

MICRO CORNUCOPIA
11740 N.W. West Road
Portland, Oregon 97229
503-645-3253

Editor \& Publisher David J. Thompson
Technical Editor
Ruth Fredine-Burt
Graphic Design
Sandra Thompson

> Typography
> Patti Morris \& Martin White Irish Setter
> Cover Illustration Gerald Torrey

MICRO CORNUCOPIA is published six times a year by Micro Cornucopia of Oregon, 11740 N.W. West Road, Portland, Oregon 97229.

SUBSCRIPTION RATES:
1 yr. (6 issues)
$\$ 12.00$
1 yr. (Canada)
$\$ 15.00$
1 yr (other foreign) $\quad \$ 20.00$
All subscription orders payable in United States funds only, please.
ADVERTISING RATES: Available on request.
CHANGE OF ADDRESS:Please send old label and new address.
SOFTWARE, HARDWARE, AND BOOK VENDORS: Micro Cornucopia is establishing a group of reviewers. We would very much like to review your Big Board compatible products for Micro C. Please send material to Review Editor, Micro Cornucopia.
WRITER'S GUIDELINES: All items should be typed, doublespaced on white paper or better yet, on disk. (Your disk will be returned promptly.) Payment is in contributor's copies.
LETTERS TO THE EDITOR: Please sound off.

CP/M is a trademark of Digital Research, Inc. Copyright 1981 by Micro Cornucopia. All rights reserved.

Letters

ar Sir
July came and July went by, and my mailbox has completely rusted out due to all that drooling.
Silly me! When I read 'Issue No. 1 will hit the streets during July' I assumed it was July 1981! But now I realize you meant July 1982. I'd better get a stainless steel mailbox or maybe not bother to wait, because the magazine will never get here.
Maybe it went the way of Mitt's Newsletter, the Digital Group Newsletter, and Processor Technology's "Access."
I hope not.
Joe Kish
758 Yucca Ridge Lane
San Marcos, CA 92069

Editor's note:

I called Joe; after all it was the least I could do for his mailbox. And besides, I think it's a great letter! (He did finally receive issue no. 1.)

Sandy and I made a desperate, last ditch effort to get all 500 first issues collated, bound, labeled, sorted and bundled in one afternoon so we could get the first issue in the mail on July 31. We missed the 8 PM deadline at the post office by 15 minutes.

So the magazine was mailed Monday morning, August 3rd. (So much for hitting the streets in July.)

Someday maybe I'll write a book about starting a users group magazine. I could almost write the book about the first issue, and Murphy would certainly be a leading figure. (For those of you who don't know Murphy, he is the one credited with the first voyage of the Titanic.)

Quote from Murphy:

> If there is no way
your plan can fail,
you simply don't have all the information.

Dear Editor,
I bought a bare board version and built it up from scratch. I had to buy about $\$ 80.00$ worth of parts beyond what I had around. I have it up and running CP / M and am currently working on packaging it in a ter-minal-type case with a Ball Brothers CRT. The unit is going to be used for text processing and formatting for a friend's photo typesetter. My other computer is an LSI-11 and I also use
(continued next column)

Supporting A Language

By David Thompson

Throughout these early months of Micro Cornucopia, I have been looking at commercial and public versions of various languages with the hope of finding a semiofficial language for this group.

A common high level language would mean we could pass around source code in something other than assembler. But the language would need to be powerful enough for substantial commercial applications and inexpensive enough that most of the people in the group could afford it.

Letters continued

my H19 with the DEC-20 at work. I think the Big Board is an excellent value and very useful.

I agree that Frank Gentges' idea about the parallel ports is excellent. That would take care of most of the board's limitatons. I think your publication has already been worth the price and I suspect that an active users group with a publication will enhance the usefulness of the hardware significantly.

Doug Faunt

PO Box 11142A
Palo Alto CA 94306

Dear David,

CONGRATULATIONS!!! FANTASTIC!!! You really made it. It looks great and reads great. You are certainly to be congratulated for undertaking such a task that should be helpful to so many.

I hate to mention that Momma and I are just back from five weeks vacation in the Smokey Mountains in Tennessee. I am about ready to get my feet on the ground again. I hope that I can get back on track to help keep the pipe full of articles for future issues.

Don Retzlaff

6435 Northwood
Dallas TX 75225

Editor's note,

What can I say? Thanks again Don, without you and John Jones and Andrew Beck, and the rest of you who are writing up things for future issues this wouldn't be possible. (As for the five whole weeks in the Smokey Mountains, that's just not fair.)

Plus, it would need to produce fast and compact object code, encourage readable source code, and promote structured programming. (Whew!)

I am looking seriously at three languages: Forth, Pascal, and C. Of these three, C is presently leading. One reason is that all the versions I have seen have been upwardly compatible with Bell Lab's C.
Versions of C that $I^{\prime} m$ aware of: Small C (Puklic)
Small C+ (Public)
Tiny C (\$100)
CW/C (\$75)
BDSC (\$145)
Supersoft C (\$200)
Whitesmith's C (\$600)
(The prices are approximate.)
Whitesmith's C is a full blown version of the language. In fact, sources tell me that it was created by three fellows who worked on C for Bell Labs. They left Bell in order to develop and market C for the business and scientific community.

I've heard that BDSC is a competent enough subset to be an option for someone writing commercial applications. It has its own users group and publication. All this for $\$ 145$, such a deal. (Lifeboat is offering discounts on quantity purchases of BDSC.)

CW/C is an expanded version of Small C with lots of nice utilities, but I don't know if it is ready to do commercial work. However, it still looks like quite a bargain at $\$ 75$.

Tiny C is the only interpreter in the bunch. It also comes in compiler form for about $\$ 300$. The only thing I have heard about Tiny C is that it has an excellent manual (and I heard that fourth or fifth hand).

Supersoft's C is new on the market. The ads say that they support 'most' of version 7 Unix. If that includes floating point and pointer arithmetic, then it would be a very credible piece of of software, assuming they have taken time to exorcise bugs.
The standard text on C is:
"The C Programming Language"
by Kernighan and Ritchie
Prentice-Hall

Parallel Print Driver

By John P．Jones

5826 Southwest Ave．
St．Louis，MO 63139
This is a simple parallel printer driver that can be incorporated into any CP／M BIOS．
On first entry，the program initial－ izes PIO port B and the interrupt vector register．The program also modifies the BIOS jump table so that all subsequent calls for list output bypass the initialization routine．

As each character is output to port B，a flag byte is set，indicating that the printer is busy．When the printer is again ready，the PIO does an inter－ rupt．The sole purpose of the inter－ rupt service routine is to reset the ＇printer busy＇flag．The character output routine tests the flag byte and loops until it is reset．When the flag is reset，a character is sent and the flag is again set．
$\square \square \square$

ADS

If you want millions to know what you＇re doing， buy a page in Byte．
However，if you：
－need help designing a commercial product
－can provide help on a consulting basis
－need to find a source of ．．．
－want to sell that new BB peripheral we＇ve all been waiting for
Well then，how about an ad in Micro C ？

Space Ads
People laugh when we tell them what our space rates are． They stop laughing when they realize that a $1 / 3$ page ad costs about as much as a sack of groce－ ries．
If you are interested in one of our grocery ads or in something larger or smaller，call or write． We＇ll send a rate card and com－ plete details．The advertising deadline is October 15 for issue no．3，and December 15 for issue no． 4 ．

Want Ads

For a modest 20 cents per word，you could become famous on a budget．（Please include payment with ad．）Where else could you say

WORLD＇S GREATEST PROGRAMMER 503－645－3253

for only 80 cents？
So write it down just the way you＇d like to see it．Dnt abbrev the pr thng to deth．List the price if possible and any expected shipping delay．

Write or call the editorial office for information．
：STANDARD．JUMP TABLE TO
；THE SUBROUTINES OF CBIOS
；LIST DEVICE VECTOR
；PUNCH DEVICE VECTOR
；READER DEVICE VECTOR

	＞${ }_{0}$ OYBZ－NON NN＊：
9＊า』 9NIaNヨd 1dח४¢ヨ⿺NI：	
	y $\because H 3$ anjs：
Ө1४の Gヨidgnni sajan yainily	
	NI甘9＊gnianl izas
NI甘פ＊פNIGNJd 1ヨs：	
	10N 7I LIVM＇Sヨ入 li ：

Notes From Garland, Texas

By David Thompson

Clearing up the screen.

The clear-to-end-of-screen command is CONTROL Q, not CONTROL W as indicated in the documentation.

Bringing up stubborn boards.

A number of people have been contacting Jim and me about problems they are having bringing up boards. One of the most common symptoms is a pattern of two characters on the screen or a screenful of random garbage. Either way, it basically means that the board probably didn't finish loading the PFM monitor in RAM so it could try to clear the screen.
Jim is going to put together information about what they look for when they troubleshoot boards. Hopefully, I will have that in time for the next issue.
Don't forget the 90 day guarantee which completely covers defective parts and boards. Plus, he has been doing out-of-warranty or pilot error repairs very reasonably. Most of the time these charges have been between $\$ 25$ and $\$ 50$. The maximum so far has been $\$ 75$ (the board had to be almost completely resoldered, among other things). That's pretty hard to beat.

Two CP/Ms

I have noticed that some software which runs on one Big Board system will not necessarily run on another. I also noticed that there are two different IDs when CP/M boots.
I called Jim about this and he said that those folks who used the BIOS he sent out with the boards and who did their own incorporation into CP/ M have a version which origins the BIOS at EA00. All the folks who bought CP/M already modified for the Big Board have a BIOS starting at E800. The difference has led to some problems with software which depends on having BIOS in a certain place.

4 MHz Modification Version 2

Jim said the ready-to-run version has BIOS shifted down 200 H because they thought they needed room to store 256 bytes (a doubledensity sector) in high memory. Then the data could be moved into low memory in 128 byte chunks and accessed. Jim isn't sure whether there is going to be a use for this space but he is concerned that we maintain consistancy.

According to Jim, it's easy to make the EA00 BIOS into an E800 BIOS.
Original-.RES.(MSIZE-20)*1024
New-.RES.((MSIZE-20)*1024)-200
Now reassemble the mess and you too can ORG at E800.

By the way, a pretty reliable way to tell which version you have is to look at the ID that's displayed when you boot CP/M. If it just says " 60 k CP/M version $2.2^{\prime \prime}$ then you probably ORG at EA00. If the prompt includes the words "BIG BOARD" then you already ORG at E800.

The separate BIOS (and monitor etc.) disk Jim is shipping with orders now ORGs at E800. If you would like the latest version rather than reassembling BIOS with the modification above, send Jim a disk and $\$ 3.00$ for shipping.

4 MHz (Again).

This is an updated version of the 4 $\mathrm{MHz} \bmod$ printed in issue no. 1 . This version reportedly does not require special ram. Jim says he has 300ns 4116 working consistently using this mod. The only difference between this one and the previous one is that the CAS and MUXC lines are each moved left one pin on U76 (shift register) so that they change states 50 ns earlier. This change means that the system meets the precharge requirements for the slower RAM.

4 MHz Mod Version 2

1. Cut the trace (bottom of the board) to U76 pin 4.
2. Connect the cut trace (MUXC) to U76 pin 3.
3. Cut the trace (bottom of the board) to U76 pin 5.
4. Connect the cut trace (CAS) to U76 pin 4.
5. Remove U96.
6. Connect U97 pin 4 to U96 pin 4.
7. Don't replace U96.

Disk Drive Motor Control

By David Thompson

CP/M patch for serial printer port.
This CP/M modification redirects the list device output to serial port B. The default data rate is 300 baud. This patch does not force the Big Board to poll any of the handshake lines on port B. Thus, it has no way of knowing if the printer buffer is full. (May or may not be a problem.) This modification is for those who ORG at E800.
Enter the characters inside the quotation marks. $\langle\mathrm{CR}>=$ carriage return.

The patch:

1. Power up the Big Board (BB).
2. Place a CP/M disk with SYSGEN on it, in drive A.
3. Boot CP/M.
4. Enter "SYSGEN" "<CR>"

Displays: SYSGEN VER. 2.0
Displays: SOURCE DRIVE NAME...
5. Enter "A"

Displays: SOURCE ON A, THEN TYPE RETURN
6. Enter " $<\mathrm{CR}>$ "

Displays: FUNCTION
COMPLETE...
7. Hit the BB RESET switch <CR>

NOTE: You now have an image of Boot, CPIM, and Bios in RAM starting at 0900H.
8. Remove the source disk from drive A.
9. Enter "M22C7" " $<\mathrm{CR}>$ " Displays: 22C7 00
10. Enter " 79 "
11. Enter "C3"
12. Enter " 18 "
13. Enter "F0"
14. Hit spacebar to return to PFM.
15. Enter "M1F90" "<CR>"
16. Enter " 47 "
17. Enter "EB"
18. Hit spacebar to return to PFM.
19. Place blank disk in drive A.
20. Enter "G100"

Displays: SYSGEN VER 2.0
21. Enter " $<\mathrm{CR}>$ "

Displays: DESTINATION DRIVE...
22. Enter " A "

Displays: DESTINATION ON A...

```
23. Enter "<CR>"
    Displays: FUNCTION
        COMPLETE . . .
24. Enter "<CR>"
```

The disk now contains a $C P / M$ system that supports CONTROL P (and PIP LST:=) for listings. As mentioned above, the output is on serial port B and is 300 baud.

Editor's note:

To change the baud rate, create F.COM as follows:

1. Enter "DDT" " $<$ CR>"
2. Enter " A 100 " " $\ll \mathrm{CR}>$ "
3. Enter "MVI A, XX" " $<\mathrm{CR}>$ "
4. Enter "OUT $0 C^{\prime \prime}$ " $<C R>$ "
5. Enter "JMP 0 " " $<$ CR $>$ "
6. Enter " $<$ CR>"
7. Enter " G 00 " " $<\mathrm{CR}>$ "
8. Enter "SAVE 1 F.COM" " $<\mathrm{CR}>$ "

This routine sends a single byte (XX) to the channel B baud rate generator. I am working at 9600 baud so I replace XX with 0 E . See the Big Board Theory of Operation for other baud rates.

Once you have completed the baud rate program, simply enter " F " " $<\mathrm{CR}>$ " from the CP/M prompt to set the baud rate.

No UPS to a PO Box?

Jim Tanner lists his mailing address as a PO Box but he also has a street address that works for both the post office and United Parcel Service. (The ZIP is different.)

Jim Tanner
Digital Research Computers
2702 Industrial Lane
Suite J2
Garland, Texas 75041
Phone 214-271-3538

Disk AC Control Circuit.

If you're tired of listening to your disk drives grind on hour after hour, here's relief.

The board must have the timer option installed and you must jumper pin 3 to pin 4 and pin 7 to pin 8 on JB2. This supplies the one second interrupt to the Z80. If the Z80 counts all the way to 30 after the most recent disk access then it sends a command to the system PIO to drive the output of U112 pin 2 low.
Terminal 7 on the Big Board power connector is tied to U112 pin 2. This terminal is high (about 4V) when the system is doing a disk access and goes low if there hasn't been an access for 30 seconds.

Simply connect the input of an optically isolated solid state relay between terminal 7 and ground. Then connect the output in series with the AC to the disk drive motors. (But do not connect in series with the drives' DC supply.)
I tried mechanical relays at first, but even the type made to be driven by TTL have problems. Whenever you use mechanical switches to start and stop motors you get interesting transients on the AC line. Interesting transients occasionally cause CPUs to go off picking daisies.
I am now using an ITT solid state relay P6-3DCC-120R5. It has a (P6) package, a 3VDC (3D) input, a 120 VAC output with random switching point (120R), and it handles up to (5) amps. It is also small, quiet, and hasn't yet sent the system packing.

Jumpering The Wild Shugart

By David Thompson

Shugart set a new standard for obscurity when they came out with their SA 801 user's manual.
It's not that they don't tell you how to jumper their drives, the only problem is figuring out what they told you. Once you figure it out, don't go back and look at the manual, you'll just get confused again.
So on that note, here's what I figured out.
For drive A , jumper only the following: DC, C, DS1 (Drive Select 1), T2, T3, T4, T5, T6, HL, A, B, T1, 800, Y.

For drive B , change DS1 to DS2. For drive C, change DS1 to DS3, and so on.
For the last 9 months or so, Shugart has been shipping drives with a new circuit board. The new board is completely interchangeable with the old one, but the new one does not use the $-5 /-15 \mathrm{~V}$ pin on the DC supply jack (55). The pin is there but is not connected to anything because the new board does not need -5 V .

One way to tell whether you have a new or old style drive is to check the bottom left hand corner on the circuit board. The old drive has a -5 V regulator there. On the new one, that corner is pretty empty. Also, the resistance from the -5 V pin to ground is infinite on the new boards.
I had one of the new boards but the old documentation so I spent a couple of 'interesting' evenings trying to make sure the -12 V I was supplying would be properly turned in-
to -5 V on the board. (Oh well, if everyones' documentation were perfect there probably wouldn't be so much need for user groups.)

Note: The following information is from Bill Klevesahl, Shugart's product manager for the SA 800 series.

```
Test points for both boards.
    1,2 Amplified read signal
    5,6,7 Ground
    10 -Index
    \(11+\) Head Load
    12 -Index and Sector Pulses
    \(16+\) Read Data
    \(25+\) Write Protect
    \(26+\) Detect Track 0
    27 +Step Pulse
```

Test points on the old board only. 3,4 Differential Read Signal (this signal is now hidden inside the new LSI read chip).
21,24 -Data Separator Timing (there is no longer a pot to adjust this).

Test points on the new board only. $8+$ Data Window (for checking FM data separation).

Optional features on the new board.

- Add-trace option TS enables true FM data separation, maintaining synchronization during address marks.
- Add-trace option NFO prevents the head from being forced out past track 0 .

The formatiting program 1isted in issue 1 contains a bugn If the program has a problem accessing a disk in drive Ey it reformats the dj.sk in the default drive (A).

Issue Z will include a revised format progran.

Coming Up

Articles you'll be seeing in the future.

- Reverse video cursor
- 5 inch disk interface
- Real time clock routine
- Converting a TV into a real video monitor
- More on the PFM monitor
- Review of 3 assembly language texts
- Bios modifications

Articles we'd love to see.

- Trials and tribulations of bringing up a Big Board
- How you've improved the PFM monitor
- Hard disk interface
- Filling out the second bank with system RAM
- DMA interface
- Double density disk interface
- A graphics display
- A speech generator
- A simple ROM burner
- Interfacing with particular printers etc.
- An in-depth series on CP/M
- Reviews of FIG Forth and Forth 79
- Reviews of BDSC, Whitesmith's C, CW/C and Supersoft's C
- Computer consulting using a Big Board
- Reviews on peripherals, keyboard, video monitor, power supply, cabinet, disks, etc.
- Other software reviews. Even if you are just borrowing a copy to evaluate, please let us know how you like it.
- Book reviews

If you are immersed in any of these projects, please share your experience with all of us.

Direct Input Routine

By Andrew P. Beck

AB Computer Products
 PO Box 571
 Jackson, NJ 08527

F800	ES	SUER	PUSH HL	; SAVE Address of hl\%
F801	cdobfo		CALL kedst	; GET kED Status
F804	B7		OR A	; IF $A=0$ data available
F805	cacefa		JP z ISDATA	; jp to data save routine
F808	E1		POF HL	; GET ADDRESS EACK
F809	3 C		INC A	; A=FF IS NO DATA, MAKE IT
Froa	77		LD (HL), A	; STORE O IN HL\%
F80E	23		INC HL	; DO EOTH EYTES
Froc	77		LD (HL), A	
Fgod	C9		RET	;RETURN WITH HL\% = O
Froe	CDO9FO	ISDATA	CALL KRDIN	; GET Infut char into a
F911	E1		FOP HL	;GET ADDRESS OF HL\% EACK
F812	77		LD (HL), A	; Store data, LOW DRDER
F813	23		INC HL	
FB14	3600		LD (HL), 0	; High order =
F816	C9		RET	; RETURN TO EASIC

-- Poke the above program into FB00+ --

500 SUBR $=84 F 800$
510 DATA \&HE5, \&HCD, \&HO6, $\mathrm{KHFO}, \mathrm{KHE}, \& \mathrm{HCA} \% \mathrm{HOE}, \mathrm{BHFB}$
520 DATA \&HE1, \&HSC, \&H77, \&H2J, \&H77, \&HC9, \&HCD, \&HO9, \&HFO
$5 S O$ DATA \&HE $, 8 \mathrm{H} 77, \& H 23, \& H 36, \& H 00, \& H C 9$
540 FOR I=0 TO 22
550 READ INST
560 POKE SUBR + I, INST
570 NEXT
-- Demonstration routine --
$580 \quad \mathrm{HL} \%=0$
590 CALL SUBR (HL\%)
600 IF HL\%=0 GOTO 590
610 IF HL $\%=3$ THEN STOF
620 FRINT CHR $\$(H L \%$):
630 GOTO 590

This routine makes it possible to do direct input with Microsoft basic. First, a machine language subroutine is poked into an unused area of the system monitor.
This subroutine calls the monitor subroutine and the monitor checks to see if an input character is available. If none is available, the $\mathrm{HL} \%$ is set to zero. If a character is available, it is stored in HL \% before a return is executed.
In the demonstration program, a returned character is echoed on the console. If the character is ${ }^{\wedge} \mathrm{C}$, the demonstration stops.

Something New

DataCast
345 Swett Road
Woodside, CA 94062
I just received issue no. 1 of DataCast and I'm impressed, very impressed. This is a bimonthly magazine for 'major micro systems and telecommunications.' 'Major micro systems ${ }^{\prime}$ means CP / M in a business or OEM environment and 'telecommunications' means networking.
Jim Warren, guiding force behind the West Coast Computer Faire, is behind this magazine and I suspect it will be around for a long while. Subscriptions are $\$ 18$ per year (6 issues).

He is starting with a staff of 19 (if you include the mascot, Sir Lick-ALot) and it shows. The first issue is

More
 Power Supplies

By David Thompson

I just received a catalog from ACDC Electronics and they list a power supply that should power the Big Board and a couple of drives. (Like the Power One, you still have to finagle +12 V but that isn't hard, see Issue no. 1.)
Model ETV801 provides:

$$
+5 \mathrm{~V} \text { at } 9 \mathrm{amps}
$$

-12 V at 0.8 amps
+24 V at 4.5 amps peak
Price is $\$ 132$ (list, single)
They don't mention how they handle over-current protection, but they do indicate that they only have over-voltage protection on the +5 V line unless you specify the -1 option. They don't say how much extra you pay for the option.
ACDC Electronics
401 Jones Rd
Oceanside, CA 92054
Power/Mate also has an open frame linear with the same specifications as the ACDC model above, but the PowerMate model ED-132AV lists for $\$ 120$ (single).

Power/Mate
514 S River St
Hackensack, NJ 07601

64 pages and about 60 pages of that is copy.

Some first issue articles:

- What is Telidon and Why is AT\&T Adopting It?
- Overview of Home Information Services
- A Seminar for Independent CP/M Software Vendors
- Software Documentation Protocols
- An Index to CP/M Software and Vendors

Other Interesting Periodicals

Dr. Dobb's Journal
PO Box E
Menlo Park, CA 94025

Lifelines

1651 Third Ave
New York, NY 10028
Please let us know about your favorite magazines.

Program Storage Above PFM

By Don Retzlaff

6435 Northwood
Dallas, TX 75225

There are numerous times when you want to write a small assembly language program to use as a printer driver or other routine. These small utilities need to reside in high memory so they can operate at the same time as routines which reside in the normal transient program area (starting at 0100 H).
Since programs are loaded starting at 0100 H , these utilities must load themselves into high memory.
There is a considerable amount of memory available above PFM that is not dedicated to any other use. PFM version 3.3 uses upper memory starting at F000H through F7E6H. The RAM area FF 00 H through FFC8H is used for data storage. This leaves the memory from 77 E 7 H through FEFFH and FFC9H through FFFFH available for your use. Not all of this space is really available since future releases of PFM could use some of this space.
I recommend that you limit your programs to the following areas: (FA00H through FEFFH and FFEOH through FFFFH).

Moving the program up

In order for your routine to start out as a normal COM file but wind up in upper memory, it has to do a quick shuffle.

1. When the COM file is executed it is loaded into memory starting at 0100H.
2. Execution starts at 0100 H .
3. The first few statements (starting at 0100 H) must copy the routine into upper memory.
4. An initialization routine may then be executed.
5. Control is then transferred to the routine or back to PFM.
In order to accomplish all of the above it is necessary to do the following:
6. Write your assembly language routine as follows:
a. The origin is set at the desired point where your routine is to reside.
b. Your program must start with a short move routine.
c. An initialize routine usually follows that patches (hooks) your routine into the monitor or PFM.
d. Your routine follows.
e. The last statement defines the length of the program.
7. Assemble your program.
8. Execute DDT and load your HEX file into memory. Typically this is done as follows:

>A.DDT NAME.HEX

This will load your program into memory at the desired location (example EAOOH). The program will not execute.

DDT will print out starting and ending addresses.

NEXT PC/n
 FAxx FA00

4. Using DDT, move the program from upper memory to 0100 H .
MFA00,FAxx,0100
5. Transfer control back to PFM by typing:
G0
6. Save the program using the SAVE command.
SAVE 1 NAME.COM
You must save the program in 256 byte blocks. Using ' 1 ' will save 256 bytes, ' 2 ' would save 512 bytes, etc.
7. The program is now ready for execution as a COM file.
The above procedure may seem long and rather involved but after you have done it a few times you will find it very quick and simple.

PFM Monitor Listing (continued)

F4C1	CDE7F4	1021	DSPTCH:	CALL	CALLHL ;	;CALL SUBROUTINE ADDRESSED EY H	
F4C4	F1	1022		POF	'AF		
F4Cs	C1	1023		FOP	EC		
F4C6	D1	1024		POP	DE		
F4C7	E1	1025		POP	HL		
F4C8	ED7B35FF	1026		LD	SP, (SPSAVE)		
F4CC	FE	1027		EI		;RE-ENABLE INTERRUPTS \& RETUFN	
F4CD	ED4D	1028		RETI			
		1029	;				
		1030	;				
		$\begin{aligned} & 1031 \\ & 1032 \end{aligned}$	-- RX ERROR		;	ICE ROUTINE FOR SIO --	
		1035	: ARRIVE HERE		RECEIVE INTE	ERRUFT FRDM FRAMING; ${ }^{\text {a }}$ (VERRUN	
		1034			ORS. (FARITY	CAN BE DISABLED)	
		1035	SIDERR: LD				
F4CF	ED7335FF	1036			(SPSAVE), SF	; SAVE USER STACK PGINTER AND	
F4D3	3157FF	1037	SIDERR:	LD	SP, TMPSTK+32	2 ; SWITCH TO LOCAL STACK	
F4D6	F5	1038		PUSH	AF		
F4D7	CDFSF4	1039		CALL	$\begin{aligned} & \text { SIOIN2 } \\ & A^{\prime}, G^{\prime}-64 \end{aligned}$; CLEAR BAD CHARACTER FROM SIO	
F4DA	3E07	1040		LD			
F4DC	CD15F5	1041		CALL	SIDXMT	; OUTPUT A CTL-G AS A WARNING	
F4DF	F1	1042		POF	$\begin{aligned} & \text { AF } \\ & \text { SP, (SFSAVE) } \end{aligned}$		
F4EO	ED7B35FF	1043		LD			
F4E4	FB	1044		EI			
F4ES	ED4D	1045		RETI			
		1046	;				
		1047	:				
F4E7	E9	1048	CALLHL:	JP	(HL)		
		1049	;				
		1050	;				
		1051					
		1052	;POLLED	MODE I/O ROUTINES FOR SID CHANEL B			
		1053					
F4E8	DEO7	1054	SIOST:	IN	A, (SIOCPB) ;	; GET SIO StATUS REGISTER	
F4EA	E601	1055		AND	00000001E		
F4EC	C8	1056		RET	2 ;	; ACC=0 IF NO DATA AVAILABLE	
F4ED	3EFF	1057		L.D	A,255		
F4EF	C9	1058		RET			
		1059	;				
		1060					
F4FO	CDEBF4	1061	SIOIN:	CALL	SIOST ;	; TEST CONSOLE STATUS	
F4F3	28F日	1062		JR	Z,SIOIN-\$:	: LOOP UNTIL DATA IS RECEIVED	
R4F5	3E30	1063	SIOIN2:	LD	A,00110000B	; RESET STATUS EITS IN SIO FO	
F4F7	D307	1064		OUT	(SIOCPE), A ;	:PARITY/OVERRUN/FRAMING ERRORS,	
F4F9	DE05	1065		IN	A, (SIODPE) ;	; THEN GET THE INPUT Character	
F4FE	E67F	1066		AND	01111111 E		
F4FD	C9	1067		RET			
		1068	;				
		1069	;				
F4FE	FE20	1070	SIDOUT:	CP	, , ;	: TEST FOR CONTROL CHARACTERS	
F500	3013	1071		JR	NC,SIOXMT-\$;	; JUMP IF PRINTABLE CHARACTEF	
F502	CD15F5	1072		CALL	SIOXMT	: ELSE SEND CONTROL CHARACTER	
F505	3A79FF	1073		LD	A, (NULLS)	; AND THEN SEND NULLS AS PADDING	
F508	3 C	1074		INC	A	; GET NULL FAD COUNT AND FIX S0	
F509	1806	1075		JR	PAD1-\$; THAT COUNT $=0$ SENDS NO NULLS	
		1076					
FSOB	F5	1077	PAD:	PUSH	AF		
F50C	AF	1078		XOR	A		
FSOD	CD15F5	1079		CALL	SIOXMT	; OUTPUT A NULL TO THE SIO	
F510	F1	1080		POF	AF		
FS11	3D	1081	PAD1:	DEC	A		
FS12	20F7	1082		JR	NZ, PAD-\$;	; LOOF SENDING NULLS TO SIO	
FS14	c9	1083		RET			
		1084	;				
		1085					
F515	FS	1086	SIOXMT:	PUSH	AF		
F516	DEO7	1087	SIOX1:	IN	A, (SIOCPE)		

PFM Monitor Listing (continued)

F5SC	CBEF	1151		RES	7,A	; SWITCH BACK LOWER 16K OF RAM
F55E	D31C	1152		QUT	(BITDAT), A	
F560	FB	1153		EI		; INTERRUPTS ARE SAFE AGAIN
F561	C1	1154		POP	EC	
F562	D1	1155		POF	DE	
F563	E1	1156		FOF	HL	
F564	c9	1157		RET		
		1158	;			
		1159	;			
		1160	;			
F565	1178FF	1161	Qutch:	LD	DE,LEADIN	
F568	1 A	1162		LD	A, (DE)	; GET LEAD-IN SEQUENCE STATE
F569	E7	1163		OR	A	
F56A	C270F6	1164		JF	NZ, MULTI	; JUMP IF IN A LEAD-IN SEQUENCE
F56D	79	1165		LD	A, C	; ELSE FROCESS CHARACTER IN C
F56E	FE20	1166		CF		
F570	380F	1167		JR	C,CONTRL-\$; JUMP IF A CONTROL CHARACTER
F572	71	1168	DISFLA:	LD	(HL) , C	; ELSE STORE DISFLAYABLE CHAR
F573	23	1169.		INC	HL	; AND ADV FOINTER TO NEXT COLUMN
F574	7D	1170		LD	A, L	
F575	E67F	1171		AND	O1111111日	; EXTRACT COLUMN\# FROM HL
F577	FE50	1172		CP	80	
F579	DB	1173		RET	c	; EXIT IF NOT PAST COLUMN 79
F57A	CDETFS	1174		CALL	RETURN	; ELSE DO AUTOMATIC <CR>
FSTD	CD42Fb	1175		CALL	LFEED	; AND LINEFEED
F580	C9	1176		RET		
		1177	;			
		1178	;			
		1179				
F581	E5	1180	CONTRL:	FUSH	HL	
F582	218FF5	1181		LD	HL, CTLTAE	: SEARCH FOR CONTROL CHARACTER
F585	010000	1182		LD	EC,CTLSIZ/3	3; HANDLING SUBRDUTINE IN TABLE
F588	CD60F3	1183		CALL	SEARCH	
F59B	E1	1184		POF	HL	
F58C	co	1185		RET	NZ	; EXIT IF NOT IMFLEMENTED
FSED	C5	1186		FUSH	EC	
F58E	C9	1187		RET		; DO SNEAKY JUMF TO PRESERVE REGISTERS
;						
		1188				
F58F	1 F	1189	CTLTAE:	DEFE	: ${ }^{\prime}$ - -64	
F590	1 E	1190		DEFE	: ${ }^{\prime}$, 64	
F591	1 B	1191		DEFE	' ['-64	
F592	1 A	1192		DEFE	'2'-64	
F593	18	1193		DEFE	' x '-64	
F594	11	1194		DEFE	-0.-64	
F595	OD	1195		DEFB	'M'-64	
F596	OC	1196		DEFE	'L'-64	
F597	0 B	1197		DEFB	'k'-64	
F598	OA	1198		DEFE	'J'-64	
F599	09	1199		DEFE	'I'-64	
F59A	08	1200		DEFB	'H'-64	
F59E	07	1201		DEFB	'G'-64	
		1202				
F59C	DCF5	1203		DEFW	. BELL	; CTL-G IS THE EELL
F59E	BEFS	1204		DEFW	BAKSPC	; CTL-H IS CURSOR LEFT
FSAO	CCFS	1205		DEFW	TAE	; CTL-I IS TAE
F5A2	42F6	1206		DEFW	LFEED	;CTL-J IS CURSOR DOWN
FSA4	2CF6	1207		DEFW	UPCSR	; CTL-K IS CURSOR UF
FSA6	C4FS	1208		DEFW	FORSPC	; CTL-L IS CURSOR RIGHT

FSAB	E7F5	1209		DEFW	RETURN	；CTL－M IS＜CR＇＞	F645	17	1338		RLA		；EXTRACT ROW\＃COMPONENT OF HL
FSAA	11F6	1210		DEFW	CLREOS	；CTL－Q CLEAR TO END－0F－SCREEN	F646	E61F	1339		AND	00011111 B	；Extract raw heomponent or hl
FSAC	03F6	1211		DEFW	CLREDL	；CTL－X IS CLEAR TO END－OF－LINE	F64日	4 F	1340		LD	C，A	；COPY ROW\＃TO C FOR SCROLL TEST
FSAE	ECFS	1212		DEFW	CLRSCN	；CTL－Z IS CLEAR SCREEN	F649	CD37F6	1341		CALL	DNCSR	：MOVE CURSOR TO NEXT ROW DOWN
FSBO	E6F5	1213		DEFW	ESCAPE	；CTL－I IS ESCAPE	F64C	3A77FF	1342		LD	A，（BASE）	；TEST IF CURSOR ON EOTTOM ROW
FSE2	GCF6	1214		DEFW	HIMEUP	；CTL－＾IS HOME UP	F64F	B9	1343		CP	$\mathrm{C}^{\text {，}}$	；DF SCREEN EEFDRE MOUING DOWN
FSE4	EAFS	1215		DEFW	STUFF	；CTL－＿IS DISPLAY CONTROL CHARS	F650	co	1344		RET	NZ	；EXIT IF NOT AT EOTTOM
		1216							1345				；EXIT IF NOT AT EOTTOM
>0027		1217	CTLSIZ	EQU	\＄－CTLTAB		F651	E5	1346		Push	HL	；Else frep to scroll screen uf
		1218					F652	CD60F6	1347		CALL	CLRLIN	；FILL NEW bottom line wTh sfaces
		1219					F655	29	1348		ADD	HL，HL．	
F5E6	3 EOL	1220	ESCAPE：	LD	A， 1		F656	7 C	1349		LD	A， H	；GET ROW\＃FART OF HL INTO A
FSE8	12	1221		LD	（DE），A	；SET LEAD－IN SEQUENCE STATE	F657	E61F	1350		AND	00011111 B	
F5B9	c9	1222		RET		；FOR XY CURSOR FOSITIONING MODE	F659	3277FF	1351		LD	（BASE），A	；Store new base line\＃
		1223	；				F65C	D 314	1352		OUT	（SCROLL），A	；SCROLL UP NEW ELANK EOtTM Line
		1224					F65E	E1	1353		POP	HL	；Scroll UP New blank bottm Line
F5EA	3E04	1225	STUFF：	LD	A， 4		F65F	C9	1354		RET		
F5EC	12	1226		LD	（DE），A	；SET LEAD－IN SEQUENCE STATE			1355	；			
FSED	c9	1227		RET		；FOR CONTRDL CHAR OUTPUT MODE			1356				
		1228	；				F660	7D	1357	CLRLIN：	LD	A，L	
		1229					F661	E680	1358		AND	100000008	；POINT HL TO 1ST COLUMN OF ROW
FSEEF	7D	1230	EAKSPC	LD	A，L	；CHECK FOR LEFT MARGIN	F663	6F	1359		LD	L，A	
FSC1	CB	1232		RET	$2^{\text {a }}$	；AEDRT IF IN LEFTMOST COLUMN	F664 F666	0650 3620	1360 1361		LD	E，${ }_{\text {（HL）}}$ ，	
FSC2	2F	1233		DEC	HL	；BACK UP CURSOR POINTER	F666	3620	1361	CLR：	LD	（HL），	；STORE ASCII SPACES AT ADDF： IN HL
F5C3	C9	1234		RET			F668	23	1362		INC	HL	；AND INCREMENT HL
		1235	；				F669	10FB	1363		DJNZ	CLR－\＄	；REPEAT NUMEER OF TIMES IN E
		1236					F66E	C9	1364		RET		
$\begin{aligned} & \text { F5C4 } \\ & \text { FSCC } \end{aligned}$	7D	1237	FORSPC：	LD ${ }^{\text {AND }}$	$\begin{aligned} & A, L \\ & O 11111118 \end{aligned}$	¢CHECK FOR RIGHTMOST COLUNM			1365	；			
FSC7	FE4F	1239		CP	79		F66C	OE20	1366 1367	HOMELF：			
FSC9	DO	1240		RET	NC	；DO NOTHING IF ALREADY THERE	F66E	1817	1368	Homeur：	JR	SETROW－\＄	；TO DO HOMEUP ALMOST FOR FREE
FSCA	23	1241		INC	HL				1369	；			
FSCB	c9	1242		RET		ELSE ADVANCE CURSOR POINTER			1370				
		1243	；				F670	Es	1371	MULTI：	EX	DE，HL	；UNCONDITIONALLY RESET LEAD－IN
		1244					F671	3600	1372		LD	（ HL ）， O	；STATE to zero before going on
FSCC	110800	1245	TAE：	LD	DE， 8	；TAES ARE EVERY 8 COLUMNS	F673	EB	1373		EX	DE，HL	
FSCF	7 D	1246		LD	A，L	；GET COLUMN COMPONENT OF	F674	FEO1	1374		CP	1	
FSDO	E678	1247		AND	01111000 B	；FREvious tab fosition	F676	2008	1375		JF	NZ，M2TST－${ }^{\text {\％}}$	
FSD2	83	1248		ADD	$A_{\text {，}} \mathrm{E}$		F678	79	1376	SETXY：	LD	A，C	；GET SECOND CHAR OF SEQUENCE
F5D	FE50	1249		CP	80	；EXIT IF NEXT TAB COLUMN WOULD	F679	FESD	1377		CP	＇$=$	
FSDS	DO	1250		RET	NC	；be past the right margin	F678	CO	1378		RET	NZ	；AEORT SEQUENCE IF Nat＇＝，
FSD6	7 D	1251		LD	A，L		F67C	3E02	1379		LD	A， 2	
FSD7	E6FB	1252		AND	11111000 B	；ELSE INCREMENT THE CURSOR	F67E	12	1380		LD	（DE），A	；MAKE LEADIN＝2 NEXT TIME
FSD9	6 F	1253		LD	L，A	；POINTER FOR REAL	F67F	c9	1381		RET		
FSDA	19	1254		ADD	HL，DE				1382				
FSDE	C9	1255		RET			F680	FEO2	1383	M2TST：	CP	2	
		1256	；				F682	2019	1384		JR	NZ，MSTST－\＄	
		1257					F684	3E03	1385		LD	A，3	
FSDC	DB1C	1258	EELL：	IN	A，（BITDAT）		F686	12	1386		LD	（DE），A	；MAKE LEADIN＝3 NEXT TIME
FSDE	CEEF	1259		SET	S，A	；TOGGLE BIT 5 OF SYSTEM FIO TO	F687	3A77FF	1387	SETROW：	LD	A，（EASE）	；ARRIVE HERE ON THIRD CHAR
FSEO	D31C	1260		OUT	（BITDAT），A	；TRIGger bell hardware to sound	F68A	81	1388		ADD	A，C	；OF ESC，＇$=$＇，ROW，COL SEQUENCE
FSE2	ceaf	1261		RES	5，A		F68E	D61F	1389		SUE	，＇－1	
FSE4	D31C	1262		OUT	（BITDAT），A		F68D	D618	1390	SETR2：	SUE	24	
FSE6	C9	1263		RET			F68F	30FC	1391		JR	NC，SETR2－	；VERIFY RDW\＃BETWEEN O．AND 23
		1264	；				F691	C61日	1392		ADD	A， 24	
		1265	－				F693	F660	1393		OR	CRTMEM．SHR．	7 ；MERGE IN MSE＇S OF CRT MEMORY
FSE7	7 D	1266	RETURN：	LD	A，L		F695	67	1394		LD	H，A	
FSE日	E680	1267		AND	10000000 B		F696	2 EOO	1395		LD	L， O	
FSEA	6F	1268		LD	L，A	；MOVE CURSOR POINTER EACK	F698	CE3C	1396		SRL	H	
FSER	C9	1269		RET		；TO START OF LINE	F69A	CB1D	1397		RR	L	
		1270	；				F69C	C9	1398		RET		
		1271							1399				
FSEC	210030	1272	CLRSCN：	LD	HL，CRTMEM		$\begin{aligned} & \text { F69D } \\ & \text { F69F } \end{aligned}$	$\begin{aligned} & \text { FEOS } \\ & 2000 \end{aligned}$	1400 1401	MZTST：	$\begin{aligned} & \text { CP } \\ & \text { NR } \end{aligned}$	$\begin{aligned} & 3 \\ & \text { NZ,M4TST-\$ } \end{aligned}$	
－M	icro Corn	copia，	Numbe	2，Sep	mber 1981	（continued on top of page 12）							（continued next page）

PFM Monitor Listing (continued)

F6A1	79	1402	SETCOL:	LD	A, C	; ARRIVE HERE ON FOURTH CHAR		
F6A2	D620	1403		SUB	,	; OF ESC, ' $=$ ', ROW, COL SEQUENCE		
F6A4	D650	1404	SETC2:	SUB	80			
FGAG	30FC	1405		JR	NC, SETC2-\$; MAKE SURE COL\# between 0 \& 79		
FGAB	C650	1406		ADD	A,80			
FGAA	ES	1407		OR		; MERGE IN COL\# WITH L		
FGAB	6F	1408		LD	L, A			
FGAC	C9	1409		RET				
		1410						
FGAD	CD72F5	1411	M4TST:	CALL	DISPLA	;DISPLAY THE CONTROL CHAR		
F6EO	C9	1412		RET		;PASSED IN C		
		1413	;					
		1414	;					
		1415	;					
		1416	;					
		1417		INCLUDE DISKIO.ASM				
		1418	;**************************			*******************************		
		1419	;*			*		
		1420	;*	DISK INPUT/OUTPUT		DRIVER SUBROUTINE PACKAGE		
		1421	;*	DISK FOR	TERN DIGITAL	1771 DISK CONTROLLER		
		1422	;			*		
		1423	; *	bullet-proof error		recovery added 12-AFR-80		
		1424	; *					
		1425	;**					
		1426	;					
		1427	;EQUATES FOR					
		1428			K CONTROLLE	ER PORTS AND COMmAND CODES		
		1429						
>0010		1430	STSREG	EQU	WD1771+0	; STATUS REGISTER		
>0010		1431	cmdreg	EQU	WD1771+0	; COMMAND REGISTER		
>0011		1432	TRKREG	EQU	WD1771+1	; TRACK REGISTER		
>0012		1433	SECREG	EQU	WD $1771+2$; SECTOR REGISTER		
>0013		1434	datreg	EQU	WD1771+3	; DATA REGISTER.		
		1435						
>0088		1436	RDCMD	EQU	10001000	; READ COMMAND		
>0048		1437	WRTCMD	EQU	10101000B	; WRITE COMMAND		
>0010		1438	SKCMD	EQU	O0011100B	; SEEK COMMAND		
>0000		1439	FINCMD	EQU	11010000 B	;FDRCE INTR COMMAND		
>000C		1440	RSTCMD	EQU	00001100E	;RESTIRE COMMAND		
>0004		1441	HLOAD	EQU	00000100B	;RD/WRT HEAD LOAD ENABLE		
		1442	'; EQU OCOH					
>00C9		1443						; SUBROUTINE RETURN INSTR OFCODE
>0066		1444	NMIVEC	EQU	0066H	; THE NON-MASKABLE INTERRUPT IS ;USED FOR DATA SYNC BETWEEN ;THE 2-80 AND 1771		
		1445						
		1446						
		1447	;					
		1448	;					
		1449						
F6B1	79	1450	SELECT:	LD	A, C	GGET UNIT\# PASSED IN C AND		
F6E2	FEO4	1451		CP	4	; CHECK FOR MAXIMUM VALID*		
F6E4	DO	1452		RET	NC	; ERROR IF NUMBER > 3		
F6E5	CDB8F7	1453		CALL	TURNON	; MAKE SURE disks are turned on		
F6E8	DB1C	1454		IN	A, (BITDAT)			
FGEA	47	1455		LD	B, A	; SAVE CURRENT DRIVE SELECT DATA		
F6BE	E6F8	1456		AND	11111000 B	; MERGE IN NEW DRIVE UNIT\# IN C		
F6ED	B1	1457		OR	C	; IN PLACE OF THE CURRENT ONE		
FGEE	D31C	1458		OUT	(BITDAT), A	; TO SELECT THE NEW DISK DRIVE		
F6CO	CDAEF7	1459		CALL	FDRCE	; TEST NEW DRIVE'S READY STATUS		

PFM Monitor Listing (continued)

	$\begin{aligned} & 1656 \\ & 1657 \\ & 1658 \end{aligned}$	$;$				
>FFOO	1659	vectab	EQU	\$; interrupt vector table starts	
>FFOO	1660	SIOVEC:	DEFS	16	SPACE FOR a Vectors for sio	
>FF10	1661	ctcvec:	defs	8	; SPACE FOR 4 vectors for cti	
>FF18	1662	SYSVEC:	DEFS	4 ;	; SPACE FOR 2 VECTORS FOR SYSTEM	
					PIO	
>FF1C	1663	GENVEC:	DEFS	4 ;	; SPACE FOR 2 VECTORS FOR general pio	
	1664					
	1665					
	1666	; KEYEDAR	RD DATA	A INPUT FiFD Va	ARIABLES	
>FF20	1668	FIFO: DEFS 16			; CONSOLE INPUT Fifo	
>FF30	1669	FIFCNT:	defs	1 ;	;FIFO DATA COUNTER	
>FF31	1670	FIFIN:	DEFS	1 ;	;FiFI infut pointer	
>FF32	1671	FIFDUT:	DEFS	1 ;	; FIFO OUTFUT POINTER	
>FF33	1672	LOCK:	defs	2 ;	;SHIFT LOCK Char+FLAG BYte	
	1673	;				
	1674					
	$\begin{aligned} & 1675 \\ & 1676 \end{aligned}$					
>FF35	1677	SPSAVE:	DEFS	2	;USER STACK POINTER SAVE AREA ;LOCAL STACK FOR INTERRUPTS	
>FF37	1678	TMPSTK: DEFS		32		
	1679					
	1680	; 'softhare' Vectors for interrupt service routines				
	1681					
>FF57	1682	TIKVEC:	DEFS	2	;1 SEC INTERRUPT ROUTINE VECTOR	
>FFS9	1684	PINVEC:	dEFS	2	; PARALLEL Console infut vector	
>FFSE	1685	SINVEC:	defs	2	; SERIAL CONSOLE INFUT VECTOR	
	1686	;				
	1687	;CLOCK-TIMER I		INTERRUPT VARIABLES		
	1688					
	1689					
>FF5D	1690	TIKCNT:	DEFS	2	; Binary clock tick counter	
>FFSF	1691	DAY:	DEFS	1	; CALENDAR DAY	
>FF60	1692	MONTH:	DEFS	1 ;	; MONTH	
>FF61	1693	YEAR:	DEFS	1 ;	; YEAR	
>FF62	1694	HRS:	DEFS	1 ;	; CLOCK HOURS REGISTER	
>FF63	1695	MINS:	DEFS	1 ;	MINUTES RETISTER	
>FF64	1696	secs:	DEFS	1 ;	seconds register	
	1697					
	1698					
	$\begin{aligned} & 1699 \\ & 1700 \end{aligned}$;DISK I	10 DRIV	VER VARIABLES		
>FF65	1701	UNIT:	defs	1 ;	; Currently selected disk\#	
>FF66	1702	TRKTAB:	DEFS	4 ;	; 4 dRIVE HEAD POSITION TABLE	
>FFGA	1703	SPEED:	DEFS	1 ;	; SEEK SPEED FOR 1771 COMMANDS	
>FF6E	1704	RECLEN:	DEFS	1 ;	; SECTOR RECORD LENGTH VARIAELE	
>FF6C	1705	MOTOR:	DEFS	1 ;	; DRIVE MOTOR TURN-DFF TIMER	
>FF6D	1706	TRACK:	DEFS	1		
>FFGE	1707	SECTOR:	DEFS	1		

>FF6F	17018	CMDTYP:	DEFS	1	; COMMAND EYTE FOR READS/WRITES		
>FF70	1709	RETRY:	DEFS	1	:DISK OFERATION RE-TRY COUNT		
>FF71	1710	IOPTR:	DEFS	2	;DISK I/O EUFFER POINTER		
	1711						
	1712	;					
	1713	; CRT OUTPUT DRIVER VARIABLES					
	1714						
	1715						
>FF73	1716	CURSOR: DEFS 2			; CURSOR POINTER		
>FF75	1717	CHRSAV:	DEFS	1	; CHAR QUERLAYED BY CURSOR		
>FF76	1718	CSRCHR:	DEFS	1	; CHAR USED FOR A CURSOR		
>FF77	1719	BASE:	DEFS	1	; CURRENT CONTENTS OF SCROLL		
;					REGISTER		
>FF7 7	1720	LEADIN:	DEFS	1	; STATE OF LEAD-IN SEQUENCEHANDLER		
;		-					
	1721	;					
	1722						
	1723	; NULL PAD COUNT FOR SERIAL OUTPUT DELAY					
	1724						
>FF79	1725	NULLS:	DEFS	1	; OF NULLS SENT AFTER CONTROL		
;					CHARS.		
	1726	;					
	1727						
	1728	; IISthead pointer for dynamic memory allocation scheme					
	1729 1730						
>FF7A	1731	FREPTR: DEFS 2					
	1732	; CONSOLE MONITOR PROGRAM VARIABLES					
	1733						
	1734	PARAM1: DEFS 2			; STORAGE FOR NUMEERS READ		
PFF7C	1735						
PFF7E	1736	PARAM2: D	DEFS	2	; FRDM LINE INFUT EUFFER		
>FF8O	1737	PARAMS: D	DEFS	2	; BY 'PARAMS' SUBROUTINE		
>FFg2	1738	PARAM4: D	DEFS	2			
>FF84	1739	ESCFLG: D	DEFS	1	; CONSOLE ESCAPE FLAG		
>FF85	1740	CDFLAG: D	DEFS	1	; CONSOLE OUTfut toggle		
>FF86	1741	LAST: LINBUF:	DEFS	2	; LAST ADDRESS USED EY 'MEMDMP'		
>FFB8	1742		LINBUF: DEFS ;		64	; CONSOLE LINE INFUT BUFFER	
	1743						
	1744	;					
	1745						
	1746	; END					
	1747						
ERRORS $=0000$							

$\square I$ own a big board (Hooray!)
$\square I$ don't own a Big Board but am very interested (There's hope)

	EXPERTISE Guru $=5$ Novice $=0$
Software Systems	\square
Software Applications	\square
Languages 1.	\square
2.	\square
Hardware	\square

What are your hardware/software needs now?
\qquad

In the near future? \qquad

What kind of exciting adventure (misadventure) are you working on? \qquad
\qquad
\qquad

If you get the idea that this document is as interested in enlisting your aid and ideas as it is in getting a subscription, you're right. Lots of people are willing to subscribe, lots of people have ideas - and we'd like to encourage lots of people (especially you) to take an hour or two and put ideas and needs and accomplishments down on paper or disk. Then we can pass them along to others and that's what this journal is all about.

Send me six issues (1 yr .) of MICRO CORNUCOPIA. I understand that I can cancel at any time and receive a refund for the balance of the subscription. (Issue \#1 was published in August 1981.)
U.S.

- $\$ 16.00$

Canada \& Mexico
$\square \$ 20.00$ (U.S. funds)\square Back issues, Specify \#s $\$ 3.00$ each (U.S. funds)

Other Foreign

- $\$ 26.00$ (U.S. funds)
- Back issues, Specify \#s $\$ 3.00$ each (U.S. funds)
\qquad
- Back issues, Specify \#s \qquad
\qquad $\$ 3.00$ each
\qquad

ADDRESS

CITY \qquad STATE \qquad ZIP

US,CAN,MEX Other Foreign
 USER'S DISK \#1 $\$ 15.00$ \$20.00

Over 200K of software especially for the Big Board.
Including:
1-Two fast disk copiers.
2-The manual for Small C + .
3-A Z80 assembler.
4-Two disk formatters.
5-Othello.
6-A serial print routine.
7-Modem software.
8-Documentation for all the above.
See issue \#3, page 15 for more information about the disk. Also see "Using Modem7" in the same issue for information about configuring the modem software.

USER'S DISK \#2 \$15.00 \$20.00
Especially for folks with single-drive systems and those who want to try their hand at extending an assembler. Also a new CBIOS with parallel printer interface. Returns to default drive on reboot, stifles head banging, supports CP/M 2.2 and 1.4. Step by step instructions for the simple incorporation into your CP/M (using only DDT and SYSGEN). CBIOS source also included.
Including:
1-Two single-disk copy programs, both with source.
2-The source of the Crowe Assembler.
3-New Crowe.com file with larger symbol table.
4-New CBIOS for CP/M 1.4 and 2.2 (\& boot).
5-Disk mapper with source.
6-Documentation for all the above.
Screen Editor in Small C $\$ 39.00$ \$44.00 A simple out full-iunction screen text editor plus a text formatter, all written in Small C by Edward Ream. This package includes the editor and formatter .COM files setup for the Big Board, Small C itself, and source code for all. With the documentation this is over 400 K on a flippy disk. Edward is selling this package for $\$ 50$, you can buy it from us for $\$ 39$ (and Ed gets a royalty). Where else can you get an editor, a formatter, a C compiler, and source for all for under $\$ 40$?

	US,CAN,MEX	Other Foreign
FORTH IN ROM	\$65.00	\$70.00
	\$80.00	\$85.00

Now, what you've all been waiting for-FORTH in ROM. This is standard FIG FORTH in three 2716's. FIG FORTH is standalone FORTH so you don't use CP/M at all. If you have disks, FIG FORTH handles the disk I/O. If not, you can still enjoy a most fascinating language. A simple FORTH line editor and a decompiler are available on disk.
FORTH editor \& decompiler disk. \$15.00
$\$ 20.00$
TINY BASIC IN ROM
$\$ 35.00$
$\$ 40.00$
This two-ROM set takes control of the system just like FORTH does, handling its own I/O, loading Basic programs and object code routines on and off the disk or out of the third ROM. This little Basic is great for controller and utility applications.

MORE ROMS

Fast monitor ROMs for speed freaks and our famous 'better than Texas' character ROM for screen freaks.

Fast Monitor ROM.	$\$ 25.00 \quad \$ 25.00 \quad \$ 30.00$
Version 2.2 Character ROM	$\$ 30.00$

- Send Big Board number with monitor ROM orders.
- Monitor \& char. ROMs $\$ 5.00$ each if you send a fast ROM and a stamped, self-addressed return envelope.

BACK ISSUES(each) \$ 3.00 \$ 5.00

- Because of the demand from new subscribers (bless their hearts) we are keeping back issues in print.

ISSUE \#1	ISSUE \#2	ISSUE \#3
Power Supply	Parallel Print	Four MHz Mods
RAM Protection	Drive Motor Cont.	Configuring Modem 7
Video Wiggle	Shugart Jumpers	Safer Formatter
$1 / 2$ PFM.PRN	1/2 PFM.PRN	Reverse Video Cursor******
Plus More (16 pgs)	Plus More (16 pgs)	Plus More (16 pgs)
ISSUE \#4		ISSUE \#5
Keyboard Translation		Word Processing at Micro C
More 4MHz Mods		Two Great Spells
Modems, Lync \& SIOs		Two Text Editors
Undoing the CP/M ERASE		Scribble, a Formatter
Plus More (${ }^{\text {a }} \mathrm{pgs}$)		Plus More (20 pgs)

ISSUE \#1
RAM Protection Video Wiggle 1/2 PFM.PRN Plus More (16 pgs)

ISSUE \#4
Keyboard Translation
Modems, Lync \& SIO
Undoing the CP/M ERASE
Plus More (${ }^{20} \mathrm{pgs}$)

ISSUE \#3
Cor
Safer Format
Reverse Video Cursor ${ }^{*}$
Revers More (16 pgs)
ISSUE \#5
Word Processing at Micro C
Two Great Spells
Scribble, a Formatter
Plus More (20 pgs)

FREE
Your choice of either user's disk or the deluxe character ROM free if you send an article or software and a ROM or extra disk.

QUANTITY	DESCRIPTION	PRICE EACH	TOTAL

NAME
ADDRESS
CITY \qquad STATE \qquad ZIP
U.S. funds only; please

Make checks payable to:
MICRO CORNUCOPIA

