

REACTIVE
C O M P U T E R

rC1 SYSTEMS

DESIGN
SPECIFICATION

v i

Subject

Page
Date

TABLE OF CONTENTS

I . Compil e r Overview
11. Standards and Conventions

111. Common Routines and Communication Reqion
IV. Resident Tables

V. Disk Record Formats
VI. RPG Generated Object Proaram

VII. Detail Design
Compi 1 e r Executive
Header Card Scan

File Description Scan
Extension Scan

Line Counter Scan
Input Specification Scan
Calculation Specifications
O u t n u t Sneci f icat ions
Tab1 e Overf 1 ow Proqram
Control Proaram Generator
In~ut/Output Generator
File Extension - A1 t Col 1 a t i no Seq-Tables-Line Counter

Input Record Hand1 i n u Generator
Calculations Generator
Output Record Handlins Generator

Code Formatter
Cross Reference

R E A C T I V E
C O M P U T E R
S Y S T E M S

DESIGN
SPECIFICATION

Page
Date 8/2/71

Subject COMPILER OVERVIEW

REACTIVE DESIGN
C O M P U T E R

Page I (1)

SYSTEMS
SPECIFICATION Date 8/2/71

P Subject COMPILER OVERVIEW

RPG I1

DESIGN OBJECTIVES

I .A . 1 PURPOSE

The R P G I1 compiler i s beinq deve lo~ed t o allow the Memorex B and C

machines t o compete w i t h the IBM SYSTEV/3 and IBM 360120. In order

t o accomplish t h i s ob jec t ive , the RPG I1 product wil l duol ica te

SYSTEM/3 R P G I1 as c lose ly as reasonably possible. This wi l l provide

compatability with IBtll SYSTEM13 R P G 11, a s well a s with a l a rqe

number of IBM 360/20 R P G programs. R P G I1 wil l onerate under

OPSYS/1, and wil l be upward compatible with OPSYS/2 R P G 11.

I .A.2 CONFIGURATION

The RPG I 1 compiler and object prosram i t qenerates wil l operate

under OPSYS/1. M i n i m u m confiquration wi l l cons i s t of ope ra to r ' s

console, one d i sk , CPU, and 8K-byte memory f o r the compiler o r

ob jec t proqram (excl usive of OPSYS/1 support r ou t i ne s) . In addi t i a n ,

i t i s necessary f o r the minimum conf iqurat ior t o be caoable of

supportinq OPSYS/1, including i t s Data tlanagement, Linkaqe Editor ,

Loader, and Job Control Lansuaqe fea tu res . T h u s 16K bytes of memory

a r e reauired. The confiquration wil l a l so employ the I /@ un i t s

required by the object programs t o be used on the machine.

I.A.3 INTERFACE CONSIDER.4TIfiNS

R P G I1 wil l in te r face with the following areas of the o ~ e r a t i n g

system: -__ .__

o Linkage Editor and Overlay Loader

o Data Flanaqement

o Job Control

o Sor t

DESIGN
SPECIFICATION

n

Subject COMPILER OVERVIEW

REACTIVE
COMPUTER
SYSTEMS

Page I (2)
Date V

Since RPG I 1 w i l l be developed i n p a r a l l e l w i t h t h e o ~ e r a t i n p system,

RPG 11 w i l l r e q u i r e a development system i n c l u d i n g an assembler and

s i m u l a t i o n and/or emu la t ion o f t h e computer and t h e above system

f a c i l i t i e s .

I.A.4 PERFORt!,4NCE GOALS

The RPG I 1 comp i l e r w i l l onera te i n an 8K-byte o a r t i t i o n . Minimal

RPG I 1 o b j e c t nroqrams w i l l be a b l e t o execute i n an 8K-byte p a r t i t i o n .

Compi la t ion on a minimum c o n f i q u r a t i o n machine w i 11 be a lmos t I / O

bound. Performance on l a r q e r c o n f i a u r a t i o n s w i l l b e n e f i t f r om

a d d i t i o n a l memory (up t o some f i n i t e 1 i m i t) and improved 110

f a c i l i t i e s .

I. A. 5 STANDARDS

IB I l SYSTEll/3 RPG I 1 w i l l be used as t h e s tandard f o r v a l i d a t i n q t h e

flEblOREX RPG I 1 imp1 ementat ion.

I.A.6 TECHNICAL SUPPORT REOUIREMENTS

6.1 PUBLISHED DnCUpjENTS

o RPG I 1 Reference Manual (SRL)

o RPG I 1 Programmer's Guide (SRL)

o RPG I 1 Systems Manual, (PLY)

o RPG 11 Reference Card

6.2 RPG 11 UPDATES TO OTHER PUBLICATIONS

o System D e s c r i p t i o n Manual (o r e q u i v a l e n t) - ,

o Messaqes and C o m ~ l e t i o n Codes

o Terminal Serv ices Manual (o r e a u i v a l e n t)

o Job Cont ro l Lanquage Reference Manual

o L inkage E d i t o r Manual (o r e q u i v a l e n t)

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

, Subject COMPILER O V E R V I E W

Page I (3)
Date 8/2/21

There i s a lso a brief description of each separate module with a rough

s i ze estimate.

RPG 11 UPDATES TO OTHER PUBLICATIOqS (Cont'd)

o Job Control Lanquape Reference Card
o Sales & Systems Pl anni n q Guide for "PSYS/1- (or eauivalent)

MEFIOREX INTER?IAL E D U C A T I O N

In addition to standard announcement type clases , a one- to two-
week R P G I1 Internals calss will be necessary in order for the
MEMOREX Education and Product Test qrouos to prepare for the i r
product support requirements.

INTERNAL DEVELOPMENT PROGRAMIIER TRAIN I N G

No known reauirements currently ex i s t for internal development
programmer t ra in i n q .

PRODUCT TEST REQUIREMEPITS

A comprehensive s e t of we1 1 debuqqed, sel f-checkinq, and sel f-documenting
t e s t cases for which predefined resu l t s ex i s t will be required. This

s e t of t e s t cases must insure regression tes t ina for future product

reports.

REPORT PROGRAM GENERATOR

G E N E R A L DESIGI

The followinq qeneral desian i s intended to show the information flow

throuqh the compiler and the general compiler orqanization. Since the

compiler should always be InputlOutput bound, one can get a good

idea of the speed of the compiler. - -

R E A C T I V E
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page I (4)
Date 8/2/71

Subject COMPILER OVERVIEW

1 . B GENERAL DESIGM (Cont ' d)

The total compiler should be about 15,000 instructions, plus 2,000
instructions of object time subroutines, pl us error messages, p1 us
OPSYS/l Data Manaqement, plus table and buffer sizes.

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject G E N E R A L COMPILER FLOW

I Source Input

I

I
Source

I I
I I
I I

4

condensed
[record (-1 * A1 ternate ~ o l 1 a:: n q Seauenct

File Translation Tables
descriptions Com~il e Time Tables & Array!

1 I I

SYNTAX PHASE
(one overlay for each card type)

I I
CODE GENERATION PHASE I/O,FE, Red Move , (uses resident f i l e

(5 overlays-Subroutine Generation, Calcs, O P) description Tpble)

\1
I 7 / 1 I

(builds resident f i e ld name & f i l e
description tab1 e s)

/ ~ r e l imi nary NTR I ES
Object
Code XTRNS

11
CODE FORMATTING PHASE

Object
Proqrarn

CRQSS R E F E R E N C E PHASE - .- --

Source
Memory ?lap
Error Messaaes

Cross Reference
List

I

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page I (6)
Date 8/2 /71

Subject COMPILER O V E R V I E W

I.B.l The Compiler

One program will be resident with a l l phases (sections of i t may

be overlaid). This i s the:

EXECUTIVE PPOGRAM (1000 bytes)

o This will contain the COMMON variable used by a l l programs.

' Fixed Table Addresses & l imi t

Control Section Address Counters

- Control Card Information

Program Data used in a l l phases

o I t will also contain a l l 110 interfaces

o Table lookup routine

o Phase Over1 ay Control
0 Blocking/Debl , .. ocking

-The r e s t of the compiler will be broken into four main phases

each of which may consis t of several overlays.

I . B. 1 .1 Syntax Checking Phases

a. Header Card Scan (2000 bytes)

'Moves information from control card to common area

'Gets System information (date , Time)

'Opens & assigns RPG System f i l e s

'Any other initialization/housekeeping

b. File Description Scan (3000 bytes)

'Error checks f i l e description card -. . .-

'Builds resident f i l e & f i l e disc table

'Write out encoded f i l e description record

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject COMPILER OVERVIEW

File Extension Scan (2000 bytes)

'Builds RAF table entr ies in f i l e description table

'Writes tab1 e lookup/array coded records (in final format)

'Error checkin

'Calculates f ie ld name table s ize 6 ~ u t s in P A G E , PAGE 1 , PAGE 2

Line Counter Scan (1000 bytes)

'Writes l ine counter table on disc

'Error checki nq

Input Specifications Scan (4000 bytes)

' I n i t i a t e s buildinq f i e ld name & description table

'Writes record, ident i f icat ion & f i e ld description records

'Error checki ng

Calculation Specifications Scan (4000 bytes)

'Write calculation coded record on disk

'Error checki nq

'Adds to f i e ld name & description tables

O u t p u t Specifications Scan (4000 bytes)

'Writes record ID & f ie ld description records

'Transforms e d i t picture to ed i t control characters

' Error chec ki ng

I.B.l.2 Table Overflow Phase (Optional) (1000 bytes)

If the resident f ie ld table overflows durina the snecification phase

processinq continues b u t no more en t r ies a re added to the tab le , with

a l l references to en t r ies in the table resolved. A special pass then

takes place, which takes the output of the f i r s t pass and builds table

en t r i e s for those f i e lds not entered in the f i r s t pa'ss - t h i s continues

until a l l en t r ies have been entered in the table once.

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page I @)
Date 8/2/71

Subject COMPILER O V E R V I E W

I .B.1.3 Code Generation Phgse

Object Control Proqram Generation* (2000 bytes)

'Decides which parts of object control program are necessary and

include them in object Droaram

'Generates part of object time common region

* The actual object time subroutines include (7000 bytes)

1 . Basic control program

2. Look ahead routine

3. Record ident i f icat ion

4. Field moving input

5. Field moving output

6. Level break t e s t

7. Matchinq record

8. Record selection

9. Table lookup

10. Some calculations (Divide, mu1 t i ply, subroutine 1 inkaqe)

1 I O u t p u t record selection

Input/Output aeneration (6000 bytes)

'Generates interface between loqical IP and compiler

'Decides which loqical $0 routines are to be called

'Processes compile time tables & puts the i r address in control table

'Processes f i l e extensions & 1 ine counter

File Extension - A1 t Col la t ina Seq.-Tab1 es-Li ne Counter

'Processes f i l e extension records

'Reads and qenerates a l te rna te col la t ing seauence tables

'Reads and senerates tables/arrays

'Processes l ine counter

Record Hand1 ing Generator (5000 bytes)

'Generates record ident i f icat ion table

'Generates code to move data from input to work area includinq

conversion from binary or unpacked decimal.

REACTIVE
C O M P U T E R

II SYSTEMS

DESIGN
SPECIFICATION

Subject COMPILER OVERVIEW

Page I (9)
Date 8/2/71

e. Calculation Generator (6000 bytes)

'Eliminate d u ~ l i c a t e indicator tes t ing

'Generates indicator tes t inq & se t t ina

'Generates claculation code

'Selects needed subroutines

f. O u t p u t Generation (5000 bytes)

' O u t p u t record selection tab1 e

'Generate f i e ld moving/editing code

I.B.1.4 Code Formatter Phase (3000 bytes & messages)

'Produce object disk

'List e r ro r messages

'Memory & indicator map

'Debugging code dump

'Load and make part of object program compile time tables/arrays

I .B. 1.5 Cross Reference Phase (1 000 bytes)

'Cross Reference l i s t

Phase

f-

n y n t a x Phase
1. Compiler Executive 1,000
2. Buffers 730
3. Fixed Table Snace 256
4. a . Header Scan 2,000

b. F i le Description 3,000
c. F i l e Extension 2,000
d. Line Counter 1,000
e . I n ~ u t Specif ica t ions 4,000
f . Calculation Specif ica t ions 4,000
g . O u t p u t Specif ica t ions 4,000

REACTIVE
C O M P U T E R

DESIGN Page I(1Q)

S Y S T E M S
SPECIFICATION Date 8/2/71,

B. Table Overlay Phase
1. Compiler Executive 1,000
2. ,Buffers 730
3. 'Fixed Table Space 256
4. Tab1 e Overlay Proqram 1,000

Subiect COMPILER C O R E UTILIZATION

C,. Code Generation Phase
1. Compiler Executive 1 ,000
2. Buffers 560
3. Fixed Table Space 2 56
4. a . Control Proqram Generator 2,000

b. Input/Output Generator 6,000
c. F i l e Extension-Line Counter2,OOO
d. Input Record Hand1 ing 5,000
e . Calculations 6,000
f . O u t p u t Record Handling 5,000

D. Code Formatter
1 . Compi 1 e r Executive 1,000
2. Buffers 994
3. Fixed Table Space 256
4. Code Formatter 3,000

E. Cross Reference
1 . Com~i 1 e r Execu t i ve 1,000
2. Buffers 470
3. Cross Reference Program 1,000

1.C Memory Overflow Contingencies

.
REACTIVE DESI CN Page I (1 l)
C O M P U T E R
SYSTEMS

SPECIFICATION
r'

Date 8/2/71

Subject COMPILER OVERVIEW

In a Syntax Checking Phase

These will a l l be f a i r l y small programs with l i t t l e likelihood

of exceedinq the s ize estimates given. If one or two are la raer

than expected, then the ooss ib i l i ty gf movinq some error checking

to the generator phase will be looked a t (the aenerator phase must

have room avai lable) , or the available table space will be reduced

for fie1 d names.

Field Name Table Overflow

The Field Name and Description table occupies a l l the space between

the la rges t syntax scan overlay and the bottom of the f i l e descrip-

tion table. If a l l the available en t r ies a re f i l l ed and there are

more l e f t t o p u t in,the table overflow ~ h a s e i s called a f t e r a l l

the syntax overlays a re processed.

The table overflow phase reads the condensed description records

outputted by the Syntax checkinq phase and checks f i e l d , taq and

subroutine names not ~rocessed by the syntax phase. Undefined and

duplicate names are diagnosed, and a new condensed description f i l e

i s writ ten.

The table overflow phase reprecesses the new condensed description

f i l e as many times as necessary.

Code Generation Programs

The Calculation Ge-mator will have the most d i f f i c u l t f i t i n core.

To cover the possibi l i ty tha t i t may not f i t in core, i t will be

coded in isolated subroutines corresponding to Calculation operator

types. If i t will not f i t as a whole in one overlay, the l eas t used

options can be made into an overlay to be pinq-ponged with the more

popular options .

R E A C T I V E
COMPUTER
S Y S T E M S

DESIGN
SPECIFICATION

Page
Date T

Subject STANDARDS AND CONVENTIONS

REACTIVE
COMPUTER
SYSTEMS

DESIGN
SPECIFICATION

PI Subject STANDARDS AND CONVENTIONS

RPG Coding Convent ions

A. A l l e n t r y p o i n t s and program names b e g i n w i t h SRG (t h i s does n o t

app ly t o r e g u l a r l a b e l s i n a program).

B. The comp i l e r c o m u n i c a t i o n r e g i o n w i l l be i n common (DCOM), and a l l

f i e l d s i n i t w i l l b e g i n w i t h XS. .

A l l programs w i l l use t h e same common d e f i n i t i o n s which w i l l be

s t o r e d i n t h e system macro l i b r a r y and re fe renced by t h e macro

name.

XSCOM

C. Linkage w i t h i n comp i l e r w i l l use r e g i s t e r s as f o l l o w s :

R e g i s t e r - Use

Work r e g i s t e r , n o t saved
Work r e g i s t e r , n o t saved
Must be saved i f used
Must be saved i f used
Must be saved i f used
Must be saved i f used
Parameter l i s t p o i n t e r
Return address

Note: Reg i s te r s 0 and 7 w i l l become a v a i l a b l e when t h e f i n a l machine
does (1972). A t t h a t t i m e we can s w i t c h t o u s i n g r e g i s t e r 7 as
t h e r e t u r n address and 0-1 w i l l be work r e g i s t e r s

D. ~ i n k a ~ e r e g i s t e r s 7 and 6 w i l l be r e f e r r e d t o as RR and RP.

E. A1 1 1 i nkage t o Compi 1 e r Execu t i ve Subrout ines (e.g . SRGLUP, SRGIND,

SRGPUT) w i l l be w i t h t h e LINK macro.

o p e r a t o r operand1 operand 2 (o p t i o n a l)

L INK SRGLUP / PARLST

operand 1 i s t h e sub rou t i ne name, operand 2 i s t h e ' p o i n t e r t o t h e

parametor 1 i s t

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page I I (2)
Date ---ULU-

Subject STANDARDS A N D CONVENTIONS

F. A1 1 Input/Output records will be addressed symbol ical ly (Instead of using

a displacement to a f i e ld i t will have a name). All names begin with the

character a t the beginning of the record followed by a 8 .

For example the f i l e number in the O u t p u t Record Identification record

could be ca l l ed :

OSF I LN

R E A C T I V E DESIGN
C O M P U T E R Page
SYSTEMS

SPECIFICATION Date
k' . Subject COMMON ROUTINES & COFlFlUN I C A T I O N REGION

-

111. A RPG Indicator Processing

f l

Indicators can be both defined and referenced. I t will be one of the e r ror
checking functions of the compiler to diagnosed when a referenced indicator
has not been defined (has never had possibi l i ty of being s e t on by being
predefined, a resu l t or record indicator) . For t h i s purpose the SRGIND
i s provided and must be used to process indicators, for i t keeps two b i t
maps of referenced and defined indicators.

REACTIVE DESIGN
C O M P U T E R

Page I I I (1)

SYSTEMS SPECIFICATION Date T

Only those indicators used (with the possible exception of HO-H9, 10-19,

LR, MR, OA-OV and IF) will be assigned locations in the object program.
Those locations will not be assigned until the code focmat te r phase.
Internally the indicators will be assigned as follows:

Subject COMMON ROUTINES & COMMUNICATION REGION

Hex -
00

01 -63
64-613
6E-77
7 8

79
7A-81
82

83-8A

Indicator

Not used

01 -99
HO-H9
LO-L9
L R

MR

OA-OV

1 P

U1 -U8

REACTIVE
C O M P U T E R

/c' S Y S T E M S

DESIGN
SPECIFICATION

Page I I I (1)
Date 8/2 /71

Subject COMMON R O U T I N E S & COMMUNICATION R E G I O N

111. B Subroutine name: JRGLUP

Functions: 1) To look u p the Field Definition Table and verify i f
a given name occurs there;

2) To stash an entry in the table i f requested and i f no
duplicate i s found.

Inputs: RG points to the parameter 1 i s t that contains the following
information:

Byte

0-1 request coding one of the following values:

0 - only look-up

2 - look-up and stash

2-3 - pointer to the entry

4-7 - used to return information

Outputs: The following information i s placed in the parameter l i s t
s ta r t ing a t byte 4:

4-5 return code; one of the following valves:

0 - no duplicate entrylname n o t found

2 - duplicate entry/name found

4 - table overflow (only used for stash request)

6-7 - points to e i ther the old entry located in the
table or to the location where the new entry
has been stored.

Notes: 1) The name f i e ld i s contained in bytes 0-4 of the entry.
2) The entry i s assumed to be 12 bytes long. The subroutine

does not s tore array appendages with array ent r ies .
3) I f a name already occurs in the table , code 2 i s returned

together with the address of the old entry. In t h i s case
i t does not matter i f the request i s look-up or stash.

4) 1 f entry i s stashed, b i t 1 of ZJSWTZ i s s e t indicating
entry has been made in table. - .

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject COMMON ROUTINES SI COMMUNICATION REGION

Name of subroutine: JRGCKS

Function: to scan variable length s t r i n g (s) and check for invalid EBCDIC
characters.

Input: RG points to the parameter l i s t containing the following information:

Byte
0-1 pointer to beginning of f i e ld to scan
2-3 length of f i e ld in bytes
4 - used to return information

Outputs: The following information will be placed in the parameter l i s t
s ta r t ing a t byte 4:

4-5 return code; one of the following values:
0 - f i l ed blank
2 - alphameric s t r ing s t a r t ing with an alphabetic character
4 - f i e ld s t a r t s with a quote, +, -, or numeric
6 - leading blank or imbedded blank found; no i l lega l characters
8 - i l l ega l character found

6-7 number of synificant characters in the s t r ing .

8-11 the same information as in bytes 4-7 for the second s t r ing i f
there i s one. (Note: i f there a re two s t r ings , they must be
separated by a comma).

Description: The s t r ing i s scanned and each character i s inspected. If an'
i l l ega l EBCDIC character i s found (other than A- Z, 0-9, #, $ or @)
the scan i s terminated and the return code i s s e t to - 2. If a
blank i s found, the r e s t of the f i e ld i s checked. If there i s a
character other than blank following an i n i t i a l blank, the return
code i s s e t t o -1 . If there are two s t r ings on the fie1 d ,
separated by a comma, both s t r ings a re checked. If a s t r ing
s t a r t s with a quote, no fur ther check i s made on the f ie ld .

Number of synificant characters will be returned only with return
code 1 or 2.

Auxi 1 iary Subroutine: SRGCKA

Function: t o check 1 character for Alphabetic A-Z,#,$,@ -

Input: R1 = character to be checked

O u t p u t : RO = o valid character
RO = 2 invalid

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject QMMON ROUTINES & COMMUNICATION REGION

Page I I I (3)
Date 8/2/71

Subroutine name: SRGIND

Functions: 1) To check an EBCDIC indicator and convert i t to the appropriate
binary code.

2) To s e t the pertinent l i s t fo r the indicator in the defini t ion
map or the reference map.

Inputs : RG points to the parameter 1 is-t containing the following
information.

Byte

0-1 indicator with one of the following values:

0 - reference
1 - defini t ion

2-3 pointer to two-character f i e ld containing indicator in EBCDIC

4-7 used to return information

Outputs: the following information will be placed in the parameter
l i s t s ta r t ing a t byte 4:

Byte

4-5 return code; one of the following values:

0 - blank
2 - valid indicator
4 - invalid indicator

6-7 binary code for the indicator

Description: SRGIND checks a 2-character f i e ld to determine i f i t contains a
valid indicator. If i t does the pertinent binary code i s obtained
and used as an index to s e t on a b i t in e i ther the indicator
reference map or the indicator definit ion map.

Note: i f the indicator i s expressed i s a 1-digit number, i t must
be r ight adjusted ' in the f ie ld .

R E A C T I V E DESIGN
C O M P U T E R

Page f I S (4)

S Y S T E M S
' SPECIFICATION Date 8 /21 71

I" Subject COMMON ROUTINES & COMMUNICATION REGION

Subroutine name - SRGCKN

Function: t o ver i fy a variable length EBCDIC numeric s t r i n g and t o convert
i t to binary.

Inputs: RG points t o the parameter l i s t containing the following information:

Byte
0-1 pointer to heginning of s t r i n g

2-3 s i z e of f i e l d i n bytes

1 4-7 used to return information
I

Outputs: the following information i s placed i n the p 1 a t byte 4:
e t e r 1 i s t s t a r t i n g

Byte

4-5 re turn code; one of the following values:
0 - f i e l d i s blank
2 - val id number
4 - not a val id number

6-7 numeric value of the s t r i n g converted t o binary.

Notes: 1) sign o r decimal point a r e not allowed.
2) the s t r i n g must be r i gh t adjusted in the f i e l d .

REACTIVE
COMPUTER
SYSTEMS

DESIGN
SPECIFICATION

Subject COMMON ROUTINES & COMMUNICATION REGION

Page ##+
Date

Subrout ine name - SRGLFN

Funct ion: To l o o k up t h e F i l e D e s c r i p t i o n Table f o r a g iven f i l e name.

Inputs :

Outputs :

RG p o i n t s t o t h e parameter l i s t t h a t con ta ins the f o l l o w i n g i n fo rma t i o r

Byte

0-1 p o i n t e r t o 1-8 cha rac te r f i l e name (l e f t ad justed, padded
w i t h EBCDIC b lanks)

2-3 Unused

4-7 used t o r e t u r n i n f o r m a t i o n

The f o l l o w i n g i n f o r m a t i o n i s p laced i n t h e parameter l i s t s t a r t i n g
a t b y t e 4:

4-5 r e t u r n code; one o f t h e f o l l o w i n g values:

0 - name n o t found

2 - name found

6-7 p o i n t e r t o e n t r y i f found.

DESIGN
SPECIFICATION

n
C ' Subject COMI'4ON ROUTINES & COMMUNICATION REGION

REACTIVE
COMPUTER
SYSTEMS

Page I I I (6)
Date 8/5/'71

Subrout ine name - SRGCND

Funct ion: To condense a s t r i n g o f EBCDIC charac ters by s t r i p p i n g o f f the
h igh order 2 b i t s and packing the reduced s i x - b i t charac ters
nex t t o each o ther .

Inpu ts : RG p o i n t s t o t h e parameter l i s t t h a t con ta ins the f o l l o w i n g
I i n fo rma t i on :

Bjlte

I ,
I 0-1 p o i n t e r t o t h e EBCDIC s t r i n g ,
i

i 2-3 number o f charac ters i n t h e s t r i n g

1 4-5 p o i n t e r t o work area where t h e condensed cha rac te rs a re t o
be p laced (c a l l i n g r o u t i n e must i n i t i a l i z e t h i s area t o zero)

Outputs: Condensed s t r i n g i n t h e s p e c i f i e d work area.

Note: The i n p u t charac ters a re no t checked f o r v a l i d i t y .

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page I I I (7)
Date

Subject Common Routine & Communication Requir.

. -

SUBROUTINE NAME : $RGETC

FUNCTION: To read a card from card reader.

INPUT: RG points to a parameter l i s t in which the following information
w i 11 be pl aced.

OUTPUT: Byte
0-1 Return code; one of the following

0 - successful
1 - end of f i l e

2-3 Buffer address

DESCRIPTION: A card i s read from the card reader into a physical
buffer whose address i s placed in bytes 2-3 of the
parameter l i s t .

REACTIVE DESIGN
C O M P U T E R

Page 111 (8)

SYSTEMS
SPECIFICATION h t e 9 /14 /71

P Subject Common Routines

SUBROUTINE NAME: SRGDMP

FUNCTION: To make readable dump of resident tables

INPUT: RG contains one of the following:

zero - Dump a l l of f i l e table
Dump a l l of f i e ld table

non-zero - pointer to f i e ld name table entry to dump

OUTPUT: O u t p u t goes to pr inter - dump of tables

DESCRIPTION: The f i l e description table will be printed as follows:

c ~ , l s 1-2 hex f i l e number
4-11 f i l e name

14-1 7 switches (hex)
19-20 f i l e type (hex)
22-23 linked f i l e (hex)
25-28 pointer (hex)
30-31 seg l imi t on overflow in (hex)
33-34 high match red level (hex)
36-39 record length (hex)

The f i e ld description table will be printed as follows:

cols 1-4
6-11

13-1 8
20-23
25-28
30-33
35-38
40-43

table address (hex)
f i e ld name (uncondensed)
f ie ld type and switches in hex
blank or zero ind and f ie ld s ize in hex
storage address in hex
hex FF and table entry in hex
number of table entr ies (hex)
storage address (hex)

REACTIVE
COMPUTER
SYSTEMS

DESIGN
SPECIFICATION

Subject COMMON ROUTINES

Page I I I (9)
Date -WTm-

SUBROUTINE NAME: $RGET

FUNCTION: TO READ A RECORD FROM DISC.

INPUT:

I
I
I

\
OUTPUT :
I
!

RP p o i n t s t o parameter l i s t which conta ins f o l l o w i n g i n fo rma t i on :

Byte

0- 1

2-3
4- 5
6- 7

FILE IDENTIFICATION NO.
1 - Condensed Record Desc r i p t i ons
2 - Source Records
3 - E n t r i e s and Ex t rns
4 - Condensed Record ~ e s c r i p t i o n s (pingponged w i t h #1)
5 - P r e l i m i n a r y Ob jec t Code

RECORD ADDRESS
RECORD LENGTH I N BYTES
RETURN CODE
0 - Successful
1 - EOF
2 - Unsuccessful

Subject COMMON ROUTINES

SUBROUTINE NAME: $RGPUT

FUNCTION : WRITE A RECORD TO SPECIFIED DISC FILE

INPUT: ~ 6 ' p o i n t s t o parameter l i s t t h a t con ta ins the f o l l o w i n g i n fo rma t i on :

Byte

0-1 FILE IDENTIFICATION NO..
1 - Condensed Record Desc r i p t i ons
2 - Source Records
3 - E n t r i e s and Ex t rns
4 - Condensed Record Desc r i p t i ons (pingponged w i t h # I)
5 - Pre l im ina ry Object Code

2-3 RECORD LENGTH IN BYTES
4-5 RECORD ADDRESS

fi-

REACTIVE DESIGN
COMPUTER Page I 1 1 (10)

SYSTEMS
SPECIFICATION Date 10/1/'71

-

J

REACT1 V E
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject Common Routines - Generation

Page * Date O 6 /

SUBROUTINE NAME: $RGING

FUNCTIONS: 1 . Return re la t ive address of indicator in Object code
group 21 (see page V1(7)).

2. Return s tatus showing whether indicator i s undefined
or unreferenced.

INPUT: R G points to the parameter l i s t tha t contains the follow
information

Byte

0-1 Indicator (as def ined on page 111(0)).

OUTPUT: The following informa
s ta r t ing a t byte 2:

t ion i s placed in the parameter 1 i s t

2-3 Return code; one of the following values

0 - Indicator defined and referenced
2 - Indicator not defined
4 - Indicator not referenced

4-5 Relative address of indicator in code group 21 .

DESCRIPTION: $RGING checks the defined and referenced indicator bi t
maps (X$INDF and XSINRF) t o determine i f the indicator
had been defined and referenced. I t then O R ' S the two
indicator maps together and computes the number of b i t s
on before i t gets to the one currently being converted

- and tha t number i s the re la t ive address in the indicator
group (21) for the current indicator.

IV.

6

R E A C T I V E DESIGN
COMPUTER

Page

S Y S T E M S
SPECIFICATION Date 8/2/71

, Subject RESIDENT TABLES

REACTIVE
COMPUTER
SYSTEMS

DESIGN
SPECIFICATION

Subject RESIDENT TABLES

Page IV(~) 'G
Date

I V . A. Resident F i l e Name and D e s c r i ~ t i o n Table

Column F i e l d Length

F i 1 e Name

Swi tches

F i l e Type

Linked F i l e (RAF o r ADDROUT)

Record ID o r L ine Counter Chain

Sequence L i m i t o r Overf low I n d i c a t o r

High Matchinq Record Level

Record Length

8

2

1

1

2

1

1

2

18 bytes

Th is t a b l e i s b u i l t down from the top o f core. I t i s c rea ted b.v the

F i l e Desc r ip t i on Scan, added t o by the F i l e Extension and I n o u t

S p e c i f i c a t i o n Scans and used by the C a l c u l a t i c n Scan, Output Scan and

Input /Output Generator. Some f i e l d s con ta in d i f f e r e n t i n f o r m a t i o n

depending on whether i t i s an i n ~ u t o r an output f i l e .

F i e l d Descr ip t ions

Col umns Desc r ip t i on

0-7 F i l e Name - same as i t appears on F i l e Desc r ip t i on Form

4 =
5 =
6 =
7 =

Column 9 B i t O =
1 =
2 =
3 =
4 =

8-9 S w i t c hes
Column 8 R i t O = 1 Primary F i l e

1 = 1 Secondary F i l e
2 = 1 Chained
3 = 1

1
1
1
1
1
1
1
1
1

RAF/ADDROUT
Tab1 e/Array
Demand
P r i n t F i l e
Var iab le Lenqth F i l e
Ascending Seauence ,

Descendinq Seauence
F i l e Extensions necessary
L ine Counter Neeessary
New record w i l l be added t o f i l e

5 = 1 Alphanumeric keys
6 = 1 Packed decimal keys
7 = 1 Card f i l e

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject RESIDENT TABLES

File type . O = Input
2 = Outout
4 = Update
6 = Display
8 = (Combined) not implemented

Linked File (for RAF or ADDROUT f i l e s)
File Tab1 e Entry ~urnber' (by order of entrv into tab1 e)
tha t t h i s f i l e i s 1 inked to by the File Extension Spec.

Record Identification pointer (fo r Input f i l e s) o r l i ne
counter pointer (fo r output f i l e s)
- a minus one indicates not used - i n i t i a l i z e to minus one

This entry i s f i l l e d in by the Innut Specifications Scan
or the Line Counter Scan, with the re1 a t ive address of
the record ident i f icat ion table11 ine counter table for
th i s f i l e

This i s used by the Input/Output generator to help build
the File Control Table

'b

- I-- &or DSPLYfil es i s s e t to zero when referenced, -- #ey f l e l d
length fo r indexed f i 1 es or overflow indicator.

The overflow indicator and key fie1 d 1 ength both come from
the f i l e description scan.

High Matching Record level - from Input specifications.

Record Length - for checkinq maximum record positions in
i n ~ u t and output specifications

R E A C T I V E
C O M P U T E R
S Y S T E M S

DESIGN
SPECIFICATION

Page
Date

Subject Y B

w

REACTIVE
s$

DESIGN
C O M P U T E R

Page IV(3)

SYSTEMS
SPECIFICATION Date 8/2/71

Subject RESIDENT TABLES

Resident Field Name and Description Table

Col umn Field Lenqth

0 Field Name (compressed) 5
5 Fie1 d Type 1
6 Switches 1
7 Switches 1
8 Blank o r Zero Indicator . 1
9 Field Size 1

1 0 Storage Address 2
r b y t e s

The Field Name and Description Table i s a randomly addressable t ab l e

occupying a1 1 the area ava i l ab le below the F i le Table. I t i s b u i l t and

referenced by the Input Specif ica t ion, F i l e Extension and Calculat ion

Scans, and referenced by the Q u t p u t Scan. If t h i s t ab l e f i l l s u p before

a l l new f i e l d names a r e processed then a special f i e l d Table overflow

rout ine i s used.

Field Descriptions

Columns Description

0-4 Field Name (condensed) -, . , , :

The f i e l d name i s packed 6 b i t s to a character (t o t a l of

36 b i t s o r 4 1 /2 bytes) by simnly removina the hiqh order

2 b i t s of each character (e.q. A , which in binary i s 11000001

becomes simply 000001)

5 Field Type

B i t 0=1 Numeric

!=I Alpha

2=1 Taq name

3=1 Subroutine Name
- . -

matter i s not t o c r ea t e adcon

,

DESIGN
SPECIFICATION

Subject RFSI DENT TABLES

6 Swi t ches

B i t 0 = 1

1 = 1

2 = 1
3 = 1

4 = 1

5 = 1

7 = 1
7 Swi t c hes

B i t 0 = 1

Tab1 e Name

A r r a y Name

Tab le i n Ascending Order

Tab le i n Descendi nq Order

E x t r n I
F i e l d used.as a r r a y index (must have zero decimal

p o s i t i o n s) I
I n ~ u t Data t ype - packed decimal

I n p u t Data t y p e - b i n a r y

Redef i nab1 e f i e l d (PAGE, PAGE1 , PAGE2)
These 3 e n t r i e s a r e made by FE scan i n f i e l d name I
t a b l e - b u t may be r e d e f i n e d by i n p u t specs o r c a l c spec,

1 = 1 E n t r y has been made in t a b l e (s e t when a new f i e l d name
i s p u t i n f i e l d name t a b l e)

2 = 1 Name i s d e f i n e d

I 3 = 1 Name i s r e fe renced I
4 = 1 RLABL

5 = 1 RLABL i n d i c a t o r (INXX) I n d i c a t o r i s i n s to rage address
(r i g h t j u s t i f i e d)

6 = 1 Nan Redef inable and Non A l t e r a b l e f i e l d (UDATE, UMONTH,
UDAY, UYEAR o r Lookahead)

7 = 1 Page Redefined.

Blank o r Zero I n d i c a t o r

For f i e l d s f rom i n ~ u t s p e c i f i c a t i o n s o r c a l c u l a t i o n s p e c i f i c a t i o n s

I t h a t have a b lank o r zero i n d i c a t o r assoc ia ted w i t h them, t h a t I
i n d i c a t o r number i s p u t here. (Code i s generated t o cause t h i s

i n d i c a t o r t o he r e s k t f o r a b lank a f t e r o f t h i s f i e l d name

I on o u t p u t) I
ZSSIZE 9 F i e l d S ize - - - --

Alphameric - Lenath o f f i e l d (1-255)

Numeric - B i t s 0-3 Decimal P o s i t i o n s (0-9) I
B i t s 4-7 Number o f d i a i t s i n f i e l d (1-15) I

1 (f o r nacked decimal o r b i n a r y f i e l d s t h i s i s I
n o t t h e same as f i e l d s i z e) I

DESIGN
SPECIFICATION

f i

Subject RESIDENT TABLES

REACTIVE
C O M P U T E R
SYSTEMS

Page
Date

To compute the number of bytes the f i e ld will occupy in the

work are'a from th i s f i e ld s ize use the following:

fo r Alphameric - f i e ld s ize

fo r Numeric - f i e ld size/2+1

10-1 1 Storage Address
Relative address of f i e ld in work area (where numeric f ie lds

a re in packed format) This address i s assigned by the scan

phase over1 ays

If RLABL indicator byte 1 1 holds indicator number

I f EXIT orULABL name contains EXTRN ordinal*or Label processing

o r SPECIAL processing

or Table Chain for Table and/or Array f i e lds

If TableIArray, bytes 10-11 point t o a 6 byte table entry with

the following format.

Col umn Description

0 binary 255 (FF) identif

1 Table f i l e entry number

of def ini t ion

2-3 Number of table en t r ies

4-5 Storage Address

ies th i s as a tablelarray extension

(1 -60) consecutively assigned in order

(maximum index val ue)

For tables th i s points to l a s t found table element hold

area - The hold area i f followed by table proper

For Arrays t h i s points to beginning of array.

For R L A B L , EXIT, ULABL or f i l e processing EXTRN see Z$ADDR

description

~ I E X T R N Ordinal - for EXIT or ULABL t o get indirect address of f i e ld use ordinal

f Z.,as/displ acemen t in code group (C S E ~ T) ' 02.
'2 ,

TAG entry: -. . .-

Bvte

'$CTL 6 Control level on which TAG i s defined
I

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject RESIDENT TABLES

Byte

7 Status indicator

Bit 1 = 1 entry made in the table
Bit 2 = 1 label defined
Bit 3 = 1 label referenced
Number of references to t h i s TAG

TAG ordinal

Subroutine entry:

Byte

6

7 Status indicator

Bit 1 = 1 entry made in the table
Bit 2 = 1 label defined
Bit 3 = 1 label referenced
Number of references to th i s name.

Subroutine ident i f icat ion code.

R E A C T I V E
COMPUTER
S Y S T E M S

DESIGN
SPECIFICATION

Page
Date

R E A C T I V E DESIGN
COMPUTER

Page

S Y S T E M S
SPECIFICATION Date 8/21n

f- Subject D I S K RECORD FORMATS

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject DISK RECORD FORMATS

The records kept on Disk are encoded forms of the i n w t records, written b y
the scans, and read b y the table overflow phase, code generating phases and
cross reference ?base-.
Each record beqins wi t h information
associated input l ine number as fol

Byte 0 - Record Type
X = Error Record
F = File Description

,identifying the record type and the
1 ows :

T = Table and Array Description
L = Line Counter
I = Input Record Identification
N = Input Field Description
C = Calculations
0 = O u t p u t Record Identification
U = O u t p u t Field Descriptions
G = Generated Code
E = Entries and Extrns

Byte 1 Blank not used
Bytes 2-3 = Input Line Number

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

f-1 Subject DISK RECORD FORMATS

Field Descriptions in Intermediate Records

Applies to Record types T , N, C and U

The condensed f i e ld descriptions in intermediate records have exactly the
same 1 2 byte format as the Resident Field Table except for the case of
Tables/Arrays, which i s :

TABLE/ARRAY Intermediate record condensed f ie ld description - 16 bytes

Bytes Description

0- 9 Same as Resident Field Table

10 FF

11 Tab1 e/Array entry number (1 -60)

12-1 3 Number of table en t r ies

14-1 5 Storage address
For tables th i s points t o l a s t found table element hold
area. The hold area i s followed by the table proper. For a r ra
this points to beginning of array.

Page V (2)
Date rev. 81 31 / 7 1

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page V (3)
Date 8/3/71

Subject DISC PFCORD FORIJATS

X - Error Record

Error records are written fo r a l l e r ro r s , whether they have been
printed out when found or not.

Col umns Description

0 X - Error record . .
2-3 Record number
4-6 EBCDIC PHASE ID
7 hO=warning, l=ser ioas , 2=disastrous (Binary 0, 1 or 2)

8-9 Phase Number in binary (see Schedule fo r phase number)
10-1 1 Error number

\
12-n variable f i e ld data - (defined as needed)

REACTIVE
C O M P U T E R

DESIGN Page V (4)

SYSTEMS SPECIFICATION Date 8 / 2 / / 1
Rev. 9/24/71

r"- Subject DISC R E C O R D FORMATS

F - Fi l e Description

The f i l e descr ip t ions a r e created by the F i le Description Scan and used by
the 1/0 Generator.

Col umns

0
2-3
4

5

6

7

8- 9
10-1 1
12

13

14-1 5
16

17

F - Fi le descr ip t ions
Record number
F i le type 1=0 Input f i l e

0=2 O u t p u t f i l e
U=4 Update f i l e
D=6 Display f i l e
C=8 Combined f i l e

F i l e designation
P=O Primary
S=l Secondary
C=2 Chained
R=3 Record address
T=4 Table o r a r ray
D=5 Demand
b=6 No designation

End of f i l e O= No end
1= E specif ied

Sequence O= No sequence
1 = Ascendi ng sequence
2= Descending sequence

Block length in binary 1 - 32,767 Bytes)
Record length in binary 1 - 32,767 Bytes
F i l e format O= Fixed length records

1= var iab le length records
Mode of processing

L=O Sequential within l i m i t s
R=l Random
b=2 Sequent i a1

maxi m u m depends
on device

Langth of Key o r record 'address f i e l d in binary (O-?)
Record address type

A=O Record keys a re used
I=1 ADDROUi processing
j5=2 other
K=3 360/20 option (Assume A)

F i l e organi ra t ion
1=0 Indexed f i l e
T=ll ADDROUT f i l e
1-9 Additional I f 0 areas
6=10 Use one 1/0 area
D=12 3G0/20 option (Assume 1)

REACTIVE
C O E l P U T E R
SYSTEMS

Subject

DESIGN
SPECIFICATION

Page V(5)
Date 8/2/71

Rev. 9/24/71

Overflow indicator
Bl ank=O
OA = 1
OB* = 2

?

o d = 7
OV = 8

Extension code
b=O No extensions
E=l File extensions
L=2 Line counter used

Key f i e ld s t a r t ing location in binary
Device 0 - PRINTER

1 - R E A D
2 - TAPE
3 - DISC
4 - CONSOLE
5 - P U N C H
6 - SPECIAL

Labels B = O No labels
S=l Standard labels
E=2 Standard labels followed by user labels
N=3 Non standard labels

ORDINAL of label e x i t from f i l e description card or user ' s writ ten
subroutine name (i f device = special)

Fi 1 e addi tion/unordered
I=O
A=l New records will be added to f i l e
U=2 Load in unordered sequence

Tape rewind
b=O Rewind only
N= l No rewind
U=2 Rewind and unload

Core index - number of bytes (i n binary) reserved for core
index

Fi le condition indicator or zero
blank = 0
U1 = 1
U2 =2
U3 =3

* s
U8 =8

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page V(6)
Date rev. 8 / 3 177

Subject DISC RECORD FORWTS

T - Table and Array Descriptions

These records a r e b u i l t by the f i l e extension scan and used by the
Input-Output generator to generate t ab l e lookup and control t ab les .

Go1 umns Field

0 T - t a b l e and a r ray descr ipt ions
1 Blank it 7=1: do not generate code) .

2-3 Record number
From f i l e name t ab l e entry (1-20) (O=compile o r execution tim
To f i l e name tab le entry (1-20) (O=no run time output)
Entries per record in binary
Entry length in binary
Condensed f i e l d descr ipt ion en t ry
Swi t c hes

0 = execution time array
1 = pre-execution time tab le /a r ray
2 = compile time table /array

Not used
Alternating tab le en t ry length in binary

A zero en t ry here indicates end of record
(O=no condensed f i e l d descr ipt ion f o l l o w)

Condensed Fie1 d descr ipt ion en t ry

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page V(7)
Date 8/2/71

Subject DISK R E C O R D FORMATS

L - Line Counter Descriptions -

Built by Line Counter Scan and used by the Input/Output generator

0 L = Line Counter Description
2- 3 Record nunber
4- 5 File name table entry (r e l a t ive pointer)
6-7 Line Number
8- 9 Channel Number (1 =top of page, 1 Z=overflow 1 i ne) 14=1 ines per page

Repeat 6-9 as often as necessary. A zero entry signified end of record.

REACTIVE
C O M P U T E R
SYSTEMS

Page V(8) --
Date 8/2/71

Subject DISC R E C O R D FOWATS

I - Input Record Iden t i f i c a t i on

These records a r e created by the Input Specif ica t ion Scan from the record
i den t i f i c a t i on portion of the Input Specif ica t ions . They a r e used by the
Record Handling Generator.

I = Input record i den t i f i c a t i on
 i it 7.1 DO NOT generate code)

Blank
Record number
AND-0, OR=2, End of Alphas-set f o r f i r s t numeric equiv. t o A N D ,

End of Table=6, T ra i l e r=8
Option - 0=2, blank=0
Stacker sel e c t
Indicator associa ted with record
Number

O=Not appl icable
2=0nly one record permi ssabl e
4=More than one record OK

Not
O=bl ank
2=N

Portion o f character t o t e s t
O=character
2=numeri c
4=zone
6=no character t o t e s t

Character o r portion of t o be t es ted
Displacement within record of character t o be t e s t ed
F i le number

R E A C T I V E
C O M P U T E R
S Y S T E M S

DESIGN
SPECIFICATION

Page ~ (9)
Date 8/2/77

Subject DISC R E C O R D FORMATS

N - Input Field Descriptions

These records a r e b u i l t by the Input Specif ica t ions Scan from the f i e l d
desc r ip t ion port ion of the records, and a r e used by the Record Handling
Generator.

N-Input f i e l d desc r ip t ions
blank
Record number
Displ acenient of f i e l d within record
Input f i e l d length
Level (0 - 9)
Matching record number (0-9)
Field record re1 a t ion- ind ica to r associated with f i e l d
Plus ind ica to r
Mi nus ind ica to r
Blank o r zero ind ica to r
Switches

IT O=l Packed Field
1=1 Binary f i e l d

Field type
2=Kegular f i e l d (1 2 byte en t ry follows)
4=Table o r Array (16 byte en t ry follows)

16-n ~ o n z n s e d f i e1 d desc r ip t ion
n+l zero

n+2 Field type
O=end of record (no entry fol lows)
2=Index i s regular f i e l d (12 byte en t ry follows)
4=Index i s t ab l e name (16 byte en t ry follows)
6=Index i s constant (2 byte en t ry follows)

n+3 Condensed f i e l d desc r ip t ion o r 2 byte binary constant

Subject DISK R E C O R D FORWTS

C - Calcula t ion Descript ion Record

B u i l t d u r i n q c a l c u l a t i o n s ~ e c i f i c a t i o n scan and used by the fol lowinq
rou t ines :

1) Table Overflow phase
2) Code Generator

. - .

0 C f o r record type - .

-1 blank not used
2-3 s t a t e m n t nurber
4 cont ro l 1 eve1 i n d i c a t o r

O=detail c a l c u l a t i o n
6 E = L O
6 F=L I
. .

S w i tcl?
0 = 1 opera t ion record
1 = 1 i n d i c a t o r record
2 = 1 do not aenera te code
3 = 1 h a l f a d j u s t

Indicator. rpcords: only one reco;d i s w i t t e n f o r a s e t i f condi t ioniqg ---- -----
i n d i c a t c r s evcn i f A Y / O R s ta tements are used.

' c p 4 ~ , d < c / I f / - .C(

6- n 8 byte f i e l d s f o r groups of 1-3 i n d i c a t o r s a s f o l l c v ~ s :

0 Not switch f o r i n d i c a t o r 1 (b i t 0=1 f o r NOT)
1 Ind ica to r 1
2 Mot switch f o r i n d i c a t o r 2
3 Ind ica to r 2
4 Not switch f a r i n d i c z t o r 3

I ~ d i c a t o r 3
ANIORfend of record (-b hflw i P v*+%[

'i
0 - end of record

REACTIVE DESIGN
C O i 4 P U T E R
SYSTERS SPECIFICATlON

6'\ X ' FD ' - C,i\ii)
X ' F E ' - OR

------.-..-

R E A C T I V E
COXPUTER
SYSTEMS

DESIGN
SPECIFICArTION

Page V (1 1)
Date

Y (6 -

Ca l cw1 t i on records : one t o one correspondence between statements and records.

6 Q p e r ~ t i on code.

/ i r) - ~ m s , c :
11-EXCPTA
12- EXIT -

/ 1 3-E XSR /"
i dl 4-FORCE /

/ 1 5-GOT0 / 1 "IF-LOKUP/
/ /I 'l-t/ltfHZll

j / 22+1OVEL
---/ 23-HULT

/ 24-MVR
c ' 25- READ

26-RABL
/ 27-S ETllF

REACTIVE
C O M P U T E R

DESIGN Page V(12)

SYSTEMS SPECIFICATION Date 8/2/71
P Subject DISK R E C O R D FORMATS

7- 9 Result indicators - high, low, equal
10-131< Program control (switches fo r moving er ror checking to generate or)

16 f 4 r n Variable length subfie'ids as fo11or.is:
0 Indicator

b i t 0=1 1 i t e r a l
1=1 f i l e name
2=1 other
3=1 fac tor 1
4=1 fac tor 2
5=1 re su l t
6=1 index fo r one of the above
7 ; 1 '+. / . 8 x .I*-(

I f a l l h i t s a re zero, t h i s i s the end of the record

unused

Literal

2 indicator

b i t 0=1 alphameric
1 =1 packed decimal
2=1 b i t map (1 byte) fo r BITON/RITOF

length of l i t e r a l

number of d i g i t s

number of decimal ~ o s i t i c n s
7

l i t e r a l (lef t- adjusted fo r alpha & 8.byte packed decimal fo r numeric.
/ File name

re l a t ive location of pertinent entry in the resident f i l e
description table .

Field, tab le , array, tag or subroutine name

(2-19 fo r an array) - dunlicate of the related entry in the
resident f i e ld description table .

0 - O u t p u t Record Ident i f icat ion

This i s bu i l t by the output description scan and used by the O u t p u t
Hand1 i ng Generator

.

SECTION PAGE V(13)
WBJECT D j s c Record Formats O R IG INA L DATE 8/30/71 -

REVISED DATE 'm/Q

Columns

0
1

2-3
4

5

6
7
8
9

10-11
12-13
14

15
16

17
I 8
19
20+

Field

0-Output Record Ident i f icat ion
7 Do not generate code
Record number
A N D / O R relationship with previous record

0="1R
1=1 ADD
2=print f i l e
3=card f i l e
4=variable length record
5=f i l e name entered on output spec.

Stacker sel ect/Fetched Overflow
f o r stacker se l ec t i s hopper number
f o r fetched overflow = 15

Space before
Space a f t e r
Skip before
Skip a f t e r
Record length
Fi le number
Group l = F i r s t page

2=Headers and de ta i l s not conditioned by overflow & and chained
3=Total s not condi t i oned by overflow & not chained
4=Totals conditioned by overflow or chained
5=Headers and detai 1 s condi tionea by overflow o r chained
G=Excepti on records

Number of Indicator se t s
O u t p u t indicator s e t

b i t s 0-1 indicator 1 O=not used
l=must be on
2=must be off

2-3 indicator 2 , usage as i n b i t s 0-1
4-5 indicator 3, usage as in b i t s 0-1

Indicator 1
Indi cator 2
Indicator 3
Same as 16-19 fo r each s e t of ' A N D ' indicators.

p S E C T 1 0 N

'UBJECT Disc Record Formats

U - Output Field Descriptions

Th is i s b u i l t by the O u t p u t Description Scan and used by the O u t p u t
Generator.

0 U = O u t p u t Field Descriptions
- 1 b i t 7 do not generate code for t h i s record

2-3 record number
4-7 Field Condi t ioni ng Indicators - See O u t p u t Record Ident i f icat ion

bytes 16-19
8-9 End posi t i on i n record
10 Switches

0=1 *PLACE speci f i ed
1=1 Blank a f t e r
2=1 P-Packed format
3=1 G-Binary format
4=1 2 byte binary format
5=1 Card pr in t option
6=1 *PRINT specified
7=1 4 byte binary format

_---- Z=condensed f i e l d name description
I.---- 4=index condensed f i e ld name description

lO=edi t word
(-13 Length of following - 14n Condensed f i e ld description, 1 i teral , e d i t word, or binary index

n+l Repeat 14n as needed

DEVELOPMENT DIVISION SANTA CLARA SYSTEMS PROGWMMING

REACTIVE
C O F l P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject DISC R E C O R D FORI4AT

E - Entries and Extrns Record

Entries and Extrns records a re w r i t t e n ~ f o r a l l f i e lds defined as external
t o the R P G o r are R P G f i e lds used by external routines. This appl ies t o
e x i t s specified on f i l e description specifications and EXITS, RLABLs, and ULABLs
on Calculation Specifications.

Columns Description

0 E - Entries and Extrns Record
I Not Used

2- 3 Record / ' J r

14-15-or-IS Condensed Field Description Entry for fie1 d

+ / r ~ 4 7

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject DISC RECORD FORMAT

Page V (1 5)
Date 8/16771

E - Entries and Extrns Record

Entries and Extrns records a re wr i t ten , for a l l f i e lds defined as external
t o the RPG o r a re R P G f i e lds used by external routines. This appl ies to
ex i t s specified on f i l e description specifications and EXITS, RLABLs, and ULABL:
on Calculation Specifications.

Columns Description

0 E - Entries and Extrns Record
1 Not Used

2- 3 Record
14-15 or 19 Condensed Field Description Entry for f i e l d

G - Generated Code Record

Generated code records are written by the generators and contain a
preliminary version of the generated program. Control section addresses
are not yet defined. These will be resolved in the code formatter phase.
Note: e r ror records are passed on as x records by the generator.

Co1 umns Field

DESIGN Page V(16)
SPECIFICATION Date 1 0/5/71

Subject DISC RECORD FORMATS Rev. 10/18/71

0 G - Generated Code Record
1 Blank

2- 3 Record Number
4 Group (CSECT)
5 Length (Group Size - accumulated tex t length

6- 7 Address (Relative)
8 Text Re1 oca t i on Group 0 = end of record

1-253 = relocation group
254 = The following byte i s not to be

relocated and i s to be propagated
as indicated by the repeat count

255 = The following bytes a re absolute

Repeat C o u n t e i ther the number of following text wordslbytes
(words fo r 1-253, byte for 255 tex t relocation
group) which share the relocation a t t r ibu te speci-
f ied by the TEXT relocation group, or the number
o f bytes t o be propagated

Special case - i f repeat count = 255 then reloca-
tion group refers to an external ordinal and the
implied length i s two.

10-n Text
n+l - Same as 8-n

DESIGN
SPECIFICATION

f

R E A C TI V E rp.
C O M P U T E R

DESIGN Page
SPECIFICATION Date 6" S Y S T E M S

DESIGN
SPECIFICATION Date . i

R E A C T I V E
C O M P U T E R
S Y S T E M S

DESIGN
SPECIFICATION

Page
Date

Subject RPG GENERATED OBJECT PROGRAM

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject RPG GENERATED OBJECT PROGRAM

Page VI(1)
Date 8/'2/71

VI. RPG GENERATED OBJECT PRnGRAM

The RPG qenerated code consists of a main control routine, several

optional subroutines, interpreted table and in l ine code.

A. Main Control Routine

The RPG bu i l t in loqic i s in th i s routine, I t determines when

records a re read, when to do detai l and total calculations and

output and c a l l s various subroutines.

I t operates chief ly on the File Control Table. From the informa-

tion in th i s table i t controls the RPG program's f i l e s .

There are pointers in the File Control Table t o other qenerated

tables (e.g. Record ID, Field moves e t c) . The control Droaram

passes the addresses of these tables to the appropriate subroutine.

B . Subroutines

1/0 routines - Open, Close, Get, P u t , Position

Table building - will read a tablelarray f i l e and usins the

table descr ipt ion(s) in the File Control table will build

the table .

Table Output - will write out an arrayj table accordinq to

File Control table en t r ies .

Record Identification - Processes the record ident i f icat ion

tab le to identify input records-when a match i s found i t stores

the record identification table address in the f i l e control

table for future reference.

Field moving (Input) - Processes the input f i e ld move table

to move f i e lds from input record to work areas.

a . Test f ie ld record relat ion to see i f f i e ld should be moved.

b. Pack a decimal f i e l d , move a packed decimal or alpha

f i e l d , convert binary f i e lds to packed decimal (fo r
matching f ie ld moves-sign in forced to prosi t ive)
(for matching f i e ld alpha moves with a l te rna te col la t ing
sequence-trans1 a te f ie ld a f t e r moving i t) .

c. Set f i e ld indicators as needed

Field moving (output) - Process the output f i e ld move table
to create an output record.

a . Test output f i e ld indicators.
b. Perform move (e d i t) .
c. Do blank.

r

REACTIVE DESIGN
C O M P U T E R

Page VI(2)

S Y S T E M S
' SPECIFICATION Date 8/ 2/ 71

Subject RPG G E N E R A T E D OBJECT PROGRAM

Line counter table processing.

Level break t e s t .

Matching Record t e s t .

Calculation subroutines (divide, mu1 t i ply, square root , e t c .

see Calc code sect ion) .

REACTIVE
C O M P U T E R

DESIGN Page VI(3)

SYSTEMS SPECIFICATION Date 8 / 'U7 l
t-' Subject OBJECT COPJTROL PROGRAM

I . I n i t i a l i ze , Set
User Indicators

I Get next entry in
File Control Table

<Excl uded b.y
nd i ca tor? v

Open File r"l

no

Record

- . -_

I

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Page VI(5)
Date 812/71

Close
F i 1 es

T u r n on Record
Identifying Indicator

Break?

I Set on' Control
1 eve1 Indicator I
7

P r i o r i t y record
by matching Fiel

Content

REACTIVE
C O M P U T E R

C" SYSTEMS

DESIGN
SPECIFICATION

. Subject RPG GENERATED O B J E C T PROGRAM

Page V I (6)
Date */'2//1

@ +=
Set on L R , ..
L1 -L9

1
I I

Do level c a l c ~ l a t i o n z)
Do level output

K-

Set MR on or off

I
Make Data

ecord selected

Read another
record and move

. .

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject RPG GENERATED OBJECT PROGRAM

Page V I (7)
Date 8 / Z / / 1

Generated Code Groups ,

Each of the generation overlays generates code in one or more of the

compile time Groups. The s ize of each Group i s kent track of and the

code formatter assigns the correct address to generated code b ,

resolving the s ta r t inq location of each Group.

Below i s a l i s t of each Group by the number that ident i f ies i t in the

generated code. Included with each Group i s a l i s t of a l l the
generators tha t produce code in that Group. The generators a re

identified as follows:

1. Control Program Generator G c l i ~ ~

2. Input/Output Generator
3. Fil e Extension/Li ne Counter Generator
4. Input Handling Generator
5. Calculations Generator
6. O u t p u t Handling Generator

The CSECTS are as follows:

No. Description -
1 2 3 4 5 6

1 Ubject Time Communications Region x x x x x x
2 Not Used
3 I/O/BDT x
4 Fi leCont ro lTable x x x x
5 Table ~ ~ ~ k ~ ~ / L i n e Counter Table x
6 Input Fie1 d Poves-Level /Matching Field x
7 Input Field Moves-Other x
8 Input Record ID Table x
9 Calculation x

10 O u t p u t Moves x
11 NotUsed
12 Constants, Li terals x x
13 O u t p u t Identification Table - Group 1 x
14 O u t p u t Identification Table - Group 2 x
15 O u t p u t Identification Table - Grow 3
16 Output Identification Table - Group 4 x
17 O u t p u t Identification Table - Crouu 5 x
18 O u t p u t Identification Table - Group 6 x
19 Data Hold Area x x x

I

~4
6 SECTION PAGE V I (8)

SUBJECT R . P . G , GeneratedObject Proqram ORIGINALDATE 11/17/71
C

I

REVISED DATE 4/31/73

1. FILE CONTROL TABLE

One per f i l e - fixed length 40 bytes each.
---1

The File Control Table has a different format for I n p u t , O u t p u t , Update,
Record Address and Tables/Arrays,

Following i s the portion of the table tha t applies t o a1 1 f i l e types.

Bytes

F$TYPE 0

F$TYP2 1

F$TYP3 2

Description

Filled in TO -
TO v=vari able
BY phase number (see pg. -

VI(7)
File Type Switches - More than one b i t may be on

Bit 0=1 Input f i l e
1=1 O u t p u t f i l e
2=1 Record Address File (Limits)
3=1 Record Address File (Record Numbers or keys)
4=1 RAFed f i l e - f i l e RAF links to
5=1 Chained File
6=1 Combined/Update f i l e
7=1 MFCU Fi le

File Type Switches (continued)
Bit 0=1 Table/Array File

1=1 Console File
2=1 Demand File
3=1 Random by keys
4=1 Random by Record Number
5=1 Unused
6=1 E Specified (when a l l E's reach end of f i le-LR)
7=1 End o f f i l e reached

Fi 1 e Type Swi tches
Bit 0=1 Card File

1=1 Print File
2=,1 Special F i l e
3=1 Matching Records Specified
4=1 Matching F l d in current R C D
5=1 Matching Records found
6=1 Tra i le r in current RCD
7=1 Lev 1 Flds in current RCD

- - . . - - - . . . - a r -

REVISED DATE 4 177 / 77

Bytes Description Filled In TO -
F$TYP4 3 Level 2-9 Present Switches

Bit 0=1 Lev 2 FLDS in current RCD 0
1=1 Lev 3 FLDS in current R C D
2=1 Lev 4 FLDS in current R C D
3=1 Lev 5 FLDS in current R C D
4=1 Lev 6 FLDS in current R C D
5=1 Lev 7 FLDS in current RCD
6=1 Lev 8 FLDS in current R C D
7=1 Lev 9 FLDS in current RCD

SECTION PAGE V I (8a)
SUBJECT RPG Generated Object Proqram ORIGINALDATF 11/17/71

- ' I . . . ' , , '

-5 Buffer Description Table (B D T) address or address of
SPECIAL device support routine

6-7 Logical Record Address

8-9 Record Length (Maximum for Variable Length Records) A t
object time th is i s changed to actual record length

10-11 File Translation Table Pointer

12-13 User Indicator Address

14-15 Pointer t o next input or prnt FCT

16-17 Unused

18 Unused

19 Unused

Below the portions referring to Input and O u t p u t f i l e s combine fo r
update f i l e s .

--

Following i s the portion of the table tha t pertains t o Input f i l e s .
(except RAF and TablelArray f i l e s .)

Bytes Description Filled in To Ex
F$PRI 20-21 Fi 1e Prior i ty (O=Prirnary, 1-19=Secondary) v 2

F$RID 22-23 Record Identification Table Address v 2

F$LOOK 24-25 Look ahead f i e ld Move Pointer
-.. _ _ v 4

F$MACH 26-27 Matching Record Hold Area Pointer v 4

F$LEV 23-29 Level Control Fields hold area Pointer v 4

OEVELOPMENT DIVISION SANTA CLARA SYSTEMS PROGRAMMING

F $

'F SECTION PAGE V I (8b)
SUBJECT RPG Generated Object Proqram ORIGINAL DATE 1 1 /17/71

REVISED DATE 17/9/77 h 4/21/72

-.
"\

Following i s the portion of the table tha t pertains to output f i l e s .

F$LINE 20-21 Line Counter Table Pointer v

F$HAD 22-23 O u t p u t Record Ident i f icat ion Table chaining pointer -
Header and Detail Records v

F$T 24-25 O u t p u t Record Identi f icat ion Table chaining pointer -
Total Records v

F$UP1 26-31 Left f o r possible update f i l e

Description Byte Filled in

F$CRID 30-31 Current Record Identification Table Entry Pointer

F$RAFP 38-39 RAF File Pointer (from RAFed Fi le)

F$MFCU 32-33 MFCU interpret area address

F$WORK 34-35 Work area - Last Line Number (Pr in t f i l e s only) 0
or re la t ive key location in record (indexed f i l e s only)

F$SKIP 36 Switches
Bit 0=1 Last Line had a skip a f t e r 0

or 36-37 Pointer t o Low Tra i le r Displacement
F$STAT 37 Overflow Status 0

O=Overflow work not ye t done
1 =Fetched overf 1 ow done

O u t p u t wi 11 change th i s t o 2 instead of doing normal overflow
2=All overflow work done - exec should turn off overflow

indicator and th is switch s e t by output routines a f t e r
overflow processing.

F$OVER 38-39 Pointer t o Overflow Indicator
or Trai l e r Displacement

Following i s the portion of the table that pertains to Record Address Files (RAF)

F$ELEN 20-21 RAF Element Length -.. -- v 2

F$CLOC 22-23 RAF current location in record

F$FPTR 24-40 RAF Fi l e FCT Pointer

I
DEVELOPMENT DIVISION SANTA CLARA SYSTEMS PROGRAMMfNC

SECTION PAGE (vI(8~)
R P G Generated Object Program ORIGINAL DATE 11/17/71

Following i s the portion of the t ab le t h a t pe r ta ins t o Table/Array f i l e s .

Byte Description F i l l ed i n

Pointer t o Table Control (a1 t e rna t e
t ab le pointed t o by TACT chain) -

-

REVISED DATE 4/21/72

DEVELOPMENT DIVt S lON SANTA C L A M SYSTEMS PROGRAMMING

R E A C T I V E
COMPUTER

P"‘ S Y S T E M S

DESIGN
SPECIFICATION

Page \

Date '

MEMORm Design specification
WRITER H. Leslie PAGE v I (9)
SUBJECT R P G GEIIERATED OBJECT PROGRAII ORIGINAL

DATE 3/2/71
REVISED DATE '2/2/71

Input Record Identi f i c a t i ~ n

The input record ident i f icat ion routine must:
A , Identify Record Type
B. Check for proper sequence of input records

To accomplish th i s the Input Record Identification routine interpret ively
processes the Input Record Identification Table.

The beginning of the table i s pointed to by a f i e ld in the f i l e control
table. Also there i s a work area in the f i l e control table for saving the
location ~f the l a s t identified record ident i f icat ion entry, and a switch to
indicate whether alpha or numeric sequence i s being processed.

Processing of the table always resumes where i t had l a s t l e f t o f f . If the
alpha sequences are being processed, a l l of them must be checked in a
c ircular chain before going to the numeric sequences. The numeric sequences
direct ly follow the alphas - when numeric sequences are reached, the position
i s marked and the routine returns to the beginning of the tab le , when a l l alphas
are processed, the routine tnen goes to the numeric sequences. If a non-
optional numeric sequence i s passed in the table an error switch i s turned on b u t
the search continues t i l l a l l table en t r ies are checked.

INPUT RECORD IDENTIFICATION TABLE
-- - I-

1-

Bytes Description

0 Type of record
0 = AND
2 = OR
4 = Firs t Numeric Entry (an assumed O R)
6 = End of Table
8 = Trai le r Description

1-2 Swi tches
Bit 0=1 Option = 0

1=1 Numeric Entry
2=1 Onlv One Record Permissable
3=1 N O < = iJ
4=F ~ & ? : R L ; L ~ d f reraw! id

3 Stacker Select

4-5 Pointer to Indicator associated with record

6 Portion of Character to t e s t
0 = Character
2 = Numeric
4 = Zone
6 = No Character to t e s t - Record Identified

MEMORE ~esign spec R
WRITE~i. Les 1 i e PAGE VI (9-p

SUBJECT RPG GEtlERATED OBJECT
r)

ORIGINAL DATE ,3/!//
REVISED DATE l d / 8 / / I

7 Character o r Portion t o be t es ted .

8-9 Displacement within record of character to be tes ted

10-11 Pointer t o f i e l d moves t ab le

12-13 Pointer t o level/MR moves t ab le

DESIGN
SPECIFICATION

i

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject RPG G E N E R A T E D OBJECT PROGRAM

Page VI(10)
Date &7/77-

3. O u t p u t Record Identification Table

And/or relationship with previous table entry
Bit 0=1, And, Bit 1 = 1 , O R , Bit 2=1 A D D , Bit 3=1 End of Table
Stacked Se1 ec t / Fetched overflow, 15=Fetched overflow
Space before
Space a f t e r
Skip before
Skip a f t e r
Field description pointer for t h i s record type
File control table pointer
l=presence i s required, 2=must be off (N O T)
Indicator to be tested

4, Input Field Move

This table i s in three sections:
a. Level/Matching f ie lds move (10 byte^ en t r i e s)
b. Regular f i e ld moves (10-13 byte en t r ies
c. Look Ahead f i e ld moves (10-13 byte en t r i e s)

Instruct i 0 n 1

a11 b u t
binary 2
moves 2

Switches
Bit 0 = 1 Level Move

1 = 1 Matching Field Move
2 = 1 Array Move - constant index
3 = 1 Array Move - variable Index
4 = 1 Packed Decimal
5 = 1 Bytes 2-3 of th is entry point to TR (t r a i l e r) moves?
6 = 1 Field indicator t r a i l e r s
7 = 1 End of table (no ent r ies follow)

Fie1 d Record re1 ation indicator (or zero)
Move operation code (P A C K , M O V X , binary)
sol6 (M=5, R = O)

Index 5 will contain the address of the input record
From displacement in record
To address
From length
To length
Array, index (present only for array move)
Plus f ie ld indicator or zero
Minus f ie ld indicator or zero
Zero/blank f i e ld indicator orzero

REACTIVE
C O M P U T E R

rC4 SYSTEMS

DESIGN
SPECIFICATION

Page V I (11)
Date 8/2/71

I 7 ,Subject RPG GENERATED O B J E C T PROGRAM

5. Output F i e l d Moves

I 1
Type o f da ta i n t a b l e e n t r y

va lue = 0
2
4
6
8

10
12

I 14
I 16
I

i 18

F ie1 d c o n d i t i o n i n g i n d i c a t o r s
E d i t (e d i t word must be moved t o OP then e d i t o p e r a t i o n)
B i n a r y OP f i e l d
Regul a r move
Unpack
Blank a f t e r
A r r a y e l ement
F u l l a r r a y l o o p c o n t r o l
* PLACE
End o f moves

1 The above precedes each o f t h e f o l l o w i n g fo rmats

- - - - F i e l d c o n d i t i o n i n g i n d i c a t o r s

-1 3 B i t 0 = 1 Not s p e c i f i e d (N)
1-7 = I n d i c a t o r

I The above i s repeated 3 t imes zero means no i n d i c a t o r t o t e s t .

1 Switches
B i t 0 = 1 f l o a t i n g d o l l a r s i g n

2 From l o c a t i o n
2

. ~

t o l o c a t i o n
2 E d i t word p o i n t e r
1 From l e n g t h
1 E d i t word l e n g t h

, B i n a r y f i e l d

1 From l e n g t h
2 From 1 o c a t i on
2 To l o c a t i o n

REACTIVE
C O M P U T E R
SYSTEMS

DESIGN
SPECIFICATION

Subject R P G GENERATED OBJECT PROGRAM

---- Regular move o r Unpack

1 Not used

1 Operation Code
1 061 6 - Register 6 i s record base
2 From location
2 To displacement in record
1 From length
1 To length

Blank a f t e r
. . .

1 Blank a f t e r indicator

---- . Array Element

1. Switches
B i t 7=1 Immediate Binary value i s index
B i t 6=1 Pointer t o binary value i s index

2 Address from - (Address of array t a b l e)
2 Indes (I m e d i a t e value or pointer t o binary o r decimal index)

(Note - r e s u l t of t h i s operation i s the From Address
f o r the next move en t ry in t ab l e - the r e s u l t of t h i s
ar ray operation will be p u t in a work area - which will
be pointed t o by the next operat ion) .

---- Full Array Loop Control

---- * PLACE

Not Used

Array index increment in binary
Pointer t o array index (i n previous t ab l e en t ry)
Maximum index value
Transfer address

Swi t c h
Bit 6=1 * PLACE current ly in process (s e t a t execution time -

i f off then r eg i s t e r 6 must be incrernented, i f on
r e g i s t e r 6 must be decremented).

Increment/Decrement t o r e g i s t e r 6 i n binary
Transfer address - . --

MEMORB Desi
WRITER H . Leslie PAGE VI (1 3)

SUBJEC J R P G Generated Object Program ORIGINAL DATE 11/5/71
REVISED DATE 12/9 /71

Table and Array Processing

Tables and arrays require a run time control table in Code Group 5. The
location in Group 5 of the control table fo r a table/array can be found
by taking the table f i l e entry number (from the f i e ld description table)
minus one times 24. The resu l t i s the re la t ive location in Code Group 5.

The format of the table/array control table i s :

Bytes

0

1
2-3
4- 5

Description

Bit 0=0 Table Name
0=1 Array Name
1 =1 Ascendi ng
2-1 Oescendi ng
3-1 Input Data - packed decimal
4-1 Input Data - binary
5-1 Numeric
6-1 Alpha
7-1 A1 ternat i ng table

&,:-re. , , , '
Pointer to beginning of table/array
Pointer to byte fol 1 owing tab1 e/array
Entry length ,

Number of en t r ies
Pointer t o l a s t element found area
Number of en t r ies per record
Chaining input TACT address
Chaining output TACT address
Last entry address of upper search table
Power 2 of upper table length +I
Power 2 of lower table length +1
F i r s t entry address of lower search table

DEVELOPMENT DIVISION SANTA CLARA SYSTEMS PROGRAMMING

R E A C T I V E
C O M P U T E R
S Y S T E M S

DESIGN
SPECIFICATION

Subject

Page
Date

MEMORm Design Specificat ion t-
WRITER H. Leslie PAGE VI (14)
SUBJECT R P G GENERATED OBJECT PROGRAM ORIGINAL DATE 1 /I 9/72

REVISED DATE

Object time l ine counter table.

Byte Description

, 0-1 Line Number

1 2-3 Channel number

The Object time Line Counter Table i s pointed to by FSLINE in the File
Control Table. The Line Counter table has the following format.

/ 0-3 are repeated as
I

I the terminating

(1 = top of page, 12 = overflow l ine , 14 = l ine
number contains 1 ines per page.)

often as necessary (a maximum of 11 times)
entry i s a word of zeros. \. -

\fT DIVISION SANTA C L A M SYSTEMS PROGRAM1

1 RPG G E N E R A T E D OBJECT PROSPAN
r(SECTION VI PAGE 15

SUBJECT S P E C I A L FILE L I N K A G E ORIGINAL DATE 3/8/72
REVISED DATE

SPECIAL

Speci a1
externa

FILE LINKAGE

Device types are read in a program externa
1 program must provide a l l the interfaces w

the record buffer(s) and GET logical record area.

1 to the R P G . This
i t h data management and

Linkage t o the external routine from the RPG uses the standard linkage.

o the parameter l i s t address will be in reg is te r s ix (6)

e the save area address wi 11 be s e t in reg is te r seven (7)
e the return address will be s e t in the f i r s t word of the save area.

The format of the parameter l i s t i s :

Word -
1

2

3

4-6

7

8 ,

9

Contents

Length of Lis t (always 1 1)

Bits 0 - 7 - function code
= 0 G E T 4 = O P E N
= 1 PUT 5 = CLOSE

Bit 12 = 1 variable length records are specified,
and word 7 must point to the record s ize .

Bit 13 = 1 end of f i l e return address specified i n word 9.

Error return code - s e t by the external routine
(i f non-zero the job wi l l be stopped and the e r ror return code
printed out) ,

Not used.

Record s ize address - Points to a one word (2 byte) location which
will contain the record s ize .
(Bit 12 of word 2 must te = 1)
For GET, the record s ize address and record s i ze are s e t by
the external program. For PUT they are s e t by the RPG.
n o t used

End of f i l e return address (always specified - b i t 13 of word 2
will always be = 1)

10-11 not used.

1 R 7 6 GENERATED OBJECT PROGRAM

r q S E C T I 0 N V I PAGE 16
SUBJECT ORIGINAL DATE 3 /8 /72

REVISED DATE

Word Contents -

Address of record

o For Get t h i s address i s supplied by the external routine.

For P u t t h i s addres's i s supplied by the RPG compiler.

The Save Area (pointed to by reg is te r seven) format i s :

Word Contents
7

1 Return address

2-9 Used by called program to save reg is te rs .

DEVELOPMENT DIVISION SANTA CLARA SYSTEMS PROGRAMMING

R P G GENERATED OBJECT PROGRAM

SECTION I V PAGE 17
SUBJECT R u n Time Error Message ORIGINAL DATE 3/17/72

REVISED DATE

Err No.

The Linkage to the run time e r ro r routine i s :

LODD e r ro r number R6 ,

LOD variable f i e ld (or p t r) R1

JSR W$ERR R7 .

I f the operator speci f i e s the continue option, control wi 11 be returned

t o the instruction following the JSR.

If there i s no optional f i e l d , R1 need not be in i t i a l i zed .

A tentat ive l i s t of r u n time er ror messages follows. Please supply me with
any changes o r addi t i ons.

Message Variable Field

Indicator - i s on HO-H9

Negative Square Root l ine number
a t l ine number - (in binary)

Arithmetic Overflow 1 i ne number
a t 1 ine number - (i n binary)

Divide by zero l ine number
a t l i n e number - (i n binary)

Variable index i s not l ine number
within array bounds (i n binary)
(zero,minus or too
large) a t 1 ine number -
Table/Array out of p t r to 6 byte
sequence, from f i l e f i e l d with

, T/A number f i l e ID ptr
within f i l e , and T/A number
record number within in f i l e s &
T/ A record #

Cntld
Continue By Pass Cancel

Immed.
Cancel

X

X

X

X

X

X

PPG GENEBPTE'I OBJECT PROGRAkl
-..

SECTION 1v PAGE 18
SUBJECT R u n Time Error Message ORIGINAL DATE 3 /17 /73

REVISED DATE

Cutld Immed.
Err No. Message Variable Field Continue By Pass Cancel Cancel

p t r to 4 byte
f i e ld with f i l e
ID p t r & TA
number in f i l e .
(same as f o r 7)

Table/Arra.y n o t found -
from f i l e 3

T/A number wi thin
f i l e

Too many entr ies f o r
a table/array

Available par t i t ion
s i ze exceeded

I P Forms Alignment

Record out of
Sequence f o r f i l e

File O u t of Matching
Record sequence for
f i l e

Unidentified Record
from f i l e

Invalid Numerical
Data a t i j n i

Channel not defined
on Line Counter for
f i l e

Binary conversion
overflow a t
1 ine number

none

none

p t r t o
f i l e name

p t r to
f i 1 e name

p t r t o
f i l e name

l ine number
(in binary)

p t r t o
filename

1 ine number
(in binary)

17-n 10 Errors (not defined) p t r t o
filename

O R J F C T T I M G C D K M I J N I C A T -

F C I L L O W I N G ARE F I L L F D I P J R Y G E N E R A T O R S 09 F O R M A T T E R

JUN S R G F X E C - 1 S T E X E C U T A B L E R P G IVS
S W I T C t i E S

B I T f l = E M A I C H I Q S F I F L D S I!q C119 K C D
1=1 S I G N F P K C I N G Or4 I Q P U T T E L S
2 = 1 H A L T OF4 O V F R F L 3 W
3 = 1 F I 9 S T C Y C L E
4=1 L(?W St0 Y T C H F L D S P K I F I L E
5 = 1 ONE OF M T C H F L U S S E C F I L E
6 = 1 '4TCH F I L F S I V O E S C S E O
7 = 1 V R T ~ C ' M E S T I C F O R M A T

S W I T C H t S
H E G I N N I N G FC,. P O I N T E R
YIJi4HFR O F F C T F V T S I F S
P O I r i T E R T i l t iO -H9 ,LO-L9 tL ' I tMK tOA-C1V
P U I l j T F 9 T f ? F I R S T P A G E G J ~ O U ?
PCI I r4TFI< 117 H O R S AUD D F T A I L
P O I Y T F K TO T n T A L S
P O I Y T E K T C T C T 4 L S - O V E R F L O W
P O I ' I T F R TQ W 0 9 S t D E T A I L - O V F I I F L C h
P G I Y T F R TO E X C F P T I P U Y E C O K D S
P O I N T E 3 T n M A S T E Y L F V C L H O L D A R E A
L E Y G T H f l F M h S T E R M A T C H I l ' d G F I E L 9 AREA
P O I N T E 4 T O Y A S T E 9 N T C H F I E L D A A E 4
P O l N T E K TO REGIYNING OF I Y D I C A T C K S
P T R T O D A T E - ODDSOVMSOYYSOO9MFlYYS
P O I N T E R T C B E G I N N I N G O F T A C T T A B L E
P O I N T E r < T P D E T A I L C A L C R O U T I N E
P O I Y f F % T C L E V E L 0 C A L C I I L A F I O Y S
P O I Y T E K T D L E V I - L 1 C 4 L C I J L A T I O Y S
P O I P d T E 4 T f l L E V E L 2 C A L C U L A T I C Y ?
P O l N T F R T n L E V E L 3 C a L C l l L A l I O N S
P m v r t l i T r L F V E L 4 CALCI IL I \T I~NS
P O I U T E 9 TQ L E V E L 5 C A L C U L A T I O C J 5
P n I R T E d TO L F V F L 6 C A L C U L A T I O X S
P O l Y T i f i T 2 L E V E L 7 C 4 L C t J L A T l n : J S
POI i ' i TER T D L E V E L 8 C A L C U L A T I O U P
P O I Y T E A T f l L E V E L 9 C A L C U L A T I O N S
P O I U T E t t T 3 L A S T 2 E C U X D C 4 L C U L A T I O ' J S
P O I U T E t ? TO F I Y S T I N P U T F I L E
P O I N T E A TO F I R S T P & I N T F I L E F C T
P O I Y T E K TD F O K C E F C T F U T A Y
P O I Y T E d T O A L T C O L L A T I N G S E O T A B L E

a \ O a \ 0 4 2 9
C C C C C C
C c ? C G C O
C O C G O O
C C C C C G
C C O C C C
C O C C G O

C G O C O C O O C O O O O C C O O G O
G O C C C C O C G C O C C O C C O C C
C O C C C C O C C O C G G O O O O O O
O O O O C C C O C O C O O O C O O O O o c o o o o

J-P a ~ u 2 ~ a ~ 0 ~ 0 ~ ~ ~ ~ ~ 0 w o n . t ~ a m d 4 - a ~
P-
t'-

= C c C C P o a 2 3 - m 6 : c O \ C ; i . c ' 3 \ P u ' O ' U 4 = Z C 4 ~ S) O
-2

tR
C C C C O C C O C O C O C 0 3 6 O O C G G C C C O

w O O O C O C C O O O C C C O C O O O O C G O O O G

R E A C T I V E DESIGN Page
C O M P U T E R
S Y S T E M S

SPECIFICATION Date
9"" Subject

VII.

REACTIVE
C O M P U T E R

p SYSTEMS

DESIGN
SPECIFICATION

Page VII G (1)
Date 8/2/71

Subject Detail Design - Calculation Specifications

VII. - G Calculation Spe~ i f i ca t ion Scan

Internal tab1 es :

Parameter Definition Table (PDT)

Number of en t r ies = 35 .
Entry s i ze = 1 2 bytes

Byte

0- 4

5

6

Bit -

0

1

2

3
4

5

6

7

0-7

0

1

2

3
4
5

6

7

Description

Command name

Index into SRBT (0 = no special processing)

Bit map. Meaning of each b i t : bit=O, f i e ld must
be blank; b i t= l , f i e ld does not have to be blank.

conditioning i nd.

f i e ld length

decimal position

ha1 f-adjust

resu l t indicator

factor 1
factor 2

resu l t f i e ld

Bit'map. Meaning of each b i t : bit=O, f i e ld may be
blank; bi t=1, f i e ld must be present, .

For b i t assignment see byte 6.

Indicators for factor 1. Meaning of each b i t :
bit=C, type not allowed; b i t= ; , type allowed.

1 i teral

f i e ld or element

en t i r e table or array

special name

TAG or subroutine name
--.. --

f i l e name

a1 phameri c

numeric

Indicators for factor 2. For specif ics , see byte 8.

10 Indicators for. resu l t f i e ld . For specif ics , see byte 8.

11 Miscellaneous indicators

0=1 control level must be SR.

1=1 only AN/OR i s acceptable

Special Requi t ement Branch Tab1 e (SRBT) .

Nufiller of en t r ies : 15
Entry s ize: 2 bytes

Branch addres*.es to routines tha t perform specif ic command-related processing.

For de ta i l s , *,ee flow chart pp. 10-16.

I

R E A C T I V E
C O M P U T E R

DESIGN Page VII G (2)

SYSTEMS SPECIFICATION Date 8/2/71

,P Subject Detail Design - Calculation Specifications

R E A C T I V E DESIGN Page \ -
C O M P U T E R --

SYSTEMS
SPECIFICATION ~ a i e ' ' -

yl-. 9 r - Subject , , - , I - /:I - c c i cr A E
7 - t

$ 3 6 1 R A F P

4-20 1 L INE

4- 36 S T A T
'

OVER

C O H P U T E R
S Y S T E M S

DESICiq
SPECIFICATION

Page
Date

Subject L - 4

R E A C T I V E
COHPUTER
S Y S T E M S

DESIGN
SPECIFiCATION

Page
Date ,

-- -- ---- pi;, -1 s;l 1 y--- - --- -

RPG MODULE DESCRIPTIONS

Routine Modules - $NUCLIB

Object Library Source
Member Name Name Descri pti on

Run Time Executive Root
Run Time Executive - In i t i a l i za t ion Place
Run Time Executive - Run Phase
Run Time Executive - End of Job Phase
Matching Record Processing
Level Processing
Binary to Packed Conversion
Number-i c Field Test Routine
Alpha Field Test Routine
Array Processing
Finish Pack Routine
Fie1 d Indi cator Processing
Convert to Binary Routine
Array O u t p u t Routine
*PLACE Processing
ADD/SUB with half adjust
Z-ADD/Z-SUB wi t h ha1 f adjust
Sign forcing for unpacked decimal
Half adjust routine
Test b i t routine
Test zone routine
Chaining routine
Debug processing
Divide routine
Mu1 t i ply routine
Display Routine
Read routine (from cal culations)
Binary Lookup of tablelarray
Sequenti a1 1 ookup of tab1 e/array
Square Root Routine

f i

PACE 2
Preliminary Inform

OPEN FILE 0
TABLE OR ARRAY \

I D E N T I F Y

RECORD

1
MOVE LOOK-
AHEAD FIELDS ! 0
I F P R E S E N T j

I

Preliminary Information 0
DO F IRST

OUTPUT

DO HEADIN
AND D E T A I L

OUTPUT

OVERFLOW
INDICATORS
FOR TOTAL
OUTPUT

PAGE 3

SET OFF HO-H9,
L 1 - L 9 , I P , AND
RECORD I D
INDICATORS

ON?

CYCLE *

PAGE 4 Preliminary Information

I D E N T I FY

RECORD
READ

>

OF JOB 0

F I L E TO
SELECT

Preliminary Information

0

I

SEQUENCE/HIGHEST
PRIORITY RECORD-

TURN ON
RECORD ID
INDICATOR

PERFORM SEQUENCE
,CHECK

\
r

FIRST
CYCLE

C

-

SET ON
L1-L9, LR
INDICATORS

J

SET ON CONTROL LEVEL

INDICATOR IF LEVEL
BREAK OCCURED

PAGE: 5

L

Preliminary Information

LEVEL
CALCULATIONS

LEVEL

OUTPUT

PROCESSING

OUTPUT

HEADING

UTPUT PROCESSIN

INDICATOR ON
OR OFF

PAGE 6

Brelirninar Information

-1
1

MAKE DATA
AVAILABLE
FROM SELECTEC
RECORD

LOOK-AHEAD
F I E L D S I,

>ERFORM
'ETA1 L
SALCULATIONS

Preliminary Information

0

CALCULATIONS

-r-

CLOSE

F I L E S

Preliminary Information

HOUSEKEEPING

Open a1 1 f i l e s . Load pre-
execution tables and arrays .
Perform f i r s t page (1P) output.

PAGE 13

DETAIL CALCULATIONS DETAIL OPERATIONS

Se t matching record indi- : Write heading and de ta i l @ output. T u r n o f record ca tor (M R) on o r o f f .
Make selected record data -- iden t i fy ing , l e v e l , f i r s t
avai lable f o r processing. page, and ha1 t ind ica tors .

TOTAL OUTPUT OPERATIONS

Write a l l t o t a l records t o
d i s c , tape, or p r i n t e r , o r
punch t o t a l s i nformati on
i n t o cards f o r output.

INPUT OPERATIONS

Read, i den t i fy , and s e l e c t
a record fo r processi nq .
Set on control level indi -
ca tors i f a control break

occurred.

TOTAL CALCULATIONS ', t t t

Perform t o t a l ca lcula t ions
according t o control level

1 ad4 ca t o r s .

RPG MODULE DESCRIPTIONS

Compiler Modules - $SYSLODLIB

Load Library Object Library Source -
Member Member indicates Description

same

RPG
r r -

-
s r -
$RGFDS

$RGXLS

$RGI PS

$RGCLS

$RGOPS

$RGOVF

$RGIOG
f r -

$RGTBG

$RGI PG

ISRGCLG - cy

$RGC;-LT r

~ R G O P G

$RGCFM
I I -

-
-

$RGXRF

$RGXRP

Compi 1 e r Executi ve

Common In i t i a l ization

Header Card Scan, File Allocations

Scan Common Subroutines

File Description Scan

Fi le Extension /Line Counter Scan

Input Description Scan

Calculation Description Scan

O u t p u t Description Scan

Tab1 e Overf 1 ow Phase

Generation Common Subroutines

Input/Output Generator

Table/Array Genera to r

Input Processing Generator

Calculation Generator - Pass 1

Calculation Generator - Pass 2

O u t p u t Generator

Code Formatter - Root

Code Formatter - Listing

Code Formatter - Ena 0.2 j o b processing

Buffered Library Generator

Cross Reference - Pass 1

Cross Reference - Pass 2

1-1________-.-.-
J,!-X CROSS RI!FE"E"'EN_C&FE

2 L CARr3lAf-E CGrJTR. TYP

2T.i- - - - SGUECE :,F(2. CHECK - - - - -- -----
1,: f I t i Y O R E tll,, I H . O'FLOW

OPSYS/l D E V E L O P i 4 E N T UORl<I;OOK

TABLE OF CONTENTS

1.1 Programming Conventions
1.2 Workbook Maintenance
1 . 3 Milestones

2. COi.1PILER OVERVIEW

2.1 In t roduc t ion
2.2 Design Approach
2.3 Language S p e c i f i c a t i o n s

3. COMPILER-SYSTEM INTERFACE

3.1 System Requirements
- 3.2 Job Control I n t e r f a c e

3 .3 L i n k E d i t o r I n t e r f a c e
3.4 Loader I n t e r f a c e
3.5 Data Managenlent I n t e r f a c e

4. FILE A N D TABLE USP,GE

4.1 Disc Record Formats
4.2 Resident Tables

6. PROGRAtl SPEC1 FICATIONS

6.1 Executi v? Program
6 .2 Common Rout i nes
6 . 3 Phase 1 - Syntax Checking

6.3.3 Header Card Scan
6.3.2 F i l e Descr ip t ion Scan
6 .3 .3 Extension S c m
6.3.4 Line Counter Scan
6.3.5 Input S p e c i f i c a t i c n Scan
6.3.6 Ca lcu la t ion S p e c i f i c a t i o n Scan - .-
6.3.7 Output S p e c i f i c a t i o n Scan

6.4 Phase 2 - Table Overflow (Opt ional)

6.5 Phase 3 - Code ene era ti on

6.5.1 Control Program Generator
6.5.2 I f0 Generator
6.5.3 F i l e Extension/Alternate Collat ing SequencefTabIefLine

Countec Genera t o r
6.5.4 Input Record Handling Generator
6.5.5 Calculations Generator
6.5.6 Output Record Hand1 ing Generator

6.6 Phase 4 - Code Formatter

6.7 Phase 5 - Cross-Reference

8. APPENDICES

8.1 Diagnostics
8.2 Module/Subroutine Cross-Reference
8.3 Subrouti ne/i4odul e Cross-Reference
8.4 Glossary

SECTIO N PAGE VI (8)
SUBJECT R . P. G. Generated Object Proqram ORIGINAL DATE 11/17/71

1. FILE CONTROL TABLE

One per f i l e - f ixed length 40 bytes each.

The F i le Control Table has a d i f f e r en t format f o r Input, Output, Update,
Record Address and Tables/Arrays.

Following i s the portion of the t ab l e t h a t appl ies t o a l l f i l e types.

Bytes

F$TYPl 0

F$TYP2 1

F$TYP3 2

f

Descri ption

F i l l ed in TO BY - -
TO v=vari abl e
BY phase number (s ee pg. -

VI (7)
Fi le Type Switches - More than one b i t may be on

B i t 0=1 Input f i l e
1=1 O u t p u t f i l e
2=1 Record Address Fi le (Limits)
3=1 Record Address Fi le (Record Numbers)
4=1 RAFed f i l e - f i l e RAF l inks t o
5=1 Chained F i le
6=1 Combined/Update f i l e
7=1 MFCU Fi l e

F i l e Type Switches (continued)
Bi t 0=1 TableIArray F i le

1=1 Console Fi le
2=1 Demand F i l e
3=1 Random by keys
4=1 Random by Record Number
5=1 Unused
6=1 E Specified (when a l l E 's reach end of f i le-LR)
7=1 End of f i l e reached

Fi 1e Type Switches
Bi t 0=1 Card Fi le

1=1 Pr in t Fi le
2=1 Special F i l e
3=1 Matching Records Specified
4=1 Matching Fld in current RCD
5=1 Matching Records found
6=1 T r a i l e r in current R C D
7=1 Lev 1 Fl ds in current RCD

, .v -
SUBJECT R P G Generated Object Proqram ORIGINAL DATE 11 / I 7/71

REVISED DATE 4/21 /72

Bytes Description Filled In

F$TYP4 3 Level 2-9 Present Switches
Bit 0=1 Lev 2 FL2S in current R C D

1=1 Lev 3 FLDS in current R C D
2=1 Lev 4 FLDS
3=1 Lev 5 FLDS
4=1 Lev 6 FLDS
5=1 Lev 7 FLDS
6=1 Lev 8 FLDS
7=1 Lev 9 FLDS

F$BDT 4-5 Buffer Description Tab

n current R C D
n current R C D
n current RCD
n current R C D
n current R C D
n current R C D

e (BDT) address or address of
SPECIAL device support routine

F$LRAD 6-7 Logical Record Address

F$RLEN 8-9 Record Length (Maximum for Variable Length Records) A t
object time this i s changed to actual record length

F$TRAN 10-1 1 File Translati on Table Pointer

F$USER 12-1 3 User Indicator Address

F$LINK 14-15 Pointer to next input or prnt FCT

F$UN1 16-17 Unused

F$UN2 18 Unused

F$UN3 19 Unused

Below the portions referring to Input and O u t p u t f i l e s combine fo r
update f i l e s .

Following i s the portion of the table tha t pertains t o Input f i l e s .
(except RAF and Table/Array f i l es .)

Bytes Descri pti on

F$PRI 20-21 Fi l e Pri ori ty (O=Prirnary , 1 -19=Secondary)

F$RID 22-23 Record Identification Table Address

F$LOOK 24-25 Look ahead f i e l d Move Pointer

F$MACH 26-27 Matching Record Hold Area Pointer

F$LIV 28-29 Level Control Fields hold area Pointer

Filled in

DEVELOPMENT DlVlSlO N SANTA CLARA SYSTEMS PROGRAMMIN(

Byte Description Filled in - TO

F$CRID 30-31 Current Record Identification Table Entry Pointer 0

F$RAFP 38-39 RAF File Pointer (from RAFed Fi l e)

Following i s the portion of the table that pertains to output f i l e s .

SECT10 N PAGE VI(8b)
SUBJECT RPG Generated Object Prosram ORIGINAL DATE 11 / I 7/71

REVISED DATE 13/9/71 h 4/21 /72

F$LINE 20-21 Line Counter Table Pointer v

F$HAD 22-23 O u t p u t Record Identi f icat ion Table chaining pointer -
Header and Detail Records v

FST 24-25 O u t p u t Record Identification Table chaining pointer -
Total Records v

F$UP1 26-31 Left fo r possible update f i l e

F$MFCU 32-33 MFCU in te rpre t area address v

F$WORK 34-35 Work area - Last Line Number (Pr in t f i l e s only) 0

Switches
Bit 0=1 Last Line had a skip a f t e r 0

Overflow Status 0
O=Overflow work not ye t done
l=Fetched overflow done

O u t p u t wi 11 change th is to 2 instead of doing normal overflow
2=A11 overflow work done - exec should turn off overflow

indicator and th is switch s e t by output routines a f t e r
overflow processing.

39 Poi nter to Overfl ow Indi cator v

Following i s the portion of the table that pertains to Record Address Files (RAF)

F$ELEN 20-21 RAF Element Length v 2

F$CLOC 22-23 RAF current location in record

F$FPTR 24-40 RAF File FCT Pointer

SECTION PAGE (VI(8c)
R P G Generated Object Program ORIGINAL DATE 11/17/71

REVISED DATE 4 /21/72

Following i s the portion of the table tha t pertains to Table/Array f i l e s .

Byte Description I

(26-27 Pointer t o Table Control (a1 ternate
table pointed to by TACT chain)

Filled in TO BY - -

t e) - T---&-

UBJECT ORIGINAL DATE
REVISED DATE

Generated Code Summary

There are two major categories of generated code; Ln l ine cod? and interpreted
tables. In l ine code consists of both subroutine calls-and s t r a igh t l ine code.
Interpreted tables require run time subroutines to process them.

Following i s a short summary of code generated by RPG Compiler:

Description

1. File Control Table

2. Buffer Description Table

3. Line Counter Table

4. Table/Array Control Table

5. Compile Time Tables/Arrays

6. Input Record Identification Table

7. Input Field Moves

8. Level /Matching Fie1 d Moves

9. Cal cul a t i ons

10. O u t p u t Moves

11. Cons tan t s

12. O u t p u t Record Identification Table

Type

T

T

T

T

T

T

I L

I L

I L

I L

T

T

Generated By

1/0 Generator

1/0 Generator

FE/Li ne Counter Generator

FE/Line Counter Generator

FE/Line Counter Generator

Input Handling Generator

Input Hand1 ing Generator

Input Handling Generator

Cal cul a t i on Generator

O u t p u t Generator

Calc. & O u t p u t Generators

O u t p u t Generator

REACTIVE DESIGN
C O M P U T E R

Page VI(7)
r

I SYSTEMS SPECIFICATION Date T

I Subject R P G G E N E R A T E D OBJECT PROGRAM

Generated Code Groups

Each of the generation overlays qenerates code in one or more of the

compile time Groups. The s ize of each Group i s kent track of and the

code formatter assigns the correct address to generated code b ,

resolvinq the s t a r t ing location of each Group.

Below i s a l is ' t of each Group by the number that ident i f ies i t in the

generated code. Included with each Group i s a l i s t of a l l the

generators tha t produce code in tha t Group. The aenerators a re

identified as follows:

1 . Control Program Generator
2. Input/Output Generator
3. File Extension/Li ne Counter Generator
4. Input Handling Generator
5. Calculations Generator
6. O u t p u t Handling Generator

The CSECTS are as follows: -
No. -

1
2
3
4
ti
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
2 2

Descrintion

Object Time Communications Region
Not Used
I/O/BDT
File Control Table
Tab1 e Lookup/Li ne Counter Tab1 e
Input Field F'oves-Level/Matching Field
Input Field Moves-Other
I n ~ u t Record ID Table
Calculation
O u t p u t !loves
i?jot Used
Constants, Li terals
O u t p u t Identification Table - Group 1
O u t p u t Identification Table - Group 2
O u t n u t Identification Table - Group 3
O u t p u t Identification Table - Group 4
O u t p u t Identification Table - &-OUD 5
O u t p u t Identification Table - Group 6
Data Hold Area
Not Used
Indicators
Buffers and record area

Generated by

1 2 3 4 5

x x x x x

X
X X X

X
X
X
X

X

X X X

BLOCK D1ASRAi.I OF R . P. G . COMPILERS

. -
- --

(builds resident f i e l d name & f i l e
descri ti on tab1 e s)

I

File Translation Tables
Compile Time Tables & Arrays

I I

CODE GEKERATIO!J PHASE I/O,FE, Red Yoves, (uses resident ' f.11 e
(5 overlays-Subrouti ne Generation, Calcs, O P) I description ;gble)

\1
- L ,-,,,,,,,,, J I

h r e l imi nary
Object O U ~ C E
Code

I
\L

CODE FORI.?ATTIPjG PHASE

Object
Proqram

Source
Memory ?lap
Error Messaqes

6' Program Over1 ay

Phase 1 - Scan

Conpi 1 e r Execu t i ve

Header Card Scan
#INS=1050/1 i ne

F i l e Description Scan
#INS-1 23O/ 1 i ne

F i l e Extension Scan
#INS- 1000/ 1 i ne

Line Counter Scan
#INS=7OO/l i ne

Input Spec. Scan
#INS=1000/1 ine

Calcuf a t ion Spec. Scan
#INS=1200/1 ine

Output Spec. Scan
#INS=] 000/l i ne

Phase 2

Overflow ~ h a s b (Optional)

Phase 3 - Code Generation

#INPUT Cards
i n .Source Size Reaj

MX Normal(%) Bytes (S ize) Write (S ize)

1/0 Generator 3 .*
#INS=] 500/1 i ne

Table/Array/Li ne counter Gen 3
#INS=6OO/l i ne

Input Hand1 i ng Generator 0
#INS=800/line

CALC.GEN,SUB. PHASE I 00

#INS=700/line
Calc.Gen.Sub.Phase I a“

#INS=600/1 i ne
Output Hand1 i ng Generator e

#INS=7OO/ 1 i ne

Phase 4

Code Formatter
#INS=6OO / 1 i ne

Phase 5

2,000
Open 0 ,1 ,2 ,3

I 750 O(80) 2(84)

very few=O
O(80) 1 (46) ,2(84)

3,900
O(80) l (20) ,2(84)

very few=O
(33) 3,770 O(80) l (2 8) ,2(84)

(*Note: Close 3,Reading and wr i t ing 1&2 i s a
1-1 r e l a t i onsh ip)

2,000 l (a s above) 4(Same a s input l eng th)

4,000 l (40 5(300) i n 8 g e c o ~ d s
open 5

2,000 *0(80). 1 (M), 1 (20) 5(50)
Close 2,O

4.168 1 (27) 5 (40) , 2 (84)
open 6

3,876 l (50) 6(50)

5,356 6(50) 5(50)

5,630 l (28) 5(60) i n 2 records
c l o s e l , 6 ~ OPEN 2,3, OBJECT & PRINTER

J

4,500 5(50) ,2(84) , 3 (20) . , OP(5O) , L i s t (l 3 2)
c l o se 2,3,5

Cross Reference (opt ional)
Not used

FILES: 1,2,3,4,5,6 = work f i l e s ; 0 = source f i l e ; OP = objec t program; l i s t = source l i k ing
8

* (Reads i n any compile time t ab l e s o r a r r ays)

I V . MEMORY ALLOCATION

A, Minimum buffer s izes

File: 0 (source input)* - 84 Header Scan T/A,LCGen.
1 [intermediate output)** -140 Header Scan O u t p u t Gen
2 (source intermediate) - 84 Header Scan T / A , L C Gen.
3 (extrns , en t r i e s) * - 24 Header Scan O u t p u t Scan
4 (a1 terna t e i ntermedi atey-140 Overf 1 ow Phase * * - 5 (generated code) -140 1/0 Gen End of Job
6 (in t e r . gen. code) -140 Calc Gen I O u t p u t Gen.

* 1 or 4 is closed a t end of Overflow Phase cross reference must
reopen 1 or 4.

** The s i ze buffer needed f o r f i l e 0 (source input) i s gotten from
data management . , .

Input Source Buffer Size I n i t . -
Card Reader 84 I n i t f i r s t 4 bytes as CSD header
Teletype 124 I n i t f i r s t 4 bytes as CSD header
Spooled Dynami c None

i
Library Dynami c None

I B. Memory Allocation - Par t i t ion Size greater than 8K.
I
; 1. Available f r ee storage f o r tables and buffers =

H i g h core address - 7000 bytes

2. Allocate Fi le 0 (source input buffer) same as 8K system

3. Allocate other buffer s izes as:

Fi le : 1 -16% of available f ree storage
2 =/6% of available f ree storage
3 = 48 bytes ava
4 = 16% of available f ree storage
5 =/6% of available f ree storage
6 = 16% of avai 1 able f ree storage

4. Allocate remainder of available space to tables:

i

768t

-.
I

li n.
COO
bytes

658C

2400

C Memory A l l o c a t i o n - P a r t i t i o n S i z e = 8K

SCANS

JCT, FDT
System Tab l es

BUFFER FILE 1 = (140)
BUFFER FILE 2 = (84)
BUFFER FILE 3 = (24)
BUFFER FILE 0 = (?)

FILE NAME/DESC TABLE

FIELD DESCRIPTION
TABLE

SCAN

OVERLAYS

L

SCAN
COMMOM

SUBROUTINES

COMPILER

EXECUTIVE

OVERFLOW
- --

JCT, FDT
Sys tern Tab1 es

BUFFER FILE 1 = (140)
BUFFER FILE 2 = (84)
BUFFER FILE 3 = (24)
BUFFER FILE 0 = (?)

FILE NAME/DESC TABLE
- --

FIELD DESCRIPTION
TABLE

BUFFER - FILE 4 (140)

OVERFLOW

PHASE

SCAN
COMMON

SUBROUTINES .

COMPILER

EXECUTIVE

COMMUNICATIONS AREA

GENE RAT0 RS

JCT , FDT
Sys tern Tab l es

3UFFER FILE 1 = (140)
3UFFER FILE S = (140)
3UFFER FILE 6 = (140)

FILE NAME/DESC TABLE

3UFFER FILE

GENERATOR
OVERLAYS

COMPILER

EXECUTIVE

:OMMUNIGATIONS AREA

C. (C o n t i n u e d)

CODE FORMATTER

JCT, FDT, PDT

BUFFER FILE 2 = (8 4)
BUFFER FILE 3 = (2 4)
BUFFER FILE 5 =(140)

CODE
FORMATTE R

(c o n t a i n s own b u f f e r :
f o r p r i n t a n d o b j e c l
o u t p u t - i n c l u d e s 600
b y t e BLIGEN s u b -
r o u t i n e)

G E N COMMON SUBROUTINES

COMPI LER

EXECUTIVE

COMtllUN I CAT IONS AREA

CROSS REFERENCE

JCT, FDT, PDT

BUFFER FILE 1 = (1 4 0)
BUFFER FILE 5 = (140)
BUFFER FILE 6 = (1 4 0)

CROSS
REFERENCE

(c o n t a i n s own b u f f e r
for p r i n t f i l e)

;EN COMMON SUBROUTINES

COMPILER

EXECUTIVE

COMMUNICATIONS AREA

RPG II
Reference Manual

intent of the &nuat

This publication is intended as a reference for programmers
writing RPG I1 specifications for the IBM System/3, Disk
System. Before using this manual, the reader must under-
stand the concepts and terms described in the following
ublications:

1. IBM System/3 Disk System Introduction

2. ISM System/3 Card and Disk System RPG I1
Fundamentals Programmer's Guide

Division of Chapters

This publication has ten chapters. Chapter 1 is the intro-
duction. Chapter 2 contains information common to all
RPG coding sheets. Chapters 3-9 describe the seven types
of RPG specifications in the order required by the RPG 11
compiler. Chapter 10 contains supplementary information
on subjects referenced in other chapters. The subjects
presented in this last chapter are in alphabetical order.

Column Descriptions

Specifications for each coding sheet are described column
by column as a programmer would write them. Informa-
tion in every column description is presented in this order:

1. List of possible entries.

2. General discussion of use of column and considera-
tions for all possible entries.

3. Specific discussion of each entry

4. Charts and examples.

Page and Figure Numbers

Figure numbers and page numbers consist of two numbers
separated by a hyphen. The first number identifies the
chapter, and the second number identifies the figure or
page within the chapter. For example, Figure 4-10 refers
to the tenth figure in Chapter 4.

First Edition

Some illustrations in this manual have a code number in the lower comer. This is a publish-
ing con.trol number and is not related to the subject matter.

nges are continually made to the specifications herein; any such change will be reported in
uent revisions or T e c ~ c a l Newsletters.

Requests for copies of IBM publications should be made to your IBM representagve or to
the IBM branch office wring your locality.

A form for reader's comments is provided at the back of this publi~tion. If the form
, comments may be addressed to IBM Corporation, Progtamming

PubLications, Department 425, Rochestez, b e s o b 55901.

Contents

CHAPTER 1 . INTRODUaION 1-1
. Function of RPG I1 1-1

Using RPG I1 1-2
. Machine Requirements 1-2

CHAPTER 2 . COMMON ENTRIES 2-1
. Columns 1-2 (Page) 2-1
. Columns 3-5 (Line) 2-1

. Column 6 (Form Type) 2-2
Column 7 (Comments) 2-3

. Column 75-80 (Program Identification) 2-3
. Control Cards 2-3

. All Other Source Cards 2-3

CHAPTER 3 . CONTROL CARD SPECIFICATIONS . . 3-1
Columns 1-2 (Page) 3-1
Columns 3-5 (Line) 3-1
Column 6 (Form Type) 3-1
Columns 7-9 (Core Sue to Compile) 3-2
Column 10 (Object Output) 3-2
Column 11 (Listing Options) 3-2
Columns 12-14 (Core Size to Execute) 3-2
Column 15 (Debug) 3-3
Column 16 3-3

. Columns 17-20 (Sterling) 3-3
Column 17 (Input-Shillings) 3-3

. Column 18 (Input-Pence) 3-3
Column 19 (Output-Shillings) 3-3

. Column 20 (Output-Pence) 3-3
Column 21 (Inverted Print) 3-3
Columns 22-25 3-4
Column 26 (Alternate Collating Sequence) 3-4
Columns 27-36 3-4
Column 37 (RPG Inquiry Support) 3-4
Columns 38-40 3-4
Column 41 (Forms Positioning) 3-5
Column 42 3-5
Column 43 (File Translation Tables) 3-5
Column 44 (Leading Zero Suppression) 3-5
Column 45 (Unprintable Character Option) 3-5
Columns 46-74 3-5
Columns 75-80 (Program Identification) 3-5

CHAPTER 4 . FILE DESCRIPTION SPECIFICATIONS . 4-1
Columns 1-2 (Page) 4-1
Columns 3-5 (Line) 4-1
Column 6 (Form Type) 4-2
Columns 7-14 (Filename) 4-2
Column 15 (File Type) 4-2
Column 16 (File Designation) 4-2

Primary File 4-3
Secondary Files 4-3

. Chained Files 4-3
Record Address Files 4-3
Table Files 4-3
Demand Files 4-3

. Column 17 (End of File) 4-4

. Column 18 (Sequence) 4-4
Column 19 (Fib Format) 4-4
Columns 20-23 (Block Length) 4-4

. Columns 24-27 (Record Length)

. Column 28 (Mode of Processing)
. Consecutive

. By ADDROUT File

. Sequential By Key
. Sequential Within Limits

Random
Columns 29-30 (Length of Key Field or Record

. Address Field)
. Column31 (RecordAddressType)

Column 32 (File Organization or Additional 110 Area)
. File Organization

. . . Additional Input/Output Area
. ADDROUT Files

Columns 33-34 (Overflow Indicators) . .
Columns 35-38 (Key Field Starting Location)

. Column 39 (Extension Code)
. Columns40-46 (Device)

. Console
. Printer Files
. Columns 47-59

Columns 60-65 (Cylinder Index in Core) .
. Column 66 (File Addition)

. Column 67
Columns 68-69 (Number of Extents) . .
Column 70
Columns71-72 (Filecondition)
Columns 73-74
File Description Charts

. Columns 73-74
Column 75-80 (Program Identification) . .

. File Description Charts

CHAPTER 5 . EXTENSION SPEClFlCATIONS . .
Columns 1-2 (Page)
Columns 3-5 (Line)

. Column 6 (Form Type)
Columns 7-10
Columns 11-18 (FromFilename)
Columns 19-26 (To Filename)
Columns 27-32 (Table or Array Name)

. Table Name
Array Name

Columns 33-35 (Number of Entries per Record) . .
Columns 36-39 (Number of Entries per Table or Array)
Columns 40-42 (Length of Entry)
Column 43 (Packed or Binary Field)
Column 44 (Decimal Positions)

. Column 45 (Sequence)
. Columns 46-57

. Columns 58-74 (Comments)
. . . . Columns 75-80 (Program Identification)

CHAPTER 6 . LINE COUNTER SPECIFICATIONS .
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)

. Columns 7-14 (Filename)
Columns 15-17 (Line Number-Number of Lines per

. Page)

. Columns 18-19 (Form Length) 6-2
Columns 20-22 (Line Number) 6-2
Columns 23-24 (Overflow Line) 6-2

. Columns 25-74 6-2
Columns 75-80 (Program Identification) 6-2

CHAPTER 7 . INPUT SPECIFICATIONS 7-1
Columns 1-2 (Page) 7-1
Columns 3-5 (Line) 7-1
Column 6 (Form Type) 7-1
Columns 7-14 (Filename) 7-2
Columns 15-16 (Sequence) 7-2

. Column 17 (Number) 7-4
Column 18 (Option) 7-5
Columns 19-20 (Record Identifying Indicator. **) . . 7-5

. Record Identifying Indicators 7-5
Look Ahead Fields 7 6

Columns 21-41 (Record Identification Codes) 7-6
Column 42 (Stacker Select) 7-8
Column 43 (Packed or Binary Field) 7-8
Columns 44-51 (Field Location) 7-8
Column 52 (Decimal Position) 7-9
Columns 5 3-58 (Field Name) 7-9
Columns 59-60 (Control Level) 7-10

Split Control Fields 7-13
Columns 61-62 (Matching Fields) 7-14

Matching Fields 7-14
Sequence Checking 7-17

Columns6364 (Field ReeordRelation) 7-18
RecordIdentifyingIndicators (01-99) 7-19
Control Level (Ll-L9) and Matching Record (MR)
Indicators 7-19
External Indicators (Ul-U8) 7-19
Halt Indicators (Hl-H9) 7-19

Columns65-70 (FieldIndicators) 7-23
Halt Indicators 7-24

Columns 71-74 (Sterling Sign Position) 7-24
Columns 75-80 (Program Identification) 7-24

CHAPTER 8 . CALCULATION SPECIFICATIONS
Columns 1-2 (Page)

. Columns 3-5 (Line)
Column 6 (Form Type)
Columns 7-8 (Control Level)

Control Level Indicators (LO. L1-L9) . . .
Last Record Indicator (LR)
Subroutine Lines (SR)
AND/OR Lines (AN. OR)

Columns 9-17 (Indicators)
Columns 18-27 (Factor 1) and Columns 33-42
(Factor 2)

Literals ":
Columns 28-32 (Operation)
Columns43-48 (ResultField)
Columns49-51 (FieldLength)
Column 52 (DecimalPositions)
Column 53 (Half Adjust)
Columns 54-59 (Resulting Indicators)

Test Results
Setting Indicators

Columns 60-74 (Comments)
Columns 75-80 (Program Identification) . . .

CHAPTER 9 . OUTPUT-FORMAT SPECIFICATIONS
Columns 1-2 (Page)
Columns 3-5 (Line)
Column 6 (Form Type)
Column 7-14 (Filename)
Column 15 (Type)
Columns 16-18 (Add a Record)

. . . Column 16 (Stacker Select/Fetch Overflow)
Stacker Select

. Fetch Overflow
Columns 17-22 (Space/Skip)
Columns 17-18 (Space)
Columns 19-22 (Skip)

. Columns 23-31 (Output Indicators)
External Indicators
Overflow Indicators
Error Conditions

Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39 (Blank After)
Columns 40-43 (End Position in Output Record) . .

. . . Disk. Punched Cards and Printed Reports
Printing on Cards

. Column 44 (Packed or Binary Field)
. . . . Columns 45-70 (Constant or Edit Word)

Constant
. Edit Word

Columns71-74 (SterlingSignPosition)
Columns 75-80 (Program Identscation)

CHAPTER 10 . SUPPLEMENTARY iNFORMATION . . 10-1
Alternate Collating Sequence 10-1

Defining an Alternate Collating Sequence 10-1
Translation Table and Alternate Collating
Sequence Coding Sheet 10-1
Causing Characters to be Considered Equal 10-4
Altering the Normal Collating Sequence 10-4

Arrays 10-4
Defining Arrays-Extension Specifications 10-6
Input Specifications 10-7
Using Arrays 10-1 1
Calculation Specifications 10-12
Output-Format Specifications 10-1 3

Character Structure 10-25
Character Grouping by Zone or Digit 10-25
Negative Number 10-25

Editing 10-25
Edit Codes 10-26
Edit Words 10-28
Editing Considerations 10-28
Formatting Edit Words 10-28

File Translation 10-31
Specifications for File Translation 10-31
Translation Table and Alternate Collating
Sequence Coding Sheet 10-34

Indicators 10-34
01-99 (Field Indicators. Record Identifying Indicators.
Resulting Indicators. and Conditioning Indicators) . . 10-35
HI-H9 (Halt Indicators) 10-36
1P (First Page Indicator) 10-38
MR (Matching Record Indicator) 10-38
OA-OG. OV (Overflow Indicators) 10-38
L1-L9 (Control Level Indicators) 10-38
LO Indicator 10-39
LR (Last Record Indicator) 10-39
U1-U8 (External Indicators) 10-39

Look Ahead
. Look Ahead Fields

Specifications
. Multifiie Processing

No Match Fields
. Match Fields

. Operation Codes
. Arithmetic Operations

Move Operations
Move Zone Operations
Compare and Testing Operations

. Binary Field Operations
. Setting Indicators

Branching Operations
. Lookup Operations

. Using the LOKUP Operation
. Subroutine Operations

Programmed Control of Input and Output . .
. Debug Operation

. RecordsPrintedforDebug
Overflow Indicators

Writing Specifkations Using Overflow Indicators
. FetchingtheOverflowRoutine

. General Considerations
. Program Cycle

. Sterling
. . . Control Card Specifications (Columns 17-20)

. Column 17 (Input Shilling Field)
. Column 18 (Input PenceField)

. Column 19 (Output Shilling Field)

. Column 20 (Output Pence Field)
Input Specifications

. Columns 1-43
. Columns44-51 (FieldLocation)
. Column 52 (Decimal Positions)

Columns 53-58 (Field Name)
Columns 59-62
Columns 63-70
Columns 7 1-74 (Sterling Sign Position)

. Output Specifications
Columns 1-37

. Column 38 (Edit Codes)

. Column 39 (Blank After)
Columns 40-43 (End Position in Output Record) .
Column 44

. . . Columns 45-70 (Constant or Edit Word)
. . . . Columns 7 1-74 (Sterling Sign Position)

. Subroutines
. Coding Subroutines

Use of One Subroutine in Many Different Programs

Chapter 1. Introduction

CTlOlU OF RPG I I

The RPG I1 language consists of a symbolic programming
language and a compiler program. The RPG I1 symbolic
language is designed as a highly flexible, problem-solving
language. It allows programming solutions to a wide variety
of data processing problems. The compiler program trans-
lates the symbolic language program (source program) into
a machine language program (object program). The object
program is used by System13 to process information
according to the programmer's specifications.

Basically, then the program you have written undergoes
two basic processes:

1 . Compilation (source program translated into object
program).

2. Execution (object program used to process data).

In the f ~ s t case, program specifications defined by the
programmer are used to produce machine-language instruc-
tions. Storage areas are automatically assigned, constants
or other reference factors are included, and program rou-
tines for checking, for inputloutput operations, and for
other functions are produced.

In the second case, the machine-language instructions are
combined with the input data files and both are processed
through the system to produce the desired reports and
output files.

USING RPG I1

The preparation of a report by means of RPC I1 consists of
the general operations illustrated in Figure 1-1 and
described as follows. (The circled numbers in Figure 1-1
refer to the numbers in the following text.)

1. The programmer evaluates the report requirements to
determine the format of the input files and the layout
of the finished report. For example, he determines
what fields in the input records are to be used, what
calculations are to take place, where the data is to be
located in the output records and how many and
what kind of totals must be accumulated.

2. After the programmer has evaluated the requirements
of the report, he provides the RPG I1 program with
information about these requirements.

a. He describes all files used by the object program
(input files, output files, table files, etc.) by
making entries on the File Description Specifica-
tions sheet.

b. If the programmer uses record address files, tables,
or arrays in his object program, he furnishes in-
formation about them through entries on the
Extension Specifications sheet.

c. He describes his input (record layout fields used,
etc). This is done by making entries on the Input
Specifications sheet.

d. He states what processing is to be done (add,
subtract, multiply, divide, etc.) by means of entries
on a Calculation Specifications sheet.

e. He defines the layout of the desired report (print
positions, carriage control, etc). This is accom-
plished by making entries on the Output-Format
Specifications sheet.

3. After the specifications have been written on the
appropriate forms, the data on the forms is recorded
in punched cards. Each line on the form is punched
into one card.

4. These punched cards (called a source deck) are
preceded by the RPG I1 control card. The source
deck and the control card are placed into a card-read-
ing device and processed by the RPC I1 compiler
under control of the Disk System. At the end of this
processing run (referred to as the compilation run),
the object program is produced and stored in the
working storage area of the disk. This program
contains all the machine instructions required to pre-
pare the desired report.

5. The programmer may now have the object program
punched into cards for storage or he may proceed
directly to processing of the object program.

6 . The input files are then read into the system and
production of the report begins. This is known as
the object run.

MACHINE REQUIREMENTS

The minimum SystemJ3, Disk System machine require-
ments for use of the W G I1 language are:

* 12K bytes of core storage

5424 Multi-Function Card Unit

* 5203 Printer

* 5444 Disk Storage Drive

* 5410 Processing Unit

The optional machine devices allowed are:

* 16K, 24K, or 32K bytes of core storage

* Two 5444 Disk Storage Drives

* 5471 Printer Keyboard

RPG Specification Sheets

The RPC specification sheets are used when coding an
RPG I1 program. The format and column headings on each
of these sheets guide you in making the appropriate entries.
The sheets are designed so that one card is keypunched
from each specification line. There are five specification
sheets:

1 . Control Card and File Description Sheet. This sheet
contains two types of specifications:

a. Control card specifications provide information to
the RPG I1 compiler.

b. File description specifications provide illformation
about all files used in the program.

A - -- - - - - -
-> --.

File Description

@ RPG I I source program is
written on coding sheets.

@ Report outline
studied by
programmer.

Core Storage

(Compiler Program 1

Compiler program on disk

@ The compiler program, read from
disk into storage, translates the

is read into
core storage.

source program into an objecl : program. I

Object program 1 . . -

I aunched cards
on disk

' - - - - - I - - - - ~
@ The object program is initially stored

on disk but may be punched into cards.
From either disk or cards the object
program is read into core storage. Core Storage 1

Input Data Output Data

Printer

OiSk \ MFCU .-.

p r i n t e r - ~ e y b o a r d ~

&:::"
\ Printer-Keyboard

@ The object program performs the
processing of the data specified by
the RPG I I program and produces
the desired report.

Figure 1-1. Reparation of a Report Using RPG I1

2. Extension and Line Counter Sheet. This sheet con- 4.
tains two types of specifications:

a. Extension specifications provide information 5 .
about tables, arrays, and record address files.

b. Line counter specifications provide information
about the number of lines to be printed on the
forms that are used.

3. Input Sheet. This sheet is used to describe the records
in an input file.

Calculation Sheet. This sheet is used to describe all
operations that are to be performed on the data.

Oubput-Format Sheet. This sheet is used to specify
the arrangement and type of data that will be written
or punched on printed reports or cards, or stored on
disk.

The information on the specification sheets is
recorded in punched cards to form your source
program. The arrangement of the cards in a source
program deck is shown in Figure 1-2.

Collating Sequence

File Translation
Specifications

Input

Some of these specifications
we optional, depending on the
requirements of your program.

Figure 1-2. Card Arrangement in the RPG I1 Source Deck

1-4

Chapter 2. Common Entries

This chapter defines the entries which are common to all 3. Input
RPG coding sheets. Each coding sheet contains the follow-
ing entries: 4. Calculation

1. Columns 1-2 (PAGE) 5. Output-Format

2. Columns 3-5 (LINE) Number the sheets in ascending order.

3. Column 6 (FORM TYPE)

4. Column 7 (COMMENTS)

5. Columns 75-80 (PROGRAM IDENTIFICATION)
COLUMNS 3-5 (LINE)

COLUMNS 1-2 (PAGE)
En@ Explanation

Any numbers Line numbers
Entry Explanation

0 1-99 Page number

Columns 1-2 in the upper right corner of each sheet are used
to number the specifications sheets for your job. You may
use more than one of each type of sheet if you need to, but
keep all sheets of the same type together. When all the
specifications sheets are filled out, arrange them in the
following order:

1 . Control Card and File Description

2. Extension and Line Counter

Columns 3-5 are used to number the lines on each page.
Columns 3-4 are preprinted on each sheet, so in most cases
line numbering is already done for you. For instance, the
Control Card and File Descriptions sheet contains line
numbers for lines 01 -07. If you need more than 7 lines
on one sheet, enter 08 in columns 3-4 below line 07. Then
09 can be entered if it is required. The blank areas below
the preprinted numbers can be used to insert a line between
two lines you have completed (see Example).

The control card specification line is always line 01. Any
other lines on the sheets can be skipped. The line numbers
you use need not be consecutive, but should be in ascending
order.

Figure 2-1 shows the insertion of a line between two lines
that are already written. To show that a line belongs
between line 02 and line 03, a 5 is placed in column 5 (any
number 1-9 can be used). Line 025 should be inserted
between 02 and 03. All linesinserted between existing
lines should be written after the last line with a printed
line number.

Note: After the source cards have been punched, cards
from insert lines must be placed in proper sequence.

COLUMN 6 (FORM TYPE)

En try Ex plana tion

H Header card (control card specification)

F File Description specifications

Entry

E

L

I

C

0

Explanation

Extension specifications

Line counter specifications

Input specifications

Calculation specifications

Output-Format specifications

Column 6 contains a pre-printed letter on all sheets. The
letter identifies the type of specifications for each line of
coding. The H entry in column 6 of the Control Card
stands for header card. The header card must always be the
first card in the RPG I1 source program deck (Figure 1-2).

IBM Inmnnt,ona% BurtnruM~hlnrr Cerpna(m Form XZ19092
m n m u s A

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS

Programmer-

Control Card Specifications

Refer to the rpgifie Syrtmt Refa - Likary manusl for actual entrih

I File Daroiption Spacificatiom

Figure 2-1. Insertion of Lines

COLUMN 7 (COMMENTS) COLUMNS 7580 (PROGRAM IDENTIFICATION)

EnW Explanation

* Comment line

You often want to write comments that will help you
understand or remember what you are doing in a certain
section of coding. RPG 11 allows you to use an entire line
for these comments. The comment line is identified by
placing an asterisk in column 7. Any characters in the
character set may be used in a comment line. A card is
punched from this line and the comments appear in the
source program listing.

Comments are not instructions to the RPG I1 program.
They serve only as a means of documenting your program.
A comment line cannot be written in the Control Card
specifications line.

Note: To be compatible with other RPG systems, the
specification sheets show only 80 card columns that are
used for RPG I1 coding.

Entry Explanation

Any Program identification.
characters

Blank RPGOBJ is assumed.

Control Cards

Columns 75-80 of the control card are used to name your
object program. This name is used in a program directory
which contains the location of your program on disk. You
may use any combination of characters in these columns.
The compiler places the first four characters (columns
75-78) into positions 89-92 of each record in your object
program. If columns 75-80 are left blank, the compiler
assumes the entry is RPCOBJ. (The compiler uses columns
93-96 of each object program record for consecutive num-
bering of the records.)

All Other Source Cards

Columns 75-80 on all source program cards, except the
control card, may contain any characters. These columns
may use the program name in the control card, or the
column may contain any other characters to identify a
certain portion of the program. These entries are ignored
by the compiler, but will appear in the source program
listing.

Chapter 3. Control Card Specifications

One control card is required for every program. It provides
special information about your program and describes your
system to the RPG I1 compiler. Without this information
your source program cannot be translated into an RPG I1
object program. To help you code the control card, one
specification line is provided on the Control Card and File
Description sheet (Figure 3-1).

COLUMNS 1-2 (PAGE)

See Chapter 2.

COLUMNS 3-5 (LINE)

See Chapter 2.

COLUMN 6 (FORM TYPE)

An H must appear in column 6 . A control card with an N
in column 6 must be entered for every program even if all
the other control card columns are left blank.

l n m a a a l m u m MrhloarComontlon Form X27 Sl
prinw Pd" U (

RPG CONTROL CARD AND FILE DESCRIPTIWU SPECIFICATIONS
1 2 75 76 77 78 7% 1

rwammee

Conool Card Specifications

Refer to tharpecific Synem Rdaance Lbbrsry manual for actual enrrlar

File Oedption Specificationr

Name of
label Exrt

1455865758'

File MdltionlUrardara:

N u m k of Tracks

imber of Extern

Figure 3-1. Control Card and File Description Sheet

COLUMNS 7-9 (CORE SIZE TO COMPILE)

Columns 7-9 are not used. Leave them blank. Any entry
in these columns is ignored by the compiler. The program
is compiled in the available core storage.

COLUMN 10 (OBJECT OUTPUT)

Entry Explanation

Blank Object program is written temporarily in
the object library.

* C P Object program is written permanently
t

- in the object library.

P Object program is punched into cards.

Column 10 is used to indicate the output you want as a
result of compiling the source program. The object program
is always written in the same object library in which the
compiler resides.

You will usually want the object program written tem-
porarily in the object library until you have corrected any

Column 11 provides for listing options at the time your
source program is compiled. Compilation will cease after
the program listing is complete if any severe errors are
found.

The blank entry is the usual case, producing an object
program (if no severe errors are found), an object program
listing, and a core map. The program listing consists of the
source program and error messages. The core map lists
relative addresses of fields, constants, I/Q areas, etc.

The D entry means that no object program will be
produced; however, a program listing with error messages
and a core map are printed. This entry can be used if you
think the program has many initial errors. In such a case,
it is not advisable to produce an object program until these
errors are reduced in number. The D entry overrides any
entry made in column 10 of the Control Card Specifica-
tions line.

severe errors in your program. When a program is written
temporarily in the object library, it will be overlaid by the - -AOLUMNS 12-14 (CORE SIZE TO EXECUTE)
next program written in the object library.

COLUMN 11 (LISTING OPTIONS)

E n 0 Explanation

Blank I . The object program is produced (if
no severe errors are found).

A program listing is printed.

A core map is printed.

The object program is not produced.
(The D entry overrides any entry in
column 10 of the Control Card
Specifications.)

The program listing is printed.

A core map is printed.

Entry Explanation

Blank The core storage available for object pro-
gram execution is the same as that used to
compile the program.

00 1-029 The core storage available for program
execution (if different from core storage
available for object program generation).

Columns 12-14 define the core storage available for program
execution. The entry must end in column 14. The entry
is some multiple of 1K bytes of storage (K=1,024).

This entry may be different from the core storage avail-
able for object program generation for two reasons: I)
Your program may be executed on a different system from
the one that compiled your program, or 2) You are using
the Dual Program Feature.

If the system used for program execution is different from
that used for compilation, subtract the amount of core
storage occupied by the supervisor from the total core
storage of the system used for execution.

If you are using the Dual Program Feature, subtract the
amount of core storage occupied by the second object
program and the supervisor from the total core storage of
the system used for program execution.

COLUMN 15 (DEBUG) COLUMN 19 (OUTPUT-S

Entry Explanation Entry Explanatiorz

Blank DEBUG operation is not performed. Blank Sterling currency is not being used.

1 DEBUG operation is performed. 0 Output shilling field is to be printed only.

Use column 15 to indicate whether or not the DEBUG opera- 1 Output shilling field is to be punched in

operation is performed. In order to perform a DEBUG IBM format.

operation:
2 Output shilling field is to be punched in

1. A 1 must appear in column 15 when the source pro-
gram is compiled,

BSI format.

2. The DEBUG operation code must appear in calcula-
tion specifications. COLUMN 20 (OUTPUT-PENCE)

See Operation Codes, Debug Operation in Chapter 10 for
more information.

COLUMN 16

Column 16 is not used. Leave it blank.

-- - COLUMNS 17-20 (STERLING)

Columns 17-20 are used to describe the format of the
sterling fields used in sterling currency. If you are not using
sterling, these columns must be left blank. See Sterling in
Chapter 10 for more information.

- - COLUMN 17 (INPUT-SHILLINGS)

EntvY Explanation

Blank Sterling currency is not being used.

1 Input shilling field is in IBM format.

2 Input shilling field is in BSI (British
Standards institute) format.

*.. 4 COLUMN 18 (INPUT-PENCE)

Entry Explanation

Blank Sterling currency is not being used.

1 Input pence field is in IBM format.

2 Input pence field is in BSI format.

Entry Explanation

Blank Sterling currency is not being used.

0 Output pence field is to be printed only.

1 Output pence field is to be punched in

2 Output pence field is to be punched in
BSI format.

The same fields may be both punched and printed. Although
they are always punched in the selected format (IBM or
BSI), the printed output is not affected by the selected
format. Printed fields always have two positions in both the
pence and shilling fields. See Sterling in Chapter 10 for
more information.

"-,COLUMN 21 (INVE

Entry Explanation

Blank Domestic format.

I World Trade format.

J World Trade format (leading zero remains
for zero balances).

D United Kingdom format.

Use column 21 to describe the format and punctuation used
in numeric and UDATE fields. The blank entry specifies
the domestic format of monthldaylyear for UDATE fields
(10/15/69), and a decimal point for numeric fields (183.55).

The I entry specifies the World Trade format of
day.month.year for UDATE fields (1 5 .lO.69), and a decimal
comma for numeric fields (18355).

The J entry specifies the same World Trade format as the
I entry with one exception. When the J entry is used, zero
balances are always written or punched with one zero to
the left of the decimal comma (such as 0,OO). Also this
leading zero appears for the J entry when there is some value
in the field, but there is no value to the left of the decimal
comma (such as 0,04 or 0,lO). The J entry overrides any
edit codes used for zero suppression; that is, the leading zero
that appears for the J entry cannot be removed by an edit
code.

The D entry specifies the United Kingdom format of
daylmonthlyear for UDATE fields (1 5/10/69), and a
decimal point for numeric fields (183.55).

OLUMNS 22-25

Columns 22-25 are not used. Leave them blank.

COLUMN 26 (ALTERNATE COLLATING SEQUENCE)

Entry Explanation

Blank Normal collating sequence is used.

S Alternate collating sequence is used.

Use column 26 only if you are altering the normal collating
sequence for this job. See Alternate Collating Sequence in
Chapter 10 for more information.

OLUMNS 27-36

olumns 27-36 are not used. Leave them blank.

OLUMN 37 (RPG INQUIR

Blank This program cannot be interrupted (does
not recognize an inquiry request).

B This program can be interrupted (does
recognize an inquiry request).

I This program is an inquiry program that
can only be executed when an inquiry
request is made.

System13 Disk System allows certain programs to be
interrupted while they are being processed. A request for
interruption is called an inquiry request (made by depres-
sion of the inquiry key on the printer-keyboard). Programs
are usually interrupted to permit another program to run
and then control is given back to the first program.

A blank entry in column 37 indicates that the program
cannot be interrupted (does not recognize an inquiry
request).

A "B" entry indicates that the program can be interrupted
(will recognize an inquiry request).

An I entry indicates that the program is an inquiry pro-
gram that is executed only when the inquiry request is
made. Usually this type of program is read in only when a
B type program is interrupted. In this case the I type pro-
gram will not recognize an inquiry request. However, if an
I type program is loaded in the normal manner (not because
of a program interrupt) it can only be executed when an
inquiry request is made. While this program is running, it
will not recognize an inquiry request.

The RPG inquiry request is outlined in these steps:

Only a B type program will recognize an inquiry
request.

When the program recognizes on inquiry request,
a "Roll-Out" routine moves the interrupted program
from main storage to disk.

The program for which the interrupt was requested
is processed. The interrupting program may be any
type (blank, B, or I). This interrupting program can-
not be interrupted no matter what type it may be.

After the interrupting program is executed, the
interrupted program moves back into main storage
using a "Roll-In" routine. The interrupted program
begins execution at the point of interruption and
terminates in a normal manner.

Note: In the dual program mode the same specifications
apply except that only level I programs can be interrupted
and "Rolled-Out".

COLUMNS 38-40

Columns 38-40 are not used. Leave them blank.

COLUMN 41 (FORMS POSITIONING) 4 COLUMN 44 (LEA51

Blank First 1P line is printed only once. Blank Leading zeros are removed.
I

I First 1P line can be printed repeatedly. 1 Leading zeros are used.

h e n forms are first inserted in the printer, they may not
always be in perfect alignment. Sometimes it requires the
printing of several lines to determine the correct positioning
of the form. Since you do not want to print several lines of
your report before you get the forms positioned correctly,
you have the option of repeatedly printing the first line
conditioned by the first page (1P) indicator. Each time the
1P line is printed, the program halts so you may reposition
the forms if needed.

This column applies only to outputon the
column is left blank, all numeric output fie
will have leading zeros removed. Enter a I in column
when you wish to have leading zeros on field
printed by the MFCU.

If an edit word or edit code is defined for records to be
printed or punched on the MFCU, the edit
will override column 44. See Editing in Ch
other ways in wheh to suppress leading zeros.

"-%*" COLUMN 45 (UNPRI TABLE CWARACT

COLUMN 42

Column 42 is not used. Leave it blank.

COLUMN 43 (FILE TRANSLATION TABLES)

Entry Explanation

Blank No fde translation is needed.

F Input, output, update, or combined files
are to be translated.

Use column 43 only when information contained in an
input, output, combined, or update file is in a form which
is not usable by your program. When file translation is
specified for an update or combined file, both the input
and output portion of the file is translated.

An F i n column 43 indicates either or both of the follow-
ing: The character code used in the input data must be
translated into a form that can be used by your program,
or the output data must be in a character code different
from that used by your program.

The specifications for forming a file translation table are
discussed under File Translation in Chapter 10.

Blank Program halts if an un
is to be printed.

1 No program halt for such unprin
characters.

Column 45 is used to bypass machine halts for u
characters. This column applies to the printer a
printer keyboard, All characters are known to the system
by a numeric code. Tf a numeric code is formed which is
not known to your system (not in your character set)
that character is to be printed. the machine will halt
out attempting to print.

If you wish to bypass this halt, enter L in column 45. An
unprintable character will be printed as a blank and no halt
will occur. Note, however, that this o
some types of output data meaningless.

COLUMNS 46-74

Columns 46-74 are not used. Leave them blank.

COLUMNS 75-80 (PROGRAM IDEMTI

See Chapter 2.

Chapter 4. File Description Specifications

File description specifications are required for every file COLUMNS 1-2 (PAGE)
used by a program. Write these specifications on the Con-
trol Card and File Description sheet (Figure 4-1). Only one see chapter 2.
line is needed to describe a file.

At the end of this chapter is a series of charts showing
all possible files that can be defined on the File Description COLUMNS 3-5 (LINE)
sheet (see Figures 4-14 through 4-20). The charts are
arranged by device, showing the basic entries for all possible Chapter 2 .
disk, card, console, and printer files.

IBM rnternauo-t ~ u m p * . ~ e c h i m C-raoon Farm X21 m 2
Prlnfld in U S A

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
$ 2 75 76 71 i 8 79 80

h t e program /-/im
Idenittaaflon

Program - ---

Programmer

Control Card Specifications

Refer to the rpecnfic Synem Refnmce Llhary manual tor actual enfries

File h i p t i o n Specifications

I Mode ot Procemng I 1
Extent Exnt
for Dam

Cylmde Index
in Cote

0 61 62 63 M 8'

Figure 4-1. Control Card and File Description Sheet

6 (FORM TYPE)

S 7-14 (FILENAME)

Use columns 7-14 to assign a unique name to every file used
in your program. Every file must be named, with two
exceptions:

1 . Compile time tables or arrays are not described, and
must not be named on the File Description sheet.
Compile time tables or arrays are described on the
Extension sheet.

2. Execution time tables and arrays are desertbed on the
File Description sheet. However, if more than one
execution time table or array is assigned to the MFCU,
only one of the tables or arrays need be named and
described on the File Description sheet. Note, how-
ever, that all execution time tables and arrays must
have a unique name and must be further described on
the Extension sheet.

The filename can be from 1-8 characters long, and must
begin in column 7. The first character must be an alpha-
betic character. The remaining characters can be any com-
bination of alphabetic and numeric characters (special
characters are not allowed). Blanks may not appear betaeen
characters in the filename.

COLUMN 15 (FILE TYPE)

En@ Explanation

I Input file

0 Output file

U Update file

s ,R
--* c Combined file

D Display file

Use column 15 to identify the way in whlch your program

-2

Input files are records that a program uses as a source of
en input files are described in a program it indi-

cates that records are to be read from the file. All Input
files must be further described on the Input sheet with two
exceptions: Table files and Record Address files must be
further described in the Extension sheet.

Outputfiles are records that are written, punched, or
printed by a program. All Output files, except table output
files, must be further described on the Output-Fomat sheet.

Update files are disk files from which a program reads a
record, updates fie1 s in the record, and writes the record
back in the location from which it was read. Update files
must be further described on both the Input and Output-
Format sheets,

A CombitzedfiIe is a file which is both an input file and an
output file. A combined file must be assigned to the MFCU
or the console. A program reads records from a combined
file and includes output data on the records in the file.
The result is one file that contains both input and output
data. Combined files must be further described on both
the Input and Output-Format sheets.

A Display file is a collection of information from fields
used by a program. The DSPLY operation code must be

e Calculation sheet in order to print a field or
record directly from storage andlor key data into a field
or record in storage. Display files need only be described
on the File Description sheet. The device associated with
a display file must be a console. See Operation Codes,
Dispby, in Chapter 10 for more information.

Ermy Explanation

P Primary file

S Secondary file

C Chained file

R Record address file

T Table fife (execution time tables or
arrays)

D Demand file

Use column 16 to further identify the use of input, update,
and combined files. Leave the column blank for display
files, and all output files except chained output files (direct
load).

Primary File

A pn'naary file is the main file from which a program reads
records. In multifile processing the primary file is used eo
control the order in which records are selected for process-
ing. It can be an input, update, or combined file. In pro-
grams that read records from only one file, that file is the
primary file. Every program must have one, and only one, - -- - * -*

If more than 01% pHmar7 file is specified, an
but the first primary file named are considered secondary
files.

If no P entry is made in the file description specifications,
the first Secondary file defined will be taken as the Primary
file. When no Secondary files are present in the program,
the first Demand file will be used as the Primary file. If
none of the above are present, a warning is issued and the
program cannot be executed.

Secondary Files

Secondary files apply to programs that do multifile proc-
essing. All of the files involved in multifile &xessing
except the primary file are secondary files. A secondary
file can be an input, update, or combined file. Secondary
files are processed in the order in which they are written
in the file description specifications.

Note that table, chained, record address, and demand
files are not involved in record selection in multifile proc-
essing.

See Multifile Processing in Chapter 10 for more informa-
tion on primary and secondary files.

Chained Files

A chairzedfile is a disk file that uses the CHAIN operation
code to :

A chained file can be an Input, Output, or Update file.
See Column 28 (Mode of Puocessing), Random, in this
chapter, and Operation Codes, CHAIN, in Chapter 10.

A record address file 1s an input file zhar indicates (1)
isk file and (2) the

program during the compilation

tables, however, can be permanently alteled

the execution of the p

* processing.*&i1 takie files must be furth
+ /-

extensioiiFecifications.

e Input, Gpdate, or Combined files.
The FORCE operation code must be used in calculation
specifications in order to read fro a Demand file. See
Operation Codes, F8;FZCE: in Chapter 10.

Entry Explanation

lank I . The program can end whether or

f column 17 is blank for all of the
files, all records from every file
must be processed before the pro-
gram can end.

A ecking is to be done. Records
in the file are in ascending order.

Blank uence checking Is to be done.

1, bypass the record out of sequence and read the next
record from the same fde, or

2. bypass the record out of sequence, turn on the LR
indicator and perform all end-of-job and final total
procedures, or

3. cancel the entire program.

If column 18 is blank and matching fields are used, the
compiler assumes that the entry is A and prints a warning
message. For more information, see Col~rnns 61-62
(Matching Fields) in Chapter 7.

COLUMN 19 (F I L E FO

Entry &planation

F Fixed-length records

Column 19 must contain an F entry. This entry indicates
that all of the records in the file are of the same length. A
blank entry is assumed as F.

S 20-23 (BLOCK LENGT

Entry Explanation

A number Records are blocked. The number is
that is a some multiple of the record length.
multiple of
record length

A number Records are unblocked. The block
that equals length equals the record length.
record length

Use columns 20-23 to indicate the block length. An entry
must be made in these columns for every disk file. For
the MFCU, printer, or console enter a value equal to
record length. The block length is a multiple of record
length, indicating the number of records you want the
program to read or write on disk at one time. If the record
length is 120, you might have a block length of 480,
indicating that you want 4 records read or written on disk
at one time. The program runs more quickly when records
are blocked. Blocking does not affect the order of records
stored on disk. The entry must end in column 23, and
leading zeros may be omitted.

The block length must be a multiple of the record length.
If the record length is 120, the block length must be 240 or
360 or 480 and so on. However, the system must read and
write data from the disk in multiples of 256 characters. If
your block length is 80, the system must actually read in
256 characters. If your block length is 260, the system musf
read in 5 12 characters (2 x 256).

Therefore, the most efficient blocking you can do is to
have your block length as close as possible to a multiple
of 256. For a record length of 120,240 is a more efficient
block length than 120, since 240 is closer to 256. Also, for
the same record length, 480 is a more efficient block length
than 360 because 480 is closer to a multiple of 256 (5 12).
If you specified 360 as a block length, 5 12 characters must
be read in by the system, so you might as well include
another record, making your block length 480.

COLUMNS 24-27 (RECORD LENGTH)

Entry Explanation

1-4096 The number of characters in each record,
limited by the device used.

Blank The maximum record length of the device
is assumed.

Use columns 24-27 to indicate the length of the records in
the file. Any entry must be made in these columns for a
disk file.

All of the records in one file must be the same length.
(For update files, the length of a record after the record is
updated must be the same as it was before the record was
updated.) The maximum length allowed depends upon the
device assigned to the file.

Device

MFCU 96

Printer 96,120, or 132 (depending on the size
of the print positions)

Disk

Console 125

The record length may be shorter than the maximum
length for the device, but not longer.

The entry you place in these columns must end in column
27. Leading zeros can be omitted. If columns 24-27 are
left blank for a disk file, a warning is issued and the program
wilI not be executed. f these columns are left blank for
any other devices, the maximum record length of the device
is assumed.

COLUM (M

E:ntry Explanation

L Sequential Within Limits

R
umber

4. Direct file load (ran

lank

2. Consecutive

Use column 28 to indicate the method by whi
are to be read from the file or to indicate that a direct file
load (random load) is to take place.

The program reads records from the file until either the
end of that f ie is reached or the program ends due to the

c- end of file condition of another fie. See Column 17, End
of File in this chapter for more information about the
second condition.

'- in column 28.

The consecutive method applies only to sequential and
direct files. During consecutive processing records are
read in the order in which they physically a
file. The contents of spaces left for missing records in
direct files are read as though the records were there.

en a direct fde is loaded, such s
blanks.)

!MARY AND SECONDARY FILES

Organization

Sequential

D i recr

l ndexed

1. Consecutively

2. By ADDROUT fife

1. By ADDROUT fiie
2. Sequentialiy by key
3. Sequentially within limits.

CHAINED FILES

Possible Methods

Direct

Randomly by relativ

record number

record number

l ndexed

&I ALfDROUT (address output) file is a record address
fie on disk produced by the Disk Sort program. It contains
addresses of records in a disk file.

When an RPG II program uses an ADDROUT file, it reads
a disk address from the ADDROUT file. The program then
locates and reads records located at that address in the
original disk file. Records are read in this manner until
either the end of the ADDROUT file is reached or the
program ends due to the end of file condition of another
file. See Column 17, End of File in this chapter for more
information about the second condition.

Sequential By Key

The sequential-by-key method of processing applies only
to indexed disk files that are used as primary or secondary
files.

Records are read in ascending key sequence (the order in
which the record keys are arranged in the index portion of
the file). The program reads records until all records in the
fie are processed or the program ends due to the end of
f ie condition of another file. See Column 17, End of File
for more information about the second condition.

Sequential Within Limits

The sequential-within-limits method applies only to indexed
disk files that are used as primary and secondary files.
Records that are identified in certain segments of the index
are read. The segments are identified by sets of limits in
records from a record address file. A record address file
using limits can be located on disk, punched in cards, or
entered by the printer-keyboard. A set of limits identifying
a segment consists of the lowest record key and the highest
record key from the segment.

The program uses one set of limits at a time. Records
are read in the order in which the record keys are arranged
in the segment of the index identified by the limits. When
the records identified in one segment have been read, the
program reads another set of limits from the record address
file. The program continues reading records in this manner
until either the end of the record address file is reached or
the program ends due to the end of file condition of another
file. See Column 17, End of File in this chapter for more
infomation about e second condition.

The format of the records in a record address file contain-
ing limits must conform to these rules:

1. Only one set of limits is allowed per record in the
record address file. The length of the RAF record,
therefore, must be twice the len th of the record key.

2. The low record key must begin in position one of the
record. The high record key must immediately fortow
the low record key. A record key can be from 1-29
characters in length. No blanks are allowed between
the two keys.

S 29-30 (LENGTH OF KEY FIELD 0
ADDRESS FIELD)

Entry Expiam tion

Number Length of record key or disk address

Columns 29-30 ap ly only to indexed disk files and record
address files. Use it to indicate:

1 . The length of the record keys in indexed fdes and
dress files that contain limits.

3. The low record key and the high record key must be 2. The length of the disk addresses in ADDROUT files.
equal in length and each key must be equal in length r4
to the key field length specified in columns 29-30. A11 of the key fields in the records in an indexed file
Therefore, leading zeros may be necessary in speci- ___ must be the same length. The maximum is 29 characters.-
fying numeric record keys. All of the disk addresses contained in an ADDROUT file

are three characters long.
4. An alphameric record key may contain Hanks.

The same set of limits car1 appear in more than one record
address record, Data records, therefore, can be processed as
many times as you wish.

The two record keys in a set of limits can be equal. The
segment of the index in this case contains only one record
key.

Random

The two methods, random by relative record number and
random by key, apply to chained files only. They require
the use of the CHAIN operation code. The records of a file
to be read or written must be processed by the Ct
operation code. The records are read or written only when
the CHAIN statements that identify them are ex

For sequential and direct files, relative record n
must be used to identify the records. Relative record num-
bers identify the positions of the records relative to the
beginning of the file. For example, the relative record num-
bers of the first, fifth, arid seventh records in a fi
5, and 7 respectively.

For indexed filer;, record keys must be used to identify
the records. A record key is the info
field of a record. The information is
tion of the file to identify the record.

e calculation phase of the pro-
e executed during detail ur

total calculation. Note tlien, that fields of records read
from chained update files can "c; read and altered during
total calculations and the records can be updated (written
back on the file with alterations) during total output; the
same also applies to detail calculations and detail output.

D ADDRESS TYPE)

E'ntry Explanation

A Record keys are used in processing and
loading indexed files.

I The file is being processed by using disk
addresses from the ADDROUT file or the
file is an ADDROUT file consisting of
disk addresses.

Blan 3 . Relative record numbers are used in
processing sequential and direct files.

2. A sequential or direct file is being
loaded.

ecords are read consecutively.

les specified as input, update,
dicates the way in which
ed (see Figure 4-3). Together,

he method by which records are read from the file

2. a direct file load.

For ADDROUT files, column 31 must contain an I. It
indicates that disk addresses are used in processing.

PRIMARY AND SECONDARY FILES

Method Column 28 Column 31

Consecutive Blank Blank

Sequential By Key Blank A

Sequential Within L

Limits

CHAINED FILES

Method Column 28 Column 31

Random By Relative R Blank

Record Number

Random By Key R A

Direct File Load R Blank *
(Random Load)

Use column 32 to (1) identify the organization of all files
except ADDROUT files (2) identify ADDROUT files, and
(3) indicate whether one or two input/output areas are to
be used for sequential files or direct files.

File Organization

File organization is the arrangement of records in a file.
The three types are indexed, direct, and sequential. Files
organized in these ways are called indexed files, direct files,
and sequential files, respectively.

* A direct file load requires an 0 in column 15 and a C in column 16.

Figure 4-3. Specifications Identifying Methods for Retrieving Records

Indexed Files

COLUMN 32 (FILE ORGANIZATION OR ADDITIONAL
I/O AREA)

E n W Explanation

I Indexed file

T ADDROUT file

1-9 Sequential file or direct file. Use two
inputloutput areas for the file.

Blank Sequential file or direct file. Use one
input/output area for the file.

An indexed file is a disk file in which the location of records
is recorded in a separate portion of the file called an index.
The index and its associated fde occupy adjacent positions
on disk. The index contains the record key and disk address
of every record (Figure 4-4).

A record key is the information from the key field of a
record. The record key can be used to identify the records
of an indexed file. Record keys are always required in an

exed files may be loaded with the keys -
A

-

" in ascending sequence or keys in non-ascending sequence.
" After a file is loaded in non-ascending key sequence, the
' keys in the index are placed in ascending sequence. See

Column 66 of the File Description sheet for a definition of
the unordered load function.

"x"- -

Index* Data

'Entries are of the form record-keyfdisk-location (Dl=lst disk location, D2=2nd disk location, and so on)

ART: 55013

The order of the records in the data portion remains
unchanged when the entries in the index are sorted.

l ndex Data

1st Record

Figure 4-4. Indexed File Organization

I
5 1 2nd

I

I
2 1 3rd

I

I
1 1 4th
I

I
31 5th

I

I
4 1 6th

I

Additional InputIOutput Area

ect fdes are disk files in which records are assigned
ciGc record positions. Regardless of the order in which

always occupy a speci-
es~). Relative record num-
n of a record within the

ire disk area for the
aces are reserved in a

the time the file is

uential files are files in which the order of the records
by the order in which the records are put in
xample, the tenrh record put in the file

occupies the tenth record position.
Files other than disk files are always sequential files.

files can be sequential, direct, or indexed files, except
when the files are used as demand files. Demand files must
be sequential files.

Normally the program uses one input/output area for each
file. A second area, however, can be used for sequential
and direct disk fifes and non-disk files, specified as input
or output files in column 15. Additional inputloutput
areas cannot be used for table or demand files. The devices
associated with these files can be the disk and MFCU for
input or output files, and the printer for output files only.
If you want two areas to be used for a card file, do not
specify stacker selection for the records in the file. Stacker
selection is described under Column 42, Stacker Select
in Chapter 7 .

The use of two 110 areas increases the efficiency of the
program. However, it also increases the size of the program.
Therefore, before you indicate that two areas are to be used
for a file, be sure that the increase in size will not make
your program exceed the capacity of your system.

ADDROUT Files

When describing an ADDROUT file, you must place a Tin
column 32. The ADDROUT file must be a disk file.

Records are stored on disk in the order indicated by the
relative record numbers. Swim are I& on disk for missing
records (in ths case, records 5 and 7).

elatr*e Record Number*

* The programmer usually derives relative record numbers f rom information in the records. - - - - - -
ART - - - - - - 55010

COLUMNS 33-34 (OVER FLOW INDICATORS) COLUMN 39 (EXTENSION CODE)

Entry Explanation

OA-OG, OV An overflow indicator is used to condition
records in the file. The indicator specified
is the one used.

Blank No overflow indicator is used.

Columns 33-34 apply to output files assigned to the printer.
Use these columns to indicate that you are using an overflow
indicator to condition records being printed in the file. Any
overflow indicators used in a program must be unique for
each output file assigned to the printer. The use of overflow
indicators is described under Uverflow Indicators in Chapter
10. Note that only one overflow indicator can be assigned
to a file. Do not assign overflow indicators to a console file.

COLUMNS 35-38 (KEY FIELD STARTING LOCATION)

1-4096 Record position in which the key field
begins.

Columns 35-38 apply to indexed disk files only. An entry
must be made in these columns for an indexed disk file.
Use them to identify the record position in which the key
Geld begins. The key field of a record is the field that con-
tains the information that identifies the record. The infor-
mation is used in the index portion of the file. The key
Geld must be in the same location in all of the records in
the file.

The number you place in these columns must end in
column 38. Leading zeros can be omitted.

E Extension specifications further describe
the file.

L Line counter specifications further
describe the file.

Column 39 applies only to (1) table and array files that
are to be read during program execution and (2) record
address files and (3) output files that are assigned to the
printer. Use it to indicate whether the file is further
described on the Extension sheet or the Line Counter sheet.
Output files that are assigned to the printer must be
described on the Line Counter sheet. Table, array, and
record address files must be described on the Extension
sheet.

COLUMNS 40-46 (DEVICE)

E n w

MFCUl

MFCU2

PRINTER

PRINTR2

CONSOLE

DISK

Explanation

Multi-Function Card Unit.
The cards are in the primary hopper.

Multi-Function Card Unit.
The cards are in the secondary hopper.

Printer (whole carriage). If the dual car-
riage feature is used, this entry refers to
the left carriage.

Right carriage of the printer (dual carriage
feature only).

Printer-keyboard,

Disk unit.

Use columns 4046 to identify the inputloutput device to
be used for the file. All entries must begin in column 40.
The devices that can be used depend upon the form of the
records (Figure 4-6).

Records entered from a console file will be treated as any
other records. Every character to be entered must be keyed
in. Key the information into the fields as you would into
a card. Fields must be properly right-justified and left-
justified by you. The system does not do this for you.
You must space where blanks appear in a record.

If the operator hits the "cancel" key, those characters of
the record already accepted will be "erased", the keying
element will return to column I , and the operator may
begin to key the record in again.

If the operator keys in more characters than are specified
possible for a record, the record is automatically "cancelled"
and the operator is notified to key it in again.

Printer Files

The dual carriage feature allows you to produce two
separate printer output files in one program. The two out-
put files assigned to the printer must be named PRINTER
and PRINTR2. The forms used for the two files are
special forms that are both narrower than the regular form
for your printer (such as checks or invoices). One form is
controlled by the left carriage of the printer (device name
PRINTER) and the other form is controlled by the right
carriage (device name PRINTR2). The two printer files
are considered as separate output files and must be de-
scribed as such. There are no programming restrictions for
these files that are different from a normal printer file
(spacing and skipping are independent for each carriage).
Note, however, that care must be taken when describing the
location (end position) of output fields, to avoid printing
in positions where there is no form.

Figure 4-7 shows the columns that cannot be used for the
devices named. The shaded columns must be blank for the
device named in the specification line. fMFCU is MFCUl

NTER is PRINTER or PRINTR2.)

FORM POSSIBLE DEVICES

'rimary or Secondary Cards MFCUI or MFCU2
nput Files

Disk DISK

Keyed in by CONSOLE
operator*

3ecord Address Files Cards MFCUI or MFCU2
Zontaining Record-Key
Limits

Disk DISK

Keyed in by CONSOLE
operator*

3ecord Address Files Disk DISK
Zontaining Disk Addresses
:ADDROUT File)

3emand Files Cards MFCUl or MFCU2

Disk DISK

Keyed in by CONSOLE
operator*

rable Files Cards MFCUI or MFCU2

Disk DISK

Keyed in by CONSOLE
operator*

:hained Input Files Disk DISK

Jpdate Files (Primary, Disk DISK
jecondary, or Chained)

:ornbined Files (Primary Cards MFCUl or MFCU2
)r Secondary)

Keyed in by CONSOLE

operator* *

Iutput Files Cards MFCUI or MFCU2

Disk DISK

Printed PRINTER, PRINTR2

pages or CONSOLE

lisplay File Printed CONSOLE

pages

* Records are not typed when they are keyed into the program.

* * Records are typed when they are keyed into the program.

COLUMNS 47-59

Columns 47-59 are not used. Leave them blank. Figure 4-6. Device Assignment

File Description Swifirations

Figure 4-7. Columns That Do Not Apply to Device Named

COLUMNS 60-65 (CYLINDER INDEX I N CORE)

EnW Explanation

1-9999 Number of bytes reserved for the cylinder
index

Columns 60-65 apply only to indexed files processed ran-
domly. Entries must be right-justified. Leading zeros are
not required. An entry should be made in columns 60-65 if
you are processing an indexed file randomly. You can
specify up to 9999 bytes for the cylinder index in core.

The cylinder index is a table containing entries for tracks
in the index portion of a data file. Each entry contains a
track number and the highest key field associated with that
track. Figures 4-8 through 4-10 show the layout of an
indexed file, INDEXT, and its associated cylinder index.
Figure 4-8 shows how the index portion of the file, INDEXT,
might be laid out on disk. The location of specific record
keys by cylinder and track is shown in Figure 4-9.

Cylinder- 10 11 12

Track

Figure 4-8. Disk Layout Form for INDEXT

Cylinder Track Record Keys

Figure 4-9. Location of Records for INDEXT by Cylinder and Track

Highest Key

Track Number //

Cylinder 10 Cylinder 1 1 Cylinder 12

Figure 4-10. Cylinder Index in Core for INDEXT

The use of the cylinder index significantly reduces the
amount of time needed to process an indexed file because
it enables the system to go more directly to the specific
record you want. With the cylinder index, the system can
find a specific record by searching only a small portion of
the file index. Without the cylinder index, however, all
index entries which precede the record you want must be
searched. Using the cylinder index shown in Figure 4-10
the record with key field 125 can be found in this manner:

0 Search the cylinder index until the first key field higher
than 125 is located. In this instance that key is 150; it
has track 24 associated with it.

0 Search track 24 in the file index until key 125 is located.

Chain directly to the associated data record.

In columns 60-65 you specify the number of storage
positions (bytes) you wish reserved for the cylinder index.
Using the amount of core storage you specify, the system
builds the most efficient cylinder index it can for you. The
cylinder index is built immediately before your RPG I1
program is executed.

For efficient processing the cylinder index should be large
enough to contain one entry (key and track number) for
each track of index in the data file. Each entry is equal to
key field length plus 2 multiplied by the number of tracks
in the file index. Therefore, for an indexed file having a key
length of 4 and 10 tracks of file index, the most efficient
cylinder index requires 60 bytes of storage (4 plus 2 times
10).

If the storage space you specify in columns 60-65 is not
large enough to contain one entry for each track of file
index, the system will construct a' table containing one entry
for every cylinder of file index. Or the cylinder index might
only contain one entry for every other cylinder. As the num.
ber of entries in the cylinder index become fewer, the
amount of processing time increases.

66 (FILE ADDITION)

A New records will be added to the file.

U Records are to be loaded for an indexed
file in unordered sequence (non-ascending
sequence),

Column 66 applies to sequential disk and indexed disk files
only. This column indicates:

1. you want the program to add new records to the file,
or

2. records are loaded in unordered (non-ascending)
sequence.

Records added to a sequential file are added at the end of
the file. Records added to an indexed file are added at the
end of the file and entries for the new records are made in
the index. The index is then reorganized so that the record
keys (including the new ones) are in ascending order.

File addition in column 66 cannot be specified for (1)
direct files, or (2) indexed files from which records are
read using the sequential-within-limits method. (New
records may be inserted in a direct file by specifying the
fde as an update file processed consecutively or by the
CHAIN operation code.)

After a file has been loaded on disk, it may become
necessary to add records to the file. Records can be added
at detail, total, or exception time during the program cycle.
The records to be added may:

1. Contain keys that are above the highest key presently
in the file (in this case, the records constitute an
extension of the file), or

2. Contain keys that are either lower than the lowest key
presently in the f ie , or fall between keys already in
the file.

To add a record, the program searches the index of the fite
to determine if the record is on the file. I
the file a halt occurs; otherwise, the record is added. The
following options will be given if a halt occurs:

1. Bypass the duplicate record, or

2. Bypass the duplicate record and turn on the LR indi-
cator and perform all end-of-job and final total pro-
cedures, or

3. Cancel the entire job.

In Figure 4-1 1, combinations of entries in File type (column
15) and File Addition (column 66) show the functions that
can be verformed for indexed files (1 in column 321.

Column 75 Column 66 Function

0 Blank Load records in ascending
key sequence to an
indexed file.

0 U Load records in unordered
key sequence to an indexed
file.

0 A * Add records to an
existing indexed file.

I Blank Read records of an indexed
fi le without adding new
records or updating records.

I A * Read records of an indexed file
and add new records to the
file that are not presently
there. No updating is performed.

U Blank Update records of an
indexed fi le without
adding new records.

U A" Update records of an
indexed file and add new
records to the file.

* An A in column 66 requires an ADD entry in
columns 16-18 of the Output-Format sheet.

Figure 4-1 1. Various Functions Performed on Indexed Files

Example There may be records in CARDIN that do not belong in
that file, or some records may have a keypunch error. These

Figure 4-1 2 shows how records can be added to an indexed records are identified on the Input sheet as not having the
disk file. The new records are contained in a card file, character A in position 80. These records will turn on
CARDIN. The file INDEXED is the existing disk file to indicator 02, and are not to be added to the disk file
which new records will be added. A printer file, PRINT, INDEXED. However, these records are printed on the file
wdl provide a report showing all the records in CARDIN,
with an indication of which records were added to INDEXED
and which records were not added.

On the File Description sheet, an A must appear in column
66 for the file INDEXED, and on the Output sheet ADD
must appear in columns 16-18 for the new record to be
added.

As defined on the Input sheet, all the cards in CARDIN
should have an A in position 80. The code ~dentifies a
record to be added to the disk file, and this record type is
assigned indicator 01. On the Output sheet, notice that
when 01 is on, the data from the card is written on the
disk file INDEXED and is also printed on the file PRINT
to keep a visual report of new records.

PRINT for a visual report, but they must be identified in
the printed report as records that were not added to the
disk file INDEXED. On the Output sheet, the constant
'RECORD NOT ADDED' is printed only on indicator 02,
indicating a record that was not added to the disk file. In
this manner, there will be a printed report of all records
in CARDIN, and the records not added to INDEXED are
identified by the constant 'RECORD NOT ADDED'.

COLUMN 67

Column 67 is not used. Leave it blank.

File Dewription Specifications

re 4-12. File Addition (Part 1 o f 2)

4-16

Line

F
1 ! 4

Ourput Indicators

--Tl- And And Fseld Name

Figure 4-12. File Addition (Part 2 of 2)

COLUMNS 68-69 (NUMBER OF EXTENTS)

Entry Explanation

01-80 Number of volumes (disks) that contain
the disk file.

Columns 68-69 must contain an entry for each disk file.
The entry must end in column 69. These columns define
the number of volumes (disks) on which the disk file is
located. A disk file must occupy consecutive cylinders on
each volume. For instance, a disk file could not occupy
cylinders 20-30 and 41-50 on one volume. The file could
occupy cylinders 20-40 on that volume, or the data in
cylinders 41-50 could be placed on another volume.

The number of volumes you can use depends on the mode
of processing and number of drives used. For single volume
files the entry in columns 68-69 is always 01. For multi-
volume files, determine the entry as follows:

1. Consecutive processing. All disk files processed
consecutively must be located on removable disks.
If a multi-volume file is to be processed consecutively,
the entry in columns 68-69 can be from 2-80. (If 1
drive is used for multi-volume files, only 1 volume
can be on-line at any given time; and if 2 drives are
used, only 2 volumes can be on-line at any given time.)

2. Sequential or Random Processing. A disk file to be
processed sequentially or randomly can be located
on a fixed disk, a removable disk, or both. To process
a multi-volume disk file sequentially or randomly, the
entire file must be available to the system at any given
time. Therefore, the entire file must be on-line. (This
is unlike consecutive processing of multi-volume files
in which portions of the file can be off-line.) If 1 drive
is used for multi-volume files, the entry in columns
68-69 is 2. If 2 drives are used for multi-volume files
the entry in columns 68-69 can be 3 or 4. Figure 4-13
shows the maximum number of volumes allowed for
each processing method and number of drives available

COLUMN 70

Column 70 is not used. Leave it blank.

ONE DRIVE I
Maximum Maximum
number of number of
volumes volumes
allowed on-line

Consecutive
processing
(removable 80 1

disks only)

Sequential
or Random
Processing 2 2
(removable
or fixed
disks)

TWO DRIVES

Figure 4-13. Number of Volumes Allowed for Multi-Volume Files

COLUMNS 71-72 (FILE CONDITION)

Entry Explanation

U 1 -U8 The file is conditioned by the specified
external indicator.

Blank The file is not conditioned by an external
indicator.

Columns 71-72 apply to input (excluding table input files),
update, output, and combined files. These columns indicate
whether or not the file is conditioned by an external indi-
cator. A file conditioned by an external indicator is used
only when the indicator is on. When the indicator is off,
the file is treated as though the end of the file had been
reached. (No records can be read from or written in the
file.) See Indicators, External Indicators, in Chapter 10 for
more information.

COLUMNS 73-74

Columns 73-74 are not used. Leave them blank.

COLUMNS 75-80 (PROGRAM IDENTIFICATION)

See Chapter 2.

FILE DESCRIPTION CHARTS Example

The File Description charts in the following pages are for:

1. Disk files, presented by disk file organization and
processing method.

2. MFCU, Console, and Printer files.

The entries in the chart must be made for the
processing method and type of file described on
that line.

* The shaded columns must be blank for the file
described on that line.

The other columns may be required or optional,
but cannot be indicated on the chart because the
entries represent information that changes from
program to program.

If you are updating an indexed disk file using the CHAIN
operation code, look at the chart for: indexed disk files,
random processing by CHAIN operation code. Then choose
the chained update file with or without record addition.

The entries on the chart must be made for the file you are
describing. The shaded columns must be blank for that file.

The remaining colu~nns represent information that changes
from program to program. For instance, in this example
these columns are required but may change from one pro-
gram to another: Line, Filename, Block Length, Record
Length, Length of Key Field, Key Field Starting Location,
and Number of Extents. Optional entries are: End of File,
Sequence, and File Condition.

L .-
I-'

5
8'
V)

Figure 4-14. Processing Methods for Indexed Disk Files

4-20

Figure 4-15. Processing Methods for Sequential Disk Files

-16. Processing Metho

Figure 4-17. Record Address Files Located on Drsk

Figure 4-18. MFGU Files

4-24

Figure 4-20. Printer Files

Extension specifications are needed to describe the record
address files, tables, and arrays you may use in your job.

nter these specifications on the Extension and Line
ounter sheet (Figure 5-1). Record address files require
atries on the Extension sheet in columns 11-26,
Execution time tables and arrays are described in columns

11-45. Compile time tables and arrays are described in
. If an alternating table or array is to be
nother table or array, it is described in

columnt45-97 of the same line as the first.
A chart &owing possible Extension sheet entries is at the

end of this chapter (see Figure 5-6).
See Arrays in Chapter 10 for more information about

arrays.

COLUMNS 1-2 (PAGE)

See Chapter 2.

COLUMNS 3 5 (LINE)

See Chapter 2.

COLUMN 6 (FORM TYPE)

An E must appear in column 6.

I"--& B u % m M h n m C-rmm

G EXTENSION AND LINE COUNTER SPECIFICATIONS

F a m X21.9091
Prlntsd In USA.

Line Counter Spedficatiws

Figwe 5-1. Extension and Line Counter Sheer

COLUMNS 7-10

Columns 7-10 are not used. Leave them blank.

COLUMNS 11-18 (FROM FILENAME)

Record The name of the Record Address fde.
Address
filename

Table Array 1. Table loaded at execution time.
filename

2. Array loaded at execution time if
there is an entry in Number of
Entries per Record (columns 33-
35).

Blank 1. Table loaded at compilation time.

2. Array loaded at compilation time
if there is an entry in Number of
Entries per Record (columns
33-35).

3. Array loaded via input or calcu-
lations specifications if there is no
entry in Number of entries per
Record (columns 33-35).

Columns 11-18 are used to name a table file, array file, or
record address file. Filenames must begin in column 1 1.

The record address filename must always be entered in
these columns and in the file description specifications.

Leave columns 1 1- 18 blank for compile time tables or
arrays or for arrays loaded via input or calculations
specifications.

These columns must contain the table or array filename
of every execution time table or array used in your pro-
gram. When the table or array is loaded at compilation
time, it is compiled along with the source program and
included in the object program. Thus, a table deck is not
needed in addition to the object deck every time the pro-
gram is run. Only those tables and arrays which do not
change often should be compiled with the program.

men tables or arrays are being compiled with the pro-
gram, table fde records must always follow the RPG I1
source program. A record with /* in columns 1 and 2 must
follow the table file input records. A record with **b in
columns 1-3 is also needed to separate the table or array
records from the RPG 11 source program. Tables or arrays
must be separated from each other by records with **b in
columns 1-3 (Figure 1-2).

Each table or array loaded at execution time must be
followed by a record with I* in columns 1-2. Short tables
(tables which are not full) may be compiled with the pro-
gram but a warning is issued. See Colrtmns 36-39 in this
chapter for more information.

COLUMNS 1926 (TO FILENAME)

EntrV Explanation

Name of an The file processed via the Record
input or up- Address file named under From File-
date file name.

Name of an The output file to which a table or array
output file is to be written or punched.

Columns 19-26 define the relationship between a file named
in these columns and a file named in columns 11-18. File-
names must begin in column 19.

If a record address file is named under From Filename,
columns 11-18, the following entry should be made under
To Filename, columns 19-26; the name of the input or
update file that contains the data records to be processed.
Do not enter the record address filename in these columns.

If you wish a table or array to be written or punched,
use columns 19-26 to enter the fdename of the output file
you will use to do this. This output file must have been
previously named in the file description specifications. A
table or array can be written on only one output device.
Leave columns 19-26 blank if you do not want the table
or array written or punched.

If a table or array is to be written or punched, it is auto-
matically written or punched at the end of the job after all
other records have been written or punched.

Since the table or array will be written or punched in the
same format in which is was entered, you may want to re-
arrange the output table or array through output-format
specifications. You may format table or array output by
using exception lines to write out one item at a time (see
Operation Codes, Exception in Chapter 10). Tables or
arrays should be written or punched only after all records
have been processed (Last Record indicator is on).

COLUMNS 27-32 (TABLE OR ARRAY NAME)

Entry Explanation

Table or Name of each table or array used in the
Array name program.

Use columns 27-32 to name your table or array. No two
tables or arrays may have the same name. The name can
be from 1-6 characters long, and must begin in column 27.
The first character must be alphabetic. The remaining
characters can be any combination of alphabetic and
numeric characters (no special characters are allowed).
Blanks may not appear between characters in the name.

Table Name

Every table used in your program must be given a name be-
ginning with the letters TAB. Any name in these columns
which does not begin with TAB is considered an array name.
This table name is used throughout the program. However,
different results can be obtained depending upon how the
table name is used. When the table name is used in Factor 2
or Result Field (on the Calculation sheet) with LOKUP
operation, it refers to the entire table. When the table name
is used with any other operation code, it refers to the table
item last selected from the table by a LOKUP operation.

See Operation Codes, Lookup in Chapter 10 for more in-
formation.

Table files are processed in the same order as they are
specified on the Extension sheet. Therefore, if you have
more than one table file, remember the fdes are to be load-
ed in the same order as they appear on the sheet. When
you have only one short table, you should specify it after
all other tables.

If two related tables are in alternating form in one table
file, the table whose item appears first must be named in
columns 27-32. The second table is named in columns
46-5 1 (see Example).

Example

Every array used in your program must be given a name.
An array name cannot begin with the letters TAB. This

name is used throu@out the program. See Arrays
hapter 10 for more information.

Table A Table B

--- -"-

5 7
Positions Positions

- - - --Corresponding
Table l tems

Figure 5-2, insert A, sh
TABB) described in alte
An item for TABA appears first. Thus, i
named in columns 27-32 of the Extension sheet: is
named in columns 46-5 1.

A
0 /-

4 TAB
8
4

A I B I A B I A 1 B 2
8 2 3 4 5 ' 1 I s l1 l Z t t l $4 $5 I 170. I$ 10 2, 21 21 2e1:S 1 11 21 15'11 11 11

4 5 A

I *W 37m

The corresponding items from the related
tables are punched in alternating format on
the table input card. The corresponding
items from the two related tables are
considered as one entry.

lntsrnattond 8u.i- ~ r l l m s r C-&urn

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

-
- Extension Srrecifications

Numlm
f

Envie
Per Table
w Array

Table w h o s #terns are punched first on the card
rsparned In columns 27 32 \ Table whose items are punch

ir named in columns 46-51.

This entry indicate% the number of table entrier
on each card. Rmember the corresponding items
from two related tebles are considered 6s one entry.

nd on the card

COLUMNS 33-35 (NUMBER OF ENTRIES PER RECORD)

Entry Explanation

1-999 Number of table or array entries found
in each table or array input record.

Indicate in columns 33-35 the exact number of table en-
tries in each table or array input record. Every table or
array input record except the last must contain the same
number of entries as indicated in columns 33-35. The last
record may contain fewer entries than indicated, but never
more.

When two related tables are described in one file, each
table input record must contain the corresponding items
from each table written in alternating form. These table
items are considered as one entry (see Example). The num-
ber entered must end in column 35. Corresponding items
from related tables must be on the same record. If there is
room, comments may be entered on table input record in
columns following table entries.

When loading an array the following must be considered:

To load an array at execution time, a filename must
be entered in columns 11-18 and an entry must be
made in Number of Entries per record (columns 33-
35).

To load an array at compile time, the filename entry
(columns 11-18) must be blank, but an entry must
be made in Number of Entries per Record (columns
33-35).

To load an array via the input and/or calculations
specifications, the filename (columns 11-18) entry
must be blank and the Number of Entries per
Record (columns 33-35) must be blank.

Example

Figure 5-2, insert B, shows table entries for the two re-
lated tables, A and B. A1 and B l , the corresponding
items in tables A and B, are considered one entry. Even
though there are 14 table items on the card, there are
only 7 table entries.

COLUMNS 36-39 (NUMBER OF ENTRIES PER TABLE
OR ARRAY)

Entry Explanation

1-9999 Maximum number of table or array
entries.

Use columns 36-39 to indicate the maximum number of
table items which can be contained in the table named in
columns 27-32, or the maximum number of array items
which can be contained in the array named in columns
27-32. This number may apply to one table or to two re-
lated tables. Any number entered in these columns must
end in column 39.

If your table or array is full, this entry gives the exact
number of items in it. However, if the table or array is
not full, the entry gives the number of items that can be
put into it (Figure 5-3). A table that is not full is known as a short table.

TABPRT TABAMT
(Part Number) (Price)

TABPRT TABAMT
(Part Number) (Price)

I f this data is punched
on table input cards
and entered into the
machine, TABPRT and
TABAMT will be full
(20 entries fill the
table).

If this data is punched
on table input cards and
entered into the machine,
TABPRT and TABAMT
will not be full.

I"0lrnrtiWwd Bud- Mrtlnnn carraat,on

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Extension Specifications

This entry indicates that TABPRT and TABAMT may both have a
maximum of 20 entries.

Figure 5-3. Table Entries (Number per Table)

5-6

Since the number of table items for two related tables
must be the same, the entry in these columns also gives the
number of table items in a second table (columns 46-51).

If a table is to be compiled, it should be a full table. How-
ever, if it is not a full table (a short table), the table is com-
piled with the program and a warning is issued. The short
table is completed in storage by filling in with blanks or
zeros (for alphameric or numeric table, respectively). An
execution time table need not be a full table. All execu-
tion time tables and arrays must be followed by a record
with /* in columns 1 and 2 when they are loaded.

COLUMNS 40-42 (LENGTH OF ENTRY)

Entry Ex plana tion

1-999 Length of entry.

Use columns 40-42 to give the length of each entry in the
table or array named in columns 27-32. The number
entered must end in column 42. For numeric tables or
arrays in packed decimal format, enter the unpacked decimal
length in columns 40-42. For numeric tables or arrays in
binary format, enter the number of bytes required in storage
for the binary field. For a 2 character binary field, the entry
in columns 40-42 is 4; for a 4 character binary field the
entry is 9.
All table items must have the same number of characters.

It is almost impossible, however, for every item to be the
same length. Therefore, add zeros or blanks to the front
of numeric items to make them the same length and add
blanks to alphameric items. For alphameric items, blanks
may be added either before or after the item (see Examples,
Example 1).

If two related tables are described in one table file, the
specification in columns 40-42 applies to the table whose
item appears first on the record (see Examples, Example 2).

The maximum length of a numeric table item is 15
characters. The maximum length of an alphameric table
item is 256 characters. However, the use of table or array
input cards limits you to a length of 96 characters per table
item. See Arrays in Chapter 10 for more information.

Examples

Example 1: Figure 5-4 shows a table, called TABMO,
which lists the months of the year. The name SEPTEMBER,
having nine characters, is the longest entry. Because the
lengths of the entries must be the same, blanks are added
to the remaining names to make each of them nine charac-
ters long.

JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

Example 2: Figure 5-5 shows entries in a table input card
AH entries must for related tables, C and D. Each item in table C is two

characters long; each item in table D is six characters long.
Since table C appears first on the card, its length, 2, is
specified in columns 40-42. The length of items in table D
is indicated in columns 52-54.

SEPTEMBER item must be
O C T O B E R b b
N O V E M B E R b p

added
with

DECEMBE R b blanks (b)- i I
List of Months Table of Months

Figure 5-4. Length of Table Entries

ln(oMtim.l B h Mrhlnn Capastim

RPG EXTENSION AN0 LINE COUNTER SPECIFICATIONS

J
The length of the table item which appeared first

on the table input card is entered in columns 4@42.

Figure 5-5. Length of Comesponding Table Items

COLUMN 43 (PACKED OR BINARY FIELD)

Blank Data for table or array is in unpacked
decimal format or is alphameric.

P Data for table or array is in packed
decimal format.

B Data for table or array is in binary for-
mat.

COLUMN 44 (DECIMAL POSITIONS1

Blank Alphameric table or array.

0-9 Number of positions to the right of the
decimal in numeric table or array items.

Column 44 must always have an entry for a numeric table
or array. If the items in a table or array have no decimal
positions, enter a 0,

If two related tables are described in one table file, the
specification in this column applies to the table contain-
ing the item which appears first on the record.

45 (SEQUENCE)

Blank No particular order.

A Ascending order.

D Descending order.

Use column 45 to describe the sequence (either ascending
or descending) of the data in a table or array file.

When an entry is made in column 45, the table or array
is checked for the specified sequence. If a compile time
table or array is out of sequence, a severe error occurs.
The program halt after compilation. If an execution
time table or array is out of sequence, a severe error occurs
and the pragam hdts immediately,

Ascending order means that the table or array items are
entered starting with the lowest data item (according to
the collating sequence) and proceeding to the highest.
Descending order means that the table or array items are
entered starting with the highest data item and proceeding
to the lowest.

If two related tables or two related arrays are described
in one file, the entry in column 45 applies to the table or
array containing the item which appears first on the record.

W e n you are searching a table or array for an item
(LOKUP) and wish to know if the item is high or low com-
pared with the search word, your table or array must be in
either ascending or descending order. See Opera~on Codes,
Lookup in Chapter 10 for more information. When a spec-
ific sequence has been specified, RPG I1 checks the data in
the table or array to see if it really is in that sequence.

COLUMNS 46-57

Use columns 45-57 only when describing a second table or
array which relates to and corresponds with the table or
array named in columns 27-32. All fields in this section
have the same significance and require the same entries as
the fields with corresponding titles in columns 27-45. See
the previous discussion on those columns for information
about correct specifications.

Leave these columns blank for a single table or array.

ber what you are doing in each specification line. Com-
ments are not instructions to the RPG I1 program; they
serve only as a means of documenting your program. '

See Chapter 2.

I ~ ~ d awn- MPihanc CDrPCIP(,UI PnnW m "Sii.

RPO EXTENSION AND LINE COUNTER SPEClFiCATlOMS
75 76 77 78 79 84

Line Counter Spacifications

0 The shaded columns must be blank for the file named.
For tables and arrays, columns 1426 and columns 46-57 are always optional.
For record address files, columns 11-26 must have entries.

Figure 5-6. Possible File Entries for Extension Specifications

Chapter 6. Line Counter Specifications

Line counter specifications must be used COLUMNS 3 5 (LINE)
f&e in your program. If the
two specification lines must be completed. Line counter See Chapter 2.
specifications indicate at what line printing is to begin and
end on forms used in a printer. Write these specifications
on the Extension and Line Counter sheet (Figure 6-1).

COLUMNS 1-2 (PAGE)

See Chapter 2.

COLUMN 6 (FORM TYPE)

An L must appear in column 6.

t"dan.tmul B u l M Mdmescapar.,,on

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

FWrn x21-am*
Pnntsd in U.S.A.

Praaamma. Extension Swdficationr

Figure 6-1. Extension and Line Counter Sheet

Use columns 7-14 to identify the output fde to be written
on the printer. The filename must begin in column 7.

Any filename entered in these columns must be a filename
reviously defined on the File Description sheet. The out-
ut device assigned to the file on the File Description sheet

must be a printer.

MBER OF LINES

Enhy Explanation

Blank Number of printing lines available is 66.

1-1 12 Number of printing lines available is
from 1-112.

Columns 15-17 specify the exact number of lines available
on the form or page to be used. The entry must end in
column 17. Leading zeros are not necessary.

LUMNS 18-19 (FORM LENGTH)

FL Form length

Columns 18- 19 must contain the entry FL. This entry in-
dicates that the preceding entry (columns 15-17) is the
form length.

QLUMNS 20-22 (LI

EWY Explanation

Columns 2822 specify the line number that is the overflow
line. The entry must end in column 22. Leading zeros
may be omitted.

When the line which you have specified as the overflow
line is printed, the overflow indicator turns on to indicate
that the end of the page is near. When the overflow
indicator is on, the following occur before forms advance to
the next page:

1. Detail lines are printed (if this part of the program
cycle has not already been completed).

2. Total lines are printed.

3. Total lines conditioned by the overflow indicator are
printed.

Because all these lines are printed on the page after the
overflow line, you have to specify the overflow line high
enough on the page to allow all these lines to print. You
know the data you will be printing out after the overflow
line is reached. Thus, you can judge what line should be
the overflow line on this basis. See Overflow Indicators
in Chapter 10 for more information.

COLUMNS 2324 (OVERFLOW LINE)

E n w Explanation

OL Overflow line

Columns 23-24 must contain the entry OL. This entry
indicates that the preceding entry (columns 20-22) is the
overflow line.

COLUMNS 2574

Columns 25-74 are not used. Leave them blank.

lank Line 60 is the overflow line.
COLUMNS 7580 (PROGRAM IDENTIFICATION)

1-1 12 A line number from 1 - 1 12 is the overflow
line. See Chapter 2.

Input specifications describe the data files, records, and
fields of the records to be used by your program. These
specifications may be divided into two categories:

1. File and record type identification (colturnns 7-42)
describes the input record and its relationship to
other records in the file,

2. Field description entries (columns 43-74) describe
the fields in the records.

The specifications are written on the Input sheet (Fi
7-1). The field description entries must start one line
lower than fde and record type identification entries.

See Chapter 2,

RPG INPUT SPECIFICATtOI-jS

Figure 7-1. Input Sheet

Columns 7-14 identify the input file you are describing.
ut filename rnust begin in column 7. Use the same

e file description specifications. The
fnle described in the file description

specificatsons milst be entered at least once on this sheet.
The filename must appear on the first line that contains
infornuxion concerning the cards m hat file. If the file-
same is omitted. the last filename enered is assumed to be

Anq two o not check for special sequence.
alphabetic
characters

h y two-digit Check for speciai sequence.
number

Columns 15-26 may contain a numeric entry which assigns
a special sequence ro different record ty

If different types of records do not ne
specla1 order, use two a c characters (see ExanzpZes,

ters must be used for
se alphabetic entries ND and R$

one file, all record

different types of records within a file. Your job may re-
one record type (identified by a record identifi-
e) must appear before another record type with-

in a sequenced group. For instance, you may want a name
record before an address record. You must provide a re-
cord identification code for each type of record and then
number the record types in the order that they should
appear. The program will check this order as the records
are read, The first record type must have the lowest
sequence number (Ol), the next record type should be
given a higher number, etc. (See Ejcamples, Example 2.)

Numeric sequence numbers only ensure that all records
of record type 01 precede all records of record type 02,
etc,, in any sequenced group. The sequence numbers do
not ensure that records within a record type are in any
certain order. Numeric sequence numbers have no relation-
ship with control levels, nor do they provide for sequence
checking of data in fields of a record (see Examples,
Example 3).

Caps in sequence numbers are allowed, but the numbers
used must be kept in ascending order, The first sequence
number must be 01.

A record type out of sequence causes the program to
stop. The program may be restarted by pressing the start
key on the Processing Unit. The record that causes the
halt is bypassed and the next record is read from the same
file.

Records in an OR line cannot have a sequence entry in
these columns. The entry in these columns from the
previous line also applies to the card in the OR line. See
Columns 53-58 in this chapter for information on OR re-
!ationships.

Examples

Example 1: Figure 7-2, insert A, shows a file having two
types of records (part number and item number) which may
appear in any order. Since they are not to be checked for
sequencing, they are assigned two alphabetic characters (AA
and BC, respectively) instead of numbers. See Figure 7-2,
insert 3, for the coding of this example.

Example 2: Figure 7-3, insert A shows the order of four
different types of records within a file. The records are
arranged in groups according to some control field.
The name record is first in each group and is assigned
sequence number 01. Street record is next and is assigned
02. Citylstate record is 03. Item number is last and is
assigned 07. (Remember gaps are allowed.) See Figure
7-3, insert B for the coding of this example.

P Part Number (AA) \

I ltem Number (BC) \
-
I

Figure 7-2. Unsequenced Card Types in a File

/ N Name (01)

I ltem Number (07)

--

/ S Street (02)
Second group
of records

IBM
RPG IN

Record tdentificatmn Cod*

Figure 7-3. Sequence Checking of Record Types

Example 3: Figure 7-4 shows three groups of four different
record types. Each group is in proper sequence according
to the assigned sequence numbers (01,02,03 and 07).
Notice, however, that the citylstate record for group B is
in group C and vice versa, The sequence entry which you
specify in columns 15-16 will not catch this mistake since
the sequence entry does not cause the data on the record
to be checked.

COLUMN 17 (NUMBER)

Entry Explanation

Blank Record types are not being sequence
checked (columns 15- 16 have alphabetic
entries).

1 Only one record of this type is present in
the sequenced group.

N One or more records of this type may be
present in the sequenced group.

These two cards, even though in the proper
sequence, are in the wrong data group.
A requence entry in columns 1516 does
not check for this type of error.

Figure 7-4. Correct Card Sequence (Incorrect Data in Each Group)

Use column 17 only if sequence checking is to be done
(columns 15- 16 contain numbers). Often, when sequence
checking, you may have more than one record of a par-
ticular type within the sequenced group (see Example).
Thus you must indicate by an entry in column 17 that a
certain number of records of one type may be found in
the sequence group.

OR lines (columns 14-15 have the letters OR) should not
have an entry in this column. It is assumed that the num-
ber of records of this type to be found in the sequenced
group is the same as the number entered in column 17 of
the previous line. See Columns 53-58 in this chapter for
more information on OR lines.

Example

Figure 7-5 shows a sequencedrecord file in which there is
more than one record per type in a group. The record type
called item number appears three times.

There is no reason for a name, street, or citylstate record
to appear more than once in one group. A 1 is entered in
column 17 to indicate that these record types appear only
once in each group. However, since one person may have
purchased more than one item, there may be two or more
item number records per group; an N is entered in
column 17 for this field. See Figure 7-3, insert B, for the
coding of this example.

(i; Item Number (07) 1

Figure 7-5. Sequenced Card File (More than One Record per
Type in a Group)

COLUMN 18 (OPTIO

Entry ExpIanation

Blank Record type must be present (if sequence
checking is specified).

0 Option. Record type may or may not be
present.

Column 18 is used when record types are being sequence
checked. A blank entry specifies that a record of this
record type must be present in each sequenced group.

The 0 entry specifies that a record of this record type may
or may not be present in each sequenced group (see
Example). If all record types are optional, no sequence
errors will be found.

OR lines should not have an entry in this column. The
entry in this column on the previous line also applies to
this record in the OR relationship. See Columns 53-58 in
this chapter for more information on OR lines.

Example

Figure 7-6 shows a sequenced card file in which a card
type may be optional. For instance, the street or item
number records may not be included. Since it is not al-
ways necessary to have a street address, this record is o
tional. Suppose this job required a list of all items purchas-
ed during one month by the individual named in the name
record. It is possible that a person might not buy anything
during the month. In this case, there would be no item
record; therefore, the item record would also be optional.
(See Figure 7-3, insert B for a coding example.)

A Item Number 1071

Figure 7 6 . Sequen Card File (Optional Record Types)

01-99 Record identifying in

Ll-L9 Control Iwel indicator, used for a record identi-
fying indicator when a record type rather t
a control field signals the start of
troi. group.

indicator, used for a record identifying
indicator when checking for a record type

causes an error condition.

+a: Look ahead field,

y be used for two pur

entifying indicators, or

2. to indicate a look ahead field.

ve different types of records within a
you often want to do different operations for each

herefore, you must
of record has just been read. To do this,
rent record identifyhg indicators to each

record type. Whenever a record type i
cessed next, Its corresponding identify
on (all other record identifying indicators are off at this
time). This indicator signals throughout the rest of the
program cycle which record type has just been selected.

Because the record identifying indicator is on for the rest
of the program cycle, you may use it to condition calcu-
lation operations (see Columns 9-1 7 in Chapter 8) and

e Columns 23-31 in Chapter 9).
indicators do not have to be assi

same indicator to two or more
provided you want the same opera-
ese types. Do this by usin

relationship (see Columns 21-41 in this chapter)
No record identifying indicator may be specified in the

AND line of 2n PIED relationship, Result
for OR lines may be specified for every re
OR relationship that requires special proc
Columns 21-41 in this chapter for information on AND
lines, See Columns 52.5 ter for information
on OR lines.

Use asterisks in columns 39-70 to indicate that fields named
in coiunms 53-55 in foEo.wrng specifications are look ahead
fields, A Look ahead Ezld allows you to look at information

a field on the next record that is available for processi~ig
date, or combined
re able to use the in

look ahead field to determine what

hrilugjh the use of a look ahead fieid, you are able to:

etermine when you are processing the last card of a
control group.

2, Do jobs which the G II marching record capability

See Look Ahead in hapter 10 for information on when
rid hew to use the look ahead fields.

se columns 21-41 to describe the infor
ifks a record type.
en you have many record types in one file, you often

erforrn diiTerent operati
must identify each type

consisting of a combinati
pos~tions in the record. This c
columns 21-41 so that when a

entifying indicator for that record type
will bc turned on at the time of selection.
are to be processed alike regardless of their type, or if
there is only one type, leave columns 21-4

urn of t hee identifying characters may be des-
line. Thus, if the identification
three characters, an AND line

lines as are needed. Wri
to indicate an AND line

specify as many AND lines as you need in order
record identifying code. The record must
characters indicated as its record identifica-

fore the record identif>ling indicator will turn
on.

A particular record type may be identified by two different
codes. If this is the case, OR lines must be used to indicate
that either one of the codes may be present to identify the
record. A maximum of twenty OR lines may appear for
each record sequence. Write the word OR in columns
14-1 5 to indicate an OR line (see Examples, Example 2).

Seven columns are set aside for the description of one
character in the record identification code. Each specifica-
tion line contains three sets of seven columns: columns 21-
27, 28-34, and 35-41. Each set consists of 4 fields:
Position, Not, CIZID, and Character. Coding is the same
for all three sets.

Position

Entpy Explanation

Blank No record identification code is needed.

1-4096 Record position of one character in the
record identification code.

Use columns 21-24, 28-31, and 35-38 to give the location
in the record of every character in the identification code.
Entries in these columns must end in columns 24,3l , and
38 respectively.

Not (Nl

Entry Explarmtion

Blank Character is present in the specified
column.

N Character is not present in the specified
column.

Use columns 25, 32, and 39 to indicate that a certain
character should not be present in the specified positicin.

C/Z/D

Entry Expknarion

C Entire character.

Z Zone portion of character.

D

Use columns 26,33, and 40 to indicate what portion of a
character is used as part of the record identifying code.
Only the zone portion, only the digit portion, or both
portions (the whole character) may be used (see Examples,
Example 3, and Example 4). When establishing record
identifying codes, remember that many characters have
either ths same zone or the same digit portion. For a list
of characters that have identical zone or digit portions see
Character Structure in Chapter 10.

Character

Use any alphabetic character, special character, or digit in
columns 27,34, and 41 to identify the character that was
used in the record to serve as the code or part of the code.

Note: If none of the identifying codes you have specified
is found on a record, processing stops. You may continue,
however, by pressing the start key on the Processing Unit.
The record that caused the halt is not processed, and the
next record in that file is read.

Examples

i p r e 7-7, insert A shows a record identifica-
tion code consisting of five characters. Tile first character
is located in position 1, the other four in positions 93,94,
95 and 96. Since only three identifyi
described on one h e , the word AED
next line to indicate that the last two
are part of the preceding record identification entries.

Example 2: Figure 7-7, insert B, shows the use of an 0
line to describe record type identification codes. The
record assigned resulting indicator 12 can be identified by
two different codes. The record can be identified by
consisting of a 5 in position 1 and a 6 in position 2 or
code consisting of a 6 in position 1.

re 7-7, inseri: A, the entry in column 32
indicates that the digit 9 must not be pesenk in position
93 for record type 12.

RPG INPUT SPECIFICATIONS

3ate
1 2 r-- -- ;b 36 71 18 i8 80

2dn . :] Bio$rsm , ' 7- r -:--- I
'regram pp - - 1 ~ ~ d m t A c a t ~ w ~ u - - d -L- 1 -

1rw8mmer

Figure 7-7. Record ldeatif3c;ltion Codes

-7, insert A, shows that only the zone
ter T tocated in position 94 is part of
In position 96 only the digit portion

of the character E is part o f t

Blank Cards automatically fall into a predeter-

1-4 Stacker into which the card type is

42 is used to indicate that certain types of input
cards must be stacked in a specific stacker. If you make no

go into a predetermined stacker
acker I , secondary hopper--stacker 4).

Only input file and combined f i e cards may be stacker
selected in the input specifications.

You may stacker select cards from the input file in input
ns only. However, cards from a combined file

er selected in either input specifications or
t specifications (see Column 16 in Chapter 9).

h y card type that is stacker selected on the input
specifications should not have an output operation specified

ut operation is specified, however, the
ecification is overridden (see
if the output is performed.

ndicated for both input and
put file is put in the stacker
. This procedure is reversed

(input card before output card) if Look Ahead Fields or
dual I/O areas are spe d for the input file.

The card type in an line may be selected for a special
stacker by an entry in column 42. If t card type in an OR
h e has no entry in column 42, the c

an entry in stacker select.

Column 43 is used to indicate that an input field is in
packed decimal or binary format. Packed decimal and
binary fields are converted into unpacked decimal format
for use by the system. The conversion ignores decimal
points.

Column 43 must contain a P if the input field named in
columns 53-58 is in packed decimal format.

Column 43 must contain a B if the input field named in
columns 53-58 is in binary format. Binary fields can only
be read in from disk. The binary input field can only be
2 or 4 characters in length. The highest decimal number
that can be expressed with 2 binary characters is 32,767;
thus, 4 bytes of storage are set aside for a two-character
binary field. The highest decimal number that can be ex-
pressed with 4 binary characters is 2,197,483,608; thus, 9
bytes of storage are set aside for a four-character binary
field.

Note: Column 43 begins the field description entries
(columns 43-74) which must begin one line below the file
and record identification entries (columns 7-42) for each
file.

COLUMNS 44-51 (FIELD LOCATION)

fit-rY Explanation

Two 1-4 digit Beginning of a field (From) and end of a
numbers field (To).

Use columns 44-51 (From and To) to describe the location
on the record of each field containing input data named in
columns 53-58 (Field Name). Enter the number of the
record position in which the field begins in columns 44-47.
Enter the number of the record position in which the field
ends in columns 48-5 1.

A single position field is defined by putting the same
number in both From (columns 44-47) and To (columns
48-51). If a field of more than one position is defined, the
number entered in From (columns 44-47) must be smaller
than the number entered in To (columns 48-51).

The maximum field length for a numeric field is 15 digits.
The maximum field length for an alphameric field is 256
characters.

Entries in these columns must end in columns 47 and 5 1.
ading zeros may be omitted.

COLUMN 52 (DECIMAL POSITION)

Entry Explanation

Blank Alphameric field.

0-9 Number of decimal positions in numeric
field.

Use column 52 to indicate the number of positions to the
right of the decimal in any numeric field named in columns
53-58. Column 52 must always have an entry when the
field named in columns 53-58 is numeric. If you wish to
define a field as numeric with no decimal position, enter
a 0. If a field is to be used in arithmetic operations or is to
be edited, it must be numeric. If the number of decimal
positions specified for a field exceeds the length of that
field, the number of decimal positions is assunled equal to
the length of the field.

COLUMNS 53-58 (FIELD NAME)

Entry Explanation

1-6 alphameric Field name, array name, or array element.
characters

PAGE

PAGE1 Special words

Use columns 53-58 to name a field, array, or array element
found on your input records. If you are referencing an array,
additional entries may be needed in these columns (see
Arrays in Chapter 10). Use this name throughout the pro-
gram whenever you refer to this field. You must indicate
the names of the fields for all types of records. However, you
should name only the fields that you will use.

A field name can be from 1-6 characters long, and must
begin in column 53. The first character must be an
alphabetic character. The remaining characters can be any
combination of alphabetic and numeric characters (special
characters are not allowed). Blanks may not appear
between characters in the name.

All fields in one type of record should have different
names. If two or more fields on the same record type have
the same name, only the field described last is used. How-
ever, fields from different record types may have the same
name if the fields are the same length and contain the same
type of data. This applies even if the fields are found in
different locations in each record type. Duplicate field
names should not be used if matching fields are specified
in your program.

Numeric fields may have a maximum length of 15 charac-
ters. Alphameric fields may have a maximum length of 256
characters. However, fields which are read in from a card
are limited to the length of one punched card.

Fields that are used in arithmetic operations (see Oper-
ation Codes in Chapter 10) or fields that are edited or
zero suppressed (see Editing in Chapter 10) must be defin-
ed as numeric. This means that column 52 must have a
decimal position entry.

A separate line is used for each field description.

OR Relationship: Even though two or more record types
contain identical fields, you must describe each field. This
may require duplicate coding. To eliminate duplicate cod-
ing of identical fields from different record types, you may
use the OR relationship. A maximum of twenty OR lines
may be used for each record sequence group.

An OR relationship means that the fields named may be
found in either one of the record types. You may use OR
lines when:

1. Two or more record types have the same fields in the
same positions (see Example).

2. Two or more record types have some fields which are
identical and some fields which differ in location,
length, or type of data. See Columns 63-64 in this
chapter for sample coding of such record types.

Write the word OR in columns 14 and 15 to indicate an OR
line (see Example). If there are several AND or OR lines,
field description lines start after the last record identification
line.

PAGE: If your printed report has several pages, you may
want to number the pages. The special word PAGE allows
you to indicate that page numbering is to be done. When
you use a PAGE entry on the Output-Format sheet, page
numbering automatically starts with 1 (see Columns 32-37
in Chapter 9).

If you want to start at a page number other than 1, you
can enter that page number in a field of an input record
and name that field PAGE in columns 53-58. The number
you enter in the PAGE field of the input record should be
one number less than the starting page number. If your
numbering should start with 24, enter a 23 in the PAGE
field. The PAGE field can be of any length, but cannot
have decimal positions (Figure 7-8). Any entry you make
in the PAGE field should be right justified, such as 0023.

Page numbering can be restarted during a program run
by entering a number in a PAGE field of any input record.
The PAGE field can be defrned and used in calculations
like any other field.

The three possible PAGE entries: PAGE, PAGE1, and
PAGE2, are provided for naming different output files.
Do not use the same entry for two different output files.

Example

Figure 7-9 shows how the use of OR lines can save dupli-
cate coding. The two different record types (one identified
by a 5 in column 1, the other by a 6 in column 1) both
have identical fields which must be described. Figure 7-9,
insert A, shows one way of doing this. Figure 7-9, insert B,
shows the use of OR lines to do the same thing with less
coding. The coding in Figure 7-9, insert B, says that all
four fields can be found on either the record type identified
by the 5 in column 1 or the record type with a 6 in column
1 .

COLUMNS 59-60 (CONTROL LEVEL)

L1-L9 Any control level indicator.

Use columns 59-60 to assign control level indicators to in-
put fields. (Control level indicators may not be associated
with a chained fde.) Control level indicators are used to
specify the point at which specified operations are to be
done. You may assign a control level indicator to any field;
this field is then known as a control field. It is checked for
a change in information. When information in the control
field changes, a control break occurs. All records having the
same information in the control field are known as a control
group.

Whenever a record containing a control field is read, the
data in the control field is compared with data in the same
control field from the previous record. When a control
break occurs, the control level indicator turns on. Operations
conditioned by the control level indicator are then done (see
Cblumns 9-1 7 in Chapter 8 or Columns 23-31 in Chapter
9 .)

There are nine different control levels (L1 -L9). When a
certain control level indicator turns on, all control level
indicators lower than it also turn on. For example, if con-
trol level indicator 3 turns on, control level indicators 1 and
2 also turn on.

RPG INPUT SPECIFICATIONS
75 76 77 78 79 8

I Punchlng Graphic
Prosrsm

Inrirumon PunchJ

Filename

9 10 0 12 13

Figure 7-8. Page Record Description

7-10

RPG INPUT SPECIFICATIONS
-- 1 2 75 16 77 78 73 8C

_a""& i l i a :

Figure 7-9. Record Types with Identical Fields

record of a new control group).

to)iu,ms in control

: i * ~ total number of

Figure 7-10. Overlapping Control Fields

If a field is specified as numeric, only the digit
portion is used to determine if a control break has

his means that a field is always consider-
ed to be positive. A -5 is considered equal to a + 5 .

All control fields given the same control level indi-
cator are considered numeric if any one of those con-
trol fields is described as numeric (column 52 has an

is means that when numeric control fields
are compared to see if the information has changed,
only the digit portion of each character is compared.

Control fields are initialized to hexadecimal zeros.

A control break is highly probable after the first
record containing a control field is read. The control
fields In this record are compared to an area in

e which is void of any type of data. Since
from two different records are not being com-
, totai calculations and total output operations

this cycle. A control break does
it is not considered to be a true con-

trol break.

Total cafculations and total output operations are
bypassed until the first cycle following a cycle involv-
ing a record with control fields specified.

Split Control Fields

If a control field is made up of more than one field of a re-
cord, it is then known as a split control field. A split con-
trol field is created when the same indicator is assigned to
two or more connected or unconnected fields on the same
record type.
All fields in one record that have the same control level

indicators are combined by the program in the order
specified in the input specifications and treated as one con-
trol field (see Examples, Example 3). Some special rules
for split control fields are:

1. For one control level indicator, a field may be split
in some record types and not in others if the field
names are different. However, the length of the field,
whether split or not, must be the same in all record
types.

2. The length of the portions of a split control field may
vary for different record types if the field names are
different. However, the total length of the portions
must always be the same.

3. No other specification lines may come between lines
which describe split control fields.

4. If one section of a split control field is numeric, the
whole field is considered numeric.

5. A numeric split control field may have more than 15
characters if any one portion of the split field does
not exceed 15 characters and the sum of all control
fields (counting each control level only once) is not
greater than 144 characters.

6. A split control field cannot be made up of a packed
decimal field and an unpacked decimal field. Both
portions of the control field must be packed, or
both unpacked.

Note: Additional rules applying to control level indicators
when used with indicators in the Field Record Relation
columns are discussed in Columns 63-64 in this chapter.

Examples

Example 1: Figure 7-1 1 shows the assignment of three
indicators. The names of the control fields (DIVSON, D
EMPLNO) give an indication of their relative importance.
The division (DIVSON) is the most important group. It is
given the highest control level indicator used (L3). The de-
partment (DEPT) ranks below the corporation; L2 is assign-
ed to it. The employee field has the lowest control level
indicator (Ll) assigned.

RPG INPUT SPECIFICATIONS
1 2 75 76 77 78 79 80

Dam 1
Pvnchiw Graphic
lnlfru~tlon pra*Brn Punch

Figure 7-1 1. Control Level Indicators (Two Record Types)

Example 2: Figure 7-1 1 shows that the same control level
indicators may be used for different record types. Notice,
however, that the control fields having the same indicators
are the same length. EMPLNO, in both cases, is 6 columns
in length, DEPT is 4, and DIVSON is one.

Example 3: Figure 7-12 shows a split control field made up
of three portions. The control level indicator (L4) which is
used for all three portions indicates that they are all to be
treated as one control field. The field can be pictured as
follows:

CUSNO ACCTNO REGNO

The first field assigned the same control level indicator
begins the control field; the last ends it.

COLUMNS 61-62 (MATCHING FIELDS)

En tty Explanation

MI-M9 Atly matching level

Use columns 61-62 to specify matching fields and sequence
checking. Matching fields and sequence checking cannot
be specified for chained fdes.

An entry in columns 61-62 indicates:

1. Matching fields and sequence checking when you have
two or more input or combined files with match
fields.

2. Sequence checking only when you have just one in-
put or combined file.

Matching Fields

Make an entry in columns 61-62 when you wish to compare
records from two or more input or combined files in order
to determine when records match. Records can be matched
by matching one field, many fields, or entire records. You
can indicate as many as nine matching fields (Ml-M9).
Whenever the contents of the match fields from records of
the primary file are the same as the contents of the match
fields from a secondary file, the matching record (MR)
indicator turns on. M1-M9 are used only to identify fields
by which records are matched. The values M1-M9 are not
indicators, but do cause MR to turn on when a match occurs.
You can then use the MR indicator to condition those
operations which are to be done only when records match
(see Columns 9-1 7 in Chapter 8 and Columns 23-31 in
Chapter 9).

Form YZ1-SOM
Prlntsd lo ".*.A

Programmer --

Figure 7-1 2 . Split Control Fields

7-14

When assigning matching field values, remember:

Sequence checking is automatically done for all
record types with matching field specifications.
The contents of the fields to which M l M 9 have been
assigned are checked for correct sequence. An error
in sequence stops the program. The record which
caused the halt is not processed. When the machine
is restarted, the next record from the same file is
read, Thus, all matching fields must be in the same
order, either all ascending or all descending (see
Column 18 in Chapter 4).

Not all files used in the job must have matching fields.
Not all record types within one file must have match-
ing fields either. But at least one record type from
two files must have matching fields if files are ever
to be matched.

The same number of matching fields must be
specified for all record types which are used in match-
ing. The same matching record values must also be
used for all types (see Examples, Example 1).

All match fields given the same matching record
value (Ml-M9) must be the same length and type
(alphameric or numeric).

Record columns of different matching fields may
overlap, but the total length of all fields must not ex-
ceed 144 characters.

If more than one matching field is specified for a
record type, all the fields are combined and treated
as one continuous matching field (see Eiamples,
Example 2). They are combined according to ascend-
ing sequence of matching record values.

Matching fields may not be split. This means that the
same matching field value cannot be used twice for
one type of card.

Matching fields may be either alphameric or numeric.
However, all matching fields given the same matching
record value (MI-M9) are considered numeric if any
one of those matching fields is described as numeric.

M e n numeric fields having decimal positions are
matched, they are treated as if they had no decimal
position.

Only the digit portions of numeric match fields are
compared. Even though a field is negative it is con-
sidered to be positive since the sign of the numeric
field is ignored. Thus, a -5 will match with a +5.

I 1. Whenever more than one matching record value is
used, all match fields must match before the MR in-
dicator turns on. For example, if matching fields M1,
M2, Ev13 are specified, all three fields from one record
must match all three fields from the other record. A
match on only the M1 and M2 fields will not turn on
the MR indicator (see Examples, Example I).

12. Field names are ignored in matching record operations.
Therefore, fields from different record types which
have been assigned the same match level may have the
same name.

13. If you have defined an alternate collating sequence
for your program, alphameric fields are matched
according to the sequence you have specified.

%te: Additional rules applying to matching records when
used with entries in the Field Record Relation columns are
discussed in Columns 63-64 in this chapter.

Matching records for two or more files are processed in
the following manner:

Whenever a record from the primary file matches a
record from the secondary file the primary file re-
cord is processed first. Then the matching secondary
file record is processed. (Remember, the record
identifying indicator which identifies the record type
just selected is on at the time the record is processed.
This indicator is often used to control the type of
processing that takes place.)

Whenever records from ascending files do not match,
the record having the lowest match field content is
processed first (Figure 7-1 3). Whenever records from
descending files do not match, the record having the
highest match field content is processed first.

A record type which has no matching field specifi-
cation is processed immediately after the record it
follows. The MR indicator is off. If this record
type is first in the file, it is processed first even if
it is not in the primary file (see Figure 7-13).

The matching of files makes it possible to enter data
from primary records into their matching secondary
records since the primary record is processed before
the matching secondary record. However, the trans-
fer of data from secondary records into matching
primary records can only be done through look
ahead fields (see Look Ahead in Chapter 10).

For additional information on matching records from more
than two files see Operation Codes, Force, in Chapter TO.

No Match Field

I Cr
Primary File Sacondary File

The records from the two files are processed
in the order shown here. The single, mar@
card deck is shown mainly for illustration
purposes Althoughthade~kscwM be
marged, they are usually separated by the
stackers.

First Record Processed

Last ~ecord Processed ,4 s 20

P 20

The card with no match field
is processed immediately after
the card i t follows, regardb
of file.

When cards have no match.
the card with the lowast
sequence number is processed --------- first, regardless of file.

The card with no match field
is processed immedietely after
the card i t follows, regardlass

ART: 5501 1 - - - - - -

Figure 7-1 3. Processing Order According to Matching Records

Sequence Checking

Make an entry in columns 61-62 when you want to sequence
check records within one input or combined file. This entry
causes sequence checking of the data in the fields to which
MI-M9 have been assigned (see Colunins 15-16 in this
chapter for sequence checking of record types). You may
use as many as nine fields (MI-M9) to sequence check, The
sequence (ascending or descending) of your record file
must be specified in the file description specifications (see
Column 18 in Chapter 4). An entry in columns 61-62 indi-
cates that the records are to be checked to see if they really
are in the sequence specified (see Examples, Example 3).

Examples

Example 1: Figure 7-14 shows three record types that
are used in matching records. All record types have three
matching fields specified and all use the same values (M 1,

M2, M3) to indicate which fields must match. The MR
indicator turns on only if all three match fields in either
of the record types from the MASTER file are the same
as ail three fields from the record in the WEEKLY file.

Example 2: Figure 7-14 indicates three matching fields on
one record. These three are combined and treated as one
matching field organized as follows:

DIVSON DEPT EMPLNO

M3 M2 M 1

The order in which the fields are specified on the input
specifications does not affect the organization of the
match fields in the computer.

Figure 7-14. Match Fields

Example 3: An input file called MASTER is to be sequence
checked using three fields (Figure 7-15). Data from two
cards is shown below:

Data from First Card Data @om Second Card

DEPT 008 DEPT 003

REGION 051 REGION 025

DIVSON 003 DIVSON 005

In sequence checking, all fields are treated as one contin-
uous field. Thus, the matching fields look like:

card 1
card 2

The matching field from card 1 is compared with the match-
ing field from card 2. If the file is specified to be in ascend-
ing sequence, the cards are in order since 005025003 is
higher than 003051008. However, if the file is specified as
having a descending sequence, card 2 is out of order.

Entry Explanation

01-99 Record identifying indicator assigned to
a record type.

L1-L9 Control level indicator previously used.

MR Matching record indicator.

U 1 -U8 External indicator previously set.

HI -H9 Halt indicator previously used.

Columns 63-64 have several uses which are discussed
after these general rules:

1. All fields, including matching or control fields, that
have no field record relation specification should
come before those that do.

2. All fields related to one record type (that is, having
the same Field Record Relation entry) should be
entered as a group in specification lines following one
another for more efficient use of core storage. These
fields could, however, be entered in any order.

3. All portions of a split control field must be assigned
the same field record relation indicator and must be
entered as a group in specification lines following
one another (see Examples, Example I) . For more
information on split control fields, see Columns
59-60 in this chapter.

Figure 7-15. Match Fields (Sequence Checking Within a File)

7-18

RPG INPUT SPECIFICATIONS
75 76 77 78 79 80

Date

P r w m

t
P u ~ h w Graphnc
lnr~uet6on

Punch I

Record Identifying indicators (01-99)

Columns 63-64 are commonly used when several record
types have been specified in an OR relationship. Fields
which have no field record relation indicator are associat-
ed with all the record types in the OR relationship. This is
fine when all record types have the same fields. But if the
record types in the OR relationship have some fields that
are the same and some that are not the same, you do not
want to associate every field with all records. Therefore,
you must have some way of relating a field to a certain
record. To do this, place in columns 63-64 the record
identifying indicator found in columns 19-20 of the record
type on which the field is found (see Examples, Example 2).

Control fields (indicated by entries in columns 59-60)
and matching fields (indicated by entries in columns 61-62)
may also be related to a particular record type in an OR
relationship by a field record relation entry. Control fields
or matching fields that are not related to any particular
record type in the OR relationship by the field record rela-
tion indicator are used with all record types in the OR re-
lationship.

When two control fields have the same control level indi-
cator or two matching fields have the same matching level
entry, it is possible to assign a field record relation indicator
to just one of the control fields or to just one of the match-
ing fields. In this case, only the specification having the
field record relation indicator is used when that indicator is
on. If none of the field record relation indicators are on for
that control field or matching field, the specification with-
out a field record relation indicator is used. Control fields
and matching fields cannot have an L1-L9 or MR entry in
columns 63-64.

Control Level (LI-L9) and Matching Record (MR)
Indicators

Another situation for which you may use these columns is
when you wish to accept and use data from a particular
field only when a certain condition (such as matching
records or a control break) occurs. You indicate the con-
ditions under which you accept data from a field by
indicator L1-L9 or MR. Data from the field named in
columns 53-58 is accepted only when the indicator is on
(see Examples, Example 3).

External lndicators (UI-U8)

You may also use these columns to condition a specification
by an external indicator (Ul-U8). The external indicator,
which you set prior to processing, controls whether or not
the specification is done. When the indicator is on, the
specification is done; when it is off, the specification is not
done.

External indicators are primarily used when file condition-
ing is done by an entry in columns 71-72 in the file descrip-
tion specifications. However, they may also be used to
condition when a specification should or should not be done
even though file conditioning is not specified. See
Indicators, External Indicators, in Chapter 10.

Halt lndicators (HI-H9)

A halt indicator is used to relate a field to a record that is
in an OR relationship and also has a halt indicator specified
in columns 19-20.

Examples

Example 1: Split control fields on one record type must
have the same record relation entry. Figure 7-16, insert A,
shows several record types with split control fields in each.
The record identified by a 1 in column 95 has two split
control fields:

FLDlA and FLDIB
FDL2A and FLD2B

8 8
4 FLDlA F LDA 4

.-2

FLDlB FLD2A 48 FLD2B
8
4

Record identification code = 1

The record with a 2 in column 95 has three split control
fields.

FLDlA and FLDlB
FLD2A and FLD2B
FLD3A, FLD3B, and FLD3C

The third record type, identified by the 3 in column 95,
also has three split control fields:

FLDlA and FLDlB
FLD2A and FLD2B
FLD3D and FLD3E

n w s9 wo ar a* m , o ~ t ~ s as m im ios no in au na >a ns la in ws as tzo in a2 $23 i a ia ~n m ,a
a B
A A
8 8
4 FLDlA F LDA FLDC FLD3B - - r,"f?. , l 1 a~-liA $5 s ,I 88 . * 0 1 2 , 2 2 2 1 2 4 2 ~ 2 8 * ~ * o i l , ,*A
A A

48 FLD2B FLD3C FLDlB FLD2A
8
4

; \fiw, - -.-:
15 u 3S 3s 37 $6 35 $2 51 11 11 56 57 5. 5. 60% 62 eJ 61

A b

Record identification code = 2

Record identification code = 3

F i r e 7-16. F~e!d Record Relation (Split Control Fields) (part 1 of 2)

7-20

All portions of the split control field must be assigned the
same control level indicator and all must have the same
field record relation entry. Figure 7-16, insert B, shows the
field record relation required for the three record types.

RPG INPUT SPECIFICATIONS

-- -

re 7-16, Field Record Relation (Split Control Fields) (part 2 of 2)

A A
8 FLDC 8
4 4
2 2

It U 63 S4 .I I e R 58 5% 613 61 03 61 ')

1.U 3700

Record identification code = 5

A A
8 FLDA FLDB 8

IBM 3700

Record identification code = 6

IBM
RPG INPUT SPECIFICATIONS

Figure 7-17. Field Record Relation

Example 2: Figure 7-17 shows how record identifying
indicators are used to relate a field to a record. The file
contains two different types of records, one identified
by a 5 in column 1 and the other by a 6 in column 1.
FLDC is related by record identifying indicator 14 to the
record type which is identified by a 5 in column I. FLDD
is related to the record type having a 6 in column 1 by re-
cord identifying indicator 16. This means that FLDC is
found on only one type of record (that identified by 5 in
column 1) and FLDD is found only on the other type.
FLDA and FLDB are found on both types since they are
not related to any one type by a record identifying
indicator.

Example 3: Suppose you were printing a monthly report
showing all items sold in each department in your company.
You also want the report to list the name of the manager
of each department. Each input record then has the depart-
ment number JDEPT), the manager's name (MAKAGR),
and one item (ITEM) that was sold by that department.
Fields are described as shown in Figure 7-18. The records
are arranged in order by department.

In the report it is not necessary to print the manager's
name for every item that was sold in his department. In-
stead, it should be printed only when the first record con-
taining an item sold in a different department is read. The
field called DEPT is established as a control field.

Remember that the manager's name is printed only when
information in the control field changes. Thus the infor-
mation from the field called MANAGR is not used often.
It would be wasted time to accept that information every
time a record is read. The L1 entry in columns 63-64
indicates that the data from the field called MANAGR is to
be accepted and used only when a control break occurs.

COLUMNS 6570 (FIELD INDICATORS)

Entry Explanation

01-99 Field indicator.

H 1 -H9 Halt indicator (when checking for an
error condition in the data).

Use field indicators 01-99 when you wish to test a field
for a condition of either plus, minus, zero, or blank. The
indicator specified turns on if the condition is true; it re-
mains off or turns off if the condition is not true. You
usually use these same indicators to control certain calcu-
lation or output operations (see Columns 9-1 7 in Chapter
8 or Columns 23-31 in Chapter 9).

Figure 7-18. Field Record Relation: Accepting Data From a Field

The three conditions you may check for are:

1. Plus (colums 65-66). Any valid indicator entered
here is turned on if the numeric field named in
columns 53-58 is greater than zero.

2. Minus (columns 67-68). Any valid indicator entered
here is turned on if the numeric field in columns
53-58 is less than zero.

3, Zero or blank (columns 69-70). Any valid indicator
entered here is turned on if a numeric field named in
columns 53-58 is all zeros or if an alphameric field
is all blanks.

A numeric field which is all blanks will turn on an
indicator specified for all zeros. However, if an
alphameric field is all zeros, the field will not turn on
an indicator specified for all blanks.

In the input specifications, you specify the indicators that
will be used to condition operations. In the calculation
specifications and output-format specifications, you
actually use these indicators. When conditioning operations,
you must know when the indicators will be off and when
they will be on. When assigning and using field indicators
in columns 65-70 remember:

Indicators for plus or minus are off at the beginning
of the program. They are not turned on until the
condition (plus or minus) is satisfied by the field be-
ing tested on the card just read.

An indicator assigned to zero or blankis off at the
beginning of the program. It remains off until the
field being tested is zero or blank.

One input field may be assigned two or three field
indicators. However, only the one which signals the
result of the test turns on; the others are turned off.

If the same field indicator is assigned to fields in
different record types, its status is always based
on the last record type selected.

When different field indicators are assigned to fields
in different record types, a field indicator turned on
will remain on until another record of that type is
read. Similarly, a field indicator assigned to more
than one field within a single record type will always
reflect the status of the last field defined.

Field indicators assigned in these columns may be
SETON or SETOF in calculation specifications.

Halt Indicators

Specify any halt indicator (HI-H9) in columns 65-7
you wish to check for an error condition in your d
example, if a field should not be zero, you can specify a
halt indicator to check for that zero condition. If a zero
field is found, the halt indicator turns on and the job sto
after the record with the zero field has been processed.

Indicators HI-£39 cause the program to halt after the
record which caused the indicator to turn on is complete1
processed.

COLUMNS 71-74 (STERLING SIGN POSIT1

Blank Sterling input is not being used.

S Sign is in normal position.

1-4096 Number of the column which contains the
sign if the sign is not in normal position.

Use columns 71-74 only when processing sterling currency
amounts. The position of the sign (+ or -) for the field
named in columns 53-58 must be indicated in these columns.
The normal position of the sign in a field having decimal
positions is in the rightmost decimal position of the pence
field. If the field has no decimal positions, the normal
sign position is in the last column (units position) of the
pounds field. See Sterling in Chapter 10 for more infor-
mation.

COLUMNS 75.80 (PROGRAM IDENTIFICATION)

See Chapter 2.

Chapter 8. Calcu iation Specifications

Calculation speciEications describe the calculations you
want performed on your data and the order in which you
want them performed. Each calculation specification can
be divided into three parts:

1. When the operation is to be performed (columns
7-17). The indicators entered in these columns
determine under what conditions the operation
specified is to be done.

2. What kind of operation is to be performed (columns
18-53). Entries in these fields describe the kind of
operation to be done. They also specify the data
upon which the operation is to be performed.

3. What tests are to be made on the results of the
operation (columns 54-59). The indicators entered
here signal the result of the operation and may
serve to condition other operations.

Write these specifications on the Calculation sheet
(Figure 8-1).

COLUMNS 1-2 (PAGE)

See Chapter 2.

IBM lntWnBtional Buts- M k h i n s i C o m t l # m form Y21--3
PnntBC in U %A.

RPG CALCULATION SPECIFICATIONS
1 2 75 76 77 18 79 80

Date -

Program -_ _ .- -

Programmer

Factor 2

Figure 8-1. Calculation Sheet

COLUMNS 3-5 (LINE)

See Chapter 2.

COLUMN 6 (FORM TYPE)

A C must appear in column 6.,

COLUMNS 7-8 (CONTROL LEVEL)

Entry Explanation

Blank Calculation operation is not part of a
subroutine and may only be performed
for detail calculations.

LO, L1-L9 Calculation operation is done when the
appropriate control break occurs:

LR Calculation operation is done after the
last record has been processed.

SR Calculation operation is part of a sub-
routine.

AN, OR Establishes AND and OR relationships
between lines of indicators.

If you leave columns 7-8 blank, the operation specified
on the same line is done every time a record is read, pro-
vided indicators in columns 9-17 allow it (see Columns
9-1 7 in this chapter).

A control break for a certain level causes all lower con-
trol level indicators to turn on. Thus, if you used indicators
L3, L2, and L1 in your program, and L3 turns on, L1 and
L2 will also turn on. All operations conditioned by L3, L2,
and L1 will be done.

An exception is as follows: when a control level indicator
used as a record identifying indicator turns on to reflect
the type of record read or when a control level indicator
turns on by the SETON instruction, only that one control
level indicator turns on. All lower level indicators remain
off.

Last Record Indicator (LR)

The last record (LR) indicator automatically turns on
when the last record is read and processed. You may
have certain operations which are to be done only when
the last record has been read. Condition these operations
with the LR indicator. The last record causes the LR
indicator and all other control level indicators specified
(Ll-L9) to turn on.

Subroutine Lines (SR)

Use columns 7-8 to indicate that a line is part of a sub-
routine (see Subroutines in Chapter 10). Subroutine lines
must be specified last.

Control Level Indicators (LO, L1-L9)
AND/OR Lines (AN,OR)

The LO indicator is on during the entire program. You need
never assign this indicator, but you may use it. The
indicator is often used when no control fields have been
assigned. Remember that when a control break occurs,
all operations conditioned by control level indicators are
done before those that are not conditioned. If you have no
control field but want total calculations to be done and
total output records to be written or punched, you may use
the LO indicator to condition those operations (see
Examples, Example 1). Lines conditioned by LO must
appear before lines conditioned by L1-L9 or LR.

Use control level indicators L1-L9 to signal when certain
operations are to occur. If you specify a control level
indicator (Ll-L9) in columns 7-8, the operation described
on the same specifications line is done only when that
indicator is on. Remember that a control level indicator
turns on when information in a control field changes (see
Columns 59-60 in Chapter 7).

Columns 7-8 can be used to specify that lines of indicators
are in an AND/OR relationship. By using the AND/OR
relationship, many lines of indicators may be grouped
together to condition an operation. A maximum of
twenty OR lines may be used to condition an operation.
There is no limit to the number of AND lines that can be
used.

The first line of such a group contains blanks in columns
7-8, or an LGL9, LR, or SR entry if the group of lines is
conditioned by a control level indicator or is part of a
subroutine. All lines after the first line in the group must
have an AN or OR entry in columns 7-8. The last line of
the group contains the operation and the necessary
operands. All lines in the group prior to the last line must
contain blanks in the columns for Factor 1, Factor 2,
Operation, Result Field, and Resulting Indicator (see
Ex~mples, Examples 2 and 3).

Examples

Example 1: Figure 8-2 shows the format of the report
printed by the job described in Figure 8-3. The job
shows how total operations can be performed even though
there is no control field (no L1-L9 indicators). The job
requires:

1. A list of items sold in each district.

2. A total of all sales for each district.

3. A grand total of all sales in all districts.

The input records have ITEM and COST fields and a
one column record identification field. The records are
grouped in ascending sequence by district. The record
identification code is used to tell which district a record
is from. For example, records from district one are
identified either by a 1 or an M in column 1. Records
from district two are identified by either a 2 or an N in
column 1 (Figure 8-3, insert A).

No field on the records can serve as a control field.
Certainly, ITEM and COST cannot. The record identi-
fying field cannot either since one district can be identi-
fied by two different codes. This means that the contents
of this one column identifying field can change even
though the district number cannot. Therefore, in order

J102 4.50
J202 3.75
K450 2.98
B231 9.08

20.31 *

GlOH 92.79
GlOK 98.89
A126 4.29

195.97 *

Figure 8-2. Format of a Printed Report

to get total operations without the use of a control field,
LO must be used (see line 05 of Figure 8-3, insert B).
Assume that the five records shown in Figure 8-4 are read.
Refer to Figure 8-3 as you read the description of opera-
tions performed for each record read.

RPG INPUT SPECIFICATIONS
4 ? 75 76 77 78 79 80

Program
Identification

OafR

Program

Programmer --

Figure 8-3. Use of the LO Indicator (Part 1 of 2)

Punchmg
I"*,"Ct,O"

Giaphtc

Punch i i i i i

Consiant or Edlt Word

5 46 41 48 4D 50 it 12 53 54 5- 55 7 5F: 59 W i 62 63 UI 65 B 67 68 W Ii

re 8-3. Use of the LO Indicator (Past 2 of 2)

8-4

Record Indicators On Operations Performed

u
Figure 8-4. Data Cards with No Control Fields

(2) LO, 21 01 is turned on.
No total operations are
performed.
COST is added to DISTOT.
ITEM and COST are printed
out.
01 is turned off.
21 remains on.

(3) LO, 21 02 turns on.
DISTOT is added to GDTOT.
(Conditions for the total
operation in line 5 have been
met.)

Record Indicators On Operations Performed

(1) LO 01 turns on.
No total operations are
performed because condi-
tions in lines 5 and 6 (Calcu- (4) LO
lation sheet) are not met.
(Remember that operations
conditioned by control
level indicators in columns
7-8 are performed first.)
COST is added to DISTOT.
21 is set on.
ITEM and COST are printed (5) LR
out.
01 is turned off.
21 remains on.

DISTOT is printed out.
COST is added to DISTOT.
21 is set off.
ITEM and COST are printed
out.
02 is turned off.

02 is turned on.
No total operations are
performed.
COST added to DISTOT.
ITEM and COST are printed
out.
02 is turned off.

DISTOT added to GDTOT
(LR indicator is on).
DISTOT and GDTOT
printed out.

Example 2: Figure 8-5, insert A shows the use of AN
and OR entries to group lines of indicators. When indi-
cators 01, 02, 03 and 04 are on, or when indicators 01,
02, 03 and 05 are on, the calculation will be performed.

Example 3: Figure 8-5, insert B illustrates a case in which
three conditions will cause the L4 total calculations to
be performed: 01 and 02 are on, but not 03; or 01 and
03 are on, but not 02; or 02 and 03 are on but not 01.

IBM in.einatienal Busin- Msch,nesCo.uiar.on Form X21-909.
Plirnie* ," US.'

RPG CALCULATION SPECIFICATIONS
1 2 75 76 77 78 79 M

Programmer

I h d C a t 0 ~ ~

inienbslionai Buriness Uachinrr camvrai,m

RPG CALCULATION SPECIFICATIONS

Form h21-9083
Printed in U.S.R.

Figure 8-5. Use of AND/OR Lines for Indicators

8-6

COLUMNS 9-17 (INDICATORS)

Blank

LR

MR

HI-H9

U1-U8

OA-OG, OV

Explanation

Operation is performed for every card
read.

Resulting indicators used elsewhere in
the program.

Control level indicators previously
assigned.

Last record indicator.

Matching record indicator.

Halt indicators assigned elsewhere.

External indicators previously set.

Overflow indicator previously assigned.

Use columns 9-17 to assign indicators that control when
an operation is or is not to be done. You may use from
one to three indicators on a line. By using AN or OR
entries in columns 7-8, many indicators can be used to
condition one operation. A maximum of twenty OR
lines may be used to condition an operation. There is
no limit to the number of AND lines that can be used.

There are three separate fields (9-1 1, 12-14, and 15-17}
on each line, one for each indicator. If the indicator must
not be on in order to condition the operation, place an
N before the appropriate indicator (eolumns 9, 12, 15).

All three indicators on one line are in an AND relation-
ship with each other. The indicators on one line, or indi-
cators in grouped lines, plus the control level indicator
(if used in columns 7-8) must all be exactly as specified
before the operation is done. See Examples, Example 1.

Use any record identifying indicators previously speci-
fied in columns 19-20 on the Input sheet to condition
an operation that is to be done only for a certain type of
record (see Examples, Example 2).

Use any field indicators previously specified in columns
65-70 on the Input sheet to condition an operation that
is to be done only after the status of a field has been
checked and has met certain conditions (see Examples,
Example 3).

Use any resulting indicators specified in columns 54-59
on the Calculation sheet to condition operations according
to the results of previous calculation operations (see the
example in Columns 54-59 in this chapter).

Use any halt indicators previously used in columns
65-70 on the Input sheet or in columns 54-59 on the
Calculation sheet to prevent the operation from being
done when a specified error condition has been found in
the input data (see Columns 19-20 in Chapter 7) or on
previous calculations. This is necessary because the
record that causes the halt condition will be completely
processed before your program stops. Thus, if the opera-
tion is performed even on an error condition, the results
are in error. It is also possible to use a halt indicator to
condition an operation that is to be done only when an
error occurs.

Use the matching record (MR) indicator to condition
an operation that is to be done only when matching
records have been found.

Use any external indicator, including any previously
specified in columns 71-72 on the File Description sheet,
to condition which operations should be done and which
files should be used for a specific job.

Use the last record (LR) indicator to condition all
operations that are to be done at the end of the job.

Use any control level indicators specified in columns
59-60 on the Input sheet, or in columns 54-59 on the
Calculation sheet. If control level indicators are used in
these columns instead of in columns 7-8, the operation
is performed on only the first record of a new control
group.

Use any overflow indicators previously specified in col-
umns 33-34 on the File Description sheet to condition
operations that are to be done when the last line to be
printed on a page has been reached. See Indicators in
Chapter 10 for more information.

The relationship between columns 7-8 and columns
9- 17 is explained in the following discussion.

When a control level indicator (Ll-L9) is specified in
columns 7-8 and MR is specified in columns 9- 17, MR
indicates the matching condition of the previous record
and not the one just read that caused the control break.
After all operations conditioned by control level indicators
(specified in columns 7-8 of the Calculation sheet) are
done, MR then indicates the matching condition of the
record just read.

When a control level indicator is used in columns 9- 17
and columns 7-8 are not used, the operation conditioned
by the indicator is done only on the record that causes
that control break or any higher level control break.

In one program cycle all operations conditioned by
control level indicators in columns 7-8 are done before
operations that are conditioned by control level indicators
in columns 9-1 7 (see Examples, Examples 4).

Examples

Example 4: Figure 8-6 shows the use of control level
indicators to condition calculation operations. The
operation in line 03 may be done when the L2 indicator
is on provided the other conditions are met. Indicator 10
must be. on. The L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done
only when a control level 2 break occurs. These two
indicators are used together because this operation is not
to be done when a control level 3 break occurs, even
though L2 is also on.

Figure 8-6. Conditioning Operations (Control Level Indicators)

Example 2: Figure 8-7 shows how a record identifying
indicator is used to condition an operation. When a
record is read that has a T in column 1, the 01 indicator
turns on. If this indicator is on, the field named SAVE is
added to SUM. When a record having no T in column 1
is read, the 02 indicator is on. The subtract operation,
since it is conditioned by 02, is then done instead of the
add operation.

\ Record identifying indicators 01 and 02
are assigned on the input specifications.
They are used here to condition calculation
ooerations.

Figure 8-7. Conditiohg Operations (Resulting Indicators)

Exampk 3: Figure 8-8 shows the use of field indicators
to condition operations. Assume the job is to find weekly
earnings including overtime. The overtime field is checked
to see if any overtime has been put in. If the employee
has worked overtime, the field is positive and indicator
10 turns on. In all cases the weekly regular wage is
calculated. However, overtime pay is calculated only if
indicator 10 is on (lines 03,and 04).

Exanzple 4: Line 02 of Figure 8-8 shows the use of a
control level indicator in columns 9- 1 7. Assume that

indicator 25 represents a record type and that a control
level 2 break occurred when record type 25 was read.
L1 and L2 are both on. All operations conditioned by
the control level indicators in columns 7-8 are performed
before operations conditioned by control level indicators
in columns 9-1 7. Thus, the operation in line 03 occurs
before the operation in line 02. The operation in line 02
is done on the first record of the new control group
indicated by 25, whereas the operation in line 03 is a
total operation done for all records of the previous control
group.

RPG INPUT SPECIFICATIONS
9 "

intrimatranst Burinsa Mschioa9 Comorelmn Form Y21.9093
Prinfed 8" U.S.I.

RPG CALCULATION SPECIFICATIONS
1 2 15 76 77 18 79 80

1 ~ ~ r n i n , ~ ~ G w h c
i initiucts~n Punch
8 t -1-- I

\ Field indicator 10 was assigned on the input specifications.
It is being used here to condition calculation operations.

Figure 8-8. Conditioning Opmation (Field Indicators)

-1 0

COLUMNS 18-27 (FACTOR 11 AND COLUMNS 33-42
(FACTOR 2)

Use columns 18-27 and 33-42 to name the fields or to
give the actual data (literals) on which an operation is to
be performed. The entries you can use are:

The name of any field that has been defined.

Any alphameric or numeric literal.

Any subroutine, table, or array name.

Any date field names (UDATE, UMONTH, UDAY,
WEAR).

The special names PAGE, PAGEI, or PAGE2.

A label for a TAG or ENDSR operation (Factor 1
only). A label for a GOT0 operation (Factor 2
only).

A filename for a CHAIN, DEBUG, DSPLY, or
FORCE operation (Factor 2 only).

An entry in Factor 1 must begin in column 18; an entry
in Factor 2 must begin in column 33.

The entries you use depends upon the operation you
are describing. Some operations need entries in both
sets of columns, some need entries in only one, and some

need no entries at all. See Columns 28-32 in this chapter
for more information on operation codes. If you are
naming a subroutine, see Subroutines in Chapter 10.

Literals

A literal is the actual data used in an operation rather
than the field name representing that data. A literal may
be either alphameric or numeric.

Consider the following rules when using an alphameric
literal (Figure 8-9, insert A):

Any combination of characters may be used in an
alphameric literal. Blanks are also valid.

The maximum length of an alphameric literal is 8
characters.

Alphameric literals must be enclosed by apostrophes
0.

An apostrophe required as part of a literal is repre-
sented by two apostrophes. For example, the
literal O'CLOCK would be written as 0"CLOCK.

Alphameric literals may not be used for arithmetic
operations.

Consider the following rules when using a numeric
literal (see Figure 8-9, insert B):

1. A numeric literal consists of any combination of
the digits @9. A decimal point or sign may also be
included.

2 The maximum total length of a literal is 10 char-
acters including signs and decimal points.

3. Blanks may not appear in the literal.

4. The sign, if present, must be the leftmost character.
An unsigned literal is treated as a positive number.

5. Numeric literals must not be enclosed by apostro-
phes 0.

6. Numeric literals are used in the same way as a
numeric field.

I n t e r n . t ~ Buane. Mrh,nsCo"mra*m
F n r n X21-W3

mlJl Printed 8" US(\.

RPG CALCULATION SPECIFICATIONS
75 76 77 78 79 80

Data

pmgrsm -

RPG CALCULATION SPECIFICATIONS

O w m e n Factor 2

Form Y21-9M3
Pirnted m U % A

Figure 8-9. Alphameric and Numeric Literals

8-1 2

COLUMNS 2832 (OPERATION!

Use columns 28-32 to specify the kind of operation to be
performed using Factor 1, Factor 2, andlor the Result
Field. The operation code must begin in column 28.
A special set of operation codes have been defined which
you must use to indicate the type of operation desired
Every operation code used requires certain entries on
the same specification line. See Figure 8-10 for a summary
of all possible codes and the additional entries required
for each code. For further information on the operations
that can be performed, see Operations Codes in Chapter
1 0.

The operations are performed in the order specified on
the Calculation sheet.

All operations conditioned by control level indicators
in columns 7-8 (except those which are part of a sub-
routine) must follow those that are not conditioned by
control level indicators.

1-256 Result Field length.

Use columns 49-5 1 to give the length of a result field that
has not been defined pre~ously. If you are naming a new
field (one that has not been used before), you must con-
sider the form your ta will be ira and the length it
have after the operation has been performed.

Whenever the field length is specified for a result field,
you should be careful to make the result field long enough
to hold the largest possible result. If the result field is
too small, significant digits may be lost. For example,
you may wish to add field A (eight characters long, four
decimal places) to field 3 (ten characters long, six decimal
positions). Fields A and B have four characters to the
left of the decimal, but the result field, field C, must
allow for more characters to the left of the decimal.

9999.0000 Field A
0001.111211 Field B

10000.111111 Field C (result field)
COLUMNS 4548 (RESULT FIELD)

Entry Explanation

Result field Field, table, array, or array element.

Use columns 43-48 to name the field, table, array, or
array element that will hold the result of the operation
specified in columns 28-32. You may use the name of a
field, table, array, or array element that has already been
defined either in the input specifications or elsewhere in
the calculation specifications. (See Aways in Chapter 10
for more information on arrays.)

Otherwise you may define a new field by entering a
field name that has not already been used. Any field you
define here will be created at the time the program is
compiled. The field you name may be either numeric or
alphameric. A field used in arithmetic operations (see
CoIurnns 2&32 in this chapter) or numeric compare,
or a field edited or zero suppressed in output-format
specifications must be numeric.

The result field name must begin with an alphabetic
character in column 43 and contain no blanks or special
characters.

If you are entering the name of a field that has not
been defined elsewhere, columns 49-52 should also contain
entries.

If you are entering the name of a field that has been
defined, entries in columns 49-52 are not necessary but if
specified must agree with the previous definition of that
field.

ield C was defined as 11 characters long
with six decimal positions. Some of the numbers to the
right of the decimal could be lost without changing the
meaning of the result greatly. However, if field C were
defined as 10 characters long with six decimal positions,
a significant digit to the left of the decimal would be
lost. Field C in this case would be 0000.1 1 1 11 1 and
the meaning of the result has greatly changed.

Numeric fields have a maximum length of 15 characters.
Alphameric fieids may be up to 256 characters long.
You may indicate the length of a field that has been
previously described either in the input specifications or
in calculation specifications. However, if you do so,
you must specify the same field length and number of
decimal positions as was previously given to the field.

If the result field contains the name of a table or array,
an entry in these columns is optional. If used, it must
agree with the length described in the extension specifi-
cations.

Blank Alphameric or numeric field described
elsewhere.

0.9 Number of decimal places in a numeric
result field.

Move Factor 2 into Result Field, right justified. MOVE O O B R R O O B B
Operation Move Factor 2 into Result Field, left justified. MOVEL O O B R R O O B B i Move zone from low-order position of Factor 2 to MLLZO O O B R R O O B B

low-order position of Result Field.
Move zone from high-order position of alphameric MHHZO O O B R R O B B B
Factor 2 to high-order of alphameric Result Field.
Move zone from low-order position of Factor 2 to high- MLHZO 0 0 B R R 0 B B B

1 to which GOT0 may branch. I 1 I I I I 1 1 1 1

1 I is entered via the printer-kevboard into a field. I 1 1 1 1 1 l 1 1 1 1

1 I A record is read from a disk file.

1 Debug I Aid in finding programming errors.
Function I 1
0 - Optional
R - Required
B - Blank
* Columns 7-8 must have an SR entry for ail subroutine lines.

** See columns 54-59 in this chapter for more information.

Figure 8-10. Operation Codes

8-14

Use column 52 to indicate the number of positions to
the right of the decimal in a numeric result field. If the
numeric result field contains no decimal positions, enter
a O (zero).

This column must be left blank if the result field is
alphameric. This column may be left blank if the result
field is numeric but has been previously described in the
input or calculations specifications.

The number of decimal positions must never be greater
than the length of the field. The number may, however,
be larger or smaller than the number of decimal positions
that actually result from an operation. If the number of
decimal positions specified is greater than the number
of decimal places that actually result from an operation,
zeros are filled in to the right. If the number specified
is smaller that the number that results from the operation,
the rightmost digits are dropped.

Figure 8-1 1 shows how the contents of a result field
after a multiplication operation may change according
to the Decimal Positions (column 52) and Field Length
(columns 49-5 1) specifications.

COLUMN 53 (HALF ADJUST)

Entry Explanation

Blank Do not half adjust.

H Half adjust.

Use column 53 to indicate that the contents of the result
field are to be half adjusted (rounded). Half adjusting is
done by adding a 5 (-5 if the field is negative) to the
number at the right of the last decimal position specified
for this field. All decimal positions to the right of the
position specified for that field are then dropped (see
Example).

The half adjust entry is allowed only with arithmetic
operations (see Columns 28-32 in this chapter).

Example

This example shows a result field being half adjusted to
two decimal positions (2 in column 52 and N in column
53).

Multiplication: 98.76 x 1.234 = 121.86984

Decimal Positions

Not permitted

Permitted but inaccurate

Recommended

Figure 8-1 1. Result Field Contents Based on Various Field Length an Decimal Podlion Specifications

2nd Position

I
35.7968 Result of an add operation.

5 Add 5 to the number at 1.
the last decimal position specified.

35.80XX Drop all decimal positions to the right
at the position specified

35.80 Result after half adjusting.

COLUMNS 54-59 (RESULTING I

01-99 Any two digit number.

H I 4 9 Any halt indicator.

L1-L9 Any control level indicator.

LR Last record indicator.

OA-OG,OV Any overflow indicator.

Columns 54-59 are used for three different purposes:
(1) to test the value of the result field after an arithmetic
operation (2) to check the outcome of a CHAIN, LOKUP,
COMP, TESTB, or TESTZ operation (see Operation Codes
in Chapter 10) and (3) to specify which indicators to set
on or off.

Test Results

By entering an indicator in columns 54-59, you specify
that the result field is to be tested after the operation
specified in columns 28-32 has been performed. (Normally,
only indicators 01-99 and N1-H9 are used for testing.)
The indicator specified is turned on only if the result
field satisfies the condition being tested for. This indicator
may then be used to condition following calculations
or output operations (see Example). If the same indicator
is used to test the result of more than one operation, the
operation last performed determines the stting of the
indicator.

Notice that three fields (columns 54-55, 56-57, and
58-59) can be used for this purpose. Each field is used
to test for different conditions: columns 54-55, plus or
high; colums 56-57, minus or low; columns 58-59, zero
or equal, You may test for any or all conditions at the
same time.

Columns 54-55 (Plus or High): Place an indicator in
these columns when testing to find:

1. If the result field in an arithmetic operation is
positive.

2 If factor 1 is higher than Factor 2 in a compare
operation.

3, If factor 2 is higher than Factor 1 in a table or
array lookup operation.

4. The results of a CHAIN, TESTB, or TESTZ opera-
tion.

Columns 56-57 (Minus or Low): Place an indicator in
these columns when testing the result field to fmd:

1. If the result field in an arithmetic operation is
negative.

2 If factor 1 is lower than Factor 2 in a compare
operation.

3. If factor 2 is lower than Factor 1 in a table or
array lookup operation.

4. The results of a CHAIN, TESTB, or TESTZ
operation.

Columns 58-59 (Zero or Equal): Place an indicator in
these columns when testing the result field to find:

1. If the result field in an arithmetic operation is zero.

2 If factor 1 is equal to Factor 2 in a compare operation.

3. If factor 2 is equal to Factor I in a table or array
lookup operation.

4. The results of a CJ3AIN, TESTB, or TESTZ
operation.

Setting Indicators

You may enter the indicators that you want to turn on
or off by the operations SETON or SETOF. See Opera~on
Codes, Setting Indicators in Chapter 10 for more informa-
tion on these operations. Any indicators to be turned on
or off by the SETON or SETOF operations are specified
from left to right in the three resulting indicators fields
(Figure 8-1 2). Column headings in columns 54-59 have no
meaning for SETON, or SETOF operations.

IBM l"tlnls<iimd Bur,- M a c h i n n C w n i m F a * X2t BOs3
Pr(nf.d in U s.4.

RPG CALCULATION SPECIFICATIONS

Figure 8-1 2. Setting Indicators

Example COLUMNS 6@74 (COMMENTS)

Figure 8-13 shows the entry of two indicators that are
used to test for the different conditions in a compare
operation. These indicators are used to condition the
calculations which must be performed for a payroll job.
Indicator I0 is turned on if the hours worked (HRSWKD)
are greater than 40 and is then used to condition aU
operations necessary to find overtime pay. Indicator 20
is turned on if HRSWKD is less than 40. It is also used to
condition other operations. In line 03 if 20 is not on
(the employee worked 40 or more hours), regular pay
based on a 40 hour week is calculated. In line 06 if 20
is on (employee worked less than 40 hours), pay based
on less than a 40 hour week is calculated.

Enter in columns 60-74 any meaningful information you
wish. The comments you use should help you understand
or remember what you are doing on each specification
line. Comments are not instructions to the RPG I1
program They serve only as a means of documenting your
program.

COLUMNS 7580 (PROGRAM IDENTIFICATION)

See Chapter 2

Fern X21-9093
Prlnwd in U.S.A.

Date __________

Program-

Figure 8-13. Conditioning Operations (Resulting Indicators)

RPG CALCULATION SPECIFICATIONS
-. -. 1 2 75 76 77 78 79 80

Punching I 3 7 1

lnrtructmn Punch
.-&

I ; j 1
.-A

ter 9. Output-Format S

Output-Format specifications describe your output records. COLUMNS 2-2 (PAGE)
These specifications may be divided into two general cate-
gories: See Chapter 2.

1. Record description entries (columns 7-3 1) which
describe the output file records to be written or
punched. COLUMNS 3-5 (LINE)

2. Field description entries (colunms 23-74) which in- See Chapter 2.
dicate the position and the format of data on the
output record.

Write the specifications on the Output-Format sheet COLUMN 6 (FORM TYPE)
(Figure 9-1). The field description entries start one line
lower than record description entires. An O must appear in column 6.

Oste

Pmgram

Programmer

Figwe 9-1. Output-Format Sheet

9- 1

COLUMN 7-14 (FILENAME)

Use columns 7-14 to identify the output file you will be
using. The fdename must begin in column 7. Use the same
filename given in the file description specifications. You
need to specify the output filename only once. That name,
however, must be on the first line that identifies the file.

COLUMN 15 (TYPE)

EnrrY Explanation

H Heading records.

D Detail records.

T Total records.

E Eines to be written during
calculation time.

Use column 15 to indicate the type of record that is to be
written, This record may be printed, written on disk, or
punched or printed on a card. Perhaps the clearest method
of describing output files is to enter the records for each
file in this order: heading, detail, total, and exception
(see Figure 9-2, insert A).

Another method is to enter all heading records for all out-
put files, then, all detail records for all output files, etc.
The program is compiled faster when records are listed in
this manner (see Figure 9-2, insert B).

Heading records usually contain unchanging identifying
information such as column headings, as well as page and
date.

Detail records are closely connected with input data. Most
data in a detail record comes directly from the input record
or is the result of calculations performed on data from the
inpilt record.

Total records usually contain data that is the end result
of specific calculations on several detail records. Total out-
put may not be specified for update files, which are not
rocessed randomly.
Exception records are written or punched during calcula-

tion time. This is an unusual case and can be indicated only
when the operation code EXCPT is used. E may not be
specified for a combined file. See Operation Codes in Chapter
10 for further information on the EXCPT operation.

Figure 9-2. Order of Output Record Types

COLUMNS 16-98 (ADD A RECORD]

Entry Explanation

ADD Add a record.

Columns 16-18 may be used to specify that a record is to
be added to an Input, Output, or Update file. The output
device for these files must be a disk.

COLUMN 16 (STACKER SELECTIFETCH OVERFLOW)

Entry Explanation

Blank Cards automatically fall into certain
stackers (primary hopper-stacker 1,
secondary hopper-stacker 4).

1 -4 Indicate stacker you wish.

F Fetch overflow.

Column 16 may be used for two different purposes:

1. To select a special stacker into which certain cards
are to go.

2. To indicate that the overflow routine can be used at
this point for a printer file.

Stacker Select

Use column 16 to indicate that certain cards are to be
stacked in a specific stacker. If you make no entry, cards
go into a predetermined stacker Oprimary hopper-stacker 1 ;
secondary hopper-stacker 4).

Only combined or output files may be stacker selected
in the output-format specifications. If any output operations
are to be performed on cards from a combined file that
are also to be stacker selected, stacker selection should be
done by the output-format specifications not by the input
specifications. Stacker selection in output specifications
overrides stacker selection in input specifications.

If stacker selection is done on the basis of matching
records, it should only be done for detail output (D in
column 15). It is only at this time that the MR indicator
signals the matching status of the card that should be stacker
selected.

OR lines may have different entries in column 16; AND
lines may not. An OR line containing a blank in column 16
causes cards to fall into the normal stacker associated with
the hopper used. The stacker select entry on the previous
line is not assumed.

All remaining detail lines in that program cycle are
printed (if a printer operation spaced or skipped to
the overflow area).

All remaining total lines in that program cycle are
printed.

All lines conditioned by an overflow indicator are
printed.

Forms advance to a new page if a skip to a new page
has been specified.

If you do not want all of the remaining detail and total
lines printed on the page before overflow lines are printed
and forms advance to the new page, you may cause overflow
lines to be printed ahead of the usual time. This is known
as fetching the overflow routine and is indicated by the entry
in column 16. Overflow is fetched only if all conditions
specified by the indicators in columns 23-31 are met and an
overflow has occurred. See &tYer.ow Indicators in Chapter
10 for detailed information and examples of a fetched
overflow routine.

The fetched overflow routine does not automatically cause
forms to advance. A skip to line 01 (new page) must also
be specified on a line conditioned by the overflow indicator.
F must be used in an OR line if you want that line to

condition a record with the overflow indicator.

COLUMNS 17,

Columns 17-22 are used to specify spacing and line skipping
for a printer file. Spacing may be specified for a console
file, but not line skipping. If these columns are blank, single
spacing occurs automatically after each line is printed.

Line spacing and skipping may be specified both before
and after printing of a line. There may be as many as six
spaces (three before, three after) between two lines of
printing.

If both spacing and skipping are specified on the same
line, they are done in t

1. Skip before.

2. Space before.
Fetch OverFlow

3. Skip after,
When the fetch overflow routine is not used, the following
usually occurs when the overflow line is sensed: 4. Space after.

Spacing to or past the overflow line causes the overflow
indicator to turn on. Skipping past the overflow line to a
line on the next page, however, does not cause the overflow
indicator to turn on. If you want to turn on the overflow
indicator to condition overflow operations when you skip
to a lower line number (higher position) on the next page
from a line above the overflpw line, you may either use a
SETON operation or specify two skips (a skip to the over-
flow line, then to the first printing line on the next page).
This is necessary because the overflow indicator will not be
turned on if the skip to a new page occurs on a non-overflow
line.

You may save time by specifying that spacing or skipping
should be done after printing. This means that the output
file does not have to wait for paper movement before it can
print.

You may specify different spacing and skipping on OR
lines. If there are no spacing or skipping entries in the OR
line, spacing and skipping is done according to the entries
in the line preceding the OR line.

A zero indicates no movement of the paper. If a zero
is indicated for all output lines, the lines will print on top of
each other. No spacing may be useful in some cases, how-
ever. For example, when you desire two or more output
items on the same line but in different positions, you do not
specify spacing for one item.

COLUMNS 17-18 (SPACE)

Entry Explanation

0 No spacing.

1 Single spacing.

2 Double spacing.

3 T~iple spacing.

Spacing is used in reference to the lines on one page. You
may indicate that spacing should be done before (column 17)
or after (column 18) a line is printed.

COLUMNS 19-22 (SKIP1

Entry Explanation

0-99 Lines 0-99.

AO-A9 Lines 100-109.

BO-B2 Lines 110-112.

Entries in columns 19-22 must correspond to those entries
for the same file on the Line Counter sheet. The skip entry
must not be greater than the line number of the overflow
line indicated on the Line Counter sheet. Skipping refers
to jumping from one printing line to another without
stopping at lines in between. This is usually done when a
new page is needed. A skip to a lower line number means
advance to a new page. Skipping may also be used, how-
ever, when a great deal of space is needed between lines.
The entry must be the two-digit number which indicates
the number of the next line to be printed. You may in-
dicate that skipping should be done before (column 19-20)
or after (columns 21-22) a line is printed. If you specify a
skip to the same line number as the forms are positioned on,
no movement of the paper occurs.

COLUMNS 23-31 (OUTPUT INDICATORS)

Entry

0 1-99

M-L9

HI-H9

u 1 -U8

OA-OG, OV

MR

LR

1P

Explanation

Any resulting indicator, field indicator,
or record identifying indicator previously
specified.

Any control level indicators previously
specified.

Any halt indicators previously specified.

Any external indicator set prior to program
execution.

Any overflow indicator previously assigned
to this file.

Matching record indicator.

Last record indicator.

First page indicator.

Use output indicators to give the conditions under which
output operations are to be done. More specifically, use
them to tell:

1. When you want to output a line (see Examples,
Example I).

2. When you want to output a field (see Examples,
Example 2).

When you use an indicator to condition an entire line in each field. If these indicators are on, the output oper-
of print, place it on the line which specified the type of ation will be done. An N in the column (23,26, or 29)
record (see Figure 9-3, insert A). Place an indicator which preceding each indicator means that the output operation
conditions when a field is to be printed on the same line as will be done only if the indicator is not on. No output line
the field name (see Figure 9-3, insert B). may be conditioned by all negative indicators (at least one

There are three separate output indicator fields (columns of the indicators used must be positive).
23-25,26-28, and 29-31). One indicator may be entered

I n t o n u f d B u m MlOllnar Caporiitsm

RPG OUTPUT - FORMAT SPECIFICATIONS

Fom, X21-9080
Rl"W bn U.S.A.

Insmottonal BurnsaMsdaN. Co-fm F m XZi .9080
Plbted in U.S.A.

RPG OUTPUT - FORMAT SPECIFICATIONS

Figure 9-3. Output Indicator

AND and OR tines

If you need to use more than three indicators to condition
an output operation, you may use an AiW line. Enter
the word AND in columns 14-1 6 and as many indicators as
needed. The condition for all indicators in an AND rela-
tionship must be satisfied before the output operation is
done. There is no limit to the number of AND lines that
can be used for an output operation.

Output indicators may also be in an OR relationship. If
one or the other condition is met, the output operation will
be done. OR lines are indicated by the word OR in columns
14-15. A maximum of twenty OR lines may be used for an
output operation. Both AND or OR lines may be used
together to condition an entire output line. They may not
be used, however, to condition a field (see Examples,
Example 3).

External Indicators

A file named in the output-format specifications may be
conditioned by an external indicator in the file description
specifications. In this cage, every output record for that
file must be conditioned by the same external indicator
used in the file description specifications.

erflow Indicators

Overflow indicators are used to condition output operations
on the printer. The operations conditioned by the overflow
bdicator are done only after the overflow line (end of page)
has been reached.

If you have not assigned an overflow indicator to the
printer file in the file description specifications, you may
not use an overflow indicator in the output-format specifi-
cations. In this case, advancing the forms to a new page is
handled automatically, even though no overflo'w indicator
has been assigned. If any specification line not conditioned
by an overflow indicator specifies a skip to a line on a new
page, overflow indicators turn off before forms advance to

new page.
An overflow indicator may appear on either AND or OR

lines. However, only one overflow indicator may be
associated with one group of output indicators. That
overflow indicator must also be the same indicator asso-
ciated with the file on the File Description sheet.

When the overflow indicator is used in an AND relation-
ship with a record identifying indicator, unusual results
are often obtained. This is because the record type might
not be the one read when overflow has occurred. Thus,
the record type indicator is not on and all lines conditioned
by both overflow and record type indicators do not print.

If at all possible, use overflow indicators and record type
indicators in an OR relationship when conditioning output
lines.

An overflow indicator cannot condition an exception
line (E in column 15), but may condition fields within the
exception record.

First Page Indicator

The first page (1P) indicator is usually used to allow printing
on the first page. It may also be used in connection with
the overflow indicator to allow printing on every page (see
Examples, Example 4). The information printed out on the
line conditioned by the 1P indicator is usually constant
information used as headings. The constant information is
specified on the Output-Format sheet.

The 1P indicator is used only with heading or detail
output lines. It cannot be used to condition total or excep-
tion output lines. Use this indicator only when other indi-
cators (control level or resulting indicators) cannot be used
to control printing on every page.

The 1P indicator cannot be used in an AND or OR rela-
tionship with control level indicators.

Error Conditions

On certain error conditions, you may not want output
performed. Indicators can be used to prevent the data
that caused the error from being used (see Examples,
Example 5).

Examples

Example 1: Figure 9-3, insert A, shows the use of one
indicator to condition an entire line of printing. When 44
is on, the fields named INVOIC, AMOUNT, CUSTR, and
SALSMN are all printed.

Example 2: Figure 9-3, insert B, shows the use of a control
level indicator to condition when one field should be printed.
When indicator 44 is on, fields INVOIC, AMOUNT, and
CUSTR are always printed. However, SALSMN is printed
only if 44 and L1 are on.

Example 3: The use of indicators in both AND and OR
lines to condition an output line is shown by Figure 9-4,
insert A. The specifications in lines 01-04 say that the
detail line is printed if either one of two sets of conditions
is met. If 21,40,01, and 16 are all on, the line is printed,
or if 21 and 40 are on and 01 and 16 are off, the line is
also printed.

A maximum of three indicators may be used on the calculatjons For instance, indicators 10, 12, 14, 16 and 18
Output-Format sheet to condition a field since AND and are to condition an output field name PAY. In calculation
OR lines may not be used to condition an output field SETON indicator 20 if indicators
(see Figure 9-4, insert B). Then condition the output field

However, you can condition an output field with more nd 18 on the Output-For
than three indicators by using the SETON o

in,*m,KWI 8"- Me,#- ccpnpntm F m X11-
P ? h W 8" " S,,

RPG OUTPUT - FORMAT SPECIFICATIONS

P r h w 8" u.:
RPG OUTPUT - FORMAT WECIFICATIONS

e 94. Output Indicators

Example 4: Figure 9-5, insert A, shows how the 1P indica- from the card in error. If FIELDB contains all zeros, halt
tor is used when headings are to be printed on the first indicator H1 turns on (see line 03 of Figure 9-6, insert A).
page only. Figure 9-5, insert B, shows the use of the 1P In the calculation specifications, if H1 is on, resulting
indicator and overflow indicator to print headings on every indicator 01 turns off (see line 01 of Figure 9-6, insert B).

Page. On the output-format specifications, FIELDA and FIELDB
are printed only if 01 is on (see lines 04 and 05 of Figure
9-6, insert C). Therefore, if indicator 01 is off, fields A and

Example 5: Figure 9-6 shows coding necessary to check for B are not printed. Use this general format when you do not
an error condition and to stop processing on and printing want information that is in error to be printed.

IBM ,"ta?e,d ,3u*npn Mmm- c-mtion F a m X2t 9090
PnnW od,n U S A

RPG OUTPUT - FORMAT SPECIFICATIONS

IBM ~nt-ti& sum- ~ r h m n ~ l l o r a r m Form x23.9as-3
Pibnd m USA.

RPG OUTPUT - FORMAT SPECIFICATIONS
1 2 75 76 77 78 79 80

Date
Punching G"Phc
tnsUunNn Pumh Program

Figure 9-5. 1P Indicator

9-8

P n " w ,n US*
RPG CALCULATION SPECIFICATIONS

Pwram

Programmer

hen HI is on, resulting indicator 01
is turned off. This prevents all calcula-
tion and output operations conditioned
on the 01 indicator from being done.

IBM intecnstmal ~ u n o e u M r n ~ n a cwporrtion ram X21909f
Prhw m " $ 8

RPG OUTPUT - FORMAT SPECIFICATIONS

Date

Program

Figure 96. Preventing Fields From Printing

COLUMNS 32-37 (FIELD NAME)

In columns 32-37, use one of the following to name every
that is to be written out.

name previously used in this program.

2. The special words PAGE, PAGE1 , PAGE2, *PLACE,
*PRINT, UDATE, WAY, WONTH, and UYEAR.

3. A table name, array name, or array element.

The field names used are the same as the field names on
the Input sheet (columns 53-58) or the Calculation sheet
(columns 43-48). Do not use these columns if a constant is
used (see Columns 45- 70 in this chapter). If a field name is
entered in columns 32-37, columns 7-22 must be blank.

Fields may be listed on the sheet in any order since the
sequence in which they appear on the printed form is deter-
mined by'the entry in columns 40-43. However, they are
usually listed sequentially. If fields overlap, only the last
field specified is printed.

The sign (t or-) of a numeric field is in the units position
(rightmost digit). Either sign (+ or -) in the units position
prints as a letter unless the field is edited (see Editing in
Chapter 10 or Column 38 in this chapter).

PAGE: PAGE is a special word, which, when used, causes
automatic numbering of your pages. Enter the word PAGE,
PAGE1, or PAGE2 in these columns if you wish pages to
be numbered. When a PACE field is named in these columns
without being defined elsewhere, it is assumed to be a four
column, numeric field with no decimal position. Leading
zeros are suppressed and the sign is printed in the rightmost
position unless an edit word or edit code is specified. The
page number starts with 1 unless otherwise spec~fied, and 1 is
automatically added for each new page. See Columns 53-58
in Chapter 7 for information concerning page numbering
starting at a number other than 1.

It is possible at any point in your job to restart the page
numbering sequence. To do this set the PACE field to
zero before it is printed. One method of setting the PAGE
field to zero is to use Blank After (see Column 39 in this
chapter). Another way is to use an output indicator. If the
status of the indicator is as specified, the PACE field is
reset to zero. Remember that 1 is added to the PAGE field
before it is printed (see Ex~wzples, Ejcample 1).

The three possible PAGE entries: PACE, PAGE 1, and
PAGE2 may be needed for naming different output files.
Do not use the same name for two different output files.

Note: A PAGE field named only in output specifications
must be four characters long, and need not be defined else-
where. However, a PAGE field can be defined in input or
calculation specifications and may be of any length. Despite
the difference in length, these PAGE fields are treated
exactly as if they were named in output specifications only.

*PLACE: "PLACE is a special RPG I1 word which makes
it possible to write or punch the same field in several loca-
tions on one record without having to name the field and

position each time the field is to be written or
punched. The fields are written or punched in the same
relative positions ending in the column specified by
*PLACE. For example, if you wish FIELDS A, B, and C
to appear twice on one line, you can specify this in two
ways:

1. Define each field and its corresponding end position
each time it is to be printed (Figure 9-7, insert A).

2 . Use the special word "PLACE (see Figure 9-7, insert B).

Both coding methods produce a line which looks like this:

(Print Positonsl 10 20 30 40 50 60
(Fields) FIELDA FIELD6 FIELDC FiELDA FlELDB FIELDC

However, it is easy to see that using the special word
*PLACE saves extra coding.

When using *PLACE, all Gelds named for each record type
(H/D/T/E) are written or punched as usual in the locations
specified. The entry *PLACE then causes all of these same
fields to be written or punched ending at the position speci-
fied in the *PLACE statements.

When using "PLACE, remember:

1. *PLACE must be specified after the field names which
are to be placed in different positions in on
(see Emmples, Eratnple 2).

2. "PLACE causes all fields (in a record type) above the
"PLACE entry to be written or punched, not just the
fieid named on the line above "PLACE.

3. *PLACE must appear on a separate specification line 5. The leftmost position of the fields to be moved by the
for every additional time you want the field or group *PLACE specification is always assumed to be position
of fields written or punched. 1.

4. An end position must be specified for every *PLACE 6 . When *PLACE is specified for card output, the fields
line. Be sure to allow enough space for all fields prior named above "PLACE will be repunched. Any printe
to the *PLACE to be printed again (see Examples, output on the cards will not be reprinted unless an
Example 2). Otherwise overlapping occurs. * is entered in column 40 of the same line as *PLACE.

InUrMiianr(EuansnMMmrCorpor**aen

RPG OUTPUT - FORMAT SPECIFICATIONS

Date

Progrsrn

Farm X 2 1 . W
RbW 6" U.S.A.

s Twice on the Same Line

*PRINT: *PRINT is a special RPG I1 word which causes
fields that were punched in the card to be printed on the
card. This enables you to more easily determine what infor-
mation is found on the card. *PRINT prints the field in the
positions which correspond one-for-one to the columns in
which the field is punched (see Examples, Example 3).

When using "PRINT, remember:

1. *PRINT may be used'only once for each record.

2. "PRINT must be specified after all punch fields which
are to be printed on the card are named.

3. The *PRINT specification may be conditioned by
indicators in columns 23-31. Columns 7-22 and 38-74
may not be used.

4. *PRINT may be used on a card file only.

If you want to print the fields in positions other than those
which correspond to the punch positions of the fields, you
must use the card printing option (see Columns 40-43 in
this chapter).

Date Field: Often you want the date to appear on your
printed report, punched card, or program listing. Use
special words UDATE, UMONTH, UDAY, and WEAR to
get the date field you desire. The following rules apply
to date fields:

1. UDATE gives a six-character numeric date field in one
of three formats:

a. Domestic (rnrnddyy).
b. United Kingdom (ddmmyy).
c. World Trade (ddmmyy).

The format is specified by an entry in Column 21 of
the control card.

2. UDAY may be used for days only, UMONTH for
months only, and WEAR for years only.

3. These fields may not be changed by any operations
specified in the program. Thus, these fields are usually
used only in compare and test operations.

Examples

Example 1: Figure 9-8 shows how an output indicator can
be used to reset a PAGE field to zero. When indicator 15 is
on, the PAGE field is reset to zero and a 1 added before the
field is printed. When 15 is off, a 1 is added to the contents
of the PAGE field before it is printed.

Figure 9-8. Resetting the PAGE Field to Zero

9-12

Example 2: Figure 9-9 shows the use of the special word
*PLACE to print the same fields several times on the same
line. Fields A, B, and C are to be printed four times on one
line (see Figure 9-9, insert A). They are printed once when
they are named and once for every "PLACE entry. In Figure
9-9, insert B, *PLACE is specified after the fields which
are to be printed several times on the same line. All fields
to which "PLACE applies appear on the same record. Field

D, which appears on the total record, is not affected by
*PLACE.

Notice also that an end position is given for every *PLACE.
Fields A, B, and C have a total length of 15 characters. Thus
the end positions given for the "PLACE entries all allow room
for the printing of 15 characters. This eliminates anv over-
lapping.

Final
Printed
Detail
Line

0 5 10 15 20 25 30 35 40 45 50 55 60

RPG OUTPUT - FORMAT SPECIFICATIONS

Farm X21-9090
Pnmed 8" V.S.A.

Programmer

Figure 9-9. *PLACE

COLUMNS 40-43 (END POSITION IN OUTPUT RECORD)

Use column 38 when you want to:

1. suppress leading zeros

2. omit a sign from the low order position of a numeric
field

3. punctuate a numeric field without setting up your own
edit word.

A table sumarizing the edit codes that can be used is
printed above columns 45-70 on the Output-Format sheet
(see Figure 9-10). Each edit code punctuates differently.
If you use an edit code in column 38, columns 45-70 must
be blank except for the following condition. If asterisk
fill or a floating dollar sign is required, enter ' * ' or ' $ '
in column 45-70. When an edit code is used to punctuate an
array, two spaces are left between fields of the array to the
left of each element. Only numeric fields can be edited. For
more information on edit codes, see Editing in Chapter 10:

Eraw Explanation

Disk, Punched Cards and Printed Repofis

Use columns 40-43 to indicate the location on the output
record of the field or constant that is to be written: You
enter only the number of the punching or printing position
of the rightmost character in the field or constant.

The largest number to be used to indicate end position
for disk output is 4,096. The largest number for punched
card output is 96. The largest number for printer output
depends upon the number of print positions on the printer
you have.

When *PLACE is specified for the printer (see Columns
33-37 in this chapter), end position indicates the end posi-
tion of the last field of the group that is to be printed.
Thus you must be sure you have indicated an end position
that allows enough room for all specified fields to be printed.

Be sure to allow enough space (as indicated by end posi-
tion entries) on your output record to hold edited fields.

Printing on Cards

The MFCU prints and punches fields in the same positions
on a card by using "PRINT in columns 32-37. If you want
to print fields in positions other than those which correspond
to the punch positions of the fields, you must:

Blank Field is not to be reset.
1. name the field in columns 32-37.

B Field specified in columns 32-37 is to be
reset after the output operation is com lete. 2. place an * in column 40.

Use column 39 to reset a field to zeros or blanks. Nuneric
fields are set to zero and alphameric fields are set to blanks.
This column must be blank for Look-Ahead and Udate
fields.

Resetting fields to zeros is useful when you are accumu-
lating and printing totals for each control group. After
finding the total for one group and printing it, you want to
start accumulating totals for the next group. Before you do
this, however, you want your total field to start with zeros,
not with the total it had for the previous group. Blank After
will reset the total field to zero after it is printed.

If the field 1s lo be used for output more than once (i.e.,
punching and printing), be sure the B is entered on the last
output line for that field, Otherwise, the field is blanked
out before d l required output is finished.

3. specify an end position for that field in columns 41 -43.
The maximum entry for an end position is 128.

The field will be printed in the upper portion of the card
in the position you have specified.

All lines with an * in column 40 should follow all lines
specifying punching only and all *PRINT lines for that record
(see Example). All the punching for a card is done before
the printing.

Note: If Blank After (column 39) is specified for a field
to be punched and printed, the B entry must be entered on
the last line specifying printing for that field. All the printing
is done for a card after all the punching, so be careful not
to blank out a punch field and then try to print it later. If

*PRINT is the last line specifying printing for a field, the printed in the same card columns. The account number
B entry is made in the last punching specification line for field is punched only. The amount due field is punched in
that field. If an * is used in column 40 to print a field columns 75-80, but for ease of reading it is printed with an
after it is punched, the B entry is made in the last print edit word in columns 44-52. For the same reason, a con-
specification line for that field. A Blank After entry is stant is printed to identify the amount due field.
correctly entered for a punch and print field in Figure 9-1 1.

Example In Line 06, the field AMTDUE is blanked out after it is
printed by a B entry in column 39. If the B entry appeared

Figure 9-1 1 shows several examples of printing on a card. in column 39 of line 05, the field would be blanked out
The coding shows that the name field will be punched and after punching and would not be available for printing.

Figure 9-1 1. Printing on the MFCU

9-16

IBX lnsrmfivvl euv- Mlhmm C c w a t t t Form ~21.9091
Printed sdm U.SA.

RPG OUTPUT - FORMAT SPECIFICATIONS
1 2 15 76 71 78 79 80

Date I l l i
Program

Instruction Punch

COLUMN 44 (PACKED OR BINARY FIELD)

Entry Explanation

Blank Field is unpacked numeric data, alpha-
meric data, or is to be printed.

P Field is to be written on disk or punched
in the packed decimal format.

B Field is to be written on disk in the binary
format.

Column 44 must have an entry if a numeric field is to be
written on disk or punched in cards in the packed decimal
format, or written on disk in the binary format. Packed
decimal fields cannot be printed, and binary fields cannot
be printed or punched.

Fields of 4 or less bytes are converted to 2 bytes of binary
data for output, and fields of 5-9 bytes are converted to 4
bytes of binary data for output. The output device for
binary fields can only be disk.

Column 44 must be blank if an asterisk (*) appears in
column 40 of the same field specification. Column 44 must
also be blank for fields in a record that precede *PRINT with
an MFCU file or *PLACE with a printer file.

COLUMNS 4570 (CONSTANT OR EDIT WORD)

Use columns 45-70 to specify a constant or an edit word.

Constant

A constant is any unchanging information that is entered
by a specification. Constants are usually words used for
report headings, column headings or card identification.
To print a constant on a card, an * must be entered in
column 40 (see Columns 40-43 in this chapter for printing
on cards).

The foHowing rule
9-12, insert A for ex

3 . he in a constant must be represented by
two apostrophes. For example, if the word you're
appears in a constant it must be coded as VOU"RE.

4. Numeric data may be used as a constant.

5. Up to 24 characters of constant information can be
1. Field name (columns 32-37) placed in one line. Additional lines may be used, but

each line must be treated as a separate line of con-
2. A constant must be enclosed stants. The end position of each line must appear in

the leading apostrophe in column 45. columns 40-43.

@G WTPNT - FORMAT SPEClFlCATlOlUS

RPG OUTPUT - FORMAT SPECtFlCAftONS
1 2 75 7C 77 78 79 Mi

Figure 9-12. Constants and Edit Words

Edit Word

Use an edit word in place of an edit code when you want
to punctuate the field named in column 32-37 according
to your own format. Edit words can be used to suppress
leading zeros, punctuate with decimal points, commas,
dollar signs and asterisks, insert spaces and identify negative
totals. Figure 9-12, insert B, shows examples of edit words.
For further information on edit words see Editing in Chaptel
10.

The following rules apply to edit words:

Field name (columns 32-37) must contain an entry.

An edit word must be enclosed in apostrophes. Enter
leading apostrophe in column 45. The edit word
itself must begin in column 46.

Any printable character is valid, but certain characters
in certain positions have special uses (see Editing in
Chapter 10).

An edit word cannot be longer than 24 characters.

The numer of replaceable characters in the edit word
must be equal to the length of the field to be edited.
See Editing, Edit Words, in Chapter 10 for a discussion
of replaceable characters.

COLUMNS 71-74 (STERLING SIGN POSITION)

Use columns 71-74 only when processing sterling currency
amounts. For detailed information see Sterling in Chapter
10.

Printer

Entry Emlamlion

All blanks Field is printed in pence only.

S in column Field is printed in pounds, shillings, and
74 pence.

Output Devices Other Than the Printer

Entry Explanation

Blank Sterling output is not used.

Position in Number of the column which contains
record the sign if the sign is not in the normal

position.

S in column Sign is in the normal position.
74

For output devices other than the printer, these columns
are used to indicate the position of the sign of the field.
The normal position of the sign in a field having decimal
positions is in the rightmost decimal position of the pence
field. If the fields have no decimal position, the normal
sign position is in the last column (unit position) of the
pounds fields.

COLUMNS 75-80 (PROGRAM IDENTIFICATION)

See Chapter 2.

Chapter 10. Supplementary Information

This chapter further explains topics which were introduced,
but not fully explained, in the preceding chapters. Because
the discussion of each topic is complete, the sections are
arranged alphabetically by section title.

ALTERNATE COLLATING SEQUENCE

Every alphabetic, numeric, or special character holds a
special position in relation to all other characters. This
special order is known as the collating sequence. System13
uses a collating sequence based on the way characters are
represented in the machine (Figure 10-1).
You may change this collating sequence if you wish. If
you want characters to appear in a sequence other than tfie
one used by System13 or if you want two or more charac-
ters to have the same position in the sequence (this means
they are considered equal), you must describe an alternate
collating sequence.

Note: An alternate collating sequence applies to:

1. matching fields and sequence checking.

2. alphameric compare operations (COMP).

Columns 1-6: Enter ALTSEQ to indicate that you are
altering the normal sequence.

Columns 7-8: Leave these columns blank.

Columns 9-10: Enter the hexadecimal number of the
character being taken out of sequence. The table in Figure
10-1 lists characters and their hexadecimal equivalents.

Columns 11-12: Enter the hexadecimal number of the
character that is replacing the character taken out of se-
quence.

Columns 13-16, 17-20, 21-24, etc: These columns are used
the way columns 9-12 are used. The first two columns give
the character to be replaced by the character specified in
the next two columns. There may be as many four-column
entries as necessary. Additional cards may be used with the
above format. The first blank column terminates the card.
A ** or /* ends the table.

The alternate sequence table deck must be preceded by a
card with **& in columns 1-3. The remaining columns of
the card may be used for comments. This deck must follow
the RPG I1 specification deck and file translation cards, if
used. Figure 1-2 shows the arrangement of cards in an
RPG I1 source deck.

Defining an Alternate Collating Sequence
Translation Table and Alternate Collating Sequence Coding

To define an alternate collating sequence you must first Sheet
indicate that a sequence other than the normal one is to be
used. Do this by entering an S in column 26 of the RPG I1 The Translation Table and Alternate Collating Sequence
control card specifications. Sheet (Figure 10-2) can be used for coding an alternate

A table also must be entered which lists the changes you collating sequence. It helps you more easily determine the
wish to make in the normal collating sequence. The fol- entries needed for the alternate collating sequence table in-
lowing entries are needed for each table card entered: put cards.

I Collating I Character I Hexadecimal I
Sequence

ormal CoUating Sequence and Hexadecimal Equivalents of Characters

10-2

Equivalent

18

19

1

%

- (underscore)

6C

6D

Figure 10-2. Translation Tabb and Alttternate Collating S

If you want one character to be considered the same as
another character, the characters must hold the same posi-
tion in the collating sequence. For example, you may wish

e considered as a zero. Therefore, you need to
define an alternate collating sequence in which the blank
is the same as the zero because it holds the same position
in the sequence. The alternate collating sequence input
card looks like this:

Column Entry

1 -6 ALTSEQ

9-12 40F0 (blank takes the zero's position)

Now whenever a blank is read and used in a compare it is
considered as a zero. Thus, if you were comparing numbers
to 0036 to find an equal condition, 0036 and bb36 (where
b=blank) both compare equal to 0036.

Notice on the Translation Table and Alternate Collating
Sequence Coding Sheet that there are many characters
between I and) , R and S, Z and 0. These characters can
be represented in the computer and on records by a certain
code. However, they have no printable graphic symbol.
Due to this particular arrangement of graphics, nongraphics,
graphics, etc. in the collating sequence, a character, when
inserted between A and B, changes only the position of
graphics B-I. All other graphics are not affected. B-I ail
move down one position causing the I to take the place of
the nongraphic represented by hexadecimal CA. This does
not matter, however, since the original character CA cannot
be printed anyway. See Figure 10-3 for the entries on the
Translation Table and Alternate Collating Sequence Coding
Sheet.

The alternate sequence input card is punched as follows:

Column Entry

Altering the Normal

ARRAYS
You may after the normal collating sequence in a number
of ways. For example, you may insert a character between
two existing characters, you may take a character out of
the sequence, or you may change characters (put A where
Z is and Z where A is). Regardless of how you alter the
sequence, you must specify every character that is to be
changed by the alteration. For example, if you want the
dollar sign ($) to be positioned in the collating sequence

, the normal sequence is changed as follows:

Noma1 Sequence Altered Sequence

ALTSEQ
(blanks)
5BC2 ($ takes B's position)
C2C3 (B takes C's position)
C3C4 (C takes D's position)
C4C5 (D takes E's position)
C5C6 (E takes F's position)
C6C7 (F takes G's position)
C7C8 (G takes H's position)
C8C9 (H takes 1's position)
C9CA (I is given a new position held by
no other printable character.)

An array is a continuous series of data fields having like
characteristics, that is, same field length and same number of
decimal positions.

There are three kinds of arrays: compile time arrays,
execution time arrays, and those arrays loaded or created
by input andlor calculations specifications.

A compile time array is compiled with the source program
and becomes a permanent part of the object program. A
compile time array can, then, be permanently changed only
by recompiling the source program with the revised
array.

An execution time array is loaded with the object program
before actual execution of your RPG TI program begins
(that is, before any input files are read, calculations per-
formed, or output function performed).

An array loaded or created by input or calculation speci-
fications, which might be calIed a dynamic array, is loaded
into the computer after actual execution of your RPG I1
program has begun (it is read as input data) or is created
during the calculation phase of your RPG 11 program. Sucb
a dynamic array must nonetheless be described on the
Extension sheet.

1al-mMsrt i l w a c l Y r h u n C a r p m m s

TRANSLATION TABLE AND ALTERNATE COLLATING SEWENCE CODING SHEET

(no printrblc cha ractcr)

Figure 10-3. Altering the Collating Sequence

Defining Arrays-Extension Specificatons Column EntPV

Every array must be defmed on extension specifications.
The entries are as follows:

Column

6

7-10

11-18

19-26

27-32

33-35

36-39

4042

43

1

blank

Filename of execution time array. Blank
for compile time array or for array created
by input and/or calculation specifications.

Filename of output fde on which array is
written at end of job. Blank-array is not
written out at end of job.

44 For numeric fields enter the number of
digits to the right of the decimal point.
This number can be 0. For alphameric
fields leave column 44 blank.

Name of the array. The array name can-
not begin with the letters TAB. (See
Array Name and ladex .)

Number of array elements found in each
input record for execution or compile
time arrays. Leave these columns blank
for an array defmed in input and calcu-
lation specifications.

Number of elements in the array. This
entry must end in column 39. Leading
zeros are not required.

Decimal field length of array element. All
elements in the array must be the same
length. If the array is in packed, binary,
or BSI shilling format, this entry must be
the converted decimal length.

P
Array elements are in packed format.
B
Array elements are in binary format.
Blank
Array elements are in al
imal format, Leave this column blank for
an array defined in inpuhnd calculation
specifications.

A
Array is to be checked for ascending
sequence.
D
Array is to be checked for descending
sequence.
Blank
No sequence checking is done. This
column must be blank for any array
created in input and calculations speci-
fications.

Use these columns to describe an alter-
nating array.

Figure 1 0 4 shows the necessary extension specifications
for each type of array. Line 1 specifies a compile time
array, ARRAYC. This array has a total of eight elements
(three elements per record). Each element has an unpacked
length of 12 positions, including 4 decimal places. Line 2
specifies an execution time array ARRAYE, to be read
from file CARDINP. ARRAYE has 250 alphameric elements
(10 elements per record); each element is 5 positions long
and higher in collating sequence than the previous element.
Line 3 specifies an array, ARRAYI, to be read from input
records. ARRAYI has 10 numeric elements each 10 post
tions long.

Any of these specifications may include entries in columns
19-26 (to define a filename of a file to which the array
would be outputat end of job) and in columns
define an alternating array).

Figure 10-4. Varieties of Arrays

input Specifications specifications. How the entries are made depends on whether
the array information is contained in one or more records.

If you are reading array information from input records;
that is, if columns 11-18, and columns 33-35 of the Ex- Note: An array name with a variable index cannot be de-
tension sheet are blank, you must describe that informa- fined as a look-ahead field.
tion in your input specifications as well as in the extension

Array information in One Record

If all of the array information is in one record, it can oc-
cupy consecutive positions in the record or be scattered
throughout the record.

If the array elements are consecutive on the input record,
they may be loaded with a single input specification.
Figure 10-5 shows an array, IWARR, of six elements
(twelve positions each) being loaded from a single record
from the file ARRFILE.

If the array elements are scattered thoughout the record,
they may be defined and loaded one at a time, one to a
specification line. In Figure 10-6, an array, ARRX, of six
elements with 12 positions each, is loaded from a single
record from file ARRFILE; a blank column appears be-
tween each two elements.

Following are the input specifications required for loading
an array from a single input record:

Column

44-47
and
48-5 1

Entry

Blank

P (packed), B (binary) or blank.

Field location of either an entire array
(consecutive elements) or individual field
locations of single elements of the array.

This column can be left blank. If a
decimal position entry is made, it must be
the same as that specified on the Ex-
tension sheet.

IBM InVlmPI.wol Bull- MmI.RCmO..I,M
Form X21-gall
Prlotld n U.S.A.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

Date

RPG INPUT SPECIFICATIONS

-r&w 1 1 1 1 1 1 1
Inrtructhon 1 1 Punch 1 / / 1 I

Figure 10-5. Defining an Input Time Array with Consecutive Elements

10-8

The name of the array or the name of a
single element (array name with index).
This array name must be the same name
as that used on the Extension sheet.

Blank

Field Record Relation indicator. See
Columns 63-64 in Chapter 7 for informa-
tion on this entry.

Blank

Sterling field. See Sterling in this chapter
for information on this entry.

Array Information in More Than One Record

If the array information is in two or more records, there
are many methods that may be used to introduce the array
to the system. The method you use is primarily based on
the size of the array and whether the array information is
all together in the input records.

Examples 1-4 show four methods of loading and sorting
array information.

Keep in mind that the RPG I1 program processes one
record at a time. You cannot process the entire array until
dl of the records containing the array information have
been read and the information moved into the array fields.
It may, therefore, be necessary to suppress calculation and
output operations until the entire array has been read into
the system.

RPG INPUT SPECIFICATIONS

Punchtog Graphic
f n ~ r u c m n

Punch j

Figure lad. Defining an Input Time Array with Scattered Ebments

Figure 10-7 shows the creation of an array, ARRZ, using
fields from input records. Fields are extracted from records
from fie CARDFILE, and the square root of each of these
fields is moved into an element o f t e array- The Output
fde for this job is named OUTARR. Indicator 25 is on when
the record containing data for the first five elements of
ARRZ has been read. Similarly, indicator 26 is on when
data for the remaining four elements has been read. In-
dicator 27 is turned on only after all elements have been
calculated. Because not the ekments of ARRZ Can be

established in one RPG cycle, you will want to suppress
(that is, skip) any calculations or output functions which
use ARRZ or any of its elements until all of the elements
are calculated. To suppress these calculations and output
functions you would use indicator 27 as a conditioning
indicator in any calculation or output specification which
uses ARRZ or one of its elements. Line 14 of the Calcula-
tion sheet of Figure 10-7 shows indicator 27 used to con-
dition an operation which should not be performed until
all elements of ARRZ have been calculated.

In-dad BuwnanMEhinr. -im

RPG EXTENSION AN0 LINE COUNTER WECIFICATIOMS

F a m X21.0a)l
P & M in USA.

RPG INPUT SPECIFICATIONS 75 7% 77 78 79 80

Isto

kwm

Using Arrays

Arrays can be used in input, output, or calculation specifi-
cations (see Examples). The elements in an array can be
referenced individually, or the array can be referenced as a
whole. Individual elements are referenced by an array name
plus an index. The array name alone references the entire
array.

Array Name and index

The array name must begin in column 27 of the Extension
sheet. The array name cannot begin with the letters TAB.

However, the name can contain any other combination of
letters and numbers but must not begin with the letters
TAB. The first character must be alphabetic. The name
cannot contain blanks or special characters. The name must
not be the same as any other name used in the program.

The length of the array name depends on how the array
is being used. The array name can be from 1-6 characters
long. The array name by itself is used only when referencing
the entire array.

If individual elements of the array are to be referenced,
the array name will require an index. The array name and
index must be separated by a comma. The array name plus
comma plus index will never occupy fewer than three char-
acter positions. Total length of an array name plus comma
plus index entry is limited to six positions (input, output
specifications, or Result Field of calculation specifications)
or ten positions (Factor 1 or Factor 2 of calculation speci-
fications).

Prinmd in u..%A

RPG CALCULATION SPECIFICATIONS

Figure 10-7. Array to be Built Dur ~ ~ l ~ ~ f ~ t i ~ ~ ~ (part 2 of 2)

Some examples of array names with and without indexes
are as follows:

Valid

ARAYO 1
B
AR, I
X,W2

Invalid

BALANCE
6TOTAL
TOTAL-
CR TOT
A l , A1
BAL,XXI

(the first klement of array AR)
(where YY2 is a field name)

(array name has more than six characters)
(first character not alphabetic)
(name contains special character)
(name contains blank)
(array is used as index)
(name including comma has more than
six characters. This name is valid for
Factor 1 and Factor 2 of the calculation
specifications only .)

Calculation Specifications

You can reference an entire array or individual elements
in an array using calculation specifications. Process indivi-
dual elements like normal fields. Remember, if an array
field is to be used as a result field, the array name plus com-
ma plus index cannot exceed six characters.

To reference an entire array use only the array name. You
may use it in Factor 1, Factor 2 or the Result Field. The
operations you may use are: ADD, Z-ADD, SUB, 2-SUB,
MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO,
MHLZO, MHHZO, DSPLY (array element only), DEBUG,
BITON, BITOF, XFOOT and LOKW.

The following rules apply when using arrays in calculations:

When the factors and the result field are all arrays
with the same number of elements, the operation is
performed using the first element from every array,
then the second element from every array, etc., until
all elements in the arrays are processed. If the arrays
do not have the same number of entries the operation
ends when the last element of the array with the fewest
elements has completed processing.

When one of the factors is a field or constant and the
other is an array, and the result field is an array, the
operation is performed once for every element in the
shorter array. The same field or constant is used
in all of the operations. If the result field is not an
array, the operation is performed once, using only the
first element of the specified array.

Resulting indicators cannot be used due to multiple
operations being performed. Exceptions are XFOOT
and LOKUP which allow resulting indicators.

You can use indicators (columns 7-1 7) to condition
the operation.

The arrays you use in arithmetic operations must be
numeric. You may indicate Half Adjust (column 53)
if you wish.

Two operations are unique in their handling of arrays.
They are XFOOT and LOKW.

XFOOT

The XFOOT operation code totals the contents of all
elements in the array named in factor 2 and places the
total in a field named in the result field. This operation may
be conditioned by indicators in columns 7-1 7. You can
half-adjust the total in the result field and use resulting
indicators if you wish.

LOKUP

Since arrays are similar to tables, the LOKW operation
code can be used to determine whether the contents of an
element in an array matches a search word. No special
storage areas are required. The specifications for arrays are
the same as for tables except that for LOKW, the result
field cannot be used if Factor 2 is an array (see Operation
Codes, Lookup in this chapter).

If you use just the array name in referencing the array, the
search begins at the first element in the array. You must
use indicators to determine if a match was found.

If you use the array name and an index (which may be a
field name or a literal), the search begins at the element
identified by the index. If a match is found, the number
of the array element containing the match is placed in the
field used as an index. If no match is found, the index
field is set to 1.

If a literal was used as an index, indicators must be used
to determine if a match was found. The content of the
element referenced by the literal is not changed.

Columns

6

23-3 1

32-37

38-39

4043

44

45-70

7 1-74

individual Fields

Output inhcators. If used, they pertain to
the entire array. See Colum~s 23-31 in
Chapter 9 for more information.

Array name. This must be the same name
as that used on the Extension sheet.

Edit Code and Biank After. These columns
may be used with arrays. See Column 38
and Coletrnn 39 in Chapter 9 for more
information.

Enter the record position where the last
field of the array is to end. Be aware that
you must allow room for any editing you
perform.

P = pack each element.
B = convert each element to binary.

Edit word. If you use an edit word, it
pertains to all fields in the array. Do not
use an edit word if an edit code is used.

Blank.

If an output record is to contain certain fields from an
array but not the entire array, describe the fields the same
way you do normal fields. Use the array name and index
(separated by a comma) as the field name. The index can
be either a field or a number. Note that the length of the
array name and index, including the comma, must not ex-
ceed six characters (the maximum length of a field name).

Output-Format Specifications
Editing Arra ys

You can reference an entire array or individual element in
an array in output specifications.

Entire Array

If an array is to be punched or printed in an output record,
describe the array along with any normal fields for the
record. The columns you use to describe the array and
their contents on the output-format sheet are:

In editing arrays, remember that when you reference the
entire array any editing you specify applies equally to all
fields in the array. If you require different editing for
various fields, you have to reference the fields individually.

When you specify an edit code for an entire array (column
381, note that two blanks are automatically inserted lo the
left of every field in the array. When you specify an edit
word instead, the blanks are not inserted. The edit word
must specify all the blanks you want inserted.

Examples is to contain 12 elements, each 5 positions long. On the
Input sheets each array element is given a separate field

e 10-8 shows the straight substitution name. On the calculation sheet each input field is moved
an array into the system. Array A into an array element.

Blanks and other fields can appear on the input records
since the From and To entries identify the location of the
field. The array fields need not be in order. They can be
ordered in the calculation specifications.

The disadvantages of this method are the amount of coding
required for entering a large array and the amount of core
required to set up the array.

Example 2: Figure 10-9 illustrates a method of loading
an array using indexed entries on the input records. Once
again the example shows a 1Zelement array with element
length of 5; however, because of the record identifying

indicator the array could be made larger without using
additional coding. This is accomplished by assigning a
different value to 11,12, etc. on each input record. Each
record that turned on 03 would then load another 10
elements into array AR. The short record (end of the array)
turns on indicator 04 in the example.

Blanks and other fields can appear on the input records
since the array elements and their index are identified by
From and To entries.

While this method requires a minimum of coding and no
calculations to set up the array, a considerable amount of
work is required to set up the indexing scheme for the
input records.

RPG INPUT SPECIFICATIONS

Date
75 76 77 78 79 80

-

Prwam

prw="'"M

Figure 10-9. Building an Array Using Input Fields as Indexes

Example 3: In Figure 10-10 we see a method whereby
eighteen 5-position elements of array AR1 are loaded with
only 2 specification lines. No blanks or non-array infor-
mation can appear on the input record. On succeeding
lines of the Input sheet other elements of AR1 are loaded
one after another until the array is f a . Each additional
element is coded on a separate line. Each new record re-
quires a separate means of iaentification. For example, if
another 03 record followed the first, the fields on the
second record would overlay the fields read in from the
first record.

The method illustrated in Example 3 works well for
small arrays.

Example 4: The best method of loading large arrays
requires the building of two arrays, one to contain the
fields read in from a single record, the other to hold the
entire array. In Figure 10-1 1 we are loading a 22-element
array, each element being five positions long. Ten elements
are read in from each record. Blanks or other fields cannot
be mixed with the array information.

On the Extension sheet define two arrays:

ARI - Ten elements, five positions long, zero decimal
positions.

AR2 - Twenty-two elements, five positions long, zero
decimal positions.

The first record read must be identified by a I in position
80. This turns on resulting indicator 03 and initializes re-
sult field IN which will be used to contain the count of all
records read. As shown in the Calculation sheet in Figure
10-1 1, the following actions then occur:

IN is set to 1 and resulting indicator 04 is set on.

IN1 issetto 1.

The contents of element 1 of AR1 is moved into
element 1 of AR2.

1 is added to IN. IN now contains 2.

IN is compared to 22. Since it is less than 22,
continue.

1 is added to IN1. IN1 now contains 2.

IN1 is compared to 10. Since it is less than 10,
continue.

The conditions of line 10 (04 on, 55 not on) are
met. Go to T1.

The second element or AR1 (IN1=2) is moved into the
second element of AR2 (IN=2).

F r n X2I.BOQI
Pl1"f.d h U S A

RPG INPUT SPECIFICATIONS
75 76 77 78 79 80

Dste
Punching Graphic

P r m - I n s ~ ~ c t i o n Punch
ldanfification

Figure 10-10. Building an Anay Using Fixed Indexes

10-16

The program continues through the same calculations A new record with a 2 in column 80 must now be read.
moving all the fields read into ARI from the first record This turns on indicator 0 4 and starts the calculations. Note
into A R ~ . When the tenth field is moved, IN and I N con- that result field IN is not initialized for this pass. It con-
tain 11 (they Were 0rigina& initialized to I). On this pass, tained 11 when the second record was read and be
the compare on line 9 causes indicator 55 to turn on- Ten stepped to 21 when the 10 fields from the second record
array elements have been read and moved into processing are loaded.
position.

IBM Inirnat8onar Buanssr Ueh ,nm Carpoierion F a m X21.9D93
Printed in U.S.,,

RPG CALCULATION SPECIFICATIONS

Figme 10-11. Building a Functional h a y From an Input Array

In this example we are building a 22-field array; there-
fore, another record containing the last two elements must
be read in. This record must also contain a 2 in column 80.
After the second field of this record has been transferred
into AR2, IN will contain 23. The compare operation on
line 6 will turn on resulting indicator 12. The conditions
on line 7 are now met and we will go to T2. The array
(AR2) is completely built.

The calculations shown for this example can be used to
build any size array. The only changes required are:

1, Line 06. Change Factor 2 to the total number of
elements in the array you are building.

2. Line 09. Change Factor 2 to the total number of
fields you are reading from each record. (If the
last record contains less than this amount, the total
array size in line 06 will handle the short record.)

Example 5: The specifications in Figure 10-12 perform
the function of tabulating three levels of totals. The fields
FIELDA, FIELDB, FIELDC, and FIELDD are added, as
they are read from input records, to the first level totals
L1 A, LIB, LlC, and LID. These first level totals are added
at the time of an L1 control break to totals L2A, L2B, L2C,
and L2D. Similarly, at an L2 control break the second
level totals are added to third level totals L3A, L3B, L3C,
and L3D. In addition, as control breaks occur, L1, L2, and
L3 total output is performed; total fields are zeros after they
are written on the output device.

Now, Figure 10-1 3 shows the same functions being per-
formed using arrays. Note the reduction in coding required
to specify the function. For example, line 5 of the Calcu-
lation sheet performs the same function as lines 5 through 8
of the Calculation sheet of Figure 10-1 2. Similarly, the
output specifications are reduced from 15 lines to 6.

Use any allowable record identification codes and re.
sulting indicators.

rsm-m " S

RPG OUTPUT FORMAT SPECIFICATIONS

,n*..t,o"d Burin- MachlnRComoraiton
S a m X21-9093

IBM P r b m in U.SA.

RPG CALCULATION SPECIFICATIONS 75 76 77 78 79 80

~ ~ r s m ~ t m a".- ~r)l-capntia,
F a m X2t.gOBO

IBM Prinwlm U.S.A.

RPG OUTPUT - FORMAT SPECIFICATIONS
1 9 75 76 77 76 79 80

Figure 10-13. Calculating Totals With Arrays

10-20

Example 6: This example illustrates the use of three
arrays defined as follows. Refer t o Figure 10-14.

Array Name Number of F W s FieM Length

ARA 4 5
ARB 5 10
ARC 6 4

In*- W MEhi~cOmacoma,,m

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS

RPG INPUT SPECIFICATIONS

Punehiw Graphkc
Insuu~fihn

Punch

I
Ptnw In U SA

RPG OUTPUT. FORMAT SPECIFICATIONS I

Onarnt a. Edit word

Figure 10-14. Using Arrays to Format Field Output

Array ARA is contained in the input records corresponding
to indicator 01, ARB in the records corresponding to 02,
and ARC in both types of records. Array ARC and the first
field of array ARA are to be included together in an output
record as are arrays ARC and a field (identified by field X1)
of array ARB. Every field in array ARC is edited according
to the edit word OB.bb&CR. (where b represents a blank).

Assume that the contents of the arrays in the first two
input records are:

Record Array Array Contents

1 ARA 12345678901234567890
ARC 01234567890123456789876N

(note that N equals minus 5)

2 ARB JOWNbDOEbb JOEbSMITNbLEEb
MARXbbJmbKNOTSbTMbTYLERb

ARC (The same as in record 1)

In the firstoutput record, the location and contents of the
arrays are 0, represents a blank):

A m y Location Contents

ARA 85-89 12345
(fist field)

ARC 37-84 b 1.23bbb45.67bbb
89.01 .bbb23.45bbb
67.89bbb87.65bCR

For the second output record assume that the contents
of field X1 is 4. The locations and contents of the arrays
are :

Array Location Contents

ARB 86-95 JlMbKNOTSb
(fourth field)

ARC 37-84 The same as in the first record.

Example 7: Figure 10-1 5 shows a method of writing
short arrays on the output device. The contents of one
element of a 22-element array, AR2, is written to the out-
put file ARFILE each time the specification in line 3 of the
Calculation sheet is performed.

Progrrmmer

" I l l 1 I 1 l I l I l i l I I I l I I l I l l

Rant or Edit Word

Figure 10-15. Printing One Array Element Per Line

CHARACTER STRUCTURE

Character Grouping by Zone or Digit

When selecting characters for record identification purposes
on a digit or zone only basis, it must be understood that all
characters having the same zone or digit will be selected
by the system as meeting record ID requirements. The
reason is that when a character is read into the system it is
converted into an 8-bit code. It is the 8-bit code that is
tested to see if the character meets the requirements of
the record identifying character on the input specifications.
Figure 10-1 7 lists the character grouping for zone or digit
only entries in the CharacterlZonelDigit columns (26, 33
or 40) and character columns (27,34, or 41) of the input
specifications.

As an example, a digit only entry in C/Z/D and an A in
character would cause all records having a / (slash), A, J, or
1 in the specified column to be selected.

Using the same letter A but now selecting records on a
zone only basis, $ and A-I meet the requirements and are
selected.

Negative Number

Negative numbers have a different character structure than
positive numbers because negative numbers are formed by
combining a minus sign with the number. Numbers 0-9
have only digit portions. A minus sign is B zone entry.
Thus when the zone (minus sign) and the digit (0-9) are put
together, a letter is formed. Therefore, negative numbers
are represented in the computer by the characters J-R.

EDITING

To edit a field means to punctuate it by adding commas,
decimal points, negative value signs, dollar signs or constant
information. Data should be edited before it is printed if
it is to be understandable. For example, take the following
unedited data:

Is the amount 367,964? Possibly, but many figures are
dollars and cents and are edited with two decimal positions.
A decimal point is automatic with most edit codes. The
number of decimal positions is defined on the input or
calculation sheet. For this example, let's assume two decimal
positions. If the unedited data is edited with an edit code it
can look like this:

CHARACTER GROUPING
BY ZONE (2)

blank

C

<
(
+
I

Figure 10-17. Characters Interpreted as Having the Same Zone or Digit

If it is edited by an edj
this :

t word, you can make it look like

$**3,679.64

The decimal point prints only on an edited field. You can
edit a field by using an edit code or an edit word.

Note: If the inverted print option is specified on the RPG I1
control card specifications for the job, the edited data is
converted according to the option selected (see Column 21,
Inverted Print in Chapter 3).

Edit Codes

The use of codes is the easiest and most commonly used
method of editing. You simply enter the code that you
want in column 38 of the Output-Format sheet. The

available codes are printed in a table above columns 45-70
of the Output-Format sheet. Figure 10-1 8 further illustrates
these codes and the options they provide. Figure 10-19
illustrates how data looks when it is edited by edit codes.
Each code punctuates the field a little differently. All codes
suppress leading zeros, with the following exception. One
of the World Trade formats for output is a J entry in
column 21 in the control card specifications. For this J
entry, all zero balances and balances with zero values to the
left of the decimal comma are always written or punched
with one leading zero (such as 0,00 or 0,04). The J entry
overrides any edit codes that might suppress the leading
zero; that is, the leading zero for the J entry cannot be
suppressed by any edit codes in the cases mentioned.

- I A I/ Yes / Yes 1 I C R I 1 .OO or o 1 0.00or o 1 yes

Zero
Suppress

Yes

Yes

3

4

Edit
Code

1

2

I Yes I I .W or o / 0.00 or 0 / yes

Yes

Yes

I I I I I I I I I

) Blanks] Blanks I Yes

Commas

Yes

Yes

Sign For Negative Balance

I - 1.00or0 1 0.00 or o I yes

Decimal
Point

Yes

Yes

Print Out On Zero Balance *

No Sign

No Sign

Blanks 1 Blanks I Yes B

- Blanks Blanks Yes

I I I I

Domestic
United Kingdom
World Trade I

.00 or 0

Blanks

- (Minus) No Sign

No Sign

No Sign

- .00 or 0 0.00 or 0 Yes

I
I - Blanks Blanks Yes

World Trade J

0.00 or 0

Blanks

?

CR

.00 or 0

Blanks

Yes

Yes

Yes

* Zero balances for the World Trade format are printed or punched in two ways, depending on the entry made in column 21
of the control card specifications.

** The X code performs no editing.
*" The Y code suppresses the leftmost zero only. The Y code edits a three to six digit field according to the following

pattern: nnfn
nnlnn
nnlnnln
nnlnnlnn

0,00 or 0

Blanks

Yes

Figure 16-18. Edit Codes

Yes

Yes

CR

Normally, when you use an edit code in column 38 you
cannot define an edit word in columns 45-70; however,
there are two exceptions:

1. If you want leading zeros replaced by asterisks, enter
'*'in columns 45-47 of the line containing the edit
code.

2 . If you want a dollar sign to appear before the first
digit in the field (floating dollar sign), enter '$'in
columns 45-47 of the line containing the edit code.

It is also possible to have a dollar sign appear before the
asterisk fill (fixed dollar sign). This is accomplished in the
following manner:

1, Place '*'in column 4547 of the line containing the
edit code.

2 . Place '$'in columns 45-47 of the line following the
edit code line. The end position of the field is re-
quired in both lines.

Zero Balance - **

I I I I 1 I

1 12,345.67 1,234,567 .I20 120 .oO 0,Oo 0

* The character)is a negative zero.
** Zero balances for the World Trade format

are printed or punched in two ways, depending
on the entry made in column 21 of the control
card specifications.

Figure 10-19. Examples of Edit Code Usage

Edit Words

An edit word gives you more freedom in punctuating a nu -
meric field than an edit code. You specify directly whether
commas, decimal points and zero suppression are needed, if
the negative sign should print and, if the output is dollars
and cents, whether you want a dollar sign and leading
asterisks. Figure 10-20 shows examples of edit words.

Edit words are entered in columns 45-70 of the Output-
Format sheet. Each line that contains an edit word must
have entries in columns 32-37 (Field Name) and columns
40-43 (End Position in Output Record). Column 38 (Edit
Code) must not be used.

Editing Considerations

One important thing to keep in mind is that you must leave
exactly enough room on the printed form for the edited
word. If the field to be edited is seven characters long on
the input card, consider whether seven positions allows
enough space for it to print on the report. By the time the
field is edited, it may contain many more characters than
seven.

When computing the length of an edited output field
determine how many of the editing characters are replace-
able. The number of replaceable characters in the edit word
must be equal to the length of the field to be edited. A
replaceable character is a part of the edit word that does not
require a position in the output file. The replaceable
characters are:

0 (zero suppress)
* (asterisk fill)
% (blank)
$ (when it appears immediately to the left of zero

suppress: floating dollar sign)

Note: An extra space must be left in the edit word for the
floating dollar sign. This ensures a print position for the
dollar sign if the output field is full.

A fixed dollar sign, decimal points, floating dollar sign,
commas, ampersands (representing blanks), negative signs
(- or CR) and constant information all require space in the
output field.

Certain combinations of edit characters are not allowed.
For example, 'bbObb0' is invalid. Only one zero suppress can
be used: 'bb*bbO' is invalid but 'bbObb*' is valid. The
asterisk in the last example is considered a constant. The
position of the zero suppress 0 is important. Consider the
following:

'W%' If the field is five characters, the first
position can be zero suppressed.

'0M;tl;II;15My If the field is five characters, no zero
suppression will occur, because a six
position edit word is represented.

Formatting Edit Words

The Printer Spacing Chart is helpful when forming edit
words. Figure 10-21 shows how an output line can be for-
matted using this chart. Note that X s and zeros are used

Figure 10.20. Examples of Edit Words

10-28

Comments Unedited
Data

Edit Words Edited Data

Unedited Data

Item number - 000241
Item cost - 02000
Selling price - 02200
% profit or loss - 25

Printer S~acina Chart

Output - Format Sheet

Edited Output

Figure 10-21. Using the Printer Spacing Chart to Format Data

to show field positions. A zero indicates that all zeros to
the left of this position (leading zeros) are to be suppressed.
An X indicates any number can appear in the position. Use
blanks in place of the F s when writing the edit words. Two

ditional T s are provided for Percent Profit or Loss since
a negative value must be recognizable.

If it is necessary to show a n tive number, a sign must
be included in the edit word. may use either the minus
sign (-1 or the letters CR. These print only for a negative
number; however, the character positions they require must
be taken into consideration when entering the end position
of the field on the Output-Format sheet. Figure 10-21
shows that for the field P RCPL, CR is to be printed for a
negative balance. Assume the field PERCPL contains the
negative data 2N (-25%). The printed output looks fike this:

If PERCPL was positive, C would not print and the same

You may also use a us sign to indicate a negative
baiance. If you want to leave a space between the number
and the negative sign, place an ampersand (
ward before the minus si
as :

If you wish to have a dollar sign printed, you also indi-
cate this in your edit word. To print a dollar sign at the
left of the field called SPRICE, put the dollar sign ($1 next
to the first quote mark and then put in the necessary blanks
and punctuation. A dollar sign in this position is called

The SPRICE fieId in Figure 10-22,
Line A, can look like any of the following (N stands for
any number):

Suppose, however, you do not want a lot of empty space
between the dollar sign and the first digit when zero
suppression occurs. (This is commonly the case when
writing checks.) You may fili in this empty space with
asterisks (*). Instead of using 0 to indicate zero suppresion,
you use the asterisk (*) to indicate that all extra spaces
should be frlled with asterisks. The SPRICE field in Figure
10-22, Line B, look like any of the following (N stands for
any numbe:):

Innmasloo* W"ll"rrr M*h.nrs colvwsi,a

RPG OUTPtJT - FORMAT SPECIFICATIONS

10-22. Different Edrt Words Used on the Same Field

You may want the dollar sign to always be next to the
left-most digit instead of filling in the space with asterisks
or leaving extra blanks. This is indicated in the edit word
by placing the $ next to the zero suppress 0. A dollar sign
which changes positions depending upon the number of
positions zero suppressed is known as a floating dollar sign.
When printed, the SPRICE field in Figure 10-22, Line C,
can look like any of the following:

Note that an extra space must be left in the edit word for
the floating dollar sign. This ensures a print position for the
dollar sign if the output field is full.

FILE TRANSLATION

RPG I1 allows you to translate any character code into
another character code. This capability is file translation.

Characters can be translated in input, output, update,
and combined files. When update or combined fdes are
translated, both the input and output portions of these files
are translated.

A different character code used as input can be translated
into the code used by System/3, and the code used by
System13 can be translated into a different code for output..

Specifications for File Translation

You must first indicate that there are files to be translated.
Do this by entering an F i n column 43 of the RPG I1 con-
trol card specifications. Table input cards must also be
used to specify how the translation is to be done. The
following entries are needed for each fde translation table
input card used :

Columns 1-6: Enter *FILES to indicate that all input,
output, update, and combined files are to undergo transla-
tion (both the input and output portions of update and
combined files will be translated). Then use the specifica-
tions listed below, beginning with columns 9-10. All files
will be translated according to the table specified begin-
ning in column 9.

If only certain fdes are to be translated, they must be named
individually in column 1-8 as follows:

Columns 1-8: Enter the fdename of the input, output,
update, or combined file to be translated (both the input
and output portions of update and combined files will be
translated). Then use the specifications listed below, be-
ginning with columns 9-10.

Columns 9-15: Enter the hexadecimal number corresponding
to the character which is to be translated or replaced by
another character.

Columns 11-12: Enter the hexadecimal number of the
character taking the place of the character being translated
(replaced).

Columns 13-1 6, 17-20, and 21-24, etc: These groups of
columns are used the same way as columns 9-1 2 are used.
The first two columns of a group give the character which
is to be translated to the character named in the last two
columns of a group.

All tables for one file must be kept together. The file
translation table input deck must be preceded by a card
with **$ in columns 1-3. The remaining columns of this
card may be used for comments. The file translation deck
must directly follow the RPG specifications in the source
program (see Figure 1-2).

Example

Assume that while working for a department store,
you must process cards serving as sales slips for all items
sold. Each card contains a punched and printed record of
the actual, or wholesale, cost of its associated item along
with a retail price.

Obviously, wholesale cost must remain confidential,
and so the store uses individual letters of a code-name in
place of numbers comprising wholesale costs.

A typical code-name generally consists of a combination
of letters that can be easily remembered by the store's
personnel. The only restriction, however, is that the code-
name must contain ten different letters, one for each of
the numbers zero through nine.

Using the code-name BUCKINGHM to represent num-
bers one through nine and zero, the letter B represents the
number 1; letter U represents number 2, etc. Letter M
represents zero. Individual letters are combined to repre-
sent each item's wholesale cost. Thus a wholesale cost of
BBU.CC translates as 112.33; that is, one hundred twelve
dollars and thirty-three cents.

In the following chart, hexadecimal equivalents of each
letter in the word BUCKINGHM are listed along with the
hexadecimal equivalents of numbers one through nine and
zero.

Letter in
Code-name

B

U

C

K

I

N

G

H

A

M

Hexadecinaa2
Equivalent

C2

E4

c 3

D2

C9

D5

c 7

C8

C1

D4

Number

1

2

3

4

5

6

7

8

9

0

Hexadecimal
Equivalent

F 1

F2

F3

F4

F5

F6

F7

F8

F9

FO

See Figure 10-23. Note that if letters BBU were read and
never translated, hexadecimal equivalents C2, C2, and E4
would be used by Systeml3. As a result, it would be im-
possible to perform an arithmetic operation involving the
wholesale cost, BBU. Therefore, with the aid of file trans-
lation, the computer replaces the letters BBU with numbers.

A file translation table input card specifications for letters
in the word BUCKINGHAM is as follows:

Column Entry

"FILES
Blank
C2F1
E4F2
C3F3
D2F4
C9F5
D5F6
C7F7
C8F8
C1F9
D4FO

Hexadecimal equivalents are merely a different way of Only the letters of the previous example will be specified
representing the 8-bit code that the computer examines for translation. All other characters will be handled in the
to recognize individual characters in your language. normal manner.

1nte""ttarul Bur- M.&ncr rorplr.a0n

TRANSLATION TABLE AND ALTERNATE COLLATING SEQUENCE CODING SHEET

\
1

C2, which if translated
would represent the
number 1, is the letter
8 in the code used by
the System/3.

E4, which if translated
would represent the

.number 2. is the letter
u in the code used by
the System/3.

ART: 51757

Figure 10-23. Differences in Character Codes

T ransletion Table and Alternate Collating Sequence Coding
Sheet

You will find this coding sheet helpful for determing the
correct entries you wish to make in the file translation
table input card. Figure 10-24 shows the entries made on
the sheet for the previous example.

INDICATORS

Indicators are used to signal when certain conditions occur
or do not occur. After you have assigned an indicator (on
one of the specification sheets) to signal a certain condition,

the indicator assigned is associated with that one condition
throughout the entire program.

Many times you want operations to be performed only
when certain conditions occur. Because the indicator
associated with the condition tells whether or not the
condition has occurred, you may use the indicator to
signal whether or not the operation should be done. In this
way, indicators condition operation.

The status (on or off) of an indicator assigned on a specifi-
cation line is determined by the results of processing the
instruction on that specification line. If the condition has
been satisfied, the indicator turns on; if it has not, the indi-
cator turns off.

TRANSLATION TABLE hND ALTERNATE COLLATING SEWENCE CODING SHEET

&'- I

This is the hexzdecimal equivalent of the This is the hexadecimal eq!ivalent of the
character to be translated. Synem/3 character that will ba substituted

for the charactef that is to be trmrtated.

Figure 10-24. Specifications for File Translation Input Cards

1f3-34

Usually indicators are set on or off by the conditions in the 2 . The status (
program itself. However, you may also set certain indicators (see Columt~s 65-76) in Chapter 7) .
by the SETON and SETOF operation. At the start of each
program all indicators are off except the 1P indicator, LO 3. The results of a caIculation operation (see Coltimns
indicator, and any external indicators which have been set ter 8). See Exmples, Example I and
on. All indicators which you may use are shown in Figure Example 2,
10-25.

Any of these indicators which you have ass~gned may then
also be used to:

01-99 (Field Indicators, Record Identi.fying Indicators, I . Condition calculation operations (see Coll~mns 9-1 7
Resulting Indicators, and Conditioning Indicators) in Chapter 8).

You may assign any of the numbers 01-99 to indicate such 2 . Condition output operations (see Columns 23-31 in
things as: Chapter 9).

1 . The type of record read (see Columns 19-20 in 3. Establish field record relations (see CoLmns 63-6
Chapter 7). in Chapter 7).

File
Description
Specifications lnput Specifications Calcuiation Specifications

Output-
Format
Specifications

l ndicators

Note: X denotes the indicators that may be used.
* Not valid on look-ahead fields.
I * When field named is not a match field or a control field.
*** Only for detail or heading lines.
***I Cannot condition an exception line, but may condition fields within the exception record.
***** Not valid for table input files.

Figure 1045. &did Indicators

Indicators reflect only one condition at a time. When
one indicator is used to reflect two or more conditions, it
is always set to reflect the condition in the last operation
performed. Therefore, it is not usual practice to assign the
same number as a field indicator and/or resulting indicator
more than once in a program. When you use such an indi-
cator to condition other operptions, you may get wrong
results since the indicator may not always reflect the con-
dition you think it does (see Examples, Example 3).

If any indicator 01-99 is set on or off by the operation
codes SETON or SETOF, it remains on or off until an in-
struction in a specification line containing that same indi-
cator is performed. The indicator is then set to reflect a
condition from the operation performed.

Examples

Example 1: Figure 10-26, insert A, shows that resulting
indicator 10 has been assigned to signal when a minus
condition occurs. Indicator 10 turns on if the result after
the subtraction operation has been performed is negative.
It then remains on (or off depending upon the result) until
the same operation is performed again. It is always set to
reflect the result of the subtraction operation each time it
is done.

Example 2: Figure 10-26, insert B, shows the same oper-
ation as insert A. However, this operation is conditioned
by indicator 01. The operation is done only when indica-
tor 01 is on. Resulting indicator 10 is set on only when the
result of the operation is negative.

Example 3: Figure 10-26, insert C, shows the use of the
same indicator (10) in two lines. The status of this indica-
tor reflects the result of each operation. For instance, indi-
cator 10 turns on after the operation in line 05 has been
done if the result of the opeation is negative. However if the
result of the operation in line 07 is positive or zero, indica-
tor 10 turns off. It is then reset only when the operation in
line 05 is done again.

HI-H9 (Halt Indicators)

You may use any halt indicator to:

1. Cause the program to stop after finding an unaccep-
table condition.

2 Condition calculation or output operations that are
not to be performed when such an unacceptable
condition has occurred. This is necessary because all
calculation and detail output operations are still
performed for the record that caused the error before
processing stops.

Factor 2

Figure 10-26. Indicators 01-99

3. Establish field record relations (see Columns 63-64
in Chapter 7).

Using the same indicator to test for two or more error
conditions is not usually good practice. For example,
Figure 10-27, insert A, shows the use of HI in two different
specification lines. If the result of the calculation operation
in line 01 is negative, H1 turns on. This is an error con-
dition. Processing continues, however, until this program

cycle is completed. Thus, the operation in line 03 is done.
If the result of this subtraction operation is positive, H1
turns off. The program does not stop because H1 is not on,
even though an error condition has been found in line 01.

The use of two different halt indicators as shown in
Figure 10-27, insert B, does not allow a situation like the
one just described to occur.

IBV inarnarconei Buanerr ~ i r h ~ n ~ corporstlon Farm X219093
Printed in U S A

RPG CALCULATION SPECIFICATIONS

Dare

Program

This operation is not conditioned.
@ It will always be done even when

the halt indicator is on to signal
an error condition.

IBM Intarnatmat Buranaa M ~ c h m s l Ccmorsaon Farm X Z , 9093
Prtntsd in U s A

RPG CALCULATION SPECIFICATIONS

Programmer

Indlc*tors

"+
If H I turns on as a result of the operation @ in line 01. this operation is not performed.

Figure 10-27. One Haft Indicator Testing for Two Error Conditions

OA-OG,OV (Overflow Indicators) Any halt indicator assigned to test for zero or blank is
off at the beginning of the program.

Note: If a halt indicator stops processing, it is turned off
when the system is restarted. If more than one halt indi-
cator turns on during a program cycle, each halt indicator
must be considered separately. Every time the program
is restarted, only one halt indicator is bypassed.

1P (First Page Indicator)

Use the first page indicator to condition those lines which
are to be printed on only the first page. These lines are
usually heading lines. Data is provided for lines conditioned
by the 1P indicator by constants entered in columns 45-70
of the Output-Format sheet.

All lines conditioned by the 1P indicator are printed out
even before the first record from input file is processed.
Therefore, do not condition output fields which are based
upon data from input records by the 1P indicator. You get
meaningless output if you do.

Calculation operati~ns cannot be conditioned by the 1P
indicator either. This indicator is on at the beginning of
the program and turns off after the detail output has been
performed on the first data record.

MR (Matching Record Indicator)

Use the MR indicator to condition calculation and output
operations which are to be done only when records match.

The MR indicator turns on when a primary file record
matches any secondary fde record on the basis of the
matching fields indicated by M1-M9. The matching record
indicator is always set on or off (according to a match or
nonmatch field) before any calculation operations which
are not conditioned by control level indicators (columns
7-8 of the caIcuIation specifications) are performed. It
retains this setting for one complete cycle. If all primary
fde records match all secondary file records, the MR indica-
tor is always on.

If record types for which no matching fields have been
specified are read, they are processed as if they belonged to
the same match group as the record previously processed.
MR is always off for these types.

Overflow indicators are used only on the printer fie. Use
then1 primarily to condition the printing of heading lines.
If you intend to use an overflow indicator to condition
output lines on the printer, you must assign an overflow
indicator to the printer file on the File Description sheet
(columns 33-34). This same indicator must then be used
to condition all lines that are to be written only when over-
flow occurs.

If the destination of a spaeelskip or print operation faUs
within the form overflow area, the overflow indicator is
turned on and remains on until all overflow lines are printed.
However, if a skip is specified that advances the form past
the overflow line to the first line or past the first line on a
new page, the overflow indicator does not turn on. Certain-
ly, you do not want the overflow indicator on to signal a
need for a new page when you just skipped to a new page.

If an overflow indicator is used as a conditioning indica-
tor, it indicates that output is to be performed at overflow
time. This applies regardless of whether or not the line
conditioned by the indicator is in an AND or OR relation-
ship with other indicators.

When an overflow indicator is used, a form skip specifica-
tion should be made on the last Iine conditioned by an over-
flow indicator. Otherwise, forms do not advance. Remem-
ber, they advance automatically if you do not use overflow
indicators.

The overflow indicator may e set by the SETON or
SETOF operation code, After all total records have been
written, however, the indicator is set as it normally is in
accord with the overflow line. See Overflow lrtdicators
in this chapter for further information.

L1-L9 (Control Level lndieatorsl

Control level indicators are used to signal when a change
in a control field has occurred. Because they turn on when
the information in a control field changes, they may be
used to condition operations (such as finding totals) that
are to be performed only when all records having the same
information in the control field have been read. They may
also be used to do total printing or to condition operations
that are to be done on only the first record in a control
group. Control level indicators always turn on after the
first record of a control group is read.

Control level indicators may be used in three different
types of specifications: input, calculation, and output-
format.

Input Specifications LO Indicator

If a control level indicator is entered in columns 59-60
of this sheet, the field described in columns 53-58 is
declared to be a control field. This means that the field
on each card read is matched against the same field on
the previous card. If the information is not the same,
the control level indicator turns on. All lower level
indicators turn on when a higher level indicator turns on.
For example, if L8 turns on, L1-L7 also turn o n

When a control level indicator is used on the Input
sheet in the Field Record Relation columns (63-64),
the data from the field named in columns 53-58 is accepted
and used only when the control level indicator is on.

If record types without a control field are read, they are
treated as if they belong to the same control group as the
preceding record. No control level indicator is set for
them Control level indicators may also be used to estab
lish field record relations (see Columns 63-64 in Chapter 7).

Calculation Specifications

When a control level indicator is entered in columns 7-8
of this sheet, it conditions the operation so that it is done
only when a control field changes. If any control level
indicator appears in columns 9-1 7, the operation is done
only on the first record of a new control group.

A control level indicator may be turned on or off by
operation codes SETON and SETOF. However, these
operations do not cause all control level indicators lower
than the one specified to turn on or off. For example,
when L2 is set on, L1 does not automatically turn on.

Output-Format Specifications

Control level indicators entered in columns 23-3 1 of this
sheet specify when output records are to be written:

1. If the control level indicator is entered along with a
Tin column 15 and no overflow indicator is used,
the record is written only after the last record of
a control group has been processed,

2 If the indicator is entered along with a D in column
15 and no overflow indicator is used, the record is
written only after the first record of the new control
group has been processed.

3. If the control level indicator is entered along with an
overflow indicator, the record is written after the

The LO indicator is never assigned, but it is always auto-
matically on. Thus, it can be used to condition certain
calculation or output operations. LO is used in the same
way and for the same purpose as the other control level
indicators. However, it is used only when Ll-L9 cannot
be assigned because the input data records have no field
available which can serve as a control field.

LR (Last Record Indicator)

Use the LR indicator to condition all operations that
are to be done only at the end of the j ob This indicator
automatically turns on after the last record of the input
file has been processed. When LR turns on, all other
control level indicators used also automatically turn on.
If LR is on, the job ends after all total records have been
written. It is also possible to turn the LR indicator on by
a SETON operation. This does not, however, cause all
other control level indicators used to turn on. (LR cannot,
however, be turned off by a SETOF operation.)

U1-U8 (External Indicators)

Indicators U1-U8 are external indicators. This means
they are set prior to processing by an operation control
statement. Their setting cannot be changed during
processing. Thus, the program has no control over them.

You may use these indicators as fde conditioning indi-
cators. They tell whether or not a certain file is to be
used for a job. For example, you may have a job which
one time requires the use of two output (or input) files
and another time the use of only one. Instead of writing
two different programs (one using one file, the other two),
you can condition a file (in the file description specifi-
cations) by an external indicator. When the indicator is
on, the file is used; when it is off, the file is not used.

If a file is conditioned by an external indicator, all output
data handled by the file must also be conditioned by
the same indicator. Any calculation operations which
should not be done when the file is not in use should also
be conditioned by the same indicator.

In addition to using these indicators as file conditioning
indicators, you may use them:

1. To condition calculation operations.

2 To condition output operations.

overflow line has been sensed (provided a control 3. As field record relation indicators (columns 63-64
break has also occurred). of input specifications).

LOOK AH EAD

RPG programs process one record at a time. Normally,
only the information from the record being processed is
available for use. However, the RPG II look ahead feature
enables you to use information from recorhs that follow
the one being processed Tfie fields containing the infor-
mation are called look ahead fields.

Look ahead fields always apply to the next record in
the file, provided the file is not a combined or update
file. Thus, if you wish to use information both before
and after the record is selected for processing, you must
describe the field twice, once as a look ahead field and
once as a normal field

For combined and update files the look ahead fields
apply to the next record in the file only if the current
record was not read from that Me. Therefore, when you
are reading from only one file and the file is a combined
or update file, look ahead fields always apply to the
current record

Figure 10.28 shows the processing of three records
from two input files, file A and file B. The first record
from each Me is read (see Figure 10.28, insert A). In
Figure 10-28, insert B, record A1 is selected for processing;
in Figure 10.28, insert C, record A2; and in Figure 10.28,
insert D, record B1. The records available for look ahead
during the processing of these records are:

Look Ahead Fields
Record Processed Records Available

The look ahead feature can be used only with input, update,
or combined files. Chained files or demand files may not
use the look ahead feature. To use the look ahead feature,
you must describe the look ahead fields and reference them
as you do normal fields. You can describe one set of look
ahead fields per file; the description applies to all records in
the fde, regardless of their type. (The specifications for de-
scribing the fields are given later.)

A2 and B1
A3 and B1
A3 and B2

In general, when the record being processed is from an
input file, the next record in the input file is available
as are the records which were read, but not selected,
from the other files.

File A: R i m Fib B: Sxondry

Match Fields /

from fils A.
2. R e d f im record

from fib 8. I-
Am into which records
rs nsd ired r a l .

Arw into *id, remrd. rs
rd&W for Procainp ipaeo. ra).

from fils A. =I

I
1. Select first record from I

file A for processiw. I i
I

I

(Rocan-
I

!
I
I

Figure 10-28. Available Records: Two Input Files (Part 1 of 2)

ecords: Two Input Files (Part 2 of 2)

ART 51766.2

Figure 10.29 shows the same files as Figure 10.28 with
one exception: file A is a combined file. The records
available for look ahead during the processing of the
three records are:

Records Prctcessed Records Avar'lable

A1 andB1
A2 and B 1
A3 and B2

In general, when the record being processed is from a
combined or update file, only the records which were

read, but not selected, from the other files are available
for look ahead. The next record from the combined or
update file is not read until after the current record has
been processed. Therefore, the next record from the
combined or update file is not available for look ahead.

After the last record from a file has been processed,
every look ahead field for the file is automatically filled
with 9's. For example, a field three record positions
long contains 999. The 9's remain in the fields until the
job ends. Note also that blank after (B in column 39
of the Output-Format sheet) cannot be used with look
ahead fields.

File A File B
Sscondaiy: Input File

Rimarv: Combined File

Match Fields

v

Area into which records
are read (read ares).

I Area into which records are selected
) for processing (process areal.

I
I I

- -1
I I
I C--------- Record A1 has moved into the process area,

/' 1 A1 I
I 1

but a data image of A1 remains in the read

I I I Read Area area until A2 is read in. A2 will not be read
I I I
I I I in until A1 is completely processed. There-
1 I
! l. _----....---4 fore, while A1 is in the process area, records

--_------------- available for look ahead are E l and A1 (the

7 data image).
I
I
I

I
I

I

I
I
I I

I I
I

I Process Area

I

! I I

Figure 10-29. Available Records: One Input File, One Combined File (Part 1 of 3)

Read Area

Process Area

- - - - - - -
ART: 55014.2
-- ---- -

Figure 10-29. Available Records: One Input File, One Combined File (Part 2 of 3)

+

Pracged Records

Figme 10-29. Avaitabfe Records: One Input File, One Combined File (Part 3 of 3)

their type. Look ahead fields must not be described for 3.
, and they must not be used as array fields.
fields on the Input sheet before or after the

field descriptrons for any of the records in the file. To

4.
Place any alphabetic characters u
15-16, Descrik the look ahead fieids on separate lines
fbflow~ng the ** Iine (as in Figure 10-30 Bart 2, insert B).
Descrlbe each field as follows:

1 . have columns 1-43 blank. 5.

- - - . .- - -
ART: 55014.3
------ -

In columns 44-5 1, identify the record positions in
which the field is located.

If the field is numeric, indicate in column 5 2 the
number of digits to the right of the decimal point.
If the field is not numeric, leave column 5 2 blank.

In columns 53-58 identify the field by name. If
the field is also one of your normal fields, be sure
to use a different name here. Use this name to refer
to the look ahead field.

Leave columns 59-74 blank.

Examples MULTIFILE PROCESSING

Multifile processing applies to programs that read records
from a primary file and one or more secondary files. It

Figure 10-30 shows a job which reads records from two is the name given to the methods by which the programs
files. The primary f i is named PRIh'fARY; the secondary select records for processing. The method used depends
file, SECONDRY. If a record from the primary file matches upon whether or not match fields are used in the records.
one from the secondary file, the information in positions
1-10 of the secondary file record is placed in positions
31-40 of the primary file record. When there is no match,
a 6 is placed in position 1 of the primary file record. The
6 will indicate an unmatched record in the primary file.

Because the primary file record is processed first when it
matches a secondary file record, the information from the
secondary file record has to be described as a look ahead
field.

No Match Fields

When no match fields are used, records are selected from
one file at a time. When the records from one f i e have
ail been processed, the records from the next f ie are
selected. The files are chosen in this order:

1. primary file

2 secondary files in the order in which they are
described in the file description specifications.

Brn
intern*ionsi eumnaa M S L ~ N Z C O I I I D ~ ~ O ~ F W ~ x21.m

Pri"?d in U.S&

RPG CONTROL CARD AND FILE DESCRIPTION SPECIFICATIONS
1 2 75 76 77 78 79 6U

ogrsm

Control Card Specifications

File Cescr~ption Specifications

Figure 10-30. Look Ahead Fields (Part 1 of 2)

,ntsm.r,on*t Bus,- M m l n a C a p a s l l M

RPG OUTPUT - FORMAT SPECIFICATIONS

Place the look ahead field from secondary
records into positions 31-40 of the primary

0
Figure 10-30. Look Ahead Fields (Part 2 of 2)

Match Fields Arithmetic Operations

When match fields are used, records are selected according
to the contents of the match fields. One record is read
from every file, and the match fields in the records are
compared. If the records are in ascending order, the
record with the lowest match field is selected for proces-
sing. If the records are in descending order, the record
with the highest match field is selected.

When a record is selected from a file, the next record
from the file is read. At the beginning of the next program
cycle, the new record is compared with the records that
had not been selected during the previous cycle and one
is selected (Figure 10.31).

Records without match fields can be included in the
files. Such records are selected before records with match
fields. If two or more of the records being compared
have no match fields, selection of those records is deter-
mined by the priority of the files from which the records
came. The priority of files is:

1. primary file

2 secondary files in the order in which they are
described in the file description specifications.

When the primary record matches one or more of the
secondary records, the MR (matching record) indicator
is turned on. The indicator can be used to condition
calculations or output for the record that is selected.
If one of the matching records must be selected, the
selection is determined by the priority of the files from
which the records came.

OPERATION CODES

You are able to perform many different types of opera-
tions on your data using the RPG I1 language. Special
codes have been set up which indicate the operation to
be performed. Usually these are just abbreviations of
the name of the operation. You must use these codes to
specify the operation to be performed.

Operations may be divided into nine categories; all
codes in each category are explained in this section.
Examples are also given for many codes. Figure 8-10
(Chapter 8) provides a summary of the operation codes.
It also shows what other specifications need to be used
with each code.

Arithmetic operations can be performed only on numeric
fields or literals. The result field must also be numeric. For
arithmetic operations in which all three fields are used:

1. Factor 1, factor 2, and the result field may all be
different fields.

2. Factor 1, factor 2, and the result field may all be
the same field.

3. Factor 1 and factor 2 may be the same field but
different from the result field.

4. Either factor 1 or factor 2 may be the same as the
result field.

The length of any field involved in an'arithmetic operation
cannot exceed 15 characters. If the result exceeds 15
characters, characters may be dropped from either or
both ends depending on the location of the decimal
point. The results of all operations are signed (+,-). Any
data placed in the result field replaces the data that was
there previously.

Add (ADD)

Factor 2 is added to factor 1. The sum is placed in the
result field. Factor 1 and factor 2 are not changed by the
operation.

Zero and Add (Z-ADD)

The result field is set to zeros. Then factor 2 is added
to the result field and placed in the result field. Factor 1
is not used.

Subtract (SUB)

Factor 2 is subtracted from factor 1. The difference is
placed in the result field. Factor 1 and factor 2 are not
changed by the operation,

Note: Subtracting two fields which are the same is a
method of setting the result field to zero.

First secondary file Second secondary file Primary file

The records from the three input files are
p.ocesed in the order shown here. The single
line of records is shown mainly for illustration
plrpbses, and is not meant to imply merging
of records. The records are arranged in
this manner only to show the order of
record selection.

Figure 10-3 1. Normal Record Selection from Three Files (Part 1 of 3)

Step
1

The f h t r& from esch file is read.
The P and S records have no match
field, SJ they are procffsed before

Because the P reawd comes from the
wimary fiie, it is relaaad foiproc-
e g i ~ fim

The next P record IS read, If contains
no match field, and comer from the
primary fiie, so the new P record IS
alw selected for processing before
the S record.

Step
3

The next P r w r d read has a match
field. The S record has no match
field, so it is seIected for p r m i n g .

Step
4

The next S record Ir read. Ail three
records have match ftelds. Because
the value in the match fieid of the T
record is loww than the value in the
other two, the record IS selected
for processing

Step
5

The nexr T record is read. The match-
ing P and S records both have the low
match field value, u, they are proc-
eaed before the T record. Since the
matching P record comes from the
primary file, it is selected for proc-
m i n e first.

Figure 10-3 1. Normal Record Selection from Three Files (Part 2 of 3)

The next P record 1s read. Because t t

contains the same match fteld and

6 comes from the pimary f~le, the new
P record IS selected ~nstead of the S
record.

The next P record is read. The value
of the match field in the S record is
the lowest of the three, so the S
record is selected for proceSing.

Step
8

The next S record is read. Because
the S and T records match and have
the lowest match field, they are
selected before the P record. Because
the S record comes from the first
secondary file, it is selected for
pocessing before the T record.

The next S record is read. Because
Step it also has the same match field as
9 the S record just selected, it too is

selected before the T record.

The next S record is read. The
Step record contains the lowest match
10 field value, and is selected for Proc-

essing.

- ------
ART: 55007.3
---- ..---

Figure 10-31. Normal Record Selection from Three Files (Part 3 of 3)

Zero and Subtract (Z-SUB) Multiply (MUL TI

The result field is set to zeros. Factor 2 i s subtracted Factor 1 is multiplied by factor 2 The product is then
from the result field and then placed in the result field. placed in the result field Factor 1 and factor 2 are not
This actually places the negative of factor 2 in the result changed When you use (as a factor) a field which is
field Factor 1 is not used This operation can be used described as a result field, you must be sure the result
to change the sign of a field fidd is large enough to hold the product.

Divide (Dl V) Square Root (SQRT)

Factor 1 (dividend) is divided by factor 2 (divisor). The
quotient (result) is placed in the result field. Factor 1
and factor 2 are not changed.

If factor 1 is 0, the result of the divide operation will be
0. Factor 2 cannot be 0. If it is, the job stops immediately.
You may continue processing, however, by pressing the
start key on the Processing Unit. When processing is con-
tinued, the result and remainder are set to zero.

Any remainder resulting from the divide operation is
lost unless the move remainder operation is specified as
the next operation, If move remainder is the next opera-
tion, the result of the divide operation cannot be half
adjusted (rounded).

This operation derives the square root of the field named
in factor 2. The square root of factor 2 is placed in the
result field. Do not use factor 1.

A whole array can be used in a SQRT operation if factor
2 and Result Field contain array names.

The number of decimal places in the result field may be
less than or greater than the number of decimal places
in factor 2. However, the result field should not have
less than half the number of decimal places in Factor 2,

If the value of the Factor 2 field is negative, the job
will halt. You may continue processing by pressing the
start key on the Processing Unit. When processing is con-
tinued, the Result Field is set to zero.

Crossfoot (XFOOT)

Move Remainder (M VR)

This operation moves the remainder from the previous
divide operation to a separate field named under Result
Field. Factor 1 and factor 2 must not be used. This
operation must immediately follow the divide operation.

The length of the remainder is the same as the length
of factor 2 in the divide operation. The remainder has
the same number of decimal positions as the adjusted
dividend had (the decimal positions are aligned in the
remainder). If the result celd is shorter than factor 2,
the leftmost characters of the remainder are dropped.
Figure 10-32 shows the use of the move remainder
operation.

This operation is used only on arrays It adds all the
elements of the array together and puts the sum into a
separate field specified as the result field. Factor 1 is not
used. Factor 2 contains the name of the array.

Move Operations

Move operations move part or all of factor 2 to the result
field. Factor 2 remains-unchanged, but the result field
is changed.

IBM lnrnrnationai B u r t n s n s ~ ~ h z m s cormratcon Form X219093
Printed '" U S A

RPG CALCULATION SPECIFICATIONS

Date

Program

Programmer --

Figure 10-32. Move Remainder Operation

Factor 1 is not used in any move operations. It must
always be blank No resulting indicators may be used.
Numeric fields may be changed to alphameric fields and
alphameric fields may be changed to numeric fields by
the move operations. To change a numeric field to an
alphameric field, place the name of the numeric field in
the Factor 2 columns and use 8x1 alphameric result field.
To change an alphameric field to a numeric field, place
the name of the alphameric field in the Factor 2 columns
and use a numeric result field.

When move operations are specified to move data into
numeric fields, decimal positions are ignored. For example,
if the data 1.00 is moved into a numeric field with one
decimal position, the result is 10.0.

ove lMOVEl

This operation causes characters from factor 2 to be moved
to the rightmost position in the result field. Moving
starts with the rightmost characters.

If factor 2 is longer than the result field, the excess Ieft-
most characters of factor 2 are not moved. If the result
field is longer than factor 2, the characters to the left of
the data just moved in are unchange

An alphameric field or constant may be changed into a
numeric field by moving it into a numeric field When
this is specified, the digit portion of each character is
converted to its corresponding numeric character and then
moved to the result field. Blanks are transferred as zeros.

However, the zone portion of the rightmost alphameric
character is converted to a corresponding sign and is moved
to the rightmost position of the numeric geld where it I

becomes the sign of the field. A numeric field may also be
changed into an alphameric field by moving it into an
alphameric field All digits are transferred. The digit and
zone of the rightmost character are transferred. The
MOVE operation is summarized in Figure 10-33.

Move Left fMO VELI

This operation causes characters from factor 2 to be
moved to the leftmost positions in the result field. Moving
begins with the leftmost characters.

If factor 2 is longer than the result field, the excess
rightmost characters of factor 2 are not moved If the
result field is longer than factor 2, the characters to the
right of the data just moved in are unchanged, In this case
the sign of a numeric field is not changed either.

An alphameric field or constant may be changed into a
numeric field by moving it into a numeric result field.
When this is specified, the digit portion of each character
is converted to its conesponding numeric character and
then moved into the resalt field,

Blanks are transferred as zeros. If the rightmost charac-
ter is moved, the zone is also converted and used as the
sign of the field. When the rightmost character is not
transferred, the zone is, neverfheless, still transferred and
used as the sign of the result field.

A numeric field may also be changed into an alphameric
field by moving it into an alphameric f'ield. AH digits are
transferred. Both digit and zone portions of the rightmost
character are transferred if that character is to be moved.

I Result Field Larger than Factor 2

Factor 2 Result Field

Before MOVE Operation
+ Numeric or Alphameric

,1 12 13 r 4 , 5 $ 6 ,7 $ 8 ,4 ,
+
(4 = letter D)

--\

After MOVE Operation 12 1 3 1 4 17 18 , 4 12 151 Numeric Result Field

\ (5 letter N)

1 2 1 3 1 4 t P 1 H 1 4 IS ,Nl Alphameric Result Field

Result Field Smaller than Factor 2

Factor 2 Result Field

Before MOVE Operation
+ lu;lmeric or Alphameric

LAcC ~ E ~ G I P I H i 4 1 S i N1 Alphameric 1 5 1 6 1 7 1 8 1 4 1 (4=letterD) -.*- -
After MOVE Operation 7 I 8 Numeric Result Field

6 = letter N) h- P I H 14 1 S 1 N; Alphameric Result Field

Result Field and Factor 2 Same Length

Factor 2 Result Field

Before MOVE Operation
+ FSumeric or Alphameric

1P I H (4 , S I N 1 Alphameric t 5 1 6 1 7 1 8 1 4 1 (4=letterD)

(5 = letter N)
~ P I H I ~ I S I N

P I H t 4 , S I MI Alphameric Result Field

Result Field and Factor 2 Same Length

Factor 2 Result Field

I Before MOVE Operation

(7 I 8 1 4 1 2 I t Numeric I A I L I T I S I F J Alphameric
-/-

After MOVE Operation , Numeric Result Field
(5 = letter N)

,7 18 1 4 1 2 13 Alphameric Result Field

Figure 10-33. MOVE Operations

A summary of rules for MOVEL transfers are as follows.
(See also Figure 10.34.)

1. Factor 2 is the same length as the result field.

a Factor 2 and result field numeric: the sign is
moved with the rightmost digit.

b. Factor 2 numeric, result field alphameric: the
sign is moved with the rightmost digit. Only
digits are moved for other positions.

c. Factor 2 alphameric, result field numeric: zone
and digit of rightmost digit are moved.
Zones in other positions are not moved.

d. Factor 2 and result field alphameric: all charac-
ters are moved.

2 Factor 2 is longer than the result field.

a Factor 2 and result field numeric: the sign from
the rightmost position of factor 2 is moved over
the rightmost digit of the result field.

b. Factor 2 numeric, result field alphameric: the

result field contains only digits.
c. Factor 2 alphameric, result field numeric: zone

from the rightmost character of factor 2 is
moved over the rightmost digit of the result
field; other result field positions contain only
digits

d. Factor 2 and result field alphameric: only the
number of characters needed to fill the result
field are moved.

3. Factor 2 is shorter than the result field.

a. Factor 2 either numeric or alphameric, result
field numeric: digit portion of factor 2 replaces
the contents of the leftmost positions in the
result field. The sign in the rightmost position
of the result field is not changed.

b. Factor 2 either numeric or alphameric, result
field alphameric: characters in factor 2 replace
the equivalent number of leftmost positions in
the result field. No change is made in the zone of
the rightmost position of the result field.

Factor 2 Factor 2 and Result Field Same Length Result Field

a. Numeric
Before MOVEL Operation

+
151617.8141

Numeric
After MOVEL Operation ,7 , 8 ,4.2,$, .
Before MOVEL K t T 4 Dl

Alphamer
After MOVEL 1 7 , 8 , 4 , 2 1 N 1 . - F - - - - - - '
Before MOVEL 1 5 1 6 1 7 1 8 ~ 4 ~

Numeric . .

,PI H 1 4 IS IN! After MOVEL L7 ! 8 4 2 lg,

l P l H 1 4 1 S 1NI
d. Alphameric

IPI H14 IS IN t

Before MOVEL

After MOVEL

t A g K , T 1 4 I D ,
Alphameri

IP 1H14 IS IN,

Factor 2 Factor 2 Longer Than Result Field Result Field

Factor 2 Factor 2 Shorter Than Result Field Result Field

Figure 10-34. MOVEL Operations

Move Zone Operations Move Low to Low Zone (ML LZO)

These operations are used only to move the zone portion
of a character. There are four varieties of the move zone
operation (Figure 10-35).

Note: Generally, whenever the word high is used, the field
involved must be alphameric; whenever low is used, the
field involved may be either alphameric or numeric.

Move High to High Zone (MHHZO)

This operation moves the zone from the leftmost position
of factor 2 to the leftmost position of the result field.
Factor 2 and the result field must be alphameric.

Move High to Low Zone (MHLZOI

This operation moves the zone from the leftmost position
of factor 2 to the rightmost position of the result field.
Factor 2 can be only alphameric. The result field may be
either alphameric or numeric.

MLHZO
M L U O

MHLZO

Alphameric

Numeric

- -- - - -
ART: 51774

Figure 10-35. Function of Move Zone Operations

10-58

This operation moves the zone from the rightmost position
of factor 2 to the rightmost position of the result field.
Factor 2 and the result field may be either alphameric
or numeric.

Move Low to High Zone (MLHZO)

This operation moves the zone from the rightmost position
of factor 2 to the leftmost position of the result field.
Factor 2 can be numeric or alphameric, but the result
field can only be alphameric.

Compare and Testing Operations

These operations test fields for certain conditions. The
result of the test is shown by the resulting indicators
assigned in columns 54.59. No fields are changed by
these operations.

Compare (COMP)

This operation causes factor 1 to be compared with
factor 2 As a result of the compare, indicators are turned
on as follows:

High Factor 1 is greater than factor 2.
Low Factor 1 is less than factor 2.
Equal Factor 1 equals factor 2.

Factor 1 and factor 2 must either be both alphameric
or both numeric.

The fields are automatically aligned before they are
compared. If the fields are alphameric, they are aligned
to their leftmost character. If one is shorter, the unused
positions are filled with blanks (Figure 10-36). The
maximum field length for alphameric fields of unequal
length which are to be compared is 40 characters. If the
fields are of equal length, the m i m u m is 256 characters.

If the fields which are to be compared are numeric,
they are aligned according to the decimal point. Any
missing digits are filled in with zeros (Figure 10.3'7).
The maxhum field length for numeric fields which are
to be compared is 15 digits.

If an alternate collating sequence is defined, alphameric
fields are compared according to that sequence.

Equal Length
Alphameric Fields

l C I C ~ C ~ C I C I C

L c i c c c c i
I [

Unequal Length
Alphameric Fields

I C ~ C i C l b $ b i b l ,
.. .. - - - -
LRT 5 g n j

Figure 10-36. Comparison of Alphameric Fields

i l 1 5 1 6 1 7 1 9 1 5 1 .
) Equal Length

i Numeric Fields
,211 i 0 1 5 j 7 1 6 1

Figure 10-37. Comparison of Numeric Fields

Figure 10.38 shows some specifications for compare
operations. In specification line 01, the contents of the
field SLS67 (1 967 sales) are compared with the contents
of SLS68. If 1967 sales exceed 1968 sales, resulting
indicator 21 turns on; if they are less, resulting indicator
26 turns on; if the two years had equal sales, 30 turns on.
In line 03 the alphameric constant OCTOBER is compared
against the contents of the field named MONTH (which
must also be defined as alphameric). If the MONTH
field does not contain the word OCTOBER, indicator 13
turns on; if it does, indicator 15 turns on after the compare
operation. In line 05 the contents of the field named
GRSPAY (which must be defined as numeric) is decimal-
aligned with numeric constant 1250.00. If the value in
field GRSPAY is greater than or equal to 1250.00, indi-
cator 04 turns on; if its value is less than 1250.00, indi-
cator 05 turns on. In line 08 the contents of the field
NETPAY (which must be defined as numeric) is decimal-
aligned with numeric constant 0 and then compared to it,
If NETPAY is greater than zero, indicator W 1 remains
off after the compare operation. If NETPAY is zero
or negative, indicator HI turns on.

re 10-38. Compare Operations

Test Zone (TESTZJ Test Bit (TESTB)

This operation tests the zone of the leftmost character in
the result field. The result field must be alphameric since
this operation can be done only on alphameric characters.
Resulting indicators are used to determine the results of
the test, The zone portion of characters &, A-I causes the
plus indicator to turn on. The zone portion of the char-
acters -, J-R causes the minus indicator to turn on, A11
other characters, when tested, cause the blank indicator
to turn on. Factor 1 and factor 2 are not used in this
operation.

Binary Field Operations

Three operation codes, BITON, BITOF, and TESTB are
provided to set and test individual bits. The individual
bits can be used as switches in a program. This allows a
space saving ability for binary switches.

Set Bit On (BI TONI

This operation code causes specified bits identified in
Factor 2, to turn on (set to 1) in a field named as Result
Field. In the one position field named in Result Field,
one or more of the 8 bits may be turned on. The bits are
identified by the numbers 0-7 for each field. The bit
numbers must be enclosed by apostrophes. To turn on
the first bit in a field, enter '0' in Factor 2, in columns
33-35. To turn on bits 0, 2, and 5 enter '025' in Factor 2
in columns 33-37. From one to eight bits in a field may
be turned on with each BITON operation.

The field that contains the eight bits (numbered 0-7)
is named in the Result Field. It must be a one position
alphameric field. The field may be an array element, if
each element is only one position in length.

The operation code BITON must appear in columns
28-32. Conditioning indicators may be used in columns
7-1 7, and any entry under Field Length must be 1.

Factor 1, Decimal Positions, Half-Adjust, and Resulting
Indicators are not used, leave them blank.

Set Bit Off (BITOF)

This operation code causes specified bits, identified in
Factor 2, to turn off (set to 9) in a field named as Result
Field.

The operation code BITOF must appear in columns
28-32 All other specifications are the same as those for
the BITON operation.

This operation code causes specified bits, identified in
Factor 2, to be tested for an on or off condition in the
field named as Result Field. The condition of the bits is
known by resulting indicators in columns 5459.

The operation code TESTB must appear in columns
28-32. All other specifications are the same as those for
BITON and BITOF except for the use of resulting indi-
cators.

At least one resulting indicator must be used with the
TESTB operation, and as many as three can be named
for one operation. Two indicators may be the same for
one TESTB operation, but not three. A resulting indi-
cator has the following meanings for these columns:
Columns 5455: An indicator in these columns is turned
on if each bit in Factor 2 is off (0).
Columns 56-57: An indicator in these columns is turned
on if two or more bits were tested and found to be of
mixed status, that is, some bits on and other bits off.
Columns 58-59: An indicator in these columns is turned
on if each bit in Factor 2 is on (1).

If an array name is used as the Result Field the bits
specified in Factor 2 are tested for each element of the
array, and the resulting indicators are set for the array as
a whole.

Setting indicators

These operation codes are used to turn indicators off or
on. Any indicator to be turned on or off is specified in
columns 54-59. The headings in the Resulting Indicators
field (Plus or High, Minus or Low, Zero or Equal) have no
meaning in these operations. When setting indicators,
remember:

1. The following indicators may not be turned on by
the SETON operation: lP, MR, LO, U1-U8.

2 The following indicators may not be turned off by
the SETOF operation: 1P, MR, LR, LO, U1-U8.

3. If the LR indicator is turned on by a SETON
operation which is conditioned with a control
level indicator (columns 7-8 of the Calculation
sheet), processing stops after all total output
operations are finished. If it is turned on by a
SETON operation not so conditioned, processing
stops after the next total output operation is
completed.

If the halt indicators (Hl-H9) are set on and not
turned off before the detail output operations are
complete, the system stops. Processing may be
continued by pressing the start key on the
Processing Unit once for every halt indicator that
is on.

Setting on or setting off a control level indicator
(Ll-L9) does not automatically set any other
control level indicator.

Indicators L1-L9 and the record identifying indi-
cators are always turned off after detail output
operations are completed, regardless of the previous
set on or set off operation.

Whenever a new record is read, record identifying
indicators (01-99) and field indicators are set to
reflect conditions on the new record. The setting
from any previous SETON or SETOF operation
does not apply then.

Set On (SETON)

This operation causes any indicators in columns 5459
to be turned on.

Set Off (SETOFJ

This operation causes any indicators in columns 5459
to be turned off.

Branching Operations

Operations are normally performed in the order that they
appear on the Calculation sheet. There may be times,
however, when you do not want the operations performed
in the order they are specified. For example, you may
wish to:

1. Skip several operations when certain conditions
occur.

2. Perform certain operations for several, but not all,
record types.

3. Perform several operations over and over again.

This operation allows you to skip instructions by speci-
fying some other instruction to go to. You may branch
to an earlier line or to a later specification line. However,
you cannot skip from a calculation that is not conditioned
by a control level indicator (columns 7-8) to one that is.

Factor 2 must contain the name of the point to which
you wish to go. The name in Factor 2 is called a label.
The label can be from 1-6 characters long, and must
begin in column 33 with an alphabetic character. The
remaining characters can be any combination of alpha-
betic or numeric characters and special characters.
Blanks may not appear between characters in the label.
Factor 1 and the result field are not used in this operation.
The GOT0 operation may be conditioned by any indi-
cators If it is not conditioned, the operation is always
done. See Examples for use of the GOT0 operations.

Tag (TAG)

The operation code names the point to which you are
branching in the GOT0 operation. Factor 1 contains this
label. The name must begin in column 18. The same
label may not be used for more than one TAG instruction,
nor can it be the name of a field used in the program.

Factor 2 and the result field are not used. No indicators
may be entered in columns 9-17 for a TAG instruction.
Control level indicators must be used, however, if branch-
ing is to occur only when the information in a control
field has changed. See Examples for use of the TAG
operation.

Examples

Example I: Figure 1639 shows how TAG and GOT0
may be used to skip operations on certain conditions.

1. If the result of the suibtraction in line 01 is minus
(indicator 10 is on), a branch is taken to RTN1
(routine I) named by the TAG operation code in
line 09. Notice that both the GOT0 (line 02) and
TAG (line 09) are not conditioned by control
level indicators

2 If the branch is not taken in line 02, the multipli-
cation in line 03 is performed. Then the branch to
RTNl (line 09) must be taken because this branch
is not conditioned by indicators.

3. Operations in lines 1 6 1 2 are then done. If the
operation in line 12 does not turn indicator 15 on, a
branch is taken backwards to RTN2 (line 05).

4. Operations then go in the order specified again from
lines 06-1 2. Nothing is done in line 09 since TAG
only gives a name. These same operations are
performed again and again until 15 does turn on.

5. When 15 is on, the branch to RTN2 is not taken.
The TESTZ operation is then performed. If this
operation causes 20 to turn on, a branch is taken
to line 17 (GOT0 ENLl). If 20 is not on, the
operation in line 16 is done.

RPG CALCULATION SPEClFlCATrONS
1 2 75 76 77 78 79 M)

Dale . .-
Pspe

Prwpm. .-_

Figtrre 10-39. Using GOT0 and TAG (Skipping Operations)

10-62

Example 2: Figure 10-40 shows how TAG and GOT0 Assume that you wish to make 20 mailing labels for
may be used to eliminate coding when several operations every customer you have, The customer's name and
have to be performed again and again address are found on an input card. Since you wish to

Inarm- Buu- M m + ~ C D r n O n ~ m F m n X21.9C33
Printed 6" US&

RPG CALCULATION SPECIFICATIONS

Factor 1 Opratian Factor 2 Regin Fnid

Figate 10-40. Using GOT0 and TAG (Eliminate Duplicate Coding)

write twenty labels for each card, you have to use excep
tion lines and the operation EXCPT (see EXCPT operation
in this section for further information).

This can be coded as shown in Figure 10-40, insert A.
You have to write the EXCPT operation code for every
mailing label. However, by using branching, you can
code it all in five lines (see Figure 10-40, insert B). An
EXCPT line is printed out. O'ne is added to COUNT in
order to keep track of how many times the line has been
printed. Then COUNT is compared to 20. If COUNT
does not equal 20, a branch is taken back to the beginning
(GOT0 DOAGIN). If COUNT equals 20, the branch is
not taken. Instead 20 is subtracted from the COUNT
field so that it will be zero for the next cycle.

Lookup Operations

Lookup operations are used when searching through a
table or an array to find a special element.

Lookup (LOKUPI

This operation code causes a search to be made for a
particular item in a table or array. The table or array is
factor 2. Factor 1 is the search word (data for which
you wish to find a match in the table or array named).
Factor I , the search word, may be:

1. An alphameric or numeric constant.

2 A field name.

3. An array element.

4. A table name.

Remember that when a table is named in Factor 1, it
refers to the element of the table last selected in a LOKUP
operation, not to the whole table.

Resulting indicators are always used in connection with
LOKUP. They are used to first indicate the type of
search desired and then to reflect the result of the search.
A resulting indicator assigned to Equal (columns 58-59)
instructs the program to search for an entry in the table
or array equal to the search word. The indicator turns
on only if such an entry is found. If there are several
entries identical to the search word, the first one that is
encountered is selected.

An indicator assigned to Low (columns 56-57) instructs
the program to locate an entry in the table that is nearest
to, yet lower in sequence than, the search word. The
first such entry found causes the indicator assigned to
Low to turn on.

The indicator assigned to High (columns 5455) instructs
the program to find the entry that is nearest to, yet
higher in sequence than, the search word. The first higher
entry found causes the indicator assigned to High to
turn on. In all cases the resulting indicator turns on only
if the search is successful.

At least one resulting indicator must be assigned, but no
more than two can be used. Resulting indicators can be
assigned to Equal and High or Equal and Low. The
program searches for an entry that satisfied either con-
dition with Equal given precedence; that is, if no Equal
entry can be found, the nearest lower or nearest higher
entry is selected. If resulting indicators are assigned both
to High and Low, the indicator assigned to Low is ignored.
When using the LOKUP operation, remember:

1 . The search word and each table or array item must
have the same length, the same number of decimal
positions (if used), and the same format (alphameric
or numeric).

2 You may search on High, Low, High and Equal,
or Low and Equal only if your table or array is in
sequence,

3. No resulting indicator turns on if the entry searched
for is not found.

Using the LOKUP Operation

L 0 KUP with One Table

When searching a single table, factor 1, factor 2, and at
least one resulting indicator must be specified. Conditioning
indicators (specified in columns 7-1 7) may also be used.

Whenever a table item is found that satisfies the type
of search being made (Equal, High, Low), a copy of that
table item is placed in a special storage area Every time
a search is successful, the newly found table item is placed
in this area, destroying what was there before. If the
search is not successful, no table item is placed in the
storage area Instead the area keeps the contents it had
before the unsuccessful search.

Resulting indicators are always set to reflect the result
of the search. If the indicator is on, showing a successful
search, you know that a copy of the item searched for
is in the special storage area

LOKUP with Two Tables

When two related tables are used in a search, only one is
actually searched. When the search condition (High, Low,
Equal) is satisfied, the corresponding data items from
both tables are placed in their respective special storage
areas and are made available for use.

Factor 1 must be the search word and factor 2 must
name the table to be searched. The result field must
name the related table from which data is made available
for use. Resulting indicators must also be used. Condi-
tioning indicators (specified in columns 7-1 7) may be
specified if needed.

The two tables involved should be the same length. If
the table that is searched is longer than its related table,
it is possible to satisfy the search condition However,
there will not be a data table item in the second table
which corresponds to the item found in the search table.
Unpredictable results may occur.

L OKUP with an Array

The LOKUP specifications for arrays are the same as for
tables except that if Factor 2 is an array, the result field
cannot be used. In addition if the desired item is found,
it is not moved to a special holding area since these holding
areas are only associated with tables. Instead, the indi-
cators will reflect only that the desired item is in the
array; the programmer does not have ready access to
this item

Figure 10-41 shows two LOKUP operations performed
with an array. MANNOS, a 2100 element may of em-
ployee numbers, is read in at execution time from file
ARRFILE with six 10 position elements per record; the
array elements are in ascending order. Line 01 of the
Calculation sheet shows a LOKUP of array MANNOS with
the object of fmding the element nearest to but higher in
sequence than the search word '100336'. If this desired
element is found in the array, indicator 20 turns on and
the GOT0 in line 02 is performed, Notice that the result

of this LOKUP indicates only whether or not the desired
element exists in the array. Line 05 of the Calculation
sheet shows essentially the same LOKW operation-
indicator 20 will turn on when the fust element higher in
sequence than '100336' is found. Note, however, that in
this LOKUP operation, the array MANNOS is indexed by
the field INX This index field was set to I in line 04 so
the LOKW will begin at the first element of MANNOS.
If the desired element is found, the number of this ele-
ment (not its contents) is placed in the field INX In this

lnm8tMNl Bus- M d l i M C m n n
FW," X21-BOB,
Pd"d in U.S4.

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS . "

Wyam- Extension Specifications

In*m.t,ond Eurlnan MxhlnrxCapomt,on F n m X21-9093

BM P r m w i rr U.S*

RPG CALCULATION SPECIFICATIONS
75 76 77 78 79 80

ete I
pun*ing Gfaphle / / I

~~~~~~~~b~ 1 j l l i 1  
iwam 

Figure 10-41. LOKCT With an Array 

10-66 



way, the actual element which satisfied the LOKUP can be 
used in subsequent calculation operations, as in line 07. 
If no element was found to satisfy the U)KuP, the field 
INX would be reset to 1. Refer to Starting the Search at 
a Particub Array Item in this section for more informa- 
tion on indexing an array in a LOKUP operation 

Examples 

Figures 10-42 through 10-45 show the use of the LOKUP 
operation. Figure 10.37, insert A, shows the contents 
of four tables: table A, table B, table C, and table D 
(loaded at compile time). Each table has frve entries. 

Figure 10.42, insert B, shows the extension specifica- 
tions for these tables. Table A and Table B are described 
separately and are, therefore, entered separately. Tables 
C and D are related tables and are entered in alternating 
format on the table input cards. Figure 10.43 shows 
the order in which the table input cards are loaded into 
the machine at compile time. 

Figure 10-44 shows 15 different LOKUP operations 
using these four tables. The results of these operations 
are shown in Figure 1045. Figure 10.45 tells if the 
entry searched for was found, and if so, what indicator 
is on to tell the result of the search, what table item 
satisfied the search, what item was taken from a related 
table (when one is used). 

1"- 6"un.r u r r h n e c m -  

WIO EXTENSION AND LINE COUNTER SPEClFiCATlONS 

------  
A R T  517.90 

Figure 10-42. Table Lookup (Tables Used) 







Specificetion 
Line Number 

Entry 
Found 

Indicator 
On 

Figure 1045. Results of LOKUP Operations 

Table ltem 
Satisfying Search 

Condition 

32 

05 

08 

08 

08 

32 

08 

NIU 

GGG 

LLL 

2 

Referencing the Table ltem Found in a LOKUP Opefat[on 

Whenever a table name is used in an operation other than 
EOKUP, the table name really refers to the data placed 
in the special table storage area by the last successful 
search Thus, by specifying the tabIe name in this fashion, 
you can use data items from a table in calculation opera- 
tions 

If the table is used as factor 1 in a IAOKUP operation, 
the contents of the special table storage area is used as 
the search word In this way a data item from a table 
can itself become a search word 

The table may also be used as the result field in opera- 
tions other than the LX)KUP operation. In this case the 
contents of the special table storage area is changed by 
the calculation operation. The corresponding table item 
in the table itself is also changed. This is a way in which 
you can modify the contents of the table by calculation 
operations (see Figure 10.46). 

Tabla l tern 
Ussd from 

Related Table 

28.70 

02.12 

47.f 5 

GGG 

LLL 

a 

3 

Starting the Search at a Particular Array Item 

It is possible, in order lo save processing time, to start 
the EOKUP search at a particular item in the array. This 
type of search is indicated by addjtiond entries in columns 
33-42, Enter the name of the array to be searched in 
these columns followed by a comma and a numeric literal 
or the name of a numeric field (with no decimal positions). 
The numeric literal or numeric field tells the number of 

t which you wish to start the search (Figure 
10-47). This numeric literal or field is known as the 
index because it points to a certain item in the array. 
Aft other columns are used as previously described for 
the normal lookup operatian. 

The search starts at the specified item and contjriues 
until the desired item is found or until the end of the 
array is reached. When an index field is used, an unsuc- 
~essful search causes the index field to contain the value 
of one. If, however, an item is found which satisfies the 



Figure 10-46. Referencing the Table Item Found in a LOKUP Operation 

Figure 1@47. Array Lookup: Starting at a Particular Array Item 

conditions of the LOKUP operation, the number of that 
array item (counting from the &st item) is placed in the 
index field. A numeric literal used as an index is not 
changed to reflect the result of the search. 

Note: If a literal or field index for an array is zero, or 
greater than the number of elements in the array, the 
following will result: 

1. For a literal index a severe error occurs, and 
compilation will cease. 

2. For a field index the job will halt, allowing the 
operator to cancel or restart the program If the 
program is restarted, the field index is 
of one. 



Subroutine Operations 

These operation codes are only used for subroutines. 
See Subroutines in this chapter for information on sub- 
routines. All subroutine operation codes must be written 
in specification Lies following all operations conditioned 
by control level indicators specified in columns 7-8. 
Subroutine lines are always identified by an SR in 
columns 7-8. 

Begin Subroutine (BEGSRI 

This operation code serves as the beginning point of the 
subroutine. Factor 1 must contain the name of the 
subroutine. 

End Subroutine (ENDSR} 

This operation code must be the last statement of the 
subroutine. It serves to define the end of the subroutine. 
Factor 1 may contain a name. This name then serves as 
a point to which you can branch by a GOT0 statement 

within the subroutine. The ENDSR operation ends the 
subroutine and automatically causes a branch back to 
the next statement after the EXSR operation. 

Execute Subroutine (EXSR) 

This operation causes all the operations in the subroutine 
to be performed. EXSR may appear anywhere in the 
program. Whenever it appears, the subroutine is executed 
After all operations in the subroutine are done, the 
operation hi the line following the EXSR operation is 
performed. 

This operation may be conditioned by any indicators, 
meaning the subroutine is executed only when all con- 
ditions are satisfied. Factor 2 must contain the name of 
the subroutine that is to  be executed. This same name 
must appear on a BEGSR instruction. 

rogtammed Control of lnput and Output 

Normdy a record is read, and calculations are performed 
on data from that record, Then any data from that input 
record resulting from calculations on data from that 
record is written. At this time only the records that have 
been specified in the output-format specifications will be 
written or punched Programmed control allows you to 
have more control concerning which records from the 
different files are to be read next, when records are to be 
written, and how many should be written. 

Exception IEXCPTJ 

This operation allows records to be written at the time 
calculations are being done. Use this primarily when you 
wish to have a variable number of similar or identical 
records (either detail or total) written in one program 
cycle. (Remember that normally only the exact number 
of records specified in the output-format specifications 
are written on a file in one program cycle.) For example, 
you might use EXCPT to produce a variable number of 
identical mailing labels, to write out contents of a table, 
or to produce a number of records having the same infor- 
mation punched on them. 

When the EXCPT operation is used, EXCPT is entered 
in columns 28-32, and columns 7-17 may have entries. 
All other columns must be blank. The line or lines which 
are to be written out during calculation time are indicated 
by an E in column 15 of the Output-Format sheet. 
Exception lines may not be used in a combined file. 

Figure 1@48 shows the use of the EXCFT operation to 
produce a variable number of records having the same 
information punched on them Records in the input file 
have two fields, NAME and COUNT. The NAME field 
is to be entered into a certain number of records. That 
number is indicated in the COUNT field. 

Every time the operation code EXCPT is performed, 
the exception record indicated by the E in column 15 
of the Output-Format sheet is punched. The field CONSEC 
is used to keep track of the number of records punched, 
Each time an exception record is written, 1 is added to 
CONSEC. CONSEC is then compared with COUNT, 
the field that tells how many records should be punched. 
If they are not equal (indicator 20 is not on), a branch 
is taken back to DOAGIN. Another record is written 
out. One is added to CONSEC and CONSEC is compared 
to COUNT. If these fields are now equal, another input 
record is read If not, the same operations are done 
again. Whenever CONSEC equals COUNT, enough records 
have been punched or printed. CONSEC is then sub- 
tracted from itself, making it zero. This last operation 
is necessary so that an accurate count can be kept for 
the next record. 

Force (FORCE) 

FORCE statements enable you to select the file from 
which the next record is to be taken for processing. They 
apply to primary, secondary, or demand; input, update, 
or combined files. They are the only means by which 
records can be read from demand files. 



PC"%,& in ".*.A 

RPG CALCULATION SPECIFICATIONS 

IBM lnterninroMl EvllMa Mach,m Comaatin, Form mi 9u90 Primed ,n " S z, 

RPG OUTPUT - FORMAT SPECIFICATIONS 

Figure 1048. E X W  Operation (Producing a Variable Number of Identical Records) 



Factor 2 in a FORCE statement identifies the file from 
which the next record is to be read. If the statement is 
executed, the record is read at the start of the next program 
cycle. If more than one FORCE statement is executed 

the same program cycle, all but the last is ignored. 
FORCE statements override the multifile processing 

method by which the program normally selects records 
However, the fxst record to be processed is always selected 
by the normal method The remaining records can be 
selected by FORCE statements. 

Exam ple 

Figure 10-49 shows part of a job which uses FORCE 
operation codes and look ahead fields to simulate normal 
record selection Normal record selection is not used 
because records in the two secondary files have two match 
fields, CUST and ITEM, and those in the primary file 
have only one, CUST. Normal record selection requires 

ee to have the same number of match fields 
Indicators 20-23 and 26-28 are used to determine which 

e next record is to be read from. The conditions 
which the files are chosen follow. Record 1 means 

the record from the primary files; record 2 the first 
secondary file; and record 3, the second secondary file. 

Condition Indicators Set On 

None of the 20 and 22 
records match. 
Record 1 has the 
lowest CUST field 
value. 

Record 1 matches 21 and 22 
record 2 Record 
3 has a higher 
CUST field value. 

Record 1 matches 20 and 23 
record 3. Record 
2 has a higher 
CUST field value. 

Records 1, 2, and 21 and 23 
3 match (CUST 
field values). 

Record 2 has lower 26 
CUST field value 
than record 1. 
Record 2 has 
lower CUST and 
ITEM fields 
(together) value 
than record 3. 

File Description Sp€cificatiom 

File Selected 

Primary 
(FIRST) 

Primary 
(FIRST) 

Primary 
(FIRST) 

Primary 
(FIRST) 

First 
secondary 
(SECOND) 

9. FORCE Operation Code (Part 1 of 2) 

10-74 





Condition Indicators Set On 

Record 2 matches 27 
record 3 (both 
CUST and ITEM 
fields). Record 1 
has greater CUST 
field value. 

Record 3 has 28 
lower CUST field 
value than record 
1. Record 3 has 
lower CUST and 
ITEM field (together) 
value than record 2. 

File Selected 

First 
secondary 
(SECOND) 

Second 
secondary 
(THIRD) 

In addition, indicators 24, 25, and 29 are set to condition 
calculations which process the record selected. 

Condition Indicator Set On 

Records 1, 2, and 3 match (CUST 24 
fields). Records 2 and 3 match 
(CUST fields and ITEM fields). 

Records 1, 2, and 3 match (CUST 25 
fields). ITEM fields in records 2 
and 3 do not match. 

CUST field values in records 2 29 
and 3 match; ITEM fields do 
not, Record 1 has higher CUST 
field value. 

All the calculations shown in Figure 10-49, insert C, are 
needed to determine which record is to be processed 
next. The operations which are performed upon the data 
from the input records are not shown. They do, however, 
precede the calculations shown in Figure 10-49, insert C, 
and are conditioned by the indicators set during the 
previous cycle by the calculations shown. 

Display (DSPL Y) 

The display operation allows either or both of the following: 

1, : A field or array element is printed on the printer- 
keyboard during program execution without a 
program halt. 

2 A field or array element is printed on the printer- 
keyboard, and the program halts, allowing that 
field to be changed. 

See Figure 10-50 for coding possibilities and results. 
Also see Figure 10-5 1 under CHAIN operation in this 
chapter for an example using the display operation. 

When the display operation is used, DSPLY must appear 
in columns 28-32, and the filename of the console device 
under Factor 2. Indicators in columns 7- 17 may be 
specified. Field length, Decimal positions, Half-adjust, 
and Resulting Indicators (columns 49-59) must be left 
blank. No input or output specifications are required 
for this operation, However, the File Description sheet 
must have entries in columns: 7-1 4, 15, 19, 24-27, and 
40-46 (columns 71-72 are optional). 

If data is to be printed but not changed, enter a field 
name, an array name plus an index, or a literal in Factor 1, 
and the filename of the console device in Factor 2. 
Result Field must be blank in this case. The data in 
Factor 1 will be printed, but not changed, and the 
program will continue. 

If data is to be changed during program execution 
enter the field name or array name plus index under 
Result Field, and the filename of the console device 
under Factor 2. This causes the data to be printed and 
then blanked out. Immediately after the field or array 
element is blanked out, the program halts. The operator 
can now enter data into the blank field or array element 
via the printer-keyboard. There are several points to 
remember when this is done: 

1. The data entered must be followed by a function 
key character. 

2, Numeric data need not be entered with leading 
zeros. However, you must be sure to right-justify 
numeric data when it is keyed in. 

3, Similarly, alphameric fields must be left justified 
by the operator when it is keyed in. 

4. Alphameric fields are blanked out. Numeric fields 
are zeroed out. 

The chain operation causes a record to be read from a 
disk file during calculations. This operation allows one 
record to be read in when the operation code CHAIN 
appears in columns 28-32 of the Calculation sheet. 

Indicators in columns 7-1 7 may be used, but Result 
Field, Field tength, Decimal Position, and Half-Adjust 
(columns 45-53) must be blank. If the chained file is 
conditioned in the file description specifications by an 
external indicator, the CHAIN statement must be condi- 
tioned by that same external indicator. 



Figure 10-50. Display Operation 

Columns 54-55 may contain an entry. If they do, 
the same entry must be made in columns 56-57. If the 
record is not found, the indicator specified in these columns 
will turn on. No output is permitted to a chained update 
me when the specified record is not found. Columns 
58-59 must always be blank for chain operations. 

If an indicator is not specified in columns 5457, and 
the record is not found, the program will halt. Processing 
can be continued by pressing the start key on the 
Processing Unit. 

The chain operation is used for two purposes: 

1. Random processing of an indexed, sequential, or 
direct file. 

2 Loading a direct file. 

Random Processing 

In order to read a record from a sequential or direct file, 
the record must be identified by relative record number. 
To read a record from an indexed file, a record key is 
used for identification. The relative record number or 
key can be contained in a field specified for that purpose. 

The chain operation requires the code word G W N  in 
columns 28-32 of the Calculation sheet. Factor I entries 
must be a relative record number or key, or the name of a 
numeric field that contains a relative record number or 
key. Factor 2 must contain the name of the file from 
which the record will be read. This Me is called the file 
that is chained to, or the chained file (see Examples, 
Example 2 ). 



Direct Fiie Load 

A direct f ie  load is defined by sperifyhg the disk file to 
be loaded as a chained output f i e  on the File Description 
sheet. In the calculation specifications, Factor 1 must 
contain a relative record number, columns 28-32 must 
contain the operation code CHAIN, and Factor 2 must 
conrdma the name of the direct disk Me to be loaded. 
The relative record number of the input record defines 

osition for each record in the direct disk Me. 
number can be dl or part of a field in the 

input records. Such fields are used for record identification 
of the input records, as well as for the disk records after 
the disk file is loaded. 

When a direct file is loaded you m ~ s t  define the record 
length and number of records in your file. The system 
then clears the disk space required for the file with blanks. 

en a record is read in, the relative record number is 
to chain to the corresponding relative record posi- 

the disk file. The blanks at that record position 
are read in, and the information contained in the input 

rd is then written on disk, replacing the blanks with 
a. If a record is missing from the input file when a 

direct file is loaded, the space reserved for that record 
in the disk file remgns-blank (until the proper record 
is read in later). A direct file is loecied by defining it as 

tput file in file description specifications 

ed, records are Smerted or 
nged in rhe file by defining the direct f ie  as an update 
processed consecutively or by the chain operation. 

(Remember that any file defined as a chained output file 
e cleared entirely to bl s before any records are 
ssed) 

Note: The insertion of records in direct disk files is very 
different from record addition to sequential or indexed 
files For sequential disk files, the new record is added 
in at the first available position at the end of the fie. 
The same process occurs for an indexed file, except 
that the record key and disk address are added to the 
file index. Any new records inserted in a direct disk file 
dready have a space resefved for them Hence, the record 
is inserted in its proper place, not merely added to the 
physical end of the Me. 

Examples 

Example I: Figure 10-51 shows the coding necessary 
to chain to and update an indexed file, MASTINV. The 
CARDIN file consists of cards sorted by item number, 
each card representing some quantity ordered Item 
number is used as a control field. When all the quantities 
for one item number are added, a control break will occur. 
At this point in calculations, the master record for that 
item number must be found and updated. ITEMNO is 
a field containing the item number of the cards presently 
being worked on. The chain operation uses ITEMNO to 
find the master record for that item number. If it is not 
found, a display operation prints out the item number of 
the cards. Note that indicator (20) turns on when the 
records are not found. 

If the master record is found (20 not on) the total 
quantity for the item number is subtracted from the 
quantity on hand. After the total calculations, the QOH 
field in the master record is updated. 



File lhmiption Specdimitions 

F i g u r e  10-51. Chain O p e r a t i o n  (Part 1 of 2) 

RPG INPUT SPECIFICATIONS 

i l l  

75 76 77 78 79 80 
Program 



IBM inmnls-i Bus,- M r O i -  C-~~MI"XI 

RPG CALCULATION SPECIFICATIONS 

Factor 2 Result Field 

i 44 45 46 47 & 

Date 

Program 

,"nmaf,O~utl Buunell M.EhlMIC.W,.llO" 

RPG OUTPUT - FORMAT SPECIFICATIONS 

Figure 10-51. Chain Operation (Part 2 of 2) 

Example 2: Assume that you are loading a direct file with 
customer information such as: customer number, address, The direct file of customers is named DIRECT on the 
year-to-date sales, balance due, and other data for a File Description sheet (see Figure 1052). This direct 
master record. Each record is 126 characters long and is file will be loaded from the MFGU. The card file with 
identified by customer number. At present there are 200 the customer data is named CARDIN. The printer file 
customers, but you plan to have more in the future so PRINT enables us to print out any cards that may contain 
space will be reserved on disk for 250 records altogether. errors or that may be duplicate cards. 



Exten Exa 
tor Dam 

Date 

Program 

RPG INPUT SPECIFICATIONS 
1 2  75 76 77 78 79 8 f  

Punch 

Figure 10-52. Loading a Direct File (Part 1 of 2) 



F i r e  10-52. Loading a Direct File (Part 2 of 2) 



On the Input sheet there are two record types identified 
for CARDIN. This is because our disk record is 126 
positions long, and two different cards are needed to 
contain 126 positions of data. The cards each have a code 
in position 1. The fzst card is filled with data using 
positions 2-96; the second card has data in positions 231. 
Together these data positions total 125 (position 1 of the 
disk record will be left blank). During the proper output 
cycle, these two card fields, FIELD 1 and FIELD 2, are 
written in the appropriate record positions on disk. 

Three possibilities will be considered in this program: 

1. The CHAIN operation is successful, and the data 
is written from card to disk 

2 The record number in the card has no corresponding 
record position on disk. 

3. The proper record position on disk is found, but 
heady  contains data, indicating duplicate input 
cards. 

In the first case, assume that the two input cards are 
read in for customer 154 (000154 in the card) turning 
on indicator 0 2  The card field containing the customer 
number is named CUSNUIM. On the Calculation sheet, 
02 causes a chain operation using the card field CUSNUM 
(1 54) to locate record position 154 in the disk file 
DIRECT. Assume that the proper record position is found, 
so 02 must be on and 30 must be off. On 02 and N30 
CUSTNO on disk is compared to blanks. CUSTNO is 
the disk field that will contain the customer number. 
Remember that this disk field is still all blank at this 
point. (For a direct load, you may use input specifications 
to name fields in the file being loaded.) 

The compare operation is checking to make sure that 
CUSTNO is equal to all blanks; that is, checking to see 
if any data has already been written in CUSTNO. If 
CUSrNO is all blank indicator 50 turns on, and you can 
assume the whole disk record is blank and proceed to 
write the card fields onto disk. 

On the Output sheet, indicators N30 (indicating the 
disk record was found) and 50 (indicating the disk record 
was blank) are used to condition the loading of the card 
fields onto disk. The disk record will look like this after 
the load: 

1, disk position 1 is left blank for future use. 

2 disk positions 2-7 contain the 6 position customer 
number from CUSNLM in the input card (in this 
case 0001 54)). 

16 contain the data from FIELD1 I disk positions 8-9 
in the input card 

4. disk positions 947- 
in the input card. 

In the second case mentioned, 
is not found. The card field CU 
number for which there is no comesponding record 
position in the disk f ie  DIRECT. For example, suppose 
that a card is read in with customer nurn 
in the card), If such a card is processed, this error will 
be found in calculations; the chain operation will not be 
successful because the file is only 250 records long (indica- 
tor 30 will turn on). On the utput sheet, indicator 30 is 
used to print out the data fr the cards with the error. 

FOUND' is conditioned 
y indicator 30 to identify the reason for printing out the 

CUSTNO has data written in it (it is not equal to  blank). 
Such a case would occur if the cards for customer 154 
were read in again, indicating duplicate cards in the card 

154 were processed again, 
CUSTNO would not and indicator 50 in calcu- 
lations would rerna the Output sheet, an output 

The indicators 30 

The duplicate cards will not be written on disk but 
will be printed with an identifyi 
CARDS'. This corlstant field is 
duplicate card fields from the card fields 

printed with the constant ' 

progiarnrning errors, 



Debug (DEBUG) Print Positions Infomation 

The DEBUG operation code may be placed at any point 1-14 The words FIELD VALUE= 
or at several points in the calculation operations. Whenever 
it is encountered, either one or two records are printed 15-any position The contents of the result field 
depending upon the specifications entered. One record (depending on (up to 256 characters). If the 
contains a list of all indicators which are on at the time length of field) result field is an array, more than 
the DEBUG code was encountered. The other shows the one record may be needed to 
contents of any one field. contain the array. 

Specifics tions 

Factor 1 is optional: It may contain a literal of 1-8 
characters which will identify the particular debug opera- 
tion The name entered here is printed on record 1. 
Factor 2 must contain the name of the output fde on 
which the records are written. The same output filename 
must appear in Factor 2 for all DEBUG statements in a 
program. The result field may be a field or array whose 
contents you wish to appear on record 2. Any valid 
indicator may be used in columns 7-17. Columns 49-59 
must be blank. 

The operation code produces results only if the proper 
entry (1 in column 15) has been made in the control 
card specifications. If the control card entry has not been 
made, the operation code DEBUG is treated as a comment. 
See Column 15 in Chapter 3 for more information. 

Records Printed for Debug 

Record 1 is required. I t  is printed in the following format: 

Pn'nt Positions Information 

Constant entered in Factor I 
(optional) 

17-18 Blank 

19-34 The words INDICATORS ON= 

The names of all indicators which 
are on, each separated by a blank. 

Record 2 is optional and is printed only when there is 
a result field. The record is printed in the following 
format: 

OVERFLOW INDICATORS 

When the printer has reached the end of a printed page, 
RPG I1 language allows you to do one of three things: 

1. Advance to the top of the next page and continue 
printing. 

2 Ignore the fact that the end of the page has been 
reached and keep right on printing. 

3. Print special lines at the bottom of the page and 
at the top of the new page. 

You automatically get the fust option by doing nothing. 
You get the second by assigning an overflow indicator 
and never using it to condition output lines. You get the 
third by assigning and using overflow indicators. These 
three possibilities are described as follows. 

1. For every job you do you must determine how 
many lines will be printed on each page or form. 
You indicate this by line counter specifications. 
From these specifications RPG I1 determines which 
line is the overflow line. The overflow area is from 
the line associated with overflow to the end of 
the form. 

RPG I1 language is set up so that when the overflow 
line is sensed, an overflow indicator automatically 
turns on, and at the appropriate point in the program 
cycle, the following steps occur: 

a. Detail lines are printed (if this part of the program 
cycle has not already been completed). 

b. Total lines are printed, 
c. Forms advance to a new page. 
d. The overflow indicator turns off. 



Thus you can print detail and total output lines 
without worrying about what will happen at the 
end of the page. RPG I1 takes care of that auto- 
matically. All you have to do is set up the correct 
line counter specifications. 

2 If you are not concerned about pages or skipping 
to new pages and want one continuous listing, you 
must make an entry that will cause the automatic 
handling of overflow and advancing of forms to be 
discontinued. Merely assign an overflow indicator 
to the printer file in columns 33-34 of a file des- 
cription specification line. This one entry causes 
overflow to be ignored. Pages are not taken into 
consideration. 

3. If you are concerned about pages and want certain 
lines to appear on each page, you first have to 
assign a certain overflow indicator to  the printer 
file. This is specified in columns 33-34 of a file 
description specification line (Figure 10.53). Then 
use this same indicator to  condition those lines 
which you want printed on every page. Usually 
these lines are total lines which must be printed 
at the bottom of every page, or heading lines which 
must be printed at the top of each new page. 

Now forms will not automatically advance to a 
new page. You have to specify a skip to the first 
printing line on a new page. This skip is usually 
specified on the first heading line you want printed 
on the new page (Figure 10-54). 

intsrnstiorut 

RPG OUTPV 

Figure 10-54. Advance Forms to New Page 

File Dewription Specifications 

- 

Figure 1053. Assigning an Overflow Indicator 



In the case where you have specified an overflow 
indicator and are using it to  condition output lines, 
the following steps occur when the overflow line 
(end of page) has been sensed: 

a Detail lines are printed (if that part of the program 
cycle has not already been completed). 

b. Total lines are printed. 
c, Total overflow lines are printed if conditioned 

by the overflow indicator. 
d. Forms advance to  the next page if indicated 

by the skip specification on a heading line or 
total line. 

e. Headings and detail lines are printed, if conditioned 
by overflow indicators. 

Writing Specifications Using 

Often you want each page to contain information from 
only one control group. (Information from one group 
may require several printed pages, however.) You might 
also wish each page to have headings identifying the type 
of information on the page. For these cases you need to 
use both the control level indicators and the overflow 
indicators. Together they condition when headings 
and/or group information are to be printed. 

A new page should advance either when the overflow 
line has been reached (the overflow indicator you assigned 
is on) or when there is a change in a control field (L 
indicator is on). You must specify that each indicator 
causes a new page to be advanced by specifying a skip 
to the first printing line on a page. If the control level 
has changed and the overflow condition has occurred at 
the same time, it is possible to  duplicate an output line 
(one called for by the overflow indicator, the other by 
the control level indicator). A blank page can also appear 
in your report as a result. 

Figure 10-55 shows the coding necessary for printing 
headings on every page: fust page, every overflow page, 
and each new page to be started because of a change in 
control fields (L2 is on). Line 01 allows the headings to 
be printed at the top of a new page (skip to 01) only when 
an overflow occurs (OV is on and L2 is not on). 

Line 02 allows printing of headings on the new page 
only at the beginning of a new control group (L2 is on). 
This way, duplicate headings caused by both L2 and OV 
being on at the same time do not occur. Line 02 allows 
headings to be printed on the first page after the first 
record is read. This is true because the fvst record always 
causes a control break (L2 turns on), if control fields are 
specified on the record. (If the first record did not have 
a control field, another OR line would be necessary with 
a 1P entry in columns 24-25.) 

Figure 10-56 shows the necessary coding for the printing 
of certain fields on every page: a skip to 01 (first line on 
new page) is done either on an overflow condition or on 
a change in control level (L2). The NL2 indicator in 
line 01 prevents the line from printing and skipping 
twice in the same cycle. 

inrsma<wd Buvnsn MsOtw CaUoraf-u, Form X21-OODO 
PihtsC .n ".%A 

RPG OUTPUT - FORMAT SPECIFICATIONS 
1 7  I* 7s 71 71  70 ." ." . .  ." .- *- 

'Ti -1 2:: atto Jj 

Figure 10-55. Printing Headings on Every Page 

10-86 



I m m ' S m a d  W"*rnMrnina caporma 

RPG OUTPUT - FORMAT SPECIFtCATlONS 

F a m  X Z 1  DOPO 
PlrnMrnUS* 

Figure 10-56. Printing Fields on Every Page 

Fetching The Overflow Routine 

When the overflow line is reached, the same sequence of 
events always takes place. These were described previously. 
Briefly, remaining detail lines, total lines, and total over- 
flow lines (lines conditioned by the overflow indicator) 
are printed on the page even after overflow has occurred. 
Therefore, you must leave enough room between the 
overflow line and the actual end of page to have room for 
all these lines to print. 

However, you can run into problems when you do this. 
For example, if a different number of detail or total 
lines can be printed each time, you may not have allowed 
enough room between the overflow line and the end of 
page to  take care of all total lines which will print before 
the forms advance. Therefore, printing is done on the 
perforation You may also have to allow so much room 
between the overflow line and the end of page that often 
only half a page is used 

To take care of these problems, you may call for the 
printing of overflow lines and a forms advance any time 
after the overflow line has been reached Causing overflow 
lines to  be printed ahead of the usual time is known as 

fetching overflow. When overflow is caused in this way, 
the following events occur: 

1. All total lines conditioned by the overflow indicator 
are printed. 

2 Forms advance to  new page when a skip to 01 has 
been specified in a line conditioned on an overflow 
indicator. 

3. Heading lines conditioned by the overflow indicator 
are printed. 

4. The line that fetched overflow is printed. 

5. Any detail andlor total lines left to  be printed for 
that program cycle are printed. 

For the printer file, an F in column 16 on the Output- 
Format sheet specifies that the overflow routine will be 
fetched. An F can be specified for any total, detail line, 
or exception line except those conditioned by an overflow 
indicator. 



Figure 10-57 shows the use of a fetched overflow 
routine (F  in column 16). The total lines 03,09, and 11 
can fetch the overflow routine. They do this, however, 
only if the overflow line has been sensed prior to the 
printing of one of these lines. If the overflow indicator 
is turned on before the output line specified in line 03 is 
printed and if control level indicator L1 is on, forms advance 
to the new page as specified by the skip entry in the 
heading line. The heading line and all total lines are 
printed on the new page. If, however, the printing of the 
line specified in 03 caused the overflow indicator to turn 
on, the following happens: 

1. The line specified in 05 prints on the same page. 

2 The line specified in 07 prints on the same page. 

3, The line specified in 09 fetches an overflow (F in 
column 16) and causes the heading line and all 
total lines (09, 11, 13, and 15) to print on the new 
page- 

If the output lines specified in 09 fetched overflow, 
line 13 does not fetch a new page again since the overflow 
indicator is turned off after line 09 fetched overflow. 
(Remember, a line can fetch overflow only when the 
overflow indicator is on.) Line 11 fetches overflow only 
if the output line specified in 09 causes the overflow 
indicator to turn o n  

You should fetch the overflow routine (Fin column 16) 
only when you feel that (1) this line, when printed, 
could cause overflow and (2) if it did, there would not 
be enough room left on the page to print the remaining 
detail andlor total output lines plus lines conditioned 
by the overflow indicator. 

Overflow Printing with EXCPT Operation Code 

Overflow indicators cannot condition an exception line, 
but can condition fields within an exception record. 
The use of the EXCPT operation code with the E in 
column 15 of the Output-Format sheet causes the fields 
to be printed during the time calculations are being 
performed (normally they are printed afterwards). Only 
the specified fields (identified by an E in column 15) are 
printed at that time. Even though these fields are not 
printed at the usual time, they still have the same effect 
on the overflow routine as all other lines. If the overflow 
line is sensed when an exception field is printed, the 
overflow indicator turns on as usual. 

IBM Innnunnut 

RPG OUTPUl 

Programmer - 

Figure 10-57. Uses of Fetch 

General Considerations 

When using the overflow indicator to condition overflow 
printing, remember: 

Overflow indicators may be turned on and off by 
the operation codes SETON and SETOF. 

Spacing past the overflow line causes the overflow 
indicator to turn on. 

Skipping past the overflow line to any line on the 
new page does not turn the overflow indicator on. 

A skip to a new page specified on a line not con- 
ditioned by an overflow indicator causes the overflow 
indicator to turn off. 



Figure 10.58 shows the setting of overflow indicators 
during the normal overflow routine and during a fetched 
overflow routine for both normal output and exception 
output. The left-hand portion of the graph shows when 
the indicators are on or off in relation to the general 
program cycle. For example, if, during normal output, 
a detail line is printed on the line number specified as 
the overflow line, the overflow indicator turns on. It 
remains on until the end of the next program cycle. The 
solid blank lines indicate that the indicator is on. The 
dashes are used to show a connection between the end 
of one cycle and the start of the next. 

1 NORMAL OVERFLOW ROUTINE 

I NORMAL OUTPUT EXCEPTIOI; OUTPUT r 
buring 
Wail I - 

f 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I + 
I 
I 

i 
I 

f 
'[ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I + 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
t 
I 

l o  
,' - 

Overflow 
During 
Total Calc. 
P 

Figure 10-58. Overflow Pri~tling: Setting of the Overflow Indicator 

PROGRAM CYCLE 

For each record that is processed, the RPG I1 object 
program goes through the same general cycle of opera- 
tions. After a record is read, there are two different 
instances in time when calculation operations are performed 
and records are written out. First, all calculation opera- 
tions conditioned by control level indicators (columns 
7-8) and all total output operations are done. Second, 
all calculation operations not conditioned by control 
level indicators (columns 7-8) and all detail output opera- 
tions are done. 

FETCHED OVERFLOW ROUTINE 

EXCEPTION OUTPUT 

Overflow 
During 
Detail Outr - luring 

letail I - 
I 
I 
I 

I 

I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I + 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

t 
i 

J 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I + 
I 

t 
I 
I 
I 

i 0 
,' 



The fust instance in time that calculation operations 
are performed, they are performed on information from 
records read prior to the record just read. The second 
instance in time that calculations are performed, they 
are performed on data from the record just read. The 
following discussion describes this concept in more detail. 

Whenever a record is read, a check is made to determine 
if information in a control field (when one has been 
specified) is different from the control field information 
on the previous record. A change in the control field 
information indicates that all records from a particular 
control group have been read and a new group is starting. 
When all records from a group have been read (shown by 
control level indicators being turned on), operations may 
be done using information accumulated from all records 
in that group. It is at this time then that all calculations 
conditioned by control level indicators in columns 7-8 
are done. Total output operations are also performed 
at this time. Remember that information on the record 
read at the beginning of the program cycle is not used 
in these operations; only information from cards in the 
previous control group is used. 

Calculations are done at the second instance in time 
when one of the following occurs: 

1. All total calculation and total output operations 
have been completed. 

2 The information in the control field has not changed 
(no total operations have been done). 

3. No control fields have been specified (no total 
operations will be done). 

When any one of these three conditions occurs, all calcula- 
tion operations not conditioned by control level indicators 
(columns 7-8) are performed. Detail output operations 
are also performed at this time. 

The specific steps taken in one program cycle are shown 
in Figure 10-59. The item numbers in the following 
description refer to the numbers in the figure. A program 
cycle begins with step 1 and continues through step 21. 

1. The object program performs all specified heading 
and detail output operations whose conditions are 
satisfied This does not include specifications that 
are conditioned by the overflow indicator. The 
object program also performs a test to determine if 
the overflow line was encountered when heading and 
detail records were written. If it was, the overflow 
indicator turns on. Otherwise, the overflow indicator 
turns off. 

2 The program tests to see if the LR indicator is on. 
If it is, the program branches to step 14. 

The object program tests the halt indicators If 
the halt indicators are off, the program branches 
to step 5. 

The execution of the program is stopped if the halt 
indicators are on. Execution may be restarted, how- 
ever, by pressing the start key on the Processing 
Unit. 

All record identifying indicators and indicators 1P, 
LR, L1-L9, HI-H9 are turned off. 

The program reads the next input record. At the 
beginning of processing, if it is a multifile job, one 
input record from each file is read. 

The program performs a test to determine if the 
record is an end-of-file record. If an end-of-file 
condition has occurred, the program branches to 
step 22. 

If end of file has not occurred, the program per- 
forms a test to determine if the input records are 
in the sequence specified for them on the Input 
sheet. If the sequence is incorrect, the program 
branches to step 30. The program also branches 
to step 30 if nonsequential input records are 
specified and the record cannot be identified. 

The object program branches to step 25 if matching 
fields are specified. 

The record identifying indicator specified for the 
current record type turns on. Data from the current 
record type is not available for processing until 
step 20. 

The object program performs a test to determine if 
a control break has occurred (the contents of this 
control field are not equal to the contents of a 
previously stored control field). If a control break 
has not occurred, the program branches to step 13. 

If a control break has occurred, the appropriate 
control level indicators turn on. 

If this is the fust program cycle, the program by- 
passes the calculations and the output specifications 
conditioned by control level indicators and branches 
to step 16. 

If control fields are specified, calculations conditioned 
by control Level indicators and total output lines are 
bypassed for all records read until the first record 



At start: one record 

control ravel 
indicators 

conditioned by control 
tntct indruton. 

If overflow tine h 
been rerhad, turn 

Make data available from laat 
record and from specifled 
laok ahead ftelds. 

conditioogl by control 
lerel indicators m colurnm 
7-8 of calculation 
swcifieations Turn on or 

Figure 10-5 9. Program Cycle 



that contains control field information has been 
processed. This applies also to the calculations 
specified with an LO indicator. 

All calculations conditioned by control level indi- 
cators (columns 7-8 of calculation specifications) 
are performed and resulting indicators are turned 
on or off as specified. 

All total output that is not conditioned by an over- 
flow indicator is performed. The program performs 
a test to determine if an overflow condition has 
occurred. If an overflow condition has occurred 
at any time during this cycle, the overflow indicator 
turns on. 

The program performs a test to determine if the last 
record indicator (LR) is on. If the indicator is on, 
the program branches to step 32. 

The program performs a test to determine if the 
overflow indicator is on. If no overflow indicator 
is on, the program branches to step 19. 

The specified overflow output is performed. If no 
overflow output is specified, and no overflow indi- 
cator is used in file description specifications, the 
program performs an automatic skip to line 06 
of the next page in the printer. 

The MR indicator turns on if this is a multifile job 
and the record to be processed is a matching record. 
Otherwise, the MR indicator turns off. 

Field indicators are turned on or off as specified. 
Data from the last record read and from specified 
look &ead fields is made available for processing. 

Any calculations not conditioned by control level 
indicators (columns 7-8 of the calculation specifica- 
tions) are performed, and resulting indicators are 
turned on or off as specified. Processing continues 
with step I. 

If only one input file is to be processed, the program 
continues with step 24. 

The program performs a test to determine if the 
processing of all the mes to be checked for end of 
Me has been completed. If not, the program branches 
to step 27. 

All control level indicators (L1-L9), and last record 
indicator (LR) are turned on and processing con- 
tinues with step 13. 

The program performs a test to determine if the 
sequence of matching fields is correct. If the 
sequence is incorrect, the program branches to 
step 30. 

The program performs a test to determine if more 
than one file is to be processed. If only one input 
file is to be processed, the program branches to 
step 10. 

The contents of the matching fields are compared. 
If the contents are equal, the program branches to 
step 29. 

The program determines the contents of the new 
matching fields. 

The program determines the next file to be processed 
and branches to step 10. 

The execution of the program is discontinued 
because of a sequence or record type error. 

Restart processing after eliminating the error condi- 
tion. 

End of job occurs. 

STERLING 

The RPG I1 language is able to handle British sterling data. 
The use of sterling data, however, must be indicated to 
the RPG I1 compiler. This requires special control card 
specifications, input specifications, and output-format 
specifications. 

System13 can process pence data only. Input data, 
however, may be in pounds, shillings, pence, and pence 
decimals. RPG I1 automatically converts the sterling 
amounts in the input field into pence so that processing 
can be done. All records are punched or printed in pence 
unless otherwise indicated by certain specifications 

S h e  sterling requires the use of special entries in three 
different types of specifications, each type will be con- 
sidered separately. A column by column description is 
used However, only those columns affected by the use 
of sterling are described. Those that are not described 
have the same entries as described in the main sections. 



CONTROL CARD SPECIFICATIONS (COLUMNS 17-20) 

Entry Explanation 

0 Records are only printed, not punched. 

1 Indicates IBM format. 

2 Indicates BSI format. 

Use columns 17-20 to indicate the format in which the 
input data is punched on the card. Two forms are available, 
IBM or BSI, for data recorded on punched cards. These 
two formats allow variations in the number of card 
columns used for shilliig and pence fields. As you read 
about entries in columns 17-20 refer to Figure 10-60 
which shows sterling data punched in various formats. 

Column 17 (Input Shilling Field) 

IBM Two columns are used in the shilling field 
The field may contaip a number from 00-19. 

BSI One column is used in the shilling field. Be- 
cause this one column shilling field may 
contain a maximum value of 19, there must be 
a way of representing a two digit number in a 
one column field. The following characters 
are used to do this: 

0-9 0-9 shillings. 
& 10 shillings. 
A-I 1 1 - 1 9 shillings. 

Column 18 (Input Pence Field) 

IBM One column is used in the pence field. The 
following punches are used to punch pence 
data into the card: 

0-9 0-9 pence. 
- (minus) 10 pence. 
& I1 pence. 

BSI One column is used in the pence field. The 
following are used to punch pence data in 
the BSI format: 

0-9 0-9 pence. 
& 10 pence. 
-  us) 11 pence. 

I Sterling Amount : a f  : 15 : 10. 5 
(one decimal position, unsigned) 

- - - -- -  
ART. 51793 - - - - - -  

Figure 10-60. Sterling Formats for Punched Output Records 

Column 19 (Output Shilling Field) 

See column I 7  for details on formats. 

Column 20 (Output Pence Field) 

See column 17 for details on formats. 

When using sterling, remember: 

1. It is possible to combine the two formats (see 
Figure 10-60). For example, the shilling field may 
be in IBM format and the pence field in BSI format. 

2 Sterling fields written on the printer are not in IBM 
or BSI format. Instead they are always in print 
format which consists of two shilling positions and 
two pence positions in addition to a maximum of 
three decimal positions and nine pound positions. 



Columns 1-43 

See Chapter 4 for information concerning columns 1-43. 

51 (Field Location) 

Columns 4 4 5  I. are used to indicate the location of the 
sterling field on the card. Entries in these columns are 
the same for fields containing sterling data as for fields 
not containing sterling data. Keep in mind, however, that 
the tot& length of any sterling field before and after con- 
version to pence must not be greater than 15 characters. 
(Tle W G  EI compiler converts dl fields to pence.) See 
Columns 44-51 in Chapter 7 for correct entries, 

The field length inclu s pounds, shillings, pence, and 
decimal positions. The must be large enough 
to include at least one po ion, but no more than 
nine. The number of positions in the shilling and pence 

y the type of format used (see Col- 
umns 17-20 in Chapter 3). Figure 10.48 shows the 
maximum size of sterling fields for all formats. 

e number of decimal posi- 
tions in the pence field. The maximum number of posi- 
tions is three. Therefore, you may enter any number from 
0 to 3 in this column. 

Use columns 53-58 to name your sterling field. Remember 
that the same name cannot be used for both a sterling 
field and a decimal field. See Columns 53-58 in Chapter 7 
for rules on forming field names, 

Columns 5962 

Columns 59-62 may not be used with sterlin 
Leave them blank. 

Columns 63-70 

See Chapter 7 for hformation concerning columns 63-70. 

(Sterling Sign Position) 

Use columns 71-74 to indicate the position of the sign in 
the sterling field. Normally, when there are decimal 

is in the rightmost decimal position of 
the pence field (see Example 1). The sign of the field 
is found in the rightmost character of the pounds field, 
however, when there are no decimal positions (see 
Example 2). 

The sign need not appear in these standard positions. 
In fact, the sign does not even need to be within the field. 
However, the sign position, wherever it is, must not only 
contain a zone entry but also a valid digit entry to ensure 
that the sign position will be recognized. 

Enter an S in column 74 when the sign is in the standard 
position. However, when the sign is not in the standard 
position, enter the number of the record position (1-4,096) 
in which the sign is found. The number entered must end 
in column 74. 

Example I :  Figure 10.61, insert A shows that the correct 
osition of the sign when decimals are used is in the right- 

most decimal position of the pence field. Notice that the 
minus sign combined with a 5 (the number in the last 
decimal position) punched out as an N. 

Example 2: Figure 10.61, insert B shows that the correct 
position of the sign, when decimals are not used, is in the 
rightmost pound position. Notice that the minus sign, 
combined with a 1 (number in the rightmost pound 
position), punches out as a J. 

OUTPUT SPECIFICATIONS 

See Chapter 9 for information on columns 1-37. 

Column 38 (Edit Codes) 

The RPG TI compiler automatically causes zero suppression 
of the leftmost digits of the skilling and pence fields. How- 
ever, if you wish the pounds field to be zero suppressed 
you must specify editing. A Z in column 38 causes the 
pound portion of the field named in columns 32-37 to be 
zero suppressed, It also removes the sign of the field 
before the field is printed 



Sterling Amount:-£21 1 :3: 11.75 Sterling Amount: - &  301  :0:9 
( two decimal positions) (no decimal positions) 

A' 

Sign of the field 

Figure 10-61. Sterling Amounts in All Available Formats 

Example: After conversion from pence to pounds, 
shillings, and pence, the field containing a value of 
001 040201 (001 04 pounds, 02 shillings, and 01 pence) 
is printed as 1040201 if zero suppression has been speci- 
fied. If zero suppression has not been specified, the field 
prints out as 00104 2 1. 

Column 39 (Blank After) 

See Chapter 9 for further information. 

Columns 40-43 (End Position in Output Record) 

Use columns 4043 to indicate the end position of the 
field on the output record. The formats (IBM or BSI) 
which were specified on the control card are not used on 
printed output. Printed output requires two positions 
for pence, two positions for shillings, from one to nine 
positions for pounds, and from zero to  three positions for 
decimals. Keep this in mind so that you are sure to allow 
enough room on the record for the entire field See 
Columns 40-43 in Chapter 9 for correct specifications. 
For output devices other than the printer, the length 
required depends on the format used (see Columns 40-43 
in Chapter 3). 

Column 44 

Column 44 is not used. Leave it blank. 

Columns 45-70 (Constant or Edit Word) 

If edit code Z is not used, columns 45-70 may be used to 
edit an output field. Each edit word used is composed of 
three sections or fields: the pounds field, the shillings 
field, and the pence field. When using edit words, you may 
use: 

Floating and fvred pound signs. 

Zero suppression of the pounds field. 

CR and minus (-) symbols. 

Asterisk fill. 

An ampersand to cause a blank in the edit word 

Any constant information. 



When editing sterling fields, remember: 

1. An edit word must be enclosed by single quotes. 

2 Two positions must be allowed for the shiUings 
field in every edit word. Two positions must be 
allowed for the pence field. 

3. At least one character should be inserted between 
the pounds and shillings fields and the shillings and 
pence fields in order to separate them. Any character 
except a blank may be used to separate the shillings 
and pence fields. A comma, however, is permitted 
within the pounds field and a decimal point is 
permitted within the pence field. 

Zeros in the pounds field may be suppressed by 
putting a zero suppression zero in the edit word. 
The shillings and pence fields are always zero 
suppressed automatically. 

When specifying the floating pound sign, there must 
be at least one pound field position preceding the 
shillings field and following the pound sign 

Asterisk fdl, if desired, must be specified by placing 
an asterisk in the pounds field. This causes the 
pounds field to fdl with asterisks. 

Figure 10.62 shows valid examples of editing a sterling 
field. t denotes the pound sign. S the shilling sign, and 
d the pence sign. See Editing in this chapter for more 
information on edit words. 

Unedited Field Edited Field 

00N0703 5 7 3 

Figure 1062. Edit Words for Sterling Fields 

10-96 



Columns 71-74 (Sterling Sign Position) 

For printed output records, column 74 must contain an 
S if the pence field is to be converted to pounds, shillings, 
and pence before it is printed. I t  may not contain a numeric 
entry. If blank, the field is printed in pence. 

For punched card or disk output, the same entries are 
used as on the input specifications. An S is entered in 
column 74 when the sign is to appear in the standard 
position. When the sign is not in the standard position, 
columns 73-74 must contain the number of the column 
(1-96) in which the sign is to appear. 

to write these instructions every time they are needed, it 
is easier and less time consuming if they can be written 
just once and then referred to each time they are needed. 
You can do this by writing a subroutine which then 
consists of all those operations you have to do at several 
points in your program. 

You might also have to do the same sequence of opera- 
tions in several different programs. Instead of writing 
these specifications in each program, you can code the 
operations once as a subroutine. You then include this 
subroutine in as many different programs as you wish. 

Coding Subroutines 
SUBROUTINES 

A subroutine is a routine that is part of another main 
routine. A routine is something done over and over 
again. A program can be called a routine because the 
instructions in a program are done again and again (the 
program cycle). A subroutine is a group of instructions 
in that main routine (program) which may be done several 
times in one program cycle. 

Sometimes it is necessary to write a program which at 
several points does the same operations. Instead of having 

Subroutines are coded and used on the Calculation sheet. 
They are entered after all other calculation operations. 
Every subroutine must have a name. But no two sub- 
routines used in the same progxam may have the same 
name. 

Enter the name of the subroutine in Factor 1, and on 
the same line enter the operation code BEGSR (line 10 of 
Figure 1 M3). The subroutine name can be 1-6 characters 
long and must begin in column 18 with an alphabetic 
character. The remaining characters can be any combination 

Figure 10-63. Subroutine Lines (SR) 

RPG CALCULATION SPECIFICATIONS 

Owation Fmtw 2 R w l t  Fidd 

Calculation 
operat ions 

Calculation operations 
in the subroutine 



of alphabe :tic or numeric characters (no special characters). 
Blanks may not appear between characters in the name. 

Each specifications line within the subroutine must have 
SR in c~lumns 7-8 to identify it as a subroutine line (see 
Figure 1863). The last statement of the subroutine is 
indicated by the operation code ENDSR (see line 17 of 
Figure 1863). Factor I of the ENDSR statement may 
contain a name. This name indicates the point to which a 
GOT0 within the subroutine can branch (Figure 10.64). 

The subroutine, even though specified last on the 
Calculation sheet, may be performed at any point in the 
calculation operations Whenever the subroutine is to be 
used, enter the operation code EXSR (execute subroutine). 
The name of the subroutine to be used must also be 
entered in Factor 2 (lines 04 and 08 of Figure 10-65). 
Using the EXSR operation is known as calling a subroutine, 

The operation code EXSR causes the operations in the 
subroutine named in Factor 2 to be performed. After all 
calculation operations in the subroutine are done, the next 
operation after the EXSR is performed. For example, when 
the EXSR operation (see line 04 of Figure 10.65 is en- 
countered, all subroutine operations (lines 11-1 5) are done. 
Then the operation in lime 05 is performed. 

Indicators may be used with EXSR code to condition 
when the subroutine should be executed. Any valid indi- 
cator may be used in columns 7-1 7. If no indicators are 
used, the subroutine is always executed. 

All possible RPG I1 operations may be performed within 
a subroutine. Operations within the subroutine may be 
conditioned by any valid indicator in columns 9-17 (see 
Figure 10.65). Since SR must appear in columns 7-8, 
control level indicators cannot be used in these columns. 

IBM 

Programmer 

I 1 1  I Indi~dtors 

RPG CALCULATION SPECIFICATIONS 

Calculation operations 

Calculation operations 

Factor 1 of the ENDSR statement contains 
a name to which the GOT0 statement 
in the subroutine can branch. 

Figure 10-64. Subroutines (ENDSR) 

10-98 



I RPG CALCULATION SPECIFICATIONS 

"-C Calculation 
operations 

I.r Calculation 
operations 

-c Calculation operations 
within the subroutine 

Figure 1065. Subroutines @XSR) 



This means that individual operations within the subroutine 
cannot be conditioned by a control level indicator used in 
columns 7-8. However, entire subroutines can be condi- 
tioned by control level indicators. This can be done by 
using the control level indicator with the EXSR operation 
(see line 08 of Figure 10.65). 

Fields used in the subroutine may be defined either 
inside or outside the subroutine. In either case, they can 
be used by both the main routine and the subroutine. 

You may use as many subroutines in your main program 
as you wish. However, you cannot write a subroutine 
within a subroutine. This means that within one sub  
routine you cannot have the BEGSR and ENDSR operation 
codes. One subroutine may call another subroutine, 

however. In other words, within a subroutine you may 
have an EXSR operation (Figure 10.66). 

Subroutines need not be defrned in the order in which 
they are used. However, you must make certain that each 
one has a different name and a BEGSR and ENDSR 
operation code. 

When you use a GOT0 statement in a subroutine, you 
may only branch to another statement in that same 
subroutine. Branching (GOTO) to a statement in another 
subroutine or outside of a subroutine causes an error 
condition. You cannot use a GOT0 from outside the 
subroutine to a statement within the subroutine either. 
Figure 10.67 shows the correct use of GOT0 and TAG 
within a subroutine. 

IBM 

Date - -  

RPG CALCULATION SPECIFICATIONS 
1 2  75 76 77 78 79 80 

-7-rT-n 

Factor 2 

F i r e  10-66. Subroutines: Calling Another Subroutine 



Use of One Subroutine in Many Different Programs 

When you wish to do the same operations in many different 
programs, you may use a subroutine to eliminate duplicate 
coding in each program Merely code these operations 
once, punch them on cards, and use this subroutine deck 
along with your main program deck. 

Whenever you code a subroutine to be used in several 
different programs, remember: 

1. When you call the subroutine in your main program 
(EXSR operation code), you must use the correct 
name of the subroutine in Factor 2. 

All fields that will be used both by the subroutine 
and the main routine must be named the same in 
each routine, For example, if both the main routine 
and the subroutine used data from the field called 
COST on the input card, that field must be named 
COST in both routines. Keep in mind that the 
COST field also has the same characteristics (length, 
decimal positions) in both the main routine and the 
subroutine. 

Date - 

Program 

l"8m.lon%l B"ll"slr hlachansr Somoratlon 

RPG CALCULATION SPECIFICATIONS 

Factor 2 Result Field 
F'e'd 
Len@ 

Revtltmg 
Indicators 

Amhmetc 

Comments 

Figure 10-67. GOT0 and TAG Within a Subroutine 





Index 

ADD (add) 10-49 
Add a record 9-2 
Adding records to fies 4-14 
Additional inputloutput area 4-8 
ADDROUT files 

column 32 (fie organization) 4-8,4-10 
definition of 4-6 
disk address length 4-7 
extension code 4-1 1 
B e  description chart 4-23 
processing by 4-5 
record address type 4-7 

Alternate collating sequence 
column 26 (alternate collating sequence) 3-4 
control card entry 3-4 
example of 10-4 
general information 10-1 
specifications for 10-1 

AND relationship 
cdculation sheet 8-2 
input sheet 7-6 
output-format sheet 9-6 

Arithmetic operations 10-49 
Arrays 

building arrays via calculations 10-10 
calculation specifications 10-1 2 
compilation time 5-1,5-2, 10-4 
decimal positions 5-8 
definition 10-4, 10-6 
editing 10-13 
end of array 5-2 
execution time 5-1,5-2, 10-4 
extension code 4-1 1 
extension sheet chart 5-9 
indexing 10-11 
length of entry 5-6 
loading 

considerations 5-2 
via input specifications 10-7 
with more than one input record 10-9 
with one input record 10-8 

lookup 
general information 10-1 3 
specifications 10-65 
starting at a particular item 10-70 

name 
fie description sheet 4-2 
extension sheet 5-2, 5-3 
rules for 10-1 1 

number of entries per array 5-5 
number of entries per record 5-5 
output-format specHcations 10-1 3 
packed or binary format 5-8 
related arrays 5-9 
sequence 5-8 
XFOOT 10-13 

BEGSR (begin subroutine) 10-72 

Binary field operations 10-60 
Binary fields 

extension sheet 5-8 
input sheet 7-8 
output-format sheet 9-17 

BITOF (set bit off) 10-60 
BITON (set bit on) 10-60 
Blank after 9-15 
Block length 4-4 
Blocking records 4-4 
Branching operations 10-136 

C-character 7-6 
Calculation indicators 8-2, 8-7, 8-16, 10-39 
Calculation specifications 8-1 
Card arrangement in source deck 1-4 
CHAIN (chain) 10-76 
Chained fies 

examples 10-7 8 
f i e  description entry 4-3 
general information 10-76 

Character structure 10-25 
Combined fiies 4-2 
Commas (see Editing) 
Comments 2-3 
COMP (compare) 1&58 
Compare and testing operations 10-58 
Compiling 1-1 
Conditioning indicators 

calculation sheet 8-7 
output-format sheet 9-4 

Consecutive processing 4-6 
Console (printer-keyboard) 

considerations 4-1 2 
device names 4-1 1 
f ie  description chart 4-25 

Constant or edit word 9-17 
Constants, output-format sheet 9-17 
Control break 7-10 (see also Control fields) 
Control card specifications 3-1 
Control fields 

assigning on input sheet 7-10 
split 7-13 

Control level indicators 
assigning on input sheet 7-10 
calculation sheet entries 8-2, 8-16 
field record relation, used as 7-18 
output-format sheet 9-4 
SUMMARY 10-38 

Core size to compile 3-2 
Core size to execute 3-2 
Cylinder index in core 4-1 3 
C/Z/D 7-6 

D-digit 7-6 
Date field 

UDATE 9-10 
editing of 10-26 



DEBUG (debug) 
control card entry 3-3 
general information 10-83 
operation code table 8-14 
specifications 10-84 

Decimal positions 
calculation sheet 8-1 3 
extension sheet 5-8 
input sheet 7-9 

Defining an alternate collating sequence 10-1 
Demand files 

file description entry 4-2 
(see FORCE) 

Detail records 9-2 
Device 

console, considerations 4-1 2 
f i e  description entries 4-1 1 
printer, considerations 4-1 2 
printer keyboard considerations 4-12 

Digit, characters grouped by 10-25 
Direct files 

addition to 4-22, 10-78 
general information 4-10 
loading 4-22, 10-78 
processing methods 4-22 

Disk f i e  
organization (see File organization) 
processing (see Processing methods) 

Display files 
example 10-78 
file description entry 4-2 
general information 10-76 

DIV (divide) 10-53 
Domestic format 3-3 
DSPLY (display) 10-76 
Dual carriage feature 4-12 

Edit codes (see Editing, edit codes) 
Edit words (see Editing, edit words) 
Editing 

edit code% 
column 38 (edit codes) 9-15 
effect on inverted print 3-3 
examples 10-27 
general information 10-26 
table 10-26 

edit words 
columns 45-70 (constant or edit word) 9-17 
considerations 10-28 
examples 10-28 
formatting of 10-28 
general information 10-28 
output-format sheet entries 9-17 
printer spacing chart 10-29 

general information 10-25 
sterling fields 10-95 

End of file 4-4 
End position in output record 9-15 
ENDSR (end subroutine) 10-72 
Exception records 9-2 
EXCPT (exception) 10-72 
EXSR (execute subroutine) 10-72 
Extension chart 5-9 
Extension code 4-1 1 
Extension specjfications 5-1 
Extents, number of 4-18 

External indicators 
assigning on file description sheet 4-18 
field record relation, used as 7-18 
output indicator, used as 9-4 
summary 10-39 

Factor 1 8-11 
Factor 2 8-11 
Fetching the overflow routine 

general information 10-87 
output sheet entry 9-3 

Field 
length 8-13 
location 7-8 
name, input sheet 7-9 
name, output-format sheet 9-10 

Field indicators 
assigning on input sheet 7-23 
summary of use 10-35 

Field record relation 7-18 
File addition 4-14 
File condition 4-18 
File description charts 4-19 
File description specifcations 4-1 
File designation 4-2 
File format 4-4 
File organization 

direct files 4-10 
file description sheet entries 4-8 
indexed fiies 4-8 
sequential files 4-10 
(see also file description charts) 

File organization or additional 110 area 4-8 
File processing (see Processing methods) 
File translation tables 

column 43 (file translation table) 3-5 
control card entSy 3-5 
example of 10-3 1 
general information 10-31 
specifications for 10-31 

File type 4-2 
Filename 

extension sheet 5-2 
file description sheet 4-2 
input sheet 7-2 
line counter sheet 6-2 
output-format sheet 9-2 

First page indicator 
assigning on output-format sheet 9-4 
summary 10-38 

Fixed dollar sign 10-28, 10-30 
Fixed length format 4-4 
Floating dollar sign 10-28, 10-3 1 
Flowchart, RPG programcycle 10-91 
FORCE (force) 10-72 
From filename 5-2 
Function of RPG I1 1-1 
Form length 6-2 
Form type 2-2 
Formatting edit words 10-28 
Forms positioning 3 5  

GOTO (go to) 10-61 

Half adjust 8-1 5 



Halt indicators 
assigning on input sheet 7-5 
calculation sheet entries 8-7, 8-16 
field indicator, used as 7-23 
field record relation, used as 7-1 8 
output-format sheet entry 9 4  
summary and example 10-36 

Heading records 9-2 

Indexed fies 
addition to  4-14 
general information 4-8 
loading 4-15,4-20 
processing methods 4-15,4-20 

Indicators 
calculation sheet 8-2,8-7,8-16, 10-39 
conditioning 

calculation sheet 8-7 
output-format sheet 9-4 

control level 
assigning on input sheet 7-10 
calculation sheet entries 8-2, 8-16 
field record relation, used as 7-18 
output-format sheet entry 9-4 

summary 10-38 
external 

assigning on fie description sheet 4-18 
field record relation, used as 7-18 
output indicator, used as 9-4 
summary 10-39 

field 
assigning on input sheet 7-23 
summary of use 10-35 

field record relation 7-18 
file conditioning 4-1 8 
f i e  description sheet 4-1 8 
first page 

assigning on output-format sheet 9-4 
summary 10-38 

general information 10-34 
halt 

assigning on input sheet 7-5 
calculation sheet entries 8-7, 8-16 
field indicator, used as 7-23 
field record relation, used as 7-18 
output-format sheet entry 9-4 
summary and example 10-36 

input sheet 7-5, 7-18,7-23 
last record 

calculation sheet entries 8-2, 8-16 
summary 10-39 

level zero (LO) 
assigning on calculation sheet 8-2 
summary 10-39 

matching record 
assigning matching fields (MI-M9) 
calculation sheet entry 8-7 
field record relation, used as 7-1 8 
general infomation 10-38 
output-format sheet entry 9-4 

output-format sheet 94 ,  10-39 
overflow 

calculation sheet entries 8-7, 8-16 
examples 10-86, 10-87,10-88 
fetching the overtlow routine 10-87 
file description sheet entry 4-1 1 
general information 10-84 

output-format sheet entry 9-4, 9-6 
relation to program cycle 10-89 
summary of use 10-38 

record identifying 
field record reIa.tion, used as 7-18 
assigning on input sheet 7-5 
summary and examples 10-35 

resulting 
calculation sheet entry 8-16 
summary 10-35 
summary chart 10-35 

Input fies 4-2 
Input/output areas 4-8 
Input ~ p e c ~ c a t i o n s  7-1 
Inquiry support, RPG I1 3-4 
Inserting new records 4-14 
Inverted print 3-3 

Key field 
definition 4-8 
length 4-7 
starting location 4-11 

LO indicator 
assigning on calculation sheet 8-2 
summary 10-39 

Last record indicator 
calculation sheet entries 8-2, 8-16 
summary 10-39 

Leading zero suppression 3-5 
Length of 

key field 4-7 
record address field 4-7 
table or array entry 5-6 

Level zero indicator 
assigning on calculation sheet 8-2 
summary 10-39 

Line 2-1 
Line counter specifications 6-1 
Line number 

coding lines 2-1 
number of lines per page 6-2 
overflow line 6-2 

Listing options 3-2 
Literals 8-11 
Logic, RPG program cycle 10-89 
LOKUP (lookup) 

examples 10-66,lO-67 
general information 10-64 
referencing the table item found 10-70 
starting the search at a particular array item 10-70 
with an array 1065 
with one table 10-65 
with two tables 10-65 

Look ahead fields 
examples 10-40, 1047  
input sheet entries 7-6 
specifications 10-46 
use of 1040 

Lookup operation (see LOKUP) 

Machine requirements 1-2 
Matching fields 7-14 
Matching record indicator 

assigning matching fields (Ml-M9) 
calcuhtion sheet entry 8-7 



field record relation, wed as 7-18 
general information 10-38 
output-format sheet entry 9-4 

-um number of volumes (extents) 4-18 
WCU (multi-function card unit) 

f i e  description chart 4-24 
device names 4-1 1 
printing on cards 9-15 

MHHZO (move high to high zone) 10-58 
MHLZO (move high to low zone) 10-58 
MLHZO (move low to high zone) 10-58 
MLLZO (move low to low zone) 10-58 
Mode of processing 4-5 
MOVE (move) 10-54 
MOVEL (move left) 10-56 
Move operations 10-53 
Move zone operations 10-5 8 
MULT (multiply) 10-5 2 
Multifile processing 

match fields 10-49 
no match fields 10-47 

Multi-functionard unit (see MFCU) 
MVR (move remainder) 10-53 

Negative numbers 10-25 
Normal collating sequence 10-1 
Not, input sheet 7-6 
Number, record types 7-4 
Number of entries per record 5-5 
Number of entries per table or array 5-5 
Number of extents 4-18 

Object program identification 2-3 
Object program output 3-2 
Operation codes 

calculation sheet entry 8-1 3 
general information 10-49 
summary chart 8-14 
(see individual operation codes, such as ADD, MULT, Z-ADD) 

bption, record type 7-5 
OR relationship 

calculation sheet 8-2 
input sheet 7-6,7-9 
output-format sheet 9 6  

Order of record selection, match fields 10-49 
Output files 4-2 
Output-format ~ p e ~ c a t i o n s  9-1 
Output indicators 9-4 
Overflow indicators 

calculation sheet entries 8-7,8-16 
examples 10-86, 10-87, 10-88 
fetching the overflow routine 10-87 
fie description sheet entry 4-1 1 
gene& information 10-84 
output-fomat sheet entry 9 4 9 - 6  
relation to program cycle 10-89 
summary of use 10-38 

Overflow line 6-2 

Packed or binary field 
extension sheet 5-8 
input sheet 7-8 
output-fomat sheet 9-17 

PAGE 7-9,9-10 
Page numbers 2-1 
*PLACE 9-10 
Primary file 4-3 

*PRINT 9-10,9-12 
Printer 

device names 4-1 1 
dual carriage feature 4-1 2 
f ie  description chart 4-26 

Printer-keyboard (see Console) 
Printing on cards 9-15 
Processing methods 

consecutive 4-6 
direct f ie  load 10-78 
random by ADDROUT file 43,446 
random by key 4-7,lO-77 
random by relative record number 4-7,10-77 
sequential by key 4-6 
sequential within limits 4-6 

Program control of input and output 10-72 
Program cycle 10-89 
Progtam identification 2-3 
Program listing 3-2 

Random processing 
by ADDROUT f ie  4-3,46 
by key 4-7,10-77 
by relative record number 4-7, 10-77 
using chain operation 10-77 

Record addition 4-14 
Record address files 

defmition 4-3 
extension code 4-1 1 
extension sheet entries 5-2 
format of records 4-7 
key field length 4-7 
located on disk 4-23 
processing sequential within limits 4-6 

Record address type 4-7 
Record identification codes 7-6 
Record identifying indicators 

field record relation, used for 7-18 
assigning on input sheet 7-5 
summary and examples 10-35 

Record insertion 10-78 
Record length 4-5 
Result field 8-13 
Resulting indicators 

calculation sheet entry 8-16 
summary 10-35 

RPG inquiry support 3-4 
RPG program cycle 10-89 
RPG source deck, card arrangement 1-4 
RPG specification sheets, general information 1-2 

Secondary Ties 4-3 
Sequence 

checking, input records 7-2 
checking, using M1-M9 7-14 
extension sheet 5-8 
file description sheet 4-4 
input sheet 7-2 
tables or arrays 5-8 

Sequential fies 
addition to 4-21 
general information 4-10 
loading 4-21 
processing methods 4-21 

sequential by key 4-6 
Sequential processing within limits 446 
SETOF (set of0 8-16, 10-61 



SETON (set on) 8-16, 10-6 1 
Setting indicators 1060 
Short tables 5 6  
Skipping 9-3 
Source deck, card arrangement 1-4 
Source program ident

ifi

cation 2-3 
Spacing 9-3 
Split control fields 7-1 3 
SQRT (square root) 10-53 
Stacker select 

input sheet 7-8 
output-format sheet 9-3 

Sterling fields 
control card entries 3-3 
editing of 10-95 
general information 10-92 
input specifications 

all input sheet entries 10-94 
columns 71-74 (sterling sign position) 7-24 
example 10-94 

output-format specifications 
aIl output-format entries 10-94 
columns 71-74 (sterling sign position) 9-19 
example 10-96 

SUB (subtract) 10-49 
Subroutines 

columns 7-8, calculation sheet 8-2 
examples 10-97,lO-98,lO-99, 10-100, 10-101 
general information 10-97 
operation codes 10-72 
using one subroutine in different programs 10-101 

Table files 
compilation time 5-1,s-2 
decimal positions 5-8 
definition 4-3 
end of table 5-2 
execution time 5-1,s-2 
extension code 4-1 1 
extension sheet chart 5-9 
length of entry 5-6 

loading 5-2 
lookup 1064 
name 

extension sheet 5-2,5-3 
file description sheet 4-2 
rules for 5-3 

number of entries per record 5-5 
number of entries per table 5-5 
packed or binary format 5-8 
related tables 5-9 
sequence 5-8 

Table or array name 5-3 
TAG (tag) 10-61 
TESTB (test bit) 10-60 
TEST2 (test zone) 10-60 
To filename 5-2 
Total records 9-2 
Translation table and alternate collating sequence coding sheet 10-3 
Type H/D/T/E 9-2 

UDATE 9-10,9-12 
UDAY 9-10,9-12 
UMONTH 9-10,9-12 
United Kingdom format 3-3 
Unprintable character option 3-5 
Update files 4-2 

example 10-78 
Using RPG I1 1-2 
UYEAR 9-10. 9-12 

Volumes, number allowed 4-18 

World Trade format 3-3 

XFOOT (crossfoot) 10-53 

&zone 7-6 
2-ADD (zero and add) 10-49 
Z-SUB (zero and subtract) 10-52 
Zero suppression 3-5 
Zone, characters grouped by 10-25 







International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, New York 10601 
(USA only) 

IBM Wortd Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

- 
s" 
V) 
Y 

f 
\ 
W 
w 
I?. 
2 m n 
J 
C 
V) 
D 

$2 
-i 

I 
-4 VI 
0 
P 
I 
0 



READER'S COMMENT FORM 

Your answers to the questions on this sheet will help us produce better manuals for 
your use. If any of your answers require comments, or if you have additional 
information you think would be helpful, please use the space provided. All comments 
and suggestions become the property of IBM. 

1. Is the manual easy to  rea'd? 

2. Is any of the information unclear? 

3. Is additional information needed? 

4. Is any of the information unnecessary? 

5 .  Did you read the Preface? 

6. Did you use the Table of Contents? 

7. Did you use the Index? * 

8. Did you take the tests? * 
* Not included in all manuals 

9. How did you use the manual: 

Instructor in a class 
Student in a class 
Reference material 
Self-Training 
Other (Explain) 

Have you had previous computer or programming training? 

What is your present job? 

What business is your company engaged in? 

COMMENTS 

0 Thank you for your cooperation. No postage nece 



YOUR COMMENTS, PLEASE. . . 

Your answers to the questions on the back of this form, together with your comments, will 
' 

help us produce better publications for your use. Each reply will be carefully reviewed by 
the persons responsible for writing and publishing this material. All comments and sug- 
gestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

I 
I 
i 

F o l d  
I 

F o l d  

- - _ _ _ _ _ - _ _ - _ _ _ _ _ . _ _ _ _  - - - - - - -  - - - - - - -- -- -  
I 

FIRST CLASS 

PERMIT N O .  387 

ROCHESTER, MINN. 

B U S I N E S S  R E P L Y  M A I L  
N O  POSTAGE NECESSARY IF MAILED I N  THE UNITED STATES 

POSTAGE WILL BE PAID BY . . . 

IBM Corporation 
Systems Development Division 
Development Laboratory 
Rochester, Minnesota 55901 

Attention: Programming Publications, Dept. 425 I 

International Busmess Machines Corporatton 
Data Processing Dtvtsion 
112 East Post Road White Plains, N.Y. 10601 
' U S A  Only 

iBM World Trade Corporation 
821 Unrted Natlons Plaza New York, New York 10017 
1 In ternattonal 


