APPLICATION			REVISIONS						
NEXT ASSY	USED ON	LTR DESCRIPTION		DATE	APPROVED				
	-	1	PRELIMINARY	3/14/79	Shin .				
•		2	PRELIMINARY REVISED	3/29/79	Sohr				
		A	PRODUCTION RELEASE ENQ411	10/30/79	Sphe				

The information hereon is the property of MICROPOLIS CORP-ORATION. No portion of this data shall be released, disclosed, used, or duplicated for procurement or manufacturing purposes without specific written consent of MICROPOLIS.

UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES. TOLERANCES ON: FRAC- DECIMALS ANGLES	CONTRACT NO.	MICROPΩLIS™						
TIONS .XX .XXX ± ± ± ±	DR BY SEL	SPECIFICATION - 1220 SERIES						
MATERIAL	CHK BY			RIGID DIS	SK DRI	VE SUBSYS	TEMS	
FINISH	APPROV SSL clude	VED BY K. 3/14/79		CODE IDEN	IT NO.	dwg no. 100	292	REV.
DO NOT SCALE DRAWING			SCALE				SHEET 1 OF	40
DIETERICH-POST CLEARPRINT 10	20-10	· ·					· · ·	

APPLICATION

REVISIONS

1.0 INTRODUCTION

This specification describes the Micropolis Model 1220/1200 series of fixed disk systems. These products are intended for mini or microcomputer applications which require medium capacity fixed disk storage at low cost.

Model 1220 consists of a Micropolis 8" fixed disk drive with an integral controller board, and is the minimum system configuration. The 1220 fits within the outline of a Shugart 8" flexible disk drive and requires the same D.C. supply voltages. The controller provides full data transfer and control facilities in six standard sectoring arrangements and can be easily attached to the host computer through a simple bus-oriented interface.

Model 1200 is an add-on module similar to the 1220 except that no controller is provided. Up to three 1200's may be added to the 1220.

These modules are available in three configurations depending on the number of data surfaces in use and offer the following formatted storage capacities:

DATA	DATA		12				TED CAP	ACITY	(M B				
4													
PER DRIVE	FER SURFALE		256					100	056	States and s		and the second secon	
		120	200	208	320	512	1024	128	256	268	320	512	1024
1	580	4.90	6.24	1 6.2	2 6.68	3 7.1	3 7.13	19,6	24.9	24.9	26.7	28,5	28.5
3	580	14.7	18.7	18.7	20.0	21.4	21,.4	58,8	74.8	74.6	80.2	85.6	85.6
5	580	24.5	31.2	31.1	33.4	35.6	35.6	98.0	125	124	134	143	143
	SURFACES PER DRIVE 1	SURFACES PER DRIVE PER SURFACE 1 580 3 580	SURFACES PER DRIVETRACKS PER SURFACE158035803580	SURFACES TRACKS PER DRIVE PER SURFACE 1 580 3 580 14.7 18.7	SURFACES TRACKS P PER DRIVE PER SURFACE SEC 1 580 4.90 6.24 6.22 3 580 14.7 18.7 18.7	SURFACES PER DRIVE TRACKS PER SURFACE PER DRI SECTOR LE 1 580 4.90 6.24 6.22 6.68 3 580 14.7 18.7 18.7 20.0	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE 1 580 4.90 6.24 6.22 6.68 7.13 3 580 14.7 18.7 18.7 20.0 21.4	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE 1 580 4.90 6.24 6.22 6.68 7.13 7.13 3 580 14.7 18.7 18.7 20.0 21.4 21.4	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE PER DRIVE 1 580 4.90 6.24 6.22 6.68 7.13 7.13 19.6 3 580 14.7 18.7 18.7 20.0 21.4 21.4 58.8	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE PER DRIVE 1 580 4.90 6.24 6.22 6.68 7.13 7.13 19.6 24.9 3 580 14.7 18.7 18.7 20.0 21.4 21.4 58,8 74.8	SURFACES PER DRIVE TRACKS PER SURFACE Ref DRIVE PE SECTOR LENGTH PE SECTOR LENGTH PE SECTOR SECTOR 1 580 4.90 6.24 6.22 6.68 7.13 7.13 19.6 24.9 24.9 3 580 14.7 18.7 18.7 20.0 21.4 21.4 58.8 74.8 74.6	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE PER SYS 1 580 4.90 6.24 6.22 6.68 7.13 19.6 24.9 24.9 26.7 3 580 14.7 18.7 18.7 20.0 21.4 21.4 58.8 74.8 74.6 80.2	SURFACES PER DRIVE TRACKS PER SURFACE PER DRIVE PER SYSTEM 1 580 4.90 6.24 6.22 6.68 7.13 19.6 24.9 24.9 26.7 28.5 3 580 14.7 18.7 18.7 20.0 21.4 21.4 58.8 74.8 74.6 80.2 85.6

TABLE 1

In addition, the controller has select capability which allows two such systems to be attached to the host via a common interface cable.

2.0 FEATURES

- -- Buffered for asynchronous transfers between host and controller. Full error checking and error recovery procedures are automatically performed.
- Controller may be operated in a direct mode for synchronous transfers between the disk and host at disk speed. Error recovery procedures in direct mode are determined by the host.
- -- Error correction (ECC) option is provided to ensure high data integrity.

с. 	MIC	ROP	∩LIS™	
SIZE	CODE IDENT NO.	DWG NO.		
A		10	0292	
SCALE			SHEET 2 OF	1

REVISIONS

-- Six standard recording formats are available (others by special order):

66	Sectors.	9	128	bytes
42	Sectors	0	256	bytes
40	Sectors	ø	268	bytes
36	Sectors	0	320	bytes
24	Sectors	0	512	bytes
12	Sectors	მ	1024	bytes

- Interfaces easily to the host via an 8-bit bi-directional bus and 9 control lines. The interface structure is suitable for use with either programmed I/O or DMA data transfers.
- -- Provides capability to initialize the disk with a wide range of sector sequences to optimize thruput for specific applications.
- -- Data transfers may be from one sector to a full track per command. Sectors are normally accessed in logical order. Special commands are also included which transfer a full track in physical sector order to facilitate loading/dumping the disk.
- -- Overlap seek is provided. Seeks or read/write operations on the selected drive may be performed simultaneously with seeks on all other drives.
- -- High thruput In buffered mode, the buffer may be filled/unloaded at any rate up to disk speed (approximately 1µs/byte). Since transfers are buffered, the host interface need not provide special logic to account for DMA latency for the first data request of each block. In direct mode, the host interface must provide for response to all data requests at disk speed.
- -- Most media defects which appear during the life of the system can be eliminated under host control. One spare sector per track is provided for this purpose.
- -- Host may verify the correct transmission of each byte of a command to the controller before the command is executed.
- -- Cylinder accessing may be logical or physical.

MICROPΩLIS™							
SIZE	CODE IDEN	T NO.	DWG NO.				
Α			100292				
SCALE			SHEET 3 OF				

3.0 GENERAL DESCRIPTION

Model 1220 consists of a 1200 series rigid disk drive and a controller board which is housed within the drive outline. These combine to form a flexible, low cost disk sub-system which can be easily attached to any computer system. Three additional 1200's can be attached to the 1220 for expanded storage capacity.

3.1 Disk Drive Mechanics

This consists of a die cast deck whose lower half is devoted to the recording heads, platters and the voice coil motor components. This lower half is sealed and air is circulated throughout the area by disk rotation induced flow. This flow is directed through a 0.3 micron absolute filter. The sealed area breathes to the outside via a similar filter.

There are no active electronic parts in the "clean" area and electrical connection is made between this area components and the electronics package via a PCB, which also seals the "clean" area from the rest of the casting.

3.2 Drive Motor

Rotational drive for the platters is provided by a direct coupled brushless D.C. motor. This combination provides a very low profile allowing 3 platters to be packaged in an envelope only 4.62" high. Switching information for the electronic commutator is supplied by 3 photo transistor/LED combinations attached to the motor control PCBA.

3.3 Positioner System

The positioner is a balanced swing arm mechanism supported on two preloaded bearings which reference to a stub shaft rigidly attached to the casting. The system is designed to accept between 2 and 4 arms depending on the model number. The voice coil is attached to the system on the opposite side of the bearings from the head and the whole mechanism is statically balanced. The magnet is of the short coil long magnet type and utilizes a Ferrite magnet. Position reference is made to tracks recorded on a dedicated surface on the platter nearest the deck. These tracks are recorded with position information in the "Modified Dibit"

3.4 Read/Write Head

This consists of a single gap slider assembly of the Winchester type with the slider surface modified to run at 3600rpm.

			ROPS		5	
SIZE	CODE IDEN	IT NO.	DWG NO.			
Α			1	00292		
SCALE		-		SHEET 4	OF	
The second value of the se						

REVISIONS

3.5 Electronics Package:

Three boards are associated with the basic drive mechanism:

- a) Preamplifier PCBA
- b) Motor Control PCBA
- c) Device Electronics PCBA

Figure 7 lists the basic drive interface signals. See Specification 100198 - 1200 Series Disk Drives, for a detailed description of the drive and drive interface signals.

3.6 Controller PCBA

This is a microprocessor-based controller which performs such functions as data formatting, encoding, decoding, sector buffering, error detection and recovery, and general housekeeping functions. It consists of a $8" \times 14"$ board which resides in the 1220 drive assembly. Error correction is provided by an optional ECC board which attaches to the controller. D.C. power is drawn from the disk drive.

External connection is made through two edge connectors at the rear of the drive assembly:

a) Host Interface, J101. (34 pin edge connector)

This attaches to the host system (and another 1220 in an expanded system). Signal and pin assignments for this interface are shown in Figure 8.

b) Drive Interface, J102. (50 pin header)

This attaches to the drive interface connector, Jl, and add-on 1220's, if any. Pin assignments are shown in Figure 7.

A detailed description of the host interface and controller operation is given in the following sections of this specification.

	MICROPΩLIS™							
size A	CODE IDEN	IT NO.	DWG NO.	00292				
SCALE				SHEET 5	OF			

	APPL	ICATION	REVISIONS
4.0	SDEC	IFICATION SUMMARY	
4.0			
	4.1	Disk Drives	
		Spindle Speed	3600 rpm
		Speed Variation	±.5%
		Latency	3.3 ms
		Track Density	478 tpi
		Available Tracks	580
		Access Time	
		Track-to-Track	4 ms
		Average (1/3 stroke)	34 ms
		Settling	8 ms
		Data Surfaces	
		1221-1	1
		1222-1	3
		1223-1	5
		Media	200 mm oxide coated (IBM 3350 technology)
	4.2	1220/1200 System	
		Sectoring Method	Hard
		Number of Sectors	Six standard formats (See Table 1)
		Encoding Method	EPM (modified 3PM).
		Data Density (inner track)	8623 bpi
		Flux Density (inner track)	5749 frpi
		Transfer Rate	922 Kbytes/sec maximum
		Formatted Capacity	See Table 1
	4.3	Physical (each module)	
		Environmental	10 40%
		Ambient Temperature	$10 - 40^{\circ}$ C
		Relative Humidity	10 - 80% non condensing
			MICROPΩLIS™

SIZE	CODE IDEI	NT NO.	DWG NO.	
Α			100292	
SCALE			SHEET 6 0	F

	APPLI	CATION				RE	VISION	IS	
		Mechanical (See	e Figure	3)					
		Depth	<u>-</u>	- /	1	4,25" (362	2 mm)		
		Width				8.55" (21)	7 mm)		
		Height				4.62" (11)	7 mm.)		
		Weight				22 1bs. (10 KG)).	
	4.4	Dissipation							
		Total dissipat	ion inclu	uding po	sition	ing:			
		1220			9	5 watts			
		1200			7	5 watts			
	4.5	Reliability (ex	kcluding	error c	orrect	ion)			
		Soft Read Erro	rs		۱	in 10 ¹⁰			
		Hard Read Error	rs		1	in 10 ¹²			
		MTBF (Total Un	it)		۱	0,000 hrs	•		
		MTBF "Clean" An Components			2	5,000 hrs	•		
5.0	DC P	OWER REQUIREMEN	TS (each	module))				
	assi	ower is supplied gnments are show DC requirements	wn in Fi	h drive gure 6.	via a The m	10 pin Aŀ ating con	P conr nector	nector, J3. Pin r is AMP 1-37159-0.	
			12					200	
VOLT/			AVE	PEAK	20		AVE 2 25 A	$\frac{PEAK}{4}$	
+24V + 5V	±5% ±5%		2.25A 6.0A	4.5A (6.0A	20 sec	•	2.25A 2.25A	4.5A (20 secs) 2.25A	
-12V			0.0A 0.8A	0.8A			0.5A	0.5A	
6.0		ROLS AND INDICA							
	None and init posi	. When DC power controller deter	r is app rmine th ce occur over cy	at all v s which linder (voltage runs t). The	s are wit he spindl controll	hin l e up t er in	se circuits in the c imits. At this time to operating speed a itializes important 3.0.	nd the
								ROPALIS	м
					size A	CODE IDEN	IT NO.	DWG NO. 100292	
				н. 1917 - С.	SCALE			SHEET 7 O	F
ETERICH-POS	T CLEA	RPRINT 1020-10							

-

REVISIONS

7.0 DISK FORMAT

The 1220 controller makes use of the track/sector format shown in Figure 4. Tracks are divided into a number of sectors which contain a fixed blocklength of user data. The beginning of each sector is identified by a sector pulse from the disk drive. Each track contains one spare sector which at the time of initialization can be made to fall over a defective area of the track.

Sectors are divided into an address field, a data field, and a trailing gap area. Data is recorded most significant bit first where Bit 7 is the most significant and Bit \emptyset the least significant bit of each byte. The EPM encoding method provides an increased data packing density compared to MFM while maintaining the same decoding margins and reliability.

The suffix H indicates a hexadecimal value in the following description.

7.1.1 <u>Address Field</u> -- Contains a unique track/sector address and associated information. This field is written during initialize commands only.

	Synchronizes read circuits Identifies the beginning of an Address Field. The value contained in this byte indicates whether a defective sector has been spared
	on this track.
= //H	Normal initialize, no defective sector. The
	spare sector resides at the end of the track.
= 7DH	Track has been initialized to eliminate a
	defective sector.
Byte 0	Bits 0-2 Head Address (0-4)
Byte 1	Bits O-7 Cylinder Address LSB}(O-579) Bits O-1 Cylinder Address MSB
Byte 2	Bits 0-1 Cylinder Address MSB
Byte 3	Bits 0-6 Logical Sector Address (0-65)
CRC (2 bytes)	Cyclic Redundancy Check bytes.
	Computed from contents of the
	Address Mark and bytes 0-3 using
	the polynomial $X^{16} + X^{12} + X^5 + 1$
Postamble	Trailing guardband

Unused bits are zeroes.

7.1.2 Data Field -- Contains user data for transfer to/from the host system:

	Synchronizes read circuits
Data Mark, 44H	Identifies beginning of a Data Field
Data	n bytes of user data
ECC (4 bytes)	Optional Error Correction Code computed from
	contents of Data Mark and User Data
CRC (2 bytes)	CRC computed from contents of Data Mark
	and User Data using same polynomial as Address Field.
Postamble	Trailing guardband

	M		ROP	ΩLIS™	
SIZE	CODE IDEN	IT NO.	DWG NO.		
A			10	0292	
SCALE		·		SHEET 8 OF	

7.1.3 GAP -- Provides tolerance for disk speed variation

Six standard arrangements of this format are available as shown in Figure 4. The required format is selected by appropriate jumper connections on the drive and controller and must be specified when ordering. An additional 1K bytes of RAM must be installed in the controller for operation with the 1K byte data format.

7.2 Sector Interleaving

A track can be initialized with the sectors in sequential order or in a number of interleaved patterns (Figure 5). When interleaved, consecutive logical sectors (as determined by byte 3 in the address field) are physically separated from each other by one or more other sectors. This provides a sector-to-sector latency which can be chosen to optimize the host system's processing time.

In addition, the physical position of sector 0 can be specified on a track-by-track basis. For instance, the user might format the disk surface with a specific interleaved pattern which rotates by equal increments as consecutive cylinders are accessed.

7.3 Sector Sparing

Tracks are normally initialized with the spare sector located at the end of the track. If one of the data sectors becomes defective the track can be re-initialized placing the spare sector over the defective area. The sector in error and all other sectors around to index are shifted right one place maintaining the interleaved pattern. Parameter Byte 6 in the Initialize commands specifies normal/spared mode and contains the logical address of the sector to be spared. Address Mark bytes contain 77H for a normal track or 7DH for a spared track.

A maximum of one sector per track may be spared. The user can determine if a given track has already been spared by accessing the contents of an Address Mark using the Read Header command.

7.4 Initialize Commands

Each data surface of the disk must be pre-recorded with the desired format before normal use. Three Initialize commands are provided for this purpose:

and ending with index) using head, cylinder, sector sequencing and sparing information contained in the accompanying parameter bytes. Data fields contain the cylinder address in the first two bytes and EEH in the remaining data byte locations.

VERIFY FORMAT ------ Verifies that track is correctly initialized. Reads entire track and compares against initialize Di

allern		CROPΩLIS™	
size A	CODE IDENT NO.	DWG NO. 100292	r
SCALE		SHEET 9 OF	

REVISIONS

INIT and VFY ----- Combination of the two above commands.

A user utility program is required to initialize then verify each track on the disk with the desired format.

8.0 HOST INTERFACE

The host interface to the 1220 is made through a 34 pin edge connector, J101, located on the Controller PCBA. Pinouts, electrical characteristics, and timing requirements are shown in Figures 8-11.

All signals except CBUSY on the interface are low true (indicated by a /). However, in the remainder of this text reference will be made to the logical condition of each signal rather than it's electrical polarity. e.g. O=false, 1=true.

The interface is structured around an 8 bit bi-directional bus and the three control signals WSTR, RSTR, and DATA. Information is output to either a control (command) or data port using WSTR, and input from a control (status) or data port using RSTR. DATA selects the port in use.

These exchanges are controlled by the host making use of handshake flags in the status byte. Most flags appear in both the status byte and on separate interface lines to allow flexibility in the method of attachment to the host system.

8.1 Interface Signals

SEL ------ Selects the controller in one of two 1220/1200 systems attached to host interface. When selected, the controller responds to the bus control lines. The address is determined by jumpers W1, W2 on the controller PCBA.

SEL = 0 Address 0, W1 installed = 1 Address 1, W2 installed

ENABLE -----

Normally held true. When false (2µs min), the power-on sequence is invoked in all controllers (Section 9.0). Automatically initializes controller if there is no host power or if the cable is disconnected. May also be used for programmed reset.

BUSØ - BUS7 ------(8 lines)

----- Bi-directional tri-state bus which transfers information to/from the controller in parallel.

	M	IC	ROP	JLIS™	
SIZE	CODE IDEN	T NO.	DWG NO.		
Α			100	292	
SCALE			SH	EET 10 OF	

APPLIC	CATION	REVISIONS
· ·	WSTR	Write Strobe. When pulsed, one byte is output from the host to the controller. Contents of the bus are copied into an output buffer on the trailing edge of WSTR. The byte is interpreted as being either control (DATA=0) or data (DATA=1).
	RSTR	Read Strobe. When pulsed one byte is input from the controller to the host. When RSTR is true, the controller drives the bus with the contents of either the status register (DATA=0) or input buffer (DATA=1). RSTR must not be asserted while the host is driving the bus.
	DATA	above.
	CBUSY/	Controller Busy/. Cleared when a command is issue set when the command is terminated. The polarity is chosen so that the controller appears busy to the host when the cable is disconnected.
		CBUSY/ = 0 = 1 Controller busy executing a command. Controller not busy, a new command can be accepted.
· .	ATTN	Attention. Set true at the end of each command when CBUSY/ changes state. The host should respon by reading the TERMINATION STATUS byte which indicates the success or failure of the command. ATTN is cleared approximately 70µs after TERMINATION STATUS is read.
	DREQ	Data Request. This flag requests the transfer of each byte of user data to/from the controller. The direction of transfer is specified by OUT. The host must respond by writing/reading the required byte to the data port. Data must be transferred only in response to DREO.
		In buffered mode the data transfer rate is determined by the host (0-922KHz). In direct mode transfers are synchronous with the disk, and each byte must be serviced in less than one byte-time. See Figure 11 for timing.
	OUT	Specifies the direction of data transfer.
		<pre>= 0 Controller to host (Class 2 commands) = 1 Host to controller (Class 3 commands)</pre>
		MICROPΩLIS™
		SIZE CODE IDENT NO. DWG NO. 100292
		SCALE SHEET 11 OF

-

APPLI	CATION		REVIS	IONS
8.2	Status Byte			
	controller sta information wi	atus and handshake ith the host. The	flags which co- flags ORDY and	ol port. It contains ordinate the exchange of IRDY are used during and OUT control the transfer
	Bit 0	be a Command N Status byte. by reading fro	contains a byte Verify, Termina Set when input om the data por alid and should	for the host. This may tion Status, or Auxiliary buffer is filled, cleared t. be ignored when CBUSY/=0.
	Bit 1	the output bu byte, cleared	ut a Command, P ffer. Set when by writing to alid and should	arameter, or GO byte to controller accepts previous the control or data port. be ignored when CBUSY/=0.
	Bits 2,3	= 0		
	Bit 4 Bit 5 Bit 6 Bit 7	CBUSY/ DREQ OUT ATTN	e Section 8.1	
8.3	Information Ex	xchange		
		table summarizes t r and the host:	he types of inf	ormation exchanged between
DIRN	PORT	TYPE	QTY.	RELEVANT CONDITIONS
	CONTROL	COMMAND	1	CBUSY/, ORDY
OUTPUT (WSTR)	DATA	CMD PARMS GO WRITE DATA	6 1 n	CBUSY/,ORDY CBUSY/,ORDY CBUSY,DREQ,OUT

STATUS

CMD VFY

READ DATA

TERM STATUS

AUX STATUS

1

0-7

n

1

0-7

DATA

CONTROL

MICROPOLIS[™]

CBUSY/,ORDY,IRDY CBUSY,DRE0,OUT/

CBUSY/,ATTN, IRDY

CBUSY/,ATTN/,IRDY

ALL

SIZE	CODE IDEN	IT NO.	DWG	NO.	· · · · · · · · · · · · · · · · · · ·		-
Α				10	0292		
SCALE	an a				SHEET	12 of	

INPUT (RSTR)

9.0 POWER-ON SEQUENCE

A d.c. reset is applied to the controller logic for a period of 500 ms after power-on, or when ENABLE/ is false. This forces CBUSY/=0, causing the controller to appear busy. When the reset is released the controller initializes important flags and registers to a known state. Approximately one second later, CBUSY/ is set and the controller is ready for use.

MICROPΩLIS™					
SIZE	CODE IDEN	IT NO.	DWG NO.	00292	
~			<u> </u>		
SCALE				SHEET 13 OF	
			,		

REVISIONS

10.0 GENERAL OPERATION

A command is initiated by writing a command byte to the control port, followed by six parameter bytes and a GO byte to the data port. The command byte (Figure 12) specifies the type of command, while the parameter bytes (Figure 13) contain associated address information. The GO byte causes the command to be executed and may contain any value. All eight bytes must be transmitted to the controller even though some are not used in certain commands.

As each of the command and parameter bytes is transmitted, the controller copies the received value into the input buffer. If desired, the host may access and verify this byte before proceeding to the following byte. In this way the transmission of a command can be fully verified.

The command set is divided into three classes as follows:

Class 1 --- Non-data transfer

Class 2 --- Transfers from controller to host

Class 3 --- Transfers from host to controller

When the GO byte is received, the controller goes busy (CBUSY/ = \emptyset) and proceeds to execute the command. Data transfers between the host/controller/disk now take place as required. Checks are performed on the validity of the command and parameter bytes, and on all data transfers to/from the disk.

The command is terminated in one of two ways:

- a) On successful completion of the command. For Class 2 and 3 commands this occurs when the required number of sectors have been transferred.
- b) When a fatal error condition has been detected.

2511

In both cases a standard termination sequence occurs. First the controller drops busy (CBUSY/=1), sets ATTN, then places a Termination Status byte in the input buffer. Termination Status identifies any error condition or special event that may have occurred during the command. When ATTN true (or CBUSY/=1) is recognized, the host should respond by reading Termination Status from the data port using the command termination protocol shown in Figure 15. Reading Termination Status causes ATTN to be cleared. Execution of the command is now complete.

If desired, the host may also access one or more of the Auxiliary Status bytes which are placed in the input buffer following Termination Status. These provide detailed drive and controller status information and are usually reserved for diagnostic purposes.

MICROPΩLIS™				
size A	CODE IDENT NO.	DWG NO. 100292		
SCALE		SHEET14 OF		

REVISIONS

A command will be accepted at any time the controller is not busy. The receipt of a command byte (i.e. write to control port while CBUSY/=1) conditions the controller to expect the transmission of a complete command, hence no special initialization is required when previous activity is unknown. For instance, if one of the command or parameter bytes fail to verify the host would simply retransmit the entire command beginning with the command byte.

The bus protocol taking place during command initiation and termination is shown in detail in Figures 14, 15, and 16.

11.0 COMMANDS (Figure 12)

11.1 Class 1 Commands

These commands do not involve host data transfers.

Bits 0,1 ---- 01H. Class 1 code.

Bits 2-4 ---- Command Code. See below.

Bit 5 ----- Not used.

Bit 6 ----- Seek (READ HDR, 3 INITIALIZE CMDS).

- = 1 -- A seek to the specified head/cylinder (track) occurs
 before the operation is performed.
- = 0 -- Operation performed on the current track.
- Bit 7 ----- Retry Over-Ride (READ HDR, 3 INITIALIZE CMDS).
 - = 1 -- Automatic error retry procedure disabled.
 - = 0 -- Retry procedure enabled. (See Section 14.0)
- CMD Code = 0 Drive Status

The specified drive is selected and drive status is reported in Aux. Status Byte 1.

= 1 Seek Only

A seek is initiated on the specified drive to the specified head/cylinder. The command is immediately terminated.

Overlapped seeks can be performed by repeated use of this command or in conjunction with commands having an implied seek. Any command can be overlapped with seeks previously initiated on other drives.

	M		ROI	ກΩLIS™	
SIZE A	CODE IDEN	IT NO.	DWG NO. 1002	292	
SCALE				SHEET15 OF	

= 2 Read Header

The Address Field in the first occurring sector is read and the contents are made available in Aux. Status bytes 3 thru 7.

This command may be used to determine whether a track has been spared, or to check that the expected track has been reached after a seek operation.

= 3 Restore

The selected drive is restored to head 0, cylinder 0, and the drive cylinder address register is recalibrated.

= 4 <u>Initialize Track</u>

See Section 7.4

= 5 Verify Format

See Section 7.4. To ensure a good Initialize, retries should be disabled when using this command (bit 7=1).

= 6 Initialize and Verify

Combination of Initialize Track and Verify Format. If retries are enabled a track failing to verify will be automatically re-written.

= 7 Fault Reset

Resets fault latch in selected drive.

11.2 Class 2 Read Commands

These commands involve data transfers from the controller to the host. The four basic commands specified by bits 2,3 can be executed in a number of different modes depending on the value of bits 4-7.

Bits 0,1 ----- 02H. Class 2 code.

Bits 2,3 ---- Command Code. See below.

Bit 4 ----- Track. Selects logical or physical sector sequencing.

- Normal. Sectors are accessed in logical order. Parameter byte 4 contains the starting sector address and parameter byte 5 the number of sectors to be transferred.
- = 1 A complete track is transferred in physical order, beginning and ending with index. Parameter bytes 4,5 must contain the

	M		ROPALIS	5
SIZE	CODE IDEN	IT NO.	DWG NO.	
A			100292	
SCALE			SHEET 16 C)F

APPLICATION	REVISIONS
	Initialize format pattern. Parameter byte 6 is not used. Useful for disk load/dump operations in direct mode.
= 0	 Direct. Selects direct/buffered mode. Buffered Mode. All data transfers to/from the host take place through a sector buffer in the controller (0-922 Kbytes/sec). Buffered mode includes automatic error retries if bit 7=0. Direct Mode. Data transfers takes place directly between the disk and host, and are synchronous with the disk (922 Kbytes/sec). Read data is also stored in the sector
	buffer for error correction purposes. Retries are not performed. The host must implement it's own error recovery procedures.
	- Seek. No implied seek. Drive seeks to specified head/cylinder before data transfer.
= 0	- Retry Over-Ride. (Buffered mode only). Automatic retry procedure enabled. Retries disabled.
	Normal Read. Disk read data is transferred to the host in the mode specified by bits 4-7. All error checks are enabled. Read with Address Check Over-ride. Same as normal read except that all checks on the address field are over-
= 1	ridden except sector co-incidence. The overridden checks are head, cylinder, and CRC. Read with Data Check Override. Same as normal read except that the data field checks (ECC and CRC) are overridden.
= 0	Correct. The contents of the sector buffer undergo a correction attempt and the result is transferred to the host. Success or failure is indicated in the Termination Status byte. This command is only valid immediately following an unsuccessful read in either Direct mode or Buffered mode with retries overridden, when the ECC option is installed.
	MICROPΩLIS™

SCALE

T

SIZECODE IDENT NO.DWG NO.A100292

SHEET 17 OF

DIETERICH-POST CLEARPRINT 1020-10

₽

REVISIONS

11.3 Class 3 Write Commands

These commands involve data transfers from the host to the controller. They are divided into two groups, WRITE and VERIFY, depending on the state of bit 2 and can be executed in a number of different modes selected by bits 3-7.

Bits 0,1 ----- 11H. Class 3 code.

Bit 2 ----- Write. Selects WRITE or VERIFY command.

= 1 WRITE command. Host data is transferred to the controller and is written onto the disk in the mode specified by bits 3-7. Automatic rewrites occur if bit 3 = 1 (buffered mode).

- = 0 VERIFY command. Host data is compared byte-for-byte against data read from the disk. This command is normally used directly after a WRITE command to verify that the data has been correctly recorded. Automatic rewrites occur if bit 3 = 1 (buffered mode).
- Bit 3 ----- Read-After-Write.
 - = 0 Normal WRITE or VERIFY.
 - = 1 Buffered mode only (no effect Direct mode).

For WRITE commands, an automatic read-after-write is performed as each sector is processed. If an error occurs, the sector is automatically rewritten using the contents of the sector buffer.

For VERIFY commands, a sector which fails to verify is automatically rewritten using the contents of the sector buffer.

- Bit 4 ----- Track.
- Bit 5 ----- Direct.
- Bit 6 ----- Seek.

See Class 2 Commands.

Bit 7 ----- Retry Override

MICROPΩLIS™

SIZE CODE IDENT NO. DWG NO.

Α

SCALE

100292

SHEET18 OF

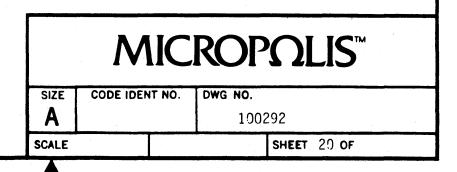
 12.0 <u>PARAMETER BYTES</u> (Figure 13). The six parameter bytes contain address and control information associated with each command. All parameter bytes must be transmitted to the controller even though some may not be used. Unused bits should be zero. <u>PARM BYTE 1</u> Bits 0,1 Unit Address. Selects one of 4 disk drives. Bits 2,3 Not used. Bits 4-7 Head Address (0-4). <u>PARM BYTE 2</u> Bits 0-7 Cylinder Address, least significant 3 bits. Bits 3,4 Zero. Bit 5 Not used. Bit 5 Not used. Bit 6 OFFSET+ Offsets positioner either side of center track. Bit 6 OFFSET+ Differed mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the sector so be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 5 Bits 0-7 Normally not used. For INIT and INIT 4 VFY commands this byte determines the spare sector location as follows: = 111egal sector address (0 thru 25). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru 25). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru 25). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru 25). Normal initialize actor address (0 thru	APPLICATIO	N	REVISIONS	
The six parameter bytes contain address and control information associated with each command. All parameter bytes must be transmitted to the controller even though some may not be used. Unused bits should be zero. PARM BYTE 1 Bits 0,1 Unit Address. Selects one of 4 disk drives. Bits 2,3 Not used. Bits 2,3 Not used. PARM BYTE 2 Bits 0-7 Cylinder Address, least significant 8 bits. PARM BYTE 3 Bits 0-2 Cylinder Address, least significant 3 bits. DARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. Bit 5 Not used. Bit 5 Not used. Bit 5 Not used. Bit 6 OFFSET+ Effective for Read Commands only in direct mode of Bit 7 OFFSET- Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally contains the spare is written at the end of the track. Address Marks contain 77H. Equiparent mode marks and INIT A VFY commands this byte determines the spare is written at the end of the track. Address Marks contain 77H. Equiparent mode marks contain 77H. * Track-oriented commands around to index are shifted right one place. Address marks contain 77H. * Track-oriented commands and class 2 or 3 commands and class 2	12.0 PARAME	TER BYTES (Figu	re 13).	
Bits 2,3 Not used. Bits 4-7 Head Address (0-4). PARM BYTE 2 Bits 0-7 Cylinder Address, least significant 8 bits. PARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. Bits 3,4 Zero. Bit 5 Not used. Bit 6 OFFSET- Differed mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the sector spacing code. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Bite CODE IDENT NO. [DMC NO.]	The si with e	x parameter bytach command. A	es contain address and control information associat 11 parameter bytes must be transmitted to the contro	
Bits 4-7 Head Address (0-4). PARM BYTE 2 Bits 0-7 Cylinder Address, least significant 8 bits. PARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. Bits 3,4 Zero. Bit 5 Not used. Bit 6 OFFSET+ Diffsets positioner either side of center track. Effective for Read Commands only in direct mode of buffered mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare is written at the end of the track. Address (0 thru 255). Normal initialize, the spare is written at the end of the track. Address (0 thru N-1). Elegal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Bite CODE IDENT NO. DWG NO.	PARM BYTE 1	Bits 0,1	Unit Address. Selects one of 4 disk drives.	
PARM BYTE 2 Bits 0-7 Cylinder Address, least significant 8 bits. (0-579) PARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. (0-579) Bits 3,4 Zero. Bits 5 Not used. Bit 5 Not used. Bit 6 OFFSET+ Offsets positioner either side of center track. Effective for Read Commands only in direct mode of Bit 7 OFFSET- Differed mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare is written at the end of the track. Address Marks contain 77H. Elegal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands must the the Track bit set (bit 4=1). Size CODEIDENT NO. DWG NO.		Bits 2,3	Not used.	
PARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. (0-579) Bits 3,4 Zero. Bits 5 Not used. Bit 5 OFFSET+ Offsets positioner either side of center track. Bit 7 OFFSET- Diffsets positioner either side of center track. PARM BYTE 4 Bits 0-7 OFFSET- Diffsets positioner either side of center track. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = 11legal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (O thru N-1). Spared mode. The spare is woritten where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). SIZE CODE IDENT NO. DWG NO.		Bits 4-7	Head Address (0-4).	
PARM BYTE 3 Bits 0-2 Cylinder Address, most significant 3 bits. Bits 3,4 Zero. Bit 5 OFFSET+ Bit 6 OFFSET+ Bit 7 OFFSET- Bit 7 OFFSET- Defreed mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (0 thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). SIZE CODE IDENT NO. DWG NO.	PARM BYTE 2	Bits 0-7	Cylinder Address, least significant 8 bits.	\
Bit 5 Not used. Bit 6 OFFSET+ Bit 7 OFFSET- Bit 7 OFFSET- Deffective for Read Commands only in direct mode of buffered mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (0 thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands sectors is around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. Bit set (bit 4=1).	PARM BYTE 3	Bits 0-2)
Bit 6 OFFSET+ Bit 7 OFFSET- Bit 7 OFFSET- Deffective for Read Commands only in direct mode of buffered mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO.		Bits 3,4	Zero.	
 Bit 7 OFFSET- Bit 7 OFFSET- buffered mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands and class 4 (bit 4=1). 		Bit 5	Not used.	
Bit 7 OFFSET-] buffered mode with retries disabled. Used in hos error recovery procedures. PARM BYTE 4 Bits 0-7 Normally contains the starting sector address. For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = 11legal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (O thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO. Size CODE IDENT NO. DWG NO.		Bit 6		
For track-oriented commands*it contains the physical address of logical sector 0. PARM BYTE 5 Bits 0-7 Normally contains the number of sectors to be processed. For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands and Class 2 or 3 commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO.		Bit 7	OFFSET-] buffered mode with retries disabled. Use	
For track-oriented commands*it contains the sector spacing code. PARM BYTE 6 Bits 0-7 Normally not used. For INIT and INIT & VFY commands this byte determines the spare sector location as follows: = Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands consist of the 3 INITIALIZE commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO.	PARM BYTE 4		For track-oriented commands*it contains the	
 byte determines the spare sector location as follows: = Illegal sector address (N thru 255). Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (O thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands consist of the 3 INITIALIZE commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO. 	PARM BYTE 5		For track-oriented commands*it contains the sector	
Normal initialize, the spare is written at the end of the track. Address Marks contain 77H. = Legal sector address (0 thru N-1). Spared mode. The spare is written where the specified logical sector would normally be. The replaced sector and the following sectors around to index are shifted right one place. Address marks contain 7DH. * Track-oriented commands consist of the 3 INITIALIZE commands and Class 2 or 3 commands with the Track bit set (bit 4=1). Size CODE IDENT NO. DWG NO.	PARM BYTE 6			
of the 3 INITIALIZE commands and Class 2 or 3 commands with the Track bit set (bit 4=1). SIZE CODE IDENT NO. DWG NO.		=	Normal initialize, the spare is written at the end track. Address Marks contain 77H. Legal sector address (O thru N-1). Spared mode. The spare is written where the specif logical sector would normally be. The replaced sec and the following sectors around to index are shift	ied tor
SIZE CODE IDENT NO. DWG NO.	of the 3 I Class 2 or	NITIALIZE comma 3 commands wit	nds and	
			MICROPALIS	S
A				
SCALE SHEET 19 OF	n an tha an			

♪

REVISIONS

13.0 TERMINATION/AUXILIARY STATUS

The Termination and Auxiliary Status bytes are made available by the controller at the end of each command. Termination Status is accessed by reading from the data port in response to ATTN true, using the command termination protocol. If desired, one or more of the Auxiliary Status bytes can then be accessed by further reads from the data port.


13.1 Termination Status Byte

Bits 0-3 of this byte contain an error code which identifies any error condition that may have occurred during the command. If zero, the command has been successfully completed; if non-zero, the code value indicates the reason for termination. Bits 4-7 contain other flags useful in error analysis.

Bits 0-3 ---- Error Code.

- = 0 No error.
 - 1 Invalid command.
 - 2 Invalid parameter byte.
 - 3 Drive not ready.
 - 4 Drive fault.
 - 5 Illegal head or cylinder address.
 - 6 Sector not found.
 - 7 Data error.
 - 8 Verify (compare) error.
 - 9 Timeout error.
- A-F Not used.
- Bit 4 ----- Temporary Positioner Error (sector not found cleared by restore).
- Bit 5 ----- Temporary Write Fault (drive Fault occurred during write, was successfully cleared).
- Bit 6 ----- Temporary Error (one or more retries performed).
- Bit 7 ----- Corrected Error (data error successfully cleared by ECC correction).

Bits 4-7 = 0 if Error Code $\neq 0$.

REVISIONS

13.2 Auxiliary Status

The Auxiliary Status bytes contain detailed drive and controller status relating to the last command. They are normally reserved for diagnostic purposes.

Auxiliary Byte 1

Drive Status	
Bits 0,1,3,4	Undefined
Bit 2	Not Ready
Bit 5	Illegal Head or Cylinder Address
Bit 6	Fault
Bit 7	Seek Complete

Auxiliary Bytes 2-7

<u>Command Echo</u>

These bytes normally contain the command code and first 5 parameter bytes for the last command, except that the starting sector address (Aux. Byte 6) has been updated to indicate the last sector processed. Aux. Byte 6, therefore, indicates the failing sector address when an error termination occurs.

For a READ HEADER command:

Aux. Byte 2	= Command Code
Aux. Byte 3, bits 0-3	= Unit Address in command
Aux. Byte 3, bits 4-7	= Head Address read from header
Aux. Bytes 4-7	= Cylinder LSB, Cylinder MSB, Sector and Address Mark

bytes read from header,

respectively

Following Aux. Status Byte 7, the controller will continue to fill the input buffer indefinitely. This information is not defined.

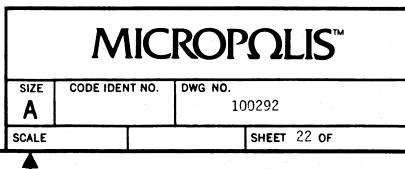
14.0 RETRY SEQUENCE

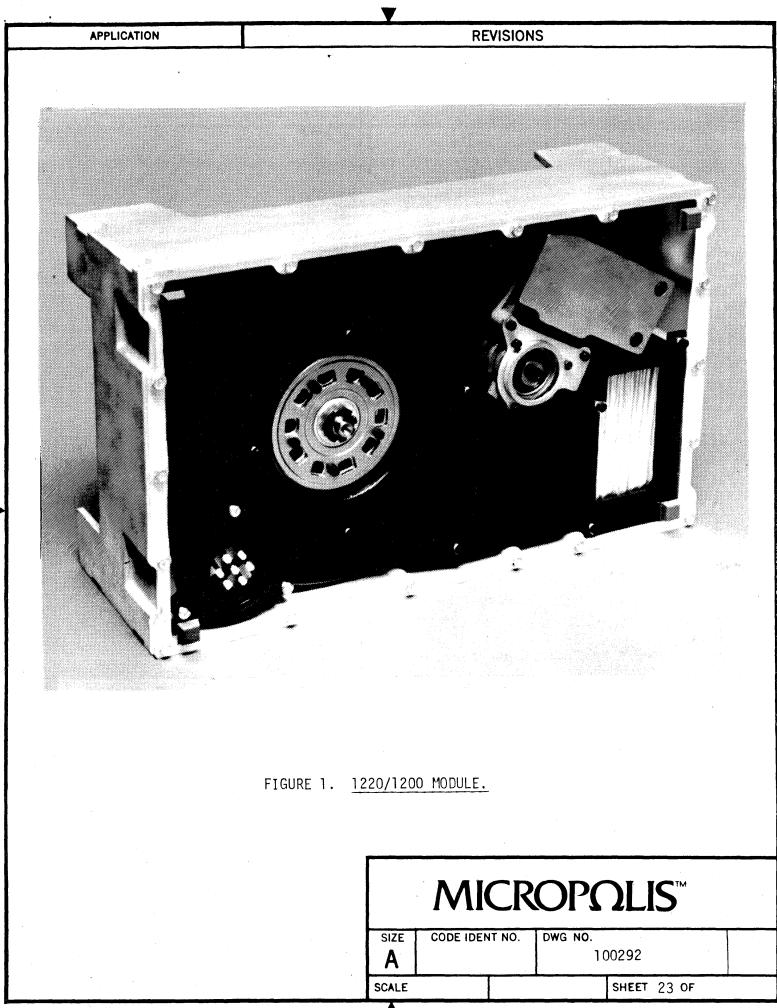
This feature is enabled or disabled by bit 7 in the command byte. In buffered mode, an automatic retry sequence is entered on a sector-by-sector basis when a disk error condition is detected. For data errors, three levels of retry are performed:

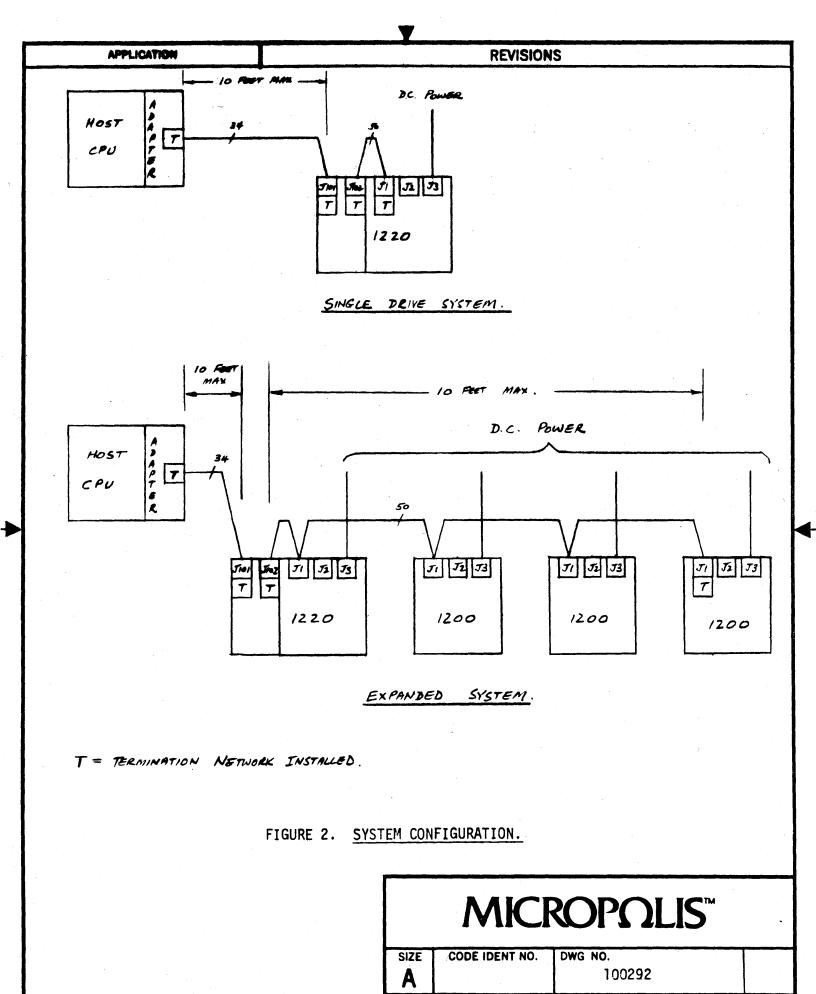
	M		ROP	ΩI	_IS™	
SIZE	SIZE CODE IDENT NO.		DWG NO.			ي بين من يوري المحمد بين ويدي الكر
Α			10	0292		
SCALE				SHEET	21 OF	

REVISIONS

- Level 1 ----- If the ECC option is installed, a correction attempt is made on the contents of the sector buffer. If successful the corrected data is transmitted to the host.
- Level 2 ---- The failing operation is repeated up to ten times. Level 1 retries are included.
- Level 3 ---- The positioner is offset one way then the other from the track center. Level 1 and 2 retries are performed again.

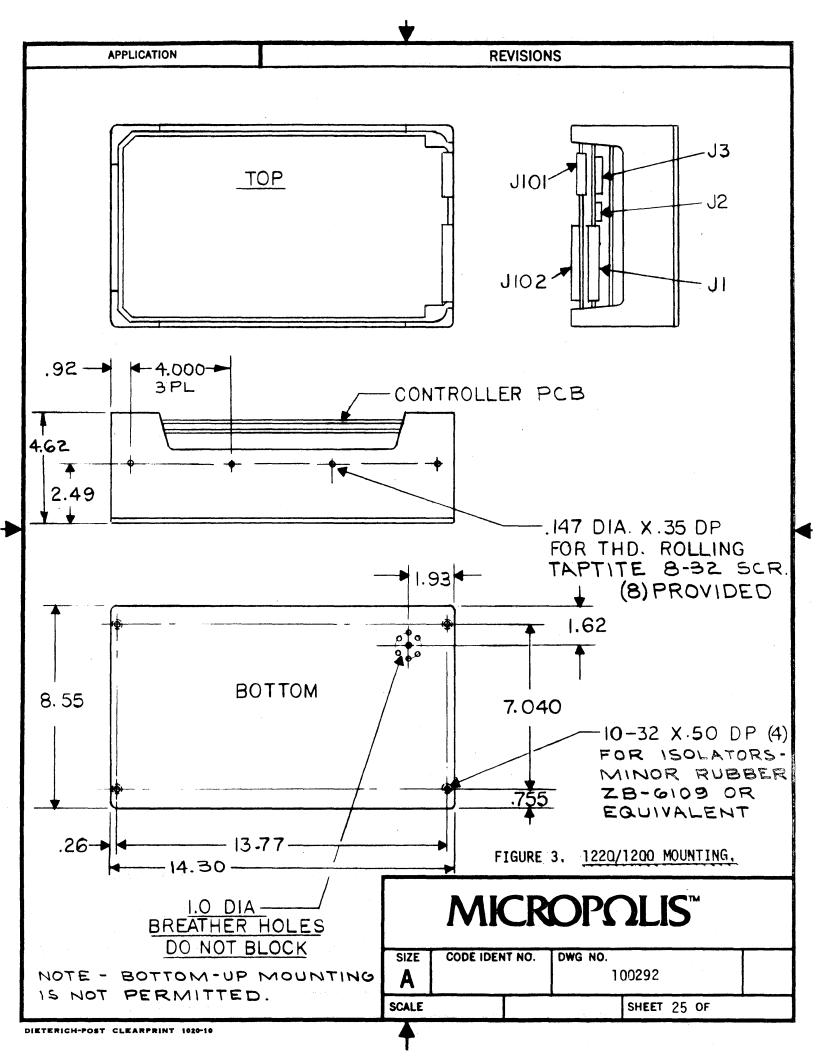

For a sector not found condition, the positioner is restored and a re-seek takes place to the original track. A retry is then made.

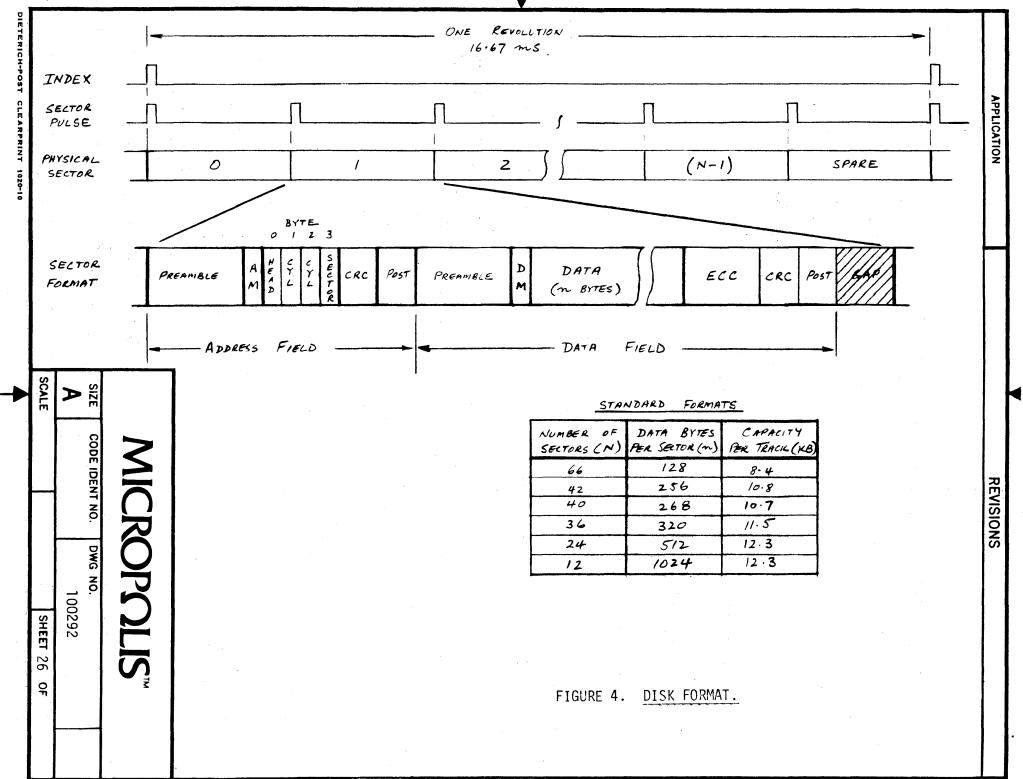

If drive FAULT status is detected during write operations, a FAULT RESET is attempted. If successful, a retry is made.


If all retires are unsuccessful, the command is aborted and an error termination occurs. The cause for termination is contained in the Termination Status byte.

15.0 HOST I/O PROTOCOL

Figures 16a - 16c show the I/O bus protocol that must be performed by the host to successfully communicate with the controller. This may be implemented in any combination of hardware/software.




DIETERICH-POST CLEARPRINT 1020-10

-

SCALE

SHEET 24 OF

REVISIONS

For Initialize Commands:

- a) Parameter Byte 4 specifies the physical address of logical sector 0.
- b) Parameter Byte 5 specifies the number of sectors occurring between consecutive logical sectors.
- c) Parameter Byte 6 selects normal/spared track and specifies the logical sector address to be spared.

EXAMPLE

12 Sector Format, Normal Initialize with Parameter Byte 4 = 0.

PARAMETER			P	HYSI	CAL	S	ECTO	R	Pos	TION	1		
BYTE 5	0	1	2	3	4	5	6	7	8	9	10	11 -	12
0	0	1	Z	3	4	5	6	7	8	9	10	//	SP
1 .	0	6	1	7	2	8	3	9	4	10	5	11	SP
2	0	4	8	1	5	9	2	6	10	3	7	11	SP
3	0	3	6	9	1	4	7	10	2	5	8	//	SP
4	0	5	10	3	8	1	6	//	4	9	2	7	SP
5	0	Z	4	6	8	10	1	3	5	7	9	11	SP
6	0	7	2	9	4	[]	6	1	8	3	10	5	SP
7	0	3	6	9	2	5	8	11	1	4	7	10	SP
. 8	0	4	8	3	7	11	2	6	10	1	5	9	SP
9	0	6	5	IJ	4	10	3	9	2	8	1	7	SP
10	0	11	10	9	8	7	6	5	4	3	2	1	SP

FIGURE 5. INTERLEAVED SECTOR PATTERNS.

· · · · · · · · · · · · · · · · · · ·	MI	CR	OPC	∑LIS ™	
	CODE IDEN	IT NO.	1	0292	
SCALE	<u>,</u>		1	SHEET 27 OF	

APPLICATION		REVISIONS
	PIN	VOLTAGE
	1	+24V SENSE
	2	GND SENSE
	3	-12V SENSE
	4	+5V SENSE
	5	+5V RETURN
	6	-12V RETURN
	7	+5V
	8	-12V
	9	+24V RETURN
	1ø	+24V
·		
!	MATING CONNECTOR: AMP 1-8	37159-0

ĸ

	MIC	ROPΩLIS™	
SIZE	CODE IDENT NO.	DWG NO.	
Α		100292	
SCALE	an a	SHEET 28 OF	÷.,

	PL	1r	AТ	RO I	•
 A r			~.		

REVISIONS

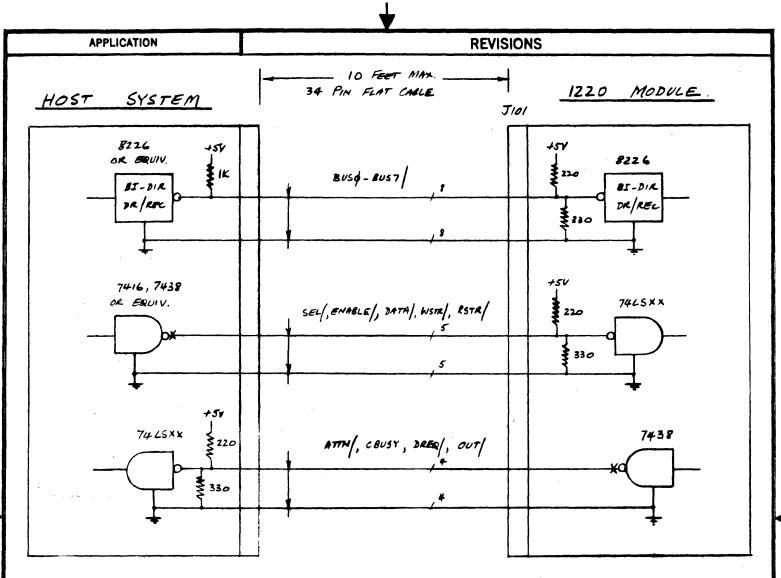
J1/J102 CONNECTOR

SIG	GND	NAME	DESCRIPTION	SOURCE
2	1	(RESERVED)		· _
2 3 5 6 8	4	R/W DATA + R/W DATA -	Bi-directional Read/Write Data	C/D
10	7 9	DS1/ DSØ/	Drive Select (encoded)	C C
12	11	BUSEN/	Bus Strobe	C
14 16	13 15	BA1/ BAØ/	Bus Address (encoded)	C C
18 20	17 19	ENABLE/ (RESERVED)	Bus Enable	C _
22 24	21 23	BUS 7/ BUS 6/	Data Bus	C C
25 26		TV TV	Termination Voltage	C C
28 30 32	27 29 31	BUS 5/ BUS 4/ BUS 3/		C C C
32 34 36	33 35	BUS 2/ BUS 1/	Data Bus	C C
38	37	BUS Ø/		C
40	39	RDY/	Drive Ready Status	D
42	41	FLT/	Fault Status	D
44	43	ILADR/	Illegal Head/Cylinder Status	D D
46 48	45 47	SKCMP/ IDX/	Seek Complete Status Index Pulse	D
48 50	49	SECP/	Sector Pulse	D

Mating Connectors:	J1 3M 3415-0001 J101 3M 3425-0000	
Recommended Cable:	3M 3365/50	

FIGURE 7. DRIVE INTERFACE J1/J102

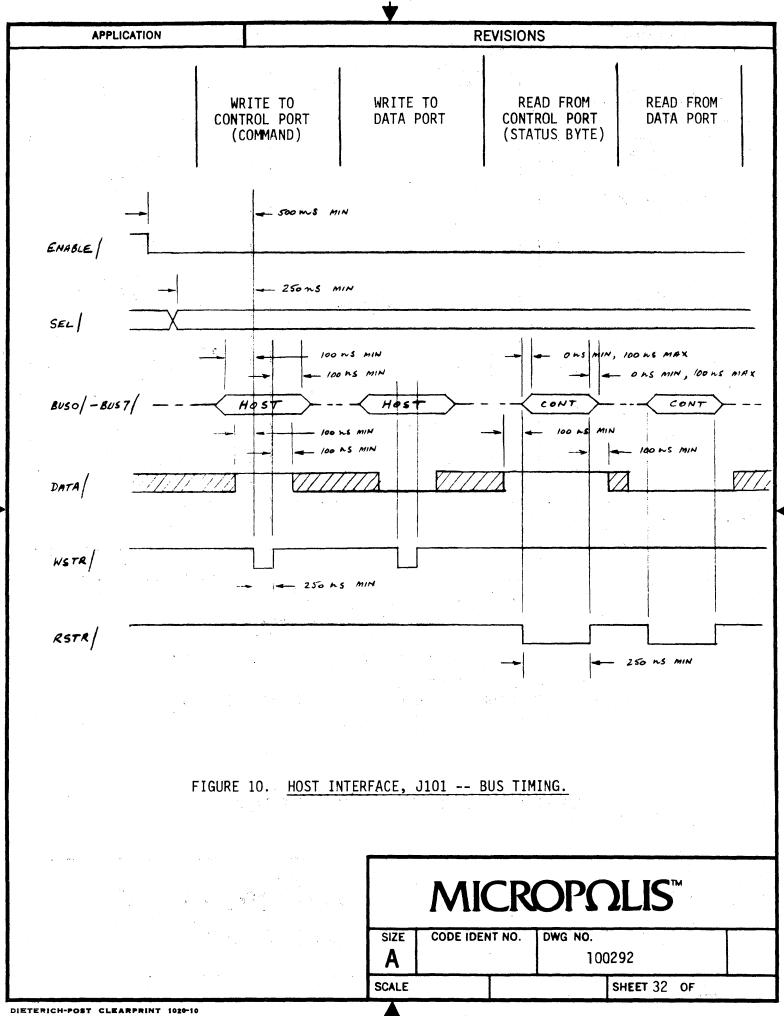
	M	IC	ROP	ΩLIS™
SIZE	CODE IDEN	NO.	DWG NO.	
A			10	0292
SCALE				SHEET 29 OF
-				

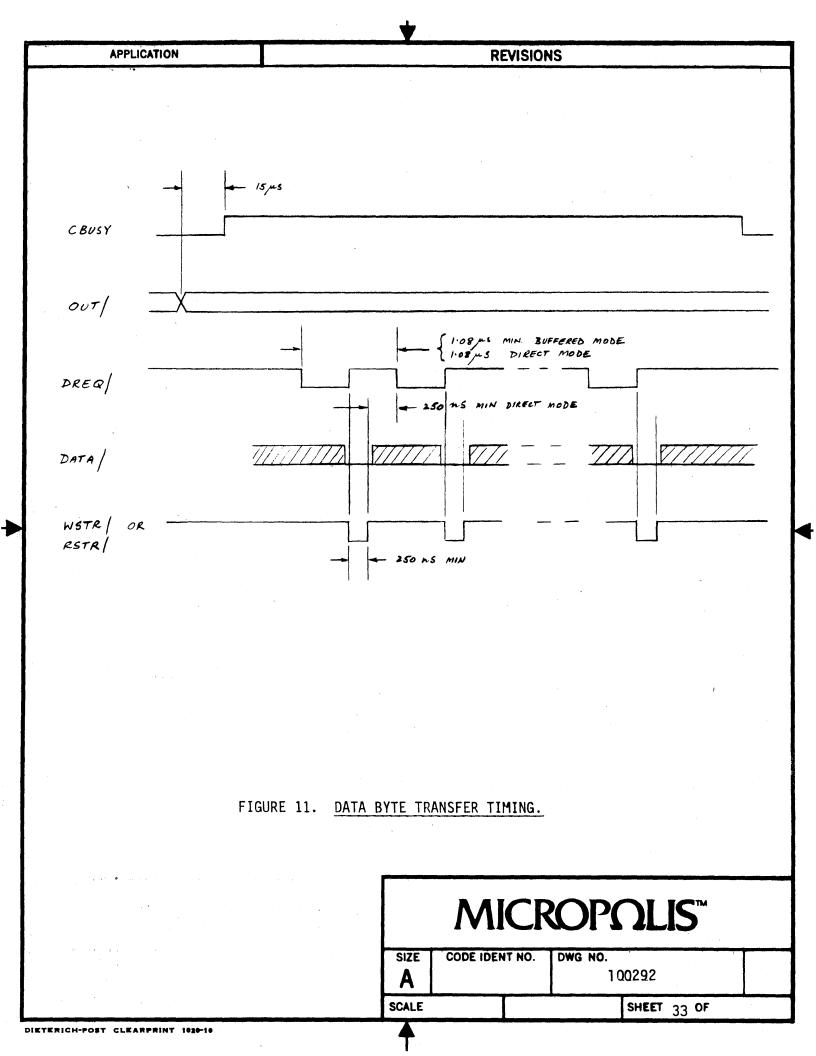

DIETERICH-POST CLEARPRINT 1020-10

· · · · · · · · · · · · · · · · · · ·							
APPLICATION		REVISIONS					
5 A. J.							
J1 CONNEC SIG	01 TOR PIN GND		NAME		DESCRIPTION	· · ·	SOURCE
2	1		BUS7/)	(most significant)		H/C
4	3	·*	BUS6/		(11000 0.9.1.1.000.00)		H/C
6	5		BUS5/		Bi-		H/C
8	7		BUS4/		Directional		H/C
10	9		BUS3/		Data Bus		H/C
12	11		BUS2/		505		H/C
14	13		BUS1/				H/C
16	15		BUSØ/	J	(least significant)		H/C
18	17		ATTN/		Attention		С
20	19		DATA/		Data/Control Select		H
22	21		RSTR/	· •	Read Strobe		Н
24	23		WSTR/		Write Strobe		Н
26	25		ENABLE/		Controller Enable		H
28	27		SEL/		Controller Select		-ª t
30	29		CBUSY		Controller Busy		С
32	31		DREQ/		Data Request	• 	С
34	33		OUT/		Direction of Data Transf	er	С

Mating Connector: 3M 3463-0001 Recommended Cable: 3M 3365/34

FIGURE 8. HOST INTERFACE, J101 -- PINOUTS


MICROPΩLIS™							
SIZE	CODE IDENT NO.	DWG NO.					
Α		100292					
SCALE		SHEET 30 OF					



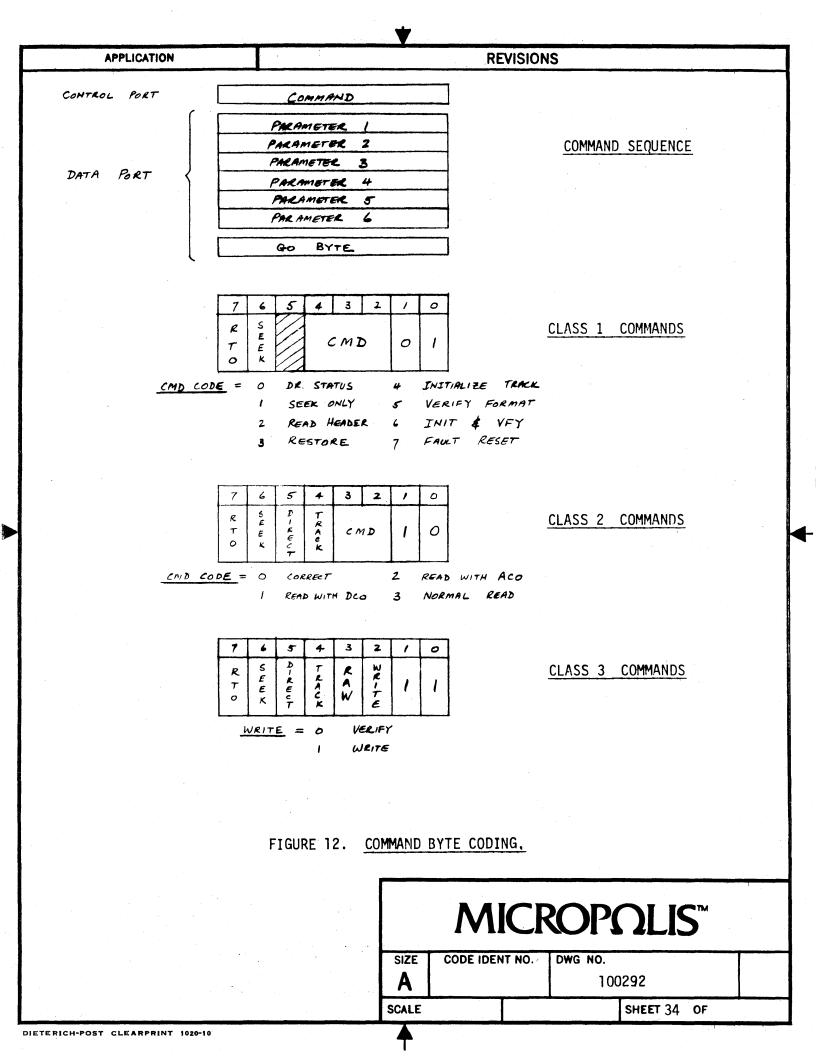
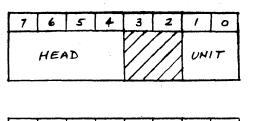
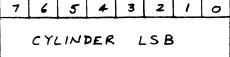
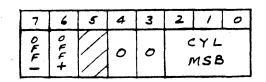

- NOTES: 1. ALL SIGNAL LINES (EXCEPT CBUSY) ARE LOW TRUE AT INTERFACE CONNECTOR AND HIGH TRUE INTO DRIVERS AND OUT OF RECEIVERS.
 - 2. INTERFACE SIGNAL LEVELS ARE LOW = 0-0.4V @25ma HIGH = 25-5.0V @ Oma
 - 3. HOST SHOULD PROVIDE 1K PULLUPS ON BUSØ/-BUS7/ AND 220/330 $_{\rm TERMINATIONS}$ ON ATTN/, CBUSY, DREQ/, OUT/.
 - 4. $220/330\Omega$ TERMINATORS ARE INSTALLED IN LAST 1220 MODULE ONLY.

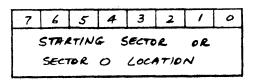
FIGURE 9. HOST INTERFACE, J101 -- ELECTRICAL.

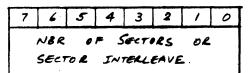
MICROPALIS							
size A	CODE IDENT	NO.	DWG NO. 100	292			
SCALE				SHEET 31 OF			

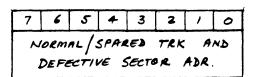

PARAMETER BYTE 1

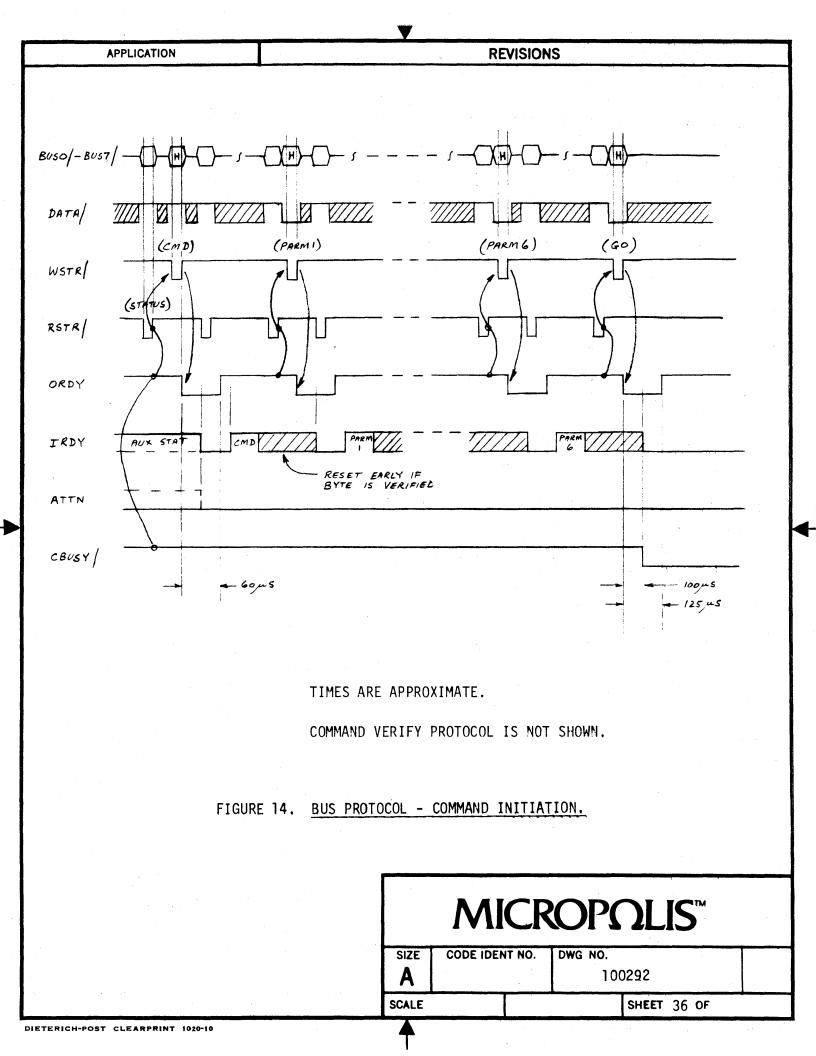

PARAMETER BYTE 2


PARAMETER BYTE 3


PARAMETER BYTE 4


PARAMETER BYTE 5



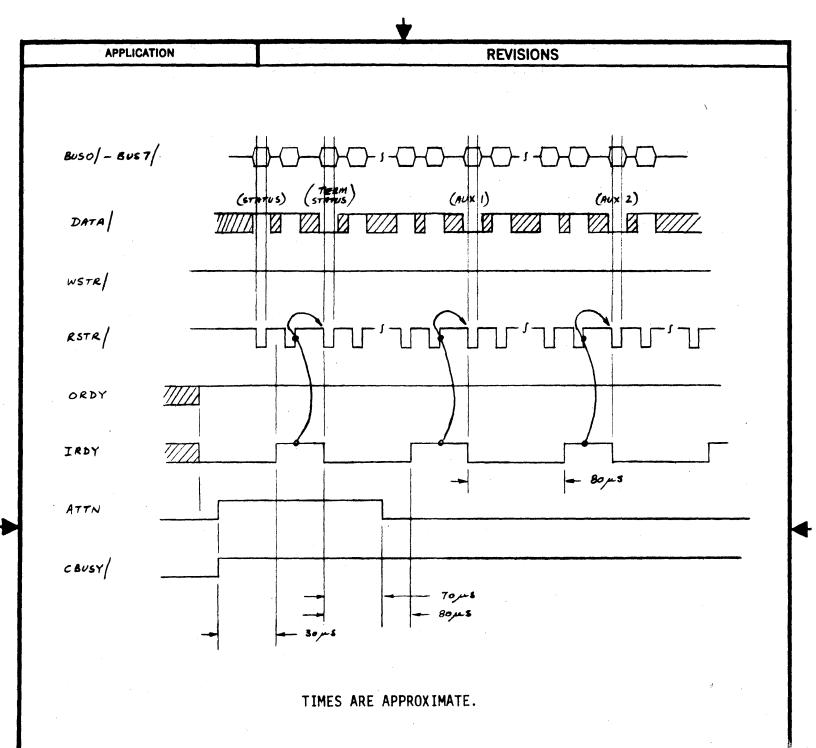
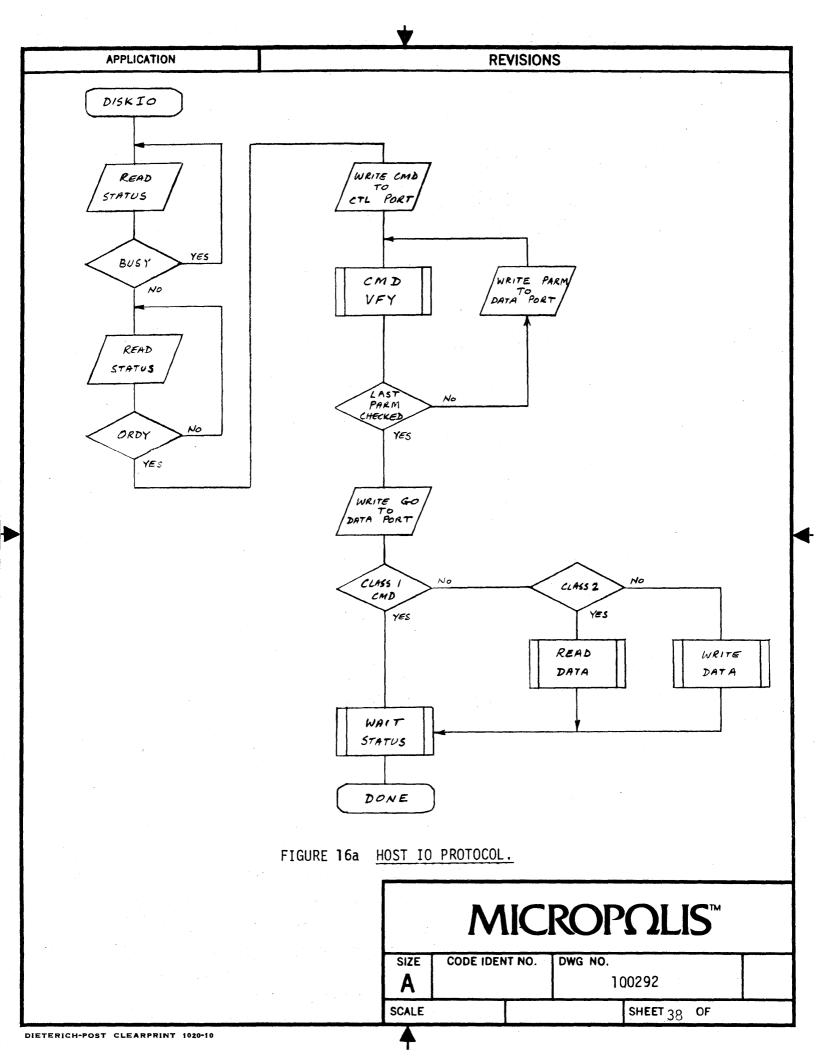
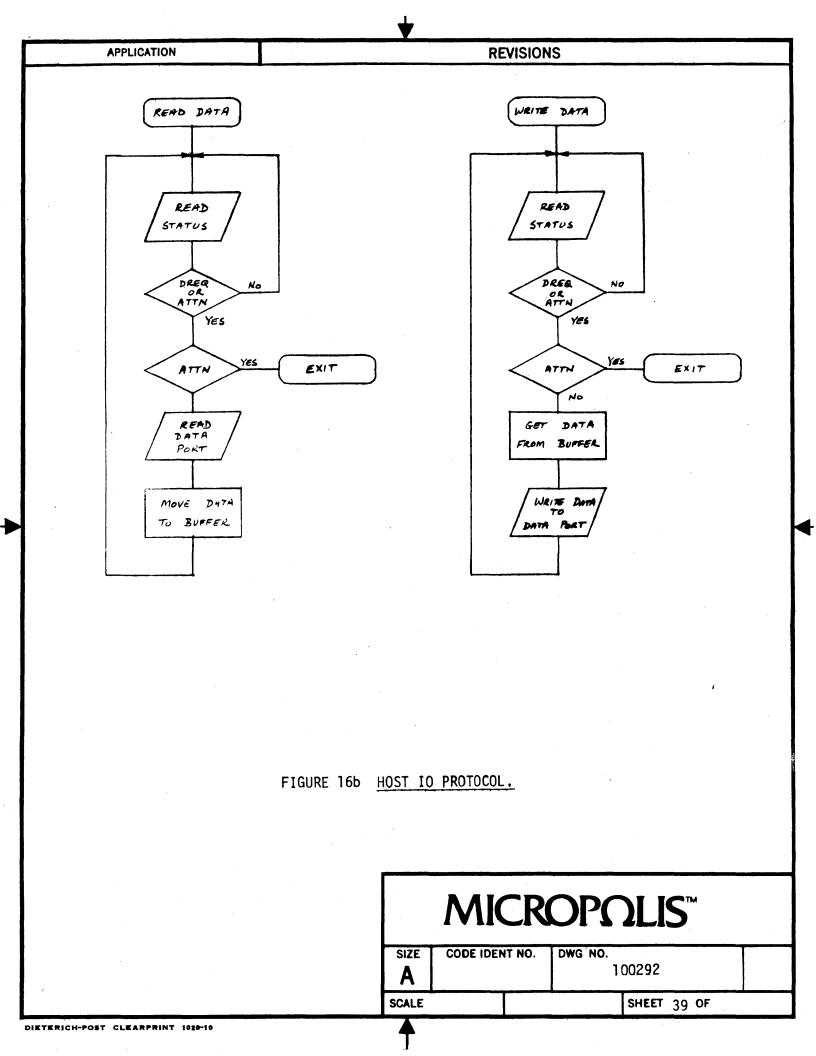


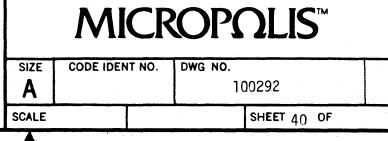
PARAMETER BYTE 6

FIGURE 13. PARAMETER BYTE CODING.

MicropΩlis™							
	CODE IDEN	T NO.	DWG NO. 100292				
SCALE			SHEET 35 OF				

DIETERICH-POST CLEARPRINT 1020-10


FIGURE 15. BUS PROTOCOL - COMMAND TERMINATION.

	M	ICF	ROP	ΩL	IS™	
size A	CODE IDEN	NT NO.	DWG NO.	DWG NO. 100292		
SCALE				SHEET	37 OF	
			<u>' 1997 - 1977 - 1977 - 1977 - 1977 - 1977</u>	- -		

