, by declaring
each argument with V AR. BASIC can pass data in a variety of
ways, but is unable to receive data in any form other than as a
near pointer.

63

Microsoft Mixed-Language Programming Guide

With near pointers, the program assumes that the data are in the
default data segment. If you want to pass data that are not in the
default data segment (this is only a consideration with far-heap
allocation), then first copy the data to a variable that is in the
default data segment .

• Example

The following example demonstrates a BASIC program which calls a Pas­
cal procedure. The Pascal procedure then calls a BASIC function that
returns twice the number passed it, and a BASIC subprogram that prints
two numbers.

, BASIC source ,
DEFINT A-Z
DECLARE SUB Pprog ()
CALL Pprog
END ,
fUNCTION Dbl(N) STATIC

Dbl = N*2
END fUNCTION ,
SUB Printnum(A,B) STATIC

PRINT "The first number is ";A
PRINT "The second number is ";B

END SUB

{* Pascal procedure *}
{* Calls a BASIC function and a BASIC subprogram *}

module pproc;
procedure Pprog();

function Dbl (var n:integer) : integer; extern;
procedure Printnum (var nl,n2:integer); extern;
var a,b:integer;

begin

end;
end.

a := 5;
b := 6;
writeln ('Twice of 5 is
Printnum(a,b);

Dbl(a));

In the example above, note that every argument in the external declara­
tions must be declared V AR, since BASIC can only receive near pointers
as parameters.

64

Pascal Calls to Ingh-Level Languages

5.4 Pascal Calls to C

This section applies the steps outlined in Section 5.1 to two examples of
Pascal-C programs. A brief analysis follows each example.

5.4.1 Calling C from Pascal-No Return Value

The example below demonstrates a Pascal main module calling a C func­
tion, maxparam. This function returns no value, but adjusts the lower of
two arguments to equal the higher .

• Example

{ Pascal source file - calls C function, no return value }

program Pcsub (input, output);
procedure Maxparam (var i,j : integer) [C]; extern;

{ C attribute directs Pascal to use C conventions. }
{ VAR indicates each parameter passed by near reference. }

var
a, b : integer;

begin
a := 5;
b := 7;
writeln('a = ',a, 'b = ',b);
Maxparam(a,b);
writeln('a = ',a, 'b = ',b);

end.

/* C source file */
/* Compile in MEDIUM or LARGE memory model */
/* Maxparam declared VOID because no return value */

p2) void maxparam(pl,
int near *pl; /* Integer params received by near ref. */
int near *p2; /* NEAR keyword not needed in MEDIUM model */
{

if (*pl > *p2)
*p2 = *pl;

else
*pl = *p2;

}

Naming conventions: The C attribute causes Maxparam to be called
with the C naming convention (as _maxparam).

65

Microsoft Mixed-Language Programming Guide

Calling conventions: The C attribute causes Maxparam to be called
with the C calling convention, which pushes parameters in reverse order.

Parameter-passing methods: Since the subprogram Maxparam may
alter the value of either parameter, both arguments must be passed by
reference. In this case, near reference was chosen; this method is specified
in Pascal with the V AR keyword, and in C by using near pointers.

Far reference could have been specified by using V ARS instead of V AR;
in that case, the C parameter declarations would use far pointers.

5.4.2 Calling C from Pascal-Function Call

The example below demonstrates a Pascal main module calling a C func­
tion, fact. This function returns the factorial of an integer value .

• Example

{ Pascal source file - calls C function}

program Pcfun (input, output);
function Fact (n : integer) [CJ; extern;

{ C attribute directs Pascal to use C conventions. }
{ Parameter passed by value, the default method. }

var
a, b : integer;

begin

end.

a := 3;
b := 4;
writeln('The factorial of a is
writeln('The factorial of b is
writeln('The factorial of a+b is

/* C source file */
/* Compile in MEDIUM or LARGE model */

Fact(a»;
Fact(b»;
Fact(a+b»;

/* Factorial function, returning integer */

int fact (n)
int n; /* Integer received by value, the C default */
{

}

66

int result = 1;

while (n)
result *= n--; /* Parameter n modified here */

return (result);

Pascal Calls to IDgh-Level Languages

Naming conventions: The C attribute causes Fact to be called with the
C naming convention (as _fact).

Calling conventions: The C attribute causes Fact to be called with the
C calling convention, which pushes parameters in reverse order, and spec­
ifies other low-level differences.

Parameter-passing methods: The C function should receive the integer
parameter by value. Otherwise, the function will corrupt the value of the
parameter in the calling routine. Passing by value is the default method
for both Pascal and C.

5.5 Pascal Calls to FORTRAN

This section applies the steps outlined in Section 5.1 to two examples of
Pascal-FORTRAN programs. A brief analysis follows each example.

5.5.1 Calling FORTRAN from Pascal­
Subroutine Call

The example below demonstrates a Pascal main module calling a FOR·
TRAN subroutine, MAXPARAM. This subroutine adjusts the lower of two
arguments to equal the higher .

• Example

{ Pascal source file - calls FORTRAN sUbroutine }

program Pfsub (output);
procedure Maxpar (var i,j : integer) ; extern;

{ Name must not exceed six characters. }
{ VAR indicates each parameter passed by near reference. }

var
a, b : integer;

begin
a := 5;
b := 7;
writeln('a = ',a, 'b = ',b);
Maxpar(a,b);
writeln('a = ',a, 'b = ',b);

end.

67

:Microsoft Mixed-La.ngua.ge Programming Guide

C FORTRAN source file, subroutine MAXPARAM
C

C

SUBROUTINE MAXPARAM (I, J)
1NTEGER*2 I [NEAR]
INTEGER*2 J [NEAR]

C I and J received by near reference, because of NEAR attribute
C

IF (I .GT. J) THEN
J = I

ELSE

ENDIF
END

I = J

Naming conventions: By default, Pascal places all eight characters of
Maxparam into the object file, whereas FORTRAN places only the first
six. This conflict is resolved by shortening the name of the Pascal routine
to six characters.

Calling conventions: Pascal and FORTRAN use the same calling con­
vention.

Parameter-passing methods: Since the subprogram Maxparam may
alter the value of either parameter, both arguments must be passed by
reference. In this case, near reference was chosen; this method is specified
in Pascal with the V AR keyword, and in FORTRAN by applying the
NEAR attribute to each parameter declaration.

Far reference could have been chosen by using V ARS instead of V AR. In
that case, the NEAR attribute would not be used in the FORTRAN
parameter declarations.

5.5.2 Calling FORTRAN from Pascal­
Function Call

The example below demonstrates a Pascal main module calling a FOR­
TRAN function, FACT. This function returns the factorial of an integer
value.

68

Pascal Calls to Ingh-Level Languages

• Example

{ Pascal source file - calls FORTRAN function}

program Pffun (output);
function Fact (n : integer); extern;

{ Parameter passed by value, the default method. }

var
a, b : ir:lteger;

begin

end.

a := 3;
b := 4;
writeln('The factorial of a is', Fact(a»;
writeln('The factorial of b is Fact(b»;
writeln('The factorial of a+b is Fact(a+b»;

C FORTRAN source file - factorial function
C

C

INTEGER*2 FUNCTION FACT (N)
INTEGER*2 N [VALUE]

C N is received by value, because of VALUE attribute
C

INTEGER*2 I
FACT = 1
DO 100 I = 1, N

FACT = FACT * I
100 CONTINUE

RETURN
END

Naming conventions: There are no conflicts with naming conventions,
because the function name (FACT) does not exceed six characters.

Calling conventions: Pascal and FORTRAN use the same convention for
calling.

Parameter-passing methods: When passing a parameter that should
not be changed, it is generally safest to pass the parameter by value. Pass­
ing by value is the default method in Pascal, and is specified in FORTRAN
by applying the VALUE attribute to a parameter declaration.

69

CHAPTER
ASSEMBLY-lD-HIGH-LEVEL
INTERFACE

6.1 Writing the Assembly Procedure 73
6.1.1 Setting Up the Procedure 73
6.1.2 Entering the Procedure 74
6.1.3 Allocating Local Data (Optional) 75
6.1.4 Preserving Register Values 75
6.1.5 Accessing Parameters 76
6.1.6 Returning a Value (Optional) 78
6.1.7 Exiting the Procedure 80

6.2 Calls from BASIC ... 81
6.3 Calls from C ... 83
6.4 Calls from FORTRAN .. 85
6.5 Calls from Pascal .. 88

6.6 ~~~~~~~~~~.:::~.~~~~ ~O
6.7 The Mcrosoft Segment Model ~1

Assembly-to-IDgh-Level Interface

With the Microsoft Macro Assembler you can write assembly modules that
can be linked to modules developed with Microsoft BASIC, C, Pascal, or
FORTRAN. This chapter first outlines the recommended programming
guidelines for writing assembly routines compatible with Microsoft high­
level languages; it then gives examples specific to each language.

Writing assembly routines for Microsoft high-level languages is easiest
when you use the simplified segment directives provided with the Macro
Assembler, Version 5.0. In general, this manual assumes that you have
Version 5.0. For information on writing assembly-language interfaces
without the simplified segment directives, turn to Section 6.7 in order to
look up SEGMENT, GROUP, and ASSUME statements.

6.1 Writing the Assembly Procedure

The Microsoft BASIC, C, FORTRAN, and Pascal compilers use roughly
the same interface for procedure calls. This section describes the interface,
so that you can call assembly procedures using essentially the same
methods as Microsoft compiler-generated code. Procedures written with
these methods can be called recursively and can be effectively used with
the Stack Trace feature of the Microsoft CodeView® debugger.

The standard assembly-interface method consists of these steps:

• Setting up the procedure

• Entering the procedure

• Allocating local data (optional)

• Preserving register values

• Accessing parameters

• Returning a value (optional)

• Exiting the procedure

Sections 6.1.1-6.1.7 describe each of these steps.

6.1.1 Setting Up the Procedure

The linker cannot combine the assembly procedure with the calling pro­
gram unless compatible segments are used and unless the procedure itself
is declared properly. The following points may be helpful:

1. Use the .MODEL directive at the beginning of the source file, if
you have Version 5.0 of the Macro Assembler; this directive
automatically causes the appropriate kind of returns to be

73

Microsoft Mixed-Language Programming Guide

generated (NEAR for small or compact model, FAR otherwise).
Modules called from Pascal should be declared as .MODEL
LARGE; modules called from BASIC should be .MODEL
MEDIUM. If you have a version of the assembler previous to 5.0,
declare the procedure FAR (or NEAR if the calling program is
small- or compact-model 0).

2. If you have Version 5.0 or later of the Microsoft Macro Assembler,
use the simplified segment directives .CODE to declare the code
segment and .DATA to declare the data segment. (Having a code
segment is sufficient if you do not have data declarations.) If you
are using an earlier version of the assembler, look up SEGMENT,
GROUP, and ASSUME directives in Section 6.7, "The Microsoft
Segment Model."

3. The procedure label must be declared public with the PUBLIC
directive. This declaration makes the procedure available to be
called by other modules. Also, any data you want to make public
to other modules must be declared as PUBLIC.

4. Global data or procedures accessed by the routine must be declared
EXTRN. The safest way to use EXTRN is to place the directive
outside of any segment definition (however, near data should gen­
erally go inside the data segment).

6.1.2 Entering the Procedure

Two instructions begin the procedure:

push bp
mav bp,sp

This sequence establishes BP as the "framepointer." The framepointer is
used to access parameters and local data, which are located on the stack.
SP cannot be used for this purpose because it is not an index or base regis­
ter. Also, the value of SP may change as more data are pushed onto the
stack. However, the value of the base register BP will remain constant
throughout the procedure, so that each parameter can be addressed as a
fixed displacement off of BP.

The instruction sequence above first saves the value of BP, since it will be
needed by the calling procedure as soon as the current procedure ter­
minates. Then BP is loaded with the value of SP in order to capture the
value of the stack pointer at the time of entry to the procedure.

74

Assembly-to-lllgh-Level Interface

6.1.3 Allocating Local Data (Optional)

An assembly procedure can use the same technique for implementing local
data that is used by high-level languages. To set up local data space, sim­
r.ly decrease the contents of SP in the third instruction of the procedure.
lTo ensure correct execution, you should always increase or decrease SP
by an even amount.) Decreasing SP reserves space on the stack for the
local data. The space must be restored at the end of the procedure.

push bp
mov bp,sp
sub sp, space

In the text above, space is the total size in bytes of the local data. Local
variables are then accessed as fixed, negative displacements off of BP .

• Example

push bp
mov bp,sp
sub sp,4

mov WORD PTR [bp-2],O
mov WORD PTR [bp-4],O

The example above uses two local variables, each of which is two bytes in
size. SP is decreased by 4, since there are four bytes total of local data.
Later, each of the variables is initialized to o. These variables are never
formally declared with any assembler directive; the programmer must keep
track of them manually.

Local variables are also called dynamic, stack, or automatic variables.

6.1.4 Preserving Register Values

A procedure called from any of the Microsoft high-level languages should
preserve the values of SI, DI, SS, and DS (in addition to BP, which is
already saved). Therefore, push any of these register values that the pro­
cedure alters. If the procedure does not change the value of any of these
registers, then the registers do not need to be pushed.

75

Microsoft Mixed-Language Programming Guide

The recommended method (used by the high-level languages) is to save
registers after the framepointer is set and local data (if any) are allocated.

push
mov
sub
push
push

bp
bp,sp
sp,4
si
di

Save old framepointer
Establish current framepointer
Allocate local data space
Save S1 and D1

In the example above, Dl and SI (in that order) must be popped before the
end of the procedure.

6.1.5 Accessing Parameters

Once you have established the procedure's framepointer, allocated local
data space (if desired), and pushed any registers that need to be preserved,
you can write the mam body of the procedure. In order to write instruc­
tions that can access parameters, consider the general picture of the stack
frame after a procedure call as illustrated in Figure 6.1.

The stack frame for the procedure is established by the following sequence
of events:

1. The calling program pushes each of the parameters on the stack,
after which SP points to the last parameter pushed.

2. The calling pro~ram issues a CALL instruction, which causes the
return address l the place in the calling program to which control
will ultimately return) to be placed on the stack. This address may
be either two bytes long (for near calls) or four bytes long (for far
calls). SP now points to this address.

3. The first instruction of the called procedure saves the old value of
BP, with the instruction push bp. SP now points to the saved
copy ofBP.

4. BP is used to capture the current value of SP, with the instruction
mov bp, sp. BP therefore now points to the old value of BP.

5. Whereas BP remains constant throughout the procedure, SP may
be decreased to provide room on the stack, for local data or saved
registers.

In general, the displacement (off of BP) for a parameter X is equal to:

2 + size of return address
+ total size of parameters between X and BP

76

.Assembly-to-High-Level Interface

For example, consider a FAR procedure that has received one parameter,
a two-byte address. The displacement of the parameter would be:

Argument's displacement = 2 + size of return address
= 2 + 4
= 6

The argument can thus be loaded into BX with the following instruction:

mov bx, [bp+6]

Once you determine the displacement of each parameter, you may want to
use string equates or structures so that the parameter can be referenced
with a single identifier name in your assembly source code. For example,
the parameter above at BP+6 can be conveniently accessed if you put the
following statement at the beginning of the assembly source file:

Arg1 EQU [bp+6]

You could then refer to this parameter as Argl in any instruction. Use of
this feature is optional.

Parameter

Parameter

Return address

Saved BP

Figure 6.1 The Stack Frame

77

Microsoft Mixed-Language Programming Guide

Note

Microsoft high-level languages always push segment addresses before
pushing offset address. Furthermore, when pushing arguments larger
than two bytes, high-order words are always pushed before low-order
words.

This standard for pushing segment addresses before pushing offset
addresses facilitates the use of the LES instruction, as demonstrated
in Section 6.4, "Calls from FORTRAN."

6.1.6 Returning a Value (Optional)

Microsoft BASIC, C, FORTRAN, and Pascal share similar conventions for
receiving return values. The conventions are the same when the data type
to be returned is simple (that is, not an array or structured type) and is no
more than four bytes long. This includes all NEAR and FAR address
types (in other words, all pointers and all parameters passed by reference).

Data size

1 byte

2 bytes

4 bytes

Returned in register

AL

AX

High-order portion (or segment address) in DX;
low-order portion (or offset address) in AX

When the return value is larger than four bytes, a procedure called by C
must allocate space for the return value and then place its address in
DX:AX. A convenient way to create space for the return value is to sim­
ply declare it in a data segment.

If your assembly procedure is called by BASIC, FORTRAN or Pascal, then
it must use a special convention in order to return Hoating-point values,
records, user-defined types and arrays, and values larger than four bytes.
This convention is presented below.

• BASIC/FORTRAN/Pascal Long Return Values

In order to create an interface for long return values, BASIC, FORTRAN
and Pascal modules take the following actions before they call your pro­
cedure:

78

Assembly-to-High-Level Interface

1. First they create space, somewhere in the stack segment, to hold
the actual return value.

2. When the call to your procedure is made, an extra parameter is
passed; this parameter contains the offset address of the actual
return value. This parameter is placed immediately above the
return address. (In other words, this parameter is the last one
pushed.)

3. The segment address of the return value is contained in both SS
and DS.

The extra parameter (which contains the offset address of the return
value) is always located at BP+6. Furthermore, its presence automati­
cally increases the displacement of all other parameters by two, as shown
in the following comparison:

Return address
(4 bytes)

Figure 6.2 BASIC/FORTRAN/Pascal Long Return Values

Your assembly procedure will successfully return a long value if you follow
these steps:

1. Put the data for the return value at the location pointed to by the
return value offset.

2. Copy the return-value offset (located at BP+6) to AX, and copy
SS to DX. This is necessary because the calling module expects
DX:AX to point to the return value.

3. Exit the procedure as described in the next section.

79

Microsoft Mixed-Language Programming Guide

6.1. 7 Exiting the Procedure

Several steps may be involved in terminating the procedure:

1. If any of the registers SS, DS, SI, or DI have been saved, these
must be popped off the stack in the reverse order that they were
saved.

2. If local data space was allocated at the beginning of the procedure,
SP must be restored with the instruction mov sp, bp.

3. Restore BP with pop bp. This step is always necessary.

4. Finally, return to the calling program with ret. If the BASIC,
FORTRAN, or Pascal calling convention is in use, then use the
ret n form of the instruction to adjust the stack with respect to
the parameters that were pushed by the caller. (If the procedure is
called by a C module, then the calling module will perform this
adjustment.)

• Examples

pop bp
ret

The example above shows the simplest possible exit sequence. No registers
were saved, no local data space was allocated, and the C calling conven­
tion is in use.

pop
pop
mov
pop
ret

di
si
sp,bp
bp
6

Pop saved regs

Remove local data space
Restore old framepointer
Exit, and restore 6 byte of args

The example above shows an exit sequence for a procedure that has previ­
ously saved SI and DI, allocated local data space, and uses a non-C calling
convention. The procedure must therefore use ret 6 to restore the six
bytes of parameters on the stack.

80

.Assembly-to-ffigh-Level Interface

6.2 Calls from BASIC

A BASIC program can call an assembly procedure in another source file
with the use of the CALL, CALLS, or DECLARE statement. In addi­
tion to the steps outlined in Section 6.1, "Writing the Assembly Pro­
cedure," the following guidelines may be helpful:

1. Declare procedures called from BASIC as FAR.

2. Observe the BASIC calling convention.

a. Upon exit, the procedure must reset SP to the value it had
before the parameters were placed on the stack. This is accom­
plished with the instruction ret size, where size is the total size
in bytes of all the parameters.

b. Parameters are placed on the stack in the same order in which
they appear in the BASIC source code. The first parameter will
be highest in memory (because it is also the first parameter to
be placed on the stack, and the stack grows downward).

c. By default, BASIC parameters are passed by reference as two­
byte addresses.

3. Observe the BASIC naming convention.

BASIC outputs symbolic names in uppercase characters, which is
also the default behavior of the assembler. BASIC recognizes up to
40 characters of a name, whereas the assembler recognizes only the
first 31, but this should rarely create a problem.

In the following example program, QuickBASIC 4.0 calls an assembly pro­
cedure that calculates "A x 2B," where A and B are the first and second
parameters, respectively. The calculation is performed by shifting the bits
in A to the left, B times. (Note: with earlier versions of BASIC, you need
to rewrite the example so that it calls a subprogram, not a function.)

DEFINT A-Z
PRINT "3 times 2 to the power of 5 is ";
PRINT Power2(3,5)
END

81

Microsoft Mixed-Language Programming Guide

To understand how to write the assembly procedure, consider how the
parameters are placed on the stack:

Arg 2 address

Return address
(4 bytes)

Figure 6.3 BASIC Stack Frame

The return address is four bytes long because procedures called from
BASIC must be FAR. Arg 1 (parameter 1) is higher in memory than Arg 2
because BASIC pushes arguments (parameters) in the same order in which
they appear. Also, each argument is passed as a two-byte offset address,
the BASIC default.

The assembly procedure can be written as follows:

. MODEL MEDIUM

. CODE
PUBLIC Power2

Power2 PROC
push bp Entry sequence - saved old BP
mov bp,sp Set stack framepointer

mov bx, [bp+8] "' Load Argl into
mov ax, [bx] AX
mov bx, [bp+6] Load Arg2 into
mov cx, [bx] CX
shl ax,cl AX=AX* (2 to power of CX)

Leave return value in AX

pop bp Exit sequence - restore old BP
ret 4 Return, and restore 4 bytes

Power2 ENDP
END

82

Assembly-to-High-Level Interface

Note that each parameter must be loaded in a two-step process because
the address of each is passed rather than the value. Also, note that the
stack is restored with the instruction ret 4 since the total size of the
parameters is four bytes.

6.3 Calls from C

A C program can call an assembly procedure in another module, just as it
would call a C function. In addition to the steps outlined in Section 6.1,
"Writing the Assembly Procedure," the following guidelines may prove
helpful:

1. Declare procedures called from C as FAR if the C module is com­
piled in large, huge, or medium model, and NEAR if the C module
is compiled in small or compact model (although the near and far
keywords can override these defaults). The correct declaration for
the procedure is made implicitly when you use the .MODEL direc­
tive available in the Microsoft Macro Assembler, Version 5.0.

2. Observe the C calling convention.

a. Return with a simple ret instruction. Do not restore the stack
with ret size, since the calling C routine will restore the stack
itself, as soon as it resumes control.

b. Parameters are placed on the stack in the reverse order that
they appear in the C source code. The first parameter will be
lowest in memory (because it is the last parameter to placed on
the stack, and the stack grows downward).

c. By default, C parameters are passed by value, except for
arrays, which are passed by reference.

3. Observe the C naming convention.

Include an underscore in front of any name which will be shared
publicly with C. C recognizes only the first eight characters of any
name, so do not make names shared with C longer than eight char­
acters. Also, if you plan to link with the /NOIGNORECASE
option, remember that C is case sensitive and does not convert
names to uppercase. Assemble with the /"!!vfX. option to prevent
MASM from converting names to uppercase.

In the following example program, C calls an assembly procedure that cal­
culates "A x 2B," where A and B are the first and second parameters,
respectively. The calculation is performed by shifting the bits in A to the
left, B times.

83

Microsoft Mixed-Language Programming Guide

The C program uses an extern declaration to create an interface with the
assembly procedure. No special keywords are required because the assem­
bly procedure will use the C calling convention.

extern int power2(int, int);

main 0
{

printf ("3 times 2 to the power of 5 is %d\n", power2 (3,5» ;
}

To understand how to write the assembly procedure, consider how the
parameters are placed on the stack, as illustrated in Figure 6.4.

Arg 1

Return address

Figure 6.4 C Stack Frame

The return address is two bytes long, assuming that the C module is com­
piled in small or compact model. If the C module is compiled in large,
huge, or medium model, then the addresses of Arg 1 and Arg 2 are each
increased by two, to BP+6 and BP+8, respectively, because the return
address will be four bytes long.

Arg 1 (parameter 1) is lower in memory than Arg 2, because C pushes
arguments in the reverse order that they appear. Each argument is passed
by value.

84

Assembly-to-High-Level Interface

The assembly procedure can be written as follows:

.MODEL SMALL

. CODE
PUBLIC -power 2

_power 2 PROC
push
mov

mov
mov
shl

pop
ret

-power 2 ENDP
END

bp
bp,sp

ax, [bp+4]
cx, [bp+6]
aX,cl

bp

Entry sequence - save old BP
Set stack framepointer

Load Argl into AX
Load Arg2 into CX
AX = AX * (2 to power of CX)
Leave return value in AX

Exit sequence - restore old BP
Return

The example above assumes that the C module is compiled in small model.
The parameter offsets and the .MODEL directive will change for different
models.

Note that ret without a size variable is used, since the caller will adjust
the stack upon return from the call.

6.4 Calls from FORTRAN

A FORTRAN program can call an external assembly procedure with the
use of the INTERFACE statement. However, the INTERFACE state­
ment is not strictly necessary unless you intend to change one of the FOR­
TRAN defaults. In addition to the steps outlined in Section 6.1, "Writing
the Assembly Procedure," the following guidelines may be helpful:

1. Declare procedures called from FORTRAN as FAR.

2. Observe the FORTRAN calling convention.

a. Upon exit, the procedure must reset SP to the value it had
before the arguments were placed on the stack. This is accom­
plished with the instruction ret size, where size is the total size
of all the parameters.

85

Microsoft Mixed-Language Programming Guide

b. Arguments are placed on the stack in the same order in which
they appear in the FORTRAN source code. The first parameter
will be highest in memory (because it is also the first parameter
to be placed on the stack, and the stack grows downward).

c. By default, FORTRAN parameters are passed by reference as
far addresses if the FORTRAN module is compiled in large or
huge memory model, and as near addresses if the FORTRAN
module is compiled in medium model. Versions of FORTRAN
prior to Version 4.0 are always large model.

3. Observe the FORTRAN naming convention.

FORTRAN only recognizes the first 6 characters of any name,
while the assembler recognizes the first 31. Names shared publicly
with FORTRAN should not be longer than 6 characters, unless the
FORTRAN module is using the ALIAS feature.

In the following example, FORTRAN calls an assembly procedure that cal­
culates "A x 2B," where A and B are the first and second parameters,
respectively. This is done by shifting the bits in A to the left, B times.

The FORTRAN module uses the INTERFACE statement, which is
described in Section 4.1, "The FORTRAN Interface to Other Languages."

C

INTERFACE TO INTEGER*2 POWER2(A,B)
INTEGER*2 A, B
END

INTEGER*2 A,B
A = 3
B = 5
WRITE (*,*) '3 times 2 to the power of 5 is ',POWER2(A,B)
END

To understand how to write the assembly procedure, consider how the
parameters are placed on the stack, as illustrated in Figure 6.5.

Figure 6.5 assumes large-model FORTRAN. If you compile the FORTRAN
module in medium model, then each argument will be passed as a two­
byte, not four-byte address. The return address is four bytes long because
procedures called from FORTRAN must always be FAR.

Arg 1 (parameter 1) is higher in memory than Arg 2 because FORTRAN
pushes arguments (parameters) in the same order that they appear.

86

Assembly-to-Ingh-Level Interface

Arg 1 offset

Arg 2 segment

Arg 2 offset

Return address
(4 bytes)

Figure 6.5 FORTRAN Stack Frame

The assembly procedure can be written as follows:

.MODEL LARGE

. CODE
PUBLIC Power2

Power2 PROC
push bp Entry sequence - save old BP
mov bp,sp Set stack framepointer

les bx, [bp+1O] Load Argl into
mov ax, es: [bx] AX
les bx, [bp+6] Load Arg2 into
mov cX,es: [bx] CX
shl ax,cl AX=AX* (2 to power of CX)

Leave return value in AX

pop bp Exit sequence - restore old
ret 8 Return and restore 8 bytes

Power2 ENDP
END

87

BP

Microsoft Mixed-Language Programming Guide

In the example above, each argument must be loaded using the four-byte
address that was pushed onto the stack. The procedure loads four-byte
addresses with the LES instruction, which loads the destination operand
(in this case, BX) with the source operand, and also loads ES with the
object two bytes higher in memory. Thus, the instruction

les bx, [bp+l0]

loads BXwith the value at BP+I0 (an offset address), and ES with the
value at BP+12 (a segment address), which is necessary to set up the next
instruction.

Upon exit, the stack is restored with the instruction ret 8, since the total
size of parameters pushed onto the stack is eight.

6.5 Calls from Pascal

A Pascal program can call an assembly procedure in another module just
as it would call a Pascal routine. In addition to the steps outlined in Sec­
tion 6.1, "Writing the Assembly Procedure," the following guidelines may
be helpful:

88

1. Declare procedures called from Pascal as FAR. This is taken care
of for you automatically if you use the MODEL directive available
with the Microsoft Macro Assembler, Version 5.0 or later; specify
LARGE.

2. Observe the Pascal calling convention.

a. Upon exit, the procedure must reset SP to the value it had
before the parameters were placed on the stack. The procedure
resets SP with the instruction ret size, where size is the total
size of all the parameters pushed on the stack.

b. Parameters are placed on the stack in the same order in which
they appear in the Pascal source code. The first parameter will
be highest in memory (because it is also the first parameter to
be placed on the stack, and the stack grows downward.)

c. By default, Pascal parameters are passed by value.

3. Observe the Pascal naming convention.

Assembly-to-High-Level Interface

Pascal only recognizes the first 8 characters of any name, while the
assembler recognizes the first 31. Names shared publicly with Pas­
cal should not be longer than 8 characters.

In the following example program, Pascal calls an assembly procedure that
calculates "A x 2B," where A and B are the first and second parameters,
respectively. The calculation is performed by shifting the bits in A to the
left, B times.

The Pascal module uses an extern declaration in its interface with the
assembly procedure. No special keywords are required, because the assem­
bly procedure will use the Pascal calling convention.

program Asmtest(input, output);
function Power2(a,b:integer):integer; extern;
begin

writeln('3 times 2 to the power of 5 is ',Power2(3,5»;
end.

To understand how to write the assembly procedure, consider how the
parameters are placed on the stack, as illustrated in Figure 6.6.

Figure 6.6 Pascal Stack Frame

Arg 1 (parameter 1) is higher in memory than Arg 2 because Pascal pushes
arguments in the same order that they appear. Each argument is passed
by value.

89

Microsoft Mixed-Language Progra.mming Guide

The assembly procedure can be written as follows:

. MODEL LARGE

. CODE
PUBLIC Power2

Power2 PROC
push bp Entry sequence - save old BP
mov bp,sp Set stack framepointer

mov ax, [bp+8] Load Argl into AX
mov cx, [bp+6] Load Arg2 into CX
shl aX,cl AX = AX * (2 to power of CX)

Leave return value in AX

pop bp Exit sequence - restore old
ret 4 Return and restore 4 bytes

Power2 ENDP
END

The AX and ex registers can be loaded directly because the parameters
were passed by value. Note that the ret 4 instruction is necessary to
clear the stack of the four bytes of parameters.

6.6 Calling High-Level Languages
from Assembly

High-level language routines assume that certain initialization code has
previously been executed; you can ensure that the proper initialization is
performed by starting in a high-level language module, and then calling an
assembly procedure. The assembly procedure can then call high-level
language routines as needed, as shown in Figure 6.7.

To execute an assembly call to a high-level language, you need to observe
the following guidelines:

90

1. Push each parameter onto the stack, observing the calling conven­
tion of the high-level language. Constants such as offset addresses
must first be loaded into a register before being pushed.

2. With long parameters, always push the segment or high-order por­
tion of the parameter first, regardless of the calling convention.

3. If you are using the BASIC/FORTRAN/Pascal calling convention
with a function that returns a non integer value, then allocate an
additional two-byte parameter. This additional parameter should
contain the offset of the location where you want the value
returned, and must be pushed onto the stack last.

4. Execute a call. The call must be far unless the high-level-language
routine is small model.

BP

Assemb ly-to-High-Level In terf ace

5. If the routine used the C calling convention, then immediately
after the call you must clear the stack of parameters with the
instruction

add sp, she

where size is the total size in bytes of all parameters that were
pushed.

(C start-up)

main(){
asub();

PROC asub

(C termination)

call ctest

ctest(){_--------rrr-
ret

ENDP asub

Figure 6.7 Assembly Call to C

6.7 The Microsoft Segment Model

If you use the simplified segment directives by themselves, you do not need
to know the names assigned for each segment. However, versions of the
Macro Assembler prior to 5.0 do not support these directives. With older
versions of the assembler, you should use the SEGMENT, GROUP,
ASSUME, and ENDS directives equivalent to the simplified segment
directives.

Microsoft Mixed-Language Programming Guide

Table 6.1 shows the default segment names created by each directive. Use
of these segments ensures compatibility with Microsoft languages and will
help you to access public symbols. This table is followed by a list of three
steps, illustrating how to make the actual declarations, and an example
program.

Table 6.1

Default Segments and Types
for Standard Memory Models

Model Directive Name Align Combine Class Group

Small .CODE _TEXT WORD PUBLIC 'CODE'

.DATA .-DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? ...BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Medium .CODE namcTEXT WORD PUBLIC 'CODE'

.DATA .-DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? ...BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Compact .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR..DATA PARA private 'FAR..DATA'

.FARDATA? FAR...BSS PARA private 'FAR...BSS'

.DATA .-DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? ...BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Large .CODE namcTEXT WORD PUBLIC 'CODE'

.FARDATA FAR..DATA PARA private 'FAR..DATA'

.FARDATA? FAR...BSS PARA private 'FAR...BSS'

.DATA .-DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? ...BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

92

Assembly-to-High-Level Interface

The directives in Table 6.1 refer to the following kinds of segments:

Directive

.CODE

. DATA

.DATA?

.FARDATA and

. FARDATA?

.CONST

.STACK

Description of Segment

The segment containing all the code for the
module.

Initialized data .

Uninitialized data. Microsoft compilers store
uninitialized data separately because it can be
more efficiently stored than initialized data.

Data placed here will not be combined with
the corresponding segments in other modules .
The segment of data placed here can always
be determined, however, with the assembler
SEG operator.

Constant data. Microsoft compilers use this
segment for such items as string and floating­
point constants.

Stack. Normally, this segment is declared in
the main module for you and should not be
redeclared.

The following steps describe how to use Table 6.1 to create directives:

1. Determine what memory model you are using. Then refer to Table
6.1 to look up the segment name, align type, combine type, and
class for your code and data segments. Use all of these attributes
when you define a segment. For example, the code segment for
small model is declared as follows:

_TEXT SEGMENT WORD PUBLIC 'CODE'

The name _TEXT and all the attributes are taken from Table 6.1.
If the combine type is private, simply do not use any combine type.

2. If you have segments in DGROUP, put them into DGROUP
with the GROUP directive, as in:

GROUP

3. Use ASSUME and ENDS as you would normally. Upon entry, DS
and SS will both point to DGROUP; therefore, a small-model
procedure that makes use of DGROUP should include the follow­
ing ASSUME directive:

ASSUME CS : TEXT, DS: DGROUP, SS : DGROUP

A large-model procedure will assume a different code segment, and
may assume a far data segment for ES.

93

Microsoft Mixed-Language Programming Guide

The following example shows the C-assembly program from Section 6.3,
without the simplified segment directives from Version 5.0 of the Microsoft
Macro Assembler:

_TEXT SEGMENT WORD PUBLIC 'CODE'
ASSUME cs:_TEXT
PUBLIC Yower2

_Power2 PROC
push bp Entry sequence - save BP
mov bp,sp Set stack frame

mov ax, [bp+4] Load Argl into AX
mov cx, [bp+6] Load Arg2 into CX
shl aX,cl AX=AX* (2 to power of CX)

Leave return value in AX

pop bp Exit sequence - restore BP
ret Return

_Power2 ENDP
_TEXT ENDS

END

94

PART

~T~
~

~NDLING

EFERENCE

Part 2 explains how to pass types of data, with
focus on those types of data (such as strings of
text) that are stored in a different format by
each language. This part also summarizes
parameter-passing methods and describes al­
ternative methods for sharing data between
modules.

97

CHAPTER
pASSING
BY REFERENCE OR VALUE

7.1 BASIC Arguments ... 101
7.2 C Arguments ... 102
7.3 FORTRAN Arguments 104
7.4 Pascal Arguments 105

Passing by Reference or Value

Chapter 2 introduced the general concepts of passing by reference and
passing by value. Chapter 2 also listed the default method used by each
language. For example, BASIC passes by reference, and Pascal passes by
value.

This chapter describes features in each language that override the default.
For example, using the BYV AL keyword in a DECLARE statement will
cause BASIC to pass a given parameter by value rather than by reference.

This chapter is divided into four sections, each of which summarizes
parameter-passing methods in a particular language, discussing how to
pass arguments by value, by near reference, and by far reference. To write
a successful mixed-language interface, you must consider how each param­
eter is passed by the calling routine and how each is received by the called
routine.

7.1 BASIC Arguments

The default for BASIC is to pass all arguments by near reference.

Note

Every BASIC subprogram or function always rece£ves parameters by
near reference. The rest of this section describes how BASIC passes
parameters only.

• Passing BASIC Arguments by Value

An argument is passed by value when the called routine is first declared
with a DECLARE statement, and the BYV AL keyword is applied to the
argument. The use of CALLS overrides this default and passes by far
reference instead, as mentioned below.

• Passing BASIC Arguments by Near Reference

The BASIC default is to pass by near reference. Use of SEG, BYV AL, or
CALLS changes this default.

101

Microsoft Mixed-Language Programming Guide

• Passing BASIC Arguments by Far Reference

BASIC will pass each argument in a call by far reference when CALLS is
used to invoke a routine. Using SEG to modify a parameter in a preceding
DECLARE statement will also cause BASIC to pass that parameter by
far reference.

• Examples

DECLARE SUB Test(BYVAL a%, b%, SEG c%)

CALL Test(x%, y%, z%)

The example above passes the first argument (a%) by value, the second
argument (b%) by near reference, and the third argument (c%) by far
reference.

CALLS Test2(x%, y%, z%)

The example above passes each argument by far reference.

7.2 C Arguments

The default for C is to pass all arrays by reference (near or far, depending
on the memory model) and all other data types by value. C uses far data
pointers for compact, large, and huge model, and near data pointers for
small and medium model.

• Passing C Arguments by Value

The C default is to pass all non arrays (which includes all data types other
than those explicitly declared as arrays) by value.

Arrays can be passed by value by being declared as the only member of a
structure. The following example passes all 100 bytes of x directly to the
function test 0 .

struct x_struct {int x[lOO]} xs;

.
test(xs);

102

Passing by Reference or Value

The function test, in turn, receives the array by declaring a parameter of
type x_struct. A 0 routine would interpret this data object as a struc­
ture, so that structure syntax would be used to manipulate an array ele­
ment, as in the following example:

test (x_arrs)
struct x_struct x_arrs;
{

x_arrs.x[O] = 1; /* set first element to 1 */

Routines written in other languages, however, would not require structure
or record syntax. FORTRAN, for example, would access the first element
simply as X (1) .

• Passing C Arguments by Reference (Near or Far)

In 0, passing a pointer to an object is equivalent to passing the object
itself by reference. Mter control is passed to the called function, each
reference to the parameter itself is prefixed by *.

Note

To pass a pointer to a object, prefix the parameter in the call state­
ment with &. To receive a pointer to an object, prefix the parameter's
declaration with *. In the latter case, this may mean adding a second
* to a parameter which already has a *. For example, to receive a
pointer by value, declare it as

int *ptr;

but to receive the same pointer by reference, declare it as

int **ptr;

The default for arrays is to pass by reference.

• Effect of Memory Models on Size of Reference

Near reference is the default for passing pointers in small and medium
model O. Far reference is the default in the compact, large, and huge
models.

103

Microsoft Mixed-Language Programming Guide

Near pointers can be specified with the near keyword, which overrides the
default pointer size. However, if you are going to override the default
pointer size of a parameter, then you must explicitly declare the parameter
type in function declarations as well as function definitions.

Far pointers can be specified with the far keyword, which overrides the
default pointer size.

7.3 FORTRAN Arguments

The FORTRAN default is to pass and receive all arguments by reference.
The size of the address passed depends on the memory model.

• Passing FORTRAN Arguments by Value

A parameter is passed by value when declared with the VALUE attribute.
This declaration can occur either in a FORTRAN INTERFACE state­
ment (which determines how to pass a parameter) or in a function or sub­
routine declaration (which determines how to receive a parameter).

A function or subroutine declared with the PASCAL or C attribute will
pass by value all parameters declared in its parameter list (except for
parameters declared with the REFERENCE attribute). This change in
default passing method applies to function and subroutine definitions, as
well as to an INTERFACE statement.

• Passing FORTRAN Arguments by Reference (Near or Far)

Passing by reference is the default for FORTRAN. However, if either the
C or PASCAL attribute is applied to a function or subroutine declara­
tion, then you need to apply the REFERENCE attribute to any parame­
ter of the routine that you want passed by reference.

• Use of Memory Models and FORTRAN Reference Parameters

Near reference is the default for medium-model FORTRAN programs; far
reference is the default for large-model and huge-model programs.

104

Passing by Reference or Value

Note

Versions of FORTRAN prior to 4.0 always compile in large memory
model.

You can apply the NEAR attribute to reference parameters in order to
specify near reference. You can apply the FAR attribute to reference
parameters in order to specify far reference. These keywords enable you to
override the default. They have no effect when they specify the same
method as the default.

You may need to apply more than one attribute to a given parameter. In
that case, enclose both attributes in brackets, separated by a comma:

REAL*4 X [NEAR, REFERENCE]

7.4 Pascal Arguments

The Pascal default is to pass all arguments by value.

• Passing Pascal Arguments by Near Reference

Parameters are passed by near reference when declared as V AR or
CONST.

Parameters are also passed by near reference when the ADR of a variable,
or a pointer to a variable, is passed by value. In other words, the address
of the variable is first determined. Then, this address is passed by value.
(This is essentially the same method employed in C.)

• Passing Pascal Arguments by Far Reference

Parameters are passed by far reference when declared as V ARS or
CONSTS.

Parameters are also passed by far reference when the ADRS of a variable
is passed by value.

105

CHAPTER
NUMERICAL, LOGICAL,
AND SIRING DATA

8.1 Integer and Real Numbers 109
8.2 FORTRAN COMPLEX Types 109
8.3 FORTRAN LOGICAL Type 111
8.4 Strings .. 111

8.4.1 String Formats ... 111
8.4.2 Passing BASIC Strings 114
8.4.3 Passing C Strings 117
8.4.4 Passing FORTRAN Strings 118
8.4.5 Passing Pascal Strings 120

Numerical, Logical, and String Data

This chapter considers the details of passing and receiving kinds of data.
Discussion focuses on the differences in string format and on the methods
of passing strings between each combination of languages.

8.1 Integer and Real Numbers

Integers and reals are usually the simplest kinds of data to pass between
languages. However, the type of numerical data is named differently in
each language; furthermore, not all data types are available in every
language, and another type may have to be substituted in some cases.

Table 8.1 shows equivalent data types in each language.

Warning

As noted in Table 8.1, C sometimes performs automatic data conver­
sions which the other languages do not perform. You can prevent C
from performing such conversions by declaring a variable as the only
member of a structure and then passing this structure. For example,
you can pass a variable x of type float, by first declaring the structure:

struct {
float x;

} x_struct;

If you pass a variable of type char or float by value and do not take
this precaution, then the C conversion may cause the program to fail.

8.2 FORTRAN CO:rvtPLEX Types

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not
directly implemented in any other language. However, you can write struc­
tures in C, records in Pascal, and user-defined types in BASIC that are
precisely equivalent.

The type COMPLEX*8 has two fields: the first is a four-byte floating­
point number that contains the real component, and the second is a four­
byte floating point number that contains the imaginary component.

109

Microsoft Mixed-Language Programming Guide

Table 8.1

Equivalent Numeric Data Types

BASIC C FORTRAN

x% short INTEGER ... 2
INTEGER int

unsigned short·
unsigned

x& long INTEGER ... 4
LONG INTEGER

(default)

unsigned long *

xl ftoatt REAL ... 4
x REAL

(default)

SINGLE

X# double REAL ... 8
DOUBLE DOUBLE

PRECISION

unsigned chart
BOOLEAN

CHARACTER ... 1§

* Not available in BASIC, FORTRAN, or Pascal. A signed integer may be
substituted, but take care not to exceed range.

Pascal

INTEGER2
INTEGER

(default)

WORD

INTEGER4

REAL4
REAL

(default)

REAL8

t C automatically converts float to double in assignment or when passed by value.

* C automatically converts char and unsigned char to int in assignment or when passed
by value.

§ The FORTRAN type CHARACTER.l is not the same as LOGICAL. The data type
LOGICAL is covered in Section 8.3.

110

Numerical, Logical, and String Data

The type COMPLEX*16 is similar to COMPLEX*8, with the only
difference being that each field contains an eight-byte floating-point
number.

The type COMPLEX is equivalent to the type COMPLEX*8.

Float real component Float imaginary component

I ..
4 bytes

Figure 8.1 FORTRAN COMPLEX Data Format

8.3 FORTRAN LOGICAL Type

The FORTRAN LOGICAL type is not equivalent to either the Pascal
BOOLEAN or C char type. Instead, a FORTRAN LOGICAL*2 is
stored as a one-byte indicator value (l=true, O=false) followed by an
unused byte. A FORTRAN LOGICAL*4 is stored as a one-byte indicator
value followed by three unused bytes. The type LOGICAL is equivalent
to LOGICAL*4, unless $STORAGE:2 is in effect.

To pass or receive a FORTRAN LOGICAL type, declare a C structure,
Pascal record, or BASIC user-defined type, with the appropriate fields.

8.4 Strings

Strings are stored in a variety of formats. Therefore, some transformation
is frequently required to pass strings between languages.

This section presents the string format(s) used in each language, and then
describes methods for passing strings within specific combinations of
languages.

8.4.1 String Formats

The following section describes how a string is stored by each language, as
well as how a string is passed as an argument.

111

Microsoft Mixed-Language Programming Guide

• BASIC String Format

Strings are stored in BASIC as four-byte string descriptors:

Figure 8.2 BASIC String Descriptor Format

The first field of the string descriptor contains a two-byte integer indicat­
ing the length of the actual string text. The second field contains the
address of this text. This address is an offset into the default data area
and is assigned by BASIC's string-space management routines. These
management routines need to be available to reassign this address when­
ever the length of the string changes, yet these management routines are
only available to BASIC. Therefore, other languages should not alter the
length of a BASIC string.

• C String Format

C stores strings as simple arrays of bytes and uses a null character (numer­
ical 0, ASCII NUL) as delimiter. For example, consider the string declared
as follows:

char str[] = "String of text"

The string is stored in 15 bytes of memory as:

Figure 8.3 C String Format

112

Numerical, Logical, and String Data

Since str is an array like any other, it is passed by reference, just as
other C arrays are. To pass by value, declare the array as a member of a
structure. (See Section 7.2, ICC Arguments," for more information.)

• FORTRAN String Format

FORTRAN stores strings as a series of bytes at a fixed location in mem­
ory. There is no delimiter at the end of the string as in C. Consider the
string declared as follows:

STR = 'String of text'

The string is stored in 14 bytes of memory as:

Figure 8.4 FORTRAN String Format

Strings are passed by reference, just as other FORTRAN data are. Al­
though Version 4.0 of the FORTRAN Optimizing Compiler has a method
for passing length, the variable length FORTRAN strings cannot be used
in a mixed-language interface because other languages cannot access the
temporary variable that FORTRAN uses to communicate string length.

• Pascal String Format

Pascal has two types of strings, each of which uses a different format: a
fixed-length type STRING and the variable-length type LSTRING.

The format used for STRING is identical to the FORTRAN string for­
mat, described above.

The format of an LSTRING stores the length in the first byte. For exam­
ple, consider an LSTRING declared as:

VAR STR:LSTRING(14):
STR := 'String of text'

113

Microsoft Mixed-Language Programming Guide

The string is stored in 15 bytes of memory. The first byte indicates the
length of the string text. The remaining bytes contain the string text
itself:

Figure 8.5 Pascal String Format

8.4.2 Passing BASIC Strings

When a BASIC string (such as A$) appears in an argument list, BASIC
passes a string descriptor rather than the string data itself. The BASIC
string descriptor is not compatible with the string formats of the other
languages.

Warning

When you pass a string from BASIC to another language, the called
routine should under no circumstances alter the length of the string.
Other languages lack BASIC's string-space management routines.
Therefore, altering the length of a BASIC string is liable to corrupt
parts of the BASIC string space. Changes that do not affect. length,
however, are relatively safe.

The routine that receives the string must not call any BASIC routine.
If it does, BASIC's string-space management routines may change the
location of the string data without warning.

However, the SADD and LEN functions extract parts of the string
descriptor. SADD extracts the address of the actual string data, and
LEN extracts the length. The results of these functions can then be
passed to other languages.

BASIC should pass the result of the SADD function by value. Bear in
mind that the string's address, not the string itself, will be passed by
value. This amounts to passing the string itself by reference. The BASIC

114

Numerical, Logical, and String Data

module passes the string address, and the other module receives the string
address. The address returned by SADD is declared as type integer, but is
actually equivalent to a C near pointer or Pascal ADR variable.

Pass LEN (A$) as you would normally pass a two-byte integer.

• Passing BASIC Strings to C

Before attempting to pass a BASIC string to C, you may want to first
append a null byte on the end, with an instruction such as:

A$ = A$ + CHR$(O)

The string now conforms to the C string format. Note that when used in a
BASIC string expression the + indicates concatenation, or joining, of two
strings.

There are two methods for passing a string from BASIC to C. The first
method is to pass the string address and string length as separate argu­
ments, using the SADD and LEN functions. If you are linking to a C
library routine, this is the only workable method.

DECLARE SUB Test CDECL(BYVAL S%, BYVAL N%)
CALL Test (SADD(A$), LEN(A$»

void Test(s, n)
char near *s;
int n;
{

In the example above, SADD (A$) returns the near address of the string
data. This address must be passed by value, since it is equivalent to a
pointer (even though treated by BASIC as an integer). Passing by refer­
ence would attempt to pass the address of the address, rather than the
address itself.

C must receive a near pointer since only the near (offset) address is being
passed by BASIC. Near pointers are the default pointer size in medium­
model C.

The second method is to pass the string descriptor itself, with a call state­
ment such as:

CALL Test2 (A$)

115

Microsoft Mixed-Language Programming Guide

In this case, the C function must declare a structure for the parameter,
which has the appropriate fields (length and address) for a BASIC string
descriptor. The C function should then expect to receive a pointer to a
structure of this type.

• Passing BASIC Strings to FORTRAN

FORTRAN variable-length strings (available in Version 4.0) cannot be
used in a mixed-language interface.

Use the SADD function to pass the address of a BASIC string. The FOR­
TRAN routine should declare a character variable of the same length
(which is fixed).

DECLARE SUB Test(BYVAL S%)
A$=" abed"
CALL (SADD (A$))

C FORTRAN SOURCE
C

SUBROUTINE TEST (STRINGA)
CHARACTER*4 STRINGA [NEAR]

In the example above, SADD (A$) should be passed by value, since it is
actually an address and not an integer. (Passing a string by reference is
equivalent to passing the string address by value.) Note that CHARAC­
TER*4 STRINGA [NEAR] declares a fixed-length parameter received by
near reference.

FORTRAN must receive by near reference. The NEAR attribute makes
this adjustment, since the FORTRAN default is to receive by far reference.

• Passing BASIC Strings to Pascal

The same technique used to pass a string to FORTRAN can be used to
pass a string to Pascal. However, the Pascal routine should declare the
string as a V AR parameter, in order to receive the string by near refer­
ence. The Pascal code must declare the fixed-length type string (4) in a
separate statement, then use the declared type in a procedure declara­
tion.

116

Numerical, Logical, and String Data

DECLARE SUB Test (BYVAL S%)
A$="abcd"
CALL Test(SADD(A$»

type stype4=string(4);
procedure Test(VAR StringA:stype4);

8.4.3 Passing C Strings

When a C string appears in an argument list, C passes the address of the
string. (A C string is just an array and so is passed by reference.) C can
easily pass data to a fixed-length FORTRAN or Pascal string, or to BASIC
in the form of a string descriptor.

• Passing C Strings to BASIC

To pass a C string to BASIC, first allocate a string in C. Then create a
structure identical to a BASIC string descriptor. Pass this structure by
near reference, as in the example below:

char cstr[] = "ABC";
struct {

char *sd_addr;
int sd_len;

} str_des;
str_des.sd_addr = cstr;
str_des.sd_len = strlen(cstr);
bsub(&str_des);

Make sure that the string originates in C, not in BASIC. Otherwise,
BASIC may attempt to move the string around in memory.

• Passing C Strings to FORTRAN and Pascal

To pass strings to FORTRAN and Pascal, it is only necessary to make
sure that the called routine receives the string by reference and allocates
sufficient space. FORTRAN and Pascal should expect to receive fixed­
length strings; to declare a fixed-length string parameter in Pascal you
must first declare a type, as shown below.

117

Microsoft Mixed-Language Programming Guide

• Example

/* C code - calls Pascal and FORTRAN */
/* large memory model assumed */

char a [] =" abcd" ;

Testl(a);
Test2(a);

{* Pascal *}
module Ptestl;
type stype4 : string(4);

/* call to FORTRAN */
/* call to Pascal */

procedure Testl(vars StringA stype4)

C FORTRAN
C

SUBROUTINE TEST2(A)
CHARACTER*4 A

However, C cannot pass variable-length strings to FORTRAN; the FOR­
TRAN string data are not placed on the stack, but require special low­
level variables found only in a FORTRAN program.

8.4.4 Passing FORTRAN Strings

Variable-length FORTRAN strings of type CHARACTER*(*) (available
in Versions 4.0 and later) cannot be effectively passed to other languages.
However, fixed-length strings can be passed without much difficulty; the
principal limitation is that the FORTRAN INTERFACE must declare
the length of the string in advance.

By default, FORTRAN passes strings by reference. However, if you apply
the C or PASCAL attribute to a routine, then the default changes to
passing by value. The actual string data do not include a delimiter, unless
you use the G-string feature described below.

• Passing FORTRAN Strings to BASIC

FORTRAN cannot directly pass strings to BASIC because BASIC expects
to receive a string descriptor when passed a string. Yet there is an indirect
method for passing FORTRAN strings to BASIC. First, allocate a fixed­
length string in FORTRAN, declare an array of two-byte integers, and
treat the array as a string descriptor. Next, assign the address of the

118

Numerical, Logical, and String Data

string to the first elemen t (using the LOa function), and assign the length
of the string to the second element. Finally, pass the integer array itself by
reference. BASIC can receive and process this array just as it would a
string descriptor.

• Passing FORTRAN Strings to a
The C-string feature overrides the normal FORTRAN format and pro­
duces strings that can be effectively manipulated by C. When the C-string
feature is used, a null byte is appended to the end of the string, and
backslashes that appear in a literal-string text are treated as escapes.

You convert FORTRAN strings to C strings by simply typing a immedi­
ately after a string constant. Do not insert commas or any other interven­
ing punctuation, only spaces. Note that the length of the string is in­
creased by one because of the null byte that is appended. You need to
allow for this when you declare string variables.

The following example passes the address of a string to C. The string is in
the C format.

• Example

C

INTERFACE TO SUBROUTINE CONY [C] (Sl)
CHARACTER*5 Sl [REFERENCE]
END

CHARACTER*5 Sl
Sl = 'abed' C
CALL CONY (Sl)

In the example above, note that an additional byte is allocated for SI, in
consideration of the null byte added by the C-string conversion (done on
the line above the call). Also note that the REFERENCE keyword was
necessary because the a attribute in the first line changes the parameter­
passing default to calling by value.

• Passing FORTRAN Strings to Pascal

The FORTRAN and Pascal fixed-length string types are equivalent and
therefore can be easily passed between FORTRAN and Pascal.

FORTRAN modules should only pass fixed-length strings to Pascal. The
Pascal routines, in turn, should expect to receive fixed-length strings. To
specify a fixed-length string parameter in Pascal, you first need to declare
a type, as in the example below.

119

Microsoft MIXed-Language Programming Guide

• Example

C FORTRAN SOURCE CODE
C

C

INTERFACE TO SUBROUTINE PS (Sl)
CHARACTER*4 Sl
END

Sl = 'wxyz'
CALL PS (Sl)
END

{ Pascal module}

module Psmod;
type stype4 = string(4);
procedure ps (vars str1 : stype4);

8.4.5 Passing Pascal Strings

The Pascal data type LSTRING is not compatible with the formats used
by the other languages. You can pass an LSTRING indirectly, however,
by first assigning it to a STRING variable. Pascal supports such assign­
ments by performing a conversion of the data.

Important

Pascal passes an additional, two-byte parameter that indicates string
length whenever you pass a parameter of type STRING or of type
LSTRING. To suppress the passing of this additional parameter, you
first declare a fixed-length type, as shown in the example in the sec­
tion, "Passing Pascal Strings to C," below.

• Passing Pascal Strings to BASIC

To pass a Pascal string to BASIC, first allocate a string in Pascal. Next,
create a record identical to a BASIC string descriptor. Initialize this record
with the string address and length, and then pass the record by near refer­
ence. Make sure that the string originates in Pascal, not in BASIC; other­
wise, BASIC may attempt to move the string data around in memory.

• Passing Pascal Strings to C

To pass a string to C, first append a null character (numerical 0, ASCII
NUL) to the end of the string by using the concatenation operator (...).

120

Numerical, Logical, and String Data

Then pass the string to C by reference (by declaring the string argument
as CONST, CONSTS, VAR, or VARS). Remember to first declare the
fixed-length string type .

• Example

program Passtr(input, output);
type

stype6 = string(6);
var

str : stype6;
procedure Passtoc (var sl : stype6) [C]; extern;
begin

str := 'abcde' * chr(O);
Passtoc(str);

You can achieve more flexibility in passing Pascal strings by declaring a
value parameter of type ADRMEM or ADSMEM and then passing the
address of the argument. For instance, the example above could be imple­
mented by first declaring the parameter with the statement,

procedure Passtoc (sladr : ADRMEM) [C]; extern;

Then you could make the call with

Passtoc(ADR str);

With this method, you can pass strings of different lengths to the pro­
cedure Passtoc.

• Passing Pascal Strings to FORTRAN

The Pascal STRING and the FORTRAN CHARACTER*n types are
equivalent. Therefore Pascal fixed-length string variables can be freely
passed to FORTRAN. Usually, you will find it most efficient to pass
strings by reference (by declaring the string argument as V AR or V ARS).
Remember to first declare the fixed-length type before using it.

program Passtr(input, output)
type

stype6 = string(6);
var

str : stype6;
procedure PasstoF (var sl : stype6); extern;
begin

PasstoF(str);

As explained previously, you can use ADRMEM and ADSMEM to
achieve more flexibility in passing strings from Pascal.

121

CHAPTER

SEECIAL DATA TITES

9.1 Arrays ... 125
9.1.1 Passing Arrays from BASIC 125
9.1.2 Array Declaration and Indexing 127

9.2 Structures, Records, and
User-defined. Types ... 129

9.3 External Data ... 130
9.4 Pointers and Address Variables 132
9.5 (;ommon Blocks .. 132

9.5.1 Passing the Address
of the Common Block 133

9.5.2 Accessing Common Blocks Directly 134
9.6 Using a Varying Number of Parameters 134

Special Data Types

This chapter considers special types of data that are either structured (i.e.,
contain more than one field) or are accessed externally.

9.1 Arrays

When you program in only one language, arrays do not present special
problems; the language is consistent in its handling of arrays. When you
program with more than one language, however, you need to be aware of
two special problems that may arise with arrays:

1. Arrays are implemented differently in BASIC, so that you must
take special precautions when you pass an array from BASIC to
another language (including assembly).

2. Arrays are declared and indexed differently in each language.

This section considers each of these problems in turn.

Note

As explained in Chapter 7, arrays cannot be passed by value in C, un­
less declared within a structure. However, it is usually most efficient to
pass arrays by reference.

0.1.1 Passing Arrays from BASIC

Most Microsoft languages permit you to reference arrays directly. In C, for
example, an address name is equivalent to the address of the first element.
FORTRAN and Pascal are similar. This simple implementation is possible
because the location of data for an array never changes.

BASIC uses an array descriptor, however, which is similar in some respects
to a BASIC string descriptor. The array descriptor is necessary because
BASIC may shift the location of array data in memory; BASIC handles
memory allocation for arrays dynamically.

C, FORTRAN, and Pascal do not have any equivalent of the BASIC array
descriptor. More importantly, they lack access to BASIC's space manage­
ment routines for arrays. Therefore, you may safely pass arrays from
BASIC only if you follow three rules:

1. Pass the array's address by applying the V ARPTR function to
the first element of the array and passing the result by value. To
pass the far address of the array, apply both the V ARPTR and

125

Microsoft Mixed-Language Programming Guide

V ARSEG functions and pass each result by value. The receiving
language gets the address of the first element and considers it to be
the address of the entire array. It can then access the array with its
normal array-indexing syntax. The example below illustrates how
this works.

2. The routine that receives the array must not, under any circum­
stances, make a call back to BASIC. If it does, then the location of
the array data may change, and the address that was passed to the
routine will become meaningless.

3. BASIC may pass any member of an array by value. With this
method, the above precautions do not apply.

The following example demonstrates how a BASIC array can be passed to
FORTRAN.

• Example

REM BASIC SOURCE FILE
OPTION BASE 1
DEFINT A-Z
DIM A(20)
DECLARE SUB ArrFix(BYVAL Addr AS INTEGER)

CALL ArrFix(VARPTR(A(l)))
PRINT A(l)
END

C FORTRAN SOURCE FILE
C

SUBROUTINE ARRFIX (ARR)
INTEGER*2 ARR [NEAR] (20)
ARR(l) = 5
END

In the example above, BASIC considers that the argument passed is the
near address of an array element. FORTRAN considers it to be the near
address of the array itself. Both languages are correct. You can use essen­
tially the same method for passing BASIC arrays to Pascal or C.

The parameter was declared BYVAL Addr AS INTEGER because a near
(two-byte) address needed to be passed. If you wanted to pass a far (four­
byte) address, then the proper code would be:

DECLARE SUB ArrFix (BYVAL SegAddr AS INTEGER, BYVAL Addr AS INTEGER)
CALL ArrFix (VARSEG(A(O», VARPTR(A(O»)

The first field is the segment returned by V ARSEG. If you use CDECL
then be sure to pass the offset address before the segment address, because

126

Special Data Types

ODEOL causes parameters to be passed in reverse order:

DECLARE SUB ArrFix CDECL (BYVAL Addr AS INTEGER, BYVAL SegAddr AS INTEGER)
CALL ArrFix(VARPTR(A((O», VARSEG(A(O»)

Note

You can apply LBOUND and UBOUND to a BASIC array, to deter­
mine lower and upper bounds, and then pass the results to another
routine. This way, the size of the array does not need to be determined
in advance. See the Microsoft BASIC Language Reference for more in­
formation on LBOUND and UBOUND.

9.1.2 Array Declaration and Indexing

Each language varies somewhat in the way that arrays are declared and
indexed. Array indexing is purely a source-level consideration and involves
no transformation of data. There are two differences in the way that ele­
ments are indexed by each language:

1. Lower bounds.

By default, FORTRAN indexes the first element of an array as 1.
BASIC and C index it as O. Pascal lets the programmer begin
indexing at any integer value. Recent versions of BASIC and FOR­
TRAN also give the user the option of specifying lower bounds at
any integer values.

2. Row-major order vs. column-major order.

This issue only affects arrays with more than one dimension. With
row-major order (used by C and Pascal) the leftmost dimension
changes the fastest. With column-major order (used by FOR­
TRAN, and BASIC by default), the rightmost dimension changes
the fastest. Thus, in Pascal the first four elements of array X (3,3)
are:

X [1,1] X [1,2] X [1,3] X [2,1]

In FORTRAN, the four elements are:

X (1,1) X(2,l) x (3,1) X(1,2)

The example above assumes that both the Pascal and FORTRAN arrays
use lower bounds of 1. Table 9.1 shows equivalences for array declarations
in each lan~uage. In this table, r is the number of elements of the row
dimension (which chan~es most slowly), and c is the number of elements of
the column dimension (which changes most quickly).

127

Microsoft Mixed-Language Programming Guide

Table 9.1

Equivalent Array Declarations

Language

BASIC

c

FORTRAN

Pascal

Array Declaration

DIM x(c-l, r-l)

type x[r] [c]

struct {
type x[r][c];} x

type x(c,r)

x:array[a •• a+r-l, b •• b+c-l]
of type

Notes

with default lower
bounds of 0

when passed by
reference
when passed by
value

with default lower
bounds of 1

The declarations above extend to any number of dimensions that you may
use. For example, the C declaration

int arr1 [2] [10] [15] [20]

is equivalent to the FORTRAN declaration

INTEGER*2 ARR1(20, 15, 10, 2)

• Example

The following references all refer to the same place in memory for an
array:

arr1 [2] [8]

Arr1 [3, 9]

ARR1 (9, 3)

ARR1 (8, 2)

(in C)

(in Pascal, assuming lower bounds of 1)

(in FORTRAN, assuming lower bounds of 1)

(in BASIC, assuming lower bounds of 0)

When you use BASIC with the Be command line, you can select the /R
compile option, which specifies that row-major order is to be used, rather
column-major order.

128

Special Data Types

Note

The constants used in a C array declaration represent dimensions, not
upper bounds as they do in other languages. Therefore, the last ele­
ment in the C array declared as int arr [5] [5] is not arr [5] [5],
but arr [4] [4].

9.2 Structures, Records, and
User-defined Types

The C struct type, the BASIC user-defined type, and the Pascal record
type are equivalent. Therefore, these data types can be passed between C,
Pascal, and BASIC.

However, these types may be affected by the storage method. By default, C
and Pascal use word alignment (unpacked storage) for all data except
byte-sized objects and arrays of byte-sized objects. This storage method
specifies that occasional bytes may be added as padding, so that word and
double-word objects start on an even boundary. (In addition, all nested
structures and records start on a word boundary.) The following illustra­
tion shows the the contrast between packed and unpacked storage:

Figure 9.1 Structure and Record Storage

129

Microsoft Mixed-Language Programming Guide

If a structure or record is being passed between them, it is important that
a calling routine and the called routine agree on storage method. Other­
wise, data will not be properly received. The simplest method for ensuring
compatibility between all three languages is simply to turn on packing for
C and Pascal modules. The packed storage method may sacrifice some
speed, but it has the advantage of creating smaller executable files.

9.3 External Data

You can always share data between two languages by passing parameters.
In the case of local variables and all BASIC variables, passing parameters
is the only convenient way to share data.

However, C, FORTRAN, and Pascal routines can access data directly that
are external. The term "external" refers to data that are both static and
public; in other words, the data are stored in a set place in memory (static,
unlike dynamic or local data, which are allocated on the stack), and the
data have been made publicly available to other modules. Compilers make
a data object (variable, structure or array) available by placing its name,
along with size and type information, into the object file.

External data (data that can be directly accessed by any other module)
can be defined III a C, FORTRAN, Pascal, or assembly module. Note that
a data definition is distinct from an external declaration. A definition
causes a compiler to create a data object; an external declaration informs
a compiler that the object is to be found in another module.

There are three requirements for programs that share external data be­
tween languages:

130

1. One of the modules must define the static data.

You can define a static data object in a C or FORTRAN module by
defining a data object outside all functions and subroutines. (Do
not use the static keyword in C with a data object you wish to be
public.)

2. The other modules that will access the data must declare the data
as external.

In C, you can declare data as external by using an extern declara­
tion, similar to the extern declaration for functions. In FORTRAN
and Pascal, you can declare data as external by adding the
EXTERN attribute to the data declaration.

3. Resolve naming-convention differences.

Special Data Types

In C, you can adopt the BASIC/FORTRAN/Pascal naming con­
vention by applying fortran or pascal to the data declaration. In
FORTRAN and Pascal, you can adopt the C naming convention by
applying the C attribute to the data declaration.

The examples below help illustrate the general language features of exter­
nal data just described .

• Examples

/* C source code */

int thingl; /* Thingl is public and static */
extern int thing2;
static int thing3;

/* Thing2 is defined in another module */
/* Thing3 is static, but not public */

ctestO
{

C FORTRAN SOURCE CODE
C

C

INTEGER*2 THINGl [C, EXTERN]
INTEGER*2 THING2 [C]

C THINGl DEFINED IN ANOTHER MODULE, USING C CONVENTION <_thingl)
C THING2 DEFINED HERE, USING C CONVENTION <_thing2)

{ Pascal source code }

module Ptest;
procedure Test;

var
thingl [C, EXTERN]
thing2 [C, EXTERN]

integer; { Both vars defined elsewhere}
integer; { and use C naming convention}

In the examples above, the variables thingl and thing2 are defined and
declared with the C naming convention so that they will be placed into
each object file as _thingl and _thing2. However, you can just as easily
specify the BASIC/FORTRAN/Pascal naming convention, by using the
following C statements:

int fortran thingl:
extern int fortran thing2:

The C attribute can then be dropped from the FORTRAN and Pascal
source code. Each object file will contain the names THINGl and THING2.

131

Microsoft Mixed-Language Programming Guide

9.4 Pointers and Address Variables

Rather than passing data directly, you may want to pass the address of a
piece of data. Passing the address amounts to passing the data itself by
reference. In some cases, such as BASIC arrays (see Section 9.1.1), passing
an address is the only way to share particular kInds of data between two
languages.

The Pascal ADR and ADS types are equivalent to near and far pointers,
respectively, in C. You can pass ADR and ADS variables as ADRMEM
or ADSMEM. BASIC and FORTRAN do not have formal address types.
However, they do provide ways for storing and passing addresses.

BASIC programs can access a variable's segment address with V ARSEG
and its offset address with V ARPTR. The values returned by these
intrinsic functions should then be passed or stored as ordinary integer
variables. If you pass them to another language, pass by value. Otherwise
you will be attempting to pass the address of the address, rather than the
address itself.

To pass a near address, pass only the offset; if you need to pass a far ad­
dress, you may need to pass the segment and offset separately. Pass the
segment address first, unless CDECL is in effect.

FORTRAN programs can determine near and far addresses with the LOC
and LOCFAR functions. Store the result as INTEGER*2 (with the
LOC function) or as INTEGER*4 (with the LOCFAR function).

As with BASIC, if you pass the result of LOC or LOCF AR to another
language, be sure to pass by value.

9.5 Cormnon Blocks

You can pass individual members of a FORTRAN or BASIC common
block in an argument list, just as you can with any data. However, you can
also give a different language module access to the entire common block
at once.

Pascal and C modules can reference the items of a common block by first
declaring a structure or record, with fields that corresI?ond to the common
block variables. (For an example, see the next section.) BASIC modules
can also employ a user-defined type to access the fields of a FORTRAN
common block.

132

Special Da.ta Types

Having defined a structure, record, or user-defined type with the appropri­
ate fields, the Pascal or C module must then connect with the common
block itself. The next two sections each present a method for gaining
access to common blocks.

9.5.1 Passing the Address
of the Common Block

To pass the address of a common block, simply pass the address of the
first variable in the block. (In other words, pass the first variable by refer­
ence.) The receiving C or Pascal module should expect to receive a struc­
ture (or record) by reference .

• Example

In the example below, the C function ini tcb receives the address of the
variable N, which it considers to be a pointer to a structure with three
fields:

C FORTRAN SOURCE CODE
C

COMMON /CBLOCK/N,X,Y
INTEGER*2 N
REAL*8 X, Y

CALL INITCB(N)

/* C source code */

struct block_type {
int n;
double x;
double y;

};

initcb(block_hed)
struct block_type *block_hed;
{

}

block_hed->n = 1;
block_hed->x = 10.0;
block_hed->y = 20.0;

133

Microsoft MIxed-La.nguage Progra.mmIng Guide

9.5.2 Accessing Common Blocks Directly

You can access FORTRAN common blocks directly by defining a structure
(or record in Pascal) with the appropriate fields and then using the meth­
ods described in Section 9.3, "External Data."

• Example

In the example below, cblock is declared as an external structure. You
can reference the individual fields of cblock which will correspond to
those of the common block CBLOCK in the FORTRAN source file.

struct block_type {
int n;
double x:
double y:

}:

extern struct block_type fortran cblock:

9.6 Using a Varying Number of Parameters

Some C functions, most notably printf, can be called with a different
number of arguments each time. To call such a function from another lan­
guage, you need to suppress the type-checking that normally forces a call
to be made with a fixed number of parameters. In BASIC, you can remove
this type checking by omitting from the DECLARE statement a param­
eter list, as explained in Section 2.2, "Alternative BASIC Interfaces." In
FORTRAN or Pascal, you can call routines with a variable number of
parameters by including the VARYING attribute in your interface to
the routine, along with the C attribute. You must use the C attribute
because a variable number of parameters is only feasible with the C calling
convention.

The VARYING attribute prevents FORTRAN or Pascal from enforcing a
matching number of parameters. Each time you call the routine, you will
be able to pass more or fewer parameters than are declared in the interface
to the routine. However, each actual parameter that you pass will be
type-checked against whatever formal parameters you may have declared
in the interface. FORTRAN or Pascal will compare the type of the first
actual parameter to the first formal parameter (if any), the second actual
parameter to the second formal parameter, and so on.

134

Special Data Types

Because the number of parameters is not fixed, the routine you call should
have some mechanism for determining how many parameters to expect.
Often this information is indicated by the first parameter. For example,
the C function printf scans the format string passed as the first parame­
ter. The number of fields in the format string determines how many addi­
tional parameters the function should expect.

The example below demonstrates the use of the VARYING attribute to
call printf directly from Pascal (the program needs to be compiled and
linked to the C large memory model so that printf is linked in) .

• Example

program Test (input, output);
type

var
stype30 : string(30);

str1 : string(30);
str2 : string(10);
n : integer;

procedure printf (vars sl : stype30) [C, VARYING]; extern;
begin

end.

str1 = 'This is %s string, number %d.' * chr(O);
str2 = 'formatted' * chr(O);
n = 1;
printf(str1, str2, n);

In Pascal, you can write the interface to printf so that the format string
can be of varying lengths, by using the ADRMEM feature. See Section
8.4.5, "Passing Pascal Strings," for more information.

135

MIXED-LANGUAGE
pROGRAMMING GUIDE INDEX

&
C address operator, 103
type declaration character, 20

*, C indirection operator, 103
$, type declaration character, 20
!, type declaration character, 20
, type declaration character, 20
%, type declaration character, 20

Address sizes
code, 15
data, 16

Address variables, 132
ADR

address type, 121
address variable, 132
keyword, 105

ADRMEM, address type, 121
ADS, address variable, 132
ADS:MEM, address type, 121
ALIAS keyword

BASIC, use in, 20
FORTRAN, use in, 48, 49

Array descriptors, 125
Arrays, 125
AS keyword, 21
Assembly

calling from
BASIC,81
C,83
FORTRAN, 85
Pascal, 88

interfaces
address parameters, used with, 86
BASIC, 81
C,83
entry sequences, 74, 76
exit sequences, 80
FORTRAN,85
local data, 75, 76
Pascal, 88
register considerations, 75
return value, 78

parameters, accessing, 76
passing by

far reference, 86
near reference, 82, 86, 90
value, 85

procedures, 9

ASSUME directive, 93
Attributes, FORTRAN, 47, 105
Automatic variables, 75

BASIC
arrays, 125
AS keyword, 21
BYVAL keyword, 21, 101
calling convention, 13,81
calling from

C,37
FORTRAN, 50
Pascal, 62

CALLS statement, 101, 102
calls to

C,23
FORTRAN, 26
other languages, 19
Pascal,29

common blocks, 132
compiling, 15
initialization, 37
naming convention, 10, 20
parameter-passing

defaults, 15
methods, 101

parameters, list of, 21
passing by

far reference, 21, 102
near reference, 38, 63, 81, 101
value, 21, 50, 101

procedures, 9
SEG keyword, 21
string format, 112
type declaration characters, 20
types, user-defined, 129
V ARPTR keyword, 125, 132
VARSEG keyword, 126, 132

BOOLEAN data type, 110
BYVAL keyword, 21,101

C attribute
FORTRAN, used in, 47,104,131
Pascal, used in, 61, 131

C language
arrays, 102, 125
calling convention, 13, 83

137

Index

C lan~age (continued)
calhng from

BASIC, 23
FORTRAN, 52
Pascal, 65

calls to
BASIC, 37
FORTRAN, 40
other languages, 35
Pascal,42

compiling, 15
extern statement, 35
far keyword, 36
FORTRAN, linking with, 16
fortran keyword, 35, 36
functions, 9
IGc compile option, 35
memory models, 15
naming convention, 10
near keyword, 36
parameter-passing

defaults, 15
methods, 102

pascal keyword, 35, 36
passing by

far reference, 35, 103
near reference, 35, 103
value, 83, 102

pointers, 35, 103, 132
return value, 78
string format, 112
structures, 102, 129, 132
type declarations, 35

Calhng conventions, 12
CALLS statement, 101, 102
CDECL keyword, 8, 20, 126
.CODE directive, 74
CodeView debugger, 73
Column-major order, 127
Common blocks, 132
Compact memory model, 15, 74
COMPLEX data type, FORTRAN, 109
CONST keyword, 105
CONSTS keyword, 105
G-string feature, FORTRAN, 119

Data address size, 16
.DATA directive, 74
DECLARE statement, 8, 19
Default pointer size, C, 104
Default segment names, 91
DGROUP,93
Double-precision reals, 110
Dynamic variables, 75

138

EQU directive, 77
extern statement

C, used in, 35
Pascal, used in, 61

External data, 130

FAR attribute, 105
Far reference parameters

BASIC, 21, 102
C, 35,103
FORTRAN, 48, 86, 104
Pascal, 61

far keyword, 36
.F ARDATA directive, 93
Floating-point numbers, 109
FORTRAN

ALIAS keyword, 48, 49
arrays, 125
C attribute, 47, 131
C, linking with, 16
calling convention, 13, 85
calling from

BASIC, 26
C,40
Pascal,67

calls to
BASIC, 50
C,52
other languages, 47
Pascal, 55

common blocks, 132
compiling, 15
COMPLEX data type, 109
functions and subroutines, 9, 47
INTERFACE statement, 47
LOC function, 132
LOCF AR function, 132
LOGICAL data type, 111
naming convention, 10, 20, 49
parameter-passing

defaults, 15
keywords, 48
methods, 104

PASCAL attribute, 47
passing by

far reference, 48, 86, 104
near reference, 48, 104
value, 48, 104

return value, 78
string formats, 113

fortran keyword, 35, 36, 131
Framepointer,74
FUNCTION procedures, 9
functions, 8

~Gc compile option, 35
GROUP directive, 93

Huge memory model, use with C, 15

Integers, 109
INTERFACE statement, FORTRAN,

47

Large memory model, 15, 74
LES instruction, 78, 88
LOC, FORTRAN function, 132
LOCFAR, FORTRAN function, 132
LOGICAL data type, FORTRAN, 111
Lower bounds, arrays, 127
LSTRING, 113

Macro Assembler
See also Assembly
assembly interfaces, writing, 73
EQU directive, 77
simplified segment directives, 73

Medium memory model, 15, 74
Memory models, 15, 35, 73
Microsoft segment model, 91
Mixed-language programs

compiling, 15
linking, 16

.MODEL directive, 73, 85

Naming conventions, 9, 130
NEAR attribute, FORTRAN, 48, 105
Near reference parameters

assembly, 82, 86, 90
BASIC, 38, 63, 81, 101
C, 35, 103
FORTRAN, 48, 104
Pascal, 61, 105

near keyword, C, 36
jNOI linker option, 10

Packed storage, 129
Parameter list, BASIC, 21
Parameter type declarations, in C, 35
Parameter-passing methods, 13
Parameters

See also Passing by
assembly, accessing from, 76
calling conventions, effect of, 12

Parameters (continued)
passing, 13
varying number of, 13

PASCAL attribute, 47,104
Pascal

address variables, 132
arrays, 125
C attribute, 131
calling convention, 13, 88
calling from

BASIC, 42
FORTRAN, 55

calls to
BASIC,62
C,65
FORTRAN, 67
other languages, 61

compiling, 15
functions and procedures, 9
LSTRING,113
naming convention, 10
parameter-passing

defaults, 15
methods, 105

passing by
far reference, 61
near reference, 61, 105
value, 61, 88

records, 129, 132
return value, 78
string formats, 113

pascal keyword, 35, 36, 131
Passing by

far reference
assembly, 86
BASIC, 21, 102
C, 35,103
FORTRAN, 48, 86, 104
Pascal, 61

near reference
assembly, 82, 86, 90
BASIC, 38, 63, 81,101
C, 35,103
FORTRAN, 48, 104
Pascal, 61, 105

value
assembly, 85
BASIC, 21, 50, 101
C, 83,102
FORTRAN, 48, 104
Pascal, 61, 88

Pointers, 35, 132
Procedures, 8
Public data, 130
PUBLIC directive, 74

Index

139

Index

Real numbers, 109
Receiving parameters and calling

conventions, 12
Records, 129
REFERENCE attribute, 48, 104
Return value, offset, 79
Row-major order, 127

SEG keyword, 21
SEGMENT directive, 91
Segment directives, simplified, 73
Segments, 93
Single-precision reals, 110
Small memory model

C, use with, 15
procedures, setting up, 74

Special data types, 125
Stack frame, 74, 76
Stack Trace, Code View feature, 73
Stack variables, 75
Static data, 130
Strings

formats, 111
passing from

BASIC, 114
C,117
FORTRAN, 118
Pascal,120

Structured data types, 125
Structures, 129
Subprograms, 8
Subroutines, 8

Type declaration characters, 20, 21

Unpacked storage, 129
Unsigned integers, 110
User-defined types, 129

VALUE keyword, 48
Value parameters

BASIC, 21, 50, 101
C, 83, 102
FORTRAN, 48, 104
Pascal, 61, 88
passing, 14

VAR keyword, 105
Variables

address, 132
automatic, 75
dynamic, 75

V ARPTR keyword, 125, 132

140

V ARS keyword, 105
V ARSEG keyword, 126, 132
VARYING attribute, 134

MiClosott~
Making it all make sense "

1287 Part NQ 01508

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	059
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	xBack

