

DOUBLER

OPERATOR'S Manual

D01 000 REV B

Copyright 1980 Micromation, Inc 1620 Montgomery San Francisco, CA 94111 All rights reserved worldwide.

This manual cannot be reproduced, in whole or in part, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written approval from Micromation, Inc.

If you would like to duplicate, regardless of the means, any portion of the text, write a letter to us requesting permission first. Specify the pages needed and the application of the duplicated text when filing the request. We reserve the right to refuse duplication rights.

Micromation Incorporated makes no representations or warranties with respect to the contents of this document and specifically disclaims any implied warranties of merchantibility or fitness for any particular purpose. Further, Micromation reserves the right to revise this publication and to make changes as necessary in the content hereof without obligation of Micromation to notify any person or organization of such revision or changes.

DOUBLER - 4.80

MICROMATION

DOUBLER FLOPPY DISK CONTROLLER

TABLE OF CONTENTS

Section 1		
1-1 1-2 1-3	Introduction Hardware Interface Bus Interface Disk Interface Special Interface Requirements	1 1 2 2
2-1	Controller Options Necessary Hardware Console Device Connection	3 4 5
3-2 3-3 3-4 3-5	DOUBLER Installation Preparation Baud Rate Selection Jumper Options Board Insertion Cable Installation Booting the Systems	5 5 6 6 6 7
4-3 4-4	Use Of CP/M with the DOUBLER Diskette Handling and File Maintenance Standard CP/M Utilities Micromatin Utilities Other Files The Micromation BIOS	10 10 11 12 15 16
5	CP/M Interversion Compatibility	17
Section 2	: Theory of operation	
$ \begin{array}{r} 6-1\\ 6-2\\ 7\\ 7-1\\ 7-2\\ 7-3\\ 8\\ 8-1\\ 8-2\\ 8-3\\ 8-4\\ 8-5\\ 9\end{array} $	Address bus decoding The address decoder PROM The C2-PROM The scratch pad RAM The read and write control	18 19 20 21 21 21 21 21 21 22 22 23 23 23 24
9-2	-)	25

9-3 Wait states (XRDY or PRDY)	26
9-4 The cyclic redundancy check	26
9-5 Encoding and write precompnsation	27
10 The RS232 serial interface	27
11 Power on Jump	28
12 Power supply	28
Appendix A: The Disk Format	29
Appendix B: C2-PROM listing	31
Appendix C:	
Changing Operating System Characteristics	46
C-1 Changing the System Size	46
C-2 Changing the IOBYTE default and Step Time	48
C-3 BIOS and BOOT Alteration	52

Appendix D: Schematic diagrams

DOUBLER

OPERATOR'S MANUAL

1 INTRODUCTION

The DOUBLER is a high performance floppy disk controller designed for the S-100 bus. Its proper installation in an S-100 system will provide reliable operation at the highest speed and capacity currently possible with floppy disk technology. The controller is designed to interface directly with CP/M*, an operating system which has file management facilities and software utilities comparable to the most advanced computer systems. To ensure full utilization, the user of a DOUBLER system should be acquainted with the options available and its general method of operation.

1-1 HARDWARE INTERFACE

The DOUBLER will provide all the functions required for single or double density floppy diskette operation for S-100 bus computer. It uses the IBM 3740 format for single density recording (26 sectors of 128 bytes each). In double density, the DOUBLER uses a version of the IBM 2D format modified for 52 sectors of 128 bytes to maintain compatability with CP/M. The board uses the system processor to control drive functions. The transfer of disk data is done under program control in order to assure reliable operation. The board requires two thousand (2K) bytes of system address space: 1K is used by the 2708 EPROM and the remainder is used for an on-board RAM scratchpad and memory-mapped I/O locations. All I/O operations are handled through memory locations in the board's address space, so no I/O mapped ports are required.

1-2 BUS INTERFACE

Detailed interface information is available by referring to the schematics included in appendix D. Address decoding for the board is accomplished by a 256 x 4 bipolar PROM. When the proper address appears on the bus, the appropriate strobes are generated. Further decoding of the strobes for input and output functions provides strobes for individual operations. A power-onjump is accomplished by disabling the memory at location Ø after a reset with the phantom line. The on-board EPROM is then enabled and a jump instruction to the bootstrap routine is sent to the processor. The board synchronizes the disk drive with the processor by holding the system ready line low until the disk interface is ready for another byte of data. Circuitry on the board prevents the ready line from remaining low for a period of time longer than that required to transfer eight bytes of data from the disk.

* CP/M is a registered trademark of Digital Research, Inc.

1-3 DISK INTERFACE

Software routines in the EPROM direct the generation of signals necessary to control the disk drives. The output signals are latched in a latch/driver. The input signals are read by the system through an input port. Circuitry is included to cause the drive head to unload if there has been no disk access during eight revolutions of the diskette.

When reading data from the disk drive, the controller derives its data clock from the data on the diskette by generating a signal called PLO. This signal represents a phase lock oscillator and maintains synchronization with the disk data without being sensitive to the shift of individual bits. During write operations, the PLO is derived from the crystal clock and controls the data pulses written to the disk. During write operations in double density, the PLO signal is shifted under special conditions to cause the data written to the diskette to be "pre-compensated." Special circuitry prevents inadvertent writing to the diskette by unintentional memory accesses.

Error checking of all disk operations is done by computation of the sector's CRC. The CRC checking is done in hardware, so the system is capable of reading or writing consecutive sectors.

1-4 SPECIAL INTERFACE REQUIREMENTS

The DOUBLER and Micromation CP/M are currently configured to interface Shugart single-sided or Remex or YE Data double-sided drives. In addition, the controller can be factory configured for PerSci model 277 drives. Call Micromation for other drive types supported. This is especially important if you are thinking of upgrading your system with the DOUBLER.

FOUR-DRIVE SYSTEMS: The DOUBLER and associated CP/M are designed to support from 1 - 4 drives without modification. Each drive must be from the same manufacturer and be of the same type (single- or double-sided), however.

DRIVES REQUIRING ABOVE TRACK 43 CONTROL: Some floppy disk drives require a signal to indicate that the head is positioned above track 43. This signal is available from the controller and is generally connected to the disk interface connector on pin 8. Some drives require this signal on a different line, however, and the user should verify the operation with the particular drive being used.

2 CONTROLLER OPTIONS

The DOUBLER has several options to make it the most powerful controller available. Their functions and factory settings are reviewed below. Note that all the jumpers described below except the WAIT jumper are in the form of traces. To disable the function, the trace must be cut. (A header can be installed to facilitate re-enabling the jumper.)

POJ: Connection of this jumper (located near device 7C) enables the power-on-jump function of the DOUBLER. This feature operates by driving the "phantom" line on pin 67 of the S-100 bus low after a reset. This should disable the output buffers of the low memory. Check with your system technical manual of the memory used in this area to ensure that it supports the "phantom" line. If it does not, the controller's power-on-jump cannot be used, and another method of transferring control of the processor to the bootstrap routine must be used. When enabled, the DOUBLER's power-on-jump circuitry causes the system to jump to the cold bootstrap routine located in PROM on the controller board. The DOUBLER is shipped with the power-on-jump enabled. To disable it, remove the jumper between the pads marked "POJ".

PHANTOM: This jumper (located near device D4) connects the line used to disable RAM while the DOUBLER executes a power-on-jump. It ordinarily is connected to pin 67 of the S-100 bus, but can be jumpered to any other pin which the user's system supports. The reference manuals of the system should be checked to determine whether any other boards use pin 67. A few processor boards use this line to output the refresh signal from Z-80 processors. This should be disabled or disconnected if the DOUBLER's power-on-jump circuitry is utilized.

XRDY & PRDY: The DOUBLER uses the ready line to synchronize the processor with disk data. Different systems, depending on front panel or dynamic memory design, require that peripherals use XRDY and PRDY on the S-100 bus. The DOUBLER can use either line. It is shipped with jumpers (located near device D4) enabled to use both XRDY and PRDY. If either adversely affects the system operation, it may be disconnected by cutting the trace where marked.

WRITE: In order to prevent unintentional writing on a diskette, a write enable jumper (located near device 7A) is installed. This jumper must be in place in order to write on a diskette. If the floppy disk drives that are being used do not support write protect (all Micromation systems do), it is recommended that this jumper be removed until the system has been operated successfully and whenever the user wants to ensure that a diskette is not written upon.

HEAD: Standard Shugart-type drives support a signal named HEAD LOAD on the disk interface cable. This signal is used to load and unload the head of a selected drive, so the drive select buffers may remain enabled. Other drives, such as PerSci, use the drive

select lines to unload the head. With these drives, the drive select lines must be disabled in order to unload the head. The DOUBLER unloads the head of a selected drive if a read or write operation has not occurred during the past eight revolutions of the diskette. Ordinarily this is done by disabling the HEAD LOAD line. If the controller is used with PerSci-type drives, the HEAD jumper (located near device 10A) must be switched to its alternate position. This will disable the drive select buffers to unload the head.

WAIT: To facilitate operations with Z-80 processors, a WAIT jumper (in the form of a header located near device D5) is available. This causes a wait state to be added only when the board is addressed. This is necessary to enable the on-board 2708 EPROM to be accessed and to allow time for the disk control circuitry to be properly set-up. This wait state will not affect overall system speed since during disk operations the speed of the system is controlled by the transfer speed of the disk data. The WAIT jumper must be connected when the DOUBLER is used with any 8080 system or when the DOUBLER is installed in a Z-80 based system operating at 4 MHz. If a 2 MHz Z-80 processor is used, WAIT should not be connected. The DOUBLER is shipped with the WAIT jumper installed. It should be removed only when operating with a 2 MHz Z-80 processor.

2-1 NECESSARY HARDWARE

Micromation DOUBLER floppy disk systems are designed to operate with all standard S-100 systems with 2 to 4 MHz 8080 or Z-80 processors. Since the controller performs a power-on-jump, it can be used in systems with or without a front panel. The operating system requires at least 16K bytes of RAM contiguously addressed in the lowest addresses of memory. The controller occupies 2K bytes of memory generally located at the top of the addressable memory range, from F800 to FFFF. The user should ensure that there are no memory address conflicts with other boards in the system. The DOUBLER may be addressed at locations C000, D000, E000 or F000 by obtaining special PROMs from Micromation.

2-2 CONSOLE DEVICE CONNECTION

A console device is necessary to communicate with the system. The DOUBLER includes a full function UART to communicate with RS-232 type terminals. The software provided with the system is programmed to use the UART on the controller to communciate with the console device. Optional software drivers for the Processor Technology SOL and NorthStar Horizon are also available from Micromation.

NOTE: The DOUBLER derives the clock input for the UART from the CLOCK signal on pin 49 of the S-100 bus. This must have a 2 MHz frequency for the UART to function. Check your system manual to

ensure that pin 49 has a 2 MHz clock on it. If your system does not, install the necessary jumpers to provide the requisite signal.

CONSOLE DEVICE INSTALLATION: Installation of the hardware is straightforward. To initially bring up the system, the minimum amount of hardware should be used. This is just the disk controller, processor board, and, at least, 16K to 32K of memory in the lowest address of RAM. An RS-232 terminal should then be connected to the controller board. The controller has a 10 pin socket header with cable on the right side of the board. The pins are labelled to indicate their RS-232 function. The following table may be used to connect an RS-232 terminal. A ten foot cable with RS-232 connector is available from Micromation. Most RS-232 terminals require only three signals (ground, transmitter data, and receiver data) to be connected. The other signals are for terminals which require handshake operation.

DOUBLER HEADER PIN	SIGNAL <u>NAME</u>	TERMINAL RS-232 PIN		
2	GND	7		
1	ΤxD	3		
3	RTS	20		
5	DSR	4		
9	RxD	2		

- GND The ground signal sets a common reference between the output and input devices.
- TxD Transmitter Data is that data output from the CPU to the terminal.
- RTS Request to Send informs the terminal that the CPU has some data to output. This signal is used only when handshaking is necessary.
- DSR Data Set Ready active indicates that the terminal is ready to receive data. The terminal sends a signal called Data Terminal Ready (DTR) to this pin. The processor checks this bit before it sends the character. This, also, is only necessary with terminals that require handshaking.
- RxD Receiver Data is that data output from the terminal to the processor.

. . 5

5

3 DOUBLER INSTALLATION

3-1 PREPARATION

Before installing the DOUBLER in your system, clean off the S-100 edge connector fingers with alcohol on a cotton swab. This will remove any oxidation or finger prints. Do not use any other cleaning agents (e.g., a solvent, emory cloth, ink eraser, etc.), as these may damage the connector fingers.

3-2 BAUD RATE SELECTION

Any baud rate from 110 to 9600 can be selected with the proper jumper. The baud rate selection jumpers are in the upper right side of the DOUBLER, just to the right of the RS-232 connector. Do not confuse the two. The baud rate jumpers are in the form of a 16-pin connector; the RS-232 connector has 10 pins.

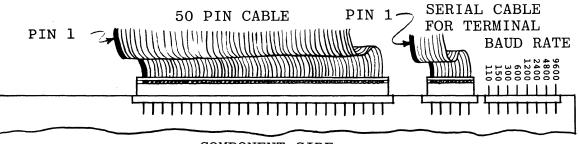
The selectable baud rates are labelled on the board. The DOUBLER is shipped with a jumper setting the rate at 2400. Before installing the board, remove the jumper and place it in the position that corresponds with the setting on your terminal. Most terminals also feature a selectable baud rate. Ensure that the setting on the DOUBLER matches the setting on your terminal. If you are in a quandary as to which setting to choose, 9600 BPS (bits per second) is a popular rate.

3-3 JUMPER OPTIONS

Read the CONTROLLER OPTIONS section above and install or remove the appropriate jumpers for your system.

3-4 BOARD INSERTION

- Turn off power to the computer and floppy drives.
- Install the DOUBLER in a slot in the S-100 mother board. Place the controller as close to the processor card as possible. Ensure that the card is pressed down into the edge connector all the way. Note that S-100 fingers are offset from the side preventing mis-orientation of the DOUBLER in the card cage.


3-5 CABLE INSTALLATION

- Connect the 50 conductor ribbon cable from the floppy disk drives to the 50-pin connector on the DOUBLER. Pin 1, indicated by a red stripe on the edge of the cable, must be connected to header pin 1 on the left side (as viewed from the component side) of the board.
- Connect the RS-232 terminal to the controller. Again, pin 1 of

the lØ-pin cable attaches to the left side of the DOUBLER connector.

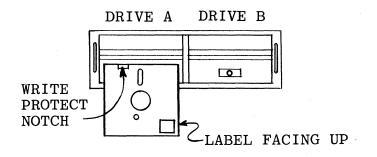
NOTE: Pin 1 of this cable is typically indicated by a red stripe. If no such stripe is present on the cable, an arrow or indentation molded into the plastic cable connector also designates pin 1.

The figure below illustrates the top of the DOUBLER for use with cable installation and baud select

COMPONENT SIDE

DOUBLER CABLES AND BAUD SELECT

3-6 BOOTING THE SYSTEM


Before loading the operating system, read the CP/M Licensing Agreement and mail the registration card to Digital Research. Only registered owners are entitled to updates.

Of course, you should become familiar with the CP/M operating system as well. Begin with the booklet An Introduction to CP/M Features and Facilities. This should be followed with CP/M 2.2 User's Guide for CP/M 1.4 Owners for a discussion of the updates from the previous version included in the new release. The remainder of the documents shipped with the O/S (operating system) can be read when the need arises.

NOTE: CP/M version 2.2 is being shipped at the time of this writing. As new revisions are distributed by Digital Research, Micromation makes the necessary modifications and ships them with the units. To accommodate this flux, 2.x will be used as a descriptor in the examples that follow.

To boot the system,

- Turn on the power to the floppy drives and the terminal.
- Turn on the power to the computer and press the reset button.
- Ensure that the distribution diskette from Micromation is write protected. For systems with drives that check the write protect notch of the diskette, leave the notch **exposed**. (The figure below shows the location of the notch.) If your drives do not support this feature, remove the WRITE GATE jumper described above from the DOUBLER.
- Insert the distribution disk in drive A with the label facing up (see the illustration below) and close the door. In Micromation systems, drive A is the bottom drive where the drives are mounted vertically; the left drive in our systems with horizontal mounting.

DISKETTE ORIENTATION (Horizonal Mounting)

- If the computer has a RUN/STOP switch, hit RUN. If the DOUBLER's power-on-jump is not being utilized, use a front panel or monitor to cause the system to execute the program at location F800 (or at the base address of the controller if it is located at a different location).
- Drive A should home (go to track Ø), step twice, and within two or three seconds display

62k CP/M - Micromation ver 2.x A>

where the first line is the sign-on message and "A>" is the CP/M prompt. "A" indicates the current drive.

- To view the contents of the disk, type "DIR". This is the CP/M command to display the directory of the files on the diskette. The system responds with the names of the files.

8

This is the sequence for booting the system. It is referred to as a cold boot and need only be performed when the system is first turned on. Subsequently, a control-C can be used to load the system when necessary. This is called a warm boot and is only mandatory when diskettes are changed. In the event of a program crash, a cold boot may be necessary to get out of the program and back to the operating system.

The following chapeter discusses the utilities (called transient commands in the CP/M documents) provided on the distribution diskette and provides some exercises to demonstrate their use. We strongly recommend that the operator(s) perform(s) these exercises to get hands-on experience in the use of the computer system.

9

4 USE OF CP/M WITH THE DOUBLER

4-1 DISKETTE HANDLING AND FILE MAINTENANCE

There are some precautions that should be observed to ensure that your files aren't inadvertently lost due to operator error or the slings and arrows of outrageous fortune.

- 1) Handle the diskettes with care. Keep your fingers away from the exposed areas on both sides of the disk. Store diskettes in the paper sleeve whenever they are not in the computer (dust accumulates, otherwise, and shortens the life of the read/write head on the floppy drive). Since diskettes are a magnetic media, be sure to keep them away from magnets. You should also keep the diskette out of direct sunlight and away from extreme heat. Never remove the mylar disk from its protective paper enclosure nor abuse the disk by folding or bending it. When possible, write the label before applying it to the diskette. Subsequently, use only felt-tip pens for additional notes.
- 2) ALWAYS make a back-up of your data files. In many cases great time and effort is spent creating these files. It is much easier to make back-up copies on an on-going basis than to re-enter the whole thing over again. Make a back-up of any files changed every time they're changed. (After the program has terminated and the O/S prompt has re-appeared, of course.)
- 3) NEVER power down the disk drives during program execution nor with a disk in a drive and the door closed. Clear the drives of all diskettes before turning off the power to the drives (opening the drive door will do). Powering down during program execution will, at least, render the data files suspect or, worse, trash a couple of sectors rendering the whole file useless. Turning off power with a diskette in the drive (but not during program execution) may also trash a sector or two as the head responds to powering down.
- 4) Write protect your important diskettes. The little notch on the left side of the leading edge (see the figure above) causes write protect when exposed. Cover it with tape (or the silver squares frequently provided with this type of diskette) and the diskette can be written on. The CP/M system disk provided with the DOUBLER has the notch exposed so the disk cannot be written on or formatted (erased).

If these precautions are observed, very few problems will arise and those that do can be easily repaired with the back-up disks.

4-2 STANDARD CP/M UTILITIES

These two utilities will be used frequently. Diskettes used for program execution (and development) should contain these programs for diskette monitoring (with STAT) and file back-up (with PIP).

STAT.COM: This utility is used primarily to indicate the status of the disk space. It can indicate, for instance, the amount of space remaining for file storage, how much space a certain file takes up, how much space a group of files takes up, etc. Slightly different invocations display or change the current logical assignments of the peripheral devices.

PIP.COM: PIP is short for Peripheral Interchange Program. It is most frequently used to transfer files from one disk to another in multi-drive systems. It is also used to transfer files between devices (from disk to list device, from paper tape reader to disk, etc.).

The next three programs may be useful, depending upon the application of the your system.

ED.COM: This is the CP/M text editor for creating and altering files. Although ED can be used for word processing, it is not recommended. There are several word processing programs available that are much better suited to this application. Primarily, it is useful for creating and editing program files.

SUBMIT.COM: A limited form of batch processing is available with SUBMIT. This is most useful when a sequence of transient commands is frequently performed. A source file containing these commands is created with the editor for subsequent execution(s). There is no limit to the number of times this file is SUBMITEd.

XSUB.COM: XSUB enhances SUBMIT by allowing line input to programs in addition to CCP input. Refer to the <u>CP/M</u> 2.2 <u>User's Guide for CP/M</u> 1.4 <u>Owners</u> for a description of XSUB.

The following utilities are used to generate a new system and to transfer the system from one disk to another.

MOVCPM.COM: This utility is used to move the CP/M system from one location in memory to another. CP/M should be loaded into the uppermost part of memory allowed by the computer system unless a special application requires differently.

SYSGEN.COM: Primarily, this utility is useful for transferring the system image between different density disks (single to double, double to single). Additionally, SYSGEN is used when a new system image is created and recorded. An illustration of its primary use is given in **DISKETTE PREPARATION** below.

The next four utilities are pertinent to assembly language programming. Many end users will never need these programs.

ASM.COM: This is the CP/M 8080 assembler. A program of commands from the 8080 instruction set can be assembled rendering two files, x.HEX and x.PRN, where 'x' is name of the program file. The .PRN file contains the original program listing plus the machine code. The .HEX file contains only the 8080 machine code in the Intel "hex" format.

LOAD.COM: The LOAD command converts a .HEX file created by ASM to a COM file (which indicates that it contains machine executable code). Once an assembly language program has been LOADed, it can be invoked by merely typing the file name when the CP/M prompt is displayed on the console. That is, the program has the status of a CP/M utility.

DUMP.COM: The DUMP program displays the contents of the designated file on the console device in hexadecimal form.

DDT.COM: DDT, which stands for Dynamic Debugging Tool, allows interactive testing and debugging of programs. An assembly language program can be tested, altered, patched, executed and/or repaired "on the fly" under DDT.

4-3 MICROMATION UTILITIES

The utilities described below were developed by Micromation to reconcile CP/M with Micromation equipment and to make computer operation easier. Note that the following describes the utilities provided with the standard Micromation CP/M system.

FORMAT.COM: Before using them to store data, diskettes must be formatted. This procedure writes a code on the diskette identifying each track (77 concentric circles around the diskette) and sector (26 or 52, depending upon the density, sections within each track). Thus, each location on the diskette is uniquely identified and can be individually accessed. There are two formats for standard 8" diskettes: single and double density. The diskette shipped with the DOUBLER is recorded in single density and contains about 250 kilobytes (250K) of read/write space. Diskettes with a double density format have about 500K bytes of file space. To format a diskette in drive B in double density enter:

FORMAT BD@

Where FORMAT indicates the program, B the drive containing the diskette and D the density.

To format a diskette in drive B in single density enter:

FORMAT BS@

Where S indicates single density.

The diskette in drive A can be formatted. However this will erase the diskette. Do not attempt to boot from the diskette in drive A after it has been formatted.

IMPORTANT: The format program should be used with care. When old diskettes that have information stored on them are formatted, all data is erased as part of the process. If a used diskette requires formatting (e.g., to make it double density from single density) be aware of this fact. There is no way to recover files erased by FORMAT.

SYSTFORM.COM: This program is like the format utility but formats the system tracks on the diskette only.

VERIFY.COM: This utility calculates cyclic redundancy check characters from all sectors and compares them to the CRCCs written on the diskette in the drive queried. If an error exists its location will be displayed, if not the prompt is returned.

DENSITY.COM: A program to determine and display the density of the diskette in the drive queried.

SDIR.COM: This utility displays an alphabetized disk directory when called.

COPY.COM: Often, it is easier or necessary to copy an entire diskette rather than transfer files one at a time. The COPY utility is provided for this purpose. Note that COPY will only transfer data between like-density formatted diskettes (single to single or double to double).

There are three forms of COPY, each for a different task.

COPY A (copy All system and data tracks) COPY S (copy just the System area, tracks Ø,1) COPY D (copy just the Data area, tracks 2 - 76) Prompts are displayed by the program requesting the source disk (the master from which the copy is made) and the destination disk. Use of COPY is illustrated in DISTRI-BUTION DISKETTE DUPLICATION below.

FILES.COM: The directory entries for a disk and the blocks used are indicated by this transient. The first three 8digit groups of numbers are the file name and type; the fourth indicates the extent in the first two digits and the number of records used in the extent (in hex) in the last two digits (the middle 4 digits have no significance); and the remainder indicate the specific blocks used. Note that this utility can be invoked on the current disk only.

CPM62.COM: This is not a utility. It is a duplicate of the Micromation CP/M operating system set up for operation in 62K of RAM. It is provided as a convenience in new system generation. Refer to Appendix C for an example of its use.

RAMTEST.COM: This utility was written to check the RAM in Micromation systems. It may or may not run in non-Micromation systems. Refer to the listing (RAMTEST.ASM) on the distribution diskette to see if it has utility.

4-4 OTHER FILES

DISKDEF.LIB: DISKDEF is used with the Digital Research Macro assembler. It has no utility beyond its use with this program. Refer to the CP/M 2.2 Alteration Guide.

DEBLOCK.LIB: This file is supplied by Digital Research and conains sector blocking and deblocking algorithms. Refer to the $\underline{CP/M}$ Alteration Guide for a discussion of this feature.

CBIOS.LIB, BIOS.LIB, BOOT.LIB: These files are distributed by Digital Research as examples of the BIOS and BOOT programs. They are for reference only. To alter the system, use MM2BIOS.ASM and M2BOOT.ASM described below.

LIST.SUB, STEP.SUB: These files are used with the CP/M SUBMIT utility to change the IOBYTE and step time respectively. See Appendix C-2 for a description of their use.

The remainder of the files on the distribution diskette, with file type ASM, are the source files of the Micromation generated utilities. Many users will find these files immaterial for day to day operation. However, system builders may find these very useful, especially when developing dedicated application packages. Most of the ASM files have corresponding COM files, some don't. Those that don't are discussed below.

C2PROM.ASM: This file contains the code of the DOUBLER PROM at board location D4. It is provided for reference. As such it can be used to develop special application packages that require knowledge of and/or access to DOUBLER routines and their locations.

MM2BIOS.ASM: MM2BIOS is the source file of the BIOS portion of CP/M. Micromation has written this section to allow system alteration with a minimum of fuss. Refer to THE MICROMATION BIOS below for a description of the default characteristics.

M2BOOT.ASM: M2BOOT, like the custom BIOS, is another part of the CP/M O/S. Its role is to load the system. If you change the size parameter in MM2BIOS, a corresponding change must be made in M2BOOT. The two files must then be re-assembled and inserted in the system.

4-5 THE MICROMATION BIOS

The BIOS (Basic Input/Output System) portion of CP/M is custom tailored to accommodate the Micromation hardware. In addition, several parts are conditionally assembled to suit the user's application. "Conditionally assembled" means that portions of the program are not included during assembly unless a flag is set true. To reset them to alter the system configuration, see New System Generation below.

The system characteristics are established in BIOS and are as follows. (Your system may have slightly different characteristics if it was configured for a non-Micromation hardware environment.)

- a system size of 62K
- the serial port on the DOUBLER for console (CON:) device with an appropriate driver
- 3 parallel ports on the Multi I/O board assigned to the line printer (LPT:) option for LST: with a driver routine for a Centronics type dot matrix printer
- the serial port on the Multi I/O Board assigned to the TTY: option for LST: with a driver routine for a serial interface printer

The following table summarizes the relationship between logical and physical device assignments as established in BIOS at cold boot.

Although RDR: and PUN: are assigned to TTY:, they are not supported in the BIOS. Attempts to output to PUN: or input from RDR: will not work.

The list device (LST:) is assigned to the line printer (LPT:) option. The BIOS currently contains a driver for a Centronics 703/779 printer to correspond with this assignment. This is a parallel input dot matrix printer connected through the parallel ports on the I/O board.

The next section has twofold significance. First, it presents the procedures for backing up the distribution diskette, for making a double master from the distribution diskette, and, finally, for making work disks for use in the day to day operation of your computer system. Second and equally as important, execution of these procedures provides hands-on experience in use of the utilities for the operator.

5 CP/M INTER-VERSION COMPATIBILITY

The operating system shipped with the DOUBLER is the latest version of the popular CP/M O/S from Digital Research. (As of this writing, the version number is 2.2. This is subject to change as new revisions are distributed.) In the single density recording format, there's complete compatibility between this and previous versions. In double density recording, there is an important difference. This difference will destroy the data stored in a file when transferring it from a diskette recorded under an earlier version to one recorded under version 2.2 (or later) or vice versa. Use the following procedure to move files from diskettes recorded in double density by previous versions to double density disks created under the new 2.2 system.

- 1) Put the old system master in drive A. Use your old FORMAT program to initialize enough disks in drive B to accommodate the files presently on your double density disks.
- 2) Using the old version of PIP, transfer the program and data files from the double density disks to the newly created single density disks. Do not transfer any utilities (also referred to as transient commands); the ones provided with your new system diskette will replace those from the previous version.
- 3) Place a single or double density CP/M version 2.2 (or later) disk in drive A and your single density disk created above in drive B. Use PIP from the new version to transfer the program and data files from B to A. Do not use the version of PIP from the earlier revision of CP/M.

Transfer all the files from your double density disks created under a previous CP/M version to the new one in this manner.

Do not use the Micromation COPY utility to make 2.2 duplicates of your 1.4 or earlier double density disks. This will render the files on the 2.2 disk unreadable.

Do not use any utilities from previous versions. Use only the ones provided on the distribution diskette.

SECTION 2

THEORY OF OPERATION

6 INTRODUCTION

The DOUBLER is a byte oriented floppy disk controller. It has an on board PROM that allows for bootstrap start, and holds primitives that control hardware systems on the board. Features include single and double density disk formats with automatic selection of the format on the disk, an RS-232 serial port with baud rate select, and a variety of control configurations for the S-100 bus.

The disk controller transfers data under program control on a sector by sector basis. In CP/M compatible single density format there are 26 sectors per track with 128 bytes per sector transfered at a data bit rate of 250KHz (IBM 3740 standard). In the double density format there are 52 sectors per track with 128 bytes per sector transfered at a data bit rate of 500KHz.

The intent of this theory of operation is to describe the hardware systems on the DOUBLER. Since there are many references to the schematic diagrams, component parts are referenced by the page number of the schematic followed by the part number. The part numbers on the schematic also refer to the column and row that the package occupies on the board. After the part number, the part type is listed in parentheses. For instance 2IClØC (74LS374) refers to page 2 of the schematic, IC 10C (which is the IC in column 10 at row C), of the type 74LS374.

6-1 DISK SYSTEM OPERATION

When the disk system is to be accessed the intent of the operator is translated by CP/M into a sequence of events. The drive to be used, selection of read or write, and the file to be found, are provided, indirectly, by the operators actions. These parameters are then processed by the operating system to access the appropriate portion of the disk.

Disk I/O is performed by a sequence of calls to the disk access subroutines, and by hardware that performs the ongoing processes of encoding, decoding, and phase lock to the serial data stream. When a request for disk access is made, the operating system readies the file to be written to the disk or allocates memory space to accept the file read from the disk. The operating system must then select the drive to be accessed, load the read/write head and move it to the proper track on the disk, phase lock the controller to the serial data stream on the disk, locate the sector to be operated on, perform a read or write record operation, and determine if the transfer is completed. If the transfer is not complete the next record is selected, located, and written to or read from, until the transfer is completed.

The routines used to control the disk drive, and interface to the operating system are in BIOS and the C2-PROM (Appendix B is a listing of the C2-PROM). The routines in the C2-PROM are an extension of BIOS. They are closest to the DOUBLER hardware, while BIOS holds the more executive functions. A listing of the MICROMATION custom BIOS and C2-PROM can be found in the distribution diskette, and information on the standard model BIOS is included in the CP/M reference manuals.

The parameters used to access the sector on the disk are held in the scratch pad RAM. For example, TRACK, SECTOR, DMA (the address of a memory buffer used for the source or destination of data during transfers), and DENBYTE are registers in the RAM that pertain directly to sector read/write operations. A complete list of these registers is included in the C2-PROM listing.

When a disk is accessed for the first time after being inserted in the drive, it is logged and tested for density. Testing for density is executed by trying to read the SYNC FIELD HEADER on track 2 in single density. After 30 unsuccessful tries at single density, double density is tested. DENBYTE, in the scratch pad RAM, is set according to test results.

6-2 DISK READ/WRITE

During disk read and write operations the operating system loads the head, steps to the selected track, and tests DENBYTE for the density of the disk. A call to the SYNC subroutine then finds the sync field header (see Appendix A if unfamiliar with the sector format) in the ID FIELD and establishes the synchronization of PLO and the byte sync counter with the moving disk data. Once in sync, the operating system looks for the sector ID MARK. When it is found, the track intended is checked against the track read. If it is the correct track, a sector by sector search is executed until the selected sector is found. CRC is checked during these operations to ensure that the disk has been read correctly.

After the proper sector has been found, read or write of the DATA FIELD begins. When a read operation has been requested, the operating system looks for the DATA MARK, then reads the 128 bytes of data in the sector, and finally checks the CRC to confirm the accuracy of the data. When a write operation has been requested, the operating system writes a new SYNC FIELD HEADER and a DATA MARK in the data field, then writes 128 bytes of data followed by the CRC.

Read or write operations are a byte by byte transfer of a sector of data to or from the system memory area marked by the disk memory address, DMA, (not to be confused with direct memory access). After a sector has been read, the operating system takes the information in the memory area marked by DMA and uses it to build the file being read. The operating system then provides parameters on a new sector to be transfered, and transfers it, or ends the read operation. After a sector has been written, another sector of data is placed in the memory area marked by DMA, and transfered, or the write operation is ended.

7 THE S-100 BUS INTERFACE

The DOUBLER's S-100 bus interface has three sections; the control bus, the bidirectional data bus (D0-D7), and the address bus (A0-A15).

7-1 THE CONTROL BUS

The **control bus** is used to control data transfers between the processor and memory or peripherals. The DOUBLER uses the following signals:

PDBIN is used by the processor to indicate that a valid address is on the address bus and that it is reading data on data bus lines $D\emptyset-D7$ from memory or an I/O port.

/PWR is used by the processor to indicate that a valid address is on the address bus and that it is outputting data on data bus lines DØ-D7 to memory or an I/O port.

SINP and SOUT are used by the processor to indicate input or output, respectively, to an I/O port. They are similar to the PDBIN and /PWR signals and are active when these signals are in coincidence with /IOREQ. These lines disable the DOUBLER when active.

SINTA indicates that the processor is in an interrupt mode. The DOUBLER is disabled when this signal is active.

/PHANTOM disables the RAM that occupies the same memory position as the DOUBLER. It is active whenever the DOUBLER is enabled.

PSYNC is a synchronizing signal used with a 4MHz CPU clock to synchronize wait state requests to the processor machine cycles.

/PRST (reset) is used on the DOUBLER board to generate a power on jump which accesses the jump to BOOT instruction in the resident firmware.

XRDY and **PRDY** are wait state inputs to the processor. One of these control lines (user option) is used by the DOUBLER floppy disk interface to make the CPU wait, on a byte by byte basis, during data transfers to and from the disk.

7-2 THE DATA BUS

The **bidirectional data bus** handles data transfers between the DOUBLER and the processor. It is isolated from the on board data bus by a bidirectional tri-state buffer, consisting of lIClØD (74LS244) and lICl1D (8304).

This buffer writes data to the DOUBLER board whenever /PWR is active, and reads data to the bus when PDBIN is active and the board is enabled by the address decoder. When the DOUBLER is not enabled the data bus buffers are in a high impedance state.

7-3 THE ADDRESS BUS

The **address bus** is used to enable and select registers that comunicate with the disk system on the DOUBLER board, and to access the UART, scratch pad RAM, and the C2-PROM.

8 ADDRESS BUS DECODING

Decoding of the high order address bits takes place in the address decoder PROM lIC9C (74S287). The low order bits are connected directly to the devices addressed or to the read/write control.

8-1 THE ADDRESS DECODER PROM

The address decoder generates the /RAM, I/O, PROM, and BD signals from address lines A9-A15. Decoding of these lines takes place in the bipolar PROM, IIC9C (74S287). Note that address inputs to IIC9C do not correspond to address bus lines. The A3 input to IIC9C is set by the NOR of control bus signals SINP, SOUT, and SINTA. If any of these lines are active the decoder PROM output lines, and the board, are not enabled. BD is active whenever /RAM, I/O, or PROM are active. BD is used as the board enable, and inverted, it drives the /PHANTOM line.

The DOUBLER occupies the memory space from F800H to FFFFH. This area is divided into three sections as follows.

C2-PROM			F8ØØH	-	FBFFH
Scratch p	ad R	AM	FCØØH		FDFFH
I/O			FEØØH	-	FFFFH

8-2 THE C2-PROM

The C2-PROM, 6IC9D (2708), is enabled by the PDBIN and PROM enable signals, accessed by address lines A0-A9, and based at address F800H. It holds the bootstrap loader and routines that control the DOUBLER. Refer to the C2PROM.ASM listing in Appendix B.

8-3 THE SCRATCH PAD RAM

The 64 byte scratch pad RAM, 6IC9A (4036), is accessed by address lines A0-A5. It is selected by the /RAM signal from the address decoder. RAM output enable and R/W are controlled by the /WR signal. This RAM is assigned the dedicated registers and the stack used by the routines in C2-PROM and BIOS.

8-4 READ AND WRITE CONTROL

The read/write control generates strobes that operate the read, write, control, and status latches on the DOUBLER's internal data bus. Its inputs are address lines $A\emptyset$ -A2, /WR, /PDBIN, and I/O. This circuit consists of two, eight wide data distributors, IIC7D and IIC6D (74LS138). Both of these are enabled by the I/O signal from the address decoder PROM. IIC6D and IIC7D are also enabled by /PDBIN and /WR, respectively, /PDBIN enables the read control; /WR enables the write control. Low active strobes generated by the read/write control memory map are listed in firmware as follows.

ADDRESS	<u>/WR</u>	/PDBIN
FEØØH	WRCONT	RDSTAT
FEØlH	WRCLK	
FEØ2H	WRUART	RDUART
FEØ4H	WRMRKCRC	RDMRKRC
FEØ5H	WRMRK	RDMARK
FEØ 6H	WRDATA	RDDATA
FEØ7H	WRCRC	SYNCPORT
FEØAH		UARTSTAT

These strobes and their corresponding latches perform the following functions.

WRCONT loads the drive control latch, 5IClØA (74S374), which operates the drive control lines.

RDSTAT reads the drive status latch, 5IC11A (74LS224), which contains the drive status lines.

WRCLK writes the clock pattern to the sync mark latch, 2ICl2D (74LS273). This value is then compared with the clock pattern from the SYNC FIELD HEADER to synchronize with the moving disk data.

WRUART and RDUART write and read to the UART, 6IC13D (8251), used for the RS-232 serial interface.

WRMRK is a strobe that writes an ID or a DATA MARK to the disk (depending on the status of the MRKA signal).

RDMRK is a strobe that holds the processor until a MARK is read (or the timeout triggers) in order to synchronize the byte sync counter. It is also used to clear the head load counter.

WRMRKCRC and RDMRKCRC are strobes that perform the same functions as WRMRK and RDMRK, respectively, and also preset the cyclic redundancy check circuit.

WRDATA and RDDATA these strobes activate the DISKWR and /DISK READ signals respectively. Addressing these ports transfers data to or from the disk on a byte by byte basis.

WRCRC is a strobe used to gate the cyclic redundancy check character into the serial data stream.

SYNCPORT is a strobe used in the synchronization of the byte sync counter.

UARTSTAT accesses the control and status latches in the UART.

Address line A2 is used to enable the DISKWR and /DISKREAD signals. All strobes listed above in the address range of FEO4H - FEO7H also transfer data to or from the disk when active.

8-5 THE UART

The UART, 6IC13D (8251), is based at FEØ2H, and selected by the /RDUART and /WRUART signals from the READ/WRITE CONTROL. Address line A3 is connected to the UART C/D input, which accesses its control and status latch, based at FEØAH.

9 DISK DRIVE INTERFACE

The operating system controls and monitors the drives via the drive control latch (WRCONT), which operates the drive control input lines, and the drive status latch (RDSTAT), which contains the drive status outputs. These latches and their pin connection to the disk drive list as follows:

BIT	PIN WRCONT	PIN RDSTAT
DØ D1 D2	36 /STEP 34 /DIR SD/DD	22 /RDY 10 /SEEK DONE 18 /HEAD
D3	32 /DRIVE D	20 /INDEX
D4	30 /DRIVE C	24 /SECTOR
D 5	28 /DRIVE B	44 /WRITE PRT
D6 D7	26 /DRIVE A 12 /RESTORE	42 /TRACK ØØ CRCSTAT

CRCSTAT and SD/DD are listed in the latches but do not connect to the drives. The other signal pin connections to the drives are:

PIN FUNCTION

- 8 /ABOVE 43 38
- /DISK WRITE DATA /WRITE GATE
- 4Ø
- 46 /RAW DATA

9-1 THE PHASE LOCK OSCILLATOR

The heart of the floppy disk system is the phase lock oscillator, PLO, which generates signals used to synchronize to the moving disk data. Phase lock is the process of synchronizing an oscillator to an external signal. In order to work, control of the output frequency of the oscillator and a system to detect the frequency differences between the external signal and the oscillator must exist. The final part of the phase lock system is a feedback loop that allows the detector to control the oscillator.

In the DOUBLER, control of the PLO output frequency is achieved by digitally dividing the signal from an oscillator with a frequency twenty times higher than the frequency to be generated. The divider (a preset counter string) can be set to divide by any integer in the domain of 1 to 45.

Detection of frequency difference is executed by latching the divider status when a transition of the external signal (raw disk data) occurs.

The feedback loop is completed by a PROM that is coded to use the divider status as an input to output a preset value that will correct the difference in frequency.

The DOUBLER'S PLO consists of a 20 MHz crystal oscillator, 4 Yl and 4IC4A (74SØ4), which drives a presetable counter string, 4IC2A (74LS163) and 4IC3A (74LS161-A). The nominal count for double density is 20D, which yields a 1 MHz clock rate which is approximately equal to the frequency of the serial stream from The nominal count for single density is 40D which the disk. yields 500KHz. Notice that these values are twice the data transfer rate. This is necessary to accommodate the interleaved data and clock bits.

Preset values are provided for the counter string by one of two PROMs, the Rl, 4IClB (74S471), for read and the WA, 4IC2B (74S471), for write. The counters are continuosly being incremented by the 20MHz clock. The logic conditioned raw data stream is used as a clock input to the latch, 4IClA (74LS174). Data inputs to this latch are connected to the stage outputs of the counter string. When a pulse comes down the raw data stream the current count of the counter string is stored in the latch. Outputs of this latch connect to the address inputs of the Rl PROM. If there is an error in timing between the disk data stream and the PLO, the preset value of the counter string is changed by the contents of the PROM to correct the timing error.

Since data on the disk is frequency modulated, changes in timing caused by modulation must be ignored, so the R1 PROM is coded to compensate only the larger errors in timing. If there is no incoming pulse during the current PLO count cycle, (when reading a zero data bit for example), the latch is cleared. If the incoming pulse is on time, the latch stores zero. Either of these conditions set the counter string to the nominal value, and PLO remains synchronous to the disk data stream.

PLO is the clock input of the byte sync counter, and is also used to shift disk data into the shift register, 2IC11B and 2IC11C (74LS164), used for conversion of raw disk data to eight bit parallel bytes. PLO is locked to the signal from the disk any time information is read from the disk. (Write operations involve a read of the ID field to verify the track and locate the sector to be written to.) Since the frequency to be locked is known, phase lock can be achieved in a few cycles.

During write operations, after the sector has been located, PLO becomes a frequency synthesizer and is set to the nominal frequency. Data is brought from the data bus to the disk write data latch, 2IClØB (74LSl65), and is shifted serially out by the PLO signal. This serial stream goes through the CRC, multiplexer, encoder, and precompensator, and then to the disk drive.

9-2 THE BYTE SYNC COUNTER

The **byte sync counter**, 3IC4B (74LS161), provides signals used to separate clock bits from data bits and define the beginning and end of bytes in moving disk data. Outputs from this counter are also sent to the multiplexer, 3IC3B (74LS157), to insert clock bits into the disk write data and provide information for write precompensation (see section 9-5).

The byte sync counter is clocked by the /DPLO signal. This signal is PLO delayed by 50Ns which is one cycle of the 20MHz oscillator. /DPLO is used so that circuits using PLO can settle before action is taken on their outputs.

The byte sync counter is set, if not in sync, when SYNCPLO is addressed by the operating system. The counter is set so that C/D is high with respect to data bits in the moving disk data, EOC is high during data bit 7 and EOW is high during clock bit Ø.

The SYNCMARK signal is connected to the "B" load input of the counter. If SYNCPLO is addressed and the counter is not in sync the high on the "B" load input is loaded. This steps the counter toward byte synchronization.

Detection of SYNCMARK starts in the shift register, 2IC11C and 2IC11B (74LS164), which is used to separate clock bits from data bits, and convert moving disk data into parallel bytes. Alternating stages of this shift register are connected to the disk read data latch, 2IClØC (74LS374), and the SYNCMARK comparator, 2IC12B and 2IC12C (74LS266). The SYNCMARK comparator sees the clock bits from the shift register and codes loaded by the operating system into the sync mark latch, 2IC12D (74LS273). When the codes in the sync mark latch and the shift register match, the SYNCMARK signal goes low. This sets EOC from the byte sync counter, 3IC4B (74LS161), and loads the multiplexed data pattern, from the SYNC FIELD HEADER, into the disk read data latch, 2IClØC (74LS374). The operating system reads this latch and, if the proper code is found, verifies sync and continues the read or write sector operation.

9-3 WAIT STATES (XRDY or PRDY)

Data recovery from the disk is slower than the cycle time of the CPU. Consequently the XRDY or PRDY lines are held low to hold the processor in a wait state and allow the current byte of the disk read or write operation to be transfered. The byte sync counter output, EOC, marks the end of a byte. EOC is used to lift the wait state and transfer a complete data byte from the DOUBLER to the data bus, or from the data bus to the DOUBLER.

If for some reason the DOUBLER cannot complete the byte transfer, a timer, lICl3A (4040), is used to prevent loss of dynamic RAM data. It lifts the wait state before the refresh timing limits of dynamic RAM are exceeded.

Wait states must also be generated when a 4MHz processor clock is used. PSYNC and BD (board enable) coincidences are detected in an AND gate 1IC5D (74LSØØ). When coincidence is detected XRDY and PRDY become active, generating one wait state per board access. This is needed to allow adequate access time for the C2-PROM. A jumper labeled "WAIT" can be found at location D-4 on the DOUBLER. It must be installed to operate at 4MHz.

9-4 THE CYCLIC REDUNDANCY CHECK

The cyclic redundancy check, CRC, is an on going process carried on by the CRC IC, 3IC8B (8506). During write operations a complex logic creates a unique code from the data sent to the sector, called the cyclic redundancy check character (CRCC), which is appended to the sector. During disk read operations the CRCC is read from the disk and compared with the character calculated from the data just read. If an error condition is found, the operating system attempts to read again. If subsequent retries fail, the operating system displays an error message.

9-5 ENCODING AND WRITE PRECOMPENSATION

The double density recording format pushes the recording medium to the limit. When two transitions of magnetic polarity are written adjacent to each other, they interact, causing a shift in This shift makes the data stream unreadable. The timing. solution is to write adjacent pulses shifted, so that their interaction yields the correct position in time along the disk serial data stream. This corrective shift of timing, prior to write, is called write precompensation. In the DOUBLER, compensation in write timing is achieved by moving the position of clock bits with respect to data bits. The mechanism for doing this is in the PLO. The PLO is a digitally controlled frequency synthesizer. During read, frequency control is used to achieve synchronization with the moving data stream on the disk. During write, clock pulses are offset in time by changing the count of the counter string, 4IC2A and 4IC3A (74LS161A), on a bit by bit basis.

During write, control of the PLO counter string is executed by the WA PROM, 4IC2B (74S471). The address inputs to this PROM represent a portion of the serial data stream mixed with clock. The data outputs of the PROM are connected to the preset inputs of the counter string. Coding in the PROM presets the counter string to provide write precompensation.

WA PROM output D7 is the serial data stream sent to the disk during write. Coding in the PROM also holds the algorithms for encoding disk data. Both single and double density codes are in the WA PROM. Write precompensation is not used in single density. So for single density write the counter string is always set to the nominal count, which yields a 500KHz output frequency.

10 THE RS-232 SERIAL INTERFACE

The terminal interface consists of an RS-232 serial interface designed around the UART, 6ICl3D (8251), on the DOUBLER. The UART clock is derived from system clock by counters, 6ICl4D (74LSl61), and 6ICl4A (4024). Baud rate is selectable via a jumper from the outputs of the counters. There is a provision for use of the on board 20MHz clock to generate the 2MHz UART clock via 6IC3C (74LS90 not provided), if the host system has a different clock frequency.

The following is a list of the RS-232 connections:

J2-1	ΤxD	transmitter data
J2-2	GND	ground
J2-3	/RTS	request to send
J2-5	/DSR	data set ready
J2-6	/DTR	data terminal ready
J2-7	/CTS	clear to send data
J2-9	/RxD	receiver data

27

To connect a video display terminal, signal ground, TxD, and /RxD are all that need be connected. The other signals are for handshake arrangements not usually necessary for terminals.

11 POWER ON JUMP

When power is first applied to the computer, or the reset button is pushed, a reset (/PRST) pulse is generated activating the power on jump circuit on the DOUBLER which generates a /POJ signal. With this signal active the C2-PRØM is enabled, and the JMP COLDBOOT instruction at address F800H in the PROM is executed. Since the high order address bits are decoded by the address decoder, F800H appears to be 0000H when /POJ is active.

COLDBOOT reads tracks "0" and "1" (the system tracks) of the diskette in drive "A" into memory locations 0000H-007FH, and then executes the transferred code by performing a jump to 0000H, to load the system into memory.

12 POWER SUPPLY

The DOUBLER runs on the S-100 bus supply line voltage. On board regulation produces +5v, -5v, +12v, and -12v. The +5 volt line can draw more than an ampere, while the other lines draw less than 50 milli amperes.

Ceramic disk capacitors are distributed along the power rails, in accordance with good digital logic design, to reduce noise.

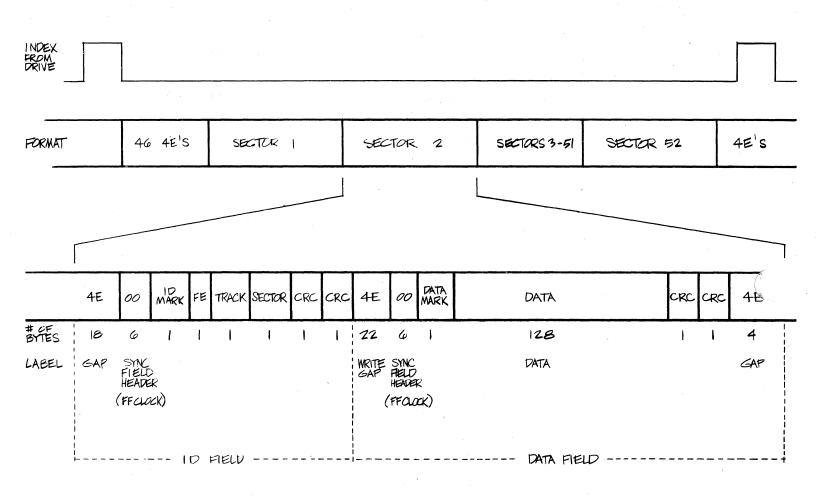
Appendix A:

THE DISK FORMAT

The MICROMATION DOUBLE DENSITY FORMAT divides the disk into tracks (numbered \emptyset - 76). Each track has 52 sectors. The position of the tracks is set by the position of the read/write head in the disk drive. Sectors are sequentially positioned within the track starting at the index.

Each sector is divided into two parts; the ID FIELD and the DATA FIELD. The ID FIELD is written when the disk is formatted and is used to find the sector to be read from or written to. This is called soft sectoring.

Gaps are inserted between the sectors, and between the ID and DATA fields. These allow the write current to be turned on without destruction to the information recorded on the disk. Gaps are recorded with the hex number 4E, which identifies them as gaps when the operating system is locating sectors.


The ID field marks the start of a sector, identifies it and verifies the track. The first six bytes of the ID FIELD are the SYNC FIELD HEADER. These have an unique pattern written into the clock pulses and are therefore readily distinguished from the rest of the serial data stream. The SYNC FIELD HEADER is used to synchronize the hardware to the serial data stream. The next byte is the ID MARK. This verifies that the SYNC FIELD HEADER found is in an ID FIELD, and prepares the operating system to read the track and sector bytes. The ID MARK is followed by a byte written with the hex number FE, which ensures that an ID FIELD, not a gap, has been found. This is necessary since gaps are written with random information, that may mimic an ID FIELD, when the write current is turned on.

The DATA FIELD is used to store the 128 bytes of data recorded in a sector. There is a gap that separates it from the ID field. So the SYNC FIELD HEADER, and the DATA MARK, in the DATA FIELD are needed to synchronize the hardware again. When the disk is formatted, the SYNC FIELD HEADER and the DATA MARK are written, and the data area of the DATA FIELD is filled with the hex number E5.

When data is written to the disk, only the DATA FIELD is changed. A new SYNC FIELD HEADER and DATA MARK are written, followed by the data to be recorded in the sector.

CRC, cyclic redundancy check, bytes are appended to the fields in sectors. They are used by the hardware system to verify that the serial data was read without errors.

MICROMATION DOUBLE DENSITY FORMAT

1D & DATA MARKS > AI DATA OA CLOCK

ЗØ

APENDIX B:

C2-PROM LISTING

WARNING: This listing is provided for information only. It may not be the exact information for your DOUBLER. Refer to the listing provided in the distribution diskette for exact information.

; ; PROM ROUTINES FOR MICROMATION DOUBLER, VERSION C.2 THE C.1 VERSION HAS NOPS IN SYNC ROUTINE TO ALLOW MORE FREQUENT ;REFRESH OF DYNAMIC RAMS ; IT ALSO SETS UP THE SIDE BIT EARLIER TO MEET SETUP TIME FOR Y-E ;DATA DRIVES ;THIS VERSION HAS THE FOLLOWING CHANGES FROM C.1: ;HAS FIX FOR C.1 BUG IN SETTING UP DENSITY DISABLES INTERRUPTS AFTER FINDING CORRECT SECTOR **:HAS SLOWER STEP AND SETTLE TIMES** ; FEB 11, 1980 ; BASE ORG ØF8ØØH BUFF EQU BASE+4ØØH ;SCRATCHPAD RAM ; START OF HARDWARE PORT DEFINITIONS ; WRCONT EQU BASE+6ØØH WRCLK EOU WRCONT+1 WRUART EQU WRCONT+2 WRMRKCRC EQU WRCONT+4WRMRK EQU WRCONT+5 WRDATA EOU WRCONT+6 WRCRC EQU WRCONT+7 RDSTAT EQU WRCONT RDUART EOU WRCONT+2 RDMRKCRC EQU WRCONT+4 RDMARK EQU WRCONT+5 RDDATA EQU WRCONT+6 SYNCPORT EOU WRCONT+7 START OF RAM VARIABLE DEFINITIONS ERRORBYTE BUFF :NO. OF ERRORS DURING RETRIES EOU

DENBYTE	EQU	BUFF+1	Ø FOR SINGLE DENSITY
			;4 FOR DOUBLE DENSITY
READWRITE	EQU	BUFF+2	;Ø FOR READ
			;10H FOR WRITE
CONTROLBYTE	EQU	BUFF+3	;RAM IMAGE OF RDSTAT OR WRCONT

TRACK		EQU	BUFF+4
PRESDIS		EQU	BUFF+5
LOGINTA	B	EQU	BUFF+6 ;FOR EACH DRIVE
			Ø IF DRIVE HAS NOT BEEN LOGGED IN
			55H IF DRIVE HAS BEEN LOGGED IN
SECTOR		EQU	BUFF+ØAH
DMA		EQU	BUFF+ØBH ;DMA ADDRESS
DISK		EQU	BUFF+ØDH
TESTNEX	'T	EQU	BUFF+ØEH ;55H IF WANT TO TEST DENSITY
THOTHER	. 1	пõo	; OF NEXT TRACK
TWOSIDE	ч	EQU	BUFF+ØFH
STEPTIM		EQU	BUFF+1ØH
ABOVE43	i	EQU	BUFF+11H ;10H IF (TRACK) <44D
	_		; 50H OTHERWISE
TRACKTA	В	EQU	BUFF+12H
DENMAP		EQU	BUFF+16H ;SAME CONVENTION AS DENBYTE
TRYl		EQU	BUFF+2ØH
RETRYCO	UNT	EQU	BUFF+21H
CURRDRI	VE	EQU	BUFF+22H
TESTMAX		EQU	BUFF+23H ;NO. RETRIES FOR DENSITY TEST
STEPSET	TLE	EQU	15
HEADSET	TLE	EQU	40
STACK		EQU	BUFF+64D
		-2-	
	JMP	COLDBOC	ጥ
	JMP	HOME	
	JMP	SELDSK	
	JMP	SETTRK	
	JMP	SETIEC	
	JMP	SETDMA	
	JMP	READ	
	JMP	WRITE	
	JMP	SKEW	
	JMP	SETDEN	
WRITEPR	OTECT:		
	CALL	DISKREA	DY1 ;LOADS HEAD
			;WAITS TILL DISK READY
			RETURNS (RDSTAT) IN B
	MOV	А,В	,,,
	ANI	ø4	;WRITEPRT BIT FROM DRIVE
	RNZ	~ -	
	LDA	RDMARK	;RESETS HEAD LOAD COUNTER
	RET		
READ:		• FNTDV	POINT FOR READ ROUTINE
NIAD.	XRA	A	; (READWRITE) = ØØ FOR READ
	JMP	GO	(ABADWAIIE) - DU FOR AEAD
	JHP	GO	
			DOTNE BOD WDIER DOUMIND
WRITE:		; LNTRY	POINT FOR WRITE ROUTINE
	MVI	A,1ØH	; (READWRITE) = 10H FOR WRITE

GO STA READWRITE LHLD DENBYTE ; (L) = (DENBYTE)LDA CONTROLBYTE CMA ØFBH ;MASK OUT BIT 2 $(SD/-DD = \emptyset)$ ANI ORA L CMA STA WRCONT CALL DISKREADY1 LDA SECTOR MOV C,A ; (C) = (SECTOR)LDA TRACK MOV B,A ; (B) = (TRACK)XRA Α ; (ERRORBYTE) = \emptyset STA ERRORBYTE MOV A,L ORA Α ;TEST FOR SINGLE DENSITY SD JZ **READDD:** ;DOUBLE DENSITY READ OR WRITE ;SYNC ON HEADER BLOOP CALL SYNC ;FOUND HEADER ;FIND OA CLOCK FOR ID MARK MVI M,ØAH ;SYNC WITH -EOW LDAX D LDA RDMRKCRC CPI ØAlH ;DATA FOR ID MARK JNZ BLOOP ;FOUND ID ADDRESS MARK ; ;BYTE AFTER ID MARK SHOULD BE FE LDAX D CPI ØFEH JNZ BLOOP ;FOUND FE BYTE ; LDAX ;TRACK BYTE FROM DISK D CMP В ; (B) = (TRACK)**TERROR1** JNZ ;TRACK ERROR LDAX ;SECTOR BYTE FROM DISK D С CMP ; (C) = (SECTOR)JNZ BLOOP ;WRONG SECTOR. TRY AGAIN LDAX D ;DISABLE INTERRUPTS BEFORE DI ;CHECKING ID CRC LDAX D ;READ 1 BYTE PAST ID CRC LDAX D LDA RDSTAT RAR ;CHECK ID CRC LDAX D ;ID CRC ERROR JC ERROR LDAX D LDA ABOVE43 MOV B,A LDAX D

33

GLOOP	MOV LDAX MVI LDAX DCR JNZ	M,B D B,9 D B GLOOP	;(WRCLK)=(ABOVE43) ;NOW 5 BYTES INTO GAP
	LDAX LDA ORA LDAX JNZ	D READWRITE A D WRITEDD	;NOW 15 BYTES INTO GAP ;CHECK FOR WRITE ;16 BYTES INTO GAP
			DOUBLE DENSITY READ
	LDAX LDAX MVI LDAX LDAX LDAX INX LDAX DCX MVI LHLD	D D M,ØFFH D D D D D M,ØAH DMA	; 21 BYTES INTO GAP ;(D)=SYNCPORT ;SYNC ON FF CLOCK PATTERN ;(D)=RDDATA ;(WRCLK)=ØA ;CLOCK PATTERN FOR DATA MARK
	LDAX LDA CPI	D RDMRKCRC ØAlh	;SYNC WITH -EOW ;GET DATA PATTERN FOR DATA MARK
	JNZ	ERROR	;MISSING DATA MARK ; ;FOUND DATA MARK ;START TRANSFERRING DATA ;
RXFER	LDAX MOV INX MOV LDAX MOV INX MOV LDAX MOV INX MVI LDAX	D M,A H B,D D M,A H C,E B M,A H E,ØE1H B	
	MOV INX LDAX	M,A H B	;4 BYTES OF DATA

RLOOP	MOV LDAX INR INX MOV LDAX INX MOV LDAX INX MOV INX LDAX JNZ	M,A B E H M,A B H M,A B H M,A H B RLOOP	;HAVE TRANSFERRED 128 BYTES ;AND HAVE READ 129TH BYTE
	LDAX LDAX LDA RAR	B B RDSTAT	;READ 1 BYTE PAST CRC ;CHECK DATA CRC
	JC	ERROR	DATA CRC ERROR
	XRA STA RET	;SUCCESSFUL SEC ; A WRCLK	TOR READ ;RETURN ØØ IN ACCUMULATOR
ERROR:		; 30H TRA ; ID CRC ; MISSING	ANY OF FOLLOWING CONDITIONS ACK ERRORS ERROR G DATA MARK AC ERROR
	MVI ORA STA RET	A,ØEFH A WRCLK	;RETURN EFH IN ACC ; (UNSUCCESSFUL READ)
TERROR:	CALL JNZ	;ARRIVE HERE ON ERRORCOUNT ALOOP	TRACK ERROR IN SINGLE DENSITY ;INCREMENT ERRORBYTE ;TRY AGAIN IF LESS THAN 30H
NO	MVI ORA STC STA RET	A,ØEFH A WRCLK	;30H TRACK ERRORS ;RETURN EFH IN ACC ;(UNSUCESSFUL DISK OPERATION)
TERRORI	CALL JNZ JMP	;ARRIVE HERE ON ERRORCOUNT BLOOP NO	N TRACK ERROR IN DOUBLE DENSITY ;INCREMENT ERRORBYTE ;TRY AGAIN IF LESS THAN 30H

ERRORCO	UNT: LXI INR MOV CPI RET	H,ERRORBYTE M ;INCREMENT ERRORBYTE A,M 30H
WRITEDD		;DOUBLE DENSITY WRITE ;ARRIVE HERE 16 BYTES AFTER ID FIELD
	MVI	A,4EH
	STAX	D ;WRITE 4 BYTES OF 4E
	STAX	D
	STAX	D
	STAX	D
	XRA	Α
	STAX	D ;WRITE 6 BYTES OF ØØ
	STAX	D
	LHLD	DMA
	STAX	D
	STAX	D
	LXI	B,WRMRKCRC
	STAX STAX	D D
	MVI	A,ØAlH
	STAX	-
	MVI	B ;WRITE DATA MARK (Al) C,ØElH
		START WRITING DATA TO DISK FROM MEMORY
WXFER	MOV	A,M
WLOOP	STAX	D
	INX	H
	INR	C
	MOV	Α,Μ
	STAX	D
	INX	H
	MOV	Α,Μ
	STAX	D
	INX	H
	MOV	Α,Μ
	INX	Н
	STAX	D
	MOV	Α,Μ
	JNZ	WLOOP
		WHEN WE ARRIVE HERE WE'VE WRITTEN
	CMAY	; 31*4=124 BYTES TO DISK
	STAX	D
	INX MOV	H A,M
	STAX	D A M
	INX	Η · · · · · · · · · · · · · · · · · · ·
	MOV	А,М
	INX	H
	STAX	D
	MOV	A,M
	STAX	D ;128TH BYTE TO DISK
		•

MVI A,ØFFH STA WRCRC ;WRITE 2 BYTES OF DATA CRC STA WRCRC STAX D · ;WRITE 3 BYTES OF FF D STAX D STAX XRA Α ;RETURN ØØ IN ACC WRCLK STA ; (SUCCESSFUL WRITE) RET SINGLE DENSITY ROUTINES ;ENTRY POINT IS SD (BELOW) WRITESD: ;ARRIVE HERE 6 BYTES PAST ID FIELD MVI A,ØFFH STAX D ;WRITE 3 BYTES FF (BYTES 7,8,9) STAX D STAX D А XRA STAX D ;WRITE 6 BYTES OO (BYTES 10-15) STAX D LHLD DMA STAX D STAX D STAX D STAX D ;BYTE 15 OF GAP MVI A,ØFBH ;WRITE DATA MARK FOR SINGLE DEN STA WRMRKCRC MVI C,ØE1H WXFER JMP JUMP TO COMMON WRITE ROUTINE ;ROUTINE TO SYNC ON HEADER SYNC; LXI H,WRCLK MVI M,ØFFH D, SYNCPORT LXI CLOOP LDAX D ;SYNC ON FF CLOCK IN HEADER ORA Α ;SHOULD HAVE ØØ DATA ;FOUND SYNC PATTERN NOP NOP DCX ; (D)=WRDATA=READDATA D RZ JMP SYNC SD: ;SINGLE DENSITY ENTRY POINT ALOOP CALL SYNC ;FOUND HEADER MLOOP MVI M,ØC7H ;CLOCK PATTERN FOR ID MARK LLOOP LDA-RDMRKCRC ORA Α LLOOP JZ CPI ØFEH NLOOP JZ MVI M,ØFFH LDA SYNCPORT

	ORA JZ JMP	A MLOOP ALOOP	
NLOOP:			;FOUND DATA MARK
	LDAX	D	TRACK BYTE FROM DISK
	CMP	В	
	JNZ	TERROR	;TRACK ERROR
	LDAX	D	;SIDE BYTE FROM DISK (IGNORE)
	LDAX	D	;SECTOR BYTE FROM DISK
	CMP	С	
	JNZ	ALOOP	;WRONG SECTOR. TRY AGAIN
	DI		;FOUND CORRECT TRACK AND SECTOR ;DISABLE INTERRUPTS BEFORE
	DI		CHECKING ID CRC
	LDAX	D	JCHECKING ID CKC
	LDAX	D	;CRC BYTE
	LDAX	D	CRC BYTE
	LDAX	D	GAP BYTE 1
	LDA	RDSTAT	CHECK ID CRC
	RAR		•
	LDAX	D	;GAP BYTE 2
	LDAX	D	GAP BYTE 3
	JC	ERROR	;ID CRC ERROR
	LDAX	D	;GAP BYTE 4
	LDA	ABOVE43	•
	MOV	Μ,Α	
	LDAX	D	;GAP BYTE 5
	LDA	READWRITE	
	ORA	A	;CHECK FOR WRITE
	LDAX	D	;GAP BYTE 6
	JNZ	WRITESD	
		;SINGLE DENSITY	
	LDAX	D	;READ 6 BYTES OF GAP
	LDAX	D	
	LDAX	D	
	LDAX LDAX	D D	
	LDAX	D	
	MVI	M,ØFFH	;(WRCLK)=FF
	LXI	B, RDDATA	(UNCER)-II
	LDAX	D	;GAP BYTE 14
	INX	D	; (D) =SYNCPORT
	LDAX	D	
	MVI	М,ØС7Н	CLOCK PATTERN FOR DATA MARK
	MVI	E,Ø4	; (D) =RDMRKCRC
	LDAX	В	GAP BYTE 16
	LDAX	D	READ DATA MARK
	ANI	ØFCH	
	CPI	ØF8H	;DATA PATTERN FOR DATA MARK
	JNZ	ERROR	;MISSING DATA MARK
	MVI	;FOOND ; E,ØEØH	SINGLE DENSITY DATA MARK ;32*4=128 BYTE TRANSFER

	LDAX LHLD JMP	B DMA RLOOP	JUMP TO MAIN READ ROUTINE
TEST:		;RETURNS ØØ IN ;RETURNS ØF IN ;RETURNS ØA IN	OF DISKETTE IN LOGGED-IN DRIVE ACC IF DOUBLE DENSITY ACC IF SINGLE DENSITY ACC IF TEST FAILS
	XRA STA	A TESTMAX	;(TESTMAX)=Ø
TEST1	XRA STA CALL LXI LDA	A ERRORBYTE DISKREADY B,WRCONT CONTROLBYTE	;(ERRORBYTE)=Ø ;LOAD HEAD
	ORI ANI STAX	8ØH	;SET CONTROLLER FOR SIDE Ø ;TRY DOUBLE DENSITY
L00P6:	LXI MVI	;DOUBLE DENSITY H,WRCLK M,ØFFH	
LOOP7	LXI LDAX INR JZ	D,SYNCPORT D L RETRY	;SYNC ON FF CLOCK IN HEADER ;READ DATA PATTERN ;ABORT AFTER 256 TRIES
	ORA JNZ	A LOOP7	;DATA SHOULD BE ØØ
			;FOUND HEADER
	DCX	D	; (D) =READDATA
	MVI	L,Ø1	; $(H) = WRCLK$
	MVI	м, ØАН	
	LDAX	D	;SYNC WITH -EOW
	LDA CPI JNZ	RDMRKCRC ØAlH RETRY	;LOOK FOR ID MARK
	0112	REINI	FOUND ID MARK
	LDAX	D	FE BYTE
	LDAX	D	SECTOR BYTE
	LDAX	D	CRC BYTE
	LDAX	D	CRC BYTE
	LDAX	D	GAP BYTE 1
	LDAX	B	
	RAR	-	;CHECK ID CRC
	JC	RETRY	,
			;ID CRC OK
	XRA RET	Α	RETURN ØØ
RETRY	CALL JNZ	ERRORCOUNT LOOP6	
		;SINGLE DENSITY ;ARRIVE HERE AF	TEST TER 30H TRIES AT DOUBLE DENSITY

SDTEST	XRA	A	
	STA	ERRORBYTE	; (ERRORBYTE) = \emptyset
	LDA	CONTROLBYTE	
	ORI	84H	;SET UP SIDE Ø, SINGLE DENSITY
	STAX	В	;TO WRCONT
SDLOOP1	MVI	E,Ø7	; (D)=SYNCPORT
	LXI	H,WRCLK	
	MVI	M,ØFFH	;SYNC ON FF CLOCK PATTERN
SDLOOP2	LDAX	D	;GET CORRESPONDING DATA
	INR	L	;ABORT AFTER 256 TRIES
	JZ	RETRYl	
	ORA	А	;DATA SHOULD BE ØØ
	JNZ	SDLOOP2	•
			;FOUND HEADER
	DCX	D	; (D) =READDATA
÷	MVI	L,Ø1	; (H)=WRCLK
~	MVI	M,ØC7H	LOOK FOR C7 CLOCK
	LDAX	D	;SYNC WITH -EOW
	LDA	RDMRKCRC	, DINC WITH DOW
	CPI	ØFEH	;DATA FOR ID MARK
	JNZ	RETRY1	DATA TON ID MARK
	JNZ	REIRII	FOUND TO MADY
		В	FOUND ID MARK
	LDAX	D	;TRACK BYTE
	LDAX	D	;SIDE
	LDAX	D	;SECTOR
	LDAX	D	
	LDAX	D	;CRC BYTE
	LDAX	D	;CRC BYTE
	LDAX	D	
	LDAX	В	;GET RDSTAT
	RAR		;CHECK ID CRC
	JC	RETRYl	
			;ID CRC OK
	ORI	ØFFH	;RETURN FF
	RET		
RETRY1	CALL	ERRORCOUNT	
	JNZ	SDLOOP1	
		;FAILED BOTH D	OUBLE AND SINGLE DENSITY
		; TESTS 30H TI	
	LXI	H, TESTMAX	
	INR	M	;INCREMENT TESTMAX
	MOV	A,M	
	CPI	10	
	CFI TN7		

ORA RET

JNZ

T.

TEST1

Α

;FAILED TEST 10 TIMES

;RETURN ØA

LXI H, Ø PUSH H LDA CONTROLBYTE ANI 7FH ;SIDE 1 MOV A, C SUI 52 MOV A, E ; (A) = (C) -52 MOV A, E ; (A) = (CONTROLBYTE) ^7F JP SKIPY ;INPUT WAS LESS THAN 52 (A) = (CONTROLBYTE) ^7F JP SKIPY ;INPUT WAS LESS THAN 52 (A) = (CONTROLBYTE) ^7F JP SKIPY ;INPUT WAS LESS THAN 52 (B) = (INPUT) MOD 52 MOV A, B ; (B) = (INPUT) MOD 52 MOV A, B ; (B) = (INPUT) MOD 52 LOOPIØ INR C SUI 13 JP LOOPIØ DAD H DAD H DAD H DAD H DAD H DAD H DAD H DAD H DAD H DAD H CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 2044 JMP LOOP11 SKIP12 ADD C MOV C, A RET HIGH ADI 48 RET SETDMA MOV A, C STA SECTOR ;STORE SECTOR NUMBER	SKEW:		SKEW FACTOR IS	UT ARE IN C REG T) MOD 52)*8 - 7) MOD 52
ANI 7FH ;SIDE 1 MOV E,A MOV A,C SUI 52 MOV B,A ;(B)=(C)-52 MOV A,E ;(A)=(CONTROLBYTE)^7F JP SKIPY ;INPUT WAS LESS THAN 52 ORI 80H ;CHOOSE SIDE 0 MOV B,C SKIPY STA TWOSIDE MOV A,B ;(B)=(INPUT) MOD 52 MOV L,B POP B LOOP10 INR C SUI 13 JP LOOP10 DAD H DAD H DAD H DAD H DAD H MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV A,C STA SECTOR ;STORE SECTOR NUMBER		PUSH	Н, Ø Н	
MOV E, A MOV A, C SUI 52 MOV B, A ; (B) = (C) - 52 MOV A, E ; (A) = (CONTROLBYTE) ^7F JP SKIPY ; INPUT WAS LESS THAN 52 ORI 80H ; CHOOSE SIDE 0 MOV B, B ; (B) = (INPUT) MOD 52 SKIPY STA TWOSIDE MOV LOB ; (B) = (INPUT) MOD 52 MOV LOP10 INR SUI 13 JP LOOP10 DAD H MOV C, A RET MOV HIGH ADI SETDMA MOV <td< td=""><td></td><td></td><td></td><td>•SIDE 1</td></td<>				•SIDE 1
$\begin{array}{c} MOV A, C \\ SUI 52 \\ MOV B, A \qquad ; (B) = (C) - 52 \\ MOV A, E \qquad ; (A) = (CONTROLBYTE)^{T} F \\ JP SKIPY \qquad ; INPUT \text{ WAS LESS THAN 52} \\ ORI 8 \mathscr{G} H \qquad ; CHOOSE SIDE \mathscr{G} \\ MOV B, C \\ SKIPY STA TWOSIDE \\ MOV A, B \qquad ; (B) = (INPUT) MOD \; 52 \\ MOV L, B \\ POP B \\ LOOP1 \mathscr{G} INR C \\ SUI 13 \\ JP LOOP1 \mathscr{G} \\ DAD H \\ DAD H \\ DAD H \\ ORA A \\ MOV A, L \\ CNZ HIGH \\ LOOP11 CPI 52 \\ JC SKIP12 \\ ADI \mathscr{Q} \mathscr{G} \\ JMP LOOP11 \\ SKIP12 ADD C \\ MOV C, A \\ RET \\ HIGH ADI 48 \\ RET \\ \\ SETDMA MOV H, B \\ MOV L, C \\ SHLD DMA \\ RET \\ \\ SETSEC MOV A, C \\ STA SECTOR ;STORE \; SECTOR \; NUMBER \\ \end{array}$, OIDE I
SUI52 MOV; (B) = (C) - 52 ; (A) = (CONTROLBYTE) ^7F JPJPSKIPY; INPUT WAS LESS THAN 52 ; CHOOSE SIDE ØSKIPYSTATWOSIDE MOVMOVA, B MOV; (B) = (INPUT) MOD 52SKIPYSTATWOSIDE MOVMOVL, B POPPOPB LOOP1ØDADH DADDADH DADDADH DADCNZHIGH LOOP11LOOP11CPISKIP12 ADDADDC RETHIGH ADI48 RETSETDMAMOV MOVMOV RETL, C SHLDSETSECMOV STASETSECMOV STAMOV RETA, C STASETSECMOV STAA, C STASETSECMOV SECTORSETSECMOV STAA, C STASETSECMOV STAA, C STASETSECMOV A, C STASETSECMOV SECTORADA, C STASETSECMOV SECTORADSECTORSETSECMOV SECTOR				
MOVB, A; (B) = (C) -52MOVA, E; (A) = (CONTROLBYTE) ^7FJPSKIPY; INPUT WAS LESS THAN 52ORI80H; CHOOSE SIDE ØSKIPYSTATWOSIDEMOVA, B; (B) = (INPUT) MOD 52MOVL, BFOPPOP BLOOP1ØINRLOOP1ØINRCSUI13JPDADHDADHDADHDADHDADHDADHDADHDADHDADHDADHDADHBADKIP12ADI204JMPLOOP11SKIP12ADDADDC, ARETHIGHHIGHADI48RETSETDMAMOVMOVL, CSHLDDMARETSETSECMOVA, CSTASECTORSETSECMOVA, CSTASECTORSTASECTORSTASECTORSTASETOR				
MOV A,E ;(A)=(CONTROLBYTE)^7F JP SKIPY ;INPUT WAS LESS THAN 52 ;INPUT WAS LESS THAN 52 ;CHOOSE SIDE Ø MOV A,B ;(B)=(INPUT) MOD 52 MOV L,B POP B LOOP1Ø INR C SUI 13 JP LOOP1Ø LOOP1Ø DAD H DAD H DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				(B) = (C) - 52
JP SKIPY ; INPUT WAS LESS THAN 52 ; CHOOSE SIDE Ø MOV B,C ; CHOOSE SIDE Ø MOV A,B ; (B) = (INPUT) MOD 52 MOV L,B POP B LOOP1Ø INR C SUI 13 JP LOOP1Ø DAD H DAD H MOV A,H ORA A MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B NOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
ORI $\$0H$; CHOOSE SIDE \emptyset MOVB, CSKIPYSTAMOVA, BMOVL, BPOPBLOOP1 \emptyset INRDADHDADCMOVC, ARETHIGHHIGHADIABSTORESETDMAMOVNOVL, CSHLDDMARETSETSECMOVA, CSTASECTORSTORESECTOR NUMBER		UF	BRIFI	TNDUT WAS IESS TUAN 50
MOV B,C SKIPY STA TWOSIDE MOV A,B ; (B)=(INPUT) MOD 52 MOV L,B POP B LOOP10 INR C SUI JP LOOP10 DAD H MOV A,L CNZ HIGH LOOP11 CPI SKIP12 ADD MOV C,A RET HIGH HIGH ADI 48 RET SETDMA MOV MOV L,C SHLD DMA RET STORE DMA ADDRESS SETSEC MOV STA SECTOR ;STORE SECTOR N		OPT	8 0H	
SKIPYSTA MOVTWOSIDE A,B POP; (B)=(INPUT) MOD 52LOOP10INRCSUI13JPLOOP10DADHDADHDADHORAAMOVA,LCNZHIGHLOOP11CPISKIP12ADIADI204JMPLOOP11SKIP12ADDADI204JMPLOOP11SKIP12ADDMOVC,ARETHIGHHIGHADI48RETSETDMAMOVMOVL,CSHLDDMArstreetJMASETSECMOVA,CSTASECTOR;STORE SECTOR NUMBER				CHOOSE SIDE 0
MOV A, B ; (B) = (INPUT) MOD 52 $MOV L, B$ $POP B$ $LOOP10 INR C$ $SUI 13$ $JP LOOP10 DAD H$ $DAD H$ $DAD H$ $MOV A, H$ $ORA A$ $MOV A, L$ $CNZ HIGH$ $LOOP11 CPI 52$ $JC SKIP12$ $ADI 204$ $JMP LOOP11$ $SKIP12 ADD C$ $MOV C, A$ RET $HIGH ADI 48$ RET $SETDMA MOV H, B$ $MOV L, C$ $SHLD DMA ; STORE DMA ADDRESS$ $SETSEC MOV A, C$ $STA SECTOR ; STORE SECTOR NUMBER$	CKIDY			
MOV L,B POP B LOOP10 INR C SUI 13 JP LOOP10 DAD H DAD H DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER	SKIPI			(R) = (INDUT) MOD 52
LOOP10 FOP B LOOP10 INR C SUI 13 JP LOOP10 DAD H DAD H DAD H MOV A, H ORA A MOV A, L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C, A RET HIGH ADI 48 RET SETDMA MOV H, B MOV L, C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A, C STA SECTOR ;STORE SECTOR NUMBER				(B) = (INFOI) MOD 52
LOOP10 INR C SUI 13 JP LOOP10 DAD H DAD H DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
SUI 13 JP LOOP10 DAD H MOV A, H ORA A MOV A, L CNZ HIGH JMP LOOP11 SKIP12 ADD MOV C, A RET HIGH HIGH ADI 48 SETDMA MOV MOV L, C SHLD DMA RET SETSEC MOV STA SECTOR	LOOPIØ			
JPLOOP10DADHDADHDADHDADHMOVA, HORAAMOVA, LCNZHIGHLOOP11CPISKIP12ADIADI204JMPLOOP11SKIP12ADDMOVC, ARETHIGHADI48SETDMAMOVNOVL, CSHLDDMARETSETSECMOVA, CSTASECTOR; STORE SECTOR NUMBER				
DAD H DAD H DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
DAD H DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
DAD H MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER			-	
MOV A,H ORA A MOV A,L CNZ HIGH LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				,
ORAAMOVA, LCNZHIGHLOOP11CPISKIP12JCADI204JMPLOOP11SKIP12ADDMOVC, ARETHIGHADI48SETDMAMOVMOVL, CSHLDDMARETSETSECMOVA, CSETSECMOVA, CSETOR, STORE SECTOR NUMBER				
MOV CNZA, L HIGHLOOP11CPISKIP12 ADIADI204 JMPJMPLOOP11SKIP12 MOVC, A RETHIGH RETADI ADI RETSETDMA MOV RETH, B DMA RET DMA RETSETSEC STAMOV SECTORSETSEC STAA, C SECTOR			-	
LOOP11CNZHIGHLOOP11CPI52JCSKIP12ADI204JMPLOOP11SKIP12ADDMOVC, ARET48RET48SETDMAMOVMOVL, CSHLDDMARETJMASETSECMOVA, CSTASECTORSETSECMOVA, CSETSECMOVA, CSETSECMOVA, CSETSECMOVA, CSETSECMOVA, CSETSECMOVSTASECTORSETSECSTASETSECSTASETSECSETSECSETSECSETSECSETSECSTASETSECSTASETSECSTASETSECSTASETSECSETSECSTASETSECSETSECSTASETSECSTASETSECSTASETSECSTASETSEC </td <td></td> <td></td> <td></td> <td></td>				
LOOP11 CPI 52 JC SKIP12 ADI 204 JMP LOOP11 SKIP12 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
JC ADI JMP LOOP11SKIP12 204 JMP LOOP11SKIP12ADD MOV C, A RETHIGH ADI RET48SETDMAMOV MOV L, C SHLD RETH, B DMA MA , STORE DMA ADDRESSSETSECMOV STAA, C SECTOR	LOOP11			
ADI 204 JMP LOOP11 ADD C MOV C,A RET HIGH ADI 48 RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C SECTOR ;STORE SECTOR NUMBER				
JMPLOOP11SKIP12ADDCMOVC, ARET48SETDMAMOVMOVH, BL, CJMASETSECMOVSTAA, CSECTOR;STORE SECTOR NUMBER				
SKIP12ADD MOVC C, A RETHIGHADI ADI RET48SETDMAMOV MOV L, C SHLD RETH, B L, C DMASETSECMOV STAA, C SECTORSETSECMOV STAA, C SECTOR				
HIGH ADI 48 RET 48 SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET A,C STA SECTOR ;STORE SECTOR NUMBER	SKIP12			
HIGHRET ADI RET48SETDMAMOV MOV L,C SHLD RETH, B L,C DMASETSECMOV STAA, C SECTORSETSECMOV STAA, C SECTOR				
HIGHADI RET48SETDMAMOV MOV SHLD RETH, B L, C DMA;STORE DMA ADDRESSSETSECMOV STAA, C SECTOR;STORE SECTOR NUMBER				
RET SETDMA MOV H,B MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER	нтсн		48	
SETDMA MOV H, B MOV L, C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A, C STA SECTOR ;STORE SECTOR NUMBER			10	
MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
MOV L,C SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER	SETDMA	MOV	H,B	
SHLD DMA ;STORE DMA ADDRESS RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				
RET SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				STORE DMA ADDRESS
SETSEC MOV A,C STA SECTOR ;STORE SECTOR NUMBER				•
STA SECTOR ;STORE SECTOR NUMBER		-		
STA SECTOR ;STORE SECTOR NUMBER				
STA SECTOR ;STORE SECTOR NUMBER	SETSEC	MOV	A,C	
				STORE SECTOR NUMBER
				-

SETTRK:	MOV	;STEPS DRIVE TO A,C	TRACK (C)
	CPI	44D	;IF (C)<44
	MVI	A,1ØH	; THEN $(ABOVE43) = 10H$
	JC	SKIP3	
	MVI	А,50Н	; ELSE $(ABOVE 43) = 50H$
SKIP3	STA	ABOVE43	
	CALL	DISKREADY	
STEPLOO		H, TRACK	
	MOV	A, M	;GET (TRACK)
	CMP JZ	C	; DONE?
	CALL	DONESTEP STEPHEAD	;NO, STEP HEAD
	JMP	STEPLOOP	REPEAT
Î			
STEPHEA		STEPIN	; IF (TRACK) < (C) THEN STEP IN
STEPOUT		CONTROLBYTE	;ELSE STEP OUT
	DCR ORI	M Ø 2H	; (TRACK) = (TRACK) -1 ;DIR=OUT
	JMP	DOSTEP	;DIR-001
	- UIIL	DODIEL	
STEPIN	LDA	CONTROLBYTE	
	INR	Μ	; $(TRACK) = (TRACK) + 1$
	ANI	ØFDH	;DIR=IN
DOSTEP	STAX	D	STORE DIRECTION IN WRCONT
	DCR	А	;-STEP=Ø
	STAX	D	
	INR	Α	;-STEP=1
	STAX	D	
	LDA	STEPTIME	WATE O MC BOD NEVE CEED
	MOV JMP	B , A DE LAY	;WAIT 8 MS FOR NEXT STEP ;DELAY EXECUTES A RETURN
	JMP	DELAI	; DELAI EXECUTES A REFORM
DONESTE		B,STEPSETTLE	
	CALL	DELAY	;WAIT 8 MS FOR STEP SETTLE
	MOV	A,C	
	CPI JC	2 SETTN	;IF (TRACK)<2 THEN SET TESTNEXT
	LDA	TESTNEXT	
	ORA	A	
	MVI	A,Ø	
	STA	TESTNEXT	
	STC		
	JNZ	SETDEN	;IF TESTNEXT=55 TEST DENSITY
	RET		
SETDEN:		;TESTS DENSITY	
	CALL	;UPDATES DENBYT	
	CALL MVI	TEST A,4	;TEST DENSITY ;IF Z IS SET (DOUBLE DENSITY)
	JZ	SKIP	
	MVI	A,Ø	; THEN (DENBYTE)=4 ; ELSE (DENBYTE)=0
			, (, _

SKIP	STA LXI PUSH LDA MOV MVI DAD POP MOV RET	DENBYTE H,DENMAP PSW PRESDISK C,A B,Ø B PSW M,A	;SAVE FLAGS ; (DENMAP (PRESDISK)) = (DENBYTE)
SELDSK:	LXI MVI	;LOADS HEAD OF H,MASKTABLE B,Ø	POINTED TO BY C REG SELECTED DRIVE
	DAD	В	C CONTAINS DRIVE NUMBER
SELDSK1	MOV STA STA LXI LDA MOV MOV DAD LDA	A,M WRCONT TWOSIDE CONTROLBYTE H,TRACKTAB PRESDISK E,A D,B D TRACK	;MASKTABLE CONTAINS Ø FOR ; SELECTED DRIVE, 1'S ELSEWHERE
	MOV MOV	M,A A,C	; (TRACKTAB(PRESDISK)) = (TRACK)
	STA STA LXI DAD MOV	PRESDISK DISK H,TRACKTAB B A,M	; (PRESDISK) = (C) ; (DISK) = (C)
	STA LXI DAD MOV	TRACK H,LOGINTAB B	; (TRACK) = (TRACKTAB(C))
	ORA JNZ	A,M A INOK	;HAS DRIVE BEEN LOGGED IN?
	MVI MOV	A,55H M,A	;NO. MARK AS LOGGED IN
INOK	CALL CALL MVI	HOME DISKREADY B,HEADSETTLE	; AND HOME THE HEAD ;LOAD HEAD
	CALL LDA CPI JNC	DELAY TRACK Ø2 SETDEN	;WAIT FOR HEAD SETTLING
SETTN	MVI STA JMP	A,55H TESTNEXT SETDEN	;ON TRACKS Ø AND 1, WE WANT ; TO TEST DENSITY OF NEXT TRACK ;TEST DENSITY OF THIS TRACK

LI MV CI	NI DA VI	20H RDMARK B,HEADSETTLE	;ASSUMES (D)=RDSTAT ;HEAD ALREADY LOADED? ;RESET HEAD LOAD COUNTER ;IF HEAD WASN'T LOADED
DELAY:		;DELAYS (B) MILL	ISECONDS
			;SAVE HL
		CONTROLBYTE	
			; IF SINGLE DENSITY,
		L,31 DELAY1	; 31 BYTES * 32 USEC = 1 MS
			; IN DD, 63 BYTES * 16 USEC = 1 MS
		RDDATA	
		L	
		DE LAY 1	
			;END 1 MS LOOP
-		DELAY2 H	RESTORE HL
RI		п	RESTORE HL
. 111	D 1		
HOME CA	ALL	DISKREADY	
L	XI	H,TRACK	;FOR STEPIN AND STEPOUT
		STEPIN	;STEP TOWARD 76
		D	
			; UNTIL -TRKØ IS INACTIVE
J2 GOHOME CA		ATHOME STEPOUT	THEN STEP TOWARD ØØ
		D	JINEN SIEF IOWARD 00
			; UNTIL -TRKØ IS ACTIVE
		GOHOME	,
		А,10Н	
			; (ABOVE 43) = 1 ØH
			; (TESTNEXT)=1ØH
		A TRACK	; (TRACK)=ØØ
		SETDEN	TEST DENSITY
DISKREADY		RDSTAT	,
M	ov	B,A	
		ØAØH	; IF DRIVE READY AND HEAD LOADED
R		_	; THEN RETURN
DISKREADY			
		D,WRCONT HEADLOAD	;(D)=WRCONT=RDSTAT ;LOAD HEAD
		B	
		D	
RI	LC		
J		DISKREADY	;LOOP UNTIL DRIVE READY
RI	ET		

MVI A,10	STAX INR	A B,BUFF B	;ZERO OUT RAM BUFFER
STASTEPTIME;SET STEPTIME LONGER THAN IT;NEEDS TO BE TO BE SAFE, SINCE;COLD BOOT LOADER RESETS ITLXIB,ØCALLSETDMACALLSELDSKMVIC,Ø1CALLSETSECCALLSETSECCALLREADJNZCOLDBOOTRSTØ;SAVES 2 BYTES OVER JMP ØØØØ)	STA LXI CALL CALL MVI CALL CALL JNZ	STEPTIME B,Ø SETDMA SELDSK C,Ø1 SETSEC READ COLDBOOT	;NEEDS TO BE TO BE SAFE, SINCE ;COLD BOOT LOADER RESETS IT ;SETDMA DOES NOT CHANGE C REG, SO ;SELECT DRIVE A ;LOAD BOOTSTRAP LOADER ; FROM TRACK Ø SECTOR 1 ;ON READ FAILURE, TRY AGAIN ;EXECUTE BOOTSTRAP LOADER

MASKTABLE

DB

ØBFH,ØDFH,ØEFH,ØF7H

Appendix C

CHANGING OPERATING SYSTEM CHARACTERISTICS

This section is divided into three subsections corresponding to three types of operating system alterations.

> C-1 Changing the system size

- Changing the IOBYTE and step time defaults BIOS and BOOT Alteration C-2
- C-3

Section C-1 discusses use of the MOVCPM and SYSGEN transient commands to relocate the operating system to reside in a different part of memory. When shipped, the system is configured to use 62K of RAM, the maximum since the DOUBLER is located at F800H.

Section C-2 describes changing the IOBYTE, the byte of memory referred to by the system to set the logical to physical device assignments at cold boot. If you purchased Remex double-sided drives with the DOUBLER, refer to this section to change step time.

Section C-3 discusses altering the Micromation custom BIOS. MM2BIOS.ASM contains a driver for a Centronics 703/779 printer and all the software necessary to support the various configurations of disk drive types (single or double sided floppies with or without a hard disk) and serial I/O port assignments. A specific application may require additional driver routines or reconfigured I/O assignments.

C-1 CHANGING THE SYSTEM SIZE

Generally, the CP/M operating system should be located at the top of system memory since the O/S uses only that portion of memory below it. Circumstances may dictate a decrease in the amount of memory used, however. For instance, data base management systems typically set aside a portion of memory above the CP/M system area for reference and temporary data storage.

The MOVCPM and SYSGEN utilities (transient commands) are used to relocate the system to a lower portion of system memory. There are several different invocations of MOVCPM, each for a different purpose. Refer to the CP/M document, An Introduction to CP/M Features and Facilities, for a description of the options.

The MOVCPM utility contains the MM2BIOS.ASM and M2BOOT.ASM files in a somewhat altered form. This alteration allows for the size parameter to be specified by the user. All other values are held constant.

In the following example a 60K system size is specified. The re-

sultant system image is put on a formatted disk in drive B. In this and other examples the "@" symbol is used to indicate a carriage return. When it appears, press the RETURN key on your keyboard; do not press the @ key. All user entries are underscored.

A>MOVCPM 6Ø *@

CONSTRUCTING 60k CP/M - Micromation ver 2.x READY FOR "SYSGEN" OR "SAVE 35 CPM60.COM" A>SAVE 35 CPM60.COM@ A>SYSGEN SYSGEN VER 2.x SOURCE DRIVE NAME (OR RETURN TO SKIP) @ DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B DESTINATION ON B, THEN TYPE RETURN @ FUNCTION COMPLETE DESTINATION DRIVE NAME (OR RETURN TO REBOOT) @

A>

In all cases above, the 2.x indicates the current revision of the program.

Notice the MOVCPM transient command. In this mode, a system with a size of 60K is generated and left in the transient program area (TPA); the system originally loaded remains in control of the computer.

SAVE is invoked next. This writes the contents of memory, in this case the operating system, onto the disk. The file name "CPM60.COM" is given to the file. This step is not always necessary. It is included to demonstrate use of the SAVE command. Subsequently, CPM60.COM can be used with DDT to install a new BIOS and BOOT, if necessary (see section C-3 below).

The SYSGEN utility is invoked to write the system image from the TPA to the system tracks $(\emptyset - 1)$ on the designated disk. Notice that the example above puts the new system on the disk in drive B. "A" could have been specified as well. In this case, the write operation would replace the original system recording residing there with the system just created.

If several formatted disks require the new system, the operation can be repeated, without MOVCPM, by entering the destination drive name again instead of a RETURN in the last step.

C-2 CHANGING THE IOBYTE AND STEP TIME DEFAULTS

Changing the IOBYTE

A single byte at location ØØØ3H sets the logical to physical device assignments in CP/M. It is set at cold boot (reset), but not warm boot (^C), by the BIOS section. The byte is broken down into four 2 bit sections corresponding to the four physical assignments. The bits are allocated as follows

> MSB LSB bits | 7 6 | 5 4 | 3 2 | 1 Ø | LST PUN RDR CON

The following codes can be entered for each 2 bit location

- LST ØØ LIST is Teletype device (TTY:) Øl - LIST is terminal device (CRT:) lØ - LIST is a line printer device (LPT:) ll - user defined list device (UL1:)
- PUN ØØ PUNCH is Teletype device (TTY:) Øl - PUNCH is a high speed punch device (PUN:) lØ - user defined punch #1 (UP1:) ll - user defined punch #2 (UP2:)
- RDR ØØ READER is Teletype device (TTY:) Øl - READER is a high speed reader device (RDR:) lØ - user defined reader #1 (UR1:) ll - user defined reader #2 (UR2:)
- CON ØØ CONSOLE is Teletype device (TTY:) Ø1 - CONSOLE is a terminal (CRT:) 1Ø - batch mode: READER is CONSOLE input and LIST device is CONSOLE output (BAT:) 11 - user defined console device (UC1:)

In BIOS, the entire byte is entered in hexadecimal form. For instance, the value supplied in MM2BIOS.ASM is 81. In binary, this appears as 1000 0001 in the IOBYTE and means the LST is assigned to LPT:, PUN and RDR devices are coded for TTY: and the CON is coded for a terminal (CRT:). The replacement value used in the example below is 1. In binary, this is 0000 0001 which means LST: is assigned to TTY:, RDR: and PUN: are still assigned as TTY:, and CON: remains as CRT:.

The following assignments are made by MM2BIOS at cold boot. To have them displayed on your terminal, type STAT DEV:

CON:	is	CRT:
PUN:	is	TTY:
RDR:	is	TTY:
LST:	is	LPT:

NOTE: Although PUN: and RDR: are assigned to TTY:, MM2BIOS does not contain a driver routine. An attempt to output to a punch device or input from the reader device will not work.

The CRT: device is a typical terminal (keyboard with screen) attached to the serial port on the DOUBLER. The LPT: assignment for LST: references a Centronics 703/779 dot matrix printer driver included in the BIOS. Alternately TTY:, CRT: or UL1: may be assigned to LST:. TTY: provides output through the serial I/O port on the Micromation Multi I/O board. A driver routine is present in the BIOS to drive a serial printer. CRT: indicates that the terminal is the LST: device. UL1: references a custom driver written and installed by the user (see section C-3 below).

If your system has a serial printer attached to the Multi I/O Board serial port for the LST: device, you will need to type

STAT LST:=TTY:

after every cold boot (a warm boot does not affect the IOBYTE) to output to the printer. This may prove tedious in daily operation. If so, the procedure below describes how to change that portion of MOVCPM.COM that sets the IOBYTE. Subsequent use of MOVCPM renders TTY: as the LST: device. Of course, CRT: or ULL: can also be specified.

The procedure to change the IOBYTE uses the CP/M transients SUBMIT and XSUB. If you are not familiar with them, read through their descriptions in <u>AN INTRODUCTION TO CP/M FEATURES AND</u> FACILITIES and <u>CP/M 2.x USER'S GUIDE FOR CP/M 1.4 OWNERS</u>. To begin, place the back-up system disk in drive A, close the door and type

SUBMIT LIST XX

where xx is one of the following.

l if you want TTY: as the default LST: assignment 4l if you want CRT: as the default LST: assignment 8l if you want LPT: as the default LST: assignment Cl if you want UL1: as the default LST: assignment

The following illustrates use of this procedure. In this example, the system size remains at the value shipped with the Z-PLUS (62K of memory) and the LST: assignment is changed from LPT: (the Centronics printer) to TTY: (the serial port on the Multi I/O board). As in other sections of this manual, user entries are underlined and a RETURN is indicated by the "@" character.

A>SUBMIT LIST 1@

A>XSUB

A>DDT DDT VERS 2.x -IMOVCPM.COM

-R

NEXT PC 2800 0100 -S20CA 20CA 81 1 20CB 32 .

-GØ

(xsub active)

A>SAVE 39 MOVCPM.COM

A>

The only user entry in this example is the first. The remainder of the display is performed automatically under SUBMIT and XSUB. This SUBMIT file uses DDT to alter the location in MOVCPM that sets the IOBYTE. The value entered (1, 41, 81 or Cl for xx) replaces the default setting (81).

After the final prompt is displayed (after SAVE 39 MOVCPM.COM), press the RESET button on the front of the computer. This disengages XSUB. The CP/M sign-on and prompt are displayed. The following steps create a new system image using the new MOVCPM. After the RESET, perform the following.

A>MOVCPM 62 *@ Reminder: if you wish to generate a different size, replace 62. CONSTRUCTING 62k CP/M - Micromation ver 2.x READY FOR "SYSGEN" OR "SAVE 35 CPM62.COM" A>

The new system is now in memory. The following transfers it to the disk in A. If you wish to preserve your current system, put a formatted disk in B and specify it as the destination disk. A>SYSGEN@ SYSGEN VER 2.x SOURCE DRIVE NAME (OR RETURN TO SKIP)@ DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <u>A</u> DESTINATION IN A, THEN TYPE RETURN <u>@</u> FUNCTION COMPLETE DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <u>@</u> A>

To see (and ensure) that the change has occurred, press the RESET button again (if you wrote the new system to the disk in B, exchange the disks before resetting) and type

STAT DEV:0

The procedure described above renders the following response.

CON: is CRT: RDR: is TTY: PUN: is TTY: LST: is TTY:

Changing the Step Time

IMPORTANT: This section has significance to those who have purchased Remex double sided drives with the DOUBLER. If your model has the standard Shugart drives, the BIOS portion of the O/S contains the appropriate step time setting. Do NOT execute this procedure if you have Shugart drives.

The step time value included in BIOS is used by the floppy disk drives to establish the rate at which the drive head moves from track to track. The appropriate rate for the different disk drives (from various manufacturers) is determined by noting the system performance with different settings; the good old trial and error method. Micromation has already done the leg-work and we've determined that the best setting for Shugart drives is 8 milliseconds and for Remex drives is 4 milliseconds. Since most of our systems are shipped with Shugart drives, MM2BIOS sets the step time at 8 ms. Remex drives will work with this setting, but system performance is enhanced by changing this value to 4 ms.

The STEP.SUB file is provided to change the step time value in MOVCPM for Remex drives much as the LIST.SUB file changes the IOBYTE default. In fact, execution of STEP.SUB is very similar. Again, STEP.SUB is SUBMITED, and XSUB and DDT are called up. To invoke STEP.SUB, enter

SUBMIT STEP 4

when the A> prompt is displayed and terminate the command with a RETURN. As in the execution of LIST.SUB, do not make any additional entries until the final A> is displayed. It appears after A>SAVE 39 MOVCPM.COM has been displayed.

When the final A> prompt appears, hit the RESET button on the cabinet to disengage XSUB. Subsequently, perform MOVCPM exactly as illustrated above to generate a system image with the new step time installed.

C-3 BIOS AND BOOT ALTERATION

You will need to change and install MM2BIOS.ASM (the floppy disk only BIOS) if

- you need to insert a special printer driver (Note: several printer manufacturers use the Centronics conventions for data output. Check with your dealer to see if your printer falls into this category.)
- you do not have the Micromation Multi I/O Board. MM2BIOS is set-up to use the parallel and serial ports on this board for output to the Centronics printer and output to a serial interface printer. Code is present in MM2BIOS supporting serial output through a number of I/O boards from other manufacturers. This section describes MM2BIOS alteration to support these boards.

NOTE: If MM2BIOS is changed and inserted into the operating system as described in this section, the MOVCPM utility will not contain the change. Subsequent use of MOVCPM will render a system with the features of the O/S originally shipped with the unit. Consequently, plan ahead; determine the system size and IOBYTE default before installing the new system.

If you change the MSIZE equate in MM2BIOS.ASM, a corresponding change must be made in M2BOOT.ASM. There are two ways to do this:

- 1) Perform a MOVCPM as illustrated in Step 1 in NEW SYSTEM GENERATION below. The system size generated must match the value entered as MSIZE. In this case, there's no need to alter the MSIZE value in M2BOOT.
- 2) Change the MSIZE value in M2BOOT.ASM to agree with the value entered in MM2BIOS.ASM. Both must be assembled and inserted into the system as shown in NEW SYSTEM GENERATION. There's no need to perform Step 1 in this case; skip to Step 2.

Of course there are other changes that can be implemented. These should be left to programmers experienced in CP/M and BIOS alteration though. In fact, all changes to the operating system should be left to experienced programmers. This section is for reference to identify and define the significant labels. In addition, installation of the altered BIOS and BOOT with DDT is described. Regardless of your hardware components, MM2BIOS.ASM and M2BOOT.ASM are the two programs to alter if a change is required. CBIOS.LIB, BIOS.LIB, and BOOT.LIB are examples of the form of these programs and should not be used as the source for changes. They are for reference only. Most alterations will affect MM2BIOS only.

Before demonstrating creation of a new system with altered BIOS and BOOT, the features and options of MM2BIOS are presented. Once the files have been edited and assembled, return to NEW SYSTEM GENERATION below to install the them.

MM2BIOS.ASM: This program is supplied with systems that contain the Multi I/O Board. Four serial ports are available (though only one is installed). MM2BIOS assigns this port to the TTY: device. A driver routine for a Centronics $7\emptyset3/779$ dot matrix printer is included to use a couple of the parallel ports. Flags are set to assemble only those features present in a particular system. The listing below is excerpted from MM2BIOS.ASM and shows the conditional flags.

MSIZE	EQU	48	;SIZE OF OPERATING SYSTEM IN KILOBYTES ;(CURRENTLY 48K). THIS NUMBER MUST BE
NDRIVES	EQU	4	;CHANGED FOR LARGER SYSTEMS. ;NUMBER OF DISK DRIVES SUPPORTED BY ;THIS CBIOS

*I/O BYTE FOR LIST DEVICE IS IMPLEMENTED AS FOLLOWS: "TTY" = MULTLIST (MM MULTI I/O BOARD SERIAL PORT#1) * "CRT" = CONOUT (MM DOUBLER SERIAL PORT)
"LPT" = CENTLIST (CENTRONICS 703/779 TYPE LIST DEVICE) "CRT" = CONOUT* "UL1" = OPTIONAL DRIVER TO BE SELECTED BY USER (SEE BELOW) ==>UPDATED: 2-12-80 ;LIST DEVICE EQUATES: (THESE COULD BE SET FALSE TO SAVE BIOS SPACE IF USER LIST DRIVER IS TOO LARGE TO FIT OTHERWISE) ; MULTLIST EOU TRUE CENTLIST EOU TRUE :-----_____

;LIST DEVICE	OPTIONS:	SET ONLY	ONE FLAG TRUE FOR DESIRED DRIVER AS "ULL"
;			
NONE	EQU	TRUE	;NO "UL1" FUNCTION DESIRED
GODBIO	EQU	FALSE	;GODBOUT I/O BOARD AS LST:
SSMIO	EQU	FALSE	;SOLID STATE MUSIC 2S+P AS LST:
DPIO	EQU	FALSE	;DELTA PRODUCTS CPU BOARD AS LST:
USERLST	EQU	FALSE	;SET FLAG TO INSERT USER DEFINED LST:
	22		;THIS CODE MUST BE INSERTED UNDER LIST:
			;AND INITIALIZATION CODE UNDER (COLD)
			;BOOT:

The labels have the following meanings:

MSIZE: The amount of memory to be used by CP/M is set by this equate. Note that a change in MSIZE here necessitates a corresponding change in the MSIZE equate in MPBOOT.ASM (use one of the two methods described above). If only the system size is to be changed in the operating system, use MOVCPM instead. Notice that the value in MM2BIOS is 48. If you reset any flag, be sure to set this one to your current system size (62 in the standard configuration).

NDRIVES: The number of disk drives supported by the BIOS is indicated here. There is no need to change this equate even if your system has only two drives.

MULTLIST is assigned as the TTY: device and is set to use the Multi I/O board serial port (port 1) for output. It is set TRUE. If a user list device (UL1:) is to be incorporated, this flag can be set FALSE. Subsequent assembly will not include the MULTLIST related code. Thus, room can be made if the new code requires it.

CENTLIST is assigned as the LPT: device and is set to use the I/O board parallel ports for output. Subsequent code drives a Centronics printer. It, too, is set TRUE and can be set FALSE if the new code necessitates more room to fit in BIOS.

LIST DEVICE OPTIONS: One of the five labels shown can be assigned as the UL1: device. NONE is set TRUE since none apply. However, if you have one of these boards from other manufacturers or have a special printer driver you wish to incorporate, set the appropriate label TRUE. Note that only one can be TRUE.

If a driver is to be written (i.e., USERLST is to be used as UL1:), the code to assign the ports, to initialize the device, and to output data must be inserted in the appropriate places. The locations within MM2BIOS are identified by IF USERLST. (There are several, each for a separate portion of the code.) Insert the appropriate code after this entry and before the ENDIF statement.

If it is necessary to change the port assignments or install an additional USART on the Multi I/O Board, refer to that manual for a description of the changes necessary to the BIOS. Excerpts from MM2BIOS.ASM and program examples are provided.

To reiterate, the flags described above determine which options to implement. There is little need to alter other parts of MM2BIOS.ASM unless a special printer driver is to be inserted. Also, if you change the MSIZE equate in MM2BIOS, remember to change the MSIZE equate in M2BOOT.ASM.

Once any changes have been made, assemble MM2BIOS.ASM (and M2BOOT.ASM if necessary). Subsequently, proceed with the next part of this section to create a new system.

M2BOOT.ASM ALTERATION

M2BOOT.ASM will need alteration if you purchased REMEX doublesided floppy disk drives in your Z-PLUS system with Hard Disk. In Hard Disk systems, the STEP utility provided on the distribution diskette must NOT be used. Also, some users may want to change the MSIZE value in M2BOOT for convenience sake if the MSIZE in M(H)2BIOS was changed.

To review, changing M2BOOT isn't always necessary. In floppy disk only Z-PLUS systems, the values for MSIZE and STEPTIME can be changed with MOVCPM and SUBMIT STEP, respectively. If you choose either of these options be sure to perform the operation before installing the new BIOS. Subsequently, disregard the two commands for installing M2BOOT.HEX in Step 2 below.

The MSIZE equate appears in the beginning of the M2BOOT.ASM file. As distributed, a value of 48 is present. Change this value with your editor to agree with the value in MM2BIOS.ASM. The MSIZE equate in both MUST be the same.

To change the STEPTIME default for REMEX drives, look in the INIT section of M2BOOT.ASM for the following code.

MVI	A,8				
STA	STEPTIME	;STEPTIME	FOR	SHUGART	DRIVES

Change the "8" in the first instruction to "4". This is the recommended steptime for REMEX drives.

These are the only changes that should be made to M2BOOT.ASM. After you are finished editing the file, assemble it and insert the new M2BOOT.HEX as described in Step 2 below.

If your intention is to change the STEPTIME only, you will need to change MSIZE as well. This is because the MSIZE equate is set for a 48K system which probable is not the amount of memory you have your BIOS set-up to use.

NEW SYSTEM GENERATION

After the programs have been assembled, MM2BIOS.HEX (and M2BOOT.HEX) must be inserted into the system. If the system size is 62K, you can use CPM62.COM as the source file when DDT is invoked. (Skip Step 1 below.) For another system size, proceed with Step 1.

In the examples that follow, "@" indicates a carriage return should be entered (press the RETURN key). Do not enter the @ character. All user entries are underscored.

To start, put a system diskette with the following files on it in drive A and a formatted (either single or double density) diskette in B.

If a system size other than 62k is needed, proceed with the next step. Otherwise, skip to the Step 2.

STEP 1

A>MOVCPM xx *@ where xx indicates the new system size

CONSTRUCTING XXK CP/M VERS 2.X READY FOR "SYSGEN" OR "SAVE 35 CPMXX.COM"

A>SAVE 35 CPMxx.COM

The MOVCPM program read the system image from the diskette, changed the values that specify the system size, and loaded it into memory, specifically the transient program area (TPA). SAVE was used to record the file CPMxx.COM from the contents of the TPA onto the disk in drive A:.

To install the new BIOS and BOOT, DDT is used. In this example, the CPM62.COM file is used. If a different system size was created, substitute the CPMxx.COM SAVEd above for CPM62.COM.

STEP 2

A>DDT CPM62.COM@					
DDT VERS 2.x					
NEXT PC					
2400 0100					
- <u>L1F8Ø</u>	List the contents of the				
1F8Ø JMP F2C9	10 locations starting at				
1F83 JMP F2FE	1F8Ø. This is the jump				
1F86 JMP F496	table for BIOS. Use F200				
•••	to determine offset in				
	next step (see descrip-				
	tion below for reason)				
-H1F8Ø F2ØØ	Determine the offset.				
1180 2D80	2D80 is the offset				
-IMM2BIOS.HEX	Get MM2BIOS				
-R2D8Ø	Insert it at 2D80				
NEXT PC	Insele le at 2000				
	Get new M2BOOT *				
-IM2BOOT.HEX					
-R900	M2BOOT always goes at				
NEXT PC	9ØØ				
2400 0000					
- <u>^c</u>	Exit to the system				
A>SAVE 35 CPM62X.COM	Save the new CP/M system				

* Installation of M2BOOT.HEX is only necessary if some value (e.g., MSIZE or STEPTIME) was changed. Recall that a change is system size can be performed by performing Step 1 above before installing the new BIOS with DDT. If no change was made to M2BOOT, skip this command and the next.

The system was SAVEd as CPM62X.COM as a precaution in case the new BIOS doesn't work. Thus, CPM62.COM is available as a source if the operation needs to be done again.

Unlike M2BOOT, which always goes at 900H in the system, the location of MM2BIOS varies with the system size. Where to put it is determined by finding the difference between the its present location in memory and the location it resides at when in use. Memory location 1F80H is always the location of the jump table to the BIOS routines in CP/M. To determine where to put the new BIOS (MM2BIOS), list this portion of the system after executing MOVCPM to see where it has been placed. Since BIOS starts at an xx-hundred location, drop the last two digits, rounding down to the hundred hex number. The following table illustrates this procedure.

Value Shown	Value Used
F2C9	F2ØØ
C2C9	C200
EAC9	EAØØ

The "Value Used" is then used to calculate the offset necessary. The offset is the negative difference between the location where BIOS resides during execution (in high memory) versus its present location under DDT in the TPA. Use the H command entering first the jump table address (1F80), a space, and then the location pointed to by the jump table. The numbers that result are the sum of the two and the difference. Disregard the sum and use the difference (2D80 in the example above) as the location for MM2BIOS in the DDT R (read) command.

Step 3 writes the new system on a disk. Again as a precaution, write the new system to a different formatted disk than the one currently in use. Since it is not known whether the new one works, it's not a good idea to erase the current system yet. To start, keep the system disk in drive A and put a formatted disk (either single or double density, it doesn't matter) in drive B. If you did not use CPM62.COM in the example above, substitute your CPMxx.COM file for CPM62X.COM in the examples below.

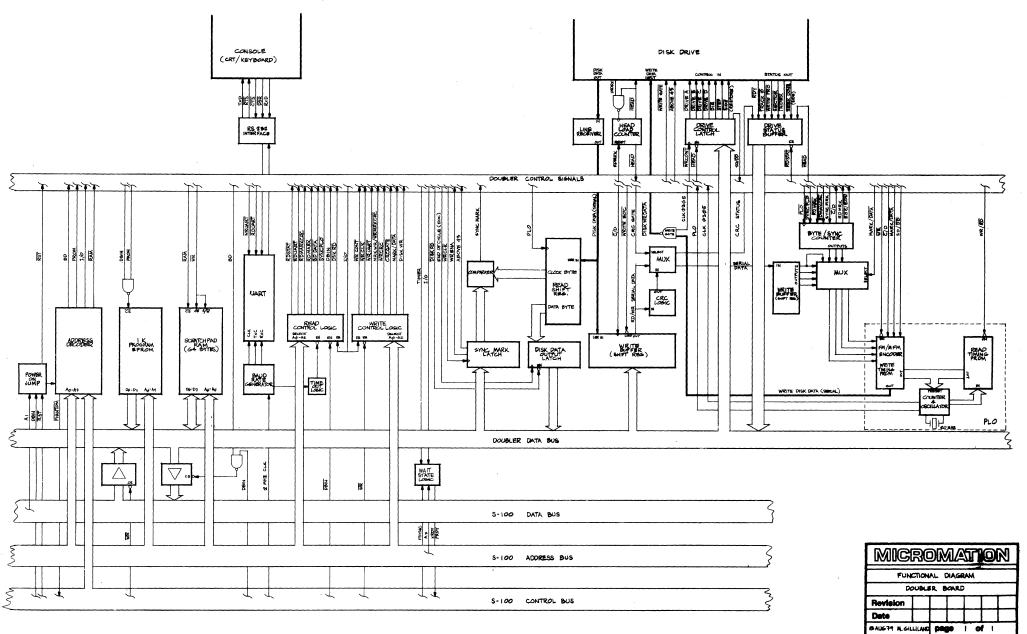
STEP 3

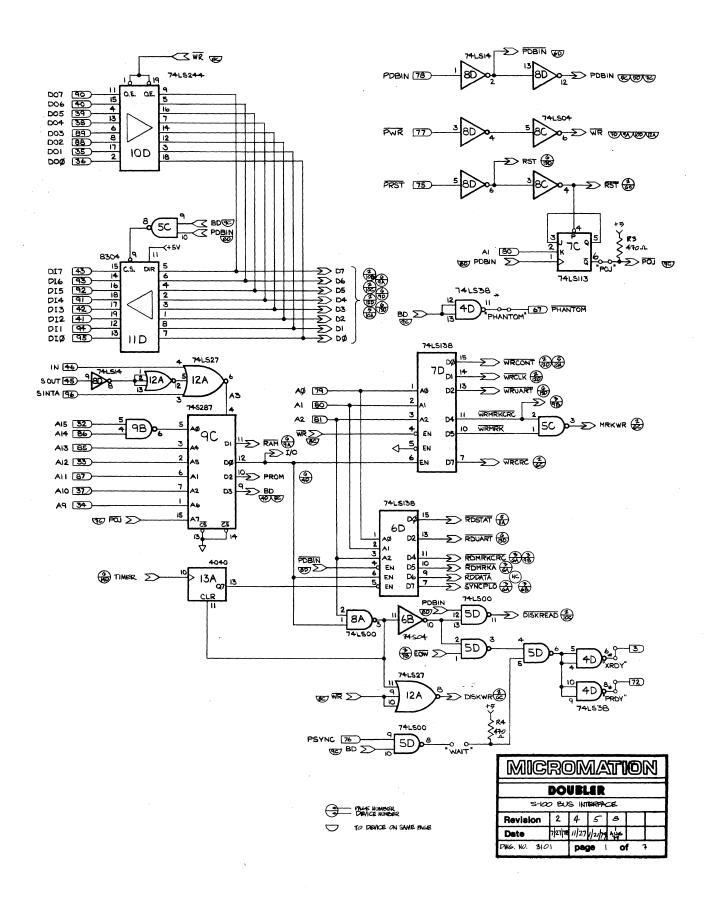
A>DDT CPM62X.COM@ Invoke DDT to load the DDT VERS 2.x the system into memory. NEXT PC 2400 0100 -^C Exit to system A>SYSGEN@ Invoke SYSGEN to SYSGEN VER 2.x generate new system SOURCE DRIVE NAME (OR RETURN TO SKIP) @ DESTINATION DRIVE NAME (OR RETURN TO REBOOT)B DESTINATION ON B, THEN TYPE RETURN@ FUNCTION COMPLETE DESTINATION DRIVE NAME (OR RETURN TO REBOOT)@ A>

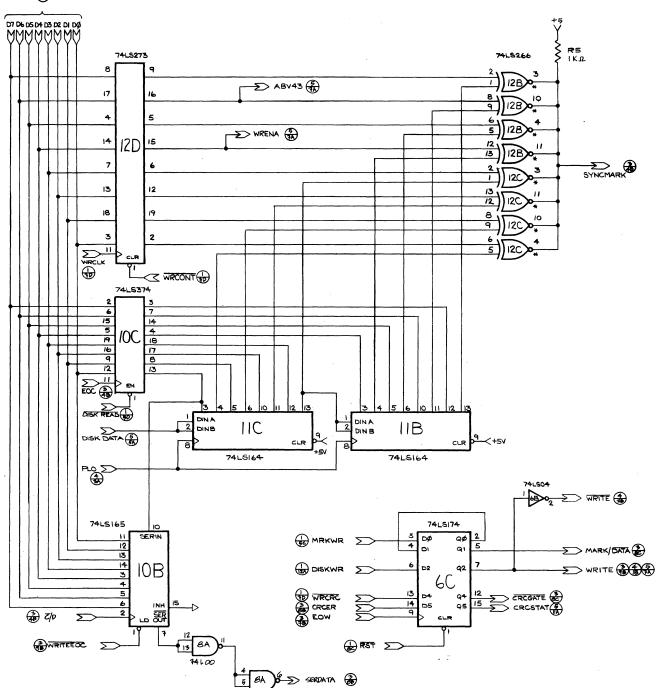
Notice that a RETURN was entered in response to the program question SOURCE DRIVE NAME. DDT had already transferred the system image (in this case CPM62X.COM) from disk into memory.

To test the new diskette, exchange the disks in A and B and hit the RESET button. The CP/M sign-on message and prompt should appear.

STEP 4

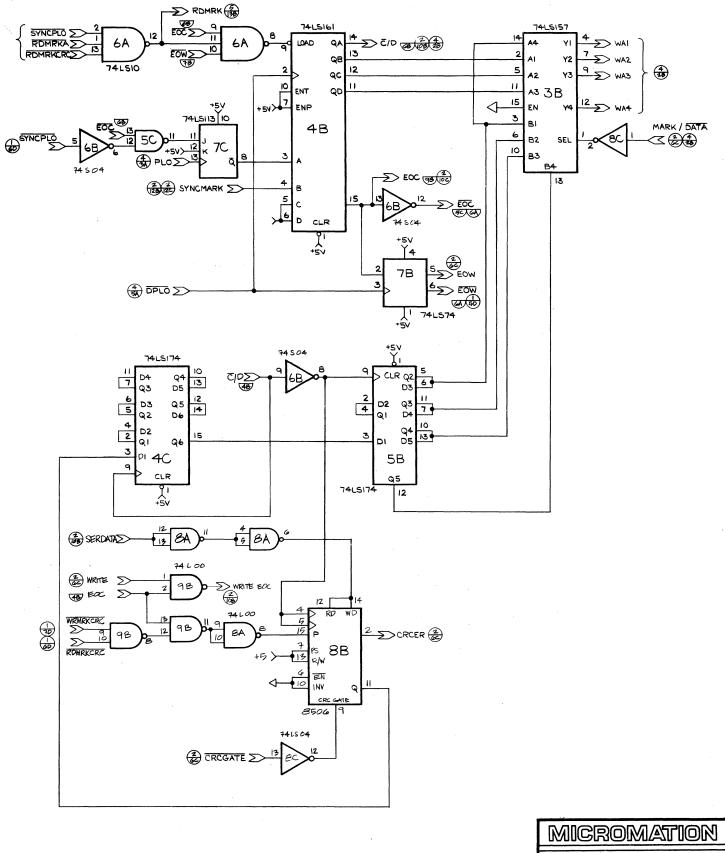

Assuming the new system worked, type

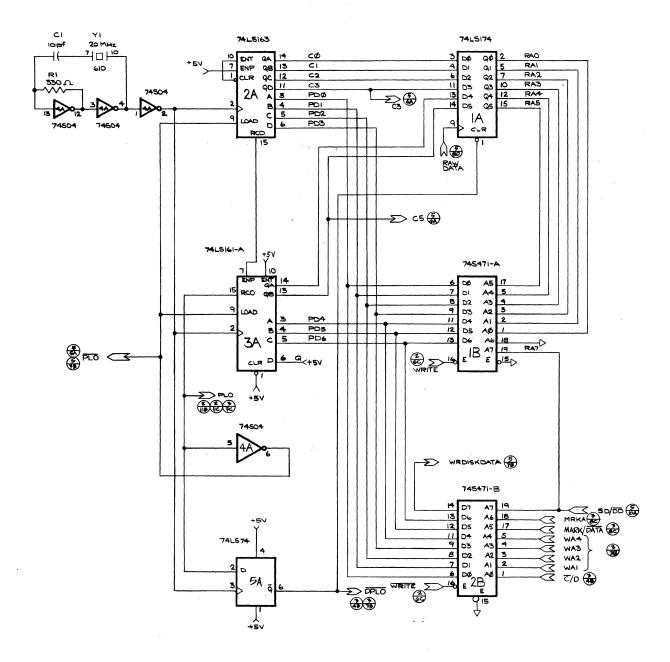

B:PIP A:=B:*.*


to transfer all the files from the disk in B (the former system disk) to the new system disk in drive A. "B:" had to precede PIP since the disk in A: is blank except for the system.

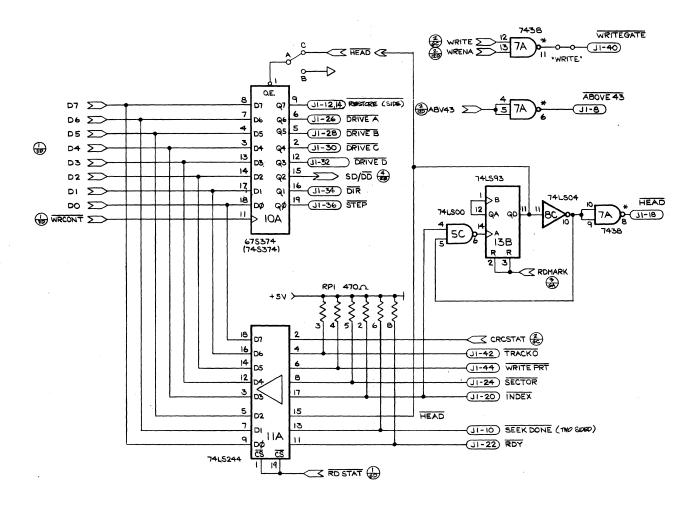
If the new system did not work, try the procedure for creating a new system again. (Perhaps you made a mistake the first time through.) If it doesn't work after the second try, the problem is most likely in the BIOS you wrote or patched.

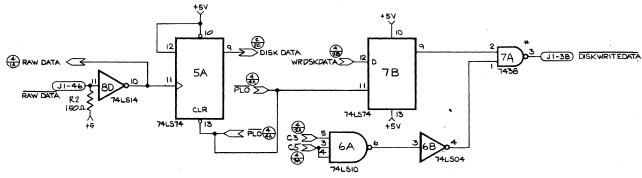
Once MM2BIOS and M2BOOT have been patched and incorporated into your operating system, use of MOVCPM to change the system size will install the old system rather than the new one. MOVCPM contains the original MM2BIOS and M2BOOT with alterations to relocate the system size according to the value entered. All the other flags described above remain the same. To change the size of the new system, you will need to edit MM2BIOS.ASM and M2BOOT.ASM again changing the MSIZE equate, re-assemble the files, perform MOVCPM (specifying the new system size again to render the appropriate) locations in the jump table described above), and execute DDT to insert the altered files.



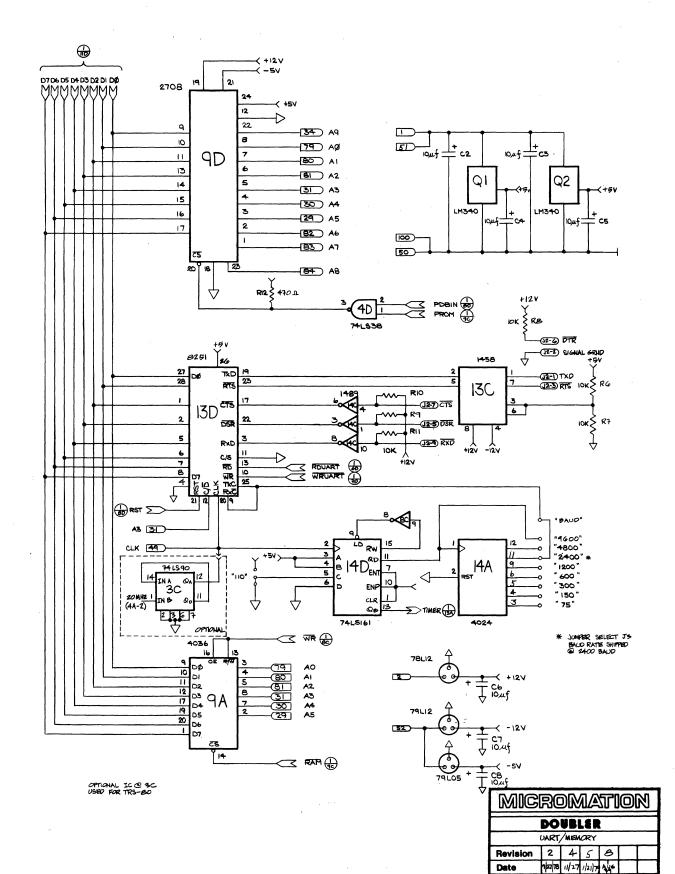


MICROMATION						
DOUBLER						
,	æad	CHAI	INEL			
Revision	2	4	5	8		
Date 721 12 11/27 1/21/79 445						
DWG. NO. 3102 page 2 of 7						

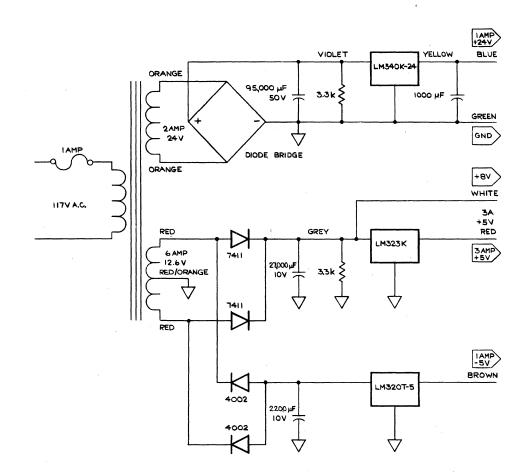

⊕



DOUBLER						
WRITE CHANNEL						
Revision	Revision 2 4 5 8 8.1					
Date	7/22/78	11/27	1/21/79	AU6	ALK O	
DWG.NO. 3103 page 3 of 7						



MICROMATION							
	DOUBLER						
1	20	CIRC	UITR	Y			
Revision	2	4	5	8			
Date 7/2118 1/27 1/2)79 1/2							
DWG. NO. 3104 page 4 of 7							



MICROMATION						
	DOUBLER					
P	RIVE	INTE	rfaci	E		
Revision	2	4	5	в		
Date 7/21/18 //27 //2/ Aug						
DW6. NO. 3105 page 5 of 7						

DW6. NO. 3106

page G of 7

MICROMATION						
	DO	UBL	ER			
,	DISK	ROW	ER			÷
Revision	2	4	5	8		
Date 1/21/18 /1/27 //2/77 1/2/7						
DW6.ND. 5107 page 7 of 7						

; ;PRDM ROUTINES FOR MICROMATION DOUBLER, VERSION C.2

;THE C.1 VERSION HAS NOPS IN SYNC ROUTINE TO ALLOW MORE FREQUENT REFRESH ;OF DYNAMIC RAMS ;IT ALSO SETS UP THE SIDE BIT EARLIER TO MEET SETUP TIME FOR Y-E DATA DRIVES ;

;THIS VERSION HAS THE FOLLOWING CHANGES FROM C.1: ;HAS FIX FOR C.1 BUG IN SETTING UP DENSITY ;DISABLES INTERRUPTS AFTER FINDING CORRECT SECTOR ;HAS SLOWER STEP AND SETTLE TIMES ;

FEB 11, 1980

ş

F800	BASE	ORG	0F800H	
FC00 =	BUFF	EQU	BASE+400H	SCRATCHPAD RAM
1000 -		LUU	5052.4000	çoonni on ny 'nnn
	; . CTADT		IARE PORT DEFINI	TIONE
			MAE FUNI VEFIMI	11043
FE00 =	; WRCONT	EQU	BASE+600H	
FE01 =	WRCLK	EQU	WRCONT+1	
FE02 =	WRUART	EQU	WRCONT+2	
FE02 =	WRMRKCRC	EQU	WRCONT+4	
FE05 =	WRMRK	EQU	WRCONT+5	
FE06 =	WRDATA	EQU EQU	WRCONT+6	
FE07 =	WRCRC		WRCONT+7	
FE00 =	RDSTAT	EQU	WRCONT	4
FE02 =	RDUART	EQU	WRCONT+2	
FE04 =	RDNRKCRC	EQU	WRCONT+4	
FE05 =	RDMARK	EQU	WRCONT+5	
FE06 =	RDDATA	EQU	WRCONT+6	
FE07 =	SYNCPORT	EQU	WRCONT+7	
	ļ			
	;START	UF RAM Y	ARIABLE DEFINIT	1UN5
	j			
FC00 =	ERRORBYTE	EQU	•	F ERRORS DURING RETRIES
FC01 =	DENBYTE	EQU	· · ·	SINGLE DENSITY
				DOUBLE DENSITY
FC02 =	READWRITE	EQU	BUFF+2 ;0 FO	
			•	ORWRITE
FC03 =	CONTROLBYTE	EQU	BUFF+3 ;RAM I	MAGE OF RDSTAT OR WRCONT
FC04 =	TRACK	EQU	BUFF+4	
FC05 =	PRESDISK	EQU	BUFF+5	
FC06 =	LOGINTAB	EQU	BUFF+6 ;FOR E	
			;0 IF DRIVE HA	S NOT BEEN LOGGED IN

			;55H IF DRIVE HAS BEEN LOGGED IN
FCOA =	SECTOR	EQU	BUFF+OAH
FCOB =	DMA	EQU	BUFF+OBH ;DMA ADDRESS
FCOD =	DISK	EQU	BUFF+ODH
FCOE =	TESTNEXT	EQU	BUFF+OEH ;55H IF WANT TO TEST DENSITY
			; OF NEXT TRACK
FCOF =	TWOSIDE	EQU	BUFF+0FH
FC10 =	STEPTIME	EQU	BUFF+10H
FC11 =	ABOVE43	EQU	BUFF+11H ;10H IF (TRACK)<44D
			50H OTHERWISE
FC12 =	TRACKTAB	EQU	BUFF+12H
FC16 =	DENMAP	EQU	BUFF+16H ; SAME CONVENTION AS DENBYTE
FC20 =	TRY1	EQU	BUFF+20H
FC21 =	RETRYCOUNT	EQU	BUFF+21H
FC22 =	CURRDRIVE	EQU	
FC23 =	TESTMAX	EQU	BUFF+23H ;NO. RETRIES FOR DENSITY TEST
			,
000F =	STEPSETTLE	EQU	15
0028 =	HEADSETTLE	EQU	40
FC40 =	STACK	EQU	BUFF+64D

.

;BEGIN WITH JUMP TABLE

F800 C3D3FB	JNP	COLDBOOT
F803 C397FB	JMP	HOME
F806 C31EFB	JNP	SELDSK
F809 C3AEFA	JMP	SETTRK
FBOC C3A9FA	JNP	SETSEC
F80F C3A3FA	JMP	SETDNA
F812 C329F8	JNP	READ
F815 C32DF8	JMP	WRITE
F818 C369FA	JNP	SKEW
F81B C303FB	JMP	SETDEN

PAGE

WRITEPROTECT:

F81E CDBEFB	CALL	DISKREADY1	;LOADS HEAD ;Waits Till Disk Ready ;Returns (Rdstat) in B
F821 78	MOV	A, B	
F822 E604	ANI	•	EPRT BIT FROM DRIVE
F824 C0	RNZ		
F825 3A05FE	LDA	RDMARK ;RESE	TS HEAD LOAD COUNTER
F828 C9	RET		
	•		
	READ:		;ENTRY POINT FOR READ ROUTINE
F829 AF	XRA	A	;(READWRITE)= 00 FOR READ
F82A C32FF8	JMP	60	g menumicates of the menu
	WRITE:		ENTRY POINT FOR WRITE ROUTINE
F82D 3E10	MVI	A,10H	;(READWRITE)=10H FOR WRITE

FILE: C2PROM PRN PAGE 003

F82F 3202FC F832 2A01FC F835 3A03FC	60:	STA LHLD LDA	READWRITE Denbyte Controlbyte	; (L)=(DENBYTE)
F838 2F F839 E6FB F838 B5		CNA Ani Ora	OFBH L	;MASK OUT BIT 2 (SD/-DD = 0)
F83C 2F F83D 3200FE F840 CDBEFB		CMA Sta Call	WRCONT Diskready1	
F843 3A0AFC F846 4F		LDA MOV	SECTOR C,A	; (C) = (SECTOR)
F847 3A04FC F84A 47 F84B AF		LDA Nov Xra	TRACK B, A A	; (B)=(TRACK)
F84C 3200FC F84F 7D		STA	ERRORBYTE A,L	;(ERRORBYTE)= 0
F850 B7 F851 CA70F9		ORA JZ	A SD	;TEST FOR SINGLE DENSITY

ţ

DOUBLE DENSITY READ OR WRITE

READDD:

F854	CD5FF9	BLOOP:	CALL	SYNC	SYNC ON HEADER
					;FOUND HEADER
	360A		MVI	M, OAH	;FIND OA CLOCK FOR ID MARK
F859			LDAX	D	;SYNC WITH -EOW
F85A	3A04FE		LDA	RDMRKCRC	
F85D	FEA1		CPI	0A1H	;DATA FOR ID MARK
F85F	C254F8		JNZ	BLOOP	
					FOUND ID ADDRESS MARK
					1
F862	14		LDAX	D	BYTE AFTER ID MARK SHOULD BE FE
	FEFE		CPI	OFEH	,
	C254F8		JNZ	BLOOP	
	020110			22001	;FOUND FE BYTE
C010	1A		LDAX	D	, TRACK BYTE FROM DISK
F869				B	,
			CMP		; (B) = (TRACK)
L90H	C2F2F8		JNZ	TERROR1	;TRACK ERROR
F86D	1A		LDAX	D	SECTOR BYTE FROM DISK
F86E	B9		CMP	C	; (C) = (SECTOR)
F86F	C254F8		JNZ	BLOOP	WRONG SECTOR. TRY AGAIN
F07 7	1.6		1 844	D	
F872			LDAX	U	- STRADIE INTERDURTS DEPOSE DUESVING IS ODS
F873			DI	-	;DISABLE INTERRUPTS BEFORE CHECKING ID CRC
F874			LDAX	D	
F875			LDAX	D	;READ 1 BYTE PAST ID CRC
	3A00FE		LDA	RDSTAT	
F879	1F		rar		;CHECK ID CRC
F87A	1A		LDAX	D	
F87B	DADDF8		JC	ERROR	; ID CRC ERROR
F87E	1A		LDAX	D	
	3A11FC		LDA	ABOVE43	

5000 47				
F882 47		MOV	B,A	
F883 1A		LDAX	D	
F884 70		MOV	M,B	;(WRCLK)=(ABOVE43)
F885 1A		LDAX	D	;NOW 5 BYTES INTO GAP
F886 0609		MVI	B,9	
F888 1A	GLOOP:	LDAX	D	
F889 05		DCR	B	
F88A C288F8		JNZ	GLOOP	
F88D 1A		LDAX	D	;NOW 15 BYTES INTO GAP
				ANN 13 DITES INTO OMP
F88E 3A02FC		LDA	READWRITE	
F891 B7		ORA	A	;CHECK FOR WRITE
F892 1A		LDAX	D	;16 BYTES INTO GAP
F893 C203F9		JNZ	WRITEDD	
				9
				;DOUBLE DENSITY READ
F896 1A		LDAX	D	3
F897 1A		LDAX	D	
F898 36FF		NVI	N, OFFH	
F89A 1A		LDAX	D	
F89B 1A		LDAX	D	
F89C 1A		LDAX	D	;21 BYTES INTO GAP
F89D 13		INX	D	; (D)=SYNCPORT
F89E 1A		LDAX	D	;SYNC ON FF CLOCK PATTERN
F89F 1B		DCX	D	; (D)=RDDATA
F8A0 360A		MVI	M, OAH	; (WRCLK)=0A
			,	CLOCK PATTERN FOR DATA MARK
F8A2 2A0BFC		LHLD	DMA	
F8A5 1A		LDAX	D	;SYNC WITH -EDW
F8A6 3A04FE		LDA	RDMRKCRC	SET DATA PATTERN FOR DATA MARK
F8A9 FEA1		CPI	OAIH	,
F8AB C2DDF8		JNZ	ERROR	;MISSING DATA NARK
				:
				FOUND DATA MARK
				START TRANSFERRING DATA
				,
F8AE 1A	RXFER:	LDAX	D	
F8AF 77		MOV	M,A	
F8B0 23		INX	H	
F8B1 42		MOV	B,D	
F8B2 1A		LDAX	D	
F8B3 77		MOV	Ň,A	
F8B4 23		INX	H	
F8B5 4B		MOV	C,E	
F8B6 0A		LDAX	B	
F8B7 77		MOV	M,A	
F8B8 23		INX	H	
F8B9 1EE1		MVI	E,OE1H	
F8BB OA		LDAX	B	
F8BC 77		MOV	N,A	;4 BYTES OF DATA
F8BD 23		INX	H	
FBBE OA		LDAX	B	
F8BF 77	RLOOP:	MOV	H,A	
F8C0 0A		LDAX	B	
F8C1 1C		INR	E	

PAGE 004

FILE: C2PROM PRN

FILE:	C2PROM	PRN		PAGE 0)05			
F8C2	23		INX	Н				
F8C3	77		MOV	M,A				
F8C4	0A		LDAX	B				
F8C5	23		INX	H				
F8C6	77		MOV	M,A				
F8C7	0A		LDAX	B				
F8C8	23		INX	H				
F8C9	77		MOV	M,A				
F8CA	23		INX	Н				
F8CB	0A		LDAX	B				
F8CC	C2BFF8		JNZ	RLOOP		•	FERRED 128 BYTE	S
						; AND HAVE R	EAD 129TH BYTE	
F8CF	0A		LDAX	B				
FBDO			LDAX	B		;READ 1 BYT	E PAST CRC	
F8D1	3A00FE		LDA	RDSTAT				
F8D4	1F		RAR			; CHECK DATA	CRC	
F8D5	DADDF8		JC	ERROR		;DATA CRC E	RROR	
				; .eurrreer	in er	CTOR READ		
				•	UL JL			
F8D8	ΔΕ		XRA	; A		-RETURN OO	IN ACCUMULATOR	
	3201FE		STA	WRCLK		INCIONA VV	IN RECONCERTON	
F8DC			RET	MUCEN			7	
	W 3		n 					
		ERROR:						
		ARRIVE	HERE ON	ANY DE ED	N I OWT	NG CONDITIONS	ł	
		;		CK ERRORS				
		;	ID CRC E					
		, ,		DATA MARI	K			
		;	DATA CRI		n			
		,						
F8DD	3EEF		NVI	A,OEFH		; RETURN EFH	I IN ACC	
F8DF	B7		ORA	A		; (UN	SUCCESSFUL REAL))
F8E0	3201FE		STA	WRCLK				
F8E3	C9		RET					
		TERROR:						
		; ARRIVE	HERE ON	TRACK ERF	ROR IN	SINGLE DENSI	ТҮ	
EDEA	CDF BF 8		CALL	ERRORCOU	UT ·	; INCREMENT		
	COFBF8		JNZ	ALOOP	M E	•	IF LESS THAN 30	u
FOC/	627067		UNL	HLUUF		JINT MOMIN	IF LEDD INHIN DV	'n
F8EA	3 E EF	NO	MVI	A,OEFH		; 30H TRACK	ERRORS	
F8EC	B7		ORA	A		RETURN EFH		
F8ED	37		STC			•	UL DISK OPERAT	ION)
	3201FE		STA	WRCLK		•		
F8F1			RET					
		TERROR1						

;ARRIVE HERE ON TRACK ERROR IN DOUBLE DENSITY

F8F2 CDFBF8		CALL	ERRORCOUNT	; INCREMENT	ERRORBYTE
F8F5 C254F8		JNZ	BLOOP	;TRY AGAIN	IF LESS THAN 30H
	•				

FILE:	C2PROM	PRN		PAGE	006	
5050	075150		140	110		
	C3EAF8	-	JMP	NO		
F8FB F8FE	2100FC	ERRORCO	UNT	LXI INR	H,ERRORBYTE M	.INCOENENT CODODVIC
FBFF				MOV	A,M	;INCREMENT ERRORBYTE
F900				CPI	30H	
F902				RET		
		WRITEDD	:			
		: DOUBLE	DENSITY	WRITE		
					TER ID FIELD	
F903			MVI	A, 4EH		
F905 F906			STAX Stax	D D	WRITE	4 BYTES OF 4E
F908			STAX	D		
F90B			STAX	D		
F909			XRA	A		
F90A			STAX	D	:WRITE	6 BYTES OF 00
F90B	12		STAX	D		
F90C	2A0BFC		LHLD	DNA		
F90F				D		
F910			STAX	D		
	0104FE			B, WRMRKC	CRC	
F914			STAX	D		
F915 F916			STAX			
F918			NVI Stax	A, OA1H B	·WRITE	DATA MARK (A1)
F919			NVI	C,OE1H	, with C	
		:START		-) ISK FROM MEMOR'	Y
F91B	7F	WXFER:	MOV	A,M		
F91C		WLOOP:	STAX	D.		
F91D			INX	H		
F91E			INR	C		
F91F			MOV	A,M		
F920			STAX	D		
F921			INX	H		
F922			MOV	A, M		
F923 F924			STAX Inx	D H		
F925			MOV	A,M		
F926			INX	H		
F927			STAX	D		
F928	7E		NOV	A,M		
F929	C21CF9		JNZ	WLOOP		
				•	E ARRIVE HERE W 124 Bytes to di	
F92C	12		STAX	D		
F92D			INX	H		
F92E			MOV	A,M		
F92F	12			D		
F930	23		INX	Н		

F931 7E	MOV	A,M	
F932 23	INX	H	
F933 12	STAX	D	
F934 7E	MDV	A, M	
F935 12	STAX	D	;128TH BYTE TO DISK
F936 3EFF	MVI	A, OFFH	
F938 3207FE	STA	WRCRC	;WRITE 2 BYTES OF DATA CRC
F93B 3207FE	STA	WRCRC	
F93E 12	STAX	D	;WRITE 3 BYTES OF FF
F93F 12	STAX	D	
F940 12	STAX	D	
F941 AF	XRA	A	;RETURN OO IN ACC
F942 3201FE	STA	WRCLK	(SUCCESSFUL WRITE)
F945 C9	RET		-

;SINGLE DENSITY ROUTINES ;ENTRY POINT IS SD (BELOW)

	WRITESD:	;ARRIVE HERE	E 6 BYTES PAST ID FIELD
F946 3EFF	NVI	A, OFFH	
F948 12	STAX	D	;WRITE 3 BYTES FF (BYTES 7,8,9)
F949 12	STAX	D	
F94A 12	STAX	D	
F94B AF	XRA	A	
F94C 12	STAX	D	;WRITE 6 BYTES OD (BYTES 10-15)
F94D 12	STAX	D	
F94E 2AOBFC	LHLD	DMA	
F951 12	STAX	D	
F952 12	STAX	D	
F953 12	STAX	D	
F954 12	STAX	D	;BYTE 15 OF GAP
F955 3EFB	NVI	A, OFBH	;WRITE DATA NARK FOR SINGLE DEN
F957 3204FE	STA	WRMRKCRC	
F95A 0EE1	HVI	C,0E1H	
F95C C31BF9	JMP	WXFER	JUMP TO COMMON WRITE ROUTINE

SYNC:

;ROUTINE TO SYNC ON HEADER

F95F 2101FE F962 36FF F964 1107FE F967 1A	CLOOP:	LXI MVI LXI LDAX	H,WRCLK M,OFFH D,SYNCPORT D	;SYNC ON FF CLOCK IN HEADER
F968 B7	CLVUF;	ORA	A	;SHOULD HAVE OO DATA ;Found Sync Pattern
F96A 00 F96B 1B		NOP DCX	D	;(D)=WRDATA=READDATA
F96C CB F96D C35FF9		RZ JMP	SYNC	

;SINGLE DENSITY ENTRY POINT

	SD:		
F970 CD5FF9	ALCOP:	CALL	SYNC

				;FOUND HEADER
F973 36C7	MLOOP:	MVI	M, 0C7H	CLOCK PATTERN FOR ID MARK
F975 3A04FE	LLOOP:	LDA	RDNRKCRC	
F978 B7		ORA	A	
F979 CA75F9		JZ	LLOOP	
F97C FEFE		CPI	OFEH	
F97E CA8DF9		JZ	NLOOP	
F981 36FF		MVI	M, OFFH	
F983 3A07FE F986 B7		lda Ora	SYNCPORT	
F987 CA73F9		JZ	a Mloop	
F98A C370F9		JMP	ALCOP	
1 /08 03/01 /	NLOOP:	VIII	neoui	FOUND DATA MARK
F98D 1A	1120011	LDAX	D	TRACK BYTE FROM DISK
F98E B8		CMP	B	
F98F C2E4F8		JNZ	TERROR	; TRACK ERROR
F992 1A		LDAX	D	SIDE BYTE FROM DISK (IGNORE)
F993 1A		LDAX	D	SECTOR BYTE FROM DISK
F994 B9		CMP	C	•
F995 C270F9		JNZ	ALOOP	;WRONG SECTOR. TRY AGAIN
				;FOUND CORRECT TRACK AND SECTOR
F998 F3		DI		DISABLE INTERRUPTS BEFORE CHECKING ID
F999 1A		LDAX	D	
F99A 1A		LDAX	D	;CRC BYTE
F99B 1A		LDAX	D	;CRC BYTE
F99C 1A		LDAX	D	;GAP BYTE 1
F99D 3A00FE		LDA	RDSTAT	;CHECK ID CRC
F9A0 1F		RAR		
F9A1 1A		LDAX	D	;GAP BYTE 2
F9A2 1A		LDAX	D	; GAP BYTE 3
F9A3 DADDF8		JC	ERROR	;ID CRC ERROR
F9A6 1A		LDAX	D	;GAP BYTE 4
F9A7 3A11FC		LDA	ABOVE43	
F9AA 77		MOV	M,A	
F9AB 1A		LDAX	D	;GAP BYTE 5
F9AC 3A02FC		LDA	READWRITE	
F9AF B7		ORA	A	;CHECK FOR WRITE
F9B0 1A		LDAX	D	;GAP BYTE 6
F9B1 C246F9		JNZ	WRITESD	
	;SINGLE	DENSITY	READ	
F9B4 1A		LDAX	D	;READ 6 BYTES OF GAP
F9B5 1A		LDAX	D	
F9B6 1A		LDAX	D	
F9B7 1A		LDAX	D	
F9B8 1A		LDAX	D	
F9B9 1A		LDAX	D M OCCU	
F9BA 36FF		MVI	N, OFFH	;(WRCLK)=FF
F9BC 0106FE F9BF 1A		LXI LDAX	B,RDDATA D	;GAP BYTE 14
F9C0 13		INX	D	;(D)=SYNCPORT
F9C1 1A		LDAX	D	י אט שחוש פאז
F9C2 36C7		MVI	N, 0C7H	CLOCK PATTERN FOR DATA MARK
F9C4 1E04		MVI	E,04	; (D)=RDMRKCRC
*		-	,	•

CRC

FILE: C2PRON PRN

+

F9C6 0A	LDAX	B	;GAP BYTE 16
F9C7 1A	LDAX	D	READ DATA MARK
F9CB E6FC	ANI	OFCH	
F9CA FEF8	CPI	0F8H	;DATA PATTERN FOR DATA MARK
F9CC C2DDF8	JNZ	ERROR	;MISSING DATA MARK

;FOUND SINGLE DENSITY DATA MARK

F9CF 1EE0	NVI	E,OEOH	;32#4=128 BYTE TRANSFER
F9D1 0A	LDAX	B	
F9D2 2AOBFC	LHLD	dna	
F9D5 C3BFF8	JMP	RLOOP	JUNP TO MAIN READ ROUTINE

TEST:

;TESTS DENSITY OF DISKETTE IN LOGGED-IN DRIVE ;RETURNS OO IN ACC IF DOUBLE DENSITY ;RETURNS OF IN ACC IF SINGLE DENSITY ;RETURNS OA IN ACC IF TEST FAILS

F9DC F9DD F9E0 F9E3 F9E6	3223FC AF 3200FC CDC5FB 0100FE 3A03FC F680 E6FB	TEST1:	XRA STA XRA STA CALL LXI LDA ORI ANI STAX	A TESTMAX A ERRORBYTE DISKREADY B,WRCONT CONTROLBYTE 80H OFBH B	;(TESTMAX)=0 ;(ERRORBYTE)=0 ;LOAD HEAD ;SET CONTROLLER FOR SIDE 0 ;TRY DOUBLE DENSITY
		L00P6:		; DOUBLE DENSITY	TEST
F9EE	2101FE		LXI	H, WRCLK	
F9F1	36FF		MVI	M,OFFH	
F9F3	1107FE		LXI	D, SYNCPORT	;SYNC ON FF CLOCK IN HEADER
F9F6	1A	L00P7:	LDAX	D	;READ DATA PATTERN
F 9F 7			INR	L	;ABORT AFTER 256 TRIES
	CA1AFA		JZ	RETRY	
F9FB			ORA	A	; DATA SHOULD BE OO
F9FC	C2F6F9		JNZ	L00P7	
					;FOUND HEADER
F9FF			DCX	D	; (D) =READDATA
FA00			MVI	L,01	; (H) =WRCLK
	360A		MVI	N, OAH	
FA04			LDAX	D	;SYNC WITH -EOW
	3A04FE		LDA	RDMRKCRC	;LOOK FOR ID MARK
FA08			CPI	0A1H	
FAOA	C21AFA		JNZ	RETRY	
					;FOUND ID MARK
FAOD			LDAX	D	FE BYTE
FAOE			LDAX	D	; TRACK BYTE
FAOF		ł	LDAX	D	; SECTOR BYTE
FA10			LDAX	D	CRC BYTE
FA11			LDAX	D	CRC BYTE
FA12			LDAX	D	;GAP BYTE 1
FA13	VA		LDAX	B	

FILE:	C2PROM	PRN		PAGE 010	
FA14	1F		RAR		CHECK ID CRC
	DA1AFA		JC	RETRY	,
					; ID CRC OK
FA18 FA19			XRA Ret	A	;RETURN 00
1.473	61		NEI		
FA1A	CDFBF8	RETRY:	CALL	ERRORCOUNT	
FAID	C2EEF9		JNZ	L00P6	
		• STNGI F	DENSITY	TEST	
		-		TER JOH TRIES AT	DOUBLE DENSITY
		,			
FA20		SDTEST:		A	
	3200FC		STA	ERRORBYTE	; (ERRORBYTE)=0
FA24 FA27	JAOJEC Eara		LDA Ori	CONTROLBYTE 84h	;SET UP SIDE 0, SINGLE DENSITY
FA29			STAX	B	TO WRCONT
		SDLOOP1	•		
FA2A			NVI	E,07	; (D)=SYNCPORT
FA2C FA2F	2101FE		LXI MVI	H, WRCLK N, OFFH	- CANC ON EE CLOCK DATTERN
FHZF	JOLL	SDLOOP2		n,vrrn	;SYNC ON FF CLOCK PATTERN
FA31	1A		LDAX	D	;GET CORRESPONDING DATA
FA32			INR	L	;ABORT AFTER 256 TRIES
	CA57FA		JZ	RETRY1	
FA36	87 C231FA		ora Jnz	A SDLOOP2	;DATA SHOULD BE 00
FNJ/	6231FM		141	SUCCOFZ	;FOUND HEADER
FA3A	1B		DCX	D	; (D) =READDATA
FA3B	2E01		MVI	L,01	;(H)=WRCLK
FA3D			MVI	M, OC7H	;LOOK FOR C7 CLOCK
FA3F	1A 3A04FE		LDAX LDA	D RDNRKCRC	;SYNC WITH -EOW
FA43			CPI	OFEN	;DATA FOR ID MARK
	C257FA		JNZ	RETRY1	······
					;FOUND ID MARK
FA48				D	TRACK BYTE
FA49 FA4A			LDAX LDAX	D D	; SIDE ; SECTOR
FA4B			LDAX		JOCOTON
FA4C	1A		LDAX		;CRC BYTE
FA4D			LDAX		;CRC BYTE
FA4E				D	OFT DROTAT
FA4F Fa50			LDAX Rar	B	;GET RDSTAT ;CHECK ID CRC
	DA57FA		JC	RETRY1	joneok in one
					; ID CRC OK
	F6FF		ORI	OFFH	;RETURN FF
FA56	C9		RET		
FA57	CDFBF8	RETRY1:	CALL	ERRORCOUNT	
	C22AFA		JNZ	SDLOOP1	
				BOTH DOUBLE AND	SINGLE DENSITY
			; TESTS	30H TIMES	
FA5D	2123FC		LXI	H, TESTNAX	
				,	

FILE:	C2PROM	PRN		PAGE 011	
FA60	34		INR	M	; INCREMENT TESTNAX
FA61			MOV	A,M	yanananan rawinin
FA62			CPI	10	
	C2DCF9		JNZ	TESTI	
				FAILED TEST 10	TIMES
FA67	B7		ORA	A	;RETURN OA
FA68	C9		RET		
		SKEW:			
			; COMPUTI	ES PHYSICAL SECTO	IR FROM LOGICAL SECTOR
			;SKEW F	ACTOR IS 8	
			•	AND DUTPUT ARE IN	
				=(((INPUT) MOD 5	
			; IF INPI	UT>52, SELECTS SI	IDE 1
FA69	210000		LXI	Н,0	
FA6C	E5		PUSH	H	
FA6D	3A03FC		LDA	CONTROLBYTE	
FA70	E67F		ANI	7FH	;SIDE 1
FA72	5F		MOV	E,A	
FA73			MOV	A,C	
	D634		SUI	52	
FA76			MOV	B,A	; (B) = (C) - 52
FA77			MOV	A,E	; (A) = (CONTROLBYTE) ^7F
FA/8	F27EFA		JP	SKIPY	; INPUT WAS LESS THAN 52
FA7B	F680		ORI	80H	CHOOSE SIDE 0
FA7D	41		MOV	B,C	,
FA7E	320FFC	SKIPY:	STA	TNOSIDE	
FA81	78		MOV	A,B	;(B)=(INPUT) MOD 52
FA82			MOV	L,B	
FA83			POP	B	
FA84		L00P10:		C	
FA85			SUI	13	
	F284FA		JP	L00P10	
FABA Fabb			dad Dad	H H	
FASC			DAD	H	
FASD			MOV	A,H	
FASE			ORA	A	
FABF			MOV	A,L	
	C4A0FA		CNZ	HIGHE	
	FE34	L00P11:		52	
FA95	DA9DFA		JC	SKIP12	
FA98	0000		ADI	204	
	C393FA		JMP	LOOP11	
FA9D		SKIP12:		C	
FA9E			MOV	C,A	
FA9F			RET		
FAAO		HIGHE:	ADI	48	
FAA2	67		RET		
FAA3		SETDMA:		H,B	
FAA4			MOV	L,C	
FAA5	220BFC		SHLD	DMA	STORE DMA ADDRESS

ILLI	CZENUN	FAN		FHOE VIZ	
FAAB	C9		RET		
FAA9		SETSEC:		A,C	
	320AFC		STA	SECTOR	STORE SECTOR NUMBER
FAAD	67		RET		
		SETTRK:		STEPS DRIVE TO	TRACK (C)
FAAE	79		MOV	A,C	
FAAF	FE2C		CPI	44D	;IF (C)<44
FAB1	3E10		MVI	A,10H	; THEN (ABOVE43)=10H
	DABBFA		JC	SKIP3	
	3E50		MVI	A,50H	; ELSE (ABOVE43)=50H
	3211FC	SKIP3:		ABOVE43	
LURR	CDC5FB		CALL	DISKREADY	
		STEPLOO	P:		
FABE	2104FC	0121200	LXI	H, TRACK	
FAC1			MOV	A,N	;GET (TRACK)
FAC2	B9		CMP	C	; DONE?
	CAEAFA		JZ	DONESTEP	
	CDCCFA		CALL	STEPHEAD	;NO, STEP HEAD
FAC9	C3BEFA		JMP	STEPLOOP	;REPEAT
		STEPHEA	B.		·
FACC	DAD8FA	a i crinch	JC	STEPIN	;IF (TRACK)<(C) THEN STEP IN
1 1100	21120111	STEPOUT		012111	
FACF	3A03FC		LDA	CONTROLBYTE	;ELSE STEP OUT
FAD2	35		DCR	M	; (TRACK) = (TRACK) -1
FAD3			ORI	02H	;DIR=OUT
FAD5	C3DEFA		JNP	DOSTEP	
EVUD	3A03FC	STEPIN:	1 04	CONTROLBYTE	
FADB		OILI INI	INR	M	; (TRACK)=(TRACK)+1
FADC	•••		ANI	OFDH	; DIR=IN
FADE		DOSTEP:	STAX	D	;STORE DIRECTION IN WRCONT
FADF			DCR	A	;-STEP=0
FAEO			STAX	D	
FAE1 FAE2			INR	A	;-STEP=1
	3A10FC		STAX LDA	D Steptine	
FAE6			MOV	B,A	WAIT 8 MS FOR NEXT STEP
	C37DFB		JNP	DELAY	; DELAY EXECUTES A RETURN
					,
		DONESTE	P:		
FAEA			MVI	B, STEPSETTLE	
	CD7DFB		CALL	DELAY	WAIT 8 MS FOR STEP SETTLE
FAEF			MOV	A,C	- 16 / TDARKY / 2 THEN GET TERTHENT
	FE02 DA69FB		CPI JC	2 Settn	; IF (TRACK) <2 THEN SET TESTNEXT
	JHOTEB JAOEFC		LDA	TESTNEXT	
FAF8			ORA	A	
	3E00		NVI	A,0	
	320EFC		STA	TESTNEXT	
FAFE			STC		

PAGE 012

FILE: C2PROM PRN

FAFF C203FB	JNZ	SETDEN	; IF	TESTNEXT=55	TEST	DENSITY
FB02 C9	RET					

SETDEN:

;TESTS DENSITY ;UPDATES DENBYTE AND DENMAP

FB03 CDD8F9 FB06 3E04 FB08 CA0DFB FB0B 3E00		CALL HVI JZ HVI	TEST A,4 SKIP A,0	;TEST DENSITY ;IF Z IS SET (DOUBLE DENSITY) ; THEN (DENBYTE)=4 : ELSE (DENBYTE)=0
FBOD 3201FC FB10 2116FC	SKIP:	STA	DENBYTE H, DENMAP	,
FB13 F5 FB14 3A05FC		PUSH LDA	PSW PRESDISK	
FB17 4F FB1B 0600		NOV MVI	C,A B,O	
FB1A 09 FB1B F1 FB1C 77		DAD POP NOV	B PSW M A	; SAVE FLAGS
FB1D C9		RET	N,A	; (DENMAP (PRESDISK))=(DENBYTE)

SELDSK:

;SELECTS DRIVE POINTED TO BY C REG ;LOADS HEAD OF SELECTED DRIVE

FB1E 21F9FB	LXI	H, MASKTABLE	
FB21 0600	MVI	B,0	
FB23 09	DAD	B	C CONTAINS DRIVE NUMBER
FB24 7E	NOV	A,M	MASKTABLE CONTAINS O FOR
	SELDSK1:		
FB25 3200FE	STA	WRCONT	; SELECTED DRIVE, 1'S ELSEWHERE
FB28 320FFC	STA	TWOSIDE	
FB2B 3203FC	STA	CONTROLBYTE	
FB2E 2112FC	LXI	H, TRACKTAB	
FB31 3A05FC	LDA	PRESDISK	
FB34 5F	MOV	E,A	
FB35 50	MOV	D,B	
FB36 19	DAD	D	
FB37 3A04FC	LDA	TRACK	
FB3A 77	NOV	N,A	; (TRACKTAB(PRESDISK))=(TRACK)
FB3B 79	NOV	A,C	
FB3C 3205FC	STA	PRESDISK	;(PRESDISK)=(C)
FB3F 320DFC	STA	DISK	;(DISK)=(C)
FB42 2112FC	LXI	H, TRACKTAB	
FB45 09	DAD	B	
FB46 7E	MOV	A,M	
FB47 3204FC	STA	TRACK	;(TRACK)=(TRACKTAB(C))
FB4A 2106FC	LXI	H,LOGINTAB	
FB4D 09	DAD	B	
FB4E 7E	MOV	A,M	
FB4F B7	ORA	A	;HAS DRIVE BEEN LOGGED IN?
FB50 C259FB	JNZ	INOK	
FB53 3E55	MVI	a, 55H	;ND. MARK AS LOGGED IN
FB55 77	MOV	M,A	

FILE: C2PRON PRN PAGE 014

FB56 CD97FB	l	CALL	HOME	; AND HOME THE HEAD
FB59 CDC5FB	INOK:	CALL	DISKREADY	;LOAD HEAD
FB5C 0628		MVI	B, HEADSETTLE	
FB5E CD7DFB		CALL	DELAY	;WAIT FOR HEAD SETTLING
FB61 3A04FC	•	LDA	TRACK	
FB64 FE02		CPI	02	
FB66 D203FB	1	JNC	SETDEN	
FB69 3E55	SETTN:	MVI	A,55H	;ON TRACKS 0 AND 1, WE WANT
FB6B 320EFC	•	STA	TESTNEXT	; TO TEST DENSITY OF NEXT TRACK
FB6E C303FB	1	JMP	SETDEN	TEST DENSITY OF THIS TRACK

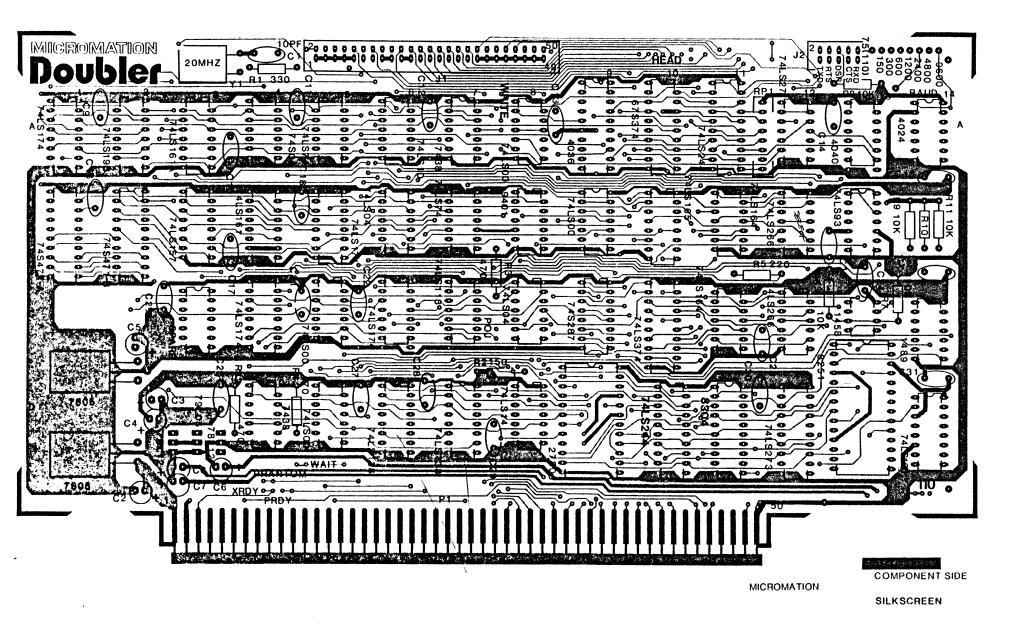
	HEADLOAD:		
FB71 1A	LDAX	D	;ASSUMES (D)=RDSTAT
FB72 E620	ANI	20H	;HEAD ALREADY LOADED?
FB74 3A05FE	LDA	RDMARK	RESET HEAD LOAD COUNTER
FB77 0628	NVI	B, HEADSETTLE	
FB79 C47DFB	CNZ	DELAY	;IF HEAD WASN'T LOADED
FB7C C9	RET		

DELAY:

;DELAYS (B) MILLISECONDS

FB7D E5	PUSH	H	; SAVE HL
FB7E 3A03FC	DELAY2: LDA	CONTROLBYTE	
FB81 E604	ANI	4	; IF SINGLE DENSITY,
FB83 2E1F	MVI	L,31	;31 BYTES # 32 USEC = 1 MS
FB85 C28AFB	JNZ	DELAY1	
FB88 2E3F	NVI	L,63	; IN DD, 63 BYTES # 16 USEC = 1 MS
FBBA 3A06FE	DELAY1: LDA	RDDATA	
FB8D 2D	DCR	L	
FB8E C28AFB	JNZ	DELAY1	
FB91 05	DCR	B	;END 1 MS LOOP
FB92 C27EFB	JNZ	DELAY2	
FB95 E1	POP	H	RESTORE HL
FB96 C9	RET		

FB97 CDC5FB	HOME:	CALL	DISKREADY	
FB9A 2104FC		LXI	H, TRACK	;FOR STEPIN AND STEPOUT
FB9D CDD8FA	ATHOME:	CALL	STEPIN	;STEP TOWARD 76
FBA0 1A		LDAX	D	
FBA1 E602		ANI	02	; UNTIL -TRKO IS INACTIVE
FBA3 CA9DFB		JZ	ATHOME	
FBA6 CDCFFA	GOHOME:	CALL	STEPDUT	; THEN STEP TOWARD 00
FBA9 1A		LDAX	D	
FBAA E602		ANI	02	; UNTIL -TRKO IS ACTIVE
FBAC C2A6FB		JNZ	GOHOME	
FBAF 3E10		MVI	A,10H	
FBB1 3211FC		STA	ABOVE43	; (ABOVE43)=10H
FBB4 320EFC		STA	TESTNEXT	; (TESTNEXT)=10H
FBB7 AF		XRA	A	
FBBB 3204FC		STA	TRACK	; (TRACK)=00
FBBB C303FB		JMP	SETDEN	;TEST DENSITY


	DISKREA	ADY1:		
FBBE 3A00FE		LDA	RDSTAT	
FBC1 47		MOV	B,A	
FBC2 E6A0		ANI	OAOH	; IF DRIVE READY AND HEAD LOADED
FBC4 C8		RZ		THEN RETURN
	DISKREA	DY:		·
FBC5 C5		PUSH	B	
FBC6 1100FE		LXI	D, WRCONT	;(D)=WRCONT=RDSTAT
FBC9 CD71FB		CALL	HEADLOAD	LOAD HEAD
FBCC C1		POP	B	,
FBCD 1A		LDAX	D	
FBCE 07		RLC		
FBCF DAC5FB		JC	DISKREADY	LOOP UNTIL DRIVE READY
FBD2 C9		RET		,
`	COLDBOO			
FBD3 3140FC		LXI	SP, STACK	
FBD6 AF		XRA	A	
FBD7 0100FC		LXI	B,BUFF	
FBDA 02	CBUFF:	STAX	B	;ZERO OUT RAN BUFFER
FBDB OC		INR	C	
FBDC C2DAFB		JNZ	CBUFF	
FBDF 3E0A		MVI	A,10	
FBE1 3210FC		STA	STEPTINE	;SET STEPTIME LONGER THAN IT NEEDS TO BE ;TO BE SAFE, SINCE COLD BOOT LOADER RESETS IT
FBE4 010000		LXI	B,0	, · · · · · · · · · · · · · · · · · · ·
FBE7 CDA3FA		CALL	SETDMA	;SETDMA DOES NOT CHANGE C REG, SO
FBEA CD1EFB		CALL	SELDSK	SELECT DRIVE A
FBED 0E01		MVI	C,01	LOAD BOOTSTRAP LOADER
FBEF CDA9FA		CALL	SETSEC	; FROM TRACK 0 SECTOR 1
FBF2 CD29F8		CALL	READ	,
FBF5 C2D3FB		JNZ	COLDBOOT	;ON READ FAILURE, TRY AGAIN
FBF8 C7		RST	0	EXECUTE BOOTSTRAP LOADER
				; (SAVES 2 BYTES OVER JMP 0000)
FBF9 BFDFEFF7	MASKTAL	BLE	DB OBFH,O	DFH, OEFH, OF7H
FC11 ABOVE43	F970 AL	.00P	FB9D ATHOME	F800 BASE F854 BLOOP

•

- FBF	/ BFUFEFF/	MASK	IABLE	UВ	VRLH, VD	fH,VE	f H,VF/H		
FC11	ABOVE43	F970	ALOOP	FB9D	ATHOME	F800	BASE	F854	BLOOP
FC00	BUFF	FBDA	CBUFF	F967	CLOOP	FBD3	COLDBOOT		
FC03	CONTROLBYT	Ε		FC22	CURRDRIVE	FB7D	DELAY	FB8A	DELAYI
FB7E	DELAY2	FC01	DENBYTE	FC16	DENNAP	FCOD	DISK	FBBE	DISKREADY1
FBC5	DISKREADY	FCOB	DMA	FAEA	DONESTEP	FADE	DOSTEP	FC00	ERRORBYTE
F8DD	ERROR	F8FB	ERRORCOUNT	F888	GLOOP	F82F	60	FBA6	GOHOME
FB71	HEADLOAD	0028	HEADSETTLE	FAA0	HIGHE	FB97	HOME	FB59	INOK
F975	LLOOP	FC06	LOGINTAB	FA84	LOOP10	FA93	L00P11	F9EE	L00P6
F9F6	L00P7	FBF9	MASKTABLE	F973	MLOOP	F98D	NLOOP	F8EA	NO
FC05	PRESDISK	FE06	RDDATA	FE05	RDNARK	FE04	RDMRKCRC	FE00	RDSTAT
FE02	RDUART	F829	READ	F854	READDD	FC02	READWRITE	FA57	RETRY1
FC21	RETRYCOUNT	FAIA	RETRY	F8BF	RLOOP	F8AE	RXFER	F970	SD
FA2A	SDLOOP1	FA31	SDLOOP2	FA20	SDTEST	FCOA	SECTOR	FBIE	SELDSK
FB25	SELDSK1	FB03	SETDEN	FAA3	SETDMA	FAA9	SETSEC	FB69	SETTN
FAAE	SETTRK	FA69	SKEW	FA9D	SKIP12	FAB8	SKIP3	FBOD	SKIP
FA7E	SKIPY	FC40	STACK	FACC	STEPHEAD	FAD8	STEPIN	FABE	STEPLOOP
FACF	STEPOUT	000F	STEPSETTLE	FC10	STEPTIME	F95F	SYNC	FE07	SYNCPORT
F8F2	TERROR1	F8E4	TERROR	F9DC	TESTI	FC23	TESTMAX	FC0E	TESTNEXT
F9D8	TEST	FC04	TRACK	FC12	TRACKTAB	FC20	TRY1	FCOF	TWOSIDE

F91C WLOOP	FE01 WRCLK	FEOO WRCONT FEO7 WRCRC	FE06 WRDATA
F82D WRITE	F903 WRITEDD	F81E WRITEPROTECT	F946 WRITESD
FE04 WRMRKCRC	FE05 WRMRK	FE02 WRUART F91B WXFER	

.

