

INTRODUCTION

Micro Linear Corporation, headquartered in San Jose, California, designs, develops and markets high performance analog and mixed signal integrated circuits for a broad range of applications within the communications, computer and industrial markets. By combining its analog expertise with a unique development methodology, Micro Linear offers to its customers highly-integrated system-level solutions that add value and reduce systems costs.
This product catalog contains more than 180 standard products many of which are application specific focused on the following areas:

Local Area Networks
Telecommunications
Hard Disk Drives
Magnetic Tape Drives
Magneto-Optical Drives
Motor Controls
Switch Mode Power Supplies
DC to DC Converters
Fluorescent Lamp Ballasts
Data Acquisition Systems
Bus Products
Micro Linear is committed to supplying analog and mixed signal system level solutions to our customers with the highest quality and best service possible.

Micro Linear Corporation Data Book 1995

Copyright © 1995

M Micro Linear is a registered trademark of Micro Linear Corporation

LIFE SUPPORT POLICY

MICRO LINEAR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF MICRO LINEAR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Micro Linear reserves the right to make changes at any time, without notice, to any of its products, specifications, processes, and suppliers. The application notes, schematic diagrams, printed circuit layouts and other information contained herein is provided as application aids only and are therefore provided "AS IS." MICRO LINEAR MAKES NO WARRANTIES WITH RESPECT TO THE INFORMATION CONTAINED HEREIN, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND MICRO LINEAR EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS AND FITNESS FOR A PARTICULAR PURPOSE.

1995 Product Data Book

GENERAL INFORMATION
A/D CONVERTERS, D/A CONVERTERS TELECOMMUNICATION PRODUCTS

NETWORKING PRODUCTS
MASS STORAGE PRODUCTS
\qquad
__ POWER MANAGEMENT \& CONTROL PRODUCTS QUALITY AND RELIABILITY

PACKAGING INFORMATION
\qquad BUS PRODUCTS
\qquad

Table of Contents

PAGE
SECTION 1 - GENERAL INFORMATION
General Ordering Information 1-1
Alternate Source Cross Reference 1-2
Alpha Numeric Index 1-5
SECTION 2 - A/D CONVERTERS, D/A CONVERTERS
Selection Guide 2-1
A/D Converters
ML22001 2-Bit + Sign Data Acquisition Peripheral 2-3
ML2208 12-Bit + Sign Data Acquistiion Peripheral 2-3
ML2221 Serial Peripheral Interface 12-Bit Plus Sign A/D Converter with Sample \& Hold 2-31
ML2223 Asynchronous Serial Interface 12-Bit Plus Sign A/D Converter with Sample \& Hold 2-45
ML2223EVAL 12-Bit A/D Converter with PC Compatible Serial Interface Evaluation Kit. 2-53
ML2230 μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-54
ML2233 μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-70
ML2252 $\mu \mathrm{P}$ Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2258 μ P Compatible 8-Bit A/D Converter with 8-Channel Multiplexer 2-97
ML2259 $\mu \mathrm{P}$ Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2261 μ P Compatible High Speed 8-Bit A/D Converter with T/H (S/H) 2-108
ML2264 4-Channel High Speed 8-Bit A/D Converter with T/H (S/H) 2-123
ML2271 $\mu \mathrm{P}$ Compatible High Speed 10-Bit A/D Converter with S/H 2-139
ML2280 Serial I/O 8-Bit A/D Converters 2-151
ML2281 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2282 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2283 Serial I/O 8-Bit A/D Converters 2-151
ML2284 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2288 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2375 DSP Analog I/O Peripheral 2-218
ML2377 DSP Analog I/O Peripheral 2-218PAGE
SECTION 2 - A/D CONVERTERS, D/A CONVERTERS (continued) D/A Converters
ML2330 Selectable Dual 3V/3.3V/5V 8-Bit D/A Converters 2-189
ML2340 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2341 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2350 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2351 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2375 DSP Analog I/O Peripheral 2-218
ML2377 DSP Analog I/O Peripheral 2-218
SECTION 3 - TELECOMMUNICATIONS
Selection Guide 3-1
Gain/Attenuators
ML2003 Logarithmic Gain/Attenuator 3-3
ML2004 Logarithmic Gain/Attenuator 3-3
ML2008 $\quad \mu \mathrm{P}$ Compatible Logarithmic Gain/Attenuator 3-14
ML2009 $\quad \mu$ P Compatible Logarithmic Gain/Attenuator 3-14
Equalizers
ML2020 Telephone Line Equalizer 3-23
ML2021 Telephone Line Equalizer 3-34
Tone Detectors
ML2031 Tone Detector. 3-45
ML2032 Tone Detector. 3-45
Programmable Sinewave Generators
ML2035 Programmable Sinewave Generator 3-53
ML2036 Programmable Sinewave Generator 3-53
Filters
ML2110 Universal Dual Filter 3-65
ML2111 Universal Hi-Frequency Dual Filter
ML2111 Universal Hi-Frequency Dual Filter 3-84 3-84
PAGE
SECTION 4 - NETWORKING PRODUCTS
Selection Guide 4-1
Ethernet
ML2652 10BASE-T Physical Interface Chip 4-3
ML2653 10BASE-T Physical Interface Chip 4-3
ML2653EVAL 10BASE-T Transceiver Evaluation Kit 4-23
ML4642 AUI Multiplexer 4-44
ML4644 4-Port AUI Multiplexer 4-58
ML4652 10BASE-T Transceiver 4-69
ML4654 10BASE-T Transceiver for Multi-Port Repeaters 4-85
ML4658 10BASE-T Transceiver with Autopolarity 4-69
ML4661 FOIRL Transceiver 4-86
ML4662 10BASE-FL Transceiver 4-87
ML4662EVAL 10BASE-FL Evaluation Kit 4-99
ML4663 Single Chip 10BASE-FL Transceiver 4-100
ML4663EVAL 10BASE-FL Evaluation Kit 4-113
High-Speed Networking
ML6671 FDDI TP-PMD Transceiver 4-125
ML6671-22EVAL TP-PMD Transceiver Evaluation Kit 4-132
ML6672 ATM UTP Transceiver 4-133
ML6672-9EVAL 155 Mbps ATM Transceiver Evaluation Kit 4-140
ML6673 FDDI TP-PMD Transceiver 4-141
Token-Ring
ML6682 Token Ring Physical Interface 4-143
Fiber Optic Components
ML4621 Fiber Optic Data Quantizer 4-24
ML4622 Fiber Optic Data Quantizer 4-30
ML4624 Fiber Optic Data Quantizer 4-30
ML4632 Fiber Optic LED Driver 4-38
ML6622 High-Speed Data Quantizer 4-115
ML6633 High-Speed Fiber Optic LED Driver 4-120
ML6633/22EVAL High-Speed Fiber Optic Evaluation Kit 4-124
Network Interface Products
ML4670 Multi-Protocol Physical Interface Device 4-114

SECTION 5 - MASS STORAGE

> Selection Guide .. 5-1

Read/Write Amplifiers

ML117 2, 4, or 6-Channel Read/Write Circuits 5-5
ML117R 2, 4, or 6-Channel Read/Write Circuits 5-5
ML501 6, 7, or 8-Channel Read/Write Circuits. 5-13
ML501R 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502R 6, 7, or 8-Channel Read/Write Circuits. 5-13
ML502S 6, 7, or 8-Channel Read/Write Circuits 5-13
ML511 4, 6, 7, or 8-Channel Read /Write Circuits 5-21
ML511R 4, 6, 7, or 8-Channel Read/Write Circuits 5-21
ML4415 15-Channel Read/Write Circuit. 5-132
ML4415R 15-Channel Read/Write Circuit 5-132
ML4416 14-Channel Read/Write Circuit with $\overline{C S}$ 5-132
ML4416R 14-Channel Read/Write Circuit with $\overline{C S}$ 5-132
ML4451 2-Channel Preamplifier for Tape Drives 5-194
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML4610R $5 \mathrm{~V}, 2-, 4$-Channel Thin-Film Read/Write Circuit 5-269
Mí46i1R $5 \mathrm{~V}, 2$-, 4-Channel Thin-Film Read/Write Circuit 5-269
ML6320 3V/5V 4-Channel Thin-Film Read/Write Circuit. 5-400
Read/Write Signal Processing
ML541 Read Data Processor 5-29
ML4041 Read Data Processor 5-39
ML4042 Read Data Processor 5-39
ML4417 Zoned Bit Recording Circuit 5-140
ML4427 Zoned Bit Recording Circuit 5-140
ML4568 Disk Pulse Detector + Embedded Servo Detector 5-261
ML6005 24 Mbps Read Channel Filter/Equalizer 5-275
ML6006 36 Mbps Read Channel Filter/Equalizer 5-285
ML6010 Integrated Disk Read Channel Processor 5-295
ML6012 3.5" RWN MOD Read Channel Front-end Processor 5-303
ML6013 3.5" RNW MOD Read Channel Back-end Processor 5-317
ML6024 $\quad 16$ Mbps Filter/Equalizer for Tape Drives 5-332
ML6025 24 Mbps Read Channel Filter/Equalizer 5-334
ML6026 36 Mbps Read Channel Filter/Equalizer 5-344
ML6042 Tape Drive Data Channel Processor 5-365
ML6310 3V/5V Read Channel Front-end Processor 5-369
ML6311 3V/5V Read Channel Back-end Processor 5-384
ML8464B Pulse Detector 5-406
ML8464C Pulse Detector 5-406
SECTION 5 - MASS STORAGE (continued)Servo Control ICs
ML4401 Servo Demodulator 5-50
ML4402 Servo Driver 5-56
ML4403 Servo Controller 5-61
ML4404 Trajectory Generator 5-71
ML4406 Disk Voice Coil Servo Driver 5-82
ML4407 Disk Voice Coil Servo Driver 5-82
ML4408 Low Voltage Drop Voice Coil Servo Driver 5-88
ML4413 Servo Controller 5-61
ML4418 Low Saturation Voice Coil Servo Driver 5-150
ML4431 Servo Demodulator 5-186
ML4506 5V Disk Voice Coil Servo Driver. 5-207
ML4508 Low Voltage Drop Voice Coil Servo Driver 5-214
ML4532 Servo Burst Area Detector with PWM 5-230
ML4533 Servo Burst Area Detector without PWM 5-230
ML4534 Area Detector Based Embedded Servo Demodulator 5-241
ML4535 Area Detection Based Hybrid Servo Demodulator 5-248
ML4536 Servo Burst Area Detector without PWM DAC 5-230
Motor Control ICs
ML4410 Sensorless Spindle Motor Controller 5-95
ML4411 Sensorless Spindle Motor Controller 5-106
ML4412 Enhanced Sensorless BLDC Motor Controller 5-119
ML4420 Enhanced Sensorless BLDC Motor Controller 5-157
ML4425 Sensorless BLDC PWM Motor Controller 5-170
ML4426 Sensorless BLDC PWM Motor Controller with Reverse 5-170
ML4510 5 V Sensorless Spindle Motor Controller 5-221
ML6035 5V Spindle Motor Controller and Driver 5-354
Tape Drive
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML6042 Tape Drive Data Channel Processor 5-365
Magneto Optical Drive
ML6012 3.5" RNW MOD Read Channel Front-end Processor 5-303
ML6013 3.5" RMW MOD Read Channel Back-end Processor 5-317
SECTION 6 - BUS PRODUCTS
Selection Guide 6-1
ML6500 Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-3
ML6500EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) Evaluation Kit 6-18
ML6508EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) Evaluation Kit 6-18
ML6508 Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-19
ML6509 Active SCSI Terminator 6-34
ML6509EVAL Active SCSI Terminator Evaluation Kit 6-44
ML6510 Series Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-45
ML65244 High Speed Dual Quad Buffer/Line Driver 6-62
ML65245 High Speed Octal Buffer Transceiver 6-68
ML65541 High Speed Octal Buffer/Line Driver 6-77
ML6599 Hot-Insertable Active SCSI Terminator 6-83
SECTION 7 - POWER MANAGEMENT AND CONTROL
Selection Guide 7-1
Battery Power Supply ICs
ML4761 Adjustable Output Low Voltage Boost Regulator 7-12
ML4851 Low Current, Low Voltage Boost Regulator 7-200
ML4861 Low Voltage Boost Regulator 7-202
ML4861EVAL Low Voltage Boost Regulator Evaluation Kit 7-213
ML4862 Battery Power Controller IC 7-214
ML4862EVAL Battery Power Controller Evaluation Kit 7-224
ML4863 High Efficiency Battery Pack Converter 7-225
ML4865 High Voltage, High Current Boost Regulator 7-241
ML4866 3.3V Output DC-DC Step-Down Converter 7-243
ML4868 High Frequency, Low Voltage Boost Regulator 7-244
ML4871 High Current Boost Regulator 7-252
ML4872 High Current Boost Regulator with Shutdown 7-254
ML4873 Battery Power Control IC 7-256
ML4873EVAL Battery Management IC Evaluation Kit 7-266
ML4875 Low Voltage Boost Regulator with Shutdown 7-277
ML4880 Portable PC and PCMCIA Power Controller 7-295
ML4890 High Efficiency, Low Ripple Boost Regulator 7-297
ML4890EVAL Low Ripple Boost Regulator Evaluation Kit 7-299
ML4961 Adjustable Output Low Voltage Boost Regulator with Detect 7-300

Table of Contents

PAGE
SECTION 7 - POWER MANAGEMENT AND CONTROL (continued) Power Factor Controllers
ML4812 Power Factor Controller 7-39
ML4812EVAL Power Factor Controller Evaluation Kit 7-53
ML4813 Flyback Power Factor Controller 7-54
ML4819 Power Factor and PWM Controller "Combo" 7-113
ML4821 Power Factor Controller 7-127
ML4821EVAL Average Current PFC Controller Evaluation Kit 7-135
ML4824 Power Factor and PWM Combo 7-143
High Frequency PWM Controllers
ML1825 High Frequency Power Supply Controller 7-5
ML4809 High Frequency Current Mode PWM Controller 7-20
ML4810 High Frequency Current Mode PWM Controller 7-31
ML4811 High Frequency Current Mode PWM Controller 7-31
ML4817 High Frequency Single Ended PWM Controller 7-93
ML4823 High Frequency Current Mode PWM Controller 7-136
ML4825 High Frequency Current Mode PWM Controller 7-153
ML4826 Power Factor and Dual PWM Combo 7-160
ML4828 BiCMOS Phase Modulation/Soft Switching Controller 7-165
Resonant and Phase Modulation Controllers
ML4815 Zero Voltage Switching Resonant Controller 7-66
ML4816 High Frequency Multi-Mode Resonant Controller 7-79
ML4818 Phase Modulation/Soft Switching Controller 7-101
ML4818EVAL Phase Modulation Controller Evaluation Kit 7-112
LCD Backlight Lamp Controllers
ML4864 LCD Backlight Lamp Driver with Contrast 7-232
ML4864EVAL LCD Backlight with Contrast Evaluation Kit 7-240
ML4874 LCD Backlight Lamp Driver 7-268
ML4874EVAL Differential Drive LCD Backlight Evaluation Kit. 7-276
ML4876 LCD Backlight Lamp Driver with Contrast 7-287
ML4876EVAL Differential Drive LCD Backlight with Contrast Evaluation Kit 7-294
Electronic Ballast Control
ML4830 Electronic Ballast Controller 7-173
ML4831 120VAC Dimmable Electronic Ballast 7-186
ML4831EVAL 120VAC Dimmable Electronic Ballast Evaluation Kit 7-199
SECTION 8 - QUALITY AND RELIABILITY
Quality and Reliability 8-1
Appendix A — Failure Rate Calculation 8-9
Appendix B — Radiation Hardness of 12V Bipolar Process 8-11
SECTION 9 - PACKAGING INFORMATION
Package: J08 8-Pin Hermetic DIP 9-1
Package: P08 8-Pin Molded DIP 9-1
Package: S08N 8-Pin SOIC (Narrow) 9-2
Package: J14 14-Pin Hermetic DIP 9-2
Package: P14 14-Pin Molded DIP 9-3
Package: S14N 14-Pin SOIC (Narrow) 9-3
Package: J16 16-Pin Hermetic DIP 9-4
Package: P16 16-Pin Molded DIP 9-4
Package: S16N 16-Pin SOIC (Narrow) 9-5
Package: S16W 16-Pin SOIC 9-5
Package: J18 18-Pin Hermetic DIP 9-6
Package: P18 18-Pin Molded DIP 9-6
Package: S18W 18-Pin SOIC 9-7
Package: J20 20-Pin Hermetic DIP 9-7
Package: P20 20-Pin Molded DIP 9-8
Package: Q20 20-Pin Molded Leaded PCC 9-8
Package: R20 20-Pin SSOP 9-9
Package: K20 20-Pin QSOP 9-9
Package: T20 20-Pin TSSOP 9-10
Package: S20W 20-Pin SOIC 9-10
Package: P22 22-Pin Molded DIP 9-11
Package: J24W 24-Pin Hermetic DIP 9-11
Package: J24N 24-Pin Hermetic Ceramic DIP (Narrow) 9-12
Package: P24W 24-Pin Molded DIP 9-12
Package: P24N 24-Pin Molded DIP (Narrow) 9-13
Package: R24 24-Pin SSOP 9-9
Package: S24W 24-Pin SOIC 9-13
Package: J28W 28-Pin Hermetic DIP 9-14
Package: P28W 28-Pin Molded DIP 9-14
Package: P28N 28-Pin Molded DIP 9-15
Package: \quad Q28 28-Pin Molded Leaded PCC 9-15
Package: R28 28-Pin SSOP 9-9
Package: S28W 28-Pin SOIC 9-16
Package: H32 32-Pin TQFP 9-16
Package: Q32 32-Pin Molded Leaded PCC 9-17
Package: S32W 32-Pin SOIC 9-17
Package: J40 40-Pin Hermetic DIP 9-18
Package: P40 40-Pin Molded Plastic DIP 9-18。
Package: G44 44-Pin PQFP 9-19
Package: Q44 44-Pin Molded Leaded PCC 9-19
SECTION 9 - PACKAGING INFORMATION (continued)
Package: H44 44-Pin TQFP 9-20
Package: H48 48-Pin TQFP 9-16
Package: G52 52-Pin PQFP 9-19
Package: Q52 52-Pin Molded Leaded PCC 9-19
Package: H52 52-Pin TQFP 9-20
Package: H64 64-Pin TQFP 9-20
Package: Q68 68-Pin Molded Leaded PCC 9-19
Package: Q84 84-Pin Molded Leaded PCC 9-19

General Information

 Section 1General Ordering Information 1-1
Alternate Source Cross Reference 1-2
Alpha Numeric Index 1-5

General Ordering Information

Part Number and Package Type Explanation

PART NUMBER

Number or letter indicates electrical grade of part (optional)

PACKAGE TYPE

Letter Suffix	Description
D	Side Brazed Hermetic DIP
F	Flat Pack
G	(PQFP) Plastic Quad Flat Pack
H	Thin Quad Flat Pack (TQFP)
J	Ceramic Hermetic DIP (CERDIP)
K	Quarter Size Small Outline Package (QSOP)
L	Ceramic Leadless Chip Carrier (LCC)
P	Plastic DIP
Q	Plastic Chip Carrier (PCC)
R	Shrink Small Outline Package (SSOP)
S	Small Outline (SOIC)
T	Thin Shrink Small Outline Package (TSSOP)

Cross Reference Guide

Alternate Source Part Number

Analog Devices		National Semiconductor	
Analog Devices Part Number	Micro Linear Direct Replacement ${ }^{1}$	National Semiconductor Part Number	Micro Linear Direct Replacement ${ }^{1}$
AD7820BQ	ML2261CIJ	ADC0831BCJ	ML2281BIJ
AD7820CQ	ML2261BIJ	ADC0831BCN	ML2281BCP
AD7820KN	ML2261CCP	ADC0831CCJ	ML2281CIJ
AD7820KP	ML2261CCQ	ADC0831CCN	ML2281CCP
AD7820LN	ML2261BCP	ADC0832BCJ	ML2282BIJ
AD7820LP	ML2261BCQ	ADC0832BCN	ML2282BCP
AD7820TQ	ML2261CMJ	ADC0832CCJ	ML2282CIJ
AD7820UQ	ML2261BMJ	ADC0832CCN	ML2282CCP
AD7824BQ	ML2264CIJ	ADC0833BCJ	ML2283BIJ
AD7824CQ	ML2264BIJ	ADC0833BCN	ML2283BCP
AD7824KN	ML2264CCP	ADC0833CCJ	ML2283CIJ
AD7824LN	ML2264BCP	ADC0833CCN	ML2283CCP
AD7824TQ	ML2264CMJ	ADC0834BCJ	ML2284BIJ
AD7824UQ	ML2264BMJ	ADC0834BCN	ML2284BCP
Linear Technology		ADC0834CCJ	ML2284CIJ
		ADC0834CCN	ML2284CCP
		ADC0838BCJ	ML2288BIJ
Linear Technology	Micro Linear	ADC0838BCN	ML2288BCP
Part Number	Direct Replacement ${ }^{1}$	ADC0838BCV	ML2288BCQ
LTC1060ACJ	ML2110BIJ2	ADC0838CCJ	ML2288CIJ
LTC1060ACN	ML2110BCP2	ADC0838CCV	ML22888CCP
LTC1060AMJ	ML2110BMJ2	ADC08061BCN	ML2261BCP
LTC1060CJ	ML2110CIJ2	ADC08061BCV	ML2261BCQ
LTC1060CN	ML2110CCP2	ADC08061BCWM	ML2261BCS
LTC1060MJ	ML2110CMJ2	ADC08061BCJ	ML2261BCJ
National Semiconductor		ADC08061BMJ	ML2261BMJ
		ADC08061CCN	ML2261CCP
		ADC08061CCV	ML2261CCQ
National Semiconductor	Micro Linear	ADC08061CCWM	ML2261CCS
Part Number	Direct Replacement ${ }^{1}$	ADC08061CCJ	ML2261CCJ
ADC0808CJ	ML2258BMJ	ADC08061CMJ	ML2261CMJ
ADC0808CCJ	ML2258BIJ	ADC08061BIN	ML2261BIP
ADC0808CCV	ML2258BIQ	ADC08061BIV	ML2261BIQ
ADC0809CCN	ML2258CIP	ADC08061BIWM	ML2261BIS
ADC0809CCV	ML2258CIQ	ADC08061BJJ	ML2261BIJ
ADC0820BCJ	ML2261BIJ	ADC08061CIN	ML2261CIP
ADC0820BCN	ML2261BCP	ADC08061CIV	ML2261CIQ
ADC0820BCV	ML2261BCQ	ADC08061CIWM	ML2261CIS
ADC0820CCJ	ML2261CIJ	ADC08061CIJ	ML2261CIJ
ADC0820CCN	ML2261CCP	ADC08064BCN	ML2264BCP
ADC0820CCV	ML2261CCQ	ADC08064BCV	ML2264BCQ
ADC0820CJ	ML2261CMJ	ADC08064BCWM	ML2264BCS

Note 1. 100\% pin-for-pin compatible with improved electrical specifications.
Note 2. Consult data sheet for electrical specifications that may vary from limit or conditions of alternate source.
Note 3. Alternate source ships $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ product as molded; Micro Linear does this on a customer need basis.

National Semiconductor	
National Semiconductor	Micro Linear
Part Number	Direct Replacement1
ADC08064BMJ	ML2264BMJ
ADC08064CCN	ML2264CCP
ADC08064CCV	ML2264CCQ
ADC08064CCWM	ML2264CCS
ADC08064CCJ	ML2264CCJ
ADC08064CMJ	ML2264CMJ
ADC08064BIN	ML2264BIP
ADC08064BIV	ML2264BIQ
ADC08064BIWM	ML2264BIS
ADC08064BIJ	ML2264BIJ
ADC08064CIN	ML2264CIP
ADC1061	ML2271
ADC08064CIV	ML2264CIQ
ADC08064CIWM	ML2264CIS
ADC08064CIJ	ML2264CIJ
ADC1061CIJ	ML2271CJ
ADC1061CIN	ML2271CCP3
ADC1061CIWM	ML2271CCS3
ADC1061CMJ	ML2271CMJ
DP5016QC	ML501-6CQ
DP5016RQC	ML501R-6CQ
DP5018QC	ML501-8CQ
DP5018RQC	ML501R-8CQ
$\mu A 5016 Q C$	ML501-6CQ
$\mu A 5016 R Q C$	ML2110CCP2
$\mu A 5018 Q C$	
$\mu A 5018 R Q C$	ML501R-6CQ
DP8464BN-3	ML501-8CQ
DP8464BV-3	ML501R-8CQ
DP8464BN-2	ML8464B-3CP2
DP8464BV-2	ML8464B-3CQ2
DP8464BN-2	ML8464B-2CP2
DP8464BN-3	ML8464B-2CQ2
DP8464BV-2	ML8464B-2CP2
DP8464BV-3	ML8464B-3CP2
DP8468BTP-3	ML8464B-2CQ2
DP8468BTP-2	ML8464B-3CQ2
LMF100CCN	ML4568-3CQ2
LMF100CCWM	ML4568-2CQ2
MF10AJ	ML2111CCP
MF10ACN	ML2111CCS
MF10CCJ	MF10CCWM
MF10CCN	

Silicon Systems, Inc.

Silicon Systems, Inc. Part Number	Micro Linear Direct Replacement
SSI 32P541-CH	ML541CQ
SSI 32P541-P	ML541CP
SSI 32P541A-CH	ML4042CQ
SSI 32P541A-P	ML4042CP
SSI 32P541B-CH	ML4042CQ
SSI 32P541B-P	ML4042CP
SSI 32R4610A	MLL6320CS-5
SSI 32R2020R	ML6320CS-5
SSI 32R2024R	ML6320CS-5
SSI 32R2030A	ML6320CS-5
SSI 32R2201R	ML6320CS-5
SSI 32R2300R	ML6320CS-5
SSI 32R2310R	ML6320CR-3
SSI 32R2300R	ML6320CR-3
SSI 32R2310R	ML501R-6CQ
SSI 32R501R-6H	ML501R-8CF
SSI 32R501R-8F	ML501R-8CQ
SSI 32R501R-8H	MLL501R-8CP
SSI 32R501R-8P	ML501-6CQ
SSI 32R501-6H	ML501-8CF
SSI 32R501-8F	ML501-8CQ
SSI 32R501-8H	ML501-8CP
SSI 32R501-8P	ML511R-4CS
SSI 32R511R-4S	ML511R-6CQ
SSI 32R511R-6H	ML511R-6CP
SSI 32R511R-6P	ML511R-6CS
SSI 32R511R-6S	ML511R-8CQ
SSI 32R511R-8H	ML511R-8CP
SSI 32R511R-8P	ML511R-8CS
SSI 32R511R-8S	ML511-4CS
SSI 32R511-4S	ML511-6CQ
SSI 32R511-6H	ML511-6CP
SSI 32R511-6P	ML511-6CS
SSI 32R511-6S	ML511-8CQ
SSI 32R511-8H	ML511-8CP
SSI 32R511-8P	
SSI 32R511-8S	

Note 1. 100% pin-for-pin compatible with improved electrical specifications.
Note 2. Consult data sheet for electrical specifications that may vary from limit or conditions of alternate source.
Note 3. Alternate source ships $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ product as molded; Micro Linear does this on a customer need basis.

Cross Reference Guide

Texas Instruments	
Texas Instruments Part Number	Micro Linear Direct Replacement ${ }^{1}$
ADC0808MJ	ML2258BMJ
ADC0808FN	ML2258BCQ
ADC0808N	ML2258BIP
ADC0809FN	ML2258CCQ
ADC0809N	ML2258CIP
TLC0820ACN	ML2261CCP
TLC0820ACFN	ML2261CCQ
TLC0820BCN	ML2261BCP
TLC0820BCFN	ML2261BCQ
ADC0831ACP	ML2281CCP
ADC0831AIP	ML2281CIJ3
ADC0831BCP	ML2281BCP
ADC0831BIP	ML2281BIJ3
ADC0832ACP	ML2282CCP
ADC0832AIP	ML2282CIJ3
ADC0832BCP	ML2282BCP
ADC0832BIP	ML2282BIJ3
ADC0834ACN	ML2284CCP
ADC0834AIN	ML2284CIJ3
ADC0834BCN	ML2284BCP
ADC0834BIN	ML2284BIJ3
ADC0838ACN	ML2288CCP
ADC0838AIN	ML2288CIJ3
ADC0838CCN	ML2288BCP
ADC0838BIN	ML2288BIJ3

VTC	
VTC	Micro Linear Direct Replacement ${ }^{1}$
Part Number	ML117-2CJ
VM117-2DK	ML117-2CP
VM117-2PK	ML117-4CF
VM117-4FK	ML117-4CP
VM117-4PK	ML117-4CJ
VM117-4DK	ML117-6CP
VM117-6PK	ML117-6CJ
VM117-6DK	ML117-6CP
VM117-6PK	ML117-6CQ
VM117-6PLK	ML117R-2CJ
VM117R-2DK	ML117R-2CP
VM117R-2PK	ML117R-4CF
VM117R-4FK	ML117R-4CP
VM117R-4PK	ML117R-4CJ
VM117R-4DK	ML117R-6CJ
VM117R-6DK	ML117R-6CP
VM117R-6PK	ML117R-6CQ
VM117-6PLK	ML501-6CP
VM217-6PK	ML501-6CQ
VM217-6PLK	ML501-8CP
VM217-8PK	ML501-8CQ
VM217-8PLK	ML6320CR-5
VM7204	ML6320CR-5
VM720H4	ML6320CR-5
VM720L4	ML6320CR-3
VM3204	ML6320CR-3
VM320H4	ML6320CR-3

Unitrode

Unitrode Part Number	Micro Linear Direct Replacement ${ }^{1}$
UC1823J	ML4823MJ
UC1825J	ML4825MJ
UC2823N	ML4823IP
UC2823Q	ML4823IQ
UC2825N	ML4825IP
UC2825Q	ML4825IQ
UC3823N	ML4823IP
UC3823Q	ML4823CQ
UC3825N	ML4825IP
UC3825Q	ML4825CQ

Note 1. 100% pin-for-pin compatible with improved electrical specifications
Note 2. Consult data sheet for electrical specifications that may vary from limit or conditions of alternate source. Note 3. Alternate source ships $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ product as molded; Micro Linear does this on a customer need basis.

Alpha Numeric Index

PAGE
ML117 2, 4, or 6-Channel Read/Write Circuits 5-5
ML117R 2, 4, or 6-Channel Read/Write Circuits 5-5
ML501 6, 7, or 8-Channel Read/Write Circuits 5-13
ML501R 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502 6,7, or 8-Channel Read/Write Circuits 5-13
ML502R 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502S 6,7, or 8-Channel Read/Write Circuits 5-13
ML511 4, 6, 7, or 8-Channel Read /Write Circuits 5-21
ML511R 4, 6, 7, or 8-Channel Read/Write Circuits 5-21
ML541 Read Data Processor 5-29
ML1825 High Frequency Power Supply Controller 7-5
ML2004 Logarithmic Gain/Attenuator 3-3
ML2008 μ P Compatible Logarithmic Gain/Attenuator 3-14
ML2009 μ P Compatible Logarithmic Gain/Attenuator 3-14
ML2020 Telephone Line Equalizer 3-23
ML2021 Telephone Line Equalizer 3-34
ML2031 Tone Detector 3-45
ML2032 Tone Detecto 3-45
ML2035 Programmable Sinewave Generator 3-53
ML2036 Programmable Sinewave Generator 3-53
ML2110 Universal Dual Filter 3-65
ML2111 Universal Hi-Frequency Dual Filter 3-84
ML2200 12-Bit + Sign Data Acquisition Peripheral 2-3
ML2208 12-Bit + Sign Data Acquistiion Peripheral 2-3
ML2221 Serial Peripheral Interface 12-Bit Plus Sign AD Converter with Sample \& Hold 2-31
ML2223 Asynchronous Serial Interface 12-Bit Plus Sign A/D Converter with Sample \& Hold 2-45
ML2223EVAL 12-Bit ADD Converter with PC Compatible Serial Interface Evaluation Kit 2-53
ML2230 μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-54
ML2233 μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-70
ML2252 $\mu \mathrm{P}$ Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2258 $\mu \mathrm{P}$ Compatible 8-Bit A/D Converter with 8-Channel Multiplexer 2-97
ML2259 $\mu \mathrm{P}$ Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2261 μ P Compatible High Speed 8 -Bit A/D Converter with T/H (S/H) 2-108
ML2264 4-Channel High Speed 8-Bit A/D Converter with T/H (S/H) 2-123
ML2271 μ P Compatible High Speed 10-Bit A/D Converter with S/H 2-139
ML2280 Serial I/O 8-Bit A/D Converters 2-151
ML2281 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2282 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2283 Serial I/O 8-Bit A/D Converters 2-151
ML2284 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2288 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2330 Selectable Dual 3V/3.3V/5V 8-Bit D/A Converters 2-189
ML2340 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2341 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2350 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2351 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2375 DSP Analog I/O Peripheral 2-218
ML2377 DSP Analog I/O Peripheral 2-218
ML2003 Logarithmic Gain/Attenuator 3-3
ML2652 10BASE-T Physical Interface Chip 4-3
ML2653

Alpha Numeric Index

PAGE
ML2653EVAL 10BASE-T Transceiver Evaluation Kit 4-23
ML4041 Read Data Processor 5-39
ML4042 Read Data Processor 5-39
ML4401 Servo Demodulator 5-50
ML4402 Servo Driver 5-56
ML4403 Servo Controller 5-61
ML4404
ML4406
Trajectory Generator 5-71
Disk Voice Coil Servo Driver. 5-82
ML4407 Disk Voice Coil Servo Driver 5-82
ML4408 Low Voltage Drop Voice Coil Servo Driver 5-88
ML4410 Sensorless Spindle Motor Controller 5-95
ML4411 Sensorless Spindle Motor Controller 5-106
ML4412 Enhanced Sensorless BLDC Motor Controller 5-119
ML4413 Servo Controller 5-61
ML4415 15-Channel Read/Write Circuit 5-132
ML4415R 15-Channel Read/Write Circuit 5-132
ML4416 14-Channel Read/Write Circuit with $\overline{\mathrm{CS}}$ 5-132
ML4416RML441714-Channel Read/Write Circuit with $\overline{\mathrm{CS}}$5-132ML4418Zoned Bit Recording Circuit5-140
Low Saturation Voice Coil Servo Driver 5-150
ML4420 Enhanced Sensorless BLDC Motor Controller 5-157
ML4425 Sensorless BLDC PWM Motor Controller 5-170
Sensorless BLDC PWM Motor Controller with Reverse 5-170
ML4426
Zoned Bit Recording Circuit 5-140
ML4431 Servo Demodulator 5-186
ML4451 2-Channel Preamplifier for Tape Drives 5-194
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML4506 5V Disk Voice Coil Servo Driver 5-207
ML4508 Low Voltage Drop Voice Coil Servo Driver 5-214
ML4510 5 V Sensorless Spindle Motor Controller 5-221
ML4532 Servo Burst Area Detector with PWM 5-230
ML4533 Servo Burst Area Detector without PWM 5-230
ML4534 Area Detector Based Embedded Servo Demodulator 5-241
ML4535 Area Detection Based Hybrid Servo Demodulator 5-248
ML4536 Servo Burst Area Detector without PWM DAC 5-230
ML4568 Disk Pulse Detector + Embedded Servo Detector 5-261
ML4610R 5V, 2-, 4-Channel Thin-Film Read/Write Circuit 5-269
ML4611R 5V, 2-, 4-Channel Thin-Film Read/Write Circuit 5-269
ML4621 Fiber Optic Data Quantizer 4-24
ML4622 Fiber Optic Data Quantizer 4-30
ML4624 Fiber Optic Data Quantizer 4-30
ML4632 Fiber Optic LED Driver 4-38
ML4642 AUI Multiplexer 4-44
ML4644 4-Port AUI Multiplexer 4-58
ML4652 10BASE-T Transceiver 4-69
ML4654 10BASE-T Transceiver for Multi-Port Repeaters 4-85
ML4658 10BASE-T Transceiver with Autopolarity 4-69
ML4661 FOIRL Transceiver 4-86
10BASE-FL Transceiver 4-87
ML4662EVAL 10BASE-FL Evaluation Kit 4-99
ML4663 Single Chip 10BASE-FL Transceiver 4-100
ML4663EVAL 10BASE-FL Evaluation Kit 4-113
ML4670 Multi-Protocol Physical Interface Device 4-114
ML4761 Adjustable Output Low Voltage Boost Regulator 7-12
ML4809 High Frequency Current Mode PWM Controller 7-20
ML4810 High Frequency Current Mode PWM Controller 7-31
ML4811 7-31
PAGE
ML4812 Power Factor Controller 7-39
ML4812EVAL Power Factor Controller Evaluation Kit 7-53
ML4813 Flyback Power Factor Controller 7-54
ML4815 Zero Voltage Switching Resonant Controller 7-66
ML4816 High Frequency Multi-Mode Resonant Controller 7-79
ML4817 High Frequency Single Ended PWM Controller 7-93
Phase Modulation/Soft Switching Controller 7-101
ML4818EVAL Phase Modulation Controller Evaluation Kit 7-112
ML4819 Power Factor and PWM Controller "Combo" 7-113
ML4821 Power Factor Controller 7-127
ML4821EVAL Average Current PFC Controller Evaluation Kit 7-135
ML4823 High Frequency Current Mode PWM Controller 7-136
ML4824 Power Factor and PWM Combo 7-143
ML4825 High Frequency Current Mode PWM Controller 7-153
ML4826 Power Factor and Dual PWM Combo 7-160
BiCMOS Phase Modulation/Soft Switching Controller 7-165
ML4830 Electronic Ballast Controller 7-173
ML4831 120VAC Dimmable Electronic Ballast 7-186
ML4831EVAL 120VAC Dimmable Electronic Ballast Evaluation Kit 7-199
ML4851 Low Current, Low Voltage Boost Regulator 7-200
ML4861 Low Voltage Boost Regulator 7-202
ML4861EVAL Low Voltage Boost Regulator Evaluation Kit 7-213
ML4862 Battery Power Controller IC 7-214
ML4862EVAL Battery Power Controller Evaluation Kit 7-224
ML4863 High Efficiency Battery Pack Converter 7-225
ML4864 LCD Backlight Lamp Driver with Contrast 7-232
ML4864EVAL LCD Backlight with Contrast Evaluation Kit 7-240
ML4865 High Voltage, High Current Boost Regulator 7-241
ML4866 3.3V Output DC-DC Step-Down Converter 7-243
ML4868 High Frequency, Low Voltage Boost Regulator 7-244
ML4871 High Current Boost Regulator 7-252
ML4872 High Current Boost Regulator with Shutdown 7-254
ML4873 Battery Power Control IC 7-256
ML4873EVAL Battery Management IC Evaluation Kit 7-266
ML4874 LCD Backlight Lamp Driver 7-268
ML4874EVAL Differential Drive LCD Backlight Evaluation Kit 7-276
ML4875 Low Voltage Boost Regulator with Shutdown 7-277
ML4876 LCD Backlight Lamp Driver with Contrast 7-287
ML4876EVAL Differential Drive LCD Backlight with Contrast Evaluation Kit 7-294
ML4880 Portable PC and PCMCIA Power Controller 7-295
ML4890 High Efficiency, Low Ripple Boost Regulator 7-297
ML4890EVAL Low Ripple Boost Regulator Evaluation Kit 7-299
ML4961 Adjustable Output Low Voltage Boost Regulator with Detect 7-300
ML6005 24 Mbps Read Channel Filter/Equalizer 5-275
ML6006 36 Mbps Read Channel Filter/Equalizer 5-285
ML6010 Integrated Disk Read Channel Processor 5-295
ML6012 3.5" R/W MOD Read Channel Front-end Processor 5-303
ML6013 3.5" R/W MOD Read Channel Back-end Processor 5-317
ML6024 16 Mbps Filter/Equalizer for Tape Drives 5-332
ML6025 24 Mbps Read Channel Filter/Equalizer 5-334
ML6026 36 Mbps Read Channel Filter/Equalizer 5-344
ML6035 5V Spindle Motor Controller and Driver 5-354
ML6042 Tape Drive Data Channel Processor 5-365
ML6310 3V/5V Read Channel Front-end Processor 5-369
ML6311 3V/5V Read Channel Back-end Processor 5-384
ML6320 3V/5V 4-Channel Thin-Film Read/Write Circuit 5-400
ML6500
PAGE
ML6500EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) Evaluation Kit 6-18
ML6508 Programmable Adaptive Clock Manager (PACMan ${ }^{\mathrm{TM}}$) 6-19
ML6508EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) Evaluation Kit 6-18
ML6509 Active SCSI Terminator 6-34
ML6509EVAL Active SCSI Terminator Evaluation Kit 6-44
ML6510 Series Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-45
ML6599 Hot-Insertable Active SCSI Terminator 6-83
ML6622 High-Speed Data Quantizer 4-115
ML6633 High-Speed Fiber Optic LED Driver 4-120
ML6633/22EVAL High-Speed Fiber Optic Evaluation Kit 4-124
ML6671 FDDI TP-PMD Transceiver 4-125
ML6671-22EVAL TP-PMD Transceiver Evaluation Kit 4-132
ML6672 ATM UTP Transceiver 4-133
ML6672-9EVAL 155 Mbps ATM Transceiver Evaluation Kit 4-140
ML6673 FDDI TP-PMD Transceiver 4-141
ML6682 Token Ring Physical Interface 4-143
ML8464B Pulse Detector 5-406
ML8464C Pulse Detector. 5-406
ML65244 High Speed Dual Quad Buffer/Line Driver 6-62
ML65245 High Speed Octal Buffer Transceiver 6-68
ML65541 High Speed Octal Buffer/Line Driver 6-77

A/D Converters, D/A Converters

Section 2

Selection Guide 2-1
A/D Converters
ML2200 12-Bit + Sign Data Acquisition Peripheral 2-3
ML2208 12-Bit + Sign Data Acquistion Peripheral 2-3
ML2221 Serial Peripheral Interface 12-Bit Plus Sign A/D Converter with Sample \& Hold 2-31
ML2223 Asynchronous Serial Interface 12-Bit Plus Sign A/D Converter with Sample \& Hold 2-45
ML2223EVAL 12-Bit A/D Converter with PC Compatible Serial Interface Evaluation Kit 2-53
ML2230 $\quad \mu \mathrm{P}$ Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-54
ML2233 $\quad \mu$ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold 2-70
ML2252 $\quad \mu$ P Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2258 $\quad \mu \mathrm{P}$ Compatible 8-Bit A/D Converter with 8-Channel Multiplexer 2-97
ML2259 $\quad \mu \mathrm{P}$ Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer 2-86
ML2261 $\quad \mu \mathrm{P}$ Compatible High Speed 8-Bit A/D Converter with T/H (S/H) 2-108
ML2264 4-Channel High Speed 8-Bit A/D Converter with T/H (S/H) 2-123
ML2271 $\quad \mu \mathrm{P}$ Compatible High Speed 10-Bit A/D Converter with S/H 2-139
ML2280 Serial I/O 8-Bit A/D Converters 2-151
ML2281 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2282 Serial I/O 8-Bit A/D Converters with Multiplexer Optıons 2-169
ML2283 Serial I/O 8-Bit A/D Converters 2-151
ML2284 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2288 Serial I/O 8-Bit A/D Converters with Multiplexer Options 2-169
ML2375 DSP Analog I/O Peripheral 2-218
ML2377 DSP Analog I/O Peripheral 2-218
D/A Converters
ML2330 Selectable Dual 3V/3.3V/5V 8-Bit D/A Converters 2-189
ML2340 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2341 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2350 Single Supply Programmable 8-Bit D/A Converters 2-195
ML2351 Single Supply, Programmable 8-Bit D/A Converters 2-206
ML2375 DSP Analog I/O Peripheral 2-218
ML2377 DSP Analog I/O Peripheral 2-218

8-Bit A/D

$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	CONV. TIME	MAX FREQ OF V_{IN}	SAMPLE TIME	$\begin{gathered} \text { INPUTS } \\ \text { (MUX) } \end{gathered}$	$\begin{aligned} & \text { NON } \\ & \text { LINEARITY } \\ & \text { (MAX) } \end{aligned}$	$\begin{gathered} \text { BUS } \\ \text { INTERFACE, } \\ \text { BITS } \end{gathered}$	SUPPLY VOITAGE	SUPPLY CURRENT	$\begin{gathered} \text { PIN } \\ \text { COUNT } \end{gathered}$	ALTERNATE SOURCES	FEATURES
ML2252	$6.6 \mu \mathrm{~s}$	51 KHz	$0.39 \mu \mathrm{~s}$	2	$\pm 1 / 2, \pm 1 \mathrm{LSB}$	Parallel	5 V	3 mA	20		Ratiometric output
ML2258	$6.6 \mu \mathrm{~s}$	51 KHz	$0.39 \mu \mathrm{~s}$	8	$\pm 1 / 2, \pm 1$ LSB	Parallel	5 V	3 mA	20	$\begin{aligned} & \text { ADC0808, } \\ & \text { ADC0809 } \end{aligned}$	Superior alternative Superior alternative
ML2259	$6.6 \mu \mathrm{~s}$	51 KHz	$0.39 \mu \mathrm{~s}$	8	± 1 LSB	Parallel	5 V	3 mA	28		Ratiometric output
ML2261	$0.7 \mu \mathrm{~s}$	500 KHz	$0.30 \mu \mathrm{~s}$	1	$\pm 1 / 2, \pm 1$ LSB	Parallel	5 V	15.5 mA	20	AD7820, ADC0820, ADC08061 TLC0820	Superior alternative Superior alternative
ML2264	$0.7 \mu \mathrm{~s}$	500 KHz		4	$\pm 1 / 2, \pm 1$ LSB	Parallel	5 V	20 mA	24	ADC08064	$\mathrm{T} \& \mathrm{H}$ or S \& H modes
ML2280	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 \mu \mathrm{~s}$	1	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	2.5 mA	8		No zero or full-scale adjustment required
ML2281	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 \mu \mathrm{~s}$	1	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	2.5 mA	8	ADC0831	Superior alternative
ML2282	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 \mu \mathrm{~s}$	2	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	3.5 mA	8	ADC0832	Superior alternative
ML2283	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 \mu \mathrm{~s}$	4	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	2.5 mA	14	ADC0833	Superior alternative
ML2284	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 . \mu \mathrm{s}$	4	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	2.5 mA	14	ADC0834	Superior alternative
ML2288	$6.6 \mu \mathrm{~s}$	51 KHz	$0.38 . \mu \mathrm{s}$	8	$\pm 1 / 2, \pm 1$ LSB	Serial	5 V	2.5 mA	20	ADC0830	Superior alternative

10-Bit A/D

$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	CONV. TIME	MAX FREQ OF V_{IN}	SAMPLE TIME	$\begin{aligned} & \text { INPUTS } \\ & \text { (MUX) } \end{aligned}$	$\begin{aligned} & \text { NON } \\ & \text { LINEARITY } \\ & \text { (MAX) } \end{aligned}$	$\begin{gathered} \text { BUS } \\ \text { INTERFACE, } \\ \text { BITS } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { SUPPLY } \\ \text { VOLTAGE } \end{gathered}\right.$	SUPPLY CURRENT	$\begin{gathered} \text { PIN } \\ \text { COUNT } \end{gathered}$	ALTERNATE SOURCES	Features
ML2271	$1.5 \mu \mathrm{~s}$	150 KHz		1	$\pm 1 / 2, \pm 1 \mathrm{LSB}$	Parallel	5 V	35 mA	20	ADC1061	Latched 3-state output
ML2375	$2 \mu \mathrm{~s}$			4	± 1 to ± 1 LSB	Parallel	$5 \mathrm{~V}, 12 \mathrm{~V}$	11 mA	28		Two channel simultaneous S \& H
ML2377	$2 \mu \mathrm{~s}$			6	± 1 to ± 1 LSB	Parallel	$5 \mathrm{~V}, 12 \mathrm{~V}$	11 mA	44		Two channel simultaneous S \& H

12-Bit A/D + Sign

PART NUMBER	CONV. TIME	MAX FREQ OF VIN	SAMPLE TIME	(NPUTS (MUX)	NON LNEARITY (MAX)	BUS INTERFACE, BITS	SUPPLY VOLTAGE	SUPPLY CURRENT	PIN COUNT	ALTERNATE SOURCES	FEATURES

8-Bit D/A

8-BIT D/A	SETTLING TIME	SET-UP TIME	OUTPUT CURRENT	OUTPUT VOLTAGE	NON LINEARITY (MAX)	BUS INTERFACE, BITS	SUPPLY VOLTAGE	SUPPLY CURRENT	PIN COUNT	FEATURES

10-Bit D/A

8-BIT D/A	SETTLING TIME	SET-UP TIME	OUTPUT CURRENT	OUTPUT VOLTAGE	NON LNEARITY (MAX)	BUS INTERFACE, BITS	SUPPLY VOLTAGE	SUPPLY CURRENT	PIN COUNT	FEATURES
ML2375	$2 \mu \mathrm{~S}$	60 ns		V_{CC} -0.25 V	$\pm \pm 1 / 4, \pm 1 / 2 \mathrm{LSB}$	$16, \mu \mathrm{P}$	5 V	11 mA	28	16 bit timer \& clock. Limit alarm.
ML 2377	$2 \mu \mathrm{~s}$	60 ns		V_{CC} -0.25 V	$\pm 1 / 4, \pm 1 / 2 \mathrm{LSB}$	$16, \mu \mathrm{P}$	5 V	11 mA	44	16 bit timer \& clock. Limit alarm.

October 1994

12-Bit Plus Sign Data Acquisition Peripheral

GENERAL DESCRIPTION

The ML2200 and ML2208 Data Acquisition Peripherals (DAP) are monolithic CMOS data acquisition subsystems. These data acquisition peripherals feature an input multiplexer, a programmable gain instrumentation amplifier, a 2.5 V bandgap reference, and a 12 -bit plus sign A/D converter with built-in sample-and-hold. In addition to a general purpose 8-bit microprocessor interface, the ML2200 and ML2208 include a programmable processor, data buffering, a 16-bit timer, and limit alarms.

The ML2200B and ML2208B self-calibrating algorithmic A/D converters have a maximum non-linearity error over temperature of 0.018% of full-scale, while the ML2200C, ML2200D, ML2208C, and ML2208D have a maximum non-linearity error over temperature of 0.024%.

The ML2200 has a four channel differential input multiplexer and the ML2208 has an eight channel single ended input multiplexer.

The digital interface, with software-alterable configurations, is designed to off-load the microprocessor. Control of the DAP is autonomously handled through the control sequencer which receives its instructions from the instruction RAM.

FEATURES

Conversion time (including S / H acquisition)	$31.5 \mu \mathrm{~s}$ max
\square Sample-and-hold acquisition	2.3 $\mathrm{s}_{\text {max }}$
- Non-linearity error $\pm 3 / 4$ LSB and ± 1 LSB max	
w harmonic distortion	0.01\%
- No missing codes	
Self-calibrating - maintains accuracy over time and temperature	
- Inputs withstand $\|7 \mathrm{~V}\|$ beyond supplies	
- Internal voltage reference	$2.5 \mathrm{~V} \pm$
\square Four differential or eight single-ended input channels	
- Data buffering (8 word data RAM)	
- Programmable limit alarm	
$\begin{aligned} & \text { 8-Bit microprocessor interface - interrupt, DMA, } \\ & \text { or polling } \end{aligned}$	
- 16-Bit timer for programmable conversion rates	
40-p	

BLOCK DIAGRAM

ML2200 BLOCK DIAGRAM

BLOCK SCHEMATIC DIAGRAM

Figure 1. Block Schematic Diagram.

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	AGND	Analog Ground.
2	$\mathrm{V}_{\text {TEMP }}$	Voltage output proportional to the die temperature.
3	$V_{\text {ReF }}$	Internal voltage reference output
4-11	CH	Analog Inputs. ML2200 - Positive or negative input of four differential inputs ML2208 - Eight single ended inputs referenced to common pin. Digitally selected by control sequencer.
12	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{COM} \end{aligned}$	ML2200 - No connection. ML2208 - Negative common input for the eight input channels. Tie to analog ground or $\left(\mathrm{V}_{\mathrm{SS}}+2.5\right)$ to $\left(\mathrm{AV}_{\mathrm{CC}}-2.5 \mathrm{~V}\right)$
13	V_{SS}	Negative power supply; decouple to AGND.
14	$\overline{P_{\text {DN }}}$	Power-Down Input When $\overline{\mathrm{P}_{\mathrm{DN}}}=$ 0 , device in power-down mode with register contents retained if $\mathrm{AV}_{\mathrm{CC}}>2.0 \mathrm{~V}$.
15	NC	No Connection.
16-19	$\begin{aligned} & \text { D7, D6, } \\ & \text { D5, D4 } \end{aligned}$	Bidirectional data bits.
20	DGND	Digital Ground.
21	DV ${ }_{\text {CC }}$	Digital power supply. Tie to $\mathrm{AV}_{\mathrm{CC}}$ from same power supply.
22-25	$\begin{aligned} & \text { D3, D2, } \\ & \text { D1, D0 } \end{aligned}$	Bidirectional data bits.
26	SYNC	In the slave mode, SYNC is a positive edge triggered input used to start a conversion. In master mode, SYNC is an output and indicates a conversion has occurred.
27	INT	Interrupt output. A maskable interrupt programmable to be active high or low or will default to active high. INT will not clear until acknowledged in halt mode; not affected by the run or halt state. INT $=0$ during reset and inactive during P_{DN}.

PIN\#	NAME	FUNCTION
28	DBR	Data Buffer Ready output active high indicates that a sequence of operations has completed and data is ready to transfer. DBR is not maskable. It can be used to generate an interrupt in addition to the INT pin when the DBRIE bit in the interrupt mask register has not been enabled. DBR is the DMA request pin when DMA mode is enabled. DBR is not active unless in run mode and at least one sequence of operations has been completed. DBR remains active in the halt mode if not acknowledged; low during reset time and power-down.
29	DGND	Digital Ground.
30	CLK	Clock input. Drive with an external clock or crystal reference to DGND. The crystal must be parallel resonant with minimum capacitive loading (i.e., No bypass caps should be used and leads should be kept short).
31	$\overline{\text { RESET }}$	Active low hardware reset with internal pull up resistor of 200 K . Tie to system reset line or to grounded capacitor. The capacitor size (usually $>6 \mu \mathrm{~F}$) is based on the time the power supplies stabilize, to the time reset voltage reaches 1.4 V ($>400 \mathrm{~ms}$).
32	$\mathrm{T}_{\text {CLK }}$	External timer, $\mathrm{T}_{\text {CLK }}$ is used as external clock input for the 16bit timer when the $T_{\text {CLK }}$ bit in the control register is set to one.
33	ALE	Address latch enable, active low latches information on A0, A1, $A 2$ and $\overline{C S}$. Tie to $A V_{C C}$ to disable use when separate address and data bus are used.
34	A2	Address 2
35	A1	Address 1
36	A0	Address 0
37	$\overline{\mathrm{CS}}$	Chip select, active low
38	$\overline{\mathrm{RD}}$	Read, active low enables ML2200 or ML2208 to drive data bus.
39	$\overline{W R}$	Write, active low allows writing into the registers.
40	A $V_{C C}$	Positive analog Power supply. Decouple to AGND. Tie to $\mathrm{DV}_{\mathrm{CC}}$ from same power supply

PIN CONNECTIONS

	ML2200 40-PIN DIP	
AGND 1	\bigcirc	$\mathrm{AV}_{\mathrm{cc}}$
$\mathrm{V}_{\text {temp }} 2$	39	$\overline{\mathrm{WR}}$
$\mathrm{v}_{\text {Ref }} 3$	38	$\overline{\mathrm{RD}}$
$\mathrm{CHO}+\square^{4}$	37	$\overline{\mathrm{cs}}$
CH0- 5	36	A0
CH1+ \square^{6}	35	A1
CH1- 7	34	A2
CH2+ \square^{8}	33	ale
CH2- ${ }^{-1}$	32	Tclk
CH3+ 10	$0 \quad 31$	$\overline{\text { RESET }}$
CH3- 11	130	CLK
NC 12	29	dGND
$\mathrm{v}_{\text {SS }} 13$	38	DBR
$\overline{\text { PDN }} 14$	4 27	int/INT
NC 15	5	SYNC
D7 16	6 25	Do
D6 17	$7 \quad 24$	D1
D5 18	8 - 24	D2
D4 19	9 22	D3
DGND 20	0 - 21	DVCC

ML2208		
40-PIN DIP		
AGND 1	40	$\mathrm{AV}_{\mathrm{cc}}$
$V_{\text {temp }} 2$	39	$\overline{\mathrm{WR}}$
$\mathrm{V}_{\text {ref }} 3$	38	$\overline{\mathrm{RD}}$
CH0 4	37	$\overline{\mathrm{Cs}}$
CH1 5	36	A0
CH2 ${ }^{6}$	35	A1
CH3 7	34	A2
CH4 8	33	ALE
CH5 ${ }^{-1}$	32	Talk
CH6 10	31	RESET
CH7 11	30	CLK
Com 12	29	DGND
$\mathrm{v}_{\text {ss }} 13$	28	DBR
$\overline{\text { PDN }} 14$	27	INT/INT
NC ${ }^{15}$	26	sync
D7 16	25	Do
D6 17	24	D1
D5 18	24	D2
D4 19	22	D3
dgnd 20	21	DVcc

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltages ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$) 6.0 V
Negative Supply Voltage (V_{SS}) 6.0 V
Voltage at Analog Inputs

\qquad
$\mathrm{V}_{\mathrm{SS}}-7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}+7 \mathrm{~V}$
Voltage at $\mathrm{V}_{\text {RE }} \mathrm{F}$

\qquad
$V_{S S}-7 V$ to $A V_{C C}+7 V$Input Current per Digital Pin
\qquad $\pm 10 \mathrm{~mA}$
Input Current at Analog Inputs $\pm 20 \mathrm{~mA}$
Storage Temperature Range

\qquad
$+150^{\circ} \mathrm{C}$
Package Dissipation @ $25^{\circ} \mathrm{C}$ 1W
Lead Temperature (Soldering 10 sec .)Dual-In-Line Package (Plastic)$260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

(Note 2)
Temperature Range \qquad $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ ML2200BCP, ML2200CCP, ML2200DCP $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ML2208BCP, ML2208CCP, ML2208DCP $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Supply Voltage ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$) $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$ Negative Supply Voltage $\left(V_{S S}\right) \ldots-4.5 V_{D C}$ to $-6.0 V_{D C}$

ELECTRICAL CHARACTERISTICS

The following specifications apply for $A V_{C C}=D V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, A G N D=D G N D=C O M=C H X-=$ $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for $\mathrm{DO}-\mathrm{D} 7, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for $\mathrm{INT}, \mathrm{DBR}$, and SYNC .

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | NOTE 3 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

Converter Characteristics

Linearity Error ML2200BCP, ML2208BCP ML2200CCP, ML2208CCP ML2200DCP, ML2208DCP	4	$\begin{aligned} \mathrm{f}_{\mathrm{CCLK}}=0.1 \leq 7 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CCLK}}=0.1 \leq 7 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CCLK}}=0.1 \leq 5 \mathrm{MHz} \end{aligned}$			$\begin{gathered} \pm 3 / 4 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Zero Error ML2200BCP, ML2208BCP ML2200CCP, ML2208CCP ML2200DCP, ML2208DCP	4				$\begin{gathered} \pm 3 / 4 \\ \pm 2 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Positive and Negative Full Scale Error	5				± 4	LSB
Zero Error Temperature Coefficient				0.5		ppm $/{ }^{\circ} \mathrm{C}$
Gain Temperature Coefficient		External Reference		3		ppm $/{ }^{\circ} \mathrm{C}$
Common-Mode Rejection	13			80		dB
Analog Input Range	5	All Analog Inputs	$\mathrm{V}_{\mathrm{SS}}-0.05$		$\mathrm{AV}_{\mathrm{CC}}+0.05$	V
External Source Resistance for Analog Inputs	5	$\begin{aligned} & \text { Channel }=\text { Analog Input } \\ & \text { Channel }=\text { Voltage Reference } \end{aligned}$			$\begin{gathered} 2 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Differential Analog Input Range		CHX referred to COM for ML2208 $\mathrm{CHX}+$ referred to CHX - for ML2200	$-\mathrm{V}_{\text {REF }}$		$+\mathrm{V}_{\text {REF }}$	V
Off Channel Leakage Current	5,6	On Chan $=2.5 \mathrm{~V}$, Off Chan $=-2.5 \mathrm{~V}$ On Chan $=-2.5 \mathrm{~V}$ Off Chan $=2.5 \mathrm{~V}$	-100		+100	nA
On Channel Leakage Current	5,6	$\begin{aligned} & \text { On Chan }=-2.5 \mathrm{~V}, \\ & \text { Off Chan }=2.5 \mathrm{~V} \\ & \text { On Chan }=2.5 \mathrm{~V} \\ & \text { Off Chan }=--2.5 \mathrm{~V} \end{aligned}$	-100		+100	nA
Gain Error		Gain $=2,4$, or 8		0.03		\%

Voltage Reference and $V_{\text {TEMP }}$ Characteristics

$V_{\text {Ref }}$ Absolute Value	4	Referred to AGND	2.45		2.55	V
$V_{\text {ReF }}$ Output Pin Output Resistance Minimum Load Resistance Maximum Load Resistance Temperature Coefficient Line Regulation Load Regulation Output Noise	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 4.75 \leq \mathrm{AV}_{\mathrm{CC}} \leq 5.25 \\ & -4.75 \geq \mathrm{V}_{\mathrm{SS}} \geq-5.25 \\ & 1 \mu \mathrm{~A}-2.5 \mathrm{~mA} \end{aligned}$	1	$\begin{gathered} 50 \\ 1 \\ 1 \\ 1 \\ 100 \end{gathered}$	$\begin{gathered} 300 \\ 50 \end{gathered}$	$\mathrm{m} \Omega$ k Ω pF $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ mV mV mV $\mu V_{\text {RMS }}$
$V_{\text {TEMP }}$ Output Pin Absolute Value @ $25^{\circ} \mathrm{C}$ Volts per ${ }^{\circ} \mathrm{C}$				$\begin{gathered} \mathrm{AV}_{\mathrm{CC}}-1.5 \\ 5 \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Continued)
The following specifications apply for $A V_{C C}=D V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, A G N D=D G N D=C O M=C H X-=$ $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for $\mathrm{D} 0-\mathrm{D} 7, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for INT , DBR , and SYNC .

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP NOTE 3	MAX	UNITS
DC Characteristics							
	Power Supply Current $\mathrm{Al}_{\mathrm{CC}}$, Analog $\mathrm{AV}_{\mathrm{CC}}$ $\mathrm{DI}_{\mathrm{CC}}$, Digital DV CC $\mathrm{I}_{\mathrm{sS}}, \mathrm{V}_{\mathrm{ss}}$	$\begin{gathered} 4 \\ 12 \\ 4 \end{gathered}$	$\overline{\mathrm{RD}}=\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$		$\begin{aligned} & 30 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	mA $\mu \mathrm{A}$ mA
$\begin{gathered} \mathrm{I}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{SS}} \end{gathered}$	Standby Current $\mathrm{Al}_{\mathrm{CC}}+\mathrm{DI}_{\mathrm{CC}}$ Standby Current $\mathrm{V}_{\mathrm{CCPD}}$ Minimum $\mathrm{AV}_{\mathrm{CC}}$ and DV ${ }_{\text {CC }}$ for power-down data retention	4,9	$\begin{aligned} & \overline{\mathrm{P}_{\mathrm{DN}}} \mathrm{pin}=\mathrm{GND} \\ & \overline{\mathrm{P}_{\mathrm{DN}}} \text { pin }=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{SS}}=-5.25 \text { to } \mathrm{GND} \end{aligned}$	2	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ V
	Power Supply Rejection $\begin{aligned} & \mathrm{A} \mathrm{~V}_{\mathrm{CC}} / \mathrm{DV}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	7	```DC DC to 25kHz, 200mV P-P DC DC to 25kHz, 200mVP_P```		$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
V_{IL}	Input Low Voltage (except CLK, $\mathrm{t}_{\text {CLK }}$)	4				0.8	V
$\mathrm{V}_{\text {ILI }}$	Input Low Voltage (CLK, $\mathrm{t}_{\text {CLK }}$)	4				0.8	V
V_{IH}	Input High Voltage (except CLK, tCLK)	4		2.0			V
$\mathrm{V}_{1 \mathrm{H} 1}$	Input High Voltage (CLK, $\mathrm{t}_{\text {CLK }}$)	4		3.5			V
V_{OL}	Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45	V
V_{OH}	Output High Voltage	5	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	4.0			V
I L	Input Leakage Current (except CLK and RESET)	4	$\mathrm{GND}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\text {CC }}$			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{L} 1}$	Input Leakage Current (CLK)	4	GND $<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$			± 200	$\mu \mathrm{A}$
ILO	Output Leakage Current (D0 - D7)	4	$\overline{\mathrm{RD}}=\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {RST }}$	RESET Pin Source Current	4	$\overline{\text { RESET }}=0 \mathrm{~V}$	15	50	100	$\mu \mathrm{A}$
C_{1}	Input Capacitance (All Digital Inputs)				10		pF
CO_{O}	Output Capacitance (All Outputs and D0 - D7)				20		pF

AC Electrical Characteristics (Note 8)

${ }^{t} C$	Conversion Time	4,9	CLK Mode $=0$	$\mathrm{f}_{\mathrm{CLK}}=7.0 \mathrm{MHz}$	31.5			$\mu \mathrm{s}$
				$\mathrm{f}_{\text {CLK }}=5.0 \mathrm{MHz}$	44.0			$\mu \mathrm{s}$
	Sample and Hold Acquisition	4,9	CLK Mode $=0$	$\mathrm{f}_{\mathrm{CLK}}=7.0 \mathrm{MHz}$			2.3	$\mu \mathrm{s}$
				$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$			3.2	$\mu \mathrm{s}$
SNR	Signal-to-Noise Ratio		$\begin{aligned} & \mathrm{V}=10 \mathrm{kHz}, 2.5 \\ & \mathrm{f}_{\mathrm{CLK}}=7 \mathrm{MHz}\left(\mathrm{f}_{\mathrm{S}}\right. \end{aligned}$ 31.8 kHz). Nois nonfundamenta up to $1 / 2$ of $f_{S A M}$	Sine. AMPLING = is sum of all components PLING.		73		dB
THD	Total Harmonic Distortion		$\begin{aligned} & \mathrm{V}=10 \mathrm{kHz}, 2.5 \\ & \mathrm{f}_{\mathrm{CLK}}=7 \mathrm{MHz} \text { (f } \\ & 31.8 \mathrm{kHz} \text {). THL } \\ & \text { 3, 4, } 5 \text { harmon } \\ & \text { to fundamental } \end{aligned}$	V Sine. SAMPLING $=$ is sum of 2 , ics relative		-75		dB

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply for $\mathrm{AV}_{\mathrm{CC}}=\mathrm{DV}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{AGND}=\mathrm{DGND}=\mathrm{COM}=\mathrm{CHX}-=$ $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for D0-D7, $\mathrm{C}_{L}=50 \mathrm{pF}$ for INT, DBR, and SYNC.

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | NOTE 3 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

AC Electrical Characteristics (Note 8) (Continued)

IMD	Intermodulation Distortion		$V_{I N}=f_{A}+f_{B} \cdot f_{A}=9 k H z$ 1.25 V sine. $\mathrm{f}_{\mathrm{B}}=10 \mathrm{kHz}, 1.25$ sine. $\mathrm{f}_{\mathrm{CLK}}=7 \mathrm{MHz}$ ($f_{\text {SAMPLING }}=31.8 \mathrm{kHz}$). IMD is $\left(f_{A}+f_{B}\right)$, $\left(f_{A}-f_{B}\right)$, $\left(2 f_{A}-f_{B}\right),\left(2 f_{A}+f_{B}\right),\left(f_{A}+2 f_{B}\right)$, ($f_{A}-2 f_{B}$) relative to fundamental.		-75		dB
FR	Frequency Response		$\mathrm{V}_{\mathrm{IN}}=0$ to $10 \mathrm{kHz}, 2.5 \mathrm{~V}$ sine relative to 1 kHz		0.01		dB
$\mathrm{f}_{\text {CLK }}$	CLK Frequency	4	(No crystal)	0.1		7	MHz
$\mathrm{f}_{\text {CLKX }}$	CLK Frequency	4	(Crystal)	3		7	MHz
$\mathrm{f}_{\text {CLKI }}$	Internal CLK Frequency				1/2		$f_{\text {CLK }}$ or fCLKX
$\mathrm{f}_{\text {CLKT }}$	CLK Frequency (tcLK only)	4				$\mathrm{f}_{\text {CLKI }}$	MHz
$\mathrm{f}_{\text {CLKW }}$	Minimum Clock High/Low Width (CLK)	5		50			ns
$\mathrm{f}_{\text {CLKWT }}$	Minimum Clock High/Low Width (tcLK)	5		75			ns
t_{RF}	Maximum Rise/Fall Times, All Inputs	5				25	ns
$\mathrm{t}_{\text {RESET }}$	Mınimum Reset Active Time	4, 10		10			$f_{\text {CLK }}$ Periods
tpDN	Power-Up Time		Time After $\mathrm{P}_{\mathrm{DN}}=\mathrm{V}_{\mathrm{IH}}$		1		ms

Non-Multiplexed Data Bus Timing

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply for $A V_{C C}=D V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, A G N D=D G N D=C O M=C H X-=$ $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for $\mathrm{DO}-\mathrm{D7}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for INT, DBR, and SYNC.

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 3 \end{gathered}$	MAX	UNITS
Non-Multiplexed Data Bus Timing							
$t_{\text {RV }}$	Recovery Time Between Two Reads or Writes	4		250			ns
$t_{\text {AW }}$	Address Stable Before Write	4		0			ns
$t_{\text {WA }}$	Address Hold Time for Write	4		0			ns
tww	Write Pulse Width	4		150			ns
$t_{\text {DW }}$	Data Setup Time for Write	4		100			ns
$t_{\text {WD }}$	Data Hold Time for Write	4		0			ns
DMA Interrupt and SYNC Timings							
$\mathrm{t}_{\text {CKDBR }}$	Clock to DBR Assert	11, 4	DMA		120	190	ns
$\mathrm{t}_{\text {RDD }}$	Read to DBR Negation on Last Byte	4			110	170	ns
$\mathrm{t}_{\text {CKDBR }}$	Clock to DBR or $\mathrm{t}_{\text {CKINT }}$, INT Assert	11, 4	Non-DMA		100	180	ns
twrdbr	Write to DBR or ${ }_{\text {Wrint }}$ INT Negation	11, 4			70	120	ns
$\mathrm{t}_{\text {CKSYNC }}$	Clock to SYNC Delay	11, 4	Master Mode		150	220	ns
$\mathrm{t}_{\text {SYNCN }}$	SYNC Input Width	5		3			$\mathrm{f}_{\text {CLKI }}$
$\mathrm{t}_{\text {SYNCCK }}$	SYNC to Clock Setup	4	Slave: Mode 4 Only	50			ns
tsynco	Minimum SYNC Output Width	4		4		4	$\mathrm{f}_{\text {CLKI }}$

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100\% tested are not in outgoing quality level calculation.
Note 6: Leakage current is measured with the clock not switching.
Note 7: Power supply rejection is the ratio of the change in zero error to the change in power supply voltage.
Note 8: All parameters measured from 0.8 V to 2.0 V .
Note 9: Power-down current is with power-down pin at GND potential only. Any other level will dissipate more power. Other digital input pins may float but cannot be above VDD or below GND.
Note 10: RESET should be held active for at least 10 internal clocks after power supplies have stabilized to within 5% of 5 V
Note 11: Since the internal master clock is the input clock divided by 2 , this number can be ether the maximum listed or the maximum listed plus $1 / 2$ the input clock period.
Note 12: When $R D=C S=V_{11}$, the current into the $D V_{C C}$ pin depends on the data bus pins $D 0-D 7$.
Note 13: Common-Mode rejection is the ratıo of the change in zero error to the change in common-mode input voltage.

TIMING DIAGRAMS

Figure 2. Multiplexed Bus.

Figure 3. Non-Multiplexed Bus.

TIMING DIAGRAMS (Continued)

Note: There are 2*n Read Operations where n is the number of words to be transferred DBR is set and cleared by internal circuitry. DMA bit in the control register must be set for this operation.

Figure 4. DMA Mode.

Figure 5. DBR and INT (Non-DMA Mode).

Figure 6. SYNC

1.0 FUNCTIONAL DESCRIPTION

1.1 ALGORITHMIC A/D CONVERTER

Micro Linear's algorithmic converter uses a successive approximation technique. Most of today's successive approximation converters use a DAC to feed back the approximated signal, however this technique requires more circuitry than algorithmic converters. In addition the values of all of the resistors or capacitors in the DAC must be matched to within the accuracy of the converter. This is difficult to do in silicon beyond 10 bits unless trimming is used. An algorithmic converter uses less circuitry and is more easily trimmed. Micro Linear's algorithmic converter is implemented using a $2 x$ amplifier, a sample/hold amp, and a comparator as shown in Figure 7.

Figure 7. Self Calibrating A/D Converter.

The input sample is first multiplied by two then compared to the reference voltage. If the $2 x$ input voltage is greater than the reference, the MSB is a 1 and the reference voltage is subtracted from the $2 x$ input voltage. The remainder is stored in the sample-and-hold. If the $2 x$ input voltage is less than the reference, the MSB is a 0 and the $2 x$ input voltage is stored in the sample-and-hold. This process repeats again, however now the sample-and-hold voltage is multiplied by 2 .

Self-Calibration

In order to maintain integral and differential linearity to the $1 / 2$ LSB level in an algorithmic converter, two critical parameters need to be controlled, loop offsets and the gain of the loop. Loop offsets are automatically nulled before each conversion using auto-zeroing circuitry on both the sampling amp and the $2 x$ amp. The gain of the loop is adjusted using self-calibration.
Self-calibrating the algorithmic converter, once the offsets have been nulled, is performed by measuring the $2 x$ gain of the loop and adjusting it. The gain can be measured by converting the reference voltage as the input as well as the reference ($\mathrm{V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{REF}}$), and examining the output code. Converting $V_{\text {REF }}$ should yield plus full-scale, since $V_{\text {REF }} /$ $\mathrm{V}_{\text {REF }}$ should equal 1 . If the gain of the loop is slightly less than 2 , the resulting LSB of the conversion will be " 0 " . If the magnitude bits of the resulting conversion are all " 1 s ",
the gain may be too great, therefore the gain is reduced to the point where the threshold of the LSB is reached.
Adjustment of the $2 x$ gain is done with the binary weighted trim capacitor arrays connected to each of the 2C input capacitors. A small value of capacitance is either added to or subtracted from the 2C input caps until the gain of the loop is within 13-bit accuracy of 2.

1.2 MULTIPLEXER INPUT

The input voltage is $\pm 2.5 \mathrm{~V}$ relative to COM of the ML2208 or a CH - of the ML2200. The input voltages under normal operation must not exceed supply voltages by 0.05 V . Each channel is selected by the programmable sequencer.

1.3 INTERNAL VOLTAGE REFERENCE AND VTEMP

The internal bandgap voltage reference with a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ has an external use current of 2.5 mA .

The voltage reference $V_{\text {TEMP }}$ output is directly proportional to the chip temperature.

1.4 CONVERSION TIMES

The following table lists the conversion times which include the sample-and-hold acquisition time. For a CALRD and CALWR no A/D conversion actually takes place.

Operation	Number of Internal Clocks*
8 -bit A/D	80
13 -bit A/D	110
CALWR	52
CALRD	80

*Internal clock is the external clock divided by two.

1.5 SAMPLE-AND-HOLD TIMING

Figure 8 shows the internal timing for the sample-andhold circuitry. The relationship between the "Start of Conversion" and the input channel going into sample mode is fixed at 6 internal clocks, regardless of the Start

Mode. Six internal clocks after the Start of Conversion, the Sample-and-Hold is switched into the sample mode, placing two 9 pF capacitors in parallel with the input pins; one on $\mathrm{CH}+$ and one on CH - for the ML2200, and CH and COM for the ML2208. The sample switch is kept in the sample mode for 8 internal clocks $(2.3 \mu \mathrm{~s}$ at a 7 MHz external clock), then placed in the hold mode. During the next 2 internal clocks the charge on the sample-and-hold is transferred into the A / D, after which the $V_{\text {REF }}$ pin is sampled for 8 internal clocks.
Figure 8 also illustrates the timing of the SYNC pin in Master Mode during a conversion. SYNC is activated one internal clock cycle before the Start of Conversion and lasts for four internal clocks.

1.6 ANALOG INPUTS DIFFERENTIAL INPUTS AND COMMON-MODE REJECTION

The differential inputs of the ML2200 eliminate the effects of common-mode input noise (60 Hz , for example), as $\mathrm{CH}+$ and CH - are sampled at the same time.

Noise

The leads to the analog inputs should be kept as short as possible to minimize output noise. Noise as well as digital

Note 1: External clock in phase with internal clock using RESET.
Note 2: Immediate execute mode where start of conversion and start of operation occur at the same time

Figure 8. Sample-and-Hold Timing.

Interfaces are shown for multiplexed address data bus in Figure 9 and Figure 10. When non-multiplexed interfaces

Figure 9. 8-Bit Multiplexed Bus Interface.

2.1 INTERRUPTS

The ML2200 and ML2208 provide two interrupt pins, one for control/status interrupts (INT), and one for data interrupts (DBR). The standard INT pin is maskable via an interrupt mask register while the DBR pin is always enabled to signify that data is available. DBR can be mapped into the INT pin if only one interrupt pin is desired.

The interrupt pin (INT) can be programmed, via the Interrupt Bit Mask register, to be active high, or active low. When programmed for active high, it is driven in both directions. When INT is programmed for active low, it is an open drain output, therefore an external pull-up resistor of $2.5 \mathrm{k} \Omega$ or more should be used. The DAP's Status register can be read to determine whether its interrupt is active or not.
are used, ALE can be tied high. All internal address and chip select latches are transparent.

Figure 10. 16-Bit Multiplexed Bus Interface.

2.2 DMA

The separate $D B R$ pin can also serve as a DMA request signal when DMA operation is enabled in the Control register. DBR goes active high when the data buffer is full and ready to be read. DBR remains high until the last byte in the data buffer has been read. This allows back-to-back DMA cycles or single cycle transfers depending on how the DMA controller is programmed. The data for the DMA cycle is transferred over the 8-bit data bus at address 0 (A0 - A2 =0). The ML2200 or ML2208 automatically places both high and low bytes of the 16-bit wide data buffer at address 0 or 1 for the DMA controller to read. The LOBYT bit in the Control register specifies whether the high or low byte is placed on the bus first. Figure 11 shows a block diagram interfacing to the 8237 DMA controller.

Figure 11. DMA Interface.

3.0 REGISTER DEFINITIONS

These data acquisition peripherals contain six directly addressable 8-bit registers, and twenty indirectly addressable 16-bit registers. Figure 12 illustrates the register architecture while Figures $13,14 \& 15$ illustrate the bit maps and addresses. The first three primary registers (Window Low,

Window High, and Index) are used to access the 20 secondary registers. Window Low and Window High provide read /write access to the low and high bytes of the secondary register pointed to by Index.

Figure 12. Register Architecture.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LAST	ALRMEN	MDE2	MDE1	MDE0	CH2	CH1	CH0	SC2	SC1	SC0	GN1	GNo	REF2	REF1	REFO

MODE SELECT	INPUT CHANNEL SELECT
$000=$ IMMEDIATE EXECUTE	$000=$ CHANNEL 0
001 = INTRA SEQUENCE PAUSE	$001=$ CHANNEL 1
010 = START ON NEXT TIMEOUT	$010=$ CHANNEL 2
011 = PRESET TIMER/START ON	$011=$ CHANNEL 3
TIMEOUT	$100=$ ILLEGAL
$100=$ EXTERNAL SYNC/TIMER	101 = ILLEGAL
PRESET/TIMEOUT	$110=$ ILLEGAL
$110=$ ILLEGAL	111 = ILLEGAL
111 = ILLEGAL	

Figure 13. ML2200 Bit Map of Instruction RAM.

Figure 14. ML2208 Bit Map of Instruction RAM.

Figure 15. Interrupt Enable and Alarm Criteria Registers.

3.1 Primary Registers							READ
D7	D6	D5	D4	D3	D2	D1	D0
Window Low Register $\begin{aligned} & \text { ReAD, } \\ & \text { WRITE }\end{aligned}$							
D15	D14	D13	D12	D11	D10	D9	D8

Window Registers— Registers 0 and 1

These registers form a two-byte window into the secondary registers. Window Low is the low byte of the secondary 16 -bit word, and Window High is the high byte. Any one of the 20 words in the secondary register set can be accessed by first setting a 5-bit address in the Index register, then reading from or writing to the Window registers. Sequential access of the secondary registers is also available without writing to the Index register via the AUTOI bit in the Index register.

Index Register - Register 2

AUTOI
WEAD/ WRITE

Index Register

RSX = Secondary Register Address (Bits 0 to 4): The lower five bits of this register (RSO - RS4) define the location within the secondary register set that the window registers are positioned at.
Bits 5 and 6: Undefined. Writing to these bits have no effect, however a zero should be written; always read as ones.
AUTOI = autoincrement (Bit 7): Setting AUTOI signifies that the lower five addressing bits in the Index register are automatically incremented after either the Window Low or Window High register is accessed. Whether the autoincrement occurs when accessing Window Low or Window High register, is based on the LOBYT bit in the Control register.
Interrupt Operation Caution!!! - Using the autoincrement feature with interrupt driven software deserves special attention. A problem can arise when an interrupt service routine accessing the secondary registers, interrupts another routine accessing secondary registers. This problem can be avoided one of two ways: disable the interrupt in the main routine while accessing secondary registers, or reload the index register to its entry value when exiting the interrupt routine.
Note: The Index register is automatically cleared only under two conditions, one is a RESET, the other is when mode is used. This register is reset to 0 in DMA mode just prior to the DMA request (DBR going active). DMA mode uses the index register for operation, so the index register should never be written to when RUN and DMA are set.

Control Register - Register 3

CAL	RESET	SLFTST	tclk	DMA	LOBYT	MSTR	RUN
Control Register							

RUN (Bit 0): Setting this bit to a one will cause the chip to start executing the operations defined in the Instruction RAM, beginning with location 0 . This is referred to as the Run mode. Clearing this bit will place the ML2200 in the Halt mode. The run bit is initially cleared on power up or after a hardware or software reset. In order to properly start the chip operation, the RUN bit should be set after setting all other applicable bits in the control register. The act of halting the chip will always reset the sequence pointer to operation 0 . Thus, the next time RUN is asserted, the chip starts from operation 0 again. Placing the chip in the Run or Halt mode has no effect on the Interrupt pins (INT and DBR), nor the status bits in the status register. It is recommended that secondary registers only be written to in the Halt mode. Writing to secondary registers in the Run mode will cause the RNER status bit to be set, indicating a run error. All of the status bits in the Status register should be acknowledged (cleared) before entering the Run mode.
MSTR $=$ master (Bit 1): Indicates whether the SYNC pin will be an input or an output. If set the chip will enter the master mode of operation and the SYNC pin will become an output pin which puts out a sync pulse at the beginning of each operation. This serves as a signal for other slave chips that are used in a synchronous operating method. While in master mode, any operation requiring a sync input will not proceed, and the chip will "hang", waiting for a sync that will never come. The chip default is slave mode with the SYNC pin as an input.
LOBYT = low byte first (Bit 2): This bit is used to indicate which byte is accessed first in AUTOI or DMA operation. When this bit is set, the index register is incremented on the read or write of the Window High register. When this bit is clear, the index register is incremented on the read or write of the Window Low register. If DMA operation is specified, then setting this bit will make the low byte be output first, then the high byte, after which the index register is incremented. Conversely, clearing this bit will output the high byte first, then the low byte, then increment the index register. The default is low.
DMA = DMA Mode (Bit 3): When set enables DMA operation. DMA operation proceeds as follows:

1) The DMA bit must be set after defining all other registers (Instruction RAM, Alarm etc.) but prior to setting the RUN bit. The RUN bit is then set.
2) The sequence of operations in the Instruction RAM is executed.
3) At the end of the sequence, the DBR pin goes true, requesting DMA service, and the Index register is automatically cleared, pointing to the first location of the data buffer.
4) Each read of either Window Low or Window High register outputs a byte from the data registers. The DMA controller can read Window Low register, or Window High register, or alternate between Window Low and Window High. The same data is placed in both Window Low and Window High registers, and updated in both of them when either one is read. The data is placed in the Window registers beginning with data word 0 and incrementing on up. The placement of the low byte/ high byte order is based on the LOBYT bit in the Control register. The number of bytes transmitted equals twice the number of operations defined, since the words are 16 -bits going over an 8 -bit bus. DBR remains asserted until all of the bytes have been transmitted. It is negated on the leading edge of the last byte read pulse. DBR acknowledge (setting the DBRAK bit in the Status register) is not required when transferring bytes via DMA.
The AUTOI bit does not have to be set when in the DMA mode. Setting the DMA bit forces the Index register to be auto-incremented in the Run mode. However if AUTOI is not set, then when in Halt mode autoincrement will not be enabled. If the AUTOI bit and DMA bit are both set, the autoincrement will occur in both the Run mode and the Halt mode.
$\mathbf{t}_{\mathbf{C L K}}=$ enable external timer clock (Bit 4): When set, will divert the clock input for the internal sixteen bit timer to the $t_{C L K}$ pin. When reset to 0 , the timer runs at the internal chip clock frequency, which is $1 / 2$ of that generated at the CLK pin.
SLFTST = self test (Bit 5): When set, the function of the input multiplexer is modified to enable self test operations. This bit also redefines the Instruction Word,
specifically the CHAN field of the instruction word (See Figure 16 for the redefinition of the Instruction Word when SLFTST $=1$). With SLFTST set the CHAN bits now specify which of four self tests is to be performed as shown below.

| Instruction
 Word
 CHAN Field | Function | Description |
| :---: | :--- | :--- |, | System Offset |
| :---: |
| 000 |
| 001 |
| 010 |
| Reference |
| Inputs shorted
 together and
 shorted to ground |

These self-test results are useful for user confidence at power on. The default on reset is 0 , normal mode of operation.
RESET = soft reset (Bit 6): Is a software reset of the chip. This bit does not have to be cleared once set. The microprocessor should read this bit back to determine if the reset operation has completed, especially if a slow clock rate is being used. It takes at least 4 internal clocks for the reset bit to clear. Microprocessor communication with the chip should be held off until this bit is read back as cleared. When issuing a hardware reset, communication with the chip should be held off until the RESET pin goes inactive. The chip will be in the Halt mode (RUN bit cleared) after a reset. See RESET/Power-On Conditions (Section 4.2) for chip register conditions after a reset.

Figure 16. Bit Map of Instruction Word When SLFTST $=1$.

CAL = calibration start (Bit 7): When set, a self-calibration of the A / D converter will begin. Reading the CAL bit indicates whether the chip has been calibrated since the last reset or power-on condition. If CAL is a 1 , then a calibration of the A/D converter has been performed since the last reset or power-up. When setting CAL, the user should not write a 0 back to clear it. Writing a 0 to the CAL bit has no effect; this will not clear it if it was previously set. Attempting to set the RUN bit without this bit being set will result in a run error condition, in which the RNER status bit will be set, and an interrupt being generated if it was enabled in the mask register. The amount of time required for calibration is 8,260 internal clocks, or 16,520 external clocks. To determine when a calibration is complete, the microprocessor should enable the calibration complete interrupt (CLCPIE) in the interrupt mask register, and wait for the interrupt to occur. Interrupt servicing of the calibration complete interrupt is done in a normal manner, in which the interrupt is acknowledged by setting the CLCPAK bit in the interrupt acknowledge register. All I /O to the ML2200 should be avoided during calibration (i.e., 16,520 external clocks after the CAL bit is set), because accessing the chip during calibration could adversely affect the calibration. If an interrupt is not desired, the microprocessor can read the Status register to verify completion 16,520 external clocks after the CAL bit is set. When the CAL bit is set, all other bits in the Control register should be cleared. DO NOT set the CAL and RUN bits simultaneously.
Status Register - Register 4

INT	CLCP	RNER	ISQ	OVRN	ALRM	OVRG	OBR
Status Register							

Register 4 serves as the status register of the various conditions that can occur. The bits in the Status register will be updated regardless of the Mask register. The status bits are updated any time within or at the end of a sequence of operations. The bits in the Status register are cleared by setting the corresponding bits in the Interrupt Acknowledge register. The status register can be polled at any time without fear of clearing the status bits. This register is not cleared at HALT time. When entering the Run mode, all of the old status bits should be cleared (acknowledged).
DBR = Data Buffer Ready (Bit 0): Is set when the chip has gone through one complete sequence of operations and has filled the data registers with the converted results. This bit signifies that the microprocessor should read all locations in the data registers that have relevant data. Reading all loaded data locations will clear DBR. If all loaded data locations are not read, DBRAK in the Interrupt Acknowledge register should be set to clear DBR, else OVRN will be set. The DBR pin is logically the same as the DBR status bit. The DBR pin is ALWAYS enabled and cannot be masked out. The DBR status bit is the only condition that can cause the DBR pin to be asserted. The DBR status bit can be enabled to assert the INT pin through the Interrupt Mask register.

OVRG = overrange interrupt (Bit1): Is set at the end of an operation when an underflow or overflow of the A / D converter has occurred (underflow and overflow are the most negative and most positive number, respectively, that is representable in the chip according to the specified cycle length). The overflow and underflow conditions apply to ALL incoming A/D converted data.
ALRM = limit alarm (Bit 2): Is the limit alarm status bit. It is set whenever the alarm criteria specified in the alarm registers is satisfied by a conversion from an operation where the ALRMEN bit is enabled. The limit alarm test only applies to an operation in which the ALRMEN bit is set.

Note that OVRG and ALRM can be enabled without enabling the DBR interrupt so that the microprocessor can be left alone until an overflow/underflow or limit alarm occurs. This is done to search for a limit condition first without taking any data into the microprocessor. Doing this, however, will set the OVRN (overrun error) bit in the status register, indicating that the microprocessor has not read any data from previous sequences.

OVRN = overrun error (Bit 3): The OVRN bit indicates that the microprocessor has missed from one byte to several blocks of data. Even if an overrun error occurs, the ML2200 or ML2208 continues converting the inputs and updating the data registers with the new conversions.

This bit may intentionally become set as a result of searching for the overflow/underflow or limit alarm criteria without reading the data.

The setting of the OVRN bit also occurs in DMA mode if all data has not been read by the completion of the next sequence. (Note: DBRAK should not be set in DMA mode, since DBR is automatically cleared by the chip.) If OVRN occurs in DMA mode, DBR will not be reactivated once all of the data from the sequence which was overrun is read; OVRN automatically disables DBR reactivation. Acknowledging OVRN (setting OVRNAK in the Interrupt Acknowledge register) will re-enable the DBR pin, however the OVRN bit may immediately be set again before the DMA controller can read the entire buffer. Therefore, it is recommended that in DMA mode if OVRN gets set, put the ML2200 or ML2208 in the Halt state, acknowledge the overrun and the DBR, then place the chip back in the Run mode.

ISQ = intra-sequence pause (Bit 4): Indicates that the chip has halted operation within a sequence as a result of choosing the ISQ op code in the mode field of the Instruction word. Setting the ISQAK bit in the interrupt acknowledge register will then restart the operation within the sequence. This lets the microprocessor achieve timing control of individual operations within a sequence.

RNER= run error (Bit 5): Indicates that an error occurred either entering or operating in the Run state. The following operational errors cause the RNER bit to get set

1. Entering the Run state without having performed a selfcalibration after the most recent Reset or power-up. The status of whether a calibration was executed or not is indicated by the CAL bit in the control register. If the CAL bit in the Control register is a one, the chip has already been calibrated.
2. Writing to any secondary registers other than the data registers during Run mode. All secondary register locations are readable during Run time.
CLCP = calibration complete (Bit 6): Is set at the end of a calibration sequence. The purpose of this bit is to notify the microprocessor that a self-calibration has completed.
INT = interrupt (Bit 7): Is identical to the state of the INT pin. The INT status bit and pin is an OR of the status bits enabled in the Interrupt Mask register. While the polarity of the INT pin can be defined in the interrupt mask register, this bit is positive true only.

\section*{Interrupt Acknowledge Register — Register 4
 WRITE
 ONLY
 | | CLCPAK | RNERAK | ISQAK | OVRNAK | ALRAK | OVRGAK | DBRAK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 Interrupt Acknowledge Register}

The status bits in the status register can only be cleared by setting the appropriate bit in this register; writing a zero has no effect. The relative bit positions in the Interrupt Acknowledge register are identical to the Status register except for bit 7, which is valid for reads (see explanation in Status Register) and undefined for writes (user must write a zero to this bit to be software-compatible for possible future redefinitions).
Sequence Register - Register 5
Sequence Register - Register 5

READ							
1	1	1	1	1	OR2	SR1	OROLY

During the RUN mode, this register can be read back to indicate the current operation in progress. This is especially useful for examining interrupts when multiple intra-sequence pauses are specified. Bits 3-7 always reads 1 s .

Registers 6 and 7- these registers are reserved for future use.

3.2 SECONDARY REGISTERS

There are twenty 16 -bit wide secondary registers containing the Data RAM, Instruction RAM, Timer, Alarms, Alarm Criteria Register, and Interrupt Mask. Except for the Data RAM, the secondary registers should only be accessed on initialization, or when the chip is placed in the Halt mode.

Secondary Registers 0 to 7

Data RAM (read only) Calibration Holding Register (write only)

The Data RAM consists of eight 16 -bit wide registers that hold the output results from the latest conversion sequence. Each word in the Data RAM has a one-for-one correspondence with a word in the Instruction RAM. The Data RAM is also referred to as the data output registers.
The data output registers are double buffered and readable by the microprocessor at any time. The A/ D converter fills a "shadow" bank of registers during conversions, while the microprocessor is free to read the output registers. When the sequence is done, the "shadow" bank information is transferred to the output registers for the microprocessor to read, after which time DBR is asserted. Therefore, the microprocessor has essentially one sequence time to drain the data buffer. This time varies according to the number of operations defined, the system clock frequency, the mode field for each operation, and the cycle length (number of bits to be converted). Refer to Conversion Times for more information.

Data Format

All data is returned from the converter in 16-bit two's complement format, right hand justified, with the sign bit extended across the most significant unused bits.

Cycle	+Max	-Max	Mid-Range
16	7FFF	8000	0000
13	OFFF	F000	0000
8	007F	FF80	0000

Calibration Holding Register -

This register is for diagnostic purposes only. It is one 16-bit wide register mapped into the write only secondary address space 0 to 7 (i.e., a write to any of the secondary addresses 0-7 will load the Calibration Holding register). This register is write only and cannot be read back directly. It is used when the mode field in the Instruction Word is set to CAL Write, and the Instruction is executed. This command takes the contents of the Calibration Holding register and loads it into the Calibration register of the A / D converter. Note that this will change the calibration of the A/D converter, and a calibration of the A/D converter should be done after a CAL Write command is issued.

Instruction RAM - Secondary Registers 8 to 15 (Read/Write)
\(\left.\begin{array}{|c|l|l}\hline OP \& 0 \& 8

\hline OP \& 1 \& 9

\hline OP \& 2 \&

\hline OP \& 3 \& 10

\hline OP \& 4 \& 11

\hline OP \& 5 \& 12

\hline OP \& 6 \& 13

\hline OP \& 7 \& 14

\hline \& 15\end{array}\right\}\)| |
| :--- |

The Instruction RAM, sometimes referred to as the Operation registers, consists of eight 16 -bit wide registers broken up into seven different fields (see Figures 10 and 10A). Each Instruction or Operation defines a single conversion, where the converted data result is stored in the corresponding data output register. Note that when the SLFTST bit in the Control register is set, the Instruction Word is redefined for diagnostic mode. Figure 12 illustrates the redefinition when SLFTST is set. The following section defines the seven different fields making up the Instruction word when SLFTST $=0$.

D15	D14	D13-11	D10-8	D7-5	D4, 3		D2-0
LAST	ALRMEN	MODE	CHAN	CYCLE	GAIN		
REF							

REF (Bits 2,1, 0 - Voltage Reference Selection) REF specifies the source of the voltage reference used for the A/D conversion.
GAIN (Bits 4 and 3 - Gain Settings) GAIN defines the gain of the precision instrumentation amplifier. The gain can be either 1,2,4, or 8 . Each gain factor of 2 adds an additional 4 internal clock cycles ($1 / \mathrm{f}_{\text {CLKI }}$) to the conversion time. Therefore a gain of 8 adds an additional 12 internal clock cycles to the conversion time.
CYCLE (Bits 7, 6,5 - Cycle Select) CYCLE defines one of five different cycles: 8-, 13-, or 16-bit conversions, and READ or WRITE CAL CODE. Choosing 8 -, 13 - or 16 -bit cycles determines how many bits the A / D converter will convert. However, even though the converter has a 16 -bit cycle, it may not have 16 -bits of useful resolution. The useful resolution of the converter can be determined from the linearity specs.

Since the algorithmic converter is a successive approximation type of converter, an 8-bit cycle requires
the least amount of time to convert, and the 16 -bit cycle requires the most. Refer to Sampling Rates and Conversion Times for the exact number of clocks each cycle takes.

READ CAL CODE and WRITE CAL CODE cycles are for diagnostic purposes only. READ CAL CODE reads the Calibration register in the A/D converter and loads it into the corresponding data output register. WRITE CAL CODE transfers the contents of the Calibration Holding register into the A/D converter's Calibration register. The transfer is complete after the operation is executed. Refer to Diagnostics for more information on READ and WRITE CAL CODE.
CHAN (Bits 10, 9, 8 - Input Channel Number) defines the input channel to be converted.
ALRMEN (Bit 14 - Alarm Enable) When this bit is set the alarm criteria for the operation is enabled, otherwise the alarm is disabled for this operation. If ALRMEN is set and the alarm condition is met, the ALRM bit in the Status register will be set at the end of the operation.

LAST (Bit 15 - Last Operation) signifies that this operation is the last operation of the sequence. The chip will return to and begin the first operation of the sequence after execution of the current operation. If all eight operations are specified, the last one MUST have this bit set.
MODE (Bits 13,12,11-Mode Selection) defines the condition that must be met for the operation to proceed. The mode field also has an effect on the Operation Execution Time.

000	Immediate Execute
001	Intra-Sequence Pause
010	Start on Next Time out
011	Preset Timer/Start on Time out
100	External Sync Start
101	External Sync/Timer Preset/Time out
110	ILLEGAL
111	ILLEGAL

Events That Occur Within an Operation

To better understand six modes of the ML2200 or ML2208 one must first understand the events that occur during an operation. This can be aided by referring to Figure 17.

Figure 17. Events Within an Operation.

The first event that occurs in the Operation is the Start of Operation. This may or may not be the beginning of the conversion, depending on the mode selected. The time between the Start of Operation and Start of Conversion is variable. When the conditions of the mode have been met, the Start of Conversion occurs.

The Conversion Execution time includes the input and reference acquisition times, the gain time, and the successive approximation conversion time. Shortly after the Start of Conversion the S / H goes into sample mode acquiring the input channel for eight internal clocks. After the input has been acquired the S / H goes into hold mode, disconnecting the S / H from the input channel, and transferring the charge into the A/D converter. A couple of clocks later the same S / H goes into sample mode on the reference voltage, either the internal $\mathrm{V}_{\text {REF }}$ or one of the input channels. The reference acquisition time for all six modes is the same; eight internal clocks. After the S/H goes into hold mode the successive approximation A / D conversion begins. When the conversion is complete the next operation begins.
Immediate Execute (000) - The Start of Conversion begins at the Start of Operation. In other words, the conversion begins the instant the operation begins. There is no gating item delaying the conversion. This mode allows the chip to convert at its maximum rate with no unnecessary delays. As an example of calculating the sequence time, if all eight operations used Immediate Execute with a gain of 1 and a 13-bit conversion, the time to execute one sequence (all eight operations) would be $8 \times 110=880$ internal clocks.

Intra-Sequence Pause (001) - This mode provides a way for the microprocessor to initiate conversions, rather than the other modes which either initiate conversions from internal timings or an external pulse. At the Start of Operation the ISQ status bit is set. The microprocessor will recognize the setting of the ISQ status bit either by polling the Status register, or having enabled the ISQ interrupt. The Start of Conversion is delayed until the ISQAK bit in the Interrupt Acknowledge register is set.
Start on Next Time out (010) - After the Start of Operation occurs the Start of Conversion is delayed until the internal timer decrements from 1 to 0 . When using this mode the timer will be free-running. This means that the timer is initialized in the Halt mode and left alone to decrement and reload automatically when in the Run mode. This mode can be used to establish a specific sampling rate. Note that the timer value must be greater than the conversion time, therefore this mode can only slow the sampling rate down from its maximum rate. In the case where several operations are used, and only one of them uses this mode, the timer value must be greater than all the other Operation Execution times plus the current operation conversion time.

Preset Timer/Start on Time out (011) - At the Start of Operation the timer is loaded with its pre-programmed count. The delay between the Start of Operation and the Start of Conversion is the pre-programmed count. Execution time of the operation is the pre-programmed timer count plus the conversion time. As opposed to mode 2 , the timer can be any value between 2 and 216 ; i.e.,
there is no restriction on the timer value being greater than the conversion time. One application of this mode would be when an external analog event is triggered by the SYNC pulse, and the conversion needs to be delayed by a programmable amount of time.
Using the External SYNC Input - The following description applies to modes 4 and 5, since these two modes use the external SYNC input. These modes should only be used when the SYNC pin is programmed as an input (MSTR bit in Control register is 0). If the external SYNC signal arrives before the Start of Operation, it may be latched depending upon the arrival time. If it arrives 22 clocks after the previous operation's Start of Conversion, external SYNC will be latched; any time before will miss the pulse. Therefore the external SYNC pulse rate should not be any faster than the frequency of the operations which use this mode, otherwise there will be more external SYNC pulses than conversions.
External SYNC Start (100) - After the Start of Operation, the Start of Conversion is delayed until the rising edge of the SYNC pulse and the next rising edge of the internal clock. Unless the rising edge of the external SYNC is synchronized with the internal clock (See tsyncck Spec), the aperture uncertainty is one internal clock.
External SYNC/Timer Preset/Time out (101) — For this mode, the external SYNC pulse presets the timer, and when the timer times out the Start of Conversion begins. The timer is preset after the rising edge of the external SYNC and the next rising edge of the internal clock. When the timer transitions from 1 to 0 , the Start of Conversion begins. As in the previous mode, unless the rising edge of the external SYNC is synchronized with the internal clock, the aperture uncertainty is one internal clock.
Timer Functions of the Different Modes - The on-chip timer is started when RUN is asserted. It then free-runs, pre-loads and restarts itself at the pre-programmed count unless one of the modes in an operation word specifies a timer preset. If "Start on Next Timeout" mode is selected for all operations, the timer free-runs and subsequently starts conversions on regular intervals, without the inclusion of any variable overhead timing requirements of any specific operation. The "preset timer" function that can be specified in any operation, functions as a "oneshot" time out feature; however it can upset the regularity of conversions. The use of the external SYNC start allows flexibility with asynchronous conditions outside the chip. In addition, the use of time out with external SYNC allows synchronous operation of multiple Micro Linear chips with interleaved operation. If a different rate is desired other than increments of one master clock cycle ($1 / 2$ the CLK pin frequency) or if external events need to be counted before starting an operation, then setting the tCLK bit in the control register will divert the timer to the $\mathrm{t}_{\mathrm{CLK}}$ pin for all operations.
Timer Holding Register - Secondary Register 16 - This register holds the pre-programmed value of the timer. The value is in 1 internal clock increments, or the period of $t_{\text {CLK }}$ if this input is used. The timer is a countdown timer, therefore the realized delay will be the number loaded into the Timer Holding register multiplied by the clock period. The value is written as a 16-bit binary word, and
either high or low bytes can be written first. These registers are both writable and readable, with register writes executed only when the chip is in the Halt mode (RUN bit cleared in the control register). Reading the Timer Holding register will return the preprogrammed value for the timer, it will not provide the actual timer value. Timer Holding register values of 1 or 0 are illegal and will "hang up" the timer when placed in Run mode. Therefore the minimum value that can be loaded into the Timer holding register is 2 . The timer is decrementing when in Run mode and idle when in Halt mode. When the chip is placed in Run mode, the timer is automatically loaded with the value in the Timer Holding Register, and begins to count down.

Alarm Registers - Secondary Registers 17, 18

(Read /Write) - These registers specify the alarm criteria against which the converted data of a current operation is compared. The comparison occurs only when the ALRMEN bit is set within the operation. Secondary register 17 is Alarm A and secondary register 18 is Alarm B. These values are written in two's complement format, right justified and sign extended (refer to Data Format for more information).

Alarm Criteria Register- Secondary Register 19

lower byte (Read/Write) - Specifies the compare criteria to be used with alarm registers A and B . Bit 0 specifies whether the comparison of alarm word A is to be greater than (setting the bit) or less than equal to (clearing the bit). Similarly, bit I specifies the same criteria for alarm word B. The criteria of the two groups can be "ANDed" or "ORed" together by clearing (OR) or setting (AND) bit 2. Bits 3 and 4 enable the alarm comparison for words A and B, respectively. Bits 5, 6, and 7 are unused and be can be any value when written, always read as ones. The following table illustrates all of the possible combinations, X signifies don't care.

Bit Number					
4	3	2	1	0	
ENB	ENA	AND	GB	GA	Test Done:
0	0	X	X	X	No Test
0	1	X	X	0	$\leq \mathrm{A}$
0	1	X	X	1	$>\mathrm{A}$
1	0	X	0	X	$\leq \mathrm{B}$
1	0	X	1	X	$>B$
1	1	0	0	0	$\leq \mathrm{B}$ or $\leq \mathrm{A}$
1	1	0	0	1	$\leq \mathrm{B}$ or $>\mathrm{A}$
1	1	0	1	0	$>\mathrm{B}$ or $\leq \mathrm{A}$
1	1	0	1	1	$>$ B or $>$ A
1	1	1	0	0	$\leq \mathrm{B}$ and $\leq \mathrm{A}$
1	1	1	0	1	$\leq \mathrm{B}$ and $>\mathrm{A}$
1	1	1	1	0	$>B$ and $\leq A$
1	1	1	1	1	$>\mathrm{B}$ and $>\mathrm{A}$

Using the various criteria, the chip can discern whether a certain channel is inside or outside a band, or greater than or less than a value. Notifying the microprocessor can be done through an interrupt or by polling the status register.

Interrupt Mask—Secondary Register 19 Upper Byte (Read/Write)

D15	D14	D13	D12	D11	D10	D9	D8
INTL	CLCPIE	RNERIE	ISQIE	IVRNIE	ALRMIE	OVRGIE	DBRIE

This register is used to define which interrupt conditions are capable of setting the hardware interrupt pin and the INT bit of the Status register. The bits in the Interrupt Mask register are interrupt enable bits, meaning when the bits are set they enable the corresponding status bit to activate the hardware interrupt pin as well as the INT bit in the Status register. The INTL bit determines the polarity of the INT pin. If set, the INT pin becomes active low, with an open drain output. If clear, the INT pin becomes active high, with driving capability in both directions.

Secondary Registers 20 to 31 - Undefined

These registers are undefined and will cause unpredictable results if read or written to.

4.0 SAMPLING RATES AND CONVERSION TIMES

To determine the sampling rate, one must first determine the sequence execution time. A sequence is defined as the number of operations or instructions used. Therefore the sequence execution time equals the sum of the individual operation execution times. The simplest case for determining the sampling rate is when only one operation is used in the sequence. Then the sampling period is the operation execution time. If all eight instructions are used in the sequence, the sampling rate would be the sequence rate multiplied by the number of times the channel was sampled in the sequence.
It is possible to sample one channel more frequently than another. For example, if every other operation sampled channel 0 , while the remaining operations sampled channels 1,2 , and 3 , the sampling rate for channel 0 would be four times the sampling rate of the other channels. If periodic sampling is important, one must be careful when sampling a channel multiple times in a sequence since different operations can have different execution times.

EXAMPLE: SAMPLING FOUR CHANNELS IN A BURST EVERY 10 MS

Using Mode 2 "Start on Next Time out" for Instruction 0 will establish the 10 ms sampling rate, once the clock is initialized properly. Instructions 1, 2, and 3 can each use Mode 0 "Immediate Execution." For the ML2200, each instruction can sample a different channel, thus covering all four channels in a burst. For the ML2208, the same holds true except all eight channels can be sampled in a burst, periodically.

Assuming the external clock is 7 MHz and each conversion is 13 bits with a gain of 1 , the conversion time for each operation will be $110 \times 286 \mathrm{~ns}=31.4 \mu \mathrm{~s}$. Therefore four instructions will require $4 \times 31.4 \mu \mathrm{~s}=125.7 \mu \mathrm{~s}$. The execution time is much less than the sampling rate, thus the timer can be used to set the sampling rate. The timer value for a 10 ms sample rate is: $10 \mathrm{~ms} / 286 \mathrm{~ns}=35,000$ decimal or 88 B 8 H .

Micro Linear

OPERATION OR INSTRUCTION EXECUTION TIME

Figure 17 illustrates the Operation Execution Time. The time between the Start of Operation and Start of Conversion is variable and depends on the Mode chosen. For more information on how to determine the time between Start of Operation and Start of Conversion refer to the Secondary registers Mode field description in the Instruction RAM.
The Conversion Execution time depends on the Cycle, the Gain, and the Mode chosen in the instruction word. Modes 0-5 all behave the same way when it comes to Conversion Execution Time. To help determine the Conversion Execution Time the following table gives the number of internal clocks used for Modes $0-5$ based on the Cycle chosen.

Cycle	Number of Internal System Clocks Needed $\left(\mathbf{1 / f} \mathbf{\mathbf { C L K I } ^ { \prime }}\right)$
$16-\mathrm{Bit}$	128
$13-\mathrm{Bit}$	110
$8-\mathrm{Bit}$	80
Read CAL	80
Write CAL	52

Add 4 extra clocks to the Cycle time for each gain of 2 (including Read CAL and Write CAL). For a gain of 2 add 4 extra clocks, for gain of 4 add 8 extra clocks, for gain of 8 add 12 extra clocks. Example: Modes 0-5, Cycle = 13 -bit conversion with a gain of 8 . Conversion Execution time is 122 internal clocks.

5.0 MICROPROCESSOR INITIALIZATION PROCEDURE

The following sequence of steps is recommended when initializing the ML2200 from the microprocessor:

1) Keep reset active for at least 10 internal clock cycles after power supplies have stabilized. If a software reset is issued, hold off microprocessor communications with the chip until the RESET bit in the control register is read back as cleared, which takes 4 internal clock cycles.
2) If desired, check the data register path by performing a write and read of the calibration register for all 8 operations. (This step is optional, but does provide user assurance of the integrity of the on-chip data paths.) The calibration register is a full 16 -bit data path.
3) Perform a calibration by first enabling the CLCP interrupt in the Interrupt Mask register, then start the calibration by asserting the CAL bit in the Control register. Alternately, if an interrupt driven system is not desired, the interrupt status register can be polled 8260 internal clocks after the CAL bit has been set. The chip should not be polled during calibration.
4) Upon receiving the CLCP interrupt, acknowledge it. If desired, read back the calibration code to verify a successful calibration. Other diagnostics may be run at this time, however diagnostics are optional and not required.
5) Load the Instruction RAM, alarm criteria, interrupt conditions, and timer. Set the proper data transfer mode up (DMA,
interrupt driven or polled mode.) Clear all status bits before setting the RUN bit.
6) Start the chip running by setting the RUN bit in the Control register. This may be done by ORing the RUN bit with the other bits already configured in the Control register; however do not set the CAL bit again or another calibration will take place. Writing a 0 to the CAL bit has no effect; it will still read 1 .

5.1 RESET/ POWER-ON CONDITIONS

When applying power to the ML2200, DV $V_{C C}$ and $A V_{C C}$ should never be powered-on at different times.
It is OK to assert both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ during RESET time, but not legal to do so otherwise; this may damage the chip internally.
The following list specifies the affected registers on the chip after a reset is performed. Note that both hardware and software reset of the chip have identical effects.
All registers shown below are cleared (all bits 0):

Primary Registers:

Index register (register 2)
Control register (register 3)
Status register (register 4)
Sequence status (register 5)

Secondary Registers:

Interrupt bit mask (upper half, register 19)
Alarm criteria register (lower half, register 19)
All other registers will have random data in them after power on. If a hardware or software reset is performed later, registers which are not listed above will be unchanged. Re-calibration after a hardware or software reset is not necessary, since the calibration register remains the same after a reset. Only after a power-up is a calibration necessary. However the CAL bit in the Control Register will be cleared after a reset. Setting the RUN bit while the CAL bit is clear will cause the RNER bit to be set. But, if a calibration had been done before the reset, the RNER may be ignored.

5.2 TIMER

If any of the operations require a timer function, (either a one-shot or regular conversion interval) then the timer value must be written. This is done by writing the index register value to 10 hexadecimal and writing the proper 16-bit time value to the window registers. The timer value must be greater than 1 . If using mode 2 "Start on Next Time out" the timer value must be greater than the conversion time.

5.3 LIMIT ALARM OPERATION

The chip may be set up to watch for certain data conditions by enabling the proper interrupt bits in the Interrupt Mask register. These conditions include AD overrange/ underrange and userdefined alarm criteria. In order to use the alarms, the A and B alarm values must be defined. Note that since alarm registers A and B are 16 bits wide, 13 -bit two's complement sign extended values must be loaded. (Refer to Data Format for more information). In order to further qualify alarm registers A and B, the Alarm Criteria register must be initialized.

5.4 DEFINING INTERRUPT CONDITIONS

If the chip is used in polled situations, the interrupt mask bits need not be set unless the "OR" of the interrupt conditions, bit 7 in the Status register is used.
If the chip is used in interrupt mode rather than polled mode, the desired interrupt conditions should be considered. In addition to the interrupts specified for data comparison operations, several other interrupts can be defined in the Interrupt Mask register. The DBR bit can be set if the DBR pin is not used. This enables interrupts at the end of sequences for data transfer via the INT pin. The intra-sequence interrupt bit should be enabled if intrasequence pauses are desired in any of the operations. Overrun error and run-time error bits should be enabled if trapping of these errors is desired.

Note that alarm A and B and overrange interrupts occur at any time within the sequence of operations. Due to the interrupt latency time of the microprocessor, multiple interrupts of this type within a sequence may be indistinguishable from each other. The A and B alarms should generally be used on only one operation so that its source can be determined with no ambiguity. Overrange interrupts can be handled by examining the data in the chip at the end of the sequence.

The INT pin polarity can be defined to be active high (bit 15 cleared in the Interrupt Mask register) or active low (bit 15 set). When active low is chosen, the INT pin is open drain without a pull-up. When active high, the INT pin is driven actively in both directions. The default condition is active high, and the INT pin is actively driven low during reset time.

6.0 METHODS OF DATA TRANSFER TO THE MICROPROCESSOR

There are several ways to handle the data output; polling, interrupt, or DMA. If interrupts are the method chosen, method 5) may be preferable. Method 5) DMA/Interrupt mode, does not require a DMA controller. It simply uses the DMA mode of the ML2200 or ML2208 which can be interfaced to an interrupt controller.

1) Intra-Sequence pause instruction is used when the microprocessor is not going to periodically/continuously read the data, but it will read the data at arbitrary times. The Table 1 below shows the op codes to sample all eight channels.

Using these instructions the program begins when the RUN bit is set in the control register. Immediately after RUN is set, before the first conversion takes place, the ISQ bit in the status register is set. This indicates that the sequencer has paused. When the microprocessor wants to read a value on one or more of the channels it sets the ISQAK bit in the Interrupt Acknowledge register. The ML2208 then performs eight conversions back-toback, jumps back to sequence 0 , and sets the ISQ and DBR bits in the status register. The data from all eight channels is now available in the Data RAM. The next time a conversion is desired, once again the microprocessor sets ISQAK in the interrupt acknowledge register.
2) Polled mode transfer is done simply by polling the status register and examining the DBR bit to see if a sequence has been completed. The DBRIE interrupt mask bit need not be set, but an acknowledge should be done by setting DBRAK in the Interrupt Acknowledge register, otherwise an overrun error will occur. The CPU can just poll the INT bit in the Status register. Only the bits which are enabled in the Interrupt Mask register will set the INT status bit. When the INT bit is set, the CPU can examine the other status bits to determine which requests are active.
3) Interrupt mode can be implemented using the INT pin and enabling the desired interrupt conditions in the Interrupt Mask register. The polarity of the INT pin can be selected at the same time. If desired, DBR can be used as a second interrupt pin to signify the transfer of data only. This may be useful in systems with multiple and prioritized interrupt structures. If DBR is used, the DBR mask bit in the interrupt mask register should be disabled or cleared.
4) DMA mode can be implemented by setting the DMA enable bit in the control register and selecting high byte or low byte first by setting or clearing the LOBYT bit. The DBR pin is utilized as the DMA request, and will remain asserted until all data from the sequence is read.
5) DMA/Interrupt mode. DMA mode can also be used in non-DMA applications. Although this appears to be unconventional, it may actually be preferred over the interrupt mode because of its convenience and speed. One way to do this would be to use the DBR pin as an interrupt request but enable DMA mode in the DAP. When data is ready DBR interrupts the microprocessor. The microprocessor then reads either window register the required number of times to drain the Data RAM.

TABLE 1. CHANNELS IN AN ML2208 AT ARBITRARY TIMES

	LAST	ALRMEN	MODE	CHAN	CYCLE	GAIN	REF
SEQ0	0	0	Intra Sequence Pause	CH 0	13	1	Internal
SEQI	0	0	Immed Execute	CHI	13	1	Internal
SEQ2	0	0	Immed Execute	CH 2	13	1	Internal
SEQ3	0	0	Immed Execute	CH 3	13	1	Internal
SEQ4	0	0	Immed Execute	CH 4	13	1	Internal
SEQ5	0	0	Immed Execute	CH 5	13	1	Internal
SEQ6	0	0	Immed Execute	CH 6	13	1	Internal
SEQ7	1	0	Immed Execute	CH 7	13	1	Internal

Using the DMA mode interrupt method over non-DMA mode interrupt method saves a lot of overhead. For example in non-DMA mode interrupt method (assuming AUTOI is set), the index register would have to be set on entry, and the DBRAK bit would have to be set each service routine. In DMA interrupt mode, neither the Index register nor the DBRAK bit would have to be set. These are handled automatically in DMA mode.

7.0 POWER-DOWN MODE

The chip can be powered-down by asserting the $P_{D N}$ pin. It is advisable to place the chip in HALT mode first by clearing the RUN bit in the control register, however the chip will automatically go into Halt mode when powereddown. All analog circuits are powered-off; digital circuits are left in an idle state. All registers within the chip will retain their values down to a level of 2 V between V_{CC} and GND.

Powering-up the chip is done by bringing P_{DN} high. The chip will be in Halt mode upon power-up. Note, however,
that the first 10 ms of chip operation after a power-up will not be valid due to the settling of quiescent bias conditions within the on-chip's analog circuits. Any data that is returned for this period after power-up should be considered invalid. The user has the choice of either throwing away the first 10 ms of data or waiting for 10 ms and then setting the chip in RUN mode. The on-chip timer can be used for this purpose, if desired, by defining a sequence of dummy operations that last for the required delay, then rewriting the required operations for normal use.
Acknowledge register. $D_{\text {BRAK }}$ should also be set sometime before the next sequence to prevent the OVRN bit from being set, however this is not necessary.
Note that the microprocessor cannot let the ML2200 sequencer run continuously, i.e., SEQ 0 would be changed to Immediate Execute and asynchronously read the Data RAM. The problem in this case would be that the microprocessor may read the data at the same time that the chip is updating it. That is why either polling, interrupt, or DMA transfer is required in a continuous run mode of operation.

APPENDIX A

DIAGNOSTICS

The ML2200 and ML2208 may be run through a diagnostic routine after power-up. The DAP provides software programmable diagnostics so that no external hardware is necessary. Diagnostics are not necessary. They are provided as an option to the user.

SELF-TEST MODE

Setting the SLFTST bit in the Control register redefines the CHAN field in the Instruction Word. This in effect changes the input to the Sample-and-Hold from the multiplexer input channels to internal points within the chip; such as $V_{\text {REF }}$ and AGND. Conversions in the Self-Test Mode allow the user to determine how the Sample-and-Hold and A/D converter behave with known input signals. This can be useful as a diagnostic routine for a product in the field, or as a debugging feature during product development. Figure 16 illustrates the redefinition of the instruction word when SLFTST $=1$.

1. System Offset - The positive and negative inputs to the Sample-and-Hold are tied to analog ground. With this setting, converted data will give the offset of the A/D converter and Sample-and-Hold combination.
2. Internal Reference - Connects the positive input of the Sample-and-Hold to $V_{\text {REF }}$ and the negative input of the Sample-and-Hold to analog ground. The result of converting in this test mode is a value near positive full scale.
3. Invert Internal Reference - Connects the negative input of the Sample-and-Hold to $V_{\text {REF }}$ and the positive input of the Sample-and-Hold to analog ground. The result of converting in this test mode is a value near negative full scale.
4. Common Mode - Both the positive and negative inputs of the Sample-and-Hold are tied to the internal $V_{\text {REF }}$. The result of a conversion in this test mode indicates how well the converter is rejecting a common mode signal.
Since setting the SLFTST bit merely changes the input to the Sample-and-Hold, conversions must be executed in order to read the results. This means placing the chip in the RUN mode and reading the results from the Data RAM. It is possible to run one sequence then halt the sequencer and read the results. The sequencer can be put in a "pause" via the Intra Sequence Pause Mode instruction. The following instructions accomplish this:

	LAST	ALRMEN	MODE	CHAN	CYCLE	GAIN	REF
SEQ 0	0	0	Intra SEQ Pause	System Offset	13	1	0
SEQ 1	0	0	Immed Execute	INT REF	13	1	0
SEQ 2	0	0	Immed Execute	Minus INT REF	13	1	0
SEQ 3	1	0	Immed Execute	Common Mode	13	1	0

After the RUN bit is set, the ISQ bit in the status register is immediately set. Setting the ISQAK bit in the Interrupt Acknowledge register will allow the sequencer to continue. The next time the ISQ bit is set, the results may be read from the Data RAM.

Reading and Writing to the Calibration Register The ML2200 and ML2208 architecture provides a way for the microprocessor to indirectly read and write to the A/D converter; specifically the Calibration register and the A/D's Data register. Figure 18 illustrates this architecture.

The instructions that cause these transfers are READ CAL CODE and WRITE CAL CODE; selected in the Cycle field of the instruction word when SLFTST $=0$. WRITE CAL CODE transfers the contents of the Calibration Holding register into the A/D converter's Calibration register. READ CAL CODE transfers the contents of the Calibration Holding register through the A/D's Data register, into the Data Output register with the same location as the operation.

As a result of providing READ and WRITE CAL, it is possible to execute digital loopbacks through the Calibration register, A/D registers, and all 8 Data Output registers. These loopbacks provides user assurance that all of the paths are clear and there are no stuck bits.
Writing to the Calibration register changes the calibration of the A/D converter. Therefore a self calibration should be performed after executing a WRITE CAL CODE to ensure the A / D is properly calibrated.

Figure 18. Digital Loopback Architecture.

DIGITAL LOOPBACK ARCHITECTURE

Reading the calibration register provides a way for the microprocessor to determine that the self calibration was successful. The microprocessor configures the DAP to execute a READ CAL CODE after a self calibration has been performed. If the lower byte of data from the READ CAL CODE is anything other than all 1 s , then the calibration was successful.

Even though the calibration register itself is a 16-bit register, and is capable of holding a 16-bit result, only the lower 9 bits are significant in determining the calibration code. These 9 bits have a sign magnitude format, in other words the 9th bit (MSB of the 9-bit word) is the sign bit, and the other eight bits are magnitude bits. An easy way to determine whether the calibration has passed or failed is to read the lower data byte after a READ CAL is executed. If it's not all 1 s then the calibration was a success.

APPLICATIONS

Utilizing instruction RAM bits 0,1 , and 2, any of the differential input channels of the ML2200 can be programmed to sense the external reference (See Figure 13.) Only single ended channels 0 thru 5 can be used on the ML2208 (See Figure 14.)

Figure 19. Using a 2.5V External Reference.

The system gain errors can be nulled by applying 2.4991 V (the full-scale voltage minus 1.5 LSB) to one of the input channels and adjusting R1 until the digital output toggles between 0111111111110 and 011111111 1111. If offset is not adjusted the full-scale voltage will be shifted by the amount of this unadjusted offset voltage.

Figure 20. Adjusting Full-Scale Error.

APPLICATIONS (Continued)

Figure 21. Adjusting Zero Error.

An op amp with an offset adjustment with a range of at least +1.3 mV is required, like an $\mathrm{OP}-27$. The Zero Error can be nulled by first applying $305 \mu \mathrm{~V}$ to one of the input channels (referenced to AGND.) $305 \mu \mathrm{~V}$ is equivalent to $1 / 2$ LSB which is the ideal input voltage which should cause the digital output to toggle from 0000000000000 to 0 000000000001 . Adjust R3 until this occurs.

If an external reference is also being used, it should be referenced to AGND, while the COM or negative inputs are tied to the offset op amp as shown above. In this configuration, the offset adjustment will effect the gain setting and so should be set first.
The Channel to Channel Zero Error and Full-Scale Error are very low and do not need to be adjusted separately. If, however, the input signal sources have their own different offsets, a separate op amp, with an offset adjustment, can be placed at each channel input.

APPLICATIONS (Continued)

Figure 22. Interfacing ML2200 to $\mathbf{6 8 0 0}$ Type Microprocessors.

Figure 23. Pressure Sensor Application.

ORDERING INFORMATION

PART NUMBER	LINEARITY ERROR	MINIMUM CONVERSION	PACKAGE	TEMPERATURE RANGE

Four Differential Analog Inputs

ML2200BCP	$\pm 3 / 4 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$		
ML2200CCP	$\pm 1 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$	Plastic DIP (P40)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2200DCP	$\pm \mathrm{LSB}$	$44.0 \mu \mathrm{~s}$		

Eight Single Ended Analog Inputs

ML2208BCP	$\pm 3 / 4 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$		
ML2208CCP	$\pm 1 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$	Plastic DIP (P40)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Serial Peripheral Interface (SPI) 12-Bit Plus Sign A/D Converter with S/H

GENERAL DESCRIPTION

The ML2221 is a member of Micro Linear's 12-bit plus sign CMOS A/D converter family utilizing a self calibrating algorithmic SAR technique. All errors of the sample-and-hold are accounted for in the analog-todigital converter's accuracy specification.

These A/D converters have a maximum nonlinearity error over temperature of $\pm 0.009 \%$ or $\pm 0.012 \%$ of minus full scale to plus full scale.
The serial interface is compatible with industry standard serial interfaces. The ML2221 has 4 modes of operation: gated serial data clock, gated chip select, chip select to initiate conversion with serial out data controlled by ML2221, and free run mode.
The serial interface allows either MSB or LSB first data with 2's complement output coding. For easy interface to microprocessors and shift registers the output data word is 16 bits.

FEATURES

- Nonlinearity error $\quad \pm 3 / 4$ LSB and ± 1 LSB max
- Conversion time (including S/H acquisition) $44 \mu \mathrm{~s}$ max
- Harmonic distortion 0.01\%
- No missing codes
- Inputs withstand $|7 \mathrm{~V}|$ beyond supplies
- Bipolar -5 V to +5 V analog input range
- Controlled or free run operation
- Direct 4-wire interface to $\mu \mathrm{P}$ (MPU) with synchronous serial formats
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
- 16-pin DIP

BLOCK DIAGRAM

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

OPERATING CONDITIONS

ML2221BIJ, ML2221CIJ	${ }^{\circ} \mathrm{C}$
ML2221BCP, ML2221CCP $\ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Supply Voltage (V_{CC})	$4.5 \mathrm{~V}_{D C}$ to $6.0 \mathrm{~V}^{\text {DC }}$
Negative Supply Voltage (V_{SS})	$-4.5 \mathrm{~V}_{\mathrm{DC}}$ to $-6.0 \mathrm{~V}_{\mathrm{DC}}$
Reference Voltage ($\mathrm{V}_{\text {REF }}$)	V

ELECTRICAL CHARACTERISTICS

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{REF}}=+4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=\mathrm{AGND}$, $\mathrm{V}_{\mathrm{IN}^{+}}=-4.75 \mathrm{~V}$ to $+4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified.

PARAMETER	NOTES	CONDITIONS	ML2221BIJ, ML2221CIJ			ML2221BCP, ML2221CCP			UNITS
			MIN	$\begin{array}{c\|} \text { TYP } \\ \text { (Note 3) } \end{array}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 3) } \end{gathered}$	MAX	

Converter Characteristics

Linearity Error ML2221BXX ML2221CXX	4	$\mathrm{f}_{\text {CCLK }}=0.1$ to 5 MHz			$\begin{aligned} & \pm 3 / 4 \\ & \pm 1 \end{aligned}$			$\begin{gathered} \pm 3 / 4 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Zero Error ML2221BXX ML2221CXX	4				$\begin{gathered} \pm 3 / 4 \\ \pm 2 \end{gathered}$			$\begin{gathered} \pm 3 / 4 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Positive and Negative Full-Scale Error	4				± 5			± 4	LSB
Zero Error Temperature Coefficient				0.5			0.5		ppmFS/ ${ }^{\circ} \mathrm{C}$
Gain Temperature Coefficient				10			10		ppmFS/ ${ }^{\circ} \mathrm{C}$
Common Mode Rejection	5,6		80			80			dB
Analog Input Source Resistance	4				2			2	$\mathrm{k} \Omega$
Analog Input Range	4	$\mathrm{V}_{\mathbb{N}^{+}}$Referred to $\mathrm{V}_{\mathbb{I N}^{-}}$	$-\mathrm{V}_{\text {REF }}$		$+\mathrm{V}_{\text {REF }}$	$-\mathrm{V}_{\text {REF }}$		$+\mathrm{V}_{\text {REF }}$	V
Analog Input Leakage Current	4				100			100	nA
Voltage Reference Input Source Impedance	4				0.5			0.5	k Ω
Reference Input Leakage Current	4				100			100	nA

Digital and DC Characteristics

Power Supply Current $\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ $I_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}$	4			$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		30 18	$\begin{array}{r} 50 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Supply Rejection $\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$	7	DC DC to 25 kHz DC DC to 25 kHz		$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$			$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$		dB $d B$ $d B$ $d B$
$\mathrm{V}_{\text {ILCLK }}$, Clock Input Low Voltage	4				0.8			0.8	V
$\mathrm{V}_{\text {IHCLK }}$, Clock Input High Voltage	4		3.5		V_{CC}	3.5		V_{CC}	V
$\mathrm{I}_{\text {L1 }}$, Input Leakage Current (CCLK)	4	$\mathrm{AGND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			± 200			± 200	$\mu \mathrm{A}$
$\mathrm{V}_{1 \mathrm{~L}}$ Input Low Voltage	4				0.8			0.8	V
V_{IH}, Input High Voltage	4		2.0		V_{CC}	2.0		V_{CC}	V
$\mathrm{V}_{\text {OL }}$ Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45			0.45	V
V_{OH}, Output High Voltage	4	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			2.4			V
L_{L} Input Leakage Current (except CCLK)	4	DGND $\leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{CC}}$			± 10			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HI}-\mathrm{Z},}$ Output Leakage Current	4	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$			± 10			± 10	$\mu \mathrm{A}$
C_{1}, Input Capacitance (all digital inputs)	5			10			10		pF
C_{O}, Output Capacitance (all digital outputs)	5			10			10		pF

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 3) } \end{gathered}$	MAX	UNITS
AC Electrical Characteristics (Note 8)								
${ }_{\text {t }}$	Conversion Time	4,9	$\mathrm{f}_{\text {CCLK }}=5 \mathrm{MHz}(\mathrm{CCLK} \div=$ " 0 ")		44			$\mu \mathrm{s}$
	Sample and Hold Acquisition	4,9	$\mathrm{f}_{\text {CCLK }}=5 \mathrm{MHz}\left(\mathrm{CCLK} \div={ }^{\prime} 0\right.$ ")		3.2			$\mu \mathrm{s}$
$\mathrm{ffCLK0}$	Clock Frequency	5,9	Crystal (CCLK $\div=$ " 0 ")		3		5	MHz
			Driven (CCLK $\div={ }^{\prime} 0$ " ${ }^{\text {) }}$		0.1		5	MHz
$\mathrm{f}_{\text {CCLK }}$	Clock Duty Cycle	5,9	Driven		40		60	\%
$\mathrm{f}_{\text {CCLK0 }}$	Clock Width	5,9	Driven (CCLK $\div=$ " 0 ")	High	50			ns
				Low	50			ns
$\mathrm{f}_{\text {CCLK1 }}$	Clock Frequency	5,9.	Driven (CCLK $\div=$ " 1 ")		0.05		2.5	MHz
$\mathrm{f}_{\text {CLLK1 }}$	Clock Width	5	Driven (CCLK $\div=$ " 1 ")	High	150			ns
				Low	150			ns
${ }^{\text {t }}$ CSB	$\overline{\mathrm{CS}}$ Low to BUSY Driven	4					85	ns
${ }^{\text {tCSB }} \mathrm{HZ}$	$\overline{\mathrm{CS}}$ High to BUSY, Hi-Z	4					85	ns
${ }_{\text {t }}^{\text {SCLK }}$ A ${ }^{\text {a }}$	SCLK High to BUSY	5	Gated SCLK				270	ns
${ }^{\text {t CCLKB }}$ D	CCLK Low to BUSY, Deassert	5					160	ns
$\mathrm{t}_{\text {SCLK, DO }}$	Serial Clock Low to DO Valid/Hold	4					190	ns
${ }_{\mathrm{t}}{ }_{\text {CS, DO }}$	$\overline{\mathrm{CS}}$ Low to DO Driven	4					85	ns
$\mathrm{t}_{\mathrm{CS}, \mathrm{DO}} \mathrm{HZ}$	$\overline{\mathrm{CS}}$ High to DO Hi-Z	4					85	ns
${ }_{\text {t CS, CCLK }}$	$\overline{\mathrm{CS}}$ Low Setup Time to CCLK	4	Immediate Conversion	Start	0			ns
$\mathrm{t}_{\text {CS, SCLK }}$	$\overline{\mathrm{CS}}$ Low Setup to SCLK Low for No-Delay Data Transmit	5					75	ns
$\mathrm{t}_{\text {CCLK, SCLK }}$	CCLK to SCLK Output Delay	5	SCLK $_{\text {IN/OUT }}=$ " 0 "				225	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Common mode rejection is the ratio of the change in zero error to the change in common mode input voltage.
Note 7: Power supply rejection is the ratio of the change in zero error to the change in power supply voltage.
Note 8: All parameters measured from 0.8 V to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
Note 9: Maximum frequency is $1 / \mathrm{t}_{\mathrm{CLK} 1}$ (high) $+\mathrm{t}_{\mathrm{CLK} 1}$ (low) + rise + fall times, which must be $\leq 2.5 \mathrm{MHz}$.

Figure 1. High Impedance Test Circuits and Waveforms

Figure 2. $\overline{\mathrm{CS}}$, SCLK Sourced Mode

Figure 3. $\overline{\mathbf{C S}}$, SCLK External Mode

Figure 4. FREERUN Mode

*DATA WILL BE MSB OR LSB FIRST DEPENDING ON "MSB" LOGIC STATE

Figure 5. Gated SCLK Mode

1.0 FUNCTIONAL DESCRIPTION

1.1 ALGORITHMIC A/D CONVERTER

Micro Linear's algorithmic converter uses a successive approximation technique. Most of today's successive approximation converters use a DAC to feedback the approximated signal, however this technique requires more circuitry than algorithmic converters. In addition the values of all of the resistors or capacitors in the DAC must be matched to within the accuracy of the converter. This is difficult beyond 10 bits unless trimming is used. An algorithmic converter uses less circuitry and is more easily trimmed. Micro Linear's algorithmic converter is implemented using a $2 x$ amplifier, a sample/hold amplifier and a comparator as shown in Figure 6.
The input sample is first multiplied by two then compared to the reference voltage. If the $2 x$ input voltage is greater than the reference, the MSB is a 1 and the reference voltage is subtracted from the $2 x$ input voltage. The remainder is stored in the sample and hold. If the $2 x$ input voltage is less than the reference, the MSB is a 0 and the $2 x$ input voltage is stored in the sample and hold. This process repeats again, however now the sample and hold voltage is multiplied by 2 .

The algorithm involves multiplication by 2, comparison, and possibly subtraction. Referring to Figure 6, the algorithm for the circuit can be described as follows:

Step 1

$$
\begin{aligned}
& \text { If }\left(2 \times V_{\text {IN }}\right)-V_{\text {REF }} \geq 0 \\
& \text { then } M S B=1 \\
& \left(2 \times V_{I N}\right)-V_{\text {REF }} \rightarrow S / H \\
& \text { else } M S B=0 \\
& \left(2 \times V_{I N}\right) \rightarrow S / H
\end{aligned}
$$

Step 2 If $(2 \times S / H)-V_{\text {REF }} \geq 0$
then next bit $=1$
$(2 \times S / H)-V_{R E F} \rightarrow S / H$
else next bit $=0$
$(2 \times S / H) \rightarrow S / H$
Step 3 Repeat Step 2 until conversion complete.

Since the A/D converter handles bipolar inputs, negative inputs are handled slightly differently using the same principle.

1.1.1 Self Calibration

In order to maintain integral and differential linearity in an algorithmic converter, two critical parameters need to be controlled, loop offsets and the gain of the loop. Loop offsets are automatically nulled before each conversion using auto-zeroing circuitry on both the sampling amplifier and the $2 x$ amplifier. The gain of the loop is adjusted using self calibration.

Self calibrating the algorithmic converter, once the offsets have been nulled, is performed by measuring the $2 x$ gain of the loop and adjusting it. The gain can be measured by converting the reference voltage at the input as well as the reference ($\mathrm{V}_{\text {REF }} / \mathrm{V}_{\text {REF }}$), and examining the output code. Converting $\mathrm{V}_{\text {REF }}$ should yield plus full scale, since $\mathrm{V}_{\text {REF }} / \mathrm{V}_{\text {REF }}$ should equal 1. If the gain of the loop is slightly less than 2 , the resulting LSB of the conversion will be " 0 ". If the magnitude bits of the resulting conversion are all " 1 s ", the gain may be
where the threshold of the LSB is reached.

Adjustment of the $2 x$ gain is done with the binary weighted trim capacitor arrays connected to each of the 2 C input capacitors. A small value of capacitance is either added to or subtracted from the 2C input caps until the gain of the loop is within 13-bit accuracy.
Self calibration is done at the factory. The calibration process is not available at the finished product level.

Figure 6. Self Calibrating A/D Converter

1.1.2 Conversion Times

The following table lists the conversion times which include the sample and hold acquisition time.

OPERATION MODE	INTERNAL CLOCKS*
$\overline{\mathrm{CS}}$, SCLK External	124
$\overline{\mathrm{CS}}$, SCLK Sourced	124
FREERUN	110
Gated SCLK	124

1.1.3 Sample and Hold Timing

Figure 7 shows the internal timing for the sample and hold circuitry. The relationship between the start of conversion and the input channel going into sample mode is fixed at 6 internal clocks*, regardless of the start mode. Six internal clocks after the start of conversion the sample and hold is switched into the sample mode, placing two 9 pF capacitors in parallel with the input pins; one on $\mathrm{V}_{\mathrm{IN}^{+}}$and one on $\mathrm{V}_{\mathrm{IN}^{-}}$. The sample switch is kept in the sample mode for 8 internal clocks (3.2μ s at a 5 MHz external clock, if $\mathrm{CLK} \div=0$), then placed in the hold mode. During the next 2 internal clocks the charge on the sample and hold is transferred into the A/D, after which the $V_{\text {REF }}$ pin is sampled for 8 internal clocks.

1.2 ANALOG INPUTS

1.2.1 Differential Inputs and Common Mode Rejection

The differential inputs of the ML2221 eliminate the effects of common mode input noise $(60 \mathrm{~Hz}$ for example), as $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathbb{N}^{-}}$are sampled at the same time.

1.2.2 Noise

The leads to the analog inputs should be kept as short as possible to minimize input noise. Noise as well as digital clocks can couple into the inputs and cause errors. Input filters can be used to reduce the effects of these sources.

1.2.3 Power Supply Decoupling

Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater and $0.01 \mu \mathrm{~F}$ disc ceramic capacitors are recommended for bypassing V_{CC} as well as V_{SS} to AGND. These capacitors should be placed close to the V_{CC} and V_{SS} pins.

1.3 CONVERTER CLOCK

The CCLK input can be driven with an external clock or a crystal referenced to DGND. The crystal must be parallel resonant with minimum capacitive loading. (i.e., no bypass caps should be used and leads should be kept short)
If driven with external clock and if the $\mathrm{CCLK} \div$ pin is tied to V_{CC}, the frequency must be between 50 KHz to 2.5 MHz with the requirement that clock LOW ($\mathrm{t}_{\mathrm{CCLKL}}$) and clock HIGH ($\mathrm{t}_{\text {CCLKH }}$) durations must be more than 150 ns. If the CCLK \div pin is tied to ground then the frequency can be from 100 KHz to 5.0 MHz .
For crystal operation with the divide by two flip flop bypassed, and there is a 30 to 70% variation in duty cycle of the oscillator, the maximum crystal frequency is 2.0 MHz to insure that the minimum clock high and low times are greater than 150 nsec.

[^0]

Figure 7. Sample and Hold Timing

1.4 RESET

The $\overline{\text { RESET }}$ pin has an internal 100 K pullup resistor. Power supplies must be stable to within a $\pm 5 \%$ tolerance before the reset condition is removed.

The active low hardware reset can be performed by a capacitor value (usually $>6 \mu \mathrm{~F}$) tied to the RESET pin or by driving it with the system reset signal.

1.5 DIGITAL INTERFACE

All four synchronous interface modes of operation are determined by CS during reset period as follows:

Logic Level of CS During Reset	SCLK Mode Select (SCLK IN/OUT)	Serial Interfacle Mode
0	0	FREERUN
0	1	Gated SCLK
1	0	$\overline{\mathrm{CS}}$, SCLK Sourced
1	1	$\overline{\mathrm{CS}}$, SCLK External

After the reset time, the SCLK ${ }_{\text {IN/OUT }}$ pin can be changed to switch between either (FREERUN and Gated SCLK) or (CS, SCLK Sourced and CS, SCLK External).
The logic level of $\overline{C S}$ will not change the mode of operation of the ML2221 once the mode of operation is programmed during the RESET period.

1.5.1 $\overline{\mathbf{C S}}$, SCLK External Mode

$\overline{\mathrm{CS}}$ starts a conversion. The SCLK is continuously driven into the ML2221 and data from the previous conversion is shifted out at the SCLK rate starting at the first SCLK falling edge from the CS assertion. CS is normally kept low for all 16 bits of data, but can be brought back high after the desired number of bits have been shifted out. CS should be held low for a minimum of 124 internal clocks (see Figure 8) for the conversion to complete.
It takes 110 internal clocks to convert an analog signal into 13 bits of data plus 13 more clock periods to make data available. At a 5.0 MHz clock and CCLK $\div=0 \mathrm{~V}$, the maximum conversion rate is 49.6 microseconds or 124 internal converter clocks.
When $\overline{\mathrm{CS}}$ is asserted (LOW) a conversion begins and the DO output becomes active. The ML2221 is ready to shift out the data serially.
The BUSY output is in the high impedance state when the ML2221 is not selected. When CS input goes low, the BUSY output is driven high or low depending on if a conversion is in progress. Once a conversion begins, BUSY is held active for 123 internal converter clocks.
The DO output is high impedance when the ML2221 is not selected. When CS input goes low, it is driven with the first bit of data initially, and then begins to put out all subsequent data bits on each FALLING edges of the serial clock (SCLK). Data is always output in 16 bit format: if the LSB is output first, the data is sign extended after 13 bits; if the MSB is output first, the data is zero-filled after 13 bits. DO remains driven as long as CS remains low.
a. Serial Transmission $<$ Conversion Time

NOTE: CONVERSION TIME EQUALS 124 INTERNAL CLOCK OR CCLK'S IF CCLK \div = " 1 "

[^1]Figure 8. $\overline{\mathrm{CS}}, \mathbf{S C L K}$ External Mode

1.5.2 CS, SCLK Sourced Mode

Conversion is initiated by $\overline{\mathrm{CS}}$. In this mode, SCLK is sourced by the ML2221. At the end of the conversion, the device will provide a packet of 16 SCLKs to transmit the 16 bits data stream (see Figure 9). The data rate at which the data is being transmitted is (internal clock)/4. For example, when $\mathrm{CCLK} \div=1, \mathrm{CCLK}=256 \mathrm{kHz}$, the data rate is 64 Kbps .
$\overline{\mathrm{CS}}$ should be held low during the entire conversion and the transmission sequence. The time required to convert an analog signal is 110 clocks, with additional

13 clocks to shift out the data. The total conversion time is therefore 123 clocks plus one bit delay. Data transmission will need 64 (16-bit x 4) internal clocks. Hence, the total clock cycles to complete one operation in this mode is 188 clocks. CS therefore should be held low for a minimum of 188 clocks.
Example: If $\mathrm{CCLK}=5 \mathrm{Mhz}, \mathrm{CCLK} \div=0$, the maximum conversion time will be $75.2 \mu \mathrm{~s}$. Therefore, the maximum frequency for $\overline{\mathrm{CS}}$ is 13.3 kHz .
In this mode, the data transmitted is always the current data.

b. Serial Transmission $>$ Conversion Time

Notes:

1. Use 10 K pulldown resistor on BUSY pin to get "TRUE" convert BUSY status.
2. If $\overline{\mathrm{CS}}$ is brought HIGH in the middle of a serial data transmission, the data transmission is aborted and the data is reloaded into the output shifter.

Figure 8. $\overline{\mathbf{C S}}$, SCLK External Mode

*NUMBER OF INTERNAL CONVERTER CLOCKS OR C CLKS WITH C CLK $\div=$ " 1 "

Notes:

1. Use 10 K pulldown resistor on BUSY pin to get "TRUE" convert BUSY status.
2. If $\overline{\mathrm{CS}}$ is brought HIGH in the middle of a serial data transmission, the data transmission is aborted and the data is reloaded into the output shifter.

Figure 9. $\overline{\text { CS, }}$, SCLK Sourced Mode

1.5.3 FREERUN Mode

The FREERUN mode executes continuous back-to-back conversions at the rate of 110 internal converter clocks per conversion, and outputs 16 bits of data and 16 corresponding SCLKS at the rate of 4 internal converter clocks per bit (see Figure 10). The ML2221 immediately begins converting after reset and starts outputting data after the first conversion. A conversion rate of 44 microseconds can be achieved by using the maximum CCLK frequency.
In the FREERUN mode, SCLK can not be sourced externally. The SCLK provided internally by the device is equal to (internal clock)/4. Since the converter is performing continuous conversion, BUSY is therefore always asserted.

1.5.4 Gated SCLK Mode

In this mode of operation, an external SCLK source must be used. This external SCLK should be a 16 clock
packet which will be used by the converter to send out the data and initiate the conversion simultaneously (see Figure 11).
The data transmitted by ML2221 is the data from the previous conversion (see Figure 11). Therefore, in order to ensure integrity of the first data byte, the first SCLK signal should be initiated after a minimum of 124 internal clocks after reset. After the reception of the first SCLK signal, the converter will start the conversion process which is 124 clock as mentioned. Therefore the minimum time required between initiation of conversion by the SCLK should be no less than 124 clocks. In the case of maximum CCLK at 5 MHz , the miniumum time interval between two packets of SCLK should be $49.6 \mu \mathrm{~s}$.
The BUSY output never floats and is asserted at the first SCLK and deasserted after 123 internal converter clocks. DO is always driven.

Note: DO is always driven.
Figure 10. FREERUN Mode
a. Serial Data Transmission < Conversion Time

*NUMBER OF INTERNAL CONVERTER CLOCKS OR CCLKS WITH CCLK $\div=$ " 1 "
Note: Time from first SCLK to seventeenth SCLKt must be greater than 124 internal converter clocks.
Figure 11. Gated SCLK Mode

1.6 DATA FORMAT

The MSB pin determines if the MSB or LSB data is transmitted first and in the following format. If more than 13 SCLK's occur.
$M S B=1$

b. Serial Data Transmission > Conversion Time

Note: Time from first SCLK to seventeenth SCLKi must be greater than 124 internal converter clocks.
Figure 11. Gated SCLK Mode

APPLICATIONS

START	MNEMONIC	INSTRUCTION
START	BCLRn	Bit 0 Port C goes low ($\overline{\mathbf{C S}}$ goes low)
	LDA	Load contents of SPI data register into Acc. (Dout MSBs)
	STA	Start next SPI cycle
	AND	Clear 3 MSBs of first $D_{\text {Out }}$ word
	STA	Store in memory location A (MSBs)
	TST	Test status of SPIF
	BPL	Loop to previous instruction if not done with transfer
	BSETn	Set B0 of Port C ($\overline{\mathrm{CS}}$ goes high)
	LDA	Load contents of SPI data register into Acc. (Dout LSBs)
	STA	Store in memory location A + 1 (LSBs)

Figure 12. Interfacing to $\mathbf{6 8 H C 0 5 C} 4$ with a Dedicated Serial Port

Figure 13. Adjusting Zero Error

Figure 15. Optical Isolated 8088 Interface

ORDERING INFORMATION

PART NUMBER	LINEARITY ERROR	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
ML2221BCP	$\pm 3 / 4$ LSB	$\pm 11 / 2$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	MOLDED DIP (P16)
ML2221BIJ				HERMETIC DIP (J16)
ML2221CCP	± 1 LSB	$\pm 21 / 2$		MOLDED DIP (P16)
ML2221CIJ				HERMETIC DIP (J16)

Asynchronous Serial Interface 12-Bit Plus Sign A/D Converter with S/H

GENERAL DESCRIPTION

The ML2223 is a member of Micro Linear's 12-bit plus sign CMOS A/D converter family utilizing a self calibrating algorithmic SAR technique. All errors of the sample-and-hold are accounted for in the analog-to-digital converter's accuracy specification.

These A/D converters have a maximum nonlinearity error over temperature of $\pm 0.009 \%$ or $\pm 0.012 \%$ of full scale.
For easy interface to microprocessors, the ML2223 is designed to transmit data into RS-232 type ports.
The ML2223 operates in an asynchronous mode of operation. In this mode, the A/D continuously transmits 2 bytes in a 24 -bit stream, inserting 8 idle bits between transmissions. When $\overline{C U R R}$ input pin is tied high, transmission of the previous data begins immediately upon receiving a conversion start request. When CURR is low, transmission is started after a new conversion is completed.

The serial data clock can be generated by the ML2223 or it can be provided by an external source.

FEATURES

- RS-232 compatible asynchronous interface
- One-wire data transmission
- Continuous conversions
- Nonlinearity error $\pm 3 / 4$ LSB and ± 1 LSB max

■ Conversion time (including S / H acquisition)
$45.6 \mu \mathrm{~s}$ max

- Bipolar -5 V to +5 V analog input range with $\pm 5 \mathrm{~V}$ power supplies
- Harmonic distortion 0.01\%
- No missing codes
- Self calibrating - maintains accuracy over time and temperature
- Inputs withstand $17 \mathrm{~V} \mid$ beyond supplies
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range

■ Standard 0.3" 16-pin DIP or 20-pin SOIC (wide)

The serial interface provides LSB first data with 2's complement output coding.

ML2223
20-Pin SOIC (S20W)

ML2223
16-Pin DIP (P16)

PIN DESCRIPTION

$\begin{array}{r} 20 \\ \text { PIN } \\ \hline \end{array}$		NAME	FUNCTION
1	1	$\mathrm{V}_{1 \mathrm{~N}^{+}}$	Positive differential analog input; $\begin{aligned} & \text { range }=V_{S S} \leq V_{I N}+\leq V_{C C} \\ & \left\|\left(V_{\mathbb{I N}^{+}}\right)-\left(\mathrm{V}_{\mathrm{IN}^{-}}\right)\right\| \leq \mathrm{V}_{\mathrm{REF}} . \end{aligned}$
2	2	$\mathrm{V}_{\mathrm{IN}^{-}}$	Negative differential analog input; range $=\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }}-\leq \mathrm{V}_{\mathrm{CC}}$, $\left\|\left(V_{\mathbb{I N}^{+}}\right)-\left(V_{\mathbb{I N}^{-}}\right)\right\| \leq V_{\text {REF }}$.
3	3	$V_{\text {REF }}$	Voltage reference input; referenced to analog ground.
4	4	V_{SS}	Negative supply $-5 \mathrm{~V} \pm 5 \%$; decouple to AGND.
7	5	INSCLK	SCLK mode select. This pin is used to select SCLK pin as an input or an output. When INSCLK is high, SCLK is an input. When INSCLK is low, SCLK becomes an output pin. SCLK will then provide a clock at $1 / 128$ or $1 / 256$ depending on how the CLKMODE pin is set-up.
8	6	DGND	Digital ground.
9	7	SCLK	Serial data transmit clock. The serial data will always be transmitted at the frequency of the clock present at this pin. The SCLK pin can be programmed as an input or an output by using the INSCLK pin (pin 5). When the SCLK is used as an output pin. The data rate will be the internal converter clock divided by 128 . When CLKMODE $=1, \mathrm{SCLK}=\mathrm{CCLK} / 128$. When CLKMODE $=0$, SCLK = CCLK/256.
10	8	Dout	Data out. Digital output which contains result of A / D conversion. The serial data is clocked out on falling edges of SCLK.

2016
PIN PIN NAME FUNCTION
119 BUSY Three-state active high BUSY status output. Normally low. Goes high to indicate that a conversion is in progress; de-asserted when conversion is complete and data is available from the conversion just completed. A pulldown resistor is recommended on this pin.

1210 RESERVED This pin should be tied to ground.
1311 CURR Current or previous data mode pin. When this pin is tied high, the data will be transmitted at the start of a conversion (previous data mode). When CURR is tied low, the data will then be transmitted at the completion of the conversion.
$1412 \overline{\text { RESET }}$ Active low reset. The RESET period is set by the time constant of the internal 100 K pull up resistor and an external capacitor. After the RESET period the converter will be ready for accepting requests or will automatically start conversions/ transmissions based upon the mode.

1713 CLKMODE Clock mode pin. When CLKMODE pin $=1$, the internal converter clock $=$ CCLK. When CLKMODE pin is tied low, the internal converter clock = CCLK/2.

1814 CCLK Clock input. Internal clock can be generated by tying a crystal from this pin to DGND or applying a clock directly to the pin.

Positive supply. $+5 \mathrm{~V} \pm 5 \%$ decouple to AGND.

Analog ground 0 volts. Common mode reference point of the internal differential circuitry.

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage (V_{CC}) ... 6.0V
Negative Supply Voltage ($\mathrm{V}_{\text {SS }}$) -6.0V
Voltage at Analog Inputs $\mathrm{V}_{\mathrm{SS}}-7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$
Voltage at $\mathrm{V}_{\text {REF }} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \mathrm{V}_{\mathrm{SS}}-7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$
Input Current per Digital Pin $\pm 10 \mathrm{~mA}$
Input Current at Analog Inputs $\pm 20 \mathrm{~mA}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $25^{\circ} \mathrm{C}$ (Board Mount) 875 mW
Lead Temperature (soldering 10 seconds)
Dual-In-Line Package (Molded) $260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

(Note 2)

Temperature Range.	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$
ML2223BIJ, ML2223CIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2223BCP, ML2223CCP .	.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) ...	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}^{\text {DC }}$
Negative Supply Voltage ($\mathrm{V}_{\text {SS }}$)	$-4.5 \mathrm{~V}_{\text {DC }}$ to $-6.0 \mathrm{~V}_{\mathrm{DC}}$
Reference Voltage ($\mathrm{V}_{\mathrm{REF}}$)	$\ldots \mathrm{V}_{\mathrm{CC}}$

ML2223BCP, ML2223CCP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Negative Supply Voltage $\left(\mathrm{V}_{\mathrm{SS}}\right) \ldots-4.5 \mathrm{~V}_{\mathrm{DC}}$ to $-6.0 \mathrm{~V}_{\mathrm{DC}}$
Reference Voltage ($\mathrm{V}_{\text {REF }}$) $V_{C C}$

ELECTRICAL CHARACTERISTICS

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {REF }}=+4.75 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{IN}^{-}}=\mathrm{AGND}, \mathrm{V}_{\text {IN }}+=-4.75 \mathrm{~V}$ to $+4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified.

PARAMETER	NOTES	CONDITIONS	ML2223BIJ, ML2223CIJ			ML2223BCP, ML2223CCP			UNITS
			MIN	$\left\lvert\, \begin{gathered} \text { TYP } \\ \text { (NOTE 3) } \end{gathered}\right.$	MAX	MIN	$\begin{array}{c\|} \hline \text { TYP } \\ \text { (NOTE 3) } \end{array}$	MAX	

Converter Characteristics

$\left.\begin{array}{l|c|c|c|c|c|c|c|c|c}\hline \begin{array}{l}\text { Linearity Error } \\ \text { ML2223BXX } \\ \text { ML2223CXX }\end{array} & 4 & \mathrm{f}_{\mathrm{CCLK}}=0.1 \leq 5 \mathrm{MHz} & & & \begin{array}{c} \pm 3 / 4 \\ \pm 1\end{array} & & & \begin{array}{c} \pm 3 / 4 \\ \pm 1\end{array} & \begin{array}{c}\mathrm{LSB} \\ \mathrm{LSB}\end{array} \\ \hline \begin{array}{l}\text { Unadjusted Zero Error } \\ \text { ML2223BXX } \\ \text { ML2223CXX }\end{array} & 4 & & & & & & \\ \hline \begin{array}{l}\text { Unadjusted Positive and Negative } \\ \text { Full-Scale Error }\end{array} & 4 & & & & \pm 3 / 4 \\ \pm 2\end{array}\right)$

Digital and DC Characteristics

Power Supply Current $I_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ $\mathrm{I}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}$	4			$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$		$\begin{aligned} & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Supply Rejection $\begin{aligned} & \mathrm{v}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{SS}} \end{aligned}$	7	$\begin{aligned} & \text { DC } \\ & \text { DC to } 25 \mathrm{kHz} \\ & \text { DC } \\ & \text { DC to } 25 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$			$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{\text {ILCLK }}$, Clock Input Low Voltage	4				0.8			0.8	V
$\mathrm{V}_{\text {IHCLK }}$, Clock Input High Voltage	4		3.5		V_{CC}	3.5		VCC	V
$\mathrm{L}_{\text {L1 }}$, Input Leakage Current (CCLK)	4	DGND $\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			± 200			± 200	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	NOTES	CONDITIONS	ML2223BIJ, ML2223CIJ			ML2223BCP, ML2223CCP			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { (NOTE 3) } \end{gathered}$	MAX	MIN	$\left\|\begin{array}{c} \text { TYP } \\ \text { (NOTE 3) } \end{array}\right\|$	MAX	

Digital and DC Characteristics (Continued)

$\mathrm{V}_{\text {IL }}$, Input Low Voltage		4				0.8			0.8	V
V_{IH}, Input High Voltage		4		2.0		V_{CC}	2.0		V_{CC}	V
$\mathrm{V}_{\text {OL }}$, Output Low Voltage		4	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45			0.45	V
V_{OH}, Output High Voltage		4	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			2.4			V
I_{L}, Input Leakage Current (except CLK)		4	DGND $\leq \mathrm{V}_{\text {IN }}$			± 10			± 10	$\mu \mathrm{A}$
$I_{\text {HI-Z, }}$ Output Leakage Current		4	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$			± 10			± 10	$\mu \mathrm{A}$
C_{1}, Input Capacitance (all digital outputs)		5			10			10		pF
C_{O}, Output Capacitance (all digital outputs)		5			10			10		pF
SYMBOL	PARAMETER		NOTES	CON	ONS		MIN	$\begin{gathered} \text { TYP } \\ \text { (NOTE 3) } \end{gathered}$	MAX	UNITS

AC Electrical Characteristics (Note 8)

${ }^{\text {t }}$ C	Conversion Time	$\begin{array}{r} 4,9 \\ \hline 5,9 \end{array}$	$\mathrm{f}_{\text {CCLK }}=5 \mathrm{MHz}($ CCLKMODE $=$ " 0 " $)$		45.6		$\mu \mathrm{s}$
$\mathrm{f}_{\text {CCLK }}$	Clock Frequency		Crystal (CCLKMODE $=$ " 0 ")		0.3	5	MHz
			Driven (CCLKMODE $=$ " 0 ")		0.1	5	MHz
$\mathrm{f}_{\text {CCLK }}$	Clock Width	5,9	Driven (CCLKMODE $=$ " 0 ")	High	50		ns
				Low	50		ns
$\mathrm{f}_{\text {CCLK1 }}$	Clock Frequency	5	Driven (CCLKMODE $=$ " 1 ")		0.05	2.5	MHz
$\mathrm{f}_{\text {CCLK1 }}$	Clock Width	5	Driven (CCLKMODE $=$ " 1 ")	High	150		ns
				Low	150		ns
$\mathrm{t}_{\text {SCLK, }}$	Serial Clock Low to DO Valid/Hold	4				190	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Common mode rejection is the ratio of the change in zero error to the change in common mode input range.
Note 7: Power supply rejection is the ratio of the change in zero error to the change in power supply voltage.
Note 8: All parameters measured from 0.8 V to $20 \mathrm{~V}, \mathrm{CL}=50 \mathrm{pF}$.
Note 9: Maximum frequency is $1 / \mathrm{t}_{\mathrm{CLK} 1}$ (high) $+\mathrm{t}_{\mathrm{CLK} 1}$ (low) + rise + fall tımes, which must be $\leq 2.5 \mathrm{MHz}$.

Serial Clock to Data Out Delay

Figure 1. High Impedance Test Circuits and Waveforms

1.0 FUNCTIONAL DESCRIPTION

1.1 ALGORITHMIC A/D CONVERTER

Micro Linear's algorithmic converter uses a successive approximation technique. Most of today's successive approximation converters use a DAC to feedback the approximated signal, however this technique requires more circuitry than algorithmic converters. In addition the values of all of the resistors or capacitors in the DAC must be matched to within the accuracy of the converter. This is difficult beyond 10 bits unless trimming is used. An algorithmic converter uses less circuitry and is more easily trimmed. Micro Linear's algorithmic converter is implemented using a $2 x$ amplifier, a sample/hold amplifier and a comparator as shown in Figure 2.

The input sample is first multiplied by two then compared to the reference voltage. If the $2 x$ input voltage is greater than the reference, the MSB is a 1 and the reference voltage is subtracted from the $2 x$ input voltage. The remainder is stored in the sample and hold. If the $2 x$ input voltage is less than the reference, the MSB is a 0 and the $2 x$ input voltage is stored in the sample and hold. This process repeats again, however now the sample and hold voltage is multiplied by 2 .

The algorithm involves multiplication by 2, comparison, and possibly subtraction. Referring to Figure 2, the algorithm for the circuit can be described as follows:

Step 1 If $\left(2 \times V_{\text {IN }}\right)-V_{\text {REF }} \geq 0$ then MSB $=1$

$$
\left(2 \times V_{I N}\right)-V_{\text {REF }} \rightarrow S / H
$$

else MSB $=0$

$$
\left(2 \times \mathrm{V}_{\mathbb{I N}}\right) \rightarrow \mathrm{S} / \mathrm{H}
$$

Step 2 If $(2 \times S / H)-V_{\text {REF }} \geq 0$ then next bit $=1$

$$
(2 \times S / H)-V_{\text {REF }} \rightarrow S / H
$$

else next bit $=0$

$$
(2 \times S / H) \rightarrow S / H
$$

Step 3 Repeat Step 2 until conversion complete.

Figure 2. Self Calibrating A/D Converter

Since the A/D converter handles bipolar inputs negative inputs are handled slightly differently using the same principle.

1.1.1 Self Calibration

In order to maintain integral and differential linearity in an algorithmic converter, two critical parameters need to be controlled, loop offsets and the gain of the loop. Loop offsets are automatically nulled before each conversion using auto-zeroing circuitry on both the sampling amplifier and the $2 x$ amplifier. The gain of the loop is adjusted using self calibration.
Self calibrating the algorithmic converter, once the offsets have been nulled, is performed by measuring the $2 x$ gain of the loop and adjusting it. The gain can be measured by converting the reference voltage at the input as well as the reference ($\mathrm{V}_{\mathrm{REF}} / \mathrm{V}_{\mathrm{REF}}$), and examining the output code. Converting $\mathrm{V}_{\text {REF }}$ should yield plus full scale, since $\mathrm{V}_{\text {REF }} /$ $V_{\text {REF }}$ should equal 1. If the gain of the loop is slightly less than 2 , the resulting LSB of the conversion will be " 0 ". If the magnitude bits of the resulting conversion are all " 1 s ", the gain may be too great, therefore the gain is reduced to the point where the threshold of the LSB is reached.

Adjustment of the $2 x$ gain is done with binary weighted trim capacitor arrays connected to each of the 2 C input capacitors. A small value of capacitance is either added to or subtracted from the 2C input caps until the gain of the loop is within 13-bit accuracy.
The self calibration and trimming is performed in the factory at wafer sort. This procedure is not available as a finished product.

1.1.2 Conversion Times

The following table lists the conversion times which include the sample and hold acquisition time.

OPERATION MODE	INTERNAL CLOCKS*
FREERUN	113

1.1.3 Sample and Hold Timing

Figure 3 shows the internal timing for the sample and hold circuitry. The relationship between the start of conversion and the input channel going into sample mode is fixed at 6 internal clocks*. Six internal clocks after the start of
conversion the sample and hold is switched into the sample mode, placing two 9 pF capacitors in parallel with the input pins; one on $\mathrm{V}_{\mathrm{IN}^{+}}$and one on $\mathrm{V}_{\mathrm{IN}^{-}}$. The sample switch is kept in the sample mode for 8 internal clocks $(3.2 \mu \mathrm{~s}$ at a 5 MHz external clock), then placed in the hold mode. During the next 2 internal clocks the charge on the sample and hold is transferred into the A/D, after which the $\mathrm{V}_{\text {REF }}$ pin is sampled for 8 internal clocks.
*For a description of internal clocks see Clock section.

1.2 ANALOG INPUTS

1.2.1 Differential Inputs and Common Mode Rejection

The differential inputs of the ML2223 eliminate the effects of common mode input noise (60 Hz for example), as $\mathrm{V}_{\mathbf{I N}}+$ and $\mathrm{V}_{1 \mathrm{~N}^{-}}$are sampled at the same time.

1.2.2 Noise

The leads to the analog inputs should be kept as short as possible to minimize output noise. Noise as well as digital clocks can couple into the inputs and cause errors. Input filters can be used to reduce the effects of these sources.

1.2.3 Power Supply Decoupling

Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater and $0.01 \mu \mathrm{~F}$ disc ceramic capacitors are recommended for bypassing V_{CC} as well as V_{SS} to $A G N D$. These capacitors should be placed close to the $V_{C C}$ and $V_{S S}$ pins.

1.3 CONVERTER CLOCK

The CCLK input can be driven with an external clock or a crystal referenced to DGND. The crystal must be parallel resonant with minimum capacitive loading. (i.e., no bypass caps should be used and leads should be kept short).
If driven with external clock and if the CLKMODE pin is tied to V_{CC}, the frequency must be between 50 KHz to 2.5 MHz with the requirement that clock LOW (t CCLKL $)$ and clock HIGH ($\mathrm{t}_{\text {CCLKH }}$) durations must be more than 150 ns . If the CCLKMODE pin is tied to ground then the frequency can be from 100 KHz to 5.0 MHz .

For crystal operation with the divide by two flip flop bypassed, and there is a 40 to 60% variation in duty cycle of the oscillator, the maximum crystal frequency is 2.5 MHz to insure that the minimum clock high and low times are greater than 150 nsec.

Figure 3. Sample and Hold Timing

1.4 RESET

The $\overline{\text { RESET }}$ pin has an internal 100K pullup resistor. Power supplies must be stable to within a $\pm 5 \%$ tolerance before the reset condition is removed.
The active low hardware reset can be performed by a capacitor value (usually $>6 \mu \mathrm{~F}$) tied to the RESET pin or by driving it with the system reset signal.

1.5 SCLK

The SCLK is used to clock out the data to the transmission line via the DOUT pin. The SCLK can be supplied either externally or internally through the use of the INSCLK pin. Maximum SCLK frequency is 625 kHz .
In applications where the internal SCLK is used, the SCLK is generated by dividing the internal clock by 128 . For example, when 2.4576 MHz crystal is used to generate CCLK, this will result in a 19.2 Kbps data transmission rate (CLKMODE $=1$). In the case where CLKMODE $=0$, then the transmission rate will be 9.6 Kbps .

1.6 CONVERTER OPERATION

There are two basic types of operation. By programming the CURR pin to " 1 ", the device will be operating in the "Previous Data Mode" and when CURR pin = " 0 ", the device is in the "Current Data Mode."

The ML2223 performs continuous conversion. The conversion takes 110 clock periods and an additional 13 clock periods are required for the device to shift out the data. In the Current Data Mode, the data are transmitted after the conversion is completed. 24-bit time of the SCLK (transmit clock) is required to transmit the full data frame and an additional 8 -bit time of idle is needed before the next conversion begins. A total of 32 -bit time delay of the SCLK is therefore needed between conversions (see Figure 4).

In the Previous Data Mode, the data is transmitted at the start of the conversion (see Figure 5).

1.7 DATA FORMAT

The converter data is output in two data byte frame. Each frame has one start bit and two stop bits and each data byte consists of 8 bits of data and one parity bit. The data is transmitted LSB first (see Figure 6).

The first data byte transmitted is the least significant byte with even parity and the second byte is the most significant byte with odd parity. Thus, the UART can identify the lower byte or the upper byte by observing the parity error flag in accordance to the parity check it has set-up.

Figure 4. Current Data Mode.

Figure 5. Previous Data Mode.

Figure 6. Data Format.

APPLICATIONS (For detailed applications information, see Application Note 41)

Figure 7. Remote Monitor System.

ORDERING INFORMATION

PART NUMBER	LINEARITY ERROR	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
ML2223BCP	$\pm 3 / 4 \mathrm{LSB}$	$\pm 11 / 2$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16) Hermetic DIP ((16)
ML2223BIJ	$\pm 1 \mathrm{LSB}$	$\pm 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		

12-BIT A/D Converter with PC Compatible Serial Interface Evaluation Kit

GENERAL DESCRIPTION

The ML2223 12-bit plus sign A/D Converter has an Asynchronous serial output designed specifically for the communications port (COM1 or COM2 etc.) of IBM PCcompatible computers. This is the same port used by the mouse or any other external serial port device such as modems and printers. The ML2223 evaluation kit is a combination of hardware and software to ease the interface between the PC and device without spending considerable time writing software or prototyping the circuit board. The board contains optional functions to set baud rate, reference voltage and analog multiplexing to allow user customization. The software provided ranges from a simple Assembly/C routine to a sophisticated GUI (Graphical User Interface) that furnishes software control over the hardware and an "oscilloscope" type display of the analog input.

FEATURES

- RS-232 compatible asynchronous interface
- One or two-wire data transmission
- Assembly, C and LabWindows ${ }^{\text {TM }}$ software provided
- 9600 or 19200 on-board baud rate generator
- 256Kbaud available with external generator
- DB9 connector for direct connection to COM port

KIT CONTENTS

- ML2223EVAL Users guide

■ ML2223 data sheet

- Fully populated, assembled and tested
- 3.5" Disk with PC-compatible software
- Gerber File

μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold

GENERAL DESCRIPTION

The ML2230 is a member of Micro Linear's 12-bit plus sign CMOS A/D converter family utilizing a self calibrating algorithmic technique. The sample-and-hold, incorporated on the ML2230, has a differential input for noise immunity and power supply rejection. All errors of the sample-and-hold are accounted for in the analog-todigital converter's accuracy specification.
The ML2230B has a maximum non-linearity error over temperature of 0.018% of full-scale, and the ML2230C and ML2230D have a maximum non-linearity error over temperature of 0.024% of full scale.
Designed to interface to an 8-bit microprocessor bus without additional components, the ML2230 outputs the 13-bit data result two 8 -bit bytes. Data format is 2 's complement. All digital signals are fully TTL and CMOS compatible.
For interfacing to a 16-bit microprocessor bus the ML2233 provides a 13-bit data result.

FEATURES

BLOCK DIAGRAM

PIN CONNECTIONS

ML2230
24-Pin DIP (P24)

PIN DESCRIPTION

DIP	PCC	NAME	FUNCTION
1	1	AGND	Analog ground.
2	2	VIN^{+}	Positive differential analog input; $\begin{aligned} & \text { range }=\mathrm{V}_{S S} \leq \mathrm{V}_{\mathrm{IN}^{+}} \leq \mathrm{AV} \mathrm{CC} \\ & \left\|\left(\mathrm{~V}_{\mathrm{IN}^{+}}\right)-\left(\mathrm{V}_{\mathrm{N}^{-}}\right)\right\| \leq \mathrm{V}_{\mathrm{REF}} . \end{aligned}$
3	3	$\mathrm{V}_{1 \mathrm{~N}^{-}}$	Negative differential analog input; range $=V_{S S} \leq V_{I^{-}} \leq A V_{C C}$, $I\left(V_{\mathbb{N}^{+}}\right)-\left(\mathrm{V}_{\mathbb{N}^{-}}\right) \mid \leq \mathrm{V}_{\mathrm{REF}}$
4	4	$V_{\text {REF }}$	Voltage reference input; referenced to analog ground.
5	5	$\mathrm{V}_{\text {SS }}$	Negative power supply; decouple to AGND.
6	8	$\overline{\text { DAV }}$	Data available; indicates a conversion has completed and data is available or calibration completed.
7	9	SYNC	In the slave mode, SYNC is a positive edge triggered input used to start a conversion. In master mode, SYNC is an output and indicates a conversion has occurred.
8	10	D0	Bidirectional data bit.
9	11	D1	Bidirectional data bit.
10	13	D2	Bidirectional data bit.
11	14	D3	Bidirectional data bit.
12	15	DV ${ }_{\text {CC }}$	Digital power supply. Tie to $A V_{C C}$ from same power supply.

DIP PCC	NAME	FUNCTION			
13	16	D4	Bidirectional data bit.		
14	17	D5	Bidirectional data bit.		
15	18,19	DGND	Digital ground.		
16	20	D6	Bidirectional data bit. 17 21	D7 \quad	Bidirectional data bit.
:---					
18	22 A1	Address for the microprocessor			
:---					
interface to access any one of the four					
registers.					

OPERATING CONDITIONS

(Note 2)
Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Supply Voltage ($\mathrm{AV}_{\mathrm{CC}}$ and DV CC) $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$ Negative Supply Voltage (V_{SS}) $-4.5 \mathrm{~V}_{\mathrm{DC}}$ to $-6.0 \mathrm{~V}_{\mathrm{DC}}$ Reference Voltage ($\mathrm{V}_{\mathrm{REF}}$) 2.60 V

ELECTRICAL CHARACTERISTICS

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{REF}}=2.500 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=\mathrm{AGND}$, $\mathrm{V}_{\mathrm{IN}^{+}}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified.

PARAMETER	NOTES	CONDITIONS	TYP MIN	(NOTE 3)	MAX	UNITS
Converter Characteristics						
Linearity Error ML2230BXX ML2230CXX ML2230DXX	4	$\begin{aligned} f_{\text {CCLK }} & =0.1 \leq 7 \mathrm{MHz} \\ f_{\text {CCLK }} & =0.1 \leq 7 \mathrm{MHz} \\ f_{\text {CCLK }} & =0.1 \leq 5 \mathrm{MHz} \end{aligned}$			$\begin{gathered} \pm 3 / 4 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Zero Error $\begin{aligned} & \text { ML2230BXX } \\ & \text { ML2230CXX } \\ & \text { ML2230DXX } \end{aligned}$	4				$\begin{gathered} \pm 3 / 4 \\ \pm 2 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Positive and Negative Full Scale Error	5				± 4	LSB
Zero Error Temperature Coefficient				0.5		ppm/ ${ }^{\circ} \mathrm{C}$
Gain Temperature Coefficient				10		ppm $/{ }^{\circ} \mathrm{C}$
Common-Mode Rejection	5,6		80			dB
Analog Input Source Resistance	5				2	$\mathrm{k} \Omega$
Analog Input Range	4	$\mathrm{V}_{1 \mathrm{~N}^{+}}$Refer to $\mathrm{V}_{\mathrm{IN}^{-}}$	$-\mathrm{V}_{\text {REF }}$		$+\mathrm{V}_{\text {REF }}$	\checkmark
Analog Input Leakage Current	4				100	nA
Voltage Reference Input Source Impedance	5				0.5	k Ω
Reference Input Leakage Current	4				100	nA

Digital and DC Characteristics

Power Supply Current $\mathrm{Al}_{\mathrm{CC}}$, Analog V_{CC} DI $_{\mathrm{CC}}$, Digital V_{CC} $\mathrm{I}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}$	4			30 10 18	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \end{aligned}$
Power Supply Rejection $A V_{\text {CC }}$ V_{sS}	7	$\begin{aligned} & \text { DC } \\ & \text { DC to } 25 \mathrm{kHz} \\ & \text { DC } \\ & \text { DC to } 25 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$V_{\text {ILCLK }}$, Clock Input Low Voltage	4				0.8	V
$\mathrm{V}_{\text {IHCLK }}$, Clock Input High Voltage	4		3.5		$\mathrm{AV}_{\mathrm{CC}}$	V
I ${ }_{\text {L1, Input Leakage Current (CLK) }}$	4	AGND $\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{AV}_{\text {CC }}$			± 200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$, Input Low Voltage	4				0.8	V
V_{IH}, Input High Voltage	4		2.0		DV CC	V
$\mathrm{V}_{\text {OL }}$, Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45	V
V_{OH}, Output High Voltage	4	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
IL, Input Leakage Current (except CLK)	4	$A G N D \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{AV}_{\text {CC }}$			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HI}-\mathrm{Z},}$ Output Leakage Current (D0-D7)	4	$\overline{\mathrm{RD}}=\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}$			± 10	$\mu \mathrm{A}$
C_{1}, Input Capacitance (all digital inputs)				10		pF
C_{O}, Output Capacitance (outputs D0 to D7, and DAV)				10		pF

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS		MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 3) } \end{array}$	MAX	UNITS
AC Electrical Characteristics (Note 8)								
${ }^{\text {t }} \mathrm{C}$	Conversion Time	4,9	CLK Mode $=0$		$\begin{aligned} & 31.5 \\ & 44.0 \end{aligned}$			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~S} \end{aligned}$
	Sample and Hold Acquisition	4, 9	CLK Mode $=0$	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=7.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & 2.3 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	5,9	Crystal (CLK Mode $=0$) Crystal (CLK Mode $=0$)		$\begin{aligned} & 3 \\ & 1 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {CLK }}$	Clock Width	5,9	Driven (CLK Mode = 0)	High Low	$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{f}_{\text {CLK1 }}$	Clock Frequency	5,10	Driven (CLK Mode $=1$)		0.5		(Note 11)	MHz
$\mathrm{t}_{\text {CLK } 1}$	Clock Width	5,10	Driven (CLK Mode $=1$)	High Low	$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t_{AD}	Address Stable to Valid Data	4			150			ns
${ }^{t_{A R}}$	Address Stable Before Read	4			0			ns
$\mathrm{t}_{\text {RA }}$	Address Hold After Read	4			0			ns
t_{RR}	Read Pulse Width	4			150			ns
t_{RD}	Read Access	4					150	ns
$\mathrm{t}_{12}, \mathrm{t}_{0 z}$	Data Read to Hi-Z	4			0		50	ns
trv	Recovery Between Two Reads or Writes	5			250			ns
$\mathrm{t}_{\text {RDCK }}$	Read to Clock Setup Time	5,12			40			ns
$t_{\text {AW }}$	Address Stable Before Write	4			0			ns
${ }^{\text {t W }}$ A	Address Hold After Write	4			0			ns
tww	Write Pulse Width	4			150			ns
tow	Data Setup Before Write Trailing Edge	4			100			ns
twD	Data Hold After Write Trailing Edge	4			0			ns
$t_{\text {twrck }}$	Write to Clock Setup Time	5,12			40			ns
${ }^{\text {t CKDAV }}$	Clock to $\overline{\text { DAV }}$ Assert	4,13	$C_{L}=50 \mathrm{pF}$			120	220	ns
$\underline{\text { tsyncck }}$	SYNC Input to Clock Setup	5,12			40			ns
$t_{\text {SYNCN }}$	SYNC Input Width	5	$\begin{aligned} & (C L K \text { Mode }=0) \\ & (C L K \text { Mode }=1) \end{aligned}$		$\begin{aligned} & 6 \\ & 3 \end{aligned}$			$1 /$ fllko $1 /$ flCLK

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP (NOTE 3)	MAX	UNITS

AC Electrical Characteristics (Note 8) (Continued)

$\mathrm{t}_{\text {CKSYNC }}$	External Clock to SYNC Output Delay	5,13	$C_{L}=50 \mathrm{pF}$	150	200	ns
${ }^{\text {tsynco }}$	SYNC Output Pulse Width	5,13	$\begin{aligned} & \text { (CLK Mode }=0) \\ & (C L K \text { Mode }=1) \end{aligned}$		$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$1 /$ fleko $1 /$ flek $^{\text {Cl }}$
twrdav	Write Reg2 to $\overline{\mathrm{DAV}}$ Rising Edge	4,14	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		170	ns
trdoav	Read Reg0 to DAV Rising Edge	4,15	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		170	ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall		All Inputs		25	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Devices are 100% tested with temperature limits guaranteed by 100% testing, sampling or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Common mode rejection is the ratio of the change in zero error to the change in common mode input range.
Note 7: Power supply rejection is the ratio of the change in zero error to the change in power supply voltage.
Note 8: All parameters measured from 08 V to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
Note 9: CK1X bit in control register $=0$.
Note 10: CK1X bit in control register $=1$.
Note 11: Maximum frequency is $1 /$ CLLK1 (high) $+\mathrm{t}_{\text {CLK1 }}$ (low) + rise + fall times and $\leq 35 \mathrm{MHz}$.
Note 12: Setup time required for synchronous start of conversion.
Note 13: In CLK mode $=0($ CK1X bit in control register $=0$) start of conversion will occur at specified time, or tıme plus one fCLKo perıod (see Figure 5).
Note 14: Writing a control register bit 0 with a one will acknowledge the $\overline{\mathrm{DAV}}$ condition and de-assert DAV output.
Note 15: In start mode $=1$, a read from location " 0 " will start the next conversion and de-assert the DAV output.

TIMING DIAGRAMS

Figure 1. Read Cycle

Figure 2. Write Cycle

TIMING DIAGRAMS (Continued)

DAV IS SET AND CLEARED BY INTERNAL CIRCUITRY. NOTE: DMA BIT IN THE CONTROL REGISTER MUST BE SET FOR THIS OPERATION.

Figure 3. Data Available

Figure 4. SYNC Output

TIMING DIAGRAMS (Continued)

NOTES:

1. CLK IS THE CLOCK DRIVEN AT THE CLOCK PIN.
2. IN CLK MODE 1, WILL ALWAYS OCCUR AT TO IF SETUP TIMES ARE MET.
3. IN CLK MODE 0, WILL OCCUR EITHER AT TO OR T1 IF SETUP TIMES ARE MET.

Figure 5. Start of Conversion (Start Mode 0, 1, 3)

BLOCK DIAGRAM

Figure 6. Block Schematic Diagram

FUNCTIONAL DESCRIPTION

ALGORITHMIC A/D CONVERTER

Micro Linear's algorithmic converter uses a successive approximation technique. Most of today's successive approximation converters use a DAC to feedback the approximated signal, however this technique requires more circuitry than algorithmic converters. In addition the values of all of the resistors or capacitors in the DAC must be matched to within the accuracy of the converter. This is difficult to do in silicon beyond 10 bits unless trimming is used. An algorithmic converter uses less circuitry and is more easily trimmed. Micro Linear's algorithmic converter is implemented using a $2 x$ amplifier, a sample/hold amp, and a comparator as shown in Figure 7.
The input sample is first multiplied by two then compared to the reference voltage. If the $2 x$ input voltage is greater than the reference, the MSB is a 1 and the reference voltage is subtracted from the $2 x$ input voltage. The remainder is stored in the sample and hold. If the $2 x$ input voltage is less than the reference, the MSB is a 0 and the $2 x$ input voltage is stored in the sample and hold. This process repeats again, however now the sample and hold voltage is multiplied by 2 .
The algorithm involves multiplication by 2, comparison, and possibly subtraction. Referring to Figure 6, the algorithm for the circuit can be described as follows:

$$
\begin{array}{cc}
\text { Step } 1 \text { If }\left(2 \times V_{I N}\right)-V_{\text {REF }} & \geq 0 \\
\text { then MSB }=1 \\
\left(2 \times V_{I N}\right)-V_{\text {REF }} \rightarrow S / H \\
\text { else MSB }=0 \\
\left(2 \times V_{I N}\right) \rightarrow S / H
\end{array}
$$

Step 2 If $(2 \times S / H)-V_{\text {REF }} \geq 0$ then next bit $=1$

$$
(2 \times S / H)-V_{R E F} \rightarrow S / H
$$

else next bit $=0$

$$
(2 \times S / H) \rightarrow S / H
$$

Step 3 Repeat Step 2 until conversion complete.
Since the A/D converter handles bipolar inputs, negative inputs are handled slightly differently using the same principle.

Figure 7. Self Calibrating A/D Converter

SELF CALIBRATION

In order to maintain integral and differential linearity to the $1 / 2$ LSB level in an algorithmic converter, two critical parameters need to be controlled, loop offsets and the gain of the loop. Loop offsets are automatically nulled before each conversion using auto-zeroing circuitry on both the sampling amp and the $2 x$ amp. The gain of the loop is adjusted using self calibration.

Self calibrating the algorithmic converter, once the offsets have been nulled, is performed by measuring the $2 x$ gain of the loop and adjusting it. The gain can be measured by converting the reference voltage as the input as well as the reference ($\mathrm{V}_{\mathrm{REF}} / \mathrm{N}_{\mathrm{REF}}$), and examining the output code. Converting $V_{\text {REF }}$ should yield plus full scale, since $V_{\text {REF }} /$ $V_{\text {REF }}$ should equal 1. If the gain of the loop is slightly less than 2 , the resulting LSB of the conversion will be " 0 ". If the magnitude bits of the resulting conversion are all " 1 s ", the gain may be too great, therefore the gain is reduced to the point where the threshold of the LSB is reached.
Adjustment of the $2 x$ gain is done with the binary weighted trim capacitor arrays connected to each of the 2C input capacitors. A small value of capacitance is either added to or subtracted from the 2C input caps until the gain of the loop is within 13 bit accuracy of 2 .

CONVERSION TIMES

The following table lists the conversion times which include the sample and hold acquisition time. For a CALRD and CALWR no A/D conversion actually takes place.

OPERATION	\# OF INTERNAL CLOCKS*
8 bit A/D	80
13 bit A/D	110
CALWR	52
CALRD	80

SAMPLE AND HOLD TIMING

Figure 8 shows the internal timing for the sample and hold circuitry. The relationship between the "Start of Conversion" and the input channel going into sample mode is fixed at 6 internal clocks*, regardless of the Start Mode. Six internal clocks after the Start of Conversion the Sample and Hold is switched into the sample mode, placing two 9 pF capacitors in parallel with the inputs pins; one on $\mathrm{V}_{1 \mathrm{~N}^{+}}$and one on $\mathrm{V}_{\mathrm{IN}}-$. The sample switch is kept in the sample mode for 8 internal clocks ($2.3 \mu \mathrm{~s}$ at a 7 MHz external clock), then placed in the hold mode. During the next 2 internal clocks the charge on the sample and hold is transferred into the A / D, after which the $V_{\text {REF }}$ pin is sampled for 8 internal clocks.

Figure 8 also illustrates the timing of the SYNC pin in Master Mode during a conversion ($\mathrm{M} / \mathrm{S}=1$ Control High Byte register) and Start Mode 0, 1, or 2. SYNC is activated one internal clock cycle after the Start of Conversion and lasts for four internal clocks.
*For a descriptıon of internal clocks see Clock sectıon.

ANALOG INPUTS

Differential Inputs and Common Mode Rejection

The differential inputs of the ML2230 eliminate the effects of common mode input noise (60 Hz for example), as $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathrm{IN}^{-}}$are sampled at the same time.

Noise

The leads to the analog inputs should be kept as short as possible to minimize output noise. Noise as well as digital clocks can couple into the inputs and cause errors. Input filters can be used to reduce the effects of these sources.

Power Supply Decoupling

Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater and $0.01 \mu \mathrm{~F}$ disc ceramic capacitors are recommended for bypassing $\mathrm{AV}_{\mathrm{CC}}$ as well as V_{SS} to $A G N D$. These capacitors should be placed close to the $A V_{C C}$ and $V_{S S}$ pins.

MICROPROCESSOR INTERFACE

There are four 8-bit directly addressable registers; two Data Buffer registers and two Control registers. The data buffer registers provide the conversion results. The data registers are double buffered, allowing one result to be read while the next sample is being converted. The data registers also allow access to the algorithmic converter's calibration code. Normally the ML2230 is operated without ever accessing these registers. (Refer to Diagnostics for more information). The two Control registers provide complete control and status information. These four registers are addressed by pins A0 and A1.

Figure 8. Sample and Hold Timing

All data is returned from the converter in sixteen bit two's complement format, right hand justified, with the sign bit extended across the most significant bits

Cycle	+Max	-Min	Zero
13	0FFF	F000	0000
8	$007 F$	FF80	0000

REGISTER DESCRIPTION

REGISTER 0 - DATA BUFFER LOW BYTE:

Register 0 contains the low byte result of the latest conversion when read. Depending on the Start Mode selected, reading or writing to this register may start the next conversion.

REGISTER 1 - DATA BUFFER HIGH BYTE:

Register 1 contains the high byte result of the latest conversion when read.

REGISTER 2 - CONTROL REGISTER LOW BYTE:

Bit 0 (DAV status when READ/DAVACK acknowledge when a ONE is written):
Reading DAV $=1$ indicates that new data is available or a calibration is complete. If both data bytes have been read, DAV will be cleared automatically. This bit can be explicitly acknowledged by writing a ONE to it; writing a zero has no effect. The $\overline{\mathrm{DAV}}$ output pin always reflects the DAV status bit.

Bit 1 (BUSY status when READ/RESET when a ONE is written):
Reading BUSY $=1$ indicates that a conversion or calibration is in progress. Writing a ONE will force a chip reset. Writing a zero has no effect.

RESET DEFAULT CONDITIONS:

Both Control registers will automatically be cleared. Both Data Buffer registers will be unchanged. The Calibration register is not cleared after a reset, however the ADRDY bit is cleared. Since the DAV status bit is cleared, the DAVB output is inactivated (high). The SYNC pin is forced to be an input as a result of clearing the M / S bit in the Control High Byte register.
Bit 2 (ADRDY status when READ/DOCAL request when a ONE is written):
Reading ADRDY $=0$ indicates that the converter has not been calibrated since the last reset, and ADRDY $=1$ indicates that is has been calibrated since the last reset. Writing a ONE will force the converter to do a calibration; writing a zero has no effect.
Bit 3 (SC: Short cycle select):
Selects 8 or 13 bit conversions.

2

SC $=0: 13$-bit conversion (default)
SC $=1: 8$-bit conversion (short cycle)

Note: For 8-bit conversions in non-DMA mode, only one byte needs to be read. This can be accomplished by setting $L / H=0, D M A=0$ and reading the Data Low Byte register. In DMA mode both bytes need to be read.

Bits 4,5 (SMDE: Start Mode):
Defines Start Conversion mode.

Bits 5,4

00 Start Conversion upon writing to register 0 (default)
01 Start Conversion upon reading register 0 if $\mathrm{L} / \mathrm{H}=0$, or Start Conversion upon reading register 1 if $\mathrm{L} / \mathrm{H}=1$. In DMA mode both bytes need to be read. The second byte read will Start Conversion.
10 Start Continuous Conversions upon writing to register 0 .
11 Start on external SYNC input going high (Requires Slave mode: $M / S=0$)
Bits 7,6 (reserved):
These bits are reserved by Micro Linear and must be written as zero.
Register 3 (Control Register High Byte):
Bits 2,1,0 (TMDE: test mode select bits)
These bits are used for diagnostic purposes only and normally not accessed during operation. The default value of TMDE is 000 which selects a normal A/D conversion. See Diagnostics for more information.

TMDE Description

000	Normal A/D Conversion
001	Reserved by Micro Linear (Do Not Use)
010	CALWR Operation
011	CALRD Operation
100	System Offset
101	Common-mode
110	Plus Full Scale
111	Minus Full Scale

Bit 3 (M / S : Master/Slave bit): Dictates whether the SYNC pin is an input or an output. Upon RESET, this bit is cleared.

$$
\begin{array}{ll}
M / S=0: \text { Slave Mode } & \begin{array}{l}
\text { SYNC is an input which is used } \\
\text { to trigger a conversion if } \\
\text { SMDE = 11. }
\end{array} \\
M / S=1: \text { Master Mode } & \begin{array}{l}
\text { SYNC is an output. At the } \\
\text { beginning of every conversion, }
\end{array} \\
\begin{array}{l}
\text { SYNC is high for 4 internal } \\
\text { clocks. }
\end{array}
\end{array}
$$

Bit 12 (CK1X: clock select bit):
Selects whether the external clock will be divided by two or used directly as the internal clock. See Clock section for a detailed explanation.

CK1X $=0:$

CK1X = 1:

Bit 5 (L/H: Low Byte/High Byte):
In non-DMA mode the L/H bit defines whether DAVB is deactivated by reading the Data Low Byte or Data High Byte. In DMA mode, the L/H bit defines the order in which the Low/High Data Bytes are presented to the data bus. DMA mode automatically deactivates DAVB after both bytes are read.
*non-DMA mode: DMA $=0$
$\mathrm{L} / \mathrm{H}=0$: \quad reading register 0 (Low Byte) will deassert DAVB
$\mathrm{L} / \mathrm{H}=1: \quad$ reading register 1 (High Byte) will deassert DAVB
*DMA mode: DMA = 1
$\mathrm{L} / \mathrm{H}=0: \quad$ the first read is the Data High Byte, and the second read is the Data Low Byte, then DAVB output is de-asserted
$\mathrm{L} / \mathrm{H}=1: \quad$ the first read is the Data Low Byte, and the second read is the Data High Byte, then DAVB output is de-asserted.

Bit 6 (DMA: DMA mode bit):
This bit allows both high and low bytes from the 13 bit conversion to be read from one address; either Data Buffer Low Byte or Data Buffer High Byte registers.
$\mathrm{DMA}=0 \quad$ The high byte of the conversion will always be read from the Data Buffer High Byte register and the low byte of the conversion will always be read from the Data Buffer Low Byte Register.
$D M A=1: \quad$ Both high and low bytes of the conversion can be read from either the Data Buffer High or Low Byte Registers. A DMA controller, microprocessor, or other I/O device can use a single I/O address to read both the low and high bytes of the conversion. The order in which the high and low data bytes are presented is defined by the L/H control bit.

Note: This feature is not restricted to DMA controllers. It is an I/O option which may be used by a DMA controller, microprocessor, or any other type of $1 / O$ device.

Bit 7 (Reserved by Micro Linear)
This bit is not used. When written use zero.

GENERAL OPERATING INFORMATION

CONVERSION-START PROTOCOL

There are four different ways to start a conversion. They are defined by SMDE bits 4 and 5 in the Control Low Byte Register.

SMDE

Bits 5,4
00: A write to register 0 will start a conversion. During a conversion, if another write is issued to register 0, the "Start Conversion" command will be latched and another conversion will immediately follow the current one. To insure that the second write will be latched, it must occur at least 3 internal clocks after the first write. Only one additional write will be latched; multiple writes within a conversion will only yield one more conversion.

01: Reading the data from the previous conversion starts the next conversion. Start Conversion upon reading register 0 if $\mathrm{L} / \mathrm{H}=0$, or Start Conversion upon reading register if $\mathrm{L} / \mathrm{H}=1$. In DMA mode both bytes need to be read. The second byte read will Start the Conversion.

10: This mode causes continuous conversions; the next conversion begins immediately after the previous conversion ends. Writing to register 0 will start the first conversion; thereafter the converter runs continuously. This mode yields the maximum conversion rate.

11: The SYNC input triggers the start of a conversion. The M/S bit in the Control High Byte Register must be cleared, placing the chip in the slave mode.

Note: the external activation for Start Modes 0, 1, and 3 are synchronized internally to the system clock. If periodic sampling is required using these Start Modes, the SYNC, RD, or WR pulses must be synchronized to the system clock. Start Mode 2 guarantees periodic sampling.

DOUBLE-BUFFERED DATA REGISTER

The A/D conversion result is double-buffered using the Data Buffer registers and the A/D Data register. The actual End-Of-Conversion (EOC) does not correspond with the DAVB output going low. The DAVB output goes low 16 internal clocks after the EOC. From the time DAVB output goes LOW, the user has one full conversion time (80 or 110 internal clocks) minus 16 internal clocks to read two data bytes as shown in Figure 10.

SELF CALIBRATION

Setting the DOCAL bit issues a calibration request to the chip. When calibration is done, the DAV status bit is set and the DAVB output goes low.

A calibration requires 8,260 internal clocks. Using a 7 MHz clock (CLK Mode $=0$), this approximately 2 ms . Power supplies and external voltage reference must be stable before issuing a request for calibration. are attempted. Calibrations must not be performed simultaneously with conversions. Before requesting a calibration, the user may want to read the Busy status bit to make sure that the converter is idle. Polling the chip while the calibration is in progress is not recommended.

Figure 10.

CLOCK

The ML2230 has the option of dividing the clock at the CLK pin by 2 , or using it directly to drive the internal logic. This option is selected through the CK1X bit in the Control register. When CK1X $=0$ the clock is divided by 2. This is referred to as CLK Mode $=0$. The clock at the CLK pin is referred to as the External clock, and the Internal Clock is the External clock divided by 2. When CK1X $=1$, the clock at the CLK pin drives the internal logic directly, therefore this clock is referred to as the Internal clock. This is also known as CLK Mode $=1$. All internally clocked logic is positive edge triggered.

CLK Mode $=0$:

There are two advantages to CLK Mode 0 . This is the only Mode that allows an external crystal to be used. CLK Mode 1 cannot operate with an external crystal, the CLK pin must be driven. The second advantage of CLK Mode 0 is that the duty cycle for a driven clock is less stringent than in CLK Mode 1. (Refer to $\mathrm{t}_{\text {CLK }}$ and $\mathrm{t}_{\text {CLK1 }}$ in AC Electrical Characteristics for CLK Mode 0 and 1 timing requirements, respectively.)
On power up the state of the divide by two flip-flop is indeterminate. Therefore the relationship between the internal clock and the external clock at the CLK pin can have one of two possibilities as shown in Figure 11. As a result the following should be considered.
$t_{\text {WRCK }}, \mathrm{t}_{\text {RDCK }}$, and $\mathrm{t}_{\text {SYNCCK }}$ specs, $(\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and SYNC setup times to Start of Conversion), will be as shown in the data sheet, or the data sheet specs plus one external clock period. Since these specifications are with respect to the rising edge of the external clock, it is not known whether this rising edge corresponds to the rising edge or falling edge of the internal clock. Therefore there is an uncertainty of one external clock period.
If periodic sampling is necessary and Start Mode 0,1 or 3 is used, the external start pulse (either $\overline{R D}, \overline{W R}$, or SYNC) must be synchronous to the external clock, meet the setup time, and be an even number of external clock periods. If the start pulse were an odd number of external periods, half the pulses would correspond with the rising edge of the internal clock, and the other half would correspond with the falling edge of the internal clock. Therefore the sampling period would change by one external clock period every sample. Start Mode 2 guarantees periodic sampling regardless of the CLK mode.

CLK Mode = 1:
This mode eliminates the requirement that external start pulses must be an even number of external clock periods. However periodic sampling still requires that the start pulse be synchronous to the external clock, and the setup time must be met. CLK Mode 1 also eliminates the uncertainty of the $\mathrm{t}_{\text {WRCK }}, \mathrm{t}_{\text {RDCK }}$ and $\mathrm{t}_{\text {SYNCCK }}$ requirements.

*INTERNAL CLOCK MAY BE ONE OF THE TWO ABOVE IN CLK MODE = 0

Figure 11.

DIAGNOSTICS

Diagnostics routines may be run after power up or any other time to ensure proper operation. The diagnostic features, which are software selectable, don't require external hardware. Both the analog and digital sections can be tested.

The ML2230 is placed in the diagnostic mode via the TMDE field in the Control High Byte Register. Once the ML2230 is placed in one of the diagnostic modes, a conversion must be executed before the results can be read. As with all conversions, DAVB will be activated upon completion.

ANALOG CONVERSION DIAGNOSTICS

TMDE $=000:$ Normal Operation
Selects normal A/D conversion. Default condition after a software reset.

TMDE $=001$: Reserved by Micro Linear.
TMDE $=0101:$ CALWR operation
The data in Write register 0 and 1 (CALCODE Holding Register), are transferred into the converter's Calibration register when a "Start Conversion" is issued. A dummy conversion occurs and the DAVB output goes LOW to indicate that the operation is complete.

TMDE $=011:$ CALRD operation
The contents of the Calibration register are transferred through the A/D Data register and loaded into the Data Buffer register. A dummy 8-bit conversion occurs and DAVB output goes LOW to indicate that the CALRD operation is complete.

TMDE $=100:$ System Offset

The positive and negative inputs to the Sample and Hold are tied to analog ground. With this setting, converted data will give the offset of the A/D converter and Sample/ Hold combination. The $\mathrm{V}_{1 \mathrm{~N}^{+}}$and $\mathrm{V}_{1 \mathrm{~N}^{-}}$pins will remain in a high impedance state while in this mode.

TMDE $=101$: Common-mode

Both the positive and negative inputs of the Sample and Hold are tied to $\mathrm{V}_{\text {REF }}$. The results of a conversion in this test mode indicates how well the converter is rejecting a common mode signal.
TMDE = 110: Positive Full Scale
This test mode connects the positive input of the Sample and Hold to $\mathrm{V}_{\text {REF }}$ and the negative input of the Sample and Hold to analog ground. The result of converting in this test mode is a value near positive full scale.

TMDE = 111: Negative Full Scale
This test mode connects the positive input of the Sample and Hold to analog ground and the negative input to $V_{\text {REF }}$. The result of converting in this test mode is a value near negative full scale.

DIGITAL LOOPBACK

The ML2230's architecture provides a way for the microprocessor to indirectly read and write to the A/D converter's calibration register and data register via a CALRD and CALWR. Figure 12 illustrates this architecture. This in effect allows a digital loopback.

Figure 12. Digital Loopback

When the TMDE bits are set to 010 CAL WRITE (CALWR), and a Start Conversion is issued in any one of the four modes, the contents of the CALCODE Holding Low Byte and High Byte registers are transferred into the A / D converter's Calibration register. When the TMDE bits are set to 011 CAL READ (CALRD), and a Start Conversion is issued, the contents of the Calibration register are transferred through the A/D's Data register into the Data Buffer Low Byte and Data Buffer High Byte registers. The result of these two operations is a complete loopback from the CALCODE Holding registers through the A/D converter and back into the Data buffer registers. This loopback provides user assurance that all the paths are clear and there are no stuck bits.

Note: When a CALWR is done, the previous calibration value is lost. The correct calibration value must be restored before the converter is used to convert data.

CALIBRATION PASS/FAIL TEST

The CALRD can be used as a way to verify a successful calibration. After a calibration is completed, the CALRD may be issued in order to read the contents of the Calibration register. If the Low Byte of the data buffer register is all ones after executing a CALRD, the calibration failed; otherwise the calibration is successful.

Figure 13. Interfacing to $\mathbf{8 0 4 8}$ Microcontroller

Figure 14. Interfacing to $\mathbf{6 8 0 0}$ Microprocessor

ORDERING INFORMATION

PART NUMBER	LINEARITY ERROR	MINIMUM CONVERSION	TEMPERATURE RANGE	PACKAGE
ML2230BCP	$\pm 3 / 4 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP (P24)
ML2230CCP	$\pm 1 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP (P24)
ML2230DCP	$\pm 1 \mathrm{LSB}$	$44.0 \mu \mathrm{~s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP (P24)

μ P Compatible 12-Bit Plus Sign A/D Converter with Sample and Hold

GENERAL DESCRIPTION

The ML2233 is a member of Micro Linear's 12-bit plus sign CMOS A/D converter family utilizing a self calibrating algorithmic technique. The sample-and-hold, incorporated on the ML2233, has a differential input for noise immunity and power supply rejection. All errors of the sample-and-hold are accounted for in the analog-todigital converter's accuracy specification.

The ML2233B has a maximum non-linearity error over temperature of 0.018% of full-scale, and the ML2233C and ML2233D have a maximum non-linearity error over temperature of 0.024% of full scale.
Designed to interface to a 16-bit microprocessor bus without additional components, the ML2233 outputs the 13 -bit data result in one word. Data format is 2 's complement. All digital signals are fully TTL and CMOS compatible.

For interfacing to an 8-bit microprocessor bus the ML2230 provides a 13-bit data result in two 8-bit bytes.

FEATURES

olution	12-bits + sign
Conversion time (including S/H acquisition)	$31.5 \mu \mathrm{~s}$ max
Sample and hold acquisition	$2.3 \mu \mathrm{~s} \mathrm{max}$
-linearity error	$\pm 3 / 4 \mathrm{LSB}$ and ± 1 LSB max
w harmonic distortion	0.0
missing codes	
Self calibrating - maintains and temperature	accuracy over time
uts withstand I7VI beyo	upplies
ata transfer options - int	upt, DMA, or polling
28-pin DIP	

Conversion time
(including S / H acquisition)
$2.3 \mu \mathrm{~s}$ max

- Non-linearity error $\pm 3 / 4$ LSB and ± 1 LSB max
- Low harmonic distortion
0.01\%
- Self calibrating - maintains accuracy over time and temperature
- Inputs withstand I7VI beyond supplies

Data transfer options - interrupt, DMA, or polling

- 13-bit result for 16 -bit bus interface
- Standard 28-pin DIP

BLOCK DIAGRAM

PIN CONNECTIONS

ML2233
28-Pin DIP (P28)

AGND 1	28	AVcc
$\mathrm{V}_{\text {IN }}+2$	27	CLK
$\mathrm{V}_{\text {IN }}{ }^{\text {d }}$	26	$\overline{\mathbf{W R}}$
Vref [4	25] $\overline{\mathrm{DD}}$
Vss 5	24	$\overline{\mathbf{C S}}$
$\overline{\text { DAV }} 6$	23	A0
SYNC 7	22	D12
D0 8	21	D11
D1 ${ }^{\text {a }}$	20	DGND
D2 10	19	D10
D3 11	18	D9
D4 12	17	D8
D5 13	16	D7
D6 14	15	DVCC

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	AGND	Analog ground.
2	VIN^{+}	Positive differential analog input; $\begin{aligned} & \text { range }=V_{S S} \leq V_{I N}+\leq A V_{C C} \\ & \left\|\left(V_{I_{N}}\right)-\left(V_{I N^{-}}\right)\right\| \leq V_{R E F} . \end{aligned}$
3	$\mathrm{V}_{1 N^{-}}$	Negative differential analog input; range $=\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}^{-}} \leq \mathrm{AV}_{\mathrm{CC}}$, $\left\|\left(V_{I^{+}}\right)-\left(V_{I^{-}}\right)\right\| \leq V_{\text {REF }}$.
4	$V_{\text {REF }}$	Voltage reference input; referenced to analog ground.
5	$\mathrm{V}_{\text {SS }}$	Negative power supply; decouple to AGND.
6	$\overline{\text { DAV }}$	Data available; indicates a conversion has completed and data is available or calibration completed.
7	SYNC	In the slave mode, SYNC is a positive edge triggered input used to start a conversion. In master mode, SYNC is an output and indicates conversion start.
8	D0	Bidirectional data bit.
9	D1	Bidirectional data bit.
10	D2	Bidirectional data bit.
11	D3	Bidirectional data bit.
12	D4	Bidirectional data bit.
13	D5	Bidirectional data bit.
14	D6	Bidirectional data bit.
ABSOLUTE MAXIMUM RATINGS (Note 1)		
Supply Voltages ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$) \qquad 6.0 V Negative Supply Voltage (V_{SS}) \qquad $-6.0 \mathrm{~V}$		
Voltage at AnalogInputs $\mathrm{V}_{\text {SS }}-7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}+7 \mathrm{~V}$		
Input Current per Digital Pin $\pm 10 \mathrm{~mA}$		
Input Current at Analog Inputs $\pm 20 \mathrm{~mA}$		
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Package Dissipation @ $25^{\circ} \mathrm{C}$............................. 875 mW		
Lead Temperature (soldering, 10 seconds)		
Dual-In-Line Package (Plastic).......................... $260^{\circ} \mathrm{C}$		

PIN\#	NAME	FUNCTION
15	DV ${ }_{\text {CC }}$	Digital power supply.
16	D7	Bidirectional data bit.
17	D8	Bidirectional data bit.
18	D9	Bidirectional data bit.
19	D10	Bidirectional data bit.
20	DGND	Digital ground.
21	D11	Bidirectional data bit.
22	D12	Bidirectional data bit.
23	A0	Address for the microprocessor interface to access registers.
24	$\overline{C S}$	Chip select; enables writing to or reading from.
25	$\overline{\mathrm{RD}}$	Read; enables ML2233 to drive data bus.
26	$\overline{W R}$	Write; allows writing into the registers.
27	CLK	Clock input. Driven with an external clock or crystal referenced to DGND. The crystal must be parallel resonant with minimum capacitive loading. (i.e., no bypass caps should be used and leads should be kept short.)
28	$\mathrm{AV}_{\mathrm{CC}}$	Positive analog power supply. Decouple to AGND. Tie to $\mathrm{DV}_{\mathrm{CC}}$ from same power supply.

ABSOLUTE MAXIMUM RATINGS
Supply Voltages ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$) 6.0 V
Negative Supply Voltage (VSS)$\mathrm{V}_{\mathrm{SS}}-7 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{CC}}+7 \mathrm{~V}$
Voltage at $\mathrm{V}_{\text {REF }}$ $V_{S S}-7 V$ to $A V_{C C}+7 V$put Cur ent Andog input.$\pm 20 \mathrm{~mA}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation 25 C.$260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

(Note 2)
Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Supply Voltage ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV} \mathrm{V}_{\mathrm{CC}}$) $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$ Negative Supply Voltage $\left(V_{S S}\right)$.......... $-4.5 \mathrm{~V}_{\mathrm{DC}}$ to $-6.0 \mathrm{~V}_{\mathrm{DC}}$
Reference Voltage ($\mathrm{V}_{\mathrm{REF}}$) 2.60 V

ELECTRICAL CHARACTERISTICS

The following specifications apply for $A V_{C C}=D V_{C C}=5 \mathrm{~V} \pm 5 \%, V_{S S}=-5 \mathrm{~V} \pm 5 \%, V_{R E F}=2.500 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=A G N D$, $\mathrm{V}_{\mathrm{IN}^{+}}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise specified.

PARAMETER	NOTES	CONDITIONS	$\begin{aligned} & \text { TYP } \\ & \text { MIN } \end{aligned}$	(NOTE 3)	MAX	UNITS
Converter Characteristics						
Linearity Error ML2233BCJ ML2233CCJ ML2233DCJ	4	$\begin{aligned} \mathrm{f}_{\mathrm{CCLK}} & =0.1 \leq 7 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CCLK}} & =0.1 \leq 7 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CCLK}} & =0.1 \leq 5 \mathrm{MHz} \end{aligned}$			$\begin{gathered} \pm 3 / 4 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Zero Error ML2233BCJ ML2233CCJ ML2233DCJ	4				$\begin{gathered} \pm 3 / 4 \\ \pm 2 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Unadjusted Positive and Negative Full Scale Error	5				± 4	LSB
Zero Error Temperature Coefficient				0.5		ppm/ ${ }^{\circ} \mathrm{C}$
Gain Temperature Coefficient				10		ppm/ ${ }^{\circ} \mathrm{C}$
Common-Mode Rejection	5,6		80			dB
Analog Input Source Resistance	5				2	$\mathrm{k} \Omega$
Analog Input Range	4	$\mathrm{V}_{\mathrm{IN}^{+}}$Referred to $\mathrm{V}_{\mathbb{I N}^{-}}$	$-\mathrm{V}_{\text {REF }}$		$+\mathrm{V}_{\text {REF }}$	V
Analog Input Leakage Current	4				100	nA
Voltage Reference Input Source Impedance	5				0.5	k Ω
Reference Input Leakage Current	4				100	nA

Digital and DC Characteristics

Power Supply Current $\mathrm{Al}_{\mathrm{CC}}$, Analog V_{CC} $\mathrm{DI}_{\mathrm{CC}}$, Digital V_{CC} $\mathrm{I}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SS}}$	4			$\begin{aligned} & 30 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & \hline \end{aligned}$	mA $\mu \mathrm{A}$ mA
Power Supply Rejection $\mathrm{AV}_{\mathrm{CC}}$ V_{ss}	7	DC DC to 25 kHz DC DC to 25 kHz		$\begin{aligned} & 80 \\ & 50 \\ & 80 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{\text {ILCLK }}$, Clock Input Low Voltage	4				0.8	V
$\mathrm{V}_{\text {IHCLK }}$, Clock Input High Voltage	4		3.5		$\mathrm{AV}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {L1 }}$, Input Leakage Current (CLK)	4	$\mathrm{AGND} \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{AV}_{\text {CC }}$			± 200	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$, Input Low Voltage	4				0.8	V
V_{IH}, Input High Voltage	4		2.0		DV ${ }_{\text {CC }}$	V
$\mathrm{V}_{\text {OL }}$, Output Low Voltage	4	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.45	V
V_{OH}, Output High Voltage	4	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
I_{L}, Input Leakage Current (except CLK)	4	AGND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{AV}_{\text {CC }}$			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{HI}-\mathrm{Z},}$ Output Leakage Current (D0-D12)	4	$\overline{\mathrm{RD}}=\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}$			± 10	$\mu \mathrm{A}$
C_{1}, Input Capacitance (all digital inputs)				10		pF
C_{O}, Output Capacitance (outputs D0 to D12, SYNC and DAV)				10		pF

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP (NOTE 3)	MAX	UNITS

AC Electrical Characteristics (Note 8)

t_{C}	Conversion Time	4, 9	CLK Mode $=0$		31.5 44.0			$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
	Sample and Hold Acquisition	4,9	CLK Mode $=0$	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=7.0 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & 2.3 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
$\mathrm{f}_{\text {CLK0 }}$	Clock Frequency	5,9	CLK Mode $=0$	Crystal Driven	$\begin{aligned} & 3 \\ & 1 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	MHz MHz
$\mathrm{f}_{\text {CLKo }}$	Clock Width	5,9	Driven $($ CLK Mode $=0)$	High Low	$\begin{aligned} & 50 \\ & 50 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{f}_{\text {CLK1 }}$	Clock Frequency	5,10	Driven (CLK Mod	de $=1$)	0.5		(Note 11)	MHz
$\mathrm{t}_{\text {CLK1 }}$	Clock Width	5,10	Driven (CLK Mode = 1)	High Low	$\begin{aligned} & 125 \\ & 125 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {AD }}$	Address Stable to Valid Data	4			150			ns
$t_{\text {AR }}$	Address Stable Before Read	4			0			ns
$t_{\text {RA }}$	Address Hold After Read	4			0			ns
$t_{\text {RR }}$	Read Pulse Width	4			150			ns
$t_{\text {RD }}$	Read Access	4					150	ns
$\mathrm{t}_{1 \mathrm{Z},} \mathrm{t}_{0 Z}$	Data Read to Hi-Z	4			0		50	ns
$\mathrm{t}_{\mathrm{R} V}$	Recovery Between Two Reads or Writes	5			250			ns
$\mathrm{t}_{\text {RDCK }}$	Read to Clock Setup Time	5,12			40			ns
$\mathrm{t}_{\text {AW }}$	Address Stable Before Write	4			0			ns
twa	Address Hold After Write	4			0			ns
tww	Write Pulse Width	4			150			ns
tow	Data Setup Before Write Trailing Edge	4			100			ns
twD	Data Hold After Write Trailing Edge	4			0			ns
twrck	Write to Clock Setup Time	5,12			40			ns
$\mathrm{t}_{\text {CKDAV }}$	Clock to $\overline{\text { DAV }}$ Assert	4,13	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			120	220	ns
$\mathrm{t}_{\text {SYNCCK }}$	SYNC Input to Clock Setup	5,12			40			ns
$\mathrm{t}_{\text {SYNCN }}$	SYNC Input Width	5	$\begin{aligned} & (\text { CLK Mode }=0) \\ & (\text { CLK Mode }=1) \end{aligned}$		$\begin{aligned} & 6 \\ & 3 \end{aligned}$			1/f CLKo 1/fCLK1

ELECTRICAL CHARACTERISTICS (Continued)

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | (NOTE 3) | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

AC Electrical Characteristics (Note 8)

$\mathrm{t}_{\text {CKSYNC }}$	External Clock to SYNC Output Delay	5,13	$C_{L}=50 \mathrm{pF}$	150	200	ns
tsynco	SYNC Output Pulse Width	5,13	$\begin{aligned} & (\text { CLK Mode }=0) \\ & (\text { CLK Mode }=1) \end{aligned}$		$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$1 /$ flelko 1/fCLK1
twrdav	Write Reg2 to $\overline{\text { DAV }}$ Rising Edge	4,14	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		170	ns
trddav	Read Reg0 to DAV Rising Edge	4,15	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		170	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall		All Inputs		25	ns

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Devices are 100% tested with temperature limits guaranteed by 100% testıng, sampling or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Common mode rejection is the ratio of the change in zero error to the change in common mode input range
Note 7: Power supply rejection is the ratio of the change in zero error to the change in power supply voltage.
Note 8: All parameters measured from 0.8 V to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.
Note 9: CK1X bit in control register $=0$.
Note 10: CK1X bit in control register $=1$.
Note 11: Maxımum frequency is $1 / \mathrm{t}_{\mathrm{CLK} 1}$ (hıgh) $+\mathrm{t}_{\mathrm{CLK} 1}$ (low) + rise + fall times and $\leq 3.5 \mathrm{MHz}$.
Note 12: Setup time required for synchronous start of conversion.
Note 13: In CLK mode $=0($ CK1X bit in control register $=0)$ start of conversion will occur at specified time; or time plus one fCLKo period (see Figure 5)
Note 14: Writing a control register bit 0 with a one will acknowledge the $\overline{\mathrm{DAV}}$ condition and de-assert DAV output
Note 15: In start mode $=1$, a read from location " 0 " will start the next conversion and de-assert the DAV output

TIMING DIAGRAMS

Figure 1. Read Cycle

Figure 2. Write Cycle

TIMING DIAGRAMS (Continued)

DAV IS SET AND CLEARED BY INTERNAL CIRCUITRY. NOTE: DMA BIT IN THE CONTROL REGISTER MUST BE SET FOR THIS OPERATION.

Figure 3. Data Available

Figure 4. SYNC Output

TIMING DIAGRAMS (Continued)

notes:

1. CLK IS THE CLOCK DRIVEN AT THE CLOCK PIN.
2. IN CLK MODE 1, WILL ALWAYS OCCUR AT TO IF SETUP TIMES ARE MET.
3. IN CLK MODE0, WILL OCCUR EITHER AT T0 OR T1 IF SETUP TIMES ARE MET.

Figure 5. Synchronous Start of Conversion (Start Mode 0, 1, 3)

BLOCK DIAGRAM

Figure 6. Block Schematic Diagram

FUNCTIONAL DESCRIPTION

ALGORITHMIC A/D CONVERTER

Micro Linear's algorithmic converter uses a successive approximation technique. Most of today's successive approximation converters use a DAC to feedback the approximated signal, however this technique requires more circuitry than algorithmic converters. In addition the values of all of the resistors or capacitors in the DAC must be matched to within the accuracy of the converter. This is difficult to do in silicon beyond 10 bits unless trimming is used. An algorithmic converter uses less circuitry and is more easily trimmed. Micro Linear's algorithmic converter is implemented using a $2 x$ amplifier, a sample/hold amp, and a comparator as shown in Figure 7.
The input sample is first multiplied by two then compared to the reference voltage. If the $2 x$ input voltage is greater than the reference, the MSB is a 1 and the reference voltage is subtracted from the $2 x$ input voltage. The remainder is stored in the sample and hold. If the $2 x$ input voltage is less than the reference, the MSB is a 0 and the $2 x$ input voltage is stored in the sample and hold. This process repeats again, however now the sample and hold voltage is multiplied by 2 .

The algorithm involves multiplication by 2, comparison, and possibly subtraction. Referring to Figure 6, the algorithm for the circuit can be described as follows:

Step 1 If $\left(2 \times V_{I N}\right)-V_{\text {REF }} \geq 0$

$$
\text { then } \mathrm{MSB}=1
$$

$$
\left(2 \times V_{I N}\right)-V_{\text {REF }} \rightarrow S / H
$$

else MSB $=0$

$$
\left(2 \times \mathrm{V}_{\mathrm{IN}}\right) \rightarrow \mathrm{S} / \mathrm{H}
$$

Step 2 If $(2 \times S / H)-V_{R E F} \geq 0$ then next bit $=1$

$$
(2 \times S / H)-V_{\text {REF }} \rightarrow S / H
$$

else next bit $=0$

$$
(2 \times S / H) \rightarrow S / H
$$

Step 3 Repeat Step 2 until conversion complete.
Since the A/D converter handles bipolar inputs, negative inputs are handled slightly differently using the same principle.

Figure 7. Self Calibrating A/D Converter

SELF CALIBRATION

In order to maintain integral and differential linearity to the $1 / 2$ LSB level in an algorithmic converter, two critical parameters need to be controlled, loop offsets and the gain of the loop. Loop offsets are automatically nulled before each conversion using auto-zeroing circuitry on both the sampling amp and the $2 x$ amp. The gain of the loop is adjusted using self calibration.
Self calibrating the algorithmic converter, once the offsets have been nulled, is performed by measuring the $2 x$ gain of the loop and adjusting it. The gain can be measured by converting the reference voltage as the input as well as the reference ($\mathrm{V}_{\mathrm{REF}} / \mathrm{N}_{\mathrm{REF}}$), and examining the output code. Converting $\mathrm{V}_{\text {REF }}$ should yield plus full scale, since $\mathrm{V}_{\text {REF }} /$ $\mathrm{V}_{\text {REF }}$ should equal 1. If the gain of the loop is slightly less than 2, the resulting LSB of the conversion will be " 0 ". If the magnitude bits of the resulting conversion are all " 1 s ", the gain may be too great, therefore the gain is reduced to the point where the threshold of the LSB is reached.
Adjustment of the $2 x$ gain is done with the binary weighted trim capacitor arrays connected to each of the 2C input capacitors. A small value of capacitance is either added to or subtracted from the 2C input caps until the gain of the loop is within 13 bit accuracy of 2 .

CONVERSION TIMES

The following table lists the conversion times which include the sample and hold acquisition time. For a CALRD and CALWR no A/D conversion actually takes place.

OPERATION	\# OF INTERNAL CLOCKS*
8 bit A/D	80
13 bit A / D	110
CALWR	52
CALRD	80

SAMPLE AND HOLD TIMING

Figure 8 shows the internal timing for the sample and hold circuitry. The relationship between the "Start of Conversion" and the input channel going into sample mode is fixed at 6 internal clocks*, regardless of the Start Mode. Six internal clocks after the Start of Conversion the Sample and Hold is switched into the sample mode, placing two 9 pF capacitors in parallel with the inputs pins; one on $\mathrm{V}_{\mathrm{IN}^{+}}$and one on $\mathrm{V}_{\mathrm{IN}^{-}}$. The sample switch is kept in the sample mode for 8 internal clocks $(2.3 \mu$ s at a 7 MHz external clock), then placed in the hold mode. During the next 2 internal clocks the charge on the sample and hold is transferred into the A / D, after which the $V_{\text {REF }}$ pin is sampled for 8 internal clocks.

Figure 8 also illustrates the timing of the SYNC pin in Master Mode during a conversion ($M / S=1$ Control register) and Start Mode 0,1 , or 2 . SYNC is activated one internal clock cycle after the Start of Conversion and lasts for four internal clocks.
*For a descriptıon of internal clocks see Clock sectıon.

ANALOG INPUTS

Differential Inputs and Common Mode Rejection

The differential inputs of the ML2233 eliminate the effects of common mode input noise (60 Hz for example), as $\mathrm{V}_{\mathrm{IN}^{+}}$ and $\mathrm{V}_{\mathrm{IN}^{-}}$are sampled at the same time.

Noise

The leads to the analog inputs should be kept as short as possible to minimize output noise. Noise as well as digital clocks can couple into the inputs and cause errors. Input filters can be used to reduce the effects of these sources.

Power Supply Decoupling

Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater and $0.01 \mu \mathrm{~F}$ disc ceramic capacitors are recommended for bypassing $A V_{C C}$ as well as $V_{S S}$ to $A G N D$. These capacitors should be placed close to the $A V_{C C}$ and $V_{S S}$ pins.

MICROPROCESSOR INTERFACE

There are two 13-bit directly addressable registers; a Data Buffer register and a Control register. The data buffer register provides the conversion results. The data register is double buffered, allowing one result to be read while the next sample is being converted. The data register also allows access to the algorithmic converter's calibration code. Normally the ML2233 is operated without ever accessing these registers. (Refer to Diagnostics for more information). The Control register provides complete control and status information. The two registers are addressed by pin A0.

Figure 8. Sample and Hold Timing

All data is returned from the converter in two's complement format.

Cycle	+Max	-Min	Zero
13	OFFF	1000	0000
8	$007 F$	1 F80	0000

REGISTER DESCRIPTION

REGISTER 0 - DATA BUFFER:

Register 0 contains the results of the latest conversion when read. Depending on the Start Mode selected, reading or writing to this register may start the next conversion.

REGISTER 1 - CONTROL REGISTER

Bit 0 (DAV status when READ/DAVACK acknowledge when a ONE is written):
Reading DAV $=1$ indicates that new data is available or a calibration is complete. DAV will be cleared automatically when the data is read. This bit can be explicitly acknowledged by writing a ONE to it; writing a zero has no effect. The $\overline{D A V}$ output pin always reflects the DAV status bit.

Bit 1 (BUSY status when READ/RESET when a ONE is written):
Reading BUSY $=1$ indicates that a conversion or calibration is in progress. Writing a ONE will force a chip reset. Writing a zero has no effect.

RESET DEFÁULT CONDITIONS:

The Control register will automatically be cleared. The Data Buffer register will be unchanged. The Calibration register is not cleared after a reset, however the ADRDY bit is cleared. Since the DAV status bit is cleared, the $\overline{D A V}$ output is inactivated (high). The SYNC pin is forced to be an input as a result of clearing the M / S bit in the Control register.
Bit 2 (ADRDY status when READ/DOCAL request when a ONE is written):
Reading ADRDY $=0$ indicates that the converter has not been calibrated since the last reset, and ADRDY $=1$ indicates that is has been calibrated since the last reset. Writing a ONE will force the converter to do a calibration; writing a zero has no effect.

Figure 9. Register Description

Bit 3 (SC: Short cycle select):
Selects 8 or 13 bit conversions.
$\mathrm{SC}=0: 13$-bit conversion (default)
$S C=1: 8$-bit conversion (short cycle)
Bits 4,5 (SMDE: Start Mode):
Defines Start Conversion mode.

Bits 5,4

00 Start Conversion upon writing to register 0 (default)
01 Start Conversion upon reading register 0
10 Start Continuous Conversions upon writing to register 0.
11 Start on external SYNC input going high (Requires Slave mode: $M / S=0$)
Bits 7,6 (reserved):
These bits are reserved by Micro Linear and must be written as zero.

Bits 10,9,8 (TMDE: test mode select bits)
These bits are used for diagnostic purposes only and normally not accessed during operation. The default value of TMDE is 000 which selects a normal A/D conversion. See Diagnostics for more information.

TMDE Description

000 Normal A/D Conversion
001 Reserved by Micro Linear (Do Not Use)
010 CALWR Operation
011 CALRD Operation
100 System Offset
101 Common-mode
110 Plus Full Scale
111 Minus Full Scale

Bit 11 (M/S: Master/Slave bit):
Dictates whether the SYNC pin is an input or an output. Upon RESET, this bit is cleared.
$M / S=0$: Slave Mode \quad SYNC is an input which is used to trigger a conversion if SMDE $=11$.
$M / S=1$: Master Mode
SYNC is an output. At the beginning of every conversion, SYNC is high for 4 internal clocks.
Bit 12 (CK1X: clock select bit):
Selects whether the external clock will be divided by two or used directly as the internal clock. See Clock section for a detailed explanation.

CK1X $=0$: \quad the external clock is divided by two and used as the internal clock. This is referred to as CLK Mode $=0$.

CK1X $=1$: the external clock input is used directly as the internal clock. This is referred to as CLK Mode $=1$.

GENERAL OPERATING INFORMATION

CONVERSION-START PROTOCOL

There are four different ways to start a conversion. They are defined by SMDE bits 4 and 5 in the Control Register.

SMDE

Bits 5,4

00: A write to register 0 will start a conversion. During a conversion, if another write is issued to register 0, the "Start Conversion" command will be latched and another conversion will immediately follow the current one. To insure that the second write will be latched, it must occur at least 3 internal clocks after the first write. Only one additional write will be latched; multiple writes within a conversion will only yield one more conversion.
01: Reading the data from the previous conversion starts the next conversion.
10: This mode causes continuous conversions; the next conversion begins immediately after the previous conversion ends. Writing to register 0 will start the first conversion; thereafter the converter runs continuously. This mode yields the maximum conversion rate.
11: The SYNC input triggers the start of a conversion. The M/S bit in the Control Register must be cleared, placing the chip in the slave mode.
Note: the external activation for Start Modes 0, 1, and 3 are synchronized internally to the system clock. If periodic sampling is required using these Start Modes, the SYNC, RD, or WR pulses must be synchronized to the system clock. Start Mode 2 guarantees periodic sampling.

DOUBLE-BUFFERED DATA REGISTER

The A/D conversion result is double-buffered using the Data Buffer register and the A/D Data register. The actual End-Of-Conversion (EOC) does not correspond with the $\overline{\mathrm{DAV}}$ output going low. The DAV output goes low 16 internal clocks after the EOC. From the time DAV output goes LOW, the user has one full conversion time (80 or 110 internal clocks) minus 16 internal clocks to read the data as shown in Figure 10.

SELF CALIBRATION

Setting the DOCAL bit issues a calibration request to the chip. When calibration is done, the DAV status bit is set and the $\overline{\mathrm{DAV}}$ output goes low.
A calibration requires 8,260 internal clocks. Using a 7 MHz clock (CLK Mode $=0$), this approximately 2 ms . Power supplies and external voltage reference must be stable before issuing a request for calibration.
The ML2233 should be calibrated before any conversions are attempted. Calibrations must not be performed simultaneously with conversions. Before requesting a calibration, the user may want to read the Busy status bit to make sure that the converter is idle. Polling the chip while the calibration is in progress is not recommended.

Figure 10.

CLOCK

The ML2233 has the option of dividing the clock at the CLK pin by 2 , or using it directly to drive the internal logic. This option is selected through the CK1X bit in the Control register. When CK1X $=0$ the clock is divided by 2. This is referred to as CLK Mode $=0$. The clock at the CLK pin is referred to as the External clock, and the Internal Clock is the External clock divided by 2. When CK1X $=1$, the clock at the CLK pin drives the internal logic directly, therefore this clock is referred to as the internal clock. This is also known as CLK Mode $=1$. All internally clocked logic is positive edge triggered.

CLK Mode = 0:

There are two advantages to CLK Mode 0 . This is the only Mode that allows an external crystal to be used. CLK Mode 1 cannot operate with an external crystal, the CLK pin must be driven. The second advantage of CLK Mode 0 is that the duty cycle for a driven clock is less stringent than in CLK Mode 1. (Refer to $\mathrm{t}_{\mathrm{CLK} 0}$ and $\mathrm{t}_{\mathrm{CLK} 1}$ in AC Electrical Characteristics for CLK Mode 0 and 1 timing requirements, respectively.)
On power up the state of the divide by two flip-flop is indeterminate. Therefore the relationship between the internal clock and the external clock at the CLK pin can have one of two possibilities as shown in Figure 11. As a result the following should be considered.
$t_{\text {WRCK }}, \mathrm{t}_{\text {RDCK }}$, and $\mathrm{t}_{\text {SYNCCK }}$ specs, ($\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and SYNC setup times to Start of Conversion), will be as shown in the data sheet, or the data sheet specs plus one external clock period. Since these specifications are with respect to the rising edge of the external clock, it is not known whether this rising edge corresponds to the rising edge or falling edge of the internal clock. Therefore there is an uncertainty of one external clock period.
If periodic sampling is necessary and Start Mode 0,1 or 3 is used, the external start pulse (either $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, or SYNC) must be synchronous to the external clock, meet the setup time, and be an even number of external clock periods. If the start pulse were an odd number of external periods, half the pulses would correspond with the rising edge of the internal clock, and the other half would correspond with the falling edge of the internal clock. Therefore the sampling period would change by one external clock period every sample. Start Mode 2 guarantees periodic sampling regardless of the CLK mode.

CLK Mode =1:

This mode eliminates the requirement that external start pulses must be an even number of external clock periods. However periodic sampling still requires that the start pulse be synchronous to the external clock, and the setup time must be met. CLK Mode 1 also eliminates the uncertainty of the tWRCK $\mathrm{t}_{\text {RDCK }}$ and $\mathrm{t}_{\text {SYNCCK }}$ requirements.

*INTERNAL CLOCK MAY BE ONE OF THE TWO ABOVE IN CLK MODE = 0

Figure 11.

DIAGNOSTICS

Diagnostics routines may be run after power up or any other time to ensure proper operation. The diagnostic features, which are software selectable, don't require external hardware. Both the analog and digital sections can be tested.

The ML2233 is placed in the diagnostic mode via the TMDE field in the Control Register. Once the ML2233 is placed in one of the diagnostic modes, a conversion must be executed before the results can be read. As with all conversions, $\overline{\mathrm{DAV}}$ will be activated upon completion.

ANALOG CONVERSION DIAGNOSTICS

TMDE $=000:$ Normal Operation
Selects normal A/D conversion. Default condition after a software reset.

TMDE $=001$: Reserved by Micro Linear.
TMDE $=0101:$ CALWR operation
The data in Write register 0 (CALCODE Holding Register), is transferred into the converter's Calibration register when a "Start Conversion" is issued. A dummy conversion occurs and the $\overline{\mathrm{DAV}}$ output goes LOW to indicate that the operation is complete.
TMDE $=011$: CALRD operation
The contents of the Calibration register are transferred through the A/D Data register and loaded into the Data Buffer register. A dummy 8-bit conversion occurs and $\overline{\mathrm{DAV}}$ output goes LOW to indicate that the CALRD operation is complete.

TMDE = 100: System Offset

The positive and negative inputs to the Sample and Hold are tied to analog ground. With this setting, converted data will give the offset of the A/D converter and Sample/ Hold combination. The $\mathrm{V}_{\mathrm{IN}^{+}}$and $\mathrm{V}_{\mathrm{IN}^{-}}$pins will remain in a high impedance state while in this mode.
TMDE $=101$: Common-mode
Both the positive and negative inputs of the Sample and Hold are tied to $\mathrm{V}_{\text {REF }}$. The results of a conversion in this test mode indicates how well the converter is rejecting a common mode signal.

TMDE $=110$: Positive Full Scale
This test mode connects the positive input of the Sample and Hold to $V_{\text {REF }}$ and the negative input of the Sample and Hold to analog ground. The result of converting in this test mode is a value near positive full scale.
TMDE = 111: Negative Full Scale
This test mode connects the positive input of the Sample and Hold to analog ground and the negative input to $V_{\text {REF }}$. The result of converting in this test mode is a value near negative full scale.

DIGITAL LOOPBACK

The ML2233's architecture provides a way for the microprocessor to indirectly read and write to the A / D converter's calibration register and data register via a CALRD and CALWR. Figure 12 illustrates this architecture. This in effect allows a digital loopback.

Figure 12. Digital Loopback

When the TMDE bits are set to 010 CAL WRITE (CALWR), and a Start Conversion is issued in any one of the four modes, the contents of the CALCODE Holding register is transferred into the A/D converter's Calibration register. When the TMDE bits are set to 011 CAL READ (CALRD), and a Start Conversion is issued, the contents of the Calibration register are transferred through the A/D's Data register into the Data Buffer register. The result of these two operations is a complete loopback from the CALCODE Holding register through the A/D converter and back into the Data buffer register. This loopback provides user assurance that all the paths are clear and there are no stuck bits.

Note: When a CALWR is done, the previous calibration value is lost. The correct calibration value must be restored before the converter is used to convert data.

CALIBRATION PASS/FAIL TEST

The CALRD can be used as a way to verify a successful calibration. After a calibration is completed, the CALRD may be issued in order to read the contents of the Calibration register. If the Low Byte (lower 8 bits) of the data buffer register are ones after executing a CALRD, the calibration failed; otherwise the calibration is successful.

Figure 13. Interfacing to $\mathbf{6 8 0 0 0}$ Microprocessor

Figure 14. Interfacing to TMS320C25 Digital Signal Processor

ORDERING INFORMATION

PART NUMBER	MAXIMUM LINEARITY ERROR	MAXIMUM TOTAL UNADJUSTED ERROR	MINIMUM CONVERSION	PACKAGE
ML2233BCP	$\pm 3 / 4 \mathrm{LSB}$	$\pm 11 / 2$ LSB	$31.5 \mu \mathrm{~s}$	Plastic DIP (P28)
ML2233CCP	$\pm 1 \mathrm{LSB}$	$\pm 21 / 2 \mathrm{LSB}$	$31.5 \mu \mathrm{~s}$	Plastic DIP (P28)
ML2233DCP	$\pm 1 \mathrm{LSB}$	$\pm 21 / 2 \mathrm{LSB}$	$44.0 \mu \mathrm{~s}$	Plastic DIP (P28)

μ P Compatible 8-Bit A/D Converters with 2- or 8-Channel Multiplexer

GENERAL DESCRIPTION

The ML2252 and ML2259 combine an 8-bit A/D converter, 2 - or 8 -channel analog multiplexer, and a microprocessor compatible 8-bit parallel interface and control logic in a single monolithic CMOS device.

Easy interface to microprocessors is provided by the latched and decoded multiplexer address inputs and a double buffered three-state data bus. These analog-todigital converters allow the microprocessor to operate completely asynchronous to the converter clock.
The built in sample and hold function provides the ability to digitize a $5 \mathrm{~V}, 50 \mathrm{KHz}$ sine wave to 8 -bit accuracy. The differential comparator design provides low power supply sensitiveity to DC and AC variations. The voltage reference can be externally set to any value between ground and V_{CC}, thus allowing a full conversion over a relatively small span if desired. All parameters are guaranteed over temperature with a power supply voltage of $5 \mathrm{~V} \pm 10 \%$.

The device is suitable for a wide range of applications from process and machine control to consumer, automotive, and telecommunication applications.

FEATURES

■ Conversion time ($\mathrm{f}_{\mathrm{CLK}}=1.46 \mathrm{MHz}$) $\quad 6.6 \mu \mathrm{~s}$

- Total unadjusted error $\pm 1 / 2$ LSB or ± 1 LSB
- No missing codes
- Sample and hold 390ns acquisition
- Capable of digitizing a $5 \mathrm{~V}, 50 \mathrm{KHz}$ sine wave
- 2- or 8-channel input multiplexer
- 0 V to 5 V analog input range with single 5 V power supply
■ Operates ratiometrically or with up to 5V voltage reference
- No zero or full scale adjust required
- Analog input protection

25 mA per input min

- Continuous conversion mode
- Low power dissipation

15mW MAX

- TTL and CMOS compatible digital inputs and outputs
- Standard 20-pin or 28-pin DIP or PCC
- Temperature range

$$
\begin{array}{r}
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\
\text { or }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\
\text { or }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

ML2252 BLOCK DIAGRAM

ML2259 BLOCK DIAGRAM

PIN CONFIGURATION

ML2252
20-Pin DIP (P20)

CH1 1	V20	CH0
Start	19	ADDR0
eoc \square	18	$\square \mathrm{ale}$
DB3	17	D ${ }^{\text {D } 7}$
OE \square	16	$\square \mathrm{DB6}$
CLK	15	\square DB5
Vcc	14	DB4
+ $\mathrm{V}_{\text {REF }}$	13	$\square \mathrm{DBO}$
GND \square -	12] $\mathrm{V}_{\text {ref }}$
DB1 10	11	DB2

ML2259
28-Pin DIP(P28)

ML2259 28-Pin PCC (Q28)

PIN DESCRIPTION
Pin Number

ML 2252	ML2259	Name	Function
	1	CH3	Analog input 3.
	2	CH 4	Analog input 4.
	3	CH 5	Analog input 5.
	4	CH 6	Analog input 6.
	5	CH7	Analog input 7.
2	6	START	Start of conversion. Active high digital input pulse initiates conversion.
3	7	EOC	End of conversion. This output goes low after a START pulse occurs, stays low for the entire A / D conversion, and goes high after conversion is completed. Data on DB0-DB7 is valid on rising edge of EOC and stays valid until next EOC rising edge.
4	8	DB3	Data output 3.
5	9	OE	Output enable input. When $O E=0, D B 0-D B 7$ are in high impedance state; $\mathrm{OE}=1, \mathrm{DB} 0-\mathrm{DB7}$ are active outputs.
6	10	CLK	Clock. Clock input provides timing for A / D converter, S / H, and digital interface.
7	11	$\mathrm{V}_{\text {CC }}$	Positive supply. $5 \mathrm{~V} \pm 10 \%$.
8	12	$+V_{\text {REF }}$	Positive reference voltage.
9	13	GND	Ground. OV, all analog and digital inputs or outputs are referenced to this point.
10	14	DB1	Data output 1.
11	15	DB2	Data output 2.
12	16	- $\mathrm{V}_{\text {REF }}$	Negative reference voltage.
13	17	DB0	Data output 0.
14	18	DB4	Data output 4.
15	19	DB5	Data output 5.
16	20	DB6	Data output 6.
17	21	DB7	Data output 7.
18	22	ALE	Address latch enable. Input to latch in the digital address (ADDR2-0) on the rising edge of the multiplexer.
	23	ADDR2	Address input 2 to multiplexer. Digital input for selecting analog input.
	24	ADDR1	Address input 1 to multiplexer. Digital input for selecting analog input.
19	25	ADDR0	Address input 0 to multiplexer. Digital input for selecting analog input.
20	26	CH 0	Analog input 0.
1	27	CH 1	Analog input 1.
	28	CH 2	Analog input 2.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

VoltageLogic Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$Analog Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$Input Current per Pin (Note 2) 25 mAStorage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Package Dissipationat $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) 875 mWLead Temperature (Soldering 10 sec.)Dual-In-Line Package (Plastic)...................... $260^{\circ} \mathrm{C}$Dual-In-Line Package (Ceramic)................ $300^{\circ} \mathrm{C}$

Molded Chip Carrier Package Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$
Infrared (15 sec.) $220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage, $\mathrm{V}_{\mathrm{CC}} . ~$ $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$

ELECTRICAL CHARACTERISTICS
Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=+\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \pm 10 \%,-\mathrm{V}_{\text {REF }}=\mathrm{GND}$ and $\mathrm{f}_{\mathrm{CLK}}=1.46 \mathrm{MHz}$

PARAMETER	NOTES	CONDITIONS	ML2252B, ML2259B			ML2252C, ML2259C			
			MIN	$\begin{array}{c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (NOTE 4) } \end{gathered}$	MAX	UNITS

Converter and Multiplexer Characteristics

Total Unadjusted Error	5,7	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}$			$\pm 1 / 2$			± 1	LSB
$+\mathrm{V}_{\text {ReF }}$ Voltage Range	6		$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\text {CC }}+0.1$	V
- $\mathrm{V}_{\text {Ref }}$ Voltage Range	6		GND - 0.1		+ $\mathrm{V}_{\text {REF }}$	GND - 0.1		$+\mathrm{V}_{\text {REF }}$	V
Reference Input Resistance	5		14	20	35	14	20	28	K Ω
Analog Input Range	5,8		GND -0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	GND -0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Power Supply Sensitivity	6	$\mathrm{DC}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB
		$\begin{array}{\|l} 100 \mathrm{mVp} \mathrm{p}, 100 \mathrm{KHz} \\ \text { Sine on } \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=0 \end{array}$		$\pm 1 / 16$			$\pm 1 / 16$		LSB
loff, Off Channel Leakage Current (Note 9)	5,9	On Channel $=V_{C C}$ Off Channel $=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=V_{C C} \end{aligned}$			1			1	$\mu \mathrm{A}$
I_{ON}, On Channel Leakage Current (Note 9)	5,9	On Channel $=0 \mathrm{~V}$ Off Channel $=V_{C C}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=\mathrm{V}_{\mathrm{CC}} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$			1			1	$\mu \mathrm{A}$

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | (NOTE 4) | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

Digital and DC

$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	5		2.0		
$\mathrm{~V}_{\mathrm{IN}(0)}$	Logical "0" Input Voltage	5				0.8
$\mathrm{I}_{\mathrm{IN}(1)}$	Logical "1" Input Current	5	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$		V	
$\mathrm{I}_{\mathrm{IN}(0)}$	Logical "0" Input Current	5	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1		1
$\mathrm{~V}_{\mathrm{OUT}(1)}$	Logical "1" Output Voltage	5	$\mathrm{I}_{\mathrm{OUT}}=-2 \mathrm{~mA}$	$\mu \mathrm{~A}$		
$\mathrm{~V}_{\mathrm{OUT}(0)}$	Logical "0" Output Voltage	5	$\mathrm{I}_{\mathrm{OUT}}=2 \mathrm{~mA}$	4.0		$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{OUT}}$	Three-State Output Current	5	$\mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$			V
			$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$	-1		0.4
I_{CC}	Supply Current	5				1

AC and Dynamic Performance Characteristics (Note 10)

$\mathrm{t}_{\mathrm{ACQ}}$	Sample and Hold Acquisition				$1 / 2$		$1 / \mathrm{f}_{\mathrm{CLK}}$
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	5		10		1460	KHz
t_{C}	Conversion Time				8.5	$8.5+250 \mathrm{~ns}$	$1 / \mathrm{f}_{\mathrm{CLK}}$
SNR	Signal to Noise Ratio	$\mathrm{V}_{\mathrm{IN}}=51 \mathrm{KHz}, 5 \mathrm{~V}$ Sine. $\mathrm{f}_{\mathrm{CLK}}=1.46 \mathrm{MHz}$ (f of AMPLNG Nonfundamental Components of All up to $1 / 2$ of $\mathrm{f}_{\text {SAMPLING }}$	47		dB		

ELECTRICAL CHARACTERISTICS (Continued)

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | (NOTE 4) | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

AC and Dynamic Performance Characteristics (Note 10) (Continued)

THD	Total Harmonic Distortion		$\begin{aligned} & \mathrm{V}_{\text {IN }}=51 \mathrm{KHz}, 5 \mathrm{~V} \text { Sine. } \\ & \mathrm{f}_{\mathrm{CLK}}=1.46 \mathrm{MHz} \\ & \left(\mathrm{f}_{\text {SAMPLING }} \cong 150 \mathrm{KHz}\right) . \text { THD is Sum } \\ & 2,3,4,5 \text { Harmonics Relative to } \\ & \text { Fundamental } \end{aligned}$		-60		dB
IMD	Intermodulation Distortion		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{A}}+\mathrm{f}_{\mathrm{B}} \cdot \mathrm{f}_{\mathrm{A}}=49 \mathrm{KHz}, 2.5 \mathrm{~V} \text { Sine. } \\ & \mathrm{f}_{\mathrm{B}}=47.8 \mathrm{KHz}, 2.5 \mathrm{~V} \text { Sine, } \\ & \mathrm{f}_{\mathrm{CLK}}=1.46 \mathrm{MHz} \\ & \left(\mathrm{f}_{\mathrm{SAMPLI}}\right. \\ & \left(\mathrm{f}_{\mathrm{A}}-\mathrm{f}_{\mathrm{B}}\right),\left(2 \mathrm{f}_{\mathrm{A}}+\mathrm{f}_{\mathrm{B}}\right),\left(2 \mathrm{f}_{\mathrm{A}}-\mathrm{f}_{\mathrm{B}}\right),\left(\mathrm{f}_{\mathrm{A}}+2 \mathrm{f}_{\mathrm{B}}\right), \\ & \left(\mathrm{f}_{\mathrm{A}}-2 \mathrm{f}_{\mathrm{B}}\right) \text { Relative to Fundamental } \end{aligned}$		-60		dB
FR	Frequency Response		$\mathrm{V}_{\mathrm{IN}}=0$ to 50 KHz .5 V Sine Relative to 1 KHz		0.1		dB
${ }^{\text {t }}$ D	Clock Duty Cycle	6,11		40		60	\%
$\mathrm{t}_{\text {EOC }}$	End of Conversion Delay	5			1/2	$1 / 2+250 \mathrm{~ns}$	1/f CLK
tws	Start Pulse Width	5		50			ns
$\mathrm{tss}^{\text {s }}$	Start Pulse Setup Time	6,12	Synchronous Only	40			ns
twale	Address Latch Enable Pulse Width	5		50			ns
ts	Address Setup	5		0			ns
${ }_{\text {th }}$	Address Hold	5		50			ns
$\mathrm{t}_{\mathrm{H} 1, \mathrm{HO}}$	Output Enable for DB0-DB7	6	Figure 1, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			100	ns
		6	Figure 1, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			50	ns
$\overline{t_{1 H, O H}}$	Output Disable for DB0-DB7	6	Figure 1, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			100	ns
		6	Figure 1, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			50	ns
$\mathrm{C}_{\text {IN }}$	Capacitance of Logic Input				5		pF
COUT	Capacitance of Logic Outputs				10		pF

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2: When the input voltage $\left(V_{\mathbb{N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{N}}<\mathrm{GND}-01 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{CC}}+0.1\right)$ the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation
Note 7: Total unadjusted error includes offset, full scale, linearity, multiplexer and sample and hold errors
Note 8: For $-V_{\text {REF }} \geq \mathrm{V}_{\mathbb{N}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one dıode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (45 V), as high level analog inputs (5 V) can cause this input diode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale. The spec allow 100 mV forward bias of ether diode This means that as long as the analog $V_{I N}$ or $V_{\text {REF }}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{D C}$ over temperature variations, intial tolerance and loading
Note 9: Leakage current is measured with the clock not switching.
Note 10: $C_{L}=50 \mathrm{pF}$, tımıng measured at 50% point.
Note 11: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum time the clock is high or the minımum time the clock is low must be at least 40 ns . The maximum time the clock can be high or low is $60 \mu \mathrm{~s}$.
Note 12: The conversion start setup time requirement only needs to be satisfied if a conversion must be synchronized to a given clock rising edge. If the setup time is not met, start conversion will have an uncertainty of one clock pulse.

OUTPUT
ENABLE
OUTPUT

Figure 1. High Impedance Test Circuits and Waveforms

Figure 2. Linearity Error vs $\mathbf{f}_{\mathbf{C L K}}$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 3. Linearity Error vs $\mathbf{V}_{\text {Ref }}$ Voltage

Figure 4. Unadjusted Offset Error vs $\mathrm{V}_{\text {ref }}$ Voltage

1.0 FUNCTIONAL DESCRIPTION

1.1 MULTIPLEXER ADDRESSING

The ML2252 and ML2259 contain a single ended analog multiplexer. A particular input channel is selected by using the address decoder. The relationship between the address inputs, ADDR0-ADDR2, and the analog input selected is shown in Table 1. The address inputs are latched into the decoder on the rising edge of the address latch signal ALE.

ML2252

SELECTED ANALOG CHANNEL	ADDRESS INPUT
CHO	0
$\mathrm{CH1}$	1

ML2259

SELECTED	ADDRESS INPUT		
ANALOG CHANNEL	ADDR2	ADDR1	ADDR0
CH 0	0	0	0
CH 1	0	0	1
CH 2	0	1	0
CH 3	0	1	1
CH 4	1	0	0
CH 5	1	0	1
CH 6	1	1	0
CH 7	1	1	1

Table 1. Multiplexer Address Decoding

1.2 A/D CONVERTER

The A/D converter uses successive approximation to perform the conversion. The converter is composed of the successive approximation register, the DAC and the comparator.

The DAC generates the precise levels that determine the linearity and accuracy of the conversion. The DAC is composed of a capacitor upper array and a resistor lower array. The capacitor upper array generates the 4 MSB decision levels while the series resistor lower array generates the 4 LSB decision levels. A switch decoder tree is used to decode the proper level from both arrays.
The capacitor/resistor array offers fast conversion, superior linearity and accuracy since matching is only required between $2^{4}=16$ elements (as opposed to $2^{8}=256$ elements in conventional designs). And since the levels are based on the ratio of capacitors to capacitors and resistors to resistors, the accuracy and long term stability of the converter is improved. This also guarantees monotonicity and no missing codes, as well as eliminating any linearity temperature or power supply dependence.
The successive approximation register is a digital block used to store the bit decisions from the conversion.

The comparator design is unique in that it is fully differential and auto zeroed. The fully differential architecture provides excellent noise immunity, excellent power supply rejection, and wide common mode range. The comparator is auto zeroed at the start of each conversion in order to remove any DC offset and full scale gain error, thus improving accuracy and linearity.

Another advantage of the capacitor array approach used in the ML2252 and ML2259 is the inherent sample-and-hold function. This true S / H allows an accurate conversion to be done on the input even if the analog signal is not stable. Linearity and accuracy are maintained for analog signals up to $1 / 2$ the sampling frequency. As a result, input signals up to 50 KHz can be converted without degradation in linearity or accuracy.
The sequence of events during a conversion is shown in figure 5. The rising edge of a START pulse resets the internal registers and initiates a conversion on the next rising edge of CLK providing that (t_{SS}) start pulse setup time is satisfied. If this setup time is not met, start conversion will have an uncertainty of one clock pulse. The input is then sampled for the next half CLK period until EOC goes low. EOC goes low on the falling edge of the next CLK pulse indicating that the conversion is now beginning. The actual conversion now takes place for the next eight CLK pulses, one bit for each CLK pulse. After the conversion is done, the data is updated on DB0-DB7 and EOC goes high on the rising edge of the 9th CLK pulse, indicating that the conversion has been completed and data is valid on DB0-DB7. The data will stay valid on DB0-DB7 until the next conversion updates the data word on the next rising edge of EOC.

A conversion can be interrupted and restarted at any time by a new START pulse.

1.3 ANALOG INPUTS AND SAMPLE/HOLD

The ML2252 and ML2259 have a true sample-and-hold circuit which samples both the selected input and ground simultaneously. These analog to digital converters can reject AC common mode signals from $D C-50 \mathrm{KHz}$ as well as maintain linearity for signals from DC-50KHz.
The plot in figure 6 shows a 2048 point FFT of the ML2259 converting a $50 \mathrm{KHz}, 0$ to 5 V , low distortion sine wave input. The ML2252 and ML2259 sample and digitize, at their specified accuracy, dynamic input signals with frequency components up to the Nyquist frequency (one-half the sampling rate). The output spectra yields precise measurements of input signal level, harmonic components, and signal to noise ratio up to the 8 -bit level. The near ideal signal to noise ratio is maintained independent of increasing analog input frequencies to 50 KHz .

The signal at the analog input is sampled during the interval when the sampling switch is open prior to conversion start. The sampling window (S / H acquisition time) is one half CLK period long and occurs one half CLK period after START goes low. When the sampling switch closes at the start of the S / H acquisition time, 8 pF of capacitance is thrown onto the analog input. One half CLK period later, the sampling switch opens, the signal present at analog input is stored and conversion starts. Since any error on the analog input at the end of the S / H acquisition time will cause additional conversion error, care should be taken to insure adequate settling and charging time from the source. If more charging or settling time is needed to reduce these analog input errors, a longer CLK period can be used.
Each analog input has dual diodes to the supply rails, and a minimum of $\pm 25 \mathrm{~mA}(\pm 100 \mathrm{~mA}$ typically) can be injected into each analog input without causing latchup.

Figure 5. Timing Diagram

1.4 REFERENCE

The voltage applied to the $+V_{\text {REF }}$ and $-V_{\text {REF }}$ inputs defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {INMAX }}$ and $\mathrm{V}_{\text {INMIN }}$) over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pins must be connected to a voltage source capable of driving the reference input resistance, typically 20 K .
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A / D reference. This voltage is typically the system power supply, so the $+V_{\text {REF }}$ pin can be tied to $V_{C C}$ and $-V_{\text {REF }}$ tied to GND. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between specific voltage limits, the reference pins can be biased with a time and temperature stable voltage source.
$+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be at any voltage between $V_{C C}$ and GND. In addition, the difference between $+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be set to small values for conversions over smaller voltage ranges. Particular care must be taken with regard to noise pickup, circuit layout ond system error voltage sources when operating with a reduced span due to the increased sensitivity converter.

1.5 POWER SUPPLY AND REFERENCE DECOUPLING

A $10 \mu \mathrm{~F}$ electrolytic capacitor is recommended to bypass $V_{C C}$ to GND, using as short a lead length as possible. In addition, with clock frequencies above 1 MHz , a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor should be used to bypass $V_{C C}$ to GND.

If REF + and REF-inputs are driven by long lines, they should be bypassed by $0.1 \mu \mathrm{~F}$ ceramic disc capacitors at the reference input pins (pins 12, 16).

1.6 DYNAMIC PERFORMANCE Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 8-bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

Harmonic Distortion

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2252 and ML2259 are defined as

$$
20 \log =\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} are the rms amplitudes of the individual harmonics.

Figure 6. Output Spectrum

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order ($m+n$), at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1,2$, $3, \ldots$. Intermodulation terms are those for which m or n is not equal to zero. The (IMD) intermodulation distortion specification includes the second order terms ($f_{A}+f_{B}$) and ($f_{A}-f_{B}$) and the third order terms $\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right)$, $\left(f_{A}+2 f_{B}\right)$ and $\left(f_{A}-2 f_{B}\right)$ only.

1.7 DIGITAL INTERFACE

The analog inputs are selected by the digital addresses, ADDR0-ADDR2, and latched on the rising edge of ALE. This is described in the Multiplexer Addressing section.
A conversion is initiated by the rising edge of a START pulse. As long as this pulse is high, the internal logic is reset.

The sampling interval starts with the following CLK rising edge after a START falling edge and ends on the falling edge of CLK. The conversion starts and EOC goes low. The sampling clock is at least one half CLK period wide. Each bit conversion in the successive approximation process takes 1 CLK period. On the rising edge of the ninth CLK pulse, the digital output of the conversion is updated on the outputs DB0-DB7 and EOC goes high indicating the conversion is done and data on DB0-DB7 is valid.

One feature of the ML2252 and ML2259 is that the data is double buffered. This means that the outputs DB0-DB7 will stay valid until updated at the end of the next conversion and will not become invalid when the next conversion starts. This facilitates interfacing with external logic of $\mu \mathrm{P}$.

The signal OE drives the data bus, DB0-DB7, into the high impedance state when held low. This allows the ML2252 and ML2259 to be tied directly to a $\mu \mathrm{P}$ system bus without any latches or buffers.

1.7.1 Restart During Conversion

If the A / D is restarted (start goes low and returns high) during a convesion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in process is not allowed to be completed. EOC will remain low and the output data latch is not updated.

1.7.2 Continuous Conversions

In the free-running, continuous conversion mode, the start input is tied to the (figure 7) EOC output. An initialization pulse, following power-up, of mementarily forcing a logic high level is required to guarantee operation.

2.0 TYPICAL APPLICATIONS

Figure 8. Protecting the Input

Figure 9. Operating with Ratiometric Transducers 15\% of $\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{XDR}} \leq 85 \%$ of V_{CC}

ORDERING INFORMATION

PART NUMBER	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
Two Analog Inputs, 20-Pin Package			
ML2252BMJ ML2252BIJ ML2252BCP ML2252BCQ ML2252CIJ ML2252CCP ML2252CCQ	$\pm 1 / 2$ LSB	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	Hermetic DIP (J20) Hermetic DIP (J20) Molded DIP (P20) Molded PCC (Q20) Hermetic DIP (J20) Molded DIP (P20) Molded PCC (Q20)
Eight Analog Inputs, 28-Pin Package			
ML2259BMJ ML2259BIJ ML2259BIP ML2259BCP ML2259BCQ ML2259CIP ML2259CIJ ML2259CCP ML2259CCQ	$\pm 1 / 2$ LSB	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	Hermetic DIP (J28) Hermetic DIP (J28) Molded DIP (P28) Molded DIP (P28) Molded PCC (Q28) Molded DIP (P28) Hermetic DIP (J28) Molded DIP (P28) Molded PCC (Q28)

μ P Compatible 8-Bit A/D Converter with 8-Channel Multiplexer

GENERAL DESCRIPTION

The ML2258 combines an 8-bit A/D converter, 8-channel analog multiplexer, and a microprocessor compatible 8-bit parallel interface and control logic in a single monolithic CMOS device.

Easy interface to microprocessors is provided by the latched and decoded multiplexer address inputs and latched three-state outputs.

The device is suitable for a wide range of applications from process and machine control to consumer, automotive, and telecommunication applications.

The ML2258 is an enhanced pin compatible second source for the industry standard ADC0808/ADC0809. The ML2258 enhancements are faster conversion time, true sample and hold function, superior power supply rejection, wider reference range, and a double buffered data bus as well as faster digital timing. All parameters are guaranteed over temperature with a power supply voltage of $5 \mathrm{~V} \pm 10 \%$.

FEATURES

$\begin{array}{ll}\text { Conversion time } & 6.6 \mu \mathrm{~s} \\ \text { Total unadjusted error } & \pm 1 / 2 \mathrm{LSB} \text { or } \pm 1 \mathrm{LSB} \\ \text { No missing codes } & \\ \text { Sample and hold } & 390 \mathrm{~ns} \text { acquisition } \\ \text { Capable of digitizing a } 5 \mathrm{~V}, 50 \mathrm{KHz} \text { sine wave } \\ \text { 8-input multiplexer } & \\ \text { 0V to } 5 \mathrm{~V} \text { analog input range with single } 5 \mathrm{~V} \\ \text { power supply } & \text { Operates ratiometrically or with up to } 5 \mathrm{~V}\end{array}$

- Operates ratiometrically or with up to 5 V voltage reference
- No zero or full scale adjust required
- Analog input protection 25 mA per input min
- Low power dissipation 3mA max
- TTL and CMOS compatible digital inputs and outputs
- Standard 28-pin DIP or surface mount PCC
- Superior pin compatible replacement for ADC0808 and ADC0809

BLOCK DIAGRAM

PIN CONFIGURATION

ML2258
28-Pin DIP (P28)

ML2258
28-Pin PCC (Q28)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	IN3	Analog input 3.
2	IN4	Analog input 4.
3	IN5	Analog input 5.
4	IN6	Analog input 6.
5	IN7	Analog input 7. 6
START	Start of conversion. Active high digital input pulse initiates conversion.	
7	EOC	End of conversion. This output goes low after a START pulse occurs, stays low for the entire A/D conversion, and goes high after conversion is completed. Data on DB0-DB7 is valid on rising edge of EOC and stays valid until next EOC rising edge.
8	DB3	Data output 3. 9
OE	Output enable input. When OE $=0$, DB0-DB7 are in high impedance state; OE $=1$, DB0-DB7 are active outputs. Clock. Clock input provides timing for	
10	CLK	A/D converter, S/H, and digital interface.
11	VCC	Positive supply. $5 \mathrm{~V} \pm 10 \%$. 12
$+V_{\text {REF }}$	Positive reference voltage.	

$\begin{array}{cll}\text { PIN\# } & \text { NAME } & \text { FUNCTION } \\ \hline 13 & \text { GND } & \begin{array}{l}\text { Ground. 0V, all analog and digital } \\ \text { inputs or outputs are reference to this } \\ \text { point. }\end{array} \\ 14 & \text { DB1 } & \text { Data output } 1 . \\ 15 & \text { DB2 } & \text { Data output } 2 . \\ 16 & - \text { V }_{\text {REF }} & \text { Negative reference voltage. } \\ 17 & \text { DB0 } & \text { Data output } 0 . \\ 18 & \text { DB4 } & \text { Data output 4. } \\ 19 & \text { DB5 } & \begin{array}{l}\text { Data output } 5 . \\ 20\end{array} \\ \text { DB6 } & \begin{array}{l}\text { Data output } 6 . \\ 21\end{array} & \text { DB7 }\end{array} \begin{array}{l}\text { Data output } 7 . \\ 22\end{array}$ ALE $\left.\quad \begin{array}{l}\text { Address latch enable. Input to latch in } \\ \text { the digital address (ADDR2-0) on the } \\ \text { rising edge of the multiplexer. }\end{array}\right\}$

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Molded Chip Carrier Package
Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$
Infrared (15 sec.) $220^{\circ} \mathrm{C}$
OPERATING CONDITIONS
Supply Voltage, V_{CC} $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$Temperature Range (Note 3)
\qquad $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ ML2258BMJ, ML2258CMJ \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ML2258BIJ, ML2258BIP, ML2258BIQ, ML2258CIJ ML2258CIP, ML2258CIQ.................... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=+\mathrm{V}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%,-\mathrm{V}_{\text {REF }}=\mathrm{GND}$ and $\mathrm{f}_{\mathrm{CLK}}=10.24 \mathrm{MHz}$

PARAMETER	NOTES	CONDITIONS	ML2258B			ML2258C			
			MIN	TYP (NOTE 4)	MAX	MIN	TYP (NOTE 4)	MAX	UNITS

Converter and Multiplexer

Total Unadjusted Error	5,7	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\pm 1 / 2$			± 1	LSB
$+\mathrm{V}_{\text {REF }}$ Voltage Range	6		$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
- $\mathrm{V}_{\text {REF }}$ Voltage Range	6		GND-0.1		$+\mathrm{V}_{\text {REF }}$	GND-0.1		$+\mathrm{V}_{\text {REF }}$	V
Reference Input Resistance	5		14	20	35	14	20	28	$\mathrm{K} \Omega$
Analog Input Range	5,8		GND -0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	GND-0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Power Supply Sensitivity	6	$\mathrm{DC}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB
		$100 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{KHz}$ Sine on $V_{C C}, V_{I N}=0$		$\pm 1 / 16$			$\pm 1 / 16$		LSB
loff, Off Channel Leakage Current (Note 9)	5,9	$\begin{aligned} \text { On Channel } & =V_{\mathrm{CC}} \\ \text { Off Channel } & =0 \mathrm{~V} \end{aligned}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=\mathrm{V}_{\mathrm{CC}} \end{aligned}$			1			1	$\mu \mathrm{A}$
lon, On Channel Leakage Current (Note 9)	5,9	$\begin{aligned} \text { On Channel } & =0 \mathrm{~V} \\ \text { Off Channel } & =\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=\mathrm{V}_{\mathrm{CC}} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$			1			1	$\mu \mathrm{A}$

Digital and DC

$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input Voltage	5		2.0			2.0			V
$\mathrm{V}_{\text {IN }(0), \text {, Logical " } 0 \text { " Input }}$ Voltage	5				0.8			0.8	V
$\mathrm{I}_{\mathrm{IN}(1), \text { Logical " }}{ }^{1 "}$ Input Current	5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			1			1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N}(0) \text {, Logical " } 0 \text { " Input }}$ Current	5	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
$V_{\text {OUT(1), Logical " } 1 \text { " }}$ Output Voltage	5	$\mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA}$	4.0			4.0			V
$V_{\text {OUT(0), }}$ Logical "0" Output Voltage	5	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$			0.4			0.4	V
IOUT, Three-State Output	5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			1			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC, Supply Current }}$	5			1.5	3		1.5	3	mA

ELECTRICAL CHARACTERISTICS (Continued)

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | (NOTE 4) | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

AC and Dynamic Performance Characteristics (Note 10)

$\mathrm{t}_{\mathrm{ACQ}}$	Sample and Hold Acquisition				4		1/fCLK
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	5		100		10240	KHz
${ }^{\text {t }}$ C	Conversion Time	5			67	$67+250 \mathrm{~ns}$	1/fCLK
SNR	Signal to Noise Ratio		$\begin{aligned} & V_{I N}=51 \mathrm{KHz}, 5 \mathrm{~V} \text { Sine. } \\ & f_{\mathrm{CLK}}=10.24 \mathrm{MHz} \\ & \text { (f } \mathrm{f}_{\text {AMPLING }} \cong 150 \mathrm{KHz} \text {). Noise is Sum } \\ & \text { of All Nonfundamental Components } \\ & \text { up to } 1 / 2 \text { of } \mathrm{f}_{\text {SAMPLING }} \end{aligned}$		47		dB
THD	Total Harmonic Distortion		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=51 \mathrm{KHz}, 5 \mathrm{~V} \text { Sine. } \\ & \mathrm{f}_{\mathrm{CLK}}=10.24 \mathrm{MHz} \\ & \text { (f } \left.\mathrm{f}_{\text {SAMPLING }} \cong 150 \mathrm{KHz}\right) \text {. THD is Sum } \\ & \text { of } 2,3,4,5 \text { Harmonics Relative to } \\ & \text { Fundamental } \end{aligned}$		-60		dB
IMD	Intermodulation Distortion				-60		dB
FR	Frequency Response		$\mathrm{V}_{\mathrm{IN}}=0$ to 50 KHz . 5 V Sine Relative to 1 KHz		0.1		dB
$t_{\text {DC }}$	Clock Duty Cycle	6,11		40		60	\%
$\mathrm{t}_{\text {EOC }}$	End of Conversion Delay	5			8	$8+250 \mathrm{~ns}$	1/f CLK
$\mathrm{t}_{\text {Ws }}$	Start Pulse Width	5		50			ns
${ }_{\text {tss }}$	Start Pulse Setup Time	6,12	Synchronous Only	40			ns
twale	Address Latch Enable Pulse Width	5		50			ns
ts	Address Setup	5		0			ns
t_{H}	Address Hold	5		50			ns
$\mathrm{t}_{\mathrm{H} 1, \mathrm{HO}}$	Output Enable for DB0-DB7	6	Figure 1, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			100	ns
		6	Figure 1, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			50	ns
$\mathrm{t}_{1 \mathrm{H}, \mathrm{OH}}$	Output Disable for DB0-DB7	6	Figure 1, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			200	ns
		6	Figure 1, $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			100	ns
$\mathrm{CIN}_{\text {I }}$	Capacitance of Logic Input				5		pF
Cout	Capacitance of Logic Outputs				10		pF

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impaired All voltages unless otherwise specified are measured with respect to ground
Note 2: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails $\left(V_{\mathbb{N}}<V-\right.$ or $\left.V_{\mathbb{N}}>V+\right)$ the absolute value of current at that pin should be limited to $25 m A$ or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested with temperature lımits guaranteed by 100% testıng, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted erior includes offset, full scale, linearity, multiplexer and sample and hold errors.
Note 8: For $-V_{\text {REF }} \geq V_{\mathbb{I N}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply Be careful, during testıng at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input dıode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale. The spec allow 100 mV forward bias of ether diode. This means that as long as the analog $V_{I N}$ or $V_{\text {REF }}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct To achieve an absolute $0 V_{D C}$ to $5 \mathrm{~V}_{D C}$ input voltage range will therefore require a minımum supply voltage of $4900 \mathrm{~V}_{\mathrm{DC}}$ over temperature varıatıons, inıtial tolerance and loading
Note 9: Leakage current is measured with the clock not switching.
Note 10: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, tıming measured at 50% point.
Note 11: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minımum time the clock is high or the minimum time the clock is low must be at least 40 ns. The maximum time the clock can be high or low is $60 \mu \mathrm{~s}$.
Note 12: The conversion start setup tıme requirement only needs to be satısfied if a conversion must be synchronized to a given clock risıng edge. If the setup time is not met, start conversion will have an uncertainty of one clock pulse.

Figure 1. High Impedance Test Circuits and Waveforms

TYPICAL PERFORMANCE CURVES

Figure 2. Linearity Error vs $\mathbf{f}_{\text {CLK }}$

Figure 3. Linearity Error vs $\mathrm{V}_{\text {REF }}$ Voltage

Figure 4. Unadjusted Offset Error vs $\mathbf{V}_{\text {Ref }}$ Voltage

1.0 FUNCTIONAL DESCRIPTION

1.1 MULTIPLEXER ADDRESSING

The ML2258 contains an 8 -channel single ended analog multiplexer. A particular input channel is selected by using the address decoder. The relationship between the address inputs, ADDR0-ADDR2, and the analog input selected is shown in Table 1. The address inputs are latched into the decoder on the rising edge of the address latch signal ALE.

SELECTED	ADDRESS INPUT		
ANALOG CHANNEL	ADDR2	ADDR1	ADDR0
IN0	0	0	0
IN1	0	0	1
IN2	0	1	0
IN3	0	1	1
IN4	1	0	0
IN5	1	0	1
IN6	1	1	0
IN7	1	1	1

Table 1. Multiplexer Address Decoding

1.2 A/D CONVERTER

The A/D converter uses successive approximation to perform the conversion. The converter is composed of the successive approximation register, the DAC and the comparator.
The DAC generates the precise levels that determine the linearity and accuracy of the conversion. The DAC is composed of a capacitor upper array and a resistor lower array. The capacitor upper array generates the 4 MSB decision levels while the series resistor lower array generates the 4 LSB decision levels. A switch decoder tree is used to decode the proper level from both arrays.

The capacitor/resistor array offers fast conversion, superior linearity and accuracy since matching is only required between $2^{4}=16$ elements (as opposed to $2^{8}=256$ elements in conventional designs). And since the levels are based on the ratio of capacitors to capacitors and resistors to resistors, the accuracy and long term stability of the converter is improved. This also guarantees monotonicity and no missing codes, as well as eliminating any linearity temperature or power supply dependence.
The successive approximation register is a digital block used to store the bit decisions from the conversion.
The comparator design is unique in that it is fully differential and auto zeroed. The fully differential architecture provides excellent noise immunity, excellent power supply rejection, and wide common mode range. The comparator is auto zeroed at the start of each conversion in order to remove any DC offset and full scale gain error, thus improving accuracy and linearity.
Another advantage of the capacitor array approach used in the ML2258 over conventional designs is the inherent sample and hold function. This true S / H allows an accurate conversion to be done on the input even if the analog signal is not stable. Linearity and accuracy are maintained for analog signals up to $1 / 2$ the sampling frequency. As a result, input signals up to 75 KHz can be converted without degradation in linearity or accuracy.
The sequence of events during a conversion is shown in figure 5 . The rising edge of a START pulse resets the internal registers and the falling edge initiates a conversion on the next rising edge of CLK. Four CLK pulses later, sampling of the analog input begins. The input is then sampled for the next four CLK periods until EOC goes low. EOC goes low on the rising edge of the 8th CLK pulse indicating that the conversion is now beginning. The actual conversion now takes place for the next 56 CLK pulses, one bit for each 7 CLK pulses. After the conversion is done, the data is updated on DBO-DB7 and EOC goes high on the rising edge of the 67 th CLK pulse, indicating that the conversion has been completed and data is valid on DB0-DB7. The data will stay

Figure 5. Timing Diagram
valid on DB0-DB7 until the next conversion updates the data word on the next rising edge of EOC.
A conversion can be interrupted and restarted at any time by a new START pulse.

1.3 ANALOG INPUTS AND SAMPLE/HOLD

The ML2258 has a true sample and hold circuit which samples both the selected input and ground simultaneously. This simultaneous sampling with a true S / H will give common mode rejection and AC linearity performance that is superior to devices where the two input terminals are not sampled at the same instant and where true sample and hold capability does not exist. Thus, the ML2258 can reject AC common mode signals from $D C-50 \mathrm{KHz}$ as well as maintain linearity for signals from DC-50KHz.
The plot below (figure 6) shows a 2048 point FFT of the ML2258 converting a $50 \mathrm{KHz}, 0$ to 5 V , low distortion sine wave input. The ML2258 samples and digitizes, at its specified accuracy, dynamic input signals with frequency components up to the Nyquist frequency (one-half the sampling rate). The output spectra yields precise measurements of input signal level, harmonic components, and signal to noise ratio up to the 8 -bit level. The near ideal signal to noise ratio is maintained independent of increasing analog input frequencies to 50 KHz .
The signal at the analog input is sampled during the interval when the sampling switch is open prior to conversion start. The sampling window (S / H acquisition time) is 4 CLK periods long and occurs 4 CLK periods after START goes low. When the sampling switch closes at the start of the S / H acquisition time, 8 pF of capacitance is thrown onto the analog input. 4 CLK periods later, the sampling switch opens, the signal present at analog input is stored and conversion starts. Since any error on the analog input at the end of the S / H acquisition time will cause additional conversion error, care should be taken to insure adequate settling and charging time from the
source. If more charging or settling time is needed to reduce these analog input errors, a longer CLK period can be used.

The ML. 2258 has improved latchup immunity. Each analog input has dual diodes to the supply rails, and a minimum of $\pm 25 \mathrm{~mA}(\pm 100 \mathrm{~mA}$ typically) can be injected into each analog input without causing latchup.

1.4 REFERENCE

The voltage applied to the $+V_{\text {REF }}$ and $-V_{\text {REF }}$ inputs defines the voltage span of the analog input (the difference between $V_{\text {INMAX }}$ and $V_{\text {INMIN }}$) over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pins must be connected to a voltage source capable of driving the reference input resistance, typically 20K.
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A / D reference. This voltage is typically the system power supply, so the $+V_{\text {REF }}$ pin can be tied to $V_{C C}$ and $-V_{\text {REF }}$ tied to GND. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between specific voltage limits, the reference pins can be biased with a time and temperature stable voltage source.

In contrast to the ADC0808 and ADC0809, the ML2258
$-V_{\text {REF }}$ and $+V_{\text {REF }}$ reference values do not have to be symmetric around one half of the supply. $+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be at any voltage between V_{CC} and GND. In addition, the difference between $+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be set to small values for conversions over smaller voltage ranges. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter.

Figure 6. Output Spectrum

1.5 POWER SUPPLY AND REFERENCE DECOUPLING

A $10 \mu \mathrm{~F}$ electrolytic capacitor is recommended to bypass V_{CC} to GND, using as short a lead length as possible. In addition, with clock frequencies above 1 MHz , a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor should be used to bypass $V_{C C}$ to GND.

If REF + and REF-inputs are driven by long lines, they should be bypassed by $0.1 \mu \mathrm{~F}$ Ceramic disc capacitors at the reference pins (pins 12, 16).

1.6 DYNAMIC PERFORMANCE

Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 8 -bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

Harmonic Distortion

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2258 is defined as

$$
20 \log =\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} are the rms amplitudes of the individual harmonics.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order $(\mathrm{m}+\mathrm{n})$, at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1,2,3, \ldots$. Intermodulation terms are those for which m or n is not equal to zero. The ML2258 (IMD) intermodulation distortion specification includes the second order terms $\left(f_{A}+f_{B}\right)$ and $\left(f_{A}-f_{B}\right)$ and the third order terms $\left(2 f_{A}+f_{B}\right)$, $\left(2 f_{A}-f_{B}\right),\left(f_{A}+2 f_{B}\right)$ and $\left(f_{A}-2 f_{B}\right)$ only.

1.7 DIGITAL INTERFACE

The analog inputs are selected by the digital addresses, ADDR0-ADDR2, and latched on the rising edge of ALE. This is described in the Multiplexer Addressing section.

A conversion is initiated by the rising edge of a START pulse. As long as this pulse is high, the internal logic is reset.
The sampling interval starts with the 4th CLK rising edge after a START falling edge and ends on the 8 th rising edge of CLK, 4 CLK periods later. On the rising edge of the 8 th CLK pulse, the conversion starts and EOC goes low.
Each bit conversion in the successive approximation process takes 7 CLK periods. On the rising edge of the 64 CLK pulse, the digital output of the conversion is updated on the outputs DB0-DB7. On the rising edge of the 65th CLK pulse, EOC goes high indicating the conversion is done and data on DB0-DB7 is valid.
One feature of the ML2258 over conventional devices is that the data is double buffered. This means that the outputs DB0-DB7 will stay valid until updated at the end of the next conversion and will not become invalid when the next conversion starts. This facilitates interfacing with external logic of μ P.
The signal OE drives the data bus, DB0-DB7, into the high impedance state when held low. This allows the ML2258 to be tied directly to a $\mu \mathrm{P}$ system bus without any latches or buffers.

2.0 TYPICAL APPLICATIONS

Figure 7. Protecting the Input

Figure 8. Operating with Ratiometric Transducers 15\% of $\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{XDR}} \leq \mathbf{8 5 \%}$ of V_{CC}

Figure 9. Continuous Conversion Mode

ORDERING INFORMATION

PART NUMBER	ALTERNATE PART NUMBER	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
ML2258BMJ	ADC0808CJ	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J28)
ML2258BIJ	ADC0808CC		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J28)
ML2258BIP	ADC0808CCN		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P28)
ML2258BIQ	ADC0808CCV		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded PCC (Q28)
ML2258CIJ		± 1 LSB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J28)
ML2258CIP	ADC0809CCN		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P28)
ML2258CIQ	ADC0809CCV		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded PCC (Q28)

$\mu \mathrm{P}$ Compatible High-Speed 8-Bit A/D Converter with T/H (S/H)

GENERAL DESCRIPTION

The ML2261 is a high-speed, $\mu \mathrm{P}$ compatible 8 -bit A/D converter with a conversion time of 670 ns over the operating temperature range and supply voltage tolerance. The ML2261 operates from a single 5V supply and has an analog input range from GND to $V_{C C}$.
The ML2261 has two different pin selectable modes. The T/H mode has an internal track and hold. The S/H mode has a true internal sample and hold and can digitize 0 to 5 V sinusoidal signals as high as 500 kHz . Timing is compatible with the AD7821.
The ML2261 digital interface has been designed so that the device appears as a memory location or I/O port to a $\mu \mathrm{P}$.
The ML2261 is an enhanced, pin compatible second source for the industry standard ADC0820 and AD7820. The ML2261 enhancements are faster conversion time, parameters guaranteed over the supply tolerance and temperature range, improved digital interface timing, superior power supply rejection, and better latchup immunity on analog inputs.

FEATURES

- Conversion time, WR-RD mode over temperature and supply voltage tolerance Track \& Hold Mode \qquad 850ns max
Sample \& Hold Mode 700ns max
- Total unadjusted error $\pm 1 / 2$ LSB or ± 1 LSB
- Digitizes a $5 \mathrm{~V}, 250 \mathrm{kHz}$ sine wave to 8 -bit accuracy
- No missing codes
- 0 V to 5 V analog input range with single 5 V power supply
- No zero or full scale adjust required
- Analog input protection
$25 m A$ min
- Operates ratiometrically or with up to 5 V voltage reference
- No external clock required
- Easy interface to $\mu \mathrm{P}$, or operates stand alone
- Power-on reset circuitry
- Low power

75 mW

- Standard 20 -pin DIP or surface mount PCC
- Superior pin compatible replacement for ADC0820 and AD7820

BLOCK DIAGRAM

PIN CONNECTIONS

20-Pin PCC

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	V_{IN}	Analog input.
2	DB0	Data output - bit 0 (LSB).
3	DB1	Data output - bit 1.
4	DB2	Data output - bit 2.
5	DB3	Data output - bit 3.
6	$\overline{\text { WR/RDY }}$	Write input or ready output. In WR-RD mode, this pin is WR input. In RD mode, this pin is RDY open drain output. See Digital Interface section.
7	MODE	Mode select input. MODE = GND: RD mode MODE $=\mathrm{V}_{\mathrm{CC}}$: WR-RD mode Pin has internal current source pulldown to GND.
8	$\overline{\mathrm{RD}}$	Read input. In RD mode, this pin initiates a conversion. In WR-RD mode, this pin latches data into output latches. See Digital Interface section.
9	INT	Interrupt output. This output signals the end of a conversion and indicates that data is valid on the data outputs. See Digital Interface section.
ABSOLUTE MAXIMUM RATINGS (Note 1)		
Voltage		
Input Current per Pin (Note 2) $\pm 25 \mathrm{~mA}$		
Package Dissipation at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ (Board Mount) \qquad		
Lead Temperature (Soldering 10 sec.$)$		
Dual-In-Line Package (Plastic) $260^{\circ} \mathrm{C}$		
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$		
Molded Chip Carrier Package		

PIN NO.	NAME	FUNCTION
10	GND	Ground.
11	- $\mathrm{V}_{\text {REF }}$	Negative reference voltage for A/D converter.
12	$+\mathrm{V}_{\text {REF }}$	Positive reference voltage for A/D converter.
13	$\overline{\mathrm{CS}}$	Chip select input. This pin must be held low for the device to perform a conversion.
14	DB4	Data output - bit 4.
15	DB5	Data output - bit 5.
16	DB6	Data output - bit 6.
17	DB7	Data output - bit 7 (MSB).
18	$\overline{\text { OFL }}$	Overflow output. This output goes low at end of conversion if $\mathrm{V}_{\mathbb{N}}$ is greater than $+V_{\text {REF }}-1 / 2$ LSB.
19	SH/TH	$\mathrm{S} / \mathrm{H}, \mathrm{T} / \mathrm{H}$ mode select. When $\mathrm{SH} / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}}$, the device is in sample and hold mode. When $\mathrm{SH} / \mathrm{TH}=\mathrm{GND}$, the device is in track and hold mode. Pin has internal pulldown current source to GND.
20	V_{CC}	Positive supply. +5 volts $\pm 5 \%$.

OPERATING CONDITIONS

Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \ldots \ldots \ldots . . .4 .5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$ Temperature Range (Note 3) $\ldots \ldots \ldots \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$ ML2261BIJ, ML2261CIJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ML2261BCQ, ML2261CCQ ML2261BCP, ML2261CCP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }} V_{C C}=+V_{R E F}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$

			ML2261XCX			ML2261XIX			UNITS
PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	TYP (Note 4)	MAX	

Converter

Total Unadjusted Error ML2261BXX ML2261CXX	5,7	$\mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}$			$\pm 1 / 2$ ± 1			$\pm 1 / 2$ ± 1	LSB LSB
$+\mathrm{V}_{\text {REF }}$ Voltage Range	6		$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$-\mathrm{V}_{\text {REF }}$ Voltage Range	6		$\mathrm{GND}-0.1$		$+\mathrm{V}_{\text {REF }}$	$\mathrm{GND}-0.1$		$+\mathrm{V}_{\text {REF }}$	V
Reference Input Resistance	5		1	2	3	1	2	3	$\mathrm{k} \Omega$
Analog Input Range	5,8		$\mathrm{GND}-0.1$		$\mathrm{~V}_{\mathrm{CC}}+0.1$	$\mathrm{GND}-0.1$		$\mathrm{~V}_{\mathrm{CC}}+0.1$	V
Power Supply Sensitivity	5	DC $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {REF }}=4.75 \mathrm{~V}$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB

Digital and DC

$\mathrm{V}_{\text {IN(1), }}$ Logical "1" Input Voltage	5	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}$		2.0			2.0			V
		MODE, SH/TH		$\mathrm{V}_{\mathrm{CC}}-0.5$			$\mathrm{V}_{\mathrm{CC}}-0.5$			V
$\mathrm{V}_{\text {IN(0) }}$ Logical "0" Input Voltage	5	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}$				0.8			0.8	V
		MODE, SH/TH				0.5			0.5	V
$I_{\text {IN } 1 \text { 1) }}$ Logical "1" Input Current	5	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}$			1			1	$\mu \mathrm{A}$
			MODE, SH/TH	15	50	150	15	50	150	$\mu \mathrm{A}$
$I_{\text {INO } 0 \text {, }}$ Logical " 0 " Input Current	5	$\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}$	-1			-1			$\mu \mathrm{A}$
			MODE, SH/TH	-20			-20			$\mu \mathrm{A}$
$V_{\text {OUT(1), }}$ Logical "1" Output Voltage	5	$\mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA}$		4.0			4.0			V
$V_{\text {OUT(0) }}$, Logical " 0 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$				0.4			0.4	V
$\mathrm{I}_{\text {Out, }}$ Three-State Output Current	5	$V_{\text {OUT }}=0 \mathrm{~V}$		-1			-1			$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$				1			1	$\mu \mathrm{A}$
Cout, Logic Output Capacitance					5			5		pF
$\mathrm{C}_{\text {IN }}$, Logic Input Capacitance					5			5		pF
$I_{\text {CC }}$ Supply Current	5	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{WR}}= \\ & \text { No Output } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{RD}}=" 1 " \\ & \text { Load } \end{aligned}$		8	14		8	15.5	mA

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}} \mathrm{V}_{\mathrm{CC}}=+\mathrm{V}_{\text {REF }}=5 \mathrm{~V} \pm 5 \%,-\mathrm{V}_{\text {REF }}=\mathrm{GND}$, and timing measured at 1.4 V , . $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$.

PARAMETER	NOTES	CONDITIONS	ML2261XCX			ML2261XIX			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	TYP (Note 4)	MAX	

AC and Dynamic Performance (Note 9)

$\mathrm{t}_{\mathrm{CRD}}$, Conversion Time, Read Mode	5	$\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}, \mathrm{MODE}=0 \mathrm{~V}$			1060		1100	ns
$t_{\text {twr-RD, }}$ Conversion Time, Write-Read Mode	5,9	$\overline{\text { WR }}$ Falling Edge to $\overline{I N T}$, $\mathrm{t}_{\text {RD }}<\mathrm{t}_{\mathrm{INT}}$, MODE $=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	650	700	690	740	ns
			$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$		850		920	ns
SNR, Signal to Noise Ratio		$\begin{aligned} & \mathrm{V}_{\mathbb{I}}=5 \mathrm{~V}, 250 \mathrm{kHz} \\ & \text { Noise is sum of all } \\ & \text { nonfundamental } \\ & \text { components } \\ & \text { from } 0-500 \mathrm{kHz} . \\ & \mathrm{SH} / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}} \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\mathrm{SAMPLNG}}=1 \mathrm{MHz} \\ & \hline \end{aligned}$		48		48		dB
HD, Harmonic Distortion		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 250 \mathrm{kHz}$ THD is sum of $2-5$ th harmonics relative to fundamental. $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{f}_{\mathrm{SAMPLING}}=1 \mathrm{MHz}$		-63		-63		dB
IMD, Intermodulation Distortion		$\begin{aligned} & \mathrm{fa}=2.5 \mathrm{~V}, 250 \mathrm{kHz} \\ & \mathrm{fb}=2.5 \mathrm{~V}, 248 \mathrm{kHz} \\ & \mathrm{IMBB} \text { is }(\mathrm{fa}+\mathrm{fb}),(\mathrm{fa}-\mathrm{fb}), \\ & (2 \mathrm{fa}+\mathrm{fb}),(2 \mathrm{fa}-\mathrm{fb}), \\ & (\mathrm{fa}+2 \mathrm{fb}), \text { or }(\mathrm{fa}-2 \mathrm{fb}) \\ & \text { relative to fundamental. } \\ & \mathrm{SH} / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\mathrm{SAMPLING}}=1 \mathrm{MHz} \\ & \hline \end{aligned}$		-60		-60		dB
FR, Frequency Response		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 0-250 \mathrm{kHz} \\ & \mathrm{Relative} \text { to } 1 \mathrm{kHz} \\ & \mathrm{SH} / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}} \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\text {SAMPLING }}=1 \mathrm{MHz} \\ & \hline \end{aligned}$		± 0.1		± 0.1		dB
SR, Slew Rate Tracking	6	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$			4.0		4.0	$\mathrm{V} / \mu \mathrm{s}$
		SH/TH $=$ GND			. 25		. 25	$\mathrm{V} / \mu \mathrm{s}$

AC Performance Read Mode (Pin $7=0 \mathrm{~V}$), Figure 2

$\mathrm{t}_{\text {RDY }}, \overline{\mathrm{CS}}$ to RDY Delay	5		0	65	0	70	ns
$\mathrm{t}_{\mathrm{RDD}}, \overline{\mathrm{RD}}$ Low to RDY Delay	5, 10	Figure 1		1060		1100	ns
$\mathrm{t}_{\mathrm{CSS}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Setup Time	5		0		0		ns
$\mathrm{t}_{\mathrm{CSH}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time	5		0		0		ns
${ }^{\text {t }}$ CRD, Conversion Time $\overline{\text { RD }}$ Low to INT Low	5, 10			1060		1100	ns

ELECTRICAL CHARACTERISTICS ${ }_{(C o n t i n u e d)}$
Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X} V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%,-V_{\text {REF }}=G N D$, and timing measured at 1.4 V , $C_{L}=100 \mathrm{pF}$

PARAMETER	NOTES	CONDITIONS	ML2261XCX			ML2261XIX			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	
AC Performance Read Mode (Pin $7=0 \mathrm{~V}$), Figure 2 (Continued)									
$t_{\text {Acco }}$, Data Access Time RD to Data Valid	5		${ }^{\text {t }}$ CRD		$\mathrm{t}_{\mathrm{CRD}}+30$	${ }^{\text {t }}$ CRD		$\mathrm{t}_{\mathrm{CRD}}+30$	ns
$\mathrm{t}_{\text {RDPW, }} \overline{\mathrm{RD}}$ Pulse Width	5		$\mathrm{t}_{\mathrm{CRD}}+30$			$\mathrm{t}_{\text {CRD }}+30$			ns
$\mathrm{t}_{\mathbf{I N T H}}, \overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$ Delay	5,10		0		65	0		70	ns
t_{DH}, Data Hold Time RD Rising Edge to Data High Impedance State	6, 10	Figure 1	0		50	0		60	ns
t_{p}, Delay Time Between Conversions - $\overline{\mathrm{N} T}$ Low to $\overline{R D}$ Low	5, 10	Sample \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	300			325			ns
		Track \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	240			260			ns

AC Performance Write-Read Mode (Pin $7=5 \mathrm{~V}$), Figures 3 and 4

$\mathrm{t}_{\mathrm{CSS}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Setup Time	5		0			0			ns
$\mathrm{t}_{\mathrm{CSH}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time	5		0			0			ns
$t_{\text {WR }}, \overline{W R}$ Pulse Width	5	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	170		50K	180		50K	ns
	6	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	320		50K	360		50K	ns
t_{RD}, Read Time - $\overline{\mathrm{WR}}$ High to $\overline{R D}$ Low Delay	5	$\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}$	275			290			ns
$\mathrm{t}_{\mathrm{R},}, \overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$ Delay	5,10	$\mathrm{t}_{\text {RD }}<\mathrm{t}_{\text {INTL }}$	0		255	0		270	ns
$t_{\text {ACC1 }}$, Data Access Time - RD Low to Data Valid	5	$\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}$	0		260	0		280	ns
$t_{\text {CWR-RD }}$ Conversion Time - WR Falling Edge to INT Low	5,9,10	$\mathrm{t}_{\text {RD }}<\mathrm{t}_{\text {INTL }} \mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$		650	700		690	740	ns
	6,9,10	$\mathrm{t}_{\text {RD }}<\mathrm{t}_{\text {INTL }} \mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$			850			920	ns
$\mathrm{t}_{\text {INTL }}$ Internal Comparison Time - WR Rising Edge to INT Low	5, 10	$\mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{NTLL}}$			650			670	ns
$t_{\text {ACC2 }}$ Data Access Time - RD to Data Valid	5	$\mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{INTL}}$	0		50	0		60	ns
t_{DH}, Data Hold Time RD Rising Edge to Data High Impedance State	6, 10	Figure 1	0		50	0		60	ns
	5, 10		0		65	0		70	ns
t_{p}, Delay Time Between Conversions - INT Low	5, 10	Sample \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	300			325			ns
to WR Low		Track \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	240			260			ns
$\mathrm{t}_{\text {IHWR, }} \overline{\text { WRt }}$ to $\overline{\text { INT }} \uparrow$ Delay	5, 10	Standalone Mode	0		100	0		110	ns
t_{ID}, $\overline{\mathrm{INT}} \downarrow$ to Data Valid Delay	5, 10	Standalone Mode	0		20	0		30	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: When the voltage at any pin exceeds the power supply rails $\left(V_{\mathbb{I N}}<G N D\right.$ or $\left.V_{\mathbb{I N}}>\mathrm{V}_{\mathrm{CC}}\right)$ the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted error includes offset, full scale, linearity, and sample and hold errors. Total unadjusted error is tested at the minimum specified times for $\overline{W R}, \overline{R D}, t_{R 1}$, and t_{p}. For example, for the ML2261XCX in the sample and hold mode, $\overline{W R} / \overline{R D}$ mode: $t_{W R}=$ $170 \mathrm{~ns}, \mathrm{t}_{\mathrm{RD}}=275 \mathrm{~ns}$ with a frequency of 1.00 MHz (cycle time of 1000 ns).
Note 8: For $-V_{R E F} \geq V_{I N}$ the digital output code will be 00000000 . Two on-chip diodes are tied to the analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale. The spec allows 100 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I N}}$ or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 9: \quad Conversion time, write-read mode $=t_{W R}+t_{R D}+t_{R I}$.
Note 10: Defined from the time an output crosses 0.8 V or 2.4 V .

Figure 1. High Impedance Test Circuits and Waveforms

Figure 2. RD Mode Timing

Figure 3. WR-RD Mode Timing ($\mathbf{t}_{\mathbf{R D}}>\mathbf{t}_{\mathbf{I N T L}}$)

Figure 4. WR-RD Mode Timing ($\mathbf{t}_{\mathbf{R D}}<\mathbf{t}_{\mathbf{I N T L}}$)

Figure 5. WR-RD Mode Stand-Alone Timing $\overline{\mathbf{C S}}=\overline{\mathbf{R D}}=\mathbf{0}$

1.0 FUNCTIONAL DESCRIPTION

The ML2261 uses a two stage flash technique for A / D conversion. This technique first performs a 4 bit flash conversion on $\mathrm{V}_{\mathbb{N}}$ to determine the 4 MSB .s. These 4 MSB's are then cycled through an internal DAC to recreate the analog input. This reconstructed analog input signal from the DAC is then subtracted from the input, and the difference voltage is converted by a second 4 bit flash conversion, providing the 4 LSB's of the output data word. An additional overrange function detects if V_{IN} is greater than $+\mathrm{V}_{\mathrm{REF}}-1 / 2 \mathrm{LSB}$.

1.1 ANALOG INPUT

The analog input on the ML2261 behaves differently than inputs on conventional converters. The analog input current requirements change while the conversion is in progress, and the amount of input current depends on what cycle the converter is in.
The equivalent input circuit for the converter is shown in Figure 6. When the conversion starts in the T/H mode (WR! in the WR-RD mode or RD! in the RD mode) S1, S4 and S6 close and S3 opens. This period is known as the acquisition period where the MSB flash converter tracks the input signal and the LSB flash converter samples it. During this period, $\mathrm{V}_{\text {IN }}$ is connected to the 16 MSB and 15 LSB comparators. Thus 38 pF of input capacitance must be charged up through the combined R_{ON} resistance of the internal analog switches plus any external source resistance, R_{S}. In addition, there is a stray capacitance of approximately 11 pF that needs to be charged through the external source resistance R_{S}. This period ends in the WR-RD mode when WR 1 or by an internal timer in the RD mode. At this point S1 and S4 open and the analog input at $V_{\mathbb{I N}}$ is no longer being sampled; thus during this time the analog voltage on $V_{\mathbb{I N}}$ does not affect converter performance.

Figure 6. Converter Equivalent Input Circuit

As shown above, the critical period for charging up the analog input occurs when the MSB and LSB comparators are sampling the input, known as the acquisition period. The source of the external signal on V_{IN} must adequately charge up the analog voltage during the acquisition period. To do this, the input must settle within the required analog accuracy tolerance at least 50 ns before the end of the acquisition period so that the MSB comparators have adequate time to make the correct decision. If more time is needed due to finite charging or settling time of the external source, the WR low period can be extended in WR-RD mode. In RD mode, since the acquisition time is fixed by internal delays, the burden is on the external source to charge up and settle the input adequately.
When the ML2261 operates in the S/H mode (pin $19=$ $V_{C C}$) both the MSB and the LSB flash converter perform a true sample and hold operation during the acquisition or sampling period. This period starts after the falling edge of INT and ends with the falling edge of $W R$ in the WR-RD mode or the falling edge of RD in the RD mode. The duration of this period is user controlled and must satisfy a minimum of t_{p}.
During this period S1, S3, S4 and S6 close, therefore 46 pF of input capacitance must be charged up in addition to the 11 pF of stray capacitance.

1.2 TRACK AND HOLD vs. SAMPLE AND HOLD

The MSB Flash Converter of the ML2261 in T/H mode has a track and hold mechanism for sampling the input. The input is attached to the MSB comparators directly in the MSB compare cycle, or acquisition period. When the MSB compare cycle ends, the state of the MSB comparators is latched. The LSB Flash Converter always performs a S/H operation. Thus, the analog input signal can be changing during the MSB compare cycle, or acquisition period, and the MSB comparators will be tracking it as long as the slew rate of the analog input is slow enough so that the MSB comparators can respond. The ML2261 can track and hold signals with slew rates as high as $.25 \mathrm{~V} / \mu \mathrm{s}$ (16 kHz @ 5 volts) without sacrificing conversion accuracy.
The ML2261 in S/H mode does not have the slew rate limitation of the T/H mode since an internal sample and hold acquires the analog signal, holds it internally, and then performs a conversion. Since this is a true sample and hold function, the S/H mode can theoretically digitize signals of frequencies much higher than the T/H mode. The ML2261 in S/H mode can digitize signals of frequencies as high as 250 kHz @ 5 V (slew rates as high as $4 \mathrm{~V} / \mu \mathrm{s}$) without sacrificing conversion accuracy. In most applications, the S/H mode is more desirable than T / H mode because of the better dynamic performance.

1.2.1 CONVERTER - T/H MODE

The operating sequence for the WR-RD mode is illustrated in Figure 7a. Initially, the internal comparators are auto-zeroed while $\overline{W R}$ is high. A conversion is initiated by the falling edge of WR. While WR is low, the MSB comparators are tracking the analog input and comparing this voltage against voltages from the internal resistor ladder. At the same time, the input is being acquired or sampled by LSB comparators. On the rising edge of $\overline{W R}$, the MSB comparator results are latched, and the LSB acquisition time is ended by closing the sampling switch to the LSB comparators. While WR is high, the LSB comparators then compare the residual input voltage against internal voltages from the resistor ladder to determine the 4 LSB's. When the LSB comparison or conversion is complete, INT goes low and latches the conversion result into the output latches. Then, the comparators are auto-zeroed while WR is high before another conversion can start.
The operating sequence for RD mode, is similar to that described above for the WR-RD mode, except the conversion is initiated by the falling edge of RD, and the MSB and LSB conversions are generated by internal clock edges that are generated while RD is low.

1.2.2 CONVERTER - S/H MODE

The operating sequence for S / H mode is illustrated in Figure 7b. Notice that it is similar to T/H mode described above except this mode has a true sample and hold function. The falling edge of INT closes the sampling switch and starts the acquisition period where the analog input is sampled at the same time all comparators are auto-zeroed. The falling edge of $\overline{W R}$ opens the internal sampling switch, ends the acquisition period, and starts the conversion on the internally sample and held signal. The MSB comparators make their decisions while WR is low. On the rising edge of WR, the MSB comparator results are latched. The LSB comparators make their decision when WR is high. When the LSB comparison or conversion is complete, INT goes low and latches the conversion result into the output buffers. Then, the acquisition period begins again and the converter is ready for the next conversion.

The operating sequence for the RD mode is the same as the WR-RD mode, except the conversion is initiated by the falling edge of $\overline{R D}$, and the MSB and LSB conversions are generated by internal clock edges that are generated while RD is low.

a). T/H Mode

b). S/H Mode

Figure 7. Operating Sequence (WR-RD Mode)

1.3 REFERENCE

The $+\mathrm{V}_{\text {REF }}$ and $-\mathrm{V}_{\text {REF }}$ inputs are the reference voltages that determine the full scale and zero input voltages, respectively, for the A/D converter. Thus, $+V_{\text {REF }}$ defines the analog input which produces a full scale output and $-V_{\text {ref }}$ defines the analog input which produces an output code of all zeroes. The transfer function for the A/D converter is shown in Figure 8.
$+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be set to any voltage between GND and $V_{C C}$. This means that the reference voltages can be offset from GND and the difference between $+\mathrm{V}_{\text {REF }}{ }^{+}$and $-\mathrm{V}_{\text {REF- }}$ can be made small to increase the resolution of the conversion. Note that the total unadjusted error increases when $\left[+\mathrm{V}_{\text {REF }}-\left(-\mathrm{V}_{\text {REF }}\right)\right]$ decreases.

Figure 8. A/D Transfer Characteristic

1.4 POWER SUPPLY AND REFERENCE DECOUPLING

A $0.1 \mu \mathrm{~F}$ ceramic disc capacitor is recommended to bypass $V_{C C}$ to GND, using as short a lead length as possible.

If REF+ and REF- inputs are driven by long lines, they should be bypassed by $0.1 \mu \mathrm{~F}$ ceramic disc capacitors at the reference input pins.

1.5 DYNAMIC PERFORMANCE

1.5.1 SINUSOIDAL INPUTS

Since the ML2261 has an internal sample and hold, the device can digitize high frequency sinusoids with little or no signal degradations. Using the Nyquist criteria, the highest frequency input to the converter could theoretically be $1 / 2$ the sampling rate (f_{s}). Any frequency components above $f_{s} / 2$ will be aliased below $f_{s} / 2$. In most applications, these aliased components cause unacceptable distortion and must be filtered out of the input. If the input frequency is too close to $f_{s} / 2$, then the requirements on the anti-alias filter become difficult
to impossible to realize with standard component and tolerances. In most practical applications, the highest input frequency has to be limited to $1 / 3$ to $1 / 4$ of $f_{\max }$ in order to relax the filtering requirements enough to make a realizable anti-alias filter.

The maximum sampling rate ($f_{\max }$) for the ML2261 in the WR-RD mode, ($\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}$) can be calculated as follows:
$f_{\max }=\frac{1}{t_{W R}+t_{R D}+t_{R I}+t_{p}}$
$f_{\max }=\frac{1}{170 n s+275 n s+255 n s+300 n s}$
$f_{\text {max }}=1.00 \mathrm{MHz}$
$t_{W R}=$ Write Pulse Width
$\mathrm{t}_{\mathrm{RD}}=$ Delay Time between $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ Pulses
$\mathrm{t}_{\mathrm{RI}}=\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$ Delay
$t_{p}=$ Delay Time between Conversions
This permits a maximum sampling rate of 1 MHz for the ML2261. The dynamic performance specifications (SNR, HD, IMD, and FR) for the ML2261 are all specified at 250 kHz , which is approximately $1 / 4$ of the sampling rate, f_{s}.

In applications where aliased frequency components are acceptable and filtering of the input signal is not needed or where a filter with a steep amplitude response is available, the user can apply an input sinusoid higher than 250 kHz to the device. Note, however, that as the input frequency increases above 500 kHz , dynamic performance degradation will occur due to the finite bandwidth of the internal sample and hold.

The Figure 9 plots are 4096 point FFT^{\prime} s of the ML2261 converting a 257 kHz and a $491 \mathrm{kHz}, 0$ to 4.5 V , low distortion sine wave input. The ML2261 samples and digitizes at its specified accuracy, dynamic input signals with frequency components up to the Nyquist frequency (one-half the sampling rate). The output spectra yields precise measurements of the input signal level, harmonic components, and signal to noise ratio up to the 8 -bit level. The near ideal signal to noise ratio is maintained independent of increasing analog input frequencies to 500 kHz .

1.5.2 SIGNAL-TO-NOISE RATIO

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more the levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 8-bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

Figure 9. Dynamic Performance, Sample and Hold Mode

1.5.3 HARMONIC DISTORTION

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2261 is defined as

$$
20 \log =\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and $\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$ are the rms amplitudes of the individual harmonics.

1.5.4 INTERMODULATION DISTORTION

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order ($m+n$), at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1$, 2, $3 \ldots$. Intermodulation terms are those for which m or n is not equal to zero. The (IMD) intermodulation distortion specification includes the second order terms ($f_{A}+f_{B}$) and ($f_{A}-f_{B}$) and the third order terms
$\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right),\left(f_{A}+2 f_{B}\right)$, and $\left(f_{A}-2 f_{B}\right)$ only.

1.6 DIGITAL INTERFACE

The ML2261 has two basic interface modes, RD and WR-RD, which are selected by the MODE input pin.

1.6.1 RD MODE

In the RD mode, the $\overline{W R} / R D Y$ pin is configured as the RDY output. The read mode performs a conversion with a single $\overline{\mathrm{RD}}$ pulse. This allows the $\mu \mathrm{P}$ to start a conversion, wait, and then read data with a single read instruction.

The timing for the RD mode is shown in Figure 2. To do a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. After $\overline{\mathrm{CS}}$ goes low, the RDY output goes low indicating that the device is ready to do a conversion. The conversion starts on the falling edge of RD. While RD is low, the MSB and LSB decisions are made with internally generated clock edges. When the conversion is complete, RDY goes high and INT goes low signaling the end of the conversion. After INT goes low, the data outputs go from high impedance to active state with valid output data. Data stays valid until either RD or CS goes high. When either signal goes high, the output data lines return to the high impedance state and INT returns high. A pull up resistor on RDY in the sample and hold mode will cause clock injection, degrading the total unadjusted error, unless $\overline{C S} \downarrow$ is $\geq 20 \mathrm{~ns}$ before RD.

1.6.2 WR-RD MODE

In the WR-RD mode, the $\overline{W R} / R D Y$ pin is configured as the WR input. In this mode, WR initiates the conversion and $\overline{R D}$ controls reading the output data. This can be done in several ways, described below.

1.6.3 WR-RD MODE - USING INTERNAL DELAY $\left(\mathbf{t}_{\text {RD }}>\mathbf{t}_{\mathrm{INTL}}\right)$

The timing is shown in Figure 3. To do a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. Then, $\overline{W R}$ falling edge triggers the conversion. While WR is low, the MSB comparison is made. When WR returns high the LSB decision is made. After some internal delay, INT goes low indicating end of conversion. Valid data will appear on DB0-7 when RD is pulled low. INT is then reset by the rising edge of either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$.

1.6.4 WR-RD MODE - READING BEFORE DELAY ($\mathbf{t}_{\text {RD }}<\mathbf{t}_{\text {INTL }}$)

The internally generated delay for the LSB decision when $t_{\text {RD }}>t_{\text {INTL }}$ is longer than necessary due to circuit design tolerances of $t_{\text {INTL }}$ delay. If desired, a faster conversion will result without loss of accuracy by bringing RD low within the minimum time specified for $t_{R D}$. The timing diagram for this mode is shown in Figure 4. $\overline{W R}$ is the same as when $t_{R D}>t_{\text {INTL }}$. But in this case, RD is brought low $\mathrm{t}_{\mathrm{RD}} \mathrm{ns}$ after WR rising edge and before INT. INT goes low indicating an end of conversion after the falling edge of $\overline{R D}$ and is reset on the rising edge of $\overline{R D}$ or CS . When $\overline{R D}$ is brought low before INT goes low the data bus always remains in the high-impedance state until INT.

1.6.5 WR-RD MODE - STAND ALONE OPERATION

Stand alone operation can be implemented by tying $\overline{\mathrm{CS}}$ and RD low as shown in Figure 5. WR initiates a conversion as before. When WR is low, the MSB comparison is made. When, $\overline{W R}$ goes high, the LSB comparison is made. Since RD is already low, the output data will appear automatically at end of conversion. Since RD is always low, INT is reset on rising edge of WR and goes low at end of conversion.

1.6.6 POWER-ON RESET

When power is first applied, an internal power-on reset and timer circuit inhibits the $\overline{\mathrm{CS}}$ input and resets the internal circuitry to prevent the ML2261 from starting in an unknown state. During this period of approximately $3 \mu \mathrm{~s}$, INT remains high and the data bus is in the highimpedance state.

2.0 TYPICAL APPLICATIONS

* NO PROTECTION IS REQUIRED IF INPUT CURRENT < 25mA

Figure 10. Protecting the Input

Figure 12. Using External Reference of D/A

Figure 11. Using $\mathbf{V}_{\mathbf{C C}}$ as Reference for Ratiometric Operation

Figure 13. 68000 Type Interface to ML2261

Figure 14. 9-Bit Resolution

2.0 TYPICAL APPLICATIONS (Continued)

Figure 15. \pm 2.5V Analog Input Range

Figure 16. Simultaneous Sampling of Two Variables

Figure 17. TMS320 Interface with D/A Output

Figure 18. 8051 Interface to ML2261

Figure 19. Operating with a Ratiometric Analog Signal of 15% of V_{CC} to $\mathbf{8 5 \%}$ of V_{CC}

ORDERING INFORMATION

PART NUMBER	TOTAL	TEMPERATURE	
	UNADJUSTED ERROR	RANGE	PACKAGE
ML2261BIJ	$\pm 1 / 2 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2261BCP		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2261BCQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)	
ML2261CIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)	
ML2261CCP		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2261CCQ		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)

ML2264

4-Channel High-Speed 8-Bit A/D Converter with T/H (S/H)

GENERAL DESCRIPTION

The ML2264 is a high-speed, $\mu \mathrm{P}$ compatible, 4-channel 8 -bit A/D converter with a conversion time of 680 ns over the operating temperature range and supply voltage tolerance. The ML2264 operates from a single 5 V supply and has an analog input range from GND to V_{CC}.

The ML2264 has two different pin selectable modes. The T/H mode has an internal track and hold. The S/H mode has a true internal sample and hold and can digitize 0 to 5 V sinusoidal signals as high as 500 kHz .
The ML2264 digital interface has been designed so that the device appears as a memory location or I/O port to a μ P. Analog input channels are selected by the latched and decoded multiplexer address inputs.

The ML2264 is an enhanced, pin compatible second source for the industry standard AD7824. The ML2264 enhancements are faster conversion time, parameters guaranteed over the supply tolerance and temperature range, improved digital interface timing, superior power supply rejection, and better latchup immunity on analog inputs.

BLOCK DIAGRAM

FEATURES

- Conversion time, WR-RD mode over temperature and supply voltage tolerance

Track \& Hold Mode
830ns max
Sample \& Hold Mode 700ns max

- Total unadjusted error \qquad $\pm 1 / 2$ LSB or ± 1 LSB

■ Capable of digitizing a $5 \mathrm{~V}, 250 \mathrm{kHz}$ sine wave

- 4-analog input channels
- No missing codes
- 0 V to 5 V analog input range with single 5 V power supply
- No zero or full scale adjust required
- Analog input protection \qquad 25 mA min
- Operates ratiometrically or with up to 5 V voltage reference
- No external clock required
- Power-on reset circuitry
- Low power

100 mW

- Narrow 24-pin DIP or surface mount SOIC

■ Superior pin compatible replacement for AD7824

PIN CONNECTIONS

PIN DESCRIPTION

PIN\#	Name	FUNCTION
1	AIN 4	Analog input 4.
2	A IN 3	Analog input 3.
3	A IN 2	Analog input 2.
4	A IN 1	Analog input 1.
5	MODE	Mode select input. MODE = GND: RD mode MODE $=\mathrm{V}_{\mathrm{CC}}:$ WR-RD mode Pin has internal current source pulldown to GND.
6	DB0	Data output - bit 0 (LSB).
7	DB1	Data output - bit 1.
8	DB2	Data output - bit 2.
8	DB3	Data output - bit 3.
10	$\overline{\mathrm{RD}}$	Read input. In RD mode, this pin initiates a conversion. In WR-RD mode, this pin latches data into output latches. See Digital Interface section.
11	$\overline{\text { INT }}$	Interrupt output. This output signals the end of a conversion and indicates that data is valid on the data outputs. See Digital Interface section.
12	GND	Ground.
13	- $\mathrm{V}_{\text {REF }}$	Negative reference voltage for A/D converter.
14	$+\mathrm{V}_{\text {REF }}$	Positive reference voltage for A/D converter.

PIN\#	Name	FUNCTION
15	$\overline{\text { WR/RDY }}$	Write input or ready output. In WR-RD mode, this pin is $\overline{W R}$ input. In RD mode, this pin is RDY open drain output. See Digital Interface section.
16	$\overline{C S}$	Chip select input. This pin must be held low for the device to perform a conversion.
17	DB4	Data output - bit 4.
18	DB5	Data output - bit 5.
19	DB6	Data output - bit 6.
20	DB7	Data output - bit 7 (MSB).
21	A1	Digital address input 1 that selects analog input channel. See multiplexer addressing section.
22	A0	Digital address input 0 that selects analog input channel. See multiplexer addressing section.
23	$\mathrm{SH} / \overline{\mathrm{TH}}$	$\mathrm{S} / \mathrm{H}, \mathrm{T} / \mathrm{H}$ mode select. When $\mathrm{SH} / \overline{\mathrm{TH}}=$ V_{CC}, the device is in sample and hold mode. When $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$, the device is in track and hold mode. Pin has internal pulldown current source to GND.
24	V_{CC}	Positive supply. +5 volts $\pm 5 \%$.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

OPERATING CONDITIONS

Supply Voltage, $\mathrm{V}_{\mathrm{CC}} \ldots .4 .5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range (Note 3) $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ ML2264BMJ, ML2264CMJ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ML2264BIJ, ML2264CIJ $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ML2264BCS, ML2264CCS ML2264BCP, ML2264CCP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$

			ML2264XCX			ML2264XIX, ML2264XMX			UNITS
PARAMETER	NOTES	CONDITIONS	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (NOTE 4) } \end{gathered}$	MAX	

Converter

Total Unadjusted Error ML2264BXX ML2264CXX	5,7	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Integral Linearity Error ML2264BXX ML2264CXX	5,7	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error ML2264BXX ML2264CXX	5	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Full Scale Error ML2264BXX ML2264CXX	5				$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Zero Scale Error ML2264BXX ML2264CXX	5				$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Channel to Channel Mismatch	5				$\pm 1 / 4$			$\pm 1 / 4$	LSB
$+\mathrm{V}_{\text {ReF }}$ Voltage Range	6		$-\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	- $\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
- $\mathrm{V}_{\text {REF }}$ Voltage Range	6		GND-0.1		$+\mathrm{V}_{\text {REF }}$	GND-0.1		$+\mathrm{V}_{\text {REF }}$	V
Reference Input Resistance	5		1	2.5	4	1	2.5	4	k Ω
Analog Input Range	5,8		GND-0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	GND-0.1		$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Power Supply Sensitivity	5	DC $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{REF}}=4.50 \mathrm{~V}$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB
		$\begin{aligned} & 100 \mathrm{mVp}-\mathrm{p} \\ & 100 \mathrm{kHz} \text { sine on } \mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=0 \end{aligned}$		$\pm 1 / 16$			$\pm 1 / 16$		LSB
Analog Input Leakage Current, OFF Channel	5	$\begin{aligned} & \text { ON Channel }=\mathrm{V}_{\mathrm{CC}} \\ & \text { OFF Channel }=0 \mathrm{~V} \end{aligned}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { ON Channel }=0 \mathrm{~V} \\ & \text { OFF Channel }=V_{C C} \end{aligned}$			1			1	$\mu \mathrm{A}$
Analog Input Leakage Current, ON Channel	5	$\begin{aligned} & \text { ON Channel }=0 \mathrm{~V} \\ & \text { OFF Channel }=V_{C C} \end{aligned}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { ON Channel }=\mathrm{V}_{\mathrm{CC}} \\ & \text { OFF Channel }=0 \mathrm{~V} \end{aligned}$			1			1	$\mu \mathrm{A}$
Analog Input Capacitance		During Acquisition Period		45			45		pF

Digital and DC

$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input	5	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}, \mathrm{AO}, \mathrm{A} 1$	2.0		2.0		V
Voltage		MODE, SH/ $/$ TH	$\mathrm{V}_{\mathrm{CC}}-0.5$		$\mathrm{V}_{\mathrm{CC}}-0.5$		V
$\mathrm{V}_{\text {IN(0), }}$, Logical " 0 " Input Voltage	5	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}, \mathrm{AO}, \mathrm{A} 1$		0.8		0.8	V
		MODE, SH/TH		0.5		0.5	V

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$, and timing measured at 1.4 V , $C_{L}=100 \mathrm{pF}$.

PARAMETER	NOTES	CONDITIONS	ML2264XCX			ML2264XIX, ML2264XMX			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{array}{c\|} \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	

Digital and DC (Continued)

I IN(1), Logical " 1 " Input Current	5	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}, \\ & \mathrm{AO}, \mathrm{~A} 1 \end{aligned}$			1			1	$\mu \mathrm{A}$
			MODE, SH/ $/ \overline{T H}$	15	50	150	15	50	150	$\mu \mathrm{A}$
I ${ }_{\mathrm{N}(0) \text {, Logical " } 0 \text { " }}$ Input Current	5	$\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	$\overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{CS}}$	-1			-1			$\mu \mathrm{A}$
			MODE, SH/ $/ \overline{T H}$	-20			-20			$\mu \mathrm{A}$
VOUT(1), Logical " 1 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=-2 \mathrm{~mA}$		4.0			4.0			V
$V_{\text {OUT(0), }}$ Logical " 0 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$				0.4			0.4	V
lout, Three-State Output Current	5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-1			-1			$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$				1			1	$\mu \mathrm{A}$
Cout, Logic Output Capacitance					5			5		pF
C_{IN}, Logic Input Capacitance					5			5		pF
ICC, Supply Current	5	$\overline{\overline{C S}}=\overline{\mathrm{WR}}=\overline{\mathrm{R}}$ No Output	$5=" 1 "$			18			20	mA

AC and Dynamic Performance (Note 9)

$t_{\text {CRD }}$, Conversion Time, Read Mode	5	$\overline{\mathrm{RD}}$ to $\overline{\mathrm{NT}}, \mathrm{MODE}=0 \mathrm{~V}$			1020		1100	ns
$t_{\text {CWR-RD }}$ Conversion Time, Write-Read Mode	5,9	$\begin{aligned} & \overline{\text { WR }} \text { Falling } \\ & \text { Edge to } \overline{I N T}, \\ & t_{\text {RD }}<t_{\text {INT }}, \\ & M O D E=V_{C C} \end{aligned}$	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$		700		775	ns
			$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$		830		930	ns
SNR, Signal to Noise Ratio		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 250 \mathrm{l}$ Noise is sum nonfundament components from $0-500 \mathrm{kH}$ $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{f}_{\mathrm{SAMPLING}}=1$.	kHz fall al $\begin{aligned} & \mathrm{z} . \\ & \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & 0 \mathrm{MHz} \end{aligned}$	48		48		dB
HD, Harmonic Distortion		$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}, 250$ THD is sum of harmonics rela fundamental. $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{f}_{\mathrm{SAMPLING}}=1$.	Hz 2-5th tive to $\begin{aligned} & \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & 0 \mathrm{MHz} \end{aligned}$	-63		-63		dB
IMD, Intermodulation Distortion		$\begin{aligned} & \mathrm{fa}=2.5 \mathrm{~V}, 250 \\ & \mathrm{fb}=2.5 \mathrm{~V}, 248 \mathrm{l} \\ & \mathrm{MB} \text { is }(\mathrm{fa}+\mathrm{fb}) \\ & (2 \mathrm{fa}+\mathrm{fb}),(2 \mathrm{fa} \\ & \text { (fa }+2 \mathrm{fb}), \text { or (fag } \\ & \text { relative to fund } \\ & \mathrm{SH} / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\text {SAMPLING }}=1 . \end{aligned}$	kHz kHz ($\mathrm{fa}-\mathrm{fb}$), -fb), - 2 fb) lamental. $\mathrm{MODE}=\mathrm{V}_{\mathrm{CC}}$ 0 MHz	-60		-60		dB

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=+V_{R E F}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$, and timing measured at 1.4 V , $C_{L}=100 \mathrm{pF}$.

			ML2264XCX			ML2264XIX, ML2264XMX			UNITS
PARAMETER	NOTES	CONDITIONS	MIN	$\left\lvert\, \begin{gathered} \text { TYP } \\ \text { NOTE 4) } \end{gathered}\right.$	MAX	MIN	$\left\lvert\, \begin{gathered} \text { TYP } \\ \text { (NOTE 4) } \end{gathered}\right.$	MAX	

AC and Dynamic Performance (Note 9) (Continued)

FR, Frequency Response		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, 0-250 \mathrm{kHz} \\ & \text { Relative to } 1 \mathrm{kHz} \\ & \mathrm{SH} / / \mathrm{TH}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\mathrm{SAMPLING}}=1.0 \mathrm{MHz} \end{aligned}$		± 0.1			± 0.1		dB
SR, Slew Rate Tracking	6	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$			4.0			4.0	V/ $/ \mathrm{s}$
		$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$			0.25			0.25	$\mathrm{V} / \mathrm{\mu s}$
$\mathrm{t}_{\text {AS }}$, Multiplexer Address Setup Time	5	$\begin{aligned} & \text { SH/ } / \overline{\mathrm{TH}}=\mathrm{GND}, \text { Figure } 1 \\ & \text { (Track \& Hold Operation) } \end{aligned}$	0			0			ns
t_{AH}, Multiplexer Address Hold Time	5	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$, Figure 1 (Track \& Hold Operation)	60			70			ns
t_{AS}, Multiplexer Address Setup Time	5	$\begin{aligned} & \mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}, \text { Figure } 2 \\ & \text { (Sample \& Hold Operation) } \end{aligned}$	225			245			ns
t_{AH}, Multiplexer Address Hold Time	5	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$, Figure 2 (Sample \& Hold Operation)	60			70			ns

AC Performance Read Mode (Pin $5=0 \mathrm{~V}$), Figure 4

$t_{\text {RDY }}, \overline{C S}$ to RDY Delay	5		0		60	0		65	ns
$\mathrm{t}_{\text {RDD }}, \overline{\mathrm{RD}}$ Low to RDY Delay	5,10	Figure 3			1020			1100	ns
$\mathrm{t}_{\mathrm{CSS}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Setup Time	5		0			0			ns
$\mathrm{t}_{\mathrm{CSH}}, \overline{\mathrm{CS}} \text { to } \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time	5		0			0			ns
$t_{\text {CRD }}$, Conversion Time $\overline{\mathrm{RD}}$ Low to $\overline{\mathrm{N} T}$ low	5,10				1020			1100	ns
$t_{\text {ACC0 }}$, Data Access Time $\overline{R D}$ to Data Valid	5		$\mathrm{t}_{\text {CRD }}{ }^{10}$		$\mathrm{t}_{\mathrm{CRD}}+20$	$\mathrm{t}_{\text {CRD }}{ }^{-10}$		$\mathrm{t}_{\mathrm{CRD}}+20$	ns
$\mathrm{t}_{\text {RDPW, }} \overline{\mathrm{RD}}$ Pulse Width	5		$\mathrm{t}_{\mathrm{CRD}}+30$			$\mathrm{t}_{\mathrm{CRD}}+30$			ns
$\mathrm{t}_{\text {INTH }}, \overline{\mathrm{RD}}$ to $\overline{\mathrm{NTT}}$ Delay	5,10		0		65	0		75	ns
$t_{D H}$, Data Hold Time $\overline{R D}$ Rising Edge to Data High Impedance State	6,10	Figure 3	0		50	0		60	ns
t_{p}, Delay Time Between Conversions - $\overline{\mathrm{INT}}$ Low to $\overline{\mathrm{RD}}$ Low	5,10	Sample \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	300			325			ns
		Track \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	240			260			ns

AC Performance Write-Read Mode (Pin $5=5 \mathrm{~V}$), Figures 5 and 6

$\mathrm{t}_{\mathrm{CSS}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Setup Time	5		0			0			ns
$\mathrm{t}_{\mathrm{CSH}}, \overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Hold Time	5		0			0			ns
$\mathrm{t}_{\mathrm{WR}}, \overline{\mathrm{WR}}$ Pulse Width	5	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$	190		50 K	205		50 K	ns
	6	$\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	320		50 K	360		50 K	ns

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$, and timing measured at 1.4 V , $C_{L}=100 \mathrm{pF}$.

PARAMETER	NOTES	CONDITIONS	ML2264XCX			ML2264XIX, ML2264XMX			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	

AC Performance Write-Read Mode (Pin $5=5 \mathrm{~V}$) Figures 5 and 6 (Continued)

$t_{\text {RD }}$, Read Time - $\overline{W R}$ High to $\overline{\mathrm{RD}}$ Low Delay	5	$\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\text {INTL }}$	275		300		ns
$\mathrm{t}_{\mathrm{Rl}}, \overline{\mathrm{RD}}$ to $\overline{\mathrm{NT}}$ Delay	5,10	$\mathrm{t}_{\text {RD }}<\mathrm{t}_{\text {INTL }}$	0	235	0	270	ns
$t_{A C C}$, Data Access Time - $\overline{R D}$ Low to Data Valid	5	$\mathrm{t}_{\text {RD }}<\mathrm{t}_{\text {INTL }}$	0	240	0	300	ns
$t_{\text {CWR-RD }}$, Conversion Time - WR Falling Edge to $\overline{\mathrm{NT}}$ Low	5, 9, 10	$\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\text {INTL }}, \mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{V}_{\mathrm{CC}}$		700		775	ns
	6, 9, 10	$\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\text {INTL }}, \mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$		830		930	ns
$\mathrm{t}_{\text {INTL }}$ Internal Comparison Time - $\overline{\mathrm{WR}}$ Rising Edge to $\overline{\mathrm{NT}}$ Low	5,10	$t_{R D}>t_{\text {INTL }}$		620		670	ns
$t_{A C C 2}$, Data Access Time - $\overline{\mathrm{RD}}$ to Data Valid	5	$t_{\text {RD }}>\mathrm{t}_{\text {INTL }}$	0	50	0	60	ns
$t_{D H}$, Data Hold Time $\overline{R D}$ Rising Edge to Data High Impedance State	6, 10	Figure 3	0	50	0	60	ns
$\mathrm{t}_{\text {INTH }}, \overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{INT}} \uparrow$ Delay	5,10		0	65	0	75	ns
t_{p}, Delay Time Between Conversions - $\overline{\mathrm{INT}}$ Low to $\overline{W R}$ Low	5,10	Sample \& Hold Mode, $\mathrm{SH} / \overline{T H}=\mathrm{V}_{\mathrm{CC}}$	300		325		ns
		Track \& Hold Mode, $\mathrm{SH} / \overline{\mathrm{TH}}=\mathrm{GND}$	240		260		ns
$\mathrm{t}_{\text {IHWR, }}, \overline{\mathrm{WR}} \uparrow$ to $\overline{\mathrm{INT}} \uparrow$ Delay	5,10	Standalone Mode	0	90	0	100	ns
$\mathrm{t}_{\mathrm{ID}}, \overline{\mathrm{NT}} \downarrow$ to Data Valid Delay	5,10	Standalone Mode	0	20	0	30	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impared All voltages unless otherwise specified are measured with respect to ground.
Note 2: When the voltage at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I N}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}$) the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested at temperature extremes with worst-cast test conditions. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted error includes offset, full scale, linearity, sample and hold, and multiplexer errors. Total unadjusted error is tested at the minımum specified tımes for $\overline{W R}, \overline{R D}, t_{R 1}$, and t_{p}. For example, for the ML2264XCX in the sample and hold mode, $\bar{W} / \overline{R D}$ mode $t_{W R}=190 \mathrm{~ns}, t_{R D}=275 \mathrm{~ns}$ with a frequency of 1.000 MHz (cycle time of 1000 ns).
Note 8: For $-V_{\text {REF }} \geq \mathrm{V}_{\text {IN }}$ the digital output code will be 00000000 . Two on-chip diodes are tied to the analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply Be careful, during testıng at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minımum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loadıng
Note 9: Conversion time, write-read mode $=t_{W R}+t_{R D}+t_{R 1}$.
Note 10: Defined from the tıme an output crosses 0.8 V or 24 V

Figure 1. Analog Multiplexer Address Timing for Track \& Hold Mode (Pin 23 = GND)

Figure 2. Analog Multiplexer Address Timing for Sample \& Hold Mode (Pin $23=\mathbf{V}_{\mathrm{CC}}$)

Figure 3. High Impedance Test Circuits and Waveforms

*In SAMPLE \& HOLD mode a pull up resistor on RDY should not be used unless $\operatorname{CS} \downarrow$ is $\geq 20 \mathrm{~ns}$ before RD \downarrow.

Figure 4. RD Mode Timing

Figure 5. WR-RD Mode Timing ($\mathbf{t}_{\text {RD }}>\mathbf{t}_{\mathbf{I N T L}}$)

Figure 6. WR-RD Mode Timing ($\mathbf{t}_{\mathbf{R D}}<\mathbf{t}_{\mathbf{I N T L}}$)

Figure 7. WR-RD Mode Stand-Alone Timing $\overline{\mathbf{C S}}=\overline{\mathbf{R D}}=\mathbf{0}$

1.0 FUNCTIONAL DESCRIPTION

The ML2264 uses a two stage flash technique for A / D conversion. This technique first performs a 4 bit flash conversion on $\mathrm{V}_{\mathbb{I N}}$ to determine the $4 \mathrm{MSB}^{\prime}$. These 4 MSB's are then cycled through an internal DAC to recreate the analog input. This reconstructed analog input signal from the DAC is then subtracted from the input, and the difference voltage is converted by a second 4 bit flash conversion, providing the 4 LSB's of the output data word.

1.1 MULTIPLEXER ADDRESSING

The ML2264 contains a 4-channel single ended analog multiplexer. A particular input channel is selected by using the address inputs A 0 and A 1 . The relationship between the address inputs, A0 and A1, and the analog input selected is shown in Table 1.

Selected Analog Channel	A0	Address Input
	0	0
A IN 2	1	0
A IN 3	0	1
A IN 4	1	1

Table 1. Multiplexer Address Decoding
The address inputs are latched into the ML2264 on the falling edge of the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, or $\overline{\mathrm{CS}}$ depending on the state of pins $\mathrm{SH} / \widetilde{\mathrm{TH}}$ and mode as shown in Table 2.

Address Latching Signal	Mode	Operation Mode
$\overline{\mathrm{KD}} \downarrow$	GND	GND
$\overline{\mathrm{WR}} \downarrow$	V_{CC}	GND
$\overline{\mathrm{CS}} \downarrow$	GND	V_{CC}
$\overline{\mathrm{CS}} \downarrow$	V_{CC}	V_{CC}

Table 2.
In the Sample \& Hold mode of operation $\overline{\mathrm{CS}}$ is used as the address latch enable, allowing for continuous conversions without addressing a given analog input for each conversion.
The Track \& Hold mode of operation requires an analog input to be addressed and latched for each conversion that the ML2264 performs.

1.2 ANALOG INPUTS

The analog input on the ML2264 behaves differently than inputs on conventional converters. The analog input current requirements change while the conversion is in progress, and the amount of input current depends on what cycle the converter is in.

The equivalent input circuit for the converter is shown in Figure 8. When the conversion starts in the T/H mode ($\overline{W R} \downarrow$ in the WR-RD mode or $\overline{R D} \downarrow$ in the RD mode) S1, S4 and S6 close and S3 opens. This period is known as the acquisition period where the MSB flash converter tracks the input signal and the LSB flash converter samples it. During this period, $\mathrm{V}_{I N}$ is connected to the 16 MSB and 15 LSB comparators. Thus $38 p F$ of input capacitance must be charged up through the combined R_{ON} resistance of the internal analog switches plus any external source resistance, R_{s}. In addition, there is a stray capacitance of approximately 11 pF that needs to be charged through the external source resistance R_{S}. This period ends in the WRRD mode when $\overline{W R} \uparrow$ or by an internal timer in the RD mode. At this point S1 and S4 open and the analog input at $\mathrm{V}_{I N}$ is no longer being sampled; thus during this time the analog voltage on V_{IN} does not affect converter performance.
As shown above, the critical period for charging up the analog input occurs when the MSB and LSB comparators are sampling the input, known as the acquisition period. The source of the external signal on $V_{I N}$ must adequately charge up the analog voltage during the acquisition period. To do this, the input must settle within the required analog accuracy tolerance at least 50 ns before the end of the acquisition period so that the MSB comparators have adequate time to make the correct decision. If more time is needed due to finite charging or settling time of the external source, the $\overline{W R}$ low period can be extended in WR-RD mode. In RD mode, since the acquisition time is fixed by internal delays, the burden is on the external source to charge up and settle the input adequately.

When the ML2264 operates in the S / H mode (pin $23=$ $V_{C C}$) both the MSB and the LSB flash converter perform a true sample and hold operation during the acquisition or sampling period. This period starts after the falling edge of $\overline{\mathrm{INT}}$ and ends with the falling edge of $\overline{\mathrm{WR}}$ in the WR-RD mode or the falling edge of $\overline{R D}$ in the RD mode. The duration of this period is user controlled and must satisfy a minimum of t_{p}.
During this period S1, S3, S4 and S6 close, therefore 46 pF of input capacitance must be charged up in addition to the 11 pF of stray capacitance.

1.3 TRACK AND HOLD vs. SAMPLE AND HOLD

The MSB Flash Converter of the ML2264 in T/H mode has a track and hold mechanism for sampling the input. The input is attached to the MSB comparators directly in the MSB compare cycle, or acquisition period. When the MSB compare cycle ends, the state of the MSB comparators is latched. The LSB Flash Converter always performs a S/H operation. Thus, the analog input signal can be changing during the MSB compare cycle, or acquisition period, and
the MSB comparators will be tracking it as long as the slew rate of the analog input is slow enough so that the MSB comparators can respond. The ML2264 can track and hold signals with slew rates as high as $0.25 \mathrm{~V} / \mu \mathrm{s}$ (16 kHz @ 5 volts) without sacrificing conversion accuracy.

The ML2264 in S/H mode does not have the slew rate limitation of the T / H mode since an internal sample and hold acquires the analog signal, holds it internally, and then performs a conversion. Since this is a true sample and hold function, the S / H mode can theoretically digitize signals of frequencies much higher than the T / H mode. The ML2264 in S/H mode can digitize signals of frequencies as high as 250 kHz @ 5 V (slew rates as high as $4 \mathrm{~V} / \mu \mathrm{s}$) without sacrificing conversion accuracy. In most applications, the S / H mode is more desirable than T / H mode because of the better dynamic performance.

1.3.1 Converter - T/H Mode

The operating sequence for the WR-RD mode is illustrated in Figure 9a. Initially, the internal comparators are autozeroed while $\overline{W R}$ is high. A conversion is initiated by the falling edge of $\overline{W R}$. While $\overline{W R}$ is low, the MSB comparators are tracking the analog input and comparing this voltage against voltages from the internal resistor ladder. At the same time, the input is being acquired or sampled by LSB comparators. On the rising edge of $\overline{W R}$, the MSB comparator results are latched, and the LSB acquisition time is ended by closing the sampling switch to the LSB comparators. While $\overline{W R}$ is high, the LSB comparators then compare the residual input voltage against internal voltages from the resistor ladder to determine the 4 LSB's. When the LSB comparison or conversion is complete, INT goes low and latches the conversion result into the output latches. Then, the comparators are auto-zeroed while $\overline{W R}$ is high before another conversion can start.

The operating sequence for RD mode, is similar to that described above for the WR-RD mode, except the conversion is initiated by the falling edge of $\overline{R D}$, and the MSB and LSB conversions are generated by internal clock edges that are generated while RD is low.

Figure 8. Converter Equivalent Input Circuit

1.3.2 Converter - S/H Mode

The operating sequence for S / H mode is illustrated in Figure 9b. Notice that it is similar to T / H mode described above except this mode has a true sample and hold function. The falling edge of $\overline{\mathrm{NT}}$ closes the sampling switch and starts the acquisition period where the analog input is sampled at the same time all comparators are auto-zeroed. The falling edge of $\overline{\mathrm{WR}}$ opens the internal sampling switch, ends the acquisition period, and starts the conversion on the internally sample and held signal. The MSB comparators make their decisions while $\overline{W R}$ is low. On the rising edge of $\overline{W R}$, the MSB comparator results are latched. The LSB comparators make their decision when WR is high. When the LSB comparison or conversion is complete, INT goes low and latches the conversion result into the output buffers. Then, the acquisition period begins again and the converter is ready for the next conversion.

The operating sequence for the RD mode is the same as the WR-RD mode, except the conversion is initiated by the falling edge of $\overline{R D}$, and the MSB and LSB conversions are generated by internal clock edges that are generated while $\overline{R D}$ is low.

Figure 9. Operating Sequence (WR-RD Mode)

1.4 REFERENCE

The $+V_{\text {REF }}$ and $-V_{\text {REF }}$ inputs are the reference voltages that determine the full scale and zero input voltages, respectively, for the A / D converter. Thus, $+V_{\text {REF }}$ defines the analog input which produces a full scale output and $-V_{\text {REF }}$ defines the analog input which produces an output code of all zeroes. The transfer function for the A / D converter is shown in Figure 10.
$+\mathrm{V}_{\text {REF }}$ and $-\mathrm{V}_{\text {REF }}$ can be set to any voltage between GND and $V_{C C}$. This means that the reference voltages can be offset from GND and the difference between $+V_{\text {REF }}+$ and $-\mathrm{V}_{\text {REF }}-$ can be made small to increase the resolution of the conversion. Note that the total unadjusted error increases when $\left[+V_{\text {REF }}-\left(-V_{\text {REF }}\right)\right]$ decreases.

1.5 POWER SUPPLY AND REFERENCE DECOUPLING

A $0.1 \mu \mathrm{~F}$ ceramic disc capacitor is recommended to bypass $V_{C C}$ to GND, using as short a lead length as possible.
If REF+ and REF-inputs are driven by long lines, they should be bypassed by $0.1 \mu \mathrm{~F}$ ceramic disc capacitors at the reference input pins.

Figure 10. A/D Transfer Characteristic

1.6 DYNAMIC PERFORMANCE

1.6.1 Sinusoidal Inputs

Since the ML2264 has an internal sample and hold, the device can digitize high frequency sinusoids with little or no signal degradations. Using the Nyquist criteria, the highest frequency input to the converter could theoretically be $1 / 2$ the sampling rate (f_{s}). Any frequency components above $\mathrm{f}_{\mathrm{S}} / 2$ will be aliased below $\mathrm{f}_{\mathrm{S}} / 2$. In most applications, these aliased components cause unacceptable distortion and must be filtered out of the input. If the input frequency is too close to $\mathrm{f}_{\mathrm{S}} / 2$, then the requirements on the anti-alias filter become difficult to impossible to realize with standard component and tolerances. In most practical applications, the highest input frequency has to be limited to $1 / 3$ to $1 / 4$ of $f_{\text {MAX }}$ in order to relax the filtering requirements enough to make a realizable anti-alias filter.

The maximum sampling rate ($f_{\max }$) for the ML2264 in the WR-RD mode, ($\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}$) can be calculated as follows:
$f_{\max }=\frac{1}{t_{W R}+t_{R D}+t_{R I}+t_{P}}$
$f_{\max }=\frac{1}{190 n s+275 n s+235 n s+300 n s}$
$f_{\max }=1.000 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{WR}}=$ Write Pulse Width
$\mathrm{t}_{\mathrm{RD}}=$ Delay Time between $\overline{W R}$ and $\overline{R D}$ Pulses
$\mathrm{t}_{\mathrm{RI}}=\overline{\mathrm{RD}}$ to $\overline{\mathrm{INT}}$ Delay
$t_{p}=$ Delay Time between Conversions
This permits a maximum sampling rate of 1 MHz for the ML2264. The dynamic performance specifications (SNR, HD, IMD, and FR) for the ML2264 are all specified at 250 kHz , which is approximately $1 / 4$ of the sampling rate, f_{s}.

In applications where aliased frequency components are acceptable and filtering of the input signal is not needed, or where a filter with a steep amplitude response is available, the user can apply an input sinusoid higher than 250 kHz to the device. Note, however, that as the input frequency increases above 500 kHz , dynamic performance degradation will occur due to the finite bandwidth of the internal sample and hold.
The Figure 11 plots are 4096 point FFT's of the ML2264 converting a 257 kHz and a $491 \mathrm{kHz}, 0$ to 4.5 V , low distortion sine wave input. The ML2264 samples and digitizes at its specified accuracy, dynamic input signals with frequency components up to the Nyquist frequency (one-half the sampling rate). The output spectra yields precise measure-ments of the input signal level, harmonic components, and signal to noise ratio up to the 8 -bit level. The near ideal signal to noise ratio is maintained independent of increasing analog input frequencies to 500 kHz .

1.6.2 Signal-To-Noise Ratio

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more the levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 8-bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

1.6.3 HARMONIC DISTORTION

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2264 is defined as

Figure 11. Dynamic Performance, Sample and Hold Mode

$$
20 \log =\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and $\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$ are the rms amplitudes of the individual harmonics.

1.6.2 Signal-To-Noise Ratio

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more the levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by
$S N R=(6.02 \mathrm{~N}+1.76) \mathrm{dB}$
where N is the number of bits. Thus for ideal 8 -bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

1.6.3 HARMONIC DISTORTION

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2264 is defined as

$$
20 \log =\frac{\left(V_{2}{ }^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and $\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$ are the rms amplitudes of the individual harmonics.

1.6.4 Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order $(m+n)$, at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1,2$, 3 ... Intermodulation terms are those for which m or n is not equal to zero. The (IMD) intermodulation distortion specification includes the second order terms ($f_{A}+f_{B}$) and $\left.f_{A}-f_{B}\right)$ and the third order terms $\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right)$, ($f_{A}+2 f_{B}$), and ($f_{A}-2 f_{B}$) only.

1.7 DIGITAL INTERFACE

The ML2264 has two basic interface modes, RD and WRRD, which are selected by the MODE input pin.

1.7.1 RD Mode

In the RD mode, $\overline{\mathrm{WR}} /$ RDY pin is configured as the RDY output. The read mode performs a conversion with a single $\overline{\mathrm{RD}}$ pulse. This allows the $\mu \mathrm{P}$ to start a conversion, wait, and then read data with a single read instruction.
The timing for the RD mode is shown in Figure 4. To do a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. After $\overline{\mathrm{CS}}$ goes low, the RDY output goes low indicating that the device is ready to do a conversion. The conversion starts
on the falling edge of $\overline{\mathrm{RD}}$. While $\overline{\mathrm{RD}}$ is low, the MSB and LSB decisions are made with internally generated clock edges. When the conversion is complete, RDY goes high and INT goes low signaling the end of the conversion. After $\overline{\text { INT }}$ goes low, the data outputs go from high impedance to active state with valid output data. Data stays valid until either $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$ goes high. When either signal goes high, the output data lines return to the high impedance state and INT returns high.

1.7.2 WR-RD Mode

In the WR-RD mode, the $\overline{W R} / R D Y$ pin is configured as the $\overline{\mathrm{WR}}$ input. In this mode, $\overline{\mathrm{WR}}$ initiates the conversion and $\overline{\mathrm{RD}}$ controls reading the output data. This can be done in several ways, described below.

1.7.3 WR-RD Mode - Using Internal Delay ($\mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{INTL}}$)

The timing is shown in Figure 5. To do a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. Then, WR falling edge triggers the conversion. While $\overline{W R}$ is low, the MSB comparison is made. When $\overline{W R}$ returns high the LSB decision is made. After some internal delay, $\overline{\text { NT }}$ goes low indicating end of conversion. Valid data will appear on DB0-7 when $\overline{\text { RD }}$ is pulled low. $\overline{\mathrm{IT}}$ is then reset by the rising edge of either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$.

1.7.4 WR-RD Mode - Reading Before Delay ($\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{INTL}}$)

The internally generated delay for the LSB decision when $\mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{INTL}_{\mathrm{L}}}$ is longer than necessary due to circuit design tolerances of $\mathrm{t}_{\mathrm{INTL}}$ delay. If desired, a faster conversion will result without loss of accuracy by bringing $\overline{\mathrm{RD}}$ low within the minimum time specified for t_{RD}. The timing diagram for this mode is shown in Figure $6 . \overline{W R}$ is the same as when $t_{R D}>t_{\text {INTL }}$. But in this case, $R D$ is brought low $t_{\text {RD }}$ ns after WR rising edge and before $\overline{\text { INT. }} \overline{\text { INT }}$ goes low indicating an end of conversion after the falling edge of $\overline{R D}$ and is reset on the rising edge of $\overline{R D}$ or $\overline{C S}$. When $\overline{R D}$ is brought low before INT goes low the data bus always remains in the high-impedance state until $\overline{\text { INT }} \downarrow$.

1.7.5 WR-RD Mode - Stand Alone Operation

Stand alone operation can be implemented by tying $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low as shown in Figure 7. WR initiates a conversion as before. When $\overline{W R}$ is low, the MSB comparison is made. When, WR goes high, the LSB comparison is made. Since $\overline{\mathrm{RD}}$ is already low, the output data will appear automatically at end of conversion. Since $\overline{\mathrm{RD}}$ is always low, $\overline{\mathrm{INT}}$ is reset on rising edge of $\overline{\mathrm{WR}}$ and goes low at end of conversion.

1.7.6 Power-On Reset

When power is first applied, an internal power-on reset and timer circuit inhibits the $\overline{\mathrm{CS}}$ input and resets the internal circuitry to prevent the ML2264 from starting in an unknown state. During this period of approximately $3 \mu \mathrm{~s}$, $\overline{\text { INT }}$ remains high and the data bus is in the highimpedance state.

2.0 TYPICAL APPLICATIONS

*NO PROTECTION REQUIRED IF INPUT CURRENT < $\mathbf{2 5 m A}$

Figure 12. Protecting the Input

Figure 13. Using $V_{C C}$ as Reference for Ratiometric Operation

Figure 14. Using External Reference of D / A

Figure 15. 68000 Type Interface to ML2264

Figure 16. $\pm 2.5 \mathrm{~V}$ Analog Input Range

Figure 17. 8051 Interface to ML2264

2.0 TYPICAL APPLICATIONS (Continued)

Figure 18. TMS320 Interface with D/A Output

Figure 19. Operating with a Ratiometric Analog Signal of 15% of V_{CC} to $\mathbf{8 5 \%}$ of V_{CC}

ORDERING INFORMATION

PART NUMBER	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
ML2264BMJ	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J24) ML2264BIJ
ML2264BCP		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J24) Molded DIP (P24) ML2264BCS
ML2264CMJ		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S24)
ML2264CIJ	$\pm 1 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J24)
ML2264CCP		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Hermetic DIP (J24)
ML2264CCS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P24)	

ML2271

μ P Compatible High-Speed 10-Bit A/D Converter with S/H

GENERAL DESCRIPTION

The ML2271 is a high speed, $\mu \mathrm{P}$ compatible 10 -bit A / D converter. A three step flash technique is used to achieve a conversion time of $1.65 \mu \mathrm{~s}$. The ML2271 operates from a single 5 V supply and has an analog input range from GND to V_{CC}.

The ML2271 has a true internal sample and hold and can digitize sinusoid signals as high as 150 kHz without conversion errors.

The ML2271 digital interface has been designed so that the device appears as a memory location or I/O port to a $\mu \mathrm{P}$, eliminating the need for external interfacing logic. The data outputs are latched and have three state control, allowing direct connection to a $\mu \mathrm{P}$ bus or I/O port. The addition of an internal timing generator also allows the device to easily operate in stand alone applications.

The ML2271 is pin and function compatible with the ADC1061.

FEATURES

- Conversion time over temperature and supply voltage tolerance
$1.8 \mu \mathrm{~s}$
■ Linearity error $\pm 1 \mathrm{LSB}$
- Full scale error ± 1 LSB
- Zero error ± 1 LSB
- Capable of digitizing a $5 \mathrm{~V}, 150 \mathrm{kHz}$ sine wave
- No missing codes
- 0 V to 5 V analog input range with single 5 V power supply
- Analog input protection - 25 mA min
- Operates ratiometrically or with up to 5 V voltage reference
- No external clock required
- Easy interface to $\mu \mathrm{P}$, or operates stand-alone
- Latched, 3-state data outputs
- Power-on reset circuitry

■ Low power - 175 mW max

- Standard 20-pin DIP or surface mount SOIC
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range

BLOCK DIAGRAM

PIN CONFIGURATION

20-Pin SOIC

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	D $V_{C C}$	Digital supply. $+5 \mathrm{~V} \pm 5 \%$. Connect to $\mathrm{A} \mathrm{V}_{\mathrm{CC}}$.
2	$\overline{\mathrm{INT}}$	Interrupt output. This output signals the end of a conversion and indicates that data is valid on the data outputs. See Digital Interface section.
3	$\overline{W R}$	Write input. Input which initiates a conversion. See Digital Interface section.
4	$\overline{\mathrm{RD}}$	Read input. This input latches data into the output latches. See Digital Interface section.
5	$\overline{C S}$	Chip select input. This input must be held low during $\overline{W R}$ and $\overline{R D}$ for the device to perform a conversion.
6	A V_{CC}	Analog supply. $+5 \mathrm{~V} \pm 5 \%$. Connect to D V CC .

PIN\#	NAME	FUNCTION
7	-V ${ }_{\text {REF }}$	Negative reference input voltage for A/D converter.
8	VIN	Analog input.
9	+V	
		Positive reference input voltage for A/D converter.
10	GND	Ground.
11	DB9	Data output - bit 9 (MSB)
12	DB8	Data output - bit 8
13	DB7	Data output - bit 7
14	DB6	Data output - bit 6
15	DB5	Data output - bit 5
16	DB4	Data output - bit 4
17	DB3	Data output - bit 3
18	DB2	Data output - bit 2
19	DB1	Data output - bit 1
20	DB0	Data output - bit 0 (LSB)

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage, A V_{CC}, D V $\mathrm{CC}_{\mathrm{CC}} . ~ 6.5 V ~$
Voltage
Logic Inputs \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Analog Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3$
Input Current per Pin (Note 2) $\pm 25 \mathrm{~mA}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation
at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) 875 mW
Lead Temperature (Soldering 10 sec .)
Dual-In-Line Package (Molded) $260^{\circ} \mathrm{C}$
Molded Small Outline IC Package
Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$
Infrared (15 sec.) ... $220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 3) $\ldots \ldots \ldots \ldots \ldots . . . \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
ML2271CCS

ML2271CIS.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2271CIP ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, D V_{C C}=A V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$

		ML2271CCX			ML2271CIX			
PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	TYP (Note 4)	MAX	UNITS

Converter

$\left.\begin{array}{l|l|l|l|l|l|l|c|c}\hline \begin{array}{l}\text { Integral Linearity Error } \\ \text { ML2271CXX }\end{array} & V_{\text {REF }}=V_{\text {CC }}(\text { Notes 5,7) }\end{array}\right)$

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, D V_{C C}=A V_{C C}=+V_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-V_{\text {REF }}=G N D$

		ML2271CCX			ML2271CIX			
PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	UNITS

Digital and DC

$\mathrm{V}_{\operatorname{IN}(1), \text { Logical "1" }}$ Input Voltage	(Note 5)	2.0			2.0			V
$\mathrm{V}_{\text {IN(0) }}$, Logical " $0^{\text {" }}$ Input Voltage	(Note 5)			0.8			0.8	V
IIN(1), Logical " 1 " Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}($ Note 5$)$			1			1	$\mu \mathrm{A}$
IN(0), Logical "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}($ Note 5$)$	-1			-1			$\mu \mathrm{A}$
$\begin{aligned} & \hline \text { VouT(1), Logical "1" } \\ & \text { Output Voltage } \end{aligned}$	$\mathrm{l}_{\text {OUT }}=-2 \mathrm{~mA}($ Note 5)	4.0			4.0			V
$\begin{aligned} & \hline \text { Vout(0), Logical "0" } \\ & \text { Output Voltage } \end{aligned}$	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$ (Note 5)			0.4			0.4	V
Iout, Three-State	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 5)	-1			-1			$\mu \mathrm{A}$
Output Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ (Note 5)			1			1	$\mu \mathrm{A}$
Cout, Logic Output Capacitance			5			5		pF
$\mathrm{C}_{\text {IN }}$ Logic Input Capacitance			5			5		pF
ICC, Supply Current, Analog Plus Digital	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0 \\ & \text { No Output Load (Note 5) } \end{aligned}$			32			35	mA

AC and Dynamic Performance (Note 9)

tconv, Conversion Time, Interrupt Mode	Figure $2 \mathrm{t}_{\mathrm{WR}}=250 \mathrm{~ns}$ (Note 6)		1.65		1.8	$\mu \mathrm{s}$
tcWRD, Conversion Time, Write-Read Mode	Figure 3 (Note 5)		1.9		2.0	$\mu \mathrm{s}$
$t_{C R D}$, Conversion Time, Write-Read Mode	Figure 4 (Note 6)		1.9		2.0	$\mu \mathrm{s}$
SNR, Signal to Noise Ratio	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 150 \mathrm{kHz}$ Noise is sum of all nonfundamental components from $0-300 \mathrm{kHz}$. $\mathrm{f}_{\text {SAMPLING }}=600 \mathrm{kHz}$	60		60		dB
HD, Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 150 \mathrm{kHz}$ THD is sum of 2-5th harmonics or aliases relative to fundamental. $\mathrm{f}_{\text {SAMPLING }}=600 \mathrm{kHz}$	-60		-60		dB
IMD, Intermodulation Distortion	$\begin{array}{\|l\|} \hline \mathrm{fa}=2.5 \mathrm{~V}, 150 \mathrm{kHz} \\ \mathrm{fb}=2.5 \mathrm{~V}, 148 \mathrm{kHz} \\ \mathrm{MB} \text { is (fa }+\mathrm{fb}) \text {, (fa }-\mathrm{fb}) \text {, } \\ \text { (2fa + fb), (2fa }-\mathrm{fb}) \text {, relative to } \\ \text { fundamental. fSAMPLING }=600 \mathrm{kHz} \end{array}$	-60		-60		dB
FR, Frequency Response	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, 0-150 \mathrm{kHz} \\ & \text { Relative to } 1 \mathrm{kHz} \\ & \text { fSAMPLING }=600 \mathrm{kHz} \end{aligned}$	± 0.1		± 0.1		dB
SR, Slew Rate Tracking		2.36		2.36		V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{D} \mathrm{V}_{\mathrm{CC}}=\mathrm{A} \mathrm{V}_{\mathrm{CC}}=+\mathrm{V}_{\text {REF }}=5 \mathrm{~V} \pm 5 \%$, and $-\mathrm{V}_{\text {REF }}=\mathrm{GND}$

PARAMETER	CONDITIONS	ML2271CCX			ML2271CIX			
		MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 4) } \end{array}$	MAX	UNITS

AC Performance, Figures 2, 3, 4, and 5

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground
Note 2: When the voltage at any pin exceeds the power supply rails $\left(V_{I N}<\right.$ or $G N D$ or $\left.V_{I N}>V_{C C}\right)$ the absolute value of current at that pin should be limited to $25 m A$ or less.
Note 3: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested with temperature limits guaranteed by 100% testıng, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted error includes offset, full scale, linearity, and sample and hold errors.
Note 8: For $-V_{R E F} \geq V_{I N}$ the digital output code will be 00000000 . Two on-chip diodes are tied to the analog input which will forward conduct for analog input voltages one dıode drop below ground or one dıode drop greater than the V_{CC} supply Be careful, during testıng at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input dıode to conduct - especially at elevated temperatures, and cause errors for analog inputs near full scale The spec allows 100 mV forward bias of either diode. This means that as long as the analog $V_{\mathbb{N}}$ or $V_{R E F}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minımum supply voltage of $4900 V_{D C}$ over temperature variations, initial tolerance and loading.

Figure 1. High Impedance Test Circuits and Waveforms

Figure 2. Interrupt Mode Timing

Figure 3. WR-RD Mode Timing

Figure 4. RD Mode Timing

1.0 FUNCTIONAL DESCRIPTION

The ML2271 uses a three step flash technique for A / D conversion. This technique first performs a 3 bit flash conversion on $\mathrm{V}_{\text {IN }}$ to determine the 3 most significant bits (MSB decision). These 3 MSB's are then cycled through an internal DAC to recreate the analog input. This reconstructed analog input signal from the DAC is then subtracted from the input, and the difference voltage is converted by a second 3 bit flash conversion providing the next 3 significant bits, called intermediate significant bits (ISB decision). This procedure is then performed again to provide the final 4 least significant bits (LSB decision).

The ML2271 has a true internal sample and hold. The internal operating sequence is shown in Figure 5. The falling edge of $\overline{W R}$ opens the S / H sampling switch, ends the acquisition time for the analog input, and starts the conversion on the internally sample and held signal. Then the MSB, ISB, and LSB decisions are made. INT goes low at end of conversion and $\overline{\mathrm{RD}}$ controls the data outputs. This falling edge of $\overline{\mathrm{INT}}$ also closes the sampling switch and starts the acquisition period for the next conversion.

Figure 5. Operating Sequence

1.1 ANALOG INPUT

The analog input on the ML2271 behaves differently than inputs on conventional converters. The analog input current requirements change while the conversion is in progress, and the amount of input current depends on what cycle the converter is in.
The input circuit for the converter is shown in Figure 6A with the equivalent input circuit shown in Figure 6B. The acquisition period for the S / H starts on $\overline{\mathrm{NT}}$ falling edge and ends on $\overline{W R}$ falling edge.
The critical period for charging up the analog input occurs during the acquisition period and the source of the external signal on $\mathrm{V}_{\text {IN }}$ must adequately charge up the analog voltage during this time. To do this, the input must settle within the required analog accuracy tolerance 100ns before the end of the acquisition period so that the sampling capacitors have adequate time to store the input signal. If more time is needed due to finite charging or settling time of the external source, the $\overline{W R}$ high period can be extended as long as is required.

1.2 SAMPLE AND HOLD

The ML2271 does not have the limitation of an equivalent circuit implemented with a track/hold. An internal sample and hold acquires the analog signal, holds it internally, and then a conversion is performed on the sample and held signal. Since this is a true sample and hold function, the ML2271 can sample and hold signals with frequencies as high as $150 \mathrm{kHz} @ 5 \mathrm{~V}$ (slew rates as high as $2.36 \mathrm{~V} / \mu \mathrm{s}$) without sacrificing conversion accuracy.

1.3 REFERENCE

The $+V_{\text {REF }}$ and $-V_{\text {REF }}$ inputs are the reference voltages that determine the full scale and zero input voltages, respectively, for the A / D converter. Thus, $+V_{\text {REF }}$ defines the analog input which produces a full scale output and $V_{\text {REF }}$ defines the analog input which produces an output code of all zeroes. The transfer function for the A / D converter is shown in Figure 7.
$+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be set to any voltage between GND and $V_{C C}$. This means that the reference voltages can be offset from GND and the difference between $+V_{\text {REF }}$ and $-V_{\text {REF }}$ can be made small to increase the resolution of the conversion. Note that the linearity error increases when $\left[+V_{\text {REF }}-\left(-V_{\text {REF }}\right)\right]$ decreases.

Figure 6A. Converter Input Circuit

Figure 6B. Converter Equivalent Input Circuit

AIN, INPUT VOLTAGE (IN TERMS OF LSB'S)
Figure 7. A/D Transfer Characteristic

1.4 POWER SUPPLY AND REFERENCE DECOUPLING

$0.1 \mu \mathrm{~F}$ in parallel with $0.01 \mu \mathrm{~F}$ ceramic disc capacitors are recommended to bypass $A V_{C C}$ to GND, as well as $D V_{C C}$ to GND, using the shortest lead lengths possible.

If $+V_{\text {REF }}$ and $-V_{\text {REF }}$ inputs are driven by long lines, they should be bypassed by $0.1 \mu \mathrm{~F}$ in parallel with $0.01 \mu \mathrm{~F}$ ceramic disc capacitors at the reference input pins.

1.5 DYNAMIC PERFORMANCE

1.5.1 Sinusoidal Inputs

Since the ML2271 has an internal sample and hold, the device can digitize high frequency sinusoids with little or no signal degradations. Using the Nyquist criteria, the highest frequency input to the converter could theoretically by $1 / 2$ the sampling rate (f_{S}). Any frequency components above $\mathrm{f}_{\mathrm{S}} / 2$ will be aliased below $\mathrm{f}_{\mathrm{S}} / 2$. In most applications, these aliased components cause unacceptable distortion and must be filtered out of the input. If the input frequency is too close to $f_{S} / 2$, then the requirements on the antialias filter become difficult or impossible to realize with standard component and tolerances. In most practical applications, the highest input frequency has to be limited to $1 / 3$ to $1 / 4$ of f_{S} in order to relax the filtering requirements enough to make a realizable antialias filter.
The maximum sampling rate ($f_{\text {MAX }}$) for the ML2271 can be calculated as follows:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{MAX}}=\frac{1}{\mathrm{t}_{\mathrm{CONT}}+\mathrm{t}_{\mathrm{p}}} \\
& \mathrm{f}_{\mathrm{MAX}}=\frac{1}{1.45 \mu \mathrm{~s}+0.300 \mu \mathrm{~s}} \\
& \mathrm{f}_{\mathrm{MAX}}=570 \mathrm{kHz} \\
& \mathrm{t}_{\mathrm{WR}}=\text { Write Pulse Width } \\
& \mathrm{t}_{\mathrm{WRD}}=\text { Write to Data Delay } \\
& \mathrm{t}_{\mathrm{P}}=\text { Delay Time Between Conversions }
\end{aligned}
$$

Note that the dynamic performance specifications (SNR, HD, IMD and FR) for the ML2271 are all specified at 150 kHz , which is less than $1 / 3$ of the sampling rate, f_{s}. This allows adequate margin between the input frequency and the aliased components to allow antialias filtering if needed.

In applications where aliased frequency components are acceptable and filtering of the input signal is not needed, the user can apply an input sinusoid higher than 150 kHz to the device. Note, however, that as the input frequency increases above 150 kHz , dynamic performance degradation will occur due to the finite bandwidth of the internal sample and hold.

1.5.2 Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is the measured signal to noise at the output of the converter. The signal is the rms magnitude of the fundamental. Noise is the rms sum of all the nonfundamental signals up to half the sampling
frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more the levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 10-bit converter, $\mathrm{SNR}=61.96 \mathrm{~dB}$.

1.5.3 Harmonic Distortion

Harmonic distortion is the ratio of the rms sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2271 is defined as

$$
20 \log =\frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} are the rms amplitudes of the individual harmonics.

1.5.4 Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order ($m+n$), at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1,2$, $3 \ldots$ Intermodulation terms are those for which m or n is not equal to zero. The (IMD) intermodulation distortion specification includes the second order terms ($f_{A}+f_{B}$) and $\left(f_{A}-f_{B}\right)$ and the third order terms $\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right)$, and ($f_{A}-2 f_{B}$) only.

1.6 DIGITAL INTERFACE

Depending on the way the external signals are applied to the ML2271, the timing of the conversion and resultant digital interface can be configured in three different modes.
While the operation for each mode is described below, there are some general rules that dictate the general relationships between $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{INT}}$, and DB0-DB9. The falling edge of $\overline{W R}$ terminates the acquisition period and initiates a conversion. $\overline{\mathrm{NT}}$ is forced low when a conversion is internally completed. $\overline{\mathrm{NT}}$ is reset high by the $\overline{\mathrm{RD}}$ rising edge. DBO-DB9 is in the high impedance state except when both $\overline{R D}$ and $\overline{\mathrm{INT}}$ are low. $\overline{\mathrm{RD}}$ low period does not affect the internal conversion but only determines when the digital signals DB0-DB9 are active; thus, $\overline{\mathrm{RD}}$ can occur anytime. $\overline{\mathrm{CS}}$ is used to select the device and needs to be low only while $\overline{W R}$ is low or when $\overline{\mathrm{RD}}$ is low.

1.6.1 Interrupt Mode

Timing for the Interrupt Mode is shown in Figure 2. To do a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. $\overline{\mathrm{NT}}$ falling edge starts the acquisition period. The falling edge of $\overline{W R}$ ends the acquisition period and the MSB comparison is made. Then, the (Intermediate Significant Bits) ISB and LSB decisions are made with internal timing
signals. After the conversion is complete, $\overline{\mathrm{NT}}$ goes low indicating end of conversion. When RD goes low, DB0-DB9 goes from high impedance to the active state with the digital result of the conversion. $\overline{\mathrm{INT}}$ is rest high and DB0-DB9 is reset to high impedance on the rising edge of $\overline{R D}$.
Interrupt Operation is intended to be used in interrupt driven systems or applications where $\overline{\mathbb{N T}}$ signals the transfer of data.

1.6.2 Write-Read Mode

Write-Read Operation is the same as Interrupt Operation except that $\overline{R D}$ is brought low before the internal conversion is completed (before $\overline{\mathrm{NNT}}$ goes low).
Timing for Write-Read Operation is shown in Figure 3. To perform a conversion, $\overline{\mathrm{CS}}$ must be low to select the device. $\overline{\mathrm{INT}}$ falling edge starts the acquisition period. The falling edge of $\overline{W R}$ ends the acquisition period and the MSB decision is made. Then, the ISB and LSB decisions are made by internal timing signals. In this mode, $\overline{R D}$ is brought low before the internal conversion is completed. When the internal conversion is completed, INT will be forced low and data will appear on DB0-DB9 as long as $\overline{\mathrm{RD}}$ is still low. $\overline{\mathrm{INT}}$ is reset high and DB0-DB9 is reset to high impedance on the rising edge of $\overline{R D}$.

Write-Read Operation is intended for applications where $\overline{R D}$ controls the transfer of data to a microprocessor.

1.6.3 Read Mode

Read Mode Operation is implemented by tying $\overline{R D}$ to $\overline{W R}$ and keeping $\overline{R D}$ and $\overline{\mathrm{WR}}$ low long enough so that the conversion time is totally determined by the internal timing signals.
Timing for the Read Mode is shown in Figure 4. To do a conversion, $\overline{C S}$ must be low to select the device. The $\overline{R D}$ and $\overline{W R}$ falling edge starts the conversion. $\overline{R D}$ and $\overline{W R}$ is held low for the entire internal conversion. Thus, the MSB, ISB, and LSB comparisons along with the end of the acquisition period are made by internally generated timing signals. After the conversion is complete, $\overline{\mathrm{INT}}$ goes low. Since $\overline{R D}$ is fixed low, DB0-DB9 will go from high impedance to active state as soon as $\overline{I N T}$ goes low. $\overline{I N T}$ is reset high and DB0-DB9 is reset to high impedance on rising edge of $\overline{W R}$ and $\overline{R D}$.
Read Mode Operation allows a conversion to be done with the device's own internal timing and thus, no eternal timing is needed.

1.6.4 Power-On Reset

When power is first applied, an internal power-on reset and timer circuit inhibits the $\overline{\mathrm{CS}}$ input and resets the internal circuitry to prevent the ML2271 from starting in an unknown state. During this period of approximately $50 \mu \mathrm{~s}, \overline{\mathrm{INT}}$ remains high and the data bus is in the highimpedance state.

2.0 TYPICAL APPLICATIONS

*PROTECTION IS REQUIRED IF INPUT CURRENT > $\mathbf{2 5 m A}$
Figure 8. Protecting the Input

Figure 9. Using $\mathbf{V}_{\mathbf{C C}}$ as Reference for Ratiometric Operation

Figure 10. Using External Reference of D/A

Figure 11. 68000 Type Interface to ML2271

Figure 12. $\pm 2.5 \mathrm{~V}$ Analog Input Range

2.0 TYPICAL APPLICATIONS (Continued)

Figure 13. Simultaneous Sampling of Two Variables

Figure 14. TMS320 Interface with D/A Output

Figure 15. Operating with a Ratiometric Analog Signal of 15% of $V_{C C}$ to $\mathbf{8 5 \%}$ of $V_{C C}$

ORDERING INFORMATION

PART NUMBER	LINEARITY ERROR	TEMPERATURE RANGE	PACKAGE
ML2271CIP	$\pm 1 \mathrm{LSB}$	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2271CIS		$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	MOLDED SOIC (S20)
ML2271CCP	$\pm 1 \mathrm{LSB}$	$0^{\circ} \mathrm{C} \mathrm{TO} \mathrm{+70}^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2271CCS		$0^{\circ} \mathrm{C} \mathrm{TO} \mathrm{+70}^{\circ} \mathrm{C}$	MOLDED SOIC (S20)

Serial I/O 8-Bit A/D Converters

GENERAL DESCRIPTION

The ML2280 and ML2283 are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 4 input channels.
All errors of the sample-and-hold incorporated on the ML2280 and ML2283, are accounted for in the analog-todigital converters accuracy specification.
The voltage reference can be externally set to any value between GND and V_{CC}, thus allowing a full conversion over a relatively small voltage span if desired.
The ML2283 is an enhanced double polysilicon CMOS pin compatible second source for the ADC0833 A/D converter. All parameters are guaranteed over temperature with a power supply voltage of $5 \mathrm{~V} \pm 10 \%$.

FEATURES

- Conversion time
- ML2280 capable of digitizing a $5 \mathrm{~V}, 40 \mathrm{kHz}$ sine wave
- Total unadjusted error with external reference $\pm 1 / 2$ LSB or ± 1 LSB
- Sample-and-hold 375 ns acquisition
- 0 to 5 V analog input range with single 5 V power supply
- 2.5 V reference provides 0 to 5 V analog input range
- No zero or full-scale adjust required
- Low power
12.5 mW MAX
- Analog input protection
$25 \mathrm{~mA}(\mathrm{~min})$ per input
- Differential analog voltage inputs
- 0.3 " width 8 - or 14 -pin DIP
- 4-channel input MUX option
- Superior pin compatible replacement for ADC0833

BLOCK DIAGRAMS

ML2283

PIN CONNECTIONS

PIN DESCRIPTION

NAME	FUNCTION
V_{CC}	Positive supply. 5 volts $\pm 10 \%$
DGND	Digital ground. 0volts. All digital inputs and outputs are referenced to this point.
AGND	Analog ground. The negative reference voltage for A / D converter.
GND	Combined analog and digital ground.
$\mathrm{CHO}, \mathrm{V}_{\mathrm{IN}^{+}}+\mathrm{V}_{\mathrm{IN}^{-}}$	Analog inputs. Digitally selected to be single ended $\left(V_{I N}\right)$ or; $V_{I N}+$ or $\mathrm{V}_{\mathrm{IN}^{-}}$of a differential input. Analog range $=G N D \leqslant V_{I N} \leqslant V_{C C}$
$V_{\text {REF/2 }}$	Reference. The analog input range is twice the positive reference voltage value applied to this pin.
V+	Input to the Shunt Regulator.
DO	Data out. Digital output which contains result of A/D conversion. The serial data is clocked out on falling edges of CLK.

NAME	FUNCTION
SARS	Successive approximation register status. Digital output which indicates that a conversion is in progress. When SARS goes to 1, the sampling window is closed and conversion begins. When SARS goes to 0 , conversion is completed. When $\overline{\mathrm{CS}}=1$, SARS is in high impedance state.
CLK	Clock. Digital input which clocks data in on DI on rising edges and out on DO on falling edges. Also used to generate clocks for A/D conversion.
DI	Data input. Digital input which contains serial data to program the MUX and channel assignments.
$\overline{\mathrm{CS}}$	Chip select. Selects the chip for multiplexer and channel assignment and A/D converison. When $\overline{\mathrm{CS}}=1$, all digital outputs are in high impedance state. When $\overline{\mathrm{CS}}=0$, normal A/D conversion takes place.

ABSOLUTE MAXIMUM RATINGS
(Note 1)

Current into $\mathrm{V}+\ldots .$. 15 mA
Supply Voltage, V_{CC} 6.5 VLogic Inputs-7 V to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$
Analog Inputs 0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current per Pin (Note 2)$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage TemperaturePackage Dissipationat $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)800 mWLead Temperature (Soldering 10 sec .)Dual-In-Line Package (Molded)$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage, V_{CC}
4.5 V_{DC} to $6.3 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range (Note 3) $T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$
ML2280BMJ, ML2283BMJ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ML2280BIJ, ML2283BIJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2280CIJ, ML2283CIJ
ML2280BCP, ML2283BCP $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2280CCP, ML2283CCP

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{f}_{C L K}=1.333 \mathrm{MHz}$, and $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}$.

PARAMETER	NOTES	CONDITIONS	ML2280B, ML2283B			ML2280C, ML2283C			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 4 \end{gathered}$	MAX	MIN	TYP NOTE 4	MAX	

CONVERTER AND MULTIPLEXER CHARACTERISTICS

Total Unadjusted Error	5,7	$\begin{aligned} & \mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF} / 2} \text { not Connected } \end{aligned}$			$\begin{gathered} \pm 1 / 2 \\ \pm 2 \end{gathered}$			$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \hline \text { LSB } \\ & \text { LSB } \end{aligned}$
Reference Input Resistance, $\mathrm{V}_{\text {REF / } 2}$	5		3	5	7.5	3	5	7.5	k Ω
Common-Mode Input Range	5,8		$\begin{gathered} \mathrm{GND} \\ -0.05 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.05 \end{gathered}$	$\begin{aligned} & \text { GND } \\ & -0.05 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.05 \end{gathered}$	V
DC Common-Mode Error	6	Common Mode Voltage GND to $\mathrm{V}_{\mathrm{CC} / 2}$		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB
AC Common-Mode Error	6	Comon Mode Voltage GND to V_{CC}, 0 to 50 kHz			$\pm 1 / 4$			$\pm 1 / 4$	LSB
DC Power Supply Sensitivity	6	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{REF}} \leqslant \mathrm{~V}_{\mathrm{CC}}+0.1 \mathrm{~V} \end{aligned}$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB
AC Power Supply Sensitivity	6	$100 \mathrm{mV}_{\text {P- }}, 25 \mathrm{kHz}$ Sine on $V_{C C}$			$\pm 1 / 4$			$\pm 1 / 4$	LSB
Change in Zero Error from $V_{C C}=5 V$ to Internal Zener Operation	6	15 mA into $\mathrm{V}+$ $V_{C C}=$ N.C. $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}$		$\pm 1 / 2$			$\pm 1 / 2$		LSB
V_{Z}, Internal Diode Regulated Breakdown (at $\mathrm{V}+$)		15 mA into $\mathrm{V}+$		6.9			6.9		V
$\mathrm{V}+$ Input Resistance	5		20	35		20	35		k Ω
loff, Off Channel Leakage Current	5,9	On Channel $=V_{C C}$ Off Channel $=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
		$\begin{array}{\|l\|} \hline \text { On Channel }=0 \mathrm{~V} \\ \text { Off Channel }=V_{C C} \\ \hline \end{array}$			+1			+1	$\mu \mathrm{A}$
$\overline{I_{\text {On }}}$ On Channel Leakage Current	5,9	On Channel $=0 \mathrm{~V}$ Off Channel $=V_{C C}$	-1			-1			$\mu \mathrm{A}$
		$\begin{aligned} & \text { On Channel }=V_{\mathrm{CC}} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$			+1			+1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$, and $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}$.

PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 4 \end{gathered}$	MAX	LIMIT UNITS
DIGITAL AND DC CHARACTERISTICS						
$\mathrm{V}_{\text {IN(1) }}$, Logical " 1 " Input Voltage	5		2.0			V
$\mathrm{V}_{\text {IN(0) }}$, Logical " 0 " Input Voltage	5				0.8	V
IN(1), Logical " 1 " Input Current	5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			1	$\mu \mathrm{A}$
IN(0), Logical " 0 " Input Current	5	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1			$\mu \mathrm{A}$
$V_{\text {OUT(1), }}$ Logical "1" Output Voltage	5	$\mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA}$	4.0			V
$V_{\text {OUT(0), }}$ Logical " 0 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$			0.4	V
lout, Hi-Z Output Current	5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	-1		1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
ISOURCE, Output Source Current	5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-6.5			mA
$\mathrm{I}_{\text {SINK, Output Sink Current }}$	5	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			8.0	mA
${ }_{\text {ICC }}$, Supply Current	5			1.3	2.5	mA

AC ELECTRICAL CHARACTERISTICS

fCLK, Clock Frequency	5		10		1333	kHz
$\mathrm{t}_{\mathrm{ACQ}}$, Sample-and-Hold Acquistion				1/2		$1 / \mathrm{f}_{\text {CLK }}$
${ }_{\text {t }}$, Conversion Time		Not including MUX Addressing Time		8		1/f ${ }_{\text {CLK }}$
SNR, Signal to Noise Ratio ML2280	12	$\begin{array}{\|l\|} \hline \mathrm{V}_{\text {IN }}=40 \mathrm{kHz}, 5 \mathrm{~V} \text { Sine. } \\ \mathrm{f}_{\text {CLK }}=1.333 \mathrm{MHz} \\ \left(\mathrm{f}_{\text {SAMPLING }} \cong 120 \mathrm{kHz}\right) . \\ \text { Noise is Sum of All } \\ \text { Nonfundamental } \\ \text { Components up to } 1 / 2 \text { of } \\ \mathrm{f}_{\text {SAMPLING }} \\ \hline \end{array}$		47		dB
THD, Total Harmonic Distortion ML2280	12	$\mathrm{V}_{\mathrm{IN}}=40 \mathrm{kHz}$, 5 V Sine. $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$ ($\mathrm{f}_{\text {SAMPLING }} \cong 120 \mathrm{kHz}$). THD is Sum of 2, 3, 4, 5 Harmonics Relative to Fundamental		-60		dB
MD, Intermodulation Distortion ML2280	12	$\mathrm{V}_{\mathrm{IN}}=\mathrm{f}_{\mathrm{A}}+\mathrm{f}_{\mathrm{B}} \cdot \mathrm{f}_{\mathrm{A}}=40 \mathrm{kHz}$, 2.5 V Sine. $\mathrm{f}_{\mathrm{B}}=39.8 \mathrm{kHz}, 2.5 \mathrm{~V}$ Sine, $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$ (SAMPLING 120 kHz). IMD is $\left(f_{A}+f_{B}\right),\left(f_{A}-f_{B}\right)$, $\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right)$, $\left(f_{A}+2 f_{B}\right),\left(f_{A}-2 f_{B}\right)$ Relative to Fundamental		-60		dB
Clock Duty Cycle	5,10		40		60	\%
$\mathrm{t}_{\text {Set-uf }}$ CS Falling Edge or Data Input Valid to CLK Rising Edge	5		130			ns
thold, Data Input Valid after CLK Rising Edge	5		80			ns

ELECTRICAL CHARACTERISTICS ${ }_{\text {(Continued) }}$

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$, and $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}$

				TYP		LIMIT
PARAMETER	NOTES	CONDITIONS	MIN	NOTE 4	MAX	UNITS

AC ELECTRICAL CHARACTERISTICS

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails $\left(V_{I N}<G N D\right.$ or $\left.V_{I N}>V_{C C}\right)$ the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted error includes offset, full-scale, linearity, multiplexer and sample-and-hold errors.
Note 8: For $\mathrm{V}_{\mathbb{I}}(-) \geqslant \mathrm{V}_{\mathbb{I N}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (See Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater then the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I N}}$ or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum, time the clock is high or the minimum time the clock is low must be at least 300 ns . The maximum time the clock can be high or low is $60 \mu \mathrm{~s}$.
Note 11: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (See Block Diagram) to allow for comparator response time.
Note 12: Because of multiplexer addressing, test conditions for the ML 2283 is $\mathrm{V}_{\mathbb{I N}}=30 \mathrm{kHz}, 5 \mathrm{~V}$ sine ($\mathrm{f}_{\text {SAMPLING }} \approx 89 \mathrm{kHz}$).
$\mathbf{t}_{1} \mathrm{H}$

t_{OH}

Figure 1. High Impedance Test Circuits and Waveforms

ML2280 Start Conversion Timing

Figure 2. Timing Diagrams

ML2280 Timing

*LSB FIRST OUTPUT NOT AVAILABLE ON ML2280

ML2283 Timing

Figure 2. Timing Diagrams (Continued)

Figure 3. Linearity Error vs $\mathbf{f}_{\mathbf{C L K}}$

Figure 4. Linearity Error vs $\mathbf{V}_{\text {REF }}$ Voltage

Figure 5. Unadjusted Offset Error vs $\mathrm{V}_{\text {REF }}$ Voltage

Figure 6. ML2283 Functional Block Diagram

1.0 FUNCTIONAL DESCRIPTION

1.1 Multiplexer Addressing

The design of these converters utilizes a sample data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the " -" input, the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software configurable single ended, or differential options.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single ended or differential. In the differential case, it also assigns the polarity of the analog channels. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a different pair but channel 0 or channel 1 cannot act differentially with any other channel. In addition to selecting the differential mode, the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is illustrated by the MUX addressing codes shown in Table 1.
The MUX address is shifted into the converter via the DI input. Since the ML2280 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 7 illustrates these different input modes.

Table 1. ML2283 MUX Addressing 4 Single-Ended or 2 Differential Channel

Single-Ended MUX Mode

MUX Address				Channel \#			
SGL/	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT		0	1	2	3
DIF		1	0				
1	0	0	1	+			
1	0	1	1			+	
1	1	0	1		+		
1	1	1	1				+

Differential MUX Mode

MUX Address					Channel \#				
SGL/ DIF	ODD/	SIGN	SELECT						
	1	0	0	1	2	3			
0	0	0	1	+	-				
0	0	1	1			+	-		
0	1	0	1	-	+				
0	1	1	1			-	+		

Figure 7. Analog Input Multiplexer Functional
Options for ML2283

1.2 Digital Interface

The block diagram and timing diagrams in Figures 2-5 illustrate how a conversion sequence is performed.
A conversion is initiated when $\overline{\mathrm{CS}}$ is pulsed low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
A clock is applied to the CLK input. On each rising edge of the clock, the data on DI is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on the DI input (all leading edge zeros are ignored). After the start bit, the device clocks in the next 2 to 4 bits for the MUX assignment word.
When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period is used for sample-and-hold settling through the selected MUX channels. The SAR status output goes high at this time to signal that a conversion is now in progress and the DI input is ignored.
The DO output comes out of high impedance and provides a leading zero for this one clock period.
When the conversion begins, the output of the comparator, which indicates whether the analog input is greater than or less than each successive voltage from the internal DAC, appears at the DO output on each falling edge of the clock. This data is the result of the conversion being shifted out (with MSB coming first) and can be read by external logic or $\mu \mathrm{P}$ immediately.
After 8 clock periods, the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
The serial data is always shifted out MSB first during the conversion. After the conversion has been completed, the data is shifted out a second time with LSB first. The ML2280 data is shifted out only once, MSB first.
All internal registers are cleared when the $\overline{C S}$ input is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.
The DI input and DO output can be tied together and con-
trolled through a bidirectional $\mu \mathrm{P}$ I/ O bit with one connection. This is possible because the DI input is only latched in during the MUX addressing interval while the DO output is still in the high impedance state.

1.3 Reference

The ML2280 and ML2283 are intended primarily for use in circuits requiring absolute accuracy. In this type of system, the analog inputs vary between very specific voltage limits and the reference voltage for the A/D converter must remain stable with time and temperature. For ratiometric applications, see the ML2281 and ML2284 which have a $\mathrm{V}_{\text {REF }}$ input that can be tied to V_{CC}.
The voltage applied to the $V_{R E F / 2}$ pin defines the voltage span of the analog input (the difference between VIN + and VIN^{-}) over which the 256 possible output codes apply. A full-scale conversion (an all 1 s output code) will result when the voltage difference between a selected " + " input and " - " input is approximately twice the voltage at the $\mathrm{V}_{\mathrm{REF} / 2} \mathrm{pin}$. This internal gain of 2 from the applied reference to the full-scale input voltage allows biasing a low voltage reference diode from the $5 \mathrm{~V}_{\text {DC }}$ converter supply. To accommodate a 5 V input span, only a 2.5 V reference is required. The output code changes in accordance with the following equation:

$$
\text { Output Code }=256\left(\frac{\mathrm{~V}_{\mathrm{IN}}(+)-\mathrm{V}_{\mathrm{IN}}(-)}{2\left(\mathrm{~V}_{\mathrm{REF}} / 2\right)}\right)
$$

where the output code is the decimal equivalent of the 8 -bit binary output (ranging from 0 to 255) and the term $V_{\text {REF/2 }}$ is the voltage to ground.
The $V_{\text {REF/2 }}$ pin is the center point of a two resistor divider (each resistor is $10 \mathrm{k} \Omega$) connected from V_{CC} to ground. Total ladder input resistance is the parallel combination of these two equal resistors. As shown in Figure 8, a reference diode with a voltage less than $\mathrm{V}_{\mathrm{CC} / 2}$ can be connected without requiring an external biasing resistor if its current requirements meet the indicated level.
The minimum value of $\mathrm{V}_{\text {REF/2 }}$ can be quite small (See Typical Performance Curves) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particu-

Figure 8. Reference Biasing
lar care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1LSB equals $V_{\text {REF/256 }}$).

1.4 Analog Inputs and Sample/Hold

An important feature of the ML2280 and ML2283 is that they can be located at the source of the analog signal and then communicate with a controlling $\mu \mathrm{P}$ with just a few wires. This avoids bussing the analog inputs long distances and thus reduces noise pickup on these analog lines. However, in some cases, the analog inputs have a large common mode voltage or even some noise present along with the valid analog signal.
The differential input of these converters reduces the effects of common mode input noise. Thus, if a common mode voltage is present on both " + " and " - " inputs, such as 60 Hz , the converter will reject this common mode voltage since it only converts the difference between " + " and " -" inputs.
The ML2280 and ML2283 have a true sample-and-hold circuit which samples both " + " and " - " inputs simultaneously. This simultaneous sampling with a true S / H will give common mode rejection and AC linearity performance that is superior to devices where the two input terminals are not sampled at the same instant and where true sample-and-hold capability does not exist. Thus, these A/D converters can reject AC common mode signals from DC-50 kHz as well as maintain linearity for signals from DC-50kHz.
The signal at the analog input is sampled during the interval when the sampling switch is closed prior to conversion start. The sampling window (S / H acquisition time) is $1 / 2$ CLK period wide and occurs $1 / 2$ CLK period before DO goes from high impedance to active low state. When the sampling switch closes at the start of the S / H acquisition time, 8 pF of capacitance is thrown onto the analog input. $1 / 2$ CLK period later, the sampling switch is opened and the signal present at the analog input is stored. Any error on the analog input at the end of the S / H acquisition time will cause additional conversion error. Care should be taken to allow adequate charging or settling time from the source. If more charging or settling time is needed to reduce these analog input errors, a longer CLK period can be used.
For latch-up immunity each analog input has dual diodes to the supply rails, and a minimum of $\pm 25 \mathrm{~mA}$ ($\pm 100 \mathrm{~mA}$ typically) can be injected into each analog input without causing latch-up.

1.5 Zero Error Adjustment

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\text {INMIN }}$ is not ground, a zero offset can be done. The converter can be made to out-
put 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{N}}$ - input at this $\mathrm{V}_{\mathbb{I N M I N}}$ value. This utilizes the differential mode operation of the A / D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathbb{I N}}-$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathbb{N}}+$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2 \mathrm{LSB}$ value $(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF} / 2}=2.500 \mathrm{~V}_{\mathrm{DC}}$).

1.6 Full-Scale Adjustment

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF/2 }}$ input for a digital output code which is just changing from 11111110 to 11111111.

1.7 Adjustment for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathbb{I N}}+$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding " -" input should then be adjusted to just obtain the 00000000 to 00000001 code transition.

The full-scale adjustment should be made by forcing a voltage to the $V_{I N}+$ input which is given by:

$$
\begin{aligned}
\mathrm{V}_{\text {IN }}+\mathrm{fs} \text { adjust } & =\mathrm{V}_{\mathrm{MAX}}-1.5^{*}\left[\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right) / 256\right] \\
\text { where } \mathrm{V}_{\mathrm{MAX}} & =\text { high end of the analog input range } \\
\mathrm{V}_{\mathrm{MIN}} & =\text { low end (offset zero) of the analog range }
\end{aligned}
$$

The $V_{\text {REF }}$ or $V_{\text {CC }}$ voltage is then adjusted to provide a code change from 11111110 to 11111111.

1.8 Shunt Regulator

A unique feature of the ML2283 is the inclusion of a shunt regulator connected from $V+$ terminal to ground which also connects to the V_{CC} terminal (which is the actual converter supply) through a silicon diode as shown in Figure 9. When the regulator is turned on, the $V+$ voltage is clamped at 11 V_{BE} set by the internal resistor ratio. The typical I-V curve of the shunt regulator is shown in Figure 10. It should be noted that before $V+$ voltage is high enough to turn on the shunt regulator (which occurs at about 5.5 V), $35 \mathrm{k} \Omega$ of resistance is observed between $\mathrm{V}+$ and GND. When the shunt regulator is not used, $V+$ pin should be either left floating or tied to GND. The temperature coefficient of the regulator is $-22 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

2.0 APPLICATIONS

8051 Interface and Controlling Software

Figure 9. Shunt Regulator

Figure 10. I-V Characteristic of the Shunt Regulator

Mnemonic			Instruction
START	ANL	P1, \#0F7H	$\begin{aligned} & \text {;SELECTA/D } \\ & \text { (CS }-0) \end{aligned}$
	MOV	B, \#5	;BIT COUNTER $\leftarrow 5$
	MOV	A, \#ADDR	;A \leftarrow MUX BIT
LOOP 1:	RRC	A	;CY \leftarrow ADDRESS BIT
	JC	ONE	$\begin{aligned} & \text {;TEST BIT } \\ & ; B I T-0 \end{aligned}$
ZERO:	ANL	P1, \#OFEH	; $\mathrm{DI} \leftarrow 0$
	SJMP	CONT	;CONTINUE
			;BIT = 1
ONE: CONT:	ORL	P1,\#1	;D1 $\leftarrow 1$
	ACALL	PULSE	;PULSE SK $0 \rightarrow 1 \rightarrow 0$
	DJNZ	B, LOOP 1	;CONTINUE UNTIL DONE
	ACALL	PULSE	;EXTRA CLOCK FOR SYNC
	MOV	B, \#8	;BIT COUNTER $\leftarrow 8$
LOOP 2:	ACALL	PULSE	;PULSE SKO \rightarrow 1 $\rightarrow 0$
	MOV	A, P1	; $\mathrm{CY} \leftarrow \mathrm{DO}$
	RRC	A	
	RRC	A	
	MOV	A, C	; $4 \leftarrow$ RESULT
	RLC	A	;A(0) \leftarrow BIT AND SHIFT
	MOV	C, A	$\text { ; } C \leftarrow \text { RESULT }$
	DJNZ	B, LOOP 2	;CONTINUE UNTIL DONE
RETI			
			;PULSE SUBROUTINE
PULSE:	ORL	P1, \#04	;SK $\leftarrow 1$
	NOP		;DELAY
	ANL RET	P1, \#OFBH	;SK $\leftarrow 0$

APPLICATIONS (Continued)

ML2283 "Stand-Alone" or Evaluation Circuit

Low-Cost Remote Temperature Sensor

Protecting the Input

Digitizing a Current Flow

Operating with Ratiometric Transducers

Span Adjust: $0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 3 \mathrm{~V}$

APPLICATIONS (Continued)

Zero-Shift and Span Adjust: $\mathbf{2 V} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant 5 \mathrm{~V}$

Digital Load Cell

- USES ONE MORE WIRE THAN LOAD CELL ITSELF
- TWO MINI-DIPs COULD BE MOUNTED INSIDE LOAD CELL FOR DIGITAL OUTPUT TRANSDUCER
- ELECTRONIC OFFSET AND GAIN TRIMS RELAX MECHANICAL SPECS FOR GAUGE FACTOR AND OFFSET
- LOW LEVEL CELL OUTPUT IS CONVERTED IMMEDIATELY FOR HIGH NOISE IMMUNITY

Sampling Rate 111 KHz , Data Rate 1.33 MHz

Interfacing ML2280 to TMS320 Series

ORDERING INFORMATION

$\left.\begin{array}{c|c|c|c|c}\hline \text { PART NUMBER } & \begin{array}{c}\text { ALTERNATE } \\ \text { PART NUMBER }\end{array} & \text { TOTAL } & \text { TEMPERATURE } & \text { UNADJUSTED ERROR }\end{array} \begin{array}{c}\text { RANGE }\end{array}\right]$ PACKAGE

SINGLE ANALOG INPUT, 8-PIN PACKAGE

ML2280BMJ		$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J08)
ML2280BIJ		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J08)	
ML2280BCP		0° to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P08)	
ML2280CIJ		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J08)	
ML2280CCP		$\pm 1 \mathrm{SB}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P08)

FOUR ANALOG INPUTS, 14-PIN PACKAGE

ML2283BMJ	ADC0833BJ	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (114)
ML2283BIJ	ADC0833BCJ		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (014)
ML2283BCP	ADC0833BCN	0° to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P14)	
ML2283CIJ	ADC0833CCJ	$\pm 115 B$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J14)
ML2283CCP	ADC0833CCN		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P14)

Serial I/O 8-Bit A/D Converters with Multiplexer Options

GENERAL DESCRIPTION

The ML2281 family are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 8 input channels.
All errors of the sample-and-hold, incorporated on the ML2281 family are accounted for in the analog-to-digital converters accuracy specification.
The voltage reference can be externally set to any value between GND and V_{CC}, thus allowing a full conversion over a relatively small voltage span if desired.
The ML2281 family is an enhanced double polysilicon CMOS pin compatible second source for the ADC0831, ADC0832, ADC0834, and ADC0838 A/D converters. The ML2281 series enhancements are faster conversion time, true sample-andhold function, superior power supply rejection, improved AC common mode rejection, faster digital timing, and lower power dissipation. All parameters are guaranteed over temperature with a power supply voltage of $5 \mathrm{~V} \pm 10 \%$.

FEATURES

- Conversion time $6 \mu \mathrm{~s}$
- Total unadjusted error
$\pm 1 / 2$ LSB or ± 1 LSB
- Sample-and-hold 375 ns acquisition
- 2, 4, or 8-input multiplexer options
- 0 to 5 V analog input range with single 5 V power supply
- Operates ratiometrically or with up to 5 V voltage reference
- No zero or full-scale adjust required
- ML2281 capable of digitizing a $5 \mathrm{~V}, 40 \mathrm{kHz}$ sine wave
- Low power
12.5 mW MAX
- $0.3^{\prime \prime}$ width 8 -, 14 , or 20 -pin DIP
- 20-pin surface mount PCC ML2288
- Superior pin compatible replacement for ADC0831, ADC0832, ADC0834, and ADC0838
- Analog input protection $\quad 25 \mathrm{~mA}(\mathrm{~min})$ per input

BLOCK DIAGRAMS

PIN CONNECTIONS

ML2284 4-Channel MUX
14-PIN DIP

$v+$	1	14	V_{CC}
$\overline{\mathrm{CS}}$	2	13	$\square \mathrm{DI}$
CH0	3	12	$\square \mathrm{Clk}$
CH1	4	11	$\square \mathrm{SARS}$
CH2	5	10	$\square \mathrm{DO}$
CH3	6	9	$\mathrm{V}_{\mathrm{REF}}$
DGND	7	8	$] \mathrm{AGND}$

TOP VIEW

ML2282 2-Channel MUX 8-PIN DIP

ML2288 8-Channel MUX 20-PIN PCC

TOP VIEW

ML2288 8-Channel MUX
20-PIN DIP

TOP VIEW

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
$\mathrm{V}_{\text {CC }}$	Positive supply. 5 volts $\pm 10 \%$	DO	Data out. Digital output which
DGND	Digital ground. Ovolts. All digital inputs and outputs are referenced to this point.		contains result of A/D conversion. The serial data is clocked out on falling edges of CLK.
AGND	Analog ground. The negative reference voltage for A / D converter.	SARS	Successive approximation register status. Digital output which indicates that a conversion is in progress. When SARS goes to 1 , the sampling window is closed and conversion begins. When SARS goes to 0 , conversion is completed. When $\overline{\mathrm{CS}}=1$, SARS is in high impedance state.
$\mathrm{CHO}-7, \mathrm{~V}_{\mathrm{IN}}+, \mathrm{V}_{\mathrm{IN}^{-}}$	Analog inputs. Digitally selected to be single ended $\left(\mathrm{V}_{\mathrm{IN}}\right)$ or; $\mathrm{V}_{\mathrm{IN}}+$ or $\mathrm{V}_{\mathrm{IN}^{-}}$of a differential input. Analog range $=G N D \leqslant V_{\mathbb{I N}} \leqslant V_{C C}$		
COM	Common reference point for analog inputs. A/D conversion is		
	performed on voltage difference between analog input and this common reference point if singleend conversion is specified.	CLK	Clock.Digital input which clocks data in on DI on rising edges and out on DO on falling edges. Also used to generate clocks for A/D conversion.
$V_{\text {REF }}$	Reference. The positive reference voltage for A/D converter.		
$\overline{\mathrm{SE}}$	Shift enable. Input controls whether LSB first bit stream is	D	Data input. Digital input which contains serial data to program the MUX and channel assignments. Chip select. Selects the chip for multiplexer and channel assignment and A/D converison. When $\overline{\mathrm{CS}}=1$, all digital outputs are in high impedance state. When $\overline{\mathrm{CS}}=0$, normal A/D conversion takes place.
	shifted out on serial output DO. If $\overline{S E}=1$, MSB first is shifted out only. If $\overline{\mathrm{SE}}=0$, an MSB first bit stream is shifted out, then a second bit stream with LSB first is shifted out after end of conversion.	$\overline{\mathrm{CS}}$	
V+	Input to the Shunt Regulator.		

ABSOLUTE MAXIMUM RATINGS(Note 1)
Current into $\mathrm{V}+$ 15 mA
Supply Voltage, V_{CC} 6.5 V
Voltage
Logic Inputs -7 V to $\mathrm{V}_{\mathrm{CC}}+7 \mathrm{~V}$
Analog Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current per Pin (Note 2) $\pm 25 \mathrm{~mA}$Storage Temperature$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Package Dissipationat $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)800 mW
Lead Temperature (Soldering 10 sec .)
Dual-In-Line Package (Molded) $260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$
Molded Chip Carrier Package
Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$
Infrared (15 sec.) $220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage, V_{CC}	$4.5 \mathrm{~V}_{D C}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range (Note 3)	$T_{\text {MIN }} \leqslant T_{A} \leqslant T_{\text {MAX }}$
ML2281/2/4/8 BMJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ML2281/2/4/8CMJ	
ML2281/2/4/8 BIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2281/2/4/8 CIJ	
ML2281/2/4/8 BCP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2281/2/4/8 CCP	

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$, and $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$

PARAMETER	NOTES	CONDITIONS	$\begin{aligned} & \text { ML2281B, ML2282B } \\ & \text { ML2284B, ML2288B } \end{aligned}$			$\begin{aligned} & \text { ML2281C, ML2282C } \\ & \text { ML2284C, ML2288C } \end{aligned}$			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 4 \end{gathered}$	MAX	MIN	TYP NOTE 4	MAX	

CONVERTER AND MULTIPLEXER CHARACTERISTICS

Total Unadjusted Error	5,7	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$			$\pm 1 / 2$			± 1	LSB
Reference Input Resistance	5,8		6	10	15	6	10	15	k Ω
Common-Mode Input Range	5,9		$\begin{aligned} & \text { GND } \\ & -0.05 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.05 \end{gathered}$	$\begin{aligned} & \text { GND } \\ & -0.05 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.05 \end{gathered}$	V
DC Common-Mode Error	6	Common Mode Voltage GND to $\mathrm{V}_{\mathrm{CC} / 2}$		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB
AC Common-Mode Error	6	Comon Mode Voltage GND to $\mathrm{V}_{\mathrm{CC} / 2}$, 0 to 50 kHz			$\pm 1 / 4$			$\pm 1 / 4$	LSB
DC Power Supply Sensitivity	6	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~V}_{\mathrm{REF}} \leqslant \mathrm{~V}_{\mathrm{CC}}+0.1 \mathrm{~V} \end{aligned}$		$\pm 1 / 32$	$\pm 1 / 4$		$\pm 1 / 32$	$\pm 1 / 4$	LSB
AC Power Supply Sensitivity	6	$100 \mathrm{mV}_{\text {P. } \mathrm{P},} 25 \mathrm{kHz}$ sine on V_{CC}			$\pm 1 / 4$			$\pm 1 / 4$	LSB
Change in Zero Error from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to Internal Zener Operation	6	$\begin{aligned} & 15 \mathrm{~mA} \text { into } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{N} . \mathrm{C} . \mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V} \end{aligned}$		$\pm 1 / 2$			$\pm 1 / 2$		LSB
V_{Z} I Internal Diode Regulated Breakdown (at $\mathrm{V}+$)		15 mA into $\mathrm{V}+$		6.9			6.9		V
V + Input Resistance	5		20	35		20	35		k Ω
$\mathrm{I}_{\text {Off }}$ Off Channel Leakage Current	5,10	On Channel $=V_{\mathrm{CC}}$ Off Channel $=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
		$\begin{array}{\|l\|l} \hline \text { On Channel }=0 \mathrm{~V} \\ \text { Off Channel }=V_{C C} \\ \hline \end{array}$			+1			+1	$\mu \mathrm{A}$
I_{On}, On Channel Leakage Current	5,10	$\begin{array}{\|l\|l\|} \hline \text { On Channel }=0 \mathrm{~V} \\ \text { Off Channel }=V_{C C} \\ \hline \end{array}$	-1			-1			$\mu \mathrm{A}$
		On Channel $=V_{C C}$ Off Channel $=0 \mathrm{~V}$			+1			+1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS ${ }_{\text {(Continued) }}$
Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$, and $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$

PARAMETER	NOTES	CONDITIONS	$\begin{aligned} & \text { ML2281B, ML2282B } \\ & \text { ML2284B, ML2288B } \end{aligned}$			$\begin{aligned} & \text { ML2281C, ML2282C } \\ & \text { ML2284C, ML2288C } \end{aligned}$			UNITS
			MIN	TYP NOTE 4	MAX	MIN	TYP NOTE 4	MAX	

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\text {IN(1) }}$, Logical " 1 " Input Voltage	5		2.0			2.0			V
$V_{\text {IN }(0)}$, Logical " 0 " Input Voltage	5				0.8			0.8	V
$I_{\text {IN(1), Logical " } 1 \text { " Input }}$ Current	5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$			1			1	$\mu \mathrm{A}$
IN(0), Logical " 0 " Input Current	5	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1			-1			$\mu \mathrm{A}$
$V_{\text {OUT(1), }}$ Logical " 1 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=-2 \mathrm{~mA}$	4.0			40			V
$\mathrm{V}_{\text {OUT(0) }}$, Logical " 0 " Output Voltage	5	$\mathrm{l}_{\text {OUT }}=2 \mathrm{~mA}$			0.4			0.4	V
lout, HI-Z Output Current	5	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-1		1	-1		1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
I SOURCE , Output Source Current	5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-6.5			-6.5			mA
I SINK, Output Sink Current	5	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			8.0			8.0	mA
${ }^{\mathrm{I} C}$, Supply Current ML2281, ML2284, ML2288	5			1.3	2.5		1.3	2.5	mA
ML2282	5	Includes Ladder Current		1.8	35		1.8	3.5	mA

PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 4 \end{gathered}$	MAX	LIMIT UNITS
AC ELECTRICAL CHARACTERISTICS						
$\mathrm{f}_{\text {CLK, }}$ Clock Frequency	5		10		1333	kHz
$\mathrm{t}_{\text {ACQ }}$, Sample-and-Hold Acquistion				$1 / 2$		1/f CLK
${ }^{\text {c }}$, Conversion Time		Not including MUX Addressing Time		8		$1 / \mathrm{f}_{\text {CLK }}$
SNR, Sıgnal to Noıse Ratıo ML2281	12	$\mathrm{V}_{\mathrm{IN}}=40 \mathrm{kHz}, 5 \mathrm{~V}$ Sine. $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$ (fsAMPLING $\cong 120 \mathrm{kHz}$). Noise is Sum of All Nonfundamental Components up to $1 / 2$ of $\mathrm{f}_{\text {SAMPLING }}$		47		dB
THD, Total Harmonic Distortion ML2281	12	$\mathrm{V}_{\mathrm{iN}}=40 \mathrm{kHz}, 5 \mathrm{~V}$ Sine. $\mathrm{f}_{\mathrm{CLK}}=1.333 \mathrm{MHz}$ (SAMPLING $=120 \mathrm{kHz}$). THD is Sum of $2,3,4,5$ Harmonics Relative to Fundamental		-60		dB

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, V_{C C}=V_{\text {REF }}=5 \mathrm{~V} \pm 10 \%$, and $f_{C L K}=1.333 \mathrm{MHz}$

| PARAMETER | NOTES | CONDITIONS | MIN | TYP | NOTE 4 | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | UIMIT

AC ELECTRICAL CHARACTERISTICS (Continued)

IMD, Intermodulation Distortion ML2281	12			-60		dB
Clock Duty Cycle	5,11		40		60	\%
$\mathrm{t}_{\text {SET-UP, }} \overline{\mathrm{CS}}$ Falling Edge or Data Input Valid to CLK Rising Edge	5		130			ns
$t_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge	5		80			ns
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$-CLK Falling Edge to Output Data Valid	5,13	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Data MSB First Data LSB First		$\begin{aligned} & 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 200 \\ & 110 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{0 \mathrm{H}},-$ Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS HıZ	6	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { (see }$ High Impedance Test Circuits)		40	90	ns
	5	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		80	160	ns
$\mathrm{C}_{\mathbb{I}}$, Capacitance of Logic Input				5		pF
$\mathrm{C}_{\text {OUT }}$ Capacitance of Logic Outputs				5		pF

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{I N}}<G N D\right.$ or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}_{\mathrm{CC}}\right)$ the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testıng, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Total unadjusted error includes offset, full-scale, linearity, multiplexer and sample-and-hold errors.
Note 8: Cannot be tested for ML2282.
Note 9: For $\mathrm{V}_{\mathbb{I N}}(-) \geqslant \mathrm{V}_{\mathbb{I N}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater then the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I N}}$ or $\mathrm{V}_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a mınimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 10: Leakage current is measured with the clock not switching.
Note 11: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum, time the clock is high or the minimum time the clock is low must be at least 300 ns . The maximum time the clock can be high or low is $60 \mu \mathrm{~s}$.
Note 12: Because of multiplexer addressıng, test conditions for the ML2282 would be $\mathrm{V}_{\mathrm{IN}}=34 \mathrm{kHz}, 5 \mathrm{~V}$ sine ($\mathrm{f}_{\text {SAMPLING }} \approx 102 \mathrm{kHz}$); ML2284 $\mathrm{V}_{\mathrm{IN}}=32 \mathrm{kHz}, 5 \mathrm{~V}$ sine ($\mathrm{f}_{\text {SAMPLING }} \approx 95 \mathrm{kHz}$); ML2288 $\mathrm{V}_{\text {IN }}=30 \mathrm{kHz}, 5 \mathrm{~V}$ sine ($\mathrm{f}_{\text {SAMPLING }} \approx 89 \mathrm{kHz}$).
Note 13: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
$\mathbf{t}_{\mathbf{H}}$
$\mathbf{t}_{\mathbf{1 H}}$

Figure 1. High Impedance Test Circuits and Waveforms

ML2281 Start Conversion Timing

Figure 2. Timing Diagrams

ML2282 Timing

ML2284 Timing

Figure 2. Timing Diagrams (Continued)

Figure 2. Timing Diagrams (Continued)

Figure 3. Linearity Error vs $\mathbf{f}_{\text {CLK }}$

Figure 4. Linearity Error vs $V_{\text {REF }}$ Voltage

Figure 5. Unadjusted Offset Error vs $\mathrm{V}_{\text {REF }}$ Voltage

*SOME OF THESE FUNCTIONS/PINS ARE NOT AVAILABLE WITH OTHER OPTIONS.
NOTE 1: FOR THE ML2284 DI IS INPUT DIRECTLY TO THE D INPUT OF SELECT 1. SELECT 0 IS FORCED TO A " 1 ". FOR THE ML2282, DI IS INPUT DIRECTIY TO THE D INPUT OF ODD/SIGN. SELECT 0 IS FORCED TO A " 1 " AND SELECT 1 IS FORCED TO A" 0 ".

Figure 6. ML2288 Functional Block Diagram

1.0 FUNCTIONAL DESCRIPTION

1.1 Multiplexer Addressing

The design of these converters utilizes a sample data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a " - " input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the " -" input, the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software configurable single ended, differential, or pseudo differential options. The pseudo differential option will convert the difference between the voltage at any analog input and a common terminal. One converter package can now accomodate ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single ended or differential. In the differential case, it also assigns the polarity of the analog channels. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a different pair but channel 0 or channel 1 cannot act differentially with any other channel. In addition to selecting the differential mode, the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is illustrated by the MUX addressing codes shown in Tables 1, 2, and 3.
The MUX address is s. nto the converter via the DI input. Since the ML2281 colnains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line on the ML2288 can be used as a pseudo differential input. In this mode, the voltage on the COM pin is treated as the " - " input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single supply applications where the analog circuitry may be biased at a potential other than ground and the output signals are all referred to this potential.
Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 7 illustrates these different input modes.

Table 1. ML2288 MUX Addressing 8 Single-Ended or 4 Differential Channels

Single-Ended MUX Mode

MUX Address					Analog Single-Ended Channel \#							
SGL/ DIF	ODD/	SELECT										
	SIGN	1	0	0	1	2	3	4	5	6	7	COM
1	0	0	0	+								-
1	0	0	1			+						-
1	0	1	0					+				-
1	0	1	1							+		-
1	1	0	0		+							-
1	1	0	1				+					-
1	1	1	0						+			-
1	1	1	1								+	-

Differential MUX Mode

MUX Address				Analog Differential Channel-Pair \#							
SGL/	$\begin{array}{\|l\|} \hline \text { ODD/ } \\ \text { SIGN } \end{array}$	SELECT		0		1		2		3	
$\overline{\text { DIF }}$		1	0	0	1	2	3	4	5	6	7
0	0	0	0	+	-						
0	0	0	1			+	-				
0	0	1	0					+	-		
0	0	1	1							+	-
0	1	0	0	-	+						
0	1	0	1			-	+				
0	1	1	0					-	+		
0	1	1	1							-	+

Table 2. ML2284 MUX Addressing 4 Single-Ended or 2 Differential Channel

Single-Ended MUX Mode

MUX Address			Channel \#			
$\frac{\mathrm{SGL} /}{\overline{\mathrm{DIF}}}$	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT	0	1	2	3
		1				
1	0	0	+			
1	0	1			+	
1	1	0		+		
1	1	1				+

COM is internally tied to A GND
Differential MUX Mode

MUX Address				Channel \#			
SGL/ DIF	ODD/	SIGN	SELECT				
$n n$	0	1	2	3			
0	0	0	+	-			
0	0	1			+	-	
0	1	0	-	+			
0	1	1			-	+	

Table 3. ML2282 MUX Addressing 2 Single-Ended or 1 Differential Channel

Single-Ended MUX Mode

MUX Address		Channel \#	
SGL/ $\overline{\mathrm{DIF}}$	ODD/SIGN	0	1
1	0	+	
1	1		+

COM is internally tied to GND
Differential MUX Mode

MUX Address		Channel \#	
SGL/位F	ODD/SIGN	0	1
0	0	+	-
0	1	-	+

1.2 Digital Interface

The block diagram and timing diagrams in Figures 2-5 illustrate how a conversion sequence is performed.
A conversion is initiated when $\overline{\mathrm{CS}}$ is pulsed low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
A clock is applied to the CLK input. On each rising edge of the clock, the data on Dl is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on the DI input (all leading edge zeros are ignored). After the start bit, the device clocks in the next 2 to 4 bits for the MUX assignment word.
When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period is used for sample \& hold settling through the selected MUX channels. The SAR status output goes high at this time to signal that a conversion is now in progress and the Dl input is ignored.
The DO output comes out of High impedance and provides a leading zero for this one clock period.
When the conversion begins, the output of the comparator, which indicates whether the analog input is greater than or less than each successive voltage from the internal DAC, appears at the DO output on each falling edge of the clock. This data is the result of the conversion being shifted out (with MSB coming first) and can be read by external logic or $\mu \mathrm{P}$ immediately.
After 8 clock periods, the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
The serial data is always shifted out MSB first during the conversion. After the conversion has been completed, the data can be shifted out a second time with LSB first, depending on level of $\overline{S E}$ input. For the case of ML2288, if $\overline{\mathrm{SE}}=1$, the data is shifted out MSB first during the conversion only. If $\overline{S E}$ is brought low before the end of conversion (which is signalled by the high to low transition of SARS), the data is shifted out again immediately after the end of conversion; this time LSB first. If $\overline{S E}$ is brought low after end of conversion, the LSB first data is shifted out on falling edges of clock after $\overline{\mathrm{SE}}$ goes low. For ML2282 and 2284, $\overline{\text { SE }}$ is internally tied low, so data is shifted out MSB first, then shifted out a second time LSB first at end of conversion. For ML2281, $\overline{\text { SE }}$ is internally tied high, so data is shifted out only once MSB first.
All internal registers are cleared when the $\overline{\mathrm{CS}}$ input is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.
The DI input and DO output can be tied together and controlled through a bidirectional $\mu \mathrm{P} \mathrm{I/O}$ bit with one connection. This is possible because the DI input is only latched in during the MUX addressing interval while the DO output is still in the high impedance state.

Figure 7. Analog Input Multiplexer Functional Options for ML2288

1.3 Reference

The voltage applied to the reference input to these converters defines the voltage span of the analog input the difference between $V_{I N} \max$ and $\left.V_{I N} m i n\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance, typically 10 k . This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC}. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source.
The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be quite small to allow direct conversion of inputs with less than 5 volts of voltage span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter.

1.4 Analog Inputs and Sample/Hold

An important feature of the ML2281 family of devices is that they can be located at the source of the analog signal and then communicate with a controlling $\mu \mathrm{P}$ with just a few wires. This avoids bussing the analog inputs long distances and thus reduces noise pickup on these analog lines. However, in some cases, the analog inputs have a large common mode voltage or even some noise present along with the valid analog signal.
The differential input of these converters reduces the effects of common mode input noise. Thus, if a common mode voltage is present on both " + " and " - " inputs, such as 60 Hz , the converter will reject this common mode voltage since it only converts the difference between " + " and " - " inputs.
The ML2281 family have a true sample and hold circuit which samples both " + " and " - " inputs simultaneously. This simultaneous sampling with a true S / H will give common mode rejection and AC linearity performance that is superior to devices where the two input terminals are not sampled at the same instant and where true sample and hold capability does not exist. Thus, the ML2281 family of devices can reject AC common mode signals from DC- 50 kHz as well as maintain linearity for signals from DC-50kHz.
The signal at the analog input is sampled during the interval when the sampling switch is closed prior to conversion start. The sampling window (S / H acquisition time) is $1 / 2 \mathrm{CLK}$ period wide and occurs $1 / 2$ CLK period before DO goes from high impedance to active low state. When the sampling switch closes at the start of the S / H acquisition time, 8 pF of
capacitance is thrown onto the analog input. $1 / 2$ CLK period later, the sampling switch is opened and the signal present at the analog input is stored. Any error on the analog input at the end of the S / H acquisition time will cause additional conversion error. Care should be taken to allow adequate charging or settling time from the source. If more charging or settling time is needed to reduce these analog input errors, a longer CLK period can be used.
The ML2281X family has improved latchup immunity. Each analog input has dual diodes to the supply rails, and a minimum of $+/-25 \mathrm{~mA}(+/-100 \mathrm{~mA}$ typically) can be injected into each analog input without causing latchup.

1.5 Dynamic Performance Signal-to-Noise-Ratio

Signal-to-noise ratio (SNR) is the measured signal-to-noise at the output of the converter. The signal is the RMS magnitude of the fundamental. Noise is the RMS sum of all the nonfundamental signals up to half the sampling frequency. SNR is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical SNR for a sine wave is given by

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus for ideal 8 -bit converter, $\mathrm{SNR}=49.92 \mathrm{~dB}$.

Harmonic Distortion

Harmonic distortion is the ratio of the RMS sum of harmonics to the fundamental. Total harmonic distortion (THD) of the ML2281 Series is defined as

$$
20 \log \frac{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}\right)^{1 / 2}}{V_{1}}
$$

where V_{1} is the RMS amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} are the RMS amplitudes of the individual harmonics.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, f_{A} and f_{B}, any active device with nonlinearities will create distortion products, of order ($m+n$), at sum and difference frequencies of $m f_{A}+n f_{B}$, where $m, n=0,1,2,3, \ldots$. Intermodulation terms are those for which m or n is not equal to zero. The (IMD) intermodulation distortion specification includes the second order terms ($f_{A}+f_{B}$) and ($f_{A}-f_{B}$) and the third order terms $\left(2 f_{A}+f_{B}\right),\left(2 f_{A}-f_{B}\right),\left(f_{A}+2 f_{B}\right)$ and $\left(f_{A}-2 f_{B}\right)$ only.

1.6 Zero Error Adjustment

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathbb{I N}} \min$ is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{N}}$ - input at this $\mathrm{V}_{\mathbb{I N}}$ min value. This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V_{IN} - input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathbb{N}}+$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\left.V_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

1.7 Full-Scale Adjustment

The full-scale adjustment can be made by applying a differential input voltage which is $1 \frac{1}{2}$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $V_{\text {REF }}$ input or $V_{\text {CC }}$ for a digital output code which is just changing from 11111110 to 11111111.

1.8 Adjustment for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. $A \mathrm{~V}_{1 \mathrm{~N}}+$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding " - " input should then be adjusted to just obtain the 00000000 to 00000001 code transition.
The full-scale adjustment should be made by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}+$ input which is given by:
$\mathrm{V}_{\mathrm{IN}}+$ fs adjust $=\mathrm{V}_{\text {max }}-1.5^{*}\left[\left(V_{\text {max }}-\mathrm{V}_{\mathrm{min}}\right) / 256\right]$
where $V_{\max }=$ high end of the analog input range Vmin = low end (offset zero) of the analog range The $V_{\text {REF }}$ or $V_{C C}$ voltage is then adjusted to provide a code change from 11111110 to 11111111.

1.9 Shunt Regulator

A unique feature of ML2288 and ML2284 is the inclusion of a shunt regulator connected from $\mathrm{V}+$ terminal to ground which also connects to the V_{CC} terminal (which is the actual converter supply) through a silicon diode as shown in Figure 8. When the regulator is turned on, the $V+$ voltage is clamped at $11 \mathrm{~V}_{\mathrm{BE}}$ set by the internal resistor ratio. The typical I-V curve of the shunt regulator is shown in Figure 9. It should be noted that before $V+$ voltage is high enough to turn on the shunt regulator (which occurs at about 5.5 V), $35 \mathrm{k} \Omega$ of resistance is observed between $\mathrm{V}+$ and GND. When the shunt regulator is not used, $V+$ pin should be either left floating or tied to GND. The temperature coefficient of the regulator is $-22 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Figure 8. Shunt Regulator

Figure 9. I-V Characteristic of the Shunt Regulator

2.0 APPLICATIONS

8051 Interface and Controlling Software

Mnemonic			Instruction
START	ANL	P1, \#0F7H	$\begin{aligned} & \text {;SELECTA/D } \\ & (\mathrm{CS}=0) \end{aligned}$
	MOV	B, \#5	;BIT COUNTER $\leftarrow 5$
	MOV	A, \#ADDR	; $\mathrm{A} \leftarrow$ MUX BIT
LOOP 1:	RRC JC	A ONE	;CY \leftarrow ADDRESS BIT ;TEST BIT
			;BIT $=0$
ZERO:	ANL	P1, \#0FEH	; $\mathrm{DI} \leftarrow 0$
	SJMP	CONT	;CONTINUE
			; $\mathrm{BIT}=1$
ONE: CONT:	ORL	P1, \#1	;D1 $\leftarrow 1$
	ACALL	PULSE	;PULSE SK $0 \rightarrow 1 \rightarrow 0$
	DJNZ	B, LOOP 1	;CONTINUE UNTIL DONE
	ACALL	PULSE	;EXTRA CLOCK FOR SYNC
	MOV	B, \#8	;BIT COUNTER $\leftarrow 8$
LOOP 2:	ACALL	PULSE	;PULSE SK $0 \rightarrow 1 \rightarrow 0$
	MOV RRC	$\begin{aligned} & \mathrm{A}, \mathrm{P} 1 \\ & \mathrm{~A} \end{aligned}$; $\mathrm{CY} \leftarrow \mathrm{DO}$
	RRC	A	
	MOV	A, C	;A \leftarrow RESULT
	RLC	A	;A(0) \leftarrow BIT AND SHIFT
	MOV	C, A	; $\mathrm{C} \leftarrow$ RESULT
	DJNZ	B, LOOP 2	;CONTINUE UNTIL DONE
RETI			
			;PULSE SUBROUTINE
PULSE:	ORL	P1, \#04	;SK $\leftarrow 1$
	NOP		;DELAY
	ANL RET	P1, \#OFBH	;SK $\leftarrow 0$

APPLICATIONS (Continued)

APPLICATIONS (Continued)

Obtaining 9-Bit Resolution

CONTROLLER PERFORMS A ROUTINE TO DETERMINE WHICH INPUT POLARITY PROVIDES A NON-ZERO OUTPUT CODE. THIS INFORMATION PROVIDES THE EXTRA BITS.

Protecting the Input

Digitizing a Current Flow

Operating with Ratiometric Transducers

Span Adjust: $0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathbb{I N}} \leqslant 3 \mathrm{~V}$

APPLICATIONS (Continued)

Zero-Shift and Span Adjust: $2 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant 5 \mathrm{~V}$

Digital Load Cell

- USES ONE MORE WIRE THAN LOAD CELL ITSELF
- TWO MINI-DIPS COULD BE MOUNTED INSIDE LOAD CELL FOR DIGITAL OUTPUT TRANSDUCER
- ELECTRONIC OFFSET AND GAIN TRIMS RELAX MECHANICAL SPECS FOR GAUGE FACTOR AND OFFSET
- LOW LEVEL CELL OUTPUT IS CONVERTED IMMEDIATELY FOR HIGH NOISE IMMUNITY

Convert 8 Thermocouples with only One Cold-Junction Compensator

USES THE PSEUDO-DIFFERENTIAL MODE TO KEEP THE DIFFER-
ENTIAL INPUTS CONSTANT
WITH CHANGES IN REFERENCE TEMPERATURE (Tref).

APPLICATIONS (Continued)

4mA-20mA Current Loop Converter

Isolated Data Converter

Interfacing ML2281 to TMS320 Series

ORDERING INFORMATION

PART NUMBER	ALTERNATE PART NUMBER	TOTAL UNADJUSTED ERROR	TEMPERATURE RANGE	PACKAGE
SINGLE ANALOG INPUT, 8-PIN PACKAGE				
ML2281BMJ ML2281BIJ ML2281BCP ML2281CIJ ML2281CCP	ADC0831BJ ADC0831BCJ ADC0831BCN ADC0831CC ADC0831CCN	$\pm 1 / 2$ LSB	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	HERMETIC DIP (J08) HERMETIC DIP (008) MOLDED DIP (P08) HERMETIC DIP (J08) MOLDED DIP (P08)
		± 1 LSB		
TWO ANALOG INPUTS, 8-PIN PACKAGE				
ML2282BMJ ML2282BIJ ML2282BCP ML2282CIJ ML2282CCP	ADC0832BJ ADC0832BCJ ADC0832BCN ADC0832CCJ ADC0832CCN	$\pm 1 / 2$ LSB	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	HERMETIC DIP (J08) HERMETIC DIP (008) MOLDED DIP (P08) HERMETIC DIP (J08) MOLDED DIP (P08)
		± 1 LSB		

FOUR ANALOG INPUTS, 14-PIN PACKAGE

ML2284BMJ	ADC0834BJ	$\pm 1 / 2 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J14)
ML2284BIJ	ADC0834BCJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J14)	
ML2284BCP	ADC0834BCN		0° to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P14)
ML2284CIJ	ADC0834CCJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J14)	
$M 12284 C C P$	ADC0834CCN	$\pm 1 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P14)

EIGHT ANALOG INPUTS, 20-PIN PACKAGE

ML2288BMJ	ADC0838BJ	$\pm 1 / 2 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2288BIJ	ADC0838BCJ		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2288BCP	ADC0838BCN		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2288BCQ	ADC0838BCV		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2288CIJ	ADC0838CC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)	
ML2288CCP	ADC0838CCN		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2288CCQ	ADC0838CCV		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)

Selectable Dual 3V/3.3V/5V 8-Bit DACs

GENERAL DESCRIPTION

The ML2330 Selectable Dual 3V/3.3V/5V 8-bit DACs are dual voltage-output digital-to-analog converters which can be independently programmed or powered down to conserve power. The devices are intended for use in portable or low power 3 V systems where space is critical.

Programming access to the DACs is provided over a high speed ($10 \mathrm{Mb} / \mathrm{s}$), 3-wire serial interface which is compatible to the SPITM and Microwire. ${ }^{\mathrm{TM}}$ In addition to independent programming of the DAC output voltages, each device may be powered down independent of the other DAC to conserve power. Each DAC draws 2 mA of maximum quiescent current when operating, and typically less than $1 \mu \mathrm{~A}$ when powered down.

The device comes in an 8-pin SOIC package and in a special Extended Commercial temperature range $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$.

FEATURES

- $3 \mathrm{~V} \pm 10 \%, 3.3 \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%$ operation
- Low supply current (4 mA max)
- Individual and full power down (down to $1 \mu \mathrm{~A}$)
- $10 \mathrm{Mb} / \mathrm{s}$ three-wire serial interface, compatible to SPI and Microwire
- 8-pin SOIC packages
- Available in Extended Commercial Temperature range $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	DIN	Data In
2	$S_{\text {CLK }}$	Serial Clock
3	$\overline{\text { CS }}$	Chip Select
4	DOUT	Data Out
5	GND	Ground
6	OUT B	Output of DAC B
7	OUT A	Output of DAC A
8	$V_{\text {CC }}$	Positive Supply

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC}) .. 6.0 V
GND ... 0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Logic Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current per Pin
$\pm 25 \mathrm{~mA}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
750 mW
Lead Temperature (Soldering 10 sec .)
SOIC $150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage (V_{CC})
2.7V to 5.5 V

Temperature Range $-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, V_{C C}=3.3 \mathrm{~V} \pm 10 \%, F_{C L K}=10 \mathrm{MHz} R_{L}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Converter			8			bits
Resolution	ILE				± 1	LSB
Integral Linearity Error	DLE				± 1	LSB
Differential Linearity Error		.	15	20	25	mV
Offset Error					± 3	$\% \mathrm{FS}$
Gain Error						

Analog Output

Output Drive Current	louTPP	$@ 00 ~ \& ~ F F$	2			mA
Power Supply Rejection Ratio	PSRR	$@ 00 \&$ FF	-40			dB

Digital and DC

Logic Input Low	V_{IL}				0.5	V
Logic Input High	V_{IH}		2.0			V
Logic Input Low Current	I_{IL}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	-1			$\mu \mathrm{~A}$
Logic Input High Current	I_{IH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{VCC}$			1	$\mu \mathrm{~A}$
Logic Output Low	V_{OL}	$\mathrm{I}=3.2 \mathrm{~mA}$			0.4	V
Logic Output High	V_{OH}	$\mathrm{I}=0.4 \mathrm{~mA}$	2.4			V
Supply Current	I_{CC}	$\mathrm{R}_{\mathrm{L}}=\infty$		2.5	4	mA
Power Down Current		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$			1	$\mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			5	$\mu \mathrm{~A}$

AC Performance

Settling Time	t_{s}	$\pm 1 / 2$ LSB		5	10	$\mu \mathrm{~s}$
Slew Rate				1.4		$\mathrm{~V} / \mathrm{\mu s}$
Crosstalk			60			dB

TIMING CHARACTERISTICS
$V C C=3.3 \mathrm{~V} \pm 10 \%, C_{L}=50 \mathrm{pF}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Converter						
$\overline{\mathrm{CS}}$ Fall to $\mathrm{S}_{\text {CLK }}$ Setup Time	$\mathrm{t}_{\text {css }}$		20			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time	${ }^{\text {t }}$ CSH		50			ns
$\mathrm{D}_{\text {IN }}$ to $\mathrm{S}_{\text {CLK }}$ Rise Setup Time	$t_{\text {DS }}$		20			ns
$D_{\text {IN }}$ to $S_{\text {CLK }}$ Rise Hold Time	$t_{\text {DH }}$		20			ns
$\mathrm{S}_{\text {CLK }}$ Frequency	$\mathrm{f}_{\text {CLK }}$			10		MHz
$\mathrm{S}_{\text {CLK }}$ Duty Cycle			40		60	\%
$\mathrm{S}_{\text {CLK }}$ to DOUT Valid	too			30		ns

Figure 1A. Connections for Microwire.

Figure 1B. Connections for SPI.

Figure 1C. Interface Timing

Figure 2. Detail Interface Timing

FUNCTIONAL DESCRIPTION

SERIAL INTERFACE

The ML2330 communicates with microprocessors through a synchronous, full-duplex, 3-wire interface (figure 1A \& B). At power on, the control registers are cleared and both DACs have high impedance outputs. Data timing shown in figure 1C is sent MSB first and can be transmitted in one 4 -bit and one 8 -bit packet or in one 12 -bit word. If a 16 -bit control word is used, the first four bits are ignored. The serial clock ($\mathrm{S}_{\mathrm{CLK}}$) synchronizes the data transfer. Data is transmitted and received simultaneously. Figure 2 shows detailed serial interface timing. Note that the clock should be low between updates. DOUT does not go into a high impedance state if the clock idles or $\overline{\mathrm{CS}}$ is high.
Serial data is clocked into the data registers in MSB-first format, with the address and configuration information preceding the actual DAC data. Data is sampled on the $\mathrm{S}_{\text {CLK }}$'s rising edge while $\overline{\mathrm{CS}}$ is low. Data at DOUT is clocked out 12.5 clock cycles later, on the $\mathrm{S}_{\text {CLK }}$'s falling edge.
Chip select $(\overline{\mathrm{CS}})$ must be low to enable the read or write operation. If $\overline{C S}$ is high, the interface is disabled and DOUT remains unchanged. CS must go low at least 10 ns before the first clock pulse to properly clock in the first bit. With $\overline{\mathrm{CS}}$ low, data is clocked into the ML2330's internal shift register on the rising edge of the external serial clock. $\mathrm{S}_{\text {CLK }}$ can be driven at rates up to 10 MHz .

SERIAL INPUT DATA FORMAT AND CONFIGURATION CODES

The 12 -bit serial input format shown in Figure 3 comprises two DAC address bits (A1, A0), two power down control bits (P1, P0) and eight bits of data (D7 . . D0).

$$
\text { DOUT } \leftarrow \text { A1 A0 P1 D7...D0 } \longleftarrow \text { DIN }
$$

Figure 3. Serial Input Format

The 4-bit address/control code configures the DAC as shown in Table 3.

A1	A0	Function
0	0	No operation
0	1	Select control bits and DAC A
1	0	Select control bits and DAC B
1	1	Select control bits and both DACs

Table 3.1 Address Selection

P1	P0	Function
0	0	Normal
0	1	Power down DAC A
1	0	Power down DAC B
1	1	Power down entire chip

Table 3.2 Power Down Selection

DAC OPERATION

The DACs are implemented using an array of equal current sources that are decoded linearly for the four most significant bits to improve differential linearity and to reduce output glitch around major carries. A voltage difference between on-board bandgap reference voltage and GND is converted to a reference current using an internal resistor to set up the appropriate current level in the DACs. The DACs output current is then converted to a voltage output by an output buffer and a resistive network. The matching among the on-chip resistors preserves the gain accuracy between these conversions.

VOLTAGE REFERENCE

A bandgap voltage reference is incorporated on the ML2330. It is trimmed for Zero Temperature Coefficient at $25^{\circ} \mathrm{C}$ to minimize output voltage drift over the specified operating temperature range.

OUTPUT BUFFER AND GAIN SETTING

The output buffer converts the DAC output current to a voltage output using a resistive network. The outputs can swing from GND +0.02 V to either $2.02 \mathrm{~V}(3 \mathrm{~V})$ or 4.02 V (5 V). The DAC transfer function is:

$$
V_{\text {OUT }}=\frac{K \times D A T A}{256}+0.02
$$

where $K=2$ if $V_{C C}=3 V$ and $K=4$ if $V_{C C}=5 V$
In the $3 V$ operation, the amplifier outputs will settle to $1 / 2$ LSB in $10 \mu \mathrm{~s}$ when loads are greater than $1 \mathrm{~K} \Omega(2 \mathrm{~K} \Omega$ for 5 V operation) and capacitive loads smaller than 100 pF .

VCC SUPPLY RANGE

ML2330 can be operated at $3 \mathrm{~V} \pm 10 \%$ (ML2330-2), 3.3 V $\pm 10 \%$ (ML2330-3) or $5 \mathrm{~V} \pm 10 \%$ (ML2330-5).

POWER DOWN MODE

There are three power down modes in the ML2330. By clearing the control bits P1-P0 (Table 3.2), the entire chip will be powered down with a supply current less than $5 \mu \mathrm{~A}$. Individual DACs can also be powered down to save power.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML2330ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -PIN SOIC (S08N)

Single Supply, Programmable 8-Bit D/A Converters

GENERAL DESCRIPTION

The ML2340 and ML2350 are CMOS voltage output, 8-bit D/A converters with an internal voltage reference and a $\mu \mathrm{P}$ interface. These devices are designed to be powered by a single supply, although they can be powered from dual power supplies. The output voltage swings above zero scale $\left(V_{\mathrm{ZS}}\right)$ in the unipolar mode or around zero scale $\left(\mathrm{V}_{\mathrm{ZS}}\right)$ in the bipolar mode, both with programmable gain.
V_{ZS} can be set to any voltage from AGND to 2.25 V below V_{CC}. The digital and analog grounds, DGND and AGND, are totally independent of each other. DGND can be set to any voltage from AGND to 4.5 V below V_{CC} for easy interfacing to standard TTL and CMOS logic families.

The high level of integration and versatility of the ML2340 and ML2350 makes them ideal for a wide range of applications in hard disk drives, automotive, telecom, and a variety of general purpose industrial. One specific intended application is controlling a hard disk voice coil.
The internal reference of the ML2340 provides a 2.25 V or 4.50 V output for use with A/D converters that use a single $5 \mathrm{~V} \pm 10 \%$ power supply, while the ML2350 provide a 2.50 V or 5.00 V reference output.

FEATURES

- Programmable output voltage gain settings of 2,1 , $1 / 2,1 / 4$ provide 8 -, $9-10$-, or 11 -bit effective resolution around zero
- AGND to $V_{\text {CC }}$ output voltage swing
- Bipolar or unipolar output voltage
- 4.5 V to 13.2 V single supply or $\pm 2.25 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}$ dual-supply operation
- Transparent latch allows microprocessor interface with 30 ns setup time
- Data flow through mode
- Voltage reference output

ML2340
2.25 V or 4.50 V

ML2350 ..2.50V or 5.00V
■ Nonlinearity $\pm 1 / 4$ LSB or $\pm 1 / 2$ LSB

- Output voltage settling time over temperature and supply voltage tolerance

Within 1 V of V_{CC} and $A G N D$
$2.5 \mu \mathrm{~s}$ max
Within 100 mV of V_{CC} and $\mathrm{AGND}5 \mu_{\mathrm{s}}$ max

- TTL and CMOS compatible digital inputs

■ Low supply current (5 V supply) 5 mA max

- 18-pin DIP or surface mount SOIC
- Operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN CONNECTIONS

ML2340
ML2350
18-Pin DIP (P18)

$\mathrm{vcc}^{\text {C }}$	$1 \bigcirc 10$	$\mathrm{v}_{\text {ref in }}$
vout	11	$\mathrm{V}_{\text {ref out }}$
vzs	12	gain 1
AGND	13	gaino
DGND	14	Xfer
DB0	15]DB7
DB1	16]DB6
DB2	17	JDB5
DB3	$9 \quad 18$	DB4

ML2340
ML2350
18-Pin SOIC (S18W)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	$V_{\text {CC }}$	Positive supply.
2	$\mathrm{V}_{\text {OUT }}$	Voltage output of the D / A converter. $V_{\text {OUT }}$ is referenced to $V_{Z S}$.
3	V_{ZS}	Zero Scale Voltage. $V_{\text {OUT }}$ is referenced to $\mathrm{V}_{\mathrm{ZS}} . \mathrm{V}_{\mathrm{ZS}}$ is normally tied to AGND in the unipolar mode or to mid-supply in the bipolar mode. When the device is operated from a single power supply, V_{ZS} has a maximum current requirement of $-300 \mu \mathrm{~A}$ in the bipolar mode.
4	AGND	Analog ground.
5	DGND	Digital ground. This is the ground reference level for all digital inputs. The range is AGND $<\left(\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}\right)$. DGND is normally tied to system ground.
6	DB0	Data input - Bit 0 (LSB).
7	DB1	Data input - Bit 1.

PIN\#	NAME	FUNCTION
8	DB2	Data input - Bit 2.
9	DB3	Data input - Bit 3.
10	DB4	Data input - Bit 4.
11	DB5	Data input - Bit 5.
12	DB6	Data input - Bit 6.
13	DB7	Data input - Bit 7 (MSB).
14	XFER	Transfer enable input. The data is transferred into the transparent latch at the high level of XFER.
15	GAIN 0	Digital gain setting input 0 .
16	GAIN 1	Digital gain setting input 1.
17	$V_{\text {REF OUT }}$	Voltage reference output. $V_{\text {REF OUT }}$ is referenced to AGND. $V_{\text {REF OUT }}$ is set to 2.5 V and 5.0 V in a low-voltage and high-voltage operation, respectively for the ML2350; 2.25 V and 4.5 V for the ML2340.
18	$V_{\text {REF IN }}$	Voltage reference input. $\mathrm{V}_{\text {REF IN }}$ is referenced to AGND.

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage V_{CC} with Respect to AGND 14.2 V
DGND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$V_{\text {ZS }}, V_{\text {REF IN }}$ -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Logic Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current per Pin (Note 2) $\pm 25 \mathrm{~mA}$
Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) ... 875 mWLead Temperature (Soldering 10 sec .)Dual-In-Line Package (Molded)$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$
Molded Small Outline IC Package
Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$
Infrared (15 sec.) $220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

(Note 1)

Supply Voltage, V_{CC} $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $13.2 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range (Note 3) $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ ML2340BMJ, ML2340CMJ ML2350BMJ, ML2350CMJ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ML2340BIJ, ML2350BIJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ML2340BCP, ML2340CCP ML2350BCP, ML2350CCP ML2340BCS, ML2340CCS ML2350BCS, ML2350CCS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, V_{C C}-A G N D=5 \mathrm{~V} \pm 10 \%$ and $12 \mathrm{~V} \pm 10 \%, V_{\text {REF }}$ IN for $M L 2340=2.25 \mathrm{~V}$ and 4.50 V , for ML2350 $\mathrm{V}_{\text {REF }} \mathrm{N}=2.50 \mathrm{~V}$ and $5.00 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}$ load is $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\text {REF }}$ load is $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ and $\underline{C_{L}}=100 \mathrm{pF}$ and input control signals with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 20 \mathrm{~ns}$.

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2340XIX, ML2350XMX ML2350XIX, ML2350XMX			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \\ \hline \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	

Converter and Programmable Gain Amplifier

Converter Resolution	5		8			8			Bits
Integral Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX	5	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX	5	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$			$\begin{aligned} & \pm^{1 / 4} \\ & \pm^{1 / 2} \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Mode Select Unipolar Output Bipolar Output	5	V_{ZS} with respect to AGND	$\begin{gathered} 0 \\ 1.50 \end{gathered}$		$\left\|\begin{array}{c} 1.0 \\ \mathrm{~V}_{\mathrm{CC}}-2.25 \end{array}\right\|$	$\begin{gathered} 0 \\ 1.50 \end{gathered}$		$\left\|\begin{array}{c} 1.0 \\ \mathrm{v}_{\mathrm{CC}}-2.25 \end{array}\right\|$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Offset Error Unipolar Mode	5	Figure 1 $\begin{aligned} & \text { GAIN }=1 / 4,1 / 2,1 \\ & \text { GAIN }=2 \end{aligned}$			± 10 ± 20			$\begin{aligned} & \pm 12 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bipolar Mode	5	Figure 1 $\text { GAIN }=1 / 4,1 / 2,1,2$			$\begin{aligned} & \pm 10 \text { plus } \\ & \pm 2^{1 / 2} \text { LSB } \end{aligned}$			$\begin{array}{\|} \pm 10 \text { plus } \\ \pm 2^{1 / 2} \text { LSB } \end{array}$	mV
Gain Error Unipolar Mode Bipolar Mode	5	Figure 1 $\begin{aligned} & \text { GAIN }=1 / 4,1 / 2,1,2 \\ & \text { GAIN }=1 / 4,1 / 2,1,2 \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \text { \%FS } \\ & \% \text { FS } \end{aligned}$

Reference

$V_{\text {REF OUT }}$ Voltage ML2340BXX	5	$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{array}\right\|$	$\begin{aligned} & 2.23 \\ & 2.22 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.23 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.32 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
ML2340CXX		$\begin{array}{\|lr\|} \hline \mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \hline \end{array}$	$\begin{aligned} & 4.48 \\ & 4.46 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.54 \end{aligned}$	$\begin{aligned} & 4.48 \\ & 4.43 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.57 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{array}{\|lr\|} \hline V_{\mathrm{CC}} \leq 7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{array}$	$\begin{aligned} & 2.22 \\ & 2.20 \end{aligned}$	2.25	$\begin{aligned} & 2.29 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.28 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{array}$	$\begin{aligned} & 4.45 \\ & 4.40 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 4.35 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.65 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2350BXX	5	$\begin{array}{lr} \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{array}$	$\begin{aligned} & 2.48 \\ & 2.47 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 2.43 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.57 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \hline \end{array}$	$\begin{aligned} & 4.98 \\ & 4.96 \end{aligned}$	5.00	$\begin{aligned} & 5.02 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & 5.02 \\ & 5.10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2350CXX		$\begin{array}{\|lr\|} \hline \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \hline \end{array}$	$\begin{aligned} & 2.45 \\ & 2.44 \end{aligned}$	2.50	$\begin{aligned} & 2.55 \\ & 2.58 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 2.42 \end{aligned}$	2.50	$\begin{aligned} & 2.55 \\ & 2.59 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
		$\begin{array}{\|lr} \hline \mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{array}$	$\begin{aligned} & 4.95 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & 5.05 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.85 \end{aligned}$	5.00	$\begin{aligned} & 5.05 \\ & 5.15 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Temperature Coefficient $V_{\text {Ref out }}$				50			50		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {REF }}$ Output Current	5		0.75		5	0.75		5	mA
$V_{\text {REF out }}$ Power Supply Rejection Ratio	5	$100 \mathrm{mV} \mathrm{P}_{\text {P-p }} 1 \mathrm{kHz}$ Sinewave on V_{CC}	-40	-60		-40	-60		dB

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2340XIX, ML2350XMX ML2350XIX, ML2350XMX			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	

$V_{\text {REF IN }}$ and $V_{\text {ZS }}$

$V_{\text {REF IN }}$ Input Range	5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 8.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 8.75 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { AGND+2 } \\ \text { AGND+2 } \end{array}$	$\left.\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}-1.75 \\ \mathrm{AGND}+7 \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \mathrm{AGND}+2 \\ \mathrm{AGND}+2 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.75 \\ & \mathrm{AGND}+7 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {ref in }}$ DC Input Resistance	5		10		10		$\mathrm{M} \Omega$
$\mathrm{V}_{\text {ZS }}$ Voltage Range	5,8	$\mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V}$	AGND	$\mathrm{V}_{\text {CC }}-2.25$	AGND	$\mathrm{V}_{\mathrm{CC}}-2.25$	V

Analog Output

$V_{\text {OUT }}$ Output Swing Unipolar Mode	5,8	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$	$\begin{gathered} \text { AGND+ } \\ 0.01 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.5$	$\begin{array}{\|c\|} \mathrm{AGND}+ \\ 0.01 \end{array}$		$\mathrm{V}_{\mathrm{CC}}-0.5$	V
Bipolar Mode		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$	$\begin{gathered} \hline \text { AGND+ } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\begin{array}{\|c\|} \hline \text { AGND+ } \\ 1.0 \end{array}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	V
	5	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$	$\begin{gathered} \hline \text { AGND+ } \\ 0.1 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	$\begin{array}{\|c\|} \hline \text { AGND }+ \\ 0.1 \end{array}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$	$\begin{gathered} \mathrm{AGND}+ \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\begin{array}{\|c\|} \hline \text { AGND + } \\ 1.0 \end{array}$		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.0}$	V
V OUT Output Current	5	AGND $+1 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$	-10		+10	-10		+10	mA
Power Supply Rejection Ratio		100 mV P_p, 1 kHz sinewave on V_{CC}		-60			-60		dB

Digital and DC

$V_{\text {IN }(0)}$ Logical " 0 " Input Voltage	5				0.8			0.8	V
$V_{\text {IN(1) }}$ Logical "1" Input Voltage	5		2.0			2.0			V
$I_{\mathrm{IN}(0)}$ Logical " 0 " Input Current	5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{DGND}$	-1			-1			$\mu \mathrm{A}$
$I_{\mathrm{IN}(1)}$ Logical "1" Input Current	5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			1			1	$\mu \mathrm{A}$
Supply Current, Bipolar Mode $I_{C C}, V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $l_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current	5	$V_{C C}=5 \mathrm{~V} \pm 10 \%$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$
$I_{C C}, V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{\text {VZS }}, V_{\text {ZS }}$ Current	5	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} \pm 10 \%$		-90	$\begin{aligned} & 9.3 \\ & -9.0 \\ & -300 \end{aligned}$		-90	$\begin{gathered} 9.3 \\ \\ -9.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	NOTES	CONDITIONS	ML2340XCX, ML2350XCX			ML2340XIX, ML2350XMX ML2350XIX, ML2350XMX			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (NOTE 4) } \end{array}$	MAX	

Digital and DC (Continued)

Supply Current, Unipolar Mode $I_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{V Z S}, V_{Z S}$ Current	5	$V_{C C}=5 \mathrm{~V} \pm 10 \%$			$\begin{gathered} 6.0 \\ \\ -4.3 \\ -1.7 \end{gathered}$			$\begin{gathered} 6.0 \\ -4.3 \\ -1.7 \end{gathered}$	mA mA mA
$I_{C C}, V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{\text {VZs, }} \mathrm{V}_{\mathrm{ZS}}$ Current	5	$V_{C C}=12 \mathrm{~V} \pm 10 \%$			$\begin{aligned} & 11.0 \\ & -7.3 \\ & -3.7 \end{aligned}$			$\begin{aligned} & 11.0 \\ & \\ & -7.3 \\ & -3.7 \end{aligned}$	mA mA mA

AC Performance

Settling Tıme ${ }^{\text {ts }} 1$	5	Figure 2, Output Step of AGND + 1 V to $V_{C C}-1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$		1.2	2.5		1.2	3.0	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{s} 2}$		Output Step of AGND +100 mV to $\mathrm{V}_{\mathrm{CC}}-100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$		2.5	5		2.5	6	$\mu \mathrm{s}$
t_{53}		Output Step of ± 1 LSB			1			1	$\mu \mathrm{s}$
t_{54}, Gain Change		Change of Any Gain Setting		1.1	2.5		1.1		$\mu \mathrm{s}$
$t_{\text {t }}$ (EER, XFER Pulse Width	5	Figure 3	60			60			ns
tobs, DB0-DB7 Setup Time	5	Figure 3	40			45			ns
$t_{\text {DBH }}$, DB0-DB7 Hold Time	5	Figure 3	0			0			ns
$t_{\text {RESET }}$, Power-On Reset Time	6				16			16	$\mu \mathrm{s}$

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be imparred. All voltages unless otherwise specified are measured with respect to analog ground
Note 2: When the voltage at any pin exceeds the power supply rals ($V_{I N}<A G N D$ or $V_{I N}>V_{C C}$) the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Supply current and analog ground current are specified with the digital inputs stable and no load on V Vut.
Note 8: In unipolar operation with V_{ZS} and AGND tied together, digital codes that represent an analog value of less than 100 mV from AGND should be avoided.

Figure 1. Gain and Offset Error

Figure 2. Settling Time

Figure 3. Single Buffered Mode

1.0 FUNCTIONAL DESCRIPTION

1.1 D/A CONVERTER

The D/A converter is implemented using an array of equal current sources that are decoded semi linearly for the four most significant bits to improve differential linearity and to reduce output glitch around major carries. See Figure 4.

The input voltage reference of the D/A converter is the difference between $V_{\text {REF IN }}$ and AGND. This difference voltage is converted to a reference current using an internal resistor to set up the appropriate current level in
the D / A converter. The D / A converter output current is then converted to a voltage output by an output buffer and a resistive network. The matching among the on-chip resistors preserves the gain accuracy between these conversions.

The D/A converter can be used in a multiplying mode by modulating the reference input within the specified $V_{\text {REF IN }}$ range.

Figure 4. D/A Converter Implementation

1.2 SINGLE-SUPPLY vs. DUAL-SUPPLY OPERATION

ML2340 and ML2350 can be powered from a single supply ranging from 4.5 V to 13.2 V or dual supplies ranging from $\pm 2.25 \mathrm{~V}$ to $\pm 6.6 \mathrm{~V}$.

The internal digital and analog circuitry is powered between $V_{C C}$ and AGND. The range of DGND is $\mathrm{AGND} \leq \mathrm{DGND} \leq \mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$ with the logic thresholds set between 0.8 V and 2.0 V above DGND (standard TTL logic level $)$. The range of V_{ZS} is $\mathrm{AGND} \leq \mathrm{V}_{\mathrm{ZS}} \leq\left(\mathrm{V}_{\mathrm{CC}}-\right.$ 2.25 V).

1.3 UNIPOLAR AND BIPOLAR OUTPUT VOLTAGE SWING

ML2340 and ML2350 can operate in either unipolar bipolar output voltage mode. Unipolar/bipolar mode selection is determined by comparing the zero scale voltage (V_{Zs}) of these devices to a precise internal reference that is referred to $\mathrm{AGND} . \mathrm{V}_{\mathrm{Zs}}$ is ideally the voltage that will be produced at the DAC voltage output when the digital input data is set to all " 0 's" Unipolar mode is selected when $V_{Z S}$ is lower than 1.00 volt, and bipolar mode is selected when V_{ZS} is greater than 1.50 volts.

1.3.1 Unipolar Output Mode

In the unipolar mode, $\mathrm{V}_{\text {OUT }}$ swings above V_{ZS}. Ideally the 00000000 code results in an output voltage of V_{Zs}, and the 11111111 code results in an output voltage of $V_{F S} \times 255 / 256$, where $V_{F S}$ is the full-scale voltage determined by $\mathrm{V}_{\text {REF IN }}$ and the gain setting.

1.3.2 Bipolar Output Mode

In the bipolar mode, $\mathrm{V}_{\text {OUT }}$ swings around V_{Zs}. The input data is in 2 's complement binary format. Ideally, the 00000000 code results in an output voltage of V_{ZS}; the 10000000 code results in an output voltage of $\left(\mathrm{V}_{\mathrm{ZS}}-\mathrm{V}_{\mathrm{FS}}\right)$; and the 01111111 results in an output voltage of $\left(\mathrm{V}_{\mathrm{ZS}}+\right.$ $\left.V_{F S} 127 / 128\right)$, where $V_{F S}$ is the full scale output voltage determined by $\mathrm{V}_{\text {REF IN }}$ and the gain setting.

1.4 OUTPUT BUFFER AND GAIN SETTING

The output buffer converts the D/A output current to a voltage output using a resistive network with proper gain setting determined by the GAIN 0 and GAIN 1 inputs. There are four possible gain settings for unipolar output voltage mode and bipolar output voltage mode as listed below:

Unipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Output Swing Relative to $\mathbf{V}_{\mathbf{Z S}}$
0	0	$1 / 4$	$\mathrm{~V}_{\text {REF IN }} \times 1 / 4$
0	1	$1 / 2$	$\mathrm{~V}_{\text {REF IN }} \times 1 / 2$
1	0	1	$\mathrm{~V}_{\text {REF IN }} \times 1$
1	1	2	$\mathrm{~V}_{\text {REF IN }} \times 2$

Bipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Outputp-P
0	0	$1 / 4$	$\mathrm{~V}_{\text {REF } \operatorname{IN}} \times 1 / 8$
0	1	$1 / 2$	$\mathrm{~V}_{\text {REF IN }} \times 1 / 4$
1	0	1	$\mathrm{~V}_{\text {REF IN }} \times 1 / 2$
1	1	2	$\mathrm{~V}_{\text {REF IN }} \times 1$

The output buffer can source or sink as much as 10 mA of current with an output voltage of at least 1 V from either V_{CC} or AGND. As the output voltage approaches V_{CC} or AGND the current sourcing/sinking capability of the output buffer is reduced. The output buffer can still swing down to within 10 mV of AGND and up to within 40 mV of V_{CC} with a 100 K load at $\mathrm{V}_{\text {OUT }}$ to $A G N D$ in the unipolar operation. In the bipolar operation, the output buffer swing is limited to about 100 mV from either rails.

1.5 VOLTAGE REFERENCE

A bandgap voltage reference is incorporated on the ML2340 and ML2350. Two reference voltages can be produced by each device. An internal comparator monitors the power supply voltage to determine the selection of the reference voltage. A reference voltage of 2.25 volts on the ML2340 and 2.50 volts on the ML2350 is selected when the supply voltage is less than approximately 7.50 volts. Otherwise, a reference voltage of 4.50 volts and 5.00 volts is selected. To prevent the comparator from oscillating between the two selections, avoid operation with a power supply between 70 and 8.0 volts.

The bandgap reference is trimmed for zero Temperature Coefficient (TC) at $35^{\circ} \mathrm{C}$ to minimize output voltage drift over the specified operating temperature range.

The internal reference is buffered for use by the DAC and external circuits. The reference buffer will source more than 5 mA of current and sink more than 1 mA of current. With $\mathrm{V}_{\text {REF IN }}$ connected to $\mathrm{V}_{\text {REF OUT, }}$, the following output voltage ranges of the DAC are obtained:

ML2340

Gain Setting	$V_{\text {REF }}=2.25 \mathrm{~V}$ with $V_{\text {CC }} \leq 7.0 \mathrm{~V}$		$V_{\text {REF }}=4.5 \mathrm{~V}$ with $V_{\text {CC }} \geq 8.0 \mathrm{~V}$	
	Unipolar	Bipolar	Unipolar	Bipolar
	0 to 0.562 V	-0.281 V to +0.281 V	0 to 1.125 V	-0.562 V to +0.562 V
$1 / 2$	0 to 1.125 V	-0.562 V to +0.562 V	0 to 2.250 V	-1.125 V to +1.125 V
1	0 to 2.250 V	-1.125 V to +1.125 V	0 to 4.500 V	-2.250 V to
2	0 to 4.500 V	-2.250 V to +2.250 V	0 to 9.000 V	-4.500 V to

ML2350

Gain Setting	$\begin{gathered} \mathrm{V}_{\text {REF }}=2.50 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} V_{\text {REF }}=5.0 \mathrm{~V} \text { with } \\ V_{\text {CC }} \geq 8.0 \mathrm{~V} \end{gathered}$	
	Unipolar	Bipolar	Unipolar	Bipolar
$1 / 4$	0 to 0.625 V	$\begin{array}{\|c\|} \hline-0.3125 \mathrm{~V} \text { to } \\ +0.3125 \mathrm{~V} \end{array}$	0 to 1.25 V	$\begin{aligned} & -0.625 \mathrm{~V} \text { to } \\ & +0.625 \mathrm{~V} \end{aligned}$
1/2	0 to 1.250 V	$\begin{array}{\|c\|} \hline-0.6250 \mathrm{~V} \text { to } \\ +0.6250 \mathrm{~V} \end{array}$	0 to 2.50 V	$\begin{aligned} & -1.250 \mathrm{~V} \text { to } \\ & +1.250 \mathrm{~V} \end{aligned}$
1	0 to 2.500 V	$\begin{array}{\|l\|} \hline-1.2500 \mathrm{~V} \text { to } \\ +1.2500 \mathrm{~V} \end{array}$	0 to 5.00 V	$\begin{aligned} & -2.500 \mathrm{~V} \text { to } \\ & +2.500 \mathrm{~V} \end{aligned}$
2	0 to 5.000 V	$\left\lvert\, \begin{aligned} & -2.5000 \mathrm{~V} \text { to } \\ & +2.5000 \mathrm{~V} \end{aligned}\right.$	0 to 10.00 V	$\begin{aligned} & -5.000 \mathrm{~V} \text { to } \\ & +5.000 \mathrm{~V} \end{aligned}$

An external reference can alternatively be used on $V_{\text {REF IN }}$ to set the desired full scale voltage. The linearity of the D/A converter depends on the reference used, however. To insure integral linearity at an 8 -bit level, a reference voltage of no less than 2 V and no more than $7 \mathrm{~V}(2.75 \mathrm{~V}$ for operation with a low-voltage power supply) should be used.

1.6 DIGITAL INTERFACE

The digital interface of the ML2340 and ML2350 consist of a transfer input (XFER) and eight data inputs, DB0 through DB7. The digital interface operates in one of the two modes:

1.6.1 Single-Buffered Mode

Digital input data on DB0-DB7 is passed through an 8-bit transparent input latch on the rising edge of XFER. Because the outputs of the latch are connected directly to the inputs of the internal DAC, changes on the digital data while the XFER input is still active will cause an immediate change in the DAC output voltage. To hold the input data on the latch, the XFER input needs deactivated while the data is still stable.

1.6.2 Flow-Through Mode

In the flow-through mode, the input latch is bypassed. When XFER is set to logic " 1 ", a change of data inputs, DB0-DB7, results in an immediate update of the output voltage.

1.7 POWER-ON-RESET

The ML2340 and ML2350 have an internal power-onreset circuit to initialize the device when power is first applied to the device. The power-on-reset interval of typically 8μ s begins when the supply voltage, V_{CC} reaches approximately 2.0 V . During the power-on-reset interval, the transparent latch is reset to all " 0 ' s ".

2.0 TYPICAL APPLICATIONS

Figure 5. Using 4.50V Reference of D / A for Reference of A / D Using Single $5 V V_{C C} \pm 10 \%$

Figure 6. TMS320 Interface

Figure 7. Single 5V Supply Unipolar VOUT

TYPICAL APPLICATIONS (Continued)

Figure 8. Single 12V Supply, Bipolar V OUt with 11-Bits Resolution Around Zero

Figure 9. Hard Disc Drive Servo Coil Driver Providing 13-Bit Effective Resolution

ORDERING INFORMATION

$\mathrm{V}_{\text {REF OUT }}=2.50 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

ML2350BMJ $/ 5$	$\pm 1 / 4 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J18) HL2350BIJ/5
ML2350BCP/5		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P18) ML2350BCQ/5
ML2350CMJ/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {REF OUT }}=4.50 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$

ML2340BMJ/12	$\pm 1 / 4 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J18) ML2340BIJ/12
Hermetic DIP (J18)			
ML2340BCP/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P18) ML2340BCQ/12
ML2340CMJ/12	$\pm 1 / 2 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q18)
$\mathrm{ML2340CCP} / 12$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J18)
$\mathrm{ML2340CCQ} / 12$		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P18)

$V_{\text {REF OUT }}=5.00 \mathrm{~V}$ with $V_{C C}=12 \mathrm{~V}$

ML2350BMJ/12	$\pm 1 / 4 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J18) ML2350BIJ/12
ML2350BCP/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J18)
ML2350BCQ/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P18)
ML2350CMJ/12	$\pm 1 / 2 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Molded PCC (Q18)
ML2350CCP/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Hermetic DIP (J18)
ML2350CCQ/12	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P18)	

Single Supply, Programmable 8-Bit D/A Converters

GENERAL DESCRIPTION

The ML2341 and ML2351 are CMOS voltage output, 8 -bit D/A converters with an internal voltage reference and a $\mu \mathrm{P}$ interface. These devices are designed to be powered by a single supply, although they can be powered from dual power supplies. The output voltage swings above zero scale $\left(\mathrm{V}_{\mathrm{ZS}}\right)$ in the unipolar mode or around zero scale (V_{Zs}) in the bipolar mode, both with programmable gain. V_{ZS} can be set to any voltage from AGND to 2.25 V below V_{CC}. The digital and analog grounds, DGND and AGND, are totally independent of each other. DGND can be set to any voltage from AGND to 4.5 V below V_{CC} for easy interfacing to standard TTL and CMOS logic families.
The high level of integration and versatility of the ML2341 and ML2351 makes them ideal for a wide range of applications in hard disk drives, automotive, telecom, and a variety of general purpose industrial. One specific intended application is controlling a hard disk voice coil.

The ML2341 provides a 2.25 V or 4.50 V reference output for use with A/D converters that use a single $5 \mathrm{~V} \pm 10 \%$ power supply, while the ML2351 provides a 2.50 V or 5.00 V reference output.

FEATURES

- Programmable output voltage gain settings of 2,1 , $1 / 2,1 / 4$ provide 8 -, 9 -, 10 -, or 11 -bit effective resolution around zero
- AGND to V_{CC} output voltage swing
- Bipolar or unipolar output voltage
- 4.5 V to 13.2 V single supply or $\pm 2.25 \mathrm{~V}$ to $\pm 6.5 \mathrm{~V}$ dual-supply operation
- Single- and double-buffered, edge-triggered interface with 30 ns write time, 0 ns hold time
- Voltage reference output
ML2341
2.25 V or 4.50 V

ML2351
2.50 V or 5.00 V

■ Nonlinearity $\ldots \ldots \ldots \ldots{ }^{1 / 4}$ LSB or $\pm 1 / 2$ LSB

- Output voltage settling time over temperature and supply voltage tolerance

Within 1 V of V_{CC} and AGND
$2.5 \mu \mathrm{~s}$ max
Within 100 mV of V_{CC} and AGND $5 \mu \mathrm{~s}$ max

- TTL and CMOS compatible digital inputs
- Low supply current ($\mathrm{V}_{\text {REF }} \leq 2.5 \mathrm{~V}$) 5 mA max
- 20-pin DIP or PCC
- Operating temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN CONNECTIONS

ML2341	ML2341
ML2351	ML2351
20-Pin DIP	20-Pin PCC

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
1	$\mathrm{V}_{\text {REF IN }}$	Voltage reference input. $\mathrm{V}_{\text {REF IN }}$ is referenced to AGND.
2	$V_{C C}$	Positive supply.
3	$\mathrm{V}_{\text {OUT }}$	Voltage output of the D/A converter. $V_{\text {OUT }}$ is referenced to V_{ZS}.
4	$\mathrm{V}_{\text {ZS }}$	Zero Scale Voltage. $\mathrm{V}_{\text {OUt }}$ is referenced to V_{Zs}. V_{ZS} is normally tied to AGND in the unipolar mode or to mid-supply in the bipolar mode. When the device is operated from a single power supply, V_{ZS} has a maximum current requirement of $-300 \mu \mathrm{~A}$ in the bipolar mode.
5	AGND	Analog ground.
6	DGND	Digital ground. This is the ground reference level for all digital inputs. The range is AGND $<\left(\mathrm{V}_{\mathrm{CC}}\right.$ -4.5 V). DGND is normally tied to system ground.
7	DB0	Data input - Bit 0 (LSB).
8	DB1	Data input - Bit 1.
9	DB2	Data input - Bit 2.
ABSOLUTE MAXIMUM RATINGS (Note 1)		
Supply Voltage $\mathrm{V}_{\text {CC }}$ with Respect to AGND 14.2V		
Logic Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$		
Input Current per Pin (Note 2) $\pm 25 \mathrm{~mA}$		
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) 875mW		
Lead Temperature (Soldering 10 sec.$)$		
Dual-In-Line Package (Plastic) $2600^{\circ} \mathrm{C}$		
Dual-In-Line Package (Ceramic) 300 ${ }^{\circ} \mathrm{C}$		
Molded Chip Carrier Package		
Vapor Phase (60 sec.) $215^{\circ} \mathrm{C}$		
Infrared (15 sec.) $220{ }^{\circ} \mathrm{C}$		

(Note 1)

PIN \#	NAME	FUNCTION
10	DB3	Data input - Bit 3.
11	DB4	Data input - Bit 4.
12	DB5	Data input - Bit 5.
13	DB6	Data input - Bit 6.
14	DB7	Data input - Bit 7 (MSB).
15	XFER	Transfer enable input. In the double buffered mode of operation, the data in the input latch is transferred to the D/A converter at the high level of XFER.
16	$\overline{W R}$	Write enable input. While $\overline{\mathrm{CS}}$ is low, data inputs are latched into the input latch on the rising edge of WR.
17	$\overline{\mathrm{CS}}$	Chip select input. Active low input which enables latching in the data on the rising edge of WR.
18	GAIN 0	Digital gain setting input 0 .
19	GAIN 1	Digital gain setting input 1.
20	$V_{\text {REF }}$ OUT	Voltage reference output. $V_{\text {REF }}$ out is referenced to AGND. $\mathrm{V}_{\text {REF OUT }}$ is set to 2.5 V and 5.0 V in a low-voltage and high-voltage operation, respectively for the ML2351; 2.25 V and 4.5 V for the ML2341.

OPERATING CONDITIONS
 (Note 1)

Temperature Range (Note 3) $\ldots \ldots \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ ML2341BMJ, ML2341CMJ ML2351BMJ, ML2351CMJ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ML2341BIJ, ML2341CIJ ML2351BIJ, ML2351CIJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ML2341BCQ, ML2341CCQ ML2351BCQ, ML2351CCQ ML2341BCP, ML2341CCP
ML2351BCP, ML2351CCP
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }} \mathrm{V}_{\mathrm{CC}}-\mathrm{AGND}=5 \mathrm{~V} \pm 10 \%$ and $12 \mathrm{~V} \pm 10 \%$ (Note 9),
$\mathrm{V}_{\text {REF IN }}$ for ML2341 $=2.25 \mathrm{~V}$ and 4.50 V , for ML2351 $\mathrm{V}_{\text {REF }} \mathrm{IN}=2.50 \mathrm{~V}$ and 5.00 V , $\mathrm{V}_{\text {OUT }}$ load is $R_{\mathrm{L}}=1 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,
$V_{\text {REF }}$ load is $R_{L}=1 K$ and $C_{L}=100 \mathrm{pF}$ and input control signals with $t_{R}=t_{F} \leq 20 \mathrm{~ns}$.

			ML2341XCX, ML2351XCX			ML2341XIX, ML2341XMX ML2351XIX, ML2351XMX			UNITS
PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	

Converter and Programmable Gain Amplifier

Converter Resolution	5		8			8			Bits
Integral Linearity Error ML2341BXX, ML2351BXX ML2341CXX, ML2351CXX	5	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error ML2341BXX, ML2351BXX ML2341CXX, ML2351CXX	5	GAIN $=2,1,1 / 2$, or $1 / 4$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$			$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Mode Select Unipolar Output Bipolar Output	5	V_{ZS} with respect to AGND	$\begin{gathered} 0 \\ 1.50 \end{gathered}$		$\begin{array}{\|c\|} 1.0 \\ \mathrm{~V}_{\mathrm{CC}}-2.25 \\ \hline \end{array}$	$\begin{gathered} 0 \\ 1.50 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} 1.0 \\ \mathrm{~V}_{\mathrm{CC}}-2.25 \\ \hline \end{array}$	$\begin{aligned} & V \\ & V \end{aligned}$
Offset Error Unıpolar Mode	5	$\begin{aligned} & \text { Figure } 1 \\ & \text { GAIN }=1 / 4,1 / 2,1 \\ & \text { GAIN }=2 \end{aligned}$			$\begin{aligned} & \pm 10 \\ & \pm 20 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 24 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Bipolar Mode	5	Figure 1 $\text { GAIN }=1 / 4,1 / 2,1,2$			$\left\|\begin{array}{cc} \pm 10 & \text { plus } \\ \pm 21 / 2 & \text { LSB } \end{array}\right\|$			$\left\|\begin{array}{cc} \pm 10 & \text { plus } \\ \pm 21 / 2 & \text { LSB } \end{array}\right\|$	mV
Gain Error Unipolar Mode Bipolar Mode	5	Figure 1 $\text { GAIN }=1 / 4,1 / 2,1,2$ $\text { GAIN }=1 / 4,1 / 2,1,2$		$\begin{aligned} & \pm .5 \\ & \pm .5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$		$\begin{aligned} & \pm .5 \\ & \pm .5 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \text { \%FS } \\ & \% \text { FS } \end{aligned}$

Reference

$V_{\text {Ref out }}$ Voltage ML2341BXX/5	5	$\left\|\begin{array}{lr} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}\right\|$	$\begin{aligned} & 2.23 \\ & 2.22 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.23 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.27 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
ML2341CXX/5		$\begin{array}{\|lr\|} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}} \end{array}$	$\begin{aligned} & 2.22 \\ & 2.20 \end{aligned}$	2.25	$\begin{aligned} & 2.29 \\ & 2.30 \end{aligned}$	$\begin{aligned} & 2.22 \\ & 2.18 \end{aligned}$	2.25	$\begin{aligned} & 2.28 \\ & 2.32 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2351BXX/5	5	$\begin{array}{\|lr\|} \hline V_{C C}=5.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \hline \end{array}$	$\begin{aligned} & 2.48 \\ & 2.47 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 2.43 \end{aligned}$	2.50	$\begin{aligned} & 2.52 \\ & 2.57 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
ML2351CXX/5		$\begin{array}{\|lr\|} \hline \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \hline \end{array}$	$\begin{aligned} & 2.45 \\ & 2.44 \end{aligned}$	2.50	$\begin{aligned} & 2.55 \\ & 2.58 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 2.42 \end{aligned}$	2.50	$\begin{aligned} & 2.55 \\ & 2.59 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2341BXX/12	5	$\mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$	$\begin{aligned} & 4.48 \\ & 4.46 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.54 \end{aligned}$	$\begin{aligned} & 4.48 \\ & 4.43 \end{aligned}$	4.50	$\begin{aligned} & 4.52 \\ & 4.57 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
ML2341CXX/12		$\begin{array}{\|lr\|} \hline \mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \hline \end{array}$	$\begin{aligned} & 4.45 \\ & 4.40 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.60 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 4.35 \end{aligned}$	4.50	$\begin{aligned} & 4.55 \\ & 4.65 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2351BXX/12	5	$\mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$	$\begin{aligned} & 4.98 \\ & 4.96 \end{aligned}$	5.00	$\begin{aligned} & 5.02 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & 5.02 \\ & 5.10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ML2351CXX/12		$\begin{array}{\|lr\|} \hline \mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\mathrm{MAX}} \\ \hline \end{array}$	$\begin{aligned} & 4.95 \\ & 4.90 \end{aligned}$	5.00	$\begin{aligned} & 5.05 \\ & 5.10 \end{aligned}$	$\begin{aligned} & 4.95 \\ & 4.85 \end{aligned}$	5.00	$\begin{aligned} & 5.05 \\ & 5.15 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Temperature Coefficient \qquad				50			50		ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ReF }}$ Output Current	5		0.75		5	0.75		5	mA
$\mathrm{V}_{\text {Ref out }}$ Power Supply Rejection Ratio	5	100 mV P-p, 1 kHz Sinewave on $V_{C C}$	-40	-60		-40	-60		dB

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }} \mathrm{V}_{\mathrm{CC}}-\mathrm{AGND}=5 \mathrm{~V} \pm 10 \%$ and $12 \mathrm{~V} \pm 10 \%$ (Note 9),
$\mathrm{V}_{\text {REF }}$ IN for ML2341 $=2.25 \mathrm{~V}$ and 4.50 V ; for ML2351 $\mathrm{V}_{\text {REF }} \operatorname{IN}=2.50 \mathrm{~V}$ and 5.00 V , $\mathrm{V}_{\text {OUT }}$ load is $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,
$V_{R E F}$ load is $R_{L}=1 K$ and $C_{L}=100 \mathrm{pF}$ and input control signals with $t_{R}=t_{F} \leq 20 \mathrm{~ns}$.

PARAMETER	NOTES	CONDITIONS	ML2341XCX, ML2351XCX			ML2341XIX, ML2341XMX ML2351XIX, ML2351XMX			UNITS
			MIN	$\begin{gathered} \text { TYP } \\ \text { (Note 4) } \end{gathered}$	MAX	MIN	TYP (Note 4)	MAX	

$\mathrm{V}_{\text {Ref in }}$ and $\mathrm{V}_{\text {ZS }}$

$V_{\text {REF IN }}$ Input Range	5	$\begin{aligned} & v_{\mathrm{cC}} \leq 8.75 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CC}} \geq 8.75 \mathrm{~V} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline \mathrm{AGND}+2 \\ \mathrm{AGND}+2 \end{array} \right\rvert\,$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.75 \\ & \mathrm{AGND}+7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { AGND +2 } \\ \text { AGND + } 2 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{v}_{\mathrm{cc}}-1.75 \\ \mathrm{AGND}+7 \\ \hline \end{array}$	$\stackrel{v}{v}$
$V_{\text {Ref IN }} D C$ Input Resistance	5		10		10		$\mathrm{M} \Omega$
v_{zs} Voltage Range	5,8	$\mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V}$	AGND	$\begin{aligned} & v_{\mathrm{cc}} \\ & .2 .25 \end{aligned}$	AGND	$\begin{aligned} & v_{\mathrm{cc}} \\ & .2 .25 \end{aligned}$	v
	5,8	$\mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V}$	AGND	$\mathrm{V}_{\mathrm{CC}}-3.0$	AGND	$\mathrm{V}_{\mathrm{CC}}-3.0$	V

Analog Output

$V_{\text {Out }}$ Output Swing Unipolar Mode	5, 8	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$	$\begin{gathered} \text { AGND+ } \\ 0.01 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-.05$	$\begin{gathered} \text { AGND+ } \\ 0.01 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-.05$	V
Bipolar Mode		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$	$\begin{gathered} \text { AGND+ } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.0}$	$\begin{gathered} \text { AGND }+ \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	V
	5	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$	$\begin{gathered} \text { AGND+ } \\ 0.1 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	$\begin{gathered} \text { AGND+ } \\ 0.1 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$	$\begin{gathered} \text { AGND+ } \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	$\begin{gathered} \text { AGND }+ \\ 1.0 \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}-1.0$	V
$\mathrm{V}_{\text {Out }}$ Output Current	5	AGND $+1 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$	-10		+10	-10		+10	mA
Power Supply Rejection Ratio		$100 \mathrm{mV} \mathrm{P}_{\text {P-p }} 1 \mathrm{kHz}$ sinewave on V_{CC}		-60			-60		dB

Digital and DC

$\mathrm{V}_{\mathrm{IN}(0)}$ Logical " 0 " Input Voltage	5				0.8			0.8	V
$\mathrm{V}_{\text {IN(1) }}$ Logical "1" Input Voltage	5		2.0			2.0			V
$\mathrm{I}_{\mathrm{IN}(0)}$ Logical "0" Input Current	5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{DGND}$	-1			-1			$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N}(1)}$ Logical "1" Input Current	5	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$			1			1	$\mu \mathrm{A}$
Supply Current, Bipolar Mode $I_{C C} V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$. Analog Ground Current $\mathrm{I}_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current	5	$V_{C C}=5 \mathrm{~V} \pm 10 \%$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$		-90	$\begin{gathered} 5.3 \\ -5.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$
$I_{C C} V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$ Analog Ground Current $\mathrm{I}_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current	5	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} \pm 10 \%$		-90	$\begin{gathered} \hline 9.3 \\ \\ -9.0 \\ -300 \\ \hline \end{gathered}$		-90	$\begin{gathered} \hline 9.3 \\ \\ -9.0 \\ -300 \end{gathered}$	mA mA $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }} \mathrm{V}_{\mathrm{CC}}-\mathrm{AGND}=5 \mathrm{~V} \pm 10 \%$ and $12 \mathrm{~V} \pm 10 \%$ (Note 9),
$\mathrm{V}_{\text {REF IN }}$ for ML2341 $=2.25 \mathrm{~V}$ and 4.50 V ; for ML2351 $\mathrm{V}_{\text {REF }} \mathrm{IN}=2.50 \mathrm{~V}$ and 5.00 V , $\mathrm{V}_{\mathrm{OUT}}$ load is $R_{L}=1 \mathrm{k}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$,
$V_{R E F}$ load is $R_{L}=1 \mathrm{~K}$ and $C_{L}=100 \mathrm{pF}$ and input control signals with $t_{R}=t_{F} \leq 20 \mathrm{~ns}$.

PARAMETER	NOTES	CONDITIONS	ML2341XCX, ML2351XCX			ML2341XIX, ML2341XMX ML2351XIX, ML2351XMX			UNITS
			MIN	TYP (Note 4)	MAX	MIN	TYP (Note 4)	MAX	
Digital and DC (Continued)									
Supply Current, Unipolar Mode $\mathrm{I}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $I_{V Z S}, V_{Z S}$ Current	5	$V_{C C}=5 \mathrm{~V} \pm 10 \%$			$\begin{gathered} 6.0 \\ -4.3 \\ -1.7 \end{gathered}$			$\begin{gathered} 6.0 \\ -4.3 \\ -1.7 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{C C}, V_{C C}$ Current $\mathrm{I}_{\mathrm{AGND}}$, Analog Ground Current $\mathrm{I}_{\mathrm{VZS}}, \mathrm{V}_{\mathrm{ZS}}$ Current	5	$V_{C C}=12 \mathrm{~V} \pm 10 \%$			$\begin{array}{r} 11.0 \\ -7.3 \\ -3.7 \end{array}$			$\begin{aligned} & 11.0 \\ & -7.3 \\ & -3.7 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
AC Performance									
Settling Time $\mathrm{t}_{\mathrm{s} 1}$ t_{s} $\mathrm{t}_{\mathrm{S}} 3$ t_{54}, Gain Change	5	Figure 2, Output Step of AGND + 1V to $V_{C C}-1 V, R_{L}=1 \mathrm{~K}$ Output Step of AGND +100 mV to $\mathrm{V}_{\mathrm{CC}}-100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K}$ Output Step of ± 1 LSB Change of Any Gain Setting		1.2 2.5 1.1	$\begin{gathered} 2.5 \\ 5 \\ \\ 1 \\ 2.5 \end{gathered}$		1.2 2.5 1.1	3.0 6 1 3	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
$t_{\text {WR, }}, \overline{W R}$ Pulse Width	5	Figure 3	40			40			ns
${ }^{\text {t }}$ (FER, XFER Pulse Width	5	Figure 3	60			60			ns
${ }^{\text {xW }}$, $\overline{\mathrm{WR}} \uparrow$ to XFER \downarrow	6	Figure 3	30			30			ns
$t_{\text {DBS, }}$ DB0-DB7 Setup Time	5	Figure 3	40			45		.	ns
$t_{\text {DBH, }}$ DB0-DB7 Hold Time	5	Figure 3	0			0			ns
$\mathrm{t}_{\mathrm{CSS}}, \overline{\mathrm{CS}}$ Setup Time	5	Figure 3	50			50			ns
$\mathrm{t}_{\mathrm{CSH}}, \overline{\mathrm{CS}}$ Hold Time	5	Figure 3	0			0			ns
$\mathrm{t}_{\text {RESET }}$, Power-On Reset Time	6				16			16	$\mu \mathrm{s}$

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to analog ground.
Note 2: When the voltage at any pin exceeds the power supply rails $\left(V_{\mathbb{N}}<A G N D\right.$ or $\left.V_{\mathbb{N}}>V_{C C}\right)$ the absolute value of current at that pin should be limited to 25 mA or less.
Note 3: $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: Parameter guaranteed and 100% production tested.
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 7: Supply current and analog ground current are specified with the digital inputs stable and no load on $V_{\text {Out }}$.
Note 8: In unipolar operation with V_{ZS} and AGND tied together, digital codes that represent an analog value of less than 100 mV from AGND should be avoided.
Note 9: ML2341XXX/5 and ML2351XXX/5 are tested for 5 V operation only and ML2341XXX/12 and ML2351XXX/12 are tested for 12 V operation.

Figure 1. Gain and Offset Error

Figure 2. Settling Time

Figure 3a. Single Buffered Mode

Figure 3b. Double Buffered Mode

1.0 FUNCTIONAL DESCRIPTION

1.1 D/A CONVERTER

The D/A converter is implemented using an array of equal current sources that are decoded semi linearly for the four most significant bits to improve differential linearity and to reduce output glitch around major carries. See Figure 4.
The input voltage reference of the D/A converter is the difference between $\mathrm{V}_{\text {REF IN }}$ and AGND. This difference voltage is converted to a reference current using an internal resistor to set up the appropriate current level
in the D/A converter. The D/A converter output current is then converted to a voltage output by an output buffer and a resistive network. The matching among the on-chip resistors preserves the gain accuracy between these conversions.

The D/A converter can be used in a multiplying mode by modulating the reference input within the specified $\mathrm{V}_{\text {REF IN }}$ range.

Figure 4. D/A Converter Implementation

1.2 SINGLE-SUPPLY vs. DUAL-SUPPLY OPERATION

ML2341 and ML2351 can be powered from a single supply ranging from 4.5 V to 13.2 V or dual supplies ranging from $\pm 2.25 \mathrm{~V}$ to $\pm 6.6 \mathrm{~V}$.

The internal digital and analog circuitry is powered between $V_{C C}$ and AGND. The range of DGND is $\mathrm{AGND} \leq \mathrm{DGND} \leq \mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$ with the logic thresholds set between .8 V and 2.0 V above DGND (standard TTL logic level). The range of V_{Zs} is $\mathrm{AGND} \leq \mathrm{V}_{\mathrm{Zs}} \leq$ ($\mathrm{V}_{\mathrm{CC}}-2.25 \mathrm{~V}$).

1.3 UNIPOLAR AND BIPOLAR OUTPUT VOLTAGE SWING

The ML2341 and ML2351 can operate in either unipolar and bipolar output voltage mode. Unipolar/bipolar mode selection is determined by comparing the zero scale voltage $\left(\mathrm{V}_{\mathrm{ZS}}\right)$ of these devices to a precise internal reference that is referred to AGND. V_{ZS} is ideally the voltage that will be produced at the DAC voltage output when the digital input data is set to all " 0 's". Unipolar mode is selected when V_{ZS} is lower than 1.00 volt, and bipolar mode is selected when V_{ZS} is greater than 1.50 volts.

1.3.1 Unipolar Output Mode

In the unipolar mode, $\mathrm{V}_{\text {OUT }}$ swings above V_{ZS}. Ideally the 00000000 code results in an output voltage of V_{ZS}, and the 11111111 code results in an output voltage of $\mathrm{V}_{\mathrm{FS}} \times 255 / 256$, where V_{FS} is the full-scale voltage determined by $\mathrm{V}_{\text {REF }} \mathbb{N}$ and the gain setting.

1.3.2 Bipolar Output Mode

In the bipolar mode, $\mathrm{V}_{\text {OUT }}$ swings around V_{ZS}. The input data is in 2's complement binary format. Ideally, the 00000000 code results in an output voltage of V_{ZS}; the 10000000 code results in an output voltage of $\left(\mathrm{V}_{\mathrm{ZS}}\right.$ - V_{FS}); and the 01111111 results in an output voltage of $\left(V_{Z S}+V_{F S} 127 / 128\right)$, where $V_{F S}$ is the full scale output voltage determined by $\mathrm{V}_{\text {REF }} \mathrm{IN}^{\mathrm{N}}$ and the gain setting.

1.4 OUTPUT BUFFER AND GAIN SETTING

The output buffer converts the D/A output current to a voltage output using a resistive network with proper gain setting determined by the GAIN 0 and GAIN 1 inputs. There are four possible gain settings for unipolar output voltage mode and bipolar output voltage mode as listed below:

Unipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Output Swing Relative to $V_{\text {ZS }}$
0	0	$1 / 4$	$V_{\text {REF } \mathbb{N}} \times 1 / 4$
0	1	$1 / 2$	$V_{\text {REF } \mathbb{N}} \times 1 / 2$
1	0	1	$V_{\text {REF } \mathbb{N}} \times 1$
1	1	2	$V_{\text {REF } \mathbb{N}} \times 2$

Bipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Outputp_P
0	0	$1 / 4$	$\pm V_{\text {REF }} \mathbb{N} \times 1 / 8$
0	1	$1 / 2$	$\pm V_{\text {REF }} \mathbb{N} \times 1 / 4$
1	0	1	$\pm V_{\text {REF }} \mathbb{N} \times 1 / 2$
1	1	2	$\pm V_{\text {REF }} \mathbb{N} \times 1$

The output buffer can source or sink as much as 10 mA of current with an output voltage of at least 1 V from either V_{CC} or AGND. As the output voltage approaches V_{CC} or AGND the current sourcing/sinking capability of the output buffer is reduced. The output buffer can still swing down to within 10 mV of AGND and up to within 40 mV of V_{CC} with a 100 K load at $\mathrm{V}_{\text {OUT }}$ to $A G N D$ in the unipolar operation. In the bipolar operation, the output buffer swing is limited to about 100 mV from either rails.

1.5 VOLTAGE REFERENCE

A bandgap voltage reference is incorporated on the ML2341 and ML2351. Two reference voltages can be produced by each device. An internal comparator monitors the power supply voltage to determine the selection of the reference voltage. A reference voltage of 2.25 volts on the ML2341 and 2.50 volts on the ML2351 is selected when the supply voltage is less than approximately 7.50 volts. Otherwise, a reference voltage of 4.50 volts and 5.00 volts is selected. To prevent the comparator from oscillating between the two selections, avoid operation with a power supply between 7.0 and 8.0 volts.

The bandgap reference is trimmed for zero Temperature Coefficient (TC) at $35^{\circ} \mathrm{C}$ to minimize output voltage drift over the specified operating temperature range.
The internal reference is buffered for use by the DAC and external circuits. The reference buffer will source more than 5 mA of current and sink more than 1 mA of current. With $\mathrm{V}_{\text {REF IN }}$ connected to $\mathrm{V}_{\text {REF }}$ OUT, the following output voltage ranges of the DAC are obtained:

ML2341

Gain Setting	$\begin{gathered} \mathrm{V}_{\mathrm{REF}}=2.25 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} V_{\mathrm{REFF}}=4.5 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \geq 8.0 \mathrm{~V} \end{gathered}$	
	Unipolar	Bipolar	Unipolar	Bipolar
$1 / 4$	0 to 0.562 V	$\begin{aligned} & -0.281 \mathrm{~V} \text { to } \\ & +0.281 \mathrm{~V} \end{aligned}$	0 to 1.125 V	$\begin{aligned} & -0.562 \mathrm{~V} \text { to } \\ & +0.562 \mathrm{~V} \end{aligned}$
1/2	0 to 1.125 V	$\begin{aligned} & -0.562 \mathrm{~V} \text { to } \\ & +0.562 \mathrm{~V} \end{aligned}$	0 to 2.250 V	$\begin{aligned} & -1.125 \mathrm{~V} \text { to } \\ & +1.125 \mathrm{~V} \end{aligned}$
1	0 to 2.250 V	$\begin{gathered} -1.125 \mathrm{~V} \text { to } \\ +1.125 \mathrm{~V} \end{gathered}$	0 to 4.500 V	$\begin{aligned} & -2.250 \mathrm{~V} \text { to } \\ & +2.250 \mathrm{~V} \end{aligned}$
2	0 to 4.500 V	$\begin{aligned} & -2.250 \mathrm{~V} \text { to } \\ & +2.250 \mathrm{~V} \end{aligned}$	0 to 9.000 V	$\begin{aligned} & -4.500 \mathrm{~V} \text { to } \\ & +4.500 \mathrm{~V} \end{aligned}$

ML2351

Gain Setting	$\begin{gathered} \mathrm{V}_{\text {REF }}=2.50 \mathrm{~V} \text { with } \\ \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} V_{\text {REF }}=5.00 \mathrm{~V} \text { with } \\ V_{\text {CC }} \geq 8.0 \mathrm{~V} \end{gathered}$	
	Unipolar	Bipolar	Unipolar	Bipolar
$1 / 4$	0 to 0.625 V	$\begin{aligned} & -0.3125 \mathrm{~V} \text { to } \\ & +0.3125 \mathrm{~V} \end{aligned}$	0 to 1.25 V	$\begin{aligned} & -0.625 \mathrm{~V} \text { to } \\ & +0.625 \mathrm{~V} \end{aligned}$
$1 / 2$	0 to 1.250 V	$\begin{aligned} & -0.6250 \mathrm{~V} \text { to } \\ & +0.6250 \mathrm{~V} \end{aligned}$	0 to 2.50 V	$\begin{aligned} & -1.250 \mathrm{~V} \text { to } \\ & +1.250 \mathrm{~V} \end{aligned}$
1	0 to 2.500 V	$\begin{aligned} & -1.2500 \mathrm{~V} \text { to } \\ & +1.2500 \mathrm{~V} \end{aligned}$	0 to 5.00 V	$\begin{aligned} & -2.500 \mathrm{~V} \text { to } \\ & +2.500 \mathrm{~V} \end{aligned}$
2	0 to 5.000 V	$\begin{aligned} & -2.5000 \mathrm{~V} \text { to } \\ & +2.5000 \mathrm{~V} \end{aligned}$	0 to 10.00 V	$\begin{aligned} & -5.000 \mathrm{~V} \text { to } \\ & +5.000 \mathrm{~V} \end{aligned}$

An external reference can alternatively be used on $\mathrm{V}_{\text {REF IN }}$ to set the desired full scale voltage. The linearity of the D/A converter depends on the reference used, however. To insure integral linearity at an 8-bit level, a reference voltage of no less than 2 V and no more than $7 \mathrm{~V}(2.75 \mathrm{~V}$ for operation with a low-voltage power supply) should be used.

1.6 DIGITAL INTERFACE

The digital interface of the device consists of a chip select input, CS, a write input, WR, a transfer input, XFER and eight data inputs, DB0 through DB7. The digital interface operates in one of the two modes:

1.6.1 Single-Buffered Mode

To use the ML2341 and ML2351 in the single-buffered mode, tie XFER to logic " 1 ". This will put the D/A latch in the transparent mode and the rising edge of WR at low level of CS will latch the data on DB0-DB7 into the input latch as well as update the D/A output voltage.

1.6.2 Double-Buffered Mode

To use the devices in the double-buffered mode, timing information is applied to WR as well as XFER inputs. The rising edge of $\overline{W R}$ at low level of $\overline{C S}$ will latch the data on DB0-DB7 into the input latch. The D/A output voltage will not be updated, however, until XFER is brought to a high level, which transfers the data from input latch to D/A latch. Note that the D/A latch is a transparent latch controlled by the level, not edge, of the XFER input, any write operation to the input latch while XFER is still at a high level results in the immediate update of the D/A output voltage.

1.7 POWER-ON-RESET

The ML2341 and ML2351 have an internal power-onreset circuit to initialize the device when power is first applied to the device. The power-on-reset interval of typically 8μ s begins when the supply voltage, V_{CC} reaches approximately 2.0 V . During the power-on-reset interval, both the input and data latch are reset to all " 0 's'.

2.0 TYPICAL APPLICATIONS

Figure 5. Using 4.50V Reference of D / A for Reference of A / D Using Single $5 V V_{C C} \pm 10 \%$

Figure 6. TMS320 Interface with D/A Output

Figure 7. Single 5V Supply Unipolar VOUT

2.0 TYPICAL APPLICATIONS (Continued)

Figure 8. Single 12V Supply, Bipolar VOUT with 11-Bits Resolution Around Zero

Figure 9. Hard Disc Drive Servo Coil Driver Providing 13-Bit Effective Resolution

ORDERING INFORMATION

PART NUMBER	INTEGRAL \& DIFFERENTIAL NON-LINEARITY	TEMPERATURE RANGE	PACKAGE
$\mathrm{V}_{\text {REF OUT }}=2.25 \mathrm{~V}$ with $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$			
ML2341BMJ/5	$\pm 1 / 4$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341BIJ/5		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341BCP/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2341BCQ/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2341CMJ/5	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341CIJ/5		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341CCP/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2341CCQ/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
$\mathrm{V}_{\text {REF OUT }}=2.50 \mathrm{~V}$ with $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$			
ML2351BMJ/5	$\pm 1 / 4$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351BIJ/5		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351BCP/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2351BCQ/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2351CMJ/5	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351CIJ/5		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351CCP/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2351CCQ/5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
$\mathrm{V}_{\text {REF OUT }}=4.50 \mathrm{~V}$ with $\mathrm{V}_{\text {CC }}=12 \mathrm{~V}$			
ML2341BMJ/12	$\pm 1 / 4$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341BIJ/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341BCP/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2341BCQ/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2341CMJ/12	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341CIJ/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2341CCP/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2341CCQ/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
$\mathrm{V}_{\text {REF OUT }}=5.00 \mathrm{~V}$ with $\mathrm{V}_{\text {CC }}=12 \mathrm{~V}$			
ML2351BMJ/12	$\pm 1 / 4$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351BIJ/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351BCP/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2351BCQ/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2351CMJ/12	$\pm 1 / 2$ LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351CIJ/12		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2351CCP/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2351CCQ/12		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)

DSP Analog I/O Peripheral

GENERAL DESCRIPTION

The ML2377 is a complete analog I/O peripheral frontend for DSP based control system. It contains a highspeed 10-bit A/D converter, a two channel simultaneous sample/hold circuit, a 6 channel input multiplexer, a 10bit D/A converter and a 8 -bit D/A converter.

The two channel simultaneous sample/hold in conjunction with the multiple channel multiplexer provided on-chip is especially well suited for disk drive applications, where minimum skew positional channel conversion and flexible calibration sensing functions are desirable.

Both input and output channel voltages are referenced to floating common points provided by the device. An additional common point is also available in the A/D input for flexibility. Bipolar conversion of ± 2 volts around the floating point is provided by the chip.
Channel multiplexing and common referencing control are provide on-chip via its easy to use microprocessing port. In addition, external control of the conversion start and MUX addressing is also available for the ML2377.
The ML2375 is a 4 channel version of the ML2377.

FEATURES

- 10-bit bipolar A/D resolution
- 10-bit bipolar and 8-bit bipolar D/A resolution
- $2 \mu \mathrm{~s} \mathrm{~A} / \mathrm{D}$ conversion time
- $2 \mu \mathrm{~s}$ D/A settling time (ILSB, $4 \mu \mathrm{~s}$ full scale)
- 2 channel simultaneous S / H
- 6 bipolar input channels
- A / D and D / A converters have no missing codes
- Inputs and outputs have floating commons

■ ± 2 volt input/output range with 2.5 V reference

- Extra floating common input for A / D
- Programmable input MUX and common
- TMS320C14 compatible microprocessor interface
- Single 5 volt power supply
- External conversion start and MUX control (ML2377)
- Additional package and bond-out options available

BLOCK DIAGRAM ML2375

PIN CONNECTION

ML2377
44-Pin QFP (G44)

ML2375
28-Pin SSOP (R28)

PIN DESCRIPTION

NAME	FUNCTION
$\mathrm{VZ}_{\text {AD2 }}$	Programmable input common
$V Z_{A D 1}$	Default A/D input common.
$\mathrm{VZ}_{\text {DA10 }}$	10-bit D/A common.
$V Z_{\text {DA8 }}$	8 -bit D/A common.
$\overline{\text { START }}$	Active low input starts A / D converter.
RESET	Active low resets the IC.
MUX0	Multiplexer address bit 0 .
MUX1	Multiplexer address bit 1.
MUX2	Multiplexer address bit 2.
$V_{1 N} 5-0$	Analog input channels 5 through 0 .
AGND	Analog ground.
$\mathrm{VR}_{\text {AD }}$	Voltage reference input for establishing \pm full scale for the A/D converter. \pm full scale value is 0.8 of the voltage on $\mathrm{VR}_{\mathrm{AD}}$, referenced to AGND .
VR_{8}	\pm full scale value for the 8 -bit D / A converter is 0.8 of the voltage reference input on VR_{8}, referenced to AGND.
VR_{10}	\pm full scale value for the 10 -bit D/A converter is 0.8 of the voltage reference input on VR_{10}, referenced to AGND.

NAME	FUNCTION
$\mathrm{V}_{\text {OUT }} 8$	Voltage output of the 8-bit D/A converter.
$\mathrm{V}_{\text {OUt }} 10$	Voltage output of the 10 -bit D/A converter.
D9-D0	Data I/O bit 9 through 0 .
DVCC	Digital power supply. +5 volts $\pm 5 \%$.
AVCC	Analog power supply. +5 volts $\pm 5 \%$.
DGND	Digital ground.
A1	Register address 1.
A0	Register address 0.
BUSY	Active high output indicates that an A / D conversion is in progress.
INT	Active high output indicating A/D conversion complete.
$\overline{\mathrm{CS}}$	Active low chip select input.
$\overline{\mathrm{WR}}$	Write input, active low.
$\overline{\mathrm{RD}}$	Read input, active low
CLK	Clock input. Clock can be generated by tying a crystal from this pin to DGND or applying a clock directly to pin.
Note:	Latch Enable) for demultiplexing address and data can be made available on request. Consult Micro Linear for ation at optons of the ML2377 are avalable on request.

ABSOLUTE MAXIMUM RATINGS

Supply Voltages ($A V_{C C}$ and $D V_{C C}$)
Maximum Voltage Between AGND and DGND 1V
Maximum Voltage Between $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}} \ldots \ldots0 .3 \mathrm{~V}$
Input Current per Pin $\pm 25 \mathrm{~mA}$
Package Dissipation @ $25^{\circ} \mathrm{C}$
. W
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range \qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{DV}_{\mathrm{CC}}$) \qquad $4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation in not implied.

ELECTRICAL CHARACTERISTICS

The following specifications apply for $A V_{C C}=D V_{C C}=+5 \mathrm{~V} \pm 5 \%, A G N D=D G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range $V Z_{A D 1}=V Z_{A D 2}=V Z_{D A 10}=V Z_{D A 8}=V R_{A D}=V R_{8}=V R_{10}=2.5 \mathrm{~V}, T_{A}=T_{M I N}$ to $T_{M A X}$ unless otherwise specified, $C_{L}=50 \mathrm{pF}$ for all digital outputs, $\mathrm{V}_{\text {OUT }} 8$ and $V_{\text {OUT }} 10$ load is $R_{L}=1 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, and input control signals with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} 20 \mathrm{~ns}, \mathrm{f}_{\mathrm{CLK}}=11 \mathrm{MHz}$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

A/D Converter, S/H and Multiplexer Performance

	Integral Linearity Error	C Grade			± 3	LSB
		B Grade			± 1	LSB
	Differential Linearity Error				± 1	LSB
	Converter Resolution	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	10			Bits
	Zero Error	$\mathrm{VZ}=2.5 \mathrm{~V}$			± 3	LSB
	Positive and Negative Full Scale Error	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			± 3	LSB
	Input Voltage Range		0		$\mathrm{V}_{\text {CC }}$	V
	$V_{\text {REF }}$ Input Resistance		1.5		3.5	$\mathrm{k} \Omega$
	Maximum $\mathrm{V}_{\text {REF }}$ Input Voltage	Referred to AGND			2.6	V
ION	On Channel Leakage Current	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$	-1		1	$\mu \mathrm{A}$
IOFF	Off Channel Leakage Current	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$	-1		1	$\mu \mathrm{A}$
$\mathrm{CON}^{\text {O }}$	On Channel Input Capacitance	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$		20		pF
COFF	Off Channel Input Capacitance	$\mathrm{OV}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$		10		pF
	Clock Duty Cycle		30		70	\%
$\mathrm{f}_{\text {CLK }}$	Input Clock Frequency		1		11	MHz
${ }^{\text {c }}$ C	Conversion Time	Including S/H Acquisition Time		22		1/f ${ }_{\text {CLK }}$
$\mathrm{t}_{\mathrm{ACQ}}$	Acquisition Time	Included in Conversion Time		2		1/f ${ }_{\text {CLK }}$

ELECTRICAL CHARACTERISTICS (continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

10-Bit D/A Converter Performance

Integral Linearity Error	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			± 3	LSB
Differential Linearity Error	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			± 1	LSB
Settling Time	$V_{\text {REF }}=2 V$, Settling to $\pm 1 / 2$ LSB,$~ \pm 1$ LSB Step 4 V Step (Note 1)			$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Resolution	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	10			Bits
Zero Error				± 5	LSB
+ and - Full Scale Error	Full Scale $=4 \mathrm{~V}$			± 10	LSB
Output Voltage Swing	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	0.25		$\mathrm{V}_{\mathrm{CC}}-0.25$	V
$V_{\text {REF }}$ Input Resistance	(ML2377 only)		1		$\mathrm{M} \Omega$

8-Bit D/A Converter Performance

Integral Linearity Error	$V_{\text {REF }}=2.5 \mathrm{~V}$			± 1	LSB
Differential Linearity Error	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			± 1	LSB
Settling Time	$V_{\text {REF }}=2 \mathrm{~V}$, Settling to $\pm 1 / 2$ LSB,± 1 LSB Step 4V Step (Note 1)			$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Resolution	$V_{\text {REF }}=2.5 \mathrm{~V}$	8			Bits
Zero Error				± 3	LSB
+ and - Full Scale Error				± 3	LSB
Output Voltage Range	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	0.25		$\mathrm{V}_{\mathrm{CC}}-0.25$	V
$\mathrm{V}_{\text {REF }}$ Input Resistance	(ML2377 only)		1		$M \Omega$

DC Characteristics

IIL	Logic Input Current	$\begin{aligned} & 0<V_{\text {IN }}<V_{C C}, \text { MUXO- } 2, \overline{\text { START }}, \\ & \overline{\text { RESET }}, \mathrm{ALE} \end{aligned}$		± 100	$\mu \mathrm{A}$
I_{1}	Logic Input Current	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$		± 1	$\mu \mathrm{A}$
$I_{\text {INC }}$	Clock Input Current	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$		± 200	$\mu \mathrm{A}$
V_{IH}	Logic High		2		V
$\mathrm{V}_{\text {IL }}$	Logic Low			0.8	V
$\mathrm{V}_{\text {(CLK) }}$	Clock High	(CLK Pin)	3.7		V
$\mathrm{V}_{\text {(CLK)L }}$	Clock LOW	(CLK Pin)		1.8	V
I OFF	Output Leakage Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, 0<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}$		± 1	$\mu \mathrm{A}$
V_{OL}	Output Low	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$		0.4	V
V_{OH}	Output High	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4		V

aC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Supply Current ($\mathrm{V}_{\text {REF }}=\mathbf{2 . 5 V}$, No Output Load)

	No Input Switching			10	20	mA
	Analog Ground Current	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$			10	mA

Microprocessor Interface Read Cycle Timing

Microprocessor Interface Write Cycle Timing

$t_{\text {AW }}$	Address Stable Before Write		5		
$t_{\text {WA }}$	Address Hold After Write		5		ns
$t_{W W}$	Write Pulse Width		50		ns
$t_{D S}$	Data Valid Before Write		30		ns
t_{DH}	Data Hold After Write		15		ns
$\mathrm{t}_{\text {RV }}$	Recovery Time Between Writes		25		ns

Microprocessor Interface Interrupt and Busy Timing

$t_{C l}$	Clock to Interrupt Active				100
$t_{R I}$	Read to Interrupt Inactive				
$t_{C B}$	Clock to Busy Active	(ML2377 Only)		100	ns
$t_{C B}$	Clock to Busy Inactive	(ML2377 Only)		100	ns

Note 1: Guaranteed by characterization and/or correlation to other test.

Figure 1. Transfer Characteristics

Figure 2. Gain and Offset Error

Figure 3. Settling Time

Figure 4. Read Cycle Timing

Figure 5. Write Cycle Timing

FUNCTIONAL DESCRIPTION

DEVICE TYPES

The family consists of two different devices:

1) The ML 2375

It is a 28 pin device that contains the basic 10-bit A/D converier, 10-bit D/A converter, 8-bit D/A converter and a 4 channel multiplexer.
2) The ML2377

It is a 6 channel version of ML2375. In addition, the BUSY, INT and multiplexer control pins are also available to the user.

ANALOG INPUT AND OUTPUT VOLTAGES

The ML2375 and ML2377 allow the analog input and output voltages to be referenced to a common point. Thus, the input voltage swing and the offset of the ADC and the output voltage swing and the offset of the DAC can be defined by the voltage applied at the commons, $V Z_{A D 1}, V Z_{A D 2}, V Z_{D A 10}$ and $V Z_{D A 8}$.
The voltage at the common for the 10 -bit D / A converter and the 8-bit D / A converter are defined by $\mathrm{VZ} \mathrm{DA}_{\mathrm{D} 10}$ and $V Z_{D A 8}$ respectively. For the A / D inputs, channel 0 and 1 common are defined by $V Z_{A D 1}$. The common of the other channels (2 to 5) may be programmed to $\mathrm{VZ}_{\mathrm{AD} 2}$ by setting the on-chip control register (see Table 3).
The peak full scale voltage is defined by the reference voltages.

$$
V_{F S}=0.8 \times V_{R E F}
$$

Figure 1 shows the transfer function of the ML2375 and ML2377 and the relationship between VZ and V_{FS}.

A/D CONVERTER OPERATION

Input Multiplexer Addressing

The input multiplexer is addressed with either the MUXO to MUX2 pins or the internal multiplexer address register. The MUX0 to MUX2 pins are not latched, and control the addressing of the multiplexer directly. If control of the multiplexer is to be done from the microprocessor addressable mux control register, then all MUX pins should be tied to a logic high. This condition, which is an illegal mux address, will then route control of the multiplexer addressing to the internal register, which is under microprocessor control.
ML2375 multiplexer can only be addressed via its on-chip multiplexer register.

Simultaneous Sample/Hold Function

The simultaneous sample/hold function is only available on channels 0 and 1 . When addressing channel 0 or 1 with the external MUX pins or the internal register bits and starting a conversion, both channels will be sampled and held simultaneously. Two conversions will then proceed back to back, with the BUSY pin and status bit going active for two conversion times. The INT pin and status bit will go active after the completion of the first
conversion. A read of the data register will then clear the INT pin and status bit. After the second conversion is completed, the INT pin and status bit will go active again, indicating the need for a read of the second result from the data register. If, however, the results of the first register are not read after the first conversion and before the second conversion, the INT pin and status bit remain active until the completion of the second conversion. The results of the first conversion remain in the data register, with the results of the second conversion stored in a holding register. After completion of the second conversion, which is indicated by the BUSY status bit or pin going inactive, both results can be obtained by successive reads of the data register. The INT pin and status bit are then cleared by the act of the second data register read.

D/A CONVERTER OPERATION

The D / A converters are updated beginning on the rising edge of the $\overline{W R}$ pin. Settling time is measured from this point.

Microprocessor Interface

The ML2375 is presented as four 10-bit registers to the microprocessor. These registers are addressed via the address pins A0 and A1. The register map below describes the four registers.

Converter Registers

Table 1. A/D Converter Register

ADDRESS 00

	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Data Bit	9	8	7	6	5	4	3	2	1	0
	Sign	MSB								LSB

Table 2. D/A Converter Register

ADDRESS 01										
	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D/A 10	9	8	7	6	5	4	3	2	1	0
	SIgn	MSB								LSB

ADDRESS 10

	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D/A 8	7	6	5	4	3	2	1	0		
	Sign	MSB						LSB	0	0

REGISTER DESCRIPTIONS

Register Address 00
This register holds the results of the 10 -bit A/D conversion results when read. The converted results are in 2's complement form, where 0 is the potential at the common pin. Reading of this register also clears the INT status bit and the deasserts the INT pin on the falling edge of the $\overline{R D}$ pin.

Register Address 01

When written, it receives the 10-bit digital value for the 10 -bit D/A converter. All codes are in 2's complement form, where the 0 code indicates the potential at the $\mathrm{VZ} \mathrm{DA}_{\mathrm{D} 10}$ or $\mathrm{VZ} \mathrm{N}_{\text {REF }}$ pin. This register can also be read, which returns the previously written value.

Register Address 10

This register receives the 8 -bit digital value for the 8 -bit $\mathrm{D} /$ A converter. This value is also in 2 's complement format. When read, it returns the previously written value. 8-bit data in this 10-bit register is left justified.

Control Register

This is the control register. Functions such as A / D conversion start, multiplexer control, and A/D converter status are included.

D4 BUSY. This bit is A/D converter status bit which provides indication that a conversion is in progress. It is equivalent to the BUSY pin of the ML2377.

D3 START. This bit has the same function as the START pin. When this bit receives a 1 , it will start a conversion. After the conversion has started, this bit is cleared after 4 clock cycles.
MUX2. MUX address bit 2.
MUX1. MUX address bit 1.
D0 MUXO. MUX address bit 0 .

CHIP RESET

The chip is reset when a 0 is presented to the $\overline{\operatorname{RESET}}$ pin. All registers are reset to 0 . Therefore, the D / A and the A / D converters are all at zero scale and the multiplexer select is addressed to channel 0 . Additionally, $\mathrm{VZ}_{2}-\mathrm{VZ} 5$ are cleared in the control register.

Table 3. Control Register

ADDRESS 11

	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ML2375	0	0	0	0	INT	BUSY	START	0	MUX1	MUX0
$\mathrm{ML2377}^{2}$	VZ_{5}	VZ_{4}	VZ_{3}	VZ_{2}	INT	BUSY	START	MUX2	MUX1	MUX0

Figure 6. Interrupt Timing, ML2375, and ML2377

Figure 7. BUSY Timing, ML2377

ML2375, ML2377

ORDERING INFORMATION

PART NUMBER	PACKAGE	GRADE	COMMENTS
ML2375BCP	28-Pin DIP (P28)	B	Multiplex Address and
ML2375CCP	28-Pin DIP (P28)	C	Data Bus
ML2375BCQ	28-Pin PLCC (Q28)	B	
ML2375CCQ	28-Pin PLCC (Q28)	C	
ML2375BCR	28-Pin SSOP (R28)	B	
ML2375CCR	28-Pin SSOP (R28)	C	
ML2377BCQ	44-Pin PLCC (Q44)	B	Additional Analog Inputs,
ML2377CCQ	44-Pin PLCC (Q44)	C	Individual VREF and VZS
ML2377BCH	44-Pin TQFP (H44)	B	
ML2377CCH	44-Pin TQFP (H44)	C	
ML2377BCG	44-Pin QFP (G44)	B	
ML2377CCG	44-Pin QFP (G44)	C	

Telecommunications

Section 3

Selection Guide 3-1
Gain/Attenuators
ML2003 Logarithmic Gain/Attenuator 3-3
ML2004 Logarithmic Gain/Attenuator 3-3
ML2008 μ P Compatible Logarithmic Gain/Attenuator 3-14
ML2009 μ P Compatible Logarithmic Gain/Attenuator 3-14
Equalizers
ML2020 Telephone Line Equalizer 3-23
ML2021 Telephone Line Equalizer 3-34
Tone Detectors
ML2031 Tone Detector 3-45
ML2032 Tone Detector 3-45
Programmable Sinewave Generators
ML2035 Programmable Sinewave Generator 3-53
ML2036 Programmable Sinewave Generator 3-53
Filters
ML2110 Universal Dual Filter 3-65
ML2111 Universal Hi-Frequency Dual Filter 3-84

Selection Guide

Gain/Attenuators

Part Number	Gain Range (dB)	Resolution (dB Steps)	Noise (dBrnc @ Max Gain)	Harmonic Distortion (dB)	Digital Interface	Power Supplies (V)	$\begin{aligned} & \text { Temperature } \\ & \text { Range } \\ & \text { C } \quad 1 \end{aligned}$		Package
ML2003	-24 to +24	0.1	0	-60	Serial, Hard Wire	± 5	X	X	$\begin{aligned} & \text { 18-Pin DIP } \\ & \text { 20-Pin PLCC } \end{aligned}$
ML2004	-24 to +24	0.1	0	-60	Serial	± 5	X	X	14-Pin DIP
ML2008	-24 to +24	0.1	0	-60	8-Bit $\mu \mathrm{P}$	± 5	X	X	$\begin{aligned} & \text { 18-Pin DIP } \\ & \text { 20-Pin PLCC } \end{aligned}$
ML2009	-24 to +24	0.1	0	-60	16-Bit $\mu \mathrm{P}$	± 5	X	X	$\begin{aligned} & \text { 18-Pin DIP } \\ & \text { 20-Pin PLCC } \end{aligned}$

Equalizers

Part Number	Frequency Response Adjustable	Idle Channel Noise (dBrnc)	Harmonic Distortion (dB)	Comment	Interface Interface	Power Supplies (V)	Temperature Range C	I Package
ML2020	Slope, Height Bandwidth	8	-48	60 Hz Rejection	Serial	± 5	X	X
ML2021	Slope, Height Bandwidth	8	-48	Group Delay DIP 18-Pin SOIC Optimized	Serial	± 5	X	X

Tone Detectors

Part Number	Detect Frequency (Hz)	Dynamic Range Detect (dBm)	Frequency Template (Hz)	Comment	Power Supplies (V)	$\begin{aligned} & \text { Temperature } \\ & \text { Range } \\ & \text { C I } \end{aligned}$		Package
ML2031	1 K to 4 K	-34 to +6	Detect ± 10 No Detect ± 36	Exceed Bell Pub 43004 Clock Outputs of $\mathrm{CLK}_{\text {IN }} \div 2, \div 8$	± 5	X	X	8 -Pin DIP
ML2032	1 K to 4K	-34 to +6	Detect ± 10 No Detect ± 36	Exceed Bell Pub 43004 Uncommitted Op Amp	± 5	X	X	8-Pin DIP

Programmable Sinewave Generators

Part Number	Frequency Range (Hz)	Min Resolution (Hz)	Gain Error (dB)	Harmonic Distortion (dB)	Comment	Digital Interface	Power Supplies (V)	Tem R C		Package
ML2035	DC to 25 K	± 0.75	± 0.1	-45	Voltage Amplitude $\mathrm{V}_{\mathrm{Cd}} / 2$	Serial	± 5	X	X	8-Pin DIP
ML2036	DC to 50K	± 0.75	± 0.1	-45	Adj. Voltage Amplitude, Clock Outputs of CLK $_{\text {IN }} \div 2, \div 8$	Serial	± 5	X	X	$\begin{aligned} & \text { 14-Pin DIP } \\ & \text { 16-Pin SOIC } \end{aligned}$

Switched Capacitor Filters

Part Number	No. of Sections	\mathbf{f}_{O} Range $(\mathbf{H z})$	$\mathbf{f o}_{\mathrm{O}} / \mathbf{f}_{\text {CLK }}$ Ratio	$\mathbf{f}_{\mathbf{O}}$ Tempco $\left(\mathbf{p p m} /{ }^{\circ} \mathbf{C}\right)$	Power Supplies (V)	Temp. Range \mathbf{C} \mathbf{I}	Package
ML2110	2	25 to 30 K	$100,50: 1$	20	± 2.5 to ± 5	X	X
ML2111	2	25 to 150 K	$100,50: 1$	20	± 2.5 to ± 5	X	X

Logarithmic Gain/Attenuator

GENERAL DESCRIPTION

The ML2003 and ML2004 are digitally controlled logarithmic gain/attenuators with a range of -24 to +24 dB in 0.1 dB steps.
The gain settings are selected by a 9-bit digital word. The ML2003 digital interface is either parallel or serial. The ML2004 is packaged in a 14-pin DIP with a serial interface only.
Absolute gain accuracy is 0.05 dB max over supply tolerance of $\pm 10 \%$ and temperature range.
These CMOS logarithmic gain/attenuators are designed for a wide variety of applications in telecom, audio, sonar, or general purpose function generation. One specific intended application is analog telephone lines.

FEATURES

- Low noise 0 dBrnc max with +24 dB gain
- Low harmonic distortion -60 dB max
- Gain range -24 to +24 dB
- Resolution 0.1dB steps
- Flat frequency response $\pm .05 \mathrm{~dB}$ from $.3-4 \mathrm{kHz}$ $\pm .10 \mathrm{~dB}$ from $.1-20 \mathrm{kHz}$
- Low supply current 4 mA max from $\pm 5 \mathrm{~V}$ supplies
- TTL/CMOS compatible digital interface
- ML2003 has pin selectable serial or parallel interface; ML2004 serial interface only
- Standard 14 -pin or 18 -pin $0.3^{\prime \prime}$ center DIP or $20-$ pin molded chip carrier package

BLOCK DIAGRAM

NOTE: SERIAL MODE FUNCTIONS INDICATED BY PARENTHESES.

PIN CONNECTIONS

PIN DESCRIPTION

NAME	FUNCTION
C3	In serial mode, pin is unused. In parallel mode, coarse gain select bit. Pin has internal pulldown resistor to GND.
(LATI) C 2	In serial mode, input latch clock which loads the data from the shift register into the latch. In parallel mode, coarse gain select bit. Pin has internal pulldown resistor to GND.
(SID) C 1	In serial mode, serial data input that contains serial 9 bit data word which controls the gain setting. In parallel mode, coarse gain select bit. Pin has internal pulldown resistor to GND.
(LATO) C0	In serial mode, output latch clock which loads the 9 bit data word back into the shift register from the latch. In parallel mode, coarse gain select bit. Pin has internal pulldown resistor to GND.
P_{DN}	Powerdown input. When $\mathrm{P}_{\mathrm{DN}}=1$, device is in powerdown mode. When $P_{D N}=0$, device is in normal operation. Pin has internal pulldown resistor to GND.
F3	In serial mode, pin is unused. In parallel mode, fine gain select bit. Pin has internal pulldown resistor to GND.
(SCK) F2	In serial mode, shift register clock which shifts the serial data on SID into the shift register on rising edges and out on SOD on falling edges. In parallel mode, fine gain select bit. Pin has internal pulldown resistor to GND.
ABSOLUTE MAXIMUM RATINGS (Note 1)	
Supply Voltage	
$V_{\text {CC }} \ldots$.	$+6.5 \mathrm{~V}$
VSS -6.5V
AGND with respect to GND $\pm .5 \mathrm{~V}$	
Analog Input and Output.......... $\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
Digital Inputs and Outputs........ GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
Input Current Per Pin . $\pm 25 \mathrm{~mA}$	
Power Dissipation . 750mW	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperatu	(soldering, 10 sec) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)	
ML2003CP, ML2004CP, ML2004CQ	. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2003IJ, ML2004IJ.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{V}_{\text {Cc }}$	4 V to 6 V
$\mathrm{V}_{\text {S }}$	4 V to -6 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: ATTEN/GAIN $=1$, Other Bits $=0$ (0 dB Ideal Gain), $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, $\mathrm{SCK}=$ LATI $=$ LATO $=0, \mathrm{dBm}$ measurements use 600Ω as reference load, digital timing measured at 1.4 V .

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | NOTE 3 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

Analog							
AG	Absolute gain accuracy	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz}$	-0.05		+0.05	dB
RG	Relative gain accuracy	4	100000001 000000000 000000001 All other gain settings All values referenced to 100000000 gain when ATTEN/GAIN $=1, \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{dBm}$ when ATTEN/GAIN $=0$, $\mathrm{V}_{\mathrm{IN}}=(8 \mathrm{dBm}$ - Ideal Gain) in dB	$\begin{aligned} & -.05 \\ & -.05 \\ & -.05 \\ & -0.1 \end{aligned}$		$\begin{aligned} & +.05 \\ & +.05 \\ & +.05 \\ & +0.1 \end{aligned}$	$d B$ $d B$ $d B$ $d B$
FR	Frequency response	4	$300-4000 \mathrm{~Hz}$ $100-20,000 \mathrm{~Hz}$ Relative to 1 kHz	$\begin{gathered} -0.05 \\ -0.1 \end{gathered}$		$\begin{aligned} & +0.05 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
vos	Output Offset Voltage	4	$\mathrm{V}_{\text {IN }}=0,+24 \mathrm{~dB}$ gain			± 100	mV
ICN	Idle Channel Noise	4	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0,+24 \mathrm{~dB} \text { gain, } \mathrm{C} \text { msg. Weighted } \\ & \mathrm{V}_{\text {IN }}=0,+24 \mathrm{~dB} \text { gain, } 1 \mathrm{kHz} \end{aligned}$		$\begin{array}{r} -6 \\ 450 \\ \hline \end{array}$	$\begin{gathered} 0 \\ 900 \end{gathered}$	$\mathrm{dBrnc}_{\mathrm{nv} / \sqrt{\mathrm{Hz}}}$
HD	Harmonic Distortion	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz}$ Measure 2nd, 3rd harmonic relative to fundamental			-60	dB
SD	Signal to Distortion	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz} \text {. }$ C msg. weighted	+60			dB
PSRR	Power Supply Rejection	4	$\begin{array}{\|l} \hline 200 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p},}, \\ \text { on } \mathrm{V}_{\mathrm{cc}} \\ \text { on } \mathrm{V}_{\mathrm{ss}} \end{array}$		$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & -40 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{Z}_{\text {IN }}$	Input Impedance, $\mathrm{V}_{\text {IN }}$	4		1			Meg
$\mathrm{V}_{\text {INR }}$	Input Voltage Range	4		± 3.0			V
V ${ }_{\text {OSW }}$	Output Voltage Swing	4		± 3.0			V

Digital and DC						
V_{lL}	Digital Input Low Voltage	4			. 8	V
V_{IH}	Digital Input High Voltage	4		2.0		v
V_{OL}	Digital Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$. 4	V
V_{OH}	Digital Output High Voltage	4	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	4.0		V
$\mathrm{I}_{\text {NS }}$	Input Current, SER/P/PR	4	$\mathrm{V}_{\mathrm{HH}}=\mathrm{GND}$	-5	-100	$\mu \mathrm{A}$
I_{ND}	Input Current, All Digital Inputs Except SER/PAR	4	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$	5	100	$\mu \mathrm{A}$
I_{Cc}	$V_{\text {CC }}$ Supply Current	4	$\begin{aligned} & \text { No output load, } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {IN }}=0 \end{aligned}$		4	mA
Iss	$\mathrm{V}_{\text {SS }}$ Supply Current	4	$\begin{aligned} & \text { No output load, } \mathrm{V}_{\mathrm{II}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=0 \end{aligned}$		-4	mA
$\mathrm{I}_{\text {CCP }}$	V_{CC} Supply Current, Powerdown Mode	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$. 5	mA
ISSP	$\mathrm{V}_{\text {SS }}$ Supply Current Powerdown Mode	4	$\begin{aligned} & \text { No output load, } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$		-. 1	mA

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: ATTEN $/ \overline{\mathrm{GAIN}}=1$, Other Bits $=0$ (0dB Ideal Gain), $C_{L}=100 \mathrm{pF}, R_{L}=600 \Omega, S C K=L A T I=L A T O=0, d B m$ measurements use 600Ω as reference load, digital timing measured at $1.4 \mathrm{~V} . \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ or SOD .

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	UNITS
AC Characteristics							
$\mathrm{t}_{\text {SET }}$	$\mathrm{V}_{\text {OUT }}$ Settling Time	4	$\mathrm{V}_{\mathrm{IN}}=0.185 \mathrm{~V}$. Change gain from -24 to +24 dB . Measure from LATI rising edge to when $V_{\text {OUt }}$ settles to within 0.05 dB of final value.			20	$\mu \mathrm{s}$
$\mathrm{t}_{\text {STEP }}$	V ${ }_{\text {OUT }}$ Step Response	4	Gain $=+24 \mathrm{~dB} . \mathrm{V}_{\mathrm{IN}}=-0.185 \mathrm{~V}$ to +0.185 V step. Measured when $\mathrm{V}_{\text {OUT }}$ settles to within 0.05 dB of final value.			20	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SCK }}$	SCK On/Off Period	4		250			ns
t_{5}	SID Data Setup Time	4		50			ns
t_{H}	SID Data Hold Time	4		50			ns
t_{D}	SOD Data Delay	4		0		125	ns
$\mathrm{I}_{\text {IPW }}$	LATI Pulse Width	4		50			ns
topw	LATO Pulse Width	4		50			ns
$\mathrm{t}_{15}, \mathrm{t}_{\mathrm{OS}}$	LATI, LAT0 Setup Time	4		50			ns
$\mathrm{t}_{\mathrm{IH}}, \mathrm{t}_{\mathrm{OH}}$	LATI, LAT0 Hold Time	5		50			ns
$\mathrm{t}_{\text {PLD }}$	SOD Parallel Load Delay	4		0		125	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed. parameters not 100% tested are not in outgoing quality level calculation.

TIMING DIAGRAM

TIMING PARAMETERS ARE REFERENCED TO THE 1.4 VOIT MIDPOINT.
Figure 1. Serial Mode Timing Diagram

TYPICAL PERFORMANCE CURVES

Figure 2. Amplitude vs Frequency ($\mathbf{V}_{\mathbf{I N}} / \mathbf{V}_{\mathbf{O U T}}=. \mathbf{. 5}_{\mathbf{R M S}}$)

Figure 4. Output Noise Voltage vs Frequency

Figure 6. $\mathbf{C}_{\text {MSG }} \mathbf{S} / \mathbf{N}$ vs Gain Setting

Figure 3. Amplitude vs Frequency ($\mathbf{V}_{\mathbf{I N}} / \mathbf{V}_{\text {OUT }}=\mathbf{2} \mathbf{V}_{\mathbf{R M S}}$)

Figure 5. C $_{\text {MSG }}$ Output Noise vs Gain Setting

Figure 7. Gain Error vs Gain Setting

TYPICAL PERFORMANCE CURVES (Continued)

Figure 8. $\mathbf{S} / \mathbf{N}+\mathbf{D}$ vs Gain Setting ($\mathbf{V}_{\mathbf{I}} \mathbf{N} / \mathbf{V}_{\mathbf{O U T}}=\mathbf{2} \mathbf{V}_{\mathbf{R M S}}$)

Figure 9. $\mathbf{S} / \mathbf{N}+\mathbf{D}$ vs $\mathbf{G a i n}$ Setting ($\mathbf{V}_{\mathbf{N}} / \mathbf{V}_{\text {OUT }}=. \mathbf{5 V}_{\mathbf{R M S}}$)

1.0 FUNCTIONAL DESCRIPTION

The ML2003 consists of a coarse gain stage, a fine gain stage, an output buffer, and a serial/parallel digital interface.

1.1 Gain Stages

The analog input, V_{IN}, goes directly into the op amp input in the coarse gain stage. The coarse gain stage has a gain range of 0 to 22.5 dB in 1.5 dB steps.
The fine gain stage is cascaded onto the coarse section. The fine gain stage has a gain range of 0 to 1.5 dB in 0.1 dB steps.

In addition, both sections can be programmed for either gain or attenuation, thus doubling the effective gain range.
The logarithmic steps in each gain stage are generated by placing the input signal across a resistor string of 16 series resistors. Analog switches allow the voltage to be tapped from the resistor string at 16 points. The resistors are sized such that each output voltage is at the proper logarithmic ratio relative to the input signal at the top of the string. Attenuation is implemented by using the resistor string as a simple voltage divider, and gain is implemented by using the resistor string as a feedback resistor around an internal op amp.

1.2 Gain Settings

Since the coarse and fine gain stages are cascaded, their gains can be summed logarithmically. Thus, any gain from -24 dB to +24 dB in 0.1 dB steps can be obtained by
combining the coarse and fine gain settings to yield the desired gain setting. The relationship between the digital select bits and the corresponding analog gain values is shown in Tables 1 and 2. Note that C3-C0 selects the coarse gain, F3-F0 selects the fine gain, and ATTEN/GAIN selects either attenuation or gain.

1.3 Output Buffer

The final analog stage is the output buffer. This amplifier has internal gain of 1 and is designed to drive 600 ohms and 100 pF loads. Thus, it is suitable for driving a telephone hybrid circuit directly without any external amplifier.

1.4 Power Supplies

The digital section is powered between $V_{C C}$ and GND, or 5 volts. The analog section is powered between V_{CC} and V_{SS} and uses AGND as the reference point, or ± 5 volts.
GND and AGND are totally isolated inside the device to minimize coupling from the digital section into the analog section. However, AGND and GND should be tied together physically near the device and ideally close to the common power supply ground connection.
Typically, the power supply rejection of V_{CC} and V_{SS} to the analog output is greater than -60 dB at 1 kHz . If decoupling of the power supplies is still necessary in a system, V_{CC} and V_{SS} should be decoupled with respect to AGND.

FUNCTIONAL DESCRIPTION (Continued)

Table 1. Fine Gain Settings ($\mathbf{C} 3-\mathbf{C O}=\mathbf{0}$)

				Ideal Gain (dB)	
F3	F2	F1	F0	ATTEN/GAIN $=\mathbf{1}$	
ATTEN/GAIN $=\mathbf{0}$					
$\mathbf{0}$	0	0	0	.0	.0
0	0	0	1	-.1	.1
0	0	1	0	-.2	.2
0	0	1	1	-.3	.3
0	1	0	0	-.4	.4
0	1	0	1	-.5	.5
0	1	1	0	-.6	.6
0	1	1	1	-.7	.7
1	0	0	0	-.8	.8
1	0	0	1	-.9	.9
1	0	1	0	-1.0	1.0
1	0	1	1	-1.1	1.1
1	1	0	0	-1.2	1.2
1	1	0	1	-1.3	1.3
1	1	1	0	-1.4	1.4
1	1	1	1	-1.5	1.5

1.5 Powerdown Mode

A powerdown mode can be selected with pin P_{DN}. When $P_{D N}=1$, the device is powered down. In this state, the power consumption is reduced by removing power from the analog section and forcing the analog output, $\mathrm{V}_{\text {OUT }}$, to a high impedance state. While the device is in powerdown mode, the digital section is still functional and the current data word remains stored in the latch when in serial mode. When $\mathrm{P}_{\mathrm{DN}}=0$, the device is in normal operation.

1.6 Digital Section

The ML2003 can be operated with a serial or parallel interface. The SER/PAR pin selects the desired interface. When SER/PAR $=1$, the serial mode is selected. When $\mathrm{SER} / \overline{\mathrm{PAR}}=0$, the parallel mode is selected. The ML2004 digital interface is serial only.

1.6.1 Serial Mode

Serial mode is selected by setting SER/ $\overline{\text { PAR }}$ pin high. The serial interface allows the gain settings to be set from a serial data word.
The timing for the serial mode is shown in Figure 10. The serial input data, SID, is loaded into a shift register on rising edges of the shift clock, SCK. The data can be parallel loaded into a latch when the input latch signal, LATI, is high. The LATI pulse must occur when SCK is low. In this way, a new data word can be loaded into the shift register without disturbing the existing data word in the latch.
The parallel outputs of the latch control the attenuation/gain setting. The order of the data word bits in the latch is shown in Figure 11. Note that bit 0 is the first bit of the data word clocked into the shift register. Tables 1 and 2 describe how the data word programs the gain.

Table 2. Coarse Gain Settings ($\mathbf{F 3}-\mathbf{F 0}=\mathbf{0}$)

				Ideal Gain (dB)	
C3	C2	C1	C0	ATTEN/GAIN $=\mathbf{1}$	ATTEN/GAIN $=\mathbf{0}$
$\mathbf{0}$	0	0	0	.0	.0
0	0	0	1	-1.5	1.5
0	0	1	0	-3.0	3.0
0	0	1	1	-4.5	4.5
0	1	0	0	-6.0	6.0
0	1	0	1	-7.5	7.5
0	1	1	0	-9.0	9.0
0	1	1	1	-10.5	10.5
1	0	0	0	-12.0	12.0
1	0	0	1	-13.5	13.5
1	0	1	0	-15.0	15.0
1	0	1	1	-16.5	16.5
1	1	0	0	-18.0	18.0
1	1	0	1	-19.5	19.5
1	1	1	0	-21.0	21.0
1	1	1	1	-22.5	22.5

The device also has the capability to read out the data word stored in the latch. This can be done by parallel loading the data from the latch back into the shift register when the latch signal, LATO, is high. The LATO pulse must occur when SCK is low. Then, the data word can be shifted out of the shift register serially to the output, SOD, on falling edges of the shift clock, SCK.
The loading and reading of the data word can be done continuously or in bursts. Since the shift register and latch circuitry inside the device is static, there are no minimum frequency requirements on the clocks or data pulses. However, there is coupling (typically less than $100 \mu \mathrm{~V}$) of the digital signals into the analog section. This coupling can be minimized by clocking the data bursts in during noncritical intervals or at a frequency outside the analog frequency range.

1.6.2 Parallel Mode

The parallel mode is selected by setting SER/ $\overline{\text { PAR }}$ pin low. The parallel interface allows the gain settings to be set with external switches or from a parallel microprocessor interface.
In parallel mode, the shift register and latch are bypassed and connections are made directly to the gain select bits with external pins ATTEN/GAIN, C3-C0, and F3-F0. Tables 1 and 2 describe how these pins program the gain. The pins ATTEN/GAIN, C3-C0, and F3-F0 have internal pulldown resistors to GND. The typical value of these pulldown resistors is $100 \mathrm{k} \Omega$.

FUNCTIONAL DESCRIPTION (Continued)

LATI \qquad
lato

so $X \times \square \square \square \times \square \times \square \times \square \square \square \square \times$
a) LOAD

b) READ

Figure 10. Serial Mode Timing

Figure 11. 9-Bit Latch

APPLICATIONS

Figure 12. Typical Serial Interface

Figure 13. Typical $\boldsymbol{\mu} \mathbf{P}$ Parallel Interface

Figure 14. Controlling Multiple ML2020 and ML2004 With Only 3 Digital Lines Using One Long Data Word

Figure 15. AGC For DSP Or Modem Front End

APPLICATIONS (Continued)

Figure 16. Analog AGC

Figure 17. Digitally Controlled Volume Control

fCLK1 DETERMINES PEAK ACQUIRE TIME fclk 2 DETERMINES PEAK HOLD TIME

Figure 18. Precision Peak Detector ($\mathbf{~} 1 \%$) with Controllable Acquire and Hold Times

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML2003IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J18)
ML2003IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P18)
ML2003IQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2003CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P18)
ML2003CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML2004IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J14)
ML2004IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P14)
ML2004CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P14)

μ P Compatible Logarithmic Gain/Attenuator

GENERAL DESCRIPTION

The ML2008 and ML2009 are digitally controlled logarithmic gain/attenuators with a range of -24 to +24 dB in 0.1 dB steps.

Easy interface to microprocessors is provided by an input latch and control signals consisting of chip select and write.

The interface for gain setting of the ML2008 is by an 8-bit data word, while the ML2009 is designed to interface to a 16-bit data bus with a single write operation by hardwiring the gain/attenuation pin or LSB pin. The ML2008 can be power downed by the microprocessor utilizing a bit in the second write operation.

Absolute gain accuracy is 0.05 dB max over supply tolerance of $\pm 10 \%$ and temperature range.

These CMOS logarithmic gain/attenuators are designed for a wide variety of applications in telecom, audio, sonar or general purpose function generation.

FEATURES

- Low noise

OdBrnc max with +24 dB gain

- Low harmonic distortion
-60 dB max
- Gain range -24 to +24 dB
- Resolution
0.1 dB steps
$\pm 0.05 \mathrm{~dB}$ from $0.3-4 \mathrm{kHz}$ $\pm 0.10 \mathrm{~dB}$ from $0.1-20 \mathrm{kHz}$
- Low supply current 4 mA max from $\pm 5 \mathrm{~V}$ supplies
- TTL/CMOS compatible digital interface
- ML2008 is designed to interface to an 8-bit data bus; ML2009 to 16-bit data bus

■ Standard 18-pin 0.3" center DIP or 20-pin molded chip carrier package

BLOCK DIAGRAM

ML2008

ML2009

PIN CONFIGURATION

ML2009
18-Pin DIP (P18)

20-Pin PLCC (Q20)

20-Pin PLCC (Q20)

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
$V_{S S}$	Negative supply. -5 Volts $\pm 10 \%$	D3	Data bit, F3
$V_{\text {CC }}$	Positive supply. 5Volts $\pm 10 \%$	D2	Data bit, PDN, F2 ML2008; F2 ML2009
GND	Digital ground. OVolts. All digital inputs are referenced to this ground.	D1	Data bit, F0, F1 ML2008; F1 ML2009
AGND	Analog ground. OVolts. Analog input and output are referenced to this ground.	$\frac{\mathrm{DO}}{\overline{W R}}$	Data bit, F0 ML2009 only Write enable. This input latches the data bits into the registers on rising edges of $\overline{W R}$.
$V_{\text {IN }}$	Analog input	$\overline{\mathrm{CS}}$	Chip select. This input selects the device by only allowing the $\overline{W R}$ signal to latch in data when $\overline{\mathrm{CS}}$ is low.
V OUT	Analog output		
D8	Data bit, ATTEN/ $\overline{G A I N}$		
D7	Data bit, C3	$\begin{gathered} \text { A0 } \\ \text { (ML2008 only) } \end{gathered}$	Address select. This input determines which data word is being written into the registers.
D6	Data bit, C2		
D5	Data bit, C1		
D4	Data bit, C0		

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage
$V_{C C}$ $+6.5 \mathrm{~V}$
$V_{S S}$ $-6.5 \mathrm{~V}$
AGND with Respect to GND V_{CC} to V_{SS}
Analog Inputs and Outputs $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Digital Inputs and Outputs ... GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pin $\pm 25 \mathrm{~mA}$
Power Dissipation 750 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)

ML2008CP, ML2009CP........................ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ML2008CQ, ML2009CQ	. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{V}_{\text {CC }}$	4 V to 6V
	-4 V to -6 V

$0^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
ML2008CQ, ML2009CQ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2008IJ, ML2009IJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
upply Voltage
$V_{S S}$ -4 V to -6 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%$, Data Word: D8 (ATTEN/GAIN) $=1$, Other Bits $=0$, (0dB Ideal Gain), $C_{L}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{dBm}$ measurements use 600Ω as reference load, digital timing measured at 1.4 V .

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP NOTE 3	MAX	UNITS
Analog							
AG	Absolute Gain Accuracy	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz}$	-0.05		+0.05	dB
RG	Relative Gain Accuracy	4	$\begin{array}{\|l\|} \hline 100000001 \\ 000000000 \\ 000000001 \\ \text { All other gain settings } \\ \text { All values referenced to } 100000000 \\ \text { gain when D8 (ATTEN } / \mathrm{GAIN})=1, \\ \mathrm{~V}_{\text {IN }}=8 \mathrm{dBm} \text { when D8 (ATTEN/GAIN) }=0, \\ \mathrm{~V}_{\text {IN }}=(8 \mathrm{dBm} \text { - Ideal Gain) in dB } \end{array}$	$\begin{aligned} & -0.05 \\ & -0.05 \\ & -0.05 \\ & -0.1 \end{aligned}$		$\begin{aligned} & +0.05 \\ & +0.05 \\ & +0.05 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
FR	Frequency Response	4	$\begin{aligned} & 300-4000 \mathrm{~Hz} \\ & 100-20,000 \mathrm{~Hz} \\ & \text { Relative to } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.1 \end{aligned}$		$\begin{gathered} +0.05 \\ +0.1 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	4	$\mathrm{V}_{\mathrm{IN}}=0,+24 \mathrm{~dB}$ gain			± 100	mV
I_{CN}	Idle Channel Noise	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0,+24 \mathrm{~dB}, \mathrm{C}$ msg weighted $\mathrm{V}_{\mathrm{IN}}=0,+24 \mathrm{~dB}, 1 \mathrm{kHz}$		$\begin{gathered} -6 \\ 450 \end{gathered}$	$\begin{gathered} \hline 0 \\ 900 \\ \hline \end{gathered}$	dBrnc $\mathrm{nv} / \sqrt{\mathrm{Hz}}$
HD	Harmonic Distortion	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz}$ Measure 2nd, 3rd, harmonic relative to fundamental			-60	dB
SD	Signal to Distortion	4	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{dBm}, 1 \mathrm{kHz}$ C msg weighted	+60			dB
PSRR	Power Supply Rejection	4	$\begin{gathered} 200 \mathrm{~m} V_{\mathrm{P}-\mathrm{P},} 1 \mathrm{kHz} \text { sine, } \mathrm{V}_{\mathrm{IN}}=0 \\ \text { on } V_{\mathrm{CC}} \\ \text { on } V_{\mathrm{SS}} \end{gathered}$		$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & -40 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{Z}_{\text {IN }}$	Input Impedance, V_{IN}	4		1			Meg
$V_{\text {INR }}$	Input Voltage Range	4		± 3.0			V
$\mathrm{V}_{\text {OSW }}$	Output Voltage Swing	4		± 3.0			V

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP NOTE 3	MAX	UNITS

Digital and DC

$\mathrm{V}_{\text {IL }}$	Digital Input Low Voltage	4			0.8	V
V_{IH}	Digital Input High Voltage	4		2.0		V
1 IN	Input Current, Low	4	$V_{1 H}=G N D$		-10	$\mu \mathrm{A}$
In	Input Current, High	4	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		10	$\mu \mathrm{A}$
ICC	V_{CC} Supply Current	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $V_{I H}=V_{C C}, V_{I N}=0$		4	mA
Iss	$\mathrm{V}_{\text {SS }}$ Supply Current	4	$\begin{aligned} & \text { No output load, } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{IN}}=0 \end{aligned}$		-4	mA
$I_{\text {CCP }}$	VCC Supply Current, ML2008 Powerdown Mode Only	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $V_{I H}=V_{C C}$		0.5	mA
ISSP	VSS Supply Current, ML2008 Powerdown Mode Only	4	No output load, $\mathrm{V}_{\text {IL }}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		-0.1	mA

AC Characteristics

${ }_{\text {tSET }}$	$\mathrm{V}_{\text {OUT }}$ Settling Time	4	$\mathrm{V}_{\mathrm{IN}}=0.185 \mathrm{~V}$. Change gain from -24 to +24 dB . Measure from $\overline{\mathrm{WR}}$ rising edge to when $\mathrm{V}_{\text {OUT }}$ settles to within 0.05 dB of final value.		20	$\mu \mathrm{s}$
$\mathrm{t}_{\text {STEP }}$	$\mathrm{V}_{\text {OUT }}$ Step Response	4	Gain $=+24 \mathrm{~dB} . \mathrm{V}_{\mathrm{IN}}=-3 \mathrm{~V}$ to +3 V step. Measure from $\mathrm{V}_{\text {IN }}=-3 \mathrm{~V}$ to when $\mathrm{V}_{\mathrm{OUT}}$ settles to within 0.05 dB of final value.		20	$\mu \mathrm{s}$
$t_{\text {DS }}$	Data Setup Time	4		50		ns
${ }_{\text {t }}$	Data Hold Time	4		50		ns
t_{AS}	A0 Setup Time	4		0		ns
$\mathrm{t}_{\text {AH }}$	A0 Hold Time	4		0		ns
${ }^{\text {c CSS }}$	$\overline{\mathrm{CS}}$ * Setup Time	4		0		ns
$\mathrm{t}_{\text {CSH }}$	$\overline{\text { CS* Hold Time }}$	4		0		ns
tPW	$\overline{\mathrm{WR}} *$ Pulse Width	4		50		ns

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be imparred. All voltages unless otherwise specified are measured with respect to ground
Note 2: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operatıng temperature range devices are 100% tested with temperature limits guaranteed by 100% testıng, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed Parameters not 100% tested are not in outgoing quality level calculation.

TIMING DIAGRAM

TYPICAL PERFORMANCE CURVES

Figure 2. Amplitude vs Frequency

$$
\left(\mathrm{V}_{\text {IN }} / \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}_{\mathrm{RMS}}\right)
$$

Figure 4. Output Noise Voltage vs Frequency

Figure 3. Amplitude vs Frequency $\left(\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}=\mathbf{2} \mathrm{V}_{\text {RMS }}\right)$

Figure 5. CMSG Output Noise vs Gain Setting

TYPICAL PERFORMANCE CURVES (Continued)

Figure 6. $\mathrm{C}_{\text {MSG }} \mathrm{S} / \mathrm{N}$ vs Gain Setting

Figure 8. $\mathrm{S} / \mathrm{N}+\mathrm{D}$ vs Gain Setting $\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\mathrm{OUT}}=\mathbf{2} \mathrm{V}_{\text {RMS }}\right)$

Figure 7. Gain Error vs Gain Setting

Figure 9. $\mathrm{S} / \mathrm{N}+\mathrm{D}$ vs Gain Setting $\left(\mathrm{V}_{\mathrm{IN}} / \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {RMS }}\right)$

1.0 FUNCTIONAL DESCRIPTION

The ML2008, ML2009 consists of a coarse gain stage, a fine gain stage, an output buffer, and a $\mu \mathrm{P}$ compatible parallel digital interface.

1.1 Gain Stages

The analog input, V_{IN}, goes directly into the op amp input in the coarse gain stage. The coarse gain stage has a gain range of 0 to 22.5 dB in 1.5 dB steps.

The fine gain stage is cascaded onto the coarse section. The fine gain stage has a gain range of 0 to 1.5 dB in 0.1 dB steps.

Both stages can be programmed for either gain or attenuation, thus doubling the effective gain range.

The logarithmic steps in each gains stage are generated by placing the input signal across a resistor string of 16 series resistors. Analog switches allow the voltage to be tapped from the resistor string at 16 points. The resistors are sized such that each output voltage is at the proper logarithmic ratio relative to the input signal at the top of the string. Attenuation is implemented by using the resistor string as a simple voltage divider, and gain is implemented by using the resistor string as a feedback resistor around an internal op amp.

1.2 Gain Settings

Since the coarse and fine gain stages are cascaded, their gains can be summed logarithmically. Thus, any gain from -24 dB to +24 dB in 0.1 dB steps can be obtained by combining the coarse and fine gain setting to yield the
desired gain setting. The relationship between the register 0 and 1 bits and the corresponding analog gain values is shown in Tables 1 and 2. Note that C3-C0 select the coarse gain, F3-F0 select the fine gain, and ATTEN/GAIN selects either gain or attenuation.

1.3 Output Buffer

The final analog stage is the output buffer. This amplifier has internal gain of 1 and is designed to drive 600Ω, 100 pF loads. Thus, it is suitable for driving a telephone hybrid circuit directly without any external amplifier.

Table 1. Fine Gain Settings ($\mathbf{C} 3-\mathbf{C 0}=\mathbf{0}$)

				Ideal Gain (dB)	
F3	F2	F1	F0	ATTEN/GAIN $=\mathbf{1}$ ($\mathbf{A T T E N}$ /GAIN = $\mathbf{0}$	
0	0	0	0	0.0	0.0
0	0	0	1	-0.1	0.1
0	0	1	0	-0.2	0.2
0	0	1	1	-0.3	0.3
0	1	0	0	-0.4	0.4
0	1	0	1	-0.5	0.5
0	1	1	0	-0.6	0.6
0	1	1	1	-0.7	0.7
1	0	0	0	-0.8	0.8
1	0	0	1	-0.9	0.9
1	0	1	0	-1.0	1.0
1	0	1	1	-1.1	1.1
1	1	0	0	-1.2	1.2
1	1	0	1	-1.3	1.3
1	1	1	0	-1.4	1.4
1	1	1	1	-1.5	1.5

2.0 DIGITAL INTERFACE

The architecture of the digital section is shown in the preceding black diagram.

The structure of the data registers or latches is shown in Figures 10 and 11 for the ML2008 and ML2009, respectively. The registers control the attenuation/gain setting bits and with the ML2008 the power down bit.

Tables 1 and 2 describe how the data word programs the gain.

The difference between the ML2008 and ML2009 is in the register structure. The ML2008 is an 8-bit data bus version. This device has one 8 -bit register and one 2-bit register to store the 9 gain setting bits and 1 powerdown bit. Two write operations are necessary to program the full 10 data bits from eight external data pins. The address pin A0 controls which register is being written into. The powerdown bit, PDN, causes the device to be placed in powerdown. When $\mathrm{PDN}=1$, the device is powered

1.4 Power Supplies

The digital section is powered between V_{CC} and GND, or 5 V . The analog section is powered between V_{CC} and V_{SS} and uses AGND as the reference point, or $\pm 5 \mathrm{~V}$.
GND and AGND are totally isolated inside the device to minimize coupling from the digital section into the analog section. Typically this is less than $100 \mu \mathrm{~V}$. However, AGND and GND should be tied together physically near the device and ideally close to the common power supply ground connection.
Typically, the power supply rejection of $V_{C C}$ and $V_{S S}$ to the analog output is greater than -60 dB at 1 KHz . If decoupling of the power supplies is still necessary in a system, V_{CC} and V_{SS} should be decoupled with respect to AGND.

Table 2. Coarse Gain Settings ($\mathbf{F 3} \mathbf{- F 0}=\mathbf{0}$)

			Ideal Gain (dB)		
C3	C2	C1	C0	ATTEN/GAIN $=\mathbf{1}$ ATTEN/GAIN = $\mathbf{0}$	
0	0	0	0	0.0	0.0
0	0	0	1	-1.5	1.5
0	0	1	0	-3.0	3.0
0	0	1	1	-4.5	4.5
0	1	0	0	-6.0	6.0
0	1	0	1	-7.5	7.5
0	1	1	0	-9.0	9.0
0	1	1	1	-10.5	10.5
1	0	0	0	-12.0	12.0
1	0	0	1	-13.5	13.5
1	0	1	0	-15.0	15.0
1	0	1	1	-16.5	16.5
1	1	0	0	-18.0	18.0
1	1	0	1	-19.5	19.5
1	1	1	0	-21.0	21.0
1	1	1	1	-22.5	22.5

down. In this state, the power consumption is reduced by removing power from the analog section and forcing the analog output, $\mathrm{V}_{\mathrm{OUT}}$, to a high impedance state. While the device is in powerdown, the digital section is still functional and the current data word remains stored in the registers. When PDN $=0$, device is in normal operation.

The ML2009 is a 9-bit data bus version. This device has one 9-bit register to store the 9 gain setting bits. The full 9 data bits can be programmed with one write operation from nine external data pins.
The internal registers or latches are edge triggered. The data is transferred from the external pins to the register output on the rising edge of $\overline{W R}$. The address pin, $A 0$, controls which register the data will be written into as shown in Figures 1 and 2. The $\overline{\mathrm{CS}}$ control signal selects the device by allowing the $\overline{W R}$ signal to latch in the data only when $\overline{\mathrm{CS}}$ is low. When $\overline{\mathrm{CS}}$ is high, $\overline{\mathrm{WR}}$ is inhibited from latching in new data into the registers.

	D8	D7	D6	D5	D4	D3	D2	D1	BIT
A0 $=0$	ATTEN/GAIN	C3	C2	C1	C0	F3	F2	F1	REG 0
$A 0=1$							PDN	F0	REG 1

Figure 10. ML2008 Register Structure

Figure 12. Typical 8-Bit μ P Interface, Double Write

Figure 14. Typical 16-Bit μ P Interface

Figure 11. ML2009 Register Structure

Figure 15. AGC for DSP or Modem Front End

Figure 16. Operation as Logarithmic D/A Converter

Figure 17. Controlling Multiple Gain/Attenuators

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML2008IJ	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Hermetic Dip (J18)
ML2008IP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Molded Dip (P18)
ML2008IQ	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML2008CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded Dip (P18)
ML2008CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML2009IJ	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Hermetic Dip (J18)
ML2009IP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Molded Dip (P18)
ML2009IQ	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML2009CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded Dip (P18)
ML2009CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q20)

Telephone Line Equalizer

GENERAL DESCRIPTION

The ML2O20 is a monolithic analog line equalizer for telephone applications. The ML2O20 consists of a switched capacitor filter that realizes a family of frequency response curves optimized for telephone line equalization.

The ML2020 consists of a continuous anti-aliasing filter, a 60 Hz rejection highpass filter section, three programmable switched capacitor equalization filters, an output smoothing filter, a 600Ω driver, and a digital section for the serial interface.

The equalization filters adjust the slope, height, and bandwidth of the frequency response. The desired frequency response is programmed by a digital 14 -bit serial input data stream.

The ML2020 is implemented in a double polysilicon CMOS technology.

FEATURES

- Slope, height, and bandwidth adjustable
- 60 Hz rejection filter
- On chip anti-alias filter
- Bypass mode
- Low supply current 6 mA typical from $\pm 5 \mathrm{~V}$ supplies
- TTL/CMOS compatible interface
- Double buffered data latch
- Selectable master clock
1.544 or 1.536 MHz
- Synchronous or asynchronous data loading capability
- Compatible with ML2003 and ML2004 logarithmic gain/attenuator
- Standard 16-pin $0.3^{\prime \prime}$ center molded or hermetic dip and 18-pin SOIC
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range

BLOCK DIAGRAM

PIN CONNECTIONS

16-PIN DIP

ML2020 18-PIN SOIC

CLKSEL $\quad 1$	18	$\mathrm{V}_{\mathrm{VCC}}$
SID $=2$	17	${ }^{-1} \mathrm{PDN}^{\text {P }}$
NC $=3$	16	mout
LATO	15	m AGND
SCK ${ }^{-1}$	14	m NC
NC \square^{6}	13	m VIN
SOD $\quad 7$	12	m NC
CLK ${ }_{-1}$	11	$\mathrm{m}^{\text {Vss }}$
GND $=9$	10	- LATI

PIN DESCRIPTION

NAME	FUNCTION
CLKSEL	Clock select input. This pin selects the frequency of the CLK input. If CLK is 1.536 MHz , set CLKSEL $=1$. If CLK is 1.544 MHz , set CLKSEL $=0$. Pin has an internal pullup resistor to V_{CC}.
SID	Serial input data. Digital input that contains serial data word which controls the filter frequency response setting.
LATO	Output latch clock. Digital input which loads the data word back into the shift register from the latch.
SCK	Shift clock. Digital input which shifts the serial data on SID into the shift register on rising edges and out onto SOD on falling edges.
SOD	Serial output data. Digital output of the shift register.
CLK	Master clock input. Digital input which generates clocks for the switched capacitor filters. Frequency can be either 1.544 MHz or 1.536 MHz .

NAME	FUNCTION
GND	Digital ground. 0volts. All digital inputs and output are referenced to this ground.
LATI	Input latch clock. Digital input which loads data from the shift register into the latch.
$\mathrm{V}_{\text {SS }}$	Negative supply. - 5 volts $\pm 10 \%$.
V_{IN}	Analog input.
AGND	Analog ground. Ovolts. Analog input and output are referenced to this ground.
$V_{\text {OUT }}$	Analog output.
P_{DN}	Powerdown input. When $\mathrm{P}_{\mathrm{DN}}=1$, device is in powerdown mode. When $\mathrm{P}_{\mathrm{DN}}=0$, device is in normal operation. This pin has an internal pulldown resistor to GND.
V_{CC}	Positive supply. 5 volts $\pm 10 \%$

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage	
$\mathrm{V}_{\text {CC }}$	+6.5V
V ${ }_{\text {S }}$	-6.5V
AGND with Respect to GND	$\pm 0.5 \mathrm{~V}$
Analog Input and Output	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Digital Input and Outputs	GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pin	$\pm 25 \mathrm{~mA}$
Power Dissipation	750 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .)	$300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)	
ML2020CP, ML2020CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2020IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	
V_{CC}	4 V to 6V
V_{SS}	-4 V to -6 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: $\overline{\mathrm{BP}}=1$, Other Bits $=0, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, $R_{L}=600 \Omega, \mathrm{dBm}$ measurements use 600Ω as reference load, $\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{dBm}, 1 \mathrm{kHz}$ sinusoid $\mathrm{CLK}=1.544 \mathrm{MHz} \pm 300 \mathrm{~Hz}$ and digital time measured at 1.4 V

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP NOTE 3	MAX	UNITS
ANALOG							
SR	Response, Slope Section	4				$\begin{gathered} 1.4 \pm 0.1 \\ 2.6 \pm 0.2 \\ 4.7 \pm 0.2 \\ 7.8 \pm 0.2 \\ 11.4 \pm 0.25 \\ 0 \pm 0.1 \\ 0.4 \pm 0.1 \\ 0.9 \pm 0.2 \\ 1.8 \pm 0.2 \\ 3.7 \pm 0.2 \\ 6.6 \pm 0.25 \end{gathered}$	dB
HR	Response, Height Section	4	$\begin{aligned} & 3250 \mathrm{~Hz} \text { response referenced to } 1 \mathrm{kHz} \\ & \text { response with } \overline{\mathrm{BP}}=1 \text {, other bits }=0 \\ & \begin{array}{ccccc} \mathrm{NL} / \mathrm{L} & \mathrm{H} 3 & \frac{\mathrm{H} 2}{0} & \frac{\mathrm{H} 1}{0} & \frac{\mathrm{H}}{0} \\ 0 & 0 & 0 & 0 & \frac{\mathrm{H}}{0} \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{array} \end{aligned}$			$\begin{gathered} 0 \pm 0.1 \\ 0.6 \pm 0.2 \\ 1.2 \pm 0.2 \\ 2.4 \pm 0.2 \\ 5.8 \pm 0.3 \\ 11.2 \pm 0.3 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ dB
$\overline{B R}$	Response, Bandwidth Section (Q)	4				$\begin{gathered} 16.1 \pm 2.0 \\ 14.2 \pm 1.5 \\ 12.6 \pm 1.5 \\ 9.1 \pm 1.0 \\ 3.6 \pm 0.5 \\ 1.2 \pm 0.35 \end{gathered}$	
PK	BW Peak Frequency	4	H 3 thru $\mathrm{HO}=1$	3230	3250	3270	Hz
AG	Absolute Gain, Flat Response	4	1 to 4 kHz	-0.1	+0.1	+0.3	dB
AGB	Absolute Gain, Bypass Mode	4	0.3 to $4 \mathrm{kHz}, \overline{\mathrm{BP}}=0$	-0.1	+0.1	+0.3	dB
ICN	Idle Channel Noise	4	$\mathrm{V}_{\text {IN }}=0$		3	8	dBrnc
			$\mathrm{V}_{\text {IN }}=0$, All Data Bits $=1$		9		dBrnc

ML2020

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: $\overline{B P}=1$, Other Bits $=0, C_{L}=100 \mathrm{pF}$, $R_{L}=600 \Omega, d B m$ measurements use 600Ω as reference load, $\mathrm{V}_{\mathbb{I N}}=-7 \mathrm{dBm}, 1 \mathrm{kHz}$ sinusoid $\mathrm{CLK}=1.544 \mathrm{MHz} \pm 300 \mathrm{~Hz}$ and digital time measured at 1.4 V

| SYMBOL | PARAMETER | NOTES | CONDITIONS | MIN | TYP | NOTE 4 | MAX |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNIT

HD	Harmonic Distortion	4	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{dBm}, 1 \mathrm{kHz}$ Measure 2nd, 3rd, harmonic relative to fundamental		-48	dB
SD	Signal to Distortion	4	$\mathrm{V}_{\mathbb{N}}=-12 \mathrm{dBm}, 1 \mathrm{kHz}$ C msg weighted	+48		dB
SFN	Single Frequency Noise	5	$\begin{aligned} & V_{\text {IN }}=0, \\ & 4 \mathrm{kHz} \leqslant \text { frequency } \leqslant 150 \mathrm{kHz} \end{aligned}$		-50	dBm
PSRR	Power Supply Rejection	4	$\begin{gathered} 200 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p},} 1 \mathrm{kHz} \text { sine, } \mathrm{V}_{\mathrm{IN}}=0 \\ \text { on } V_{\mathrm{CC}} \\ \text { on } V_{\mathrm{SS}} \end{gathered}$		$\begin{array}{r} -40 \\ -40 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
$\mathrm{Z}_{\text {IN }}$	Input Impedance, $\mathrm{V}_{\mathbb{I N}}$	4		100		k Ω
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	4	$\mathrm{V}_{\text {IN }}=0$		± 50	mV
$V_{\text {INR }}$	Input Voltage Range	4		± 2.0		V
$\mathrm{V}_{\text {OSW }}$	Output Voltage Swing	4	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 2.0		V

DIGITAL AND DC

$\mathrm{V}_{\text {IL }}$	Digital Input Low Voltage	4			0.8	V
V_{IH}	Digital Input High Voltage	4		2.0		V
V_{OL}	Digital Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$		0.4	V
V_{OH}	Digital Output High Voltage	4	$\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$	4.0		V
LCLK	Input Current, CLK SEL	4	$\mathrm{V}_{\text {IN }}=0$	5	100	$\mu \mathrm{A}$
ILPDN	Input Current, PDN	4	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	-5	-100	$\mu \mathrm{A}$
$\underline{\text { L }}$	Input Current, All Other Inputs	4	$\mathrm{V}_{\text {IN }}=0-\mathrm{V}_{\text {CC }}$		± 10	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=0$		10	mA
I_{SS}	$\mathrm{V}_{\text {SS }}$ Supply Current	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $V_{I H}=V_{C C}, V_{I N}=0$		-10	mA
$\overline{I_{\text {CCP }}}$	VCC Supply Current, Powerdown Mode	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		1.2	mA
$\mathrm{I}_{\text {SSP }}$	$\mathrm{V}_{\text {SS }}$ Supply Current, Powerdown Mode	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		-1.2	mA

AC CHARACTERISTICS

${ }_{\text {t }}$ AC	Clock Duty Cycle	5		40	60	\%
$\mathrm{t}_{\text {SCK }}$	SCK On/Off Period	4		250		ns
t_{S}	SID Data Setup Time	4		50		ns
${ }_{\text {t }}$	SID Data Hold Time	4		50		ns
t_{D}	SOD Data Delay	4		0	125	ns
${ }_{\text {t }}^{\text {IPW }}$	LATI Pulse Width	4		50		ns
topw	LATO Pulse Width	4		50		ns
	LATI, LATO Setup Time	4		50		ns
$\mathrm{tiH}_{\mathrm{H}, \mathrm{t}}$	LATI, LATO Hold Time	5		50		ns
tPLD	SOD Parallel Load Delay	4		0	125	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.

TIMING PARAMETERS ARE REFERENCED TO THE 1.4 VOLT MIDPOINL.

Figure 1. Serial Timing Diagram

Figure 2. Typical Slope Filter Response-NL/L=0 B3-B0, H3-H0 = 0000, S3-S0 = $\mathbf{0 0 0 0}$ to 1111.

Figure 3. Typical Slope Filter Response-NL/L=1
B3-B0, H3-H0 = 0000, S3-S0 = 0000 to 1111.

Figure 4. Typical Height Filter Response-NL/L=0 B3-B0, $\mathbf{S 3 - S 0}=\mathbf{0 0 0 0} ; \mathbf{H 3 - H 0}=\mathbf{0 0 0 0}$ to 1111.

Figure 5. Typical Bandwidth Filter Response-NL/L=0
$\mathrm{H} 3-\mathrm{H} 0=1111 ; \mathrm{S3}-\mathrm{SO}=\mathbf{0 0 0 0} ; \mathrm{B} 3-\mathrm{B0}=0000$ to 1111.

1.0 FUNCTIONAL DESCRIPTION

The ML2020 consists of a continuous anti-alias filter, a 60 Hz reject highpass filter section, three programmable switched capacitor equalization filters, an output smoothing filter, an output driver, and a digital section for the serial interface.

1.1 Anti-Alias Filter

The first section is a continuous anti-alias filter. This filter is needed to prevent aliasing of high frequency signals present on the input into the passband by the sampling action of the switched capacitor filters. This section is a continuous second order lowpass filter with a typical 3 dB frequency at 20 kHz and 30 dB of rejection at 124 kHz .

1.260 Hz Rejection Filter

The 60 Hz section is a highpass switched capacitor filter designed to reject DC offsets and low frequency signals present on the input. This filter is a first order section with a typical 3 dB frequency at 135 Hz .

1.3 Equalization Filters

The equalizer filters follow the 60 Hz highpass section. These programmable filters implement a family of frequency response curves intended to compensate for the response of telephone lines.
This filter is composed of three distinct sections: slope, height, and bandwidth.

1.3.1 Response of Slope, Height, and Bandwidth

The family of response curves generated by the slope section are shown in Figures 2 and 3. There are 4 slope select bits, S3SO. These bits alter the slope of the highpass response under 1000 Hz , and as a result, the absolute gain above 1000 Hz will be unique for each setting. Table 1 gives typical 1 kHz gain values for all slope settings.
Table 1. Typ. $1 \mathbf{k H z}$ Gain for Slope Settings

Slope Setting	Rel 1kHz Gain (dB)	
	$\mathbf{N L} / \mathbf{L}=\mathbf{1}$	$\mathbf{N L} / \mathbf{L}=\mathbf{0}$
0	0.0	Rel
1	0.4	1.4
2	0.9	2.6
3	1.4	3.7
4	1.8	4.7
5	2.3	5.5
6	2.8	6.3
7	3.4	7.2
8	3.7	7.8
9	4.2	8.4
10	4.6	9.0
11	5.0	9.5
12	5.4	10.0
13	5.8	10.5
14	6.2	11.0
15	6.6	11.4

HT, BW Bits = 0

There is an additional bit, NL/L, that also affects the highpass response of the slope filter. The slope response curves in Figure 2 are with $\mathrm{NL} / \mathrm{L}=0$. These same response curves are shown in Figure 3 with NL/L=1. Notice that the NL/L bit adds more droop in the highpass response below 2500 Hz . The family of response curves generated by the height section are shown in Figure 4. There are 4 height select bits, $\mathrm{H} 3-\mathrm{HO}$. This section creates a peak in the response at 3250 Hz and this filter controls the amount of peaking. Table 2 gives typical 1 kHz gain values for all height and bandwidth settings.

Table 2. Typ. 1 kHz Gain for HT and BW Settings

Relative 1kHz Gain (dB)																
HT Setting																
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	Rel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
5	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.1
. 6	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1
\% 7	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
88	0	0	0	0	0	0	0.1	0.1	0.1	0.1	0.1				0.3	0.4
9	0	0	0	0	0	0.1	0.1	0.1	0.1	0.2	0.2				0.5	0.6
10	0	0	0	0	0.1	0.1	0.1	0.1	0.2	0.3	0.3			0.6	0.7	0.8
11	0	0	0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.7	0.8	0.9	1.1
12	0	0	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.7	0.8	1.0	1.1	1.4	1.6
13	0	0	0.1	0.1	0.2	0.3	0.4	0.5	0.6	0.8	0.9	1.1	1.4	1.6	1.9	2.3
14	0	0	0.1	0.1	0.2	0.3	0.4	0.5	0.7	0.8	1.0	1.2	1.5	1.7	2.0	2.4
15	0	0	0.1	0.1	0.2	0.3		0.5		0.9	1.1			1.8	2.1	2.5

Slope Bits $=0$

The family of response curves generated by the bandwidth section is shown in Figure 5 There are 4 bandwidth select bits, B3-B0. This section causes the response of the 3250 Hz peak to be widened, and as a result, this filter controls the bandwidth of the 3250 Hz peaked region.

1.3.2 Transfer Function

The transfer function for the ML2020 is shown below. This transfer function is valid for magnitude response only. The actual magnitude response from an individual device may deviate from the computed response from the transfer function by typically $0-0.2 \mathrm{~dB}$.

$$
\begin{aligned}
H(s)=\frac{-s}{s+a} & \times \frac{c(s+b)}{b(s+c)} \times \frac{\left[s^{2}+h\left(\omega_{0} / Q\right) s+\omega_{0}{ }^{2}\right]}{\left[s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}\right]} \times \frac{[\sin (\pi f / f c)]}{(\pi f / f c)} \\
s & =j \times 256000 \times \tan (\pi f / 128000) \\
a & =848.230 \\
\omega_{0} & =20463.77 \\
f c & =128000 \\
b, c & : \\
\text { Qee Table 3. } & \text { See Table 4. } \quad \text { (slope) } \\
h & : \text { See Table 5. } \quad \text { (bandwidth) }
\end{aligned}
$$

Table 3.	Slope Response Factors (\mathbf{b}, \mathbf{c}) \mathbf{b}	\mathbf{b}
$\mathbf{S 3 - 0}$	$\mathbf{N L} / \mathbf{L}=\mathbf{0}$	$\mathbf{N L} / \mathbf{L}=\mathbf{1}$
0000	$2.371759 \mathrm{E}+03$	$1.116280 \mathrm{E}+04$
0001	$1.985920 \mathrm{E}+03$	$9.345141 \mathrm{E}+03$
0010	$1.701779 \mathrm{E}+03$	$8.007156 \mathrm{E}+03$
0011	$1.493571 \mathrm{E}+03$	$7.026999 \mathrm{E}+03$
0100	$1.326721 \mathrm{E}+03$	$6.241681 \mathrm{E}+03$
0101	$1.196668 \mathrm{E}+03$	$5.629636 \mathrm{E}+03$
0110	$1.087277 \mathrm{E}+03$	$5.114881 \mathrm{E}+03$
0111	$9.983588 \mathrm{E}+02$	$4.696487 \mathrm{E}+03$
1000	$9.179889 \mathrm{E}+02$	$4.318339 \mathrm{E}+03$
1001	$8.537864 \mathrm{E}+02$	$4.016273 \mathrm{E}+03$
1010	$7.966049 \mathrm{E}+02$	$3.747249 \mathrm{E}+03$
1011	$7.478074 \mathrm{E}+02$	$3.517676 \mathrm{E}+03$
1100	$7.035099 \mathrm{E}+02$	$3.309279 \mathrm{E}+03$
1101	$6.651771 \mathrm{E}+02$	$3.128945 \mathrm{E}+03$
1110	$6.299477 \mathrm{E}+02$	$2.963214 \mathrm{E}+03$
1111	$5.990361 \mathrm{E}+02$	$2.817797 \mathrm{E}+03$
	\mathbf{c}	\mathbf{c}
$\mathbf{S 3 - 0}$	$\mathbf{N L} / \mathbf{L}=\mathbf{0}$	$\mathbf{N L} / \mathbf{L}=\mathbf{1}$
$\mathbf{X X X X}$	$2.371759 \mathrm{E}+03$	$1.116280 \mathrm{E}+04$

Table 4. B3-0	Slope Response Factors $\mathbf{(b , ~} \mathbf{c})$ \mathbf{Q}
0000	17.444906
0001	15.386148
0010	13.652451
0011	11.593677
0100	9.859960
0101	8.017864
0110	6.392453
0111	5.092080
1000	3.900003
1001	3.141338
1010	2.599369
1011	2.165724
1100	1.731965
1101	1.406509
1110	1.352248
1111	1.297981

Table 5. Code	Height Response Factors (\mathbf{h}) \mathbf{h}
0000	1.000000
0001	1.071519
0010	1.148154
0011	1.230269
0100	1.318257
0101	1.445438
0110	1.603245
0111	1.757924
1000	1.949845
1001	2.137962
1010	2.317395
1011	2.540973
1100	2.786121
1101	3.019951
1110	3.311311
1111	3.672823

1.4 Smoothing Filter

The equalizer filters are followed by a continuous second order smoothing filter that removes the high frequency sample information generated by the action of the switched capacitor filters. This filter provides a continuous analog signal at the output, $V_{\text {OUT }}$.

1.5 Output Buffer

The final stage in the ML2020 is the output buffer. This amplifier has internal gain of 1 and is capable of driving 600Ω, 100 pF loads. Thus, it is suitable for driving telephone hybrids directly without any external amplifier.

1.6 Bypass Mode

The filter sections can be bypassed by setting the bypass data bit, $\overline{B P}$, to 0 . Since the switched capacitor filters are bypassed in this mode, frequency response effects of the switched capacitor filters are eliminated. Thus, this mode offers very flat response and low noise over the $300-4000 \mathrm{~Hz}$ frequency range.

1.7 Filter Clock

The master clock, CLK, is used to generate the internal clocks for the switched capacitor filters. The frequency of CLK can be either 1.544 MHz or 1.536 MHz . However, the internal clock frequency must be kept at 1.536 MHz to guarantee accurate frequency response. The CLKSEL pin enables a bit swallower circuit to keep the internal clock frequency set to 1.536 MHz . When 1.544 MHz clock is used, CLKSEL should be set to logic level 0, and one bit out of every 193 bits is removed (swallowed) to reduce the internal frequency to 1.536 MHz . When 1.536 MHz clock is used, CLKSEL should be set to logic level 1, and the internal clock rate is the same as the external clock rate.

1.8 Serial Interface

The architecture of the digital section is shown in the preceding block diagram.
A timing diagram for the serial interface is shown in Figure 6. The serial input data, SID, is loaded into a shift register on rising edges of the shift clock, SCK. The data word is parallel loaded into a latch when the input latch signal, LATI, is high. The LATI pulse must occur when SCK is low. A new data word can be loaded into the shift register without disturbing the existing data word in the latch.
The parallel outputs of the latch control the filter response curves. The order of the data word bits in the latch is shown in Figure 7.
Note that bit 0 is the first bit of the data word clocked into the shift register.
The device has the capability to read out the data word stored in the latch. This is done by parallel loading the data from the latch back into the shift register when the latch signal, LATO, is high. The LATO pulse must occur when SCK is low. Then, the data word can be shifted out of the register serially to the output, SOD, on falling edges of the shift clock, SCK.
The loading and reading of the data word can be done continuously or in bursts. Since the shift register and latch
circuitry inside the device is static, there are no minimum frequency requirements on the clocks or data pulses. However, there is some coupling of the digital signals into the analog section. If this coupling is undesirable, the data can be clocked in bursts during non critical intervals, or the data rate can be done at a frequency outside the analog frequency range.

The clocks used to shift and latch data (SCK, LATI, LATO) are not related internally to the master clock and can occur asynchronous to CLK.

Figure 6. Serial Timing

${ }^{\text {NL/L }}$	SLOPE				BANDWIDTH				HEIGHT				$\overbrace{\overline{B P}}^{\text {BYPASS }} .$	\longleftarrow FUNCTION
NL/L	S3	S2	S1	S0	B3	B2	B1	B0	H3	H2	H1	H0		
13	12	11	10	9	8	7	6	5	4	3	2	1	0	\longleftarrow BIT NUMBER

Figure 7. 14-Bit Latch

POWERDOWN MODE

A powerdown mode can be selected with pin P_{DN}. When $P_{D N}=1$, the device is powered down. In this state, the power consumption is reduced by removing power from the analog section and forcing the analog output, $\mathrm{V}_{\mathrm{OUT}}$, to a high impedance state. While the device is in power down mode, the digital section is still functional and the current data word remains stored in the latch. The master clock, CLK, can be left active or removed during powerdown mode. When $P_{\mathrm{DN}}=0$, the device is in normal operation.

POWER SUPPLIES

The digital section inside the device is powered between V_{CC} and GND, or 5 volts. The analog section is powered between V_{CC} and V_{SS}, or ± 5 volts. The analog section uses AGND as the reference point.
GND and AGND are totally isolated inside the device to minimize coupling from the digital section into the analog section. Typically this is less than $100 \mu \mathrm{~V}$. However, AGND and GND should be tied together physically near the device and close to the common power supply ground connection.
The power supply rejection of V_{CC} and V_{SS} to the analog output is greater than -60 dB at 1 kHz , typically. If decoupling of the power supplies is still necessary in a system, V_{CC} and $V_{S S}$ should be decoupled with respect to AGND.

Figure 8. Typical Serial Interface

Figure 9. Controlling Multiple ML2020 and ML2004 With Only 3 Digital Lines Using One Long Data Word

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML2020CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML2020CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S18W)
ML2020IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J16)
ML2020IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML2020IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S18W)

ML2021

Telephone Line Equalizer

GENERAL DESCRIPTION

The ML2021 is a monolithic analog line equalizer for telephone applications. The ML2021 consists of a switched capacitor filter that realizes a family of frequency response curves optimized for telephone line amplitude equalization while minimizing group delay. This ML2021 is the same function as the ML2020 telephone equalizer without the 60 Hz rejection filter.
The ML2021 consists of a continuous anti-aliasing filter, three programmable switched capacitor equalization filters, an output smoothing filter, a 600Ω driver, and a digital section for the serial interface.

The equalization filters adjust the slope, height, and band-width of the frequency response. The desired frequency response is programmed by a digital 14-bit serial input data stream.
The ML2021 is implemented in a double polysilicon CMOS technology.

FEATURES

- Slope, height, and bandwidth adjustable
- Optimized group delays (500 Hz to 6.4 kHz)
- On chip anti-alias filter
- Bypass mode
- Low supply current 6 mA typical from $\pm 5 \mathrm{~V}$ supplies
- TTL/CMOS compatible interface
- Double buffered data latch
- Selectable master clock $\quad 1.544$ or 1.536 MHz
- Synchronous or asynchronous data loading capability
- Compatible with ML2003 and ML2004 logarithmic gain/attenuator
■ Standard 16-pin $0.3^{\prime \prime}$ center molded or hermetic DIP and $18-$ pin SOIC
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DESCRIPTION

NAME	FUNCTION
CLKSEL	Clock select input. This pin selects the frequency of the CLK input. If CLK is 1.536 MHz , set CLKSEL $=1$. If CLK is 1.544 MHz , set
CLKSEL = 0. Pin has an internal	
pullup resistor to VCC.	
Serial input data. Digital input that	
contains serial data word which	
controls the filter frequency re-	
sponse setting.	

NAME	FUNCTION
GND	Digital ground. 0volts. All digital inputs and output are referenced to this ground.
LATI	Input latch clock. Digital input which loads data from the shift register into the latch.
$\mathrm{V}_{S S}$	Negative supply. -5 volts $\pm 10 \%$.
$V_{\text {IN }}$	Analog input.
AGND	Analog ground. Ovolts. Analog input and output are referenced to this ground.
$\mathrm{V}_{\text {OUT }}$	Analog output.
P_{DN}	Powerdown input. When $\mathrm{P}_{\mathrm{DN}}=1$, device is in powerdown mode. When $\mathrm{P}_{\mathrm{DN}}=0$, device is in normal operatıon. This pin has an internal pulldown resistor to GND.
$\mathrm{V}_{\text {CC }}$	Positive supply. 5 volts $\pm 10 \%$

ABSOLUTE MAXIMUM RATINGS	
Supply Voltage	
$\mathrm{V}_{\text {CC }}$	$+6.5 \mathrm{~V}$
$V_{\text {SS }}$	-6.5V
AGND with Respect to GND	$\pm 0.5 \mathrm{~V}$
Analog Input and Output	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
Digital Input and Outputs	GND -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pın	$\pm 25 \mathrm{~mA}$
Power Dissipation	750 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solderıng 10 sec.)	. $300^{\circ} \mathrm{C}$

(Note 1) quency can be either 1544 MHz or 1.536 MHz .

OPERATING CONDITIONS

```
Temperature Range (Note 2)
    ML2021CP, ML2021CS . . . . . . . . . . . . . . . . . . . 0 }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70
    ML2021IJ . . . . . . . . . . . . . . . . . . . . . . . - 40' C to + 855'`
Supply Voltage
    \mp@subsup{V}{CC}{} .... . ..................................... . . 4V to 6V
    V VS ............................................. - 4V to -6V
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Temperature Range (Note 2)} \\
\hline ML2021CP, ML2021CS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline ML2021IJ & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Supply Voltage} \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & 4 V to 6 V \\
\hline \(\mathrm{V}_{\text {SS }}\) & -4 V to -6 V \\
\hline
\end{tabular}
```


ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: $\overline{B P}=1$, Other Bits $=0, C_{L}=100 \mathrm{pF}$, $R_{L}=600 \Omega, \mathrm{dBm}$ measurements use 600Ω as reference load, $\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{dBm}, 1 \mathrm{kHz}$ sinusoid $\mathrm{CLK}=1.544 \mathrm{MHz} \pm 300 \mathrm{~Hz}$ and digital time measured at 1.4 V

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{C C}=5 \mathrm{~V} \pm 10 \%, V_{S S}=-5 \mathrm{~V} \pm 10 \%$, Data Word: $\overline{B P}=1$, Other Bits $=0, C_{L}=100 \mathrm{pF}$, $R_{L}=600 \Omega, \mathrm{dBm}$ measurements use 600Ω as reference load, $\mathrm{V}_{I N}=-7 \mathrm{dBm}, 1 \mathrm{kHz}$ sinusoid $\mathrm{CLK}=1.544 \mathrm{MHz} \pm 300 \mathrm{~Hz}$ and digital time measured at 1.4 V

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 3 \end{gathered}$	MAX	LIMIT UNITS
ANALOG							
HD	Harmonic Distortion	4	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{dBm}, 1 \mathrm{kHz}$ Measure 2nd, 3rd, harmonic relative to fundamental			-48	dB
$\overline{S D}$	Signal to Distortion	4	$\mathrm{V}_{\mathrm{IN}}=-12 \mathrm{dBm}, 1 \mathrm{kHz}$ C msg weighted	+48			dB
$\overline{\text { SFN }}$	Single Frequency Noise	5	$\begin{aligned} & \mathrm{V}_{\mathrm{iN}}=0, \\ & 4 \mathrm{kHz} \leqslant \text { frequency } \leqslant 150 \mathrm{kHz} \end{aligned}$			-50	dBm
PSRR	Power Supply Rejection	4	$\begin{gathered} 200 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p},} 1 \mathrm{kHz} \text { sine, } \mathrm{V}_{\mathrm{IN}}=0 \\ \text { on } \mathrm{V}_{\mathrm{CC}} \\ \text { on } \mathrm{V}_{\mathrm{SS}} \end{gathered}$			$\begin{aligned} & -40 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{Z}_{\text {IN }}$	Input Impedance, $\mathrm{V}_{\text {IN }}$	4		100			k Ω
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	4	$\mathrm{V}_{\mathrm{IN}}=0$			± 50	mV
$V_{\text {INR }}$	Input Voltage Range	4		± 2.0			V
$\mathrm{V}_{\text {OSW }}$	Output Voltage Swing	4	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 2.0			V

DIGITAL AND DC

$\mathrm{V}_{\text {IL }}$	Digital Input Low Voltage	4			0.8	V
V_{IH}	Digital Input High Voltage	4		2.0		V
V_{OL}	Digital Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$		0.4	V
V_{OH}	Digital Output High Voltage	4	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	4.0		V
LCLK	Input Current, CLK SEL	4	$\mathrm{V}_{\text {IN }}=0$	5	100	$\mu \mathrm{A}$
ILPDN	Input Current, PDN	4	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	-5	-100	$\mu \mathrm{A}$
IL	Input Current, All Other Inputs	4	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		± 10	$\mu \mathrm{A}$
I_{CC}	V CC Supply Current	4	No output load, $\mathrm{V}_{\text {IL }}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=0$		10	mA
$\overline{\mathrm{l}}$ SS	$\mathrm{V}_{\text {SS }}$ Supply Current	4	No output load, $\mathrm{V}_{\text {IL }}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=0$		-10	mA
$\mathrm{I}_{\mathrm{CCP}}$	V_{CC} Supply Current, Powerdown Mode	4	No output load, $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		1.2	mA
$\mathrm{I}_{\text {SSP }}$	$V_{\text {SS }}$ Supply Current, Powerdown Mode	4	No output load, $\mathrm{V}_{\text {IL }}=\mathrm{GND}$, $\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{CC}}$		-1.2	mA

AC CHARACTERISTICS

t_{DC}	Clock Duty Cycle	5		40		60	$\%$
$\mathrm{t}_{\mathrm{SCK}}$	SCK On/Off Period	4		250			ns
t_{S}	SID Data Setup Time	4		50			ns
t_{H}	SID Data Hold Time	4		50			ns
t_{D}	SOD Data Delay	4		0		125	ns
t_{PW}	LATI Pulse Width	4		50			ns
$\mathrm{t}_{\mathrm{OPW}}$	LATO Pulse Width	4		50			ns
$\mathrm{t}_{\mathrm{IS}, \mathrm{t}_{\mathrm{OS}}}$	LATI, LATO Setup Time	4		50			ns
$\mathrm{t}_{\mathrm{IH}, \mathrm{t}_{\mathrm{OH}}}$	LATI, LATO Hold Time	5		50			ns
$\mathrm{t}_{\text {PLD }}$	SOD Parallel Load Delay	4		0		125	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by
100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.

Figure 1. Serial Timing Diagram

Figure 2. Typical Slope Filter Response-NL/L=0
$\mathrm{B} 3-\mathrm{BO}, \mathrm{H} 3-\mathrm{H} 0=\mathbf{0 0 0 0}, \mathrm{S3}-\mathrm{SO}=\mathbf{0 0 0 0}$ to 1111.

Figure 3. Typical Slope Filter Response-NL/L=1
B3-B0, $\mathbf{H} 3-\mathrm{HO}=\mathbf{0 0 0 0}, \mathbf{S 3 - S O}=\mathbf{0 0 0 0}$ to 1111.

Figure 4. Typical Height Filter Response-NL/L=0
B3-BO, S3-SO = 0000; H3-H0 = 0000 to 1111 .

Figure 5. Typical Bandwidth Filter Response-NL/L=0
$\mathrm{H} 3-\mathrm{HO}=1111 ; \mathrm{S3}-\mathrm{SO}=\mathbf{0 0 0 0} ; \mathbf{B 3 - B 0}=\mathbf{0 0 0 0}$ to 1111 .

1.0 FUNCTIONAL DESCRIPTION

The ML2021 consists of a continuous anti-alias filter, three programmable switched capacitor equalization filters, an output smoothing filter, an output driver, and a digital section for the serial interface.

1.1 ANTI-ALIAS FILTER

The first section is a continuous anti-alias filter. This filter is needed to prevent aliasing of high frequency signals present on the input into the passband by the sampling action of the switched capacitor filters. This section is a continuous second order lowpass filter with a typical 3 dB frequency at 20 kHz and 30 dB of rejection at 124 kHz .

1.2 EQUALIZATION FILTERS

The programmable filters implement a family of frequency response curves intended to compensate for the response of telephone lines.
This filter is composed of three distinct sections: slope, height, and bandwidth.

1.2.1 RESPONSE OF SLOPE, HEIGHT, AND BANDWIDTH

The family of response curves generated by the slope section are shown in Figures 2 and 3. There are 4 slope select bits, S3SO. These bits alter the slope of the highpass response under 1000 Hz , and as a result, the absolute gain above 1000 Hz will be unique for each setting. Table 1 gives typical 1 kHz gain values for all slope settings.

Table 1. Typ. $1 \mathbf{k H z}$ Gain for Slope Settings

Slope Setting	Rel 1kHz Gain (dB)	
	$\mathbf{N L} / \mathbf{L}=\mathbf{1}$	$\mathbf{N L} / \mathbf{L}=\mathbf{0}$
0	0.0	Rel
1	0.4	1.4
2	0.9	2.6
3	1.4	3.7
4	1.8	4.7
5	2.3	5.5
6	2.8	6.3
7	3.4	7.2
8	3.7	7.8
9	4.2	8.4
10	4.6	9.0
11	5.0	9.5
12	5.4	10.0
13	5.8	10.5
14	6.2	11.0
15	6.6	11.4

HT, BW Bits $=0$

There is an additional bit, NL/L, that also affects the highpass response of the slope filter. The slope response curves in Figure 2 are with $\mathrm{NL} / \mathrm{L}=0$. These same response curves are shown in Figure 3 with NL/L $=1$. Notice that the NL/L bit adds more droop in the highpass response below 2500 Hz . The family of response curves generated by the height section are shown in Figure 4. There are 4 height select bits, $\mathrm{H} 3-\mathrm{HO}$. This section creates a peak in the response at 3250 Hz and this filter controls the amount of peaking. Table 2 gives typical 1 kHz gain values for all height and bandwidth settings.

Table 2. Typ. 1kHz Gain for HT and BW Settings

Relative 1kHz Gain (dB)																	
HT Setting																	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14		15
0	Rel	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.1
5	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1			0.1
- 6	0	0	0	0	0	0	0	0	0	0	0.1	0.1	10.1	0.1	10.1		0.1
\% 7	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.1	10.1	0.2			0.2
盛 8	0	0	0	0	0	0	0.1	0.1	0.1		0.1		0.2				0.4
9	0	0	0	0	0	0.1	0.1	0.1	10.1		0.2		30.3				0.6
10	0	0	0	0	0.1	0.1	0.1	0.1	0.2		0.3	0.4	0.40 .5				0.8
11	0	0	0	0.1	0.1				20.3		0.4		0.7				
12	0	0	0.1	0.1	0.1	0.2	0.2	0.3	30.4	0.5	0.7	0.8	8 1.0	1.1	11.4		1.6
13	0	0	0.1	0.1	0.2	0.3	0.4	0.5	50.6		0.9	1.1	1.4	1.6	1.9		2.3
14	0	0	0.1								1.0	1.2	21.5	1.7			2.4
15	0	0	0.1	0.1	0.2	0.3					1.1	1.3	1.6	1.8	2.1		2.5

Slope Bits $=0$
The family of response curves generated by the bandwidth section is shown in Figure 5 There are 4 bandwidth select bits, B3-B0. This section causes the response of the 3250 Hz peak to be widened, and as a result, this filter controls the bandwidth of the 3250 Hz peaked region.

1.2.2 TRANSFER FUNCTION

The transfer function for the ML2021 is shown below. This transfer function is valid for magnitude response only. The actual magnitude response from an individual device may deviate from the computed response from the transfer function by typically $0-0.2 \mathrm{~dB}$.

$$
H(s)=\frac{c(s+b)}{b(s+c)} \times \frac{\left[s^{2}+h\left(\omega_{0} / Q\right) s+\omega_{0}{ }^{2}\right]}{\left[s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}\right]} \times \frac{[\sin (\pi f / f \mathrm{fc})]}{(\pi f / f \mathrm{fc})}
$$

Table 3.	Slope Response Factors (\mathbf{b}, \mathbf{c}) \mathbf{b}	\mathbf{b} $\mathbf{S 3 - 0}$ $\mathbf{N L} / \mathbf{L}=\mathbf{0}$
0000	$2.371759 \mathrm{E}+03$	$1.116280 \mathrm{E}+04$
0001	$1.985920 \mathrm{E}+03$	$9.345141 \mathrm{E}+03$
0010	$1.701779 \mathrm{E}+03$	$8.007156 \mathrm{E}+03$
0011	$1.493571 \mathrm{E}+03$	$7.026999 \mathrm{E}+03$
0100	$1.326721 \mathrm{E}+03$	$6.241681 \mathrm{E}+03$
0101	$1.196668 \mathrm{E}+03$	$5.629636 \mathrm{E}+03$
0110	$1.087277 \mathrm{E}+03$	$5.114881 \mathrm{E}+03$
0111	$9.983588 \mathrm{E}+02$	$4.696487 \mathrm{E}+03$
1000	$9.179889 \mathrm{E}+02$	$4.318339 \mathrm{E}+03$
1001	$8.537864 \mathrm{E}+02$	$4.016273 \mathrm{E}+03$
1010	$7.966049 \mathrm{E}+02$	$3.747249 \mathrm{E}+03$
1011	$7.478074 \mathrm{E}+02$	$3.517676 \mathrm{E}+03$
1100	$7.035099 \mathrm{E}+02$	$3.309279 \mathrm{E}+03$
1101	$6.651771 \mathrm{E}+02$	$3.128945 \mathrm{E}+03$
1110	$6.299477 \mathrm{E}+02$	$2.963214 \mathrm{E}+03$
1111	$5.990361 \mathrm{E}+02$	$2.817797 \mathrm{E}+03$
	\mathbf{c}	\mathbf{c}
$\mathbf{S 3 - 0}$	$\mathrm{NL} / \mathbf{L}=\mathbf{0}$	$\mathbf{N L} / \mathbf{L}=\mathbf{1}$
XXXX	$2.371759 \mathrm{E}+03$	$\mathbf{1 . 1 1 6 2 8 0 \mathrm { E } + 0 4}$

Table 4. Slope Response Factors (b, c)

B3-0	\mathbf{Q}
0000	17.444906
0001	15.386148
0010	13.652451
0011	11.593677
0100	9.859960
0101	8.017864
0110	6.392453
0111	5.092080
1000	3.900003
1001	3.141338
1010	2.599369
1011	2.165724
1100	1.731965
1101	1.406509
1110	1.352248
1111	1.297981

Table 5. Height Response Factors (h)

Code	h
0000	1.000000
0001	1.071519
0010	1.148154
0011	1.230269
0100	1.318257
0101	1.445438
0110	1.603245
0111	1.757924
1000	1.949845
1001	2.137962
1010	2.317395
1011	2.540973
1100	2.786121
1101	3.019951
1110	3.311311
1111	3.672823

1.2.3 GROUP DELAY

The difference between the ML2020 and ML2021 is the elimination of a 60 Hz highpass filter in order to eliminate positive group delay at low frequency.

The group delay through the ML2021 can be minimized such that less than $50 \mu \mathrm{~s}$ of group delay can be achieved in both unloaded and cable loaded conditions relative to 1804 Hz in the frequency range of 504 to 3004 Hz . Minimum group delays are dependent upon using the proper setting for slope, height, and bandwidth for a give equalization requirement.

1.3 SMOOTHING FILTER

The equalizer filters are followed by a continuous second order smoothing filter that removes the high frequency sample information generated by the action of the switched capacitor filters. This filter provides a continuous analog signal at the output, $\mathrm{V}_{\text {OUT }}$.

1.4 OUTPUT BUFFER

The final stage in the ML2020 is the output buffer. This amplifier has internal gain of 1 and is capable of driving 600Ω, 100 pF loads. Thus, it is suitable for driving telephone hybrids directly without any external amplifier.

1.5 BYPASS MODE

The filter sections can be bypassed by setting the bypass data bit, $\overline{B P}$, to 0 . Since the switched capacitor filters are bypassed in this mode, frequency response effects of the switched capacitor filters are eliminated. Thus, this mode offers very flat response and low noise over the $300-4000 \mathrm{~Hz}$ frequency range.

1.6 FILTER CLOCK

The master clock, CLK, is used to generate the internal clocks for the switched capacitor filters. The frequency of CLK can be either 1.544 MHz or 1.536 MHz . However, the internal clock frequency must be kept at 1.536 MHz to guarantee accurate frequency response. The CLKSEL pin enables a bit swallower circuit to keep the internal clock frequency set to 1.536 MHz . When 1.544 MHz clock is used, CLKSEL should be set to logic level 0 , and one bit out of every 193 bits is removed (swallowed) to reduce the internal frequency to 1.536 MHz . When 1.536 MHz clock is used, CLKSEL should be set to logic level 1, and the internal clock rate is the same as the external clock rate.

1.7 SERIAL INTERFACE

The architecture of the digital section is shown in the preceding block diagram.
A timing diagram for the serial interface is shown in Figure 6. The serial input data, SID, is loaded into a shift register on rising edges of the shift clock, SCK. The data word is parallel loaded into a latch when the input latch signal, LATI, is high. The LATI pulse must occur when SCK is low. A new data word can be loaded into the shift register without disturbing the existing data word in the latch.
The parallel outputs of the latch control the filter response curves. The order of the data word bits in the latch is shown in Figure 7.

Note that bit 0 is the first bit of the data word clocked into the shift register.
The device has the capability to read out the data word stored in the latch. This is done by parallel loading the data from the latch back into the shift register when the latch signal, LATO, is high. The LATO pulse must occur when SCK is low. Then, the data word can be shifted out of the register serially to the output, SOD, on falling edges of the shift clock, SCK.
The loading and reading of the data word can be done continuously or in bursts. Since the shift register and latch
circuitry inside the device is static, there are no minimum frequency requirements on the clocks or data pulses. However, there is some coupling of the digital signals into the analog section. If this coupling is undesirable, the data can be clocked in bursts during non critical intervals, or the data rate can be done at a frequency outside the analog frequency range.
The clocks used to shift and latch data (SCK, LATI, LATO) are not related internally to the master clock and can occur asynchronous to CLK.

LATI

a) LOAD

LATI

b) READ

Figure 6. Serial Timing

Figure 7. 14-Bit Latch

1.8 POWERDOWN MODE

A powerdown mode can be selected with pin P_{DN}. When $P_{D N}=1$, the device is powered down. In this state, the power consumption is reduced by removing power from the analog section and forcing the analog output, $\mathrm{V}_{\mathrm{OUT}}$, to a high impedance state. While the device is in power down mode, the digital section is still functional and the current data word remains stored in the latch. The master clock, CLK, can be left active or removed during powerdown mode. When $P_{D N}=0$, the device is in normal operation.

1.9 POWER SUPPLIES

The digital section inside the device is powered between V_{CC} and GND, or 5 volts. The analog section is powered between $V_{C C}$ and $V_{S S}$ or ± 5 volts. The analog section uses AGND as the reference point.
GND and AGND are totally isolated inside the device to minimize coupling from the digital section into the analog section. Typically this is less than $100 \mu \mathrm{~V}$. However, AGND and GND should be tied together physically near the device and close to the common power supply ground connection.
The power supply rejection of V_{CC} and $\mathrm{V}_{S S}$ to the analog output is greater than -60 dB at 1 kHz , typically. If decoupling of the power supplies is still necessary in a system, V_{CC} and V_{SS} should be decoupled with respect to AGND .

2.0 APPLICATIONS

Figure 8. Typical Serial Interface

Figure 9. Controlling Multiple ML2021 and ML2004 With Only 3 Digital Lines Using One Long Data Word

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML2021CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML2021CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S18W)
ML2021IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J16)
ML2021IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML2021IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S18W)

Tone Detector

GENERAL DESCRIPTION

The ML2031 and ML2032 are monolithic tone detectors intended for telecommunication applications utilizing 4wire loopback capability. The device meets or exceeds the 4 -wire Maintenance Terminating Unit (MTU) requirements outlined in BELL PUB 43004.

These devices incorporate a 2713 Hz tone detector, clock oscillator, and uncommitted op amp in an 8 -pin DIP. No external components are required.

The ML2031 or ML2032 can be used to detect frequencies of 1004 Hz or 2600 Hz , as the tone detector frequency template from 1000 Hz to 4000 Hz is proportional to the frequency of the external clock.

The ML2031 has two clock outputs. CLK OUT 1 is one half the frequency of $\mathrm{CLK}_{\mathrm{IN}}$, while $\mathrm{CLK}_{\mathrm{OUT}} 2$ is one eighth of the frequency of $\mathrm{CLK}_{1 \mathrm{~N}}$. The ML2032 has an uncommitted op amp instead of the clock outputs.
The ML2031 and ML2032 are implemented in a double polysilicon CMOS technology.

FEATURES

- Meets or exceeds BELL PUB 43004 requirements
- Extended dynamic range detect -34 dBm to +6 dBm no detect $\leqslant-40 \mathrm{dBm}$
- Frequency template ($f_{C L K} \mathbb{I N}=12 \mathrm{MHz}$)
detect $2713 \pm 10 \mathrm{~Hz}$ no detect $2713 \pm 36 \mathrm{~Hz}$
- General purpose tone detect range of 1000 Hz to 4000 Hz
- Signal-to-guard ratio

8 dB to 13 dB

- No external components required
- Continuous anti-alias filter
- 60 Hz reject filter
- $\pm 5 \mathrm{~V}$ supplies
- Clock input
$12.352 \mathrm{MHz}, 1.544 \mathrm{MHz}$, or a 12.352 MHz crystal
- ML2031 has clock outputs of 1.544 MHz and 6.176 MHz
- Tone detection of 1000 Hz to 4000 Hz proportional to external clock
- ML2032 has uncommitted op amp
- 8-pin dual-in-line package

BLOCK DIAGRAMS

PIN CONNECTIONS

PIN DESCRIPTIONS

ML2031		
PIN NO.	NAME	FUNCTION
1	$V_{S S}$	Negative supply. $-5 \mathrm{~V} \pm 10 \%$
2	CLK ${ }_{\text {OUT }}{ }^{1}$	Clock output. Digital output from oscillator divided by 2.
3	$\mathrm{CLK}_{\text {OUT }}{ }^{2}$	Clock output. Digital output from oscillator divided by 8 .
4	TDET	Tone detect output. Digital output which indicates when valid 2713 Hz tone is present on analog input.
5	$\mathrm{CLK}_{\text {IN }}$	Clock input. Internal clock can be generated by tying a 12.352 MHz crystal between this pin and GND, or by applying a 12.352 MHz or 1.544 MHz clock to this pin.
6	GND	Ground. Analog and digital inputs and outputs are referenced to this point.
7	$\mathrm{V}_{\text {CC }}$	Positive supply. $+5 \mathrm{~V} \pm 10 \%$
8	$\mathrm{V}_{1 \times}+$	Analog input.

ML2032

PIN NO.	NAME	FUNCTION
1	$\mathrm{V}_{\mathrm{IN}}+$	Positive Analog input. Positive input to the uncommitted op amp.
2	$\mathrm{V}_{1 N^{-}}$	Negative Analog input. Negative input to the uncommitted op amp.
3	$V_{S S}$	Negative supply. $-5 \mathrm{~V} \pm 10 \%$
4	TDET	Tone detect output. Digital output which indicates when valid 2713 Hz tone is present on analog input.
5	$\mathrm{CLK}_{\text {IN }}$	Clock input. Internal clock can be generated by tying a 12.352 MHz crystal between this pin and GND, or by applying a 12.352 MHz or 1.544 MHz clock to this pin.
6	GND	Ground. Analog and digital inputs and outputs are referenced to this point.
7	V_{CC}	Positive supply. $+5 \mathrm{~V} \pm 10 \%$
8	VOUT	Analog output. Output of the uncommitted op amp.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage	
$V_{\text {CC }}$	+6.5V
$\mathrm{V}_{\text {SS }}$	-6.5V
Analog Input and Output	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Digital Input and Outputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pin	$\pm 25 \mathrm{~mA}$
Power Dissipation	750 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Solderıng 10 sec.) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)	
ML2031CP, ML2032CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2031IJ, ML2032IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	
$\mathrm{V}_{\text {CC }}$	4 V to 6 V
V_{SS}	-4 V to -6 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, C L K_{\mathrm{IN}}=12.352 \mathrm{MHz} \pm 1200 \mathrm{~Hz}$, or $\mathrm{CLK}_{\mathrm{IN}}=1.544 \mathrm{MHz} \pm 150 \mathrm{~Hz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{dBm}$ measurements use 600Ω as reference load, uncommitted op amp in unity gain configuration.

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 3 \end{gathered}$	MAX	UNITS
TONE DETECT							
$\mathrm{f}_{\text {TD }}$	Tone Detection Frequency	4	$\mathrm{V}_{\text {IN }}=+6 \mathrm{dBm}$ to -34 dBm	2703		2723	Hz
$\mathrm{f}_{\text {TR }}$	Tone Rejection Frequency	4		2679		2747	Hz
$\mathrm{A}_{\text {TD }}$	Tone Detection Amplitude	4	$\mathrm{V}_{\text {IN }}=2703 \mathrm{~Hz}$ to 2723 Hz	-34		+6	dBm
$\mathrm{A}_{\text {TR }}$	Tone Rejection Amplitude	4		-40			dBm
SGM	Signal to Guard Margin	4	$\begin{aligned} & 800 \mathrm{~Hz} \\ & 1400 \mathrm{~Hz} \\ & 2000 \mathrm{~Hz} \\ & 2450 \mathrm{~Hz} \\ & \text { Signal }=-13 \mathrm{dBm}, 2713 \mathrm{~Hz} . \\ & \text { See BELL PUB } 43004 \text { sec. } 2.4 \\ & \text { for test method } \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
SFI	SF Tone Immunity	5	$\mathrm{V}_{\mathrm{IN}}+=2600 \mathrm{~Hz}$ No tone detect			+6	dBm
$\mathrm{t}_{\text {TD }}$	Tone Detect Delay	4	$\mathrm{V}_{\mathrm{IN}^{+}}=-8 \mathrm{dBm}, 2713 \mathrm{~Hz}$ Figure 1	0	10	30	ms
$t_{\text {TR }}$	Tone Removal Delay	4	$\mathrm{V}_{\mathrm{IN}^{+}}=-8 \mathrm{dBm}, 2713 \mathrm{~Hz}$ Figure 1	0	4	30	ms

OP AMP

$\mathrm{V}_{\text {INR }}$	Input Voltage Range	5		± 3			V
$\mathrm{~V}_{\text {OSW }}$	Output Voltage Swing	4	ML2032 Only	± 3			V
$\mathrm{~V}_{\text {OS }}$	Input Offset Voltage	4	ML2032 Only			± 20	mV
$\mathrm{Z}_{\text {IN }}$	Input Impedance	4		1			$\mathrm{M} \Omega$
$\mathrm{A}_{\mathrm{VOL}}$	DC Open Loop Gain	4		1 k	5 k		V / V
f_{UG}	Unity Gain Frequency	5		0.5	1		MHz
I_{CN}	Noise- Input Referred	5	C msg weighted 1 kHz		-9	-3 375	dBrnc $\mathrm{nv} / \sqrt{\mathrm{Hz}}$ l

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, C L K_{\mathrm{IN}}=12.352 \mathrm{MHz} \pm 1200 \mathrm{~Hz}$, or $C L K_{I N}=1.544 \mathrm{MHz} \pm 150 \mathrm{~Hz}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{dBm}$ measurements use 600Ω as reference load, uncommitted op amp in unity gain configuration.

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP NOTE 3	MAX	UNITS
DIGITAL AND DC							
$\mathrm{V}_{\text {IL }}$	Input Low Voltage, $\mathrm{CLK}_{\text {IN }}$	4				1.5	V
$\underline{\mathrm{V}_{\mathrm{IH}}}$	Input High Voltage, $\mathrm{CLK}_{\text {IN }}$	4		3.5			V
I_{N}	Input Current, $\mathrm{CLK}_{\text {IN }}$	4	$\mathrm{CLK}_{\text {IN }}=1.5 \mathrm{~V}$ to 3.5 V		10	60	$\mu \mathrm{A}$
			$\mathrm{CLK}_{\text {IN }}=0$ to $1.5 \mathrm{~V} ; 3.5 \mathrm{~V}$ to V_{CC}		150	500	$\mu \mathrm{A}$
C_{IN}	Input Capacitance, $\mathrm{CLK}_{\text {IN }}$	5			11		pF
V_{OL}	Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=-2 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage	4	$\mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA}$	4.0			V
$\mathrm{ICC}^{\text {che }}$	$\mathrm{V}_{\text {CC }}$ Supply Current	4	No output load			7.5	mA
ISS	$\mathrm{V}_{\text {SS }}$ Supply Current	4	No output load			-4.5	mA

CLOCK OUTPUT

$\mathrm{f}_{\text {CLK }} 1$	CLK $_{\text {OUT }} 1$ Output Frequency	4	Figure 2	1/2	1/2	$\mathrm{f}_{\text {CLK }} 1$
$\mathrm{f}_{\text {CLK }}{ }^{2}$	CLK ${ }_{\text {OUT }}{ }^{2}$ Output Frequency	4	Figure 2	1/8	1/8	$\mathrm{f}_{\text {CLK }} 1$
$\mathrm{t}_{1 \mathrm{R}}$	CLK ${ }_{\text {Out }} 1$ Output Rise Time	4	Figure 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	20	ns
t_{17}	$\mathrm{CLK}_{\text {OuT }} 1$ Output Fall Time	4	Figure 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	20	ns
t_{2}	$\mathrm{CLK}_{\text {OUT }}{ }^{2}$ Output Rise Time	4	Figure 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	20	ns
t_{2}	CLK ${ }_{\text {OuT }}{ }^{2}$ Output Fall Time	4	Figure 2, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	0	20	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.

TIMING DIAGRAMS

ttd MEASURED FROM VIN + ZERO CROSSING TO 1.4V MIDPOINT ON TDET tre MEASURED FROM 1.4V MIDPOINT ON TDET TO ZERO CROSSING ON VIN +

Figure 1. Tone Detect Timing

$\mathrm{t}_{17}, \mathrm{t}_{12}, \mathrm{t}_{2 \mathrm{~F}}, \mathrm{t}_{2 \mathrm{R}}$ MEASURED BETWEEN 0.8 and $\mathbf{2 . 0}$ VOLT TRANSITION POINTS ALL OTHER PARAMETERS REFERRED TO 1.4 V MIDPOINT

Figure 2. Digital Clock Output Timing

TYPICAL PERFORMANCE CURVE

Figure 3. $\mathrm{CLK}_{\mathrm{IN}}$ Input Current vs. Input Voltage

1.0 FUNCTIONAL DESCRIPTION

The ML2031 has a divide by 2 and divide by 8 clock output to drive external devices. The ML2032 has an uncommitted op amp. Refer to the block diagram.

1.1 Uncommitted Op Amp

The ML2032 features an uncommitted op amp. The ML2031 has the op amp connected in the unity gain configuration (V_{IN} - internally tied to $\mathrm{V}_{\mathrm{OUT}}$).
The uncommitted op amp is a general purpose amplifier that can be used to interface the device with the analog telephone line. It has a high impedance input, a 0.5 MHz unity gain bandwidth, will drive a $1 \mathrm{k}, 100 \mathrm{pF}$ load, and the input and output can swing within 1.5 V of the supplies.

1.2 Anti-Alias Filter

The anti-alias filter is a continuous second order low pass designed to prevent high frequency signals at the input from being aliased into the passband by the sampling action of the switched capacitor filters. The typical 3 dB corner frequency is 25 kHz and the typical rejection at 124 kHz is -30 dB .

$1.3 \mathbf{6 0 ~ H z}$ Reject Filter

The 60 Hz reject filter is a switched capacitor second order high pass designed to reject 60 Hz line interference on the analog input. The typical 3 dB corner frequency is 300 Hz and the typical rejection at 60 Hz is -24 dB .

1.4 Tone Detector

The tone detector is a monolithic block designed to indicate when a valid 2713 Hz tone is present on the analog input. A tone is valid if the following criteria are met:

1. 2713 Hz tone satisfies amplitude vs. frequency tone detector template shown in Figure 4.
2. The non -2713 Hz out of band energy present on the input is sufficiently small enough compared to the 2713 Hz tone (signal to guard margin).
The tone detector consists of 2713 Hz bandpass and notch filters, tone and guard peak detectors, tone and guard comparators, reference, and digital output buffer.
The analog signal first goes through the 2713 Hz bandpass and notch switched capacitor filters. The bandpass filter outputs any 2713 Hz signal (tone), and the notch filter outputs any non -2713 Hz signals (guard) in the range of $300-4500 \mathrm{~Hz}$, respectively.

The tone and guard signals then go to peak detectors which output a DC voltage proportional to the 2713 Hz and non2713 Hz energy present on the analog input.
The tone comparator compares the tone energy to a fixed reference value to determine if it meets the amplitude requirements for tone detection shown in Figure 4.
The guard comparator compares the tone energy to the guard energy to determine if the signal to guard margin is met.
If both comparators indicate that a 2713 Hz tone and no out of band energy exists, the TDET output goes high indicating valid tone detection. If the signal comparator indicates insufficient signal energy or the guard comparator indicates too much out of band energy, then the TDET output stays low indicating invalid tone output.

1.5 Crystal Oscillator/Clock Generator

The crystal oscillator/clock generator generates the necessary internal clocks from either an external clock or an external crystal.
If an external clock input is used to drive $\mathrm{CLK}_{\mathrm{IN}}$, the input frequency can either be 12.352 MHz or 1.544 MHz in order to meet the frequency template. The device has an internal frequency sense circuit that can sense the difference between 12.352 MHz and 1.544 MHz and makes the necessary changes in the clock generator to accomodate either frequency at the input.
If a crystal is used, a 12.352 MHz crystal must be connected between CLK ${ }_{I N}$ and GND. This unique 1-pin crystal oscillator does not generally require any external capacitors or other external components to meet the frequency template. The crystal should be physically placed as close as possible to the $\mathrm{CLK}_{\mathrm{IN}}$ pin to minimize stray inductances and capacitances.
The crystal must have the following characteristics:

1. Parallel resonant type
2. Frequency: 12.352000 MHz
3. Tolerance: $\pm 0.005 \% @ 25^{\circ} \mathrm{C}$
4. Less than 0.005% variation over desired temperature range
5. Maximum equivalent series resistance of 15Ω at a drive level of $1 \mu \mathrm{~W}$ to $200 \mu \mathrm{~W}$
6. Maximum equivalent series resistance of 30Ω at drive levels of 10 nW to $1 \mu \mathrm{~W}$
7. Typical load capacitance: 18 pF
8. Maximum case capacitance: 5 pF

The frequency of oscillation will be a function of the crystal parameters and board capacitance. If the final oscillation frequency is different than the ideal 12.352 MHz , the template frequencies will change according to the formulas outlined in section 1.6. If the crystal meets the above recommended parameters and typical PC board capacitance from $C L K_{I N}$ to GND is 2 pF , then the device will meet the template specifications. Crystals that meet these requirements are M-tron $3709-01012.352$ for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and 3709-020 12.352 for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation.

Figure 4. Tone Detector Template

1.0 FUNCTIONAL DESCRIPTION (Continued)

The ML2031 has two clock outputs that can be used to drive other external devices. The CLK ${ }_{\text {OUT }} 1$ output is a buffered output from the oscillator divided by 2 . The CLK ${ }_{\text {OUT }} 2$ output is a buffered output from the oscillator divided by 8 . If a 12.352 MHz clock or crystal is used, $\mathrm{CLK}_{\text {OUT }} 1=6.176 \mathrm{MHz}$ and $\mathrm{CLK}_{\text {OUT }} 2=1.544 \mathrm{MHz}$.

1.6 Detecting Tones from 1000 Hz to $\mathbf{4 0 0 0 H z}$

The tone detector frequency template shown in Figure 5 is proportional to the frequency of $\mathrm{CLK}_{\text {IN }}$. Thus, the device can be set to a center frequency (other than 2713 Hz) by adjusting $\mathrm{CLK}_{\text {IN }}$ frequency.
The external clock frequency, $\mathrm{fCLK}_{\mathrm{IN}}$, needed to produce a given center frequency, can be calculated by:
$\mathrm{fCLK}_{I N}=\mathrm{f}_{\mathrm{C}} \times 4552.893$
once $f \mathrm{fCLK}_{\mathrm{IN}}$ has been determined, the other template frequency points shown in Figure 5 can be calculated by:

$$
\begin{aligned}
& f_{\mathrm{DL}}=\mathrm{fCLK}_{\text {IN }} \times 2.18831 \times 10^{-4} \\
& \mathrm{f}_{\mathrm{DU}}=\mathrm{fCLK}_{\text {IN }} \times 2.20450 \times 10^{-4} \\
& \mathrm{f}_{\mathrm{RL}}=\mathrm{fCLK}_{\text {IN }} \times 2.16888 \times 10^{-4} \\
& \mathrm{f}_{\mathrm{RU}}=\mathrm{fCLK}_{\text {IN }} \times 2.22393 \times 10^{-4}
\end{aligned}
$$

The above formulas are valid for center frequencies with the range of 1000 Hz to 4000 Hz . The internal divide by 8 circuitry may be bypassed by applying a clock that is one eighth of the above calculated values.
When the required $\mathrm{CLK}_{\text {IN }}$ frequency calculated above is less than 6 MHz , the internal frequency sense circuit may be-
come enabled causing the detection of an erroneous center frequency. In this case, the divide by 8 function cannot be used and only the lower clock frequency may be used. For example, for a 1004 Hz tone detector, the clock frequency applied must be 571 kHz .

1.7 Power Supplies

The analog circuits in the device run from +5 to $-5\left(\mathrm{~V}_{\mathrm{CC}}\right.$ to V_{SS}) and are referenced to GND.
The digital circuits in the device run from +5 to $0\left(\mathrm{~V}_{\mathrm{CC}}\right.$ to GND).

It is recommended that the power supplies to the device be bypassed by placing decoupling capacitors from $V_{C C}$ to GND and V_{SS} to GND as physically close to the device as possible.

Figure 5. Tone Detector Template

2.0 APPLICATIONS

Figure 6. 4-Wire Termination Equipment

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML2031CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P08)
ML2031IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P08)
ML2032CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P08)
ML2032IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P08)

Programmable Sinewave Generator

GENERAL DESCRIPTION

The frequency of these monolithic sinewave generators is programmable for the ML. 2035 from DC to 25 kHz and for the ML2036 from DC to 50 kHz . No external components are required.
The frequency of the sinewave output is derived from either an external crystal or clock input, thus providing a stable and accurate frequency reference. The frequency is programmed by a 16 -bit serial data word.
The ML2035 is packaged in an 8-pin DIP and has a $V_{\text {OUT }}$ amplitude of $\pm \mathrm{V}_{\mathrm{CC}} / 2$.
The ML2036 provides for a $V_{\text {OUt }}$ amplitude of either $\pm V_{\text {REF }}$ or $\pm V_{\text {REF }} / 2$. Also included with the ML2036 is an inhibit input which allows the sinewave output to be held at zero volts after completing the last half cycle of the sinewave preventing steps in voltage. Two pins of the ML2036 are clock outputs designed to drive other devices with one half or one eighth of the clock input frequency.
The ML2035 and ML2036 are intended for telecommunications and modem applications that need low cost and accurate generation of precise test tones, call progress tones, and signaling tones.

FEATURES

- Programmable frequency DC to 50 kHz
- Frequency resolution with $\mathrm{f}_{\text {CLKIN }}=12 \mathrm{MHz}$
$(\pm 0.75 \mathrm{~Hz}) 1.5 \mathrm{~Hz}$
- Absolute gain error
$\pm 0.1 \mathrm{~dB}$ max
- Harmonic distortion $-45 d B$ max
- Output voltage amplitude of $\pm \mathrm{V}_{\text {REF }}$ or $\pm \mathrm{V}_{\text {REF }} / 2$

■ On chip crystal oscillator 3 to 12 MHz

- ML2036 has clock outputs of $1 / 2$ or $1 / 8$ of the input clock frequency
- No external components required
- $\mu \mathrm{P}$ compatible serial interface
- Double buffered data latch
- Synchronous or asynchronous data loading capability
- Power dissipation $\quad 50 \mathrm{~mW}$ max from ± 5 supplies
- Compatible with ML2031 and ML2032 tone detector, and ML2004 logarithmic gain/attenuator
- TTL/CMOS compatible inputs
- ML2035 package 8-pin DIP; ML2036 14-pin DIP or 16-pin SOIC
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range

BLOCK DIAGRAMS

ML2035

ML2036

PIN CONFIGURATIONS

ML2035
8-Pin DIP (P08)

ML2036
14-Pin DIP (P14)

Vss	${ }_{1}{ }_{14}$	CLKIN
PDN-INH	213	GAIN
Clkout 1	312	\square DGND
CLKout2	$4 \quad 11$	AGND
SCK	$5 \quad 10$	Vout
SID	$6 \quad 9$	$V_{\text {ReF }}$
LATI	7	VCC
	TOP VIEW	

ML2036
16-Pin SOIC (S16W)

PIN DESCRIPTIONS

ML2035

PIN\#	NAME	FUNCTION
1	$\mathrm{V}_{\text {SS }}$	Negative supply. $-5 \mathrm{~V} \pm 10 \%$.
2	SCK	Serial clock. Digital input which clocks in serial data on rising edges.
3	SID	Serial data. Serial input data which programs the frequency of $\mathrm{V}_{\text {OUT }}$.
4	LATI	Serial latch. Digital input which latches serial data into the internal data latch on falling edges.
5	V_{CC}	Positive supply. $+5 \mathrm{~V} \pm 10 \%$.
6	$V_{\text {OUT }}$	Analog output. $\mathrm{V}_{\text {OUT }}$ swing is $\pm \mathrm{V}_{\mathrm{CC}} / 2$.
7	GND	Ground. 0 volts. All inputs and outputs referenced to this point.
8	$\mathrm{CLK}_{\mathrm{IN}}$	Clock input. Internal clock can be generated by tying a 3 to 12 MHz crystal from this pin to GND or applying a clock directly to the pin.

ML2036

		NAME	FUNCTION
1	2	$V_{S S}$	Negative supply. $-5 \mathrm{~V} \pm 10 \%$.
2	3	$\mathrm{P}_{\text {DN }}-\mathrm{INH}$	Three level input. Controls inhibit mode and power down mode. Current source pull up to V_{CC}.
3	4	$\mathrm{CLK}_{\text {OUT1 }}$	Clock output. Digital output from internal clock generator that can drive other devices. $\mathrm{f}_{\text {CLKOUT } 1}=\mathrm{f}_{\text {CLKIN } / 2}$.
4	5	$\mathrm{CLK}_{\text {OUT2 }}$	Clock output. Digital output form internal generator that can drive other devices. $\mathrm{f}_{\text {CLKOUT2 }}=\mathrm{f}_{\text {CLKIN } / 8}$.
5	6	SCK	Serial clock. Digital input which clocks in serial data on rising edges.
6	7	SID	Serial data. Serial input data which programs the frequency of $\mathrm{V}_{\text {OUT }}$.
7	8	LATI	Serial latch. Digital input which latches serial data into the internal data latch on falling edges.
8	9	$\mathrm{V}_{\text {CC }}$	Positive supply. $+5 \mathrm{~V} \pm 10 \%$.
9	10	$V_{\text {REF }}$	Reference input. The voltage on this pin determines the peak-peak swing on $\mathrm{V}_{\text {OUT }}$. $\mathrm{V}_{\text {REF }}$ can be tied to V_{CC}.
10	11	$\mathrm{V}_{\text {OUT }}$	Analog output.
11	12	AGND	Analog ground. 0 volts. Analog inputs and outputs referenced to this point.
12	13	DGND	Digital ground. 0 volts. Analog inputs and outputs referenced to this point.
13	15	GAIN	Sets $V_{\text {OUT }}$ peak amplitude to $V_{\text {REF }}$ or $\mathrm{V}_{\mathrm{REF}} / 2$. Current source pull down to DGND.
14	16	$\mathrm{CLK}_{1 \mathrm{~N}}$	Clock input. Internal clock can be generated by tying a 3 to 12 MHz crystal from this pin to DGND or applying a clock directly to the pin.

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage

V_{CC}... +6.5 V	
Analog Input and Output $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
AGND Voltage $\mathrm{V}_{\text {SS }}$ to V_{CC}	
Digital Inputs and Outputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	
Input Current per Pin $\pm 25 \mathrm{~mA}$	
Power Dissipation 750mW	

Lead Temperature (soldering 10 sec)
Dual-In-Line Package (Molded) $260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$
Molded Small Outline IC Package
Vapor Phase (60 sec)
$215^{\circ} \mathrm{C}$
Infrared (15 sec) .. $220^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)

ML2035CP, ML2036CP, ML2036CS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML2035IJ, ML2036IJ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{CLK}_{\text {IN }}=12.352 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}$ load $C_{L}=100 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$, all digital timing measured at 1.4 V midpoint, and input control signals from 10% to 90% of $V_{C C}$ with $t_{R}=t_{F}=20 \mathrm{~ns}$.

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP	MAX

Sinewave Generator

HD	Harmonic Distortion	4	2nd or 3rd harmonic relative to fundamental	$\mathrm{f}_{\text {Out }}=20 \mathrm{~Hz}$ to 5 kHz			-45	dB
				$\mathrm{f}_{\text {OUT }}=5 \mathrm{kHz}$ to 25 kHz			-40	dB
SND	Signal to Noise + Distortion	4	$200 \mathrm{~Hz} \leq \mathrm{f}_{\text {OUT }} \leq 3400 \mathrm{~Hz}$, noise measured 200 Hz to 4 kHz				-45	dB
			$20 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{OUT}} \leq 25 \mathrm{kHz}$, noise measured 20 Hz to 75 kHz				-40	dB
ICN	Output Idle Channel Noise	4	Power Down Mode, Cmsg weighted			-20	0	dBrnc
			Power Down Mode, 1 kHz			50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
PSRR	Power Supply Rejection Ratio	5	200 mV P-P, 0-10kHz sine, measured on $\mathrm{V}_{\text {OUT }}$		V_{CC}		-40	dB
					$\mathrm{V}_{\text {SS }}$		-40	dB
$\mathrm{V}_{\text {OS }}$	$V_{\text {Out }}$ Offset Voltage	4					± 75	mV
V_{PK}	$V_{\text {OUT }}$ Peak Voltage					$\pm \mathrm{V}_{\mathrm{CC}} / 2$		V
V_{GN}	V Out Gain Error	4	Relative to V_{CC}	$\mathrm{f}_{\text {OUt }}=20 \mathrm{~Hz}$ to 5 kHz			± 0.1	dB
				$\mathrm{f}_{\text {OUT }}=5 \mathrm{kHz}$ to 25 kHz			± 0.3	dB

Digital and DC

$\mathrm{V}_{\text {IL, }}$, CLK	Input Low Voltage, CLK ${ }_{\text {IN }}$	4				1.5	V
$\mathrm{V}_{\mathrm{IH},}$ CLK	Input High Voltage, CLK ${ }_{\text {IN }}$	4		3.5			V
$\mathrm{I}_{\mathbf{N},}$, ${ }^{\text {dek }}$	Input Current, CLK ${ }_{1 \mathrm{IN}}$	4	$\mathrm{CLK}_{1 \mathrm{IN}}=1.5 \mathrm{~V}$ to 3.5 V		10	60	$\mu \mathrm{A}$
			$\mathrm{CLK}_{\text {IN }}=0$ to $1.5 \mathrm{~V} ; 3.5 \mathrm{~V}$ to V_{CC}			250	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$, CLK	Input Capacitance, $\mathrm{CLK}_{\text {IN }}$	5			12		pF
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	4				0.8	V
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	4		2.0			V
$\mathrm{I}_{\text {IL }}$	Input Low Current	4	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-1			$\mu \mathrm{A}$
I_{H}	Input High Current	4	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			1	$\mu \mathrm{A}$
CIN	Digital Input Capacitance				5		pF
V_{OL}	Output Low Voltage	4	$\mathrm{I}_{\mathrm{OL}}=-2 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage	4	$\mathrm{l}_{\mathrm{OH}}=2 \mathrm{~mA}$	4.0			V

ML2035, ML2036
ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP	MAX	UNITS
Digital and DC (Continued)							
I_{CC}	V_{CC} Supply Current	4	No output load, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			5.5	mA
I_{SS}	V_{SS} Supply Current	4	No output load, $\mathrm{V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$, $V_{\mathrm{CC}}=5.5 \mathrm{~V}$			-3.5	mA
$\mathrm{I}_{\mathrm{CCI}}$	V_{CC} Supply Current, Power Down Mode	4	No output load, Power Down Mode			2.0	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{SSI}}$	$V_{\text {SS }}$ Supply Current, Power Down Mode	$\mathbf{4}$	No output load, Power Down Mode			-100	$\mu \mathrm{~A}$

Digital Timing

$t_{C K I}$	CLK ${ }_{I N}$ On/Off Period	4	$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=10 \mathrm{~ns}, 2.5 \mathrm{~V}$ midpoint	30		
$\mathrm{t}_{\text {SCK }}$	SCK On/Off Period	4		100		ns
t_{DS}	SID DATA Setup Time	4		50		ns
t_{DH}	SID DATA Hold Time	4		50		ns
$\mathrm{t}_{\text {LPW }}$	LATI Pulse Width	4		50		ns
$\mathrm{t}_{\text {LH }}$	LATI Hold Time	4		50		ns
$\mathrm{t}_{\text {LS }}$	LATI Setup Time	5		50		ns

ML2036 ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V} \pm 10 \%, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$ to V_{CC}, and $\mathrm{CLK}_{\text {IN }}=12.352 \mathrm{MHz}, \mathrm{V}_{\mathrm{OUT}}$ load $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$, all digital timing measured at 1.4 V midpoint, and input control signals from 10% to 90% of V_{CC} with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP	MAX

Sinewave Generator

HD	Harmonic Distortion	4,6	2nd or 3rd harmonic relative to fundamental	$\mathrm{f}_{\text {OUT }}=20 \mathrm{~Hz}$ to 5 kHz				-45	dB
				fout $=5 \mathrm{kHz}$ to 50 kHz				-40	dB
SND	Signal to Noise + Distortion	4,6	$200 \mathrm{~Hz} \leq \mathrm{f}_{\text {OUT }} \leq 3400 \mathrm{~Hz}$, noise measured 200 Hz to 4 kHz					-45	dB
			$20 \mathrm{~Hz} \leq \mathrm{f}_{\text {out }} \leq 50 \mathrm{kHz}$, noise measured 20 Hz to 150 kHz					-40	dB
ICN	Output Idle Channel Noise	4	Power Down Mode, Cmsg weighted				-20	0	dBrnc
			Power Down Mode, 1kHz				50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			Inhibit mode, 1 kHz				500		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
PSRR	Power Supply Rejection Ratio	5	200 mV P-P, $0-10 \mathrm{kHz}$ sine, measured on $\mathrm{V}_{\text {OUT }}$		$\mathrm{V}_{\text {cc }}$			-40	dB
					$\mathrm{V}_{\text {ss }}$			-40	dB
v_{OS}	$V_{\text {Out }}$ Offset Voltage	4,7						$\begin{array}{\|l\|} \hline \pm(0.025+ \\ \text { Voutp-p/ } \left.^{2} 00\right) \end{array}$	v
V_{PK}	V out Peak Voltage	6	GAIN $=\mathrm{V}_{\text {CC }}$				$\pm \mathrm{V}_{\text {ReF }}$		v
			GAIN $=$ DGND				$\pm \mathrm{V}_{\text {Ref } / 2}$		v
$\mathrm{v}_{\text {sw }}$	$V_{\text {Out }}$ Swing	5	GAIN $=\mathrm{V}_{\text {CC }}$			$\mathrm{V}_{\text {SS }}+1.5 \mathrm{~V}$		$\mathrm{v}_{\mathrm{CC}}-1.5 \mathrm{~V}$	V
$V_{G N}$	V Out Gain Error	4,6	$\mathrm{f}_{\text {OUT }}=20 \mathrm{~Hz}$ to 5 kHz					± 0.1	dB
			$\mathrm{f}_{\text {OUT }}=5 \mathrm{kHz}$ to 50 kHz					± 0.3	dB
$\mathrm{R}_{\text {Ref }}$	Reference Input Resistance	4				2.5	12		M Ω

Digital and DC

$\mathrm{V}_{\mathrm{HL}, \mathrm{CLK}}$	Input Low Voltage, CLK ${ }_{\text {IN }}$	4				1.5	V
$\mathrm{V}_{\mathrm{HH}, \mathrm{CLK}}$	Input High Voltage, CLK ${ }_{\text {IN }}$	4		3.5			V
IIN, CLK	Input Current, CLK ${ }_{\text {IN }}$	4	$\mathrm{CLK}_{\text {IN }}=1.5 \mathrm{~V}$ to 3.5 V		10	60	$\mu \mathrm{A}$
			$\mathrm{CLK}_{\text {IN }}=0$ to $1.5 \mathrm{~V} ; 3.5 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$			250	$\mu \mathrm{A}$
$\mathrm{CiN}^{\text {I }}$, CLK	Input Capacitance, CLK $_{\text {IN }}$	5			12		pF
V_{IL}	Input Low Voltage	4	LATI, SID, GAIN, SCK			0.8	V
$\mathrm{V}_{1 \mathrm{H}}$	Input High Voltage	4	LATI, SID, GAIN, SCL	2.0			V
IIL	Input Low Current	4	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{LATI}$, SID, GAIN, SCK	-1			$\mu \mathrm{A}$
I_{H}	Input High Current	4	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC, }}$, LATI, SID, P PDN-INH, SCK			1	$\mu \mathrm{A}$
IL, P PN	Input Low Current	4	$\mathrm{P}_{\mathrm{DN}}-\mathrm{INH}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-70	-20	-5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IH}, \mathrm{G}}$	Input High Current	4	GAIN, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$	5	20	70	$\mu \mathrm{A}$
v_{11}	Input Logic Low $\mathrm{P}_{\text {DN-INH }}$	4		DGND-0.5		0.8	v
V_{12}	Inhibit State Voltage $\mathrm{P}_{\mathrm{DN}}-1 \mathrm{NH}$	4				$\mathrm{V}_{\text {SS }}+0.5$	v
V_{13}	Input Logic High P $\mathrm{PN}^{-1 \mathrm{INH}}$	4		2.0			V
$\mathrm{Can}^{\text {IN }}$	Digital Input Capacitance				5		pF
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	4	$\mathrm{I}_{\mathrm{LL}}=-2 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage	4.	$\mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA}$	4.0			V

ML2036 ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	NOTES	CONDITIONS	MIN	TYP	MAX	UNITS
Digital and DC (Continued)							
$I_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Supply Current	4	No output load, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$			5.5	mA
Iss	$\mathrm{V}_{\text {SS }}$ Supply Current	4	No output load, $\mathrm{V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.5 \mathrm{~V}$			-3.5	mA
$\mathrm{I}_{\mathrm{CCI}}$	V_{CC} Supply Current, Power Down Mode		No output load, power down mode			2.0	mA
$\mathrm{I}_{\text {SSI }}$	$V_{\text {SS }}$ Supply Current, Power Down Mode		No output load, power down mode			-100	$\mu \mathrm{A}$

Digital Timing

t_{CK}	CLK ${ }_{\text {IN }}$ On/Off Period	4	$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=10 \mathrm{~ns}, 2.5 \mathrm{~V}$ midpoint	30		
$\mathrm{t}_{\mathrm{SCK}}$	SCK On/Off Period	4		100		
t_{DS}	SID DATA Setup Time	4		50		ns
t_{DH}	SID DATA Hold Time	4		50		ns
$\mathrm{t}_{\mathrm{LPW}}$	LATI Pulse Width	4		50		ns
t_{LH}	LATI Hold Time	4		50		ns
t_{LS}	LATI Setup Time	5		50		ns

Clock Output

$\mathrm{f}_{\text {CLK1 }}$	CLK ${ }_{\text {OUT1 }}$ Output Frequency	4	Figure 2	1/2	1/2	$\mathrm{f}_{\text {CLKIN }}$
$\mathrm{f}_{\text {CLK2 }}$	CLK ${ }_{\text {OUT2 }}$ Output Frequency	4	Figure 2	1/8	1/8	$\mathrm{f}_{\text {CLKIN }}$
$\mathrm{t}_{1 R}, \mathrm{t}_{2 R}$	CLK Output Rise Time	5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, 10 \% \text { and } 90 \% \\ & \text { transition point } \end{aligned}$	0	20	ns
		4	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 0.8 \mathrm{~V} \text { and } 2.0 \mathrm{~V} \\ & \text { transition point } \end{aligned}$	0	20	ns
$\overline{t_{1 F}, t_{2 F}}$	$\mathrm{CLK}_{\text {OUT1 }}, \mathrm{CLK}_{\text {OUT2 }}$, Output Fall Time	5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, 10 \% \text { and } 90 \% \\ & \text { transition point } \end{aligned}$	0	20	ns
		4	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, 0.8 \mathrm{~V} \text { and } 2.0 \mathrm{~V} \\ & \text { transition point } \end{aligned}$	0	20	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be imparred All voltages unless otherwise specified are measured with respect to ground.
Note 2: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testıng, samplıng, or by correlatıon with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Maximum peak-to-peak voltage for output sinewave is $V_{\text {OUTP-p }} \leq(125 \mathrm{kV} \times \mathrm{Hz}) / \mathrm{f}_{\mathrm{OUT}}$. For example at 50 kHz output the maxımum guaranteed voltage swing is $2.5 \mathrm{~V}_{\text {P-p. }}$
Note 7: Offset voitage is a function of the peak-to-peak output voltage, for example if $V_{O U T P}-\mathrm{P}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OS}}= \pm 50 \mathrm{mV}$ max.

TIMING DIAGRAMS

Figure 1. Serial Interface Timing.

fCLK PARAMETERS REFERRED TO 1.4V MIDPOINT

Figure 2. ML2036 Digital Clock Output Timing.

TYPICAL PERFORMANCE

Figure 3. CLK $_{\text {IN }}$ Input Current vs. Input Voltage.

1.0 FUNCTIONAL DESCRIPTION

The ML2035 and ML2036 are composed of a programmable frequency generator, sinewave generator crystal oscillator, and serial digital interface. The ML2035
and ML2036 frequency and sinewave generator functional block diagram is shown in figure 4.

Figure 4. Frequency and Sinewave Generator Functional Block Diagram.

1.1 PROGRAMMABLE FREQUENCY GENERATOR

The programmable frequency generator produces a digital output whose frequency is determined by a 16-bit digital word.
The frequency generator is composed of a phase accumulator which is clocked at $\mathrm{f}_{\text {CLKIN } / 4}$. The value stored in the data latch is added to the phase accumulator every 4 cycles of $\mathrm{CLK}_{\mathrm{IN}}$. The frequency of the analog output is equal to the rate at which the accumulator overflows and is given by the following equation:

$$
\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{CLKIN}} \times(\mathrm{D} 15-\mathrm{D} 0)_{\mathrm{DEC}}}{2^{23}}
$$

The frequency resolution and the minimum frequency are the same and is given by the following equation:

$$
\Delta \mathrm{f}_{\mathrm{MIN}}=\frac{\mathrm{f}_{\mathrm{CLKIN}}}{2^{23}}
$$

When $\mathrm{f}_{\mathrm{CLKIN}}=12.352 \mathrm{MHz}, \Delta \mathrm{f}_{\mathrm{MIN}}=1.5 \mathrm{~Hz}(\pm 0.75 \mathrm{~Hz})$. Lower frequencies are obtained by using a lower clock.
Due to the phase quantization nature of the frequency generator spurious tones can be present in the output range of -55 dB relative to fundamental. The energy from these tones is included in the signal to noise + distortion specification. The frequency of these tones can be very close to the fundamental, therefore it is not practical to filter them out.

1.2 SINEWAVE GENERATOR

The sinewave generator is composed of a sine look-up table, a DAC, and an output smoothing filter. The sine look-up table is addressed by the phase accumulator. The DAC is driven by the output of the look-up table and generates a staircase representation of a sinewave.
The output smoothing filter "smooths" the analog output by removing the high frequency sampling components. The resultant voltage on $\mathrm{V}_{\text {OUT }}$ is a sinusoid with all distortion components at least 45 dB below the fundamental.
The ML2035 provides a peak sinewave voltage of $\pm \mathrm{V}_{\mathrm{CC}} / 2$. The ML2036 has a $V_{\text {REF }}$ input that can be tied to V_{CC} or generated from an external voltage. With the gain input equal to a logic " 1 " the sinewave peak voltage is equal to $\pm \mathrm{V}_{\text {REF; }}$; with the gain input equal to a logic " 0 " the peak voltage is $\pm \mathrm{V}_{\mathrm{REF}} / 2$. The sinewave output is referenced to AGND for the ML2036 and GND for the ML2035.

The analog section is designed to operate over a range from DC to 50 kHz . Due to slew rate limitations, the peak-to-peak output voltage must be limited to $\mathrm{V}_{\text {OUTP-P }} \leq$ $(125 \mathrm{kV} \times \mathrm{Hz}) / \mathrm{f}$ OUT. For example on the ML2036 an output at 50 kH must be limited to 2.5 V P-p. Since the ML2035
peak-to-peak output voltage is equal to V_{CC}, the maximum output frequency must be limited to 25 kHz for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. $\mathrm{V}_{\text {OUT }}$ can drive $1 \mathrm{k} \Omega, 100 \mathrm{pF}$ loads and swing to within 1.5 V of V_{CC} and V_{SS}, provided the slew rate limitations mentioned above are not exceeded.
The output offset voltage, V_{OS}, is a function of the peak-to-peak output voltage and is specified as
$\pm\left(0.025+\frac{V_{\text {OUTP_P }}}{100}\right) V_{\text {MAX }}$.
For example, if $\mathrm{V}_{\text {OUTP-P }}=2.5 \mathrm{~V}$
then $V_{\text {OS }}= \pm\left(0.025+\frac{2.5}{100}\right) V_{\text {MAX }}$.
So, $\mathrm{V}_{\mathrm{OS}}= \pm 0.050 \mathrm{~V}_{\mathrm{MAX}}$, or $\pm 50 \mathrm{mV}$ max.

1.3 CRYSTAL OSCILLATOR

The crystal oscillator generates an accurate reference clock for the programmable frequency generator.
The internal clock can be generated with a crystal or external clock.

If a crystal is used, it must be placed between CLK ${ }_{I N}$ and DGND of the ML2036 or GND of the ML2035. An on chip crystal oscillator will then generate the internal clock. No other external capacitors or components are required. The crystal should be a parallel resonant type with a frequency between 3 MHz to 12.4 MHz . It should be placed physically as close as possible to the CLK IN DGND (GND).
An external clock can drive CLK ${ }_{I N}$ directly if desired. The frequency of this clock can be anything from 0 to 12 MHz .
The crystal must have the following characteristics:

1. Parallel resonant type
2. Frequency: 3 MHz to 12.4 MHz
3. Maximum equivalent series resistance of 15Ω at a drive level of $1 \mu \mathrm{~W}$ to $200 \mu \mathrm{~W}$
4. Maximum equivalent series resistance of 30Ω at drive levels of 10 nW to $1 \mu \mathrm{~W}$
5. Typical load capacitance: 18 pF
6. Maximum case capacitance: 7 pF

The frequency of oscillation will be a function of the crystal parameters and board capacitance. Crystals that meet these requirements at 12.352000 MHz are M -tron $3709-01012.352$ for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and 3709-020 12.352 for $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation.

Figure 5. Serial Interface Timing

The ML2036 has two clock outputs that can be used to drive other external devices. The CLK buffered output from the oscillator divided by 2 . The $\mathrm{CLK}_{\text {OUT2 }}$ output is a buffered output from the oscillator divided by 8.

1.4 SERIAL DIGITAL INTERFACE

The digital interface consists of a shift register and data latch. The serial 16-bit data word on SID is clocked into a 16-bit shift register on rising edges of the serial shift clock, SCK. The LSB should be shifted in first and the MSB last as shown in figure 5 . The data that has been shifted into the shift register is loaded into a 16 -bit data latch on the falling edge of LATI. To insure that true data is loaded into the data latch from the shift register, LATI falling edge should occur when SCK is low, as shown in figure 1. LATI should be low while shifting data into the shift register to avoid inadvertently entering the power down mode as described in paragraph 1.5. Note that all data is entered and latched on edges, not levels, of SCK and LATI.

1.5 INHIBIT AND POWER DOWN MODES

1.5.1 ML2035 Power Down Mode

The power down mode of the ML2035 can be selected by entering all zeros in the shift register and applying a logic " 1 " to LATI and holding it high. A zero data detect circuit detects when all bits in the shift register are zero's. In this state, the power consumption is reduced to 11.5 mW max, and $\mathrm{V}_{\text {OUT }}$ goes to 0 V as shown in figure 6 and appears as 10 k to analog ground. The master clock, $\mathrm{CLK}_{\mathrm{IN}}$, can be left active or removed during power down mode.

1.5.2 ML2036 Inhibit and Power Down Modes

The ML2036 has an inhibit mode and a power down mode which are controlled by the three-level $\mathrm{P}_{\mathrm{DN}}-I N H$ input as described in table 1 . When a logic " 1 ", V_{13}, is applied to the $\mathrm{P}_{\mathrm{DN}}-\mathrm{INH}$ pin, the power down mode is entered in the same way as described for the ML2035. Also, the ML2036 will be placed in the power down mode by applying a logic " 0 " to the $\mathrm{P}_{\mathrm{DN}}-\mathrm{INH}$ pin.

If V_{SS} to $\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{12}$, is applied to the $\mathrm{P}_{\mathrm{DN}}-\mathrm{INH}$ pin, the inhibit mode is entered by shifting all zero's into the shift register and applying a logic " 1 " to the LATI pin. Once the inhibit mode is entered $\mathrm{V}_{\text {OUT }}$ will complete the last half cycle of the sinewave and then be held at approximately V_{OS}, such that no voltage step occurs, as shown in figure 6.

PART NUMBER	$\begin{aligned} & \mathrm{P}_{\mathrm{DN}}-\mathrm{INH} \\ & \text { MODE } \end{aligned}$	$\begin{gathered} \text { PDN-INH }_{\text {PIN }} \end{gathered}$	DATA IN SHIFT REG.	LATI	SINEWAVE OUTPUT
ML2036	$\mathrm{P}_{\text {DN }}{ }^{(1)}$	V_{11}, Logic " 0 "	X	X	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & (10 \mathrm{~K} \text { to } \mathrm{AGND}) \end{aligned}$
ML2036	Inhibit	V_{12}, Inhibit State Voltage, V_{SS} to $\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}$	All 0's	Logic "1"	$\mathrm{V}_{\text {OUT }}$ goes to approximately V_{OS} at the next V_{OS} crossing. See figure 6.
 ML2036	$\mathrm{P}_{\mathrm{DN}}{ }^{(1)}$	V_{13}, Logic " 1 "	All 0's	Logic "1"	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & (10 \mathrm{~K} \text { to } \mathrm{AGND}) \end{aligned}$

Note 1: In the power down mode, the oscillator, CLK OUT1 and CLK ${ }_{\text {OUT2 }}$, shift register, and data latch are all functional
Table 1. Three Level $\mathbf{P}_{\mathrm{DN}}-\mathrm{INH}$ Function.

Figure 6. Power Down and Inhibit Mode.

1.6 POWER SUPPLIES

The analog circuitry in the device are powered from +5 V to $-5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right.$ to $\left.\mathrm{V}_{\mathrm{SS}}\right)$ and are referenced to AGND.
The digital circuits in the device are powered from +5 V to $0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right.$ to DGND$)$.
For the ML2036, it is recommended that AGND and DGND be connected together close to the device and have a good connection back to the power source.

It is recommended that the power supplies to the device should be bypassed by placing decoupling capacitors from $V_{C C}$ to AGND (GND for ML2035) and $V_{S S}$ to AGND (GND for ML2035) as physically close to the device as possible.

2.0 TYPICAL APPLICATIONS

Figure 7. 4-Wire Termination Equipment.

Figure 8. Sinewave Ratiometric to $\pm \mathbf{V}_{\mathbf{C d}} / \mathbf{2}$.

Figure 9. Sinewave with $\pm 2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\left(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)$.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML2035IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J08) ML2035IP
ML2036IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P08)
ML2036IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Hermetic DIP (J14)
ML2036IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P14)
ML2035CP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S16W)
ML2036CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P08)
ML2036CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P14)

ML2110

Universal Dual Filter

GENERAL DESCRIPTION

The ML2110 consists of two independent switched capacitor filters that perform second order filter functions such as lowpass, bandpass, highpass, notch and allpass. All filter configurations including Butterworth, Bessel, Cauer, and Chebyshev can be formed.
The center frequency of these filters is tuned by an external clock or the external clock and resistor ratio.

The ML2110 frequency range is specified to 30 kHz with $\pm 2.25 \mathrm{~V}$ (single 5 V operation) to $\pm 5.5 \mathrm{~V}$ power supplies.

For higher frequency operation the ML2111 is specified up to 150 kHz operation.

These filters are ideal where center frequency accuracy and high Qs are needed.

The ML2110 is a pin compatible superior replacement for MF10, LMF100, and LTC1060 filters.

FEATURES

- Specified to 30 kHz
- Center frequency $\times \mathrm{Q}$ product $\leq 2 \mathrm{MHz}$
- Separate highpass, notch, allpass, bandpass, and lowpass outputs
- Center frequency accuracy $\pm 0.3 \%$ or $\pm 0.8 \%$ max
- Q accuracy $\pm 3 \%$ or $\pm 6 \%$ max
- Clock inputs TTL or CMOS compatible with duty cycle 40% to 60%
- Single $5 \mathrm{~V}(\pm 2.25 \mathrm{~V})$ or $\pm 5 \mathrm{~V}$ supply operation
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range
- Standard 0.3" 20-pin DIP or 20-pin small outline (SOIC) package

BLOCK DIAGRAM

PIN CONNECTIONS

ML2110
20-PIN SOIC

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	PIN NO.	NAME	FUNCTION
1	LP_{A}	Lowpass output for biquad A .	12	50/100/HOLD	Input pin to control the clock to center frequency
2	BP_{A}	Bandpass output for biquad A .			ratio of 50:1 or 100:1, or stops the clock to hold the
3	$\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{A}}$	Notch/allpass/highpass output for biquad A.			last sample of the bandpass or lowpass outputs.
4	$\mathrm{INV}_{\text {A }}$	Inverting input of the summing op amp for biquad A .	13	$V_{D^{-}}$	Negative digital supply.
			14 15	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}- \\ & \mathrm{AGND} \end{aligned}$	Negative analog supply. Analog ground.
5	S1 ${ }_{\text {A }}$	Auxiliary signal input pin used in modes 1a, 1d, 4, 5, and 6 b .	16	$S 1_{B}$	Auxiliary signal input used in modes 1a, 1d, 4, 5, and 6 b.
6	$\mathrm{S}_{\mathrm{A} / \mathrm{B}}$	Controls S2 input function.	17	$1 N V_{B}$	Inverting input of the summing op amp for
7	$\mathrm{V}_{\text {A }}+$	Positive analog supply.			biquad B .
8	$\mathrm{V}_{\mathrm{D}}+$	Positive digital supply.	18	N/AP/HP ${ }_{\text {B }}$	Notch/allpass/highpass
9	LSh	Reference point for clock input levels. Logic threshold typically 1.4 V	19	BP_{B}	output for biquad B. Bandpass output for biquad B.
		above LSh voltage.	20	$L P_{B}$	Lowpass output for
10	$\mathrm{CLK}_{\text {A }}$	Clock input for biquad A .			biquad B.
11	$\mathrm{CLK}_{\text {B }}$	Clock input for biquad B.			

ABSOLUTE MAXIMUM RATINGS

(Note 1)

```
Supply Voltage
```



```
    \mp@subsup{V}{A}{}+,\mp@subsup{V}{D}{}+\mathrm{ to LSh..................................... . . . . . . . . N}
```



```
|}\mp@subsup{V}{A}{}+|\mathrm{ to }|\mp@subsup{V}{D}{}+|\ldots..................................... . . 0.3V
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750mW
Storage Temperature Range. . . . . . . . . . . . . . . . - 65'0}\textrm{C}\mathrm{ to 150年年
Lead Temperature (soldering, 10 sec). . . . . . . . . . . . . . . . . 300
```


OPERATING CONDITIONS

```
Temperature Range (Note 2)
    ML2110BCP, ML2110CCP,
```



```
    ML2110BIJ, ML2110CIJ.
                                40.}\textrm{C}\mathrm{ to }+8\mp@subsup{5}{}{\circ}\textrm{C
    ML2110BMJ, ML2110CMJ . . . . . . . . . . . . . - 55 ' C to + 125'0}\textrm{C
    Supply Voltage Range . . . . . . . . . . . . . . . . }\pm2.25\textrm{V}\mathrm{ to }\pm6.0\textrm{V
```


ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}, \mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{V}_{I N}=2.5 \mathrm{~V}_{\mathrm{PK}}$ (1.767 VRMS) Clock Duty Cycle 40% to 60%.

PARAMETER	NOTES	CONDITIONS	ML2110B			ML2110C			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \\ \hline \end{array}$	MAX	
Filter									
f_{o}, Center Frequency Maximum	5,6	$\begin{aligned} & \text { Figure } 16 \text { (Mode 1) } \\ & Q \leq 50, \mathrm{Q} \text { Accuracy } \leq \pm 20 \% \\ & \mathrm{Q} \leq 20, \mathrm{Q} \text { Accuracy } \leq \pm 10 \% \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{kHz} \\ \mathrm{kHz} \\ \hline \end{array}$
fo, Center Frequency Minimum	5,6 F	$\begin{aligned} & \text { Figure } 16 \text { (Mode 1) } \\ & Q \leq 50, Q \text { Accuracy } \leq \pm 30 \% \\ & Q \leq 20, Q \text { Accuracy } \leq \pm 15 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \hline \end{aligned}$
fo, Temperature Coefficient		$\mathrm{fCLK}<1 \mathrm{MHz}$		-10			-10	*	ppm $/{ }^{\circ} \mathrm{C}$
Clock to Center Frequency Ratio	4 4	$\begin{aligned} & Q=10 \\ & \text { Figure } 16(\text { Mode } 1) \\ & 50: 1, \text { fCLK }=250 \mathrm{kHz} \\ & 100: 1, \text { fCLK }=500 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 49.85 \\ & 100.0 \\ & \hline \end{aligned}$	$\begin{gathered} 50.0 \\ 100.3 \end{gathered}$	$\begin{aligned} & 50.15 \\ & 100.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 49.60 \\ & 99.50 \end{aligned}$	$\begin{gathered} 50.0 \\ 100.3 \end{gathered}$	$\begin{aligned} & 50.40 \\ & 101.1 \end{aligned}$	

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PK}}$ (1.767 VRMS Clock Duty Cycle 40% to 60%.

Clock Frequency	5	$\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$		2.5k		1.5M	2.5k		1.5M	Hz
Clock Feedthrough	5	$\mathrm{f}_{\text {CLK }} \leq 1 \mathrm{MHz}$			10	20		10	20	$\mathrm{mV}(\mathrm{p}-\mathrm{p})$
Q Accuracy	4	$\mathrm{f}_{\mathrm{O}}=5 \mathrm{kHz}, \mathrm{Q}=10$ Figure 16 (Mode 1)	50:1			± 3			± 6	\%
			100:1			± 4			± 8	\%
Q Temperature Coefficient		$\mathrm{fCLK}<500 \mathrm{kHz}, \mathrm{Q}=10$			20			20		ppm $/{ }^{\circ} \mathrm{C}$
$\begin{gathered} \hline \text { DC Offset } \\ \text { VoS } 2,3 \\ \text { Vos } 2,3 \end{gathered}$	4 4	$50: 1$, fCLK $=250 \mathrm{kHz}$$\mathrm{S}_{A / B}$ HighS $_{\text {A/B }}$ Low$100: 1, \mathrm{f}_{\text {CLK }}=500 \mathrm{kHz}$S $_{\text {A/B }}$ HighS $_{\text {A/B }}$ Low			$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	mV
$\begin{gathered} \text { DC Offset } \\ \text { Vos } 2,3 \\ \text { Vos } 2,3 \\ \hline \end{gathered}$	4				$\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 14 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	mV mV
Gain Accuracy DC Lowpass Bandpass at f_{0} DC Notch Output	$\begin{aligned} & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=20 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}, \mathrm{R} 3=20 \mathrm{k} \\ & 100: 1, \mathrm{f}_{\mathrm{o}}=5 \mathrm{kHz}, \mathrm{Q}=10 \end{aligned}$			$\begin{gathered} 0.01 \\ 1 \\ 0.02 \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$		$\begin{gathered} 0.01 \\ 1 \\ 0.02 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 8 \\ & 2 \\ & \hline \end{aligned}$	\% $\%$ $\%$
Noise	7	Figure 16 (Mode 1) $\mathrm{Q}=1, \mathrm{R} 1=\mathrm{R} 2=$ $\mathrm{R} 3=2 \mathrm{k}$ Bandpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$ Lowpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$ Notch, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$			$\begin{gathered} 80 \\ 100 \\ 105 \\ 130 \\ 80 \\ 100 \\ \hline \end{gathered}$			$\begin{gathered} 80 \\ 100 \\ 105 \\ 130 \\ 80 \\ 100 \\ \hline \end{gathered}$		$\mu V_{\text {RMS }}$
		Figure 16 (Mode 1) $\mathrm{Q}=10, \mathrm{R} 1=\mathrm{R} 3=20 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}$ Bandpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$ Lowpass, $5 \mathrm{kHz}, 50: 1$ (R1 $=2 \mathrm{k})$ $5 \mathrm{kHz}, 100: 1$ Notch, $5 \mathrm{kHz}, 50: 1$ (R1=2k) $5 \mathrm{kHz}, 100: 1$			$\begin{gathered} 256 \\ 315 \\ 262 \\ 320 \\ 33 \\ 38 \\ \hline \end{gathered}$			$\begin{gathered} 256 \\ 315 \\ 262 \\ 320 \\ 33 \\ 38 \\ \hline \end{gathered}$		$\mu V_{\text {RMS }}$ $\mu V_{\text {RMS }}$ μ RMS μ VMMS $\mu V_{\text {RMS }}$ $\mu V_{\text {RMS }}$
Crosstalk		$\mathrm{fCLK}=250 \mathrm{kHz}, \mathrm{f}_{\mathrm{o}}=5 \mathrm{kHz}$			-70			-70		dB

Filter, $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.707 \mathrm{~V}_{\mathrm{PK}}\left(0.5 \mathrm{~V}_{\mathrm{RMS}}\right)$ (NOTE 8)

f_{o}, Center Frequency Maximum	5	$\begin{aligned} & \text { Figure } 16 \text { (Mode } 1 \text {) } \\ & Q \leq 50, \mathrm{Q} \text { Accuracy } \leq \pm 25 \% \\ & \mathrm{Q} \leq 20, \mathrm{Q} \text { Accuracy } \leq \pm 12 \% \end{aligned}$			$\begin{aligned} & 20 \\ & 30 \end{aligned}$			$\begin{array}{r} 20 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$
fo, Center Frequency Minimum	5	$\begin{aligned} & \text { Figure } 16 \text { (Mode } 1 \text {) } \\ & Q \leq 50, Q \text { Accuracy } \leq \pm 30 \% \\ & Q \leq 20, Q \text { Accuracy } \leq \pm 15 \% \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \end{aligned}$			Hz Hz
Clock to Center Frequency Ratio	4	$\begin{aligned} & \mathrm{Q}=10 \\ & \text { FIgure } 16 \text { (Mode 1) } \\ & 50: 1, \text { fCLK }=250 \mathrm{kHz} \\ & 100: 1, \text { fCLK }=500 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{array}{r} 49.85 \\ 100.0 \\ \hline \end{array}$	$\begin{gathered} 50.0 \\ 100.3 \\ \hline \end{gathered}$	$\begin{aligned} & 50.15 \\ & 100.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 49.60 \\ & 99.50 \\ & \hline \end{aligned}$	$\begin{gathered} 50.0 \\ 100.3 \\ \hline \end{gathered}$	$\begin{aligned} & 50.40 \\ & 101.1 \\ & \hline \end{aligned}$	
Clock Frequency	5	$\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$	2.5 k		1.5M	2.5 k		1.5M	Hz
Q Accuracy	4	PCLK $=250 \mathrm{kHz}, \mathrm{Q}=10$ $50: 1$ Figure 16 (Mode 1) $100: 1$			± 4			± 8	\%
				± 3			± 6		\%

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{A}+=V_{D}+=5 \mathrm{~V} \pm 10 \%, V_{A}-=V_{D^{-}}=-5 \mathrm{~V} \pm 10 \%, C_{L}=25 \mathrm{pF}, \mathrm{V}_{I N}=2.5 \mathrm{~V}_{\mathrm{PK}}$ (1.767 VRMS) Clock Duty Cycle 40% to 60%.

PARAMETER	NOTES	CONDITIONS	ML2110B			ML2110C			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	
Filter, $\mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}-=\mathrm{V}_{\mathrm{D}}-=-2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.707 \mathrm{~V}_{\text {PK }}\left(0.5 \mathrm{~V}_{\text {RMS }}\right)$ (Continued)									
Noise	7	$\|$Figure 16 (Mode 1) $Q=1, R 1=R 2=R 3=2 k$ Bandpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$ Lowpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$ Notch, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100: 1$		$\begin{gathered} 80 \\ 100 \\ 105 \\ 130 \\ 80 \\ 100 \end{gathered}$			$\begin{gathered} 80 \\ 100 \\ 105 \\ 130 \\ 80 \\ 100 \end{gathered}$		$\mu V_{\text {RMS }}$
		Figure 16 (Mode 1) $Q=10, R 1=R 3=20 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}$ Bandpass, $5 \mathrm{kHz}, 50: 1$ $5 \mathrm{kHz}, 100 \cdot 1$ Lowpass, $5 \mathrm{kHz}, 50: 1$ (R1=2k) $5 \mathrm{kHz}, 100: 1$ Notch, $5 \mathrm{kHz}, 50: 1$ $(\mathrm{R} 1=2 \mathrm{k})$ $5 \mathrm{kHz}, 100: 1$		$\begin{gathered} 256 \\ 315 \\ 262 \\ 320 \\ 33 \\ 38 \end{gathered}$			$\begin{gathered} 256 \\ 315 \\ 262 \\ 320 \\ 33 \\ 38 \\ \hline \end{gathered}$		$\mu V_{\text {RMS }}$

Operational Amplifiers and Power Supply

VOS DC Offset	4			2	15		2	15	mV
DC Open Loop Gain		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		95			95		dB
Cain Bandwidth Product				2.4			2.4		MHz
Slew Rate				2.0			2.0		$\mathrm{~V} / \mu \mathrm{S}$
Output Voltage Swing (Clipping Level)	5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k},\|\mathrm{V}\|$ from $\mathrm{V}_{\mathrm{A}+}$ or $\mathrm{V}_{\mathrm{A}-}$.5	1.2		.5	1.2	V
Output Short Circuit Current									

Power Supply And Clock

Supply Current $\left(I_{\mathrm{A}}+\right)+\left(I_{\mathrm{D}}+\right)$ $\left(\mathrm{I}_{\mathrm{A}}-\right)+\left(\mathrm{I}_{\mathrm{D}}-\right)$ I_{SH}	4	$\mathrm{fCLK}=250 \mathrm{kHz}$		13	22		13	22	mA
VCLK Input Threshold	4			12	21		12	21	mA

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Center frequency is defined as the peak of the bandpass output.
Note 7: The noise is measured with the HP8903A audio analyzer with a bandwidth of 30 kHz which is 6 times the f_{o} at 50:1 or at 100:1.
Note 8: For $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=2.375 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.375 \mathrm{~V}$

TYPICAL PERFORMANCE CURVES

Figure 1. $f_{\text {CLK }} / f_{o} \mathbf{v s}$. $f_{\text {CLK }}\left(\mathbf{1 0 0}: 1, \mathbf{5 0}: 1\right.$ at $V_{S}= \pm \mathbf{2 . 5 V}$ or $\left.\mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 2 A . $\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{\mathbf{o}}$ Deviation vs. Temperature $\left(\mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 2B. $\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{\mathbf{o}}$ Deviation vs. Temperature $\left(\mathrm{V}_{\mathbf{S}}= \pm \mathbf{2 . 5 V}\right)$

Figure 3. Q Error vs. $f_{C L K}\left(\mathbf{1 0 0 : 1 , 5 0 : 1}\right.$ at $V_{S}= \pm 2.5 V$ or $\left.V_{S}= \pm \mathbf{5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 4A. Q Deviation vs. Temperature $\left(V_{S}= \pm 5 \mathrm{~V}\right)$

Figure $5 \mathrm{~A} . \mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Deviation vs. $\mathrm{Q}\left(\mathrm{V}_{\mathrm{S}}= \pm \mathbf{5 V}\right)$

Figure 6A. Q Deviation vs. $Q\left(50: 1, V_{S}= \pm 5 V\right)$

Figure 4B. Q Deviation vs. Temperature $\left(V_{S}= \pm 2.5 V\right)$

Figure 5B. $f_{C L K} / f_{\text {NOTCH }}$ Deviation vs. $Q\left(V_{S}= \pm 5 V\right)$

Figure 6B. Q Deviation vs. $Q\left(100: 1, V_{S}= \pm \mathbf{5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 7A. Distortion vs. $f_{I N}\left(50: 1, V_{S}= \pm 5 V\right)$

Figure 8A. Noise Spectrum Density $(Q=1)$

Figure 9. $\mathfrak{f}_{\text {CLK }} / \mathbf{f}_{\text {NOTCH }}$ vs. $f_{\text {CLK }}$

Figure 7B. Distortion vs. $\mathrm{f}_{\mathrm{IN}}\left(\mathbf{1 0 0 : 1}, \mathrm{V}_{\mathrm{S}}= \pm \mathbf{5 V}\right)$

Figure 8B. Noise Spectrum Density $(Q=10)$

Figure 10. Notch Depth vs $\mathbf{f}_{\text {CLK }}$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 11. Supply Current vs. Supply Voltage

Figure 12. Supply Current vs. Temperature

FUNCTIONAL DESCRIPTION

POWER SUPPLIES

The analog $\left(\mathrm{V}_{\mathrm{A}}+\right.$) and digital ($\mathrm{V}_{\mathrm{D}}+$) supply voltage pins, in most cases, are tied together and bypassed to AGND with a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ disc ceramic capacitor. If high digital noise exists, the supply pins can be bypassed separately. The ML2110 positive analog and positive digital supply pins are internally connected by the IC substrate and should be biased from the same DC source.
The ML2110 operates with a single supply from $5 \mathrm{~V} \pm 10 \%$ and with split supplies from $\pm 4.5 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ supplies.

CLOCK INPUT PINS AND LEVEL SHIFT

With dual supplies equal to or higher than $\pm 4.0 \mathrm{~V}$, the level shift (LSh) pin 9 can be connected to the same potential as the $A G N D$ or $V_{A}-$ pin. With single supply operation, the negative supply pins and the LSh pin should be tied to the system ground. The AGND, pin 15 , should be biased at $1 / 2$ supplies. Under these conditions, the clock levels are TTL or CMOS. The input clock pins $(10,11)$ share the same level shift pin.

50/100/HOLD (Pin 12)

By tying pin 12 to ($\mathrm{V}_{\mathrm{A}^{+}}, \mathrm{V}_{\mathrm{D}}+$) the filter operates in the 50:1 mode. By tying pin 12 to $1 / 2$ of the voltage supplies (AGND potential), the ML2110 operates in the 100:1 mode. The range of pin 12 with total supply voltage of +5 V is $2.5 \pm 0.5 \mathrm{~V} ;+10 \mathrm{~V}$ is $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$. When pin 12 is tied to the negative supply pin, the filter operation is stopped and the bandpass and lowpass outputs act as an S / H circuit holding the last sample.

$\mathbf{S 1}{ }_{\mathrm{A}}, \mathbf{S 1} 1_{\mathbf{B}}$, (Pins 5 and 16)

These are voltage signal input pins and should be driven with a source impedance below 5 k . The $\mathrm{S} 1_{\mathrm{A}}, \mathrm{S1}_{\mathrm{B}}$ pins can be used to alter the clock to center frequency ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$) of the filter (see modes 1b, 1c, 2a, 2b) or to feedforward the input signal for allpass filter configurations (see modes 4 and 5). When these pins are not used, they should be tied to the AGND pin.

$\mathrm{S}_{\mathrm{A} / \mathrm{B}}(\operatorname{Pin} 6)$

When $S_{A / B}$ is high, the $S 2$ negative input of the voltage summer is tied to the lowpass output. When the $S_{A / B}$ pin is connected to the negative supply, the S 2 input switches to ground.

AGND (Pin 15)

AGND is connected to the system ground for dual supply operation. When operating with a single positive supply, the analog ground pin should be tied to $1 / 2$ of the supply and bypassed with a $0.1 \mu \mathrm{~F}$ capacitor. The positive inputs of the internal op amps and the reference point of the internal switches are connected to the AGND pin.

$\mathrm{f}_{\text {CLK }} / \mathbf{f}_{\mathbf{o}}$ RATIO

The ML2110 is a sampled data filter and approximates continuous time filters. The filter deviates from its ideal continuous filter model when the ($\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}\right)$ ratio decreases and when the Qs are low.

$f_{0} \times \mathbf{Q}$ PRODUCT RATIO

The $f_{o} \times Q$ product of the ML2110 depends on the clock frequency and the mode of operation. For clock frequencies below 1 MHz , in mode 1 and its derivatives, the $f_{0} \times Q$ product is mainly limited by the desired f_{0} and Q accuracy. For the same clock frequency and for the same Q value the $f_{0} \times Q$ product can be further increased if the clock to center frequency ratio is lowered below 50:1.
Mode 3, Figure 24, and the modes of operation where R4 is finite, are "slower" than the basic mode 1. The resistor R4 places the input op amp inside the resonant loop. The finite GBW of this op amp creates an additional phase shift and enhances the Q value at high clock frequencies.

OUTPUT NOISE

The wideband RMS noise of the ML2110 outputs is nearly independent from the clock frequency provided that the clock itself does not become part of the noise. The noise at the BP and LP outputs increases for high Qs.

FILTER FUNCTION DEFINITIONS

Each filter of the ML2110 with an external clock and resistors approximates 2 nd order filter functions. These are tabulated below in the frequency domain.

1. Bandpass function: available at the bandpass output pins $(2,19)$, Figure 13.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OBP}} \frac{\mathrm{~s} \omega_{\mathrm{O}} / \mathrm{Q}}{\mathrm{~s}^{2}+\left(\mathrm{s} \omega_{\mathrm{O}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}}
$$

$\mathrm{H}_{\mathrm{OBP}}=$ Gain at $\omega=\omega_{\mathrm{O}}$
$f_{o}=\omega_{0} / 2 \pi ; f_{o}$ is the center frequency of the complex pole pair. f_{o} is measured as the peak frequency of the bandpass output.
$\mathrm{Q}=$ Quality factor of the complex pole pair. It is the ratio of f_{0} to the -3 dB bandwidth of the 2nd order bandpass function. The Q is always measured at the filter BP output.
2. Lowpass function: available at the LP output pins $(1,20)$, Figure 14.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OLP}} \frac{\omega_{\mathrm{O}}^{2}}{\mathrm{~s}^{2}+\mathrm{s}\left(\omega_{\mathrm{O}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{OLP}}=\mathrm{DC}$ gain of the LP output.
3. Highpass function: available only in mode 3 at the output pins $(3,18)$, Figure 15.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OHP}} \frac{\mathrm{~s}^{2}}{\mathrm{~s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}}
$$

$H_{O H P}=$ gain of the HP output for $f \rightarrow \frac{f_{C L K}}{2}$
4. Notch function: available at pins 3 (18) for several modes of operation.

$$
\mathrm{G}(\mathrm{~s})=\left(\mathrm{H}_{\mathrm{ON} 2}\right) \frac{\left(\mathrm{s}^{2}+\omega_{\mathrm{n}}^{2}\right)}{\mathrm{s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{ON} 2}=$ gain of the notch output for $\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}$
$\mathrm{H}_{\mathrm{ON} 1}=$ gain of the notch output for $\mathrm{f} \rightarrow 0$
$f_{n}=\omega_{n} / 2 \pi ; f_{n}$ is the frequency of the notch occurrence.
5. Allpass function: available at pins 3 (18) for mode $4,4 \mathrm{a}$.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OAP}} \frac{\left[\mathrm{~s}^{2}-\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}\right]}{\mathrm{s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}}
$$

$H_{\text {OAP }}=$ gain of the allpass output for $0<f<\frac{f_{\text {CLK }}}{2}$
For allpass functions, the center frequency and the Q of the numerator complex zero pair is the same as the denominator. Under these conditions, the magnitude response is a straight line. In mode 5, the center frequency f_{Z}, of the numerator complex zero pair, is different than f_{o}. For high numerator Q^{\prime} 's, the magnitude response will have a notch at f_{Z}.

$Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{0}=\sqrt{f_{L} f_{H}}$
$f_{L}=f_{o}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)$
$f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)$
Figure 13

Figure 14

$f_{C}=f_{0} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1}$
$f_{p}=f_{0} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]^{-1}$
$H_{O P}=$ HOHP $\times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

Figure 15

OPERATION MODES

Table 1. 1st Order Functions

MODE	PIN 2 (19)	PIN 3 (18)	f_{C}	$f_{\mathbf{Z}}$
$6 a$	LP	HP	$\frac{f_{C L K}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	
6 b	LP	LP	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	
7	LP	AP	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \frac{\mathrm{R} 2}{\mathrm{R} 3}$

Table 2. 2nd Order Functions

MODE	PIN 1 (20)	PIN 2 (19)	PIN 3 (18)	f_{0}	f_{N}
1	LP	BP	Notch	$\frac{f_{\mathrm{CLK}}}{100(50)}$	f_{o}
1 a	LP	BP	BP	$\frac{f_{\mathrm{CLK}}}{100(50)}$	
1b	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1 c	LP	BP	Notch	$\frac{f_{C L K}}{100(50)} \times \sqrt{\frac{R 6}{R 5+R 6}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1d	LP	BP		$\frac{f_{\mathrm{CLK}}}{100(50)}$	
2	LP	BP	Notch	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$
2a	LP	BP	Notch	$\frac{f_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{f_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
2b	LP	BP	Notch	$\frac{f_{\text {CLK }}}{100(50)} \times \sqrt{\frac{R 2}{R 4}+\frac{R 6}{R 5+R 6}}$	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
3	LP	BP	HP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
3 a	LP	BP	Notch	$\frac{f_{\text {CLK }}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{R_{h}}{R_{\mathrm{l}}}}$
4	LP	BP	AP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$	
4 a	LP	BP	AP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
5	LP	BP	C.Z	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}}$

OPERATION MODES (Continued)

There are basically three modes of operation: mode 1, mode 2 , mode 3 . In the mode 1, Figure 16, the input amplifier is outside the resonant loop. Because of this, mode 1 and its derivatives (mode 1a, 1b, 1c, 1d) are faster than modes 2 and 3.

Mode 1a, Figure 17, represents the most simple hook-up of the ML2110. Mode 1a is useful when voltage gain at the bandpass output is required. The bandpass voltage gain, however, is equal to the value of Q , and a second order, clock tunable, BP resonator can be achieved with only 2 resistors. The filter center frequency directly depends on the external clock frequency. For high order filters, mode 1 a is not practical as it requires several clock frequencies to tune the overall filter response.

Mode 1, Figure 16, provides a clock tunable notch. Mode 1 is a practical configuration for second order clock tunable bandpass/notch filters. In mode 1, a bandpass output with a very high Q, together with unity gain, can be obtained with the dynamics of the remaining notch and lowpass outputs.
Modes 1b and 1c, Figures 18, 19 are similar. They both produce a notch with a frequency which is always equal to the filter center frequency. The notch and the center frequency can be adjusted with an external resistor ratio.

Figure 16. Mode 1: 2nd Order Filter Providing Notch, Bandpass, Lowpass

The clock to center frequency ratio range is:

$$
\begin{aligned}
& \frac{500}{1} \geq \frac{f_{C L K}}{f_{o}} \geq \frac{100}{1} \text { or } \frac{50}{1} ; \text { mode } 1 \mathrm{~b} \\
& \frac{100}{1} \text { or } \frac{50}{1} \geq \frac{f_{C L K}}{f_{o}} \geq \frac{100}{\sqrt{2}} \text { or } \frac{50}{\sqrt{2}} ; \text { mode } 1 \mathrm{c}
\end{aligned}
$$

The input impedance of the S 1 pin is clock dependent, and in general R 5 should not be larger than 5 k . Mode 1 b can be used to increase the clock to center frequency ratio beyond 100:1. For this mode, the limit for the ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$) ratio is $500: 1$. Beyond this, the filter will exhibit large output offsets. Mode 1d, Figure 20, is the fastest mode of operation: In the 50:1 mode center frequencies beyond 20 kHz can easily be achieved.
Modes 2, 2a, and $2 b$ have a notch output which frequency, f_{n}, can be tuned independently from the center frequency, f_{o}. For all cases, however, $f_{n}<f_{o}$. These modes are useful when cascading second order functions to create an overall elliptic highpass, bandpass or notch response. The input amplifier and its feedback resistors (R2/ R4) are now part of the resonant loop. Because of this, mode 2 and its derivatives are slower than mode 1's.

1/2 ML2110

Figure 17. Mode 1a: 2nd Order Filter Providing Bandpass, Lowpass

OPERATION MODES (Continued)

1/2 ML2110

Figure 18. Mode 1b: 2nd Order Filter Providing Notch, Bandpass, Lowpass
1/2 ML2110

Figure 19. Mode 1c: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Figure 20. Mode 1d: 2nd Order Filter Providing Bandpass and Lowpass for Qs Greater Than or Equal to 1.

OPERATION MODES (Continued)

$$
f_{o}=\frac{f_{C L K}}{100(50)} \sqrt{1+\frac{R 2}{R 4}} ; f_{n}=\frac{f_{C L K}}{100(50)} ; Q=\frac{R 3}{R 2} \sqrt{1+\frac{R 2}{R 4}} ; H_{O L P}=\frac{-R 2 / R 1}{1+(R 2 / R 4)}
$$

$$
H_{\mathrm{OBP}}=-R 3 / R 1 ; H_{\mathrm{ON} 1}(f \rightarrow 0)=\frac{-R_{2} / R 1}{1+(R 2 / R 4)} ; H_{\mathrm{ON} 2}\left(f \rightarrow \frac{\mathrm{fCLK}}{2}\right)=-R 2 / R 1
$$

Figure 21. Mode 2: 2nd Order Filter Providing Notch, Bandpass, Lowpass
1/2 ML2110

Figure 22. Mode 2a: 2nd Order Filter Providing Notch, Bandpass, Lowpass
1/2 ML2110

Figure 23. Mode 2b: 2nd Order Filter Providing Notch, Bandpass, Lowpass

OPERATION MODES (Continued)

In mode 3, Figure 24, a single resistor ratio (R2/R4) can tune the center frequency below or above the $\mathrm{f}_{\mathrm{CLK}} / 100$ (or $\mathrm{f}_{\mathrm{CLK}} / 50$) ratio. Mode 3 is a state variable configuration since it provides a highpass, bandpass, lowpass output through progressive integration; notches are obtained by summing the highpass and lowpass outputs (mode 3a, Figure 25). The notch frequency can be tuned below or above the center frequency through the resistor ratio (R_{h}) $\left.R_{l}\right)$. Because of this, modes 3 and 3a are the most versatile and useful modes for cascading second order sections to obtain high order elliptic filters. Figure 33, shows the 2 sections connected in mode 3a to obtain a clock tunable 4th order sharp elliptic bandpass filter. The first notch is created by summing directly the HP and LP outputs of the first section into the inverting input of the second section op amp. The individual Q's are 29.6 and the filter maintains its shape and performance up to 20 kHz center frequency, as shown in Figure 34. For this circuit an external op amp is required to obtain the 2 nd notch. The dynamics of Figure 34 show that the amplitude response at each output pin does not exceed 0 dB . The gain in the passband
depends on the ratio of $\left(R_{g} / R_{h 2}\right) \times\left(R 22 / R_{h 1}\right) \times(R 21 / R 11)$. Any gain value can be obtained by acting on the ($R_{g} / R_{h 2}$) ratio of the external op amp, the remaining ratios are adjusted for optimum dynamics of the output nodes. The external op amp of Figure 33 is not always required. In Figure 35, one section in mode 3 a is cascaded with the other section in mode $2 b$ to obtain a 4 th order, 1 dB ripple, elliptic bandreject filter. The clock to center frequency ratio is adjusted to 200:1; this is done in order to better approximate a linear R,C notch filter. The amplitude response of the filter is shown in Figure 36 with up to 1 MHz clock frequency. The $0 d B$ bandwidth to the stop bandwidth ratio is $8 / 1$. When the filter is centered at 1 kHz , it should theoretically have a 44 dB rejection with a 50 Hz stop bandwidth. For a more narrow filter than the above, the unused BP output of the mode 2 b section, Figure 35, has a gain exceeding unity which limits the dynamic range of the overall filter. For very selective bandpass/bandreject filters, the mode 3a approach as in Figure 25, yields better dynamic range since the external op amp helps to optimize the dynamics of the output nodes of the ML2110.

1/2 ML2110

Figure 24. Mode 3: 2nd Order Filter Providing Highpass, Bandpass, Lowpass

Figure 25. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Notch

OPERATION MODES (Continued)

1/2 ML2110

Figure 26. Mode 4a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Allpass

Figure 27. Mode 4: 2nd Order Filter Providing Allpass, Bandpass, Lowpass

OPERATION MODES (Continued)

1/2 ML2110

$$
f_{o}=\frac{f C L K}{100(50)} \sqrt{1+\frac{R 2}{R 4}} ; f_{z}=\frac{f C L K}{100(50)} \sqrt{1-\frac{R 1}{R 4}} ; Q=\frac{R 3}{R 2} \sqrt{1+\frac{R 2}{R 4}}
$$

$$
Q Z=\frac{R 3}{R 1} \sqrt{1-\frac{R 1}{R 4}} ; H_{O Z}(f \rightarrow 0)=\frac{(R 4 / R 1)-1}{(R 4 / R 2)+1} ; H_{O Z}\left(f \rightarrow \frac{f C L K}{2}\right)=\frac{R 2}{R 1} ;
$$

$$
H_{O B P}=\frac{R 3}{R 2}\left(1+\frac{R 2}{R 1}\right) ; H_{O L P}=\frac{1+(R 2 / R 1)}{1+(R 2 / R 4)}
$$

Figure 28. Mode 5: 2nd Order Filter Providing Numerator Complex Zeros, Bandpass, Lowpass

1/2 ML2110

Figure 30. Mode 6b: 1st Order Filter Providing Lowpass

1/2 ML2110

$$
f_{C}=\frac{f_{C L K} R 2}{100(50) R 3} ; H_{O L P}=-R 3 / R 1 ; H_{O H P}=-R 2 / R 1
$$

Figure 29. Mode 6a: 1st Order Filter Providing Highpass, Lowpass

1/2 ML2110

$$
f_{p}=\frac{f_{C L K} R 2}{100(50) R 3} ; f_{Z}=\frac{f_{C L L} R 2}{100(50) R 3} ; \text { GAIN AT OUTPUT }=1 \text { FOR } 0 \leq f \leq \frac{f_{C L K}}{2}
$$

Figure 31. Mode 7: 1st Order Filter Providing Allpass, Lowpass

OPERATION MODES (Continued)

Figure 32. Cascading the 2 sections connected in mode 1b to obtain a clock tunable 4th order 1dB ripple bandpass Chebyshev filter with (center frequency) $/($ Ripple Bw) $=20 / 1$.

NOTE: FOR CLOCK FREQUENCIES ABOVE 700 kHz A 12pF CAPACITOR ACROSS R41 AND A 20 pF CAPACITOR ACROSS R42 WERE USED TO PREVENT THE PASSBAND RIPPLE FROM ANY ADDITIONAL PEAKING.

Figure 33. Combining mode 3 with mode 3a to make the 4th order BP filter of Figure 34 with improved dynamics. The gain at each node is $\leq 0 \mathrm{~dB}$ for all input frequencies.

OPERATION MODES (Continued)

Figure 34. The BP filter of Figure 33, when swept from a $2 \mathbf{k H z}$ to $20 \mathbf{k H z}$ center frequency.

Figure 35. Combining mode 3 with mode $2 b$ to create a 4th order BP elliptic filter with 1 dB ripple and a ratio of 0 db to stop bandwidth equal to $8 / 1$.

Figure 36. Amplitude Response of the Notch Filter of Figure 35.

OFFSETS

Switched capacitor integrators generally exhibit higher input offsets than discrete R,C integrators.

These offsets are mainly the charge injection of the CMOS switches into the integrating capacitors. The internal op amp offsets also add to the overall offset budget.
Figure 37 shows half of the ML2110 filter with its equivalent input offsets $\mathrm{V}_{\mathrm{OS} 1}, \mathrm{~V}_{\mathrm{OS} 2}, \mathrm{~V}_{\mathrm{OS} 3}$.
The DC offset at the filter bandpass output is always equal to $\mathrm{V}_{\mathrm{OS3}}$. The DC offsets at the remaining two outputs
(Notch and LP) depend on the mode of operation and external resistor ratios. Table 3 illustrates this.
It is important to know the value of the DC output offsets, especially when the filter handles input signals with large dynamic range. As a rule of thumb, the output DC offsets increase when:

1. The Q^{\prime} 's decrease
2. The ratio $\left(f_{C L K} / f_{o}\right)$ increases beyond $100: 1$. This is done by decreasing either the (R2/R4) or the R6/(R5 + R6) resistor ratios.

Figure 37. Equivalent Input Offsets of $\mathbf{1 / 2}$ ML2110 Filter
Table 3

MODE	$V_{\text {OSN }}$ PIN 3 (18)	$\begin{gathered} \text { VOSBP } \\ \text { PIN } 2 \text { (19) } \\ \hline \end{gathered}$	$V_{\text {OSLP }}$ PIN 1 (20)	
1,4	$\mathrm{V}_{\text {OS1 }}\left[(1 / \mathrm{Q})+1+\\| \mathrm{H}_{\text {OLP }} \mathrm{ll}\right]-\mathrm{V}_{\text {OS3 }} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
1a	$\mathrm{V}_{\mathrm{OS} 1}[1+(1 / \mathrm{Q})]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
1b	$\mathrm{V}_{\mathrm{OS} 1}[(1 / \mathrm{Q})+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\text {OS2 }}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$	
1c	$\mathrm{V}_{\mathrm{OS} 1}[(1 / \mathrm{Q})+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2} \frac{(\mathrm{R} 5+\mathrm{R} 6)}{(\mathrm{R} 5+2 \mathrm{R} 6)}\right.$	
1d	$\mathrm{V}_{\text {OS } 1}[1+\mathrm{R} 2 / \mathrm{R} 1]$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	
2,5	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {[\mathrm{R} 4 /(\mathrm{R} 2+\mathrm{R} 4)]+\mathrm{V}_{\mathrm{OS} 2}[\mathrm{R} 2 /(\mathrm{R} 2+\mathrm{R} 4)]} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
2a	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {\left[\frac{\mathrm{R} 4(1+\mathrm{k})}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right) \frac{(\mathrm{R} 5+\mathrm{R} 6)}{(\mathrm{R} 5+2 \mathrm{R} 6)}$	
2b	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {\left[\frac{\mathrm{R} 4 \mathrm{k}}{\mathrm{R} 2+\mathrm{R} 4 \mathrm{k}}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4 \mathrm{k}}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$	
3, 4a	$\mathrm{V}_{\text {OS } 2}$	$\mathrm{V}_{\text {OS3 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OS} 1}\left[1+\frac{\mathrm{R} 4}{\mathrm{R} 1}+\frac{\mathrm{R} 4}{\mathrm{R} 2}+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right]-\mathrm{V}_{\mathrm{OS} 2}\left(\frac{\mathrm{R} 4}{\mathrm{R} 2}\right) \\ & -\mathrm{V}_{\mathrm{OS} 3}\left(\frac{\mathrm{R} 4}{\mathrm{R} 3}\right) \end{aligned}$	

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE	PART NUMBER	TEMP. RANGE	PACKAGE
ML2110BCP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)	ML2110BMJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2110CCP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)	ML2110CMJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2110BCS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)	ML2110BIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2110CCS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)	ML2110CIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2110BIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)	ML2110BIS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)
ML2110CIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)	ML2110CIS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)

Universal Hi-Frequency Dual Filter

GENERAL DESCRIPTION

The ML2111 consists of two independent switched capacitor filters that operate up to 150 kHz . These filters perform second order functions, such as lowpass, bandpass, highpass, notch and allpass. All filter configurations, including Butterworth, Bessel, Cauer and Chebyshev can be formed.
The center frequency of these filters are tuned by an external clock or the external clock and a resistor ratio.
The ML2111 frequency range up to 150 kHz is specified with $\pm 5.0 \mathrm{~V} \pm 10 \%$ power supplies. Using a single $5.0 \mathrm{~V} \pm 10 \%$ power supply the frequency range is up to 100 kHz .
These filters are ideal where center frequency accuracy and high Qs are needed.
The ML2111 is a pin compatible superior replacement for MF10, LMF100, and LTC1060 filters.

FEATURES

- Guaranteed frequency range to 150 kHz
- Center frequency $\times \mathrm{Q}$ product
$\leqslant 5 \mathrm{MHz}$
- Separate highpass, notch, allpass, bandpass, and lowpass outputs
- Center frequency accuracy $\quad \pm 0.4 \%$ or $\pm 0.8 \%$ max
- Q accuracy $\pm 4 \%$, or $\pm 8 \%$ max
- Clock inputs TTL or CMOS compatible
- Single $5 \mathrm{~V}(\pm 2.25 \mathrm{~V})$ or $\pm 5 \mathrm{~V} \pm 10 \%$ supply operation guaranteed
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range
- Standard 0.3" 20-pin DIP or 20-pin small outline (SOIC) package

BLOCK DIAGRAM

PIN CONNECTIONS

ML2111
20-PIN DIP

ML2111
20-PIN SOIC

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	PIN NO.	NAME	FUNCTION
1	LP_{A}	Lowpass output for biquad A .	12	50/100/HOLD	Input pin to control the clock to center
2	BP_{A}	Bandpass output for biquad A .			frequency ratio of 50:1 or 100:1, or stops the clock
3	$\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{A}}$	Notch/allpass/highpass output for biquad A.			to hold the last sample of the bandpass or lowpass outputs.
4	$\mathrm{INV}_{\text {A }}$	Inverting input of the summing op amp for biquad A .	13 14	$V_{D^{-}}$ $V_{A}-$	Negative digital supply. Negative analog supply.
5	$\mathrm{S1}_{\mathrm{A}}$	Auxiliary signal input pin used in modes 1a, 1d, 4, 5 , and 6 b.	15	$\begin{gathered} \text { AGND } \\ \mathrm{S}_{\mathrm{B}} \end{gathered}$	Analog ground. Auxiliary signal input used in modes 1a, 1d, 4,
6	$\mathrm{S}_{\mathrm{A} / \mathrm{B}}$	Controls S2 input function.	17	$\mathrm{INV}_{\text {B }}$	5 , and 6 b . Inverting input of the
7	$\mathrm{V}_{\text {A }}+$	Positive analog supply.			summing op amp for biquad B .
8 9	$V_{D}+$ LSh	Positive digital supply. Reference point for clock input levels. Logic	18	$\mathrm{N} / \mathrm{AP} / \mathrm{HP}_{\mathrm{B}}$	Notch/alipass/highpass output for biquad B.
		threshold typically 1.4 V above LSh voltage.	19	BP_{B}	Bandpass output for biquad B .
10	$\mathrm{CLK}_{\text {A }}$	Clock input for biquad A .	20	$L P_{B}$	Lowpass output for
11	$\mathrm{CLK}_{\text {B }}$	Clock input for biquad B.			biquad B .

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage	
$\left\|V_{A}+1,\left\|V_{D}+1-\left\|V_{A}-1,\right\| V_{D}-1\right.\right.$	
$\mathrm{V}^{+}+, \mathrm{V}_{\mathrm{D}}+$ to LSh..........	$3 \mathrm{~V}$
Inputs............ $\mathrm{V}_{\mathrm{A}}+, \mathrm{V}_{\mathrm{D}}+$	+0.3 V to $\mid \mathrm{V}_{\mathrm{A}}-, \mathrm{V}_{\mathrm{D}}-1-0.3 \mathrm{~V}$
Outputs $\mid \mathrm{V}_{\mathrm{A}}+, \mathrm{V}_{\mathrm{D}}+$	+0.3 V to $\mid \mathrm{V}_{\mathrm{A}^{-}}, \mathrm{V}_{\mathrm{D}^{-}}-0.3 \mathrm{~V}$
$\left\|\mathrm{V}_{\mathrm{A}}+\right\|$ to $\mid \mathrm{V}_{\mathrm{D}}+$	$\pm 0.3 \mathrm{~V}$
Power Dissipation.	750 mW
Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range (Note 2)
ML2111BCP, ML2111CCP,
ML2111BCS, ML2111CCS . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ML2111BIJ, ML2111 CIJ. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML2111BMJ, ML2111CMJ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage Range
$\pm 2.25 \mathrm{~V}$ to $\pm 6.0 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X}, V_{A}+=V_{D}+=5 \mathrm{~V} \pm 10 \%, V_{A}-=V_{D^{-}}=-5 \mathrm{~V} \pm 10 \%, C_{L}=25 \mathrm{pF}, \mathrm{V}_{I N}=1.41 \mathrm{~V}_{\mathrm{PK}}$ (1.00 V $_{\text {RMS }}$), Clock Duty Cycle 45% to 55%.

PARAMETER	NOTES	CONDITIONS	ML2111B			ML2111C			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \\ \hline \end{array}$	MAX	
Filter									
fo, Center Frequency Maximum	5,6	$\begin{aligned} & \text { Figure } 15 \text { (Mode 1) } \\ & V_{\text {IN }}=1 V_{\text {PK }}(.707 \text { V RMS } \\ & Q \leq 50, \text { Q Accuracy } \leq \pm 25 \% \\ & Q \leq 20, \text { Q Accuracy } \leq \pm 15 \% \\ & \hline \end{aligned}$			$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$			$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$
for Center Frequency Minimum	5,6	$\begin{aligned} & \text { Figure } 15 \text { (Mode } 1 \text {) } \\ & Q \leq 50, Q \text { Accuracy } \leq \pm 30 \% \\ & Q \leq 20, Q \text { Accuracy } \leq \pm 15 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$			$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$			Hz Hz
fo, Temperature Coefficient		fCLK $<5 \mathrm{MHz}$		-10			-10		ppm $/{ }^{\circ} \mathrm{C}$
Clock to Center Frequency Ratio	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & Q=10 \\ & \text { Figure } 15 \text { (Mode 1) } \\ & 50: 1, \text { fCLK }=5 \mathrm{MHz} \\ & 100: 1, f \text { CLK }=5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 49.65 \\ & 99.60 \\ & \hline \end{aligned}$	$\begin{gathered} 49.85 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 50.05 \\ 100.40 \\ \hline \end{gathered}$	$\begin{aligned} & 49.45 \\ & 99.20 \\ & \hline \end{aligned}$	$\begin{gathered} 49.85 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 50.25 \\ 100.80 \\ \hline \end{gathered}$	

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified $T_{A}=T_{\text {MIN }}$ to $T_{M A X} V_{A^{+}}=V_{D^{+}}=5 \mathrm{~V} \pm 10 \%, V_{A^{-}}=V_{D^{-}}=-5 \mathrm{~V} \pm 10 \%, C_{L}=25 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=1.41 \mathrm{~V}_{\mathrm{PK}}\left(1.00 \mathrm{~V}_{\mathrm{RMS}}\right)$, Clock Duty Cycle 50% (Note 8).

PARAMETER	NOTES	CONDITIONS		ML2111B			ML2111C			UNITS
				MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 3 \end{gathered}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \\ \hline \end{array}$	MAX	
Filter (Continued)										
Clock Frequency	5	$\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$		2.5k		7.5M	2.5k		7.5M	Hz
Clock Feedthrough	5	$\mathrm{fCLK}^{5} 5 \mathrm{MHz}$			10	20		10	20	mV (p-p)
Q Accuracy	4	$\mathrm{fCLK}=5 \mathrm{MHz}, \mathrm{Q}=10$ Figure 15 (Mode 1)	50:1			± 3			± 5	\%
			100:1			± 4			± 8	\%
Q Temperature Coefficient	5	fCLK $<5 \mathrm{MHz}, \mathrm{Q}=10$			20			20		ppm $/{ }^{\circ} \mathrm{C}$
$\begin{gathered} \hline \text { DCOffset } \\ \text { VOS } 2,3 \\ \text { VOS } 2,3 \end{gathered}$	4 4	$50: 1, \mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}$$\mathrm{S}_{\mathrm{A} B}$ High$\mathrm{S}_{\mathrm{A} / B}$ Low$100: 1$, flLK $=5 \mathrm{MHz}$$\mathrm{S}_{A / B}$ HighS $_{\text {ABB }}$ Low			$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	mV
$\begin{gathered} \text { DC Offset } \\ \operatorname{VOS} 2,3 \\ \operatorname{VOS} 2,3 \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$				$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	mV mV
Gain Accuracy DC Lowpass Bandpass at f_{o} DC Notch Output	$\begin{aligned} & 4 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & R 1=20 k, R 2=2 k, R 3=20 k \\ & 100: 1, f_{\mathrm{O}}=50 \mathrm{kHz}, \mathrm{Q}=10 \end{aligned}$			$\begin{gathered} 0.01 \\ 1 \\ 0.02 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$		$\begin{gathered} 0.01 \\ 1 \\ 0.02 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 6 \\ & 2 \end{aligned}$	\% $\%$ $\%$
Noise	7	Figure 15 (Mode 1) $\mathrm{Q}=1, \mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=2 \mathrm{k}$ Bandpass, $100 \mathrm{kHz}, 50: 1$ $50 \mathrm{kHz}, 100: 1$ Lowpass, $100 \mathrm{kHz}, 50: 1$ $50 \mathrm{kHz}, 100: 1$ Notch, $100 \mathrm{kHz}, 50: 1$ $50 \mathrm{kHz}, 100: 1$			$\begin{aligned} & 103 \\ & 121 \\ & 120 \\ & 150 \\ & 115 \\ & 135 \end{aligned}$			$\begin{aligned} & 103 \\ & 121 \\ & 120 \\ & 150 \\ & 115 \\ & 135 \end{aligned}$		$\mu V_{\text {RMS }}$
		Figure 15 (Mode 1) $Q=10, R 1=R 3=20 \mathrm{k}, \mathrm{R2} 2=2 \mathrm{k}$ Bandpass, $100 \mathrm{kHz}, 50: 1$ $50 \mathrm{kHz}, 100: 1$ Lowpass, $100 \mathrm{kHz}, 50: 1$ (R1 $=2 \mathrm{k}$) $50 \mathrm{kHz}, 100: 1$ Notch, $100 \mathrm{kHz}, 50: 1$ $(\mathrm{R} 1=2 \mathrm{k})$ $50 \mathrm{kHz}, 100: 1$			$\begin{gathered} 262 \\ 333 \\ 268 \\ 342 \\ 64 \\ 72 \end{gathered}$			$\begin{aligned} & 262 \\ & 333 \\ & 268 \\ & 342 \\ & 64 \\ & 72 \end{aligned}$		$\mu V_{\text {RMS }}$ μ VMS μ VMMS $\mu V_{\text {RMS }}$ $\mu V_{\text {RMS }}$ μ RMS
Crosstalk		$\mathrm{fCLK}=5 \mathrm{MHz}, \mathrm{f}_{0}=100 \mathrm{kHz}$			-50			-50		dB

Filter, $\mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.707 \mathrm{~V}_{\mathrm{PK}}\left(0.5 \mathrm{~V}_{\mathrm{RMS}}\right)$ (NOTE 9)

f_{o}, Center Frequency									
Maximum	5	Figure 15 (Mode 1) $\mathrm{Q} \leq 50, \mathrm{Q}$ Accuracy $\leq \pm 30 \%$ $\mathrm{Q} \leq 20, \mathrm{Q}$ Accuracy $\leq \pm 15 \%$							

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }} \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, $\mathrm{V}_{\mathrm{IN}}=1.41 \mathrm{~V}_{\mathrm{PK}}\left(1.00 \mathrm{~V}_{\mathrm{RMS}}\right)$, Clock Duty Cycle 50% (Note 8).

PARAMETER	NOTES	CONDITIONS	ML2111B			ML2111C			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { NOTE } 3 \end{array}$	MAX	

Filter, $\mathrm{V}_{\mathrm{A}}+=\mathrm{V}_{\mathrm{D}}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}-=\mathrm{V}_{\mathrm{D}}-=-2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.707 \mathrm{~V}_{\mathrm{PK}}\left(0.5 \mathrm{~V}_{\mathrm{RMS}}\right)$ (Continued)

Operational Amplifiers and Power Supply

Vos DC Offset	4		2	15	2	15	mV
DC Open Loop Gain		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	95		95		dB
Gain Bandwidth Product			2.4		2.4		MHz
Slew Rate			2.0		2.0		$\mathrm{V} / \mathrm{\mu s}$
Output Voltage Swing (Clipping Level)	5	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k},\|\mathrm{V}\|$ from $\mathrm{V}_{\mathrm{A}}+$ or $\mathrm{V}_{\mathrm{A}-}$	0.5	1.2	0.5	1.2	V
Output Short Circuit Current		Source Sink	$\begin{array}{r} 50 \\ 25 \\ \hline \end{array}$		$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Power Supply And Clock

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested at temperature extremes with worst-case test conditions. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 3: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 4: Parameter guaranteed and 100\% production tested.
Note 5: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 6: Center frequency is defined as the peak of the bandpass output.
Note 7: The noise is measured with the HP8903A audio analyzer with a bandwidth of 750 kHz which is 7.5 times the f_{O} at $50: 1$ and 15 times the f_{O} at 100:1.
Note 8: For best performance with $\mathrm{f}_{\mathrm{CLK}}>2.5 \mathrm{MHz}$ use a 50% duty cycle.
Note 9: For $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{A}^{+}}=\mathrm{V}_{\mathrm{D}^{+}}=2.375 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}^{-}}=\mathrm{V}_{\mathrm{D}^{-}}=-2.375 \mathrm{~V}$

FUNCTIONAL DESCRIPTION

POWER SUPPLIES

The analog $\left(\mathrm{V}_{\mathrm{A}}+\right.$) and digital $\left(\mathrm{V}_{\mathrm{D}^{+}}\right)$supply voltage pins should be tied together and bypassed to AGND with at least a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ disc ceramic capacitor. If high digital noise exists, the supply pins can be bypassed separately. The ML2111 positive analog and positive digital supply pins are internally connected by the IC substrate and should be biased from the same DC source. The ML2111 negative analog and negative digital supply are not connected internally, however they should be biased from the same DC source and bypassed with at least a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ disc ceramic capacitor.
The ML2111 operates with a single supply from 4 V to 12 V and with split supplies from $\pm 2.0 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$.

CLOCK INPUT PINS AND LEVEL SHIFT

With dual supplies equal to or higher than $\pm 4.0 \mathrm{~V}$, the level shift (LSh) pin 9 can be connected to the same potential as the AGND or V_{A} - pin. With single supply operation, the negative supply pins and the LSh pin should be tied to the system ground. The AGND, pin 15, should be biased at $1 / 2$ supplies. Under these conditions, the clock levels are TTL or CMOS. The input clock pins $(10,11)$ share the same level shift pin.

50/100/HOLD (Pin 12)

By tying pin 12 to $\left(\mathrm{V}_{\mathrm{A}}+, \mathrm{V}_{\mathrm{D}}+\right)$ the filter operates in the $50: 1$ mode. By tying pin 12 to $1 / 2$ of the voltage supplies (AGND potential), the ML2111 operates in the 100:1 mode. The range of pin 12 without affecting the 100:1 filter operation with total supply voltage of +5 V is $2.5 \pm 0.5 \mathrm{~V} ;+10 \mathrm{~V}$ is $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$. When pin 12 is tied to the negative supply pin, the filter operation is stopped and the bandpass and lowpass outputs act as an S/H circuit holding the last sample.

$S 1_{A}, S 1_{B}$, (Pins 5 and 16)

These are the auxiliary voltage signal input pins always connected to one of the negative inputs of the voltage summer (the other negative input switches between LPo and AGND according to control pin $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ (pin 6). The positive input of the voltage summer is always connected to N/AP/HP pin of the corresponding section. They should be driven with a source impedance below 5 k for $\mathrm{f}_{\mathrm{CLK}}<2.5 \mathrm{MHz}$ and 1 k to 2 k for $\mathrm{f}_{\mathrm{CLK}}>2.5 \mathrm{MHz}$. The $\mathrm{S} 1_{\mathrm{A}}, \mathrm{S} 1_{\mathrm{B}}$ pins can be used to alter the clock to center frequency ratio ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$) of the filter (see modes $1 \mathrm{~b}, 1 \mathrm{c}, 2 \mathrm{a}, 2 \mathrm{~b}$) or to feedforward the input signal for allpass filter configurations (see modes 4 and 5). They can
also be used, as in mode 1d to avoid the finite phase shift through the input amplifier, hence allowing higher operating frequencies. When these pins are not used, they should be tied to the AGND pin.

$\mathrm{S}_{\mathrm{A} / \mathrm{B}}($ Pin 6)

When $S_{A / B}$ is high, the $S 2$ negative input of the voltage summer is tied to the lowpass output. When the $S_{A / B}$ pin is connected to the negative supply, the S2 input switches to ground.

AGND (Pin 15)

AGND is connected to the system ground for dual supply operation. When operating with a single positive supply, the analog ground pin should be tied to $1 / 2$ of the supply and bypassed with a $0.1 \mu \mathrm{~F}$ and a $0.01 \mu \mathrm{~F}$ disc ceramic capacitor. The positive inputs of the internal op amps and the reference point of the internal switches are connected to the AGND pin.

$\mathbf{f}_{\text {CLK }} / \mathbf{f}_{\mathbf{o}}$ RATIO

The ML2111 is a sampled data filter and approximates continuous time filters. The filter deviates from its ideal continuous filter model when the ($\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$) ratio decreases and when the Qs are low.

$\mathbf{f}_{\mathbf{o}} \times \mathrm{Q}$ PRODUCT RATIO

The $f_{o} \times Q$ product of the ML2111 depends on the clock frequency and the mode of operation. For clock frequencies below 5 MHz , in mode 1 and its derivatives, the $f_{0} \times Q$ product is mainly limited by the desired f_{o} and Q accuracy. For the same clock frequency and for the same Q value the $f_{o} \times Q$ product can be further increased if the clock to center frequency ratio is lowered below 50:1.

Mode 3, Figure 23, and the modes of operation where R4 is finite, are "slower" than the basic mode 1. The resistor R4 places the input op amp inside the resonant loop. The finite GBW of this op amp creates an additional phase shift and enhances the Q value at high clock frequencies.

OUTPUT NOISE

The wideband RMS noise of the ML2111 outputs is nearly independent from the clock frequency provided that the clock itself does not become part of the noise. The noise at the BP and LP outputs increases for high Qs.

TYPICAL PERFORMANCE CURVES

Figure 1A. $f_{\text {CLK }} / f_{\mathbf{o}}$ vs. $\mathrm{f}_{\mathbf{C L K}}\left(\mathbf{5 0}: 1, \mathrm{~V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 1B. $\mathbf{f}_{\text {CLK }} / f_{\mathbf{o}} \mathbf{v s .} \mathrm{f}_{\mathrm{CLK}}\left(\mathbf{1 0 0 : 1 ,} \mathbf{v}_{\mathbf{S}}= \pm \mathbf{5} \mathbf{V}\right)$

Figure $1 \mathrm{C} . \mathbf{f}_{\mathbf{C L K}} / \mathrm{f}_{\mathbf{o}} \mathbf{v s .} \mathbf{f}_{\mathbf{C L K}}\left(\mathbf{5 0}: 1, \mathbf{V}_{\mathbf{S}}= \pm \mathbf{2 . 5} \mathbf{V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 1D. $\mathbf{f}_{\text {CLK }} / \mathbf{f}_{\mathbf{o}} \mathbf{v s} . \mathrm{f}_{\text {CLK }}\left(\mathbf{1 0 0 : 1}, \mathrm{V}_{\mathbf{S}}= \pm \mathbf{2 . 5 V}\right)$

Figure 2A. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Deviation vs. Temperature (50:1, $V_{S}= \pm 5 \mathrm{~V}$)

Figure 2C. $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Deviation vs. Temperature (50:1, $V_{S}= \pm 2.5 \mathrm{~V}$)

Figure 2B. $f_{C L K} / f_{\mathbf{o}}$ Deviation vs. Temperature (100:1, $V_{S}= \pm 5 \mathrm{~V}$)

Figure 2D. $\mathbf{f}_{\mathrm{CLK}} / \mathbf{f}_{\mathbf{o}}$ Deviation vs. Temperature (100:1, $V_{S}= \pm \mathbf{2 . 5} \mathrm{V}$)

TYPICAL PERFORMANCE CURVES (Continued)

Figure 2E. Q Error vs. $\mathrm{f}_{\mathrm{CLK}}\left(\mathbf{5 0 : 1}, \mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 2F. Q Error vs. $f_{\text {CLK }}\left(100: 1, V_{S}= \pm \mathbf{5 V}\right)$

Figure 2G. Q Error vs. $f_{C L K}\left(50: 1, V_{S}= \pm \mathbf{2 . 5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 2H. Q Error vs. $\mathrm{f}_{\text {CLK }}\left(\mathbf{1 0 0}: 1, \mathrm{~V}_{\mathrm{s}}= \pm \mathbf{2 . 5} \mathrm{V}\right)$

Figure 3A. Q Deviation vs. Temperature (50:1, $V_{S}= \pm \mathbf{5 V}$)

Figure 3C. Q Deviation vs. Temperature (50:1, $V_{S}= \pm \mathbf{2 . 5 V}$)

Figure 3B. Q Deviation vs. Temperature (100:1, $V_{S}= \pm 5 \mathrm{~V}$)

Figure 3D. Q Deviation vs. Temperature (100:1, $V_{S}= \pm \mathbf{2 . 5} \mathrm{V}$)

TYPICAL PERFORMANCE CURVES (Continued)

Figure 4A. $f_{\text {CLK }} / \mathbf{f}_{\mathbf{o}}$ Deviation vs. $\mathbf{Q}\left(\mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 5A. Q Deviation vs. $Q\left(50: 1, V_{S}= \pm 5 \mathrm{~V}\right)$

Figure 6A. Distortion vs. fin $\left(50: 1, \mathbf{V}_{\mathbf{S}}= \pm \mathbf{5 V}\right)$

Figure 4B. $\mathrm{f}_{\mathbf{C L K}} / \mathrm{f}_{\text {NOTCH }}$ Deviation vs. $\mathrm{Q}\left(\mathrm{V}_{\mathbf{S}}= \pm \mathbf{5}\right)$

Figure 5B. Q Deviation vs. $Q\left(\mathbf{1 0 0}: 1, V_{S}= \pm \mathbf{5 V}\right)$

Figure 6B. Distortion vs. fiN $\left(\mathbf{1 0 0}: 1, \mathrm{~V}_{\mathrm{s}}= \pm \mathbf{5 V}\right)$

TYPICAL PERFORMANCE CURVES (Continued)

Figure 7A. Noise Spectrum Density $(Q=1)$

Figure 8. $\mathbf{f C L K} / \mathbf{f}_{\text {NOTCH }}$ vs. $\mathbf{f}_{\text {CLK }}$

Figure 10. Supply Current vs. Supply Voltage

Figure 7B. Noise Spectrum Density $(Q=10)$

Figure 9. Notch Depth vs. $\mathbf{f}_{\mathbf{C L K}}$

Figure 11. Supply Current vs. Temperature

FILTER FUNCTION DEFINITIONS

Each filter of the ML2111 with an external clock and resistors approximates 2 nd order filter functions. These are tabulated below in the frequency domain.

1. Bandpass function: available at the bandpass output pins $(2,19)$, Figure 12.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OBP}} \frac{\mathrm{~s} \omega_{\mathrm{o}} / \mathrm{Q}}{\mathrm{~s}^{2}+\left(\mathrm{s} \omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}}
$$

$\mathrm{H}_{\mathrm{OBP}}=$ Gain at $\omega=\omega_{\mathrm{o}}$
$f_{o}=\omega_{0} / 2 \pi ; f_{o}$ is the center frequency of the complex pole pair. f_{o} is measured as the peak frequency of the bandpass output.
$\mathrm{Q}=\mathrm{Quality}$ factor of the complex pole pair. It is the ratio of f_{o} to the -3 dB bandwidth of the 2nd order bandpass function. The Q is always measured at the filter BP output.
2. Lowpass function: available at the LP output pins $(1,20)$, Figure 13.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OLP}} \frac{\omega_{\mathrm{O}}^{2}}{\mathrm{~s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{OLP}}=\mathrm{DC}$ gain of the LP output.
3. Highpass function: available only in mode 3 at the output pins $(3,18)$, Figure 14.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OHP}} \frac{\mathrm{~s}^{2}}{\mathrm{~s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{OHP}}=$ gain of the HP output for $\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}$
4. Notch function: available at pins 3 (18) for several modes of operation.

$$
\mathrm{G}(\mathrm{~s})=\left(\mathrm{H}_{\mathrm{ON} 2}\right) \frac{\left(\mathrm{s}^{2}+\omega_{\mathrm{n}}^{2}\right)}{\mathrm{s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{ON} 2}=$ gain of the notch output for $\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}$
$\mathrm{H}_{\mathrm{ON} 1}=$ gain of the notch output for $\mathrm{f} \rightarrow 0$
$f_{n}=\omega_{n} / 2 \pi ; f_{n}$ is the frequency of the notch occurrence.
5. Allpass function: available at pins 3(18) for mode 4, 4a.

$$
\mathrm{G}(\mathrm{~s})=\mathrm{H}_{\mathrm{OAP}} \frac{\left[\mathrm{~s}^{2}-\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{o}}^{2}\right]}{\mathrm{s}^{2}+\mathrm{s}\left(\omega_{\mathrm{o}} / \mathrm{Q}\right)+\omega_{\mathrm{O}}^{2}}
$$

$\mathrm{H}_{\mathrm{OAP}}=$ gain of the allpass output for $0<\mathrm{f}<\frac{\mathrm{f}_{\mathrm{CLK}}}{2}$
For allpass functions, the center frequency and the Q of the numerator complex zero pair is the same as the denominator. Under these conditions, the magnitude response is a straight line. In mode 5 , the center frequency f_{Z}, of the numerator complex zero pair, is different than f_{o}. For high numerator $Q^{\prime} s$, the magnitude response will have a notch at f_{Z}.

$\mathrm{Q}=\frac{\mathrm{f}_{\mathbf{o}}}{\mathrm{f}_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}} ; \mathrm{f}_{\mathrm{o}}=\sqrt{\mathrm{f}_{\mathrm{L}} \mathrm{f}_{\mathrm{H}}}$
$\mathrm{f}_{\mathrm{L}}=\mathrm{f}_{\mathrm{O}}\left(\frac{-1}{2 \mathrm{Q}}+\sqrt{\left(\frac{1}{2 \mathrm{Q}}\right)^{2}+1}\right)$
$f_{H}=f_{O}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)$
Figure 12

$$
\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{o}} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}
$$

$$
f_{p}=f_{o} \sqrt{1-\frac{1}{2 Q^{2}}}
$$

$$
H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
$$

Figure 13

$f_{C}=f_{o} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1}$
$f_{P}=f_{0} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]^{-1}$
$H_{O P}=$ HOHP $\times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$
Figure 14

OPERATION MODES

Table 1. 1st Order Functions

MODE	PIN 2 (19)	PIN 3 (18)	f_{C}	$f_{\mathbf{Z}}$
$6 a$	LP	$H P$	$\frac{f_{C L K}}{100(50)} \times \frac{R 2}{R 3}$	
$6 b$	$L P$	$L P$	$\frac{f_{C L K}}{100(50)} \times \frac{R 2}{R 3}$	
7	$L P$	$A P$	$\frac{f_{C L K}}{100(50)} \times \frac{R 2}{R 3}$	$\frac{f_{C L K}}{100(50)} \times \frac{R 2}{R 3}$

Table 2. 2nd Order Functions

MODE	PIN 1 (20)	PIN 2 (19)	PIN 3 (18)	f_{0}	f_{N}
1	LP	BP	Notch	$\frac{f_{\mathrm{CLK}}}{100(50)}$	f_{o}
1 a	LP	BP	BP	$\frac{f_{\mathrm{CLK}}}{100(50)}$	
1 b	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1c	LP	BP	Notch	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
1d	LP	BP		$\frac{f_{\mathrm{CLK}}}{100(50)}$	
2	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)}$
2 a	LP	BP	Notch	$\frac{f_{C L K}}{100(50)} \times \sqrt{1+\frac{R 2}{R 4}+\frac{R 6}{R 5+R 6}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
2 b	LP	BP	Notch	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{R 2}{\mathrm{R} 4}+\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}}$
3	LP	BP	HP	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
3 a	LP	BP	Notch	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{f_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{R_{h}}{R_{l}}}$
4	LP	BP	AP	$\frac{f_{\mathrm{CLK}}}{100(50)}$	
4 a	LP	BP	AP	$\frac{\mathrm{f}_{\mathrm{CLK}}}{100(50)} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	
5	LP	BP	C. Z	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$	$\frac{\mathrm{f}_{\text {CLK }}}{100(50)} \times \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}}$

OPERATION MODES (Continued)

There are basically three modes of operation: mode 1 , mode 2 , mode 3. In the mode 1, Figure 15, the input amplifier is outside the resonant loop. Because of this, mode 1 and its derivatives (mode 1a, 1b, 1c, 1d) are faster than modes 2 and 3. The table below gives an approximation of the frequency range for each mode.

Mode 1^{*}	High Frequency Mode
1, la, 1d 1b, 1c	f_{0} up to $150 \mathrm{kHz} ; \mathrm{Q}$ up to $20^{* *}$
Mode 2	f_{0} up to $100 \mathrm{kHz} ; \mathrm{Q}$ up to 30
2, 2a, 2 b	Flexible for Notches
Mode 3	f_{0} up to $30 \mathrm{kHz} ; \mathrm{Q}$ up to 30
3, 3a	Most Flexible/ Low Component Count

* Q and f_{0} have an inverse relatıonship. This table is only an approximation. Actual performance depends on board layout and stray capacitance.
** 15% of less Q deviation Higher Q's can be realized with greater deviation

Mode 1a, Figure 16, represents the most simple hook-up of the ML2111. Mode 1a is useful when voltage gain at the bandpass output is required. The bandpass voltage gain, however, is equal to the value of Q, and a second order, clock tunable, BP resonator can be achieved with only 2 resistors. The filter center frequency directly depends on the external clock frequency. For high order filters, mode 1 a is not practical as it requires several clock frequencies to tune the overall filter response.

1/2 ML2111

Figure 15. Mode 1: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Mode 1a is a good choice when Butterworth filters are desired since they have poles in a circle with the same f_{0}. Figure 31 shows an example of a 4th order 100 kHz lowpass Butterworth filter clocked at 5 MHz .

A monotonic passband response with a smooth transition band results, showing the circuit's low sensitivity, even though 1% resistors are used which result in an approximate value of Q .
Mode 1, Figure 15, provides a clock tunable notch. Mode 1 is a practical configuration for second order clock tunable bandpass/notch filters. In mode 1, a bandpass output with a very high Q, together with unity gain, can be obtained with the dynamics of the remaining notch and lowpass outputs. Figure 32 is an example of a 4 th order bandpass filter implemented by cascading 2 sections each with a Q of 10 . This figure shows the amplitude response when $\mathrm{f}_{\mathrm{CLK}}=7.5 \mathrm{MHz}$ resulting in a center frequency of 150 kHz and a Q of 15.5.
Modes 1b and 1c, Figures 17, 18 are similar. They both produce a notch with a frequency which is always equal to the filter center frequency. The notch and the center frequency can be adjusted with an external resistor ratio.
The clock to center frequency ratio range is:

$$
\begin{aligned}
& \frac{500}{1} \geq \frac{f_{C L K}}{f_{o}} \geq \frac{100}{1} \text { or } \frac{50}{1} ; \text { mode } 1 \mathrm{c} \\
& \frac{100}{1} \text { or } \frac{50}{1} \geq \frac{f_{C L K}}{f_{o}} \geq \frac{100}{\sqrt{2}} \text { or } \frac{50}{\sqrt{2}} ; \text { mode } 1 \mathrm{~b}
\end{aligned}
$$

The input impedance of the $S 1$ pin is clock dependent, and in general $R 5$ should not be larger than 5 k for $\mathrm{f}_{\text {CLK }}<2.5 \mathrm{MHz}$ and 1 k to 2 k for $\mathrm{f}_{\text {CLK }}>2.5 \mathrm{MHz}$. Mode 1 b can be used to increase the clock to center frequency ratio beyond 100:1. For this mode, the limit for the ($f_{C L K} / f_{o}$) ratio is $500: 1$. Beyond this, the filter will exhibit large output offsets. Mode 1d, Figure 19, is the fastest mode of operation: In the 50:1 mode center frequencies beyond 150 kHz can easily be achieved. Figure 33 is an example using mode 1d of a 4th order filter where each section has a Q of 1 independent of resistor ratios. In this mode the input amplifier is outside the damping (Q) loop. Therefore, its finite bandwidth does not degrade the response at high frequency. This allows the amplifier to be used as an antialiasing and continuous smoothing filter by placing a capacitor across R2.
Modes 2, 2a, and $2 b$ have a notch output which frequency, f_{n}, can be tuned independently from the center frequency, f_{o}. For all cases, however, $f_{n}<f_{0}$. These modes are useful when cascading second order functions to create an overall elliptic highpass, bandpass or notch response. The input amplifier and its feedback resistors (R2/ R4) are now part of the resonant loop. Because of this, mode 2 and its derivatives are slower than mode 1 's.

OPERATION MODES (Continued)

1/2 ML2111

$$
\begin{aligned}
& f_{0}=\frac{f_{C L K}}{100(50)} ; Q=\frac{R 3}{R 2} ; H_{O B P}=-\frac{R 3}{R 2} ; \\
& H_{\text {OBP } 2}=1 \text { (NONINVERTING); }
\end{aligned}
$$

Figure 16. Mode 1a: 2nd Order Filter Providing Bandpass, Lowpass

1/2 ML2111

$f_{0}=\frac{f(C L K}{10(50)} \sqrt{1+\frac{R 6}{R 5+R 6}} ; f_{n}=f_{0} ; Q=\frac{R 3}{R 2} \sqrt{1+\frac{R 6}{R 5+R 6}} ;$
$H_{O N 1}(f \rightarrow 0)=H_{\text {ON }}\left(f-\frac{f C L K}{2}\right)=-\frac{R 2}{R 1} ; H_{O B P}=-\frac{R 3}{R 1} ; H_{O L P}=\frac{-R 2 / R 1}{1+R 6 /(R 5+R 6)} ; R 5<5 K \Omega$
Figure 17. Mode 1b: 2nd Order Filter Providing Notch, Bandpass, Lowpass
1/2 ML2111

Figure 18. Mode 1c: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Figure 19. Mode 1d: 2nd Order Filter Providing Bandpass and Lowpass for Qs Greater or Equal to 1

OPERATION MODES (Continued)

1/2 ML2111

$$
\begin{aligned}
& f_{0}=\frac{f_{C L K}}{100(50)} \sqrt{1+\frac{R 2}{R 4}} ; f_{n}=\frac{f_{C L K}}{100(50)} ; Q=\frac{R 3}{R 2} \sqrt{1+\frac{R 2}{R 4}} ; H_{O L P}=\frac{-R 2 / R 1}{1+(R 2 / R 4)} \\
& H_{O B P}=-R 3 / R 1 ; H_{O N 1}(f \rightarrow 0)=\frac{-R 2 / R 1}{1+(R 2 / R 4)} ; H_{O N 2}\left(f \rightarrow \frac{f_{C L K}}{2}\right)=-R 2 / R 1
\end{aligned}
$$

Figure 20. Mode 2: 2nd Order Filter Providing Notch, Bandpass, Lowpass

Figure 21. Mode 2a: 2nd Order Filter Providing Notch, Bandpass, Lowpass
1/2 ML2111

$$
f_{0}=\frac{f C L K}{100(50)} \sqrt{\frac{R 2}{R 4}+\frac{R 6}{R 5+R 6}} ; f_{n}=\frac{f C L K}{100(50)} \sqrt{\frac{R 6}{R 5+R 6}} ; Q=\frac{R 3}{R 2} \sqrt{\frac{R 2}{R 4}+\frac{R 6}{R 5+R 6}}
$$

$$
H_{\mathrm{ON} 1}(f \rightarrow 0)=-\frac{R 2}{R 1}\left\{\frac{R 6 /(R 5+R 6)}{(R 2 / R 4)+[R 6 /(R 5+R 6)]}\right\} ; H_{\mathrm{ON} 2}\left(f \rightarrow \frac{\mathrm{fCLK}}{2}\right)=-R 2 / R 1
$$

$$
H_{\mathrm{OBP}}=-\mathrm{R} 3 / \mathrm{R} 1 ; \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 2 / \mathrm{R} 1}{(R 2 / R 4)+[R 6 /(R 5+R 6)]}
$$

Figure 22. Mode 2b: 2nd Order Filter Providing Notch, Bandpass, Lowpass

OPERATION MODES (Continued)

In mode 3, Figure 23, a single resistor ratio (R2/R4) can tune the center frequency below or above the $\mathrm{f}_{\mathrm{CLK}} / 100$ (or $\mathrm{f}_{\mathrm{CLK}} /$ 50) ratio. Mode 3 is a state variable configuration since it provides a highpass, bandpass, lowpass output through progressive integration; notches are obtained by summing the highpass and lowpass outputs (modes 3a, Figure 24). The
notch frequency can be tuned below or above the center frequency through the resistor ratio $\left(R_{h} / R_{1}\right)$. Because of this, modes 3 and $3 a$ are the most versatile and useful modes for cascading second order sections to obtain high order elliptic filters with frequencies up to 30 kHz .

Figure 23. Mode 3: 2nd Order Filter Providing Highpass, Bandpass, Lowpass

1/2 ML2111

Figure 24. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Notch

Figure 25. Mode 4: 2nd Order Filter Providing Allpass, Bandpass, Lowpass

Figure 26. Mode 4a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Allpass

OPERATION MODES (Continued)

1/2 ML2111

$\mathrm{f}_{0}=\frac{\mathrm{fCLK}}{\mathbf{1 0 0 (5 0)}} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4^{\prime}} ;} \mathrm{f}_{\mathrm{z}}=\frac{\mathrm{f} C L K}{100(50)} \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4^{4}}} ; \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$\mathrm{Qz}_{\mathrm{Z}}=\frac{\mathrm{R} 3}{\mathrm{R} 1} \sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4} ;} ; \mathrm{HOZ}(\mathrm{f} \rightarrow 0)=\frac{(\mathrm{R} 4 / \mathrm{R} 1)-1}{(\mathrm{R} 4 / \mathrm{R} 2)+1} ; \mathrm{HOZ}\left(\mathrm{f}-\frac{\mathrm{fCLK}}{2}\right)=\frac{\mathrm{R} 2}{\mathrm{R} 1} ;$
$H_{\mathrm{OBP}}=\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) ; \mathrm{H}_{\mathrm{OLP}}=\frac{1+(\mathrm{R} 2 / \mathrm{R} 1)}{1+(\mathrm{R} 2 / \mathrm{R} 4)}$

Figure 27. Mode 5: 2nd Order Filter Providing Numerator Complex Zeros, Bandpass, Lowpass

1/2 ML2111

Figure 29. Mode 6b: 1st Order Filter Providing Lowpass

1/2 ML2111

Figure 28. Mode 6a: 1st Order Filter Providing Highpass, Lowpass

1/2 ML2111

$f_{p}=\frac{f_{C L K} R 2}{100(50) R 3} ; f_{z}=\frac{f C L K R 2}{100(50) R 3} ;$ GAIN AT OUTPUT $=1$ FOR $0 \leq f \leq \frac{f C L K}{2}$

Figure 30. Mode 7: 1st Order Filter Providing Allpass, Lowpass

OPERATION MODES (Continued)

Figure 31. 4th Order, 100kHz Lowpass Butterworth Filter Obtained by Cascading 2 Sections in Mode 1a

Figure 32. Cascading Two Sections in Mode 1, Each With $Q=10$ Results in a Bandpass Filter with $Q=15.5$ and $f_{0}=150 \mathrm{kHz}\left(\mathrm{f}_{\mathrm{CLK}}=7.5 \mathrm{MHz}\right)$

OPERATION MODES (Continued)

FREQUENCY (Hz)

Figure 33. Cascading Two Sections in Mode 1d, Each With $\mathbf{Q}=1$ (Independent of Resistor Ratios) Creates a Sharper 4th Order Lowpass Filter

Figure 34. Notch Filter with $Q=50$ and $f_{0}=130 \mathrm{kHz}$. This Circuit Uses Side A^{\prime} 's Biquad in Mode 1d and the Side B Op Amp to Create a Notch Whose Depth is Controlled by R31. The Notch is Created by Subtracting the Bandpass from Vin. The Bandpass of Side A is Subtracted Using the Op Amp of Side B.

OFFSETS

Switched capacitor integrators generally exhibit higher input offsets than discrete R, C integrators.
These offsets are mainly the charge injection of the CMOS switches into the integrating capacitors. The internal op amp offsets also add to the overall budget.

Figure 35 shows half of the ML2111 filter with its equivalent input offsets $\mathrm{V}_{\mathrm{OS} 1}, \mathrm{~V}_{\mathrm{OS} 2}, \mathrm{~V}_{\mathrm{OS} 3}$.
The DC offset at the filter bandpass output is always equal to $\mathrm{V}_{\mathrm{OS} 3}$. The DC offsets at the remaining two outputs
(Notch and LP) depend on the mode of operation and external resistor ratios. Table 3 illustrates this.

It is important to know the value of the DC output offsets, especially when the filter handles input signals with large dynamic range. As a rule of thumb, the output DC offsets increase when:

1. The Q 's decrease
2. The ratio $\left(f_{C L K} / f_{0}\right)$ increases beyond 100:1. This is done by decreasing either the (R2/R4) or the R6/(R5 + R6) resistor ratios.

Figure 35. Equivalent Input Offsets of $\mathbf{1 / 2}$ ML2111 Filter
Table 3

MODE	$\begin{gathered} \text { V OSN }^{\text {PIN } 3(18)} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {OSBP }} \\ \text { PIN } 2(19) \end{gathered}$	$\begin{gathered} \text { V }_{\text {OSLP }} \\ \text { PIN } 1(20) \end{gathered}$	
1,4	$\mathrm{V}_{\mathrm{OS} 1}\left[(1 / \mathrm{Q})+1+\\| \mathrm{H}_{\text {OLP }} \mathrm{ll}\right]-\mathrm{V}_{\text {OS3 }} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
1 a	$\mathrm{V}_{\mathrm{OS} 1}[1+(1 / \mathrm{Q})]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
1 b	$\mathrm{V}_{\mathrm{OS} 1}[(1 / \mathrm{Q})+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$	
1 c	$\mathrm{V}_{\text {OS }}[(1 / \mathrm{Q})+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(V_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right) \frac{(\mathrm{R} 5+\mathrm{R} 6)}{(\mathrm{R} 5+2 \mathrm{R} 6)}$	
1d	$\mathrm{V}_{\text {OS1 }}[1+\mathrm{R} 2 / \mathrm{R} 1]$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}-\mathrm{V}_{\mathrm{OS} 3} / \mathrm{Q}$	
2,5	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {[\mathrm{R} 4 /(\mathrm{R} 2+\mathrm{R} 4)]+\mathrm{V}_{\mathrm{OS} 2}[\mathrm{R} 2 /(\mathrm{R} 2+\mathrm{R} 4)]} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$	
2a	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {\left[\frac{\mathrm{R} 4(1+\mathrm{k})}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4(1+\mathrm{k})}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(V_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right) \frac{(\mathrm{R} 5+\mathrm{R} 6)}{(R 5+2 R 6)}$	
2 b	$\begin{aligned} & {\left[\mathrm{V}_{\mathrm{OS} 1}(1+\mathrm{R} 2 / \mathrm{R} 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3)\right] \times} \\ & {\left[\frac{\mathrm{R} 4 \mathrm{k}}{\mathrm{R} 2+\mathrm{R} 4 \mathrm{k}}\right]+\mathrm{V}_{\mathrm{OS} 2}\left[\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 4 \mathrm{k}}\right] ; \mathrm{k}=\frac{\mathrm{R} 6}{\mathrm{R} 5+\mathrm{R} 6}} \end{aligned}$	$\mathrm{V}_{\text {OS3 }}$	$\sim\left(\mathrm{V}_{\mathrm{OSN}}-\mathrm{V}_{\mathrm{OS} 2}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$	
3, 4a	$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{\text {OS3 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OS} 1}\left[1+\frac{\mathrm{R} 4}{\mathrm{R} 1}+\frac{\mathrm{R} 4}{\mathrm{R} 2}+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right]-\mathrm{V}_{\mathrm{OS} 2}\left(\frac{\mathrm{R} 4}{\mathrm{R} 2}\right) \\ & -\mathrm{V}_{\mathrm{OS} 3}\left(\frac{\mathrm{R} 4}{\mathrm{R} 3}\right) \end{aligned}$	

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML2111BCP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2111CCP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2111BCS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)
ML2111CCS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)
ML2111BIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2111CIJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	HERMETIC DIP (J20)

PART NUMBER	TEMP. RANGE	PACKAGE
ML2111BMJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2111CMJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	HERMETIC DIP (J20)
ML2111BIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2111CIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML2111BIS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)
ML2111CIS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MOLDED SOIC (S20W)

Networking Products

Section 4

Selection Guide 4-1
Ethernet
ML2652 10BASE-T Physical Interface Chip 4-3
ML2653 10BASE-T Physical Interface Chip 4-3
ML2653EVAL 10BASE-T Transceiver Evaluation Kit 4-23
ML4642 AUI Multiplexer 4-44
ML4644 4-Port AUI Multiplexer 4-58
ML4652 10BASE-T Transceiver 4-69
ML4654 10BASE-T Transceiver for Multi-Port Repeaters 4-85
ML4658 10BASE-T Transceiver with Autopolarity 4-69
ML4661 FOIRL Transceiver 4-86
ML4662 10BASE-FL Transceiver 4-87
ML4662EVAL 10BASE-FL Evaluation Kit 4-99
ML4663 Single Chip 10BASE-FL Transceiver 4-100
ML4663EVAL 10BASE-FL Evaluation Kit 4-113
High-Speed Networking
ML6671 FDDI TP-PMD Transceiver 4-125
ML6671-22EVAL TP-PMD Transceiver Evaluation Kit 4-132
ML6672 ATM UTP Transceiver 4-133
ML6672-9EVAL 155 Mbps ATM Transceiver Evaluation Kit 4-140
ML6673 FDDI TP-PMD Transceiver 4-141
Token-Ring
ML6682 Token Ring Physical Interface 4-143
Fiber Optic Components
ML4621 Fiber Optic Data Quantizer 4-24
ML4622 Fiber Optic Data Quantizer 4-30
ML4624 Fiber Optic Data Quantizer 4-30
ML4632 Fiber Optic LED Driver 4-38
ML6622 High-Speed Data Quantizer 4-115
ML6633 High-Speed Fiber Optic LED Driver 4-120
ML6633/22EVAL High-Speed Fiber Optic Evaluation Kit 4-124
Network Interface Products
ML4670 Multi-Protocol Physical Interface Device 4-114

Networking Products

ETHERNET

Part Number	Description	LED Outputs	Autopolarity	Package Types
ML2652	10BASE-T Physical Layer with AUI Port	6	Yes	44 Pin PLCC
ML2653	10BASE-T Physical Layer	2	Yes	28 Pin PLCC
ML2653EVAL	Evaluation Kit for ML2653		N/A	28 Pin SSOP
ML4642	AUI Multiplexer (2-port)	6	N/A	68 Pin PLCC
ML4644	AUI Multiplexer (4-port)	10	No	24 Pin Skinny DIP
ML4652	10BASE-T MAU	6	28 Pin PLCC	

High-Speed Networking

Part Number	Applications	Data Rate	Media Interface	Adaptive Equilization	Base Line Wander	Package Types
ML6671	FDDI over Copper (TP-PMD) Fast Ethernet (100BASE-TX)	125 MHz	MLT-3	Yes	No	32 Pin PLCC 32 Pin TQFP
ML6671-22EVAL	Evaluation Kit for ML6671					
ML6672	ATM over Copper	155 Mbps	NRZ	Yes	No	32 Pin PLCC 32 Pin TQFP
ML6672-9EVAL	Evaluation Kit for ML6672					
ML6673	FDDI over Copper (TP-PMD)	125 MHz	MLT-3	Yes	Yes	32 Pin PLCC
	Fast Ethernet (100BASE-TX)					

Token Ring Physical Interface

Part Number	Application	Data Rates	Cable Type	Package Type
ML6682	Station	4 Mbps	UTP	44 Pin TQFP
	Concentrator	16 Mbps	STP	

Fiber Optic Components

Part Number	Decription	Bandwidth	I/O Types	Package Types
ML4621	Quantizer	50 MHz	TTL, ECL	24 Pin Skinny DIP 28 Pin PLCC
ML4622	Quantizer	40 MHz	TTL, ECL	16 Pin Skinny DIP 16 Pin Narrow SOIC
ML4624	Quantizer	40 MHz	TTL, ECL	24 Pin Skinny DIP 28 Pin PLCC
ML4632	LED Driver	20 MHz	TTL, ECL	$\begin{aligned} & 14 \text { Pin DIP } \\ & 16 \text { Pin SOIC } \end{aligned}$
ML6622	Quantizer	150 MHz	ECL	16 Pin DIP 16 Pin Narrow SOIC
ML6633	LED Driver	200 MHz	ECL	8 Pin DIP 8 Pin SOIC
ML6633/22EVAL	Evalutation Kit for ML6633 and ML6622			

Networking Interface Products

Part Number	Decription	Protocols	Data Rate	Package Types
ML4670	Multiple Protocol Physical	RS-449, RS-232	10Mbps	84 Pin PLCC
	Interface	V.35, X.21		

10Base-T Physical Interface Chip

GENERAL DESCRIPTION

The ML2652, 10BASE-T Physical Interface Chip, is a complete physical interface for twisted pair and AUI Ethernet applications. It combines a 10BASE-T MAU, Manchester Encoder/Decoder, and Twisted Pair Interface filters in one monolithic IC. A complete DTE interface for twisted pair Ethernet can be implemented by combining the ML2652, an Ethernet controller, and transformers.

The ML2652 can automatically select between an AUI and twisted pair interface based on Link Pulses. Six LED outputs provide complete status at the physical link. Link and Test can be enabled or disabled through the LED outputs.

The unique transmitter design uses a waveform generator and low pass filter to meet the 10BASE-T transmitter requirements without the need for an external filter. The differential current driven output reduces common mode which in turn results in very low EMI and RFI noise.
The ML2652 and ML2653 (28 pin version) is implemented in a low power double polysilicon CMOS technology. The ML2653 does not include the AUI interface.

FEATURES

- Complete physical interface solution

■ Conforms to IEEE 802.3i-1990 (10Base-T)

- On-chip transmit and receive filters
- Automatic AUI/Twisted Pair selection (ML2652 only)
- Power down mode
- Pins selectable controller interface-(CS0 - CS2)

Intel 82586, 82596
NSC DP8390
Seeq 8003, 8005
AMD 7990

- Automatic polarity correction
- Pin selectable receive squelch levels
- Status pins for: link detect, receive \& transmit activity, collision, jabber, AUI selection
■ Single supply $5 \mathrm{~V} \pm 5 \%$
- ML2653 - 28 pin PLCC package

■ ML2652 - 44 pin PLCC package (see page 2)

ML2652 BLOCK DIAGRAM

ML2653
28-Pin PLCC (Q28)

ML2653 BLOCK DIAGRAM

PIN DESCRIPTION

NAME FUNCTION

VCC Positive supply. +5 V
GND Ground. 0 volts. All inputs and outputs referenced to this point.
CLK Clock input. There must be either a 20 MHz crystal or a 20 MHz clock between this pin and GND.

Tx+ Transmit positive twisted pair output. This output is a current source that drives the twisted pair cable through a pulse transformer.
Tx- Transmit negative twisted pair output. This output is a current source that drives the twisted pair cable through a pulse transformer.

Rx+ Receive positive twisted pair input. This input receives data from the twisted pair cable through a pulse transformer.
Rx- Receive negative twisted pair input. This input receives data from the twisted pair cable through a pulse transformer.
DO+ AUI positive transmit output. AUI transmit data output to optional external transceiver.
DO- AUI negative transmit output. AUl transmit data output to optional external transceiver.
DI+ AUI positive receive data input from optional external transceiver.

NAME FUNCTION

DI- AUI negative receive data input from optional external transceiver.
$\mathrm{Cl}+\mathrm{AUI}$ positive collision input from optional external transceiver.
CI- AUI negative collision input from optional external transceiver.
RTX Transmit current set. An external resistor between this pin and GND programs the absolute value of output current on Tx \pm.
TxC Transmit clock output. Digital output which clocks the transmit data (TxD) into the device from the controller.
TxD Transmit data input. Digital input which contains transmit data from the controller.
TxE Transmit enable input. Digital input from the controller that indicates when the transmit data (TxD) is valid.
COL Collision output Digital output to the controller which indicates when a collision condition is present.
RxC Receive clock output. Digital output which clocks receive data ($\mathrm{R} \times \mathrm{D}$) from the device into the controller.

PIN DESCRIPTION (Continued)

NAME FUNCTION

RxD Receive data output. Digital output which contains receive data sent to the controller.
RxE Receive data valid. Digital output to the controller that indicates when the receive data (RxD) is valid.
LPBK Local loopback. Digital input from the controller which forces the device to loopback transmit data without sending it on the media.
FD Full Duplex Enable. When enabled the 10BASE-T MAU loopback and collision detect are disabled. LPBK must be disabled when using this function.
CSO Controller selection input. Digital input which selects one of four standard controller timing interfaces. This pin has an internal pulldown resistor to GND.

CS1 Controller select input. Digital input which selects one of four standard controller timing interfaces. This pin has an internal pulldown resistor to GND.

CS2 Controller select input. Digital input which selects one of four standard controller timing interfaces. This pin has an internal pulldown resistor to GND.
RSL Receive squelch level select input. Pin has internal pullup resistor to VCC.

RSL $=$ High Receive squelch level $=10$ Base $-T$
RSL $=$ Low Receive squelch level = extended distance
$\overline{\text { XMT }} \quad$ Transmit status output. Digital output which indicates data transmission on $T x+$ and $T x-$. Pin is open drain output with resistor pullup and is capable of driving an LED. XMT pin and $\overline{R C V}$ pin are the same pin for ML4653.
$\overline{R C V} \quad$ Receive status output. Digital output which indicates unsquelched data reception on $R x+$ and $R x$-. Pin is an open drain output with resistor pullup and is capable of driving an LED.

NAME FUNCTION

$\overline{\mathrm{CLS}}$ Collision status output. Digital output which indicates that collision condition has been detected. Pin is an open drain output with resistor pullup and is capable of driving an LED.
$\overline{\text { LTP }} \quad$ Link test pass output/input. This pin consists of an open drain output transistor with a resistor pullup that serves both as a link test pass output and a link test disable input. When used as an output, this pin is capable of driving an LED.
$\overline{L T P}=$ High, link test failed
$\overline{\mathrm{LTP}}=$ Low, link test pass
$\overline{\mathrm{LTP}}=\mathrm{GND}$, link test disabled
$\mathrm{AUI} / \overline{\mathrm{TP}} \mathrm{AUI} /$ twisted pair interface select input. $A \cup I / \overline{T P}=$ High, AUI selected $\mathrm{AUI} / \overline{\mathrm{TP}}=$ Low, TP selected
$\overline{\mathrm{RPOL}}$ This pin must be grounded at all times.
$\overline{J A B} \quad$ Jabber detect output. Digital output which indicates that the jabber condition has been detected. Pin is an open drain output with resister pullup and is capable of driving a LED.
$\widehat{\mathrm{JB}}=$ High, normal
$\overline{J A B}=$ Low, jabber detected
$\overline{A U I S E L} A \cup I / \overline{T P}$ port output status
$\overline{\text { AUISEL }}=$ High, TP port selected
$\overline{\mathrm{AUISEL}}=$ Low, AUI port selected
JABDIS Jabber disable input
JABDIS = High, jabber disabled
JABDIS = Low, normal operation
NC No connect. Leave this pin open circuit.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to GND. (Note 1)
VCC supply voltage +6.5 volts
All inputs and outputs $-0.3 v$ to VCC $+.3 v$
Input current per pin $\pm 25 \mathrm{~mA}$
Power dissipation 0.75 Watt
Storage temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}+5 \%$. Note $2 \& 3$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VIL	Digital input low voltage	All except CLK CLK			$\begin{gathered} .8 \\ 1.5 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
VIH	Digital input high voltage	All except CLK CLK	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & V \\ & V \end{aligned}$
IIL	Digital input low current	$\begin{aligned} & \text { VIN=GND TxD, TxE, AUI/TP } \\ & \text { VIN=GND LPBK, CS2-0, LBDIS,JABDIS } \\ & \text { VIN=GND RSL } \\ & \text { VIN=GND } \overline{\text { LTP }}, \text { RPOL, } \\ & \text { VIN=GND CLK } \end{aligned}$	$\begin{aligned} & -10 \\ & -15 \end{aligned}$	$\begin{gathered} -25 \\ -250 \end{gathered}$	$\begin{gathered} -5 \\ -5 \\ -50 \\ -500 \\ -300 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IIH	Digital input high current	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \operatorname{TxD}, \mathrm{TxE}, \mathrm{AUI} \overline{\mathrm{TP}} \\ & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{RSL}, \mathrm{CS} 2-0, ~ L B D I S, ~ J A B D I S \\ & V I N=V C C \overline{L T P}, R P O L \\ & V I N=V C C \\ & \hline \end{aligned}$	10	25	$\begin{gathered} 1 \\ 50 \\ 1 \\ 1 \\ 250 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
CIN	Digital input capacitance	All except CLK CLK		$\begin{gathered} 5 \\ 10 \end{gathered}$		pF pF
VOL	Digital output low voltage	$\begin{aligned} & \mathrm{IOL}=-2 \mathrm{~mA} \mathrm{TxC}, \mathrm{COL}, \\ & \mathrm{RxC}, \mathrm{RxD}, \mathrm{RxE} \\ & \mathrm{IOL}=-10 \mathrm{~mA} \overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}, \\ & \overline{\mathrm{CLS}}, \overline{\mathrm{LTP}}, \mathrm{RPOL}, \overline{\mathrm{JAB}} \end{aligned}$. 4 . 6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VOH	Digital output high voltage	$\begin{aligned} & \mathrm{IOH}=2 \mathrm{~mA} \mathrm{TxC}, \mathrm{COL}, \\ & \mathrm{RxC}, \mathrm{RxD}, \mathrm{RxE} \\ & \mathrm{IOL}=10 \mathrm{uA} \overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}, \overline{\mathrm{CLS}}, \\ & \overline{\mathrm{LTP}, \mathrm{RPOL}, \overline{\mathrm{JAB}}} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.4 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
ICC	VCC supply current	TX transmission No transmission Powerdown mode		2	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	mA mA mA
TOV	Tx \pm differential output voltage	RTX $=10 \mathrm{~K}$	2.2	2.5	2.8	Vp
THD	Tx t harmonic distortion	TxD=all ones	-27			dB
TCM	$\mathrm{Tx} \pm$ common mode output voltage				± 50	mVp
TCMR	Tx \pm common mode rejection	$\mathrm{VCM}=15 \mathrm{vp}, 10.1 \mathrm{MHz}$ sine		± 100		$m \vee p$
TOVI	Tx \pm differential output voltage during idle				± 50	mVp
TOIA	Tx \pm output current accuracy	RTX $=10 \mathrm{~K}$		50		mA
TRO	Tx \pm output resistance			1		Mohm
TCO	Tx \pm output capacitance			10		pF
RRI	Receive input resistance		2.5 K	10K		ohms
RCI	Receive input capacitance			10		pF
RSON	Receive squelch on level	$\begin{aligned} & \text { RSL }=1 \\ & \text { RSL }=0 \end{aligned}$	$\begin{aligned} & 275 \\ & 150 \end{aligned}$		$\begin{aligned} & 520 \\ & 325 \end{aligned}$	$\begin{aligned} & \mathrm{mVp} \\ & \mathrm{mVp} \end{aligned}$

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RSOF	Receive squelch off level	$\begin{aligned} & \mathrm{RSL}=1 \\ & \mathrm{RSL}=0 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$		$\begin{aligned} & 325 \\ & 225 \end{aligned}$	$\begin{aligned} & \mathrm{mVp} \\ & \mathrm{mVp} \end{aligned}$
DOV	DO \pm differential output voltage		± 550		± 1170	mV
DOVI	DO \pm differential output voltage during idle				± 40	mV
DOUS	DO \pm differential output voltage return to 0 undershoot				-100	mV
DOCMA	DO \pm common mode AC output voltage				± 40	mV
DOCMA	DO \pm common mode DC output voltage			VCC *. 5		V
DIRI	$\mathrm{DI} / \mathrm{Cl}$ input resistance		2.5 K	10K		ohms
DICl	$\mathrm{DI} / \mathrm{Cl}$ input capacitance			10		pF
DIBV	$\mathrm{DI} / \mathrm{Cl}$ input bias voltage	DI/CI floating		VCC *. 5		V
DISON	$\mathrm{DI} / \mathrm{Cl}$ squelch on level		-175		-325	mVp
t1	TxC on time		45		55	ns
t2	TxC off time		45		55	ns
t3	TxC period			100		ns
t4	TxE setup time		25			ns
t5	TxE hold time		0			ns
t6	TxD setup time		25			ns
t7	TxD hold time		0			ns
t8	Transmit propagation delay	Tx \pm DO \pm		60	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t9	Start of Idle Pulse Width	Tx \pm $\mathrm{DO} \pm$	200		350	ns
t10	SOI pulse width to within 40 mV of final value	Tx \pm DO \pm			$\begin{aligned} & 4500 \\ & 8000 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t11	Transmit output jitter	Tx \pm $\mathrm{DO} \pm$			$\begin{gathered} \pm 8.0 \\ \pm .5 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t12	Transmit output rise and fall time	Tx $\pm, 10-90 \%$	1	5		ns
t13	TxE to $\overline{\text { XMT }}$ assert				250	ms
t14	$\overline{\text { XMT }}$ blinker pulse period		95		115	ms

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t15	$\overline{\text { XMT }}$ duty cycle		45		55	\%
t20	Start of receive packet to RxE assert	$\begin{aligned} & \mathrm{Rx} \pm \\ & \mathrm{D} \pm \end{aligned}$			$\begin{aligned} & 600 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { no } \end{aligned}$
t21	Start of receive packet to RxC active	$\begin{aligned} & \mathrm{Rx}+ \\ & \mathrm{Dl}+ \end{aligned}$			$\begin{aligned} & 1600 \\ & 1300 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t22	RxC on time		45		900	ns
t23	RxC off time		45		55	ns
t24	RxD valid before RxC		45			ns
t25	RxD valid after RxC		35			ns
t26	RxE assert to $\overline{\mathrm{RCV}}$ assert				250	ms
t27	$\overline{\mathrm{RCV}}$ blinker pulse period		95		115	ms
t28	$\overline{\mathrm{RCV}}$ duty cycle		45		55	\%
t29	Receive input jitter	Preamble Data			$\begin{aligned} & \pm 12 \\ & \pm 18 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t30	Receive propagation delay	Tx \pm $\mathrm{DI} \pm$			$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t31	RxC to RxE assert		30		60	ns
t32	RxC to RxE deassert		20		45	ns
t33	RxE deassert to RxC switchover		100		200	ns
t34	Minimum SOI pulse width required for receive detection	Tx \pm DI \pm	$\begin{aligned} & 180 \\ & 180 \end{aligned}$			$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
t40	Jabber activation delayTxE assert to $T x \pm$ disable		20		150	ms
t41	Tx \pm disable to $\overline{\mathrm{AB}}$ assert			200		ms
t42	Jabber reset time - TxE deassert to $\overline{\mathrm{JAB}}$ deassert		250		750	ms
t43	Tx \pm disable to COL assert			50		ns
t44	Tx \pm disable to $\overline{\mathrm{CLS}}$ assert			50		ns
t45	$\overline{\mathrm{JAB}}$ deassert to COL deassert				50	ns
t46	$\overline{\mathrm{JAB}}$ deassert to $\overline{\mathrm{CLS}}$ deassert				50	ns
t51	Transmit link pulse period		8		24	ms
t52	Minimum link pulse period required for receive detection		2		7	ms
t52	Maximum link pulse period required for receive detection		25		150	ms
t53	Receive link pulse no detect to $\overline{\text { LTP }}$ deassert		50		150	ms

ML2652/ML2653

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t54	Receive link pulse detect to $\overline{\mathrm{LTP}}$ assert		2			Link Pulse
t55	AUI/TP to $\overline{\text { AUISEL }}$ delay				200	ns
t60	TxE deassert to COL assert		. 9	1.0	1.1	$\mu \mathrm{s}$
t61	COL pulse Width		. 9	1.0	1.1	$\mu \mathrm{s}$
t70	Start of $\overline{R C V}$ packet during transmission to COL assert	$R \times \pm$			500	ns
t71	Start of $\overline{R C V}$ packet during transmission to $\overline{\mathrm{CLS}}$ assert	$R \times \pm$			500	ns
t72	End of $\overline{\mathrm{RCV}}$ packet during transmission to COL deassert	$R \times \pm$			300	ns
t73	$\overline{\mathrm{CLS}}$ blinker pulse period		95		115	ms
t74	$\overline{\text { CLS }}$ duty cycle		45		55	\%
t75	Transmission start during reception to COL assert	Tx \pm			300	ns
t76	Transmission start during reception to $\overline{\mathrm{CLS}}$ assert	Tx \pm			250	ms
t77	$\mathrm{Cl} \pm$ period		80		120	ns
t78	$\mathrm{Cl} \pm$ duty cycle		40		60	\%
t79	First valid negative $\mathrm{CI} \pm$ data transition to COL assert				100	ns
t80	First valid negative $\mathrm{Cl} \pm$ data transition to $\overline{\mathrm{CLS}}$ assert				100	ns
t81	Last $\mathrm{Cl} \pm$ positive data transition to COL deassert		160		250	ns
t82	External clock input jitter				50	ps

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground
Note 2: Limits are guaranteed by 100% testıng, samplıng, or correlation with worst-case test conditions.
Note 3: Low Duty cycle pulse testing is performed at T_{A}.

TIMING DIAGRAMS

Figure 1. Transmit System Timing

Figure 2. Receive Timing

TIMING DIAGRAMS

Figure 3. Transmit Timing

NOTE:

1. RxC is not Continuous during idie
2. RxC is CONTINUOUS DURING IDLE

Figure 4. Receive Timing - Start of Frame

NOTE:

1. RxC IS NOT CONTINUOUS DURING IDLE - 8 EXTRA CLOCKS ADDED FOR CS2 - $\mathbf{0 = 0 0 0}$ 2. RxC IS CONTINUOUS DURING IDLE

Figure 5. Receive Timing - End of Frame

Figure 6. Jabber Timing (ML2652 only.)

TIMING DIAGRAMS

Figure 7. Link Pulse Timing

Figure 8. SQE Test Timing

Figure 9. Collision Timing Reception During Transmission

TxE

TxD \qquad

Figure 10. Collision Timing Transmission During Reception

TIMING DIAGRAMS

Figure 11. $\mathrm{Cl} \pm$ Collision

APPLICATION CIRCUIT — ML2652

Figure 12

FUNCTIONAL DESCRIPTION

GENERAL

The ML2652 and ML2653 are composed of a transmitter section, receive section and some miscellaneous functions.

The transmit section consists of the manchester encoder, AUI, jabber detect, link pulse generator, start of idle (SOI) pulse generator, waveform generator, and line driver. The purpose of the transmit section is to take data from the controller, encode it, and transmit it over either the AUI or twisted pair interface. In addition, the transmit section generates link pulses, start of idle pulses, and checks for jabber condition. The transmitter keeps the data jitter to a maximum of $\pm 8.0 \mathrm{~ns}$, and the maximum delay through the transmission section is less than 2 bits, or 200ns.

The receive section consists of the manchester decoder, collision detect, AUI, receive LPF, receive comparators, receive squelch, automatic polarity correct, start of idle (SOI) detect, and link pulse detect. The purpose of the receive section is to take data from either the twisted pair cable or AUI, decode it, then send the data to the controller via the controller interface. In addition, the receive section detects and automatically corrects for reverse polarity, detects link pulses, detects start of idle pulses, and implements an intelligent receive squelch algorithm. The receive section can successfully lock onto an incoming data that contains $\pm 18 \mathrm{~ns}$ of jitter in less than $1.6 \mu \mathrm{~s}$.

APPLICATION CIRCUIT — ML2653

Figure 13

The miscellaneous functions are the controller interface, single pin crystal oscillator, AUI, loopback modes, test mode, and powerdown mode. The ML2653 has no AUI interface output.
The following text describes each of these blocks and functions in more detail. Refer to the block diagram.

TRANSMISSION

The transmit data (NRZ) is first clocked into the device through the controller interface. The device can be digitally programmed to accommodate any one of four standard Ethernet controllers as described in Controller section.

Then the NRZ data is encoded by the manchester encoder as shown in transmit timing diagram in Figure 1.
The manchester encoded data then goes to either the AUI or twisted pair interface. The selection of the appropriate interface is automatic. If the AUI is selected, the manchester encoded data is transmitted out differentially on the DO+ and DO- pins, and the twisted pair line driver is disabled. If the twisted pair interface is selected, the manchester encoded data is transmitted out differentially on Tx+ and Tx- pins, and the transmit AUI is disabled.

Refer to the AUI section for details on how the AUI and automatic interface selection is accomplished.

Assuming that the twisted pair interface is selected, the Manchester encoded data then goes to the transmit waveform generator. The transmit waveform generator takes the digital Manchester encoded data and generates a waveform. When this waveform is passed through the cable model in the 10BASE-T standard (figure 14-7 IEEE Std 802.3i-1990) it meets the voltage template (figure 149 IEEE Std 802.3i-1990).
The transmit waveform generator is composed of a 16×4 bit ROM, 4 bit DAC, 3rd order LPF, and clock generator. The DAC is used to synthesize a stair-step representation of a signal that will meet the required output template. The ROM stores the digital representation of the output signal and provides a digital input to the DAC. The ROM is addressed by a 16 phase clock generator that is locked to the transmit clock TxC. The high frequency content present in the output of the DAC is removed by a 3 rd order continuous LPF which smooths the output.
The transmit line driver takes the output of the waveform generator and converts this voltage to a differential output current on Tx+ and Tx-pins. When one transmit output (either $T x+$ or $T x-$) is sinking current, the other output is high impedance, and vice versa. In this way, a differential output voltage is developed by sinking this output current through two external 200 ohm terminating resistor and a 2:1 transformer as shown in Figure 12.
Setting the external terminating resistors to 200 ohms as shown in Figure 12 will implement a 100 ohm terminating impedance when looking back through the transformer. If other terminating impedances are required (such as 150 ohm), the terminating resistor values can be adjusted accordingly as long as the output current stays within the minimum and maximum limits ($30-70 \mathrm{~mA}$).

The absolute value of the output current, and subsequently the output voltage level, is set by an external resistor between RTX and GND. If RTX $=10 \mathrm{k}$ ohms and $\mathrm{Tx} \pm$ is terminated as shown in Figure 12, the output level is $\pm 2.5 \mathrm{~V}$ which meets $802.3 \mathrm{i}-1990$ differential output voltage requirements. If a different output current/voltage level is desired, the level can be changed by changing the value of RTX according to the following formula:

$$
\begin{aligned}
\text { RTX } & =\mathrm{K} * \mathrm{Vb} / \text { lout } \\
& =125 * 4 \mathrm{v} / 50 \mathrm{~mA} \\
\text { RTX } & =10 \mathrm{k} \Omega
\end{aligned}
$$

When data is being transmitted (and there is no collision or link pulse fail condition), the transmit data is looped back to the receive path, and the Manchester decoder will lock onto the transmit data stream.
After data transmission is completed, the transmitter sends a start of idle (SOI) pulse to signal the end of a packet. During the idle period, $T x+$ and $T x$ - are held low. Occasionally, link pulses are transmitted during the idle period.
The XMT pin is an output that indicates transmit activity. The pin consists of an open drain output with an internal pull-up resistor and can drive an LED from VCC or another digital input. In order to make an LED visible, XMT has an internal blinker circuit that generates a 100 ms blink (50 ms high, 50 ms low) that is triggered when a trans-mission starts. At the completion of the 100 ms blink period, if a transmission is in progress, another 100 ms blink is generated.

RECEPTION

The twisted pair receive data is typically transformer coupled and terminated with an external resistor as shown in Figure 12.
The output of the transformer is then applied to the device input pins $R x+$ and $R x-$. The input is differential, and the common mode input voltage is biased to VCC/2 by two internal 10 K bias resistors from $R x+, R x-$ to $V C C / 2$.

The $R x+$ and $R x$ - inputs then go to the receive filter. The receive filter is a continuous 3rd order LPF and has the following characteristics:

$$
\begin{array}{ll}
\text { 1. } 3 \mathrm{~dB} \text { cut-off frequency } & 15 \mathrm{MHz} \\
\text { 2. Insertion Loss }(5-10 \mathrm{MHz}) & \leq 1.0 \mathrm{~dB} \\
\text { 3. } 30 \mathrm{MHz} \text { attenuation } & 17.5 \mathrm{~dB} \text { min. }
\end{array}
$$

The output of the filter goes to the receive comparators. There are two receive comparators inside the chip, threshold and zero crossing. The threshold comparator determines if the receive data is valid by checking the input signal level against a predetermined positive and negative squelch level. Once the threshold comparator determines that valid data is being received, the zero crossing comparator senses zero crossings to determine data transitions. Both comparators are fast enough to respond to 12 ns pulse widths with minimum squelch overdrive.

The receive squelch circuit determines when data on incoming $R x+, R x-$ is valid. The receive squelch is considered "on" when the data is deemed to be invalid, and the receive squelch is considered "off" when data is determined to be valid.

The input signal must meet the following criteria in order to turn receive squelch off and be recognized as valid data:

1. The input signal must exceed the receive squelch on level. When this occurs, a 400 ns squelch interval timer is started.
2. During the 400 ns squelch interval, the input signa! must go from one squelch threshold to the opposite polarity squelch threshold in less than 127 ns .
3. During the 400 ns squelch interval, the input signal has to make less than 9 squelch threshold to opposite polarity squelch threshold crossings.
When the receive squelch is turned off, the receive squelch off level is reduced to $2 / 3$ of receive squelch on level.
The receive squelch will be turned back on if either the incoming data peaks go below the receive squelch off level for 400ns or the start of idle (SOI) pulse is detected.
The receive squelch on level can be digitally programmed for one of two possible levels by using the RSL pin. When RSL $=1$, the squelch on level complies with the IEEE $802.3 \mathrm{i}-1990$ specification. When $\mathrm{RSL}=0$, the receive squelch on level is lowered in order to accommodate greater receive attenuation and consequently longer twisted pair cable lengths. The receive squelch on level can be programmed as follows:

Receive Squelch On Level				
RSL	Application	Min	Typ	Max
1	10BASE-T	300		585 mV
0	Long Distance	200		390 mV

The $\overline{\mathrm{RCV}}$ pin is an output that indicates receive activity. The pin consists of an open drain output with an internal pull-up resistor and can drive an LED from VCC or another digital input. In order to make an LED visible, $\overline{\mathrm{RCV}}$ has an internal blinker circuit that generates a 100 ms blink (50 ms high, 50 ms low) that is triggered when reception starts. At the completion of the 100 ms blink period, if reception is in progress, another 100 ms blink is generated.

The manchester decoder receives data from either the twisted pair interface (as described above) or the AUI (described in AUI section).
The manchester decoder is responsible for recovering clock and data from the incoming receive bit stream. Clock and data recovery is accomplished by a digital PLL which can lock on the incoming bit stream in less than $1.6 \mu \mathrm{~s}$.

The clock (RxC) and NRZ data (RxD) are then output to the external world via the controller interface.

SOI

A start of idle (SOI) pulse is sent at the end of transmission in order to signal to all receivers that transmission has ended and the idle period begins. Thus, the transmit section has an SOI generator and the receive section has an SOI detector.

The transmit SOI pulse generator inserts an SOI pulse at the end of each transmission. The SOI pulse is typically a 250 ns positive pulse inserted after the last positive data transition. Depending on the data pattern, the positive data transition could occur either in the middle or at the end of the last bit cell. So the actual width of the transmitted SOI pulse can vary from 250-300ns, typically.

The receive SOI detector senses the SOI pulse using the zero crossing comparator. When the SOI pulse is detected, the receiver signals to the controller that receive data is no longer valid and turns the receive squelch on.

LINK PULSE

During the idle period, link pulses are sent by the transmitter and detected by the receiver so that the integrity of the twisted pair link can be continuously monitored. Thus, the transmit section has a link pulse generator, and the receiver has a link pulse detector.

The transmit link pulse generator transmits a 100 ns wide positive pulse ($T x+$ high, $T x$ - low) every $16 \pm 8 \mathrm{~ms}$.

IEEE 802.3i-1990 Section 14 requires the link pulse to be shaped to meet a template when passed or not passed through the twisted pair line model. The transmit waveform generator takes the link pulse and generates the waveform on TX \pm when passed or not passed through the twisted pair line model.

The receiver monitors the receive input to determine if the link pulses are present. When the device is in the link pulse pass state, normal packet transmission and reception can occur. All link pulses less than $2-7 \mathrm{~ms}$ apart are ignored while in the link pass state. If no link pulses or receive packets are detected for a period of $50-150 \mathrm{~ms}$, the device goes into the link pulse fail state.
When the device is in the link pulse fail state, reception is inhibited and the transmitter is placed in the idle state (no data transmission but link pulses are still transmitted). In order for the device to exit the link pulse fail state, one complete packet or 4 consecutive link pulses must be detected, and transmit and receive must be idle. Consecutive link pulses are defined as pulses that occur within 25-150ms of each other. If the link pulses occur 2-7ms apart in the link fail state, the device ignores the link pulses and resets the number of consecutive link pulses to zero. After the link pulse fail state is exited, transmission and reception can be resumed.
Link pulse status is indicated by the $\overline{\text { LTP }}$ pin. $\overline{\text { LTP }}$ is a dual function input/output pin that acts both as an active low link test pass output and a link test disable input. The pin consists of an open drain output with an internal pull-up resistor. If the pin is tied to GND, the pin acts as an input and the link test function is disabled. If the pin is not tied to GND, the pin acts as an active low link test pass output and can drive an LED from VCC or another digital output. Thus, the LED is lit when the link test is passing.

JABBER

The transmit section contains a jabber detect circuit. Jabber is a fault condition characterized by a babbling transmitter. The ML2652 and ML2653 detect jabber when a transmission packet exceeds $20-150 \mathrm{~ms}$ in length. If jabber detect occurs, the transmit output is disabled, the collision signal COL is sent over the controller interface, and the $\overline{J A B}$ pin is pulled low. The device remains in the jabber detect state until there is at least $250-750 \mathrm{~ms}$ of continuous non-transmission. Note that link pulses continue to be transmitted even when the device is in the jabber condition.
The jabber detection circuitry can be disabled (only on the ML2652) with the JABDIS pin for testing and diagnostic purposes. Disabling jabber means that a jabber condition is never recognized, even when it occurs. JABDIS is an active high jabber disable input and has an internal pulldown resistor to GND.

COLLISION

Collision occurs whenever the DTE card is transmitting and receiving data simultaneously. However, the collision circuit on the ML2652 operates differently depending on whether twisted pair interface or AUI is being used.
When the twisted pair interface is used, collision occurs whenever the device is transmitting and receiving data simultaneously, that is when both RxE and TxE are active. The collision state is indicated by COL and $\overline{\mathrm{CLS}}$ pins. COL is used to signal collision to the controller. $\overline{C L S}$ is an active low open drain output. $\overline{\mathrm{CLS}}$ is activated during Jabber, but not during SQE test while COL is activated during both.

When the AUI is used (ML2652 only), collision is no longer detected from simultaneous transmission and reception, but the collision state is determined when a collision signal is present on the AUI collision inputs, $\mathrm{Cl}+$ and $\mathrm{Cl}-$. A 10 MHz square wave has to be applied to this input in order for the device to signal the collision state on COL and $\overline{C L S}$.
The $\overline{\mathrm{CLS}}$ pin is an output that indicates collision activity. The pin consists of an open drain output with an internal pull-up resistor and can drive an LED from VCC or another digital input. In order to make an LED visible, $\overline{C L S}$ has an internal blinker circuit that generates a 100 ms blink (50 ms high, 50 ms low) that is triggered when a collision starts. At the completion of the 100 ms blink period, if collision is in progress, another 100 ms blink is generated.

SQE TEST

When the twisted pair interface is used, the device tests the collision circuitry at the end of each transmission by sending a $1 \mu \mathrm{~s}$ collision pulse over the COL pin. This is known as SQE (signal quality error) test and is shown in the transmit timing diagram in Figure 1. The SQE test is disabled if the device is in jabber detect state or link pulse fail condition.

When AUI is used (ML2652), the SQE test pulse is generated by an external MAU and the external MAU sends the SQE test pulse to the ML2652 via the collision inputs, $\mathrm{Cl}+$ and $\mathrm{Cl}-$. The ML2652 then relays the collision signal to the controller via the COL and CLS output pins.

RECEIVE POLARITY DETECT AND AUTO CORRECTION

The ML2652 and ML2653 contain an auto-polarity circuit that detects the polarity of the receive twisted pair leads, $R x+$ and $R X$-and internally reverses the leads if their polarity is incorrect.
When the device is powered up, it is assumed that the polarity is correct and no polarity correction occurs. Then receive polarity is continuously monitored by checking the polarity of the SOI and link pulses since they are always positive pulses. If either 2 consecutive SOI or 4 consecutive link pulses have incorrect RX \pm polarity, then the auto-polarity circuit internally reverses the $\mathrm{Rx}+$ and Rx - connections.

AUI (APPLIES ONLY TO ML2652)

The ML2652 can be used with an external MAU via the Attachment Unit Interface (AUI). When the AUI is used, the internal MAU functions and twisted pair interface are disabled, and the device only uses the manchester encoder and decoder functions, as shown in the block diagram. The AUI consists of three differential signal pairs: DI, DO, and CI. The function of each pair is described below.
The DO + and DO- are differential outputs to the external MAU which contain the transmit data output from the Manchester encoder. The DO+ and DO-output drivers are capable of driving 50 meters of 78 ohm cable with less than 5 ns rise and fall time and less than ± 0.5 ns of jitter. In addition, at the end of transmission, the AUI output driver inserts a 200 ns minimum pulse and meets the turnoff and idle characteristics specified in IEEE 802.31988. An external 78 ohm resistor across DO+ and DOis required as shown in Figure 12 to develop the proper output levels from the internal current sources. The DO+ and DO- outputs can be coupled to an external MAU with either capacitors or a transformer. The ML2652 meets all AUI transmitter specifications outlined in IEEE 802.31988 Section 7.
$\mathrm{DI}+$ and $\mathrm{DI}-$ are inputs from the external MAU which contain the receive data that goes to the manchester decoder.
The DI+ and DI- inputs contain an AUI DI squelch circuit which determines when incoming data on $\mathrm{DI}+$ and $\mathrm{DI}-$ is valid. The DI squelch is considered "on" when the data is deemed to be invalid, and the DI squelch is considered "off" when data is determined to be valid.
The input signal on $\mathrm{DI}+$ and DI - must meet the following criteria in order to turn receive squelch off and be recognized as valid data:

1. The input signal must exceed the negative AUI DI squelch on level.
2. The input signal must exceed the negative AUI DI squelch on level for more than 20 ns .
When the DI squelch is turned off, the DI squelch off level is reduced to $2 / 3$ of the DI squelch on level.
The DI squelch circuit will be turned back on if the idle period is detected by no DI squelch level transitions for more than 180 ns.

An external 78 ohm termination resistor is needed across $\mathrm{DI}+$ and $\mathrm{DI}-$ as shown in Figure 12. The DI+ and DIinputs can be coupled from an external MAU into the ML2652 with either capacitors or a transformer. The ML2652 meets all AUI receiver specifications outlined in IEEE 802.3-1988 Section 7.
$\mathrm{Cl}+$ and $\mathrm{Cl}-$ are inputs from the external MAU which contain the $10 \mathrm{MHz} \pm 15 \%$ collision signal as defined in IEEE 802.3-1988 Section 7. The $\mathrm{Cl}+$ and Cl - inputs contain the same squelch circuit used on the DI inputs described in previous paragraphs in this section.
An external 78 ohm termination resistor is needed across $\mathrm{Cl}+$ and $\mathrm{Cl}-$ as shown in Figure 12. The $\mathrm{Cl}+$ and $\mathrm{Cl}-$ inputs can be coupled from an external MAU into the ML2652 with either capacitors (shown in Figure 12) or a transformer. The ML2652 meets all AUI receiver specifications outlined in IEEE 802.3-1988 Section 7.
The ML2652 contains an AUI/TP select input pin which controls whether the AUI or twisted pair interface is to be used for data transmission and reception. When AUI/ Twisted Pair Switching = High, the AUI is used for data transmission and reception. When $\mathrm{AUI} /$ Twisted Pair Switching = Low, the twisted pair interface is used for data transmission and reception.
The $\overline{\text { AUISEL }}$ pin is a digital status output that indicates which interface has been selected for data transfer, either twisted pair or AUI. The pin consists of an open drain output with an internal pull-up resistor and can drive an LED from VCC or another digital input. $\overline{\text { AUISEL }}=$ High indicates that the twisted pair interface has been selected. $\overline{\text { AUISEL }}=$ Low indicates that the AUI interface has been selected.

The ML2652 has the capability to automatically select between the twisted pair interface and AUI. This automatic interface selection is accomplished by tying the LTP output pin to the AUI/TP input pin. When these two pins are connected together, if valid link pulses are detected, it is assumed that the twisted pair interface is being used. This causes LTP output to go low, thus forcing $A \cup I / T P$ low, and thus enabling the twisted pair interface. If no valid link pulses are detected, it is assumed that the twisted pair interface is not being used, thus causing $\overline{\text { LTP }}$ to go high, thus forcing $A \cup I / T P$ high, thus enabling the AUI interface. If valid link pulses reappear, the device will automatically disable the AUI and enable the twisted pair interface. The algorithm for determining valid link pulses is described in the Link Pulse section.

LOOPBACK

LPBK provides a loopback through the manchester encoder/decoder, but not through the on-chip 10BASE-T MAU. No data will go out on either the AUI port or the twisted pair port in this mode. This same function is found on many discrete manchester encoder/decoders.
IEEE 802.3 MAUs normally loop the transmit data (DO+) when transmitting with no collisions. When using an external transceiver through the ML2652's AUI port, the controller can first check the local loopback by setting LPBK. If it passes this test it can then check the AUI cable and external MAU by doing the normal MAU loopback.

FULL DUPLEX OPERATION

The ML2652 and ML2653 are capable of operating in the full duplex mode which transmits and receives data simultaneously. In the full duplex mode the collision circuitry is disabled just as it is in the loopback mode. To achieve full duplex operation the full duplex pin FD is enabled and the loopback pin LPBK must be disabled. Both of these conditions must be present to operate in the full duplex mode.

CONTROLLER INTERFACE

The ML2652 and ML2653 has a flexible and programmable digital interface which enables it to directly interface to Ethernet controllers manufactured by Intel, AMD, National and Seeq.
The controller interface consists of seven pins. TxC, TxD, and TxE are the transmit clock output, transmit data input, and transmit data enable input, respectively. $R \times C, R \times D$, and $R \times E$ are the receive clock output, receive data output, and receive data enable output, respectively. COL is the collision detect output.
All the standard Ethernet controllers use a similar controller interface but differ in the polarity of COL, LPBK, TxE and RxE, and in what edge of TxC and RxC that clocks in the data. They also differ on whether the RxC clock needs to be continuous or not during idle, and on the polarity of RxD during idle. In order to accommodate the different controller interface definitions, the controller select pins, CS2-0, modify these signals according to Table 1.

POWERDOWN

The device can be placed in the power down mode with the controller select pins CS2-0 as described in Table 1. When in powerdown mode, the current consumption is reduced to less than $100 \mu \mathrm{~A}$ and all device functions are disabled.

CRYSTAL OSCILLATOR

The ML2652 requires an accurate 20 MHz reference for internal clock generation. This can be achieved by connecting an external crystal or an external clock between the CLK and GND pins.
If an external clock is used, it must have a frequency of $20 \mathrm{MHz} \pm 0.01 \%$ and have high and low levels of 3.5 and 1.5 volts.

If a crystal is used, the crystal should be placed physically as close as possible to the CLK and GND pins, especially CLK. No other external capacitors or components are required. The crystal should have the following characteristics:

1. Parallel resonant type
2. Frequency: 20 MHz
3. Tolerance: $\pm 0.005 \%$ @ $25^{\circ} \mathrm{C}$
4. Less than 0.005% frequency drift across temperature.
5. Maximum equiv. series resistance:

15 ohms @ 1-200 $\mu \mathrm{W}$
30 ohms @ 0.01-1 $\mu \mathrm{W}$
6. Typical load capacitance: 20 pF
7. Maximum case capacitance: 5pF

Table 1. Controller Select Pin Definitions

CS2-0	TxC	TxE	RxC	RxE	COL	LPBK	$\underset{\text { RxC }}{\substack{\text { IdI }}}$	$\begin{gathered} \text { Idl\| } \\ \text { RxD } \end{gathered}$		Iler
000	r	h	r	h	h	h	m	1	NSC	DP8390
001	f	1	f	1	1	1	n	hi	Intel	82586/96
010	r	h	r	h	h	h	n	hi	AMD	AM7990
011	f	h	r	h	h	1	c	lo	Seeq	8003/5
100	-	-	-	-	-	-	-	-	-	
101	-	-	-	-	-	-	-	-	-	
110	-	-	-	-	-	-	-	-	-	
111	-	-	-	-	-	-	-	-	PDN mode	
$r=$ rising edge clocks data $f=$ falling edge clocks data			$\begin{aligned} & \mathrm{h}=\text { active high } \\ & \mathrm{I}=\text { active low } \end{aligned}$		$\begin{aligned} & c=R \times C \text { requred continuously } \\ & n=R \times C \text { only during } R \times D \text { transmission } \\ & m=R \times C \text { only during R×D transmission }+5 \text { extra } R \times C \text { cycles } \end{aligned}$					

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML2652CQ	$0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$	44-Pin Molded Leaded PCC (Q44)
ML2653CQ	$0^{\circ} \mathrm{C}$ TO $+70^{\circ} \mathrm{C}$	28-Pin Molded Leaded PCC (Q28)

10BASE-T Transceiver Evaluation Kit

GENERAL DESCRIPTION

The ML2653EVAL evaluation board is an internal 10BASE-T transceiver which can interface to either National or AMD's Ethernet controller. The ML2653 contains an encoder/decoder (ENDEC), media access unit (MAU), and filter. The ML2653 interfaces to the twisted pair media through an isolation transformer. This evaluation board can interface to the Ethernet LAN controller by plugging it's 24 -pin socket into the manchester encoder/decoder (ENDEC) socket.

FEATURES

- LED status for; link detect, receive and transmit activity
- Selectable receive squelch level
- Selectable full duplex mode
- Single supply $5 \mathrm{~V} \pm 5 \%$

KIT COMPONENTS

- ML2653 user guide
- ML2653 data sheet
- ML2653 assembled Eval board

The user guide includes performance data, lay out recommendation, lay out, schematic, parts list and a tutorial on how to use the demo board.

BLOCK DIAGRAM

June 1992

Data Quantizer

GENERAL DESCRIPTION

The ML4621 Data Quantizers is a low noise, wideband, bipolar monolithic ICs designed specifically for signal recovery applications in fiberoptic receiver systems. It contains a two stage wideband limiting amplifier which is capable of accepting an input signal as low as 2 mV with a 55 dB dynamic range. This high level of sensitivity is achieved by using a DC restoration feedback loop which nulls any offset voltage produced in the limiting amplifier.

The output stage is a high speed comparator circuit with both TTL and ECL outputs. An enable pin is included for added control.

The Minimum Signal Discriminator circuit provides a Link Monitor function with a user selectable reference voltage. This circuit monitors the peaks of the input signal and provides a logic level output indicating when the input falls below an acceptable level. This output can be used to disable the Quantizer and/or drive an LED, providing a visible link status.

FEATURES

- 50 MHz minimum bandwidth for data rates of up to 100 MBd
- Can be powered by either +5 V providing TTL level outputs or -5.2 V providing ECL levels
- Low noise design:
$25 \mu \mathrm{~V}$ RMS over 50 MHz noise bandwidth
- Adjustable Link Monitor function
- Wide 55 dB input dynamic range
- 10ns minimum input pulse
- Available in a 24-pin Skinny DIP and 28-pin PLCC

APPLICATIONS

- IEEE 802.3 FOIRL Receiver
- IEEE 802.54 and 16 Mbps Fiber Optic Token Ring
- IEEE 802.4 Fiber Optic Token Bus
- Fiber Optic Data Communications and Telecommunications Receivers

BLOCK DIAGRAM

PIN CONNECTIONS

ML4621
24-Pin Skinny DIP

ML4621
28-Pin PCC

TOP VIEW

NAME	FUNCTION
$\overline{\text { ECL LINK MON }}$	ECL Link Monitor output. Signal is low when the $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$inputs exceed the minimum threshold, which is set by a voltage on the $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ pin. Signal is high when the input signal level is below the threshold.
$\overline{\text { TTL LINK MON }}$	TTL Link Monitor output. Same logic function as ECL LINK MON. Capable of driving a 10 mA LED indicator. This pin normally tied to CMP ENABLE.
$\overline{\text { CMP ENABLE }}$	A low voltage at this TTL input pin enables both the ECL and the TTL outputs. A high TTL voltage disables the comparator output with ECL+ high, ECL- low, and TTL OUT high.
VIN^{-}	This input pin should be capacitively coupled to the input source or to ground. (The input resistance is approximately $8 \mathrm{k} \Omega$.)
VIN^{+}	This input pin should be capacitively coupled to the input source or to ground. (The input resistance is approximately $8 \mathrm{k} \Omega$.)
CMP-	This comparator input pin is an open base configuration which relies on the DC bias of the amplifier output to establish the proper DC operating voltage. This voltage should be reestablished if filtering is implemented between $V_{\text {OUT }}-$ and CMP-.
ECL-	The ECL comparator negative output.
ECL+	The ECL comparator positive output.
GND TTL	The negative supply for the TTL comparator stage. If the TTL output is not necessary, connect GND TTL and V_{CC} TTL to V_{CC}.
$\mathrm{V}_{\text {CC }}$ TTL	The positive supply for the TTL comparator stage. If the TTL output is not necessary, connect GND TTL and V_{CC} TTL to V_{CC}.
TTL OUT	TTL data output. (Totem pole type output stage.)

NAME	FUNCTION
$V_{\text {DC }}$	An external capacitor on this pin integrates an error signal which nulls the offset of the input amplifier. If the DC feedback loop is not being used, this pin should be connected to $V_{\text {REF. }}$.
CF2	A capacitor from this pin to ground controls the maximum bandwidth of the amplifier to accommodate lower operating frequencies.
CF1	The capacitor on this pin should match the one on CF2.
$\mathrm{V}_{\text {OUT }}{ }^{-}$	The negative output of the amplifier, which is normally tied to CMP-
$\mathrm{V}_{\text {OUT }}{ }^{+}$	The positive output of the amplifier, which is normally tied to CMP+.
CMPt	This comparator input pin is an open base configuration which relies on the DC bias of the amplifier output to establish the proper DC operating voltage. This voltage should be reestablished if filtering is implemented between $\mathrm{V}_{\mathrm{OUT}}{ }^{+}$and CMP+.
GND	Negative supply. Connect to -5.2 V for ECL operation, or to ground for TTL operation.
$\mathrm{V}_{\text {TH }} \mathrm{ADJ}$	This input pin sets the minimum amplitude of the input signal required to cause the link monitors to go low.
$V_{\text {REF }}$	A 2.5 V reference with respect to GND.
$C_{\text {PEAK }}$	A capacitor from this pin to ground determines the Link Monitor response time.
$I_{\text {SET }}$	Current into an internal diode connected between this pin and GND is turned around and pulled from CPEAK. This pin is normally connected to $I_{\text {NOM }}$.
$I_{\text {NOM }}$	Sets a current of approx. $125 \mu \mathrm{~A}$ when connected to $\mathrm{I}_{\text {SET }}$.
V_{CC}	Positive supply. Connect to ground for ECL operation, or to 5 V for TTL operation.

ABSOLUTE MAXIMUM RATINGS

$V_{C C}-G N D$
-0.3 to +7.0
V_{CC} TTL - GND TTL $\ldots \ldots \ldots$.
Inputs/Output GND $\ldots \ldots$.
Storage Temperature Range..............${ }^{-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}}$
Lead Temperature (Soldering 10 sec .) \qquad $+260^{\circ} \mathrm{C}$

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ML4621 ELECTRICAL CHARACTERISTICS

Over recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{I}_{\mathrm{CC1}}$	$\mathrm{V}_{\text {CC }}$ Supply Current		65	100	mA	V_{CC} TTL $=\mathrm{GND} T \mathrm{TL}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC} 2}$	$V_{C C}$ Supply Current (TTL Out Enabled)		70	110	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} T \mathrm{TL}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{GND} T \mathrm{TL}=\mathrm{GND} \end{aligned}$
$\mathrm{IV}_{\text {REF }}$	$\mathrm{V}_{\text {ReF }}$ Output Current	-5.0		0.5	mA	
$\mathrm{V}_{\text {REF }}$	Reference Voltage	2.40	2.55	2.65	V	
A_{V}	Amplifier Gain A1 A2		75		V / V	$\mathrm{V}_{\mathbf{I N}}=5 \mathrm{mV}$
V_{IN}	Input Signal Range	2		1400	$\mathrm{m} \mathrm{P}_{\text {P-p }}$	
$\begin{aligned} & \mathrm{V}_{\mathrm{TH}} \mathrm{ADJ} \\ & \text { Range } \\ & \hline \end{aligned}$	External Voltage at $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ to set V_{TH}	1		2.5	V	
V_{OS}	Input Offset		3		mV	$\mathrm{V}_{\mathrm{DC}}=\mathrm{V}_{\text {REF }}$ (DC loop inactive)
E_{N}	Input Referred Noise		25		$\mu \mathrm{V}$	50 MHz BW
BW	3dB Bandwidth	50	65		MHz	
$\mathrm{V}_{\text {IN }}$ PW	Min Input Pulsewidth		10		ns	
$\mathrm{R}_{\text {IN }}$	Input Resistance		8		k Ω	$\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$
$\mathrm{t}_{\text {PD }}$ AMP	Amplifier Propagation Delay	4		8	ns	From $\mathrm{V}_{\mathbb{N}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$to $\mathrm{V}_{\mathrm{OUT}^{+}}, \mathrm{V}_{\text {OUT }}{ }^{-}$ $V_{I N}=10 \mathrm{mV} V_{P-P}$
$\mathrm{tPD}^{\mathrm{ECL}}$	ECL Comparator Propagation Delay	4		8	ns	From CMP+, CMP- to ECL+, ECL$\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
$t_{\text {PD }}$ TTL	TTL Comparator Propagation Delay	4		8	ns	From ECL+, ECL- to TTL OUT $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{R}_{\mathrm{V}_{\text {TH }} \mathrm{ADJ}}$	Input Resistance of $\mathrm{V}_{\text {TH }} \mathrm{ADJ}$		6.8		$\mathrm{k} \Omega$	
$\mathrm{I}_{\text {Out }}$	Output Current of $\mathrm{V}_{\mathrm{OUT}^{+}}$and $\mathrm{V}_{\mathrm{OUT}^{-}}$			3	mA	
$\mathrm{I}_{\text {CMP }}$	Leakage Current of CMP+ and CMP-		25		$\mu \mathrm{A}$	
$\mathrm{VCM}_{\text {CMP }}$	Common Mode Range of CMP+ and CMP-	GND + 2.0		$\mathrm{V}_{\mathrm{CC}}-1.0$	V	
ECL V_{OH}	Output High Voltage at ECL+, ECL-	3.90		4.30	V	With 200Ω load tied to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ $T_{A}=25^{\circ} \mathrm{C}$
ECL V ${ }_{\text {OL }}$	Output Low Voltage at ECL+, ECL-	3.11		3.38	V	With 200Ω load tied to $V_{C C}-2 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{A}_{\mathrm{V}} \mathrm{ECL}$	ECL CMP Gain		100		V/V	
TTL V_{OH}		2.4			V	V_{CC} TTL $=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$
TTL V_{OL}				0.4	V	V_{CC} TTL $=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
TTL V_{IH}		2.0			V	
TTL $\mathrm{V}_{\text {IL }}$				0.8	V	
TTLI ${ }_{\text {IH }}$		-50		50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
TLL IL		-1.6	,	0	mA	$\mathrm{V}_{\mathrm{IH}}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {NOM }}$			125		$\mu \mathrm{A}$	$\mathrm{I}_{\text {NOM }}=\mathrm{I}_{\text {SET }}$

FUNCTIONAL DESCRIPTION

AMPLIFIER

The Quantizer has a two stage limiting amplifier with an input common mode range of (GND +1.8 V) to ($\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$). Maximum sensitivity is achieved through the use of a DC restoration feedback loop and AC coupling the input. When AC coupled, the input DC bias voltage is set by an on-chip network at about 1.9 V . These coupling capacitors, in conjunction with the input impedance of the amplifier, establish a high pass filter with a 3 dB corner frequency, f_{L} at

$$
\begin{equation*}
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi 8000 \mathrm{C}} \tag{1}
\end{equation*}
$$

Since the amplifier has a differential input, two capacitors of equal value are required. If the signal driving the input is single ended, one of the coupling capacitors can be tied to V_{CC} as shown in figure 1 . The high corner frequency can also be adjusted by attaching capacitors to CF1 and CF2. The equation for adjusting this corner is

$$
\begin{equation*}
f_{H}=\frac{1}{2 \pi 425 \mathrm{C}} \tag{2}
\end{equation*}
$$

Although the input is AC coupled, the offset voltage within the amplifier will be present at the amplifier's output. This is represented by V_{OS} in figure 2. In order to reduce this error a DC feedback loop is incorporated. This negative feedback loop nulls the offset voltage, forcing $V_{\text {Os }}$ to be zero. An external capacitor at $V_{D C}$ is used to store the offset voltage. Although the value of this capacitor is non-critical, the pole it creates can effect the stability of the feedback loop. To avoid stability problems using the ML4621, the

Figure 2.

value of this capacitor should be at least 100 times smaller than the input coupling capacitors.

On the ML4621, the output of the amplifier is isolated from the comparator and made available to the user. This allows the user to add circuitry between the amplifier and the comparator for wave shaping and other signal conditioning as desired.

COMPARATOR

Two types of comparators are employed in the output section of these Quantizers. The high speed ECL comparator is used to provide the ECL level outputs and in turn drives the TTL comparator. The enable pin, CMP ENABLE, is provided to control the ECL comparator. When CMP ENABLE is low the comparators function normally. When it's high, it forces ECL+ high, ECL- low, and TTL OUT high. The CMP ENABLE pin can be controlled with TTL level signals when the Quantizer is powered by 5 V and ground.

Figure 1. The ML4621 Configured for 20 MHz Bandwidth with TTL Output

LINK MONITOR

This function is implemented by the Minimum Signal Discriminator and the Threshold Generator circuits. The purpose of this function is to monitor the input signal and provide a status signal indicating when the input falls below a preset voltage level. This is done by peak detecting the output of the amplifier section and comparing this level with the voltage at $\mathrm{V}_{\mathrm{TH}} \mathrm{AD}$.
The equation which determines the droop rate of the peak detector is

$$
\begin{equation*}
\frac{d V}{d t}=\frac{I_{\text {ISET }}}{C} \tag{3}
\end{equation*}
$$

In this equation C is the peak capacitor at $\mathrm{C}_{\text {PEAK }}$. On the ML4621 the droop rate of the peak detector can be adjusted two ways:

1) By adjusting the value of the peak capacitor at CPEAK.
2) By adjusting the charge current into the peak capacitor at $I_{\text {SET }}$.
The charge current, $I_{I S E T}$, can be controlled externally by connecting a resistor, $\mathrm{R}_{\mathrm{EXT}}$, between $\mathrm{I}_{\text {ISET }}$ and V_{CC}. IISET will then be

$$
\begin{equation*}
I_{\text {ISET }}=\frac{V_{C C}-0.7}{R_{E X T}+1700} \tag{4}
\end{equation*}
$$

For convenience, an on-chip current source of $125 \mu \mathrm{~A}$ is available by connecting $I_{\text {NOM }}$ to $I_{\text {SET }}$.
The Threshold Generator level shifts the reference voltage at $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ through a circuit which has a temperature coefficient matching that of the limiting amplifier. The relationship between $V_{T H} A D J$ and $V_{T H}$ (the minimum peak voltage at the input which will trigger the Link Monitor) is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}=600 \mathrm{~V}_{\mathrm{TH}}+0.7 \tag{5}
\end{equation*}
$$

The on-chip reference voltage, $\mathrm{V}_{\text {REF }}$, can be tied directly to $\mathrm{V}_{\mathrm{TH}} \mathrm{AD}$ J to set the threshold level. This will set the minimum input signal on the ML4621 at about 3 mV (peak).

A lower threshold level can be set by dividing down $\mathrm{V}_{\text {REF }}$ with a resistor string, as in figure 3.

Figure 3.
Since the ML4621 has a relatively low input impedance of 6.8 K and is offset by one diode drop, the equation which accounts for the load and offset is:

$$
\begin{equation*}
V_{T H} A D J=\frac{R_{2}\left(6800 V_{R E F}+0.7 R_{1}\right)}{6800\left(R_{1}+R_{2}\right)+R_{1} R_{2}} \tag{8}
\end{equation*}
$$

THRESHOLD ADJUSTMENT EXAMPLE

If you are using the ML4621 and you want the Link Monitor to trigger when the received optical power goes below $1 \mu \mathrm{~W}(-30 \mathrm{dBm})$, you first need to calculate the resultant voltage at $\mathrm{V}_{1 N^{+}}$and $\mathrm{V}_{1 N^{-}}$. If you are using the Hewlett-Packard HFBR-24X6 Fiberoptic Receiver with a responsitivity of $8 \mathrm{mV} / \mu \mathrm{W}$, the peak-to-peak voltage would be:

$$
\begin{equation*}
1 \mu \mathrm{~W} \times 8 \mathrm{mV} / \mu \mathrm{W}=8 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \tag{9}
\end{equation*}
$$

So the Link Monitor should trigger at some point slightly lower than 4 mV peak, say 3 mV . Setting V_{TH} in equation 5 to 3 mV and solving for $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ yields:

$$
V_{T H} A D J=600(.003)+0.7=2.5 \mathrm{~V}
$$

This is a convenient value since the reference voltage supplied by the Quantizer, $\mathrm{V}_{\mathrm{REF}}$, is 2.5 V .

The Link Monitor has about 0.4 mV (peak) hysteresis built-in. More hysteresis can be induced by connecting a resistor between TTL LINK MON and $\mathrm{V}_{\text {TH }} \mathrm{ADJ}$ creating a positive feedback loop.

Refer to Micro Linear's Application Note 6 for more detail.

ORDERING INFORMATION

	TEMPERATURE	
PART NUMBER	RANGE	PACKAGE
ML4621CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P24N)
ML4621CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)

ML4622, ML4624

Fiber Optic Data Quantizer

GENERAL DESCRIPTION

The ML4622 and ML4624 Data Quantizers are low noise, wideband, bipolar monolithic ICs designed specifically for signal recovery applications in fiberoptic receiver systems. They contain a wideband limiting amplifier which is capable of accepting an input signal as low as $2 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ with a 55 dB dynamic range. This high level of sensitivity is achieved by using a DC restoration feedback loop which nulls any offset voltage produced in the limiting amplifier.

The output stage is a high speed comparator circuit with both TTL and ECL outputs. An enable pin is included for added control.

The Link Detect circuit provides a Link Monitor function with a user selectable reference voltage. This circuit monitors the peaks of the input signal and provides a logic level output indicating when the input falls below an acceptable level. This output can be used to disable the Quantizer and/or drive an LED, providing a visible link status.

FEATURES

- Data rates up to 40 MHz or 80 MBd
- Can be powered by either +5 V providing TTL or raised

ECL level outputs or -5.2 V providing ECL levels

- Low noise design: $25 \mu \mathrm{~V}$ RMS over bandwidth
- Adjustable Link Monitor function with hystersis
- Wide 55 dB input dynamic range
- Low power design
- Available in 16-pin SOIC (Narrow) or DIP (ML4622), 24-pin Skinny DIP (ML4624) and 28-pin PCC (ML4624)
■ ML4624 is pin compatible with the ML4621

APPLICATIONS

IEEE 802.3 FOIRL, 10BASE-F Receiver
■ IEEE 802.54 and 16 Mbps Fiber Optic Token Ring

- Fiber Optic Data Communications and Telecommunications Receivers

ML4622/ML4624 BLOCK DIAGRAM

PIN CONNECTIONS

ML4622
16-Pin DIP or SOIC (Narrow)

ML4624
24-Pin Skinny DIP
$\begin{aligned} & \text { NC }[1 24 \\ & \text { TTL LINK MON } \\ & \text { CMP ENABLE }\end{aligned} \mathrm{V}_{2}$

ML4624 28-Pin PCC

PIN DESCRIPTION

NAME	FUNCTION
$\overline{\text { TTL LINK MON }}$	TTL Link Monitor output. Signal is low when the $\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$inputs exceed the minimum threshold, which is set by a voltage on the $\mathrm{V}_{\mathrm{TH}} A D J$ pin. Signal is high when the input signal level is below the threshold. Capable of driving a 10 mA LED indicator. This pin can be tied to CMP ENABLE.
$\overline{\text { CMP ENABLE }}$	A low voltage at this TTL input pin enables both the ECL and the TTL outputs. A high TTL voltage disables the comparator output with ECL+ high, ECL- low, and TTL OUT high.
$\mathrm{V}_{1 N^{-}}$	This input pin should be capacitively coupled to the input source or to filtered ground (note 5). (The input resistance is approximately $1.6 \mathrm{~K} \Omega$.)
$\mathrm{V}_{1 \mathrm{~N}^{+}}$	This input pin should be capacitively coupled to the input source or to filtered ground (note 5). (The input resistance is approximately $1.6 \mathrm{~K} \Omega$.)
ECL-	The ECL comparator negative output. Has internal pull down resistor. External pull downs are not required unless driving a large capacitive load.
ECL+	The ECL comparator positive output. Has internal pull down resistor. External pull downs are not required unless driving a large capacitive load.
GND TTL	The negative supply for the TTL comparator stage. If the TTL output is not necessary, connect GND TTL to V_{CC}.

NAME FUNCTION

$\mathrm{V}_{\text {CC }}$ TTL	The positive supply for the TTL comparator stage. If the TTL output is not necessary, connect V_{CC} TTL to $V_{\text {CC }}$. (ML4624 only)
TTL OUT	TTL data output.
$V_{D C}$	An external capacitor on this pin integrates an error signal which nulls the offset of the input amplifier. If the DC feedback loop is not being used, this pin should be connected to $\mathrm{V}_{\text {REF }}$.
CF2	A capacitor from this pin to CF1 controls the maximum bandwidth of the amplifier.
CF1	Connect to CF2 through a capacitor.
GND	Negative supply. Connect to -5.2 V for ECL operation, or to ground for TTL or raised ECL operation.
$\mathrm{V}_{\text {TH }} \mathrm{ADJ}$	This input pin sets the link monitor threshold.
$\mathrm{V}_{\text {REF }}$	A 2.5 V reference with respect to GND.
$\mathrm{C}_{\text {Timer }}$	A capacitor from this pin to $V_{C C}$ determines the Link Monitor response time.
V_{CC}	Positive supply. Connect to ground for negative ECL operation, or to 5 V for TTL or raised ECL operation.

ABSOLUTE MAXIMUM RATINGS

(Note 1)
$V_{C C}-G N D$. -0.3 to +7.0
$V_{C C}$ TTL - GND TTL . . -0.3 to +7.0
Inputs/Outputs GND . -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $+260^{\circ} \mathrm{C}$

ML4622, ML4624 ELECTRICAL CHARACTERISTICS (Note 2 and 3)

Over recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for commercial temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for industrial temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{I}_{\mathrm{CC1}}$	V_{CC} Supply Current (TTL Output Disabled)		35	45	mA	GND TTL $=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{CC} 2}$	V_{CC} Supply Current (TTL Output Enabled)		55	70	mA	GND TTL = GND
$V_{\text {REF }}$	Reference Voltage	2.40	2.50	2.60	V	
$\mathrm{I}_{\text {VREF }}$	$V_{\text {ReF }}$ Output Source Current			5	mA	
A_{V}	Amplifier Gain		100		V/V	
$V_{\text {IN }}$	Input Signal Range	2		1600	$\mathrm{m} \mathrm{V}_{\text {P-P }}$	
$\mathrm{V}_{\text {TH }} \mathrm{ADJ}$ Range	External Voltage at $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ to set V_{TH}	0.5		2.6	V	
$\mathrm{V}_{\text {OS }}$	Input Offset		3		mV	$\mathrm{V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}}$ (DC loop inactive)
E_{N}	Input Referred Noise		25		$\mu \mathrm{V}$	50 MHz BW
BW	3dB Bandwidth		45		MHz	
$\mathrm{R}_{\text {IN }}$	Input Resistance	1	1.6	2.5	k Ω	$\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{1 \mathrm{~N}^{-}}$
$\mathrm{I}_{\text {VTHADJ }}$	Input Bias Current of $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$	-200	10	+200	$\mu \mathrm{A}$	
${ }_{\text {tPDTTL }}$	Propagation Delay		15		ns	From $V_{I N^{+}}, V_{\mathbb{N}^{-}}$to TTL Out $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
$t_{\text {PDECL }}$	Propagation Delay		11		ns	From $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$to $\mathrm{ECL}+$, ECL$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
TTL V_{OH}		2.4			V	V_{CC} TTL $=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$
TTL V_{OL}				0.55	V	$\mathrm{V}_{\mathrm{CC}} \mathrm{TTL}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
TTL V_{IH}		2.0			V	
TTL $\mathrm{V}_{\text {IL }}$				0.8	V	
TTLI ${ }_{\text {IH }}$		-50		50	$\mu \mathrm{A}$	$\mathrm{V}_{1 \mathrm{H}}=2.4 \mathrm{~V}$
TTL ILL		-1.6		0	mA	$\mathrm{V}_{\mathrm{IH}}=0.4 \mathrm{~V}$

ML4622, ML4624 ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for commercial temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for industrial temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
V_{TH}	Input Threshold Voltage ML4622 ML4624	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & m V_{\text {P-P }} \\ & m V_{P-P} \end{aligned}$	$\begin{aligned} & V_{T H} A D J=V_{\text {REF }} \text { (note 4) } \\ & V_{T H} A D J=V_{\text {REF }} \text { (note 4) } \end{aligned}$
Hystersis			20		\%	
$\mathrm{V}_{C M}$	Common mode voltage on VIN+, VIN-		1.65		V	
$\mathrm{ECL}_{\text {Voh }}$	Output High Voltage at ECL+, ECL-	$V_{C C-1.06}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.7 \\ & \mathrm{~V}_{\mathrm{CC}}-0.6 \end{aligned}$	(note 5)	With 200Ω load tied to $V_{C C}-2 V$
ECL ${ }_{\text {vol }}$	Output Low Voltage at ECL+, ECL-	$\mathrm{V}_{C C}-1.89$		$\begin{aligned} & V_{\mathrm{CC}}-1.62 \\ & \mathrm{~V}_{\mathrm{CC}}-1.56 \end{aligned}$	(note 5)	With 200Ω load tied to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testıng, samplıng, or correlation with worst-case test conditions.
Note 3: Low Duty Cycle pulse testing is performed at T_{A}.
Note 4: DC Tested - Threshold for switching TTL LINK MON from High (off) to Low (on).
Note 5: Industrial temperature range specification..

FUNCTIONAL DESCRIPTION

AMPLIFIER

The ML4622, ML4624 have an adjustable Bandwidth limiting amplifier. Maximum sensitivity is achieved through the use of a DC restoration feedback loop and AC coupling the input. When AC coupled, the input DC bias voltage is set by an on-chip network at about 1.7 V . These coupling capacitors, in conjunction with the input impedance of the amplifier, establish a high pass filter with a 3 dB corner frequency, f_{L}, at

$$
\begin{equation*}
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi 1600 \mathrm{C}} \tag{1}
\end{equation*}
$$

Since the amplifier has a differential input, two capacitors of equal value are required. If the signal driving the input is single ended, one of the coupling capacitors can be tied to V_{CC} as shown in figure 1.
CF1 and CF2 create a low pass filter with the corner frequency determined by the following equation

$$
\begin{equation*}
f_{H}=\frac{1}{2 \pi 800(C+4 p F)} \tag{2}
\end{equation*}
$$

Figure 2.

The above equation applies when a single capacitor is tied between CF1 and CF2. When using two capacitors of equal value (Cap1 from CF1 to V_{CC}, Cap2 from CF2 to $V_{C C}$) the value derived for C should be doubled.
Although the input is AC coupled, the offset voltage within the amplifier will be present at the amplifier's output. This is represented by V_{OS} in figure 2. In order to reduce this error a DC feedback loop is incorporated. This negative feedback loop nulls the offset voltage, forcing V_{OS} to be zero. Although the capacitor on V_{DC} is non-

Note: If TTL OUT is used, tie GND TTL to unfiltered ground and remove L1. If TTL OUT and ECL outputs are both used, add 3 K pulldown resistors at ECL outputs.

Figure 1. The ML4622, ML4624 Configured for 20 MHz Bandwidth
critical, the pole it creates can effect the stability of the feedback loop. To avoid stability problems, the value of this capacitor should be at least 10 times larger than the input coupling capacitors.

COMPARATOR

Two types of comparators are employed in the output section of these Quantizers. The high speed ECL comparator is used to provide the ECL level outputs and in turn drives the TTL comparator. The enable pin, $\overline{\text { CMP }}$ ENABLE, is provided to control the ECL comparator. When CMP ENABLE is low the comparators function normally. When it's high, it forces ECL+ high, ECL- low, and TTL OUT high. The CMP ENABLE pin can be controlled with TTL level signals when the Quantizer is powered by 5 V and ground.

LINK DETECT CIRCUIT

The Link Detect circuit monitors the input signal and provides a status signal indicating when the input falls below a preset voltage level. When the input falls below the preset voltage level, the TTL LINK MON output changes from active (low) to inactive (high). This signal can be fed to the ML4662 10BASE-FL transceiver or a similar type of function to indicate a Low Light Condition. This output can also be used to disable the output data by tying it to the CMP ENABLE input.
In many fiber optic systems, including Ethernet and Token Ring, a bit error rate is given at a minimum power level. For example, in a 10Base-FL receiver there must be less than 1×10^{-9} bit errors at a receive power level of -32.5 dBm average. Designers of these systems must insure that the bit error rate is lower than the specification at the given minimum power level. One procedure to determine the sensitivity of a receiver is to start at the lowest optical power level and gradually increase the optical power until the BER is met. In this case the Link Detect circuit must not disable the receiver (i.e. $\overline{\mathrm{CMP}}$ ENABLE should be tied to Ground). Once the sensitivity of the receiver is determined, the Link Detector circuit can be set just above the power level that meets the BER specification. This way the receiver will shut off before the $B E R$ is exceeded.

The ML4622 and ML4624 quantizers have greater Link Detect sensitivity, noise immunity, and accuracy than their predecessor the ML4621.

The threshold generator shifts the reference voltage at $\mathrm{V}_{\text {TH }} A D J$ through a circuit which has a temperature coefficient matching that of the limiting amplifier. The relationship between the $\mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}$ and the V_{TH} (the peak to peak input threshold) is:

$$
\begin{align*}
& \mathrm{V}_{T H} \mathrm{ADJ}=417 \mathrm{~V}_{\mathrm{TH}}(\mathrm{ML} 4624) \tag{3}\\
& \mathrm{V}_{\mathrm{TH}} \mathrm{ADJ}=500 \mathrm{~V}_{\mathrm{TH}}(\mathrm{ML} 4622)
\end{align*}
$$

In most cases, including 10Base-FL, 10Base-FB and Token-Ring, $\mathrm{V}_{\text {TH }} A D$ J can be tied directly to $\mathrm{V}_{\text {REF }}$. However if greater sensitivity is required the circuit in figure 3 can be used to adjust the $V_{T H} A D J$ voltage. Even if $V_{\text {REF }}$ is tied to $V_{T H} A D J$, it is a good idea to layout a board with these two resistors available. This will allow potential future adjustments without board revisions.
The response time of the Link Detect circuit is set by the $\mathrm{C}_{\text {Timer }} \mathrm{pin}$. Starting from the link off state (i.e., TTL LINK MON is high), the link can be switched on if the input exceeds the set threshold for a time given by:

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{C}_{\text {TIMER }} \times 0.7 \mathrm{~V}}{700 \mu \mathrm{~A}} \tag{4}
\end{equation*}
$$

To switch the link from on to off, the above time will be doubled.

Figure 3.

BURST MODE

In some fiber optic links, the idle signal is DC, or of a frequency that is substantially different from the data. For these links, a faster response time of the DC loop and the Link Monitor is required.

The ML4622 and ML4624 has been designed to accommodate these two requirements. The input coupling capacitors can be relatively small and still maintain stability. With smaller input coupling capacitors and $V_{D C}$ capacitor a faster DC loop response time can be achieved. The Link Monitor is also enhanced to have a faster response time.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4622CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4622CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (Narrow) (S16N)
ML4622IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (Narrow) (S16N)
ML4624CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P24N)
ML4624CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q28)

August 1994

Fiber Optic LED Driver

GENERAL DESCRIPTION

The ML4632 is a fiber optic LED driver suited for network applications up to 20 Mbps . The part is capable of driving up to 100 mA of current through a Fiber Optic LED from an ECL or TTL level input signal. Its efficient output stage provides a high current that can be programmed for accurate absolute output level as well as automatic temperature compensation. The combination of automatic temperature compensation and a highly accurate current driven design insures precise launch power.

The LED driver's output stage provides fast, well matched rise and fall times through a unique class B output stage that burns supply current only when the LED is on. A positive temperature coefficient of up to $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ can be programmed into the output current to compensate for the negative temperature coefficient of the LED optical output power. An optional peaking circuit may also be employed.
The ECL and TTL inputs are ANDed so one can be used for data and the other for an enable input. An ECL compatible BIAS voltage is also provided for single ended ECL applications.

FEATURES

■ Current Driven Output for accurate Launch Power
■ Programmable output current from 20 mA to 100 mA

- Programmable temperature coefficient, 0 to $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High Efficiency Output Stage
- Programmable LED pre-bias current
- Low EMI/RFI Noise
- ECL or TTL inputs
- Optional Peaking circuit

APPLICATIONS

- IEEE 802.3, 10BASE-F
- IEEE 802.5 Fiber Optic Token Ring
- IEEE 802.4 Fiber Optic Token Bus
- Fiber Optic Data Communications and Telecommunications

BLOCK DIAGRAM

PIN CONFIGURATION

ML4632
16-Pin SOIC (S16W)

PIN DESCRIPTION

NAME	FUNCTION
ECLN	Negative ECL data input. Tie to VBIAS for single ended ECL operation or when ECLP is used as an enable. Tie to ground during TTL only operation.
VBIAS	BIAS voltage for single ended ECL operation.
LED	Fiber optic LED drive pin. Connect the LED between this pin and V_{CC}.
GND	Negative power supply. The pin should be tied to the grounded side of RTSET to improve output accuracy and avoid a ground loop.
RTSET	Output current programming pin. Connect a resistor of value $V_{D R V} / /_{\text {LED }}$ from this pin to ground to set the high LED output current.
RPK	Peaking circuit bias pin. Connect a resistor of value $V_{D R V} / I_{\text {PEAK }}$ from this pin to ground when using the peaking circuit. Leave open circuited when peaking is not used.
PEAK	Peaking circuit output pin. When using peaking, connect this pin to V_{CC} through a resistor of value RRPK. Then connect a capacitor from this pin to the LED cathode. When peaking is not used, open circuit RPK.

NAME	FUNCTION
V_{CC}	Positive power supply. +5 volts.
loff	Connect a resistor from this pin to V_{CC} to increase the off current to the LED, i.e. $4.3 \mathrm{~K} \Omega$ for 1 mA . With this pin open, the default loff current is between $0.5-1.0 \mathrm{~mA}$.
VREF	A constant 1.2 V reference output used to set up DRV.
DRV	A DC input that sets the positive swing on RTSET and the high level output current to the LED.
PTAT	Proportional to Absolute Temperature. A 1.0 V reference at $25^{\circ} \mathrm{C}$ that moves proportional to absolute temperature, also used to set up DRV. (See figure 1)
TTL	TTL data input. Can also be used as an enable during ECL operation. TTL = High (enabled), TTL = Low (disabled).
ECLP	Positive ECL data input controls signal to the LED. Tie to VBIAS during TTL only operation or use as an enable.

ABSOLUTE MAXIMUM RATINGS

V_{CC} \qquad -0.3 V to 6 V
Input Pin Voltages \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ LED Output Current \qquad .120 mA

PEAK DC Output Current 120 mA Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10 sec .) $260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Over the recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ICC	Supply Current	LED off		25	35	mA
VREF	VREF Voltage	No Load	1.14	1.20	1.26	V
$V_{\text {PTAT }}$	PTAT Voltage	$\begin{aligned} \text { No Load, } \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 0.9 \\ 1.08 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{gathered} 1.1 \\ 1.32 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OS}	Driver Offset	$\mathrm{VDRV}=1.2 \mathrm{~V}, \mathrm{RTSET}=20 \Omega$			50	mV
$\begin{aligned} & \mathrm{I}_{\mathrm{LEDH}} \\ & \mathrm{I}_{\mathrm{LEDL}} \end{aligned}$		$\begin{aligned} & \mathrm{VDRV}=\mathrm{VREF}, \mathrm{RTSET}=20 \Omega \\ & \text { I } \mathrm{OFF}=\text { open } \end{aligned}$	$\begin{gathered} 54 \\ 0.5 \end{gathered}$	$\begin{gathered} 60 \\ 0.7 \end{gathered}$	$\begin{aligned} & 66 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
t_{R}	Rise Time	VDRV $=$ VREF, $\mathrm{RTSET}=20 \Omega$		4.5		ns
t_{F}	Fall Time	VDRV $=\mathrm{VREF}, \mathrm{RTSET}=20 \Omega$		4.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Low to High High to Low	$\text { VDRV }=\text { VREF }, \text { RTSET }=20 \Omega$ TTL and ECL		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tPWD	Pulse Width Distortion	VDRV $=$ VREF, $\mathrm{RTSET}=20 \Omega$		1.0	2.0	ns
$\mathrm{V}_{\text {PK }}$	Peaking Voltage	$\mathrm{R}_{\text {RPK }}=20 \Omega, \mathrm{CPK}=100 \mathrm{pF}, \mathrm{R}_{\text {PEAK }}=20 \Omega$	1.08	1.2	1.32	V
$\mathrm{V}_{\text {PKTR }}$	Peaking Rise Time	$\mathrm{R}_{\text {RPK }}=20 \Omega, \mathrm{CPK}=100 \mathrm{pF}, \mathrm{R}_{\text {PEAK }}=20 \Omega$		4.5		ns
$\mathrm{V}_{\text {PKTF }}$	Peaking Fall Time	$\mathrm{R}_{\text {RPK }}=20 \Omega, \mathrm{CPK}=100 \mathrm{pF}, \mathrm{R}_{\text {PEAK }}=20 \Omega$		4.5		ns
$\mathrm{I}_{\mathrm{ECL}}$	ECL Input Current				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {TTL }}$	TTL Input Current				100	$\mu \mathrm{A}$
V_{DO}	Dropout Voltage between pin 5 and 3		1.5			V
loff	Additional LED Off Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\text {IOFF }}=4.3 \mathrm{~K} \Omega$	0.8	1.0	1.2	mA
VBIAS	ECL BIAS Voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.8		V

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling or correlation with worst-case test conditions.
Note 3: Low Duty cycle pulse testing is performed at T_{A}.

FUNCTIONAL DESCRIPTION

The ML4632 accepts ECL and TTL input signals and generates a high speed, high accuracy output current which is independent of supply voltage variations. The output current is programmable from 20 mA to 100 mA . A temperature coefficient can be programmed into the output current and a peaking circuit can be added with a few external components.
The input of the LED driver accepts both ECL and TTL signals. The ECL input stage is a standard NPN differential pair with a common mode range of between 3 V and 4.5 V with a +5 V supply. A bias voltage VBIAS is available for biasing either ECL input for single-ended operation. The TTL input has a standard switching range of between 0.8 V and 2.0 V . These inputs are ANDed so that the extra input can be used as an enable.

Output current to the LED is set by connecting the appropriate resistance from RTSET to ground. With the VREF and DRV pins tied together, the high level output voltage at RTSET will be 1.2 V . The current through the LED. The output current with RTSET set to 20Ω will be

$$
\mathrm{I}_{\mathrm{LED}}(\mathrm{HIGH})=1.2 \mathrm{~V} / \mathrm{R}_{\mathrm{TSET}}=1.2 \mathrm{~V} / 20 \Omega=60 \mathrm{~mA} .
$$

The low level output current is set internally by a resistor at approximately 0.7 mA . This current prebiases the LED and results in faster optical rise times. The value of this current can be increased by connecting a resistor from the $l_{\text {OfF }}$ pin to $V_{\text {CC }}$. The additional current will be equal to $\left(\mathrm{V}_{\mathrm{CC}}-0.7 \mathrm{~V}\right) / R_{\mathrm{IOFF}}$.
The voltage input at the DRV pin appears across the RTSET pin when the LED is turned on. The current in RTSET is directed through the LED. Therefore the voltage set at DRV along with the RTSET resistor sets current through the LED.
A temperature coefficient of between $0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ can be programmed into the high level output current to compensate for the drop in LED optical output power at high temperatures. This is accomplished by driving the DRV pin from a resistor divider between the VREF and PTAT pins.
When DRV is tied directly to PTAT, the peak voltage at RTSET will be 1.0 V at $25^{\circ} \mathrm{C}$ and have a $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient. At $85^{\circ} \mathrm{C}$, PTAT is 1.2 V and equal to VREF. An arbitrary temperature coefficient less than $3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ can be set by using a resistor divider between PTAT and VREF to set the voltage at DRV, as shown in figure 1.

Figure 1. Current for Programming Output Temperature Coefficient

In this configuration the temperature coefficient is

$$
\begin{aligned}
& \mathrm{TC}_{\text {ILED }}=\left(3300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2} \text {, and } \\
& \mathrm{LED}(\mathrm{HIGH})=\frac{1 \mathrm{~V}+0.2 \mathrm{~V}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}\right)}{\mathrm{RTSET}}
\end{aligned}
$$

The output current will be a linear function of temperature. A plot of ILED versus temperature for several values of the programming resistance, R1 and R2, in figure 2.

Figure 2. ILED $^{\text {vs }} \mathrm{T}^{\text {, }} \mathrm{R}_{\text {TSET }}=\mathbf{2 0 \Omega}$

ML4632

The ML4632 output stage conducts full load current only when the LED is on, and even then power dissipation in the part is low because most of the +5 V supply voltage is dropped across the LED and external resistor RTSET. Even with a low power design, the LED driver junction temperature will rise above ambient due to quiescent power dissipation and won't exactly match the LED junction temperature since it is also self-heating. Therefore, the effectiveness of a temperature compensated design will be related to component power dissipations, thermal conductance of the PC board and packaging, and the proximity of the LED driver to the LED.
The ML4632 also provides for peaking of the LED output current. Peaking is used to counteract the effects of the LED junction capacitance. By creating a controlled overshoot and undershoot in the output current waveform, charge is transferred to and from the LED capacitance on the rising and falling edges of the output, speeding up rise and fall times.

To provide peaking current, a second output stage is biased up with a resistor from RPK to ground and another from PEAK to V_{CC}. When these bias resistors are set equal to each other, a pulse will be generated across the RPEAK resistor with a magnitude equal to the voltage on the DVR pin. A coupling capacitor transfers the rising and falling edges of the output current waveform.

A typical application is shown in figure 3. When the resistors $R_{\text {RPK }}$ and $R_{\text {PEAK }}$ are both set to 20Ω, a pulse will be generated at the PEAK pin of magnitude 1.2 V and equivalent resistance 20Ω (assuming $V_{D R V}=1.2 \mathrm{~V}$).

Figure 3. Application of the Peaking Circuit
The peaking current is coupled through the 100 pF capacitor, CPEAK, which will transfer 120 pC of charge to and from the LED on each cycle of output current. The peaking circuit shown provides approximately a 70\% overshoot current into a 0Ω LED impedance. Peaking currents will be slightly lower for real LED's.

Note: The LED, PEAK and $V_{C C}$ traces should be very short and shielded with a
GND plane to reduce ringing and overshoot at the LED.

TTL Driven Implementation (No Temp. Comp)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4632CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Molded DIP (P14)
ML4632CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-Pin SOIC (S16W)

GENERAL DESCRIPTION

The ML4642 AUI Multiplexer contains all the necessary drivers/receivers and control logic to implement a 2 port MAU when used in conjuction with a transceiver chip which has a standard 802.3 AUI interface. In addition, the ML4642 is capable of operating in stand-alone mode where it interconnects two DTEs in the absence of a network MAU. Several ML4642s can be cascaded together to implement a 4 or 8 port MAU or stand-alone device.
Logic within the ML4642 detects collisions resulting from multiple DTEs transmitting simultaneously. In addition, collision signals received from a transceiver attached at the MAU port are propagated to both of the DTE ports. Jabbering DTEs are prevented from loading down the network by internal jabber timers which disable babbling ports.

Squelch circuitry on port receivers prevent noise on the cables from being erroneously interpreted as valid data. Transmit, receive, collision, and jabber LED drivers indicate network activity and faults. The ML4642 is available in a 28 pin SSOP package.

FEATURES

- IEEE 802.3 compliant AUI interfaces assure compatibility with any AUI ready devices.
- No crystal or clock input.
- On-chip Jabber logic, Collision Detection, and SQE test with enable/disable option.
- Selectable Loopback, Jabber, and SQE Test allows cascading of multiple chips to increase DTE port fan-out.
- Six network status LED outputs.
- 28 pin SSOP packaging
- Semi-standard options available

BLOCK DIAGRAM

ML4642
28-PIN SSOP (R28)

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	DESCRIPTION
1	$\overline{\text { RXLED/LPBK/SQE }}$	I/O	Active low receive LED driver for MAU port. If tied to ground, this pin enables internal loopback of the active TXIN pair to the RXOUT pairs and enables SQE test. If tied to 0.6 volts internal loppack is enable but
			SQE test is disabled. SQE and loopback are disabled when this pin is pulled high.
2	RXINP	Input	Receive signal pair for MAU port.
3	RXINN	Onput	Receive signal pair for MAU port.
4	$\overline{\text { JAB1/JDIS }}$	I/O	Active low jabber LED driver for DTE port 1. If tied to ground, the jabber function is disabled at TXIN1 and TXIN2.
5			RRSET

ABSOLUTE MAXIMUM RATINGS (Note 1)

Power Supply Vol	.0V
Input Current RRSET, $\overline{\mathrm{JAB} 1 / \mathrm{JABD}, \mathrm{JAB2}}$, $\overline{\mathrm{CDLED}}$,	
$\overline{\mathrm{RxLED} / \mathrm{LPBK} / \mathrm{SQE}}$, TxLED1 , TxLED2	60 mA
Storage Temperature	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ad Temperature (Sold	$260^{\circ} \mathrm{C}$

OPERATING CONDITIONS (Note 2)

Supply Voltage (V_{CC})
$5 \mathrm{~V} \pm 10 \%$
LED on Current
10 mA
RRSET
$61.9 \mathrm{~K} \Omega \pm 1 \%$

ML4642 ELECTRICAL CHARACTERISTICS

Unless otherwise specified $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Power Supply Current I_{CC} (Note 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		60	120	mA
LED Drivers: V_{OL}				0.8	V
Transmit Squelch Voltage Level (Tx+, $\mathrm{Tx}-$)		-300	-250	-200	mV
Differential Output Voltage		± 550		± 1200	mV
Common Mode Output Voltage			4.0		V
Differential Output Voltage Imbalance			2	± 40	mV
$\overline{\text { RxLED/LPBK/SQE }}$	$\overline{\mathrm{SQE}}$ Enabled/Loopback Enabled SQE Disabled/Loopback Enabled	0.4	0.6	$\begin{aligned} & 0.3 \\ & 0.8 \end{aligned}$	V

Note 1: Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Low Duty cycle pulse testing is performed at T_{A}.
Note 4: This does not include the current from the AUI pull down resistors or the LED output pins
Note 5: LED drivers can sink up to 20 mA , but V_{OL} will be higher

ML4642 ELECTRICAL CHARACTERISTICS (Continued)
 aC ELECTRICAL CHARACTERISTICS

SYMBOLS	PARAMETER	MIN	TYP.	MAX	UNITS
TRANSMIT					
${ }_{\text {t }}$ TNPW	Transmit Turn-On Pulse Width		20		ns
${ }_{\text {t TXFPW }}$	Transmit Turn-Off Pulse Width		180		ns
${ }_{\text {t }}^{\text {XODY }}$	Transmitter Turn-On Delay		30		ns
${ }_{\text {t TXLP }}$	Transmit Loopback Startup Delay		40		ns
${ }_{\text {t }}^{\text {TXSDY }}$	Transmit Steady State Prop. Delay		15		ns
${ }^{\text {tXJ }}$	Transmitter Jitter		1		ns
RECEIVE					
$\mathrm{t}_{\text {RXODY }}$	Receive Turn-On Delay		20		ns
$\mathrm{t}_{\text {RXSD }}$	Receive Steady State Prop. Delay		15		ns
$\mathrm{t}_{\mathrm{RXJ}}$	Receiver Jitter		1		ns
$t_{\text {AR }}$	Differential Output Rise Time 20\% to 80% ($\mathrm{Rx}+/-$, COL $+/-$)		3		ns
$\mathrm{taf}_{\text {AF }}$	Differential Output Fall Time 20\% to 80% ($\mathrm{Rx}+/-$, COL+/-)		3		ns
COLLISION					
${ }^{\text {t }}$ PPSQE	Collision Present to SQE Assert	0		200	ns
${ }_{\underline{\text { SQEXR }}}$	Time for SQE to Deactivate after a collision	100		900	ns
${ }^{\text {t CLF }}$	Collision Frequency	8.5	10	11.5	MHz
${ }^{\text {t CLPDC }}$	Collision Pulse Duty Cycle	40	50	60	\%
${ }^{\text {t SQEDY }}$	SQE Test Delay (Tx Inactive to SQE)	0.6	1.1	1.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SQETD }}$	SQE Test Duration	0.5	1.0	1.5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SQEB }}$	SQE Blank Period	4		7	$\mu \mathrm{sec}$
JABBER, LINK TEST AND LED TIMING					
${ }^{\text {tad }}$	Jabber Activation Delay	7	13.5	20	ms
${ }_{\text {t }}^{\text {RT }}$	Jabber Reset Unjab Time	250	450	750	ms
tJSQE	Delay from Outputs Disabled to Collision Oscillator On		100		ns
tedt	$\overline{\text { CDLED }}$, $\overline{\text { RxLED }}$, $\overline{\text { TxLED1 }}, \overline{\text { TxLED2 }}$ On Time	20	50	300	ms

Figure 1. Transmit and Loopback Timing

Figure 2. Receive Timing

Figure 3. Collision Timing

Figure 4. Collision Timing

Figure 5. Collision Timing

Figure 6. SQE Timing

TIMING DIAGRAMS (Continued)

Figure 7. Jabber Timing

Figure 8. LED Timing

FUNCTIONAL DESCRIPTION

Figure 9 is a block diagram of a Two Port Multiplexer using the ML4642 chip. All AUI interfaces are shown AC coupled as they would be in an AUI multiplexer which does not include the MAU circuitry on the same board.

TRANSMISSION

The transmit function consists of detecting data on either of the TXIN differential receivers (TXIN1 or TXIN2) and transmitting this data out the TXOUT differential driver at the MAU port as well as both RXOUT1 and RXOUT2 drivers of the DTE ports. (Note: the looping back of data received at a TXIN pair to the RXOUT pairs is discussed in the Loopback section.)
Before data will be transmitted to the TXOUT and RXOUT pins from the TXIN pins it must meet the unsquelch requirements of the TXIN receiver circuitry. The squelch circuitry prevents any noise on the TXIN wires from being
misinterpreted as data and transmitted to the TXOUT and RXOUT pins. The squelch circuit rejects signals with pulse widths less than typically 20 ns and voltage levels more positive than -250 mV . Once the TXIN receiver is unsquelched it remains so until reception of the input idle signal, which is detected when the TXIN signal is more positive than -170 mV for longer than 180 ns .

RECEPTION

The receive function consists of detecting data at the RXIN differential receiver of the MAU port transmitting this data to both DTE port RXOUT pairs.
Before data will be transmitted to the RXOUT pins of the DTE ports it must meet the unsquelch requirements for the RXIN receiver circuitry. The squelch circuitry at the RXIN differential receiver input performs the same function as that of the TXIN squelch circuitry using the same noise rejection criteria.

Figure 9. Two Port AUI Multiplexer

COLLISION

There are two conditions that constitute a collision from the point of view of the ML4642:
a) If data is received at the TXIN inputs of both DTE ports simultaneously a local collision occurs within the ML4642.
b) If the CDIN input is active at any time other than the inter-packet gap window allowed for the SQE Test function described below.

In either of the above circumstances it is necessary for the ML4642 to drive the CDOUT pairs on both DTE ports with the collision signal. The collision signal consists of a $10 \mathrm{MHz}+/-15 \%$ square wave matching the AUI specifications and capable of driving a 78Ω load. The collision signal shall turn on within 2 bit times of the origination of the collision condition and shall turn off within 2-5 bit times after the collision condition subsides.
During a collision condition there are two sources for data to be transmitted to TXOUT, TXIN1 and TXIN2. The highest priority source for data to be transmitted to TXOUT is the TXIN1 receiver.
For example if TXIN2 begins transmission then TXIN1 turns on, the collision oscillator will turn on and TXOUT will switch from TXIN2 to TXIN1. If the collision ends by TXIN1 turning off first, TXOUT will switch from TXIN1 to TXIN2, and 2-5 bit times later the collision oscillator will turn off.
The MAU port's CDIN receiver contains squelch circuitry to prevent noise from causing the erroneous detection of a collision signal. A signal on the CDIN pair will not be considered active until it exceeds the same squelch requirements as those of the TXIN receivers.

LOOPBACK

The loopback function allows the ML4642 to emulate a coaxial transceiver by propagating the TXIN data back out the RXOUT pair of the same DTE port that is sourcing the data as well as the RXOUT pair of the idle DTE port. This allows the Ethernet controller sending the data to monitor its transmit packets and detect network faults.

The loopback function is enabled at both DTE ports when the RXLED pin is tied to ground, or 0.6 volts.

SQE TEST FUNCTION

The Signal Quality Error (SQE) Test function allows the DTE to determine whether or not the collision detection circuitry is functional. After each transmission, during the inter-packet gap time, the collision signal will be activated on the CDOUT pair of the same port as the TXIN pair which received the packet, for typically $1 \mu \mathrm{~s}$. The SQE function will not be activated on DTE ports of the ML4642 which are in the Jabber state. The SQE function is enabled on both DTE ports when the RXLED/LPBK/SQE pin is grounded.

JABBER

The jabber function prevents a babbling transmitter from loading down the network. Within the ML4642 is a jabber timer on each TXIN receiver. Each timer starts at the beginning of a received packet and resets at the end of each packet. If a packet lasts longer than 7 to 20 ms the jabber logic disables its corresponding TXIN receiver (thus preventing its data from being retransmitted) and generates a collision signal on the babbling port's CDOUT pair. When the TXIN pair finally goes idle, a second timer measures 0.5 seconds of idle on TXIN prior to re-enabling the receiver and turning off the collision signal. If the TXIN pair becomes active again before the 0.5 seconds has expired, the timer is reset and measures another 0.5 seconds of idle time.
The jabber function can be disabled on both ports by tying the JAB1/JABD pin to ground.

LED DRIVERS

The ML4642 has six LED driver pins. Each DTE port has a transmit LED and a jabber LED and the MAU port has a receive LED. Additionally, there is a collision LED which indicates the presence of a collision condition. All LED drivers are active low 10 mA current sources.
The $\overline{\text { TXLED }}, \overline{\text { RXLED }}$, and $\overline{\text { CDLED }}$ outputs have 50 ms pulse stretchers on them to enable the LEDs to be visible. The JLED outputs do not have pulse stretchers on them because their conditions occur long enough for the LEDs to be visible.
Two of the ML4642 LED outputs serve as configuration pins as well. $\overline{\mathrm{RXLED}} / \overline{\mathrm{LPBK}} / \overline{\mathrm{SQE}}$ and $\overline{\mathrm{JAB1}} / \mathrm{JDIS}$ may be tied through a resistor to V_{CC}, tied through a resistor and a LED to V_{CC} or grounded. Additionally $\overline{\mathrm{RXLED} / \mathrm{LPBK} / \overline{S Q E} \text { may }}$ be tied to a specific voltage. When these pins are grounded or tied to a 0.6 Volts they become configuration inputs. Otherwise when tied high they become status outputs.

CASCADING THE ML4642 FOR 4 AND 8 PORT DESIGNS

The configurability of such functions as loopback, jabber, and SQE allows ease of cascading multiple ML4642 chips for larger fan-out designs. Figure 10 shows a four port AUI Multiplexer design. For a type 0 configuration both jabber and transmit LEDs are available on a per port basis for status. The $\overline{\operatorname{RXLED}} / \overline{\mathrm{LPBK}} / \overline{\mathrm{SQE}}$ pins are tied through a resistor to 5 volts, and $\overline{\text { CDLED }}$ is wire OR'ED with the other chip for one collision detect status LED per system. There is also only one receive LED status output which is displayed in a type 2 configuration. This particular pin in a type 2 configuration offers three options. In option 1, when tied to +5 volts through a resistor and an LED, an internal or external MAU will be connected. For standalone operation without an internal or external MAU a loopback is required. Option 2 allows loopback with no SQE test while option 3 provides loopback with an SQE test.

Figure 10. Four Port AUI Multiplexer

An eight port design is accomplished in the same way as shown in the block diagram in Figure 11. In an eight port design Type 0 and Type 2 configuration remain the same as in a four port design. Type 1 however only differs from Type 2 by tying RXLED/LPBK/SQE through a resistor to +5 volts. Table 1 summerizes all of the different LED configurations.

SQE TEST WHEN CASCADING

As mentioned before, after each transmission during the interpacket gap time the collision signal will be activated on the CDOUT pair of the same port as the TXIN pair which received the packet. When cascading ML4642s to implement 4 or 8 port designs, the path is remembered and followed to acheive this function. The paths that did not carry the transmit data blocks CDOUT for $4-7 \mu \mathrm{sec}$ after transmission to guarantee that only the port that transmitted will see SQE test.

TABLE 1. LED Configurations for 2, 4, and 8 Port Designs

	JAB1/JABD	RXLED/LPBK/SQE	JAB2	CDLED	TXLED1	TXLED2
Two Port AUI Mux	LED	GND, 0.6 V, LED	LED	LED	LED	LED
Type 0	LED	270Ω to +5 V	LED	WIRE'ORED	LED	LED
Type 1	GND	270Ω to +5 V	NC	NC	NC	NC
Type 2	GND	GND, 0.6 V, LED	NC	NC	NC	NC

Figure 11. Eight Port AUI Multiplexer

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4642CR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$28-\mathrm{Pin} \operatorname{SSOP}$ (R28)

4 Port AUI Multiplexer

GENERAL DESCRIPTION

The ML4644 AUI Multiplexer contains all the necessary drivers/receivers and control logic to implement a 4 port MAU when used in conjuction with a transceiver chip which has a standard 802.3 AUI interface. Two ML4644s together with a ML4642 can be used to implement an 8 port MAU.
Logic within the ML4644 detects collisions resulting from multiple DTEs transmitting simultaneously. In addition, collision signals received from a transceiver attached at the MAU port are propagated to all of the DTE ports. Jabbering DTEs are prevented from loading down the network by an internal jabber timer which disables babbling ports.

Squelch circuitry on port receivers prevent noise on the cables from being erroneously interpreted as valid data.

Transmit, receive, collision, and jabber LED drivers indicate network activity and faults. The ML4644 is available in a 68 pin PLCC package.

FEATURES

- IEEE 802.3 compliant AUI interfaces assure compatibility with any AUI ready devices.
■ On-chip Jabber logic, Collision Detection, and SQE test with enable/disable option.
- Selectable SQE Test
- Ten network status LED outputs.
- 68 pin PLCC packaging
- Semi-standard options available

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DESCRIPTION

PIN \#	NAME	FUNC.	DESCRIPTION
1	CDOUT2P	Output	Collision signal pair for DTE port 2.
2	CDOUT2N	Output	Collision signal pair for DTE port 2.
3	COLL	Output	Open collector LED driver for collision.
4	CDOUT3P	Output	Collision signal pair for DTE port 3.
5	CDOUT3N	Output	Collision signal pair for DTE port 3.
6	NC		No connection.
7	TxIN2P	Input	Transmit signal pair for DTE port 2.
8	NC		No connection.
9	NC		No connection.
10	TxIN2N	Input	Transmit signal pair for DTE port 2.
11	TxIN3P	Input	Transmit signal pair for DTE port 3.

$\left.\begin{array}{clll}\hline \text { PIN \# } & \text { NAME } & \text { FUNC. } & \text { DESCRIPTION } \\ \hline 12 & \text { TxIN3N } & \text { Input } & \begin{array}{l}\text { Transmit signal pair for } \\ \text { DTE port 3. }\end{array} \\ 13 & \text { NC } & & \begin{array}{l}\text { No connection. }\end{array} \\ 14 & \text { TxOUTN } & \text { Output } & \begin{array}{l}\text { Transmit signal pair for } \\ \text { MAU port. }\end{array} \\ 15 & \text { TxOUTP } & \text { Output } & \begin{array}{l}\text { Transmit signal pair for } \\ \text { MAU port. }\end{array} \\ 16 & \text { Reserved } & & \begin{array}{l}\text { This pin should be tied } \\ \text { to VCC. }\end{array} \\ 17 & \text { RRSET } & \text { Input } & \begin{array}{l}\text { Bias setting external } \\ \text { resistor, 61.9K } \Omega, \\ \text { connected to VCC }\end{array} \\ 18 & \text { NC } & \text { JAB2 } & \text { Output }\end{array} \begin{array}{l}\text { No connection. } \\ 19\end{array} \begin{array}{l}\text { Open collector jabber } \\ \text { LED driver for Jabber of } \\ \text { DTE port 2. }\end{array}\right\}$

PIN DESCRIPTION (continued)

PIN \#	NAME	FUNC.	DESCRIPTION		PIN \#	NAME	FUNC.	DESCRIPTION

OPERATING CONDITIONS (Note 2)
Supply Voltage (V_{CC}) . $5 \mathrm{~V} \pm 10 \%$ RRSET . $61.9 \mathrm{~K} \Omega \pm 1 \%$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$.

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Power Supply Current ICC (Note 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	50	150	190	mA
LED Drivers: V_{OL}	$\mathrm{R}_{\mathrm{L}}=510 \Omega$ (Note 5)			0.8	V
Transmit Squelch Voltage Level (Tx+, Tx-)		-300	-250	-200	mV
Differential Output Voltage		± 550		± 1200	mV
Common Mode Output Voltage			4.0		V
Differential Output Voltage Imbalance		2	± 40	mV	

[^2]ELECTRICAL CHARACTERISTICS (Continued)
aC ELECTRICAL CHARACTERISTICS

SYMBOLS	PARAMETER		MIN	TYP.	MAX	UNITS
TRANSMIT						
$\mathrm{t}_{\text {TXNPW }}$	Transmit Turn-On Pulse Width			20		ns
$\mathrm{t}_{\text {TXFPW }}$	Transmit Turn-Off Pulse Width			180		ns
${ }_{\text {t }}^{\text {XODY }}$	Transmitter Turn-On Delay			50		ns
$\mathrm{t}_{\text {TXSDY }}$	Transmit Steady State Prop. Delay			15		ns
RECEIVE						
trXODY	Receive Turn-On Delay			20		ns
$t_{\text {RXSDY }}$	Receive Steady State Prop. Delay			15		ns
$t_{\text {AR }}$	Differential Output Rise Time 20% to 80% ($\mathrm{Rx} \pm$, COL \pm)			3		ns
$\mathrm{t}_{\text {AF }}$	Differential Output Fall Time 20% to 80% ($\mathrm{Rx} \pm, \mathrm{COL} \pm$)			3		ns
COLLISION						
${ }^{\text {t CPSQE }}$	Collision Present to SQE Assert		0		200	ns
$\mathrm{t}_{\text {SQEXR }}$	Time for SQE to Deactivate after a collision		0		500	ns
$\mathrm{F}_{\text {CLF }}$	Collision Frequency	XTAL Controlled	8.5	10	11.5	MHz
	Collision Pulse Duty Cycle	XTAL Controlled	40	50	60	\%
${ }^{\text {tSQEDY }}$	SQE Test Delay (Tx Inactive to SQE)		0.6	1.1	1.6	$\mu \mathrm{s}$
${ }^{\text {t }}$ SQETD	SQE Test Duration		0.5	1.0	1.5	$\mu \mathrm{s}$

JABBER, LINK TEST AND LED TIMING

$\mathrm{t}_{\mathrm{IAD}}$	Jabber Activation Delay	7	13.5	20	ms
$\mathrm{t}_{\text {ISQE }}$	Delay from Outputs Disabled to Collision Oscillator On		100	ns	
$\mathrm{t}_{\text {LEDT }}$	REC, COLL, Tx1, Tx2, Tx3, T×4 On Time	0.3	1.0	3.0	ms

TIMING DIAGRAMS

Figure 3. Transmit Timing

Figure 4. Receive Timing

Figure 5. Collision Timing

Figure 6. Collision Timing

Figure 7. SQE Timing

Figure 8. Jabber Timing

Figure 9. LED Timing

FUNCTIONAL DESCRIPTION

Figure 1 is a block diagram of a Four Port Multiplexer using the ML4644. All AUI interfaces are transformer coupled as required in an AUI connection.

RECEPTION

The receive function consists of detecting data on receive differential data input pair of the MAU port (RxIN) and transmitting this data out of the RxOUT ports of all the DTE port. This data will only be passed onto the DTE port if it meets the unsquelch criteria of the AUI receiver circuit. This provision prevents any noise on the AUI cable from being misinterpreted as data and transmitted to the RxOUT pins.
The receiver squelch circuit rejects signal typically with pulse width less than 20 ns or a voltage level more positive than -250 mV . Once the receiver is unsquelched, it remains so until reception of the idle signal which is more positive than -170 mV for longer than 180 ns .

TRANSMISSION

The transmit function consists of detecting data on any of the four differential data input pairs (TxIN1, TxIN2, TxIN3, and TxIN4) and transmitting this data out of the TxOUT pair of the MAU port. The loopback function of the MAU will loop the data back to the RxOUT port. The RxOUT port will treat the data as a received data and passes it on to all the DTE ports.
Only data that meets the unsquelch criteria of the AUI receiver circuit will be passed onto the TxOUT port.

COLLISION

There are two possible collision scenarios.

1. Collision from the network connected to the MAU.
2. Collision between two or more DTEs attached to the multiplexer.
In the case of a network collision, the MAU will send a collision presence signal to the multiplexer. The ML4644 will propagate this signal to the CDOUT pins of each of the DTE ports. The collision signal is a $10 \mathrm{MHz} \pm 0.01 \%$ signal.
When a collision event occurs between two or more DTE ports, the ML4644 will send the collision presence signal to each of the DTEs via the collision ports. At the same time a 5 MHz JAM signal is sent to the network.

SQE TEST FUNCTION

The Signal Quality Error (SQE) test function allows the DTE to determine whether or not the collision port is functional. After each transmission, during the interpacket gap time, the collision signal will be activated on the CDOUT port of the same DTE port data has been transmitted, for typically $1 \mu \mathrm{~s}$. The SQE function is not activated at the DTE ports that are in jabber state. The SQE function of each port can be disabled by tying the SQEN pin low.

JABBER FUNCTION

The jabber function prevents a malfunction transmitter from continuous transmission and thus loaded down the network. Within the ML4644, there is a jabber timer. The timer starts at the beginning of a received packet and resets at the end of each packet. If the packet lasts longer than 7 to 20 ms the jabber circuit will disable the offending TxIN receiver (the transmission of excessively long packet is thus terminated) and generates a collision signal to the collision port of the offending DTE port. The DTE port will exit the jabber state when the transmission goes idle.

LED DRIVERS

The ML4644 has ten LED drivers. Each DTE port has a transmit LED and a jabber LED and the MAU port has a receive LED. Additionally there is a collision LED which indicates the presence of a collision condition. All LED drivers are active low open collector driver.
All LED drivers except the jabber have pulse 1 ms pulse stretchers. The pulse stretchers provide adequate on time for the LED to be visible.

CASCADING THE ML4644 FOR EIGHT PORT MULTIPLEXER APPLICATION

An 8 port multiplexer can be realized by using two ML4644s and one ML4642. In this configuration (see fig. 2), the SQE function of the ML4642 should be disabled to prevent false collision signalling. The SQE function in this configuration is performed by each DTE port of the ML4644 independently.

Figure 2. Block Diagram of an Eight port Multiplexer.

Figure 1. Four Port AUI Multiplexer.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4644CQ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$68-\mathrm{Pin}$ PLCC (Q68)

10BASE-T Transceiver

GENERAL DESCRIPTION

The ML4652/ML4658 10BASE-T Transceivers are single chip cable line driver/receivers that provides all of the functionality required to implement both an internal and external IEEE 802.3 10BASE-T MAU. These parts offer a standard IEEE 802.3 AU interface that allows them to directly connect to industry standard manchester encoder/decoder chips or an AUI cable.
These parts require a minimal number of external components, and are compliant to the IEEE 802.3 10BASE-T standard. The differential current driven transmitter offers superior performance because of its highly symetrical switching. This results in low RFI noise and low jitter.
The Transceiver easily interfaces to 100Ω unshielded twisted pair cable, 150Ω shielded twisted pair cable, or a range of other characteristic impedances by simply changing one external resistor. Jabber, Link Test, and SQE Test are fully integrated onto the chip with enable/disable options. A polarity detection status pin, which can drive an LED, is provided for receive data, and the ML4658 offers automatic polarity correction.

The ML4652 and ML4658 are available in 24 pin skinny DIP as well as a 28 pin PLCC.

FEATURES

Complete implementation of IEEE 802.3 10BASE-T Medium Attachment Unit (MAU)

- Incorporates an $A \cup$ interface for use in an external MAU or internal MAU
- Single +5 volt supply $\pm 10 \%$
- No crystal or clock input
- Current Driven Output for low RFI noise and low jitter
- Capable of driving 100Ω unshielded twisted pair cable or 150Ω shielded twisted pair cable
- Polarity detect status pin capable of driving an LED
- Automatic Polarity Correction on the ML4658

■ On-chip Jabber logic, Link Test, and SQE test with enable/disable option

- ML4652 and ML4658 provide six network status LED ouput pins
- ML4652 and ML4658 are available in a 24-pin skinny DIP or 28-pin PLCC
- Semi-standard option using Micro Linear's FB3651 LAN Transceiver Tile Array

BLOCK DIAGRAM

PIN CONFIGURATION

ML	$\begin{aligned} & \text { 4652/ML4 } \\ & \text { 24-Pin DIF } \end{aligned}$	
$\overline{\text { CLSN }}$	124	$\overline{\mathrm{JAB}}$
$\mathrm{COL}+$	23	BIAS
COL-	22	RxTP+
SQEN/LTD/IABD	21	RxTP-
$\mathbf{R x}+$	20	LTF
Rx-	19	TxCAP0
$\mathrm{VCC}^{\text {L }}$	18	TxCAP1
$\mathbf{T x +}$	17	$\square \mathrm{GND}$
Tx-	16	TxTP+
RTSET	$10 \quad 15$	TxTP-
RRSET -	1114	$\overline{\mathbf{R C V}}$
$\overline{\text { POLRD }}$	1213	$\overline{\text { XMT }}$
	TOP VIEW	

PIN DESCRIPTION (DIP)

PIN\#	NAME	FUNCTION
1	$\overline{\text { CLSN }}$	Indicates that a collision is taking place. Active low LED driver, open collector. Event is extended 100 ms for visibility.
2	COL+	Gated 10MHz signal used to indicate a collision, SQE test, or jabber. Balanced differential 3
COL-	line driver outputs that meet AU interface specifications. AC or DC coupled.	
4	SQEN/LTD/	SQE Test Enable, Link Test Disabled, Jabber Disabled. This input uses four voltage levels to
	JABD	configure the chip as shown in Table 1.

Table 1. SQEN/LTD/JABD Pin Configuration

Pin	SQE Test	Link Test	Jabber
OV (GND)	Disabled	Enabled	Enabled
1.2 V	Disabled	Disabled	Disabled
BIAS	Enabled	Disabled	Enabled
$5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$	Enabled	Enabled	Enabled

When link test is disabled, no link pulses are transmitted, and the transmitter and receiver will not be disabled as a result of a loss of receive link pulses. When Jabber is disabled the transmitter can transmit continuously without interruption, and the collision oscillator will not be activated.

5 6	$\begin{aligned} & R x+ \\ & R x- \end{aligned}$	Manchester encoded receive data output to the local device. Balanced differential line driver outputs that meet AU interface specifications. AC or DC coupled.
7	$V_{C C}$	+5 Volt power input.
8 9	$\begin{aligned} & \mathrm{Tx}+ \\ & \mathrm{Tx}- \end{aligned}$	Balanced differential line receiver inputs that meet $A U$ interface specifications. These inputs may be AC or DC coupled. When AC coupled, the BIAS pin is used to set the common mode voltage. Signals meeting the transmitter squelch input requirements are pre-equalized and output on TxTP+ and TxTP-.
10	RTSET	When using 100Ω unshielded twisted pair, a 220Ω resistor is tied between this pin and $V_{C C}$. When using 150Ω shielded twisted pair, a 330Ω resistor is tied between this pin and V_{CC}.
11	RRSET	A $1 \% 61.9 \mathrm{~K} \Omega$ resistor tied from this pin to V_{CC} is used for internal biasing.

PIN\#	NAME	FUNCTION
12	$\overline{\text { POLRD }}$	Receive Polarity status. Active low LED Driver, open collector output. Indicates the polarity of the receive twisted pair regardless of auto polarity correction. When this pin is high, the receive polarity is correct, and when this pin is low the receive polarity is reversed. Indicates that transmission is taking place on the TxTP+, TxTP- pair. Active low LED driver, open collector. It is extended 100ms for visibility. Indicates that the transceiver has unsquelched and is receiving data from the twisted pair. Active low LED driver, open collector. It is extended 100ms for visibility.
14	$\overline{\text { XMT }}$	$\overline{\text { RCV }}$

ABSOLUTE MAXIMUM RATINGS

(Note 1)

OPERATING CONDITIONS

(Note 2)

Supply Voltage (V_{CC}) $5 \mathrm{~V} \pm 10 \%$
LED on Current 10 mA
RRSET $61.9 \mathrm{~K} \Omega \pm 1 \%$
RTSET. $220 \Omega \pm 1 \%$
TxCAP 330pF

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Note 3), $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Current ICC (Note 4)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			140	mA
LED Drivers: V_{OL}	$\mathrm{R}_{\mathrm{L}}=510 \Omega$ (Note 5)			0.8	V
Transmit Peak Output Current	RTSET $=220 \Omega$		42		
$($ Note 6$)$					

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Low Duty cycle pulse testing is performed at T_{A}.
Note 4: This does not include the current from the AUI pull down resistors, the transmit pins TxTP+ and TxTP- or the LED output pins.
Note 5: LED drivers can sink up to 20 mA , but VOL will be higher.
Note 6: This current will result in a 2.5 V peak output voltage on unshielded twisted pair cable when connected through an external filter and transformer as shown in Figure 12.

ELECTRICAL CHARACTERISTICS (Continued)
aC Electrical Characteristics

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
Transmit					
$\mathrm{t}_{\text {TXNPW }}$	Transmit Turn-On Pulse Width	20		ns	
${ }^{\text {t }}$ TXFPW	Transmit Turn-Off Pulse Width	180		ns	
$\mathrm{t}_{\text {TXLP }}$	Transmit Loopback Startup Delay			200	ns
${ }_{\text {t }}^{\text {TXODY }}$	Tranmitter Turn-On Delay			200	ns
$\mathrm{t}_{\text {TXSDY }}$	Transmit Steady State Prop. Delay		15	100	ns
	Transmitter Jitter		± 2	± 3.5	ns

Receive

$\mathrm{t}_{\text {RXODY }}$	Receive Turn-On Delay if Transmit is Idle		420	500	ns
$\mathrm{t}_{\text {RXTDY }}$	Receive Turn-On Delay if Tranmit is Active		650	800	ns
$\mathrm{t}_{\text {RXFX }}$	Last Bit Received to Start Slow Decay Output	230	800		ns
$\mathrm{t}_{\text {RXSDY }}$	Receive Steady State Prop. Delay		15	100	ns
$\mathrm{t}_{\text {RXJ }}$	Receiver Jitter		± 0.7	± 1.5	ns
$t_{\text {AR }}$	Differential Output Rise Time 20\% to 80\% (Rx \pm, COL \pm)		3		ns
${ }_{\text {t }}^{\text {AF }}$	Differential Output Fall Time 20\% to 80\% (Rx \pm COL \pm)		3		ns

Collision

$t_{\text {CPSQE }}$	Collision Present to SQE Assert 0		900	ns	
$\mathrm{t}_{\text {TXRX }}$	Time for Loopback to swtich from Tx to RxTP during a collision	0		n	
$\mathrm{t}_{\text {SQEXR }}$	Time for SQE to deactivate given that RxTP goes idle and TxTP continues	0		900	ns
$\mathrm{t}_{\text {SQEXT }}$	Time for SQE to deactivate given thata TxTP goes idle and RxTP continues	0		ns	
$\mathrm{t}_{\text {CLF }}$	Collision Frequency	8.5	10	11.5	MHz
$\mathrm{t}_{\text {CLPDC }}$	Collision Pulse Duty Cycle	40	50	60	$\%$
$\mathrm{t}_{\text {SQEDY }}$	SQE Test Delay (Tx Inactive to SQE)	0.6	1.1	1.6	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SQETD }}$	SQE Test Duration	0.5	1.0	1.5	$\mu \mathrm{~s}$

Jabber, Link Test and LED Timing

$\mathrm{t}_{\text {JAD }}$	Jabber Activation Delay	20	70	150	ms
$\mathrm{t}_{\text {JTT }}$	Jabber Reset Unjab Time	250	450	750	ms
tJSQE	Delay from Outputs Disabled to Collision Oscillator On		100		ns
$\mathrm{t}_{\text {LLT }}$	Link Loss Time	50	95	150	ms
titN	Link Test Pulse Receive Minimum Time	2	4.2	7	ms
$\mathrm{t}_{\text {LTX }}$	Link Test Pulse Receive Maximum Time	25	70	150	ms
$\mathrm{t}_{\text {TLP }}$	Link Test Pulse Repetition Rate 8	16	24	ms	
$\mathrm{t}_{\text {LTPW }}$	Link Test Pulse Width	85	100	200	ns
tedt	$\overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$, $\overline{\mathrm{CLSN}}$ On Time	30	100	300	ms

Figure 1. Transmit and Loopback Timing

Figure 2. Receive Timing

TIMING DIAGRAMS (Continued)

Figure 3. Collision Timing

Figure 4. Collision Timing

TIMING DIAGRAMS (Continued)

Figure 5. Collision Timing

Figure 6. SQE Timing

Figure 7. Jabber Timing

TIMING DIAGRAMS (Continued)

Figure 8. Link Pulse Timing

Figure 9. LED Timing

SYSTEM DESCRIPTION

Figure 10 shows a typical block diagram of an external 10BASE-T transceiver interface. On one side of the transceiver is the AU interface and the other is the twisted pair. The AU interface is AC coupled when used in an external transceiver or can be AC or DC coupled when used in an internal transceiver. The AU interface for an external transceiver includes isolation transformers, some biasing resistors, and a voltage converter for power.
The twisted pair side of the transceiver requires external transmit and receive filters, isolation transformers, and terminating resistors. These components can be obtained in a single hybrid package from suppliers listed in figure 12. The transmitter sends pre-equalized data through the transmit filters onto the twisted pair. The pre-equalized data uses a standard two step output waveform that lowers the amplitude of the 5 MHz component so that at the receiving end both the 5 MHz and 10 MHz components have the same amplitude. The external transmit filter smooths the edges of the signal before passing it onto the twisted pair.

The receive pair side of the transceiver accepts the data after it passes through the isolation transformer and the receive low pass filter. Since this is an AC coupled input, the Bias pin is used to set the proper common mode voltage for the receive inputs. A pair of 50Ω resistors correctly terminate the receive pair and provide a common mode for the Bias voltage connection point.

AU INTERFACE

The AU interface consists of 3 pair of signals, DO, Cl and DI as shown in Figure 10. The DO pair contains transmit data from the DTE which is received by the transceiver and sent out onto the twisted pair. The DI pair contains valid data that has been either received from the twisted pair or looped back from the DO and output through the DI pair to the DTE. The Cl pair indicates whether a transmit based collision has occurred. It is an output that oscillates at 10 MHz . Cl pair is also used for Jabber and SQE Test.

The transceiver may be AC or DC coupled depending on the application. For the AC coupled interface, the DO input must be DC biased (shifted up in voltage) for the proper common mode input voltage. The BIAS pin serves this purpose. When DC coupled, the manchester encoder/ decoder transmit output pair provides this common mode voltage and the Bias pin is not connected.
The two $39 \Omega 1 \%$ resistors tied to the $T x+$ and $T x-$ pins serve two purposes. They provide a point to connect the common mode bias voltage, and they provide the proper matching termination for the AUI cable. The Cl and DI pair, which are output drivers from the transceiver to the AUI cable, require 360Ω pull down resistors when terminated with a 78Ω load. However on a DTE card, CI and DI do not need 78Ω terminating resistors. This also means that the pull down resistors on Cl and DI can be $1 \mathrm{~K} \Omega$ or greater depending upon the particular manchester encoder/decoder chip used.

Figure 10. System Block Diagram

The AUI drivers are capable of driving the full 50 meters of cable length and have a rise and fall time of typically 3 ns . The rise and fall times match to within 1 ns . In the idle state, the outputs go to the same voltage to prevent DC standing current in the isolation transformers.

TRANSMISSION

The transmit function consists of detecting the presence of data from the AUI DO input ($T x+, T x-$) and driving that data onto the transmit twisted pair (TxTP + , TxTP-). A positive signal on the $T x+$ lead relative to the $T x$ - lead of the DO circuit will result in a positive signal on the TxTP+ lead of the chip with respect to the TxTP-lead.
Before data will be transmitted onto the twisted pair from the $A \cup$ interface, it must exceed the squelch requirements for the DO pair. The Tx squelch circuit serves the function of preventing any noise from being transmitted onto the twisted pair. This circuit rejects signals with pulse widths less than typically 20 ns and voltage levels more positive than -175 mV . Once the Tx squelch circuit has unsquelched, it looks for the start of idle signal to turn on the squelch circuit again. The transmitter turns on the squelch again when it receives an input signal at $T x \pm$ that is more positive than -175 mV for more than approximately 180 ns .

At the start of a packet transmission, no more than 2 bits are received from the DO circuit and not transmitted onto the twisted pair. The difference between start-up delays (bit loss plus steady-state propagation delay) for any two packets that are separated by 9.6μ s or less will not exceed 200ns.
The output stage of the transmitter is a current mode switch which develops the output voltage by driving current through the terminating resistor and the output filter. The transmitter employs a center tap 2:1 transformer where the center tap is tied to $\mathrm{V}_{\mathrm{CC}}(+5 \mathrm{~V})$. While one pin of the transmit pair (TxTP+, TxTP-) is pulled low, the other pin floats. The output pins to the twisted pair wires, TxTP+ and TXTP-, can drive a $100 \Omega, 150 \Omega$ load, or a variety of impedances that are characteristic of the twisted pair wire. RTSET selects the current into the TxTP+, TxTP- pins. This current along with the characteristic impedance of the cable determines the output voltage.
Once the characteristic impedance of the twisted pair is determined, one must select the appropriate RTSET resistor as well as match the terminating impedances of the transmit and receive filter. The RTSET resistor can be selected as follows:

$$
\text { RTSET }=\left(R_{L} / 100\right) \times 220 \Omega
$$

where R_{L} is the characteristic impedance of the twisted pair cable.

Figure 11. Transmit Pre-Equalization Waveform

The transmitter incorporates a pre-equalization circuit for driving the twisted pair line. Pre-equalization compensates for the amplitude and phase distortion introduced by the twisted pair cable. The twisted pair line will attenuate the 10 MHz signal more than the 5 MHz signal. Therefore pre-equalization insures that both the 5 and 10 MHz components will be roughly the same amplitude at the far end receiver.
The pre-equalization circuit reduces the current output when a 5 MHz bit is being transmitted. After 50 ns of a 5 MHz bit, the current level is reduced to approximately $2 / 3$ of its peak for the remaining 50 ns . Figure 11 illustrates the pre-equalization.
An on-chip one-shot determines the pulse width of the pre-equalized transmit signal. This requires an external capacitor connected to pins TxCAPO and TxCAP1. The proper value for this one-shot is 330 pF . Pre-equalization can be disabled by shorting TxCAPO and TxCAP1 together.
The transmitter enters the idle state when it detects start of idle on Tx+ and Tx-input pins. The transmitter maintains a minimum differential output voltage of at least 450 mV for 250 ns after the last low to high transition. The driver differential output voltage will then be within 50 mV of 0 V within 45 bit times.

RECEPTION

The twisted pair receive data is transformer coupled and low pass filtered before it is fed into the input pins RxTP \pm. The input is differential with the common mode voltage set by the chip's Bias pin. At the start of packet reception from the twisted pair link, no more than 5 bits are received from the twisted pair cable and not transmitted onto the DI circuit. The first bit sent on the DI circuit may contain phase violations or invalid data, but all subsequent bits are valid.
The receive squelch will reject the following signals on the RxTP+ and RxTP-inputs:

1. All signals that produce a peak magnitude less than 300 mV .
2. All continuous sinusoidal signals of amplitude less than $6.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ and frequency less than 2 MHz .
3. All single sinusoidal cycles of amplitude less than $6.2 \mathrm{~V}_{\text {P-P }}$ and either polarity, where the frequency is between 2 MHz and 15 MHz . For a period of 4 BT before and after this single cycle, the signal will conform to (1) above.
4. All sinusoidal cycles gated by a 100 ns pulse gate of amplitude less than $6.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ and either polarity, where the sinusoidal frequency is between 2 MHz and 30 MHz . The off time of the pulse gate on the sinusoidal signal shall be at least 400 ns .

The first three receive squelch criteria are required to conform to the 10BASE-T standard. The fourth receive squelch criteria exceeds the 10BASE-T requirements and enhances the performance of the receiver. The fourth squelch criteria prevents a false unsquelch caused by cross talk or noise typically found coupling from the phone lines onto the receive twisted pair.
When the receive squelch is on during idle, the input voltage must exceed approximately $\pm 450 \mathrm{mV}$ peak several times before unsquelch occurs. If the transmitter is inactive, the receiver has up to 5 bit times to unsquelch and output the receive data on the $R x+, R x$ - pair. If the transmitter is active, the receive squelch extends the time it takes to determine whether to unsquelch. If the receiver unsquelches while the transmitter is active, a collision will result. Therefore the receive squelch uses the additional time to insure that a collision will not be reported as a result of a false receive squelch.
After the receiver is unsquelched, the detection threshold is lowered to 275 mV . Upon passing the receive squelch requirements the receive data propagates into the multiplexer and eventually passes to the $R x+$ and $R x-$ outputs of the $A \cup$ interface. The addition of jitter through the receive section is no more than $\pm 1.5 \mathrm{~ns}$.
While in the unsquelch state, the receive squelch circuit looks for the start of idle signal at the end of the packet. When start of idle is detected, receive squelch is turned on again. The proper start of idle occurs when the input signal remains above 300 mV for 160 ns . Nevertheless, if no transitions occur for 160 ns , receive squelch is still turned on.

COLLISION

Whenever the receiver and the transmitter are active at the same time the chip will activate the collision output. The collision output is a differential square wave matching the AUI specifications and capable of driving a 78Ω load. The frequency of the square wave is $10 \mathrm{MHz} \pm 15 \%$ with a 60/40 to 40/60 duty cycle. The collision oscillation turns on no more than 9 bit times after the collision condition begins, and turns off no more than 9 bit times after the collision condition is removed. The collision oscillator also is activated during SQE Test and Jabber.

LOOPBACK

The loopback function emulates a coax Ethernet transceiver where the transmit data sent by the DTE is looped back over the AUI receive pair. Many LAN controllers report the status of the carrier sense for each packet transmitted. The software can use this loopback information to determine whether a MAU is connected to the DTE by checking the status of carrier sense after each packet transmission.

When data is received by the chip while transmitting, a collision condition exits. This will cause the collision oscillator to turn on within 9 bit times. The data on the DI AUI pair ($R x+, R x-$) changes from $T x+, T x-$ to $R x T P+$, RxTP-, when entering the collision state. During a collision, if the receive data ($\mathrm{RxTP}+, \mathrm{RxTP}-$) drops out before the transmit data ($T x+, T x-$), $R x+, R x-$ will switch back to Tx+, Tx-.

SQE TEST FUNCTION (SIGNAL QUALITY ERROR)

The SQE test function allows the DTE to determine whether the collision detect circuitry is functional. After each transmission, during the inter-packet gap time, the collision oscillator will be activated for typically $1 \mu \mathrm{~s}$. The SQE test will not be activated if the chip is in the link fail state, or the Jabber state.
For SQE to operate, the SQEN pin must be tied to V_{CC} or BIAS. The SQE test can be disabled by tying the SQEN pin to 1.2 V or ground. This allows the chip to be interfaced to a repeater.

JABBER FUNCTION

The Jabber function prevents a babbling transmitter from bringing down the network. Within the transceiver is a Jabber timer that starts at the beginning of each transmission and resets at the end of each transmission. If the transmission lasts longer than 20 ms the jabber logic disables the transmitter, and turns on the collision oscillator COL+, COL-. When Tx+ and Tx- finally go idle, a second timer measures 0.5 seconds of idle on $\mathrm{Tx}+$ and $T x$-before re-enabling the transmitter and turning off the collision oscillator. If transmission starts up again before 0.5 seconds has expired, the timer is reset and measures another 0.5 seconds of idle time.

Even though the transmitter is disabled during jabber, Link Pulses are still transmitted if the, Link Test is enabled.
Jabber can be disabled by placing 1.2 V on the SQEN/LTD/ $J A B D$ pin. This is useful for measuring jitter performance on the transmitter.

LINK TEST FUNCTION

Transmission - Whenever data is not being delivered to the twisted pair link, the idle signal is applied. The idle signal is a sequence of Link Pulses separated by a 16 ms period of silence. The idle signal starts with a period of silence after a packet transmission ends. The link test pulse is a single high pulse with the same amplitude requirements as the data signal.

Reception - The transceiver monitors the receive twisted pair input for packet and link pulse activity. If neither a packet nor a link test pulse is received for 50 to 150 ms , the transceiver enters the Link Test Fail state and inhibits transmission and reception. Link pulses received with the wrong polarity will be ignored and cause the chip to go into link test fail.

A DTE can determine that the transceiver is in Link Test Fail one of two ways: it can monitor the LTF pin if the transceiver is internal, or it can monitor loopback. If the MAU is on-board the LTF pin can be sampled to determine that the transceiver is in the link fail state. If the MAU is external the DTE can monitor carrier sense during transmission. A loss of carrier sense is an indication of Link Test Fail State, since in Link Test Fail, loopback is disabled. Note that jabber also disables loopback but with Jabber the collision signal will be on.
When a packet, or two consecutive link test pulses is received from the twisted pair input, the transceiver will exit the Link Test Fail state upon transmit and receive data being idle, and re-enable transmission and reception.
Link test pulses that do not occur within at most 25 to 150 ms of each other are not considered consecutive. In addition, detected pulses that occur within a time between 2 to 7 ms of a previous pulse will be considered as noise by the link test circuitry.

POLARLITY CIRCUITRY

The ML4652 offers polarity detection, while the ML4658 offers automatic polarity correction. The ML4652 and ML4658 are pin for pin compatible. The POLRD pin is used to report the status of the receive pair polarity. This pin reflects the true status of the receive polarity regardless of whether the part has autopolarity correction or not.
Polarity Detection — ML4652 - The internal circuitry uses the start of idle signal to determine the receive polarity. With the correct receive polarity, the Start of Idle signal (the end of the frame) will remain above 300 mV for more than 160 ns . If the polarity is reversed, the Start of Idle signal will end with a negative voltage.
The $\overline{\text { POLRD }}$ status pin is updated only when two consecutive frames are received with the same Start of Idle polarity. In the case where the part is powered up with the receive polarity reversed and no frames are received, the part will go into link test fail without reflecting a reverse polarity condition. Without autopolarity correction, the part will remain in link test fail unless a frame is received or the correct polarity link pulses are received.

Automatic Polarity Correction - ML4658 - In the link OK state, receive polarity is updated when two consecutive frames are received with the same Start of Idle polarity. In the Link Test Fail state the part will use either the Start of Idle signal or link pulses to correct the receive polarity.
In the case where the part is powered up with the receive polarity reversed and no frames are received, the part will go into Link Test Fail. After two link pulses are received with the same polarity, the part will exit Link Test Fail and correct the receive polarity. The POLRD pin will continue to reflect the true polarity of the receive pair.

LED DRIVERS

The ML4652, ML4658 have six LED drivers for transmit, receive, collision, Link Test Fail, reverse polarity, and jabber. The LEDs are normally off except for LTF which is normally on and active high. The LEDs are tied to their respective pins through a 510Ω resistor to 5 Volts.

The $\overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$ and $\overline{\mathrm{CLSN}}$ pins have pulse stretchers on them which enables the LEDs to be visible. When transmission or reception occurs, the LED XMT, $\overline{\mathrm{RCV}}$ or $\overline{\mathrm{CLSN}}$ status pins will activate low for 100 ms . If another transmit, receive or collision condition occurs during the first 100 ms , the LED timer will reset and begin timing again for 100 ms . The LEDs will remain on for consecutive frames. The $\overline{J A B}, \overline{P O L R D}$, and LTF LEDs do not have pulse stretchers on them since their conditions occur long enough for the eye to see.

SEMI-STANDARD OPTION

The ML4652 and ML4658 are designed using Micro Linear's Bipolar Tile Array technology. They use a special Tile Array, the FB3651, that was designed for Data Communications applications. As a result these parts are customizable, and can be modified to suit a specific customer application. Please contact your local representative or Micro Linear for more information on semi-standard options.

APPLICATION: EXTERNAL MAU

* Single Chip Solutions are Available from Magnetic Suppliers.

Magnetics and Filter Suppliers-
Pulse Engıneerıng, Inc (San Diego)
Valor Electronics, Inc. (San Diego)
Fil-Mag (San Diego)

Figure 12. External MAU

APPLICATION: INTERNAL MAU

Figure 13. Internal MAU

ORDERING INFORMATION

ORDERING NUMBER	PACKAGE	PIN COUNT	AUTO-POLARITY
ML4652CP	Skinny DIP (P24N)	24 pins	No
ML4658CP	Skinny DIP (P24N)	24 pins	Yes
ML4652CQ	PLCC (Q28)	28 pins	No
ML4658CQ	PLCC (Q28)	28 pins	Yes

10BASE-T Transceiver for Multi-Port Repeaters

GENERAL DESCRIPTION

The ML4654 10BASE-T Transceiver is a single chip cable line driver/receiver that provides all of the functionality required to implement an internal 10BASE-T Transceiver for a Multi-Port Repeater. The ML4654 provides a TTL interface well suited for Multi-Port Repeater control logic.

The ML4654 uses a minimal number of external components, and fully conforms to the IEEE 802.3 10BASE-T standard. The transmitter offers a current driven output that is less sensitive to power supply variation and noise. It offers superior performance because of its highly symetrical switching which results in low RFI noise and low jitter.

The Transceiver easily interfaces to 100Ω unshielded twisted pair cable, 150Ω shielded twisted pair cable, 0 a range of other characteristic impedances by changing one external resistor. Jabber and Link Test Function are fully integrated into the chip with det $_{\text {a }}$ enable/disable options. An autopolarity circuit detects the polarity of the receive pair and automatically corrects it if necessary. A polarity status pin that can drive an LED reflects the true polarity of the receive pair.
designed using Micro Linear's Bipolar Tile Array technology. It uses a special Tile Array designed for Data Communications applications. Semi-Standard options are available to suit a particular customer application.

FEATURES

■ Complete implementation of IEEE 802.3 10BASE-T internal Medium Attachment Unit (MAU)

- TTL interface for direct comection to Multi-Port Repeater control logid
Automatic polarity correction with a status pin to reflect the true receive polarity
- Single +5 volt supply $=70 \%$ No clock or cristal required
- Capable of driving 100Ω unshielded twisted pair cable or 150Ω shielded twisted pair cable
- Fully integrated Link Test logic, with Link Test Fail Status pin and enable/disable option
Onechip jabber logic, with enable/disable option
- Available ina 20 pin skinny DIP or 28 pin PLCC
- Semi-standard option using Micro Linear's FB3651 LAN Transceiver Tile Array

The ML4654 is available in a 20 pinskinny Dlp as well as a surface mount 28 pin PLCC. The ML4654 is

BLOCK DIAGRAM

FOIRL Transceiver

GENERAL DESCRIPTION

The ML4661 FOIRL transceiver combined with the ML4621 or ML4622 fiber optic quantizers provides all of the functionality required to implement both an internal and external IEEE 802.3 FOIRL MAU. The ML4661 offers a standard IEEE 802.3 AU interface that allows it to be directly connected to industry standard manchester encoder/decoder chips or an AUI cable.

The ML4661 provides a highly integrated solution that requires a minimal number of external components, and is compliant to the IEEE 802.3 FOIRL standard. The transmitter offers a current driven output that directly drives a fiber optic LED transmitter. Jabber, 1 MHz idle signal, and SQE Test are fully integrated onto the chip.

The receiver accepts an ECL level input coming from the ML4621 or ML4622 fiber optic quantizers. The 1 MHz idle signal is removed and the AUI output is activated when the receive squelch criteria is exceeded. A Link Monitor function is also provided for low light detection.

FEATURES

- Combined with the ML4621 or ML4622, offers a complete implementation of an FOIRL Medium Attachment Unit (MAU)
- Incorporates an AU interface for use in an external MAU or an internal MAU
- Single +5 volt supply $\pm 10 \%$
- No crystal or clock required
- On-chip Jabber, 1 MHz idle, and SQE Test with enable/disable option
- Five network status LED outputs
- Available in a 28-pin PLCC package
- Semi-standard option using Micro Linear's FB3651 LAN Transceiver Tile Array

BLOCK DIAGRAM

10BASE-FL Transceiver

GENERAL DESCRIPTION

The ML4662 10Base-FL transceiver combined with the ML4622 or ML4624 fiber optic quantizers provides all of the functionality required to implement both an internal and external IEEE 802.3 10Base-FL MAU. The ML4662 offers a standard IEEE 802.3 AU interface that allows it to be directly connected to industry standard manchester encoder/decoder chips or an AUI cable.
The ML4662 provides a highly integrated solution that requires a minimal number of external components, and is compliant to the IEEE 802.3 10Base-FL standard. The transmitter offers a current driven output that directly drives a fiber optic LED transmitter. Jabber, 1 MHz idle signal, and SQE Test are fully integrated onto the chip.

The receiver accepts an ECL level input coming from the ML4622 or ML4624 fiber optic quantizers. The 1 MHz idle signal is removed and the AUI output is activated when the receive squelch criteria is exceeded. A Link Monitor function is also provided for low light detection.

FEATURES

- Combined with the ML4622 or ML4624, offers a complete implementation of an 10Base-FL Medium Attachment Unit (MAU)
- Pin compatible with the ML4661 FOIRL Transceiver
- Incorporates an AU interface for use in an external MAU or an internal MAU
- Single +5 volt supply $\pm 10 \%$
- No crystal or clock required

■ On-chip Jabber, 1 MHz idle, and SQE Test with enable/disable option

- Five network status LED outputs
- Available in a 28-pin PCC package
- Semi-standard option available

PIN \#	NAME	FUNCTION
1	$\overline{\text { CLSN }}$	Indicates that a collision is taking place. Active low LED driver, open collector. Event is extended with internal timer for visibility.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { COL+ } \\ & \text { COL- } \end{aligned}$	Gated 10 MHz oscillation used to indicate a collision, SQE test, or jabber. Balanced differential line driver outputs that meet AUI specifications.
4	SQEN/JABD	SQE Test Enable, Jabber Disable. When tied low, SQE test is disabled, when tied high SQE test is enabled. When tied to BIAS both SQE test and Jabber are disabled.
5	GND	Ground Reference.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & R x+ \\ & R x- \end{aligned}$	Manchester encoded receive data output to the local device. Balanced differential line driver outputs that meet AUI specifications.
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$V_{C C}$ $V_{C C}$	+5 Volt power input.
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{Tx}+ \\ & \mathrm{Tx}- \end{aligned}$	Balanced differential line receiver inputs that meet AUI specifications. These inputs may be transformer, AC or DC coupled. When transformer or AC coupled, the BIAS pin is used to set the common mode voltage.
12	RTSET	Sets the current driven out of the transmitter.
13	RRSET	A $1 \% 61.9 \mathrm{~K} \Omega$ resistor tied from this pin to V_{CC} sets the biasing currents for internal nodes.
14	NC	No Connection.
15	$\overline{\text { XMT }}$	Indicates that transmission is taking place. Active low LED driver, open collector. Event is extended with internal timer for visibility.
16	$\overline{\mathrm{RCV}}$	Indicates that the transceiver is receiving a frame from the optical input. Active low LED driver, open collector. Event is extended with internal timer for visibility.
17	$\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$	+5 volt supply for LED driver.
18	TxOUT	Fiber optic LED driver output.

PIN \#	NAME	FUNCTION
19	NC/PEAK	Normally this pin can be left floating. (tying it to GND or V_{CC} is OK too.) Some fiber optic LEDs may need an additional peaking circuit to speed-up the rise and fall times. For this case, tie pin 19 (NC/PEAK) to pin 18 (TxOUT). When using the HP HFBR 1414, let pin 19 float. Using the peaking circuit may deteriorate optical overshoot and undershoot.
20	GND	Ground Reference.
21	GND	Ground Reference.
22	$\overline{\mathrm{LMON}}_{\mathrm{IN}}$	Link Monitor Input from the ML4622 or ML4624. This input must be low (active) for the receiver to unsquelch.
23	LBDIS	Loopback Disable. When this pin is tied to V_{CC}, the AUI transmit pair data is not looped back to the AUI receive pair, and collision is disabled. When this pin is tied to GND (normal operation), the AUI transmit pair data is looped back to the AUI receiver pair.
24	$\overline{\text { LMON }}$	Link Monitor LED status output. This pin is pulled low when $\mathrm{LMON}_{\mathrm{IN}}$ input is low and there are transitions on $\mathrm{RxIN} \pm$ indicating an idle signal or active data. If either $\mathrm{LMON}_{\mathrm{IN}}$ goes high or transitions cease on RxIN士, $\overline{\mathrm{LMON}}$ will go high. Active low LED driver, open collector.
$\begin{aligned} & 25 \\ & 26 \end{aligned}$	RxINRxIN+	Fiber Optic receive pair. This ECL level signal is received from the ML4622 or ML4624 fiber optic quantizer. When this signal exceeds the receive squelch requirements, and the $\overline{L M O N}_{I N}$ input is low, the receive data is buffered and sent to the AUI receive outputs.
27	BIAS	BIAS output voltage for the AUI Tx+, Tx- inputs when they are AC coupled.
28	$\overline{J A B}$	Jabber network status LED. When in the Jabber state, this pin will be low and the transmitter will be disabled. In the Jabber "OK" state this pin will be high. Open collector TTL output.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage Range	
Input Voltage Range	
Digital Inputs (SQEN, LMON ${ }_{\text {IN }}$, LBDIS)	-0.3 to V_{CC}
Tx + , Tx-, RxIN+, RxIN-	-0.3 to V_{CC}
Input Current	
RRSET, RTSET, $\overline{J A B}, \overline{\mathrm{CLSN}}, \overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$, $\overline{\mathrm{LMON}}$. 60 mA
Output Current	
TxOUT	.. 70 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 seconds) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS
 (Note 2)

Supply Voltage (V_{CC}) $5 \mathrm{~V} \pm 10 \%$
LED on Current ... 10mA
RRSET ... 61.9K \pm 1\%
RTSET $162 \Omega \pm 1 \%$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Current ICC: While Transmitting	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \text { RTSET }=162 \Omega \\ & \text { (Note 4) } \end{aligned}$			200	mA
LED Drivers: V_{OL}	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$ (Note 5)			0.8	V
Transmit Peak Output Current (Note 6)	$\begin{aligned} & \text { RTSET }=162 \Omega \\ & V_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}^{2}=5 \mathrm{~V} \pm 5 \% \end{aligned}$	47	52	60	mA
Transmit Squelch Voltage Level ($T x+$, Tx-)		-300	-250	-200	mV
Common Mode Input Voltage ($\mathrm{Tx} \pm$, $\mathrm{RxIN} \pm$)		2		$\mathrm{V}_{\mathrm{CC}}-0.5$	V
Differential Output Voltage ($R x \pm$, COL \pm)		± 550		± 1200	mV
Common Mode Output Voltage (Rx \pm, COL \pm)			4.0		V
Differential Output Voltage Imbalance $(\mathrm{Rx} \pm, \mathrm{COL} \pm)$				± 40	mV
BIAS Voltage			3.2		V
SQE/JABD	SQE Test Disable Jabber Disable Both Enabled	$\begin{gathered} 1.5 \\ \mathrm{~V}_{\mathrm{CC}}-0.5 \\ \hline \end{gathered}$		$\stackrel{.3}{V_{C C}-2}$	V
LBDIS Threshold	Disabled Enabled	$\mathrm{V}_{\mathrm{CC}}-0.10$		1	V

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
Transmit					
${ }_{\text {t }{ }_{\text {TXNPW }}}$	Transmit Turn-On Pulse Width		20		ns
${ }^{\text {t }}$ TXFPW	Transmit Turn-Off Pulse Width from Data to Idle	400		2100	ns
$\mathrm{t}_{\text {TXLP }}$	Transmit Loopback Startup Delay			500	ns
${ }_{\text {t }}^{\text {TXODY }}$	Transmitter Turn-On Delay			100	ns
${ }^{\text {t }}$ (XIDF	Transmit Idle Frequency	0.85		1.25	MHz
$\mathrm{t}_{\text {TXDC }}$	Transmit Idle Duty Cycle	45		55	\%
$\mathrm{t}_{\text {TXSDY }}$	Transmit Steady State Propagation Delay		15	50	ns
$\mathrm{t}_{\text {TXJ }}$	Transmitter Jitter into 31Ω Load			± 1.5	ns

Receive

$\mathrm{t}_{\mathrm{RXST}}$	Receive Squelch Frequency Threshold	2.51		4.5	MHz
$\mathrm{t}_{\mathrm{RXODY}}$	Receive Turn-On Delay			250	ns
$\mathrm{t}_{\mathrm{RXXX}}$	Last Bit Received to Slow Decay Output	230	300		ns
$\mathrm{t}_{\mathrm{RXSDY}}$	Receive Steady State Propagation Delay		15	50	ns
$\mathrm{t}_{\mathrm{RXI}}$	Receiver Jitter			± 1.5	ns
t_{AR}	Differential Output Rise Time 20\% to $80 \%(\mathrm{Rx} \pm, \mathrm{COL} \pm)$		4		ns
t_{AF}	Differential Output Fall Time 20\% to $80 \%(\mathrm{Rx} \pm, \mathrm{COL} \pm)$		4		ns

Collision

$\mathbf{t}_{\text {CPSQE }}$	Collision Present to SQE Assert	0		350	ns
$\mathbf{t}_{\text {SQEXR }}$	Time for SQE to Deactivate After Collision	0		700	ns
$\mathbf{t}_{\text {CLF }}$	Collision Frequency	8.5		11.5	MHz
$\mathbf{t}_{\text {CLPDC }}$	Collision Pulse Duty Cycle	40	50	60	$\%$
$\mathbf{t}_{\text {SQEDY }}$	SQE Test Delay (Tx Inactive to SQE)	0.6		1.6	$\mu \mathrm{~s}$
$\mathbf{t S Q E T D}$	SQE Test Duration	0.5	1.0	1.5	$\mu \mathrm{~s}$

Jabber and LED Timing

${ }^{\text {t }}$ AD	Jabber Activation Delay	20	70	150	ms
$\mathrm{t}_{\text {IRT }}$	Jabber Reset Unjab Time	250	450	750	ms
$\mathrm{t}_{\text {SSQE }}$	Delay from Outputs Disabled to Collision Oscillator On		100		ns
$\mathrm{t}_{\text {LED }}$	$\overline{\mathrm{RCV}}, \overline{\mathrm{CLSN}}, \overline{\mathrm{XMIT}}$ On Time	8	16	32	ms
${ }^{\text {tLIPH }}$	Low Light Present to LMON High	3	5	10	$\mu \mathrm{s}$
$\mathrm{t}_{\underline{L C L}}$	Low Light Clear to LMON Low	250		750	ms

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Low Duty Cycle pulse testing is performed at T_{A}.
Note 4: This does not include the current from the AUI pull down resistors, or LED status outputs.
Note 5: LED drivers can sink up to 20 mA , but V_{OL} will be higher.
Note 6: Does not include prebias current for fiber optic LED which would typically be 3 mA .
NOTE: IF TTLOUT IS USED, TIE GNDTTL TO UNFILTERED GROUND AND REMOVE 11. IF TILOUT AND ECL OUTPUTS ARE BOTH USED, ADD 3k PULLDOWN RESISTORS AT ECL OUTPUTS

SYSTEM DESCRIPTION

Figure 1 shows a schematic diagram of the ML4662 in an internal or external 10Base-FL MAU. On one side of the transceiver is the $A U$ interface and the other is the fiber optic interface. The AU interface is AC coupled when used in an external transceiver or can be AC or DC coupled when used in an internal transceiver. The AU interface for an external transceiver includes isolation transformers, some biasing resistors, and a voltage regulator for power.
The fiber optic side of the transceiver requires an external fiber optic transmitter, fiber optic receiver, and the ML4622 or ML4624 fiber optic quantizers. The transmitter uses a current driven output that directly drives the fiber optic transmitter. The receive side of the transceiver accepts the data after passing through the fiber optic receiver and the ML4622/ML4624 fiber optic quantizer.

AU INTERFACE

The AUI interface consist of 3 pair of signals, DO, CI and DI as shown in figure 1. The DO pair contains transmit data from the DTE which is received by the transceiver and sent out onto the fiber optic cable. The DI pair contains valid data that has been either received from the fiber optic cable or looped back from the DO and output through the DI pair to the DTE. The Cl pair indicates whether a collision has occurred. It is an output that oscillates at 10 MHz if a collision Jabber or SQE Test has taken place, otherwise it remains idle.
When the transceiver is external, these three pair are AC coupled through isolation transformers, while an internal transceiver may be AC or DC coupled. For the AC coupled interface, DO which is an input must be DC biased (shifted up in voltage) for the proper common mode input voltage. The BIAS pin serves this purpose. When DC coupled, transmit output pair coming from the serial interface provides this common mode voltage and the BIAS pin is not connected.
The two $39 \Omega 1 \%$ resistors tied to the Tx+ and Tx-pins serve two purposes. First they provide a point to connect the common mode bias voltage as discussed above, and they provide the proper matching termination for the AUI cable. The CI and DI pair, which are output from the transceiver to the AUI cable, require 360Ω pull down resistors when terminated with a 78Ω load. However on a DTE card, CI and DI do not need 78Ω terminating resistors. This also means that the pull down resistors on Cl and DI can be $1 \mathrm{~K} \Omega$ or greater depending upon the particular manchester encoder/decoder chip used. Using higher value pull down resistors as in a DTE card will save power.
The AUI drivers are capable of driving the full 50 meters of cable length and have a rise and fall time of typically $4 \mathbf{n s}^{*}$. In the idle state, the outputs go to the same voltage to prevent DC standing current in the isolation transformers.

TRANSMISSION

The transmit function consists of detecting the presence of data from the AUI DO input (Tx_{t}, $\mathrm{Tx}-$) and driving that data onto the fiber optic LED transmitter. A positive signal on the Tx+ lead relative to the Tx- lead of the DO circuit will result in no current, hence the fiber optic LED is in a low light condition. When Tx+ is more negative than Tx-, the ML4662 will sink current into the chip and the LED will light up.
Before data will be transmitted onto the fiber optic cable from the AUI interface, it must exceed the squelch requirements for the DO pair. The Tx squelch circuit serves the function of preventing any noise from being transmitted onto the fiber. This circuit rejects signals with pulse widths less than typically 20ns (negative going), or with levels less than -250 mV . Once Tx squelch circuit has unsquelched, it looks for the start of idle signal to turn on the squelch circuit again. The transmitter turns on the squelch again when it receives an input signal at TxIN \pm that is more positive than -250 mV for more than approximately 180 ns .
At the start of a packet transmission, no more than 1 bit is received from the DO circuit and not transmitted onto the fiber optic cable. The difference between start-up delays (bit loss plus steady-state propagation delay) for any two packets that are separated by $9.6 \mu \mathrm{~s}$ or less will not exceed 200ns.

FIBER OPTIC LED DRIVER

The output stage of the transmitter is a current mode switch which develops the output light by sinking current through the LED into the TxOUT pin. Once the current requirement for the LED is determined, the RTSET resistor is selected. The following equation is used to select the correct RTSET resistor:

$$
\text { RTSET }=\left(\frac{52 \mathrm{~mA}}{\mathrm{l}_{\mathrm{OUT}}}\right) 162 \Omega
$$

The transmitter enters the idle state when it detects start of idle on Tx+ and Tx- input pins. After detecting the start of idle the transmitter switches to a 1 MHz output idle signal.

The output current is switched through the TxOUT pin during the on cycle and the $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$ pin during the off cycle as shown in figure 2 . Since the sum of the current in these two pins is constant, $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}_{x}$ should be connected as close as possible to the V_{CC} connection for the LED.

Figure 2. Fiber Optic LED Driver Structure.

Figure 3. Converting Optical LED Driver Output to Differential ECL.

If not driving an optical LED directly, a differential output can be generated by tying resistors from $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$ and TxOUT to V_{CC} as shown in figure 3. The minimum voltage on these two pins should not be less than $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.

RECEPTION

The input to the transceiver comes from the ECL outputs of the ML4622 or ML4624. At this point it is a clean digital ECL signal. At the start of packet reception no more than 2.5 bits are received from the fiber cable and not transmitted onto the DI circuit. The receive squelch will reject frequencies lower than 2.51 MHz and any receive input if the $\mathrm{LMON}_{\mathbb{I N}}$ pin is high.
While in the unsquelch state, the receive squelch circuit looks for the start of idle signal at the end of the packet. Start of idle occurs when the input signal remains idle for more than 160 ns . When start of idle is detected, the receive squelch circuit returns to the squelch state and the start of idle signal is output on the DI circuit ($R x+, R x-$).

COLLISION

Whenever the receiver and the transmitter are active at the same time the chip will activate the collision output, except when loopback is disabled (LBDIS $=\mathrm{V}_{\mathrm{CC}}$). The collision output is a differential square wave matching the AUI specifications and capable of driving a 78Ω load. The frequency of the square wave is $10 \mathrm{MHz} \pm 15 \%$ with a $60 / 40$ to $40 / 60$ duty cycle. The collision oscillator also is activated during SQE Test and Jabber.

LOOPBACK

The loopback function emulates a 10Base-T transceiver whereby the transmit data sent by the DTE is looped back over the AUI receive pair. Some LAN controllers use this loopback information to determine whether a MAU is connected by monitoring the carrier sense while transmitting. The software can use this loopback information to determine whether a MAU is connected to the DTE by checking the status of carrier sense after each packet transmission.

When data is received by the chip while transmitting, a collision condition exits. This will cause the collision oscillator to turn on and the data on the DI pair will follow RxIN土. After a collision is detected, the collision oscillator will remain on until either DO or RxIN go idle.
Loopback can be disabled by strapping LBDIS to V_{CC}. In this mode the chip operates as a full duplex transmitter and receiver, and collision detection is disabled. A loopback through the transceiver can be accomplished by tying the fiber transmitter to the receiver.

SQE TEST FUNCTION (SIGNAL QUALITY ERROR)

The SQE test function allows the DTE to determine whether the collision detect circuitry is functional. After each transmission, during the inter packet gap time, the collision oscillator will be activated for typically $1 \mu \mathrm{~s}$. The SQE test will not be activated if the chip is in the low light state, or the jabber on state.

For SQE to operate, the SQEN pin must be tied to V_{CC}. This allows the MAU to be interfaced to a DTE. The SQE test can be disabled by tying the SQEN pin to ground, for a repeater interface.

JABBER FUNCTION REQUIREMENTS

The Jabber function prevents a babbling transmitter from bringing down the network. Within the transceiver is a Jabber timer that starts at the beginning of each transmission and resets at the end of each transmission. If the transmission last longer than 20 ms the jabber logic disables the transmitter, and turns on the collision signal COL+, COL-. When Tx+ and Txfinally go idle, a second timer measures 0.5 seconds of idle time before the transmitter is enabled and collision is turned off. Even though the transmitter is disabled during jabber, the 1 MHz idle signal is still transmitted.

LED DRIVERS

The ML4662 has five LED drivers. The LED driver pins are active low, and the LEDs are normally off. The LEDs are tied to their respective pins through a 500Ω resistor to 5 Volts.
The $\overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$ and $\overline{\mathrm{CLSN}}$ pins have pulse stretchers on them which enables the LEDs to be visible. When transmission or reception occurs, the LED XMT, $\overline{\mathrm{RCV}}$ or $\overline{\mathrm{CLSN}}$ status pins will activate low for several milliseconds. If another transmit, receive or collision conditions occurs before the timer expires, the LED timer will reset and restart the timing. Therefore rapid events will leave the LEDs continuously on. The JAB and LMON LEDs do not have pulse stretchers on them since their conditions occur long enough for the eye to see.

LOW LIGHT CONDITION

The $\overline{\mathrm{LMON}}$ LED output is used to indicate a low light condition. LMON is activated low when both $L M O N_{I_{N}}$ is low and there are transitions on $\mathrm{RxIN} \pm$ less than $3 \mu \mathrm{~s}$ apart. If either one of these conditions do not exist, LMON will go high.

DIFFERENCES BETWEEN 10BASE-FL AND FOIRL

10Base-FL is an improved version of the original FOIRL standard. The 10Base-FL standard allows backward compatibility of a 10Base-FL transceiver with a FOIRL transceiver. The main improvements incorporated into 10Base-FL are that it can attach to a DTE by adding the SQE test, and the distance has been increased from 1 Km to 2 Km . The other differences are much more subtle.

1. SQE Test: The FOIRL standard did not include the option of attaching a fiber transceiver to a DTE. Adding the SQE test to 10Base-FL enables a 10Base-FL transceiver to attach to a DTE. Micro Linear's ML4661 FOIRL transceiver has a SQE test, but this is beyond the scope of the FOIRL standard.
2. 0 to at Least 2 Km Distance: The FOIRL standard specifies a 1 Km distance while $10 B a s e-F L$ specifies 2 Km . The additional 1 Km distance for 10Base-FL comes from an increased flux budget for the cable of 3.5 dB . This 3.5 dB increase came from an increase of 2.5 dB sensitivity for the receiver and a 1 dB improvement for the transmitter. The following table illustrates the transmit and receive power requirements for the two standards. Note: FOIRL specifies optical power in peak and 10Base-FL specifies it in average. Subtracting 3dB from peak will give the average. In the table below the FOIRL specifications were converted from peak to average power.

Transmit/Receive Average Power	MIN	MAX	Conditions	
FOIRL				
Transmitter	-12 dBm	-21 dBm		
Receiver	-12 dBm	-30 dBm	BER $<10^{-10}$	
10Base-FL				
Transmitter	-12 dBm	-20 dBm		
Receiver	-12 dBm	-32.5 dBm	BER $<10^{-9}$	

3. MAU State Diagrams are Different: The state diagrams for 10Base-FL are similar to 10Base-T, while the state diagrams for FOIRL are slightly different. The differences are in the AUI loopback, and in the link integrity function.

AUI Loopback - In 10Base-FL, the DO to DI loopback is always disabled during a collision, and optical receive data is passed through to DI. For FOIRL there are some cases where loopback continues (i.e. DO looped to DI) during a collision, and others where loopback is disabled during a collision. 10Base-FL is identical to 10Base-T in this case. Please refer to the IEEE standards for greater detail.

Link Integrity - 10Base-FL adds an additional state to the Link Integrity Test function that will not allow an exit from the Low Light State until both the transmitter and receiver are idle. In FOIRL it is possible to exit from the Low Light State while still receiving data.

MAU Timing Differences - The timing differences between 10Base-FL and FOIRL relate to propagation delays, start-up delays, and collision deassert delays. The following table provides the details of these parameters.

Timing Parameter Differences	FOIRL (bit times)	10Base-FL (bit times)
ORD_input to input on DI		
Steady State Prop Delay	0.5	2
Start-up Delay	3.5	5
output on DO to OTD_output		
Steady State Prop Delay	0.5	2
Start-up Delay		
Collision Deassert to SQE Deassert minimum	3.5	5

OTD - Optical Transmit Data
ORD - Optical Receive Data
DI, DO, CI — AUI Interface Signals

TIMING DIAGRAMS

Figure 4. Transmit and Loopback Timing

Figure 5. Receive Timing

TxOUT

Figure 6. Collision Timing

TIMING DIAGRAMS (Continued)

Figure 7. Collision Timing

Figure 8. Collision Timing

Figure 9 SQE Timing

Figure 10. Jabber Timing

Figure 11. LED Timing

ORDERING INFORMATION

PART NUMBER	PIN COUNT	PACKAGE
ML4662CQ	28 Pins	Molded PCC (Q28)

ML4662EVAL

10BASE-FL Evaluation Kit

GENERAL DESCRIPTION

The ML4662EVAL is an external MAU designed to evaluate the ML4662 FOIRL/10BASE-FL transceiver and the ML4622 fiber optic quantizer. The board interfaces to the AUI port through the transformer and to the fiber optic cable through the HP fiber optic transmitter and receiver.

FEATURES

- Jumper switches to enable or disable Loop Back.
- Jumper switches to enable or disable SQE and Jabber functions.
- Capable of adjusting the receive sensitivity.
- 6 status LEDs.

■ Current consumption: $\mathbf{2 6 0 - 2 9 0 m A}$ Typically

KIT COMPONENTS

The ML4662EVAL kit includes the following items to help the customer speed their design, layout and debug process.

1) BLANK PCB: 4 layer board with separate power and ground plane (inner layers).
2) COMPONENT KIT: Includes the key components as listed below. The rest of the components should be provided by the customer based on the parts list of the ML4662EVAL.

- HFBR1414: HP fiber Optic LED transmitter.
- HFBR2416: HP fiber optic pin diode receiver.
- One 28 pind sockets for the ML4662.
- ML4662CQ: 10BASE-FL transceiver.
- ML4622CP: Fiber Optic quantizer.
- PE64103: PULSE AUI coupling transformer.
- AUI CONNECTOR: 15 pins D SUB connector.

3) DOCUMENTATION: Includes the following items:

- Demo board description.
- Block Diagram of the DEMO board.
- Schematic of the demo board.
- Lay out of the demo board.
- Parts list of the ML4662EVAL.

BLOCK DIAGRAM

Single Chip 10BASE-FL Transceiver

GENERAL DESCRIPTION

The ML4663 Single Chip 10BASE-FL Transceiver integrates both a ML4662 10BASE-FL Transceiver with a ML4622 Fiber Optic Data Quantizer to implement a highly integrated solution for 10BASE-FL transceivers. ML4663 offers a standard IEEE 802.3 AU interface that allows it to be directly connected to industry standard manchester encoder/decoder chips or an AUI connector.
The ML4663 provides a highly integrated solution that requires a minimal number of external components, and is compliant to the IEEE 802.3 10BASE-FL standard. The transmitter offers a current drive output that directly drives a fiber optic LED transmitter. The receiver offers a highly stable fiber optic data quantizer capable of accepting input signals as low as $2 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ with a 55 dB dynamic range.

The transmitter automatically inserts 1 MHz signal during idle time and removes this signal on reception. Low Light is continuously monitored for both activity as well as power level. Five LED status indicators monitor error conditions as well as transmissions, receptions and collisions.

FEATURES

- Single chip solution for 10BASE-FL internal or external Medium Attachment Units (MAUs)
- Incorporates an AU interface
- Highly stable data quantizer with 55dB input dynamic range
- Input sensitivity as low as $2 \mathrm{mV} \mathrm{V}_{\text {- }}$ P
- Current driven fiber optic LED driver for accurate launch power
- Single +5 volt supply
- No crystal or clock required
- Five network status LED outputs
- Available in 28 pin PCC package
- Semi-Standard option available

PIN CONNECTION

28-Pin PCC Q-28

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	$\overline{\text { CLSN }}$	Indicates that a collision is taking place. Active low LED driver, open collector. Event is extended with internal timer for visibility.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{COL}+ \\ & \mathrm{COL}- \end{aligned}$	Gated 10 MHz oscillation used to indicate a collision, SQE test, or jabber. Balanced differential line driver outputs that meet AUI specifications.
4	$\mathrm{C}_{\text {TIMER }}$	A capacitor from this pin to $V_{C C}$ determines the Link Monitor response time.
5	SQEN/JABD	SQE Test Enable, Jabber Disable. When tied low, SQE test is disabled, when tied high SQE test is enabled. When tied to 2.0 V both SQE test and Jabber are disabled.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & R x+ \\ & R x- \end{aligned}$	Manchester encoded receive data output to the local device. Balanced differential line driver outputs that meet AUI specifications.
8	LBDIS	Loopback Disable. When this pin is tied to V_{CC}, the AUI transmit pair data is not looped back to the AUI receive pair, and collision is disabled. When this pin is tied to GND (normal operation) or left floating, the AUI transmit pair data is looped back to the AUI receiver pair, except during collision.
9	V_{CC}	+5 volt power input.
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{Tx}+ \\ & \mathrm{Tx}- \end{aligned}$	Balanced differential line receiver inputs that meet AUI specifications. These inputs may be transformer or capacitively coupled. The Tx input pins are internally DC biased for AC coupling.
12	RTSET	Sets the current driven output of the transmitter.
13	RRSET	A $1 \% 61.9 \mathrm{k} \Omega$ resistor tied from this pin to $V_{C C}$ sets the biasing currents for internal nodes.
14	$\overline{\text { LMON }}$	Link Monitor "Low Light" LED status output. This pin is pulled low when the voltage on the $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$inputs exceed the minimum threshold set by the $\mathrm{V}_{\text {THADJ }} \mathrm{pin}$, and there are transitions on $\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$indicating an idle signal or active data. If either the voltage on the $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$inputs fall below the minimum threshold or transitions cease on $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$, LMON will go high. Active low LED driver, open collector.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

OPERATING CONDITIONS

Supply Voltage (V_{CC}) $5 \mathrm{~V} \pm 5 \%$
LED on Current

10 mA

RRSET
$61.9 \mathrm{k} \Omega \pm 1 \%$
RTSET
$115 \Omega \pm 1 \%$
$\mathrm{Tx}_{\mathrm{t}}, \mathrm{Tx}-, \mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$... 0.3 to V_{CC}
Input Current
RRSET, RTSET, $\overline{J A B}, \overline{\mathrm{CLSN}}, \overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}, \overline{\mathrm{LMON}} \ldots . . .60 \mathrm{~mA}$
Output Current
TxOUT \qquad 70 mA
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 sec) .
$.260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} T \mathrm{Tx}=5 \mathrm{~V} \pm 5 \%$ (Note 2 and 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Current I_{CC} : While Transmitting	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RTSET}=115 \Omega$ (Note 4)			220	mA
LED Drivers: V_{CC}	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$ (Note 5)			0.8	V
Transmit Peak Output Current (Note 6)	RTSET $=115 \Omega$	47	52	57	mA
Transmit Squelch Voltage Level ($T x+, T x-$)		-300	-250	-200	mV
Differential Output Voltage (Rx \pm, COL \pm)		± 550		± 1200	mV
Common Mode Output Voltage ($\mathrm{Rx} \pm$, COL \pm)			4.0		V
Differential Output Voltage Imbalance ($\mathrm{Rx} \pm, \mathrm{COL} \pm$)				± 40	mV
SQE/JABD	SQE Test Disable Both Disabled Both Enabled	$\begin{array}{\|c\|} 1.5 \\ \mathrm{~V}_{\mathrm{CC}}-0.5 \\ \hline \end{array}$		$\begin{gathered} 0.3 \\ \mathrm{~V}_{\mathrm{CC}}-2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
LBDIS Threshold	Disabled Enabled	$\mathrm{V}_{\mathrm{CC}}-0.1$		1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Common Mode Voltage (Tx+, Tx-)			3.5		V
Common Mode Voltage ($\mathrm{V}_{\mathrm{N}^{+}}+\mathrm{V}_{\text {IN }}{ }^{-}$)			1.65		V
Reference Voltage		2.30	2.45	2.60	V
$\mathrm{V}_{\text {REF }}$ Output Source Current				5	mA
Amplifier Gain			100		V / N
Input Signal Range		2		1600	$\mathrm{mV} \mathrm{P}_{\text {-P }}$
External Voltage at $\mathrm{V}_{\text {THAD }}$ to Set V_{TH}		0.5		2.7	V
Input Offset	$\mathrm{V}_{\mathrm{DC}}=\mathrm{V}_{\text {REF }}$ (DC loop active)		3		mV
Input Referred Noise	50 MHz BW		25		$\mu \mathrm{V}$
Input Resistance	$\mathrm{V}_{\mathrm{IN}^{+},} \mathrm{V}_{\mathrm{NN}^{-}}$	0.8	1.3	2.0	$\mathrm{k} \Omega$
Input Bias Current of $\mathrm{V}_{\text {THADJ }}$		-200	10	+200	$\mu \mathrm{A}$
Input Threshold Voltage	$\mathrm{V}_{\text {THADJ }}=\mathrm{V}_{\text {REF }}($ Note 7)	5	6	7	$\mathrm{m} \mathrm{P}_{\text {P-P }}$
Hysteresis			20		\%

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
Transmit					
$\mathrm{t}_{\text {TXNPW }}$	Transmit Turn-On Pulse Width		20		ns
$\mathrm{t}_{\text {TXFPW }}$	Transmit Turn-Off Pulse Width from Data to Idle	400		2100	ns
${ }_{\text {T XXLP }}$	Transmit loopback Start-up Delay			500	ns
$\mathrm{t}_{\text {TXODY }}$	Transmit Turn-On Delay			100	ns
$\mathrm{t}_{\text {TXIDF }}$	Transmit Idle Frequency	0.85		1.25	MHz
$t_{\text {TXDC }}$	Transmit Idle duty Cycle	45		55	\%
$\mathrm{t}_{\text {TXSDY }}$	Transmit Steady State Propagation Delay		15	50	ns
$\mathrm{t}_{\mathrm{TX}}{ }^{\text {I }}$	Transmit Jitter into 31Ω Load			± 1.5	ns

Receive

$t_{\text {RXSFT }}$	Receive Squelch Frequency Threshold	2.51		4.5	MHz
$\mathrm{t}_{\mathrm{RXODY}}$	Receive Turn-On Delay			270	ns
$\mathrm{t}_{\mathrm{RXFX}}$	Last Bit Received to Slow Decay Output	230	300		ns
$\mathrm{t}_{\text {RXSDY }}$	Receive Steady State Propagation Delay		15	50	ns
$\mathrm{t}_{\mathrm{RXJ}}$	Receive Jitter			± 1.5	ns
t_{AR}	Differential Output Rise Time 20% to $80 \%(\mathrm{Rx} \pm, \mathrm{COL} \pm)$		4		ns
t_{AF}	Differential Output Fall Time 20% to $80 \%(\mathrm{Rx} \pm, \mathrm{COL} \pm)$		4		ns

Collision

$\mathbf{t}_{\text {CPSQE }}$	Collision Present to SQE Assert	0		350	ns
$\mathrm{t}_{\text {SQEXR }}$	Time for SQE to Deactivate After Collision	0		700	ns
$\mathrm{t}_{\text {CLF }}$	Collision Frequency	8.5		11.5	MHz
$\mathrm{t}_{\text {CLPDC }}$	Collision Pulse Duty Cycle	40	50	60	$\%$
$\mathrm{t}_{\text {SQEDY }}$	SQE Test Delay (Tx Inactive to SQE)	0.6		1.6	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SQETD }}$	SQE Test Duration	0.5	1.0	1.5	$\mu \mathrm{~s}$

Jabber and LED Timing

$\mathrm{t}_{\mathrm{JAD}}$	Jabber Activation Delay	20	70	150	ms
$\mathrm{t}_{\text {RT }}$	Jabber Reset Unjab Time	250	450	750	ms
tJSQE	Delay from Outputs Disabled to Collision Oscillator On		100		ns
$\mathrm{t}_{\text {LED }}$	$\overline{\mathrm{RCV}}, \overline{\mathrm{CLSN}}, \overline{\text { XMT }}$ On Time	8	16	32	ms
tLLPH	Low Light Present to $\overline{\text { LMON }}$ High	3	5	10	$\mu \mathrm{s}$
tLLCL	Low Light Present to $\overline{\text { LMON }}$ Low	250		750	ms

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testıng, sampling, or correlation with worst-case test conditions.
Note 3: Low Duty Cycle pulse testing is performed at T_{A}.
Note 4: This dose not include the current from the AUI pull-down resistors, or LED status outputs.
Note 5: LED drivers can sink up to 20 mA , but $\mathrm{V}_{\text {OL }}$ will be higher.
Note 6: Does not include pre-bias current for fiber optic LED which would typically be 3 mA .
Note 7: Threshold for switching from Link Fail to Link Pass (Low Light).

SYSTEM DESCRIPTION

Figure 1 shows a schematic diagram of the ML4663 in an internal or external 10BASE-FL MAU. On one side of the transceiver is the $A U$ interface and the other is the fiber optic interface. The $A \cup$ interface is $A C$ coupled when used in an external transceiver or an internal transceiver. The AU interface for an external transceiver includes isolation transformers, some biasing resistors, and a voltage regulator for power.
The fiber optic side of the transceiver requires an external fiber optic transmitter and fiber optic receiver. The transmitter uses a current driven output that directly drives the fiber optic transmitter. The receive side of the transceiver accepts the data after passing through a fiber optic receiver, which consists of a module containing a pin diode and a transimpedance amplifier.

AU INTERFACE

The $\mathrm{A} U$ interface consist of 3 pair of signals, DO, Cl and Dl as shown in figure 1. The DO pair contains transmit data from the DTE which is received by the transceiver and sent out onto the fiber optic cable. The DI pair contains valid data that has been either received from the fiber optic cable or looped back from the DO and output through the DI pair to the DTE. The CI pair indicates whether a collision has occurred. It is an output that oscillates at 10 MHz if a collision, Jabber or SQE Test has taken place, otherwise it remains idle.

When the transceiver is external, these three pairs are AC coupled through isolation transformers, while an internal transceiver may be capacitively coupled. $T x+, T x-$ is internally DC biased (shifted up in voltage) for the proper common mode input voltage.
The two $39 \Omega 1 \%$ resistors (or one $78 \Omega 1 \%$ resistor) tied to the $T x+$ and $T x$ - pins will provide the proper termination. The CI and DI pair, which are output from the transceiver to the AUI cable, require 360Ω pull down resistors when terminated with a 78Ω load. However on a DTE card, CI and DI do not need 78Ω terminating resistors. This also means that the pull down resistors on Cl and DI can be $1 \mathrm{k} \Omega$ or greater depending upon the particular Manchester encoder/decoder chip used. Using higher value pull down resistors as in a DTE card will save power. Refer to Application Note 13 for a more detailed explanation of the AUl pull-down resistors.
The AUI drivers are capable of driving the full 50 meters of cable length and have a rise and fall time of typically 4 ns . In the idle state, the outputs go to the same voltage to prevent DC standing current in the isolation transformers.

TRANSMISSION

The transmit function consists of detecting the presence of data from the AUI DO input ($\mathrm{T} x+, \mathrm{Tx}-$) and driving that data onto the fiber optic LED transmitter. A positive signal on the Tx+ lead relative to the Tx-lead of the DO circuit will result in no current, hence the fiber optic LED is in a low light condition. When $T x+$ is more negative than $T x-$, the ML4663 will sink current into the chip and the fiber optic LED will light up.

Before data will be transmitted onto the fiber optic cable from the AUI interface, it must exceed the squelch requirements for the DO pair. The Tx squelch circuit serves the function of preventing any noise from being transmitted onto the fiber. This circuit rejects signals with pulse widths less than typically 20ns (negative going), or with levels less than -250 mV . Once Tx squelch circuit has unsquelched, it looks for the start of idle signal to turn on the squelch circuit again. The transmitter turns on the squelch again when it receives an input signal at Tx+, Txthat is more positive than -250 mV for more than approximately 180 ns .

At the start of a packet transmission, no more than 2 bits are received from the DO circuit and not transmitted onto the fiber optic cable. The difference between start-up delays (bit loss plus steady-state propagation delay) for any two packets that are separated by $9.6 \mu \mathrm{~s}$ or less will not exceed 200ns.

FIBER OPTIC LED DRIVER

The output stage of the transmitter is a current mode switch which develops the output light by sinking current through the LED into the TxOUT pin. Once the current requirement for the LED is determined, the RTSET resistor is selected. The following equation is used to select the correct RTSET resistor:

$$
\text { RTSET }=\left(\frac{52 \mathrm{~mA}}{\mathrm{l}_{\mathrm{OUT}}}\right) 115 \Omega
$$

The transmitter enters the idle state when it detects start of idle on Tx+ and Tx-input pins. After detecting the start of idle the transmitter switches to a 1 MHz output idle signal.

The output current is switched through the TxOUT pin during the on cycle and the $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$ pin during the off cycle as shown in figure 2. Since the sum of the current in these two pins is constant, $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$ should be connected as close as possible to the V_{CC} connection for the LED.
If not driving an optical LED directly, a differential output can be generated by tying resistors from $\mathrm{V}_{\mathrm{CC}} \mathrm{Tx}$ and TxOUT to $V_{C C}$ as shown in figure 3 . The minimum voltage on these two pins should not be less than $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.

Figure 2. Fiber Optic LED Driver Structure.

Figure 3. Converting Optical LED Driver Output to Differential ECL.

RECEPTION

The input to the transceiver comes from a fiber optic receiver as shown in figure 1. At the start of packet reception no more than 2.7 bits are received from the fiber cable and not transmitted onto the DI circuit. The receive squelch will reject frequencies lower than 2.51 MHz .

While in the unsquelch state, the receive squelch circuit looks for the start of idle signal at the end of the packet. Start of idle occurs when the input signal remains idle for more than 160 ns. When start of idle is detected, the receive squelch circuit returns to the squelch state and the start of idle signal is output on the DI circuit ($R x+, R x-$).

COLLISION

Whenever the receiver and the transmitter are active at the same time the chip will activate the collision output, except when loopback is disabled (LBDIS $=\mathrm{V}_{\mathrm{CC}}$). The collision output is a differential square wave matching the AUI specifications and capable of driving a 78Ω load. The frequency of the square wave is $10 \mathrm{MHz} \pm 15 \%$ with a $60 /$ 40 to $40 / 60$ duty cycle. The collision oscillator also is activated during SQE Test and Jabber.

LOOPBACK

The loopback function emulates a 10BASE-T transceiver whereby the transmit data sent by the DTE is looped back over the AUI receive pair. Some LAN controllers use this loopback information to determine whether a MAU is connected by monitoring the carrier sense while transmitting. The software can use this loopback information to determine whether a MAU is connected to the DTE by checking the status of carrier sense after each packet transmission.
When data is received by the chip while transmitting, a collision condition exits. This will cause the collision oscillator to turn on and the data on the DI pair will follow $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$. After a collision is detected, the collision oscillator will remain on until either DO or $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$go idle.

Loopback can be disabled by strapping LBDIS to V_{CC}. In this mode the chip operates as a full duplex transmitter and receiver, and collision detection is disabled. A loopback through the transceiver can be accomplished by tying the fiber transmitter to the receiver.

SQE TEST FUNCTION (SIGNAL QUALITY ERROR)

The SQE test function allows the DTE to determine whether the collision detect circuitry is functional. After each transmission, during the inter packet gap time, the collision oscillator will be activated for typically $1 \mu \mathrm{~s}$. The SQE test will not be activated if the chip is in the low light state, or the jabber on state.
For SQE to operate, the SQEN pin must be tied to V_{CC}. This allows the MAU to be interfaced to a DTE. The SQE test can be disabled by tying the SQEN pin to ground, for a repeater interface.

JABBER FUNCTION REQUIREMENTS

The Jabber function prevents a babbling transmitter from bringing down the network. Within the transceiver is a Jabber timer that starts at the beginning of each transmission and resets at the end of each transmission. If the transmission last longer than 20 ms the jabber logic disables the transmitter, and turns on the collision signal COL+, COL-. When Tx+ and Tx- finally go idle, a second timer measures 0.5 seconds of idle time before the transmitter is enabled and collision is turned off. Even though the transmitter is disabled during jabber, the 1 MHz idle signal is still transmitted.

LED DRIVERS

The ML4663 has five LED drivers. The LED driver pins are active low, and the LEDs are normally off (except for $\overline{\mathrm{LMON}})$. The LEDs are tied to their respective pins through a 500Ω resistor to 5 Volts.
The $\overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$ and $\overline{\mathrm{CLSN}}$ pins have pulse stretchers on them which enables the LEDs to be visible. When transmission or reception occurs, the LED $\overline{\mathrm{XMT}}, \overline{\mathrm{RCV}}$ or $\overline{\mathrm{CLSN}}$ status pins will activate low for several milliseconds. If another transmit, receive or collision conditions occurs before the timer expires, the LED timer will reset and restart the timing. Therefore rapid events will leave the LEDs continuously on. The $\overline{J A B}$ and $\overline{\mathrm{LMON}}$ LEDs do not have pulse stretchers on them since their conditions occur long enough for the eye to see.

LOW LIGHT CONDITION

The $\overline{\mathrm{LMON}}$ LED output is used to indicate a low light condition. $\overline{\mathrm{LMON}}$ is activated low when both the receive power exceeds the Link Monitor threshold and there are transitions on $\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{-}}$less than $3 \mu \mathrm{~s}$ apart. If either one of these conditions do not exist, LMON will go high.

INPUT AMPLIFIER

The $\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathbb{I N}}$ - input signal is fed into a limiting amplifier with a gain of about 100 and input resistance of $1.3 \mathrm{k} \Omega$. Maximum sensitivity is achieved through the use of a DC restoration feedback loop and AC coupling the input. When AC coupled, the input DC bias voltage is set by an on-chip network at about 1.7 V . These coupling capacitors, in conjunction with the input impedance of the amplifier, establish a high pass filter with 3 dB corner frequency, f_{L}, at

$$
\begin{equation*}
f_{L}=\frac{1}{2 \pi 1300 C} \tag{1}
\end{equation*}
$$

Since the amplifier has a differential input, two capacitors of equal value are required. If the signal driving the input is single ended, one of the coupling capacitors can be tied to $A V_{C C}$ as shown in figure 1.
The internal amplifier has a lowpass filter built-in to band limit the input signal which in turn will improve the signal to noise ratio.

Although the input is AC coupled, the offset voltage within the amplifier will be present at the amplifier's output. This is represented by V_{OS} in figure 4 . Inorder to reduce this error a DC feedback loop is incorporated. This negative feedback loop nulls the offset voltage, forcing $\mathrm{V}_{\text {OS }}$ to be zero. Although the capacitor on $V_{D C}$ is non-critical, the pole it creates can effect the stability of the feedback loop. To avoid stability problems, the value of this capacitor should be at least 10 times larger than the input coupling capacitors.

Figure 4.
The comparator is a high-speed differential zero crossing detector that slices and accurately digitizes the receive signal. The output of the comparator is fed in parallel into both the receive squelch circuit and the loopback MUX.

LINK DETECT CIRCUIT AND LOW LIGHT

The link detect circuit monitors the input signal and determines when the input falls below a preset voltage level. When the input falls below a preset voltage, the ML4663 goes into the Low Light state. In the Low Light state the transmitter is disabled, but continues sending the 1 MHz idle signal, the loopback is disabled, the receiver is disabled, and the LMON LED pin goes to high shutting off the $\overline{\mathrm{LMON}} \mathrm{LED}$. To return to the Link Pass state, the optical receiver power must be 20% higher than the shutoff state. This built-in hysteresis adds stability to the Link Monitor circuit. Once the receiver power threshold is exceeded, the ML4663 waits 250 ms to 750 ms , then checks to see that Tx+. Tx- is idle and no data is being received before re-enabling the transmitter, receiver, loopback circuit, and lighting up the $\overline{\mathrm{LMON}} \mathrm{LED}$.

The $V_{\text {THADJ }}$ pin is used to adjust the sensitivity of the receiver. The ML4663 is capable of exceeding the 10BASE-FL specifications for sensitivity. The sensitivity is dependent on the layout of the PC board. A good low noise layout will exceed the 10BASE-FL specifications, while a poor layout will fail to meet the sensitivity and BER spec.

The threshold generator shifts the reference voltage at $\mathrm{V}_{\text {THADJ }}$ through a circuit which has a temperature coefficient matching that of the limiting amplifier. The relationship between the $\mathrm{V}_{\mathrm{THADJ}}$ and the V_{TH} (the peak to peak input threshold) is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{THADJ}}=408 \mathrm{~V}_{\mathrm{TH}} \tag{2}
\end{equation*}
$$

In a 10BASE-FL receiver there must be less than 1×10^{-9} bit errors at a receive power level of -32.5 dBm average. One procedure to determine the sensitivity of a receiver is to start at the lowest optical power level and gradually increase the optical power until the BER is met. In this case the Link Detect circuit must not disable the receiver (i.e. $V_{T H A D J}$ should be tied to Ground). Once the sensitivity of the receiver is determined, $\mathrm{V}_{\text {THADJ }}$ can be set just above the power level that meets the BER specification. This way the receiver will shut-off before the BER is exceeded.

For 10BASE-FL $V_{\text {THADJ }}$ can be tied directly to $V_{\text {REF }}$. However if greater sensitivity is required the circuit in figure 5 can be used to adjust the $\mathrm{V}_{\text {THADJ }}$ voltage. Even if $V_{\text {REF }}$ is tied to $V_{\text {THAD, }}$, it is a good idea to layout a board with these two resistors available. This will allow potential future adjustments without board revisions.
The response time of the Link Detect circuit is set by the $C_{\text {TIMER }}$ pin. Starting from the link off state the link can be switched on if the input exceeds the set threshold for a time given by:

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{C}_{\text {TIMER }} \times 0.7 \mathrm{~V}}{700 \mu \mathrm{~A}} \tag{3}
\end{equation*}
$$

To switch the link from on to off, the above time will be doubled. A value of $0.05 \mu \mathrm{~F}$ will meet to 10BASE-FL specifications.

Figure 5.

DIFFERENCES BETWEEN 10BASE-FL AND FOIRL

10BASE-FL is an improved version of the original FOIRL standard. The 10BASE-FL standard allows backward compatibility of a 10BASE-FL transceiver with a FOIRL transceiver. The main improvements incorporated into 10BASE-FL are that it can attach to a DTE by adding the SQE test, and the distance has been increased from 1 Km to 2 Km . The other differences are much more subtle.

1. SQE Test: The FOIRL standard did not include the option of attaching a fiber transceiver to a DTE. Adding the SQE test to 10BASE-FL enables a 10BASE-FL transceiver to attach to a DTE.
2.0 to at Least 2 Km Distance: The FOIRL standard specifies a 1 Km distance while 10 BASE -FL specifies 2 Km . The additional 1 Km distance for 10BASE-FL comes from an increased flux budget for the cable of 3.5 dB . This 3.5 dB increase came from an increase of 2.5 dB sensitivity for the receiver and a 1 dB improvement for the transmitter. The following table illustrates the transmit and receive power requirements for the two standards. Note: FOIRL specifies optical power in peak and 10BASE-FL specifies it in average. Subtracting 3 dB from peak will give the average. In the table below the FOIRL specifications were converted from peak to average power.

TRANSMIT/RECEIVE AVERAGE POWER	MIN	MAX	CONDITIONS
FOIRL			
Transmitter	-12 dBm	-21 dBm	
Receiver	-12 dBm	-30 dBm	BER $<10^{-10}$
10BASE-FL			
Transmitter	-12 dBm	-20 dBm	
Receiver	-12 dBm	-32.5 dBm	BER $<10^{-9}$

3. MAU State Diagrams are Different: The state diagrams for 10BASE-FL are similar to 10BASE-T, while the state diagrams for FOIRL are slightly different. The differences are in the AUI loopback, and in the link integrity function.

AUI Loopback - In 10BASE-FL, the DO to DI loopback is always disabled during a collision, and optical receive data is passed through to DI. For FOIRL there are some cases where loopback continues (i.e. DO looped to DI) during a collision, and others where loopback is disabled during a collision. 10BASE-FL is identical to 10BASE-T in this case. Please refer to the IEEE standards for greater detail.
Link Integrity - 10BASE-FL adds an additional state to the Link Integrity Test function that will not allow an exit from the Low Light State until both the transmitter and receiver are idle. In FOIRL it is possible to exit from the Low Light State while still receiving data.
MAU Timing Differences - The timing differences between 10BASE-FL and FOIRL relate to propagation delays, start-up delays, and collision deassert delays. The following table provides the details of these parameters.

TIMING PARAMETER DIFFERENCES	FOIRL (BIT TIMES)	10BASE-FL (BIT TIMES)
ORD_input to input on DI		
Steady State Prop Delay	0.5	2
Start-Up Delay	3.5	5
output on DO to OTD_output		
Steady State Prop Delay		0.5
Start-Up Delay	3.5	2
Collision Deassert to SQE Deassert minimum	4.5	0

OTD - Optıcal Transmit Data
ORD - Optical Receive Data
DI, DO, CI — AUI Interface Signals

TIMING DIAGRAMS

Figure 6. Transmit and Loopback Timing

TIMING DIAGRAMS

Figure 7. Receive Timing

Figure 8. Collision Timing

TIMING DIAGRAMS

Figure 9. Collision Timing

Figure 10. Collision Timing

Figure 11. SQE Timing

TIMING DIAGRAMS

Figure 12. Jabber Timing

Figure 13. LED Timing

ORDERING INFORMATION

PART NUMBER	PIN COUNT	PACKAGE
ML4663CQ	28 Pins	Molded PCC (Q28)

ML4663EVAL

10BASE-FL Evaluation Kit

GENERAL DESCRIPTION

The ML4663EVAL is an external MAU designed to evaluate the ML4663 10BASE-FL PMD chip. The board interfaces to the AUI port through the transformer and to the fiber optic cable through the HP fiber optic transmitter and receiver.

FEATURES

- Jumper switches to enable or disable Loop Back.
- Jumper switches to enable or disable SQE and Jabber functions.
- Capable of adjusting the receive sensitivity.
- 6 status LEDs.
- Current consumption $260-280 \mathrm{~mA}$ typically

KIT COMPONENTS

The ML4663EVAL kit includes the following items to help the customer speed their design, layout and debug process.

1) BLANK PCB: 4 layer board with separate power and ground plane (inner layers).
2) COMPONENT KIT: Includes the key components as listed below. The rest of the components should be provided by the customer based on the parts list of the ML4663EVAL.
■ HFBR1414: HP fiber Optic LED transmitter.

- HFBR2416: HP fiber optic pin diode receiver.
- One 28 pin sockets for the ML4663.
- ML4663CQ: 10BASE-FL combo transceiver and quantizer.
- PE65728: PULSE AUI coupling transformer.
- AUI CONNECTOR: 15 pins D SUB connector.

3) DOCUMENTATION: includes the following items:

- Demo board description.
- Block Diagram of the DEMO board.
- Schematic of the demo board.
- Lay out of the demo board.
- Parts list of the ML4663EVAL.

BLOCK DIAGRAM

Multi-Protocol Physical Interface

GENERAL DESCRIPTION

The ML4670 Multi-Protocol Interface Device is designed primarily for use in and with bridge, router and frame relay equipment. The device provides the serial communications interface for DCE or DTE applications that require RS-232, RS-449, X.21/N. 36 or V. 35 protocols.
The ML4670 offers system designers a single chip that provides the physical electrical interface for the four most commonly used serial protocols. The device is programmable with standard, static TTL levels that select the desired electrical interface for clock, data and diagnostic local loopback control. The selection of the desired interface alters the characteristics of the line drivers and receivers such that the proper interface is available for transmit and receive of clock, data, and control signals for the above listed protocols. The flexibility of the ML4670 allows the implementation of a single device that can be configured to interface with any one of the four desired protocols.

FEATURES

■ Programmable physical interfaces for RS-232, RS-449, X.21/N.36, V. 35

- Supports DCE/DTE transmit and receive clocks as well as data and control signals
- 200 mV hysteresis on all receive inputs for noise immunity
- $10 \mathrm{Mb} / \mathrm{s}$ data and clock rates for high-speed V.35, X.21, and RS-449 protocols
- DTE/DCE function selectable by single pin
- Resistor programmable slew rate for RS-232 transmitters
- Pin selectable diagnostic loopback mode
- $\pm 12 \mathrm{~V}$ or $\pm 6 \mathrm{~V}$ power supply flexibility for RS-232 implementation
- 84-pin PLCC package

BLOCK DIAGRAM

DATA \& CLOCK

October 1994

High-Speed Data Quantizer

GENERAL DESCRIPTION

The ML6622 High-Speed Data Quantizer is a low noise, wide-band, BiCMOS monolithic IC designed specifically for signal recovery applications in FDDI and SONET fiberoptic receiver systems. An internal DC restoration feedback loop nulls any offset voltage produced in the input stage. The limiting amplifier contributes to a high level of sensitivity and a minimum of duty cycle distortion.

The output of the data path is a high-speed comparator with ECL outputs. An enable pin gates the comparator on or off in response to the input signal level or a system control signal.

The Link Detect circuit provides an Assert-Deassert function with a user-selectable threshold voltage. This circuit monitors the input signal and provides an ECL High output within 100 ms of signal acquisition and an ECL Low output within 350 ms of signal loss. The ECL discriminator output can be used to disable the comparator when the signal is below the user-selected threshold. LINKLED drives an LED for a visible indication of the link status.

FEATURES

- 150 MHz bandwidth
- Low noise design
- Adjustable Link Detect function

■ Low power design: 35 mA typical

- Available in 16-pin DIP and 16-pin Skinny SOIC

BLOCK DIAGRAM

PIN DESCRIPTION
$\left.\begin{array}{ccl}\text { PIN\# } & \text { NAME } & \text { FUNCTION } \\ \hline 1 & \text { ENABLE } & \begin{array}{l}\text { ECL input active Jow. When this input } \\ \text { is tied to LINKLED the ECL comparator } \\ \text { output is automatically enabled and } \\ \text { disabled by the Link Detect circuit. } \\ \text { This input can be tied to GND for } \\ \text { continuous enable. When the ECL } \\ \text { Comparator is disabled, ECL OUT- } \\ \text { goes low and ECL OUT+ goes high. }\end{array} \\ 2 & \text { LINKLED } & \begin{array}{l}\text { Link Detect Status output. LINKLED is } \\ \text { an open collector active low signal. It } \\ \text { will be active low when the input } \\ \text { signal applied to VIN+ }, \text { VIN- exceeds } \\ \text { the programmed threshold level at the }\end{array} \\ \text { THIN pin. Capable of driving a 20mA }\end{array}\right\}$

NAME	PIN \#	FUNCTION
10	THIN	Threshold Input. A voltage applied to this input pin sets the minimum amplitude of the input signal required to cause the link detect to activate. In most cases this can be tied to $\mathrm{V}_{\text {REF }}$.
11	GNDA	Ground connection for noise sensitive circuits in the chip; the input amplifier, DC restoration loop, part of the Comparator and part of the link detect circuit. In some system designs, it may be advantageous to separate GND and GNDA.
12	$\mathrm{V}_{\text {IN }}$	This input pin should be capacitively coupled to the input source or to V_{CC}.
13	$\mathrm{V}_{1 \mathrm{~N}+}$	This input pin should be capacitively coupled to the input source or to V_{CC}.
14	$\mathrm{V}_{\mathrm{CC}} \mathrm{A}$	Positive power supply V_{CC} for noise sensitive circuits as mentioned in GNDA. +5 volts.
15	CAP	A capacitor is tied from this pin to $\mathrm{V}_{\text {REF }}$. This capacitor sets the lower frequency rejection and helps remove internal DC offset. This capacitor should be 10 times larger than the input capacitors.
16	$\mathrm{C}_{\text {TIMER }}$	A capacitor from this pin to ground determines the Link Detect response time. To Meet FDDI specifications this capacitor should be $2,000 \mathrm{pF}$. This capacitor can be removed for faster response time.

PIN CONNECTION

ML6622
16-Pin DIP (P16)

ML6622 16-Pin Narrow SOIC (S16N)

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
$V_{C C}$-GND -0.3 to +7.0
$V_{C C} A$ - GNDA . -0.3 to +7.0
Inputs/Outputs GND -0.3 to $V_{C C}+0.3$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}$, unless otherwise noted. (Note 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {CC }}$	V_{CC} Supply Current (No load on ECL outputs)			35	50	mA
$\mathrm{V}_{\text {REF }}$	Reference Voltage		2.37	2.47	2.57	V
IV ${ }_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ Output Current		-1	3	+5	mA
$V_{\text {IN }}$	Input Signal Range		3.5		1600	$m V_{P-P}$
$\begin{aligned} & V_{T H} A D J \\ & \text { Range } \end{aligned}$	External Voltage at THIN to set $\mathrm{V}_{\text {TH }}$		0.5		$\mathrm{V}_{\text {REF }}$	\checkmark
EN	Input-referred Voltage Noise	100 MHz BW		25		$\mu \mathrm{V}_{\text {RMS }}$
R_{IN}	Input Resistance	$\mathrm{VIN}^{+}, \mathrm{V}_{\text {IN }}{ }^{-}$	500	770	1000	Ω
ItHin	Input Bias Current of THIN		-100		+100	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{CC}}$	ECL Output Voltage-Low	Through 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.840	-1.730	-1.620	V
$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{CC}}$	ECL Output Voltage-High	Through 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.045	-0.963	-0.880	V
tr_{r}	Data Output Rise Time					ns
t_{f}	Data Output Fall Time		0.35		1.3	ns

Link Detect

AS_Max	Assert Time (off to on)	$\mathrm{C}_{\text {TIME }}=2000 \mathrm{pF}$	0		100	$\mu \mathrm{s}$
ANS_Max	Deassert Time (on to off)	$\mathrm{C}_{\text {TIME }}=2000 \mathrm{pF}$	0		350	$\mu \mathrm{s}$
$\mathrm{V}_{\text {TH }}$	Input threshold Hysteresis	THIN $=\mathrm{V}_{\text {REF }}$ Assert	$\begin{gathered} 8 \\ 1.5 \end{gathered}$	$\begin{aligned} & 10 \\ & 1.7 \end{aligned}$	$\begin{gathered} 12 \\ 2 \end{gathered}$	$\begin{gathered} m V \\ \mathrm{~dB} \end{gathered}$
BW	Bandwidth 1-3dB			200		MHz
VIPW	Minimum Input Pulse Width			5		ns
DCD	Duty Cycle Distortion Peak-to-peak	Data rate $=155 \mathrm{Mb} / \mathrm{s}$ 50\% duty cycle input		0.5		ns
DDJ	Data Dependent Jitter Peak-to-peak	FDDI - 56 Data Pattern $\mathrm{V}_{\mathrm{IN}}=60 \mathrm{mV}$, Data rate $=125 \mathrm{Mb} / \mathrm{s}$		1.2		ns

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case conditions.

FUNCTIONAL DESCRIPTION

The ML6622 High Speed Data Quantizer accepts a low level analog signal from a pin diode and transimpedance amp front end and converts it into digital ECL levels for subsequent digital processing. The input signal, from a transimpedance amplifier, is immediately amplified by a two-stage video amplifier. The output of this amplifier feeds two parallel paths.
The data path is comprised of a high speed comparator that outputs PECL differential data on the ECL OUT \pm pins. The Link Detection path monitors the magnitude of the amplified input signal, compares it to a user-settable threshold, and provides the result of the comparison as a PECL differential output on the Link \pm pins. The timer following the threshold block is used to set the Link Detect output acquire and deacquire time using a capacitor.

AMPLIFIER

The amplifier is a two stage video amplifier with a gain of approximately $55 \mathrm{~V} / \mathrm{N}$. Maximum sensitivity is achieved through the use of the DC restoration feedback loop and AC coupling the input. The AC coupling input capacitors, in conjunction with the input impedance of the amplifier, establishes a high pass filter with the lower 3 dB point determined by the input resistance and the input coupling capacitors.
Since the amplifier has a differential input, two AC capacitors of equal value are required. If the signal driving the input is single ended, the other coupling capacitor should be tied to V_{CC}.

Another low-pass filter is created with the CAP capacitor. The lower 3 dB point controlled by a capacitor tied from the CAP pin to $\mathrm{V}_{\text {REF }}$ as shown in the application circuit. For stability reasons the value of the capacitor on the CAP pin should be 10 times larger than the input coupling capacitors. The 3 dB point is given by the following equation:

$$
F_{3 \mathrm{~dB}}=\frac{1}{2 \pi 100 \mathrm{C}}
$$

Although the input is AC coupled, the offset voltage within the amplifier will be present at the amplifier's output. The removal of the dc offset in the amplifier helps the circuit respond to small input voltages, and reduces duty-cycle distortion. In order to reduce this error, a negative feedback loop nulls the offset voltage. An external capacitor connected to the CAP pin is used to store the offset voltage. This voltage is compared to $\mathrm{V}_{\text {REF }}$ and a difference current proportional to the result is applied to the negative side of the input stage of the AMP circuit block thereby nulling the DC offset.

COMPARATOR

A high speed ECL comparator with PECL outputs is used for the quantization function. The comparator has an Enable input pin which takes an ECL level. This Enable pin is normally driven by LINKLED, which causes the output to be enabled when the link is up and disabled when the link is down. When ENABLE is low the comparator is operational. When ENABLE is high the comparator is disabled causing ECL OUT- to go low and ECL OUT+ to go high. The ENABLE pin can be tied to ground to keep the comparator permanently enabled.

LINK DETECT CIRCUIT

The Link Detection Circuit is used to accurately measure the input amplitude to determine whether it is large enough to reliably recover the input signal. Once the Bit Error Rate (BER) for the ML6622 receive circuit is determined, the link detect threshold can be set so that the Link Detect Circuit will shut off before the error rate exceeds the link requirement.
The Link Detection Circuit consists of three functional blocks; Thresh, Timer, and Link Out. Thresh detects the output of Amp and compares it to a programmable threshold input THIN. As long as the input amptitude is greater than the programmable threshold input, the Link Detect output remains active.
When the peak input drops below THIN, Thresh's output changes state and Timer delays the Link Out state change for a programmable amount of time. When using the default C TIME capacitance of 2000 pF, the deassert time and the assert time values conform to the ANSI X3.1661990 PMD standard for FDDI.
To improve stability, the Link Detect circuit includes 1.7 dB of hysteresis.

The $V_{\text {REF }}$ output can be tied directly to THIN to set the Link Detect threshold. For greater sensitivities, $V_{\text {REF }}$ can be divided down before applied to THIN. The formula for the threshold on the thin pin is as follows:

$$
\begin{aligned}
& \text { Threshold(Assert) }=\frac{V_{\text {THIN }}}{500} \\
& \text { Threshold(Deassert) }=\frac{V_{\text {THIN }}}{750}
\end{aligned}
$$

APPLICATION CIRCUIT

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6622CP	0° to $+70^{\circ} \mathrm{C}$	16-Pin MOLDED DIP (P16)
ML6622CS	0° to $+70^{\circ} \mathrm{C}$	16-Pin MOLDED SOIC (S16N)

High Speed Fiber Optic LED Driver

GENERAL DESCRIPTION

The ML6633 is a high speed fiber optic LED driver suited for networking applications up to 200 Mbps . The part is capable of driving up to 75 mA of current through a fiber optic LED from an ECL level input signal. Its efficient output stage provides a high current that can be programmed for accurate absolute output level which insures precise launch power.
The LED driver's output stage provides a fast well matched rise and fall time through a unique differential output stage.
The ML6633 high speed fiber optic LED driver is implemented in BiCMOS process and is available in an 8-pin SOIC or PDIP package.

BLOCK DIAGRAM

FEATURES

Data rates up to 200 Mbps
Current driven output for accurate launch power

- Programmable output current from 20 mA to 75 mA
- High Efficiency Output Stage
- Low EMI/RFI Noise
- ECL inputs

APPLICATIONS

- Fiber Optic Token Ring
- FDDI

SONET OC1 and OC3

- Fiber Optic Data Communications and Telecommunications

PIN CONNECTION

PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	NC	
2	ECLP	Positive ECL data input controls signal to the LED.
3	ECLN	Negative ECL data input.
4	NC	
5	GND	Negative power supply ground.

PIN NO.	NAME	DESCRIPTION
6	RTSET	Output current programming pin. Connect a resistor of value 2/ILED from this pin to ground to set the high LED output current.
7	IOUT	Fiber optic LED drive pin. Connect the LED between this pin and $V_{C C}$.
8	$V_{C C}$	Positive power supply. +5 volts.

ELECTRICAL CHARACTERISTICS

Peak DC Output Current (IOUT) 75mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $260^{\circ} \mathrm{C}$

Over the recommended operating conditions of $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, RTSET $=26.1 \Omega \pm 1 \%$, unless otherwise specified. (Notes 2 and 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
I_{CC}	Supply Current				$40 \mathrm{~mA}+\mathrm{lout}$	mA
$\begin{aligned} & \mathrm{l}_{\mathrm{LEDH}} \\ & \mathrm{I}_{\mathrm{LEDL}} \end{aligned}$	LED Current Accuracy (IOUT) High Low		70	75	$\begin{aligned} & 80 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
t_{R}	Rise Time (IOUT)				2	ns
$t_{\text {F }}$	Fall Time (IOUT)				2	ns
$\begin{aligned} & \mathrm{tpLH}^{\text {thL }} \\ & \mathrm{t}_{\mathrm{pHHL}} \end{aligned}$	Propagation Delay (IOUT) Low to High High to Low				$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
tpwo	Pulse Width Distortion (IOUT)				1.0	ns
$\mathrm{I}_{\text {ECL }}$	ECL Input Current				20	$\mu \mathrm{A}$

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground
Note 2: Limits are guaranteed by 100% testıng, sampling, or correlation with worst-case test conditions
Note 3: Low Duty Cycle pulse testing is performed at T_{A}.

FUNCTIONAL DESCRIPTION

The ML6633 accepts ECL input signals and generates a high speed, high accuracy output current which is independent of supply voltage variations. The output current is programmable from 75 mA .

The ECL input stage is a standard NPN differential pair with a common mode range of between 1 V and 4.5 V with $\mathrm{a}+5 \mathrm{~V}$ supply. With this common mode range it is possible to convert the ECL inputs into TTL. If the ECLN input is biased up to the TTL switching level, the ECLP pin can be driven by a TTL or CMOS output. Figure 1 b shows a circuit implementing this technique. This circuit may degrade pulse width distortion and should be checked for acceptable performance in this configuration.

Output current to the LED is set by connecting the appropriate resistance from RTSET to ground. The high level output voltage at RTSET will be 2.0 V . The current in the external resistor will be equal to the current through the LED. The output current with RTSET set to 26.1Ω will be:

$$
\mathrm{I}_{\mathrm{LED}}(\mathrm{HIGH})=2.0 \mathrm{~V} / \mathrm{R}_{\text {TSET }}=2.0 \mathrm{~V} / 26.1 \Omega=75 \mathrm{~mA} .
$$

a) $\boldsymbol{I}_{\mathrm{OUT}}=75 \mathrm{~mA}$

b)

Figure 1. Typical Applications

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6633CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin Molded DIP (P08)
ML6633CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08N)

High Speed Fiber Optic Evaluation Kit

GENERAL DESCRIPTION

The ML6633/22 evaluation kit is designed for high speed fiber optic applications such as 125Mbaud FDDI (Fiber Data Distributed Interface), OC1 and OC3 SONET (Optical Carrier-level 1 and 3 for Synchronous Optical Network), and Fiber Channel.
Data inputs and outputs of the ML6633/22EVAL board are designed for high speed ECL lines. $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ fiber optic cable with an ST connector at each end plugged into a 1300 nm fiber optic LED and a pin detector in the demo board.

FEATURES

- Adjustable link detect function through R3 and R4
- Fast rise and fall time at the transmitter
- Link LED status
- Low noise design

KIT COMPONENTS

- ML6633/22 user guide
- ML6633 data sheet
- ML6622 data sheet
- ML6633/22 assembled Eval board
- $3.5^{\prime \prime}$ disk with Gerber Files

The user guide includes performance data, layout recommendation, layout, schematic, parts list and a tutorial on how to use the demo board.

BLOCK DIAGRAM

TP-PMD Transceiver

GENERAL DESCRIPTION

The ML6671 is a complete monolithic transceiver for 125 Mbaud MLT-3 encoded data transmission over Category 5 Unshielded Twisted Pair and Shielded Twisted Pair cables. The adaptive equalizer in the ML6671 will accurately compensate for line losses of up to 100 m of UTP. The part requires only external 1% resistors for accurate equalization.
The ML6671 receive section consists of an equalizing filter with a feedback loop for controlling effective line compensation. The feedback loop contains a filter and detection block for determining the proper control signal. The ML6671 also contains data comparators with precisely controlled slicing thresholds and an MLT-3 to NRZI translator. An ECL 100K compatible buffer at the output interfaces directly with existing FDDI PHY silicon from various manufacturers.

The ML6671 transmit section accepts ECL 100K compatible NRZI inputs and converts them to differential current mode MLT-3 signals. Transmit amplitude is controlled by a single external resistor.
Several additional functions are provided by the ML6671 to simplify applications. A common-mode reference is provided to set the input DC level for the equalizer and
the near-end transformer winding. This terminal may be used as an AC ground for the transformer center-tap or termination resistors. The transmitter can be disabled to provide true quiet line.
The ML6671 is implemented in a BiCMOS process. A differential signal path throughout minimizes the effects of power supply transients and noise.

FEATURES

- Transmitter converts NRZI ECL signals to MLT-3 current driven outputs
- Transmitter can be externally turned off for true quiet line
- Receiver includes adaptive equalizer and MLT-3 to NRZI decoder
■ Operates over 100 meters of STP or category 5 UTP Twisted Pair Cable
- 32-pin surface mount package

APPLICATIONS

- FDDI over copper (TP-PMD)
- Fast Ethernet (100BASE-TX)

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

NAME	FUNCTION
TXIN+, TXIN-	These differential ECL100K compatible inputs receive NRZI data from the PHY for transmission.
TPOUT+, TPOUT-	Outputs from the NRZI-MLT3 state machine drive these differential current outputs. The transmitter filter/transformer module connects the media to these pins.
$\overline{\text { LPBK }}$	This TTL input enables transmitterreceiver loopback internally when asserted low.
$\overline{\text { TXOFF }}$	This TTL input forces the NRZI-MLT3 state machine to a quiet state when asserted low.
RTSET1, RTSET2	An external 1\% resistor connected between these pins controls the transmitter output current amplitude. $\mathrm{I}_{\mathrm{OUT}}=64 \times 1.25 \mathrm{~V} /$ RTSET
TVCCA, TVCCD	Separate analog and digital transmitter power supply pins help to isolate sensitive circuitry from noise generating digital functions. Both supplies are nominally +5 volts.
TGNDA, TGNDD	Analog and digital transmitter grounds provide separate return paths for clean and noisy signals.
SD+, SD-	These differential ECL100K compatible outputs indicate the presence of a data signal with an amplitude exceeding a preset threshold.
TPIN+, TPIN-	MLT-3 encoded data from the receiver filter/ transformer module enters the receiver through these pins.

NAME	FUNCTION
RXOUT+, RXOUT-	Differential ECL100K compatible outputs provide NRZI encoded data to the PHY.
CAP1, CAP2	Two external capacitors connected to these pins sets the time constant for the adaptation in the equalizer loop as well as for signal detect response.
RRSET1, RRSET2	Internal time constants controlling the equalizer's transfer function are set by an external resistor connected across these pins.
CMREF	This pin provides a DC common mode reference point for the receiver inputs.
RVCCA, RVCCD	Analog and digital supply pins are separated to isolate clean and noisy circuit functions. Both supplies are nominally +5 volts.
RGND	Receiver ground.
RSET1, RSET2	An external $5 \mathrm{~K} \Omega$ resistor across these pins sets up an internal reference current.
RTH1, RTH2	An external resistor connected across these pins sets the internal levels for equalization as well as signal detect. This resistor allows compensation for transmit and magnetics variations. RTH should be set to match the peak-to-peak transmit amplitude. $\mathrm{V}_{\text {AMP }}=16 \times 1.25 \times$ RTH/RSET where $\mathrm{V}_{\text {AMP }}$ is the peak-to-peak amplitude of the transmit output with zero length cable.

ABSOLUTE MAXIMUM RATINGS
VCC Supply Voltage Range -0.3 V to 6 V
Input Voltage RangeDigital Inputs-0.3 V to V_{CC}Output Current
TPOUT \pm, SD \pm, RXOUT \pm 50 mA
All other outputs 10 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

$V_{C C}$ Supply Voltage .. $5 \mathrm{~V} \pm 5 \%$
T_{A}, Ambient Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RTSET.. $2 \mathrm{~K} \Omega \pm 1 \%$
RRSET ... $8 \mathrm{~K} \Omega \pm 1 \%$
RSET .. $5 K \Omega \pm 1 \%$
RTH .. $500 \Omega \pm 1 \%$
CAP1, CAP2 .. $0.33 \mu \mathrm{~F} \pm 5 \%$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$, RTSET $=2.0 \mathrm{~K} \Omega$, RTH $=500 \Omega$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics					
Supply Current			67		mA
RVCCD		52	mA		
RVCCA		25	mA		
TVCCD		6	mA		
TVCCA			170	mA	

TTL Inputs ($\overline{\text { TXOFF, }} \overline{\text { LPBK }})$

V_{IL} Input Low Voltage				0.8	V
$\mathrm{~V}_{\mathrm{IH}}$ Input High Voltage		2.0			V

Differential Inputs (TPIN \pm, TXIN \pm)

Differential Outputs (SD \pm, RXOUT \pm, TPOUT \pm)

| SD+, SD-, RXOUT+, RXOUT-
 Output Voltage HIGH $\left(\mathrm{V}_{\mathrm{OH}}\right)$ | Note 5 | $\mathrm{V}_{\mathrm{CC}}-1.025$ | | $\mathrm{~V}_{\mathrm{CC}-}-0.88$ |
| :--- | :--- | :---: | :---: | :---: | V 9.

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Outputs (SD \pm, RXOUT \pm, TPOUT \pm) (Continued)					
TPOUT+, TPOUTOutput Current Offset	Note 3			0.5	mA
TPOUT + , TPOUT- $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$ Output Amplitude Error	Note 3, 4	-5.0		5.0	\%
TPOUT,+ TPOUT $-\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \pm 1.1 \mathrm{~V}$ Output Voltage Compliance		-2.0		+2.0	\%

AC Characteristics

TPOUT+, TPOUT- Rise/Fall Time	Note 2		2.0	
TPOUT+, TPOUT- Output Jitter	Note 2		0.8	
RXOUT+, RXOUT- Rise/Fall Time	Note 2			ns
RXOUT+, RXOUT- Output Jitter	Note 2		2.0	ns

Note 1. Absolute maximum ratings are limits beyond which the life of the integrated circuit may be imparred. All voltages unless otherwise specified are measured with respect to ground.
Note 2. Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3. Low Duty cycle pulse testing is performed at T_{A}.
Note 4. Output current amplitude is determined by $\mathrm{l}_{\mathrm{OUT}}=64 \times 125 \mathrm{~V} /$ RTSET.
Note 5. Output voltage levels are specified when terminated by 50Ω to $V_{C C}-2 V$ or equivalent load.

FUNCTIONAL DESCRIPTION

The ML6671 MLT-3 transceiver is a physical media dependent transceiver that allows the transmission and reception of 125 Mbaud data up to 100 meters over shielded twisted pair cable or category 5 unshielded twisted pair cable. It provides a standard Physical Media Dependent (PMD) interface compatible with many FDDI chip sets.
The transmit section accepts NRZI data, converting it to a three level MLT-3 code and sending the information on a two pin current driven transmitter. The transmitted output passes through an external low pass filter and transformer before entering the connectors to the STP or UTP cable. The output amplitude of the transmitted signal is programmable through the external RTSET resistor.
The receive section accepts MLT-3 coded data after passing through an isolation transformer and band limiting filter. Before the data con be converted from MLT-3 back to NRZI, the adaptive equalizer is used to compensate for the amplitude and phase distortion incurred from the cable. The adaptive control section determines the cable length and adjusts the equalizer accordingly.

The adaptive control block governs both the equalization level as well as the link detection status. The link detection threshold has a fixed relationship to the overall equalization level which is currently 25% of the transmitted amplitude. For the link status to be true, a minimum level signal must be received. When the input signal is small, the equalization will be at its maximum.

After the signal has been equalized, it passes into the MLT-3 to NRZI converter where it is converted back to NRZI and fed through the loopback multiplexer onto the RXOUT \pm pins.

Figure 1 shows a timing diagram of NRZI data and the equivalent MLT-3 data. The MLT-3 data shows the output current l lout for one side of the transmitter, either TPOUT+ or TPOUT-. The other transmit output pin will be the complement. Whenever there is a change in level in NRZI, MLT-3 will change levels too. The maximum fundamental frequency of MLT-3 is half of the maximum fundamental of NRZI.

Figure 2 shows a typical gain vs frequency plot of the adaptive equalizer for $0,25,50,75$ and 100 meter category 5 cable lengths.

Figure 1. MLT-3 Encoding

Figure 2. Equalization Range

Application Example of ML6671 Configured for $2.0 V_{\text {P-p }}$ Transmit Amplitude on C5 UTP.

Note 1. Split 100 K ECL terminations are 82Ω and 130Ω to VCC and GND respectively.
Note 2. Recommended power supply bypass capacitors are $0.1 \mu \mathrm{~F}$ with optional $10 \mu \mathrm{~F}$ tantalum in parallel.
Note 3. Transformer turns ratio is $1: 1$.
Note 4. LPBK and TXOFF inputs are active LOW.

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6671CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32-Pin Molded Leaded PCC (Q32)
ML6671CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32-Pin TQFP $(\mathrm{H} 32)$

TP-PMD Transceiver Evaluation Kit

GENERAL DESCRIPTION

The ML6671-22EVAL board is a TP-PMD transceiver designed to replace an existing 1402 U ODL FDDI transceiver (22-pin). This permits the conversion of an existing fiber-based FDDI adapter card or concentrator to a copper-based FDDI design.

At one end, the ML6671 demo board interfaces to an RJ45 connector through a transformer and common mode choke. The other end of the evaluation board interfaces to a 22-pin ODL footprint.

FEATURES

- Loop back capability

■ Quiet line by turning the transmitter off

- Low jitter
- Fast rise and fall times at the transmitter

KIT COMPONENTS

- ML6671-22EVAL user guide
- Application Note 28
- ML6671 data sheet
- Assembled evaluation board
- 3.5" disk with Gerber Files

The user guide includes performance data, layout recommendations, layout, schematic, parts list and a tutorial on how to use the demo board.

BLOCK DIAGRAM

ATM UTP Transceiver

GENERAL DESCRIPTION

The ML6672 is a complete monolithic transceiver for 155Mbps NRZ encoded data transmission over Category 5 Unshielded Twisted Pair and Shielded Twisted Pair cables. The ML6672 is compliant with the ATM Forum 155 Mbps Twisted Pair Specification. The adaptive equalizer in the ML6672 will accurately compensate for line losses of up to 100 m of UTP. The part requires only external 1% resistors for accurate equalization.

The ML6672 receive section consists of an equalizing filter with a feedback loop for controlling effective line compensation. The feedback loop contains a filter and detection block for determining the proper control signal. An ECL 100 K compatible buffer at the output interfaces directly with ATM physical interface chips.
The ML6672 transmit section accepts ECL 100K compatible NRZ inputs.
Several additional functions are provided by the ML6672 to simplify applications. A common-mode reference is provided to set the input DC level for the equalizer and the near-end transformer winding. This terminal may be
used as an AC ground for the transformer center-tap or termination resistors. A link status circuit monitors line integrity and provides a proper logic level output signal to interface with the host system.
The ML6672 is implemented in a BiCMOS process. A differential signal path throughout minimizes the effects of power supply transients and noise.

FEATURES

- Complies with ATM Forum 155Mbps Twisted Pair Specification
- Transmitter can be externally turned off for true quiet line
- Receiver includes adaptive equalizer
- Operates over 100 meters of STP or category 5 UTP Twisted Pair Cable
- 32-pin surface mount package
- Semi-standard options available

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

NAME	FUNCTION
$\mathrm{TX}^{1 \mathrm{~N}^{+}}, \mathrm{TX}_{\mathrm{IN}^{-}}$	These differential ECL100K compatible inputs receive NRZ data from the PHY for transmission.
TPOUT+, TPOUT-	Outputs from the NRZ buffer drive these differential current outputs. The transmitter filter/transformer module connects the media to these pins.
$\overline{\text { LPBK }}$	This TTL input enables transmitterReceiver loopback internally when asserted low.
$\overline{\text { TXOFF }}$	This TTL input forces the NRZ buffer to a quiet state when asserted low.
RTSET1, RTSET2	An external 1\% resistor connected between these pins controls the transmitter output current amplitude. $\mathrm{I}_{\mathrm{OUT}}=64 \times 1.25 \mathrm{~V} /$ RTSET
TVCCA, TVCCD	Separate analog and digital transmitter power supply pins help to isolate sensitive circuitry from noise generating digital functions. Both supplies are nominally +5 volts.
TGNDA, TGNDD	Analog and digital transmitter grounds provide separate return paths for clean and noisy signals.
SD+, SD-	These differential ECL100K compatible outputs indicate the presence of a data signal with an amplitude exceeding a preset threshold.
TPIN+, TPIN-	NRZ encoded data from the receiver filter/ transformer module enters the Receiver through these pins.

NAME	FUNCTION
RXOUT+, RXOUT- CAP1, CAP2	Differential ECL100K compatible outputs provide NRZ encoded data to the PHY. Two external capacitors connected to these pins sets the time constant for the adaptation in the equalizer loop as well as for signal detect response.
RRSET1,	Internal time constants controlling the equalizer's transfer function are set by an external resistor connected across these pins.
RRSET2	

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

VCC Supply Voltage $5 \mathrm{~V} \pm 5 \%$
T_{A}, Ambient Temperature

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
RTSET $4 \mathrm{~K} \Omega+1 \%$
RRSET $8 K \Omega+1 \%$
RSET $5 K \Omega+1 \%$
RTH $250 \Omega+1 \%$
CAP1, CAP2

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=T_{M I N}$ to $T_{M A X}, V C C=5 \mathrm{~V} \pm 5 \%, R T S E T=4.0 K \Omega, R T H=250 \Omega$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics					
Supply Current			67		
RVCCD			52		
RVCCA			25	mA	
TVCCD			6	mA	
TVCCA				mA	
RVCCD + RVCCA + TVCCD + TVCCA					

TTL Inputs ($\overline{\mathrm{TXOFF}}, \overline{\mathrm{LPBK}})$

V_{IL} Input Low Voltage				0.8	V
$\mathrm{~V}_{\mathrm{IH}}$ Input High Voltage		2.0			V

Differential Inputs (TPIN \pm, TXIN \pm)

TPIN+, TPINCommon Mode Input Voltage		2.2		V_{CC}	V
TPIN+, TPINDifferential Input Voltage				1.5	V
TPIN+, TPINDifferential Input Resistance		10.0K			Ω
TPIN+, TPIN- Common Mode Input Current				+10	uA
TXIN+, TXINInput Voltage HIGH $\left(V_{I H}\right)$		$\mathrm{V}_{\mathrm{CC}}-1.165$		$\mathrm{V}_{\mathrm{CC}}-0.88$	V
TXIN+, TXINInput Voltage LOW (VII)		$\mathrm{V}_{\mathrm{CC}}-1.810$		$V_{C C}-1.475$	V
$\begin{aligned} & \text { TXIN+, TXIN- } \\ & \text { Input Current LOW (} \mathrm{I}_{\mathrm{L}} \text {) } \end{aligned}$		0.5			$u \mathrm{~A}$
TXIN+, TXINInput Current HIGH (I_{IH})				50	uA

Differential Outputs (SD \pm, RXOUT \pm, TPOUT \pm)

SD+, SD-, RXOUT+, RXOUT- Output Voltage HIGH $\left(\mathrm{V}_{\mathrm{OH}}\right)$	Note 5	$\mathrm{V}_{\mathrm{CC}}-1.025$		$\mathrm{~V}_{\mathrm{CC}}-0.88$	V
SD+, SD-, RXOUT+, RXOUT- Output Voltage LOW $\left(\mathrm{V}_{\mathrm{OL}}\right)$	Note 5	$\mathrm{~V}_{\mathrm{CC}-1.81}$		$\mathrm{~V}_{\mathrm{CC}}-1.62$	V
TPOUT+, TPOUT- Differential Output Current HIGH	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \pm 0.5$, Note 4	19.0		21.0	mA
TPOUT+, TPOUT- DifferentialOutput Current LOW	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \pm 0.5$, Note 4				

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Outputs (SD \pm, RXOUT \pm, TPOUT \pm) (Continued)					
TPOUT + , TPOUT- Output Current Offset	Note 3	Note 3,4			
TPOUT+, TPOUT-V Output Amplitude Error	V_{CC}	-5.0		5.5	mA
TPOUT+, TPOUT-V Output $=\mathrm{V}_{\mathrm{CC}} \pm 1.1 \mathrm{~V}$		-2.0		$\%$	

AC Characteristics

TPOUT+, TPOUT- Rise/Fall Time	Note 2		1.5	2.0	2.5
TPOUT+, TPOUT- Output Jitter	Note 2		ns		
RXOUT+, RXOUT- Rise/Fall Time	Note 2	0.5		ns	
RXOUT+, RXOUT- Output Jitter	Note 2			5	ns

Note 1. Absolute maximum ratıngs are limits beyond which the life of the integrated circuit may be impared. All voltages unless otherwise specified are measured with respect to ground.
Note 2. Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3. Low Duty cycle pulse testing is performed at T_{A}.
Note 4. Output current amplitude is determined by $\mathrm{l}_{\mathrm{OUT}}=64 \times 1.25 \mathrm{~V} /$ RTSET.
Note 5. Output voltage levels are specified when terminated by 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ or equivalent load.

FUNCTIONAL DESCRIPTION

The ML6672 transceiver is a physical media dependent transceiver that allows the transmission and reception of 155 Mbps data up to 100 meters over shielded twisted pair cable or category 5 unshielded twisted pair cable.
The transmit section accepts NRZ data, sending the information on a two pin current driven transmitter. The transmitted output passes through an external low pass filter and transformer before entering the connectors to the STP or UTP cable. The output amplitude of the transmitted signal is programmable through the external RTSET resistor.
The receive section accepts NRZ coded data after it passes through an isolation transformer and band limiting filter. The adaptive equalizer is used to compensate for the amplitude and phase distortion incurred from the cable. The adaptive control section determines the cable length and adjusts the equalizer accordingly. As the input signal amplitude diminishes, the amount of equalization increases until it reaches its maximum of an equivalent 100 meters of category 5 cable.
The adaptive control block governs both the equalization level as well as the link detection status. The link detection threshold has a fixed relationship to the overall equalization level which is currently 25% of the transmitted amplitude. For the link status to be true, a minimum level signal must be received. When the input signal is small, the equalization will be at its maximum.

After the signal has been equalized, it is fed through the loopback multiplexer onto the RXOUT \pm pins.

Figure 1 shows a typical gain vs frequency plot of the adaptive equalizer for $0,25,50,75$ and 100 meter category 5 cable lengths.

Figure 1. Equalization Range

TRANSMISSION

PECL level scrambled NRZ data is received by the ML6672 and the current driven transmitter then sent the data to the filter/transformer module. The transmit amplitude is controlled by one external resistor, RTSET.

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{64 \times 1.25 \mathrm{~V}}{\text { RTSET }}
$$

For ATM UTP applications the transmit amplitude is 1 V peak to peak. The termination at the transmitter output is 50Ω. Therefore the transmit current $\mathrm{l}_{\mathrm{OUT}}=1 / 50=20 \mathrm{~mA}$.
Therefore, $\mathrm{RTSET}=64 \times 1.25 / 40 \mathrm{~K} \Omega=4 \mathrm{~K} \Omega$
The transmitter may be disabled via the TXOFF pin. When this pin is pulled low, the transmitter's output goes to its center value ($\mathrm{l}_{\mathrm{OUT}} / 2$) with no differential current flowing through the transformer.

ADAPTIVE EQUALIZATION

During transmission of data over UTP (unshielded twisted pair), distortion and ISI are caused by dispersion in the cable. Equalization is used to overcome this signal corruption. However, the distortion is frequency dependent and loop length dependent. Therefore, in most practical cases, the TP port characteristic is unknown and it is impractical to tune the equalizer specifically to each
individual port. Hence, adaptive equalizer is used in the TP-PMD to ensue proper compensation of the received signal.

By using adaptive equalizer, the receiver automatically compensate different length of cable without over equalizing or under equalizing the line. The ML6672 monitors the energy of the received signal to determine the cable length and adjust the equalizer accordingly. The input signal level is inversely proportional to the cable length. Therefore, as the signal level decreases, the amount of equalization is increased to compensate for the line loss.

RECEIVE CIRCUIT

After the data is received and equalized, it is then sent to the clock recovery circuit via the RXOUT pins. A resistor RTH is used to control the internal level of equalization.

$$
\mathrm{V}_{\mathrm{AMP}}=\frac{16 \times 1.25 \times \mathrm{RTH}}{\mathrm{RSET}}
$$

VAMP is the transmit voltage amplitude and is equal to 1 V and RSET $=5 \mathrm{~K} \Omega$. Therefore, $\mathrm{RTH}=1 \times 5 /(16 \times 1.25) \mathrm{K} \Omega=$ 250Ω.
CAP1 and CAP2 are capacitors used to set the time constant for adaptation of the equalizer loop and should be $0.33 \mu \mathrm{~F}$.

Application Example of ML6672 Configured for $1.0 V_{\text {P-P }}$ Transmit Amplitude on C5 UTP.

Note 1. Split 100 K ECL terminations are 82Ω and 130Ω to VCC and GND respectively.
Note 2. Recommended power supply bypass capacitors are $01 \mu \mathrm{~F}$ with optional $10 \mu \mathrm{~F}$ tantalum in parallel
Note 3. Transformer turns ratio is $1 \cdot 1$.
Note 4. LPBK and TXOFF inputs are active LOW.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6672CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32-Pin Molded Leaded PCC (Q32)
ML6672 CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	32 -Pin TQFP (H32)

155Mbps ATM Transceiver Evaluation Kit

GENERAL DESCRIPTION

The ML6672-9EVAL board is a 155 Mbps ATM transceiver for transmission over UTP (Unshielded Twisted Pair) Category 5 cable. At one end, the ML6672-9EVAL board interfaces to an RJ45 connector, through a transformer and common mode choke module (T1 and T2). The other end of the evaluation board interfaces to a 9-pin ODL (1408U) footprint socket. This permits the conversion of an existing fiber-based ATM design to a copper-based design.

FEATURES

- Loop back capability
- Quiet line by turning transmitter off
- Low jitter
- Fast rise and fall times at the transmitter

KIT COMPONENTS

- ML6672-9EVAL user guide
- Application Note 30
- ML6672 data sheet
- Assembled evaluation board
- 3.5" disk with Gerber Files

The user guide includes performance data, layout recommendation, layout, schematic, parts list and tutorial on how to use the demo board.

BLOCK DIAGRAM

TP-PMD Transceiver

GENERAL DESCRIPTION

The ML6673 is a complete monolithic transceiver for 125 Mbaud MLT-3 encoded data transmission over Category 5 Unshielded Twisted Pair and Shielded Twisted Pair cables. The ML6673 integrates the baseline restoration function defined in the TP-PMD standard. The adaptive equalizer in the ML6673 will accurately compensate for line losses of up to 100 m of UTP. The part requires only external 1% resistors for accurate equalization.
The ML6673 receive section consists of an equalizing filter with a feedback loop for controlling effective line compensation. The feedback loop contains a filter and detection block for determining the proper control signal. The ML6673 also contains data comparators with precisely controlled slicing thresholds and an MLT-3 to NRZI translator. An ECL 100K compatible buffer at the output interfaces directly with existing FDDI PHY silicon from various manufacturers.

The ML6673 transmit section accepts ECL 100K compatible NRZ inputs and converts them to differential current mode MLT-3 signals. Transmit amplitude is controlled by a single external resistor.
Several additional functions are provided by the ML6673 to simplify applications. A common-mode reference is
provided to set the input DC level for the equalizer and the near-end transformer winding. This terminal may be used as an AC ground for the transformer center-tap or termination resistors. The transmitter can be disabled to provide true quiet line.

The ML6673 is implemented in a BiCMOS process. A differential signal path throughout minimizes the effects of power supply transients and noise.

FEATURES

- Compliant with ANSI X3T12 FDDI over copper (TP-PMD) standard
■ Compliant with IEEE 802.3 Fast Ethernet (100BASE-TX) standard
- Integrated baseline wander correction circuit

■ Transmitter converts NRZI ECL signals to MLT-3 current driven outputs

- Transmitter can be externally turned off for true quiet line
- Receiver includes adaptive equalizer and MLT-3 to NRZI decoder
- Operates over 100 meters of STP or category 5 UTP Twisted Pair Cable
- 32-pin PLCC and TQFP

BLOCK DIAGRAM

PIN CONFIGURATION

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6673CQ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32-Pin Molded PCC
ML6673CH	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$32-$ Pin TQFP

Token Ring Physical Interface

GENERAL DESCRIPTION

The ML6682 Token Ring Physical Interface Circuit is designed for use as a token ring concentrator port interface in $4 \mathrm{Mb} / \mathrm{s}$ and $16 \mathrm{Mb} / \mathrm{s}$ IEEE 802.5 networks using category 4 and 5 unshielded twisted pair (UTP) and type 1 shielded twisted pair (STP) cable. It can also be configured as a RingIn or Ring-Out port for concentrator interface to the main network trunk. It includes a receiver equalizer for suppression of inter-symbol distortion, a narrow-bandwidth master PLL with a constant-gain phase/frequency detector for enhanced clock tracking and low VCO phase distortion, an 8 UI FIFO and slave PLL for additional jitter attenuation, internal frequency/phase tracking select logic, and a waveshaping twisted pair transmit driver which requires only a very simple external filter to meet the 802.5 standard. The circuit also includes phantom wire fault detection and output drivers for use with an external phantom switching mechanism in a concentrator-to-trunk interface application. The part has an on-chip single-pin crystal oscillator designed for a 16 MHz crystal. It can also be used with an external clock of either 16 MHz or 32 MHz frequency. The part uses a frequency squelch circuit at the twisted pair receiver to allow detection of incorrect network speed.

FEATURES

- Supports the complete interface for a concentrator.
- Supports dual PLL jitter attenuator and clock regeneration for each lobe port and Ring $\ln /$ Ring Out ports for UTP/STP extended distance concentrators.
- Compatible with IEEE 802.5-1989 Standard for Token Ring
- Pin selectable 16 and $4 \mathrm{Mb} / \mathrm{s}$ data rates
- Supports dual ring fault tolerant Ring In/ Ring Out trunks
- Fault isolation capability at each concentrator port available for network management.
- Provides Dual Phase-Locked Loop with single edge constant gain phase detector and 8 UI FIFO for clock regeneration, jitter attenuation and data recovery.
- Phantom voltage drive/sense for both transmit and receive cable pairs.
- On-chip crystal oscillator can also be driven by external clock.
- On-chip receiver channel equalization switchable for both 4 and 16 Mbps
- Advanced BiCMOS technology

BLOCK DIAGRAM

GENERAL DESCRIPTION (Continued)

External components are minimized by the use of internallycontrolled station fault, receiver pulse width squelch, onchip crystal oscillator, and internal $4 / 16 \mathrm{Mbps}$ switching logic. The ML6682 performs the hybrid switching functions, eliminating the need for relays. Isolation can be achieved optically. The circuit requires a single +5 V power supply, and is fabricated in BiCMOS technology.

PIN CONFIGURATION

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
$\begin{gathered} 1 \\ 44 \end{gathered}$	$\begin{aligned} & \text { RxTPP } \\ & \text { RxTPN } \end{aligned}$	Receive wire pair inputs. These inputs receive data from the twisted pair media through the receive isolation transformer. These pins are DC biased internally for proper receive data biasing.
$\begin{gathered} 2 \\ 20 \end{gathered}$	DGND2 DGND1	Digital ground pins.
$\begin{gathered} 3 \\ 21 \end{gathered}$	DVCC2 DVCC1	Positive power supply pins (+5 V) for digital part of the chip.
$\begin{gathered} 4 \\ 35 \end{gathered}$	AVCC3 AVCC1	Positive power supply pins (+5 V) for analog part of the chip.
5	FILTR4MB	4 Mbps PLL filter input. Connection point for external PLL filter components for 4 Mbps data rate.
6	FILTPLL2	Second PLL filter input. Connection point for external PLL filter components for second (slave) PLL.
7 F	FILTR16MB	16 Mbps PLL filter input. Connection point for external PLL filter components for 16 Mbps data rate.
8	AGND3	Analog ground pins.
29	AGND2	
32	AGND1	
9	N/C	
10	$\overline{\text { LOCK }}$	PLL phase lock indicator output. This output goes low when both PLLs achieve lock. May be externally gated with $\overline{\text { FBYP }}$ for zero delay lockout. (Prevent a 4 Mbps station from entering a 16 Mbps Ring).
11	$4 / \overline{16}$	Data rate selection input. A logic one selects 4 Mbps operation. A logic zero selects 16 Mbps operation. The pin automatically switches the receive equalizer and the PLL loop filter for the appropriate data rate.
12	PHTMD/S	"Phantom drive/sense" select input. When set low, the chip is configured for "phantom sense". In the "phantom sense" state PHTMRX1 pin serves as an input coming from an opto-isolator to sense phantom current and PHTMTX1 is an output. When $\mathrm{PHTMD} / \overline{\mathrm{S}}$ is set high, the chip is configured for "phantom drive". In the "phantom drive" state PHTMTX1 and PHTMTX2 provide the phantom drive and fault detect for the transmit pair of wires, and PHTMRX1 and PHTMRX2 sense fault detect for the receive pair of wires.

PIN \# NAME
 FUNCTION

$13 \overline{\text { ALLOW }}$
$\overline{\text { ALLOW }}$ is a digital input that allows the port to control INSERT/BYPASS through phantom current, or allows the port to be forced into INSERT mode using FBYP.

Force Bypass input. This digital input provides network management control to force the ML6682 into BYPASS mode.

Valid signal indicator output. This output goes low when the signal at RxTPP/N meets frequency and amplitude squelch requirements.
XTAL1 Crystal/external clock input. Connecting a 16 MHz crystal between this pin and ground provides the required reference frequency. This pin may also be driven by an external 16 MHz clock. XTAL2 must be connected to ground when XTAL1 is used.
XTAL2 Clock input pin. Connecting a 32 MHz external clock between this pin and ground provides the required reference frequency. When XTAL2 is used, XTAL1 must be grounded.

N/C

Receive data output. When the ML6682 is in INSERT mode, RxD is sourced by the PLL reclocked data from receive twisted pair inputs RxTPP, RxTPN. When the ML6682 is in the BYPASS mode, RxD is sourced by the TxD input.
23 RxCLK Synchronized data clock output. When the ML6682 is in INSERT mode, RxCLK is sourced by the PLL. When the ML6682 is in BYPASS mode, RxCLK is sourced by the TxCLK input.
Phantom wire fault detection output.
When this output is low, the phantom current test has failed. In the "phantom drive" mode this will be detected as an open or a short by the PHTMTX1, PHTMTX2, PHTMRX1, PHTMRX2 pins. In the "phantom sense" mode, $\overline{\text { FAULT }}$ is an output that simply buffers the PHTMRX1 input.
25 PHTMRX2 Receive pair phantom sense inputs. In
26 PHTMRX1 the "phantom drive" mode (PHTMD/S pin is tied to $V_{C C}$) these inputs sense phantom current on the receive pair wires to detect a phantom circuit fault condition. In "phantom sense" configuration (PHTMD/S pin is tied to GND) PHTMRX1 is the sense input for phantom current coming from an opto isolator and PHTMRX2 should be grounded.

PIN DESCRIPTION (Continued)

$\left.\begin{array}{cl}\text { PIN \# } & \text { NAME } \\ 27 \text { PHTMTX1 } & \text { FUNCTION } \\ \hline 28 \text { PHTMTX2 } & \begin{array}{l}\text { Transmit pair phantom drive/sense pair. } \\ \text { In the "phantom drive" mode, these } \\ \text { pins output a +5 volt phantom signal } \\ \text { and sense opens and shorts as a } \\ \text { phantom circuit fault condition. In the } \\ \text { "phantom sense" mode, PHTMTX1 is } \\ \text { an open collector pin that can be used } \\ \text { to drive an LED to reflect the INSERT/ } \\ \text { BYPASS state. In the INSERT state, }\end{array} \\ \text { PHTMTX1 is low to light the LED and } \\ \text { in the BYPASS state PHTMTX1 is high. } \\ \text { PHTMTX2 should be left floating in } \\ \text { the "phantom sense" mode. }\end{array}\right\}$
\(\left.$$
\begin{array}{ccl}\text { PIN \# } & \text { NAME } & \text { FUNCTION } \\
\hline 36 & \text { RVCO } & \begin{array}{l}\text { External resistor input. A precision } \\
\text { resistor of the appropriate value } \\
\text { connected to this input sets the phase } \\
\text { detector gain. }\end{array} \\
37 & \text { RTSET } & \begin{array}{l}\text { External resistor input. A precision } \\
\text { resistor of the appropriate value } \\
\text { connected to this input sets the } \\
\text { twisted pair transmitter output level. } \\
\text { Receive squelch low select input. } \\
\text { When this pin is tied to Vcc the } \\
\text { receive squelch level will be lower; } \\
\text { more sensitive. When this pin is tied to } \\
\text { GND, the receive squelch level will be } \\
\text { higher; less sensitive. }\end{array} \\
38 & \text { RSL } & \text { SQDIS }\end{array}
$$ \begin{array}{l}Squelch disable input. Normally wired

to ground. A high level input disables

the RX wire pair squelch function.\end{array}\right\}\)| Differential connection for external |
| :--- |
| equalization components for 16 Mbps |
| operation. The equalizer is disabled |
| when these two pins are tied together. |
| 40 | EQ16B | Differential connection for external |
| :--- | :--- |
| equalization components for 4 Mbps |
| operation. The equalizer is disabled |
| when these two pins are tied together. |

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

$V_{C C}$ Supply Voltage $5 \mathrm{~V} \pm 5 \%$ All V_{CC} supply pins must be within 0.1 V of each other. All GND pins must be within 0.1 V of each other.
T_{A}, Ambient Temperature
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
T_{l}, Junction Temperature $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
REXT1 ...1.66K ohms $\pm 1 \%$
REXT2
2.42 K ohms $\pm 1 \%$

ELECTRICAL CHARACTERISTICS

Over full range of operating conditions unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

TTL Inputs (4/ $\overline{16}, \overline{\text { NSERT, PHTMD } / \bar{S}}$, SQDIS, $\overline{\text { ALLOW }}, ~ T \times D, ~ T x C L K, ~ \overline{F B Y P}) ~$

V_{IL}	Input Low Voltage	$\mathrm{I}_{\mathrm{IL}}=400 \mu \mathrm{~A}$	-0.3		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage	$\mathrm{I}_{\mathrm{IH}}=100 \mu \mathrm{~A}$	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
I_{IL}	Input Low Current	All except TxD, TxCLK; $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-400			$\mu \mathrm{~A}$
		TxD, TxCLK; $\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-1600			$\mu \mathrm{~A}$
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			100	$\mu \mathrm{~A}$

V_{OL}	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.40	V
V_{OH}	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-0.1 \mathrm{~mA}$	2.4			V
Receiver						
$\mathrm{V}_{\text {OSR }}$	RxTPP-RxTPN Differential Offset Voltage	$\mathrm{V}_{\text {SQDIS }}=\mathrm{V}_{1 \mathrm{H}}$	-35		35	mV
$\mathrm{V}_{\text {DSO }}$	RxTPP-RxTPN Differential Squelch Threshold	RSL $=\mathrm{V}_{\text {IL }}$	335		565	mVp-p
		RSL $=\mathrm{V}_{\mathrm{IH}}$	35		70	mVp-p
$\mathrm{V}_{\text {PSO }}$	RxTPP-RxTPN Post-Squelch Differential Input Threshold	RSL $=\mathrm{V}_{\text {IL }}$	167		282	mVp-p
		RSL $=\mathrm{V}_{\text {IH }}$	23		47	mVp-p
$V_{\text {IBR }}$	RxTPP-RxTPN Open-Circuit Common-Mode Bias Voltage		2.2		2.8	\checkmark
$\mathrm{R}_{\mathrm{IDR}}$	RxTPP-RxTPN Differential Input Resistance	Input differential voltage $=2 \mathrm{~V}$, centered at $\mathrm{V}_{\text {IBR }}$	3.0		6.7	K Ω
$\mathrm{V}_{\text {STX }}$	XTAL1 Input Switching Threshold Voltage		2.2		3.4	V
$I_{\text {RXT1 }}$	RExT1 Input Current	RExT1 $=1.66 \mathrm{~K} \Omega$	575		625	$\mu \mathrm{A}$
$\mathrm{I}_{\text {RXT2 }}$	RExT2 Input Current	RExT2 $=2.42 \mathrm{~K} \Omega$	387		438	$\mu \mathrm{A}$

Transmitter

$I_{\text {TOUT }}$	TxTPP Differential Output Current	$\mathrm{R}_{\mathrm{L}}=100$ or 150Ω	28	33	mA
$\mathrm{I}_{\text {TOFF }}$	TxTPP-TxTPN Off-state Output Current	$\mathrm{V}_{\overline{\mathrm{FBYP}}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{R}_{\mathrm{L}}=200 \Omega$		1.5	mA
$\mathrm{I}_{\text {TXI }}$	TxTPP-TxTPN Differential Current Imbalance	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	-900	+900	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Phantom Output Driver (PHTMD/ $\overline{\mathrm{S}}=\mathrm{V}_{\mathrm{IH}}$, except as noted)

V_{OHP}	PHTMTX1/PHTMTX2 Output High Voltage	$\mathrm{I}_{\mathrm{OHP}}=-1 \mathrm{~mA}$	4.1		
	$\mathrm{I}_{\mathrm{OHP}}=-2 \mathrm{~mA}$	3.8		V	
$\mathrm{I}_{\mathrm{OHP}}$	PHTMTX1/PHTMTX2 Output Short Circuit Current	$\mathrm{V}_{\mathrm{OHP}}=0 \mathrm{~V}$	-20	V	
$\mathrm{I}_{\mathrm{OZP}}$	PHTMTX1/Tx2/Rx1/Rx2 Output Off Current	PHTMD/S $=\mathrm{V}_{\mathrm{IL}}$ $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OHP}} \leq \mathrm{V}_{\mathrm{CC}}$	-100	-4	mA

Phantom Output Fault Sensing (PHTMD/ $\bar{S}=V_{I H}$)

$V_{\text {OPN }}$	FAULT Output Voltage, Normal Condition	Notes 2,3	2.4		
$V_{\text {OPF }}$	FAULT Output Voltage, Fault Condition	Notes 2,4		V	

Power Supply Current

$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current, Transmitting	Note 1			205
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current, Idle	Current into all V_{CC} pins, $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		mA	

AC CHARACTERISTICS (Over full range of operating conditions unless otherwise specified)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Transmitter (Note 8)						
$\mathrm{t}_{\text {DF01 }}$	TxTPP-TxTPN Output Delay Mismatch, Zeros and Ones	16Mb/s, Note 5A	0.3		1.0	ns
		$4 \mathrm{Mb} / \mathrm{s}$	-0.5		0.5	ns
${ }^{\text {t }}$ DFMX	TxTPP-TxTPN Output Delay Mismatch, Random Data	$4 \mathrm{Mb} / \mathrm{s} \& 16 \mathrm{Mb} / \mathrm{s}$, Note 5B	-2.0		2.0	ns
$t_{\text {DCD }}$	TxTPP-TxTPN Output Duty Cycle Distortıon	16Mb/s, Note 6	-1.5		1.5	ns
		$4 \mathrm{Mb} / \mathrm{s}$, Note 6	-6.0		6.0	ns

Receiver, General					
$t_{\text {RPWL }}$	Maximum RxTPP-RxTPN Period To Turn On	$16 \mathrm{Mb} / \mathrm{s}, \mathrm{RxTP} \mathrm{V}_{\text {DIFP-P }}=1 \mathrm{~V}$	166	244	ns
		$4 \mathrm{Mb} / \mathrm{s}, \mathrm{RxTP} \mathrm{V}_{\text {DIFP-P }}=1 \mathrm{~V}$	667	2000	ns
$t_{\text {RPWS }}$	Minimum RxTPP-RxTPN Period To Turn On	$16 \mathrm{Mb} / \mathrm{s}, \mathrm{RxTP} \mathrm{V}_{\text {DIFP-P }}=1 \mathrm{~V}$	40	59	ns
		$4 \mathrm{Mb} / \mathrm{s}, \mathrm{RxTP} \mathrm{V}_{\text {DIFP-P }}=1 \mathrm{~V}$	166	244	ns
$t_{\text {PL }}$	PLL Phase-Lock After Freq. Lock	Figure 1		1.5	ms
t_{FL}	PLL Frequency-Lock After Power-Up	Power-up to $2 B R \pm 1 \%$ Hz frequency at RxCLK; Note 7		500	ms
t_{DL}	PLL Phase Unlock Time	Figure 1		100	$\mu \mathrm{s}$
tpVC1	RxCLK Period, $\mathrm{V}_{\text {FILTR4MB }}=2.2 \mathrm{~V}$	$\mathrm{V}_{4 / 16}=\mathrm{V}_{\mathrm{OH}}(4 \mathrm{Mb} / \mathrm{s})$, Note 9	225	150	ns
$\mathrm{t}_{\text {PVC2 }}$	RxCLK Period, $\mathrm{V}_{\text {FILTR4MB }}=2.8 \mathrm{~V}$	$\mathrm{V}_{4 / 16}=\mathrm{V}_{\mathrm{OH}}(4 \mathrm{Mb} / \mathrm{s})$, Note 9	75	112	ns
tpVC3	RxCLK Period, $\mathrm{V}_{\text {FILTSL }}=2.2 \mathrm{~V}$	$\mathrm{V}_{4 / 16}=\mathrm{V}_{\mathrm{OL}}(16 \mathrm{Mb} / \mathrm{s})$, Note 9	56.3	37.5	ns
tpVC4	RxCLK Period, $\mathrm{V}_{\text {FILTSL }}=2.8 \mathrm{~V}$	$\mathrm{V}_{4 / 16}=\mathrm{V}_{\mathrm{OL}}(16 \mathrm{Mb} / \mathrm{s})$, Note 9	18.8	28	ns
K_{d}	Phase Detector Gain	$4 \mathrm{Mb} / \mathrm{s}$; Note 10 and Figure 2	0.25	0.35	$\mu \mathrm{A} / \mathrm{ns}$
		$16 \mathrm{Mb} / \mathrm{s}$; Note 10 and Figure 2	1.0	1.4	$\mu \mathrm{A} / \mathrm{ns}$
$t_{\text {RSTE }}$	PLL Static Phase Error	Note 11	-2	+2	ns
$t_{\text {RDC }}$	RxD to RxCLK Delay		-2	2	ns
$t_{\text {RTD }}$	RxTP to RxD Delay		1	4	BT
$\mathrm{t}_{\text {RCFS }}$	RxCLK 90-10\% Fall Time	RxCLK ter $=31.25 \mathrm{~ns}$		5	ns
tPTRD	TxD to RxD Propagation Delay	$V_{\overline{\text { FBYP }}}=V_{\text {OL }}$, Figure 4	TBD	TBD	ns
tPTRC	TxCK to RxCK Propagation Delay	$V_{\overline{\mathrm{FBYP}}}=\mathrm{V}_{\mathrm{OL}}, \text { Figure } 4$	TBD	TBD	ns
$\mathrm{t}_{\text {SRM }}$	Setup Time, RxD Valid to RxCLK Risıng Edge (1.5V point)	RxCLK ter $=31.25 \mathrm{~ns}$, Figure 4	10		ns
$\mathrm{t}_{\text {HRM }}$	Hold Time, RxD Valid After RxCLK Rising Edge (1.5V)	RxCLK tPER $=31.25 \mathrm{~ns}$, Figure 4	2		ns
$\mathrm{t}_{\text {RCRM }}$	RxCLK 10-90\% Rise Time	$\text { RxCLK } t_{\text {PER }}=31.25 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ;$ Figure 4		5	ns
$t_{\text {RCFM }}$	RxCLK 90-10\% Fall Time	$\text { RxCLK } t_{P E R}=31.25 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ;$ Figure 4		5	ns

Note 1: Current into all V_{CC} pins, $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, transmitting and receiving 16 MHz data.
Note 2: Use a 2 K ohm load at $\overline{\text { FAULT }}$ for these tests.
Note 3: $2.9 \mathrm{~K}<\mathrm{RL} 1<5.5 \mathrm{~K}, 2.9 \mathrm{~K}<\mathrm{RL} 2<5.5 \mathrm{~K}$. RL1 connected between PHTMTX1 and PHTMRX1; RL2 connected between PHTMTX2 and PHTMRX2.
Note 4: Tested under the following conditions:
A. RL1 $>9.9 \mathrm{~K}$ and $2.9 \mathrm{~K}<\mathrm{RL} 2<5.5 \mathrm{~K}$, or RL2 $>9.9 \mathrm{~K}$ and $2.9 \mathrm{~K}<\mathrm{RL} 1<55 \mathrm{~K}$.
B. RL. $<100 \Omega$ and $2.9 \mathrm{~K}<\mathrm{RL} 2<5.5 \mathrm{~K}$, or RL2 $<100 \Omega$ and $2.9 \mathrm{~K}<\mathrm{RL} 1<5.5 \mathrm{~K}$.

Note 5: A. Difference between the delay from the nearest TxCLK rising edge to the TxTPPN differential BR edge and the delay from the nearest TxCLK rising edge to the TxTPPN differential $B R / 2$ edge. Measured for either rising output edges or falling output edges only, with measurements made for each. Measurements are to be made at the output of both test circuits shown in Figure 3. (See waveforms in Figure 7-4 of draft IEEE 802.5q/D4).
B. Difference between the delay from the nearest TxCLK rising edge to the TxTPPN differential edge and the delay from the nearest TxCLK rising edge to the TxTPPN differential edge. Measured for either rising output edges or falling output edges only, with measurements made for each using random data (JKs, 0s, 1s) Measurements are to be made at the output of both test circuits shown in Figure 3. (See waveforms in Figure 7-4 of draft IEEE 802.5q/D4)
Note 6: One-half the difference between the positive-going differential output pulsewidth and the negative-going differental output pulsewidth. Measured at the output of both test circuits in Figure 3 with a constant stream of all zeros or all ones. Measurements are to be averaged over 128 data pulses Measured with input drive to TxD/TxCLK.
Note 7: Not tested in production Guaranteed by characterızation measurements.
Note 8: The transmitter TxTPP-TxTPN output waveform must also meet the waveform templates shown in section 7.2.2.2 of IEEE 802.5q
Note 9: Disconnect the filter components at the FILT4MB or FILT16MB pins and apply the indicated voltage to that pin. Measure the output period at RxCLK. Disconnect RxTPPN from all input.
Note 10: See Figure 2 for timing. With the circuit in phase-lock, inject $11=+5 \mu \mathrm{~A}$ and measure the propagation delay tpD1 between an RxTPP rising edge and the corresponding RxCLK falling edge. Make a second delay measurement tpD2 while injecting $12=-5 \mu \mathrm{~A}$. Phase detector gain is given by $\mathrm{K}_{\mathrm{d}}=(\mathrm{I} 2-11) /\left(\mathrm{tpD1}^{-t_{\text {PD } 2}}\right)$.
Note 11: The ML6682 is phase-locked to the RxTPP waveform with RxTPN biased to 2.5 V (see Figure 5). Monitor RxD to observe correct data being latched For one pulse, shorten the positive pulse at RxTPP by moving the rising edge, and check to see if the short pulse was latched Continue to shorten the pulse in this manner untul incorrect data appears at RxCLK. The tıme between the rising edge and the unshortened positive pulse midpoint is trSTE. Repeat this procedure for the other 3 cases shown in Figure 5.

Figure 1. PLL Phase Lock Timing.

Figure 2. Phase Detector Gain Test.

Figure 3A. Transmitter AC Test Circuit, 100 Ohms (UTP).

Figure 3B. Transmitter AC Test Circuit, 150 Ohms (STP).

Figure 4. Receiver Timing.

Figure 5. Receiver Static Timing Error Test.

FUNCTIONAL DESCRIPTION

Page 1 shows the functional block diagram of the ML6682. The device contains four major functional blocks; twisted pair line interface, port interface, PLL retiming circuit and crystal oscillator. In normal operation, the data is retransmitted from the previous port on to the transmit TP wire pair (to the station) by the use of TxD and TxCLK. The data from the station via the receive wire pair is retimed through the use of a dual PLL/FIFO. The retimed data at RxD is then clocked out to the next port by RxCLK .

PORT INTERFACE

The ML6682 can be used for implementing Lobe, Ring In and Ring Out ports in a concentrator. The device can be placed into either the INSERT state or the BYPASS state. Figure 6 is a functional illustration of the INSERT and BYPASS states.

When ML6682 is in the BYPASS state, the station is bypassed. The data input from the previous port is retimed and fed directly through to the next port (see figure 6). Signal from the receive twisted pair is retimed via the PLL and looped back to the transmit twisted pair. However, if the signal does not meet the receive frequency squelch criteria, the signal will not be fed to the PLL. The PLL will transmit the local clock signal onto the transmit twisted pair.

When the port is INSERTed into the network, the transmit data $T x D$ from the previous port is clocked by transmit clock TxCLK, and fed out on the twisted pair lines. The data from the receive twisted pair input is passed through the PLL and output on RxD and RxCLK pins.

Through various input pins, the ML6682 may be selected for one of three options:

1. Forced into the INSERT state
2. Forced into the BYPASS state
3. Allow the remote station to place the ML6682 into INSERT or BYPASS state with phantom control.

The logic equation to implement these options is as follows:

$$
\overline{\mathrm{FBYP}} \times(\overline{\mathrm{ALLOW}}+\overline{\mathrm{FAULT}})=\text { INSERT }
$$

When INSERT is a logic 1 , the ML6682 is placed into the INSERT state as shown in Figure 6. When INSERT is a logic 0, the ML6682 is placed into the BYPASS state. Truth table 1 illustrates how the three above options can be achieved.

	$\overline{\text { FBYP }}$	$\overline{\text { ALLOW }}$	$\overline{\text { FAULT }}$	INSERT State
Forced Bypass Mode	0	X	X	0
Phantom Controlled Bypass	1	0	0	0
Phantom Controlled Insert	1	0	1	1
Forced Insert	1	1	X	1
$\mathrm{X}=$ Don't Care				

Table 1. Logic for INSERT/BYPASS.

TP LINE INTERFACE

TP Line Receiver consists of a line equalizer, receive squelch circuit and a resistive attenuator.

RECEIVE EQUALIZER

This receive equalizer compensates for twisted-pair cable dispersion, which otherwise would give rise to intersymbol interference (ISI). The amount of equalization varies with the average amplitude of the received signal. The received signal amplitude gives a rough value for the length of the attached cable. The filter/equalizer characteristic is the inverse of the cable's dispersion characteristic. Both UTP and STP cables approximate a low-pass filter, so the filter/equalizer approximates an inverse root equalizer. There are two sets of equalizers, one for 4 Mbps operation and one for 16 Mbps operation. This is switched automatically when the $4 / \overline{16}$ pin is toggled. Each equalizer has its own external components which consist of two resistors and a capacitor.

Figure 6. Bypass and Insert States.

RECEIVE SQUELCH CIRCUIT

The TP line receiver consists of a resistive attenuator with common-mode bias set circuit and voltage offset comparators to set the amplitude squelch threshold. When the RxTP input signal meets amplitude and pulsewidth requirements, the SQUELCH circuit reduces the offset voltage of the TP Line Receive comparators, decreasing the amplitude squelch threshold. This hysteresis allows the receiver to stay on in the presence of a fading input signal.
The receive squelch circuit qualifies the incoming signal to determine whether the signal contains valid data. The circuit qualifies the signal on the basis of both the amplitude and frequency of the signal. This prevents the PLL from trying to lock onto the wrong frequency when using 4 or 16 Mbps data rates, as well as preventing the PLL from locking onto noise. Once the signal has been qualified, the circuit will then unsquelch. The RSL pin selects one of two amplitude levels for the amplitude squelch criteria, while the $4 \overline{16}$ pin selects one of two frequency squelch criteria.

The level of the amplitude squelch circuit can be selected by using the RSL pin. The squelch threshold range is as follows:

	MIN Threshold	MAX Threshold
RSL $=1$	$35 \mathrm{mV}_{\text {P-P }}$	70 mV
P-P		
RSL $=0$	335 mV	

Frequency Squelch Criteria

4 Mbps max limit
4.1 MHz to 6 MHz
4 Mbps min limit
0.5 MHz to 1.5 MHz
16 Mbps max limit
17 MHz to 25 MHz
16 Mbps min limit
4.1 MHz to 6 MHz

When squelch is on, the PLL is tracking the internal clock frequency coming from an external clock or the internal oscillator. When the part unsquelches the PLL switches into phase acquisition mode, attempting to phase lock onto the incoming data.

PHASE LOCK LOOP

The PLLs are third-order, type II charge pump loops (see F.M. Gardner, "Charge-Pump Phase-Lock Loops", IEEE Trans Comm, Vol. COM-28, No. 11, pp. 1849-1858, November 1980). They have high damping factor and low loop bandwidth to minimize accumulated jitter. The loop filter is externally connected. The third pole is at a very high frequency, since the ratio of the second and third order pole capacitors $\mathrm{C} 1 / \mathrm{C} 3$ is about 20,000:1. This, too, is done to minimize accumulated jitter.

The 16 Mbps loop filter, slave loop filter, and 4 Mbps loop filter are external to the chip. Each filter consists of two capacitors and a resistor. The switching between the 16 Mbps and 4 Mbps loop filters is automatic when the $4 / \overline{16}$ pin is toggled. Each data rate uses a different charge pump.
The VCO uses a MOS voltage-to-current converter at its input to give a very high input impedance and low static phase error. The high VCO input impedance also allows the elimination of a loop filter buffer and the parasitic poles a buffer would add to the loop. The oscillator itself is a bipolar ring type oscillator with temperature and voltage-compensated output frequency for low jitter.
The first PLL will achieve lock after several microseconds of a static phase error of less than $\pm 4 \mathrm{nsec}$. Hysteresis is built into the lock circuit so that it is more difficult to achieve lock than it is to lose lock. This will also prevent any oscillation of the LOCK pin. Lock will be lost if the phase error exceeds $\pm 4 \mathrm{nsec}$ for several micro-seconds. Once lock is lost, the PLL will try to achieve phase lock for several milli-seconds. If it is unsuccessful, the ML6682 will switch to internal frequency acquisition mode and recenter the VCO. Once it has achieved frequency lock with its internal oscillator, it will automatically switch to phase acquisition mode and try again to phase lock onto the data.
The frequency squelch circuit will limit the frequency range allowed to pass into the PLL. This limited frequency range in addition to the stringent lock criteria will insure that the PLL will not lock onto harmonics or sidebands of the fundamental data rate.

The first PLL clocks the data into an 8 UI FIFO. Each flipflop in the FIFO stores one UI which is one half bit. The second (slave) PLL has a much narrower bandwidth set by the external filter connected to pin FILTPLL2. The second PLL is fed the first PLL's clock so that it can remove more of the jitter. The clock out of the second PLL is used to clock the data out of the FIFO and onto the RxD pin. The second PLL's clock output appears at RxCLK. This dual PLL architecture is the most effective way to reduce jitter and insure optimal performance from a token ring network.

TP LINE DRIVER

The TP OUTPUT driver uses a current mode switch which develops the output voltage by driving current through the terminating resistor and the output filter. Both TxTPP and TxTPN outputs are open collector, intended to drive a center-tapped transformer, with the center tap connected to V_{CC}. The driver is capable of driving 150Ω doublyterminated transmission lines to a minimum $4.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ level or 100Ω doubly-terminated transmission lines to a minimum 2.7V $\mathrm{V}_{\text {P-p }}$ level. The driver's output is waveshaped, allowing the use of a simple external transmit filter.

PHANTOM CURRENT DETECTION

The ML6682 provides a phantom current detection function. With PHTMD/S driven high, the phantom voltage and wire fault detection circuit provides correct phantom DC output voltage under normal conditions. It also senses short-circuit and open-circuit fault conditions, and removes phantom voltage when appropriate.
In the LOBE port application with PHTMD/S tied low ($\overline{\text { FBYP }}$ is tied high and $\overline{\text { ALLOW }}$ is tied low), driving PHTMRX1 high places the device into the INSERT mode. Driving PHTMRX1 low places the device in the BYPASS mode, in which data from the previous port will be passed on to the next port.

CLOCK OSCILLATOR

The ML6682 provides an on-chip clock oscillator by connecting a crystal to the XTAL1 pin. The ML6682 can also be driven by an external 16 MHz clock at the XTAL1 pin, or by an external 32 MHz clock at the XTAL2 pin. In either case, the unused XTAL pin should be grounded.

APPLICATIONS

Figure 7 shows a block diagram of an intelligent UTP Hub implementation with active retiming on each port. The architecture shown has a back up ring for fault tolerant operation. The Ring In and Ring Out ports use phantom current to detect wire faults. When a fault is detected, the Ring-In and Ring-Out port go into the bypass state and perform an automatic loopback onto the Back-up Ring. This feature is especially useful in stackable hub designs.
A micro processor can be used to manage each individual port. All the ports including the Ring In and Ring Out ports can be individually programmed into "Force INSERT", "Force BYPASS" or "Allow phantom control".

LOBE PORT

Figure 8 shows a typical implementation of a lobe port. Lobe ports are configured as phantom sense ports using opto isolators for sensing phantom current. Phantom current is sensed with an opto isolated output signal fed into pin PHTMRX1. PHTMTX1 will go low with an open collector output when the ML6682 goes into the INSERT state. PHTMTX1 may either be used to drive an LED indicator or another opto isolator to signal the remote station whether it is inserted or not.
By connecting the signal from the $\overline{\mathrm{LOCK}}$ pin to the $\overline{\mathrm{FBYP}}$ pin, the ML6682 is forced into bypass mode until the PLL achieves lock. When a station with a frequency different than the ring frequency attempts to insert into the ring, the PLL will not achieve lock and thus the station will not be inserted.

Figure 7. Intelligent UTP Hub.

RING-IN PORT

The Ring In port may also be configured for phantom sense with automatic loopback fault detection. When Phantom current is detected the part is in the INSERT state. If phantom current is lost, the ML6682 will automatically switch to the BYPASS state. Using the $\overline{\text { FBYP }}$ and $\overline{\text { ALLOW }}$ pins the part can also be forced into INSERT state, for compatibility with older standard type hubs, or forced into BYPASS for diagnostic purposes.

The configuration of a fault tolerant Ring In port is implemented exactly like a lobe port. The TxD and TxCLK pins are connected to the $R \times D$ and the $R \times C L K$ pins of the ring out port to create a "back up" ring. When the fault tolerant feature is not needed for compatibility with the older hubs, the phantom current sense capability of the

ML6682 should be disabled and the device should be placed in the forced insert state by using $\overline{\text { FBYP }}$ and ALLOW. The LOCK pin should still be used to ensure that the proper ring speed is maintained.

RING OUT PORT

Tie the PHTMD/S pin high to configure the ML6682 as a Ring Out port. In this mode the Ring Out port looks like a station; however, when a FAULT is detected on the transmit or receive twisted pair wires, the ML6682 will automatically go into BYPASS state. The PHTMRX1 and PHTMRX2 pins drive the receive pair transformer center taps, and the PHTMX1 and PHTMTX2 pins drive the transmit pair transformer center taps on the cable side of the transformers in this mode.

Figure 8. Typical Circuit for a Lobe Port.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6682CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$44-$ Pin PLCC (Q44)

Mass Storage

Section 5
Selection Guide 5-1
Read/Write Amplifiers
ML117 2, 4, or 6-Channel Read/Write Circuits 5-5
ML117R 2, 4, or 6-Channel Read/Write Circuits 5-5
ML501 6, 7, or 8-Channel Read/Write Circuits 5-13
ML501R 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502R 6, 7, or 8-Channel Read/Write Circuits 5-13
ML502S 6, 7, or 8-Channel Read/Write Circuits 5-13
ML511 4, 6, 7, or 8-Channel Read Write Circuits 5-21
ML511R 4,6,7, or 8-Channel Read/Write Circuits 5-21
ML4415 15-Channel Read/Write Circuit 5-132
ML4415R 15-Channel Read/Write Circuit 5-132
ML4416 14-Channel Read/Write Circuit with CS 5-132
ML4416R 14-Channel Read/Write Circuit with $\overline{C S}$ 5-132
ML4451 2-Channel Preamplifier for Tape Drives 5-194
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML4610R 5V, 2-, 4-Channel Thin-Film Read/Write Circuit 5-269
ML4611R 5V, 2-, 4-Channel Thin-Film Read/Write Circuit 5-269
ML6320 3V/5V 4-Channel Thin-Film Read/Write Circuit 5-400
Read/Write Signal Processing
ML541 Read Data Processor 5-29
ML4041 Read Data Processor 5-39
ML4042 Read Data Processor 5-39
ML4417 Zoned Bit Recording Circuit 5-140
ML4427 Zoned Bit Recording Circuit 5-140
ML4568 Disk Pulse Detector + Embedded Servo Detector 5-261
ML6005 24 Mbps Read Channel Filter/Equalizer 5-275
ML6006 36 Mbps Read Channel Filter/Equalizer 5-285
ML6010 Integrated Disk Read Channel Processor 5-295
ML6012 3.5" RW MOD Read Channel Front-end Processor 5-303
ML6013 3.5" R/W MOD Read Channel Back-end Processor 5-317
ML6024 16 Mbps Filter/Equalizer for Tape Drives 5-332
ML6025 24 Mbps Read Channel Filter/Equalizer 5-334
ML6026 36 Mbps Read Channel Filter/Equalizer 5-344
Read/Write Signal Processing (Continued)
ML6042 Tape Drive Data Channel Processor 5-365
ML6310 3V/5V Read Channel Front-end Processor 5-369
ML6311 3V/5V Read Channel Back-end Processor 5-384
ML8464B Pulse Detector 5-406
ML8464C Pulse Detector 5-406
Servo Control ICs
ML4401 Servo Demodulator 5-50
ML4402 Servo Driver 5-56
ML4403 Servo Controller 5-61
ML4404 Trajectory Generator 5-71
ML4406 Disk Voice Coil Servo Driver 5-82
ML4407 Disk Voice Coil Servo Driver 5-82
ML4408 Low Voltage Drop Voice Coil Servo Driver 5-88
ML4413 Servo Controller 5-61
ML4418 Low Saturation Voice Coil Servo Driver 5-150
ML4431 Servo Demodulator 5-186
ML4506 5V Disk Voice Coil Servo Driver 5-207
ML4508 Low Voltage Drop Voice Coil Servo Driver 5-214
ML4532 Servo Burst Area Detector with PWM 5-230
ML4533 Servo Burst Area Detector without PWM 5-230
ML4534 Area Detector Based Embedded Servo Demodulator 5-241
ML4535 Area Detection Based Hybrid Servo Demodulator 5-248
ML4536 Servo Burst Area Detector without PWM DAC 5-230
Motor Control ICs
ML4410 Sensorless Spindle Motor Controller 5-95
ML4411 Sensorless Spindle Motor Controller 5-106
ML4412 Enhanced Sensorless BLDC Motor Controller 5-119
ML4420 Enhanced Sensorless BLDC Motor Controller 5-157
ML4425 Sensorless BLDC PWM Motor Controller 5-170
ML4426 Sensorless BLDC PWM Motor Controller with Reverse 5-170
ML4510 5V Sensorless Spindle Motor Controller 5-221
ML6035 5V Spindle Motor Controller and Driver 5-354
Tape Drive
ML4452 MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback 5-202
ML6042 Tape Drive Data Channel Processor 5-365
Magneto Optical Drive
ML6012 3.5" R/W MOD Read Channel Front-end Processor 5-303
ML6013 3.5" R/W MOD Read Channel Back-end Processor 5-317

READ/WRITE AMPLIFIERS

Part Number	Numbers of Channels	Head Type	Max Input Noise ($\mathrm{nV} / \mathrm{VHz}$)	Write Current Range (mA)	Key Features	Package Options
ML117	2, 4 or 6	Ferrite	2.1	10 to 50	Write Current Disable Function	$\begin{aligned} & \text { PDIP-18, 22, 28; } \\ & \text { SO-18, 24; PCC-28 } \end{aligned}$
ML117R	2,4 or 6	Ferrite	2.1	10 to 50	Internal Damping Resistors	$\begin{aligned} & \text { PDIP-18, 22, 28; } \\ & \text { SO-18, 24; PCC-28 } \end{aligned}$
ML501	6 or 8	Ferrite	1.5	10 to 50	Enchanced Write Stability	$\begin{aligned} & \text { PDIP-28, 40; } \\ & \text { SO-32; PCC-28, } 44 \end{aligned}$
ML501R	6 or 8	Ferrite	1.5	10 to 50	ML501 with Internal Damping Resistors	$\begin{aligned} & \text { PDIP-28, 40; } \\ & \text { SO-28, 32; PCC-28, } 44 \end{aligned}$
ML502	6 or 8	Thin Film	1.5	10 to 50	Enchanced Write Stability	$\begin{aligned} & \text { PDIP-28, 40; } \\ & \text { SO-32; PCC-28, } 44 \end{aligned}$
ML502R	6,7 or 8	Thin Film	1.5	10 to 50	ML502 with Internal Damping Resistors	$\begin{aligned} & \text { PDIP-28, 40; } \\ & \text { SO-32; PCC-28, } 44 \end{aligned}$
ML502S	6 or 8	Thin Film	1.5	10 to 50	ML502 with Internal 750Ω Damping Resistor	PCC-28, 44
ML511	4,6 or 8	Ferrite	1.5	10 to 40	Improved Write Stability	SO-24; PCC-28, 44
ML511R	$4,6,7$ or 8	Ferrite	1.5	10 to 40	ML511 with Internal Damping Resistor	SO-24; PCC-28, 44
ML4415	15	Ferrite	1.5	10 to 40	Improved Write Current Stability	PCC-44
ML4415R	15	Ferrite	1.5	10 to 40	ML4415 with Internal Damping Resistor	PCC-44
ML4416	14	Ferrite	1.5	10 to 40	Chip Select Input	PCC-44
ML4416S	14	Ferrite	1.5	10 to 40	ML4416 with Internal Damping Resistor	PCC-44
*ML4610R	2 or 4	Thin Film	0.85	5 to 35	Switchable Damping Res. (700)	SO-16, 20
*ML4611R	4	Thin Film	0.85	5 to 35	Switchable Damping Res. (700 $)^{\text {) }}$ and Write Current Adjust	SO-24
ML6320-3	4	Thin Film	0.6	3 to 30	2.7V to 3.6V Operating Supply	SSOP-20
ML6320-5	4	Thin Film	0.6	3 to 30	5 V , SSINTC Alternate Source	SOIC-20

Note: * Possible uses in Tape Drive Applications.

READ/WRITE SIGNAL PROCESSING

Part Number	Function	Key Features	Package Options
ML4041	Read Data Processor	Fast AGC Recovery, 1 ns Pulse Pairing	PDIP-24, SO-24, PCC-28
ML4042	ML4041 with Undervoltage Detector	Fast AGC Recovery, 1 ns Pulse Pairing	PDIP-28, SO-28, PCC-28
ML4417 ML4427	Zone Bit Recording IC	100 MHz VCO	SO-16, PDIP-16
ML4568	Pulse Detector with Embedded Servo	5V Only; 1ns Pulse Pairing	PCC-28
*ML541	Read Data Processor	$15 \mathrm{MBits} / \mathrm{sec}$ Data Rate	PDIP-24, CERDIP-24, PCC-28, SO-24
ML6005	24 Mbps HDD Filter/Equalizer	Low Power/High Performance	SSOP-20
ML6006	36 Mbps HDD Filter/Equalizer	Low Power/High Performance	SSOP-20
ML6010	36 Mbps Read Channel Combo	Low Cost/High Integration Configurable Array	QFP-52
ML6024	16Mbps Tape Filter/Equalizer	Parasitic Insensitive Gm/C Filter, Programmable $\mathrm{f}_{\mathrm{C}} \mathbf{2 - 9 M H z}$, 10dB Boost	SSOP-20
ML6025	24Mbps HDD Filter/Equalizer	Parasitic Insensitive Gm/CFilter, Programmable f $\mathrm{C} 3-13 \mathrm{MHz}$, 10dB Boost	SSOP-20
ML6026	36Mbps Tape Filter/Equalizer	Parasitic Insensitive Gm/C Filter, Programmable $f_{C} 4-20 \mathrm{MHz}$, 10dB Boost	SSOP-20
ML6310	3V/5V HDD Read Channel Front-end Processor	Low Profile Package, High Integration, Low Power, $3 \mathrm{~V} / 5 \mathrm{~V}$ Supplies	TQFP-32
ML6311	3V/5V HDD Read Channel Back-end Processor	Low Profile Package, High Integration, Low Power, $3 \mathrm{~V} / 5 \mathrm{~V}$ Supplies	TQFP-32
ML8464B	Pulse Detector	DP8464B Second Source	PDIP-24, PCC-28
ML8464C	Pulse Detector	1 ns Pulse Pairing	PDIP-24, PCC-28

Note: * Possible uses in Tape Drive Applications.

SERVO CONTROL ICs

Part Number	Function	Key Features	Package Options
ML4401	Servo Demodulator	ECL Output VCO	PDIP-28, PCC-28
ML4402	Servo Driver, External Power Drive	Low Offset ($\pm 5 \mathrm{mV}$)	PDIP-20, PCC-20
ML4403	Servo Controller	On-Chip Interpolation Function	PDIP-20, PCC-20
ML4404	Analog Trajectory Generator	User-Defined Trajectory, 2 DACs	PDIP-28, PCC-28
ML4406	Servo Driver, Internal Power Drive	Internal Threshold Reference	PCC-20
ML4407	Servo Driver, Internal Power Drive	External Threshold Reference	PCC-20
ML4408	Low Voltage Drop Servo Driver	5V Only or 12V Operation	SOIC-24
ML4413	Servo Controller	ML4403 with Ext. Amp. Nulling	PDIP-24, PCC-28
ML4418	Low Saturation Voice Coil Servo Driver	On-Chip Precision Power Fail Detect Circuitry	SOIC-20
ML4431	Servo Demodulator	Enhanced ML4401; TTL Output	PCC-32
ML4506	Servo Driver, Internal Power Drive	$5 V$ Operation, Internal Threshold Reference	SOIC-20, SSOP-20
ML4508	Low Voltage Drop Servo Driver	5V Operation	SOIC-20
ML4532	Servo Burst Area Detector	Includes PWM DAC	SSOP-20, PCC-20
ML4533	Servo Burst Area Detector	No PWM DAC, Reference Levels Compatible to ML A/D Converters	SOIC-16
ML4536	Servo Burst Area Detector	No PWM DAC, Reference Levels Compatible to Zilog μC with ADC	SOIC-16
ML4534	SUM/DIFF Area Detector	For Hybrid Servo	PCC-20
ML4535	Hybrid Servo Demodulator	Integration/Area Detection	PCC-32

MOTOR CONTROLLER ICs

Part Number	Function	Key Features	Package Options
ML4510	Sensorless Spindle Motor Controller	Linear or PWM, PNP Drivers, $5 V$ Operation	SOIC-28
ML4410	Sensorless Spindle Motor Controller	Linear or PWM, FET Drivers	SOIC-28, PCC-28
ML4411	Sensorless Spindle Motor Controller	Linear or PWM, FET Drivers	SOIC-28, PCC-28
ML4412	Sensorless Spindle Motor Controller	Linear or PWM, FET Drivers, 200mW	SOIC-28
ML4420	Sensorless Spindle Motor Controller	μ P Controlled PWM, FET Drivers, 200 mW	SOIC-28
ML4425	Sensorless Motor Controller	On Board PWM Generator and Speed Controller, FET Drivers	PDIP-28N, SOIC-28
ML4426	Sensorless Motor Controller with Reverse	On Board PWM Generator and Speed Controller, FET Drivers	PDIP-28N, SOIC-28
ML6035	Sensorless Spindle Motor Controller	μ P Controlled, 1A FET Drivers, $5 V ~ O p e r a t i o n, ~ P h a s e ~ A d v a n c e ~$	TQFP-32

Mass Storage

TAPE DRIVE

Part Number	Function	Key Features	Package Options
ML6042	Tape Drive Data Channel Processor	Complete Read/Write Data Channel for QIC40/80/3010/3020 Tape Drives	SOIC-32
ML4451	Tape Drive Read/Write Preamplifier	Isolated 2R \& 2W Channels, Ferrite Heads	SOIC-24
ML4452	MR Head Preamplifier for Tape Drives	2 Channel Read and 1 Channel Write with Readback	SSOP-20

MAGNETO OPTICAL DRIVE

Part Number	Function	Key Features	Package Options
ML6012	3.5" R/W MOD Read Channel Front-end Processor	Supports 128M and 230M ISO standards for R/W Magneto-Optical Drives, implements complete read channel with ML6013	TQFP-32
ML6013	3.5" R/W MOD Read Channel Back-end Processor	Supports 128M and 230M ISO standards for R/W Magneto-Optical Drives, implements complete read channel with ML6012	TQFP-32

2, 4, or 6-Channel Read/Write Circuits

GENERAL DESCRIPTION

The ML117 devices are bipolar monolithic integrated circuits designed for use with center-tapped ferrite recording heads. They provide a low noise read path, write current control, and data protection circuitry for as many as six channels. The ML117 requires +5 V and +12 V power supplies and is available in 2,4 , or 6 -channel versions with a variety of packages. The ML117 contains exclusive circuitry that inhibits write current during device power-up, thereby eliminating powerup "glitches" common to similar read/write circuits. The ML117R differs from the ML117 by having internal damping resistors.

FEATURES

- Exclusive write current disable during power-up
- Replacement for SSI 32R117/117R
- $+5 \mathrm{~V},+12 \mathrm{~V}$ power supplies
- Single or multi-platter Winchester drives
- Designed for center-tapped ferrite heads
- Programmable write current source
- Available in 2, 4, or 6 channels
- Easily multiplexed for larger systems
- Includes write unsafe detection
- TTL compatible control signals

BLOCK DIAGRAM

PIN CONNECTIONS

ML117-2 OR ML117R-2
2 Channels 18 -PIN SOIC AND DIP

TOP VIEW

ML117-6 OR ML117R-6
6 Channels
28-PIN PCC

TOP VIEW

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
$\begin{gathered} \mathrm{HSO} 0-\mathrm{HS} 2 \\ \overline{\mathrm{CS}} \end{gathered}$	Head Select (six heads)	RDX, RDY	X, Y Read Data (differential read signal out)
	Chip Select (low level enables chip)		signal out) Write Current (used to set the write
R/W	Read/Write (high level selects Read mode)		current magnitude)
		V_{CT}	Voltage Center Tap (center tap
WUS	Write Unsafe, open collecter output (high level indicates alarm)	V_{CC}	voltage source)
WDI	Write Data In (negative transition toggles head current direction)	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	+12 volts
		$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	Positive supply for center tap
H0X-H5X	X head connections	GND	Ground
HOY-H5Y	Y head connections		

ABSOLUTE MAXIMUM RATINGS (Note 1)	
Power Supply Voltage Range	
$V_{\text {DD }}{ }^{2}$	-0.3 to 14
$\mathrm{V}_{\text {cc }}$	0.3 to 6 V DC
Input Voltage Range	
	-0.3 to $V_{\text {cC }}+0.3$
Head Ports (HOX-H5X, HOY-H5Y) -0.	
Write Unsafe (WUS) -0.3 to 14.	
Write Current (1w)	
Output Current	
Read Data (RDX, RDY) - 10 m	
Center Tap Current (ICT) . -60m	
Write Unsafe (WUS)	12 mA
Storage Temperature $-65^{\circ} \mathrm{C}$ to 150	
Junction Temperature (T_{1})	

OPERATING CONDITIONS

Supply Voltage	
$V_{\text {DD }}{ }^{1}$	$12 \mathrm{~V} \pm 10 \%$
$V_{\text {CC }}$	$5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\mathrm{DD}}{ }^{2}$	6.5 to $V_{\text {DD }} 1$
Head Inductance (L_{H})	5 to $15 \mu \mathrm{H}$
Damping Resistor ($\mathrm{R}_{\mathrm{D}}, \mathrm{ML} 117$ only)	500 to 2000』
RCT Resistor (1/2 Watt)	130) $\pm 5 \%$
Write Current (lw)	25 to 50 mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC OPERATING CHARACTERISTICS						
POWER SUPPLY						
${ }_{\text {cc }}$	$\mathrm{V}_{\text {CC }}$ Supply Current	Read or Idle Mode			25	mA
		Write Mode			30	mA
$\overline{\mathrm{IDD}}$	V_{DD} Supply Current	Read Mode			50	mA
		Write Mode			$30+1$ w	mA
		Idle Mode			25	mA
$\overline{P_{D}}$	Power Dissipation	Read Mode			600	mW
		Write Mode $\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}, \mathrm{R}_{\mathrm{CT}}=130 \Omega$			700	mW
		$\text { Write Mode } \mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA} \text {, }$ $R_{C T}=0 \Omega$			1050	mW
		Idle Mode			400	mW

DIGITAL INPUTS ($\overline{C S}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{HS}$, WDI)

V_{IH}	High Voltage		2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	$\mathrm{~V}_{\mathrm{DC}}$
V_{IL}	Low Voltage		-0.3		0.8	$\mathrm{~V}_{\mathrm{DC}}$
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA
WUS OUTPUT						
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Safe)		0.5	$\mathrm{~V}_{\mathrm{DC}}$	
I_{OH}	Output High Current	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ (Unsafe)			100	$\mu \mathrm{~A}$

CENTER TAP VOLTAGES

$V_{C T}$	Read Mode	Read Mode		4		$V_{D C}$
$V_{C T}$	Write Mode	Write Mode		6		$V_{D C}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $V_{D D} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, I_{W}=45 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}, \mathrm{R}_{\mathrm{D}}=750 \Omega, \mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}$, C_{L} (RDX, RDY) $\leqslant 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3) $\mathrm{V}_{\text {IN }}$ is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
WRITE MODE CHARACTERISTICS						
I_{WR}	Write Current Range	$I_{W}=K / R_{W C}$	10		50	mA
K	Write Current Constant		133		147	V
V_{HD}	Differential Head Voltage Swing		8			V_{PK}
$\mathrm{IHU}^{\text {In }}$	Unselected Head Transient Current				2	$\mathrm{mA}_{\text {PK }}$
C_{OD}	Differential Output Capacitance				15	pF
R_{OD}	Differential Output Resistance	ML117	10k			Ω
		ML117R	562		938	Ω
${ }^{\text {f WDI }}$	WDI Transition Frequency	WUS = Low	250			kHz
A_{1}	Iws to Head Current Gain			20		A/A
I_{1}	Unselected Head Leakage	Sum of X \& Y Side Leakage Current			85	$\mu \mathrm{A}$

READ MODE CHARACTERISTICS

A_{V}	Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~m} \mathrm{~V}_{\mathrm{P} . \mathrm{p}} @ 300 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY})=1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	80		120	V/V
DR	Dynamic Range	DC Input Voltage (V_{i}) Where Gain Falls 10\%, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{i}}+0.5 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}} @ 300 \mathrm{kHz}$	-3		+3	mV
BW	Bandwidth (-3 dB)	$\left\|Z_{S}\right\|<5 \Omega, V_{I N}=1 \mathrm{mV} V_{\text {RMS }}$	30			MHz
$\mathrm{e}_{\text {IN }}$	Input Noise Voltage	$\mathrm{BW}=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$			2.1	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
CIN	Differential Input Capacitance				20	pF
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance	ML117	2k			Ω
		ML117R	390		810	Ω
1 N	Input Bias Current				45	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{C M}=\mathrm{V}_{\text {CT }}+100 \mathrm{mV} \mathrm{P}_{\text {P-P }} @ \mathrm{f}=5 \mathrm{MHz}$	50			dB
PSRR	Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{V}_{\text {. }} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}}{ }^{2}$, or V_{CC}	45			dB
CS	Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} @ 5 \mathrm{MHz}$ and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	45			dB
V_{OS}	Output Offset Voltage		-480		+480	mV
$\mathrm{V}_{\text {OCM }}$	Common-Mode Output Voltage	Read Mode Write or Idle Mode	5		7	V
				4.3		V
$\mathrm{R}_{\text {OUT }}$	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			30	Ω
I_{L}	Leakage Current, RDX, RDY	RDX, RDY $=6 \mathrm{~V}$ Write or Idle Mode	-100		+100	$\mu \mathrm{A}$
Io	Output Current	AC Coupled Load, RDX to RDY	2			mA

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}, \mathrm{R}_{\mathrm{D}}=750 \Omega, \mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}$, $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
t_{RW}	R/产 to Write Switching Delay	To 90\% of Write Current Output			1	$\mu \mathrm{S}$
$t_{\text {WR }}$	R/产 to Read Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current			1	$\mu \mathrm{S}$
$\begin{aligned} & \mathrm{t}_{\mathrm{IW}} \\ & \text { or } \\ & \mathrm{t}_{\mathrm{IR}} \\ & \hline \end{aligned}$	$\overline{\text { CS }}$ to Select Switching Delay	To 90% of Write Current or to 90% of 100 mV , 10 MHz Read Signal Envelope			1	$\mu \mathrm{S}$
$t_{w I}$ or t_{RI}	$\overline{\mathrm{CS}}$ to Select Switching Delay	To 90% Decay of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90% Decay of Write Current			1	$\mu \mathrm{S}$
t_{HS}	Head Select Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope			1	$\mu \mathrm{S}$
tD1	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}$	1.6		8	$\mu \mathrm{S}$
tD2	Unsafe to Safe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}$			1	$\mu \mathrm{S}$
tD3	Head Current Prop. Delay	$\mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$ From 50% points			25	nS
tD3	Head Current Asymmetry	WDI has 50\% Duty Cycle and 1nS Rise/Fall Time			2	nS
	Time Head Current Rise/Fall	10\% and 90\% Points			20	nS

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Maximum junction temperature (T_{J}) should not exceed $125^{\circ} \mathrm{C}$.

TIMING DIAGRAMS

Write Mode Timing Diagram

FUNCTIONAL DESCRIPTION

CIRCUIT OPERATION

The ML117, ML117R functions as a write driver or as a read amplifier for the selected head. Head selection and mode control are described in Tables 1 \& 2. Both R/W and $\overline{\mathrm{CS}}$ have internal pull-up resistors for the prevention of an accidential write condition.

READ MODE

In the Read Mode the ML117, ML117R is configured as a low noise differential amplifier, the write current source and the write unsafe detector are deactivated, and the write data flipflop is set. The RDX and RDY outputs are driven by emitter followers and are in phase with the " X " and " Y " head ports.
The internal write current source is deactivated for both the Read and the Chip Deselect modes which eliminates the need for external gating of the write current source.

WRITE MODE

The Write mode configures the ML117, ML117R as a current switch and activates the Write Unsafe Detector. The head current is toggled between the X - and Y -side of the recording head on the falling edges of WDI, Write Data Input. A preceding read operation initializes the Write Data Flip-Flop, WDFF, to pass current through the X-side of the head. The magnitude of the write current, given by:
$I_{W}=K / R_{W C}$, where $K=$ Write Current Constant
is set by the external resistor, $R_{W C}$, connected from pin WC to GND.
Any of the following conditions will be indicated as a high level on the Write Unsafe, WUS, open collector output.

- Head open
- Head center tap open
- WDI frequency too low
- Device in Read mode
- Device not selected
- No write current

Two negative transitions on WDI are required to clear WUS after the fault condition is removed.

Table 1.

Head Select			
HS2	HS1	HSO	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	X	NONE

$0=$ Logic Level Low
$1=$ Logic Level High
X $=$ Don't Care

Table 2.
Mode Select

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	$\mathbf{M O D E}$
0	0	Write
0	1	Read
1	X	Idle

[^3]
TYPICAL APPLICATION

NOTES:

1. RCT is optional and is used to limit internal power dissipation (Otherwise connect $\mathrm{V}_{\mathrm{DD}} \mathbf{1}$ to $\mathrm{V}_{\mathrm{DD}}{ }^{2}$).
$\operatorname{RCT}\left(1 / 2\right.$ Watt) $=\mathbf{1 3 0}\left(55 / I_{w}\right)$ ohms where $I_{w}=$ Write Current, in $\mathbf{m A}$
2. Ferrite bead optional: used to suppress write current overshoot and ringing. Recommend Ferroxcube 3659065/4A6.
3. RDX and RDY load capacitance 20 pF maximum. RDX and RDY output current must be limited to $100 \mu \mathrm{~A}$.
4. Damping resistors not required on ML117R.

THERMALCHARACTERISTICS

28-Lead	
PDIP	$80^{\circ} \mathrm{C} / \mathrm{W}$
PCC	$60^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead	
SOIC	$60^{\circ} \mathrm{C} / \mathrm{W}$
22-Lead	
PDIP	$100^{\circ} \mathrm{C} / \mathrm{W}$
18-Lead	
PDIP	$115^{\circ} \mathrm{C} / \mathrm{W}$
SOIC	$85^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING INFORMATION

PART NUMBER	PACKAGE	NUMBER OF CHANNELS
ML117-2CP	18-Lead Molded DIP (P18)	2
ML117R-2CP	18-Lead Molded DIP (P18)	2
ML117-2CS	18-Lead Molded SOIC (S18)	2
ML117R-2CS	18-Lead Molded SOIC (S18)	2
ML117-4CP	22-Lead Molded DIP (P22)	4
ML117R-4CP	22-Lead Molded DIP (P22)	4
ML117-4CS	24-Lead Molded SOIC (S24)	4
ML117R-4CS	24-Lead Molded SOIC (S24)	4
ML117-6CP	28-Lead Molded DIP (P28)	6
ML117R-6CP	28-Lead Molded DIP (P28)	6
ML117-6CQ	28-Lead PCC (Q28)	6
ML117R-6CQ	28-Lead PCC (Q28)	6

6, 7 , or 8 -Channel Read/Write Circuits

GENERAL DESCRIPTION

The ML501, ML502 family of devices are bipolar monolithic $\mathrm{read} / \mathrm{write}$ circuits designed for use with fixed disk centertapped recording heads. The ML501 and ML501R are designed for use with ferrite recording heads while the ML502, ML502R and ML502S are designed for thin film or composite heads. The R and S designation in the part number indicate that these parts have internal head damping resistors.
The ML501, ML502 family provides up to eight multiplexed read/write data channels. These circuits exhibit features not found in similar read/write circuits such as improved write current stability and the elimination of write current "glitches" during power-up. The exclusive ML502 is identical to the ML501 except that the write unsafe detect circuitry is designed to operate with lower head inductance.

FEATURES

- Exclusive write current disable during power-up
- Enhanced write current stability
- ML501, ML501R is replacement for SSI 32R501/501R and is designed for center-tapped ferrite heads
- ML502, ML502R, and ML502S are designed for centertapped thin film or composite heads
- Single or multi-platter Winchester drives
- Easily multiplexed for larger systems
- Available in 6, 7 or 8 channels
- TLL compatible control signals
- Programmable write current source
- Includes write unsafe detection
- Available in a selection of packages
- $+5 \mathrm{~V},+12 \mathrm{~V}$ power supplies

BLOCK DIAGRAM

ML501-6 OR ML501R-6
OR ML502-6 OR ML502R-6
6 Channels
28-PIN DIP AND SOIC

ML501-8 OR ML501R-8
OR ML502-8 OR ML502R-8
OR ML502S-8
8 Channels

ML501-8 OR ML501R-8 OR ML502-8 OR ML502R-8

8 Channels
32-PIN SOIC

ML501-6 OR ML501R-6
OR ML502-6 OR ML502R-6
OR ML502S-6
6 Channels

ML501-8 OR ML501R-8 OR ML502-8 OR ML502R-8

8 Channels 40-PIN DIP

ML502S-7CQ
ML502R-7CQ

PIN DESCRIPTION

NAME	FUNCTION
HSO-HS2	Head Select (eight heads) $\overline{\mathrm{CS}}$
R/WChip Select (low level enables chip)	
WUS	Read/Write (high level selects Read mode) Write Unsafe, open collecter out- put (high level indicates an unsafe writing condition)
WDI	Write Data In (negative transition toggles head current direction)
HOX-H7X	X head connections Y head connections
HOY-H7Y	

FUNCTION
X, Y Read Data (differential read signal out)
WC Write Current (used to set the write current magnitude)
Voltage Center Tap (center tap voltage source)
+5 volts
+12 volts
Positive supply for center tap
Ground

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Power Supply Voltage Range	
$V_{\text {DD }} 1$	-0.3 to $14 V_{\text {DC }}$
$V_{D D}{ }^{2}$	-0.3 to $14 \mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {CC }}$	-0.3 to $6 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage Range	
Digital Inputs ($\overline{C S}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{HS}, \mathrm{WDI}$)	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}_{\mathrm{DC}}$
Head Ports (H0X-H7X, H0Y-H7Y	-0.3 to $\mathrm{V}_{\mathrm{DD}}{ }^{1}+0.3 \mathrm{~V}_{\mathrm{DC}}$
Write Unsafe (WUS)	-0.3 to $14 \mathrm{~V}_{\mathrm{DC}}$
Write Current (lw)	60 mA
Output Current	
Read Data (RDX, RDY)	$-10 \mathrm{~mA}$
Center Tap Current ($\mathrm{I}_{\text {CT }}$)	$-60 \mathrm{~mA}$
Write Unsafe (WUS)	12 mA
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction Temperature (T_{j})	$135^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.)	$300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage	
$\mathrm{V}_{\mathrm{DD}}{ }^{1}$	12V $\pm 10 \%$
$V_{\text {CC }}$	$5 \mathrm{~V} \pm 10 \%$
Head Inductance	
$L_{\text {H }}$, ML501 or ML501R only	5 to $15 \mu \mathrm{H}$
L ${ }_{\text {H }}$, ML502, ML.502R, ML502S only	400 to 1000 nH
Damping Resistor (R_{D}, ML501 only)	500 to 2000s
RCT Resistor ($1 / 2$ Watt)	$120 \Omega \pm 5 \%$
Write Current (${ }_{\text {W }}$)	22 to 50 mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $V_{D D} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, l_{W}=45 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

DC OPERATING CHARACTERISTICS

POWER SUPPLY

DIGITAL INPUTS ($\overline{\mathbf{C S}}, \mathbf{R} / \overline{\mathbf{W}}, \mathbf{H S}$, WDI)

V_{IH}	High Voltage		2			$\mathrm{~V}_{\mathrm{DC}}$
V_{IL}	Low Voltage				0.8	$\mathrm{~V}_{\mathrm{DC}}$
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA

WUS OUTPUT

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Safe)			0.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{OH}	Output High Current	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ (Unsafe)			100	$\mu \mathrm{~A}$

CENTER TAP VOLTAGES

$V_{C T}$	Read Mode	Read Mode		4		$V_{D C}$
$V_{C T}$	Write Mode	Write Mode		6		$V_{D C}$

ML501, ML501R, ML502, ML502R, ML502S

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%, \mathrm{I}_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}$ (ML501, ML501R), $\mathrm{L}_{\mathrm{H}}=600 \mathrm{nH}(\mathrm{ML} 502, M L 502 R, M L 502 \mathrm{~S}), \mathrm{R}_{\mathrm{D}}=750 \Omega$ (ML501), $\mathrm{f}_{\mathrm{DATA}}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}(R D X, R D Y) \leqslant 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3) ($\mathrm{V}_{\mathbb{I N}}$ is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
WRITE MODE CHARACTERISTICS						
${ }_{\text {WR }}$	Write Current Range	$I_{W}=K / R_{W C}$	10		50	mA
K	Write Current Constant		129		151	V
V_{HD}	Differential Head Voltage Swing		7.5			V_{PK}
I_{HU}	Unselected Head Transient Current				2	$\mathrm{mA}_{\text {PK }}$
C_{OD}	Differential Output Capacitance				15	pF
R_{OD}	Differential Output Resistance	ML501, ML502	10k			Ω
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ML501R, ML502S/ML502R	560/180		940/300	Ω
$\mathrm{f}_{\mathrm{WDI}}$	WDI Transition Frequency	WUS = Low	250			kHz
A_{1}	$I_{\text {WC }}$ to Head Current Gain			20		A/A
IL	Unselected Head Leakage	Sum of X \& Y Side Leakage Current			85	$\mu \mathrm{A}$

READ MODE CHARACTERISTICS

A_{V}	Differential Voltage Gain	$\begin{aligned} & V_{1 N}=1 \mathrm{mV} V_{\text {P.p }} @ 300 \mathrm{kHz}, \\ & R_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY})=1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	90		120	V/V
$\overline{\text { DR }}$	Dynamic Range	DC Input Voltage (V_{I}) Where Gain Falls 10\%, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1}+0.5 \mathrm{mV} \mathrm{P}_{\text {P. }} @ 300 \mathrm{kHz}$	-3		+3	mV
BW	Bandwidth (-3 dB)	$\left\|Z_{S}\right\|<5 \Omega, \mathrm{~V}_{\mathbb{N}}=1 \mathrm{mV} \mathrm{P}_{\text {P- }}$	30			MHz
$\mathrm{e}_{\text {IN }}$	Input Noise Voltage	$\mathrm{BW}=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$			1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{Cl}_{\text {IN }}$	Differential Input Capacitance	$f=5 \mathrm{MHz}$			23	pF
R_{IN}	Differential Input Resistance	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \quad \mathrm{ML} 501, \mathrm{ML} 502$	2k			Ω
		$\mathrm{V}_{\text {IN }}=6 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ ML501R, ML502S/ML502R	530/180		790/300	Ω
1 IN	Input Bias Current (1 side)				100	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{C M}=\mathrm{V}_{\mathrm{CT}}+100 \mathrm{~m} \mathrm{~V}_{\text {P-P }} @ \mathrm{f}=5 \mathrm{MHz}$	50			dB
PSRR	Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{V}_{\text {P-P }} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\text {DD }} 1, \mathrm{~V}_{\text {DD }} 2$, or V_{CC}	45			dB
CS	Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} @ 5 \mathrm{MHz}$ and Selected Channel: $V_{I N}=0 V_{P-P}$	45			dB
v_{OS}	Output Offset Voltage		-480		+480	mV
$\mathrm{V}_{\text {OCM }}$	Common-Mode Output Voltage	Read Mode	5		7	V
		Write or Idle Mode		4.3		V
$\mathrm{R}_{\text {OUT }}$	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			30	Ω
R_{L}	External Resistive Load (AC Coupled to Output)	Per Side to GND	100			Ω
IL	Leakage Current, RDX, RDY	$3 \mathrm{~V}<$ (RDX, RDY) < V V Write or Idle Mode	-50		50	$\mu \mathrm{A}$
$\underline{Z_{0}}$	Center Tap Output Impedance	$0 \mathrm{MHz} \leqslant \mathrm{f} \leqslant 5 \mathrm{MHz}$			150	Ω
I_{0}	Output Current	AC Coupled Load, RDX to RDY	2			mA

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%, l_{\mathrm{W}}=45 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}$ (ML501, ML501R), $\mathrm{L}_{\mathrm{H}}=600 \mathrm{nH}$ (ML502, ML502R, ML502S), $\mathrm{R}_{\mathrm{D}}=750 \Omega$ (ML501), $\mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
t_{RW}	$\mathrm{R} / \overline{\mathrm{W}}$ to Write Switching Delay	To 90\% of Write Current Output			600	ns
$t_{\text {WR }}$	$\mathrm{R} / \overline{\mathrm{W}}$ to Read Switching Delay	To 90% of 100 mV , 10 MHz Read Signal Envelope or to 90% Decay of Write Current			600	ns
$\begin{aligned} & \overline{\mathrm{t}_{W}} \\ & \text { or } \\ & \mathrm{t}_{\mathrm{IR}} \\ & \hline \end{aligned}$	$\overline{\mathrm{CS}}$ to Select Switching Delay	To 90% of Write Current or to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope			600	ns
$t_{W I}$ or t_{RI}	$\overline{\overline{C S}}$ to Unselect Switching Delay	To 90% Decay of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current			600	ns
t_{HS}	Head Select Switching Delay	To 90% of 100 mV , 10 MHz Read Signal Envelope			600	ns
tD1	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=50 \mathrm{~mA}$	1.6		8	us
tD2	Unsafe to Safe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=20 \mathrm{~mA}$			1	us
tD3	Prop. Delay Head Current	$\mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$ From 50% points		25	40	ns
tD3	Asymmetry Head Current	WDI has 50\% Duty Cycle and 1nS Rise/Fall Time			2	ns
	Rise/Fall Head Current	10\% and 90\% Points			20	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Maximum junction temperature (T_{J}) should not exceed $135^{\circ} \mathrm{C}$.

TIMING DIAGRAM

Write Mode Timing Diagram

FUNCTIONAL DESCRIPTION

CIRCUIT OPERATION

For any selected head, the ML501, ML502 functions as a read amplifier when in the Read mode, or as a write current switch when in the Write mode. Pins HSO, HS1 and HS2 determine head selection while pin $\mathrm{R} / \overline{\mathrm{W}}$ controls the Read/ Write mode. A detected "write-unsafe" condition is indicated by pin WUS.

READ MODE

When the ML501, ML502 is in the Read Mode, it operates as a low-noise differential amplifier on the selected channel. In Read mode the write data flip-flop is set and both the write unsafe detector and the write current source are deactivated. The center tap voltage is also lowered. Pins RDX and RDY provide differential emitter follower outputs which are in phase with the X and Y head input pins.
Note that during the Read or Chip Deselect mode the internal write current is deactivated, thus making external write current gating unnecessary.

WRITE MODE

The ML501, ML502 operates as a write-current switch when in the Write mode. Write current magnitude is determined by the following relationship:
$I_{W}=K / R_{W C}$
Where: $\mathrm{K}=$ Write Current Constant
$R_{\mathrm{WC}}=$ Resistance connected between pin WC and GND.
The head current is toggled between the X and Y side of the selected head by a negative transition on WDI (Write Data Input). When switching the ML501, ML502 to write mode, the WDFF (Write Data Flip-Flop) is initialized to pass write current through the X-side of the head.
The ML501, ML502 exhibit enhanced write current stability, compared to similar read/write circuits, which reduces the problem of oscillation. This is a result of increased internal write current compensation. Also, write current "glitches" during power-up, common in similar read/write circuits, are eliminated with an exclusive write current disabling function.
The WUS (Write Unsafe) pin is an open collector output that gives a logic high level for any of the following unsafe write conditions:

- Open head
- Open head center-tap
- Too low WDI frequency
- Read mode selected
- Device not selected
- No write current

Two negative transitions on WDI are required to clear WUS after the fault condition is removed.
The ML502, ML502R, ML502S differ from the ML501, ML501R by having write unsafe detect circuitry that is designed to operate with lower amplitude write pulse voltages, which result from the lower head inductance of thin film or composite heads.

Table 1.

Head Select			
HS2	HS1	HS0	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$0=$ Logic Level Low
1 = Logic Level High
X = Don't Care

Table 2.
Mode Select

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	MODE
0	0	Write
0	1	Read
1	X	Idle

[^4]
TYPICAL APPLICATION

NOTES:

1. RCT is optional and is used to limit internal power dissipation (Otherwise connect $V_{D D}$ to $V_{D D}{ }^{2}$).
RCT $(1 / 2$ Watt $)=120\left(50 / I_{w}\right)$ ohms
where $I_{w}=$ Write Current, in mA
2. Ferrite bead optional: used to suppress write current overshoot and ringing. Recommend Ferroxcube 3659065/4A6.
3. RDX and RDY load capacitance 20 pF maximum. RDX and RDY output current must be limited to $100 \mu \mathrm{~A}$.
4. Damping resistors not required on ML501R or ML502R.

ORDERING INFORMATION

PART NUMBER	PACKAGE	NUMBER OF CHANNELS	TRANSDUCER HEAD TYPE
ML501-6CP ML501-6CQ ML501-6CS ML501-8CP ML501-8CQ ML501-8CS*	28-Lead Molded DIP (P28) 28-Lead PCC (Q28) 28-Lead SOIC (S28) 40-Lead Molded DIP (P40) 44-Lead PCC (Q44) 32-Lead SOIC (S32)	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Ferrite Heads
ML501R-6CP ML501R-6CQ ML501R-6CS ML501R-8CP ML501R-8CQ ML501R-8CS*	28-Lead Molded DIP (P28) 28-Lead PCC (Q28) 28-Lead SOIC (S28) 40-Lead Molded DIP (P40) 44-Lead PCC (Q44) 32-Lead SOIC (S32)	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Ferrite Heads
ML502-6CP ML502-6CQ ML502-6CS ML502-8CP ML502-8CQ ML502-8CS*	28-Lead Molded DIP (P28) 28-Lead PCC (Q28) 28-Lead SOIC (S28) 40-Lead Molded DIP (P40) 44-Lead PCC (Q44) 32-Lead SOIC (S32)	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Thin Film or Composite Heads
ML502R-6CP ML502R-6CQ ML502R-6CS ML502R-7CQ ML502R-8CP ML502R-8CQ ML502R-8CS*	$\begin{aligned} & \text { 28-Lead Molded DIP (P28) } \\ & \text { 28-Lead PCC (Q28) } \\ & \text { 28-Lead SOIC (S28) } \\ & \text { 28-Lead PCC (Q28) } \\ & \text { 40-Lead Molded DIP (P40) } \\ & \text { 44-Lead PCC (Q44) } \\ & \text { 32-Lead SOIC (S32) } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Thin Film or Composite Heads
ML502S-6CQ ML502S-7CQ ML502S-8CQ	28-Lead PCC (Q28) 28-Lead PCC (Q28) 44-Lead PCC (Q44)	$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	Thin Film or Composite Heads

[^5]
4, 6, 7, or 8-Channel Ferrite Read/Write Circuits

GENERAL DESCRIPTION

The ML511 is a bipolar monolithic read/write circuit designed for use with center-tapped ferrite recording heads. The ML511 and ML511R are performance upgrades from the ML501 and ML501R. The R designation in the part number indicates that this part has internal head damping resistors.
The ML511 provides up to eight multiplexed read/write data channels. These circuits exhibit features not found in similar read/write circuits such as improved write current stability and the elimination of write current "glitches" during powerup. The ML511 also provides a low noise read data path, and data protection circuitry for all of the channels.

FEATURES

- Enhanced write current stability
- ML511, ML511R is replacement for SSI 32R511/511R and is designed for center-tapped ferrite heads
- Single or multi-platter Winchester drives
- Easily multiplexed for larger systems
- Power supply fault protection
- $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ maximum input noise voltage
- TTL compatible control signals
- Programmable write current source
- Includes write unsafe detection
- Available in a selection of packages
- +5 V , +12 V power supplies

BLOCK DIAGRAM

PIN CONNECTIONS

ML511-8 OR ML511R-8 8 Channels

ML511-8 OR ML511R-8 8 Channels

ML511R-7CS
28-Lead SOIC
28-PIN SOIC

ML511R-7CQ
28-Lead PCC

ML511-4 OR ML511R-4 4 Channels

24-PIN SoIc

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
$\frac{\mathrm{HSO}-\mathrm{HS} 2}{\overline{\mathrm{CS}}}$	Head Select (eight heads)	RDX, RDY	X, Y Read Data (differential read signal out)
	chip) Read/Write (high level selects	WC	Write Current (used to set the write current magnitude)
	Read mode)	$\mathrm{V}_{C T}$	Voltage Center Tap (center tap
WUS	Write Unsafe, open collecter output (high level indicates an unsafe writing condition)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{v}_{\mathrm{DD}} 1 \end{aligned}$	voltage source) +5 volts +12 volts
WDI	Write Data In (negative transition toggles head current direction)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}{ }^{2} \\ & \mathrm{GND} \end{aligned}$	Positive supply for center tap Ground
HOX-H7X	X head connections		
HOY-H7Y	Y head connections		

ABSOLUTE MAXIMUM RATINGS(Note 1)

Power Supply Voltage Range	
$V_{D D}{ }^{1}$	-0.3 to $14 V_{\text {DC }}$
$V_{\text {DD }}{ }^{2}$	-0.3 to $14 V_{D C}$
V_{CC}	-0.3 to $6 V_{D C}$
Input Voltage Range	
Digital Inputs (CS, R/W, HS, WDI)	$\ldots . .0 .3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}_{\mathrm{DC}}$
Head Ports (H0X-H7X, HOY-H7Y	-0.3 to $\mathrm{V}_{\mathrm{DD}} 1+0.3 \mathrm{~V}_{\mathrm{DC}}$
Write Unsafe (WUS) -0.3 to $14 V_{\text {DC }}$
Write Current (lw)	60 mA
Output Current	
Read Data (RDX, RDY)	$-10 \mathrm{~mA}$
Center Tap Current ($\mathrm{l}_{\text {CT }}$)	-60mA
Write Unsafe (WUS)	12 mA
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction Temperature ($\mathrm{T}_{\text {J }}$)	$135^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec	$300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage	
$\mathrm{V}_{\mathrm{DD}} 1$.	$12 \mathrm{~V} \pm 10 \%$
$V_{\text {CC }}$	$5 \mathrm{~V} \pm 10 \%$
Head Inductance	
L_{H}, ML511 or ML511R	5 to $15 \mu \mathrm{H}$
Damping Resistor ($\mathrm{R}_{\mathrm{D}}, \mathrm{ML} 511$ only)	500 to 2000s
RCT Resistor ($1 / 4$ Watt)	1208 $\pm 5 \%$
Write Current (${ }_{\text {W }}$)	10 to 40 mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $V_{D D} 1=V_{D D} 2=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, l_{W}=40 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC OPERATING CHARACTERISTICS						
POWER SUPPLY						
ICC	V CC Supply Current	Read or Idle Mode			35	mA
		Write Mode			30	mA
$\overline{\mathrm{IDD}}$	V_{DD} Supply Current	Read Mode			35	mA
		Write Mode			$20+1$ w	mA
		Idle Mode			20	mA
P_{D}	Power Dissipation	Read Mode			655	mW
		$\begin{aligned} & \text { Write Mode } I_{W}=40 \mathrm{~mA}, \\ & R_{\mathrm{CT}}=0 \Omega \end{aligned}$			960	mW
		Idle Mode			455	mW

DIGITAL INPUTS ($\overline{\text { CS, }}, \mathbf{R} / \overline{\mathrm{W}}, \mathrm{HS}$, WDI)

V_{IH}	High Voltage		2			$\mathrm{~V}_{\mathrm{DC}}$
V_{IL}	Low Voltage				0.8	$\mathrm{~V}_{\mathrm{DC}}$
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA

WUS OUTPUT

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Safe)			0.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{OH}	Output High Current	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ (Unsafe)			100	$\mu \mathrm{~A}$

CENTER TAP VOLTAGES

$V_{C T}$	Read Mode	Read Mode		4		$V_{D C}$
$V_{C T}$	Write Mode	Write Mode		6		$V_{D C}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $V_{D D} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%, \mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}, \mathrm{~L}_{H}=10 \mu \mathrm{H}, \mathrm{R}_{\mathrm{D}}=750 \Omega$ (ML511), $f_{\text {DATA }}=5 \mathrm{MHz}, C_{L}(R D X, R D Y) \leqslant 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3) ($\mathrm{V}_{\mathbb{N}}$ is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
WRITE MODE CHARACTERISTICS						
IHCW	Head Current (per side)	$\begin{aligned} & \text { Write Mode } \\ & 0 \leqslant V_{\mathrm{CC}} \leqslant 3.7 \mathrm{~V} \\ & 0 \leqslant \mathrm{~V}_{\mathrm{DD}} 1 \leqslant 8.7 \mathrm{~V} \\ & \hline \end{aligned}$	-200		200	$\mu \mathrm{A}$
$I_{\text {WR }}$	Write Current Range	$I_{W}=K / R_{W C}$	10		40	mA
K	Write Current Constant		2.375		2.625	
V_{HD}	Differential Head Voltage Swing		7.0			V_{PK}
I_{HU}	Unselected Head Transient Current				2	$m A_{\text {PK }}$
$\mathrm{C}_{\text {OD }}$	Differentral Output Capacitance				15	pF
R_{OD}	Differentral Output Resistance	ML511	10k			Ω
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \mathrm{ML.511R}$	600		960	Ω
$f_{\text {WDI }}$	WDI Transition Frequency	WUS = Low	250			kHz
A_{1}	I wc to Head Current Gain			0.99		$\mathrm{mA} / \mathrm{mA}$
IL	Unselected Head Leakage	Sum of X \& Y Side Leakage Current			85	$\mu \mathrm{A}$

READ MODE CHARACTERISTICS

A_{V}	Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}} @ 300 \mathrm{kHz}, \\ & R_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY})=1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	85		115	V/V
$\overline{\text { DR }}$	Dynamic Range	DC Input Voltage (V_{1}) Where Gain Falls 10%, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1}+0.5 \mathrm{mV} \mathrm{V}_{\text {P. }} @ 300 \mathrm{kHz}$	-3		+3	mV
BW	Bandwidth (-3 dB)	$\left\|Z_{S}\right\|<5 \Omega, V_{1 N}=1 \mathrm{mV} \mathrm{P}_{\text {P }}$	30			MHz
$\mathrm{e}_{\text {IN }}$	Input Noise Voltage	$B W=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$			1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{Cin}^{\text {IN }}$	Differential Input Capacitance	$f=5 \mathrm{MHz}$			20	pF
R_{IN}	Differential Input Resistance	$\begin{aligned} & \hline \mathrm{f}=5 \mathrm{MHz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \quad \mathrm{ML} 511 \\ & \mathrm{~V}_{\mathrm{IN}}=6 \mathrm{mV}_{\mathrm{P} . \mathrm{P}} \quad \mathrm{ML} 511 \mathrm{R} \\ & \hline \end{aligned}$	2k			Ω
			460		860	Ω
$\overline{I_{\text {HCR }}}$	Head Current (per side)	Read or Idle Mode $0 \leqslant V_{C C} \leqslant 5.5 \mathrm{~V}$ $0 \leqslant V_{D D} \leqslant 13.2 \mathrm{~V}$	-200		200	$\mu \mathrm{A}$
I_{N}	Input Bias Current (1 side)				45	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CT}}+100 \mathrm{mV} \mathrm{V}_{\text {P-P }} @ \mathrm{f}=5 \mathrm{MHz}$	50			dB
PSRR	Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{V}_{\text {P. }} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}}{ }^{2}$, or V_{CC}	45			dB
CS	Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} @ 5 \mathrm{MHz}$ and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P}}$	45			dB
V_{OS}	Output Offset Voltage	Read Mode	-460		$+460$	mV
		Write or Idle Mode	-20		+20	mV
$\overline{\mathrm{VOCM}}$	Common-Mode Output Voltage	Read Mode	4.5		6.5	V
		Write or Idle Mode		5.3		V
R	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			30	Ω
I_{L}	Leakage Current, RDX, RDY	$($ RDX, RDY $)=6 \mathrm{~V}$ Write or Idle Mode	-100		100	$\mu \mathrm{A}$
Io	Output Current	AC Coupled Load, RDX to RDY	± 2.1			mA

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%, \mathrm{l}_{\mathrm{W}}=35 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}, \mathrm{R}_{\mathrm{D}}=750 \Omega(\mathrm{ML} 511)$, $f_{\text {DATA }}=5 \mathrm{MHz}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
trw	R/W to Write Switching Delay	To 90\% of Write Current Output			1	$\mu \mathrm{s}$
$t_{\text {WR }}$	$\mathrm{R} / \overline{\mathrm{W}}$ to Read Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current			1	$\mu \mathrm{s}$
$\begin{aligned} & \hline \mathrm{tiv}_{1 / 2} \\ & \mathrm{or}_{\mathrm{R}} \end{aligned}$	$\overline{\text { CS }}$ to Select Switching Delay	To 90% of Write Current or to 90% of 100 mV , 10 MHz Read Signal Envelope			1	$\mu \mathrm{s}$
$\begin{aligned} & \mathrm{t}_{\mathrm{Wl}} \\ & \mathrm{or} \\ & \mathrm{t}_{\mathrm{R} 1} \end{aligned}$	$\overline{\text { CS }}$ to Unselect Switching Delay	To 90% Decay of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current			1	$\mu \mathrm{s}$
${ }_{\text {ths }}$	Head Select Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope			1	$\mu \mathrm{s}$
tD1	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{w}}=35 \mathrm{~mA}$	1.6		8	us
tD2	Unsafe to Safe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}$			1	us
tD3	Prop. Delay Head Current	$L_{H}=0, R_{H}=0$ From 50% points			25	ns
	Asymmetry Head Current	WDI has 50\% Duty Cycle and 1nS Rise/Fall Time			2	ns
	Rise/Fall Head Current	10\% and 90\% Points			20	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Maximum junction temperature (T_{1}) should not exceed $135^{\circ} \mathrm{C}$.

TIMING DIAGRAM

Write Mode Timing Diagram

FUNCTIONAL DESCRIPTION

CIRCUIT OPERATION

For any selected head, the ML511 functions as a read amplifier when in the Read mode, or as a write current switch when in the Write mode. Pins HSO, HS1 and HS2 determine head selection while pin R/W controls the Read/Write mode. A detected "write-unsafe" condition is indicated by pin WUS.

READ MODE

When the ML 511 is in the Read Mode, it operates as a lownoise differential amplifier on the selected channel. In Read mode the write data flip-flop is set and both the write unsafe detector and the write current source are deactivated. The center tap voltage is also lowered. Pins RDX and RDY provide differential emitter follower outputs which are in phase with the X and Y head input pins.

Note that during the Read or Chip Deselect mode the internal write current is deactivated, thus making external write current gating unnecessary.

WRITE MODE

The ML511 operates as a write-current switch when in the Write mode. Write current magnitude is determined by the following relationship:
$I_{W}=K / R_{W C}$
Where: $\mathrm{K}=$ Write Current Constant

$$
\begin{aligned}
\mathrm{R}_{\mathrm{WC}}= & \text { Resistance connected between pin WC and } \\
& \text { GND. }
\end{aligned}
$$

The head current is toggled between the X and Y side of the selected head by a negative transition on WDI (Write Data Input). When switching the ML511 to write mode, the WDFF (Write Data Flip-Flop) is initialized to pass write current through the X-side of the head.
The ML511, ML511R exhibit enhanced write current stability, compared to similar read/write circuits, which reduces the problem of oscillation. This is a result of increased internal write current compensation. Also, write current "glitches" during power-up, common in similar read/write circuits, are eliminated with an exclusive write current disabling function. The WUS (Write Unsafe) pin is an open collector output that gives a logic high level for any of the following unsafe write conditions:

- Open head
- Open head center-tap
- Too low WDI frequency
- Read mode selected
- Device not selected
- No write current

Two negative transitions on WDI are required to clear WUS after the fault condition is removed.
The ML511 also offers a voltage fault detection circuit that prevents write current during power-loss or power-up.

Table 1.
Head Select

HS2	HS1	HSO	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$0=$ Logic Level Low
$1=$ Logic Level High
X = Don't Care

Table 2.
Mode Select

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	MODE
0	0	Write
0	1	Read
1	X	Idle

$0=$ Logic Level Low
$1=$ Logic Level High
X = Don't Care

TYPICAL APPLICATION

NOTES:

1. RCT is optional and is used to limit internal power dissipation
(Otherwise connect $\mathrm{V}_{\mathrm{DD}}{ }^{1}$ to $\mathrm{V}_{\mathrm{DD}}{ }^{2}$).
$\operatorname{RCT}\left(1 / 2\right.$ Watt) $=\mathbf{1 2 0}\left(\mathbf{4 0} / I_{w}\right)$ ohms
where $I_{w}=$ Write Current, in mA
2. Ferrite bead optional: used to suppress write current overshoot and ringing. Recommend Ferroxcube 3659065/4A6.
3. RDX and RDY load capacitance 20 pF maximum. RDX and RDY output current must be limited to $100 \mu \mathrm{~A}$.
4. Damping resistors not required on ML511R.

ORDERING INFORMATION

PART NUMBER	PACKAGE	NUMBER OF CHANNELS
ML511-4CS	24-Lead SOIC (S24)	4
ML511R-4CS	24-Lead SOIC (S24)	4
ML511-6CP	28-Lead Molded DIP (P28)	6
ML511R-6CP	28-Lead Molded DIP (P28)	6
ML511-6CQ	28-Lead PCC (Q28)	6
ML511R-6CQ	28-Lead PCC (Q28)	6
ML511-6CS	28-Lead SOIC (S28)	6
ML511R-6CS	28-Lead SOIC (S28)	6
ML511R-7CS	28-Lead SOIC (S28)	7
ML511R-7CQ	28-Lead PCC (Q28)	7
ML511-8CP	40-Lead Molded DIP (P40)	8
ML511R-8CP	40-Lead Molded DIP (P40)	8
ML511-8CQ	44-Lead PCC (Q44)	8
ML511R-8CQ	44-Lead PCC (Q44)	8
ML511-8CS	32-Lead SOIC (S32)	8
ML511R-8CS	32-Lead SOIC (S32)	8

THERMAL CHARACTERISTICS

PIN COUNT	PACKAGE	0ja
24-Lead	SOIC	$75^{\circ} \mathrm{C} / \mathrm{W}$
28-Lead	PDIP	$55^{\circ} \mathrm{C} / \mathrm{W}$
28-Lead	PCC	$65^{\circ} \mathrm{C} / \mathrm{W}$
28-Lead	SOIC	$70^{\circ} \mathrm{C} / \mathrm{W}$
32-Lead	SOIC	$60^{\circ} \mathrm{C} / \mathrm{W}$
44-Lead	PCC	$60^{\circ} \mathrm{C} / \mathrm{W}$
40-Lead	PDIP	$45^{\circ} \mathrm{C} / \mathrm{W}$

Read Data Processor

GENERAL DESCRIPTION

The ML541 is a monolithic bipolar integrated circuit for use in a disk drive system to detect analog pulse peaks generated by the recording head during a Read operation. Connected to the read/write amplifier output, it detects valid data and provides a TTL output to the data separator for further processing. It contains both analog and digital circuitry and supports the reading of MFM and RLL encoded data at rates up to 15 megabits/second.
The primary functional blocks within the device include an AGC amplifier, a level detector, a slope detector, and output logic. Operating modes Read, Write, and Hold are selectable with input logic signals. Read mode is used for pulse peak detection during a Read operation. Write mode disables the device's ouput during a Write operation, while Hold mode holds the AGC gain constant during recovery of embedded servo information.

By using both level and slope detection, accurate pulse validation and peak time detection is acheived. The ML541 performance can be adjusted to fit particular needs through external component selection.
The ML541 is available both in a 24-pin PDIP and 28-pin PCC.

FEATURES

- Second source for SSI 541
- Data rates up to 15 megabits/ second
- Supports MFM and RLL encoded read data
- 25 MHz wide-bandwidth AGC amplifier
- Fast AGC region for fast transient recover
- Slow AGC region for minimum zero crossing distortion
- Write to read transient suppression
- Supports embedded servo decoding
- +5 V , +12 V power supplies

SIMPLIFIED BLOCK DIAGRAM

PIN CONNECTIONS

24-Pin DIP and SOIC Package

28-Pin PCC Package

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
$\mathrm{V}_{\text {cc }}$	$+5 \mathrm{~V}$	HYS	Input for setting hysteresis level of the
$V_{D D}$	+12V		hysteresis comparator.
AGND	Analog Ground.	LEVEL	Provides rectified signal level for input
DGND	Digital Ground.		to the hysteresis comparator.
R/WB	TIL compatible Read/Write Control pin.	Dout	Buffered test point for monitoring D input of the flip-flop.
IN+, ${ }^{\text {N }}$ -	Analog Signal Input pins	$\mathrm{CiN}_{+}, \mathrm{CiN}_{\text {- }}$	Analog input to the differentiator.
OUT +, OUT-	AGC Amplifier Output pins	$\mathrm{DIF}_{\text {+ }}, \mathrm{DIF}^{\text {IF }}$	External differentiating network con-
BYP	The AGC timing capacitor $\mathrm{C}_{\text {AGC }}$ is		nection pins.
	tied between this pin and AGND.	Cout	Buffered test point for monitoring the
HOLDB	TL compatible pin that holds the		clock input to the flip-flop.
	AGC gain when pulled low.	OS	Connection for read output pulse
AGC	Reference input voltage level for the		width setting capacitor $\mathrm{C}_{\text {OS }}$.
$\mathrm{D}_{\mathrm{N}+}$, $\mathrm{DiN}_{\text {I }}$	AGC circuit. Analog input to the hysteresis com	RD	TTL compatible read output.

TABLE 1 MODE SELECT

R/WB	HOLDB	MODE	DESCRIPTION
1	1	READ	AGC amp section active, Digital section active.
1	0	HOLD	AGC gain constant, Digital section active.
0	X	WRITE	AGC gain maximum, Digital section inactive, Input common mode resistance reduced.

$0=$ Logic level low
$1=$ Logic level high
$X=$ Don't care

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Power Supply Voltage Range	
$V_{\text {CC }}$	-0.3 to $6 \mathrm{~V}_{\text {DC }}$
$V_{D D}$	-0.3 to $14 \mathrm{~V}_{\text {DC }}$
Terminal Voltage Range	
R/WB, $\mathrm{N}^{\text {+ }}$, $\mathrm{IN}-$, HOLDB	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
RD	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ or +12 mA
All others	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature ($\mathrm{T}_{\text {J }}$)	$+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	$260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ and external components as specified under recommended operating conditions unless otherwise specified. (See Note 2.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	NOTE 5	MAX

DC Characteristics

ICC	V_{CC} Supply Current	Outputs unloaded			14	mA
I_{DD}	V_{DD} Supply Current	Outputs unloaded			70	mA
P_{D}	Power Dissipation	Outputs unloaded, $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			930	mW

Digital Inputs Characteristics (HOLDB, R/WB)

V_{IH}	High Voltage		2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Voltage				0.8	V
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-0.4			mA

Digital Outputs Characteristics (C $\mathrm{C}_{\text {OUT }}$, RD)

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	2.4			V

WRITE AND HOLD MODE CHARACTERISTICS

Mode Control

t_{RW}	Read to Write Transition Time			1	$\mu \mathrm{~s}$	
t_{WR}	Write to Read Transition Time	AGC settling not included, time to high input resistance	1.2		3	$\mu \mathrm{~s}$
t_{RH}	Read to Hold Transition Time				1	$\mu \mathrm{~s}$

Write Mode

| $\mathrm{Z}_{\text {IC }}$ | Common Mode Input
 Impedance (both sides) | R/WB pin=low | 250 | | Ω |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |

ELECTRICAL CHARACTERISTICS ${ }_{\text {(Continued) }}$

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}, \mathrm{IN}+$ and IN - AC coupled, OUT + and OUT - differentially loaded with $>600 \Omega$ and each side loaded with $<10 \mathrm{pF}$ to $\mathrm{GND}, \mathrm{C}_{\mathrm{BYP}}=2000 \mathrm{pF}, \mathrm{OUT}+$ and $\mathrm{OUT}-\mathrm{AC}$ coupled to $\mathrm{D}_{I N}$ + and $\mathrm{D}_{I N}$ - respectively, $\mathrm{V}_{A G C}=2.2 \mathrm{~V}$ unless otherwise specified. (See Note 2.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 5 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

READ MODE CHARACTERISICS

AGC Amplifier

$\mathrm{R}_{\text {ID }}$	Differential Input Resistance	$\mathrm{V}_{(1 \mathrm{~N}+-\mathrm{IN}-)}=100 \mathrm{mV}_{\text {P-P }} @ 2.5 \mathrm{MHz}$		5		k ת
$\mathrm{C}_{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{(\text {IN }+-\mathrm{IN}-)}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }} @ 2.5 \mathrm{MHz}$			10	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance (both sides)	R/WB pin high		1.8		k Ω
		R/WB pin low		0.25		k Ω
A_{VR}	Gain Range	$1 \mathrm{~V}_{\text {P.P }} \leqslant \mathrm{V}_{\text {OUT diff }}<2.5 \mathrm{~V}_{\text {P-P }}$	4		83	V/V
e_{N}	Input Noise Voltage	Gain set to maximum			30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
BW	Bandwidth	Gain set to maximum, -3 dB point	25			MHz
V_{OP}	Maximum Output Voltage Swing	Set by $\mathrm{V}_{\mathrm{AGC}}$	3			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
IOD	OUT + to OUT - Pin Current	No DC path to GND, See Note 3	± 3.2			mA
R_{O}	Output Resistance			20	30	Ω
C_{O}	Output Capacitance			12		pF
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IP}} \\ & \mathrm{~V}_{\mathrm{AGC}} \\ & \hline \end{aligned}$	($\mathrm{D}_{\mathrm{IN}+}-\mathrm{D}_{\mathrm{IN}}$) Input Voltage Swing VS AGC Input Level	$\begin{aligned} & 30 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} \leqslant \mathrm{~V}_{(\mathbb{N}+-1 \mathrm{~N}-)} \leqslant 550 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & 1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{AGC}} \leqslant 3.75 \mathrm{~V} \end{aligned}$		0.48		$\mathrm{V}_{\text {P-p }} / \mathrm{V}$
$\mathrm{V}_{\text {IP }}$	($\mathrm{D}_{\mathrm{IN}+}-\mathrm{D}_{\mathrm{IN}}$) Input Voltage Swing Variation	$30 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}<\mathrm{V}_{(\mathbb{N}+-\mathbb{I N -)}}<550 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}$ AGC Fixed, over supply and temp.			+8	\%
t_{D}	Gain Decay Time	See Figure 1a; $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mV} \mathrm{V}_{\mathrm{P} \text { - }}$ then $>150 \mathrm{mV}$ P.p at 2.5 MHz , $V_{\text {OUT }}$ to 90% of final value.		50		$\mu \mathrm{s}$
$t_{\text {A }}$	Gain Attack Time	See Figure 1b; from Write to Read transition to $V_{\text {OUT }}$ at 110% of final value, $\mathrm{V}_{\mathrm{IN}}=400 \mathrm{~m} \mathrm{~V}_{\text {P. }} @ 2.5 \mathrm{MHz}$		4		$\mu \mathrm{s}$
$\mathrm{I}_{\text {AGCfc }}$	Fast AGC Capacitor Charge Current	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\mathrm{IN}-}\right)}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=3.0 \mathrm{~V}$		1.5		mA
$\overline{l_{\text {AGCsc }}}$	Slow AGC Capacitor Charge Current	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\mathrm{IN}}\right)}=1.6 \mathrm{~V}$, Vary $\mathrm{V}_{\mathrm{AGC}}$ until slow discharge begins		0.17		mA
	Fast to Slow Attack Switchover Point	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\text {IN- }}\right)}$		1.25		-
$\overline{I_{A G C D}}$	AGC Capacitor Discharge Current	$\begin{aligned} & \mathrm{V}_{\left(\mathrm{D}_{1 N_{+}}-\mathrm{D}_{1 N-}\right)}=0.0 \mathrm{~V} \\ & \text { Read Mode } \end{aligned}$		4.5		$\mu \mathrm{A}$
		Hold Mode	-0.2		+0.2	$\mu \mathrm{A}$
CMRR	CMRR (Input Referred)	$\mathrm{V}_{\mathrm{IN}+}=\mathrm{V}_{\mathrm{IN}-}=100 \mathrm{~m} \mathrm{~V}_{\text {P-P }}$ @ 5 MHz , gain at max.	40			dB
PSRR	PSRR (Input Referred)	$V_{C C} \text { or } V_{D D}=100 \mathrm{mV}_{P-P}$ @ 5 MHz , gain at max.	30			dB

Hysteresis Comparator

$\mathrm{V}_{\text {IP }}$	Input Signal Range				1.5	$V_{\text {P.P }}$
$\underline{\mathrm{R}_{\text {ID }}}$	Differential Input Resistance	$\mathrm{V}_{\left(\mathrm{D}_{\left.1 \mathrm{~N}_{+}-\mathrm{D}_{\text {IN- }}\right)}=100 \mathrm{mV} \mathrm{P}_{\text {P- }} @ 2.5 \mathrm{MHz}\right.}$	5		15	ks
$\mathrm{ClD}^{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\text {IN }-}\right)}=100 \mathrm{mV} \mathrm{P}$. $^{@}$ @ 2.5 MHz			6.0	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance	(both sides)		2.0		k Ω
V_{10}	Comparator Offset Voltage	HYS pin at $-0.5 \mathrm{~V}, \leqslant 1.5 \mathrm{k} \Omega$ across $\mathrm{D}_{\mathrm{IN}+}, \mathrm{D}_{\mathrm{IN}-}$		5		mV

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}, \mathrm{IN}+$ and IN - AC coupled, OUT + and OUT - differentially loaded with $>600 \Omega$ and each side loaded with $<10 \mathrm{pF}$ to GND $, \mathrm{C}_{\mathrm{BYP}}=2000 \mathrm{pF}, \mathrm{OUT}+$ and OUT - AC coupled to $\mathrm{D}_{I N}$ + and D_{IN} - respectively, $\mathrm{V}_{\mathrm{AGC}}=2.2 \mathrm{~V}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
READ MODE CHARACTERISICS (Continued)						
Hysteresis Comparator (Continued)						
$\begin{aligned} & \mathrm{V}_{\mathrm{HYSP}} \\ & \mathrm{~V}_{\mathrm{HYS}} \\ & \hline \end{aligned}$	Peak Hysteresis Voltage vs HYS pin voltage (input referred)	$1 \mathrm{~V}<\mathrm{V}_{\mathrm{HYS}}<3 \mathrm{~V}$		0.21		V/V
1	HYS Pin Input Current	$1 \mathrm{~V}<\mathrm{V}_{\mathrm{HYS}}<3 \mathrm{~V}$	0		-20	$\mu \mathrm{A}$
O	LEVEL Pin Max Output Current		3			mA
R_{O}	LEVEL Pin Output Resistance	$\mathrm{L}_{\text {LEVEL }}=0.5 \mathrm{~mA}$		180		Ω
V_{OL}	D OUT Pin Output Low Voltage	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-4.0$		$\mathrm{V}_{\mathrm{DD}}-2.5$	V
V_{OH}	Dout Pin Output High Voltage	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-2.2$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
V_{OL}	D OUT Pin Output Low Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-4.0$		$\mathrm{V}_{\mathrm{DD}}-2.8$	V
V_{OH}	Dout Pin Output High Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-2.5$		$\mathrm{V}_{\mathrm{DD}}-1.6$	V

Active Differentiator

$\mathrm{V}_{\text {IP }}$	Input Signal Range				1.5	$V_{\text {P-P }}$
$\mathrm{R}_{\text {ID }}$	Differential Input Resistance	$\mathrm{V}_{\left(\mathrm{C}_{\text {IN }+}-\mathrm{C}_{\text {IN- }}\right)}=100 \mathrm{mV} \mathrm{V}_{\text {P-P }} @ 2.5 \mathrm{MHz}$	5		15	$\mathrm{k} \Omega$
$\mathrm{Cl}_{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{\left(\mathrm{C}_{\text {IN }+}-\mathrm{C}_{\text {IN - }}\right)}=100 \mathrm{mV} \mathrm{P}_{\text {P-P }} @ 2.5 \mathrm{MHz}$			6	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance	(both sides)		2.0		k Ω
$\overline{\mathrm{IOD}}$	$\mathrm{D}_{\mathrm{IF}+}$ to $\mathrm{D}_{\mathrm{IF}-}$ Pin Current	Differentiator Imped must be set so as not to clip signal at this current level	± 1.3			mA
V_{10}	Comparator Offset Voltage	$\mathrm{D}_{\mathrm{IF}+}$, $\mathrm{IF}_{\mathrm{IF}}$ - AC Coupled		5		mV
V_{OL}	Cout Pin Output Low Voltage	$0 \leqslant \mathrm{l}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-3$		V
V_{PO}	Cout Pin Output Pulse Voltage	$0 \leqslant \mathrm{l}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		0.4		V
PW_{0}	Cout Pin Output Pulse Width	$0 \leqslant \mathrm{l}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		30		ns

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}, \mathrm{V}_{\left(\mathrm{C}_{I N+}-\mathrm{C}_{I N-}\right)}=\mathrm{V}_{\left(\mathrm{D}_{I N+}-\mathrm{D}_{I N-}\right)}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{AC}$ coupled sine wave at $2.5 \mathrm{MHz}, \mathrm{R}_{\mathrm{D}_{I F}}=100 \Omega, \mathrm{C}_{\mathrm{D}_{I F}}=65 \mathrm{pF}, \mathrm{V}_{\mathrm{HYS}}=1.8 \mathrm{~V}$, $\mathrm{C}_{\mathrm{OS}}=60 \mathrm{pF}, 4 \mathrm{k} \Omega$ to V_{CC} and 10 pF to GND on pin RD unless otherwise specified.

Output Data Characteristics (Refer to Figure 2)

$t_{D 1}$	D-Flip-Flop Set Up Time	Min delay from $V_{\left(D_{I N+}-D_{I N-}\right)}$ exceeding threshold to $\left.V_{\left(D_{I F}+\right.}-D_{I F-}\right)$ reaching a peak	0			ns
$t_{D 3}$	Propagation Delay				110	ns
$t_{D 5}$	Output Data Pulse Width	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$		$\pm 15 \%$		
$\mathrm{t}_{\mathrm{D} 5}$	Output Data Pulse Width Variation	$\mathrm{C}_{\mathrm{OS}}=60 \mathrm{pF}$, See Note 4	30		80	ns
$\mathrm{t}_{\mathrm{D} 3} \mathrm{t}_{\mathrm{D} 4}$	Logic Skew (Pulse Pairing)				3	ns
t_{R}	Output Rise Time	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			18	ns
t_{F}	Output Fall Time	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$			14	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: AGC amplifier output current may be increased as in Figure 4.
Note 4: $\mathrm{t}_{\mathrm{D} 5} \cong 770\left(\mathrm{C}_{\mathrm{OS}}\right), 50 \mathrm{pF}<\mathrm{C}_{\mathrm{OS}}<150 \mathrm{pt}$.
Note 5: Typicals are parametric norm at $25^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

Operating Modes

The ML541 has three definitive operation modes which are: Read mode, Write mode and Hold mode. These modes are defined by input pins HOLDB and R/WB as shown in Table 1. Read mode, the mode used normally for pulse detection, is assumed in the following sections unless otherwise noted.

AGC Amplifier Section

The purpose of the AGC amplifier is to provide a constant read signal level for both the level and slope detectors. Full differential processing of the read signal is used to minimize noise and distortion in the analog signal. A wide gain range is required due to large signal variation when moving the recording head from an inside to outside data track or variations in media.
The differential output voltage level $\mathrm{V}_{\mathrm{OUT}}$ from the AGC amp is determined by voltage $\mathrm{V}_{\mathrm{AGC}}$ present at pin AGC. $\mathrm{V}_{\mathrm{OUT}}$ is full wave rectified and compared against $V_{A G C}$ to create charge/discharge current for capacitor $\mathrm{C}_{\mathrm{BYP}}$ connected at pin BYP. Voltage $V_{B Y P}$ across $C_{B Y P}$ controls the gain in the AGC amplifier.
Two distinct values of $I_{\text {BYP }}$ are possible which determine a fast and slow AGC gain response attack rate. When VOUT is more than 125% of the set level a high value of $I_{B Y P}$ is sourced which provides a fast AGC attack rate. When $\mathrm{V}_{\text {OUT }}$ is within 100% to 125% of the set level a reduced value of $I_{\text {BYP }}$ is sourced which provides a slower attack rate. The fast-slow gain response attack rates provides for an initial quick system response and then minimum zero crossing distortion of the analog signal once the gain is within working range. $V_{A G C}$ should be set so that the differential input voltage $V_{\text {DIN }}$ into the level comparator is $1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ at nominal Read signal conditions. The AGC amp section gain is given by:

$$
\frac{A_{V 2}}{A_{V 1}}=\exp \frac{V_{\mathrm{BYP} 2}-V_{\mathrm{BYP} 1}}{5.8 \times V_{\mathrm{T}}}
$$

Where: $A_{V 1}, A_{V 2}$ are initial and final amplifier gain values corresponding to initial and final $\mathrm{V}_{\mathrm{BYP}}$ values.
$V_{T}=(K T) / Q=26 \mathrm{mV}$ at room temperature.
The AGC amp's differential inputs must be AC coupled to the read amplifier (ML117, ML501, etc.) differential outputs. Similarly, AC coupling must be used at the AGC amp outputs.

AGC Amp During Write Mode-When the ML541 is put into write mode, the AGC amp's input impedance is lowered to allow a faster dampening of the Write to Read transient from the head pre-amp. The AGC gain is also set to maximum gain so that fast AGC attack will occur when changing back to the Read mode. Internal device timing is controlled so that settling occurs prior to Read mode activation. Minimal value input coupling capacitors should be chosen to reduce settling time, however, bandwidth requirements also need to be considered.

AGC Amp During Hold Mode-During the Hold mode, the charge/discharge current driving pin BYP is internally disconnected. AGC compensation capacitor $\mathrm{C}_{A G C}$ will then hold the present gain setting. The amplitude of $\mathrm{V}_{\text {OUT }}$ will therefore not affect the AGC gain and gain will remain constant.

Hold mode is used so that AGC gain will not be adjusted when embedded servo information is read. This prevents loosing the pulse peak amplitude information needed during position decoding, or creating additional gain settling time when again reading data. Embedded servo pulses are normally taken at outputs $\mathrm{D}_{\mathrm{IF}-}$ and $\mathrm{D}_{\mathrm{IF}+,}$ as shown in the typical application.

External Filter Network

Filtering for the level and slope detectors can be performed with a single filter or two separate filters. If separate filters are used, care must be used to insure that time delays are matched. A multi-pole Bessell filter is recommended due to the group delay and linear phase characteristics.

Level Detector

The full wave rectified $V_{\text {OUT }}$ is buffered and available at pin LEVEL. The level detector uses a hysteresis comparator to compare the processed read signal amplitude against a reference voltage derived from voltage $V_{\text {LEVEL }}$ output from pin LEVEL. Using $V_{\text {LEVEL }}$ provides a feed-forward function that allows valid level detection to be performed prior to AGC amp gain settling. The level detector hysteresis value is set in a way that will only allow relatively large read pulse peaks (negative or positive) to be detected.

Slope Detector

The slope detector uses an external reactive component network to produce a voltage signal proportional to the differential of the read signal. By using a hysteresis comparator to detect zero slope of the read signal, the time occurrence of positive or negative read pulse peak values can be determined.
An external reactive network, shown in the Typical Application, is used between the $\mathrm{D}_{\mathrm{IF}+}$ and D_{IF} - pins to provide the differential function given by:

$$
A_{V}=\frac{-2000 C s}{L C s^{2}+(R+92) C s+1}
$$

Where: $\mathrm{C}=$ External capacitor (20 pF to 150 pF)
$\mathrm{L}=$ External inductor
$\mathrm{R}=$ External resistor

$$
s=j \omega=j 2 \pi f
$$

Output Logic

The output logic provides a negative TTL pulse at pin RD which begins at the peak of a valid read pulse, as shown below.

Pin R/WB must be high for the output logic to be active. The key element in the output logic is the D flip-flop. The flip-flop is clocked by the slope detector at the time of a zero crossing, which loads data from level detector. The flip-flop inputs only change state when the level detector detects a peak amplitude of a polarity opposite to the previous valid peak. Thus, through the output logic the slope detector determines output timing and the level detector determines pulse validity.

Layout Considerations

As with any high gain, wide bandwidth analog circuitry, care needs to be exercised in PC layout. Power supply and ground lines should be bypassed and well isolated from other circuitry. A ground plane is recommended, as is keeping analog lines short and well balanced to prevent interaction with nearby circuitry in the disk drive.

BLOCK DIAGRAM

Figure 1. AGC Timing Diagram

Figure 2. Output Logic Timing Diagram

TYPICAL APPLICATIONS

5

Figure 3. Typical Application Diagram

$$
\text { IOUT }+ \text { TO IOUT }-=4 \mathrm{~mA}+\frac{8 \mathrm{~V}}{R_{E X T}}
$$

Figure 4. Modification of AGC Amplifier Output to Drive Low Impedance Filters

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML541CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)
ML541CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	HERMETIC DIP (J24)
ML541CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)
ML541CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S24)

Read Data Processor

GENERAL DESCRIPTION

The ML4041, ML4042 is a monolithic bipolar integrated circuit used in disk drive systems to detect amplitude peaks generated by the recording heads during a Read operation. Connected to the read/write amplifier output, it detects valid data and provides a TTL output to the data separator. Containing both analog and digital circuitry, it supports the reading of MFM and RLL encoded data at rates up to 24 megabits/second.

Operating modes Read, Write, and Hold are selectable with input logic signals. Read mode is used for pulse peak detection during a Read operation. Write mode disables the device's output during a Write operation, while Hold mode holds the AGC gain constant during recovery of embedded servo information.

By using both level and slope detection, accurate pulse validation and peak time detection is achieved. The ML4041, ML4042 characteristics can be modified to fit particular needs through external component selection. The ML4041, ML4042 has a swift Write to Read recovery time of $2 \mu \mathrm{~s}(10 \mu \mathrm{~s}$ max) allowing for better format efficiency with faster access times. Pulse pairing of 1 ns max reduces data decoding errors by allowing tighter specs for the clock recovery circuit.

FEATURES

- Fully compatible with industry standard read data processor
- Write to Read recovery time -2μ stypical, 10μ s max
- Pulse pairing - 1ns max
- Data rates up to 24 megabits/second
- Supports MFM and RLL encoded read data
- 30 MHz wide-bandwidth AGC amplifier
- Fast AGC region for fast transient recover
- Slow AGC region for minimum zero crossing distortion
- +5 V and +12 V undervoltage fault detection (ML4042 only)
- Write to read transient suppression
- Hold pin supports embedded servo decoding

The ML4042 is identical to the ML4041 but in addition it includes $\mathrm{a}+5 \mathrm{~V}$ and +12 V undervoltage detector. The ML4041 is available in a 24 -pin PDIP, 24 -pin SOIC, or a 28 -pin PCC, while the ML4042 is available in a 28-pin PDIP, 28-pin SOIC, or a 28 -pin PCC.

SIMPLIFIED BLOCK DIAGRAM

PIN CONNECTIONS

ML4041
24-Pin DIP and SOIC Package

ML4042 28-Pin DIP and SOIC Package

PIN DESCRIPTION

NAME	FUNCTION
V_{CC}	+5V
$V_{\text {DD }}$	+12V
AGND	Analog Ground.
DGND	Digital Ground.
R/W	TLL compatible Read/Write Control pin.
$\mathrm{IN}+, \mathrm{IN}-$	Analog Signal Input pins
OUT+, OUT-	AGC Amplifier Output pins
BYP	The AGC timing capacitor $\mathrm{C}_{\mathrm{AGC}}$ is tied between this pin and AGND.
$\overline{\text { HOLD }}$	TTL compatible pin that holds the AGC gain when pulled low.
AGC	Reference input voltage level for the AGC circuit.
$\mathrm{D}_{\mathrm{IN}+}, \mathrm{D}_{\mathrm{IN}-}$	Analog input to the hysteresis comparator.

NAME	FUNCTION
HYS	Input for setting hysteresis level of the hysteresis comparator.
LEVEL	Provides rectified signal level for input to the hysteresis comparator.
Dout	Buffered test point for monitoring D input of the flip-flop.
$\begin{aligned} & C_{1 N+1} C_{l N}- \\ & D_{I F+}, D_{l F-} \end{aligned}$	Analog input to the differentiator. External differentiating network connection pins.
Cout	Buffered test point for monitoring the clock input to the flip-flop.
OS	Connection for read output pulse width setting capacitor C_{OS}.
$\overline{\mathrm{RD}}$	TTL compatible read output.
$\overline{V_{\text {FLT }}}$	Undervoltage detector output, active low; ML4042 only.

TABLE 1MODE SELECT

$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\text { HOLD }}$	MODE	DESCRIPTION
$\mathbf{1}$	1	READ	AGC amp section active, Digital section active.
$\mathbf{1}$	0	HOLD	AGC gain constant, Digital section active.
$\mathbf{0}$	X	WRITE	AGC gain maximum, Digital section inactive, Input common mode resistance reduced.

$0=$ Logic level low
$1=$ Logic level high
$\mathrm{X}=$ Don't care

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Power Supply Voltage Range	
$V_{\text {cc }}$	-0.3 to $6 \mathrm{~V}_{\text {DC }}$
VDD	-0.3 to $14 V_{D C}$
Terminal Voltage Range	
R/W, IN +, IN - HOLD	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
RD	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ or +12 mA
All others -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature (T_{j})	. $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering	$260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage	
$V_{\text {cc }}$	$5 \mathrm{~V} \pm 10 \%$
$V_{\text {DD }}$	$12 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\left(\mathrm{C}_{\text {IN }+}-\mathrm{C}_{\text {IN- }}\right)}$,	$1 \mathrm{~V}_{\text {P-P }}$
$\mathrm{V}_{\text {HYS }}$	1.0 V
Cos	50 to 200 pF
Typical Component Values (Refer to Typical Applications)	
$\mathrm{C}_{1 \mathrm{~N}}$.. $0.001 \mu \mathrm{~F}$
C_{s}	$\ldots 0.01 \mu \mathrm{~F}$
Cout	$0.0047 \mu \mathrm{~F}$
Rout	4008
$\mathrm{C}_{\text {AGC1 }}$	220pF
$\mathrm{C}_{\text {AGC2 }}$	2000pF
$\mathrm{R}_{\text {AGC }}$	2.21 k 8
$\mathrm{C}_{\text {Level }}$. 150pF
$\mathrm{R}_{\text {LeVEL1 }}$	1.54 k 8
$\mathrm{R}_{\text {LeVEL2 }}$	6.49 kQ
Cos.	. . 50pF

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ and external components as specified under operating conditions unless otherwise specified. (See Note 2.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 4 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

I_{CC}	V_{CC} Supply Current	Outputs unloaded			14	mA	
I_{DD}	V_{DD} Supply Current	Outputs unloaded			70	mA	
P_{D}	Power Dissipation	Outputs unloaded, $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			93	mW	

Digital Inputs Characteristics ($\overline{\mathrm{HOLD}}, \mathrm{R} / \overline{\mathrm{W}}$)

V_{IH}	High Voltage		2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Voltage		-0.3		0.8	V
I_{H}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-0.4			mA

Digital Outputs Characteristics ($\mathrm{C}_{\mathrm{OUT}}, \overline{\mathrm{RD}}$)

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	2.4			V

WRITE AND HOLD MODE CHARACTERISTICS

Mode Control

t_{RW}	Read to Write Transition Time			1	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {WR }}$	Write to Read Transition Time	AGC settling not included, time to high input resistance	1.2		3	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {RH }}$	Read to Hold Transition Time				1	$\mu \mathrm{~s}$

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Write Mode | | | | | |
| Z_{IC} | Common Mode Input
 Impedance (both sides) | $\mathrm{R} / \overline{\mathrm{W}}$ pin=low | 250 | | Ω |

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, \mathrm{IN}+$ and IN - AC coupled, OUT + and OUT - differentially loaded with $>600 \Omega$ and each side loaded with $<10 \mathrm{pF}$ to $\mathrm{GND}, \mathrm{C}_{\mathrm{BYP}}=2000 \mathrm{pF}, \mathrm{OUT}$ + and OUT - AC coupled to $\mathrm{D}_{\mathrm{IN}+}$ and D_{IN} - respectively, $\mathrm{V}_{\mathrm{AGC}}=2.2 \mathrm{~V}$ unless otherwise specified. (See Note 2.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 4 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

READ MODE CHARACTERISICS

AGC Amplifier

$\mathrm{R}_{\text {ID }}$	Differential Input Resistance	$\mathrm{V}_{(1 \mathrm{~N}+-1 \mathrm{~N}-)}=100 \mathrm{mV} \mathrm{P}_{\text {- }} @ 2.5 \mathrm{MHz}$		5		ks
$\mathrm{C}_{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{(1 \mathrm{~N}+-\mathrm{IN}-)}=100 \mathrm{mV} \mathrm{P}_{\text {- }} @ 2.5 \mathrm{MHz}$			10	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance (both sides)	R/W pin high		1.8		k Ω
		$\mathrm{R} / \overline{\mathrm{W}}$ pin low		0.25		k Ω
$\mathrm{A}_{\mathrm{V}_{\text {MAX }}}$	Maximum Gain	$\mathrm{V}_{\mathrm{BYP}}=2.6 \mathrm{~V}$	83			V/V
$\mathrm{A}_{\mathrm{V}_{\text {MIN }}}$	Minimum Gain	$\mathrm{V}_{\mathrm{BYP}}=6 \mathrm{~V}$	2		4	V/V
e_{N}	Input Noise Voltage	Gain set to maximum			30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
BW	Bandwidth	Gain set to maximum, -3 dB point	30			MHz
$\Delta \mathrm{V}_{\mathrm{OS}}$	Maximum Gain and Minimum Gain AGC Amp Output Offset Voltage Difference	$\mathrm{V}_{\mathrm{BYP}}=2.6 \mathrm{~V}$ for maximum gain $\mathrm{V}_{\mathrm{BYP}}=5.0 \mathrm{~V}$ for minimum gain			700	mV
$\bar{V}_{\text {BYP }}{ }_{\text {MAX }}$	Max Voltage at BYP Pin at Minimum Gain	$\mathrm{V}_{\left(\mathrm{D}_{\text {I }+}+\mathrm{D}_{\text {IN- }}\right)}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=3.0 \mathrm{~V}$		6.0	6.7	V
$\mathrm{V}_{\text {OP }}$	Maximum Output Voltage Swing	Set by $\mathrm{V}_{\text {AGC }}$,	3			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
IOD	OUT + to OUT - Pin Current	No DC path to GND, See Note 3	± 3.2			mA
R_{O}	Output Resistance			18	32	Ω
C_{0}	Output Capacitance			12		pF
$\begin{aligned} & \mathrm{V}_{\mathrm{IP}} \\ & \mathrm{~V}_{\mathrm{AGC}} \end{aligned}$	($\mathrm{D}_{\mathrm{IN}+}-\mathrm{D}_{\mathrm{IN}-}$) Input Voltage Swing VS AGC Input Level	$\begin{aligned} & 30 \mathrm{~m} V_{\text {P-P }} \leqslant V_{(I N+-I N-)} \leqslant 550 \mathrm{~m}_{\mathrm{P}-\mathrm{P},} \\ & 0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \leqslant \mathrm{~V}_{\left(\mathrm{D}_{\mathrm{IN}+}-\mathrm{D}_{\mathrm{IN}-)}\right.} \leqslant 1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	0.37	0.48	0.56	$\mathrm{V}_{\mathrm{P}-\mathrm{P}} / \mathrm{V}$
V_{IP}	($\mathrm{D}_{1 \mathrm{~N}_{+}}-\mathrm{D}_{\mathbf{I N}-}$) Input Voltage Swing Variation	$30 \mathrm{~m} V_{\mathrm{P}-\mathrm{P}}<\mathrm{V}_{(\mathbb{N}+-\mathbb{N}-)}<550 \mathrm{~m} V_{\mathrm{P}-\mathrm{P}}$ AGC Fixed, over supply and temp.			+8	\%
t_{D}	Gain Decay Time	See Figure 1a; $\mathrm{V}_{\text {IN }}=300 \mathrm{~m} \mathrm{~V}_{\text {P-P }}$ then $>150 \mathrm{mV} V_{\text {P-p }}$ at 2.5 MHz , $V_{\text {Out }}$ to 90% of final value.		50		$\mu \mathrm{s}$
$t_{\text {A }}$	Gain Attack Time	See Figure 1b; from Write to Read transition to $V_{\text {OUT }}$ at 110% of final value, $\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mV}_{\text {P-P }} @ 2.5 \mathrm{MHz}$		4		$\mu \mathrm{s}$
$\mathrm{I}_{\text {AGCic }}$	Fast AGC Capacitor Charge Current	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{DIN}_{\text {I }}\right)}=1.6 \mathrm{~V}, \mathrm{~V}_{\text {AGC }}=3.0 \mathrm{~V}$	1.3	1.5	2.0	mA
$\overline{\mathrm{I}_{\text {AGCsc }}}$	Slow AGC Capacitor Charge Current	$V_{\left(D_{I N+}-D_{I N-}\right)}=1.6 \mathrm{~V}$, Vary $\mathrm{V}_{\text {AGC }}$ until slow discharge begins	0.14	0.17	0.22	mA
	Fast to Slow Attack Switchover Point	$\frac{V_{\left(D_{I N+}-D_{I N_{-}}\right)}}{\left.V_{\left(D_{I N_{+}}-D_{I N_{-}}\right)}\right)}$		1.25		-
$\overline{I_{A G C D}}$	AGC Capacitor Discharge Current	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\text {IN }}\right)}=0.0 \mathrm{~V}$ Read Mode		4.5		$\mu \mathrm{A}$
		Hold Mode	-0.2		+0.2	$\mu \mathrm{A}$
CMRR	CMRR (Input Referred)	$\mathrm{V}_{\mathbf{I N +}+}=\mathrm{V}_{\mathrm{IN}-}=100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}} @ 5 \mathrm{MHz},$ gain at maximum	40			dB
PSRR	PSRR (Input Referred)	$\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{DD}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} @ 5 \mathrm{MHz}$ gain at maximum	30			dB
TREC	Write to Read Recovery Time. Includes AGC Settling	$\mathrm{V}_{(1 \mathrm{~N}+-\mathrm{IN}-)}=100 \mathrm{mV} \mathrm{P}_{\text {-P }} @ 2.5 \mathrm{MHz}$	1.2	2	10	$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS ${ }_{\text {(Continued) }}$

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, \mathrm{IN}$ + and IN - AC coupled, OUT + and OUT- differentially loaded with $>600 \Omega$ and each side loaded with $<10 \mathrm{pF}$ to $G N D, C_{B Y P}=2000 \mathrm{pF}, \mathrm{OUT}+$ and OUT - $A C$ coupled to $\mathrm{D}_{I N}+$ and $\mathrm{D}_{I N}$ - respectively, $\mathrm{V}_{A G C}=2.2 \mathrm{~V}$ unless otherwise specified. (See Note 2.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 4 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS | UR |
| :--- |

READ MODE CHARACTERISICS (Continued)
Hysteresis Comparator

$V_{\text {IP }}$	Input Signal Range				1.5	$V_{\text {P-p }}$
RID	Differential Input Resistance	$\mathrm{V}_{\left(\mathrm{D}_{\left.1 \mathrm{~N}_{+}-\mathrm{D}_{\mathrm{IN}+}\right)}=100 \mathrm{mV} \mathrm{P} \text {-P }^{0} \text { @ } 2.5 \mathrm{MHz}\right.}$	5		15	k Ω
$\mathrm{C}_{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{\left(\mathrm{D}_{\text {IN }+}-\mathrm{D}_{\text {IN- }}\right)}=100 \mathrm{mV} \mathrm{P}_{\text {P }} @ 2.5 \mathrm{MHz}$			6.0	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance	(both sides)		2.0		k8
V_{10}	Comparator Offset Voltage	HYS pin at $-0.5 \mathrm{~V}, \leqslant 1.5 \mathrm{k} \Omega$ across $\mathrm{D}_{\mathrm{IN}+}, \mathrm{D}_{\mathrm{IN}-}$		5		mV
$V_{\text {HYSP }}$ $\mathrm{V}_{\mathrm{HYS}}$	Peak Hysteresis Voltage vs HYS pin voltage (input referred)	$1 \mathrm{~V}<\mathrm{V}_{\mathrm{HYS}}<3 \mathrm{~V}$	0.16	0.21	0.25	V/V
1	HYS Pin Input Current	$1 \mathrm{~V}<\mathrm{V}_{\mathrm{HYS}}<3 \mathrm{~V}$	0		-20	$\mu \mathrm{A}$
Io	LEVEL Pin Max Output Current		3			mA
R_{O}	LEVEL Pin Output Resistance	$\mathrm{I}_{\text {LeVEL }}=0.5 \mathrm{~mA}$		180		ᄋ
V_{OL}	Dout Pin Output Low Voltage	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-4.0$		$\mathrm{V}_{\mathrm{DD}}-2.5$	V
V_{OH}	Dout Pin Output High Voltage	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DD}}-2.2$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
$\mathrm{V}_{\text {LeVEL }}$ $V_{D_{I N}}$	Level Pin Output Voltage vs $V_{\left(D_{I N+}-D_{1 N_{-}}\right)}$	$\begin{array}{\|l} \hline 0.6<\left\|\mathrm{V}_{\left(\mathrm{D}_{1 \mathrm{~N}_{+}}-\mathrm{D}_{1 N_{-}}\right)}\right\|<1.3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ 10 \mathrm{k} \Omega \text { from level pin to GND } \end{array}$	1.5		2.5	$\mathrm{V} / \mathrm{V}_{\mathrm{P}-\mathrm{P}}$

Active Differentiator

V_{IP}	Input Signal Range				1.5	$V_{\text {P-P }}$
$\mathrm{R}_{\text {ID }}$	Differential Input Resistance	$\mathrm{V}_{\left(\mathrm{C}_{\mathrm{IN}+}-\mathrm{C}_{\text {IN- }}\right)}=100 \mathrm{mV} \mathrm{P}_{\text {P- }} @ 2.5 \mathrm{MHz}$	5		11	k8
$\mathrm{CID}_{\text {ID }}$	Differential Input Capacitance	$\mathrm{V}_{\left(\mathrm{C}_{\text {IN+}}-\mathrm{C}_{\text {IN- }}\right)}=100 \mathrm{mV} \mathrm{P}_{\text {P- }} @ 2.5 \mathrm{MHz}$			6	pF
$\mathrm{Z}_{\text {IC }}$	Common Mode Input Impedance	(both sides)		2.0		k Ω
IOD	$\mathrm{D}_{\mathrm{IF}+}$ to $\mathrm{D}_{\mathrm{IF}-}$ Pin Current	Differentiator Imped must be set so as not to clip signal at this current level	± 1.3			mA
V_{10}	Comparator Offset Voltage	$\mathrm{D}_{\mathrm{IF}+}$, $\mathrm{IFF}^{\text {a }}$ AC Coupled		5		mV
V_{OL}	Cout Pin Output Low Voltage	$0 \leqslant \mathrm{l}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{DD}}-3$		V
V_{PO}	$\mathrm{C}_{\text {OUT }}$ Pin Output Pulse Voltage	$0 \leqslant \mathrm{I}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		0.4		V
PW_{0}	Cout Pin Output Pulse Width	$0 \leqslant \mathrm{I}_{\mathrm{OH}} \leqslant 0.5 \mathrm{~mA}$		30		ns
A_{V}	$\begin{aligned} & \text { Voltage Gain From } \mathrm{C}_{\mathbb{I N} \pm} \text { to } \\ & \mathrm{D}_{\mathrm{IF} \pm} \end{aligned}$	$\mathrm{R}_{\left(\mathrm{D}_{\mathrm{IF}+} \text { to } \mathrm{D}_{\mathrm{IF}-)}=2 \mathrm{k} \Omega\right.}$	1.7		2.2	V/V
Undervoltage Detector (ML4042 Only)						
$\mathrm{V}_{\text {CCTH }+}$	$\mathrm{V}_{\text {CC }}$ Fault Threshold +	$\overline{\bar{V}_{\text {FLT }}}$ transition from low to high	3.8	4.2	4.5	V
$\mathrm{V}_{\text {CCTH- }}$	$V_{\text {CC }}$ Fault Threshold -	$\bar{V}_{\text {FLT }}$ transition from high to low	3.8	4.1	4.5	V
$\mathrm{V}_{\mathrm{DDTH}+}$	$\mathrm{V}_{\text {DD }}$ Fault Threshold +	$\overline{V_{\text {FLT }}}$ transition from low to high	9.6	10.2	10.8	V
$\mathrm{V}_{\text {DDTH- }}$	V_{DD} Fault Threshold-	$\overline{\bar{V}_{\text {FLT }}}$ transition from high to low	9.6	10.0	10.8	V
V_{OL}	Output Low Voltage ($\left.\overline{\mathrm{V}_{\mathrm{FLT}}}\right)$	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage ($\left.\overline{\mathrm{V}_{\mathrm{FLT}}}\right)$	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.7			V

ELECTRICAL CHARACTERISTICS ${ }_{\text {(Continued) }}$

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%$, $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}, \mathrm{V}_{\left(\mathrm{C}_{I N+}-\mathrm{C}_{I N_{-}}\right)}=\mathrm{V}_{\left(\mathrm{D}_{I N+}-\mathrm{D}_{I N-}\right)}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} A C$ coupled sine wave at $2.5 \mathrm{MHz}, R_{D_{I F}}=100 \Omega, \mathrm{C}_{\mathrm{D}_{\text {IF }}}=65 \mathrm{pF}, \mathrm{V}_{\mathrm{HYS}}=1.8 \mathrm{~V}$, $\mathrm{C}_{\mathrm{OS}}=60 \mathrm{pF}, 4 \mathrm{k} \Omega$ to V_{CC} and 10 pF to GND on pin $\overline{\mathrm{RD}}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 4 \end{gathered}$	MAX	UNITS
Output Data Characteristics (Refer to Figure 2)						
$\mathrm{t}_{\mathrm{D} 1}$	D-Flip-Flop Set Up Time	Min delay from $\mathrm{V}_{\left(\mathrm{D}_{\mathrm{IN}+}-\mathrm{D}_{\mathrm{IN}}\right)}$ exceeding threshold to $\mathrm{V}_{\left(\mathrm{D}_{\mathrm{IF}}+-\mathrm{D}_{\mathrm{IF}}\right)}$ reaching a peak	0			ns
$\mathrm{t}_{\text {D }}$	Propagation Delay				110	ns
$t_{\text {D }}$	Output Data Pulse Width Variation	(See Note 5) $\mathrm{C}_{\mathrm{OS}}=60 \mathrm{pF}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	50	65	ns
$\mathrm{t}_{\mathrm{D} 3} \mathrm{t}_{\mathrm{D} 4}$	Logic Skew (Pulse Pairing)				1	ns
t_{R}	Output Rise Time	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$			18	ns
t_{F}	Output Fall Time	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$			14	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: AGC amplifier output current may be increased as in Figure 4.
Note 4: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 5: $\mathrm{t}_{\mathrm{D} 5}=830\left(\mathrm{C}_{\mathrm{OS}}\right), 50 \mathrm{pF}<\mathrm{C}_{\mathrm{OS}}<150 \mathrm{pF}$

FUNCTIONAL DESCRIPTION

Operating Modes

The ML4041, ML4042 has three definitive operation modes which are: Read mode, Write mode and Hold mode. These modes are defined by input pins $\overline{\mathrm{HOLD}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ as shown in Table 1. Read mode, the mode used normally for pulse detection, is assumed in the following sections unless otherwise noted.

AGC Amplifier Section

The purpose of the AGC amplifier is to provide a constant read signal level for both the level and slope detectors. Full differential processing of the read signal is used to minimize noise and distortion in the analog signal. A wide gain range is required due to large signal variation when moving the recording head from an inside to outside data track or variations in media.
The differential output voltage level $\mathrm{V}_{\text {OUT }}$ from the AGC amp is determined by voltage $V_{A G C}$ present at pin $A G C . V_{O U T}$ is full wave rectified and compared against $V_{A G C}$ to create charge/discharge current for capacitor $\mathrm{C}_{\mathrm{BYP}}$ connected at pin BYP. Voltage $V_{B Y P}$ across $C_{B Y P}$ controls the gain in the AGC amplifier.
Two distinct values of $\mathrm{I}_{\mathrm{BYP}}$ are possible which determine a fast and slow AGC gain response attack rate. When $\mathrm{V}_{\text {OUT }}$ is more than 125% of the set level a high value of $I_{B Y P}$ is sourced which provides a fast AGC attack rate. When VOUT is within 100% to 125% of the set level a reduced value of $I_{\text {BYP }}$ is sourced which provides a slower attack rate. The fast-slow gain response attack rates provides for an initial quick system
response and then minimum zero crossing distortion of the analog signal once the gain is within working range. $V_{A G C}$ should be set so that the differential input voltage $\mathrm{V}_{\mathrm{DIN}}$ into the level comparator is $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ at nominal Read signal conditions. The AGC amp section gain is given by:

$$
\frac{A_{V 2}}{A_{V 1}}=\exp \frac{V_{B Y P 2}-V_{B Y P 1}}{5.8 \times V_{T}}
$$

Where: $A_{V 1}, A_{V 2}$ are initial and final amplifier gain values corresponding to initial and final $\mathrm{V}_{\mathrm{BYP}}$ values.
$V_{T}=(K T) / Q=26 \mathrm{mV}$ at room temperature.
The AGC amp's differential inputs must be AC coupled to the read amplifier (ML117, ML501, etc.) differential outputs. Similarly, AC coupling must be used at the AGC amp outputs.

AGC Amp During Write Mode - When the ML4041, ML4042 is put into write mode, the AGC amp's input impedance is lowered to allow a faster dampening of the Write to Read transient from the head pre-amp. The AGC gain is also set to maximum gain so that fast AGC attack will occur when changing back to the Read mode. Internal device timing is controlled so that settling occurs prior to Read mode activation. Minimal value input coupling capacitors should be chosen to reduce settling time, however, bandwidth requirements also need to be considered.

AGC Amp During Hold Mode-During the Hold mode, the charge/discharge current driving pin BYP is internally disconnected. AGC compensation capacitor $\mathrm{C}_{A G C}$ will then hold the present gain setting. The amplitude of $\mathrm{V}_{\mathrm{OUT}}$ will therefore not affect the AGC gain and gain will remain constant.
Hold mode is used so that AGC gain will not be adjusted when embedded servo information is read. This prevents loosing the pulse peak amplitude information needed during position decoding, or creating additional gain settling time when again reading data. Embedded servo pulses are normally taken at outputs $\mathrm{D}_{\mathrm{IF}-}$ and $\mathrm{D}_{\mathrm{IF}+}$, as shown in the typical application.

External Filter Network

Filtering for the level and slope detectors can be performed with a single filter or two separate filters. If separate filters are used, care must be used to insure that time delays are matched. A multi-pole Bessell filter is recommended due to the group delay and linear phase characteristics.

Level Detector

The full wave rectified $V_{\text {OUT }}$ is buffered and available at pin LEVEL. The level detector uses a hysteresis comparator to compare the processed read signal amplitude against a reference voltage derived from voltage $V_{\text {LEVEL }}$ output from pin LEVEL. Using $V_{\text {LEVEL }}$ provides a feed-forward function that allows valid level detection to be performed prior to AGC amp gain settling. The level detector hysteresis value is set in a way that will only allow relatively large read pulse peaks (negative or positive) to be detected.

Slope Detector

The slope detector uses an external reactive component network to produce a voltage signal proportional to the differential of the read signal. By using a hysteresis comparator to detect zero slope of the read signal, the time occurrence of positive or negative read pulse peak values can be determined.
An external reactive network, shown in the Typical Application, is used between the $\mathrm{D}_{\mathrm{IF}+}$ and $\mathrm{D}_{\mathrm{IF}-}$ pins to provide the differential function given by:

$$
A_{V}=\frac{-2000 C s}{L C s^{2}+(R+92) C s+1}
$$

Where: $\mathrm{C}=$ External capacitor (20 pF to 150 pF)
$\mathrm{L}=$ External inductor
$R=$ External resistor
$s=j \omega=j 2 \pi f$

Output Logic

The output logic provides a negative TTL pulse at pin $\overline{R D}$ which begins at the peak of a valid read pulse, as shown below.

Pin R/ \bar{W} must be high for the output logic to be active. The key element in the output logic is the D flip-flop. The flip-flop is clocked by the slope detector at the time of a zero crossing, which loads data from level detector. The flip-flop inputs only change state when the level detector detects a peak amplitude of a polarity opposite to the previous valid peak. Thus, through the output logic the slope detector determines output timing and the level detector determines pulse validity.

Layout Considerations

As with any high gain, wide bandwidth analog circuitry, care lines should be bypassed and well isolated from other circuitry. A ground plane is recommended, as is keeping analog lines short and well balanced to prevent interaction with nearby circuitry in the disk drive.

BLOCK DIAGRAM

Figure 1. AGC Timing Diagram

Figure 2. Output Logic Timing Diagram

TYPICAL APPLICATIONS

Figure 3. Typical Application Diagram

Figure 4. Modification of AGC Amplifier Output to Drive Low Impedance Filters

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4041CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)
ML4041CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)
ML4041CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S24)
ML4042CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P28)
ML4042CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)
ML4042CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S28)

ML4401

Servo Demodulator

GENERAL DESCRIPTION

The ML4401 provides all of the analog circuitry necessary for the demodulation of di-bit servo signal information in Winchester disk drives. It interfaces to the servo head preamp and provides quadrature position signal outputs for the servo controller circuitry.

The ML4401 includes a high-performance 592-type input amplifier and differential AGC circuit. External logic is designed to meet the needs of the particular servo system utilizing the VCO and Charge Pump to create a PLL time base for Peak Detector gating. The SYNC output provides servo channel timing information for the logic.

The ML4401 when combined with the ML4402, ML4406/07/08 Servo Driver, the ML4403, ML4413 Servo Controller and the ML4404 Trajectory Generator, provides a flexible closed-loop servo control system.

FEATURES

- Combines all analog di-bit demodulation circuitry
- Logic track-type switching can be used to minimize demodulator offset
- Exponential AGC characteristics makes AGC settling independent of input step size
- External loop compensation of analog blocks
- External digital circuitry allows flexible pattern format
- On-chip band gap voltage reference eliminates external referencing
- Operates from 12 V power supply
- Compatible with Micro Linear's ML4403, ML4413 Servo Controller, ML4402, ML4406/07/08 Servo Driver and ML4404 Trajectory Generator

PIN CONNECTIONS

ML4401 28-Pin DIP (Prototypes Only)

ML4401 28-Pin PCC

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
1	$\overline{\text { FINC }}$	Charge pump frequency increment input (TTL).
2	VCOL	PLL loop compensation terminal.
3	VCOI	VCO high impedance input.
4	VCOP	VCO positive output, for capacitive feedback to VCOI.
5	VCON	VCO negative output, drives resistance feedback to VCOI, also provides ECL output on ML4401 and TTL output on ML4411.
6	$\mathrm{V}_{\text {CC }}$	+12V supply.
7	$V_{\text {REF }}$	Voltage reference output (+5 V).
8	GND	Ground.
9	$V_{\text {AGC }}$	AGC gain reference voltage input.
10	$\mathrm{C}_{\text {AGC }}$	External capacitor terminal to set AGC response.
11	GAIN1	Input amplifier gain adjusting RC terminal 1.
12	INX	X input into input amplifier.
13	INY	Y input into input amplifier.
14	GAIN2	Input amplifier gain adjusting RC terminal 2.

PIN \#	NAME	FUNCTION
15	CAP1	Peak detector 1 capacitor terminal.
16	CAP2	Peak detector 2 capacitor terminal.
17	CAP3	Peak detector 3 capacitor terminal.
18	CAP4	Peak detector 4 capacitor terminal.
19	GATE1	Peak detector 1 gate input (TTL) high enabled, low disabled.
20	GATE2	Peak detector 2 gate input (TTL) high enabled, low disabled.
21	GATE3	Peak detector 3 gate input (TTL) high enabled, low disabled.
22	GATE4	Peak detector 4 gate input (TTL) high enabled, low disabled.
23	TP	Composite test point, normally left unconnected.
24	$C_{D C}$	External capacitor terminal to set DC restore response.
25	SYNC	SYNC pulse output (TTL).
26	POSA	Position output A.
27	POSB	Position output B.
28	FDEC	Charge pump frequency decrement input (TTL).

ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

OPERATING CONDITIONS

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) $12 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$
Input Coupling Capacitance (Ci) $0.01 \mu \mathrm{~F}$
Input Amp Gain Capacitance (C_{G}) $0.047 \mu \mathrm{~F}$
Input Amp Gain Resistance (R_{G}) $1 \mathrm{k} \Omega$
AGC Response Compensation Capacitance (C_{A}) $0.082 \mu \mathrm{~F}$
Composite DC Restore Capacitance (C_{D}) $0.01 \mu \mathrm{~F}$
PLL Compensation Components:
C_{CP} $0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{CP} 2}$ $1 \mu \mathrm{~F}$
$R_{\text {CP }}$ 910Ω
PLL Gain Components:
Rv 1000Ω
RL1, RL2 1000Ω
Peak Detector Capacitance (CAP1 thru CAP4) 270pF
SYNC Output Pull-Up Resistor (to 5V) 3.3k
On track Base-to-Peak Voltage at pin TP 1.75 V
V_{GA} Gain Control Voltage (at pin $\mathrm{C}_{\mathrm{ACC}}$) 0.65

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10.8$ to 13.2 V ,
$V_{V A G C}=5.0 \mathrm{~V}$, and external components as recommended above, unless otherwise specified (See Note 1.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 2 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS | Power Supply |
| :--- |
| ICC |

TTL Inputs FINC, FDEC, GATE1, GATE2, GATE3, GATE4

V_{IH}	High Level Input Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage				0.8	V
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	-1		30	$\mu \mathrm{~A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-20		1	$\mu \mathrm{~A}$

SYNC Output (TTL Open Collector) See Note 3

V_{OL}	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0	0.3	0.5	V
$\mathrm{~V}_{\mathrm{THR}}$	Positive going input threshold			$\mathrm{V}_{\text {REF }}+0.9$		V
$\mathrm{~V}_{\mathrm{THF}}$	Negative going input threshold			$\mathrm{V}_{\mathrm{REF}}$		V
$\mathrm{t}_{\mathrm{PD}} \pm$	Propagation Delay Rising, Falling	$\mathrm{RL}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	50		ns	

VCOP Output ML4401 ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

V_{OH}	High Level Output Voltage	$\mathrm{RL}=1 \mathrm{k} \Omega$	4.0	4.3	4.6	V
$\mathrm{~V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mathrm{RL}=1 \mathrm{k} \Omega$	2.9	3.2	3.5	V

VCOP Output ML4411

V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=50 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.5	V

VCO and Charge Pump Section

$I_{\text {BIAS }}$	$V_{\text {COI }}$ Input Bias Current		0	25	50	$\mu \mathrm{~A}$
$I_{\text {CH }}, I_{\text {DIS }}$	$V_{\text {COL }}$ Charge and Discharge Current		495	660	825	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CH}} / I_{\text {DIS }}$	$\mathrm{V}_{\text {COL }}$ Charge/Discharge Ratio		0.95	1.00	1.05	$\mu \mathrm{~A} / \mu \mathrm{A}$
$\mathrm{I}_{\text {OFF }}$	$\mathrm{V}_{\text {COL }}$ OFF State Current	$\overline{\mathrm{FINC}}=2.0$ $\mathrm{FDEC}=0.8$	0	25	50	nA

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10.8$ to 13.2 V , $\mathrm{V}_{\mathrm{AGC}}=5.0 \mathrm{~V}$, and external components as recommended above, unless specified (See Note 1.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 2 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

VCO and Charge Pump Section (Continued)

$\mathrm{F}_{\text {MAX }}$	MAX VCO Frequency to Maintain + and - 5% Control Range Note 4		30			MHz
$\mathrm{F}_{\mathrm{VCO}}$	VCO Frequency Range Note 4	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=12, \mathrm{~V}_{\mathrm{COL}}=6 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{V}}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{V}}=604 \Omega \end{aligned}$	9.7	10.0	10.3	MHz
K VCO	VCO Voltage to Frequency Factor			2		\%/V
Input AMP, AGC AMP, and DC Restore						
RIN	INX, INY Differential Input Resistance		7.5	10	20	k Ω
$\mathrm{I}_{\text {GAIN1,2 }}$	GAIN1, GAIN2 Bias Current		0.66	1.0	1.20	mA
$\mathrm{I}_{\text {BIAS }}$	$\mathrm{V}_{\text {AGC }}$ Input Bias Current		0	5	20	$\mu \mathrm{A}$
GMAGC	AGC Transconductance at $\mathrm{C}_{\mathrm{AGC}}$			370		$\mu \mathrm{MHOS}$
$\mathrm{R}_{\text {AGC }}$	Control Range of AGC Loop to Regulate Composite Amplitude to within 2\% of Nominal			7/1		V/V
BW	Bandwidth from INX, INY to Composite Note 4		10	15		MHz
GMDCR	DC Restore Transconductance			200		$\mu \mathrm{MHOS}$

Peak Detectors

I_{CH}	Charge Current		12.7			mA
$\mathrm{I}_{\text {DIS }}$	Discharge Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	45	60	$\mu \mathrm{~A}$
$\mathrm{~T}_{\mathrm{CDIS}}$	Tempco of $\mathrm{I}_{\mathrm{DIS}}$			-0.17		$\mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Voltage Reference

$\mathrm{V}_{\text {REF }}$	Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.85	5.10	5.35	V
TC	Tempco			50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {OUT }}$	Load Regulation			2		$\mathrm{mV} / \mathrm{mA}$
PSRR	Line Regulation			10		mV / V
ISINK	Maximum SINK Current		0.8			mA

Output Amplifiers (POSA, POSB)

$V_{\text {OS }}$	Input Offset	$V_{C A P} 1-4=6 \mathrm{~V}$	-10	0	10	mV
A_{V}	Gain		1.23	1.28	1.33	$\mathrm{~V} / \mathrm{V}$
$\mathrm{A}_{\mathrm{VA}} / \mathrm{A}_{\mathrm{VB}}$	Gain Tracking		-3	0	+3	$\%$
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Range		1.0		9.5	V
$\mathrm{I}_{\text {SR }}$	Output Source Current		5			mA
$I_{\text {SK }}$	Output Sink Current		2			mA
SR	Slew Rate			2.5		$\mathrm{~V} / \mu \mathrm{s}$
BW	3dB Gain Bandwidth			3		MHz

[^6]
FUNCTIONAL DESCRIPTION

Input Amplifier

The input amplifier is equivalent to a wide-band 592 type video amplifier and provides amplification and buffering to the AGC circuitry. The Inputs INX and INY, which must be AC coupled, accept the composite analog signal from the servo head differential preamplifier. Internal input termination resistors eliminate the need for external bias resistors. Prefiltering of the signal is normaly desired to eliminate unwanted components. External components R_{G} and C_{G} determine the input amplifier's low frequency cutoff and gain as follows:

$$
F C=\frac{1}{2 \pi\left(R_{G}+60 \Omega\right) C_{G}} \quad A_{V}=\frac{1700}{R_{G}+60 \Omega}
$$

Where: $\mathrm{C}_{\mathrm{G}}=$ External series capacitance between pins GAIN1 and GAIN2
$\mathrm{R}_{\mathrm{G}}=$ External series resistance between pins GAIN1 and GAIN2

Automatic Gain Control (AGC)

The purpose of the AGC loop is to maintain a constant peak output voltage level at outputs POSA and POSB. This peak level is established by the reference voltage applied to pin
$V_{A G C}$.

$$
\begin{aligned}
& \\
& \text { Where: } \begin{array}{l}
\mathrm{K} 1 \\
\mathrm{~V} 2-\mathrm{P} \text { (Composite) }
\end{array}=\mathrm{K} 1 \times \mathrm{V}_{\mathrm{AGC}}+\mathrm{K} 2 \\
& \mathrm{~K} 2=0.41 \mathrm{~V}
\end{aligned}
$$

In this closed-loop system, the peak detector output voltages are fed back and combined with the $\mathrm{V}_{\mathrm{AGC}}$ voltage to provide a gain control current. The current controls the variable gain amplifier (VGA) and is compensated at pin $\mathrm{C}_{\mathrm{AGC}}$ to provide control of AGC bandwidth. The bandwidth of the entire AGC loop is determined by:

$$
B W=\frac{K V_{V A G C}}{2 \pi C_{A}}
$$

Where: K $=4.3 \times 10^{-4}$
$V_{V A G C}=$ External reference voltage at pin $V_{A G C}$
$C_{A}=$ External capacitance at pin $C_{A G C}$
Optimum system stability is achieved by deriving $V_{\text {VAGC }}$ from the $V_{\text {REF }}$ output using a resistive divider.

Composite Amplifier

The input amplifier and AGC circuit of the ML4401 operate in a differential signal mode to provide good common mode and power supply rejection. The composite amplifier converts the differential signal into a buffered single-ended signal for the peak detector circuitry. The DC base line of the composite signal is equal to $\mathrm{V}_{\text {REF }}$. The bandwidth of the DC restore function is controlled by capacitor C_{D} at pin $C_{D C}$ with the following relationship:

$$
B W=\frac{g m}{2 \pi C_{D}}
$$

Where: gm $=1 / 5 \mathrm{k} \Omega$
$C_{D}=$ External capacitance at pin $C_{D C}$
The composite signal is available at pin TP and is normally left unconnected. For short circuit protection a 425Ω resistor is connected in series with pin TP internally.

Synchronization Pulse Separator

The SYNC pulse separator is a threshold comparator with hysteresis which passes pulses from the composite amplifier above a set threshold. It provides a buffered open collector TTL output. The SYNC output, when gated through an external one-shot, is used to control the external gate timing and PLL logic.

Peak Detector

The peak detector circuit captures the peak signal amplitude of the di-bit pulses. The gates are controlled by inputs GATE1 through GATE4. Timing is established by the external logic circuitry. The external peak detector capacitors are connected from pins CAP1 through CAP4 to ground. The peak detector discharge rate (set by CAP1-CAP4) determines the maximum track crossing rate during an access operation. The performance of this block can be enhanced by using the velocity output of the ML4403, ML4413 to create a velocity proportional discharge. The peak detector outputs are fed into internal differential amplifiers that calculate the track error signals and provide buffered outputs POSA and POSB as follows:
POSA $=1.25(C A P 1-C A P 2)+V_{\text {REF }}$
POSB $=1.25(C A P 3-C A P 4)+V_{\text {REF }}$

Voltage Controlled Oscillator and Charge Pump

The VCO and external phase compare logic provide a time base for peak detector gate sychronization. Inputs FINC and FDEC provide increment and decrement signals to the charge pump for changing the oscillator frequency. The $\overline{\mathrm{FINC}}$ and FDEC inputs gate the charge pump for the duration of the pulse width. The RC timing network formed by C_{V} and R_{V} at pins VCOI, VCON, and VCOP control the oscillators center frequency. (See Typical Performance Characteristics)
R_{V} should be greater than 330Ω. Too low of a value will result in excessive power dissipation. RL1, RL2 and RV should be approximately equal, although the values of RL1 and RL2 do not require accuracy.
The VCO output should only be taken from pin VCON. Charge pump capacitor $\mathrm{C}_{\mathrm{CP} 1}$ is connected from pin VCOL to ground. Components R_{CP} and $\mathrm{C}_{\mathrm{CP} 2}$ are also connected in series from pin VCOL to ground to provide VCO loop compensation.

Internal Voltage Reference

$V_{\text {REF }}$ is an internal band-gap voltage reference. It is buffered and available at pin $V_{\text {REF }}$ and is used by the ML4402, ML4403, ML4404 and other chips requiring a 5 volt reference.

External Logic

The external logic provided by the user typically has a complexity of about 150 to 300 equivalent gates. Complexity and architecture depends on the users di-bit pattern and control function.
Note: Stray capacitance should be considered in applying the above relationships when low capacitor values are used. Stray capacitance of the integrated circuit terminal is typically about 2 to 3 pF .

TYPICAL PERFORMANCE CHARACTERISTICS

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4401CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P28)
ML4401YCQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)

GENERAL DESCRIPTION

The ML4402 Servo Driver contains all of the control circuitry necessary to drive the head positioning actuator of a hard or rigid disk drive system. It receives the error signal generated from a servo controller circuit, such as the ML4403, ML4413, and drives an external transistor bridge which controls the head positioning voice coil actuator. The ML4402 output control circuitry includes current sense inputs to provide closed-loop control of actual actuator current. By using an external power transistor bridge, flexible thermal and space management is allowed as well as transistor selection which enables a wide application range.
Included in the device is a unique disable function which permits interruption of actuator current. During a disable, the output control amplifiers are shut down which cuts off all current to the external transistor bridge. Disable can be activated by a logic high into pin DIS or by the on-board lowvoltage detector. Use of the low-voltage disable function prevents actuator response to a false error signal during a power failure. The low voltage detector can monitor up to two power supplies and has user definable low voltage trigger levels.
The ML4402, when combined with the ML4401/4431 Servo Demodulator, the ML4403, ML4413 Analog Servo Controller and the ML4404 Trajectory Generator, provides a flexible high-performance head positioning servo system.

FEATURES

- Low differential input offset voltage
- Contains all control circuitry necessary to drive an external transistor bridge
- Differential amplifiers internally compensated
- Unique disable function interrupts actuator current
- Programmable dual supply low voltage detector
- Single +12 V power supply
- Compatible with Micro Linear's ML4401/4431

Servo Demodulator, ML4403, ML4413 Servo
Controller and ML4404 Trajectory Generator chips

The ML4402-1 and ML4402-2 differ in offset voltage at the differential error signal inputs which is a result of the manufacturing trim process.

BLOCK DIAGRAM

PIN CONNECTIONS

TOP VIEW

20-PIN DIP (Prototypes Only)

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
1	VINY	Inverting input for error voltage signal. Used as a reference voltage (analog ground) input when using a single ended output from the ML4403 Servo Controller. Obtained from the $V_{\text {REF }}$ output of the ML4401 Servo Demodulator.
2	VINX	Non-inverting input for error voltage signal. Used as the signal input pin when using a single ended output from the ML4403.
3	REFA	Reference pin for low voltage comparator.
4	$\mathrm{V}_{\text {CC }}$	+12V power supply pin.
5	$\mathrm{V}_{\text {ALT }}$	Optional +5 V power supply pin to keep the PSF pin operating if $V_{C C}$ fails. With $\mathrm{V}_{\text {ALT }}$ at +5 V , the PSF pin will go low if V_{CC} goes to zero, or too low to operate the comparator.
6	PS1	Voltage input for low voltage comparator.
7	PS2	Voltage input for low voltage comparator.
8	PSF	Power supply failure indication, is an open collector output of comparator. Logic low indicates PS1 and/or PS2 voltage has gone below REFA.
9	DIS	Amplifier Disable pin. TTL input that disables both amplifiers with a logic high.
10	RETR	Return spring output, clamped open collector output, opposite logic polarity as pin PSF. Used to drive optional safety circuitry.

PIN \#	NAME	FUNCTION
11	CMP2	Compensation node of AMP2 used to add additional compensation; the device is manufactured with approximately 27 pF of internal compensation.
		Bandwidth Effects: $f=\frac{g m}{2 \pi(C+27 p F)}$
		Slew Rate Effects: $\mathrm{SR}=\frac{20 \mu \mathrm{~A}}{\mathrm{C}+27 \mathrm{pF}}$
		Where: $\mathrm{gm}=150 \mu \mathrm{mhos}$ C=External Compensation Capacitor CMP1 or $\mathrm{C}_{\mathrm{CMP2}}$
12	S2	Current sense input for AMP2.
13	C2	Collector of output transistor of AMP2.
14	E2	Emitter of output transistor of AMP2.
15	C1	Collector of output transistor of AMP1.
16	E1	Emitter of output transistor of AMP1.
17	S1	Current sense input for AMP1.
18	SGND	Reference ground for S1, S2 feedback.
19	CMP1	Compensation node of AMP1, used to add additional compensation. The device is manufactured with approximately 27 pF of internal compensation. Bandwidth and Slew Rate effects are the same as the CMP2 pin.
20	GND	Ground.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Power Supply Voltage (VCC)
Terminal Voltage Range
(Vinx,
-0.3 to $V_{\mathrm{CC}}+0.3 \mathrm{~V}$
S1,S2 7 V
Terminal Input Current (CMP1, CMP2) 0.1 mA
Storage Temperature Range.................. $.65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{j}) . $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage	
V_{CC}	$12 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\text {ALT }}$	$5 \mathrm{~V} \pm 10 \%$
Typical Component Values (Refer to Typical Application)	
R_{OA}	470Ω
R_{OB}	240s
Roc	150
R_{OD}	0.5Ω

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\text {INY }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, and external components as shown above unless otherwise specified (See Note 1).

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 2 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

Power Supply

I_{CC}	V_{CC} Supply Current	Outputs unloaded, Pin REFA open		10	20	mA
IDD	$\mathrm{V}_{\mathrm{ALT}}$ Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}$		150	500	$\mu \mathrm{~A}$

Amplifier Characteristics

$\mathrm{A}_{\mathrm{V} 1}$	Voltage Gain at Pin S1, $\mathrm{V}_{\mathrm{S} 1} /\left(\mathrm{V}_{\mathbb{N} X}-\mathrm{V}_{\mathrm{IN}}\right)$; Applies when $V_{\text {INX }}>V_{\text {INY }}$	$\begin{aligned} & V_{I N X}=5.1 \text { and } 6 \mathrm{~V} \\ & V_{I N Y}=5.0 \mathrm{~V} \end{aligned}$		0.342	0.352	0.362	V/V
$A_{V} 2$	Voltage Gain at Pin S2, $\mathrm{V}_{\mathrm{S} 2} /\left(\mathrm{V}_{\mathrm{INY}}-\mathrm{V}_{\mathrm{INX}}\right)$; Applies when $V_{\text {INY }}>V_{\text {INX }}$	$\begin{aligned} & V_{I N X}=4.9 \text { and } 4 \mathrm{~V} \\ & V_{I N Y}=5.0 \mathrm{~V} \end{aligned}$		0.342	0.352	0.362	V/V
$e^{\text {AV }}$	Gain Linearity Error	$\left(\mathrm{A}_{11}-\mathrm{A}_{\mathrm{V} 2} / 0.5\left(\mathrm{~A}_{\mathrm{V} 1}+\mathrm{A}_{\mathrm{V} 2}\right)\right.$		-2	0	2	\%
$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {INX }}, \mathrm{V}_{\text {INY }}$ Input Offset Voltage with Respect to Either Pin S1 or Pin S2	V_{OS} defined where $\mathrm{A}_{\mathrm{V} 1}$ or $\mathrm{A}_{\mathrm{V} 2}>0.16$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-10		+10	mV
$\mathrm{V}_{\text {OS DIFF }}$	Differential Input Offset	$\begin{aligned} & V_{\mathrm{OS} 1}-\mathrm{V}_{\mathrm{OS} 2} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { ML4402-1 } \\ \text { ML4402-2 } \end{gathered}$	$\begin{aligned} & -5 \\ & -10 \end{aligned}$		$\begin{array}{r} +5 \\ +10 \end{array}$	mV
$\mathrm{T}_{\text {cVos }}$	Offset Voltage Tempco				15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{S}	Voltage Swing Range of Pin S1, S2 Above Ground	$\begin{aligned} & V_{\mathrm{S} 11} V_{I N X}=6.7 \mathrm{~V} \\ & V_{\mathrm{S} 2} V_{\mathrm{INX}}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$			0.5	0.65	V
l_{VR}	Input Voltage Range into $\mathrm{V}_{\mathrm{INX}}$ and $V_{\text {INY }}$			3.3		10	V
I_{181}	Input Bias Current, $\mathrm{V}_{\mathrm{INX}}$ and $\mathrm{V}_{\mathrm{INY}}$			0	10	75	$\mu \mathrm{A}$
$\mathrm{I}_{\text {B2 } 2}$	Input Bias Current, Pin S1 or S2 (sourcing)	$\mathrm{V}_{\mathrm{S} 1}, \mathrm{~V}_{\mathrm{S} 2}=\mathrm{GND}$		-1.6	-1.2	-0.8	mA
PSRR	Power Supply Rejection				60		dB
CMRR	Common Mode Rejection Ratio				80		dB
GBP	Gain Bandwidth Product	$\mathrm{C}_{\text {CMP1,2 }}=0$			0.83		MHz
SR	Slew Rate	$\mathrm{C}_{\text {CMP1,2 }}=0$			0.74		$\mathrm{V} / \mu \mathrm{S}$

Output Transistor Characteristics

OUT	Output Current; $I_{C 1}, I_{E 1}, I_{C 2}, I_{\mathrm{E} 2}$	$\mathrm{V}_{\mathrm{INX}}-\mathrm{V}_{\mathrm{INY}}=+1 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2}=0.7 \mathrm{~V}$	50	100	mA

ELECTRICAL CHARACTERISTICS (Continued)
The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{INY}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, and external components as shown unless otherwise specified (See Note 1).

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 2 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS

Internal Voltage Reference ($\mathbf{V}_{\text {REF }}$)

$\mathrm{PS}_{\text {MIN }}$	Minimum Allowable V_{CC} Voltage	Where $\mathrm{V}_{\text {REF }}>2.48 \mathrm{~V}$	4.75		V	
$\mathrm{~V}_{\text {REF }}$	$\mathrm{V}_{\text {REF }}$ Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2.44	2.55	2.66	V
$\mathrm{~T}_{\text {REG }}$	$\mathrm{V}_{\text {REF }}$ Thermal Stability	Over Specified Range		50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {REF }}$	R $_{\text {REF }}$ Resistance	(Internal Resistor from $\mathrm{V}_{\text {REF }}$ to Pin REFA)		2.55		$\mathrm{k} \Omega$

Comparator

V_{OS}	Input Offset Voltage, any Two Inputs		-30	5	30	mV
I_{N}	Input Bias Current		-0.5	-0.1	0	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	PSF Logic 0 Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0	0.2	0.4	V
$\mathrm{~V}_{\mathrm{OL}}$	RETR Logic 0 Voltage	$\mathrm{I}_{\mathrm{SINK}}=3 \mathrm{~mA}$	0	0.5	1	V
I_{OH}	PSF Logic 1 Leakage Current	$\mathrm{V}_{\mathrm{PSF}}=5 \mathrm{~V}$	-10	0.2	10	$\mu \mathrm{~A}$
I_{OH}	RETR Logic 1 Leakage Current	$\mathrm{V}_{\text {RETR }}=2 \mathrm{~V}$	-20	0.05	20	$\mu \mathrm{~A}$

Amplifier Disable Section

V_{IH}	DIS Logic High Voltage		2.0		
I_{IH}	DIS Logic High Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	-20		20
I_{IL}	DIS Logic Low Voltage				0 A
I_{IL}	DIS Logic Low Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-20		V

Note 1: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.

TYPICAL APPLICATION DIAGRAM

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE	COMMENTS
ML4402-1CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)	Input Offset $= \pm 5 \mathrm{mV}$
ML4402-1CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)	Input Offset $= \pm 5 \mathrm{mV}$
ML4402-2CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)	Input Offset $= \pm 10 \mathrm{mV}$
ML4402-2CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)	Input Offset $= \pm 10 \mathrm{mV}$

GENERAL DESCRIPTION

The ML4403/4413 Servo Controller provides analog circuitry used in high performance trajectory and position control system for disk drive transducer heads. As a part of a head positioning servo system, this bipolar monolithic chip is designed to accept quadrature position signals and generate a servo error signal. While designed for minimum track access time, the ML4403/4413 supports a wide range of system designs.

Trajectory control functions include a track crossing detector, a velocity signal generator, and a velocity event detector. System stability and short settling time is insured by the interpolator function, which generates a ramp signal used to smooth the external position DAC output.

Position control is provided by a signal error amplifier within the device. When used with the ML4401/4431 Servo Position Demodulator, the track selection is performed by ML4401/4431 peak detector timing. This selection method eliminates track to track voltage offset problems and allows minimum track spacing. The ML4413

FEATURES

- Interpolate function smooths trajectory curve - Flexible architecture allows user defined loop response
- Provides minimum track access time and maximum track density
- Single +12 V power supply
- Compatible with ML4401 Servo Demodulator, ML4402, ML4406/07/08 Servo Driver and ML4404 Trajectory Generator
has a discharge function that enables zeroing of the external error amplifier compensation. This feature further reduces position settling time. An on-board on-track detector is provided which is used as a safety alarm by the controller for an off-track condition.
The ML4403/4413 Servo Controller, when combined with the ML4401 Servo Demodulator, the ML4402, ML4406/07/08 Servo Driver and the ML4404 Trajectory Generator provides a flexible closed-loop servo control system.

BLOCK DIAGRAM

PIN CONNECTIONS

ML4403 20-PIN DIP (Prototypes only)

DECO	1
MODE	20
FILL	2

ML4403 20-PIN PLCC

ML4403 DIP and PLCC	ML4	PLCC	ML4413	FUNCTION
1	1	1	DECO	Digital output from the velocity event detector. In application, this output goes to a logic high when the actual actuator velocity reaches the trajectory curve. It remains high through the "braking" or negative acceleration. This pin goes low when velocity is zero and remains low during actuator acceleration. This pin is only allowed to go high during access mode. This output is open collector and requires an external pull-up resistor.
2	2	2	MODE	Digital input used to select Hold mode (low level) or Access mode (high level).
3	3	3	FILL	Analog output that provides a sawtooth waveform that, when summed with stair-step output of the external DAC, provides a smooth trajectory curve. Refer to Figure 3.
4	4	5	POSA	Analog input for quadrature position signals from demodulator (ML4401/
5	5	6	POSB	4431). Low pass prefiltering is recommended to eliminate peak detector ripple and external noise.
6	7	8	GND	Device ground connection.
	8	9	CMP1	Digital outputs that can be used for various control and count schemes. These
	6	7	CMP2	pins are only available on the ML4413. Timing is shown in Figure 3. These outputs are open collector outputs with an internal pull-up resistor tied to +5 V .
7	9	10	$V_{C C}$	+12V power supply connection.
8	10	12	TRKX	Digital output that provides a logic transition at each track crossing which is defined as the point midway between two tracks. Refer to Figure 3. This output is open collector with an internal pull-up resistor tied to +5 V .
9	11	13	TCO	Digital output from the on-track detector. Used in Hold mode, this pin goes to logic high when the position signal exceeds an established window. This output is open collector with an internal pull-up resistor tied to +5 V .
10	12	14	TCI	Analog input into the on-track detector. The input is normally derived from the position signal.
11	13	15	DIFA	Analog inputs for differentiated quadrature position signals. These inputs are
12	14	16	DIFB	used to generate the velocity signal at output VELO.
13	15	17	VELO	Analog output that provides a continuous velocity (tachometer) signal by time multiplexing/inverting the DIFA, DIFB input signals.
14	16	19	VR	Reference voltage input. This value should typically be +5 V , which is obtainable from the $\mathrm{V}_{\text {REF }}$ output of ML4401/4431.
15	17	20	Evo	Multiplexed analog output of both velocity error and position error signals. This output is used as the input for the servo actuator driving circuity such as the ML4402.
	18	21	DIS	Digital input that, upon a logic high, electrically shorts pins CDIS and CMPO in order to keep the compensator capacitor discharged after entering hold mode. This pin and function is only available on ML4413. This function is used to reduce settling time when entering the Hold mode. Unlike pins MODE and DIN which float to logic high, this pin floats to logic low when left unconnected.
16	19	22	CMPO	Analog connection point for position compensation circuitry that is connected between this pin and POSI.
	20	23	$\mathrm{C}_{\text {DIS }}$	Used to discharge external position compensation as shown in Figure 5. This pin is only available on ML4413. On the ML4403 this pin is internally connected to pin POSI.
17	21	24	POSI	Analog input for position control amplifier.
18	22	26	VELC	Analog input into velocity comparator. The velocity comparator trigger level is VR and is used for velocity event detection as described below.
19	23	27	VELE	Analog input for velocity error signal generated off-chip, referenced to VR.
20	24	28	$\mathrm{DIN}^{\text {N }}$	Digital input that controls actuator direction during Seek mode. This input affects the waveforms of outputs $\mathrm{F}_{\text {ILL }}, \mathrm{V}_{\mathrm{ELO}}$, and $\mathrm{EVO}_{V O}$. Refer to Figure 3.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only. and functional device operation is not implied. (All voltages referenced to GND.)
Power Supply Voltage, V_{CC}
14 V
Terminal Voltage Range
VR
. . -0.3 to 7.0 V
POSI -0.3 to $\mathrm{V}_{\mathrm{R}}+0.3 \mathrm{~V}$
DIN, POSA, POSB, DIFA, DIFB, VELE, VELC, MODE, DIS,

Storage Temperature Range $\ldots .5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8$ to 13.2 V , and $\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$, unless otherwise specified. (See Note 1.)

SYMBOL	PARAMETER	CONDITIONS	MIN	$\begin{gathered} \text { TYP } \\ \text { NOTE } 2 \end{gathered}$	MAX	UNITS
Power Supply						
ICC	$\mathrm{V}_{\text {CC }}$ Supply Current	Outputs unloaded		38	60	mA
DIGITAL INPUT/OUTPUT CHARACTERISTICS						
Inputs $\mathrm{D}_{\text {IN }}$ and Mode						
V_{IH}	Logic High Voltage		2.0			V
${ }^{\mathrm{IH}}$	Logic High Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	-40	1	40	$\mu \mathrm{A}$
V_{IL}	Logic Low Voltage				0.8	V
ILL	Logic Low Current	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$	-100	-50	0	$\mu \mathrm{A}$
Input DIS (ML4413 Only)						
V_{IH}	Logic High Voltage		2.0			V
$\underline{\mathrm{IH}^{\prime}}$	Logic High Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	0	180	250	$\mu \mathrm{A}$
V_{IL}	Logic Low Voltage				0.65	V

Outputs TCO and TRKX

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}-50 \mu \mathrm{~A}$	2.4			V
t_{PD}	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		200		ns
$\mathrm{~V}_{\mathrm{TH}}$	Track Comparator Window	+ and - relative to VR	235	257	270	mV

Outputs CMP1 and CMP2 (ML4413 Only)

V_{OL}	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$	0		0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	2.4			V

Output DECO							
V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.5	V	

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8$ to 13.2 V , and $\mathrm{V}_{\mathrm{R}}=5.0 \mathrm{~V}$, unless otherwise specified. (See Note 1.)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | NOTE 2 | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | UNITS | U |
| :--- |

ANALOG INPUT/OUTPUT CHARACTERISTICS

Outputs Fill, VELO, COMPO, and EVO

$\mathrm{V}_{\text {OS } 1}$	Input Offset Voltage EVO, FILL			2		mV
$\mathrm{V}_{\text {OS2 }}$	Input Offset Voltage COMPO		-5		5	mV
$\mathrm{V}_{\text {OS3 }}$	VELO Input Offset Voltage Tracking Between 4 Multiplex States	Variation in output level in 4 multiplex states with DIFA $=\mathrm{DIFB}=5 \mathrm{~V}$	-10		10	mV
SR_{1}	Slew Rate FILL			4		$\mathrm{V} / \mu \mathrm{s}$
SR_{2}	Slew Rate COMPO, VELO, EVO			1		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{V}_{\text {OUT }}$	Output Range All		1.0		9.0	V
$\mathrm{I}_{\text {SRC1 }}$	Source Current COMP, VELO, FILL		3			mA
$\mathrm{I}_{\text {SRC2 }}$	Source Current EVO		1.5			mA
${ }_{\text {SNK1 }}$	Sink Current FILL		0.25			mA
$\mathrm{I}_{\text {SNK2 }}$	Sink Current EVO, VELE		2			mA
${ }_{\text {I }}^{\text {SNK }}$	Sink Current COMPO		4			mA

Operational Ampiners

V_{OS}	Input Offset Voltage			2		mV
t_{C}	Average Temperature Coeff of Input Offset Voltage			20		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
IOS	Input Offset Current			10		nA
I_{B}	Input Bias Current			100		nA
$\mathrm{AV} \mathrm{OL}_{\mathrm{OL}}$	Open Loop Gain			200		$\mathrm{~V} / \mathrm{mV}$
GBW	Gain Bandwidth Product			1		MHz

POSA, POSB Comparators

V_{OS}	Input Offset Voltage			2		mV
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis			± 500		mV
t_{C}	Average Temp Coeff of Input Offset Voltage			20		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
I_{OS}	Input Offset Current			50		nA
I_{B}	Input Bias Current			500	nA	
A_{V}	Voltage Gain			200		$\mathrm{~V} / \mathrm{mV}$
Pd	Response Time			500	ns	

Note 1: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.

FUNCTIONAL DESCRIPTION

Power Supply and Reference Requirements

The ML4403/4413 operates from a single $12 \mathrm{~V} \pm 10 \%$ power supply, a 5.0 V reference is required at pin VR which is available from pin $\mathrm{V}_{\text {REF }}$ on the ML4401/4431. VR serves as a system reference or "analog ground".

Modes of Operation

The device has two modes of operation, Access and Hold mode, which are controlled by pin MODE. To accomplish this, pin MODE controls the output multiplexer that selects either the velocity or position error signal.

Access Mode

The head actuator servo system uses Access mode to move the recording head(s) from one data track to another. Access mode circuitry within the ML4403/4413 includes analog functions necessary to measure and control head actuator velocity. The head velocity is controlled in a fashion that provides for a fast track-to-track movement and minimum settling time, which results in minimum track access time.

Actuator Trajectory

Similar to racing to the next stop sign, the fastest way to move from one data track to the next is through maximum acceleration and maximum braking (negative acceleration). In a disk drive the acceleration, either positive or negative, is governed by maximum available actuator current. To do this in a controllable manner and land on the target track, an achievable "braking curve" or trajectory function is first defined. At the beginning of Access mode, maximum acceleration is applied until the head velocity reaches this defined braking curve. Following the velocity profile of the trajectory curve, controlled braking stops the head on the target track.
Unlike acceleration, velocity and distance are accurately measurable and therefore controllable parameters. The trajectory function, as shown in Figure 2, is therefore expressed as velocity (track crossing rate) vs. distance (tracks to go). The desirable constant positive and negative acceleration will result in the expression of velocity as a function of the square root of distance. Therefore generation of the trajectory curve, velocity vs. distance, requires a non-linear function.

Actuator Trajectory Generation

At the start of a track access cycle, initial tracks-to-go count is supplied by the microprocessor. As the head moves, the count is decremented by the ML4403/4413 track crossing detector. To generate the analog "desired velocity" signal required for braking control, the tracks-to-go count (distance variable) is converted through a DAC (Digital to Analog Converter) with a non-linear square function included either before or after the conversion. One common approach used to obtain this non-linear function is to pre-process the tracks-to-go count (or multiple thereof) in the microprocessor. This can be performed algorithmically by the use of a look up table.

An alternate method, as shown in the typical application of Figure 5 places the non-linear function after the DAC conversion. The tracks-to-go count is maintained by a simple discrete down-counter that is initialized by the microprocessor. To eliminate the DAC steps and provide a smooth distance signal, the DAC output is summed with the ML4403/4413's FILL output in the external summing amplifier shown. The FILL output generates a sawtooth wave, as shown in Figure 3. This distance signal is then passed through the non-linear trajectory generator which generates the "desired velocity" signal used during braking. Generating a smooth trajectory curve reduces electrical/mechanical system oscillation and target track settling time.
Inductance-caused actuator lag can also create a target track overshoot problem. The trajectory curve generator, as indicated, can be designed to allow the microprocessor to modify the non-linear function in a way to account for this lag. Refer to Figure 2. The amount of lag will depend on duration of braking. Braking duration can be correlated against acceleration duration which is indicated by the timing of pin DECO.
The track crossing detector, which drives the trajectory position counter (see Figure 5), is generated with external logic. The input comparators have a fixed amount of internal hysteresis to provide noise immunity and media dropouts. The CMP1 and CMP2 outputs on the ML4413 can be used to perform more sophisticated sequential track crossing detection schemes. This can further reduce the detector's susceptability to media dropouts.

Hold Mode

At the end of an Access cycle, the head is stopped, or nearly so, on the target track. Hold mode is then selected to maintain accurate head positioning on that track. In this mode, the compensator output (CMPO) is multiplexed into the error amplifier output (EVO).

Track Selection

Track position is held by maintaining a zero value of the position input signal, with respect to VR. However, to allow selection of one of four track types and maintain error signal polarity, selection of POSA, POSB, or their inverse needs to be possible. Commonly this selection process is accomplished with an analog multiplexer-inverter matrix. The problem inherent with this approach is the track-to-track offset differences, caused by the amplifier input offset differences within the matrix.
The track selection scheme adopted by the ML4401/4431 and ML4403/4413 combination performs the multiplexing within the ML4401/4431. The selection/inversion operation is performed with the external support logic of the ML4401/4431 by changing the peak detector sample timing. This method eliminates the offset problems and allows a higher track density.

Position Amplifier and Compensator Zeroing

During track following mode (mode low), the compensator amplifier acts as an integrator which nulls out the position error. The timing of the transition between access mode and track follow is critical to minimize settling time. The velocity at which this transition occurs can be externally set by resistor RCMP (see Figure 5). During seek mode, the large compensator capacitor (CCMP) is discharged through an internal switch, so that the integrating loop sees no initial charge at the beginning of track follow mode. This can reduce settling time by several milliseconds.
The ML4413 provides a further enhancement of this feature. The switch can remain closed after the beginning of the seek-to-track follow transition by holding pin DIS high. In this way, the time at which the logic switches modes, and the time that integration begins can be controlled independently, and further settling time reduction can be acheived.

On-Track Detector

The on board on-track detector is a window comparator that provides a digital alarm of an off-track condition. This feature is useful as a safety to prevent data transfer during an off-track condition that may occur during track settling or mechanical jarring.

Velocity Control

As a necessary element of velocity control, a velocity signal is generated and is output at pin VELO. To
accomplish this, the quadrature position signals are first differentiated through external RC networks and then input into pins DIFA and DIFB. The ML4403/4413 then time multiplexes these differentiated signals to obtain a continous velocity signal that is output at pin VELO. It is important to note that the trajectory generator shown in Figure 5 generates a "desired velocity" signal positive with respect to VR, and that VELO creates a negative signal with respect VR. This allows the use of a simple external resistor bridge to create the velocity error signal.

The summing function can be modified, as illustrated, by the action of pin DECO when the actual velocity reaches the trajectory curve. Modification can also be made just prior to that time with the "optional trajectory overshoot compensation" circuit, shown in Figure 5, that prevents overshoot due to actuator motor inductance.

Inductance-caused actuator lag can also create a track overshoot problem. The trajectory curve generator, as indicated, can be designed to allow the microprocessor to modify the non-linear function in a way to account for this lag as shown in Figure 2. The amount of lag will depend on duration of braking. Braking duration can be correlated against acceleration duration which is indicated by the timing of pin DECO.

Figure 2.

DIN INPUT

Figure 3.

*NOTE: THESE PINS ONLY AVAILABLE ON ML4413

Detailed Function of Block Diagram of the ML4403/13
Figure 4.

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4403CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P20)
ML4403CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML4413CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)
ML4413CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)

Trajectory Generator

GENERAL DESCRIPTION

The ML4404 Trajectory Generator provides the trajectory function for time optimal head positioning systems. The ML4404 receives position and velocity information from a servo controller, such as the ML4403, and generates the desired time optimal velocity trajectory. Desired Velocity is then compared with the actual velocity to create the error signal used by the servo controller.
An anticipate function is included to compensate for phase shift error caused by actuator inductance. Another feature on the ML4404 is an error measure output which averages the velocity error during deceleration, so that the control system can monitor and adjust the necessary transducer gain for minimum access time.
The servo system usually requires accurate analog voltages to be set through software control. This is easily accomplished with a duty cycle to current translator function on the ML4404. By controlling the duty cycle of a TTL line, a processor can set an analog voltage on the translator output. These translators are fully independent blocks which can be used anywhere in the control system.

FEATURES

- Flexible architecture allows a user defined trajectory function
- Anticipate function compensates for phase delay caused by actuator inductance
- Feed forward function improves system stability
- Uncommitted PWM to current translators allow an analog voltage to be set with microprocessor control
- Single +12 V power supply
- Compatible with Micro Linear's ML4401, ML4431 Demodulator, ML4402, ML4406/07/08 Driver, and ML4403, ML4413 Controller

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DESCRIPTION

PIN \# ML4404	NAME
1	MSB
2	LSB
3	$I_{\text {SET }}$
4	TRA ${ }_{\text {IN }}$
5	$I_{\text {SUM }}$
6	RYVOS
7	PWM ${ }_{\text {OUTB }}$
8	PWM OUTA
9	PWMINA
10	PWM ${ }_{\text {INB }}$
11	NC
12	DIR

FUNCTION

Pulse width modulated (PWM) DAC TTL input (active low). The DAC output current is the position input to the trajectory generator. The MSB/LSB ratio is 8 / 1. The duty cycle of these two TTL inputs are controlled by a processor to form an 8 -bit PWM DAC. The 3 higher order bits are modulated into the MSB. Pulse width modulated (PWM) DAC TTL input (active low). The 5 lower order bits are modulated into the LSB input.
A resistor ($R_{\text {SET }}$) from this pin to $V_{\text {REF }}$ sets the internal bias levels. $I_{\text {BIAS }}=3 \mathrm{~V} / \mathrm{R}_{\mathrm{SET}}$. The nominal value should be between 0.25 and 0.5 mA .
The trajectory generator input. This node is connected through an external filter to the sum of the PWM DAC output and the multiplier output. The trajectory DAC output which is summed with the multiplier output feedback. An external RC filter network from this pin to $T R A J_{\mathbb{N}}$ smooths out PWM DAC ripple.
Nulls out the offset of the trajectory curve at the origin. A resistor equal to RY is connected from this pin to $\mathrm{V}_{\text {REF }}$. This pin is available only on the ML4404.
PWM to current translator output.
PWM to current translator output.
TTL input for the PWM to current translator. This converter translates a signal's duty cycle to an analog voltage.
TTL input for the PWM to current translator. This converter translates a signal's duty cycle to an analog voltage.
No Connection.
TTL direction input from the processor. Controls the polarity of the V / I converter output.

PIN DESCRIPTION (Continued)

PIN \# ML4404	NAME	FUNCTION
13	$\mathrm{V}_{\text {OUT }}$	The V / I converter output. This circuit block monitors the differential voltage across the sense resistors of an actuator driver (such as the ML4402) and converts it to a bidirectional current whose scale factor is set by two external resistors. This current can be used to compensate for a noise reducing low pass filter in the output of the velocity transducer so that there is no net phase shift in the velocity signal.
14	$\mathrm{R}_{\text {SENSEA }}$	A gain setting resistor is connected from this input to the sense resistor on the bridge driver.
15	$\mathrm{R}_{\text {SENSEB }}$	A gain setting resistor is connected from this input to the sense resistor on the bridge driver.
16	RY	A resistor ($R Y$) is connected from this pin to $V_{\text {REF. }}$. RY and $R X$ set the second order term of the trajectory curve.
17	$\mathrm{RX}_{\text {B }}$	A resistor ($R X$) is connected between $R X_{A}$ AND $R X_{B}$ to set the second order term in the trajectory curve.
18	$\mathrm{RX}_{\text {A }}$	A resistor ($R X$) is connected between $R X_{A}$ and $R X_{B}$ to set the second order term in the trajectory curve. An additional resistor (RK3) can be connected from $R X_{A}$ to either the trajectory output (TRA $J_{\text {OUT }}$) or to $V_{\text {REF }}$ to set the third order term.
19	TRAJOUT	The trajectory output. This voltage relative to $V_{\text {REF }}$ is proportional to the desired velocity. A resistor and capacitor from this pin to $T R A J_{\mathbb{N}}$ sets the first order term and the loop compensation.
20	DECEL	Decelerate mode TTL input from the servo controller (such as the ML4403). When low (during accelerate) the anticipate output becomes a voltage follower, the error measure output is a high impedance, and the error sign is latched. When high (during deceleration) anticipate goes to high impedance, error measure integrates the velocity error, and the error sign latch is transparent.
21	ELATCHOUT	The latched sign of the access loop error during deceleration. This TTL output can be used by the processor to adjust the velocity transducer gain to match that required by the mechanical system.
22	ANTICIPATE	Modifies the trajectory curve during acceleration and the accelerate to decelerate transition. This accounts for the time delay error caused by the actuator inductance.
23	$V_{C C}$	+12V power supply.
24	GND	Ground.
25	EAMPOUT	Error amplifier output. The positive trajectory output (desired velocity) is summed with the negative velocity input (actual velocity) to form a difference output. The velocity input comes from the servo controller (such as the ML4403).
26	EMEAS ${ }_{\text {OUT }}$	Error measure output. This output averages the value of the access loop error during deceleration.
27	$V_{\text {ReF }}$	The analog zero reference point. This pin is intended to be driven with the ML4401 V ${ }_{\text {REF }}$ output. The ML4404 has an internal 5 V reference connected through a current limiting resistor to this pin so that standalone operation/ evaluation is available.
28	EAMP ${ }_{\text {IN }}$	Error amplifier input. The INPUT summing node for the trajectory and velocity signals.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. (All voltages referenced to GND.)
Power Supply Voltage, V_{CC}. 14 V

PWM OUTA, PWM OUTB, PWMOUTC $\ldots-0.3$ to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
Anticipate, $\mathrm{V}_{\text {IOUT }}$ EAMP OUT............

TRA $J_{\text {OUT }}, R X_{A}, R X_{B}, R Y, R Y_{\text {VOS }} \ldots \ldots \ldots . . V_{\text {REF }}-1$ to $V_{C C}+0.3 \mathrm{~V}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J}) . $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

(See Figure 7)

Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC})	. $12 \mathrm{~V} \pm 10 \%$
$\mathrm{R}_{\text {SET }}$	6.2 K
RK1	110 K
RY	3K
RYvos	3 K
RX	6.8 K
RK3	12 K to $\mathrm{V}_{\text {REF }}$
CCOMP	56 pF
CF1	$0.0022 \mu \mathrm{~F}$
CF2	. . . Open
RF	... 10K
$\mathrm{R}_{\text {LOAD }}$	20 K to $\mathrm{V}_{\text {REF }}$

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$, $R_{\text {FIIT }}=10 \mathrm{~K}, \mathrm{RY}=R Y_{V O S}=3 \mathrm{~K}, \mathrm{RK} 1=100 \mathrm{~K}, \mathrm{RX}=6.8 \mathrm{~K}, \mathrm{R}_{\text {SET }}=6.2 \mathrm{~K}$ and $R K 3=12 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{REF}}$ unless othenwise specified. (See Note 1.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP NOTE 2	MAX	UNITS
DCCHARACTERISTICS						
ICC	Power Supply Current			23	35	mA

DIGITAL INPUT/OUTPUT CHARACTERISTICS

$\mathrm{V}_{1 \mathrm{H}}$	Logic High Voltage		2.0			V
${ }_{\text {IH }}$	Logic High Current	$\mathrm{V}_{1 H}=2.4 \mathrm{~V}$	-40	10	40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logic Low Voltage				0.8	V
IL	Logic Low Current	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$	-40	1	40	$\mu \mathrm{A}$
Inputs (DECEL)						
V_{IH}	Logic High Voitage		2.0			V
$\underline{\text { IH }}$	Logic High Current	$\mathrm{V}_{1 H}=2.4 \mathrm{~V}$	-250	5	40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logic Low Voltage				0.8	V
IIL	Logic Low Current	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$	-1600	-850	0	$\mu \mathrm{A}$

Outputs (ELATCH ${ }_{\text {OUT }}$)

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0	0.3	0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{REF}}$	2.4	5.0	5.5	V

Trajectory Amplifier (See Note 3)

I_{B}	Input Bias Current		0	7	20	nA
A_{V}	Open Loop Gain			75 k		V / V
BW	Unity Gain Bandwidth			1		MHz
PHIM	Phase Margin			75		DEG

Velocity Error Amplifier

$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		-10		10	mV
I_{B}	Input Bias Current		0	50	300	nA
A_{V}	Open Loop Gain			120 k		V / V
$\mathrm{I}_{\text {SOURCE }}$	Source Current		4	8		mA
$\mathrm{I}_{\text {SINK }}$	Sink Current		1	2		mA
BW	Unity Gain Bandwidth			1		MHz
PHIM	Phase Margin			75		DEG
$V_{\text {OUT }}$	Output Voltage Range		0.5		$\mathrm{~V}_{\mathrm{CC}}-3$	V

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{V}_{\mathrm{CC}}=10.8$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{FILT}}=10 \mathrm{~K}, \mathrm{RY}=\mathrm{RY} \mathrm{VOS}_{\mathrm{VO}}=3 \mathrm{~K}, \mathrm{RK} 1=100 \mathrm{~K}, \mathrm{RX}=6.8 \mathrm{~K}, \mathrm{R}_{\mathrm{SET}}=6.2 \mathrm{~K}$ and $\mathrm{RK} 3=12 \mathrm{~K}$ to $\mathrm{V}_{\mathrm{REF}}$ unless otherwise specified. (See Note 1)

Biasing

$\mathrm{V}_{\text {IS }}$	$\mathrm{I}_{\text {SET }}$ Voltage		2.00	2.02	2.06	V
PWM to Current Translators						
	$\mathrm{I}_{\text {CHARGE }} / \mathrm{I}_{\text {SET }}, \mathrm{I}_{\text {DIS }} / \mathrm{I}_{\text {SET }}$	$\mathrm{PWM}_{\text {OUT }}=5.0 \mathrm{~V}$		0.98		$\mathrm{mA} / \mathrm{mA}$
	$\mathrm{I}_{\text {CHARGE }} / \mathrm{I}_{\text {DIS }}$	$\mathrm{PWM}_{\text {OUT }}=5.0 \mathrm{~V}$	0.910	0.99	1.10	$\mathrm{mA} / \mathrm{mA}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage Range		1.5		9	V

Transconductance Amps

$V_{\text {OS }}$	Input Offset Voltage		-10		10	mV
gm	Transconductance			1700		$\mu \mathrm{Mhos}$
$\mathrm{I}_{\text {OUTMAX }}$	Max Output Current			90		$\mu \mathrm{~A}$
I_{B}	Input Bias Current			4.5		$\mu \mathrm{~A}$

Latch/Comparator

I_{B}	Input Bias Current		0	2	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OS}}$	Input Offset Voltage	$\mathrm{V}_{\text {TRAJOUT }} @ 5 \mathrm{~V}$	-10		10	mV
A_{V}	Open Loop Gain			15 k		V / V
t_{pd}	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$ to $\mathrm{V}_{\text {REF }}$		60		ns

V/I Amp

$\begin{aligned} & \mathrm{I}_{\mathrm{O}_{10} / I_{\mathrm{SESSE}}} \end{aligned}$	Sense Current Offset	$\begin{aligned} & I_{\text {SENSEA }}=I_{\text {SENSEB }} \\ & 0.1 \mathrm{~mA}<\mathrm{I}_{\text {SENSE }}<1 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IOUT }}=5 \mathrm{~V} \end{aligned}$	-2	0	2	\%
$\mathrm{V}_{\text {SMAX }}$	Max R ${ }_{\text {SENSE }}$ Voltage		0.5	0.64		V
$V_{\text {OUT }}$	Output Range		1.8		9	V

Trajectory DAC

$I_{\text {MSB }} / I_{\text {SET }}$	MSB Current			0.98		$\mathrm{~mA} / \mathrm{mA}$
$I_{\text {MSB }} / I_{\text {LSB }}$	MSB to LSB Ratio		7.8	8.00	8.5	$\mathrm{~mA} / \mathrm{mA}$

Trajectory Multiplier (Note 4)

$\mathrm{V}_{\text {OS }}$	$\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {REF }}$ at Origin	$\mathrm{V}_{\text {OUT }}$ at $\mathrm{I}_{\text {SUM }}=0$	-5		5	mV
	$\mathrm{V}_{\text {TRACK1 }}$: $\mathrm{V}_{\text {TRACK32 }}$	$\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }} / 32\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }}\right)$	0.090		0.140	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK2 }}: \mathrm{V}_{\text {TRACK32 }}$	$\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }} / 16\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }}\right)$	0.165		0.205	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK } 4}: \mathrm{V}_{\text {TRACK32 }}$	$\left(V_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LBB }} / 8\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }}\right)$	0.270		0.320	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK8 }}: \mathrm{V}_{\text {TRACK32 }}$	$\left(V_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }} / 4\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }}\right)$	0.430		0.470	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK16 }}: \mathrm{V}_{\text {TRACK32 }}$	$\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }} / 2\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {LSB }}\right)$	0.660		0.695	$\mathrm{mV} / \mathrm{mV}$
$\mathrm{V}_{\text {LSB }}$	$\mathrm{V}_{\text {TRACK32 }}$	$V_{\text {OUT }}$ at $I_{\text {SUM }}=I_{\text {LSB }}$	0.935		1.035	V
$\mathrm{V}_{\text {CROSS }}$	Crossover Error	$\left(V_{\text {OUT }}\right.$ at $\left.I_{\text {SUM }}=I_{\text {LSB }}\right)-$ ($\mathrm{V}_{\text {OUT }}$ at $\mathrm{I}_{\text {SUM }}=\mathrm{I}_{\text {MSB }} / 8$)	-25		+10	mV
	$\mathrm{V}_{\text {TRACK32 }}: \mathrm{V}_{\text {TRACK256 }}$	($\mathrm{V}_{\text {OUT }}$ at $\left.\mathrm{I}_{\text {MSB }} / 8\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $I_{\text {MSB }}$)	0.305		0.325	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK64 }}: \mathrm{V}_{\text {TRACK256 }}$	($\mathrm{V}_{\text {OUT }}$ at $\left.\mathrm{I}_{\text {MSB }} / 4\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {MSB }}\right)$	0.450		0.470	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK128 }}: \mathrm{V}_{\text {TRACK256 }}$	$\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {MSB }} / 2\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\left.\mathrm{I}_{\text {MSB }}\right)$	0.670		0.685	$\mathrm{mV} / \mathrm{mV}$
	$\mathrm{V}_{\text {TRACK192 }}: \mathrm{V}_{\text {TRACK256 }}$	($\mathrm{V}_{\text {OUT }}$ at $\left.\mathrm{I}_{\text {MSB }}{ }^{*} 3 / 4\right) /\left(\mathrm{V}_{\text {OUT }}\right.$ at $\mathrm{I}_{\text {MSB }}$)	0.840		0.860	$\mathrm{mV} / \mathrm{mV}$
$\mathrm{V}_{\text {MSB }}$	$\mathrm{V}_{\text {TRACK256 }}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \text { at } I_{\text {SUM }}=I_{\text {MSB }} \\ & \text { (Full Scale }+1 \text {) } \end{aligned}$	3.070		3.225	V
PSRR	Supply Rejection	at Origin at Full Scale		$\begin{gathered} 0.2 \\ 2 \end{gathered}$		mV / V mV / V

Note 1: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-case test conditions.
Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 3: Minimum recommended load resistor is $10 \mathrm{k} \Omega$ from the trajectory output to $\mathrm{V}_{\text {REF }}$.

FUNCTIONAL DESCRIPTION

Power Supply and Reference Requirements

The ML4404 operates from a single 12 V power supply. In addition, a 5.0 V reference is required at pin $V_{\text {REF }}$ which is available from the ML4401, ML4431. V REF serves as a system reference or "analog ground".

Biasing

All of the critical internal biasing on the ML4404 is set as a function of an external resistor, $\mathrm{R}_{\text {SET }}$. An internal feed-back loop forces the voltage on $\mathrm{I}_{\text {SET }}$ (pin 3) to be 2.0 V . R $\mathrm{R}_{\text {SET }}$ is connected from this pin to $\mathrm{V}_{\text {REF }}(5.0 \mathrm{~V}$) and the resulting current is used in the multiplier and duty cycle-to-current translators.

$$
I_{B I A S}=\left(V_{\text {REF }}-2\right) / R_{S E T}=3 V / R_{S E T}
$$

The nominal value of $I_{\text {BIAS }}$ should be between 0.25 and 0.50 mA .

Trajectory Multiplier/Amplifier

The Trajectory Multiplier/Amplifier generates the optimal velocity output from the position-to-go input. The optimal velocity is the TRAJ ${ }_{\text {OUT }}$ voltage relative to $V_{\text {REF }}$ The input position is set by the duty cycle of the MSB and LSB-inputs.
During an access operation, the actuator is first driven to maximum acceleration, and then into braking or deceleration. To minimize access times the trajectory curve (velocity vs position) during deceleration must be accurately controlled so that the head stops exactly on the desired track (without overshooting or undershooting). The head is driven to maximum acceleration until this braking curve is reached. Then the velocity is controlled to follow this optimal trajectory during deceleration.
According to the theory for a second order system, time optimal access is achieved if the position is proportional to the square of velocity $\left(P=K V^{2}\right.$, or $\left.V=K P^{1 / 2}\right)$. However, in the real system environment, this theory needs modification in two important areas. First, as shown in Figure 1, the slope of the trajectory at the origin (final position) is infinite for a pure square root function. This infinite slope would result in an infinite bandwidth servo loop. As a result, a first order linear term needs to be included which will reduce the slope of this curve near the origin. Second, at large velocity, the square root function is not quite optimal, due to non-zero actuator inductance. A higher order term to modify the curve in this region needs to be included.
This trajectory curve, with its first, second, and third order terms is implemented with a multiplier in the feedback loop of an opamp (see Figure 2). The position input is a current which is a fraction of $I_{\text {BIAS }}$, as discussed in the trajectory DAC section below. The first order term is implemented with a feedback resistor (RK1) directly in the feedback path of the op amp . This transfer function of this I/V converter is expressed by $\mathrm{V}_{\mathrm{OUT}}=$ RK1 $* I_{\mathrm{IN}}$. The second order term comes from the multiplier.

$$
I_{\mathbb{N}}=\left(V_{O U T}{ }^{2 /\left(2.25 I_{B I A S} * R X * R Y\right)}\right.
$$

With both terms together,

$$
\mathbb{I N}^{N}=\frac{V_{\text {OUT }}}{R K 1}+\frac{V_{\text {OUT }^{2}}}{2.25 I_{\text {BIAS }} * R X} * R Y
$$

The first order term dominates near the origin, and the second order term dominates, at higher velocities.
The multiplier is modified by the addition of a resistor (RK3) which results in the third order term. This resistor is connected from RXA (pin 18) to either TRA Jout or $\mathrm{V}_{\text {REF }}$. As shown in Figure 3, the shape of the trajectory curve for large velocities can be adjusted in either direction from nominal, depending on which pins RK3 is connected between. It should be noted that the above equations are only approximate. The actual multiplier transfer function is not a pure second order function, even with RK3 unconnected. The multiplier is designed to approximate the required trajectory for most typical servo systems. For most applications, very little correction with RK3 will be required. On the ML4404, an additional resistor (RY vos) equal to RY can be included which nulls the offset of the curve near the origin.
Since the resistors R RET, RK1, RX, RY, RK3, and RY VOs are all external, any desired trajectory can be set. The constraints on these values are as of follows:
$V_{\text {OUTMAX }}<1.5 * R X * I_{\text {BIAS }}$
$V_{\text {OUTMAX }}>1.5 *$ RY $* I_{\text {BIAS }}$
$V_{\text {OUTMAX }}<3.5 \mathrm{~V}$
$6 \mathrm{k}<\mathrm{R}_{\text {SET }}<12 \mathrm{k}$ for $V_{\text {REF }}=5 \mathrm{~V}$
$R_{\text {FILT }}<$ RK $1 / 10$
$\mathrm{R}_{\text {FILT }} *$ C $_{\text {FILT2 } 2}<$ RK1 $*$ C $_{\text {COMP }}$
$\mathrm{R}_{\mathrm{LOAD}}>10 \mathrm{k}$ to $\mathrm{V}_{\text {REF }}$
$V_{\text {OUTMAX }}$ is the maximum trajectory output voltage (relative to $V_{\text {REF }}$).

Trajectory DAC

The trajectory DAC creates, a position input for the trajectory multiplier. The position input is controlled by the duty cycle of the TTL inputs MSB and LSB. For most applications the position information will be digitally encoded to 8 -bit resolution-each code representing one track. Therefore, the full scale input of the trajectory curve is 255 tracks. The input current corresponding to this full scale is $\mathrm{I}_{\text {BIAS }}$.
Since the duty cycle of a single line is difficult to control to $0.4 \%(1 / 256)$, the duty cycle to input current translator section is divided into 2 signals (MSB and LSB). As shown in Figure 4 , the ratio between these two currents is $8 / 1$. The 5 lower order bits of code are modulated into the LSB input, and the 3 higher order bits into the MSB input. For example, a position input of 32 tracks would correspond to the MSB line always inactive, and the LSB line always active. 256 tracks would be MSB always active, and the LSB always inactive. 1 track would be MSB always inactive, and L.SB 1/32 of the period active.
In general for an 8-bit binary code D7 D6 D5 D4 D3 D2 D1 D0 where D7 is the high order bit, the active duty cycle for the MSB input is D7 D6 D5/8 and the active duty cycle for the LSB input is D4 D3 D2 D1 D0 / 32. For example 10100011 (163 tracks) would be active 5/8 of a period on the MSB, and $3 / 32$ of a period on the LSB.

Figure 1.

AC Considerations - Trajectory Amp/Multiplier

The AC response of the trajectory output is primarily controlled by the external components $\mathrm{C}_{\text {FILT1 }}, \mathrm{C}_{\text {FILT2 }}, \mathrm{R}_{\text {FILT }}$, RK1, and $\mathrm{C}_{\mathrm{COMP}}{ }^{\text {' }}$ ' $o u r$ parameters must be considered to determine the values of these components.
First, the value of RK1 is set based on the bandwidth of the servo loop. RK1 sets the gain of the trajectory function at the origin. As the system bandwidth increases, more gain is required near the origin, and the value of RK1 increases.
Second, the exponential decay rate of the trajectory output during deceleration must be fast enough for the mechanical system to dominate the loop response. As the head approaches the target track, the multiplier (2nd and 3rd order terms) becomes less significant, and the first order term dominates. In this region, the exponential decay is dominated by the RK1 * C COMP product. This product should be set at a frequency which is a few times higher than that of the position loop bandwidth, so that the overall phase margin is not significantly degraded.
Third, the filter components should be set such that the ripple from the trajectory DAC is minimized. Once the values for $\mathrm{C}_{\text {COMP }}$ and RK1 have been set, then the values of the remaining components, $\mathrm{C}_{\text {FILT1 }}, \mathrm{C}_{\text {FILT2 }}$, and $\mathrm{R}_{\text {FILT }}$, can be determined. As the capacitance and resistance of these components increase the PWM ripple from the trajectory DAC is reduced. Due to the nonlinear nature of this circuit block, a mathematical analysis of the ripple is quite cumbersome, so the values of these components are best chosen

Figure 2.

Figure 4.
empirically. The PWM ripple is dependent on $\mathrm{R}_{\text {FILT, }} \mathrm{C}_{\text {FILT1 }}$, $\mathrm{C}_{\text {FILT2 } 2, ~}$ as well as the duty cycle (50% duty cycle on the MSB will result in the largest ripple), and the frequency of modulation (the ripple is proportional to the square of the period).
Fourth, the $\mathrm{R}_{\text {FILT }} \mathrm{C}_{\text {FILT }}$ combination must be set such that the dynamic response of the trajectory output does not overshoot during deceleration. Ideally, the RC combination should be set such that the system is critically damped to a maximum deceleration input.

Note that a tradeoff exists between the ripple amplitude and the transient response. Too large a value of $\mathrm{R}_{\text {FIIT }} \mathrm{C}_{\text {FIIT }}$ will cause an overshoot in the transient response, and a low ripple level. Too small a value will provide acceptable transient response, but a large ripple amplitude. A range of values exists for most applications which results in acceptable performance for both ripple and transient response.

Anticipate

The function of the anticipate block is to modify the trajectory curve during acceleration. This compensates for the actuator inductance delay during the accelerate-todecelerate transition.

At the start of a access operation, the actuator is driven into acceleration. The actuator velocity increases until either the maximum velocity is reached, or the trajectory deceleration curve is reached. As shown in Figure 5, if the trajectory curve is reached first, then the actuator needs to be driven into deceleration so that the trajectory curve can be followed. This accelerate-to-decelerate transition requires that the

current in the actuator be reversed. Since this cannot happen instantaneously (due to actuator inductance), a phase shift results. The actuator will then overshoot the desired trajectory, and miss the target track. However, if the curve can be modified (see Figure 5) such that the accelerate-to-decelerate transition begins before the nominal trajectory is reached, this overshoot problem can be eliminated. This function is implemented with a switched transconductance amp. During acceleration (DECEL input low), the anticipate output becomes a voltage follower-the anticipate signal is identical to the TRA JUUT signal. An external resistor from anticipate to $T R A J_{\mathbb{N}}$ will modify the trajectory curve as required. During deceleration, the anticipate output becomes a high impedance and the normal trajectory curve is followed.
In addition to the external resistor, an external capacitor to $V_{\text {REF }}$ sets the anticipate decay time constant equal to the current reversal time for the actuator.

Velocity Error Amplifier

The function of this block is to subtract the desired velocity (from the trajectory output) with the actual velocity (from the servo controller) to create a velocity error output. This error output is multiplexed through the servo controller into the servo driver during access mode (see ML4403, ML4413 data sheet).

Since the polarity of the velocity input from the ML4403, ML4413 is the opposite of the trajectory output polarity, the difference function is accomplished with a summing amplifier, as shown in the application diagram. The summing resistors and the feedback resistor are external.

V/I Amp—Velocity Filter

The function of this block is to create a low noise velocity input. The velocity error amp requires that a clean, noise-free velocity input be compared with the desired velocity (from the trajectory output) to create a velocity error signal.
One way to create this velocity signal is to differentiate position. However, the differentiated signal will be noisy, and this noise can excite the mechanical resonances in the system. Another way to create velocity is to integrate acceleration. This eliminates the noise problem, however, the integrator DC accuracy will be poor due to the drift.

The ML4404 uses both of these techniques to achieve a low noise tachometer function which will operate at low frequencies noise from the mechanical resonances is attenuated by the RC filter. The filter output is then summed with a current proportional to acceleration.

Figure 6.
The V / I amp creates this current by monitoring the sense resistors in the bridge driver. The resulting transfer function has both a pole and a zero, and can be expressed by:

Where $\mathrm{KT}=$ The velocity transducer gain (from differentiator)

$$
\begin{aligned}
& K F=\text { Motor force constant } \\
& M=\text { Total moving mass }
\end{aligned}
$$

The above equation is a first order approximation which assumes that the, frictional components of the system (such as windage) are negligible. If the pole and zero are set to identical frequencies, then an all pass function is achieved. To do this, first, set the pole $(W=1 / R C)$ at a frequency much lower than the mechanical resonances. Then set the scaling resistors, RSA, such that:

$$
R S A=M^{*} R S B /\left(K F^{*} K T * C\right)
$$

Note that setting a lower corner frequency results in increased dependence on the actuator current being an accurate representation of true acceleration. Some frictional terms and bias forces (such as flex cable force), as well as variations in KF, will distort this relationship. The lower limit on this corner frequency will be determined by these non ideal effects.

Error Averaging

The velocity error output should ideally be within a few millivolts of $\mathrm{V}_{\text {REF }}$ (near zero error) through the deceleration region. However, due to manufacturing tolerances, this error will not be identical for each drive. The EMAS OUT and ELAT$\mathrm{CH}_{\text {OUT }}$ pins, allow this error to be nulled out for each individual system.
During deceleration (DECEL input high) a transconductance amplifier is, switched on (see Block Diagram) and the velocity error output is integrated through an external capacitor. This average velocity error is then compared with $\mathrm{V}_{\text {REF }}$ and sent to ELATCH ${ }_{\text {OUT }}$ (TTL output).

During acceleration (DECEL input low) the amplifier is switched off (high impedance output) and the external capacitor is discharged to $\mathrm{V}_{\text {REF }}$ through an external resistor. In this condition, the TTL output, ELATCH ${ }_{\mathrm{OUT}}$, is held in its previous state. Since the velocity error during acceleration is not of interest, the ELATCH OUT $^{\text {during acceleration is the sign }}$ of the average velocity error output at the end of the previous deceleration cycle.
The processor can modify the velocity transducer gain based on the state of the ELATCH ${ }_{\text {OUt }}$ signal. During a power-up sequence, this transducer gain can be iteratively adjusted through several seek operations until the velocity error is minimized. As described below, one of the PWM to current translators on the ML4404 could be used to adjust this transducer gain.

PWM To Current Translators

The function of this block is to convert the duty cycle of a TTL input line to an analog output voltage. To optimize a complex servo control system, the manufacturing tolerances of some components must be accounted for. Traditionally, the manufacturing process included an expensive sequence of measurement and adjustment to bring each individual unit within specification. A more cost effective solution is to perform these tasks through software control.

The ML4404 implements this function with TTL to current translators. The external components RPWM and CPWM set the desired characteristics. The operation of these translators can be expressed by:

$$
\mathrm{VO}=\mathrm{V}_{\mathrm{REF}}+\mathrm{I}_{\mathrm{BIAS}} * \mathrm{R}_{\mathrm{PWM}} *(2 * \text { DUTY CYCLE } / 100-1)
$$

Thus for a 50% duty cycle, the output voltage equals the reference voltage. The output voltage increases linearly with the input duty cycle.
The external capacitor ($\mathrm{C}_{\text {PWM }}$) should be made sufficiently large to smooth out the PWM ripple.
The ML4404 has two translators. These stand-alone converters can be used for any purpose, but their intended functions are:

1. To set the AGC reference voltage on the ML4401, ML4431 servo demodulator.
2. To offset the position loop null location for data recovery (compensator inputs on the ML4403, ML4413 servo controller).
3. To offset the access arrival point for the trajectory (ISUM node on the ML4404).

Figure 7. Block Diagram of Trajectory Generator.

Figure 8. Connecting the ML4403 to the ML4404 Trajectory Generator and the ML4402 Servo Driver

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4404YCQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)

Disk Voice Coil Servo Driver

GENERAL DESCRIPTION

The ML4406 is a voice coil power driver intended for use in Hard Disk servo systems. The ML4406 contains all power and control circuitry necessary to drive the voice coils of most $3.5^{\prime \prime}$ drives. In addition, power fail detection and head retraction functions are provided for orderly shut-down of the drive.
The transconductance is programmed by a logic input at $1 / 4 \mathrm{~A} / \mathrm{V}$ and $1 / 24 \mathrm{~A} / \mathrm{V}$ respectively, using a 1Ω sense resistor. This allows for greater DAC resolution in digitally controlled servos during track follow without compromising dynamic range during seek.

The retraction circuit, main drive cicruit, and control circuits are each powered from their own supplies. This allows maximum flexibility and provides for the lowest forward drop.
The power fail detection circuit includes a precision 2.5 V bandgap reference with the option of either
internally generated power-fail thresholds (ML4406) or open comparator inputs for adjustable thresholds (ML4407).
The ML4406 is implemented using Micro Linear's bipolar array technology. This allows for easy customization of the IC for a user's specific application.

FEATURES

- 500 mA power output with 1.5 V total forward drop - Low offsets, cross-over distortion and quiescent current
- Pin-programmable transconductance settings
- Retraction circuitry with programmable retract current, voltage limiting, and separate supply pin
- On-chip precision power fail detect circuitry

■ Over-temperature protection with flag output

- Logic input available for disabling outputs

PIN CONFIGURATION
ML4406/ML4407
20-Pin PCC

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	RETRACT	A logic " 0 " input causes the main outputs to tri-state and the retraction circuit to activate. This input also functions as a flag output and will go low in the event of an over-temperature condition.
2	+12V	12 V power to the circuit and input to the power fail detection circuit.
3	DISABLE	A logic " 1 " turns off the main outputs.
4	I(RET) SET	A resistor to ground sets the retract current.
5	HIGH/LOW	A logic " 1 " sets the transconductance gain to $1 / 4$ while a logic " 0 " sets the gain to $1 / 24$. Transconductance gain is voltage across $\mathrm{R}_{\text {SENSE }} \div$ the input voltage.
6	GND	Analog Signal Ground.
7	V(RET)	Power supply for the retract circuit.
8	R(SENSE)	Current sensing resistor terminal.
9	PWR GND B	Ground Terminal for power amplifier.
10	OUTPUT+	Output terminal for bridge amplifier.

PIN NO.	NAME	FUNCTION
11	PWR VC	$\begin{array}{l}\text { Power supply for bridge } \\ \text { amplifier. }\end{array}$
12	OUTPUT-	$\begin{array}{l}\text { Output terminal for bridge } \\ \text { amplifier. }\end{array}$
14	PWR GND A	$\begin{array}{l}\text { Ground Terminal for power } \\ \text { amplifier. }\end{array}$
15	CONTROL+	$\begin{array}{l}\text { Positive input for current } \\ \text { command. }\end{array}$
16	REF	$\begin{array}{l}\text { COMROL- } \\ \text { Negative input for current } \\ \text { command. } \\ \text { Reference input to the Power }\end{array}$
Fail comparator. Leave open to		
use internal 2.5V reference.		
Input to the Power Fail		
Comparator. Connect to an		
external resistor divider for the		
ML4407. Internally connected		
to a resistor divider from 12V		
in the ML4406.		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Pins 11, 13, 7, 2)	14 V
Voltage Pins 19, 18, 17, 16, 1, 3, 5	-. 3 V to +7V
Pins 14, 15	. -3 to $+\mathrm{V}_{\mathrm{CC}}$
Output Current	$\pm 750 \mathrm{~mA}$
Retraction Current	80 mA
Retract Set Current (Pin 4)	3 mA
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 sec	$260^{\circ} \mathrm{C}$
Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{JA}}$)	$60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Supply Voltage (PWR VC, +12V) 12V $\pm 10 \%$
+5V (Pin 19) $5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}($ RET) (Pin 7) 2.5 V to 16 V
Control + Voltage Range ($\operatorname{Pin} 15=5 \mathrm{~V}$) $\ldots \ldots$. 0 V to V_{CC}
Control - Voltage Range $\ldots \ldots \ldots \ldots \ldots$. . 1 V to $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$, $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{R}_{\mathrm{LOAD}}=15 \Omega$, CONTROL- $(\operatorname{Pin} 15)=5 \mathrm{~V}, \mathrm{R}_{\text {SET }}(\operatorname{Pin} 4)=1.2 \mathrm{~K} \Omega$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifier					
Offset				± 10	mA
Gain	Pin $5=2 \mathrm{~V}$	238	250	263	mA / V
	Pin $5=0.8 \mathrm{~V}$	39.6	41.7	43.8	mA / V
Bandwidth			100		KHz
Sinking Saturation	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$. 6	V
	$\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}$. 8	
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$			1.0	
Sourcing Saturation	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$			1.2	V
	$\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$			1.3	
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$			1.5	

Retraction Circuit

I(RET)SET			.75		V
Turn On Time			300		ns
Turn Off Time			2		ms
I(RET) Current	Pin $1=0.8 \mathrm{~V}$	34	50	65	mA

Power Fail Detection Circuit

Reference Voltage		2.35	2.50	2.65	V
Reference Source Impedance			2.25		$\mathrm{k} \Omega$
Comparator Bias Current	ML4407 only, Pin 20 high		50	250	nA
Hysteresis Current	Pin 20 low, ML4407 only		10		$\mu \mathrm{~A}$
Offset Voltage	ML4407 only			10	mV
12V Threshold Hysteresis	ML4406 only ML4406 only	9.5	10	10.5	V
5V Threshold Hysteresis	ML4406 only ML4406 only	4.40	4.575	4.75	V

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2	1.4		V	
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$			1.4	.8	V	
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			± 10	$\mu \mathrm{~A}$	
Current Low $\left(\mathrm{I}_{\mathrm{LL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Except Pin 1	-40	-10		$\mu \mathrm{~A}$
		Pin 1 Only	-250	-160		$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{R}_{\mathrm{LOAD}}=15 \Omega$, CONTROL- $(\operatorname{Pin} 15)=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}(\operatorname{Pin} 4)=1.2 \mathrm{k} \Omega$.

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Current Consumption | $I_{\text {LOAD }}=0$ | | 1 | 2 | mA |
| Pin 19 | $I_{\text {RET }}=0$ | | 1 | 2 | mA |
| Pin 7 | $I_{\text {LOAD }}=0$ | | 10 | 15 | mA |
| Pin $2+$ Pin 11 | | | | | |

FUNCTIONAL DESCRIPTION

POWER AMPLIFIER

The ML4406 power amplifier circuit is set up as a Howland current source with a fixed gain of $1 / 4$ or $1 / 24$ (set by driving pin 5 high or low respectively). This architecture yields minimal cross-over distortion while maintaining low output cross conduction currents. The gain figure refers to the ratio of input voltage to the output voltage seen across $\mathrm{R}_{\text {SENSE }}$. For example, at a $1 / 4$ gain setting with V - input at 2.5 and the $\mathrm{V}+$ input at 4.5 V , +500 mA would flow through the coil using a 1Ω sense resistor. Under the same conditions with pin 5 low, the current would be 83 mA . The ability to change from low to high gain allows more complete utilization of DAC resolution when in the track follow mode.

Figure 1. Power Amplifier Topology

The output stage (Figure 2) is designed to provide minimal saturation losses and employs a "composite PNP" for the sourcing drive and a saturable NPN to sink current. Sourcing saturation drop is typically .9 V while sinking saturation drop is typically $<0.4 \mathrm{~V}$.

Figure 2. Main Power Output Stage

Figure 3. Output Saturation Voltage vs. Output Current (Power $\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}$)

Power Fail Detect

The ML4406 power fail detection circuit consists of a precision trimmed reference, resistor dividers, and an "or-function" comparator with hysteresis. The $10 \mu \mathrm{~A}$ current sink on the comparator input lowers the comparator's positive input by 15 mV when the output of the comparator is high. This creates an effective hysteresis of 30 mV at the 5 V input (on the ML4406). The amount of hysteresis and threshold levels can be programmed by external resistor dividers on the ML4407. The impedance of the external divider sets the amount of hysteresis while the division ratio sets the power fail threshold. The output at pin 20 is opencollector and is normally tied to pin 1 which is internally pulled-up to 5 V .

Retract

The retract circuit features a current sink which is programmed via external resistor from pin 4 to ground ($\mathrm{R}_{\text {RET }}$). The output of the retract circuit is voltage limited to 1.4 V . The current sink provides an acceleration limit during retract while the voltage limited source provides a velocity limit. Pin 1 (Retract Input) also serves as a flag to indicate an overtemperature condition on the die. Pin 1 goes low in the event of over-temperature, which occurs when the die temperature exceeds a safe operating limit (about $160^{\circ} \mathrm{C}$).

The retraction current is set by programming $R_{\text {RET }}$ (figure 4). The retract circuit works down to 3 V on $V_{\text {RETRACT }}$ (Pin 7).

Compensation

Figure 6 shows the equivalent AC circuit for the transconductance amplifier.
The amplifier's current bandwidth is limited by COUT which varies with the value chosen for R $\mathrm{R}_{\text {SENSE }}$

$$
\mathrm{C}_{\mathrm{OUT}}=\frac{25 \mathrm{nF}}{\mathrm{R}_{\mathrm{SENSE}}}
$$

With no snubber (RS and CS) the bandwidth is limited to

$$
\mathrm{F}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi} \sqrt{\frac{2.414}{\mathrm{~L}(\mathrm{M}) \mathrm{C}(\mathrm{OUT})}}
$$

Since this is a second order system with $L(M)$ and C(OUT) forming a resonant circuit, some damping is desirable to reduce ringing in the step response. This is accomplished with a resistive snubber. The optimum value of $R(S)$ occurs when the following condition is met:

$$
\mathrm{R}(\mathrm{~S})=\sqrt{\frac{\mathrm{L}(\mathrm{VCM})}{\mathrm{C}(\mathrm{OUT})}}
$$

For a given $C(S)$, setting $R(S)$ to this value will minimize the ringing in the transient response. Larger values of $R(S)$ will result in more ringing and more bandwidth. Smaller values of $R(S)$ will result in more ringing and less bandwidth. $\mathrm{R}(\mathrm{S})$ should not exceed 300Ω.

Figure 4. Retract Current vs. RSET

Figure 5. Total Harmonic distortion vs Frequency Low Gain Setting ($V_{\text {PIN }} 5=0$), $R_{\text {SENSE }}=1 \Omega, V_{I N}=2.4 V_{\text {P-P }}$ High Gain Setting ($V_{\text {PIN }} 5=0$), $R_{\text {SENSE }}=1 \Omega, V_{I N}=0.4 V_{\text {P-P }}$

Figure 6. AC Equivalent Circuit for Current Amplifier, Voice Coil Motor (VCM) and Snubber.
$\mathrm{C}(\mathrm{S})$ (snubber capacitor) values of between 200 nF and $1 \mu \mathrm{~F}$ are usually necessary to achieve the desired reduction of ringing in the step response. At the optimum value of $R(S)$ larger values of $C(S)$ further reduce the ringing but do not affect the bandwidth.
Tuning the current loop response can be easily done simulating the network in figure 6 with a computer simulator (such as SPICE).

APPLICATIONS

Figure 7. Typical Application: ML4406 used with ML2341 8-bit DAC provides up to 12-bit effective resolution

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4406CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML4407CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)

Low Voltage Drop Voice Coil Servo Driver

GENERAL DESCRIPTION

The ML4408 is a voice coil power driver intended for use in High Performance 12V Hard Disk servo systems. The ML4408 contains all control circuitry necessary to drive the voice coils of most small drives. To maximize compliance voltage, the ML4408 includes two 1-Amp NPN drivers and provides drivers for external PNP transistors. In addition, power fail detection and a low voltage head retraction functions are provided for orderly shut-down of the drive.
The transconductance is programmed by a logic input at $1 / 4 \mathrm{~A} / \mathrm{V}$ and $1 / 24 \mathrm{~A} / \mathrm{V}$ respectively, when using a 1Ω sense resistor. This allows for greater DAC resolution in digitally controlled servos during track follow without compromising dynamic range during seek.
The retraction circuit, main drive circuit, and control circuits are each powered from their own supplies. Retract is self-contained for 12 V systems but allows the use of an external PNP retraction with as little as 1 V of back EMF from the spindle.

The power fail detection circuit includes a precision 1.5 V bandgap reference and a power fail comparator.

The ML4408 is implemented using Micro Linear's bipolar array technology. This allows for customization of the IC for a user's specific application.

FEATURES

- Low saturation voltage ($<1 \mathrm{~V}$ at 1 A)
- No cross-over distortion with low quiescent current
- Pin-programmable transconductance settings
- Retraction circuitry with programmable retract voltage and separate power pin
■ On-chip precision power fail detect circuitry
■ Over-temperature protection with flag output

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN \#	NAME	FUNCTION	PIN \#	NAME	FUNCTION
1	$V_{\text {CC }}$	Supply input to power amplifiers.	12	SOURCE A	PNP Base drive output for noninverting power amplifier.
2	DISABLE	A Logic " 1 " puts the IC into a low			
	(PWR DOWN)	power state and disables the power amplifiers.	13	SINK A REF	Kelvin sensing point for power amplifier. Connect to SINK A.
3	HIGH/LOW	A logic " 1 " sets the transconductance gain to $1 / 4$ while a logic " 0 " sets the gain to $1 / 24$. Transconductance gain is the $\mathrm{V}_{\text {RSENSE }} \div \mathrm{V}_{\text {CONTROL }}$.	14	SINK A	Current sinking output for noninverting power amplifier. Connects to voice coil (+) terminal.
			15	PWR GND A	Power return pin for non-inverting power amplifier. Normally used for current sensing.
4	RETR OUT	Open collector output which pulls low during retract. Used to drive external power transistor to source retract current to the coil and can provide a braking signal to spindle.	16	CONTROL+	Positive input for current command.
			17	CONTROL-	Negative input for current command.
5	RET SET	External set resistor to establish a voltage limit for the internal retract driver.	18	COMP 1	Pin for external compensation capacitor.
			19	COMP 2	Pin for external compensation capacitor.
6	GND	Analog signal ground.			
7	R(SENSE)	Current sense resistor terminal.	20	5V SENSE	Center node of a resistor divider from +5 V .
8	V(RET)	Supply pin for retract circuits.	21	+5V	
9	SOURCE B	PNP Base drive output for inverting power amplifier.	21	POWER FAIL	detection and logic power supply.
10	PWR GND B	Power return pin for inverting power amplifier. Normally used for current sensing.	22	POWER FAIL	Open Collector output drives low for low voltage conditions.
			23	$\overline{\text { RETRACT }}$	A logic " 0 " initiates retract. Also
11	SINK B	Current sinking output for inverting power amplifier. Connects to voice coil (-) terminal.			temperature output flag.
			24	12V SENSE	Input to the power fail comparator from a resistor divider from V_{CC}.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pins 1, 8)	14 V
Voltage pins 2, 3, 23	-.3V to +7V
pins $4,7,9,11,12,13,14,16,17,22$. -.3 V to V_{CC}
Output Sink Current	$\pm 1 \mathrm{~A}$
Retraction Current	80 mA
Retract Set Current (pin 5)	3 mA
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec)	$150^{\circ} \mathrm{C}$
Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{JA}}$)	$60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{CC} Supply Voltage
12 V operation........................... . 10.8 V to 13.2 V
+5 V (pin 21) Supply Voltage 4.5 V to 5.5 V
V(RET) (pin 8) Supply Voltage 12 V operation
2.5 V to 13.2 V

Control + Voltage Range (pin $15=5 \mathrm{~V}$) $\ldots \ldots \ldots . . .0 \mathrm{~V}$ to V_{CC}
Control - Voltage Range $\ldots \ldots \ldots \ldots \ldots . . .2 \mathrm{~F}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=$ Operating Range, $\mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$, CONTROL- $(\operatorname{pin} 17)=\mathrm{V}_{\mathrm{CC} / 2}, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1, \mathrm{Q} 2=\mathrm{MJE} 210, \mathrm{R}_{\mathrm{SET}}=3.7 \mathrm{~K} \Omega$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifier					
Offset				± 10	mA
Gain	Pin $5=2 \mathrm{~V}$	238	250	263	mA / V
	Pin $5=0.8 \mathrm{~V}$	39.6	41.7	43.8	mA / V
Bandwidth			100		KHz
Sinking Saturation	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$. 3		V
	$\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$. 4		V
	$\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}$. 5		V
Sourcing Saturation	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$. 1		V
	$\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$. 2		V
	$\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}$. 3		V
Source A/B Base Drive		20			mA
Q1/Q2 Standby Current	$\mathrm{V}_{\text {PIN 16 }}=5 \mathrm{~V}$		4		mA

Retraction Circuit

I(RET) SET			.75		V
Turn On Time			800		ns
Turn Off Time			8		$\mu \mathrm{~s}$
Source Voltage	$\mathrm{V}_{\text {PIN 23 }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN 8 }}=3 \mathrm{~V}$, $\mathrm{IPIN}^{2}=50 \mathrm{~mA}$	0.95	1.2	1.5	V
Sink Current	$\mathrm{V}_{\text {PIN 23 }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN 8 }}=1.2 \mathrm{~V}$, $V_{\text {PIN 11 }}=0.5 \mathrm{~V}$	36	48	60	mA
RETR OUT $\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {PIN 23 }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {PIN } 4}=1 \mathrm{~mA}$		0.1	0.4	V

Power Fail Detection Circuit

12 V Threshold		9.5	10	10.5	V
Hysteresis - 12V Sense			120		mV
5 V Threshold		4.40	4.575	4.75	V
Hysteresis - 5V Sense			30		mV

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=$ Operating Range, $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$, CONTROL- $($ pin 17 $)=\mathrm{V}_{\mathrm{CC} / 2}, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1, \mathrm{Q} 2=\mathrm{MJE210}, \mathrm{R}_{\mathrm{SET}}=3.7 \mathrm{~K} \Omega$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logic Inputs and Outputs		2	1.4		V
Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$			1.4	.8	V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$				± 10	$\mu \mathrm{~A}$
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	-40	-10		$\mu \mathrm{~A}$
Current Low $\left(\mathrm{I}_{\mathrm{IL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, except pin 23	-250	-160		$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$, pin 23 only			.4	V
Voltage Low (pins 22, 23)	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$				

Over-lemperature Detection

T_{1} Threshold			160		${ }^{\circ} \mathrm{C}$
Hysteresis			30		${ }^{\circ} \mathrm{C}$

Current Consumption

Pin 21	Pin 21 $=5.5 \mathrm{~V}$		5	7	mA
Pin 1	$\mathrm{~V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 16}=\mathrm{V}_{\mathrm{CC} / 2}$		5	10	mA
Pin 8	$\mathrm{~V}_{\mathrm{PIN} 8}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 23}=5 \mathrm{~V}$		3.5	5	mA

FUNCTIONAL DESCRIPTION

POWER AMPLIFIER

The ML4408 power amplifier circuit (figure 1) is set up as a Howland Current source with a fixed gain of $1 / 4$ or $1 / 24$ (set by driving pin 3 high or low respectively). This architecture yields minimal cross-over distortion while maintaining low output cross conduction currents. The gain figure refers to the ratio of input voltage to the output voltage seen across $\mathrm{R}_{\text {SENSE. }}$ For example, at a $1 / 4$ gain setting, with $\mathrm{V}(-)$ input at 2.5 V and the $\mathrm{V}(+)$ input at $4.5 \mathrm{~V},+500 \mathrm{~mA}$ would flow through the coil using a 1Ω sense resistor. Under the same conditions with pin 3 low, the current would be 83 mA . If lower input voltage swings and higher currents are desired, the overall transconductance gain may be increased by using a lower value of sense resistor, however offset current will increase proportionally. The ability to change from low to high gain allows more complete utilization of DAC resolution when in the track follow mode.
The output stage is designed to provide minimal saturation losses and employs an external PNP transistor for the sourcing drive and an internal saturable NPN to sink current. Sinking saturation drop is typically under 0.4 V . Sourcing saturation drop depends on the external transistors used.
Care should be taken to avoid drawing substrate currents due to negative excursions on any pin of the ML4408. Schoktty diodes should be included on both sides of the VCM to prevent negative excursions from forward biasing the substrate diodes on the IC.

Figure 1. Simplified Power Amplifier Schematic (High Gain Mode)

Two areas should be considered to avoid high frequency oscillation in the output stage:

1. Choose external PNP transistors with a F_{τ} of at least 50 MHz .
2. An RC compensation network should be used to cancel the zero presented to the output by the L/R of the voice coil motor as shown in figure 2.

COMPENSATION

Figure 2 shows the equivalent $A C$ circuit for the current amplifier.

Figure 2. AC Equivalent Circuit for Current Amplifier, Voice Coil Motor (VCM) and Snubber.
The amplifier's current bandwidth is limited by Cout which varies with the value chosen for $\mathrm{R}_{\text {SENSE }}$

$$
\mathrm{C}_{\mathrm{OUT}} \approx \frac{1200 \times\left(\mathrm{C}_{\mathrm{COMP}}+12.8 \mathrm{pF}\right)}{R_{\mathrm{SENSE}}}
$$

Where Ccomp is C 1 between pins 18 and 19. With no snubber (R_{S} and C_{S}) the bandwidth is limited to

$$
\mathrm{F}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi} \sqrt{\frac{2.414}{\mathrm{~L}(\mathrm{M}) \mathrm{C}(\mathrm{OUT})}}
$$

Since this is a second order system with $L(M)$ and $\mathrm{C}(\mathrm{OUT})$ forming a resonant circuit, some damping is desirable to reduce ringing in the step response. This is accomplished with a resistive snubber. The optimum value of $R(S)$ occurs when the following condition is met:

$$
\mathrm{R}(\mathrm{~S})=\sqrt{\frac{L(\mathrm{VCM})}{\mathrm{C}(\mathrm{OUT})}}
$$

Figure 3. Output Current: $\mathrm{V}_{\mathrm{IN}}=\mathbf{1 0 0} \mathbf{~ H z}$ Sine Wave, $\mathbf{1 V}_{\text {P-P }}$ Low Gain Mode (VPIN $3=0$), RSENSE $=1 \Omega$

For a given $C(S)$, setting $R(S)$ to this value will minimize the ringing in the transient response. Larger values of $R(S)$ will result in more ringing and more bandwidth. Smaller values of $R(S)$ will result in more ringing and less bandwidth. C(S) (snubber capacitor) values of between 200 nF and $1 \mu \mathrm{~F}$ are usually necessary to achieve the desired reduction of ringing in the step response. At the optimum value of $R(S)$ larger values of $\mathrm{C}(\mathrm{S})$ further reduce the ringing but do not affect the bandwidth.
Tuning the current loop response can be easily done simulating the network in figure 2 with a computer simulator (such as SPICE).

POWER FAIL DETECT CIRCUIT

The ML4408 circuit consists of a precision trimmed reference, resistor dividers and an "or function" comparator with hysteresis. The output (open collector) of this circuit appears on pin 22. When either comparator input (pins 20 and 24) falls below the 1.5 V reference, pin 22 pulls low.

RETRACT CIRCUITS

When pin 23 goes low, pin 4 will pull low. The internal NPN transistor will saturate, pulling SINK B (pin 11) low. This portion of the circuit will function with less than 1 V on $\mathrm{V}($ RET $)$. An internal voltage limited pull-up transistor is provided which sources current on pin 7 to the VCM. This circuit will operated reliably down to a $\mathrm{V}($ RET $)$ voltage of around 2.5 V , making the ML4408 retract circuit adequate for 12 V systems where the spindle motor EMF provided is adequate.

Figure 4. Output Current: $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{KHz}$ Sine Wave, $1 \mathrm{~V}_{\text {P-P }}$ Low Gain Mode ($\mathrm{V}_{\text {PIN } 3}=0$), $\mathrm{R}_{\text {SENSE }}=1 \Omega$

Figure 5. Output Saturation Voltage vs Output Current $\left(Q_{1}=Q_{2}=\right.$ MJE210 $)$

Figure 7. Retract Source Voltage Limit

Figure 6. Output Saturation Voltage vs Output Current with BSR31
$\left(Q_{1}=\mathbf{Q}_{\mathbf{2}}=\right.$ BSR31 $)$

Figure 8. Retract Sink Voltage vs Current

Figure 9. Typical 12V Application

Figure 10. ML4408 Used with ML2341 8-Bit DAC Provides up to 13-Bit Effective Resolution

Sensorless Spindle Motor Controller

GENERAL DESCRIPTION

The ML4410 provides complete commutation for delta or wye wound Brushless DC (BLDC) motors without the need for signals from Hall Effect sensors. This IC senses the back EMF of the 3 motor windings (no neutral required) to determine the proper commutation phase angle using phase lock loop techniques. This technique will commutate virtually any 3-phase BLDC motor and is insensitive to PWM noise and motor snubbing.

Included in the ML4410 is the circuitry necessary for a Hard Disk Drive microcontroller driven control loop. The ML4410 controls motor current with either a constant offtime PWM or linear current control driven by the microcontroller. Speed feedback for the micro is a stable digital frequency equal to the commutation frequency of the motor. All commutation is performed by the ML4410. Braking and Power Fail are also included in the ML4410.
Two different start-up sequencing (minimum start-up time or minimum reverse rotation at start up) algorithms are supported by the ML4410. Since the timing of the start-up sequencing is determined by the micro, the system can be optimized for a wide range of motors and inertial loads.

The ML4410 modulates the gates of external N -channel power MOSFETs to regulate the motor current. The IC drives external PNP transistors or P-channel MOSFETs directly. Special circuits are used to save base drive power at low load currents.

FEATURES

- Back-EMF Commutation Provides Maximum Torque for Minimum "Spin-Up" Time for Spindle Motors
- Accurate, Jitter-Free Phase Locked Motor Speed Feedback Output
- Linear or PWM Motor Current Control
- Easy Microcontroller Interface for Optimized Start-Up Sequencing and Speed Control
- Power Fail Detect Circuit with Delayed Braking
- Drives External N-Channel FETs and PNP's or P-Channel FETs

BLOCK DIAGRAM

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	GND	Signal and Power Ground
2	PNP1	Drives the external PNP transistor driving motor PH 1 .
3	PNP2	Drives the external PNP transistor driving motor PH 2 .
4	$\mathrm{V}_{\mathrm{CC} 2}$	12 V power and power for the braking fucntion.
5	PNP3	Drives the external PNP power transistor driving motor PH 3 .
6	$\mathrm{C}_{\text {OTA }}$	Compensation capacitor for linear motor current amplifier loop.
7	OTA OUT	Output of motor current error amplifier, normally connected to OTA IN or to external MOSFET gate.
8	OTA IN	Driving voltage for N1-N3. Normally tied to OTA OUT.
9-11	N1, N2 N3	Drives the external N -channel MOSFETs for PH1, PH2, PH3
12	I(SENSE)	Motor current sense input.
13	$\mathrm{Cos}^{\text {O}}$	Timing capacitor for fixed off-time PWM current control.
14	Cvco	Timing capacitor for VCO
15	VCO OUT	Open Collector Logic Output from VCO.

$\left.\begin{array}{lll}\text { PIN\# NAME } & \text { FUNCTION } \\ \hline 16 & \overline{\text { RESET }} & \begin{array}{l}\text { Input which holds VCO off and sets } \\ \text { the ML4410 to the RESET condition. }\end{array} \\ 17 & \overline{\text { PWR FAIL }} & \begin{array}{l}\text { A "0" output indicates } 5 \mathrm{~V} \text { or } 12 \mathrm{~V} \text { is } \\ \text { under-voltage. }\end{array} \\ 18 & \text { ENABLE E/A A "1" logic input enables the error } \\ \text { amplifier and closes the back-EMF } \\ \text { feedback loop. }\end{array}\right\}$

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pins 4, 25)
Output Current (pins 2, 3, 5, 9,10,11) $\pm 150 \mathrm{~mA}$
Logic Inputs (pins $16,17,18,26$) -0.3 to 7 V
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $150^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range $0^{\circ} \mathrm{C}$ to $=70^{\circ} \mathrm{C}$
$V_{C C}$ Voltage $+12 \mathrm{~V}(\operatorname{Pin} 25)$.............................. 12V $\pm 10 \%$
+5 V (pin 19) .. $5 \mathrm{~V} \pm 10 \%$
I(RAMP) Current (Pin 21) 0 to $100 \mu \mathrm{~A}$
Control Voltage Range (Pins 27, 28) 0 V to 7V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{C}_{\mathrm{OTA}}=\mathrm{C}_{\mathrm{VCO}}=0.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=0.02 \mu \mathrm{~F}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator (VCO) Section (Mode 1 or 2 unless otherwise specified)					
Frequency vs. VPIN 20	$1 \mathrm{~V} \leq \mathrm{V}_{\text {PIN } 20} \leq 10 \mathrm{~V}$		300		Hz N
Frequency	$\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$	1450	1800	2150	Hz
	$\mathrm{V}_{\mathrm{VCO}}=0.5 \mathrm{~V}$	70	140	210	Hz
Reset Voltage at C VCO	Mode $=0$		125	250	mV

Sampling Amplifier

V_{RC}	Mode 0		125	250	mV
I_{RC}	Mode $1, \mathrm{R}_{\mathrm{RAMP}}=39 \mathrm{~K} \Omega$	70	100	130	$\mu \mathrm{~A}$
	Mode $2 \mathrm{~A}, \mathrm{~V}_{\mathrm{PH} 2}=4 \mathrm{~V}$	13	50	70	$\mu \mathrm{~A}$
	Mode $2 \mathrm{~A}, \mathrm{~V}_{\mathrm{PH} 2}=6 \mathrm{~V}$	-15	2	+15	$\mu \mathrm{~A}$
	Mode $2 \mathrm{~A}, \mathrm{~V}_{\mathrm{PH} 2}=8 \mathrm{~V}$	-30	-50	-70	$\mu \mathrm{~A}$

Motor Current Control Section

I(SENSE) Gain	$\mathrm{V}_{\text {PIN27 }}=5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {PIN28 }} \leq 2.5 \mathrm{~V}$	4.5	5	5.5	$\mathrm{~V} / \mathrm{N}$
One Shot Off Time		12	25	33	$\mu \mathrm{~s}$
I(CMD) Transconductance Gain			0.19		mmho

Power Fail Detection Circuit

12 V Threshold		9.1	9.8	10.5	V
Hysteresis			150		mV
5 V Threshold		3.8	4.25	4.5	V
Hysteresis			70		mV

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2			V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$				0.8	V
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	-10	1	10	$\mu \mathrm{~A}$
Current Low $\left(\mathrm{I}_{\mathrm{IL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-500	-350	-200	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Outputs I(CMD $)=\mathrm{I}(\mathrm{LIMIT})=2.5 \mathrm{~V}$					
IpNp low		50	75	100	mA
IPNP high	Off State	-100		100	$\mu \mathrm{V}$
V_{N} high	$\mathrm{V}_{\text {PIN8 }}=10 \mathrm{~V}$	9.7	10	10.3	V
V_{N} low			0.2	0.7	V
A_{V} PIN 8 to V_{N}	$\mathrm{V}_{\text {PIN } 8}=6 \mathrm{~V}$	0.95	1	1.05	V / N
LOGIC low	$\mathrm{l}_{\text {OUT }}=0.5 \mathrm{~mA}$			0.4	V
LOGIC lout High			5		$\mu \mathrm{A}$

Supply Currents (N and PNP Outputs Open)

5 V Current			2	4
$\mathrm{~V}_{\mathrm{CC}}$ Current		mA		
$\mathrm{V}_{\mathrm{CC} 2}$ Current			38	50

Note 1. For explanation of states, see Figure 5 and Table 1.

FUNCTIONAL DESCRIPTION

The ML4410 provides closed-loop commutation for 3-phase brushless motors. To accomplish this task, a VCO, integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor current with either linear or constant offtime PWM modes. Braking and power fail detection functions are also provided on chip. The ML4410 is designed to drive external power transistors (N -channel MOSFET sinking transistors and PNP sourcing transistors) directly, and contains a special circuit to reduce PNP base currents when output current demand is reduced.
Start-up sequencing and motor speed control are accomplished by a microcontroller. Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal which is phased-locked to the commutation frequency of the motor.

BACK-EMF SENSING AND COMMUTATOR

The ML4410 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter (RC) on pin 20, increasing the VCO input while early commutation causes pin 20 discharge. Analog speed control loops can use pin 20 as a speed feedback voltage.
The input impedance of the three PH inputs is about $8 \mathrm{~K} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at any PH input does not exceed VCC. See ML4410 data sheet for applications.

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO

Figure 1. Back EMF Sensing Block Diagram.

Figure 2. Typical Motor Phase Waveform with Back-EMF Superimposed (Ideal Commutation).
control voltage will be no higher than $\mathrm{VCC}_{\text {MIN }}-1 \mathrm{~V}$. The VCO maximum frequency will be:

$$
\mathrm{F}_{\mathrm{MAX}}=0.05 \times \mathrm{POLES} \times \mathrm{RPM}
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.

The minimum VCO gain derived from the specification table (using the minimum $\mathrm{F}_{\mathrm{VCO}}$ at $\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{2.42 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}}(\mathrm{MAX})=9.5 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{9.5 \times 2.42 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{460}{\text { POLES } \times \mathrm{RPM}} \mu \mathrm{~F}
$$

Figure 4 shows the transfer function of the Phase Lock Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C1, and C2.

Figure 3. VCO Output Frequency vs. $\mathbf{V}_{\mathbf{v c o}}$ (Pin 20)

Figure 4. Back EMF Phase Lock Loop Components.
The impedance of the loop filter is

$$
Z_{R C}(s)=\frac{1}{C_{1} s} \frac{\left(s+\omega_{\mathrm{LEAD}}\right)}{\left(s+\omega_{\mathrm{LAG}}\right)}
$$

Where the lead and lag frequencies are set by:

$$
\begin{aligned}
& \omega_{\text {LEAD }}=\frac{1}{R C_{2}} \\
& \omega_{\text {LAG }}=\frac{C_{1}+C_{2}}{R C_{1} C_{2}}
\end{aligned}
$$

START-UP SEQUENCING

When the motor is initially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained (around 100 RPM). The following steps are a typical procedure for starting a motor which is at rest.

Step 1: The IC is held in reset (state R) with full power applied to the windings (see figure 6). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state.

Step 2: Reset is released, and a fixed current is input to pin 21 and appears as a current on pin 20, and will ramp the VCO input voltage, accelerating the motor at a fixed rate.

Step 3: When the motor speed reaches about 100 RPM, the back EMF loop can be closed by pulling pin 18 high.

Table 1 Commutation, Braking and PLL States

STATE							iNPUT SAMPLING
	OFF	N2	N3	P1	P2	P3	ON
OFF	OFF	ON	OFF	ON	N/A		
A	OFF	OFF	ON	ON	OFF	OFF	PH2
B	OFF	OFF	ON	OFF	ON	OFF	PH1
C	ON	OFF	OFF	OFF	ON	OFF	PH3
D	ON	OFF	OFF	OFF	OFF	ON	PH2
E	OFF	ON	OFF	OFF	OFF	ON	PH1
F	OFF	ON	OFF	ON	OFF	OFF	PH3

Table 1. Commutation States.

Figure 5. Commutation Timing and Sequencing.

STEP	PIN $\mathbf{1 6}$	PIN $\mathbf{1 8}$	PIN $\mathbf{2 1}$	I(LIMIT) I(CMD)
1	0	0	FIXED	$I_{\text {MAX }}$
2	1	0	FIXED	$I_{\text {MAX }}$
3	1	1	0	$I_{\text {MAX }}$

Table 2. Start-up Sequence.

Figure 6. Typical Start-up Sequence.
Using this technique, some reverse rotation is possible.
The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.

ADJUSTING OPEN LOOP STEP RATE

$\mathrm{I}_{\text {RAMP }}$ should be set so that the VCO's frequency ramp during "open loop stepping" phase of motor starting is less than the motor's acceleration rate. In other words, the motor must be able to keep up with the VCO's ramp rate in open loop stepping mode. The VCO's input voltage ($\mathrm{V}_{\text {PIN 20 }}$) ramp rate is given by:

$$
\frac{d V_{V C O}}{d t}=\frac{R_{\text {RAMP }}}{C_{1}+C_{2}}
$$

since

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{VCO}}=\mathrm{K}_{\mathrm{VCO}} \times \mathrm{V}_{\mathrm{VCO}} \\
& \mathrm{~K}_{\mathrm{VCO}(\mathrm{MAX})} \approx \frac{4 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
\end{aligned}
$$

then combining the 3 equations $I_{\text {RAMP }}$ can be calculated from the desired maximum open loop stepping rate the motor can follow.

$$
\mathrm{l}_{\mathrm{RAMP}}<\frac{\mathrm{d} \mathrm{VVCO}}{\mathrm{dt}} \frac{\mathrm{C}_{\mathrm{VCO}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}{4 \times 10^{-6}}
$$

The motor will start more consistently and tolerate a wider variation in open loop step rate if there is some damping on the motor (such as head drag) during the open loop modes.

The tolerance of the open loop step VCO acceleration $\left(\frac{d F_{V C O}}{d t}\right)$ depends on the tolerances of $K_{V C O}, I_{\text {RAMP }}, C 1$, C 2 , and $\mathrm{C}_{\mathrm{VCO}}$. For more optimum spin up times, these variables can be digitally "calibrated" out by the microprocessor using the following procedure:

1. Reset the IC by holding pin 16 low for at least $5 \mu \mathrm{~s}$.
2. Go into open loop step mode with no current on the motor and measure the difference between the first two complete VCO periods with the PWM signal at 50\% duty cycle:
ENABLE E/A = (see below)
$I(C M D)=0 V$
PWM OUT $=50 \%$

Figure 7. Auto-Calibration of Open-Loop Step Rate.
3. Compute a correction factor to adjust $\mathrm{I}_{\text {RAMP }}$ current by changing the PWM duty cycle from the Micro (D.C.)

4. Use new computed duty cycle for open loop stepping mode and proceed with a normal start-up sequence.

If this auto calibration is used ENABLE E/A can be tied permanently high, eliminating a line from the Micro. Since there is offset associated with the Phase Detector Error Amp (E / A), more current than is being injected by $\mathrm{I}_{\text {RAMP }}$ may be taken out of pin 20 if the offset is positive (into pin 20) if the error amp were enabled during the open loop stepping mode. In that case, $\mathrm{V}_{\mathrm{VCO}}$ would not rise and the motor would not step properly. The effect of E / A offset can also be canceled out by the auto calibration algorithm described above allowing the E / A to be permanently enabled.

PWM AND LINEAR CURRENT CONTROL

To facilitate speed control, the ML4410 includes two current control loops - linear and PWM (figure 9). The linear control loop senses the motor current on the I(SENSE) terminal through R RENSE. An internal current sense amplifier's (A2) output modulates the gates of the 3 N -channel MOSFET's when OTA OUT is tied to OTA IN, or can modulate a single MOSFET gate tied to OTA OUT. When operated in this mode, OTA IN is tied to 12 V , and $\mathrm{N} 1-\mathrm{N} 3$ are saturated switches. This method produces the lowest current ripple at the expense of an extra MOSFET.
The linear current control modulates the gates of the external MOSFET drivers. Amplifier A2 is a transconductance amplifier which amplifies the difference between I(CMD) and I(SENSE). The transconductance gain of A 2 is:

$$
\mathrm{g}_{\mathrm{m}}=1.875 \times 10^{-4} \boldsymbol{v}
$$

The current loop is compensated by $\mathrm{C}_{\text {OTA }}$ which forms a pole given by

$$
\omega_{\mathrm{P}}=\frac{9.375 \times 10^{-4}}{\mathrm{C}_{\mathrm{OTA}}}
$$

This time constant should be fast enough so that the current loop settles in less than 10% of $\mathrm{TVCO}_{\mathrm{VCO}}$ at the highest motor speed to avoid torque ripple to V_{TH} mismatch of the N -Channel MOSFETs, or use a separate MOSFET in series with N1-N3 with a lower time constant.
The ML4410 also includes a current mode constant offtime PWM circuit. When motor current builds to the threshold set on I(LIMIT) input (pin 27), a one-shot is fired whose timing is set by COS. The current in the motor will be controlled by the lower of pin 27 and pin 28.

The I(SENSE) input pin should be kept below 1 V . If
1 (SENSE) goes above 1 V , a bias current of about $-300 \mu \mathrm{~A}$ will flow out of pin 12 and the N outputs will be inhibited. Bringing I(SENSE) below 7 V removes the bias current to its normal level. For this reason, the noise filter resistor on the l(SENSE) pin ($1 \mathrm{~K} \Omega$ on Figure 11) should be less than $1.5 \mathrm{~K} \Omega$.
The noise filter time constant should be less than 1μ s to avoid excessive phase shift in the I(SENSE) signal.

Figure 8. I(LIMIT) Output Off-Time vs. Cos.

OUTPUT DRIVERS

The motor's source transistor drivers are open-collector NPN's with internal $50 K \Omega$ pull-up resistors, whose current is controlled according to the current demanded through the motor. To conserve power, the ML4410 sets the current to PNP1, PNP2, and PNP3, proportional to the lower of pin 27 and pin 28.
Drivers N1 through N3 are totem-pole outputs capable of sourcing and sinking 10 mA . Switching noise in the external MOSFETs can be reduced by adding resistance in series with the gates.

BRAKING

Applying a 0 on pin 26 activates the braking circuit. The brake circuit turns on PNP1 through PNP3 and turns off NPN1 and NPN3.

Figure 9. Current Control, Output Drive and Braking Circuits.

APPLICATIONS

Figure 11. ML4410 Typical Application.

APPLICATIONS (Continued)

Figure 12. Analog Start-up Circuit.

SYMBOL	VALUE
A1	LM358
Q1	$74 \mathrm{HC14}$
D1, D2	1 N 4148
R1	$1 \mathrm{M} \Omega$
R2	$1 \mathrm{M} \Omega$
R3	$100 \mathrm{~K} \Omega$

SYMBOL	VALUE
R4	$100 \mathrm{~K} \Omega$
R5	$50 \mathrm{~K} \Omega$
R6	$50 \mathrm{~K} \Omega$
C 1	$3.3 \mu \mathrm{~F}$
C 2	$3.3 \mu \mathrm{~F}$
C 3	$0.47 \mu \mathrm{~F}$

Figure 13. Analog Speed Control.

Figure 11 shows a typical application of the ML4410 in a hard disk drive spindle control. Although the timing necessary to start the motor in most applications would be generated by a microcontroller, Figure 12 shows a simple "one-shot" start-up timing approach.
Speed control can be accomplished either by:

1. Sensing the VCO OUT frequency with a Microcontroller and adjusting I(CMD) via an analog output from the Micro (PWM DAC).
2. Using analog circuitry for speed control (Figure 13).

OUTPUT STAGE HINTS

Q1, Q2, and Q3 are MJE210 or equivalent. Q4, Q5, and Q6 are IRFU010 or equivalent. Base resistors (100 2) are included to reduce power dissipation in the IC during start-up. If requested currents are low, these can be eliminated. Switching transients due to commutation can be reduced by increasing the 470Ω gate resistors on Q4-Q6.

Since the output section in a full bridge application consists of three half-H switches, cross-conduction can occur. Cross-conduction is the condition where an N-FET and PNP in the same phase of the bridge conduct simultaneously. This could happen under two conditions (see figure 14):

1. When transitioning from mode 0 to mode A (see table 1) or from braking to mode R, a PNP goes from on to off at the same time N goes from off to on in the same phase. If the PNP turns off slowly and N turns on quickly, cross-conduction may occur. This condition has been prevented inside the IC on later revisions of the ML4410. Consult your Micro Linear representative for date code information. On earlier revision parts, forcing the PNP to turn off more quickly than the NPN turns on will minimize the cross-conduction current.
2. When the MOSFET (or PNP) in the same phase switches on gate current flows due to capacative coupling of current through the FET's drain to gate capacitance (or PNP's Miller Capacitance). This could cause the device that was off to be turned on.
In Condition 2 above, the PNP is pulled up inside the ML 4410 with a $50 \mathrm{~K} \Omega$ resistor. If the current through $\mathrm{C}(\mathrm{CB})$ is greater than $0.7 \mathrm{~V} \div 50 \mathrm{~K}$ when the N -FET turns on, the PNP could turn on simultaneously, causing crossconduction. Adding R1 as shown in figure 14 eliminates this. The size of R1 will depend on the fall time of the phase voltage, and the size of the $C(C B)$.

APPLICATIONS (Continued)

Figure 14. Causes of Cross-conduction.
Adding a series damping resistor to the N-FET gate (RGn) will slow the fall time. The damping resistor should be low enough to:

Avoid turning on the N -Channel gate when the PNP turns on via the same mechanism outlined in condition 2 above

Not severely increase the switching losses in the N-FET In higher power applications, when large MOSFETs are used, the N-Output can be pulled below GND, causing the internal substrate diode (Dint) to conduct. The negative substrate current should be limited to less than 2 mA , which can be done by adding D1 as shown in figure 14. D1 prevents the gate from going below 0.7 V , limiting the substrate current to:
$V_{B E(D 1)}-V_{B E(D i n t)}$ RG(N)

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
$M L 4410 \mathrm{CQ}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Pin Molded PCC (Q28)

Sensorless Spindle Motor Controller

GENERAL DESCRIPTION

The 4411 provides complete commutation for delta or wye wound Brushless DC (BLDC) motors without the need for signals from Hall Effect Sensors. This IC senses the back EMF of the 3 motor windings (no neutral required) to determine the proper commutation phase angle using Phase Lock Loop techniques. This technique will commutate virtually any 3-phase BLDC motor and is insensitive to PWM noise and motor snubbing. The ML4411 is architecturally similar to the ML4410 but with improved braking and brown-out recovery circuitry.
Included in the ML4411 is the circuitry necessary for a Hard Disk Drive microcontroller driven control loop. The 4411 controls motor current with either a constant off-time PWM or linear current control driven by the microcontroller. All commutation is performed by the ML4411. Braking and Power Fail are also included in the ML4411.
The timing of the start-up sequencing is determined by the micro, allowing the system to be optimized for a wide range of motors and inertial loads.

The ML4411 modulates the gates of external N-Channel power MOSFETs to regulate the motor current. The IC drives P-Channel MOSFETs directly.
The ML4411A includes a comparator on the P3 output to prevent cross-conduction.

FEATURES

- Back-EMF Commutation Provides Maximum Torque for Minimum "Spin-Up" Time for Spindle Motors
- Accurate, Jitter-Free Phase Locked Motor Speed Feedback Output
- Linear or PWM Motor Current Control
- Easy Microcontroller Interface for Optimized Start-Up Sequencing and Speed Control
- Power Fail Detect Circuit with Delayed Braking
- Drives External N-Channel FETs and P-Channel FETs
- Back-EMF comparator detects motor rotation after power fail for fast re-lock after brownout
- Improved version of ML4411

BLOCK DIAGRAM

PIN CONFIGURATION

ML4411
28-Pin SOIC (S28W)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	GND	Signal and Power Ground	16	$\overline{\text { RESET }}$	Input which holds VCO off and sets the IC to the RESET condition
2	P1	Drives the external P-channel transistor driving motor PH 1	17	PWR FAIL	IC to the RESET condition A " 0 " output indicates 5 V or 12 V is
3	P2	Drives the external P-channel transistor driving motor PH 2			under-voltage. This is an open collector output with a $4.5 \mathrm{~K} \Omega$ pull-up to +5 V
4	$\mathrm{V}_{\mathrm{CC} 2}$	12 V power and power for the braking function	18	ENABLE E/A A " 1 " logic input enables the error amplifier and closes the back-EMF feedback loop	
5	P3	Drives the external P-channel transistor driving motor PH3	19		feedback loop
6	COtA	Compensation capacitor for linear motor current amplifier loop	20	RC	VCO loop filter components
7	C(BRK)	Capacitor which stores energy to charge N -channel MOSFETs for braking with power off.	21	I(RAMP)	Current into this pin sets the initial acceleration rate of the VCO during start-up
8	$\overline{\text { DIS PWR }}$	A logic 0 on this pin turns off the N and P outputs and causes the TACH comparator output to appear on TACH OUT	22	PH1	Motor Terminal 1
			23	PH2	Motor Terminal 2
			24	PH3	Motor Terminal 3
9-11	N1, N2 N3	Drives the external N -channel MOSFETs for $\mathrm{PH} 1, \mathrm{PH} 2, \mathrm{PH} 3$	25	V_{CC}	12 V power supply. Terminal which is sensed for power fail
12	I(SENSE)	Motor current sense input	26	$\overline{\text { BRAKE }}$	A " 0 " activates the braking circuit
13	$\mathrm{CoS}^{\text {S }}$	Timing capacitor for fixed off-time PWM current control	27	I(LIMIT)	Sets the threshold for the PWM comparator
14	Cvco	Timing capacitor for VCO	28	I(CMD)	Current Command for Linear Current amplifier
15	$\begin{aligned} & \text { VCO/TACH } \\ & \text { OUT } \end{aligned}$	Logic Output from VCO or TACH comparator			

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Voltage (pins 4, 25) \qquad . 14 V
Output Current (pins $2,3,5,9,10,11$) $\pm 150 \mathrm{~mA}$ Logic Inputs (pins $16,17,18,25$) -0.3 to 7 V Junction Temperature ... $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10 sec.$)$.................... $150^{\circ} \mathrm{C}$ Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$...................................... $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
VCC Voltage $+12 \mathrm{~V}(\mathrm{pin} 25)$ $12 \mathrm{~V} \pm 10 \%$
+5V (pin 19) $5 \mathrm{~V} \pm 10 \%$
I(RAMP) current (Pin 21) 0 to $100 \mu \mathrm{~A}$
I Control Voltage Range (pins 27, 28) 0 V to 7 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}=12 \mathrm{~V}, \mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{C}_{\mathrm{OTA}}=\mathrm{C}_{\mathrm{VCO}}=0.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=0.02 \mu \mathrm{~F}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Oscillator (VCO) Section (VIN16 $=5 \mathrm{~V}$)						
Frequency vs. $\mathrm{V}_{\text {PIN 20 }}$	$1 \mathrm{~V} \leq \mathrm{V}_{\text {PIN20 }} \leq 10 \mathrm{~V}$		300		$\mathrm{~Hz} / \mathrm{N}$	
Frequency	$\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$	1450	1800	2150	Hz	
	$\mathrm{~V}_{\mathrm{VCO}}=0.5 \mathrm{~V}$	70	140	210	Hz	
Reset Voltage at $\mathrm{C}_{\mathrm{VCO}}$	Mode $=0$		125	250	mV	

Sampling Amplifier (Note 1)

V_{RC}	State R		125	250	mV
I_{RC}	$\mathrm{V}_{\text {PIN18 }}=0 \mathrm{~V}, \mathrm{R}_{\text {RAMP }}=39 \mathrm{~K} \Omega$	70	100	130	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{PIN} 18}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=4 \mathrm{~V}$	30	50	90	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{PIN} 18}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=6 \mathrm{~V}$	-13	2	13	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{PIN} 18}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=8 \mathrm{~V}$	-30	-50	-90	$\mu \mathrm{A}$
$\mathrm{V}_{\text {PIN21 }}$	$\mathrm{R}_{\text {PIN2 } 1}=39 \mathrm{~K} \Omega$ to +5 V	1.0	1.1	1.20	V

Motor Current Control Section

I(SENSE) Gain	$\mathrm{V}_{\text {PIN27 }}=5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {PIN28 }} \leq 2.5 \mathrm{~V}$	4.5	5	5.5	$\mathrm{~V} / \mathrm{N}$
One Shot Off Time		12	25	33	$\mu \mathrm{~s}$
I(CMD) Transconductance Gain			0.19		mmho
I(CMD), I(LIM) Bias Current	$\mathrm{V}_{\mathrm{IN}}=0$	0	-100	-400	nA

Power Fail Detection Circuit

12 V Threshold		9.1	9.8	10.5	V
Hysteresis			150		mV
5 V Threshold		3.8	4.25	4.5	V
Hysteresis			70		mV

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2			V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$				0.8	V
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	-10	1	10	$\mu \mathrm{~A}$
Current Low $\left(\mathrm{I}_{\mathrm{IL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-500	-350	-200	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Braking Circuit ($\mathrm{V}_{\text {PIN17 }}=0 \mathrm{~V}$)					
Brake Active Threshold		0.8	1.2	1.6	V
PIN 26 Bias Current	$\mathrm{V}_{\text {PIN26 }}=0 \mathrm{~V}$		0.3	1	$\mu \mathrm{A}$
N -Channel Leakage	$\begin{aligned} & V_{C C}, V_{C C 2}=0 \mathrm{~V} \\ & V_{\text {PIN17 }}=0 \mathrm{~V}, V_{\mathrm{N}}=4 \mathrm{~V} \end{aligned}$	0	0.06	10	nA
C(BRK) Current	$\begin{aligned} & V_{\mathrm{CC},} \mathrm{~V}_{\mathrm{CC} 2}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 26}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PIN} 7}=6 \mathrm{~V} \end{aligned}$		20	85	$\mu \mathrm{A}$

Outputs $\left(I_{\text {CMD }}=I_{\text {LIMIT }}=2.5 \mathrm{~V}\right)$

Ip Low	$\mathrm{V}_{\mathrm{P}}=0.8 \mathrm{~V}$	5	7	19.5	mA
	$\mathrm{V}_{\mathrm{P}}=0.4 \mathrm{~V}$	2	4		mA
$\mathrm{V}_{\mathrm{p}} \mathrm{High}$	$\mathrm{I}_{\mathrm{P}}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
P3 Comparator Threshold		$\mathrm{V}_{\mathrm{CC} 2}-1.6$		$\mathrm{V}_{\mathrm{CC} 2}-0.8$	V
V_{N} High	$\mathrm{V}_{\text {PIN } 12}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC} 2}-3.2$	10	$\mathrm{V}_{\mathrm{CC}}-1.2$	V
V_{N} Low	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA}$		0.2	0.7	V
LOGIC Low (V_{OL})	$\mathrm{l}_{\text {OUT }}=0.4 \mathrm{~mA}$			0.5	V
$\mathrm{VCO} / \mathrm{TACH} \mathrm{V}_{\mathrm{OH}}$	$\mathrm{l}_{\text {OUT }}=-100 \mu \mathrm{~A}$	2.4			V
POWER FAIL V_{OH}	$\mathrm{l}_{\text {OUT }}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{PIN} 19}-0.2$	$\mathrm{V}_{\text {PIN19 }}-0.1$	$\mathrm{V}_{\text {PIN19 }}$	V

Supply Currents (N and P Outputs Open)

5 V Current			3	4	mA
$\mathrm{~V}_{\mathrm{CC}}$ Current			38	50	mA
$\mathrm{~V}_{\mathrm{CC} 2}$ Current	ML4411		2	3	mA
$\mathrm{~V}_{\mathrm{CC} 2}$ Current	ML4411A		2.6	3.75	mA

Note 1. For explanation of states, see Figure 5 and Table 1

FUNCTIONAL DESCRIPTION

The ML4411 provides closed-ioop commutation for 3-phase brushless motors. To accomplish this task, a VCO, integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor current with either linear or constant offtime PWM modes. Braking and power fail detection functions are also provided on chip. The ML4411 is designed to drive external power transistors (N -channel sinking transistors and PNP sourcing transistors) directly.
Start-up sequencing and motor speed control are accomplished by a microcontroller. Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal which is phased-locked to the commutation frequency of the motor.

BACK-EMF SENSING AND COMMUTATOR

The ML4411 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter (RC) on pin 20, increasing the VCO input while early commutation causes pin 20 discharge. Analog speed control loops can use pin 20 as a speed feedback voltage.
The input impedance of the three PH inputs is about $8 \mathrm{~K} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at ány PH input does not exceed VCC.

Figure 2. Typical motor phase waveform with Back-EMF superimposed (Ideal Commutation)

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO control voltage will be no higher than VCC MIN -1 V . The VCO maximum frequency will be:

$$
F_{\text {MAX }}=0.05 \times \text { POLES } \times R P M
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.

FIGURE 1. BACK EMKF sensing block diagram

The minimum VCO gain derived from the specification table (using the minimum Fvco at $\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{2.42 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}}(\mathrm{MAX})=9.5 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{9.5 \times 2.42 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

Figure 3. VCO Output Frequency vs. V vco (Pin 20)
Figure 4 shows the transfer function of the Phase Lock Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C1, and C2.

The impedance of the loop filter is

$$
Z_{R C}(s)=\frac{1}{C_{1}} \frac{\left(s+\omega_{\text {LEAD }}\right)}{\left(s+\omega_{\text {LAG }}\right)}
$$

Figure 4. Back EMF Phase Lock Loop Components
Where the lead and lag frequencies are set by:
$\omega_{\text {LEAD }}=\frac{1}{R C_{2}}$
$\omega_{L A G}=\frac{C_{1}+C_{2}}{R C_{1} C_{2}}$

START-UP SEQUENCING

When the motor is initially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained (around 100 RPM). The following steps are a typical procedure for starting a motor which is at rest.

Step 1: The IC is held in reset (state R) with full power applied to the windings (see figure 6). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state.

Step 2: Reset is released, and a fixed current is input to pin 21 and appears as a current on pin 20, and will ramp the VCO input voltage, accelerating the motor at a fixed rate.
Step 3: When the motor speed reaches about 100 RPM, the back EMF loop can be closed by pulling pin 18 high.

Figure 6. Typical Start-up Sequence.
Using this technique, some reverse rotation is possible.
The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.
For quick recovery following a momentary power failure, the following steps can be taken:

STEP	PIN 16	PIN 18	PIN 21	I(LIMIT) I(CMD)
1	0	0	FIXED	$I_{\text {MAX }}$
2	1	0	FIXED	$I_{\text {MAX }}$
3	1	1	0	$I_{\text {MAX }}$

Table 2. Start-up Sequence.

STATE	ONPUT SAMPLING						
	N1	N2	N3	P1	P2	P3	SATPUTS
A	OFF	ON	OFF	ON	OFF	ON	N/A
B	OFF	OFF	ON	ON	OFF	OFF	PH2
C	ON	OFF	OFF	OFF	ON	OFF	PH3
D	ON	OFF	OFF	OFF	OFF	ON	PH2
E	OFF	ON	OFF	OFF	OFF	ON	PH1
F	OFF	ON	OFF	ON	OFF	OFF	PH3

Table 1. Commutation States.

Figure 5. Commutation Timing and Sequencing.

Step 1a: The IC is held in reset (state R) with I(CMD) low and DIS PWR low. The Micro Processor monitors the $\mathrm{VCO} / \mathrm{TACH}$ OUT pin to determine if a signal is present. If a signal is present, the frequency is determined (by measuring the period). If a signal is not present, proceed to the routine described above for starting a motor which is a rest.

Step 2a: Release RESET and DIS PWR. Apply a current to pin 21 and monitor the VCO/TACH OUT pin for VCO frequency.

Step 3a: When the VCO frequency approaches 6 X the motor frequency (or where the motor frequency has decelerated to by coasting during the time the VCO frequency was ramping up) the back EMF loop can be closed by pulling pin 18 high and motor current brought up with I(CMD) or I(LIMIT).

ADJUSTING OPEN LOOP STEP RATE

$I_{\text {RAMP }}$ should be set so that the VCO's frequency ramp during "open loop stepping" phase of motor starting is less than the motor's acceleration rate. In other words, the motor must be able to keep up with the VCO's ramp rate in open loop stepping mode. The VCO's input voltage ($\mathrm{V}_{\mathrm{PIN}}{ }_{20}$) ramp rate is given by:

$$
\frac{d V_{V C O}}{d t} \approx \frac{I_{R A M P}}{C_{1}+C_{2}}
$$

since

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{VCO}}=\mathrm{K}_{\mathrm{VCO}} \times \mathrm{V}_{\mathrm{VCO}} \\
& \mathrm{~K}_{\mathrm{VCO}}(\mathrm{MAX})
\end{aligned}=\frac{4 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

then combining the 3 equations $I_{\text {RAMP }}$ can be calculated from the desired maximum open loop stepping rate the motor can follow.

$$
\mathrm{I}_{\mathrm{RAMP}}<\frac{\mathrm{d} \mathrm{~F}_{\mathrm{VCO}}}{\mathrm{dt}} \frac{\mathrm{C}_{\mathrm{VCO}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}{4 \times 10^{-6}}
$$

The motor will start more consistently and tolerate a wider variation in open loop step rate if there is some damping on the motor (such as head drag) during the open loop modes.

The tolerance of the open loop step VCO acceleration $\left(\frac{d F_{V C O}}{d t}\right)$ depends on the tolerances of $K_{V C O}, I_{\text {RAMP }}, C 1$, C 2 , and $\mathrm{C}_{\mathrm{VCO}}$. For more optimum spin up times, these variables can be digitally "calibrated" out by the microprocessor using the following procedure:

1. Reset the IC by holding pin 16 low for at least $5 \mu \mathrm{~s}$.
2. Go into open loop step mode with no current on the motor and measure the difference between the first two complete VCO periods with the PWM signal at 50% duty cycle:

ENABLE E/A = (see below)
$I(C M D)=0 V$
PWM OUT $=50 \%$

Figure 7. Auto-Calibration of Open-Loop Step Rate.
3. Compute a correction factor to adjust $\mathrm{I}_{\text {RAMP }}$ current by changing the PWM duty cycle from the Micro (D.C.)

$$
\text { D.C. }(\text { NEW })=50 \% \times \frac{\Delta \nwarrow_{V C O}(\text { DESIRED })}{\Delta \mathrm{F}_{\mathrm{VCO}}(\text { MEASURED })}
$$

4. Use new computed duty cycle for open loop stepping mode and proceed with a normal start-up sequence.
If this auto calibration is used ENABLE E/A can be tied permanently high, eliminating a line from the Micro. Since there is offset associated with the Phase Detector Error Amp (E / A), more current than is being injected by $I_{\text {RAMP }}$ may be taken out of pin 20 if the offset is positive (into pin 20) if the error amp were enabled during the open loop stepping mode. In that case, $\mathrm{V}_{\mathrm{VCO}}$ would not rise and the motor would not step properly. The effect of E/A offset can also be canceled out by the auto calibration algorithm described above allowing the E / A to be permanently enabled.

$$
A_{V}=\frac{1.875 \times 10^{-4}}{s C_{\text {OTA }}}
$$

PWM AND LINEAR CURRENT CONTROL

To facilitate speed control, the ML4411 includes two current control loops - linear and PWM (figure 9). The linear control loop senses the motor current on the I(SENSE) terminal through R SENSE . An internal current sense amplifier's (A2) output modulates the gates of the 3 N -channel MOSFET's when OTA OUT is tied to OTA IN, or can modulate a single MOSFET gate tied to OTA OUT. When operated in this mode, OTA IN is tied to 12 V , and $\mathrm{N} 1-\mathrm{N} 3$ are saturated switches. This method produces the lowest current ripple at the expense of an extra MOSFET.

The linear current control modulates the gates of the external MOSFET drivers. Amplifier A2 is a
transconductance amplifier which amplifies the difference between I(CMD) and I(SENSE). The transconductance gain of $A 2$ is:

$$
g_{m}=1.875 \times 10^{-4} \mho
$$

The current loop is compensated by COTA which forms a pole given by

$$
\omega_{\mathrm{P}}=\frac{9.375 \times 10^{-4}}{\mathrm{C}_{\mathrm{OTA}}}
$$

This time constant should be fast enough so that the current loop settles in less than 10% of $\mathrm{TVCO}_{\mathrm{VCO}}$ at the highest motor speed to avoid torque ripple to V_{TH} mismatch of the N -Channel MOSFETs.
The I(SENSE) input pin should be kept below 1 V . If I (SENSE) goes above 1 V , a bias current of about $-300 \mu \mathrm{~A}$ will flow out of pin 12 and the N outputs will be inhibited. Bringing I(SENSE) below 0.7 V removes the bias current to its normal level. For this reason, the noise filter resistor on the l(SENSE) pin ($1 \mathrm{~K} \Omega$ on Figure 10) should be less than $1.5 \mathrm{~K} \Omega$.
The noise filter time constant should be great enough to filter the leading edge current spike when the N-FETs turn on but small enough to avoid excessive phase shift in the I(SENSE) signal.

OUTPUT DRIVERS

The motor's source drivers (P1 thru P3) are open-collector NPN's with internal $16 \mathrm{~K} \Omega$ pull-up resistors. N3is inhibited until P3 is within 1.4 V (typ) of $\mathrm{V}_{\mathrm{CC} 2}$ on the ML4411A.
Drivers N1 through N3 are totem-pole outputs capable of sourcing and sinking 10 mA . Switching noise in the external MOSFETs can be reduced by adding resistance in series with the gates.

BRAKING

As shown in figure 9, the braking circuit pulls the NChannel MOSFET gates high when BRAKE falls below a 1.4 V threshold. After a power failure, C(DLY) is discharged slowly through R(DLY) providing a delay for retract to occur before the braking circuit is activated. The N Channel buffer (B1) tri-states when the BRAKE pin reaches 2.1 V to ensure that no charge from $\mathrm{C}(\mathrm{BRK})$ is lost through the pull-down transistor in B1. To brake the motor with external signals, first disable power by pulling pin 8 low, then pull pin 26 below 1.4 V using an open drain (or diode isolated) output.
The bias current for the Braking circuits comes from VCC2. When the N -Channel MOSFETs turn on, no additional power is generated for VCC2 (motor back-EMF rectified through out the MOSFET body diodes). After VCC2 drops below 4V, Q2 turns off. Continued braking relies on the C_{GS} of the N -Channel MOSFETs to sustain the MOSFET gate enhancement voltage.

Figure 8. I(LIMIT) Output Off-Time vs. Cos.

Figure 9. Current Control, Output Drive and Braking Circuits.

APPLICATIONS

Figure 10 shows a typical application of the ML4411 in a hard disk drive spindle control. Although the timing necessary to start the motor in most applications would be generated by a microcontroller, Fig. 11 shows a simple "one shot" start-up timing approach.

Speed control can be accomplished either by:

1. Sensing the VCO OUT frequency with a Microcontroller and adjusting I(CMD) via an analog output form the Micro (PWM DAC).
2. Using analog circuitry for speed control. (Fig. 12).

OUTPUT STAGE HINTS

In the circuit in Figure 10, Q1, Q2, and Q3 are IRFR9024 or equivalent. Q4, Q5, and Q6 are IRFR024 or equivalent. New MOSFET packaging technology such as the Little Foot ${ }^{\circledR}$ series may decrease the PC board space. These packages, however have much lower thermal inertia and dissipation capabilities than the larger packages, and care should be taken not to exceed their rated current and junction temperature.
Since the output section in a full bridge application consists of three half-H switches, cross-conduction can occur. Cross-conduction is the condition where an N-FET and P-FET in the same phase of the bridge conduct simultaneously. This could happen under two conditions (see figure 13):

Figure 10. ML4411 Typical Application

Figure 11. Analog Start-up Circuit

Figure 12. Analog Speed Control

1. When transitioning from mode 0 to mode A (see table 1) P3 goes from on to off at the same time N3 goes from off to on. If the P3 turns off slowly and N3 turns on quickly, cross-conduction may occur. This condition has been prevented inside the IC on the ML4411A through the addition of comparator A6 on the P3 output (Figure 9). This comparator may cause an oscillation when the N3 switches on due to the capacitive coupling effect described below pulling the P3 pin below VCC2-1.4V. To avoid this, use the circuit in Figure 13.
2. When the MOSFET in the same phase switches on gate current flows due to capacitive coupling of current through the MOSFET's drain to gate capacitance. This could cause the device that was off to be turned on.

Figure 13. Alternate cross-conduction prevention for ML4411A

In Condition 2 above, the P-Channel MOSFET is pulled up inside the ML4411 with a $16 \mathrm{~K} \Omega$ resistor. If the current through $\mathrm{C}(\mathrm{CGp})$ is greater than $\mathrm{V}_{\mathrm{TH}} \div 16 \mathrm{~K}$ when the N -FET turns on, the P-FET could turn on simultaneously, causing cross-conduction. Adding R1 as shown in Figure 14 eliminates this. The size of R1 will depend on the fall time of the phase voltage, and the size of the C(DGp). D1 may be needed for high power applications to limit the negative current pulled (through C(DGn)) out of the substrate diode in the ML4411 when P-FET turns off.

Figure 14. Causes of Cross-conduction
Adding a series damping resistor to the N-FET gate (RGn) will slow the fall time. The damping resistor should be low enough to:

Avoid turning on the N -Channel gate when the PNP turns on via the same mechanism outlined in condition 2 above

Not severely increase the switching losses in the N-FET

UNIPOLAR OPERATION

Unipolar mode offers the potential advantage of lower motor drive cost by only requiring the use of 3 transistors to drive the motor. The ML4411 will operate in unipolar mode (Figure 15) provided the following precautions are taken:

1. The IC supplies should not exceed $12 \mathrm{~V}+10 \%$.
2. The phase pins on the IC should not exceed the supply voltage.

Figure 15. ML4411 Unipolar Drive Application

In unipolar operation, the motor's windings must be allowed to drive freely to:

$$
V_{\Phi(M A X)}=V_{S U P P L Y}(\operatorname{MAX})+V_{E M F}(\operatorname{MAX})
$$

Therefore, there can be no diodes to clamp the inductive energy to $\mathrm{V}_{\text {SUPPLY }}$. This energy must be clamped, however, to avoid an over-voltage condition on the MOSFETs and other components. Typically, a VCLAMP voltage is created to provide the clamping voltage. The inductive energy may either be dissipated (Figure 16) or alternately efficiently regenerated back to the system supply (Figure 17).
The circuit in Figure 15 is designed to minimize the external components necessary, at some compromise to performance. The 3 resistors from the motor phase windings to the PH inputs work with the ML4411's $8 \mathrm{~K} \Omega$ internal resistance to ground to divide the motor's phase voltage down, providing input signals that do not exceed 12 V .

Figure 16. Dissipative Clamping Technique

This circuit uses analog speed regulation. The $1 \mathrm{M} \mu \Omega$ resistor from Pin 20 to the speed regulation op amp provides the function of injecting current into the VCO loop filter for the open loop stepping phase of start-up operation. The "one shot" circuitry to time the reset is replaced by a diode and RC delay from the rising edge or the POWERFAIL signal. The error amplifier is left enabled continuously since at low speeds its current contribution is negligible. The current injected into the loop filter must be greater than the leakage current from the phase detector amplifier for the motor to start reliably.

Figure 17. Non-Dissipative Clamping Technique

HIGHER VOLTAGE MOTOR DRIVE

To drive a higher voltage motor, the same precautions regarding ML4411 voltage limitations as were outlined for Unipolar drive above should be followed. Figures 14-16 provide several methods of translating the ML4411's P outputs to drive a higher voltage.

Figure 18. High Voltage Translation using PNP Power Transistor

Figure 19. High Voltage Translation using "Composite" PNP Power Transistor

Figure 20. High Voltage Translation with NPN Darlington

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4411CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$28-\operatorname{Pin} \mathrm{SOIC}(\mathrm{S} 28 \mathrm{~W})$

Enhanced Sensorless BLDC Motor Controller

GENERAL DESCRIPTION

The ML4412 motor controller provides complete commutation for delta or wye wound Brushless DC (BLDC) motors without the need for signals from Hall Effect Sensors to indicate rotor position. It senses the back EMF of the motor windings (no neutral required) to determine the proper commutation phase sequence using PLL techniques. The ML4412 uses a patented Back-EMF sensing technique which will commutate virtually any 3phase BLDC motor and is insensitive to PWM noise and motor snubbing circuitry.

The ML4412 controls the motor current with a constant off-time PWM or with a microprocessor controlled linear current. The velocity loop can be controlled with an external microprocessor or through an analog feedback loop. An accurate, jitter-free, VCO output is provided, equal to the commutation frequency of the motor. The ML4412 modulates the gates of external N -channel power MOSFETs to regulate the motor current and directly drives the P-channel MOSFETs. The ML4412 supports enhancements like a blanker circuit to prevent false retriggering of the one shot during a motor current spike and circuitry to ensure that there is no shoot through in any state.

The start-up algorithm consists of measuring a fixed VCO frequency and externally ramping the commutation clock until it is equal to the VCO frequency. The timing of the start-up sequencing is determined by the microprocessor thus allowing the optimization for a wide range of motors and inertial loads.

FEATURES

- Less than 200 mW power dissipation
- Patented Back-EMF commutation technique provides jitterless torque for minimum "spin-up" time
- Linear or PWM motor current control
- Microprocessor based start-up algorithm allows for optimized start-up sequencing, speed control and support for variable motor loads
- Back-EMF comparator output senses motor rotation after power fail for fast re-lock after brownout
- Onboard power fail detect monitor
- Onboard motor braking circuit allows 'life' braking on command
- Drives external N-ch \& P-ch FETs
- Enhanced version of the ML4410 \& ML4411

BLOCK DIAGRAM

ML4412
28-Pin SOIC (S28Wi)

PIN DESCRIPTION

PIN\# NAME	FUNCTION	
1	I(SENSE)	Motor current sense input 2
P1	Drives the external P-Channel transistor driving motor PH1	
3	P2	Drives the external P-Channel transistor driving motor PH2
4	P3	Drives the external P-Channel transistor driving motor PH3
5	VCC	12V power supply. Terminal which is sensed for power fail
6	C(BRK)	Capacitor which stores energy to charge N-Channel MOSFETs for braking with power off
7	R(BRK)	External resistor to C(BRK) to drive NMOS during braking
8	+5V	5V power supply input
$9-11$	N1, N2 N3	Drives the external N-channel MOSFETs for PH1, PH2, PH3
12	COTA	Compensation capacitor for linear motor current amplifier loop
13	I(CMD)	Current Command for Linear Current amplifier 14
VCC2	12V power and power for the braking function	
16	CVCO	Viming capacitor for VCO TMCLK

PIN\#	NAME	FUNCTION
17	RESET	Input which holds the VCO off and sets the IC to the RESET condition (refer table 1)
18	$\overline{\text { PWR FAIL }}$	A " 0 " output indicates 5 V or 12 V is - under-voltage. This is an open collector output with a $4.5 \mathrm{k} \Omega$ pull-up to +5 V
19	$\overline{\text { ENABLE E/A }}$	A " 0 " logic input enables the error amplifier and closes the Back-EMF feedback loop (refer table 1)
20	RC	VCO loop filter components
21	I(LIMIT)	Sets the threshold for the PWM comparator
22	PH1	Motor Terminal 1
23	PH 2	Motor Terminal 2
24	PH3	Motor Terminal 3
25	BRAKE	A " 0 " activates the braking circuit
26	C_{OS}	Timing capacitor to GND and resistor to +5 V , for fixed off-time PWM current control
27	$\overline{\text { DIS PWR }}$	A logic 0 on this pin turns off the N and P outputs and causes the TACH comparator output to appear on TACH OUT
28	GND	Signal and Power Ground

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pins 5, 14) 14V
Output Current (pins 2, 3, 4, 9,10,11) $\pm 150 \mathrm{~mA}$
Logic Inputs (pins 14, 17, 18, 25) 0.3 to 7 V
Junction Temperature . $.150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $150^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ $60^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range...................................... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
VCC Voltage +12 V (pin 14) $12 \mathrm{~V} \pm 10 \%$
+5 V (pin 8) .. $5 \mathrm{~V} \pm 10 \%$
I Control Voltage Range (pins 13, 21) OV to 7 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{VCC}=\mathrm{VCC2}=12 \mathrm{~V}, \mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{C}_{0 \text { TA }}=\mathrm{C}_{\mathrm{VCO}}=0.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OS}}=10 \mathrm{k} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator (VCO) Section	$1 \mathrm{~V} \leq \mathrm{V}_{\text {PIN20 }} \leq 10 \mathrm{~V}$		300		$\mathrm{~Hz} / \mathrm{N}$
Frequency vs. $\mathrm{V}_{\text {PIN20 }}$	$\mathrm{V}_{\text {VCO }}=6 \mathrm{~V}$	1450	1800	2150	Hz
Frequency	Reset mode	70	140	210	Hz

Sampling Amplifier (note 1)

V_{RC}	State R	400	500	600	mV
I_{RC}	State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=4 \mathrm{~V}$	30	50	70	$\mu \mathrm{~A}$
	State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=6 \mathrm{~V}$	-13	2	13	$\mu \mathrm{~A}$
	State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=8 \mathrm{~V}$	-30	-50	-70	$\mu \mathrm{~A}$

Motor Current Control Section	$V_{\text {PIN21 }}=2.5 \mathrm{~V}$	4.5	5	5.5	$\mathrm{~V} / \mathrm{N}$
I(SENSE) Gain		5	10	15	$\mu \mathrm{~S}$
One Shot off time			0.19		mmho
I(CMD) Transconductance Gain	$\mathrm{V}_{\text {IN }}=0$	0	-100	-400	nA
I(CMD), I(LIM) Bias Current					

Power Fail Detection Circuit

12 V Threshold		9.1	9.8	10.5	V
Hysteresis			150		mV
5 V Threshold		3.8	4.25	4.5	V
Hysteresis			70		mV

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2			V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$				0.8	V
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	-10	1	10	$\mu \mathrm{~A}$
Current Low $\left(\mathrm{I}_{\mathrm{IL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-500	-350	-200	$\mu \mathrm{~A}$
Braking Circuit		1.0	1.4	1.8	V
Brake Active Threshold			0.3	1	$\mu \mathrm{~A}$
PIN 25 Bias Current					

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $T_{A}=$ Operating Temperature Range, $V C C=V C C 2=12 \mathrm{~V}, \mathrm{R}_{\text {SENSE }}=1 \bar{\Omega}, \mathrm{C}_{0 T A}=\mathrm{C}_{\mathrm{VCO}}=0.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OS}}=10 \mathrm{k} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Outputs $\mathrm{I}(\mathrm{CMD})=\mathrm{I}(\mathrm{LIMIT})=2.5 \mathrm{~V}$					
Ip low	$V_{P}=2 \mathrm{~V}$	0.5		1.2	mA
V_{P} high	$\mathrm{I}_{\mathrm{p}}=-10 \mu \mathrm{~A}$	VCC2-1V			V
P3 Comparator Threshold		VCC2-3.6V		VCC2-2.4V	V
V_{N} high	$\mathrm{V}_{\mathrm{PIN} 1}=0 \mathrm{~V}$	VCC - 3.2	10	VCC - 1.2	V
V_{N} low	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA}$		0.2	0.7	V
LOGIC low (V_{OL})	$\mathrm{l}_{\text {OUT }}=0.4 \mathrm{~mA}$			0.5	V
VCO/TACH V_{OH}	$\mathrm{l}_{\text {OUT }}=100 \mu \mathrm{~A}$	2.4			V
POWER FAIL V_{OH}	$\mathrm{l}_{\text {OUT }}=10 \mu \mathrm{~A}$	$\mathrm{V}_{\text {PIN8 }}-0.2$	$\mathrm{V}_{\text {PIN8 }}-0.1$	$\mathrm{V}_{\text {PIN8 }}$	V

Supply Currents (N and P outputs open)

5V Current			8	25	mA
VCC Current			1	1.5	mA
VCC2 Current			8	16	mA

Note 1. For explanation of states, see Figure 5 and Table 1.

SUMMARY OF ENHANCEMENTS IN ML4412 OVER THE ML4411

1. Lower power dissipation, 200 mW versus 450 mW in the ML4411.
2. Accurate and customized start-up by using commutation clock provided by the microprocessor instead of relying on $I_{\text {RAMP }}$ as in the ML4411.
3. True braking function which is biased by TOB, to allow braking block to work under a power loss situation.
4. ML4412 adds hysteresis into braking comparator to accelerate the transition as soon as the (Vth) threshold is reached.
5. ML4412 adds comparator to prevent the PMOS from coming "ON" when the braking is active.
6. ML4412 adds active pull-up to the P output to replace the resistor pull-up in ML4411.
7. ML4412 enhances pull-down capability to the N output to prevent injected shoot through (only 3 mA in the ML4411).
8. ML4412 adds comparator to prevent P3 N3 shoot through during reset to state A transition.
9. The one-shot accuracy in the ML4412 is improved over the ML4411's.
10. ML4412 adds a blanker circuit to one-shot to prevent it from false triggering which occurrs when large starting currents cause noise coupling to the chip.

FUNCTIONAL DESCRIPTION

The ML4412 provides closed-loop commutation for 3phase brushless motors. To accomplish this task, a VCO, Integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor current with either linear or constant offtime PWM modes. Braking and power fail detection functions are also provided on chip. The ML4412 is designed to drive external power transistors (N -channel sinking transistors and P -Channel sourcing transistors) directly.
Start-up sequencing and motor speed control are accomplished by a microcontroller. Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal, phased-locked to the commutation frequency of the monitor.

BACK-EMF SENSING AND COMMUTATOR

The ML4412 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2 below) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter (RC) on pin 20, increasing the VCO input while early commutation causes pin 20 to discharge. Analog speed control loops can use Pin 20 as a speed feedback voltage.
The input impedance of the three PH inputs is about $5 \mathrm{k} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at any PH input does not exceed VCC.

Figure 1. Back-EMF sensing block diagram

Figure 2. Typical motor phase waveform with Back-EMF superimposed (Ideal Commutation)

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO control voltage will be no higher than $\mathrm{VCC}_{\text {MIN }}-1 \mathrm{~V}$. The VCO maximum frequency will be:

$$
\mathrm{F}_{\mathrm{MAX}}=0.05 \times \mathrm{POLES} \times \mathrm{RPM}
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.

The minimum VCO gain derived from the specification table (using the minimum $\mathrm{F}_{\mathrm{VCO}}$ at $\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{2.42 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}}(\mathrm{MAX})=9.5 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{9.5 \times 2.42 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{460}{\mathrm{POLES} \times \mathrm{RPM}} \mu \mathrm{~F}
$$

Figure 3. VCO Output Frequency vs. $\mathbf{V}_{\mathbf{V C O}}$ (pin 20)

Figure 4. Back EMF Phase Lock Loop Components

Figure 4 above shows the transfer function of the Phase Lock Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C_{1}, and C_{2}.

The impedance of the loop filter is

$$
Z_{R C}(s)=\frac{1}{C_{1} s} \frac{\left(s+\omega_{\text {LEAD }}\right)}{\left(s+\omega_{\text {LAG }}\right)}
$$

Where the lead and lag frequencies are set by:

$$
\begin{aligned}
& \omega_{\text {LEAD }}=\frac{1}{R C_{2}} \\
& \omega_{\text {LAG }}=\frac{C_{1}+C_{2}}{R C_{1} C_{2}}
\end{aligned}
$$

Requiring the loop to settle in 20 PLL cycles with a spread of 10 between $\omega_{\text {LEAD }}=10 \times \omega_{\text {LAG }}$ produces the following calculations for $\mathrm{R}, \mathrm{C}_{1}$, and C_{2} :

$$
\begin{gathered}
\mathrm{C}_{1} \approx \frac{4.66 \times 10-9}{\mathrm{C}_{\mathrm{VCO}} \times \mathrm{FVCO}^{2}} \\
\mathrm{C}_{2}=9 \times \mathrm{C}_{1} \\
\mathrm{R}=\frac{12.54}{\mathrm{C}_{2} \times \mathrm{FVCO}^{2}}
\end{gathered}
$$

START-UP SEQUENCING

When the motor is initially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained. The following steps are a typical procedure for starting a motor which is at rest. It is possible to determine if the motor is running by polling the VCO/TACH OUT pin with power disabled ($\operatorname{Pin} 27=$ low).
STEP 1 The IC is held in reset state until the platters are steady by setting pin 17 and pin 19 to a ' 1 ', with full power applied to the winding (see figure 5). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state. Pin 20 is held at 0.5 V internally. Microprocessor needs to measure VCO frequency by setting pin 27 to a ' 1 ' and then store it.
STEP 2 Setting pin 17 to a ' 0 ' and pin 19 to a ' 1 ' holds the IC in a ramping state. Microprocessor sends starting commutation clock to pin 16 which is an input pin in this state. This clock frequency is gradually increasing until it reaches the VCO frequency previously stored in Step 1.
STEP 3 As soon as commutation clock reaches the VCO frequency of Step 1, pin 19 is switched to " 0 " while pin 17 remains ' 0 '. Now the PLL is closed and the VCO is locked to the Back EMF. Pin 16 becomes an output pin. Thus the commutation clock from the microprocessor should be held in tri-state.

Table 1 Commutation, Braking and PLL States

STATE	OUTPUTS						INPUT SAMPLING
	OFF	N2	N3	P1	P2	P3	ON
A	OFF	OFF	ON	ON	OFF	ON	N/A
B	OFF	OFF	ON	OFF	OFF	OFF	PH2
C	ON	OFF	OFF	OFF	OFF	PH1	
D	ON	OFF	OFF	OFF	OFF	OFF	PH3
E	OFF	ON	OFF	OFF	OFF	ON	PH2
F	OFF	ON	OFF	ON	OFF	OFF	PH3

STATE	ENABLE E/A	RESET	PIN20 (RC)	VCO	COMMUTATOR
RESET	1	1	0.5 V	RUNNING PER VPIN20	IN RESET STATE
RAMP	1	0	0.5 V	PRESET	CLOCKED FROM COMMUTATION CLOCK
RUN	0	0	DRIVEN BY PLL	RUNNING PER VPIN20	SEQUENCED BY VCO
BRAKE	0	1	X	X	X

Figure 5. Start up sequencing (from stop)

Figure 6. Typical Start-up Sequence
Using this technique, some reverse rotation is possible. The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.

TABLE 2. START-UP SEQUENCE

STEP	PIN $\mathbf{1 7}$	PIN $\mathbf{1 9}$	PIN $\mathbf{2 1}$	I(LIMIT) I(CMD)
1	1	1	FIXED	$I_{\text {MAX }}$
2	0	1	FIXED	$I_{\text {MAX }}$
3	0	0	0	$I_{\text {MAX }}$

PWM AND LINEAR CURRENT CONTROL

To facilitate speed control, the ML4412 includes two current control loops - linear and PWM (fig. 7). The linear control loop senses the motor current on the I(SENSE) terminal through RSENSE. An internal current sense amplifier's (A2) output modulates the gates of the 3 N-channel MOSFET's.
The ML4412 also includes a current mode constant offtime PWM circuit. When motor current builds to the threshold set on I(LIMIT) input (pin 21), a one-shot is fired whose timing is set by C_{OS} and R_{OS} where

$$
\mathrm{t}_{\mathrm{OFF}}=1.3 \times \mathrm{R}_{\mathrm{OS}} \times \mathrm{C}_{\mathrm{OS}}
$$

The current in the motor will be controlled by the lower of pin 13 and pin 21.
The linear current control modulates the gates of the external MOSFET drivers. Amplifier A2 is a transconductance amplifier which amplifies the difference between I(CMD) and I(SENSE). The transconductance gain of A 2 is:

$$
g_{m}=1.875 \times 10^{-4} \mho
$$

The current loop is compensated by C CTA which forms a pole given by

$$
\omega_{\mathrm{P}}=\frac{9.375 \times 10^{-4}}{\mathrm{C}_{\text {OTA }}}
$$

This time constant should be fast enough so that the current loop settles in less than 10% of $\mathrm{T}_{\mathrm{VCO}}$ at the highest motor speed to avoid torque ripple to V_{TH} mismatch of the N-Channel MOSFET's.
The I(SENSE) input pin should be kept below 1 V . If I(SENSE) goes above 1 V , a bias current of about $-300 \mu \mathrm{~A}$ will flow out of pin 1 and the N outputs will be inhibited. Bringing l(SENSE) below 0.7 V returns the bias current to its normal level For this reason, the noise filter resistor on the I(SENSE) pin ($1 \mathrm{k} \Omega$ on Figure 8) should be less than $1.5 \mathrm{k} \Omega$.
The noise filter time constant should be great enough to filter the leading edge current spike when the N -FETs turn on but small enough to avoid excessive phase shift in the I(SENSE) signal.

OUTPUT DRIVERS

The motor's source drivers (P1 thru P3) are NPN emitter followers. N3 is inhibited until P3 is within 3V (typ) of VCC2. Drivers N1 through N3 are totem-pole outputs capable of sinking 10 mA . Switching noise in the external MOSFETs is reduced by an internal $4 \mathrm{~K} \Omega$ resistor in series with the sourcing NPN to form an RC time constant with the N -Channel gate capacitance.

BRAKING

As shown in Figure 7 the braking circuit pulls the N channel MOSFET Gates high when the BRAKE pin falls below a $2 \times$ Vbe threshold (Vth). After a power failure, $\mathrm{C}(\mathrm{DLY})$ is discharged slowly through R(DLY) providing a delay for retract to occur before the braking circuit is activated. The P-channel MOSFETs are turned off well before braking occurs. As soon as the Vth threshold is reached, the braking comparator with hysteresis will accelerate the transition and tri-state the N -channel buffer (B1, refer figure 7) before C (BRK) dump charges into the N -channel Gates. This is to ensure that no charge from $\mathrm{C}(\mathrm{BRK})$ is lost through the pull-down transistors in B1, (figure 7). The $\mathrm{C}(B R K)$ will continue charging the N channel Gates, to ensure braking, even when VCC2 (motor BEMF rectified through the MOSFET body diode), drops due to the braking process. An external signal could be used to brake the motor. To accomplish this set pin 17 $=' 1$ ', pin $19={ }^{\prime} 0^{\prime}$. This will pull pin 26 below the threshold to activate the braking circuit.

Figure 7. PWM and Linear Current Control, Gate Drive and Braking Circuits

APPLICATIONS

Figure 8 shows a typical application of the ML4412 in a hard disk drive spindle control. The timing needed to start the motor in most applications would be generated by a microcontroller.

Speed control can be accomplished either by:

1. Sensing the VCO OUT frequency with a Microcontroller and adjusting l(CMD) via an analog output from the Micro (PWM DAC).
2. Using analog circuitry for speed control. (Fig. 9)

OUTPUT STAGE HINTS

In the circuit in Figure 8, Q1, Q2 and Q3 are IRFR9024 or equivalent. Q4, Q5 and Q6 are IRFR024 or equivalent. New MOSFET packaging technology such as the Little Foot ${ }^{\circledR}$ series may decrease the PC board space. These
packages, however have much lower thermal inertia and dissipation capabilities than the larger packages, and care should be taken not to exceed their rated current and junction temperature.
Since the output section in a full bridge application consists of three half- H switches, cross-conduction can occur. Cross conduction is the condition where an N-FET and P-FET in the same phase of the bridge conduct simultaneously. This could happen under two conditions (see Figure 10):

1. When transitioning from mode 0 to mode A (see table 1) P3 goes from on to off at the same time N3 goes from off to on. If P3 turns off slowly and N3 turns on quickly, cross conduction may occur. This condition has been prevented inside the IC on the ML4412 through the addition of comparator A6 on the P3 output (Fig. 7).
2. When the MOSFET in the same phase switches on gate current flows due to capacative coupling of current through the MOSFET's drain to gate capacitance. This could cause the MOSFET that was off to be turned on.
3. In condition 2 above, the P-channel MOSFET is pulled up inside the ML4412 by a NPN follower with base pulled up to VCC2 via $16 \mathrm{~K} \Omega$. If the current through Cdgp is greater than the $\mathrm{Vth}_{\mathrm{PMOS}} / 16 \mathrm{~K} \Omega /$ Beta NPN, when the N-FET turns ON, the P-FET could be turned ON simultaneously, causing cross-conduction. The same mechanism can be applied to N-FET when

P-FET is turned ON. The ML4412 is designed to take care of both the cases through slow turn-on, fast turn-off schemes ie P-FET Gate is puiled down by an $800 \mu \mathrm{~A}$ current source and the N -FET Gate is charged up by an emitter follower in series with $4 \mathrm{~K} \Omega$.

Figure 10 shows the output stages and the potential causes of cross-conduction. The diode D1 shown, may be needed for high power applications to limit the negative current pulled (through Cdgn) out of the substrate diode in the ML4412 when P-FET turns off.

Figure 8. ML4412 Typical Application

SYMBOL	VALUE
A1	LM358
IC1	74 HC 14
D1, D2	IN4148
R1	$1 \mathrm{M} \Omega$
R2	$1 \mathrm{M} \Omega$
R3	$100 \mathrm{~K} \Omega$

SYMBOL	VALUE
R4	$100 \mathrm{~K} \Omega$
R5	$50 \mathrm{~K} \Omega$
R6	$50 \mathrm{~K} \Omega$
C 1	$3.3 \mu \mathrm{~F}$
C 2	$3.3 \mu \mathrm{~F}$
C 3	$0.47 \mu \mathrm{~F}$

Figure 10. Causes of Cross-conduction

Figure 9. Analog Speed Control

Figure 11. ML4412 Unipolar Drive Application

UNIPOLAR OPERATION

Unipolar mode offers the potential advantage of lower motor drive cost by only requiring the use of 3 transistors to drive the motor. The ML4412 will operate in unipolar mode (Figure 11) provided the following precautions are taken:

1. The IC supplies should not exceed $12 \mathrm{~V}+10 \%$.
2. The phase pins on the IC should not exceed the supply voltage.

In unipolar operation, the motor's windings must be allowed to drive freely to:

$$
V_{\boldsymbol{\Phi}(\mathrm{MAX})}=\mathrm{V}_{S U P P L Y}(\mathrm{MAX})+\mathrm{V}_{\mathrm{EMF}(\mathrm{MAX})}
$$

Therefore, there can be no diodes to clamp the inductive energy to $\mathrm{V}_{\text {SUPPLY. }}$ This energy must be clamped, however, to avoid an over-voltage condition on the MOSFETs and other components. Typically, a V(CLAMP) voltage is created to provide the clamping voltage. The inductive energy may either be dissipated (Figure 12) or alternately efficiently regenerated back to the system supply (Figure 13).

The circuit in Figure 11 is designed to minimize the external components necessary, at some compromise to performance. The 3 resistors from the motor phase
windings to the PH inputs work with the ML4412's $5 \mathrm{~K} \Omega$ internal resistance to ground to divide the motor's phase voltage down, providing input signais that do not exceed 12 V . This circuit uses analog speed regulation. The "one shot" circuitry to time the reset is replaced by a diode and RC delay from the rising edge or the POWERFAIL signal. The error amplifier is left enabled continuously since at low speeds its current contribution is negligible. The current injected into the loop filter must be greater than the leakage current from the phase detector amplifier for the motor to start reliably.

HIGHER VOLTAGE MOTOR DRIVE

To drive a higher voltage motor, the same precautions regarding ML4412 voltage limitations as were outlined for Unipolar drive above should be followed. Figures 14-16 provide several methods of translating the ML4412's P outputs to drive a higher voltage.

Figure 12. Dissipative Clamping Technique

Figure 13. Non-Dissipative Clamping Technique

Figure 14. High Voltage Translation using PNP Power Transistor

Figure 15. High Voltage Translation using "Composite" PNP Power Transistor

Figure 16. High Voltage Translation with NPN Darlingtion

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4412CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$28-\mathrm{PIN} \mathrm{SOIC} \mathrm{(S28W)}$

15 Channel Read/Write Circuit

GENERAL DESCRIPTION

The ML4415, ML4416 devices are bipolar monolithic read/write circuits designed for use with fixed disk ferrite center-tapped recording heads. They provide a low noise read path, write current control, and data protection circuitry for all channels.

These multiplexed read/write data channels exhibit features not found in similar read/write circuits such as improved write current stability and elimination of write current "glitches" during power up.
The ML4416 has fourteen read/write data channels and a chip select pin. The chip select pin allows additional read/write circuits in the system by enabling or disabling a particular chip. The ML4415 has fifteen read/write data channels and no chip select pin.
The ML4415R and ML4416R versions include on-chip damping resistors.

FEATURES

■ Write current disable during power up

- Enhanced write current stability
- Designed for center-tapped ferrite heads
- ML4415 provides 15 read/write channels
- ML4416 - easily multiplexed for larger systems
- Includes write unsafe detection
- TTL compatible control signals
- Programmable write current source

■ +5 V , +12 V power supplies

BLOCK DIAGRAM

[^7]ML4415CQ, ML4415RCQ
44-Pin PCC

ML4416CQ, ML4416RCQ
44-Pin PCC

PIN DESCRIPTION

NAME	FUNCTION
HSO-HS3	Head Select (14 heads for the ML4416, and 15 heads for ML4415).
$\overline{\mathrm{CS}}$	Chip Select (low level enables, ML4416 only)
R/W	Read/Write (high level select Read Mode)
WUS	Write Unsafe, open collector output (high level indicates an unsafe writing condition)
WDI	Write Data In (negative transition toggles head current direction)

NAME FUNCTION
H0X-H14X X head connections
H0Y-H14Y Y head connections
RDX, RDY X, Y Read Data (differential read signal out)
WC Write Current (used to set the write current magnitude)
$\mathrm{V}_{\mathrm{CT}} \quad$ Voltage Center Tap (center tap voltage source)
$\mathrm{V}_{\mathrm{CC}} \quad+5$ volts
$V_{D D}+12$ volts
GND Ground

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Power Supply Voltage Range	
$V_{\text {DD }} 1 \ldots$	-0.3 to $14 V_{D C}$
$V_{D D}{ }^{2}$	-0.3 to $14 \mathrm{~V}_{\text {DC }}$
$\mathrm{V}_{\text {CC }}$	-0.3 to $6 V_{D C}$
Input Voltage Range	
Digital Inputs ($\overline{C S}, \mathrm{R} / \overline{\mathrm{W}}$, HS, WDI)	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}_{\mathrm{DC}}$
Head Ports	-0.3 to $\mathrm{V}_{\mathrm{DD}} 1+0.3 \mathrm{~V}_{\mathrm{DC}}$
Write Unsafe (WUS) -0.3 to $14 V_{D C}$
Write Current (IW) . 60mA	
Output Current	
Read Data (RDX, RDY) . - 10 mA	
Center Tap Current (l $\mathrm{l}_{\text {CT }}$) . ${ }^{-60 \mathrm{~mA}}$	
Write Unsafe (WUS)	12 mA
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction Temperature (T_{1}) . $135^{\circ} \mathrm{C}$	
Lead Temperature (Soldering 10 sec.$)$. $300^{\circ} \mathrm{C}$	

OPERATING CONDITIONS

Supply Voltage	
$\mathrm{V}_{\text {DD }}{ }^{1}$	$12 \mathrm{~V} \pm 10 \%$
$V_{\text {cc }}$	$5 \mathrm{~V} \pm 10 \%$
Head Inductance	
L_{H}	5 to $15 \mu \mathrm{H}$
Damping Resistor ($\mathrm{R}_{\mathrm{D}}, \mathrm{ML} 4415 \mathrm{R}$ or ML4416R)	500 to 2000Ω
RCT Resistor (1/4 Watt)	$120 \Omega \pm 5 \%$
Write Current (lw)	10 to 40 mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $V_{D D} 1=V_{D D} 2=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, l_{W}=40 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 70^{\circ} \mathrm{C}$ (Notes 2 and 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

DC OPERATING CHARACTERISTICS

POWER SUPPLY

I_{CC}	V_{CC} Supply Current	Read or Idle Mode	31	35	mA
		Write Mode	26	30	mA
IDD	V_{DD} Supply Current	Read Mode	29	35	mA
		Write Mode	$17+l_{W}$	$20+1$ w	mA
		Idle Mode	17	20	mA
P_{D}	Power Dissipation	Read Mode	550	655	mW
		$\begin{aligned} & \text { Write Mode } I_{W}=40 \mathrm{~mA}, \\ & R_{C T}=0 \Omega \end{aligned}$	890	960	mW
		Idle Mode	378	455	mW

DIGITAL INPUTS ($\overline{\mathbf{C S}}, \mathbf{R} / \overline{\mathbf{W}}, \mathbf{H S}, \mathbf{W D I})$

V_{IH}	High Voltage		2			$\mathrm{~V}_{\mathrm{DC}}$
V_{IL}	Low Voltage				0.8	$\mathrm{~V}_{\mathrm{DC}}$
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA

WUS OUTPUT

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Safe)			0.5	$\mathrm{~V}_{\mathrm{DC}}$
I	Output High Current	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ (Unsafe)			100	$\mu \mathrm{~A}$

CENTER TAP VOLTAGES

$V_{C T}$	Read Mode	Read Mode		4		$V_{D C}$
$V_{C T}$	Write Mode	Write Mode		6		$V_{D C}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $V_{D D} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, I_{W}=35 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}$,
$\mathrm{R}_{\mathrm{D}}=750 \Omega$ (ML4415, ML4416), $\mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY}) \leq 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ (Notes 2 and 3)
($\mathrm{V}_{\text {IN }}$ is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
WRITE MODE CHARACTERISTICS						
IHCW	Head Current (per side)	Write Mode $0 \leqslant V_{C C} \leqslant 3.7 \mathrm{~V}$ $0 \leqslant V_{D D} 1 \leqslant 8.7 \mathrm{~V}$	-200	0.15	200	$\mu \mathrm{A}$
$I_{\text {WR }}$	Write Current Range	$I_{W}=K / R_{W C}$	10		40	mA
K	Write Current Constant		2.375	2.5	2.625	
V_{HD}	Differential Head Voltage Swing		7.0	10.2		V_{PK}
I_{HU}	Unselected Head Transient Current				2	$\mathrm{mA}_{\text {PK }}$
C_{OD}	Differential Output Capacitance			8.8	15	pF
R_{OD}	Differential Output Resistance	ML4415, 4416	10k			Ω
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ML4415R, 4416R	600		960	Ω
${ }_{\text {f WDI }}$	WDI Transition Frequency	WUS = Low	250	490		kHz
A_{1}	$I_{\text {WC }}$ to Head Current Gain			0.99		$\mathrm{mA} / \mathrm{mA}$
IL	Unselected Head Leakage	Sum of X \& Y Side Leakage Current			85	$\mu \mathrm{A}$

READ MODE CHARACTERISTICS

A_{V}	Differential Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~m} \mathrm{~V}_{\text {p.p }} @ 300 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY})=1 \mathrm{k} \Omega \end{aligned}$	85	106	115	V/V
DR	Dynamic Range	DC Input Voltage (V_{1}) Where Gain Falls 10\%, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{1}+0.5 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}} @ 300 \mathrm{kHz}$	-3	± 7	+3	mV
BW	Bandwidth (-3dB)	$\left\|Z_{S}\right\|<5 \Omega, \mathrm{~V}_{1 \mathrm{~N}}=1 \mathrm{mV} \mathrm{V}_{\text {P. }}$	30	40		MHz
$\mathrm{e}_{\text {IN }}$	Input Noise Voltage	$B W=15 \mathrm{MHz}, L_{H}=0, R_{H}=0$		1.2	1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{Cl}_{\text {IN }}$	Differential Input Capacitance	$f=5 \mathrm{MHz}$		14	20	pF
R_{IN}	Differential Input Resistance	$\begin{aligned} & \mathrm{f}=5 \mathrm{MHz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { ML4415, } 4416 \\ & \mathrm{~V}_{\mathrm{IN}}=6 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P}} \text { ML4415R, 4416R} \end{aligned}$	2k	15K		Ω
			460		860	Ω
$\mathrm{I}_{\mathrm{HCR}}$	Head Current (per side)	Read or Idle Mode $0 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.5 \mathrm{~V}$ $0 \leqslant \mathrm{~V}_{\mathrm{DD}} 1 \leqslant 13.2 \mathrm{~V}$	-200		200	$\mu \mathrm{A}$
I_{N}	Input Bias Current (1 side)			8.5	45	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{C M}=\mathrm{V}_{\text {CT }}+100 \mathrm{mV} \mathrm{V}_{\text {P-P }} @ f=5 \mathrm{MHz}$	50	77		dB
PSRR	Power Supply Rejection Ratio	$100 \mathrm{mV}_{\mathrm{P} . \mathrm{P}} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\mathrm{DD}}{ }^{1}, \mathrm{~V}_{\mathrm{DD}}{ }^{2}$, or V_{CC}	45			dB
CS	Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P} \cdot \mathrm{P}} @ 5 \mathrm{MHz}$ and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$	45	57		dB
V_{OS}	Output Offset Voltage	Read Mode	-460	± 29	+460	mV
		Write or Idle Mode	-20	± 1	+20	mV
$\mathrm{V}_{\text {OCM }}$	Common-Mode Output Voltage	Read Mode	4.5	5.5	6.5	V
		Write or Idle Mode		5.6		V
$\mathrm{R}_{\text {OUT }}$	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			30	Ω
\underline{L}	Leakage Current, RDX, RDY	$($ RDX, RDY $)=6 \mathrm{~V}$ Write or Idle Mode	-100	± 15	100	$\mu \mathrm{A}$
Io	Output Current	AC Coupled Load, RDX to RDY	± 2.1	± 2.7		mA

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%, \mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}, \mathrm{~L}_{\mathrm{H}}=10 \mu \mathrm{H}$, $R_{D}=750 \Omega$ (ML4415, ML4416), f $_{\text {DATA }}=5 \mathrm{MHz}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ (Notes 2 and 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
t_{RW}	R/产 to Write Switching Delay	To 90\% of Write Current Output		. 105	1	$\mu \mathrm{s}$
$t_{\text {WR }}$	R/ \bar{W} to Read Switching Delay	To 90% of 100 mV , 10 MHz Read Signal Envelope or to 90% Decay of Write Current		. 036	1	$\mu \mathrm{s}$
$\begin{aligned} & \overline{t_{w}} \\ & o r \\ & t_{\mathrm{IR}} \\ & \hline \end{aligned}$	$\overline{\text { CS }}$ to Select Switching Delay	To 90% of Write Current or to 90% of 100 mV , 10 MHz Read Signal Envelope		. 165	1	$\mu \mathrm{s}$
$\begin{aligned} & t_{W 1} \\ & \text { or } \end{aligned}$ $\underline{t_{R 1}}$	$\overline{\text { CS }}$ to Unselect Switching Delay	To 90% Decay of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90\% Decay of Write Current		. 084	1	$\mu \mathrm{s}$
$t_{\text {HS }}$	Head Select Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope		. 045	1	$\mu \mathrm{S}$
tD1	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}$	1.6	3.9	8	us
tD2	Unsafe to Safe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}$. 387	1	us
tD3	Prop. Delay Head Current	$\mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$ From 50% points		23	25	ns
	Asymmetry Head Current	WDI has 50\% Duty Cycle and 1nS Rise/Fall Time		0.9	2	ns
	Rise/Fall Head Current	10\% and 90\% Points		5	20	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Maximum junction temperature (T_{J}) should not exceed $135^{\circ} \mathrm{C}$.

TIMING DIAGRAM

Write Mode Timing Diagram

FUNCTIONAL DESCRIPTION

CIRCUIT OPERATION

For any selected head, the ML4415/4416 functions as a read amplifier when in the Read mode, or as a write current switch when in the Write mode. Pins HS0, HS1 and HS2 determine head selection while pin R/W controls the Read/Write mode. A detected "writeunsafe" condition is indicated by pin WUS.

READ MODE

When the ML4415, 4416 is in the Read Mode, it operates as a low-noise differential amplifier on the selected channel. In Read mode the write data flip-flop is set and both the write unsafe detector and the write current source are deactivated. The center tap voltage is also lowered. Pins RDX and RDY provide differential emitter follower outputs which are in phase with the X and Y head input pins.
Note that during the Read or Chip Deselect mode the internal write current is deactivated, thus making external write current gating unnecessary.

WRITE MODE

The ML4415, 4416 operates as a write-current switch when in the Write mode. Write current magnitude is determined by the following relationship:
$I_{W}=K / R_{W C}$
Where: $\mathrm{K}=$ Write Current Constant

$$
\begin{aligned}
R_{W C}= & \text { Resistance connected between pin WC } \\
& \text { and GND. }
\end{aligned}
$$

The head current is toggled between the X and Y side of the selected head by a negative transition WDI (Write Data Input). When switching the ML4415, 4416 to write mode, the WDFF (Write Data Flip-Flop) is initialized to pass write current through the X -side of the head.

The ML4415, 4416 exhibit enhanced write current stability, compared to similar read/write circuits, which reduces the problem of oscillation. This is a result of increased internal write current compensation. Also, write current "glitches" during power-up, common in similar read/write circuits, are eliminated with an exclusive write current disabling function.
The WUS (Write Unsafe) pin is an open collector output that gives a logic high level for any of the following unsafe write conditions:

- Open head
- Open head center-tap
- Too low WDI frequency
- Read mode selected
- Device not selected
- No write current

Two negative transitions on WDI are required to clear WUS after the fault condition is removed.
The ML4415, 4416 also offers a voltage fault detection circuit that prevents write current during power-loss or power-up.

Table 1.

Head Select				
HS3	HS2	HS1	HS0	HEAD
0	0	0	0	H0
0	0	0	1	H1
0	0	1	0	H2
0	0	1	1	H3
0	1	0	0	H4
0	1	0	1	H5
0	1	1	0	H6
0	1	1	1	H7
1	0	0	0	H8
1	0	0	1	H9
1	0	1	0	H10
1	0	1	1	H11
1	1	0	0	H12
1	1	0	1	H13
1	1	1	0	H14*

* ML4415 only
$0=$ Logic Level Low
$1=$ Logic Level High
X = Don't Care

Table 2.
Mode Select

$\overline{\mathbf{C S}}^{* *}$	$\mathbf{R} / \overline{\mathbf{W}}$	MODE
0	0	Write
0	1	Read
1	X	Idle

** ML4416 only
$0=$ Logic Level Low
1 = Logic Level High
X = Don't Care

TYPICAL APPLICATION

NOTES:

1. RCT is optional and is used to limit internal power dissipation (Otherwise connect $\mathbf{V}_{\mathrm{DD}} 1$ to $\mathbf{V}_{\mathrm{DD}}{ }^{2}$).
RCT ($\mathbf{1 / 2}$ Watt) $=120\left(40 / I_{W}\right)$ ohms
where $\mathbf{I}_{\mathbf{W}}=$ Write Current, in $\mathbf{m A}$
2. Ferrite head optional: used to suppress write current overshoot and ringing. Recommend Ferroxcube 3659065/4A6.
3. RDX and RDY load capacitance 20pF maximum. RDX and RDY output current must be limited to $100 \mu \mathrm{~A}$.
4. Damping resistors not required on ML4415R, 4416R.

ORDERING INFORMATION

PART NUMBER	PACKAGE	NUMBER OF CHANNELS
ML4415CQ	MOLDED PCC (Q44)	15
ML4415RCQ	MOLDED PCC (Q44)	15
ML4416CQ	MOLDED PCC (Q44)	14 with $\overline{\mathrm{CS}}$
ML4416RCQ	MOLDED PCC (Q44)	14 with $\overline{\mathrm{CS}}$

Zoned Bit Recording Circuit

GENERAL DESCRIPTION

The ML4417/27 is a bipolar monolithic integrated circuit that simplifies the design of zoned bit recording systems in hard disk drives. It contains a VCO capable of operating at frequencies up to 95 MHz , a charge pump, and the active electronics required for a loop filter to form a variable rate data encoding and decoding system.

The ML4417/27 also includes a code clock output and the dividers required for an interface clock output whose frequency is equal to the code clock output frequency divided by 1.5. This feature simplifies the use of RLL $(1,7)$ coding for improved storage density.

In addition, the ML4417/27 includes two uncommitted ECL to TTL level translators to simplify interfacing with TTL-based systems. The ML4417/27 is designed for operation from 12 V and 5 V supplies, but may be operated from a single 5 V supply if desired.
The ML4417 has TTL-compatible logic input levels on the charge pump, and the ML4427 has a charge pump control input, which, when driven by a CMOS tri-state output, eliminates one logic interface line to the circuit.

FEATURES

- Wide VCO Range (3:1 Range to 95 MHz)
- Allows RLL $(1,7)$ or $(2,7)$ Encoding
- SO-16 (Narrow) Packaging
- Coarse and Fine VCO Control Inputs
- Two Uncommitted ECL to TTL Converters
- 12 V , 5 V or Single 5 V Operation

BLOCK DIAGRAM

PIN CONNECTIONS

ML4417, ML4427 SOIC-16 (Narrow) Package

ML4417, ML4427
PDIP-16 Package (Prototypes Only)

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	PIN NO.	NAME	FUNCTION
1	OSCTP (ECL)	Oscillator Test Point. An ECL output of the VCO	15, 7	ECLIN1, 2	ECL inputs for ECL to TTL level translators.
		that is useful for direct evaluation of the VCO output.	9, 8	TTLOUT1, 2	TTL outputs for ECL to TTL level translators.
2	INTCAP (COARSE)	The coarse input for the loop filter time constant setting.	10	INTCLK (TTL)	Interface clock output. This output is a TTL output at one third of the VCO frequency.
3	LOOPFLTR (FINE)	The fine input for loop filter time constant setting.	11	GND	Ground.
4	$\mathrm{V}_{\mathrm{C} 2}$	Analog power supply input, nominal 5 V or 12 V .	12	$\mathrm{V}_{\text {CC }}(5 \mathrm{~V})$	Logic power supply input, nominally 5 V .
5	QIN2	Increment input on the charge pump. This input is TL -compatible on the	13	CAPA	VCO capacitor connection. This capacitor determines the nominal VCO frequency.
		it can be connected, along with pin 6 , to a single CMOS tri-state	14	$\mathrm{V}_{\mathrm{C} 1}$	$\mathrm{V}_{\mathrm{C} 1}$ should be connected to a wellregulated $5 \mathrm{~V} \pm 5 \%$ supply.
		output, eliminating one pin on the controlling gate array. (Active high)	16	CODECLK (ECL)	The code clock output. This is an ECL output at half the VCO frequency.
6	QIN1	Decrement input on the charge pump. (Active low)			

ABSOLUTE MAXIMUM RATINGS

Power Suppiy voitage Range	
$V_{C 1}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+.3 \mathrm{VDC}$
$V_{\text {C2 }}$. -0.3 to 14 VDC
$\mathrm{V}_{\text {CC }}$	-0.3 to 6 VDC
Digital Inputs	
ECLIN1, 2	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
QIN1, 2	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Analog Inputs	
LOOPFLTR, INTCAP	-0.3 to $\mathrm{V}_{\mathrm{C} 2}+0.3 \mathrm{~V}$
CAPA	-0.3 to $\mathrm{V}_{\mathrm{C} 1}+0.3 \mathrm{~V}$
Digital Outputs	
TTLOUT1, 2, OSCTP,	
CODECLK, INTCLK	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Digital Inputs
ECLIN1, 2
-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Analog Inputs
LOOPFLTR, INTCAP
-0.3 to $\mathrm{V}_{\mathrm{C} 2}+0.3 \mathrm{~V}$
Digital Outputs
TTLOUT1, 2, OSCTP,
CODECLK, INTCLK
-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

TYPICAL OPERATING CONDITIONS

Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Analog Supply Voltage ($\left.\mathrm{V}_{\mathrm{C} 2}\right)^{*}$	5 or 12V
Digital Supply Voltage (V_{CC})	V
$\mathrm{V}_{\mathrm{C} 1}$	
* This supply voltage is designed for sheet specifies the ML4417/4427 specification, please contact Micro	ration. This data For 5 V

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. (All voltages are referenced to GND.)

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{C} 2}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{C} 1}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply						
$\mathrm{I}_{\mathrm{C} C}$	$\mathrm{~V}_{\mathrm{CC}}$ Supply Current ${ }^{(1)}$	Pin 12		90.0		mA
$\mathrm{I}_{\mathrm{C} 1}$	$\mathrm{~V}_{\mathrm{C} 1}$ Supply Current	Pin 14		11.0		mA
$\mathrm{I}_{\mathrm{C} 2}$	$\mathrm{~V}_{\mathrm{C} 2}$ Supply Current	Pin 4		4.5		mA

Digital Inputs

$\mathrm{V}_{\mathrm{IH}(\mathrm{ECL})}$	High Voltage ECL Input	Pin $15, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.0		
$\mathrm{~V}_{\mathrm{IL}(\mathrm{ECL})}$	Low Voltage ECL Input	Pin $15, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			3.6
$\mathrm{I}_{\mathrm{IH}(\mathrm{ECL})}$	High Current ECL Input	Pin $15, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			1250
$\mathrm{I}_{\mathrm{IL}(\mathrm{ECL})}$	Low Current ECL Input	Pin $15, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mu \mathrm{~A}$		

Digital Outputs (ECL are Open Emitter)

$\mathrm{V}_{\mathrm{OH} \text { (TTL) }}$	High Voltage TTL Output	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	TTL OUT ${ }_{1,2,3}$ Pins 8, 9, 10, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.75			V
$\mathrm{V}_{\mathrm{OL} \text { (TIL) }}$	Low Voltage TTL Output	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$				0.50	V
$\mathrm{V}_{\mathrm{OH} \text { (ECL) }}$	High Voltage ECL Output	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	ECL Code CLK Pin 16, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.05	4.22	4.30	V
$\mathrm{V}_{\mathrm{OL} \text { (ECL) }}$	Low Voltage ECL Output	$\mathrm{I}_{\mathrm{OL}}=-4 \mathrm{~mA}$		2.80	3.22	3.55	V

Voltage Controlled Oscillator (VCO) (Transfer Function Pin 2 to Pin $1=7.5 \mathrm{MHz} /$ Volt $@ 10 \mathrm{pF}$)

$\mathrm{f}_{\text {VCO }}$	VCO Range	COSC $=10 \mathrm{pF}$ Pin 14 to Pin 13 $($ Pin 2 = 1V to 11V, Pin 3 = 6V) $($ Pin 14 = VCC	$20-95$		MHz

Charge Pump

I_{Q}	Charge Pump Current	Pin 3	± 125		$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{QH}}$	Charge Pump Maximum Voltage	Pin 3		$\mathrm{~V}_{\mathrm{C} 2}-1 \mathrm{~V}$	
$\mathrm{~V}_{\mathrm{QL}}$	Charge Pump Minimum Voltage	Pin 3		1.0	V

INC, $\overline{\mathrm{DEC}}$ Inputs

V_{IH}	High Voltage Input	Pin $6, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	1.9		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Low Voltage Input	Pin 6	0		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High Voltage Input	Pin $5(\mathrm{ML} 4417), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	1.9		$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IL}	Low Voltage Input	Pin $5(\mathrm{ML4417)}$	0		0.8	V

Note 1: This value includes current consumed in $1 \mathrm{~K} \Omega$ terminating resistors from pins 1 and 16 to ground.

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{V}_{\mathrm{C} 2}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{C} 1}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INC, $\overline{\text { DEC }}$ Inputs (Continued)						
V_{IH}	High Voltage Input	Pin 5 (ML4427) see figure $2, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.2		5.0	V
$\mathrm{V}_{\text {IL }}$	Low Voltage Input	Pin 5 (ML4427) see figure 2, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0		3.1	V
$\underline{I_{\text {IH }}}$	High Current Input	Pin $6, \mathrm{~V}_{\mathbb{N}}=1.9 \mathrm{~V}$	-5.0		+1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Current Input	Pin 6, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-25		-1,9	$\mu \mathrm{A}$
${ }_{\underline{1} \text { IH }}$	High Current Input	Pin 5 (ML4417), $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$	+30		+200	$\mu \mathrm{A}$
IIL^{1}	Low Current Input	$\operatorname{Pin} 5$ (ML4417), $\mathrm{V}_{\text {IN }}=0 \rightarrow 0.9 \mathrm{~V}$	-25		+40	$\mu \mathrm{A}$
${ }_{\underline{1} \mathrm{H}}$	High Current Input	Pin 5 (ML4427), $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	+1.0		+20	$\mu \mathrm{A}$
IIL	Low Current Input	Pin 5 (ML4427), $\mathrm{V}_{\text {IN }}=3.1 \mathrm{~V}$	-0.1		+7.0	$\mu \mathrm{A}$

ECL Input 2 (Pin 7) at $\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{5 M H z}<\mathrm{f}_{\mathrm{IN}}<\mathbf{3 5 M H z}, \mathbf{4 0 \%}<$ Duty Cyde $<\mathbf{6 0 \%}$ (If Unused, Pin $7=\mathrm{V}_{\mathrm{CD}}$)

V_{IH}	High Voltage Input	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.0	4.2	5.1	V
$\mathrm{~V}_{\mathrm{IL}}$	Low Voltage Input	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.5	3.4	4.6	V
$\mathrm{~V}_{\mathrm{A}}$	Voltage Swing	$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.5		2.0	V
I_{IN}	Input Current	DC Bias Value		35		$\mu \mathrm{~A}$

Transconductance Amplifier

$\mathrm{V}_{\text {REFI }}$	Inverting Input of Amplifier		$\mathrm{V}_{\mathrm{C} 2} / 2$		V
G_{M}	Transconductance	$\Delta \mathrm{I}($ Pin 2) $\div \Delta \mathrm{V}$ (Pin 3)		27.5	
$\mathrm{I}_{\text {SAT }}$	Limiting Value of Output Current	Pin 2	$\mu \mathrm{mho}$		

Figure 1. Typical Passive Component Connections

Figure 2.

The ML4427 version has an input on pin 5 that allows a single-line control interface on the charge pump. By connecting pins 5 and 6 together, the charge pump can be controlled from a single CMOS tri-state output as follows: $\mathrm{HI}=$ increment, $\mathrm{LO}=$ decrement, tri-state = coast. The benefit is a savings of one output pin on a control gate array. A resistive termination to $\mathrm{V}_{\mathrm{CC}} / 2$ is required to establish the logic level during tri-state, as shown.

TYPICAL PERFORMANCE CHARACTERISTICS

$\frac{\text { VCO }}{2}(\mathrm{MHz})$ vs. $\mathrm{V}_{\mathrm{INT}}$
$\mathrm{V}_{\mathrm{C} 2}=5 \mathrm{~V}$
(5V-Only Operation)

ML4417, ML4427

4417/4427 LOOP RESPONSE

$\mathrm{K}_{\phi}=\frac{.125 \mathrm{~mA}}{2 \pi} \frac{\mathrm{Amp}}{\text { Radian }}$
$K_{\text {FLTR }}-$ To Be Derived, Units $=\frac{\text { Volts }}{\text { Amp }}$
$K_{\mathrm{VCO}}=\frac{100 \%}{2.5 \mathrm{~V}} \quad \frac{\%}{\text { Volt }}\left(\mathrm{C}_{\mathrm{OSC}}=10 \mathrm{pF}\right)$

$\mathrm{V}_{1}=\mathrm{I}_{\mathrm{QP}} * \frac{\left(\mathrm{R}_{1}+\frac{1}{\mathrm{SC}_{1}}\right) \frac{1}{\mathrm{SC}_{2}}}{\mathrm{R}_{1}+\frac{1}{\mathrm{SC}_{1}}+\frac{1}{\mathrm{SC}_{2}}}=\mathrm{l}_{\mathrm{QP}} * \frac{\mathrm{SR}_{1} \mathrm{C}_{1}+1}{\mathrm{~S}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)\left(\mathrm{SR}_{1} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+1\right)}$
$v_{2}=v_{1} * \frac{G_{M}}{S C_{3}}, v_{C}=V_{1} K_{1}+V_{2} K_{2}=V_{1}\left(K_{1}+\frac{G_{M} K_{2}}{S C_{3}}\right)=v_{1} \frac{s \frac{K_{1}}{K_{2} G_{M}} C_{3}+1}{s \frac{1}{G_{M} K_{2}} C_{3}}$
$\therefore \frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{QP}}}=\frac{\mathrm{G}_{M} \mathrm{~K}_{2}\left(\mathrm{SR}_{1} \mathrm{C}_{1}+1\right)\left(\mathrm{s} \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2} \mathrm{G}_{\mathrm{M}}} \mathrm{C}_{3}+1\right)}{\mathrm{S}^{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{C}_{3}\left(\mathrm{SR}_{1} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+1\right)}$
$=\frac{\left(\mathrm{SR}_{1} \mathrm{C}_{1}+1\right)\left(\mathrm{S} * 3.6 * 10^{3} \mathrm{C}_{3}+1\right)}{36 * 10^{3} \mathrm{~S}^{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{C}_{3}\left(\mathrm{SR}_{1} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+1\right)}=\mathrm{K}_{\mathrm{FLTR}}$

$$
\begin{aligned}
& \mathrm{K}_{1}=.1 \frac{\mathrm{~V}}{\mathrm{~V}} \\
& \mathrm{~K}_{2}=1 \frac{\mathrm{~V}}{\mathrm{~V}} \\
& \mathrm{G}_{\mathrm{M}}=27.5 * 10^{-6} \frac{\mathrm{Amp}}{\text { Volt }}
\end{aligned}
$$

Thus complete open loop transfer function T_{OL} :

$$
\begin{aligned}
T_{\mathrm{OL}} & =\frac{\mathrm{K}_{\mathrm{FP}}}{S} * K_{\dot{\varphi}} * \mathrm{~K}_{\mathrm{FLTK}} * \mathrm{~K}_{\mathrm{VCO}} * \mathrm{~F}_{\mathrm{REF}}=\frac{2 \pi}{S} * \frac{.125 * 10^{-3}}{2 \pi} * \mathrm{~K}_{\mathrm{FLTR}} * \frac{1}{2.5} * \mathrm{~F}_{\mathrm{REF}} \\
& =\frac{\mathrm{K}_{\mathrm{FLTR}}}{\mathrm{~S}} * \frac{\mathrm{~F}_{\mathrm{REF}}}{20 * 10^{3}}=\frac{\left(\mathrm{SR}_{1} \mathrm{C}_{1}+1\right)\left(\mathrm{S} * 3.6 * 10^{3} \mathrm{C}_{3}+1\right) * \mathrm{~F}_{\mathrm{REF}}}{\mathrm{~S}^{3}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \mathrm{C}_{3}\left(\mathrm{SR}_{1} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+1\right) * 720 * 10^{6}}
\end{aligned}
$$

Must define desired $F_{\text {REF }}, f_{0}, Z_{2}, P_{1}, Z_{1}$; then can proceed with component value determination.
If $\mathrm{F}_{\text {OUT }}=36 * 10^{6}, \mathrm{~N}=50$ (typical numbers), then $\mathrm{F}_{\text {REF }}=720 * 10^{3}$
Assume: $f_{0}=1000 \mathrm{~Hz}, Z_{2}=250 \mathrm{~Hz}, P_{1}=3000 \mathrm{~Hz}, Z_{1}=45 \mathrm{~Hz}$

1. Set Z_{1} with C_{3} :

$$
3.6 * 10^{3} * C_{3}=\frac{1}{2 \pi Z_{1}} \longrightarrow C_{3}=\frac{1}{2 \pi * 45 * 3.6 * 10^{3}}=.982 * 10^{-6} \sim 1 \mu \mathrm{~F}
$$

2. Set -3 intercept frequency f_{3} with $\left(C_{1}+C_{2}\right): f_{3}=\left(Z_{1} Z_{2} f_{0}\right)^{1 / 3}=\left(11.25 * 10^{6}\right)^{1 / 3}$

$$
\rightarrow C_{1}+C_{2}=\frac{720 * 10^{3}}{(2 \pi)^{3} * 11.25 * 10^{6} * 10^{-6} * 720 * 10^{6}}=.358 * 10^{-6}
$$

3. Ratio $\frac{Z_{2}}{P_{1}}=\frac{R_{1}\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)}{R_{1} C_{1}}=\frac{C_{2}}{C_{1}+C_{2}} \rightarrow C_{2}=\left(C_{1}+C_{2}\right) \frac{Z_{2}}{P_{1}}=.358 * 10^{-6} * \frac{250}{3000}=.0298 * 10^{-6} \sim .030 \mu \mathrm{~F}$
4. $\mathrm{C}_{1}=\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)-\mathrm{C}_{2}=.358 * 10^{-6}-.030 * 10^{-6}=.328 * 10^{-6} \sim .33 \mu \mathrm{~F}$
5. Set Z_{2} with $R_{1}: R_{1} C_{1}=\frac{1}{2 \pi Z_{2}} \longrightarrow R_{1}=\frac{1}{2 \pi * 250 * .33 * 10^{-6}}=1.929 * 10^{3} \sim 1.91 \mathrm{~K}$

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4417CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML4417CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S16N)
ML4427CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P16)
ML4427CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S16N)

July 1992

Low Saturation Voice Coil Servo Driver

GENERAL DESCRIPTION

The ML4418 is a voice coil power driver intended for use in High Performance 12V Hard Disk servo systems. The ML4418 contains all control circuitry necessary to drive the voice coils of most drives. To maximize compliance voltage, the ML4418 includes two 1-Amp NPN drivers and provides base drive for external PNP transistors. In addition, power fail detection and a low voltage head retraction functions are provided for orderly shut-down of the drive. A current sense amplifier is included to enable voice coil current feedback for velocity calculations. Special care has also been taken to maximize system loop bandwidth.
The transconductance programmed by a logic input at $1 / 2$ A / V and $1 / 7 \mathrm{~A} / \mathrm{V}$ respectively, when using a 1Ω sense resistor. This allows for greater DAC resolution in digitally controlled servos during track follow without compromising dynamic range during seek.
The retraction circuit, main drive circuit, and control circuits are each powered from their own supplies. Retract is selfcontained for 12 V systems but allows the use of an external PNP to allow retraction with as little as 1 V of back EMF from the spindle.

The power fail detection circuit includes a precision 1.5 V bandgap reference and a power fail comparator.
The ML4418 is implemented using Micro Linear's bipolar array technology. This allows for customization of the IC for a user's specific application.

FEATURES

- Low saturation voltage ($<1 \mathrm{~V}$ at 1 A .)
- No cross-over distortion with low quiescent current
- VCM coil current output referenced to $\mathrm{V}_{\text {REF }}$
- Pin-programmable transconductance settings
- Retraction circuitry with programmable retract voltage and separate power pin operates to 1 V
- On-chip precision power fail detect circuitry
- Over-temperature protection with flag output
- Operates from +12 supplies

BLOCK DIAGRAM

ML4418
24-Pin SOIC

PIN DESCRIPTION

PIN\# NAME	FUNCTION
1 VCC	Supply input to power amplifiers
2 DISABLE	A Logic "1" puts the IC into a low power state and disables the power amplifiers.
$3 \mathrm{HIGH} / \overline{\mathrm{LOW}}$	A logic "1" sets the transconductance gain to $1 / 2$ while a logic " 0 " sets the gain to 1 / 7. Transconductance gain is the $\mathrm{V}_{\mathrm{R}(\text { SENSE })}$ $\div \mathrm{V}_{\text {CONTROL }}$.
4 RETR OUT	Open collector output which pulls low during retract. Used to provide a braking signal to spindle.
5 RET SET	External set resistor to establish a voltage limit for the internal retract driver.
6 GND	Analog signal ground.
7 R(SENSE)	Current sense resistor terminal.
8 V (RET)	Supply pin for retract circuits.
9 SOURCE B	PNP Base drive output for inverting power amplifier.
$\begin{array}{r} 10 \mathrm{I}(\mathrm{SENSE}) \\ \text { OUT } \end{array}$	Output of the Current Sense amplifier
11 PWR GND B	Power return pin for inverting power amplifier B.
12 SINK B	Current sinking output for inverting power amplifier. Connects to voice coil () terminal.

PIN\# NAME FUNCTION

power amplifier.
14 SINK A Current sinking output for non-inverting power amplifier. Connects to voice coil

15 PWR GND A Power return pin for non-inverting power amplifier A.
16 CONTROL + Positive input for current command.
17 I(SENSE) $+\quad$ Positive input for current sense amplifier.
18 CONTROL - Negative input for current command.
19 COMP 1 Pin for external compensation capacitor.
20 COMP 2 Pin for external compensation capacitor.
$21+5 \mathrm{~V} \quad$ Input for +5 V for power fail detection and logic power supply.
$22 \overline{\text { POWER FAIL }}$ Open Collector output drives low for low voltage conditions.
$23 \overline{\text { RETRACT }} \quad$ A logic " 0 " initiates retract. Also used as an open-collector over-temperature output flag.
24 12V SENSE Input to the power fail comparator from a resistor divider from VCC.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (pins 1,8) ... 14V
Voltage pins 2, 3, 23, 22 -0.3 V to +7V
pins 4,7,8,9,12,13,14,17 -0.3V to VCC
Output Sink Current .. \pm 1A
Retraction Current ... 80mA
Retract set current (pin 5)....................................... 3 mA
Junction temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range .. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
VCC Supply Voltage 10.8 V to 13.2 V
+5V (pin 21) Supply Voltage 4.5 V to 5.5 V
V(RET) (pin 8) Supply Voltage5V to 13.2 V
CONTROL + Voltage Range (pins 16).......... 0 V to VCC
CONTROL - Voltage Range (pins 18)......... 2.4 V to 6.0 V

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{VCC}=$ operating range, $\mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$
CONTROL $-(\operatorname{pin} 18)=\mathrm{VCC} / 2, \mathrm{R}_{\mathrm{SET}}(\operatorname{pin} 5)=7.5 \mathrm{~K} \Omega, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1=\mathrm{Q} 2=\mathrm{MJE} 210$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifier					
Offset				± 12	mA
Common Mode Transconductance	$2 \mathrm{~V} \leq \mathrm{V}_{\text {PIN } 18} \leq 6 \mathrm{~V}$		0.5	1	mA / V
Gain	pin $3=2 \mathrm{~V}$	475	500	525	mA / V
	pin $3=0.8 \mathrm{~V}$	136	143	150	mA / V
Maximum Bandwidth			100		Khz
Sinking saturation	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		0.3	0.6	V
	$\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}$		0.4	0.8	V
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$		0.5	1	V
Sourcing saturation	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}$		0.1		V
	$\mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}$		0.2		V
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$		0.3		V
Source A/B Base Drive		20	30	50	mA
Q1/Q2 Standby Current	$\beta_{\text {PNP }}=200, \mathrm{~V}_{\text {PIN } 16}=5 \mathrm{~V}$	1	4	7	mA
Retraction Circuit					
Turn on time			800		nS
Turn off time			8		$\mu \mathrm{S}$
Source Voltage	$\mathrm{V}_{\text {PIN } 23}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 8}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{PIN} 7}=-50 \mathrm{~mA}$	0.53	0.75	0.97	V
Sink Current	$\mathrm{V}_{\mathrm{PIN} 23}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 8}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 12}=0.6 \mathrm{~V}$	36	48	150	mA
RETR OUT $\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{PIN2} 2}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{PIN} 4}=1 \mathrm{~mA}$			0.4	V
Power Fail Detection Circuit					
12 V Threshold		9.5	10	10.5	V
Hysteresis - 12V Sense		5	120	190	mV
5V Threshold		4.35	4.525	4.70	V
Hysteresis - 5V Sense		5	30	80	mV
Logic Inputs and Outputs					
Voltage High (V_{IH})		2	1.4		V
Voltage Low (V_{IL})			1.4	0.8	V
Current High (I_{IH})	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Current Low ($\mathrm{ILL}^{\text {) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, except pin 23	-40	-10		$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, pin 23 only	-250	-160		$\mu \mathrm{A}$
Voltage Low (pins 22, 4)	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	V

ELECTRICAL CHARACTERISTICS (continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{VCC}=$ operating range, $\mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$
CONTROL $-(\operatorname{pin} 18)=\mathrm{VCC} / 2, \mathrm{R}_{\mathrm{SET}}(\operatorname{pin} 5)=7.5 \mathrm{~K} \Omega, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1=\mathrm{Q} 2=\mathrm{MJE} 210$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Over-Temperature Detection					
T, Threshold		150	160		${ }^{\circ} \mathrm{C}$
Hysteresis			30		${ }^{\circ} \mathrm{C}$
Current Sense Amplifier					
Voltage Offset				± 50	mV
Differential Mode Gain		1.95	2	2.05	V/V
Common Mode Gain		-44			dB
Current Consumption					
Pin 21	Pın $21=5.5 \mathrm{~V}$		5	8	mA
Pin 1	$\mathrm{VCC}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 16}=\mathrm{VCC} / 2$		8	13	mA
Pin 8	$\mathrm{V}_{\mathrm{PIN} 8}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 23}=5 \mathrm{~V}$		3.5	5	mA

FUNCTIONAL DESCRIPTION

POWER AMPLIFIER

The ML4418 power amplifier circuit is set up as a Howland Current source with a fixed gain of $1 / 2$ or $1 / 7$ (set by driving pin 3 high or low respectively). This architecture yields minimal cross-over distortion while maintaining low output cross conduction currents.
The gain figure refers to the ratio of input voltage to the output voltage seen across RSENSE. For example, at a $1 / 2$ gain setting, with $V(-)$ input at 2.5 V and the $\mathrm{V}(+)$ input at $3 \mathrm{~V},+500 \mathrm{~mA}$ would flow through the coil using a 0.5Ω sense resistor. Under the same conditions with pin 3 low, the current would be 143 mA . The ability to change from low to high gain allows more complete utilization of DAC resolution when in the track follow mode.

Figure 1. Power Amplifier Topology
The output stage is designed to provide minimal saturation losses and employs an external PNP transistor for the sourcing drive and an internal saturable NPN to sink current. Sinking saturation drop is typically under 0.4 V . Sourcing saturation drop depends on the external transistors used. To avoid oscillation in the output stage, PNP transistors with $\mathrm{F}_{\tau} \geq 50 \mathrm{Mhz}$. should be used.

Figure 5. Output Saturation Voltage vs. Output Current (Q1 = Q2 = MJE210)

Figure 6. Output Saturation Voltage vs. Output Current ($\mathrm{Q} 1=\mathbf{Q} 2=$ BSR31)

Figure 4. Output Current : $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~Hz}$ Sine Wave, $2.4 \mathrm{~V}_{\text {P.pp, }}$ Low Gain Mode ($\mathrm{V}_{\text {PIN } 3}=0$), $\mathrm{R}($ SENSE $)=1 \Omega$

Figure 5. Output Current: $\mathrm{V}_{\mathbf{I N}}=1 \mathrm{KHz}$ Sine Wave, $2.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Low Gain Mode $\left(V_{\text {PIN } 3}=0\right), R(S E N S E)=1 \Omega$

Figure 6. Retract Source Voltage at Pin 7 vs. R(SET) $\mathbf{I V C M}^{\mathbf{V C M}}=50 \mathrm{~mA}$

Figure 7. Retract Sink Voltage at Pin 12 vs. IVCM $=50 \mathrm{~mA}$

POWER FAIL DETECT CIRCUIT

The ML4418 circuit consists of a precision trimmed reference, resistor dividers and an "or function" comparator with hysteresis. The output (open collector) of this circuit appears on pin 22. When either comparator input falls below the 1.5 V reference, pin 22 pulls low.

RETRACT CIRCUITS

The ML4418 retract circuit provides for spindle EMF energized power fail retraction of the VCM. When pin 23 goes low, pin 4 will pull low, providing a signal which can be delayed for spindle braking. The internal NPN transistor will saturate, pulling SINK B (pin 12) low. This portion of the circuit will function with less than 1 V on $\mathrm{V}($ RET $)$. An internal voltage limited pull-up transistor is provided which sources current on pin 7 to the VCM. This circuit will operate reliably down to a $V($ RET $)$ voltage of around 2.5 V , making the ML4418 retract circuit adequate for 12 V systems where the spindle motor EMF provided is adequate.
Figure 6 shows the saturation characteristics of the SINK B output ($R_{S A T} \approx 9 \Omega$) The $R_{\text {SAT }}$ of the pull down transistor does not vary appreciably with $V($ RET $)$ voltage. Figure 7 shows the voltage sourced at R(SENSE) during Retract vs. $R(S E T)$ at various $V(R E T)$ input voltages.

CURRENT SENSE AMPLIFIER

The current sense amplifier in the ML4418 creates a signal referenced to CONTROL - (normally the Vref pin of the system's DAC and ADC) appearing accross a resistor in series with the VCM. Its output is twice the voltage that appears between pins 17 and 7.

APPLICATIONS

POWER AMPLIFIER COMPENSATION

Figure 8 below shows the equivalent AC circuit for the current amplifier.

Figure 8. AC Equivalent Circuit for Current Amplifier, Voice Coil Motor (VCM) and Snubber
The amplifier's current bandwidth is limited by COUT which varies with the value chosen for $\mathrm{R}_{\text {SENSE }}$

$$
\mathrm{C}_{\mathrm{OUT}} \approx \frac{1197 \times\left(\mathrm{C}_{\mathrm{COMP}}+3.5 \mathrm{pF}\right)}{\mathrm{R}_{\mathrm{SENSE}}}
$$

Where $\mathrm{C}_{\text {COMP }}$ is C 1 between pins 19 and 20. With no snubber (RS and CS) the bandwidth is limited to.

$$
F_{-3 \mathrm{~dB}}=\frac{1}{2 \pi} \sqrt{\frac{2.414}{\mathrm{~L}(M) \mathrm{C}(\mathrm{OUT})}}
$$

Since this is a second order system with $L(M)$ and $C(O U T)$ forming a resonant circuit, some damping is desirable to reduce ringing in the step response. This is accomplished with a resistive snubber. The optimum value of $R(S)$ occurs when the following condition is met:

$$
\mathrm{R}(\mathrm{~S})=\sqrt{\frac{\mathrm{L}(\mathrm{VCM})}{\mathrm{C}(\mathrm{OUT})}}
$$

For a given $C(S)$, setting $R(S)$ to this value will minimize the ringing in the transient response. Larger values of $R(S)$ will result in more ringing and more bandwidth. Smaller values of $R(S)$ will result in more ringing and less bandwidth.
$\mathrm{C}(\mathrm{S})$ (snubber capacitor) values of between 200 nF and $1 \mu \mathrm{~F}$ are usually necessary to achieve the desired reduction of ringing in the step resonse. At the optimum value of $R(S)$ larger values of $C(S)$ further reduce the ringing but do not affect the bandwidth.
Tuning the current loop response can be easily done simulating the network in figure 8 with a computer simulator (such as SPICE).

Figure 9. ML4418 Used with ML2341 8-Bit Gain Ranging DAC Provides up to 13-Bit Effective Resolution

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4418CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	S20W

ML4420

Enhanced Sensorless BLDC Motor Controller

GENERAL DESCRIPTION

The ML4420 motor controller provides complete commutation for delta or wye wound Brushless DC (BLDC) motors without the need for signals from Hall Effect Sensors to indicate rotor position. It senses the back EMF of the motor windings (no neutral required) to determine the proper commutation phase sequence using PLL techniques. The ML4420 uses a patented Back-EMF sensing technique which will commutate virtually any 3phase BLDC motor and is insensitive to PWM noise and motor snubbing circuitry.
The ML4420 controls the motor current with a constant off-time PWM or with a microprocessor controlled constant frequency PWM input. The velocity loop can be controlled with an external microprocessor or through an analog feedback loop. An accurate, jitter-free, VCO output is provided, equal to the commutation frequency of the motor. The ML4420 modulates the gates of external N -channel power MOSFETs to regulate the motor current and directly drives the P-channel MOSFETs. The ML4420 supports enhancements like a blanker circuit to prevent false retriggering of the one shot during a motor current spike and circuitry to ensure that there is no shoot through in any state.

The start-up algorithm consists of measuring a fixed VCO frequency and externally ramping the commutation clock until it is equal to the VCO frequency. The timing of the start-up sequencing is determined by the microprocessor thus allowing the optimization for a wide range of motors and inertial loads.

FEATURES

- Less than 200 mW power dissipation
- Patented Back-EMF commutation technique provides jitterless torque for minimum "spin-up" time
- PWM motor current control
- Microprocessor based start-up algorithm allows for optimized start-up sequencing, speed control and support for variable motor loads
- Back-EMF comparator output senses motor rotation after power fail for fast re-lock after brownout
- Onboard power fail detect monitor
- Onboard motor braking circuit allows 'life' braking on command
- Drives external N -ch \& P-ch FETs
- Enhanced version of the ML4410 \& ML4411

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	I(SENSE)	Motor current sense input	17	RESET	Input which holds the VCO off and sets the IC to the RESET condition (refer table 1)
2	P1	Drives the external P-Channel transistor driving motor PH 1			
3	P2	Drives the external P-Channel transistor driving motor PH 2	18	PWR FAIL	A " 0 " output indicates 5 V or 12 V is under-voltage. This is an open collector output with a $4.5 \mathrm{k} \Omega$ pull-up to +5 V
4	P3	Drives the external P-Channel transistor driving motor PH3	19	EN	
5	VCC	12 V power supply. Terminal which is sensed for power fail			amplifier and closes the Back-EMF feedback loop (refer table 1)
6	C (BRK)	Capacitor which stores energy to charge N -Channel MOSFETs for braking with power off	20	RC I(LIMIT)	VCO loop filter components Sets the threshold for the PWM comparator
7	R(BRK)	External resistor to $\mathrm{C}(\mathrm{BRK})$ to drive NMOS during braking	22	PH1	Motor Terminal 1
8	+5V	5 V power supply input	23	PH2	Motor Terminal 2
9-11	N1, N2 N3	Drives the external N -channel MOSFETs for PH1, PH2, PH3	24	$\frac{\mathrm{PH} 3}{\overline{\mathrm{BRAKE}}}$	Motor Terminal 3 A " 0 " activates the braking circuit
12	PWM	TTL input of PMW signal	26	COS	Timing capacitor to GND and resistor to +5 V , for fixed off-time PWM current control
13	VCO/CMCLK	Logic Output from VCO serves as an input pin for the commutation clock used in start-up sequencing	27	$\overline{\text { DIS PWR }}$	
14	VCC2	12 V power and power for the braking function			A logic 0 on this pin turns off the N and P outputs and causes the TACH comparator output to appear on TACH OUT
15	CVCO	Timing capacitor for VCO	28	GND	Signal and Power Ground
16	TACH	Logic Output from TACH comparator			

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pins 5, 14) ... 14 V
Output Current (pins 2, 3, 4, 9,10,11) $\pm 150 \mathrm{~mA}$
Logic Inputs (pins $14,17,18,25$) -0.3 to 7 V
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $150^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{J}}\right)$...................................... $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{VCC}=\mathrm{VCC} 2=12 \mathrm{~V}, \mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{C}$ VCO $=0.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OS}}=10 \mathrm{k} \Omega$

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Oscillator (VCO) Section | $1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PIN20}} \leq 10 \mathrm{~V}$ | | 300 | | $\mathrm{~Hz} / \mathrm{V}$ |
| Frequency vs. $\mathrm{V}_{\mathrm{PIN} 20}$ | $\mathrm{~V}_{\mathrm{VCO}}=6 \mathrm{~V}$ | 1450 | 1800 | 2150 | Hz |
| Frequency | Reset mode | 70 | 140 | 210 | Hz |
| Sampling Amplifier (note 1) | State R | | | | |
| $\mathrm{~V}_{\mathrm{RC}}$ | State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=4 \mathrm{~V}$ | 400 | 500 | 600 | mV |
| I_{RC} | State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=6 \mathrm{~V}$ | 30 | 50 | 70 | $\mu \mathrm{~A}$ |
| | State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=8 \mathrm{~V}$ | -13 | 2 | 13 | $\mu \mathrm{~A}$ |

Motor Current Control Section					
I(SENSE) Gain	$\mathrm{V}_{\mathrm{PIN} 21}=2.5 \mathrm{~V}$	4.5	5	5.5	V/N
One Shot off time		8	12	16	$\mu \mathrm{S}$
Power Fail Detection Circuit					
12V Threshold		9.1	9.8	10.5	V
Hysteresis			150		mV
5V Threshold		3.8	4.25	4.5	V
Hysteresis			70		mV
Logic Inputs					
Voltage High (V_{IH})		2			V
Voltage Low ($\mathrm{V}_{\text {IL }}$)				0.8	V
Current High ($\mathrm{I}_{\mathbf{H}}$)	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	-300	1	300	$\mu \mathrm{A}$
Current Low ($\mathrm{l}_{\text {LL }}$)	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-150	0	150	$\mu \mathrm{A}$
Braking Circuit					
Brake Active Threshold		1.0	1.4	1.8	V
PIN 25 Bias Current	$\mathrm{V}_{\mathrm{PIN} 25}=0 \mathrm{~V}$	-10	0.3	10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $T_{A}=$ Operating Temperature Range, $V C C=V C C 2=12 \mathrm{~V}, R_{S E N S E}=1 \Omega, C_{V C O}=0.01 \mu F$, $\mathrm{C}_{\mathrm{OS}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{OS}}=10 \mathrm{k} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Outputs $\mathrm{I}(\mathrm{LIMIT})=2.5 \mathrm{~V}$					
Ip low	$\mathrm{V}_{\mathrm{P}}=2 \mathrm{~V}$	0.5		1.2	mA
V_{p} high	$\mathrm{I}_{\mathrm{P}}=-10 \mu \mathrm{~A}$	VCC2-1V			V
P3 Comparator Threshold		VCC2-3.6V		VCC2 - 2.4 V	V
V_{N} high	$\mathrm{V}_{\text {PIN1 }}=0 \mathrm{~V}$	VCC - 3.2	10	VCC - 1.2	V
V_{N} low	$l_{N}=1 \mathrm{~mA}$		0.2	0.7	V
LOGIC low (V_{OL})	$\mathrm{I}_{\text {OUT }}=0.4 \mathrm{~mA}$			0.5	V
$\overline{\mathrm{VCO} / \mathrm{TACH} \mathrm{V}_{\mathrm{OH}}}$	$\mathrm{l}_{\text {OUT }}=100 \mu \mathrm{~A}$	2.4			V
POWER FAIL V_{OH}	$\mathrm{l}_{\mathrm{OUT}}=10 \mu \mathrm{~A}$	$\mathrm{V}_{\text {PIN8 }}-0.2$	$\mathrm{V}_{\text {PIN8 }}-0.1$	$\mathrm{V}_{\text {PIN8 }}$	V

Supply Currents (N and P outputs open)

5V Current			16	25	mA
VCC Current			1	2	mA
VCC2 Current			8	16	mA

Note 1. For explanation of states, see Figure 5 and Table 1.

SUMMARY OF ENHANCEMENTS IN ML4420 OVER THE ML4411

1. Lower power dissipation, 200 mW versus 450 mW in the ML4411.
2. Accurate and customized start-up by using commutation clock provided by the microprocessor instead of relying on $\mathrm{I}_{\text {RAMP }}$ as in the ML4411.
3. True braking function which is biased by TOB, to allow braking block to work under a power loss situation.
4. ML4420 adds hysteresis into braking comparator to accelerate the transition as soon as the (Vth) threshold is reached.
5. ML4420 adds comparator to prevent the PMOS from coming " ON^{\prime} when the braking is active.
6. ML 4420 adds active pull-up to the \mathbf{P} output to replace the resistor pull-up in ML4411.
7. ML4420 enhances pull-down capability to the N output to prevent injected shoot through (only 3 mA in the ML4411).
8. ML4420 adds comparator to prevent P3 N3 shoot through during reset to state A transition.
9. The one-shot accuracy in the ML4420 is improved over the ML4411's.
10. ML4420 adds a blanker circuit to one-shot to prevent it from false triggering which occurrs when large starting currents cause noise coupling to the chip.

FUNCTIONAL DESCRIPTION

The ML4420 provides closed-loop commutation for 3 -phase brushless motors. To accomplish this task, a VCO, Integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor current with either constant frequency or constant off-time PWM modes. Braking and power fail detection functions are also provided on chip. The ML4420 is designed to drive external power transistors (N -channel sinking transistors and P -Channel sourcing transistors) directly.
Start-up sequencing and motor speed control are accomplished by a microcontroller. Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal, phased-locked to the commutation frequency of the monitor.

BACK-EMF SENSING AND COMMUTATOR

The ML4420 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2 below) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter (RC) on pin 20, increasing the VCO input while early commutation causes pin 20 to discharge. Analog speed control loops can use Pin 20 as a speed feedback voltage.
The input impedance of the three PH inputs is about $5 \mathrm{k} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at any PH input does not exceed VCC.
11. Directly controls speed through external PWM input.

Figure 1. Back-EMF sensing block diagram

Figure 2. Typical motor phase waveform with Back-EMF superimposed (Ideal Commutation)

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO control voltage will be no higher than VCC MIN -1 V . The VCO maximum frequency will be:

$$
\mathrm{F}_{\text {MAX }}=0.05 \times \mathrm{POLES} \times \mathrm{RPM}
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.

The minimum VCO gain derived from the specification table (using the minimum $\mathrm{F}_{\mathrm{VCO}}$ at $\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{2.42 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}}(\mathrm{MAX})=8.0 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{8.0 \times 2.42 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{436}{\text { POLES } \times \mathrm{RPM}} \mu \mathrm{~F}
$$

Figure 3. VCO Output Frequency vs. VVCO (pin 20)

Figure 4. Back EMF Phase Lock Loop Components

Figure 4 above shows the transfer function of the Phase Lock Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C_{1}, and C_{2}.
The impedance of the loop filter is

$$
Z_{R C}(s)=\frac{1}{C_{1}} \frac{\left(s+\omega_{\text {LEAD }}\right)}{\left(s+\omega_{\text {LAG }}\right)}
$$

Where the lead and lag frequencies are set by:

$$
\begin{aligned}
& \omega_{\text {LEAD }}=\frac{1}{R C_{2}} \\
& \omega_{\text {LAG }}=\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{R C_{1} C_{2}}
\end{aligned}
$$

START-UP SEQUENCING

When the motor is initially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained. The following steps are a typical procedure for starting a motor which is at rest. It is possible to determine if the motor is running by polling the TACH OUT pin 16 with power disabled (Pin 27 = low).

STEP 1 The IC is held in reset state until the platters are steady by setting pin 17 and pin 19 to a ' 1 ', with full power applied to the winding (see figure 5). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state. Pin 20 is held at 0.5 V internally. Microprocessor needs to measure VCO frequency by setting pin 27 to a ' 1 ' and then store it.

STEP 2 Setting pin 17 to a ' 0 ' and pin 19 to a ' 1 ' holds the IC in a ramping state. Microprocessor sends starting commutation clock to pin 13 which is an input pin in this state. This clock frequency is gradually increasing until it reaches the VCO frequency previously stored in Step 1.
STEP 3 As soon as commutation clock reaches the VCO frequency of Step 1 , pin 19 is switched to " 0 " while pin 17 remains ' 0 '. Now the PLL is closed and the VCO is locked to the Back EMF. Pin 13 becomes an output pin. Thus the commutation clock from the microprocessor should be held in tri-state.

Table 1 Commutation, Braking and PLL States

STATE	OUTPUTS						INPUT SAMPLING
	OFF	N2	N3	P1	P2	P3	OF
A	OFF	OFF	ON	ON	OFF	ON	N/A
B	OFF	OFF	ON	OFF	OFF	ON	OFF
OFF	PH2						
C	ON	OFF	OFF	OFF	ON	OFF	PH3
D	ON	OFF	OFF	OFF	OFF	ON	PH2
E	OFF	ON	OFF	OFF	OFF	ON	PH1
F	OFF	ON	OFF	ON	OFF	OFF	PH3

Table 2 Start-up Sequence

STATE	$\overline{\text { ENABLE }}$ PIN 19	RESET PIN 17	PIN20 (RC)	VCO	COMMUTATOR
RESET	1	1	0.5 V	RUNNING PER VPIN20	IN RESET STATE
RAMP	1	0	0.5 V	PRESET	CLOCKED FROM COMMUTATION CLOCK
RUN	0	0	DRIVEN BY PLL	RUNNING PER VPIN20	SEQUENCED BY VCO
BRAKE	0	1	x	x	X

Figure 5. Start up sequencing (from stop)

Figure 6. Typical Start-up Sequence
Using this technique, some reverse rotation is possible. The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.

PWM CURRENT CONTROL

To facilitate speed control, the ML4420 has a PWM input pin to receive a constant frequency PWM signal generated from an external speed control loop.

The ML4420 also includes a current mode constant offtime PWM circuit. When motor current builds to the threshold set on I(LIMIT) input (pin 21), a one-shot is fired whose timing is set by C_{OS} and R_{OS} where

$$
\mathrm{t}_{\mathrm{OFF}}=1.3 \times \mathrm{R}_{\mathrm{OS}} \times \mathrm{C}_{\mathrm{OS}}
$$

The I(SENSE) input pin should be kept below 1 V . If I (SENSE) goes above 1 V , a bias current of about $-300 \mu \mathrm{~A}$ will flow out of pin 1 and the N outputs will be inhibited. Bringing I(SENSE) below 0.7 V returns the bias current to its normal level For this reason, the noise filter resistor on the I(SENSE) pin ($1 \mathrm{k} \Omega$ on Figure 8) should be less than $1.5 \mathrm{k} \Omega$.

The noise filter time constant should be great enough to filter the leading edge current spike when the N -FETs turn on but small enough to avoid excessive phase shift in the I(SENSE) signal.

OUTPUT DRIVERS

The motor's source drivers (P1 thru P3) are NPN emitter followers. N3 is inhibited until P3 is within 3V (typ) of VCC2. Drivers N1 through N3 are totem-pole outputs capable of sinking 10 mA . Switching noise in the external MOSFETs is reduced by an internal $4 \mathrm{~K} \Omega$ resistor in series with the sourcing NPN to form an RC time constant with the N -Channel gate capacitance.

BRAKING

As shown in Figure 7 the braking circuit pulls the N channel MOSFET Gates high when the BRAKE pin falls below a $2 \times \mathrm{Vbe}$ threshold (Vth). After a power failure, $C(D L Y)$ is discharged slowly through $R(D L Y)$ providing a delay for retract to occur before the braking circuit is activated. The P-channel MOSFETs are turned off well before braking occurs. As soon as the Vth threshold is reached, the braking comparator with hysteresis will accelerate the transition and tri-state the N -channel buffer (B1, refer figure 7) before C(BRK) dump charges into the N -channel Gates. This is to ensure that no charge from $\mathrm{C}(\mathrm{BRK})$ is lost through the pull-down transistors in B1, (figure 7). The $\mathrm{C}(B R K)$ will continue charging the N channel Gates, to ensure braking, even when VCC2 (motor BEMF rectified through the MOSFET body diode), drops due to the braking process. An external signal could be used to brake the motor. To accomplish this set pin 17 $={ }^{\prime} 1^{\prime}$, pin $19={ }^{\prime} 0^{\prime}$. This will pull pin 26 below the threshold to activate the braking circuit.

Figure 7. PWM Current Control, Gate Drive and Braking Circuits

APPLICATIONS

Figure 8 shows a typical application of the ML4420 in a hard disk drive spindle control. The timing needed to start the motor in most applications would be generated by a microcontroller.
Speed control can be accomplished either by:

1. Sensing the VCO OUT frequency with a Microcontroller and adjusting the duty cycle of PWM signal sending into PWM pin.
2. Using analog circuitry for speed control. (Fig. 9)

OUTPUT STAGE HINTS

In the circuit in Figure 8, Q1, Q2 and Q3 are IRFR9024 or equivalent. Q4, Q5 and Q6 are IRFR024 or equivalent. New MOSFET packaging technology such as the Little Foot ${ }^{\circledR}$ series may decrease the PC board space. These
packages, however have much lower thermal inertia and dissipation capabilities than the larger packages, and care should be taken not to exceed their rated current and junction temperature.
Since the output section in a full bridge application consists of three half- H switches, cross-conduction can occur. Cross conduction is the condition where an N -FET and P-FET in the same phase of the bridge conduct simultaneously. This could happen under two conditions (see Figure 10):

1. When transitioning from mode 0 to mode A (see table 1) P3 goes from on to off at the same time N3 goes from off to on. If P3 turns off slowly and N3 turns on quickly, cross conduction may occur. This condition has been prevented inside the IC on the ML4420 through the addition of comparator A6 on the P3 output (Fig. 7).
2. When the MOSFET in the same phase switches on gate current flows due to capacative coupling of current through the MOSFET's drain to gate capacitance. This could cause the MOSFET that was off to be turned on.
3. In condition 2 above, the P -channel MOSFET is pulled up inside the ML4420 by a NPN follower with base pulled up to VCC2 via $16 \mathrm{~K} \Omega$. If the current through Cdgp is greater than the $\mathrm{Vth}_{\mathrm{PMOS}} / 16 \mathrm{~K} \Omega /$ Beta NPN, when the N-FET turns ON, the P-FET could be turned ON simultaneously, causing cross-conduction. The same mechanism can be applied to N-FET when

P-FET is turned ON. The ML4420 is designed to take care of both the cases through slow turn-on, fast tium-off schemes ie P-FET Gdie is pulied down by an $800 \mu \mathrm{~A}$ current source and the N-FET Gate is charged up by an emitter follower in series with $4 \mathrm{~K} \Omega$.

Figure 10 shows the output stages and the potential causes of cross-conduction. The diode D1 shown, may be needed for high power applications to limit the negative current pulled (through Cdgn) out of the substrate diode in the ML4420 when P-FET turns off.

Figure 8. ML4420 Typical Application

Figure 9. Voltage Controller PWM Generator

Figure 11. ML4420 Unipolar Drive Application

UNIPOLAR OPERATION

Unipolar mode offers the potential advantage of lower motor drive cost by only requiring the use of 3 transistors to drive the motor. The ML4420 will operate in unipolar mode (Figure 11) provided the following precautions are taken:

1. The IC supplies should not exceed $12 \mathrm{~V}+10 \%$.
2. The phase pins on the IC should not exceed the supply voltage.
In unipolar operation, the motor's windings must be allowed to drive freely to:

$$
V_{\Phi(M A X)}=V_{S U P P L Y}(M A X)+V_{E M F}(\text { MAX })
$$

Therefore, there can be no diodes to clamp the inductive energy to $\mathrm{V}_{\text {SUPPLY }}$. This energy must be clamped, however, to avoid an over-voltage condition on the MOSFETs and other components. Typically, a V(CLAMP) voltage is created to provide the clamping voltage. The inductive energy may either be dissipated (Figure 12) or alternately efficiently regenerated back to the system supply (Figure 13).

The circuit in Figure 11 is designed to minimize the external components necessary, at some compromise to performance. The 3 resistors from the motor phase
windings to the PH inputs work with the ML4420's $5 \mathrm{~K} \Omega$ internal resistance to ground to divide the motor's phase voltage down, providing input signals that do not exceed 12 V . This circuit uses analog speed regulation. The "one shot" circuitry to time the reset is replaced by a diode and RC delay from the rising edge or the POWERFAIL signal. The error amplifier is left enabled continuously since at low speeds its current contribution is negligible. The current injected into the loop filter must be greater than the leakage current from the phase detector amplifier for the motor to start reliably.

HIGHER VOLTAGE MOTOR DRIVE

To drive a higher voltage motor, the same precautions regarding ML4420 voltage limitations as were outlined for Unipolar drive above should be followed. Figures 14-16 provide several methods of translating the ML4420's P outputs to drive a higher voltage.

Figure 12. Dissipative Clamping Technique

Figure 13. Non-Dissipative Clamping Technique

Figure 14. High Voltage Translation using PNP Power Transistor

Figure 15. High Voltage Translation using "Composite" PNP Power Transistor

Figure 16. High Voltage Translation with NPN Darlingtion

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4420CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$28-$ PIN SOIC $(\mathbf{S} 28 \mathrm{~W})$

Sensorless BLDC PWM Motor Controller

GENERAL DESCRIPTION

The ML4425/ML4426 PWM motor controllers provide all of the functions necessary for starting and controlling the speed of delta or wye wound Brushless DC Motors (BLDC) without Hall Effect Sensors.
Back EMF voltage is sensed from the motor windings to determine the proper commutation phase sequence using PLL techniques. The patented Back-EMF sensing technique used will commutate virtually any 3-Phase BLDC motor and is insensitive to PWM noise and motor snubbing circuitry.

The ML4425/ML4426 limits the motor current with a constant off-time PWM controlled current. The velocity loop is controlled with an on-board amplifier. An accurate, jitter-free, VCO output is provided equal to the commutation frequency of the motor. The ML4425/ ML4426 switches the gates of external N-channel power MOSFETs to regulate the motor current and directly drives

FEATURES

- Stand-alone operation
- Forward and reverse operation: ML4426
- Current limit input: ML4425
- Motor starts and stops with power to IC
- On-board start sequence: Align \rightarrow Ramp \rightarrow Set Speed
- Patented Back-EMF commutation technique provides jitterless torque for minimum "spin-up" time
- Simple variable speed control
- On-board voltage reference: 6.9V
- Single External Resistor Sets all Critical Currents
- On-board speed control loop

BLOCK DIAGRAM/TYPICAL APPLICATION

GENERAL DESCRIPTION (Continued)

the P-channel MOSFETs for 12V motors. Higher voltage motors are driven using buffer transistors or standard "High side" drivers.

The ML4425/ML4426 has a blanker circuit to prevent false retriggering of the one shot during a motor current spike and circuitry to ensure that there is no shoot through in any state of the power drive FETs.
The timing of the start-up sequence is determined with one current setting resistor and two timing capacitors thus allowing for simple optimization for a wide range of motors and loads.

FEATURES (Continued)

- PLL used for commutation provides noise immunity from PWM spikes, compared to noise sensitive zero crossing technique
- PWM control for maximum efficiency
- Under-voltage fault output
- 12 volt operation
- Direct FET drive for 12 V motors
- Drives high voltage motors with IC buffers from IR, IXYS, Harris, Power Integration, Holt, Siliconix, etc.
- Industrial temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ is available
- Available in 28-pin DIP and SOIC packages

PIN CONFIGURATION

ML4425
28-Pin SOIC (S28W)
28-Pin Molded Narrow DIP (P28N)

ML4426
28-Pin SOIC (S28W) 28-Pin Molded Narrow DIP (P28N)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	$\mathrm{I}_{\text {SENSE }}$	Motor current sense input. I LIMIT occurs when this pin is approximately 0.5 V .
2	P1	Drives the external P-channel transistor driving motor PH 1 .
3	P2	Drives the external P-channel transistor driving motor PH2.
4	P3	Drives the external P-channel transistor driving motor PH 3 .
5	RCPWM	The resistor/capacitor combination on this gm amplifier sets the pole-zero of the speed loop in conjunction with a gm of 0.385 mmho .
6	Cosc	This capacitor sets the PWM oscillator frequency. A 1 nF capacitor will set the frequency to approximately 25 KHz .
7	$V_{\text {REF }}$	This voltage reference output can be used to set the speed reference voltage.
8	$V_{\text {SPEED }}$	This input to the amplifier in the speed loop controls the speed target of the motor.
9-11	N1, N2, N3	Drives the external N -channel MOSFETs for PH1, PH2, PH3.
12	F / \bar{R}	For the ML4426, the forward/reverse pin controls the sequence of the commutation states and thus the direction of motor rotation.
12	ILIMIT	For the ML4425, this pin is internally set to 2.5 V which sets the $I_{\text {SENSE }}$ threshold to 0.5 V . This voltage can be lowered externally to reduce the $I_{\text {SENSE }}$ threshold.
13	VCO	This logic output indicates the commutation frequency of the motor.
14	V_{CC}	12 V power supply.

PIN\#	NAME	FUNCTION
15	CVco	Timing capacitor for VCO
16	Rvco	The resistor on this pin sets a process independent current to generate a repeatable VCO frequency.
17	$\mathrm{C}_{\text {RST }}$	A $0.75 \mu \mathrm{~A}$ current from this pin will charge a capacitor to 1.5 V . This is the time the device will remain in reset mode. Connecting this pin to ground forces the chip to the reset state.
18	V_{FT}	A logic " 0 " indicates the power supply is under-voltage. A logic " 1 " is $>3.5 \mathrm{~V}$.
19	$\overline{C_{E N}}$	After $\mathrm{C}_{\text {RST }}$ has timed out a $0.75 \mu \mathrm{~A}$ current from this pin will charge a capacitor to 1.5 V . This is the time the device will remain in the ramp mode.
20	$\mathrm{RC}_{\mathrm{VCO}}$	VCO loop filter components. A $0.5 \mu \mathrm{~A}$ current from this pin will ramp the VCO after $\mathrm{C}_{\text {RST }}$ has timed out.
21	$\mathrm{C}_{\text {RAMP }}$	This capacitor can be used if necessary to reduce the ramp speed to enhance start-up in high RPM applications. It is logic low until C_{EN} times out.
22	PH1	Motor Terminal 1
23	PH2	Motor Terminal 2
24	PH3	Motor Terminal 3
25	$\overline{\text { BRAKE }}$	A " 0 " activates the braking circuit
26	Cos	A $30 \mu \mathrm{~A}$ current from this pin will charge a timing capacitor to GND for fixed off-time PWM current control
27	$\mathrm{R}_{\text {REF }}$	This resistor sets constant currents on the device to reduce process dependence and external components. The 137 K resistor sets the previously mentioned current levels.
28	GND	Signal and Power Ground

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pin 14) \qquad 14 V
Output Current (pins 2, 3, 4, 9,10,11) $\pm 50 \mathrm{~mA}$
Logic Inputs (pins 17, 19, 25)
-0.3 to 7 V
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $150^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) $60^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

```
Temperature Range ML4425CS/ML4426CS/ ML4425CP/ML4426CP .............................. \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) ML4425IS/ML4426IS/ ML4425IP/ML4426IP . \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
VCC Voltage \(+12 \mathrm{~V}(\) pin 14) \(\ldots . . . . . . . . . . . . . . . . . . . . . . . . . .12 V ~ \pm 10 \% ~\)
```


ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{C}_{\mathrm{VCO}}=0.01 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OS}}=100 \mathrm{pF}$, $R_{\text {REF }}=137 \mathrm{k} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator (VCO) Section $\left(V_{\text {PIN16 }}=5 \mathrm{~V}\right)$					
Frequency vs. $V_{\text {PIN } 20}$	$1 \mathrm{~V} \leq \mathrm{V}_{\text {PIN20 }} \leq 7 \mathrm{~V}$	1450	1800	2150	Hz
Frequency	$\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$				

Sampling Amplifier (Note 1)

V_{RC}	State R		125	250	mV
I_{RC}	Ramp		0.5		$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{PIN19}}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=4 \mathrm{~V}$	30	50	70	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{PIN19}}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=6 \mathrm{~V}$	-13	2	13	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{PIN19}}=5 \mathrm{~V}$, State $\mathrm{A}, \mathrm{V}_{\mathrm{PH} 2}=8 \mathrm{~V}$	-30	-50	-70	$\mu \mathrm{~A}$

Motor Current Control Section

I(SENSE) Gain	$V_{\text {PIN12 }} \leq 2.5 \mathrm{~V}$	4.5	5	5.5	$\mathrm{~V} N$
One Shot Off Time		8	12	16	$\mu \mathrm{~s}$

Power Fail Detection Circuit

12 V Threshold		9.1	9.8	10.5	V
Hysteresis			150		mV

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2			V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$				0.8	V
Current High $\left(\mathrm{l}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	-300	1	300	$\mu \mathrm{~A}$
Current Low $\left(\mathrm{l}_{\mathrm{IL}}\right)$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	-150		150	$\mu \mathrm{~A}$

Braking Circuit

Pin 25 Bias Current	$V_{\text {PIN } 25}=0 \mathrm{~V}$	-10	0.3	10	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PAARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Outputs ($\mathrm{I}_{\text {CMD }}=I_{\text {LIMIT }}=2.5 \mathrm{~V}$)						
Ip Low	ML4425	$V_{P}=2 \mathrm{~V}$	0.5		1.2	mA
	ML4426	$V_{P}=2 \mathrm{~V}$	4.0		7.0	mA
$\mathrm{V}_{\mathrm{p}} \mathrm{High}$		$\mathrm{I}_{\mathrm{P}}=-10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-1$			V
P3 Comparator Threshold			$\mathrm{V}_{\mathrm{CC}}-3.6$		$\mathrm{V}_{\mathrm{CC}}-2.4$	V
V_{N} High		$\mathrm{V}_{\text {PIN12 }}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-3.2$	10	$\mathrm{V}_{\mathrm{CC}}-1.2$	V
V_{N} Low		$\mathrm{I}_{\mathrm{N}}=1 \mathrm{~mA}$		0.2	0.7	V
LOGIC Low (V_{OL})		$\mathrm{l}_{\text {OUT }}=0.4 \mathrm{~mA}$			0.5	V
VCO/ OHH		$\mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$	2.4			V
POWER FAIL V_{OH}		$\mathrm{l}_{\text {OUT }}=-10 \mu \mathrm{~A}$	3.5		6.5	V

Speed Control

FPWM (Pin 6)	COSC $=1 \mathrm{nF}$		28		kHz
gm Current (Pin 5)		± 10		± 15	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {REF }}$			6.9		V

Start-Up

$I_{\text {CRST }}$			0.75		$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{TH}} C_{\text {RST }}$			1.5		V
$\mathrm{I}_{\mathrm{CEN}}$			0.75		$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{TH}} C_{\mathrm{EN}}$			1.5		V

Supply Current

VCC Current			32	50	mA

Note 1. For explanation of states, see Figure 5 and Table 1.

FUNCTIONAL DESCRIPTION

The ML4425/ML4426 provides closed-loop commutation for 3-phase brushless motors. To accomplish this task, a VCO, integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor speed in PWM mode. Braking and power fail detection functions are also provided on chip. The ML4425/ML4426 is designed to drive external power transistors (N -channel sinking transistors and P -channel sourcing transistors) directly.

Start-up timing sequence is accomplished by means of 2 timing capacitors charged by currents sources on the device. $\mathrm{C}_{\text {RST }}$ determines the time the motor stays in align mode and C_{EN} determines the time the motor will ramp before the speed set loop closes. Once the speed loop closes the N -channels are in a PWM mode to control the motor current. The voltage set on $V_{\text {SPEED }}$ will force the same voltage on RCVCO to control speed.
Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal which is phasedlocked to the commutation frequency of the motor.

BACK-EMF SENSING AND COMMUTATOR

The ML4425/ML4426 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter (RC) on pin 20, increasing the VCO input while
early commutation causes pin 20 discharge. The analog speed control loop uses pin 20 as a speed feedback voltage.
The input impedance of the three PH inputs is about $8 \mathrm{k} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at any PH input does not exceed V_{CC}.

Figure 2. Typical Motor Phase Waveform with Back-EMF Superimposed (Ideal Commutation).

Figure 1. Back EMF Sensing Block Diagram

COMPONENT SELECTION GUIDE

In order to properly select the critical components for the ML4425/ML4426 you should know the following things:

1. The motor operating voltage.
2. The maximum operating current for the motor.
3. The number of poles the motor has.
4. The back EMF constant of the motor.
5. The torque constant of the motor. (This is the same as the back EMF constant, only in different units.)
6. The desired speed of operation.
7. The moment of inertia of the motor and its load.
8. The coefficient of viscous friction.

If you do not know one or more of the above values, it is still possible to pick components for the ML4425/ML4426, but some experimentation may be necessary to determine the optimal value. All quantities are in SI units unless other wise specified. The formulas in the following section are based on linear system models. Since Coulomb friction is not a linear phenomenon, large amounts of friction in a system may require values different from those given below. The following formulas should be considered a starting point from which you can optimize your application.

Rense

The function of R RENSE is to provide a voltage proportional to the motor current, for current limit/feedback purposes. The trip voltage across $R_{\text {SENSE }}$ is 0.5 V so:

$$
\mathrm{R}_{\mathrm{SENSE}}=\frac{0.5}{\mathrm{I}_{\mathrm{MAX}}}
$$

$I_{\text {MAX }}$ is the maximum motor current.

The power dissipation is obviously $I_{\text {MAX }}$ squared times RSENSE, so the resistor should be sized appropriately. For very high current motors, a smaller resistor can be used, with an op-amp to increase the gain, so that power dissipation in the sense resistor is minimized.
In the ML4425, the trip voltage across R $_{\text {SENSE }}$ can be modified with a voltage applied to the l LIMIT pin, pin 12. There is a gain of 5 in the ISENSE path so that 2.5 V on pin 12 corresponds to a 0.5 V trip voltage across $\mathrm{R}_{\text {SENSE }} \mathrm{Z}_{\mathrm{IN}}$ on the $\mathrm{I}_{\text {LIMIT }} \mathrm{pin}$ is $\approx 6 \mathrm{~K} \Omega$.

$I_{\text {SENSE }}$ FILTER

The ISENSE filter consists of an RC lowpass filter in series with the current sense signal. The purpose of this filter is to filter out noise spikes on the current, which may cause false triggering of the one shot circuit. It is important that this filter not slow down the current feedback loop, or destruction of the output stage may result. The recommended values for this circuit are $R=1 \mathrm{~K} \Omega$ and $\mathrm{C}=300 \mathrm{pF}$. This gives a time constant of 300 ns , and will filter out spikes of shorter duration. These values should suffice for most applications. If excessive noise is present on the I IENSE pin, the capacitor may be increased at the expense of speed of current loop response. The filter time constant should not exceed 500ns or it will have a significant impact on the response speed of the one shot current limit.

Cos

The one shot capacitor determines the off time after the current limit is activated, i.e. the voltage on the I ISENSE pin exceeded 0.5 V . The following formula ensures that the motor current is stable in current limit:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{OS}}=\frac{1.11 \times 10^{-6} \times \mathrm{V}_{\mathrm{MOTOR}}-5 \times 10^{-6}}{947.4} \\
\mathrm{C}_{\mathrm{OS} \text { is in Farads }}
\end{gathered}
$$

This is the maximum value that C_{OS} should be. Higher average torque during the current limit cycle can be achieved by reducing this value experimentally, while monitoring the motor current carefully, to be sure that a runaway condition does not occur. This runaway condition occurs when the current gained during the on time exceeds the current lost during the off time, causing the motor current to increase until damage occurs. For most motors this will not occur, as it is usually a self limiting phenomenon.

Cvco

As given in the section on the VCO and phase detector:

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{315 \times 10^{-6}}{\mathrm{~N} \times \mathrm{RPM}}
$$

Where N is the number of poles in the motor, and RPM is the motor's maximum operating speed in revolutions per minute.

RESET CAPACITOR

The function of the reset capacitor is to provide a time delay, during which the ML4425/ML4426 will align the rotor to a known position. During this time period the ML4425/ML4426 turns on two of the upper and one of the lower output drivers. This results in a fixed current in the windings, a stationary magnetic field, and a locked rotor. If the position is not at a torque null during the reset period, it will require some time to move to the locked position, and settle. This time period is dependent on the motor, the load, the friction and eddy current losses, and current limit setting. A good starting point for a value for the reset capacitor is:

$$
C=\frac{1.5 \times 10^{-6}}{\delta \times \sqrt{\frac{N \times K \times \tau \times l_{\mathrm{MAX}}}{\pi \times J}}}
$$

The δ factor is known as the damping factor, and can range from 0.1 in a motor with very little damping to 0.9 in a heavily damped motor. $\mathrm{K} \tau$ is the torque constant in $N \times M / A m p$, Imax is the motor current in current limit, and J is the moment of inertia of the motor and the load. If you don't know the damping factor, try a value of 0.3 initially. If you don't know the moment of inertia, start
with a $1 \mu \mathrm{~F}$ capacitor. In any case, if the motor has come to a full stop well before the ramp up period, you can decrease this value. If the motor does not stop before ramp up, you must increase this value until it does. Motors with very little friction or damping and a large inertial load tend to require larger values of capacitance here.

ENABLE CAPACITOR

This capacitor provides a time delay after the reset period for the motor to ramp up to speed. The following equation gives an approximate starting value for this capacitor. If starting is not reliable, this capacitor may be increased until it is. If starting is reliable and minimum spin up time is important, this value can be decreased experimentally to find the minimum practical value. Motors with a large amount of friction or a large inertia will tend to need larger capacitors.

$$
\mathrm{C}_{\mathrm{EN}}=\frac{55.85 \times \mathrm{N} \times(\mathrm{C} 1+\mathrm{C} 2)}{\mathrm{Kv}}
$$

Where N is the number of poles in the motor, C 1 and C2 are the VCO loop filter components on pin 20, and Kv is the VCO Pain (See the section on the VCO and phase detector.)

RAMP CAPACITOR

The ML4425/ML4426 outputs a fixed $0.5 \mu \mathrm{~A}$ current on pin 20 during ramp up. This is the input to the VCO. Therefore, the rotor's acceleration is a function of the current, VCO gain and the loop filter components only. In some cases, where the VCO capacitor is small due to a high running speed, and the motor inertia is large, the rotor may not be able to follow the VCO during ramp up. In these cases, it is necessary to add a capacitor from pin 21 to ground. This capacitor is switched in during ramp only, and allows the rate of acceleration during ramp up to be lowered. An approximate starting point for this capacitor is given by the equation below:

$$
C_{R A M P}=\frac{J \times 0.5 \times 10^{-6}}{l_{M A X} \times K t} \times \frac{\mathrm{Kv} \times 2 \times \pi}{3 \times N}-(\mathrm{C} 1+\mathrm{C} 2)
$$

Where J is the inertia of the motor plus load, $K v$ is the VCO gain, N is the number of poles, Imax is the maximum motor current, Kt is the torque constant, and C 1 and C 2 are the loop filter components on pin 20. Normally, the result of the preceding equation will be a negative number, meaning that no ramp capacitor is necessary. If the result of this equation is greater than zero, then the ramp capacitor should be included.

Cosc

This capacitor sets the PWM ramp oscillator frequency. This is the PWM "switching frequency". If this value is too low, $<20 \mathrm{kHz}$, then magnetostriction effects in the motor may cause audible noise. If this frequency is too high, $>30 \mathrm{kHz}$, then the switching losses in the output drivers may become a problem. 25 kHz should be a good compromise for this value, which can be obtained by using a 1 nF capacitor.

$R_{\text {VCO }}$ AND $\mathbf{R}_{\text {REF }}$

$R_{\text {VCO }}$ should be 80 K and $\mathrm{R}_{\text {REF }}$ should be 137 K for normal operation.

RC PWM

This pin is the output of a transconductance amplifier. A resistor and a capacitor in series with this pin and connected to ground form the speed loop compensation. The motor will have a mechanical time constant, given approximately by:

$$
\tau_{\mathrm{m}}=\frac{\mathrm{J} \times \mathrm{Rw}}{\mathrm{Ke}^{2}}
$$

Where J is the moment of inertia of the rotor plus the load, Rw is the winding resistance, and Ke is the back-E.M.F. constant This pole occurs at a relatively low frequency, and will limit the frequency of response of the servo loop. In order to get better response, the RC combination on the $R C_{\text {PWM }}$ pin can be used to provide phase lead for the speed loop. This combination also sets the open loop gain characteristics, and therefore the accuracy of the speed loop. In order to pick components for this loop, it is necessary to decide on a desired closed loop bandwidth. The chosen closed loop bandwidth should be substantially lower than the bandwidth of the phase locked loop used for commutation, in order to preserve acceptable phase margin. This is usually not a problem, as the mechanical time constant of the motor is necessarily much lower than the commutation loop response.
Depending on the motor and its load, a bandwidth in the $1-10 \mathrm{~Hz}$ range is easily achievable. The frequency of the compensating zero should be set to be a decade below the unity gain crossover frequency, so that its contribution to the phase lead will be maximum at the crossover. The following formula gives the value of C necessary for these conditions:

$$
\left.\left.\left.\mathrm{CC}=482.314 \times \mathrm{N} \times \frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{C}_{\mathrm{VCO}}}{\left[\text { freq. } \left[\operatorname{Ke}\left(\sqrt{2.5+98.696 \times \tau_{\mathrm{m}}^{2} \times \text { freq. }^{2}}\right)\right.\right.}\right)\right]\right]
$$

Where freq. is the desired unity gain crossover frequency, V_{CC} is the supply voltage, $\mathrm{C}_{\mathrm{VCO}}$ is the VCO capacitor on pin $15, N$ is the number of poles in the motor, and the other quantities are defined above. Then, the value of R should be

$$
R=\frac{10}{2 \times \pi \times C C \times \text { freq }}
$$

If the speed loop is unstable, it is possible that the desired bandwidth is too high, and reducing the value of freq. should solve the problem.

VCO FILTER

See the section on the VCO and Phase detector for information on these components.

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO control voltage will be no higher than $\mathrm{V}_{\text {REF }}$, or 6.9 V . The VCO maximum frequency will be:

$$
\mathrm{F}_{\mathrm{MAX}}=0.05 \times \mathrm{POLES} \times \mathrm{RPM}
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.
The minimum VCO gain derived from the specification table (using the minimum $\mathrm{F}_{\mathrm{VCO}}$ at $\mathrm{V}_{\mathrm{VCO}}=6 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{2.42 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}(\mathrm{MAX})}=6.5 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{6.5 \times 2.42 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{315}{\mathrm{POLES} \times \mathrm{RPM}} \mu \mathrm{~F}
$$

Figure 3. VCO Output Frequency vs. Vvco (Pin 20)
Figure 4 shows the linearized transfer function of the Phase Locked Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C_{1}, and C_{2}. The Phase detector gain is:

$$
\frac{\text { Ke } \times \omega \times \text { Atten }}{2 \pi} \times 1.25 \times 10^{-14} \mathrm{~A} / \text { Radian }
$$

Where Ke is the motor back-E.M.F. constant in V/Radian/ sec, ω is the rotor speed in r / s, and Atten is the backE.M.F. resistive attenuator, nominally 0.5 .

Figure 4. Back-EMF Phase Locked Loop Components.

The simplified impedance of the loop filter is

$$
\mathrm{Z}_{\mathrm{RC}}(\mathrm{~s})=\frac{1}{\mathrm{C}_{1} \mathrm{~s}} \frac{\left(\mathrm{~s}+\omega_{\mathrm{LEAD}}\right)}{\left(\mathrm{s}+\omega_{\mathrm{LAG}}\right)}
$$

Where the lead and lag frequencies are set by:

$$
\begin{aligned}
& \omega_{\text {LEAD }}=\frac{1}{{R C_{2}}^{2}} \\
& \omega_{\text {LAG }}=\frac{C_{1}+C_{2}}{{R C_{1} C_{2}}^{2}}
\end{aligned}
$$

Requiring the loop to settle in 20 PLL cycles with $\omega_{\text {LAG }}=10 \times \omega_{\text {LEAD }}$ produces the following calculations for $\mathrm{R}, \mathrm{C}_{1}$ and C_{2} :

$$
\begin{gathered}
\mathrm{C}_{1} \approx \frac{4.07 \times 10^{-11} \times \mathrm{K}_{\mathrm{e}} \times \mathrm{RPM}}{\mathrm{C}_{\mathrm{VCO}} \times \mathrm{F}_{\mathrm{VCO}}{ }^{2}} \\
\mathrm{C}_{2}=9 \times \mathrm{C}_{1} \\
\mathrm{R}=\frac{9.02}{\mathrm{C}_{2} \times \mathrm{F}_{\mathrm{VCO}}}
\end{gathered}
$$

where K_{e} is the back-EMF constant in volts per radian per second, and RPM is the rotor speed. See Micro Linear application note 35 for derivation of the above formulas.

START-UP SEQUENCING

When the motor is initially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained (around 100 RPM). The following steps are a typical procedure for starting a motor which is at rest.
Align: The IC is held in reset (state R) with full power applied to the windings (see figure 6). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state. This time is

$$
\mathrm{t}=\frac{(1.5 \mathrm{~V}) \mathrm{C}_{\mathrm{RST}}}{0.75 \mu \mathrm{~A}}
$$

Ramp: Align is released, and a fixed $0.5 \mu \mathrm{~A}$ current is input to pin 20, and will ramp the VCO input voltage, accelerating the motor at a fixed rate. This time is

$$
\mathrm{t}=\frac{(1.5 \mathrm{~V}) \mathrm{C}_{\mathrm{EN}}}{0.75 \mu \mathrm{~A}}
$$

Run: When the motor speed reaches about 100 RPM, the back-EMF loop can be used in closed loop speed control and the voltage on the RC.vco pin will ramp to the same voltage applied to $V_{\text {speED }}$. This allows speed selection referring to figure 3 .

Figure 6. Typical Start-up Sequence.
Using this technique, some reverse rotation is possible. The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.

MODE	PIN 17	PIN 19	I $_{\text {LIMIT }}$
Align	0	0	$\mathrm{I}_{\text {MAX }}$
Ramp	1	0	$\mathrm{I}_{\text {MAX }}$
Run	1	1	$\mathrm{I}_{\text {MAX }}$

Table 2. Start-up Sequence.
ALIGN: The IC is held in reset (state R).
RAMP: After the reset pin has reached 1.5 V the $\mathrm{C}_{\text {EN }}$ pin are charged with $0.5 \mu \mathrm{~A}$ and the VCO begins to ramp up in frequency. This continues until the $C_{E N}$ pin reaches 1.5 V and times out. The motor must be able to keep up with the VCO ramp rate.
RUN: After $\mathrm{C}_{\text {EN }}$ has timed out the device begins closed loop operation using the BEMF of the motor.
DIRECTION: The direction of motor rotation is controlled by the commutation states as given in Table 1. The state sequence is controlled by the F / \bar{R} (pin 12).

STATE	DIRECTION	OUTPUTS						INPUT SAMPLES	
	REVERSE	N3	N 2	N1	P3	P2	P1	FORWARD	REVERSE
	FORWARD	N1	N2	N3	P1	P2	P3		
R OR 0		OFF	ON	OFF	ON	OFF	ON	N/A	N/A
	A	OFF	OFF	ON	ON	OFF	OFF	PH2	PH2
	B	OFF	OFF	ON	OFF	ON	OFF	PH1	PH3
	C	ON	OFF	OFF	OFF	ON	OFF	PH3	PH1
	D	ON	OFF	OFF	OFF	OFF	ON	PH2	PH2
	E	OFF	ON	OFF	OFF	OFF	ON	PH1	PH3
	F	OFF	ON	OFF	ON	OFF	OFF	PH3	PH1

Table 1. Commutation States.

Figure 5. Commutation Timing and Sequencing.

ADJUSTING OPEN LOOP STEP RATE (RAMP)

Align

Motor alignment occurs when power is first applied and $\mathrm{C}_{\text {RST }}$ (pin 17) and C_{EN} (pin 19) are low. The device will stay in the align mode until the $0.75 \mu \mathrm{~A}$ current out of $\mathrm{C}_{\text {RST }}$ charges the external capacitor to 1.5 V at which time ramp mode is enabled.

During align P-channels P1 and P3 will be driven on and N -channel N 2 will be on to provide high torque to position rotor on pole.
Motor loads with larger inertia will require longer alignment periods or larger values of $\mathrm{C}_{\text {RST }}$ for possibly higher currents (l LIMIT $^{\prime}$).
Maximum current limit can be set by the R $_{\text {LIMIT }}$ from the $I_{\text {SENSE }}$ pin (1). The threshold on this pin is approximately 0.5 V thus

$$
\text { LIMIT }=\frac{0.5 \mathrm{~V}}{R_{\text {LIMIT }}}
$$

$I_{\text {LIMIT }}$ is also under PWM control with toff set by a capacitor connected to $\mathrm{C}_{\mathrm{OS}}(\operatorname{pin} 26)$ and given by

$$
\mathrm{t}_{\mathrm{OFF}}=\mathrm{C}_{\mathrm{OS}} \frac{2.5 \mathrm{~V}}{25 \mu \mathrm{~A}}
$$

Ramp

Motor ramping begins when $\mathrm{C}_{\text {RST }}$ has exceeded 1.5 V at which time the capacitor connected to C_{EN} (pin 19) which had been held at ground will begin to charge with $0.75 \mu \mathrm{~A}$ from the pin. When $C_{E N}$ reaches 1.5 V the device will enter run mode.
During ramp mode a $0.5 \mu \mathrm{~A}$ current from the $\mathrm{RC}_{\mathrm{VCO}}$ pin (20) will charge the filter components and begin to ramp the VCO frequency and begin commutating states A through F of the motor in an open loop fashion. $\mathrm{C}_{\text {RAMP }}$ is shorted to ground during ramp allowing additional flexibility in starting high speed motors.
$\mathrm{C}_{\text {RAMP }}$ should be set so that the VCO's frequency ramp during "open loop stepping" phase of motor starting is less than the motor's acceleration rate. In other words, the motor must be able to keep up with the VCO's ramp rate in open loop stepping mode. The VCO's input voltage ($V_{\text {PIN 20 }}$) ramp rate is given by:

$$
\frac{d V_{V C O}}{d t} \approx \frac{0.5 \mu \mathrm{~A}}{C_{1}+C_{2}+C_{R A M P}}
$$

since

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{VCO}}=\mathrm{K}_{\mathrm{VCO}} \times \mathrm{V}_{\mathrm{VCO}} \\
& \mathrm{~K}_{\mathrm{VCO}}(\mathrm{MAX})=\frac{4 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
\end{aligned}
$$

then combining the 3 equations $C_{\text {RAMP }}$ can be calculated from the desired maximum open loop stepping rate the motor can follow.

$$
0.5 \mu \mathrm{~A}<\frac{\mathrm{d} f_{\mathrm{VCO}}}{\mathrm{dt}} \frac{\mathrm{C}_{\mathrm{VCO}} \times\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{\text {RAMP }}\right)}{4 \times 10^{-6}}
$$

The motor will start more consistently and tolerate a wider variation in open loop step rate if there is some damping on the motor during the open loop modes.

The tolerance of the open loop step VCO acceleration $\left(\frac{d f_{V C O}}{d t}\right)$ depends on the tolerances of $K_{V C O}, C_{\text {RAMP }}, C_{1}$, C_{2}, and $\mathrm{C}_{\mathrm{VCO}}$.

Larger motors and loads will require longer ramp periods or larger values of C_{EN}.

Run

When the $C_{E N}$ pin exceeds 1.5 V the device will enter run mode. At this time the motor speed should be high enough to generate a detectable BEMF and allow closed loop operation to begin. The commutation position compensation has been previously discussed.
The motor will continue to accelerate as long as the voltage on the $\mathrm{RC}_{\mathrm{VCO}}$ pin (20) is less than the voltage on $\mathrm{V}_{\text {SPEED }}$ (pin 8). During this time the motor will receive full N -channel drive limited only by $\mathrm{I}_{\text {LIMIT }}$. As the voltage on pin 20 approaches that of pin 8 the $\mathrm{C}_{\text {PWM }}$ capacitor will charge and begin to control the gate drive to the N channel transistor by setting a level for comparison on the 25 kHz PWM saw tooth waveform generated on COSC (pin 6). The compensation of the speed loop is accomplished on $\mathrm{C}_{\text {PWM }}$ (pin 5) which is the output of a
transconductance amplifier with a gm $=3.85 \times 10^{-4} \mathbf{J}$.

OUTPUT DRIVERS

The P-channel drivers are emitter follower type with 5 mA pull down currents. This allows for fast turn off to prevent cross conduction. The N -channel drivers are totem pole with a 750Ω resistor in series with the pull up device again reducing cross conduction.

Figure 8. Block Diagram.

BRAKING

When $\overline{\text { BRAKE }}$ pin (25) is pulled low all 3 P-channel drivers will be turned off and all 3 N -channel drivers will be turned on.

Figure 7. ILIMIT Output Off-Time vs. Cos.

HIGHER VOLTAGE MOTOR DRIVE

The ML4425/ML4426 can be used to drive higher voltage motors by means of level shifters to the high side drive transistors. This can be accomplished by using dedicated high side drivers for applications greater than 60 V or a simple NPN level shift as shown in figure 9 for applications below 60 V . Figure 10 shows how to interface to the IR2110, a 3-phase bridge driver from I.R. This allows driving motors up to 600 V .
ع8L－G JeOUIT OHOHNTin

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4425CS ML4425CP	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	28-Pin SOIC (S28W) 28-Pin DIP (P28N)
ML4425IS ML4425IP	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	28-Pin SOIC (S28W) 28-Pin DIP (P28N
ML4426CS ML4426CP	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	28-Pin SOIC (S28W) 28-Pin DIP (P28N)
ML4426IS ML4426IP	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	28-Pin SOIC (S28W) 28-Pin DIP (P28N)

ML4431

Servo Demodulator

GENERAL DESCRIPTION

The ML4431 provides all of the analog circuitry necessary for the demodulation of di-bit servo signal information in Winchester disk drives. It interfaces to the servo head preamp and provides quadrature position signal outputs for the servo controller circuitry.
The ML4431 includes a high-performance 592-type input amplifier and differential AGC circuit. External logic is designed to meet the needs of the particular servo system utilizing the VCO and Charge Pump to create a PLL time base for Peak Detector gating. The SYNC output provides servo channel timing information for the logic.
The ML4431 has an ECL-type VCO, with an internal ECL-to-TTL converter for simplified interfacing.

The ML4431, when combined with the ML4402 Servo Driver, the ML4403, ML4413 Servo Controller and the ML4404 Trajectory Generator, provides a flexible closed-loop servo control system.

FEATURES

- Combines all analog di-bit demodulation circuitry
- Logic track-type switching can be used to minimize demodulator offset
- Exponential AGC characteristics makes AGC settling independent of input step size
- External loop compensation of analog blocks
- External digital circuitry allows flexible pattern format
- On-chip band gap voltage reference eliminates external referencing
- Operates from 5 V and 12 V power supplies
- Programmable Peak Detector Discharge Current
- Digitally-controlled AGC set point
- TTL output VCO
- AGC Sense switchable to "POSA only" or both "POSA and POSB"
- Compatible with Micro Linear's ML4403, ML4413 Servo Controller, ML4402 Servo Driver and ML4404 Trajectory Generator

BLOCK DIAGRAM

PIN CONNECTIONS

ML4431 32-Pin PCC

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION	PIN NO.	NAME	FUNCTION
1	TP	Composite test point, normally left unconnected.	18	AGCSW	Selects between "POSA only" or "POSA and POSB" AGC sense
2	FDEC	Charge pump frequency decrement input.			operation. Logic " 0 " selects "POSA only" operation. Logic " 1 " selects "POSA and POSB" operation.
3	FINC	Charge pump frequency increment input.	19	CAP1	Peak detector 1 capacitor.
4	FLTR	PLL loop compensation terminal.	20	CAP2	Peak detector 2 capacitor.
5	+5V	+5V supply.	21	CAP3	Peak detector 3 capacitor.
6	VCOI	VCO input.	22	CAP4	Peak detector 4 capacitor.
7	VCOP	VCO positive output, for capacitive feedback to VCOI.	23	GATE1	Peak detector 1 gate input (TTL) Logic " 1 " enabled, " 0 " disabled.
8	VCON	VCO negative output, drives resistive feedback to VCOI .	24	GATE2	Peak detector 2 gate input (TTL) Logic " 1 " enabled, " 0 " disabled.
9	GND	Ground.	25	GATE3	Peak detector 3 gate input (TTL) Logic " 1 " enabled, " 0 " disabled.
10	SYNC	SYNC pulse output.	26	GATE4	Peak detector 4 gate input (TTL)
11	PWM	PWM DAC input to adjust AGC set point.	27	PKDECAY	Logic " 1 " enabled, " 0 " disabled.
12	VAGC	AGC gain reference voltage input.	27	PK	current.
13	CAGC	External capacitor to set AGC response.	28	+12V	+12V supply.
14	GAIN1	Input amplifier gain adjusting RC terminal 1	29 30	PREF	Voltage reference output. Position output A. POSA $=$ Peak Detector 1 - Peak
15	INX	X input into input amplifier.			Detector 2
16	INY	Y input into input amplifier.	31	POSB	Position output B.
17	GAIN2	Input amplifier gain adjusting RC terminal 2.			POSA = Peak Detector 3 - Peak Detector 4
			32	CDC	External capacitor terminal to set DC restore response.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could lue permanentily damaged. Abosolute maximum ratings are stress ratings only and functional device operation is not implied.
Power Supply Voltage Range, V_{CC} 14 V
Input Voltages:
GAIN1, GAIN2 -0.3 to 8 V
$\mathrm{C}_{\text {AGC }}$ -0.3 to 7.0 V
$\mathrm{V}_{\mathrm{AGC}}$, PWM, VCOI -0.3 to 5.3 V
CAP1, CAP2, CAP3, CAP4 -0.3 to 10 V
GATE1, GATE2, GATE3, GATE4, VCOP -0.3 to 7.5 V
INX, INY, VCON, FINC, FDEC, $\mathrm{C}_{\mathrm{DC}} \mathrm{C}_{\mathrm{AGC}}$, FLTR-0.3 to $V_{C C}+0.3 \mathrm{~V}$
θ_{JA} for PLCC-32 $\approx 60^{\circ} \mathrm{C} /$ Watt
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T $\mathrm{T}_{\text {MAX }}$) $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Supply Voltage $\mathrm{V}_{(+12 \mathrm{~V})}$ $12 V_{\text {DC }} \pm 10 \%$
Supply Voltage $\mathrm{V}_{(+5 \mathrm{~V})}$ $5 V_{\text {DC }} \pm 10 \%$
Input Coupling Capacitance (C_{1}) $0.01 \mu \mathrm{~F}$
Input Amp Gain Capacitance (C_{G}) $0.047 \mu \mathrm{~F}$
Input Amp Gain Resistance (R_{G}) $1 \mathrm{k} \Omega$
AGC Response Compensation Capacitance (C_{A}) $0.018 \mu \mathrm{~F}$
Composite DC Restore Capacitance (C_{D}) $0.018 \mu \mathrm{~F}$PLL Compensation Components:
$\mathrm{C}_{\mathrm{CP} 1}$ $0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{CP} 2}$ $1 \mu \mathrm{~F}$
R_{CP} 910Ω
VCO Components:
C_{V}
R 39pF 39pF 1500Ω
Peak Detector Capacitance (CAP1 thru CAP4) 680Ω 270pF
On track Base-to-Peak Voltage at pin TP 1.75 V
V_{GA} Gain Control Voltage (at pin $\mathrm{C}_{\mathrm{AGC}}$) $\approx 2.4 \mathrm{~V}$
$\mathrm{R}_{\mathrm{SET}}$ $330 \mathrm{~K} \Omega$

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$,
$\mathrm{V}_{(+12 \mathrm{~V})}=10.8$ to $13.2 \mathrm{~V}, \mathrm{~V}_{(+5 \mathrm{~V})}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{VAGC}}=4.0 \mathrm{~V}$, and external components as recommended above,
unless otherwise specified (See Note 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply						
I_{+12}	Supply Current	$\mathrm{V}_{+12}=12 \mathrm{~V}, \mathrm{~V}_{+5}=5 \mathrm{~V}$		73	51	mA
I_{+5}	Supply Current	$\mathrm{V}_{+12}=12 \mathrm{~V}, \mathrm{~V}_{+5}=5 \mathrm{~V}$		37	47	mA

TIL Inputs FINC, FDEC, GATE1, GATE2, GATE3, GATE4, PWM, AGCSW

V_{IH}	High Level Input Voltage		2.0			V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage				0.8	V
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$	-1		30	$\mu \mathrm{~A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-20		1	$\mu \mathrm{~A}$

SYNC Output

V_{OL}	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0	0.35	0.5	V
$\mathrm{~V}_{\text {THR }}$	Positive going input threshold			$\mathrm{V}_{\text {REF }}+0.9$		V
$\mathrm{~V}_{\text {THF }}$	Negative going input threshold			$\mathrm{V}_{\text {REF }}$		V
$\mathrm{t}_{\text {PD }} \pm$	Propagation Delay Rising, Falling	$\mathrm{RL}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		50	ns	

VCON Output

V_{OH}	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=50 \mu \mathrm{~A}$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	0		0.5	V

VCO and Charge Pump Section

$\mathrm{I}_{\mathrm{BIAS}}$	$\mathrm{V}_{\text {COI }}$ Input Bias Current		0	20	50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CH},} \mathrm{I}_{\mathrm{DIS}}$	FLTR Charge and Discharge Current		330	450	590	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CH}} / \mathrm{I}_{\mathrm{DIS}}$	FLTR Charge/Discharge Ratio		0.95	1.00	1.05	$\mu \mathrm{~A} / \mu \mathrm{A}$
$\mathrm{I}_{\mathrm{OFF}}$	FLTR OFF State Current	$\overline{\text { FINC }=2.0, \text { FDEC }=0.8}$	0	25	50	nA
$\mathrm{F}_{\mathrm{MAX}}$	MAX VCO Frequency to Maintain + and - 5\% Control Range (Note 3)		20		MHz	
V_{QH} (FLTR)	Charge Pump Maximum Voltage			$\mathrm{V}_{(+12 \mathrm{~V})}-1.2 \mathrm{~V}$		V
$\mathrm{~V}_{\mathrm{QL}}$ (FLTR)	Charge Pump Minimum Voltage			1.0		V

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$,
$\mathrm{V}_{(+12 \mathrm{~V})}=10.8$ to $13.2 \mathrm{~V}, \mathrm{~V}_{(+5 \mathrm{~V})}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=4.0 \mathrm{~V}$, and external components as recommended above, unless otherwise specified (See Note 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VCO and Charge Pump Section (Continued)						
$\mathrm{F}_{\mathrm{VCO}}$	VCO Frequency Range (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{+5}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {LITR }}=6 \mathrm{~V}, \mathrm{C}_{\mathrm{V}}=30 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{V}}=3.74 \mathrm{~K} \Omega \text {, see figure } 1 \end{aligned}$	9.7	10.0	10.3	MHz
K ${ }_{\mathrm{vCO}}$	VCO Voltage to Frequency Factor			2		\%/V

Input AMP, AGC AMP, and DC Restore

$R_{\text {IN }}$	INX, INY Differential Input Resistance		7	10	14	$\mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{GAIN1}, 2}$	GAIN1, GAIN2 Bias Current		0.66	1.0	1.20	mA
$\mathrm{R}_{\text {INAGC }}$	$\mathrm{V}_{\text {AGC }}$ Input Resistance		7	10	13	$\mathrm{k} \Omega$
$\mathrm{G}_{\text {MAGC }}$	AGC Transconductance at C ${ }_{\text {AGC }}$			370		$\mu \mathrm{MHOS}$
$\mathrm{R}_{\text {AGC }}$	Control Range of AGC Loop to Regulate Composite Amplitude to within 2\% of Nominal		$7 / 1$		$\mathrm{~V} / \mathrm{V}$	
BW	Bandwidth from INX, INY to Composite (Note 4)		10	15		MHz
GMDCR	DC Restore Transconductance			500		$\mu \mathrm{MHOS}$

Peak Detectors

$I_{C H}$	Charge Current		5			mA
$\mathrm{I}_{\mathrm{DIS}}$	Discharge Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=330 \mathrm{~K}$	10	15	20	$\mu \mathrm{~A}$

Voltage Reference

$V_{\text {REF }}$	Reference Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.75	5.00	5.25	V
TC	Tempco			50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$R_{\text {OUT }}$	Load Regulation			2		$\mathrm{mV} / \mathrm{mA}$
PSRR	Line Regulation			10		mV / V
$I_{\text {SINK }}$	Maximum SINK Current		0.8		mA	

Output Amplifiers (POSA, POSB)

$V_{\text {OS }}$	Input Offset	$\mathrm{V}_{\text {CAP } 1-4=6 \mathrm{~V}}$	-10	0	10	mV
A_{V}	Gain		1.15	1.20	1.25	$\mathrm{~V} / \mathrm{V}$
$\mathrm{A}_{\text {VA }} / A_{\text {VB }}$	Gain Tracking		-3	0	+3	$\%$
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Range		1.0		9.5	V
$\mathrm{I}_{\text {SRC }}$	Output Source Current		3			mA
$\mathrm{I}_{\text {SNK }}$	Output Sink Current		2			mA
SR	Slew Rate			2.5		$\mathrm{~V} / \mu \mathrm{s}$
BW	3dB Gain Bandwidth			3		MHz

Note 1: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 3: This parameter is guaranteed but not 100% tested and is not used in outgoing quality level calculations.
APPLICATION HINTS
Using a nominal on-track servo signal, amplitude adjustment should be made as follows:

1. Set composite signal amplitude, measured at pin TP, by adjusting voltage at pin $\mathrm{V}_{\mathrm{ACC}}$ (approximately 4.7 volts). The composite signal should be set to 1.75 volts base to peak of an on-track position pulse (an off-track position pulse will be about 3.5 volts maximum).
2. Adjust Rg so that the VGA is in mid-range. This is determined by measuring the voltage at pin $\mathrm{C}_{\mathrm{AGC}}$ it should be approximately 0.9 volts. $\mathrm{C}_{\mathrm{AGC}}$ voltage will vary approximately ± 0.5 volts over the AGC range.

FUNCTIONAL DESCRIPTION

INPUT AMPLIFIER

The input amplifier is equivalent to a wide-band 592 type video amplifier and provides amplification and buffering to the AGC circuitry. The Inputs INX and INY, which must be AC coupled, accept the composite analog signal from the servo head differential preamplifier. Internal input termination resistors eliminate the need for external bias resistors. Prefiltering of the signal is normally desired to eliminate unwanted components. External components R_{G} and C_{G} determine the input amplifier's low frequency cutoff and gain as follows:

$$
\mathrm{FC}=\frac{1}{2 \pi\left(\mathrm{R}_{\mathrm{G}}+60 \Omega\right) \mathrm{C}_{\mathrm{G}}} \quad \mathrm{~A}_{\mathrm{V}}=\frac{1700}{\mathrm{R}_{\mathrm{G}}+60 \Omega}
$$

Where: $\mathrm{C}_{\mathrm{G}}=$ External series capacitance between pins GAIN1 and GAIN2
$\mathrm{R}_{\mathrm{G}}=$ External series resistance between pins GAIN1 and GAIN2

AUTOMATIC GAIN CONTROL (AGC)

The purpose of the AGC loop is to maintain a constant peak output voltage level at outputs POSA and POSB. This peak level is established by the reference voltage applied to pin $V_{\text {AGC }}$.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{P}-\mathrm{P}} \text { (Composite Position Pulses) } & =\mathrm{K} 1 \times \mathrm{V}_{\mathrm{AGC}}+\mathrm{K} 2 \\
\text { Where: } \mathrm{K} 1 & =0.65 \\
\mathrm{~K} 2 & =.13 * \mathrm{~V}_{\mathrm{REF}}
\end{aligned}
$$

In this closed-loop system, the peak detector output voltages are fed back and combined with the $\mathrm{V}_{\mathrm{AGC}}$ voltage to provide a gain control current. The current controls the variable gain amplifier (VGA) and is compensated at pin $\mathrm{C}_{\mathrm{AGC}}$ to provide control of AGC bandwidth. The bandwidth of the entire AGC loop is determined by:

$$
B W=\frac{K V_{V A G C}}{2 \pi C_{A}}
$$

Where: $\mathrm{K} \quad=2.8 \times 10^{-4}$
$V_{V A G C}=$ External reference voltage at pin $V_{A G C}$
$\mathrm{C}_{\mathrm{A}}=$ External capacitance at pin $\mathrm{C}_{\mathrm{AGC}}$

PWM CONTROL OF AGC SET POINT

The PWM input (pin 10) accepts a variable duty-cycle input to control the AGC set point. The relationship between duty-cycle and set point is:
100\% duty-cycle \qquad AGC set point is equal to $V_{\text {REF }}$.

0\% duty-cycle AGC set point equal to $0.6 \times V_{\text {REF }}$.
A filter capacitor from pin 11 to ground is required to filter the PWM signal. This capacitor should be sufficiently large relative to the $10 \mathrm{~K} \Omega$ nominal internal termination resistance at pin 11.
The AGC set point may be set manually via direct voltage control of pin 12 if desired. Pin 11 should be grounded in this case.

SWITTCHING THE AGC SENSE RESISTORS

The AGCSW input (pin 17) allows selection of the AGC sense. The choices are:
AGCSW low AGC senses POS A peak detector outputs only.

AGCSW high AGC senses POS A and POS B peak detector outputs.

COMPOSITE AMPLIFIER

The input amplifier and AGC circuit of the ML4431 operate in a differential signal mode to provide good common mode and power supply rejection. The composite amplifier converts the differential signal into a buffered single-ended signal for the peak detector circuitry. The DC base line of the composite signal is equal to $\mathrm{V}_{\text {REF }}$. The bandwidth of the DC restore function is controlled by capacitor C_{D} at pin $C_{D C}$ with the following relationship:

$$
B W=\frac{g m}{2 \pi C_{D}}
$$

Where: $\mathrm{gm}=\frac{1}{2 \mathrm{~K} \Omega}$

$$
C_{D}=\text { External capacitance at pin } C_{D C}
$$

The composite signal is available at pin TP and is normally left unconnected. For short circuit protection a 750Ω resistor is connected in series with pin TP internally.

SYNCHRONIZATION PULSE SEPARATOR

The SYNC pulse separator is a threshold comparator with hysteresis which passes pulses from the composite amplifier above a set threshold. It provides a buffered TTL output. The SYNC output, when gated through an external one-shot, is used to control the external gate timing and PLL logic. Active pull-up differs from ML4401 SYNC.

PEAK DETECTOR

The peak detector circuit captures the peak signal amplitude of the di-bit pulses. The gates are controlled by inputs GATE1 through GATE4. Timing is established by the external logic circuitry. The external peak detector capacitors are connected from pins CAP1 through CAP4 to ground. The peak detector discharge rate (set by CAP1-CAP4 and current out of PKDECAY) determines the maximum track crossing rate during an access operation. The peak detector outputs are fed into internal differential amplifiers that calculate the track error signals and provide buffered outputs POSA and POSB as follows:

$$
\begin{aligned}
& \text { POSA }=1.20(\mathrm{CAP1}-\mathrm{CAP} 2)+V_{\text {REF }} \\
& \mathrm{POSB}=1.20(\mathrm{CAP} 3-\mathrm{CAP} 4)+V_{\text {REF }}
\end{aligned}
$$

PEAK DETECTOR DECAY RATE CONTROL

The decay rate of the peak detector can be programmed by changing the external resistor $\mathrm{R}_{\text {SET }}$ (pin 26 , see connection diagram). The decay rate is determined by the discharge current for the hold capacitors C1-C4. The relationship between the discharge current and RSET $^{\text {is: }}$

$$
\mathrm{I}_{\mathrm{DISCHARGE}}=\frac{\mathrm{V}_{\text {REF }}}{\mathrm{R}_{\text {SET }}}
$$

VOLTAGE CONTROLLED OSCILLATOR AND CHARGE PUMP

The VCO and external phase compare logic provide a time base for peak detector gate synchronization. Inputs FINC and FDEC provide increment and decrement signals to the charge pump for changing the oscillator frequency. The FINC and FDEC inputs gate the charge pump for the duration of the pulse width. The RC timing network formed by C_{V} and R_{V} at pins VCOI, VCON, and VCOP control the oscillators center frequency. (See Typical Performance Characteristics)
R_{V} should be greater than 1000Ω, Too low of a value will result in excessive power dissipation. RL should be about 680Ω.

The VCO output should only be taken from pin VCON. Charge pump capacitor $\mathrm{C}_{\mathrm{CP} 1}$ is connected from pin FLTR to ground. Components R_{CP} and $\mathrm{C}_{\mathrm{CP} 2}$ are also connected in series from pin FLTR to ground to provide VCO loop compensation.

INTERNAL VOLTAGE REFERENCE

$\mathrm{V}_{\text {REF }}$ is an internal band-gap voltage reference. It is buffered and available at pin $\mathrm{V}_{\text {REF }}$ and is used by the ML4402, ML4403, ML4404 and other chips requiring a 5 volt reference.

EXTERNAL LOGIC

The external logic provided by the user typically has a complexity of about 150 to 300 equivalent gates. Complexity and architecture depends on the users dibit pattern and control function.

Note: Stray capacitance should be considered in applying the above relationships when low capacitor values are used. Stray capacitance of the integrated circuit terminal is typically about 2 to 3 pF .

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. ML4431 Connection Diagram

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4431CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q32)

2-Channel
 Preamplifier for Tape Drives

GENERAL DESCRIPTION

The ML4451 is a bipolar monolithic read/write circuit designed for use with center-tapped ferrite recording heads in tape drive systems. Single ended head drive is also possible by connecting one input to center tap and the other to the head which also returns to center tap.

The ML4451 provides two separate multiplexed read and write data channels. These circuits exhibit features like reduced input bias current and higher read channel voltage gain, which provide a low noise read data path. It also provides improved write current stability and eliminates write current "glitches" during power-up. The control signals to this chip are TTL compatible. The ML4451 is available in a 24 -pin SOIC package.

FEATURES

- Enhanced write current stability

■ Designed for center-tapped ferrite heads in tape drives

- Provides lower current noise Min $A_{V}>150$, Max $I_{B}<15 \mu A$
- Easily multiplexed for larger systems
- Power supply fault protection
- $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ maximum input noise voltage
- Programmable write current source
- Includes write unsafe detection
- $+5 \mathrm{~V},+12 \mathrm{~V}$ power supplies

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
HSO-HS1	Head Select (four heads)	RDX, RDY	X, Y Read Data (differential read signal out)
$\mathrm{R} \bar{W}$	Read/ $\overline{\text { Write }}$ (high level selects Read Mode)	WC	Write Current (used to set the write current magnitude)
WUS	Write Unsafe, open collector output (high level indicates an unsafe writing condition)	$\mathrm{V}_{\text {CT }}$ VCC	Voltage Center Tap (center tap voltage source) +5 volts
WDI	Write Data In (negative transition toggles head current direction)	$\mathrm{V}_{\mathrm{DD}}{ }^{1}$ $\mathrm{~V}_{\mathrm{DD}}{ }^{2}$	+12 volts Positive supply for center tap
$\begin{aligned} & \text { H0X, H1X } \\ & \text { H2X, H3X } \end{aligned}$	Read head X connections Write head X connections	GND	Ground
HOY, H1Y	Read head Y connections		
H2Y, H3Y	Write head Y connections		

ÁBSOLÚTE MAXIMUM RATINGS
Power Supply Voltage Range$V_{D D} 1$-0.3 to $14 \mathrm{~V}_{\mathrm{DC}}$
$V_{D D}{ }^{2}$ -0.3 to $14 \mathrm{~V}_{\mathrm{DC}}$
V_{CC} .-0.3 to $6 V_{D C}$
Input Voltage Range
Digital Inputs ($\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{HS}, \mathrm{WDI}) . .-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}_{\mathrm{DC}}$Head Ports (HOX-H7X, HOY-H7) . -0.3 to $\mathrm{V}_{\mathrm{DD}} 1+0.3 \mathrm{~V}_{\mathrm{DC}}$Write Unsafe (WUS)-0.3 to $14 V_{D C}$
Write Current (lw) 60 mA
Output CurrentRead Data (RDX, RDY)$-10 \mathrm{~mA}$
Center Tap Current (I_{CT}) $-60 \mathrm{~mA}$
Write Unsafe (WUS) 12 mA
Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (T_{J}) $135^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $300^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Supply Voltage
$V_{D D} 1$ $12 \mathrm{~V} \pm 10 \%$
$V_{C C}$ $5 \mathrm{~V} \pm 10 \%$
Head Inductance
L_{H} 5 to $15 \mu \mathrm{H}$
Damping Resistor (R_{D}) 500 to 2000Ω
RCT Resistor (1/4 Watt) $12 \Omega \pm 5 \%$
Write Current (lw) 10 to 40 mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}} 2=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\mathrm{CT}}=120 \Omega \pm 5 \%$, ${ }^{\mathrm{I}} \mathrm{W}=40 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ (Notes 2 and 3)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
DC OPERATING CHARACTERISTICS						
$I_{\text {CC }}$	V_{CC} Supply Current	Read or Idle Mode Write Mode			$\begin{aligned} & 35 \\ & 30 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$
I_{DD}	$\mathrm{V}_{\text {DD }}$ Supply Current	Read Mode Write Mode Idle Mode			$\begin{gathered} 35 \\ 20+l_{W} \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
P_{D}	Power Dissipation	Read Mode Write Mode $\mathrm{I}_{\mathrm{W}}=40 \mathrm{~mA}, \mathrm{R}_{\mathrm{CT}}=0 \Omega$ Idle Mode			$\begin{aligned} & 655 \\ & 960 \\ & 455 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$

DIGITAL INPUTS ($\overline{\mathbf{C S}}, \mathbf{R} / \overline{\mathbf{W}}, \mathbf{H S}$, WDI)

V_{IH}	High Voltage		2			$\mathrm{~V}_{\mathrm{DC}}$
V_{IL}	Low Voltage				0.8	$\mathrm{~V}_{\mathrm{DC}}$
I_{IH}	High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA

WUS OUTPUT

V_{OL}	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}($ Safe $)$			0.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{OH}	Output High Current	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$ (Unsafe)			100	$\mu \mathrm{~A}$

CENTER TAP VOLTAGES

$V_{C T}$	Read Mode	Read Mode		4		$V_{D C}$
$V_{C T}$	Write Mode	Write Mode		6		$V_{D C}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified $V_{D D} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, I_{W}=35 \mathrm{~mA}, \mathrm{~L}_{H}=10 \mu H, R_{D}=750 \Omega$ $\mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}($ RDX, RDY $) \leq 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
(Notes 2 and 3) (V_{IN} is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
WRITE MODE CHARACTERISTICS						
$\mathrm{l}_{\mathrm{HCW}}$	Head Current (per Side)	Write Mode $0 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.7 \mathrm{~V}$ $0 \leq \mathrm{V}_{\mathrm{DD}} 1 \leq 8.7 \mathrm{~V}$	-200		200	$\mu \mathrm{A}$
IWR	Write Current Range	$\mathrm{I}_{\mathrm{W}}=\mathrm{K} / \mathrm{R}_{\mathrm{WC}}$	10		40	mA
K	Write Current Constant		2.375		2.625	
$\underline{V_{H D}}$	Differential Head Voltage Swing		7.0			V_{PK}
I_{HU}	Unselected Head Transient Current				2	mAPK
$\mathrm{COD}_{\text {O }}$	Differential Output Capacitance				15	pF
$\mathrm{R}_{\text {OD }}$	Differential Output Resistance		10k			Ω
$\mathrm{f}_{\text {WDI }}$	WDI Transition Frequency	WUS = Low	250			kHz
A_{1}	IWC to Head Current Gain			0.99		$\mathrm{mA} / \mathrm{mA}$
I_{L}	Unselected Head Leakage	Sum of X \& Y Side Leakage Current			85	$\mu \mathrm{A}$

READ MODE CHARACTERISTICS

A_{V}	Differential Voltage Gain	$\begin{aligned} & V_{I N}=1 \mathrm{mV} V_{\text {P-p }} @ 300 \mathrm{kHz} \\ & R_{\mathrm{L}}(\mathrm{RDX}, \mathrm{RDY})=1 \mathrm{k} \Omega \end{aligned}$	150	180	205	V/N
DR	Dynamic Range	DC Input Voltage (V_{l}) Where Gain Falls 10\% $V_{I N}=V_{1}+0.5 m V_{P-P} @ 300 \mathrm{kHz}$	-3		+3	mV
BW	Bandwidth (-3dB)	$\left\|Z_{S}\right\|<5 \Omega, V_{I N}=1 \mathrm{mV} V_{\text {P-P }}$	30			MHz
ein	Input Noise Voltage	$B W=15 M H z, L_{H}=0, R_{H}=0$			1.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{Clin}^{\text {IN }}$	Differential Input Capacitance	$\mathrm{f}=5 \mathrm{MHz}$			20	pF
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	2k			Ω
$I_{\text {HCR }}$	Head Current (per side)	Read or Idle Mode $0 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ $0 \leq \mathrm{V}_{\mathrm{DD}} 1 \leq 13.2 \mathrm{~V}$	-200		200	$\mu \mathrm{A}$
I_{N}	Input Bias Current (1 side)				15	$\mu \mathrm{A}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CT}}+100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} @ \mathrm{f}=5 \mathrm{MHz}$	50			dB
PSRR	Power Supply Rejection Ratio	100 mV p-p @ $\% \mathrm{MHz}$ on $\mathrm{V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}} 1, \mathrm{~V}_{\mathrm{DD}}{ }^{2}$, or V_{CC}	45			dB
CS	Channel Separation	Unselected Channels: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{P}_{\text {P-p }} @ 5 \mathrm{MHz}$ and Selected Channel: $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	45			dB
V_{OS}	Output Offset Voltage	Read Mode Write or Idle Mode	$\begin{gathered} -460 \\ -20 \end{gathered}$		$\begin{aligned} & +460 \\ & +20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\underline{\mathrm{R}_{\text {OUT }}}$	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			30	Ω

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified $V_{D O} 1=12 \mathrm{~V} \pm 10 \%, V_{C C}=5 \mathrm{~V} \pm 10 \%, R_{C T}=120 \Omega \pm 5 \%, I_{W}=35 \mathrm{~mA}, L_{H}=10 \mu H, R_{D}=750 \Omega$ $f_{\text {DATA }}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}(R D X, R D Y) \leq 20 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
(Notes 2 and 3) ($\mathrm{V}_{I N}$ is referenced to V_{CT} for Read Mode Characteristics).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
READ MODE CHARACTERISTICS (Continued)						
L_{L}	Leakage Current, RDX, RDY	(RDX, RDY) = 6V Write or Idle Mode	-100		100	$\mu \mathrm{~A}$
I_{O}	Output Current	AC Coupled Load, RDX to RDY	± 2.1			mA

SWITCHING CHARACTERISTICS

t_{RW}	R / \bar{W} to Write Switching Delay	To 90\% of Write Current Output		1	$\mu \mathrm{s}$
$t_{W R}$	R / \bar{W} to Read Switching Delay	To 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90% Decay of Write Current		1	$\mu \mathrm{s}$
$\begin{aligned} & t_{I W} \text { or } \\ & t_{R I} \end{aligned}$	$\overline{\mathrm{CS}}$ to Select Switching Delay	To 90% of Write Current or to 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope		1	$\mu \mathrm{s}$
$\begin{aligned} & t_{W I} \text { or } \\ & t_{R I} \end{aligned}$	$\overline{\mathrm{CS}}$ to Unselect Switching Delay	To 90% Decay of $200 \mathrm{mV}, 10 \mathrm{MHz}$ Read Signal Envelope or to 90% Decay of Write Current		1	$\mu \mathrm{S}$
t_{HS}	Head Select Switching Delay	To 90% of 100 MHz Read Signal Envelope		1	$\mu \mathrm{s}$
tD1	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}$	1.6	8	$\mu \mathrm{s}$
tD2	Safe to Unsafe Write Unsafe Delay	$\mathrm{I}_{\mathrm{W}}=35 \mathrm{~mA}$		1	$\mu \mathrm{s}$
tD3	Prop. Delay Head Current	$\mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$ From 50% points		25	ns
	Asymmetry Head Current	WDI has 50% Duty Cycle and 1 ns Rise/Fall Time		2	ns
	Rise/Fall Head Current	10\% and 90\% Points		20	ns

Note 1: Absolute maxımum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 3: Maximum junction temperature (T_{j}) should not exceed $135^{\circ} \mathrm{C}$.
TIMING DIAGRAM

Write mode Timing Diagram

FUNCTIONAL DESCRIPTION

CIRCUIT OPERATION

For any selected head, the ML4451 functions as a read amplifier when in Read mode, or as a write amplifier when in the Write mode. Pins HS0 and HS1 determine head selection while pin $R \overline{\mathcal{W}}$ controls the Read/Write mode. A detected "write-unsafe" condition is indicated by pin WUS.

READ MODE

When the ML4451 is in the Read Mode, it operates as a low-noise differential amplifier on the selected channel. In Read mode the write data flip-flop is set and both the write unsafe detector and the write current source are deactivated. The center tap voltage is also lowered. Pins RDX and RDY provide differential emitter follower outputs which are in phase with the X and Y head input pins.

Note that during the Read or Chip Deselect mode the internal write current is deactivated, thus making external write current gating unnecessary.

WRITE MODE

The ML4451 operates as a write-current switch when in the Write mode. Write current magnitude is determined by the following relationship:

$$
\begin{aligned}
& \quad I_{K}=K / R_{W C} \\
& \text { Where: } K=\text { Write Current Constant } \\
& \quad R_{W C}=\text { Resistance connected between pin } \\
& \text { WC and GND }
\end{aligned}
$$

The head current is toggled between the X and Y side of the selected head by a negative transition on WDI (Write Data Input). When switching the ML4451 to write mode, the WDFF (Write Data Flip-Flop) is initialized to pass write current through the X -side of the head.

The ML4451 exhibits enhanced write current stability which reduces the problem of oscillation. This is due to increased internal write current compensation. Also write current "glitches" during power-up are eliminated with an exclusive write current disabling function.

The WUS (Write Unsafe) pin is an open collector output that gives a logic high level for any of the following unsafe write conditions:

- Open head
- Open head center-tap
- Too low WDI frequency
- Read mode selected
- Device not selected
- No write current

Two negative transitions on WDI are required to clear WUS after the fault condition is removed.

The ML4451 also offers a voltage fault detection circuit that prevents write current during power-loss or power-up.

Table 1.
HEAD SELECT

HS1	HS0	HEAD
0	0	0
0	1	1
1	0	2
1	1	3
0	0	4
0	1	5
1	1	6
1		7

Notes: $0=$ Logıc Level Low
1 = Logıc Level High
X = Don't Care

Table 2.

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	MODE
0	0	Write
0	1	Read
1	X	Idle

Notes: $0=$ Logic Level Low
$1=$ Logic Level Hıgh
X = Don't Care

TYPICAL APPLICATION

Note 1: RCT is optional and is used to limit internal power dissipations (Otherwise connect $V_{D D^{1}}$ to $V_{D D^{2}}$). RCT $(1 / 2$ Watt $)=120\left(40 / l_{W}\right)$ ohms, where $I_{W}=$ Write Current, in mA .
Note 2: Ferrite bead optional: used to suppress write current overshoot and ringing. Recommend Ferroxcube 3659065/4A6.
Note 3: RDX and RDY load capacitance 20pF maximum. RDX and RDY output current must be limited to 100 mA .

ORDERING INFORMATION

PART NUMBER	PACKAGE
ML4451	20-Lead SOIC (S24)

THERMAL CHARACTERISTICS

PIN COUNT	PACKAGE	$\theta_{\mathbf{j a}}$
24-Lead	SOIC	$75^{\circ} \mathrm{C} / \mathrm{W}$

MR Head Preamplifier for Tape Drives 2-CH Read and 1-CH Write with Readback

GENERAL DESCRIPTION

The ML4452 is a bipoloar monolithic read preamp circuit designed for use with two-terminal thin-film or MR recording heads for tape drives. It provides two dedicated low noise read channels and a separate write channel with read back capability for use with the servo head. The write channel in the ML4452 incorporates an internal 700Ω damping resistor which dampens the write signals to the head. Additionally write current control and data protection circuitry are also provided. Because the read channels are independent there is no voltage drift, which is a problem with normal preamps when switching from the write to read mode. Power supply fault protection is provided by disabling the write current generator during power sequencing.

FEATURES

- Architecturally Compatible to SSI's 32R4610AR
- Single +5 Volt Operation, $\mathrm{P}_{\mathrm{MAX}}<200 \mathrm{~mW}$
- Read Mode Gain = $125 \mathrm{~V} N$
- Dedicated Read Channels for Greater Noise Immunity
- Write Channel also Provides Servo Readback Capability
- 700 Ohm Damping Resistor in the Write Channel
- Input Noise $=0.85 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ max
- Input Capacitance $=45 \mathrm{pF}$ max
- Write Current Range $=10-35 \mathrm{~mA}$
- Enhanced System Write to Read Recovery Time
- Power Supply Fault Protection
- No Write Current Glitching on Power-up
- 20-pin SSOP Package

BLOCK DIAGRAM

PIN CONNECTION

ML4452
20-Pin SSOP (R20)

PIN DESCRIPTION

NAME 1	TYPE	DESCRIPTION	NAME	TYPE	FUNCTION
HS0, HS1	1	Head Select: Selects one of three heads	RDX, RDY	O	X, Y Read Data: Differential read data output
$\mathrm{R} / \overline{\mathrm{W}}$	1	Read/Write: A high selects read mode and a low selects write mode	WC		Write Current: Used to set the magnitude of the write current
WDI	1	Write Data In: Changes the direction of the current in the head	VCC1 VCC2	1	+5 volt supply +5 volt supply for write current drivers
RH1X, RH2X RH1Y, RH2Y	1	X, Y Head Connectors for MR Read only	GND	I	Ground
RWHOX RWHOY	I/O	X, Y Head Connectors for Servo MR read and inductive write			

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 1$) \qquad
-0.3 to +7 VDC
DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 2$) -0.3 to +7VDC
Write Current (lw) .80 mA
Digital Input Voltage ($\mathrm{V}_{\mathbb{I N}}$) -0.3 to VCC1 + 0.3VDC
Head Port Voltage $\left(\mathrm{V}_{\mathrm{H}}\right) \ldots \ldots-0.3$ to VCC1 + 0.3VDC
Output Current: RDX, RDY (IO) \qquad
Storage Temperature $\mathrm{T}_{\mathrm{STG}}$
-65 to $+150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

DC Supply Voltage (VCC1) $5 \pm 5 \%$ VDC
DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 2$) $5 \pm 5 \%$ VDC
Operating Junction Temperature $\left(\mathrm{T}_{\mathrm{j}}\right) \ldots \ldots . . .+25^{\circ}$ to $+110^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VCC1 Supply Current	Read Mode Write Mode			33	mA
VCC2 Supply Current	Read Mode Write Mode			11	mA
Power Dissipation	Read Mode Write Mode			$10+\mathrm{I}_{\mathrm{W}}$	

Digital Inputs

Input Low Voltage $\left(\mathrm{V}_{\mathrm{IL}}\right)$				0.8	VDC
Input High Voltage $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2.0			VDC
Input Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA
Input High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
VCC1 Fault Voltage	$\mathrm{I}_{\mathrm{W}}<0.2 \mathrm{~mA}$	3.7	4.0	4.2	VDC

Write Characteristics

Write Current Constant "K"			0.99		
Write Current Voltage (VWC)		1.15	1.25	1.35	V
Differential Head Voltage Swing		3.4	6		Vpp
Unselected Head Current				1	$\mathrm{~mA}(\mathrm{pk})$
Head Differential Load Capacitance				25	pF
Head Differential Load Resistance	R_{D}	500	700	950	ohms
Write Current Range (Iw)		10		45	mA

Read Characteristics $C_{L}(R D X, R D Y)<20 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}($ RDX, RDY $)=1 \mathrm{~K} \Omega$

Differential Voltage Gain		$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{mVpp} @ 1 \mathrm{MHz}$	100	125	150	V / N
Voltage BW	$-1 \mathrm{~dB}$	$\|\mathrm{Zs}\|<5 \mathrm{ohm}, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{mVpp}$	20			MHz
	-3dB		35			MHz
Input Noise Voltage		$B W=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$		0.6	0.85	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Input Capacitance		$\mathrm{V}_{\text {IN }}=1 \mathrm{mVpp}, \mathrm{f}=5 \mathrm{MHz}$		27	35	pF
Differential Input Resistance		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{mVpp}, \mathrm{f}=5 \mathrm{MHz} \\ & \text { Read/Write head \#0 } \\ & \text { Read heads \#1 \& \#2 } \end{aligned}$	$\begin{aligned} & 360 \\ & 900 \end{aligned}$			ohms ohms
Dynamic Range		AC input voltage where gain falls to 90% of its small signal gain value. @ $f=5 \mathrm{MHz}$	3			mVpp

ML4452
ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Read Characteristics $C_{L}(R D X, R D Y)<20 \mathrm{pF}, R_{L}(R D X, R D Y)=1 \mathrm{~K} \Omega$ (Continued)

Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}=0 \mathrm{VDC}+100 \mathrm{mVpp} @ 5 \mathrm{MHz}$	45			dB
Power Supply Rejection Ratio Separation	$100 \mathrm{mVpp} @ 5 \mathrm{MHz}$ on VCC Unselected channels driven with $\mathrm{V}_{\text {IN }}=0 \mathrm{VDC}+100 \mathrm{mVpp}$	40 45		dBChannel dB	
Output Offset Voltage		-200		+200	mV
Single-ended Output Resistance	$\mathrm{f}=5 \mathrm{MHz}$			40	Ohms
Output Current	AC Coupled Load, RDX to RDY	1.4			mA
RDX, RDY Common Mode Output		2.0	2.8	3.5	VDC

Switching Characteristics $\mathrm{I}_{\mathrm{W}}=20 \mathrm{~mA}, \mathrm{R}_{\mathrm{H}}=30 \mathrm{Ohm}, \mathrm{L}_{\mathrm{H}}=1 \mu \mathrm{H}, \mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}$

$R / \bar{W} \quad$ Read to Write	R/W to 90% of write current	0.1	1.0	$\mu \mathrm{s}$
$\mathrm{R} / \overline{\mathrm{W}} \quad$ Write to Read	R/W to 90% of 100 mV Read signal envelope	0.5	1.0	$\mu \mathrm{s}$
HS 0, 1 to any head	To 90% of 100 mV 10 MHz Read signal envelope	0.2	1.0	$\mu \mathrm{s}$
Head Current WDI to $I_{X}-I_{Y}$ (TD3) Asymmetry Rise/Fall Time	$L_{H}=0, R_{H}=0$ From 50\% points WDI has 1 ns rise/fall time 10% to 90% points		$\begin{aligned} & 32 \\ & 1.0 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

TIMING DIAGRAM

Figure 1. Write Mode.

MODE AND HEAD SELECT

R/W	HS1	HSO	HEAD	MODE
0	0	0	RWH0	Write
1	0	0	RWH0	Read
1	0	1	RH1	Read
1	1	0	RH 2	Read
1	1	1	RESERVED	

Note: The TTL input $R \bar{W}$ has an internal pull-up resistor to prevent an accidental write condition The TTL inputs HSO and HS1 have internal pull-downs.

FUNCTIONAL DESCRIPTION

The ML4452 has the ability to address up to 4 twoterminal thin-film heads and provide write drive or read amplification. Head selection and mode control are described in the tables below. The TTL inputs $R \bar{W}$ and $\overline{C S}$ have internal pull-up resistors to prevent an accidental write condition. HS0 and HS1 have internal pull-downs. Internal clamp circuitry will protect the ML4610R/4611R from a head short to ground condition in any mode. The damping resistors are switched out during read mode, as identified by the $R \bar{W}$ pin.

WRITE MODE OPERATION

Taking both $\overline{\mathrm{CS}}$ and $R / \overline{\mathcal{W}}$ low selects write mode which configures the ML4610R/4611R as a current switch and activates the Write Unsafe (WUS) detector circuitry. Head current is toggled between the X and Y side of the selected head on each high to low transition of the Write Data Input (WDI). A preceding read or idle mode select initializes the Write Data Flip-Flop to pass write current through the " X " side of the head. The current calculations are shown below:

Write current (peak) is given by:

$$
I_{W}=\frac{K \times V W C}{R W C}
$$

where
RWC is connected from pin WC to GND
Actual head current is given by:
where

$$
I_{X, Y}=\frac{I_{W}}{1+\frac{R_{H}}{R_{D}}}
$$

$R_{H}=$ head + external wire resistance
$R_{D}=$ damping resistance

VOLTAGE FAULT DETECTION

A voltage fault detection circuit improves data security by disabling the write current generator during a voltage fault or power start-up, regardless of mode. The Write Unsafe (WUS) open collector output goes high under the conditions given below. After the fault condition is removed, a negative transition on WDI is required to clear WUS.

- Write Data Input frequency too low
- Device in Read Mode
- Chip is disabled or head is open
- No write current

READ MODE OPERATION

The Read mode configures the ML4452 as a low noise differential amplifier and deactivates the write current generator. The RDX and RDY output are driven by emitter followers. They should be AC coupled to the load. The (X, Y) inputs are non-inverting to the (X, Y) outputs. In the Idle or Write mode, the read amplifier is deactivated and RDX, RDY outputs become high impedance. This facilitates multiple $R \overline{\mathcal{W}}$ applications (wired-OR RDX, RDY) and minimizes voltage drifts when switching from Write to Read mode. The write current source is also deactivated for both the Read and Idle mode. In addition the ML4452 supports the feature by which the internal damping resistors are switched out in the read mode, which allows the full signal to be amplified.

IDLE MODE OPERATION

Taking $\overline{\mathrm{CS}}$ high selects the idle mode which switches the RDX and RDY outputs into a high impedance state and deactivates the device. Power consumption in this mode is held to a minimum, less than 50 mW .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4452CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\mathrm{Pin} \operatorname{SSOP}($ R20 $)$

5V Disk Voice Coil Servo Driver

GENERAL DESCRIPTION

The ML4506 is a voice coil power driver intended for use in 5V Hard Disk servo systems. The ML4506 contains all power and control circuitry necessary to drive the voice coils of most small form factor drives. In addition, power fail detection and head retraction functions are provided for orderly shut-down of the drive.
The transconductance is programmed by a logic input at $1 / 4 \mathrm{~A} / \mathrm{a}$ and $1 / 24 \mathrm{~A} / \mathrm{N}$ respectively, using a 1Ω sense resistor. This allows for greater DAC resolution in digitally controlled servos during track follow without compromising dynamic range during seek.

The retraction circuit, main drive circuit, and control circuits are each powered from their own supplies. This allows maximum flexibility and provides for the lowest forward drop by eliminating the need for a blocking diode.

The power fail detection circuit includes a precision 1.5 V bandgap reference.

The ML4506 is implemented using Micro Linear's bipolar array technology. This allows for easy customizing of the IC for a user's specific application.

FEATURES

- 500 mA power output with 1.3 V total forward drop
- Low offsets, cross-over distortion and quiescent current
- Pin-programmable transconductance settings
- Retraction circuitry with programmable retract current, voltage limiting, and separate supply pin.
- On-chip precision power fail detect circuitry

■ Over-temperature protection with flag output
■ Logic input available for disabling outputs

BLOCK DIAGRAM

ML4506
20-PIN SOIC (S20W) OR 20-PIN SSOP (R20W)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	V_{CC}	Positive Power supply for the IC. Normally connected to +5 V .
2	DISABLE	A logic " 1 " turns off the main outputs.
3	RET SET	A Current into this sets up the voltage limit for the internal retract sourcing circuit
4	HIGH/LOW	A logic " 1 " sets the transconductance gain to $1 / 4$ while a logic " 0 " sets the gain to $1 / 24$. Transconductance gain is defined as:
		$\frac{V_{\text {RSENSE }}}{(\mathrm{CONTROL}+)-(\mathrm{CONTROL}-)}$
5	GND	Analog Signal Ground
6	$V_{\text {RET }}$	Power supply for the retract circuit.
7	RSENSE	Current sensing resistor terminal.
8	PWR GND A	Ground Terminal for power amplifier A.
9	OUTPUT+	Positive Output terminal for bridge amplifier.
10	OUT+ SENSE	Positive Amplifier Kelvin sense terminal. Tie to OUTPUT+.
11	PWR VC	+5 V supply for bridge amplifier

PIN\#	NAME	FUNCTION
12	OUTPUT-	Negative Output terminal for bridge amplifier. Ground Terminal for power amplifier.
14	PWR GND B	

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Voltage (pins $1,6,11$)
Voltage Pins 2,4,18,19,20
-0.3 V to +7 V
Pins 14, 15
-0.3 to $+\mathrm{V}_{\mathrm{CC}}$
Output Current $\pm 750 \mathrm{~mA}$
Retraction Current ... 80 mA
Retract set current (pin 3)
3 mA

Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $150^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
SOIC Package (S)
$.55^{\circ} \mathrm{C} / \mathrm{W}$
SSOP Package (R) .. $65^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Supply Voltage (pins 1,11) $5 \mathrm{~V} \pm 10 \%$
$\mathrm{V}_{\text {RET }}$ (pin 6) .. 1 V to V_{CC}

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{R}_{\text {SENSE }}=1 \Omega$, CONTROL- $(\operatorname{pin} 15)=2.5 \mathrm{~V}, \mathrm{R}_{\text {SET }}(\operatorname{pin} 3)=3.7 \mathrm{k} \Omega$, Load $=10 \Omega$.

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
AMPLIFIER					
Control Common Mode Range		0.5		$\mathrm{V}_{\mathrm{CC}}-1$	V
Offset				± 10	mV
Transconductance Gain	$\begin{aligned} & \operatorname{pin} 4=2 \mathrm{~V} \\ & \operatorname{pin} 4=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 238 \\ & 39.6 \end{aligned}$	$\begin{gathered} 250 \\ 41.7 \end{gathered}$	$\begin{aligned} & 263 \\ & 43.8 \end{aligned}$	$\begin{aligned} & \mathrm{mAN} \\ & \mathrm{mAN} \end{aligned}$
Bandwidth			100		kHz
Sinking saturation	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.6 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Sourcing saturation	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=100 \mathrm{~mA} \\ & \mathrm{l}_{\text {OUT }}=300 \mathrm{~mA} \\ & \mathrm{l}_{\text {OUT }}=500 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

RETRACTION CIRCUIT $V_{\text {PIN20 }}=\mathbf{0 . 8 V}, \mathrm{V}_{\text {RET }}=2.5 \mathrm{~V}$

$\mathrm{I}_{\text {RET }}$ SET			0.75		V
Turn on time			300		ns
Turn off time			8		$\mu \mathrm{~s}$
Sink current $\left(\mathrm{I}_{\text {PIN12 }}\right)$	$\mathrm{V}_{\text {PIN12 }}=0.4 \mathrm{~V}$	34	50	150	mA
Source Voltage $\left(\mathrm{V}_{\text {PIN7 }}\right)$	$\mathrm{I}_{\text {PIN }}=-50 \mathrm{~mA}$	0.3	0.5	0.7	V

POWER FAIL DETECTION CIRCUIT

Reference Voltage		1.35	1.50	1.65	V
Reference Source Impedance			2.25		$\mathrm{k} \Omega$
5 V Threshold Hysteresis		4.40	4.575	4.75	V

LOGIC INPUTS					
Voltage High (V_{IH})		2	1.4		V
Voltage Low ($\mathrm{V}_{\text {LL }}$)			1.4	0.8	V
Current High ($l_{\text {IH }}$)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			± 10	mA
Current Low ($\mathrm{IIL}^{\text {) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { except pin } 20 \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text {, pin } 20 \text { only } \end{aligned}$	$\begin{gathered} \hline-40 \\ -250 \end{gathered}$	$\begin{gathered} -10 \\ -160 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

CURRENT CONSUMPTION

Pin $1+\operatorname{Pin} 11$	$\mathrm{~V}_{\text {PIN14 }}=\mathrm{V}_{\text {PIN15 }}=2.5 \mathrm{~V}$		10	15	mA
Pin 6	$\mathrm{~V}_{\text {PIN14 }}=2.5 \mathrm{~V}$		2.5	5.0	mA

FUNCTIONAL DESCRIPTION

POWER AMPLIFIER

The ML4506 power amplifier circuit is set up as a Howland Current source with a fixed gain of $1 / 4$ or $1 / 24$ (set by driving pin 4 high or low respectively). This architecture yields minimal cross-over distortion while maintaining low output cross conduction currents.

The gain figure refers to the ratio of input voltage to the output voltage seen across RSENSE. For example, at a $1 / 4$ gain setting, with $V(-)$ input at 2.5 V and the $\mathrm{V}(+)$ input at $3.5 \mathrm{~V},+500 \mathrm{~mA}$ would flow through the coil using a 0.5Ω sense resistor. Under the same conditions with pin 4 low, the current would be 83 mA . The ability to change from low to high gain allows more complete utilization of DAC resolution when in the track follow mode.
The output stage (figure 2) is designed to provide minimal saturation losses and employs a "composite PNP" for the sourcing drive and a saturable NPN to sink current. Sourcing saturation drop is typically 0.9 V while sinking saturation drop is typically 0.4 V .

Figure 1. Power Amplifier Topology.

POWER FAIL DETECT

The ML4506 power fail detection circuit consists of a precision trimmed reference, resistor dividers, and a comparator with an effective hysteresis of 30 mV . The output at pin 18 is open-collector and is normally tied to pin 1 which is internally pulled-up to 5 V .

RETRACT

The retract circuit features provision for very low voltage operation as well as voltage limiting when a "live" retract with 5 V on $\mathrm{V}_{\text {RET }}$ is performed. When pin 20 goes low, the internal NPN transistor will saturate, pulling SINK B (pin 11) low. A RETR OUT signal (open collector) saturates to drive an external PNP source transistor when pin 20 is low and when $\mathrm{V}_{\text {RET }}(\operatorname{pin} 6)$ is below 3.5 V . This portion of the circuit will function with less than 1 V on $\mathrm{V}_{\mathrm{RET}}$.
An internal voltage limited pull-up circuit is provided which sources current on pin 7 to the VCM. This limit is set by an external resistor (see fig. 7) This circuit will operated reliably down to a $\mathrm{V}_{\text {RET }}$ voltage of around 2.5 V . Pin 20 (Retract input) also serves as a flag to indicate an over-temperature condition on the die and goes low when the die temperature exceeds a safe operating limit (about $160^{\circ} \mathrm{C}$).

Figure 2. Power Output Stage.

Figure 3. Output Saturation Voltage vs. Output Current.

$$
\left(V_{C C}=P W R ~ V C=5 V\right)
$$

Figure 4. Output Current:
$V_{\text {IN }}=100 \mathrm{~Hz}$ Sine Wave, $100 \mathrm{~mA} A_{\text {P. }}$ Low Gain Mode ($V_{\text {PIN } 5}=0$), $R_{\text {SENSE }}=0.5 \Omega, R_{L}=10 \Omega$.

Figure 5. Output Current:
$\mathrm{V}_{\text {IN }}=1 \mathrm{kHz}$ Sine Wave, $100 \mathrm{~mA}_{\mathrm{P}-\mathrm{P}}$
Low Gain Mode ($V_{\text {PIN }} 5=0$), $R_{\text {SENSE }}=0.5 \Omega, R_{L}=10 \Omega$.
200 s Ch2

Figure 6. Total Harmonic Distortion vs. Frequency. Low Gain Setting ($\mathrm{V}_{\text {PIN } 5}=0$), $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}_{\text {P-P }}$ High Gain Setting ($\mathrm{V}_{\text {PIN5 }}=0$), $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}_{\text {P-P }}$

Figure 7. R ${ }_{\text {SET }}$ vs. Retract Source Voltage Limit.

APPLICATIONS

COMPENSATION

Figure 8 shows the equivalent $A C$ circuit for the transconductance amplifier.

Figure 8. AC Equivalent Circuit for Current Amplifier, Voice Coil Motor (VCM) and Snubber.

The amplifier's current bandwidth is limited by COUT which varies with the value chosen for $\mathrm{R}_{\text {SENSE }}$

$$
\mathrm{C}_{\mathrm{OUT}}=\frac{25 \mathrm{nF}}{\mathrm{R}_{\mathrm{SENSE}}}
$$

With no snubber (RS and CS) the bandwidth is limited to:

$$
\mathrm{F}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi} \sqrt{\frac{2.414}{\mathrm{~L}(\mathrm{M}) \mathrm{C}(\mathrm{OUT})}}
$$

Since this is a second order system with $L(M)$ and $C(O U T)$ forming a resonant circuit, some damping is desirable to reduce ringing in the step response. This is accomplished with resistive snubber. The optimum value of $R(S)$ occurs when the following condition is met:

$$
R(S)=\sqrt{\frac{L(V C M)}{C(O U T)}}
$$

For a given $C(S)$, setting $R(S)$ to this value will minimize the ringing in the transient response. Larger values of $R(S)$ will result in more ringing and more bandwidth. Smaller values of $R(S)$ will result in more ringing and less bandwidth. R(S) should not exceed 300Ω.
$\mathrm{C}(\mathrm{S})$ (snubber capacitor) values of between 200 nF and $1 \mu \mathrm{~F}$ are usually necessary to acheive the desired reduction of ringing in the step response. At optimum value of $R(S)$ larger values of $\mathrm{C}(\mathrm{S})$ further reduce the ringing but do not affect the bandwidth.

Tuning the current loop response can be best done simulating the network in figure 8 with a computer simulator (such as SPICE).

Figure 9. Typical Application: ML4506 used with ML2341 8-bit DAC provides up to 12-bit effective resolution.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4506CS	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$20-\operatorname{Pin}$ SOIC (S20W)
ML4506CR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$20-\mathrm{Pin}$ SSOP (R20)

Low Voltage Drop Voice Coil Servo Driver

GENERAL DESCRIPTION

The ML4508 is a voice coil power driver intended for use in High Performance 5V Hard Disk servo systems. The ML4508 contains all control circuitry necessary to drive the voice coils of most small drives. To maximize compliance voltage, the ML4508 includes two 1-Amp (typical) NPN drivers and provides drivers for external PNP transistors. In addition, power fail detection and a low voltage head retraction functions are provided for orderly shut-down of the drive.

The transconductance is programmed by a logic input at $1 / 4 \mathrm{~A} N$ and $1 / 24 \mathrm{AV}$ respectively, when using a 1Ω sense resistor. This allows for greater DAC resolution in digitally controlled servos during track follow without compromising dynamic range during seek.
The retraction circuit, main drive circuit, and control circuits are each powered from their own supplies. Retract allows the use of an external PNP retraction with as little as 1 V of back EMF from the spindle.

The power fail detection circuit includes a precision 1.5 V bandgap reference and a power fail comparator.

The ML4508 is implemented using Micro Linear's bipolar array technology. This allows for customization of the IC for a user's specific application.

FEATURES

- Low saturation voltage ($<1 \mathrm{~V}$ at 1A typically)

■ No cross-over distortion with low quiescent current

- Pin-programmable transconductance settings
- Retraction circuitry with programmable retract voltage and separate power pin
■ On-chip precision power fail detect circuitry
■ Over-temperature protection with flag output

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	$V_{\text {CC }}$	Supply input to power amplifiers.
2	$\begin{aligned} & \text { DISABLE } \\ & \text { PWR DOWN) } \end{aligned}$	A Logic "1" puts the IC into a low power state and disables the power amplifiers.
3	HIGH//-LOW	A logic " 1 " sets the transconductance gain to $1 / 4$ while a logic " 0 " sets the gain to $1 / 24$. Transconductance gain is the $\mathrm{V}_{\text {RSENSE }} \div \mathrm{V}_{\text {CONTROL }}$.
4	RETR OUT	Open collector ouput which pulls low during retract. Used to drive external power transistor to source retract current to the coil and can provide a braking signal to spindle.
5	RET SET	External set resistor to establish a voltage limit for the internal retract driver.
6	GND	Analog signal ground.
7	R(SENSE)	Current sense resistor terminal.
8	V (RET)	Supply pin for retract circuits.
9	SOURCE B	PNP Base drive ouput for inverting power amplifier.
10	PWR GND B	Power return pin for inverting power amplifier. Normally used for current sensing.
11	SINK B	Current sinking ouput for inverting power amplifier. Connects to voice coil (-) terminal.

PIN\#	NAME	FUNCTION
12	SOURCE A	PNP Base drive output for non- inverting power amplifier.
13	SINK A REF	Kelvin sensing point for power amplifier. Connect to SINK A.
14	SINK A	Current sinking output for non- inverting power amplifier. Connects to voice coil (+) terminal.
15	PWR GND A	Power return pin for non-inverting power amplifier. Normally used for current sensing.
16	CONTROL+	Positive input for current comand.
17	CONTROL-	Negative input for current command.
19	COMP 1	Pin for external compensation capacitor.
20	COMP 2 SENSE	Pin for external compensation capacitor. Center node of a resistor divider from +5V.
21	+5 V	Input for +5V for power fail detection and logic power supply.
22	$\overline{\text { POWER FAIL }}$Open Collector output drives low for low voltage conditions.	
24	RETRACT	A logic "0" initiates retract. Also used as an open-collector over temperature output flag.
For power fail comparator.		

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (pins 1,8) 7V
Voltage Pins 2,3,23 -0.3V to +7 V
Pins $4,7,9,11,12,13,14,16,17,22 \ldots \ldots .-0.3$ to $+V_{C C}$ Output Sink Current ... $\pm 1 \mathrm{~A}$
Retraction Current .. 80mA
Retract Set current (pin 5) .. 3mA

Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $150^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{C C}$ Supply Voltage .. 4.5 to 5.5 V
+5 V (pin 21) Supply Voltage 4.5 to 5.5 V
$\mathrm{V}_{\text {RET }}$ (pin 8) Supply Voltage 2.5V
Control + Voltage Range (pin $15=5 \mathrm{~V}$) 0 V to V_{CC}
Control - Voltage Range.......................... 2 V to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=$ Operating Range, $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$, CONTROL $-(\operatorname{pin} 17)=\mathrm{V}_{\mathrm{CC} / 2}, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1, \mathrm{Q} 2=\mathrm{MJE} 210, \mathrm{R}_{\mathrm{SET}}=3.7 \mathrm{k} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
AMPLIFIER					
Offset				± 10	mA
Gain	Pin $5=2 \mathrm{~V}$	238	250	263	mAN
	$\operatorname{Pin} 5=0.8 \mathrm{~V}$	39.6	41.7	43.8	mAN
Bandwidth			100		KHz
Sinking Saturation	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		0.1	0.6	V
	$\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$		0.2	0.8	V
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$		0.3	1.0	V
Sourcing Saturation	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$. 1		V
	$\mathrm{l}_{\text {OUT }}=300 \mathrm{~mA}$. 2		V
	$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$. 3		V
Source A/B Base Drive		10		50	mA
Q1/Q2 Standby Current	$\mathrm{V}_{\text {PIN } 16}=5 \mathrm{~V}$		4		mA
RETRACTION CIRCUIT V					
I(RET) SET			. 75		V
Turn On Time			800		ns
Turn Off Time			8		$\mu \mathrm{s}$
Source Voltage	$\begin{aligned} & \mathrm{V}_{\text {PIN } 23}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 8}=3 \mathrm{~V}, \\ & \mathrm{I}_{\text {PIN } 7}=50 \mathrm{~mA} \end{aligned}$	0.95	1.2	1.5	V
Sink Current	$V_{\text {PIN } 23}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 8}=1.2 \mathrm{~V},$ force 50 mA into pin 11	10	37	1000	mV
RETR OUT V_{OL}	$\mathrm{V}_{\text {PIN 23 }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {PIN 4 }}=1 \mathrm{~mA}$		0.1	0.4	V
POWER FAIL DETECTION CIRCUIT					
5 V Threshold		4.40	4.575	4.75	V
Hysteresis - 5V Sense			30		mV

ELECTRICAL CHARACTERISTICS

(Continued)
Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=$ Operating Range, $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{R}_{\mathrm{COIL}}=15 \Omega$, CONTROL $-(\operatorname{pin} 17)=\mathrm{V}_{\mathrm{CC} / 2}, \mathrm{C} 1=30 \mathrm{pF}, \mathrm{Q} 1, \mathrm{q} 2=\mathrm{MJE} 210, \mathrm{R}_{\mathrm{SET}}=3.7 \mathrm{k} \Omega$

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
LOGIC INPUTS AND OUTPUTS					
Voltage High (V_{IH})		2	1.4		V
Voltage Low (V_{IL})			1.4	0.8	V
Current High (I_{H})	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Current Low ($\mathrm{ILL}^{\text {) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { except pin } 23 \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \text { pin } 23 \text { only } \end{aligned}$	$\begin{gathered} -40 \\ -250 \\ \hline \end{gathered}$	$\begin{gathered} \hline-10 \\ -160 \\ \hline \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
Voltage Low (pins 22, 23)	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$. 4	V

OVER-TEMPERATURE DETECTION

T_{J} Threshhold			160		${ }^{\circ} \mathrm{C}$
Hysteresis			30		${ }^{\circ} \mathrm{C}$

CURRENT CONSUMPTION

Pin 21	Pin $21=5.5 \mathrm{~V}$		5	7	mA
Pin 1	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 16}=\mathrm{V}_{\mathrm{CC} / 2}$		5	10	mA
Pin 8	$\mathrm{~V}_{\mathrm{PIN} 8}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 23}=5 \mathrm{~V}$		3.5	5	mA

FUNCTIONAL DESCRIPTION

POWER AMPLIFIER

The ML4508 power amplifier circuit (figure 1) is set up as a Howland Current source with a fixed gain of $1 / 4$ or $1 / 24$ (set by driving pin 3 high or low respectively). This architecture yields minimal crossover distortion while maintaining low output cross conduction currents. The gain figure refers to the ratio of input voltage to the output voltage seen across $R_{\text {SENSE }}$. For example, at a $1 / 4$ gain setting, with $\mathrm{V}(-)$ input at 2.5 V and the $\mathrm{V}(+)$ input at 4.5 V , +500 mA would flow through the coil using a 1Ω sense resistor. Under the same conditions with pin 3 low, the current would be 83 mA . If lower input voltage swings and higher currents are desired, the overall transconductance gain may be increased by using a lower value of sense resistor, however offset current will increase proportionally. The ability to change from low to high gain allows more complete utilization of DAC resolution when in the track follow mode.
The output stage is designed to provide minimal saturation losses and employs an external PNP transistor for the sourcing drive and an internal saturable NPN to sink current. Sinking saturation drop is typically under 0.4 V . Sourcing saturation drop depends on the external transistors used.
Care should be taken to avoid drawing substrate currents due to negative excursions on any pin of the ML4508. Schoktty diodes should be included on both sides of the VCM to prevent negative excursions from forward biasing the substrate diodes on the IC.

Figure 1. Simplified Power Amplifier Schematic (High Gain Mode)

Two areas should be considered to avoid high frequency oscillation in the output stage:

1. Choose external PNP transistors with a F_{T} of at least 50 MHz .
2. An RC compensation network should be used to cancel the zero presented to the output by the L / R of the voice coil motor as shown in figure 2.

COMPENSATION

Figure 2 shows the equivalent AC circuit for the current amplifier.

Figure 2. AC Equivalent Circuit for Current Amplifier, Voice Coil Motor (VCM) and Snubber.

The amplifier's current bandwidth is limited by COUT which varies with the value chosen for $R_{\text {SENSE }}$

$$
\mathrm{C}_{\mathrm{OUT}} \approx \frac{1200 \times\left(\mathrm{C}_{\mathrm{COMP}}+12.8 \mathrm{pF}\right)}{R_{\text {SENSE }}}
$$

Where $\mathrm{C}_{\text {COMP }}$ is C 1 between pins 18 and 19 . With no snubber (R_{S} and C_{S}) the bandwidth is limited to

$$
\mathrm{F}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}
$$

Since this is a second order system with $L(M)$ and $C(O U T)$ forming a resonant circuit, some damping is desirable to reduce ringing in the step response. This is accomplished with a resistive snubber. The optimum value of $R(S)$ occurs when the following condition is met:

$$
R(S)=\sqrt{\frac{L(V C M)}{C(O U T)}}
$$

Figure 3. Output Current: $\mathrm{V}_{\mathbf{I N}}=100 \mathrm{~Hz}$ Sine Wave, $1 \mathrm{~V}_{\text {p-p }}$ Low Gain Mode $\left(\mathrm{V}_{\text {PIN } 3}=0\right), \mathrm{R}_{\text {SENSE }}=1 \Omega$

For a given $C(S)$, setting $R(S)$ to this value will minimize the ringing in the transient response. Larger values of $R(S)$ will result in more ringing and more bandwidth. Smaller values of $R(S)$ will result in more ringing and less bandwidth. C(S) (snubber capacitor) values of between 200 nF and 1 mF are usually necessary to achieve the desired reduction of ringing in the step response. At the optimum value of $R(S)$ larger values of $C(S)$ further reduce the ringing but do not affect the bandwidth.

Timing the current loop response can be easily done simulating the network in figure 2 with a computer simulator (such as SPICE).

POWER FAIL DETECT CIRCUIT

The ML4508 circuit consists of a precision trimmed reference, resistor dividers and an "or function" comparator with hysteresis. The output (open collector) of this circuit appears on pin 22. When either comparator input (pins 20 and 24) falls below the 1.5 V reference, pin 22 pulls low.

RETRACT CIRCUITS

When pin 23 goes low, pin 4 will pull low. The internal NPN transistor will saturate, pulling SINK B (pin 11) low. This portion of the circuit will function with less than 1 V on V(RET). An internal voltage limited pull-up transistor is provided which sources current on pin 7 to the VCM. This circuit will be operated reliably down to a V(RET) voltage of around 2.5 V .

Figure 4. Output Current: $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{KHz}$ Sine Wave, $1 \mathrm{~V}_{\text {P-p }}$ Low Gain Mode ($\mathrm{V}_{\text {PIN } 3}=0$), $\mathrm{R}_{\text {SENSE }}=1 \Omega$

Figure 5. Output Saturation Voltage vs Output Current ($\mathbf{Q}_{1}=\mathbf{Q}_{2}=$ MJE210)

Figure 7. Retract Source Voltage Limit

Figure 6. Output Saturation Voltage vs Output Current with BSR31 $\left(\mathrm{Q}_{1}=\mathrm{Q}_{\mathbf{2}}=\right.$ BSR31)

Figure 8. Retract Sink Voltage vs Current

Figure 9. Typical 12V Application

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4508CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	S20W

5V Sensorless Spindle Motor Controller

GENERAL DESCRIPTION

The ML4510 provides complete commutation for delta or wye wound Brushless DC (BLDC) motors without the need for signals from Hall Effect sensors. This IC senses the back EMF of the 3 motor windings (no neutral required) to determine the proper commutation phase angle using phase lock loop techniques. This technique will commutate virtually any 3-phase BLDC motor and is insensitive to PWM noise and motor snubbing.
Included in the ML4510 is the circuitry necessary for a Hard Disk Drive microcontroller driven control loop. The ML4510 controls motor current with either a constant off-time PWM or linear current control driven by the microcontroller. Speed feedback for the micro is a stable digital frequency equal to the commutation frequency of the motor. All commutation is performed by the ML4510. Braking and Power Fail are also included in the ML4510.

Since the timing of the start-up sequencing is determined by external circuitry, the system can be optimized for a wide range of motors and inertial loads.

The ML4510 modulates the gates of external N -channel power MOSFETs to regulate the motor current. The IC drives external PNP transistors or P-channel MOSFETs directly. Special circuits are used to save base drive power at low load currents.

FEATURES

- Back-EMF Commutation Provides Maximum Torque for Minimum "Spin-Up" Time for Spindle Motors
■ Accurate, Jitter-Free Phase Locked Motor Speed Feedback Output
- Operates on Single 5V Power Supply
- Linear or PWM Motor Current Control
- Easy Microcontroller Interface for Optimized StartUp Sequencing and Speed Control
- Power Fail Detect Circuit
- Drives External N-Channel FETs and PNP's or P-Channel FETs

BLOCK DIAGRAM

ML4510
28-Pin SOIC (S28W)

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
1	GND	Signal and Power Ground.
2	PNP1	Drives the external PNP power transistor driving motor PH1.
3	PNP2	Drives the external PNP power transistor driving motor PH 2 .
4	VCC2	5 V power.
5	PNP3	Drives the external PNP power transistor driving motor PH3.
6	$\mathrm{C}_{\text {OtA }}$	Compensation capacitor for linear motor current amplifier loop.
7	OTA OUT	Output of motor current error amplifier, normally connected to OTA IN or to external MOSFET gate.
8	OTA IN	Driving voltage for N1-N3. Normally tied to OTA OUT.
9-11	N1, N2, N3	Drives the external N -channel MOSFETs for PH1, PH2, PH3.
12	I(SENSE)	Motor current sense input.
13	$\mathrm{CoS}^{\text {S }}$	Timing capacitor for fixed offtime PWM current control.
14	CvCO	Timing capacitor for VCO.
15	VCO OUT	Logic output from VCO.

PIN \#	NAME	FUNCTION
16	$\overline{\text { RESET }}$	Input which holds the VCO off and sets the ML4510 to the RESET condition.
17	$\overline{\text { PWR FAIL }}$	A " 0 " output indicates 5 V is under-voltage.
18	ENABLE E/A	A " 1 " logic input enables the error amplifier and closes the back-EMF feedback loop.
19	NC	No Electrical Connection.
20	RC	VCO loop filter components.
21	((RAMP)	Current into this pin sets the initial acceleration rate of the VCO during start-up.
22	PH1	Motor Terminal 1.
23	PH2	Motor Terminal 2.
24	PH3	Motor Terminal 3.
25	VCC	5 V power supply. Terminal which is sensed for power fail.
26	$\overline{\text { BRAKE }}$	A " 0 " activates the braking circuit.
27	I(LIMIT)	Sets the threshold for the PWM comparator.
28	I(CMD)	Current Command for Linear Current amplifier.

OPERATING CONDITIONS

Temperature Range $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{CC} Voltage (pins 4, 25)
$5 \mathrm{~V} \pm 10 \%$
1 (RAMP) Current (pin 21) 0 to $100 \mu \mathrm{~A}$
I Control Voltage Range (pins 27, 28) 0 OV to 3 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}=5 \mathrm{~V}$, $\mathrm{R}_{\mathrm{SENSE}}=1 \Omega, \mathrm{C}_{\mathrm{OTA}}=\mathrm{C}_{\mathrm{VCO}}=.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=.02 \mu \mathrm{~F}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OScillator (VCO) Section (Mode 1 or 2 unless otherwise specified)		670		$\mathrm{~Hz} / \mathrm{V}$	
Frequency vs. $\mathrm{V}_{\text {PIN } 20}$	$1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{PIN} 20} \leq 3.5 \mathrm{~V}$	830	1675	2500	Hz
Frequency	$\mathrm{V}_{\mathrm{VCO}}=2.5 \mathrm{~V}$	120	245	350	Hz
	$\mathrm{~V}_{\mathrm{VCO}}=.5 \mathrm{~V}$		125	250	mV
Reset Voltage at $\mathrm{C}_{\mathrm{VCO}}$	Mode $=0$				

Sampling Amplifier

V_{RC}	Mode 0		125	250	mV
I_{RC}	Mode 1, $\mathrm{R}_{\mathrm{RAMP}}=39 \mathrm{~K} \Omega$	16	33	50	$\mu \mathrm{~A}$
	Mode 2A, $\mathrm{V}_{\mathrm{PH} 2}=0.5 \mathrm{~V}$	30	60	90	$\mu \mathrm{~A}$
	Mode 2A, $\mathrm{V}_{\mathrm{PH} 2}=2.5 \mathrm{~V}$	-6	2	6	$\mu \mathrm{~A}$
	Mode 2A, $\mathrm{V}_{\mathrm{PH} 2}=4.5 \mathrm{~V}$	-30	-60	-90	$\mu \mathrm{~A}$

Motor Current Control Section

I(SENSE) Gain	$\mathrm{V}_{\text {PIN } 27}=5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {PIN } 28} \leq 2.5 \mathrm{~V}$	4	5	6	$\mathrm{~V} / \mathrm{V}$
One Shot Off Time		12	25	33	$\mu \mathrm{~s}$
I(CMD) Transconductance Gain			.19		mmho

Power Fail Detection Circuit

5 V Threshold		3.8	4.25	4.5	V
Hysteresis			70		mV

Logic Inputs

Voltage High $\left(\mathrm{V}_{\mathrm{IH}}\right)$		2			V
Voltage Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$.8	V
Current High $\left(\mathrm{I}_{\mathrm{IH}}\right)$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	-10	1	10	$\mu \mathrm{~A}$
Current Low $\left(\mathrm{ILI}^{\prime}\right)$	$\mathrm{V}_{\mathbb{I N}}=0.4 \mathrm{~V}$	-250	-120	-60	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}=5 \mathrm{~V}$, $\mathrm{R}_{\text {SENSE }}=1 \Omega, \mathrm{C}_{\mathrm{OTA}}=\mathrm{C}_{\mathrm{VCO}}=.01 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{OS}}=.02 \mu \mathrm{~F}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Outputs	$\mathrm{I}(\mathrm{CMD})=\mathrm{I}(\mathrm{LIMIT})=2.5 \mathrm{~V}$				
IPNP Low		50	75	100	mA
IPNP High	Off State	-100		100	$\mu \mathrm{A}$
V_{N} High	$\mathrm{V}_{\mathrm{PIN} \mathrm{8}}=0.5 \mathrm{~V}$	2.4	3.1	3.8	V
V_{N} Low			. 2	. 7	V
A_{V} Pin 8 to V_{N}	$\mathrm{V}_{\mathrm{PIN} 8}=0.5 \mathrm{~V}$	-3.0	-3.75	-4.5	V/V
LOGIC Low	$\mathrm{l}_{\text {OUT }}=0.5 \mathrm{~mA}$. 4	V
LOGIC I ${ }_{\text {OUT }}$ High			5		$\mu \mathrm{A}$
Supply Currents	(N and PNP Outputs Open)		$\mathrm{l}_{\text {LMT }}=2.5 \mathrm{~V}$	$\mathrm{I}_{\text {CMD }}=0 \mathrm{~V}$	
V_{CC} Current (Pin 25)			28	40	mA
$\mathrm{V}_{\mathrm{CC} 2}$ Current (Pin 4)			2	5	mA

FUNCTIONAL DESCRIPTION

The ML4510 provides closed-loop commutation for 3 -phase brushless motors. To accomplish this task, a VCO, Integrating Back-EMF Sampling error amplifier and sequencer form a phase-locked loop, locking the VCO to the back-EMF of the motor. The IC also contains circuitry to control motor current with either linear or constant offtime PWM modes. Braking and power fail detection functions are also provided on chip. The ML4510 is designed to drive external power transistors (N -channel MOSFET sinking transistors and PNP sourcing transistors) directly, and contains a special circuit to reduce PNP base currents when output current demand is reduced.
Start-up sequencing and motor speed control are accomplished by a microcontroller. Speed sensing is accomplished by monitoring the output of the VCO, which will be a signal which is phased-locked to the commutation frequency of the motor.

BACK-EMF SENSING AND COMMUTATOR

The ML4510 contains a patented back-EMF sensing circuit which samples the phase which is not energized (Shaded area in figure 2) to determine whether to increase or decrease the commutator (VCO) frequency. A late commutation causes the error amplifier to charge the filter $(R C)$ on pin 20 , increasing the VCO input while early commutation causes pin 20 discharge. Analog speed control loops can use pin 20 as a speed feedback voltage.

The input impedance of the three PH inputs is about $8 \mathrm{~K} \Omega$ to GND. When operating with a higher voltage motor, the PH inputs should be divided down in voltage so that the maximum voltage at any PH input does not exceed VCC. See ML4411 data sheet for applications.

VCO AND PHASE DETECTOR CALCULATIONS

The VCO should be set so that at the maximum frequency of operation (the running speed of the motor) the VCO

Figure 1. Back EMF Sensing Block Diagram.

Figure 2. Typical Motor Phase Waveform with Back-EMF Superimposed (Ideal Commutation).
control voltage will be no higher than $V_{C C} C_{\text {MIN }}-1 \mathrm{~V}$. The VCO maximum frequency will be:

$$
\mathrm{F}_{\text {MAX }}=0.05 \times \text { POLES } \times R P M
$$

where POLES is the number of poles on the motor and RPM is the maximum motor speed in Revolutions Per Minute.

The minimum VCO gain derived from the specification table (using the minimum $\mathrm{F}_{\mathrm{VCO}}$ at $\mathrm{V}_{\mathrm{VCO}}=2.5 \mathrm{~V}$) is:

$$
\mathrm{K}_{\mathrm{VCO}(\mathrm{MIN})}=\frac{3.32 \times 10^{-6}}{\mathrm{C}_{\mathrm{VCO}}}
$$

Assuming that the $\mathrm{V}_{\mathrm{VCO}(\mathrm{MAX})}=3.2 \mathrm{~V}$, then

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{3.2 \times 3.32 \times 10^{-6}}{\mathrm{~F}_{\mathrm{MAX}}}
$$

or

$$
\mathrm{C}_{\mathrm{VCO}}=\frac{212}{\text { POLES } \times \mathrm{RPM}} \mu \mathrm{~F}
$$

Figure 3 shows the transfer function of the Phase Lock Loop with the phase detector formed from the sampled phase through the Gm amplifier with the loop filtered formed by R, C_{1}, and C_{2}.
The impedance of the loop filter is

$$
Z_{R C}(s)=\frac{1}{C_{1} s} \frac{\left(s+\omega_{\text {LEAD }}\right)}{\left(s+\omega_{\mathrm{LAG}}\right)}
$$

Figure 3. Back EMF Phase Lock Loop Components.

Figure 4. VCO Output Frequency vs. V Vco (Pin 20)
Where the lead and lag frequencies are set by:

$$
\begin{aligned}
& \omega_{\text {LEAD }}=\frac{1}{\mathrm{RC}_{2}} \\
& \omega_{\text {LAG }}=\frac{\mathrm{C}_{1}+\mathrm{C}_{2}}{\mathrm{RC}_{1} \mathrm{C}_{2}}
\end{aligned}
$$

Requiring the loop to settle in 20 PLL cycles with a spread of 10 between $\omega_{\text {LEAD }}=10 \times \omega_{\text {LAG }}$ produces the following calculations for R, C_{1} and C_{2} :

$$
\begin{aligned}
& \mathrm{C}_{1} \approx \frac{1.97 \times 10^{-9}}{\mathrm{C}_{\mathrm{VCO}} \times \mathrm{F}_{\mathrm{VCO}}^{2}} \\
& \mathrm{C}_{2}=9 \times \mathrm{C}_{1} \\
& \mathrm{R}=\frac{12.65}{\mathrm{C}_{2} \times \mathrm{F}_{\mathrm{VCO}}}
\end{aligned}
$$

START-UP SEQUENCING

When the motor is intitially at rest, it is generating no back-EMF. Because a back-EMF signal is required for closed loop commutation, the motor must be started "open-loop" until a velocity sufficient to generate some back-EMF is attained (around 100 RPM).

Two modes are possible for starting the motor. For the lowest possible starting time, the chip is held in the reset (mode R) state by holding pin 16 low and providing full current to the motor (figure 5).

Step	Pin 16	Pin 18	Pin 21	I(LIMIT) I(CMD)
1	0	0	Fixed	$I_{\text {MAX }}$
2	1	0	Fixed	$I_{\text {MAX }}$
3	1	1	0	$I_{\text {MAX }}$

Figure 5. Minimum Time Start-Up Sequence.

Step 1: The IC is held in reset (mode R) with full power applied to the windings (see figure 7). This aligns the rotor to a position which is 30° (electrical) before the center of the first commutation state.

Step 2: A fixed current is input to pin 21 and appears as a current on pin 20, and will accelerate the motor at a fixed rate.

Step 3: When the motor speed reaches about 100 RPM, the back-EMF loop can be closed by pulling pin 18 low.
Using this technique, some reverse rotation is possible. The maximum amount of reverse rotation is $360 / \mathrm{N}$, where N is the number of poles. For an 8 pole motor, 45° reverse rotation is possible.

STATE	OUTPUTS						INPUT SAMPLING
	N1	N2	N3	PNP1	PNP2	PNP3	
R or 0	OFF	ON	OFF	ON	OFF	ON	N/A
A	OFF	OFF	ON	ON	OFF	OFF	PH2
B	OFF	OFF	ON	OFF	ON	OFF	PH1
C	ON	OFF	OFF	OFF	ON	OFF	PH3
D	ON	OFF	OFF	OFF	OFF	ON	PH2
E	OFF	ON	OFF	OFF	OFF	ON	PH1
F	OFF	ON	OFF	ON	OFF	OFF	PH3

Figure 6. Commutation State Table.

Figure 7. Start-Up Timing and Mode Sequencing.

SPEED CONTROL — CURRENT LOOP

To facilitate speed control, the ML4510 includes two current control loops - linear and PWM (figure 8). The linear control loop senses the motor current on the l(SENSE) terminal through R RENSE. An internal current sense amplifier's output modulates the gates of the 3 N -channel MOSFET's when OTA OUT is tied to OTA IN, or can modulate a single MOSFET gate to control current.

The ML4510 also includes a current mode constant offtime PWM circuit. When motor current builds to the threshold set on I(LIMIT) input (pin 27), a one-shot is fired whose timing is set by C_{Os}. The current in the motor will be controlled by the lower of pin 27 and pin 28.

OUTPUT DRIVERS

The motor's source transistor drivers are open-collector NPN's with internal $8 \mathrm{~K} \Omega$ pull-up resistors, whose current is controlled according to the current demanded through the motor. To conserve power, the ML4510 sets the current to PNP1, PNP2, and PNP3, proportional to the lower of pin 27 and pin 28.

Drivers N1 through N3 are totem-pole outputs capable of sourcing and sinking 10 mA . Switching noise in the external MOSFETs can be reduced by adding resistance in series with the gates.

BRAKING

Applying a logic 0 on pin 26 activates the braking circuit. The brake circuit turns on PNP1 through PNP3 and turns off NPN1 through NPN3.

Figure 8. Current Control and Output Drive.

Figure 9. I(LIMIT) Output Off-Time vs. Cos.

Figure 10. Available PNP Drive Current vs. I(CMD) Input.

APPLICATIONS

Figure 11 shows a typical application of the ML4510 in a hard disk drive spindle control. Although the timing necessary to start the motor in most applications would be generated by a microcontroller, Figure 12 shows a simple "one-shot" start-up timing approach.
Speed control can be accomplished either by:

1. Sensing the VCO OUT frequency with a Microcontroller and adjusting I(CMD) via an analog output from the Micro (PWM DAC).
2. Using analog circuitry for speed control (Figure 13).

Q1, Q2, and Q3 are MJE210 or equivalent. Q4, Q5, and Q6 are IRFU010 or equivalent. Base resistors (50Ω) are included to reduce power dissipation in the IC during start-up. If requested currents are low, these can be eliminated. Switching transients due to commutation can be reduced by increasing the 470Ω gate resistors on Q4-Q6.

Figure 11. ML4510 Typical Application.

Figure 12. Analog Start-up Circait.

Symbol	Value
A1	LM358
Q1	74 HC 14
D1, D2	1 N 4148
R1	$1 \mathrm{M} \Omega$
R2	$1 \mathrm{M} \Omega$
R3	$100 \mathrm{~K} \Omega$

Symbol	Value
R4	$100 \mathrm{~K} \Omega$
R5	$50 \mathrm{~K} \Omega$
R6	$50 \mathrm{~K} \Omega$
C 1	$3.3 \mu \mathrm{~F}$
C 2	$3.3 \mu \mathrm{~F}$
C 3	$.47 \mu \mathrm{~F}$

Figure 13. Analog Speed Control.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4510CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$28-$ Pin SOIC (S28W)

ML4532, ML4533, ML4536

Servo Burst Area Detector

GENERAL DESCRIPTION

The ML4532 and ML4533 Area Detectors are designed to minimize the pipeline transport delay while accurately quantizing the area of servo bursts in highspeed embedded servo systems. Combined with the ML2261 or ML2264 High Speed A/D Converters, the ML4532 and ML4533 are designed to capture back-toback servo bursts in a 700ns or larger window. Power dissipation is minimized by the use of a digital power down pin which allows the area detector to be powered down between the servo sectors. The ML4536 is the ML4533 with different reference voltage levels.
The ML4532 includes a PWM D/A for microprocessor control of the actuator driver, changing the REF $_{\text {AGC }}$ pin voltage during head change, or other system control functions.

FEATURES	ML.4532	ML4533	ML4536
Package Options	20-Pin PCC	$16-$ Pin	16-Pin
	or SSOP	SOIC	SOIC
Zero-Scale Ref. Output Voltage	1.25 V	1.25 V	1.0 V
Full-Scale Ref. Output Voltage	3.75 V	3.75 V	3.4 V
Reference Output Voltage	2.5 V	2.5 V	2.2 V
PWM D/A Onboard	Yes	No	No

FEATURES

- Allows for Area Detection of 1μ s back-to-back bursts
- AGC amplifier for maintaining accuracy
- 0.2% nonlinearity between 25% and 75% of input signal range
- 2% nonlinearity over the input signal range
- Provides zero- and full-scale outputs for A/D converter
- 5 V supply, at 29 mA for ML4533/ML4536, 35mA for ML4532
- Digitally controlled power down for minimizing power between sectors
- Bandgap Reference output
- ML4532 includes PWM D/A for controlling voice coil driver or AGC during head change
- ML4533/ML4536 available in 16-pin SOIC package ML4532 available in 20 -pin PCC or SSOP package
- Reference outputs defining the minimum and maximum demodulation output values

TYPICAL APPLICATION

Typical HDD Digital Servo Application

ML4532 BLOCK DIAGRAM AND PIN CONNECTION

20-Pin SSOP

ML4533/ML4536 BLOCK DIAGRAM AND PIN CONNECTION

16-Pin SOIC (ML4533)

16-Pin SOIC (ML4536)

PIN DESCRIPTION

$\begin{gathered} \text { ML4532 } \\ \text { PIN \# } \end{gathered}$	ML4533/ ML4536 PIN \#	NAME	DESCRIPTION
1	1	$\begin{aligned} & 1.25 \mathrm{~V}_{\text {REF }} / \\ & 1.00 \mathrm{~V}_{\text {REF }} \end{aligned}$	Zero scale reference output.
2		D/AOUT	Analog output of PWM D/A.
3	2	$\begin{aligned} & 2.50 \mathrm{~V}_{\text {REF }} \\ & 2.20 \mathrm{~V}_{\text {REF }} \end{aligned}$	2.50 voltage reference output.
4		CPWM	PWM D/A smoothing capacitor.
5	3	RESET	Reset, active high.
6	4	$\begin{gathered} \text { DEMOD } \\ \text { OUT } \end{gathered}$	Area detector output.
7	5	$\mathrm{C}_{\text {AGC }}$	AGC capacitor.
8	6	GATE	Defines area detect window, active high.
9	7	TP ${ }_{\text {AGC }}$	Output test point for AGC.
10	8	$\mathrm{H}_{\text {AGC }}$	AGC hold input, AGC active when high; AGC constant when low.

$\begin{gathered} \text { ML4532 } \\ \text { PIN \# } \end{gathered}$	ML4533/ ML4536 PIN \#	NAME	DESCRIPTION
11	9	IN-	Negative input.
12	10	IN^{+}	Positive input.
13	11	$\mathrm{V}_{\text {CC }}$	5 V power supply.
14	12	ZERO X	Zero detector crossing output.
15	13	GND	Ground.
16		MSB PWM $^{\text {P }}$	PWM D/A most significant bit input.
17	14	P_{DN}	Power down control, reduces power if logic high.
18	15	$\begin{aligned} & 3.75 \mathrm{~V}_{\mathrm{REF}} \\ & 3.40 \mathrm{~V}_{\mathrm{REF}} \end{aligned}$	Full scale reference output.
19		LSBPWM	PWM D/A least significant bit input.
20	16	$\mathrm{REF}_{\text {AGC }}$	AGC voltage reference.

OPERATING CONDITIONS

Temperature Range	0 to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC})	$5 \mathrm{~V} \pm 5 \%$
$\left(\mathrm{l}_{\mathrm{N}_{+}}\right)$- ($\left(\mathrm{I}_{\mathrm{N}_{-}}\right)$	$1 \mathrm{~V}_{\mathrm{P} \text { - }}$
$\mathrm{C}_{\text {AGC }}$. 100pF
$\mathrm{REF}_{\text {AGC }}$	2.5 V
$\mathrm{C}_{\text {PWM }}$. $01 \mu \mathrm{~F}$
C_{H} at DEMOD OUT	100pF

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to 5.25 V , and external component values as recommended above, unless otherwise specified.

PARAMETER	NOTES	CONDITIONS	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 2) } \end{array}$	MAX	UNITS
DEMODULATOR						
Differential Input Range	3	For Full Scale Output	. 25		2	$\mathrm{V}_{\text {P-P }}$
Differential AGC Range	3		0.8		1.5	V/V
Differential Input Resistance				4		$\mathrm{k} \Omega$
Differential Input Capacitance				5		pF
Common Mode Input Resistance				2		$\mathrm{k} \Omega$
Power Supply RR				40		dB
Differential Nonlinearity	$\begin{aligned} & 5,3 \\ & 5,4 \end{aligned}$	25% to 75% of Full Scale Zero to Full Scale		$\begin{aligned} & .2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
DEMOD OUT Offset Current		$\mathrm{V}_{\mathrm{IN}}= \pm 500 \mathrm{mV}$			20	$\mu \mathrm{A}$
Maximum DEMOD OUT Charge Current	3	GATE $=$ High	500			$\mu \mathrm{A}$
DEMOD OUT Leakage Current	3	GATE = Low			+5	$\mu \mathrm{A}$
DEMOD OUT Reset Voltage (ML4532/33) (ML4536)		-	$\begin{gathered} 1.15 \\ 0.9 \end{gathered}$	$\begin{gathered} 1.25 \\ 1.0 \end{gathered}$	$\begin{gathered} 1.35 \\ 1.1 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DEMOD OUT Reset Current		Discharge, RESET $=$ High	2.0			mA

AUTOMATIC GAIN CONTROL

AGC Dynamic Range	3		2.5			V / V
AGC Output Swing	3		1			V
$C_{\text {AGC }}$ Charging Current	3		150		250	$\mu \mathrm{~A}$
$\mathrm{C}_{\text {AGC }}$ Discharging Current	3		150		250	$\mu \mathrm{~A}$
$\mathrm{C}_{\text {AGC Leakage Current }}$	3				5	$\mu \mathrm{~A}$

VOLTAGE REFERENCES

$1.25 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4532/33)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.20	1.25	1.30	V
$3.75 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4532/33)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.60	3.75	3.90	V
$2.50 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4532/33)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.40	2.50	2.60	V
$1.0 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4536)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.95	1.0	1.05	V
$3.4 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4536)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.2	3.4	3.6	V
$2.2 \mathrm{~V}_{\text {REF }}$ Output Voltage (ML4536)	3	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.05	2.2	2.35	V
Load Regulation	3	$0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{OUT}} \leq 5 \mathrm{~mA}$	-5		+5	$\mathrm{mV} / \mathrm{mA}$
Line Regulation			-30		+30	mV / V

DIGITAL AND DC

Logical " 0 " Input Voltage	3				. 8	V
Logical " 1 " Input Voltage	3		2.0			V
Logical " 0 " Input Current	3	$\mathrm{V}_{1 \mathrm{~N}}=0.4 \mathrm{~V}$			-1.5	mA
Logical "1" Input Current	3	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$			+100	$\mu \mathrm{A}$
Logical "0" Output Voltage	3	ZERO X, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$. 5	V
Logical "1" Output Voltage	3	$\mathrm{I}_{\text {OUT }}=-1 \mathrm{~mA}$	3.0			V
$\begin{array}{ll}\text { Supply Current } & \text { ML4532 } \\ & \text { ML4533/ML4536 }\end{array}$	3	$\begin{aligned} & \mathrm{P}_{\mathrm{DN}}=\mathrm{Low} \\ & \mathrm{P}_{\mathrm{DN}}=\text { High } \\ & \mathrm{P}_{\mathrm{DN}}=\mathrm{Low} \\ & \mathrm{P}_{\mathrm{DN}}=\text { High } \end{aligned}$		$\begin{array}{r} 11 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 15 \\ & 38 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Monotonicity	4		9	10		Bits
LSB to MSB Ratio	3		16.0	16.5	18.0	V/V

ELECTRICAL CHARACTERISTICS (Continued)
The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to 5.25 V , and external component values as recommended above, unless otherwise specified.

PARAMETER	NOTES	TYP (Note 2)						MAX	UNITS
D/A CONVERTER (ML4532 Only)	3	$R_{\mathrm{L}}=5 \mathrm{~K}$	MIN	1.25		3.75			
Output Voltage Swing	3				.8	V			
Logical "0" Input Voltage	3		2.0			V			
Logical " 1 " Input Voltage	3	$\mathrm{~V}_{\mathrm{IL}}=.4 \mathrm{~V}$			-1	mA			
Logical " 0 " Input Current	3	$\mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}$			300	$\mu \mathrm{~A}$			
Logical " 1 " Input Current									

DYNAMIC AND AC PARAMETERS (Figures 1 and 2)

f_{B}, Burst Input Frequency	4		1		10	MHz
t_{GS}, Gate Edge Setup Prior to Burst \downarrow Zero Crossing	4,6				30	ns
treset, $^{\text {, Reset Pulse Width }}$	4, 6	$\mathrm{C}_{\mathrm{H}} \leq 200 \mathrm{pF}$	300			ns
$t_{\text {BZX }}$ Burst Zero Crossing to ZERO X Output	4, 6	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			25	ns
tPG , Power Down \downarrow to Gate \dagger	4, 5			200	400	ns

Note 1: Absolute Maximum Ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.
Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
Note 3: Parameter guaranteed and 100% production tested.
Note 4: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.
Note 5: Linearity measured as a percentage of the midpoint between 25% to 75% of full scale.
Note 6: Timing measured at 1.4 V .

Figure 1. AGC Burst Timing

Figure 2. Burst Area Detect Timing

TYPICAL PERFORMANCE CURVES

Figure 3. DEMOD Output Current vs. Input

Figure 4. Linearity vs. Input

1.0 FUNCTIONAL DESCRIPTION

The ML4532, ML4533 and ML4536 are composed of an AGC amplifier, an area detector, and a band-gap reference with three buffered outputs. In addition the ML4532 (see Figure 5) includes a pulse width modulation D/A. The ML4536 is essentially the ML4533 with a different set of reference voltages.

1.1 INPUT AMPLIFIER AND AUTOMATIC GAIN CONTROL

The inputs of the ML4532, ML4533 and ML4536 are intended for use at the output of the read channel filter, accepting a $0.25 \mathrm{~V}_{\text {P-p }}$ to $2 \mathrm{~V}_{\text {P-p }}$ signal range. The input amplifier and AGC circuit of these area detectors operate in a differential signal mode to provide good common mode and power supply rejection. The purpose of the AGC loop is to maintain a constant area detect value that correlates to the zero scale $\left(1.25 \mathrm{~V}_{\text {REF }} / 1.0 \mathrm{~V}_{\text {REF }}\right)$ and full scale ($3.75 \mathrm{~V}_{\text {REF }} / 3.4 \mathrm{~V}_{\text {REF }}$) output values based upon the minimum and maximum burst value. The sensing for the AGC is at the output of the area detector, allowing signal ranging based on the area of burst rather than the signal level of the burst. The AGC is intended to be updated at every sector of servo position bursts such that the signal variances due to platter radius and differences in read channel data frequencies can be corrected. The initial gain of the AGC circuit is established by the voltage applied to the $\mathrm{REF}_{\mathrm{AGC}}$ input.
In this closed-loop system, the area detected output voltage is fed back and compared with the REF AGC voltage in the G_{M} amplifier with a G_{M} of $1 / 4000$ ohms, to provide a gain control current, charging and discharging $\mathrm{C}_{\mathrm{AGC}}$.

The AGC value is held constant by the hold function and is controlled by $H_{A G C}$ pin. When $H_{A G C}$ is at a logic high the level of gain can change up or down and is held at a constant gain with a logic low input.
A capacitor from ground to the $\mathrm{C}_{\mathrm{AGC}}$ pin holds the gain setting when $H_{A G C}$ is at a logic low level and the area detector output does not affect the gain setting in this mode. See figure 1 for the AGC burst timing.

1.2 AREA DETECTOR

The area detector provides a measurement of servo burst area during a time window beginning at the first falling zero crossing edge after the GATE input is placed in a logic high state and ends at the first falling zero crossing edge after the GATE input is placed in a logic low state. The Zero crossing output enables the user to time the gate pulse by counting zero crossings. The analog input should be without open baseline by either keeping burst pulse spacing sufficiently close to avoid it or band limiting the signal. In most cases, both are necessary.

a. May clock anywhere and give multiple transitions, not acceptable.

b. Proper spacing.

$$
\Omega \Omega \Omega
$$

c. Band limiting.

The value of the area measurement is held on the output hold capacitor (C_{H}) until the RESET line is asserted. The RESET pin when placed in a logic high state for at least 300 ns resets the area detector output to 1.25 V which is the zero scale reference point and equals the voltage value on the $1.25 \mathrm{~V}_{\text {REF }}$ pin. See Figure 2 for position area burst detection timing.

ZERO X Detector Output

The output of the zero crossing detector (comparator) is provided for system synchronization. This signal is internally generated in ECL, but an internal ECL to TTL converter is provided to simplify external interfacing to this signal.

1.3 BANDGAP REFERENCE

A 2.5 V bandgap reference is included on the ML4532 and ML4533 and a 2.2 V one in the ML4536, to set up internal biasing and establish the on-track reference level. This is also a buffered output. Full-scale ($\mathrm{V}_{\mathrm{REF}+}$) and zero scale ($\mathrm{V}_{\text {REF- }}$) outputs are derived and buffered from the bandgap to simplify the interface to A/D converters, such as the ML2261 or ML2264. The $1.25 \mathrm{~V}_{\text {REF }}$ pin is tied directly to the $V_{\text {REF- }}$ pin of the A / D converter and with a 510Ω resistor to ground. The $3.75 \mathrm{~V}_{\text {REF }}$ pin is tied directly to the $\mathrm{V}_{\text {REF }}$ pin of the high speed A/D converter. The ML4536 offers a $1.0 \mathrm{~V}_{\text {REF }}$ and $3.4 \mathrm{~V}_{\text {REF }}$ for interface with the A/D converter on the Zilog type microcontroller devices.

1.4 PWM D/A OF THE ML4532

A D/A is included on the ML4532 for driving the VCM driver to position the head or for any other desired system error compensation, such as processorcontrolled AGC set point during head change. This is a PWM D/A and requires a pulse width modulation logic signal from the microcontroller signal to be applied to the $M_{S B} B_{P W M}$ and LSBPWM pins. The buffered and filtered output appears at the (D/A OUT) pin. This output voltage swing is centered around the $2.5 \mathrm{~V}_{\text {REF }}$ pin $(2.5 \mathrm{~V})$. The end-points of the D / A output are defined by:

PWM DAC Output Description:

	Duty Cycle at		Voltage
Range Point	MSBPWM	LSBPWM	Output
"Negative" Full-Scale:	0%	0%	1.094 V
	0%	100%	1.250 V
	100%	0%	3.594 V
"Positive" Full Scale:	100%	100%	3.750 V

The D / A is designed for 8 -bit binary coding with the MSB weighted 16 times the LSB. The MSBPWM and LSBPWM inputs are negative true in that if these inputs are in a low state for 100% of the time the D/A output will be 1.094 volts and if are held in a high state for 100% of the time the output will be at 3.75 volts. The D/A output voltage is 1.25 volts if the MSB PWM input pulse width has a $1 / 16$ or 6.25% positive duty cycle and the LSBPWM is in a constant low state or if the MSBPWM input is held in a low state and the LSBPWM input is held in a high state. The output voltage range that is controlled by the MSBPWM input is 2.5 volts and the LSB ${ }_{\text {PWM }}$ input controls 156 mV . The time constant for the PWM smoothing filter is approximately $3 \mathrm{k} \Omega \times$ $\mathrm{C}_{\text {PWM }}$. The external capacitor (CPWM) should be made sufficiently large to smooth out the PWM ripple.

Figure 5. ML4532 Functional Block Diagram

Figure 6. Typical Application ML4533/ML4536

Figure 7. ML4532 Application Timing with ML2261 A/D Converter

ML4532, ML4533, ML4536

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML4532CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q20)
ML4532CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SSOP (R20)
ML4533CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S16)
ML4536CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED SOIC (S16)

Area Detector Based Embedded Servo Demodulator

GENERAL DESCRIPTION

The ML4534 Embedded Servo Demodulator IC is designed for use in the hybrid data surface channel of an high-performance disk drive. Hybrid data are interleaved on the data surface with data records and encoded in A / B differential burst format, with a AGC field preceding the burst information. The AGC field is used by the read channel to set AGC gain levels in the burst area, which once established are held fixed for the duration of the servo burst. The demodulator measures burst amplitude using an area detection scheme, for improved noise immunity and provides both ($\mathrm{A}-\mathrm{B}$) and ($\mathrm{A}+\mathrm{B}$), to permit position error normalization with on-chip synchronization and reset functions. Using the SEL and CARR inputs the on-chip multiplexer allows selection of either (A-B) or $(A+B)$ as the output. The multiplexer and area detection capacitors operate in concert to provide a hold capability for both the ($A-B$) and ($A+B$) outputs. Also included is an uncommitted operational amplifier which could be used for voice-coil motor current sensing.

FEATURES

- Allows for Area Detection of back-to-back bursts
- 2% nonlinearity over input signal range
- Reset forces voltage on the Area Detecting capacitors $\mathrm{C}_{\mathrm{ADD}}$ to $\mathrm{V}_{\text {REF }} \& \mathrm{C}_{\mathrm{ADS}}$ to $\mathrm{V}_{\mathrm{REF}} / 2$
- Separate Reset provided for Resync Flip-Flop
- Muxed/Selectable (A-B) \& (A+B) demodulator output
- General purpose operational amplifier, applicable for use in voice coil motor current sensing
- 5 V supply, 20-pin, J-leaded, PLCC package

BLOCK DIAGRAM

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	VAGC	Gain Control input on the VGA
2	VAGCTP	Test point connected through an isolation resistor to the output of the VGA
3	RESET	Asserting this input pin resets the area detector (DIFF) to $\mathrm{V}_{\text {REF }}(+2.5 \mathrm{~V})$ and the area detector (SUM) to $\mathrm{V}_{\text {REF }} / 2$
4	HYBOUT	Output of the multiplexing amplifier, with $\mathrm{V}_{\text {REF }},(\mathrm{A}-\mathrm{B})$ or $(\mathrm{A}+\mathrm{B})$ area detector output, depending on the state of the SEL \& CARR pins.
5	$V_{\text {ReF }}$	+2.5 V reference voltage input.
8	CHSUM	The $(A+B)$ area detector integrating capacitor is connected between this pin and the ground.
7	$\mathrm{V}_{\text {CC }}$	+5 Volt supply
6	CHDIFF	The ($\mathrm{A}-\mathrm{B}$) area detector integrating capacitor is connected between this pin and the ground.
9	GND	Ground
10	RESETFF	Active high signal resets the resynch flip-flop
11	SEL	This pin in conjunction with the CARR pin, governs the multiplexer channel selection as follows : SEL CARR Mux Channel $\begin{array}{lll} 0 & X & V_{\text {REF }} \\ 1 & 0 & (A-B) \\ 1 & 1 & (A+B) \end{array}$
12	CARR	Asserting this pin high inverts the carrier input of the ($A-B$) area detector. CARR should be asserted throughout the B burst of the A / B burst pair. While the CARR pin is asserted, the (A-B)

PIN NO.	NAME	FUNCTION
12	(Cont.)	area detector integrates the B burst in a direction opposite to that in which the A burst is integrated, thus realizing the (A-B) differencing operation. Carrier polariti in the (A+B) Area Detector is not affected by the state of the CARR pin. CARR pin in conjunction with the SEL pin, selects the multiplexer output.
13	ZEROX	This is the output of the Carrier Comparator. +ZEROX is a nominally square wave having transitions coinciding with zero crossings of the output VGA.
14	GATE	Asserting this line enables the (A+B) and (A-B) area detectors to measure area of the output signal of the VGA. This signal is re-synchronized to the area detector carrier internally before application to the area detectors.
15	OPOUT	Optional operational amplifier (short circuit protected) output.
16	OPINN	Optional operational amplifier inverting input.
17	OPINP	Optional operational amplifier non- inverting input. Ground
18	GND	VGA non-inverting input. Inputs (hould be AC coupled
19	VGAINP	VGAINNVGA inverting input. Inputs should be AC coupled

NOTE: The value of the CHSUM capacitor should be roughly twice that of the CHDIFF capacitor. It is also advisable to include a small resistor in series with the capacitor on the CHSUM pin and also the CHDIFF pin, to improve settling time.

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage (V_{CC})
-0.3 to +7 VDC
Storage Temperature (TSTG) -65 to $+150^{\circ} \mathrm{C}$
Package Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)
.875 mW
Package Lead Temperature:
Soldering (10 sec) $260^{\circ} \mathrm{C}$
Vapor Phase (60 sec) ... $215^{\circ} \mathrm{C}$
Infrared (15 sec) ... $220^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage Range (V_{CC}) $5 \pm 5 \% \mathrm{VDC}$
Temperature Range . .0 to $+70^{\circ} \mathrm{C}$
Operating Junction Temperature (T_{1})
+25 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARCTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75$ to 5.25 V , and external component values as recommended, unless otherwise stated.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {CC }}$	VAGC $=4.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$	20	40	60	mA
$\mathrm{I}_{\text {VREF }}$	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	-50	25	200	$\mu \mathrm{~A}$
$\begin{array}{l}\text { GATE, CARR, SEL, } \\ \text { RESET, RESETFF }\end{array}$	For all signals in test program	V_{IH}			
V_{IL}					

OPERATIONAL AMPLIFIER USED FOR MOTOR CURRENT SENSING

$\mathrm{I}_{\text {BIAS }}$ Offset	OPINN $=$ OPINP $=1.0 \mathrm{~V}$	-200		200	nA
$V_{\text {OS }}$ - MCS	$A_{V}=2.0, V_{\text {IN }}=0$	-15		+15	mV
V_{OH} - MCS	$A_{V}=2.0, \mathrm{~V}_{\text {IN }}=-1.0, \mathrm{I}_{\text {SRC }}=-1.5 \mathrm{~mA}$	3.8		5.0	V
$\mathrm{V}_{\mathrm{OL}}-\mathrm{MCS}$	$A_{V}=2.0, \mathrm{~V}_{\text {IN }}=1.0, \mathrm{I}_{\text {SINK }}=1.5 \mathrm{~mA}$	0		1.0	V
$I_{\text {SINK - MCS }}$	Openloop, OPINP $=0.0 \mathrm{~V}$ OPINN $=1.0, \mathrm{OPOUT}=\mathrm{V}_{\mathrm{CC}}$	1.5		10	mV
$\mathrm{I}_{\text {BIAS }}-\mathrm{MCS}$	$\begin{aligned} & \text { OPINN }=1.0, \text { OPINP }=1.0 \\ & (\text { IOPINN }+ \text { IOPINP) } / 2 \end{aligned}$	-2.0		0.0	$\mu \mathrm{A}$
Amplifier Settling Time (tsmCs)	$\mathrm{R}_{\text {OUT }}=604 \Omega, \mathrm{C}_{\text {OUT }}=36 \mathrm{pF}$		0.4	1.0	$\mu \mathrm{s}$
Amplifier Bandwidth		4	8		MHz
Amplifier Gain (A_{V})	Open Loop	58	63		dB
AGC					
A_{V} - VGAMIN	Minimum Gain of AGC with 400 mV input	0		1.1	VN
A_{V} - VGAMAX	Maximum Gain of AGC with 100 mV input	6.6		20	V/N
VAGCBIAS	VAGC $=1.0$	0		200	$\mu \mathrm{A}$

ELECTRICAL CHARCTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
RESET CIRCUITRY					
IRESET SUM, DIFF	RESET $=\mathrm{V}_{\mathrm{IH}}$	80		400	$\mu \mathrm{A}$
IOFF SUM, DIFF	RESET $=\mathrm{V}_{\text {IL }}$	-10		10	nA
VCH SUMRESET $=\mathrm{V}_{1 \mathrm{H}}$	1.245	1.260	1.275	V	
VCH DIFF RESET $=\mathrm{V}_{1 \mathrm{H}}$	2.490	2.5	2.510	V	
I SUM, DIFF UNBAL	GATE $=\mathrm{V}_{\mathrm{IH}}$, CLOCK, 1 V swing VAGC 1 X , Measure Current with VGAINP = VINP + 0.2 and VGAINN $=$ VINN -0.2 , then do VGAINP $=$ VINP - 0.2 and VGAINN $=$ VINN +0.2, Subtract	-40		40	$\mu \mathrm{A}$
I DIFF UNBALXOR	CARR $=\mathrm{V}_{1 \mathrm{H}}$	-40		+40	$\mu \mathrm{A}$
I PEAK SUM	$\begin{aligned} & \text { VGAINP }=\text { VINP }+1.0 \\ & \text { VAGC }=1.0 \end{aligned}$	-540	-400	-265	$\mu \mathrm{A}$
1 PEAK DIFF P	$\begin{aligned} & \text { VGAINP }=\operatorname{VINP}+1.0 \\ & \text { VGAINN }=\text { VINN }-1.0 \\ & \text { VAGC }=1.0, \text { CARR }=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-540	-400	-265	$\mu \mathrm{A}$
1 PEAK DIFF ON	$\begin{aligned} & \text { VGAINP }=\text { VINP }+1.0 \\ & \text { VGAINN }=\text { VINN }-1.0 \\ & \text { VAGC }=1.0, \text { CARR }=V_{I H} \end{aligned}$	265	400	540	$\mu \mathrm{A}$
VOH SUM	$\begin{aligned} & \text { VGAINP }=\text { VINP }+1.0 \\ & \text { VGAINN }=\text { VINN }-1.0 \end{aligned}$	3.9		5.0	V
VOH DIFF	$\begin{aligned} & \text { VGAINP }=\text { VINP }+1.0 \\ & \text { VGAINN }=\text { VINN }-1.0 \\ & \text { CARR }=\mathrm{V}_{\text {IL }} \end{aligned}$	3.9		5.0	V
VOL DIFF	$\begin{aligned} & \text { VGAINP }=\text { VINP }+1.0 \\ & \text { VGAINN }=\text { VINN }-1.0 \\ & \text { CARR }=\text { VIH }^{2} \end{aligned}$	0.0		1.0	V
IGATE	$\begin{aligned} & \text { GATE }=V_{I H}, C L O C K, \\ & \text { VAGC } 1 X, V_{S W I N G}=1.0 \end{aligned}$	-10		10	nA
IRESETFF	RESETFF $=\mathrm{V}_{\mathrm{IH}}$	-10		10	nA

ELECTRICAL CHARCTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
MUX AMPLIFIER					
VHYBOUT	CARR $=\mathrm{V}_{\text {IL }}, \mathrm{SEL}=\mathrm{V}_{\mathrm{IL}}$	2.4		2.6	V
VOS MUX SUM	$\begin{aligned} & \mathrm{CARR}=\mathrm{SEL}=\mathrm{V}_{1 \mathrm{H}}, \\ & \mathrm{CHSUM}=2.5 \end{aligned}$	-8		8	mV
VOS MUX DIFF	$\begin{aligned} & \text { CARR }=V_{I L}, S E L=V_{I H}, \\ & \text { CHDIFF }=2.5 \end{aligned}$	-8		8	mV
IBIASSUM	$\begin{aligned} & \mathrm{CARR}=\mathrm{SEL}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{CHSUM}=2.5 \end{aligned}$	0		300	nA
IBIASDIFF	$\begin{aligned} & \mathrm{CARR}=\mathrm{VIL}, \mathrm{SEL}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{CHSUM}=2.5 \end{aligned}$	0		300	nA
VOHMUX	$\begin{aligned} & \mathrm{CARR}=\mathrm{SEL}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{CHSUM}=3.95, \mathrm{I}_{\mathrm{SRC}}=1.5 \mathrm{~mA} \end{aligned}$	3.8		5.0	V
volmux	$\begin{aligned} & \mathrm{CARR}=\mathrm{V}_{\mathrm{IL}}, \mathrm{SEL}=\mathrm{V}_{\mathrm{IH}} \\ & \text { CHDIFF }=0.95, \mathrm{I}_{\text {SINK }}=1.5 \mathrm{~mA} \end{aligned}$	0		1.0	V
ISINKMUX	$\begin{aligned} & \mathrm{CARR}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CHDIFF}=0.95 \\ & \mathrm{SEL}=\mathrm{V}_{\mathrm{IH}}, \mathrm{VHYBOUT}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.5		10	mA
Amplifier settling time (tsMuX)	$\mathrm{R}_{\text {OUT }}=604 \Omega$, $\mathrm{C}_{\text {OUT }}=36 \mathrm{pF}$		0.4	1	$\mu \mathrm{s}$
I leakage			10	nA	
Linearity	0 to $1 \mathrm{~V}_{\text {INPUT, }}$ with VAGC such that $\mathrm{A}_{V} \mathrm{VAGC}=1.0$	-5		5	\%F.S

FUNCTIONAL DESCRIPTION

The ML4534, +5 V Embedded Servo Demodulator IC is designed for use in the hybrid data surface channel of an high-performance disk drive. Hybrid data are interleaved on the data surface with data records and encoded in A / B differential burst format, with an AGC field preceding the burst information. The AGC field is used by the read channel to set AGC gain levels in the burst area, which once established are held fixed for the duration of the servo burst. The demodulator measures burst amplitude using an area detection scheme, for improved noise immunity and provides both ($\mathrm{A}-\mathrm{B}$) and ($\mathrm{A}+\mathrm{B}$), to permit position error normalization. Using the SEL and CARR inputs, the on-chip multiplexer allows selection of either ($A-B$) or $(A+B)$ on the output. The multiplexer and area detection capacitors operate in concert to provide a hold capability for both the $(A-B)$ and $(A+B)$ outputs. The area detectors are designed to minimize the pipeline transport delay while accurately quantizing the area of servo bursts in high speed hybrid servo systems. The major functional blocks of the ML4534 are briefly discussed below.

VARIABLE GAIN AMPLIFIER

Hybrid servo burst data from the disk read channel are capacitively coupled into the VGA through the differential input pins (VGAINP, VGAINN). VGA gain is controlled by the voltage on the VAGC pin, and the gain is varied in order to secure constant area of the output signal and counteract the amplitude regulating operation of the read channel AGC loop.

VGABUF COMPARATOR

The VGABUF comparator detects zero crossings of the composite signal delivered by the VGA. The output of this comparator controls the synchronous rectification of the composite VGA output, in the area detectors.

The comparator output is provided at a TTL level on the ZEROX pin. Control logic in the servo channel employs the ZEROX signal to produce an area detector enabling gate, which spans a fixed number of cycles of the composite signal.

AREA DETECTORS (SUM AND DIFF)

The area detectors detect A and B burst levels by area detection. Two area detectors are provided - one to measure the sum of A and B bursts $(A+B)$, and a second one to measure the difference (A-B). Each area detector is
implemented as a gated current - output synchronous rectifier driving an external charge accumulating integrating capacitor. Area detection occurs only while the area detector is enabled under control of the GATE pin. When the detector is disabled, the integrating capacitor is effectively floated. An on-chip binary (FF) re-synchronizes the gating signal to remove any phase shifts due to logic delays in the external gate control logic. Initial conditions on the integrating capacitors are established prior to an area detecting operation by a reset circuit controlled by the RESET pin. A reset operation forces the voltage on the area detecting capacitors to equal the 2.5 volts applied on the $\mathrm{V}_{\text {REF }}$ pin. Determination of the burst difference ($\mathrm{A}-\mathrm{B}$) is accomplished under control of the CARR pin, by inverting the phase of the carrier input to the second area detector, while the burst B is being detected. The inversion is performed by an XOR gate. Accordingly ($\mathrm{A}-\mathrm{B}$) is bipolar relative to $V_{\text {REF }}$, while $(A+B)$ is unipolar.

MULTIPLEXER AMPLIFIER

The multiplexer amplifier drives the HYBOUT pin and allows sequential interrogation of the $(A-B)$ and $(A+B)$ measurements, the results of which are stored on the external integrating capacitors. The amplifier is implemented as two independently selectable input stages, driving a common output structure, to form a voltage follower. To minimize the droop of the (A-B) and the $(A+B)$ measurements, both input stages are biased off during periods when neither measurement is required to be routed to the HYBOUT pin. The SEL and CARR pins govern multiplexer channel selection through a decoding network.

Figure 1 shows a typical hybrid servo system application diagram for the ML4534 and also illustrates waveforms characteristic of a hybrid demodulator in a typical application

OPERATIONAL AMPLIFIER USED FOR MOTOR CURRENT SENSE

This general purpose operational amplifier is intended for use as a differential to single-ended convertor and level shift stage. It performs voice coil motor current sensing by monitoring the voltage developed differentially across current sense resistors, on the ground side of the voice coil power driver bridge.

Figure 1. A Typical Servo System Application with the ML4534.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4534CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin Molded PLCC $(\mathrm{Q} 20)$

Area Detection Based Hybrid Servo Demodulator

GENERAL DESCRIPTION

The ML4535 is a bipolar monolithic hybrid servo circuit that provides area measurement demodulation of both the continuous servo surface (dedicated servo) and the sectored servo data (embedded servo) information in a high end disk drive. It operates on a single +5 V supply and is intended to interface to a moderate speed, successive approximation ADC, with multiplexed inputs and sample and holds, like the ML2377 family.
The area detectors are designed to minimize the pipeline transport delay while accurately quantizing the area of servo bursts in high speed servo systems. The data surface (embedded) servo demodulator section consists of Sum and Difference area detectors along with an AGC control loop. The continuous (dedicated) servo demodulator section consists of a variable gain amplifier, variable frequency oscillator and four synchronous area detectors.
The ML4535 provides a high level of integration for designing the complex Hybrid Servo systems becoming popular in disk drives requiring very high bit and track densities, in excess of 3500 TPI .

FEATURES

- Allows for area detection of back-to-back bursts
- 2% non-linearity over the input signal range
- Single +5 volt operation
- Internal 2.5 V bandgap reference with reference output
- Separate AGC control loop for data surface and servo surface demodulator sections.
- Data surface amplitude control self contained on chip
- Data surface demodulator has muxed/selectable (A-B) and $(A+B)$ outputs.
- Four synchronous area detectors onboard for implementing the continuous servo demodulator.
- Threshold based Sync detector
- Servo surface area detectors ($1 \& 2$) have current output and can be individually selected using the SEL\# pins.
- Available in 44-pin TQFP package

PIN CONNECTION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	CT	Pins to connect a resistor/capacitor	9	VCC	+5 V supply ($\pm 5 \%$)
44	RT	network for setting the center frequency of the internal VCO; R from RT to CT, C from CT to VCOVCC	10	$\overline{\text { RESET }}$	Asserting this input pin resets the Area Detector (DIFF) to VREF and the Area Detector (SUM) to VREF/2
2	NC	No connects. It is recommended to			(active low)
4		Connect these to GND	11	GATE	Asserting this pin defines the SUM
43					and DIFF area detect windows, to measure the area under the curve of
33					the VGA output. This signal is resynchronized internally to ZEROX
3	VCOVCC	+5 V supply for PLL			before application to the area detectors.
5	VCOOUT	VCO clock output	12	ZEROX	This is the logic signal output of the
6	CLK1	Clock for Area Detector 3 (AGC)			carrier comparator, nominally a
7	SEL1	Active high select signal for area detector 1			square wave having transitions coinciding with zero crossings of the VGA output.
8	SEL2	Active high select signal for area detector 2			

PIN DESCRIPTION (Continued)

PIN\#	NAME	FUNCTION
13	MUXSEL	Asserting this pin inverts the carrier input of the Difference (A-B) area detector. MUXSEL should be asserted throughout the B burst of the A / B burst pair, to implement (A-B). While this pin is asserted, the Difference ($A-B$) area detector integrates the B burst in a direction opposite to that in which A is integrated, thus realizing the (A-B) operation. Carrier polarity in the $(A+B)$ area detector is not affected by the state of the MUXEN pin. This pin along with the MUXEN pin, also selects the multiplexer output.
14	MUXEN	This pin in conjunction with the MUXSEL pin governs the multiplexer channel selection as follows:
		MUXSEL MUXEN MUXOUT
		X 0 VREF 0 1 Difference (A-B) 1 1 Sum (A+B)
16	VAGCREF	AGC voltage reference
17	VAGCCAP	AGC Loop Filter/Hold Capacitor
$\begin{aligned} & 18 \\ & 19 \end{aligned}$	RDINN RDINP	Differential input to VGA from Data surface (embedded servo). Inputs must be AC coupled.
$\begin{aligned} & 20 \\ & 21 \end{aligned}$	VAGCTPN VAGCTPP	Test points connected through isolation resistors to the output of the VGA. Max $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ differential. Typically around P V.
22	$\overline{\text { AGCEN }}$	AGC enable pin, defines area detect window (active low signal)

PIN\#	NAME	FUNCTION		
23	RDSUM	The SUM area detector integrating capacitor is connected here.		
24	RDDIFF	The DIFF area detector integrating capacitor is connected here.		
25	VREF	2.5V Bandgap reference output A 15.8k (1\%) resistor to GND sets the transconductance of all Area Detectors current outputs		
26	REXT	Ground pin		
27	GND	Output of the multiplexer with DIFF or SUM output		
28	MUXOUT	Area Detector \#1 (A,B) or the Normal output		
39	DSDIFF1	DSDIFF2		Area Detector \#2 (C,D) or the Quad
:---				
output				

ABSOLUTE MAXIMUM RATINGS

D	VDC
Package Dimension, $\mathrm{TA}=25^{\circ} \mathrm{C}$ (board mount) \qquad TBD mW
Package Lead Temperature	
Soldering (10 sec)	$260^{\circ} \mathrm{C}$
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Storage Temperature (tstg)	-65 to $+150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

DC Supply Voltage (VCC) 5+/-5\% VDC
Temperature Range ... 0 to $+70^{\circ} \mathrm{C}$
Operating Junction Temperature (Tj) +25 to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
DC CHARACTERISTICS					
ICC Supply Current	$\mathrm{VAGCCAP}=4.0 \mathrm{~V}$	60	89	110	mA
Bandgap Reference voltage, VREF		2.4	2.52	2.60	V
VIH	For CLK1, CLK2, CLK3 GATE, MUXEN, MUXSEL, AGCEN, SEL1, SEL2			2.0	V
VIL	For CLK1, CLK2, CLK3 GATE, MUXEN, MUXSEL, AGCEN, SEL1, SEL2	0.8			V
IIH	For CLK1, CLK2, CLK3 GATE, MUXEN, RESET MUXSEL, AGCEN, SEL1, SEL2	-40	-0.2	+40	$\mu \mathrm{A}$
III	For CLK1, CLK2, CLK3 GATE, MUXEN, RESET MUXSEL, AGCEN, SEL1, SEL2	-400	-2	10	$\mu \mathrm{A}$

AGC (for dedicated servo)

DSINPDC, DSINNDC	open	2.4	2.5	2.6	V
AvAGC min Voltage gain from input to test point	DSSUM = 4.0V, Measure DSDIFF1 DSINP - DSINN $=0.5 \mathrm{~V}$				
AvAGC max	DSSUM $=1.0 \mathrm{~V}$ DSINP - DSINN $=20 \mathrm{mV}$	0.2	0.4	$\mathrm{~V} / \mathrm{V}$	
DCRHIGH (DCR CAP VOLTAGE)	DSSUM $=1.0 \mathrm{~V}$ DSINP - DSINN $=20 \mathrm{mV}$	75	120		$\mathrm{~V} / \mathrm{V}$
DCRLOW (DCR CAP VOLTAGE)	DSSUM $=1.0 \mathrm{~V}$ DSINN - DSINP $=20 \mathrm{mV}$	3.0	3.9		V
DSOFFSET	DSINP - DSINN $=0$	2.3	2.5	2.7	V

AREA DETECTOR 1 and 2

DSDIFF HI 1	SEL1, SEL2 $=\mathrm{VIH}$	VCC -1.0	VCC -0.5	VCC	V
DSDIFF LO 2	DSINP - DSINN $=0.1$ DSSUM $=1 \mathrm{~V}, \mathrm{CLK} 3=\mathrm{VIH}$				
DSDIFF LO 1	CLK3 = VIL		0.2	1.0	V
DSDIFF HI 2		$\mathrm{VCC}-1.0$	$\mathrm{VCC}-0.5$	VCC	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
AREA DETECTOR 1 and 2 (continued)					
DSDIFF HI R1	DSINN - DSINP = 0.1	VCC - 1.0	VCC - 0.5	VCC	V
DSDIFF LO R2	CLK3 $=\mathrm{V}_{\text {IL }}$		0.2	1.0	V
DSDIFF LO R1	DSINN - DSINP = 0.1		0.2	1.0	V
DSDIFF HI R2	CLK3 $=\mathrm{V}_{1 \mathrm{H}}$	VCC - 1.0	VCC - 0.5	VCC	V
IDSDIFF HI IDSDIFF LO	$\begin{aligned} & \text { DSINP }- \text { DSINN }=0.1 \\ & \text { DSINP }- \text { DSINN }=-0.1 \end{aligned}$	$\begin{gathered} -200 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} -133 \\ 133 \end{gathered}$	$\begin{gathered} -100 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IDSDIFF1 IDSOFF2	$\begin{aligned} & \text { SEL1 }=V_{I L} \\ & \text { SEL2 }=V_{I L} \end{aligned}$	$\begin{gathered} -1 \\ 1 \end{gathered}$	$\begin{gathered} -0.005 \\ 0.001 \end{gathered}$	$\begin{gathered} 1 \\ -1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

AREA DETECTOR 3
$\left.\begin{array}{l|l|l|l|c|c}\hline \text { SYNC LO } & \begin{array}{l}\text { CLK1 }=V_{I H}, I_{I I}=1.6 \mathrm{~mA} \\ \text { DSSUM }=1.0 \mathrm{~V}\end{array} \\ \text { DSINN }- \text { DSINP }=0.1\end{array}\right)$

AREA DETECTOR 4, VCO

I VCOIN HI	$\begin{aligned} & \text { CLK2 }=\text { VIH, DSSUM }=1 \mathrm{~V} \\ & \text { DSINP }- \text { DSINN }=0.1 \mathrm{~V} \end{aligned}$	60	136	200	$\mu \mathrm{A}$
I VCOIN LO	CLK2 $=$ VIL	-200	-135	-60	$\mu \mathrm{A}$
$\mathrm{VCOHI}\left(\mathrm{V}_{\mathrm{OH}}\right)$	$\begin{aligned} & \mathrm{CT}=4.0 \mathrm{~V}, \mathrm{VCOIN}=4.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=0.4 \mathrm{~mA} \end{aligned}$	2.3	2.6		V
$\mathrm{VCO} \mathrm{LO}\left(\mathrm{V}_{\mathrm{OL}}\right)$	$\begin{aligned} & \mathrm{CT}=1.0 \mathrm{~V}, \mathrm{VCOIN}=1.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$		0.25	0.5	V
RDINPDC, RDINNDC	open	2.3	2.5	2.7	V
V_{OH} ZEROX	$\begin{aligned} & \mathrm{RDINP}-\mathrm{RDINN}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \end{aligned}$	VCC - 2.1	VCC - 0.7	VCC	V
$\mathrm{V}_{\text {OL }}$ ZEROX	$\begin{aligned} & \mathrm{RDINP}-\mathrm{RDINN}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} \end{aligned}$		0.36	0.5	V
$\mathrm{V}_{\text {REXT }}$	$\mathrm{R}_{\mathrm{EXT}}=15.9 \mathrm{~K}$	2.2	2.48	2.8	V

AGC (for embedded servo)

VAGCTP	RDINP - RDINN $=2.0 \mathrm{~V}$ VAGC $=1.0 \mathrm{~V}$	$\mathrm{VCC}-1.5$	$\mathrm{VCC}-2.1$	$\mathrm{VCC}-2.7$	V
AV VGA MIN	RDINP - RDINN $=1.0 \mathrm{~V}$ VAGC 4.0 V		0.3	0.5	VN

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

RESET LOGIC

Av VGA MAX	$\begin{aligned} & \text { RDINP - RDINN }=0.4 \mathrm{~V} \\ & \text { VAGC }=1.0 \mathrm{~V} \end{aligned}$	2.0	2.7		V/N
VAGC BIAS	$\mathrm{XAGC}=1.0 \mathrm{~V}$	0	40	200	$\mu \mathrm{A}$
IRESET SUM, DIFF	RESET $=\mathrm{V}_{\text {IL }}$	50	100	200	$\mu \mathrm{A}$
IOFF SUM, DIFF	RESET $=\mathrm{V}_{\mathrm{IH}}$	-100		100	nA
VSUM	RESET $=\mathrm{V}_{\text {IL }}$	0.9	1.07	1.2	V
VDIFF	RESET $=\mathrm{V}_{\text {IL }}$	2.0	2.13	2.3	V
I SUM, DIFF UNBAL	$\begin{aligned} & \text { GATE }=\text { VIH, CLOCK } \\ & \text { VAGC } 1 \mathrm{X}, 1 \mathrm{Vp} \text {-p swing } \end{aligned}$	-40	0.4	40	$\mu \mathrm{A}$
IDIFF UNBAL XOR	MUXSEL $=$ VIH	-40		40	$\mu \mathrm{A}$
1 PEAK SUM	$\begin{aligned} & \text { RDINP - RDINN }=1.0 \mathrm{~V} \\ & \text { MUXSEL }=\mathrm{VIH} \end{aligned}$	-500	-377	-250	$\mu \mathrm{A}$
1 PEAK DIFF P	$\begin{aligned} & \text { RDINP - RDINN }=1.0 \mathrm{~V} \\ & \text { MUXSEL }=\mathrm{VIH}, \\ & \text { VAGC }=1 \mathrm{~V} \end{aligned}$	-500	-377	-250	$\mu \mathrm{A}$
1 PEAK DIFF XOR	$\begin{aligned} & \text { RDINP }- \text { RDINN }=1.0 \mathrm{~V} \\ & \text { MUXEN }=\mathrm{VIH}, \mathrm{VAGC}=1.0 \mathrm{~V} \end{aligned}$	250	377	500	$\mu \mathrm{A}$
VOHSUM, VOHDIFF	RDINP - RDINN $=1.0 \mathrm{~V}$	VCC - 1.0	VCC -0.5	VCC	V
VOL DIFF, VOLSUM	$\begin{aligned} & \text { RDINP - RDINN }=1.0 \mathrm{~V} \\ & \text { MUXSEL }=\text { VIH } \end{aligned}$	0	0.2	1.0	V
IGATE	GATE $=$ VIH, CLOCK 1 X	-100	0	100	nA

MUXAMPLIFIER

VOS MUXSUM	MUXSEL $=$ MUXEN $=$ VIL	0	5	16	V
VOS MUXDIFF	$\begin{aligned} & \text { MUXSEL = VIH, } \\ & \text { VDIFF = } 2.5 \mathrm{~V}, \end{aligned}$	0	5	16	V
IBIASSUM DIFF	$\begin{aligned} & \text { MUXEN }=\text { VIL } \\ & \text { SUM }=\operatorname{DIFF}=2.5 \mathrm{~V} \end{aligned}$	0	200	300	nA
VOHMUX	SUM $=3.9 \mathrm{~V}$	VCC - 1.0	VCC -0.9	VCC - 0.5	V
VOLMUX	DIFF $=0.95$	0	0.9	1.0	V
INSINGMUX	VMUXOUT = VXX	1.5	1.86	2.5	mA
Amplifier settling time - tsmux	Rout $=604$ ohms, Cout $=36 \mathrm{pF}$		0.4	1	$\mu \mathrm{sec}$
Ileakage				10	nA
Linearity	0 to 1 V input with VAGC such that $\mathrm{AvVAGC}=1.0 \mathrm{~V}$	-5		5	\%F.S

FUNCTIONAL DESCRIPTION

The ML4535 provides area measurement demodulation of both the continuous (dedicated) servo surface and the sectored (embedded) servo data on each of the data surfaces of a "hybrid" servo disk drive. It operates on a single +5 V supply and is intended to interface to a moderate speed, successive approximation ADC with multiplexed inputs and sample and holds, like the ML2377. In a conventional peak detection based servo scheme, the attack rate of the peak detectors are inherently faster than the decay, high crest factor noise sensitivity is high and rectification must have a very low offset for it to be functionally correct. On the other hand area detection has much better noise rejection and is more tolerant of small AGC rectifier offsets. However it requires that the measurement period be an integer number of signal cycles. Hence when the timing requirements are satisfied, area detection is certainly more accurate than peak detection schemes.

DATA SURFACE OR EMBEDDED SERVO DEMODULATOR SECTION

The data surface (embedded) servo demodulator section of the ML4535 consists of a standalone AGC control loop so that the amplitude control function is self contained on the chip and two area detectors providing the sum $(A+B)$ and difference ($\mathrm{A}-\mathrm{B}$) which are output through a mux amplifier.

Input Amplifier and AGC

The input amplifier and AGC circuit operate with differential inputs in the range of $0.25 \mathrm{Vp}-\mathrm{p}$ to $2 \mathrm{Vp}-\mathrm{p}$, from the read channel filter's lowpass outputs. The input impedance of the RDIN inputs is approximately $2.3 \mathrm{k} \Omega$. The purpose of the AGC loop is to maintain a constant area detect value that correlates to the zero scale and full scale output values based upon the minimum and maximum burst value. The sensing for the AGC is at the output of the SUM area detector, allowing signal ranging based on the area of the burst rather than the peak level of the burst. The AGC is intended to be updated at every sector of servo position bursts such that the signal variances due to the disk radius and differences in the read channel data frequencies can be corrected. In this closed-loop system, the area detected output voltage is compared with the VAGCREF voltage and fed back to provide a gain control current for charging and discharging the VAGCCAP. The VAGCREF voltage should be set to 80% of the full scale value of the RDSUM voltage output. The gain is varied to secure constant area of the output signal and provide amplitude control. The AGC gain value is held constant when the AGCEN is at logic low. When it is logic high, the level of gain can change up or down. The capacitor from VAGCCAP to ground holds the gain setting when AGCEN is at logic low and the area detector output does not affect the gain setting in this mode.

Zero X Detector

The output of the zero crossing detector (comparator) is provided for system synchronization. It detects zero crossings of the composite signal delivered by the Variable Gain Amplifier, VGA. The output of this comparator controls the synchronous rectification of the composite VGA output, in the area detectors. This signal is internally generated in ECL, but an internal ECL to TTL converter presents this output as a TTL level on the ZEROX pin. Control logic in the servo channel employs the ZEROX signal to produce an area detector enabling gate, which spans an integer number of cycles of the composite signal, thus helping to generate accurate timing. If one of the burst signal is very small then the ZEROX signal will not be generated correctly and the Area Detectors (SUM \& DIFF) would stay ON. Hence a single radial (always full amplitude) pulse should be located at the beginning and end of each burst. This also minimizes track pairing.

Area Detectors (Sum \& Difference)

The area detectors detect the A and B burst levels by area detection. Two area detectors - one to measure the sum of the A and B bursts $(A+B)$, and a second one to measure the difference (A-B). Each area detector is implemented as a gated current - output synchronous rectifier, driving an external charge accumulating integrating capacitor. Area detection occurs only while the area detector is enabled under the control of the GATE pin. The GATE signal turns the SUM \& DIFF Area Detectors ON and OFF. Internally it generates a synchronous signal clocked by the AGC output. When GATE is asserted high, the next rising edge of RDINP will turn ON the Area Detectors. When GATE is asserted low, the next rising edge of RDINP will shut OFF the Area Detectors. Thus GATE edges should occur near the falling edges of ZEROX. One point to note is that if the Area Detector is ON and there is no AGC signal then the internal synchronous signal will not change state even if the GATE signal is driven inactive low and the Area Detector continues to remain ON. When the detector is disabled, the integrating capacitor is effectively floated. The on-chip D Flip-Flop resynchronizes the gating signal to remove any timing error due to logic delays in the external gate control logic. It is important that the Area Detectors are shut off when not integrating a desired field, even if there is no AGC signal as the Area Detector offset currents will modify the Area Detector output voltage. Initial conditions on the integrating capacitors are established prior to an area detecting operation by a reset circuit controlled by the $\overline{\text { RESET }}$ pin. The minimum $\overline{\text { RESET }}$ pulse width will depend on the external capacitor used at RDSUM and RDDIFF pins. The pulse width is given by: $\mathrm{t}_{\text {MIN }}=[(\mathrm{CpF} \times 3 \mathrm{~V}) / 80 \mu \mathrm{~A}] \mu$ secs. RESET is normally held asserted from just after read out until just before the next sample measurement time. A reset operation forces the voltage on the DIFF area detecting capacitor to equal the voltage applied on the VREF pin and the voltage on the sum area detecting capacitor to equal VREF/2. In actuality when $\overline{\text { RESET }}$ is low the voltage observed on the RDDIFF pin will be in the range of 2 V to 2.5 V and the voltage observed on the RDSUM pin will be in the range of 1 V to 1.2 V . This is due to internal design constraints. Determination of the burst difference $(A-B)$ or $(-A+B)$ on
alternating tracks, is accomplished under control of the MUXEN pin, by inverting the phase of the carrier input to the DIFF area detector, while one burst is being detected. The inversion is performed by an XOR gate. Accordingly $(A-B)$ is bipolar relative to VREF, while $(A+B)$ is unipolar.

Multiplexer Amplifier

The multiplexed amplifier drives the MUXOUT pin and allows sequential interrogation of the (A-B) DIFF and $(A+B)$ SUM measurements, the results of which are stored on the external integrating capacitors. The amplifier is implemented as two independently selectable input stages, driving a common output structure, to form a voltage follower. To minimize the droop of the (A-B) and the $(A+B)$ measurements, both input stages are biased off during periods when neither measurement is required to be routed to the MUXOUT pin. The MUXSEL and MUXEN pins govern multiplexer channel selection through a decoding network.

CONTINUOUS OR DEDICATED SERVO DEMODULATOR SECTION

The continuous (dedicated) servo demodulator section of the ML4535 consists of its own variable gain amplifier and AGC loop, a variable frequency oscillator and four synchronous detectors. The DSIN input is usually of the order of $20 \mathrm{mV}-400 \mathrm{mV}$ differential peak to peak and the R_{IN} is approximately 4 kohms.
The first synchronous detector (AREA DETECTOR \#4) is used as a multiplying phase detector to control the variable frequency oscillator and complete the analog portion of the phase locked loop that recovers the clock. A standard PLL loop filter is connected on the VCOIN pin or an external signal could be used to drive this line. The RT and CT components are used to set the VCO frequency range. Figure 1 shows the graphical representation of the VCOOUT frequency vs VCOIN voltage for a fixed value of RT and CT. It is recommended that CT should be kept

Figure 1. ML4535 VCO Characteristics
as large as possible, say around 50 pF , otherwise parasitics could begin to dominate. Also it is recommended that CT should connect to the VCOVCC right at the pin and the VCOVCC should be well decoupled at that point. Stability could be further improved by placing another resistor to ground from the RT pin, allowing smaller RT and hence allowing the increase in CT. Recommended range for RT is 200 ohms to $2 k$ ohms. Recommended VCO frequency range is 10 to 30 MHz with the VCO frequency being set at two or four times the servo pattern fundamental frequency. A typical loop filter circuit at VCOIN is shown at the frontend of figure 3. The gain of the VCO is approximately 10% of the center frequency per volt ($\mathrm{MHz} /$ volt). The VCOOUT has a V_{OH} of 2.2 V to 2.4 V and a V_{OL} of 0.5 V which improves symmetry around the 1.4 V threshold for the VCO (TTL compatible levels). The duty cycle is symmetrical with large enough swings on the RT and CT associated with the VCO.

The second synchronous detector (AREA DETECTOR \#3) is used for measuring the area of the composite signal, to determine its amplitude for comparison with the reference of the AGC loop. The AGC loop consists of the Area Detector 3, external filter capacitor on DSSUM, REXT resistor and internal voltage set reference current on DSSUM and the gain vs. control voltage characteristic of the VGA amplifier. The reference baseline voltage for the AGC output voltage is 2.5 V . Area Detector 3 generates a current and when the integral of that current equals a DC current (approx $62 \mu \mathrm{~A}$) set by REXT, the AGC loop is stabilized. The differential output of the servo surface AGC is made available on the AGCOUTP and AGCOUTN pins. An amplitude level comparator is also included on this detector's output to provide the logic level output for Frame sync and Index data. The SYNC detector circuit is threshold based. The threshold level is set internally to 25% of full scale, however this level can be adjusted through the external SYNCADJ pin. Connecting a resistor from the SYNCADJ pin to ground increases the threshold level above 25%, while a resistor to VCC will decrease the threshold level below 25% of full scale. There is a $\pm 20 \%$ potential of error on the amount by which the threshold is changed from the internal level using the SYNCADJ pin.
The third and fourth synchronous detectors (AREA DETECTORS \#1 \& \#2) are used to demodulate the normal and quadrature position signals. The Area Detectors $1 \& 2$ are turned ON by asserting SEL1 and SEL2 lines active high. A logic low on these lines turns them OFF. The normal and quadrature outputs are currents that should be terminated off chip with nominal 19 K resistors to VREF or 0.9 VREF. The center value of the nominal output voltage range of DSDIFF1 and DSDIFF2 (the output of Area Detectors $1 \& 2$) is 2.5 V with a range of $\pm 1.5 \mathrm{~V}$. The external resistors may be terminated to 2.3 V to give maximum swing over supplies (since minimum V_{CC} is 4.5 V , hence $\mathrm{VCC} / 2$ would be approximately 2.3 V). Ripple frequency to slew rate relationship can be improved by adding switches in series with the terminating resistors gated by SEL\# in the outputs, although this is usually not required.

The DC requirements of the filter can be reduced by using the configuration where the active filter amplifier does not contribute to the DC offset, for a unity gain configuration. The position detector gain is approximately 1.19 . The emitter resistor in the AGC detector is around 16 K , giving an $I=62.5 \mu \mathrm{~A}$. This implies that the average voltage out is approximately 1 V , which implies that the output ON position with a duty cycle of $3 / 8$ equals $(0.375 \times 1.19)=$ 0.466 V base to peak based on the resistor ratio of 19 K to 15.8 K . Making this equal to the half span of the ADC by having a gain in the filter should not have a detrimental effect on the system accuracy because selecting the demodulator clock phase (based on track type) to result in the same polarity of the Position Error Signal (PES) slope and by using the same detector output section for track following results in the cancellation of offsets, with a minimum penalty in the reduction of the PES dynamic range.

Component Selection

The following section outlines the different equations for determining some of the component values associated with the ML4535 design.

VAGCCAP	$C=\{(D C) /(2$ Kohms \times BW $)\}$
where	$D C=$ Duty cycle of the AGCEN signal (approx $1 / 10$) BW $=$ AGC loop bandwidth $=2 \times \pi \times f$ (approx 500 Hz)
	$\mathrm{C}_{\text {SUM }}=\left\{(560 \mu \mathrm{~A}) \times\left(\mathrm{T}_{\text {SAMPLE }}\right) /(2.8 \times M)\right.$
where	$M=$ portion of the full scale voltage to be used in nominal condition (suggested value $=0.8$) $\mathrm{T}_{\text {SAMPLE }}=$ width of the GATE pulse
	$\left.\mathrm{C}_{\text {DIFF }}=\{560 \mu \mathrm{~A}) \times\left(\mathrm{T}_{\text {SAMPLE }}\right) /(1.4 \times \mathrm{M})\right\}$
where	$M=$ portion of the full scale voltage to be used in nominal condition (suggested value $=0.8$) $\mathrm{T}_{\text {SAMPLE }}=$ width of the GATE pulse
DCRCAP	$C=\{(0.04 \times 20) /(16 \mathrm{Kohms} \times \mathrm{BW})\}$
where	BW is the AGC restore loop bandwidth $=2$ $x \pi \times f$ (range 5 to 10 kHz)
DSSUM	$\mathrm{C}=(16 /(\mathrm{BW} \times 8 \mathrm{Kohm})$)
where	BW is the bandwidth $=2 \times \pi \times f=$ (range 10 to 50 kHz)

EXAMPLE SYSTEM DESCRIPTION

An example continuous servo composite servo encoding and the associated demodulator clock waveforms are shown in figure 2. The VCO operates at twice the frequency of the fundamental of the composite signal and drives two flip flops that generate quadrature and normal phase references. The Clock generation logic circuit and synchronizing circuit for the PLL, to acquire initial lock with type 2 loop, are shown in figure 3. A block diagram of the PLL is shown below with the transfer function based on the loop filter components (refer figure 3).

The value of the constant K is given by:
$K=\frac{62}{\pi} \times \frac{\text { phase compared cycles in the servo frame }}{\text { total cycles in the servo frame }}$
A type 2 loop has two poles at the origin of the S-plane or two time domain integrations - one in the frequency to phase conversion and one in the loop filter. In figure 3, the DC level at the non-inverting input of the left comparator should be approximately ($0.1 \mathrm{~V}_{\mathrm{CC}}$ plus one diode drop). The current supplied by the output resistors and series diodes should be approximately $62 \mu \mathrm{~A} / 4$. Time constant is approximately $2 \times(1 /$ PLL BW) and the pullup resistors to $V_{C C}$ are approximately 1 Kohm or much less than the value of the other resistors so as to make the output up level approximately equal to V_{CC} during operation. A state counter divides the servo frame into eight intervals which are:

> NAME $\begin{aligned} & S \\ & X_{1}, x_{2}, x_{3} \\ & \text { A, }, \mathrm{C}, \mathrm{D}\end{aligned}$

LENGTH (IN CLOCK CYCLES)

2

Note that all peaks of the composite signal are on Quad clock phase boundaries, so it contains only one fundamental frequency, which is easily acquired by the phase locked loop. The sync character is 180° out of phase with all others; thus at phase alignment it causes no disturbances to the phase comparator but gives an easily recognizable reverse polarity ripple in the AGC which is detected with a level detector to provide a frame sync logic signal to initialize the state counter.
The inphase clock is used throughout A, B, C, D but inverted 180° as required by the track type to give $A-B$, C-D, B-A, D-C without additional analog switching in position 1 demodulator for track following.

Figure 2. Continuous Servo Encoding and Demodulator Clock Waveforms

Filters are needed on each of the four demodulators for removing the carrier ripple and providing frequency compensation for the gain control and phase locked loop systems. The current output scaling of all four detectors to the AGC output are the same and set by on-chip resistors. The AGC setpoint is a current set by REXT and VREF. Thus a capacitor to ground provides an integrating response for the AGC control loop, as well as ripple filtering. For the phase comparator filter, two capacitors and a resistor provide D.C. integration plus a lead-lag for the PLL control loop compensation. For the position outputs, external 19 K nominal resistors to ($0.9 \times V_{\text {REF }}$) should be provided and a capacitor to ground is added to form a low pass ripple filter.

The phase compare detector forms phase only (not phase frequency) characteristic, so the loop will not acquire
initial lock with an integrating loop filter, which is needed to assure no steady state phase error. Transfer function for the gain of the phase comparator (assuming a sinusoidal servo signal) is given by:
$\frac{62 \mu \mathrm{~A}}{\pi \mathrm{rad}} \times\left[\frac{(\text { time of } \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3)+(\text { time of } \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})}{2 \times(\text { time of one frame })}\right]$
The synchronizing circuit suggested (refer figure 2), senses when the VCO control voltage is near either rail and applies a pulse that ramps it toward the other rail and thus through the operational frequency where it locks. The lock range is much greater than the acquire range, so it retains lock in the presence of the resistor-coupled pulse, with a small phase error, until the pulse goes away and the phase error becomes zero.

It is generally recommended that the servo head magnetic width be equal to two track pitches for best results. In this case for an on-track position one of the four burst patterns becomes almost zero. There is no loss of information on phase when this happens, since then its complement is twice as large so that the sum of the two is constantly independent of position and thus the amount of phase information per frame is also constantly independent of position.

HYBRID SERVO VERSUS ONLY EMBEDDED SERVO

There are a number of merits in using a hybrid servo scheme consisting of a servo surface plus limited data head servo samples over the completely embedded or data head sector servo samples scheme. These are summarized below:

Cost: Lost data surface capacity is less than 1% for a servo surface plus samples compared to 8% for samples only. This suggests that with six or more disks, the servo surface has an advantage. Without a servo surface, it is difficult to generate accurately phase and track center aligned data head (embedded) servo sectors in the drive, requiring them to be done with extra time on an expensive servo writer and moving the cost crossover point nearer to four disks. Drive hardware and costs including assembly and test favour DSP implementations in either case.

Effect on position error sources: These can be very similar for both configurations with optimized control algorithims. The servo surface does have some advantages in being able to obtain higher bandwidths and thus faster settling time and greater reduction of non-repetitive runout and random disturbances.

Effect on access time: A system with a servo surface has two advantages here. The ability to adjust the control signal at shorter time intervals and a higher small signal bandwidth, both of which reduce settling time. Move times can be equivalent.
Data integrity: Here there is a clear superiority for a servo surface system in preventing writes which destroy existing data. There are at least two ways in which this can happen. Electronic noise in the sector timing causes servo sectors to be over written, so that the head can no longer be positioned to read the track even if the data is intact. This probability can be made acceptably small by redundancy in the electronics. External mechanical shock while writing a data sector can not only cause improper writes of the new data but also overwrite adjacent tracks. Inherently there is no way to prevent this with servo sectors only, as there is no position data measurement available and estimators do no good for random fast disturbances. Dynamically balanced rotary actuators reduce this exposure compared to linear travel positioners but cannot eliminate it completely.

CLOCK GENERATION LOGIC (Implemented in Gate Array)

SYNCHRONIZING CIRCUIT FOR THE PLL (To acquire initial lock with type 2 loop)

Figure 3. Support Circuitry for the ML4535 Based "Hybrid" Servo Subsystem

SERVO DESIGN SUGGESTIONS FOR A HIGH TRACK DENSITY DISK DRIVE

The best design choices for a high track density disk drive with four or more platters are outlined below and the hybrid servo subsystem based on the ML4535 \& ML2377, provides the most optimum solution for implementing these design choices and making track densities greater than 3500 TPI achievable.

1) Continuous servo surface with quadrature signals plus some position samples and/or calibration tracks for each data head.
2) DSP implementation of the position control system for best performance of state estimators and adaptive parameter adjustment.
3) Area integration position demodulation on both the servo (dedicated) surface and data head position (embedded) servo samples, for best accuracy and noise rejection.
4) Thin film heads with gap edges aligned and perpendicular to the disk surface.
5) Dynamically balanced rotary actuator for best rejection of external mechanical shock.

ML4535 BASED SYSTEM APPLICATION DIAGRAM

ML4535
ML2375

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML 4535 CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$44-$ Pin TQFP $(\mathrm{H} 44)$

ML4568

Disk Pulse Detector + Embedded Servo Detector

GENERAL DESCRIPTION

The ML4568 is a hard disk pulse detector with two gated peak detectors to demodulate embedded servo information. The pulse detector section includes a wide bandwidth differential amplifier with automatic gain control (AGC), a precision full wave rectifier, time channel and gate channel. The embedded servo peak detector section includes a full-wave rectifier, two gated peak detectors, buffered peak detector outputs, and a difference output. A 2.25 V bandgap reference is also included on-chip.

The ML4568 is a 5 V -only upgrade for 8468 -type devices. Upgraded features include increased data rate operation (to $24 \mathrm{MB} / \mathrm{s}$ with $\mathrm{RLL}(1,7)$ coding), improve pulse pairing (1ns), and reduced power consumption (400 mW typical) resulting from 5 V -only operation.
The ML4568 pulse detector section detects amplitude peaks, producing a TTL-compatible output which accurately indicates the time position of signal peaks. In hard disk applications, these signal peaks represent flux reversals in the magnetic medium.

FEATURES

- 5V-only operation
- Low power consumption (400 mW typical)

■ Supports $24 \mathrm{MB} / \mathrm{s} \operatorname{RLL}(1,7)$ coding

- Less than ± 1 ns Pulse Pairing
- Wide input signal amplitude range (10 mV PP to $100 \mathrm{mV} \mathrm{VP}_{\mathrm{PP}}$)
■ On-chip differential gain controlled amplifier, differentiator, comparator gating circuitry, and output pulse generator
- Adjustable comparator hysteresis
- Dynamic hysteresis tracks signal amplitude
- AGC and differentiator time constants set by external components
- TTL compatible digital inputs and outputs
- Built in embedded servo detector
- On chip buffers provide low impedance servo output voltages
■ User adjustable servo time constants

BLOCK DIAGRAM

GENERAL DESCRIPTION (Continued)

The ML4568 also incorporates two gated detectors which detect embedded servo information, used for head positioning. The ML4568 provides two buffered low impedance voltage outputs which represent the peak detected level of each servo burst. The ML4568 also provides a buffered output that represents the voltage difference between the two servo channels, centered about $V_{\text {REF }}$

PIN CONFIGURATION

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
Power Supply		
9	V_{CC}	+5V $\pm 10 \%$ supply.
21	$\mathrm{V}_{\text {Ref out }}$	Internal 2.25 V reference voltage output.
26	ANALOG GROUND	Analog signals should be referenced to this pin.
13	DIGITAL GROUND	Digital signals should be referenced to this pin.
Analog Signals		
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	AMP $\mathbb{I N}^{+}$ AMP IN-	These are the differential inputs to the Amplifier. The output of the read/write head amplifier should be capacitively coupled to these pins.
$\begin{aligned} & 28 \\ & 27 \end{aligned}$	AMP OUT+ AMP OUT-	These are the differential outputs of the Amplifier. These outputs should be capacitively coupled to the channel filter.
$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & -\mathrm{CH} \operatorname{IN} \\ & +\mathrm{CH} \mathrm{IN} \end{aligned}$	These are the differential inputs to the time, gating and servo channels. These inputs must be capacitively coupled to the channel filter at the amp. outputs. The maximum differential peak-to-peak swing at this input is $1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$.
2	CD+	The external differentiator
3	CD-	network is connected between these two pins.
23	HYS.	The DC voltage on this pin sets the amount of hysteresis on the differential comparator.

$\left.\begin{array}{cc}\text { PIN \# } & \text { NAME } \\ \hline \text { Analog Signals (Continued) } \\ 24 & \text { LEVEL }\end{array} \begin{array}{l}\text { This is a Peak Detector Output } \\ \text { signal that is used in conjunction } \\ \text { with the set hysteresis pin } 23 \text { to } \\ \text { provide a dynamic hysteresis } \\ \text { function. } \\ \text { The AGC circuit adjusts the gain } \\ \text { of the gain controlled amplifier } \\ \text { to make the differential peak to } \\ \text { peak voltage at the Channel } \\ \text { inputs equal to four times the } \\ \text { DC voltage on this pin. }\end{array}\right\}$

PIN DESCRIPTION (Continued)

PIN \#	NAME	FUNCTION
Digital Signals 10 SET PW	An external capacitor to control the pulse width of the Encoded Data Out (RD) is connected between this pin and Digital Ground. See Figure 1. If this pin is low, the Pulse Detector is in the read mode and the chip is active. When this pin goes high, the pulse detector is forced into a stand-by mode.	
8	\bar{R} / W	This is a standard TTL input.
11	DOUT	This is the buffered, open collector, output of the differential comparator with hysteresis.
12	RD	This is the standard TTL output whose leading edge indicates the time position of the peaks.

PIN \# NAME FUNCTION

Digital Signals (Continued)
17 GATE 1 These inputs accept TTL levels.
20 GATE 2 When a low level is present the embedded servo signal is allowed to charge the RC network at pins 18 and 19 respectively. A high level will force a hold condition of the DC voltage across the RC network and will also disable the servo channel.
22 DISCH. This input accepts a TTL level. A high level connects a 1.5 K internal resistor to ground on pins 18 and 19.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
\qquad
TTL Input Voltage
Pins 8, 17, 20, 22 ... 5.5V
TTL Output Voltage
Pins 12, 11 5.5 V

Input Voltage
Pins 23, 5 .. 5.5V
Minimum Input Voltage
Pins 23, 5
$-0.5 \mathrm{~V}$
Differential Input Voltage

ESD susceptibility rating is to be determined
Storage Temperature
Lead Temperature (Soldering 10 sec .) $300^{\circ} \mathrm{C}$
Maximum Power Dissipation at $25^{\circ} \mathrm{C}$:
PLCC Package (derate TBD $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$) $\ldots 500 \mathrm{~mW}$

OPERATING CONDITIONS

[^8]
ELECTRICAL CHARACTERISTICS

Over recommended operating conditions.
Set Hysteresis $=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 17}=2 \mathrm{~V}$, READ/WRITE $=0.4 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 22}=0.4 \mathrm{~V}$, unless otherwise noted.

| Symbol | Pins | Parameter | Conditions | Min | Typ | Max | Units |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Amplifier | | | | | | | |
| $Z_{\text {INAI }}$ | 6,7 | Amp In Impedance (Note 1) | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 1.8 | 2.4 | 3.0 | $\mathrm{~K} \Omega$ |
| $\mathrm{~A}_{\mathrm{VMIN}}$ | 28,27 | Minimum Voltage Gain Differential | AC Output 3 V_{PP} | | 6 | 15 | $\mathrm{~V} / \mathrm{V}$ |
| $\mathrm{A}_{\mathrm{VMAX}}$ | 28,27 | Maximum Voltage Gain Differential | AC Output 3 V_{PP} | 250 | 300 | | V/V |

Channel

$\underline{\mathrm{Z}_{\text {INCI }}}$	4, 1	Channel Input Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)		2.5		$\mathrm{K} \Omega$
$\mathrm{I}_{\text {CAGC }}$	14	Pin 14 Current which Charges $\mathrm{C}_{\text {AGC }}$	$\mathrm{V}_{\text {PIN 14 }}=2.2 \mathrm{~V}$	5.0	5.8		mA
$\mathrm{I}_{\text {CAGC }}{ }^{+}$	14	Pin 14 Current which Discharges $\mathrm{C}_{\text {AGC }}$	$\mathrm{V}_{\text {PIN 14 }}=2.2 \mathrm{~V}$		0.5	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {AGCSET }}$	5	AGCSET Input Bias Current			8	100	$\mu \mathrm{A}$
IIL	23	Set Hysteresis Input Bias Current	$\mathrm{V}_{\text {PIN } 23}=0$			-20	$\mu \mathrm{A}$
I_{CD}	2,3	Current into Pin 2 and 3 that Discharges C_{D}		0.8	1.0		mA
HYS	23	Peak Hys. vs $\mathrm{V}_{\mathrm{HYS}}$	$\mathrm{V}_{\mathrm{PIN} 23}=1 \mathrm{~V}$	0.25	0.4	0.55	$\begin{aligned} & \mathrm{V}_{\mathrm{PK} /} \\ & \mathrm{V}_{\mathrm{DC}} \end{aligned}$

Write Mode

$Z_{\text {INAI }}$	6,7	Amp In Impedance in Write Mode	$\mathrm{V}_{\text {PIN }}=2.0 \mathrm{~V}$		350	450	Ω
$\mathrm{I}_{\text {AGC }}$	14	Pin 14 Current in Write Mode	$\mathrm{V}_{\text {PIN }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN 14 }}=2.2 \mathrm{~V}$		0.2	1.0	$\mu \mathrm{~A}$

Digital Pins

V_{IH}	$\begin{gathered} 8,17, \\ 20,22 \end{gathered}$	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	$\begin{gathered} 8,17, \\ 20,22 \end{gathered}$	Low Level Input Voltage				0.8	V
I_{IH}	$\begin{gathered} 8,17, \\ 20,22 \end{gathered}$	High Level Input Current	$\mathrm{V}_{5 \mathrm{~V}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$I_{\text {IL }}$	$\begin{gathered} 8,17 \\ 20,22 \end{gathered}$	Low Level Input Current	$\mathrm{V}_{5 \mathrm{~V}}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$		140	200	$\mu \mathrm{A}$
V_{OH}	12	High Level Output Voltage	$\mathrm{V}_{5 \mathrm{~V}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ (Note 2)	2.4			V
$\mathrm{V}_{\mathrm{OL} 12}$	12	Low Level Output Voltage	$\mathrm{V}_{5 \mathrm{~V}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=800 \mu \mathrm{~A}$ (Note 2)			0.5	V
I_{LH}	11	High Level Output Leakage Current	$\mathrm{V}_{\text {PIN } 11}=\mathrm{V}_{\mathrm{CC}}$ Measure Current into Pin 11			50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL11 }}$	11	Low Level Output Voltage	$\mathrm{IPIN} 11=800 \mu \mathrm{~A}$			0.5	V

Servo Channel

$\mathrm{Z}_{\mathrm{DIS}}$	18,19	Discharge Impedance	$\mathrm{V}_{\text {PIN 22 }}=2 \mathrm{~V}$ (discharge) Force 2.5V on Pins 18 or 19	0.5	1.8	2.5	$\mathrm{~K} \Omega$
$\mathrm{~V}_{\text {BOQ }}$	15,16	Buffer Quiescent Output Level	$\mathrm{V}_{\text {PIN } 17,20,22}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CI}}=0 \mathrm{~V}$ Pull 0mA from Pins 15 and 16	1.0	1.6	2.0	V
$\mathrm{~V}_{\text {LEVEL }}$	24	Level Quiescent Output Level	$\mathrm{V}_{\mathrm{CI}}=0 \mathrm{~V}$ Pull $200 \mu \mathrm{~A}$ from Pin 24		0.2	0.5	V
I_{L}	18,19	Gated Off Leakage Current	$\mathrm{V}_{\text {PIN 22 }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 20}=\mathrm{V}_{\text {PIN }} 17$ Force 3 V on Pin 18 or Pin 19	-1		1	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)
Over recommended operating conditions.
Set Hysteresis $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 17}=2 \mathrm{~V}$, READ/WRITE $=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 22}=0.4 \mathrm{~V}$, unless otherwise noted.

Symbol	Pins	Parameter	Conditions	Min	Typ	Max	Units

Servo Channel (Continued)

$\mathrm{V}_{\text {OSBO }}$	16, 15	Buffer Output Offset Voltage for $\mathrm{V}_{\mathrm{CI}}=1 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$	$\mathrm{V}_{\text {PIN 17, 20, } 22}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 1}=2.75 \mathrm{~V}$ Pull 0mA from Pins 15 and 16 $\mathrm{V}_{\text {PIN } 4}=2.25 \mathrm{~V}$, $\mathrm{V}_{\text {OSBO }}=\mathrm{V}_{\text {PIN } 16}-\mathrm{V}_{\text {PIN } 15}$		2	± 15	mV
$\mathrm{V}_{\text {OSYS }}$	25, 21	System Output Offset Voltage for $\mathrm{V}_{\mathrm{Cl}}=0.75 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$ Pull 0mA from Pin 25 $\mathrm{V}_{\text {OSYS }}=\mathrm{V}_{\text {PIN } 25}-\mathrm{V}_{\text {PIN } 21}$	$V_{\text {PIN 17, } 20,22}=0.4$ $\mathrm{V}_{\mathrm{PIN} 1}=2.688 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=2.313 \mathrm{~V}$		± 5	± 20	mV
$\mathrm{A}_{\text {VDA }}$ (1V)	25, 21	Difference Amplifier Gain, 1V Differential Input	$\begin{aligned} & V_{\text {PIN 17, 20 }}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN } 19}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 18}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {PIN 22 }}=0.4 \mathrm{~V} \end{aligned}$	1.6	2	2.4	V/V
$\mathrm{A}_{\text {VDA }}$ (.5V)	25, 21	Difference Amplifier Gain, 0.5V Differential Input	$\begin{aligned} & \mathrm{V}_{\text {PIN } 17,20}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN } 19}=1.75 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 18}=2.25 \mathrm{~V}, \\ & \mathrm{~V}_{\text {PIN 22 }}=0.4 \mathrm{~V} \end{aligned}$	1.6	2	2.4	V/V
$\underline{G L}$	25	Difference Amplifier Gain Linearity			0.2	2.5	\%
$Z_{\text {Level }}$ SOURCE	24	Level Out Output Impedance	$\mathrm{V}_{\text {PIN 17, 20, 22 }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CI}}=0.75 \mathrm{~V}$ Measure $\mathrm{V}_{\text {PIN } 24}$ with $200 \mu \mathrm{~A}$ and 3 mA pulled out of the pin. $\mathrm{Z}_{\text {LEVEL }}=$ change in $\mathrm{V}_{\text {PIN } 24}$ SOURCE $3 \mathrm{~mA}-0.2 \mathrm{~mA}$	100	180	250	Ω
$\begin{aligned} & \mathrm{AV}_{\mathrm{GD}} \\ & (1.5 \mathrm{~V}) \end{aligned}$	15, 16	Gated Detector Gain for $\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$	$\mathrm{V}_{\text {PIN 22, 20, 17 }}=0.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{PIN} 1}=2.875 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 4}=2.125 \mathrm{~V}$	1.45	1.8	2.25	V/V
$\begin{aligned} & \mathrm{AV}_{\mathrm{GD}} \\ & (0.75 \mathrm{~V}) \\ & \hline \end{aligned}$	15, 16	Gated Detector Gain for $\mathrm{V}_{\mathrm{Cl}}=0.75 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$	$V_{\text {PIN 22, 20, 17 }}=0.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{PIN} 1}=2.688 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 4}=2.313 \mathrm{~V}$	1.45	1.7	2.25	V/V
$\mathrm{AV}_{\text {Level }}$ (1.5V)	24	Level Voltage Gain For $\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$	$\mathrm{V}_{\text {PIN } 1}=2.875 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=2.125 \mathrm{~V}$	1.45	1.8	2.25	V/V
$\begin{aligned} & \mathrm{AV}_{\text {LEVEL }} \\ & (0.75 \mathrm{~V}) \end{aligned}$	24	Level Voltage Gain For $\mathrm{V}_{\mathrm{CI}}=0.75 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}$	$\mathrm{V}_{\text {PIN } 1}=2.687 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=2.312 \mathrm{~V}$	1.6	1.9	2.4	V/V
$\underline{G L}$	15, 16	Gated Detector Gain Linearity			± 0.1	± 2.5	\%
$\mathrm{I}_{\text {CC }}$	9	$\mathrm{V}_{\text {CC }}$ Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	40	90	110	mA
$\mathrm{V}_{\text {REF }}$	21	$\mathrm{V}_{\text {REF }}$ Voltage		2.0	2.25	2.5	V

AC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Temperature and Supply Range refer to AC Test Setup.
$f=2.5 \mathrm{MHz}$ unless otherwise indicated. PKA, PKB $=1 \mathrm{~K} \Omega+10 \mathrm{nF}$ to GND.

Symbol	Pins	Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {t CHARGE }}$	15, 16	Gated Detector Charge Time	$\mathrm{V}_{\mathrm{CI}}=1.5 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~V}_{\mathrm{PIN} 22}=0.3 \mathrm{~V},$ With PKA and PKB discharged, measure the time from Pin 17 or 20 going from 2 V to 0.3 V , to $\mathrm{V}_{\mathrm{BO} 1}$ or $\mathrm{V}_{\mathrm{BO} 2}$ respectively, reaching 90% of their final value		1.0		$\mu \mathrm{s}$
t Discharge	15, 16	Gated Detector Discharge Time	$\mathrm{V}_{\mathrm{Cl}}=1.5 \mathrm{~V}_{\mathrm{PP}}$ With LP1 charged, measure the time from Pin 22 going from 0.3 V to 2 V , to the voltage at $\mathrm{V}_{\mathrm{BO} 1}$ or $\mathrm{V}_{\mathrm{BO} 2}$ reaching 90% of their final value		70		$\mu \mathrm{s}$
t_{ON}	18, 19	Gated Detector Turn ON Time	$\mathrm{V}_{\mathrm{CI}}=0.35 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{PIN} 22}=0.3 \mathrm{~V} .$ With LP1 discharged, measure the time from Pin 17 going from $2 V$ to 0.3 V , to the voltage on Pin 18 increasing 0.1V. Do a similar measurement with LP2, Pin 20 and Pin 19		0.2		$\mu \mathrm{s}$
toff	18, 19	Gated Detector Turn OFF Time	$V_{\mathrm{CI}}=0.35 \mathrm{~V}_{\text {DC }} \quad \mathrm{V}_{\text {PIN 22 }}=2 \mathrm{~V}$. Measure the time from Pin 17 going from 0.3 V to 2 V , to the voltage on Pin 18 decreasing by 0.1 V . Do a similar measurement with Pins 20 and 19		0.4		$\mu \mathrm{s}$
$t_{\text {tpp }}$	12	Pulse Pairing ML4568-1	$f=2.5 \mathrm{MHz}$ and $\mathrm{V}_{\mathrm{CI}}=1 \mathrm{~V}_{\text {PP }}$ differential			± 1	ns
$t_{\text {pp }}$	12	Pulse Pairing ML4568-2	$f=2.5 \mathrm{MHz}$ and $\mathrm{V}_{\mathrm{CI}}=1 \mathrm{~V}_{\text {PP }}$ differential			± 3	ns

Notes:

1. The temperature coefficient of the input impedance is typically 0.05% per ${ }^{\circ} \mathrm{C}$.
2. To prevent inductive coupling from the digital outputs to Amp In, the TTL outputs should not drive more than one ALS TTL load each. Pin 11 is an open collector output which is tested with an external 1 K pullup resistor to the 5 V supply.

ML4568 CONNECTION DIAGRAM

PLCC-28 Version

Note 1: $\mathrm{K}=\mathrm{R} 1 / \mathrm{R} 2$
Note 2: Hysterisis Level $=0.6 \times \mathrm{K} / \mathrm{V}_{\mathrm{IN}} \mathrm{P}-\mathrm{P}$
Note 3: RC on pins PKA and PKB basically tuned to minimize ripple.

APPLICATION INFORMATION

SETTING THE OUTPUT PULSEWIDTH

The RD output pulsewidth is dependent on the value of C_{OS}, which is connected from pin 10 to V_{CC}. This relationship is shown in figure 1.

SELECTING C ${ }_{\text {D }}$

The following table summarizes the maximum C_{D} value allowed for different data rates. These values are derived using

$$
C_{D}(\max)=\frac{176}{f_{M A X}}, R_{D}=0
$$

Data Rate	$\mathbf{f}_{\mathbf{M A X}}$	$\mathbf{C}_{\mathbf{D}}$ (max)
$7.5 \mathrm{MB} / \mathrm{s}$	2.81 MHz	62.6 pF
$24 \mathrm{MB} / \mathrm{s}$	9 MHz	19.6 pF

Table 1. Maximum C_{D} Value Allowed for a $1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Differential Signal Using RLL (1, 7) Code

	1,7 RLL	2,7 RLL
$f_{\text {MAX }}$	$3 / 8 \times$ Data Rate	$1 / 3 \times$ Data Rate
$f_{\text {MAX }}$	$3 / 32 \times$ Data Rate	$1 / 8 \times$ Data Rate

Table 2

Figure 1. RD Output Pulsewidth as a Function of C_{OS} $\mathrm{PW} \simeq 0.5 \mathrm{C}_{\mathrm{OS}}$

ORDERING INFORMATION

PART NUMBER	PACKAGE	PULSE PAIRING
ML4568-1CQ	MOLDED PCC (Q28)	$\pm 1 \mathrm{~ns}$
ML4568-2CQ	MOLDED PCC (Q28)	$\pm 3 \mathrm{~ns}$

5V, 2-, 4-Channel Thin-Film Read/Write Circuit

GENERAL DESCRIPTION

The ML4610R/4611R is a bipolar monolithic read/write circuit designed for use with two-terminal thin-film recording heads. They provide a low noise read amplifier, write current control, and data protection circuitry for up to four channels. The ML4610R/4611R incorporates internal 700 ohm damping resistors which dampen the write signals to the disk. When the device is switched to read mode, the damping resistor is switched out to allow the full signal to be amplified. Power supply fault protection is provided by disabling the write current generator during power sequencing. System write to read recovery time is significantly improved by controlling the read channel common mode output voltage shift in the write mode. The ML4611R option also provides an user controllable write current adjustment capability, available in the 24-Pin package only.

FEATURES

- Compatible to SSIs 32R4610R/4611R
- Can drop into SSIs 32R2020R series sockets
- Single +5 volt operation
- Low Power, $\mathrm{P}_{\text {IDLE }}<50 \mathrm{~mW}, \mathrm{P}_{\mathrm{MAX}}<200 \mathrm{~mW}$
- Read Mode gain $=200 \mathrm{~V} / \mathrm{N}$
- Damping resistors switched out in Read mode
- Input noise $=0.85 \mathrm{nV} / \sqrt{\mathrm{Hz}} \max$
- Input capacitance $=35 \mathrm{pF}$ max
- Write Current range $=10-35 \mathrm{~mA}$
- Programmable write current source
- Enhanced system write to read recovery time
- Power supply fault protection
- Head short to ground protection
- 24-pin SOIC (4 channel with WCADJ)
- 20-pin SOIC (4 channel without WCADJ)
- 16-pin SOIC (2 channel without WCADJ)

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

NAME	TYPE	FUNCTION
HSO, HS1	I	Head Select: Selects one of four heads
$\overline{C S}$	I	Chip Select: A high inhibits the chip
R \bar{W}	I	Read/Write: A high selects read mode
WUS	O	Write Unsafe: A high indicates an unsafe writing condition
WDI	I	Write Data In: Changes the direction of the current in the head
HOX $-\mathrm{H} 3 X$	I/O	X,Y Head Connectors
HOY $-\mathrm{H} 3 Y$		

NAME	TYPE	FUNCTION
RDX, RDY	O	X, Y Read Data: Differential read data output Write Current: Used to set the
WC		magnitude of the write current Write Current Adjust: Used to decrease the write current
WCADJ		I
VCC1	+5 volt supply	
VCC2	I	+5 volt supply for write current drivers
GND	I	Ground

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}} 1\right)$
-0.3 to +7 VDC
DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 2$)- 0.3 to +7VDC
Write Current (lw)
.............. 80 mA
Digital Input Voltage (VIN) -0.3 to VCC1 + 0.3VDC
Head Port Voltage $\left(V_{H}\right) \ldots \ldots-0.3$ to VCC1 + 0.3VDC
Output Current: (RDX, RDY IO)-10mA
Output Current: (WUS) .. +12 mA

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 1$) $5 \pm 5 \%$ VDC
DC Supply Voltage ($\mathrm{V}_{\mathrm{CC}} 2$) $5 \pm 5 \%$ VDC
Operating Junction Temperature $\left(\mathrm{T}_{\mathrm{j}}\right) \ldots \ldots \ldots . .+25^{\circ}$ to $+110^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
$V_{C C} 1$	Supply Current	Read Mode			33	mA
		Write Mode			27	mA
		Idle Mode			12	mA
$\mathrm{~V}_{\mathrm{CC}}{ }^{2}$	Supply Current	Read Mode		11	mA	
		Write Mode		$10+\mathrm{I}_{\mathrm{W}}$	mA	
		Idle Mode			0.4	mA
	Power Dissipation	Read Mode			200	mW
		Write Mode		300	mW	
		Idle Mode		65	mW	

DIGITAL INPUTS

V_{IL}	Input Low Voltage				0.8	VDC
V_{IH}	Input High Voltage		2.0			VDC
	Input Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.4			mA
	Input High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			100	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	WUS Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA} \mathrm{max}$			0.5	VDC
	VCC1 Fault Voltage	$\mathrm{I}_{\mathrm{W}}<0.2 \mathrm{~mA}$	3.8	4.0	4.2	VDC

WRITE CHARACTERISTICS

	Write Current Constant "K"			0.99		
$\mathrm{V}_{\text {Wc }}$	Write Current Voltage		1.15	1.25	1.35	V
	WCADJ Voltage	$I_{\text {WCAD }}=0$ to 0.5 mA	2.0	V_{Cd} 2	3.0	VDC
	$I_{\text {HEAD (DECREASE) }} /{ }_{\text {IWCADJ }}$		26	29	32	$\mathrm{mA} / \mathrm{mA}$
	IWCADJ Range		0.0		0.5	mA
	Differential Head Voltage Swing		3.4	6		$\mathrm{V}_{\text {P-P }}$
	Unselected Head Current				1	mA (pk)
	Head Differential Load Capacitance				25	pF
	Head Differential Load Resistance	$\mathrm{R}_{\mathrm{D}}(\mathrm{ML} 4610 \mathrm{R} / 4611 \mathrm{R})$	560	700	950	Ω
	WDI Transition Frequency	WUS = low	1.0			MHz
	Write Current Range (Iw)		10		35	mA

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
READ CHARACTERISTICS CL (RDX,RDY) < 20 pF, RL (RDX, RDY) $=\mathbf{1 k} \mathbf{~} \mathbf{2}$						
	Differential Voltage Gain	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{mV} \mathrm{P}-\mathrm{P}^{\text {@ }} 1 \mathrm{MHz}$	160	200	240	V / N
	$\begin{gathered} \text { Voltage } B W \\ -1 \mathrm{~dB} \\ -3 \mathrm{~dB} \end{gathered}$	$\|Z \mathrm{~s}\|<5 \Omega, \mathrm{~V}_{\mathbb{I N}}=1 \mathrm{mV} \mathrm{P}_{\text {-P }}$	$\begin{aligned} & 20 \\ & 35 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Input Noise Voltage	$B W=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$		0.6	0.85	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Differential Input Capacitance	$\mathrm{V}_{\text {IN }}=1 \mathrm{~m} \mathrm{~V}_{\text {P-P, }} \mathrm{f}=5 \mathrm{MHz}$		27	35	pF
	Differential Input resistance	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{mV} \mathrm{P}_{\text {P-P }}, \mathrm{f}=5 \mathrm{MHz}$	1000			Ω
	Dynamic Range	AC input voltage where gain falls to 90% of its small signal gain value, $\mathrm{f}=5 \mathrm{MHz}$	3			$\mathrm{m} \mathrm{V}_{\text {P-P }}$
	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=0$ volts $\mathrm{DC}+100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ @ 5 MHz	45			dB
	Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{P}_{\text {-p }} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\text {CC }}$	40			dB
	Channel Separation	Unselected channels driven with $V_{I N}=0$ volts $D C+100 \mathrm{mV} V_{\text {P-P }}$	45			dB
	Output Offset Voltage		-200		+200	mV
	Single-Ended Output Resistance	$f=5 \mathrm{MHz}$			40	Ω
	Output Current	AC coupled load, RDX to RDY	1.4			mA
$\begin{aligned} & \text { RDX, } \\ & \text { RDY } \end{aligned}$	Common Mode Output		2.0	2.8	3.5	VDC
SWITCHING CHARACTERISTICS $\mathbf{I}_{\mathbf{W}}=\mathbf{2 0 m A}, \mathbf{R}_{\mathbf{H}}=\mathbf{3 0}$, $\mathrm{L}_{\mathbf{H}}=\mathbf{1} \mu \mathrm{H}, \mathrm{f}_{\text {DATA }}=\mathbf{5 M H z}$						
$\mathrm{R} \overline{\mathrm{W}}$	Read to Write	$\mathrm{R} / \overline{\mathrm{W}}$ to 90% of write current		0.1	1.0	$\mu \mathrm{s}$
$\mathrm{R} / \overline{\mathrm{W}}$	Write to Read	$R \bar{W}$ to 90% of 100 mV Read signal envelope		0.5	1.0	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$	Unselect to Select	$\overline{\mathrm{CS}}$ to 90% of write current or 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$		0.4	1.0	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$	Select to Unselect	$\overline{\mathrm{CS}}$ to 10% of write current		0.4	1.0	$\mu \mathrm{s}$
	HSO-1 to any head	To 90% of 100 mV 10 MHz Read signal envelope		0.2	1.0	$\mu \mathrm{s}$
	WUS Safe to Unsafe (TD1) Unsafe to Safe (TD2)		0.6	$\begin{aligned} & 2.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
	Head Current: WDI to lx - ly (TD3) Asymmetry Rise/Fall Time	$\mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$ From 50\% points WDI has 1 ns rise/fall time 10% to 90% points			$\begin{aligned} & 32 \\ & 1.0 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

Figure 1. Write Mode.

MODE SELECT

$\overline{\mathbf{C S}}$	$\mathbf{R} / \overline{\mathbf{W}}$	MODE
0	0	Write
0	1	Read
1	0	Idle
1	1	Idle

FUNCTIONAL DESCRIPTION

The ML4610R/4611R has the ability to address up to 4 two-terminal thin-film heads and provide write drive or read amplification. Head selection and mode control are described in the tables below. The TTL inputs $R \bar{W}$ and $\overline{C S}$ have internal pull-up resistors to prevent an accidental write condition. HS0 and HS1 have internal pull-downs. Internal clamp circuitry will protect the ML4610R/4611R from a head short to ground condition in any mode. The damping resistors are switched out during read mode, as identified by the $R \bar{W}$ pin.

WRITE MODE OPERATION

Taking both $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}$ low selects write mode which configures the ML4610R/4611R as a current switch and activates the Write Unsafe (WUS) detector circuitry. Head current is toggled between the X and Y side of the selected head on each high to low transition of the Write Data Input (WDI). A preceding read or idle mode select initializes the Write Data Flip-Flop to pass write current through the " X " side of the head. The current calculations are shown below:
Write current (peak) is given by:

$$
I_{W}=\frac{K \times V W C}{R W C}
$$

HEAD SELECT
HS1
0
:---:
1
1

where
RWC is connected from pin WC to GND
Actual head current is given by:

$$
I_{X, Y}=\frac{I_{W}}{1+\frac{R_{H}}{R_{D}}}
$$

where

$$
\begin{aligned}
& R_{H}=\text { head }+ \text { external wire resistance } \\
& R_{D}=\text { damping resistance }
\end{aligned}
$$

The ML4610R/4611R adds a feature which allows the user to adjust the Iw current by a finite amount using the WCADJ pin, while writing to the disk. It is used by switching a separate write current adjust resistor in and out on the WCADJ pin or by connecting a DAC to that pin to sink a controllable amount of current. It is nominally biased to $\mathrm{V}_{\mathrm{C}} / 2$. Sinking current from this pin to ground, will divert a proportional amount of current from the actual head current while maintaining a constant current through the WC resistor and V_{CC}. Allowing WCADJ to float or pulling it high will cut off the circuit and it will have no effect. For example, if the nominal head current is set to 30 mA through WC with WCADJ open, then for a
7.25 mA head current decrease, a $10 \mathrm{k} \Omega$ resistor would be connected from the WCADJ pin to ground. A TTL gate could be used as a switch with a small degradation in accuracy. A DAC could be programmed to sink 0.25 mA from the WCADJ pin, for achieving the same function.

$$
I_{W} \text { head }(\text { decrease })=\frac{29 \times V_{W C A D J}}{R_{W C A D J}}
$$

where
$V_{\text {WCADJ }}=$ Voltage on the WCADJ pin
$\mathrm{R}_{\text {WCADJ }}=$ Write current adjust setting resistor

VOLTAGE FAULT DETECTION

A voltage fault detection circuit improves data security by disabling the write current generator during a voltage fault or power start-up, regardless of mode. The Write Unsafe (WUS) open collector output goes high under the conditions given below. After the fault condition is removed, a negative transition on WDI is required to clear WUS.

- Write Data Input frequency too low
— Device in Read Mode
- Chip is disabled or head is open
- No write current

READ MODE OPERATION

The Read mode configures the ML4610R/4611R as a low noise differential amplifier and deactivates the write current generator. The RDX and RDY output are driven by emitter followers. They should be AC coupled to the load. The (X, Y) inputs are non-inverting to the (X, Y) outputs. In the Idle or Write mode, the read amplifier is deactivated and RDX, RDY outputs become high impedance. This facilitates multiple R / \bar{W} applications (wired-OR RDX, RDY) and minimizes voltage drifts when switching from Write to Read mode. The write current source is also deactivated for both the Read and Idle mode. In addition the ML4610R/4611R supports the feature by which the internal damping resistors are switched out in the read mode, which allows the full signal to be amplified.

IDLE MODE OPERATION

Taking $\overline{\mathrm{CS}}$ high selects the idle mode which switches the RDX and RDY outputs into a high impedance state and deactivates the device. Power consumption in this mode is held to a minimum, less than 50 mW .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4610R-2CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-Pin SOIC (S16W)
ML4610R-4CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin SOIC (S20W)
ML4611R-4CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24-Pin SOIC (S24W)

24 Mbps Read Channel Filter/Equalizer

GENERAL DESCRIPTION

The ML6005 is a monolithic analog filter/equalizer intended for hard disk drive read channel applications, capable of handling disk data rates upto $24 \mathrm{Mbits} / \mathrm{s}$, with an operating power dissipation of less than 300 mW . Its architecture consists of a continuous type filter based on a transconductor and a high speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics, thus realizing a family of frequency response curves optimized for disk drive read channel equalization. It consists of a programmable 6-pole 2-zero lowpass filter stage, two pairs of high-speed drivers, and a serial microprocessor interface. The poles of the transfer function approximate a maximally flat group delay (Bessel) response, whereas the symmetric zeros provide the high-frequency boost necessary for pulse slimming. The user can independently adjust both the corner frequency, as well as the slimming level. The desired frequency response is programmed by a 14-bit serial input data stream which includes one bit for power-down, one bit for read/write control, and one bit for auto-zero control. The auto-zero circuitry, if enabled, reduces the output offsets to less than 20 mV . The read/ write control is also provided by a hardware pin. The ML6005 is well suited for constant density recording systems (Zoned-bit recording) as well as for constant data rate systems. A 36Mbits/s version, ML6006 is also available.

FEATURES

■ 6-pole, 2-zero continuous time filter with $<-45 \mathrm{~dB}$ harmonic distortion

- Disk Data rates up to $24 \mathrm{Mbit} / \mathrm{s}$
- Programmable filter cutoff frequency
(4.3:1 range in 64 steps)
($\mathrm{f}_{\mathrm{c}}=3.13$ to 13.5 MHz)
■ 32 step programmable pulse slimming equalization, 0 to 10 dB boost at f_{c}.
- Power-down, Auto-zero, RM modes programmable through bits in the Control Register
- Lowpass output and Differentiated Lowpass (Bandpass) output provided.
- Fully I/O balanced architecture with TTL/CMOS compatible interface
■ High speed (upto 25 MHz clock) three wire serial microprocessor interface
- Double buffered data latch for synchronous or asynchronous data loading.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ operating temperature
- Available in 20-pin SSOP package.
- $4 \mathrm{GHz} / 1.5 \mu \mathrm{BiCMOS}$ process
- Power Dissipation - $\mathrm{P}_{\mathrm{opr}}=300 \mathrm{~mW}, \mathrm{P}_{\mathrm{dn}}=7.5 \mathrm{~mW}$

BLOCK DIAGRAM

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	VOLP	Normal Lowpass outputs	15	$\overline{\mathrm{CS}}$	Control Register Enable. A logical low level allows the SCLK input to clock data into the control register via the SDATA input line. A logical high level latches the control register contents and issues the information to the appropriate circuitry. A TTL input.
2	VOLM				
3	VCC2	Positive supply for the output drivers, $5 \mathrm{~V} \pm 10 \%$			
$\begin{aligned} & 4,5 \\ & 9,11 \end{aligned}$	GND	Ground			
7	VINP	Signal Inputs			
8	VINM		17	SDATA	Control Register Data. A TTL input
10	REXT	A 10K resistor between this pin and ground sets the filters corner frequency	18	SCLK	Control Register Clock. Negative edge triggerred control register clock input. A TTL input.
13	VCC1	Positive supply, 5V $\pm 10 \%$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	VOHM VOHP	Differentiated lowpass outputs
14	$\overline{\mathrm{R}}$ W	Read/Write Control pin. A low input level allows normal operation of the filter in the read mode. A high level input puts the filter in the write mode, where the input impedance is lowered to prevent the transients generated during write to read transitions from affecting the filter response. A TTL input. Additionally a metal mask option is available to configure this pin as either power down enable or frequency boost disable	6, 12 16	NC	No Connects, reserved for future use.

ABSOLUTE MAXIMUM RATINGS

VCC1, VCC2
+6.5 volts
VINP, VINM, REXT, CS, SCLK, SDATA, \bar{R} / \mathcal{W}

GND - 0.3 V to $\mathrm{VCC} 1+0.3 \mathrm{~V}$
VOLP, VOLM,
VOHP, VOHM
GND - 0.3 V to $\mathrm{VCC} 2+0.3 \mathrm{~V}$
Input Current per pin \qquad $\pm 25 \mathrm{~mA}$
Package Dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Surface Mount)
1.5 Watts

Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

VCC1 = VCC2 +5 volts $\pm 10 \%$
VIN $=($ VINP-VINM $)$ $1 \mathrm{Vp}-\mathrm{p}$
Rext 10 Kohms
Serial Clock Frequency (SCLK) $<25 \mathrm{MHz}$
AC Coupling Capacitors $0.0001 \mu \mathrm{~F}$

ELECTRICAL CHARACHTERISTICS

The following specifications apply over the recommended operating conditions, unless otherwise stated. Please refer to the application/test setup digram:

```
VCC1 = VCC2 = 5 volt }\pm10%,\textrm{Ta}=\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to 70}\mp@subsup{}{}{\circ}\textrm{C},\mathrm{ Rext }=10\textrm{Kohms
VIN = (VINP - VINM) = 1 Vp-p sinewave input
VOL = (VOLP - VOLM) and VOH = (VOHP - VOHM)
Input and Output coupling capacitors = 0.0047 \muF
RB1 = 750 ohms (pins 1&2), RB2 = 750 ohms (pins 19 & 20)
RL = 1000 (1000) ohms and CL = 50 (50) pF on pins 1 (19) and 2 (20)
Serial Clock Frequency =20 MHz, Power Down, Auto Zero, Read/Write bits =0
Digital timing measured at 1.4V midpoint
Input control signals from 10%-90% of VCC1 with ( }\mp@subsup{t}{r}{}=\mp@subsup{t}{f}{})<5\textrm{ns}
```

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
DC CHARACTERISTICS						
I_{CC}	VCC Supply Current	RB1 = RB2 = INF		60	74	mA
Ipd	Standby Current	VIN $=0$		1.5	2	mA

DIGITAL INPUT CHARACTERISTICS (SCLK, SDATA, $\overline{\mathbf{C S}}$)

VIL	Low Voltage				0.8	V
VIH	High Voltage		2.0			V
IIH	High Current				1.0	$\mu \mathrm{~A}$
IIL	Low Current				-1.0	$\mu \mathrm{~A}$
CIN	Input Current			5		pF

DIGITAL TIMING CHARACTERISTICS (SCLK, SDATA, $\overline{\text { CS }}$)

$t_{\text {PW- }}-\overline{C S}$	Width of $\overline{\mathrm{CS}}$, High/Low		25		
$\mathrm{t}_{\text {SU }}$-SDATA	SDATA Setup time to SCLK		15		
t_{H}-SDATA	SDATA Hold Time		5		ns
$\mathrm{t}_{\mathrm{SU}}-\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}$ Setup Time to SCLK		15		ns
$\mathrm{t}_{\mathrm{H}}-\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}$ Hold Time to SCLK		0		ns
$\mathrm{t}_{\text {PH }}-\mathrm{SCLK}$	SCLK Pulse Width		20		ns
t_{H}-SCLK	$\overline{\mathrm{CS}}$ Inactive to SCLK Active		125		ns

ELECTRICAL CHARACHTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
EQUALIZER (NORMAL AND LOWPASS OUTPUT)						

AG	Absolute Gain	S0-S4 $=0, \mathrm{~F} 0-\mathrm{F} 5=0$ at 1 MHz	-1.5	-0.5	0.5	dB
CF	$\begin{aligned} & \text { Cutoff Frequency, }-3 \mathrm{~dB} \\ & \left(\mathrm{f}_{\text {ref }}=1 \mathrm{MHz}\right) \end{aligned}$	$$	$\begin{gathered} 12.15 \\ 11.54 \\ 11.04 \\ 10.13 \\ 8.68 \\ 6.75 \\ 4.67 \\ 2.82 \end{gathered}$	$\begin{gathered} 13.50 \\ 12.82 \\ 12.27 \\ 11.25 \\ 9.64 \\ 7.50 \\ 5.19 \\ 3.13 \end{gathered}$	$\begin{gathered} 14.85 \\ 14.10 \\ 13.50 \\ 12.38 \\ 10.60 \\ 8.25 \\ 5.71 \\ 3.44 \end{gathered}$	MHz MHz
SL	Slimming Level (Gain at CF Referred to AG, Vout $=1 \mathrm{Vp}-\mathrm{p}$	$$	$\begin{array}{r} -1.4 \\ -0.9 \\ -0.0 \\ -0.2 \\ 2.4 \\ 5.9 \end{array}$	$\begin{aligned} & -2.4 \\ & -1.9 \\ & -0.9 \\ & 0.8 \\ & 3.4 \\ & 6.9 \end{aligned}$	$\begin{array}{r} -3.4 \\ -2.9 \\ -1.9 \\ 1.8 \\ 4.4 \\ 7.9 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
GD	Diff Group Delay	Fref $=5.0 \mathrm{MHz}, \mathrm{FO}-\mathrm{F} 5=0$	-1		+1	ns
HD	Harmonic Distortion Second and Third related to Fundamental	$\begin{aligned} & \text { F0-F5 }=0, \\ & \text { Vout }=1.5 \mathrm{Vp}-\mathrm{p}, \text { Fin }=9.0 \mathrm{MHz} \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & -45 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ICN	Idle Channel Noise (VIN $=0, \mathrm{DC}-78 \mathrm{MHz}$)	$\begin{aligned} & \text { F0-F5 }=0, \text { VOLP } \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & 2 \\ & 6 \end{aligned}$	mVrms mV rms
DR	$\begin{aligned} & \text { Dynamic Range } \\ & \quad(\text { Signal/(Noise }+ \text { Distor) }) \\ & \text { Signal }=1 \mathrm{Vp}-\mathrm{p} \end{aligned}$	$\begin{aligned} & \text { FO-F5 }=0, \text { Fin }=13.5 \mathrm{MHz} \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & -41 \\ & -35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection	$\begin{aligned} & 100 \mathrm{mVp}-\mathrm{p} \text { sinewave on } \mathrm{Vcc} \\ & \text { F0-F5 }=0, \mathrm{~S} 0-\mathrm{S} 4=0, \mathrm{Vin}=0 \\ & \mathrm{Fin}=1.0 \mathrm{MHz} \\ & \mathrm{Fin}=40 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
DELP HI	Phase Shift between LP and HP Output	All F's and S's = 0 $\mathrm{Vin}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{Fin}=9.0 \mathrm{MHz}$	88	90	92	Degree

ANALOG

VIP	Input Signal Monotonicity	All F's and S's =0, (VINP - VINM) Fin $=9.0 \mathrm{MHz}$		1	2	Vp-p
RID	Differential Input Resistance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 6.7 MHz	1.3	2	3	Kohms
CID	Differential Input Capacitance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 6.7 MHz		5		pF
ZIC	Common-mode Input Impedence			1		Kohms
RPD	Recovery from Pwr Dn	Auto Zero function OFF Auto Zero function ON		10		$\mu \mathrm{~s}$
VOS	Output Offset Voltage	Differential VOLP or VOHP Auto Zero ON (SO-S4 =0 or 1) Auto Zero OFF (SO-S4 =0) Auto Zero OFF (SO-S4 =1)			20	mV
				300	mV	
			mV			

ELECTRICAL CHARACHTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
ANALOG (Continued)						
ROD	Output Resistance	Differential VIN $=0$; at 6.7 MHz		5		Ohms
COD	Output Capacitance	Differential $\mathrm{VIN}=0$; at 6.7 MHz		8		pF
ROC	Output Resistance Common Mode	Common mode VIN $=0$; at 6.7 MHz		5		Ohms
COC	Output Capacitance Common Mode	Common mode VIN $=0$; at 6.7 MHz		15		pF
CLSE	Load Capacitance	VOLP; RB1 $=750$ ohms VOHP; RB2 = 750 ohms			$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
RLSE	Load Resistance	$\begin{aligned} & \text { VOLP } \\ & \text { VOHP } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$			Ohms Ohms
RLOZ	Input Resistance	Diff; PD and/or RW bit = 1			350	Ohms
$\mathrm{I}_{\text {OB }}$	Output Buffer Bias Current	VOLP or VOHP, VOLM or VOHM	1	1.4		mA
IOSC	Short Circuit Output Current	VOLP or VOHP, VOLM or VOHM		50	100	mA
SBA	Stopband Attenuation	$\mathrm{SO}=0$ at 2CF	TBD			dB

FUNCTIONAL DESCRIPTION

INTRODUCTION

Many of the high-frequency continuous-time filters have principally utilized a basic integrator consisting of a transconductance stage driving a passive integrating capacitor. These approaches are susceptible to frequency response variations due to the parasitic capacitances associated with the parasitic-sensitive output nodes of the integrator. This type of transconductance stage also often has low open-circuit voltage gain, resulting in limited practical Q range in the filter. The use of an active parasitic-insensitive integrator, has generally been avoided in these filters because of the additional excess phase that the amplifier contributes.
The ML6005 is a continuous-time filter based on a transconductor and a high-speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics and a very wide range of realizable filter Q . A unique approach to cancelling the excess phase contributed by the hi-speed BiCMOS amplifier allows this filter to achieve reproducible responses at 13.5 MHz filter bandwidth in a $1.5 \mu / 4 \mathrm{GHz}$ BiCMOS process. This active integrator incorporates a novel technique for setting the transconductance Gm value as a function of an external precision resistor, independent of temperature, supply, in conjunction with a wafer-sort trim technique to adjust capacitor process tolerances, thus eliminating the need for an on-chip PLL for tuning.

The ML6005 filter consists of a $6^{\text {th }}$ order Bessel low-pass and a 2 nd order cosine equalizer stage. It is made up of three biquads with lowpass and bandpass outputs. Both outputs of the last stage are available with matched groupdelay characteristics. The corner frequency is digitally
programmable to 64 values over a 4 to 1 range, through the serial microprocessor interface. This is accomplished internally by changing the integrating capacitor value. Slimming equalization is done by digitally programming two real-symmetric zeroes, through the serial microprocessor interface. This boosts the high frequency response in 32 steps from 0 to 10 dB .
In a typical application, the ML6005 is used together with a pulse detector such as the ML541, ML4041 or the ML8464, making up a section of the AGC loop. Thus, the output of the AGC amplifier is AC coupled to the ML6005 input and the output of the ML6005 is AC coupled not only to the rectifier input thus closing the AGC loop, but also to the pulse detector input. The ML6005 provides two sets of fully balanced outputs. The lowpass outputs and the differentiated lowpass outputs. The ML6005 input and output common mode voltage biases are generated onchip. The ML6005 consists of an input common bias circuit, a programmable continuous type equalizer filter with normal and differentiated lowpass outputs, followed by output buffers, and a high speed serial microprocessor interface. The ML6005 processes only differential input signals, common mode inputs are rejected. The output should also be taken differentially in order to obtain the best performance.

INPUT COMMON MODE

The input common mode bias consists of two resistors as shown in the block diagram, and a buffer which biases the center point with a well defined voltage required by the internal circuitry. These resistors are 1000 Ohms each and together with the external coupling capacitor define the lower corner frequency of the transfer function.

EQUALIZER FILTER

The filter transfer function is composed of a second order numerator and a sixth order denominator. The low frequency attenuation is set internally to 0 dB . The numerator realizes two zeros symmetrical symmetrical to the imaginary axis, one in the left and the other in the right half plane. The location of the zeros is programmable. This realizes a digitally programmable pulse slimming function in order to overcome intersymbol interference and thus contribute to increasing bit density. The slimming level is controlled by 5 bits in the control register, thus providing 32 different choices between 0 to 10 dB . The denominator approximately realizes a maximally flat group delay (Bessel) function with a digitally programmable corner frequency controlled by 6 bits in the control register, thus providing 64 different cutoff frequencies.

SLIMMING LEVEL

The slimming levels generated by the slimming bits are shown below. There are 5 bits of control, S0-S4. The typical gain of the equalizer at the cutoff frequency is shown in the table below. The gain at f_{c} in $d B$ is also given by the formula :

$$
\text { Gain }(d B)=20 \times \log (0.707 \times(1+0.06868 \times K))
$$

where $K=0,1, \ldots 31$

CUTOFF FREQUENCY

There are 6 bits in the control register that controls the position of the cutoff frequency, F0 - F5. The typical values of the cutoff $(-3 \mathrm{~dB})$ frequency are shown in the table below for the case when $\mathrm{S} 0-\mathrm{S} 4=0$ (no slimming). There are a total of 64 frequencies available from 13.5 MHz down to 3.13 MHz . Bits F1-F5 will select one of 32 frequency settings in a monotonic fashion. Bit F0 is used to shift the whole frequency setting range by 5% lower than each of the 32 settings given by F1 - F5. This offers a scheme to increase the effective resolution of the cutoff frequency programmability. This feature is specially useful in the higher frequency range, where the granularity is coarse.

For example :
By setting F0 $=0$,
Cutoff frequency $=13.50 \mathrm{MHz}$ with $\mathrm{F} 5-\mathrm{F} 1=00000$ and
Cutoff frequency $=12.27 \mathrm{MHz}$ with F5 $-\mathrm{F} 1=00001$, the next consecutive setting.
Frequency delta between consecutive settings $=1.23$ MHz or about 9% of 13.50 MHz .
By setting F0 = 1, we can shift the consecutive cutoff frequency settings as follows :

Cutoff frequency $=13.50 \mathrm{MHz}$ with (F5-F1, F0) $=$ (00000, 0)
Cutoff frequency $=12.82 \mathrm{MHz}$ with $(F 5-\mathrm{F} 1, \mathrm{~F} 0)=$ $(00000,1)$ Delta $=0.68 \mathrm{MHz}$

TABLE 1: TABLE OF SLIMMING LEVEL PROGRAMMING VALUES

$\mathbf{S 4}$	$\mathbf{S 3}$	$\mathbf{S 2}$	$\mathbf{S 1}$	$\mathbf{S 0}$	\mathbf{K}	GAIN AT $\mathbf{F}_{\mathbf{C}}(\mathbf{d B})$	STEPS $\mathbf{(d B})$
0	0	0	0	0	0	-3.0	
0	0	0	0	1	1	-2.4	0.6
0	0	0	1	0	2	-1.9	0.5
0	0	0	1	1	3	-1.4	0.5
0	0	1	0	0	4	-0.9	0.5
0	0	1	0	1	5	-0.4	0.5
0	0	1	1	0	6	-0.0	0.4
0	0	1	1	1	7	0.4	0.4
0	1	0	0	0	8	0.8	0.4
0	1	0	0	1	9	1.2	0.4
0	1	0	1	0	10	1.5	0.3
0	1	0	1	1	11	1.9	0.4
0	1	1	0	0	12	2.2	0.3
0	1	1	0	1	13	2.5	0.3
0	1	1	1	0	14	2.8	0.3
0	1	1	1	1	15	3.1	0.3
1	0	0	0	0	16	3.4	0.3
1	0	0	0	1	17	3.7	0.3
1	0	0	1	0	18	4.0	0.3
1	0	0	1	1	19	4.2	0.2
1	0	1	0	0	20	4.5	0.3
1	0	1	0	1	21	4.7	0.2
1	0	1	1	0	22	5.0	0.3
1	0	1	1	1	23	5.2	0.2
1	1	0	0	0	24	5.4	0.2
1	1	0	0	1	25	5.7	0.3
1	1	0	1	0	26	5.9	0.2
1	1	0	1	1	27	6.1	0.2
1	1	1	0	0	28	6.3	0.2
1	1	1	0	1	29	6.5	0.2
1	1	1	1	0	30	6.7	0.2
1	1	1	1	1	31	6.9	0.2

Cutoff frequency $=12.27 \mathrm{MHz}$ with (F5-F1, F0) $=$ (00001, 0) Delta $=0.55 \mathrm{MHz}$
Hence frequency delta between consecutive settings is lower, thus higher resolution.

In the table 2 below, the cutoff frequencies are shown as two columns depending on the FO bit being zero or one. The monotonicity is guaranteed within the individual frequency columns, however because of the limitations of the 5% frequency circuitry, the monotonicity between the two columns cannot be guaranteed. This is especially significant at the lower end of the frequency range, where the difference in frequencies between the two column settings becomes very close ($<1 \%$). Further tuning of the cutoff frequency down to the 1 to 10% range can be achieved by modifying the value of the external resistor
from its ideal 10 Kohms value by 1 to 10%, which shifts the whole response. Larger changes are not recommended for proper operation of the filter. The corner frequency is given by the formula outlined below :

$$
\mathrm{f}_{\mathrm{c}}=\left(\frac{13.5 \times(1-\mathrm{F} 0 \times 0.05)}{[1+0.1 \times \operatorname{INT}(\mathrm{N} / 2)]} \times \frac{10 \mathrm{Kohms}}{\text { Rext }}\right) \mathrm{MHz}
$$

OUTPUT BUFFER

The output buffer is the final stage of the ML6005 for both the normal and differentiated outputs. This is a fully differential buffer with unity gain. Only 1.4 mA of sinking current is provided on chip. More drive can be obtained by connecting external resistors to ground. The common mode output voltage is typically 2 V .

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. It consists of a fourteen bit serial shift register with a double bufferred latch for synchronous and asynchronous loading. A timing diagram and the control word definition are shown below. The 14-bit data word present on the SDATA line is serially shifted into the register on falling edges of the serial shift clock, SCLK, provided the $\overline{\mathrm{CS}}$ pin is active (logical zero). F0 should be shifted in first, and F13 (the power-down bit) shifted in last as shown below. When the $\overline{\mathrm{CS}}$ pin is inactive (logical one), SDATA and SCLK are ignored, and the previously shifted information is latched at the rising edge of $\overline{C S}$ becoming inactive (logical one). It is reccommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input can run upto speeds of 25 MHz . The Autozero function, if enabled, minimizes the offsets at the filter outputs to 20 mV .

TABLE 2: TABLE OF CUTOFF FREQUENCY PROGRAMMING VALUES IN MHZ

F5	F4	F3	$\mathbf{F 2}$	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{c}} \mathbf{w i t h}$ $\mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{c}}$ with $\mathbf{F 0}=\mathbf{1}$
0	0	0	0	0	0	13.5		
0	0	0	0	0			1	12.82
0	0	0	0	1	2	12.27		
0	0	0	0	1			3	11.66
0	0	0	1	0	4	11.25		
0	0	0	1	0			5	10.69
0	0	0	1	1	6	10.38		
0	0	0	1	1			7	9.87
0	0	1	0	0	8	9.64		
0	0	1	0	0			9	9.16
0	0	1	0	1	10	9.0		
0	0	1	0	1			11	8.55
0	0	1	1	0	12	8.44		
0	0	1	1	0			13	8.02
0	0	1	1	1	14	7.94		
0	0	1	1	1			15	7.54
0	1	0	0	0	16	7.50		
0	1	0	0	0			17	7.13
0	1	0	0	1	18	7.11		
0	1	0	0	1			19	6.75
0	1	0	1	0	20	6.75		
0	1	0	1	1	22	6.43		
0	1	0	1	0			21	6.41
0	1	1	0	0	24	6.14		
0	1	0	1	1			23	6.11
0	1	1	0	1	26	5.87		
0	1	1	0	0			25	5.83
0	1	1	1	0	28	5.63		
0	1	1	0	1			27	5.58
0	1	1	1	1	30	5.40		
0	1	1	1	0			29	5.34
1	0	0	0	0	32	5.19		

F5	F4	F3	F2	F1	N	f_{c} with $F 0=0$	N	$\begin{gathered} \mathbf{f}_{\mathrm{c}} \text { with } \\ \mathrm{F} 0=1 \\ \hline \end{gathered}$
0	1	1	1	1			31	5.13
1	0	0	0	1	34	5.00		
1	0	0	0	0			33	4.93
1	0	0	1	0	36	4.82		
1	0	0	0	1			35	4.75
1	0	0	1	1	38	4.66		
1	0	0	1	0			37	4.58
1	0	1	0	0	40	4.50		
1	0	0	1	1			39	4.42
1	0	1	0	1	42	4.35		
1	0	1	0	0			41	4.28
1	0	1	1	0	44	4.22		
1	0	1	0	1			43	4.14
1	0	1	1	1	46	4.09		
1	0	1	1	0			45	4.01
1	1	0	0	0	48	3.97		
1	0	1	1	1			47	3.89
1	1	0	0	1	50	3.86		
1	1	0	0	0			49	3.77
1	1	0	1	0	52	3.75		
1	1	0	0	1			51	3.66
1	1	0	1	1	54	3.65		
1	1	0	1	0			53	3.56
1	1	1	0	0	56	3.55		
1	1	1	0	0			55	3.47
1	1	1	0	1	58	3.46		
1	1	1	0	0			57	3.38
1	1	1	1	0	60	3.38		
1	1	1	0	1			59	3.29
1	1	1	1	1	62	3.29		
1	1	1	1	0			61	3.21
1	1	1	1	1			63	3.13

TIMING DIAGRAM

Figure 1.

CONTROL REGISTER DEFINITION

APPLICATIONS CIRCUIT/TEST SETUP

Filter Response (Lowpass Output)

Shown are the ML6005 filter response at three different cutoff frequency $\left(f_{c}\right)$ settings. Setting $1=3.13 \mathrm{MHz}, 2=$ 6.75 MHz and $3=13.5 \mathrm{MHz}$. At each of the f_{c} settings, the filter response is shown with no slimming (A) and with full slimming (B) activated.

ML6005 Filter/Equalizer group Delay Tracking

Shown are the curves to demonstrate group delay tracking between the lowpass $\left(\mathrm{V}_{\mathrm{OL}}\right)$ and bandpass $\left(\mathrm{V}_{\mathrm{OH}}\right)$ outputs, at an f_{c} of 13.5 MHz , with on slimming activated (A) and full slimming activated (B). It can be seen that the group delay tracking between the lowpass and bandpass outputs is well within 1 ns .

Filter Response (Bandpass Output)

Shown are the ML6005 filter response at three different cutoff frequency $\left(\mathrm{f}_{\mathrm{c}}\right)$ settings. Setting $1=3.13 \mathrm{MHz}, 2=$ 6.75 MHz and $3=13.5 \mathrm{MHz}$. At each of the f_{c} settings, the filter response is shown with no slimming (A) and with full slimming (B) activated.

Phase Difference between Lowpass

 and Bandpass OutputsShown is the delta in the phase between the lowpass and bandpass outputs. Ideally the bandpass output should be -90°. The curve shows that this is within 1° for a frequency range of 50 MHz to 10 MHz .

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6005CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\operatorname{Pin} \operatorname{SSOP}(\mathrm{R} 20)$

36 Mbps Read Channel Filter/Equalizer

GENERAL DESCRIPTION

The ML6006 is a monolithic analog filter/equalizer intended for hard disk drive read channel applications, capable of handling disk data rates upto 36Mbits/s, with an operating power dissipation of less than 350 mW . Its architecture consists of a continuous type filter based on a transconductor and a high speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics, thus realizing a family of frequency response curves optimized for disk drive read channel equalization. It consists of a programmable 6-pole 2-zero lowpass filter stage, two pairs of high-speed drivers, and a serial microprocessor interface. The poles of the transfer function approximate a maximally flat group delay (Bessel) response, whereas the symmetric zeros provide the high-frequency boost necessary for pulse slimming. The user can independently adjust both the corner frequency, as well as the slimming level. The desired frequency response is programmed by a 14-bit serial input data stream which includes one bit for power-down, one bit for read/write control, and one bit for auto-zero control. The read/write control is also provided by a hardware pin. The ML6006 is well suited for constant density recording systems (Zoned-bit recording) as well as for constant data rate systems. A $24 \mathrm{Mbits} / \mathrm{s}$ version, ML6005 is also available.

FEATURES

- 6-pole, 2-zero continuous time filter with $<-45 \mathrm{~dB}$ harmonic distortion
- Disk Data rates up to $36 \mathrm{Mbit} / \mathrm{s}$
- Programmable filter cutoff frequency
(4.3:1 range in 64 steps)
($\mathrm{f}_{\mathrm{C}}=4.69$ to 20.25 MHz)
- 32 step programmable pulse slimming equalization, 0 to 10 dB boost at f_{c}.
- Power-down, Auto-zero, R/W modes programmable through bits in the Control Register
- Lowpass output and Differentiated Lowpass (Bandpass) output provided.
- Fully I/O balanced architecture with TTL/CMOS compatible interface
- High speed (upto 25 MHz clock) three wire serial microprocessor interface
- Double buffered data latch for synchronous or asynchronous data loading.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ operating temperature
- Available in 20-pin SSOP package.
- $4 \mathrm{GHz} / 1.5 \mu \mathrm{BiCMOS}$ process
- Power Dissipation: $\mathrm{P}_{\mathrm{opr}}=350 \mathrm{~mW}, \mathrm{P}_{\mathrm{dn}}=7.5 \mathrm{~mW}$

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	VOLP	Normal Lowpass outputs
2	VOLM	VCC2
4,5,	GND	Positive supply for the output drivers, $5 \mathrm{~V} \pm 10 \%$ Ground
7	VINP	Signal Inputs
8	VINM	A 10K resistor between this pin and 10
REXT	ground sets the filters corner frequency	
14	RCW	Positive supply, 5V $\pm 10 \%$ Read/Write Control pin. A low input level allows normal operation of the filter in the read mode. A high level input puts the filter in the write mode, where the input impedance is lowered to prevent the transients generated during write to read transitions from affecting the filter response. A TTL input. Additionally a metal mask option is available to configure this pin as either power down enable or frequency boost disable

PIN\#	NAME	FUNCTION
15	$\overline{C S}$	Control Register Enable. A logical low level allows the SCLK input to clock data into the control register via the SDATA input line. A logical high level latches the control register contents and issues the information to the appropriate circuitry. A TTL input.
17	SDATA	Control Register Data. A TTL input 18
SCLK	Control Register Clock. Negative edge triggerred control register clock input. A TTL input.	
19	VOHM	Differentiated lowpass outputs
20	VOHP	NC

ABSOLUTE MAXIMUM RATINGS

VCC1, VCC2 +6.5 volts
VINP, VINM, REXT, ~CS, SCLK,
SDATA, ~RM \qquad GND - 0.3 V to $\mathrm{VCC} 1+0.3 \mathrm{~V}$
VOLP, VOLM, VOHP, VOHM \qquad GND - 0.3 V to $\mathrm{VCC} 2+0.3 \mathrm{~V}$
Input Current per pin $\pm 25 \mathrm{~mA}$
Package Dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Surface Mount) 1.5 Watts

Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) \qquad

OPERATING CONDITIONS

VCC1 = VCC2
+5 volts $\pm 10 \%$
\qquadRext .. 10 Kohms
Serial Clock Frequency (SCLK).10 Kohms
AC Coupling Capacitors

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions, unless otherwise stated. Please refer to the application/test setup digram:

```
VCC1 = VCC2 = 5 volt }\pm10%,\mp@subsup{\textrm{T}}{\textrm{a}}{2}=\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to 70}\mp@subsup{}{}{\circ}\textrm{C},\mathrm{ Rext = 10 Kohms
VIN = (VINP - VINM) = 1 Vp-p sinewave input
VOL = (VOLP - VOLM) and VOH = (VOHP - VOHM)
Input and Output coupling capacitors = 0.0047 \muF
RB1 = 750 ohms (pins 1 & 2), RB2 = 750 ohms (pins 19 & 20)
RL = 1000 (1000) ohms and CL = 50 (50) pF on pins 1 (19) and 2 (20)
Serial Clock Frequency =20 MHz, Power Down, Auto Zero, Read/Write bits =0
Digital timing measured at 1.4V midpoint
Input control signals from 10%-90% of VCC1 with (tr}=\mp@subsup{t}{f}{})<5\textrm{ns}
```

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
DC CHARACTERISTICS						
ICC	VCC Supply Current	RB1 = RB2 $=\mathrm{INF}$		70	84	mA
Ipd	Standby Current	VIN $=0$		1.5	2	mA

DIGITAL INPUT CHARACTERISTICS (SCLK, SDATA, $\overline{\mathbf{C S}}$)

VIL	Low Voltage				0.8	V
VIH	High Voltage		2.0			V
IIH	High Current				1.0	$\mu \mathrm{~A}$
IIL	Low Current				-1.0	$\mu \mathrm{~A}$
CIN	Input Current			5		pF

DIGITAL TIMING CHARACTERISTICS (SCLK, SDATA, $\overline{\text { CS }}$)

$t_{\text {PW- }} \overline{\mathrm{CS}}$	Width of $\overline{\mathrm{CS}}$, High/Low		25		
$\mathrm{t}_{\text {SU }}$-SDATA	SDATA Setup time to SCLK		15		ns
t_{H}-SDATA	SDATA Hold Time		5		ns
$\mathrm{t}_{\mathrm{SU}}-\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}$ Setup Time to SCLK		15		ns
$\mathrm{t}_{\mathrm{H}}-\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}$ Hold Time to SCLK		0		ns
$\mathrm{t}_{\text {PH }}-\mathrm{SCLK}$	SCLK Pulse Width		20		ns
t_{H}-SCLK	$\overline{\mathrm{CS}}$ Inactive to SCLK Active		125		ns

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

EQUALIZER (NORMAL AND LOWPASS OUTPUT)

AG	Absolute Gain	SO-S4 $=0, \mathrm{FO}-\mathrm{F} 5=0$ at 1 MHz	-1.5	-0.5	0.5	dB
CF	$\begin{aligned} & \text { Cutoff Frequency, }-3 \mathrm{~dB} \\ & \left(\mathrm{f}_{\text {ref }}=1 \mathrm{MHz}\right) \end{aligned}$	$$	$\begin{gathered} 18.23 \\ 17.32 \\ 16.57 \\ 15.19 \\ 13.01 \\ 10.13 \\ 7.01 \\ 4.22 \end{gathered}$	$\begin{gathered} 20.25 \\ 19.24 \\ 18.41 \\ 16.88 \\ 14.46 \\ 11.25 \\ 7.79 \\ 4.69 \end{gathered}$	$\begin{gathered} 22.28 \\ 21.16 \\ 20.25 \\ 18.57 \\ 15.91 \\ 12.38 \\ 8.57 \\ 5.16 \end{gathered}$	MHz MHz
SL	Slimming Level (Gain at CF Referred to AG, Vout $=1 \mathrm{Vp}-\mathrm{p}$	$$	$\begin{array}{r} -1.4 \\ -0.9 \\ -0.0 \\ -0.2 \\ 2.4 \\ 5.9 \end{array}$	$\begin{gathered} -2.4 \\ -1.9 \\ -0.9 \\ 0.8 \\ 3.4 \\ 6.9 \end{gathered}$	$\begin{array}{r} -3.4 \\ -2.9 \\ -1.9 \\ 1.8 \\ 4.4 \\ 7.9 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
GD	Diff Group Delay	Fref $=7.5 \mathrm{MHz}, \mathrm{F} 0-\mathrm{F} 5=0$	-1		+1	ns
HD	Harmonic Distortion Second and Third related to Fundamental	$\begin{aligned} & \text { F0-F5 }=0, \\ & \text { Vout }=1.5 \mathrm{Vp}-\mathrm{p}, \text { Fin }=13.5 \mathrm{MHz} \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & -45 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ICN	Idle Channel Noise $(\mathrm{VIN}=0, \mathrm{DC}-78 \mathrm{MHz})$	$\begin{aligned} & \text { FO-F5 }=0, \text { VOLP } \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { SO-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & 2 \\ & 6 \end{aligned}$	mVrms mVrms
DR	$\begin{aligned} & \text { Dynamic Range } \\ & \quad(\text { Signal/(Noise }+ \text { Distor)) } \\ & (\text { Signal }=1 \mathrm{Vp}-\mathrm{p}) \end{aligned}$	$\begin{aligned} & \text { FO-F5 }=0, \text { Fin }=13.5 \mathrm{MHz} \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming) } \end{aligned}$			$\begin{aligned} & -41 \\ & -35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection	$\begin{aligned} & 100 \mathrm{mVp}-\mathrm{p} \text { sinewave on } \mathrm{Vcc} \\ & \mathrm{FO}-\mathrm{F} 5=0, \mathrm{SO}-\mathrm{S} 4=0, \mathrm{Vin}=0 \\ & \mathrm{Fin}=1.0 \mathrm{MHz} \\ & \mathrm{Fin}=40 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
DELP HI	Phase Shift between LP and HP Output	All F's and S's = 0 $\mathrm{Vin}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{Fin}=13.5 \mathrm{MHz}$	88	90	92	Degree

ANALOG

VIP	Input Signal Monotonicity	All F's and S's = 0, (VINP - VINM) Fin = 13.5 MHz		1	2	Vp-p
RID	Differential Input Resistance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 10 MHz	1.3	2	3	Kohms
CID	Differential Input Capacitance	VIN $=100 \mathrm{mVp-p}$ at 10 MHz		5		pF
ZIC	Common-mode Input Impedence			1		Kohms
RPD	Recovery from Pwr Dn	Auto Zero function OFF Auto Zero function ON		10 TBD		$\mu \mathrm{s}$
VOS	Output Offset Voltage	Differential VOLP or VOHP Auto Zero ON (SO-S4 =0 or 1) Auto Zero OFF (SO-S4=0) Auto Zero OFF (SO-S4 =1)			20 300 TBD	mV
		mV				

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
ANALOG (Continued)						
ROD	Output Resistance	Differential VIN $=0$; at 10 MHz		5		Ohms
COD	Output Capacitance	Differential VIN $=0$; at 10 MHz		8		pF
ROC	Output Resistance Common Mode	Common mode $\mathrm{VIN}=0$; at 10 MHz		5		Ohms
COC	Output Capacitance Common Mode	Common mode VIN $=0$; at 10 MHz		15		pF
CLSE	Load Capacitance	VOLP; RB1 = 750 ohms VOHP; RB2 $=750$ ohms			$\begin{aligned} & 50 \\ & 50 \end{aligned}$	pF pF
RLSE	Load Resistance	VOLP VOHP	$\begin{aligned} & 400 \\ & 400 \end{aligned}$			Ohms Ohms
RLOZ	Input Resistance	Diff; PD and/or RW bit = 1			350	Ohms
${ }^{\text {OB }}$	Output Buffer Bias Current	VOLP or VOHP, VOLM or VOHM	1	1.4		mA
losc	Short Circuit Output Current	VOLP or VOHP, VOLM or VOHM		50	100	mA
SBA	Stopband Attenuation	$\mathrm{SO}=0$ at 2 CF	TBD			dB

FUNCTIONAL DESCRIPTION

INTRODUCTION

Many of the high-frequency continuous-time filters have principally utilized a basic integrator consisting of a transconductance stage driving a passive integrating capacitor. These approaches are susceptible to frequency response variations due to the parasitic capacitances associated with the parasitic-sensitive output nodes of the integrator. This type of transconductance stage also often has low open-circuit voltage gain, resulting in limited practical Q range in the filter. The use of an active parasitic-insensitive integrator, has generally been avoided in these filters because of the additional excess phase that the amplifier contributes.

The ML6006 is a continuous-time filter based on a transconductor and a high-speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics and a very wide range of realizable filter Q . A unique approach to cancelling the excess phase contributed by the hi-speed BiCMOS amplifier allows this filter to achieve reproducible responses at 20 MHz filter bandwidth in a $1.5 \mu / 4 \mathrm{GHz}$ BiCMOS process. This active integrator incorporates a novel technique for setting the transconductance Gm value as a function of an external precision resistor, independent of temperature, supply, in conjunction with a wafer-sort trim technique to adjust capacitor process tolerances, thus eliminating the need for an on-chip PLL for tuning.
The ML6006 filter consists of a $6^{\text {th }}$ order Bessel low-pass and a $2^{\text {nd }}$ order cosine equalizer stage. It is made up of three biquads with lowpass and bandpass outputs. Both outputs of the last stage are available with matched groupdelay characteristics. The corner frequency is digitally
programmable to 64 values over a 4 to 1 range, through the serial microprocessor interface. This is accomplished internally by changing the integrating capacitor value. Slimming equalization is done by digitally programming two real-symmetric zeroes, through the serial microprocessor interface. This boosts the high frequency response in 32 steps from 0 to 10 dB .

In a typical application, the ML6006 is used together with a pulse detector such as the ML541, ML4041 or the ML8464, making up a section of the AGC loop. Thus, the output of the AGC amplifier is AC coupled to the ML6006 input and the output of the ML6006 is AC coupled not only to the rectifier input thus closing the AGC loop, but also to the pulse detector input. The ML6006 provides two sets of fully balanced outputs. The lowpass outputs and the differentiated lowpass outputs. The ML6006 input and output common mode voltage biases are generated onchip. The ML6005 consists of an input common bias circuit, a programmable continuous type equalizer filter with normal and differentiated lowpass outputs, followed by output buffers, and a high speed serial microprocessor interface. The ML6005 processes only differential input signals, common mode inputs are rejected. The output should also be taken differentially in order to obtain the best performance.

INPUT COMMON MODE

The input common mode bias consists of two resistors as shown in the block diagram, and a buffer which biases the center point with a well defined voltage required by the internal circuitry. These resistors are 1000 Ohms each and together with the external coupling capacitor define the lower corner frequency of the transfer function.

EQUALIZER FILTER

The filter transfer function is composed of a second order numerator and a sixth order denominator. The low frequency attenuation is set internally to 0dB. The numerator realizes two zeros symmetrical symmetrical to the imaginary axis, one in the left and the other in the right half plane. The location of the zeros is programmable. This realizes a digitally programmable pulse slimming function in order to overcome intersymbol interference and thus contribute to increasing bit density. The slimming level is controlled by 5 bits in the control register, thus providing 32 different choices between 0 to 10 dB . The denominator approximately realizes a maximally flat group delay (Bessel) function with a digitally programmable corner frequency controlled by 6 bits in the control register, thus providing 64 different cutoff frequencies.

SLIMMING LEVEL

The slimming levels generated by the slimming bits are shown below. There are 5 bits of control, S0-S4. The typical gain of the equalizer at the cutoff frequency is shown in the table below. The gain at f_{c} in $d B$ is also given by the formula :

$$
\text { Gain }(\mathrm{dB})=20 \times \log (0.707 \times(1+0.06868 \times K))
$$

where $K=0,1, \ldots 31$

CUTOFF FREQUENCY

There are 6 bits in the control register that controls the position of the cutoff frequency, F0 - F5. The typical values of the cutoff $(-3 \mathrm{~dB})$ frequency are shown in the table below for the case when $\mathrm{S} 0-\mathrm{S} 4=0$ (no slimming). There are a total of 64 frequencies available from 20.25 MHz down to 4.69 MHz . Bits F1 - F5 will select one of 32 frequency settings in a monotonic fashion. Bit FO is used to shift the whole frequency setting range by 5% lower than each of the 32 settings given by F1 - F5. This offers a scheme to increase the effective resolution of the cutoff frequency programmability. This feature is specially useful in the higher frequency range, where the granularity is coarse.
For example :
By setting F0 $=0$,
Cutoff frequency $=20.25 \mathrm{MHz}$ with F5 - F1 $=00000$ and
Cutoff frequency $=18.41 \mathrm{MHz}$ with F5 $-\mathrm{F} 1=00001$, the next consecutive setting.
Frequency delta between consecutive settings $=1.84$
MHz or about 9% of 20.25 MHz .
By setting F0 = 1, we can shift the consecutive cutoff frequency settings as follows :
Cutoff frequency $=20.25 \mathrm{MHz}$ with $(F 5-F 1, F 0)=$ (00000, 0)
Cutoff frequency $=19.24 \mathrm{MHz}$ with $(F 5-\mathrm{F} 1, \mathrm{~F} 0)=$ (00000, 1) Delta $=1.01 \mathrm{MHz}$

TABLE 1: TABLE OF SLIMMING LEVEL PROGRAMMING VALUES

S4	S3	S2	$\mathbf{S 1}$	S0	K	GAIN AT $\mathbf{F C}_{\mathbf{C}}(\mathbf{D B})$	STEPS (DB)
0	0	0	0	0	0	-3.0	
0	0	0	0	1	1	-2.4	0.6
0	0	0	1	0	2	-1.9	0.5
0	0	0	1	1	3	-1.4	0.5
0	0	1	0	0	4	-0.9	0.5
0	0	1	0	1	5	-0.4	0.5
0	0	1	1	0	6	-0.0	0.4
0	0	1	1	1	7	0.4	0.4
0	1	0	0	0	8	0.8	0.4
0	1	0	0	1	9	1.2	0.4
0	1	0	1	0	10	1.5	0.3
0	1	0	1	1	11	1.9	0.4
0	1	1	0	0	12	2.2	0.3
0	1	1	0	1	13	2.5	0.3
0	1	1	1	0	14	2.8	0.3
0	1	1	1	1	15	3.1	0.3
1	0	0	0	0	16	3.4	0.3
1	0	0	0	1	17	3.7	0.3
1	0	0	1	0	18	4.0	0.3
1	0	0	1	1	19	4.2	0.2
1	0	1	0	0	20	4.5	0.3
1	0	1	0	1	21	4.7	0.2
1	0	1	1	0	22	5.0	0.3
$\mathbf{1}$	0	1	1	1	23	5.2	0.2
1	1	0	0	0	24	5.4	0.2
1	1	0	0	1	25	5.7	0.3
1	1	0	1	0	26	5.9	0.2
1	1	0	1	1	27	6.1	0.2
1	1	1	0	0	28	6.3	0.2
1	1	1	0	1	29	6.5	0.2
1	1	1	1	0	30	6.7	0.2
1	1	1	1	1	31	6.9	0.2
0							

Cutoff frequency $=18.41 \mathrm{MHz}$ with (F5-F1, F0) $=$ (00001, 0) Delta $=0.83 \mathrm{MHz}$

Hence frequency delta between consecutive settings is lower, thus higher resolution.

In the table 2 below, the cutoff frequencies are shown as two columns depending on the FO bit being zero or one. The monotonicity is guaranteed within the individual frequency columns, however because of the limitations of the 5% frequency circuitry, the monotonicity between the two columns cannot be guaranteed. This is especially significant at the lower end of the frequency range, where the difference in frequencies between the two column settings becomes very close ($<1 \%$). Further tuning of the cutoff frequency down to the 1 to 10% range can be achieved by modifying the value of the external resistor
from its ideal 10 Kohms value by 1 to 10%, which shifts the whole response. Larger changes are not recommended for proper operation of the filter. The corner frequency is given by the formula outlined below :

$$
\mathrm{f}_{\mathrm{c}}=\left(\frac{20.25 \times(1-\mathrm{F} 0 \times 0.05)}{[1+0.1 \times \mathrm{INT}(\mathrm{~N} / 2)]} \times \frac{10 \mathrm{Kohms}}{\text { Rext }}\right) \mathrm{MHz}
$$

OUTPUT BUFFER

The output buffer is the final stage of the ML6006 for both the normal and differentiated outputs. This is a fully differential buffer with unity gain. Only 1.4 mA of sinking current is provided on chip. More drive can be obtained by connecting external resistors to ground. The common mode output voltage is typically 2 V .

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. It consists of a fourteen bit serial shift register with a double bufferred latch for synchronous and asynchronous loading. A timing diagram and the control word definition are shown below. The 14-bit data word present on the SDATA line is serially shifted into the register on falling edges of the serial shift clock, SCLK, provided the $\overline{\mathrm{CS}}$ pin is active (logical zero). FO should be shifted in first, and F13 (the power-down bit) shifted in last as shown below. When the CS pin is inactive (logical one), SDATA and SCLK are ignored, and the previously shifted information is latched at the rising edge of $\overline{C S}$ becoming inactive (logical one). It is reccommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input can run upto speeds of 25 MHz . The Autozero function, if enabled, minimizes the offsets at the filter outputs to 20 mV .

TABLE 2: TABLE OF CUTOFF FREQUENCY PROGRAMMING VALUES IN MHZ

$\mathbf{F 5}$	$\mathbf{F 4}$	$\mathbf{F 3}$	$\mathbf{F 2}$	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{c}} \mathbf{w i t h}$ $\mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{f} \mathbf{w} \mathbf{w i t h}}$
0	0	0	0	0	0	20.25		
0	0	0	0	0			1	19.24
0	0	0	0	1	2	18.41		
0	0	0	0	1			3	17.49
0	0	0	1	0	4	16.88		
0	0	0	1	0			5	16.03
0	0	0	1	1	6	15.58		
0	0	0	1	1			7	14.80
0	0	1	0	0	8	14.46		
0	0	1	0	0			9	13.74
0	0	1	0	1	10	13.50		
0	0	1	0	1			11	12.83
0	0	1	1	0	12	12.66		
0	0	1	1	0			13	12.02
0	0	1	1	1	14	11.91		
0	0	1	1	1			15	11.32
0	1	0	0	0	16	11.25		
0	1	0	0	0			17	10.69
0	1	0	0	1	18	10.66		
0	1	0	0	1			19	10.13
0	1	0	1	0	20	10.13		
0	1	0	1	1	22	9.64		
0	1	0	1	0			21	9.62
0	1	1	0	0	24	9.20		
0	1	0	1	1			23	9.16
0	1	1	0	1	26	8.80		
0	1	1	0	0			25	8.74
0	1	1	1	0	28	8.44		
0	1	1	0	1			27	8.36
0	1	1	1	1	30	8.10		
0	1	1	1	0			29	8.02
1	0	0	0	0	32	7.79		

$\mathbf{F 5}$	$\mathbf{F 4}$	$\mathbf{F 3}$	$\mathbf{F 2}$	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{c} \mathbf{w i t h}} \mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{f} \mathbf{w} \mathbf{w i t h}}$
0	1	1	1	1			31	7.70
1	0	0	0	1	34	7.50		
1	0	0	0	0			33	7.40
1	0	0	1	0	36	7.23		
1	0	0	0	1			35	7.12
1	0	0	1	1	38	6.98		
1	0	0	1	0			37	6.87
1	0	1	0	0	40	6.75		
1	0	0	1	1			39	6.63
1	0	1	0	1	42	6.53		
1	0	1	0	0			41	6.41
1	0	1	1	0	44	6.33		
1	0	1	0	1			43	6.21
1	0	1	1	1	46	6.14		
1	0	1	1	0			45	6.01
1	1	0	0	0	48	5.96		
1	0	1	1	1			47	5.83
1	1	0	0	1	50	5.79		
1	1	0	0	0			49	5.66
1	1	0	1	0	52	5.63		
1	1	0	0	1			51	5.50
1	1	0	1	1	54	5.47		
1	1	0	1	0			53	5.34
1	1	1	0	0	56	5.33		
1	1	1	0	0			55	5.20
1	1	1	0	1	58	5.19		
1	1	1	0	0			57	5.06
1	1	1	1	0	60	5.06		
1	1	1	0	1			59	4.93
1	1	1	1	1	62	4.94		
1	1	1	1	0			61	4.81
1	1	1	1	1			63	4.69
	\mathbf{N}							

Note: $\quad N$ is the decimal value of the cutoff frequency bits (F5-FO), in the control register

TIMING DIAGRAM

Figure 1.

CONTROL REGISTER DEFINITION

	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2	F1	F0
	AZ	PD	RW		MMI	C	NTR		FR	Q	CY	NT		
AZ	AutoZero				$\begin{aligned} & 1=\mathrm{Au} \\ & 0=\mathrm{Au} \end{aligned}$	zos	cuitry cuitry	tuate active						
PD	Power Down			1 = Chip is in power down mode										
$\overline{\mathrm{R}} \mathrm{W}$	Read/Write			$1=$ Write data mode										

APPLICATIONS

Filter Response (Lowpass Output)
Shown are the ML6006 filter response at three different cutoff frequency $\left(f_{c}\right)$ settings. At each of the f_{c} settings, the filter response is shown with no slimming and with full slimming activated.

ML6006 Filter/Equalizer Group Delay Tracking

Shown are the curves to demonstrate group delay tracking between the lowpass (V_{OL}) and bandpass $\left(\mathrm{V}_{\mathrm{OH}}\right)$ outputs, with no slimming activated (min) and full slimming activated (max). It can be seen that the group delay tracking between the lowpass and bandpass outputs is well within 1 ns .

Filter Response (Lowpass and Bandpass Outputs)
Shown are the ML6006 filter characteristic curves for the lowpass and bandpass outputs, with no slimming and full slimming activated.

Phase Difference between Lowpass and Bandpass Outputs

Shown is the delta in the phase between the lowpass and bandpass outputs. Ideally the bandpass output should be -90°. The curve shows that this is within 1° for a frequency range of 50 MHz to 10 MHz .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6005CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\operatorname{Pin} \operatorname{SSOP}($ R20 $)$

Integrated Disk Read Channel Processor

GENERAL DESCRIPTION

The ML6010 Integrated Disk Read Channel Processor, incorporates a pulse detector, two channel gated servo peak detectors, a data synchronizer, a partial frequency synthesizer, a (1,7) RLL encoder/decoder and write precompensation circuitry onto a single chip, providing a complete read channel solution for hard disk drive subsystems. The chip receives serial NRZ data from the disk controller, encodes the data into (1,7) RLL code with precompensation and writes to the disk. In the read mode it peak detects preamplified read pulses for both data and embedded servo information, resynchronizes the data, and decodes the $(1,7)$ RLL data back to NRZ. The chip operates at data rates up to $36 \mathrm{Mbits} / \mathrm{s}$ with three levels of write precompensation, set with an external capacitor and a pulse detector with less than 1 ns of pulse pairing. The ML6010 supports constant density recording (CDR) applications with an onboard charge pump and VCO for the frequency synthesizer and requires an external phase detector and M \& N dividers to realize a complete frequency synthesizer. It is set to interface directly to ML6005/6 family of BICMOS filter/equalizer chips with programmable cutoff frequency and pulse slimming (equalization) capability.

FEATURES

- NRZ data rates up to $36 \mathrm{Mbits} / \mathrm{s}$
- Single +5 volt power supply $+/-5 \%$
- Operating power dissipation 700 mW
- Industry standard pulse detector circuitry with less than 1 ns pulse pairing
- Pattern-insensitive wide bandwidth AGC amplifier
- Two channel gated servo peak detectors for embedded servo recovery
- Industry standard fast acquisition PLL with zero phase start capability
- VCO/Charge pump has greater than 3:1 tuning range
- On-board frequency synthesizer charge pump and VCO for addressing ZBR applications
- Interface to industry standard channel filtering/ equalizer chips like ML6005/6
- Three level Write Data Precompensation support
- $(1,7)$ RLL encoding/decoding support
- Available in a 52 pin QFP package

BLOCK DIAGRAM

GENERAL DESCRIPTION (Continued)

The ML6010 is fabricated in a BiCMOS process $(4 \mathrm{GHz}$ npn $f_{t} ; 1.5 \mu \mathrm{CMOS}$) and operates off of a single 5 volt supply. The ML6010 is based on a semi-standard tile array (FC3560) with built in uncommitted gain stages for the flexibility of user defined channel pulse detector and/or passive differentiator or matched delay applications and a
digital gate array for adding user specific functions, thus allowing for customizable options of this feature set, based on the user requirements. Some examples are the optional servo demod outputs-unbuffered A,B,C,D, or buffered A, B and A-B outputs; a 2,7 RLL Endec instead of the 1,7 RLL Endec or maybe implement the $M \& N$ dividers instead of the Endec, digital glue, etc.

PIN CONNECTION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	PEAKB	A capacitor or a capacitor in series with a resistor, connected between this pin and GNDA functions as a servo sample and hold for channel B.
2	$\overline{\text { GATEB }}$	TTL input (active low). When this pin is forced TTL low, servo peak detector B is enabled.
3	PEAKA	A capacitor or a capacitor in series with a resistor, connected between this pin and GNDA functions as a servo sample and hold for channel A.
4	$\overline{\text { GATEA }}$	TTL input (active low). When this pin is forced TTL low, servo peak detector A is enabled.

PIN\#	NAME	FUNCTION
5	DISCHG	TTL input (active high). When this pin is forced to a TTL high, both the servo peak detectors are discharged.
6	VCCDS	Analog + 5 volt supply for data synchronizer related blocks.
7	CVCO1	Capacitor between this pin and VCCDS sets up the VCO center frequency for the data synchronizer.
8	CINT1	Coarse input for data synchronizer loop filter time constant setting.
10	VCOIN1	Data synchronizer's charge pump output, drives the loop filter input. Data synchronizer's VCO control input, driven by the loop filter output.

PIN DESCRIPTION (Continued)

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
11	GNDPLL	Analog ground for data synchronizer and frequency synthesizer.	27	CWPN	RC network to setup the normal delay time constant for write precompensation.
12	PUP	Charge pump input for the frequency synthesizer (pump up).	28	CWPE	$R C$ network to setup the early delay time constant for write precompensation.
13	PDN	Charge pump input for the frequency synthesizer (pump down).	29	TEST	Reserved for test purposes. Must be tied to DGND for normal operation.
14	DGND	Digital ground.	30	VCOIN2	Fine input for the frequ
15	NRZIN	NRZ write data input from disk controller. This pin can be connected to the NRZOUT pin to form a single bi-directional NRZ port if desired.	31	CINT2	synthesizer loop filter time constant setting. Coarse input for frequency synthesizer loop filter time constant setting.
16	WCLK	Write clock input synchronous with the NRZ Write data input.	32	CVCO2	Capacitor between this pin and VCCA sets up the VCO center frequency for the frequency synthesizer PLL. Analog +5 volt supply for frequency synthesizer.
17	$\overline{W D}$	Write precompensated, active low (1,7) RLL encoded write data output to the read/write amplifier.	33	VCCFS	
18	NRZOUT	NRZ read data output to the disk controller. This pin can be connected to the NRZIN pin to form a single bi-directional NRZ port if desired.	34	CRWD	Capacitor between this pin and GNDA determines the write to read (input clamp) delay time, e.g. a 1800 pF capacitor gives a delay time of 3 us typ.
19	RRC	Read/Reference clock : a multiplexed clock source used by the disk controller. During mode change there will be no glitches on this line and no more than two lost clock pulses will occur. When Read Gate goes high, RRC synchronized to the NRZ read data will be available after 19 read data pulses.	$\begin{array}{r}35 \\ \\ \\ \hline 68\end{array}$	$\overline{\text { HOLD }}$	time of 3 us typ. TTL input pin (active low). When this pin is forced low, all the charging and discharging pathes on the CAGC pin are disabled. The AGC amplifier now acts as a fixed gain amp. with the gain determined by the voltage on the CAGC pin.
20	VCCD	Digital VCC +5 volts.	36	LEVEL	Emitter follower output, provides rectified signal level, which can be
21	VCOCLK1	An open emitter ECL output for testing purposes.			used through a resistor divider network as a dynamic hysteresis control signal to the hysteresis pin.
22	VCO/3	Divide by three output of the frequency synthesizer VCO clock output.	37	HYS	The voltage applied to this pin determines the threshold level of the qualification channel. In a typical application, the signal on this pin is derived from the LEVEL pin.
23	DRD	$1 / 3$ cell delayed read data for testing purposes.			
24	RG	Active high read gate input from the disk controller. This signal is used to select the PLL reference input.	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{IN}- \\ & \mathrm{IN}+ \end{aligned}$	AGC amplifier differential input, AC coupled from the R/W amplifier. Signal range recommended 15 mV to $150 \mathrm{mVp}-\mathrm{p}$ differential. Analog ground.
25	WG	Active high write gate input from the disk controller. This signal is used to enable the write mode.	40	GNDA	
26	CWPL	RC network to setup the late delay time constant for write precompensation.			

PIN DESCRIPTION (Continued)

| PIN\# | NAME | FUNCTION | | | PIN\# | NAME |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | | FUNCTION |
| :--- |

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

DC Supply Voltage (VCCD) 5 +/- 5\% VDC
DC Supply Voltage (VCCA)
$5+/-5 \%$ VDC
Operating Temperature Range 0 to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

AGC Amplifier and I/P Z-Clamp

AGC 3dB bandwidth (Note 1)	$\begin{aligned} & \mathrm{VCAGC}=2 \mathrm{~V} \\ & \operatorname{VIN}(\text { Diff })=15 \mathrm{mVp}-\mathrm{p} \end{aligned}$		60		MHz
Maximum AGC gain	$\begin{aligned} & \mathrm{VCAGC}=2 \mathrm{~V}, \\ & \mathrm{VIN}(\text { Diff })=15 \mathrm{mVp}-\mathrm{p} \end{aligned}$	100	150		V/V
Minimum AGC gain	$\begin{aligned} & \text { VCAGC }=3.5 \mathrm{~V} \\ & \text { VIN(Diff) }=150 \mathrm{mVp}-\mathrm{p} \end{aligned}$		5	10	V/N
AGC Control Range			27		dB
AGC Control Sensitivity			37		dB/N
Input Signal Range (Differential)		15		150	mV
Output Signal Swing (Differential)	$\begin{aligned} & \text { VCAGC }=2.0 \mathrm{~V}, \\ & \mathrm{VIN}(\text { Diff })=+/-100 \mathrm{mVp}-\mathrm{p} \end{aligned}$		1.5	2.5	Vp-p

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

AGC Amplifier and I/P Z-Clamp (continued)

Input Voltage Noise (Note 1)	$\mathrm{VIN}=0 \mathrm{~V}$		20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Input Resistance	$\begin{aligned} & \text { Read Mode Vin+ }=2.575 \mathrm{~V} \\ & \text { Vin- }=2.425 \end{aligned}$	4.5	6.0	7.5	kohm
Differential Input Resistance	Write Mode Vin+ $=2.575 \mathrm{~V}$ $\text { Vin- }=2.425$	200	300	400	ohm
Common Mode Rejection Ratio (Note 1)	$\begin{aligned} & \text { Vin }+=\operatorname{Vin}-=100 \mathrm{mV} \\ & \text { VCAGC }=2 \mathrm{~V} \end{aligned}$		45		dB
AGC offset (I/P referred)	$\begin{aligned} & \mathrm{VIN}+=\mathrm{VIN}-=\mathrm{VCCA} / 2 \\ & \mathrm{VCAGC}=2 \mathrm{~V} \end{aligned}$	-4		4	mV
Power supply Rejection Ratio	$\begin{aligned} & \text { VCCA }=5 \mathrm{~V}+100 \mathrm{mVp}-\mathrm{p} \\ & \text { VCAGC }=2 \mathrm{~V}, \end{aligned}$		45		dB
AGC output common mode bias	$\mathrm{VCCA}=5 \mathrm{~V}, \mathrm{Vin}+=\mathrm{Vin}-$		2.7	3.0	V
AGC capacitor bias current	$\mathrm{VCAGC}=3.5 \mathrm{~V}$		1	20	$\mu \mathrm{A}$
AGC input offset voltage	VCAGC $=2 \mathrm{~V}$, Vin $+=$ Vin-			400	mV
AGC output sink current	$\mathrm{VCCA}=5 \mathrm{~V}$	1	2	3	mA
AGC output resistance	Measured on OUT+/OUT-		40		ohms
CAGC voltage range		2.2		3.4	V
Clamp Off time delay (Note 1)	```Crwd=1800 pF, VCAGC=2.0V, Vin (diff)=5 mV```	2	2.5	3.0	$\mu \mathrm{s}$
Clamp Propagation Delay R \geq W (Note 1)	Crwd $=1800 \mathrm{pF}, \mathrm{VCAGC}=2.0 \mathrm{~V}$, $\operatorname{Vin}(\mathrm{diff})=5 \mathrm{mV}$		15	100	ns
AGCVOS vs Gain	$\mathrm{VCAGC}=\mathrm{VCC} / 2$ to $\mathrm{VCC} / 2+0.25 \mathrm{~V}$	-400		400	mV

AGC Rectifier and Comparator

Input signal range (Note 1)				2.0	Vp-p
Input Bias voltage		40	50	60	\%VCCA
Input resistance (differential)		3.75	5	6.25	Kohms
CAGC Output voltage	@CAGC, Vin > VAGCSET RCAGC $=100 \mathrm{~K}$ VAGCSET $=\mathrm{VCCA} / 2+100 \mathrm{mV}$		VCCA- 8		V
CAGC charge resistance	$\begin{aligned} & \text { Vin }>\text { VAGCSET } \\ & \text { VAGCSET }=\text { VCCA } 2+100 \mathrm{mV} \end{aligned}$		300		ohms
CAGC clamped voltage (CAGCLMPV)	$\begin{aligned} & \text { Vin }<\text { VAGCSET } \\ & \text { VAGCSET }=\text { VCCA } 2+100 \mathrm{mV} \end{aligned}$		2.2		V
AGCSET bias current	VAGCSET $=2.5 \mathrm{~V}$		1.5	10	$\mu \mathrm{A}$
CAGC Decay current	Read, VCAGC=VCCA		4.7		$\mu \mathrm{A}$
CAGC leak current	Hold Mode VCAGC=CAGCLMPV +0.4 V		0.03	0.5	$\mu \mathrm{A}$
Hold On \& Hold Off time				1	$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Zero Crossing Comparator				1.5	Vp-p
Differential input signal range (Note 1)				20	$\mu \mathrm{~A}$
Differential input bias current	$@$ VCCA/2				
Diff comparator offset voltage	$\mathrm{HYS}=0 \mathrm{~V}$	-3.0		+3.0	mV
Differentail input resistance		4.5	6.0	7.5	kohms
Differential bias voltage			50	60	$\% V V C C A$
Zero crossing comparator gain (Note 1)		65		dB	

Hysteresis Comparator

HYS input signal range (Note 1)				1.5	Vp-p
Peak Hysterisis vs HYS voltage		0.44	0.5	0.56	V
HYS bias current				20	$\mu \mathrm{~A}$
LEVEL pin max output current		2			mA
LEVEL pin output resistance			130		ohms

Internal and Pulse Qualification One-shot

Internal one-shot (tpw) (Note 1)			15		ns
Pulse Qualification one-shot (tpw)	$\operatorname{Cos}=47 \mathrm{pF}$		35		ns
Pulse Detector raw data VOH			VCCA-2Vbe		V
Pulse Detector raw data VOL		$\mathrm{VOH}-0.73$		V	
Pulse Pairing Vdiff=1Vp-p diff @ 5 MHz			0.5	1.0	ns

Data Seperator PLL

Phase Detector range			+/- pi	radians
Charge pump gain	V/I - VCOIN1 @DSVCC/2		125	$\mu \mathrm{A}$
Data Synch fVCO max	$\begin{aligned} & \mathrm{CVCO} 1=10 \mathrm{pF} \geq \mathrm{VCCDS} \\ & \mathrm{RG}=1, \mathrm{WG}=0, \\ & \mathrm{VCINT} 1=\mathrm{VCCDS}-1 \\ & \text { VVCOIN } 1=\mathrm{VCCDS} / 2 \end{aligned}$	108		MHz
Data Synch VCO range	$\begin{aligned} & \mathrm{CVCO} 1=10 \mathrm{pF} \geq \mathrm{VCCDS} \\ & \mathrm{RG}=1, W \mathrm{~W}=0, \\ & \mathrm{VCINT} 1=1 \mathrm{~V} \text { to } 4.2 \mathrm{~V} \end{aligned}$	3:1	4:1	
Data Synch VCO Course Gain	$\begin{aligned} & \mathrm{CVCO} 1=10 \mathrm{pF} \geq \mathrm{VCCDS} \\ & \mathrm{RG}=1, \mathrm{WG}=0, \\ & \mathrm{VCINT1}=2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ & \mathrm{VVCOIN} 1=\mathrm{VCCDS} / 2 \end{aligned}$		300	Mrad/s/N
Data Sync VCO fine Gain	$\begin{aligned} & \mathrm{CVCO} 1=10 \mathrm{pF} \geq \mathrm{VCCDS} \\ & \mathrm{RG}=1, \mathrm{WG}=0, \\ & \mathrm{VCINT} 1=\mathrm{VCCDS} / 2 \\ & \mathrm{VVCOIN} 1=2 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		TBD	Mrad/s N
PLL jitter specifications			0.7	ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Data Seperator PLL (continued)			1% Tw $+/-2$		ns
Data sync window center offset	CVCO1 $=10 \mathrm{pF} \geq$ VCCDS RG $=1, W G=0$,	28	36	$\mathrm{Mbits} / \mathrm{s}$	
Maximum data rate ($1,7 \mathrm{RLL}$)					

Frequency Synthesizer PLL

Charge pump gain	V/I - VCOIN2 @VCCFS/2		125	$\mu \mathrm{A}$
Freq Synthesizer fVCO max	$\begin{aligned} & \mathrm{CVCO} 2=10 \mathrm{pF} \geq \mathrm{VCCFS} \\ & \text { RG }=0, W \mathrm{~W}=1, \\ & \text { VCINT } 2=\mathrm{VCCFS}-1 \\ & \text { VVCOIN } 2=\mathrm{VCCFS} / 2 \end{aligned}$	108		MHz
Freq Synthesizer VCO range	$\begin{aligned} & \mathrm{CVCO} 2=10 \mathrm{pF} \geq \mathrm{VCCFS} \\ & \mathrm{VCINT2}=1 \mathrm{~V} \text { to } 4.2 \mathrm{~V} \end{aligned}$	3:1	4:1	
Freq Synthesizer fine VCO gain	$\begin{aligned} & \mathrm{CVCO} 2=10 \mathrm{pF} \geq \mathrm{VCCFS} \\ & \mathrm{VVCOIN2} 2=2 \mathrm{~V} \text { to } 3 \mathrm{~V} \end{aligned}$		TBD	Mrad/s N
Freq Synthesizer coarse VCO gain	$\begin{aligned} & \mathrm{CVCO} 2=10 \mathrm{pF} \geq \mathrm{VCCFS} \\ & \mathrm{VCINT} 2=2 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ & \mathrm{VVCOIN} 2=\mathrm{VCCFS} / 2 \end{aligned}$		300	Mrad/s /

Servo Peak Detector

Input signal range (differential) (Note 1)				1.5	Vp-p
Servo demod voltage gain			2		VN
Offset mismatch between two chnls	Vin = 1.5 Vp-p differential	-20		+20	mV
Output leakage current (ch disabled)	GATE A/B $=1$, DISCHG=0			10	$\mu \mathrm{~A}$
Servo demod discharge current	R $=750$ ohms		650	$\mu \mathrm{~A}$	

Miscellaneous

Operating power dissipation			750	1000
Write Precompensation time	Cwpn $=20 \mathrm{pF}, \mathrm{Cwpl}=39 \mathrm{pF}$ fWCLK $=36 \mathrm{MHz}$	mW		
Write Precompensation time	Cwpn $=100 \mathrm{pF}, \mathrm{Cwpl}=200 \mathrm{pF}$ fWCLK $=7.2 \mathrm{MHz}$	2	ns	

TTL compatible inputs and outputs

Input low voltage (VIL)		-0.3		0.8	V
Input high voltage (VIH)		2.0		$\mathrm{VCC}+0.3$	V
Input low current (IIL)	$\mathrm{VIL}=0.4 \mathrm{~V}$			0.4	mA
Input high current (IIH)	$\mathrm{VIH}=2.7 \mathrm{~V}$			100	$\mu \mathrm{~A}$
Output low voltage (VOL)	$\mathrm{IOL}=1 \mathrm{~mA}$			0.4	V
Output high voltage (VOH)	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V

Note 1: These parameters are guaranteed by design. They are not 100% tested and are not in outgoing quality level calculatıon.

FUNCTIONAL DESCRIPTION

The ML6010 provides the integration of most of the functions associated with the implementation of disk read channel design up to $36 \mathrm{Mbits} / \mathrm{s}$ data rates. It incorporates a pulse detector, two gated servo peak detectors, a data seperator with fast acquisition capability, the charge pump and VCO functions for implementing a frequency synthesizer, write precompensation circuitry and a $(1,7)$ RLL Endec. It is targeted at one/two platter $31 / 2^{\prime \prime}$ and high capacity $21 / 2^{\prime \prime}$ drives, where performance and capacity requirement take priority to power requirements, although the overall power requirements are much lower than earlier discrete block implementations.

The Pulse Detector section includes a wide bandwidth differential amplifier with automatic gain control, a precision full wave rectifier, time channel and gate channel. User programmable equalization or pulse slimming, and CDR band selection is supported through an external filter chip (ML6006). The Pulse detector will support pulse pairing specifications less than $+/-1 \mathrm{~ns}$.
Two Gated Servo Peak Detectors are incorporated for recovery of embedded servo information. Optionally it can provide buffered (A, B and a position error signalPES) low impedance outputs which represent the peak detected level of each servo burst. These voltages are suitable for digitizing by an A/D converter and processed by the controlling processor, for head positioning.
The Data Synchronizer incorporates a fast acquisition phase lock loop with zero phase start capability and a 3:1 tuning range. Precise decode window control is
achievable using external components and the $1 / 3$ cell delay automatically tunes to the synthesized frequency depending on the zone. The settling time is typically less than $2 \mu \mathrm{~s}$ which is well within the requirements, e.g. for 36 Mbps data rate with 8 bytes of 3 T preamble, and 1,7 RLL code the minimum settling time required equals :

$$
1 / 36 * 2 * 8 * 8=3.55 \mu \mathrm{~s}
$$

The partial Frequency Synthesizer generates all necessary clocks for data encoding and synchronizer reference. The synthesizer requires external logic for the input divider (N) and feedback divider (M) programming and also uses an external loop filter, giving the user full control over the PLL's dynamics.
The Endec employs the $2 / 3(1,7)$ RLL code type and supports a hard sectored drive implementation. After the index/sector pulse has been detected, an internal counter counts negative transitions of the incoming read data looking for three consecutive " $3 T$ " pattern. Once detected the VCO lock process is established. The Write
Precompensation circuitry, provides control of the normal, early and late settings.

The ML6010 is fabricated in a BiCMOS process $(4 \mathrm{GHz}$ npn $f_{t} ; 1.5 \mu \mathrm{CMOS}$) and operates off of a single 5 volt supply and is based on the FC3560 semi-standard array. The tile array allows a number of configurable features to realize a ML6010 like read channel combo chip, with customized features and pinout. For more information on the configurable options contact the factory.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6010CG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	52-Pin QFP (G52)

3.5" R/W MOD Read Channel Front-end Processor

GENERAL DESCRIPTION

The ML6012 is a BiCMOS Read channel front-end processor IC which is one-half of the read channel chipset from Micro Linear, intended for 3.5" Magneto-Optical disk drive (MOD) applications. It works in conjunction with the ML6013 MOD read channel back-end processor to form a complete solution to support the ISO standards for the 128 M and the 230 M rewritable magneto-optical disk drive. The coupling capacitors between AGC/Filter/ Pulse detector are implemented on chip and the programmability of various options is achieved with onboard DACs, thus reducing the external component count significantly.
The major functional blocks in this chip are :

- Analog Mux for RO and MO selection
- VGA (variable gain amplifier)
- AGC control loop
- Sector mark detector
- Programmable VGA for sector mark detection
- 6 th order Filter/equalizer with 2 nd differentiator for sector mark detection
- Two corner frequency registers for changing between sector mark and data
- DC restore and Data detector
- Dropout detector (Retriggerable one-shot)
- Bandgap reference
- Timing and control logic
- 3-Wire Serial Port Interface

The ML6012 will have a typical power dissipation of 300 mW in normal operating mode and less than 1 mW in the sleep mode.

FEATURES

- Supports ISO Standards for 128M and 230M R/W Magneto-Optical drive (MOD)
■ Operating supply range 4.5 V to 5.5 V
- Typical power dissipation is 300 mW
- Sleep mode power dissipation less than 1 mW
- Operates up to $24 \mathrm{Mb} / \mathrm{s}$ NRZ data rate and supports $(2,7)$ RLL with a 48 MHz code rate
- On-chip mux for RO \& MO channel selection
- Wide bandwidth VGA amplifier
- Independent programmable level qualification for sector mark detection
- Independent programmable level qualification for Data detection
- On-chip DC restore circuit bandwidth tracks the filter bandwidth for reliable data detection and AGC operation.
- Programmable AGC attack and decay current
- 6 pole, 2 zero equiripple filter with less than 40 dB harmonic distortion
- Programmable filter cutoff frequency with separate registers for MO and RO inputs
MO - Data mode (DSLIM $=0$);
$\mathrm{f}_{\mathrm{C}}=4$ to 14 MHz in 32 steps
RO - Sector mark mode (DSLIM $=1$)

$$
\mathrm{f}_{\mathrm{C}}=2 \text { to } 6.84 \mathrm{MHz} \text { in } 16 \text { steps }
$$

SYSTEM BLOCK DIAGRAM

ML6012

FEATURES (continued)

Programmable asymmetric equalization with 8 -bits (256 combinations of phase/frequency) and 0 to 11 dB boost capability at f_{C}

- High speed (20 MHz clock) three wire serial port interface with double buffered data
- External components minimized

32-pin TQFP low profile package

BLOCK DIAGRAM

PIN CONNECTION WITH TYPICAL COMPONENT VALUES

PIN DESCRIPTION

PIN	NAME	FUNCTION
$\begin{gathered} 1 \\ 32 \end{gathered}$	ROINP ROINN	RO channel differential signal inputs. Signal dynamic range: 25 mV to 500 mV P-p differential. These two pins are internally biased at approximately VCCA - 2.8 V . A positive level on ROINP corresponds to the "MARK." A positive peak on ROINP pin corresponds to "1."
$\begin{aligned} & 3 \\ & 2 \end{aligned}$	MOINP MOINN	MO channel differential signal inputs. Signal dynamic range: 25 mV to 500 mV p-p differential. These two pins are internally biased at approximately VCCA - 2.8 V . A positive level on MOINP corresponds to the "MARK." A positive level on MOINP pin corresponds to " 1 ."
29	ROSEL	RO channel and MO channel selection control input, CMOS compatible. When this pin goes low, the MO channel is selected as an input to the IC. When this pin goes high, the RO channel is selected.
$\begin{aligned} & 28 \\ & 26 \end{aligned}$	AGCP AGCN	Differential VGA amplifier outputs (open emitter). Used as a test point for evaluation purposes. Leave these two pins open to reduce the power dissipation caused by the external bias resistors, or current sources. The output common-mode voltage is set at approximately VCCA - 2.7V. For better noise rejection, the signal should be observed differentially. If the signal is observed single ended, it should be referred to VCCA. $1 \mathrm{~K} \Omega$ resistors to ground may be used to bias these outputs.
4	RFIL	A $15 K \Omega$ resistor between this pin and GNDA will set up the cut-off frequency $\left(f_{C}\right)$ of the filter. This resistor may be increased up to 50\% to decrease the filter cut-off frequency (f_{C}).
5	DSLIM	Slimming disable function control pin (CMOS compatible, active high). When this pin is forced to logic high, the equalizer/slimmer function is disabled, the SMARK output is enabled, and the f_{C} of the filter can be programmed between 2 and 6.8 MHz by the content of Register \#3. When this pin is forced to logic low, the equalizer function is enabled, and can be programmed with Register \#1 and Register \#2, the SMARK output is disabled and held to logic low, and the

PIN \quad NAME	FUNCTION
	f_{C} of the filter can be programmed between 4 and 14 MHz , by the content of Register \#0. It is required to set this pin to logic low during power up and while programing the control registers in order to reset the SMARK output.

LPOUTP Differential LPF outputs from the filter (open emitter). Used as a test point for evaluation purposes. Leave these two pins open to reduce the power dissipation caused by the external bias resistors, or current sources. The output common-mode voltage is set at approximately 1.5 volts above ground. For better noise rejection, the signal should be observed differentially. Single ended, it should be referred to GNDA. 750Ω resistors to ground may be used to bias these outputs.
BPOUTP 1st differentiator output from the filter (open emitter). Used as a test point for evaluation purposes. Leave this pin open to reduce the power dissipation caused by external bias resistor, or current source. The output DC voltage is set at approx. (VCCA -3 V). For better noise rejection the signal should be observed with respect to VCCA. A 750Ω resistor may be used to bias this output.

PIN DESCRIPTION (Continued)

PIN	NAME	FUNCTION
24	SLEV	A DC voltage applied to this pin sets the qualification level for the qualification comparator in the sector mark detector block. This pin can be tied to VROUT.
17	CTO	A capacitor between this pin and GNDA will set the time out period for the dropout detection circuit. (Recommended values are: 355 pF for 3600RPM 230MB, 265pF for 4800RPM 230MB, and 250pF for 5100RPM 230MB drives) The typical time is computed from $t=0.105 \mathrm{x}$ $\mathrm{R}_{\mathrm{INT}} \times$ CTO. $\mathrm{R}_{\mathrm{INT}}$ is $20 \mathrm{~K}(\pm 25 \%)$.
21	DOUT	Dropout detection circuit output (CMOS compatible). This pin goes high when no pulses are detected for a preset time interval (determined by CTO). This pin normally ties to the COAST pin in the ML6013 chip.
$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & \text { RD } \\ & \text { RDB } \end{aligned}$	Encoded read data output (ECL outputs). The ML6013 back-end processor recovers the clock by using this data stream and the Data synchronizer Phase Locked Loop (PLL) before sending it to the $1 / 2(2,7)$ RLL ENDEC for decoding. (Rising edge of RD represents the flux changes on the MO drive). If the ML6013 is not connected, $3.2 \mathrm{~K} \Omega$ resistors to ground are needed to increase the bias current of these outputs. These outputs are reset and not active when RG is low. (Reset mode)
22	SMARK	Sector mark detector output (CMOS compatible). This pin goes high when a qualified "mark" is detected.
25	VROUT	Buffered Bandgap reference output (2.5 V typical). The voltage for the SLEV pin can be derived from this reference.

PIN	NAME	FUNCTION
15	PDB	Power down enable (CMOS compatible input, active low). This pin is set low to power down the chip. This pin is internally $O R^{\prime} d$ with bit 4 of control register \#5.
18	RG	Read gate (CMOS compatible input, active high) from controller. This pin combines with the AGCMD pin in the "timing and control logic" section, to generate the different AGC modes of operation. When RG:0; the chip enters reset mode (RD:Low, RDB:High) (VGA mode) and CAGC discharges to $0.56 \mathrm{~V}_{\mathrm{CC}}$.
9	AGCMD	AGC mode control input (CMOS compatible, active high). This pin is usually tied to the PLLGS pin in the ML6013. When AGCMD:Low and RG:High the AGC is on; when AGCMD:High and RG:High; the AGC is in HOLD mode.
13	SCLK	This is a CMOS input which clocks the Control Register (falling edge triggered). Internally this pin is gated with the SENB signal.
12	SDATA	Control Register Data, CMOS input, clocked by SCLK.
11	SENB	Active low CMOS input - Control Register enable. A logic low input on this pin allows the SCLK input to clock the SDATA into the control register and the rising edge latches the control register contents internally (double buffered).
8	VCCA	VCC for analog sections
14	VCCD	VCC for digital sections
10	GNDA1	Analog ground
31	GNDA2	Analog ground
16	GNDD	Digital ground

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged Absolute maxımum ratings are stress ratings only and functional device operation is not implied.
DC Supply Voltage (VCCA \& VCCD) -0.3 to +7 V Analog \& Digital Inputs/Outputs -0.3 to VCCA +0.3 V Input Current per Pin -25 to +25 mA Storage Temperature 65 to $+150^{\circ} \mathrm{C}$ Maximum Junction Temperature $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage Range............................... 4.5 V to 5.5 V
Operating Temperature Range.....................$~ 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, VCCA $=\mathrm{VCCD}=4.5$ to 5.5 volts and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Dissipation		4.5	5.0	5.5	V
VCCANCCD	Output unloaded		60	75	mA
IVCCA	Output unloaded		3.0	3.5	mA
IVCCD			100	$\mu \mathrm{~A}$	
Sleep Mode Supply Current	VCCA + VCCD				

Digital I/O Specifications (Inputs are CMOS compatible while outputs are TTL compatible)

High level input voltage		$\mathrm{VCCD}-0.5$		VCCD	V
Low level input voltage				0.5	V
High level input current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{VCCD}-0.1 \mathrm{~V}$			10	$\mu \mathrm{~A}$
Low level input current	$\mathrm{V}_{\mathrm{IL}}=0.1 \mathrm{~V}$			10	$\mu \mathrm{~A}$
High level output voltage	$\mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}$	$\mathrm{VCCD}-0.2$			V
Low level output voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.4	V

Analog Mux for RO and MO Channel Selection

Differential input swing	RO and MO signals	25		500	$\mathrm{mV} \mathrm{P}_{\text {-P }}$
Differential input resistance		3.75	5.0	6.25	$\mathrm{~K} \Omega$
Input bias voltage			VCCA -2.8		V
RO/MO select switching				50	ns

Variable Gain Amplifier (VGA)

Maximum gain (A Vmax)	AGC mode	1.8	2	2.2	V / N
Minimum gain ($\mathrm{A} V \mathrm{~min}$)	AGC mode		0.04	0.1	V / N
Maximum gain (A Vmax)	Fixed gain mode	5.0	5.6		V / N
Minimum gain (A Vmin)	Fixed gain mode		0.05	0.2	V / N
3 dB bandwidth	AGC mode	50	60		MHz
Gain control range	AGC mode	25			dB
AGC control sensitivity			40		dB/V
LPOUT diff output swing	Closed loop @ LPF output (ASL0:0 ASL1:1)	384	480	576	$m V_{\text {P-P }}$
Total harmonic distortion	25 mV to $500 \mathrm{mV} \mathrm{P}_{\text {- }}$			2	\%
Equivalent input noise	Fixed gain mode, minimum gain AGC mode, minimum gain		$\begin{aligned} & 90 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{nV} \sqrt{\mathrm{~Hz}} \\ & \mathrm{nV} \sqrt{\mathrm{~Hz}} \end{aligned}$
CMRR	$\mathrm{V}_{\mathrm{IN}}=300 \mathrm{~m} \mathrm{~V}_{\text {P-P }}$ diff @ 5.8 MHz , input shorted together		40		dB

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Variable Gain Amplifier (VGA) (Continued)

PSRR	$V_{I N}=300 \mathrm{~m} V_{\text {P-P }}$ diff @ 1 MHz, input shorted together		40	dB	
AC coupling network	Cutoff frequency		8	12	KHz

DC Restore Section

Maximum bandwidth	DCR bits 2-0 $=100$		620		KHz
Minimum bandwidth	DCR bits 2-0 $=100$		177		KHz
Maximum shift	DCR bits 2-0 $=111$		1.6		
Minimum shift	DCR bits 2-0 $=000$		0.2		

AGC Control Section (AGC Mode)

CAGC clamp voltage (L)		0.52	0.65	0.78	V
CAGC clamp voltage (H)		2.2	2.8	3.4	V
Min CAGC normal attack current	bits ATK1, ATK0 $=00$	230	300	390	$\mu \mathrm{~A}$
Max CAGC normal attack current	bits ATK1, ATK0 $=11$	925	1200	1560	$\mu \mathrm{~A}$
Min CAGC normal decay current	bits DKY1, DKY0 $=00$	23	30	39	$\mu \mathrm{~A}$
Max CAGC normal decay current	bits DKY1, DKY0 $=11$	92	120	156	$\mu \mathrm{~A}$
CAGC leak current	RG $=1$, AGCMD $=1$ (Hold mode)			50	nA

Sector Mark Detection Section

SLEV DC voltage range	$(\mathrm{V}$ to I converter $)$		2.5		V
RMS jitter ± 1 sigma Note 2	$\mathrm{f}_{\mathrm{IN}}=4.0 \mathrm{MHz}, \mathrm{f}_{\mathrm{C}}=5.5 \mathrm{MHz}$ DSLIM pin $=1$			5	ns
Qualification level comparator range	$\mathrm{V}_{\mathrm{DAC}}=\mathrm{V}_{\text {MAX }} \times \mathrm{k} / 16(\mathrm{k}=0-15)$			$\pm 15 \times$ $\mathrm{V}_{\mathrm{MAX}} / 16$	V
Qualification level comparator step	$\mathrm{V}_{\text {MAX }}=\mathrm{V}_{\text {SLEV }} / 80$		$\mathrm{~V}_{\text {MAX }} / 16$		V

Data Detection Section

Zero crossing comparator resolution			0.5		mV
RMS jitter ± 1 sigma Note 2	$\mathrm{f}_{\mathrm{N}}=16 \mathrm{MHz}, \mathrm{f}_{\mathrm{C}}=11.1 \mathrm{MHz}$ full slimming, $\mathrm{ASL}=1,0$			365	ps
Qualification level comparator range	$V_{\mathrm{DAC}}=750 \mathrm{mV} / 16 \times \mathrm{K} ;$ $\mathrm{K}=0$ to $15(4-\mathrm{bit} \mathrm{DAC})$	0		703.13	mV
Qualification level comparator step			46.875		mV
Dropout one-shot time	CTO $=355 \mathrm{pF}, \mathrm{t}=0.105 \times \mathrm{R}_{\mathrm{INT}} \times \mathrm{CTO}$	520	745.5	970	ns
Read pulse one-shot		15	25	40	ns
RD/RDB high $\left(\mathrm{V}_{\mathrm{OH}}\right)$	Diff psuedo ECL output		3.4		V
RD/RDB low $\left(\mathrm{V}_{\mathrm{OL}}\right)$	Diff Psuedo ECL output		3.0		V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Lowpass Filter, First and Second Differentiator					
Data mode cutoff frequency	$\begin{aligned} & \text { DSLIM }=\text { low, } \mathrm{f}_{\mathrm{C}}(\mathrm{MHz})=4+(10 \times \mathrm{n} / 31) \\ & \text { where } \mathrm{n}=0,1,2, \ldots 31 \end{aligned}$	4		14	MHz
Sector mark cutoff frequency	$\begin{aligned} & \mathrm{DSLIM}=\text { high, } \mathrm{f}_{\mathrm{C}}(\mathrm{MHz})=2+(5 \times \mathrm{n} / 31) \\ & \text { where } \mathrm{n}=0,2,4, \ldots 30 \end{aligned}$	2		6.84	MHz
Cutoff frequency accuracy		-10		+10	\%
Slimming level accuracy	Symmetric equalization	-1		+1	dB
Differential group delay	$4 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{C}} \leq 14 \mathrm{MHz}$			± 5	\%
Second differentiator center frequency (f_{O}) to main filter cutoff frequency (f_{C}) ratio	Ratio of ($\mathrm{f}_{\mathrm{O}} / \mathrm{f}_{\mathrm{C}}$)		1		

Bandgap Reference

Reference voltage out	VR $_{\text {OUT }}$	2.375	2.5	2.625	V
Driving capability		2			mA

Serial Microprocessor Interface

Serial clock (SCLK) frequency		10		20,000	KHz
SCLK duty cycle		40		60	$\%$
SCLK pulse width	tpW	20			ns
SCLK to SDATA hold time	$\mathrm{t}_{\text {HSD }}$	10			ns
SDATA to SCLK setup time	STSD	10			ns
SENB to SCLK setup time	tSSEN	10		ns	
SCLK to SENB hold time	tSSEN			10	ns
SENB high time		50			ns

Note 1: Limits are guaranteed by 100% testing, sampling or correlation with worst case test conditions.
Note 2: The ± 1 sigma RMS jitter is one standard deviation of the distribution of the edge transistor time. The peak-to-peak is twice the value shown.

TIMING DIAGRAMS

Figure 1. Serial Port Timing Diagram

FUNCTIONAL DESCRIPTION
 INTRODUCTION

The ML6012 is a BiCMOS Read channel front-end processor IC which is one half of the read channel chip set from Micro Linear, intended for 3.5" Magneto-Optical disk drive (MOD) applications. It is optimized to handle the front-end channel functions and works in conjunction with the ML6013 MOD read channel back-end processor to form a complete solution to support the ISO standards for the 128 M and the 230 M rewritable magneto-optical disk drive. The coupling capacitors between AGC/Filter/ Pulse detector are implemented on-chip and the programmability of various options is achieved with on board DACs, thus reducing the external component count significantly.
The pulse detector consists of the AGC amplifier with a full AGC loop, which works in conjunction with the programmable filter/equalizer circuitry. The AGC loop has three operation modes as tabulated below;

MODE CONTROL

RG	AGCMD	MODE
0	X	RESET mode (VGA mode)
1	0	AGC mode (AGC on)
1	1	HOLD mode (CAGC held)

Two different pulse detection schemes are employed to optimize the sector mark signal during RESET mode, and the data detector signal during the AGC and the HOLD modes independently. The entire pulse detector signal path is fully differential to minimize noise pick up from the power supply and external components, thereby increasing the signal-to-noise ratio. Also a design scheme is adopted to guarantee that any baseline noise superimposed on the signal be rejected, thereby preventing false triggering the internal flip-flop that may otherwise occur in the pulse detector.
The ML6012 is designed to offer lower power dissipation, higher level of integration and high level of programmability to minimize the number of external components, thus resulting in an optimized MOD read channel front-end. It outputs ECL a read data signal which is level compatible with the input to the companion chip ML6013, used for data separation and clock synchronization. Please refer to the block diagram of the ML6013 for the details.

SECTOR MARK DETECTOR

Sector mark detector uses the 1 st and 2 nd differentiated outputs from the filter/equalizer. The 1 st differentiated signal is differentially compared in the qualification comparator with the qualification level programmable through control register \#4. This ensures that only a data pulse of sufficient amplitude will be qualified as a correct signal and multiplied with the 2nd differentiated signal to generate the clock to the flip-flop and output the sector mark signal.

Control register \#3 can be used to program the cutoff frequency of the filter from 2 MHz to 6.84 MHz to optimize the dynamic range of the sector mark detector channel depending on the input signal amplitude. DSLIM pin can be used to gate the sector mark signal. If DSLIM is set to low, sector mark output is disabled and reset to CMOS logic low. Since the sector mark detector needs to operate only during the RESET mode, it is recommended to set the DSLIM pin to low except during RESET mode to prevent any noise injection due to switching of the CMOS output from the sector mark detector. Also, it is required to set the DSLIM pin to low during power-up to reset the sector mark.

DATA DETECTOR

The inputs to the data detector are the 1 st differentiated signal from the filter/equalizer and the DC restored lowpass signal from the AGC control loop. Control register \#0 can be used to program the cutoff frequency of the filter from 4 MHz to 14 MHz to optimize the dynamic range of the data detector channel.

The DC restored signal is first compared differentially in the qualification comparator whose qualification level is programmable using the control register \#5. This signal is then multiplied with the output of the zero crossing comparator from the 1 st differentiated signal. The multiplier output triggers the oneshot whose ECL output is the encoded read data output from ML6012. This output signal can be directly used as the input to the companion chip ML6013 for data synchronization. This signal is also internally used as an input to the retriggerable oneshot to flag if no pulses are detected for a preset time interval. RG pin can be used to gate the data detector output. If it is set low, the chip is in RESET mode and the data detector output is disabled. (RD:Low, RDB:High)

AGC

The AGC gets its differential input from the RO/MO mux. The input impedance of the mux enters a low impedance state during the intial period of AGC operation in order to avoid transients which may cause erratic AGC operation. The period consists of a $0.4 \mu \mathrm{~s}$ fixed blanking portion, during which the CAGC voltage is held constant, and a variable portion that tracks with the inverse of the cutoff frequency of the filter $\left(0.6 \mu\right.$ s for $f_{C}=11 \mathrm{MHz}$ and 48 MHz code rate). From the end of the fixed to the end of the variable portion of this period the super attack and super decay currents are multiplied by a factor of two. The $0.4 \mu \mathrm{~s}$ blanking period is necessary to allow the circuit to settle before the CAGC is allowed to change due to the charge pump. The cutoff frequency of the AC coupling network in the mux is set by the external coupling capacitor and the input impedance of the mux. The recommended value of the external capacitor is 8 nF . In this case, the cutoff frequency is 12 KHz during the RESET mode and approximately 1 MHz during the AGC mode. The input signal range is 25 mV to 500 mV peak-to-peak differential.

The AGC amplifier is a two stage differential amplifier with high bandwidth. The first stage of the amplifier is a variable Gain Amplifier (VGA) whose gain is controlled by the control register \#7 during the RESET mode and by the voltage on the CAGC pin during the AGC and the HOLD modes. The output of the AGC amplifier feeds into the filter/equalizer through internal AC coupling network whose time constant is adjusted to get optimal performance in the different modes. In RESET mode, the AC coupling cutoff frequency is set at 12 KHz . In AGC mode, the cutoff frequency is set at around 1 MHz during the initial $1 \mu \mathrm{~s}$ of the AGC to enter the fast mode and at around 120 KHz for the rest of the AGC mode.
The lowpass output from the filter/equalizer goes through 12 x amplifier and the DC restore circuitry where the DC level is clamped. This signal level is typically 480 mV (ASLI $=$ ASL2 $=0$) and it is used in the comparator in AGC loop to generate the control voltage on the CAGC pin during AGC mode. The capacitor on the CAGC pin then gets charged or discharged depending on whether the signal is greater than or less than the preset reference voltage. The reference voltage is programmable from 480 mV to 840 mV in 120 mV step through the ASL bits in the control register \#6. The charging and discharging current, also referred to as the attack and decay rates, are programmable through the D4 bit in control registers \#14. Refer to the section Control Register for programming details.

PROGRAMMABLE FILTER/EQUALIZER

The programmable filter/equalizer circuit approximates a sixth-order, 0.05 Equiripple function which achieves a flat group delay up to twice the cutoff frequency ($2 \mathrm{f}_{\mathrm{C}}$). The filter is implemented by using gm / C integrators, and processes signals in a differential mode for greater noise immunity. Temperature stable cutoff frequencies are obtained. The filter architecture provides for smaller excess phase and power dissipation. It generates both a lowpass and bandpass (differentiated) output. The filter can be operated in two modes controlled by DSLIM pin. If DSLIM is set to high, the filter is operated in the data mode, and the cutoff (corner) frequency of the filter is controlled in the range $4-14 \mathrm{MHz}$ range by 5 bits stored in control register \#0 ($\mathrm{f}_{\mathrm{C}} \mathrm{d} 4-0$) to provide 32 combinations. A low input at the DSLIM pin sets the filter to be operated in the sector mark mode with corner frequency in the range of $2-6.838 \mathrm{MHz}$, which is controlled by 4 bits stored in control register \#3 (f f $54-1$). The corner frequency of the filter is given by the following equations:

$$
\mathrm{f}_{\mathrm{C}}=4+\frac{10}{31} \times\left(16 \mathrm{f}_{\mathrm{C}} \mathrm{~d} 4+8 \mathrm{f}_{\mathrm{C}} \mathrm{~d} 3+4 \mathrm{f}_{\mathrm{C}} \mathrm{~d} 2+2 \mathrm{f}_{\mathrm{C}} \mathrm{~d} 1+\mathrm{f}_{\mathrm{C}} \mathrm{~d} 0\right)
$$

(data mode)

$$
f_{C}=2+\frac{5}{31} \times\left(16 f_{C} s 4+8 f_{C} s 3+4 f_{C} s 2+2 f_{C} s 1\right)
$$

(sector mark mode)

Two real zeroes of opposite polarity are introduced by two stages inserted between the first/second and the second/ third biquads. The zeroes can be adjusted independently so that it is possible to realize asymmetric equalization, if desired. The transfer function of the equalizer and equalization level is given by:

$$
H s=\left(1-\frac{k_{1} s}{\omega_{01}}\right)\left(1+\frac{k_{2} s}{\omega_{02}}\right)
$$

Where ω_{01}, and ω_{02} are the corner frequencies of the first and the second biquads. k 1 and k 2 can be controlled independently by adjusting the bias currents in the slimmers. They are adjusted by changing the slimming control bits in control register \#1 (ea3-0) and \#2 (eb3-0), and their values are shown below:
$k_{1}=\frac{k_{\text {MAX }}(8 e a 3+4 e a 2+2 e a 1+e a 0)}{15}=\frac{k_{1 \text { MAX }} N_{1}}{15}$,
$\mathrm{k}_{2}=\frac{\mathrm{k}_{1 \text { MAX }}(8 \mathrm{eb} 3+4 \mathrm{eb} 2+2 \mathrm{eb} 1+\mathrm{eb} 0)}{15}=\frac{\mathrm{k}_{2 \text { MAX }} \mathrm{N}_{2}}{15}$.
Then the total slimming level $\mathrm{SL}(\omega)$ and the group delay $\mathrm{G}(\omega)$ of the equalizer as a function of frequency are
$\operatorname{SL}(\omega)=10 \log \left[1+\left(\frac{\mathrm{k}_{1 \text { MAX }} \mathrm{N}_{1} \omega}{15 \omega_{01}}\right)^{2}\right]+10 \log \left[1+\left(\frac{\mathrm{k}_{2 \text { MAX }} \mathrm{N}_{2} \omega}{15 \omega_{02}}\right)^{2}\right]$
$G(\omega)=\frac{k_{1 \text { MAX }}}{\omega_{01}}\left(\frac{N_{1}}{1+\left(\frac{k_{1} N_{1} \omega}{\omega_{01}}\right)}\right)-\frac{k_{2 \text { MAX }}}{\omega_{02}}\left(\frac{N_{2}}{1+\left(\frac{k_{2} N_{2} \omega}{\omega_{02}}\right)}\right)$
The maximum slimming level, which is designed to be 11 dB at the corner frequency of the filter, is determined by
$k=k_{1 \text { MAX }} \frac{\omega_{\mathrm{c}}}{\omega_{01}}=\mathrm{k}_{2 \text { MAX }} \frac{\omega_{\mathrm{c}}}{\omega_{02}}$
The normalized corner frequencies and the quality factors of the sixth-order equiripple filter are:
$\omega_{01}=0.981, \quad \omega_{02}=2.074, \quad \omega_{03}=1.47$
$\mathrm{Q}_{1}=0.551, \quad \mathrm{Q}_{2}=1.686, \quad \mathrm{Q}_{3}=0.893$
$\mathrm{k}_{1 \text { MAX }}$ and $\mathrm{k}_{2 \mathrm{MAX}}$ are designed to be 1.566 and 3.311 to achieve 11 dB maximum slimming at the corner frequency of the filter.
The slimming function is disabled in the sector mark mode.

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. Data is serially clocked into the ML6012 on the SDATA at the falling edges of the serial shift clock, SCLK, provided the SENB pin is active (low). The data is shifted in blocks of eight bits with MSBit first. The internal registers are organized in blocks of eight bits, with the three most significant bits denoting the address, followed by the five data bits. This addressing scheme allows for a register bank of eight registers. When the chip is physically powered-up, the control registers come up in an undetermined state and hence they need to be initialized to some preset bit configuration so that the behavior of the chip is predictable. The control registers retain their programmed information in any of the powerdown modes, until the chip is physically powered-down. When the SENB pin goes inactive (high), the SDATA and SCLK pins are ignored and the previously shifted information is latched on the rising edge of the SENB, into the appropriate register bank based on the address bits. It is recommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input is capable of handling speeds up to 20 MHz .

CONTROL REGISTER DEFINITIONS

The control register bank consists of eight registers with addresses from 0 through 7 . On power-up the state of the control register bits is not predictable and hence the desired state needs to be set. It is required that the DSLIM pin be set low during power-up. Outlined below are the detailed bit-by-bit definitions of the control registers.

CONTROL REGISTER \#0

Data Filter Cutoff frequency control
MSB

A2	A1	A0	D4	D 3	D2	D 1	D0
0	0	0	$f_{C} \mathbf{d} 4$	$f_{C} \mathbf{d} 3$	$f_{C} \mathbf{d} 2$	$f_{C} \mathbf{d} 1$	$f_{C} \mathbf{d 0}$

$\mathbf{f}_{\mathbf{C}} \mathbf{d} \mathbf{4}$	$\mathbf{f}_{\mathbf{C}} \mathbf{d} \mathbf{3}$	$\mathbf{f}_{\mathbf{C}} \mathbf{d} \mathbf{2}$	$\mathbf{f}_{\mathbf{C}} \mathbf{d} \mathbf{1}$	$\mathbf{f}_{\mathbf{C}} \mathbf{d} \mathbf{0}$	$\mathbf{f}_{\mathbf{C}} \mathbf{d}(\mathbf{M H z})$
0	0	0	0	0	4.000
0	0	0	0	1	4.323
0	0	0	1	0	4.645
0	0	0	1	1	4.968
0	0	1	0	0	5.290
0	0	1	0	1	5.613
0	0	1	1	0	5.935
0	0	1	1	1	6.258
0	1	0	0	0	6.581
0	1	0	0	1	6.903
0	1	0	1	0	7.226
0	1	0	1	1	7.548
0	1	1	0	0	7.871
0	1	1	0	1	8.194
0	1	1	1	0	8.516
0	1	1	1	1	8.839
1	0	0	0	0	9.161
1	0	0	0	1	9.484
1	0	0	1	0	9.806
1	0	0	1	1	10.129
1	0	1	0	0	10.452
1	0	1	0	1	10.774
1	0	1	1	0	11.097
1	0	1	1	1	11.419
1	1	0	0	0	11.742
1	1	0	0	1	12.065
1	1	0	1	0	12.387
1	1	0	1	1	12.710
1	1	1	0	0	13.032
1	1	1	0	1	13.355
1	1	1	1	0	13.677
1	1	1	1	1	14.000
Note: DSLIM pin is LOW					
0					

CONTROL REGISTER \#1

Asymmetric equalization - Zero A \& AGC

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	1	atk1	ea3	ea2	ea1	ea0

Note: Refer Asymmetric equalızation tables attached.

CONTROL REGISTER \#2

Asymmetric equalization - Zero B \& AGC
MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	0	atk0	eb3	eb2	eb1	eb0

		AGC ATTACK CURRENT	
atk1	atk0	NORMAL	SUPER
0	0	$300 \mu \mathrm{~A}$	$600 \mu \mathrm{~A}$
0	1	$600 \mu \mathrm{~A}$	$1200 \mu \mathrm{~A}$
1	0	$900 \mu \mathrm{~A}$	$1800 \mu \mathrm{~A}$
1	1	$1200 \mu \mathrm{~A}$	$2400 \mu \mathrm{~A}$

CONTROL REGISTER \#3

Sector mark Filter Cutoff frequency control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	1	dky 1	fsm 3	fsm 2	fsm1	fsm0

$\mathbf{f s m} \mathbf{3}$	$\mathbf{f s m} \mathbf{2}$	$\mathbf{f s m} \mathbf{1}$	$\mathbf{f s m} \mathbf{0}$	$\mathbf{f}_{\mathbf{C}} \mathbf{s m}(\mathbf{M H z})$
0	0	0	0	2.00
0	0	0	1	2.32
0	0	1	0	2.65
0	0	1	1	2.97
0	1	0	0	3.29
0	1	0	1	3.61
0	1	1	0	3.94
0	1	1	1	4.26
1	0	0	0	4.58
1	0	0	1	4.90
1	0	1	0	5.23
1	0	1	1	5.55
1	1	0	0	5.87
1	1	0	1	6.19
1	1	1	0	6.52
1	1	1	1	6.84
Note: DSLIM pin is HIGH.				

CONTROL REGISTER \#4

AGC \& Sector Mark Qualification level control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	0	dky0	shy 3	shy2	shy1	shy0

		AGC DECAY CURRENT	
dky1	dky0	NORMAL	SUPER
0	0	$30 \mu \mathrm{~A}$	$60 \mu \mathrm{~A}$
0	1	$60 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$
1	0	$90 \mu \mathrm{~A}$	$180 \mu \mathrm{~A}$
1	1	$120 \mu \mathrm{~A}$	$240 \mu \mathrm{~A}$

shy3 . . . shy0 - Sector Mark qualification level control. These 4-bits program the sector mark qualification level with a 4-bit DAC whose reference is the voltage at the SLEV pin. DSLIM pin needs to be set low before programming this register in order to avoid false qualification at sector mark detector.

CONTROL REGISTER \#5

Data Detector Qualification level control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	1	pdwn	dhy 3	dhy 2	dhy 1	dhy0

PDB PIN	PDWN BIT	DESCRIPTION
0	X	Chip powered-down, $\mathrm{Pd}<1 \mathrm{~mW}$
X	0	Chip powered-down, $\mathrm{Pd}<1 \mathrm{~mW}$
1	1	Normal operation, $\mathrm{Pd}<350 \mathrm{~mW}$

dhy3 . . . dhy0 - Data Detection Qualification level control. These 4-bits program the data detector qualification level with a 4-bit DAC.

CONTROL REGISTER \#6

AGC \& DC Restore level control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	1	0	asl1	asl0	dcr2	dcr1	dcr0

asl1, asl0 - AGC set level control bits allow the optimization of the internal dynamic range between $3 T$ and 8 T frequency levels, which affects the data detectors performance. The optimum setting depends upon the f_{C} setting, the slimming level and the input signal resolution (ratio of 3 T frequency to 8 T frequency). A setting of (00) sets the lowest internal signal amplitude while a setting of (11) sets the largest. For a 20% resolution the (00) setting is recommended with $f_{C}=2 / 3 f_{3 T}$ and full slimming.
dcr2 . . . dcr1 - DC restore discharge current control to set the bandwidth of the DC restore circuitry. The DC restore discharge current which sets the bandwidth of the DC restore circuit, tracks the filter cutoff frequency set by the $f_{C} d$ bits. In addition, the dcr bits provide an extra adjustment around this value, as shown in the table below. The range is from 0.2 to 1.6 times the internally set bandwidth.

dcr2	dcr1	dcr0	dcr BW SHIFT
0	0	0	0.2
0	0	1	0.4
0	1	0	0.6
0	1	1	0.8
1	0	0	1.0
1	0	1	1.2
1	1	0	1.4
1	1	1	1.6

CONTROL REGISTER \#7

AGC Fixed Gain Control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	1	1	vga 4	vga 3	vga 2	vga 1	vga 0

Programs the gain of the AGC amplifier in the reset mode ($\mathrm{RG}=0$)

vga4	vga3	vga2	vga1	vga0	GAIN
0	0	0	0	0	5.86
0	0	0	0	1	5.54
0	0	0	1	0	5.15
0	0	0	1	1	4.78
0	0	1	0	0	4.44
0	0	1	0	1	4.13
0	0	1	1	0	3.85
0	0	1	1	1	3.58
0	1	0	0	0	3.33
0	1	0	0	1	3.10
0	1	0	1	0	2.88
0	1	0	1	1	2.67
0	1	1	0	0	2.48
0	1	1	0	1	2.29
0	1	1	1	0	2.12
0	1	1	1	1	1.95
1	0	0	0	0	1.79
1	0	0	0	1	1.64
1	0	0	1	0	1.50
1	0	0	1	1	1.36
1	0	1	0	0	1.23
1	0	1	0	1	1.10
1	0	1	1	0	0.98
1	0	1	1	1	0.86
1	1	0	0	0	0.75
1	1	0	0	1	0.64
1	1	0	1	0	0.54
1	1	0	1	1	0.43
1	1	1	0	0	0.34
1	1	1	0	1	0.24
1	1	1	1	0	0.15
1	1	1	1	1	0.06

FILTER GROUP DELAY AND SLIMMING LEVEL

AS A FUNCTION OF N1 (EAn bits, Reg1) AND N2 (EBn bits, Reg2)

N1	N2	$\begin{gathered} \mathbf{G d f}_{\mathbf{C}} \\ \text { (ns MHz) } \end{gathered}$	$\begin{gathered} \text { SL } \\ (\mathbf{d B}) \end{gathered}$
0	0	0.000	0.000
0	1	0.191	0.049
0	2	1.479	0.193
0	3	4.735	0.424
0	4	10.467	0.727
0	5	18.813	1.088
0	6	29.620	1.492
0	7	42.568	1.925
0	8	57.264	2.377
0	9	73.324	2.838
0	10	90.408	3.301
0	11	108.233	3.761
0	12	126.575	4.215
0	13	145.264	4.660
0	14	164.173	5.094
0	15	183.207	5.516
1	0	-0.191	0.049
1	1	0.000	0.098
1	2	1.288	0.243
1	3	4.544	0.473
1	4	10.276	0.776
1	5	18.621	1.137
1	6	29.429	1.541
1	7	42.376	1.974
1	8	57.073	2.426
1	9	73.133	2.887
1	10	90.217	3.350
1	11	108.041	3.811
1	12	126.384	4.264
1	13	145.073	4.709
1	14	163.982	5.143
1	15	183.016	5.566
2	0	-1.479	0.193
2	1	-1.288	0.243
2	2	0.000	0.387
2	3	3.256	0.617
2	4	8.988	0.920
2	5	17.333	1.281
2	6	28.141	1.685
2	7	41.088	2.119
2	8	55.785	2.570
2	9	71.845	3.031
2	10	88.929	3.494
2	11	106.753	3.955
2	12	125.096	4.408
2	13	143.785	4.853
2	14	162.694	5.287
2	15	181.728	5.710

N1	N2	Gdf $_{C}$ (ns MHz)	$\begin{gathered} \mathrm{SL} \\ (\mathrm{~dB}) \end{gathered}$	N1	N2	$\begin{gathered} \mathrm{Gdf}_{\mathrm{C}} \\ \text { (ns Mz) } \end{gathered}$	$\begin{gathered} \mathrm{SL} \\ (\mathrm{~dB}) \end{gathered}$
3	0	-4.735	0.424	6	0	-29.620	1.492
3	1	-4.544	0.473	6	1	-29.429	1.541
3	2	-3.256	0.617	6	2	-28.141	1.685
3	3	0.000	0.847	6	3	-24.886	1.915
3	4	5.732	1.150	6	4	-19.154	2.219
3	5	14.078	1.511	6	5	-10.808	2.580
3	6	24.886	1.915	6	6	0.000	2.983
3	7	34.833	2.349	6	7	12.947	3.417
3	8	52.529	2.801	6	8	27.643	3.869
3	9	68.589	3.262	6	9	43.704	4.330
3	10	85.673	3.725	6	10	60.787	4.793
3	11	103.498	4.185	6	11	78.612	5.253
3	12	121.840	4.639	6	12	96.955	5.707
3	13	140.529	5.083	6	13	115.644	6.152
3	14	159.438	5.518	6	14	134.552	6.586
3	15	178.472	5.940	6	15	153.586	7.008
4	0	-10.467	0.727	7	0	-42.568	1.925
4	1	-10.276	0.776	7	1	-42.376	1.974
4	2	-8.988	0.920	7	2	-41.088	2.119
4	3	-5.737	1.150	7	3	-37.833	2.349
4	4	0.000	1.454	7	4	-32.101	2.652
4	5	8.346	1.815	7	5	-23.755	3.013
4	6	19.154	2.219	7	6	-12.947	3.417
4	7	32.101	2.652	7	7	0.000	3.851
4	8	46.797	3.104	7	8	14.696	4.302
4	9	62.857	3.565	7	9	30.757	4.763
4	10	79.941	4.028	7	10	47.840	5.226
4	11	97.766	4.488	7	11	65.665	5.687
4	12	116.108	4.942	7	12	84.007	6.140
4	13	134.798	5.387	7	13	102.697	6.585
4	14	153.706	5.821	7	14	121.605	7.019
4	15	172.740	6.243	7	15	140.639	7.442
5	0	-18.813	1.088	8	0	-57.264	2.377
5	1	-18.621	1.37	8	1	-57.073	2.426
5	2	-17.333	1.281	8	2	-55.785	2.570
5	3	-14.078	1.511	8	3	-52.529	2.801
5	4	-8.346	1.815	8	4	-46.797	3.104
5	5	0.000	2.176	8	5	-38.451	3.465
5	6	10.808	2.580	8	6	-27.643	3.869
5	7	23.755	3.013	8	7	-14.696	4.302
5	8	38.451	3.465	8	8	0.000	4.754
5	9	54.512	3.926	8	9	16.060	5.215
5	10	71.595	4.389	8	10	33.144	5.678
5	11	89.420	4.849	8	11	50.969	6.138
5	12	107.762	5.303	8	12	69.311	6.592
5	13	126.452	5.748	8	13	88.001	7.037
5	14	145.360	6.182	8	14	106.909	7.471
5	15	164.394	6.604	8	15	125.943	7.893

FILTER GROUP DELAY AND SLIMMING LEVEL
AS A FUNCTION OF N1 (EAn bits, Reg1) AND N2 (EBn bits, Reg2) (Continued)

N1	N2	Gdf \mathbf{C} (ns MHz)	SL (dB)
9	0	-73.324	2.838
9	1	-73.133	2.887
9	2	-71.845	3.031
9	3	-68.589	3.262
9	4	-62.857	3.565
9	5	-54.512	3.926
9	6	-43.704	4.330
9	7	-30.757	4.763
9	8	-16.060	5.215
9	9	0.000	5.676
9	10	17.084	6.139
9	11	34.908	6.599
9	12	53.251	7.053
9	13	71.940	7.498
9	14	90.849	7.932
9	15	109.883	8.354
10	0	-90.408	3.301
10	1	-90.217	3.350
10	2	-88.929	3.494
10	3	-85.673	3.725
10	4	-79.941	4.028
10	5	-71.595	4.389
10	6	-60.787	4.793
10	7	-47.840	5.226
10	8	-33.144	5.678
10	9	-17.084	6.139
10	10	0.000	6.602
10	11	17.825	7.062
10	12	36.167	7.516
10	13	54.856	7.961
10	14	73.765	8.395
10	15	92.799	8.818
11	0	-108.233	3.761
11	1	-108.041	3.811
11	2	-106.753	3.955
11	3	-103.498	4.185
11	4	-97.766	4.488
11	5	-89.420	4.849
11	6	-78.612	5.253
11	7	-65.665	5.687
11	8	-50.969	6.138
11	9	-34.908	6.599
11	10	-17.825	7.062
11	11	0.000	7.523
11	12	18.342	7.976
11	13	37.032	8.421
11	14	55.940	8.855
11	15	74.974	9.278
9			
9			

N1	N2	Gdf \mathbf{C} (ns MHz)	SL (dB)
12	0	-126.575	4.215
12	1	-126.384	4.264
12	2	-125.096	4.408
12	3	-121.840	4.639
12	4	-116.108	4.942
12	5	-107.762	5.303
12	6	-96.955	5.707
12	7	-84.007	6.140
12	8	-69.311	6.592
12	9	-53.251	7.053
12	10	-36.167	7.516
12	11	-18.342	7.976
12	12	0.000	8.430
12	13	18.689	8.875
12	14	37.598	9.309
12	15	56.632	9.732
13	0	-145.264	4.660
13	1	-145.073	4.709
13	2	-143.785	4.853
13	3	-140.529	5.083
13	4	-134.798	5.387
13	5	-126.452	5.748
13	6	-115.644	6.152
13	7	-102.697	6.585
13	8	-88.001	7.037
13	9	-71.940	7.498
13	10	-54.856	7.961
13	11	-37.032	8.421
13	12	-18.687	8.875
13	13	0.000	9.320
13	14	18.909	9.754
13	15	37.943	10.176
14	0	-164.173	5.094
14	1	-163.982	5.143
14	2	-162.694	5.287
14	3	-159.438	5.518
14	4	-153.706	5.821
14	5	-145.360	6.182
14	6	-134.552	6.586
14	7	-121.605	7.019
14	8	-106.909	7.471
14	9	-90.849	7.932
14	10	-73.765	8.395
14	11	-55.940	8.855
14	12	-37.598	9.309
14	13	-18.909	9.754
14	14	0.000	10.188
14	15	19.034	10.610

N1	N2	Gdfc (ns MHz)	SL (dB)
15	0	-183.206	5.516
15	1	-183.016	5.566
15	2	-181.728	5.710
15	3	-178.472	5.940
15	4	-172.740	6.243
15	5	-164.394	6.604
15	6	-153.586	7.008
15	7	-140.639	7.442
15	8	-125.943	7.893
15	9	-109.883	8.354
15	10	-92.799	8.818
15	11	-74.974	9.278
15	12	-56.632	9.732
15	13	-37.943	10.176
15	14	-19.034	10.610
15	15	0.000	11.033

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6012CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$32-$ Pin TQFP $(\mathrm{H} 32)$

October 1994

3.5" R/W MOD Read Channel Back-end Processor

GENERAL DESCRIPTION

The ML6013 is a Read Channel Back-end processor for 3.5" Rewritable Magneto-Optical drives (MOD). It works in conjunction with the ML6012 Read Channel Front-end chip to form a complete integrated Read Channel solution for 128 M and 230 M MOD drives supporting the ISO standards. It incorporates a full function data synchronizer with a $3: 1$ operating range, a full function frequency synthesizer with onboard M \& N dividers. The most critical blocks on this chip are the three VCOs, one for the data synchronizer PLL, one for the frequency synthesizer PLL and the third VCO is used to generate the tracking $1 / 4$ cell delay for $(2,7)$ RLL data synchronization. Careful design considerations have been incorporated to minimize the noise coupling and crosstalk among the VCOs. The system noise is highly minimized as the VCO operates at only 2 X the data rate.

It provides 40 -bits for user programmability of a number of features through a serial microprocessor interface and a bank of internal control registers. The center frequency of the VCO, window centering, $M \& N$ dividers and power management options are programmable.
The ML6013 has a typical power dissipation of 350 mW in normal mode, and less than 1 mW in power down mode. The ML6013 has four levels of power management control for maximum flexibility.

FEATURES

- Supports ISO standards for 128 M and 230 M R/W Magneto-Optical Drive (MOD)
- Operating supply range 4.5 V to 5.5 V
- Typical power dissipation is 300 mW
- Sleep mode power dissipation less than 1 mW
- Low profile, small area, 32-pin TQFP package
- 3:1 NRZ data rate range - 8 to $24 \mathrm{Mbits} / \mathrm{s}$
- Fast acquisition PLL with zero phase start capability
- 3:1 VCO tuning range with $48 \mathrm{Mbits} / \mathrm{s} 2,7 \mathrm{RLL}$ code rate
- Tracking $1 / 4$ cell delay for handling 2,7 RLL data
- Programmable VCO center frequency and window centering adjustment ($\pm 25 \%$ in steps of 1.6%)
- PLL based frequency synthesizer with reference crystal oscillator and $M(7$-bit) \& $N(7$-bit) dividers
- High speed (20 MHz) three wire serial microprocessor interface with double buffered data latches
- Four levels of programmable power management control with external power down pin support
- CMOS, TTL compatible I/O interface for lower power
- Controls provided for manual operation of PLL for

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN	NAME
ECL Level Logic Inputs	
5	RD
Encoded read data from the ML6012 MOD drive read channel front-end processor. The rising edges of RD represent the flux changes on the media. (differential " + " input)	
6	$\overline{\text { RDB }} \quad$Encoded read data from the ML6012 MOD drive read channel front-end processor. The falling edges of RDB represent the flux changes on the media. (differential " - " input)

ECL Level Logic Outputs

(Note: These are test outputs for characterization purposes. External current sources are necessary to provide driving capability for these signals and the ECL buffer needs to be enabled from Control Register \#7)
25 VCO2CLK Test point for Data separator VCO clock output.
$26 \overline{\mathrm{DRDB}}$ Delayed read data output after the $1 / 4$ cell delay. This signal is used for $1 / 4$ cell delay characterization and window margin test. The rising edge is phase compared with the rising edge of VCO2CLK.

CMOS Level Logic Inputs

RG Read Gate signal from the disk controller. Active high signal indicates read mode. This input selects the phase detector input, switches the RRC output, initiates the data separator PLL acquisition.
XTAL A parallel resonant crystal with low parasitic capacitance is connected between this pin and ground as the master clock source. An external clock can be used as an alternative.
$\overline{\text { PDNB }} \quad$ Power Down Control. A low level input on this pin puts the chip in the power down (SLEEP) mode.
29 PLLGS PLL gain select. A high level on this pin places the PLL in low-gain mode. A low places the PLL in high-gain mode.
COAST A high level on this pin disables the phase detector/charge pump of the data separator PLL and allows the VCO to coast.
PIN NAME FUNCTION

CMOS Level Logic Inputs (continued)

$9 \quad \overline{\text { SENB }}$ Control Register Enable. Active low CMOS input. A logic low input on this pin allows the SCLK input to clock the SDATA into the control Register and a logic high on this input latches the control register contents.
10 SCLK This is a CMOS input which clocks the Control Register. Internally this pin is gated with the $\overline{\text { SENB }}$ signal. While SENB is low, address and programming data are clocked in on the falling edges of SCLK.

11 SDATA Control Register Data, CMOS input, clocked by SCLK.

CMOS Level Logic Outputs

19 2FCLK 2X clock output from the frequency synthesizer.
20 LFLDB Loss of Phase/Frequency lock detected. This pin outputs a low level signal when the data separator VCO is out of lock or the incoming read data (RD) is missing for a predetermined number of clock (2FCLK) cycles.
22 SYNDAT This is the synchronized and encoded data from the MOD drive. Data is clocked out on the falling edges of SYNCLK.
23
SYNCLK Data synchronized clock. This pin outputs 2X (code rate) clock derived from the data separator VCO clock. In the read mode this is the recovered clock from the encoded read data.

Analog Pins

3 RVCO
A 1% resistor connected between this pin and GNDA3 sets the VCO center frequency which is then programmed via register \#3.
2 RPUMP 1\% resistor connected between this pin and GNDA3 sets the nominal charge pump current.
17 VCOIN1 Frequency synthesizer PLL charge pump output and VCO input pin. A lowpass filter is connected between this pin and GNDA1.
27 VCOIN2 Data separator PLL charge pump output and VCO input pin. A lowpass filter is connected between this pin and GNDA2.

PIN DESCRIPTION

PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
Power Supplies			Power Supplies (continued)		
13	VCCD1	5V digital supply	1	VCCA3	5 V analog supply for miscellaneous functions.
14	VCCA1	5 V analog supply for frequency synthesizer.	4	GNDA3	Analog ground for miscellaneous functions
21	VCCD2	5V digital supply	8	GNDD1	Digital Ground
31	VCCD3	5 V digital supply	16	GNDA1	
32	VCCA2	5 V analog supply for data separator.			Analog ground for frequency synthesizer
			18	GNDD2	Digital Ground
			28	GNDA2	Analog ground for data separator

TYPICAL EXTERNAL COMPONENTS

LOOP FILTER 1

Note: Loop filter optimized for 24Mbps NRZ operation.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
DC Supply Voltage (VCCA \& VCCD) \qquad .-0.3 to +7 V
Analog \& Digital Inputs/Outputs. \qquad
Input Current per Pin -0.3 to VCCA +0.3 V

Storage Temperature -25 to +25 mA

Maximum Junction Temperature

$$
-65 \text { to }+150^{\circ} \mathrm{C}
$$

$$
125^{\circ} \mathrm{C}
$$

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage Range
4.75 V to 5.25 V

Operating Temperature Range
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{VCCA}=\mathrm{VCCD}=4.5$ to 5.5 volts and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, Note 1

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Dissipation					
V_{CC} (VCCA), (VCCD)		4.5		5.5	V
Supply Current Read Mode PLLFS Mode Idle Mode Sleep Mode	$\mathrm{VCCA}, \mathrm{VCCD}=4.5 \mathrm{~V}$ to 5.5 V , Data Rate $=24 \mathrm{Mbps}, \mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$ All circuits operational Data separator, OFF Only bias circuits \& serial interface ON All circuits OFF, register contents retained			$\begin{aligned} & 80 \\ & 40 \\ & 10 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$

Digital I/O Specifications

High level input voltage		$\mathrm{VCCD}-0.5$		VCCD	V	
Low level input voltage		GNDD		0.5	V	
High level input current	$\mathrm{V}_{\mathbb{I N}}=\mathrm{VCC}$			0.5	$\mu \mathrm{~A}$	
Low level input current	$\mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$			0.5	$\mu \mathrm{~A}$	
High level output voltage	$\\|_{\mathrm{OUT}} \mid=2 \mathrm{~mA}$	$\mathrm{VCCD}-0.5$		VCCD	V	
Low level output voltage	$\\|_{\mathrm{I}} \mathrm{OUT} \mid=2 \mathrm{~mA}$			0.4	V	
High impedance output current	$@ \mathrm{~V}_{\mathbb{I N}}=100 \mathrm{mV} \& \mathrm{VCC}-100 \mathrm{mV}$	-0.5		0.5	$\mu \mathrm{~A}$	

DC Characteristics

Differential Input voltage swing	On ECL input pins RD \& $\overline{\mathrm{RDB}}$	0.8		1.6	$V_{\text {P-P }}$
Psuedo ECL low level output voltage	@ $\mathrm{l}_{\text {OUT }}=3 \mathrm{~mA} \overline{\mathrm{DRDB}} \& \mathrm{VCO2CLK}$ pins	VCCA - 2.05		VCCA - 1.45	V
Psuedo ECL high level output voltage	$@ \mathrm{l}_{\text {OUT }}=3 \mathrm{~mA} \overline{\mathrm{DRD}} \mathrm{B} \& \mathrm{VCO2CLK}$ pins	VCCA - 1.7		VCCA - 1.3	V
Psuedo ECL output swing		0.15	0.25	0.35	V
Low level input current (Psuedo ECL)	Diff $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ \& $\mathrm{VCC}-0.7 \mathrm{~V}$ (RD \& RDB inputs)	0.8	1.0	1.5	mA
High level input current (Psuedo ECL)	Diff $\mathrm{V}_{\mathrm{IN}}=\mathrm{VCC}-0.7 \mathrm{~V} \& 0 \mathrm{~V}$ (RD \& RDB inputs)	0.8	1.0	1.5	mA
$\mathrm{V}_{\text {RD/RDB }}$ common mode	Note 1	1.3	VCCD - 1.4	VCCD - 1.1	V
RPUMP bias voltage	RPUMP $=7.5 \mathrm{~K} \Omega(1 \%)$	0.7	0.75	0.8	V
RVCO bias voltage	RVCO $=7.9 \mathrm{~K} \Omega$ (1\%)	0.65	0.79	0.9	V

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Frequency Synthesizer					
XTAL or input frequency	Parallel resonant type with minimum capacitance loading	5		20	MHz
M divider register		1		127	Decimal
N divider register		1	-	127	Decimal
VCO center frequency dynamic range (f_{O})	Measure $\mathrm{f}_{\mathrm{H}} @ \mathrm{VCOIN1}=0.7 \mathrm{~V}$ Measure $f_{L} @ \operatorname{VCOIN} 1=2.3 \mathrm{~V}$ Dynamic range $=\left(f_{H}-f_{L}\right) / f_{1}$	± 17	± 20		\%
VCO gain	$\begin{aligned} & \omega_{\mathrm{O}}=2 \times \pi \times \mathrm{f}_{\mathrm{O}} \\ & \mathrm{~K}_{\mathrm{VCO}}=\pi \times\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) / 100 \mathrm{mV} \\ & \mathrm{f}_{1} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}+100 \mathrm{mV} \\ & \mathrm{f}_{2} @ \text { VCOIN1 @ } \mathrm{f}_{\mathrm{O}}-100 \mathrm{mV} \end{aligned}$	0.25	0.35	0.44	$\mathrm{rad} / \mathrm{s}-\mathrm{V}$
Pump current resistor	for setting pump current ($\pm 1 \%$)		7.5		Kohms
Phase detector gain	$\begin{aligned} & \mathrm{Kd}=\left(\mathrm{I}_{\mathrm{O}} \times 48 \mathrm{MHz}\right) /\left(2 \times \pi \times \mathrm{f}_{\mathrm{O}}\right) \\ & \mathrm{l}_{\mathrm{O}}=0.75 \mathrm{~V} /\left(2 \times R_{\mathrm{PUMP}}\right) \end{aligned}$	0.80 Kd	Kd	1.20Kd	A/rad
PLL loop gain	$\mathrm{G}_{\mathrm{O}}=6.3 \times 10^{6} / \mathrm{R}_{\text {PUMP }}$	$0.70 \mathrm{G}_{\mathrm{O}}$	G_{O}	$1.30 \mathrm{G}_{0}$	$\mathrm{A} / \mathrm{s} \times \mathrm{V}$
PLLFS RMS jitter ± 1 Sigma	Note 2			600	ps

Read Mode and Data Synchronizer

VCO center frequency dynamic range (f_{O})	Measure $\mathrm{f}_{\mathrm{H}} @$ VCOIN2 $=0.7 \mathrm{~V}$ Measure $f_{L} @ V C O I N 2=2.3 \mathrm{~V}$ Dynamic range $=\left(f_{\mathrm{H}}-\mathrm{f}_{\mathrm{L}}\right) / \mathrm{f}_{1}$	± 10	± 20		\%
VCO gain	$\begin{aligned} & \omega_{\mathrm{O}}=2 \times \pi \times \mathrm{f}_{\mathrm{O}} \\ & \mathrm{KVCO}_{\mathrm{VCO}}=\pi \times\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) / 100 \mathrm{mV} \\ & \mathrm{f}_{1} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}+100 \mathrm{mV} \\ & \mathrm{f}_{2} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}-100 \mathrm{mV} \end{aligned}$	0.25	0.35	0.44	$\mathrm{rad} / \mathrm{s}-\mathrm{V}$
Phase detector gain	$\begin{aligned} & \mathrm{Kd}=\left(\mathrm{I}_{\mathrm{O}} \times 48 \mathrm{MHz}\right) /\left(2 \times \pi \times \mathrm{f}_{\mathrm{O}}\right) \\ & \mathrm{I}_{\mathrm{O}}=(2 \times 0.75 \mathrm{~V}) / R_{\text {PUMP }} \end{aligned}$	0.80Kd	Kd	1.20 Kd	A/rad
PLL loop gain	$\mathrm{G}_{\mathrm{O}}=25.2 \times 106 / \mathrm{R}_{\text {PUMP }}$ (during preamble)	$0.70 \mathrm{G}_{0}$	Go	${ }^{1.30 G_{O}}$	A/s \times V
VCO ZPS error	(zero phase start)	-0.05T-2		+0.05T + 2	ns
1/4 cell delay accuracy	relative to $\mathrm{T} / 2$			± 5	\%
Decode window centering accuracy	$\begin{aligned} & \text { WC4 }=0 \\ & \text { WC0 }-3=1,(\text { Code rate }=48 \mathrm{MHz}) \end{aligned}$			± 14	\%
RD input pulse width	${ }^{\text {twRD }}$	15		T	ns
RRC duty cycle	$W G=0, R G=1$	35		65	\%
PLLDS RMS jitter, ± 1 Sigma	$W G=0, R G=1$, (Code rate $=48 \mathrm{Mhz})$ Note 2			1	ns

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Read Mode and Data Synchronizer (continued)					
RRC to NRZout delay	$t_{\text {DNRZ1 }}$			5	ns
RG to valid NRZout delay	$t_{\text {DNRZ2 }}$		6TRRC		ns

Serial Microprocessor Interface

Serial clock (SCLK) frequency		0.01		20	MHz
SCLK pulse width	tPW	20			ns
SCLK to SDATA hold time	t $_{\text {HSD }}$	10			ns
SDATA to SCLK setup time	tsSD	10			ns
SENB to SCLK setup time	tSSEN	10			ns

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
Note 2: The ± 1 sigma RMS jitter is one standard deviation of the distribution of the edge transition time. The peak-to-peak is twice the value shown.

TIMING DIAGRAMS

Figure 2. Serial Port Timing

FUNCTIONAL DESCRIPTION

The ML6013 is a BiCMOS MOD Read Channel Back-end Processor IC which works in conjunction with the ML6012 MOD Read Channel Front-end Processor to form a complete solution for the next generation of $3.5^{\prime \prime}$ Rewritable Magneto-Optical Drives (MOD). It incorporates a full function data synchronizer with a 3:1 operating range and a full function frequency synthesizer with onboard M \& N dividers.

The most critical blocks on this chip are the three VCOs, one for the data synchronizer PLL, one for the frequency synthesizer PLL and the third VCO is used to generate the tracking $1 / 4$ cell delay for $(2,7)$ RLL data synchronization. Careful design considerations have been incorporated to minimize the noise coupling and crosstalk among the VCOs. The highlights of the ML6013 VCO architecture are that it is a fully differential, high speed circuit with built-in switching. It provides a constant amplitude across the frequency span with on-chip timing capacitors. The system noise is highly minimized as the VCO operates at only $2 X$ the data rate.

It provides 40-bits for user programmability of a number of features through a serial microprocessor interface and a bank of internal control registers. The control registers come up in an undetermined state on physical power-up and hence need to be initialized, to setup the ML6013 in a known state, on power-up. The control registers will retain their contents in all the power down modes, until power is physically switched off to the chip. The center frequency of the frequency synthesizer VCO is programmed with a 5 -bit current DAC. The program information can be provided by the user, or it can be derived from the $M \& N$ information. The VCO control current results from the summation of this DAC based coarse control and PLL based fine control. The center frequency of the data separator VCO is programmed by duplicating the control current in the frequency synthesizer VCO as the coarse control. This leaves only the data rate variation to be fine tuned by the PLL, hence implying lower sensitivity and better jitter performance. The VCO3 period is programmed from a 5-bit current DAC, which is in turn referenced to the VCO2 control current. This will vary the $1 / 2$ cycle of VCO3 for the required window centering programmability.
The ML6013 supports four power down modes for implementation of intelligent power management schemes. An external hardware pin is also provided to implement real time power management. In the sleep mode all sections are powered down except the serial microprocessor interface.

The ML6013 accepts the raw data in a pseudo ECL voltage level, as generated by the ML6012 and provides the synchronized data and clock outputs for the optical disk controller.

VCO ARCHITECTURE

The most critical circuit blocks in the ML6013 are the three VCOs. The first VCO is used in the frequency synthesizer PLL, the second VCO is used in the data separator PLL and the third VCO is used to generate the tracking $1 / 4$ cell delay for $(2,7)$ RLL data synchronization.
The VCO architecture is optimized to minimize noise coupling from the digital sections of the chip and also the cross talk among the VCOs. The highlights of the VCO architecture are:

- High speed operation with built-in switching mechanism for optimized performance.
- Fully differential circuit configuration to achieve high level of noise immunity.
- On chip timing capacitors to control accuracy and for better noise immunity.
- Constant amplitude across frequency span.
- Symmetrical waveform ($\sim 50 \%$ duty cycle).

The operating frequency of the VCO is controlled by the tail current of the VCO which consists of two components - a fixed but programmable current (coarse), generated from a DAC which is controlled by the control register \#3 and a variable current generated from the PLL. The coarse setting sets the center frequency of the VCO near the operating frequency and the negative feedback around the PLL is used to tune the VCO into the target operating frequency. To minimize the dependence on process and temperature variations the DAC current is derived using an external 1% resistor R VcO . The center frequency is given by the equation:

$$
\mathrm{f}_{\mathrm{O}}=\frac{\mathrm{m}+17}{\left(16 \times \mathrm{R}_{\mathrm{VCO}} \times \mathrm{C}\right)}
$$

where $m=0$ to 31 from control register \#3
$\mathrm{C}=$ internal capacitor

$$
\mathrm{R}_{\mathrm{VCO}}=7.87 \mathrm{k} \Omega, 1 \% \text { (recommended) }
$$

The architecture of the VCOs is such that they run at 2 X the data rate. This reduces the speed requirements of the circuits and also helps in minimizing crosstalk between the VCOs, thus contributing towards overall system noise immunity. The output of the VCO is sent to a frequency doubler to generate the $4 X$ frequency locally which is then divided by 2 or 4 to generate the synchronized 2 X and 1 X clocks. Zero phase start of the data separator VCO is supported for initial phase alignment.

PLL ARCHITECTURE

There are two PLLs implemented to realize the data separation (for data and clock recovery) and frequency synthesis function (required to support a zoned bit recording (ZBR) implementation). Shown below is a block diagram of the PLL which requires a first order loop filter.

Figure 3. Block Diagram of PLL.
To design the PLL response with a well controlled loop gain value, an external 1% resistor ($R_{\text {PUMP }}$) is used to set the charge pump current according to the bandgap reference voltage generated on chip. The recommended value for Rpump is $7.5 \mathrm{k} \Omega$. The capacitor in series with the resistor in the loop filter is chosen so that typically it is 10 times the other capacitor. The resistor is chosen to yield a damping factor between 0.5 and 1 for the acquisition performance of the PLL.

FREQUENCY SYNTHESIZER PLL

In a Zone Bit Recording (ZBR) implementation, the disk is divided into a number of zones and the data rate varies from zone to zone. In order to support a ZBR implementation the appropriate frequencies need to be synthesized. VCO1 is used in the ML6013 frequency synthesizer to generate a clock with frequency $f_{\mathrm{VCO}} 1$. This is given by the formula:

$$
f_{\mathrm{VCO} 1}=\frac{(M+1) \times f_{\mathrm{XTAL}}}{(N+1)}
$$

where M and N are 7-bit dividers, programmable through control registers \#6, 5, 4. M and N should be at least 1 so that the divide ratio in both the forward and feedback paths are no less than 2 , as that 50% duty cycle is guaranteed for the phase compared clocks. In a typical application the users keeps the N at a fixed value and reprograms M from zone to zone to synthesize the required frequency. A 2.5:1 span is required for most applications. The synthesized VCO1 clock is used to derive the 2FCLK clock. The VCO1 clock is also used to train VCO2 PLL during the non-read mode. The charge pump gain can be controlled through the CPG1 bit in control register \#0. The default is always 1X gain. The frequency synthesizer PLL bandwidth is relatively low ($\sim 10 \mathrm{KHz}$) for jitter performance.
The coarse center frequency of the frequency synthesizer VCO is programmed with a 5 -bit current DAC in conjunction with control register \#3. This speeds up the frequency acquisition and also minimizes the VCO sensitivity to $\mathrm{V}_{\text {VCOIN1 }}$ and improves the jitter performance. The synthesized frequency is tuned using the $M \& N$ divider information and the crystal frequency, as given by the equation above.

PLL LOOP FILTER DESIGN FOR FREQUENCY SYNTHESIZER

To select the components for the loop filter, two parameters, ξ (damping factor) and ω_{n} (natural frequency) of the loop characteristic need to be specified.

It is desirable to have the damping factor ξ between 0.5 and 1 to prevent locking to harmonics while maintaining an acceptable lock time. For a high gain, second-order loop this results in minimum noise bandwidth.
The desired natural frequency ω_{n} of the loop is determined by satisfying the acquisition time (1% maximum phase error after phase acquisition) which is less than the minimum track-to-track seek time. This yields a settling time of approximately $\mathrm{t}_{\mathrm{S}}=5 / \omega_{\mathrm{n}}$.

The formula for the filter components are shown in equations (1) and (2).

$$
\begin{align*}
& C_{1}=\frac{K_{O}}{(M+1) \omega_{n}^{2}} \tag{1}\\
& R=\frac{2 \xi \omega_{n}(M+1)}{K_{O}} \tag{2}
\end{align*}
$$

where $\mathrm{K}_{\mathrm{O}}=\mathrm{K}_{\mathrm{D}} \mathrm{K}_{\mathrm{VCO}}$ (open loop gain)
The operating frequency $\mathrm{F}_{\mathrm{VCO}}$ (code rate) is programmed by $M \& N$ registers. Equation (3) shows the programming relationship.

$$
\begin{equation*}
F_{V C O}=\frac{(M+1)}{(N+1)} \times F_{X T A L} \tag{3}
\end{equation*}
$$

The value of N should be fixed in the above equation and allow only the M to change for desired operating frequency.

Loop Filter Design Example:

NRZ data rate $=12$ to 24 Mbps ($1: 2$ ratio)
Code rate, $\mathrm{F}_{\mathrm{VCO}}=24$ to 48 MHz
(assumes (2,7) RLL code)
$\mathrm{F}_{\mathrm{XTAL}}=20 \mathrm{MHz}$
Choose $N=19, \Rightarrow M=23$ to 47
$\mathrm{K}_{\mathrm{D}} \mathrm{K}_{\mathrm{VCO}}=800 \mathrm{~A} / \mathrm{S} / \mathrm{N}$
Let the loop damping factor, $\xi=0.7$ at $\mathrm{F}_{\mathrm{VCO}}=48 \mathrm{MHz}$ to allow ξ to rise at lower frequencies. Let $\omega_{\mathrm{n}}=25 \mathrm{Krad} / \mathrm{s}$ (relatively low frequency, in the order of tens $\mathrm{Krad} / \mathrm{s}$ for better jitter performance). This value produces a loop settling time $=200 \mu \mathrm{~s}$.

$$
\begin{array}{ll}
\text { from eqn. (3) } & M+1=48 \\
\text { from eqn. (1) } & C_{1}=27 n F \Rightarrow C_{2}=C_{1} / 15=1.8 n \mathrm{nF} \\
\text { from eqn. (2) } & R=2.1 \mathrm{~K} \Omega
\end{array}
$$

At $\mathrm{F}_{\mathrm{VCO}}=24 \mathrm{MHz}, \mathrm{M}+1=24$ which yields $\xi=1.0$, and $\omega_{\mathrm{n}}=35 \mathrm{Krad} / \mathrm{s}$.

DATA SEPARATOR PLL

The center frequency of VCO2 is programmed by duplicating the control current in the VCO1 as the coarse control (control register \#3). VCOIN2 thus has to do the fine tuning due to data rate variations (less than several percent), thus implying low sensitivity and good jitter performance. This is an important factor because the data separator PLL has higher bandwidth (of the order of 100 KHz) to track the data rate variations and is hence more susceptible to noise induced jitter.

The charge pump has two modes of operation. During the non-read mode, the VCO clock is compared to the frequency synthesizer clock in every cycle, hence the charge pump should operate in the low gain mode (PLLGS = 1). After Read Gate is asserted, VCO clock is compared to the preamble data on every third clock (assuming 3 T preamble pattern for $(2,7)$ RLL code). The charge pump should switch to the high gain mode ($\mathrm{PLLGS}=0$) to partially compensate for the loss of phase detector gain. This switching is necessary to maintain the damping factor in the PLL during the initial acquisition for guaranteed frequency lock after 24 preamble bytes. After the initial acquisition, the charge pump is switched back into the low gain mode for better jitter and noise performance.
The overall block diagram for the PLL can be described as:

where $N=$ The ratio of the VCO frequency to the input frequency
To select the components for the loop filter, the user needs to consider the following loop requirements:

1. Residual phase error at the end of the preamble should be less than 4% of the total synchronization window (i.e. $\theta_{\mathrm{e}}<1 \mathrm{~ns}$ for $\mathrm{F}_{\mathrm{VCO}}=48 \mathrm{MHz}$ or $\mathrm{T}_{\mathrm{W}}=$ 20.8 ns). This implies a large loop bandwidth so that it can quickly obtain lock within a predetermined length of the preamble field.
2. The lock-in range $\Delta \omega_{\mathrm{L}}$ must be larger than the expected frequency step change due to variations in disk rotational velocity. In today's technology, the disk rotational velocity can be well controlled within $\pm 1 \%$.
3. The natural frequency ω_{n} and the damping factor ξ of the loop must be minimized to achieve maximum jitter rejection in the data field. The minimum value for the damping factor ξ will be 0.5 for adequate stability.
4. Re-lock time to the reference clock (frequency synthesizer) must be less than the minimum track-totrack seek time.

It is generally valid to assume the minimum value of ω_{n} is dominated by the bandwidth needed during preamble from requirement $\# 1$. This assumption will be checked in the design example.
The following loop filter design example assumes:
a. $(2,7)$ RLL code
b. The PLL encounters a phase offset instead of a frequency offset of the incoming data at the initial lock acquisition. The zero phase start function minimizes the initial phase offset to $\pm(0.2 T+2) \mathrm{ns}$ where $T=$ synchronization window.
Since the highest data rate yields the minimum amount of time that the PLL has to settle before decoding data, the settling time is calculated based on the highest data rate.

Loop Filter Design Example:

NRZ data rate $=24 \mathrm{MHz}$
Code rate, $\mathrm{F}_{\mathrm{VCO}}=48 \mathrm{MHz}$
$\mathrm{N}_{\text {MIN }}=3$ (during preamble, highest recorded frequency)
$N_{\text {MAX }}=8$ (lowest recorded frequency)
Preamble length $=24$ of 3 T (100) pattern
T_{S} (settling time of PLL) $=3 \times 24 \div 48 \mathrm{MHz}=1.5 \mu \mathrm{~s}$
Initial phase error $\theta_{\mathrm{e}, \mathrm{i}}=3 \mathrm{~ns}$
Final phase error (after T_{S}) $\theta_{\mathrm{e}, \mathrm{f}}<20 \%$ of $\theta_{\mathrm{e}, \mathrm{i}}$
$\mathrm{K}_{\mathrm{O}}=3200 \mathrm{~A} / \mathrm{S} / \mathrm{N}$ during preamble
It is desirable to have the damping factor ξ between 0.5 and 1 during acquisition. For a high gain, second-order loop this results in minimum noise bandwidth.

Let the loop damping factor $\xi=0.9$ to allow ξ to drop at $N \neq 3$
As shown in figure 4 , with $\xi=0.9$, choosing $\omega_{n} T=2.4$ the phase error will be at most 20% of the initial phase error. Since $T_{S}=1.5 \mu \mathrm{~s}, \omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$.
If the previous assumption is correct, $\omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$ should meet the loop requirements 2 and 4 . First, examining requirement \#2:

Let the maximum frequency step $\Delta f= \pm 1 \%$ of the preamble frequency

$$
\Delta \mathrm{f}= \pm 0.01 \times 48 \mathrm{MHz} \div 3= \pm 160 \mathrm{KHz}
$$

Lock-in range is given by
$\Delta \omega_{\mathrm{L}}=2 \xi \omega_{\mathrm{n}}=2 \times 0.9 \times 1.6 \mathrm{Mrad} / \mathrm{s}=2.88 \mathrm{Mrad} / \mathrm{s}$
Thu, $\Delta \mathrm{f}_{\mathrm{L}}=458 \mathrm{KHz}>160 \mathrm{KHz}$ and requirement \#2 is met.
User is encouraged to check that $\omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$ during preamble does meet the requirement \#4.

Recall the equations for determining the filter components:

$$
\begin{align*}
& \mathrm{C}_{1}=\frac{\mathrm{K}_{\mathrm{O}}}{\mathrm{~N} \times \omega_{\mathrm{n}}{ }^{2}} \tag{4}\\
& \mathrm{R}=\frac{2 \xi \omega_{\mathrm{n}} \mathrm{~N}}{\mathrm{~K}_{\mathrm{O}}} \tag{5}
\end{align*}
$$

from eqn. (4) $C_{1}=417 \mathrm{pF} \Rightarrow \mathrm{C}_{2}=\mathrm{C}_{1} / 15=28 \mathrm{pF}$ from eqn. (2) $R=2.7 \mathrm{~K} \Omega$

The above analysis is only shown as an example. The calculated values for filter components are most likely not optimized for all systems using the same data rate, code and preamble.

1/4 CELL DELAY \& SYNCHRONIZER

The synchronizer circuit aligns the encoded read data pulses to the data separator VCO clock for the external decoder. Each rising edge of the encoded read data (RD) activates the following events:

1) It enables the $1 / 4$ cell delay (VCO 3 for half of a cycle) to generate a $\overline{\mathrm{DRDB}}$ (delayed read data) pulse. The width of the $\overline{D R D B}$ pulse can be programmed by changing the tail current of VCO3. In normal operation, VCO3 is biased at the same current level as VCO2 so the half cycle pulse width is equivalent to $1 / 4$ of the NRZ data period.
2) The falling edges of $\overline{\mathrm{DRDB}}$ enable the phase detector, which operates in phase only mode during a read operation, so that the rising edges of the DRDB will be phase compared to the rising edges of VCO2 clock. The negative feedback around the PLL eventually aligns the rising edge of the $\overline{\mathrm{DRDB}}$ to the rising edge of the VCO2 clock.
3) The falling edges of $\overline{\mathrm{DRDB}}$ set the output of an internal Data Register (DR) flip-flop to 1 , so the following rising edges of the VCO2 clock will clock it into the synchronizer. After the 1 is clocked into the synchronizer, DR is reset to 0 and the following VCO2 clocks will clock in 0's to the synchronizer until the DR is set by another read pulse.
VCO3 period is programmed from a 5-bit current DAC which is in turn referenced to VCO2 control current. This will vary the $1 / 2$ cycle of VCO3 for the required window centering programmability while performing window margin test.

LOSS OF PHASE/FREQUENCY LOCK DETECTOR

The loss of phase detector will bring the output $\overline{\mathrm{LFLDB}}$ low after the encoded read data (RD) has been missing for a certain number of clock cycles due to surface defects. The internal control registers P1 and P0 determine the number of clock cycles to be used as reference. The loss of frequency detector detects if the VCO2 has locked to the harmonics of the incoming read data (in phase only mode) by comparing the frequency of VCO2 with the frequency of VCO1. The frequency detector guarantees a low output at $\overline{\text { LFLDB }}$ when it sees more than 10.5% difference in the frequency between VCO2 and VCO1 (the closest harmonic frequency that the VCO2 can lock to will be approximately $\pm 12.5 \%$ from the operating channel frequency, 2FCLK). To allow margin for frequency offset in the recovery clock (SYNCLK) due to frequency variations, the frequency detector also guarantees no frequency offset detection if the SYNCLK is within $\pm 3.5 \%$ of the 2 FCLK.

Figure 4. Transient phase error $\theta_{e}(t)$ due to a step in phase $\Delta \theta$.

Figure 5. Transient phase error $\theta_{e}(t)$ due to a step in frequency $\Delta \omega$.

READ MODE OPERATION OF THE ML6013

When Read Gate (RG) is inactive low, the data separator PLL is locked to the VCO1 clock with the phase detector operating in the phase/frequency mode.
When Read Gate (RG) goes active high, (PLLGS should go low as RG goes high) the chip enters the read mode. The internal counter starts counting the number of pulses received on the RD/ $\overline{R D B}$ input. After 8 RD pulses the VCO2 is stopped. VCO2 will restart at the next input transition. The zero phase start circuit eliminates the initial misalignment and speeds up the PLL acquisition. When RG is reasserted (PLLGS should stay high) after VCO2 recovers from the surface defects, zero phase start will be active immediately without counting another 8 RD pulses. When VCO2 restarts, the phase detector is switched to phase only mode with the input connected to DRD (delayed read data). The phase detector gain is also increased by $4 \mathrm{X}(\mathrm{CPG} 2=1)$ to ensure that the PLL has enough bandwidth and the right damping factor to lock within 24 preamble bytes. After 24 more RD pulses the PLL acquisition is assumed complete. The phase detector gain is then switched to the low gain mode (1 X) for better jitter and noise performance. The phase detector gain will be automatically set when the PLLGS signal is not available from the controller. The 1 -bit control "EXT" from the control register determines whether the PLLGS is controlled externally.

The end of the read operation is signalled by Read Gate going inactive low. VCO2 is stopped again and is restarted, synchronized with VCO1. Circuitry is implemented to ensure a glitchless transition of the clock frequencies on the RRC output.

POWER MANAGEMENT

The ML6013 provides a hardware pin ($\overline{\mathrm{PDNB}}$) and two bits in control register \#7 for multiple levels of power management control.

The major circuit blocks in the ML6013 are the serial interface, VCO1 and frequency synthesizer PLL, VCO2 and data separator PLL, VCO3, synchronizer, bias circuits and I/O circuits. The PDNB pin in conjunction with the 2 bits in control register \#7 can be used to selectively turn off a combination of these blocks depending on the mode of operation. This allows the system designer to turn off sections of the chip that are not in use during a particular sequence of events, thus minimizing power dissipation at a micro management level. Table 1 shows these different power down modes and the circuit blocks affected in these different modes. Total typical power dissipation has two components - analog power dissipation which is more or less constant and digital power dissipation which varies with operating data rate.

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. Data is shifted serially into the ML6013 on the SDATA line on the falling edges of the serial shift clock, SCLK, provided the SENB pin is active (low). The data is shifted in blocks of eight bits with MSBit first. The internal registers are organized in blocks of eight bits, with the three most significant bits denoting the address, followed by the five data bits. This addressing scheme allows for a register bank of eight registers. When the chip is physically powered-up, the control registers come up in an undetermined state and hence they need to be initialized to some preset configuration, so that the behavior of the chip is predictable. The control registers retain their programmed information in all the powerdown modes, except when the chip is physically powered-down. When the $\overline{\mathrm{SENB}}$ pin goes inactive (high), the SDATA and SCLK pins are ignored and the previously shifted information is latched on the rising edge of the SENB, into the appropriate register bank based on the address bits. It is recommended that the SCLK input be kept inactive low when it is in use. The SCLK input is capable of handling speeds up to 20 MHz .

Table 1: Power down modes in the ML6013 with typical power dissipation

POWER DOWN MODE	SLEEP	IDLE	PLL	READ	PDWN	MAX WAKE UP TIME (ms)
PDNB pin	high	high	high	high	low	-
PM1, PM0	00	01	10	11	XX	-
VCO1 and PLLFS	off	off	on	on	off	0.5
VCO2, PLLDS VCO3 and Synchronizer	off	off	off	on	off	0.1
Bias and l/O circuits	off	on	on	on	off	0.02
XTAL Oscillator	off	on	on	on	off	100
Serial Interface	on	on	on	on	on	0
Typical analog power dissipation (mA)	<0.1	6	14	37	<0.1	-

CONTROL REGISTER DEFINITIONS

The control register bank consists of eight registers with addresses from 0 through 7. Outlined below are the detailed bit by bit definitions of the control registers 0 through 7.

CONTROL REGISTER \#0

Miscellaneous Control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	0	CPG2	CPG1	K2	K1	EXT

$E X T=0$
EXT $=$
PLLGS function is controlled internally
$K 1=0$
Disable VCO1
$\mathrm{K} 1=1 \quad \mathrm{VCO} 1$ is enabled
$K 2=0$
Disable VCO2
$K 2=1$
VCO 2 is enabled
CPG1 $=0 \quad$ Frequency synthesizer Phase detector gain is set to $1 X$
CPG1 $=1 \quad$ Frequency synthesizer Phase detector gain is set to $2 X$
$\mathrm{CPG} 2=0 \quad$ Data separator phase detector gain is set to $2 X$ during preamble acquisition
$\mathrm{CPG} 2=1 \quad$ Data separator phase detector gain is set to 4 X during preamble acquisition and remains at 4 X during read mode when EXT $=1$ and PLLGS $=0$

CONTROL REGISTER \#1

Loss of Frequency Detection Control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	1	RSVD	P1	P0	EFB	EPB

$E P B=0 \quad$ Enable loss of phase lock detection
$E P B=1 \quad$ Disable loss of phase lock detection
$\mathrm{EFB}=0 \quad$ Enable loss of frequency lock detection
$E F B=1 \quad$ Disable loss of frequency lock detection
P1, P0 The combination of these two bits programs the number of VCO1 clock cycles that can elapse without RD present, before a loss of phase is detected in the LFLD circuit. This is shown in the table below:

P1	P0	NUMBER OF VCO1 CYCLES
0	0	12
0	1	20
1	0	22
1	1	28

CONTROL REGISTER \#3

VCO Coarse Center Frequency Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	1	CF4	CF3	CF2	CF1	CF0

CF4	CF3	CF2	CF1	CF0	Fo MHZ
0	0	0	0	0	17 MHz
0	0	0	0	1	18 MHz
0	0	0	1	0	19 MHz
0	0	0	1	1	20 MHz
0	0	1	0	0	21 MHz
0	0	1	0	1	22 MHz
0	0	1	1	0	23 MHz
0	0	1	1	1	24 MHz
0	1	0	0	0	25 MHz
0	1	0	0	1	26 MHz
0	1	0	1	0	27 MHz
0	1	0	1	1	28 MHz
0	1	1	0	0	29 MHz
0	1	1	0	1	30 MHz
0	1	1	1	0	31 MHz
0	1	1	1	1	31 MHz
1	0	0	0	0	33 MHz
1	0	0	0	1	34 MHz
1	0	0	1	0	35 MHz
1	0	0	1	1	36 MHz
1	0	1	0	0	37 MHz
1	0	1	0	1	38 MHz
1	0	1	1	0	39 MHz
1	0	1	1	1	40 MHz
1	1	0	0	0	41 MHz
1	1	0	0	1	42 MHz
1	1	0	1	0	43 MHz
1	1	0	1	1	44 MHz
1	1	1	0	0	45 MHz
1	1	1	0	1	46 MHz
1	1	1	1	0	47 MHz
1	1	1	1	1	48 MHz
0	0	0	0		

CONTROL REGISTER \#4

Divide by N Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	0	N6	N5	N4	N3	N2

CONTROL REGISTER \#5

Divide by M Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	1	M6	M5	M4	M3	M2

CONTROL REGISTER \#6

Divide by M \& N and endec control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	1	0	RSVD	M1	M0	N1	N0

$M \& N$ are given by :

```
\(\mathrm{M}=\mathrm{M} 6 \times 26+\mathrm{M} 5 \times 25+\mathrm{M} 4 \times 24+\mathrm{M} 3 \times 23+\mathrm{M} 2 \times\)
    \(22+\mathrm{M} 1 \times 21+1\)
or
\(M=64 \times M 6+32 \times M 5+16 \times M 4+8 \times M 3+4 \times M 2\)
        \(+2 \times M 1+1\)
```

and

$$
\begin{aligned}
N= & N 6 \times 26+N 5 \times 25+N 4 \times 24+N 3 \times 23+N 2 \times 22 \\
& +N 1 \times 21+1
\end{aligned}
$$

or

$$
\begin{aligned}
\mathrm{N}= & 64 \times \mathrm{N} 6+32 \times \mathrm{N} 5+16 \times \mathrm{N} 4+8 \times \mathrm{N} 3+4 \times \mathrm{N} 2+ \\
& 2 \times \mathrm{N} 1+1
\end{aligned}
$$

Note: The 7 -bit $M \& N$ values are updated (latched) internally only when the most significant bit (M6 or N6) is written to, irrespective of changes in any other bits.

CONTROL REGISTER \#7
Power Down Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	1	1	RSVD	BUF	0	PM1	PM0

$B U F=1$ This bit enables the ECL output buffers so that the test signals $\overline{D R D B}$ and VCO2CLK are made available to the user.
$B U F=0 \quad$ This disables the ECL output buffer, thus minimizing power dissipation.

D2 $=0 \quad$ Reserved, must be programmed as " 0 " at all times.

Bit configuration for power down modes

PDNB	PM1	PM0	MODE
1	0	0	SLEEP
1	0	1	IDLE
1	1	0	PLL
1	1	1	READ
0	X	X	PDOWN

Note: PDOWN dissipation is the same as SLEEP mode

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6013CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$32-\operatorname{Pin}$ TQFP $(\mathrm{H} 32)$

16 Mbps Filter/Equalizer for Tape Drives

GENERAL DESCRIPTION

The ML6024 is a monolithic analog filter/equalizer intended for tape drive read channel applications, capable of handling disk data rates up to 16 Mbps , with an operating power dissipation less than 300 mW . Its architecture consists of a continuous type filter based on a transconductor and a high speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics, thus realizing a family of frequency response curves optimized for tape drive read channel equalization, especially to handle the different format and media types, for ensuring backward compatibility. It consists of a programmable 6-pole 2-zero lowpass filter stage, two pairs high-speed drivers, and a serial microprocessor interface. The poles of the transfer function approximate a maximally flat group delay (modified bessel type) response, whereas the symmetric zeros provide the high-frequency boost necessary for equalization. The user can independently program the corner frequency, as well as the slimming level and individual bits for power-down, read/write control, and auto-zero control.

FEATURES

- 6-pole, 2-zero continuous time filter with $<-45 \mathrm{~dB}$ harmonic distortion
- Data transfer rates up to 16 Mbps
- Programmable filter cutoff frequency
(4.3:1 range in 64 steps)
($\mathrm{f}_{\mathrm{C}}=2$ to 9 MHz)
- 32 step programmable pulse slimming equalization, 0 to 10 dB boost at f_{C}.
- Power-down, auto-zero, R/W modes programmable through bits in the control register
- Lowpass output and differentiated lowpass (bandpass) output provided.
- Fully I/O balanced architecture with TTL/CMOS compatible interface
- High speed (up to 20 MHz clock) three wire serial microprocessor interface
- Double buffered data latch for synchronous or asynchronous data loading.
- External pin to disable the slimmer
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Available in 20-pin SSOP package.
- $4 \mathrm{GHz} / 1.5 \mu \mathrm{BiCMOS}$ process
- Power Dissipation - $\mathrm{P}_{\mathrm{OPR}}=300 \mathrm{~mW}, \mathrm{P}_{\mathrm{DN}}=7.5 \mathrm{~mW}$

■ Gm set through an external $15 \mathrm{~K} \Omega$ (REXT) resistor

BLOCK DIAGRAM

PIN CONNECTION
20-Pin SSOP

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	VOLP	Normal Lowpass outputs
2	VOLM	
3	VCC2	Positive supply for the output drivers, $5 \mathrm{~V} \pm 10 \%$
$\begin{aligned} & 4,5, \\ & 9,11 \end{aligned}$	GND	Ground
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	VINP VINM	Signal Inputs
10	REXT	A 15 K resistor between this pin and ground sets corner frequency
13	VCC1	Positive supply, $5 \mathrm{~V} \pm 10 \%$
14	FBST	Slimmer Enable pin. A high input level allows normal operation of the filter. A low level input disables the slimmer, resulting in OdB boost. A TTL input.

PIN\#	NAME	FUNCTION
15	$\overline{\text { CS }}$	Control Register Enable. A logical low level allows the SCLK input to clock data into the control register via the SDATA input line. A logical high level latches the control register contents and issues the information to the appropriate circuitry. A TTL input.
17	SDATA	Control Register Data. A TTL input 18 SCLK
19	Control Register Clock. Negative edge triggered control register clock input. A TTL input.	
20	VOHM	Differentiated lowpass outputs
16,	NC	No Connects, reserved for future use.

24 Mbps Read Channel Filter/Equalizer

GENERAL DESCRIPTION

The ML6025 is a monolithic analog filter/equalizer intended for hard disk drive read channel applications, capable of handling disk data rates upto $24 \mathrm{Mbits} / \mathrm{s}$, with an operating power dissipation of less than 300 mW . Its architecture consists of a continuous type filter based on a transconductor and a high speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics, thus realizing a family of frequency response curves optimized for disk drive read channel equalization. It consists of a programmable 6-pole 2-zero lowpass filter stage, two pairs of high-speed drivers, and a serial microprocessor interface. The poles of the transfer function approximate a maximally flat group delay (Bessel) response, whereas the symmetric zeros provide the high-frequency boost necessary for pulse slimming. The cutoff frequency range is determined by Rext, which is inversely proportional to the frequency. The user can independently adjust both the corner frequency, as well as the slimming level. The desired frequency response is programmed by a 14-bit serial input data stream which includes one bit for powerdown, one bit for read/write control, and one bit for autozero control. The auto-zero circuitry, if enabled, reduces the output offsets to less than 20 mV . External control for disabling the slimmer during servo sections is also provided. The ML6025 is well suited for constant density recording systems (Zoned-bit recording) as well as for constant data rate systems. A 36Mbits/s version, ML6026 is also available.

FEATURES

- 6-pole, 2-zero continuous time filter with $<-45 \mathrm{~dB}$ harmonic distortion
- Disk Data rates up to $24 \mathrm{Mbit} / \mathrm{s}$
- Programmable filter cutoff frequency
(4.3:1 range in 64 steps)
($f_{C}=3.13$ to 13.5 MHz)
- 32 step programmable pulse slimming equalization, 0 to 10 dB boost at f_{C}.
- Power-down, Auto-zero, R/W modes programmable through bits in the Control Register
- Lowpass output and Differentiated Lowpass (Bandpass) output provided.
- Fully I/O balanced architecture with TTL/CMOS compatible interface
- High speed (upto 25 MHz clock) three wire serial microprocessor interface
- Double buffered data latch for synchronous or asynchronous data loading.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ operating temperature
- Available in 20-pin SSOP package.
- $4 \mathrm{GHz} / 1.5 \mu \mathrm{BiCMOS}$ process

■ Power Dissipation - $P_{\mathrm{opr}}=300 \mathrm{~mW}, \mathrm{P}_{\mathrm{dn}}=7.5 \mathrm{~mW}$
■ Evaluation board available (ML602XEVAL)

BLOCK DIAGRAM

PIN CONNECTION

20-Pin SSOP

TOP VIEW

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
2	VOLP VOLM	Normal Lowpass outputs	15	$\overline{\mathrm{CS}}$	Control Register Enable. A logical low level allows the SCLK input to clock data into the control register via the SDATA input line. A logical high level latches the control register contents and issues the information to the appropriate circuitry. A TTL input.
3	VCC2	Positive supply for the output drivers, $5 \mathrm{~V} \pm 10 \%$			
$\begin{aligned} & \text { 4, } 5, \\ & 9,11 \end{aligned}$	GND	Ground			
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { VINP } \\ & \text { VINM } \end{aligned}$	Signal Inputs	17	SDATA	Control Register Data. A TTL input
10	REXT	A 10K resistor between this pin and ground sets the filters corner frequency	18	SCLK	Control Register Clock. Negative edge triggerred control register clock input. A TTL input.
13	VCC1	Positive supply, $5 \mathrm{~V} \pm 10 \%$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	VOHM VOHP	Differentiated lowpass outputs
14	FBST	Slimmer Enable pin. A high input level allows normal operation of the filter. A low level input disables the slimmer, resulting in 0 dB boost. A TTL input.	$\begin{gathered} 6,12, \\ 16 \end{gathered}$	NC	No Connects, reserved for future use.

TRANSFER FUNCTION

The transfer function is: (modified Bessel)

$$
\frac{\left(1-\frac{k_{\mathrm{SL}} \times s^{2}}{\mathrm{Q}_{2}^{2} \times \omega_{02}^{2}}\right)}{\left(\frac{\mathrm{s}^{2}}{\omega_{01}^{2}}+\frac{\mathrm{s}}{\mathrm{Q}_{1} \times \omega_{01}}+1\right)\left(\frac{\mathrm{s}^{2}}{\omega_{02}^{2}}+\frac{\mathrm{s}}{\mathrm{Q}_{2} \times \omega_{02}}+1\right)\left(\frac{\mathrm{s}^{2}}{\omega_{03}^{2}}+\frac{\mathrm{s}}{\mathrm{Q}_{3} \times \omega_{03}}+1\right)}
$$

$$
\text { Where: } \begin{aligned}
& \mathrm{s}=j \omega \\
& \mathrm{k}_{\mathrm{SL}}=0 \text { to } 7.75 \\
& \mathrm{f}_{01}=1.607 \\
& \mathrm{Q}_{1}=0.51 \\
& \mathrm{f}_{02}=1.908 \\
& \mathrm{Q}_{2}=1.02 \\
& \mathrm{f}_{03}=1.692 \\
& \mathrm{Q}_{3}=0.611 \\
& \omega_{01}=\left(2 \pi \mathrm{f}_{\mathrm{C}} \mathrm{f}_{01}\right. \\
& \omega_{02}=\left(2 \pi \mathrm{f}_{\mathrm{C}} \mathrm{f}\right. \\
& \mathrm{f}_{02} \\
& \omega_{03}=\left(2 \pi \mathrm{f}_{\mathrm{C}}\right) \\
& \mathrm{f}_{03} \\
& \mathrm{f}_{\mathrm{C}}=\text { corner frequency }
\end{aligned}
$$

ABSOLUTE MAXIMUM RATINGS

VCC1, VCC2. +6.5 volts
VINP, VINM, REXT, CS, SCLK, SDATA, \bar{R} / W GND - 0.3 V to $\mathrm{VCC} 1+0.3 \mathrm{~V}$
VOLP, VOLM, VOHP, VOHM

GND - 0.3 V to $\mathrm{VCC} 2+0.3 \mathrm{~V}$
Input Current per pin
Package Dissipation at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Surface Mount)1.5 Watts
Junction Temperature. .$+150^{\circ} \mathrm{C}$
Storage Temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

VCC1 $=$ VCC2 .. +5 volts $\pm 10 \%$
VIN = (VINP-VINM) ... 1 Vp-p
Rext
10 Kohms
Serial Clock Frequency (SCLK)............................... 25 MHz
AC Coupling Capacitors> $0.0001 \mu \mathrm{~F}$

ELECTRICAL CHARACHTERISTICS

The following specifications apply over the recommended operating conditions, unless otherwise stated. Please refer to the application/test setup digram:

$$
\begin{aligned}
& \mathrm{VCC} 1=\mathrm{VCC} 2=5 \text { volt } \pm 10 \%, \mathrm{Ta}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \text { Rext }=10 \text { Kohms } \\
& \mathrm{VIN}=(\mathrm{VINP}-\mathrm{VINM})=1 \mathrm{Vp}-\mathrm{p} \text { sinewave input } \\
& \mathrm{VOL}=(\mathrm{VOLP}-\mathrm{VOLM}) \text { and } \mathrm{VOH}=(\mathrm{VOHP}-\mathrm{VOHM}) \\
& \text { Input and Output coupling capacitors }=0.47 \mu \mathrm{~F} \\
& \mathrm{RB} 1=750 \text { ohms (pins } 1 \& 2), \mathrm{RB} 2=750 \text { ohms (pins } 19 \& 20) \\
& \mathrm{RL}=1000(1000) \text { ohms and } \mathrm{CL}=50(50) \mathrm{pF} \text { on pins } 1(19) \text { and } 2(20) \\
& \text { Serial Clock Frequency }=20 \mathrm{MHz}, \text { Power Down, Read/Write bits }=0 \text {, Auto Zero }=1 \\
& \text { Digital timing measured at } 1.4 \mathrm{~V} \text { midpoint } \\
& \text { Input control signals from } 10 \%-90 \% \text { of } \mathrm{VCC1} \text { with }\left(\mathrm{t}_{r}=\mathrm{t}_{f}\right)<5 \mathrm{~ns} .
\end{aligned}
$$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

DC CHARACTERISTICS

I_{CC}	VCC Supply Current	$\mathrm{RB} 1=\mathrm{RB} 2=\mathrm{INF}$		60	77	mA
Ipd	Standby Current	$\mathrm{VIN}=0$		1.5	1.75	mA

DIGITAL INPUT CHARACTERISTICS (SCLK, SDATA, $\overline{\mathbf{C S}}$)

VIL	Low Voltage				0.8	V
VIH	High Voltage		2.2			V
IIH	High Current				1.0	$\mu \mathrm{~A}$
IIL	Low Current				-1.0	$\mu \mathrm{~A}$
CIN	Input Capacitance			5	pF	

DIGITAL TIMING CHARACTERISTICS (SCLK, SDATA, $\overline{\mathbf{C S}}$)

ELECTRICAL CHARACHTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
EQUALIZER (NORMAL AND LOWPASS OUTPUT)						
AG	Absolute Gain	SO-S4 $=0$, F0-F5 $=0$ at 0.5 MHz	-1.5	-0.5	0.5	dB
CF	Cutoff Frequency, $-3 \mathrm{~dB} \pm 1.5$ $\left(f_{\text {ref }}=0.5 \mathrm{MHz}\right)$	$$	$\begin{gathered} 12.15 \\ 11.54 \\ 11.04 \\ 10.13 \\ 8.68 \\ 6.75 \\ 4.67 \\ 2.82 \end{gathered}$	$\begin{gathered} 13.50 \\ 12.82 \\ 12.27 \\ 11.25 \\ 9.64 \\ 7.50 \\ 5.19 \\ 3.13 \end{gathered}$	$\begin{gathered} 14.85 \\ 14.10 \\ 13.50 \\ 12.38 \\ 10.60 \\ 8.25 \\ 5.71 \\ 3.44 \end{gathered}$	MHz MHz
SL	Slimming Level (Gain at CF Referred to AG, Vout $=1 \mathrm{Vp}$-p	$$	$\begin{gathered} -0.4 \\ 0.1 \\ 1.1 \\ 2.8 \\ 5.4 \\ 8.9 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 1.1 \\ & 2.1 \\ & 3.8 \\ & 6.4 \\ & 9.9 \end{aligned}$	$\begin{gathered} 1.6 \\ 2.1 \\ 3.1 \\ 4.8 \\ 7.4 \\ 10.9 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
GD	Diff Group Delay	$0.3 \mathrm{f} \leq \mathrm{f} \leq \mathrm{f}_{\mathrm{C}}$, F0-F5 $=0$, Note 2			± 5	\%
HD	Harmonic Distortion Second and Third related to Fundamental	$\begin{aligned} & \text { FO-F5 }=0, \\ & \text { Vout }=1.5 \mathrm{Vp}-\mathrm{p}, \text { Fin }=9.0 \mathrm{MHz} \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { SO-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & -45 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ICN	Idle Channel Noise (VIN $=0, \mathrm{DC}-78 \mathrm{MHz}$)	$\begin{aligned} & \text { FO-F5 }=0, \text { VOLP } \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & 2 \\ & 6 \end{aligned}$	mV rms mVrms
DR	$\begin{aligned} & \text { Dynamic Range } \\ & \quad(\text { Signal/(Noise }+ \text { Distor) }) \\ & \text { Signal }=1 \mathrm{Vp}-\mathrm{p} \end{aligned}$	$\begin{aligned} & \text { FO-F5 }=0, \text { Fin }=9.0 \mathrm{MHz} \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & -41 \\ & -35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection	$\begin{aligned} & 100 \mathrm{mVp}-\mathrm{p} \text { sinewave on Vcc } \\ & \text { F0-F5 }=0, \mathrm{SO}-\mathrm{S} 4=0, \mathrm{Vin}=0 \\ & \mathrm{Fin}=1.0 \mathrm{MHz} \\ & \mathrm{Fin}=40 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
DELP HI	Phase Shift between LP and HP Output	All F's and S's =0 Vin $=1 \mathrm{Vp}-\mathrm{p}$, Fin $=9.0 \mathrm{MHz}$	87.5	90	92.5	Degree

ANALOG

VIP	Input Signal Monotonicity	All F's and S's $=0$, (VINP - VINM) Fin $=9.0 \mathrm{MHz}$		1	2	Vp-p
RID	Differential Input Resistance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 6.7 MHz	1.6	2	2.5	Kohms
CID	Differential Input Capacitance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 6.7 MHz		5		pF
ZIC	Common-mode					Kohms
Input Impedence						
VOS	Output Offset Voltage	Differential VOLP or VOHP Auto Zero ON (SO-S4 =0 or 1) Auto Zero OFF (SO-S4 =0) Auto Zero OFF (SO-S4 =1)			± 400 ± 400	mV
			mV			

ELECTRICAL CHARACHTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
ANALOG (Continued)	Differential VIN $=0 ;$ at 6.7 MHz		5		Ohms	
ROD	Output Resistance	Differential VIN $=0 ;$ at 6.7 MHz		8		pF
COD	Output Capacitance	Common mode VIN $=0 ;$ at 6.7 MHz				
ROC	Output Resistance Common Mode	Common mode VIN $=0 ;$ at 6.7 MHz		5		Ohms
COC	Output Capacitance Common Mode	VOLP; RB1 $=750$ ohms VOHP; RB2 $=750$ ohms		15		pF
CLSE	Load Capacitance	VOLP VOHP	400		50	pF
RLSE	Load Resistance	Diff; PD and/or RW bit $=1$	400		Ohms Ohms	
RLOZ	Input Resistance			350	Ohms	
IOB	Output Buffer Bias Current	VOLP or VOHP, VOLM or VOHM	1	1.4		mA
IOSC	Short Circuit Output Current	VOLP or VOHP, VOLM or VOHM		44	60	mA

Note 1: These parameters are guaranteed by characterization only.
Note 2: Tested only at max f_{C} setting, however this parameter is guaranteed by characterization over entire range.

FUNCTIONAL DESCRIPTION

INTRODUCTION

Many of the high-frequency continuous-time filters have principally utilized a basic integrator consisting of a transconductance stage driving a passive integrating capacitor. These approaches are susceptible to frequency response variations due to the parasitic capacitances associated with the parasitic-sensitive output nodes of the integrator. This type of transconductance stage also often has low open-circuit voltage gain, resulting in limited practical Q range in the filter. The use of an active parasitic-insensitive integrator, has generally been avoided in these filters because of the additional excess phase that the amplifier contributes.
The ML6025 is a continuous-time filter based on a transconductor and a high-speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics and a very wide range of realizable filter Q . A unique approach to cancelling the excess phase contributed by the hi-speed BiCMOS amplifier allows this filter to achieve reproducible responses at 13.5 MHz filter bandwidth in a $1.5 \mu / 4 \mathrm{GHz}$ BiCMOS process. This active integrator incorporates a novel technique for setting the transconductance Gm value as a function of an external precision resistor, independent of temperature, supply, in conjunction with a wafer-sort trim technique to adjust capacitor process tolerances, thus eliminating the need for an on-chip PLL for tuning.
The ML6025 filter consists of a $6^{\text {th }}$ order Bessel low-pass and a 2 nd order cosine equalizer stage. It is made up of three biquads with lowpass and bandpass outputs. Both outputs of the last stage are available with matched groupdelay characteristics. The corner frequency is digitally
programmable to 64 values over a 4 to 1 range, through the serial microprocessor interface. This is accomplished internally by changing the integrating capacitor value. Slimming equalization is done by digitally programming two real-symmetric zeroes, through the serial microprocessor interface. This boosts the high frequency response in 32 steps from 0 to 10 dB . The slimmer can also be instantly disabled through an external pin.

In a typical application, the ML6025 is used together with a pulse detector such as the ML541, ML4041 or the ML8464, making up a section of the AGC loop. Thus, the output of the AGC amplifier is AC coupled to the ML6025 input and the output of the ML6025 is AC coupled not only to the rectifier input thus closing the AGC loop, but also to the pulse detector input. The ML6025 provides two sets of fully balanced outputs. The lowpass outputs and the differentiated lowpass outputs. The ML6025 input and output common mode voltage biases are generated onchip. The ML6025 consists of an input common bias circuit, a programmable continuous type equalizer filter with normal and differentiated lowpass outputs, followed by output buffers, and a high speed serial microprocessor interface. The ML6025 processes only differential input signals, common mode inputs are rejected. The output should also be taken differentially in order to obtain the best performance.

INPUT COMMON MODE

The input common mode bias consists of two resistors as shown in the block diagram, and a buffer which biases the center point with a well defined voltage required by the internal circuitry. These resistors are 1000 Ohms each and together with the external coupling capacitor define the lower corner frequency of the transfer function.

EQUALIZER FILTER

The filter transfer function is composed of a second order numerator and a sixth order denominator. The low frequency attenuation is set internally to 0 dB . The numerator realizes two zeros symmetrical symmetrical to the imaginary axis, one in the left and the other in the right half plane. The location of the zeros is programmable. This realizes a digitally programmable pulse slimming function in order to overcome intersymbol interference and thus contribute to increasing bit density. The slimming level is controlled by 5 bits in the control register, thus providing 32 different choices between 0 to 10 dB . The denominator approximately realizes a maximally flat group delay (Bessel) function with a digitally programmable corner frequency controlled by 6 bits in the control register, thus providing 64 different cutoff frequencies.

SLIMMING LEVEL

The slimming levels generated by the slimming bits are shown below. There are 5 bits of control, S0-S4. The typical gain of the equalizer at the cutoff frequency is shown in the table below. The gain at f_{c} in $d B$ is also given by the formula :

$$
\text { Gain }(d B)=20 \times \log (0.707 \times(1+0.06868 \times K))
$$

where $K=0,1, \ldots 31$

CUTOFF FREQUENCY

There are 6 bits in the control register that controls the position of the cutoff frequency, F0 - F5. The typical values of the cutoff $(-3 \mathrm{~dB})$ frequency are shown in the table below for the case when $\mathrm{S} 0-\mathrm{S} 4=0$ (no slimming). There are a total of 64 frequencies available from 13.5 MHz down to 3.13 MHz . Bits F1-F5 will select one of 32 frequency settings in a monotonic fashion. Bit FO is used to shift the whole frequency setting range by 5% lower than each of the 32 settings given by F1 - F5. This offers a scheme to increase the effective resolution of the cutoff frequency programmability. This feature is specially useful in the higher frequency range, where the granularity is coarse.
For example :
By setting F0 $=0$,
Cutoff frequency $=13.50 \mathrm{MHz}$ with F5 $-\mathrm{F} 1=00000$ and
Cutoff frequency $=12.27 \mathrm{MHz}$ with $\mathrm{F} 5-\mathrm{F} 1=00001$, the next consecutive setting.
Frequency delta between consecutive settings $=1.23$
MHz or about 9% of 13.50 MHz .
By setting FO $=1$, we can shift the consecutive cutoff frequency settings as follows:
Cutoff frequency $=13.50 \mathrm{MHz}$ with (F5-F1, F0) $=$ (00000, 0)

Cutoff frequency $=12.82 \mathrm{MHz}$ with $(\mathrm{F} 5-\mathrm{F} 1, \mathrm{FO})=$ $(00000,1)$ Delta $=0.68 \mathrm{MHz}$

TABLE 1: TABLE OF SLIMMING LEVEL PROGRAMMING VALUES

S4	$\mathbf{S 3}$	$\mathbf{S 2}$	$\mathbf{S 1}$	$\mathbf{S 0}$	\mathbf{K}	GAIN AT $\mathbf{f}_{\mathbf{C}}(\mathbf{d B})$	STEPS $(\mathbf{d B})$
0	0	0	0	0	0	-3.0	
0	0	0	0	1	1	-2.4	0.6
0	0	0	1	0	2	-1.9	0.5
0	0	0	1	1	3	-1.4	0.5
0	0	1	0	0	4	-0.9	0.5
0	0	1	0	1	5	-0.4	0.5
0	0	1	1	0	6	-0.0	0.4
0	0	1	1	1	7	0.4	0.4
0	1	0	0	0	8	0.8	0.4
0	1	0	0	1	9	1.2	0.4
0	1	0	1	0	10	1.5	0.3
0	1	0	1	1	11	1.9	0.4
0	1	1	0	0	12	2.2	0.3
0	1	1	0	1	13	2.5	0.3
0	1	1	1	0	14	2.8	0.3
0	1	1	1	1	15	3.1	0.3
1	0	0	0	0	16	3.4	0.3
1	0	0	0	1	17	3.7	0.3
1	0	0	1	0	18	4.0	0.3
1	0	0	1	1	19	4.2	0.2
1	0	1	0	0	20	4.5	0.3
1	0	1	0	1	21	4.7	0.2
1	0	1	1	0	22	5.0	0.3
1	0	1	1	1	23	5.2	0.2
1	1	0	0	0	24	5.4	0.2
1	1	0	0	1	25	5.7	0.3
1	1	0	1	0	26	5.9	0.2
1	1	0	1	1	27	6.1	0.2
1	1	1	0	0	28	6.3	0.2
1	1	1	0	1	29	6.5	0.2
1	1	1	1	0	30	6.7	0.2
1	1	1	1	1	31	6.9	0.2

Cutoff frequency $=12.27 \mathrm{MHz}$ with $(\mathrm{F} 5-\mathrm{F} 1, \mathrm{~F} 0)=$ (00001, 0) Delta $=0.55 \mathrm{MHz}$
Hence frequency delta between consecutive settings is lower, thus higher resolution.
In the table 2 below, the cutoff frequencies are shown as two columns depending on the FO bit being zero or one. The monotonicity is guaranteed within the individual frequency columns, however because of the limitations of the 5% frequency circuitry, the monotonicity between the two columns cannot be guaranteed. This is especially significant at the lower end of the frequency range, where the difference in frequencies between the two column settings becomes very close ($<1 \%$). Further tuning of the cutoff frequency down to the 1 to 10% range can be

ML6025

achieved by modifying the value of the external resistor from its ideal 10 Kohms value by 1 to 10%, which shifts the whole response. Larger changes are not recommended for proper operation of the filter. The corner frequency is given by the formula outlined below :

$$
\mathrm{f}_{\mathrm{C}}=\left(\frac{13.5 \times(1-\mathrm{FO} 0 \times 0.05)}{[1+0.1 \times \mathrm{INT}(\mathrm{~N} / 2)]} \times \frac{10 \mathrm{Kohms}}{\operatorname{Rext}}\right) \mathrm{MHz}
$$

OUTPUT BUFFER

The output buffer is the final stage of the ML6025 for both the normal and differentiated outputs. This is a fully differential buffer with unity gain. Only 1.4 mA of sinking current is provided on chip. More drive can be obtained by connecting external resistors to ground. The common mode output voltage is typically 2 V .

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. It consists of a fourteen bit serial shift register with a double bufferred latch for synchronous and asynchronous loading. A timing diagram and the control word definition are shown below. The 14-bit data word present on the SDATA line is serially shifted into the register on falling edges of the serial shift clock, SCLK, provided the $\overline{\mathrm{CS}}$ pin is active (logical zero). FO should be shifted in first, and F13 (the power-down bit) shifted in last as shown below. When the CS pin is inactive (logical one), SDATA and SCLK are ignored, and the previously shifted information is latched at the rising edge of $\overline{C S}$ becoming inactive (logical one). It is reccommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input can run upto speeds of 25 MHz . The Autozero function, if enabled, minimizes the offsets at the filter outputs to 20 mV .

TABLE 2: TABLE OF CUTOFF FREQUENCY PROGRAMMING VALUES IN MHZ

F5	F4	F3	F2	F1	N	f_{C} with $F 0=0$	N	f_{C} with $F 0=1$
0	0	0	0	0	0	13.5		
0	0	0	0	0			1	12.82
0	0	0	0	1	2	12.27		
0	0	0	0	1			3	11.66
0	0	0	1	0	4	11.25		
0	0	0	1	0			5	10.69
0	0	0	1	1	6	10.38		
0	0	0	1	1			7	9.87
0	0	1	0	0	8	9.64		
0	0	1	0	0			9	9.16
0	0	1	0	1	10	9.0		
0	0	1	0	1			11	8.55
0	0	1	1	0	12	8.44		
0	0	1	1	0			13	8.02
0	0	1	1	1	14	7.94		
0	0	1	1	1			15	7.54
0	1	0	0	0	16	7.50		
0	1	0	0	0			17	7.13
0	1	0	0	1	18	7.11		
0	1	0	0	1			19	6.75
0	1	0	1	0	20	6.75		
0	1	0	1	1	22	6.43		
0	1	0	1	0			21	6.41
0	1	1	0	0	24	6.14		
0	1	0	1	1			23	6.11
0	1	1	0	1	26	5.87		
0	1	1	0	0			25	5.83
0	1	1	1	0	28	5.63		
0	1	1	0	1			27	5.58
0	1	1	1	1	30	5.40		
0	1	1	1	0			29	5.34
1	0	0	0	0	32	5.19		

F5	$\mathbf{F 4}$	$\mathbf{F 3}$	$\mathbf{F 2}$	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}}$ with $\mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}}$ with $\mathbf{F 0}=\mathbf{1}$
0	1	1	1	1			31	5.13
1	0	0	0	1	34	5.00		
1	0	0	0	0			33	4.93
1	0	0	1	0	36	4.82		
1	0	0	0	1			35	4.75
1	0	0	1	1	38	4.66		
1	0	0	1	0			37	4.58
1	0	1	0	0	40	4.50		
1	0	0	1	1			39	4.42
1	0	1	0	1	42	4.35		
1	0	1	0	0			41	4.28
1	0	1	1	0	44	4.22		
1	0	1	0	1			43	4.14
1	0	1	1	1	46	4.09		
1	0	1	1	0			45	4.01
1	1	0	0	0	48	3.97		
1	0	1	1	1			47	3.89
1	1	0	0	1	50	3.86		
1	1	0	0	0			49	3.77
1	1	0	1	0	52	3.75		
1	1	0	0	1			51	3.66
1	1	0	1	1	54	3.65		
1	1	0	1	0			53	3.56
1	1	1	0	0	56	3.55		
1	1	1	0	0			55	3.47
1	1	1	0	1	58	3.46		
1	1	1	0	0			57	3.38
1	1	1	1	0	60	3.38		
1	1	1	0	1			59	3.29
1	1	1	1	1	62	3.29		
1	1	1	1	0			61	3.21
1	1	1	1	1			63	3.13
Note:	\mathbf{N} is the decimal value of the cutoff frequency bits (F5- F0), in the control							
	register							
1								

TIMING DIAGRAM

Figure 1.

CONTROL REGISTER DEFINITION

APPLICATIONS CIRCUIT/TEST SETUP

Note: Decoupling capacitors need to be very close to the chip, to prevent oscillations.

Filter Response (Lowpass Output)
Shown are the ML6025 filter response at three different cutoff frequency $\left(\mathrm{f}_{\mathrm{c}}\right)$ settings. Setting $1=3.13 \mathrm{MHz}, 2=$ 6.75 MHz and $3=13.5 \mathrm{MHz}$. At each of the f_{c} settings, the filter response is shown with no slimming (A) and with full slimming (B) activated.

ML6025 Filter/Equalizer group Delay Tracking

Shown are the curves to demonstrate group delay tracking between the lowpass (V_{OL}) and bandpass (V_{OH}) outputs, at an f_{c} of 13.5 MHz , with no slimming activated (A) and full slimming activated (B). It can be seen that the group delay tracking between the lowpass and bandpass outputs is well within 1 ns .

Filter Response (Bandpass Output)
Shown are the ML6025 filter response at three different cutoff frequency $\left(\mathrm{f}_{\mathrm{c}}\right)$ settings. Setting $1=3.13 \mathrm{MHz}, 2=$ 6.75 MHz and $3=13.5 \mathrm{MHz}$. At each of the f_{c} settings, the filter response is shown with no slimming (A) and with full slimming (B) activated.

Phase Difference between Lowpass and Bandpass Outputs

Shown is the delta in the phase between the lowpass and bandpass outputs. Ideally the bandpass output should be -90°. The curve shows that this is within 1° for a frequency range of 50 MHz to 10 MHz .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6025CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin SSOP (R20)

36 Mbps Read Channel Filter/Equalizer

GENERAL DESCRIPTION

The ML6026 is a monolithic analog filter/equalizer intended for hard disk drive read channel applications, capable of handling disk data rates upto $36 \mathrm{Mbits} / \mathrm{s}$, with an operating power dissipation of less than 350 mW . Its architecture consists of a continuous type filter based on a transconductor and a high speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics, thus realizing a family of frequency response curves optimized for disk drive read channel equalization. It consists of a programmable 6-pole 2-zero lowpass filter stage, two pairs of high-speed drivers, and a serial microprocessor interface. The poles of the transfer function approximate a maximally flat group delay (Bessel) response, whereas the symmetric zeros provide the high-frequency boost necessary for pulse slimming. The cutoff frequency range is determined by Rext, which is inversely proportional to the frequency. The user can independently adjust both the corner frequency, as well as the slimming level. The desired frequency response is programmed by a 14 -bit serial input data stream which includes one bit for powerdown, one bit for read/write control, and one bit for autozero control. External control for disabling the slimmer during servo sections is also provided. The ML6026 is well suited for constant density recording systems (Zonedbit recording) as well as for constant data rate systems. A $24 \mathrm{Mbits} / \mathrm{s}$ version, ML6025 is also available.

FEATURES

- 6-pole, 2-zero continuous time filter with <-45dB harmonic distortion
- Disk Data rates up to $36 \mathrm{Mbit} / \mathrm{s}$
- Programmable filter cutoff frequency
(4.3:1 range in 64 steps)
($\mathrm{f}_{\mathrm{C}}=4.69$ to 20.25 MHz)
- 32 step programmable pulse slimming equalization, 0 to 10 dB boost at f_{C}.
- Power-down, Auto-zero, R/W modes programmable through bits in the Control Register
■ Lowpass output and Differentiated Lowpass (Bandpass) output provided.
- Fully I/O balanced architecture with TTL/CMOS compatible interface
- High speed (upto 25 MHz clock) three wire serial microprocessor interface
- Double buffered data latch for synchronous or asynchronous data loading.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- $0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$ operating temperature
- Available in 20-pin SSOP package.
- $4 \mathrm{GHz} / 1.5 \mu \mathrm{BiCMOS}$ process
- Power Dissipation: $\mathrm{P}_{\mathrm{opr}}=350 \mathrm{~mW}, \mathrm{P}_{\mathrm{dn}}=7.5 \mathrm{~mW}$
- Evaluation board available (ML602XEVAL)

BLOCK DIAGRAM

PIN CONNECTION
20-Pin SSOP

PIN DESCRIPTION

PIN\#	NAME	FUNCTION		
1	VOLP 2	VOLM		
3	VCC2	Normal Lowpass outputs Positive supply for the output drivers, $5 \mathrm{~V} \pm 10 \%$		
$9,5,11$	GND	Ground		
7	VINP	Signal Inputs		
8	VINM	REXT		A 10K resistor between this pin and
:---				
10				

PIN\#	NAME	FUNCTION
15	$\overline{C S}$	Control Register Enable. A logical low level allows the SCLK input to clock data into the control register via the SDATA input line. A logical high level latches the control register contents and issues the information to the appropriate circuitry. A TTL input.
17	SDATA	Control Register Data. A TTL input
18	SCLK	Control Register Clock. Negative edge triggerred control register clock input. A TTL input.
19	VOHM	Differentiated lowpass outputs
20	VOHP	NC

TRANSFER FUNCTION

The transfer function is: (modified Bessel)

$$
\frac{\left(1-\frac{k_{\mathrm{SL}} \times s^{2}}{\mathrm{Q}_{2}^{2} \times \omega_{02}^{2}}\right)}{\left(\frac{s^{2}}{\omega_{01}^{2}}+\frac{s}{Q_{1} \times \omega_{01}}+1\right)\left(\frac{s^{2}}{\omega_{02}^{2}}+\frac{s}{Q_{2} \times \omega_{02}}+1\right)\left(\frac{s^{2}}{\omega_{03}^{2}}+\frac{s}{Q_{3} \times \omega_{03}}+1\right)}
$$

Where: $s=j \omega$
$\mathrm{k}_{\mathrm{SL}}=0$ to 7.75
$\mathrm{f}_{01}=1.607$
$\mathrm{Q}_{1}=0.51$
$\mathrm{f}_{02}=1.908$
$\mathrm{Q}_{2}=1.02$
$\mathrm{f}_{03}=1.692$
$\mathrm{Q}_{3}=0.611$
$\omega_{01}=\left(2 \pi f_{C}\right) * f_{01}$
$\omega_{02}=\left(2 \pi f_{C}\right) f_{02}$
$\omega_{03}=\left(2 \pi f_{\mathrm{C}}\right) \mathrm{f}_{03}$
$\mathrm{f}_{\mathrm{C}}=$ corner frequency

ABSOLUTE MAXIMUM RATINGS

VCC1, VCC2
+6.5 volts
VINP, VINM, REXT, $\overline{C S}$, SCLK,
SDATA, \bar{R} /W \qquad GND - 0.3 V to $\mathrm{VCC} 1+0.3 \mathrm{~V}$
VOLP, VOLM,
VOHP, VOHM
GND - 0.3 V to $\mathrm{VCC} 2+0.3 \mathrm{~V}$
Input Current per pin
Package Dissipation
at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Surface Mount)1.5 Watts
Junction Temperature.. $150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

VCC1 $=$ VCC2 $\ldots \ldots \ldots . ~+~ 5 ~ v o l t s ~ m ~ 10 \% ~$
VIN = (VINP-VINM) ... 1 Vp-p
Rext .. 10 Kohms
Serial Clock Frequency (SCLK) $<25 \mathrm{MHz}$
AC Coupling Capacitors> $0.0001 \mu \mathrm{~F}$

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions, unless otherwise stated. Please refer to the application/test setup digram:

VCC1 $=$ VCC $2=5$ volt $\pm 10 \%, T_{a}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, Rext $=10 \mathrm{Kohms}$
VIN $=(\mathrm{VINP}-\mathrm{VINM})=1 \mathrm{Vp}-\mathrm{p}$ sinewave input
$\mathrm{VOL}=(\mathrm{VOLP}-\mathrm{VOLM})$ and $\mathrm{VOH}=(\mathrm{VOHP}-\mathrm{VOHM})$
Input and Output coupling capacitors $=0.47 \mu \mathrm{~F}$
RB1 $=750$ ohms (pins $1 \& 2$), RB2 $=750$ ohms (pins 19 \& 20)
$\mathrm{RL}=1000$ (1000) ohms and $\mathrm{CL}=50$ (50) pF on pins 1 (19) and 2 (20)
Serial Clock Frequency $=20 \mathrm{MHz}$, Power Down, Read/Write bits $=0$, Auto Zero $=1$
Digital timing measured at 1.4 V midpoint
Input control signals from $10 \%-90 \%$ of VCC1 with $\left(t_{r}=t_{f}\right)<5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
DC CHARACTERISTICS						
$I_{\text {CC }}$	VCC Supply Current	RB1 = RB2 = INF		70	87	mA
Ipd	Standby Current	VIN $=0$		1.5	1.75	mA

DIGITAL INPUT CHARACTERISTICS (SCLK, SDATA, $\overline{\mathbf{C S}}$)

VIL	Low Voltage				0.8	V
VIH	High Voltage		2.2			V
IIH	High Current				1.0	$\mu \mathrm{~A}$
IIL	Low Current				-1.0	$\mu \mathrm{~A}$
CIN	Input Capacitance			5		pF

DIGITAL TIMING CHARACTERISTICS (SCLK, SDATA, $\overline{\text { CS }}$)

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

EQUALIZER (NORMAL AND LOWPASS OUTPUT)

AG	Absolute Gain	S0-S4 $=0, \mathrm{FO}-\mathrm{F} 5=0$ at 0.5 MHz	-1.5	-0.5	0.5	dB
CF	$\begin{aligned} & \text { Cutoff Frequency, }-3 \mathrm{~dB} \pm 1.5 \\ & \left(\mathrm{f}_{\text {ref }}=0.5 \mathrm{MHz}\right) \end{aligned}$	S0-S4 0 , (no slimming) F5 F4 F3 F2 F1 F0 $\left(f_{C}\right)$ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1	$\begin{gathered} 18.23 \\ 17.32 \\ 16.57 \\ 15.19 \\ 13.01 \\ 10.13 \\ 7.01 \\ 4.22 \end{gathered}$	$\begin{gathered} 20.25 \\ 19.24 \\ 18.41 \\ 16.88 \\ 14.46 \\ 11.25 \\ 7.79 \\ 4.69 \end{gathered}$	$\begin{gathered} 22.28 \\ 21.16 \\ 20.25 \\ 18.57 \\ 15.91 \\ 12.38 \\ 8.57 \\ 5.16 \end{gathered}$	MHz MHz
SL	Slimming Level (Gain at CF Referred to AG, Vout $=1 \mathrm{Vp}$-p	$$	$\begin{aligned} & 0.4 \\ & 0.1 \\ & 1.1 \\ & 2.8 \\ & 5.4 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.1 \\ & 2.1 \\ & 3.8 \\ & 6.4 \\ & 9.9 \end{aligned}$	$\begin{gathered} 1.6 \\ 2.1 \\ 3.1 \\ 4.8 \\ 7.4 \\ 10.9 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
GD	Diff Group Delay	$0.3 \mathrm{f}_{\mathrm{C}} \leq \mathrm{f} \leq \mathrm{f}_{\mathrm{C}}$, F0-F5 $=0$, Note 2			± 5	\%
HD	Harmonic Distortion Second and Third related to Fundamental	$\begin{aligned} & \text { F0-F5 }=0, \\ & \text { Vout }=1.5 \mathrm{Vp}-\mathrm{p}, \text { Fin }=13.5 \mathrm{MHz} \\ & \text { S0-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & -45 \\ & -40 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ICN	Idle Channel Noise $(\mathrm{VIN}=0, \mathrm{DC}-78 \mathrm{MHz})$	$\begin{aligned} & \text { F0-F5 }=0, \text { VOLP } \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { S0-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & 2 \\ & 6 \end{aligned}$	mVrms mVrms
DR	Dynamic Range (Signal/(Noise + Distor)) (Signal $=1 \mathrm{Vp}-\mathrm{p}$)	$\begin{aligned} & \text { F0-F5 }=0, \text { Fin }=13.5 \mathrm{MHz} \\ & \text { SO-S4 }=0 \text { (no slimming) } \\ & \text { SO-S4 }=1 \text { (full slimming), Note } 1 \end{aligned}$			$\begin{aligned} & -41 \\ & -35 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Power Supply Rejection	$\begin{aligned} & 100 \mathrm{mVp}-\mathrm{p} \text { sinewave on } \mathrm{Vcc} \\ & \text { F0-F5 }=0, \text { S0-S4 }=0, \mathrm{Vin}=0 \\ & \text { Fin }=1.0 \mathrm{MHz} \\ & \text { Fin }=40 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 40 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
DELP HI	Phase Shift between LP and HP Output	All F's and S's $=0$ $\mathrm{Vin}=1 \mathrm{Vp}-\mathrm{p}$, Fin $=13.5 \mathrm{MHz}$	87.5	90	92.5	Degree

ANALOG

VIP	Input Signal Monotonicity	All F's and S's $=0$, (VINP - VINM) $\text { Fin }=13.5 \mathrm{MHz}$		1	2	Vp-p
RID	Differential Input Resistance	$\mathrm{VIN}=100 \mathrm{mVp}-\mathrm{p}$ at 10 MHz	1.6	2	2.5	Kohms
CID	Differential Input Capacitance	VIN $=100 \mathrm{mVp}-\mathrm{p}$ at 10 MHz		5		pF
ZIC	Common-mode Input Impedence			1		Kohms
vos	Output Offset Voltage	Differential VOLP or VOHP Auto Zero ON (S0-S4 = 0 or 1) Auto Zero OFF (S0-S4 $=0$) Auto Zero OFF ($\mathrm{S} 0-\mathrm{S} 4=1$)			$\begin{gathered} \pm 10 \\ \pm 500 \\ \pm 500 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
ANALOG (Continued)	Differential VIN $=0 ;$ at 10 MHz		5		Ohms	
ROD	Output Resistance	Differential VIN $=0 ;$ at 10 MHz		8		pF
COD	Output Capacitance	$\begin{array}{l}\text { Common mode } \\ \text { VIN }=0 ; \text { at } 10 \mathrm{MHz}\end{array}$				
ROC	$\begin{array}{l}\text { Output Resistance } \\ \text { Common Mode }\end{array}$	$\begin{array}{l}\text { Common mode } \\ \text { VIN }=0 ; \text { at } 10 \mathrm{MHz}\end{array}$		5		Ohms
COC	$\begin{array}{l}\text { Output Capacitance } \\ \text { Common Mode }\end{array}$	$\begin{array}{l}\text { VOLP; RB1 }=750 \text { ohms } \\ \text { VOHP; RB2 }=750 \text { ohms }\end{array}$		15		pF
CLSE	Load Capacitance	$\begin{array}{l}\text { VOLP } \\ \text { VOHP }\end{array}$	400		50	pF
pF						

Note 1: These parameters are guaranteed by characterization only.
Note 2: Tested only at max f_{C} setting, however this parameter is guaranteed by characterization over the entire range

FUNCTIONAL DESCRIPTION

INTRODUCTION

Many of the high-frequency continuous-time filters have principally utilized a basic integrator consisting of a transconductance stage driving a passive integrating capacitor. These approaches are susceptible to frequency response variations due to the parasitic capacitances associated with the parasitic-sensitive output nodes of the integrator. This type of transconductance stage also often has low open-circuit voltage gain, resulting in limited practical Q range in the filter. The use of an active parasitic-insensitive integrator, has generally been avoided in these filters because of the additional excess phase that the amplifier contributes.
The ML6026 is a continuous-time filter based on a transconductor and a high-speed parasitic free active integrator, allowing complete independence of the filter response from interconnect parasitics and a very wide range of realizable filter Q . A unique approach to cancelling the excess phase contributed by the hi-speed BiCMOS amplifier allows this filter to achieve reproducible responses at 20 MHz filter bandwidth in a $1.5 \mu / 4 \mathrm{GHz}$ BiCMOS process. This active integrator incorporates a novel technique for setting the transconductance Gm value as a function of an external precision resistor, independent of temperature, supply, in conjunction with a wafer-sort trim technique to adjust capacitor process tolerances, thus eliminating the need for an on-chip PLL for tuning.
The ML6026 filter consists of a $6^{\text {th }}$ order Bessel low-pass and a $2^{\text {nd }}$ order cosine equalizer stage. It is made up of three biquads with lowpass and bandpass outputs. Both outputs of the last stage are available with matched groupdelay characteristics. The corner frequency is digitally
programmable to 64 values over a 4 to 1 range, through the serial microprocessor interface. This is accomplished internally by changing the integrating capacitor value. Slimming equalization is done by digitally programming two real-symmetric zeroes, through the serial microprocessor interface. This boosts the high frequency response in 32 steps from 0 to 10 dB . The slimmer can also be instantly disabled through an external pin.
In a typical application, the ML6026 is used together with a pulse detector such as the ML541, ML4041 or the ML8464 , making up a section of the AGC loop. Thus, the output of the AGC amplifier is AC coupled to the ML6026 input and the output of the ML6026 is AC coupled not only to the rectifier input thus closing the AGC loop, but also to the pulse detector input. The ML6026 provides two sets of fully balanced outputs. The lowpass outputs and the differentiated lowpass outputs. The ML6026 input and output common mode voltage biases are generated onchip. The ML6026 consists of an input common bias circuit, a programmable continuous type equalizer filter with normal and differentiated lowpass outputs, followed by output buffers, and a high speed serial microprocessor interface. The ML6026 processes only differential input signals, common mode inputs are rejected. The output should also be taken differentially in order to obtain the best performance.

INPUT COMMON MODE

The input common mode bias consists of two resistors as shown in the block diagram, and a buffer which biases the center point with a well defined voltage required by the internal circuitry. These resistors are 1000 Ohms each and together with the external coupling capacitor define the lower corner frequency of the transfer function.

EQUALIZER FILTER

The filter transfer function is composed of a second order numerator and a sixth order denominator. The low frequency attenuation is set internally to 0 dB . The numerator realizes two zeros symmetrical symmetrical to the imaginary axis, one in the left and the other in the right half plane. The location of the zeros is programmable. This realizes a digitally programmable pulse slimming function in order to overcome intersymbol interference and thus contribute to increasing bit density. The slimming level is controlled by 5 bits in the control register, thus providing 32 different choices between 0 to 10 dB . The denominator approximately realizes a maximally flat group delay (Bessel) function with a digitally programmable corner frequency controlled by 6 bits in the control register, thus providing 64 different cutoff frequencies.

SLIMMING LEVEL

The slimming levels generated by the slimming bits are shown below. There are 5 bits of control, S0-S4. The typical gain of the equalizer at the cutoff frequency is shown in the table below. The gain at f_{c} in $d B$ is also given by the formula :

$$
\text { Gain }(d B)=20 \times \log (0.707 \times(1+0.06868 \times K))
$$

where $K=0,1, \ldots 31$

CUTOFF FREQUENCY

There are 6 bits in the control register that controls the position of the cutoff frequency, F0-F5. The typical values of the cutoff $(-3 \mathrm{~dB})$ frequency are shown in the table below for the case when $\mathrm{S} 0-\mathrm{S} 4=0$ (no slimming). There are a total of 64 frequencies available from 20.25 MHz down to 4.69 MHz . Bits F1 - F5 will select one of 32 frequency settings in a monotonic fashion. Bit F0 is used to shift the whole frequency setting range by 5% lower than each of the 32 settings given by F1 - F5. This offers a scheme to increase the effective resolution of the cutoff frequency programmability. This feature is specially useful in the higher frequency range, where the granularity is coarse.
For example :
By setting F0 $=0$,
Cutoff frequency $=20.25 \mathrm{MHz}$ with $\mathrm{F} 5-\mathrm{F} 1=00000$ and
Cutoff frequency $=18.41 \mathrm{MHz}$ with F5-F1 $=00001$, the next consecutive setting.
Frequency delta between consecutive settings $=1.84$ MHz or about 9% of 20.25 MHz .
By setting F0 $=1$, we can shift the consecutive cutoff frequency settings as follows:
Cutoff frequency $=20.25 \mathrm{MHz}$ with (F5-F1, F0) $=$ (00000, 0)
Cutoff frequency $=19.24 \mathrm{MHz}$ with (F5-F1, FO) $=$ $(00000,1)$ Delta $=1.01 \mathrm{MHz}$

TABLE 1: TABLE OF SLIMMING LEVEL PROGRAMMING VALUES

$\mathbf{S 4}$	$\mathbf{S 3}$	$\mathbf{S 2}$	$\mathbf{S 1}$	$\mathbf{S 0}$	\mathbf{K}	GAIN AT $\mathbf{f}_{\mathbf{C}}(\mathbf{D B})$	$\mathbf{S T E P S}$ $\mathbf{(D B})$
0	0	0	0	0	0	-3.0	
0	0	0	0	1	1	-2.4	0.6
0	0	0	1	0	2	-1.9	0.5
0	0	0	1	1	3	-1.4	0.5
0	0	1	0	0	4	-0.9	0.5
0	0	1	0	1	5	-0.4	0.5
0	0	1	1	0	6	-0.0	0.4
0	0	1	1	1	7	0.4	0.4
0	1	0	0	0	8	0.8	0.4
0	1	0	0	1	9	1.2	0.4
0	1	0	1	0	10	1.5	0.3
0	1	0	1	1	11	1.9	0.4
0	1	1	0	0	12	2.2	0.3
0	1	1	0	1	13	2.5	0.3
0	1	1	1	0	14	2.8	0.3
0	1	1	1	1	15	3.1	0.3
1	0	0	0	0	16	3.4	0.3
1	0	0	0	1	17	3.7	0.3
1	0	0	1	0	18	4.0	0.3
1	0	0	1	1	19	4.2	0.2
1	0	1	0	0	20	4.5	0.3
1	0	1	0	1	21	4.7	0.2
1	0	1	1	0	22	5.0	0.3
1	0	1	1	1	23	5.2	0.2
1	1	0	0	0	24	5.4	0.2
1	1	0	0	1	25	5.7	0.3
1	1	0	1	0	26	5.9	0.2
1	1	0	1	1	27	6.1	0.2
1	1	1	0	0	28	6.3	0.2
1	1	1	0	1	29	6.5	0.2
1	1	1	1	0	30	6.7	0.2
1	1	1	1	1	31	6.9	0.2

Cutoff frequency $=18.41 \mathrm{MHz}$ with $(\mathrm{F} 5-\mathrm{F} 1, \mathrm{~F} 0)=$ (00001, 0) Delta $=0.83 \mathrm{MHz}$
Hence frequency delta between consecutive settings is lower, thus higher resolution.
In the table 2 below, the cutoff frequencies are shown as two columns depending on the FO bit being zero or one. The monotonicity is guaranteed within the individual frequency columns, however because of the limitations of the 5% frequency circuitry, the monotonicity between the two columns cannot be guaranteed. This is especially significant at the lower end of the frequency range, where the difference in frequencies between the two column settings becomes very close ($<1 \%$). Further tuning of the cutoff frequency down to the 1 to 10% range can be
achieved by modifying the value of the external resistor from its ideal 10 Kohms value by 1 to 10%, which shifts the whole response. Larger changes are not recommended for proper operation of the filter. The corner frequency is given by the formula outlined below :

$$
\mathrm{f}_{\mathrm{C}}=\left(\frac{20.25 \times(1-\mathrm{F} 0 \times 0.05)}{[1+0.1 \times \mathrm{NT}(\mathrm{~N} / 2)]} \times \frac{10 \mathrm{Kohms}}{\operatorname{Rext}}\right) \mathrm{MHz}
$$

OUTPUT BUFFER

The output buffer is the final stage of the ML6026 for both the normal and differentiated outputs. This is a fully differential buffer with unity gain. Only 1.4 mA of sinking current is provided on chip. More drive can be obtained by connecting external resistors to ground. The common mode output voltage is typically 2 V .

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. It consists of a fourteen bit serial shift register with a double bufferred latch for synchronous and asynchronous loading. A timing diagram and the control word definition are shown below. The 14-bit data word present on the SDATA line is serially shifted into the register on falling edges of the serial shift clock, SCLK, provided the $\overline{\mathrm{CS}}$ pin is active (logical zero). FO should be shifted in first, and F13 (the power-down bit) shifted in last as shown below. When the CS pin is inactive (logical one), SDATA and SCLK are ignored, and the previously shifted information is latched at the rising edge of $\overline{\mathrm{CS}}$ becoming inactive (logical one). It is reccommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input can run upto speeds of 25 MHz . The Autozero function, if enabled, minimizes the offsets at the filter outputs to 20 mV .

TABLE 2: TABLE OF CUTOFF FREQUENCY PROGRAMMING VALUES IN MHZ

F5	F4	F3	F2	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}} \mathbf{w i t h}$ $\mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}}$ with $\mathbf{F 0}=\mathbf{1}$
0	0	0	0	0	0	20.25		
0	0	0	0	0			1	19.24
0	0	0	0	1	2	18.41		
0	0	0	0	1			3	17.49
0	0	0	1	0	4	16.88		
0	0	0	1	0			5	16.03
0	0	0	1	1	6	15.58		
0	0	0	1	1			7	14.80
0	0	1	0	0	8	14.46		
0	0	1	0	0			9	13.74
0	0	1	0	1	10	13.50		
0	0	1	0	1			11	12.83
0	0	1	1	0	12	12.66		
0	0	1	1	0			13	12.02
0	0	1	1	1	14	11.91		
0	0	1	1	1			15	11.32
0	1	0	0	0	16	11.25		
0	1	0	0	0			17	10.69
0	1	0	0	1	18	10.66		
0	1	0	0	1			19	10.13
0	1	0	1	0	20	10.13		
0	1	0	1	1	22	9.64		
0	1	0	1	0			21	9.62
0	1	1	0	0	24	9.20		
0	1	0	1	1			23	9.16
0	1	1	0	1	26	8.80		
0	1	1	0	0			25	8.74
0	1	1	1	0	28	8.44		
0	1	1	0	1			27	8.36
0	1	1	1	1	30	8.10		
0	1	1	1	0			29	8.02
1	0	0	0	0	32	7.79		

$\mathbf{F 5}$	$\mathbf{F 4}$	$\mathbf{F 3}$	$\mathbf{F 2}$	$\mathbf{F 1}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}} \mathbf{w i t h}$ $\mathbf{F 0}=\mathbf{0}$	\mathbf{N}	$\mathbf{f}_{\mathbf{C}}$ with $\mathbf{F 0}=\mathbf{1}$
0	1	1	1	1			31	7.70
1	0	0	0	1	34	7.50		
1	0	0	0	0			33	7.40
1	0	0	1	0	36	7.23		
1	0	0	0	1			35	7.12
1	0	0	1	1	38	6.98		
1	0	0	1	0			37	6.87
1	0	1	0	0	40	6.75		
1	0	0	1	1			39	6.63
1	0	1	0	1	42	6.53		
1	0	1	0	0			41	6.41
1	0	1	1	0	44	6.33		
1	0	1	0	1			43	6.21
1	0	1	1	1	46	6.14		
1	0	1	1	0			45	6.01
1	1	0	0	0	48	5.96		
1	0	1	1	1			47	5.83
1	1	0	0	1	50	5.79		
1	1	0	0	0			49	5.66
1	1	0	1	0	52	5.63		
1	1	0	0	1			51	5.50
1	1	0	1	1	54	5.47		
1	1	0	1	0			53	5.34
1	1	1	0	0	56	5.33		
1	1	1	0	0			55	5.20
1	1	1	0	1	58	5.19		
1	1	1	0	0			57	5.06
1	1	1	1	0	60	5.06		
1	1	1	0	1			59	4.93
1	1	1	1	1	62	4.94		
1	1	1	1	0			61	4.81
1	1	1	1	1			63	4.69

Note: $\quad N$ is the decimal value of the cutoff frequency bits (F5-F0), in the control register

TIMING DIAGRAM

Figure 1.

CONTROL REGISTER DEFINITION

APPLICATIONS

Filter Response (Lowpass Output)
Shown are the ML6026 filter response at the two extreme cutoff frequency (f_{c}) settings. At each of the f_{c} settings, the filter response is shown with no slimming and with full slimming activated.

ML6026 Filter/Equalizer Group Delay Tracking

Shown are the curves to demonstrate group delay tracking between the lowpass $\left(\mathrm{V}_{\mathrm{OL}}\right)$ and bandpass $\left(\mathrm{V}_{\mathrm{OH}}\right)$ outputs, with no slimming activated (min) and full slimming activated (max). It can be seen that the group delay tracking between the lowpass and bandpass outputs is well within 1 ns .

Filter Response (Bandpass Output)
Shown are the ML6026 filter characteristic curves for the bandpass output, with no slimming and fuli slimming activated.

Phase Difference between Lowpass and Bandpass Outputs

Shown is the delta in the phase between the lowpass and bandpass outputs. Ideally the bandpass output should be -90°. The curve shows that this is within 1° for a frequency range of 50 MHz to 10 MHz .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6026CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\operatorname{Pin} \operatorname{SSOP}(\mathrm{R} 20)$

5V Spindle Motor Controller and Driver

GENERAL DESCRIPTION

The ML6035 is a 5 volt brushless motor controller and driver. The circuit provides three phase sensorless commutation and speed control. A digital commutation circuit including digital delay with adjustable phase advance is included. The circuit also has three 1A complementary output drivers each with a typical on resistance of one half ohm (or one ohm total). An additional P-channel power device is provided to pull up the motor neutral for unipolar operation. Bipolar or unipolar start with either bipolar run or unipolar run is supported with mode switching. A serial bus is provided to minimize the use of dedicated pins and to provide for more command functions. Both internal speed control and external speed control (from sector data) are supported. Sensorless commutation is provided using back EMF zero crossing information. The chip has been designed for maximum flexibility to permit custom start and run algorithms to be used.

FEATURES

- Power drivers on chip (1A max at 1 ohm)
- V_{CC} decoupling diode not required
- Unipolar and bipolar operation supported
- Digital speed control loop on chip with external PID filter or supports sector data speed control
- Digital commutation circuit including digital delay with adjustable phase advance
- Serial bus for loading necessary motor information, phase advance desired, motor speed, etc.
- Supplies retract voltage with on-chip schottky diodes
- Serial interface compatible with 3 V logic
- Supplies tach output
- Sleep mode (ICC $=100 \mu \mathrm{~A}$ max)
- Brake pin with adjustable delay to permit back EMF to be used for retract. Brake also accessible from the serial bus
■ Output slope or slew rate control to minimize flyback pulses
- Able to recover from momentary power interruptions without stopping the motor for a complete restart

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NO	O. NAME	DESCRIPTION
1	TACH ${ }_{\text {OUT }}$	Tach output signal. This pin generates an indication of motor speed. Control bit D3P can be programmed for tach-out = 1 pulse per rev. (divide by N active) or raw zero crossing (divide by N in-active)
2	$E A N_{\text {IN }}$	Error amplifier inverting input
3	PIDFILT	This dual purpose pin is used either for an external PID filter for the internal charge pump speed control circuit or if the charge pump is disabled by serial bus command it is used as an input for sector data.
4	$V_{C C}$	Main supply pin $\mathrm{V}=5 \mathrm{~V}$ nominal
5	EAOUT	Independent output from the error amplifier
6	BUFPID	Output of the PID buffer amplifier
7	RSLEW	Slew Adjust Resistor
8	$V_{C C}{ }^{2}$	Power $\mathrm{V}_{\text {CC }}$
9	$\mathrm{OUT}_{\text {A }}$	Output to drive motor phase A
10	$\mathrm{OUT}_{\mathrm{B}}$	Output to drive motor phase B
$\begin{aligned} & 11,12 \\ & 13,14 \end{aligned}$	$\mathrm{P}_{\mathrm{GND}}$	Main ground and thermal heat conductor
15	Neutral	In a delta wound motor this pin forms a phantom neutral for the zero crossing comparators. In a Y wound motor the neutral from the motor is connected here.
16	$\mathrm{OUT}_{\mathrm{C}}$	Output to drive motor phase C
17	$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	Power $\mathrm{V}_{\text {CC }}$

PIN NO. NAME		DESCRIPTION
18	RETRACT	This pin supplies the raw rectified back-emf voltage from the motor (as it spins down) to retract the heads in a disk drive.
19	EAPIN	Error amp non-inverting input
20	CBRAKE	A capacitor on this pin stores the energy required by the chip to actuate the gates of the output devices and brake the motor during a power fail condition
21	$\overline{\text { BRAKE }}$	This pin is normally at 5 V . At $\mathrm{V}_{\mathrm{TH}}=1.2 \mathrm{~V}$ braking will occur.
22	DATAOUT	Serial data output. $\mathrm{V}_{\mathrm{OH}}=2.9 \pm 0.3 \mathrm{~V}$
23	DATAIN	Serial data input. $\mathrm{V}_{\mathrm{TH}}=1.4 \mathrm{~V}$
24	BUSCLK	Serial bus clock. F < 20MHz
25	$\overline{\text { CHIPSEL }}$	Chip select. A logical low level allows the Bus-Clk to clock data into the shift registers via data-in input; falling edge latches commutation states for read out
26	$\overline{\text { RESET }}$	Reset. A logic low level on the reset will set the control registers to zero and force the part into sleep mode
$\begin{aligned} & 27,28 \\ & 29,30 \end{aligned}$	$\begin{aligned} & 8 \mathrm{P}_{\mathrm{GI}} \\ & 0 \end{aligned}$	Main ground and thermal heat sink
31 S	SYSTEM-CLK	System clock. A square wave clock at 2 MHz is suggested. An internal prescaler is used to normalize the frequency based on \# of poles.
32	MOTOROFF	Bi-directional I/O pin. Upon reset this pin is configured as an input to allow microprocessor to turn the motor on or off. If over temp occurs, the motor will turn off and this pin is pulled low.

ML6035

ABSOLUTE MAXIMUM RATINGS

OPERATING CONDITIONS

Serial Clock Frequency
< 20 MHz

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions (unless otherwise stated):

1) $V_{C C 1}=V_{C C 2}=5 \mathrm{~V} \pm 10 \%$,
2) System clock frequency $=2 \mathrm{MHz}$
3) $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
4) Serial clock frequency $=20 \mathrm{MHz}$ (TBD)
5) Digital timing measured at 1.4 V threshold.
6) $\mathrm{PD}=$ logic zero.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

DC CHARACTERISTICS

$V_{C C}$	Ckt supply voltage	Operating	4.5	5.0	5.5	V
$V_{C C 2}$	Pwr supply voltage	Operating	4.5	5.0	5.5	V
$I_{C C}$	$V_{C C}$ current	PIN7 = LOW		6	10	mA
$\mathrm{I}_{\text {PD }}$	Sleep current				100	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CC}}$	Power fail		3.8	4.0	4.25	V
$\mathrm{~V}_{\mathrm{CC} 2}$	Power fail		3.8	4.0	4.25	V

DIGITAL INPUT CHARACTERISTICS

V_{IL}	Low voltage				0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High voltage		2.0			V
I_{IH}	High current				+1	$\mu \mathrm{~A}$
I_{IL}	Low current				-1	$\mu \mathrm{~A}$
C_{IN}	Input capacitance			5		pF

DIGITAL OUTPUT CHARACTERISTICS

V_{OH}	High voltage	$\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$		$2.9 \pm 0.3 \mathrm{~V}$		V
$\mathrm{~V}_{\mathrm{OL}}$	Low voltage	$\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$		0.4	0.8	V

DIGITAL TIMING CHARACTERISTICS

$\mathrm{t}_{\mathrm{CSS}}$	Chip-sel set-up time to Bus-clk		10			ns
$\mathrm{t}_{\mathrm{CSH}}$	Chip-sel hold time to Bus-clk		10			ns
$\mathrm{t}_{\text {DIS }}$	DATA ${ }_{\text {IN }}$ set-up time to Bus-clk		10			ns
$\mathrm{t}_{\text {DIH }}$	DATA $_{\text {IN }}$ hold time to Bus-clk		10			ns
$\mathrm{t}_{\text {BKL }}$	Bus-clk off time		25			ns
$\mathrm{t}_{\text {BKH }}$	Bus-clk on time		25			ns
${ }_{\text {tPDHL }}$	DATA OUT high to low delay to Bus-clk		15			ns
${ }^{\text {tPDLH }}$	DATA OUT low to high delay to Bus-clk		15			ns

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT SECTION (Phase Outputs, A, B, or C) $I_{\text {SLEW }}=1 \mu \mathrm{~A}$						
V_{OH}	$V_{\text {OUt }}$ high	$I=T B D T=T B D$		$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$		V
V_{OL}	$V_{\text {OUT }}$ sat low	$I=T B D T=T B D$		0.5		V
V_{F}	N-channel clamp diode forward V	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		0.5		V
t_{R}	Output rise time	w/o slew control		1.0		$\mu \mathrm{s}$
t_{F}	Output fall time	w/o slew control		1.0		$\mu \mathrm{s}$
$\mathrm{t}_{\text {RS }}$	Output rise time	$\mathrm{R}_{\text {SLEW }}=2 \mathrm{M}$		960		$\mu \mathrm{s}$
$\mathrm{t}_{\text {FS }}$	Output fall time	$\mathrm{R}_{\text {SLEW }}=2 \mathrm{M}$		960		$\mu \mathrm{s}$
$t_{\text {RS }}$	Output rise time	$\mathrm{R}_{\text {SLEW }}=250 \mathrm{k}$		120		$\mu \mathrm{s}$
$\mathrm{t}_{\text {FS }}$	Output fall time	RSLEW $=250 \mathrm{k}$		120		$\mu \mathrm{s}$

BRAKE SECTION

V_{BR}	Brake trip point		2.4		2.6	V
$\mathrm{~V}_{\mathrm{CBR}}$	Brake storage clamp voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		4.3		V

RETRACT SECTION

$V_{\text {RET }}$	Retract diode $V_{\text {FORWARD }}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{~T}=\mathrm{TBD}\left(\mathrm{V}_{\mathrm{OUTX}}-\mathrm{V}_{\text {PIN14 }}\right)$		0.5	

CHARGE PUMP SECTION

$I_{\text {PID }}$	Charge pump source current	$\mathrm{V}_{\text {PID }}=2.5 \mathrm{~V}, \mathrm{TBD}$		24		$\mu \mathrm{~A}$
$\mathrm{I}_{\text {PID }}$	Sink current			-24		$\mu \mathrm{~A}$
$\mathrm{I}_{\text {RAT }}$	Current ratio	$\mathrm{I}_{\text {PID }}$ (chg)//IID (dchg)	0.9	1.0	1.1	

PID BUFFER AMPLIFIER SECTION

$V_{\text {OS }}$	Offset voltage	$\mathrm{V}_{I N}=2 \mathrm{~V}$		20		mV
Slew	Slew rate			1		$\mathrm{~V} / \mathrm{\mu s}$
I_{B}	Input bias current	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}$		-10		$\mu \mathrm{~A}$
Swing	Input range		0		4	V

CURRENT CONTROL SECTION

$I_{\text {RSEN }}$	Gain set \#1	$\mathrm{l}_{\text {OUT }}=120 \mathrm{~mA}$		125	
$\mathrm{I}_{\text {RSEN }}$	Gain set \#2	$\mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$		250	
$\mathrm{I}_{\text {RSEN }}$	Gain set \#3	$\mathrm{l}_{\text {OUT }}=120 \mathrm{~mA}$	$\mu \mathrm{~A}$		
$\mathrm{I}_{\text {RSEN }}$	Gain set \#4	$\mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$		500	

ERROR AMPLIFIER SECTION

V_{OS}	Offset voltage	$\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}$		40		mV
I_{B}	Input bias current	$\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}$		10	1000	pA
$\mathrm{A}_{\mathrm{VOL}}$	Open loop gain	$\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}$		60		db
B_{W}	Bandwidth	$\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}, \mathrm{AV}=1$		2		MHz
$\mathrm{V}_{\mathrm{CMR}}$	Common-mode range		1.5		4.8	V
$\mathrm{~V}_{\text {REF }}$	Input clamp V	$\mathrm{V}_{\mathrm{NIN}}=\mathrm{V}_{\text {REF }}$		1.25		V
Slew	Slew rate	$\mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}, \mathrm{AV}=1$		1.5		$\mathrm{~V} / \mu \mathrm{s}$

FUNCTIONAL DESCRIPTION

In a typical disk drive application a microprocessor and the ML6035 are used to start a three phase brushless motor. After start-up the chip can provide stand-alone constant speed control or can be used in an external speed control loop. Unipolar run mode is supported to provide for higher motor speeds. Sensorless motor commutation is provided. See Fig. 1 for a typical application.

MOTOR START-UP

By using a microprocessor to send and receive information from the motor control chip almost any desired variation in any desired start-up algorithm can be achieved.

Under $\mu \mathrm{P}$ control, initial open-loop commutation sequence is provided to the commutation logic through the bits A, B and C. The Motor_off pin is used to control the current to the motor. As the motor is advancing and accelerating, the $\mu \mathrm{P}$ can look at the TACHOUT pin to check the speed of the motor and switch to close loop by setting bit ST.

COMMUTATION LOGIC

Commutation is performed by a 12 -bit wide digital circuit. It can detect the zero crossing pulses, then evaluate the time needed between pulses and generate a commutation pulse after the half-time delay. Should the interval of zero crossings exceed the effective range of the counter, the delay will be set at the half of the full count automatically. Unwanted flyback pulses can be blanked out by setting bits $\mathrm{FB}[5: 0]$. Blanking time from $4 \mu \mathrm{~s}$ to 128μ s with a step of $2 \mu \mathrm{~s}$ can be programmed by $\mu \mathrm{P}$. Phase delay less than 30° can be achieved by programming bits PA[7:0].

During momentary power interruptions the continuing motor zero crossing information can be used to recover commutation and resume closed loop speed control.

POWER DRIVERS

Three source PMOS devices and three sink NMOS devices, each capable of 1 A @ 500 mV are used in complementary output stages. When mode switching is used to change from bipolar drive to unipolar drive the upper devices are disabled and an additional PMOS transistor is used to pull the motor neutral to the 5 V supply.

By using a small portion of each lower FET a closed loop current mirror can be created to monitor the current in each leg. The currents from the three Iower current mirrors are summed to provide a voltage across R SENSE $^{\text {for }}$ a local current loop.

Figure 1. Typical Application Circuit

After a power failure, during the brake delay time period, the outputs are turned off so that the back-EMF energy can be used to retract the heads. Three schottky diodes are connected from the motor output pins to the retract pin to rectify the back EMF from the still spinning motor. The return rectification is provided by three schottky diodes tied in conjunction with the body diodes of each N -channel sinking transistor.

BRAKING LOGIC

This block provides active braking to slow down motor rotation quickly. A signal applied to an R/C network connected to the external brake pin initiates a delay prior to braking (turning off the P -channel devices and turning on all the output N -channel devices). A brake command from the serial bus initiates an immediate braking sequence with no delay. To prevent a momentary high current spike due to simultaneous conduction of a P -Channel and an N -channel power output device, a motor off command should be issued prior to a serial bus brake command.

SPEED CONTROL

During motor start a command from the serial bus can select one out of four divide ratios from the sum of the currents in the output sink devices $(0.0005,0.001,0.002$ and 0.004) to be applied to the $R_{\text {SENSE }}$ pin. The voltage so formed is used to derive a current loop at the noninverting input to the error amplifier. By starting with a low ratio 1A drive currents can be achieved. Note that the current loop is active during start-up.
When sufficient speed is reached to close the commutation loop (16% of final speed) the $R_{\text {SENSE }}$ ratio can be selected to provide more dynamic range at the R $_{\text {SENSE }}$ pin for the normal operating current and internal speed control (velocity loop) can be used. This is done by using a one pulse per revolution signal from the commutation circuit to compare with a preset value for the 14 -bit divider, which together with the [external] system clock frequency determine the speed (see Figure 3). A digital frequency comparator compares these two signals and generates a command signal to the charge pump to charge up or discharge the external PID filter. The voltage at the PID pin is internally buffered and applied to the BUFOUT pin. The buffered PID signal is then applied to the inverting input to the error amplifier to provide a reference for the current loop and to complete the velocity loop.
If sector data information is available the charge pump can be disabled by a signal from the serial bus and the sector information can be input to the PID pin to control the current loop (see next section).

[^9]Figure 2. Start-up Waveform

Figure 3. Speed Control

CURRENT AND SLEW RATE CONTROL

This block provides output current wave shaping to minimize very steep current slopes. The elimination of these steep currents helps to reduce magnetostriction noise in the motor windings and helps to eliminate or minimize flyback pulses caused by the motor winding inductance. Slew rate control is provided on both the P -channel devices and the N -channel devices and is active for both rise and fall. The charge and discharge rate for the slew rate control is set by an external resistor, $R_{\text {SLEW }}$. The value of this resistor should be adjusted so that a rise time or fall time of 20% (40% for both) of each "on" time. The range for $\mathrm{R}_{\text {SLEW }}$ is 250 K to $2 \mathrm{M} \Omega$. This corresponds to a $\mathrm{t}_{\mathrm{RS}}, \mathrm{t}_{\text {FS }}$ range of $120 \mu \mathrm{~s}$ to $960 \mu \mathrm{~s}$. For example, an "ON" time of $1 \mathrm{~ms}, 40 \%$ corresponds to $400 \mu \mathrm{~s}$ which equates to $1.1 \mathrm{M} \Omega$.
In addition to slew rate control the chip also supports a linear current loop on the lower (sinking) power drivers. A signal from the external PID filter is buffered and applied as a reference signal to an error amplifier shown in Figure 4. The error signal for this amplifier is derived from the $R_{\text {SENSE }}$ signal described in the power driver section above. The error amplifier has both inputs and the output available so compensation for the current loop can be easily done.
The maximum output current limit is used during motor start and is programmed from the serial bus by selecting the current ratio at Isense as mentioned above.

DIVIDE BY N BLOCK

The "divide by N" block shown in the block diagram, supplies a selectable tach output. If selected from the serial bus, one pulse per revolution is provided. This signal is derived from the equivalent of a divider tied to the zero crossing comparator for phase A. This will insure a signal with minimum jitter. A register loaded from the serial bus programs the divider for a $4,8,12$ or 16 pole motor. During start-up a serial command can disable the divide circuit to provide raw zero crossing information to the tach out pin.

Figure 4. Current Loop Velocity Loop

LOW VOLTAGE DETECT

This section provides a fail safe low voltage detect for both V_{CC} and $\mathrm{V}_{\mathrm{CC} 2}$. In most systems the low voltage detect resides on the Voice coil driver chip and has a threshold voltage of 4.575 V with 30 mV hysteresis. In the event this external chip fails to detect a low voltage condition or in the event this function is not available in another chip, then an internal low voltage detect (Vth = 4.325 V , hysteresis $=30 \mathrm{mV}$) will disable the outputs and initiate a shutdown with retract voltage available.

OVER TEMPERATURE FLAG

This section is located close to the output drivers and is used to detect an over temperature condition. At a temperature of 150 degree C the following events will occur: the outputs will be turned off and the Motor-off pin will be pulled low to signal the microprocessor that a thermal shutdown has occurred. The motor-off pin is reset to normal operation by the sleep command. When the microprocessor "sees" motor off go low it should initiate a retract so the heads can be parked prior to motor braking.

SERIAL I/O AND CONTROL LOGIC

The digital interface consists of a four-wire serial port. The 16 -bit data word present on the DATA IN pin is serially shifted on the rising edges of the serial interface clock when the chip-select pin is active low. The RMWR bit is shifted in first and followed by address bits and data bits. To read stored data word, data will be shifted out from the DATA $_{\text {OUT }}$ pin on the falling edge of the serial clock when the chip-select pin is active low. When the chip select pin is high, DATA $_{I N}$ and Bus-Clk are ignored.

Write Waveform

CONTROL REGISTER 0

RM	A1	A0	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	A	B	C	REV	Sleep	Brake	ST	D3P	UNI	CP2	CP1	T2	T0

COMMUTATION START POINT

$$
\begin{aligned}
& \text { D12 to D10 } 000=\mathrm{A}+\text { OFF A- OFF B }+ \text { OFF B- OFF C }+ \text { OFF C }- \text { OFF } \\
& 001=\mathrm{A}+\text { OFF } \mathrm{A}-\text { OFF } \mathrm{B}+\text { OFF B }-\mathrm{ON} \mathrm{C}+\mathrm{ON} \mathrm{C}-\text { OFF } \\
& 010=\mathrm{A}+\text { OFF } \mathrm{A}-\mathrm{ON} \mathrm{~B}+\text { ON B- OFF C+ OFF C-OFF } \\
& 011=A+\text { OFF } A-O N B+\text { OFF B-OFF C }+ \text { ON C-OFF } \\
& 100=A+\text { ON A }- \text { OFF } B+\text { OFF B-OFF C }+ \text { OFF C }- \text { ON } \\
& 101=\mathrm{A}+\text { ON A }- \text { OFF B }+ \text { OFF B-ON C+ OFF C }- \text { OFF } \\
& 110=A+\text { OFF } A-\text { OFF } B+\text { ON B }- \text { OFF } C+\text { OFF C }- \text { ON } \\
& 111=\mathrm{A}+\text { OFF A-OFF B }+ \text { OFF B }- \text { OFF C }+ \text { OFF C }- \text { OFF }
\end{aligned}
$$

In read mode, these three bits contain the commutation status latched at the falling edge of CS.

D9	$0=$ forward direction $1=$ reverse direction
D8	$\begin{aligned} & 0=\text { sleep mode } \\ & 1=\text { on } \end{aligned}$
D7	$\begin{aligned} & 0=\text { brake off } \\ & 1=\text { brake on } \end{aligned}$
D6	$\begin{aligned} & 0=\text { commutated by setting D12-D10 of control register } 0 \\ & 1=\text { commutated by digital delay loop } \end{aligned}$
D5	$0=$ Tach-out (1 pulse/phase) 1 = Tach-out (1 pulse/rev.)
D4	$\begin{aligned} & 1=\text { Unipolar operation } \\ & 0=\text { Bipolar operation } \end{aligned}$
D2-D3	Charge pump $00=$ normal operation 01 = discharge $10=$ charge 11 = high impedance

D1-D0 Debug mode. Enables part to a / p internal signals from the data-out (serial out) pin.
$00=$ tachout (normal operation)
$01=$ blanking pulse width
$10=\overline{U P}$
$11=$ commutation pulse
Note: a logic "0" refers to a logic low sıgnal
a logic "1" refers to a logic high signal

CONTROL REGISTER 1

RW	A1	A0	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	0	1	0	P1	P0	CL1	CL0	Tach							
DN	-	FB5	FB4	FB3	FB2	FB1	FB0								

D11,D10 $00=4$ pole motor
$01=8$ pole motor
$10=12$ pole motor
$11=16$ pole motor
D9, D8 Current limit
$11=I$ at $R_{\text {SENSE }}=0.0005^{*}$ lout Sink (A or B or C)
$00=I$ at RENSE $=0.0010$ * lout Sink (A or B or C)
$01=I$ at RENSE $=0.0020$ * lout Sink (A or B or C) $10=I$ at RSENSE $=0.0040$ * lout Sink (A or B or C)
D7 Tach/DN $0=$ DN pulse

$$
1 \text { = Tach out }
$$

D6 Unused
D5-D0 Blanking pulse width
Time step = prescale factor*/system clock rate $=4 /(2 \times 106$ counts $/ \mathrm{sec})=2 \mathrm{usec} /$ count

* the prescale factor is: 4 for a four pole motor

2 for an eight pole motor
1 for a twelve pole motor
1 for a sixteen pole motor
Note: a logic " 0 " refers to a logic low signal
a logic " 1 " refers to a logic high signal

CONTROL REGISTER 2

RN	A1	A0	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	1	0	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	-	-	-	-	FR0

D0 = Least significant bit for \# of counts to preset the frequency down counter (see next page for formula and remaining bits)
D1 to D4 Not used
D12 to D5 Select the desired phase advance
$\begin{aligned} & \text { Counts needed } \\ & \text { per electrical }\end{aligned}=\frac{\text { system }- \text { clock rate }}{\text { prescale factor }} \times \frac{60}{\mathrm{rpm}} \times \frac{1}{(3 * \text { poles })} \times \frac{1}{60}$ degree

$$
\begin{aligned}
& =\frac{2 \mathrm{E} 6 \text { count } / \mathrm{sec}}{4} \times \frac{60 \mathrm{sec} / \mathrm{min}}{3600 \mathrm{rev} / \mathrm{min}} \times \frac{1}{3 \times 4 \text { phase } / \mathrm{rev}} \times \frac{1}{60 \mathrm{deg} / \mathrm{ph}} \\
& =11.6 \text { count } / \mathrm{el} \mathrm{degree}
\end{aligned}
$$

* The prescale factor is: 4 for a 4 pole motor

2 for an 8 pole motor
1 for a 12 pole motor
1 for a 16 pole motor
Note: a logic " 0 " refers to a logic low signal
a logic " 1 " refers to a logic high signal

CONTROL REGISTER 3

RW	A1	A0	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	FR13	FR12	FR11	FR10	FR9	FR8	FR7	FR6	FR5	FR4	FR3	FR2	FR1

D12 TO D0 equal the \# of counts to preset the frequency down counter
counts needed $=\frac{\text { system clock rate }}{\text { prescale factor }} \times \frac{60}{\text { rpm }}$

$$
=\frac{2 \mathrm{E} 6 \text { counts } / \mathrm{rev}}{4} \times \frac{60 \mathrm{sec} / \mathrm{min}}{3600 \mathrm{rev} / \mathrm{min}}
$$

$$
=8,333 \text { counts } / \mathrm{rev}
$$

$$
=10,0000,1000,1101
$$

* The prescale factor is fixed in all cases.

Note: $\quad a \operatorname{logic}$ " 0 " refers to a logic low signal a logic " 1 " refers to a logic high signal

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6035CH	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$32-$ Pin TQFP $(\mathrm{H} 32)$

Tape Drive Data Channel Processor

GENERAL DESCRIPTION

The ML6042 is a single chip Data Channel for high capacity tape drives supporting a floppy like interface. It integrates the head preamplifier, pulse detector, filter/equalizer, and write driver functions. It also contains the gap/hole detector, under-voltage detector, and write driver with MR head bias. All major functions are controlled and their parameters programmed via the serial interface.
This IC is intended for tape drive systems typically utilizing the QIC formats. Specifically the QIC40/80 and the QIC3010/3020 recording formats. The minimal external components combined with the very small package makes the ML6042 ideal for designs with board space and height constraints like the popular $31 / 2^{\prime \prime}$ form factor half height drives.

The head preamp is compatible with both thin film and magneto resistive heads with a programmable MR bias. The write driver currents are also programmable.
The filter is a 6 pole, 2 zero, 0.05° equi-ripple continuous time configuration with asymmetric equalization. The cutoff frequency and amount of asymmetric equalization are programmable via the serial interface in 32 steps. The
cutoff frequency can range from 200 KHz to 1.6 MHz in two ranges.
The pulse detector utilizes a high bandwidth AGC and supports both fixed and variable gain modes with programmable attack and decay.
The three wire serial microprocessor interface has a buffered data latch.

The ML6042 is available in a low profile 32 pin SOIC package. (0.3" wide)

FEATURES

- Complete data channel for tape drives
- Compatible with QIC 40/80/3010/3020 formats
- Data rates - 2 Mbps (MFM) or 5 Mbps (RLL)
- All key parameters are programmable
- Minimal external components

■ Continuous time filter with asymmetric equalization

- Less than 500 mW operating power dissipation
- Total jitter \& pulse pairing < 5% of window

BLOCK DIAGRAM

PIN CONFIGURATION

ML6042
32-pin SOIC (S32)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	LEVEL	Rectified signal level output, and input to the programmable hysteresis comparator. An external capacitor	11	WR-	Differential negative write driver output. One side of the write head coil and damping resistor connects to this pin. Ground connection for the write driver. Positive power supply (5 V) connection for the write driver.
		connects between this pin and GNDA to set the discharge time constant.	12	GNDW	
2	CAGC	The AGC loop capacitor connects between this pin and GNDA.	13	VCCW	
3	HOLDB	Logic input for AGC disable. A low on this pin disables the charging and discharging paths to the CAGC pin causing it to float.	14	WENB	Write enable logic input. A logic low on this pin enables the write driver, switches the AGC amplifier to fixed gain mode, and discharges the CAGC pin to the lower clamp voltage. A logic high disables the write driver and initiates the write to read transition clamp time-out.
4	TESTIN	Control input to select the test signal on the TESTOUT pin. An input voltage of $0-1 \mathrm{~V}$ selects the AGC output at			
		TESTOUT, $2-3 \mathrm{~V}$ selects the multiplier output, and $4-5 \mathrm{~V}$ selects the filter low	15	WD	Write data input, MFM encoded.
		pass output.	16	GNDD1	Digital ground.
5	IMR	MR bias current sink output pin.	17	SLCK	Clock input for serial interface.
6	ISET	External resistor to GNDA that sets the write driver and MR bias current.	18	SENB	Logic input for serial interface enable. Active low.
7	VIN+	Differential signal positive input to read channel.	19	SDATA	Serial data input. Digital ground.
8	VIN-	Differential signal negative input to read channel.	21	VCCD	Positive power supply connection $(+5 \mathrm{~V})$ for digital circuitry.
9	CBYMR	MR bias circuit bypass capacitor to GNDA.	22	RDB	Read data output. Encoded data from pulse detector.
10	WR+	Differential positive write driver output. One side of the write head coil and damping resistor connects to this pin.	23	IDPIN	Used for chip identification. If not used it should be connected to GNDA.
			24	ARESETB	Under voltage status logic output. Active low.

PIN DESCRIPTION (Continued)

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
25	12VSNSE	Sense input for 12 volt fault detector. An external resistor divider from +12	29	VCCA	Positive power connection for the analog circuitry.
26	EOGC	volts to ground connects to this pin.	30	TESTOUT-	Differential negative test signal output. See TESTIN.
27	DRATE	Control input for selecting the cutoff frequency of the filter. A logic high sets	31	TESTOUT+	Differential positive test signal output. See TESTIN.
		the filter to the high range and a logic low to the low range. It has an internal pull down.	32	RFIL	External resistor to GNDA sets the center frequency of the filter.
28	GNDA	Analog ground.			

ORDERING INFORMATION

3V/5V Read Channel Front-end Processor

GENERAL DESCRIPTION

The ML6310 is a BiCMOS Read Channel Front-end Processor IC which is one half of the disk read channel chipset from Micro Linear, intended for the next generation of small form factor (1.8" \& 1.3") disk drives, operating on 3 V and/or 5 V supplies. It works in conjunction with the ML6311 Read Channel Back-end Processor to form a complete solution for the low-voltage/ low-power disk read/write channel. It incorporates a full function pulse detector, four channel servo demodulator, and a filter/equalizer with switchable response characteristics between data and servo.
The filter architecture consists of a 6 -pole, 2-zero, 0.05° Equiripple type, continuous time filter, with asymmetric equalization, realizing a family of frequency response curves optimized for the disk drive read channel. The cutoff frequency and boost (asymmetric equalization) are programmable through the serial interface using internal 5- \& 4-bit DACs. The pulse detector is implemented with a high bandwidth AGC whose attack and decay rates are programmable through the serial interface using 2-bit DACs respectively. The Hysteresis level for the pulse detector Gate channel is also programmable through the serial interface using a 4-bit DAC. A four channel servo demodulator is onboard which offers buffered outputs for head positioning with a programmable option to bring out either A, B, C, D or $A+B, A-B, C-D, C+D$ outputs.
The ML6310 supports four power down modes for implementation of real-time power management in an optimal manner. The operating power dissipation is targeted to be less than 300 mW at 3 V , while the part will dissipate less than $15 \mu \mathrm{~W}$ in the sleep mode. The ML6310 requires only three external components.

FEATURES

- Operating supply ranges are 2.7 V to 3.3 V or 3.0 V to 3.6 V or 4.5 to 5.5 V .
- Very Low Power dissipation at $3 V P_{\text {SLEEP }}<15 \mu \mathrm{~W}, \mathrm{P}_{\mathrm{OPR}}$ < 300 mili-watts
- Low profile, 32-pin TQFP package, $(7 \times 7 \times 1) \mathrm{mm}^{3}$
- NRZ Disk data rates up to $32 \mathrm{Mbits} / \mathrm{s}$, for $1,7 \mathrm{RLL}$
- Pulse detector with less than ± 500 ps pulse pairing
- Wide bandwidth (>60MHz) AGC amplifier
- Internal stable reference voltage level for AGC
- Programmable hysteresis level in Gate channel (static)
- Four channel servo demodulator with internal capacitors for track \& hold capability. Selectable A, B, C, D or $A-B, C-D, A+B, C+D$ demod outputs.
- Onboard coupling capacitors and DC offset cancellation circuitry to minimize internal offsets
■ 6-pole, 2-zero continuous time, 0.05° equiripple filter with less than 40dB harmonic distortion
- Programmable filter cutoff frequency (3:1 range in 32 steps) (f ${ }_{C}=6.0$ to 18 MHz). Also allows a 10% range shift under external resistor control
- Programmable Asymmetric Equalization in 256 steps (256 combinations of Group Delay and Boost), providing 0 to 11.6 dB slimming boost at f_{C}.
- High speed (20 MHz clock) three wire serial microprocessor interface with double buffered data latch for synchronous or asynchronous data loading.
- Four Power-down modes selectable, plus hardware pin
- CMOS / TTL compatible I/O to minimize power

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN	NAME	FUNCTION
Pulse Detector		
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	VIN+ VIN-	AGC amplifier differential input. This input is AC coupled from the Read/ Write amplifier output. It is recommended that the differential input signal be in the range of $15 \mathrm{mV} \mathrm{P}_{\mathrm{P}}$ p to $150 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{p}}$.
1	CAGC	The AGC loop capacitor is connected from this pin to GNDA. Lead-Lag network may be used for a differential loop filter characteristic, if desired. The Attack and Decay currents of the AGC can be adjusted through the bits in the control register.
3	$\overline{\text { HOLDB }}$	This is an active low CMOS input pin. When this pin is forced to a logic low, all the charging and discharging paths on the CAGC pin are disabled. The AGC amplifier now acts as a fixed gain amplifier with the gain being determined by the voltage on the CAGC pin.
22	LEVEL	Rectified signal level output and input to the programmable hysteresis comparator. An external capacitor between this pin and GNDA, in conjunction with an internal resistor (8 Kohms typical), sets up the discharge time constant.
$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\frac{R D}{R D B}$	These pins provide the differential pulse detector encoded read data output (ECL). These signals form the input to the ML6311 - read channel back-end processor chip which does the data synchronization and clock recovery. (Low voltage ECL O/P's)
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	AGC+ AGC-	Buffered AGC outputs used for test and prototyping purposes. These are differential open emitter outputs and hence should be left open in normal operation to minimize power dissipation.

Filter / Equalizer

30 VRFIL A resistor between this pin and GNDA sets up the center frequency of the filter.

26 DSLIM When this pin is high, the slimming function is disabled and the filter cutoff frequency is switched to the servo filter cutoff frequency. When this pin is low the filter data path cutoff frequency is used, with the slimming being programmable.

PIN NAME FUNCTION

Filter / Equalizer (continued)

25 LPOUT+ Buffered lowpass filter outputs used for
24 LPOUT- test and prototyping purposes. These are differential open emitter outputs and hence should be left open in normal operation to minimize power dissipation.

Timing and Control

23 PDNB
Active low CMOS input. In conjunction with the power management bits in the Control Register, this helps setup the ML6310 in one of the four power down modes.

2 WG
Active high CMOS input. This input is used to activate the input clamp for a period of $1 \mu \mathrm{~s}$, to generate the write to read transition delay.

Servo Demodulator

4 VRSVO This reference voltage derived from the internal bandgap is used by the A/D converter handling the servo bursts, to define the middle point of the dynamic range. A typical value for this is 1.0 V .

Gate control for the four channel servo burst detectors. Active high CMOS inputs. Internal holding capacitors hold the charge corresponding to the peaks of the servo bursts.

13 DIS Active high CMOS input. When this pin is asserted high, the four servo peak detector capacitors are discharged.
$5 \quad A / A+B \quad B u f f e r e d$ four channel servo demodulator
$6 \quad B / A-B$
$7 \quad C / C+D$ outputs. The four outputs can be optionally selected to be either A, B, C, D or $A+B, A-B, C+D, C-D$ through a bit (SMODE), in the Control Register \#6

Serial Interface

This is a CMOS input which clocks the Control Register (negative edge trigger). Internally this pin is gated with the $\overline{\text { SENB }}$ signal.

14 SDATA Control Register Data, CMOS input, clocked by SCLK.
$16 \quad \overline{\text { SENB }}$
Active low CMOS input - Control Register enable. A logic low input on this pin pin allows the SCLK input to clock the SDATA into the control register and a logic high latches the control register contents.

PIN DESCRIPTION (continued)

PIN	NAME	FUNCTION
Power Supply and Ground		
18	VCCA	This is the analog VCC input, used for the pulse detector, filter/equalizer and servo demodulator. In the case of a 5V supply operation this pin needs to be left open, while in the case of a 3V supply operation this pin is tied to VCCD.
17	VCCD	Digital VCC input for serial microprocessor interface and related logic. This can handle the 2.7 V to 5.5V supply range.
27	GNDA	Analog ground 21
GNDD	Digital ground	

TYPICAL EXTERNAL COMPONENTS

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage (VCCA \& VCCD) -0.3 to +7 V Analog \& Digital Inputs/Outputs - 0.3 to VCCA +0.3 V Input Current per Pin \qquad
Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage Range..... 2.7 V to 3.6 V or 4.5 V to 5.5 V For 5 V Operation...... VCCA is left open, VCCD is at 5 V For 3V Operation VCCA and VCCD are tied to 3 V Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{VCCA}=\mathrm{VCCD}=2.7$ to 3.6 Volts or 4.5 to 5.5 Volts and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Dissipation					
Analog $\mathrm{V}_{\text {CC }}$ (VCCA)	Left open for 5 V operation	2.7		3.6	V
Digital $\mathrm{V}_{\text {CC }}$ (VCCD)	Connected for both 3 V \& 5V	2.7		5.5	V
Supply Current (Analog)	(a) $\mathrm{VCCA}=3.0 \mathrm{~V}$ @ Sleep mode (PDNB pin $=0$)			$\begin{gathered} 80 \\ 8 \end{gathered}$	$\mathrm{mA}_{\mu \mathrm{A}}$
Supply Current (Digital)	@ $\mathrm{VCCA}=3.0 \mathrm{~V}$ or 5.0 V @ Sleep mode (PDNB pin $=0$)			$\begin{gathered} 10 \\ 2 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mathrm{~mA}}$
Supply Current (Total)	$\begin{aligned} & \mathrm{VCCA}=\mathrm{VCCD}=3.0 \mathrm{~V} \\ & \mathrm{VCCD}=5.0 \mathrm{~V}, \mathrm{VCCA}=\text { open } \\ & @ \text { sleep mode }(P D N B \text { pin }=0) \end{aligned}$			$\begin{gathered} 90 \\ 110 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Power Down Current (Normal mode)	$\text { PDNB pin }=1$ Control Reg bits $\mathrm{PM} 1=\mathrm{PM} 0=0$			90	mA
Power Down Current (Servo mode)	Serial Interface + AGC + Filter + Servo demodulator enabled $\operatorname{PDNB}=1, \mathrm{PM} 1=0, \mathrm{PM} 0=1$			65	mA
Power Down Current (Pulse mode)	Serial Interface + AGC + Filter + Pulse Detector enabled $\mathrm{PDNB}=1, \mathrm{PM} 1=1, \mathrm{PM} 0=0$			68	mA
Power Down Current (Idle mode)	Only Serial Interface enabled $\begin{gathered} \mathrm{PDNB}=1, \mathrm{PM1}=1, \mathrm{PMO}=1 \\ \mathrm{VCC}=2.7 \text { to } 3.6 \mathrm{~V} \end{gathered}$		0.45	30	$\mu \mathrm{A}$
	$\mathrm{VCC}=4.5$ to 5.5 V		0.8	1.5	mA
Power Down Current (Sleep mode)	Control register retains data $P D N B=0, P M 1=X, P M 0=X$		0.15	5	$\mu \mathrm{A}$

Digital I/O Specifications

High level input voltage		VCCD-0.5		VCCD	V
Low level input voltage		GNDD		GNDD +0.5	V
High level input current	@ VCC and GND			1	$\mu \mathrm{~A}$
Low level input current	@ VCC and GND			1	$\mu \mathrm{~A}$

AGC Amplifier and Input Clamp

Differential Input signal range	Note 2	15		150	mV P-p
Maximum AGC gain	VCAGC $=1.2 \mathrm{~V} @$ AGC \pm pins	15	22	28	$\mathrm{~V} / \mathrm{N}$
Minimum AGC gain	VCAGC $=2.2 \mathrm{~V} @$ AGC \pm pins		0.6	3	$\mathrm{~V} / \mathrm{N}$
Differential input resistance	Read mode (WG is low)	3.75	5	6.25	Kohms
	Write mode (WG is high)	200	500	700	Ohms

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
AGC Amplifier and Input Clamp (continued)					
CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{N}^{+}}=\mathrm{V}_{\mathrm{IN}^{-}}=100 \mathrm{mV} @ 5 \mathrm{MHz} \& \\ & \mathrm{VCAGC}=1.2 \mathrm{~V} \end{aligned}$	40			dB
PSRR	$\begin{aligned} & \mathrm{VCCA}=100 \mathrm{mV} @ 5 \mathrm{MHz} \& \\ & V C A G C=1.2 \mathrm{~V} \end{aligned}$		40		dB
CAGC voltage range	@ VCCD $=2.7 \mathrm{~V}$ Note 1	1		2.2	V
Input Clamp Off time	From WG active to input clamp release	0.7	1	1.3	$\mu \mathrm{s}$
Clamp propagation delay	From WG inactive to input Z clamped		20	100	ns

AGC Control - Rectifier and Comparator

CAGC clamp voltage		1.2	1.8	2.5	V
CAGC Output voltage	Maximum possible	1.8	VCCA/0.5	3.0	V
CAGC Attack current	Min - Control register bits $=00$	20	30	45	$\mu \mathrm{~A}$
	Max - Control register bits $=11$	70	120	170	$\mu \mathrm{~A}$
CAGC Decay current	Min - Control register bits $=00$	1	3	6	$\mu \mathrm{~A}$
	Max - Control register bits $=11$	6	9	12	$\mu \mathrm{~A}$
CAGC leak current	$\overline{\text { HOLDB }}$ pin is low			± 0.1	$\mu \mathrm{~A}$
HOLD on / off	$\overline{\text { HOLDB }}$ pin, ON time and OFF time		0.5		$\mu \mathrm{~s}$

Hysteresis Comparator

Input signal range	Differential input, Note 1				
Hysteresis range	percent of input signal amplitude	0		93.8	$\%$
Hysteresis resolution	controlled by internal DAC, Note 1		6.25		$\%$
Max output current	LEVEL pin short to gnd (ISHORT $>1 \mathrm{~mA})$	1			mA
Output resistance	LEVEL pin		400		ohms

Pulse Qualification Section

Read Data pulse width		20		30	ns
Pulse Pairing	0.2 MHz sinewave @ $15 \mathrm{mV} \mathrm{P}_{\text {P.p }}$ diff, $\mathrm{f}_{\mathrm{C}}=9 \mathrm{MHz}$ (1 sigma)		± 0.5	± 1	ns
Jitter on RD (falling edge)	0.2 MHz sinewave @ $15 \mathrm{mV}_{\text {P-p }}$ diff, $\mathrm{f}_{\mathrm{C}}=9 \mathrm{MHz}$ (1 sigma)		± 0.1	± 1	ns
RD/RDB raw data output	Differential, Psuedo ECL $\left\|V_{\text {RD }}-V_{\text {RDB }}\right\|$	0.6	0.7	0.8	V
$\mathrm{V}_{\text {RD/RDB }}$ common mode	Note 1		VCCA - VBE		V

Filter / Equalizer Section

Differential Group delay	$0.3 \mathrm{f}_{\mathrm{C}}$ to $\mathrm{f}_{\mathrm{C}}, \mathrm{f}_{\mathrm{C}} 0-\mathrm{f}_{\mathrm{C}} 4=1$			± 5	$\%$
Cutoff Frequency Accuracy		-10		+10	$\%$
Slimming Level Accuracy		-1		+1	dB
Phase shift (LP \& BP)	$\mathrm{f}_{\mathrm{C}} 0-\mathrm{f}_{\mathrm{C}} 4=1$, Note 2		90 ± 2		degree
Response settling time	Due to change in f_{C}, Note 2		1		$\mu \mathrm{~s}$

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Servo Demodulator Section (All tests @ f=5 MHz)					
Servo Amplifier voltage gain	@ Input $=50 \mathrm{mV}$ and 150 mV . AGC set to a gain of 1 .	3	5	7	V / N
Channel offset matching			± 2	± 10	mV
Output leakage current			5		nA
Discharge time	Input $=150 \mathrm{mV}$, discharge to 50% output			5	$\mu \mathrm{s}$
Droop rate	Input = 150 mV , GATE on to GATE off		0.01	0.1	$\mathrm{mV} / \mu \mathrm{s}$
Acquisition time	Gate enable to 90% of peak detector output		1	1.5	$\mu \mathrm{s}$
Difference error	Input $=150 \mathrm{mV}$		± 2	± 10	mV
VRSVO output voltage		0.9	1.05	1.3	V

Serial Microprocessor Interface

Serial clock (SCLK) frequency		0.01		20	MHz
SCLK pulse width	tPW	20			ns
SCLK to SDATA hold time	$\mathrm{t}_{\text {HSD }}$	5			ns
SDATA to SCLK setup time	$\mathrm{t}_{\text {SSD }}$	5			ns
$\overline{\text { SENB to SCLK setup time }}$	$\mathrm{t}_{\text {SSEN }}$	10			ns
SCLK to $\overline{\text { SENB }}$ hold time	$\mathrm{t}_{\text {SSEN }}$			10	ns

Note 1: These specifications are design goals and are not tested They are provided for informational purposes only.
Note 2: These parameters are guaranteed by design and verified by characterization only and are not part of the production test program, hence only the typical values are indicated for system designer's reference.

TIMING DIAGRAM

Figure 1. 3-Wire Serial Interface.

FUNCTIONAL DESCRIPTION

INTRODUCTION

The ML6310 is a Read Channel Front-end Processor IC which is one half of the disk read channel chipset from Micro Linear, intended for the next generation of small form factor ($1.8^{\prime \prime} \& 1.3^{\prime \prime}$) disk drives, operating on 3 V and/ or 5 V supplies. Fabricated in Micro Linear's BiCMOS process ($1.5 \mu \mathrm{CMOS}, 4 \mathrm{GHz} \mathrm{f}_{\mathrm{t}}$ bipolar), it works in conjunction with the ML6311 Read Channel Back-end Processor to form a complete solution for the low voltage/ low power disk read/write channel. It incorporates a full function pulse detector, four channel servo demodulator, and a filter/equalizer with switchable response characteristics between data and servo. The ML6310 supports four power down modes for implementation of real-time power management in an optimal manner. The maximum power dissipation is targeted to be less than 350 mW , while the part will dissipate less than 1 mW in the sleep mode. In this mode all sections are powered down except the serial microprocessor interface. A high level of digital programmability through this interface and onboard registers contributes to reducing the external component count significantly.

The pulse detector is implemented with a high bandwidth AGC whose attack and decay rates are programmable through the serial interface using 2-bit DACs respectively. The Hysteresis level for the pulse detector Gate channel is also programmable through the serial interface using a 4 -bit DAC. Pulse qualification is achieved by using both level and polarity.
A four channel servo demodulator is onboard which offers buffered outputs for head positioning with a
programmable option to bring out either A, B, C, D or $A+B, A-B, C-D, C+D$ outputs. The four hold capacitors for the servo peak detectors are implemented on board.

The programmable filter architecture consists of a 6-pole, 2-zero. 0.05° Equiripple type, continuous time filter, with asymmetric equalization, realizing a family of frequency response curves optimized for the disk drive read channel. For embedded servo handling, the servo and the data path filter cutoff frequencies are programmed separately. Using the external DSLIM pin, the filter characteristics can be switched to the servo cutoff frequency with no slimming boost. The switching of the filter frequency response is very fast, thus allowing for real-time embedded servo handling The cutoff frequency and boost (asymmetric equalization) are programmable through the serial interface using internal 5-bit and 4-bit DACs.

The three wire serial interface is also used to program a number of parameters controlling the various sections of the chip. On physical power-up, the control registers will come up in an undetermined state and hence these registers must be initialized to their default values first, so that the chip is put in a defined state. The contents of the control registers are retained in all power down modes, except when the power is physically turned off to the chip.

The ML6310 is designed to offer the lowest power dissipation, a high level of integration and offer a high
level of programmability to minimize the number of external components, thus resulting in an optimized read channel front-end. It outputs raw data in an ECL format whose level is compatible with the input to the companion chip ML6311, used for data separation and clock synchronization. Please refer to the block diagram of the ML6310 for the details.

PULSE DETECTOR

The pulse detector consists of the AGC amplifier with a full AGC control loop, on the front-end, which works in conjunction with the programmable filter/equalizer circuitry. The pulse detector consists of the conventional time channel and gate channel to help in pulse qualification, for generating the raw data output which represents the time position of the peaks corresponding to the flux reversals on the disk.

AGC

The AGC amplifier is a two stage differential amplifier design with high bandwidth, typically greater than 100 MHz . The first stage of the AGC is a Variable Gain Amplifier (VGA) whose gain is controlled by the voltage on the CAGC pin. The gain of the amplifier decreases as the voltage on the CAGC pin increases. The second stage is essentially a fixed gain amplifier.
The AGC usually gets its differential input from the output of the head preamp circuit. The input signal range is 15 mV to 150 mV peak-to-peak differential. The AGC's input has a switchable input impedance clamp to enhance the write to read transient recovery. This is indirectly controlled by the Write Gate signal from the disk controller. When Write Gate is active-high (write mode), the input impedance is reduced or clamped to a low impedance state and when Write Gate goes inactive-low, the input impedance switches back to the normal (high impedance state), after a 1μ s delay, typically.

The output of the AGC amplifier feeds into the filter/ equalizer directly. The lowpass output from the filter/ equalizer serves as the input to the AGC control front-end which is a full wave rectifier. The AGCSET comparator compares the full wave rectifier output with an internal settled voltage reference and generates an output to the AGC control circuitry. The AGC control circuitry compares this voltage with the voltage from the CAGC pin, before providing the feedback into the control nodes of the Variable Gain Amplifier. The capacitor on the CAGC pin then gets charged or discharged depending on whether the full wave rectifier output is greater than or less than the preset internal reference voltage. The charging and discharging current, also referred to as the attack and decay rates, are programmable through the bits in control register \#5, as shown below. Refer to the section on Control Register for programming details.

1	0	1	REG	DKY1	DKY0	ATK1	ATK0

During the servo capture period, the AGC amplifier functions as a fixed gain amplifier, under control of the HOLDB pin. When the HOLDB pin is forced to a logic low, the AGC control loop is disabled and the charging and discharging of the capacitor on the CAGC pin is stopped. The AGC loop maintains the gain setting prior to the HOLDB pin going low. The impedance and gain of the AGC amplifier are not affected.

Time Channel

The time channel of the pulse detector consists of a multiplier and a zero crossing comparator, the output of which generates the clocking signal to the pulse qualification flip-flop. The input of the multiplier is the differential lowpass and bandpass outputs of the filter/ equalizer. The capacitative coupling ensures the removal of any DC offsets in the differentiated outputs of the filter/ equalizer. This technique contributes significantly to better pulse pairing by eliminating the need for a matching bidirectional one-shot as used in conventional approaches.
The output of the multiplier goes to the zero-crossing comparator which produces a logic output whose edges correspond to the zero crossing points of the input signal. A positive transient of state at the zero crossing output indicates that a minima and maxima has been detected at the filter/equalizer's differentiated output.

Gate Channel

The Gate Channel consists of a hysteresis comparator which prevents false triggering of the output one-shot due to baseline noise. The lowpass output of the filter/ equalizer forms the input of the hysteresis comparator. Only when a data pulse is of sufficient amplitude will the hysteresis comparator allow the output one shot to be triggered. The hysteresis comparator also ensures that the output one-shot is triggered once for each data pulse polarity. The hysteresis level (as a percentage of the hysteresis comparator input signal peak), is programmable through the bits in control register \#4, as shown below. Refer to the section on Control Register for programming details.

Pulse Qualification

The pulse qualification circuitry consists of a D flip-flop whose data input is the hysteresis comparator output and it is clocked by the zero-crossing comparator output in the time channel. The output of this D flip-flop triggers a oneshot whose pulse width is programmed through an internal RC constant. In order to allow the zero-crossing comparator output to fire the one-shot, every positive transient in the zero-crossing comparator shall correspond to the opposite polarity of the hysteresis comparator output. The output of the one-shot then constitutes the raw data output which represents the time position of the peaks corresponding to the flux transitions on the disk media.

PROGRAMMABLE FILTER/EQUALIZER

The programmable filter/equalizer circuit approximately realizes a sixth-order, 0.05° Equiripple function thus achieving a flat group delay up to twice the cutoff frequency $\left(2 \mathrm{f}_{\mathrm{C}}\right)$. The filter processes signals in a differential mode for greater noise immunity. This filter architecture is capable of handling fast transients and provides smaller excess phase and power dissipation. It is made up of three biquads which generate a lowpass and bandpass (differentiated) output. The cutoff (corner) frequency of the filter is controlled by 5 bits in control register which provide 32 combinations in the range of 6 MHz to 18 MHz . Control register \#0 is used to program the data channel corner frequency while the servo channel corner frequency is programmed in control register \#1, as shown below. Refer to the section on Control Register for programming details.

DATA PATH CUTOFF FREQUENCY

0	0	0	DfC4	DfC3	DfC2	DfC1	DfC0

SERVO PATH CUTOFF FREQUENCY

0	0	1	SfC4	SfC3	SfC2	SfC1	SfC0

These five bits are used to control a DAC to generate a current which is used to control the frequency of the filter. The cutoff (corner) frequency of the filter is given by the following equation :

$$
\mathrm{f}_{\mathrm{C}}=6+\left(0.387 \times 16 \mathrm{f}_{\mathrm{C}} 4+8 \mathrm{f}_{\mathrm{C}} 3+4 \mathrm{f}_{\mathrm{C}} 2+2 \mathrm{f}_{\mathrm{C}} 1+\mathrm{f}_{\mathrm{C}} 0\right)
$$

Table 1 lists the corner frequencies and the corresponding control register bit configurations.
Two real zeroes are introduced by two equalizers (slimmers) inserted between the first/second and the second/third biquads. The zeroes can be adjusted independently so that it is possible to realize asymmetric equalization, if desired. The transfer function of the equalizer (slimmer) is given by :

$$
\mathrm{H}_{\mathrm{S}}=\left[1-\left(\mathrm{k}_{1} \times \frac{\mathrm{S}}{\omega_{\mathrm{O} 1}}\right)\right]\left[1+\left(k_{2} \times \frac{\mathrm{S}}{\omega_{\mathrm{O} 2}}\right)\right]
$$

Where $\omega_{\mathrm{O} 1}, \omega_{\mathrm{O} 2}$ are the corner frequencies of the first and second biquads and $S=j \omega$ is the complex frequency. The normalized corner frequencies of the first and second biquads are 0.981 and 2.074 . The group delay variation at the corner frequency is given by :

$$
\Delta \mathrm{G}_{\omega_{\mathrm{C}}}=\frac{1}{\omega_{\mathrm{C}}}\left[\frac{\left(\frac{\mathrm{k}_{1}}{0.981}\right)^{3}}{1+\left(\frac{\mathrm{k}_{1}}{0.981}\right)^{2}}-\frac{\left(\frac{\mathrm{k}_{2}}{2.074}\right)^{3}}{1+\left(\frac{\mathrm{k}_{2}}{2.074}\right)^{2}}\right]
$$

k_{1} and k_{2} can be controlled by adjusting the bias currents in the slimmers. They are adjusted by changing the slimming control bits - zeroA $\left(N_{A}\right)$ in control register \#2 and zero $B\left(N_{B}\right)$ in control register \#3 as shown below. Refer to Table 2 and the section on Control Register, for details.

MSB

0	1	0	RSVD	EA3	EA2	EA1	EA0

MSB

0	1	1	RSVD	EB3	EB2	EB1	EB0

$k_{1} \& k_{2}$ are expressed by the equations below :

$$
\begin{array}{ll}
k_{1}=\frac{k_{1 \mathrm{MAX}} N_{A}}{15} & k_{1 \mathrm{MAX}}=1.578 \\
k_{2}=\frac{k_{2 \mathrm{MAX}} N_{B}}{15} & k_{2 \mathrm{MAX}}=3.327
\end{array}
$$

N_{A} and N_{B} are the decimal expression of the slimming bits EA3 - EAO and EB3 - EBO, respectively. Hence the group delay and corner frequency product (refer table 2), is given by :

$$
\Delta \mathrm{G}_{\omega \mathrm{C}} \mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi}\left[\frac{\left(0.1078 \mathrm{~N}_{\mathrm{A}}\right)^{3}}{1+\left(0.1078 \mathrm{~N}_{\mathrm{A}}\right)^{2}}-\frac{\left(0.1078 \mathrm{~N}_{\mathrm{B}}\right)^{3}}{1+\left(0.1078 \mathrm{~N}_{\mathrm{B}}\right)^{2}}\right]
$$

The equalization (slimming) level is given by :

$$
\mathrm{SL}(\mathrm{~dB})=10 \log \left[1+\left(\frac{\mathrm{k}_{1} \times \omega}{\omega_{\mathrm{O} 1}}\right)^{2}\right]+10 \log \left[1+\left(\frac{\mathrm{k}_{2} \times \omega}{\omega_{\mathrm{O} 2}}\right)^{2}\right]
$$

At the corner frequency of the filter (18 MHz), the equation is reduced to :
$S L(d B)=10 \log \left[1+\left(0.1078 N_{A}\right)^{2}\right]+10 \log \left[1+\left(0.1078 N_{B}\right)^{2}\right]$

TABLE 1: Corner frequency programming values

$\mathrm{f}_{\mathrm{C}} 4$	$\mathrm{f}_{\mathrm{C}} 3$	$\mathrm{f}_{\mathrm{C}}{ }^{\text {2 }}$	$\mathrm{f}_{\mathrm{C}} \mathbf{1}$	$\mathrm{f}_{\mathrm{C}} 0$	$\mathrm{f}_{\mathrm{C}}(\mathrm{MHz})$
0	0	0	0	0	6.000
0	0	0	0	1	6.387
0	0	0	1	0	6.774
0	0	0	1	1	7.161
0	0	1	0	0	7.548
0	0	1	0	1	7.935
0	0	1	1	0	8.323
0	0	1	1	1	8.710
0	1	0	0	0	9.097
0	1	0	0	1	9.484
0	1	0	1	0	9.871
0	1	0	1	1	10.258
0	1	1	0	0	10.645
0	1	1	0	1	11.032
0	1	1	1	0	11.419
0	1	1	1	1	11.806
1	0	0	0	0	12.194
1	0	0	0	1	12.581
1	0	0	1	0	12.968
1	0	0	1	1	13.355
1	0	1	0	0	13.742
1	0	1	0	1	14.129
1	0	1	1	0	14.516
1	0	1	1	1	14.903
1	1	0	0	0	15.290
1	1	0	0	1	15.677
1	1	0	1	0	16.065
1	1	0	1	1	16.452
1	1	1	0	0	16.839
1	1	1	0	1	17.226
1	1	1	1	0	17.613
1	1	1	1	1	18.000

Table 2 shows the Product of Delta Group Delay \& f_{C}, slimming level, zeroA and zeroB programming values with control register bit configurations. The values, Binary $(E A 3-E A 0)=$ Decimal N_{A} and Binary $(E B 3-E B 0)=$ Decimal N_{B}.

FILTER TRANSFER FUNCTION

$$
=\left[\frac{\omega_{01}^{2}}{s^{2}+\frac{s \times \omega_{01}}{Q_{1}}+\omega_{01}^{2}}\right]\left[\frac{\omega_{02}^{2}}{s^{2}+\frac{s \times \omega_{02}}{Q_{2}}+\omega_{02}^{2}}\right]\left[\frac{\omega_{03}^{2}}{s^{2}+\frac{s \times \omega_{03}}{Q_{3}}+\omega_{03}^{2}}\right]
$$

Where: $\quad \omega_{01}=0.981 \omega_{\mathrm{C}}$
$\omega_{02}=2.074 \omega_{\mathrm{C}}$
$\omega_{03}=1.470 \omega_{\mathrm{C}}$
$\mathrm{Q}_{1}=0.551$
$\mathrm{Q}_{2}=1.686$
$\mathrm{Q}_{3}=0.893$

TABLE 2

$\mathbf{N}_{\mathbf{A}}$	N_{B}	$\Delta \mathbf{G f}_{\mathbf{C}}(\mathbf{s H z})$	SL(dB)
0	0	0	0
0	1	0.0002	0.0502
0	2	0.0015	0.1973
0	3	0.0049	0.432
0	4	0.0108	0.7406
0	5	0.0193	1.1077
0	6	0.0304	1.5178
0	7	0.0436	1.9574
0	8	0.0585	2.4148
0	9	0.0749	2.8809
0	10	0.0922	3.3487
0	11	0.1103	3.8132
0	12	0.1289	4.2706
0	13	0.1478	4.7187
0	14	0.1669	5.1557
0	15	0.1862	5.5807
1	0	-0.0002	0.0502
1	1	0	0.1004
1	2	0.0013	0.2475
1	3	0.0047	0.4822
1	4	0.0106	0.7908
1	5	0.0191	1.1578
1	6	0.0302	1.568
1	7	0.0434	2.0076
1	8	0.0583	2.465
1	9	0.0747	2.9311
1	10	0.092	3.3989
1	11	0.1101	3.8634
1	12	0.1287	4.3208
1	13	0.1476	4.7688
1	14	0.1667	5.2058
1	15	0.186	5.6309
2	0	-0.0015	0.1973
2	1	-0.0013	0.2475
2	2	0	0.3946
2	3	0.0033	0.6293
2	4	0.0092	0.9379
2	5	0.0178	1.305
2	6	0.0288	1.7152
2	7	0.0421	2.1547
2	8	0.057	2.6121
2	9	0.0733	3.0782
2	10	0.0907	3.546
2	11	0.1088	4.0105
2	12	0.1273	4.468
2	13	0.1463	4.916
2	14	0.1654	5.353
2	15	0.1846	5.778
3	0	-0.0049	0.432
3	1	-0.0047	0.4822
3	2	-0.0033	0.6293
3	3	0	0.864
3	4	0.0059	1.1726
3	5	0.0144	1.5397
3	6	0.0255	1.9498
3	7	0.0387	2.3894
3	8	0.0537	2.8468
3	9	0.07	3.3129
3	10	0.0873	3.7807
3	11	0.1054	4.2452
3	12	0.124	4.7026
3	13	0.1429	5.1507
3	14	0.162	5.5877
3	15	0.1813	6.0127

$\mathrm{N}_{\text {A }}$	N_{B}	$\Delta \mathbf{G f}_{\mathbf{C}}(\mathbf{s H z})$	SL(dB)
4	0	-0.0108	0.7406
4	1	-0.0106	0.7908
4	2	-0.0092	0.9379
4	3	-0.0059	1.1726
4	4	0	1.4812
4	5	0.0086	1.8483
4	6	0.0196	2.2584
4	7	0.0328	2.698
4	8	0.0478	3.1554
4	9	0.0641	3.6215
4	10	0.0815	4.0893
4	11	0.0995	4.5538
4	12	0.1181	5.0112
4	13	0.137	5.4593
4	14	0.1562	5.8963
4	15	0.1754	6.3213
5	0	-0.0193	1.1077
5	1	-0.0191	1.1578
5	2	-0.0178	1.305
5	3	-0.0144	1.5397
5	4	-0.0086	1.8483
5	5	0	2.2153
5	6	0.0111	2.6255
5	7	0.0243	3.065
5	8	0.0392	3.5225
5	9	0.0556	3.9886
5	10	0.0729	4.4564
5	11	0.091	4.9208
5	12	0.1096	5.3783
5	13	0.1285	5.8263
5	14	0.1476	6.2633
5	15	0.1668	6.6884
6	0	-0.0304	1.5178
6	1	-0.0302	1.568
6	2	-0.0288	1.7152
6	3	-0.0255	1.9498
6	4	-0.0196	2.2584
6	5	-0.0111	2.6255
6	6	0	3.0357
6	7	0.0132	3.4752
6	8	0.0282	3.9326
6	9	0.0445	4.3987
6	10	0.0619	4.8666
6	11	0.0799	5.331
6	12	0.0985	5.7885
6	13	0.1174	6.2365
6	14	0.1366	6.6735
6	15	0.1558	7.0985
7	0	-0.0436	1.9574
7	1	-0.0434	2.0076
7	2	-0.0421	2.1547
7	3	-0.0387	2.3894
7	4	-0.0328	2.698
7	5	-0.0243	3.065
7	6	-0.0132	3.4752
7	7	0	3.9148
7	8	0.015	4.3722
7	9	0.0313	4.8383
7	10	0.0486	5.3061
7	11	0.0667	5.7706
7	12	0.0853	6.228
7	13	0.1042	6.6761
7	14	0.1233	7.1131
7	15	0.1426	7.5381

TABLE 2 (continued)

$\mathrm{N}_{\text {A }}$	N_{B}	$\Delta \mathbf{G f}_{\mathbf{C}}(\mathbf{s H z})$	SL(dB)
8	0	-0.0585	2.4148
8	1	-0.0583	2.465
8	2	-0.057	2.6121
8	3	-0.0537	2.8468
8	4	-0.0478	3.1554
8	5	-0.0392	3.5225
8	6	-0.0282	3.9326
8	7	-0.015	4.3722
8	8	0	4.8296
8	9	0.0163	5.2957
8	10	0.0337	5.7635
8	11	0.0517	6.228
8	12	0.0703	6.6854
8	13	0.0892	7.1335
8	14	0.1084	7.5705
8	15	0.1276	7.9955
9	0	-0.0749	2.8809
9	1	-0.0747	2.9311
9	2	-0.0733	3.0782
9	3	-0.07	3.3129
9	4	-0.0641	3.6215
9	5	-0.0556	3.9886
9	6	-0.0445	4.3987
9	7	-0.0313	4.8383
9	8	-0.0163	5.2957
9	9	0	5.7618
9	10	0.0173	6.2296
9	11	0.0354	6.6941
9	12	0.054	7.1515
9	13	0.0729	7.5996
9	14	0.092	8.0366
9	15	0.1113	8.4616
10	0	-0.0922	3.3487
10	1	-0.092	3.3989
10	2	-0.0907	3.546
10	3	-0.0873	3.7807
10	4	-0.0815	4.0893
10	5	-0.0729	4.4564
10	6	-0.0619	4.8666
10	7	-0.0486	5.3061
10	8	-0.0337	5.7635
10	9	-0.0173	6.2296
10	10	0	6.6975
10	11	0.0181	7.1619
10	12	0.0367	7.6194
10	13	0.0556	8.0674
10	14	0.0747	8.5044
10	15	0.0939	8.9294
11	0	-0.1103	3.8132
11	1	-0.1101	3.8634
11	2	-0.1088	4.0105
11	3	-0.1054	4.2452
11	4	-0.0995	4.5538
11	5	-0.091	4.9208
11	6	-0.0799	5.331
11	7	-0.0667	5.7706
11	8	-0.0517	6.228
11	9	-0.0354	6.6941
11	10	-0.0181	7.1619
11	11	0	7.6264
11	12	0.0186	8.0838
11	13	0.0375	8.5318
11	14	0.0566	8.9688
11	15	0.0759	9.3939

$\mathrm{N}_{\text {A }}$	$\mathbf{N}_{\text {B }}$	$\Delta \mathbf{G f}_{\mathbf{C}}(\mathbf{s H z})$	SL(dB)
12	0	-0.1289	4.2706
12	1	-0.1287	4.3208
12	2	-0.1273	4.468
12	3	-0.124	4.7026
12	4	-0.1181	5.0112
12	5	-0.1096	5.3783
12	6	-0.0985	5.7885
12	7	-0.0853	6.228
12	8	-0.0703	6.6854
12	9	-0.054	7.1515
12	10	-0.0367	7.6194
12	11	-0.0186	8.0838
12	12	0	8.5413
12	13	0.0729	7.5996
12	14	0.092	8.0366
12	15	0.1113	8.4616
13	0	-0.1478	4.7187
13	1	-0.1476	4.7688
13	2	-0.1463	4.916
13	3	-0.1429	5.1507
13	4	-0.137	5.4593
13	5	-0.1285	5.8263
13	6	-0.1174	6.2365
13	7	-0.1042	6.6761
13	8	-0.0892	7.1335
13	9	-0.0729	7.5996
13	10	-0.0556	8.0674
13	11	-0.0375	8.5318
13	12	-0.0189	8.9893
13	13	0	9.4373
13	14	0.0191	9.8743
13	15	0.0384	10.299
14	0	-0.1669	5.1557
14	1	-0.1667	5.2058
14	2	-0.1654	5.353
14	3	-0.162	5.5877
14	4	-0.1562	5.8963
14	5	-0.1476	6.2633
14	6	-0.1366	6.6735
14	7	-0.1233	7.1131
14	8	-0.1084	7.5705
14	9	-0.092	8.0366
14	10	-0.0747	8.5044
14	11	-0.0566	8.9688
14	12	-0.038	9.4263
14	13	-0.0191	9.8743
14	14	0	10.311
14	15	0.0192	10.736
15	0	-0.1862	5.5807
15	1	-0.186	5.6309
15	2	-0.1846	5.778
15	3	-0.1813	6.0127
15	4	-0.1754	6.3213
15	5	-0.1668	6.884
15	6	-0.1558	7.0985
15	7	-0.1426	7.5381
15	8	-0.1276	7.9955
15	9	-0.1113	8.4616
15	10	-0.0939	8.9294
15	11	-0.0759	9.3939
15	12	-0.0573	9.8514
15	13	-0.0384	10.299
15	14	-0.0192	10.736
15	15	0	11.162

SERVO DEMODULATOR

Four gated peak detectors are incorporated for recovery of embedded servo information. The ML6310 provides four buffered low impedance outputs (A, B, C, D), which represent the peak detected level of each servo burst. The voltages on these pins are suitable for digitizing by an external A/D converter and processed by the controlling microprocessor for head positioning. With the help of the SMODE bit in control register \#6, these four outputs can be configured to be ($A+B, A-B, C+D, C-D$) using internal summation and difference amplifiers. The summation outputs ($\mathrm{A}+\mathrm{B}, \mathrm{C}+\mathrm{D}$) are equal to the sum of the peak detected levels divided by 2 . The difference outputs ($A-B$, C-D) are equal to the difference of the peak detected levels divided by 2 . The zero-level for the difference outputs (A-B, C-D) is given at the VRSVO pin. The typical value for this reference signal is 1 V . There is also a VSET bit in control register \#6 which controls the direction of the VRSVO pin. If VSET $=0$, the difference zero-level is generated internally (1 V). If $\mathrm{VSET}=1$, an external reference voltage is used to set the difference zero-level.
The zero-level for the buffered servo outputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) or the summation outputs $(A+B, C+D)$ is internally generated and has a value of 0.5 V .

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	RSVD	SMODE	VSET	PM1	PM0

The servo peak detectors in the demodulator section receive the servo burst signal from the lowpass output of the filter/equalizer, which are then amplified to the proper amplitude and sent through a full wave rectifier before the sample and hold operation. There are four identical peak and hold circuits, with internal holding capacitors which perform the sample and hold operation. This optimized architecture thus provides for higher integration by not only eliminating the four external holding capacitors but also the pins required for them, thus contributing towards minimizing the external component count and hence cost.

POWER MANAGEMENT

The ML6310 provides a hardware pin ($\overline{\text { PDNB }}$) and two bits in the control register \#6 for five levels of micro power management control.

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | RSVD | SMODE | VSET | PM1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{P M 0}$| |
| :--- |

The major circuit blocks in the ML6310 comprise of the regulator, the serial interface, the AGC, the filter/equalizer, the pulse detector, the servo demodulator and the bias circuits. The PDNB pin in conjunction with the two bits in the control register \#6 can be used to selectively turn of a combination of these blocks depending on the mode of operation viz, read mode, write mode, servo mode, etc. This allows the system designer to turn off the sections of the chip that are not in use during the operation and thus minimize power dissipation at a micro management level. Table 3 below shows these five different power management modes and the circuits that are active in these individual modes.

TABLE 3: Power Management Modes

PIN	PM1	PM0	POWER MANAGEMENT MODE
1	0	0	Normal mode
1	0	1	Servo mode
1	1	0	Data mode
1	1	1	Idle mode
0	X	X	Sleep mode

Normal Mode - All circuits are enabled. Typical Power dissipation @ 2.7 V is 175 mW .
Servo Mode - Pulse Detector is disabled. Typical Power dissipation @ 2.7 V is 150 mW .
Data Mode - Servo demodulator is disabled. Typical Power dissipation @ 2.7 V is 160 mW .
Idle Mode - Only serial interface circuit and regulator are enabled. In 3 V mode of operation the regulator is not used and could be powered off using the 'reg' bit in control register \#5. Typical Power dissipation @ 4.75V is 4 mW . Typical Power dissipation @ 2.7 V is $1.2 \mu \mathrm{~W}$.
Sleep Mode - All circuits disabled, however control registers will hold latest programmed data and can be accessed through the serial interface. Typical Power dissipation @ 2.7 V is $0.5 \mu \mathrm{~W}$.

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. Data is shifted serially into the ML6310 on the SDATA line on the falling edges of the serial shift clock, SCLK, provided the SENB pin is active (low). The data is shifted in blocks of eight bits with MSBit first. The internal registers are organized in blocks of eight bits, with the three most significant bits denoting the address, followed by the five data bits. This addressing scheme thus allows for a register bank of eight registers. When the chip is physically powered-up, the control registers come up in an undetermined state and hence they need to be initialized to some preset bit configuration so that the behavior of the chip is predictable. The control registers retain their programmed information in any of the power-down modes, until the chip is physically powereddown. When the SENB pin goes inactive (high), the SDATA and SCLK pins are ignored and the previously shifted information is latched on the rising edge of the SENB, into the appropriate register bank based on the address bits. It is recommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input is capable of handling speeds up to 20 MHz .

CONTROL REGISTER DEFINITIONS

The control register bank consists of eight registers with addresses from 0 through 7. Control register \#7 is not used and some of the bits in control register 0 through 6 are reserved. Outlined below are the detailed bit by bit definitions of the control registers 0 through 6.

CONTROL REGISTER \#0

Data Channel filter cutoff frequency control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	0	DfC4	DfC 3	DfC2	DfC1	DfC0

CONTROL REGISTER \#1

Servo Channel filter cutoff frequency control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	1	SfC_{4}	SfC	SfC2	Sfi 1	$\mathbf{S f C}^{0}$

$\mathbf{f}_{\mathbf{C}} \mathbf{4}$	$\mathbf{f}_{\mathbf{C}} \mathbf{3}$	$\mathbf{f}_{\mathbf{C}} \mathbf{2}$	$\mathbf{f}_{\mathbf{C}} \mathbf{1}$	$\mathbf{f}_{\mathbf{C}} \mathbf{0}$	$\mathbf{f}_{\mathbf{C}}(\mathbf{M H z})$
0	0	0	0	0	6.000
0	0	0	0	1	6.387
0	0	0	1	0	6.774
0	0	0	1	1	7.161
0	0	1	0	0	7.548
0	0	1	0	1	7.935
0	0	1	1	0	8.323
0	0	1	1	1	8.710
0	1	0	0	0	9.097
0	1	0	0	1	9.484
0	1	0	1	0	9.871
0	1	0	1	1	10.258
0	1	1	0	0	10.645
0	1	1	0	1	11.032
0	1	1	1	0	11.419
0	1	1	1	1	11.806
1	0	0	0	0	12.194
1	0	0	0	1	12.581
1	0	0	1	0	12.968
1	0	0	1	1	13.355
1	0	1	0	0	13.742
1	0	1	0	1	14.129
1	0	1	1	0	14.516
1	0	1	1	1	14.903
1	1	0	0	0	15.290
1	1	0	0	1	15.677
1	1	0	1	0	16.065
1	1	0	1	1	16.452
1	1	1	0	0	16.839
1	1	1	0	1	17.226
1	1	1	1	0	17.613
1	1	1	1	1	18.000
0	0	0	0		

CONTROL REGISTER \#2

Asymmetric equalization (slimming) - zero $A\left(N_{A}\right)$

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	0	RSVD	EA3	EA2	EA1	EA0

Refer to Table 2 for programming configurations

CONTROL REGISTER \#3

Asymmetric equalization (slimming) - zero $B\left(N_{B}\right)$

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	1	RSVD	EB3	EB2	EB1	EB0

Refer to Table 2 for programming configurations

CONTROL REGISTER \#4

Hysteresis Comparator qualification level

HYS3	HYS2	HYS1	HYSO	\% OF SIGNAL PEAK
0	0	0	0	0.00%
0	0	0	1	6.25%
0	0	1	0	12.50%
0	0	1	1	18.75%
0	1	0	0	25.00%
0	1	0	1	31.25%
0	1	1	0	37.50%
0	1	1	1	43.75%
1	0	0	0	50.00%
1	0	0	1	56.25%
1	0	1	0	62.50%
1	0	1	1	68.75%
1	1	0	0	75.00%
1	1	0	1	81.25%
1	1	1	0	87.50%
1	1	1	1	93.75%

CONTROL REGISTER \#5

AGC Attack \& Decay rate control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	1	REG	DKY1	DKY0	AKY1	AKY0

REG bit $=1$ implies regulator is ON
REG bit $=0$ implies regulator is OFF
This bit applies only in the 3 V operating mode where the regulator could be switched OFF, to minimize power dissipation, as it is not needed. This bit must be set to a " 1 " in the 5V operating mode.

ATK1	ATK0	AGC ATTACK CURRENT
0	0	$30 \mu \mathrm{~A}$
0	1	$60 \mu \mathrm{~A}$
1	0	$90 \mu \mathrm{~A}$
1	1	$120 \mu \mathrm{~A}$

DKY1	DKY0	AGC DECAY CURRENT
0	0	$3.0 \mu \mathrm{~A}$
0	1	$5.0 \mu \mathrm{~A}$
1	0	$7.0 \mu \mathrm{~A}$
1	1	$9.0 \mu \mathrm{~A}$

CONTROL REGISTER \#6

Miscellaneous functions register

MSB

A2	A1	A0	D4	D3	D2	D1	D0
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	RSVD	SMODE	VSET	PM1	PM0

RSVD implies bit reserved for future use. Can be zero or one.

PM1, PM0 power management mode bits

$\overline{\text { PDNB }}$ PIN	PM1	PMO	MANAGEMENT MODE
1	0	0	Normal mode
1	0	1	Servo mode
1	1	0	Data mode
1	1	1	Idle mode
0	x	x	Sleep mode

SMODE $=1$ implies servo demodulator outputs are configured as $A+B, A-B, C+D, C-D$

SMODE $=0$ implies servo demodulator outputs are configured as A, B, C, D
VSET $=1 \quad$ VRSVO servo reference pin configured as input. This allows the use of an external reference to calibrate the servo demodulator outputs for data conversion.

VSET $=0 \quad$ VRSVO servo reference pin configured as output. This implies that the internal reference is used to calibrate the servo demodulator outputs for data conversion purposes.

ORDERING INFORMATION

PART NUMBER	VCC RANGE	TEMPERATURE RANGE	PACKAGE
ML6310 CH2	2.7 V to 3.3 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP (H32)
ML6310 CH3	3.0 V to 3.6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP (H32)
ML6310 CH5	4.5 V to 5.5 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP (H32)

3V/5V Read Channel Back-end Processor

GENERAL DESCRIPTION

The ML6311 is a BiCMOS Read Channel Back-end Processor IC which is one half of the disk read channel chipset from Micro Linear, intended for the next generation of smaller form factor ($1.8^{\prime \prime} \& 1.3^{\prime \prime}$) disk drives, operating on 3 V and 5 V supplies. It works in conjunction with the ML6310 Read Channel Front-end Processor to form a complete solution for the low voltage/low power disk read/write channel. It incorporates a full function data synchronizer with a 3:1 operating range, a full function frequency synthesizer with onboard M\&N dividers, $(1,7)$ RLL encoder/decoder and write precompensation circuitry. The most critical blocks on this chip are the three VCOs, one for the data synchronizer PLL, one for the frequency synthesizer PLL and the third VCO is used to generate the tracking $1 / 3$ cell delay for $(1,7)$ RLL data synchronization. Careful design considerations have been incorporated to minimize the noise coupling and crosstalk among the VCOs. The system noise is highly minimized as the VCO operates at only 1.5 X the data rate.
It provides 40 -bits for user programmability of a number of features through a serial microprocessor interface and a bank of internal control registers. The center frequency of the VCO, window centering, $M \& N$ dividers and power management options are programmable. Independent early and late write precompensation programmability is provided through a 6-bit decoder array. The ML6311 requires two external components besides the two loop filters for the PLL's.

The ML6311 supports six power down modes. An external hardware pin is also provided to implement real time power management. The operating power dissipation is targeted to be less than 170 mW , while it will dissipate less than $100 \mu \mathrm{~W}$ in the sleep mode.

FEATURES

■ Operating supply range 2.7 V to 3.6 V or 4.5 V to 5.5 V

- Very Low Power dissipation at 3 V
$P_{\text {SLEEP }}<100 \mu \mathrm{~W}$, $\mathrm{P}_{\text {OPR }}<170 \mathrm{~mW}$
■ Low profile, small area, 32-pin TQFP package
■ 3:1 Disk data rate range - 11 to $32 \mathrm{Mbits} / \mathrm{s}$
- Fast acquisition PLL with zero phase start capability
- 3:1 VCO tuning range with $48 \mathrm{Mbits} / \mathrm{s} 1,7 \mathrm{RLL}$ code rate

■ Onboard $(1,7)$ RLL encoder/decoder

- Tracking $1 / 3$ cell delay for internal 1,7 RLL Endec and 1/4 cell delay for external 2, 7 RLL Endec
- Programmable VCO center frequency and window centering adjustment (75% to 125% in steps of 1.6%)
- PLL based frequency synthesizer with reference crystal oscillator and M (7-bit) \& N (7-bit) dividers
- Programmable independent early and late write precompensation.
- High speed (20 MHz) three wire serial microprocessor interface with double buffered data latches
- Programmable six levels of power management control with external power down pin support
- CMOS, TTL compatible I/O interface for lower power

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN	NAME	FUNCTION
ECL Level Logic Inputs		
5	RD	Encoded read data from the disk drive read channel front-end chip ML6310.
The rising edges of RD represent the		
flux changes on the disk. (differential		
" + " input)		

ECL Level Logic Outputs

(Note: These are test outputs for characterization purposes. External current sources are necessary to provide driving capability for these signals and the ECL buffer needs to be enabled from Control Register \#7)

| 27 | DRDDelayed read data output after the
 $1 / 3$ rd cell delay. This signal is used for
 $1 / 3 r$ rd cell delay characterization and
 window margin test. |
| :--- | :--- | :--- |
| 26 | VCO2CLKTest point for Data seperator VCO
 clock output. |

CMOS Level Logic Inputs

WG Write Gate signal from the disk controller. Active high signal indicates write mode. This input enables the (1, 7) RLL encoder and write precompensation circuits.
30 COAST A high level on this pin disables phase detector/charge pump of the data separator PLL and allows the VCO to coast.
$\overline{\text { PDNB }} \quad$ Power Down Control. A low level input on this pin puts the chip in the power down (SLEEP) mode with a power dissipation of less than $100 \mu \mathrm{~W}$.
12 XTAL A parallel resonant crystal with low parasitic capacitance is connected between this pin and ground as the master clock source. If a crystal oscillator is not desired, an external clock can be forced onto this pin.
PIN NAME FUNCTION

CMOS Level Logic Inputs (continued)

22 WCLK Write data clock from disk controller. This is the data rate clock synchronized to the RRC. If minimum cable delay is desired, WCLK pin can be shorted to RRC.

23 NRZIN Non-return to zero write data input from disk controller. In write mode, NRZIN is clocked into the chip on the rising edges of the WCLK.
$9 \quad \overline{\operatorname{SENB}} \quad$ Active low CMOS input - Control Register Enable. A logic low input on this pin allows the SCLK input to clock the SDATA into the control Register and a logic high on this input, latches the control register contents.

10 SCLK This is a CMOS input which clocks the Control Register. Internally this pin is gated with the $\overline{\text { SENB }}$ signal. While SENB is low, address and programming data are clocked in at the chip on the falling edges of SCLK.

11 SDATA Control Register Data, CMOS input, clocked by SCLK.

CMOS Level Logic Outputs

24 NRZOUT Non-return to zero read data output. This is the synchronized and decoded data from the disk drive. In the read mode, NRZOUT is clocked out of the chip on the falling edges of RRC. In the external Endec mode (selected through the control register \#6 RAW bit), this pin provides the synchronized encoded data output.
21 RRC Read/Reference clock. In the write mode, this pin outputs 1 X (data rate) clock derived from the frequency synthesizer VCO clock. In the read mode, it switches to 1 X clock derived from the data separator VCO clock after detecting 19 pulses on the RD line. In the external Endec mode (selected through the control register \#6 RAW bit), this pin outputs 1.5 X clock (1,7 RLL) and 2 X clock ($2,7 \mathrm{RLL}$), derived from the data separator VCO2.
$20 \overline{\mathrm{WD}}(1,7)$ RLL encoded write data output.

PIN DESCRIPTION

PIN	NAME	FUNCTION
Analog Pins	RWPC	A 1\% timing resistor for write precompensation delay setting.
18	RVCO	A 1\% resistor connected between this pin and GNDA3 sets the current level for data rate programmability.
3	RPUMP	1\% resistor connected between this pin and GNDA3 sets the charge pump current for the two PLL's and the bias current for miscellaneous blocks.
17	VCOIN1	Frequency synthesizer PLL charge pump output and VCO input pin. A lowpass filter is connected between this pin and GNDA1.
28	VCOIN2	Data separator PLL charge pump output and VCO input pin. A lowpass filter is connected between this pin and GNDA2.

PIN	NAME	FUNCTION
Power Supplies		
13	VCCD1	2.7 V to 5.5V digital supply
29	VCCD2	2.7 V to 5.5V digital supply
14	VCCA1	2.7 V to 3.6 V analog supply for frequency synthesizer. This pin should be left open for 5V operation.
32	VCCA2	2.7V to 3.6V analog supply for data separator. This pin should be left open for 5V operation.
2	VCCA3	2.7 V to 3.6V analog supply for miscellaneous functions. This pin should be left open for 5V operation.
25	GNDD1	Digital Ground
8	GNDD2	Digital Ground 16
GNDA1	Analog ground for frequency synthesizer	
31	GNDA2	Analog ground for data separator 1
GNDA3	Analog ground for miscellaneous functions	

TYPICAL EXTERNAL COMPONENTS

ASSUMPTIONS

$\mathrm{T}_{\mathrm{S}}=1 \mu \mathrm{~s} @ \mathrm{~F}_{\mathrm{VCO}}=48 \mathrm{MHz}$
Change pump current $=3 X$
$\mathrm{K}_{\mathrm{O}}=2400 \mathrm{~A} / \mathrm{S} / \mathrm{N}$
$\theta_{\mathrm{e}, \mathrm{f}}=15 \% \theta_{\mathrm{e}, \mathrm{i}}$
$\xi=0.95, \omega_{n} T=1.2$

ASSUMPTIONS

$\mathrm{F}_{\mathrm{XTAL}}=20 \mathrm{MHz}$
$N+1=20, M+1+48$
$\mathrm{K}_{\mathrm{O}}=800 \mathrm{~A} / \mathrm{S} / \mathrm{N}$
$\mathrm{T}_{\mathrm{S}}=200 \mu \mathrm{~s}$
$\omega_{n} T=5$
$\theta_{\mathrm{e}, \mathrm{f}}=1 \%$ of $\theta_{\mathrm{e}, \mathrm{i}}$
$\xi=0.6$
ABSOLUTE MAXIMUM RATINGS
DC Supply Voltage (VCCA \& VCCD) $\ldots \ldots-0.3$ to +7 V
Analog \& Digital Inputs/Outputs -0.3 to VCCA +0.3 V
Input Current per Pin -25 to +25 mA
Storage Temperature ... 155 to $155^{\circ} \mathrm{C}$
Maximum Junction Temperature

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage Range..... 2.7 V to 3.6 V or 4.5 V to 5.5 V For 5 V Operation...... VCCA is left open, VCCD is at 5 V For 3V Operation VCCA and VCCD are tied to 3 V
Operating Temperature Range \qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, VCCA $=\mathrm{VCCD}=2.7$ to 3.6 volts or 4.5 to 5.5 volts and $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Dissipation					
Analog Vcc (VCCA)	Left open for 5 V operation	2.7		3.6	V
Digital Vcc (VCCD)	Connected for both 3 V \& 5V	2.7		5.5	V
Analog Supply Current Normal Mode Read Mode Write Mode PLLFS Mode Idle Mode Sleep Mode	VCCA $=3.6 \mathrm{~V}$, Data Rate $=32 \mathrm{Mbps}$ All circuits operational Encoder \& WPrecomp OFF Data separator and decoder OFF Data separator, endec, WPrecomp OFF Only bias circuits \& serial interface ON All circuits OFF, register contents retained		$\begin{gathered} 37 \\ 36 \\ 15 \\ 14 \\ 5 \end{gathered}$	$\begin{gathered} 40 \\ 39 \\ 17 \\ 16 \\ 5.5 \\ 10 \end{gathered}$	mA mA mA mA mA $\mu \mathrm{A}$
Digital Supply Current Normal Mode Read Mode Write Mode PLLFS Mode Idle Mode Sleep Mode	$\mathrm{VCCD}=3.6 \mathrm{~V}$, Data Rate $=$ $32 \mathrm{Mbps}, \mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$ All circuits operational Encoder \& WPrecomp OFF Data separator and decoder OFF Data separator, endec, WPrecomp OFF Only bias circuits \& serial interface ON All circuits OFF, register contents retained		$\begin{gathered} 16 \\ 16 \\ 15 \\ 9 \\ 1.5 \end{gathered}$	$\begin{gathered} 20 \\ 20 \\ 20 \\ 11 \\ 2 \\ 10 \end{gathered}$	mA mA mA mA mA $\mu \mathrm{A}$
Digital Supply Current Normal Mode Read Mode Write Mode PLLFS Mode Idle Mode Sleep Mode	$\mathrm{VCCA}=$ open, $\mathrm{VCCD}=4.5 \mathrm{~V}$ to 5.5 V , Data Rate $=32 \mathrm{Mbps}, \mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$ All circuits operational Encoder \& WPrecomp OFF Data separator and decoder OFF Data separator, endec, WPrecomp OFF Only bias circuits \& serial interface ON All circuits OFF, register contents retained			$\begin{gathered} 60 \\ 59 \\ 37 \\ 27 \\ 7.5 \\ 20 \end{gathered}$	mA mA mA mA mA $\mu \mathrm{A}$

Digital I/O Specifications

High level input voltage		$\mathrm{VCCD}-0.5$		VCCD	V	
Low level input voltage		GNDD		0.5	V	
High level input current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{VCC}$			0.1	$\mu \mathrm{~A}$	
Low level input current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$			0.1	$\mu \mathrm{~A}$	
High level output voltage	$\\|_{\mathrm{OUT}} \mid=2 \mathrm{~mA}$	$\mathrm{VCCD}-0.5$		VCCD	V	
Low level output voltage	$\\|_{\mathrm{OUT}} \mid=2 \mathrm{~mA}$			0.4	V	
High impedance output current	$@ \mathrm{~V}_{\mathbb{I N}}=100 \mathrm{mV} \& \mathrm{VCC}-100 \mathrm{mV}$	-0.5		0.5	$\mu \mathrm{~A}$	

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics					
Differential Input voltage swing	On ECL input pins RD \& RDB	0.8		1.6	$V_{\text {P-P }}$
Psuedo ECL low level output voltage	@ $\mathrm{I}_{\text {OUT }}=3 \mathrm{~mA} \mathrm{DRD} \mathrm{\&} \mathrm{VCO2CLK} \mathrm{pins}$	VCCA - 2.05		VCCA - 1.45	V
Psuedo ECL high level output voltage	@ $\mathrm{I}_{\text {OUT }}=3 \mathrm{~mA} \mathrm{DRD} \mathrm{\&} \mathrm{VCO2CLK} \mathrm{pins}$	VCC -1.7		VCC-1.3	V
Psuedo ECL output swing		0.15	0.25	0.35	V
Low level input current (Psuedo ECL)	Diff $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ \& VCC -0.7 V (RD \& RDB inputs)	0.8	1.0	1.3	mA
High level input current (Psuedo ECL)	Diff $\mathrm{V}_{\mathrm{IN}}=\mathrm{VCC}-0.7 \mathrm{~V}$ \& 0 V (RD \& RDB inputs)	0.8	1.0	1.3	mA
$\mathrm{V}_{\text {RD/RDB }}$ common mode	Note 1		VCCA - V ${ }_{\text {BE }}$		V
RPUMP bias voltage	RPUMP = 7.5 Kohms (1\%)		0.75		V
RWPC bias voltage	$\begin{aligned} & \text { RWPC }=15 \text { Kohms (} 1 \% \text {) } \\ & \text { RWPC }=7.87 \text { Kohms (} 1 \% \text {) } \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.63 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 0.78 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 0.92 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
RVCO resistor	$7.87 \mathrm{~K} \Omega(1 \%)$ recommended	0.6	0.78	0.9	K Ω

Frequency Synthesizer

Xtal or input frequency	Parallel resonant type with minimum capacitance loading	5		20	MHz
M divider register		1		127	Decimal
N divider register		1		127	Decimal
VCO center frequency dynamic range (f_{O})	Measure $\mathrm{f}_{\mathrm{H}} @$ VCOIN1 $=0.7 \mathrm{~V}$ Measure $f_{L} @ \operatorname{VCOIN} 1=2.3 \mathrm{~V}$ Dynamic range $=\left(f_{H}-f_{L}\right) / f_{\mathrm{O}}$	± 17	± 20		\%
VCO gain	$\begin{aligned} & \omega_{\mathrm{O}}=2 \times \pi \times \mathrm{f}_{\mathrm{O}} \\ & \mathrm{~K}_{\mathrm{VCO}}=\pi \times\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) / 100 \mathrm{mV} \\ & \mathrm{f}_{1} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}+100 \mathrm{mV} \\ & \mathrm{f}_{2} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}-100 \mathrm{mV} \end{aligned}$	0.3	0.35	0.4	$\mathrm{rad} / \mathrm{s}-\mathrm{V}$
Pump current resistor	for setting pump current		7.5		Kohms
Pump current	$@ \mathrm{f}_{\mathrm{O}}=48 \mathrm{MHz}, \mathrm{l}_{\mathrm{O}}=0.75 \mathrm{~V} /(2 \times \mathrm{RPUMP}$)	$0.85 \mathrm{I}_{\mathrm{O}}$	10	$1.15 \mathrm{l}_{\mathrm{O}}$	$\mu \mathrm{A}$
Phase detector gain	$\mathrm{Kd}=\left(\mathrm{l}_{\mathrm{O}} \times 48 \mathrm{MHz}\right) /\left(2 \times \pi \times \mathrm{f}_{\mathrm{O}}\right)$	0.85 Kd	Kd	1.15 Kd	A/rad
PLL loop gain	$\mathrm{G}_{\mathrm{O}}=3.6 \times 106 / \mathrm{R}_{\text {PUMP }}$	$0^{0.75 G}{ }_{\text {O }}$	G_{O}	${ }^{1.25 G} \mathrm{O}$	$\mathrm{A} / \mathrm{s} \times \mathrm{V}$
PLLFS jitter	RG active, 5 V mode, Note 1 RG active, 3 V mode, Note 1		$\begin{aligned} & 200 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Read Mode and Data Synchronizer					
VCO center frequency dynamic range (f_{O})	Measure $\mathrm{f}_{\mathrm{H}} @ \operatorname{VCOIN} 2=0.7 \mathrm{~V}$ Measure $f_{L} @$ VCOIN2 $=2.3 \mathrm{~V}$ Dynamic range $=\left(f_{\mathrm{H}}-f_{\mathrm{L}}\right) / f_{\mathrm{O}}$	± 17	± 20		\%
VCO gain	$\begin{aligned} & \omega_{\mathrm{O}}=2 \times \pi \times \mathrm{f}_{\mathrm{O}} \\ & \mathrm{~K}_{\mathrm{VCO}}=\pi \times\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right) / 100 \mathrm{mV} \\ & \mathrm{f}_{1} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}+100 \mathrm{mV} \\ & \mathrm{f}_{2} @ \text { VCOIN1 } @ \mathrm{f}_{\mathrm{O}}-100 \mathrm{mV} \end{aligned}$	0.3	0.35	0.4	$\mathrm{rad} / \mathrm{s}-\mathrm{V}$
Read mode pump current during preamble	@ $\mathrm{f}_{\mathrm{O}}=48 \mathrm{MHz}, \mathrm{I}_{\mathrm{O}}=(2 \times 0.75 \mathrm{~V}) / \mathrm{R}_{\text {PUMP }}$ if CPG bit $=0$	$0.64 \mathrm{l}_{\mathrm{O}}$	$0.75{ }^{\circ} \mathrm{O}$	0.8610	$\mu \mathrm{A}$
Normal pump current	$@ \mathrm{f}_{\mathrm{O}}=48 \mathrm{MHz}, \mathrm{I}_{\mathrm{O}}=(2 \times 0.75 \mathrm{~V}) /$ RPUMP if CPG bit $=0$	0.211_{0}	$0.25 \mathrm{l}_{\mathrm{O}}$	${ }^{0.2910}$	A
Phase detector gain	$\mathrm{Kd}=\left(\mathrm{l}_{\mathrm{O}} \times 48 \mathrm{MHz}\right) /\left(2 \times \pi \times \mathrm{f}_{\mathrm{O}}\right)$	0.85 Kd	Kd	1.15 Kd	A/rad
PLL loop gain	$\mathrm{G}_{\mathrm{O}}=2.9 \times 106 / \mathrm{R}_{\text {PUMP }}$ (during preamble)	$0.75 \mathrm{G}_{0}$	G_{O}	$1.25 \mathrm{G}_{0}$	$\mathrm{A} / \mathrm{s} \times \mathrm{V}$
VCO ZPS error	(zero phase start)	-0.02T-2		+0.02T + 2	ns
1/3 cell delay accuracy	relative to $\mathrm{T} / 2$			± 5	\%
1/4 cell delay accuracy	relative to T/2, RAW bit $=1($ Reg \#6)			± 5	\%
Decode window centering accuracy				± 1	ns
RD input pulse width	twrd	15		30	ns
RRC duty cycle	$W G=0, R G=1$	40		60	\%
PLLDS jitter	```Input = 8MHz 48MHz encoded clock rate (1 sigma) 5V mode 3V mode```		$\begin{aligned} & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$
RRC to NRZout delay	tDNRZ1			5	ns
RG to valid NRZout delay	t ${ }^{\text {d }}$ RZ2		6TRRC		ns

Write Mode and Write Precompensation

Write precomp accuracy	$\begin{aligned} & \mathrm{t}_{\mathrm{E}}=\left(\mathrm{R}_{\mathrm{WPC}} \times \mathrm{C} \times \mathrm{E} / 10\right) 0<\mathrm{E}<7 \\ & \mathrm{t}_{\mathrm{L}}=\left(\mathrm{R}_{\mathrm{WPC}} \times \mathrm{C} \times \mathrm{L} / 10\right) 0<\mathrm{L}<7 \\ & 7.5 \mathrm{~K}<\mathrm{R}_{\mathrm{WPC}}<15 \mathrm{~K} \& \mathrm{C}(\mathrm{int})=0.67 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{t}_{\mathrm{E}} \\ & 0.8 \mathrm{t}_{\mathrm{L}} \end{aligned}$		$\begin{aligned} & 1.2 \mathrm{t}_{\mathrm{E}} \\ & 1.2 \mathrm{t}_{\mathrm{L}} \end{aligned}$	ns
WD pulse width	$\mathrm{T}=1 / \mathrm{f}_{\mathrm{O}} \mathrm{t}_{\mathrm{WWWD}}$	0.6 T		1.4 T	ns
RRC duty cycle	WG = 1	40		60	\%
WCLK to NRZin Hold time	$\mathrm{t}_{\mathrm{H} N R Z}$	5			ns
NRZin to WCLK setup time	tsNRZ	5			ns

Serial Microprocessor Interface

Serial clock (SCLK) frequency		0.01		20	MHz
SCLK pulse width	$t_{\text {PW }}$	40			ns
SCLK to SDATA hold time	$\mathrm{t}_{\text {HSD }}$	10			ns
SDATA to SCLK setup time	$\mathrm{t}_{\text {SSD }}$	10			ns
SENB to SCLK setup time	$\mathrm{t}_{\text {SSEN }}$	10			ns

[^10] indicated for system desıgner's reference.

TIMING DIAGRAMS

Figure 1. Read Mode Timing

Figure 3. Serial Port Timing

FUNCTIONAL DESCRIPTION

The ML6311 is a BiCMOS Read Channel Back-end Processor IC which is one half of the disk read channel chipset from Micro Linear, intended for the next generation of smaller form factor ($1.8^{\prime \prime} \& 1.3^{\prime \prime}$) disk drives, operating on 3 V and 5 V supplies. Fabricated in Micro Linear's BiCMOS process ($1.5 \mu \mathrm{CMOS}, 4 \mathrm{GHz} \mathrm{ft}$ bipolar), it works in conjunction with the ML6310 Read Channel Front-end Processor to form a complete solution for the low voltage/low power disk read/write channel. It incorporates a full function data synchronizer with a 3:1 operating range, a full function frequency synthesizer with onboard M\&N dividers, $(1,7)$ RLL encoder/decoder and write precompensation circuitry. Bidirectional NRZ I/O can be realized by tying the NRZ Out \& NRZ In pins.

The most critical blocks on this chip are the three VCOs, one for the data synchronizer PLL, one for the frequency synthesizer PLL and the third VCO is used to generate the tracking $1 / 3$ cell delay for $(1,7)$ RLL data synchronization. It also supports a tracking $1 / 4$ cell delay for $(2,7)$ RLL data synchronization, with an external endec. Careful design considerations have been incorporated to minimize the noise coupling and crosstalk among the VCOs. The highlights of the ML6311 VCO architecture are that it is a fully differential, high speed circuit with built-in switching. It provides a constant amplitude across the frequency span with on-chip timing capacitors. The system noise is highly minimized as the VCO operates at only 1.5 X the data rate.

It provides 40-bits for user programmability of a number of features through a serial microprocessor interface and a bank of internal control registers. The control registers come up in an undetermined state on physical power-up and hence need to be initialized, to setup the ML6311 in a known state, on power-up. The control registers will retain their contents in all the power down modes, until power is physically switched off to the chip. The center frequency of the frequency synthesizer VCO is programmed with a 5 -bit current DAC. The program information can be provided by the user, or it can be derived from the M \& N information. The VCO control current results from the summation of this DAC based coarse control and PLL based fine control. The center frequency of the data separator VCO is programmed by duplicating the control current in the frequency synthesizer VCO as the coarse control. This leaves only the data rate variation to be fine tuned by the PLL, hence implying lower sensitivity and better jitter performance. The VCO3 period is programmed from a 5-bit current DAC, which is in turn referenced to the VCO2 control current. This will vary the $1 / 2$ cycle of VCO3 for the required window centering programmability. Independent early and late write precompensation programmability is provided through a 6 -bit decoder array. The external resistor is used to set the time delay for the precompensation.
The ML6311 supports six power down modes for implementation of intelligent power management schemes. An external hardware pin is also provided to implement real time power management. The operating power dissipation is targeted to be less than 170 mW , while it will dissipate less than $100 \mu \mathrm{~W}$ in the sleep mode.

In this mode all sections are powered down except the serial microprocessor interface.
The ML6311 accepts the raw data in a pseudo ECL voltage level, as generated by the ML6310 and provides the synchronized data and clock outputs for the disk controller. Please refer to the block diagram of the ML6311 for the details.

VCO ARCHITECTURE

The most critical circuit blocks in the ML6311 are the three VCOs. The first VCO is used in the frequency synthesizer PLL, the second VCO is used in the data separator PLL and the third VCO is used to generate the tracking $1 / 3$ cell delay for $(1,7)$ RLL data synchronization or a tracking $1 / 4$ cell delay for $(2,7)$ RLL data synchronization.

The VCO architecture is optimized to minimize noise coupling from the digital sections of the chip and also the cross talk among the VCOs. The highlights of the VCO architecture are:

- High speed operation with built-in switching mechanism for optimized performance.
- Fully differential circuit configuration to achieve high level of noise immunity.
- On chip timing capacitors to control accuracy and for better noise immunity.
- Constant amplitude across frequency span.
- Symmetrical waveform ($\sim 50 \%$ duty cycle).

The operating frequency of the VCO is controlled by the tail current of the VCO which consists of two components - a fixed but programmable current (coarse), generated from a DAC which is controlled by the control register \#3 and a variable current generated from the PLL. The coarse setting sets the center frequency of the VCO near the operating frequency and the negative feedback around the PLL is used to tune the VCO into the target operating frequency. To minimize the dependence on process and temperature variations the DAC current is derived using an external 1% resistor $\mathrm{R}_{\mathrm{VCO}}$. The center frequency is given by the equation:

$$
f_{\mathrm{O}}=\frac{\mathrm{m}+17}{\left(16 \times \mathrm{R}_{\mathrm{VCO}} \times \mathrm{C}\right)}
$$

where $m=0$ to 31 from control register \#3
$\mathrm{C}=$ internal capacitor

$$
\mathrm{R}_{\mathrm{VCO}}=7.87 \mathrm{kOhms}, 1 \% \text { (recommended) }
$$

The architecture of the VCOs is such that they are running at 1.5 X the data rate, as opposed to the 3 X data rate in the conventional designs used for $(1,7)$ RLL data streams. This reduces the speed requirements of the circuits and also helps in minimizing crosstalk between the VCOs, thus contributing towards overall system noise immunity. The output of the VCO is sent to a frequency doubler to generate the 3 X frequency locally which is then divided
by 2 or 3 to generate the synchronized 1.5 X and 1 X clocks. Zero phase start of the data separator VCO is supported for initial phase alignment.

PLL ARCHITECTURE

There are two PLLs implemented to realize the data separation (for data and clock recovery) and frequency synthesis function (required to support a zoned bit recording (ZBR) implementation). Shown below is a block diagram of the PLL which requires a first order loop filter.

Figure 4. Block Diagram of PLL.
To design the PLL response with a well controlled loop gain value, an external 1% resistor ($\mathrm{R}_{\text {PUMP }}$) is used to set the charge pump current according to the bandgap reference voltage generated on chip. The recommended value for Rpump is 7.5 kOhms . The capacitor in series with the resistor in the loop filter is chosen so that typically it is 10 times the other capacitor. The resistor is chosen to yield a damping factor between 0.5 and 1 for the acquisition performance of the PLL. The recommended loop filter values are shown in the typical external component diagram.

FREQUENCY SYNTHESIZER PLL

In a ZBR implementation, the disk is divided into a number of zones and the data rate varies from zone to zone. In order to support a ZBR implementation the appropriate frequencies need to be synthesized. VCO1 is used in the ML6311 frequency synthesizer to generate a clock with frequency fVCO1. This is given by the formula:

$$
f_{\mathrm{VCO}}=\frac{(\mathrm{M}+1) \times f_{\mathrm{XTAL}}}{(\mathrm{~N}+1)}
$$

where M and N are 7-bit dividers, programmable through control registers \#6, 5, 4. M and N should be at least 1 so that the divide ratio in both the forward and feedback paths are no less than 2, as that 50% duty cycle is guaranteed for the phase compared clocks. In a typical application the users keeps the N at a fixed value and reprograms M from zone to zone to synthesize the required frequency. A 2.5:1 span is required for most applications. The synthesized VCO1 clock is used to derive the encoder clock and the RRC (read/reference clock) for the write operation in ZBR applications. The VCO1 clock is also used to train VCO2 PLL during the non-read mode.

PLL LOOP FILTER DESIGN FOR FREQUENCY SYNTHESIZER

To select the components for the loop filter, two parameters, ξ (damping factor) and ω_{n} (natural frequency) of the loop characteristic need to be specified.
It is desirable to have the damping factor ξ between 0.5 and 1 to prevent locking to harmonics while maintaining an acceptable lock time. For a high gain, second-order loop this results in minimum noise bandwidth.

The desired natural frequency ω_{n} of the loop is determined by satisfying the acquisition time (1% maximum phase error after phase acquisition) which is less than the minimum track-to-track seek time. This yields a settling time of approximately $\mathrm{t}_{\mathrm{S}}=5 / \omega_{\mathrm{n}}$.
The formulae for the filter components are shown in equations (1) and (2).

$$
\begin{array}{r}
C_{1}=\frac{\frac{K_{O}}{(M+1)}}{\omega_{n}{ }^{2}} \\
R=\frac{2 \xi \omega_{n}(M+1)}{K_{O}} \tag{2}
\end{array}
$$

where $K_{\mathrm{O}}=\mathrm{K}_{\mathrm{D}} \mathrm{K}_{\mathrm{VCO}}$ (open loop gain)
The operating frequency $\mathrm{F}_{\mathrm{VCO}}$ (code rate) is programmed by $M \& N$ registers. Equation (3) shows the programming relationship.

$$
\begin{equation*}
F_{V C O}=\frac{(M+1)}{(N+1) F_{X T A L}} \tag{3}
\end{equation*}
$$

The value of N should be fixed in the above equation and allow only the M to change for desired operating frequency.

Loop Filter Design Example:

```
NRZ data rate \(=12\) to 24 Mbps (1:2 ratio)
    Code rate, \(\mathrm{F}_{\mathrm{VCO}}=24\) to 48 MHz
        (assumes ( 2,7 ) RLL code)
    \(\mathrm{F}_{\mathrm{XTAL}}=20 \mathrm{MHz}\)
    Choose \(N=19, \Rightarrow M=23\) to 47
    \(K_{D} K_{V C O}=800 \mathrm{~A} / \mathrm{S} / \mathrm{N}\)
```

Let the loop damping factor, $\xi=0.9$ at $\mathrm{F}_{\mathrm{VCO}}=24 \mathrm{MHz}$ to allow ξ to drop at higher frequencies. Let $\omega_{n}=50 \mathrm{Krad} / \mathrm{s}$ (relatively low frequency, in the order of tens Krad/s for better jitter performance). This value produces a loop settling time $=100 \mu \mathrm{~s}$.

$$
\begin{array}{ll}
\text { from eqn. (3) } & M+1=24 \\
\text { from eqn. (1) } & C_{1}=13.3 n \mathrm{nF} \Rightarrow C_{2}=C_{1} / 15=880 \mathrm{pF} \\
\text { from eqn. (2) } & R=2.7 \mathrm{~K} \Omega
\end{array}
$$

At $\mathrm{F}_{\mathrm{VCO}}=48 \mathrm{MHz}, \mathrm{M}+1=48$ which yields $\xi=0.64$, and $\omega_{\mathrm{n}}=35 \mathrm{Krad} / \mathrm{s}$.

DATA SEPARATOR PLL

The center frequency of VCO2 is programmed by duplicating the control current in the VCO1 as the coarse control (control register \#3). VCOIN2 thus has to do the fine tuning due to data rate variations (less than several percent), thus implying low sensitivity and good jitter performance. This is an important factor because the data separator PLL has higher bandwidth (of the order of 200 KHz) to track the data rate variations and is hence more susceptible to noise induced jitter.

The charge pump has two modes of operation. During the non-read mode, the VCO clock is compared to the frequency synthesizer clock in every cycle, hence the charge pump operates in the low speed mode. After Read Gate is asserted, the charge pump is switched to the high speed mode with ($3 \times C P G=0$) gain and VCO clock is compared to the preamble data on every third clock (assuming $3 T$ preamble pattern for $(1,7)$ RLL code).
The overall block diagram for the PLL can be described as:

where $N=$ The ratio of the VCO frequency to the input frequency

To select the components for the loop filter, the user needs to consider the following loop requirements:

1. Residual phase error at the end of the preamble should be less than 4% of the total synchronization window (i.e. $\theta_{\mathrm{e}}<1 \mathrm{~ns}$ for $\mathrm{F}_{\mathrm{VCO}}=48 \mathrm{MHz}$ or $\mathrm{T}_{\mathrm{W}}=$ 20.8 ns). This implies a large loop bandwidth so that it can quickly obtain lock within a predetermined length of the preamble field.
2. The lock-in range $\Delta \omega_{\mathrm{L}}$ must larger than the expected frequency step change due to variations in disk rotational velocity. In today's technology, the disk rotational velocity can be well controlled within $\pm 1 \%$.
3. The natural frequency ω_{n} and the damp factor ξ of the loop must be minimized to achieve maximum jitter rejection in the data field. The minimum value for the damping factor ξ will be 0.5 for adequate stability.
4. Re-lock time to the reference clock (frequency synthesizer) must be less than the minimum track-totrack seek time.

It is generally valid to assume the minimum value of $w n$ is dominated by the bandwidth needed during preamble from requirement \#1. This assumption will be checked in the design example.

The following loop filter design example assumes:
a. $(2,7)$ RLL code
b. The PLL encounters a phase offset instead of a frequency offset of the incoming data at the initial lock acquisition. The zero phase start function minimizes the initial phase offset to $\pm(0.2 T+2) \mathrm{ns}$ where $\mathrm{T}=$ synchronization window.

Figure 4. Transient Phase Error $\theta_{\mathbf{e}}(\mathbf{t})$ Due to Step in Phase $\Delta \theta$.

Figure 5. Transient Phase Error $\theta_{\mathrm{e}}(\mathrm{t})$ Due to Step in Frequency $\Delta \omega$.

Since the highest data rate yields the minimum amount of time that the PLL has to settle before decoding data, the settling time is calculated based on the highest data rate.

Loop Filter Design Example:

NRZ data rate $=24 \mathrm{MHz}$
Code rate, $\mathrm{FVCO}^{2}=48 \mathrm{MHz}$
$\mathrm{N}_{\text {MIN }}=3$ (during preamble, highest recorded frequency)
$\mathrm{N}_{\text {MAX }}=8$ (lowest recorded frequency)
Preamble length $=24$ of $3 T$ (100) pattern
TS (settling time of PLL) $=3 \times 24 \div 48 \mathrm{MHz}=1.5 \mu \mathrm{~s}$
Initial phase error $\theta_{\mathrm{e}, \mathrm{i}}=3 \mathrm{~ns}$
Final phase error (after TS) $\theta_{\mathrm{e}, \mathrm{f}}<20 \%$ of $\theta_{\mathrm{e}, \mathrm{i}}$
$\mathrm{K}_{\mathrm{O}}=3200 \mathrm{~A} / \mathrm{S} / \mathrm{N}$ during preamble
It is desirable to have the damping factor ξ between 0.5 and 1 during acquisition. For a high gain, second-order loop this results in minimum noise bandwidth.
Let the loop damping factor $\xi=0.8$ to allow ξ to drop at $N \neq 3$
As shown in figure 4 , with $\xi=0.8$, choosing $\omega_{n} T=2.4$ the phase error will be at most 20% of the initial phase error. Since $\mathrm{T}_{\mathrm{S}}=1.5 \mu \mathrm{~s}, \omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$.
If the previous assumption is correct, $\omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$ should meet the loop requirements 2 and 4 . First, examining requirement \#2:

Let the maximum frequency step $\Delta f= \pm 1 \%$ of the preamble frequency

$$
\Delta f= \pm 0.01 \times 48 \mathrm{MHz} \div 3= \pm 160 \mathrm{KHz}
$$

Lock-in range is given by
$\Delta \omega_{\mathrm{L}}=2 \xi \omega_{\mathrm{n}}=2 \times 0.8 \times 1.6 \mathrm{Mrad} / \mathrm{s}=2.56 \mathrm{Mrad} / \mathrm{s}$
Thu, $\Delta f_{\mathrm{L}}=407 \mathrm{KHz}>160 \mathrm{KHz}$ and requirement \#2 is met.
User is encouraged to check that $\omega_{\mathrm{n}}=1.6 \mathrm{Mrad} / \mathrm{s}$ durnig preamble does meet the requirement \#4.
Recall the equations for determining the filter components:

$$
\begin{gather*}
C_{1}=\frac{\frac{K_{O}}{N}}{\omega_{n}^{2}} \tag{4}\\
R=\frac{2 \xi \omega_{n} N}{K_{O}} \tag{5}
\end{gather*}
$$

from eqn. (4) $\quad C_{1}=417 \mathrm{pF} \Rightarrow \mathrm{C}_{2}=\mathrm{C}_{1} / 15=28 \mathrm{pF}$
from eqn. (2) $R=2.4 \mathrm{~K} \Omega$
The above analysis is only shown as an example. The calculated values for filter components are most likely not optimized for all systems using the same data rate, code and preamble.
The coarse center frequency of the frequency synthesizer VCO is programmed with a 5 -bit current DAC in conjunction with control register \#3. This speeds up the frequency acquisition and also minimizes the VCO
sensitivity to $\mathrm{V}_{\mathrm{VCOIN} 1}$ and improves the jitter performance. The synthesized frequency is tuned using the $M \& N$ divider information and the crystal frequency, as given by the equation above.

1/3 CELL DELAY \& SYNCHRONIZER

The synchronizer circuits align the encoded read data pulses to the data separator VCO clock for the proper decoding of read data. The encoded read data comes in at ECL levels with the timing information embedded in its falling edges. On each rising edge of the encoded read data, the VCO3 is enabled for half of a cycle to generate a DRD (delayed read data) pulse. The falling edges of the DRD pulse enable the phase detector, which operates in phase only mode during read operation, so that the falling edges of the DRD will be phase compared to the rising edges of the VCO2 clock. The falling edges of the DRD are aligned to the rising edges of the VCO2 clock by the negative feedback around the PLL. The rising edges of DRD set the output of the internal data register to a 1 , so that the following rising edge of the VCO2 clock will clock it into the synchronizer. After the 1 is clocked into the synchronizer, the internal data register is reset to a 0 and the following VCO 2 clocks will clock in 0 's to the synchronizer until the data register is set by another read pulse. The VCO3 period is programmed from a 5-bit DAC which is in turn referenced to the VCO2 control current. This will vary the $1 / 2$ cycle of VCO3 for the required window centering programmability (control register \#2), while performing a window margin test.
When the RAW bit in control register \#6 is set, then this becomes a $1 / 4$ cell delay and the endec is disabled, thus allowing the handling of $(2,7)$ RLL data. The synchronized data and 2 X clock outputs are made available on the NRZOUT and RRC pins.

READ MODE OPERATION OF THE ML6311

When Read Gate (RG) is inactive low, the data separator PLL is locked to the VCO1 clock with the phase detector operating in the phase/frequency mode. The internal multiplexer selects the 1 X clock derived from VCO1 clock and outputs it as the RRC (read/reference clock).
When Read Gate (RG) goes active high, the chip enters the read mode. In the read mode the decoder circuits and the NRZOUT signal are enabled. The internal counter starts counting the number of pulses received on the $\mathrm{RD} / \overline{\mathrm{RDB}}$ input. After 3 pulses the VCO2 is stopped. VCO2 will restart at the next input transition. The zero phase start circuit eliminates the initial misalignment and speeds up the PLL acquisition. When VCO2 restarts, the phase detector is switched to phase only mode with the input connected to DRD (delayed read data). The phase detector gain is also increased by $3 X$ to ensure that the PLL has enough bandwidth to lock within 16 preamble bytes. After 16 more RD pulses the PLL acquisition is assumed complete. The multiplexer now selects the 1 X clock derived from VCO2 clock and outputs it as the RRC (read/reference clock). The decoder then recovers the NRZ data from the RD input and outputs it onto the NRZOUT pin. The data on NRZOUT is clocked out on the falling edges of RRC.

The end of the read operation is signalled by Read Gate going inactive low, which then returns the NRZOUT pin to high impedance and also switches the phase detector input to the VCO1 clock with low gain. VCO2 is stopped again and is restarted, synchronized with VCO1. Circuitry is implemented to ensure a glitchless transition of the clock frequencies on the RRC output.

WRITE MODE OPERATION OF THE ML6311 WRITE PRECOMPENSATION CIRCUITRY

When Write Gate (WG) is asserted active high, the chip enters the write mode. During this mode it clocks in the data on the NRZIN input on the rising edges of WCLK and puts out the $(1,7)$ RLL encoded write data ($\overline{W D}$). The width of the $\overline{\mathrm{WD}}$ pulse is made to track the data rate. Write precompensation can be achieved on this write data if desired. Write precompensation can be bypassed by setting the appropriate bit in control register \#0. Write precompensation is implemented through a decoder array and the precompensation current is set through an external resistor, RWPC. The recommended values of RWPC are 7.5 KOhm or 15 KOhm . The early and late shift values are independently programmed through control registers \#1 \& \#0. Table 1 shows the $(1,7)$ RLL code mapping table used in the ML6311 and Table 2 shows the write precompensation algorithim.
Table 1: (1, 7) RLL Code Mapping table

NRZ DATA				$(\mathbf{1}, 7)$ RLL CODE					
$\mathbf{X 0}$	X1	X2	X3	Y1	Y2	Y3	Y4	Y5	Y6
0	0	$*$	$*$	X	0	1			
0	1	$*$	$*$	0	1	0			
1	0	$*$	$*$	X	0	0			
1	1	0	0	0	1	0	0	0	1
1	1	0	1	X	0	0	0	0	0
1	1	1	0	X	0	0	0	0	1
1	1	1	1	0	1	0	0	0	0

Note: X is the complement of the previous code bit

Table 2: Write Precompensation Algorithm

BIT	BIT	BIT	BIT	BIT	COMPENSATION
$\mathrm{n}-1$	$\mathrm{n}-2$	n	$\mathrm{n}+1$	$\mathrm{n}+2$	BIT n
1	0	1	0	1	None
0	0	1	0	0	None
1	0	1	0	0	Early
0	0	1	0	1	Late
Late:	Bit n is time shited (delayed) from its nominal time position towards the bit $\mathrm{n}+1$ time position. Bit n is time shited (advanced) from its nomınal time position towards the bit $\mathrm{n}-1$ time position.				
Early					

POWER MANAGEMENT

The ML6311 provides a hardware pin (PDNB) and three bits in control register \#7 for seven levels of micro power management control.

The major circuit blocks in the ML6311 comprises of the regulator, the serial interface, VCO1 \& frequency synthesizer PLL, VCO2 \& data separator PLL, VCO3, synchronizer, decoder, encoder, precompensation circuits, bias circuits and I/O circuits. The PDNB pin in conjunction with the 3 bits in control register \#7 can be used to selectively turn off a combination of these blocks depending on the mode of operation. This allows the system designer to turn off sections of the chip that are not in use during a particular sequence of events, thus minimizing power dissipation at a micro management level. Table 3 shows these seven different power down modes and the circuit blocks affected in these different modes. Total typical power dissipation has two components - analog power dissipation which is more or less constant and digital power dissipation which varies with operating data rate.

Table 3: Power down modes in the ML6311 with typical power dissipation

POWER DOWN MODE	SLEEP	IDLE	PLLFS	READ	WRITE	NORMAL	PDWN
PDNB pin	high	high	high	high	high	high	low
Bits PM2,PM1,PM0	000	010	011	100	101	110	xXX
VCO1 and PLLFS	off	off	on	on	on	on	off
VCO2 and PLLDS	off	off	off	on	off	on	off
VCO3, Synchronizer and Decoder	off	off	off	on	off	on	off
Encode \& WPrecomp	off	off	off	off	on	on	off
Bias and I/O circuits	off	on	on	on	on	on	off
Serial Interface	on						
Typical analog power dissipation @ 2.7V	$25 \mu W$	14 mW	40 mW	97 mW	41 mW	100 mW	$25 \mu \mathrm{~W}$

SERIAL MICROPROCESSOR INTERFACE

The serial microprocessor interface consists of a simple three-wire serial port. Data is shifted serially into the ML6311 on the SDATA line on the falling edges of the serial shift clock, SCLK, provided the SENB pin is active (low). The data is shifted in blocks of eight bits with MSBit first. The internal registers are organized in blocks of eight bits, with the three most significant bits denoting the address, followed by the five data bits. This addressing scheme thus allows for a register bank of eight registers. When the chip is physically powered-up, the control registers come up in an undetermined state and hence they need to be initialized to some preset configuration, so that the behavior of the chip is predictable. The control registers retain their programmed information in all the power-down modes, except when the chip is physically powered-down. When the SENB pin goes inactive (high), the SDATA and SCLK pins are ignored and the previously shifted information is latched on the rising edge of the $\overline{\text { SENB }}$, into the appropriate register bank based on the address bits. It is recommended that the SCLK input be kept inactive low till such time when it is in use. The SCLK input is capable of handling speeds up to 20 MHz .

CONTROL REGISTER DEFINITIONS

The control register bank consists of eight registers with addresses from 0 through 7 . Outlined below are the detailed bit by bit definitions of the control registers 0 through 7.

CONTROL REGISTER \#0

Write Precompensation Late control

$\mathbf{L 2}$	$\mathbf{L 1}$	$\mathbf{L 0}$	$\mathbf{R}_{\mathbf{W P C}}=\mathbf{7 . 5 K}$	$\mathbf{R}_{\mathbf{W P C}}=\mathbf{1 5 K}$
0	0	0	0 ns	0 ns
0	0	1	0.5 ns	1.0 ns
0	1	0	1.0 ns	2.0 ns
0	1	1	1.5 ns	3.0 ns
1	0	0	2.0 ns	4.0 ns
1	0	1	2.5 ns	5.0 ns
1	1	0	3.0 ns	6.0 ns
1	1	1	3.5 ns	7.0 ns

CONTROL REGISTER \#1

Write Precompensation Early control
MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	1	E2	E1	E0	RSVD	RSVD

RSVD $=1$ Reserved, must be programmed as a 1 , all the time, to ensure proper operation of the chip.

E2	E1	E0	$\mathbf{R}_{\text {WPC }}=\mathbf{7 . 5 K}$	$\mathbf{R}_{\mathbf{W P C}}=\mathbf{1 5 K}$
0	0	0	0 ns	0 ns
0	0	1	0.5 ns	1.0 ns
0	1	0	1.0 ns	2.0 ns
0	1	1	1.5 ns	3.0 ns
1	0	0	2.0 ns	4.0 ns
1	0	1	2.5 ns	5.0 ns
1	1	0	3.0 ns	6.0 ns
1	1	1	3.5 ns	7.0 ns

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	0	0	L2	L1	L0	BYP	REG

$B Y P=0 \quad$ Do not bypass the write precompensation circuitry
BYP = $1 \quad$ Bypass the write precompensation circuitry
REG $=0 \quad$ implies regulator is ON (5 V Mode)
REG $=1 \quad$ implies regulator is OFF (3 V Mode)
The REG bit applies only in the 3 V operating mode, where the regulator should be switched OFF, to minimize power dissipation, as it is not needed. This bit must be set to 0 in the 5 V operating mode.

CONTROL REGISTER \#2

Data separator PLL window centering control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	0	WC4	WC3	WC2	WC1	WC0

WC4	WC3	WC2	WC1	WC0	VALUE
0	0	0	0	0	-24.0%
0	0	0	0	1	-22.4%
0	0	0	1	0	-20.8%
0	0	0	1	1	-19.2%
0	0	1	0	0	-17.6%
0	0	1	0	1	-16.0%
0	0	1	1	0	-14.4%
0	0	1	1	1	-12.8%
0	1	0	0	0	-11.2%
0	1	0	0	1	-9.6%
0	1	0	1	0	-8.0%
0	1	0	1	1	-6.4%
0	1	1	0	0	-4.8%
0	1	1	0	1	-3.2%
0	1	1	1	0	-1.6%
0	1	1	1	1	$0 \%($ center $)$
1	0	0	0	0	$+1.6 \%$
1	0	0	0	1	$+3.2 \%$
1	0	0	1	0	$+4.8 \%$
1	0	0	1	1	$+6.4 \%$
1	0	1	0	0	$+8.0 \%$
1	0	1	0	1	$+9.6 \%$
1	0	1	1	0	$+11.2 \%$
1	0	1	1	1	$+12.8 \%$
1	1	0	0	0	$+14.4 \%$
1	1	0	0	1	$+16.0 \%$
1	1	0	1	0	$+17.6 \%$
1	1	0	1	1	$+19.2 \%$
1	1	1	0	0	$+20.8 \%$
1	1	1	0	1	$+22.4 \%$
1	1	1	1	0	$+24.0 \%$
1	1	1	1	1	$+25.6 \%$

CONTROL REGISTER \#3

VCO Coarse Center Frequency Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
0	1	1	CF4	CF3	CF2	CF1	CF0

CF4	CF3	CF2	CF1	CF0	Fo MHZ
0	0	0	0	0	17 MHz
0	0	0	0	1	18 MHz
0	0	0	1	0	19 MHz
0	0	0	1	1	20 MHz
0	0	1	0	0	21 MHz
0	0	1	0	1	22 MHz
0	0	1	1	0	23 MHz
0	0	1	1	1	24 MHz
0	1	0	0	0	25 MHz
0	1	0	0	1	26 MHz
0	1	0	1	0	27 MHz
0	1	0	1	1	28 MHz
0	1	1	0	0	29 MHz
0	1	1	0	1	30 MHz
0	1	1	1	0	31 MHz
0	1	1	1	1	31 MHz
1	0	0	0	0	33 MHz
1	0	0	0	1	34 MHz
1	0	0	1	0	35 MHz
1	0	0	1	1	36 MHz
1	0	1	0	0	37 MHz
1	0	1	0	1	38 MHz
1	0	1	1	0	39 MHz
1	0	1	1	1	40 MHz
1	1	0	0	0	41 MHz
1	1	0	0	1	42 MHz
1	1	0	1	0	43 MHz
1	1	0	1	1	44 MHz
1	1	1	0	0	45 MHz
1	1	1	0	1	46 MHz
1	1	1	1	0	47 MHz
1	1	1	1	1	48 MHz

CONTROL REGISTER \#4

Divide by N Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	0	N6	N5	N4	N3	N2

CONTROL REGISTER \#5

Divide by M Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	0	1	M6	M5	M4	M3	M2

CONTROL REGISTER \#6

Divide by M \& N and endec control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
1	$\mathbf{1}$	0	RAW	M1	M0	N1	N0

RAW $=0$ Onboard (1,7)RLL endec enabled NRZ data output on NRZOUT and 1X clock output on RRC pins.

RAW $=1$ Onboard (1, 7) RLL endec is disabled. Encoded synchronized data on NRZOUT pin and VCO clock output (2 X clock) is available on the RRC pin for (2,7)RLL code.
$M \& N$ are given by :

```
\(M=M 6 \times 2^{6}+M 5 \times 2^{5}+M 4 \times 2^{4}+M 3 \times 2^{3}+M 2 \times 2^{2}\)
        \(+M 1 \times 2^{1}+1\)
or
\(M=64 \times M 6+32 \times M 5+16 \times M 4+8 \times M 3+4 \times M 2\)
        \(+2 \times M 1+1\)
and
\(\mathrm{N}=\mathrm{N} 6 \times 2^{6}+\mathrm{N} 5 \times 2^{5}+\mathrm{N} 4 \times 2^{4}+\mathrm{N} 3 \times 2^{3}+\mathrm{N} 2 \times 2^{2}\)
        \(+\mathrm{N} 1 \times 2^{1}+1\)
or
\(\mathrm{N}=64 \times \mathrm{N} 6+32 \times \mathrm{N} 5+16 \times \mathrm{N} 4+8 \times \mathrm{N} 3+4 \times \mathrm{N} 2+\)
    \(2 \times N 1+1\)
```

Note: The 7 -bit M \& N values are updated (latched) internally only when the most significant bit (M6 or N6) is written to, irrespective of changes in any other bits.

CONTROL REGISTER \#7

Power Down Control

MSB

A2	A1	A0	D4	D3	D2	D1	D0
$\mathbf{1}$	$\mathbf{1}$	1	CPG	BUF	PM2	PM1	PM0

$B U F=1$ This bit enables the ECL output buffers so that the test signals DRD and VCO2CLK are made available to the user.
$B U F=0 \quad$ This disables the ECL output buffer. The two pins (ECL output buffer) must be left open for zero power consumption.
CPG $=0 \quad$ Implies PLLDS Charge Pump Gain is 1 X in training mode and $3 X$ in the read mode.
CPG $=1$ Implies PLLDS (Data Separator) Charge Pump Gain is $2 X$ in training mode and $4 X$ in the read mode.
Bit configuration for power down modes

PDNB	PM2	PM1	PM0	MODE
1	0	0	0	SLEEP
1	0	0	1	Reserved
1	0	1	0	IDLE
1	0	1	1	PLLFS
1	1	0	0	READ
1	1	0	1	WRITE
1	1	1	0	NORMAL
1	1	1	1	Reserved
0	X	X	X	PDOWN

Note: PDOWN dissipation is the same as SLEEP mode

ORDERING INFORMATION

PART NUMBER	VCC RANGE	TEMPERATURE RANGE	PACKAGE
ML6311 CH2	2.7 V to 3.3 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP (H32)
ML6311 CH3	3.0 V to 3.6	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP (H32)
ML6311 CH5	4.5 V to 5.5 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 -pin TQFP $(\mathrm{H} 32)$

April 1994

3V/5V 4-Channel Thin-Film Read/Write Circuit

GENERAL DESCRIPTION

The ML6320 is a BiCMOS monolithic read/write circuit designed for use with two-terminal recording heads, in the next generation disk drives operating on 3 V supplies. In addition it can also support a 5 V supply, available as a bonding option. They provide a low noise read amplifier, write current control, and data protection circuitry for up to four channels. The ML6320 incorporates internal 400Ω damping resistors which are required for the write operation to the disk. When the device is switched to read mode, the damping resistors are switched out to allow the full signal to be amplified, thus allowing for better noise immunity. Power supply fault protection is provided by disabling the write current generator during power sequencing. System write to read recovery time is significantly improved by controlling the read channel common mode output voltage shift in the write mode.

The ML6320CR-3 operates on 2.7 V to 3.6 V and is available in a $20-\mathrm{pin}$ SSOP package. This is pin compatible with the SSI 32R2300R and VTC VM3200 family of 3 V devices. The ML6320CS-5 operates on 4.75 V to 5.25 V and is available in a $20-\mathrm{pin}$ SOIC package. This is pin compatible with the ML4610R, SSI 32C2020R and VTC VM7200 family of 5V devices.

FEATURES

- Operating supply range for the ML6320CR-3 is 2.7 V to 3.6 V (3V part)
■ Operating supply range for the ML6320CS-5 is 4.75 V to 5.25 V (5V part)
- Low Power Dissipation:
$P_{\text {Idle }}<3 \mathrm{~mW}$,
$P_{\text {READ }}<100 \mathrm{~mW}$ (Nominal Read) (@ 3.6V)
- Read Mode gain $=250 \mathrm{~V} / \mathrm{N}$

■ Damping resistors switched out in Read mode

- Nominal input noise $=0.6 \mathrm{nV} / \sqrt{\mathrm{H} z}$
- Nominal input capacitance $<15 \mathrm{pF}$ typical
- Write Current range $=3-30 \mathrm{~mA}$
- Head Inductance range $=0.2$ to $5 \mu \mathrm{H}$
- Enhanced system write to read recovery time

■ Power supply fault protection provided

- Supports two terminal thin film heads
- Write Unsafe detection circuitry onboard

BLOCK DIAGRAM

PIN CONNECTION

ML6320
(S20W)

PIN DESCRIPTION

NAME	TYPE	FUNCTION
HSO, HS1	I	Head Select: Selects one of four heads
$\overline{\mathrm{CS}}$	I	Chip Select: A high inhibits the chip
R \bar{W}	I	Read/Write: A high selects read mode
WUS	O	Write Unsafe: A high indicates an unsafe writing condition
		Write Data In: Changes the direction WDI the current in the head
HOX -H 3 X	I/O	X,Y Head Connectors
HOY $-\mathrm{H} 3 Y$		

NAME	TYPE	FUNCTION
RDX, RDY	O	X, Y Read Data: Differential read data output Write Current: Used to set the
WC		magnitude of the write current
VCC	I	+3 volt supply $(2.7 \mathrm{~V}$ to 3.6 V$)$ - ML6320CR-3
		+5 volt supply $(4.75 \mathrm{~V}$ to 5.25 V$)$
GND ML6320CS-5		

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltage (V_{CC}) -0.3 to +7VDC
Write Current (lw)
Digital Input Voltage ($\mathrm{V}_{\mathbb{N}}$) -0.3 to VCC +0.3 VDC
Head Port Voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$................. -0.3 to VCC +0.3 VDC
Output Current: (RDX, RDY IO). $-10 \mathrm{~mA}$
Output Current: (WUS) $+12 \mathrm{~mA}$

RECOMMENDED OPERATING CONDITIONS

DC Supply Voltage (V_{CC}) 2.7 V to 5.25 V
Operating Junction Temperature (T_{J}) $+25^{\circ}$ to $+110^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$	Read Mode Write Mode Idle Mode, $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}=\mathrm{V}_{\mathrm{CC}}$			$\begin{gathered} 26 \\ 20+I_{W} \\ 0.8 \end{gathered}$	mA mA mA
Supply Current $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}$	Read Mode Write Mode Idle Mode, $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}=\mathrm{V}_{\mathrm{CC}}$			$\begin{gathered} 26 \\ 20+\mathrm{I}_{\mathrm{W}} \\ 1.0 \end{gathered}$	mA mA mA
Power Dissipation $V_{C C}=3.6 \mathrm{~V}$	Read Mode Write Mode, $I_{W}=20 \mathrm{~mA}$ Idle Mode			$\begin{gathered} 93 \\ 144 \\ 2.9 \end{gathered}$	mW mW mW
Power Dissipation $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	Read Mode Write Mode, $I_{W}=20 \mathrm{~mA}$ Idle Mode			$\begin{aligned} & 136 \\ & 210 \\ & 5.25 \end{aligned}$	mW mW mW

DIGITAL INPUTS

Input Low Voltage				0.8	VDC
Input High Voltage		2.0			VDC
Input Low Current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.1			mA
Input Low Current, $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}$ pins	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}$ CC $=5.25 \mathrm{~V}$	-0.48			mA
Input Low Current, $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}$ pins	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V} \mathrm{CC}=3.6 \mathrm{~V}$	-0.30			mA
Input High Current	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			10	$\mu \mathrm{~A}$
WUS Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ max			0.5	VDC
VCC Fault Voltage	$\mathrm{I}_{\mathrm{W}}<0.2 \mathrm{~mA}$	2.25	2.45	2.65	VDC

WRITE CHARACTERISTICS

Write Current Constant "K"		36.8	40	43.2	$\mathrm{mA} / \mathrm{mA}$
Write Current Voltage		1.15	1.25	1.35	V
Differential Head Voltage Swing		3.4	6		$V_{\text {P_P }}$
Unselected Head Current				0.6	mA (pk)
Head Differential Load Capacitance				40	pF
Head Differential Load Resistance	R_{D}	250	350	450	Ω
WDI Transition Frequency	WUS = low	0.75			MHz
Write Current Range (${ }_{\text {W }}$)		3		30	mA

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

READ CHARACTERISTICS CL (RDX,RDY) < 20 pF, RL (RDX, RDY) $=1 \mathrm{k} \Omega$

Differential Voltage Gain	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{mV} \mathrm{V}_{\text {P-P }} @ 1 \mathrm{MHz}$	210	250	285	V / N
$\begin{gathered} \text { Voltage BW } \\ -1 \mathrm{~dB} \\ -3 \mathrm{~dB} \end{gathered}$	$\|\mathrm{Zs}\|<5 \Omega, \mathrm{~V}_{1 \mathrm{~N}}=1 \mathrm{mV} \mathrm{P}_{-\mathrm{P}}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Input Noise Voltage	$B W=15 \mathrm{MHz}, \mathrm{L}_{\mathrm{H}}=0, \mathrm{R}_{\mathrm{H}}=0$		0.63	0.75	$\mathrm{nV} / \sqrt{\mathrm{H} z}$
Differential Input Capacitance	$\mathrm{V}_{\text {IN }}=1 \mathrm{mV} \mathrm{P}_{\text {P-P }}, \mathrm{f}=5 \mathrm{MHz}$			15	pF
Differential Input resistance	$\mathrm{V}_{1 \mathrm{~N}}=1 \mathrm{mV} \mathrm{P}_{\text {P-P }}, \mathrm{f}=5 \mathrm{MHz}$	500			Ω
Dynamic Range	AC input voltage where gain falls to 90% of its small signal gain value, $f=5 \mathrm{MHz}$	3			mV P - P
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=0$ volts $\mathrm{DC}+100 \mathrm{mV} \mathrm{P}_{\text {-P }}$ @ 5 MHz	45			dB
Power Supply Rejection Ratio	$100 \mathrm{mV} \mathrm{P}_{\text {P-P }} @ 5 \mathrm{MHz}$ on $\mathrm{V}_{\text {CC }}$	40			dB
Channel Separation	Unselected channels driven with $\mathrm{V}_{\mathrm{IN}}=0$ volts $D C+100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	45			dB
Output Offset Voltage		-350		+350	mV
Single-Ended Output Resistance	$\mathrm{f}=5 \mathrm{MHz}$			40	Ω
Output Current	AC coupled load, RDX to RDY	1.5			mA
Common Mode Output	3 V operation	$\mathrm{V}_{\mathrm{CC}}-1.5$	$\mathrm{V}_{\text {CC }}-1.8$	$\mathrm{V}_{\mathrm{CC}}-2.1$	VDC

SWITCHING CHARACTERISTICS $\mathbf{I}_{W}=20 \mathrm{~mA}, \mathrm{R}_{\mathbf{H}}=30 \Omega, \mathrm{~L}_{\mathrm{H}}=1 \mu \mathrm{H}, \mathrm{f}_{\text {DATA }}=5 \mathrm{MHz}$

Read to Write	R / \bar{W} to 90% of write current		0.6	1.0	$\mu \mathrm{s}$
Write to Read	R / \bar{W} to 90% of 100 mV Read signal envelope		0.5	1.0	$\mu \mathrm{s}$
Unselect to Select	$\overline{\mathrm{CS}}$ to 90% of write current or 90% of $100 \mathrm{mV}, 10 \mathrm{MHz}$		0.6	1.0	$\mu \mathrm{s}$
Select to Unselect	$\overline{\mathrm{CS}}$ to 10% of write current		0.4	1.0	$\mu \mathrm{s}$
HSO-1 to any head	To 90% of 100 mV 10 MHz Read signal envelope		0.2	1.0	$\mu \mathrm{s}$
WUS Safe to Unsafe (TD1) Unsafe to Safe (TD2)		0.6	$\begin{aligned} & 2.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Head Current: WDI to lx - ly (TD3) Asymmetry Rise/Fall Time	$L_{H}=0, R_{H}=0$ From 50\% points WDI has 1 ns rise/fall time 10% to 90% points			$\begin{aligned} & 32 \\ & 1.0 \\ & 12 \end{aligned}$	ns ns ns

Figure 1. Write Mode.

MODE SELECT
$\overline{\mathbf{C S}}$
0

HEAD SELECT

HEAD SELECT	HS0	HEAD
0	0	0
0	1	1
1	0	2
1	1	3

FUNCTIONAL DESCRIPTION

The ML6320 has the ability to address up to 4 twoterminal thin-film heads and provide write drive or read amplification. Head selection and mode control are described in the tables below. The TTL inputs R$\overline{\mathcal{W}}$ and $\overline{\mathrm{CS}}$ have internal pull-up resistors to prevent an accidental write condition. HSO and HS1 have internal pull-downs. Internal clamp circuitry will protect the ML6320 from a head short to ground condition in any mode. The damping resistors are switched out during read mode, as identified by the $R \bar{W}$ pin.

WRITE MODE OPERATION

Taking both $\overline{\mathrm{CS}}$ and $\mathrm{R} \overline{\mathrm{W}}$ low selects write mode which configures the ML6320 as a current switch and activates the Write Unsafe (WUS) detector circuitry. Head current is toggled between the X and Y side of the selected head on each high to low transition of the Write Data Input (WDI). A preceding read or idle mode select initializes the Write Data Flip-Flop to pass write current through the " X " side of the head. The current calculations are shown below:

Write current (peak) is given by:

$$
I_{W}=\frac{K \times V W C}{R W C}
$$

where
RWC is connected from pin WC to GND
Actual head current is given by:

$$
I_{X, Y}=\frac{I_{W}}{1+\frac{R_{H}}{R_{D}}}
$$

where
$R_{H}=$ head + external wire resistance
$R_{D}=$ damping resistance
In the write mode a 400Ω damping resistor is switched in across the Hx , Hy ports.

VOLTAGE FAULT DETECTION

A voltage fault detection circuit improves data security by disabling the write current generator during a voltage fault or power start-up, regardless of mode. The Write Unsafe (WUS) open collector output goes high under any of the conditions given below. After the fault condition is removed, two negative transitions on WDI are required to clear WUS.

- Write Data Input frequency too low
- Device in Read or Idle Mode
- No write current
- Chip is disabled or head is open

To ensure proper operation in detecting a head open condition, it is recommended that the product of $I_{W} \times R_{D \min }$ should be greater than 2.4 V , or in other words:
$I_{W} \approx \frac{2.4 \mathrm{~V}}{250 \Omega} \cong 10 \mathrm{~mA}$

READ MODE OPERATION

The Read mode configures the ML6320 as a low noise differential amplifier and deactivates the write current generator. The RDX and RDY output are driven by emitter followers. They should be AC coupled to the load. The (X, Y) inputs are non-inverting to the (X, Y) outputs. In the Idle or Write mode, the read amplifier is deactivated and RDX, RDY outputs become high impedance. This facilitates multiple $R \bar{W}$ applications (wired-OR RDX, RDY) and minimizes voltage drifts when switching from Write to Read mode. The write current source is also deactivated for both the Read and Idle mode. In addition the ML6320 supports the feature by which the internal damping resistors are switched out in the read mode, which allows the full signal to be amplified.

IDLE MODE OPERATION

Taking $\overline{\mathrm{CS}}$ high selects the idle mode which switches the RDX and RDY outputs into a high impedance state and deactivates the device. Power consumption in this mode is held to a minimum, less than 2 mW .

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6320CR-3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 -Pin SSOP (R20)
ML6320CS-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\mathrm{Pin}$ SOIC (S20W)

ML8464B, ML8464C

Pulse Detector

GENERAL DESCRIPTION

The ML8464 is a Pulse Detector designed for use in magnetic disk applications to detect the amplitude peaks on the output of the read/write amplifier. These signal peaks are caused by flux reversal on the disk media, which when connected to the read/write amplifier result in an output consisting of a series of pulses of alternating polarity. The relative time position of these signal peaks is indicated by the leading edge of the TTL output pulses. The Pulse Detector accurately represents the time position of these peaks.

The ML8464 contains three major blocks. The amplifier block contains a wide bandwidth differential amplifier with Automatic Gain Control (AGC) and a precision full wave rectifier. The time channel block includes a programmable differentiator followed by a bidirectional one shot multivibrator. The gate channel block includes a differential comparator with programmable hysteresis, a D flip-flop and an output bi-directional one shot multivibrator. The ML8464C internally connects the time channel output to the D flip-flop.

FEATURES

- Wide differential input signal range $20-660 \mathrm{mV} \mathrm{P}_{\text {- }}$
- TTL compatible digital Inputs and Output
- Externally gain controlled input differential amplifier
- Variable hysteresis comparator with gating circuitry
- Differentiator with externally programmable time constants
- Standard 12 V power requirement
- Available in 24-pin DIP package, or a 28-pin surface mount PCC
- Improved pulse pairing ($\pm 1 \mathrm{~ns}$ max.)
- Handles RLL $(1,7)$ or $(2,7)$ data to $24 \mathrm{MB} / \mathrm{s}$

ML8464B FEATURES

- Direct replacement for DP8464B

BLOCK DIAGRAM

* ML8464C ONLY

PIN CONNECTIONS

CD +	1 24	CD-
TIME CHANNEL INPUT +	223	TIME CHANNEL INPUT -
SET HYSTERESIS	3 22	GATE CHANNEL INPUT
$V_{\text {Ref }}$	421	$]$ GATE CHANNEL INPUT
NC	50	ANALOG GROUND
AMP IN^{+}	6 24-Pin DIP ${ }^{19}$	$] \mathrm{AMPOUT}$ -
AMP IN -	$7{ }^{7}$	$] \mathrm{AMP} \mathrm{OUT} \mathrm{+}$
NC	8 (17	DIGITAL GROUND
$V_{\text {cc }}$	$9 \times$	$] \mathrm{C}_{\mathrm{AGC}}$
SET PULSE WIDTH	10 15	CHANNEL ALIGNMENT OUT
$\overline{\text { READ } / W R I T E ~}$	11	ENCODED DATA OUT
TIME PULSE OUT	12 13	TIME PULSE IN*
	(TOP VIEW)	

PIN DESCRIPTION

NAME	FUNCTION
Amp In+, Amp In-	Differential inputs to the Amplifier. The output of the read/write head amplifier should be capacitively coupled to these pins.
Amp Out+, Amp Out-	Differential outputs of the Amplifier. These outputs should be capacitively coupled to the gating channel filter and to the time channel filter.
Gate Channel Inputs	Differential inputs to the AGC block and the gating channel. Must be capacitively coupled from the Amp Out.
Time Channel Input+, Time Channel Input-	Differential inputs to the time channel differentiator. A filter is required between these pins and Amp Out pins to band limit the noise and to correct for any phase distortion due to read circuitry. Also inputs must be capacitively coupled to prevent disturbing the DC input level.
CD+, CD-	External differentiator network is connected between these two pins.
Set Hysteresis	DC voltage on this pin sets the amount of hysteresis on the differential comparator.
$\mathrm{V}_{\text {REF }}$	AGC circuit adjusts the gain of the amplifier to make the differential peak to peak voltage on the Gate Channel. Input is four times the DC voltage on this pin.
$\mathrm{C}_{\text {AGC }}$	External capacitor between this pin and Analog ground is connected for the AGC.

NAME	FUNCTION
Set Pulse Width	External capacitor between this pin and Digital ground is connected to control the pulse width of the Encoded Data Out.
$\overline{\text { Read/Write }}$	TTL input. When low, the chip is in read mode and active. When High, the chip is forced into stand by mode.
Channel Alignment	Buffered output of the differential comparator with hysteresis. This output is TTL on the ML8464B, and is open emitter on ML8464C. The ML8464C is specified with a $2 \mathrm{~K} \Omega$ pull-down resistor to ground.
Time Pulse In (ML8464B only)	This is the TTL input to the clock of the D flip-flop. Usually it is connected to the Time Pulse Out pin.
Time Pulse Out	ML8464B: This is the TTL output from the bidirectional one shot following the differentiator. Usually it is connected to the Time Pulse In pin. ML8464C: Open emitter-follower test point.
Encoded Data Out	TTL output. Leading edge of this pin indicates the time position of the peaks.
V_{CC}	12 V power supply.
GND	Digital ground. Digital signals should be referenced to this pin.
AGND	Analog ground. Analog signals should be referenced to this pin.

FUNCTIONAL DESCRIPTION

The output from the read/write amplifier is AC coupled to the amp input of the ML8464. The amplifier's output voltage is fed back via an external filter to an internal fullwave rectifier and compared against the external voltage on the $V_{\text {REF }}$ pin. The AGC circuit adjusts the gain of the amplifier to make the peak to peak differential voltage on the Gate Channel Input four times the DC voltage on the $\mathrm{V}_{\text {REF }}$. Typically the signal on the amp out will be set for $4 V_{P-p}$ differential. Since the filter usually has a 6 dB loss, the signal on the Gate Channel Input will be $2 \mathrm{~V}_{\text {P-p }}$ differential. The user should therefore set 0.5 V on $\mathrm{V}_{\text {REF }}$ which can be done with a simple voltage divider from the +12 V supply or other suitable reference.

The peak detection is performed by feeding the output of the amplifier through an external filter to the differentiator. The differentiator output changes state when the input pulse changes direction, generally this will be at the peaks. However, if the signal exhibits shouldering, the differentiator will also respond to noise near the baseline. To avoid this problem, the signal is also fed to a gating channel which is used to define a level either side of the baseline. This gating channel is
comprised of a differential comparator with hysteresis and a D flip-flop. The hysteresis for this comparator is externally set via the Set Hysteresis pin. In order to have data out, the input amplitude must first cross the hysteresis level which will change the logic level on the D input of the flip-flop. The peak of the input signal will generate a pulse out of the differentiator and bidirectional one shot. This pulse will clock the new data at the D input through to the output. In this way, when the differentiator is responding to noise at the baseline, the output of the D flip-flop is not changing since the logic level into the D input has not been changed. The comparator circuitry is therefore a gating channel which prevents any noise near the baseline from contaminating the data. The amount of hysteresis is twice the DC voltage on the Set Hysteresis pin. For instance, if the voltage on the Set Hysteresis pin is 0.3 V , the differential AC signal across the gate channel input must be larger than 0.6 V before the comparator will change states. In this case, the hysteresis is 30% of a 2 V peak to peak differential signal at the gate channel input.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 14 V
TTL Input Voltage 5.5 V
TTL Output Voltage 5.5 V
Input Voltage 5.5 V
Differential Input Voltage $+3 \mathrm{~V}$
θ_{IA} for 24 -Pin Plastic DIP (Copper Lead Frame) $60^{\circ} \mathrm{C} /$ Watt
$\boldsymbol{\theta}_{\mathrm{IA}}$ for 28 -Pin PLCC (Copper Lead Frame)
$60^{\circ} \mathrm{C} /$ Wat

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions of $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{REF}}=0.5 \mathrm{~V}$, Set Hysteresis $=0.3 \mathrm{~V}$,
Read/Write $=0.8 \mathrm{~V}$ unless otherwise noted. (All pin numbers refer to DIP package.)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
AMPLIFIER						
$\mathrm{Z}_{\text {INAI }}$	Amp In Impedance	0.8	1.0	1.5	k Ω	
$\mathrm{A}_{\text {VMIN }}$	Min Voltage Gain			6.0	V/V	AC Output $4 \mathrm{~V}_{\text {P-p }}$ Differential
A $_{\text {Vmax }}$	Max Voltage Gain	180			V/V	AC Output $4 \mathrm{~V}_{\mathrm{P} \text {-p }}$ Differential
$\mathrm{V}_{\text {CAGC }}$	Voltage on $\mathrm{C}_{\text {AGC }}$	2.8	$\begin{aligned} & 4.5 \\ & 3.4 \\ & \hline \end{aligned}$	5.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{V}=6.0 \\ & A_{V}=180 \\ & \hline \end{aligned}$

GATE CHANNEL

$\mathrm{Z}_{\text {INGCI }}$	Gate Channel Input Impedance	1.75	2.5	3.25	$\mathrm{k} \Omega$	
$\mathrm{I}_{\text {CAGC }}$	Current that charges $\mathrm{C}_{\mathrm{AGC}}$	-1.5	-2.5	-3.5	mA	Pin $16=3.9 \mathrm{~V}$ Pin $21-\operatorname{Pin} 22=1.3 \mathrm{~V}$
$\mathrm{I}_{\text {CAGC }}{ }^{+}$	Current that discharges $\mathrm{C}_{\mathrm{AGC}}$		1	5	$\mu \mathrm{~A}$	Pin $16=5.0 \mathrm{~V}$ Pin $21-\mathrm{Pin} 22=0.7 \mathrm{~V}$
$\mathrm{I}_{\text {VREF }}$	$\mathrm{V}_{\text {REF }}$ Input Bias Current		-0.01	-100	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\text {THAGC }}$	AGC Threshold	0.88	1.0	1.12	V	Pin $16=4.2 \mathrm{~V}$ See Note 1
$\mathrm{I}_{\text {SH }}$	Set Hysteresis Bias Current		-60	-100	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\text {THSH }}$	Set Hysteresis Threshold	0.48	0.6	0.72	V	See Note 2

TIME CHANNEL

$\mathrm{Z}_{\text {INTC }}$	Time Channel Input Impedance	3.5	5	6.5	$\mathrm{k} \Omega$	
I_{CD}	Current into pins 1 \& 24 that discharges C	2.1	2.7	3.4	mA	

WRITE MODE

$\mathrm{Z}_{\text {INAI }}$	Amplifier Input Impedance in Write Mode	100		500	Ω	Pin $11=2 \mathrm{~V}$
$\mathrm{I}_{\text {CAGC }}$	Pin 16 Current in Write Mode		1.0	5.0	$\mu \mathrm{~A}$	Pin $11=2 \mathrm{~V}$ $\operatorname{Pin} 16=3.9 \mathrm{~V}$ Pin $21-\operatorname{Pin} 22=1.3 \mathrm{~V}$

DIGITAL PINS

V_{IH}	High Level Input Voltage	2.0			V	ML8464B: Pins 11, 13 ML8464C: Pin 11
V_{IL}	Low Level Input Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{I}}$	Input Clamp Voltage			-1.5	V	$\mathrm{~V}_{\mathrm{CC}}=10.8 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
I_{IH}	High Level Input Current			20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$
I_{I}	Input Current at Maximum Input Voltage			1	mA	$\mathrm{V}_{\mathrm{CC}}=13.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$
I_{IL}	Low Level Input Current			-200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OH}}$	High Level Output Voltage	2.4			V	$\mathrm{V}_{\mathrm{CC}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IOH}}=-40 \mu \mathrm{~A}$ See notes 3,
V_{OL}	Low Level Output Voltage			0.5	V	$\mathrm{~V}_{\mathrm{CC}}=10.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=800 \mu \mathrm{~A}$, see note
$\mathrm{I}_{\mathrm{OSC}}$	Output Short Circuit Current			-100	mA	$\mathrm{~V}_{\mathrm{CC}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$
I_{CC}	Supply Current		54	75	mA	$\mathrm{~V}_{\mathrm{CC}}=13.2 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS (Continued)

Over recommended operating conditions of $T_{A}=0$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{C C}=12.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {REF }}=0.5 \mathrm{~V}$, Set Hysteresis $=0.3 \mathrm{~V}$, Read/Write $=0.8 \mathrm{~V}$ unless otherwise noted. (All pin numbers refer to DIP package.)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
DIGITAL PINS (Continued)						
$V_{\text {OHCA }}$	Channel Alignment Pin V_{OH} ML8464B ML8464C	2.4	7.6		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	(Note 3) $\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$ $10 \mathrm{k} \Omega$ Load to GND
$\mathrm{V}_{\text {OLCA }}$	Channel Alignment Pin V_{OL} ML8464B ML8464C		6.9	0.4	$\begin{aligned} & v \\ & v \end{aligned}$	(Note 3) $\mathrm{I}_{\mathrm{OL}}=800 \mu \mathrm{~A}$ $10 \mathrm{k} \Omega$ Load to GND
$\mathrm{V}_{\text {OHTP }}$	Time Pulse Out Pin V_{OH} ML8464B ML8464C	2.4	9.6		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$10 \mathrm{k} \Omega$ Load to GND $10 \mathrm{k} \Omega$ Load to GND
$\mathrm{V}_{\text {OLTP }}$	Time Pulse Out Pin V_{OL} ML8464B ML8464C		8.6	0.4	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	10k Ω Load to GND $10 \mathrm{k} \Omega$ Load to GND

AC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply range of $\mathrm{V}_{\mathrm{CC}}=10.8$ to $13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\begin{aligned} & \text { ML8464-1 } \\ & t_{\text {p_p }} \\ & \hline \end{aligned}$	Pulse Pairing		± 0.5	± 1.0	ns	$\begin{aligned} & f=2.5 \mathrm{MHz} \\ & V_{I N}=40 \mathrm{mV} V_{\text {P-P }} \text { differential } \\ & \text { See note } 4 \end{aligned}$
$\begin{aligned} & \text { ML8464-1.5 } \\ & \text { tp_p }^{2} \\ & \hline \end{aligned}$	Pulse Pairing ${ }^{6}$		± 0.8	± 1.5	ns	
$\begin{aligned} & \text { ML8464-2 } \\ & \text { tp-p } \end{aligned}$	Pulse Pairing		± 1.5	± 3.0	ns	

Note 1: The AGC threshold is defined as the voltage across the gate channel input when the voltage on $\mathrm{C}_{\mathrm{AGC}}$ is 4.2 V .
Note 2: The Set Hysteresis threshold is defined as the voltage across the gate channel input when the channel alignment output voltage changes state.
Note 3: To prevent inductive coupling from the digital outputs to amplifier inputs, the TTL outputs should not drive more than one ALS TTL load.
Note 4: The filter and differentiator network are described in the pulse pairing set-up.
Note 5: All limits are guaranteed by 100% testing or alternate methods.
Note 6: The 1.5 ns pulse pairing specification is available only on the ML8464C, not the ML8464B.
Note 7: ML8464B: Pins 12, 14, 15
ML8464C: Pins 14 and 15 only.

PULSE PAIRING SET UP
PARTS LIST

R1	220Ω	C1	82pF
R4	. 680Ω	C2, C3, C6	. $0.01 \mu \mathrm{~F}$
R2, R3	. 240Ω	C4	100pF
R5, R6	3.3k Ω	C5	.. 15pF
R7	100k Ω	C7, C8	$0.0022 \mu \mathrm{~F}$
11.	$1.5 \mu \mathrm{H}$	C9 47pF
L2, L3	$4.7 \mu \mathrm{H}$		

* The connection between pins 12 and 13 is required only for the ML8464B.

PULSE PAIRING MEASUREMENT

The scope probe is connected to pin 14 (Encoded Data Out) and triggered off of its positive edge. The trigger holdoff is adjusted so that the scope first triggers off the pulse associated with the positive peak and then off
the pulse associated with the negative peak. Pulse pairing is displayed on the second pair of pulses on the display. If the second pair of pulses are separated by 6 ns , then the pulse pairing for the part is $\pm 3 \mathrm{~ns}$.

ML8464C

ML8464B

DIFFERENCES BETWEEN ML8464C AND ML8464B

THE EXTERNAL DELAY

The ML8464B open circuits the digital signal at pins 12 and 13. This allows for the insertion of an external delay filter. The ML8464C has no TTL buffers at these pins and closes the signal path internally bringing out a test point at pin 12. Hence, the ML8464 does not allow for the external delay.

TEST POINTS

The ML8464B has two TTL test points at pins 12 and 15. The ML8464C uses open emitter followers in an ECL configuration. Hence, the voltage levels are not similar at pins 12 and 15 on both devices. The typical voltage level at pins 12 are $\mathrm{V}_{\mathrm{OH}}=9.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=8.6 \mathrm{~V}$ and at pin 15 are $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}$.

AGC GAIN CONTROL FACTOR

The AGC reference level is a DC voltage externally set at $V_{\text {REF }}$ (pin 4). Increasing this DC voltage will increase the gain of the gain controlled amplifier.

AGC gain control factor $=$
$\frac{V_{\text {OUT PEAK }}=\text { peak of the } A G C ~ a m p}{V_{\text {REF }}}$

$$
\begin{aligned}
\text { AGC gain control factor } & =\frac{2.5 \mathrm{~V}_{P P}}{0.5 \mathrm{~V}_{D C}}=5 \text { for ML8464B } \\
& =\frac{2.0 \mathrm{~V}_{P P}}{0.5 \mathrm{~V}_{D C}}=4 \text { for ML8464C }
\end{aligned}
$$

Thus, at $\mathrm{V}_{\text {REF }}=0.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {OUT }} \mathrm{AGC}=2.5 \mathrm{~V}$ for ML8464B and 2.0 V for ML8464C. This smaller signal amplitude should be taken into consideration at the hysteresis comparator. To set the desired amount of hysteresis, and external DC control voltage is used. The particular settings for $V_{\text {REF }}$ and control voltage at pin 3 that optimizes the ML8464B performance may not necessarily optimize the ML8464C performance.

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE	PULSE PAIRING
ML8464C-1CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)	$\pm 1 \mathrm{~ns}$
ML8464C-1CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)	(1 ns
ML8464C-1.5CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)	$\pm 1.5 \mathrm{~ns}$
ML8464C-1.5CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)	$\pm 1.5 \mathrm{~ns}$
ML8464C-2CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)	$\pm 3 \mathrm{~ns}$
ML8464C-2CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)	$\pm 3 \mathrm{~ns}$
ML8464B-1CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)	$\pm 1 \mathrm{~ns}$
ML8464B-1CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)	$\pm 1 \mathrm{~ns}$
ML8464B-2CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED DIP (P24)	$\pm 3 \mathrm{~ns}$
ML8464B-2CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	MOLDED PCC (Q28)	$\pm 3 \mathrm{~ns}$

Bus Products

Section 6

Selection Guide 6-1
ML6500 Programmable Adaptive Clock Manager (PACMan ${ }^{\mathrm{TM}}$) 6-3
ML6500EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\mathrm{TM}}$) Evaluation Kit 6-18
ML6508EVAL Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) Evaluation Kit 6-18
ML6508 Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-19
ML6509 Active SCSI Terminator 6-34
ML6509EVAL Active SCSI Terminator Evaluation Kit 6-44
ML6510 Series Programmable Adaptive Clock Manager (PACMan ${ }^{\text {TM }}$) 6-45
ML65244 High Speed Dual Quad Buffer/Line Driver 6-62
ML65245 High Speed Octal Buffer Transceiver. 6-68
ML65541 High Speed Octal Buffer/Line Driver. 6-77
ML6599 Hot-Insertable Active SCSI Terminator 6-83

Bus Products

Selection Guide

PACMan ${ }^{\text {TM }}$ Adaptive Clock Generators

Part Number	No. of Clock Outputs	faLk Range (MHz)	Maximum Round Trip Delay (ns)	Maximum $\mathbf{t}_{\text {SKEWR }}$ at the Load (ps)	Clock Source	Package	Feedback Method
ML6500	8	$10-80$	10	500	Internal or External	44-Pin PLCC	Parallel (2 trace)
ML6508	8	$10-80$	10	500	External	44 -Pin PLCC	Parallel (2 trace)
ML6510	8	$10-80$ or $10-130$	10	500	External	$44-$ Pin PLCC	Series (Single trace)

SCSI Terminators

Part Number	No. of Lines	Disconnect Capacitance $(\mathbf{p F})$	Package	Features
ML6509	9	<5	16-Pin SOIC 20-Pin TSSOP	Low power mode for laptop internal ternimation Disconnect controlled by hardware or software
ML6599	9	<5	16-Pin SOIC 20-Pin TSSOP	Low insertion current for hot-pluggable applications

High Speed Buffers/Transceivers

Part Number	Function	$\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$ $(\mathbf{n s})$	Ground Bounce $(\mathbf{m V})$	Package	Features
ML65244	Dual Quad Buffer	<1.5	<400	20-Pin SOIC 20-Pin QSOP	TTL compatible Control inputs
ML65245	Octal Transceiver	<1.5	<400	20-Pin SOIC 20-Pin QSOP	TTL compatible Control inputs
ML65541	Octal Buffer	<1.5	<400	20-Pin SOIC 20-Pin QSOP	TTL compatible Control inputs

Programmable Adaptive Clock Manager (PACMan ${ }^{\text {tix }}$)

GENERAL DESCRIPTION

The ML6500 (PACMan ${ }^{\text {TM }}$) is a Programmable Adaptive Clock Manager which offers an ideal solution for managing high speed synchronous clock distribution in next generation, high speed personal computer and workstation system designs. It provides a PLL clock generator and eight channels of deskew buffers that adaptively compensate for clock skew using a separate feedback trace. Additionally, the ML6500 can also be programmed to be driven by an external clock, thus emulating a SLAVE function, if desired. In the SLAVE mode the ML6500 offers $4 \mathrm{X}, 2 \mathrm{X}, 1 \mathrm{X}$ and 0.5 X clocks, or any ratio realizable between $M \& N$ within the maximum frequency limits.
The Programmable clock generator in the PACMan ${ }^{\mathrm{TM}}$ is implemented using a low jitter PLL with on-chip loop filter. The PACMan ${ }^{\text {TM }}$ deskew buffers adaptively compensate for clock skew on PC boards. An internal skew sense circuit is used to sense the skew caused by the PCB trace and load delays. The sensing is done through a feedback loop from the load and the skew is corrected adaptively via a unique phase control delay circuit to provide low load-to-load skew, at the end of the PCB traces. The chip configuration can be programmed to generate the desired output frequency using the internal ROM or an external serial EEPROM or a standard two-wire serial microprocessor interface. The reference clock can be generated by the internal oscillator (using an external crystal) or it can also be an external clock input.

FEATURES

- MASTER mode for clock generation using an on-chip crystal oscillator as a reference
- SLAVE mode for clock generation using a clock input as a reference, providing low input to output clock phase error
- Programmable clock generator PLL with on-chip loop filter and low jitter
- 8 independent, automatically deskewed clock outputs with up to 5 ns of on-board deskew range (10 ns round trip)
- Controlled edge rate TTL-compatible CMOS clock outputs capable of driving 40Ω PCB traces
- 10 to 80 MHz Input and output clock frequency range
- Less than 500ps skew between inputs at the device loads; less than 300ps with first order matching
- Frequency multiplication or division

■ Lock output indicates PLL and deskew buffer lock

- Test mode operation allows PLL and deskew buffer bypass for board debug
- Supports industry standard processors like Pentium, ${ }^{\mathrm{TM}}$ Intel80486, ${ }^{\text {TM }}$ Mips R4000, ${ }^{\text {TM }}$ SPARC, ${ }^{\text {TM }} 68040$, ${ }^{\text {TM }}$ PowerPC, ${ }_{1}^{\text {TM }}$ Alpha, ${ }^{\text {TM }}$ etc.

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
28	ROMMSB	MSB of the internal ROM address. Tie to GND if not used. See section on Programming the ML6500.
20	MD ${ }_{\text {OUT }}$	Programming pin. See section on Programming the ML6500.
19	$M D_{\text {IN }}$	Programming pin. See section on Programming the ML6500.
21	MCLK	Programming pin. See section on Programming the ML6500.
22	$\overline{\text { RESET }}$	Reset all internal circuits. Asserted polarity is low.
23	LOCK	Indicates when the PLL and deskew buffers have locked. Asserted polarity is high.
32	XTAL	Crystal connection for MASTER mode is between this pin and GND. Connect pin to GND if XTAL oscillator is not used.
29	$\mathrm{CLK}_{\mathrm{IN}}$	Input reference clock for SLAVE mode. Connect to GND if not used.
$\begin{gathered} 16,14,9,7 \\ 44,42,37,35 \end{gathered}$	CLK[0-7]	Clock outputs.
$\begin{aligned} & 18,12,11,5 \\ & 2,40,39,33 \end{aligned}$	FB[0-7]	Clock feedback inputs for the deskew buffers.
$\begin{gathered} 3,31 \\ 25 \end{gathered}$	AVCC[1-3]	Analog circuitry supply pins, separated from noisy digital supply pins to provide isolation. All supplies are nominally +5 V .
4,30,24	AGND[1-3]	Analog circuitry ground pins.
15	DVCC01	Digital supply pin for CLK0 and CLK1 output buffers. Nominally +5 V .
8	DVCC23	Digital supply pin for CLK2 and CLK3 output buffers. Nominally +5V.
43	DVCC45	Digital supply pin for CLK4 and CLK5 output buffers. Nominally +5 V .
36	DVCC67	Digital supply pin for CLK6 and CLK7 output buffers. Nominally +5 V .
$\begin{aligned} & 17,13,10,6 \\ & 1,41,38,34 \end{aligned}$	DGND[0-7]	Digital ground pins for CLK [0-7] output buffers. Each clock output buffer has its own ground pin to avoid crosstalk and ground bounce problems.
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { RCLKL } \\ & \text { RCLKH } \end{aligned}$	Differential reference clock outputs used to minimize part-to-part skew when building clock trees with other PACMan integrated circuits.

ABSOLUTE MAXIMUM RATINGS
VCC Supply Voltage Range -0.3 V to 6 V
Input Voltage Range -0.3 V to VCC
Output Current
CLK[0-7] 70 mA
All other outputs 10 mA
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of DVCC $=$ AVCC $=5 \mathrm{~V} \pm 5 \%$ and ambient temperature between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Loading conditions are specified individually.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPY						
IDVCC	Suppy current for each pair of clock outputs	All clock outputs open, $\mathrm{f}_{\text {CLKX }}=0$		50		$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{OUT}}=80 \mathrm{MHz} \end{aligned}$		50		mA
IAVCC1	Static supply current, AVCC1 pin			100		mA
IAVCC2	Static supply current, AVCC2 pin			35		mA
IAVCC3	Static supply current, AVCC3 pin			1		mA

LOW FREQUENCY INPUTS AND OUTPUTS (ROMMSB, MD ${ }_{\mathrm{OUT}}, \mathrm{MD}_{\mathrm{IN}^{\prime}}, M C L K, \overline{R E S E T}, ~ L O C K$)

V_{IH}	High level input voltage		DVCC-0.5			V
$\mathrm{V}_{\text {IL }}$	Low level input voltage				DGND + 0.5	V
V_{OH}	High level output voltage, MCLK and MDIN	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	DVCC - 0.5			V
V_{OL}	Low level output voltage, MCLK and MDIN	$\mathrm{l}_{\mathrm{OL}}=+200 \mu \mathrm{~A}$			GND + 0.5	V
V_{OH}	High level output voltage, LOCK output	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \end{aligned}$	$\stackrel{2.4}{\text { DVCC }}-0.5$			$\begin{aligned} & V \\ & V \end{aligned}$
V_{OL}	Low level output voltage, LOCK output	$\mathrm{l}_{\mathrm{OL}}=+1 \mathrm{~mA}$			0.4	V
I N	Static input current				10	$\mu \mathrm{A}$
$\mathrm{CIN}_{\text {IN }}$	Input capacitance			5		pF

HIGH FREQUENCY INPUTS AND OUTPUTS (CLK ${ }_{\text {IN }}$, FB [0-7], CLK [0-7])

V_{IH}	High level input voltage		2.0		V	
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage			0.8	V	
I_{IH}	High level input current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{MS}=0$	-100			$\mu \mathrm{~A}$
I_{IL}	Low level input current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{MS}=0$			400	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage	$\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$	2.4		V	
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage	$\mathrm{I}_{\mathrm{OL}}=+60 \mathrm{~mA}$		0.4	V	

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT

AC CHARACTERISTICS rise time, fall time and duty cycle are measured for a generic load; (see Load Conditions section).

t_{R}	Rise time, LOAD [0-7] output	$0.8 \rightarrow 2.0 \mathrm{~V}$	150		1500	ps
t_{F}	Fall time, LOAD [0-7] output	$2.0 \rightarrow 0.8 \mathrm{~V}$	150		1500	ps
f_{N}	Input frequency, CLK ${ }_{\text {IN }}$ pin		10		80	MHz
$\mathrm{f}_{\text {OUT }}$	Output frequency, CLK [0-7] output		10		80	MHz
$\mathrm{f}_{\text {VCO }}$	PLL VCO operating frequency		80		160	MHz
$\mathrm{f}_{\text {XTAL }}$	Crystal oscillator range		10		20	MHz
DC	Output duty cycle	Measured at device load, at 1.5 V	40		60	$\%$
$\mathrm{t}_{\text {IITTER }}$	Output jitter	Cycle-to-cycle		75		ps
		Peak-to-peak		150		ps
$\mathrm{t}_{\text {LOCK }}$	PLL and deskew lock time	After programming is complete		11		ms

SKEW CHARACTERISTICS All skew measurements are made at the load, at 1.5 V threshold each output load can vary independently within the specified range for a generic load (see Load Conditions section).

$\mathrm{t}_{\text {SKEWR }}$	Output-to-output rising edge skew				500	ps
$\mathrm{t}_{\text {SKEWF }}$	Output-to-output falling edge skew	Output clock frequency $\geq 50 \mathrm{MHz}$			1.5	ns
${ }_{\text {tSKEWIO }}$	CLK IN input to any LOAD [0-7] output Maximum rising edge skew	6500 in $1 \times$ slave mode, $N=M=0$		600		ps
		6500 in slave mode, $N \geq 2, M \geq 2$		1.25		ns
$t_{\text {RANGE }}$	Round trip delay CLKX to FBX pın; output CLK period $=\mathrm{t}_{\mathrm{CLK}}$	Output frequency $<50 \mathrm{MHz}$ Output frequency $\geq 50 \mathrm{MHz}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 10 \\ \mathrm{t}_{\mathrm{CLK}} / 2 \end{gathered}$	ns
tskew	Output-to-output rising edge skew, between matched loads			250		ps

PROGRAMMING TIMING CHARACTERISTICS

ML6500 configured with M/S = 0 (Slave Mode), (tskewio does not apply for $M / S=1$; other skew characteristics are the same):

Note: All skew is measured at the device load input pın, NOT at the ML6500 clock output pin. Skew is always a positive number, regardless of which edge is leading and which is trailing.

AC/SKEW CHARACTERISTICS LOAD CONDITIONS

FUNCTIONAL DESCRIPTION

Micro Linear's ML6500 is the first clock generator chip to use a feedback mechanism to adaptively (on a real time basis), eliminate clock skew in high speed personal computer and workstation system designs. Figure 1 shows a basic configuration of the ML6500 in a system. The skew problem results due to the delaying of clock signals in the system, as shown in Figure 2. Clock skew results from variation in factors like trace length, PCB trace characteristics, load capacitance, parasitic capacitance, temperature and supply variations, etc. Figure 2 shows a representation of the clock skew problem from a timing perspective. It shows a worst case example where the clock signal is delayed so much that its rising edge completely misses the data it is intended to strobe. Using a clock deskew mechanism, this problem can be eliminated and the strobe with the appropriate setup and hold times with respect to the data bus can be generated.

The ML6500 has eight deskew buffers, each with its own independent feedback and error correction circuit. The deskew buffer eliminates skew by using feedback from a remote chip to measure the clock error and then corrects it by generating the appropriate skew to the clock output to compensate. By connecting an external crystal for reference, the onboard low jitter PLL-based clock generator can be used to generate the desired clock output frequency.

Figure 1. Basic System Configuration Using the ML6500.

Figure 2. The Skew Problem.

CLOCK GENERATION (MASTER mode) M/S bit = 1

The ML6500 has an integrated clock generator that can be programmed via an external EEPROM, a serial bus, or the on-chip ROM. Shown in Figure 3 is a block diagram of the ML6500 clock generation mechanism. In the MASTER mode (M / S bit set $=1$), the full resolution of the PLL frequency synthesizer is available (M register 6 bits, N register 7 bits). The input frequency is defined by the crystal oscillator. The phase relationship between input clock and output clock is not well-defined in the MASTER mode. The VCO frequency is defined by the formula:

$$
f_{\mathrm{VCO}}=\mathrm{f}_{\mathrm{REF}} \times\left(\frac{\mathrm{N}+1}{M+1}\right)
$$

Where $\mathrm{F}_{\text {REF }}$ is the frequency of the crystal. The VCO frequency must remain in the range $80-160 \mathrm{MHz}$. The primary output clock is defined by the formula:

$$
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}
$$

R1	R0	INPUT/OUTPUT RANGE
0	0	Not valid: Defaults to $R=01$
0	1	$40-80 \mathrm{MHz}$
1	0	$20-40 \mathrm{MHz}$
1	1	$10-20 \mathrm{MHz}$

[^11]Example: Using a 14.318 MHz crystal for the input frequency.
Desired output frequency $=66 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$)
Set $N=82$ (1010010) and $M=8$ (001000), $M / S=1$

Then, $f_{\text {VCO }}=14.318 \times(83 / 9)=132.044 \mathrm{MHz}$
Eight individually deskewed copies of the clock are provided by the PACMan.
The deskew buffers compensate internally for board-level skew caused by the PCB trace length variations and device load variations. This is accomplished by sensing the round trip delay via the return trace, and then delaying or advancing the clock edge so that all 8 output clocks arrive at their loads in phase. Each of the eight clock lines can have any length PCB trace (up to 5 nec each way or $1 / 4$ th of the output clock period, whichever is smaller) and the device loads can vary from line to line. The PACMan will automatically compensate for these variations, keeping the device load clocks in phase. (Although PACMan will compensate for skew caused by loading, excessive capacitive loading can cause rise/fall time degradation at the ioad.) Cascading the ML6500 in slave mode, to the master ML6500 should be done using a deskewed output from master to slave. Alternatively, a ML6508 can be cascaded using the reference clock outputs (RCLKH and RCLKL).

Figure 3. ML6500 Clock Generation Block Diagram.

CLOCK REGENERATION

(ML6500 Slave mode) M / S bit $=0$

The ML6500 can also function in a clock regeneration mode (SLAVE mode) to assist in building clock trees or to expand the number of de-skewed clock lines. When the ML6500 functions in the slave mode, it has the ability to do clock multiplication or division as well, while maintaining low skew between the input clock and the device loads. It can generate a $2 x$ or $4 x$ or $0.5 x$ frequency multiplication or division from input to output (e.g. 33 MHz input, 66 MHz output or 66 MHz input, 33 MHz output, etc.). It also can generate a 1 x frequency output. To operate the ML6500 in the slave mode, set the M / S bit $=0$. Then the VCO frequency is defined by:

$$
f_{V C O}=f_{R E F} \times\left[\frac{(N+1) \times 2^{R}}{(M+1)}\right]
$$

and the output frequency is still:

$$
f_{\mathrm{OUT}}=f_{\mathrm{VCO}} / 2^{R} \text { (setting } R=00 \text { defaults to } R=01 \text {) }
$$

The VCO still must remain in the range $80-160 \mathrm{MHz}$, and the minimum phase detector input frequency is $625 \mathrm{kHz}=(80 \mathrm{MHz} / 128)$. Thus the product of $(\mathrm{N}+1)$ and 2^{R} should be limited to 128 :

$$
(N+1) \times 2^{R} \leq 128 \quad \text { to make sure that the }
$$ phase detector inputs remain above the minimum frequency.

Example: Generating a $2 x$ clock input frequency $=33 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), $N=5$ (0000101), $M=2(000010), M / S=0$

$$
f_{\mathrm{VCO}}=f_{\mathrm{REF}} \times\left[\frac{(N+1) \times 2^{R}}{(M+1)}\right]=33 \mathrm{MHz} \times\left[\frac{6 \times 2^{1}}{3}\right]=132 \mathrm{MHz}
$$

$$
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
$$

Example: Generating a $1 \times$ clock Input frequency $=66 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), set $M=0$ (000000), $N=0(0000000), M / S=0$

$$
\begin{gathered}
f_{\mathrm{VCO}}=66 \mathrm{MHz} \times\left[\frac{1 \times 2^{1}}{1}\right]=132 \mathrm{MHz} \\
f_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
\end{gathered}
$$

For doing frequency multiplication and division in slave mode, keep $\mathbf{M} \geq 2$ and $\mathbf{N} \geq 2$ for the lowest skew between input clock and output clock.

ADAPTIVE DESKEW BUFFERS

Each copy of the primary clock is driven by an adaptive deskew buffer. The deskew buffer compensates for skew time automatically in accordance to the flight time delay it senses on the feedback line.
Figure 4 shows the simplified functional block diagram of the deskew circuit. The phase of the sense signal and the drive signal is presented to a three-input phase comparator and compared with the reference signal. The phase comparator then controls the voltage controlled delay in the output drive line to match the delay of the fixed reference delay line. Therefore, the sum of the delay of the driver circuit, PCB trace delay, rise time delay at the load and the adjustable delay will always equal the fixed maximum delay.
The sense circuit has an internal level detect such that any skew caused by loading is also accounted for. Since the delay of the circuit is matched for the entire loop, the phase of all the drivers are in close alignment at the inputs of the load.

Figure 4. Deskew Circuit Block Diagram.

LOAD CONDITIONS

The ML6500 has been designed to drive the wide range of load conditions that are encountered in a high frequency system. The eight output clock loads can vary individually within a wide range of trace length, impedance and lumped capacitive load, but each load should remain within the designated range for a generic load, to insure the lowest skew and the best signal integrity. The outgoing and return trace should be matched in length and impedance, and the trace should include a termination at the feedback (FB\#) pin. All eight output clock traces are generally the same impedance with the same termination resistor values. The clock skew can be further minimized by providing some first order matching between any two loads that require particularly well matched clocks. For the best matching, use adjacent clock outputs with matched loads.

Termination resistors should have a Thevenin voltage of approximately 3 V and a Thevenin resistance equal to the impedance of the PCB trace, Z_{0} :

$$
R_{1}=\frac{5}{3}\left(Z_{0}\right) \quad \text { then } \quad R_{2}=\frac{3}{2} R_{1} \quad\left(\text { for } V_{C C}=5 V\right)
$$

TRACE IMPEDANCE	RECOMMENDED VALUES	MAX. AVG. RESISTOR POWER DISSIPATION W/GENERIC LOAD		
Z0	R1	R2	R1	R2
40Ω	68	100	160 mW	100 mW
50Ω	82	130	150 mW	70 mW
63Ω	110	160	120 mW	70 mW

CRYSTAL OSCILLATOR AND EXTERNAL CLOCKS

If the crystal oscillator is used, the crystal should be placed physically as close as possible to the XTAL and AGND2 pins as possible. No other external components are required. The XTAL pin can also be driven by an external clock signal. There is no well-defined phase difference between input and output clocks in MASTER mode. If a well-defined phase difference is required, the ML6500 should be used in SLAVE mode ($M / S=0$), and the $\mathrm{CLK}_{\text {IN }}$ input used for the external clock (up to 80 MHz).

$\overline{\text { RESET AND LOCK }}$

When $\overline{\text { RESET }}$ is de-asserted, the internal programming logic will become active and load in the configuration bits (see Programming the ML6500). Once the configuration is loaded, the PLL will lock onto the reference signal, and then the deskew blocks will adapt to the load conditions. When all eight output clocks are stable and deskewed, LOCK will be asserted. The asserted polarity of lock is high. Thus, LOCK can be used to indicate that the system is ready, or it can be used to drive the RESET input of another PACMan in a clock tree.

$\overline{\text { RESET }}$ may be reasserted at any time to reset the chip operations. Following a RESET assertion of valid pulse width (see Programming Electrical Characteristics), the ML6500 must again be loaded with a configuration, then it will re-lock and reassert lock when all eight clock outputs are stable and deskewed.

PROGRAMMING THE ML6500

The configuration of the ML6500 is programmed by loading 17 bits into the configuration shift register. To load these bits, the user has 3 options: MAIN, AUX or ROM modes. Which mode is used is determined by the logic level on the $M D_{\text {IN }}$ pin when $\overline{R E S E T}$ is deasserted. If $M D_{\text {IN }}$ is tied high, the ML6500 will assume AUX mode; if its tied low, $R O M$ mode. If $\mathrm{MD}_{\mathrm{IN}}$ is high-impedance (i.e. tied to the input of an EEPROM), it will assume MAIN mode.

1. MAIN Mode

In this mode, the ML6500 will read the 17 configuration bits from an external serial EEPROM, such as the 93C46, using the industry standard 3-wire serial I/O protocol. The serial EEPROM should be a 1 K organized in 64×16 bits and the PACMan will read the 17 configuration bits out of the two least significant 16 -bit words. To use this mode, simply connect the EEPROM serial data input pin to $M D_{\text {IN }}$ (ML6500 pin 19), the EEPROM serial data output pin to MD ${ }_{\text {OUT }}$ (ML6500 pin 20), and the EEPROM serial data clock pin to MCLK (ML6500 pin 21). After power up, when RESET is deasserted, the ML6500 will automatically generate the address and clock to read out the 19 configuration bits. Refer MAIN Mode waveform in Figure 5.

MAIN Mode Configuration.

2. AUX Mode

When $\mathrm{MD}_{\text {IN }}$ is tied to VCC, programming the PACMan will occur via the AUX Mode. This mode shifts the 17 configuration bits into the shift register directly from the MD OUt pin. The first 17 clock rising edges provided externally on the MCLK pin after RESET is deasserted will be used to load the shift register data, which should be provided on the MD OUT pin . See figure 6.

AUX Mode Configuration.

Figure 6. AUX Mode Waveforms

Figure 5. MAIN Mode Waveforms.

3. ROM Mode

When $M D_{\text {IN }}$ is tied to GND, programming the PACMan will occur via the ROM Mode. This mode reads the 17 configuration bits directly from an on chip ROM. The selection of one of the eight preset configuration codes is accomplished by means of the pins ROMMSB, MCLK and MD OUt as shown in Table 1 . In the table Code 1 is for $1 X$ slave configuration, with output clock in the frequency range of $40-80 \mathrm{MHz}$. Codes $2-7$ assume use of a 14.318 MHz crystal in the master mode to generate some of the common clock frequencies. Code 0 is TEST mode for low frequency testing (PLL is bypassed); the output clocks will follow the $\mathrm{CLK}_{\mathrm{IN}}$ input.

ROM Mode Configuration.

TABLE 1

CODE	Selection Bits			$\begin{array}{\|c\|} \hline \text { Input } \\ \text { Freq. }(\mathbf{M H z}) \\ \hline \end{array}$	$\begin{gathered} \text { VCO } \\ \text { Freq. (MHz) } \end{gathered}$	Output Freq. (MHz)	Configuration Code				
	ROMMSB	MCLK	MD ${ }_{\text {OUT }}$				M/S	R1, R0	M1	N1	TEST
0	0	0	0	0-50	-	0-50	0	-	-	-	1
1	0	0	1	40-80	80-160	40-80	0	01	0	0	0
2	0	1	0	14.318	131.73	32.93	1	10	4	45	0
3	0	1	1	14.318	100.23	50.11	1	01	1	13	0
4	1	0	0	14.318	119.91	59.96	1	01	7	66	0
5	1	0	1	14.318	131.73	65.86	1	01	4	45	0
6	1	1	0	14.318	149.32	74.66	1	01	6	72	0
7	1	1	1	14.318	159.88	79.94	1	01	5	66	0

${ }^{1} \mathrm{M}$ and N registers are represented in decimal format.

REGISTER DEFINITIONS

BITS	REGISTER	SIZE	FUNCTION
$10-16$	N	7 bit	This register is used to define the ratio for the desired frequency of the primary clock.
$8-9$	R	2 bit	This register defines the frequency of the primary clocks, CLK [0-7].
7	M/S	1 bit	Used to select master/slave operation.
6	TEST	1 bit	If TEST $=1$, PLL will be bypassed to allow low frequency testing. Set TEST $=0$ for normal operation
$0-5$	M	6 bit	This register is used to define the ratio for the desired frequency of the primary clock.

ML6500 SHIFT REGISTER CHAIN

APPLICATIONS

ZERO SKEW CLOCK GENERATION

The most advantageous feature of using PACMan is its ability to deliver multiple copies of the clock to the load with very low skew. Because of its unique ability in deskewing, trace length and load consideration are no longer critical in board design and true "zero" deskew can now be realized.

Because of the unique deskewing scheme, neither the trace length nor the device loads need to be equal. This is true for loads, $<20 \mathrm{pF}$. Higher loads can be driven if they are placed close to the clock chip, to guarantee signal integrity.

LOW SKEW CLOCK DISTRIBUTION

Clock distribution design is usually not a trivial task, especially when multiple clock chips are needed. By using closely grouped PACMans, 16 or more clock lines can be created with low part-to-part skew. Additional groups of clocks can be clustered and driven from deskewed clock lines, to minimize the number of longdistance clock lines.

BOARD TO BOARD SYNCHRONIZATION

Distribution of the synchronous clock could present significant difficulty at high frequency. With the system clock generated by the ML6500, a zero skew clock delivery to a backplane is now possible. By using the ML6508 slave chip or the ML6500 in slave mode at the receiver end, a near zero delay clock link can be accomplished between the mother board and the satellite boards.

Because the 6500 has frequency doubling capability, a lower frequency signal can be used to route across a back plane.

EXAMPLE CONFIGURATION

Shown in Figure 7 is an example configuration using the ML6500 (Master) and ML6508 (Slave) in tandem to generate eight 66 MHz clocks and eight 33 MHz low-skew clocks. This requires only a single crystal and the termination resistors. Configurations are loaded from the internal ROM. PCB traces 0 to 15 are each 50Ω impedance and the load capacitances $\mathrm{C}_{\mathrm{L} 0}-\mathrm{C}_{\mathrm{L} 15}$ are 0 to 20 pF each. Outgoing and return trace length for all loads are matched (ie. the load is tapped at the center point of the loop), but no matching is required among separate clock outputs. All traces are shown with a Thevenin termination at the feedback (FB) pin.

Figure 7. Example use of the ML6500 (Master Mode) in tandem with the ML6500 (Slave Mode) to generate multiple frequency clocks. Master mode ML6500 generates seven 66 MHz clocks while the slave mode ML6500 generates eight 33 MHz clocks.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6500CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$44-$ pin PLCC $(\mathrm{Q} 44)$

Programmable Adaptive Clock Manager (PACMan ${ }^{\text {rw }}$) Evaluation Kit

GENERAL DESCRIPTION

The ML6500 and ML6508 are programmable adaptive clock manager masters and slaves capable of automatically adjusting clock skew to within 500ps at the load. This evaluation kit is designed to exercise the devices with varying PC trace lengths and loading to mimic a "real" system. The board can accommodate either the ML6500 master or the ML6508 slave for evaluation purposes.

KIT COMPONENTS

- ML6500/08EVAL Users Guide
- ML6500/08 Data Sheet
- Application Note \#21
- Gerber file on $3.5^{\prime \prime}$ disk

■ Complete assembled and tested ML6500EVAL or ML6508EVAL Board

EVAL KIT OPERATION

The EVAL kit is shipped with ML6500 master if the ML6500EVAL is ordered or with the ML6508 slave for the ML6508EVAL. The jumpers are set so that the parts selfprogram in the "ROM Mode". A 66 MHz clock frequency from the on-board 14.318 MHz crystal is setup for initial evaluation of the ML6500EVAL. The ML6508EVAL needs an external PECL clock connected to CLK INH and CLK INL for operation. For power, simply provide +5 V for V_{CC} into the banana jack marked VCC " + " and Ground connected to GND " - ". Ceramic surface mount capacitors in the values of 5 to 20 pF are used to emulate a realistic single or multiple IC clock load. There are through hole solder pads for either sockets or capacitors to make it easier to change values. Different clock frequencies from 10 to 80 MHz can be chosen by changing the jumper pins.

BLOCK DIAGRAM

The ML6500/08 Evaluation kit. The board can be configured for different clock frequencies and used as a master or slave clock manager.

Programmable Adaptive Clock Manager (PACMan ${ }^{\mathrm{TM}}$)

GENERAL DESCRIPTION

The ML6508 is a Programmable Adaptive Clock Manager which offers an ideal solution for managing high speed synchronous clock distribution in next generation, high speed personal computer and workstation system designs. It provides eight channels of deskew buffers that adaptively compensate for clock skew using a separate feedback trace. The input clock can be either TTL or PECL, selected by a bit in the control register. Frequency multiplication or division is possible using the M\&N divider ratio, within the maximum frequency limit of $80 \mathrm{MHz} .0 .5 \mathrm{X}, 1 \mathrm{X}, 2 \mathrm{X}$ and 4 X clocks, or any ratio between M and N can be easily realized.
The ML6508 is implemented using a low jitter PLL with on-chip loop filter. The ML6508 deskew buffers adaptively compensate for clock skew on PC boards. An internal skew sense circuit is used to sense the skew caused by the PCB trace and load delays. The sensing is done through a feedback loop from the load and the skew is corrected adaptively via a unique phase control delay circuit to provide low load-to-load skew, at the end of the PCB traces. Additionally, the ML6508 supports PECL reference clock outputs for use in the generation of clock trees with minimal part-to-part skew. The chip configuration can be programmed to generate the desired output frequency using the internal ROM or an external serial EEPROM or a standard two-wire serial microprocessor interface.

FEATURES

- SLAVE mode for clock generation using a clock input as a reference providing low input to output clock phase error.
- Input clocks can be either TTL or PECL with low input to output clock phase error
- 8 independent, automatically deskewed clock outputs with up to 5 ns of on-board deskew range (10ns round trip)
- Controlled edge rate TTL-compatible CMOS clock outputs capable of driving 40Ω PCB traces
- 10 to 80 MHz Input and output clock frequency range

■ Less than 500ps skew between inputs at the device loads; less than 300ps with first-order matching

- Small-swing reference clock outputs for minimizing part-to-part skew
- Frequency multiplication or division

■ Lock output indicates PLL and deskew buffer lock

- Test mode operation allows PLL and deskew buffer bypass for board debug
- Supports industry standard processors like Pentium, ${ }^{\text {TM }}$ Intel80486, TM Mips R4000, ${ }^{\text {TM }}$ SPARC, ${ }^{\text {TM }} 68040$, ${ }^{\text {TM }}$ PowerPC, ${ }^{\text {TM }}$ Alpha, ${ }^{\text {TM }}$ etc.

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
32	ROMMSB	MSB of the internal ROM address. Tie to GND if not used. See section on Programming the ML6508.
20	MD ${ }_{\text {OUT }}$	Programming pin. See section on Programming the ML6508.
19	$M D_{\text {IN }}$	Programming pin. See section on Programming the ML6508.
21	MCLK	Programming pin. See section on Programming the ML6508.
22	$\overline{\text { RESET }}$	Reset all internal circuits. Asserted polarity is low.
23	LOCK	Indicates when the PLL and deskew buffers have locked. Asserted polarity is high.
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{CLK}_{\mathrm{INH}} \\ & \mathrm{CLK}_{\mathrm{INL}} \end{aligned}$	Input clock pins. For TTL clock reference use CLKINH pin shorted to the CLK INL pin. For PECL clock reference drive pins differentially. Input clock type is selected by the CS bit in the shift register.
$\begin{gathered} 16,14,9,7, \\ 44,42,37,35 \end{gathered}$	CLK[0-7]	Clock outputs
$\begin{aligned} & 18,12,11,5 \\ & 2,40,39,33 \end{aligned}$	FB[0-7]	Clock feedback inputs for the deskew buffers
$\begin{gathered} 3,31 \\ 25 \end{gathered}$	AVCC[1-3]	Analog circuitry supply pins, separated from noisy digital supply pins to provide isolation. All supplies are nominally +5 V .
4, 30, 24	AGND[1-3]	Analog circuitry ground pins
15	DVCC01	Digital supply pin for CLK0 and CLK1 output buffers. Nominally +5 V .
8	DVCC23	Digital supply pin for CLK2 and CLK3 output buffers. Nominally +5 V .
43	DVCC45	Digital supply pin for CLK4 and CLK5 output buffers. Nominally +5 V .
36	DVCC67	Digital supply pin for CLK6 and CLK7 output buffers. Nominally +5V.
$\begin{aligned} & 17,13,10,6 \\ & 1,41,38,34 \end{aligned}$	DGND[0-7]	Digital ground pins for CLK [0-7] output buffers. Each clock output buffer has its own ground pin to avoid crosstalk and ground bounce problems.
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { RCLKL } \\ & \text { RCLKH } \end{aligned}$	Differential reference clock output used to minimize part-to-part skew when building clock trees with other PACMan integrated circuits.

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage Range
. -0.3 V to 6 V
-0.3 V to VCC
Output Current
CLK[0-7]
70 mA
All other outputs
10 mA

Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $\mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$ and ambient temperature between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Loading conditions are specified individually.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY						
IDVCC	Supply Current for each pair of clock outputs	All clock outputs open, $\mathrm{f}_{\text {CLKX }}=0$		50		$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{Z}_{\mathrm{O}}=50 \Omega \\ & \mathrm{f}_{\mathrm{OUT}}=80 \mathrm{MHz} \end{aligned}$		50		mA
IAVCC1	Static supply current, AVCC1 pin			100		mA
IAVCC2	Static supply current, AVCC2 pin			35		mA
IAVCC3	Static supply current, AVCC3 pin			1		mA

LOW FREQUENCY INPUTS AND OUTPUTS (ROMMSB, MDout, MDIN, MCLK, $\overline{\text { EESET, LOCK) }}$

V_{IH}	High level input voltage		DVCC -0.5			V
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage				DGND +0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage, MCLK and MDIN	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			V	
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage, MCLK and MDIN	$\mathrm{I}_{\mathrm{OL}}=+200 \mu \mathrm{~A}$		$\mathrm{DGND}+0.5$	V	
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage, LOCK output	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	2.4 Low level output voltage, LOCK output	$\mathrm{I}_{\mathrm{OL}}=+1 \mathrm{~mA}$		
$\mathrm{~V}_{\mathrm{OL}}$	DVCC -0.5		V			
I_{IN}	Static input current				0.4	V
C_{IN}	Input capacitance		5		10	$\mu \mathrm{~A}$

HIGH FREQUENCY INPUTS AND OUTPUTS (CLK ${ }_{\text {INH }}$, CLK $_{\text {INL }}$, FB[0-7], CLK[0-7])

V_{IH}	High level input voltage	$\mathrm{CS}=0$ (TTL Input Clock)	2.0			V
		$\mathrm{CS}=1$ (PECL Input Clock)	AVCC -1.165		$\mathrm{AVCC}-0.88$	V
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage	$\mathrm{CS}=0$ (TTL Input Clock)			0.8	V
		$\mathrm{CS}=1$ (PECL Input Clock)	$\mathrm{AVCC}-1.810$		$\mathrm{AVCC}-1.475$	V
$\mathrm{~V}_{\mathrm{ICM}}$	Common mode input voltage range for PECL reference clocks	$\mathrm{CS}=1$ (PECL Input Clock)	2.0		$\mathrm{AVCC}-0.4$	V
I_{IH}	High level input current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low level input current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-400			$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage	$\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage	$\mathrm{I}_{\mathrm{OL}}=+60 \mathrm{~mA}$			0.4	V

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT

AC CHARACTERISTICS rise time, fall time and duty cycle are measured for a generic load; (see Load Conditions section).

t_{R}	Rise time, LOAD [0-7] output	$0.8 \rightarrow 2.0 \mathrm{~V}$	150		1500	ps
t_{F}	Fall time, LOAD [0-7] output	$2.0 \rightarrow 0.8 \mathrm{~V}$	150		1500	ps
f_{IN}	Input frequency, CLK $\mathrm{IIN}^{\mathrm{N}}$ pin		10		80	MHz
$\mathrm{f}_{\text {OUT }}$	Output frequency, CLK [0-7] output		10		80	MHz
$\mathrm{f}_{\mathrm{VCO}}$	PLL VCO operating frequency		80		160	MHz
DC	Output duty cycle	Measured at device load, at 1.5 V	40		60	$\%$
$\mathrm{t}_{\text {IITTER }}$	Output jitter	Cycle-to cycle		75		ps
		Peak-to-peak		150		ps
$\mathrm{t}_{\text {LOCK }}$	PLL and deskew lock time	After programming is complete		11		ms

SKEW CHARACTERISTICS All skew measurements are made at the load, at 1.5 V threshold each output load can vary independently within the specified range for a generic load (see Load Conditions section).

$\mathrm{t}_{\text {SKEWR }}$	Output to output rising edge skew, all clocks				500	ps
$\mathrm{t}_{\text {SKEWF }}$	Output to output falling edge skew	Output clock frequency $\geq 50 \mathrm{MHz}$			1.5	ns
$\mathrm{t}_{\text {SKEWIO }}$	CLK $_{\text {IN }}$ input to any LOAD [0-7] output Maximum rising edge skew	$N=M=0$		600		ps
		$N \geq 2, M \geq 2$		1.25		ns
$t_{\text {Range }}$	Round trip delay CLKX to FBX pin; output CLK period $=$ tcLK	Output frequency $<50 \mathrm{MHz}$ Output frequency $\geq 50 \mathrm{MHz}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} 10 \\ \mathrm{t}_{\mathrm{CLK}} / 2 \\ \hline \end{gathered}$	ns
tskew $^{\text {d }}$	Output-to-output rising edge skew, between matched loads	Providing first (see LOAD conditions) order matching order matching between outputs		250		ps

PART-TO-PART SKEW CHARACTERISTICS
Skew measured at the loads, at 1.5 V threshold. Reference clock output pins drive clock input pins of another ML6508.

tPP1	Total load-to-load skew between multiple chips interfaced with reference clock pins.	Slave chip CS $=1, C M=1$ and $N=0, M=0 ; R C L K$ outputs to CLK IN inputs distance less than 2"		TBD	ps
tPP2	Total load-to-load skew between multiple chips interfaced with reference clock pins.	Slave chip CS $=1, C M=1$ and $N \geq 2, M \geq 2 ; R C L K$ outputs to CLKIN inputs distance less than 2"			TBD

PROGRAMMING TIMING CHARACTERISTICS

$t_{\text {RESET }}$	RESET assertion pulse width		50		
$t_{\text {A1 }}$	AUX mode MCLK high tıme		2000		
$\mathrm{t}_{\mathrm{A} 2}$	AUX mode MCLK low time		2000		ns
$\mathrm{t}_{\mathrm{A} 3}$	AUX mode MD hout data time		10		ns
$\mathrm{t}_{\mathrm{A} 4}$	AUX mode MD OUT data setup time		10		ns

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT

PROGRAMMING TIMING CHARACTERISTICS (Continued)

$t_{\text {A }}$	AUX mode MCLK period		5000		
$t_{\text {M1 }}$	MAIN mode MCLK high time		900		ns
$\mathrm{t}_{\text {M2 }}$	MAIN mode MCLK low time		900		ns
$t_{\text {M3 }}$	MAIN mode MCLK period		1800		
$t_{\text {M4 }}$	MAIN mode MCLK to MD (EEPR valid (EEPOM read time $)$			ns	

ML6508 configured with bit $\mathrm{CM}=0$:

Note: All skew is measured at the device load input pin, NOT at the ML6508 clock output pin. Skew is always a positive number, regardless of which edge is leading and which is tralling.

AC/SKEW CHARACTERISTICS LOAD CONDITIONS

FUNCTIONAL DESCRIPTION

Micro Linear's ML6508 is the first clock chip to use a feedback mechanism to adaptively (on a real time basis), eliminate clock skew in high speed personal computer and workstation system designs. Figure 1 shows a basic configuration of the ML6508 in a system. The skew problem results due to the delaying of clock signals in the system, as shown in Figure 2. Clock skew results from variation in factors like trace length, PCB trace characteristics, load capacitance, parasitic capacitance, temperature and supply variations, etc. Figure 2 shows a representation of the clock skew problem from a timing perspective. It shows a worst case example where the clock signal is delayed so much that its rising edge completely misses the data it is intended to strobe. Using a clock deskew mechanism, this problem can be eliminated and the strobe with the appropriate setup and hold times with respect to the data bus can be generated.

The ML6508 has eight deskew buffers, each with its own independent feedback and error correction circuit. The deskew buffer eliminates skew by using feedback from a remote chip to measure the clock error and then corrects it by generating the appropriate skew to the clock output to compensate.

Eight individually deskewed copies of the clock are provided by the ML6508.

Figure 1. Basic System Configuration Using the ML6508.

The deskew buffers compensate internally for board-level skew caused by the PCB trace length variations and device load variations. This is accomplished by sensing the round trip delay via the return trace, and then delaying or advancing the clock edge so that all 8 output clocks arrive at their loads in phase. Each of the eight clock lines can have any length PCB trace (up to 5 ns each way or $1 / 4$ th of the output clock period, whichever is smaller) and the device loads can vary from line to line. The ML6508 will automatically compensate for these variations, keeping the device load clocks in phase. Although ML6508 will compensate for skew caused by loading, excessive capacitive loading can cause rise/fall time degradation at the load. Cascading the ML6500 to the ML6508 should be done using the PECL reference clock outputs, to minimize part-to-part skew.

CLOCK REGENERATION

The programmable adaptive clock deskew can function in a clock regeneration mode to assist in building clock trees or to expand the number of de-skewed clock lines. In this mode, it has the ability to do clock multiplication or division as well, while maintaining low skew between

Figure 2. The Skew Problem.

Figure 3. ML6508 Clock Generation Block Diagram.
input clock and output clocks. It can thus generate a $2 x$ or $4 x$ or $0.5 x$ frequency multiplication or division from input to output (e.g. 33 MHz input, 66 MHz output or 66 MHz input, 33 MHz output, etc.). It also can generate a 1 x frequency output. The VCO frequency is defined by:

$$
f_{V C O}=f_{R E F} \times\left[\frac{(N+1) \times 2^{R}}{(M+1)}\right]
$$

and the output frequency is still given by:
$f_{\text {OUT }}=f_{\mathrm{VCO}} / 2^{R}$ (setting $R=00$ defaults to $R=01$)

R1	R0	INPUT/OUTPUT RANGE
0	0	Not valid: Defaults to $R=01$
0	1	$40-80 \mathrm{MHz}$
1	0	$20-40 \mathrm{MHz}$
1	1	$10-20 \mathrm{MHz}$

Note: R implies R1, R0
The VCO still must remain in the range $80-160 \mathrm{MHz}$, and the minimum phase detector input frequency is $625 \mathrm{kHz}=$ ($80 \mathrm{MHz} / 128$). Thus the product of $(N+1)$ and 2^{R} should be limited to 128 :

$$
\begin{array}{ll}
(N+1) \times 2^{R} \leq 128 & \begin{array}{l}
\text { to make sure that the } \\
\text { phase detector inputs } \\
\text { remain above the minimum } \\
\text { frequency. }
\end{array}
\end{array}
$$

Example: Generating a $2 x$ clock input frequency $=33 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), $\mathrm{N}=5$ (0000101), $M=2(000010), M / S=0$

$$
\begin{gathered}
\mathrm{f}_{\mathrm{VCO}}=\mathrm{f}_{\mathrm{REF}} \times\left[\frac{(\mathrm{N}+1) \times 2^{\mathrm{R}}}{(\mathrm{M}+1)}\right]=33 \mathrm{MHz} \times\left[\frac{6 \times 2^{1}}{3}\right]=132 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
\end{gathered}
$$

Example: Generating a $1 \times$ clock Input frequency $=66 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), set $M=0$ (000000), $N=0(0000000), M / S=0$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{VCO}}=66 \mathrm{MHz} \times\left[\frac{1 \times 2^{1}}{1}\right]=132 \mathrm{MHz} \\
& \mathrm{~F}_{\mathrm{OUT}}=\mathrm{F}_{\mathrm{VCO}} / 2^{\mathrm{R}}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
\end{aligned}
$$

For doing frequency multiplication and division, keep $\mathbf{M} \geq 2$ and $\mathrm{N} \geq 2$ for the lowest skew between input clock and output clock. Several configurations for doing frequency multiplication and division are included in the 8 configurations stored in the on-chip ROM (see PROGRAMMING the ML6508).

ADAPTIVE DESKEW BUFFERS

Each copy of the clock is driven by an adaptive deskew buffer. The deskew buffer compensates for skew time automatically in accordance to the flight time delay it senses on the feedback line.

Figure 4 shows the simplified functional block diagram of the deskew circuit. The phase of the sense signal and the drive signal is presented to a three-input phase comparator and compared with the reference signal. The phase comparator then controls the voltage controlled delay in the output drive line to match the delay of the fixed reference delay line. Therefore, the sum of the delay of the driver circuit, PCB trace delay, rise time delay at the load and the adjustable delay will always equal the fixed maximum delay.

Figure 4. Deskew Circuit Block Diagram.
The sense circuit has an internal level detect such that any skew caused by loading is also accounted for. Since the delay of the circuit is matched for the entire loop, the phase of all the drivers are in close alignment at the inputs of the load.

LOAD CONDITIONS

The ML6508 has been designed to drive the wide range of load conditions that are encountered in a high frequency system. The eight output clock loads can vary individually within a wide range of trace length, impedance and lumped capacitive load, but each load should remain within the designated range for a generic load, to insure the lowest skew and the best signal integrity. The outgoing and return trace should be matched in length and impedance, and the trace should include a termination at the feedback (FB\#) pin. All eight output clock traces are generally the same impedance with the same termination resistor values. The clock skew can be further minimized by providing some first order matching between any two loads that require particularly well matched clocks. For best matching use adjacent clock outputs with matched loads.

Termination resistors should have a Thevenin voltage of approximately 3 V and a Thevenin resistance equal to the impedance of the PCB trace, Z_{0} :

$$
R_{1}=\frac{5}{3}\left(Z_{0}\right) \quad \text { then } \quad R_{2}=\frac{3}{2} R_{1} \quad\left(\text { for } V_{C C}=5 V\right)
$$

TRACE IMPEDANCE	RECOMMENDED VALUES	MAX. AVG. RESISTOR POWER DISSIPATION W/GENERIC LOAD		
$\mathbf{Z 0}$	R1	R2	R1	

EXTERNAL INPUT CLOCKS

The external input clock to the ML6508 can be either a differential Pseudo-ECL clock or a single-ended TTL clock. This is selected using the CS bit in the serial shift register. For the single-ended TTL clock tie the CLK ${ }_{I N H}$ and $C L K_{\text {INL }}$ pins together. The ML6508 ensures that there is a welldefined phase difference between the input and output clocks.

RESET AND LOCK

When $\overline{\text { RESET }}$ is de-asserted, the internal programming logic will become active and load in the configuration bits (see Programming the ML6508). Once the configuration is loaded, the PLL will lock onto the reference signal, and then the deskew blocks will adapt to the load conditions. When all eight output clocks are stable and deskewed, LOCK will be asserted. The asserted polarity of lock is high. Thus, LOCK can be used to indicate that the system is ready, or it can be used to drive the RESET input of another PACMan in a clock tree.

$\overline{\text { RESET }}$ may be reasserted at any time to reset the chip operations. Following a RESET assertion of valid pulse width (see Programming Electrical Characteristics), the ML6508 must again be loaded with a configuration, then it will re-lock and reassert lock when all eight clock outputs are stable and deskewed.

PROGRAMMING THE ML6508

The configuration of the ML6508 is programmed by loading 18 bits into the configuration shift register. To load these bits, the user has 3 options: MAIN, AUX or ROM modes. Which mode is used is determined by the logic level on the $M D_{\text {IN }}$ pin when RESET is deasserted. If $M D_{\text {IN }}$ is tied high, the ML6508 will assume AUX mode; if its tied low, ROM mode. If $\mathrm{MD}_{\text {IN }}$ is high-impedance (i.e. tied to the input of an EEPROM), it will assume MAIN mode.

1. MAIN Mode

In this mode, the ML6508 will read the 18 configuration bits from an external serial EEPROM, such as the 93C46, using the industry standard 3 -wire serial I/O protocol. The serial EEPROM should be a 1 K organized in 64×16 bits and the PACMan will read the 18 configuration bits out of the two least significant 16 -bit words. To use this mode, simply connect the EEPROM serial data input pin to MD ${ }_{\text {IN }}$ (ML6508 pin 19), the EEPROM serial data output pin to MDOUT (ML6508 pin 20), and the EEPROM serial data clock pin to MCLK (ML6508 pin 21) and CS pin for the EEPROM should be tied to the RESET signal. After power up, when RESET is deasserted, the ML6508 will automatically generate the address and clock to read out the 18 configuration bits. Refer MAIN Mode waveform in Figure 5.

MAIN Mode Configuration.

2. AUX Mode

When $\mathrm{MD}_{\text {IN }}$ is tied to VCC, programming the ML6508 will occur via the AUX Mode. This mode shifts the 18 configuration bits into the shift register directly from the MD Out pin. The first 18 clock rising edges provided externally on the MCLK pin after RESET is deasserted will be used to load the shift register data, which should be provided on the MD Out pin. See figure 6.

AUX Mode Configuration.

3. ROM Mode

When $\mathrm{MD}_{\text {IN }}$ is tied to GND, programming the ML6508 will occur via the ROM Mode. This mode reads the 18 configuration bits directly from an on chip ROM. The selection of one of the eight preset configuration codes is accomplished by means of the pins ROMMSB, MCLK and MDout as shown in Table 1. The TEST mode configuration (code 7) is enabled when the TEST bit is set. In this mode the PLL is bypassed for low frequency testing. Codes 0-2 are used when the ML6508 clock inputs are driven from another PACMan's reference clock outputs. Code 3 is used when zero phase error is desired between input and load clocks.

ROM Mode Configuration.

Figure 5. MAIN Mode Waveforms.

Figure 6. AUX Mode Waveforms.

TABLE 1

CODE	DESCRIPTION	SELECTION BITS			INPUT FREQ (MHz)	$\begin{array}{\|c} \hline \text { OUTPUT } \\ \text { FREQ } \\ \text { (MHz) } \\ \hline \end{array}$	CONFIGURATION CODE					
		ROMMSB	MCLK	MD ${ }_{\text {OUT }}$			CS	CM	R1, R0	M	N	TEST
0	PECL Input Clock, $1 \times$ mode	0	0	0	40-80	40-80	1	1	01	0	0	0
1	PECL Input Clock, $0.5 \times$ mode	0	0	1	40-80	20-40	1	1	10	5	2	0
2	PECL Input Clock, $2 \times$ mode	0	1	0	20-40	40-80	1	1	01	2	5	0
3	PECL Input Clock, 1x mode	0	1	1	40-80	40-80	1	0	01	0	0	0
4	TTL Input Clock, $1 \times$ mode	1	0	0	40-80	40-80	0	0	01	0	0	0
5	TTL Input Clock, $0.5 \times$ mode	1	0	1	40-80	20-40	0	0	10	5	2	0
6	TTL Input Clock, $2 \times$ mode	1	1	0	20-40	40-80	0	0	01	2	5	0
7	TEST mode, TTL Input clock	1	1	1	0-50	0-50	0	-	-	-	-	1

REGISTER DEFINITIONS

BITS	REGISTER	SIZE	FUNCTION
$11-17$	N	7 bit	This register is used to define the ratio for the desired frequency of the primary clock.
$9-10$	R	2 bit	This register defines the frequency of the primary clocks, CLK [0-7].
8	CM	1 bit	Set CM $=1$ when the PECL input reference clock is from another 6500/08 reference clock output. Set $\mathrm{CM}=0$ if the clock reference is TTL or PECL from an external source and minimum phase error between input and output is desired.
7	CS	1 bit	CS = 0 selects TTL input clock, CS $=1$, selects PECL input clock.
6	TEST	1 bit	When set to 1, the PLL is bypassed for low frequency testing.
$0-5$	M	6 bit	This register is used to define the ratio for the desired frequency of the primary clock.

ML6508 SHIFT REGISTER CHAIN

APPLICATIONS

ZERO SKEW CLOCK GENERATION

The most advantageous feature of using PACMan is its ability to deliver multiple copies of the clock to the load with very low skew. Because of its unique ability in deskewing, trace length and load consideration are no longer critical in board design.

Because of the unique deskewing scheme, neither the trace length nor the device loads need to be equal. This is true for loads, <20 pF. Higher loads can be driven if they are placed close to the clock chip, to guarantee signal integrity.

LOW SKEW CLOCK DISTRIBUTION

Clock distribution design is usually not a trivial task, especially when multiple clock chips are needed. By using closely grouped PACMans, 16 or more clock lines can be created with low part-to-part skew. Additional groups of clocks can be clustered and driven from deskewed clock lines, to minimize the number of longdistance clock lines.

BOARD TO BOARD SYNCHRONIZATION

Distribution of the synchronous clock could present significant difficulty at high frequency. With the system clock generated by the ML6508, a zero skew clock delivery to a backplane is now possible. By using the ML6508 slave chip or the ML6500 in slave mode at the receiver end, a near zero delay clock link can be accomplished between the mother board and the satellite boards.
Because the PACMan has frequency doubling capability, a lower frequency signal can be used to route across a back plane.

EXAMPLE CONFIGURATION

Shown in Figure 7 is an example configuration using the ML6500 (Master) and ML6508 (Slave) in tandem to generate eight 66 MHz clocks and eight 33 MHz low-skew clocks. This requires only a single crystal and the termination resistors. Configurations are loaded from the internal ROM. PCB traces 0 to 15 are each 50Ω impedance and the load capacitances $\mathrm{C}_{\mathrm{L} 0}-\mathrm{C}_{\mathrm{L} 15}$ are 0 to 20 pF each. Outgoing and return trace length for all loads are matched (ie. the load is tapped at the center point of the loop), but no matching is required among separate clock outputs. All traces are shown with a Thevenin termination at the feedback (FB) pin.

Figure 7. Example use of the ML6500 (Master) in tandem with the ML6508 (Slave) to generate multiple frequency clocks. Master mode ML6500 generates eight 66 MHz clocks while the slave ML6508 generates eight 33 MHz clocks.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6508CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 -pin PLCC $(\mathrm{Q} 44)$

Active SCSI Terminator

GENERAL DESCRIPTION

The ML6509 BiCMOS SCSI terminator provides active termination in a SCSI system with single-ended drivers and receivers, in full compliance with the SCSI-1, SCSI-2 and SCSI-3 recommendations. It provides a 2.85 V reference through an internal 1 V dropout linear regulator. Active SCSI termination helps the system designer to effectively control analog transmission line effects like ringing, noise, crosstalk, ground bounce, etc. In addition it provides greater immunity to voltage drops on the TERMPWR line of the SCSI bus. The desired V-I characteristics for signal negation requires that the terminator source $0-24 \mathrm{~mA}$ while maintaining 2.85 V and for signal assertion preferably follow a linear slope of 110Ω. The ML6509 attempts to provide a V-I characteristic optimized to minimize the transmission line effects during both signal assertion and negation, using a MOSFET based architecture. The desired V-I characteristic is achieved by trimming one resistor in the control block. It provides negative clamping for signal assertion transients and current sink capability, to handle active negation driver overshoots above 2.85 V , which is currently accomplished with external components in SCSI subsystems today. It provides a disconnect mode, where the terminator is completely disconnected from the SCSI bus and the output capacitance is $<5 \mathrm{pF}$, typically.

FEATURES

- Fully monolithic IC solution providing active termination for 9 lines of the SCSI bus
- Low dropout voltage (1 V) linear regulator, trimmed for accurate termination current, with 300 mA current source capability
- Output capacitance typically $<5 \mathrm{pF}$
- Disconnect mode - Logic pin to disconnect terminator from the SCSI bus, $<100 \mu \mathrm{~A}$
- Lowpower mode - For power conscious, portable system \& peripheral applications, using less than $6^{\prime \prime}$ cables. (Equivalent to a 1 mA current drive with a $2.5 \mathrm{k} \Omega$ termination)
- Current sinking - can sink current $>10 \mathrm{~mA}$ per line to handle active negation driver overshoots above 2.85 V
- Negative clamping on all lines to handle signal assertion transients
- Regulator can source 200 mA and sink 50 mA while maintaining regulation
- Current limit \& thermal shutdown protection
- Small and low profile package options; 16-pin SOIC (300 mil), 20-pin TSSOP (1 mil height)

BLOCK DIAGRAM

GENERAL DESCRIPTION (Continued)

One unique feature of the ML6509 is its support for a Low Power mode, for use in Notebook and portable computer applications, where it provides a 1 mA (approximately $2.5 \mathrm{~K} \Omega$ termination) for less than $6^{\prime \prime}$ cable lengths. This minimizes the battery drain significantly in such systems.

Current limiting and thermal shutdown protection are also provided. The ML6509 provides 9 lines of termination in the industry's smallest package - 20-pin TSSOP. The nine line configuration is optimal for wide SCSI's 18,27 , or 45 line termination needs.

PIN CONFIGURATION

PIN DESCRIPTION

NAME	DESCRIPTION
TERMPWR	Termination Power. Should be connected to the SCSI TERMPWR line. A 10 FF tantalum local bypass capacitor is recommended per system, as shown in the application diagram
L1	Signal Termination 1. SCSI Bus line 1
L2	Signal Termination 2. SCSI Bus line 2
L3	Signal Termination 3. SCSI Bus line 3
L4	Signal Termination 4. SCSI Bus line 4
L5	Signal Termination 5. SCSI Bus line 5
L6	Signal Termination 6. SCSI Bus line 6
L7	Signal Termination 7. SCSI Bus line 7
L8	Signal Termination 8. SCSI Bus line 8
L9	Signal Termination 9. SCSI Bus line 9

NAME	DESCRIPTION
V REF $^{2.85 V_{\text {REF }} \text { Output. External decoupling }}$	

NOTE: The $\overline{\mathrm{DISCNKT}}$ and $\overline{\mathrm{LPWR}}$ lines have $200 \mathrm{k} \Omega$ internal pullup resistors connected to the supply. These pins should be left floating for normal operation and should be connected to ground to enable the function.
ABSOLUTE MAXIMUM RATINGS

Signal Line Voltage \qquad -0.3 to TERMPWR +0.3 V
Regulator Output Current - 100 to 300 mA
TERMPWR Voltage. \qquad .. -0.3 to +7 V
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Temperature ... $260^{\circ} \mathrm{C}$ for 10 sec Thermal Impedance $\left(\theta_{\mathrm{JA}}\right)$
SOIC $95^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP $110^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

TERMPWR Voltage
4 V to 5.25 V
Operating Temperature
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for $4 \mathrm{~V} \leq T E R M P W R \leq 5.25 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
SUPPLY						
TERMPWR Supply Current	L1-L9 $=$ open, $\overline{\text { DISCNKT }}=$ open		3.5	5	mA	
	L1-L9 $=0.2 \mathrm{~V}, \overline{\mathrm{DISCNKT}}=$ open		225	mA		
	$\overline{\text { DISCNKT }}=0$ (active $)$			70	100	

INPUT

Input Low Voltage	LPWR, DISCNKT			1.0	V
Input High Voltage	LPWR, DISCNKT	$\begin{array}{\|c} \text { TERMPWR } \\ -1.0 \end{array}$			V
OUTPUT					
Output High Voltage	Measuring each signal line while other eight are high	2.8	2.85	2.9	V
Maximum Output Current (Normal Mode)	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$, Measuring each signal line while the other eight are high			24	mA
Maximum Output Current (Lowpower Mode)	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}, \overline{\mathrm{LPWR}}=0$, and measuring each signal line while the other eight are high	0.8	1	1.2	mA
Output Clamp Level	$\mathrm{l}_{\text {OUT }}=-30 \mathrm{~mA}$ (Note 1)	-0.15	0	0.15	V
Current Sink Capability	$\mathrm{V}_{\text {OUT }}=3.2 \mathrm{~V}$ (per line)	7	12		mA
Output Capacitance (ML Method)	L1 thru L9, $\overline{\text { DISCNKT }}=0$ $2 V_{\text {P-p }} 100 \mathrm{kHz}$ square wave applied biased at 1V D.C. (Note 2)		4	5	pF
Output Capacitance (X3T9.2/855D method)	L1 thru L9, $\overline{\text { DISCNKT }}=0$ $0.4 \mathrm{~V}_{\text {P-p }}, 1 \mathrm{MHz}$ square wave applied biased at 0.5V D.C. (Note 1)		6	7	pF

REGULATOR

Output Voltage	Sourcing 0-200mA	2.8	2.85	2.9	V
	Sinking 0-50mA (Note 1)	2.8	2.85	2.95	V
Dropout Voltage	L1-L9 $=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.85 \mathrm{~V}$		1.0	1.2	V
Short Circuit Current	Regulator output $=0 \mathrm{~V}$		100		mA
	Regulator output $=5 \mathrm{~V}$		300		mA
Thermal Shutdown			170		${ }^{\circ} \mathrm{C}$

Note 1: Parameter guaranteed by characterization only.
Note 2: Only one pin is checked in the production test environment. Otherwise parameter is guaranteed by characterization and correlation.

FUNCTIONAL DESCRIPTION

The SCSI Terminator helps in decreasing the transmission line effects with precise termination. Termination is conventionally provided at the beginning and end of the SCSI bus, however when additional peripherals are added, the termination needs to be disabled from the current device and enabled on the last device on the bus. Existing termination schemes use a SIP (Single-In-Line package) which is plugged into a socket on the PC board of the SCSI peripheral. To remove the termination, the user needs to pull the resistor SIP out of its socket. With the higher levels of system integration, this is no longer a simple task. With the increasing use of higher data rates and cable lengths in SCSI subsystems, the need for active termination is becoming necessary. Active termination also minimizes power dissipation and can be activated or deactivated under software control, thus eliminating the need for end user intervention. The V-I characteristics of popular SCSI termination schemes are shown in Figure 3. Theoretically the desired V-I characteristics are the Boulay type for signal assertion (high to low) and the Ideal type for signal negation. The ML6509 with its MOSFET based nonlinear termination element attempts to provide the most optimum V-I characteristics - optimized for both signal assertion and negation.
The ML6509 provides active termination for nine signal lines, thus accommodating basic SCSI which requires 18 lines to be terminated and wide SCSI which requires 27, 36 or 45 lines to be terminated. The ML6509 integrates an accurate voltage reference (1 V dropout voltage) and nine MOSFET based termination lines. A single internal resistor is trimmed to tune the V-I characteristic of the MOSFETs as shown in figure 1 . The voltage reference circuit produces a precise 2.85 V level and is capable of sourcing at least 24 mA into each of the nine terminating lines when low (active). When the signal line is negated (driver turns off), the terminator pulls the signal line to 2.85 V (quiescent state). When all signal lines are inactive, the regulator will source about 300 mA .

The ML6509 SCSI Terminator provides two control signals, $\overline{\text { DISCNKT }} \& \overline{\text { LPWR }}$ which are active low signals and have an internal $200 \mathrm{k} \Omega$ pull-up resistor. The DISCNKT input when asserted low, isolates the ML6509 from the signal lines and effectively removes the terminator from the SCSI Bus with a disconnect mode current of less than $100 \mu \mathrm{~A}$. The LPWR input, when asserted low, puts the ML6509 in the low power termination mode by providing only a 1 mA drive capability with an effective termination impedance of $2.5 \mathrm{k} \Omega$. This is intended for power conscious portable system and peripheral applications where the cable lengths are small, thus resulting is fast signal transitions and practically no transmission line effects, while consuming very minimum power (9 mA worst case if all lines were active). At the same time, if this portable system were connected with an external SCSI peripheral, over a long cable, the normal terminator mode could be enabled to ensure compliance with the SCSI standard and maintain data integrity. In addition the ML6509 provides for negative clamping of signal transients and also supports current sink capability in excess of 10 mA per signal line, to handle active negation driver overshoot above 2.85 V , a common occurrence with SCSI transceivers. These functions need to be handled with external components in SCSI subsystems today. Thus the ML6509 helps in eliminating a number of external components.
Disconnect mode capacitance is a very critical parameter in SCSI systems. The ML6509 provides the lowest capacitance contribution of max 5 pF and this is guaranteed by production test.

Figure 2 gives an application diagram showing a typical SCSI bus configuration. To ensure proper operation, the TERMPWR pin must be connected to the SCSI TERMPWR line. Each ML6509 requires parallel $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors connected between $\mathrm{V}_{\text {REF }}$ and GND pins and the TERMPWR line needs a $10 \mu \mathrm{~F}$ bypass capacitor per SCSI system.

Figure 1. Trimmed V-I Characteristic of the ML6509

Thus in an 8-bit wide SCSI bus arrangement (" $\mathrm{A}^{\prime \prime}$ Cable), two ML6509's would be needed at each end of the SCSI cable in order to terminate the 18 active signal lines. 16 -bit wide SCSI would use three ML6509's, while 32 -bit wide SCSI bus would require five ML6509's.
In a typical SCSI subsystem, the open collector driver in the SCSI transceiver, when asserted, pulls low and when negated, the termination resistance serves as the pull-up. Also shown in figure 2, is a typical cable response to a pulse. The receiving end of the cable will exhibit a single time delay. When negated, the initial step will reach an intermediate level defined as $\mathrm{V}_{\text {STEP. }}$. With the higher SCSI data rates, sampling could occur during this step portion. In order to get the most noise margin, the step needs to be as high as possible to prevent false triggering. For this reason the regulator voltage and the resistor defining the MOSFETs characteristic is trimmed to ensure that the I_{O} is as close as possible to the SCSI max current specification. $V_{\text {STEP }}$ is defined as follows :

$$
V_{S T E P}=V_{\mathrm{OL}}+\left(\mathrm{l}_{\mathrm{O}} \times \mathrm{Z}_{\mathrm{O}}\right)
$$

where
V_{OL} is the Driver output low voltage,
I_{O} is current from receiving terminator
Z_{O} is characteristic impedance of cable.

Figure 3. V-1 Characteristics of Various SCSI Termination Schemes

Figure 2. Application Diagram Showing Typical SCSI Bus Configuration with the ML6509

This is a very important characteristic that the terminator helps overcome by increasing the noise margin and boosting the step as high as possible. This capability for the ML6509 implementation is illustrated in the attached simulation graphs which show the terminator performance under different cable impedance situations and a comparison is shown with the standard Boulay terminator, under identical conditions.

APPLICATION INFORMATION

ML6509 EVALUATION BOARD

Shown below is the schematic, board component layout, and parts list of the ML6509 SCSI Terminator evaluation board. This evaluation board provides termination for 18 lines of SCSI signals and can be connected as the last device on a standard SCSI Bus system. The SCSI Bus signals can then be monitored to see the impact of the ML6509 Active SCSI Terminator in minimizing the transmission line effects. In addition the disconnect mode and lowpower mode can also be evaluated with respect to power dissipation and output capacitance.

ML6509 EVAL BOARD PARTS LIST

PART\#	DESCRIPTION
IC1, IC2	ML6509 Active SCSI Terminator
C1	10 $\mu \mathrm{F}, 6 \mathrm{~V}$ Tantalum Chip Capacitor (Philips 49MC106C006K0ASFT)
C2, C3	$10 \mu \mathrm{~F}, ~ 4 \mathrm{~V}$ Tantalum Chip Capacitor (Philips 49MC106C004K0ASFT)
C4, C5	$0.1 \mu \mathrm{~F}$ Ceramic Chip Capacitor (Philips C104K1206XFNT)
SW1	Two Position DIP Switch (C\&K BD02)
J1	50-pin SCSI Header Connector (AMP 1-103311-0)

TRANSIENT RESPONSE (ACTUAL)

(Approximately $110 \Omega, 10$ feet long, ribbon cable stock)

TYPICAL APPLICATION CIRCUIT

SIGNAL ASSERTION/NEGATION WAVEFORMS (SIMULATED)

Conditions Low Cable impedance of 110Ω (worst case)
$\mathrm{t}_{\mathrm{D}}=10 \mathrm{~ns}$
10 segment distributed L-C, SCSI Bus Model Driver end of cable not terminated

ML6509 SCSI TERMINATOR

SIGNAL ASSERTION/NEGATION WAVEFORMS(SIMULATED)

Conditions Low Cable impedance of 55Ω (worst case) $t_{D}=10 \mathrm{~ns}$
10 segment distributed L-C, SCSI Bus Model Driver end of cable not terminated
ivíbjūy scsI ItRMINATOR

BOULAY TERMINATOR

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6509CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$16-$ pin SOIC (S16W)
ML6509CT	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ pin TSSOP (T20)

Active SCSI Terminator Evaluation Kit

GENERAL DESCRIPTION

The ML6509 BiCMOS SCSI terminator provides active termination in a SCSI system with single-ended drivers and receivers, in full compliance with the SCS!-1, SCS!-2 and SCSI-3 recommendations. It provides a 2.85 V reference through an internal 1 V dropout linear regulator. Active SCSI termination helps the system designer to effectively control analog transmission line effects like ringing, noise, crosstalk, ground bounce, etc. In addition it provides greater immunity to voltage drops on the TERMPWR line of the SCSI bus. The desired V-I characteristics for signal negation requires that the terminator source $0-24 \mathrm{~mA}$ while maintaining 2.85 V and for signal assertion preferably follow a linear slope of 110Ω. The ML6509 attempts to provide a V-I characteristic optimized to minimize the transmission line effects during both signal assertion and negation, using a MOSFET based architecture. The desired V-I characteristic is achieved by trimming one resistor in the control block. It provides negative clamping for signal assertion transients and current sink capability, to handle active negation driver overshoots above 2.85 V , which is currently accomplished with external components in SCSI subsystems today. It provides a disconnect mode, where the terminator is completely disconnected from the SCSI bus and the output capacitance is $<5 \mathrm{pF}$, typically.

FEATURES

- Fully monolithic IC solution providing active termination for 9 lines of the SCSI bus
- Low dropout voltage (1V) linear regulator, trimmed for accurate termination current, with 300 mA current source capability
- Output capacitance $<5 \mathrm{pF}$, typically
- Disconnect mode - Logic pin to disconnect terminator from the SCSI bus, $<100 \mu \mathrm{~A}$
- Lowpower mode - For power conscious, portable system \& peripheral applications, using less than $6^{\prime \prime}$ cables. (Equivalent to a 1 mA current drive with a $2.5 \mathrm{~K} \Omega$ termination)
- Current sinking - can sink current up to 10 mA per line to handle active negation driver overshoots above 2.85 V up to 3.2 V

■ Negative clamping on all lines to handle signal assertion transients

- Regulator can source 200 mA and sink 50 mA while maintaining regulation
- Current limit \& thermal shutdown protection
- Small and low profile package options; 16-pin SOIC (300 mil), 20-pin TSSOP (1 mil height)
- 50 Pin connector for direct connection to SCSI bus ribbon cable
- Dip switches to control the low power and disconnect mode

SCHEMATIC

Series Programmable Adaptive Clock Manager (PACMan ${ }^{\mathrm{TM}}$)

GENERAL DESCRIPTION

The ML6510 (Super PACMan ${ }^{\text {TM }}$) is a Programmable Adaptive Clock Manager which offers an ideal solution for managing high speed synchronous clock distribution in next generation, high speed personal computer and workstation system designs. It provides eight channels of deskew buffers that adaptively compensate for clock skew using only a single trace. The input clock can be either TTL or PECL, selected by a bit in the control register. Frequency multiplication or division is possible using the $M \& N$ divider ratio, within the maximum frequency limit. $0.5 \mathrm{X}, 1 \mathrm{X}, 2 \mathrm{X}$ and 4 X clocks can be easily realized.
The ML6510 is implemented using a low jitter PLL with on-chip loop filter. The ML6510 deskew buffers adaptively compensate for clock skew on PC boards. An internal skew sense circuit is used to sense the skew caused by the PCB trace and load delays. The sensing is done by detecting a reflection from the load and the skew is corrected adaptively via a unique phase control delay circuit to provide low load-to-load skew, at the end of the PCB traces. Additionally, the ML6510 supports PECL reference clock outputs for use in the generation of clock trees with minimal part-to-part skew. The chip configuration can be programmed to generate the desired output frequency using the internal ROM or an external serial EEPROM or a standard two-wire serial microprocessor interface.

FEATURES

- Input clocks can be either TTL or PECL with low input to output clock phase error
- 8 independent, automatically deskewed clock outputs with up to 5 ns of on-board deskew range (10ns round trip)
- Controlled edge rate TTL-compatible CMOS clock outputs capable of driving 40Ω PCB traces
■ 10 to $80 \mathrm{MHz}(6510-80)$ or 10 to $130 \mathrm{MHz}(6510-130)$ input and output clock frequency range
- Less than 500ps skew between inputs at the device loads
- Small-swing reference clock outputs for minimizing part-to-part skew
- Frequency multiplication or division is possible using the $M \& N$ divider ratio
- Lock output indicates PLL and deskew buffer lock
- Test mode operation allows PLL and deskew buffer bypass for board debug
- Supports industry standard processors like Pentium, ${ }_{\text {TM }}^{\text {TM }}$ Intel80486, ${ }^{\text {TM }}$ Mips R4000, ${ }^{\text {TM }}$ SPARC, ${ }^{\text {TM }} 68040$, ${ }^{\text {TM }}$ PowerPC, ${ }^{\text {TM }}$ Alpha, ${ }^{\text {TM }}$ etc.

SYSTEM BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
32	ROMMSB	MSB of the internal ROM address. Tie to GND if not used. See section on Programming the ML6510.
20	MD ${ }_{\text {OUT }}$	Programming pin. See section on Programming the ML6510.
19	$M D_{\text {IN }}$	Programming pin. See section on Programming the ML6510.
21	MCLK	Programming pin. See section on Programming the ML6510.
22	$\overline{\text { RESET }}$	Reset all internal circuits. Asserted polarity is low.
23	LOCK	Indicates when the PLL and deskew buffers have locked. Asserted polarity is high.
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\mathrm{CLK}_{\mathrm{INH}}$ $\text { CLK }_{\text {INL }}$	Input clock pins. For TTL clock reference use CLK $_{\text {INH }}$ pin shorted to the CLK ${ }_{\text {INL }}$ pin. For PECL clock reference drive pins differentially. Input clock type is selected by the CS bit in the shift register.
$\begin{gathered} 16,14,9,7 \\ 44,42,37,35 \end{gathered}$	CLK[0-7]	Clock outputs
$\begin{gathered} 18,12,11,5 \\ 2,40,39,33 \end{gathered}$	FB[0-7]	Clock feedback inputs for the deskew buffers
$\begin{gathered} 3,31 \\ 25 \end{gathered}$	AVCC[1-3]	Analog circuitry supply pins, separated from noisy digital supply pins to provide isolation. All supplies are nominally +5 V .
4, 30, 24	AGND[1-3]	Analog circuitry ground pins
15	DVCC01	Digital supply pin for CLK0 and CLK1 output buffers. Nominally +5 V .
8	DVCC23	Digital supply pin for CLK2 and CLK3 output buffers. Nominally +5 V .
43	DVCC45	Digital supply pin for CLK4 and CLK5 output buffers. Nominally +5 V .
36	DVCC67	Digital supply pin for CLK6 and CLK7 output buffers. Nominally +5 V .
$\begin{aligned} & 17,13,10,6 \\ & 1,41,38,34 \end{aligned}$	DGND[0-7]	Digital ground pins for CLK [0-7] output buffers. Each clock output buffer has its own ground pin to avoid crosstalk and ground bounce problems.
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { RCLKL } \\ & \text { RCLKH } \end{aligned}$	Differential reference clock output used to minimize part-to-part skew when building clock trees with other PACMan integrated circuits.

ABSOLUTE MAXIMUM RATINGS

VCC Supply Voltage Range -0.3 V to 6 V
Input Voltage Range -0.3 V to VCC
Output Current
CLK[0-7] ...mA
All other outputs

Junction Temperature
$.150^{\circ} \mathrm{C}$
Storage Temperature

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of DVCC $=\mathrm{AVCC}=5 \mathrm{~V} \pm 5 \%$ and ambient temperature between $0^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. Loading conditions are specified individually.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY			50		$\mu \mathrm{~A}$	
DVCCXX	Supply Current for each pair of clock outputs	$\mathrm{f}_{\mathrm{CLKX}}=0$		40		mA
	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$ $\mathrm{f}_{\mathrm{OUT}}=80 \mathrm{MHz}$		100	mA		
IAVCC1	Static supply current, AVCC1 pin			35	mA	
IAVCC2	Static supply current, AVCC2 pin			1	mA	
IAVCC3	Static supply current, AVCC3 pin					

LOW FREQUENCY INPUTS AND OUTPUTS (ROMMSB, MD ${ }_{\text {OUT }}, M D_{\text {IN }}, M C L K, \overline{R E S E T}$, LOCK)

V_{IH}	High level input voltage		DVCC -0.5			V
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage				DGND +0.5	V
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage, MCLK and MDIN	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$			V	
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage, MCLK and MDIN	$\mathrm{I}_{\mathrm{OL}}=+200 \mu \mathrm{~A}$		$\mathrm{DGND}+0.5$	V	
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage, LOCK output	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	$\mathrm{IOL}=+1 \mathrm{~mA}$	2.4		
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage, LOCK output	Static input current				V
I_{IN}				0.4	V	
C_{IN}	Input capacitance			5		10

HIGH FREQUENCY INPUTS AND OUTPUTS (CLK $\left.{ }_{\text {INH }}, \mathrm{CLK}_{\text {INL }}, \mathrm{FB}[0-7], \mathrm{CLK}[0-7]\right)$

V_{IH}	High level input voltage	$\mathrm{CS}=0$ (TTL Input Clock)	2.0			V
		$\mathrm{CS}=1$ (PECL Input Clock)	AVCC -1.165		AVCC -0.88	V
$\mathrm{~V}_{\mathrm{IL}}$	Low level input voltage	$\mathrm{CS}=0$ (TTL Input Clock)			0.8	V
		$\mathrm{CS}=1$ (PECL Input Clock)	AVCC -1.810		AVCC -1.475	V
$\mathrm{~V}_{\mathrm{ICM}}$	Common mode input voltage range for PECL reference clocks	$\mathrm{CS}=1$ (PECL Input Clock)	2.0		$\mathrm{AVCC}-0.4$	V
I_{IH}	High level input current	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{IL}	Low level input current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$	-400			$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	High level output voltage	$\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$	2.4			V
$\mathrm{~V}_{\mathrm{OL}}$	Low level output voltage	$\mathrm{I}_{\mathrm{OL}}=+60 \mathrm{~mA}$			0.4	V

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT

AC CHARACTERISTICS rise time, fall time and duty cycle are measured for a generic load; (see Load Conditions section).

t_{R}	Rise time, LOAD [0-7] output	$0.8 \rightarrow 2.0 \mathrm{~V}$	150		1500	ps
t_{F}	Fall time, LOAD [0-7] output	$2.0 \rightarrow 0.8 \mathrm{~V}$	150		1500	ps
f_{IN}	Input frequency, CLK ${ }_{\text {IN }}$ pin		10		80	MHz
$\mathrm{f}_{\mathrm{OUT}}$	Output frequency, CLK [0-7] output	ML6510-80	10		80	MHz
		ML6510-130	10		130	MHz
$\mathrm{f}_{\mathrm{VCO}}$	PLL VCO operating frequency		80		160	MHz
DC	Output duty cycle	Measured at device load, at 1.5 V	40		60	$\%$
$\mathrm{t}_{\text {IITTER }}$	Output jitter	Cycle-to-cycle		75		ps
		Peak-to-peak		150		ps
$\mathrm{t}_{\text {LOCK }}$	PLL and deskew lock time	After programming is complete		11		ms

SKEW CHARACTERISTICS All skew measurements are made at the load, at 1.5 V threshold each output load can vary independently within the specified range for a generic load (see Load Conditions section).

$\mathrm{t}_{\text {SKEWR }}$	Output to output rising edge skew, all clocks	Output clock frequency $\geq 50 \mathrm{MHz}$		500	ps
$\mathrm{t}_{\text {SKEWF }}$	Output to output falling edge skew	$\mathrm{N}=\mathrm{M}=0$	N		
$\mathrm{t}_{\text {SKEWIO }}$	CLKIN input to any LOAD [0-7] output rising edge skew	$\mathrm{N} \geq 2, \mathrm{M} \geq 2$	600	ns	
$\mathrm{t}_{\text {RANGE }}$	Round trip delay CLKX to FBX pin; output CLK period = tCLK	Output frequency < 50 MHz Output frequency $\geq 50 \mathrm{MHz}$	0 0	ps	
$\mathrm{t}_{\text {SKEWB }}$	Output-to-output rising edge skew, between matched loads	Providing first (see LOAD conditions) order matching order matching between outputs		250	ns

PART-TO-PART SKEW CHARACTERISTICS Skew measured at the loads, at 1.5 V threshold. Reference clock output pins drive clock input pins of another ML6510.

tpP1	Total load-to-load skew between multiple chips interfaced with reference clock pins.	Slave chip CS $=1, \mathrm{CM}=1$ and $\mathrm{N}=0, \mathrm{M}=0 ; R C L K$ outputs to CLK IN inputs distance less than 2"		TBD	ps
tPP2	Total load-to-load skew between multiple chips interfaced with reference clock pins.	Slave chip $\mathrm{CS}=1, \mathrm{CM}=1$ and $\mathrm{N} \geq 2, \mathrm{M} \geq 2 ; R C L K$ outputs to CLK IN inputs distance less than 2"			TBD

PROGRAMMING TIMING CHARACTERISTICS

$t_{\text {RESET }}$	RESET assertion pulse width	50			ns
$\mathrm{t}_{\mathrm{A} 1}$	AUX mode MCLK high time		2000		
$\mathrm{t}_{\mathrm{A} 2}$	AUX mode MCLK low time		2000		ns
$\mathrm{t}_{\mathrm{A} 3}$	AUX mode MD hout data time		10		ns
$\mathrm{t}_{\mathrm{A} 4}$	AUX mode MD OUT setup time		10		ns
$\mathrm{t}_{\mathrm{A} 5}$	AUX mode MCLK period		5000		ns

ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT

PROGRAMMING TIMING CHARACTERISTICS (continued)

$t_{\text {M1 }}$	MAIN mode MCLK high time		900		
$t_{\text {M2 }}$	MAIN mode MCLK low time		900		
$t_{\text {M3 }}$	MAIN mode MCLK period		1800		
$t_{\text {M4 }}$	MAIN mode MCLK to MD OUT valid (tEFKUM read time)			ns	

ML6510 configured with bit $\mathbf{C M}=0$:

Note: All skew is measured at the device load input pin, NOT at the ML6510 clock output pin. Skew is always a positive number, regardless of which edge is leadıng and which is trailing.

AC/SKEW CHARACTERISTICS LOAD CONDITIONS

FUNCTIONAL DESCRIPTION

Micro Linear's ML6510 is the first clock chip to use a feedback mechanism to adaptively (on a real time basis), eliminate clock skew in high speed personal computer and workstation system designs. Figure 1 shows a basic configuration of the ML6510 in a system. The skew problem results due to the delaying of clock signals in the system, as shown in Figure 2. Clock skew results from variation in factors like trace length, PCB trace characteristics, load capacitance, parasitic capacitance, temperature and supply variations, etc. Figure 2 shows a representation of the clock skew problem from a timing perspective. It shows a worst case example where the clock signal is delayed so much that its rising edge completely misses the data it is intended to strobe. Using a clock deskew mechanism, this problem can be eliminated and the strobe with the appropriate setup and hold times with respect to the data bus can be generated.
The ML6510 has eight deskew buffers, each with its own independent the reflection and error correction circuit. The deskew buffer eliminates skew by using the reflection from a remote chip to measure the clock error and then corrects it by generating the appropriate skew to the clock output to compensate.
Eight individually deskewed copies of the clock are provided by the ML6510.

Figure 1. Basic System Configuration Using the ML6510.

The deskew buffers compensate internally for board-level skew caused by the PCB trace length variations and device load variations. This is accomplished by sensing the round trip delay via a reflected signal, and then delaying or advancing the clock edge so that all 8 output clocks arrive at their loads in phase. Each of the eight clock lines can have any length PCB trace (up to 5 ns each way or $1 / 4$ th of the output clock period, whichever is smaller) and the device loads can vary from line to line. The ML6510 will autnmatically compensate for these variations, keeping the device load clocks in phase. Although ML6510 will compensate for skew caused by loading, excessive capacitive loading can cause rise/fall time degradation at the load. Cascading one ML6510 to another ML6510 should be done using the PECL reference clock outputs, to minimize part-to-part skew.

CLOCK REGENERATION

The programmable adaptive clock deskew can function in a clock regeneration mode to assist in building clock trees or to expand the number of deskewed clock lines. In this mode, it has the ability to do clock multiplication or division as well, while maintaining low skew between

Figure 2. The Skew Problem.

Figure 3. ML6510 Clock Generation Block Diagram.
input clock and output clocks. It can thus generate a 2 x or 4 x or 0.5 x frequency multiplication or division from input to output (e.g. 33 MHz input, 66 MHz output or 66 MHz input, 33 MHz output, etc.). It also can generate a 1 x frequency output. The VCO frequency is defined by:

$$
f_{\mathrm{VCO}}=\mathrm{f}_{\mathrm{REF}} \times\left[\frac{(\mathrm{N}+1) \times 2^{R}}{(M+1)}\right]
$$

and the output frequency is still given by:

$$
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}
$$

R1	R0	INPUT/OUTPUT RANGE
0	0	$80-130 \mathrm{MHz}$
0	1	$40-80 \mathrm{MHz}$
1	0	$20-40 \mathrm{MHz}$
1	1	$10-20 \mathrm{MHz}$

Note: R implies R1, R0; for -80 version, Not valid• Defaults to $\mathrm{R}=01$
The VCO still must remain in the range $80-160 \mathrm{MHz}$, and the minimum phase detector input frequency is $625 \mathrm{kHz}=$ $(80 \mathrm{MHz} / 128)$. Thus the product of $(\mathrm{N}+1)$ and 2^{R} should be limited to 128:

$$
(N+1) \times 2^{R} \leq 128
$$

to make sure that the phase detector inputs remain above the minimum frequency.

Example: Generating a $2 x$ clock input frequency $=33 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), $\mathrm{N}=5$ (0000101), $M=2(000010), M / S=0$

$$
\begin{gathered}
f_{\text {VCO }}=f_{\text {REF }} \times\left[\frac{(N+1) \times 2^{R}}{(M+1)}\right]=33 \mathrm{MHz} \times\left[\frac{6 \times 2^{1}}{3}\right]=132 \mathrm{MHz} \\
f_{\text {OUT }}=f_{V C O} / 2^{R}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
\end{gathered}
$$

Example: Generating a 1 x clock Input frequency $=66 \mathrm{MHz}$
Set $R=01$ (output range $40-80 \mathrm{MHz}$), set $M=0$ (000000), $\mathrm{N}=0(0000000), \mathrm{M} / \mathrm{S}=0$

$$
\begin{gathered}
\mathrm{f}_{\mathrm{VCO}}=66 \mathrm{MHz} \times\left[\frac{1 \times 2^{1}}{1}\right]=132 \mathrm{MHz} \\
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\mathrm{VCO}} / 2^{\mathrm{R}}=132 \mathrm{MHz} / 2^{1}=66 \mathrm{MHz}
\end{gathered}
$$

For doing frequency multiplication and division, keep $\mathbf{M} \geq \mathbf{2}$ and $\mathbf{N} \geq \mathbf{2}$ for the lowest skew between input clock and output clock. Several configurations for doing frequency multiplication and division are included in the 8 configurations stored in the on-chip ROM (see PROGRAMMING the ML6510).

ADAPTIVE DESKEW BUFFERS

Each copy of the clock is driven by an adaptive deskew buffer. The deskew buffer compensates for skew time automatically in accordance to the flight time delay it senses from the reflection on the transmission line.
Figure 4 shows the simplified functional block diagram of the deskew circuit. The phase of the sense signal and the driver signal is presented to a three-input phase comparator and compared with the reference signal. The phase comparator then controls the voltage controlled delay in the output drive line to match the delav of the tixed reterence delay line. Therefore, the sum of the delay of the driver circuit, PCB trace delay, rise time delay at the load and the adjustable delay will always equal the fixed maximum delay.
The sense circuit has an internal level detect such that any skew caused by loading is also accounted for. Since the delay of the circuit is matched for the entire loop, the phase of all the drivers are in close alignment at the inputs of the load.

Figure 4. Deskew Circuit Block Diagram.

LOAD CONDITIONS

The ML6510 has been designed to drive the wide range of load conditions that are encountered in a high frequency system. The eight output clock loads can each vary within a range of trace length and lumped capacitive load, and the ML6510 will maintain the low skew characteristics specified in Electrical Characteristics. The clock skew can be further minimized by providing some first-order matching between any two loads that require particularly wellmatched clocks.
 requires a single external termination resistor for each output. The ML6510-130 produces a 3 V swing at the load and requires two external termination resistors for each output. The FB input pin is connected to the other side of the termination resistor R1 or R2, with a short connection. Termination resistor valves should be chosen as follows:

$\mathrm{R} 1=\mathrm{Z}_{0} \quad \mathrm{R} 2=1.5 \times \mathrm{Z}_{0}$		$\mathrm{R} 3=3 \times \mathrm{Z}_{0}$	
TRACE IMPEDANCE	RESISTOR VALUES		
$\mathbf{Z 0}$	$\mathbf{R 1}$	R2	R3
40Ω	40	60	120
50Ω	50	75	150
63Ω	63	95	189

EXTERNAL INPUT CLOCKS

The external input clock to the ML6510 can be either a differential Pseudo-ECL clock or a single-ended TTL clock. This is selected using the CS bit in the serial shift register. For the single-ended TTL clock tie the CLK INH and CLK INL pins together. The ML6510 ensures that there is a welldefined phase difference between the input and output clocks.

RESET AND LOCK

When $\overline{\text { RESET }}$ is de-asserted, the internal programming logic will become active, loading in the configuration bits (see Programming the ML6510). Once the configuration is loaded, the PLL will lock onto the reference signal, and then the deskew blocks will adapt to the load conditions. When all eight output clocks are stable and deskewed, LOCK will be asserted. The asserted polarity of lock is high. Thus, LOCK can be used to indicate that the system is ready, or it can be used to drive the $\overline{\text { RESET input of }}$ another PACMan in a clock tree.

$\overline{\text { RESET }}$ may be reasserted at any time to reset the chip operations. Following a RESET assertion of valid pulse width (see Programming Electrical Characteristics), the ML6510 must again be loaded with a configuration, then it will re-lock and reassert lock when all eight clock outputs are stable and deskewed.

PROGRAMMING THE ML6510

The configuration of the ML6510 is programmed by loading 18 (ML6510-80) or 19 (ML6510-130) bits into the configuration shift register. To load these bits, the user has 3 options: MAIN, AUX or ROM modes. Which mode is used is determined by the logic level on the $M D_{I_{N}}$ pin when RESET is deasserted. If $\mathrm{MD}_{1 \mathrm{~N}}$ is tied high, the ML6510 will assume AUX mode; if its tied low, ROM mode. If $M D_{\text {IN }}$ is high-impedance (i.e. tied to the input of an EEPROM), it will assume MAIN mode.

i. MAAIN Mode

In this mode, the ML. 6510 will read the configuration bits from an external serial EEPROM, such as the 93C46, using the industry standard 3-wire serial I/O protocol. The serial EEPROM should be a 1 K organized in 64×16 bits and the PACMan will read the configuration bits out of the two least significant 16-bit words. To use this mode, simply connect the EEPROM serial data input pin to $\mathrm{MD}_{\text {IN }}$ (ML6510 pin 19), the EEPROM serial data output pin to MDOUT (ML6510 pin 20), and the EEPROM serial data clock pin to MCLK (ML6510 pin 21) and CS pin for the EEPROM should be tied to the RESET signal. After power up, when RESET is deasserted, the ML6510 will automatically generate the address and clock to read out the configuration bits. Refer MAIN Mode waveform in Figure 5.

MAIN Mode Configuration.

2. AUX Mode

When $\mathrm{MD}_{\text {IN }}$ is tied to VCC, programming the ML6510 will occur via the AUX Mode. This mode shifts the configuration bits into the shift register directly from the MD OUt pin. The first 18 (ML6510-80) or 19 (ML6510130) clock rising edges provided externally on the MCLK pin after RESET is deasserted will be used to load the shift register data, which should be provided on the MDOUT pin. See figure 6.

AUX Mode Configuration.

3. ROM Mode

When $M D_{\text {IN }}$ is tied to GND, programming the ML6510 will occur via the ROM Mode. This mode reads the configuration bits directly from an on chip ROM. The selection of one of the eight preset configuration codes is accomplished by means of the pins ROMMSB, MCLK and $\mathrm{MD}_{\text {OUT }}$ as shown in Tables 1 and 2. The TEST mode configuration (code 7) is enabled when the TEST bit is set. In this mode the PLL is bypassed for low frequency testing. Codes 0-2 are used when the ML6510 clock inputs are driven from another PACMan's reference clock outputs. Code 3 is used when zero phase error is desired between input and load clocks.

Figure 5. MAIN Mode Waveforms.
(3 bits for ML6510-130)

TABLE 1: ML6510-80 ROM CODES

CODE	DESCRIPTION	SELECTION BITS			$\begin{gathered} \text { INPUT } \\ \text { FREQ } \\ \text { (MHz) } \end{gathered}$	$\begin{gathered} \text { OUTPUT } \\ \text { FREQ } \\ \text { (MHz) } \\ \hline \end{gathered}$	CONFIGURATION CODE					
		ROMMSB	MCLK	MDout			CS	CM	R1, R0	M	N	TEST
0	PECL Input Clock, $1 \times$ mode	0	0	0	40-80	40-80	1	1	01	0	0	0
1	PECL Input Clock, $0.5 \times$ mode	0	0	1	40-80	20-40	1	1	10	5	2	0
2	PECL Input Clock, $2 \times$ mode	0	1	0	20-40	40-80	1	1	01	2	5	0
3	PECL Input Clock, $1 \times$ mode	0	1	1	40-80	40-80	1	0	01	0	0	0
4	TTL Input Clock, $1 \times$ mode	1	0	0	40-80	40-80	0	0	01	0	0	0
5	TTL Input Clock, $0.5 \times$ mode	1	0	1	40-80	20-40	0	0	10	5	2	0
6	TTL Input Clock, $2 \times$ mode	1	1	0	20-40	40-80	0	0	01	2	5	0
7	TEST mode, TTL Input clock	1	1	1	0-50	0-50	0	-	-	-	-	1

TABLE 2: ML6510-130 ROM CODES

CODE	DESCRIPTION	SELECTION BITS			$\begin{array}{\|c\|} \hline \text { INPUT } \\ \text { FREQ } \\ (\mathrm{MHz}) \end{array}$	$\begin{aligned} & \text { OUTPUT } \\ & \text { FREQ } \\ & \text { (MHz) } \\ & \hline \end{aligned}$	CONFIGURATION CODE						
		ROMMSB	MCLK	MD ${ }_{\text {OUT }}$			CS	CM	R1, R0	M	N	DDSK	TEST
0	PECL Input Clock, $1 \times$ mode	0	0	0	80-130	80-130	1	1	00	0	0	0	0
1	PECL Input Clock, $0.5 \times$ mode	0	0	1	80-160	40-80	1	1	01	5	2	0	0
2	PECL Input Clock, $2 x$ mode	0	1	0	40-65	80-130	1	1	00	2	5	0	0
3	PECL Input Clock, $1 \times$ mode	0	1	1	80-130	80-130	1	0	00	0	0	0	0
4	TTL Input Clock, $1 \times$ mode	1	0	0	80-130	80-130	0	0	00	0	0	0	0
5	TTL Input Clock, $0.5 \times$ mode	1	0	1	80-130	40-65	0	0	01	5	2	0	0
6	TTL Input Clock, $2 \times$ mode	1	1	0	40-65	80-130	0	0	00	2	5	0	0
7	TEST mode, TTL Input clock	1	1	1	0-50	0-50	0	-	-	-	-	-	1

Figure 6. AUX Mode Waveform.

REGISTER DEFINITIONS

REGISTER	SIZE	FUNCTION
N	7 bit	This register is used to define the ratio for the desired frequency of the primary clock.
R	2 bit	This register defines the frequency of the primary clocks, CLK [0-7].
CM	1 bit	Set CM $=1$ when the PECL input reference clock is from another 6510 reference clock output. Set CM $=0$ if the clock reference is TTL or PECL from an external source and minimum phase error between input and output is desired.
CS	1 bit	CS =0 selects TTL input clock, CS =1 selects PECL input clock.
TEST	1 bit	When set to 1, the PLL is bypassed for low frequency testing.
M	6 bit	This register is used to define the ratio for the desired frequency of the primary clock.
DDSK	1 bit	When DDSK is set to 1, deskew is disabled. The chip will provide low skew clocks at the chip output pins, but trace length variations will not be compensated. When DDSK is set to 0, normal deskew will provide low skew clocks at the loads. This bit is only for ML6510-130.

ML6510-80 SHIFT REGISTER CHAIN

ML6510-130 SHIFT REGISTER CHAIN

APPLICATIONS

ZERO SKEW CLOCK GENERATION

The most advantageous feature of using PACMan is its ability to deliver multiple copies of the clock to the load with very low skew. Because of its unique ability in deskewing, trace length and load consideration are no longer critical in board design.
Because of the unique deskewing scheme, neither the trace length nor the device loads need to be equal. This is true for loads, $<20 p F$. Higher loads can be driven if they are placed close to the clock chip, to guarantee signal integrity.

LOW SKEW CLOCK DISTRIBUTION

Clock distribution design is usually not a trivial task, especially when multiple clock chips are needed. By using closely grouped PACMans, 16 or more clock lines can be created with low part-to-part skew. Additional groups of clocks can be clustered and driven from deskewed clock lines, to minimize the number of longdistance clock lines.

BOARD TO BOARD SYNCHRONIZATION

Distribution of the synchronous clock could present significant difficulty at high frequency. With the system clock generated by the ML6510, a zero skew clock delivery to a backplane is now possible. By using the ML6510 slave chip or the ML6510 in slave mode at the receiver end, a near zero delay clock link can be accomplished between the mother board and the satellite boards.

Because the PACMan has frequency doubling capability, a lower frequency signal can be used to route across a back plane.

EXAMPLE CONFIGURATION

Shown in Figure 7 is an example configuration using two ML6510 chips in tandem to generate eight 66 MHz clocks and eight 33 MHz low-skew clocks from a 66 MHz input reference. This requires only the termination resistors. Configurations are loaded from the internal ROM. PCB traces 0 to 15 are each 50Ω impedance and the load capacitances $\mathrm{C}_{\mathrm{L} 0}-\mathrm{C}_{\mathrm{L} 15}$ are 0 to 20 pF each. No trace length matching is required among separate clock the output.

Figure 7. Example use of two ML6510-80 to generate multiple frequency clocks. First ML6510-80 generates eight 66MHz clocks while second ML6510-80 takes 66 MHz small-swing reference from the first chip and generates eight 33 MHz clocks.

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6510CQ-80	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$44-$ pin PLCC $(\mathrm{Q} 44)$
ML6510CQ-130	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 -pin PLCC (Q44)

PRELIMINARY

High Speed Dual Quad Buffer/Line Driver

GENERAL DESCRIPTION

The ML65244 is a BiCMOS, non-inverting dual quad buffer/line driver. Its 8 -channels support a propagation delay of 1.5 ns , while driving a 50 pF load @ 50 MHz switching frequency and have tri-state outputs making them ideal for very high speed bus oriented applications. This increased performance is provided without a significant increase in power dissipation, thus increasing system reliability. The ML65244 high speed buffer uses a unique analog implementation over the conventional inverter approaches and hence does not waste precious nanoseconds waiting for signals to settle. It achieves its low and predictable delay as the output closely follows the input, including the rise and fall times. The ML65244 follows the pinout and functionality of the industry standard FCT244 buffer/line driver and is intended for applications where propagation delay is critical to the system design. The ML65244 is available in SOIC and QSOP packages.
Note: This part was previously numbered ML6582.

FEATURES

- Fastest buffer/line driver - 1.5 ns propagation delay

E Fast a bit TTL !cvel buffor!!ine driver with tri stato capability on the output (two 4-bit sections)

- TTL compatible input and output levels
- Schottky diode clamps on all inputs to handle undershoot and overshoot
- Onboard schottky diodes minimizes noise
- Reduced output swing of $0-4.1$ volts
- Ground bounce controlled outputs, typically less than 400 mV (See Figure 1)
- Small area, low profile, 20-pin QSOP and industry standard SOIC packages
- Industry standard FCT244 type pinout
- Applications involve, high speed cache memory, main memory, processor bus buffering and graphics cards

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

NAME	I/O	DESCRIPTION
Ai	I	Data Bus A
YAi	O	Data Bus A
Bi	I	Data Bus B
YBi	O	Data Bus B
$\overline{1 \mathrm{G}}$	1	Output Enable for data bus A
$\overline{2 \mathrm{G}}$	1	Output Enable for data bus B
GND	1	Signal Ground
V_{CC}	1	$+5 V$ supply

FUNCTION TABLE

$\overline{\mathbf{1 G}} / \overline{\mathbf{2 G}}$	$\mathbf{A i} / \mathbf{B i}$	$\mathbf{Y A i} / \mathbf{Y B i}$
High	X	Tri-state
Low	Low	Low
Low	High	High

ABSOLUTE MAXIMUM RATINGS

Supply voltage	-0.3 to + 7VDC
DC Output voltage	-0.3 to + 7VDC
DC Input voltage	-0.3 to + 7VDC
AC Input voltage (PW < 20ns) -3.0V
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature $150^{\circ} \mathrm{C}$
Max output sink current per pin	120 mA
Thermal Impedance (θ_{JA})	
SOIC	$.90^{\circ} \mathrm{C} / \mathrm{W}$
QSOP $95^{\circ} \mathrm{C} / \mathrm{W}$

TYPICAL CAPACITANCE

Pins	SOIC	QSOP	Units
$1 \& 19$	4	4	pF
$10 \& 20$	6	6	pF
$2-9,11-18$	8	8	pF

Note: Capacitance is based on characterization data only

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \% \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

AC ELECTRICAL CHARACTERISTICS (CLOAD $=50 \mathrm{pF}, \mathrm{R}_{\mathrm{LOAD}}=500 \Omega$)

$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	Propagation delay	Ai to YAi, Bi to YBi (Note 5)	1.3	1.5	ns
toe	Output enable time $\overline{1 \mathrm{G}}, \overline{2 \mathrm{G}}$ to $\mathrm{YAi} / \mathrm{YBi}$		7	10	ns
t_{OD}	Output disable time $\overline{1 G}, \overline{2 G}$ to $\mathrm{YAi} / \mathrm{YBi}$	(Note 3)		10	ns

DC ELECTRICAL CHARACTERISTICS (C $\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}$, RLOAD $=\infty$)

V_{IH}	Input high voltage	Logic HIGH	2.0			V
$\mathrm{V}_{\text {IL }}$	Input low voltage	Logic LOW			0.8	V
I_{IH}	Input high current	Per pin, TTL logic high input		0.5	1.5	mA
$1 / 1$	Input low current	Per pin, TTL logic low input		2.4	3.5	mA
$\mathrm{IHI}_{\mathrm{Z}}$	Tri-state output current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, 0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$			5	$\mu \mathrm{A}$
los	Short circuit current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \\ & (\text { Notes } 1 \& 3) \end{aligned}$	-60		-225	mA
VIC	Input clamp voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		-0.7	-1.2	V
V_{OH}	Output high voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ & (\text { Notes } 2 \& 4) \end{aligned}$	2.4			V
V_{OL}	Output low voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=25 \mathrm{~mA} \\ & (\text { Notes } 2 \& 4) \end{aligned}$			0.55	V
$V_{\text {OFF }}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ per buffer	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ (Note 2)	0	100	200	mV
ICC	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { Freq }=0 \mathrm{~Hz},$ Inputs/outputs open		55	80	mA

Note 1: Not more than one output should be shorted for more than a second
Note 2: This is a true analog buffer In the linear region, the output tracks the input with an offset ($\mathrm{V}_{\mathrm{OFF}}$) For $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathbb{I}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}$ miN includes $\mathrm{V}_{\text {Off }}$ For $\mathrm{V}_{\text {OL }}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OL max }}$ includes $\mathrm{V}_{\text {OFF }}$
Note 3: Guaranteed by design only
Note 4: See figure 2 for I_{OH} versus V_{OH} and I_{OL} versus V_{OL} data.
Note 5: One line switching, see figure $3, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$ versus C_{L}.

Figure 1. Ground Bounce Comparison, Four Outputs Switching into 50pF Loads.

Figure 2a. Typical V_{OL} Versus I_{OL} for One Buffer Output.

Figure 3. Propagation Delay ($\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$) Versus Load Capacitance, One Output Switching.

Figure 2b. Typical \mathbf{V}_{OH} Versus \mathbf{I}_{OH} for One Buffer Output.

Figure 4. ICC Versus Frequency for Various Load Capacitances, Four Outputs Switching.

FUNCTIONAL DESCRIPTION

The ML65244 is a very high speed, 8 -bit, non-inverting buffer/line driver with tri-state outputs which are ideally suited for bus-oriented applications. It achieves a 1.5 ns propagation delay into a 50 pF load at 50 MHz because of the fact that the ML65244 supports an analog design approach (a true unity gain buffer), as compared to the conventional digital inverter type approaches. The ML65244 achieves its low and predictable propagation delay by having its output follow its input with a small offest of a couple of hundred mil!ivolts. The output rise and fall times will closely match those of the input waveform. All inputs and outputs have schottky clamp diodes for handling undershoot or overshoot noise suppression in un-terminated applications. All outputs have ground bounce suppression (which is typically of the order of 400 mV), high drive output capability with almost immediate response to the input signal and low output skew. The l_{OL} current drive spec of a buffer/line driver is often interpreted as a measure of the buffer/line drivers ability to sink current in a dynamic sense. This may be true for CMOS buffer/line drivers, but it is not true for the ML65244. This is because the ML65244's sink or source current capability depends on the difference between the output and the input. The ML65244 can sink or source more than 100 milliamps to a load capacitor when the load is switching because in this case, the difference between the input and output is large. l_{OL} is only significant as a DC specification and in the case of the ML65244 it is 25 mA . The output enable ($\overline{1 \mathrm{G}} \& \overline{2 \mathrm{G}}$) inputs
enable the selected port for output or tri-state. The ML65244 follows the pinout and functionality of the industry standard FCT 244 series of buffer/line drivers and is intended to replace them in designs where the propagation delay is a critical part of the system consideration. The user needs to exercise caution in their design as the ML65244 will load an active bus when V_{CC} is removed from the device.

ARCHITECTURAL DESCRIPTION

 are capable of driving load capacitances several times larger than their input capacitance. The ML65244 is configured so that the Ai inputs go to the YAi outputs, with the output enable controlled by $\overline{1 G}$. Similarly $\overline{2 G}$ controls the Bi inputs which go to the YBi outputs.
Until now, these buffer/line drivers were typically implemented in CMOS logic and made to be TTL compatible by sizing the input devices appropriately. In order to buffer large capacitances with CMOS logic, it is necessary to cascade an even number of inverters, each successive inverter larger than the preceding, eventually leading to an inverter that will drive the required load capacitance at the required frequency. Each inverter stage represents an additional delay in the gating process because in order for a single gate to switch, the input must slew more than half of the supply voltage. The best of these CMOS buffers has managed to drive a 50 pF load capacitance with a delay of 3.2 ns .

Figure 5. One buffer cell of the ML65244

Micro Linear has produced an dual quad buffer/line driver with a delay less than 1.5 ns by using a unique circuit architecture that does not require cascaded logic gates. The ML65244 uses feedback techniques to produce an output that follows the input. If the output voltage is not close to the input then the feedback will source enough current to the load capacitance to correct the discrepancy.
The basic architecture of the ML65244 is shown in Figure 5. It is implemented on a $1.5 \mu \mathrm{~m}$ BiCMOS process. However, in this particular circuit, all of the active devices are NPNs - the fastest devices available in the process.

In this circuit, there are two paths to the output. One path sources current to the load capacitance when the signal is asserted and the other path sinks current from the output when the signal is negated.

The assertion path is the emitter follower path consisting of the level shift transistor Q1, the output transistor Q2 and the bias resistor R8. It sources current to the output through the 75Ω resistor R7 which is bypassed by another NPN (not shown) during fast input transients. The negation path is a current differencing opamp connected in a follower configuration. The active components in this amplifier are transistors Q3-Q7. R3-R6 are bias resistors, and R1 and R2 are the feedback resistors. The key to understanding the operation of the current differencing opamp is to know that the current in transistors Q3 and Q5 are the same at all times and that the voltages at the bases of Q4 and Q6 are roughly the same. If the output is higher than the input, then an error current will flow through R2. This error current will flow into the base of Q6 and be multiplied by β squared to the collector of Q7 thus closing the loop. The larger the discrepancy between the output and input, the larger the feedback current, and the harder Q7 sinks current from the load capacitor.

A number of MOSFETs that are not shown in Figure 5 have been used in the ML65244. These MOSFETs were used to tri-state dormant buffers. For instance, the feedback resistors R1 and R2 were implemented as resistive transmission gates to ensure that disabled buffers do not load the lines they are connected to. Similarly, there is a PMOS in series with R8 that is normally on but shuts off for disable. Other MOSFETs have been included to ensure that disabled buffers consume no power.

TERMINATION

R7 in Figure 5 also acts as a termination resistance. This 75Ω resistor is in series with the output and therefore helps suppress noise caused by transmission line effects such as reflections from mismatched impedances. Systems designers using CMOS transceivers commonly have to use external resistors in series with each transceiver output to suppress this noise. Hence, systems designers using the ML65244 may not have to use these external resistors.

APPLICATIONS

There are a wide variety of existing and future needs for an extremely fast buffers in high speed processor system designs like Pentium, PowerPC, Mips, Sparc, Alpha and other RISC processors. The applications are either in the cache memory area or the main memory (DRAM) area. Besides these, the fast buffer could find applications in high speed graphics and multimedia applications. The high capacitive loading due to multiplexed address lines on the system bus demand external buffers to take up the excess drive current. The needed current to skew the transitions between rise and fall times must be done without adding excessive propagation delay. The devices are equipped with schottky diodes to clean up ringing from overshoot and undershoot caused by reflections in un-terminated board traces.

ORDERING INFORMATION

PART NUMBER	SPEED	TEMPERATURE RANGE	PACKAGE
ML65244CS	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin SOIC (S20)
ML65244CK	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin QSOP (K20)

[^12]
High Speed Octal Buffer Transceiver

GENERAL DESCRIPTION

The ML65245 is a BiCMOS, non-inverting octal transceiver. Its 8-channels support a propagation delay of
 frequency and have tri-state outputs making them ideal for very high speed bus oriented applications. This increased performance is provided without a significant increase in power dissipation, thus increasing system reliability. The ML65245 high speed buffer uses a unique analog implementation over the conventional inverter approaches and hence does not waste precious nanoseconds waiting for signals to settle. It achieves its low and predictable delay as the output closely follows the input, including the rise and fall times. The ML65245 follows the pinout and functionality of the industry standard FCT family of transceivers and is intended for applications where propagation delay is critical to the system design. The ML65245 is available in SOIC and QSOP packages.
Note: This part was previously numbered ML6580.

FEATURES

- Fastest transceiver - 1.5 ns propagation delay
- Fast 8 -bit TTL level transceiver with tri-state capability on the output
- TTL compatible input and output levels
- Schottky diode clamps on all inputs to handle undershoot and overshoot
- Onboard schottky diodes minimizes noise
- Reduced output swing of $0-4.1$ volts
- Ground bounce controlled outputs, typically less than 400 mV (See Figure 1)
- Small area, low profile, 20-pin QSOP and industry standard SOIC packages
- Industry standard FCT245 type pinout
- Applications involve, high speed cache memory, main memory, processor bus buffering and graphics cards

BLOCK DIAGRAM

PIN CONFIGURATION

20-Pin SOIC, QSOP

PIN DESCRIPTION

NAME	$1 / O$	DESCRIPTION
Ai	I / O	Data Bus A
Bi	I / O	Data Bus B
T / \bar{R}	1	Direction select
$\overline{\mathrm{OE}}$	1	Output Enable
GND	1	Signal Ground
V_{CC}	1	+5 V supply

FUNCTION TABLE

$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$	\mathbf{A}	\mathbf{B}	Function
High	Don't care	Tri-state	Tri-state	Disable
Low	Low	Output	Input	Bus B to Bus A
Low	High	Input	Output	Bus A to Bus B

ABSOLUTE MAXIMUM RATINGS

Supply voltage -0.3 to + 7VDC	
DC Output voltage	-0.3 to + 7VDC
DC Input voltage 0.3 to + 7VDC	
AC Input voltage (PW < 20ns) -3.0V	
Storage temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction temperature .. $150^{\circ} \mathrm{C}$	
Max output sink current per pin.......................... 120mA	
Thermal Impedance (θ_{JA})	
SOIC	$90^{\circ} \mathrm{C} / \mathrm{W}$
QS	$95^{\circ} \mathrm{C} / \mathrm{W}$

TYPICAL CAPACITANCE

Pins	SOIC	QSOP	Units
$1 \& 19$	4	4	pF
$10 \& 20$	6	6	pF
$2-9,11-18$	8	8	pF

Note: Capacitance is based on characterızation data only

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \% \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{LOAD}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{LOAD}}=500 \Omega$)

$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	Propagation delay	Ai to/from Bi (Note 5)	1.3	1.5	ns
toe	Output enable time $\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}}$ to $\mathrm{Ai} / \mathrm{Bi}$		7	10	ns
${ }_{\text {tod }}$	Output disable time $\overline{\mathrm{AF}}, \mathrm{T} / \overline{\mathrm{R}} \mathrm{t}$ A A / Ri	(Note 3)		10	ns

DC ELECTRICAL CHARACTERISTICS (unless otherwise stated $C_{\text {LOAD }}=50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=\infty$)

V_{IH}	Input high voltage	Logic HIGH	2.0			V
V_{IL}	Input low voltage	Logic LOW			0.8	\checkmark
I_{H}	Input high current	Per pin, TTL logic high input		0.5	1.5	mA
IIL	Input low current	Per pin, TTL logic low input		2.4	3.5	mA
$\mathrm{IHI}-\mathrm{Z}$	Tri-state output current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, 0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$			5	$\mu \mathrm{A}$
l OS	Short circuit current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \\ & (\text { Notes } 1 \& 3) \end{aligned}$	-60		-225	mA
VIC	Input clamp voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		-0.7	-1.2	V
V_{OH}	Output high voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ & (\text { Notes } 2 \& 4) \end{aligned}$	2.4			V
V_{OL}	Output low voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=25 \mathrm{~mA} \\ & \text { (Notes } 2 \& 4 \text {) } \end{aligned}$			0.55	V
$V_{\text {OfF }}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ per buffer	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ (Note 2)	0	100	200	mV
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{f}=0 \mathrm{~Hz}$ Inputs/outputs open		55	80	mA

Note 1: Not more than one output should be shorted for more than a second.
Note 2: This is a true analog buffer. In the linear region, the output tracks the input with an offset $\left(V_{\mathrm{OFF}}\right)$. For $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathbb{I N}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}$ min includes $\mathrm{V}_{\mathrm{Off}}$. For $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL} \text { MAX }}$ includes $\mathrm{V}_{\text {OFF }}$
Note 3: Guaranteed by design only.
Note 4: See figure 2 for l_{OH} versus V_{OH} and I_{OL} versus V_{OL} data.
Note 5: One line switching, see figure 3, $\mathrm{t}_{\mathrm{PL}}, \mathrm{t}_{\mathrm{PHL}}$ versus C_{L}.

Figure 1. Ground Bounce Comparison, Four Outputs Switching into 50pF Loads.

Figure 2a. Typical V_{OL} Versus I_{OL} for One Buffer Output.

Figure 3. Propagation Delay ($\mathbf{t}_{\text {PLH }}$, t $_{\text {PHL }}$) Versus Load Capacitance, One Output Switching.

Figure 2b. Typical $\mathbf{V}^{\mathrm{V}_{\mathrm{OH}}}$ Versus I_{OH} for One Buffer Output.

Figure 4. ICC Versus Frequency for Various Load Capacitances, Four Outputs Switching.

FUNCTIONAL DESCRIPTION

The ML65245 is a very high speed, 8 -bit, non-inverting transceiver with tri-state outputs which are ideally suited for bus-oriented applications. It achieves a 1.5 ns propagation delay into a 50 pF load at 50 MHz because of the fact that the ML65245 supports an analog design approach (a true unity gain buffer), as compared to the conventional digital inverter type approaches. The ML65245 achieves its low and predictable propagation delay by having its output follow its input with a small offset of a couple of hundred millivolts The nutput rice and fall times will closely match those of the input waveform. All inputs and outputs have schottky clamp diodes for handling undershoot or overshoot noise suppression in un-terminated applications. All outputs have ground bounce suppression (which is typically of the order of 400 mV), high drive output capability with almost immediate response to the input signal and low output skew. The lol current drive spec of a transceiver is often interpreted as a measure of the transceivers ability to sink current in a dynamic sense. This may be true for CMOS transceivers, but it is not true for the ML65245. This is because the ML65245's sink or source current capability depends on the difference between the output and the input. The ML65245 can sink or source more than 100 milliamps to a load capacitor when the load is switching because in this case, the difference between the input and output is large. I I_{OL} is only significant as a DC specification and in the case of the ML65245 it is 25 mA . The transmit/ receive (T / \bar{R}) input determines the direction of data flow
either from A to B or B to A, while the output enable $(\overline{O E})$ input enables the selected port for output or tri-state. The ML65245 follows the pinout and functionality of the industry standard FCT series of transceivers and is intended to replace them in designs where the propagation delay is a critical part of the system consideration. The user needs to exercise caution in their design as the ML65245 will load an active bus when $V_{C C}$ is removed from the device.

ARCHITECTURAL DESCRIPTION

Octal transceivers are 8 bit logic devices that are capable of driving load capacitances several times larger than their input capacitance. These transceivers have eight inputs labeled A and eight labeled B. They can be programmed to transmit from A to B or from B to A or to go into a disable state in which both A and B are high impedance.
Until now, these transceivers were typically implemented in CMOS logic and made to be TTL compatible by sizing the input devices appropriately. In order to buffer large capacitances with CMOS logic, it is necessary to cascade an even number of inverters, each successive inverter larger than the preceding, eventually leading to an inverter that will drive the required load capacitance at the required frequency. Each inverter stage represents an additional delay in the gating process because in order for a single gate to switch, the input must slew more than half of the supply voltage. The best of these CMOS buffers has managed to drive a 50 pF load capacitance with a delay of 3.2 ns .

Figure 5. One buffer cell of the ML65245

Micro Linear has produced an octal transceiver with a delay less than 1.5 s by using a unique circuit architecture that does not require cascaded logic gates. The ML65245 uses feedback techniques to produce an output that follows the input. If the output voltage is not close to the input then the feedback will source enough current to the load capacitance to correct the discrepancy.
The basic architecture of the ML65245 is shown in Figure 5. It is implemented on a $1.5 \mu \mathrm{~m}$ BiCMOS process. However, in this particular circuit, all of the active devices are NPNs - the fastest devices available in the process.
In this circuit, there are two paths to the output. One path sources current to the load capacitance when the signal is asserted and the other path sinks current from the output when the signal is negated.

The assertion path is the emitter follower path consisting of the level shift transistor Q1, the output transistor Q2 and the bias resistor R8. It sources current to the output through the 75Ω resistor R7 which is bypassed by another NPN (not shown) during fast input transients. The negation path is a current differencing opamp connected in a follower configuration. The active components in this amplifier are transistors Q3-Q7. R3-R6 are bias resistors, and R1 and R2 are the feedback resistors. The key to understanding the operation of the current differencing opamp is to know that the current in transistors Q3 and Q5 are the same at all times and that the voltages at the bases of Q4 and Q6 are roughly the same. If the output is higher than the input, then an error current will flow through R2. This error current will flow into the base of Q6 and be multiplied by β squared to the collector of Q7 thus closing the loop. The larger the discrepancy between the output and input, the larger the feedback current, and the harder Q7 sinks current from the load capacitor.

A number of MOSFETs that are not shown in Figure 5 have been used in the ML65245. These MOSFETs were used to tri-state dormant buffers. For instance, the feedback resistors R1 and R2 were implemented as resistive transmission gates to ensure that disabled buffers do not load the lines they are connected to. Similarly, there is a PMOS in series with R8 that is normally on but shuts off for disable. Other MOSFETs have been included to ensure that disabled buffers consume no power.

TERMINATION

R7 in figure 5 also acts as a termination resistance. This 75Ω resistor is in series with the output and therefore helps suppress noise caused by transmission line effects such as reflections from mismatched impedances. Systems designers using CMOS transceivers commonly have to use external resistors in series with each transceiver output to suppress this noise. Hence, systems designers using the ML65245 may not have to use these external resistors.

APPLICATIONS DESCRIPTION

There are a wide variety of existing and future needs for an extremely fast buffer/transceiver in high speed processor system designs like Pentium, PowerPC, Mips, Sparc, Alpha and other RISC processors. The applications are either in the cache memory area or the main memory (DRAM) area. Besides these, the fast buffer could find applications in high speed graphics and multimedia applications. The high capacitive loading due to multiplexed address lines on the system bus demand external buffers to take up the excess drive current. The needed current to skew the transitions between rise and fall times must be done without adding excessive propagation delay. The devices are equipped with schottky diodes to clean up ringing from overshoot and undershoot caused by reflections in un-terminated board traces.

APPLICATION 1

BUFFERING MAIN MEMORY

An example main memory application is shown in Figure 6 for the Intel PCl chipset with the Pentium processor. This discussion is only intended as a general reference. For details please refer to the appropriate Intel documentation. This system has a 66 MHz host processor and a 33 MHz main (DRAM) memory bus. The main memory row and column addresses (RAS \& CAS) and write enable (WE) signals are provided by the PCMC chip (PCl Cache and Memory Controller) device. The DRAM SIIMs put a heavy load on the PCMC and must be buffered. Three buffered copies of the address signals and write enable are required to drive the six row array. The ML65245 provides the buffered signals and gives extra margin to be able to use slower memory modules instead of the normally required $50 / 70 \mathrm{~ns}$. The burst read (pagehit) performance is typically $7-4-4-4$ at 66 MHz for 70 ns DRAMs or $6-3-3-3$ at 66 MHz for 50 ns DRAMs. This usually translates to significantly higher costs. With the speed improvement offered by the ML65245, a 6-3-3-3 burst with 60ns DRAMs may be achievable. The extra margin comes from the 1.5 ns propagation delay of the buffer. External resistor arrays are not necessary. This becomes even more of an issue in future PCl systems which may operate at 80 MHz and beyond.
This kind of main memory application for the ML65245 could potentially extend to other kinds of processor systems which do not require latched buffering. Figure 7 shows a main memory design example with the ML65245 for the Mips R4X00 RISC processor based system without secondary cache. The faster propagation delay essentially translates to a faster main memory access.

Figure 6. ML65245 in a main memory application for a Pentium based system. The high drive and low propagation delay are essential to buffer the write enable and memory addresses to the main memory SIIMs.

Figure 7. The ML65245 in a non-cache, main memory RISC application. The main memory could be DRAM or CacheDRAM. The ML65245 can be used as a data I/O transceiver as well as an address buffer, as shown above.

APPLICATION 2

BUFFERING CACHE MEMORY

With the advent of higher power operating systems like Windows NT, NeXT Step, Cairo, etc., RISC processor designs are gaining momentum like Mips R4000 series. In these systems the interface to secondary cache has a critical path in the address and bus control pins. As shown in Figure 8, any time (propagation delay) saved in the buffer translates to a slower SRAM access requirement and hence less expensive. Currently the secondary cache bus operates at 75 MHz . In order to meet the 13 ns cycle time,
the SRAM and Buffer must meet a total access time of 12 ns . With the ML65245 for a buffer, the required SRAM access time is 10 ns at 75 MHz and 18 ns at 50 MHz . With the fastest FCT buffer available (3.2ns), the SRAM access time required in the above scenarios would be 8 ns and 15 ns respectively. This access time difference could mean the difference between using expensive BiCMOS SRAMs versus less expensive CMOS SRAMs.

Figure 8. ML65245 in a R4X00 secondary cache application. The address and control signal path is critical and loads the R4X00 output pins. The ML65245 buffer alleviates the load on the R4X00 and because it is fast, slower, less expensive SRAMs can be used.

Figure 9. Timing waveform showing address buffer switching rate $\left(t_{A}+t_{H}\right)$ in a secondary cach module.

ORDERING INFORMATION

PART NUMBER	SPEED	TEMPERATURE RANGE	PACKAGE
ML65245CS	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin SOIC (S20)
ML65245CK	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin QSOP (K20)

Intel, Pentium, PCl are registered trademarks of Intel Corporation. Mips, Alpha and Sparc are registered trademarks of Silicon Graphıcs, DEC and Sun Microsystems respectively.

September 1994

High Speed Octal Buffer/Line Driver

GENERAL DESCRIPTION

The ML65541 is a BiCMOS, non-inverting octal buffer/ line driver. Its 8-channels support a propagation delay of 1.5 ns , while driving a 50 pF load @ 50 MHz switching frequency and have tri-state outputs making them ideal for very high speed bus oriented applications. This increased performance is provided without a significant increase in power dissipation, thus increasing system reliability. The ML65541 high speed buffer uses a unique analog implementation over the conventional inverter approaches and hence does not waste precious nanoseconds waiting for signals to settle. It achieves its low and predictable delay as the output closely follows the input, including the rise and fall times. The ML65541 follows the pinout and functionality of the industry standard FCT541 family of buffer/line driver and is intended for applications where propagation delay is critical to the system design. The ML65541 is available in SOIC and QSOP packages.

FEATURES

- Fastest buffer/line driver - 1.5 ns propagation delay
- Fast 8-bit TTL level buffer/line driver with tri-state capability on the output
- TTL compatible input and output levels
- Schottky diode clamps on all inputs to handle undershoot and overshoot
- Onboard schottky diodes minimizes noise
- Reduced output swing of $0-4.1$ volts
- Ground bounce controlled outputs, typically less than 400 mV (See Figure 1)
- Small area, low profile, 20-pin QSOP and industry standard SOIC packages
- Industry standard FCT541 type pinout
- Applications involve, high speed cache memory, main memory, processor bus buffering and graphics cards
Note: This part was previously numbered ML6581.

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

NAME	I/O	DESCRIPTION
$A i$	I	Data Bus A
Bi	O	Data Bus B
$\overline{\mathrm{OE1}} \& \overline{\mathrm{OE} 2}$	I	Output Enable
GND	I	Signal Ground
V_{CC}	1	+5 V supply

FUNCTION TABLE

$\overline{\text { OE1 }} \overline{\mathbf{O E 2}}$	\mathbf{A}	B
High	X	Tri-state
Low	Low	Low
Low	High	High

ABSOLUTE MAXIMUM RATINGS

Supply voltage..................................... -0.3 to + 7VDC	
DC Output voltage	0.3 to +7VDC
DC Input voltage-0.3 to + 7VDC	
AC Input voltage (PW < 20ns) -3.0V	
Storage temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Junction temperature .. $150^{\circ} \mathrm{C}$	
Max output sink current per pin.......................... 120 mA	
Thermal Impedance (θ_{JA})	
SOIC ... $90^{\circ} \mathrm{C}$ W	
QSOP ... $95^{\circ} \mathrm{C} / \mathrm{W}$	

TYPICAL CAPACITANCE

Pins	SOIC	QSOP	Units
$1 \& 19$	4	4	pF
$10 \& 20$	6	6	pF
$2-9,11-18$	8	8	pF

Note: Capacitance is based on characterization data only

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for: $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 5 \% \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
AC ELECTRICAL CHARACTERISTICS (CLOAD $=50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=500 \Omega$)						
$\mathrm{tPLH} \mathrm{t}_{\text {PHL }}$	Propagation delay	Ai to Bi (Note 5)		1.3	1.5	ns
t_{OE}	Output enable time $\overline{\mathrm{OE}}, \overline{\mathrm{OE} 2}$ to Bi			7	10	ns
t_{OD}	Output disable time $\overline{\mathrm{OE}}, \overline{\mathrm{OE} 2}$ to Bi	(Note 3)			10	ns

DC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\text {LOAD }}=50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }}=\infty$)

V_{IH}	Input high voltage	Logic HIGH	2.0			V
$\mathrm{V}_{\text {IL }}$	Input low voltage	Logic LOW			0.8	V
$\mathrm{IIH}^{\text {H}}$	Input high current	Per pin, TTL logic high input		0.5	1.5	mA
$1 / 1$	Input low current	Per pin, TTL logic low input		2.4	3.5	mA
$\mathrm{IHI}_{\mathrm{Z}}$	Tri-state output current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, 0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$			5	$\mu \mathrm{A}$
los	Short circuit current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{GND} \\ & \text { (Notes } 1 \& 3 \text {) } \end{aligned}$	-60		-225	mA
VIC	Input clamp voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA} \\ & \text { (Note 3) } \end{aligned}$		-0.7	-1.2	V
V_{OH}	Output high voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ & (\text { Notes } 2 \& 4) \end{aligned}$	2.4			V
V_{OL}	Output low voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA} \\ & (\text { Notes } 2 \text { \& }) \end{aligned}$			0.55	V
$\mathrm{V}_{\text {OFF }}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ per buffer	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ (Note 2)	0	100	200	mV
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{f}=0 \mathrm{~Hz},$ Inputs/outputs open		55	80	mA

Note 1: Not more than one output should be shorted for more than a second.
Note 2: This is a true analog buffer. In the linear region, the output tracks the input with an offset $\left(\mathrm{V}_{\mathrm{OFF}}\right)$. For $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathbb{I N}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}$ miN includes $\mathrm{V}_{\text {Off }}$. For $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL} \text { MAX }}$ includes $\mathrm{V}_{\text {OFF }}$
Note 3: Guaranteed by design only.
Note 4: See figure 2 for l_{OH} versus V_{OH} and I_{OL} versus V_{OL} data.
Note 5: One line switching, see figure $3, t_{P L H}, t_{P H L}$ versus C_{L}.

Figure 1. Ground Bounce Comparison, Four Outputs Switching into 50pF Loads.

Figure 2a. Typical V_{OL} Versus I_{OL} for One Buffer Output.

Figure 3. Propagation Delay ($\mathbf{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$) Versus Load Capacitance, One Output Switching.

Figure 2b. Typical V_{OH} Versus $\mathrm{IOH}_{\mathrm{OH}}$ for One Buffer Output.

Figure 4. $I_{\text {cc }}$ Versus Frequency for Various Load Capacitances, Four Outputs Switching.

FUNCTIONAL DESCRIPTION

The ML65541 is a very high speed, 8 -bit, non-inverting buffer/line driver with tri-state outputs which are ideally suited for bus-oriented applications. It achieves a 1.5 ns propagation delay into a 50 pF load at 50 MHz because of the fact that the ML65541 supports an analog design approach (a true unity gain buffer), as compared to the conventional digital inverter type approaches. The ML65541 achieves its low and predictable propagation delay by having its output follow its input with a small offset of a couple of hundred millivolts. The output rise and fall times will closely match those of the input waveform. All inputs and outputs have schottky clamp diodes for handling undershoot or overshoot noise suppression in un-terminated applications. All outputs have ground bounce suppression (which is typically of the order of 400 mV), high drive output capability with almost immediate response to the input signal and low output skew. The I_{OL} current drive spec of a buffer/line driver is often interpreted as a measure of the buffer/line drivers ability to sink current in a dynamic sense. This may be true for CMOS buffer/line drivers, but it is not true for the ML65541. This is because the ML65541's sink or source current capability depends on the difference between the output and the input. The ML65541 can sink or source more than 100 milliamps to a load capacitor when the load is switching because in this case, the difference between the input and output is large. l_{OL} is only significant as a DC specification and in the case of the ML65541 it is 25 mA . The output enable ($\overline{\mathrm{OE} 1} \& \overline{\mathrm{OE} 2}$)
inputs enables the selected port for output or tri-state. The ML65541 follows the pinout and functionality of the industry standard FCT 541 series of buffer/line drivers and is intended to replace them in designs where the propagation delay is a critical part of the system consideration. The user needs to exercise caution in their design as the ML65541 will load an active bus when V_{CC} is removed from the device.

ARCHITECTURAL DESCRIPTION

Octal buffer/line drivers are 8 bit logic devices that are capable of driving load capacitances several times larger than their input capacitance. These buffer/line drivers have eight inputs labeled A and eight outputs labeled B.

Until now, these buffer/line drivers were typically implemented in CMOS logic and made to be TTL compatible by sizing the input devices appropriately. In order to buffer large capacitances with CMOS logic, it is necessary to cascade an even number of inverters, each successive inverter larger than the preceding, eventually leading to an inverter that will drive the required load capacitance at the required frequency. Each inverter stage represents an additional delay in the gating process because in order for a single gate to switch, the input must slew more than half of the supply voltage. The best of these CMOS buffers has managed to drive a 50 pF load capacitance with a delay of 3.2 ns .

Figure 5. One buffer cell of the ML65541

Micro Linear has produced an octal buffer/line driver with a delay less than 1.5 ns by using a unique circuit architecture that does not require cascaded logic gates. The ML65541 uses feedback techniques to produce an output that follows the input. If the output voltage is not close to the input then the feedback will source enough current to the load capacitance to correct the discrepancy.

The basic architecture of the ML65541 is shown in Figure 5. It is implemented on a $1.5 \mu \mathrm{~m} \mathrm{BiCMOS}$ process. However, in this particular circuit, all of the active devices are NPNs - the fastest devices available in the process.

In this circuit, there are two paths to the output. One path sources current to the load capacitance when the signal is asserted and the other path sinks current from the output when the signal is negated.

The assertion path is the emitter follower path consisting of the level shift transistor Q1, the output transistor Q2 and the bias resistor R8. It sources current to the output through the 75Ω resistor $R 7$ which is bypassed by another NPN (not shown) during fast input transients. The negation path is a current differencing opamp connected in a follower configuration. The active components in this amplifier are transistors Q3-Q7. R3-R6 are bias resistors, and R1 and R2 are the feedback resistors. The key to understanding the operation of the current differencing opamp is to know that the current in transistors Q3 and Q5 are the same at all times and that the voltages at the bases of Q4 and Q6 are roughly the same. If the output is higher than the input, then an error current will flow through R2. This error current will flow into the base of Q6 and be multiplied by β squared to the collector of Q7 thus closing the loop. The larger the discrepancy between the output and input, the larger the feedback current, and the harder Q7 sinks current from the load capacitor.

A number of MOSFETs that are not shown in Figure 5 have been used in the ML65541. These MOSFETs were used to tri-state dormant buffers. For instance, the feedback resistors R1 and R2 were implemented as resistive transmission gates to ensure that disabled buffers do not load the lines they are connected to. Similarly, there is a PMOS in series with R8 that is normally on but shuts off for disable. Other MOSFETs have been included to ensure that disabled buffers consume no power.

TERMINATION

R7 in Figure 5 also acts as a termination resistance. This 75Ω resistor is in series with the output and therefore helps suppress noise caused by transmission line effects such as reflections from mismatched impedances. Systems designers using CMOS transceivers commonly have to use external resistors in series with each transceiver output to suppress this noise. Hence, systems designers using the ML65541 may not have to use these external resistors.

APPLICATIONS

There are a wide variety of existing and future needs for an extremely fast buffers in high speed processor system designs like Pentium, PowerPC, Mips, Sparc, Alpha and other RISC processors. The applications are either in the cache memory area or the main memory (DRAM) area. Besides these, the fast buffer could find applications in high speed graphics and multimedia applications. The high capacitive loading due to multiplexed address lines on the system bus demand external buffers to take up the excess drive current. The needed current to skew the transitions between rise and fall times must be done without adding excessive propagation delay. The devices are equipped with schottky diodes to clean up ringing from overshoot and undershoot caused by reflections in un-terminated board traces.

ORDERING INFORMATION

PART NUMBER	SPEED	TEMPERATURE RANGE	PACKAGE
ML65541CS	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin SOIC (S20)
ML65541CK	1.5 ns	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-\mathrm{Pin}$ QSOP (K20)

[^13]
Hot-Insertable Active SCSI Terminator

GENERAL DESCRIPTION

The ML6599 BiCMOS SCSI terminator provides active termination in a SCSI system with single-ended drivers and receivers, in full compliance with the SCSI-1, SCSI-2 and SCSI-3 recommendations. It provides a 2.85 V reference through an internal 1 V dropout linear regulator. Active SCSI termination helps the system designer to effectively control analog transmission line effects like ringing, noise, crosstalk, ground bounce, etc. In addition it provides support for hot insertability on the SCSI bus. The desired V-I characteristics for signal negation requires that the terminator source $0-24 \mathrm{~mA}$ while maintaining 2.85 V and for signal assertion preferably follow a linear slope of 110Ω. The ML6599 provides a V-I characteristic optimized to minimize the transmission line effects during both signal assertion and negation, using a MOSFET based architecture. The desired V-I characteristic is achieved by trimming one resistor in the control block. It provides negative clamping for signal assertion transients and current sink capability, to handle active negation driver overshoots above 2.85 V , which is currently accomplished with external components in SCSI subsystems. It provides a disconnect mode, where the terminator is completely disconnected from the SCSI bus and the output capacitance is typically $<5 \mathrm{pF}$.

FEATURES

- Fully monolithic IC solution providing active termination for 9 lines of the SCSI bus
- Provides on board support for hot-insertability on the SCSI bus
- Low dropout voltage (1V) linear regulator, trimmed for accurate termination current
- Output capacitance typically $<5 \mathrm{pF}$
- Disconnect mode - Logic pin to disconnect terminator from the SCSI bus, $<100 \mu \mathrm{~A}$
■ Current sinking - can sink current in excess of 10 mA per line to handle active negation driver overshoots above 2.85 V
- Negative clamping on all lines to handle signal assertion transients
- Regulator can source 200 mA and sink 50 mA while maintaining regulation
■ Current limit \& thermal shutdown protection
- Small and low profile package options; 16-pin SOIC (300 mil), 20-pin TSSOP (1 mil height)

GENERAL DESCRIPTION (Continued)

Current limiting and thermal shutdown protection are also provided. The ML6599 provides 9 lines of termination in the industry's smallest package - 20-pin TSSOP. The nine line configuration is optimal for wide SCSI's 18, 27, or 45 line termination needs.

PIN CONFIGURATION

20-Pin TSSOP

PIN DESCRIPTION

NAME	DESCRIPTION
TERMPWR	Termination Power. Should be connected to the SCSI TERMPWR line. A 10 F tantalum local bypass capacitor is recommended per system, as shown in the application diagram
L1	Signal Termination 1. SCSI Bus line 1
L2	Signal Termination 2. SCSI Bus line 2
L3	Signal Termination 3. SCSI Bus line 3
L4	Signal Termination 4. SCSI Bus line 4
L5	Signal Termination 5. SCSI Bus line 5
L6	Signal Termination 6. SCSI Bus line 6
L7	Signal Termination 7. SCSI Bus line 7
L8	Signal Termination 8. SCSI Bus line 8
L9	Signal Termination 9. SCSI Bus line 9

NAME	DESCRIPTION
$V_{\text {REF }}$	$2.85 V_{\text {REF Output. External decoupling }}$ with a 10 $\mu \mathrm{F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended, as shown in the application diagram.
$\overline{\text { DISCNKT }}$	Disconnect Terminator. Logic input to disconnect the terminator from the bus when the SCSI device no longer needs termination due to not being the last device on the bus or otherwise. Active low input.
GND	Ground. Signal Ground (0V)
HS	Heat Sink Ground. Should be connected to GND.

[^14]| ABSOLUTE MAXIMUM RATINGS |
| :---: |
| Signal Line Voltage -0.3 to TERMPWR + 0.3 V |
| Regulator Output Current -100 to 300 mA |
| TERMPWR Voltage -0.3 to 7V |
| Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Soldering Temperature |
| | |
| |
| |
| TSSOP .. $110^{\circ} \mathrm{C}$ M |

RECOMMENDED OPERATING CONDITIONS

TERMPWR Voltage 4 V to 5.25 V
Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, these specifications apply for $4 \mathrm{~V} \leq T E R M P W R \leq 5.25 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY					
TERMPWR Supply Current	L1-L9 = open, $\overline{\text { DISCNKT }}=$ open		3.5	5	mA
	$\mathrm{L} 1-\mathrm{L} 9=0.2 \mathrm{~V}$, $\overline{\mathrm{DISCNKT}}=$ open		225		mA
Disconnect Mode Current	$\overline{\text { DISCNKT }}=0$ (active)		75	100	$\mu \mathrm{A}$
INPUT					
Input Low Voltage	$\overline{\text { DISCNKT }}$			1.0	V
Input High Voltage	DISCNKT	TERMPWR - 1.0			V
OUTPUT					
Output High Voltage	Measuring each signal line while other eight are high	2.8	2.85	2.9	V
Maximum Output Current (Normal Mode)	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$, Measuring each signal line while the other eight are high			24	mA
Hot Insertion Peak Current	TERMPWR $=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$ Any signal line (L1-L9) at 2.85 V		23		$\mu \mathrm{A}$
Output Clamp Level	$\mathrm{I}_{\text {OUT }}=-30 \mathrm{~mA}($ Note 1)	-0.15	0	0.15	V
Current Sink Capability	$\mathrm{V}_{\text {OUT }}=3.2 \mathrm{~V}$ (per line)	7	12		mA
Output Capacitance (ML Method)	L1 thru L9, $\overline{\text { DISCNKT }}=0$ $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 100 \mathrm{kHz}$ square wave applied biased at 1V D.C. (Note 2)			5	pF
Output Capacitance (X3T9.2/855D method)	L1 thru L9, $\overline{\text { DISCNKT }}=0$ $0.4 \mathrm{~V}_{\text {P-p }}, 1 \mathrm{MHz}$ square wave applied biased at 0.5V D.C. (Note 1)			7	pF
REGULATOR					
Regulator Output Voltage	Sourcing 0-200mA	2.8	2.85	2.9	V
	Sinking 0-50mA (Note 1)	2.8	2.85	2.95	V
Regulator Dropout Voltage	$\mathrm{L} 1-\mathrm{L} 9=0.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.85 \mathrm{~V}$		1.0	1.2	\checkmark
Regulator Short Circuit Current	Regulator output $=0 \mathrm{~V}$		100		mA
	Regulator output $=5 \mathrm{~V}$		300		mA
Thermal Shutdown			170		${ }^{\circ} \mathrm{C}$

Note 1: Parameter guaranteed by characterization only.
Note 2: Only one pin is checked in the production test environment. Otherwise parameter is guaranteed by characterization and correlation.

FUNCTIONAL DESCRIPTION

The SCSI Terminator helps in decreasing the transmission line effects with precise termination. Termination is conventionally provided at the beginning and end of the SCSI bus, however when additional peripherals are added, the termination needs to be disabled from the current device and enabled on the last device on the bus. Existing termination schemes use a SIP (Single-In-Line package) which is plugged into a socket on the PC board of the SCSI peripheral. To remove the termination, the user needs to pull the resistor SIP out of its socket. With the higher levels of system integration, this is no longer a simple task. With the increasing use of higher data rates and cable lengths in SCSI subsystems, the need for active termination is becoming necessary. Active termination also minimizes power dissipation and can be activated or deactivated under software control, thus eliminating the need for end user intervention. The V-I characteristics of popular SCSI termination schemes are shown in Figure 3. Theoretically the desired V-I characteristics are the Boulay type for signal assertion (high to low) and the Ideal type for signal negation. The ML6599 with its MOSFET based nonlinear termination element attempts to provide the most optimum V-I characteristics - optimized for both signal assertion and negation.

The ML6599 provides active termination for nine signal lines, thus accommodating basic SCSI which requires 18 lines to be terminated and wide SCSI which requires 27, 36 or 45 lines to be terminated. The ML6599 integrates an accurate voltage reference (1 V dropout voltage) and nine MOSFET based termination lines. A single internal resistor is trimmed to tune the V-I characteristic of the MOSFETs as shown in figure 1. The voltage reference circuit produces a precise 2.85 V level and is capable of sourcing at least 24 mA into each of the nine terminating lines when low (active). When the signal line is negated (driver turns off), the terminator pulls the signal line to 2.85 V (quiescent state). The regulator will source about 200 mA and sink 50 mA while maintaining regulation of 2.85 V typically.

Figure 1. Trimmed V-I Characteristic of the ML6599

The ML6599 SCSI Terminator provides an active low control signal, DISCNKT which has an internal 200K Ω pull-up resistor. The DISCNKT input when asserted low, isolates the ML6599 from the signal lines and effectively removes the terminator from the SCSI Bus with a disconnect mode current of less than $100 \mu \mathrm{~A}$. In addition the ML6599 provides for negative clamping of signal transients and also supports current sink capability in excess of 10 mA per signal line, to handle active negation driver overshoot above 2.85 V a common occurrence with SCSI transceivers. These functions need to be handled with external components in SCSI subsystems today. Thus the ML6599 helps in eliminating a number of external components.

Disconnect mode capacitance is a very critical parameter in SCSI systems. The ML6599 provides the lowest capacitance contribution of max 5 pF and this is guaranteed by production test.

HOT INSERTABILITY

"Hot" insertion of a SCSI device refers to the act of plugging a SCSI device which is initially unpowered into a powered SCSI bus. The SCSI device subsequently draws power from the TERMPWR line during its startup routine and thereafter. "Hot" removal refers to the act of removing a powered SCSI device from a powered SCSI bus. A device which performs both tasks with no physical damage to itself or other devices on the bus, nor which alters the existing state of the bus by drawing excessive currents, is termed "Hot-swappable."
The ML6599 Hot-Insertable SCSI terminator typically draws $23 \mu \mathrm{~A}$ from any given output line (L1-L9) during a hot insertion/removal procedure, thereby protecting itself and preserving the state of the bus. The ML6599 design is a slight modification of the ML6509 Low-capacitance SCSI Terminator design. The low current is achieved by effectively shorting the gate to drain of the output PMOS device until the 2.85 V reference ($\mathrm{V}_{\mathrm{REF}}$) has powered up. A second PMOS in series with a Schottky diode is used as the shorting bypass device. After $\mathrm{V}_{\text {REF }}$ reaches sufficient level, the bypass device is turned off and the part operates the same as the ML6509. The low-power mode option is not offered on the ML6599.
As outlined in Annex G of the ANSI SCSI-3 Parallel Interface Specification (X3T9.2/855D), "The SCSI bus termination shall be external to the device being inserted or removed." In other words, any terminator connected to a device being hot inserted/removed should be inactive (accomplished by grounding the DISCNKT pin in the case of the ML6599). If the terminator being inserted/removed were in the active state, then at some point in time, the bus would be terminated by either 1 or 3 terminators. In either case, data integrity on the bus is compromised.

Figure 2 gives an application diagram showing a typical SCSI bus configuration. To ensure proper operation, the TERMPWR pin must be connected to the SCSI TERMPOWER line. Each ML6599 requires parallel $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors connected between $\mathrm{V}_{\text {REF }}$ and GND pins and the TERMPWR line needs a $10 \mu \mathrm{~F}$ bypass capacitor per SCSI system.
Thus in an 8 -bit wide SCSI bus arrangement ("A" Cable), two ML6599's would be needed at each end of the SCSI cable in order to terminate the 18 active signal lines. Thus 16 -bit wide SCSI would use three ML6599's, while 32 -bit wide SCSI bus would require five ML6599's.

In a typical SCSI subsystem, the open collector driver in the SCSI transceiver, when asserted, pulls low and when negated, the termination resistance serves as the pull-up. Also shown in Figure 2, is a typical cable response to a pulse. The receiving end of the cable will exhibit a single time delay. When negated, the initial step will reach an intermediate level defined as $\mathrm{V}_{\text {STEP }}$. With the higher SCSI data rates, sampling could occur during this step portion. In order to get the most noise margin, the step needs to be as high as possible to prevent false triggering. For this reason the regulator voltage and the resistor defining the MOSFETs characteristic is trimmed to ensure that the I_{O} is as close as possible to the SCSI max current specification.

Figure 3. V-1 Characteristics of Various SCSI Termination Schemes

Figure 2. Application Diagram Showing Typical SCSI Bus Configuration with the ML6599
$V_{\text {STEP }}$ is defined as follows :

$$
V_{\mathrm{STEP}}=\mathrm{V}_{\mathrm{OL}}+\left(\mathrm{l}_{\mathrm{O}} \times \mathrm{Z}_{\mathrm{O}}\right)
$$

where
V_{OL} is the Driver output low voltage,
I_{O} is current from receiving terminator
Z_{O} is characteristic impedance of cable.
This is a very important characteristic that the terminator helps overcome by increasing the noise margin and boosting the step as high as possible. This capability for the ML6599 implementation is illustrated in the attached simulation graphs which show the terminator performance under different cable impedance situations and a comparison is shown with the standard Boulay terminator, under identical conditions.

APPLICATION INFORMATION

ML6599 EVALUATION BOARD

Shown below is the schematic, board component layout, and parts list of the ML6599 SCSI Terminator evaluation board. Actually the ML6509 evaluation board is used for evaluating the ML6599 also. This evaluation board provides termination for 18 lines of SCSI signals and can be connected as the last device on a standard SCSI Bus system. The SCSI Bus signals can then be monitored to see
the impact of the ML6599 Active SCSI Terminator in minimizing the transmission line effects. In addition the disconnect mode can be evaluated with respect to power dissipation and output capacitance.

ML6599 EVAL BOARD PARTS LIST

PART\#	DESCRIPTION
IC1, IC2	ML6599 Active SCSI Terminator
C1	10 $\mu \mathrm{F}$, 6V Tantalum Chip Capacitor (Philips 49MC106C006K0ASFT)
C2, C3	$10 \mu \mathrm{~F}, 4 \mathrm{~V}$ Tantalum Chip Capacitor (Philips 49MC106C004K0ASFT)
C4, C5	$0.1 \mu \mathrm{~F}$ Ceramic Chip Capacitor (Philips C104K1206XFNT)
SW1	Two Position DIP Switch (C\&K BD02)
J1	50-pin SCSI Header Connector (AMP 1-103311-0)

TRANSIENT RESPONSE (ACTUAL)
(Approximately $110 \Omega, 10$ feet long, ribbon cable stock)

TYPICAL APPLICATION CIRCUIT

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML6599CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-pin SOIC (S16W)
ML6599CT	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ pin TSSOP (T20)

Power Management and Control

Section 7

Selection Guide 7-1
Battery Power Supply ICs
ML4761 Adjustable Output Low Voltage Boost Regulator 7-12
ML4851 Low Current, Low Voltage Boost Regulator 7-200
ML4861 Low Voltage Boost Regulator 7-202
ML4861EVAL Low Voltage Boost Regulator Evaluation Kit 7-213
ML4862 Battery Power Controller IC 7-214
ML4862EVAL Battery Power Controller Evaluation Kit 7-224
ML4863 High Efficiency Battery Pack Converter 7-225
ML4865 High Voltage, High Current Boost Regulator 7-241
ML4866 3.3V Output DC-DC Step-Down Converter 7-243
ML4868 High Frequency, Low Voltage Boost Regulator 7-244
ML4871 High Current Boost Regulator 7-252
ML4872 High Current Boost Regulator with Shutdown 7-254
ML4873 Battery Power Control IC 7-256
ML4873EVAL Battery Management IC Evaluation Kit 7-266
ML4875 Low Voltage Boost Regulator with Shutdown 7-277
ML4880 Portable PC and PCMCIA Power Controller 7-295
ML4890 High Efficiency, Low Ripple Boost Regulator 7-297
ML4890EVAL Low Ripple Boost Regulator Evaluation Kit 7-299
ML4961 Adjustable Output Low Voltage Boost Regulator with Detect 7-300
Power Factor Controllers
ML4812 Power Factor Controller 7-39
ML4812EVAL Power Factor Controller Evaluation Kit 7-53
ML4813 Flyback Power Factor Controller 7-54
ML4819 Power Factor and PWM Controller "Combo" 7-113
ML4821 Power Factor Controller 7-127
ML4821EVAL Average Current PFC Controller Evaluation Kit 7-135
ML4824 Power Factor and PWM Combo 7-143
High Frequency PWM Controllers
ML1825 High Frequency Power Supply Controller 7-5
ML4809 High Frequency Current Mode PWM Controller 7-20
ML4810 High Frequency Current Mode PWM Controller 7-31
ML4811 High Frequency Current Mode PWM Controller 7-31
ML4817 High Frequency Single Ended PWM Controller 7-93
ML4823 High Frequency Current Mode PWM Controller 7-136
ML4825 High Frequency Current Mode PWM Controller 7-153
ML4826 Power Factor and Dual PWM Combo 7-160
ML4828 BiCMOS Phase Modulation/Soft Switching Controller 7-165
Resonant and Phase Modulation Controllers
ML4815 Zero Voltage Switching Resonant Controller 7-66
ML4816 High Frequency Multi-Mode Resonant Controller 7-79
ML4818 Phase Modulation/Soft Switching Controller 7-101
ML4818EVAL Phase Modulation Controller Evaluation Kit 7-112
LCD Backlight Lamp Controllers
ML4864 LCD Backlight Lamp Driver with Contrast 7-232
ML4864EVAL LCD Backlight with Contrast Evaluation Kit 7-240
ML4874 LCD Backlight Lamp Driver 7-268
ML4874EVAL Differential Drive LCD Backlight Evaluation Kit 7-276
ML4876 LCD Backlight Lamp Driver with Contrast 7-287
ML4876EVAL Differential Drive LCD Backlight with Contrast Evaluation Kit 7-294
Electronic Ballast Control
ML4830 Electronic Ballast Controller 7-173
ML4831 120VAC Dimmable Electronic Ballast 7-186
ML4831EVAL 120VAC Dimmable Electronic Ballast Evaluation Kit 7-199

High Frequency PWM Controllers

Part Number	Reference Accuracy	Max OSC Frequency	Output Driver	Output Current	Soft Start	UV Lockout	Cycle-by-Cycle lumit	Sync Input	Package Type
ML4809	$\pm 2 \%$	1 MHz	Push Pull	2A Peak	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & \text { 24-Pin DIP } \\ & \text { 28-Pin PLCC } \end{aligned}$
ML4810	$\pm 2 \%$	1 MHz	Push Pull	2A Peak	\checkmark	\checkmark	\checkmark		16-Pin DIP
ML4811	$\pm 2 \%$	1 MHz	Push Pull	2A Peak	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & \text { 20-Pin DIP } \\ & \text { 20-Pin PLCC } \end{aligned}$
ML4817	$\pm 2 \%$	1 MHz	Single Ended	2A Peak	\checkmark	\checkmark	\checkmark		$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin SOIC } \end{aligned}$
ML4823	$\pm 1 \%$	1 MHz	Single Ended	2A Peak	\checkmark	\checkmark	\checkmark		16-Pin DIP/SOIC 20-Pin PLCC
ML4825	$\pm 2 \%$	1 MHz	Push Pull	2A Peak	\checkmark	\checkmark	\checkmark		16-Pin DIP/SOIC 20-Pin PLCC

Power Factor Controllers

Part Number	Reference Accuracy	$\begin{array}{c\|} \hline \text { PFC } \\ \text { Topology } \end{array}$	Power Factor	Power Range	Output Voltage	Output Current	Soft Start	OV Protection	UV Lockout	Feed Forward	$V_{\text {IN }}$ Brownout Protection	Package Type
ML4812	$\pm 1 \%$	Peak Current Boost	0.99	>50W	$\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {IN }}$	1A Peak	\checkmark	\checkmark	\checkmark	\checkmark		$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 20-Pin PLCC } \end{aligned}$
ML4813	$\pm 1 \%$	Flyback	0.99	<250W	$V_{\text {OUT }}$ Independent of V_{IN}	1A Peak	\checkmark	\checkmark	\checkmark	\checkmark		$\begin{aligned} & \text { 16-Pin DIP } \\ & 16-\mathrm{Pin} \text { SOIC } \end{aligned}$
ML4821	$\pm 2 \%$	Average Current Boost	0.99	>500W	$\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {IN }}$	1A Peak	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{aligned} & 18-\mathrm{Pin} \text { DIP } \\ & 20-\mathrm{Pin} \text { SOIC } \end{aligned}$

Resonant and Phase Modulation Controllers

Part Number	Reference Accuracy	Max OSC Frequency	Output Driver	Output Current	Soft Start	UV Lockout	Feed Forward	Package Type

PFC/PWM Combo Controllers

Part Number	Reference Accuracy	Maximum PFC/PWM Frequency	PFC Topology	PWM Output Driver	PWM Output Current	Soft Start	UV Lockout	Current Limit	Feed Forward	ViN Brownout Protection	Package Type
ML4819	$\pm 1 \%$	PFC-500 kHz PWM-500 kHz	Peak Current Boost	Single Ended	1 A Peak		\checkmark	\checkmark			20-Pin DIP 20-Pin SOIC
ML4824-1	$\pm 1.5 \%$	PFC-500 kHz PWM-500 kHz	Average Current Boost	Single Ended	$0.5 A$ Peak	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	16-Pin DIP 16-Pin SOIC-W
ML4824-2	$\pm 1.5 \%$	PFC-250 kHz PWM-500 kHz	Average Current Boost	Single Ended	$0.5 A$ Peak	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	16-Pin DIP 16-Pin SOIC-W
ML4826-1	$\pm 1.5 \%$	PFC-500 kHz PWM-500 kHz	Average Current Boost	Push Pull	$0.5 A$ Peak	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	20-Pin DIP 20-Pin SOIC

Battery and Distributed Power Conversion Products

Step-Up:

Part Number	Maximum Output Current (mA)	Conversion Efficiency (\%)	Quiescent Current ($\mu \mathrm{A}$)	Input Voltage Range (V)	Output Voltage (V)	Total Regulation (\%)	Package Type	Architecture	Features
ML4761	500	90	70	$\left\|\begin{array}{c} 1 \text { to } \\ V_{\text {OUT }}-0.2 \end{array}\right\|$	2.5 to 6	3	8-Pin SOIC	PFM	Adjustable Output
ML4851	250	90	80	$\left\|\begin{array}{c} 1 \text { to } \\ V_{\text {OUT }}-0.2 \end{array}\right\|$	5, 3.3	3	8-Pin SOIC	PFM	Low Battery Detect
ML4861	500	90	70	$\begin{array}{\|c\|} 1 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2 \\ \hline \end{array}$	6, 5, 3.3	3	8-Pin SOIC	PFM	Low Battery Detect
ML4865	300	90	50	$\left\lvert\, \begin{array}{c\|} 1.8 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2 \end{array}\right.$	12, 15	3	8-Pin SOIC	PFM	Shutdown to Ground, Low Battery Detect
ML4868	500	90	70	$\left\lvert\, \begin{gathered} 1 \text { to } \\ \mathrm{v}_{\text {OUT }}-0.2 \end{gathered}\right.$	5, 3.3	3	8-Pin SOIC	PFM	Low Battery Detect
ML4871	750	90	30	$\begin{gathered} 1.8 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2 \end{gathered}$	5, 3.3	3	8-Pin SOIC	PFM	Low Battery Detect
ML4872	750	90	30	$\begin{array}{\|c\|} \hline 1.8 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2 \\ \hline \end{array}$	5, 3.3	3	8-Pin SOIC	PFM	Shutdown
ML4875	300	90	80	$\begin{array}{\|c\|} \hline 1 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2 \\ \hline \end{array}$	5, 3.3, 3	3	8-Pin SOIC	PFM	Shutdown to Ground, Low Battery Detect
ML4890	100	85	180	1 to 6.5	5, 3.3, 3	3	8-Pin SOIC	PFM/LDO	<5mV Output Ripple, Shutdown to Ground
ML4961	500	90	70	$\left\|\begin{array}{c}1 \text { to } \\ \mathrm{V}_{\text {OUT }}-0.2\end{array}\right\|$	2.5 to 6	3	8-Pin SOIC	PFM	Adjustable Output, Low Battery Detect

Step-Down:

ML4866	1 A	90	350	3.5 to 6.5	3.3	3	8 -Pin SOIC	PWM	Burst Mode

Flyback (Step-Up/Down):

ML4863	Controller	85	125	3.15 to 15	5 or Multiple	3	8-Pin SOIC	PFM	Shutdown to Ground, Multiple Outputs via Transformer
ML4890	100	85	180	1 to 6.5	$5,3.3,3$	3	8 -Pin SOIC	PFM/LDO	$<5 m$ O Output Ripple, Shutdown to Ground

Multiple Output Switching Regulator Controllers

Part Number	Output Voltage			Quiescent Current		Architecture			Shutdown	Package	Input Voltage (V)	Power Management FET Drivers	Conversion Efficiency (\%)
	A	B	C	Full Load	$\begin{gathered} \text { No } \\ \text { Load } \end{gathered}$	A	B	C					
ML4862	$\begin{array}{\|l} 2.5 \mathrm{~V} \text { to } \\ \mathrm{V}_{\mathrm{IN}}-1 \end{array}$	$\begin{array}{\|l\|l} 2.5 \mathrm{~V} \text { to } \\ \mathrm{V}_{\mathrm{IN}}-1 \end{array}$	12 V	10 mA	$130 \mu A^{*}$	PWM	PWM	Linear	Yes	$\begin{aligned} & \text { 32-Pin } \\ & \text { SOIC } \end{aligned}$	$\begin{gathered} 5.5 \text { to } \\ 24 \end{gathered}$	4	93
ML4863	5.0V	Fixed by turns ratio	Fixed by turns ratio	3 mA	$100 \mu \mathrm{~A}$	Flyback PFM	Flyback PFM	Flyback PFM	Yes	8-Pin SOIC	$\begin{array}{\|c} \hline 3.15 \text { to } \\ 15 \end{array}$	0	85
ML4873	$\begin{aligned} & 2.5 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{IN}}-1 \end{aligned}$	$\begin{array}{\|l\|l} 2.5 \mathrm{~V} \text { to } \\ \mathrm{V}_{\mathrm{IN}}-1 \end{array}$	12V	10 mA	$130 \mu A^{*}$	PWM	PWM	Linear	Yes	$\begin{aligned} & 28-\mathrm{Pin} \\ & \text { SOIC } \end{aligned}$	$\begin{gathered} 5.5 \text { to } \\ 30 \end{gathered}$	1	93
ML4880	$\begin{gathered} 3.0 \text { to } \\ 3.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.0 \text { to } \\ 5.0 \mathrm{~V} \end{gathered}$	$\begin{array}{c\|} \hline 2.5 \mathrm{~V} \text { to } \\ 18 \mathrm{~V} \end{array}$	30 mA	$300 \mu A^{*}$	PFM	PFM	PFM	Yes	$\begin{aligned} & 24-\mathrm{Pin} \\ & \text { SOIC } \end{aligned}$	$\begin{gathered} 5.5 \text { to } \\ 18 \end{gathered}$	0	90

*All outputs shut down.

LCD Backlight Lamp Controllers

Part Number	Function	Key Features	Package Options
ML4864	LCD Backlight Lamp Driver with Contrast	Dimming, 95\% efficiency, Positive or Negative Contrast	SSOP-20
ML4874	LCD Backlight Lamp Driver	Differential Drive, Dimming, 95\% efficiency	SOIC-16 SSOP-20
ML4876	LCD Backlight Lamp Driver with Contrast	Differential Drive, Dimming, 95\% efficiency Positive or Negative Contrast	SSOP-20

High Frequency Power Supply Controller

GENERAL DESCRIPTION

The ML1825 High Frequency PWM Controller is an IC controller optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . Propagation delays are minimal through the comparators and logic for reliable high frequency operation while slew rate and bandwidth are maximized on the error amplifier. This controller is designed to work in either voltage or current mode and provides for input voltage feed forward.
A 1 V threshold current limit comparator provides cycle-by-cycle current limit while exceeding a 1.4 V threshold initiates a soft-start cycle. The soft start pin doubles as a maximum duty cycle clamp. All logic is fully latched to provide jitter-free operation and prohibit multiple pulsing. An under-voltage lockout circuit with 800 mV of hysteresis assures low startup current and drives the outputs low.

The ML1825 is fabricated on a 40 V bipolar process from the FB3480 Power Supply Controller Array. Customized versions of this controller are therefore easily implemented. Please refer to the FB3480 datasheet for more information.

This controller is a pin for pin replacement for the UC1825 controller.

FEATURES

- Practical Operation at Switching Frequencies to 1.0 MHz
- High Current (2A peak) Dual Totem Pole Outputs
- Wide Bandwidth Error Amplifier
- Fully Latched Logic with Double Pulse Suppression
- Pulse-by-Pulse Current Limiting
- Soft Start and Max. Duty Cycle Control

■ Under Voltage Lockout with Hysteresis

- 5.1V, $\pm 1 \%$ Trimmed Bandgap Reference
- Pin Compatible Replacement for UC1825

BLOCK DIAGRAM

PIN CONNECTION

ML1825
16-Pin DIP

PIN DESCRIPTION

PIN \#	NAME	FUNCTION	PIN \#	NAME	FUNCTION
1	INV	Inverting input to error amp.	9	I(LIM)/S.D.	Current limit sense pin. Normally
2	NI	Non-inverting input to error amp.			connected to current sense resistor.
3	E/A OUT	Output of error amplifier and input to main comparator.	10	GND	Analog Signal Ground.
4	CLOCK	Oscillator output.	11	OUT A	High Current Totem pole output. This output is the first one
5	R(T)	Timing Resistor for Oscillator sets charging current for oscillator timing capacitor (pin 6).	12	PWR GND	energized after Power On Reset. Return for the High Current Totem pole outputs.
6	C(T)	Timing Capacitor for Oscillator.	13	V_{C}	Positive Supply for the High
7	RAMP	Non-Inverting input to main comparator. Connected to $\mathrm{C}(\mathrm{T})$ for Voltage Mode operation or to current sense resistor for current mode.	14 14 16	OUT B V_{CC} 5.1V REF	Current Totem pole outputs. High Current Totem pole output. Positive Supply for the IC.
8	SOFT START	Normally connected to Soft Start Capacitor.			voltage reference.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Pins 15, 13) 30V

Analog Inputs
\qquad
\qquad
Clock Output Current (Pin 4) -5mA
Error Amplifier Output Current (Pin 3) 5mA
Soft Start Sink Current (Pin 8) 20mA
Oscillator Charging Current (Pin 5) -5mA
Junction Temperature
ML4825M
$150^{\circ} \mathrm{C}$
ML4825I, ML4825C .. $125^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots$.
Lead Temperature (Soldering 10 sec.) \ldots.
Thermal Resistance ($\boldsymbol{\theta}_{\mid \mathrm{A}}$)
Ceramic DIP
$65^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML1825M
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},($ note 1)	360	400	440	KHz
Voltage Stability	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$, (note 1)		0.2	2	$\%$
Temperature Stability	(note 1)		5		$\%$
Total Variation	line, temp, (note 1)	340		460	KHz
Clock Out High		3.9	4.5		V
Clock Out Low			2.3	2.9	V
Ramp Peak	(note 1)	2.6	2.8	3.0	V
Ramp Valley	(note 1)	0.7	1.0	1.25	V
Ramp Valley to Peak	(note 1)	1.6	1.8	2.0	V

Reference Section	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.05	5.10	5.15	V
Output Voltage	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$		2	20	mV
Line Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Load Regulation	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C},($ note 1)		.2	.4	$\%$
Temperature Stability	line, load, temp (note 1)	5.0		5.20	V
Total Variation	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Output Noise Voltage	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1)		5	25	mV
Long Term Stability	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA
Short Circuit Current					

Error Amplifier Section
Input Offset Voltage
Input Bias Current
Input Offset Current
Open Loop Gain

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section (Continued)	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}$	75	95		dB
CMRR	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$	85	110		dB
PSRR	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-.5	-1.3		mA
Output Source Current	$\mathrm{I}_{\text {PIN } 3}=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
Output High Voltage	$\mathrm{I}_{\text {PIN } 3}=1 \mathrm{~mA}$	0	0.5	1.0	V
Output Low Voltage	(note 1)	3	5.5		MHz
Unity Gain Bandwidth	(note 1)	6	12		$\mathrm{~V} / \mu \mathrm{s}$
Slew Rate					

PWM Comparator Section

Pin 7 Bias Current	$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}$		-1	-5	$\mu \mathrm{~A}$
Duty Cycle Range		0		80	$\%$
Pin 3 Zero DC Threshold	$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}$	1.1	1.25		V
Delay to Output	(note 1)		50	80	ns

Soft-Start Section

Charge Current	$\mathrm{V}_{\text {PIN } 8}=0.5 \mathrm{~V}$	3	9	20	$\mu \mathrm{~A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}$	1			mA

Current Limit/Shutdown Section

Pin 9 Bias Current	$0 \vee<\mathrm{V}_{\text {PIN } 9}<4 \mathrm{~V}$			+15	$\mu \mathrm{~A}$
Current Limit Threshold		.9	1	1.1	V
Shutdown Threshold		1.25	1.4	1.55	V
Delay to Output	(note 1)		50	80	ns

Output Section

Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$.25	.4	V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$	13.0	13.5		V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	12.0	13.0		V
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{~A}$
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF},($ note 1$)$		30	60	ns

Under-Voltage Lockout Section

Start Threshold		8.8	9.2	9.6	V
UVLO Hysteresis		.4	.8	1.2	V

Supply Current

Start Up Current	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$		1.1	2.5	mA
I_{CC}	$\mathrm{V}_{\mathrm{PIN} 1,7,9}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 2}=1 \mathrm{~V}$,		22	33	mA

Note 1: This parameter not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML1825 oscillator charges the external capacitor $\left(\mathrm{C}_{\mathrm{T}}\right.$) with a current ($\mathrm{I}_{\mathrm{SET}}$) equal to $3 / \mathrm{R}_{\text {SET }}$. When the capacitor voltage reaches the upper threshold (Ramp Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q1. While the capacitor is discharging, Q2 provides a high pulse.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where: $\mathrm{T}_{\text {RAMP }}=\mathrm{C}$ (Ramp Valley to Peak) $/ I_{\text {SET }}$ and: $\quad \mathrm{T}_{\text {DEADTIME }}=\mathrm{C}($ Ramp Valley to Peak $) / \mathrm{I}_{\mathrm{Q} 1}$

Figure 1. Oscillator Block Diagram

Figure 2. Oscillator Timing Resistance vs Frequency

Figure 3. Oscillator Deadtime vs Frequency

Figure 4. Oscillator Deadtime vs $C(T)(3 K \Omega \leq R(T) \leq 100 K \Omega)$

ERROR AMPLIFIER

The ML1825 error amplifier is a 5.5 MHz bandwidth $12 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive output voltage swing (Output Inhibit line) for ease in implementing the soft start function.

Figure 5. Unity Gain Slew Rate

Figure 6. Open Loop Frequency Response

OUTPUT DRIVER STAGE

The ML1825 Output Driver is a 2A peak output high speed totem pole circuit designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.

Figure 7. Simplified Schematic

Figure 8. Saturation Curves

Figure 9. Rise/Fall Time ($\left.\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0 0} \mathrm{pF}\right)$

Figure 10. Rise/Fall Time ($\left.C_{L}=\mathbf{1 0 , 0 0 0} \mathbf{p F}\right)$

Figure 11. Supply Current vs Temperature

SOFT START AND CURRENT LIMIT

The ML1825 employs two current limits. When the voltage at pin 9 exceeds 1 V , the outputs are immediately shut off and the cycle is terminated for the remainder of the oscillator period by resetting the RS flip flop.
If the output current is rising quickly such that the voltage on pin 9 reaches 1.4 V before the outputs have turned off, a soft start cycle is initiated and the soft start capacitor (pin 8) is discharged. The duty cycle on start up is limited by limiting the output voltage of the error amplifier voltage to the voltage at pin 8.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML1825MJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J16)

Adjustable Output Low Voltage Boost Regulator

GENERAL DESCRIPTION

The ML4761 is a boost regulator designed for DC to DC conversion in 1 to 3 cell battery powered systems. The combination of BiCMOS process technology, internal synchronous rectification, variable frequency operation, and low supply current make the ML4761 ideal for 1 cell applications. The ML4761 is capable of start-up with input voltages as low as 1 V , and the output voltage can be set anywhere between 2.5 V and 6 V by an external resistor divider connected to the SENSE pin.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4761 requires a minimum number of external components to build a very small adjustable regulator circuit capable of achieving conversion efficiencies in excess of 90%.

The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the IC can no longer function due to low input voltage (UVLO).

FEATURES

- Guaranteed full load start-up and operation at 1 V input
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching FETs
- Micropower operation
- Adjustable output voltage (2.5 V to 6 V)

BLOCK DIAGRAM

PIN CONNECTION

ML4761
8-Pin SOIC (S08)

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	$V_{I N}$	Battery input voltage
2	$V_{\text {REF }}$	200 mV reference output
3	GND	Analog signal ground
4	SENSE	Programming pin for setting the output voltage

| PIN
 NO. NAME FUNCTION
 5 V $_{\text {OUT }}$ Boost regulator output
 6 V $_{\mathrm{L}}$ Boost inductor connection
 7 $\overline{\text { RESET }}$ Output goes low when regulation
 cannot be achieved
 8 PWR GND Return for the NMOS output
 transistor. |
| :---: | :--- | :--- |

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Voltage on any pin ... 7 V
Peak Switch Current, $I_{\text {(PEAK) }}$.. 2A
Average Switch Current, ${ }_{(\text {(AVG })}$............................... 500 mA
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec. .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
$110^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range
ML4761CS.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4761ES .. $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4761IS ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{\text {IN }}$ Operating Range
ML4761CS
1.0 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ML4761ES, ML4761IS
1.1 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply					
$V_{I N}$ Current	$V_{I N}=V_{\text {OUT }}-0.2 \mathrm{~V}$		45	55	$\mu \mathrm{~A}$
$V_{\text {OUT }}$ Quiescent Current			3	5	$\mu \mathrm{~A}$
V_{L} Quiescent Current				1	$\mu \mathrm{~A}$

Reference

Output Voltage $\left(V_{\text {REF }}\right)$	$0<I_{\text {PIN } 2}<-5 \mu \mathrm{~A}$	194	200	206	mV

PFM Regulator

Pulse Width (ToN $)$		9	10	11	$\mu \mathrm{~s}$
SENSE Comparator					
Threshold Voltage (VENSE $)$					

RESET Comparator

$\overline{\text { RESET Output High Voltage }\left(\mathrm{V}_{\mathrm{OH}}\right)}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}-0.2$			V
$\overline{\text { RESET Output Low Voltage }\left(\mathrm{V}_{\mathrm{OL}}\right)}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.2	V

Figure 1. Application Test Circuit.

Figure 2. PFM Regulator Block Diagram.

FUNCTIONAL DESCRIPTION

The ML4761 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is both highly efficient and simple to use. A PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

REGULATOR OPERATION

A block diagram of the boost converter is shown in Figure 2. The circuit remains idle when $\mathrm{V}_{\text {OUT }}$ is at or above the desired output voltage, drawing $45 \mu \mathrm{~A}$ from V_{IN}, and $8 \mu \mathrm{~A}$ from $V_{\text {OUT }}$ through the feedback resistors R1 and R2. When V output of amplifier A1 goes high, signaling the regulator to deliver charge to the output. Since the output of amplifier A2 is normally high, the flip-flop captures the A1 set signal and creates a pulse at the gate of the NMOS transistor Q1. The NMOS transistor will charge the inductor L 1 for $10 \mu \mathrm{~s}$, resulting in a peak current given by:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{L}(\mathrm{PEAK})}=\frac{\mathrm{T}_{\mathrm{ON}} \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{~L} 1} \approx \frac{10 \mu \mathrm{~s} \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{~L} 1} \tag{1}
\end{equation*}
$$

For reliable operation, L 1 should be chosen so that $\mathrm{I}_{\mathrm{L}(\text { PEAK }}$ does not exceed 2A.
When the one-shot times out, the NMOS FET releases the V_{L} pin, allowing the inductor to fly-back and momentarily charge the output through the body diode of PMOS transistor Q2. But, as the voltage across the PMOS transistor changes polarity, its gate will be driven low by the current sense amplifier A2, causing Q2 to short out its body diode. The inductor then discharges into the load through Q2. The output of A2 also serves to reset the flipflop and one-shot in preparation for the next charging cycle. A2 releases the gate of Q2 when its current falls to zero. If $\mathrm{V}_{\text {OUT }}$ is still low, the flip-flop will immediately initiate another pulse. The output capacitor (C1) filters the inductor current, limiting output voltage ripple. Inductor current and one-shot waveforms are shown in Figure 3.

Figure 3. PFM Inductor Current Waveforms and Timing.

RESET COMPARATOR

An additional comparator is provided to detect low V_{IN}. The inverting input of the comparator is internally connected to $V_{\text {REF, }}$ while the non-inverting input is connected to the undervoltage lockout circuit. The output of the comparator is the RESET pin, which swings from $V_{\text {OUT }}$ to GND when an undervoltage condition is detected.

DESIGN CONSIDERATIONS

INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})} \times \eta}{2 \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}} \tag{2}
\end{equation*}
$$

where η is the efficiency, typically between 0.8 and 0.9 . Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.
Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 4 and 5. Figure 4 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance. Interpolation between the different curves will give a reasonable starting point for an inductor value.

Figure 4. Output Current vs. Input Voltage.

Figure 5. Typical Efficiency as a Function of V_{IN}.

Figure 5 shows efficiency under the conditions used to create Figure 4. It can be seen that efficiency is mostly independent of input voltage and is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. As the inductor value goes down to $10 \mu \mathrm{H}$, the efficiency drops to between 70% and 75%. With $56 \mu \mathrm{H}$, the efficiency exceeds 90% and there is little room for improvement. At values greater than $100 \mu \mathrm{H}$, the operation of the synchronous rectifier becomes unreliable because the inductor current is so small that it is difficult for the control circuitry to detect.
After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
\begin{equation*}
L_{(P E A K)}=\frac{T_{\mathrm{ON}(\mathrm{MAX})} \times V_{\mathrm{IN}(\mathrm{MAX})}}{\mathrm{L}_{\mathrm{MIN}}} \tag{3}
\end{equation*}
$$

When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4761 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 3. For additional information, see Application Note 29.

Suitable inductors can be purchased from the following suppliers:

$$
\begin{array}{ll}
\text { Coilcraft } & (708) 639-6400 \\
\text { Coiltronics } & (407) 241-7876 \\
\text { Dale } & (605) 665-9301 \\
\text { Sumida } & (708) 956-0666
\end{array}
$$

OUTPUT CAPACITOR

The choice of output capacitor is also important, as it controls the output ripple and optimizes the efficiency of the circuit. Output ripple is influenced by three capacitor parameters: capacitance, ESR, and ESL. The contribution due to capacitance can be determined by looking at the change in capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as determined by the following formula:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{T}_{\mathrm{ON}}^{2} \times \mathrm{V}_{\mathrm{IN}}^{2}}{2 \times \mathrm{L} \times \mathrm{C} \times\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}\right)} \tag{4}
\end{equation*}
$$

For a 2.4 V input, and 5 V output, a $27 \mu \mathrm{H}$ inductor, and a $47 \mu \mathrm{~F}$ capacitor, the expected output ripple due to capacitor value is 87 mV .
Capacitor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the output ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the output current ramps quickly to match the peak inductor current. This fast change in current through the output capacitor's ESL causes a high frequency (5 ns) spike that can be over 1 V in magnitude. After the ESL spike settles, the output voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth shape and a peak value equal to the peak inductor current times the ESR. ESR also has a negative effect on efficiency by contributing I -squared R losses during the discharge cycle.

An output capacitor with a capacitance of $100 \mu \mathrm{~F}$, an ESR of less than 0.1Ω, and an ESL of less than 5 nH is a good general purpose choice. Tantalum capacitors which meet these requirements can be obtained from the following suppliers:

$$
\text { Matsuo } \quad(714) 969-2491
$$

Sprague (603) 224-1961

If ESL spikes are causing output noise problems, an EMI filter can be added in series with the output.

INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between $47 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$. This provides the benefits of preventing input ripple from affecting the ML4761 control circuitry, and it also improves efficiency by reducing I -squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

SETTING THE OUTPUT VOLTAGE

The adjustable output can be set to any voltage between 2.5 V and 6 V by connecting a resistor divider to the SENSE pin as shown in the block diagram. The resistor values R_{1} and R_{2} can be calculated using the following equation:

$$
\begin{equation*}
V_{\mathrm{OUT}}=0.2 \times \frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{2}} \tag{5}
\end{equation*}
$$

The value of R_{2} should be $40 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{1} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{2} \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{0.2}-1\right) \tag{6}
\end{equation*}
$$

It is important to note that the accuracy of these resistors directly affects the accuracy of the output voltage. The SENSE pin threshold variation is $\pm 3 \%$, and the tolerances of R_{1} and R_{2} will add to this to determine the total output variation.

REFERENCE CAPACITOR

Under some circumstances input ripple cannot be reduced effectively. This occurs primarily in applications where inductor currents are high, causing excess output ripple due to "pulse grouping", where the chargedischarge pulses are not evenly spaced in time. In such cases it may be necessary to decouple the reference pin $\left(\mathrm{V}_{\text {REF }}\right)$ with a small 10 nF to 100 nF ceramic capacitor. This is particularly true if the ripple voltage at $\mathrm{V}_{\mathbb{I N}}$ is greater than 100 mV .

In some applications, input noise may cause output ripple to become excessive due to "pulse grouping", where the charge-discharge pulses are not evenly spaced in time. In such cases it may be necessary to add a small 20 pF to 100 pF ceramic feedforward capacitor (C_{FF}) from the V_{IN} pin to the SENSE pin.

LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4761. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4761
- Use short trace lengths from the inductor to the V_{L} pin and from the output capacitor to the $\mathrm{V}_{\text {OUT }}$ pin
- Use a single point ground for the ML4761 ground pins, and the input and output capacitors

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4761CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4761ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-$ Pin SOIC (S08)
ML4761IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\operatorname{Pin}$ SOIC (S08)

December 1994
PRELIMINARY
ML4809

High Frequency PWM Controller

GENERAL DESCRIPTION

The ML4809 High Frequency PWM Controller is a fullfeatured IC controller optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . Propagation delays are minimized while slew rate and bandwidth are maximized for reliable high frequency operation. This controller is designed to work in either voltage or current mode and provides for input voltage feed forward.
A 1.1 V threshold current limit comparator provides cycle-by-cycle current limit while exceeding a 1.5 V threshold initiates a soft-start cycle. The soft start pin doubles as a maximum duty cycle clamp. All logic is fully latched to provide jitter-free operation and prohibit multiple pulsing. An under-voltage lockout circuit with 7V of hysteresis assures low startup current and drives the outputs low.
The ML4809 is fabricated on a 40 V bipolar process from the FB3480 Power Supply Controller Array. Customized versions of this controller are easily implemented. This controller is similar to the UC1825 controller, however the ML4809 includes many features not found on the 1825. These features are set in Italics.

FEATURES

- Practical operation at switching frequencies to 1.0 MHz
- High current (2 A peak) dual totem pole outputs
- Wide bandwidth error amplifier
- Fully latched logic with double pulse suppression
- Pulse-by-pulse current limiting
- Soft start and max. duty cycle control
- $5.1 \mathrm{~V} \pm 2 \%$ trimmed bandgap reference
- Under voltage lockout: 16 V start with 7 V hysteresis
- Programmable ramp compensation circuit
- VCO input for synchronization or frequency control
- External clock input for synchronization
- Toggle preset for synchronization
- Comparator blanker for better noise immunity/stability
- Separate error amplifier output pin for loop filtering versatility
- Fast shut down path from current limit to outputs
- Outputs preset to known condition after under voltage lockout
- Soft start latch ensures full soft start cycle
- Programmable soft start delay

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\# NAME	FUNCTION	
1	INV	Inverting input to error amp.
2	NI	Non-inverting input to error amp.
3	E/A OUT	Output of error amplifier.
4	CMP IN	Main comparator input.
5	V(VCO)	A control voltage input which sets the VCO frequency. May be tied to $5.1 V$ REF (22) for fixed frequency operation.
6	CLOCK IN	A "1" level blanks the outputs and prepares the chip for the next cycle by toggling the T flip flop.
7	CLOCK OUT	Oscillator output. This is an emitter follower output.
8	R(T)	Timing resistor for oscillator - sets charging current for oscillator timing capacitor (pin 9).
10	C(T)	Timing capacitor for oscillator.
11	SOFT START	Non-inverting input to main comparator. Connected to C(T) for voltage mode operation or to current sense resistor for current mode. Normally connected to soft start capacitor.
12	RESET DELAY	Connect to capacitor for time delay before new soft-start cycle begins after 1.4V current limit is reached.

PIN\#	NAME	FUNCTION
13	Q-FF	An emitter follower output which is high for B active.
14	RC (BLANK)	Connect resistor and capacitor to ground for blanker function.
15	I(LIM)/S.D.	Current limit sense pin. Normally connected to sense resistor.
16	GND	Analog signal ground. 17
OUT A	High current totem pole output. This output is the first one energized after power on reset.	
18	PWR GND	Return for the high current totem pole outputs.
19	POWER VC	Positive supply for the high current totem pole outputs.
20	OUT B	High current totem pole output.
21	VCC	Positive supply for the IC. 22
5.1V REF	Buffered output for the 5.1V voltage reference.	
23	RAMP COMP	Connect resistor to GND for ramp compensation.
24	PRESET	Presets the toggle flip-flop. Tie to GND to disable.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Pins 21, 19) 36V
Output Current, Source or Sink (Pins 17, 20)
DC0.5A
Pulse ($0.5 \mu \mathrm{~s}$) 2.0A
Input Voltage-0.3 V to 7 V
(Pins 8, 9, 11, 12, 15, 24) -0.3 V to 6 V
Logic Output Current (Pins 7,13) $-5 \mathrm{~mA}$
Blanker Charge Current (Pin 14) $-5 \mathrm{~mA}$
Error Amplifier Output Current (Pin 3) 5 mA
Soft Start Sink Current (Pin 11) 20 mA
Oscillator Charging Current (Pin 8) $-5 \mathrm{~mA}$
Junction Temperature
ML4809M $150^{\circ} \mathrm{C}$
ML4809I, ML4809C $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})
Plastic DIP $50^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic DIP $55^{\circ} \mathrm{C}$ W
Plastic Chip Carrier (PCC) $55^{\circ} \mathrm{C}$ W
OPERATING CONDITIONS
Temperature Range
ML4809C$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Absolute maximum ratings are those values beyond which the device could bepermanently damaged. Absolute maxımum ratıngs are stress ratıngs only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=6.2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{V}(\mathrm{VCO})=\mathrm{V}_{\mathrm{REF}}, \mathrm{R}_{\mathrm{L}}($ Pins 7,13$)=5 \mathrm{~K} \Omega$, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$. (Note 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Oscillator						
Initial Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (note 1)	380	430	470	KHz	
Voltage Stability	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$, (note 1)		0.2	4	$\%$	
Temperature Stability	(note 1)		5		$\%$	
Total Variation	line, temp, (note 1)	370	430	490	KHz	
Clock Out High		3.9	4.5		V	
Clock Out Low			2.3	2.9	V	
Ramp Peak	(note 1)	2.6	2.8	3.0	V	
Ramp Valley	(note 1)	0.7	1.0	1.25	V	
Ramp Valley to Peak	(note 1)	1.6	1.8	2.0	V	
V(VCO) Control Range		1		5.5	V	

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
Line Regulation	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C},($ note 1$)$		0.2	0.4	$\%$
Total Variation	line, load, temp, (note 1$)$	4.95		5.25	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C}$	-15	-50	-100	mA
	$\mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	-15	-50	-120	mA

Under-Voltage Lockout Section

Start Threshold		15	16	17	V
UVLO Hysteresis		6.0	7	8.0	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section					
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 15	mV
				± 20	mV
Input Bias Current			0.6	3	$\mu \mathrm{A}$
Input Offset Current			0.1	1	$\mu \mathrm{A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	96		dB
CMRR	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C}$	75	95		dB
	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	65	95		dB
PSRR	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C}$	80	110		dB
	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	70	110		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Source Current	$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-0.5	-1.3		mA
Output High Voltage	$\mathrm{IPIN} 3=1 \mathrm{~mA}$	3.5	4.3	5.0	V
Output Low Voltage	$\mathrm{IPIN} 3=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth	(note 1)	3	5.5		MHz
Slew Rate	(note 1)	6	12		$\mathrm{V} / \mathrm{\mu s}$

PWM Comparator Section

Pin 10 Bias Current	$\mathrm{V}_{\mathrm{PIN} 10}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 23}=$ open, $V_{\text {PIN } 9}=2 \mathrm{~V}$		-1	-10	$\mu \mathrm{A}$
Duty Cycle Range	$\mathrm{T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C}$	0		70	\%
	$\mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	0		65	\%
Pin 4 Zero DC Threshold	$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}$	1.1	1.25		V
Delay to Output	(note 1)		50	80	ns
Ramp Compensation					
Pin 10 Current	$\mathrm{V}_{\text {PIN } 9}=2 \mathrm{~V}, \mathrm{R}_{\text {PIN } 23}=6.8 \mathrm{~K} \Omega$	250	300	350	$\mu \mathrm{A}$

Soft-Start/Reset Delay Section

Charge Current (Pin 11)	$\mathrm{V}_{\text {PIN 11 }}=0.5 \mathrm{~V}$	-3	-9	-20	$\mu \mathrm{~A}$
Discharge Current (Pin 11)	$\mathrm{V}_{\text {PIN 11 }}=1 \mathrm{~V}$	1			mA
Discharge Current (Pin 12)	$\mathrm{V}_{\text {PIN 12 }}=1 \mathrm{~V}$	3	9	20	$\mu \mathrm{~A}$
Charge Current (Pin 12)	$\mathrm{V}_{\text {PIN 12 }}=0.5 \mathrm{~V}$	-0.4			mA

Current Limit/Shutdown Section

Pin 15 Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 15}<4 \mathrm{~V}$			± 20	$\mu \mathrm{~A}$
Current Limit Threshold		1.0	1.1	1.2	V
Shutdown Threshold		1.35	1.50	1.65	V
Delay to Output	(note 1)		40	70	ns

Blanker Section

$\mathrm{T}_{\text {BLANK }}$	(note 1), $\mathrm{RC}=5.1 \mathrm{~K} \Omega, 68 \mathrm{pF}$	80	100	120	ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Output Section					
Output Low Level	$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$		0.25	0.4	V
	$\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	13.0	13.5		V
	$\mathrm{l}_{\text {OUT }}=-200 \mathrm{~mA}$	12.0	13.0		V
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{A}$
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, (note 1)		30	60	ns

Logic Inputs/Outputs

Pin 24 Threshold	(note 2)		$V_{\text {REF }}-0.98$	
Pin $13 \mathrm{~V}_{\mathrm{OH}}$	(note 2)		$\mathrm{V}_{\text {REF }}-0.65$	
Pin $13 \mathrm{~V}_{\mathrm{OL}}$	(note 2)		$\mathrm{V}_{\text {REF }}-1.3$	

Supply Current

Start Up Current (note 2)	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.1	3.0	mA
	$\mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$			3.5	mA
I_{CC}	$\mathrm{V}_{\mathrm{PIN} 1,10,15}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 2}=1 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		29	38	mA

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: The thresholds on the logic input pins are set by a reference generator that is: $\mathrm{V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{REF}}-\left(1.5 \times \mathrm{V}_{\mathrm{BE}}\right)$. The logic outputs swing from: $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{BE}}$ to $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{REF}}-2 \times \mathrm{V}_{\mathrm{BE}} . \mathrm{V}_{\mathrm{BE}}$ is nominally 0.65 V and varies with temperature. Logic inputs and outputs will track each other with temperature variation.
Note 3: Since the Under Voltage Lockout start-up threshold is 16 V , the supply is first raised to 20 V to activate the IC and then lowered to 15 V to conduct the electrical testıng.
Note 4: Reference short circuit current, Supply current and Start-up ICC decrease with increasing temperature.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4809 Voltage Controlled Oscillator charges the external capacitor (C_{T}) with a current ($\mathrm{l}_{\text {CHARGE }}$) equal to $\mathrm{V}(\mathrm{VCO}) / \mathrm{R}_{\mathrm{T}}$. When the capacitor voltage reaches the upper threshold (Ramp Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q1. While the capacitor is discharging, Q2 provides a high pulse. For Fixed Frequency Operation, $\mathrm{V}(\mathrm{VCO})$ can be tied to $\mathrm{V}_{\text {REF }}$.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where: $\mathrm{T}_{\text {RAMP }}=\mathrm{C}($ Ramp Valley to Peak $) / I_{\text {CHARGE }}$
and: $\quad T_{\text {DEADTIME }}=C($ Ramp Valley to Peak $) / I_{\text {DIS }}$
An approximate expression for the oscillator frequency in fixed frequency operation (where $V(V C O)=V_{\text {REF }}$) is:

$$
\mathrm{F}_{\mathrm{OSC}} \approx \frac{2.48}{\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}}
$$

RAMP PEAK

RAMP VALLEY

Figure 1. Oscillator Block Diagram.

Figure 2. Timing Resistance vs Frequency $(\mathrm{V}(\mathrm{VCO})=5.1 \mathrm{~V})$.

Figure 4. Oscillator Deadtime vs Frequency $(\mathrm{V}(\mathrm{VCO})=5.1 \mathrm{~V})$.

ERROR AMPLIFIER

The ML4809 error amplifier is a 3.5 MHz bandwidth $6 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive

Figure 3. Oscillator Frequency vs V(VCO) ($\mathrm{RC}=6.2 \mathrm{~K} \Omega, 1000 \mathrm{pF}$).

Figure 5. Oscillator Deadtime vs $C(T)(3 K \Omega \leq R(T) \leq 100 K \Omega)$.
output voltage swing (Output Inhibit line) for ease in implementing the soft start function.

Figure 7. Open Loop Frequency Response.

OUTPUT DRIVER STAGE

The ML4809 Output Driver is a 2A peak output high speed totem pole circuit designed to drive capacitive loads, such as power MOSFET transistors.

Figure 8. Saturation Curves.

Figure 9. Simplified Schematic.

SOFT START, CURRENT LIMIT, AND RESET DELAY

The ML4809 employs two current limits. When the voltage at pin 15 (I(LIM)/S.D.) exceeds 1.1 V , the outputs immediately pull low and the cycle is terminated for the remainder of the oscillator period by resetting the RS flip flop.

If the output current is rising quickly (usually due to transformer saturation) such that the voltage on pin 15 reaches 1.5 V before the outputs have turned off, a soft start cycle is initiated. The soft start capacitor (pin 11) is discharged and outputs are held "off" until the voltage at pin 11 reaches 1.1 V , ensuring a complete soft start cycle. The duty cycle on start up is limited by limiting the output voltage of the error amplifier voltage to the voltage at pin 11.

Figure 10a. Rise/Fall Time ($\left.C_{L}=1000 \mathrm{pF}\right)$.

Figure 10b. Rise/Fall Time ($\mathrm{CL}=10000 \mathrm{pF}$).

Figure 11. Supply Current vs Temperature.

The ML4809 also includes a delay circuit which inhibits the outputs from coming on until a time determined by the RESET DELAY capacitor on pin 12. This capacitor is normally charged to a voltage equal to $\mathrm{V}_{\text {PIN }} 11-0.7 \mathrm{~V}$ and is limited to $\mathrm{V}_{\text {REF }}$. After the 1.5 V limit is reached, the capacitor is allowed to slowly discharge through the $9 \mu \mathrm{~A}$ current sink. When this capacitor and the Soft Start Capacitor both have discharged to 1.1 V , the outputs are enabled and the new soft start cycle begins. During Under Voltage Lockout, both capacitors will be discharged to prepare for a new cycle.
Since the emitter follower which drives pin 12 presents a load on Pin 11, the Soft Start Capacitor's effective value will be increased by:

$$
C_{E F F E C T}=C_{P I N ~} 11+\left(C_{\text {PIN } 12} / \beta\right)
$$

where β varies from 50 to 250 . Should this cause unacceptable variation on the soft start capacitor value, this effect can be mitigated by connecting a resistor from $V_{\text {REF }}$ to pin 11 to charge the Soft Start Cap (select a resistor which keeps the charge current below 2 mA).

Figure 12. Normal (Cycle by Cycle) and "Runaway" Current Timing.

Figure 13. Current Limit, Soft Start and Reset Delay.

UNDERVOLTAGE LOCKOUT

In the circuit in Figure 14, the ML4809 remains in a low quiescent drain (1.1 mA) during T 1 while C 1 charges through $R(S)$ to 16 V . After V_{CC} rises to 16 V the ML4809 begins running. C1 provides the energy needed to run the gate drive and ML4809 until the auxilary winding can provide sustaining energy for the control circuit, preventing C1 from draining below the 9 V lockout threshold. The 7 V of hysteresis in the Undervoltage Lockout circuit allows the ML4809 to start from a bleed resistor/capacitor easily. While the ML4809 is in the standby (Lockout) condition, OUTA and OUTB will be pulled low.

RAMP COMPENSATION

In order to allow stable operation of a current mode regulator above 50% duty cycle, some of the oscillator ramp needs to be added to the current signal.
Notice that the waveform of (1) and the waveform of ramp (2) have different average current values. (1) is an example of a waveform for high line and (2) an example of low line. Since the controllers all regulate based on the peak value of the current in the circuit, and the control variable really wants to be the average current, adding some of the oscillator ramp to comparator input (shown here for clarity as a subtraction of the comparator reference input, which is the output of the error amplifier) allows the peak current control to more closely approximate the average current.

Figure 14. Typical Off-Line Start-Up Circuit and Timing.

In the actual implementation, an external resistor (pin 23) sets a current which will be equal to $\mathrm{V}_{\mathrm{RAMP}} / \mathrm{R} 1$ and will appear on the comparator input pin. Since the sense resistor is a low impedance point, putting another resistor (R2) in series with the $\mathrm{V}_{\text {SENSE }}$ pin (10) causes a voltage to add to the ramp voltage which is equal to $V_{\text {RAMP }}(R 2 / R 1)$.

Figure 15. The Effect of Ramp Compensation

Figure 16. Ramp Compensation and Blanker Block Diagram.

MAIN COMPARATOR BLANKER

When CMP IN (EA OUT) is at a low level, spikes which occur on RAMP (which is connected to a current sense resistor or transformer) when the power MOSFETs first turn on can cause the cycle to terminate early. The result of early termination can cause instabilities. Three problems occur which all contribute to this spike.

1. Inductance in the sense resistor.
2. Inter-winding capacitance in the transformer.
3. Reverse recovery current in the rectifier in the opposite FET intrinsic diode (or from the secondary diodes).

Figure 17. Unintended Early Cycle Termination.
The first two problems usually cause a fairly short spike which is easy to filter out with just a simple RC before the comparator input without causing unacceptable phase delay at the input, since there is not much area underneath the spike. The third problem can have significant energy, and a filter with a low enough pole to reduce the "spike" to a level low enough not to cause early cycle termination would cause excessive phase shift.

The solution is to provide a blanking pulse to the comparator at the beginning of the cycle. The width of this pulse is programmed by an external RC. When CLOCK IN is high, a buffer in the ML4809 charges the capacitor on pin 14 to 4 V . When CLOCK goes low, the capacitor discharges through the external resistor. The outputs are held low until the voltage at pin 14 falls below 3.2 V . The buffer driving pin 14 is limited to 5 mA output current. The Blanking period can be calculated by the expression:

$$
\mathrm{T}_{\text {BLANK }} \approx \frac{\mathrm{R}_{\text {BLANK }} C_{\text {BLANK }}}{2.83}
$$

SYNCHRONIZATION INPUTS AND OUTPUTS

When using the Clock (pin 7) or Q (pin 13) outputs, a $5 \mathrm{~K} \Omega$ pull down resistor is recommended. These outputs are open emitters. Clock has an internal $(375 \mu \mathrm{~A})$ current sink load while Q is unloaded. Both will exhibit significant timing skew due to PC board capacitance if not loaded.

Clock Output and External Input

Used to synchronize multiple supplies. For synchronized operation of multiple ML4809's, tie the CLOCK OUT from the "master" to the CLOCK IN of the slaves.

Toggle Preset and Q Output

In multiple supply systems, this is important for synchronization. To synchronize multiple chips, connect the Q output from the "master" ML4809 to the Preset Input of the "slave" in a daisy chain". For nonsynchronized operation this input would be connected to GND.

OTHER FEATURES

Fast Shut Down Path from Current Limit to Outputs

Provides a 30 ns path to the outputs which begins to turn off the outputs while the longer latching path is propagating. In a normal UC1825, it can be as much as 80ns until the over-current condition shuts down the outputs.

Separate Error Amplifier Output Pin for Loop Filtering Versatility

This is especially useful for:

1. Diagnostic purposes, to see what the chip is really doing, it is useful to break the feedback loop.
2. High power supplies - current sharing: In system design with more than one supply running, in order to ensure that the supplies share current equally it is often necessary to have a "master" circuit control the PWM operation of each of the "slaves". This is most easily accomplished by an "or" (where the lowest output dominates) of the Error Amp outputs which is impossible if the output of the amp is internally connected to the input of the comparator.

Figure 18. $\mathrm{T}_{\text {BLANK }}$ vs. $\mathrm{C}_{\text {BLANK }}\left(\mathrm{R}_{\text {BLANK }}=5.1 \mathrm{~K} \Omega\right)$.

APPLICATIONS

Figure 19 shows the ML4809 in a push-pull non-isolated application. Note the Schottky Diodes on pins 17 and 20. These diodes are necessary in order to prevent transients from driving these pins negative with respect to GND which would cause the IC to malfunction.
Care should be exercised in layout:

1. Avoid Ground Loops. Use "star" grounding.
2. Bypass the $V_{C C}$ line with a high frequency capacitor which is physically close to the IC.
3. Avoid running signal lines near power lines.
4. Employ "ground planing".

Figure 19. ML4809 Typical Application

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4809CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P24N)
ML4809CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q28)

High Frequency Power Supply Controller

GENERAL DESCRIPTION

The ML4810 and ML4811 High Frequency PWM Controllers are optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . The ML4810/11 contain a unique overload protection circuit which helps to limit stress on the output devices and reliably performs a soft-start reset. Propagation delays are minimal through the comparators and logic for reliable high frequency operation and slew rate and bandwidth are maximized on the error amplifier. These controllers are designed to work in either voltage or current mode and provide for input voltage feed forward.
A 1.1 V threshold current limit comparator provides a cycle-by-cycle current limit. An integrating circuit "counts" the number of times the 1.1 V limit was reached. A soft-start cycle is initiated if the cycle-by-cycle current limit is repeatedly activated. A reset delay function is provided on the ML4811. All logic is fully latched to provide jitter-free operation and prevent multiple pulsing. An under-voltage lockout circuit with 7V of hysteresis assures low startup current and drives the outputs low during fault condition.

The ML4810/11 are fabricated on a 40 V bipolar process from the FB3480 Power Supply Controller Array. Customized versions of this controller can therefore be easily implemented. Please refer to the FB3480 data sheet for more information. These controllers are similar to the UC1825 controller, however these controllers include many features not found on the 1825 . These features are set in Italics.

FEATURES

- Integrating Soft Start Reset

■ High current (2A peak) dual totem pole outputs

- Practical operation to $1 \mathrm{MHz}\left(f_{O S C}\right)$
- $5.1 \mathrm{~V} \pm 2 \%$ trimmed bandgap reference
- Under voltage lockout with 7V hysteresis
- Soft Start Reset Delay (ML4811)
- Oscillator synchronization function (ML4811)
- Soft Start latch ensures full soft start cycle
- Outputs pull low for undervoltage lockout
- Accurately controlled oscillator ramp discharge current
- All timing currents "slaved" to R_{T} for precise control

BLOCK DIAGRAM

ML4810
16-Pin DIP (P16)

ML4810
16-Pin SOIC (S16W)

ML4811
20-Pin DIP (P20)

ML4811
20-Pin SOIC (S20W)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	INV	Inverting input to error amp.
2	NI	Non-inverting input to error amp.
3	E/A OUT	Output of error amplifier and input to main comparator.
4	RC RESET	Timing elements for Integrating Soft Start reset.
5	CLOCK	Oscillator output.
6	R_{T}	Timing resistor for oscillator - sets charging current for oscillator timing capacitor (pin 6).
7	C_{T}	Timing capacitor for oscillator.
8	RAMP	Non-inverting input to main comparator. Connected to C_{T} for voltage mode operation or to current sense resistor for current mode.
9	SOFT START	Normally connected to Soft Start capacitor.
10	SYNC	A high going pulse terminates the PWM cycle and discharges C_{T}.

PIN\# NAME	FUNCTION	
11	OVP	Exceeding 2.5V terminates the PWM cycle and inhibits the outputs.
12	LIINS.D.	Current limit sense pin. Normally connected to current sense resistor.
13	GND	Analog signal ground.
14	OUTA	High current totem pole output. This output is the first one energized after power on reset.
15	PWR GND	Return for the high current totem pole outputs.
16	VC	Positive supply for the high current totem pole outputs.
17	OUTB	High current totem pole output.
18	VCC	Positive supply for the IC.
19	$5.1 V$ REF	Buffered output for the 5.1 V voltage reference.
20	RESET DELAY	Timing capacitor to determine the amount of delay between fault.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Pins 18, 16) 25 V
Output Current, Source or Sink (Pins 14, 17)
DC 0.5A
Pulse $(0.5 \mu \mathrm{~s})$ 2.0A
Analog Inputs(Pins 1, 2, 8)-0.3 V to 7 V
(Pins 9, 10, 11, 12, 20) -0.3 V to 6 V
Clock Output Current (Pins 5) $-5 m A$
Error Amplifier Output Current (Pin 3) 5mA
Junction TemperatureML4811M$150^{\circ} \mathrm{C}$
ML4811I, ML4810C, ML4811C, ML4810I $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic DIP $65^{\circ} \mathrm{C}$ W
Ceramic DIP $65^{\circ} \mathrm{CM}$
Plastic SOIC $65^{\circ} \mathrm{CM}$
OPERATING CONDITIONS
Temperature Range
ML4810C, ML4811C

\qquad
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functonal device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, (note 1)	360	400	440	KHz
Voltage Stability	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$, (note 1)		0.2	4	\%
Temperature Stability	(note 1)		5		\%
Total Variation	line, temp, (note 1)	340		460	KHz
Clock Out High		3.9	4.5		V
Clock Out Low			2.3	2.9	V
Ramp Peak			2.8		V
Ramp Valley			1.0		V
Ramp Valley to Peak		1.6		2.3	V
Sync Input Threshold		0.8	1.0	1.4	V
Sync Input Current	$\mathrm{V}_{\text {PIN } 10}=4 \mathrm{~V}$				$\mu \mathrm{A}$

Reference Section

Output Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
Line Regulation	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$, (note 1$)$		0.2	0.4	$\%$
Total Variation	line, load, temp, (note 1)	4.95		5.25	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA

Under-Voltage Lockout Section

Start Threshold		15	16	17	V
UVLO Hysteresis		6.5	7	7.5	V

ML4810, ML4811

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current						
Start Up Current	ML4810	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
	ML4811	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 2.5 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {CC }}$	ML4810	$\mathrm{V}_{\text {PIN } 1,7,9}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 2}=1 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		32	46	mA
	ML4811	$\mathrm{V}_{\text {PIN } 1,7,9}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 2}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		38	55	mA

Error Amplifier Section					
Input Offset Voltage				± 20	mV
Input Bias Current			0.6	3	$\mu \mathrm{A}$
Input Offset Current			0.1	1	$\mu \mathrm{A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	96		dB
CMRR	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}$	65	95		dB
PSRR	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$	75	90		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Source Current	$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-0.5	-1.3		mA
Output High Voltage	$\mathrm{IPIN} 3=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
Output Low Voltage	$\mathrm{IPIN} 3=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth	Note 1	3	5.5		MHz
Slew Rate	Note 1	6	12		V/us

PWM Comparator Section

Pin 8 Bias Current	$V_{\text {PIN 8 }}=0 \mathrm{~V}$		-1	-5	$\mu \mathrm{~A}$
Duty Cycle Range		0		75	$\%$
Pin 3 Zero DC Threshold		1.1	1.25		V
Delay to Output	Note 1		50	80	ns

Soft-Start Section

Charge Current (Pin 9)	ML4811	$V_{\text {PIN } 9}=1 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4, 12 }}=0$	-35	-55	-75
Discharge Current (Pin 9)	$\mathrm{V}_{\text {PIN } 9}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}>2.5$	1	5		mA
	$\mathrm{~V}_{\text {PIN } 9}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 12}>1.65, \mathrm{~V}_{\text {PIN } 4}<2$	1	5		mA
Charge Current (Pin 20)	$\mathrm{V}_{\text {PIN 20 }}=1 \mathrm{~V}$	1	5		mA
Discharge Current (Pin 20)	Requires external discharge resistor		0		$\mu \mathrm{~A}$

Current Limit/Shutdown Section						
Pin 12 Bias Current		$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 12}<4 \mathrm{~V}$			+15	$\mu \mathrm{A}$
Current Limit Threshold	ML4810		1.2	1.3	1.4	V
	ML4811		0.95	1.1	1.3	V
Reset Threshold (Pin 12)	ML4810	$\mathrm{V}_{\text {PIN } 4}<2 \mathrm{~V}$	1.60	1.75	1.90	V
	ML4811	$\mathrm{V}_{\text {PIN } 4}<2 \mathrm{~V}$	1.4	1.50	1.8	V
Delay to Output		Note 1		40	70	ns
Pin 4 Charging Current		$\mathrm{V}_{\text {PIN 12 }}=2 \mathrm{~V}$	120	150	180	$\mu \mathrm{A}$
Restart Threshold (Pin 4)			2	2.45	3	V
OVP Shutdown Threshold (Pin 11)			2.4	2.7	2.8	V
OVP Input Current		$\mathrm{V}_{\text {PIN } 11}=3 \mathrm{~V}$	40	50	60	$\mu \mathrm{A}$
Charge Current (Pin 8)	ML4810	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4, } 9}=0$	-40	-50	-60	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Output Section						
Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$.25	.4	V	
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V	
Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$	12.5	13.5		V	
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	12.0	13.0		V	
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{~A}$	
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF},($ note 1)		30	80	ns	

Note 1: This parameter not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

SOFT START AND CURRENT LIMIT - INTEGRATING SOFT START RESET

The ML4810/11 offers a unique system of fault detection and reset. Most PWM controllers use a two threshold method which relies on the buildup of current in the output inductor during a fault. This buildup occurs because:

1. Inductor di/dt is a small number when the switch is off under load fault (short circuit) conditions, since V_{L} is smail.
2. Some energy is delivered to the inductor since the IC must first detect the over-current because there is a finite delay before the output switch can turn off.

Figure 1. Current Waveforms for Slow Turn-Off System with Load Fault

This scheme was adequate for controllers with longer comparator propagation delays and turn-off delays than is desirable in a high frequency system. For systems with low propagation delays, very little energy will be delivered to the inductor and the current "ratcheting" described above will not occur. This results in the controller never detecting the load fault and continuing to pump full current to the load indefinitely, causing heating in the output rectifiers and inductor.

Figure 2. Current Waveforms for High Speed System with Load Fault

A method of circumventing this problem involves "counting" the number of times the controller terminates the PWM cycle due to the cycle by cycle current limit.

When the switch current crosses the 1.1 V threshold A1 signals the F1 to terminate the cycle and sets F3, which is reset at the beginning of the PWM cycle. The output of F3 turns on a current source to charge C2. When, after several cycles, C 2 has charged to $2.45 \mathrm{~V}, \mathrm{~A} 5$ turns on F2 to discharge soft start capacitor C1. Charge is continually bled from C2 by R1. If a current surge is short lived (for instance a disk drive start-up or a board being plugged into a live rack) the control can "ride

Figure 3. Integrating Soft Start Reset
out" the surge with the switch protected by the cycle by cycle limit. R1 and C1 can be selected to track diode heating, or to ride out various system surge requirements as required.

If the high current demanded is caused by a short circuit, the duty cycle will be short and the output diodes will carry the current for the majority of the PWM cycle. C2 charges fastest for low duty cycles (since F3 will be on for a longer time) providing for quicker shutdown during short-circuit when the output diodes are being maximally stressed.

OSCILLATOR

The ML4811 oscillator charges the external capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ with a current ($\mathrm{I}_{\mathrm{SET}}$) equal to $3 / \mathrm{R}_{\mathrm{T}}$. When the capacitor voltage reaches the upper threshold (Ramp

Figure 4. Switching Current and Pin 4 Voltage - Normal

Figure 5. Switching Current and Pin 4 Voltage - Load Fault

Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q1. While the capacitor is discharging, Q2 provides a high pulse. A discharge of the oscillator can be initiated by applying a high level to the Sync pin. A short pulse of a frequency higher than the oscillator's free running frequency can be used to synchronize the ML4811 to an external clock. The pulse can be equal to the desired deadtime (T_{D}) or the deadtime can be determined by $\mathrm{I}_{\mathrm{DIS}}$ and C_{T}, whichever is greater.

The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where: $\quad \mathrm{T}_{\text {RAMP }}=\mathrm{C}$ (Ramp Valley to Peak)/I $\mathrm{I}_{\text {SET }}$ and: $\quad \mathrm{T}_{\text {DEADTIME }}=\mathrm{C}($ Ramp Valley to Peak $) / l_{\mathrm{Q} 1}$

Figure 6. Simplified Oscillator Block Diagram and Timing

Figure 7. Oscillator Timing Resistance vs. Frequency

ERROR AMPLIFIER

The ML4811 error amplifier is a 5.5 MHz bandwidth $12 \mathrm{~V} / \mu \mathrm{sec}$ slew rate op-amp with provision for limiting the positive output voltage swing (Output Inhibit line) for ease in implementing the soft start function.

Figure 8. Oscillator Deadtime vs Frequency

Figure 9. Oscillator Deadtime vs $\mathbf{C (T)}(3 \leq R(T) \leq 100 \mathrm{~K} \Omega)$

Figure 10. Unity Gain Slew Rate

OUTPUT DRIVER STAGE

The ML4811 Output Driver is a 2A peak output high speed totem pole circuit designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.

Figure 11. Open Loop Frequency Response

Figure 12. Simplified Schematic

Figure 13. Saturation Curves

Figure 14. Rise/Fall Time ($\mathrm{CL}=1000 \mathrm{pF}$)

Figure 15. Rise/Fall Time (CL $=\mathbf{1 0 , 0 0 0} \mathbf{p F}$)

Figure 16. Supply Current vs. Temperature

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4810CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-Pin Molded DIP (P16)
ML4810CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16-Pin Molded SOIC (S16W)
ML4811CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin Molded DIP (P20)
ML4811CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin Molded SOIC (S20W)

ML4812

Power Factor Controller

GENERAL DESCRIPTION

The ML4812 is designed to optimally facilitate a "boost" type power factor correction system. Special care has been taken in the design of the ML4812 to increase system noise immunity. The circuit includes a precision reference, multiplier, error amplifier, over-voltage protection, ramp compensation, as well as a high current output. In addition, start-up is simplified by an undervoltage lockout circuit with 6 V hysteresis.
In a typical application, the ML4812 functions as a current mode regulator. The current which is necessary to terminate the cycle is a product of the sinusoidal line voltage times the output of the error amplifier which is regulating the output DC voltage. Ramp compensation is programmable with an external resistor, to provide stable operation when the duty cycle exceeds 50%.

FEATURES

- Precision buffered 5 V reference ($\pm 0.5 \%$)
- Current input multiplier reduces external components and improves noise immunity
- Programmable ramp compensation circuit
- 1A peak current totem-pole output drive

■ Over-voltage comparator eliminates output "runaway" due to load removal

- Wide common mode range in current sense comparators for better noise immunity
- Large oscillator amplitude for better noise immunity

Patented

PIN CONFIGURATION

ML4812
16-Pin DIP (P16)

ML4812
20-Pin PCC (Q20)

PIN DESCRIPTION

PIN\# NAME	FUNCTION	
1	I(SENSE)	Input from the current sense transformer (T1) to the PWM comparator (+).
2	MULTIPLIER	Output of current multiplier. A resistor to ground on this pin converts the current to a voltage. This pin is clamped to 5V and tied to the PWM comparator (-).
3	EA OUT	Output of error amplifier. 4
5	INV	Inverting input to error amplifier. Input to over voltage comparator.
7	I(SINE)	Current multiplier input.
7	RAMP COMP Buffered output from the oscillator	
ramp [C(T)]. A resistor to ground sets		
the current which is internally		
subtracted from the product of		
I(SINE) and I(EA) in the multiplier.		

PIN\# NAME	FUNCTION	
8	R(T)	Oscillator timing resistor pin. A 5 V source sets a current in the external resistor which is mirrored to charge C(T).
9	CLOCK	Digital clock output.
10	SHUTDOWN A TTL compatible low level on this	
pin turns off the output.		

ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maxımum ratings are stress ratıngs only and functional device operation is not implied.
Supply Current (l ${ }_{C C}$) 30 mA
Output Current Source or Sink (pin 12) DC 1.0A
Output Energy (capacitive load per cycle) 5μ
Multiplier I(SINE) Input (pin 6) 1.2 mA
Error Amp Sink Current (pin 3) 10 mA
Oscillator Charge Current 2 mA
Analog Inputs (pins 1, 4, 5) -0.3 V to 5.5 V
Junction Temperature $150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{j A}\right)$
Plastic Chip Carrier (PCC) — Q....................... $60^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP - P ... $65^{\circ} \mathrm{C} / \mathrm{N}$
Ceramic DIP — J ... $65^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range
ML4812C ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ML48121.. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML4812M....................................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (note 2),
Pin numbers refer to 16 -pin DIP package.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	91	98	105	KHz
Voltage Stability	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<18 \mathrm{~V}$		0.3		\%
Temperature Stability			2		\%
Total Variation	line, temp.	90		108	KHz
Ramp Valley to Peak			3.3		V
R(T) Voltage		4.8	5.0	5.2	V
Discharge Current (pin 8 open)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {PIN } 16}=2 \mathrm{~V}$	7.8	8.4	9.0	mA
	$\mathrm{V}_{\text {PIN } 16}=2 \mathrm{~V}$	7.3	8.4	9.3	mA
Clock Out Voltage Low	$\mathrm{R}_{\mathrm{L}}=16 \mathrm{~K} \Omega$		0.2	0.5	V
Clock Out Voltage High	$\mathrm{R}_{\mathrm{L}}=16 \mathrm{~K} \Omega$	3.0	3.5		V

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5.00	5.05	V
Line Regulation	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		2	20	mV
Temperature Stability			0.4		$\%$
Total Variation	line, load, temp.	4.9		5.1	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$ (note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-30	-85	-180	mA

Error Amplifier Section

Input Offset Voltage				± 15	mV
Input Bias Current			-0.1	-1.0	$\mu \mathrm{~A}$
Open Loop Gain	$1<\mathrm{V}_{\text {PIN } 3}<5 \mathrm{~V}$	60	75		dB
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	60	75		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=6.2 \mathrm{~V}$	2	12		mA
Output Source Current	$\mathrm{V}_{\text {PIN } 3}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=4.8 \mathrm{~V}$	-0.5	-1.0		mA
Output High Voltage	$\mathrm{IPIN} 3=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN } 4}=4.8 \mathrm{~V}$	5.3	5.5		V
Output Low Voltage	$\mathrm{IPIN} 3=1 \mathrm{~mA}, \mathrm{~V}_{\text {PIN } 4}=6.2 \mathrm{~V}$		0.5	1.0	V
Unity Gain Bandwidth			1.0		MHz

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Multiplier					
I(SINE) Input Voltage	$\mathrm{I}(\mathrm{SINE})=500 \mu \mathrm{~A}$	0.4	0.7	0.9	V
Output Current (pin 2)	$\mathrm{I}($ SINE $)=500 \mu \mathrm{~A}, \operatorname{Pin} 4=\mathrm{V}_{\text {REF }}-20 \mathrm{mV}$	460	480	510	$\mu \mathrm{A}$
	$\mathrm{I}(\mathrm{SINE})=500 \mu \mathrm{~A}$, Pin $4=\mathrm{V}_{\text {REF }}+20 \mathrm{mV}$		3	10	$\mu \mathrm{A}$
	$\mathrm{l}(\mathrm{SINE})=1 \mathrm{~mA}$, Pin $4=\mathrm{V}_{\text {REF }}-20 \mathrm{mV}$	900	950	1020	$\mu \mathrm{A}$
	$\begin{aligned} & \mathrm{I}(\mathrm{SINE})=500 \mu \mathrm{~A}, \text { Pin } 4=\mathrm{V}_{\text {REF }}-20 \mathrm{mV} \\ & \mathrm{I}_{\text {PIN } 7}=50 \mu \mathrm{~A} \end{aligned}$		455		$\mu \mathrm{A}$
Bandwidth			200		KHz
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		70		dB
OVP Comparator					
Input Offset Voltage	Output Off	-25		+5	mV
Hysteresis	Output On	95	105	115	mV
Input Bias Current			-0.3	-3	$\mu \mathrm{A}$
Propagation Delay			150		ns

PWM Comparator: I(SENSE)

Input Offset Voltage				± 15	mV
Input Offset Current				± 1	mA
Input Common Mode Range		-0.2		5.5	V
Input Bias Current			-2	-10	$\mu \mathrm{~A}$
Propagation Delay			150		ns
ILIMIT Trip Point		$V_{\text {PIN 2 }}=5.5 \mathrm{~V}$	4.8	5	5.2

Output Section

Output Voltage Low	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$		0.1	0.4	V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$		1.6	2.2	V
Output Voltage High	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$	13	13.5		V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$	12	13.4		V
Output Voltage Low in UVLO	$\mathrm{I}_{\mathrm{OUT}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.1	0.8	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns
Shut Down Input	V_{IH}	2.0			V
	$\mathrm{~V}_{\mathrm{IL}}$			0.8	V
	$\mathrm{I}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PIN} 10}=0 \mathrm{~V}$			-1.5	mA
	$\mathrm{I}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{PIN} 10}=5 \mathrm{~V}$			10	$\mu \mathrm{~A}$

Under-Voltage Lockout

Start-Up Threshold		15	16	17	V
Shut-Down Threshold		9	10	11	V
$\mathrm{~V}_{\text {REF }}$ Good Threshold			4.4		V

Total Device

Supply Current	Start-Up, $\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.8	1.2	mA
	Operating, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		20	25	mA
Internal Shunt Zener Voltage	$\mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}$	25	30	34	V

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: $V_{C C}$ is rased above the Start-Up Threshold first to activate the IC, then returned to 15 V .

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4812 oscillator charges the external capacitor (C_{T}) with a current ($l_{\text {SET }}$) equal to $5 / R_{\text {SET }}$. When the capacitor voltage reaches the upper threshold, the comparator changes state and the capacitor discharges to the lower threshold through Q1. While the capacitor is discharging, Q2 provides a high pulse.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\text {OSC }}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where:

$$
\mathrm{T}_{\text {RAMP }}=\frac{\mathrm{C}_{\mathrm{T}} \times \mathrm{V}_{\text {RAMP VALLEY TO PEAK }}}{\mathrm{I}_{\mathrm{SET}}}
$$

and:

$$
\mathrm{T}_{\text {DEADTIME }}=\frac{\mathrm{C}_{\mathrm{T}} \times \mathrm{V}_{\text {RAMP VALLEY TO PEAK }}}{8.4 \mathrm{~mA}-\mathrm{I}_{\text {SET }}}
$$

Figure 1. Oscillator Block Diagram

Figure 2. Oscillator Timing Resistance vs. Frequency

OUTPUT DRIVER STAGE

The ML4812 Output Driver is a 1A peak output high speed totem pole circuit designed to quickly drive capacitive loads, such as power MOSFET gates.

Figure 3. Output Saturation Voltage vs. Output Current

ERROR AMPLIFIER

The ML4812 error amplifier is a high open loop gain, wide bandwidth, amplifier.

Figure 4. Error Amplifier Configuration

Figure 5. Error Amplifier Open-Loop Gain and Phase vs Frequency

MULTIPLIER

The ML4812 multiplier is a linear current input multiplier to provide high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dripping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator.

The output of the multiplier is a current proportional to:

$$
\mathrm{I}_{\mathrm{OUT}} \propto \mathrm{I}(\mathrm{SINE}) \times \mathrm{I}(\mathrm{EA})
$$

where $\mathrm{I}(\mathrm{SINE})$ is the current in the dropping resistor, and I(EA) is a current proportional to the output of the error amplifier. When the error amplifier is saturated high, the output of the multiplier is approximately equal to the I(SINE) input current.
The multiplier output current is converted into the reference voltage for the PWM comparator through a resistor to ground on the multiplier output. The multiplier output is clamped to 5 V to provide current limiting.
Ramp compensation is accomplished by subtracting $1 / 2$ of the current flowing out of pin 7 through a buffer transistor driven by $\mathrm{C}(\mathrm{T})$ which is set by an external resistor.

Figure 6. Multiplier Block Diagram

Figure 7. Multiplier Linearity

UNDER VOLTAGE LOCKOUT

On power-up the ML4812 remains in the UVLO condition; output low and quiescent current low. The IC becomes operational when $V_{C C}$ reaches 16 V . When V_{CC} drops below 10 V , the UVLO condition is imposed. During the UVLO condition, the $5 \mathrm{~V} \mathrm{~V}_{\text {REF }}$ pin is "off", making it usable as a "flag" for starting up a downstream PWM converter.

Figure 8. Under-Voltage Lockout Block Diagram

Figure 9a. Total Supply Current vs. Supply Voltage

Figure 9b. Supply Current (\mathbf{I}_{CC}) vs. Temperature

Figure 10. Reference Load Regulation

APPLICATIONS

INPUT INDUCTOR (L1) SELECTION

The central component in the regulator is the input boost inductor. The value of this inductor controls various critical operational aspects of the regulator. If the value is too low, the input current distortion will be high and will result in low power factor and increased noise at the input. This will require more input filtering. In addition, when the value of the inductor is low the inductor dries out (runs out of current) at low currents. Thus the power factor will decrease at lower power levels and/or higher line voltages. If the inductor value is too high, then for a given operating current the required size of the inductor core will be large and/or the required number of turns will be high. So a balance must be reached between distortion and core size.

One more condition where the inductor can dry out is analyzed below where it is shown to be maximum duty cycle dependent.

For the boost converter at steady state:

$$
\begin{equation*}
V_{\text {OUT }}=\frac{V_{\text {IN }}}{1-D_{\text {ON }}} \tag{1}
\end{equation*}
$$

Where D_{ON} is the duty cycle [$T_{\mathrm{ON}} /\left(\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}\right)$]. The input boost inductor will dry out when the following condition is satisfied:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}(\mathrm{t})<\mathrm{V}_{\mathrm{OUT}} \times\left(1-\mathrm{D}_{\mathrm{ON}}\right) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
V_{\text {INDRY }}=\left[1-D_{\mathrm{ON}}(\max)\right] \times \mathrm{V}_{\mathrm{OUT}} \tag{3}
\end{equation*}
$$

$V_{\text {INDRY }}$: Voltage where the inductor dries out.
$V_{\text {OUT }}$: Output dc voltage.

Effectively, the above relationship shows that the resetting volt-seconds are more than setting volt-seconds. In energy transfer terms this means that less energy is stored in the inductor during the ON time than it is asked to deliver during the OFF time. The net result is that the inductor dries out.

The recommended maximum duty cycle is 95% at 100 KHz to allow time for the input inductor to dump its energy to the output capacitors.
For example:

$$
\text { if: } \quad \begin{array}{ll}
\mathrm{V}_{\text {OUT }}=380 \mathrm{~V} \text { and } \\
& \mathrm{D}_{\mathrm{ON}}(\max)=0.95
\end{array}
$$

then substituting in (3) yields $\mathrm{V}_{\text {INDRY }}=20 \mathrm{~V}$. The effect of drying out is an increase in distortion at low voltages.
For a given output power, the instantaneous value of the input current is a function of the input sinusoidal voltage waveform, i.e. as the input voltage sweeps from zero volts to a maximum value equal to its peak so does the current.

The load of the power factor regulator is usually a switching power supply which is essentially a constant power load. As a result, an increase in the input voltage will be offset by a decrease in the input current.

By combining the ideas set forth above, some ground rules can be obtained for the selection and design of the input inductor:

Step 1: Find minimum operating current.
$\mathbb{I}_{\mathbb{N}}(\min)_{\text {PEAK }}=\frac{1.414 \times \mathrm{P}_{\mathrm{IN}^{\prime}}(\min)}{\mathrm{V}_{\mathrm{IN}(\max)}}$
$\mathrm{V}_{\mathbb{I N}}(\max)=260 \mathrm{~V}$
$\mathrm{P}_{\mathrm{IN}}(\min)=50 \mathrm{~W}$
then: $\quad I_{I_{N}}(\min)_{\text {PEAK }}=0.272 \mathrm{~A}$
Step 2: Choose a minimum current at which point the inductor current will be on the verge of drying out. For this example 40% of the peak current found in step 1 was chosen.
then: $\quad l_{\text {LDRY }}=100 \mathrm{~mA}$
Step 3: The value of the inductance can now be found using previously calculated data.

$$
\begin{align*}
\mathrm{L} 1 & =\frac{\mathrm{V}_{\mathrm{INDRY}} \times \mathrm{D}_{\mathrm{ON}}(\max)}{\mathrm{I}_{\mathrm{LDRY}} \times \mathrm{f}_{\mathrm{OSC}}} \\
& =\frac{20 \mathrm{~V} \times 0.95}{100 \mathrm{~mA} \times 100 \mathrm{KHz}}=2 \mathrm{mH} \tag{5}
\end{align*}
$$

The inductor can be allowed to decrease in value when the current sweeps from minimum to maximum value. This allows the use of smaller core sizes. The only requirement is that the ramp compensation must be adequate for the lower inductance value of the core so that there is adequate compensation at high current.

NOTES

1. ALL UNSPECIFIED DIODES ARE 1 N4148
2. ALL UNSPECIFIED RESISTORS ARE $1 / 4$ WATT.
3. All UNSPECIFIED CAPACITOR VOLTAGE RATINGS ARE 50V.
4. ADJUST R2A AND R5A WITH CAUTION TO AVOID OVER VOLTAGE CONDITIONS.
$\mathrm{Q}_{3}=\mathbf{2 N} 2222$ OR EQUIVALENT.

* P3 IS USED AT INITAL TURN-ON TO CHECK THE IC FOR PROPER OPERATION APPLY $\approx 16 \mathrm{VDC}$.
** FIXED RESISTORS CAN BE USED FOR THE SENSING COMPONENTS. BELOW ARE 1% STANDARD RESISTORS THAT WILL FORCE THE CORRECT OUTPUT VOLTAGES R1A, R1B, R4A, R4B $=178 \mathrm{~K} 1 \%$, R2B $=4.751 \%$, R5B $=4.53 \mathrm{~K} 1 \%$, USE JUMPERS INSTEAD OF R2A AND R5A (POTS).
*** FOR HIGHER POWER USE MORE VCC DECOUPLING. $2 \mu \mathrm{~F}$ OR MORE BE REQUIRED AT 1 KW LEVELS.

Step 4: The presence of the ramp compensation will change the dry out point, but the value found above can be considered a good starting point. Based on the amount of power factor correction the above value of L1 can be optimized after a few iterations.
Gapped Ferrites, Molypermalloy, and Powdered Iron cores are typical choices for core material. The core material selected should have a high saturation point and acceptable losses at the operating frequency.
One ferrite core that is suitable at around 200 W is the \#4119PL00-3C8 made by Ferroxcube. This ungapped core will require a total gap of $0.180^{\prime \prime}$ for this application.

OSCILLATOR COMPONENT SELECTION

The oscillator timing components can be calculated by using the following expression:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{OSC}}=\frac{1.36}{\mathrm{R}_{\mathrm{T}} \times \mathrm{C}_{\mathrm{T}}} \tag{6}
\end{equation*}
$$

For example:
Step 1: At 100 KHz with 95% duty cycle Toff $=500 \mathrm{~ns}$ calculate C_{T} using the following formula:

$$
\begin{equation*}
C_{T}=\frac{T_{\text {OFF }} \times I_{\text {DIS }}}{V_{\text {OSC }}}=1000 \mathrm{pF} \tag{7}
\end{equation*}
$$

Step 2: Calculate the required value of the timing resistor.

$$
\begin{align*}
\mathrm{R}_{\mathrm{T}} & =\frac{1.36}{\mathrm{f}_{\mathrm{OSC}} \times \mathrm{C}_{\mathrm{T}}}=\frac{1.36}{100 \mathrm{KHz} \times 1000 \mathrm{pF}} \tag{8}\\
& =13.6 \mathrm{~K} \Omega \text { choose } \mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega
\end{align*}
$$

CURRENT SENSE AND SLOPE (RAMP) COMPENSATION COMPONENT SELECTION

Slope compensation in the ML4812 is provided internally. Rather than adding slope to the noninverting input of the PWM comparator it is actually subtracted from the voltage present at the inverting input of the PWM comparator. The amount of slope compensation should be at least 50% of the downslope of the inductor current during off time as reflected to the inverting input of the PWM comparator. Note that slope compensation is required only when the inductor current is continuous and the duty cycle is more than 50%. The downslope of the inductor current at the verge of discontinuity can be found using the expression given below:

$$
\begin{equation*}
\frac{d i_{\mathrm{L}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {INDRY }}}{\mathrm{L}}=\frac{380 \mathrm{~V}-20 \mathrm{~V}}{2 \mathrm{mH}}=0.18 \mathrm{~A} / \mu \mathrm{s}(\tag{9}
\end{equation*}
$$

The downslope as reflected to the input of the PWM comparator is given by:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{PWM}}=\frac{\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{INDRY}}}{\mathrm{~L}} \times \frac{\mathrm{R}_{\mathrm{S}}}{N_{\mathrm{C}}} \tag{10}
\end{equation*}
$$

Where R_{S} is the current sense resistor and N_{C} is the turns ratio of the current transformer (T1) used. In general, current transformers simplify the sensing of switch currents especially at high power levels where the use of sense resistors is complicated by the amount of power they have to dissipate. Normally the primary side of the transformer consists of a single turn and the secondary consists of several turns of either enameled magnet wire or insulated wire. The diameter of the ferrite core used in this example is $0.5^{\prime \prime}$ (SPANG/Magnetics F41206-TC). The rectifying diode at the output of the current transformer can be a 1 N 4148 for secondary currents up to 75 mA average.
Sense FETs or resistive sensing can also be used to sense the switch current, the sensed signal has to be amplified to the proper level before it is applied to the ML4812.
The value of the ramp compensation ($\mathrm{SC}_{\mathrm{PWM}}$) as seen at the inverting terminal of the PWM comparator is:

$$
\begin{equation*}
S_{P W M}=\frac{2.5 \times R_{M}}{R_{T} \times C_{T} \times R_{S C}} \tag{11}
\end{equation*}
$$

The required value for $R_{S C}$ can therefore be found by equating:

$$
S_{C_{P W M}}=A_{S C} \times S_{P W M}
$$

where $A_{S C}$ is the amount of slope compensation and solving for RSC.
The value of $R_{M}(\operatorname{pin} 2)$ depends on the selection of R_{P} (pin 6)

$$
\begin{align*}
& R_{P}=\frac{V_{\text {IN }}(\text { max })_{\text {PEAK }}}{I_{\text {SINE }}(\text { Peak })} \tag{12}\\
& =\frac{260 \times 1.414}{0.5 \mathrm{~mA}}=750 \mathrm{~K} \tag{13}\\
& R_{M}=\frac{V_{\text {CLAMP }} \times R_{P}}{V_{\text {IN }}(\text { min })_{\text {PEAK }}}=\frac{4.9 \times 750 \mathrm{~K}}{90 \times 1.414}=28.8 \mathrm{~K}
\end{align*}
$$

The peak of the inductor current can be found approximately by:

$$
\begin{equation*}
\mathrm{I}_{\text {LPEAK }}=\frac{1.414 \times \mathrm{P}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}(\mathrm{min})_{\text {RMS }}}=\frac{1.414 \times 200}{90}=3.14 \mathrm{~A} \tag{14}
\end{equation*}
$$

Selection of N_{C} which depends on the maximum switch current, assume 4A for this example is 80 turns.

$$
\begin{equation*}
R_{S}=\frac{V_{\text {CLAMP }} \times N_{C}}{l_{\text {LPEAK }}}=\frac{4.9 \times 80}{4}=100 \Omega \tag{15}
\end{equation*}
$$

Where R_{S} is the sense resistor, and $V_{\text {CLAMP }}$ is the current clamp at the inverting input of the PWM comparator. This clamp is internally set to 5 V . In actual application it is a good idea to assume a value less than 5 V to avoid unwanted current limiting action due to component tolerances. In this application $\mathrm{V}_{\text {CLAMP }}$ was chosen as 4.9 V .
Having calculated R_{S} the value $S_{P W M}$ and of $R_{S C}$ can now be calculated:

$$
S_{\text {PWM }}=\frac{380 \mathrm{~V}-20}{2 \mathrm{mH}} \times \frac{100}{80}=0.225 \mathrm{~V} / \mu \mathrm{s}
$$

$$
\begin{align*}
& R_{S C}=\frac{2.5 \times R_{M}}{A_{S C} \times S_{P W M} \times R_{T} \times C_{T}} \\
& R_{S C}=\frac{2.5 \times 28.8 \mathrm{~K}}{0.7 \times\left(0.225 \times 10^{6}\right) \times 14 \mathrm{~K} \times 1 \mathrm{nF}}=33 \mathrm{~K} \tag{16}
\end{align*}
$$

The following values were used in the calculation:

$$
\begin{array}{ll}
R_{M}=28.8 \mathrm{~K} & \mathrm{~A}_{\mathrm{SC}}=0.7 \\
\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}
\end{array}
$$

VOLTAGE REGULATION COMPONENTS

The values of the voltage regulation loop components are calculated based on the operating output voltage. Note that voltage safety regulations require the use of sense resistors that have adequate voltage rating. As a rule of thumb if $1 / 4 \mathrm{~W}$ resistors are available, two of them should be used in series. The input bias current of the error amplifier is approximately $0.5 \mu \mathrm{~A}$, therefore the current available from the voltage sense resistors should be significantly higher than this value. Since two $1 / 4 \mathrm{~W}$ resistors have to be used the total power rating is $1 / 2 \mathrm{~W}$. The operating power is set to be 0.4 W then with 380 V output voltage the value can be calculated as follows:

$$
\begin{equation*}
\mathrm{R}_{1}=(380 \mathrm{~V})^{2} / 0.4 \mathrm{~W}=360 \mathrm{~K} \tag{17}
\end{equation*}
$$

Choose two $178 \mathrm{~K}, 1 \%$ connected in series.
Then R2 can be calculated using the formula below:

$$
\begin{equation*}
R_{2}=\frac{V_{\text {REF }} \times R_{1}}{V_{\text {OUT }}-V_{\text {REF }}}=\frac{5 \mathrm{~V} \times 356 \mathrm{~K}}{380 \mathrm{~V}-5 \mathrm{~V}}=4.747 \mathrm{~K} \tag{18}
\end{equation*}
$$

Choose $4.75 \mathrm{~K}, 1 \%$. One more critical component in the voltage regulation loop is the feedback capacitor for the error amplifier. The voltage loop bandwidth should be set such that it rejects the 120 Hz ripple which is present at the output. If this ripple is not adequately attenuated it will cause distortion on the input current waveform. Typical bandwidths range anywhere from a few Hertz to 15 Hz . The main compromise is between transient response and distortion. The feedback capacitor can be calculated using the following formula:

$$
\begin{align*}
& C_{F}=\frac{1}{3.142 \times \mathrm{R}_{1} \times B W} \\
& C_{F}=\frac{1}{3.142 \times 356 \mathrm{~K} \times 2 \mathrm{~Hz}}=0.44 \mu \mathrm{~F} \tag{19}
\end{align*}
$$

OVERVOLTAGE PROTECTION (OVP) COMPONENTS

The OVP loop should be set so that there is no interaction with the voltage control loop. Typically it should be set to a level where the power components are safe to operate. Ten to fifteen volts above $\mathrm{V}_{\text {OUT }}$ seems to be adequate. This sets the maximum transient output voltage to about 395 V .
By choosing the high voltage side resistor of the OVP circuit the same way as above i.e. $R_{4}=356 \mathrm{~K}$ then R_{5} can be calculated as:

$$
\begin{equation*}
R_{5}=\frac{V_{\text {REF }} \times R_{4}}{V_{\text {OVP }}-V_{\text {REF }}}=\frac{5 \mathrm{~V} \times 356 \mathrm{~K}}{395 \mathrm{~V}-5 \mathrm{~V}}=4.564 \mathrm{~K} \tag{20}
\end{equation*}
$$

Choose 4.53K, 1%.
Note that R_{1}, R_{2}, R_{4} and R_{5} should be tight tolerance resistors such as 1% or better.

CONTROLLER SHUTDOWN

The ML4812 provides a shutdown pin which could be used to shutdown the IC. Care should be taken when this pin is used because power supply sequencing problems could arise if another regulator with its own bootstrapping follows the ML4812. In such a case a special circuit should be used to allow for orderly start up. One way to accomplish this is by using the reference voltage of the ML4812 to inhibit the other controller IC or to shut down its bias supply current.

OFF-LINE START-UP AND BIAS SUPPLY GENERATION

The ML4812 can be started using a "bleed resistor" from the high voltage bus. After the voltage on pin $13\left(\mathrm{~V}_{\mathrm{CC}}\right)$ exceeds 16 V , the IC starts up. The energy stored on the $330 \mu \mathrm{~F}, \mathrm{C} 15$, capacitor supplies the IC with running power until the supplemental winding on L1 can provide the power to sustain operation.
The values of the start-up resistor R10 and capacitor C15 may need to be optimized depending on the application. The charging waveform for the secondary winding of L1 is an inverted chopped sinusoid which reaches its peak when the line voltage is at its minimum. In this example, $\mathrm{C} 9=0.1 \mu \mathrm{~F}, \mathrm{C} 15=330 \mu \mathrm{~F}, \mathrm{D} 8=1 \mathrm{~N} 4148, \mathrm{R} 10=39 \mathrm{~K}, 2 \mathrm{~W}$.

ENHANCEMENT CIRCUIT

The theory of operation of the power factor enhancement circuit (inside the dotted lines) in Figure 11 is described in Application Note 11 in detail. It improves the power factor and lowers the input current harmonics. Note that the circuit meets the proposed IEC 555 specifications (with the enhancement) on the harmonics with a large margin while correcting the input power factor to better than 0.99 under most steady state operating conditions.

CONSTRUCTION AND LAYOUT TIPS

High frequency power circuits require special care during breadboard construction and layout. Double sided printed circuit boards with ground plane on one side are highly recommended. All critical switching leads (power FET, output diode, IC output and ground leads, bypass capacitors) should be kept as small as possible. This is to minimize both the transmission and pick-up of switching noise.
There are two kinds of noise coupling; inductive and capacitive. As the name implies inductive coupling is due to fast changing (high di/dt) circulating switching currents. The main source is the loop formed by Q1, D5, and C3-C4. Therefore this loop should be as small as possible, and the above capacitors should be good high frequency types.

The second form of noise coupling is due to fast changing voltages (high dv/dt). The main source in this case is the drain of the power FET. The radiated noise in this case can be minimized by insulating the drain of the FET from the heatsink and then tying the heatsink to the source of the FET with a high frequency capacitor (C_{H} in Figure 11).

The IC has two ground pins named PWR GND and Signal GND. These two pins should be connected together with a very short lead at the printed circuit board exit point. In general grounding is very important and ground loops should be avoided. Star grounding schemes are preferred.

Component Values/Bill of Materials for Figure 11

Reference	Description
C1, C4	$1 \mu \mathrm{~F}, 630 \mathrm{~V}$ FILM (250 VAC)
$\mathrm{C} 3, \mathrm{C}_{\mathrm{H}}$	6.8nF 1KV Ceramic disk
C5, C6	680 $\mu \mathrm{F} 200 \mathrm{~V}$ Electrolytic
C8, C9	0.1 $\mu \mathrm{F} 50 \mathrm{~V}$ Ceramic
C10, C19	$1 \mu \mathrm{~F} 50 \mathrm{~V}$ Ceramic
C11	$0.001 \mu \mathrm{~F} 50 \mathrm{~V}$ Ceramic
C15	$330 \mu \mathrm{~F} 25 \mathrm{~V}$ Electrolytic
C16	100 $\mu \mathrm{F} 25 \mathrm{~V}$ Electrolytic
C17	10رF 25V Electrolytic
C_{F}	0.47 F F 50 V Ceramic
C_{T}	$0.002 \mu \mathrm{~F} 50 \mathrm{~V}$ Ceramic
D1, D2, D3, D4, D10	1N5406 (Motorola)
D5	MUR850 (Motorola)
$\begin{aligned} & \text { D6, D8, D9 } \\ & \text { D11, D12, D13 } \end{aligned}$	1N4148
F1	5A 250V 3AG with clips
IC1	ML4812CP (Micro Linear)
L1	$2 \mathrm{mH}, 4 \mathrm{~A} \mathrm{IPEAK}^{\text {(see below) }}$
Q1	IRF840 or MTPN8N50

Reference	Description
Q2	LM7815CT
Q3	2 N 2222 or equivalent
R1A, R1B, R4A, R4B	$180 \mathrm{~K} \Omega$
R2A, R5A	$10 \mathrm{~K} \Omega$ TRIMPOT BOURNS 3299 or equivalent
R2B, R5B	$3.9 \mathrm{~K} \Omega$
R3, R13	$22 \mathrm{~K} \Omega$
R6, R7, RPB	$150 \mathrm{~K} \Omega$
R10	$39 \mathrm{~K} \Omega, 2 \mathrm{~W}$
R11	$33 \mathrm{~K} \Omega$
R12	$1 \mathrm{~K} \Omega$
RG	10Ω
RM	$27 \mathrm{~K} \Omega$
RPA, R15	$360 \mathrm{~K} \Omega$
RS	$100 \mathrm{~K} \Omega$
RSC	$33 \mathrm{~K} \Omega$
RT	$7.5 \mathrm{~K} \Omega$
T1	SPANG F41206-TC
$\mathrm{N}_{S}=80, \mathrm{~N}_{P}=1$ (see attached)	

Notes: All resistors $1 / 4 \mathrm{~W}$ unless otherwise specified. Some reference designators are skipped (e.g. C2, C12, etc.) and do not appear on the schematic. These designators were used in previous revisions of the board and are not used on this revision. Additional information on key components is included in the attached appendix.

Magnetics Tips (Refer to Figure 11)

L1 - Main Inductor:

One of several toroidal cores can be used for L1:

Material	Manufacturer	Part \#	Turns (\#24AWG)
Powdered Iron	Micrometals	T225-8/90	200
Powdered Iron	Micrometals	T184-40	120
Molypermalloy	SPANG (Mag. Inc.)	58076-A2 (high flux)	180

The T184-40 core above is the most economical, but has lower inductance at high current. This would yield higher ripple current and require more line EMI filtering. The value for RSC (slope compensation resistor on Pin 7) was calculated for the T225-8/90 and should be recalculated for other inductor characteristics. Selected pages of the Micrometals iron powder core data sheets are attached for your convenience. The core manufacturer also has additional applications literature available.

A gapped ferrite core can also be used in place of the powdered iron core. One such core is a Ferroxcube core \#4229PL00-3C8. This is an un-gapped core. Using 145 turns of \#24 AWG wire, a total air gap of $0.180^{\prime \prime}$ is required to give a total inductance of about 2 mH . Since 1/ 2 of the gap will be on the outside of the core and $1 / 2$ the gap on the inside, putting a 0.09 " spacer in the center will yield a $0.180^{\prime \prime}$ total gap. To prevent leakage fields from generating RFI, a shorted turn of copper tape should be wrapped around the gap as shown below:

T1 - Sense Transformer

In addition to the core type mentioned in the parts list, the following Siemens cores should be suitable for substitution and may be more readily available in Europe.

Material	Size Code	Part \#
N27	R16/6.3	B64290-K45-X27
N30	R16/6.3	B64290-K45-X830

The N27 material is for high frequency and will work better above 100 KHz but both are adequate. In addition, Ferroxcube/Phillips Magnetics core 768T188-3C8 can be used.

U.S. Core Vendors:

Manufacturer	Phone Number
SPANG/Magnetics Inc.	(412) 282-8282
Micrometals	$(800) 356-5977$
Ferroxcube/Phillips Magnetics	$(818) 998-7311$

For production, a gapped center leg can be ordered from most core vendors, eliminating the need for the external shorted copper turn when using a pot core.

NOTES:

1. ALL UNSPECIFIED DIODES ARE 1 N4148.
2. ALL UNSPECIFIED RESISTORS ARE $1 / 4$ WATT
3. ALL UNSPECIFIED CAPACITOR VOLTAGE RATINGS ARE 50 V .
4. ADJUST R2A AND R5A WITH CAUTION TO AVOID OVER VOLTAGE CONDITIONS.
$\mathbf{Q}_{3}=\mathbf{2 N} 2222$ OR EQUIVALENT.

* AT INITIAL TURN-ON TO CHECK THE IC FOR PROPER OPERATION, APPLY $\approx 16 \mathrm{VDC}$.
** FIXED RESISTORS CAN BE USED FOR THE SENSING COMPONENTS. BELOW ARE 1% STANDARD RESISURS VOLTAGES R1A, R1B, R4A, R4B $=178 \mathrm{~K} 1 \%$, R2B = 451% R5B KI, R1B, RAA
R2B $=4.751 \%$, RSB $=4.53 \mathrm{~K} \%$.
USE JUMPERS INSTEAD OF R2A AND R5A (POTS).
*** FOR HIGHER POWER USE MORE VCC DECOUPLING.

ML4812

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4812CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4812CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (Q20)
ML4812IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4812IQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (Q20)
ML4812MJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J16)

Power Factor Controller Evaluation Kit

GENERAL DESCRIPTION

The ML4812EVAL kit provides a convenient vehicle to evaluate the ML4812 Power Factor Correction circuit. The board implements a 200W "boost" type power factor correction system. Special care has been taken in the layout of this PC board to provide adequate space for probes and a large area for ground plane to increase system noise immunity.

This kit includes a blank PC board, schematic of a complete power factor correction system and specifications for the key external components necessary to build a prototype Power Factor Correction front end. The unit is designed to operate over 90VAC to 256VAC line range and can run from no load to a full 200 W . Higher power levels can be achieved using this board by using larger external components.

This boost mode converter is set to run with a 380 V output and achieves power factors of better than .99 over a wide range of input line and output load.

FEATURES

- Power Factor > . 99
- Harmonic currents well below proposed IEC555-2 limits.
- 90 to 256 VAC input, 380 V output to 200 W
- 380VDC output to 200 W
- Over-Voltage Protection
- Peak Current sense circuit protects Power MOSFET
- PC board and ML4812CP controller included
- Line and Load regulation better than 2%
- Complete documentation and applications information

KIT COMPONENTS

- User's Guide
- ML4812 Datasheet
- ML4812 Sample
- Evaluation Board
- Powder Iron Toroidal Core

BLOCK DIAGRAM

Flyback Power Factor Controller

GENERAL DESCRIPTION

The ML4813 is designed to optimally facilitate a discontinuous "flyback" or "buck-boost" type power factor correction system for low power, low cost applications. Special care has been taken in the design of the ML4813 to reject system noise. The circuit includes a precision reference, oscillator, error amplifier, over-voltage comparator, over-current comparator, and an extra op-amp as well as a high current output. In addition, start-up is simplified by an under-voltage lockout circuit with 6 V hysteresis.
In a typical application, the ML4813 functions as a voltage mode regulator. By maintaining a constant duty cycle, the current follows the input voltage, making the impedance of the entire circuit appear purely resistive. With the flyback circuit, power factors of .99 are easily achievable with a small output inductor and a minimum of external components.

FEATURES

- Precision buffered 5 V reference ($\pm 1 \%$)
- Extra op-amp for output voltage instrumentation amplifier
- Over Current comparator for switch protection
$■$ Soft Start and 6V hysteresis under-voltage lockout for easy low surge off-line starting
- 1 A Peak Current Totem-Pole Output Drive
- Over-Voltage comparator eliminates output "runaway" due to load removal
- Large oscillator amplitude for better noise immunity

APPLICATIONS

- PC power supplies
- Lamp Ballasts

BLOCK DIAGRAM (Pin out shown is for DIP)

PIN CONFIGURATION

ML4813
16-Pin DIP

ML4813
16-Pin SOIC

PIN DESCRIPTION (DIP)

PIN \#	NAME	FUNCTION
1	I(LIMIT)	Current limit sense pin. Normally connected to sense resistor. When this pin exceeds 1V, the PWM cycle is terminated.
2	SOFT START	Normally connected to a Soft Start capacitor.
3	COMP	Output of error amplifier and input to PWM comparator.
4	V(FB)	Control loop feedback voltage. 5
6	OVP	Input to over voltage comparator. Output of uncommitted op-amp.
7	OA-	Oegative input of uncommitted op-amp.
8	OA+	Positive input of uncommitted op-amp.

PIN \#	NAME	FUNCTION
9	$R(T)$	Oscillator timing resistor pin. A 5V source sets a current in the external resistor which is mirrored to charge C(T).
10	SYNC	Input used to synchronize the oscillator to an external source.
11	PWR GND	Return for the High Current Totem pole output.
12	OUT	High Current Totem pole output. 13
14	VV VCE	Positive Supply for the IC. Buffered output for the 5V voltage reference.
15	SIGNAL GND	Analog signal ground. 16
C(T)	Timing Capacitor for the Oscillator.	

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Current (l_{CC}) 40mA Output Current, Source or Sink (Pin 12) DC
Output Energy (capacitive load per cycle) 5μ)
Error Amp Sink Current (pin 3) 10mA
Oscillator Charge Current 5mA
Analog Inputs (pins 1, 3-8) $\ldots \ldots \ldots \ldots \ldots . . .$.

Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots . \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $\ldots+260^{\circ} \mathrm{C}$
Thermal Resistance ($\theta_{I A}$)
Plastic DIP or SOIC
$65^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range ML4813C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	90	97	104	KHz
Initial Accuracy	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<18 \mathrm{~V}$		0.3		$\%$
Voltage Stability			2		$\%$
Temperature Stability	line, temp.	88		108	KHz
Total Variation			1.0		V
Ramp Valley			4.3		V
Ramp Peak		4.8	5.0	5.2	V
R(T) Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {PIN } 16}=2 \mathrm{~V}$	7.5	8.4	9.3	mA
Discharge Current (pin 8 open)	$\mathrm{V}_{\text {PIN } 16}=2 \mathrm{~V}$	7.2	8.4	9.5	mA
Sync Pulse Threshold		.8	1.4	2.0	V
Sync Input Bias Current			350	800	$\mu \mathrm{~A}$

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5.00	5.05	V
Line Regulation	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		6	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		3	20	mV
Temperature Stability			.4		$\%$
Total Variation	line, load, temp.	4.9		5.1	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ Hrs, (note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-30	-85	-180	mA

Error Amplifier Section		-15		15	mV
Input Offset Voltage			-0.1	-1.0	$\mu \mathrm{~A}$
Input Bias Current	$1<\mathrm{V}_{\text {PIN } 3}<5 \mathrm{~V}$	60	75		dB
Open Loop Gain	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	60	70		dB
PSRR	$\mathrm{V}_{\text {PIN 3 }}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4 }}=6.2 \mathrm{~V}$	2	12		mA
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=4.8 \mathrm{~V}$	-0.5	-1.0		mA
Output Source Current	$\mathrm{I}_{\text {PIN 3 }}=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN 4 }}=4.8 \mathrm{~V}$	5.3	6.4		V
Output High Voltage	$\mathrm{I}_{\text {PIN 3 }}=2 \mathrm{~mA}, \mathrm{~V}_{\text {PIN 4 }}=6.2 \mathrm{~V}$		0.5	1.0	V
Output Low Voltage			1.0		MHz
Unity Gain Bandwidth					

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Un-Committed Op Amp					
Input Offset Voltage		-10		10	mV
Input Bias Current			-0.1	-2.0	$\mu \mathrm{A}$
Input Offset Current		-0.35		0.35	$\mu \mathrm{A}$
Open Loop Gain			90		dB
PSRR		80	125		dB
Output High Voltage	$\mathrm{IPIN} 3=-10 \mathrm{~mA}$	6.5	8		V
Output Low Voltage	$\mathrm{R}_{\text {L(PIN 6) }}=10 \mathrm{~K} \Omega$. 2	. 5	V
I(LIMIT) Comparator					
Input Trip Point	Output Off	. 8	1.0	1.2	V
Input Bias Current			-2	-15	$\mu \mathrm{A}$
Propagation Delay			150		nS

OVP Comparator

Input Trip Point	Output Off	5.5	5.6	5.7	V
Hysteresis	Output On		100		mV
Input Bias Current			-0.3	-3	$\mu \mathrm{~A}$

PWM Comparator

Input Common Mode Range		-0.2		5.5	V
Input Bias Current			-2	-10	$\mu \mathrm{~A}$
Propagation Delay			150		nS

Soft Start Section	$\mathrm{V}_{\text {PIN } 2}=1 \mathrm{~V}$	40	60	80	$\mu \mathrm{~A}$	
Soft Start Current (pin 2)						
Output Section	$\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$		0.1	0.4	V	
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V	
Output Voltage Low	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$		13	13.6		
Output Voltage High	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	12	13.4		V	
Output Voltage Low in UVLO	$\mathrm{I}_{\mathrm{OUT}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.1	0.8	V	
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		nS	

Under-Voltage Lockout

Start-up Threshold		15	16	17	V
Shut-Down Threshold		9	10	11	V
$V_{\text {REF Good Threshold }}$			4.4		V

Total Device

Supply Current	Start-up, $\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$.9	1.5	mA
	Operating		20	30	mA
Internal Shunt Zener Voltage	$\mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}$	25	30	34	V

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: V_{CC} is raised above the Start-up Threshold first to activate the IC, then returned to 15 V .

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4813 oscillator charges the external capacitor (C_{T}) with a current ($\mathrm{I}_{\mathrm{SET}}$) equal to $5 / \mathrm{R}_{\text {SET }}$. When the capacitor voltage reaches the upper threshold, the comparator changes state and the capacitor discharges to the lower threshold through Q1. While the capacitor is discharging, Q2 provides a high pulse.
The Oscillator period can be described by the following relationship:

$$
T_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where:

$$
\mathrm{T}_{\mathrm{RAMP}}=\mathrm{C}(\text { Ramp Valley to Peak }) \div \mathrm{I}_{\mathrm{SET}}
$$

and:

$$
\begin{aligned}
\mathrm{T}_{\text {DEADTIME }}= & \mathrm{C}(\text { Ramp Valley to Peak }) \div \\
& \left(8.4 \mathrm{~mA}-\mathrm{I}_{\mathrm{SET}}\right)
\end{aligned}
$$

A pulse of a duration shorter than $T_{\text {DEADTIME }}$ from an external frequency source set to a higher frequency than foSC can be applied to pin 10 to synchronize the oscillator. $\mathrm{R}(\mathrm{SYNC})$ and $\mathrm{C}(\mathrm{SYNC})$ shorten longer pulses.

Figure 1. Oscillator Block Diagram

Figure 2. Oscillator Timing Resistance vs. Frequency

OUTPUT DRIVER STAGE

The ML4813 Output Driver is a 1A peak output high speed totem pole circuit designed to quickly drive capacitive loads, such as power MOSFET gates.

Figure 3. Output Saturation Voltage vs. Output Current

ERROR AMPLIFIER

The ML4813 error amplifier is a high open loop gain, wide bandwidth, amplifier.

Figure 4. Error Amplifier Configuration

Figure 5. Error Amplifier Open-Loop Gain and Phase vs. Frequency

UN-COMMITTED OP-AMP

The ML4813 contains an un-committed op-amp which is normally configured as a differencing amplifier to sense the output voltage. The output voltage in the flyback configuration is not ground referenced. The opamp in the ML4813 is a PNP input amplifier similar to the LM324 but with an open emitter output stage (class A).

UNDER VOLTAGE LOCKOUT

On power-up the ML4813 remains in the UVLO condition; output low and quiescent current low. The IC becomes operational when V_{CC} reaches 16 V . When V_{CC} drops below 10 V , the UVLO condition is imposed. During the UVLO condition, the $5 \mathrm{~V} \mathrm{~V}_{\text {REF }}$ pin is "off", making it usable as a "flag" for starting up a downstream PWM converter.

Figure 6. Under-Voltage Lockout Block Diagram

Figure 7. Reference Load Regulation

Figure 8. Total Supply Current vs. Supply Voltage

APPLICATIONS

The ML4813 is used to implement a discontinuous mode flyback (buck-boost) power factor regulator. This topology is particularly well suited for low power applications such as: fluorescent ballasts; and low power switching supplies. Also it is a useful topology when there is a requirement for the output voltage to be lower than the peak input voltage, or where an isolated output is required. This is not possible with the boost topology, where the output voltage must always be higher than the maximum peak of the input voltage range. The typical input range for the flyback power factor regulator is from 90 VAC to 260 VAC.
The regulator operates in the discontinuous inductor current conduction mode. The inductor energy stored during the "ON" time of the power switch Q is completely delivered to the output capacitance during the "OFF" time. At steady state conditions, the inductor current at the beginning of the "ON" time starts to ramp-up from 0 Amps to a value that is determined by the instantaneous value of the input full wave rectified voltage; the "ON" time as it is set by the error amplifier and the PWM comparator; and finally by the inductor itself (L).

Figure 9. Block Diagram of the Regulator

The expression for the inductor peak current is given by:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}}(\theta)=\frac{\mathrm{V}_{\mathbb{N}}(\theta) \mathrm{t}_{\mathrm{ON}}}{\mathrm{~L}} \tag{1}
\end{equation*}
$$

Where:
$I_{L}(\theta)=$ The instantaneous peak inductor current.
$t_{O N}=$ Power switch "on" time.
$\mathrm{V}_{\mathrm{IN}}(\theta)=\mathrm{V}_{\mathrm{P}} \sin \theta=$ Instantaneous Input Voltage.
$V_{P}=$ Input Peak Voltage.
Figure 10, is a diagram of the relationship between the low frequency envelope and the high frequency inductor current. Note that for clarity the scale between the two waveforms has not been preserved. Normally for 60 Hz input line and 100 KHz switching frequency, each half of the sine wave contains approximately 833 high frequency triangular waveforms.

Figure 10. Switch and Line Currents in the Flyback PFC Circuit
The envelope of the peaks of the switch current, which in this case represent the current drawn from the input source, have a sinewave shape. This relationship is shown as:

$$
\begin{equation*}
I_{L}(\theta)=I_{P} \sin \theta \tag{2}
\end{equation*}
$$

Combining (1) and (2) the following useful relationship is obtained:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{L} \mathrm{I}_{\mathrm{P}}}{\sqrt{2} \mathrm{~V}_{\mathrm{RMS}}} \tag{3}
\end{equation*}
$$

Note that $\mathrm{V}_{\mathbb{I N}}(\theta)=\mathrm{V}_{\mathrm{P}} \sin \theta$, and also $\mathrm{V}_{P}=\sqrt{2} \mathrm{~V}_{\text {RMS }}$. The average value of the input triangular current is:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{AVG}}(\theta)=\frac{\mathrm{t}_{\mathrm{ON}}}{2 \mathrm{~T}} \mathrm{Ip}_{\mathrm{p}} \sin \theta \tag{4}
\end{equation*}
$$

Where:
$\mathrm{I}_{\mathrm{AVG}}=$ Average value of the switch current.
This is the value of the current at the input of the regulator after filtering.
$\mathrm{t}_{\mathrm{ON}}=$ Switch "on" time.
T = Period of the switch cycle.
Substitution of (3) into (4) yields.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{AVG}}(\theta)=\frac{\mathrm{L} \mathrm{I}^{2}}{2.828 \mathrm{~T} \mathrm{~V}} \mathrm{RMS} \text { } \sin \theta \tag{5}
\end{equation*}
$$

Equation (5) clearly shows that the average value of the switch current is sinusoidal and in phase with the input voltage. The peak value of the average current is:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{AVG}(\mathrm{PEAK})}=\frac{\mathrm{L} \mathrm{I}^{2}}{2.828 \mathrm{~T} \mathrm{~V}_{\mathrm{RMS}}} \sin \theta \tag{6}
\end{equation*}
$$

Also:

$$
\begin{equation*}
I_{\mathrm{AVG}(\mathrm{PEAK})}=\frac{\sqrt{2} \mathrm{P}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{RMS}}} \tag{7}
\end{equation*}
$$

Solving equations (7) and (6) for P_{IN} :

$$
\begin{equation*}
P_{I N}=\frac{1}{4} L I_{P^{2}} f \tag{8}
\end{equation*}
$$

For optimum performance and the lowest inductor peak currents, the inductor current should be at the verge of continuity at the lowest operating voltage point and at full load. The above can be satisfied if:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{P}} \leq \frac{\mathrm{V}_{\mathrm{IN}} \mathrm{~V}_{\mathrm{OUT}}}{\mathrm{fL}\left(\mathrm{~V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{OUT}}\right)} \tag{9}
\end{equation*}
$$

Where: $\mathrm{V}_{\mathrm{IN}}=\sqrt{2} \times \mathrm{V}_{\mathbb{I N}} \operatorname{MIN}$ (RMS)
Finally (8) and (9) can be combined to derive an upper bound for the inductor value that will guarantee that the regulator always stays in the discontinuous mode of operation. If the regulator were to operate in the continuous mode the average input current would not be sinusoidal.

$$
\begin{equation*}
\mathrm{L} \leq\left[\frac{\mathrm{V}_{\mathrm{IN}} V_{\mathrm{OUT}}}{2 \sqrt{\mathrm{f} \mathrm{P}_{\mathrm{IN}}}\left(\mathrm{~V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{OUT}}\right)}\right]^{2} \tag{10}
\end{equation*}
$$

FLYBACK INDUCTOR CALCULATION

Equation (10) gives the upper bound for the inductor value for any set of specified operating conditions. Normally a few iterations may be required, for finalizing the value. The reason for this is that equation (10) does not contain parameters to correct for second or third order effects. All this means that a good initial value for the inductor is probably 10 to 20% lower than the value calculated by the right hand side expression in (10).
Several core materials are candidates for the inductor, such as: powder iron cores, gapped ferrites, moly permalloy cores, etc. In the application that will be described later, a gapped ferrite core is used.
There are no particular restrictions on the inductor except that the inductance is of correct value and the losses are acceptable.

INPUT BYPASS CAPACITANCE

The triangular high frequency current is bypassed by the input capacitor $\left(\mathrm{C}_{1}\right)$ labeled C_{7} in Figure 12. This is a high quality film capacitor with low ESR value for minimum losses and heating. A polyester, polypropylene or x-type (for line side) is a good candidate. Typical values, depending on the power level, can range anywhere from $0.33 \mu \mathrm{~F}$ to $1.5 \mu \mathrm{~F}$. The
next filtering stage of the RFI filter which has an inductor as input isolates C_{7} from the other capacitors which may be present at the input circuit. Note that C_{1} $\left(C_{7}\right)$ can be on either side of the bridge rectifier. The preferred location for low crossover distortion is at the input side. The voltage ripple across this capacitor is:

$$
\begin{equation*}
V_{C(P-P)}=\frac{D}{C_{1} f} \sqrt{\frac{P_{I N}}{L f}}-\frac{\sqrt{2} P_{I N}}{C_{1} f V_{I N}} \tag{11}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{C}(\mathrm{P}-\mathrm{P})}=$ Peak to peak worst case high frequency capacitor voltage.
D = Switch Duty Cycle.
Therefore the RFI filter that follows has to be able to attenuate $\mathrm{V}_{\mathrm{C}(\mathrm{P}-\mathrm{P})}$ to the levels set by the relevant regulatory specifications.

INPUT TRANSIENT OVERVOLTAGE PROTECTION

Careful examination of the power circuits reveals that there is no large capacitance at the input of the regulator. The only capacitances present are the RFI filter capacitors. These capacitors have a combined value in the range of a couple of microfarads. Thus their ability to absorb and minimize any line induced transients is almost non existent. Transients can occur also under sudden load removal. If the line impedance is inductive, hazardous drain source voltages may be generated leading to the destruction of the power switch. To keep this from happening a transient overvoltage protection device should be chosen such that enough safety margin is allowed for the power switch. A good rule of thumb is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{VDSS}}>\mathrm{V}_{\mathrm{ZA}}+\mathrm{V}_{\mathrm{OUT}(\mathrm{OVP})} \tag{12}
\end{equation*}
$$

Where:

> BVDSS $=$ Drain-Source breakdown voltage for the FET.
> $V_{\text {ZA }}=$ Activation or clamping voltage of the over-voltage transient protector.
> $V_{\text {OUT(OVP) }}=$ Maximum output voltage. This is set by the OVP function of the controller, and will be covered later.

THE OUTPUT CIRCUIT

The output circuit for this topology, although it is nonisolated, does not share the same ground with the power circuit. Therefore connecting the two grounds with the measuring leads of instruments should be avoided. This is a common mistake especially with the oscilloscope leads.
The output voltage "rides" on the input voltage when the (+) output is measured with respect to PGND (figure 11).
The extra OP-AMP provided in the ML4813 is used to sense the output voltage for regulation and over voltage conditions. This op-amp is connected as a difference amplifier with its output referenced to PGND. Resistors RH1, RH2, RL1, RL2 are used to scale down the voltage.

Figure 11. Output Voltage with Respect to PGND
Normally RH1 $=$ RH2 $=$ RH and RL1 $=$ RL2 $=$ RL. Then the voltage designated as V_{S} in Figure 9 is given by:

$$
\begin{equation*}
V_{S}=V_{\text {OUT }} \frac{R L}{R H+R L} \tag{13}
\end{equation*}
$$

OUTPUT CAPACITANCE

The output capacitance should be calculated such that it has the required output ripple at the worst case operating point. In addition the ESR should be sufficiently low to prevent dissipation due to RMS currents. The first criterion can be met by choosing the value of the output capacitor based on the following:

$$
\begin{equation*}
\mathrm{C} \geq \frac{\mathrm{P}_{\mathrm{IN}}}{2 \pi \mathrm{f}_{\mathrm{L}} \Delta \mathrm{~V}_{\mathrm{R}} \mathrm{~V}_{\mathrm{OUT}}} \tag{14}
\end{equation*}
$$

Where:
$C=$ Total output capacitance.
$P_{I N}=$ Total input power.
$\Delta V_{R}=$ Peak output capacitor ripple voltage.
$V_{O U T}=$ Output Voltage.
$f_{L}=$ Line Frequency times $2(120$ for 60 Hz line $)$.

The second criterion for the selection of the output capacitor can be satisfied by choosing a component with adequately low ESR value, that can safely bypass the RMS currents.

OUTPUT DIODE

The output diode can be a "fast" or ultrafast" type depending on the operating frequency. Reverse recovery losses are low since at steady state and under normal operating conditions the regulator operates in discontinuous current mode. The diode should be rated to handle the output current. The resulting power dissipation will be the forward drop of the diode times the output current.

POWER SWITCH

If a power FET is used, it should be sized for the required efficiency. Lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ devices will yield lower losses, but if they are operated at high frequencies $(100 \mathrm{KHz}$) higher charge dumping losses $(1 / 2$ $\mathrm{C}_{\mathrm{DS}} \mathrm{V}_{\mathrm{DS}}{ }^{2} \mathrm{f}$) will be experienced. The RMS current value through the power FET and the sensing resistor is:

$$
\begin{equation*}
I_{R M S}=\sqrt{\frac{L I_{P}^{3} f_{L}}{3 \sqrt{2} V_{R M S}}} \sqrt{\sum_{k=1}^{r} \sin ^{2} \frac{k \pi}{r}} \tag{15}
\end{equation*}
$$

Where:
$I_{\text {RMS }}=$ Total RMS current through the power FET and sense resistor.
$f_{L}=$ Line Frequency times 2 (120 for 60 Hz line).
$r=f_{S W I T C H} / f_{L}$.
Table 1 is provided to assist in calculating (15) above. When the power switch is a bipolar transistor (constant V_{CE} drop) then the power dissipation produced can be calculated by using (16):

$$
\begin{equation*}
P_{\mathrm{D}}=\frac{0.9 \mathrm{P}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{RMS}}} \mathrm{~V}_{\mathrm{CE}} \tag{16}
\end{equation*}
$$

Where:
$P_{D}=$ Power dissipation by the transistor (conduction losses).
$\mathrm{V}_{\mathrm{RMS}}=\mathrm{RMS}$ value of the minimum
input voltage.
$\mathrm{V}_{\mathrm{CE}}=$ Collector Emitter forward drop of the power transistor.

OFF-LINE START-UP AND BIAS SUPPLY GENERATION

A fast starting circuit is shown in figure 12. MOSFET Q2 quickly charges the IC's V_{CC} capacitor (C8) when the supply is initially turned on. This allows the supply to come on less than 1 second after AC power is applied. A simpler start-up circuit may be used which replaces the active circuit with a $39 \mathrm{~K} \Omega 2 \mathrm{~W}$ resistor but starts more slowly (up to 15 seconds under low line conditions). Systems which do not require quick starting can reduce cost with the latter start-up method.

$\mathbf{f} \mathbf{f} \mathbf{W I T C H}$ $\mathbf{(K H z)}$	\mathbf{r}	$\sqrt{\sum_{\mathbf{k}=\mathbf{1}}^{\mathbf{r}} \sin ^{2} \frac{\mathbf{k} \boldsymbol{\pi}}{\mathbf{r}}}$
20	167	9.1
30	250	11.2
40	333	12.9
50	417	14.4
60	500	15.8
70	583	17.1
80	667	18.3
90	750	19.4
100	833	20.4
110	917	21.4
120	1000	22.4
130	1083	23.3
140	1167	25.2
150	1250	25.7
160	1333	26.5
170	1417	27.3
180	1500	28.0
190	1583	28.9

Table 1. Figures for Calculating $\mathbf{I}_{\text {RMS }}$ (eq. 15)

POWER FACTOR ENHANCEMENT

Some combinations of line and load may exhibit distortion of the input current waveform. This distortion is usually caused by the inductor "ringing" with the $C_{D S}$ of the power MOSFET, resulting in a non-zero inductor current at the beginning of the next cycle. This ringing can be dampened by using R2 and D7 in figure 12. Applications which can get by with slightly worse power factor can eliminate these components.

ADIUSTING THE OUTPUT VOLTAGE

The error amplifier creates an error voltage from the difference between the output voltage presented on pin 6 and the 5 V internal reference. Since the output voltage is not ground referenced, the ML4813's internal op-amp is connected as an instrumentation amplifier (figure 13).

The output voltage is set by a combination of resistors which determine the relationship between ($\mathrm{V}_{\mathrm{OUT}}{ }^{+}$$\mathrm{V}_{\text {OUT }}-$) and the output of the op-amp (pin 6). For the following discussion, R15' $=$ R15 + R16 and R14 $=$ R14 + R13. The differencing amplifier operation depends on the following relationships:

Figure 13. Ground Referencing the Output Voltage
Then:

$$
V_{\text {OUT }}=\left(\frac{5 V \times R 18}{R 17+R 18}\right)\left(\frac{R 15^{\prime}}{R 15^{\prime}+R 25}\right)\left(\frac{R 14^{\prime}}{R 12}+1\right)
$$

Since R25 is a low value compared to R15', the second term reduces to approximately 1 . The third term is set at approximately 200 . Therefore the above equation reduces to:

$$
V_{\text {OUT }} \cong 1000 \times\left(\frac{\mathrm{R} 18}{\mathrm{R} 17+\mathrm{R} 18}\right)
$$

The over voltage comparator has a threshold that is set for $1.12 \times V_{\text {OUT }}$ when pin 5 and pin 6 are connected directly. Figure 14 shows the connection for setting an OVP trip point higher than $1.12 \times \mathrm{V}_{\text {OUT, }}$ where:

Figure 14. Setting $O V P$ for a $V_{\text {OVP }}>1.12 \times V_{\text {OUT }}$

$$
V_{\mathrm{OVP}} \cong 1.12 \times \mathrm{V}_{\mathrm{OUT}} \times\left(\frac{\mathrm{RA}+\mathrm{RB}}{\mathrm{RB}}\right)
$$

Figure 15. Setting $O V P$ for a $V_{O V P}<1.12 \times \mathbf{V}_{\text {OUT }}$
Figure 15 shows OVP set for a voltage lower than $1.12 \times$ $V_{\text {OUT }}$ where:

$$
\mathrm{V}_{\mathrm{OVP}} \cong 1.12 \times \mathrm{V}_{\mathrm{OUT}} \times\left(\frac{\mathrm{RD}+\mathrm{R} 24}{\mathrm{RD}}\right)
$$

INDUCTOR INFORMATION

L3 is the flyback inductor and also provides the operating power for the control circuitry. A gapped ferrite pot core was chosen for this application for it's modest high frequency losses with high ripple current operation. Some possible choices are:

Manufacturer	Part \#	Total Gap	$\mathbf{N p}_{\mathbf{p}}$
Magnetics Inc.	F43019	$.05^{\prime \prime}$	32
Ferroxcube (Phillips)	3019 PL00-3F3	$.05^{\prime \prime}$	32
Ferroxcube (Phillips)	3019 PA125-3C8	$.07^{\prime \prime}$	38

The first 2 cores are sold ungapped and require the use of a $.025^{\prime \prime}$ spacer to gap the center leg to yield a total gap length of $.05^{\prime \prime}$. If an ungapped core is used, a "shorted turn" should be employed as shown below (figure 16) to prevent radiated EMI. The third core listed is sold with its center leg pre-gapped (. $07^{\prime \prime}$ total), hence the outside of the core closes completely providing shielding without the shorted turn being required. N_{S} should be 3 turns. All windings \#24AWG wire.
L1 and L2 inductors are constructed using a powdered iron. This is a suitable material for these inductors since the high frequency ripple currents (and resulting flux excursions) are much less severe than for L3. The core selected is:

SHORTED TURN (COPPER FOIL)

Figure 16. Construction of EMI Shield for Ungapped Cores

Note: All resistor values $1 / 4 \mathrm{~W} \pm 5 \%$ unless otherwise specified. All capacitor values $\pm 10 \%$ unless otherwise specified.

Table 2. Component Values for Figure 8

ORDERING INFORMATION

	TEMPERATURE	
PART NUMBER	RANGE	PACKAGE
ML4813CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4813CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S16W)

Zero Voltage Switching Resonant Controller

GENERAL DESCRIPTION

The ML4815 is designed to facilitate zero-voltage switched (ZVS) resonant converters requiring constant off-time and variable on-time control. Since the power MOSFET is turned on at zero voltage in ZVS resonant converters, power dissipation due to charge-dumping of the MOSFET drain-source capacitance is eliminated, allowing high frequency operation and power density to be maximized. MOSFET parasitic drain-source capacitance can also be used as part of the resonant circuit, minimizing component count.
The ML4815 features a monostable multivibrator for precise off-time setting. The on-time is modulated through a ramp comparator in a manner similar to PWM converters. Either current-mode control with maximum on-time clamp or voltage-mode control with input feedforward can be selected.
ML4815 supports pulse-by-pulse (peak) current limiting as well as "hiccup" mode for fault protection. The controller is designed for operation up to 2 MHz . ML4815 also includes a wide band error amplifier and a high peak current output driver which minimizes cross-conduction current.

FEATURES

- Supports Single-Switch ZVS Resonant Topology with Minimal External Components
- Ideal for Simple, High Density DC to DC Converters
- Small Converter Frequency Variation from No-Load to Full-Load
- High Current (2A Peak) Totem-Pole Output Drive with Low Cross Conduction
- Precision Buffered 5.1V Reference ($\pm 2 \%$)
- Wideband $(5.5 \mathrm{MHz})$, High Slew Rate ($12 \mathrm{~V} / \mu \mathrm{S}$) Error Amp.
- Under-Voltage Lockout with Low Current Start-Up
- Integrating Fault Detection/Soft-Start Reset

BLOCK DIAGRAM (Pin out shown is for 16 -pin DIP)

PIN CONNECTIONS

ML4815
16-Pin DIP

ML4815
20-Pin PCC

PIN DESCRIPTION

PIN \#	NAME	FUNCTION
1	INV	Inverting input to error amp.
2	NI	Non-inverting input to error amp.
3	E/A OUT	Output of error amplifier and input to main comparator.
4	RAMP	Non-inverting input to main comparator. Connected to pin 8 for feedforward voltage-mode control or to pin 5 for currentmode control.
5	I(LIM)	Current limit sense pin. Normally connected to current sense resistor.
6	$\mathrm{R}_{\mathrm{D}} \mathrm{C}_{T}$	Off-time setting capacitor and resistor.
7	R_{C}	Resistor to pin 6 to limit C_{T} charging rate.
8	FF	Capacitor to generate feedforward ramp.

PIN \#	NAME	FUNCTION
9	SOFT START	Normally connected to Soft Start Capacitor and charging resistor.
10	RC (RESET)	Timing Capacitor for over-current integration and restart-delay.
11	GND	Analog Signal Ground. 12
13	OUT	High Current Totem pole output. Return for the High Current
14	V_{C}	Totem pole output. Positive Supply for the High
15	$\mathrm{~V}_{\mathrm{CC}}$	Current Totem pole output. Positive Supply for the IC. Buffered output for the 5.1V voltage reference.
16	5.1 V REF	

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (Pins 14, 15) 30 V
Output Current, Source or Sink (Pin 12)
DC
Pulsed ($0.5 \mu \mathrm{~s}$) 2A

Analog Inputs (Pins 1, 2, 4, 5, 8, 9, 10) $\ldots \ldots \ldots . .-0.3 \mathrm{~V}$ to 6 V
Error Amplifier Output Current (pin 3) -5mA
Soft Start Sink Current (Pin 9) 100mA
Feedforward Sink Current (Pin 8) 80mA

Junction Temperature
ML4815C
$125^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $\ldots+260^{\circ} \mathrm{C}$
Thermal Resistance ($\theta_{\text {JA }}$)
Plastic DIP $65^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Chip Carrier (PCC) $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range ML4815C ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, these specifications apply for $C_{T}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{C}}=100 \Omega, \mathrm{R}_{\mathrm{D}}=2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range. Pin numbers refer to 16-pin DIP.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Section	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
Output Voltage	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$		2	20	mV
Line Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Load Regulation	$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$, (note 1$)$.2	.4	$\%$
Temperature Stability	line, load, temp (note 1)	4.95		5.25	V
Total Variation	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Output Noise Voltage	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1$)$		5	25	mV
Long Term Stability	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA
Short Circuit Current					

Error Amplifier Section

Input Offset Voltage				20	mV
Input Bias Current			.6	3	$\mu \mathrm{~A}$
Input Offset Current			.1	1	$\mu \mathrm{~A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	96		dB
CMRR	$1.5<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}$	75	95		dB
PSRR	$12<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	75	110		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Source Current	$\mathrm{V}_{\text {PIN 3 }}=4 \mathrm{~V}$	-.5	-1.3		mA
Output High Voltage	$\mathrm{IPIN}=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
Output Low Voltage	$\mathrm{IPIN}=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth	(note 1)	3	5.5		MHz
Slew Rate	(note 1)	6	12		$\mathrm{~V} / \mu \mathrm{s}$

RAMP Comparator Section

Pin 4 Bias Current	$\mathrm{V}_{\text {PIN } 7}=0$		-0.7		$\mu \mathrm{A}$
Pin 3 Zero DC Threshold	$\begin{aligned} & V_{\text {PIN } 2}=2 \mathrm{~V}, V_{\text {PIN } 1}=V_{\text {PIN } 3} \\ & V_{\text {PIN } 5}=0, V_{\text {PIN } 6}=1.5 \mathrm{~V} \\ & V_{\text {PIN } 8}=2 \mathrm{~V} \end{aligned}$	1.05	1.20	1.55	V
Delay to Output	$\mathrm{C}_{\mathrm{L}}=0$, (note 1)		55		ns

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise noted, these specifications apply for $C_{T}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{C}}=100 \Omega, \mathrm{R}_{\mathrm{D}}=2 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range. Pin numbers refer to 16-pin DIP.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Current Limit Comparator					
Pin 5 Input Bias Current	$0<\mathrm{V}_{\text {PIN } 5}<4 \mathrm{~V}$		2		$\mu \mathrm{A}$
Current Limit Threshold			1.41		V
Hysteresis			30		mV
Delay to Output	$\mathrm{V}_{\text {PIN } 10}=0, \mathrm{C}_{\mathrm{L}}=0$ (note 1)		50		ns
One-Shot Section					
Off-Time Initial Accuracy	$\mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.45		$\mu \mathrm{s}$
Off-Time Voltage Stability	$\mathrm{C}_{\mathrm{L}}=0,12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		5		\%
Off-Time Temperature Stability	$C_{L}=0$ (note 1)		5		\%
Off-Time Total Variation	$C_{L}=0$, line, temp (note 1)		6		\%
Feedforward/Maximum On-Time Clamp Section					
Discharge Current	$\mathrm{V}_{\text {PIN 8 }}=2.5 \mathrm{~V}$		30		mA
On-Time Initial Accuracy	$\begin{aligned} & \mathrm{C}_{\mathrm{FF}}=330 \mathrm{pF}, \mathrm{R}_{\mathrm{FF}}=2.7 \mathrm{~K} \Omega \text { to } \mathrm{V}_{\mathrm{REF}}, \\ & \mathrm{C}_{\mathrm{L}}=0 \end{aligned}$		1.0		$\mu \mathrm{s}$
Shutdown/Restart Section					
Pin 10 Charging Current			-250		$\mu \mathrm{A}$
Overload Shutdown Threshold			2.3		V
Restart Threshold			1.1		V
Soft-Start Section					
Input Bias Current	$\mathrm{V}_{\text {PIN } 9}=4 \mathrm{~V}$		1		$\mu \mathrm{A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 9}=1 \mathrm{~V}$		25		mA

Under-Voltage Lockout Section

Start Threshold			13.4		V
UVLO Hysteresis			3.6		V

Output Section					
Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$		0.25	0.40	V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$		13.0		V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$		12.7		V
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (note 1)		30		ns

Supply Current

Start Up Current	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.0	3.0	mA
	$\mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$		2.5	3.5	mA
Operating I_{CC}			28	38	mA

FUNCTIONAL DESCRIPTION

ML4815 PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS

High speed circuits demand careful attention to layout and component placement. To assure proper performance of the ML4815, follow these rules: 1) Use a ground plane. 2) Damp or clamp parasitic inductive kick energy from the gate of driven MOSFET. Don't allow the output pins to ring below ground. A series gate resistor or a shunt 1 Amp Schottky diode at the
output pin will serve this purpose. 3) Bypass $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{C}_{1}}$ and $\mathrm{V}_{\mathrm{REF}}$. Use $1 \mu \mathrm{~F}$ monolithic ceramic capacitors for V_{CC} and V_{C} with low equivalent series inductance. Allow less than 1 cm of total lead length for each capacitor between the bypassed pin and the ground plane. 4) Treat the off-time setting capacitor, C_{T}, like a bypass capacitor.

ERROR AMPLIFIER CIRCUIT

Simplified Schematic

Open-Loop Frequency Response

Unity Gain Slew Rate
(v)

CONTROL METHODS

In current-mode control, the current transformer output is fed into the RAMP comparator input. The current-sense waveform is used as the on-time
modulating ramp. The on-time can be clamped to a maximum by using $R_{\text {FF }}$ and C_{FF} as shown.

Current-Mode Control with Maximum On-Time Clamp

In feedforward voltage-mode control, the on-time modulating ramp is generated with an external capacitor $C_{F F}$ from pin 8 to the ground. $C_{F F}$ is charged through an external resistor R_{FF}. The maximum on-time
is the time taken to charge C_{FF} to 3.7 V . Since the charging current depends on $\mathrm{V}_{\mathbb{N}}$, the resulting maximum on-time varies with $\mathrm{V}_{\mathbb{I}}$.

Feedforward Control

OUTPUT SECTION

When driving power MOSFET's with high equivalent gate capacitance $\left(\mathrm{C}_{\mathrm{G}}>3 \mathrm{nF}\right)$, it is advisable to use an external 1N4148 diode between V_{CC} and V_{C} pins (figure above) to reduce extra power dissipation caused by slow turn-off of Q_{7}. In this case both V_{CC} and V_{C} pins should have bypass capacitors ($C=1 \mu \mathrm{~F}$) as close as possible to the IC pins.
I_{C} vs $\mathbf{C}_{\mathbf{L}}$

V_{OH} Curve

ONE-SHOT

The figure below shows the detailed block diagram of the one-shot. The one-shot is programmed with external resistors $\mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{D}}$ and capacitor C_{T}. Assuming that CLK is low and Q_{2} conducts initially, the timing capacitor C_{T} is charged to $4 V$ through R_{C} and Q_{3}. This corresponds to the switch conduction cycle (on-time). When either the feedforward ramp or the sensed current signal exceeds the error amplifier output voltage, a trigger pulse is sent to the one-shot, setting the R-S latch X_{2} and disabling $Q_{3} . C_{T}$ is immediately discharged through R_{D} until C_{T} voltage reaches the lower threshold (2 V) of the Schmitt-trigger X_{1}. At this point, X_{1} output goes high, resetting $X_{2} . Q_{1}$ turns off, allowing Q_{3} to recharge C_{T} to 4 V . This time interval corresponds to the switch off-time. Since the off-time is simply the discharge time of C_{T}, one can express

$$
\mathrm{T}_{\text {OFF }}=0.69 \mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{T}}
$$

Block Diagram of the One-Shot

Timing Diagram of the One-Shot

The purpose of R_{C} is to slow the charging transient of C_{T} in order to widen the internal reset pulse. R_{C} is usually chosen such that the following inequality is satisfied.

$$
\frac{R_{C}}{R_{C}+R_{D}}<0.05
$$

Toff vs $\mathbf{R D}_{\mathrm{D}}$

ML4815

CONSTANT ON-TIME CLAMP (In Current-Mode Only)

In current-mode control, the maximum on-time can be clamped by using the comparator X_{1} (figure above). The internal transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and diode D_{2} discharges C_{FF} to approximately V_{BE}. The time taken to charge C_{FF} from $V_{B E}$ to $V_{B I A S}\left(=\frac{V_{\text {REF }}+0.488 V_{B E}}{1.488}\right)$ sets the maximum on-time. The diode D_{1} compensates the V_{BE} dependent $C_{F F}$ valley voltage. It can be shown that

$$
\mathrm{T}_{\mathrm{ON}(\mathrm{MAX})} \approx 1.115 \mathrm{R}_{\mathrm{FF}} \mathrm{C}_{\mathrm{FF}}
$$

and $T_{\mathrm{ON}(\mathrm{MAX})}$ is relatively independent of temperature.

CURRENT-LIMITING, OVERLOAD SHUTDOWN AND FAUIT MANAGEMENT

Overload Protection and Fault Management

ML4815 features a unique overload protection scheme. The power transistor current is compared with the current-limit threshold $(1.4 \mathrm{~V})$ of X_{3}. When the sensed current exceeds this threshold, the one-shot is triggered and the R-S latch X_{4} is set. The one-shot blanks the gate drive and X_{4} turns on the current source I_{F}. The external capacitor C_{RD}, which is normally fully discharged, is charged towards an overload threshold of 2.3 V . The packet of charge delivered to C_{RD} in each over-current cycle is $\mathrm{I}_{\mathrm{F}} \times \mathrm{T}_{\text {OFF }}$ (figure below). X_{4} is reset after the off-time elapses. If output short is removed before $C_{R D}$ reaches the overload threshold, $C_{R D}$ will be discharged through $R_{R D}$ and normal operation will resume. Under persistent output short circuit, CRD is
charged until it reaches 2.3 V . The gate drive is immediately terminated and the soft-start capacitor is discharged. C_{RD} then discharges through R_{RD} towards the restart threshold (1.1V). Gate drive remains off until C_{RD} is discharged below 1.1 V . The time taken for C_{RD} to discharge to the restart threshold is the restart-delay time. This delay reduces the average power delivered to the load during overload, thus protecting both the load and the controller. If overload persists, the controller will continue to hiccup until the cause of overload is removed. The controller undergoes soft-start at each restart. The overload shutdown and restart sequence for a converter with non-bootstrapped power supply V_{CC} is illustrated in figure.

Current Limiting Overload Shutdown and Restart Sequence (Non-Bootstrapped Operation)

For a bootstrapped converter (where controller V_{CC} is obtained from an auxiliary winding of the main transformer), overload shutdown causes both the converter output and the controller V_{CC} to collapse. Undervoltage lockout (UVLO) is activated and the onchip bandgap reference is disabled. ML4815 dissipates only 2 mA of supply current during shutdown. Since

Simplified VCC Bootstrapping Scheme

$I_{\text {BLEED }}$ is higher than the start-up current, C_{S} will be charged towards the UVLO start threshold. When this happens, the entire controller becomes operational except that the gate drive remains off. I_{CC} jumps to its full operational value. Since $V_{C C}$ bootstrapping is not yet available, $I_{C C}$ will discharge C_{S} below the UVLO stop threshold. The on-chip reference will again be disabled with the controller supply current reduced to 2 mA . I bleed will again charge C_{S} towards the UVLO start threshold. The process repeats until $C_{R D}$ is discharged below the restart threshold. The shutdown and restart sequence is illustrated with the timing diagram below.

Overload Shutdown UVLO and Restart Sequence (Bootstrapped Operation)

OPEN LOOP LABORATORY TEST FIXTURE

SCHEMATIC OF THE 50W ZVS DC/DC CONVERTER

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4815CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4815CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q20)

High Frequency Multi-Mode Resonant Controller

GENERAL DESCRIPTION

The ML4816 controller IC is suitable for a wide range of resonant converter topologies. This controller can be used with Zero Current Switched (ZCS) Quasi Resonant Converters (QRC) requiring constant on-time and modulated off-time, as well as frequency modulated converters such as Series Resonant Converters operating above resonance.
The ML4816's oscillator features independent control of charging and discharging currents (on-time and offtime). Output frequency can be obtained either proportional or inversely proportional to the controlling voltage. In addition, both upper and lower frequency limits ($\mathrm{m}_{\text {MIN }}$ and $\mathrm{f}_{\text {MAX }}$) can be independently set.
Both pulse-by-pulse and DC current limiting are provided for. Overload protection (shutdown) is triggered after a programmable delay time. Restart after overload shutdown can be delayed by a programmable time. Internal logic disables the gate drive until the oscillator is stable.

The ML4816 includes under-voltage lockout with 6 V hysteresis and high current high speed totem pole output drivers for high speed drive of external MOSFETs.

FEATURES

- Supports Zero Current Switched (ZCS) QuasiResonant Converters
- Supports Series Resonant (ZVS) converters operating above resonance
- Wide oscillator frequency range
- Programmable $f_{\text {MIN }}$ and $f_{\text {MAX }}$ limits
- Practical Operation to 2.5 MHz (fosc)
- Low Start-up Current and Under-Voltage Lockout Circuits support Off-Line Operation
- Pulse by Pulse or DC Current Limiting
- Integrating Soft Start Reset (Fault Integration) with Programmable Restart Delay
- High current (1.5A peak) totem-pole output drive
- Precision buffered 5V Reference ($\pm 1 \%$)

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN \#	NAME	DESCRIPTION
1	l(FB)	Input for load current limit.
2	INV	Inverting input to error amp.
3	EA OUT	Output of error amplifier.
4	I(LIM) OUT	Output for load current limit amplifier.
5	F(LIM)	A voltage input sets the maximum on time for the timer.
6	$V(D)$	Controls the $\mathrm{C}(\mathrm{T})$ discharge current and oscillator off time. Connected to error amplifier output for off-time modulation and to $V($ REF) for constant off time.
7	V (F)	Controls the charging current and oscillator on time. Connected to error amplifier for on time modulation and connected to GND for constant on time.
8	$\mathrm{R}(\mathrm{C})$	External timing resistor to either GND or V (REF) sets the charging current (oscillator on time). This pin can either source or sink current.

\(\left.$$
\begin{array}{ccl}\text { PIN \# } & \text { NAME } & \text { DESCRIPTION } \\
\hline 9 & \text { R(D) } & \begin{array}{l}\text { External resistor from this pin to } \\
\text { GND sets the oscillator discharge } \\
\text { current (off time). }\end{array} \\
10 & \text { C(T) } & \begin{array}{l}\text { Timing capacitor for Oscillator. } \\
11\end{array} \\
12 & \text { GOFT START } & \begin{array}{l}\text { Signal ground. } \\
\text { Normally connected to Soft Start } \\
\text { capacitor. }\end{array} \\
13 & \text { RC(RESET) } & \begin{array}{l}\text { Timing elements for Integrating } \\
\text { fault detection and reset delay } \\
\text { circuits. } \\
\text { High Current Totem pole } \\
\text { output A. }\end{array} \\
14 & \text { OUTA } & \text { PWR GND }\end{array}
$$ \begin{array}{l}Return for the High Current

Totem Pole outputs.\end{array}\right\}\)| Supply for the High Current |
| :--- |
| 16 |

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (Pins 16, 18)
Output Current, Source or Sink (Pin 12)
DC0.5A
Pulse $(0.5 \mu \mathrm{~s})$ 1.5A

Analog Inputs

(Pins 1, 2, 5, 6, 7, 13) \qquad -0.3 to 6.3 V
Amplifier Output Currents (Pins 3, 4) 5 mA
Soft Start Sink Current (Pin 8) 100 mA
R_{C} Current (Pin 8) -0.5 to +0.5 mA
R_{D} Current (Pin 9) $-4 \mathrm{~mA}$
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic DIP or SOIC $65^{\circ} \mathrm{C} / \mathrm{W}$
OPERATING CONDITIONS
Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} . \mathrm{V}_{\mathrm{CC}}$ is adjusted above the start threshold before settling at 15 V .

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Reference Section | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$ | 4.90 | 5.00 | 5.10 | V |
| Output Voltage | $12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$ | | 2 | 20 | mV |
| Line Regulation | $1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 10 \mathrm{~mA}$ | | 5 | 20 | mV |
| Load Regulation | $\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}(\mathrm{Note} 1)$ | | 0.2 | 0.4 | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| Temperature Stability | line, load, temp. | 4.85 | | 5.15 | V |
| Total Variation | $10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{KHz}$ | | 50 | | $\mu \mathrm{~V}$ |
| Output Noise Voltage | $\mathrm{T}_{J}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}($ Note 1$)$ | | 5 | 25 | mV |
| Long Term Stability | $\mathrm{V}_{\text {REF }}=0$ | -40 | -70 | -100 | mA |
| Short Circuit Current | | | | | |

Error Amplifier Section

Non-Inverting Input Voltage		2.37	2.47	2.57	V
Input Bias Current				3	$\mu \mathrm{~A}$
Open-Loop Gain	$1 \leq \mathrm{V}_{\mathrm{O}} \leq 4 \mathrm{~V}$	60			dB
Unity Gain Bandwidth	$($ Note 1$)$	2.5	2.8		MHz
PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$	65			dB
Output Sink Current	$\mathrm{V}_{\text {PIN 2 }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.8		mA
Output Source Current	$\mathrm{V}_{\text {PIN 2 }}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 3}=4 \mathrm{~V}$	-0.5	-2.2		mA
Output High Voltage	$\mathrm{I}_{\text {PIN 3 }}=-0.5 \mathrm{~mA}$	5.0	5.5	6.0	V
Output Low Voltage	$\mathrm{I}_{\text {PIN 3 }}=1 \mathrm{~mA}$		0.5	1.0	V
Slew Rate			8.5		$\mathrm{~V} / \mu \mathrm{s}$

Current-Limit Amplifier Section

Non-Inverting Input Voltage		0.145	0.17	0.2	V
Input Bias Current				3	$\mu \mathrm{~A}$
Open-Loop Gain	$1 \leq \mathrm{V}_{\mathrm{O}} \leq 4 \mathrm{~V}$	65			dB
Unity Gain Bandwidth	$($ Note 1$)$	1.0	1.5		MHz
PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$	55		dB	
Output Sink Current	$\mathrm{V}_{\text {PIN } 1}=1 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 4}=1 \mathrm{~V}$	1	1.6		mA

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Current-Limit Amplifier Section (Continued)					
Output Source Current	$\mathrm{V}_{\text {PIN } 1}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN 4 }}=4 \mathrm{~V}$	-0.5	-1.1		mA
Output High Voltage	$\mathrm{I}_{\text {PIN } 4}=-0.5 \mathrm{~mA}$	6.0	7.2	8.0	V
Output Low Voltage	$\operatorname{IPIN} 4=1 \mathrm{~mA}$		0.7	1.0	V
Slew Rate	(Note 1)		0.9		V/ $/ \mathrm{s}$

Current-Sense Section

Input Bias Current	$V_{\text {PIN 20 }}=0$			-2	$\mu \mathrm{~A}$
Current-Sense Threshold		1.20	1.25	1.30	V
Delay to Pin 13	(Note 1)		80	150	ns

Soft-Start Section

Discharging Current	$\mathrm{V}_{\text {PIN 13 }}=4 \mathrm{~V}, \mathrm{~V}_{\text {PIN 12 }}=1 \mathrm{~V}$	20	35		mA
Charging Current	$\mathrm{V}_{\text {PIN 13 }}=0, \mathrm{~V}_{\text {PIN 12 }}=1 \mathrm{~V}$	-16	-21	-26	$\mu \mathrm{~A}$

Overload Protection Section

Overload Threshold		3.0	3.2	3.5	V
Restart Threshold		1.0	1.2	1.4	V
Pulse-by-pulse Charging Current	$\mathrm{V}_{\text {PIN 20 }}=1.35 \mathrm{~V}, \mathrm{~V}_{\text {PIN 13 }}=2 \mathrm{~V}$		-320		$\mu \mathrm{~A}$
Current-Limit Amp. Controlled Current	$\mathrm{V}_{\text {PIN } 1}=0, \mathrm{~V}_{\text {PIN 13 }}=2 \mathrm{~V}$				
	$\mathrm{~V}_{\text {PIN } 4}=1 \mathrm{~V}$		-2.2	mA	
	$\mathrm{~V}_{\text {PIN } 4}=2.5 \mathrm{~V}$		-0.9	mA	

Voltage-Controlled Timer

C_{T} Minimum Discharging Current		$\mathrm{V}_{\text {PIN 6 }}=0, \mathrm{~V}_{\text {PIN } 10}=3 \mathrm{~V}$	14	18.5	22	$\mu \mathrm{A}$
C_{T} Peak Voltage				3.75		V
C_{T} Valley Voltage				2.1		V
R_{C} Minimum Voltage		$\mathrm{V}_{\mathrm{PIN} 5}=\mathrm{V}_{\mathrm{PIN} 7}=0$, $25 \mathrm{~K} \Omega$ from Pin 8 to GND	$0.446 \mathrm{~V}_{\text {REF }}$	$0.455 \mathrm{~V}_{\text {REF }}$	$0.464 \mathrm{~V}_{\text {REF }}$	V
R_{C} Voltage		$\mathrm{V}_{\mathrm{PIN} 5}=8+11 \mathrm{~V}_{\text {REF }}, \mathrm{V}_{\mathrm{PIN} 7}=5 \mathrm{~V}$ $25 \mathrm{~K} \Omega$ from Pin 8 to GND	$0.713 \mathrm{~V}_{\text {REF }}$	$0.72 \mathrm{~V}_{\text {REF }}$	$0.742 \mathrm{~V}_{\text {REF }}$	V
R_{D} Minimum Voltage		$V_{\text {PIN } 6}=0,3 \mathrm{~K} \Omega$ from Pin 9 to GND			0	V
R_{D} Maximum Voltage		$V_{\text {PIN } 6}=5 \mathrm{~V}, 3 \mathrm{~K} \Omega$ from Pin 9 to GND	$0.425 \mathrm{~V}_{\text {REF }}$	$0.45 \mathrm{~V}_{\text {REF }}$	$0.475 \mathrm{~V}_{\text {REF }}$	V
T_{ON}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{\text {PIN } 5}=V_{\text {PIN } 7}=0, V_{\text {PIN } 6}=3 \mathrm{~V}$, $25 \mathrm{~K} \Omega$ from Pin 8 to GND, $3 \mathrm{~K} \Omega$ from Pin 9 to GND	0.62	0.68	0.75	$\mu \mathrm{s}$
	Total Variation	$\begin{aligned} & \left.12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V} \text { (Note } 1\right) \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$	0.60	0.71	0.79	$\mu \mathrm{s}$
Output Dead Time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 1) } \end{aligned}$	$V_{\text {PIN } 5}=V_{\text {PIN } 7}=0, V_{\text {PIN } 6}=5 \mathrm{~V}$ $25 \mathrm{~K} \Omega$ from Pin 8 to GND, $3 \mathrm{~K} \Omega$ from Pin 9 to GND	100	120	145	ns
	Total Variation	$\begin{aligned} & 12 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 25 \mathrm{~V}(\text { Note } 1) \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$	100	120	155	ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Voltage-Controlled Timer (Continued)						
Frequency	$\mathrm{f}_{\text {MAX }(1)}$	$\mathrm{V}_{\mathrm{PIN} 5}=\mathrm{V}_{\mathrm{PIN} 7}=0, \mathrm{~V}_{\mathrm{PIN} 6}=5 \mathrm{~V}$ $25 K \Omega$ from Pin 8 to GND $3 \mathrm{~K} \Omega$ from Pin 9 to GND	1.0	1.2	1.4	MHz
	$\mathrm{f}_{\text {MIN(1) }}$	$\mathrm{V}_{\mathrm{PIN} 5}=\mathrm{V}_{\mathrm{PIN} 7}=0, \mathrm{~V}_{\text {PIN } 6}=1.4 \mathrm{~V}$ $25 \mathrm{~K} \Omega$ from Pin 8 to GND $3 \mathrm{~K} \Omega$ from Pin 9 to GND	17	22	28	KHz
	$\mathrm{f}_{\text {MAX }(2)}$	$\begin{aligned} & V_{\text {PIN } 5}=8 \div 11 \mathrm{~V}_{\text {REF }}, V_{\text {PIN 7 }}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN 6 }}=5 \mathrm{~V} \end{aligned}$ $22 \mathrm{~K} \Omega$ from $\operatorname{Pin} 8$ to $\operatorname{Pin} 19$ $3 \mathrm{~K} \Omega$ from Pin 9 to GND	1.1	1.33	1.55	MHz
	$\mathrm{f}_{\text {MIN(2) }}$	$\mathrm{V}_{\mathrm{PIN} 5}=8 \div 11 \mathrm{~V}_{\text {REF }}, \mathrm{V}_{\mathrm{PIN} 7}=2 \mathrm{~V}$ $V_{\text {PIN } 6}=5 \mathrm{~V}$ $22 \mathrm{~K} \Omega$ from $\operatorname{Pin} 8$ to $\operatorname{Pin} 19$ $3 \mathrm{~K} \Omega$ from Pin 9 to GND	650	800	850	KHz
Under Voltage Lockout Section						
Start Threshold			15.0	16.3	16.8	V
Stop Threshold			9.2	9.7	10.2	V

Supply Current

Start-Up Current	$\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{~V}$	1.2	1.75	2.3	mA
Operating Supply Current	$\mathrm{V}_{\mathrm{PIN} 5}=\mathrm{V}_{\text {PIN }}=0, \mathrm{~V}_{\text {PIN }}=5 \mathrm{~V}$ $25 \mathrm{~K} \Omega$ from Pin 8 to GND $3 \mathrm{~K} \Omega$ from Pin 9 to $G N D$ $\mathrm{C}_{\mathrm{LA}}=\mathrm{C}_{\mathrm{LB}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	26	32	38	mA
	$\mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$				

Output Section

Output Low Level	$\mathrm{I}_{\mathrm{SINK}}=20 \mathrm{~mA}$		0.1	0.4	V
	$\mathrm{I}_{\mathrm{SINK}}=200 \mathrm{~mA}$		0.7	2.2	V
Output High Level	$\mathrm{I}_{\text {SOURCE }}=20 \mathrm{~mA}$	12.0	13.5		V
	$\mathrm{I}_{\text {SOURCE }}=200 \mathrm{~mA}$	11.5	13.0		V
Rise Time	$\mathrm{C}_{\mathrm{LA}}=\mathrm{C}_{\mathrm{LB}}=1 \mathrm{nF}($ Note 1)			60	ns
Fall Time	$\mathrm{C}_{\mathrm{LA}}=\mathrm{C}_{\mathrm{LB}}=1 \mathrm{nF}($ Note 1)			60	ns

Note 1: This parameter is not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The oscillator is the core of the ML4816 and is designed to allow the maximum flexibility. This oscillator can be used in two basic modes of operation:

1. On time proportional to $\mathrm{V}_{\mathbb{N}}$, fixed off time with a maximum on time limit (where $\mathrm{V}_{\mathbb{I N}}$ is the output of the error amplifier).
2. Off time inversely proportional to V_{IN}, fixed on time.

Figure 1. Oscillator Block Diagram
The internal CLOCK signal, shown above, turns the outputs off at its rising edge. Clock remains high and the outputs stay off as long as $\mathrm{C}(\mathrm{T})$ is discharging. The discharge time ($\mathrm{T}_{\mathrm{OFF}}$) of $\mathrm{C}(\mathrm{T})$ is:

$$
\begin{equation*}
T_{\text {OFF }}=\frac{1.65 C(T) R(D)}{10(V(D)-2 V)+16 \mu A R(D)} \tag{1}
\end{equation*}
$$

Variable Off-Time, Constant On-Time (Figure 2)

When using a variable off time control, $V(D)$ is tied to the output of the error amplifier. Off time is given by equation (1) while the $16 \mu \mathrm{~A}$ current sink prevents the off time from becoming infinite, thereby providing an upper limit to $\mathrm{T}_{\text {OFF }}$ of:

$$
\begin{equation*}
\operatorname{Max}\left(\mathrm{T}_{\text {OFF }}\right)=\mathrm{C}(\mathrm{~T}) \times 1.03 \times 10^{5} \tag{2}
\end{equation*}
$$

The on time is given by:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ON}}=0.0605 \mathrm{R}(\mathrm{C}) \mathrm{C}(\mathrm{~T}) \tag{3}
\end{equation*}
$$

Figure 2. Variable Off Time, Constant On Time Oscillator Connections

Figure 2a. Max (Toff) vs. $\mathbf{C}_{\mathbf{T}}$

Figure 2b. Ton vs. R(C)

Variable On-Time, Constant Off-Time

The on time (T_{ON}) is controlled by the current flowing from $V($ REF $)$ through $R(C)$ into $B 2$. The output of $B 2$ is internally limited to be no less than 2.27 V and no greater than F(LIM).

Figure 3. Variable On Time, Constant Off Time Oscillator Connections (TON Proportional to EA OUT)

Figure 3a. Minimum TON for Constant Off-Time

$$
\text { Configuration with } \mathrm{V}_{\text {FLIM }}=\frac{8}{11} \times \mathrm{V}_{\text {REF }}
$$

The on time for figure 3 is given by:

$$
\begin{equation*}
T_{O N}=\frac{0.138 R(C) C(T)}{V(R E F)-V(F)} \tag{4}
\end{equation*}
$$

The maximum on time is given by:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ON}(\text { MAX })}=\frac{0.138 \mathrm{R}(\mathrm{C}) \mathrm{C}(\mathrm{~T})}{\mathrm{V}(\mathrm{REF})-\mathrm{F}(\mathrm{LIM})} \tag{5}
\end{equation*}
$$

where $\mathrm{F}(\mathrm{LIM})>2.27 \mathrm{~V}$. The minimum on time is:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ON}(\mathrm{MIN})}=0.0506 \mathrm{R}(\mathrm{C}) \mathrm{C}(\mathrm{~T}) \tag{6}
\end{equation*}
$$

ERROR AMPLIFIER

The ML4816 error amplifier is a 2.5 MHz bandwidth, $8.5 \mathrm{~V} / \mu \mathrm{sec}$ slew rate op-amp with provision for limiting the positive output voltage swing to implement the soft start function.

The Error Amplifier input contains protection diodes as shown above. INV should not be driven lower than $2.5 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}$ or higher than $2.5 \mathrm{~V}+\mathrm{V}_{\mathrm{BE}}$.

Figure 5. Error Amplifier Open-Loop Gain and Phase vs. Frequency

OUTPUT DRIVER STAGE

The ML4816 has two high current high speed totem pole output drivers each capable of 1.5A peak output, designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.

Figure 6. Power Driver Simplified Schematic

Figure 6a. Output Driver Current Consumption I(C) vs. Output Load Capacitance

Figure 7. Output Saturation Voltage vs. Output Current

Figure 8. Rise/Fall Time

CURRENT LIMIT, FAULT DETECTION AND SOFT START

The ML4816 has two modes of current limiting: Primary pulse-by-pulse over-current protection and secondary DC average current limiting.

Primary Pulse-by-Pulse Current Limit Circuit

In this mode, the primary current is compared with a 1.25 V threshold in comparator X 1 . When the sensed current exceeds the 1.25 V threshold of comparator X1, the R-S latch X 2 is set, turning on the $320 \mu \mathrm{~A}$ current source to charge $C_{R S T}$. $I_{F 1}$ remains on until CLOCK goes high (TOFF). When $\mathrm{C}_{\text {RST }}$ has charged to 3.2 V , a soft start reset occurs. The number of times the outputs reach current limit are "remembered" on CRST. Over time, $\mathrm{C}_{\text {RST }}$ is discharged by $\mathrm{R}_{\text {RST }}$ providing a measure of "forgetting" when the over-current condition no longer occurs. If the output fault is removed before $\mathrm{C}_{\text {RST }}$ reaches $3.2 \mathrm{~V}, \mathrm{C}_{\text {RST }}$ discharges slowly through $\mathrm{R}_{\text {RST }}$ and normal operation resumes.

Over-Current Sensing, Overload Shutdown and Fault Management

Figure 9. Overload Protection and Fault Management

Secondary dc Current Limit Circuit

In secondary dc current-limiting, the currents in the output rectifiers are sensed, full-wave rectified and smoothed. The smoothed signal is fed into the currentlimiting amplifier X_{3}. If the sensed current is below the 0.16 V threshold, the output of X_{3} will go above $V_{\text {REF }}$ and $I_{F 2}$ will be off. As the sensed current exceeds the current-limit threshold, $\mathrm{V}_{\text {ILO }}$ starts to fall and
$\mathrm{I}_{\mathrm{F} 2}\left(\approx \frac{\mathrm{~V}_{\text {REF }}-\mathrm{V}_{\text {ILO }}-2 \mathrm{~V}_{\mathrm{BE}}}{1200 \Omega}\right.$) turns on. $\mathrm{I}_{\mathrm{F} 2}$ charges $\mathrm{C}_{\mathrm{RST}}$ towards the overload threshold (3.2 V) of X_{4}. $\mathrm{C}_{\text {RST }}$ charging and temporary recovery through R $_{\text {RST }}$ here are similar to the pulse-by-pulse over-current sensing case except that $\mathrm{I}_{\mathrm{F} 2}$ is continuous.

Under persistent output short circuit with either form of over-current protection, $\mathrm{C}_{\text {RST }}$ is charged until it reaches 3.2 V . The gate drives are immediately terminated and the soft-start capacitor C_{SS} is discharged. $\mathrm{C}_{\text {RST }}$ then discharges through $\mathrm{R}_{\text {RST }}$ toward the restart threshold (1.2V). Gate drives remain off until $\mathrm{C}_{\mathrm{RST}}$ is discharged below 1.2V. The time taken for $\mathrm{C}_{\text {RST }}$ to discharge to the restart threshold is the restart-delay time. This delay reduces the average power delivered to the load during overload, thus protecting both the load and the controller. If overload persists, the controller will continue to hiccup until the cause of overload is removed. The controller undergoes soft-start at each restart.
The overload shutdown and restart sequences for both over-current protection schemes with non-bootstrapped V_{CC} are illustrated in Figures 10 and 11.

Figure 10. Over-Current Sensing, Overload Shutdown and Restart Sequence (Non-Bootstrapped $\mathbf{V C O}_{\text {C }}$ (ZCS-QRC Transistor Current Shown)

Figure 11. Secondary dc Current Sensing, Overload Shutdown and Restart Sequence (Non-Bootstrapped V_{CC})

Figure 12. Simplified $V_{C C}$ Bootstrapping Scheme in Half-Bridge Configuration

For a bootstrapped converter, where controller V_{CC} is obtained from an auxiliary winding of the main transformer, (see Figure 12) overload shutdown causes both the converter output and the controller V_{CC} to collapse. Undervoltage lockout (UVLO) is activated and the on-chip bandgap reference is disabled. ML4816 dissipates only 1.5 mA during shutdown. Since $\mathrm{I}_{\text {bLEED }}$ is higher than the start-up current, C_{S} will be charged towards the UVLO start threshold. When this happens, the entire controller becomes operational except that the gate drives remain off. $I_{C C}$ jumps to its full operational value. Since V_{CC} bootstrapping is not yet available, I_{CC} will discharge C_{S} below the UVLO stop threshold. The on-chip reference will again be disabled with the controller supply current reduced to 1.5 mA . $I_{\text {BLEED }}$ will again charge C_{S} towards the UVLO start threshold. The process repeats until $\mathrm{C}_{\mathrm{RST}}$ is discharged below the restart threshold. The shutdown and restart sequence is illustrated in Figure 13.
The over-current timing and shutdown sequence can be disabled by grounding pin 13.

Figure 13. Overload Shutdown, UVLO and Restart Sequence (Bootstrapped Operation)

Auxiliary Output Current-Limiting (RC(RESET) Pin Grounded)

Constant current at power inverter output can be obtained by utilizing the current-limit amplifier with pin 13 shorted to ground. The ILO pin is connected to the EAO pin through two external OR-ing diodes D_{1} and D_{2} (Figure 14). R_{1} is used as a pull-up resistor. The current-limiting loop activates and takes control if the voltage at the inverting input IFB of the current-limit amplifier exceeds the 160 mV threshold and ILO is pulled below EAO. The schematic shows that either the main error amplifier or the current-limiting amplifier controls the switching frequency of the converter. The voltage to the IFB pin comes from the output of a current sensor which produces a signal proportional to the output current.

First-Pulse Inhibit

ML4816 features a unique scheme to prevent input transformer from saturating during initial start-up. Before V_{CC} rises above the undervoltage lockout (UVLO) start threshold, the bandgap reference is disabled. Since the bias circuit of the timer requires a reference output of at least $4 \mathrm{~V}_{\mathrm{BE}}$ to operate, the timing capacitor C_{T} remains fully discharged. As $V_{C C}$ crosses UVLO start threshold at t_{0}, the reference becomes enabled. The reference output rises at a rate determined by the reference short-circuit current and the external bypass capacitor. C_{T} remains discharged until $V_{\text {REF }}$ exceeds $4 \mathrm{~V}_{\mathrm{BE}}$. There is no gate drive until $V_{\text {REF }}$ reaches the "reference-good" level (4.4V) (see Figure 16). Once $V_{\text {REF }}$ exceeds $4 V_{B E}\left(t_{1}\right), C_{T}$ is charged towards the upper threshold of the oscilllator/timer. Although the gate drives are enabled at t_{2}, the firstpulse inhibit latch continues to blank the outputs. This latch is reset when C_{T} voltage crosses the upper oscillator threshold at t_{3}. OUTA is gated on after the CLK pulse elapses.

Without the first-pulse inhibit circuit, the first OUTA pulse would be on for time $\mathrm{T}_{\mathrm{ONI}}$ which could be as much as 2 to 3 times longer than the desired $T_{O N}$ time. The first-pulse inhibit latch ensures no abnormally long first gate drive pulse, independent of $V_{\text {REF }}$ rise time.

Figure 14. Auxiliary Output Current-Limiting

Figure 15. Operation of UVLO and the First-Pulse Inhibit Circuit

Figure 16. Timing Diagram Illustrating Initial Start-Up and the First-Pulse Inhibit

Open Loop Laboratory Test Fixture

This test fixture is useful for exercising many of the ML4816's functions and measuring their specifications. As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4816CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic DIP (P20)
ML4816CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Plastic SOIC (S20W)

ML4817

Single-Ended High Frequency PWM Controller

GENERAL DESCRIPTION

The ML4817 High Frequency PWM Controller is optimized for use in single-ended Switch Mode Power Supply designs running at frequencies up to 1 MHz . Propagation delays are minimal through the comparators and logic for reliable high frequency operation while slew rate and bandwidth are maximized in the error amplifier. This controller is designed to work in either voltage or current mode.
A unique overload protection circuit helps to limit stress on the output devices. This integrating method of fault detection also provides for reset delay before restart. A 1.5 V threshold current limit comparator provides cycle-by-cycle current limit.
The ML4817 oscillator features accurately programmable dead time control to precisely limit the maximum duty cycle.
The ML4817 is fabricated on a 40 V bipolar process from the FB3480 Power Supply Controller Array. Customized versions of this controller are therefore easily implemented. Please refer to the FB3480 datasheet for more information.

FEATURES

- Practical Operation at Switching Frequencies to 1 MHz
- High Current (2A peak) Totem Pole Output
- Temperature Stable Precise Oscillator Frequency and Dead Time
- Precision Maximum Duty Cycle Limit
- Integrating Fault Detection with Reset Delay
- Fast Shut Down Path from Current Limit to Output
- Output Pulls Low for Under-Voltage Lockout

BLOCK DIAGRAM

PIN CONFIGURATIION

PIN DESCRIPTION

PIN \#	NAME	FUNCTION	PIN \#	NAME	FUNCTION
1	INV	Inverting input to error amp.	10	RAMP	Non-inverting input to main
2	Nl	Non-inverting input to error amp.			comparator. Connected to $\mathrm{C}(\mathrm{T})$ for
3	E/A OUT	Output of error amplifier and input to main comparator.			current sense resistor for current mode.
4	CLOCK	Oscillator output.	11	SIGNAL GND	Analog Signal Ground.
5	$\mathrm{R}(\mathrm{C})$	Timing Resistor for Oscillator sets charging current for oscillator timing capacitor (Pin 6).	12 13	OUT POWER GND	High Current Totem pole output. Return for the High Current Totem pole outputs.
6	$\mathrm{C}(\mathrm{T})$	Timing Capacitor for Oscillator.	14	V_{CC}	Positive Supply for the IC.
7	R(D)	Resistor which sets discharge current for oscillator timing capacitor.	15	5.1 $\mathrm{V}_{\text {REF }}$	Buffered output for the 5.1 V voltage reference.
8	SOFT START	Normally connected to Soft Start Capacitor and charging resistor.	16	RC(RESET)	Timing elements for integrating fault detection and reset delay circuits.
9	I(LIM)/S.D.	Current limit sense pin. Normally connected to current sense resistor.			

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage (Pin 14) 30V
Output Current, Source or Sink (Pin 12)
DC ... 0.5A

Analog Inputs

Clock Output Current (Pin 4) -5mA
Error Amplifier Output Current (Pin 3) 5mA

Soft Start Sink Current (Pin 8) 100mA	
Oscillator Charging Current (Pin 5)	-5
Junction Temperature $125^{\circ} \mathrm{C}$	
Storage Temperature Range $\ldots \ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering 10 sec) $\ldots+260^{\circ} \mathrm{C}$	
Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{IA}}$)	
Plastic DIP	$65^{\circ} \mathrm{C} / \mathrm{W}$
Plastic SOIC	$65^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R(C)=2540 \Omega, R(D)=2470 \Omega, C_{T}=470 \mathrm{pF}, T_{A}=$ Operating Temperature Range, $V_{C C}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial Accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	500	525	550	KHz
Voltage Stability	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		0.2		\%
Temperature Stability	(note 1)			TBD	\%
Total Variation	line, temp (note 1)	TBD		TBD	KHz
Maximum Duty Cycle	$\begin{aligned} & V_{\text {PIN } 1}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 2}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN } 9}=\mathrm{V}_{\mathrm{PIN} 10}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	44	45	46	\%
Maximum Duty Cycle	line, temp (note 1)	42		48	\%
C(T) Discharge Current	$\mathrm{V}_{\text {PIN } 6}=4 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 7}=3 \mathrm{~V}$		4.5		mA
Clock Out High		4.0	4.5		V
Clock Out Low				2.2	V
Ramp Peak			3.75		V
Ramp Valley			2.15		V
Ramp Valley to Peak			1.60		V

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
Line Regulation	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability	$\mathrm{T}_{\mathrm{MIN}}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{MAX}}$ (note 1)		.2	.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Variation		4.95		5.25	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1)		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R(C)=2540 \Omega, R(D)=2470 \Omega, C_{T}=470 \mathrm{pF}, T_{A}=$ Operating Temperature Range, $V_{C C}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section					
Input Offset Voltage				15	mV
Input Bias Current			. 6	3	$\mu \mathrm{A}$
Input Offset Current			. 1	1	$\mu \mathrm{A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	95		dB
CMRR	$1.5<\mathrm{V}_{\text {CM }}<5.5 \mathrm{~V}$	60	95		dB
PSRR	$12<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	80	110		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Source Current	$\mathrm{V}_{\text {PIN } 3}=4.0 \mathrm{~V}$	-. 5	-1.3		mA
Output High Voltage	$\mathrm{I}_{\mathrm{PIN} 3}=-0.5 \mathrm{~mA}$	5.3			V
Output Low Voltage	$\mathrm{I}_{\mathrm{PIN} 3}=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth	(note 1)	3	5.5		MHz
Slew Rate	(note 1)	6	12		$\mathrm{V} / \mu \mathrm{s}$

PWM Comparator Section

Pin 10 Bias Current	$V_{\text {PIN 10 }}=0 \mathrm{~V}$		-1	-5	$\mu \mathrm{~A}$
Pin 3 Zero D.C. Threshold	$\mathrm{V}_{\text {PIN 10 }}=0 \mathrm{~V}$	1.08	1.25	1.45	V
Delay to Output	(note 1)		50	80	ns

Soft Start Section

Pin 8 Bias Current	$\mathrm{V}_{\text {PIN 8 }}=4 \mathrm{~V}$			10	$\mu \mathrm{~A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}$	10			mA

Current Limit/Shutdown Section

Pin 9 Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 9}<4 \mathrm{~V}$			+10	$\mu \mathrm{~A}$
Current Limit Threshold	$\mathrm{V}_{\text {PIN 16 }}=0 \mathrm{~V}$	1.35		1.65	V
Delay to Output	(note 1)		40	70	ns
Pin 16 Shutdown Threshold		2.05		2.55	V
Pin 16 Restart Threshold		0.9		1.3	V
Pin 16 Charging Current	$\mathrm{V}_{\text {PIN } 9}=2 \mathrm{~V}, \mathrm{~V}_{\text {PIN 16 }}=1.5 \mathrm{~V}$	-150	-210	-275	$\mu \mathrm{~A}$

Output Low Level	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$. 25	. 4	V
	$\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	12.0	13.5		V
	$\mathrm{I}_{\text {OUT }}=-200 \mathrm{~mA}$	11.5	13.0		V
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, (note 1)		30	60	ns
Under-Voltage Lockout Section					
Start Threshold		12.0	13.8	15.0	V
UVLO Hysteresis		3.0	3.6	4.2	V
Supply Current					
Start Up Current			1.8	2.5	mA
I_{CC}	$\begin{aligned} & V_{\mathrm{PIN} 1}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 2}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PIN} 9,10}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		34	42	mA

Note 1. This parameter is not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4817 oscillator charges the external capacitor, C_{T}, with a current ($I_{S E T}$) equal to $2 / R_{C}$. When the C_{T} voltage reaches the upper threshold (Ramp Peak), the comparator changes state, turning off the current source and turning on the 4.5 mA current sink which is voltage clamped to 1.05 V by Q1. The capacitor then discharges to the lower threshold (Ramp Valley) with a time constant determined by R_{D} and C_{T}.

Oscillator period can be determined by the following formula:

$$
\begin{align*}
& T_{\mathrm{OSC}}=\mathrm{T}_{\mathrm{C}}+\mathrm{T}_{\mathrm{D}} \tag{1}\\
& \mathrm{~T}_{\mathrm{C}}=\frac{(\mathrm{RAMP} \text { PEAK }-\mathrm{VALLEY}) \mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{C}}}{2} \\
& \mathrm{~T}_{\mathrm{C}}=0.8\left(\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{C}}\right) \tag{2}\\
& \mathrm{T}_{\mathrm{D}}=R_{D} C_{T} \ln \left(\frac{\mathrm{RAMP} \text { PEAK }-1.05}{\text { RAMP VALLEY }-1.05}\right) \\
& T_{D}=0.90\left(\mathrm{R}_{\mathrm{D}} C_{T}\right) \tag{3}
\end{align*}
$$

or
or
since: $\quad f_{O S C}=\frac{1}{T_{C}+T_{D}}$
then: $\quad f_{O S C}=\frac{1}{C_{T}\left(.8 R_{C}+.90 R_{D}\right)}$
since: \quad Duty Cycle $=\frac{T_{C}}{T_{C}+T_{D}}$
then: Duty Cycle $=\frac{1}{1+1.12\left(\frac{R_{D}}{R_{C}}\right)}$
(5)

Figure 2. Duty Cycle vs R(D)

Figure 3. Oscillator Frequency vs $\mathbf{R}_{\mathbf{D}}=\frac{\mathbf{R}_{\mathbf{C}}}{1.03}$
R(C) for 50\% Duty Cycle

ERROR AMPLIFIER

The ML4817 error amplifier is a 5.5 MHz bandwidth, $12 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive output voltage swing for ease in implementing the soft start function.

Figure 4. Unity Gain Slew Rate

Figure 5. Open Loop Frequency Response

OUTPUT DRIVER STAGE

The ML4817 Output Driver is a 2A peak output high speed totem pole circuit designed to quickly switch capacitive loads, such as power MOSFET transistors.

Figure 6. Power Driver Simplified Schematic

Figure 7. Saturation Curves

Figure 8. Rise/Fall Time ($\left.\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0 0 p F}\right)$

Figure 9. Rise/Fall Time ($C_{L}=10,000 \mathrm{pF}$)

UNDER-VOLTAGE LOCKOUT

When V_{CC} is below 13.8 V , the IC draws very little current (1.8 mA typ.) and $\mathrm{V}_{\text {REF }}$ is disabled. When V_{CC} rises above 13.8 V , the IC becomes active and $\mathrm{V}_{\text {REF }}$ is enabled and will stay in that condition until $V_{C C}$ falls below 10.2 V .

Figure 10. Under-Voltage Lockout Circuit

CURRENT LIMIT, FAULT DETECTION AND SOFT START

When the current (sensed on pin 9) reaches the 1.5 V limit, the PWM cycle is terminated. The flip flop (figure 10) turns on current source $I(1)$ to charge $C_{R S T}$ and remains on until CLOCK goes high. The magnitude of current source $\mathrm{I}(1)$ is $.25 \times \mathrm{I}_{\mathrm{SET}}$ where $\mathrm{I}_{\mathrm{SET}}$ is the oscillator charging current. When $\mathrm{C}_{\text {RST }}$ has charged to 2.3 V , a soft start reset occurs. The number of times the PWM cycle is terminated due to over-current is "remembered" on C(RST). Over time, C(RST) is discharged by $R($ RST) providing a measure of "forgetting" when the over-current condition no longer occurs.

Figure 11. Over-Current, Soft Start, and Integrating Fault Detect Circuits

Since the per cycle charge on $\mathrm{RC}($ RESET) is proportional to how early in the PWM cycle the reset occurs, a reset will occur more quickly under output short circuit conditions (figures 12c and 12d) than during a load surge (figures 12a and 12b).

Figure 12a. Pin 9 (IIMIT) Waveform During Load Surge

Figure 12b. Corresponding Waveform on Pin 16 (RCRESET)

Figure 12c. Current Waveform During Short Circuit (Pin S)

Figure 12d. RC(RESET) (Pin 16) Increases More Quickly During Short Circuit Condition

When the soft start reset occurs, the output is inhibited and the soft start capacitor is discharged. The output will remain off until $\mathrm{C}(\mathrm{RST}$) discharges to 1.1 V through R(RST), providing a reset delay. When the IC restarts, the error amplifier output voltage is limited to the voltage at pin 8 , thus limiting the duty cycle.

Figure 13. Supply Current vs. Temperature

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4817CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DIP (P16)
ML4817CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOIC (S16W)

Phase Modulation/Soft Switching Controller

GENERAL DESCRIPTION

The ML4818 is a complete phase modulation control IC suitable for full bridge soft switching converters. Unlike conventional PWM circuits, the phase modulation technique allows for zero voltage switching transitions and square wave drive across the transformer. The IC modulates the phases of the two sides of the bridge to control output power.

The ML4818 can be operated in current mode. The delay times for the outputs are externally programmable to allow the zero voltage switching transitions to take place.

Pulse-by-pulse current limit, integrating fault detection, and soft start reset are provided. The under-voltage lockout circuit features a 6 V hysteresis with a low starting current to allow off-line start up with a low power bleed resistor. A shutdown function powers down the IC, putting it into a low quiescent state.

High frequency phase modulation ($>500 \mathrm{KHz}$) can be implemented using the ML4828 BiCMOS phase modulator. The ML4818 contains four high current totem pole outputs which feature high slew rate with low cross conduction.

FEATURES

- Full Bridge Phase Modulation Zero Voltage Switching Circuit with Programmable ZV transition times
- Constant Frequency Operation to 500 KHz
- Current Mode Operation
- Cycle-by-Cycle Current Limiting with Integrating Fault Detection and Restart Delay
- Precision buffered 5V Reference (+ 1%)
- Four 1.5 A Peak Current Totem-Pole Output Drivers
- Under-Voltage Lockout circuit with 6V Hysteresis.

Power DIP package allows higher dissipation

BLOCK DIAGRAM

24-Pin SOIC

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	GND	Ground
2	C $_{T}$	Timing Capacitor for Oscillator
3	RAMP	Non-Inverting input to main comparator. Connected to current sense resistor for current mode
4	ILIM $^{\text {Current limit sense pin. Normally }}$ connected to current sense resistor	
5	E/A OUT	Output of error amplifier and input to PWM comparator
6,7	GND	Ground and Substrate Inverting input to error amp
9	SOFT START	Normally connected to Soft Start Capacitor
10	SHUTDOWN	Pulling this pin low puts the IC into a power down mode and turns off all outputs. This pin is internally pulled up to Vref.
11	RT	Resistor which sets discharge current for oscillator timing capacitor

PIN\#	NAME	FUNCTION
12	RC $_{\text {RESET }}$	Timing elements for Integrating fault detection and reset delay circuits
13	CLOCK	Oscillator output
14	R DELAY	Resistor to ground on this pin programs the amount of delay from the time an output turns off until its complementary output turns on
15	GND	Ground
16	A2 OUT	High Current Totem pole output A1
17	A1 OUT	High Current Totem pole output A2
18,19	GND	Ground and Substrate
20	VCC	Positive Supply for the IC
21	B2 OUT	High Current Totem pole output B1
22	B1 OUT	High Current Totem pole output B2
23	GND	Ground
24	V $_{\text {REF }}$	Buffered output for the 5.0 V
		voltage reference

ABSOLUTE MAXIMUM RATINGSSupply Voltage ($\operatorname{Pin} 20$)30V
Output Current, Source or Sink (Pins 16,17,21,22)
DC0.5A
Pulse ($0.5 \mu \mathrm{~s}$) 1.5 A
Analog Inputs
(Pins 2 thru 5, 8 thru 10, 12) -0.3 V to 6 V
Clock Output Current (Pin 11) $-5 \mathrm{~mA}$
Error Amplifier Output Current (Pin 5) 5 mA
Soft Start Sink Current (Pin 9) 50 mA
Oscillator Charging Current (Pin 2) $-5 m A$
Junction Temperature $150^{\circ} \mathrm{C}$

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (see fig 13,14)
Plastic Power DIP
$40^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Operating Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=12.7 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=250 \mathrm{pF}, \mathrm{R}_{\mathrm{CLK}}=3 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{DELAY}}=5 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range,
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$. (Note 2)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
OSCILLATOR					
Initial accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	410	450	510	KHz
Voltage stability	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		-0.3		\%/V
Temperature stability	(note 1)		0.2		\%
Total Variation	line, temp.	375		525	KHz
C_{T} Discharge Current	$\mathrm{V}_{\text {PIN } 2}=2 \mathrm{~V}$	4.7	5.5	6.3	mA
Clock out High		2.4	3.1		V
Clock out Low			0	0.4	V
Ramp Peak			4.1		V
Ramp Valley			1.5		V
Ramp Valley to Peak			2.6		V
REFERENCE SECTION					
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5.0	5.05	V
Line regulation	$12 \mathrm{~V}<\mathrm{V}_{\text {CC }}<25 \mathrm{~V}$		2	20	mV
Load regulation	$1 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<10 \mathrm{~mA}$		3	20	mV
Temperature stability	(note 1)		. 2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Variation		4.85		5.15	V
Output Noise Voltage	10 Hz to 10 KHz		50		mV
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$, (note 1)		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-20	-50		mA
ERROR AMPLIFIER SECTION					
Input Offset Voltage		-40		+30	mV
Input Bias Current			0.6	3	$\mu \mathrm{A}$
Input Offset Current			0.1	1	$\mu \mathrm{A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	65	75		dB
PSRR	$12<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	70	80		dB
Output Sink Current	$\mathrm{V}_{\text {PIN } 5}=1 \mathrm{~V}$	1	3.2		mA

ML4818

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
ERROR AMPLIFIER SECTION (Continued)					
Output Source Current	$\mathrm{V}_{\text {PIN } 5}=5.1 \mathrm{~V}$	-0.5	-2.2		mA
Output High Voltage	$\mathrm{I}_{\text {PIN } 5}=-0.5 \mathrm{~mA}$	5.0	5.5	6.0	V
Output Low Voltage	$\mathrm{IPIN} 5=1 \mathrm{~mA}$			0.8	V
Unity Gain Bandwidth	(note 1)	2.0	2.8		MHz
Slew Rate (note 1)			8.5		$\mathrm{V} / \mu \mathrm{s}$

PHASE MODULATOR SECTION

Pin 3 Bias Current	$\mathrm{V}_{\text {PIN 3 }}=2.5 \mathrm{~V}$		-1	-10	$\mu \mathrm{~A}$
Pin 5 Zero D.C. Threshold	$\mathrm{V}_{\text {PIN 3 }}=0 \mathrm{~V}$		0.6	0.9	V
$\mathrm{~T}_{\text {PD1 }}$, pin 3 to Output	(note 1)		50	80	ns
T DELAY $^{V_{\text {PIN14 }}}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		200	250	ns

SOFT-START SECTION

Pin 9 Charge Current	$\mathrm{V}_{\text {PIN } 9}=4 \mathrm{~V}$	-15	-25	-30	$\mu \mathrm{~A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 9}=1 \mathrm{~V}$	10	20	30	mA

CURRENT LIMIT/SHUTDOWN SECTION

Pin 4 Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 4}<4 \mathrm{~V}$		-1	-10	$\mu \mathrm{~A}$
Current Limit Threshold	$\mathrm{V}_{\text {PIN 10 }}=0 \mathrm{~V}$	0.92	1.02	1.12	V
$\mathrm{~T}_{\text {PD1 }}$, pin 4	(note 1)		50		ns
Pin 12 Shutdown Threshold		3.15	3.4	3.65	V
Pin 12 Restart Threshold		1.0	1.3	1.6	V
Pin 12 Charging Current	$\mathrm{V}_{\text {PIN 4 }}=2 \mathrm{~V}, \mathrm{~V}_{\text {PIN 12 }}=1.5 \mathrm{~V}$	-400	-523		$\mu \mathrm{~A}$
Pin 10 Shutdown Threshold		2.0	2.4	2.8	V
Pin 10 Input Bias Current	$\mathrm{V}_{\text {PIN 10 }}=0$		-25	-100	$\mu \mathrm{~A}$

OUTPUT SECTION

Output Low Level	lout $=20 \mathrm{~mA}$		0.1	0.4	V
	$\mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.8	V
Output High Level	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	12.0	13.5		V
	$\mathrm{l}_{\text {OUT }}=-200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	11.0	13.0		V
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF},($ note 1$)$		50	75	ns

UNDER-VOLTAGE LOCKOUT SECTION

Start Threshold		15.5	16.5	17.2	V
Stop Threshold		9.25	10.2	10.7	V

SUPPLY CURRENT

Start Up Current	$\mathrm{V}_{\mathrm{CC}}<15.8 \mathrm{~V}$		3	4	mA
I_{CC}	$\mathrm{V}_{\mathrm{PIN}}=4 \mathrm{~V}, \mathrm{~V}$ PIN 3,4 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$			

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: V_{CC} must be brought above the UVLO start voltage $(17.2 \mathrm{~V})$ before dropping to $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ to ensure start-up.

FUNCTIONAL DESCRIPTION

PHASE MODULATOR

Power is controlled by modulating the switching phase on sides A and B of the full H -bridge converter (Figure 1). Power is delivered to the output through the transformer secondary. The power conversion process is described by the following sequence and illustrated by the timing diagram of Figure 2:

1. A 2 and B 1 are high (Q 1 and Q 2 are on), beginning the power conversion cycle.
2. After the Φ MOD comparator trips, B1 goes low turning off Q2. The parasitic drain-to-source capacitances of Q2 and Q4 charge to +VIN . This forces the drain-to-source voltage across Q 3 to 0 V .
3. The CLOCK now goes high turning A2 off. During this period, Q1 and Q2 and Q4 are off. The transformer leakage current discharges the drain-tosource capacitance on Q 4 until there is 0 V across it.
4. A1 will remain low for a period defined by tDELAY, then it goes high. The voltage across Q 4 is now 0 V as A1 turns it on at zero voltage.
5. The previous sequence is now repeated with the opposite polarity on all outputs (see Figure 2).
The above sequence is then repeated but with the opposite polarity on all outputs.
6. B2 now goes high after tolelay (set by $R_{\text {DELAY }}$). Since the voltage across Q 3 is now $0 \mathrm{~V}, \mathrm{~B} 2$ turns Q 3 on at zero voltage.

Figure 1. Simplified diagram of Phase Modulated power Outputs.

Figure 2. Phase Modulation control waveforms (Shaded areas indicate a power cycle).

The ML4818 can also be used in current mode by sensing load current on the RAMP input (pin 3).

The four output delay timers are programmed via an external $R_{\text {DELAY }}$ resistor as shown below. This resistor value should be no less than $1 \mathrm{~K} \Omega$. Expressing R DELAY in $K \Omega$ the delay, in $n s$ is:

$$
\begin{equation*}
T_{D E L A Y}=33 \times R_{\text {DELAY }}+45 \tag{1}
\end{equation*}
$$

The ML4818 contains special logic circuits to provide for voltage mode feed-forward and lock out long pulses into the internal logic. This prevents instability from occuring when the Φ Comparator trips in voltage mode.

Figure 3. Voltage Feed-Forward Circuit.
The collector of Q_{R} in figure 3 is high only during a power cycle. When the power cycle terminates, pin 3 is pulled low. In voltage mode operation, a capacitor is connected from pin 3 to GND with a resistor from pin 3 to $\mathrm{V}_{\mathbb{I N}}$ to provide input voltage feed forward.

OSCILLATOR

The ML4818 oscillator charges the external capacitor, C_{T}, with a current ($I_{\text {SET }}$) equal to $5 / R_{T}$. When the C_{T} voltage reaches the upper threshold (Ramp Peak), the comparator changes state, turning on the current sink which discharges C_{T} to the lower threshold (Ramp Valley). The C_{T} pin is clamped to Ramp Valley by Q1 (figure 5) to prevent inaccuracy due to undershoot on C_{T}.
To use the Clock Output for driving external synchronization circuitry, a pull-down resistor is required from CLOCK to GND.

Figure 4. Oscillator Timing Diagram

Figure 5. Ocillator Block Diagram.

For frequencies of less than 500 KHz , oscillator frequency can be set by using the following formulae:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{OSC}}=\frac{1}{0.52 \mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+500 \mathrm{C}_{\mathrm{T}}} \tag{2}
\end{equation*}
$$

ERROR AMPLIFIER

The ML4818 error amplifier is a 2.5 MHz , bandwidth, $8.5 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive output voltage swing (Output Inhibit line) to implement the soft start function. The error amplifier output source current is limited to 4.5 mA .

Figure 6. Error Amplifier Open-Loop Gain and Phase vs. Frequency.

Figure 8. Output Drive Saturation Voltage vs. Output Current.

OUTPUT DRIVER STAGE

The ML4818 has four high current high speed totem pole output drivers each capable of 1.5 A peak output, designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors. Figure 8 illustrates the saturation characteristics of the ouput drive transistors shown in Figure 7. Typical rise and fall time characteristics of the output drivers are illustrated with capacitive loads of 1 nF and 10 nF in Figure 9.

Figure 7. Power Driver Simplified Schematic.

Figure 9. Output Rise/Fall Time.

CURRENT LIMIT, FAULT DETECTION AND SOFT START

Current limit is implemented when the current sensed on pin 4 reaches the 1 V limit. At this point, the PWM cycle is terminated. The flip flop (Figure 10) turns on the current source to charge $\mathrm{C}_{\text {RST }}$ and remains on for the duration of the clock period. When $\mathrm{C}_{\text {RST }}$ has charged to 3.4 V , a soft start reset occurs. The number of times the PWM cycle is terminated due to over-current is "remembered" on $C_{R S T}$. Over time, $\mathrm{C}_{\text {RST }}$ is discharged by $\mathrm{R}_{\mathrm{RST}}$ providing a measure of "forgetting" when the over-current condition no longer occurs. This integrating fault detection is useful in differentiation between short circuit and load surge conditions.

Since the per cycle charge on $\mathrm{RC}_{\text {RESET }}$ is proportional to how early in the power cycle the over-current occurs, a reset will occur more quickly under output short circuit conditions (Figures 11a and 11b) than during a load surge (Figures 11c and 11d).

When the soft start reset occurs, the output is inhibited and the soft start capacitor is discharged. The output will remain off until $\mathrm{C}_{\text {RST }}$ discharges to 1.3 V through $\mathrm{R}_{\text {RST }}$, providing a reset delay. When the IC restarts, the error amplifier output voltage is limited to the voltage at pin 9, thus limiting the duty cycle.

Figure 10. Over-Current, Soft-Start, and Integrating Fault Detect Circuits.

Figure 11a, 11b. I(LIMIT) and Resulting RC(RESET) Waveforms During Short Circuit.

Figure 11c, 11d. I(LIMIT) and Resulting RC(RESET) Waveforms During Load Surge.

UNDER-VOLTAGE LOCKOUT

On power up, when V_{CC} is below 16 V , the IC draws very little current (1.1 mA typ.) and $\mathrm{V}_{\text {REF }}$ is disabled. When V_{CC} rises above 16 V , the IC becomes active and $\mathrm{V}_{\text {REF }}$ is enabled and will stay in that condition until V_{CC} falls below 10.2 V . (see Figure 12).

Figure 12. Under-Voltage Lockout and Reference Circuits.

Figure 13. Supply Current vs. Temperature (${ }^{\circ} \mathrm{C}$).

THERMAL INFORMATION

The ML4818 is offered in a Power DIP package. This package features improved thermal conduction through the leadframe. Much of the heat is conducted through the center 4 grounded leads. Thermal dissipation can be improved with this package by using copper area on the board to function as a heat sink. Increasing this area can reduce the θ_{JA} (see figures 14 and 15), increasing the power handling capability of the package. Additional improvement may be obtained by using an external heat sink (available from Staver).

Figure 14. PC Board Copper Area Used as a Heat Sink.

Figure 15. θ_{JA} as a Function of I (see figure 15).

APPLICATIONS

The application, in Figure 16, features the ML4818 in a primary-side controlled voltage mode application with voltage feed-forward. Input voltage is rectified 120VAC (nominal). Feed-forward is provided by the ramp on pin 3 via the resistor connected to the high voltage input. Current is sensed through sense transformer T4.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4818CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Power DIP (P24P)*
ML4818CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOIC (S24W)

*Same dimensional outline as (P24N)

Phase Modulation Controller Evaluation Kit

GENERAL DESCRIPTION

The ML4818EVAL kit provides a convenient vehicle to evaluate the ML4818 Phase Modulation Control IC. The board implements a 200W Phase Modulated Power Supply.
The application circuit is designed to show the performance of a 200 W isolated AC to DC converter circuit. The circuit topology is a full bridge type, suitable for high power and very high frequency operation with zero voltage switching for high efficiency. The oscillator frequency of the circuit is 500 KHz .
The PC board is designed around a 200W single output application circuit, however the circuit can be modified for other power levels and operating conditions.

KIT COMPONENTS

- User's Guide - Includes operating specification, procedure, kit component list, a complete parts list, performance data, and a detailed schematic.
- ML4818 Datasheet.
- Application Note \#19: Phase Modulated PWM Topology with the ML4818
- Blank PC Board
- Kit Components - A sample of the ML4818 and additional components which may be difficult to procure in small quantities.

FEATURES

- Zero Voltage Switching (ZVS), high efficiency AC to DC power converter circuit
- High frequency operation resulting in smaller reactive components
- Lower conducted and radiated noise due to slower rise and fall times
- Switching and CV2 losses greatly minimized

■ Feed-forward compensated voltage mode control enables automatic compensation against instantaneous line changes

- Complete documentation and applications information

OPERATING SPECIFICATIONS

Input Voltage Range (switchable)	90 to 260 V
Output Voltage	15 V
Output Power	200 W
Output Current	13 A
Switching Frequency	250 Khz.
Efficiency $\left(\mathrm{V}_{\mathrm{IN}^{\prime}}=120 \mathrm{~V}, \mathrm{P}_{\mathrm{OUT}}=200 \mathrm{~W}\right)$	85%

BLOCK DIAGRAM

Power Factor and PWM Controller "Combo"

GENERAL DESCRIPTION

The ML4819 is a complete boost mode Power Factor Control (PFC) which also contains a PWM controller. The PFC circuit is similar to the ML4812 while the PWM controller can be used for current or voltage mode control for a second stage converter. Since the PWM and PFC circuits share the same oscillator, synchronization of the two stages is inherent. The outputs of the controller IC provide high current ($>$ 1A peak) and high slew rate to quickly charge and discharge MOSFET gates. Special care has been taken in the design of the ML4819 to increase system noise immunity.
The PFC section is a peak current sensing control which uses a current sense transformer or SENSE FET to non-dissipatively sense switch current, giving the system improved overall efficiency over the average current sensing control method.

The PWM section includes cycle by cycle current limiting, precise duty cycle limiting for single ended converters, and slope compensation.

FEATURES

■ Two 1A Peak Current Totem-Pole Output Drivers
■ Precision buffered 5V Reference ($\pm 1 \%$)

- Large oscillator amplitude for better noise immunity
- Precision duty cycle limit for PWM section
- Current input multiplier reduces external components and improves noise immunity
- Programmable Ramp Compensation circuit
- Over-Voltage comparator eliminates output "runaway" due to load removal
- Wide common mode range in current sense comparators for better noise immunity
- Under-Voltage Lockout circuit with 6V hysteresis

BLOCK DIAGRAM (Pin out shown is for DIP)

PATENTED

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN \#	NAME	FUNCTION	PIN \#	NAME	FUNCTION
1	I(SENSE) A	Input from the PFC Current Sense Transformer to the PWM comparator (+). Current Limit occurs when this point reaches 5 V .	11	I(LIM)	Cycle by cycle PWM current limit. Exceeding 1V threshold on this pin terminates the PWM cycle.
2	OVP	Input to over voltage comparator.	12	RAMP COMP	Buffered output from the Oscillator Ramp ($\mathrm{C}(\mathrm{T})$). A resistor to ground sets a current $1 / 2$ of which is sourced on pins 9 and 11.
3	MULTIPLIER	Output of Current Multiplier. A resistor to ground on this pin converts the current to a voltage.			
4	EA OUT A	Output of error amplifier.	13	GND B	Return for the high current totem pole output of the PWM
5	INV A	Inverting input to error amplifier.			controller.
6	I(SINE)	Current Multiplier input.	14	OUT B	PWM controller totem pole output.
7	DUTY CYCLE	PWM controller duty cycle is limited by setting this pin to a fixed voltage.	15 16	V_{CC} OUT A	output. Positive Supply for the IC.
8	PWM B I(SENSE) B	Error voltage feedback input. Input for Current Sense resistor for current mode operation or for Oscillator ramp for voltage mode operation.	17	GND A	Return for the high current totem pole output of the PFC controller.
9					
			18	V (REF)	Buffered output for the 5 V voltage reference.
10	R(T)	Oscillator timing resistor pin. A 5 V source across this resistor sets the charging current for $\mathrm{C}(\mathrm{T})$.	19	GND	Analog signal ground.
			20	C(T)	Timing Capacitor for the Oscillator.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Output Current, Source or Sink (Pin 12)
DC
1.0A

Output Energy (capacitive load per cycle) $5 \mu \mathrm{~J}$
Multiplier I(SINE) Input (Pin 6) 1.2 mA

Error Amp Sink Current (Pin 3) 10 mA
Oscillator Charge Current
Analog Inputs (Pins 1, 4, 5) $\ldots \ldots \ldots \ldots \ldots \ldots . .$.
Analog Inputs (Pins 1, 4, 5) $\ldots \ldots \ldots \ldots \ldots$. 2mA

Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $\ldots+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\text {IA }}\right)$
Plastic DIP or SOIC $\ldots .65^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML4819C $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	90	97	104	KHz
Initial Accuracy	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		0.2		$\%$
Voltage Stability			2		$\%$
Temperature Stability	line, temp	88		106	KHz
Total Variation			0.9		V
Ramp Valley			4.3		V
Ramp Peak		4.8	5.0	5.2	V
R(T) Voltage	7.5	8.4	9.3	mA	
Discharge Current (pin 8 open)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {PIN } 16}=2 \mathrm{~V}$	7.2	8.4	9.5	mA
	$\mathrm{~V}_{\text {PIN } 16}=2 \mathrm{~V}$				

Duty Cycle Limit Comparator

Input Offset Voltage		-15		15	mV
Input Bias Current			-2	-10	$\mu \mathrm{~A}$
Duty Cycle	$\mathrm{V}_{\text {PIN } 7}=\mathrm{V}_{\text {REF/2 }}$	43	45	49	$\%$

Reference Section	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	4.95	5.00	5.05	V
Output Voltage	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		2	20	mV
Line Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		8	25	mV
Load Regulation			.4		$\%$
Temperature Stability	line, load, temp	4.9		5.1	V
Total Variation	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Output Noise Voltage	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (note 1$)$		5	25	mV
Long Term Stability	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-30	-85	-180	mA
Short Circuit Current					

Error Amplifier Section

Input Offset Voltage		-15		15	mV
Input Bias Current			-0.1	-1.0	$\mu \mathrm{~A}$
Open Loop Gain	$1<\mathrm{V}_{\text {PIN } 4}<5 \mathrm{~V}$	60	75		dB
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$	60	90		dB
Output Sink Current	$\mathrm{V}_{\text {PIN 4 }}=1.1 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 5}=5.2 \mathrm{~V}$	2	12		mA

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section (Continued)					
Output Source Current	$\mathrm{V}_{\text {PIN 4 }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 5}=4.8 \mathrm{~V}$	-0.5	-1.0		mA
Output High Voltage	$\mathrm{I}_{\text {PIN } 4}=-0.5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN } 5}=4.8 \mathrm{~V}$	6.5	7.0		V
Output Low Voltage	$\mathrm{I}_{\mathrm{PIN} 4}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PIN} 5}=5.2 \mathrm{~V}$		0.7	1.0	V
Unity Gain Bandwidth			1.0		MHz
Multiplier					
I(SINE) Input Voltage	$\mathrm{I}(\mathrm{SINE})=500 \mu \mathrm{~A}$. 4	. 7	. 9	V
Output Current (pin 2)	$\mathrm{I}(\mathrm{SINE})=500 \mu \mathrm{~A}$, Pin $5=\mathrm{V}_{\text {REF }}-20 \mathrm{mV}$	460	495	505	$\mu \mathrm{A}$
	$\mathrm{I}($ SINE $)=500 \mu \mathrm{~A}$, Pin $5=\mathrm{V}_{\text {REF }}+20 \mathrm{mV}$		0	10	$\mu \mathrm{A}$
	$\mathrm{I}(\mathrm{SINE})=1 \mathrm{~mA}$, Pin $5=\mathrm{V}_{\text {REF }}-20 \mathrm{mV}$	900	990	1005	$\mu \mathrm{A}$
Bandwidth			200		KHz
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<25 \mathrm{~V}$		70		dB

Slope Compensation Circuit

RAMP COMP Voltage (pin 12)			$V_{\text {PIN } 20}-1$		V
I OUT (pin 1 or pin 9)	$I_{\text {PIN 12 }}=100 \mu \mathrm{~A}$ (note 3)	45	48	51	$\mu \mathrm{~A}$

OVP Comparator

Input Offset Voltage	Output Off	-15		15	mV
Hysteresis	Output On	100	120	140	mV
Input Bias Current			-0.3	-3	$\mu \mathrm{~A}$
Propagation Delay			150	.	ns

I(SENSE) Comparators A and B

Input Common Mode Range		-0.2		5.5	V
Input Offset Voltage	I(SENSE) A	-15		15	mV
	I(SENSE) B	+0.4	0.7	+0.9	V
Input Bias Current			-3	-10	$\mu \mathrm{~A}$
Input Offset Current		-3	0	+3	$\mu \mathrm{~A}$
Propagation Delay			150		ns
ILIMIT (A) Trip Point		4.8	5	5.2	V

I(LIM) Comparator

ILMIT Trip Point		.95	1.0	1.05	V
Input Bias Current			-2	-10	$\mu \mathrm{~A}$
Propagation Delay			150		ns

Output Section (A and B)

Output Voltage Low	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$		0.1	0.4	V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$		1.6	2.2	V
Output Voltage High	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$	13	13.5		V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$	12	13.4		V
Output Voltage Low in UVLO	$\mathrm{I}_{\mathrm{OUT}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.1	0.8	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Under Voltage Lockout		15	16	17	V
Start-Up Threshold		9	10	11	V
Shut-Down Threshold			4.4		V
V REF Good Threshold					

Total Device

Supply Current

Start-Up, $\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$.6	1.2	mA
Operating, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		25	35	mA

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: V_{CC} is raised above the Start-up Threshold first to activate the IC, then returned to 15 V .
Note 3: PWM comparator bias currents are subtracted from this reading.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4819 oscillator charges the external capacitor $\left(C_{T}\right)$ with a current (lsET) equal to $5 / R_{\text {SET }}$. When the capacitor voltage reaches the upper threshold, the comparator changes state and the capacitor discharges to the lower threshold through Q1. While the capacitor is discharging, Q2 provides a high pulse.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where:

$$
\mathrm{T}_{\text {RAMP }}=\frac{\mathrm{C} \text { (Ramp Valley to Peak) }}{\mathrm{I}_{\text {SET }}}
$$

and:

$$
\mathrm{T}_{\text {DEADTIME }}=\frac{\mathrm{C}(\text { Ramp Valley to Peak })}{\left(8.4 \mathrm{~mA}-I_{\text {SET }}\right)}
$$

The maximum duty cycle of the PWM section can be limited by setting a threshold on pin 7. When the C(T) ramp is above the threshold at pin 7 , the PWM output is held off and the PWM flip-flop is set:

$$
\mathrm{D}_{\mathrm{LIMIT}} \cong \frac{\mathrm{D}_{\mathrm{OSC}} \times\left(\mathrm{V}_{\mathrm{PIN} 7}-0.9\right)}{3.4}
$$

Where:

Figure 1. Oscillator Block Diagram

> Dlimit = Desired duty cycle limit

DosC $=$ Oscillator duty cycle

Figure 2. Oscillator Timing Resistance vs. Frequency

Figure 3. Output Saturation Voltage vs. Output Current

ERROR AMPLIFIER

The ML4819 error amplifier is a high open loop gain, wide bandwidth, amplifier.

Figure 4. Error Amplifier Configuration

Figure 5. Error Amplifier Open-Loop Gain and Phase vs. Frequency

MULTIPLIER

The ML4819 multiplier is a linear current input multiplier to provide high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dropping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator.

The output of the multiplier is a current proportional to:

$$
\mathrm{I}_{\mathrm{OUT}} \propto \mathrm{I}(\mathrm{SINE}) \times \mathrm{I}(\mathrm{EA})
$$

where I(SINE) is the current in the dropping resistor, and $I(E A)$ is a factor which varies from 0 to 1 proportional to the output of the error amplifier. When the error amplifier is saturated high, the output of the multiplier is approximately equal to the I(SINE) input current.

The multiplier output current is converted into the reference voltage for the PWM comparator through a resistor to ground on the multiplier output (pin 3).

Figure 6. Multiplier Block Diagram

SLOPE COMPENSATION

Slope compensation is accomplished by adding $1 / 2$ of the current flowing out of pin 12 to pin 1 (for the PFC section) and pin 9 (for the PWM section). The amount of slope compensation is equal to ($\mathrm{IPIN} 12^{2} / 2$) $\times \mathrm{R}_{\mathrm{L}}$ where R_{L} is the impedance to GND on pin 1 or pin 9. Since most of the PWM applications will be limited to 50% duty cycle, slope compensation should not be needed for the PWM section. This can be defeated by using a low impedance load to the current sense on pin 9.

Figure 7. Slope Compensation Circuit

Figure 8. Multiplier Linearity

UNDER VOLTAGE LOCKOUT

On power-up the ML4819 remains in the UVLO condition; output low and quiescent current low. The IC becomes operational when V_{CC} reaches 16 V . When V_{CC} drops below 10 V , the UVLO condition is imposed. During the UVLO condition, the $5 \mathrm{~V} \mathrm{~V}_{\text {REF }}$ pin is "off", making it usable as a "flag".

Figure 9. Under-Voltage Lockout Block Diagram

Figure 10a. Total Supply Current vs. Supply Voltage

Figure 10b. Total Supply Current (ICd vs. Temperature

Figure 11. Reference Load Regulation

APPLICATIONS

POWER FACTOR SECTION

The power factor section in the ML4819 is similar to the power factor section in the ML4812 with the exception of the operation of the slope compensation circuit. Please refer to the ML4812 data sheet for more information.
The following calculations refer to figure 12. The component designators in the equations below refer to the following components in figure 12:
$R_{T}=R 16, C_{T}=C 6$.

INPUT INDUCTOR (L1) SELECTION

The central component in the regulator is the input boost inductor. The value of this inductor controls various critical operational aspects of the regulator. If the value is too low, the input current distortion will be high and will result in low power factor and increased noise at the input. This will require more input filtering. In addition, when the value of the inductor is low the inductor dries out (runs out of current) at low currents. Thus the power factor will decrease at lower power levels and/or higher line voltages. If the inductor value is too high, then for a given operating current the required size of the inductor core will be large and/or the required number of turns will be high. So a balance must be reached between distortion and core size.
One more condition where the inductor can dry out is analyzed below where it is shown to be maximum duty cycle dependent.
For the boost converter at steady state:

$$
\begin{equation*}
V_{\mathrm{OUT}}=\frac{V_{\mathrm{IN}}}{1-D_{\mathrm{ON}}} \tag{1}
\end{equation*}
$$

Where D_{ON} is the duty cycle $\left[\mathrm{T}_{\mathrm{ON}} /\left(\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}\right)\right]$. The input boost inductor will dry out when the following condition is satisfied:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{IN}}(\mathrm{t})<\mathrm{V}_{\mathrm{OUT}} \times\left(1-\mathrm{D}_{\mathrm{ON}}\right) \tag{2}\\
& \quad \text { or } \\
& \mathrm{V}_{\mathrm{INDRY}}=\left[1-\mathrm{D}_{\mathrm{ON}}(\max)\right] \times \mathrm{V}_{\mathrm{OUT}} \tag{3}
\end{align*}
$$

$V_{\text {INDRY: }}$ Voltage where the inductor dries out.
$V_{\text {OUT: }}$ Output dc voltage.
Effectively, the above relationship shows that the resetting volt-seconds are more than setting voltseconds. In energy transfer terms this means that less energy is stored in the inductor during the ON time than it is asked to deliver during the OFF time. The net result is that the inductor dries out.

The recommended maximum duty cycle is 95% at 100 KHz to allow time for the input inductor to dump its energy to the output capacitors.
For example:

$$
\text { if: } \quad \begin{aligned}
& \mathrm{V}_{\mathrm{OUT}}=380 \mathrm{~V} \text { and } \\
& \\
& \mathrm{D}_{\mathrm{ON}}(\max)=0.95
\end{aligned}
$$

then substituting in (3) yields $\mathrm{V}_{\text {INDRY }}=20 \mathrm{~V}$. The effect of drying out is an increase in distortion at low voltages.
For a given output power, the instantaneous value of the input current is a function of the input sinusoidal voltage waveform, i.e. as the input voltage sweeps from zero volts to a maximum value equal to its peak so does the current.
The load of the power factor regulator is usually a switching power supply which is essentially a constant power load. As a result, an increase in the input voltage will be offset by a decrease in the input current.

By combining the ideas set forth above, some ground rules can be obtained for the selection and design of the input inductor:
Step 1: Find minimum operating current.
$I_{I_{N}}(\min)_{\text {PEAK }}=\frac{1.414 \times P_{\mathrm{IN}}(\min)}{\mathrm{V}_{\mathrm{IN}(\max)}}$
$\mathrm{V}_{\mathrm{IN}}(\max)=260 \mathrm{~V}$
$\mathrm{P}_{\mathrm{IN}}(\mathrm{min})=50 \mathrm{~W}$
then: $\quad I_{I_{N}}(\min)_{\text {PEAK }}=0.272 \mathrm{~A}$
Step 2: Choose a minimum current at which point the inductor current will be on the verge of drying out. For this example 40% of the peak current found in step 1 was chosen.
then: $\quad l_{\text {LDRY }}=100 \mathrm{~mA}$

Step 3: The value of the inductance can now be found using previously calculated data.

$$
\begin{align*}
\mathrm{L1} & =\frac{\mathrm{V}_{\text {INDRY }} \times \mathrm{D}_{\mathrm{ON}}(\max)}{\mathrm{I}_{\mathrm{LDRY}} \times \mathrm{f}_{\mathrm{OSC}}} \tag{5}\\
& =\frac{20 \mathrm{~V} \times 0.95}{100 \mathrm{~mA} \times 100 \mathrm{KHz}}=2 \mathrm{mH}
\end{align*}
$$

The inductor can be allowed to decrease in value when the current sweeps from minimum to maximum value. This allows the use of smaller core sizes. The only requirement is that the ramp compensation must be adequate for the lower inductance value of the core so that there is adequate compensation at high current.
Step 4: The presence of the ramp compensation will change the dry out point, but the value found above can be considered a good starting point. Based on the amount of power factor correction the above value of L1 can be optimized after a few iterations.
Gapped Ferrites, Molypermalloy, and Powdered Iron cores are typical choices for core material. The core material selected should have a high saturation point and acceptable losses at the operating frequency.
One ferrite core that is suitable at around 200 W is the \#4229PL00-3C8 made by Ferroxcube. This ungapped core will require a total gap of $0.180^{\prime \prime}$ for this application.

OSCILLATOR COMPONENT SELECTION

The oscillator timing components can be calculated by using the following expression:

$$
\begin{equation*}
f_{O S C}=\frac{1.36}{R_{T} \times C_{T}} \tag{6}
\end{equation*}
$$

For example:
Step 1: At 100 KHz with 95% duty cycle $T_{\text {OFF }}=500 \mathrm{~ns}$ calculate C_{T} using the following formula:
$C_{T}=\frac{T_{\text {OFF }} \times I_{\text {DIS }}}{V_{\text {OSC }}}=1000 \mathrm{pF}$
Step 2: Calculate the required value of the timing resistor.

$$
\begin{align*}
R_{T} & =\frac{1.36}{f_{O S C} \times C_{T}}=\frac{1.36}{100 K H z \times 1000 \mathrm{pF}} \tag{8}\\
& =13.6 \mathrm{~K} \Omega \text { choose } R_{T}=14 \mathrm{~K} \Omega
\end{align*}
$$

CURRENT SENSE AND SLOPE (RAMP) COMPENSATION COMPONENT SELECTION

Slope compensation in the ML4819 is provided internally. A current equal to $\mathrm{V}_{\mathrm{C}(\mathrm{T})} / 2(\mathrm{R} 18)$ is added to I(SENSE) A (pin 1). This is converted to a voltage by R10, adding slope to the sensed current through T1. The amount of slope compensation should be at least 50% of the downslope of the inductor current during the off
time as reflected on pin 1. Note that slope compensation is a requirement only if the inductor current is continuous and the duty cycle is more than 50%. The highest inductor downslope is found at the point of inductor discontinuity:

$$
\begin{gather*}
\frac{d i_{L}}{d t}=\frac{V_{B}-V_{I N ~ D R Y}}{L}=\frac{380 \mathrm{~V}-20 \mathrm{~V}}{2 \mathrm{mH}} \tag{9}\\
=0.18 \mathrm{~A} / \mu \mathrm{s}
\end{gather*}
$$

The downslope as reflected to the input of the PWM comparator is given by:

$$
\begin{equation*}
S_{P W M}=\frac{V_{B}-V_{\mathbb{N} \text { DRY }}}{L 1} \times \frac{R_{11}}{N_{C}} \tag{10}
\end{equation*}
$$

Where N_{C} is the turns ratio of the current transformer (T1) used. In general, current transformers simplify the sensing of switch currents especially at high power levels where the use of sense resistors is complicated by the amount of power they have to dissipate.
Normally the primary side of the transformer consists of a single turn and the secondary consists of several turns of either enameled magnet wire or insulated wire. The diameter of the ferrite core used in this example is $0.5^{\prime \prime}$ (SPANG/Magnetics F41206-TC). The rectifying diode at the output of the current transformer can be a 1 N 4148 for secondary currents up to 75 mA average.

Sense FETs or resistive sensing can also be used to sense the switch current, the sensed signal has to be amplified to the proper level before it is applied to the ML4819.
The value of the ramp compensation ($\mathrm{SC}_{\mathrm{PWM}}$) as seen at pin 1 is:

$$
\begin{equation*}
S_{P W M}=\frac{2.5 \times R_{9}}{R_{16} \times C_{6} \times R_{18}} \tag{11}
\end{equation*}
$$

The required value for R_{18} can therefore be found by equating:

$$
S_{P W M}=A_{S C} \times S_{P W M}
$$

where $A_{S C}$ is the amount of slope compensation and solving for R_{18}.
The value of R_{9} (pin 2) depends on the selection of R_{2} (pin 6)

$$
\begin{align*}
& R_{2}=\frac{V_{I N}(\max)_{\text {PEAK }}}{I_{\text {SINE }}(\text { peak })}=\frac{260 \times 1.414}{0.72 \mathrm{~mA}}=510 \mathrm{~K} \tag{12}\\
& R_{9}>\frac{V_{\text {CLAMP }} \times R_{2}}{V_{I N}(\min)_{\text {PEAK }}}=\frac{4.8 \times 510 \mathrm{~K}}{80 \times 1.414} \cong 22 \mathrm{~K} \tag{13}
\end{align*}
$$

Choose R9 $=27 \mathrm{~K}$
The peak of the inductor current can be found approximately by:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{LPEAK}}=\frac{1.414 \times \mathrm{P}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}(\mathrm{~min})_{\mathrm{RMS}}}=\frac{1.414 \times 200}{90}=3.14 \mathrm{~A} \tag{14}
\end{equation*}
$$

Selection of N_{C} which depends on the maximum switch current, assume 4A for this example is 80 turns.

$$
\begin{equation*}
R_{11}=\frac{V_{\text {CLAMP }} \times N_{C}}{I_{\text {LPEAK }}}=\frac{4.8 \times 80}{4} \cong 100 \Omega \tag{15}
\end{equation*}
$$

Where R_{11} is the sense resistor, and $V_{\text {CLAMP }}$ is the current clamp at the inverting input of the PWM comparator. This clamp is internally set to 5 V . In actual application it is a good idea to assume a value less than 5 V to avoid unwanted current limiting action due to component tolerances. In this application $\mathrm{V}_{\text {CLAMP }}$ was chosen as 4.8 V .

Having calculated R_{11} the value $S_{P W M}$ and of R_{18} can now be calculated:

$$
\begin{align*}
& \mathrm{S}_{P W M}=\frac{380 \mathrm{~V}-20}{2 \mathrm{mH}} \times \frac{100}{80}=0.225 \mathrm{~V} / \mu \mathrm{s} \\
& \mathrm{R}_{18}=\frac{2.5 \times \mathrm{R}_{9}}{\mathrm{~A}_{\mathrm{SC}} \times \mathrm{S}_{\mathrm{PWM}} \times \mathrm{R}_{\mathrm{T}} \times \mathrm{C}_{\mathrm{T}}} \tag{16}\\
& \mathrm{R}_{18}=\frac{2.5 \times 27 \mathrm{~K}}{0.7 \times\left(.225 \times 10^{6}\right) \times 14 \mathrm{~K} \times 1 \mathrm{nF}} \cong 30 \mathrm{~K}
\end{align*}
$$

Choose R18 $=33 \mathrm{~K}$
The following values were used in the calculation:

$$
\begin{array}{ll}
\mathrm{R}_{9}=27 \mathrm{~K} & \mathrm{~A}_{\mathrm{SC}}=0.7 \\
\mathrm{R}_{\mathrm{T}}=14 \mathrm{~K} & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}
\end{array}
$$

VOLTAGE REGULATION COMPONENTS

The values of the voltage regulation loop components are calculated based on the operating output voltage. Note that voltage safety regulations require the use of sense resistors that have adequate voltage rating. As a rule of thumb if $1 / 4 \mathrm{~W}$ resistors are available, two of them should be used in series. The input bias current of the error amplifier is approximately $0.5 \mu \mathrm{~A}$, therefore the current available from the voltage sense resistors should be significantly higher than this value. Since two $1 / 4 \mathrm{~W}$ resistors have to be used the total power rating is $1 / 2 \mathrm{~W}$. The operating power is set to be 0.4 W then with 380 V output voltage the value can be calculated as follows:

$$
\begin{equation*}
\mathrm{R}_{5}=(380 \mathrm{~V})^{2} / 0.4 \mathrm{~W}=360 \mathrm{~K} \tag{17}
\end{equation*}
$$

Choose two 178K, 1\% connected in series.
Then R_{6} can be calculated using the formula below:

$$
\begin{equation*}
R_{6}=\frac{V_{\text {REF }} \times R_{5}}{V_{B}-V_{\text {REF }}}=\frac{5 V \times 356 \mathrm{~K}}{380 \mathrm{~V}-5 \mathrm{~V}}=4.747 \mathrm{~K} \tag{18}
\end{equation*}
$$

Choose $4.75 \mathrm{~K}, 1 \%$. One more critical component in the voltage regulation loop is the feedback capacitor for the error amplifier. The voltage loop bandwidth should be set such that it rejects the 120 Hz ripple which is present at the output. If this ripple is not adequately attenuated it will cause distortion on the input current waveform. Typical bandwidths range anywhere from a few Hertz to 15 Hz . The main compromise is between transient response and distortion. The feedback capacitor can be calculated using the following formula:

$$
\begin{align*}
& \mathrm{C}_{8}=\frac{1}{3.142 \times \mathrm{R}_{5} \times \mathrm{BW}} \tag{19}\\
& \mathrm{C}_{8}=\frac{1}{3.142 \times 356 \mathrm{~K} \times 2 \mathrm{~Hz}}=0.44 \mu \mathrm{~F}
\end{align*}
$$

OVERVOLTAGE PROTECTION (OVP) COMPONENTS

The OVP loop should be set so that there is no interaction with the voltage control loop. Typically it should be set to a level where the power components are safe to operate. Ten to fifteen volts above $V_{\text {OUT }}$ seems to be adequate. This sets the maximum transient output voltage to about 395 V .
By choosing the high voltage side resistor of the OVP circuit the same way as above i.e. $\mathrm{R}_{7}=356 \mathrm{~K}$ then R_{8} can be calculated as:

$$
\begin{equation*}
R_{8}=\frac{V_{\text {REF }} \times R_{7}}{V_{\text {OVP }}-V_{\text {REF }}}=\frac{5 V \times 356 \mathrm{~K}}{395 \mathrm{~V}-5 \mathrm{~V}}=4.564 \mathrm{~K} \tag{20}
\end{equation*}
$$

Choose $4.53 \mathrm{~K}, 1 \%$.
Note that R_{5}, R_{6}, R_{7} and R_{8} should be tight tolerance resistors such as 1% or better.

OFF-LINE START-UP AND BIAS SUPPIY GENERATION

The Start-Up Circuit in figure 12 can be either a "bleed resistor" $(39 \mathrm{~K} \Omega, 2 \mathrm{~W})$ or the circuit shown in figure 13. The bleed resistor method offers the advantage of simplicity and lowest cost, but may yield excessive turnon delay at low line.
When the voltage on pin $15\left(V_{C C}\right)$ exceeds 16 V , the IC starts up. The energy stored on the C10 supplies the IC with running power until the supplemental winding on T3 can provide the power to sustain operation.

Figure 13. Start-Up Circuit

ENHANCEMENT CIRCUIT

The theory of operation of the power factor enhancement circuit (inside the dotted lines) in Figure 11 is described in APPLICATION NOTE 11 in detail. It improves the power factor and lowers the input current harmonics. Note that the circuit meets the proposed IEC 555 specifications (with the enhancement) on the harmonics with a large margin while correcting the input power factor to better than 0.99 under most steady state operating conditions.

PWM SECTION

The PWM section in figure 12 is a two switch forward converter, shown in figure 14 below for clarity. This fully clamped circuit eliminates the need for very high voltage MOSFETs. Flyback topology is also possible with the ML4819.

Figure 14. Two-Switch Forward Converter
This regulator (figure 12) uses current mode control. Current is sensed through R24 and filtered for high frequency noise and leading edge transient through R23 and C14. The main regulation loop is through PWM B. The TL431 (U3) in the secondary serves as both the voltage reference and error amplifier, with isolation provided by an opto coupler (U2) providing a current command signal on pin 8. Loop compensation is provided by R29 and C20. The output voltage is set by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}=2.5\left(1+\frac{\mathrm{R}_{29}}{\mathrm{R}_{28}}\right) \tag{21}
\end{equation*}
$$

The control loop is compensated using standard compensation techniques.

Current is limited to a threshold of 2A (1V on R24). The duty cycle is limited in this circuit to below 50% to prevent transformer (T3) core saturation. The maximum duty cycle limit of 45% is set using a threshold of $V_{\text {REF }} / 2$ on pin 7.
The circuit in figure 12 can be modified for voltage mode operation by utilizing the slope current which appears on pin 9 as shown in figure 15 below.
The ramp amplitude appearing on pin 9 will be

$$
\begin{equation*}
V_{R}=\frac{I_{R 18}}{2} \times R(V) \tag{22}
\end{equation*}
$$

where R_{18} is the slope compensation resistor. Since this circuit operates with a constant input voltage (as supplied by the PFC section) voltage feed-forward is unnecessary.

Figure 15. Voltage Mode Configuration

CONSTRUCTION AND LAYOUT TIPS

High frequency power circuits require special care during breadboard construction and layout. Double sided printed circuit boards with ground plane on one side are highly recommended. All critical switching leads (power FET, output diode, IC output and ground leads, bypass capacitors) should be kept as small as possible. This is to minimize both the transmission and pick-up of switching noise.
There are two kinds of noise coupling; inductive and capacitive. As the name implies inductive coupling is due to fast changing (high di/dt) circulating switching currents. The main source is the loop formed by Q1, D6, and C3-C4. Therefore this loop should be as small as possible, and the above capacitors should be good high frequency types.
The second form of noise coupling is due to fast changing voltages (high $\mathrm{dv} / \mathrm{dt}$). The main source in this case is the drain of the power FET. The radiated noise in this case can be minimized by insulating the drain of the FET from the heatsink and then tying the heatsink to the source of the FET with a high frequency capacitor.

The IC has two ground pins named PWR GND and Signal GND. These two pins should be connected together with a very short lead at the printed circuit board exit point. In general grounding is very important and ground loops should be avoided. Star grounding schemes are preferred.

Component Values/Bill of Materials for Figure 12

Component	Description
C1, C3	$0.6 \mu \mathrm{~F}, 630 \mathrm{~V}$ Film (250 VAC)
C2	$330 \mu \mathrm{~F}, 400 \mathrm{~V}$ Electrolytic
C4	6800pF, 1KV Ceramic
C5, C6	1000pF
C7	10رF, 35V
C8, C11, C13, C15, C16	$1 \mu \mathrm{~F}$, Ceramic
C9, C20, C21	$0.1 \mu \mathrm{~F}$, Ceramic
C10	$1500 \mu \mathrm{~F}, 25 \mathrm{~V}$ Electrolytic
C12, C17	$1 \mu \mathrm{~F}$, Ceramic
C14	2200pF
C18	$1500 \mu \mathrm{~F}, 16 \mathrm{~V}$ Electrolytic
C19	$4.7 \mu \mathrm{~F}$
D1-D5	1N5406
D6	MUR850
D7, D10	1N4148
D8	$3 V$ Zener diode or 4×1 N4148 in series
D9	MUR110
D11, D12	MUR150
D13	D83-004K
D15	1N4001
D16, D14	1N5818 or 1N5819
F1	5A, 250V, 3AG
L1	$2 \mathrm{mH}, 4 \mathrm{~A} \mathrm{I}_{\text {PEAK }}$ Core: Ferroxcube 4229-3C8 150 Turns \#24 AWG $0.150^{\prime \prime}$ gap
L2	$10 \mu \mathrm{H}$ Core: Spang OF 43019 UG00 8 Turns \#15AWG gap 0.05"
Q1-Q3	IRF840
Q4, Q5	2N2222
Q6	IRF821
R1	330K
R2, R31	510K
R3	5.6K

Component	Description
R4	12K
R5, R7	357K, 1\%
R6	4.75K, 1\%
R8	4.53K, 1\%
R9	27K
R10, R18	33K
R11	91Ω
R12, R22	10Ω
R13, R14	4.7K
R15	4.3K
R16	15K
R17	3Ω
R20	7.5Ω
R21, R19	3K
R23	100Ω
R24, R25	1Ω
R26	1.5K
R27	1.2K
R28	8.66K, 1\%
R29	2.26K, 1\%
R30	2K, 1W
R32, R33	2K
T1	Spang F41206-TC or Siemens B64290-K45-X27 or X830 or Ferroxcube 768T188-3C8 $N_{S}=80, N_{P}=1$
T2	Same core as T1 $N_{S}=N_{P}=15$ bifilar
T3	Core: Ferroxcube 4229-3C8 Pri. 44 Turns \#18 Litz wire Sec. 4 Turns of copper strip Aux. 2 Turns \#24 AWG
U2	MOC8102
U3	TL431

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4819CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4819CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (S20W)

Power Factor Controller

GENERAL DESCRIPTION

The ML4821 provides the complete control for a "boost" type power factor correction system using the average current sensing method. Special care has been taken in the design of the ML4821 to increase system noise immunity. The circuit includes a precision reference, multiplier, average current error amplifier, output error amplifier, over-voltage protection comparator, shutdown logic, as well as a high current output. In addition, startup is simplified by an under-voltage lockout circuit with 7V hysteresis.

In a typical application, the ML4821 controls the average current, adjusting the pulse width of the output to modulate the current so that its shape conforms to the shape of the input voltage. The reference for the current regulator is a product of the sinusoidal line voltage times the output of the error amplifier which is regulating the output DC voltage. Average line voltage compensation is provided in the multiplier to ensure constant loop gain over a wide input voltage range. This compensation includes a special "brown-out" control which reduces output power below 90V RMS input.
For applications information, Please see Applications Note 16.

The ML4821 uses Micro Linears bipolar array technology which allows for customization of the IC for a user's specific application. Please consult Micro Linear for semistandard options.

FEATURES

- Average current sensing for lowest possible harmonic distortion

■ Average Line compensation with Brown-out control

- Precision buffered 5 V Reference ($\pm 1 \%$)
- Current Input Multiplier reduces external components and improves noise immunity
- 1A Peak Current Totem-Pole Output Drive
- Over-Voltage comparator eliminates output "runaway" due to load removal
- Wide common mode range in current sense comparators for better noise immunity
- Large oscillator amplitude for better noise immunity
- Output Driver internally limited to 17V
- "Sleep mode" shutdown input

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION	$\begin{aligned} & \hline \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	ILIM	Peak cycle-by-cycle Current limit input.	10	SYNC	Oscillator synchronization input Inhibits output pulses when the
2	IA OUT	Output and compensation node of the average current error amplifier.	11	ovp	Inhibits output pulses when the voltage at this pin exceeds 5 V . Also, when the voltage at this pin is less than 0.7 V , the IC goes into low current shut-down mode.
3	IA-	Inverting input of the average current error amplifier.			
4	IA+	Non-Inverting input of the average	12	R_{T}	Timing Resistor for the Oscillator
		current error amplifier and output of the multiplier.	13	PWR GND	Return for the High Current Totem pole output.
5	$I_{\text {SINE }}$	Current Multiplier input.	14	OUT	High Current Totem pole output.
			15	$\mathrm{V}_{\text {CC }}$	Positive Supply for the IC.
6	EA OUT	Output of output voltage error amplifier.	16	$\mathrm{V}_{\text {ReF }}$	Buffered output for the 5 V voltage reference.
7	INV	Inverting input to error amplifier.	17	C_{T}	Timing Capacitor for the Oscillator.
8	$\mathrm{V}_{\text {RMS }}$	Input for Average Line Voltage compensation	18	GND	Analog signal ground.
9	SOFT START	Normally connected to Soft Start Capacitor			

ABSOLUTE MAXIMUM RATINGS

Supply Current (ICC) .. 35 mA
Output Current, Source or Sink (pin 14) DC 1.0A

Output Energy (capacitive load per cycle).................... 5μ J
Multiplier ISINE Input (pin 5) 1.2 mA

Error Amp Source Current (pin 6).............................. 50 mA
Oscillator Charge Current ... 2 mA
Analog Inputs (pins $1,3,4,7,8,9,10,11$) -0.3 V to 5.5 V
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec. $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})
Plastic DIP
$65^{\circ} \mathrm{C} / \mathrm{W}$
Plastic SOIC $65^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range

ML4821C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=6.2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=720 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ (Note 2).

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
OSCILLATOR	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	90	100	110	KHz
Initial accuracy	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<18 \mathrm{~V}$		1		$\%$
Voltage stability			2		$\%$
Temperature stability	Line, Temperature	85		115	KHz
Total Variation		4.7	5.2	5.6	V
Ramp Valley to Peak		4.8	5.0	5.2	V
R_{T} Voltage	$\mathrm{V}_{\text {PIN17 }}=2 \mathrm{~V}$	7.8	8.4	9.3	mA
Discharge Current (pin 12 open)		1.5	2.0	3.0	V
Sync Input Threshold					

REFERENCE SECTION

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}=1 \mathrm{~mA}$	4.95	5.00	5.05	V
Line regulation	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<24 \mathrm{~V}$		2	10	mV
Load regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		2	15	mV
Temperature stability			.4		$\%$
Total Variation	line, load, temp	4.9		5.1	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000$ hrs, (Note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$	-30	-85	-180	mA

VOLTAGE ERROR AMPLIFIER (EA)

Input Offset Voltage		0		-15	mV
Input Bias Current			-50	-800	nA
Open Loop Gain	$2<\mathrm{V}_{\mathrm{PIN6} 6}<6 \mathrm{~V}$	60	75		dB
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<24 \mathrm{~V}$	70	100		dB
Output Sink Current	$\mathrm{V}_{\text {PIN6 }}=4 \mathrm{~V}, \mathrm{~V}_{\text {PIN7 }}=5.5 \mathrm{~V}$	300	500		$\mu \mathrm{~A}$
Output Source Current	$\mathrm{V}_{\mathrm{PIN6}}=4.0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 7}=4.8 \mathrm{~V}$	-10	-30		mA

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOLTAGE ERROR AMPLIFIER (EA) (Continued)	7.0	7.5		V	
Output High Voltage	$\mathrm{I}_{\text {PIN6 }}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN } 7}=4.8 \mathrm{~V}$		0	0.5	V
Output Low Voltage	$\mathrm{I}_{\text {PIN6 }}=0, \mathrm{~V}_{\text {PIN7 }}=5.5 \mathrm{~V}$		1.0		MHz
Unity Gain Bandwidth		-22	-38	-50	$\mu \mathrm{~A}$
Soft Start Charge Current	$\mathrm{V}_{\text {PIN9 }}=4 \mathrm{~V}$				

CURRENT AMPLIFIER (IA)

Input Offset Voltage		-1.5	0	+3.5	mV
Input Bias Current			-0.15	-1	$\mu \mathrm{~A}$
Input Offset Current				+400	nA
Open Loop Gain	$2<\mathrm{V}_{\mathrm{PIN}}<7 \mathrm{~V}$	80	100		dB
PSRR	$12 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<24 \mathrm{~V}$	65	85		dB
Output Voltage Low	$\mathrm{I}_{\mathrm{OL}}=300 \mu \mathrm{~A}$		0	0.5	V
Output Voltage High	$\mathrm{IOH}=-10 \mathrm{~mA}$	7.0	7.5		V
Input Common Mode Range		-0.3		2.5	V

MULTIPLIER

Gain	$\begin{aligned} & V_{\text {PIN7 }}=4.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN8 }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN7 }}=4.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN8 }}=1.75 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN7 }}=4.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN8 }}=2.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN7 }}=4.8 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 8}=5.2 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.75 \\ 3.1 \\ 1.25 \\ 0.22 \end{gathered}$	$\begin{gathered} 1.2 \\ 3.88 \\ 1.75 \\ 0.38 \end{gathered}$	$\begin{gathered} 1.3 \\ 4.45 \\ 2.15 \\ 0.50 \end{gathered}$	
Output Current	$\mathrm{V}_{\text {PIN7 }}=5.2 \mathrm{~V}, \mathrm{~V}_{\text {PIN8 }}=5.2 \mathrm{~V}$		-2	-4	$\mu \mathrm{A}$
Output Current Limit	$\begin{aligned} & \mathrm{V}_{\mathrm{PIN} 7}=4.8 \mathrm{~V}, \mathrm{I}_{\mathrm{PIN} 5}=500 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{PIN8} 8}=1.75 \mathrm{~V} \end{aligned}$	360	395	420	$\mu \mathrm{A}$

ILIM COMPARATOR					
Input Offset Voltage				+15	mV
Input Bias Current			-100	-200	$\mu \mathrm{~A}$

OVP COMPARATOR

Input Offset Voltage	Output Off	-25		5	mV
Hysteresis	Output On	85	105	130	mV
Input Bias Current			-0.3	-3	$\mu \mathrm{~A}$
Propagation Delay			150		ns
Shutdown Threshold		0.4	0.7	1.0	V

PWM COMPARATOR: I ISENSE

Input Common Mode Range		0		8	V
Propagation Delay			150		ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
OUTPUT SECTION					
Output Voltage Low	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Output Voltage High	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Voltage Low in UVLO	$\mathrm{l}_{\text {OUT }}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=8 \mathrm{~V}$		0.1	0.8	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

UNDER-VOLTAGE LOCKOUT

Start-up Threshold		14.5		16.5	V
Shut-Down Threshold		8.5		10.5	V
$\mathrm{~V}_{\text {REF Good Threshold }}$			4.4		V

TOTAL DEVICE

Supply Current	Start-up, $\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Operating, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.6	1.2	mA
26	32	mA			
Internal Shunt Zener Voltage	$\mathrm{I}_{\mathrm{CC}}=35 \mathrm{~mA}$	25	27	35	V

Note 1. This parameter not 100% tested in production but guaranteed by design.
Note 2: V_{CC} is raised above the Start-up Threshold first to activate the IC, then returned to 15 V
Note 3: Multiplier gain is defined as: $\frac{\mathrm{l}_{\text {OUTPIN4 }}}{\text { INPIN6 }}$

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4821 oscillator charges the external capacitor (C_{T}) with a current equal to $2.5 / R_{\mathrm{T}}$. When the capacitor voltage reaches the upper threshold, the comparator changes state and the capacitor discharges to the lower threshold through Q1.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where:

$$
\mathrm{T}_{\mathrm{RAMP}}=\mathrm{C}(\text { Ramp Valley to Peak }) \div\left(\mathrm{I}_{\mathrm{RT}} / 2\right)
$$

and:

$$
\mathrm{T}_{\text {DEADTIME }}=\mathrm{C}(\text { Ramp Valley to } \mathrm{Pk}) \div\left(8.4 \mathrm{~mA}-\mathrm{I}_{\mathrm{RT}} / 2\right)
$$

The ML4821 oscillator includes a SYNC input for synchronizing to an external frequency source. A positive pulse on this pin of 2 V (typ) resets the oscillators comparator and initiates a discharge cycle for C_{T}. The R_{T} and C_{T} component values which set the ML4821 oscillator frequency should be selected to produce a lower frequency than the external frequency source.

ERROR AND CURRENT AMPLIFIERS

The ML4821 error amplifier is a high open loop gain, wide bandwidth, amplifier with a class A output. The soft start circuit controls the input to the error amplifier for closed loop soft start operation.

The current amplifier (IA) is similar to the error amplifier but is designed for very low offsets to allow the selection of a low value resistor for $R_{\text {SENSE }}$.

OUTPUT DRIVER STAGE

The ML4821 Output Driver is a 1A peak output high speed totem pole circuit designed to quickly drive capacitive loads, such as power MOSFET gates. The driver circuit's output voltage is internally limited to 17 V .

MULTIPLIER

The ML4821 multiplier is a linear current input multiplier which provides high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dropping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator.
The output of the multiplier is a current which appears on pin 4 to form the reference for the current error amplifier and is given as:

$$
I_{M U L}=K \times I_{\text {SINE }} \times\left(V_{E A}-0.8\right)
$$

where:
$I_{\text {SINE }}$ is the current in the dropping resistor, V_{EA} is the output of the error amplifier and K is a constant determined by the $V($ RMS $)$ input on pin 8 . K assumes a higher value for the range from 90 to 170 V than in the range above 170 V .

Figure 1. Osccillator Block Diagram.

Figure 2. OsciHator Timing Resistance vs. Frequency.

Figure 3. Error and Current Amplifier Configuration

Figure 5. Output Saturation Voltage vs. Output Current.

Figure 4. Error Amplifier Open-loop Gain and Phase vs. Frequency.

VOLTAGE ON PIN \#8
Figure 6. K-factor. Gain adjustor gain with respect to the voltage at pin \#8.

UNDER VOLTAGE LOCKOUT, OVP AND CURRENT LIMIT

On power-up the ML4821 remains in the UVLO condition; output low and quiescent current low. The IC becomes operational when Vcc reaches 16 V . When VCC drops below 9 V , the UVLO condition is imposed. During the UVLO condition, the 5 V Vref pin is "off", making it usable as a "flag" for starting up a down-stream PWM converter.

OVP, SHUTDOWN, AND IC BIAS

When the input to the OVP comparator exceeds $V_{\text {REF, }}$ the output of the ML4821 is inhibited. The OVP input also functions as a "sleep" input, putting the IC into the low quiescent UVLO state when the OVP pin is pulled below 0.7V.

OFF-LINE START-UP AND BIAS SUPPLY GENERATION

The circuit in Figure 11 below supplies V_{CC} power to the ML4821. Start-up current is delivered via R10. The IC starts when pin 15 reaches 15.5 V . After that time running power is delivered through the tap on L1. The configuration shown delivers a voltage proportional to VOUT.

Figure 7. Multiplier Linearity.

Figure 9. Total Supply Current vs. Supply Voltage.

Figure 8. Under-Voltage Lockout Block Diagram.

Figure 10. Reference Load Regulation.

Figure 11. Bias and Start-up Circuit.

ORDERING INFORMATION

PART NUMRER	TEMPEPATUPE RANCE	PACḰAGL
ML4821CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18-Pin Molded DIP (P18)
ML4821CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 -Pin Molded SOIC (S18W)

Note: Other packages and temperature ranges can be made available on request. Contact your local Micro Linear Representative for more information.

ML4821EVAL

Average Current PFC Controller Evaluation Kit

GENERAL DESCRIPTION

The ML4821EVAL kit provides a convenient vehicle to evaluate the ML4821 average current sense power factor correction control IC. It contains all of the necessary documentation with the evaluation board and key components to quickly evaluate the application circuit. The board is designed for a 200 W universal input PFC circuit. However power components can be replaced for higher or lower power applications.

KIT COMPONENTS

- User's Guide
- ML4821 Datasheet
- Application Note 16
- ML4861 Sample
- Evaluation Board
- Key Power Semiconductor Components
- Powder Iron Toroidal Inductor
- Input and output filter capacitors
- Heatsinks

FEATURES

- Harmonic currents well below proposed IEC555-2 limits.
- Power Factor >> 99
- THD < 5\%
- Universal Input Range (85Vac to 256Vac)
- 380V output at 200 W .
- Efficiency as high as 94\%.
- Auxiliary supply from additional inductor winding.
- OVP protection.

BLOCK DIAGRAM

High Frequency Power Supply Controller

GENERAL DESCRIPTION

The ML4823 High Frequency PWM Controller is an IC controller optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . Propagation delays are minimal through the comparators and logic for reliable high frequency operation while slew rate and bandwidth are maximized on the error amplifier. This controller is designed for single-ended applications using voltage or current mode and provides for input voltage feed forward.

A 1 V threshold current limit comparator provides cycle-by-cycle current limit and exceeding a 1.4 V threshold initiates a soft-start cycle. The soft start pin doubles as a maximum duty cycle clamp. All logic is fully latched to provide jitter-free operation and prevent multiple pulsing. An under-voltage lockout circuit with 800 mV of hysteresis assures low startup current and drives the outputs low during fault conditions.

This controller is an improved second source for the UC1823 controller, however the ML4823 includes features not found on the 1823 . These features are set in Italics.

FEATURES

- Practical Operation at Switching Frequencies to 1.0 MHz
- High Current (2A peak) Totem Pole Output
- Wide Bandwidth Error Amplifier
- Fully Latched Logic with Double Pulse Suppression
- Pulse-by-Pulse Current Limiting
- Soft Start and Max. Duty Cycle Control
- Under Voltage Lockout with Hysteresis
- $5.1 \mathrm{~V}, \pm 1 \%$ Trimmed Bandgap Reference
- Low Start-up Current (1.1mA)
- Pin Compatible Improved Replacement for UC1823
- Fast Shut Down Path from Current Limit to Output
- Soft Start Latch Ensures Full Soft Start Cycle
- Outputs Pull Low for Undervoltage Lockout

BLOCK DIAGRAM

PIN CONFIGURATION

ML4823
16-PIN DIP

ML4823 20-PIN PCC

PIN DESCRIPTION

$\left.\begin{array}{cll}\text { PIN\# NAME } & \text { FUNCTION } \\ \hline 1 & \text { INV } & \text { Inverting input to error amp. } \\ 2 & \text { NI } & \text { Non-inverting input to error amp. } \\ 3 & \text { E/A OUT } & \begin{array}{l}\text { Output of error amplifier and input to } \\ \text { main comparator. }\end{array} \\ 4 & \text { CLOCK } & \begin{array}{l}\text { Oscillator output. }\end{array} \\ 5 & \text { RT } & \begin{array}{l}\text { Timing Resistor for Oscillator - sets } \\ \text { charging current for oscillator timing } \\ \text { capacitor (pin 6). }\end{array} \\ 6 & \text { C }_{T} & \begin{array}{l}\text { Timing Capacitor for Oscillator. }\end{array} \\ 7 & \text { RAMP } & \begin{array}{l}\text { Non-inverting input to main } \\ \text { comparator. Connected to C }\end{array} \\ \text { Voltage Mode operation or to current } \\ \text { sense resistor for current mode. }\end{array}\right\}$

PIN\#	NAME	FUNCTION
9	$\mathrm{ILIM}^{\text {S }}$. D.	Current limit sense pin. Normally connected to current sense resistor.
10	GND	Analog Signal Ground.
11	ILIM REF	Reference input for cycle-by-cycle current limit comparator.
12	PWR GND	Return for the High Current Totem pole outputs.
13	V_{C}	Positive Supply for the High Current Totem pole outputs.
14	OUT B	High Current Totem pole output.
15	$V_{C C}$	Positive Supply for the IC.
16	5.1V REF	Buffered output for the 5.1 V voltage reference.

ABSOLUTE MAXIMUM RATINGS

Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic DIP
$65^{\circ} \mathrm{CM}$
Ceramic DIP ... $65^{\circ} \mathrm{C}$ W
Plastic Chip Carrier (PCC) $60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML4823M.. $+125^{\circ} \mathrm{C}$
ML $+75^{\circ} \mathrm{C}$
ML48231 C

Absolute maximum ratıngs are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Oscillator						
Initial Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},($ Note 1$)$	360	400	440	KHz	
Voltage Stability	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V},($ Note 1$)$		0.2	2	$\%$	
Temperature Stability	(Note 1)		5		$\%$	
Total Variation	Line, Temp, (Note 1)	340		460	KHz	
Clock Out High		3.9	4.5		V	
Clock Out Low			2.3	2.9	V	
Ramp Peak	(Note 1)	2.6	2.8	3.0	V	
Ramp Valley	(Note 1)	0.7	1.0	1.25	V	
Ramp Valley to Peak	(Note 1)	1.6	1.8	2.0	V	

Reference Section

Output Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.05	5.10	5.15	V
Line Regulation	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$		2	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability	$-55^{\circ} \mathrm{C}<\mathrm{T}_{j}<150^{\circ} \mathrm{C},($ Note 1$)$		0.2	0.4	$\%$
Total Variation	Line, load, temp. (Note 1)	5.00		5.20	V
Output Noise Voltage	10 Hz to $10 \mathrm{KHz}($ Note 1$)$		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}, 1000$ hrs, (Note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA

Error Amplifier Section

Input Offset Voltage	Operating Temperature Range			± 15	mV
Input Bias Current			0.6	3	$\mu \mathrm{~A}$
Input Offset Current			0.1	1	$\mu \mathrm{~A}$
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	95		dB

ELECTRICAL CHARACTERISTICS (Continued)
Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section (Continued)	$1.5<V_{\mathrm{CC}}<5.5 \mathrm{~V}$ Operating Temperature Range	75	95		dB
CMRR	$10<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$ Operting Temperature Range	85	110		dB
PSRR	$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Sink Current	$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-0.5	-1.3		mA
Output Source Current	$\operatorname{IPIN~} 3=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
Output High Voltage	$\operatorname{IPIN~} 3=1 \mathrm{~mA}$	0	0.5	1.0	V
Output Low Voltage	$($ Note 1)	3	5.5		MHz
Unity Gain Bandwidth	$($ Note 1)	6	12		$\mathrm{~V} / \mu \mathrm{s}$
Slew Rate					

PWM Comparator Section

Pin 7 Bias Current	$\mathrm{V}_{\text {PIN 7 }}=0 \mathrm{~V}$		-1	-5	$\mu \mathrm{~A}$
Duty Cycle Range		0		80	$\%$
Pin 3 Zero DC Threshold	$\mathrm{V}_{\text {PIN7 }}=0 \mathrm{~V}$	1.1	1.25		V
Delay to Output	(Note 1)		50	80	ns

Soft-Start Section

Charge Current	$\mathrm{V}_{\text {PIN } 8}=0.5 \mathrm{~V}$	3	9	20	$\mu \mathrm{~A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}$	1			mA

Current Limit/Shutdown Section

Pin 9 Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN }}<4 \mathrm{~V}$			± 10	$\mu \mathrm{~A}$
Current Limit Offset	$\mathrm{V}_{\text {PIN } 11}=1.1 \mathrm{~V}$	0		15	mV
Pin 11 Common Mode Range		1.0		1.25	V
Shutdown Threshold		1.25	1.40	1.55	V
Delay to Output	(Note 1)		50	80	ns

Output Section

Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$		0.25	0.40	V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$	13.0	13.5		V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	12.0	13.0		V
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{~A}$
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{PF},($ Note 1$)$		30	60	ns

Under-Voltage Lockout Section

Start Threshold		8.8	9.2	9.6	V
UVLO Hysteresis		0.4	0.8	1.2	V

Supply Current					
Start Up Current	$V_{C C}=8 \mathrm{~V}$				
$I_{\text {CC }}$	$V_{\text {PIN } 1,7,9=0 \mathrm{~V}}$ $V_{\text {PIN } 2}=1 \mathrm{~V}$		1.1	2.5	mA

Note 1: This parameter not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4823 oscillator charges the external capacitor (C_{T}) with a current ($l_{\text {SET }}$) equal to $3 / R_{\text {SET }}$. When the capacitor voltage reaches the upper threshold (Ramp Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q1. While the capacitor is discharging, Q2 provides a high pulse.

The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\text {OSC }}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where: $T_{\text {RAMP }}=C($ Ramp Valley to Peak $) / I_{\text {SET }}$
and: $\quad T_{\text {DEADTIME }}=C($ Ramp Valley to Peak $) / l_{\mathrm{Q} 1}$

RAMP PEAK

Figure 1. Oscillator Block Diagram

Figure 2. Oscillator Timing Resistance vs Frequency

Figure 3. Oscillator Deadtime vs Frequency

Figure 4. Oscillator Deadtime vs $C_{T}\left(3 K \Omega \leq R_{T} \leq 100 K \Omega\right)$

ERROR AMPLIFIER

The ML4823 error amplifier is a 5.5 MHz bandwidth $12 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive output voltage swing (Output Inhibit line) for ease in implementing the soft start function.

Figure 5. Unity Gain Slew Rate

Figure 6. Open Loop Frequency Response

OUTPUT DRIVER STAGE

The ML4823 Output Driver is a 2A peak output high speed totem pole circuit designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.

Figure 7. Simplified Schematic

Figure 8. Saturation Curves

Figure 9. Rise/Fall Time ($\mathrm{C}_{\mathrm{L}}=\mathbf{1 0 0 0} \mathrm{pF}$)

Figure 10 Rise/Fall Time $\left(C_{L}=\mathbf{1 0 , 0 0 0 p F}\right)$

ML4823

SOFT START AND CURRENT LIMIT

The ML4823 employs two current limits. When the voltage at pin 9 exceeds the ILIM REF threshold on pin 11, the outputs are immediately shut off and the cycle is terminated for the remainder of the oscillator period by resetting the RS flip flop.

If the output current is rising quickly (usually due to transformer saturation) such that the voltage on pin 9 reaches 1.4 V before the outputs have turned off, a soft start cycle is initiated. The soft start capacitor (pin 8) is discharged and outputs are held "off" until the voltage at pin 8 reaches 1 V , ensuring a complete soft start cycle. The duty cycle on start up is limited by limiting the output voltage of the error amplifier voltage to the voltage at pin 8.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4823CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4823CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML4823CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S16W)
ML4823IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4823IQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML4823IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S16W)
ML4823MJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Hermetic DIP (J16)

September 1994
PRELIMINARY
ML4824

Power Factor and PWM Combo

GENERAL DESCRIPTION

The ML4824 is a complete controller for a power factor corrected, switched mode power supply. Power Factor Correction results in smaller, lower cost bulk capacitors, reduces power line loading and the stress on switching FETs, and results in a power supply that fully complies with IEC555-2 specifications. Contained in the ML4824 are circuits for the implementation of a leading edge, average current mode "boost" type power factor correction and a trailing edge, synchronized current or voltage mode pulse width modulator (PWM).
The ML4824 comes in two versions; the ML4824XP-1 ($\mathrm{f}_{\text {PWM }}=\mathrm{f}_{\text {PFC }}$) and the ML4824XP-2 ($\mathrm{f}_{\text {PWM }}=2 \mathrm{f}_{\text {PFC }}$). Doubling the switching frequency of the PWM allows the user to design with a smaller output inductor and capacitor.

An over-voltage comparator is configured to shut-down the PFC section in the event of a sudden decrease in load. The PFC section also includes peak current limiting and input voltage brown-out protection.
The PWM section can be operated in current mode or voltage mode and includes a precision duty cycle limit to prevent transformer saturation.

When a brown-out occurs, the VINOK comparator shuts down both the PFC and the PWM. A soft-start of the PWM follows with the return of normal line power.

FEATURES

- Internally Synchronized PFC and PWM in one IC
- Low Total Harmonic Distortion
- Average Current Sensing, Continuous Boost, Leading Edge PFC
- High Efficiency, Trailing Edge PWM
- Current Mode or Voltage Mode PWM

■ Average Line Voltage Compensation with Brown-Out Control (Universal Input)

- PFC Over-Voltage Comparator Eliminates Output "Runaway" Due to Load Removal
- Current Fed Multiplier to Improve Noise Immunity
- Simplified Compensation Scheme
- Overvoltage Protection, UVLO, and Soft Start

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	IEAO	PFC transconductance current error amplifier output.	9 10	DCILIM GND	PWM current limit. Ground.
2	$\mathrm{I}_{\text {AC }}$	PFC multiplier reference input.	11	VO2	PWM driver output.
3	ISENSE	Current sense input to the PFC current limit comparator.	12	VO1	PFC driver output.
4	$V_{\text {RMS }}$	Input for PFC RMS line voltage compensation.	13	$\mathrm{V}_{\text {CC }}$ REF	Positive supply (with shunt regulator). Buffered output for the 7.5 V voltage
5	SS	PWM soft start (capacitor).			reference
6	$V_{D C}$	PWM voltage feedback input.	15	FB	PFC transconductance voltage error amplifier input.
7	RAMP1	Oscillator timing node; timing set by $\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$.	16	VEAO	PFC transconductance voltage error amplifier output.
8	RAMP2	Current mode; current sense input. Voltage mode; input for PFC output (feed forward ramp).			

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Current (ICC) .. 55mA
Peak Output Current, Source or Sink (pins $11 \& 12$) . 0.5 A
Output Energy (capacitive load per cycle)................ 1.5 mJ
Multiplier I_{AC} Input (pin 2) 10 mA
Analog Inputs (pins 4, 6, 9 \& 15) $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
Pin 3 input voltage
$-3 V$ to $+5 V$
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$Plastic DIP$80^{\circ} \mathrm{C} / \mathrm{W}$
Plastic SOIC $105^{\circ} \mathrm{C} / \mathrm{W}$
OPERATING CONDITIONS
Temperature Range
ML4824C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ML4824I $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=52.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=470 \mathrm{pF}, \mathrm{T}_{\mathrm{J}}=$ Junction Operating Temperature Range, $\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifiers (pins 1, 3, 15, 16)					
Transconductance, gm_{V}	$\mathrm{V}_{\text {NON-INV }}=\mathrm{V}_{\text {INV }}($ Note 1)	30	85	140	$\mu \mho$
Transconductance, gm_{l}	$\mathrm{V}_{\text {NON-INV }}=\mathrm{V}_{\text {INV }}($ Note 1)	130	195	335	$\mu \mho$
Input Offset Voltagev			± 3.0	± 15.0	mV
Input Offset Voltage ${ }_{\text {I }}$			± 3.0	± 15.0	mV
Input Bias Current			-0.3	-1.0	$\mu \mathrm{A}$
Open Loop Gain		60	75		dB
PSRR	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$	60	75		dB
Input Voltage Range	Pin 15 (Note 3)	0		7.	V
	Pin 3 (Note 3)	-1.5		2	V
Output Low			0.65	1	V
Output High		6.0	6.7		V
Source Current	$\Delta \mathrm{V}_{\text {IN }}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V}$		-80	-40	$\mu \mathrm{A}$
Sink Current	$\Delta \mathrm{V}_{\text {IN }}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	40	80		$\mu \mathrm{A}$

Comparators (pins 1, 3, 5, 6, 15)

OVP Threshold		2.6	2.7	2.8	V
OVP Hysteresis		80	115	150	mV
ILIM Threshold		-0.80	-1.0	-1.15	V
ILIM Delay to Output	(Note 3)		150	300	ns
DCI LIM Threshold		0.90	1.0	1.10	V
DCl LIM Delay to Output	(Note 3)		150	300	ns
VINOK Threshold		2.4	2.5	2.6	V
VINOK Hysteresis		0.8	1.0	1.2	V
Input Bias Current			± 0.3	± 1	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Multiplier					
Gain (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.36	0.51	0.66	
	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	1.20	1.72	2.24	
	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=1.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.55	0.78	1.01	
	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.14	0.20	0.26	
Bandwidth	$\mathrm{I}_{\mathrm{AC}}=250 \mu \mathrm{~A}$		10		MHz
Multiplier Output Voltage	$\begin{aligned} & V_{\text {PIN15 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 5}=1.15 \mathrm{~V} \\ & \mathrm{I}_{\text {PIN } 2}=250 \mu \mathrm{~A} \end{aligned}$	0.72	0.8	0.88	V

Oscillator

Initial Accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	71	76	81	kHz
Voltage Stability	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		1		$\%$
Temperature Stability	Over operating temp. range		2		$\%$
Total Variation	Line, temp.	68		84	kHz
Ramp Valley to Peak Voltage			2.5		V
Dead Time	PFC only	270	370	470	ns
C_{T} Discharge Current	$\mathrm{V}_{\text {PIN8 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN7 }}=2.5 \mathrm{~V}$	4.5	7.5	9.5	mA

Reference

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	7.4	7.5	7.6	V
Line Regulation	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		2	10	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		2	15	mV
Temperature Stability			0.4		$\%$
Total Variation	Line, load, temp.	7.25		7.65	V
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs (Note 3$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$	-15	-40	-100	mA

PWM

Start Period Duty Cycle	ML4824-1	$0-44$	$0-47$	$0-50$	$\%$
	ML4824-2	$0-37$	$0-40$	$0-45$	$\%$

PFC

Minimum Duty Cycle	$\mathrm{V}_{\text {IEAO }}>3.8 \mathrm{~V}$			0	$\%$
Maximum Duty Cycle	$\mathrm{V}_{\text {IEAO }}<1.2 \mathrm{~V}$	90	95		$\%$

Outputs

Output Voltage Low	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$		0.3	0.8	V
	$\mathrm{l}_{\text {OUT }}=-50 \mathrm{~mA}$		0.5	3.0	V
Suipui V'vilage iriigin	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$	9.5	10		V
	$\mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}$	9	9.5		V
Output Voltage Low in UVLO	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.7	1.5	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Under-Voltage Lockout and Bias Circuits					
I_{C} Shunt Voltage $\left(\mathrm{V}_{\mathrm{CCZ}}\right)$	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	12.8	13.5	14.2	V
$\mathrm{~V}_{\mathrm{CCZ}}$ Load Regulation	$25 \mathrm{~mA}<\mathrm{I}_{\mathrm{CC}}<55 \mathrm{~mA}$		± 150	± 300	mV
$\mathrm{V}_{\mathrm{CCZ}}$ Total Variation	Load, temp.	12.4		14.6	V
Start-up Current	$\mathrm{V}_{\mathrm{CC}} \leq 12.3 \mathrm{~V}$		0.7	1.1	mA
Operating Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		16	19	mA
Undervoltage Lockout Threshold		12	13	14	V
Undervoltage Lockout Hysteresis		2.7	3.05	3.4	V

Note 1: gmV is the feedback amplifier transconductance and gml is the sense amplifier transconductance.
Note 2: Gain $=K \times 53 \mathrm{~V} ; \mathrm{K}=\left(\mathrm{I}_{\mathrm{MULO}}-\mathrm{I}_{\text {OFFSET }}\right)\left(\mathrm{I}_{\mathrm{AC}} \times \mathrm{V}_{\mathrm{EAO}}-1.5\right)^{-1}$
Note 3. This parameter not 100% tested but guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

Multiplier Gain (K) vs. VRMS

IEAO Transconductance (gm)

VEAO Transconductance (gm)

ML4824

FUNCTIONAL DESCRIPTION

OVERVIEW

The ML4824 consists of an average current controlled, continuous boost Power Factor (PFC) front-end section with a synchronized Pulse Width Modulator (PWM) backend. The PWM can be used in either current mode or voltage feed-forward mode.
Synchronizing the PWM with the PFC simplifies the PWM compensation due to the controlled ripple on the PFC output capacitor (the PWM input capacitor). The ML4824XP-1 runs at the same frequency as the PFC. The ML4824XP-2 runs at twice the frequency of the PFC; resulting in a smaller output capacitor and inductor.
In addition to power factor correction, a number of hazard protection features have been built into the ML4824 including soft-start, over-voltage, peak current limiting, brown-out protection, duty cycle limit, and under-voltage lockout.

PFC SECTION

Multiplier

Figure 1 shows the PFC multiplier section. The ML4824 multiplier is a linear current input multiplier which provides the high noise immunity required in high power switching power conversion. The rectified input sine wave is converted to a proportional current via a resistor and is then fed into the multiplier at pin $2, \mathrm{I}_{\mathrm{AC}}$. Sampling current in this way reduces ground noise to an insignificant level.

The output of the multiplier is a 120 Hz current sine wave which appears on the negative terminal of the IEA amplifier to form the reference for the current error amplifier. The quality of this waveform is dependent on the quality of the line voltage. The output voltage of the multiplier is given by:

$$
\mathrm{V}_{\mathrm{MUL}} \approx(\mathrm{~K})\left(\mathrm{I}_{\mathrm{AC}}\right)(\mathrm{VEAO}-1.5 \mathrm{~V})(3.5 \mathrm{k} \Omega)
$$

where:
$I_{A C}$ is the current in the dropping resistor
VEAO is the output of the error amplifier
K is the gain of the multiplier
The output of the multiplier is limited to around 0.8 V and its typical gain characteristics are illustrated in the typical performance characteristics.

AVERAGE CURRENT AND OUTPUT VOLTAGE REGULATION

The modulator in the PFC section will act to offset the positive voltage caused by the multiplier output by producing an offsetting negative voltage on the current sense resistor at pin 3. A cycle-by-cycle current limit is included to protect the MOSFET from high frequency current transients. When the voltage at pin 3 goes negative by more than one volt $(-1 \mathrm{~V})$, the PFC modulation cycle is terminated.

For more information on compensating the average current and boost voltage error amplifier loops, see Application Notes 16, 33, and 34.

OVER-VOLTAGE PROTECTION

The over-voltage scheme is shown in Figure 2. The OVP comparator serves to protect the power circuit from being subjected to excessive voltages if the load should change suddenly.

A resistor divider from the high voltage DC output of the PFC is fed to FB at pin 15. When the voltage on pin 15 exceeds 2.7 V , the PFC output driver is shut down. The PWM section will continue to operate. The OVP comparator has 125 mV of hysteresis, and the PFC will not restart until the voltage at FB drops below 2.58 V . The OVP feedback voltage, FB, should be set at a level where the active and passive external power components are safe to operate and within the safe operating voltage of the I_{C}, but not so low as to interfere with the boost voltage regulation loop.

Figure 1. Multiplier Block Diagram

Error Amplifier Compensation

The PWM loading of the PFC can be modelled as a negative resistor; an increase in input voltage to the PWM causes a decrease in the input current. This response dictates the proper compensation of the two transconductance error amplifiers.

The PFC has two error amplifiers in the control loop. Figure 3 illustrates compensation for the amplifiers.

Figure 3. Compensation
There are two major concerns in compensating the voltage loop error amplifier; stability and transient response. Optimizing interaction between transient response and stability requires that the closed loop error amplifier bandwidth be $1 / 2$ that of the line frequency or 30 Hz for a 60 Hz line.

Current Amplifier Compensation

The current amplifier compensation is similar to that of the error amplifier with the exception of the choice of cutoff frequency. The cut-off frequency of the current amplifier must be 10 times that of the voltage amplifier to prevent interaction with the voltage loop. It should also be limited to less than $1 / 6$ th that of the switching frequency; 16.7 kHz for a 100 kHz switching frequency.

For more information on calculating the values of compensation networks, see appication note 33 and appication note 34 .

OSCILLATOR (RAMP1)

The oscillator frequency is determined by the values $O f R_{T}$ and C_{T}, which determine the ramp and off-time of the
oscillator output clock $\mathrm{f}_{\mathrm{OSC}}=\frac{1}{\left(\mathrm{t}_{\text {RAMP }}+\mathrm{t}_{\text {DEADTIME }}\right)}$
The deadtime of the oscillator is derived from the following equation:

$$
\begin{aligned}
& t_{\text {RAMP }}=\left(C_{T}\right)\left(R_{T}\right)(\ln)\left[\frac{V_{\text {REF }}-1.25}{V_{\text {REF }}-3.75}\right]=0.51\left(\left(R_{T}\right)\left(C_{T}\right)\right\} \\
& @ V_{\text {REF }}=7.5 \mathrm{~V}
\end{aligned}
$$

The ramp of the oscillator may be determined using the following:

$$
t_{\text {DEADTIME }}=\left(\mathrm{C}_{\mathrm{T}}\right) \frac{2.5 \mathrm{~V}}{5.1 \mathrm{~mA}}=(490)\left(\mathrm{C}_{\mathrm{T}}\right)
$$

The deadtime is so small ($\mathrm{t}_{\text {RAMP }} \gg \mathrm{t}_{\text {DEADTIME }}$) that the operating frequency can typically be approximated by

$$
\mathrm{f}_{\mathrm{OSC}}=\frac{1}{\mathrm{t}_{\mathrm{RAMP}}}
$$

EXAMPLE:

For the application circuit shown in the data sheet, with the oscillator running at

$$
\begin{gathered}
f_{\text {OSC }}=(100 \mathrm{kHz})\left(\mathrm{f}_{\mathrm{OSC}}\right)=\frac{1}{T}=\frac{1}{\text { oscillation period }}=\frac{1}{\mathrm{t}_{\text {RAMP }}} \\
\mathrm{t}_{\mathrm{RAMP}}=(0.51)\left(\mathrm{R}_{\mathrm{T}}\right)\left(\mathrm{C}_{\mathrm{T}}\right)=10 \times 10^{-6}
\end{gathered}
$$

So

$$
\left(R_{T}\right)\left(C_{T}\right)=20 \times 10^{-5}
$$

Choosing standard components values

$$
C_{T}=470 \mathrm{pF}
$$

and

$$
\mathrm{R}_{\mathrm{T}}=41.2 \mathrm{~K} \Omega
$$

PWM SECTION

Soft Start

Start-up of the PWM is controlled by the selection of the external capacitor on pin 5, SS. A current source of $50 \mu \mathrm{~A}$ supplys the charging current for the capacitor, and start-up of the PWM begins at 1.25 V . Start up delay can be programmed by the following equation:

$$
\mathrm{C}_{\mathrm{SS}}=\left(\mathrm{t}_{\mathrm{d}}\right) \frac{50 \mu \mathrm{~A}}{1.25 \mathrm{~V}}
$$

where $C_{S S}$ is the required capacitance, and t_{d} is the desired start-up delay.
It is important that the time constant of the PWM soft-start allow the PFC time to generate sufficient output power for the PWM. The PWM start-up delay should be at least 5 mS .
Thus, we get;

$$
\mathrm{C}_{\mathrm{SS}}=\left(5 \times 10^{-3}\right) \frac{50 \mu \mathrm{~A}}{1.25 \mathrm{~V}}
$$

Where C_{SS} is the required capacitance.

VINOK Comparator

The VINOK comparator monitors the DC output of the PFC and inhibits the PWM if this voltage is lower than 380 V . Once this voltage reaches 380 V , the soft-start commences.

PWM CONTROL (RAMP2)

RAMP2 can be used as the PWM feedback or as a feedforward ramp from the PFC with a peak voltage of 5 V .

PWM CURRENT LIMIT

A current limit comparator is included with the noninverting input on pin 9, $\mathrm{DCl}_{\text {LIM. }}$. The trigger level is set at 1 V on the inverting input.

TYPICAL APPLICATION CIRCUIT

Figure 4 is the application circuit for a complete 200W power factor corrected power supply. Full design details are covered in Application Note 33, ML4824 Combo Controller Applications.
MJMicro Linear

ML4824

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4824CP-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4824CS-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SOIC (S16W)
ML4824CP-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4824CS-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Wide SOIC (S16W)
ML4824IP-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4824IS-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SOIC (S16W)
ML4824IP-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4824IS-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Wide SOIC (S16W)

High Frequency Power Supply Controller

GENERAL DESCRIPTION

The ML4825 High Frequency PWM Controller is an IC controller optimized for use in Switch Mode Power Supply designs running at frequencies to 1 MHz . Propagation delays are minimal through the comparators and logic for reliable high frequency operation while slew rate and bandwidth are maximized on the error amplifier. This controller is designed to work in either voltage or current mode and provides for input voltage feed forward.

A 1 V threshold current limit comparator provides cycle-by-cycle current limit while exceeding a 1.4 V threshold initiates a soft-start cycle. The soft start pin doubles as a maximum duty cycle clamp. All logic is fully latched to provide jitter-free operation and prohibit multiple pulsing. An under-voltage lockout circuit with 800 mV of hysteresis assures low startup current and drives the outputs low.
The ML4825 is fabricated on a 40 V bipolar process from the FB3480 Power Supply Controller Array. Customized versions of this controller are therefore
easily implemented. Please refer to the FB3480 datasheet for more information.
This controller is similar in architecture and performance to the UC1825 controller, however the ML4825 includes many features not found on the 1825. These features are set in Italics.

FEATURES

- Practical Operation at Switching Frequencies to 1.0 MHz
- High Current (2A peak) Dual Totem Pole Outputs
- Wide Bandwidth Error Amplifier
- Fully Latched Logic with Double Pulse Suppression
- Pulse-by-Pulse Current Limiting
- Soft Start and Max. Duty Cycle Control
- Under Voltage Lockout with Hysteresis
- 5.1V, $\pm 1 \%$ Trimmed Bandgap Reference
- Pin Compatible Improved Replacement for UC1825
- Fast Shut Down Path from Current Limit to Outputs
- Outputs Preset to Known Condition After Under Voltage Lockout
- Soft Start Latch Ensures Full Soft Start Cycle
- Outputs Pull Low for Undervoltage Lockout

BLOCK DIAGRAM

PIN CONNECTIONS

PIN DESCRIPTION

PIN \#	NAME	FUNCTION	PIN \#	NAME	FUNCTION
1	INV	Inverting input to error amp.	9	I(LIM)/S.D.	Current limit sense pin. Normally
2	NI	Non-inverting input to error amp.			connected to current sense resistor.
3	E/A OUT	Output of error amplifier and input to main comparator.	10	GND	Analog Signal Ground.
4	CLOCK	Oscillator output.	11	OUT A	High Current Totem pole output. This output is the first one
5	R(T)	Timing Resistor for Oscillator sets charging current for oscillator timing capacitor (pin 6).	12	PWR GND	energized after Power On Reset. Return for the High Current Totem pole outputs.
6	C(T)	Timing Capacitor for Oscillator.	13	V_{C}	Positive Supply for the High
7	RAMP	Non-Inverting input to main comparator. Connected to $\mathrm{C}(\mathrm{T})$ for Voltage Mode operation or to current sense resistor for current mode.	$\begin{aligned} & 14 \\ & 15 \\ & 16 \end{aligned}$	OUT B $V_{C C}$ 5.1V REF	Current Totem pole outputs. High Current Totem pole output. Positive Supply for the IC. Buffered output for the 5.1V
8	SOFT START	Normally connected to Soft Start Capacitor.			voltage reference.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Pins 15, 13)	
Output Current, Source or Sink (Pins 11, 14)	
DC	0.5A
Pulse (0.5 $\mu \mathrm{s}$)	2.0A
Analog Inputs	
(Pins 1, 2, 7)	-0.3V to 7V
(Pins 9, 8)	-0.3 V to 6V
Clock Output Current (Pin 4)	$-5 \mathrm{~mA}$
Error Amplifier Output Current (Pin 3	5 mA
Soft Start Sink Current (Pin 8)	20 mA
Oscillator Charging Current (Pin 5)	$-5 \mathrm{~mA}$
Junction Temperature	
ML4825I, ML4825C	$125^{\circ} \mathrm{C}$
Storage Temperature Range	就 $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .)	$+260^{\circ} \mathrm{C}$

```
Thermal Resistance ( \(\boldsymbol{\theta}_{1 \mathrm{~A}}\) )
```

Plastic DIP or SOIC
$65^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Chip Carrier (PCC)
$60^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

```
Temperature Range
```


Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},($ note 1)	360	400	440	KHz
Initial Accuracy	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 1)		0.2	2	$\%$
Voltage Stability	(note 1)			5	$\%$
Temperature Stability	line, temp, (note 1)	340		460	KHz
Total Variation		3.9	4.5		V
Clock Out High			2.3	2.9	V
Clock Out Low	(note 1)	2.6	2.8	3.0	V
Ramp Peak	(note 1)	0.7	1.0	1.25	V
Ramp Valley	(note 1)	1.6	1.8	2.0	V
Ramp Valley to Peak					

Reference Section						
Output Voltage	ML4825C	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.00	5.10	5.20	V
	ML4825I		5.05	5.10	5.15	V
Line Regulation		$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}$		2	20	mV
Load Regulation		$1 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<10 \mathrm{~mA}$		5	20	mV
Temperature Stability		$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$, (note 1)		. 2	. 4	\%
Total Variation	ML4825C	line, load, temp (note 1)	4.95		5.25	V
	ML4825I	line, load, temp $\mathrm{T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$, (note 1)	5.00		5.20	V
	ML4825I	line, load, temp $\mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$, (note 1)	4.95		5.25	V
Output Noise Voltage		10 Hz to 10 KHz		50		$\mu \mathrm{V}$
Long Term Stability		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$, (note 1)		5	25	mV
Short Circuit Current		$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-15	-50	-100	mA

Error Amplifier Section

Input Offset Voltage	$\mathrm{ML4825I}, \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$			15	mV
	ML 4825 I	$\mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$			20	mV
Input Bias Current			.6	3	$\mu \mathrm{~A}$	
Input Offset Current			.1	1	$\mu \mathrm{~A}$	
Open Loop Gain	$1<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}$	60	96		dB	

ELECTRICAL CHARACTERISTICS (Continued)

Unless otherwise specified, $\mathrm{R}_{\mathrm{T}}=3.65 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{T}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Error Amplifier Section (Continued)						
CMRR	ML4825I,C	$1.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$	75	95		dB
	ML4825I	$1.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	65	95		dB
$\overline{\text { PSRR }}$	ML4825I,C	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$	80	110		dB
	ML4825I	$10 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	75	110		dB
Output Sink Current		$\mathrm{V}_{\text {PIN } 3}=1 \mathrm{~V}$	1	2.5		mA
Output Source Current		$\mathrm{V}_{\text {PIN } 3}=4 \mathrm{~V}$	-. 5	-1.3		mA
Output High Voltage		$\mathrm{IPIN} 3=-0.5 \mathrm{~mA}$	4.0	4.7	5.0	V
Output Low Voltage		$\mathrm{IPIN} 3=1 \mathrm{~mA}$	0	0.5	1.0	V
Unity Gain Bandwidth		(note 1)	3	5.5		MHz
Slew Rate		(note 1)	6	12		$\mathrm{V} / \mu \mathrm{s}$

PWM Comparator Section

Pin 7 Bias Current	ML4825I,C	$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$		-1	-5	$\mu \mathrm{A}$
	ML4825I	$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$			-10	$\mu \mathrm{A}$
Duty Cycle Range	ML4825C		0		85	\%
	ML4825I	$\mathrm{T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$	0		80	\%
	ML4825I	$\mathrm{T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	0		70	\%
Pin 3 Zero DC Threshold		$\mathrm{V}_{\text {PIN } 7}=0 \mathrm{~V}$	1.1	1.25		V
Delay to Output		(note 1)		50	80	ns

Soft-Start Section

Charge Current	$\mathrm{V}_{\text {PIN } 8}=0.5 \mathrm{~V}$	3	9	20	$\mu \mathrm{~A}$
Discharge Current	$\mathrm{V}_{\text {PIN } 8}=1 \mathrm{~V}$	1			mA

Current Limit/Shutdown Section

Pin 9 Bias Current	ML4825C	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 9}<4 \mathrm{~V}$			+10	$\mu \mathrm{~A}$
	$\mathrm{ML4825I}$	$0 \mathrm{~V}<\mathrm{V}_{\text {PIN } 9}<4 \mathrm{~V}$			+15	$\mu \mathrm{~A}$
Current Limit Threshold		.9	1	1.1	V	
Shutdown Threshold	$\mathrm{T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$	1.25	1.4	1.55	V	
	$\mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$	1.25	1.4	1.60	V	
Delay to Output	(note 1)		40	70	ns	

Output Section

Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}$.25	.4	V
	$\mathrm{I}_{\mathrm{OUT}}=200 \mathrm{~mA}$		1.2	2.2	V
Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-20 \mathrm{~mA}$	13.0	13.5		V
	$\mathrm{I}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	12.0	13.0		V
Collector Leakage	$\mathrm{V}_{\mathrm{C}}=30 \mathrm{~V}$		100	500	$\mu \mathrm{~A}$
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF},($ note 1)		30	60	ns

Under-Voltage Lockout Section

Start Threshold		8.7	9.2	9.6	V
UVLO Hysteresis		0.3	0.8	1.2	V

Supply Current

Start Up Current	M1 48251 C	$V_{C C}=8 \mathrm{~V}, \mathrm{~T}_{n}>\underline{n}^{\circ} \mathrm{C}$
	ML4825I	$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}<0^{\circ} \mathrm{C}$
I_{CC}		$\mathrm{V}_{\text {PIN 1, 7,9 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 2}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	1.9	2.5	$m \wedge$
		3.5	mA
	26	33	mA

Note 1: This parameter not 100% tested in production but guaranteed by design.

FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4825 oscillator charges the external capacitor $\left(C_{T}\right)$ with a current ($l_{\text {SET }}$) equal to $3 / R_{\text {SET }}$. When the capacitor voltage reaches the upper threshold (Ramp Peak), the comparator changes state and the capacitor discharges to the lower threshold (Ramp Valley) through Q1. While the capacitor is discharging, Q2 provides a high pulse.
The Oscillator period can be described by the following relationship:

$$
\mathrm{T}_{\mathrm{OSC}}=\mathrm{T}_{\text {RAMP }}+\mathrm{T}_{\text {DEADTIME }}
$$

where: $T_{\text {RAMP }}=C($ Ramp Valley to Peak $) / I_{\text {SET }}$ and: $\quad T_{\text {DEADTIME }}=C($ Ramp Valley to Peak $) / I_{\mathrm{Q} 1}$

CLOCK

RAMP PEAK

Figure 1. Oscillator Block Diagram

Figure 2. Oscillator Timing Resistance vs Frequency

Figure 3. Oscillator Deadtime vs Frequency

Figure 4. Oscillator Deadtime vs $\mathrm{C}(\mathrm{T})(\mathbf{3 K} \Omega \leq \mathrm{R}(\mathrm{T}) \leq 100 \mathrm{~K} \Omega)$

ERROR AMPLIFIER

The ML4825 error amplifier is a 5.5 MHz bandwidth $12 \mathrm{~V} / \mu \mathrm{s}$ slew rate op-amp with provision for limiting the positive output voltage swing (Output Inhibit line) for ease in implementing the soft start function.

Figure 5. Unity Gain Slew Rate

Figure 6. Open Loop Frequency Response

OUTPUT DRIVER STAGE

The ML4825 Output Driver is a 2A peak output high speed totem pole circuit designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.

Figure 7. Simplified Schematic

Figure 8. Saturation Curves

Figure 9. Rise/Fall Time ($\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$)

Figure 10. Rise/Fall Time ($C_{L}=\mathbf{1 0 , 0 0 0 p F}$)

Figure 11. Supply Current vs Temperature

SOFT START AND CURRENT LIMIT

The ML4825 employs two current limits. When the voltage at pin 9 exceeds 1 V , the outputs are immediately shut off and the cycle is terminated for the remainder of the oscillator period by resetting the RS flip flop.
If the output current is rising quickly such that the voltage on pin 9 reaches 1.4 V before the outputs have turned ott, a soft start cycle is initiated. The soft start capacitor (pin 8) is discharged and outputs are held "off" until the voltage at pin 8 reaches 1 V , ensuring a complete soft start cycle. The duty cycle on start up is limited by limiting the output voltage of the error amplifier voltage to the voltage at pin 8.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4825CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4825CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S16W)
ML4825CQ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded PCC (Q20)
ML4825IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P16)
ML4825IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S16W)
ML4825IQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded PCC (Q20)

Power Factor and Dual PWM Combo

GENERAL DESCRIPTION

The ML4826 is a complete high power controller for a power factor corrected, switched mode power supply. Power factor correction results in smaller, lower cost bulk capacitors, reduces power line loading and the stress on switching FETs, and results in a power supply that fully complies with IEC555-2 specifications. Contained in the ML4826 are circuits for the implementation of a leading edge, average current mode "boost" type power factor correction and a trailing edge, synchronized current or voltage mode Pulse Width Modulator (PWM) with dual totem pole outputs.
The ML4826 comes in two versions: the ML4826XP-1 ($f_{\text {PWM }}=f_{\text {PFC }}$) and the ML4826XP-2 ($f_{\text {PWM }}=2 f_{\text {PFC }}$).
An over-voltage comparator is configured to shut down the PFC section in the event of a sudden decrease in load. The PFC section also includes peak current limiting and input voltage brown-out protection.

The PWM section can be operated in current mode or voltage mode and includes a precision duty cycle limit to prevent transformer saturation.

When a brown-out occurs, the VINOK comparator shuts down both the PFC and the PWM. A soft-start of the PWM follows with the return of normal line power.

FEATURES

- Internally synchronized PFC and PWM in one IC
- Low total harmonic distortion
- Average current sensing, continuous boost, leading edge PFC
- High efficiency, trailing edge PWM with dual totem pole outputs
- Current mode or voltage mode operation
- Average line voltage compensation with brown-out control (Universal Input)
- PFC over-voltage comparator eliminates output "runaway" due to load removal
- Current fed multiplier to improve noise immunity
- Simplified compensation scheme
- Over-voltage protection, UVLO, and soft-start

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	IEAO	PFC transconductance current error amplifier output.
2	$\mathrm{I}_{A C}$	PFC multiplier reference input.
3	$I_{\text {SENSE }}$	Current sense input to the PFC current limit comparator.
4	$\mathrm{V}_{\text {RMS }}$	Input for PFC RMS line voltage compensation.
5	SS	PWM soft start (capacitor).
6	$V_{D C}$	PWM output voltage feedback.
7	$\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}$	Connection for oscillator frequency setting components.
8	RAMP1	PFC ramp input. Can be used for voltage feed forward.
9	RAMP2	PWM ramp input. Current mode; current sense input. Voltage mode; input for PFC output (feed forward ramp).
10	DCl ${ }_{\text {LIM }}$	PWM current limit.

PIN\#	NAME	FUNCTION
11	AGND	Analog signal ground.
12	PGND	Return for the PWM to' , pole outputs.
13	VO 2	PWM totem pole driver 2 output.
14	VO1	PWM totem pole driver 1 output.
15	PFC OUT	PFC driver output.
16	V_{C}	Positive supply for the PWM totem pole outputs.
17	$\mathrm{V}_{\text {CC }}$	Positive supply (with shunt regulator).
18	REF	Buffered output for the 7.5 V voltage reference.
19	FB	PFC transconductance voltage error amplifier input.
20	VEAO	PFC transconductance voltage error amplifier output.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Current (l_{CC}) 55 mA
Peak Output Current, Source or Sink (pins 13, 14 \& 15) . 0.5 A
Output Energy (capacitive load per cycle)............... 1.5 mJ
Multiplier I_{AC} Input (pin 2) 10 mA
Analog Inputs (pins 4, 6, $9 \& 15$) -0.3 V to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ Pin 3 input voltage \qquad -3 V to +5 V
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{J}}\right)$
Plastic DIP .. $80^{\circ} \mathrm{C}$ W
Plastic SOIC.. $100^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML4826C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ML4826I
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R_{\text {RAMP1 }}=R_{T}=52.3 \mathrm{k} \Omega, C_{R A M P 1}=C_{T}=180 \mathrm{pF}, T_{A}=$ Operating Temperature Range, $\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Amplifiers (pins 1, 3, 15, 16)

Transconductance, gmv	$\mathrm{V}_{\text {NON-INV }}=\mathrm{V}_{\text {INV }}($ Note 1)	30	70	140	$\mu \mho$
Transconductance, gm_{l}	$\mathrm{V}_{\text {NON-INV }}=\mathrm{V}_{\text {INV }}($ Note 1)	130	195	335	$\mu \mho$
Input Offset VoltageV			± 3.0	± 15.0	mV
Input Offset Voltage ${ }_{\text {I }}$			± 3.0	± 15.0	mV
Input Bias Current			-0.5	-1.0	$\mu \mathrm{A}$
Open Loop Gain		60	75		dB
PSRR	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{C C Z}-0.5 \mathrm{~V}$	60	75		dB
Input Voltage Range	$\operatorname{Pin} 19$ (Note 3)	0		7	V
	Pin 3 (Note 3)	-1.5		2	V
Output Low			0.65	1	V
Output High		6.0	6.7		V
Source Current	$\Delta \mathrm{V}_{\text {IN }}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V}$	-40	-90		$\mu \mathrm{A}$
Sink Current	$\Delta \mathrm{V}_{\text {IN }}= \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V}$	40	90		$\mu \mathrm{A}$

Comparators (pins 1, 3, 5, 6, 15)

OVP Threshold		2.6	2.7	2.8	V
OVP Hysteresis		70	95	125	mV
ILIM Threshold		-0.80	-1.0	-1.15	V
ILIM Delay to Output	(Note 3)		150	300	ns
DCI $_{\text {LIM Threshold }}$		0.90	1.0	1.10	V
DCI LIM Delay to Output	(Note 3)		150	300	ns
VINOK Threshold		2.4	2.5	2.6	V
VINOK Hysteresis		0.7	1.0	1.2	V
Input Bias Current			± 0.45	± 1	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Multiplier					
Gain (Note 2)	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.36	0.51	0.66	
	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=1.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	1.20	1.72	2.24	
	$\begin{aligned} & \mathrm{I}_{\mathrm{PIN} 2}=50 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=1.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.55	0.78	1.01	
	$\begin{aligned} & \mathrm{IPIN} 2=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PIN} 4}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 15}=0 \mathrm{~V} \end{aligned}$	0.14	0.20	0.26	
Bandwidth	$\mathrm{I}_{\mathrm{AC}}=250 \mu \mathrm{~A}$		10		MHz
Multiplier Output Voltage	$\begin{aligned} & V_{\text {PIN15 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 5}=1.15 \mathrm{~V} \\ & \mathrm{I}_{\text {PIN } 2}=250 \mu \mathrm{~A} \end{aligned}$	0.72	0.8	0.88	V
Oscillator					
Initial Accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	180	190	200	kHz
Voltage Stability	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{C C Z}-0.5 \mathrm{~V}$		1		\%
Temperature Stability			2		\%
Total Variation	Line, temp.	175		205	kHz
Ramp Valley to Peak Voltage			2.5		V
Dead Time	PFC only, ML4826-1 ML4826-2	$\begin{aligned} & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & 440 \end{aligned}$	$\begin{aligned} & \hline 450 \\ & 550 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
C_{T} Discharge Current	$\mathrm{V}_{\text {PIN8 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN7 }}=2.5 \mathrm{~V}$	4.5	7.5	9.5	mA
Reference					
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA}$	7.4	7.5	7.6	V
Line Regulation	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{C C Z}-0.5 \mathrm{~V}$		2	10	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<20 \mathrm{~mA}$		2	15	mV
Temperature Stability			0.4		\%
Total Variation	Line, load, temp.	7.25		7.65	V
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$ (Note 3)		5	25	mV
Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$	-15	-40	-100	mA
PWM					
Duty Cycle Range	ML4826-1	0-47	0-48	0-50	\%
	ML4826-2	0-47	0-48	0-50	\%
PFC					
Minimum Duty Cycle	ML4826-1, $\mathrm{V}_{\text {IEAO }}>3.8 \mathrm{~V}$			0	\%
	ML4826-2, $\mathrm{V}_{\text {IEAO }}>5.7 \mathrm{~V}$			0	\%
Maximum Duty Cycle	$\mathrm{V}_{\text {IEAO }}<1.2 \mathrm{~V}$	90	95		\%

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Outputs					
Output Voltage Low	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$		0.3	0.8	V
	$\mathrm{I}_{\text {OUT }}=-50 \mathrm{~mA}$		0.6	3.0	V
Output Voltage High	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$	9.5	10		V
	$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}$	9	10		V
Output Voltage Low in UVLO	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.8	1.5	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

Under-Voltage Lockout and Bias Circuits

Shunt Voltage $\left(\mathrm{V}_{\mathrm{CCZ}}\right)$	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	12.8	13.5	14.2	V
$\mathrm{~V}_{\mathrm{CCZ}}$ Load Regulation	$25 \mathrm{~mA}<\mathrm{I}_{\mathrm{CC}}<55 \mathrm{~mA}$		± 150	± 300	mV
$\mathrm{V}_{\mathrm{CCZ}}$ Total Variation	Load, temp.	12.4		14.6	V
Start-up Current	$\mathrm{V}_{\mathrm{CC}} \leq 12.3 \mathrm{~V}$		0.7	1.1	mA
Operating Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		22	28	mA
Undervoltage Lockout Threshold		12	12.9	14	V
Undervoltage Lockout Hysteresis		2.7	3.05	3.4	V

Note 1: gmV is the feedback amplifier transconductance and gml is the sense amplifier transconductance.
Note 2: Gain $=K \times 5.3 \mathrm{~V} ; \mathrm{K}=\left(l_{\text {MULO }}-l_{\text {OFFSET }}\right) \times I_{A C} \times\left(V_{E A O}-1.5\right)^{-1}$
Note 3: This parameter not 100% tested but guaranteed by design.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4826CP-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4826CS-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S20)
ML4826CP-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4826CS-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S16)
ML4826IP-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4826IS-1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S20)
ML4826IP-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4826IS-2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S16)

BiCMOS Phase Modulation/Soft Switching Controller

GENERAL DESCRIPTION

The ML4828 is a complete BiCMOS phase modulation control IC suitable for full bridge soft switching converters. Unlike conventional PWM circuits, the phase modulation technique allows for zero voltage switching (ZVS) transitions and square wave drive across the transformer. The IC modulates the phases of the two sides of the bridge to control output power.
The ML4828 can be operated in either voltage or current mode. The delay times for the side A and B outputs are individually programmable to allow zero voltage switching transitions to take place.

Both cycle-by-cycle current limit, integrating fault detection, and soft start reset are provided. The undervoltage lockout circuit features a 1.5 V hysteresis with a low starting current to allow off-line start up with a bleed resistor. A shutdown function powers down the IC, putting it into a low quiescent state.

The circuit can be operated at frequencies up to 1 MHz . The ML4828 contains four high current CMOS outputs which feature high slew rate with low cross conduction.

FEATURES

5 V BiCMOS for low power and high frequency (1 MHz) operation
■ Full bridge phase modulation Zero Voltage Switching circuit with independent programmable delay times

- Current mode operation capability

■ Cycle-by-cycle current limiting with integrating fault detection and restart delay

- Can be externally synchronized
- Four 3Ω CMOS output drivers
- Under-voltage lockout circuit with 1.5 V hysteresis

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN\#	NAME	DESCRIPTION
1	R_{A}	A1 and A2 delay programming resistor.
2	R_{B}	B1 and B2 delay programming resistor.
3	R_{T}	Oscillator charge current programming resistor.
4	C $_{T}$	Oscillator timing capacitor.
5	REF	2.5V reference voltage.
6	SYNC	Synchronization input to oscillator.
7	SS	Soft start capacitor connection.
8	EAO	Error amplifier output.
9	EA-	Error amplifier inverting input.
10	EA+	Error amplifier non-inverting input.

PIN\#	NAME	DESCRIPTION
11	RAMP	RC network for phase modulator ramp input.
12	RST	RC network for reset and integrating fault detect.
13	B2	B2 driver output.
14	VCC	Power supply ($\leq 6.5 \mathrm{~V}$)
15	B1	B1 driver output.
16	A2	A2 driver output.
17	GND	Ground.
18	A1	A1 driver output.
19	SDN	Active low device shutdown.
20	LIM	Current limit.

ABSOLUTE MAXIMUM RATINGS

I_{CC} Current .. 25 mA
Output Current, Source or Sink (Pins 13,15,16,18)
Pulse ($0.5 \mu \mathrm{~s}$)
Analog Inputs
(Pins 8 thru 12, and 20) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
R_{T} Current Source (Pin 3)
Error Amplifier Output Current (Pin 8)mA
Soft Start Discharge Current (Pin 7) 5mA
Oscillator Charging Current (Pin 4)-1mA
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$ Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic DIP $40^{\circ} \mathrm{C} / \mathrm{W}$
Plastic SOIC... $100^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Commercial Temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Industrial Temperature \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R_{A}=R_{B}=33.3 \mathrm{k} \Omega, R_{T}=16 \mathrm{k} \Omega, C_{T}=270 \mathrm{~F}, \mathrm{~V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Operation Temperature Range

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Oscillator	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	340	360	380	kHz
Initial Accuracy	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}$		4	5.3	$\% / \mathrm{N}$
Voltage Stability	$($ Note 1$)$		2		$\%$
Temperature Stability	Line, temp.	325		400	kHz
Total Variation	$\mathrm{V}_{\text {PIN4 }}=2 \mathrm{~V}$	1.3	1.5		mA
C_{T} Discharge Current			2.6		V
Ramp Peak			1.12		V
Ramp Valley					

Reference

Initial Accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}=250 \mu \mathrm{~A}$	2.48	2.5	2.52	V
Line Regulation	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<6.5 \mathrm{~V}$		± 0.2	± 1	$\% / \mathrm{N}$
Load Regulation	$100 \mu \mathrm{~A}$ to 1 mA		± 0.5	± 6	mV
Temperature Stability			0.45		$\%$
Total Variation	Line, Load, \& Temp	2.44		2.54	V
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ hrs, (Note 1$)$		5	25	mV
Short Circuit Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	-10	-23	-35	mA

Error Amplifier

Input Offset Voltage		-20		20	mV
Open Loop Gain	$1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<3 \mathrm{~V}$	60	80		dB
PSRR	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<6.5 \mathrm{~V}$	60	80		dB
Output Sink Current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	1.2	1.9		mA
Output Source Current	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	-0.9	-1.1		mA
Output High Voltage	$\mathrm{I}_{\text {SOURCE }}=-500 \mu \mathrm{~A}$	2.8	2.85		V
Output Low Voltage	$\mathrm{I}_{\text {SINK }}=500 \mu \mathrm{~A}$		0.1	0.2	V
Unity Gain Bandwidth	$($ Note 1$)$	7	10		MHz
Slew Rate	Note 1$)$	0.5	1		$\mathrm{~V} / \mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS

Phase Modulator

Pin 8 Zero Duty Cycle Threshold	$V_{\text {PIN 3 }}=\mathrm{OV}$	0	0.5	0.9	V
Pin 11 Delay to Output	$($ Note 1)		50	80	ns
Pin 11 Discharge Current		48		85	mA

Soft-Start

Pin 7 Charge Current	$\mathrm{V}_{\text {PIN } 7}=4 \mathrm{~V}$		-25	-50	$\mu \mathrm{~A}$
Pin 7 Discharge Current	$\mathrm{V}_{\text {PIN } 7}=1 \mathrm{~V}$	6	10	11.2	mA

Current Limit/Shutdown

Current Limit Threshold		0.9	1.0	1.1	V
Pin 20 Delay to Output	(Note 1)		50		ns
Pin 12 Shutdown Threshold		1.0	1.1	1.5	V
Pin 12 Restart Threshold		2.2	2.4	2.6	V
Pin 12 Charging Current		-400	-460	-550	$\mu \mathrm{~A}$
$\overline{\text { SDN Shutdown Threshold }}$			2.0		V

Output

Output Low Level	lout $=20 \mathrm{~mA}$ $\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		0.01	0.1	V
Output High Level	lout $=-20 \mathrm{~mA}$ $\mathrm{l}_{\text {OUT }}=-100 \mathrm{~mA}$	0.1	0.3	V	
Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF},($ Note 1)	4.9	4.95		V
ZVS Programmable Delay			5	7	ns
Delay Mismatch		240	280	300	ns
$\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}$ Reference Voltage			0		ns

Under-Voltage Lockout

Start Threshold		5.1	5.85	6.6	V
Stop Threshold		4.1	4.2	4.3	V

Supply

Shunt Voltage $\left(\mathrm{V}_{\mathrm{CCZ}}\right)$	$\mathrm{I}_{\mathrm{CC}}<\mathrm{mA}$		7.4		V
Start Up Current	$\mathrm{V}_{\mathrm{CC}}<6 \mathrm{~V}$			1	mA
Shutdown Current			100	170	$\mu \mathrm{~A}$
I_{CC}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5		mA

Note 1: This parameter not 100% tested in production but guaranteed by design.
Note 2: $V_{C C}$ must be brought above the UVLO start voltage (6 V) before dropping to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to ensure start-up.

FUNCTIONAL DESCRIPTION

PHASE MODULATOR

The ML4828 controls the power of a full bridge power section by modulating the phases of the switches of the A and B sides (Figure 1). The power cycle starts with $A 2$ and B1 high, as shown in the timing diagram (Figure 2).

1. With A2 and B1 high, Q1 and Q2 are ON. Current flows through the primary of the transformer, and power is delivered to the output through the secondary winding (not shown).
2. After either the $\Phi M O D$ or $I_{\text {LIM }}$ comparator trips, B1 goes low, turning off Q2. Energy in the primary winding charges the parasitic capacitances of Q2 and Q3 to +VIN during t_{DB}.
3. $B 2$ goes high after time $t_{D B}$, which is set by the resistor connected from RB (pin 2) to GND. tDB should be set large enough such that the source of Q3 has been
charged to +VIN. At this time, Q3 turns on at zero voltage. The transformer is now effectively shorted through Q1 and Q3, with the primary magnetizing current circulating in the loop formed by the transformer primary, Q1, and Q3.
4. CLOCK then goes high and A2 goes low, while A1 remains low for time tDA, which is set by the resistor connected from RA (pin 1) to GND. During this time, both Q1 and Q4 are OFF. The primary magnetizing current discharges the parasitic capacitances of Q1 and Q4 to GND.
5. A1 goes high after time $t_{D A}$. At this point, the drain of Q4 is discharged to GND, and Q4 turns on at zero voltage. With both Q3 and Q4 ON, a new power cycle starts, and power is delivered to the output.
The above sequence is then repeated with the roles of side A and B interchanged.

The ML4828 can also be used in current mode by sensing the load current on the RAMP input (pin 11).

Figure 1. Simplified diagram of Phase Modulated power Outputs.

Figure 2. Phase Modulation control waveforms (Shaded areas indicate a power cycle).

SETTING THE OSCILLATOR FREQUENCY

The ML4828 switching frequency is determined by the charge and discharge times of the network connected to the R_{T} and C_{T} pins. Figure 3 shows the relationships between the internal clock and the charge and discharge times.

Figure 3. Internal Oscillator Timing.
The frequency of the oscillator is:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{OSC}}=\frac{1}{\mathrm{t}_{\text {CHARGE }}+\mathrm{t}_{\text {DISCHARGE }}} \tag{1}
\end{equation*}
$$

The ramp peak is 2.5 V and the ramp valley is 1.25 V , giving a ramp range of 1.25 V . The charging current is set externally through the resistor R_{T} :

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CHARGE}}=\frac{2.5 \mathrm{~V}}{\mathrm{R}_{\mathrm{T}}} \tag{2}
\end{equation*}
$$

while the discharging current is fixed at 1.4 mA . The charge and discharge times can be determined by:

$$
\begin{align*}
\mathrm{t}_{\mathrm{CHARGE}} & =\frac{\mathrm{C}_{\mathrm{T}} \times 1.25 \mathrm{~V}}{\mathrm{I}_{\mathrm{CHARGE}}}=\frac{\mathrm{C}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}}{2} \tag{3}\\
\mathrm{t}_{\text {DISCHARGE }} & =\frac{\mathrm{C}_{\mathrm{T}} \times 1.25 \mathrm{~V}}{\mathrm{I}_{\text {DISCHARGE }}}=\frac{\mathrm{C}_{\mathrm{T}} \times 1.25 \mathrm{~V}}{1.4 \mathrm{~mA}} \tag{4}
\end{align*}
$$

The oscillator frequency can then be found by substituting the results of equations 3 and 4 into equation 1 . This frequency activates a T flip-flop which generates the output pulses. The T flip-flop acts as a frequency divider $(\div 2)$, so the output frequency will be:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{OSC}}}{2} \tag{5}
\end{equation*}
$$

ERROR AMPLIFIER

The ML4828 error amplifier has a 10 MHz bandwidth and a $1 \mathrm{~V} / \mu \mathrm{s}$ slew rate. Figure 4 gives the Bode plot of the error amplifier.

Figure 4. Error Amplifier Open-Loop Gain and Phase vs. Frequency.

OUTPUT DRIVERS

The ML4828 has four high-current CMOS output drivers, each capable of 1A peak output current. These outputs have been designed to quickly switch the gates of power MOSFET transistors via a gate drive transformer. For higher power applications, the outputs can be connected to external MOSFET drivers.
The output phase delay times are set by charging an internal 6.7 pF capacitor up to the REF voltage (2.5 V) via a current that is externally programmed through R_{A} and R_{B}, for the side A and side B drivers, respectively. The charging current and delay time for side A are given by:

$$
\begin{align*}
\mathrm{I}_{\mathrm{A}} & =\frac{2.5 \mathrm{~V}}{R_{A}} \tag{6}\\
\mathrm{t}_{\mathrm{DA}} & =6.7 \mathrm{pF} \times \mathrm{R}_{\mathrm{A}} \tag{7}
\end{align*}
$$

The same equations can be applied to R_{B}. For example, with $\mathrm{R}_{\mathrm{A}}=33 \mathrm{k} \Omega$:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{DA}}=6.7 \mathrm{pF} \times 33 \mathrm{k} \Omega=220 \mathrm{~ns} \tag{8}
\end{equation*}
$$

Figure 5. Over-Current, Soft-Start, and Integrating Fault Detect Circuits.

SOFT START TIME CONSTANT

During start up, the output voltage is much lower than the steady state value. Without soft start circuitry, the error amplifier output (EAO) would swing all the way to the upper limit and the phase modulator would issue pulses with full duty cycle, possibly causing output overshoot. To ensure smooth start up, EAO (pin 8) is pulled low and then gradually released through the charging of an external soft start capacitor connected to SS (pin 7). The soft start charging current is internally set at $25 \mu \mathrm{~A}$. Hence, EAO will rise with a time constant of:

$$
\begin{equation*}
\frac{d v}{d t}=\frac{25 \mu \mathrm{~A}}{C_{S S}} \tag{9}
\end{equation*}
$$

For example, with $C_{S S}=25 \mu F$, the soft start rate of change will be:

$$
\begin{equation*}
\frac{d v}{d t}=\frac{25 \mu \mathrm{~A}}{25 \mu \mathrm{~F}}=1 \frac{\mathrm{~V}}{\mathrm{~s}} \tag{10}
\end{equation*}
$$

FAULT TIME CONSTANT AND RESTART DELAY

Figure 5 shows the internal circuitry and external components involved in fault detection. During normal operation, RST (pin 12) is discharged to ground through the external resistor $R_{\text {RST }}$. The $\mathrm{I}_{\text {LIM }}$ comparator has a threshold of 1 V . R RENSE is selected so that the voltage across it will be equal to the $\mathrm{I}_{\text {LIM }}$ threshold at the maximum desired $I_{\text {SWITCH }}$ current. When the voltage across $R_{\text {SENSE }}$ exceeds 1 V , the $\mathrm{I}_{\text {LIM }}$ comparator trips, terminating the present power cycle, and at the same time activating the fault logic to turn on the $500 \mu \mathrm{~A}$ current
source $I_{\text {RST }}$. This current charges the reset capacitor $\mathrm{C}_{\mathrm{RST}}$. For proper design, $\mathrm{R}_{\text {RST }}$ should be very large (in the order of $100 \mathrm{k} \Omega$). This will cause nearly all of the $\mathrm{I}_{\text {RST }}$ current (approximately $500 \mu \mathrm{~A}$) to go into charging $\mathrm{C}_{\text {RST }}$ at a rate of:

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{500 \mu \mathrm{~A}}{\mathrm{C}_{\mathrm{RST}}} \tag{11}
\end{equation*}
$$

in volts per second. $I_{\text {RST }}$ will be turned off at the beginning of the next clock cycle. If the current limit condition is removed, RST will be gradually discharged to ground, and normal operation resumes as shown in Figure 6.

Figure 6. ILIM and Resulting $\mathrm{RC}_{\text {RST }}$ Waveforms During Load Surge.

If the current limit condition persists, then $I_{\text {RST }}$ will be reactivated, thus charging $\mathrm{C}_{\text {RST }}$ to a higher level as shown in Figure 7. Eventually, the voltage at RST will exceed 2.5 V , and the soft start comparator will trip, shutting down all power drivers and inhibiting any further delivery of power. At the same time, the soft start capacitor $\mathrm{C}_{S S}$ is discharged to prepare for the next start up cycle.

Figure 7. I LIM and Resulting RC $_{\text {RST }}$ Waveforms During Short Circuit.

During the $\mathrm{I}_{\text {LIM }}$ shutdown, $\mathrm{I}_{\text {RST }}$ is turned off, and $\mathrm{C}_{\text {RST }}$ is discharged through $R_{\text {RST }}$ with a time constant of:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{RST}}=\mathrm{R}_{\mathrm{RST}} \times \mathrm{C}_{\mathrm{RST}} \tag{12}
\end{equation*}
$$

When the condition causing the current limit is removed, $R_{R S T}$ will discharge $C_{R S T}$ with a time constant of $t_{R S T}$. When the voltage at RST (pin 12) drops to 1.25 V , the soft start comparator and the converter will undergo a start up cycle. The restart delay ($\left.\mathrm{t}_{\mathrm{D}(\mathrm{RST})}\right)$ is given by:

$$
\begin{equation*}
t_{D(R S T)}=t_{R S T} \times 1.39 \tag{13}
\end{equation*}
$$

For example, with $\mathrm{C}_{\mathrm{RST}}=25 \mu \mathrm{~F}$ and $\mathrm{R}_{\mathrm{RST}}=240 \mathrm{k} \Omega$:

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{500 \mu \mathrm{~A}}{25 \mu \mathrm{~F}}=20 \frac{\mathrm{~V}}{\mathrm{~s}} \tag{14}
\end{equation*}
$$

and:

$$
\begin{equation*}
t_{D(R S T)}=(240 \mathrm{k} \Omega \times 25 \mu \mathrm{~F}) \times 1.39=8.3 \mathrm{~s} \tag{15}
\end{equation*}
$$

Since the threshold for shutdown is 2.5 V , the controller will shut down after approximately 125 ms . After the converter recovers from the current limit condition, the controller will reactivate after 8.3 s .

UNDERVOLTAGE LOCKOUT

During start-up, the ML4828 draws very little current (typically $150 \mu \mathrm{~A}$) and $\mathrm{V}_{\text {REF }}$ is disabled. When V_{CC} rises above 6.0 V , the internal circuitry and $\mathrm{V}_{\text {REF }}$ are enabled, and will stay enabled until V_{CC} falls below the 4.5 V UV lockout threshold.

SHUTDOWN FUNCTION

The ML4828 can be externally shut down by bringing SDN (pin 19) low. The shutdown threshold (V_{SD}) is given by:

$$
\begin{equation*}
V_{\mathrm{SD}}=0.33 \times \mathrm{V}_{\mathrm{CC}} \tag{16}
\end{equation*}
$$

For example, if $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, then $\mathrm{V}_{\mathrm{SD}}=1.67 \mathrm{~V}$. As long as $2.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<6.0 \mathrm{~V}$, the SDN pin will be TTL compatible.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4828CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20-$ Pin DIP (P20)
ML4828CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20-Pin DIP (S20)
ML4828IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Pin DIP (P20)
ML4828IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Pin SOIC (S20)

Electronic Ballast Controller

GENERAL DESCRIPTION

The ML4830 is a complete solution for a dimmable, high power factor, high efficiency electronic ballast. Contained in the ML4830 are controllers for "boost" type power factor correction as well as for a dimming ballast.

The Power factor circuit uses the average current sensing method with a current fed multiplier and over-voltage protection. This system produces power factors of better than 0.99 with low input current THD at $>95 \%$ efficiency. Special care has been taken in the design of the ML4830 to increase system noise immunity by using a high amplitude oscillator, and a current fed multiplier. An over-voltage protection comparator stops the PFC section in the event of sudden load decrease.

The ballast section provides for programmable starting scenarios with programmable preheat and lamp out-ofsocket interrupt times. The IC controls lamp output through either frequency or Pulse Width control using lamp current feedback.
The ML4830 is designed using Micro Linear's SemiStandard tile array methodology. Customized versions of this IC, optimized to specific ballast architectures can be made available. Contact Micro Linear or an authorized representative for more information.

FEATURES

- Complete Power Factor Correction and Dimming Ballast Control on one IC
- Low Distortion, High Efficiency Continuous Boost, Average Current sensing PFC section
- Programmable Start Scenario for Rapid or Instant Start Lamps
- Selectable Variable Frequency dimming and starting
- Programmable Restart for lamp out condition to reduce ballast heating
- Over-Temperature Shutdown replaces external heat sensor for safety
- PFC Over-Voltage comparator eliminates output "runaway" due to load removal
- Large oscillator amplitude and current fed multiplier improves noise immunity

BLOCK DIAGRAM

PIN CONFIGURATION

ML4830
20-PIN DIP (P20)

ML4830
20-PIN SOIC (S20)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	IA-	Inverting input of the PFC average current error amplifier
2	IA OUT	Output and compensation node of the PFC average current error amplifier
3	I(SINE)	PFC Current Multiplier input
4	IA+/I(LIM)	Non-Inverting input of the PFC average current error amplifier and input of peak current limit comparator
5	LAMP F.B.	Inverting input of an Error Amplifier used to sense (and regulate) lamp arc current. Also the input node for dimming control
6	LFB OUT	Output from the Lamp Current Error Amplifier used for lamp current loop compensation
7	R(SET)	External resistor which sets oscillator FMAX, and $R(X) / C(X)$ charging current
8	MODE	Controls how the Lamp Current Error Amp and preheat timers modulate the ballast outputs. Two Variable Frequency and 1 PWM mode are available through this pin
9	R(T)/C(T)	Ocrillator timing components
10	INTERRUPT	A voltage of greater than $\mathrm{V}_{\text {REF }}$ resets the chip and causes a restart after a delay of 3 times the start interval. Used for lamp-out detection and restart

PIN\# NAME	FUNCTION			
11	OVP/	When the voltage of this pin exceeds INHIBIT 5V, the PFC output is inhibited. When the voltage exceeds 6.7 V, the IC function is inhibited and the IC is reset. This pin can be used for a remote ballast shutdown.		
12	R(X)/C(X)	Sets the timing for the preheat, dimming lockout and interrupt IC Ground		
13	GND	Ballast MOSFET drive output		
14	OUT B	OUT A		Ballast MOSFET drive output
:---				
16				

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Current (ICC) .. 75 mA
Output Current, Source or Sink (Pins 14)
DC
Output Energy (capacitive load per cycle).............. 1.5 mJ
Multiplier I(SINE) Input (Pin 3) .10 mA
Amplifier Source Current (Pin 6, 20) 50 mA
Analog Inputs (Pins 1, 5, 10, 11, 19) -0.3 V to VCC -2 V
Pin 4 input voltage
.-3 V to +5 V

Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA})
Plastic DIP-P ... $65^{\circ} \mathrm{C}$ W
Plastic SOIC .. $80^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range
ML4830C
$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R(S E T)=26 \mathrm{~K}, \mathrm{R}(\mathrm{T})=52.3 \mathrm{~K}, \mathrm{C}(\mathrm{T})=470 \mathrm{pF}, \mathrm{T}_{\mathrm{J}}=$ Junction Operating Temperature Range, $\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Amplifiers (Pins 1, 2, 5, 6, 19, 20)			± 3.0	± 10.0	mV
Input Offset Voltage			-0.3	-1.0	$\mu \mathrm{~A}$
Input Bias Current		65	90		dB
Open Loop Gain	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$	70	100		dB
PSRR		0		0.5	V
Output Low		7.2	7.5		V
Output High	$\mathrm{V}_{\text {OUT }}=7 \mathrm{~V}$	-4	-7		mA
Source Current	$\mathrm{V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$	5	10		mA
Sink Current	$\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}$	10			$\mu \mathrm{~A}$
Slew Rate			1.5		$\mathrm{~V} / \mu \mathrm{s}$
Unity Gain Bandwidth			3.0		MHz

Multiplier

Output Voltage (Note 1)	$\mathrm{I}_{\text {SINE }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN20 }}=3 \mathrm{~V}$		80		mV
	$\mathrm{I}_{\text {SINE }}=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN20 }}=3 \mathrm{~V}$		255		mV
	$\mathrm{I}_{\text {SINE }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN } 20}=6 \mathrm{~V}$		220		mV
	$\mathrm{I}_{\text {SINE }}=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN20 }}=6 \mathrm{~V}$		660		mV
Output Voltage Limit	$\mathrm{I}_{\text {SINE }}=600 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN19 }}=0 \mathrm{~V}$		0.88		V
Offset Voltage	$\mathrm{I}_{\text {SINE }}=0, \mathrm{~V}_{\text {PIN } 19}=0 \mathrm{~V}$			15	mV
	$\mathrm{I}_{\text {SINE }}=150 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN19 }}=8 \mathrm{~V}$			15	mV
I(SINE) Input Voltage	$\mathrm{I}_{\text {SINE }}=200 \mu \mathrm{~A}$	0.8	1.4	1.8	V

Note 1: Measured at Pin 1 with Pins 1 and 2 shorted together and Pin 4 at GND.

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{PWM}$ or Dimming Lockout	72	80	88	KHz
Voltage stability	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		1		\%
Temperature stability			2		\%
Total Variation	Line, temperature	68		92	KHz
Ramp Valley to Peak			2.5		V
C(T) Charging Current (FM Modes)	$\begin{aligned} & V_{\text {PIN } 8}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 9}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {PIN12 }}=0.9 \mathrm{~V}, \text { Preheat } \end{aligned}$		-94		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{PIN} 8}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 9}=2.5 \mathrm{~V},$ Max. dimming		-188		$\mu \mathrm{A}$
C (T) Discharge Current	$\mathrm{V}_{\text {PIN8 }}=0 \mathrm{~V}, \mathrm{~V}_{\text {PIN9 }}=2.5 \mathrm{~V}$		5		mA
Output Drive Deadtime			0.2		$\mu \mathrm{s}$
R(SET) Voltage			2.5		V

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	7.4	7.5	7.6	V
Line regulation	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		2	10	mV
Load regulation	$1 \mathrm{~mA}<\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$		2	15	mV
Temperature stability			0.4		$\%$
Total Variation	Line, load, temp	7.35		7.65	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$	5		mV	
Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$		-40		mA

Preheat and Interrupt Timer (Pin 10) $(R(X)=590 K \Omega, C(X)=5.6 \mu \mathrm{~F})$

Initial Preheat Period			0.8		s
Subsequent Preheat Period			0.7		s
Start Period			2.1		s
Interrupt Period			6.3		s
Pin 12 Charging Current			-23		$\mu \mathrm{~A}$
Pin 12 Open Circuit Voltage	$\mathrm{V}_{\mathrm{CC}}=12.3 \mathrm{~V}$ in UVLO	0.4	0.9	1.1	V
Pin 12 Maximum Voltage		7.0	7.3	7.7	V
Input Bias Current	$\mathrm{V}_{\text {PIN12 }}=1.2 \mathrm{~V}$		-0.1		$\mu \mathrm{~A}$
Preheat Lower Threshold			1.18		V
Preheat Upper Threshold			3.36		V
Interrupt Recovery Threshold			1.18		V
Start Period End Threshold			6.6		V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OVP/Inhibit Comparator (Pin 11)		4.87	5.0	5.13	V
OVP Threshold			0.5		V
Hysteresis			-0.3	-2	$\mu \mathrm{~A}$
Input Bias Current			500		ns
Propagation Delay		6.36	6.7	7.04	V
Shutdown Threshold		0.7	1.2	1.7	V
Shutdown Hysteresis					

PWM Comparator (PWM Mode)

Start Period Duty Cycle		40	50	60	$\%$

Outputs

Output Voltage Low	$\mathrm{l}_{\mathrm{OUT}}=20 \mathrm{~mA}$		0.4	0.8	V
	$\mathrm{l}_{\mathrm{OUT}}=200 \mathrm{~mA}$		2.1	3.0	V
Output Voltage High	$\mathrm{l}_{\mathrm{OUT}}=-20 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CC}}-2.5$	$\mathrm{~V}_{\mathrm{CC}}-1.9$		V
	$\mathrm{l}_{\mathrm{OUT}}=-200 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CC}}-3.0$	$\mathrm{~V}_{\mathrm{CC}}-2.2$		V
Output Voltage Low in UVLO	$\mathrm{l}_{\mathrm{OUT}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.8	1.5	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

Under-Voltage Lockout and Bias Circuits

IC Shunt Voltage $\left(\mathrm{V}_{\mathrm{CCZ}}\right)$	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	12.8	13.5	14.2	V
$\mathrm{~V}_{\mathrm{CCZ}}$ Load Regulation	$25 \mathrm{~mA}<\mathrm{I}_{\mathrm{CC}}<68 \mathrm{~mA}$		150	300	mV
$\mathrm{V}_{\mathrm{CCZ}}$ Total Variation	Load, Temp	12.4		14.6	V
Start-up Current	$\mathrm{V}_{\mathrm{CC}} \leq 12.3 \mathrm{~V}$		1.3	1.7	mA
Operating Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		15	19	mA
Start-up Threshold			$\mathrm{V}_{\mathrm{CCZ}}-0.5$		V
Shutdown Threshold			$\mathrm{V}_{\mathrm{CCZ}}-3.5$		V
Shutdown Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$		120		${ }^{\circ}{ }^{\circ} \mathrm{C}$	
Hysteresis $\left(\mathrm{T}_{\mathrm{J}}\right)$			30		${ }^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

OVERVIEW

The ML4830 consists of an Average Current controlled continuous boost Power Factor front end section with a flexible ballast control section. Start-up and lamp-out retry timing are controlled by the selection of external timing components, allowing for control of a wide variety of different lamp types. The ballast control section can be set up to adjust lamp power using either Pulse Width (PWM) or frequency modulation (FM). Either non-overlapping or overlapping conduction can be selected for the FM mode. This allows for the IC to be used with a variety of different ouput networks.

POWER FACTOR SECTION

The ML4830 Power Factor section is an average current sensing boost mode PFC control circuit which is architecturally similar to that found in the ML4821. For detailed information on this control architecture, please refer to Application Note 16 and the ML.4821 data sheet.

MULTIPLIER

The ML4830 multiplier is a linear current input multiplier which provides high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dropping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator.

The output of the multiplier appears as a voltage across the 14 K resistor (Figure 1) on the positive terminal of IA to form the reference for the current error amplifier. When the loop is in regulation, the negative voltage on IA $+/ /($ LIM $)($ Pin 4) keeps the positive terminal of IA at 0V.

$$
\begin{equation*}
V_{\text {MUL }} \approx 0.034 \times I(\text { SINE }) \times(\text { VEA }-1.1) \times(14 K \Omega) \tag{1}
\end{equation*}
$$

where: I(SINE) is the current in the dropping resistor, $V(E A)$ is the output of the error amplifier (Pin 20).

The output of the multiplier is limited to 0.88 V .

AVERAGE CURRENT AND OUTPUT VOLTAGE REGULATION

The PWM regulator in the PFC Control section will act to offset the positive voltage caused by the multiplier output by producing an offsetting negative voltage on the current sense resistor at Pin 4. A cycle-by-cycle current limit is included to protect the MOSFET from high speed current transients. When the voltage at Pin 4 goes negative by more than 1 V , the PFC cycle is terminated.

For more information on compensating the average current and boost voltage error amplifier loops, see Application Note 16 .

OVERVOLTAGE PROTECTION AND INHIBIT

The OVP/INHIBIT pin serves to protect the power circuit from being subjected to excessive voltages if the load should change suddenly (lamp removal). A divider from the high voltage DC bus (Figure 8: R14, R24) sets the OVP trip level. When the voltage on Pin 11 exceeds 5 V , the PFC transistor is inhibited. The ballast section will continue to operate. If Pin 11 is driven above 6.8 V , the IC is inhibited and goes into the low quiescent mode. The OVP threshold should be set to a level where the power components are safe to operate, but not so low as to interfere with the boost voltage regulation loop (R11, R12, R23).

BALLAST OUTPUT SECTION

The IC controls output power to the lamps in one of three different modes. The Mode pin (Pin 8) sets the operating mode of the IC. With Pin 8 at GND, the output section is in the Frequency Modulation mode with non-overlapping conduction, which means that both ballast output drivers will be low during tois (Figure 2). In the overlapping mode (VCO-O), Pin 8 is left open and the transition from OUT A high to OUT B high occurs with no dead time. This mode is typically used in current fed ballast topologies.

Figure 1. ML4830 Block Diagram

Mode	Pin 8	Definition
VCO	GND	Frequency Modulation
VCO-O	OPEN	Overlapping VCO F.M.
PWM	VREF	Pulse Width Modulation

Table 1. ML4830 Operating Modes

OSCILLATOR

In Table 1 above, the two VCO frequency ranges are controlled by the output of the LFB amplifier (Pin 6). As lamp current decreases, Pin 6 rises in voltage, causing the $\mathrm{C}(\mathrm{T})$ charging current to decrease, thereby causing the oscillator frequency to decrease. Since the ballast output network attenuates high frequencies, the power to the lamp will be increased.
In PWM Mode, $\mathrm{I}_{\mathrm{CHG}}$ is 0 so the oscillator's frequency is set per (1) below.

Figure 2. Oscillator Block Diagram and Timing

Also, in both VCO modes, the when LFB OUT is high, $\mathrm{I}_{\mathrm{CHG}}=0$ and the minimum frequency occurs. The charging current varies according to two control inputs to the oscillator:

1. The output of the preheat timer
2. The voltage at Pin 6 (lamp current output)

In preheat condition, charging current is fixed at

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CHG}(\text { PREHEAT })}=\frac{2.5}{\mathrm{R}(\mathrm{SET})} \tag{1}
\end{equation*}
$$

In running mode, charging current decreases as the $\mathrm{V}_{\text {PIN } 7}$ rises from OV to V_{OH} of trhe LAMP FB amplifier. The highest frequency will be attained when $\mathrm{I}_{\mathrm{CHG}}$ is highest, which is attained when $\mathrm{V}_{\text {PIN6 }}$ is at 0 V :

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CHG}(0)}=\frac{5}{\mathrm{R}(\mathrm{SET})} \tag{2}
\end{equation*}
$$

The oscillator frequency is determined by the following equations:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OSC}}=\frac{1}{\mathrm{t}_{\mathrm{CHG}}+\mathrm{t}_{\mathrm{DIS}}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{t}_{\mathrm{CHG}}=\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}} \ln \left(\frac{6.25+\mathrm{I}_{\mathrm{CHG}} \mathrm{R}_{\mathrm{T}}}{3.75+\mathrm{I}_{\mathrm{CHG}} \mathrm{R}_{\mathrm{T}}}\right) \tag{4}
\end{equation*}
$$

The oscillator's minimum frequency is set when $\mathrm{I}_{\mathrm{CHG}}=0$ where:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OSC}} \cong \frac{1}{0.51 \times \mathrm{R}_{\mathrm{T}} \mathrm{C}_{T}} \tag{5}
\end{equation*}
$$

This assumes that $\mathrm{t}_{\mathrm{CHG}} \gg$ tiss.
Highest lamp power, and lowest output frequency are attained when $\mathrm{V}_{\text {PIN6 }}$ is at its maximum output voltage ($\mathrm{VOH}_{\mathrm{OH}}$).
In this condition, the minimum operating frequency of the ballast is set per (5) above.
For the IC to be used effectively in dimming ballasts with higher Q output networks a larger C_{T} value and lower R_{T} value can be used, to yield a smaller frequency excursion over the control range ($\mathrm{V}_{\text {PIN6 }}$). The discharge current is set to 5 mA . Assuming that $\mathrm{I}_{\mathrm{DIS}} \gg \mathrm{I}_{\mathrm{RT}}$:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{DIS}(\mathrm{VCO})} \cong 490 \times \mathrm{C}_{\mathrm{T}} \tag{6}
\end{equation*}
$$

IC BIAS, UNDER-VOLTAGE LOCKOUT AND THERMAL SHUTDOWN

The IC includes a shunt regulator which will limit the voltage at VCC to 13.5 (VCCZ). The IC should be fed with a current limited source, typically derived from the ballast transformer auxiliary winding. When VCC is below $\mathrm{V}_{\mathrm{CCZ}}$ -0.7 V , the IC draws less than 1.7 mA of quiescent current and the outputs are off. This allows the IC to start using a "bleed resistor" from the rectified AC line.

Figure 3. Typical V_{CC} and I_{CC} waveforms when ML4830 is started with a bleed resistor from the rectified AC line and bootstrapped from the ballast transformer.
To help reduce ballast cost, the ML4830 includes a temperature sensor which will inhibit ballast operation if the IC's junction temperature exceeds $120^{\circ} \mathrm{C}$. In order to use this sensor in lieu of an external sensor, care should be taken when placing the IC to ensure that it is sensing temperature at the physically appropriate point in the ballast. The ML4830's die temperature can be estimated with the following equation:

$$
\begin{equation*}
T_{J} \cong T_{A} \times P_{D} \times 65^{\circ} \mathrm{C} / \mathrm{W} \tag{7}
\end{equation*}
$$

STARTING, RE-START, PREHEAT AND INTERRUPT

The lamp starting scenario implemented in the ML4830 is designed to maximize lamp life and minimize ballast heating during lamp out conditions.
The circuit in Figure 4 controls the lamp starting scenarios: Filament preheat and Lamp Out interrupt. $C(X)$ is charged
with a current of $\frac{\mathrm{I}_{\text {R(SET) }}}{4}$ or $\frac{0.625}{R(S E T)}$ and discharged
through $R(X)$. The voltage at $C(X)$ is initialized to 0.7 V
 filament preheat time. During that time, the oscillator
charging current $\left(_{\left.\mathrm{l}_{\mathrm{CHG}}\right)}\right.$ is $\frac{2.5}{\mathrm{R}(\mathrm{SET})}$ in both VCO modes.

This will produce a high frequency (or low duty cycle) for filament preheat, but will not produce sufficient voltage to ignite the lamp.
After cathode heating, the inverter frequency drops to $\mathrm{F}_{\text {MIN }}$ causing a high voltage to appear to ignite the lamp. If the voltage does not drop when the lamp is supposed to have ignited, the lamp voltage feedback coming into Pin 10 rises to above $V_{\text {REF }}$, the $C(X)$ charging current is shut off and the inverter is inhibited until $C(X)$ is discharged by $R(X)$ to the 1.2 V threshold. Shutting off the inverter in this manner prevents the inverter from generating excessive heat when the lamp fails to strike or is out of socket. Typically this time is set to be fairly long by choosing a large value of $R(X)$.

LFB OUT is ignored until $\mathrm{C}(\mathrm{X})$ reaches 6.8 V threshold. The lamps are therefore driven to full power and then dimmed. The $\mathrm{C}(\mathrm{X})$ pin is clamped to about 7.5 V .
A timing diagram of lamp ignition and restart sequences provided by the circuit of Figure 4 is given in Figure 7.

Figure 4. Lamp Preheat and Interrupt Timers

Mode	PWM	FM
Preheat	50%	$\frac{[F(\text { MAX) to }(\text { MIN })]}{2}$
Dimming Lock-out	$\mathrm{D}(\mathrm{MAX}) \%$	$\mathrm{~F}(\mathrm{MIN})$
Dimming Control	0 to $\mathrm{D}(\mathrm{MAX}) \%$	$\mathrm{~F}($ MIN $)$ to $\mathrm{F}($ MAX $)$

Figure 5. Lamp Starting Summary
A summary of the lamp starting scenarios are given in figure 5 for both PWM and Frequency Modulation modes. The PWM duty cycle is defined as:

$$
\text { Duty Cycle }=\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{CLK}}}
$$

SEMI-STANDARD CAPABILITIES

The ML4830 is designed to work in a wide variety of electronic ballast applications. For high volume, cost sensitive applications, a ballast design can be implemented and debugged using the ML4830. From that design, Micro Linear can produce a reduced feature set, optimized ballast IC design quickly and easily with low risk.

Contact your Micro Linear representative or call Micro Linear for more information on Semi-Standard options.

Figure 6. Definition of Duty Cycles

Figure 7. Lamp Starting and Restart Timing

APPLICATIONS

Figure. 8 Typical Application: 2-Lamp Isolated Dimming Ballast with Active Power Factor Correction for 120VAC Input

APPLICATIONS (continued)

The schematic (Figure 8) and the bill of materials on the following pages represents a complete parts list for the schematic (Figure 8). Designators refer to Micro Linear's "rev B" PCB.

TABLE 1: PARTS LIST FOR THE ML4830 TYPICAL APPLICATION

CAPACITORS				
QTY.	REF.	DESCRIPTION	MFR.	PART NUMBER
2	C1, 2	$3.3 \mathrm{nF}, 125 \mathrm{VAC}, 10 \%$, ceramic, "Y" capacitor	Panasonic	ECK-DNS332ME
1	C3	$0.33 \mu \mathrm{~F}, 250 \mathrm{VAC}$, " X ", capacitor	Panasonic	ECQ-U2A334MV
4	C4, 8, 9, 12, 22	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR215C104KAA
1	C5	$47 \mathrm{nF}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR211C472KAA
1	C6	$1.5 \mu \mathrm{~F}, 50 \mathrm{~V}, 2.5 \%$, NPO ceramic capacitor	AVX	RPE121COG152
2	C7	$1 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \%$, ceramic capacitor	AVX	SR305E105MAA
1	C10	$100 \mu \mathrm{~F}, 25 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A1EFS101
1	C11	$100 \mu \mathrm{~F}, 250 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-S2EG101E
1	C13	$4.7 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A50Z4R7
3	C14, 15, 17	$0.22 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR305C224KAA
1	C16	$1.5 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR151V152KAA
1	C19	$22 \mathrm{nF}, 630 \mathrm{~V}, 5 \%$, polypropylene capacitor	WIMA	MKP10, 22nF, 630V, 5\%
1	C20	$0.1 \mu \mathrm{~F}, 250 \mathrm{~V}, 5 \%$, polypropylene capacitor	WIMA	MKP10, $0.1 \mu \mathrm{~F}, 250 \mathrm{~V}, 5 \%$
1	C21	$0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR211C103KAA
1	C24	$220 \mu \mathrm{~F}, 16 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A16Z220
RESISTORS:				

1	R1	$0.5 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, metal film resistor	NTE	
1	R2	$4.3 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$4.3 \mathrm{~K}-\mathrm{Q}$
1	R3	$47 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$47 \mathrm{~K}-\mathrm{Q}$
1	R4	$12 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$12 \mathrm{~K}-\mathrm{Q}$
1	R5	$20 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-20K-1
1	R6	$360 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$360 \mathrm{~K}-\mathrm{Q}$
1	R7	$36 \mathrm{~K}, 1 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$36 \mathrm{KW}-1-\mathrm{ND}$
3	R8, 22, 11	$22 \Omega, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$22-\mathrm{Q}$
1	R9	$402 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-402K-1
1	R10, 13	$17.8 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-17.8K-1
1	R12, 20	$475 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-475K-1

TABLE 1: PARTS LIST FOR ML4830 TYPICAL APPLICATION (Continued)

RESISTORS: (Continued)				
QTY.	REF.	DESCRIPTION	MFR.	PART NUMBER
4	R14	100K, 1/4W, 5\%, carbon film resistor	Yageo	100K-Q
1	R15	$681 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$681 \mathrm{~K}-\mathrm{Q}$
1	R16, 19	10K, 1/4W, 1\%, metal film resistor	Dale	SMA4-10K-1
1	R18	$4.7 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Tageo	$681 \mathrm{~K}-\mathrm{Q}$
1	R21	$33 \Omega, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	33-Q
1	R23	25 K , pot (for dimming adjustment)	Bourns	3386P-253-ND
DIODES:				
4	D1, 2, 3, 4	1A, 600V, 1N4007 diode (or 1N5061 as a substitute)	Motorola	1N4007TR
2	D5, 6	1A, 50 V (or more), 1N4001 diodes	Motorola	1N4001TR
1	D7	3A, 400V, BYV26C or BYT03 400 fast recovery or MUR440 Motorola ultra Fast diode	Gl	BYV26C
6	$\begin{aligned} & \mathrm{D} 8,9,10,11 \\ & 12,13 \end{aligned}$	0.1A, 75V, 1N4148 signal diode	Motorola	1N4148TR
IC's:				
1	IC1	ML4830, Electronic Ballast Controller IC	Micro Linear	ML4830CP
TRANSISTORS:				
3	Q1, 2, 3	3.3A, 400V, IRF720 power MOSFET	IR	IR720
MAGNETICS:				
1	T1	T1 Boost Inductor, E24/25, 1 mH , Custom Coils E24/25 core set, TDK PC40 material 8 -pin vertical bobbin (Cosmo \#4564-3-419), Wind as follows: 195 turns 25AWG magnet wire, start pin \#1, end 1 layer mylar tape 14 turns 26AWG magnet wire, start pin \#3, end NOTE: Gap for $1 \mathrm{mH} \pm 5 \%$	N 5039 or pin \#4 in \#2	CTX05-12538-1
1	T2	T2 Gate Drive Xfmr, $L_{P R I}=3 \mathrm{mH}$, Custom Coils Toroid Magnetics YW-41305-TC Wind as follows: Primary $=25$ turns 30AWG magnet wire, start p Secondary $=50$ turns 30AWG magnet wire, star	N 5037 or \#1, end pi pin \#5, end	СТХ05-12539-1

TABLE 1: PARTS LIST FOR ML4830 TYPICAL APPLICATION (Continued)

MAGNETICS: (Continued)				
QTY.	REF.	DESCRIPTION	MFR.	PART NUMBER
1	T3	T3 Inductor, $\mathrm{L}_{\text {PRI }}=1.66 \mathrm{mH}$, Custom Ciols P/N 5041 or Coiltronics P/N CTX05-12547-1 E24/25 core set, TDK PC40 material 10 pin horizontal bobbin (Plastron \#0722B-31-80) Wind as follows: 1 st : 170 T of 25 AWG magnet wire; start pin \#10, end pin \#9. 1 layer of mylar tape 2nd: 5T of \#32 magnet wire; start pin \#2, end pin \#1 1 layer of mylar tape 3rd: 3T of \#30 Kynar coated wire; start pin \#4, end pin \#5 4th: 3 T of \#30 Kynar coated wire; start pin \#3, end pin \#6 5th: 3T of \#30 Kynar coated wire; start pin \#7, end pin \#8 NOTE: Gap for $1.66 \mathrm{mH} \pm 5 \%$ (pins 9 to 10)		
1	T4	T4 Power Xfmr, LPRI $=3.87 \mathrm{mH}$, Custom Ciols P/N 5038 or Coiltronics P/N CTX05-12545E24/25 core set, TDK PC40 material 8 pin vertical bobbin (Cosmo \#4564-3-419) Wind as follows: 1st: 200T of 30AWG magnet wire; start pin \#1, end pin \#4. 1 layer of mylar tape 2nd: 300T of 32AWG magnet wire; start pin \#5, end pin \#8 NOTE: Gap for inductance primary: (pins 1 to 4) @ $3.87 \mathrm{mH} \pm 5 \%$		
1	T5	T5 Current Sense Inductor, Custom Coils P/N 504 Toroid Magnetics YW-41305-TC Wind as follows: Primary $=3 T$ 30AWG magnet coated wire, start p Secondary $=400 \mathrm{~T} 35 \mathrm{AWG}$ magnet wire, start pin	0 or Coiltron in \#1, end pin \#5, end pin	$-12546-1$
INDUCTORS:				
2	L1, 2	EMI/RFI Inductor, $600 \mu \mathrm{H}, \mathrm{DC}$ resistance $=0.45 \Omega$	Prem. Magnetics	SPE116A
FUSES:				
1	F1	2 A fuse, $5 \times 20 \mathrm{~mm}$ miniature	Littlefuse	F948-ND
2		Fuse Clips, $5 \times 20 \mathrm{~mm}$, PC Mount		F058-ND
HARDWARE:				
1		Single TO-220 Heatsink	Aavid Eng.	PB1ST-69
2		Double TO-220 Heatsink	IERC	PSE1-2TC
3		MICA Insulators	Keystone	4673K-ND

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4830CP	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P20)
ML4830CS	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded SOIC (S20)

Electronic Ballast Controller

GENERAL DESCRIPTION

The ML4831 is a complete solution for a dimmable, high power factor, high efficiency electronic ballast. Contained in the ML4831 are controllers for "boost" type power factor correction as well as for a dimming ballast.
The Power factor circuit uses the average current sensing method with a current fed multiplier and over-voltage protection. This system produces power factors of better than 0.99 with low input current THD at $>95 \%$ efficiency. Special care has been taken in the design of the ML4831 to increase system noise immunity by using a high amplitude oscillator, and a current fed multiplier. An over-voltage protection comparator inhibits the PFC section in the event of a lamp out or lamp failure condition.

The ballast section provides for programmable starting scenarios with programmable preheat and lamp out-ofsocket interrupt times. The IC controls lamp output through either frequency modulation using lamp current feedback.
The ML4831 is designed using Micro Linear's SemiStandard tile array technology. Customized versions of this IC, optimized to specific ballast architectures can be made available. Contact Micro Linear or an authorized representative for more information.

FEATURES

- Complete Power Factor Correction and Dimming Ballast Control on one IC
- Low Distortion, High Efficiency Continuous Boost, Average Current sensing PFC section
- Programmable Start Scenario for Rapid or Instant Start Lamps
- Lamp Current feedback for Dimming Control
- Variable Frequency dimming and starting
- Programmable Restart for lamp out condition to reduce ballast heating
- Over-Temperature Shutdown replaces external heat sensor for safety
- PFC Over-Voltage comparator eliminates output "runaway" due to load removal
- Large oscillator amplitude and current fed multiplier improves noise immunity

BLOCK DIAGRAM

PIN CONFIGURATION

ML4831
18-Pin DIP (P18)

PIN DESCRIPTION

$\left.\begin{array}{cll}\text { PIN\# NAME } & \text { FUNCTION } \\ \hline 1 & \text { EA OUT } & \begin{array}{l}\text { PFC Error Amplifier output and } \\ \text { compensation node }\end{array} \\ 2 & \text { IA OUT } & \begin{array}{l}\text { Output and compensation node of the } \\ \text { PFC average current transconductance } \\ \text { amplifier. }\end{array} \\ 4 & \text { I(SINE) } & \begin{array}{l}\text { PFC Current Multiplier input. }\end{array} \\ 5 & \text { IA+ } & \begin{array}{l}\text { Non-inverting input of the PFC } \\ \text { average current transconductance } \\ \text { amplifier and peak current sense point } \\ \text { of the PFC cycle by cycle current limit } \\ \text { comparator. }\end{array} \\ 6 & \text { LFB OUT } & \begin{array}{l}\text { Inverting input of an Error Amplifier }\end{array} \\ 7 & \begin{array}{l}\text { used to sense (and regulate) lamp arc } \\ \text { current. Also the input node for } \\ \text { dimming control. }\end{array} \\ \text { Output from the Lamp Current Error } \\ \text { Transconductance Amplifier used for } \\ \text { lamp current loop compensation }\end{array}\right\}$

PIN\#	NAME	FUNCTION
8	R(T)C(T)	Oscillator timing components 9
INTERRUPT	Input used for lamp-out detection and restart. A voltage greater than 7.5 volts resets the chip and causes a restart after a programmable interval.	
10	R(X)/C(X)	Sets the timing for the preheat, dimming lockout, and interrupt
11	GND	Ground
12	PGND	Power ground for the IC
13	OUT B	Ballast MOSFET drive output
14	OUT A	Ballast MOSFET drive output
15	PFC OUT	Power Factor MOSFET drive output
16	VCC	Positive Supply for the IC 17
VREF	Buffered output for the 7.5V voltage reference	
18	EA-/OVP	Inverting input to PFC error amplifier and OVP comparator input

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Current (ICC) ... 75 mA
Output Current, Source or Sink (Pins 13, 14, 15)
DC
Output Energy (capacitive load per cycle).............. 1.5 mJ
Multiplier I(SINE) Input (Pin 3) 10 mA
Analog Inputs (Pins 5, 9, 18) -0.3 V to VCC -2V
Pin 4 input voltage ... -3 V to +2 V
Maximum Forced Voltage (Pins 1, 6) -0.3 V to 7.7 V
Maximum Forced Current (Pins 1, 2, 6) $\pm 20 \mathrm{~mA}$
Maximum Forced Voltage (Pin 2) -0.3 V to 6 V
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{J A}\right)$Plastic DIP-P$70^{\circ} \mathrm{C} / \mathrm{W}$
OPERATING CONDITIONS
Temperature RangeML4831C
\qquad
\qquad $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $R(S E T)=31.6 \mathrm{~K}, \mathrm{R}(\mathrm{T})=16.2 \mathrm{~K}, \mathrm{C}(\mathrm{T})=1.5 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=$ Junction Operating Temperature Range, $\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PFC Current Sense Amplifier (Pins 2, 4)					
Small Signal Transconductance		130	200	270	$\mu \mathrm{mhos}$
Input Voltage Range		-0.3		3.5	V
Output Low	$\begin{aligned} & \mathrm{I}_{\mathrm{SINE}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PIN} 1}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN} 4}=-0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$		0.2	0.4	V
Output High	$\mathrm{I}_{\text {SINE }}=1.5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN1 } 18 / 4}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	5.2	5.6	6	V
Source Current	$\mathrm{I}_{\mathrm{SINE}}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PIN} 18 / 4}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 2}=5 \mathrm{~V}$		-0.3		mA
Sink Current	$\begin{aligned} & I_{\mathrm{SINE}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PIN} 2}=0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{PIN4} 4}=-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 1}=0 \mathrm{~V} \end{aligned}$		0.3		mA

PFC Voltage Feedback Amplifier (Pins 1, 18)/Lamp Current Amplifier (Pins 5, 6)

Input Offset Voltage			± 3.0	± 10.0	mV
Input Bias Current			-0.3	-1.0	$\mu \mathrm{~A}$
Small Signal Transconductance		50	80	110	$\mu \mathrm{mhos}$
Input Voltage Range		-0.3		3.5	V
Output Low	$\mathrm{V}_{\text {PIN5 } / 18}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		0.2	0.4	V
Output High	$\mathrm{V}_{\text {PIN5 } / 18}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	7.2	7.5		V
Source Current	$\mathrm{V}_{\text {PIN5 } / 18}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN} 1 / 6}=7 \mathrm{~V}$		-0.2		mA
Sink Current	$\mathrm{V}_{\text {PIN5 } / 18}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PIN1} / 6}=0.3 \mathrm{~V}$		0.2		mA

Multiplier

Output Voltage	$\mathrm{I}_{\text {SINE }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN1 }}=3 \mathrm{~V}$		40		mV
	$\mathrm{I}_{\text {SINE }}=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN } 1}=3 \mathrm{~V}$		130		mV
	$\mathrm{I}_{\text {SINE }}=100 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN } 1}=6 \mathrm{~V}$		112		mV
	$\mathrm{I}_{\text {SINE }}=300 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN } 1}=6 \mathrm{~V}$		350		mV
Output Voltage Limit	$\mathrm{I}_{\text {SINE }}=1.5 \mathrm{~mA}, \mathrm{~V}_{\text {PIN } 18}=0 \mathrm{~V}$		865		mV
Offrei vivilage	$\mathrm{I}_{\text {SINE }}=0, \mathrm{~V}_{\text {PIN18 }}=0 \mathrm{~V}$			15	mV
	$\mathrm{I}_{\text {SINE }}=150 \mu \mathrm{~A}, \mathrm{~V}_{\text {PIN18 }}=3 \mathrm{~V}$			15	mV
I(SINE) Input Voltage	$\mathrm{I}_{\text {SINE }}=200 \mu \mathrm{~A}$	0.8	1.4	1.8	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator					
Initial accuracy	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	72	76	80	KHz
Voltage stability	$\mathrm{V}_{\mathrm{CCz}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCz}}-0.5 \mathrm{~V}$		1		\%
Temperature stability			2		\%
Total Variation	Line, temperature	69		83	KHz
Ramp Valley to Peak			2.5		V
C(T) Charging Current (FM Modes)	$\begin{aligned} & V_{\text {PIN } 5}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 8}=2.5 \mathrm{~V}, \\ & V_{\text {PIN10 }}=0.9 \mathrm{~V} \text { (Preheat) } \end{aligned}$		-78		$\mu \mathrm{A}$
	$\begin{aligned} & V_{\text {PIN } 5}=3 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 8}=2.5 \mathrm{~V}, \\ & V_{\text {PIN } 10}=\text { Open } \end{aligned}$		-156		$\mu \mathrm{A}$
C(T) Discharge Current	$\mathrm{V}_{\mathrm{PIN} 8}=2.5 \mathrm{~V}$		5		mA
Output Drive Deadtime			0.75		$\mu \mathrm{s}$

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	7.4	7.5	7.6	V
Line regulation	$\mathrm{V}_{\mathrm{CCZ}}-3 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		2	10	mV
Load regulation	$1 \mathrm{~mA}<\mathrm{l}_{\mathrm{O}}<20 \mathrm{~mA}$		2	15	mV
Temperature stability			0.4		$\%$
Total Variation	Line, load, temp	7.35		7.65	V
Output Noise Voltage	10 Hz to 10 KHz		50		$\mu \mathrm{~V}$
Long Term Stability	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}, 1000$ hrs		5		mV
Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$		-40		mA

Preheat and Interrupt Timer (Pin 10) ($R(X)=590 \mathrm{~K} \Omega, C(X)=5.6 \mu \mathrm{~F}$)

Initial Preheat Period			0.8		s
Subsequent Preheat Period			0.7		s
Start Period			2.1		s
Interrupt Period			6.3		s
Pin 10 Charging Current			-19		$\mu \mathrm{~A}$
Pin 10 Open Circuit Voltage		0.4	0.9	1.1	V
Pin 10 Maximum Voltage		7.0	7.3	7.7	V
Input Bias Current			-0.2		$\mu \mathrm{~A}$
Preheat Lower Threshold			1.18		V
Preheat Upper Threshold			3.36		V
Interrupt Recovery Threshold			1.18		V
Start Period End Threshold		6.7		V	

Interrupt Input (Pin 9)

Interrupt Threshold		7.35	7.5	7.65	V
Input Bias Current			-0.3	-1	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OVP Comparator (Pin 18)					
OVP Threshold		2.6	2.7	2.8	V
Hysteresis			0.25		V
Propagation Delay			500		ns
Outputs					
Output Voltage Low	$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}$		0.4	0.8	V
	$\mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}$		2.1	3.0	V
Output Voltage High	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2.5$	$\mathrm{V}_{\mathrm{CC}}-1.9$		V
	$\mathrm{I}_{\text {OUT }}=-200 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-3.0$	$\mathrm{V}_{\mathrm{CC}}-2.2$		V
Output Voltage Low in UVLO	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=8 \mathrm{~V}$		0.8	1.5	V
Output Rise/Fall Time	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		50		ns

Under-Voltage Lockout and Bias Circuits

IC Shunt Voltage $\left(\mathrm{V}_{\mathrm{CCZ}}\right)$	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	12.8	13.5	14.2	V
$\mathrm{~V}_{\mathrm{CCZ}}$ Load Regulation	$25 \mathrm{~mA}<\mathrm{I}_{\mathrm{CC}}<68 \mathrm{~mA}$		150	300	mV
$\mathrm{V}_{\mathrm{CCZ}}$ Total Variation	Load, Temp	12.4		14.6	V
Start-up Current	$\mathrm{V}_{\mathrm{CC}} \leq 12.3 \mathrm{~V}$		1.3	1.7	mA
Operating Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCZ}}-0.5 \mathrm{~V}$		15	19	mA
Start-up Threshold			$\mathrm{V}_{\mathrm{CCZ}}-0.5$		V
Shutdown Threshold			$\mathrm{V}_{\mathrm{CCZ}}-3.5$		V
Shutdown Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$		120		${ }^{\circ} \mathrm{C}$	
Hysteresis $\left(\mathrm{T}_{\mathrm{J}}\right)$			30		${ }^{\circ}{ }^{\circ} \mathrm{C}$

FUNCTIONAL DESCRIPTION

OVERVIEW

The ML4831 consists of an Average Current controlled continuous boost Power Factor front end section with a flexible ballast control section. Start-up and lamp-out retry timing are controlled by the selection of external timing components, allowing for control of a wide variety of different lamp types. The ballast section controls the lamp power using frequency modulation (FM) with additional programmability provided to adjust the VCO frequency range. This allows for the IC to be used with a variety of different output networks.

POWER FACTOR SECTION

The ML4831 Power Factor section is an average current sensing boost mode PFC control circuit which is architecturally similar to that found in the ML4821. For detailed information on this control architecture, please refer to Application Note 16 and the ML4821 data sheet.

MULTIPLIER

The ML4831 multiplier is a linear current input multiplier which provides high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dropping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator.
The output of the multiplier appears on the positive terminal of the IA amplifier to form the reference for the current error amplifier. Please refer to Figure 1.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{MUL}} \approx \frac{[\mathrm{l}(\mathrm{SINE}) \times(\mathrm{VEA}-1.1 \mathrm{~V})]}{4.17 \mathrm{~mA}} \tag{1}
\end{equation*}
$$

where: $1(S I N E)$ is the current in the dropping resistor, $V(E A)$ is the output of the error amplifier (Pin 1).
The output of the multiplier is limited to 1.0 V .

AVERAGE CURRENT AND OUTPUT VOLTAGE REGULATION

The PWM regulator in the PFC Control section will act to offset the positive voltage caused by the multiplier output by producing an offsetting negative voltage on the current sense resistor at Pin 4 . A cycle-by-cycle current limit is included to protect the MOSFET from high speed current transients. When the voltage at Pin 4 goes negative by more than 1 V , the PWM cycle is terminated.
For more information on compensating the average current and boost voltage error amplifier loops, see ML4821 data sheet.

OVERVOLTAGE PROTECTION AND INHIBIT

The OVP pin serves to protect the power circuit from being subjected to excessive voltages if the load should change suddenly (lamp removal). A divider from the high voltage DC bus sets the OVP trip level. When the voltage on Pin 18 exceeds 2.75 V , the PFC transistors are inhibited. The ballast section will continue to operate. The OVP threshold should be set to a level where the power components are safe to operate, but not so low as to interfere with the boost voltage regulation loop.

TRANSCONDUCTANCE AMPLIFIERS

The PFC voltage feedback, PFC current sense, and the loop current amplifiers are all implemented as operational transconductance amplifiers. They are designed to have low small signal forward transconductance such that a large value of load resistor (R 1) and a low value ceramic capacitor ($<1 \mu \mathrm{~F}$) can be used for AC coupling (C1) in the frequency compensation network. The compensation network shown in Figure 2 will introduce a zero and a pole at:

$$
\begin{equation*}
f_{\mathrm{z}}=\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{1}} \quad \mathrm{f}_{\mathrm{p}}=\frac{1}{2 \pi \mathrm{R}_{1} \mathrm{C}_{2}} \tag{2}
\end{equation*}
$$

Figure 2. Compensation Network

Figure 1. ML4831 Block Diagram

Figure 3 shows the output configuration for the operational transconductance amplifiers.

Figure 3. Output Configuration
A DC path to ground or VCC at the output of the transconductance amplifiers will introduce an offset error. The magnitude of the offset voltage that will appear at the input is given by $\mathrm{V}_{\mathrm{OS}}=\mathrm{io} / \mathrm{gm}$. For a io of 1 uA and a gm of $0.08 \mu \mathrm{mhos}$ the input referred offset will be 12.5 mV . Capacitor C1 as shown in Figure 2 is used to block the DC current to minimize the adverse effect of offsets.
Slew rate enhancement is incorporated into all of the operational transconductance amplifiers in the ML4831. This improves the recovery of the circuit in response to power up and transient conditions. The response to large signals will be somewhat non-linear as the transconductance amplifiers change from their low to high transconductance mode. This is illustrated in Figure 4.

Figure 4. Transconductance Amplifier Characteristics

BALLAST OUTPUT SECTION

The IC controls output power to the lamps via frequency modulation with non-overlapping conduction. This means that both ballast output drivers will be low during the discharging time $t_{\text {DIS }}$ of the oscillator capacitor C_{T}.

OSCILLATOR

The VCO frequency ranges are controlled by the output of the LFB amplifier (Pin 6). As lamp current decreases, Pin 6 rises in voltage, causing the $\mathrm{C}(\mathrm{T})$ charging current to decrease, thereby causing the oscillator frequency to decrease. Since the ballast output network attenuates high frequencies, the power to the lamp will be increased.

Figure 5. Oscillator Block Diagram and Timing The oscillator frequency is determined by the following equations:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OSC}}=\frac{1}{\mathrm{t}_{\mathrm{CHG}}+\mathrm{t}_{\mathrm{DIS}}} \tag{3}
\end{equation*}
$$

añ

$$
\begin{equation*}
t_{\mathrm{CHG}}=\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}} \ln \left(\frac{\mathrm{~V}_{\mathrm{REF}}+\mathrm{I}_{\mathrm{CH}} \mathrm{R}_{\mathrm{T}}-\mathrm{V}_{\mathrm{TL}}}{\mathrm{~V}_{\mathrm{REF}}+\mathrm{I}_{\mathrm{CH}} \mathrm{R}_{\mathrm{T}}-\mathrm{V}_{\mathrm{TH}}}\right) \tag{4}
\end{equation*}
$$

The oscillator's minimum frequency is set when $\mathrm{I}_{\mathrm{CH}}=0$ where:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{OSC}} \cong \frac{1}{0.51 \times R_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}} \tag{5}
\end{equation*}
$$

This assumes that $\mathrm{t}_{\mathrm{CHG}} \gg \mathrm{t}_{\mathrm{DIS}}$.
When LFB OUT is high, $\mathrm{I}_{\mathrm{CH}}=0$ and the minimum frequency occurs. The charging current varies according to two control inputs to the oscillator:

1. The output of the preheat timer
2. The voltage at Pin 6 (lamp feedback amplifier output)
In preheat condition, charging current is fixed at

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CHG}(\text { PREHEAT })}=\frac{2.5}{\mathrm{R}(\mathrm{SET})} \tag{6}
\end{equation*}
$$

In running mode, charging current decreases as the $V_{\text {PIN6 }}$ rises from $O V$ to V_{OH} of the LAMP FB amplifier. The highest frequency will be attained when $\mathrm{I}_{\mathrm{CHG}}$ is highest, which is attained when $V_{\text {PIN6 }}$ is at 0 V :

$$
\begin{equation*}
\mathrm{I}_{\mathrm{CHG}(0)}=\frac{5}{\mathrm{R}(\mathrm{SET})} \tag{7}
\end{equation*}
$$

Highest lamp power, and lowest output frequency are attained when $\mathrm{V}_{\text {PIN6 }}$ is at its maximum output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$.
In this condition, the minimum operating frequency of the ballast is set per (5) above.

For the IC to be used effectively in dimming ballasts with higher Q output networks a larger C_{T} value and lower R_{T} value can be used, to yield a smaller frequency excursion over the control range ($\mathrm{V}_{\text {PIN6 }}$). The discharge current is set to 5 mA . Assuming that $\mathrm{I}_{\mathrm{DIS}} \gg \mathrm{I}_{\mathrm{RT}}$:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{DIS}(\mathrm{VCO})} \cong 490 \times \mathrm{C}_{\mathrm{T}} \tag{8}
\end{equation*}
$$

IC BIAS, UNDER-VOLTAGE LOCKOUT AND THERMAL SHUTDOWN

The IC includes a shunt regulator which will limit the voltage at $\mathrm{V}_{C C}$ to $13.5\left(\mathrm{~V}_{\mathrm{CC}}\right)$. The IC should be fed with a current limited source, typically derived from the ballast transformer auxiliary winding. When V_{CC} is below $\mathrm{V}_{\mathrm{CCZ}}-0.7 \mathrm{~V}$, the IC draws less than 1.7 mA of quiescent current and the outputs are off. This allows the IC to start using a "bleed resistor" from the rectified AC line.

To help reduce ballast cost, the ML4831 includes a temperature sensor which will inhibit ballast operation if the I^{\prime} 's junction temperature exceeds $120^{\circ} \mathrm{C}$. In order to use this sensor in lieu of an external sensor, care should be taken when placing the IC to ensure that it is sensing temperature at the physically appropriate point in the ballast. The ML4831's die temperature can be estimated with the following equation:

$$
\begin{equation*}
T_{J} \cong T_{A} \times P_{D} \times 65^{\circ} \mathrm{C} / \mathrm{W} \tag{9}
\end{equation*}
$$

Figure 6. Typical V_{CC} and I_{CC} Waveforms when the ML4831 is Started with a Bleed Resistor from the Rectified AC Line and Bootstrapped from an Auxiliary Winding.

STARTING, RE-START, PREHEAT AND INTERRUPT

The lamp starting scenario implemented in the ML4831 is designed to maximize lamp life and minimize ballast heating during lamp out conditions.
The circuit in Figure 7 controls the lamp starting scenarios: Filament preheat and Lamp Out interrupt. $\mathrm{C}(\mathrm{X})$ is charged with a current of $\mathrm{I}_{\mathrm{R}(\mathrm{SET})} / 4$ and discharged through $\mathrm{R}(\mathrm{X})$. The voltage at $C(X)$ is initialized to $0.7 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{BE}}\right)$ at power up. The time for $C(X)$ to rise to 3.4 V is the filament preheat time. During that time, the oscillator charging current $\left(I_{\mathrm{CHG}}\right)$ is $2.5 / \mathrm{R}(\mathrm{SET})$. This will produce a high frequency for filament preheat, but will not produce sufficient voltage to ignite the lamp.
After cathode heating, the inverter frequency drops to $F_{\text {MIN }}$ causing a high voltage to appear to ignite the lamp. If the voltage does not drop when the lamp is supposed to have ignited, the lamp voltage feedback coming into Pin 9 rises to above $V_{\text {REF }}$, the $C(X)$ charging current is shut off and the inverter is inhibited until $C(X)$ is discharged by $R(X)$ to the 1.2 V threshold. Shutting off the inverter in this manner prevents the inverter from generating excessive heat when the lamp fails to strike or is out of socket. Typically this time is set to be fairly long by choosing a large value of $R(X)$.

Figure 7. Lamp Preheat and Interrupt Timers

LFB OUT is ignored by the oscillator until $\mathrm{C}(\mathrm{X})$ reaches 6.8 V threshold. The lamps are therefore driven to full power and then dimmed. The $C(X)$ pin is clamped to about 7.5V.

A summary of the operating frequencies in the various operating modes is shown below.

Operating Mode	Operating Frequency
Preheat	$\frac{[\mathrm{F}(\mathrm{MAX}) \text { to } \mathrm{F}(\mathrm{MIN})]}{2}$
Dimming Lock-out	$\mathrm{F}(\mathrm{MIN})$
Dimming Control	$\mathrm{F}(\mathrm{MIN})$ to $\mathrm{F}(\mathrm{MAX})$

Figure 8. Lamp Starting and Restart Timing

APPLICATIONS power factor corrected fluorescent dimming lamp ballast

Figure 9. Typical Application: 2-Lamp Isolated Dimming Ballast with Active Power Factor Correction for 120VAC Input

TABLE 1: PARTS LIST FOR THE ML4831EVAL EVALUATION KIT

CAPACITORS

QTY.	REF.	DESCRIPTION	MFR.	PART NUMBER
2	C1, 2	$3.3 \mathrm{nF}, 125 \mathrm{VAC}, 10 \%$, ceramic, " Y " capacitor	Panasonic	ECK-DNS332ME
1	C3	$0.33 \mu \mathrm{~F}, 250 \mathrm{VAC}$, " X ", capacitor	Panasonic	ECQ-U2A334MV
4	C4, 8, 9, 22	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR215C104KAA
2	C5, 21	$0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR211C103KAA
1	C6	$1.5 \mu \mathrm{~F}, 50 \mathrm{~V}, 2.5 \%$, NPO ceramic capacitor	AVX	RPE121COG152
2	C7, 12	$1 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \%$, ceramic capacitor	AVX	SR305E105MAA
1	C10	$100 \mu \mathrm{~F}, 25 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A1EFS101
1	C11	$100 \mu \mathrm{~F}, 250 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-S2EG101E
1	C13	$4.7 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A50Z4R7
3	C14, 15, 17	$0.22 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR305C224KAA
1	C16	$1.5 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR151V152KAA
1	C19	$22 \mathrm{nF}, 630 \mathrm{~V}, 5 \%$, polypropylene capacitor	WIMA	MKP10, 22nF, 630V, 5\%
1	C20	$0.1 \mu \mathrm{~F}, 250 \mathrm{~V}, 5 \%$, polypropylene capacitor	WIMA	MKP10, $0.1 \mu \mathrm{~F}, 250 \mathrm{~V}, 5 \%$
1	C23	$0.068 \mu \mathrm{~F}, 160 \mathrm{~V}, 5 \%$, polypropylene capacitor	WIMA	MKP4, 68nF, 160V, 5\%
1	C24	$220 \mu \mathrm{~F}, 16 \mathrm{~V}, 20 \%$, electrolytic capacitor	Panasonic	ECE-A16Z220
1	C25	$47 \mathrm{nF}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR211C472KAA
1	C26	$330 \mathrm{pF}, 50 \mathrm{~V}, 10 \%$, ceramic capacitor	AVX	SR151A331JAA

RESISTORS:

1	R1	$0.33 \Omega, 5 \%, 1 / 2 \mathrm{~W}$, metal film resistor	NTE	HWD33
1	R2	$4.3 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$4.3 \mathrm{~K}-\mathrm{Q}$
1	R3	$47 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$47 \mathrm{~K}-\mathrm{Q}$
1	R4	$12 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$12 \mathrm{~K}-\mathrm{Q}$
1	R5	$20 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-20K-1
1	R6	$360 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$360 \mathrm{~K}-\mathrm{Q}$
1	R7	$36 \mathrm{~K}, 1 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$36 \mathrm{KW}-1-\mathrm{ND}$
3	R8, 22, 11	$22 \Omega, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	$22-\mathrm{Q}$
1	R9	$402 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-402K-1
1	R10	$17.8 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-17.8K-1
1	R12	$475 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-475K-1
1	K13	$5.49 \mathrm{~K}, 1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-5.49K-1

TABLE 1: PARTS LIST FOR ML4831EVAL EVALUATION KIT (Continued)

RESISTORS: (Continued)				
QTY.	REF.	DESCRIPTION	MFR.	PART NUMBER
4	R14, 17, 24, 25	100K, $1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	100K-Q
1	R15	$681 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	681K-Q
1	R16	10K, $1 / 4 \mathrm{~W}, 1 \%$, metal film resistor	Dale	SMA4-10K-1
1	R21	$33 \Omega, 1 / 4 \mathrm{~W}, 5 \%$, carbon film resistor	Yageo	33-Q
1	R23	25K, pot (for dimming adjustment)	Bourns	3386P-253-ND
DIODES:				
4	D1, 2, 3, 4	$1 \mathrm{~A}, 600 \mathrm{~V}, 1 \mathrm{~N} 4007$ diode (or 1N5061 as a substitute)	Motorola	1N4007TR
2	D5, 6	$1 \mathrm{~A}, 50 \mathrm{~V}$ (or more), 1N4001 diodes	Motorola	1N4001TR
1	D7	3A, 400V, BYV26C or BYT03 400 fast recovery or MUR440 Motorola ultra Fast diode	Gl	BYV26C
5	$\begin{aligned} & \text { D8, } 9,11 \text {, } \\ & 12,13 \\ & \hline \end{aligned}$	0.1A, $75 \mathrm{~V}, 1 \mathrm{~N} 4148$ signal diode	Motorola	1N4148TR
IC's:				
1	IC1	ML4831, Electronic Ballast Controller IC	Micro Linear	ML4831CP
TRANSISTORS:				
3	Q1, 2, 3	3.3A, 400V, IRF720 power MOSFET	IR	IR720
MAGNETICS:				
1	T1	T1 Boost Inductor, E24/25, 1 mH , Custom Coils P E24/25 core set, TDK PC40 material 8 -pin vertical bobbin (Cosmo \#4564-3-419), Wind as follows: 195 turns 25AWG magnet wire, start pin \#1, end 1 layer mylar tape 14 turns 26AWG magnet wire, start pin \#3, end NOTE: Gap for $1 \mathrm{mH} \pm 5 \%$	N 5039 or pin \#4 in \#2	CTX05-12538-1
1	T2	T2 Gate Drive Xfmr, $L_{\text {PRI }}=3 \mathrm{mH}$, Custom Coils P Toroid Magnetics YW-41305-TC Wind as follows: Primary $=25$ turns 30AWG magnet wire, start pi Secondary $=50$ turns 30AWG magnet wire, start	N 5037 or \#1, end pi pin \#5, end	СТХ05-12539-1

TABLE 1: PARTS LIST FOR ML4831EVAL EVALUATION KIT (Continued)

MAGNETICS: (Continued)				
QTY.	REF.	DESCRIPTION	MFR.	PART NUMB
1	T3	T3 Inductor, $\mathrm{L}_{\mathrm{PRI}}=1.66 \mathrm{mH}$, Custom Ciols P/N 50 E24/25 core set, TDK PC40 material 10 pin horizontal bobbin (Plastron \#0722B-31-80) Wind as follows: 1st: 170T of 25AWG magnet wire; start pin \#10, 1 layer of mylar tape 2nd: 5T of \#32 magnet wire; start pin \#2, end pin 1 layer of mylar tape 3rd: 3 T of \#30 Kynar coated wire; start pin \#4, end 4th: 3T of \#30 Kynar coated wire; start pin \#3, end 5th: 3T of \#30 Kynar coated wire; start pin \#7, end NOTE: Gap for $1.66 \mathrm{mH} \pm 5 \%$ (pins 9 to 10)	41 or Coilt nd pin \#9. \#1 d pin \#5 d pin \#6 d pin \#8	$5-12547-1$
1	T4	T4 Power Xfmr, $\mathrm{L}_{\text {PRI }}=3.87 \mathrm{mH}$, Custom Ciols P/N E24/25 core set, TDK PC40 material 8 pin vertical bobbin (Cosmo \#4564-3-419) Wind as follows: 1st: 200T of 30AWG magnet wire; start pin \#1, en 1 layer of mylar tape 2nd: 300T of 32AWG magnet wire; start pin \#5, e NOTE: Gap for inductance primary: (pins 1 to 4)	5038 or C d pin \#4. nd pin \#8 (a) 3.87 mH	TX05-12545-1
1	T5	T5 Current Sense Inductor, Custom Coils P/N 504 Toroid Magnetics YW-41305-TC Wind as follows: Primary $=3 \mathrm{~T}$ 30AWG magnet coated wire, start pi Secondary $=400 \mathrm{~T} 35 \mathrm{AWG}$ magnet wire, start pin	0 or Coiltro in \#1, end \#5, end pin	$-12546-1$
INDUCTORS:				
2	L1, 2	$\mathrm{EMI} / \mathrm{RFI}$ Inductor, $600 \mu \mathrm{H}, \mathrm{DC}$ resistance $=0.45 \Omega$	Prem. Magnetics	SPE116A
FUSES:				
1	F1	2 A fuse, $5 \times 20 \mathrm{~mm}$ miniature	Littlefuse	F948-ND
2		Fuse Clips, $5 \times 20 \mathrm{~mm}$, PC Mount		F058-ND
HARDWARE:				
1		Single TO-220 Heatsink	Aavid Eng.	PB1ST-69
2		Double TO-220 Heatsink	IERC	PSE1-2TC
3		MICA Insulators	Keystone	4673K-ND

OrDERIiNG iNifókimatión

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4831CP	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Molded DIP (P18)

120VAC Dimmable Electronic Ballast Evaluation Kit

GENERAL DESCRIPTION

The ML4831 evaluation board is a low cost, improved version of Micro Linear's ML4830 dimmable ballast EVAL board. Careful attention was given to reducing the magnetics cost of the eval board as well as other costly components. In addition, the design was improved to both increase and linearize the dimming range, eliminate lamp shut-off at low intensities, reduce visible standing waves and simplify the lamp-out protection circuitry. All components used are inexpensive and easy to obtain.

Operating from 85 to 135VAC line, the ML4831 evaluation board is a power factor corrected 60 W electronic ballast with a dimming range capable of a 20:1 intensity change. Optimized to power two series connected T8 fluorescent bulbs, the ML4831 EVAL board displays all the features of Micro Linear's latest ballast controller IC. The mode of operation used for pre-heat, striking and dimming of the bulbs is the widely accepted variable frequency, non-overlapping inverter topology. This eval board may be used with various bulbs other than T8's (such as T12's).

FEATURES

- Drives 2 Series Connected T8 or T12 Lamps (60W) (Will Drive a Single Lamp)
- Power Factor Corrected Front-End
- 85 to 135VAC Operation
- 20 to 1 Dimming Range Capability
- Uses Low Cost External Components

KIT COMPONENTS

■ ML4831EVAL User's Guide

- ML4831 Data Sheet
- Fully Functional ML4831 Evaluation Board
- PCB Layout Gerber File

BLOCK DIAGRAM

Low Voltage Boost Regulator

GENERAL DESCRIPTION

The ML4851 is a low power boost regulator designed for DC to DC conversion in 1 to 3 cell battery powered systems. The maximum switching frequency can exceed 100 kHz , allowing the use of small, low cost inductors.

The combination of BiCMOS process technology, internal synchronous rectification, variable frequency operation, and low supply current make the ML4851 ideal for 1 cell applications. The ML4851 is capable of start-up with input voltages as low as 1 V and is available in 5 V and 3.3 V output versions with output voltage accuracy of $\pm 3 \%$.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4851 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies in excess of 90%.

The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the IC can no longer function due to low input voltage, or when the DETECT input drops below 200 mV .

FEATURES

- Guaranteed full load start-up and operation at 1 V input
- Maximum switching frequency $>100 \mathrm{kHz}$
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching FETs
- Micropower operation
- 5 V and 3.3 V output versions

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	$V_{I N}$	Battery input voltage
2	$V_{\text {REF }}$	200 mV reference output
3	GND	Analog signal ground
4	DETECT	Pulling this pin below $V_{\text {REF }}$, causes the $\overline{\text { RESET pin to go low }}$

PIN NO.	NAME	FUNCTION
5	V $_{\text {OUT }}$	Boost regulator output
6	V $_{\mathrm{L}}$	Boost inductor connection
7	$\overline{\text { RESET }}$	Output goes low when regulation cannot be achieved or when DETECT goes below 200mV
8	PWR	

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4851ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4851ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4851IS-3	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4851IS-5	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-$ Pin SOIC (S08)

ded Commercial Temper
for Portable Handheld Equipmen
ML4861

Low Voltage Boost Regulator

GENERAL DESCRIPTION

The ML4861 is a boost regulator designed for DC to DC conversion in 1 to 3 cell battery powered systems. The combination of BiCMOS process technology, internal synchronous rectification, variable frequency operation, and low supply current make the ML4861 ideal for 1 cell applications. The ML4861 is capable of start-up with input voltages as low as 1 V and is available in $6 \mathrm{~V}, 5 \mathrm{~V}$, and 3.3 V output versions with output voltage accuracy of $\pm 3 \%$.
An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4861 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies in excess of 90%.

The circuit also contains a RESET output which goes low when the IC can no longer function due to low input voltage, or when the DETECT input drops below 200 mV .

FEATURES

- Guaranteed full load start-up and operation at 1 V input
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components

■ Low ON resistance internal switching FETs

- Micropower operation
- $6 \mathrm{~V}, 5 \mathrm{~V}$, and 3.3 V output versions

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	$V_{\text {IN }}$	Battery input voltage
2	$V_{\text {REF }}$	200 mV reference output
3	GND	Analog signal ground
4	DETECT	When this pin below $V_{\text {REF, }}$ causes the RESET pin to go low

PIN NO.	NAME	FUNCTION
5	V $_{\text {OUT }}$	Boost regulator output
6	V $_{\mathrm{L}}$	Boost inductor connection 7$\overline{\text { RESET }}$
Output goes low when regulation cannot be achieved or when DETECT goes below 200mV		
8	PWR GND Return for the NMOS output transistor	

ML4861

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Voltage on any pin .. 7V
Peak Switch Current, $I_{\text {(PEAK) }}$.. 2A
Average Switch Current, I (AVG) 500 mA
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Temperature Range
ML4861CS-X .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4861ES-X ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4861IS-X ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$ Operating Range
ML4861CS-X 1.0V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
ML4861ES-X, ML4861IS-X 1.1V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range.

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply					
$V_{I N}$ Current	$V_{I N}=V_{O U T}-0.2 \mathrm{~V}$		45	55	$\mu \mathrm{~A}$
$V_{\text {OUT }}$ Quiescent Current			8	10	$\mu \mathrm{~A}$
$V_{\text {L Quiescent Current }}$				1	$\mu \mathrm{~A}$

Reference

Output Voltage $\left(V_{\text {REF }}\right)$	$0<I_{\text {PIN } 2}<-5 \mu \mathrm{~A}$,	190	200	210	mV

PFM Regulator

Pulse Width (T_{ON})		9	10	11	$\mu \mathrm{s}$
$\begin{aligned} & \text { Output Voltage (VOUT) } \\ & \text { ML4861-6 } \\ & \text { ML4861-5 } \\ & \text { ML4861-3 } \end{aligned}$	$\mathrm{T}_{\mathrm{ON}}=0$ at $\mathrm{V}_{\mathrm{OUT}}(\mathrm{MAX})$, $9 \mu \mathrm{~s} \leq \mathrm{T}_{\mathrm{ON}} \leq 11 \mu \mathrm{~S} \mathrm{~V}_{\mathrm{OUT}}(\mathrm{MIN})$	$\begin{gathered} 5.82 \\ 4.85 \\ 3.2 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & 3.3 \end{aligned}$	$\begin{array}{r} 6.18 \\ 5.15 \\ 3.4 \end{array}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
Load Regulation ML4861-6	See Figure 1 $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}} \leq 95 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5.82 \\ & 5.82 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.18 \\ & 6.18 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
ML4861-5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 25 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 135 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.85 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.15 \\ & 5.15 \end{aligned}$	V
ML4861-3	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 180 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$	V
Under-Voltage Lockout Threshold			0.85	0.95	V
$\overline{\text { RESET Comparator }}$					
DETECT Threshold		190	200	210	mV
DETECT Bias Current		-100		100	nA
$\overline{\text { RESET }}$ Output High Voltage (V_{OH})	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OUT }}-0.2$			V
$\overline{\text { RESET }}$ Output Low Voltage (V_{OL})	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.2	V

Figure 1. Application Test Circuit

Figure 2. PFM Regulator Block Diagram

FUNCTIONAL DESCRIPTION

The ML4861 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is both highly efficient and simple to use. A PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

REGULATOR OPERATION

A block diagram of the boost converter is shown in Figure 2. The circuit remains idle when $\mathrm{V}_{\text {OUT }}$ is at or above the desired output voltage, drawing $45 \mu \mathrm{~A}$ from $\mathrm{V}_{\mathbb{N}}$, and $8 \mu \mathrm{~A}$ from $V_{\text {OUT }}$ through the feedback resistors R1 and R2. When $\mathrm{V}_{\text {OUT }}$ drops below the desired output level, the output of amplifier A1 goes high, signaling the regulator to deliver charge to the output. Since the output of amplifier A2 is normally high, the flip-flop captures the A1 set signal and creates a pulse at the gate of the NMOS transistor Q1. The NMOS transistor will charge the inductor L1 for $10 \mu \mathrm{~s}$, resulting in a peak current given by:

$$
\begin{equation*}
L_{(P E A K)}=\frac{T_{O N} \times V_{\mathbb{I N}}}{L_{1}} \approx \frac{10 \mu s \times V_{\mathbb{I N}}}{L_{1}} \tag{1}
\end{equation*}
$$

For reliable operation, L 1 should be chosen so that $\mathrm{I}_{\text {LPEAK }}$ does not exceed 2A.
When the one-shot times out, the NMOS transistor releases the V_{L} pin, allowing the inductor to fly-back and momentarily charge the output through the body diode of PMOS transistor Q2. But, as the voltage across the PMOS transistor changes polarity, its gate will be driven low by the current sense amplifier A2, causing Q2 to short out its body diode. The inductor then discharges into the load through Q2. The output of A2 also serves to reset the flipflop and one-shot in preparation for the next charging cycle. A2 releases the gate of Q2 when its current falls to zero. If $\mathrm{V}_{\text {OUT }}$ is still low, the flip-flop will immediately initiate another pulse. The output capacitor (C1) filters the inductor current, limiting output voltage ripple. Inductor current and one-shot waveforms are shown in Figure 3.

Figure 3. PFM Inductor Current Waveforms and Timing.

RESET COMPARATOR

An additional comparator is provided to detect low $\mathrm{V}_{\mathbb{N}}$, or any other error condition that is important to the user. The inverting input of the comparator is internally connected to $\mathrm{V}_{\text {REF, }}$, while the non-inverting input is provided externally at the DETECT pin. The output of the comparator is the RESET pin, which swings from $\mathrm{V}_{\mathrm{OUT}}$ to GND when an error is detected.

DESIGN CONSIDERATIONS

INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})} \times \eta}{2 \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}} \tag{2}
\end{equation*}
$$

where η is the efficiency, typically between 0.8 and 0.9 . Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.
Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 4 and 5. Figure 4 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance.
For example, a two cell to 5 V application requires 80 mA of output current while using an inductor with 15% tolerance. The output current should be derated by 25% to 100 mA to cover the combined inductor and ON-time tolerances. Assuming that 2 V is the end of life voltage of a two cell input, Figure 4 shows that with a 2 V input, the ML4861-5 delivers 108mA with a $27 \mu \mathrm{H}$ inductor.

Figure 4. Output Current vs Input Voltage.

Figure 5 shows efficiency under the conditions used to create Figure 4. It can be seen that efficiency is mostly independent of input voltage and is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. As the inductor value goes down to $10 \mu \mathrm{H}$, the efficiency drops to between 70% and 75%. With $56 \mu \mathrm{H}$, the efficiency exceeds 90% and there is little room for improvement. At values greater than $100 \mu \mathrm{H}$, the operation of the synchronous rectifier becomes unreliable because the inductor current is so small that it is difficult for the control circuitry to detect. The data used to generate Figures 4 and 5 is provided in Table 1.
After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
\begin{equation*}
L_{(\text {PEAK })}=\frac{T_{\mathrm{ON}(M A X)} \times V_{\mathrm{IN}(M A X)}}{L_{\mathrm{MIN}}} \tag{3}
\end{equation*}
$$

In the two cell application previously described, a maximum input voltage of 3 V would give a peak current of 1.2 A . When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4861 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 3. For additional information, see Applications Note 29, "Choosing an Inductor for Your ML4861 Application."

Suitable inductors can be purchased from the following suppliers:

Coilcraft	$(708) 639-6400$
Coiltronics	$(407) 241-7876$
Dale	$(605) 665-9301$
Sumida	$(708) 956-0666$

Figure 5. Typical Efficiency as a Function of $\mathrm{V}_{\mathbf{I N}}$.

OUTPUT CAPACITOR

The choice of output capacitor is also important, as it controls the output ripple and optimizes the efficiency of the circuit. Output ripple is influenced by three capacitor parameters: capacitance, ESR, and ESL. The contribution due to capacitance can be determined by looking at the change in capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as determined by the following formula:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{T}_{\mathrm{ON}}^{2} \times \mathrm{V}_{\mathrm{IN}}^{2}}{2 \times \mathrm{L} \times \mathrm{C} \times\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}\right)} \tag{4}
\end{equation*}
$$

For a 2.4 V input, and 5 V output, a $27 \mu \mathrm{H}$ inductor, and a $47 \mu \mathrm{~F}$ capacitor, the expected output ripple due to capacitor value is 87 mV .

Capacitor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the output ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the output current ramps quickly to match the peak inductor
current. This fast change in current through the output capacitor's ESL causes a high frequency (5 ns) spike that can be over 1 V in magnitude. After the ESL spike settles, the output voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth shape and a peak value equal to the peak inductor current times the ESR. ESR also has a negative effect on efficiency by contributing I -squared R losses during the discharge cycle.
An output capacitor with a capacitance of $100 \mu \mathrm{~F}$, an ESR of less than 0.1Ω, and an ESL of less than 5 nH is a good general purpose choice. Tantalum capacitors which meet these requirements can be obtained from the following suppliers:

Matsuo
(714) 969-2491

Sprague (603) 224-1361
If ESL spikes are causing output noise problems, an EMI filter can be added in series with the output.

INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between $47 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$. This provides the benefits of preventing input ripple from affecting the ML4861 control circuitry, and it also improves efficiency by reducing l -squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

REFERENCE CAPACITOR

Under some circumstances input ripple cannot be reduced effectively. This occurs primarily in applications where inductor currents are high, causing excess output ripple due to "pulse grouping", where the chargedischarge pulses are not evenly spaced in time. In such cases it may be necessary to decouple the reference pin $\left(V_{\text {REF }}\right)$ with a small 10 nF to 100 nF ceramic capacitor. This is particularly true if the ripple voltage at $\mathrm{V}_{\mathbb{I N}}$ is greater than 100 mV .

SETTING THE $\overline{\text { RESET }}$ THRESHOLD

To use the $\overline{\text { RESET }}$ comparator as an input voltage monitor, it is necessary to use an external resistor divider tied to the DETECT pin as shown in the block diagram. The resistor values R_{A} and R_{B} can be calculated using the following equation:

$$
\begin{equation*}
V_{\mathrm{IN}(\mathrm{MIN})}=0.2 \times \frac{\left(R_{A}+R_{B}\right)}{R_{B}} \tag{5}
\end{equation*}
$$

The value of R_{B} should be $100 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{A} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}{0.2}-1\right) \tag{6}
\end{equation*}
$$

LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4861. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4861
- Use short trace lengths from the inductor to the V_{L} pin and from the output capacitor to the $\mathrm{V}_{\text {OUT }}$ pin
- Use a single point ground for the ML4861 ground pins, and the input and output capacitors
A sample PC board layout is shown in Figure 6.

Figure 6. Sample PC Board Layout.

TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY.

ML4861-3.3

V_{IN}	Iout (mA)	EFFICIENCY PERCENTAGE
$\mathrm{L}=\mathbf{1 0} \mu \mathrm{H}$		
1.0	77.5	69.7
1.5	191.7	67.2
2.0	310.2	67.8
2.5	409.7	71.1
$\mathrm{L}=15 \mu \mathrm{H}$		
1.0	58.5	74.5
1.5	137.1	75.7
2.0	232.1	76.4
2.5	335.3	76.9
3.0	405.0	78.2
$\mathbf{L}=27 \mu \mathrm{H}$		
1.0	40.0	81.1
1.5	95.4	82.9
2.0	163.8	83.6
2.5	242.5	84.2
3.0	306.0	85.2
$\mathrm{L}=56 \mu \mathrm{H}$		
1.0	19.5	89.4
1.5	45.5	90.9
2.0	79.3	90.6
2.5	122.6	91.1
3.0	168.3	91.7

ML4861-5.0

V_{IN}	IOUT (mA)	EFFICIENCY PERCENTAGE
$L=10 \mu \mathrm{H}$		
1.0	45.8	70.6
1.5	112.6	74.2
2.0	210.7	74.0
2.5	331.6	73.0
$\mathrm{L}=15 \mu \mathrm{H}$		
1.0	32.4	75.7
1.5	85.6	79.5
2.0	156.3	80.6
2.5	240.2	80.9
3.0	332.5	81.2
3.5	432.3	81.6
$\mathrm{L}=\mathbf{2 7} \mu \mathrm{H}$		
1.0	20.8	78.7
1.5	59.3	83.6
2.0	108.6	84.9
2.5	167.6	85.6
3.0	236.6	86.2
3.5	311.2	86.6
4.0	385.4	87.2
4.5	442.3	88.0
$\mathrm{L}=56 \mu \mathrm{H}$		
1.0	11.3	87.3
1.5	27.4	89.4
2.0	49.8	90.5
2.5	78.1	91.2
3.0	112.0	91.7
3.5	151.2	92.2
4.0	194.2	92.6
4.5	237.0	93.1

TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY (Continued)
ML4861-6.0

$\mathrm{V}_{\text {IN }}(\mathrm{V})$	$\mathrm{I}_{\mathrm{IN}}(\mathrm{mA})$	$V_{\text {OUT }}(\mathrm{V})$	IOUT (mA)	EFFICIENCY \%
$L=10 \mu \mathrm{H}$				
1.0	325.8	5.975	40.1	73.5
1.5	524.6	5.990	100.0	76.1
2.0	730.0	5.995	184.5	75.7
2.5	910.8	5.992	284.0	74.7
$\mathrm{L}=15 \mu \mathrm{H}$				
1.0	220.5	5.993	28.5	77.5
1.5	365.7	5.981	73.8	80.5
2.0	516.7	5.998	139.9	81.2
2.5	639.3	5.995	216.3	81.1
3.0	755.1	5.999	305.1	80.8
3.5	855.1	5.996	402.0	80.5
4.0	916.1	5.992	493.0	80.6
$\mathrm{L}=27 \mu \mathrm{H}$				
1.0	154.1	5.992	21.6	84.0
1.5	235.7	5.982	50.7	85.8
2.0	329.5	5.990	95.9	87.2
2.5	404.6	6.000	147.5	87.5
3.0	478.2	5.995	209.6	87.6
3.5	551.0	5.999	281.6	87.6
4.0	610.5	5.997	356.7	87.6
4.5	659.9	5.993	434.0	87.6
5.0	689.1	5.991	504.3	87.7
5.5	665.0	5.999	534.7	87.7
$L=60 \mu \mathrm{H}$				
1.0	67.6	5.977	10.0	88.4
1.5	108.8	5.961	24.7	90.2
2.0	148.0	5.976	45.1	91.1
2.5	186.0	5.978	71.2	91.5
3.0	222.4	5.973	102.6	91.9
3.5	257.2	5.975	138.6	92.0
4.0	290.2	5.989	178.7	92.2
4.5	321.2	5.995	222.7	92.4
5.0	346.4	5.997	267.1	92.5
5.5	356.1	6.000	302.4	92.6

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4861CS-3	3.3 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4861CS-5	5.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4861CS-6	6.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4861ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4861ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4861ES-6	6.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4861IS-3	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4861IS-5	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4861IS-6	6.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-$ Pin SOIC (S08)

Low Voltage Boost Regulator Evaluation Kit

GENERAL DESCRIPTION

The ML4861EVAL kit provides a convenient vehicle to evaluate the ML4861 low voltage boost regulator IC. The kit contains a fully assembled circuit board and all of the necessary documentation to quickly evaluate a typical application circuit. The board was designed to demonstrate performance and to illustrate critical layout practices necessary for reliable operation of the circuit.

The ML4861 is complete solution for DC to DC conversion in 1 to 3 cell battery powered systems. The circuit is ideal in applications requiring high efficiency, and a minimum number of external components.
The boost IC is capable of running with input voltages as low as 1.0 V and is available in four different output versions: a 3.3 V output (ML4861-3.3), a 5.0 V output (ML4861-5), a 6.0 V output (ML4861-6), or adjustable output versions (ML4761 and ML4961).

FEATURES

- Synchronous Rectification for High Efficiency
- Wide Input Voltage Range
- Minimal External Components
- Micro Power Operation
- Low Battery/Output Voltage Regulation Flag
- $3.3 \mathrm{~V}, 5.0 \mathrm{~V}, 6.0 \mathrm{~V}$, and Adjustable Output Versions
- Auto-Suspend Mode for Low Power Standby System Operation

KIT COMPONENTS

The evaluation package contains the following items:

- ML4861EVAL User's guide
- ML4861 Data Sheet
- Application Note 29
- ML4861 Evaluation Board

FIGURE 1: ML4861 Evaluation Board Schematic

Battery Power Control IC

GENERAL DESCRIPTION

The ML4862 is a complete solution for DC to DC conversion and power management in multi-cell battery powered portable computers and instruments. Several advanced techniques are incorporated in the IC for the highest possible systems efficiency and lowest possible battery drain.
The 5.0 V and 3.3 V main regulators in the ML4862 each controls a Synchronous Rectified buck regulator and each drives two N -Channel MOSFETs. This allows high conversion efficiencies (90% or greater). Bias for all N -Channel MOSFETs in the system as well as the input for the 12 V regulator for programming EEPROMs comes from an auxiliary winding on the buck regulator choke.
The ML4862 also contains 3 outputs to drive external NChannel MOSFETs to power down disk drives and memory under control of external logic. Automatic switch-over to battery operation is also provided when the charger is removed. A μ Power 5 V linear regulator and low battery indicator are provided for the power monitoring logic.

FEATURES

- Two Synchronously Rectified, 100 KHz Buck Regulators: for 5 V and 3.3 V outputs
- Regulation to $\pm 3 \%$ maximum; provides 2% PCMCIA switch matrix margin
- Low Cost All N-Channel MOSFET Switching
- Three Logic to N-Channel Gate Drive translators for power management
- μ Power 5 V standby linear regulator to run power management logic
- Output and logic for N -Channel MOSFET to disconnect battery when charger is connected
- 12V Auxiliary output available with On/Off Control for E2 memory programming
- Low battery detect comparator
- Wide Input Voltage Range (5 V to 20 V)
- Customizable Tile Array Technology - Consult factory for additional options

BLOCK DIAGRAM

PIN CONFIGURATION

$\begin{gathered} \text { ML4862 } \\ \text { 32-Pin SOIC (S32W) } \end{gathered}$		
$\mathrm{RT}_{T} \square 1$	32	$\square 12 \mathrm{~V}$ Out
$\mathrm{V}_{\text {adapter }} \square_{2}$	31	$\square \mathrm{V}_{\text {ReF }}$
vG5 \square	30	ON/OFF
battery low \square	29	FDBK A
$\mathrm{V}_{\text {bat }} \square 5$	28	COMPA
FDBK B \square^{6}	27	Enablea
COMP $\square \square 7$	26	\square Out2A
ON/OFF $12 \square \square^{8}$	25	GND
OUT2B \square,	24	PWR GND
OUt18 \square^{10}	23	\square outia
5v out \square^{11}	22	V_{IN}
$\mathrm{I}_{\text {SENSE }} \square^{12}$	21	$\square \mathrm{I}$ IENSEA
SW1 \square^{13}	20	\square Soft Start
SW2 $\square 14$	19	SOUT1
SW3 $\square 15$	18	\square sout2
$\mathbf{V G T}^{\square} \square 16$	17	1 sout3

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	R_{T}	Timing Resistor which sets oscillator frequency
2	$V_{\text {ADAPTER }}$	Input to sense whether adapter is active. When this pin is above $V_{\text {BAT, }}$ VG5 goes low.
3	VG5	Output to drive N-Channel MOSFET gate to switch battery out when adapter is present
4	BATTERY LOW	A logic low level indicates the voltage on $\mathrm{V}_{\text {BAT }}$ is below 2.5 V . This is an open-collector output.
5	$V_{\text {BAT }}$	Battery Comparator input
6	FDBK B	Voltage Feedback for buck regulator B
7	COMP B	Buck Regulator B frequency compensation terminal
8	ON/ $/ \overline{\text { OFF }} 12$	A logic high turns on the 12 V linear regulator
9	OUT2B	5V Buck Regulator Synchronous Rectifier Output
10	OUT1B	5V Buck Regulator Switch Output
11	5V OUT	Output of the μ Power 5 V regulator. Normally used to power external management circuits and logic
12	$\mathrm{I}_{\text {SENSE }} B$	Current Sensing for buck regulator B current limit
13-15	SW1-3	Inputs for power management MOSFET gate drivers
16	V_{GT}	Boosted voltage to drive N-Channel gates and input to 12 V linear regulator

PIN\#	NAME	FUNCTION
17-19	9 SOUT3-1	MOSFET gate drive outputs for power management
20	SOFT START	Connected to a soft start capacitor
21	$\mathrm{I}_{\text {SENSE }} \mathrm{A}$	Current Sensing for buck regulator A current limit
22	$\mathrm{V}_{\text {IN }}$	Input from Battery or AC Adapter
23	OUT1A	3.3V Buck Regulator Switch Output
24	PWR GND	Power Ground
25	GND	Logic and signal Ground
26	OUT2A	3.3V Buck Regulator Synchronous Rectifier Output
27	$\overline{\text { ENABLE } A}$	A logic low disables Buck Regulator A's Synchronous Rectifier output
28	COMP A	Buck Regulator A frequency compensation terminal
29	FDBK A	Voltage Feedback for buck regulator A
30	ON/ $\overline{\text { OFF }}$	A low on this pin disables all IC functions except the low battery detection comparator, the linear 5 V regulator and the 2.5 V reference, and puts the IC into a low current consumption mode
31	$V_{\text {REF }}$	Buffered 2.5V reference output
32	12V OUT	Output of the 12 V linear regulator

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratıngs only and functional device operation is not implied.

Voltage on any pin
Output Current, Source or Sink (Pins 9,10, 23, 26) Pulsed

300 mA
VG5 Source Current .. 20mA
VG5 Sink Current ... 200mA
12V Linear Regulator Output Current 200mA
5V Linear Regulator Output Current 50mA
Logic Inputs (pins $8,13,14,15,27,30$) -0.3 V to 5.5 V
ISENSE Inputs (pins 12,21)... V_{IN}

Comparator Inputs (pins 2, 5) -0.3 V to 5.5 V
Junction Temperature
$150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) Plastic SOIC $60^{\circ} \mathrm{C}$ W

OPERATING CONDITIONS

Temperature Range
Commercial \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{\text {IN }}$ Voltage Range 5.4 V to 24 V
V_{GT} Voltage Range $\mathrm{V}_{\mathrm{IN}}-0.5$ to 35 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=22 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=200 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{LOAD}(12 \mathrm{~V})}<10 \mathrm{~mA}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Oscillator	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	95	102	105	kHz
Initial Accuracy		90		110	kHz
Accuracy Over Temperature	$50 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{T}} \leq 300 \mathrm{k} \Omega$	400	800	1000	ns
Dead Time		90	94	98	$\%$
Maximum Duty Cycle	$6 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}}<\leq 20 \mathrm{~V}$		2		$\%$
Voltage Stability					

Error Amplifiers

Input Offset Voltage			2	10	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$		10	200	nA
Output High Voltage	$\mathrm{I}_{\text {OUT }}=-2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.8	2.95		V
Output Low Voltage	$\mathrm{I}_{\text {OUT }}=15 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.6	V
Source Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-5	-7		mA
Sink Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	10	50		$\mu \mathrm{~A}$
Gain-Bandwidth Product			675		kHz

High Side (OUT1) Outputs (Pins 10, 23)

Output High Voltage	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	19.5	21.3		V
Output Low Voltage	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		0.2	0.5	V

Low Side (OUT2) Outputs (Pins 9, 26)

Output High Voltage	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	12.5	14.4		V
Output Low Voltage	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		0.2	0.5	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Soft Start and Current Limits (Pins 12, 20 21)

Voltage Threshold	From $V_{I N}$	-250	-200	-150	mV
Bias Current	$\mathrm{V}_{\text {ISENSE }}=\mathrm{V}_{\mathbb{I N}}-200 \mathrm{mV}$		27	50	$\mu \mathrm{~A}$
Soft Start $I_{\text {CHARGE }}$		-6	-13		$\mu \mathrm{~A}$
Soft Start $I_{\text {DISCHARGE }}$		2	6.2		mA

Reference Section

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{PIN} 31}=-1 \mathrm{~mA}$	2.45	2.5	2.55	V
Line regulation	$5.4 \mathrm{~V}<\mathrm{VIN}<20 \mathrm{~V}, \mathrm{I}_{\text {PIN31 }} \leq-1 \mathrm{~mA}$		0.3	2.0	mV / N
Total Variation	Line, load and temp.		7		$\%$

12V Linear Regulator

Output Voltage	$\mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA}$	11.25	12	12.75	V
Line regulation	$16 \mathrm{~V}<\mathrm{V}_{\mathrm{GT}}<30 \mathrm{~V}$		0.01		$\% / \mathrm{V}$
Drop Out Voltage $\left(\mathrm{V}_{\mathrm{GT}}-\mathrm{V}_{\mathrm{OUT}}\right)$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		2.3	2.7	V
Load regulation	$10 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{O}}<60 \mathrm{~mA}$		± 1.6	± 3.2	$\%$

5V Linear Regulator

Output Voltage	$\mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}$	4.85	5.0	5.15	V
Input Voltage	$\mathrm{V}_{\text {OUT }} \geq 4.85 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	6.2			V
Line Regulation	$5.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$		0.75	1.5	$\%$
Load Regulation	$10 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{O}}<25 \mathrm{~mA}$		± 1.5	± 3	$\%$

$\mathrm{V}_{\text {BAT }}$ and $\mathrm{V}_{\text {ADAPTER }}$ Comparators

Input Bias Current	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}>0^{\circ} \mathrm{C}$			200	nA
Input Offset Voltage				± 40	mV
Battery Low V_{OL}	$\mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$			0.4	V
Battery Low V_{OH}	$30 \mathrm{~K} \Omega$ pullup to 5 V	4.5	5.0		V
VG5 Source Current	$\mathrm{V}_{\mathrm{G} 5}=12 \mathrm{~V}$	-5	-10		mA
VG5 Sink Current	$\mathrm{V}_{\mathrm{G} 5}=12 \mathrm{~V}$	85		mA	

Power Management Drivers (Pins 13-15, 17-19)

Source Current	$\mathrm{V}_{\text {SOUT }}=10 \mathrm{~V}$	-8	-15	-30	$\mu \mathrm{~A}$
Sink Current	$\mathrm{V}_{\text {SOUT }}=10 \mathrm{~V}$	8	15	30	$\mu \mathrm{~A}$
Output High Voltage	$\mathrm{I}_{\text {SOUT }}=-20 \mu \mathrm{~A}$	14.5	15.6		V
Output Low Voltage	$\mathrm{I}_{\text {SOUT }}=20 \mu \mathrm{~A}$		0.16	0.4	V

Logic Inputs (Pins 8, 13-15, 30, 27)

Logic Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$ (except Pin 8)	$\mathrm{I}_{\mathbb{N}} \geq-5 \mu \mathrm{~A}$			1.1	V
Logic Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$ Pin 8	$\mathrm{I}_{\mathbb{N}} \geq-5 \mu \mathrm{~A}$			0.6	V
Logic High $\left(\mathrm{V}_{\mathrm{IH}}\right)$	$\mathrm{I}_{\mathbb{N}} \geq 5 \mu \mathrm{~A}$	2.5			V

Supply Current

$\mathrm{I}_{\mathrm{N}}+\mathrm{I}_{\mathrm{GT}}$	Sleep Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		115	250	$\mu \mathrm{~A}$
I_{IN}	Run Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	10	mA
I_{GT}	Run Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6	mA

FUNCTIONAL DESCRIPTION

POWER DOWN MODES

The ML4862 operates in either a powered down mode or a run mode according to the state of the ON/OFF pin (Table 1). When the ON/OFF pin is high, the IC is in the run mode and all IC sections are functioning. When the ON/OFF pin is low, the IC is in the standby mode and only the μ Power 5 V linear regulator and 2.5 V reference are on. All gate drive outputs are low. The 5 V linear regulator then provides the power to run the system's power management logic. When the BURST pin is high, and the output is above the lower threshold of the burst comparator, the IC is also in standby mode, but with the burst comparator logic also running.

BUCK REGULATORS

The two buck regulators (Figure 3) are synchronously rectifying voltage mode PWM regulators capable of being used over a wide variety of loads and input voltages. The use of synchronous rectification improves system efficiency by reducing the fixed drop associated with the "freewheeling" diode in conventional regulators. These regulators also drive all N -Channel power MOSFETs, significantly improving system efficiency at a low cost. In order to drive the MOSFET gates adequately, a V_{GT} supply must be provided which is higher than the battery voltage by an amount sufficient to provide full enhancement voltage to the MOSFETs. This can be generated as shown below.

TABLE 1. ML4862 POWER DOWN MODES

MODE	ON/ $\overline{\text { OFF }}$	$\overline{\text { ENABLE }}$	ON/ $\overline{\text { OFF }} 12$	FUNCTION	TOTAL SUPPLY CURRENT
Sleep	0	X	X	Micro Power 5V Reg Only	$130 \mu \mathrm{~A}$
12V	1	X	1	12 V Linear Regulator on	$600 \mu \mathrm{~A}^{*}$
Partial Run	1	0	0	Reg. A Disabled, All Other Functions Running	8 mA
Run	1	1	0	All Functions Enabled	10 mA

*Note This figure represents the total quiescent current for the Bust and
5 V regulator. Actual current consumed will vary in proportion to load current.

Figure 1.5V Linear Regulator Output at low $\mathrm{V}_{\text {IN }}$

Figure 2. Generating $\mathbf{V}_{\mathbf{G T}}$ Bias Voltage

Figure 3. Buck Regulator Block Diagram

Regulator A includes a pin which shuts down the IC and puts Regulator A into "Burst mode". When in "Burst mode" the regulator comes on when the burst comparator is below its lower threshold and goes off again when the output capacitor has charged to the burst comparator's upper threshold. Burst mode is useful for running the regulator at light modes, such as memory keep-alive or "suspend" mode.

Figure 4. Burst Mode Comparator and Logic
When burst mode is enabled the $\mathrm{C}_{S S}$ discharge circuit (Figure 3) is disabled. $\mathrm{C}_{S S}$ is floating until CS1 is enabled when a burst occurs. When probing the $\mathrm{C}_{S S}$ pin in burst mode, use a high impedance probe to prevent discharge of the $C_{S S}$ pin from disturbing the circuit operation.
Selection of the external MOSFETs, output inductor and capacitor determine the output capabilities of the regulator. Output voltage is set by RF1 and RF2 where.

$$
\begin{equation*}
V_{\mathrm{OUT}}=\frac{2.5 \times(\mathrm{RF} 1+\mathrm{RF} 2)}{R F 2} \tag{1}
\end{equation*}
$$

The short circuit limit is set by external resistor R_{s}.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SHORT} \mathrm{CKT}} \approx \frac{0.2}{\mathrm{R}_{\mathrm{S}}} \tag{2}
\end{equation*}
$$

C_{SS} is discharged when the regulator is off or when the voltage across R_{S} exceeds 200 mV . F2 ensures that $\mathrm{C}_{S S}$ is fully discharged. This circuit provides reliable output short circuit protection with very little power wasted in the sensing element. The error amplifier's output voltage is limited to the voltage on the SOFT START pin. When $\mathrm{C}_{S S}$ is discharged, the regulator's duty cycle is 0 .

Figure 5. Oscillator Frequency vs. $\mathbf{R}_{\mathbf{T}}$

Figure 6. OUT1 Rise and Fall Time vs. Load C LOAD

ADAPTER SWITCH

This function is provided by a comparator whose output (VG5) is pulled to V_{GT} when $\mathrm{V}_{\text {ADAPTER }}$ goes above 2.5 V . By connecting an N-Channel MOSFET gate to VG5, the system can run from the battery without the loss associated with a diode. When the AC adapter is plugged in, the voltage on pin 2 goes high, VG5 swings low, and the system runs from the AC adapter. This circuit functions in all modes of IC operation except SLEEP, when the VG5 output goes low.

12 V LINEAR REGULATOR

The 12 V regulator includes a shut-off pin. To operate the regulator as a low drop-out regulator, a separate 12VBIAS pin is provided. If this pin is 1.5 V higher than V 12 IN , the output transistor can be driven to saturation. Input for this regulator may come from either $\mathrm{V}_{\text {IN }}$ (for high voltage battery packs) or from a coupled inductor winding as shown in Figure 8. If the low drop-out feature is not necessary, V12 BIAS can be tied to V 12 IN .

Figure 8. Coupled Inductor to generated V12 IN

Figure 7. OUT2 Rise and Fall Time vs. Load C LOAD

APPLICATIONS

BUCK REGULATOR INDUCTOR

Inductors are specified with three main parameters; inductance (L), maximum current (IOUT(MAX), and DC resistance (R_{L}).
Inductance for a given set of requirements can be calculated using the following:

$$
\begin{equation*}
\mathrm{L}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times\left(\frac{\mathrm{D}}{\mathrm{~F}}\right)}{(2) \times\left(\mathrm{I}_{\text {OUT(MIN }}\right)} \tag{3}
\end{equation*}
$$

In this equation, D is the duty cycle, and F is the switching frequency.
Selecting the inductor value using this formula ensures that the inductor stays in the continuous current mode, and never goes discontinuous at light loads (lout(Min)). This is important, as high current spikes occur and losses go up when operating in the discontinuous mode.

A good rule of thumb for choosing inductor core size is to make sure that the maximum output current of the regulator doesn't exceed 80% of the maximum current rating of the inductor. Otherwise, core saturation may occur. This is especially important for ferrites, which have a harder saturation characteristic than powdered iron cores.
In order to distribute conduction losses evenly among all components, the DC resistance should be selected to be $1 / 4$ of the sum of the RDS ${ }_{\mathrm{ON}}$ s of the power MOSFETs.

Core losses, which contribute significantly to overall efficiency losses, should be minimized by using an inductor designed for minimum losses at the chosen operating frequency. This is a function of the core material, and is lowest in "Kool Mu" and molyperm cores. Of course, efficiency and cost are often inversely related when it comes to magnetic materials.
Figure 9 is a typical ML4862 Application Circuit. Table 2 provides a bill of materials for the circuit.

DESIGNATOR	DESCRIPTION	PART NUMBER
C14, C15	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$ (optional)	see text
D1	$3 \mathrm{~A}, 30 \mathrm{~V}$ Rectifier	see text
D2	$100 \mathrm{~mA}, 50 \mathrm{~V}$ (min) Rectifier	1N4148
D3-D7	Schottky Diode	1N5817 or MBRS130T3
L1	$47 \mu \mathrm{H}, 1 \mathrm{~A}$	Sumida CRD125
L2	$50 \mu \mathrm{H}, 1.5 \mathrm{~A}$	Coiltronics CTX05-11209-1
Q1-Q4	N-Channel Power MOSFET	MTD10N05E
Q5-Q7	N-Channel Power MOSFET	MMDF4N02
Q8	N-Channel Power MOSFET	Si9410
R10, R11	0.02 Ohm	see text

Table 2. Circuit Values for Typical Application (Figure 9).
LittleFoot is a registered trademark of Siliconix Inc.

FREQUENCY SELECTION

Frequency is set by the resistor R_{T}, which establishes the charge current for the internal capacitor. Since the discharge current is a constant, the dead time of the oscillator is constant, the maximum duty cycle increases as the oscillator frequency decreases. For low input voltage applications, a lower switching frequency may be required to maintain regulation at minimum input voltage.
Losses are heavily comprised of AC losses from the switching characteristic of the power MOSFETs and inductor core losses. Hence, reducing the switching frequency may result in higher efficiencies. As inductor conduction losses will increase at lower frequencies (size goes up, hence there are more copper losses), there will be a point at which this effect cancels the beneficial effect on the AC losses and further reductions no longer increase efficiencies. Also, reductions in operating frequency will result in larger magnetics, and a larger overall supply.

COMPENSATION

Proper compensation is the most critical part of designing a working supply. The compensation network must ensure stability over the full range of input voltage and load conditions, as well as maximize the available bandwidth for good transient response.
If an appreciable ESR exists such than ResrC > LC/5, then we can get away with adding one additional zero to the error amplifier's feedback network, and make use of the other zero created by the combination of the ESR and the output capacitance. We must also add an additional resistance in parallel with the zero we have added, this will give us increased bandwidth and lower the DC gain. Its size is determined by the gain necessary to bring the system to 0 dB at the desired crossover point. As a rule of thumb, this point should be no more than $1 / 5$ the switching frequency.
In cases where the ESR of the output capacitors is minimal, we no longer have a zero for free.
Now, we must use a zero on the input of the error amplifier in addition to the zero in the feedback network. The parallel feedback resistor is also still required; the gain is now the parallel combination of the feedback zero resistor and this resistor.
The internal error amplifier has an open loop gain of 90 dB , and a single pole at 31 Hz . These must be taken into account in order to adequately compensate the supply.

SEMI-STANDARD OPTIONS

The ML4862 can be quickly and easily modified to suit individual customer requirements. Examples of some of the possible customizations might include:

- Reducing the number of pins, or IC cost by eliminating unwanted functions
- Replacing unwanted functions with other functions
- Putting certain external programming components on chip to save board space
Please contact Micro Linear for more information on Semi-Standard options for the ML4862.

All Capacitors in μ F, Schottky Diodes are 1N5817 except D6, D7 which are 1N5818 or 1N5819.

Figure 9. ML4862 Typical Application

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 10.12V Regulator Load Regulation

Figure 12. Supply Current $\left(\mathbf{V}_{\mathbf{G T}}\right)$ vs $\mathbf{V}_{\mathbf{G T}}$ Voltage

Figure 11. Supply Current ($\mathrm{V}_{\mathbf{I N}}$) vs. $\mathrm{V}_{\mathbf{I N}}$ Voltage

Figure 13. SLEEP Mode Current (V_{IN}) vs. V_{IN} Voltage

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4862CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$28-\operatorname{Pin} \mathrm{SOIC}(\mathrm{S} 28 \mathrm{~W})$

Battery Power Controller Evaluation Kit

GENERAL DESCRIPTION

The ML4862EVAL kit provides a convenient vehicle to evaluate the ML4862 battery power control IC. It contains all of the necessary documentation with the evaluation board and key components to quickly evaluate the application circuit. The board is designed for a 11 W dual output power supply. However power components can be selected for higher or lower power applications.

KIT COMPONENTS

- User's Guide
- ML4862 Datasheet
- Application Note
- ML4862 Sample
- Evaluation Board
- Key power semiconductor components
- SMD power inductors for both 5 V and 3.3 V outputs

■ "Kool Mu ${ }^{\circledR \text { " }}$ toroid for inductor prototyping

FEATURES

■ Wide Input Range (5.5 V to 25 V)

- Dual Outputs (5 V at 1.5 A and 3.3 V at 1 A)
- Efficiency as high as 95%.
- Line and Load Reg better than 5\% at all conditions.
- Output Ripple to under 50 mV pk-pk.
- Complete Short Circuit Protection
- Flash Memory Program Voltage (12V at 100 mA)
- Load switching outputs.
- Battery connect terminals.

BLOCK DIAGRAM

[^15]
High Efficiency Battery Pack Converter

GENERAL DESCRIPTION

The ML4863 is a complete solution for DC to DC conversion in multi-cell battery-powered portable computers and instruments. The circuit is optimized for flyback operation to enable power conversion from battery packs whose input voltage varies both above and below the output voltage requirements.

The ML4863 controls a synchronous rectified flyback regulator which drives low-cost N -Channel MOSFETs. This topology results high conversion efficiencies in PDAs and Personal Communications Devices.

Current mode variable frequency operation is combined with synchronous switching to provide the highest power conversion efficiency over the widely varying loads required in today's power-managed portable computers (greater than 85% efficiency over a 1 mA to 1 A load range).

The circuit has been designed to operate with a minimum amount of off the shelf external components, optimizing space and cost. A totally configured DC-to-DC converter requires only 6 external components.

FEATURES

■ Synchronous rectification for high efficiency

- N-Channel MOSFET drive for lowest cost

■ Current mode, variable frequency operation for high efficiency over 3 decades of load current

- Start-up guaranteed at 3.15 V
- Extended commercial temperature range $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ available
- Operates over a wide input voltage range (3.15V to 15 V)
- Bootstrapped operation for improved performance with high impedance Alkaline or Lithium-lon batteries
- High frequency operation ($>200 \mathrm{KHz}$) minimizes the size of the magnetics
- Over-voltage, and over-current protection on-board
- Active high shutdown
- Available in 8-pin DIP and SOIC packages
- Fixed 5 V output and multiple output applications

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

PIN\# NAME	FUNCTION	
1	VIN 2	Battery input voltage
2	SENSE	Secondary side current sense (voltage in)
3	$\overline{\text { ON/OFF }}$	Active low (CMOS) ON 4
V OUT	Feedback from transformer secondary output, and input voltage for IC when $V_{\text {IN }}>V_{\text {OUT }}$	
5	$V_{\text {CC }}$	Internal power supply connection for bypass capacitor
6	OUT1	Flyback primary switch driver
7	OUT2	Flyback secondary switch driver
8	GND	Ground

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Voltage on any pin (except V_{IN}) -0.3 V to 7 V
Voltage on V_{IN} 18 V
Source Current (OUT1 \& OUT2) 1A
Sink Current (OUT1 \& OUT2) 1A
Sink Current (Burst Mode) 165mA
Junction Temperature .. $150^{\circ} \mathrm{C}$

Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) Plastic SOIC $110^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Ambient Temperature Range	
ML4863CS....................................... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
ML4863ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$ Voltage Range	3.15 V to 15 V

Ambient Temperature Range
\qquad
ML4863ES ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{IN} Voltage Range 3.15 V to 15 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_{A}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Oscillator						
On Time, T_{ON}	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$	2.35	2.5	2.65	$\mu \mathrm{~s}$	
Minimum Off Time, $\mathrm{T}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$	0.9	1	1.1	$\mu \mathrm{~s}$	

Regulation

Total Variation		Line, load, and temperature	± 2	± 3	\%
Output Drivers (3nF load)					
OUT1	Rise Time, t_{R}		60	70	ns
	Fall time, t_{F}		60	70	ns
OUT2	Rise Time, t_{R}		60	70	ns
	Fall Time, t_{F}	Continuous mode	60	70	ns
		Burst mode	125	150	ns

$\overline{\text { ON/OFF Pin }}$

Input High Voltage, V_{IH}		2.0			V
Input Low Voltage, V_{IL}				0.8	V
Input Bias Current	$\overline{\mathrm{ON} / \mathrm{OFF}=5 \mathrm{~V}}$		5		$\mu \mathrm{~A}$

Power Supply

$I_{\text {CC, Supply Current }}$			100	150	$\mu \mathrm{~A}$
Protection					
Under-Voltage Lockout	Bypass Capacitor $=100 \mathrm{nF}$	2.85	3.0	3.15	V
$I_{\text {SC, }}$ Short Circuit Current Limit	R SENSE $=100 \mathrm{~m} \Omega, \mathrm{~L}=22 \mu \mathrm{H}$		2	2.5	A

FUNCTIONAL DESCRIPTION

The ML4863 is a current mode, variable frequency controller with synchronous rectification. This device was designed primarily for use as a flyback converter in circuits where the user wishes to utilize 100% of a battery pack's available energy.
Initially, the circuit generates its bias from the input voltage. If the output voltage rises above the input voltage, the circuit will switch to the output for its bias, shutting off the low drop-out linear regulator at $\mathrm{V}_{\mathbb{I}}$ and turning on the bias network from the output pin.

The circuit uses constant on-time pulse frequency modulation, and runs in the continuous or discontinuous current mode depending on the load current sensed through RSENSE.
Under-voltage lock-out, current limit, and crossconduction protection are built-in.

DESIGN CONSIDERATIONS

CURRENT LIMIT AND MODE OF OPERATION

Operational mode and current limit are determined by the current programming comparator. They are dependent on
$\mathrm{R}_{\text {SENSE }}$, the current sense resistor on the source of the secondary side synchronous FET,
L, the nominal transformer inductance,
and V_{i}, the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$.
$\mathrm{R}_{\text {SENSE }}$ is determined by;

$$
\begin{equation*}
R_{\text {SENSE }}=\frac{165 \mathrm{mV}}{5+V_{i \text { MIN }}} \times \frac{V_{i M I N}}{l_{\mathrm{OMAX}}} \tag{1}
\end{equation*}
$$

Once $R_{\text {SENSE }}$ has been determined, the nominal transformer inductance, L, can be derived from,

$$
\begin{equation*}
\mathrm{L}=\left(25 \times 10^{-6}\right) \times V_{\mathrm{i}} \text { MAX } \times \mathrm{R}_{\text {SENSE }} \tag{2}
\end{equation*}
$$

Three operational modes are now defined by the value of SENSE at the end of the off-time: discontinuous mode, continuous mode, and current limit. The following values can be used to determine the current levels of each mode:

To determine the current levels for:

$$
\mathrm{l}_{\mathrm{O}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{O}}+\mathrm{V}_{\mathrm{i}}} \times\left[\frac{\text { SENSE }}{R_{\text {SENSE }}}+\frac{\mathrm{t}_{\mathrm{ON}} \times \mathrm{V}_{\mathrm{i}}}{2 \times \mathrm{L}}\right]
$$

where

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=\text { output voltage } \\
& t_{\mathrm{ON}}=2.5 \mu \mathrm{~s}
\end{aligned}
$$

and everything is defined as before. Using the values SENSE $=0 V$, SENSE $=165 \mathrm{mV}$ and SENSE $=210 \mathrm{mV}$, the current levels for all operational modes are defined.

DESIGN PROCEDURE

A typical design can be implemented by using the following process.

1. Rate the application by determining
$V_{i M A X}$, the maximum input voltage
V_{i} MIN, the minimum input voltage
I_{O} MAX, the maximum output current
$\Delta \mathrm{V}_{\text {OUT }}$, the maximum output voltage ripple
The maximum output voltage ripple must be below $100 \mathrm{mV} \mathrm{VP}_{\mathrm{P}}$ to ensure stability.
2. Select a sense resistor, RSENSE, using equation 1.
3. Determine the inductance required for optimum output ripple using

$$
L=\left(25 \times 10^{-6}\right) \times\left(V_{i M A X} \times R_{\text {SENSE }}\right)
$$

4. Establish the maximum allowable ESR for the output capacitor from

$$
\mathrm{R}_{\mathrm{ESR}}<\frac{\Delta \mathrm{V}_{\mathrm{OUT}} \times \mathrm{R}_{\text {SENSE }}}{165 \mathrm{mV}}
$$

5. Ensure system stability (no compensation/single pole response) by evaluating the following equation;

$$
\Delta \mathrm{V}_{\mathrm{OUT}}<\frac{100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \times \mathrm{L}}{\mathrm{~L}_{\mathrm{ACTUAL}}}
$$

where
$\mathrm{L}_{\text {ACTUAL }}$ is the actual worst case inductance used.

DESIGN EXAMPLE

1. Rate the application by determining

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{MAX}}=9 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{iMIN}}=3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{OMAX}}=1 \mathrm{~A} \\
& \Delta \mathrm{~V}_{\text {OUT }}=100 \mathrm{mV}
\end{aligned}
$$

The maximum output voltage ripple must be below 100 mVPP to ensure stability.
2. Select a sense resistor, RSENSE,

$$
R_{\text {SENSE }}=\frac{165 \mathrm{mV}}{5+3} \times \frac{5}{1}=100 \mathrm{~m} \Omega
$$

3. Determine the inductance required for minimum output ripple using

$$
\mathrm{L}=\left(25 \times 10^{-6}\right) \times 9 \mathrm{~V} \times 100 \mathrm{~m} \Omega=22 \mu \mathrm{H}
$$

4. Establish the maximum allowable ESR for the output capacitor from

$$
\mathrm{R}_{\mathrm{ESR}}<\frac{100 \mathrm{mV} \times 100 \mathrm{~m} \Omega}{165 \mathrm{mV}}=61 \mathrm{~m} \Omega
$$

5. Ensure system stability (no compensation/single pole response) by evaluating the following equation using 20% (typical inductance variation) for $\Delta \mathrm{L}$;

$$
\Delta \mathrm{V}_{\mathrm{OUT}}<\frac{100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \times 22 \mu \mathrm{H}}{22 \mu \mathrm{H}(1-0.2)}=125 \mathrm{~m} \Omega
$$

This design is shown in Figure 1. Figure 2 is the application circuit for an output of 2 A at 5 V .

Figure 1. Design Example

Figure 2. 5V, 2A Circuit

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4863CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8N)
ML4863ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8N)

PRELIMINARY

LCD Backlight Lamp Driver with Contrast

GENERAL DESCRIPTION

The ML4864 is a complete solution for controlling small cold cathode fluorescent tubes (CCFL) used in liquid crystal display (LCD) backlight applications. It provides the dimming ballast control combined with a contrast control for the LCD display.

The ML4864 is optimized for portable applications where high efficiency is critical to maximize battery life. The high efficiency is achieved by using a switching regulator in a buck configuration that feeds an inverter driver. The inverter uses a self synchronizing scheme with zero voltage switching for the lowest possible losses. The complete system implementation can be easily realized with standard off the shelf power components, including the magnetics.
A positive or negative contrast control voltage is generated with a separate flyback output. A unique feature of the ML4864 is that this contrast control voltage can remain active even though the main lamp driver circuit is disabled. It has a duty cycle adjustment range from 0% to 95%.

All of the regulators on the chip are synchronized to the inverter frequency to eliminate the ghosting and flicker common to asynchronous circuits.

The ML4864 is available in very small form factor package (20-pin SSOP) making it ideal for hand held portable applications.

The ML4864 is designed using Micro Linear's Tile Array methodology. Customized versions of this IC, optimized to specific applications can be made available. Contact Micro Linear or an authorized representative for more information.

FEATURES

- Backlight Lamp Ballast and Contrast Control

■ Low Standby Current ($<300 \mu \mathrm{~A}$)

- Contrast Voltage is Active with Lamp Driver Disabled
- Improved Efficiency ($\approx 95 \%$)
- Allows All N-Channel MOSFET Drive
- Positive or Negative Contrast Control Voltage
- Driven Self-Timing Resonant Lamp Architecture
- Low Switching Losses
- Zero Voltage Switching
- Buck Regulator uses Synchronous Rectification

BLOCK DIAGRAM

PIN CONFIGURATION

ML4864
20-Pin SSOP (R20)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	NAME	FUNCTION
1	FEA OUT	Output of flyback (contrast) error amplifier. External compensation capacitor connects between this pin and FEA-.	11	B SYNC OUT	Output of MOSFET driver. Connects to switch device.
			12	F GATE	Connects to gate of MOSFET in primary side of contrast control.
2	FEA-	Negative input of the flyback (contrast) error amplifier. Connects to the center point of the voltage divider that sets the contrast voltage.	13	VDD	Positive power 5 volt input.
			14	LGATE 1	Output of MOSFET driver. Connects to gate of one side of output MOSFET
3	FEA+	Positive input of flyback (contrast) error amplifier. Connects to ground through an offset compensating resistor.			pair.
			15	ON/OFF	Chip enable.
			16	LGATE 2	Output of MOSFET driver. Connects to gate of one side of output MOSFET
4	RT	Oscillator timing resistor.			
5	VREF	Voltage reference output. The bottom or return connection for the voltage divider that sets the contrast voltage.	17	GND	Circuit and power common.
			18	B ON	Drives the primary of the pulse transformer that supplies the bootstrap
6	L ILIM	Current limit resistor connection. This resistor sets the current limit to protect lamp driver MOSFET pair.			voltage for the synchronous rectifier device.
7	LEA-	Negative input of the lamp error amplifier.	19	B OFF	Output of MOSFET driver. Connects to gate of device that disables the input power.
8	LEA OUT	Output of lamp error amplifier. External compensation capacitor connects between this pin and B EA-.	20	F ILIM	Current limit resistor connection. This resistor sets the current limit to protect the flyback MOSFET.
9	CT	Oscillator timing capacitor.			
10	L ZCR	Zero crossing detector input. Connects to primary center tap of the output transformer.			

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Current (ICC) .. 75mA
Output Current, Source or Sink DC 250 mA
Voltage on Pins 1-9, 11-20-0.3V to VDD + 0.3V
Current into Pin 10. $\pm 10 \mathrm{~mA}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic SSOP \qquad $100^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML4864C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ML4864E ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{VDD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{T}}=82 \mathrm{~K}, \mathrm{C}_{\mathrm{T}}=47 \mathrm{pF}$ (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LAMP DRIVER SECTION					
Error Amplifier		50	60		
Open Loop Gain	$\mathrm{I}_{\text {LOAD }}=5 \mu \mathrm{~A}$	-15		dB	
Offset Voltage	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$	2.8	3.0		mV
Output High			0.4	0.7	V
Output Low			1		MHz
Bandwidth (-3 dB)		-0.3		VREF	V
Common Mode Range			50	100	nA
Input Bias Current					

Output Drivers

Output High - B SYNC OUT, B OFF	VDD $=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B SYNC OUT, B OFF	$\mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$		200	375	mV
Rise Time - B SYNC OUT, B OFF	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$		20	50	ns
Fall Time - B SYNC OUT, B OFF	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$		20	50	ns
Output High - B ON	VDD $=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B ON	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		200	375	mV
Fall Time - B ON	C LOAD $=2400 \mathrm{pF}$, Note 2		45	80	ns

Oneshot

Pulse Width		100	150	200	ns

Delay Timer

Delay Time		20	35	55	ns

Current Limit Comparator

Current Threshnld		180	200	220	mV
Input Bias Current	$V_{\text {LILIM }}=0.1 \mathrm{~V}$		10	100	nA
Propagation Delay			125	250	ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FLYBACK REGULATOR SECTION					
Error Amplifier		60	70		dB
Open Loop Gain	I LOAD $=5 \mu \mathrm{~A}$	-15		+15	mV
Offset Voltage	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$	2.8	3.0		V
Output High			0.4	0.7	V
Output Low			1		MHz
Bandwidth (-3dB)		-0.3		VREF	V
Common Mode Range			50	100	nA

Output Drivers

Output High - F GATE	VDD $=5 \mathrm{~V}$, I LOAD $=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - F GATE	$\mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$		200	375	mV
Rise Time - F GATE	$\mathrm{C}_{\text {LOAD }} 100 \mathrm{pF}$		20	50	ns
Fall Time - F GATE	C LOAD $=100 \mathrm{pF}$		20	50	ns

HIGH VOLTAGE INVERTER SECTION

Oscillator

Nominal Frequency		68	80	92	KHz
Discharge Current	$\mathrm{V}_{\mathrm{CT}}=2 \mathrm{~V}$	500	700	900	$\mu \mathrm{~A}$
Peak Voltage			2.5	2.7	V
Valley Voltage		0.8	1	1.2	V

Output Drivers

Output High - LGATE 1, 2	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - L GATE 1, 2	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		200	375	mV
Rise Time - L GATE 1, 2	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$		20	50	ns
Fall Time - L GATE 1, 2	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$		20	50	ns

Zero Crossing Detector

Threshold		0.75	1.1	1.45	V
Hysteresis		250	500	750	mV

Under Voltage Detector

Start Up Threshold		3.8	4.2	4.4	V
Hysteresis		150	300	450	mV

Logic Interface (ON/OFF)

$V_{I H}$		2.0		
$V_{I L}$			V	
Input Bias Current				

Current Limit Comparator

Current Threshold		180	200	220	mV
Input Bias Current	$\mathrm{V}_{\text {FILIM }}=0.1 \mathrm{~V}$		10	100	nA
Propagation Delay			125	250	$\mu \mathrm{~s}$

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BIAS SECTION	ON/OFF $={ }^{\prime \prime} 1^{\prime \prime}$		400	600	$\mu \mathrm{~A}$
VDD Supply Current	ON/OFF $={ }^{\prime \prime} 0^{\prime \prime}$		200	300	$\mu \mathrm{~A}$
VDD Current	$\mathrm{I}_{\text {VREF }}=25 \mu \mathrm{~A}$		10	20	mV
VREF Load Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$	2.47	2.5	2.53	V
VREF Output Voltage		2.465	2.5	2.535	V
VREF Output Voltage			20	30	mV
VREF Line Regulation					

Note 1: Limits are guaranteed by 100% testıng, sampling, or correlation with worst case test conditions.
Note 2: Actual load is 1200 pF . The 2:1 transformer reflects an effective 2400 pF .

FUNCTIONAL DESCRIPTION

The ML4864 consists of a PWM regulator, a lamp driver/ inverter, a flyback regulator, and control circuits. This IC, in conjunction with external components, converts a DC battery voltage into the high voltage and high frequency AC signal required to start and drive miniature cold cathode florescent lamps. In addition it generates the DC voltage for the contrast requirements of LCD screens. A typical application circuit is shown in figure 1. Please refer to application note 24 for detailed application information beyond what is presented here.
Note: Please read the Power Sequencing section below prior to using the ML4864.

LAMP DRIVER

The lamp driver, sometimes referred to as a lamp inverter, is comprised of a PWM regulator and a Royer type inverter circuit to drive the lamp. The PWM regulator, in a buck configuration, controls the magnitude of the lamp current to provide the dimming capability. Figure 2 shows a simplified circuit to more easily illustrate the operation of the circuit.

Figure 2. Simplified Lamp Driver Circuit.
Due to the presence of the buck inductor, L1, the circuit shown in figure 2 is essentially a current fed parallel loaded resonant circuit. Lm is the primary inductance of the output transformer, T 1 , which tunes with the resonant capacitor CR to set the resonant frequency of the inverter. The oscillator frequency is always set lower than the natural resonant frequency to ensure synchronization. The current source I_{C} models the current through the buck inductor L1.

The MOSFETs, Q1 and Q2 are alternately turned on with a constant 50\% duty cycle signal (L GATE1, L GATE2) at one-half the frequency of the oscillator. In this way each transistor pulses, or excites, the resonant tank on each half cycle. The combination of these two signals appear across the primary winding of the output transformer as a sinusoidal waveform. This voltage is multiplied by the stễ-up iunis rdiuon oí the output transtormer and impressed across the lamp.

The output transitions are controlled by feedback through the L RTD pin by sensing the voltage at the center tap of the output transformer. Each time this signal reaches the minimum resonant threshold detection point an internal clock pulse is generated to keep the system synchronized. Figure 3 shows some of these representative waveforms at the important nodes of the circuit.

Figure 3. Operating Waveforms of the Lamp Driver Section.

The PWM regulator is comprised of a MOSFET Q3, inductor L1, and the gate control and drive circuitry as shown in figure 1. A signal with a constant pulse width of 150 ns is applied to the primary of the 2:1 pulse transformer T2, rectified by diode D1, and used to charge the gate capacitance of Q3, thereby turning it on. The turn off is controlled by discharging this capacitance through MOSFET Q4. The pulse width of the signal on the gate of Q4 (B OFF) varies according to the amplitude of the feedback signal on LEA-, which is proportional to the AC current flowing in the lamp. This feedback signal is developed across resistor R4 which is in series with the lamp. The lamp current, and therefore brightness, is adjusted by varying the voltage applied to R2, at the brightness adjust control point. Increasing this voltage decreases the brightness.

CONTRAST CONTROL GENERATOR

The contrast voltage generator is a separate regulator in a flyback configuration. In conjunction with the external transformer (T3), MOSFET (Q5), diode (D2), and assorted capacitors and resistors, it provides an adjustable DC output contrast voltage necessary to drive LCD screens. The voltage is adjusted by controlling the voltage applied to R3, at the contrast adjustment point.

The contrast voltage can be made either positive or negative simply by changing the connection of the external components.. The schematic shown in figure 1 is connected for a negative voltage. Please refer to application note 24 for the circuit connection for a positive output voltage.

OSCILLATOR

The frequency of the oscillator in the ML4864 is set by selecting the values of RT and CT.

LOGIC CONTROL

The ML4864 is controlled by a logic input, ON/OFF. A logic level high on the ON/OFF pin enables just the lamp driver. A logic zero on the ON/OFF pin disables the lamp driver only.

POWER SEQUENCING

It is important to observe correct power and logic input sequencing when powering up the ML4864. The following procedure must be observed to avoid damaging the device.

1. Apply the VDD voltage.
2. Apply a logic high to the ON/OFF input.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4864CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SSOP (R20)
ML4864ER	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SSOP (R20)

LCD Backlight with Contrast Evaluation Kit

GENERAL DESCRIPTION

The ML4864 is a cold cathode fluorescent lamp (CCFL) controller featuring and dimming control and contrast voltage generation. It is commonly used to power the entire LCD display found in many handheld instruments. This evaluation board enables the designer to explore the capabilities of the circuit for a current or upcoming design.

The printed circuit board uses surface mount components for space efficiency with two adjustment potentiometers provided for controlling lamp intensity and contrast voltage levels.

FEATURES

- Operates over a 5.0 to 20 V șupply range
- Efficiency greater than 90%
- Negative contrast voltage output (0 to -20V)
- Capable of driving lamp to greater than 5W
- Low profile, high Density PC board layout

KIT COMPONENTS

■ ML4864 User's guide

- ML4864 Data Sheet
- A fully functional evaluation board
- Application Notes 26 and 32
- Miniature Fluorescent Lamp
- PCB Layout Gerber File

BLOCK DIAGRAM

High Voltage High Current Boost Regulator

GENERAL DESCRIPTION

The ML4865 is a high voltage, continuous conduction boost regulator designed for DC to DC conversion in multiple cell battery powered systems. Continuous conduction allows the regulator to maximize output current for a given inductor. The maximum switching frequency can exceed 200 kHz , allowing the use of small, low cost inductors. The ML4865 is capable of start-up with input voltages as low as 1.8 V and is available in 15 V and 12 V output versions with output voltage accuracy of $\pm 3 \%$.

Unlike regulators using external Schottky diodes, the ML4875 isolates the load from the battery when the SHDN pin is high. This is accomplished by an integrated synchronous rectifier which eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4865 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies approaching 90%.
The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the DETECT input drops below 1.25 V .

FEATURES

- Guaranteed full load start-up and operation at 1.8 V input
- Continuous conduction mode for high output current
- Very low supply current ($25 \mu \mathrm{~A}$ output referenced) for micropower operation
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency

■ Maximum switching frequency $>200 \mathrm{kHz}$

- Minimum external components
- Low ON resistance internal switching FETs
- 15 V and 12 V output versions

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	DETECT	Pulling this pin below 1.25 V causes the RESET pin to go low	5	GND	Ground
			6	$\mathrm{V}_{\mathrm{L} 2}$	Boost inductor connection
2	SHDN	Pulling this pin to $\mathrm{V}_{\mathbb{I N}}$, through an external resistor shuts down the regulator, isolating the load from the	7	$\overline{\text { RESET }}$	Output goes low when DETECT goes below 1.25 V
		input	8	$\mathrm{V}_{\text {OUT }}$	Boost regulator output
3	$V_{\text {IN }}$	Battery input voltage			
4	$\mathrm{V}_{\mathrm{L} 1}$	Boost inductor connection			

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4865ES-2	12.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4865ES-5	15.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-\mathrm{Pin}$ SOIC (SO8)

3.3V Output DC-DC Step-Down Converter

GENERAL DESCRIPTION

The ML4866 is a fully monolithic high efficiency ($>90 \%$), pulse width modulated (PWM) buck regulator. The device switches at 120 kHz and uses synchronous rectification to optimize power conversion efficiency. Unlike other solutions, the ML4866 requires no external diodes or FETs.
Designed for use in systems using mixed-voltages (5 V and 3.3 V) or in portable computing equipment designed with 3.3 V ICs, the ML4866 can provide up to 750 mA of output current at 3.3 V . The circuit operates over an input voltage range of 3.5 V to 6.5 V (3 to 4 AA batteries in series or a 5 V DC supply).
A complete $3.3 \mathrm{~V}, 750 \mathrm{~mA}$ switched mode power converter can be quickly and easily implemented with few external components. Power conversion efficiency of this DC-DC converter can exceed 90% over more than 2 decades of output current loading.
The device also has a $\overline{\text { SHDN }}$ pin for use in systems which have power management control. In shutdown mode, the circuit uses less than $20 \mu \mathrm{~A}$ of input current.

Stability and fast loop response are provided by current programming and a patented current sense circuit. Undervoltage lockout and soft start are also built in.

FEATURES

- High Power Conversion Efficiency ($>90 \%$) over more than 2 decades of load current
- Minimal external components required

■ Works down to 3.5 V input

- Extends battery life up to 30% over linear regulator based solutions
- Micropower operation ($l_{\mathrm{Q}}<350 \mu \mathrm{~A}$)
- Shutdown quiescent current ($\mathrm{I}_{\mathrm{SD}}<20 \mu \mathrm{~A}$)
- No external FETs or diodes required

BLOCK DIAGRAM

High Frequency, Low Voltage Boost Regulator

GENERAL DESCRIPTION

The ML4868 is a high frequency boost regulator designed for DC to DC conversion in 2 to 3 cell battery powered systems. The maximum switching frequency can exceed 150 kHz , allowing the use of small, low cost inductors. The ML4868 is capable of start-up with input voltages as low as 1 V and is available in 5 V and 3.3 V output versions with an output voltage accuracy of $\pm 3 \%$.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4868 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies in excess of 90%.
The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the IC can no longer function due to low input voltage, or when the DETECT input drops below 200 mV .

FEATURES

■ Maximum switching frequency $>150 \mathrm{kHz}$

- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching FETs

■ Micropower operation

- 5 V and 3.3 V output versions

BLOCK DIAGRAM

PIN CONNECTION

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	$V_{I N}$	Battery input voltage
2	$V_{\text {REF }}$	200 mV reference output
3	GND	Analog signal ground
4	DETECT	When this pin below $V_{\text {REF, causes }}$ the RESET pin to go low

PIN NO.	NAME	FUNCTION
5	V $_{\text {OUT }}$	Boost regulator output
6	V $_{\text {L }}$	Boost inductor connection
7	$\overline{\text { RESET }}$	Output goes low when regulation cannot be achieved or when DETECT goes below 200 mV

8 PWR GND Return for the NMOS output transistor

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Voltage on any pin ... 7V
Peak Switch Current, $\mathrm{I}_{\text {(PEAK) ... 2A }}$
Average Switch Current, $\mathrm{I}_{\text {(AVG) }}$..................................... 500 mA
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) \qquad $+260^{\circ} \mathrm{C}$

Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$
Plastic SOIC
$110^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range	
ML4868CS-X	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4868ES-X	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4868IS-X	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$ Operating Range	
ML4868CS-X	1.0 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
ML4868ES-X, ML	1.1 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ML4868CS-X .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4868ES-X ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4868IS-X .. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ML4868CS-X 1.0V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
ML4868ES-X, ML4868IS-X 1.1V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range.

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply					
$\mathrm{V}_{\text {IN }}$ Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$		45	55	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$ Quiescent Current			8	10	$\mu \mathrm{A}$
V_{L} Quiescent Current				1	$\mu \mathrm{A}$
Reference					
Output Voltage ($\mathrm{V}_{\text {REF }}$)	$0<\mathrm{I}_{\text {PIN } 2}<-5 \mu \mathrm{~A}$,	190	200	210	mV
PFM Regulator					
Pulse Width (T_{ON})		2.5	3	3.5	$\mu \mathrm{s}$
Output Voltage (V $\mathrm{V}_{\mathrm{OUT}}$) ML4868-5 ML4868-3	$\begin{aligned} & \mathrm{T}_{\mathrm{ON}}=0 \text { at } \mathrm{V}_{\mathrm{OUT}}(\mathrm{MAX}), \\ & 2.5 \mu \mathrm{~s} \leq \mathrm{T}_{\mathrm{ON}} \leq 3.5 \mu \mathrm{~s} \mathrm{~V}_{\mathrm{OUT}}(\mathrm{MIN}) \end{aligned}$	$\begin{gathered} 4.85 \\ 3.2 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$	$\begin{gathered} 5.15 \\ 3.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Load Regulation ML4861-5	See Figure 1 $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 25 \mathrm{~mA}$	4.85	5.0	5.15	V
	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }} \leq 40 \mathrm{~mA}$	3.2	3.3	3.4	V
Under-Voltage Lockout Threshold			0.85	0.95	V
RESET Comparator					
DETECT Threshold		190	200	210	mV
DETECT Bias Current		-100		100	nA
RESET Output High Voltage (V_{OH})	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	VOUT-0.2			V
	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.2	V

Figure 1. Application Test Circuit

Figure 2. PFM Regulator Block Diagram

FUNCTIONAL DESCRIPTION

The ML4868 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is both highly efficient and simple to use. A PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

REGULATOR OPERATION

A block diagram of the boost converter is shown in Figure 2. The circuit remains idle when $\mathrm{V}_{\text {OUT }}$ is at or above the desired output voltage, drawing $45 \mu \mathrm{~A}$ from V_{IN}, and $8 \mu \mathrm{~A}$ from $\mathrm{V}_{\text {OUT }}$ through the feedback resistors R1 and R2. When $\mathrm{V}_{\text {OUt }}$ drops below the desired output level, the output of amplifier A1 goes high, signaling the regulator to deliver charge to the output. Since the output of amplifier A2 is normally high, the flip-flop captures the A1 set signal and creates a pulse at the gate of the NMOS transistor Q1. The NMOS transistor will charge the inductor L1 for $3 \mu \mathrm{~s}$, resulting in a peak current given by:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{LPEAK})}=\frac{\mathrm{T}_{\mathrm{ON}} \times V_{\mathbb{I N}}}{L_{1}} \approx \frac{3 \mu \mathrm{~s} \times V_{\mathbb{I N}}}{L_{1}} \tag{1}
\end{equation*}
$$

For reliable operation, L 1 should be chosen so that $\mathrm{I}_{\mathrm{L}(\text { PEAK }}$ does not exceed 2A.
When the one-shot times out, the NMOS transistor releases the V_{L} pin, allowing the inductor to fly-back and momentarily charge the output through the body diode of PMOS transistor Q2. But, as the voltage across the PMOS transistor changes polarity, its gate will be driven low by the current sense amplifier A2, causing Q2 to short out its body diode. The inductor then discharges into the load through Q2. The output of A2 also serves to reset the flipflop and one-shot in preparation for the next charging cycle. A2 releases the gate of Q2 when its current falls to zero. If $\mathrm{V}_{\mathrm{OUT}}$ is still low, the flip-flop will immediately initiate another pulse. The output capacitor (C1) filters the inductor current, limiting output voltage ripple. Inductor current and one-shot waveforms are shown in Figure 3.

Figure 3. PFM Inductor Current Waveforms and Timing.

RESET COMPARATOR

An additional comparator is provided to detect low V_{IN}, or any other error condition that is important to the user. The inverting input of the comparator is internally connected to $\mathrm{V}_{\text {REF, }}$ while the non-inverting input is provided externally at the DETECT pin. The output of the comparator is the RESET pin, which swings from $\mathrm{V}_{\text {OUT }}$ to GND when an error is detected.

DESIGN CONSIDERATIONS

INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})} \times \eta}{2 \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}} \tag{2}
\end{equation*}
$$

where η is the efficiency, typically between 0.8 and 0.9 . Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.

Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 4 and 5. Figure 4 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance.

For example, a two cell to 5 V application requires 25 mA of output current while using an inductor with 15% tolerance. The output current should be derated by 25% to 31 mA to cover the combined inductor and ON-time tolerances. Assuming that 2 V is the end of life voltage of a two cell input, Figure 4 shows that with a 2 V input, the ML4868-5 delivers 34 mA with a $22 \mu \mathrm{H}$ inductor.

Figure 4. Output Current vs Input Voltage.

Figure 5. Typical Efficiency as a Function of V_{IN}.

Figure 5 shows efficiency under the conditions used to create Figure 4. It can be seen that efficiency is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. With $22 \mu \mathrm{H}$, the efficiency exceeds 90% and there is little room for improvement. At values greater than $39 \mu \mathrm{H}$, the operation of the synchronous rectifier becomes unreliable because the inductor current is so small that it is difficult for the control circuitry to detect. The data used to generate Figures 4 and 5 is provided in Table 1.

Figures 4 and 5 also show that efficiency and output current fall off at low input voltages. This is caused by propagation delays in the synchronous rectifier control circuitry that degrade performance when the discharge time is less than $1 \mu \mathrm{~s}$. Although it is possible to operate the ML4868 from a single cell, other devices in the Micro Linear product line will provide much better performance in this type of application.
After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}(\text { PEAK })}=\frac{\mathrm{T}_{\mathrm{ON}(\mathrm{MAX})} \times \mathrm{V}_{\mathrm{IN}(M A X)}}{\mathrm{L}_{\mathrm{MIN}}} \tag{3}
\end{equation*}
$$

In the two cell application previously described, a maximum input voltage of 3 V would give a peak current of 560 mA . When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4868 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 3. For additional information, see Applications Note 29, "Choosing an Inductor for Your ML4861 Application."
Suitable inductors can be purchased from the following suppliers:

Coilcraft	$(708) 639-6400$
Coiltronics	$(407) 241-7876$
Dale	$(605) 665-9301$
Sumida	$(708) 956-0666$

OUTPUT CAPACITOR

The choice of output capacitor is also important, as it controls the output ripple and optimizes the efficiency of the circuit. Output ripple is influenced by three capacitor parameters: capacitance, ESR, and ESL. The contribution due to capacitance can be determined by looking at the change in capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as determined by the following formula:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{T}_{\mathrm{ON}}^{2} \times \mathrm{V}_{\mathrm{IN}}^{2}}{2 \times \mathrm{L} \times \mathrm{C} \times\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}\right)} \tag{4}
\end{equation*}
$$

For a 2.4 V input, and 5 V output, a $22 \mu \mathrm{H}$ inductor, and a $22 \mu \mathrm{~F}$ capacitor, the expected output ripple due to capacitor value is 20 mV .
Capacitor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the output ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the output current ramps quickly to match the peak inductor current. This fast change in current through the output capacitor's ESL causes a high frequency (5 ns) spike that can be over 1 V in magnitude. After the ESL spike settles, the output voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth shape and a peak value equal to the peak inductor current times the ESR. ESR also has a negative effect on efficiency by contributing I -squared R losses during the discharge cycle.
An output capacitor with a capacitance of $100 \mu \mathrm{~F}$, an ESR of less than 0.1Ω, and an ESL of less than 5 nH is a good general purpose choice. Tantalum capacitors which meet these requirements can be obtained from the following supplier:

Sprague (603) 224-1961
If ESL spikes are causing output noise problems, an EMI filter can be added in series with the output.

INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between $22 \mu \mathrm{~F}$ and $47 \mu \mathrm{~F}$. This provides the benefits of preventing input ripple from affecting the ML4868 control circuitry, and it also improves efficiency by reducing 1 -squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

REFERENCE CAPACITOR

Under some circumstances input ripple cannot be reduced effectively. This occurs primarily in applications
 ripple due to "pulse grouping", where the chargedischarge pulses are not evenly spaced in time. In such cases it may be necessary to decouple the reference pin $\left(\mathrm{V}_{\text {REF }}\right)$ with a small 10 nF to 100 nF ceramic capacitor. This is particularly true if the ripple voltage at $\mathrm{V}_{\mathbb{N}}$ is greater than 100 mV .

SETTING THE RESET THRESHOLD

To use the RESET comparator as an input voltage monitor, it is necessary to use an external resistor divider tied to the DETECT pin as shown in the block diagram. The resistor values R_{A} and R_{B} can be calculated using the following equation:

$$
\begin{equation*}
V_{\mathrm{IN}(\mathrm{MIN})}=0.2 \times \frac{\left(R_{A}+R_{B}\right)}{R_{B}} \tag{5}
\end{equation*}
$$

The value of R_{B} should be $100 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{A} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}{0.2}-1\right) \tag{6}
\end{equation*}
$$

LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4868. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4868
- Use short trace lengths from the inductor to the V_{L} pin and from the output capacitor to the $\mathrm{V}_{\text {OUT }}$ pin
- Use a single point ground for the ML4868 ground pins, and the input and output capacitors

TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY.

ML4868-3.3

$V_{\text {IN }}(\mathrm{V})$	$\mathrm{I}_{\mathrm{IN}}(\mathrm{mA})$	lout (mA)	EFFICIENCY \%
L $=22 \mu \mathrm{H}$			
1.0	41.7	10.1	79.9
1.5	72.6	29.2	88.5
2.0	109.2	59.8	90.4
2.5	139.9	96.8	91.3
3.0	168.4	141.3	92.3
$L=10 \mu \mathrm{H}$			
1.0	75.1	15.9	69.9
1.5	136.4	51.0	82.3
2.0	200.1	103.2	85.1
2.5	311.6	198.6	84.1
3.0	297.5	235.7	87.1

ML4868-5.0

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{I N}}(\mathbf{m A})$	$\mathbf{l}_{\text {OUT }}(\mathbf{m A})$	EFFICIENCY \%	
$\mathbf{L}=\mathbf{2 2 \mu} \mathbf{H}$				
1.0	30.7	2.7	44.0	
1.5	65.5	16.2	82.4	
2.0	95.9	33.7	87.9	
2.5	133.0	59.8	89.9	
3.0	163.8	89.4	91.0	
3.5	194.5	124.8	91.7	
4.0	224.1	165.4	92.3	
4.5	247.7	207.4	93.0	
$\mathbf{L}=\mathbf{1 0} \mu \mathbf{H}$				
1.0	54.5	3.4	31.2	
1.5	124.4	28.0	75.0	
2.0	183.3	60.1	82.0	
2.5	248.8	105.1	84.5	
3.0	317.5	163.1	85.6	
3.5	454.8	270.7	85.0	
4.0	573.0	386.6	84.3	
4.5	459.9	364.9	88.2	

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4868CS-3	3.3 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4868CS-5	5.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4868ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4868ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4868IS-3	3.3 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4868IS-5	5.0 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{Pin} \mathrm{SOIC} \mathrm{(S08)}$

High Current Boost Regulator

GENERAL DESCRIPTION

The ML4871 is a continuous conduction boost regulator designed for DC to DC conversion in multiple cell battery powered systems. Continuous conduction allows the regulator to maximize output current for a given inductor. The maximum switching frequency can exceed 200 kHz , allowing the use of small, low cost inductors. The ML4871 is capable of start-up with input voltages as low as 1.8 V and is available in 5 V and 3.3 V output versions with output voltage accuracy of $\pm 3 \%$.
An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4871 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies approaching 90\%.

The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the DETECT input drops below 1.25 V .

FEATURES

- Guaranteed full load start-up and operation at 1.8 V input
- Continuous conduction mode for high output current
- Very low supply current ($15 \mu \mathrm{~A}$ output referenced) for micropower operation
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Maximum switching frequency $>200 \mathrm{kHz}$
- Minimum external components
- Low ON resistance internal switching FETs
- 5 V and 3.3 V output versions

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	$\mathrm{V}_{\text {L1 }}$	Boost inductor connection	5	$\mathrm{V}_{\text {OUT }}$	Output of the Boost Regulator
2	$V_{\text {IN }}$	Battery input voltage	6	$\mathrm{V}_{\text {L2 }}$	Boost inductor connection
3	GND	Analog signal ground	7	$\overline{\text { RESET }}$	Output goes low when DETECT goes below 1.25 V
4	DETECT	Pulling this pin below 1.25 V causes the RESET pin to go low	8	PWR GND	Return for the NMOS output transistor

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4871ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4871ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)

High Current Boost Regulator with Shutdown

GENERAL DESCRIPTION

The ML4872 is a continuous conduction boost regulator designed for DC to DC conversion in multiple cell battery powered systems. Continuous conduction allows the regulator to maximize output current for a given inductor. The maximum switching frequency can exceed 200 kHz , allowing the use of small, low cost inductors. The ML4872 is capable of start-up with input voltages as low as 1.8 V and is available in 5 V and 3.3 V output versions with output voltage accuracy of $\pm 3 \%$.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4872 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies approaching 90%.
The SHDN input allows the user to stop the regulator from switching and powers down the control circuitry.

FEATURES

- Guaranteed full load start-up and operation at 1.8 V input
- Continuous conduction mode for high output current
- Very low supply current ($15 \mu \mathrm{~A}$ output referenced) for micropower operation
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
■ Maximum switching frequency $>200 \mathrm{kHz}$
- Minimum external components
- Low ON resistance internal switching FETs
- 5 V and 3.3 V output versions

BLOCK DIAGRAM

- Optional

PIN CONFIGURATION

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	$\mathrm{V}_{\text {L1 }}$	Boost inductor connection	5	$\mathrm{V}_{\text {OUT }}$	Output of the Boost Regulator
2	$V_{\text {IN }}$	Battery input voltage	6	$\mathrm{V}_{\mathrm{L} 2}$	Boost inductor connection
3	GND	Analog signal ground	7	N/C	No connection
4	SHDN	Pulling this pin to $V_{I N}$ through an external resistor causes the regulator to stop switching, and powers down the control circuitry	8	PWR GND	Return for the NMOS output transistor

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4872ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4872ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-\mathrm{Pin}$ SOIC (S08)

Battery Power Control IC

GENERAL DESCRIPTION

The ML4873 is a complete solution for DC to DC conversion and power management in multi-cell battery powered portable computers and instruments. Several advanced techniques are incorporated in the IC for the highest possible system efficiency and lowest battery drain.
The 5.0 V and 3.3 V main regulators in the ML4873 each control Synchronous Rectified buck regulators and drive N -Channel MOSFETs. This allows high conversion efficiencies (90% or greater). The drive for the upper N -Channel MOSFETs in the system is provided via a separate input from a charge pump.
A special "burst mode" for efficient low current operation is provided on one of the regulators for suspend mode.

A low drop-out 12 V linear regulator for programming EEPROMs or PCMCIA is provided on chip with a separate input, provided by either a winding on the main inductor or from the battery pack.
A μ Power 5 V linear regulator is provided for the power monitoring logic. The IC can be turned off with only the 5 V regulator operating.

FEATURES

- Two synchronously rectified, 100 kHz buck regulators for 5 V and 3.3 V outputs
- Regulation to $\pm 3 \%$ maximum: provides 2% PCMCIA switch matrix margin.
- N-channel MOSFET drive for lowest cost

■ Burst mode for efficient operation at light load

- μ Power 5 V standby linear regulator for power management logic
- 12V low drop out linear regulator with high output (to 300 mA) capability
- Automatic charger disconnect switch comparator and N -channel driver

■ Wide input voltage range (5.5 V to 30 V)

- 28-Lead SOIC or SSOP packages

BLOCK DIAGRAM

PIN DESCRIPTION

PIN\#	NAME	FUNCTION
1	12V OUT	12V Low Drop-Out regulator output
2	R_{T}	Timing Resistor which sets oscillator frequency
3	$V_{\text {ADAPTER }}$	Input to sense whether adapter is active. VG5 goes high when this pin is above $\mathrm{V}_{\text {REF }}$.
4	BURST	A logic 1 sets Buck Regulator A into burst mode (see table 1)
5	12V BASE	Connection to increase 12 V regulator output current with external NPN pass transistor
6	FDBK B	Voltage Feedback for buck regulator B
7	COMP B	Buck Regulator B frequency compensation terminal
8	OUT2B	3.3V Buck Regulator Switch Output
9	OUT1B	3.3V Buck Regulator Synchronous Rectifier Output
10	LIN OUT	Output of the μ Power 5 V regulator. Normally used to power external management circuits and logic
11	$\mathrm{I}_{\text {SENSE }}{ }^{\text {B }}$	Current Sensing for buck regulator B Current limit
12	ON/OFF 12	A logic 1 turns on the 12 V regulator
13	VG5	Output to drive N-Channel MOSFET gate to switch battery out when adapter is present

PIN\#	NAME	FUNCTION
14	12V BIAS	Bias supply for 12V Regulator
15	V $_{\text {GT }}$	N-Channel high side gate drive
16	ENABLE B	A logic 1 enables buck regulator B
17	SOFT START Soft Start Capacitor	
18	I SENSEA	Current Sensing for buck regulator A current limit
19	VIN	Input from Battery or AC Adapter
20	OUT1A	3.3V Buck Regulator Switch Output
21	PWR GND	Power Ground
22	GND	Logic and signal Ground 23
OUT2A	3.3V Buck Regulator Synchronous Rectifier Output	
24	V12 IN	Power Input for the 12V regulator
25	COMP A	Buck Regulator A frequency compensation terminal
26	FDBK A	Voltage Feedback for buck regulator A 27
	ON/OFF	A low on this pin disables all IC functions except the linear 5V regulator and the 2.5V reference, and puts the IC onto a low current consumption mode
28	VREF	Buffered 2.5V reference output

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Voltage on any pin
Output Current Source or Sink (Pins 8, 9, 20, 23)
Pulsed 300 mA
VG5 Source Current 20 mA
VG5 Sink Current 200mA
12V Linear Regulator Output Current 200 mA
5V Linear Regulator Output Current 50mA
Inputs (Pins 3, 4, 12, 16, 27) -0.3 to 5.5 V
$I_{\text {SENSE }}$ Inputs (Pins 11, 18) $V_{\text {IN }}$
Junction Temperature $150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 Sec.) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) Plastic SOIC............. $70^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (θ_{JA}) Plastic SSOP $80^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
Commercial
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{IN} Voltage Range ... 5.4 V to 30 V
V_{GT} Voltage Range $\mathrm{V}_{\mathrm{IN}}-0.5$ to 35 V

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V} 12 \mathrm{IN}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=22 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=200 \mathrm{~K} \Omega$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Oscillator

Initial Accuracy		95	100	105	KHz
Dead Time	$50 \mathrm{~K} \leq \mathrm{R}_{\mathrm{T}} \leq 300 \mathrm{~K}$	600	800	1000	ns
Maximum Duty Cycle		90		97	$\%$
Voltage Stability	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 20 \mathrm{~V}$		2		$\%$

Error Amplifiers

Input Offset Voltage			2	10	mV
Input Bias Current			10	200	nA
Output High Voltage	$\mathrm{l}_{\text {OUT }}=-2 \mathrm{~mA}$	2.7	2.95		V
Output Low Voltage	$\mathrm{l}_{\text {OUT }}=20 \mu \mathrm{~A}$			0.5	V
Source Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-5	-7		mA
Sink Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$		500		$\mu \mathrm{~A}$
Gain Bandwidth Product			675		KHz

High Side (Out 1) Outputs (Pins 9, 20)

Output High Voltage	$\mathrm{I}_{\text {OUT }}=-20 \mathrm{~mA}$	19	21.3		V
Output Low Voltage	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		0.2	0.5	V

Low Side (Out 2) Outputs (Pins 8, 23)

Output High Voltage	I OUT $=-20 \mathrm{~mA}$	10	13		V
Output Low Voltage	I OUT $=20 \mathrm{~mA}$		0.2	0.5	V

Soft Start and Current Limit (Pins 11, 17, 18)

Voltage Threshold	From $V_{I N}$	-250	-200	-150	mV
Bias Current	$\mathrm{V}_{\text {ISENSE }}=\mathrm{V}_{\mathrm{IN}}-200 \mathrm{mV}$		27	75	$\mu \mathrm{~A}$
Soft Start $\mathrm{I}_{\text {CHARGE }}$		-10	-13	-20	$\mu \mathrm{~A}$
Soft Start $\mathrm{I}_{\mathrm{DISCHARGE}}$		3	6.2		mA

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS

Burst Regulator

Start Threshold			$V_{\text {REF }}-25$		mV
Stop Threshold			$V_{\text {REF }}+25$		mV

Reference

Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{PIN} 28}=-100 \mu \mathrm{~A}$	2.45	2.5	2.55	V
Line Regulation	$5.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, \mathrm{I}_{\text {PIN28 }} \leq-\mathrm{mA}$		0.3	1.2	mV / V

12V Linear Regulator

Output Voltage	$\mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA}$	11.5	12	12.5	V
Line Regulation	$14 \mathrm{~V}<\mathrm{V} 12 \mathrm{IN}<24 \mathrm{~V}$		0.01		$\% / \mathrm{V}$
Drop Out Voltage (V12 IN -12V OUT)	$\mathrm{I}_{\mathrm{O}}=60 \mathrm{~mA}$		0.4		V
Load Regulation	$10 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{O}}<60 \mathrm{~mA}$		0.8	2.5	$\%$

5V Linear Regulator

Output Voltage	$\mathrm{I}_{\mathrm{OUT}}=100 \mu \mathrm{~A}$	4.8	5.0	5.2	V
Input Voltage	$\mathrm{V}_{\mathrm{OUT}} \geq 4.85 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	5.5			V
Line Regulation	$5.4 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<20 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$		0.75	1.5	$\%$
Load Regulation	$10 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{O}}<10 \mathrm{~mA}$		0.25	0.5	$\%$

$\mathbf{V}_{\text {ADAPTER }}$ Comparator

Input Bias Current				100	nA
Input Offset Voltage		-30		+30	mV
VG5 Source Current	$\mathrm{V}_{\mathrm{VG} 5}=12 \mathrm{~V}$	-5	-10		mA
VG5 Sink Current	$\mathrm{V}_{\mathrm{VG} 5}=12 \mathrm{~V}$	85			mA

Logic Inputs (Pins 4, 12, 16, 27)

Logic Low $\left(\mathrm{V}_{\mathrm{IL}}\right)$	$\mathrm{I}_{\mathbb{N}} \geq-5 \mu \mathrm{~A}$			1.1	V
Logic High $\left(\mathrm{V}_{\mathrm{IH}}\right)$	$\mathrm{I}_{\mathbb{N}} \geq 5 \mu \mathrm{~A}$	2.5			V

Supply Current

$I_{\text {VIN }}+I_{\text {VGT }}$	Sleep Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		190	250	$\mu \mathrm{~A}$
$I_{\text {VIN }}+I_{\text {VGT }}$	Bust Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		250		$\mu \mathrm{~A}$
I_{VIN}	Run Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7	10	mA
$I_{\text {VGT }}$	Run Mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4	mA

FUNCTIONAL DESCRIPTION

POWER DOWN MODES

The ML4873 operates in either a powered down mode or a run mode according to the state of the ON/OFF pin (Table 1). When the ON/OFF pin is high, the IC is in the run mode and all IC sections are functioning. When the ON/OFF pin is low, the IC is in the standby mode and only the μ Power 5 V linear regulator and 2.5 V reference are on. All gate drive outputs are low. The 5 V linear regulator then provides the power to run the system's power management logic. When the BURST pin is high, and the output is above the lower threshold of the burst comparator, the IC is also in standby mode, but with the burst comparator logic also running.

BUCK REGULATORS

The two buck regulators (Figure 3) are synchronously rectifying voltage mode PWM regulators capable of being used over a wide variety of loads and input voltages. The use of synchronous rectification improves system efficiency by reducing the fixed drop associated with the "freewheeling" diode in conventional regulators. These regulators also drive all N -Channel power MOSFETs, significantly improving system efficiency at a low cost. In order to drive the MOSFET gates adequately, a V_{GT} supply must be provided which is higher than the battery voltage by an amount sufficient to provide full enhancement voltage to the MOSFETs. This can be generated as shown in figure 2.

TABLE 1. ML4873 POWER DOWN MODES

Mode	On/Off	Enable B	Burst	Function	Total Supply Current
Sleep	0	X	X	Micro Power 5V Reg Only	$130 \mu \mathrm{~A}$
Suspend	1	X	1	Buck Reg A in Burst Mode 5V Reg on	$250 \mu \mathrm{~A}^{*}$
Partial Run	1	0	0	Reg. B Disabled, All Other Functions Running	8 mA
Run	1	1	0	All Functions Enabled	10 mA

*Note This figure represents the total quiescent current for the Bust and
5 V regulator. Actual current consumed will vary in proportion to load current.

Figure 1. 5V Linear Regulator Output at low V_{IN}

Figure 2. Generating $\mathbf{V}_{\mathbf{G T}}$ Bias Voltage

Figure 3. Buck Regulator Block Diagram

Regulator A includes a pin which shuts down the IC and puts Regulator A into "Burst mode". When in "Burst mode" the regulator comes on when the burst comparator is below its lower threshold and goes off again when the output capacitor has charged to the burst comparator's upper threshold. Burst mode is useful for running the regulator at light modes, such as memory keep-alive or "suspend" mode.

Figure 4. Burst Mode Comparator and Logic
When burst mode is enabled the $\mathrm{C}_{S S}$ discharge circuit (Figure 3) is disabled. CSS is floating until CS1 is enabled when a burst occurs. When probing the $\mathrm{C}_{S S}$ pin in burst mode, use a high impedance probe to prevent discharge of the CSS pin from disturbing the circuit operation.
Selection of the external MOSFETs, output inductor and capacitor determine the output capabilities of the regulator. Output voltage is set by RF1 and RF2 where.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}}=\frac{2.5 \times(\mathrm{RF} 1+\mathrm{RF} 2)}{\mathrm{RF} 2} \tag{1}
\end{equation*}
$$

The short circuit limit is set by external resistor Rs.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{SHORT}} \mathrm{CKT} \approx \frac{0.2}{\mathrm{R}_{\mathrm{S}}} \tag{2}
\end{equation*}
$$

$C_{S S}$ is discharged when the regulator is off or when the voltage across R_{S} exceeds 200 mV . F2 ensures that $\mathrm{C}_{S S}$ is fully discharged. This circuit provides reliable output short circuit protection with very little power wasted in the sensing element. The error amplifier's output voltage is limited to the voltage on the SOFT START pin. When CSS is discharged, the regulator's duty cycle is 0 .

Figure 5. Oscillator Frequency vs. $\mathbf{R}_{\mathbf{T}}$

Figure 6. OUT1 Rise and Fall Time vs. Load C LOAD

Figure 7. OUT2 Rise and Fall Time vs. Load ClOAD

ADAPTER SWITCH

This function is provided by a comparator whose output (VG5) is pulled to V_{GT} when $\mathrm{V}_{\text {ADAPTER }}$ goes above 2.5 V . By connecting an N-Channel MOSFET gate to VG5, the system can run from the battery without the loss associated with a diode. When the AC adapter is plugged in, the voltage on pin 3 goes high, VG5 swings low, and the system runs from the AC adapter. This circuit functions in all modes of IC operation except SLEEP, when the VG5 output goes low.

12V LINEAR REGULATOR

The 12 V regulator includes a shut-off pin. To operate the regulator as a low drop-out regulator, a separate 12 VBIAS pin is provided. If this pin is 1.5 V higher than V 12 IN , the output transistor can be driven to saturation. Input for this regulator may come from either $\mathrm{V}_{\text {IN }}$ (for high voltage battery packs) or from a coupled inductor winding as shown in Figure 8. If the low drop-out feature is not necessary, V12 BIAS can be tied to V12 IN.

Figure 8. Coupled Inductor to generated V12 IN

APPLICATIONS

BUCK REGULATOR INDUCTOR

Inductors are specified with three main parameters; inductance (L), maximum current (IOUT(MAX)), and DC resistance $\left(R_{L}\right)$.

Inductance for a given set of requirements can be calculated using the following:

$$
\begin{equation*}
\mathrm{L}=\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times\left(\frac{D}{F}\right)}{\left.(2) \times\left(\mathrm{I}_{\text {OUT(MIN }}\right)\right)} \tag{3}
\end{equation*}
$$

In this equation, D is the duty cycle, and F is the switching frequency.

Selecting the inductor value using this formula ensures that the inductor stays in the continuous current mode, and never goes discontinuous at light loads (IOUT(MIN)). This is important, as high current spikes occur and losses go up when operating in the discontinuous mode.
A good rule of thumb for choosing inductor core size is to make sure that the maximum output current of the regulator doesn't exceed 80% of the maximum current rating of the inductor. Otherwise, core saturation may occur. This is especially important for ferrites, which have a harder saturation characteristic than powdered iron cores.

In order to distribute conduction losses evenly among all components, the DC resistance should be selected to be $1 / 4$ of the sum of the RDS ONS of the power MOSFETs.

Core losses, which contribute significantly to overall efficiency losses, should be minimized by using an inductor designed for minimum losses at the chosen operating frequency. This is a function of the core material, and is lowest in "Kool Mu " and molyperm cores. Of course, efficiency and cost are often inversely related when it comes to magnetic materials.

FREQUENCY SELECTION

Frequency is set by the resistor R_{T}, which establishes the charge current for the internal capacitor. Since the discharge current is a constant, the dead time of the oscillator is constant, the maximum duty cycle increases as the oscillator frequency decreases. For low input voltage applications, a lower switching frequency may be required to maintain regulation at minimum input voltage.
Losses are heavily comprised of AC losses from the switching characteristic of the power MOSFETs and inductor core losses. Hence, reducing the switching frequency may result in higher efficiencies. As inductor conduction losses will increase at lower frequencies (size goes up, hence there are more copper losses), there will be a point at which this effect cancels the beneficial effect on the AC losses and further reductions no longer increase efficiencies. Also, reductions in operating frequency will result in larger magnetics, and a larger overall supply.

COMPENSATION

Proper compensation is the most critical part of designing a working supply. The compensation network must ensure stability over the full range of input voltage and load conditions, as well as maximize the available bandwidth for good transient response.

If an appreciable ESR exists such that ResrC > LC/5, then we can get away with adding one additional zero to the error amplifier's feedback network, and make use of the other zero created by the combination of the ESR and the output capacitance. We must also add an additional resistance in parallel with the zero we have added, this will give us increased bandwidth and lower the DC gain. Its size is determined by the gain necessary to bring the system to 0 dB at the desired crossover point. As a rule of thumb, this point should be no more than $1 / 5$ the switching frequency.
In cases where the ESR of the output capacitors is minimal, we no longer have a zero for free.

Now, we must use a zero on the input of the error amplifier in addition to the zero in the feedback network. The parallel feedback resistor is also still required; the gain is now the parallel combination of the feedback zero resistor and this resistor.

The internal error amplifier has an open loop gain of 90 dB , and a single pole at 31 Hz . These must be taken into account in order to adequately compensate the supply.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. 12V Regulator Load Regulation

Figure 11. Supply Current $\left(\mathbf{V}_{\mathbf{G T}}\right)$ vs $\mathbf{V}_{\mathbf{G T}}$ Voltage

Figure 10. Supply Current (V_{IN}) vs. V_{IN} Voltage

Figure 12. SLEEP Mode Current (V_{IN}) vs. V_{IN} Voltage

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4873CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -PIN SOIC (S28W)
ML4873CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 -PIN SSOP (R28)

Battery Management IC Evaluation Kit

GENERAL DESCRIPTION

The ML4873 evaluation board provides a convenient tool for demonstrating the performance and efficiency of this battery management IC.
This board is designed to demonstrate the ML4873 in a 12 W buck DC to DC converter circuit. If other power levels and /or operating conditions are desired, modifications can easily be made to accommodate them.

Operating from a wide input range, 5.5 V to 18 V ; this board is designed to provide a 3.3 V and a 5 V output that can deliver up to 1.5 A , a 12 V linear regulator output that can provide 25 mA , and a 5 V linear output that can provide 25 mA . The chosen switching frequency is 100 kHz . Efficiency can be as high as 94% with an input voltage of 6 V . Output ripple voltage was designed to be 50 mV pk - pk max., and line and load regulation are designed to be no more than $\pm 5 \%$.

The full schematic of this board is shown in Figure 1. An additional winding was added to the 3.3 V inductor to provide the biasing necessary for the 12 V linear regulator. As logic level FETs are used, an additional winding is added to the 3.3 V inductor to provide the necessary additional 5 V of enhancement.

As the output capacitors are three paralleled surface mount tantalums, the ESR is very low (measured to be about 0.05 ohm). A double zero compensation scheme is used in order to provide the necessary 45 degrees of phase margin.

FEATURES

- High efficiency synchronous rectification
- Surface mount construction for minimum size/parasitics
- Enable and burst mode selectable via dip switches
- $3.3 \mathrm{~V}, 5 \mathrm{~W}$ output and $5 \mathrm{~V}, 7.5 \mathrm{~W}$ output

KIT COMPONENTS

- ML4873EVAL board with one ML4873

■ ML4873 Data Sheet

- Applications Note 37

BLOCK DIAGRAM

HOW TO OPERATE

1) Set all DIP switches to logic low.
2) Connect a small, separate 5 V supply to the supply pin for the DIP switches.
3) Connect a power supply capable of delivering 2 A to Vin. Set it for 12 V just for initialization of the system.
4) With both supplies turned on and all DIP switches in the off position, check to see if $\mathrm{V}_{\text {REF }}$ (Pin 25) and linear 5 V outputs are functional.
5) If all is well with $V_{\text {REF }}$ and the linear regulator, turn the "On/Off" DIP switch to the on position and verify that
6) Turn on the DIP switch to verify that regulator B is working, once again, with an adequate load. Next, check the 12 V linear regulator as well.

PRELIMINARY

LCD Backiight Lamp Driver

GENERAL DESCRIPTION

The ML4874 is an ideal solution for driving small cold cathode fluorescent tubes (CCFL) used in liquid crystal display (LCD) backlight applications. It provides the dimming ballast control for the LCD display.
By utilizing differential drive the ML4874 can deliver the same light output with significantly less input power compared to existing single ended drive schemes. Improvements as high as 30% can be realized when using low power lamps and advanced LCD screen housings. This increased light output is achieved because the differential drive configuration is much less sensitive, and therefore less power is wasted in the capacitive parasitics that exist in the backlight housing. An additional benefit of this configuration is an even distribution of light.

The ML4874 is optimized for portable applications where high efficiency is critical to maximize battery life. The high efficiency is achieved by a resonant scheme with zero voltage switching. The complete system, including the magnetics, can be easily realized with standard off the shelf power components.

All of the regulators on the chip are synchronized to the inverter frequency to eliminate the ghosting and flicker common to asynchronous circuits.
The ML4874 is available in very small form factor package (20 pin SSOP) making it ideal for hand held portable applications.

FEATURES

- Backlight Lamp Driver with Differential Drive
- Up to 30\% Lower Power for Same Light Output
- Low Standby Current ($<10 \mu \mathrm{~A}$)
- Improved Efficiency ($\approx 95 \%$)
- Allows All N-Channel MOSFET Drive
- Low Switching Losses
- Resonant Threshold Detection
- Buck Regulator uses Synchronous Rectification

BLOCK DIAGRAM

NOTE: FOR 16 PIN VERSION L ILM AND
LEA- ARE COMMON, PGND AND GND
ARE COMMON, AZR IS NOT AVAILABLE.

PIN CONFIGURATION

ML4874
20-Pin SSOP (R20)

ML4874
16-Pin SOIC (S16)

PIN DESCRIPTION

PIN\# *	NAME	DESCRIPTION
1 N/A	NC	This pin should be left open.
2 N/A	AZR	Connection to gate of external FET for high voltage regulator. Internally a zener diode to ground.
31	SS CAP	Connection of optional external soft start capacitor.
$4 \quad 2$	RT	Oscillator timing resistor.
53	VREF	Voltage reference output.
64	LILIM	Input to current limit amplifier.
74	LEA-	Negative input for lamp error amplifier.
85	LEA OUT	Output of lamp error amplifier. External compensation capacitor connects between this pin and LEA.
96	CT	Oscillator timing capacitor.
107	L RTD	Input to resonant threshold detector.

PIN\# *	NAME	DESCRIPTION			
11	8	B SYNC OUT	Output of MOSFET driver to gate of synchronous FET catch diode.		
12	9	HVDD	Battery power input to linear regulator.		
13	10	VDD	Output of linear regulator. Positive power for IC.		
14	11	L GATE1	Output of MOSFET driver. Connection to gate of one side of inverter FET drive pair.		
15	12	ON/OFF	Logic input for chip		
16	13	L GATE2	Output of MOSFET driver. Connection to gate of one side of inverter FET drive pair.		
17	14	PGND	Power ground		
18	14	GND	Signal ground. 19 15	B ON \quad	Connection to primary side of gate
:---					
pulse transformer.					
O					

[^16]ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum raitings are siress ratings only and functionai device operation is not implied.
Supply Current (ICC) 75 mA
Output Current, Source or Sink 250mA
Voltage on Pins* 1-9, 11, 13-20 -0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
Voltage on Pin 12 20V
Current into Pin* 10 $\pm 10 \mathrm{~mA}$
Junction Temperature $150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance (θ_{JA}) Plastic SSOP $100^{\circ} \mathrm{C} / \mathrm{W}$
 configuration on previous page.
OPERATING CONDITIONS
Temperature Range
ML4874C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4874E ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{VDD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{CT}=47 \mathrm{pF}$ (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT REGULATOR SECTION					
Error Amplifier	Closed loop	60	70		dB
Open Loop Gain	$\mathrm{I}_{\text {LOAD }}=5 \mu \mathrm{~A}$	0.18	0.2	0.22	V
Bias Point	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$	2.8	3.0		V
Output High			0.4	0.7	V
Output Low			1		MHz
Bandwidth (-3dB)		-0.3	0.2	VREF	V
Input Voltage Range		300	500	700	nA
Input Bias Current	$\mathrm{V}_{\text {SSCAP }}=1 \mathrm{~V}$	2		2.5	V
Soft Start Charge Current	$\mathrm{V}_{\text {SSCAP }}=1 \mathrm{~V}$			100	nA
Soft Start Threshold (LEA OUT)					

Current Limit Comparator

Current Threshold		450	500	550	mV
Input Bias Current	$\mathrm{V}_{\text {LLL }}=0.1 \mathrm{~V}$		50	100	nA
Propagation Delay	(Note 2)		150	250	ns

Output Drivers

Output High - B SYNC OUT, B OFF	VDD $=5 \mathrm{~V}, \mathrm{I}$ LOAD $=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B SYNC OUT, B OFF	$\mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$		0.2	0.375	V
Rise \& Fall time - B SYNC OUT, B OFF	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$		20	50	ns
Output High - B ON	VDD $=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B ON	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		0.2	0.375	V
Fall Time - B ON	$\mathrm{C}_{\text {LOAD }}=2400 \mathrm{pF}($ Note 2)		45	80	ns
ONE SHOT Pulse Width		100	150	200	ns
DELAY TIMER Delay Time		20	35	55	ns

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
HIGH VOLTAGE INVERTER SECTION					
Oscillator		68	80	92	kHz
Nominal Frequency	$\mathrm{V}_{\mathrm{CT}}=2 \mathrm{~V}$	500	700	900	$\mu \mathrm{~A}$
Discharge Current		2.3	2.5	2.7	V
Peak Voltage		0.8	1	1.2	V
Valley Voltage					

Output Drivers

Output High - L GATE 1, 2	VDD $=5 \mathrm{~V}, \mathrm{I}$ LOAD $=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - L GATE 1, 2	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		0.2	0.375	V
Rise \& Fall Time - L GATE 1, 2	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$		20	50	ns

Resonant threshold Detector

Threshold		0.75	1.1	1.45	V
Hysteresis		250	500	750	mV

Lamp Out Detect

Threshold		16	18	20	V
Under Voltage Detector					
Start Up Threshold		3.8	4.1	4.4	V
Hysteresis		150	300	450	mV

Logic Interface (On/Off)

VIH		2.5			V
VIL				0.5	V
Input Bias Current	On/Off $=3 \mathrm{~V}$		10	25	$\mu \mathrm{~A}$

Linear Regulator Section						
Aux Zener Reference Voltage (AZR)	$\mathrm{I}_{\text {AZR }}=10 \mu \mathrm{~A}$	7.4	7.9	8.4	V	
Regulator Voltage (VDD)	HVDD $=12 \mathrm{~V}$	4.75	5.0	5.35	V	
Regulator Source Current	External to device		10		mA	
Drop Out Voltage	$I_{\text {HVDD }}=1 \mathrm{~mA}$		30	90	mA	
Drop Out Voltage	$\mathrm{I}_{\text {HVDD }}=5 \mathrm{~mA}$		125	275	mA	
HVDD Input Voltage Range		5		18	V	

Bias Section

VDD Supply Current	On/Off $="{ }^{\prime \prime}{ }^{\prime \prime}$, no load		375	450	$\mu \mathrm{~A}$
VDD Supply Current	On/Off $={ }^{\prime} 0^{\prime \prime}, \mathrm{HVDD}=12 \mathrm{~V}$		1	10	$\mu \mathrm{~A}$
VREF Load Regulation	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$		10	20	mV
VREF Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.47	2.5	2.53	V
VREF Line Regulation			20	30	mV
VREF Line, Load, Temp		2.465	2.5	2.535	V

Note 1: Lımits are guaranteed by 100% testıng, sampling or correlation with worst case test conditions.
Note 2: Actual load is 1200 pF . The 2:1 transformer reflects an effective 2400 pF .

*NOTE: USED FOR INPUT VOLTAGES
GREATER THAN 18 VOLTS

Figure 1. Typical Application Schematic for the ML4874

FUNCTIONAL DESCRIPTION

The ML4874 consists of a PWM regulator, a lamp driver/ inverter, a linear regulator and control circuits. This IC, in conjunction with external components, converts a DC battery voltage into the high voltage and high frequency AC signal required to start and drive miniature cold cathode fluorescent lamps. A typical application circuit is shown in figure 1. Please refer to Application Note 32 for detailed application information beyond what is presented here.

Note: Please read the Power Sequencing section below prior to using the ML4874.

LAMP DRIVER

The lamp driver, sometimes referred to as a lamp inverter, is comprised of a PWM regulator and a Royer type inverter circuit to drive the lamp. The PWM regulator, in a buck configuration, controls the magnitude of the lamp current to provide the dimming capability. Figure 2 shows a simplified circuit to more easily illustrate the operation of the circuit.

Due to the presence of the buck inductor, L1, the circuit shown in figure 2 is essentially a current fed parallel loaded resonant circuit. Lm is the primary inductance of the output transformer, T 1 , which tunes with the resonant capacitor C_{R} to set the resonant frequency of the inverter. The oscillator frequency is always set lower than the natural resonant frequency to ensure synchronization. The current source IC models the current through the buck inductor L1.

Figure 2. Simplified Lamp Driver Circuit
The MOSFETs, Q3 and Q4 are alternately turned on with a constant 50\% duty cycle signal (L GATE1, L GATE2) at one-half the frequency of the oscillator. In this way each transistor pulses, or excites, the resonant tank on each half cycle. The combination of these two signals appear across the primary winding of the output transformer as a sinusoidal waveform. This voltage is multiplied by the step-up turns ratio of the output transformer and impressed across the lamp.

The output transitions are controlled by feedback through the L RTD pin by sensing the voltage at the center tap of the output transformer. Each time this signal reaches the minimum resonant threshold detection point an internal clock pulse is generated to keep the system synchronized. Figure 3 shows some of these representative waveforms at the important nodes of the circuit.

Figure 3. Operating Waveforms of the Lamp Driver Section
The PWM regulator is comprised of a MOSFET (U2-A), inductor L1, and the gate control and drive circuitry as shown in figure 1. A signal with a constant pulse width of 150 nS is applied to the primary of the 2:1 pulse transformer T2, rectified by diode D1, and used to charge the gate capacitance of $\cup 2-A$, thereby turning it on. The turn off is controlled by discharging this capacitance through MOSFET Q2. The pulse width of the signal on the gate of Q2 (B OFF) varies according to the amplitude of the feedback signal on LEA-, which is proportional to the ac current flowing in the lamp. This feedback signal is developed by monitoring the current through resistor R5 in the common source connection of the inverter MOSFETs, Q3 and Q4. The lamp current, and therefore brightness, is adjusted by varying the voltage applied to R4, at the brightness adjust control point. Increasing this voltage decreases the brightness.

OSCILLATOR

The frequency of the oscillator in the ML4874 is set by selecting the values of C_{T} and R_{T}.

The following graph shows the oscillator frequency versus the value of RT for different values of CT. This nomograph may be used to select the appropriate value of Rt and CT to achieve the desired oscillator frequency for the ML4874.

LINEAR REGULATOR

A linear voltage regulator is provided to power the low voltage and low current control circuitry on the ML4874. This is typically used when there is no separate 5 volt supply available at the inverter board. For operatiozxn up to 18 volts the linear regulator is used by connecting the HVDD pin to the input battery voltage. For operation over 18 volts, a MOSFET, and a resistor (Q1 and R1, in figure 1) are connected as shown. The MOSFET is required to stand off the high voltage. The AZR pin is just a zener diode to ground used to bias the gate of Q1.

LAMP OUT DETECT

In those cases when there is no lamp connected, or the connection is faulty, the output voltage of the lamp driver circuit will tend to rise to a high level in an attempt to start the nonexistent lamp. The lamp out detect circuit on the ML4874 will detect this condition by sensing the center tap voltage on the primary of the output transformer, T1 on the L RTD pin. When this voltage exceeds 16 volts, an internal latch is set and the lamp driver goes into a shutdown mode. The logic control pin ON/OFF must be cycled low, then high to reset the latch and return the lamp driver to the normal state.

SOFT START

The capability to control the start up behavior is achieved by setting the value of a single capacitor, C2 in figure 1. By selecting the appropriate value the ac lamp current can be set to slowly increase with a controlled time constant. The capacitor value can be calculated according to the following formula.

$$
\mathrm{C}=\left(5 \times 10^{-7}\right) \mathrm{T}_{\mathrm{S}}
$$

Where $\mathrm{T}_{\mathrm{S}}=$ Duration of the soft start sequence in seconds

LOGIC CONTROL

The ML4874 is controlled by a single logic input, ON/OFF. A logic level high on this pin enables the lamp driver. A logic zero puts the circuit into a very low power state.

POWER SEQUENCING

It is important to observe correct power and logic input sequencing when powering up the ML4874. The following procedure must be observed to avoid damaging the device.

1. Apply the battery power to HVDD.
2. Apply the VDD voltage (if HVDD is not used). With HVDD connected this voltage is supplied by the internal regulator on the ML4874.
3. Apply a logic high to the ON/OFF input.

7

Figure 4. Typical Application Schematic for the 16 pin SOIC ML4874.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4874CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SOIC (S16)
ML4874ER	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SSOP (R20)

Diffierentiai Drive LCD Backilight Evaluation Kit

GENERAL DESCRIPTION

The ML4874 is a cold cathode fluorescent lamp (CCFL) backlight controller featuring differential lamp drive and dimming control. It is commonly used to power the backlight of the LCD display found in many handheld instruments. This evaluation board enables the designer to explore the capabilities of the circuit and determine its suitability for a current or new design. A miniature lamp is included in the evaluation package to speed design turn around times.
The ML4874 evaluation board is a miniaturized design for space efficiency, and can be readily interfaced with most systems. The assembled board measures $0.65^{\prime \prime}$ W x $3.175^{\prime \prime} L \times 0.235^{\prime \prime} \mathrm{H}$.

FEATURES

- Operates Over a 5 to 20V Supply Range
- Efficiency Greater than 90\%
- Differential Lamp Drive Improves Dimming Range
- Capable of Driving Lamp to Greater than 5W
- Low Profile, High Density PC Board Layout

KIT COMPONENTS

- ML4874 User's guide
- ML4874 Data Sheet
- A fully functional evaluation board
- Application Notes 26 and 32
- Miniature Fluorescent Lamp
- PCB Layout Gerber File

BLOCK DIAGRAM

Low Voltage Boost Regulator with Shutdown

GENERAL DESCRIPTION

The ML4875 is a boost regulator designed for DC to DC conversion in 1 to 3 cell battery powered systems. The combination of BiCMOS process technology, internal synchronous rectification, variable frequency operation, and low supply current make the ML4875 ideal for 1 cell applications. The ML4875 is capable of start-up with input voltages as low as 1 V and is available in $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3 V output versions with an output voltage accuracy of $\pm 3 \%$.
Unlike regulators using external Schottky diodes, the ML4875 isolates the load from the battery when the SHDN pin is high. This is accomplished by an integrated synchronous rectifier which eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4875 requires only one inductor and two capacitors to build a very small regulator circuit capable of achieving conversion efficiencies in excess of 90%.
The circuit contains a $\overline{\text { RESET }}$ output which goes low when the DETECT input drops below 200 mV .

FEATURES

- Guaranteed start-up and operation at 1 V input
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Isolates the load from the input during shutdown
- Minimum external components
- Low ON resistance internal switching FETs
- Micropower operation
- $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3 V output versions

BLOCK DIAGRAM

PIN CONNECTION

> ML4875-5/-3/-T

8-Pin SOIC (S08)

PIN DESCRIPTION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	FUNCTION
1	VIN	Battery input voltage	5	$\mathrm{V}_{\text {OUT }}$	Boost regulator output
2	SHDN	Pulling this pin high shuts down the regulator, isolating the load from the input	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\frac{V_{\mathrm{L}}}{\text { RESET }}$	Boost inductor connection Output goes low when regulation cannot be achieved or when DETECT
3	GND	Analog signal ground			goes below 200 mV
4	DETECT	When this pin below $V_{\text {REF }}$, causes the RESET pin to go low	8	PWR G	Return for the NMOS output transistor

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Voltage on any pin
Peak Switch Current, I I(PEAK) ..1.5A
Average Switch Current, I (AVG) 300 mA
Junction Temperature
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) \qquad $+260^{\circ} \mathrm{C}$

Thermal Resistance $\left(\theta_{\mid \mathrm{A}}\right)$
Plastic SOIC
$110^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range
ML4875CS-X $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4875ES-X $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$V_{\text {IN }}$ Operating Range
ML4875CS-X
1.0 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ML4875ES-X 1.1 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range.

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply					
$V_{I N}$ Current	$V_{I N}=V_{\text {OUT }}-0.2 \mathrm{~V}$		50	65	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\text {IN }}=4.8 \mathrm{~V}, \mathrm{SHDN}=$ high		20	30	$\mu \mathrm{~A}$
$V_{\text {OUT }}$ Quiescent Current			8	12	$\mu \mathrm{~A}$
$V_{\text {L }}$ Quiescent Current				1	$\mu \mathrm{~A}$

PFM Regulator

Pulse Width (T_{ON})		9	10	11	$\mu \mathrm{s}$
Output Voltage ($\mathrm{V}_{\text {OUT }}$) ML4875-5 ML4875-3 ML4875-T	$\mathrm{T}_{\mathrm{ON}}=0$ at $\mathrm{V}_{\mathrm{OUT}}(\mathrm{MAX})$, $9 \mu \mathrm{~s} \leq \mathrm{T}_{\mathrm{ON}} \leq 11 \mu \mathrm{~s} \mathrm{~V}_{\mathrm{OUT}}(\mathrm{MIN})$	$\begin{gathered} 4.85 \\ 3.2 \\ 2.91 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.3 \\ & 3.0 \end{aligned}$	$\begin{gathered} 5.15 \\ 3.4 \\ 3.09 \end{gathered}$	V V V
Load Regulation ML4875-5	See Figure 1 $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 105 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.85 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.15 \\ & 5.15 \end{aligned}$	V
ML4875-3	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 140 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$	V
ML4875-T	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 35 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 160 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.91 \\ & 2.91 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.09 \\ & 3.09 \end{aligned}$	V
Under-Voltage Lockout Threshold			0.85	0.95	V

Shutdown

Input Bias Current		-100		100	nA
Shutdown Threshold	$\mathrm{V}_{\text {SHDN }}=$ high to low	180	200	220	mV
Shutdown Hysteresis			50	70	mV

RESET Comparator

DETECT Threshold		190	200	210	mV
DETECT Bias Current		-100		100	nA
$\overline{\text { RESET ON Voltage }}$	$\mathrm{I}_{\text {RESET }}=50 \mu \mathrm{~A}$		0.1	0.2	V
$\overline{\text { RESET OFF Current }}$	$\mathrm{V}_{\text {RESET }}=5 \mathrm{~V}$			100	nA

Figure 1. Application Test Circuit

Figure 2. PFM Regulator Block Diagram

FUNCTIONAL DESCRIPTION

The ML4875 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is both highly efficient and simple to use. A PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

REGULATOR OPERATION

A block diagram of the boost converter is shown in Figure 2. The circuit remains idle when $\mathrm{V}_{\text {OUT }}$ is at or above the desired output voltage, drawing $50 \mu \mathrm{~A}$ from V_{IN}, and $8 \mu \mathrm{~A}$ from $\mathrm{V}_{\text {OUT }}$ through the feedback resistors R1 and R2. When $\mathrm{V}_{\text {OUT }}$ drops below the desired output level, the output of amplifier A1 goes high, signaling the regulator to deliver charge to the output. Since the output of amplifier A2 is normally high, the flip-flop captures the A1 set signal and creates a pulse at the gate of the NMOS transistor Q1. The NMOS transistor will charge the inductor L1 for $10 \mu \mathrm{~s}$, resulting in a peak current given by:

$$
\begin{equation*}
L_{L(P E A K)}=\frac{T_{\mathrm{ON}} \times V_{\mathrm{IN}}}{L_{1}} \approx \frac{10 \mu \mathrm{~s} \times V_{\mathbb{I N}}}{L_{1}} \tag{1}
\end{equation*}
$$

For reliable operation, L 1 should be chosen so that $\mathrm{I}_{\text {L(PEAK) }}$ does not exceed 1.5A.

When the one-shot times out, the NMOS transistor releases the V_{L} pin, allowing the inductor to fly-back and momentarily charge the output through the body diode of PMOS transistor Q2 in series with shutdown transistor Q3. But, as the voltage across the PMOS transistor changes polarity, its gate will be driven low by the current sense amplifier A2, causing Q2 to short out its body diode. The inductor then discharges into the load through Q2. The output of A2 also serves to reset the flip-flop and one-shot in preparation for the next charging cycle. A2 releases the gate of Q 2 when its current falls to zero. If $\mathrm{V}_{\mathrm{OUT}}$ is still low, the flip-flop will immediately initiate another pulse. The output capacitor (C1) filters the inductor current, limiting output voltage ripple. Inductor current and oneshot waveforms are shown in Figure 3.

Figure 3. PFM Inductor Current Waveforms and Timing.

SHUTDOWN

The ML4875 output can be shut down by pulling the SHDN pin high. When SHDN is high, the regulator stops switching, the control circuitry is powered down, and the body diode of the PMOS synchronous rectifier is disconnected from the output, allowing the output voltage to drop below the input voltage. This feature is unique to the ML4875, as most boost regulators use external Schottky diode rectifier which cannot be disconnected during shutdown. Leaving the Schottky diode connected causes excess power dissipation in the load during shutdown because the Schottky conducts whenever the output voltage drops 300 mV below the input voltage.

RESET COMPARATOR

An additional comparator is provided to detect low V_{IN}, or any other error condition that is important to the user. The inverting input of the comparator is internally connected to $\mathrm{V}_{\text {REF }}$, while the non-inverting input is provided externally at the DETECT pin. The output of the comparator is the RESET pin, which swings from $\mathrm{V}_{\text {OUT }}$ to GND when an error is detected.

DESIGN CONSIDERATIONS

INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN(MIN)}}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})} \times \eta}{2 \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}} \tag{2}
\end{equation*}
$$

where η is the efficiency, typically between 0.8 and 0.9 . Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.

Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 4 and 5. Figure 4 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance.

For example, a two cell to 5 V application requires 80 mA of output current while using an inductor with 15% tolerance. The output current should be derated by 25% to 100 mA to cover the combined inductor and ON -time

Figure 4. Output Current vs Input Voltage.
tolerances. Assuming that 2 V is the end of life voltage of a two cell input, Figure 4 shows that with a $2 V$ input, the ML4875-5 delivers 99 mA with a $27 \mu \mathrm{H}$ inductor.
Figure 5 shows efficiency under the conditions used to create Figure 4. It can be seen that efficiency is mostly independent of input voltage and is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. As the inductor value goes down to $15 \mu \mathrm{H}$, the efficiency drops to between 70% and 75%. With $56 \mu \mathrm{H}$, the efficiency approaches 90% and there is little room for improvement. At values greater than $100 \mu \mathrm{H}$, the operation of the synchronous rectifier becomes unreliable because the inductor current is so small that it is difficult for the control circuitry to detect. The data used to generate Figures 4 and 5 is provided in Table 1.
After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}(\mathrm{PEAK})}=\frac{\mathrm{T}_{\mathrm{ON}(M A X)} \times \mathrm{V}_{\mathrm{IN}(M A X)}}{\mathrm{L}_{\mathrm{MIN}}} \tag{3}
\end{equation*}
$$

In the two cell application previously described, a maximum input voltage of 3 V would give a peak current of 1.2 A . When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4875 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 3. For additional information, see Applications Note 29.
Suitable inductors can be purchased from the following suppliers:

Coilcraft	$(708) 639-6400$
Coiltronics	$(407) 241-7876$
Dale	$(605) 665-9301$
Sumida	$(708) 956-0666$

Figure 5. Typical Efficiency as a Function of $\mathrm{V}_{\text {IN }}$.

OUTPUT CAPACITOR

The choice of output capacitor is also important, as it controls the output ripple and optimizes the efficiency of the circuit. Output ripple is influenced by three capacitor parameters: capacitance, ESR, and ESL. The contribution due to capacitance can be determined by looking at the change in capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as determined by the following formula:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}=\frac{\mathrm{T}_{\text {ON }}{ }^{2} \times \mathrm{V}_{\text {IN }}^{2}}{2 \times \mathrm{L} \times \mathrm{C} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)} \tag{4}
\end{equation*}
$$

For a 2.4 V input, and 5 V output, a $27 \mu \mathrm{H}$ inductor, and a $47 \mu \mathrm{~F}$ capacitor, the expected output ripple due to capacitor value is 87 mV .
Capacitor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the output ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the
output current ramps quickly to match the peak inductor current. This fast change in current through the output capacitor's ESL causes a high frequency (5ns) spike that can be over 1 V in magnitude. After the ESL spike settles, the output voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth shape and a peak value equal to the peak inductor current times the ESR. ESR also has a negative effect on efficiency by contributing I -squared R losses during the discharge cycle.
An output capacitor with a capacitance of $100 \mu \mathrm{~F}$, an ESR of less than 0.1Ω, and an ESL of less than 5 nH is a good general purpose choice. Tantalum capacitors which meet these requirements can be obtained from the following suppliers:

$$
\begin{array}{ll}
\text { Matsuo } & \text { (714) 969-2491 } \\
\text { Sprague } & \text { (603) 224-1961 }
\end{array}
$$

If ESL spikes are causing output noise problems, an EMI filter can be added in series with the output.

INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between $47 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$. This provides the benefits of preventing input ripple from affecting the ML4875 control circuitry, and it also improves efficiency by reducing I -squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

DRIVING THE SHDN INPUT

Unlike other boost regulators which use external Schottky diodes, the ML4875 has the ability to isolate the load from the battery input when the SHDN pin is high. Since there may be no other voltage available when the regulator is in shutdown, the SHDN input threshold is set well below the minimum $\mathrm{V}_{\mathbb{I N}}$ voltage. SHDN can be driven directly from an open collector device with a high value pull-up resistor to $\mathrm{V}_{\text {IN }}$. If SHDN is driven from a TTL or CMOS output device, a resistor divider should be used to prevent the SHDN input high level from exceeding $V_{I N}$, and to ensure the SHDN input low level is below the 200 mV threshold.

SETTING THE RESET THRESHOLD

To use the $\overline{\operatorname{RESET}}$ comparator as an input voltage monitor, it is necessary to use an external resistor divider tied to the DETECT pin as shown in the block diagram. The resistor values R_{A} and R_{B} can be calculated using the following equation:

$$
\begin{equation*}
V_{I N(M I N)}=0.2 \times \frac{\left(R_{A}+R_{B}\right)}{R_{B}} \tag{5}
\end{equation*}
$$

The value of R_{B} should be $100 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{A} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}{0.2}-1\right) \tag{6}
\end{equation*}
$$

LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4875. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4875
- Use short trace lengths from the inductor to the V_{L} pin and from the output capacitor to the V $\mathrm{V}_{\text {OUT }}$ pin
- Use a single point ground for the ML4875 ground pins, and the input and output capacitors

TABLE 1. MAXIMUM OUTPUT CURRENT AND EFFICIENCY.

ML4875-5.0

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{N N}}(\mathbf{m A})$	$\mathbf{l}_{\text {OUT }}(\mathbf{m A})$	EFFICIENCY \%
$\mathbf{L}=\mathbf{1 5 \mu \mathbf { H }}$			
1.0	237.5	35.7	75.2
1.5	373.3	86.2	77.0
2.0	494.6	151.8	76.7
2.5	616.0	233.5	75.8
3.0	710.5	319.7	75.0
3.5	793.9	410.5	73.9
$\mathbf{L}=\mathbf{2 7 \mu H}$			
1.0	138.2	22.0	79.6
1.5	220.7	54.8	82.8
2.0	296.2	98.8	83.4
2.5	374.1	156.1	83.5
3.0	441.6	220.7	83.3
3.5	496.4	289.4	83.3
4.0	538.2	358.5	83.3
4.5	542.6	408.0	83.5
$\mathbf{L}=\mathbf{5 6 \mu H}$			
1.0	72.5	12.2	84.1
1.5	113.1	29.8	87.8
2.0	158.7	56.3	88.7
2.5	201.6	89.7	89.0
3.0	237.5	127.0	89.1
3.5	270.4	169.0	89.3
4.0	297.4	212.9	89.5
4.5	310.4	251.0	89.8

ML4875-3.3

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{I N}}(\mathbf{m A})$	$\mathbf{I}_{\text {OUT }}(\mathbf{m A})$	EFFICIENCY \%
$\mathbf{L}=\mathbf{1 5 \mu} \mathbf{H}$			
1.0	243.1	54.6	74.1
1.5	346.6	122.1	77.5
2.0	473.6	207.8	72.4
2.5	551.9	299.9	71.7
3.0	563.6	368.0	71.8
$\mathbf{L}=\mathbf{2 7 \mu H}$			
1.0	144.5	35.4	80.8
1.5	218.4	80.9	81.5
2.0	292.3	143.6	81.1
2.5	345.7	211.8	80.9
3.0	357.2	263.7	81.2
$\mathbf{L}=56 \mu \mathbf{H}$			
1.0	73.9	19.5	87.1
1.5	118.5	47.2	87.6
2.0	156.8	83.4	87.8
2.5	189.0	125.7	87.8
3.0	206.6	165.5	88.1

ML4875-3.0

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{I N}}(\mathbf{m A})$	$\mathbf{I}_{\text {OUT }}(\mathbf{m A})$	EFFICIENCY \%
$\mathbf{L}=\mathbf{1 5 \mu H}$			
1.0	242.8	59.2	73.1
1.5	362.6	131.3	72.4
2.0	461.6	219.2	71.2
2.5	523.5	308.5	70.7
$\mathbf{L}=\mathbf{2 7 \mu H}$			
1.0	144.9	38.9	80.5
1.5	218.7	88.2	80.7
2.0	286.8	153.4	80.2
2.5	325.6	217.5	80.2
$\mathbf{L}=\mathbf{5 6 \mu H}$			
1.0	74.3	21.5	86.8
1.5	119.1	52.0	87.3
2.0	154.9	90.2	87.3
2.5	183.0	133.2	87.3

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
MiL48ิフ5С5-T	3.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-\mathrm{Pin} \mathrm{SOIC} \mathrm{(S08)}$
ML4875CS-3	3.3 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4875CS-5	5.0 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Pin SOIC (S08)
ML4875ES-T	3.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4875ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-\mathrm{Pin} \mathrm{SOIC} \mathrm{(S08)}$
ML4875ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)

LCD Backlight Lamp Driver with Contrast

GENERAL DESCRIPTION

The ML4876 is an ideal solution for driving small cold cathode fluorescent tubes (CCFL) used in liquid crystal display (LCD) backlight applications. It provides the dimming ballast control and the contrast control for the LCD display.

By utilizing differential drive the ML4876 can deliver the same light output with significantly less input power compared to existing single ended drive schemes. Improvements as high as 30% can be realized when using low power lamps and advanced LCD screen housings. This increased light output is achieved because the differential drive configuration is much less sensitive, and therefore less power is wasted in the capacitive parasitics that exist in the backlight housing. An additional benefit of this configuration is an even distribution of light.
The ML4876 is optimized for portable applications where high efficiency is critical to maximize battery life. The high efficiency is achieved by a resonant scheme with zero voltage switching. The complete system, including
the magnetics, can be easily implemented with standard off the shelf power components.

All of the regulators on the chip are synchronized to the inverter frequency to eliminate the ghosting and flicker common to asynchronous circuits.

The ML4876 is available in very small form factor package (20 pin SSOP) making it ideal for hand held portable applications.

FEATURES

- Backlight Lamp Driver with Differential Drive
- Up to 30\% Lower Power for Same Light Output
- Low Standby Current ($<10 \mu \mathrm{~A}$)
- Improved Efficiency ($\approx 95 \%$)
- Allows All N -Channel MOSFET Drive
- Low Switching Losses
- Resonant Threshold Detection
- Buck Regulator uses Synchronous Rectification

BLOCK DIAGRAM

PIN CONFIGURATION

ML4876
20-Pin SSOP (R20)

PIN DESCRIPTION

PIN\#	NAME	DESCRIPTION
1	FEA OUT	Output of flyback (contrast) error amplifier.
2	FEA-	Negative input of flyback (contrast) error amplifier.
3	FEA+	Positive input of flyback (contrast) error amplifier.
4	L ON	Logic input. A "0" on this pin disables the lamp driver section only. 5
6	VREF	Voltage reference output. Logic input. A "0" on this pin
7	LEA-	disables the linear regulator.
8	LEAOGative input for lamp error	
amplifier.		

\(\left.\begin{array}{cll}PIN\# NAME \& DESCRIPTION

\hline 11 \& B SYNC OUT Output of MOSFET driver. Connects

to gate of synchronous FET catch

diode.\end{array}\right]\) F GATE \quad| Connects to gate of MOSFET in |
| :--- |
| primary side of contrast control. |
| 13 |

ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
Supply Current (ICC) .. 75 mA
Output Current, Source or Sink 250mA
Voltage on Pins 1-9, 11-14, 16-20-0.3V to VDD +0.3 V
Voltage on Pin 15 ... 20V
Current into Pin 10 ... $\pm 10 \mathrm{~mA}$

Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{j A}\right)$ Plastic SSOP
$100^{\circ} \mathrm{C}$ N

OPERATING CONDITIONS

Temperature Range
ML4876C .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4876E ... $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{VDD}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{CT}=47 \mathrm{pF}$ (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT REGULATOR SECTION		60	70		
Error Amplifier	Closed loop	0.18	0.2	0.22	dB
Open Loop Gain	I LOAD $^{\prime}=5 \mu \mathrm{~A}$	2.8	3.0		V
Bias Point	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$		0.4	0.7	V
Output High			1		MHz
Output Low		-0.3	0.2	VREF	V
Bandwidth (-3dB)			50	100	nA
Input Voltage Range					

Current Limit Comparator

Current Threshold		450	500	550	mV
Input Bias Current	$\mathrm{V}_{\text {LILIM }}=0.1 \mathrm{~V}$		50	100	nA
Propagation Delay	(Note 2)		30		ns

Output Drivers

Output High - B SYNC OUT, B OFF	VDD $=5 \mathrm{~V}, \mathrm{I}$ LOAD $=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B SYNC OUT, B OFF	$\mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$		0.2	0.375	V
Rise \& Fall time - B SYNC OUT, B OFF	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$		20	50	ns
Output High - B ON	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - B ON	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		0.2	0.375	V
Fall Time - B ON	$\mathrm{C}_{\text {LOAD }}=2400 \mathrm{pF}($ Note 2)		45	80	ns
ONE SHOT Pulse Width		100	150	200	ns
DELAY TIMER Delay Time		20	35	55	ns

FLYBACK REGULATOR SECTION

Error Amplifier

Open Loop Gain		60	70		dB
Offset Voltage		-15		+15	mV
Output High	$\mathrm{I}_{\text {LOAD }}=5 \mu \mathrm{~A}$	2.8	3.0		V
Output Low	$\mathrm{I}_{\text {LOAD }}=25 \mu \mathrm{~A}$		0.4	0.7	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FLYBACK REGULATOR SECTION					
Current Limit Comparator					
Threshold		70	100	130	mV
Input Bias Current	$\mathrm{V}_{\text {LILIM }}=0.1 \mathrm{~V}$		50	100	nA
Propagation Delay			125	250	ns
Output Drivers					
Output High - F Gate	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - F Gate	$\mathrm{L}_{\text {LOAD }}=50 \mathrm{~mA}$		0.2	0.375	V
Rise \& Fall Time	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$		20	50	ns

HIGH VOLTAGE INVERTER SECTION

Oscillator					
Nominal Frequency		59	70	81	kHz
Discharge Current	$\mathrm{V}_{\mathrm{CT}}=2 \mathrm{~V}$	600	700	900	$\mu \mathrm{A}$
Peak Voltage		2.3	2.5	2.7	V
Valley Voltage		0.8	1	1.2	V
Output Drivers					
Output High - L GATE 1, 2	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=12 \mathrm{~mA}$	4.625	4.8		V
Output Low - L GATE 1, 2	$\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$		0.2	0.375	V
Rise \& Fall Time - L GATE 1, 2	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$		20	50	ns

Resonant threshold Detector

Threshold		0.75	1.1	1.45	V
Hysteresis		250	500	750	mV

Lamp Out Detect

Threshold		16	18	20	V
Under Voltage Detector					
Start Up Threshold		3.8	4.1	4.4	V
Hysteresis		150	300	450	mV

Logic Interface (On/Off, LON)

VIH		2.6			V
VIL				0.5	V
Input Bias Current	$\mathrm{VI}=3 \mathrm{~V}$		10	25	$\mu \mathrm{~A}$

Linear Regulator Section

Regulator Voltage (VDD)	HVDD $=12 \mathrm{~V}$	4.75	5.0	5.35	V
Regulator Source Current	External to device		10		mA
Drop Out Voltage	I HVDD $=1 \mathrm{~mA}$		30	90	mV
Drop Out Voltage	I HVDD $=5 \mathrm{~mA}$		125	275	mA
HVDD Input Voltage Range		5		18	V

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Bias Section	On/Off $=3 \mathrm{~V}, \mathrm{~L}_{\mathrm{ON}}=3 \mathrm{~V}$		0.45	0.6	mA
VDD Supply Current (No Load)	On/Off $=3 \mathrm{~V}, \mathrm{~L}_{\mathrm{ON}}=0 \mathrm{~V}$		200	350	$\mu \mathrm{~A}$
VDD Supply Current	On/Off $={ }^{\prime \prime} 0^{\prime \prime}, \mathrm{HVDD}=12 \mathrm{~V}$			10	$\mu \mathrm{~A}$
VDD Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.47	2.5	2.53	V
VREF Output Voltage	$\mathrm{I}_{\text {VREF }}=25 \mu \mathrm{~A}$		10	20	mV
VREF Load Regulation			20	30	mV
VREF Line Regulation		2.465	2.5	2.535	V
VREF Line, Load, Temp					

Note 1: Limits are guaranteed by 100% testing, sampling or correlation with worst case test conditions.
Note 2: Actual load is 1200 pF. The 2:1 transformer reflects an effective 2400 pF.

NOTE 1
R1, D3, Q2 ARE OPTIONAL AND ALLOWS A BATTERY VOLTAGE RANGE FROM +7 TO +28V. REMOVING THESE COMPONENTS AND CONNECTING DIRECTLY TO THE INPUT VOLTAGE ALLOWS +5.0 TO +18V.

Figure 1. Typical Application Schematic for the ML4876

FUNCTIONAL DESCRIPTION

The ML4876 consists of a PWM regulator, a lamp driver/ inverter, a linear regulator, a flyback regulator, and control circuits. This IC, in conjunction with external components, converts a DC battery voltage into the high voltage and high frequency ac signal required to start and drive miniature cold cathode fluorescent lamps. In addition it generates the DC voltage for the contrast requirements of LCD screens. A typical application circuit is shown in figure 1. Please refer to Application Note 32 for detailed application information beyond what is presented here.

Note: Please read the Power Sequencing section below prior to using the ML4876.

LAMP DRIVER

The lamp driver, sometimes referred to as a lamp inverter, is comprised of a PWM regulator and a Royer type inverter circuit to drive the lamp. The PWM regulator, in a buck configuration, controls the magnitude of the lamp current to provide the dimming capability. Figure 2 shows a simplified circuit to more easily illustrate the operation of the circuit.

Due to the presence of the buck inductor, L1, the circuit shown in figure 2 is essentially a current fed parallel loaded resonant circuit. Lm is the primary inductance of the output transformer, T 1 , which tunes with the resonant capacitor C_{R} to set the resonant frequency of the inverter. The oscillator frequency is always set lower than the natural resonant frequency to ensure synchronization. The current source IC models the current through the buck inductor L1.

Figure 2. Simplified Lamp Driver Circuit
The MOSFETs, Q4 and Q5 are alternately turned on with a constant 50% duty cycle signal (L GATE1, L GATE2) at one-half the frequency of the oscillator. In this way each transistor pulses, or excites, the resonant tank on each half cycle. The combination of these two signals appear across the primary winding of the output transformer as a sinusoidal waveform. This voltage is multiplied by the step-up turns ratio of the output transformer and impressed across the lamp.

The output transitions are controlled by feedback through the L RTD pin by sensing the voltage at the center tap of the output transformer. Each time this signal reaches the minimum resonant threshold detection point an internal clock pulse is generated to keep the svstem synchronized. Figure 3 shows some of these representative waveforms at the important nodes of the circuit.

Figure 3. Operating Waveforms of the Lamp Driver Section
The PWM regulator is comprised of a MOSFET (U2-A), inductor L1, and the gate control and drive circuitry as shown in figure 1. A signal with a constant pulse width of 150 nS is applied to the primary of the 2:1 pulse transformer T2, rectified by diode D2, and used to charge the gate capacitance of $\cup 2-A$, thereby turning it on. The turn off is controlled by discharging this capacitance through MOSFET U2-B. The pulse width of the signal on the gate of $\mathrm{U} 2-\mathrm{B}$ (B OFF) varies according to the amplitude of the feedback signal on LEA-, pin 7, which is proportional to the ac current flowing in the lamp. This feedback signal is developed by monitoring the current through resistor R6 in the common source connection of the inverter MOSFETs, Q4 and Q5. The lamp current, and therefore brightness, is adjusted by varying the voltage applied to R7, at the brightness adjust control point. Increasing this voltage decreases the brightness.

CONTRAST CONTROL GENERATOR

The contrast voltage generator is a separate regulator in a flyback configuration. In conjunction with the external transformer (T3), MOSFET (Q1), diode (D1), and assorted capacitors and resistors, it provides an adjustable DC output contrast voltage necessary to drive LCD screens. The voltage is adjusted by controlling the voltage applied to R5, at the contrast adjustment point.
The contrast voltage can be made either positive or negative simply by changing the connection of the external components. The schematic shown in figure 1 is connected for a negative voltage. Please refer to Application Note 32 for the circuit connection for a positive output voltage.

OSCILLATOR

The frequency of the oscillator in-the ML4876 is set by selecting the value of $C T$.
The following graph shows the oscillator frequency versus the value of CT. This nomograph may be used to select the appropriate value of CT to achieve the desired oscillator frequency.

LINEAR REGULATOR

A linear voltage regulator is provided to power the low voltage and low current control circuitry on the ML4876. This is typically used when there is no separate 5 volt supply available at the inverter board. For operation up to 18 volts the linear regulator is used by connecting the HVDD pin to the input battery voltage. For operation over 18 volts, a MOSFET, and a resistor (Q2 and R1, in figure 1) are connected as shown. The MOSFET is required to stand off the high voltage.

LAMP OUT DETECT

In those cases when there is no lamp connected, or the connection is faulty, the output voltage of the lamp driver circuit will tend to rise to a high level in an attempt to start the nonexistent lamp. The lamp out detect circuit on the ML4876 will detect this condition by sensing the center tap voltage on the primary of the output transformer, T1 on the L RTD pin. When this voltage exceeds 16 volts, an internal latch is set and the lamp driver goes into a shutdown mode. The logic control pin L ON must be cycled low, then high to reset the latch and return the lamp driver to the normal state.

LOGIC CONTROL

The ML4876 is controlled by a two logic inputs, L ON and ON/OFF. A logic level high on the LON pin enables just the lamp driver. A logic zero on the L ON pin disable the lamp driver only. A logic level high on the ON/OFF pin enable the complete circuit. A logic level low on the ON/OFF pin puts the circuit into a very low power state.

POWER SEQUENCING

It is important to observe correct power and logic input sequencing when powering up the ML4876. The following procedure must be observed to avoid damaging the device.

1. Apply the battery power to HVDD
2. Apply the VDD voltage (if HVDD is not used). With HVDD connected this voltage is supplied by the internal regulator on the ML4876.
3. Apply a logic high to the ON/OFF input. This will enable the internal linear regulator to ensure the VDD supply is on (when HVDD is used).
4. Apply a logic high to the LON input.

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4876CR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SSOP (R20)
ML4876ER	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Molded SSOP (R20)

Diffferentiai Drive LCD Backiight with Contrast Evaluation Kit

GENERAL DESCRIPTION

The ML4876 is a cold cathode fluorescent lamp (CCFL) controller featuring dimming control and contrast voltage generation. It is commonly used to power the entire LCD display found in many handheld instruments. This evaluation board enables the designer to explore the capabilities of the circuit and determine its suitability for a current or new design.
The printed circuit board is miniaturized using surface mount components for space efficiency, and can be readily interfaced to most systems. The board measures $0.65^{\prime \prime} \mathrm{W} \times 5.31^{\prime \prime} \mathrm{L} \times 0.235^{\prime \prime} \mathrm{H}$ including the tallest component when assembled with the optional contrast/ dimming potentiometers and switches. The board can be shortened to $4^{\prime \prime}$ by cutting off the control section.

FEATURES

■ Operates Over a 5 to 20 V Supply Range

- Efficiency Greater than 90\%
- Differential Lamp Drive Improves Dimming Range
- Negative Contrast Voltage output (0 to -20V)
- Capable of Driving Lamp Up to 5W
- Low Profile, High Density PC Board Layout

KIT COMPONENTS

- ML4876 User's guide
- ML4876 Data Sheet
- A fully functional evaluation board
- Application Notes 26 and 32
- Miniature Fluorescent Lamp
- PCB Layout Gerber File

BLOCK DIAGRAM

Portable PC and PCMCIA Power Controller

GENERAL DESCRIPTION

The ML4880 Portable PC and PCMCIA Power Controller is a complete solution for DC/DC power conversion for portable computing systems with single or multiple PCMCIA slots. A complete Pulse Frequency Modulated (PFM) power conversion and management system can be realized with the addition of one of Micro Linear's Backlight and Contrast Controllers (ML4864, ML4874, or ML4876).
The device provides two synchronous buck converters to implement mixed voltage systems and a flyback converter for 12 V VPP generation for PCMCIA. The flyback architecture enables generation of high currents $(150 \mathrm{~mA}$ or more per slot) on the 12 V bus for multiple slot PCMCIA applications.
Each regulator can be independently switched off to fully isolate the load from the power supply. The PFM architecture will automatically adjust switching frequency at light loads in order to maintain power conversion efficiencies in excess of 90%. Overall power conversion efficiencies are greater than 90% over an output power range of almost 3 decades (50 mW to 33 W). High switching frequencies allow use of small external components, reducing power supply size and cost.

FEATURES

- Regulation to $\pm 3 \%$ maximum: provides 2% PCMCIA switch matrix margin
- Two synchronous buck converters for $3.3 / 3 \mathrm{~V}, 5 \mathrm{~V}$ generation, and a flyback for high current, 12 V generation from 5.5 V to 18 V input
- Regulator power conversion efficiencies $>90 \%$ over 3 decades (5 mA to 2 A) of output current
- Pulse Frequency Modulation for high efficiency operation
- Independent regulator shutdown for full load isolation
- Operation up to 300 kHz
- Adjustable current limit
- Wide input voltage range (5.5 V to 18 V)
- Micropower operation ($\mathrm{l}_{\mathrm{Q}}<300 \mu \mathrm{~A}$)

BLOCK DIAGRAM

PIN CONFIGURATION

ML4880
24-Pin SOIC (S24W)

PIN DESCRIPTION

PIN\#	NAME	FUNCTION	PIN\#	Name	FUNCTION
1	ICB	Charge pump, output 1B	13	OUT1A	P-channel drive, regulator A
2	ICA	Charge pump, output 1A	14	OUT2A	N -channel drive, regulator A
3	CSC	Current sense, regulator C	15	VLDO	Linear regulator output
4	CSA	Current sense, regulator A	16	$\mathrm{V}_{\text {IN }}$	Power supply input voltage
5	CSB	Current sense, regulator B	17	OUT1C	N -channel drive, regulator C
6	GND	Ground	18	SDB	Shutdown regulator B
7	$V_{\text {BIAS }}$	Bias voltage	19	OUT1B	P-channel drive, regulator B
8	FDBK B	Feedback node, buck regulator B	20	OUT2B	N -channel drive, regulator B
9	FDBK A	Feedback node, buck regulator A	21	PWR GNDC	Power Ground, regulator C
10	SDC	Shutdown regulator C	22	PWR GNDB	Power Ground, regulator B
11	SDA	Shutdown regulator A	23	PWR GNDA	Power Ground, regulator A
12	FDBK C	Feedback node, flyback regulator	24	IBS	Charge pump capacitor input

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4880ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$24-$ PIN SOIC (S24W)

High Efficiency Low Ripple Boost Regulator

GENERAL DESCRIPTION

The ML4890 is a high efficiency, PFM (Pulse Frequency Modulation), boost switching regulator connected in series with an integrated LDO (Low Dropout Regulator) that incorporates "Silent Switcher"TM technology. This technique incorporates a patented tracking scheme to minimize the voltage drop across the LDO and increase the total efficiency of the regulator beyond that which can be obtained by using a descrete external LDO regulator.
The ML4890 is designed to convert multiple cell battery inputs to regulated output voltages for integrated circuits and is ideal for portable communications equipment that cannot tolerate the output voltage ripple normally associated with switching regulators.
An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency.

FEATURES

- Incorporates "Silent Switcher"TM technology to deliver very low output voltage ripple ($<5 \mathrm{mV}$)
■ Guaranteed full load start-up and operation at 1.0 V input and low operating quiescent current $(<100 \mu \mathrm{~A})$ for extended battery life
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching FETs
- $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3 V output versions

BLOCK DIAGRAM

Patent Pending

*Optional

PIN CONNECTION

ML4890-5/-3/-T
 ©-Pin SOIC (S08)

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	VIN	Battery input voltage
2	V $_{\text {REF }}$	200 mV reference pin
3	GND	Analog signal ground
4	V $_{\text {OUT }}$	LDO linear regulator output
5	V $_{\text {BOOST }}$	Boost regulator output for connection of an output filter capacitor

PIN NO.	NAME	FUNCTION
6	V $_{\mathrm{L}}$	Boost inductor connection
7	SHDN	Pulling this pin to $\mathrm{V}_{\text {IN }}$ through an external resistor shuts down the regulator, isolating the load from the input
8	PWR GND Return for the NMOS boost transistor	

ORDERING INFORMATION

PART NUMBER	OUTPUT VOLTAGE	TEMPERATURE RANGE	PACKAGE
ML4890CS-T	3.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4890CS-3	3.3 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4890CS-5	5.0 V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (SO8)
ML4890ES-T	3.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4890ES-3	3.3 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-$ Pin SOIC (SO8)
ML4890ES-5	5.0 V	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-$ Pin SOIC (SO8)

Low Ripple Boost Regulator Evaluation Kit

GENERAL DESCRIPTION

The ML4890EVAL kit provides a convenient vehicle to evaluate the ML4890 low ripple boost regulator IC. The kit contains a fully assembled circuit board and all of the necessary documentation to quickly evaluate a typical application circuit. The board was designed to demonstrate performance and to illustrate critical layout practices necessary for reliable operation of the circuit.

The ML4890 is complete solution for DC to DC conversion in 1 to 3 cell battery powered systems. The circuit is ideal in applications requiring high effeciency, low ripple and a minimum number of external components.

The boost IC is capable of running with input voltages as low as 0.95 V and is available in four different output versions: a 3 V output (ML4890-T), a 3.3 V output (ML4890-3.3), a 5V output (ML4890-5), or adjustable output versions (ML4790 and ML4990).

FEATURES

■ High Efficiency

- Low Output Ripple Voltage

■ Minimal External Components

- Micro Power Operation
- Shutdown Current less than $8 \mu \mathrm{~A}$
- $3 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable Output Versions

KIT COMPONENTS

The evaluation package contains the following items:

- ML4890EVAL User's guide

■ ML4890 Data Sheet

- ML4890 Evaluation Board

FIGURE 1: ML4890 Evaluation Board Schematic

Ádjustabie Output Low Voitage Boost Regulator with Detect

GENERAL DESCRIPTION

The ML4961 is a boost regulator designed for DC to DC conversion in 1 to 3 cell battery powered systems. The combination of BiCMOS process technology, internal synchronous rectification, variable frequency operation, and low supply current make the ML4961 ideal for 1 cell applications. The ML4961 is capable of start-up with input voltages as low as 1 V , and the output voltage can be set anywhere between 2.5 V and 6 V by an external resistor divider connected to the SENSE pin.

An integrated synchronous rectifier eliminates the need for an external Schottky diode and provides a lower forward voltage drop, resulting in higher conversion efficiency. In addition, low quiescent battery current and variable frequency operation result in high efficiency even at light loads. The ML4961 requires a minimum number of external components to build a very small adjustable regulator circuit capable of achieving conversion efficiencies in excess of 90%.

The circuit also contains a $\overline{\text { RESET }}$ output which goes low when the IC can no longer function due to low input voltage, or when the DETECT input drops below 200 mV .

FEATURES

- Guaranteed full load start-up and operation at 1 V input
- Pulse Frequency Modulation and Internal Synchronous Rectification for high efficiency
- Minimum external components
- Low ON resistance internal switching FETs
- Micropower operation

■ Adjustable output voltage (2.5 V to 6 V)

BLOCK DIAGRAM

ML4961
8-Pin SOIC (S08)

PIN DESCRIPTION

PIN NO.	NAME	FUNCTION
1	$V_{I N}$	Battery input voltage
2	GND	Analog signal ground
3	SENSE	Programming pin for setting the output voltage
4	DETECT	Pulling this pin below $V_{\text {REF, causes }}$ the $\overline{\text { RESET }}$ pin to go low

PIN	NOME	FUNCTION
5	V $_{\text {OUT }}$	Boost regulator output
6	V $_{\mathrm{L}}$	Boost inductor connection 7$\overline{\text { RESET }}$
Output goes low when regulation cannot be achieved, or when DETECT goes below 200mV		
8	PWR GND Return for the NMOS output transistor	

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functionai device operation is not implied.
Voltage on any pin
Peak Switch Current, $\mathrm{I}_{\text {(PEAK) }}$.. 2A
Average Switch Current, $\mathrm{I}_{\text {(AVG) }} \ldots \ldots .500 \mathrm{~mA}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec .) $+260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$... $110^{\circ} \mathrm{C} / \mathrm{W}$

OPERATING CONDITIONS

Temperature Range	
ML4961CS	.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4YbIES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4961IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{\text {IN }}$ Operating Range	
ML4961CS.....	1.0 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
ML4961ES, ML4	1.1V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ML4961CS ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ML4Y6IES $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

IN Operating Range
ML4961CS.................
1.0 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
1.1 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS
Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=$ Operating Voltage Range, $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
Supply					
$\mathrm{V}_{\text {IN }}$ Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$		45	55	$\mu \mathrm{A}$
$\mathrm{V}_{\text {Out }}$ Quiescent Current			3	5	$\mu \mathrm{A}$
V_{L} Quiescent Current				1	$\mu \mathrm{A}$
PFM Regulator					
Pulse Width ($\mathrm{T}_{\text {ON }}$)		9	10	11	$\mu \mathrm{s}$
SENSE Comparator Threshold Voltage (VEENSE)		194	200	206	mV
Load Regulation	See Figure 1 $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 25 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}} \leq 135 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.85 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.15 \\ & 5.15 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Undervoltage Lockout Threshold			0.85	0.95	V

RESET Comparator

DETECT Threshold		190	200	210	mV
DETECT Bias Current		-100		100	nA
$\overline{\text { RESET Output High Voltage }\left(\mathrm{V}_{\mathrm{OH}}\right)}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}-0.2$			V
$\overline{\text { RESET Output Low Voltage }\left(\mathrm{V}_{\mathrm{OL}}\right)}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.2	V

Figure 1. PFM Regulator Block Diagram.

Figure 2. PFM Regulator Block Diagram.

FUNCTIONAL DESCRIPTION

The ML4961 combines Pulse Frequency Modulation (PFM) and synchronous rectification to create a boost converter that is both highiy efficient and simpie to use. A PFM regulator charges a single inductor for a fixed period of time and then completely discharges before another cycle begins, simplifying the design by eliminating the need for conventional current limiting circuitry. Synchronous rectification is accomplished by replacing an external Schottky diode with an on-chip PMOS device, reducing switching losses and external component count.

REGULATOR OPERATION

A block diagram of the boost converter is shown in Figure 2. The circuit remains idle when $\mathrm{V}_{\text {OUT }}$ is at or above the desired output voltage, drawing $45 \mu \mathrm{~A}$ from V_{IN}, and $8 \mu \mathrm{~A}$ from $V_{\text {OUT }}$ through the feedback resistors R1 and R2. When $\mathrm{V}_{\text {OUt }}$ drops below the desired output level, the output of amplifier A1 goes high, signaling the regulator to deliver charge to the output. Since the output of amplifier A2 is normally high, the flip-flop captures the A1 set signal and creates a pulse at the gate of the NMOS transistor Q1. The NMOS transistor will charge the inductor L1 for $10 \mu \mathrm{~s}$, resulting in a peak current given by:

$$
\begin{equation*}
\mathrm{L}_{(\mathrm{PEAK})}=\frac{\mathrm{T}_{\mathrm{ON}} \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{~L} 1} \approx \frac{10 \mu \mathrm{~s} \times \mathrm{V}_{\mathrm{IN}}}{\mathrm{~L} 1} \tag{1}
\end{equation*}
$$

For reliable operation, L 1 should be chosen so that $\mathrm{I}_{\text {L(PEAK) }}$ does not exceed 2A.

When the one-shot times out, the NMOS FET releases the V_{L} pin, allowing the inductor to fly-back and momentarily charge the output through the body diode of PMOS transistor Q2. But, as the voltage across the PMOS transistor changes polarity, its gate will be driven low by the current sense amplifier A2, causing Q2 to short out its body diode. The inductor then discharges into the load through Q2. The output of A2 also serves to reset the flipflop and one-shot in preparation for the next charging cycle. A2 releases the gate of Q2 when its current falls to zero. If $\mathrm{V}_{\text {OUT }}$ is still low, the flip-flop will immediately initiate another pulse. The output capacitor (C1) filters the inductor current, limiting output voltage ripple. Inductor current and one-shot waveforms are shown in Figure 3.

Figure 3. PFM Inductor Current Waveforms and Timing.

$\overline{\text { RESET }}$ COMPARATOR

An additional comparator is provided to detect low V_{IN}, or any other error condition that is important to the user. The inverting input of the comparator is internally connected to $\mathrm{V}_{\text {REF, }}$ while the non-inverting input is provided externally at the DETECT pin. The output of the comparator is the RESET pin, which swings from $\mathrm{V}_{\text {OUT }}$ to GND when an error is detected.

DESIGN CONSIDERATIONS

INDUCTOR

Selecting the proper inductor for a specific application usually involves a trade-off between efficiency and maximum output current. Choosing too high a value will keep the regulator from delivering the required output current under worst case conditions. Choosing too low a value causes efficiency to suffer. It is necessary to know the maximum required output current and the input voltage range to select the proper inductor value. The maximum inductor value can be estimated using the following formula:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{IN(MIN)}}{ }^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MIN})} \times \eta}{2 \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})}} \tag{2}
\end{equation*}
$$

where η is the efficiency, typically between 0.8 and 0.9. Note that this is the value of inductance that just barely delivers the required output current under worst case conditions. A lower value may be required to cover inductor tolerance, the effect of lower peak inductor currents caused by resistive losses, and minimum dead time between pulses.

Another method of determining the appropriate inductor value is to make an estimate based on the typical performance curves given in Figures 4 and 5. Figure 4 shows maximum output current as a function of input voltage for several inductor values. These are typical performance curves and leave no margin for inductance and ON-time variations. To accommodate worst case conditions, it is necessary to derate these curves by at least 10% in addition to inductor tolerance. Interpolation between the different curves will give a reasonable starting point for an inductor value.

Figure 4. Output Current vs. Input Voltage.

Figure 5. Typical Efficiency as a Function of V_{IN}.

Figure 5 shows efficiency under the conditions used to create Figure 4. It can be seen that efficiency is mostly independent of input voltage and is closely related to inductor value. This illustrates the need to keep the inductor value as high as possible to attain peak system efficiency. As the inductor value goes down to $10 \mu \mathrm{H}$, the efficiency drops to between 70% and 75%. With $56 \mu \mathrm{H}$, the efficiency exceeds 90% and there is little room for improvement. At values greater than $100 \mu \mathrm{H}$, the operation of the synchronous rectifier becomes unreliable because the inductor current is so small that it is difficult for the control circuitry to detect.
After the appropriate inductor value is chosen, it is necessary to find the minimum inductor current rating required. Peak inductor current is determined from the following formula:

$$
\begin{equation*}
L_{(\text {PEAK })}=\frac{T_{\mathrm{ON}(M A X)} \times V_{\mathrm{IN}(M A X)}}{\mathrm{L}_{\mathrm{MIN}}} \tag{3}
\end{equation*}
$$

When comparing various inductors, it is important to keep in mind that suppliers use different criteria to determine their ratings. Many use a conservative current level, where inductance has dropped to 90% of its normal level. In any case, it is a good idea to try inductors of various current ratings with the ML4961 to determine which inductor is the best choice. Check efficiency and maximum output current, and if a current probe is available, look at the inductor current to see if it looks like the waveform shown in Figure 3. For additional information, see Application Note 29.

Suitable inductors can be purchased from the following suppliers:

Coilcraft	$(708) 639-6400$
Coiltronics	$(407) 241-7876$
Dale	$(605) 665-9301$
Sumida	$(708) 956-0666$

OUTPUT CAPACITOR

The choice of output capacitor is also important, as it controls the output ripple and optimizes the efficiency of the circuit. Output ripple is influenced by three capacitor parameters: capacitance, ESR, and ESL. The contribution due to capacitance can be determined by looking at the change in capacitor voltage required to store the energy delivered by the inductor in a single charge-discharge cycle, as determined by the following formula:

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{T}_{\mathrm{ON}}^{2} \times \mathrm{V}_{\mathrm{IN}}^{2}}{2 \times \mathrm{L} \times \mathrm{C} \times\left(\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{IN}}\right)} \tag{4}
\end{equation*}
$$

For a 2.4 V input, and 5 V output, a $27 \mu \mathrm{H}$ inductor, and a $47 \mu \mathrm{~F}$ capacitor, the expected output ripple due to capacitor value is 87 mV .
Capacitor Equivalent Series Resistance (ESR) and Equivalent Series Inductance (ESL), also contribute to the output ripple due to the inductor discharge current waveform. Just after the NMOS transistor turns off, the output current ramps quickly to match the peak inductor current. This fast change in current through the output capacitor's ESL causes a high frequency (5 ns) spike that can be over 1 V in magnitude. After the ESL spike settles, the output voltage still has a ripple component equal to the inductor discharge current times the ESR. This component will have a sawtooth shape and a peak value equal to the peak inductor current times the ESR. ESR also has a negative effect on efficiency by contributing I -squared R losses during the discharge cycle.
An output capacitor with a capacitance of $100 \mu \mathrm{~F}$, an ESR of less than 0.1Ω, and an ESL of less than 5 nH is a good general purpose choice. Tantalum capacitors which meet these requirements can be obtained from the following suppliers:

$$
\begin{array}{ll}
\text { Matsuo } & \text { (714) 969-2491 } \\
\text { Sprague } & (603) 224-1961
\end{array}
$$

If ESL spikes are causing output noise problems, an EMI filter can be added in series with the output.

INPUT CAPACITOR

Unless the input source is a very low impedance battery, it will be necessary to decouple the input with a capacitor with a value of between $47 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$. This provides the benefits of preventing input ripple from affecting the ML4961 control circuitry, and it also improves efficiency by reducing I-squared R losses during the charge and discharge cycles of the inductor. Again, a low ESR capacitor (such as tantalum) is recommended.

SETTING THE OUTPUT VOLTAGE

The adjustable output can be set to any voltage between 2.5 V and 6 V by connecting a resistor divider to the SENSE pin as shown in the block diagram. The resistor values R_{1} and R_{2} can be calculated using the following equation:

$$
\begin{equation*}
V_{\text {OUT }}=0.2 \times \frac{\left(R_{1}+R_{2}\right)}{R_{2}} \tag{5}
\end{equation*}
$$

The value of R_{2} should be $40 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{1} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{2} \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{0.2}-1\right) \tag{6}
\end{equation*}
$$

It is important to note that the accuracy of these resistors directly affects the accuracy of the output voltage. The SENSE pin threshold variation is $\pm 3 \%$, and the tolerances of R_{1} and R_{2} will add to this to determine the total output variation.
In some applications, input noise may cause output ripple to become excessive due to "pulse grouping", where the charge-discharge pulses are not evenly spaced in time. In such cases it may be necessary to add a small 20 pF to 100 pF ceramic feedforward capacitor (C_{FF}) from the V_{IN} pin to the SENSE pin.

SETTING THE RESET THRESHOLD

To use the $\overline{\text { RESET }}$ comparator as an input voltage monitor, it is necessary to use an external resistor divider tied to the DETECT pin as shown in the block diagram. The resistor values R_{A} and R_{B} can be calculated using the following equation:

$$
\begin{equation*}
V_{\mathrm{IN}(\mathrm{MIN})}=0.2 \times \frac{\left(R_{A}+R_{B}\right)}{R_{B}} \tag{7}
\end{equation*}
$$

The value of R_{B} should be $100 \mathrm{k} \Omega$ or less to minimize bias current errors. R_{A} is then found by rearranging the equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}} \times\left(\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}{0.2}-1\right) \tag{8}
\end{equation*}
$$

LAYOUT

Good PC board layout practices will ensure the proper operation of the ML4961. Important layout considerations include:

- Use adequate ground and power traces or planes
- Keep components as close as possible to the ML4961
- Use short trace lengths from the inductor to the V_{L} pin and from the output capacitor to the $\mathrm{V}_{\text {OUT }}$ pin
- Use a single point ground for the ML4961 ground pins, and the input and output capacitors

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4961CS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC (S08)
ML4961ES	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8-$ Pin SOIC (S08)
ML4961IS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8-\mathrm{Pin}$ SOIC (S08)

Quality and Reliability

Section 8

Quality and Reliability 8-1
Appendix A - Failure Rate Calculation 8-9
Appendix B — Radiation Hardness of 12V Bipolar Process 8-11

Quality and Reliability

Micro Linear is dedicated to excellence in its people and products. By adopting a policy of continuous improvement, we pledge to provide defect free products and services which meet or exceed our customer's expectation.

TOTAL QUALITY MANAGEMENT (TQM)

TQM is an operating methodology focused on continuous improvement of employees, products, manufacturing techniques and services to achieve our mission " 100% Quality, 100\% On Time" for our customers. The meaning of the word Customer at Micro Linear starts from within the company.

Under the TQM philosophy, quality is built into every step of the manufacturing process from design to product qualification; from receiving to shipping. The TQM program at Micro Linear Corporation is a detailed program involving engineering and manufacturing to achieve the highest quality linear integrated circuits available.

QUALITY SYSTEM

The system is design to meet the requirements of:

- ISO 9002 Quality Systems, Model for Quality Assurance in Production and Installation
- MIL-STD-883 Test Methods and Procedures for Microelectronics
- MIL-I-38535 Integrated Circuits (Microcircuits) Appendix A Manufacturing, General Specification
- MIL-M-38510 Microcircuits, General Specification for (superseded by MIL- I-38535, Appendix A)
- MIL-Q-9858, Quality Program Requirements
- MIL-STD-45662 Calibration System Requirements
- MIL-I-45208 Inspection System Requirements
- MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes
- Other requirements from customers

INTERNAL QUALITY AUDITS

The internal quality audit system requirements are according to procedure as defined in ISO 9000. It ensures that production and quality activities comply with established procedures, and regularly measures the effectiveness of the quality system. Internal quality audits are scheduled on the basis of the status and importance of
the activity to be audited, and the result of the audits is recorded and brought to the attention of the functional manager of the area audited. Follow-up audit activities are performed to verify the implementation and effectiveness of the corrective action taken.

The audit areas include Calibration, Fab, Assembly, Test, Receiving Inspection, Document Control, Shipping Inspection, Finished Goods, MPC, Contract Review, Purchasing, ESD, Particle Counts.

CORRECTIVE ACTION COMMITTEE (CAC)

The Corrective Action Committee (CAC) is comprised of representatives from Manufacturing, Process Engineering, Product Engineering, and Quality and Reliability at a minimum who is responsible for assuring that the corrective and preventive actions are implemented. The vehicles for defining the corrective and preventive actions at Micro Linear are:

- Discrepant Material Report (DMR) generated when non conformance occurs on material at any manufacturing operation.
- Customer Material Return (CMR) generated when material is returned for nonconformance occurring in shipped material.
- Corrective Action Request (CAR) generated when any employee sees a need for corrective action to take place or to document customer complaints.

MANAGEMENT REVIEW

The whole quality system is review at least once a year by the quality department to ensure continuing compliance to the requirements mentioned above.
Management reviews the Quality Indices reports as well as the Corrective Actions reports against Micro Linear's goals and objectives every quarter. The Quality Indices report includes Return Rate, AOQ Electrical and Mechanical, Reliability Data by process, Process Capabilities (Cpk) of critical parameters from each wafer fabrication facility and assembly, Vendor Lot Rejection Rate for each subcontractor, Visual Defect Density of each Foundry, and the Internal Quality Audit performance. The Corrective Actions report summarizes the corrective and preventive actions taken from DMRs, CMRs, and CARs.

DOCUMENT CONTROL

All company documents for procedures, specifications, drawings, travelers, flow charts, schematics, etc. that define customer requirements, raw material requirements, design, manufacture, and testing of products are controlled by a Document Control organization within the Micro Linear's Quality Department.

SUPPLIER CONTROL

Control of the quality of the incoming material is critical to the success of Micro Linear. Under the TQM philosophy, Micro Linear has an audit program of its suppliers of Class 1 material defined by those directly associated with the final products. Such audit is carried out on a defined frequency and performed by both manufacturing and quality personnel. Information gathered from the audit is reviewed with the supplier to incorporate programs to improve the quality of the material provided to Micro Linear.

PRODUCT IDENTIFICATION AND TRACEABILITY

All units are marked with unique lot numbers. These lot numbers provide complete traceability all the way to wafer fab as well as assembly and test.
Micro Linear considers traceability to be essential for good engineering control and additional insurance for its customers.

PROCESS CONTROL

All critical process nodes as well as test yield data are closely monitored and analyzed using statistical tools and techniques such as process capability (Cpk), Trend Chart, Paretto Analysis, etc. The data is also used for verifying the effectiveness of the corrective actions and to help focusing on areas that needs improvement under the TQM philosophy of continuous improvement.

MAJOR CHANGE NOTIFICATION

Micro Linear reviews all process, product, and package changes. All changes with possible impact are submitted for re-qualification which may include electrical, mechanical, and/or thermal characterization, in accordance to Micro Linear's Reliability program. The system is in place to notify customers with test data in accordance with MIL-M-38510.

RELIABILITY PROGRAM

Micro Linear's Reliability Program consistent with those of other semiconductor manufacturers utilizes various accelerated life tests as tools for establishing reliability status and progress. These tests are undertaken to identify infant mortality and wear-out failure mechanisms for specific or generically similar device families.
Micro Linear's Reliability program has three components: Qualification, Quality Conformance and Reliability Audit. Each design/process technology set, each wafer fabrication facility, and each assembly location by package type is initially qualified. Periodic re-evaluation (Quality Conformance Testing) is performed, thereafter, to evaluate the on-going reliability of product and processes. In addition, Micro Linear has the third component Reliability Audit named ACT (Advanced Conformance Testing) to ensure the reliability of products shipped to customers. ACT defines auditing of samples from each process and wafer fab facility and subjecting them to an accelerated life testing. Plan for each program is summarized below:

PROGRAM	PLAN
Qualification Testing	
- New Product	
- Design/Process Set	
- Wafer Fabrication Facility	see Table 1
- Assembly Location	see Table 2
- Major Change	see Table 3
Quality Conformance Testing - Wafer Fabrication Facility by Design/Process Set	Every six month
- Assembly by Package	see Table 1
Advance Conformance Testing (ACT) - Wafer Fabrication Facility by Design/Process Set	see Table 3
Note: "PLAN" are the appropriate stresses and tests determined by a	
qualification committee.	

TESTING AND CALIBRATION

Micro Linear has invested in the latest "state-of-the-art" analog testers to achieve the most complete and thorough parametric testing of integrated circuits in the industry. Data sheets provide the customer a precise listing of parameters which are 100% tested.
The calibration system is in compliance with MIL-STD45662 Calibration Systems Requirements.

CUSTOMER RETURNS

A formal program exists to record, analyze and take appropriate action on all returns. The customer is shortly notified with the initial test result. When needed, a report is generated and sent to the customer stating our findings and corrective actions to prevent re-occurrence.

ESD (ELECTRO STATIC DISCHARGE)

All semiconductor devices are sensitive to Electro Static Discharge (ESD) to some degree. For this reason a very strict control on handling and packaging are observed through all the employees and facility areas that handle or test semiconductor devices.

Strong emphasis is put on the sensitivity of Micro Linear products to ESD, from design, lay-out and process perspectives. All the products are fully characterized to MIL-STD-883, Method 3015.

TABLE 1

STRESS/TEST	METHOD	CONDITION	QUANTITY
Life Test	Mil-Std-883 Method 1005	1000 hrs @ $125^{\circ} \mathrm{C}$	77
ESD Characterization	Mil-Std-883 Method 3015	Human Body Model	min. 3

TABLE 2

STRESS/TEST	METHOD	CONDITION	QUANTITY
Life Test	Mil-Std-883 Method 1005	1000 hrs @ $125^{\circ} \mathrm{C}$	77
HAST		50 hrs @ $130^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	45
Autoclave	QAP 36004	$\begin{gathered} 168 \text { hrs @ } \\ 121^{\circ} \mathrm{C}, 15 \mathrm{psi} \end{gathered}$	45
Temperature Cycling	Mil-Std-883 Method 1010	$\begin{gathered} 1000 \text { cycles @ } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	45
Thermal Shock	Mil-Std-883 Method 1011	$\begin{gathered} 200 \text { cycles @ } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	45
High Temperature Storage	Mil-Std-883 Method 1010	$1000 \mathrm{hrs} @ 150^{\circ} \mathrm{C}$	45

TABLE 3

STRESS/TEST	METHOD	CONDITION	QUANTITY
Life Test	Mil-Std-883 iviennod iô05	1000 hrs @ $125^{\circ} \mathrm{C}$	77
HAST		50 hrs @ $130^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	45
Autoclave (*)	QAP 36004	$\begin{gathered} 168 \mathrm{hrs} @ \\ 121^{\circ} \mathrm{C}, 15 \mathrm{psi} \end{gathered}$	45
Temperature Cycling	Mil-Std-883 Method 1010	$\begin{gathered} 1000 \text { cycles @ } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	45
Thermal Shock (${ }^{*}$)	Mil-Std-883 Method 1011	$\begin{gathered} 200 \text { cycles @ } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	45
High Temperature Storage	$\begin{aligned} & \text { Mil-Std-883 } \\ & \text { Method } 1010 \end{aligned}$	1000 hrs @ $150^{\circ} \mathrm{C}$	45
Physical Dimensions	Mil-Std-883 Method 2016		15
Solderability	Mil-Std-883 Method 2003	22 leads	3
Resistance to Solder Heat	Mil-Std-750	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$.	32
Resistance to Solvents	Mil-Std-883 Method 2015		4
External Visual Inspection	QAP 30038		15
Lead Integrity	Mil-Std-883 Method 2004		3

Note: (*) Qualification testing only.
TABLE 4

STRESS/TEST	METHOD	CONDITION	QUANTITY
Burn-in Test	QAP 34004	48 hrs $@ 125^{\circ} \mathrm{C}$	125

FOUNDRY CONTROL SYSTEM

CORRECTIVE ACTION PROGRAM

TYPICAL MOLDED PACKAGE ASSEMBLY FLOW

FLOW CHART SYMBOLS

PRODUCTION INSPECTION

QUALITY INSPECTION/

MONITOR

Store
INVENTORY

APPENDIX A: FAILURE RATE CALCULATIONS

In order to predict the rate at which product will fail, it is necessary to accelerate the life of the product. This is most commonly done by a temperature and/or voltage stress, a process known as burn-in. The equation for both stresses is exponential, hence large acceleration factors can be achieved. In our studies, only temperature was used in the acceleration equation; the devices were biased at nominal voltages. The equation is shown below. It is known as the Arrhenius Reaction Rate Equation, named for the man who modeled the relationship between temperature and the relationship between temperature and the chemical reaction property of materials.

ARRHENIUS REACTION RATE EQUATION

$$
\mathrm{Af}=\operatorname{Exp}\left[\frac{\mathrm{Ea}}{\mathrm{~K}}\left(\frac{1}{\mathrm{~T} 1}-\frac{1}{\mathrm{~T} 2}\right)\right]
$$

Af: Acceleration Factor

Ea: Activation Energy (in electron volts)
K: Boltzmanns Constant (8.62×10^{-5})
T1: Temperature of System Operation $\left({ }^{\circ} \mathrm{K}\right)$
T2: Temperature of Life Test (${ }^{\circ} \mathrm{K}$)
Burn-in when run for 1000 hours, is call "life test." Interim readouts normally occur at 168 and 500 hours. The hypothesis is that a "bathtub curve" will result. This curve, shown below, illustrates a device's failure rate versus time. Certain manufacturing defects have a tendency to cause failures early in the life of a device (infant mortality). The failure rate associated with these defects can be accelerated by applying stresses, such as temperature and voltage, which do not appreciably affect the normal failure rates or wear out mechanisms.

BATHTUB CURVE

ACTIVATION ENERGIES

In order to calculate the acceleration factor, the activation energies for various failure modes encountered in the semiconductor industry are required. Initially, failure modes are assumed based on industry experience. As failures occur, they are rigorously analyzed and the failure modes then used to determine which activation energies are appropriate for determining failure rates. The following table describes the most common failure modes and their activation energies.

Table 1.

FAILURE MECHANISM	Ea	STRESS
Oxide Defects	0.3 eV	High Voltage Op Life
Contamination	1.0 eV	High Voltage Bias
Silicon Defects	0.5 eV	High Voltage
Metal Line Electromigration	0.5 eV	High Voltage Op Life
Contact Electromigration	0.9 eV	High Voltage Op Life
Maskıng Defects Assembly Defects	0.5 eV	High Temperature Storage Op Life
Microcracks	N / A	Temperature Cycling
Short Channel Charge Trapping	-0.06 eV	Low Voltage High Voltage Op Life

ACCELERATION FACTORS

Once the activating energy is determined for a given failure mechanism, the acceleration factor can be calculated using the Arrhenius equation. The following table lists some of the common activation energies and its associated acceleration factors between different ambient temperature.

Table 2.

Est. $\mathbf{T}_{\mathbf{J}}$ Accelerated Temperature	Estimated $\mathrm{T}_{\mathbf{J}}$ Typical application Temp.				Activation Energy (eV)
	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{4 0 ^ { \circ } \mathbf { C }}$	$\mathbf{5 5}^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$	$\mathbf{2}$
$125^{\circ} \mathrm{C}$	133	52	22	10	0.5
$150^{\circ} \mathrm{C}$	315	124	53	24	
$125^{\circ} \mathrm{C}$	941	255	78	26	0.7
$150^{\circ} \mathrm{C}$	3142	851	260	88	
$125^{\circ} \mathrm{C}$	6655	1241	270	67	0.9
$150^{\circ} \mathrm{C}$	31368	5852	1273	316	

FAILURE RATES

At Micro Linear, failure rates are generally stated at 60\% confidence level using Chi square statistic per the following formula.

$$
\lambda_{\mathrm{MAX}}=\frac{\chi_{1-\alpha}^{2}[\text { with } \mathrm{df}=2(r+1)]}{2 \mathrm{t}}
$$

where: $\lambda_{\text {MAX }}=$ maximum failure rate
$\chi^{2}=$ chi square distribution
$r=$ number of failures
df $=$ degree of freedom
t = total number of test hours
$\alpha \quad=$ statistical error expected in estimate.
For 60% confidence level, $\alpha=0.4$ or $1-\alpha=0.6$
Selected values of Chi Square distribution are listed in Table 3.

Table 3. Percentiles of the Chi Square Distribution. (Values of chi ${ }^{2}$ corresponding to certain selected probabilities).

		$\mathbf{6 0 \%}$ CONFIDENCE LEVEL	$\mathbf{9 0 \%}$ CONFIDENCE LEVEL
PROBABILITY IN \%		$\mathbf{6 0 . 0}$	$\mathbf{9 0 . 0}$
$\mathbf{1 - \alpha}$		$\mathbf{0 . 6 0}$	$\mathbf{0 . 9 0}$
df	TOTAL		
$\mathbf{1}$	FAILURES		
2		0.708	2.71
3		1.830	4.61
4		2.950	6.25
5		4.040	7.78
6	2	5.130	9.24
7		6.210	10.60
8	3	7.280	12.00
9		8.350	13.40
10	4	9.410	14.70
11		10.500	16.00
12	5	11.500	17.30
13		12.600	18.50
14	6	13.600	19.80
15		14.700	21.10
16	7	15.700	22.30
17		16.800	23.50
18	8	17.800	24.80
19		18.900	26.00
20	9	19.900	27.20

Failure rate may be expressed a number of ways. Table 4 compares various ways of expressing failure rates.

Table 4. Failure Rates

NO. OF FAILURES PER DEVICE HOURS	FAILURE RATE	\% PER $\mathbf{1 0 0 0 ~ H O U R S ~}$	PPM (HOURS)	FITS	MTBF (HOURS)
$1 / 1 \times 10^{9}$	0.000000001	0.0001	0.001	1	1×10^{9}
$1 / 1 \times 10^{8}$	0.00000001	0.001	0.01	10	1×10^{8}
$1 / 1 \times 10^{7}$	0.0000001	0.01	0.1	100	1×10^{7}
$1 / 1 \times 10^{6}$	0.000001	0.1	1	1000	1×10^{6}
$1 / 1 \times 10^{5}$	0.00001	1	10	10000	1×10^{5}
$1 / 1 \times 10^{4}$	0.0001	10	100	100000	1×10^{4}
$1 / 1 \times 10^{3}$	0.001	100	1000	1000000	1×10^{3}

APPENDIX B: RADIATION HARDNESS OF 12V BIPOLAR PROCESS

The Micro Linear 12 V bipolar process has demonstrated selective hardness to radiation exposure. The components most commonly used in the 12 V process which are described in table 1, were exposed up to 10^{6} Rads total
dose ionizing radiation. A second group of the same components were exposed to non-ionizing radiation of up to 10^{14} fluence neutrons/sq. cm. Neither group was exposed to both types of radiation.

DESCRIPTION	BIAS DURING IRRADIATION	POST IRRADIATION MEASUREMENTS	FIGURES
Minimum Geometry NPN	$\mathrm{V}_{\mathrm{CES}}=5 \mathrm{~V}$	$\Delta \mathrm{~h}_{\mathrm{fe}}$	1,4
Lateral Quad Collector PNP	$\mathrm{V}_{\mathrm{CES}}=-5 \mathrm{~V}$	$\Delta \mathrm{~h}_{\mathrm{fe}}$	2,5
Vertical PNP	$\mathrm{V}_{\mathrm{CES}}=-5 \mathrm{~V}$	$\Delta \mathrm{~h}_{\mathrm{fe}}$	3,6
$45 \Omega \mathrm{~N}+$ Resistor	No bias	$\Delta \mathrm{R}$	3,6
850Ω P+ Resistor	No bias	$\Delta \mathrm{R}$	3,6
$10 \mathrm{~K} \Omega$ Implanted P Resistor	No bias	$\Delta \mathrm{R}$	3,6
10 pF Capacitor	No bias	$\Delta \mathrm{I}_{\mathrm{L}}$	3,6

Table 1. Components

Figures 1 through 3 show the results of the ionizing radiation tests. Figures 4 through 6 show the results of the non-ionizing radiation tests.

* The resistors and capacitors were not significantly altered by exposure to these radiation levels. They are not included in the figures.

General Purpose NPN Transistor

Figure 1.

SUMMARY

The h_{fe} of the NPN transistors degrade by approximately 50% at 10^{5} Rads and 80% at 10^{6} Rads. The PNPs degrade more severely by approximately 80% at 10^{5} Rads and reach unity at 10^{6} Rads. Degradation vs. neutron fluence is similar but less severe.

Micro Linear circuits, exclusively using NPN devices and passive components, can be designed to perform in a high radiation environment.

Figure 2.

Figure 3.

General Purpose NPN Transistor

Figure 5.

Figure 4.

Figure 6.

Packaging Information

Section 9

Package: J08 8-Pin Hermetic DIP 9-1
Package: P08 8-Pin Molded DIP 9-1
Package: S08N 8-Pin SOIC (Narrow) 9-2
Package: J14 14-Pin Hermetic DIP 9-2
Package: P14 14-Pin Molded DIP 9-3
Package: S14N 14-Pin SOIC (Narrow) 9-3
Package: J16 16-Pin Hermetic DIP 9-4
Package: P16 16-Pin Molded DIP 9-4
Package: S16N 16-Pin SOIC (Narrow) 9-5
Package: S16W 16-Pin SOIC 9-5
Package: J18 18-Pin Hermetic DIP 9-6
Package: P18 18-Pin Molded DIP 9-6
Package: S18W 18-Pin SOIC 9-7
Package: J20 20-Pin Hermetic DIP 9-7
Package: P20 20-Pin Molded DIP 9-8
Package: Q20 20-Pin Molded Leaded PCC 9-8
Package: R20 20-Pin SSOP 9-9
Package: K20 20-Pin QSOP 9-9
Package: T20 20-Pin TSSOP 9-10
Package: S20W 20-Pin SOIC 9-10
Package: P22 22-Pin Molded DIP 9-11
Package: J24W 24-Pin Hermetic DIP 9-11
Package: J24N 24-Pin Hermetic Ceramic DIP (Narrow) 9-12
Package: P24W 24-Pin Molded DIP 9-12
Package: P24N 24-Pin Molded DIP (Narrow) 9-13
Package: R24 24-Pin SSOP 9-9
Package: S24W 24-Pin SOIC 9-13
Package: J28W 28-Pin Hermetic DIP 9-14
Package: P28W 28-Pin Molded DIP 9-14
Package: P28N 28-Pin Molded DIP 9-15
Package: Q28 28-Pin Molded Leaded PCC 9-15
Package: R28 28-Pin SSOP 9-9
Package: S28W 28-Pin SOIC 9-16
Package: H32 32-Pin TQFP 9-16
Package: Q32 32-Pin Molded Leaded PCC 9-17
Package: S32W 32-Pin SOIC 9-17
Package: J40 40-Pin Hermetic DIP 9-18
Package: P40 40-Pin Molded Plastic DIP 9-18
Package: G44 44-Pin PQFP 9-19
Package: Q44 44-Pin Molded Leaded PCC 9-19
Package: H44 44-Pin TQFP 9-20
Package: H48 48-Pin TQFP 9-16
Package: G52 52-Pin PQFP 9-19
Package: Q52 52-Pin Molded Leaded PCC 9-19
Package: H52 52-Pin TQFP 9-20
Package: H64 64tPin TQFP 9-20
Package: Q68 68-Pin Molded Leaded PCC 9-19
Package: Q84 84-Pin Molded Leaded PCC 9-19

Note 1: Dimensions are in inches/(millimeters).
Note 2: Coplanarity not to exceed $0.005^{\prime \prime}(0.127 \mathrm{~mm})$ for all surface mount packages.
Note 3: Bent leads for all surface mount packages not to exceed $0.005^{\prime \prime}(0.127 \mathrm{~mm})$ from its true position
Note 4: Bent leads for all PDIP and CDIP packages not to exceed $0.010^{\prime \prime}(0254 \mathrm{~mm})$ from their true position.

8-Pin Hermetic DIP (CERDIP)

Package: P08
8-Pin Molded DIP

Package: S08N 8-Pin SOIC (Narrow)

Package: J14
14-Pin Hermetic DIP (CERDIP)

Package: P14
14-Pin Molded DIP

Package: S14N
14-Pin SOIC (Narrow)

Package: J16
16-Pin Hermetic DIP (CERDIP)

Package: P16
16-Pin Molded DIP

PHYSICAL DIMENSIONS inches (millimeters)

Package: S16N

16-Pin SOIC (Narrow)

Package: S16W
16-Pin SOIC (Wide)

Package: J18
18-Pin Hermetic DIP (CERDIP)

Package: P18
18-Pin Molded DIP

Package: S18W 18-Pin SOIC (Wide)

Package: J20
20-Pin Hermetic DIP (CERDIP)

Package: P20
20-Pin Molded DIP

Package: Q20
20-Pin Molded Leaded PCC

Package: R20, R24, R28
20-Pin SSOP, 24-Pin SSOP, 28-Pin SSOP

"N" LEADS	DIM. $^{\text {" }}{ }^{\prime \prime} \mathrm{D}^{\prime \prime}{ }_{(\mathrm{mm})}$		PACKAGE I.D.
20	$.274 / .294$	$(6.95 / 7.45)$	R20
24	$.313 / .333$	$(7.95 / 8.45)$	R24
28	$.392 / .412$	$(9.95 / 10.45)$	R28

Package: K20
20-Pin QSOP

Package: T20
20-Pin TSSOP

Package: S20W 20-Pin SOIC

Package: P22
22-Pin Molded DIP

Package: J24W
24-Pin Hermetic DIP (CERDIP)

Package: J24N
24-Pin Hermetic Ceramic DIP (Narrow)

Package: P24W 24-Pin Molded DIP (Wide)

Package: P24N
24-Pin Molded DIP (Narrow)

Package: S24W
24-Pin SOIC

Package: J28W
28-Pin Hermetic DIP (CREDIP)

Package: P28W
28-Pin Molded DIP

Package: Q28
28-Pin Molded Leaded PCC

Package: H32, H48 32-Pin TQFP, 48-Pin TQFP

$" \mathrm{~N}^{\prime \prime}$	32L	48L
"P"	.315 BASIC $(.80)$.0197 BASIC $(.50)$
$\mathrm{W}^{\prime \prime}$	$.009 / .015$ $(.23 / .38)$	$.008 / .012$ $(.20 / .30)$
PACKAGE ID	$\mathbf{H 3 2}$	H48

PHYSICAL DIMENSIONS inches (millimeters)
Package: Q32
32-Pin Molded Leaded PCC

Package: S32W
32-Pin SOIC

Package: J40
40-Pin Hermetic DIP (CERDIP)

Package: P40
40-Pin Molded Plastic DIP

Package: G44, G52

44-Pin PQFP, 52-Pin PQFP

" N "	44L		52L	
"P"	.0315	$(.80)$ BSC	.0265	$(.65)$ BSC
'W"	$.012 / .018$	$(.30 / .45)$	$.090 / .014$	$(.22 / .35)$
PACKAGE ID	G44		G52	

Package: Q44, Q52, Q68, Q84
44-Pin, 52-Pin, 68-Pin and 84-Pin Molded Leaded PCC

MICRO LINEAR CORPORATION 2092 Concourse Drive San Jose, CA 95131
 Tel: 408-433-5200
 Fax:408-432-0295

TAARCOM, INC.

Manufacturers Representatives 451 N. Shoreline Blvd. Mt. View, CA 94043-4605 (415) 960-1550

MI Micro Linear

[^0]: * For a description of internal clocks see Clock section.

[^1]: Notes:

 1. Use 10 k pulldown resistor on BUSY pin to get "true" convert busy.
 2. If $\overline{\mathrm{CS}}$ is brought high in the middle of a serial data transmission, the data transmission is aborted and the data is reloaded into the output shifter.
[^2]: Note 1: Absolute maxımum ratings are limits beyond which the life of the integrated circuit may be imparred. All voltages unless otherwise specified are measured with respect to ground.
 Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
 Note 3: Low Duty cycle pulse testing is performed at T_{A}.
 Note 4: This does not include the current from the AUI pull down resistors or the LED output pins.
 Note 5: LED drivers can sink up to 20 mA , but V_{OL} will be higher.

[^3]: $0=$ Logic Level Low
 $1=$ Logic Level High
 X = Don't Care

[^4]: $0=$ Logic Level Low
 $1=$ Logic Level High
 X = Don't Care

[^5]: * This package is available as a special order only.

[^6]: Note 1: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.
 Note 2: Typicals are parametric norm at $25^{\circ} \mathrm{C}$.
 Note 3: Pin 25 is an open collector output which should not exceed 7 volts in the high state.
 Note 4: This parameter is guaranteed but not 100% tested and is not used in outgoing quality level calculations.

 ## APPLICATION HINTS

 Using a nominal on-track servo signal, amplitude adjustment should be made as follows:

 1. Set composite signal amplitude, measured at pin TP, by adjusting voltage at pin $V_{A G C}$ (approximately 4.7 volts). The composite signal should be set to 1.75 volts base to peak of an on-track position pulse (an off-track position pulse will be about 3.5 volts maximum).
 2. Adjust Rg so that the VGA is in mid-range. This is determined by measuring the voltage at pin $\mathrm{C}_{\mathrm{ACC}}$; it should be approximately 0.9 volts. $\mathrm{C}_{\mathrm{AGC}}$ voltage will vary approximately ± 0.5 volts over the ACC range.
[^7]: * ML4416 ONIY
 ** ML4415 ONLY

[^8]: Ambient Temperature, T_{A} $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

[^9]: Notes: $\quad \mathrm{t} 1=\mathrm{min}$ time required between "end of write" and "motor-activate"
 $\mathrm{t} 2=\mathrm{min}$ time required between "motor inactıvate" and "beginning of read"
 $\mathrm{t} 3=\mathrm{min}$ time required between "read" and "write"

[^10]: Note 1. These parameters are guaranteed by design and verified by characterization only and are not part of the production test program, hence only the typical values are

[^11]: Note: R implies R1, R0

[^12]: Intel, Pentium, PCI are registered trademarks of Intel Corporation Mıps, Alpha and Sparc are registered trademarks of Silicon Graphics, DEC and Sun Microsystems respectively

[^13]: Intel, Pentium, PCl are registered trademarks of Intel Corporation. Mips, Alpha and Sparc are registered trademarks of Silicon Graphics, DEC and Sun Microsystems respectively.

[^14]: NOTE: The DISCNKT line has a $200 \mathrm{k} \Omega$ internal pullup resistor connected to the supply. This pin should be left floatıng for normal operation and should be connected to ground to enable the function

[^15]: Kool Mu is a registered trademark of Magnetics Division, Spang and Company.

[^16]: * For 16 -Pin SOIC version.

