
Aztec C86 User Manual

Release 1.05i

June 83

Copyright (C) 1983 by Manx Software Systems

All Rights Reserved

Worldwide

Distributed by:
Manx software systems

P. O. Box 55
Shrewsbury, N. J. 07701

201-780-4004

Aztec C86 Introduction

INTRODUCTION

Welcome to the growing number of Aztec C86 users. This manual
will describe the use of the various components of the Aztec C86
system.

1.1 Origin of "C"

Dennis Ritchie originally designed .. c .. for the UNIX project at
Bell Telephone Laboratories. All of the UNIX operating system,
its utili ties, and application programs are written in "C".

1.2 Standard Reference Manual for "C··

The standard reference for the "C" language is:

Brian W. Kernighan and Dennis M. Ritchie, The C
programming Language. prentice-Hall Inc., 1978~ (Englewood
Cliffs, N. J.)

The above text besides providing the standard definition and
reference for the "C" language is an excellent tutorial. Aztec
C86 can be conveniently used in conjunction with the K & R text
for learning the "C" language. Aztec C86 is a complete
implementation of the K & R standard "C". The K & R book is an
essential part of the Aztec C86 documentation. Most questions
regarding the "C" language and many questions on the run time
library package will only be answered in the K & R text.

1.3 Basic Components of the Aztec C86 system

The Aztec C86 system consists of a comprehensive set of tools for
producing software using the "C" programming language. The system
includes a full feature "C" compiler, a relocating assembler, a
linkage editor, an object library maintenance utility, plus an
extensive set of run time library routines. Also included are
interfaces to the MSDOS/PCDOS assembler, MASM, and Digi tal
Research's SID86 debugging system.

1.4 Brief System Overview

The Aztec C86 compiler is a complete implementation of UNIX
version 7 "C", with the exception of the bit field datatype. The
compiler produces assembly language source code which can be read
by the Manx AS86 assembler or the PCDOS/MSDOS assembler, MASM.
programs generated by the compiler have a physical code segment
and a physical data segment, each of which can be up to 64 K
bytes long.

The Manx AS86 relocating assembler accepts the same language as
the PCDOS/MSDOS assembler and the Intel AS86 assembler. It has
support for codemacros, but not for macros. The assembler is used

Copyright (c) 1983 by Manx Software Systems page 1.1

Aztec C86 Introduction

to assemble the output of the compiler and for writing assembly
language subroutines to be combined with "C" routines.

The relocatable object files produced by the assembler are
combined with other relocatable files and library routines by the
Manx LN linkage editor. The linkage editor will scan through one
or more run time libraries and incorporate any routines that are
referenced by the linked modules.

The Aztec C86 system also includes LIBUTIL, an object library
utility. LIBUTIL allows a user to change the contents of the
standard Manx supplied run time library or to create private run
time library.

The run time library is included in the standard package in
source form, in Manx library format, and in MICROSOFT library
format.

1.5 System Requirements

Aztec C86 runs on any PCDOS, MSDOS, or CP/M-86 system with at least
l28K of memory and two disk drives. There are no special terminal
requirements for Aztec C86 other than the ability to produce
upper and lower case and the special characters:

{ } () [] < > _ + = ~ ! ? \ / A % * & : i II I

1.6 Cross Compilers

A UNIX/PDPll cross compiler is available for Aztec C86. The
output of the compiler, assembler, or linker can be downloaded to
the target machine.

1.7 portability

Code written for Aztec C86 can be compiled with Aztec C II, the
Manx 8080 and zao C compiler, and with Aztec C65, the Apple DOS
3.3 "C" compiler.

Copyright (c) 1983 by Manx Software Systems page I.2

Aztec C86 License

SOFTWARE LICENSE

Aztec C86, Manx AS86, and Manx LN are licensed software products.
Manx Software systems reserves all distribution rights to these
products. Use of these products is prohibited without a valid
license agreement. The license agreement is provided with each
package. Before using any of these products the license agreement
must be signed and mailed to:

Manx Software Systems
P. O. Box 55

Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine
and explicitly limits duplication of the products to no more than
two copies whose sole purpose will be for backup. Any uses of
these products that might lead to the creation of or distribution
of unauthorized copies of these products will be a breach of the
licensing agreement and Manx Software Systems will excercise its
right to reclaim the original and any and all copies derived in
whole or in part from first or later generations and to pursue
any appropriate legal actions.

Software that is developed with Aztec C86, Manx AS86, or Manx LN
can be run on machines that are not licensed for these products
as long as no part of the Aztec C86 software, libraries,
supporting files, or documentation is distributed with or
required by the software. In the latter case a licensed copy of
the appropriate Aztec C software is required for each machine
utilizing the software. There is no licensing required for
executable modules that include library routines. The only
restriction is that neither the source, the libraries themselves,
or the relocatable object of the library routines can be
distributed.

COPYRIGHT

Copyright (C) 1981, 1982, 1983 by Manx Software systems. All
rights reservec. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without prior written permission
of Manx Software Systems, Box 55, Shrewsbury, N. J. 07701.

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Manx Software Systems reserves the right to
revise this publication and to make changes from time to time in

copyright (c) 1983 by Manx Software systems

Aztec C86 License

the content hereof without obligation of Manx software Systems
to notify any person of such revision or changes.

TRADEMARKS

Aztec C86, Manx AS86, and Manx LN are trademarks of Manx Software
Systems. CPM86 and SID86 are trademarks of Digital Research.
MSDOS, MASM, and LINK are trademarks of Microsoft. UNIX is a
trademark of Bell Laboratories.

copyright (e) 1983 by Manx Software Systems

Aztec C86

CONTENTS

SECTION

Installation ...
Overview ...
Aztec C86 Compiler

I

II

III

MANX AS86 Relocating Assembler............................ IV

MANX LN Linker

MANX LIBUTIL Library utility

Library Functions

V

VI

VII

Error Codes and Error processing ..•...•..•..........•.••• VIII

I/O Redirection and Buffered I/O

Unbuffered I/O

Assembly Language Support

Data Formats

IX

X

XI

XII

Floating Point Support •.•...•.••..•...•....•...•••.•••••• XIII

SID Support XIV

Copyright (C) 1983 by Manx Software systems

Aztec C86 INSTALLATION

INSTALLATION

To begin using Aztec C86, we recommend that you first create a
"working disk" by copying the files listed below from the
distribution disk onto the working disk.We recommend that you
then compile, assemble, link, and execute the supplied sample
program, EXMPL.C. This procedure is described in chapter 2. To
execute the program after it has been created, type:

EXMPL

The program will display:

enter your name

When you enter your name, followed by a carriage return, the
program will display a simple greeting.

Your Aztec C86 system is now installed and ready to go.

A. INSTALLING AZTEC C86 FOR USE WITH MSDOS OR PCDOS

When your operating system is MSDOS or PCDOS, Aztec C86 can be
used with either the Manx assembler and linker or with the
MSDOS/PCDOS assembler (MASM) and linker (LINK). When the Manx
assembler and linker are to be used, the following files should
be copied onto your working disk:

C86.EXE
AS86.EXE
LN.EXE
LIBC.LIB
MATH. LIB
LIBC.H

When the MSDOS/PCDOS assembler and linker are to_ be used, the
following files should be copied onto the working disk:

C86.EXE
LIBCMS.LIB
MATHMS.LIB
LIBC.H

B. INSTALLING AZTEC C86 FOR USE WITH CPM86

A CPM86 working disk is created by copying the following files
from the distribution disk to the working disk:

C86.CMD
AS86.CMD
LN.CMD
LIBC.LIB

copyright (c) 1983 by Manx Software Systems page 1.1

Aztec C86

MATH. LIB
LIBC.H

copyright (c) 1983 by Manx Software Systems

INSTALLATION

Page I.2

AZ~rEC C86 OVERVIEW

OVERVIEW

This chapter describes the basic procedure for generating an
executable version of a C program. section A describes the
procedure for using Aztec e86 with MSDOS/PCDOS and the Manx
assembler and linker. Section B describes the procedure when
using Aztec C86 with MSDOS or PCDOS and their assembler and
linker. Section C describes the procedure when using CP/M-86.
Section D describes the creation of object file libraries.

The use of the compiler, assembler, linker, and object file
librarian are described in more detail in subsequent chapters.

A. using Aztec C86 with MSDOS/PCDOS and the Manx assembler and
1inker

The following commands will produce an executable file,
EXMPL.EXE, from the file EXMPL.C, which contains a C source
program:

C86 exmpl.c
AS86 exmpl. asm
LN exmpl.o libc. lib

This procedure is depicted in figure 1.1

The first command activates the compiler, e86, which compiles the
program in exmpl.c and writes the assembly language source to an
intermediate file, exmpl.asm.

The second command activates the Manx assembler, AS86, which
assembles the code in the intermediate file and writes the
resulting relocatable object code to the file exmpl.o.

The third command activates the Manx linker, LN, which links
exmpl.o, getting any needed modules from the object library,
libc.lib, and writes the executable program to the file exmpl.exe.

If the program in exmpl.c performed floating point operations,
the command to link it would be

LN exmpl.o math. lib libc.lib

Copyright 1983 (c) by Manx Software Systems Page 11.1

AZTEC C86 OVERVIEW

Figure 1.1 depicts the basic steps for producing a binary image
of a lie" program. It also indicates the path for producing and
using run time subroutine libraries.

+---------------------+
I EDITOR I
+---------------------+

I

I "C" \
I I source file I I
_----...---_1

+---------------------+
I Aztec C86 compiler I
+---------------------+

I

I assembly \
I I source file I I
\ I

+---------------------+
I Manx AS86 assembler 1

+---------------------+
I

/ ".0" \ +---------------------+
I I object file 11---> 1 LIBUTIL librarian I
\ I +---------------------+

1

+---------------------+ I subroutine \
I Manx LN Link Editor 1<-- II library I I
+---------------------+ \ I

I

I ". exe tl
\

I I executable filel I
\ /

+---------------------+
I program execution I
I I
+---------------------+

Figure 1.1: Developing "C" Programs with Aztec C86 under MSDOS or
peDOS and using the Manx assembler and linker

Copyright 1983 (c) by Manx Software Systems Page II.2

AZ'rEC C86 OVERVIEW

B. using Aztec C86 with MSDOS/PCDOS and their assembler and
linker

The following commands can be entered to produce an executable
file, exmpl.exe from the C-language file exmpl.c, when using the
MSDOS/PCDOS assembler and linker:

C86 -M exmpl.c

MASH exmpl:

LINK exmpl",libcms

This procedure is depicted in figure 2.2.

The first command activates the Aztec compiler, C86, which
compiles the C program in exmpl.c and writes the resultant
assembly language source to the file exmpl.asm.

The second command activates the MSDOS/PCDOS assembler MASM,
which assembles the code in exmpl.asm and writes the resulting
object code to the file exmpl.o.

The third command activates the MSDOS/PCDOS linker LINK, which
links exmpl.o, getting any needed modules form the object
library, libcms.lib, and writes the executable program to the
file exmpl.exe.

If the exmpl.c program performed floating point operations, the
command to link it would be:

LINK exmpl",mathms.lib+libcms.lib

Copyright 1983 (c) by Manx Software Systems Page II.3

AZTEC C86 OVERVIEW

Figure 2.2 depicts the basic steps for producing a binary image
of a "C" program when using MSDOS or PCDOS and their assembler
and linker. It also indicates the path for producing and using
run time subroutine libraries. The process depicted is fairly
basic.

+---------------------+
I EDITOR I
+---------------------+

I

/ "C" \
I I source file I I
\ /

+---------------------+
I Aztec C86 compiler I
+---------------------+

I

/ "ASM" \
I I source file I I
\ /

+---------------------+
3. I MSDOS Assembler I

+---------------------+
I

/ ... obj" \ +---------------------+
II object file
\

11---> I MSDOS LIB librarian I
/ +---------------------+

I

+---------------------+ / subroutine \
4. 1 MSDOS Link Editor 1<-- II library 1 I

+---------------------+ \ /
I

/ ".exe" \
I 1 executable fi1el 1

\ /

+---------------------+
1 program execution 1

I 1
+----------------~----+

Figure 2.2: Developing "C" programs with Aztec C86 under
MSDOS or PCDOS, and using their assembler and linker

Copyright 1983 (c) by Manx Software Systems Page II.4

AZTEC C86 OVERVIEW

C. Using Aztec C86 with CP/M-86

The following commands can be entered to produce an executable
file, exmpl.cmd, from exmpl.c:

C86 exmpl.c

LN exmpl.o libc .1ib

The first command activates the compiler, e86, which compiles the
C program in exmpl.c and writes the resulting assembly language
source to the intermediate file $tmp.$$$. C86 then activates
AS86, which assembles the code in the intermediate file and
writes the resulting object code to the file exmpl.o.

The second command activates the Manx linker, LN, which links
exmpl.o, getting any needed modules from the object library,
libc.lib, and writes the executable program to exmpl.cmd.

If the exmpl program performed floating point operations, the
link command would be:

LN exmpl.o math. lib libc.lib

D. Object libraries

The Manx linker, LN, can link any number of object files
together. One way to do, this is to explicitly tell LN of each
object module which is to be linked together. Another way is to
place commonly used modules in an object file library, using the
Aztec object file librarian, LIBUTIL. When a program is linked
which requires modules which are in the library, just include the
object file library in the list of files passed to LN. LN will
search the library, and automatically copy modules from it which
are needed. Only the needed modules will be copied. Any number of
object libraries can be searched by LN.

Aztec C86 for MSDOS and PCDOS comes with four object libraries:

LIBC.LIB is used when linking any program using LN.

MATH. LIB is used when linking any program using LN which
performs floating point operations.

LIBCMS.LIB is used when linking any program using the MSDOS
or PCDOS assembler, LINK.

MATHMS.LIB is used when linking any program using LINK
which performs floating point operations.

Aztec C86 for CP/M-86 comes with two object libraries:

LIBC.LIB is used when linking any program using LN.

Copyright 1983 (c) by Manx Software Systems Page 11.5

AZTEC C86 OVERVIEW

MATH. LIB is used when linking any program, using LN, which
performs floating point operations.

Copyright 1983 (c) by Manx Software Systems Page II.6

AZ'l'EC C86 COMPILER

C86 COMPILER

The Aztec C86 compiler uses the book The C programming Language,
by Brian W. Kernighan and Dennis M. Ritchie, for a programmer's
reference manual. This book can be also be used as a tutorial,
for learning C.

A. Operating Instructions

C86 is activated by entering:

C86 <command tai1>

where <command tail> specifies the name of the file containing
the C program, and "dash options"; that is, optional flags and
parameters which override default compiler assumptions. The
source file name and each of the dash options are separated by
spaces.

All dash options begin with a dash (-), immediately followed by a
letter which defines the option. After that, the syntax differs
for the various dash options. For some, that's all there is. For
others, a number follows which is the value of the option. In
another case, the next field is a file name. The dash options are
described below.

The compiler generates assembly language code and sends it to a
disk file. There are some differences in itls operation when
using MSDOS/PCDOS and when using CP/M-86. Under MSDOS and PCDOS,
the assembly language code by default is sent to the file whose
name is the same as that of the C language source file, with the
extent changed to I.asm l. This default file name can be overriden
using the 1.-0 1 option, described below. For example, to compile
the program in foo.c and send the assembler source code to
foo.asm when using PCDOS, enter:

C86 foo.c

Under CP/M-86, by default the assembly language source code is
sent to an intermediate file, named l$tmp.$$$I, and the MANX AS86
assembler is activated. The assembler generates object code,
sending it to a file whose name is the same as that of the C
language source file, wi th extent 1.01 • This default name for the
object file can be overriden using the 1-0 1 option, described
below. For example, to compile and assemble the program in
mycprog.c and send the object code to mycprog.o, when using CP/M-
86, enter:

C86 exmp1.c

Also under CP/M-86, the default chaining of the assembler to the
compiler can be overriden using the I-AI option. In this case,

Copyright 1983 (c) by Manx Software Systems Page 111.1

AZTEC C86 COMPILER

the compiler will stop after compilation, and won't invoke the
assembler. The assembler source by default will be sent to the
file whose name is derived from the C source file name by
changing the extent to 'a86'. This default can be overriden using
the '-0' option.

B. Compiler options

Under MSDOS or PCDOS, the dash option specifiers must be entered
in upper case. with CP/M-86, they can be entered in either upper
or lower case, since CP/M-86 translates the command tail to upper
case.

1. 1-0 1 option

The '-0' option allows the user to explicitly select the output
file of the compiler (or the assembler, as described above). The
syntax is 1-0 <output filename>', where there is a space between
'-0' and <filename>. For example, under PCDOS, to compile exmpl.c
on the default drive and send the output to exmpl.asm on the
default drive, just enter:

C86 exmpl.c

still under PCDOS, to compile exmpl.c and send the assembly
language output to b:exmpl.asm, enter:

e86 exmpl.c -0 b:exmpl.asm

or

C86 -0 b:exmp1.asm exmpl.c

If you're running with CP/M-86, to compile and assemble exmpl.c,
which is on the default drive, and send the object code to
exmpl.o on the default drive, enter:

e86 exmp1.c

Still under CP/M-86, to compile and assemble exmpl.c and send the
object code to b:exmpl.o, enter:

C86 exmpl.c -0 b:exmpl.o

or

C86 -0 b:exmp1.o86 exmpl.c

still under CP/M-86, to compile exmpl.c, send the assembly
language output to exmpl.a86, and not activate the assembler
automatically, enter:

e86 exmpl.c -A

Copyright 1983 (c) by Manx Software Systems Page 111.2

AZTEC C86 COMPILER

still under CP/M-86, to compile exmpl.c, send the assembly
language output to b:exmpl.a86, and not activate the assembler
automatically, enter:

C86 exmpl.c -A -0 b:exmpl.a86

2. I_MI option

This option causes the compiler to generate assembler source for
the Microsoft MASM assembler. For example, to compile exmpl.c and
then assemble the resulting assembler source file, exmpl.asm,
enter:

3. I_TI option

C86 -M exmp1.c
MASH exmp1;

This option causes the compiler to copy the C source statements
to the assembly language source file as comments. The e comment
in the assembly language file is followed by the assembly
language code generated from it. If not specified, the compiler
doesn't copy e source statements to the assembly language file.

4. I_EI option

specifies the number of entries in the expression work table. The
default size is 120 entries. Each entry uses 14 bytes. If the
compiler terminates with error 36, the expression work table has
overflowed.

The size of the table immediately follows
intervening spaces. For example, to compile
expression work table of 300 entries, enter:

e86 foo. c -E300

5. I_Xl option

• -E' ,
foo.c,

with
with

no
an

This option specifies the size, in bytes, of the macro table.
Each '#define' in a e program creates an entry in this table. The
default table size is 2000 bytes. If the compiler aborts with
error 59, you need a larger macro table.

The size of the macro table immediately follows the I_Xl, with no
intervening spaces. For example, to compile myprog.c with a macro
table of 3000 bytes, enter:

e86 -X3000 myprog.c

Copyright 1983 (c) by Manx Software Systems page 111.3

AZTEC C86 COMPILER

6. I_y' option

Specifies the maximum number of outstanding cases allowed in a
switch statement. Default size: 100 outstanding cases. If the
compiler terminates with error 76, you need to recompile with
more outstanding cases. For example, the following code segment
will use four, not five, entries in the case table:

switch (a) {
case 0:

a += 1;
break:

case 1:
switch (x) {
case I a I :

functl (a) ;
break;

case, I b I:

}

funct2(b)i
break;

a = 5;
case 3:

funct2(a);
break;

}

The size of the case table immediately follows I_yl. For example,
to compile exmpl.c to allow 300 outstanding case statements,
enter:

e86 exmpl.c -Y300

7. I_Z' option

This option specifies the size, in bytes, of the string table.
The table defaults to 2000 bytes. If the compiler terminates with
error 2, the program requires a larger string table.

The size of the table immediately follows the I_ZI, with no
intervening spaces. For example, to compile foo.c with a 3000
byte string table, enter:

C86 -Z3000 foo.c

8. I_S' option

By default, Aztec e86 expects that pointer references to members
within a structure are limited to the structure associated with
the pointer. To support programs written for other compilers
where this is not the case, the I_SI option is provided. If I_SI
is specified as a compile-time option and a pointer reference is
to a structure member name that is not defined in the strcture

Copyright 1983 (c) by Manx Software Systems Page III.4

AZTEC C86 COMPILER

associated with the pointer, then all previously defined
structures will be searched until the specified member is found.
The search will begin with the structure most recently defined
and search backwards from there.

9. '_L' option

This option specifies the number of entries allowed in the local
symbol table. It defaults to 40 entries. Each entry requires 26
bytes. If the compiler aborts with the message 'local symbol
table full', the program being compiled requires a larger local
symbol table.

The number of entries immediately follows the '-LI, with no
intervening spaces. For example, to compile exmpl.c with a local
symbol table having 100 entries, enter:

C86 -LI00 exmpl.c

10. '_D' option

This option allows a symbol or macro to be defined to the
compiler as if it had been a #define statement in a program.

The syntax is -Dstringl[=string2], where stringl is the symbol or
macro being defined and string2 is the value of the symbol. the
brackets surrounding =string2 mean that =string2 is optional. If
=string2 isn't entered, the value of the symbol defaults to 1. No
spaces are allowed between the first character of stringl and the
last character of string2.

For example, to compile exmpl~c and to define the symbol DEBUG to
the program from the command line, and give it a value of 1,
enter:

C86 exmpl.c -DDEBUG

To compile exmpl.c and define the macro x(y) = lO*y, enter:

C86 exmpl.c -Dx(y)=10*y

If the compiler is running under CP/M-86, all references within
the program being compiled to a command line-defined symbol or
macro must be in upper case, since CP/M-86 translates the command
line to upper case before activating C86.

If the compiler is running under PCDOS or MSDOS, a program being
compiled to a command line-defined symbol or macro must refer to
it exactly as entered on the command line, since PCDOS and MSDOS
don't translate the command line to upper case.

On PCDOS and MSDOS, the strings can be either upper or lower
case; the program being compiled must refer to the symbol just as

Copyright 1983 (c) by Manx Software Systems Page 111.5

AZTEC C86 COMPILER

it's entered.

Copyright 1983 (c) by Manx Software Systems Page 111.6

AZTEC C86 COMPILER

C. Cornpi1er Error Messages

ERROR NUMBER

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

EXPLANATION

bad digit in octal constant
string space exausted (see COMPILER -z option)
unterminated string
compiler error in effaddr
illegal type for function
inappropriate arguments
bad declaration syntax
name not allowed here
must be constant
size must be positive integer
data type too complex
illegal pointer reference
unimplemented type
unimplemented type
storage class conflict
data type conflict
unsupported data type
data type conflict
too many structures
structure redeclaration
missing)'s
struct decl syntax
undefined struct name
need right parenthesis
expected symbol here
must be structure/union member
illegal type CAST
incompatable structures
structure not allowed here
missing : on ? expr
call of non-function
illegal pointer calculation
illegal type
undefined symbol
Typedef not allowed here
no more expression space (see COMPILER -E option)
invalid expression
no auto. aggregate initialization
no strings in automatic
this shouldn't happen
invalid initializer
too many initializers
undefined structure initialization
too many structure initializers
bad declaration syntax
missing closing bracket
open failure on include file
illegal symbol name
already defined
missing bracket

Copyright 1983 (c) by Manx Software Systems Page 111.7

AZ'rEC C86

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

must be lvalue
symbol table overflow
multiply defined label
too many labels
missing quote
missing apostrophe
line too 'long
illegal # encountered

COMPILER

macro table full (see COMPILER -X option)
output file error
reference of member of undefined structure
function body must be compound statement
undefined label
inappropriate arguments
illegal argument name
expected comma
invalid else
syntax error
missing semicolon
bad goto syntax
statement syntax
statement syntax
statement syntax
case value must be integer constant
missing colon on case
too many cases in switch (see COMPILER -Y OPTION)
case outside of switch
missing colon
duplicate default
default outside of switch
break/continue error
illegal character
too many nested includes
illegal character
not an argument
null dimension
invalid character constant
not a structure
invalid storage class
symbol redeclared
illegal use of floating point type
illegal type conversion
illegal expression type for switch
bad argument to define
no argument list
missing arg
bad arg
not enough args
conversion not found in code table

Copyright 1983 (c) by Manx Software Systems Page 111.8

Aztec C86 ASSEMBLER

AS86, the MANX 8086 relocating assembler

I. OPERATING INSTRUCTIONS

AS86 is activated by entering on the command line:

AS86 <command tai1>

where <command tail> specifies the source file to be assembled
and the Itdash optionslt, that is, the optional flags and
parameters which override default assembler assumptions.

In the command tail, the source file name and each of the dash
options are separated by spaces and can be entered in any order.

All dash options begin with the dash character (-) and are
immediately followed by a letter which defines the option. After
that, the symtax for the various dash options can differ. In some
cases, thatls all there is to the option. In others, the letter
defining the option is followed by a number which gives a value
relating to the option. In another case, the next field following
the option is a file name. The various dash options are described
below.

A. Source Fi1e

The source file name can either specify the disk drive containing
the file or not. If itls not specified, the assembler assumes the
file is on the default drive.

B. Object Fi1e

AS86 writes the object code to a file. If the file doesnlt exist,
A86 will create it; if it does exist, AS86 will erase it and
create a new one.

By default, the name of the object file is derived from the
source file, is given extent 1.0 1 , and is placed on the same
drive as the source file. For example, to assemble b:subl.asm and
place the object code in b:subl.o, enter:

AS86 b:subl.asm

The default name for the object file can be overriden by
specifying the 1-01 dash option when the assembler is invoked. In
this case, the object file name is in the field following the 1-

0 1 option. For example, to assemble b:subl.asm and place the
object in a:out.o, enter:

AS86 b:subl.asm -0 a:out.o

There must be spaces between 1-0 1 and the object file name.

Copyright 1983 (c) by Manx Software Systems page IV.l

Aztec C86 ASSEMBLER

C. Listing File

A886 does not currently generate a listing.

D. Dash options

1. I_SI option: Symbol table size

By default,the symbol table can have 500 entries. TO select
another value, use the '-8' dash option, where the desired size
immediately follows the '-8', with no intervening spaces. For
example,

AS86 subl.asm -SlOOO

assembles subl.asm using a symbol table having 1000 entries.

2. I_ZI option: string space size

By default, Istring space l
, the area where symbol names and other

character strings are stored, is 200 bytes long. To select
another size, use the I_Z' option, where the desired size
immediately follows the I_ZI, with no intervening spaces. For
example,

AS86 -Z1500 subl.asm

assembles subl.asm using a lSOO-byte string space.

3. I-C' option: Codemacro table size

By default, the codemacro table can have 50 entries. Use the I_C I

dash option to 'select another value, where the desired size
immediately follows I_C I with no intervening spaces. For example,

AS86 -CIOO subl.asm

assembles subl.asm using a codemacro table having 100 entries.

4. I-V' option: Verbose option

Entering '_Vi will cause the assembler to list statistics after
it finishes. It will list the number of symbol table entries
used, the number of bytes of string space used, and the number of
entries in the codemacro table that were used.

II. programmer Information

The Manx A886 assembler accepts the same assembly language as
does the MSDOS/PCDOS assembler, MASM, and as does the Intel ASM86
assembler, with the exceptions noted below. The Intel assembler
is defined in their manual ASM86 Language Reference Manual, order

Copyright 1983 (c) by Manx Software Systems Page IV.2

Aztec C86 ASSEMBLER

number 121703-002. The exceptions are:

1. Statement names can be up to 255 characters, and all
characters are part of the name (not just the first 32
characters, as in the MSDOS/PCDOS and Intel assemblers).

Global symbols, however, while they can contain up to 255
characters within a single program, are truncated to 8 characters
in the object file. Thus, if A program has an entry point named
'A very long label', within the program it is refered to by its
full name. Other programs in other files would refer to the entry
point using its truncated name, 'A_very_l'.

2. Statement names are case sensitive; ie, the label 'A label' is
different from the label 'a label'. All other symbols
(instructions, register names, operators) aren't.

3. Only two physical segments are allowed: all logical segments
(ie, those defined within a program using the 'segment'
directive) with class name 'code' go in the code physical
segment; all other logical segments go in the data physical
segment.

4. In the MSDOS/PCDOS and Intel assemblers, code within a logical
segment is contiguous in memory, even if a segment is closed,
another opened and closed, and the first reopened. In AS86, the
only segments for which this is true is segments whose
eombinability type is 'common'. Code in other segments is placed
in memory in the order encountered in the program. For example,
consider this program:

datasegl segment
varl: db ?
datasegl ends

dataseg2 segment
var2: db ?
dataseg2 ends

datasegl segment
var3: db ?
datasegl ends

With AS86, varl, var2, and var3 will be located in memory in the
order in which they appear in the program; that is, varl, var2,
var3. This is not true for segments having combinability type
'common'. If datasegl was of type common, the variables would be
grouped in memory in this order: varl, var3, var2.

5. The ASSUME directive has no function with AS86: it's accepted,
but nothing is done with it. AS86 and LN assume that the CS
segment register points to the physical code segment, and DS, S8,
and ES point to the physical data segment.

6. Code macros are supported by AS86, as defined by the Intel

Copyright 1983 (e) by Manx Software Systems Page IV.3

Aztec C86 ASSEMBLER

ASM86 Language Reference Manual (order number 121703-002), and
are similar to those of the Digital Research ASM86 assembler (but
the DBIT directive of the Digital Research assembler isn't
supported; instead, the RECORD directive of the Intel assembler
is supported).

7. Floating point instructions are not supported by AS86. You can
make AS86 support them by including the codemacros for them
in your programs.

8. To include a file in the assembly of a program being
assembled, enter

INCLUDE <fi1ename>

in the program being assembled, where <filename> is the name of
the file to be included. Included files can be nested five deep.

9. AS86 supports conditional assembly. The statements:

IF <condition>
<block>
ENDIF

will result in the assembly language statements in <block> being
assembled if <condition> has a non-zero value. If <condition> has
the value zero, the <block> statements will be ignored.

The statements:

IF <condition>
<true block>
ELSE
<false block>
ENDIF

will cause <true block> to be assembled if <condition> is non
zero, and <false block>, otherwise.

The IF constructs can be nested.

Copyright 1983 (c) by Manx Software Systems Page IV.4

AZTEC C86 LINKER

LINKER

I. Operating Instructions

The Manx link editor, LN, combines object files produced by the
Manx AS86 assembler, copies needed modules from object libraries
which have been created using LIBUTIL, the Manx object file
librarian, and produces an executable file.

To activate the linker, enter

La <command tai1>

where <command tail> is a list of file names and dash options.
The command tail fields, that is, file names and dash options,
are separated by spaces. A 'dash option ' is used to override a
default assumption by the linker. The dash options are described
below.

The linker can link together any number of object files and
search any number of libraries. Object files are included in the
order encountered in the command tail, and libraries are searched
sequentially in the order of specification.

When LN includes a module from a library which satisfies
unresolved references, new unresolved references may be created,
due to the external symbols referenced by the library module. The
linker will not go back through libraries which have already been
searched or through the part of the current library which has
already been searched to try and find modules which contain
symbols which satisfy the unresolved references. It will press
on!

When LN is used with MSDOS or PCDOS, the resultant executable
program is written to a file whose name is derived from the first
object file name in the command tail by changing the extent to
I.exe l • This default assumption can be overriden using the 1-01

option, described below.

When LN is used with CPM86, the resultant executable program is
written to the file whose name is derived from the first object
file in the command tail by changing the extent to .cmd. This
default assumption can be overriden using the 1-0 1 option.

Supplied with Aztec C86 are the object libraries libc.lib and
math. lib. In most cases, libc.lib must be specified when linking
a program. Math.lib must be included when linking a program which
performs floating point operations, and must be specified in the
LN command tail before libc.lib.

To link a simple program, which doesnlt perform floating point,
and whose object code is in the file exmpl.o, enter

Copyright 1983 (c) by Manx software Systems Page V.I

AZTEC C86 LINKER

LN exmpl.o libc.lib

The linker will place the executable code in the file exmpl.exe,
when running with PCDOS or MSDOS, and in exmpl.cmd, when running
with CP/M-86.

If the above program performed floating point operations, it
would be linked by entering:

LN exmpl.o math.lib libc.lib

If the exmpl program called functions whose object code is in
subl.o, sub2.o and sub3.o, it could be linked by entering

LN exmpl.o subl.o sub2.o sub3.o math. lib libc.lib

If subl, sub2, and sub3 are commonly used functions, they could
be put in an object file library which weIll call sub2.lib, using
the Manx program LIBUTILi then exmpl could be linked by entering

LN exmpl.o subs. lib math. lib libc.lib

Dash Options

1. '-0' option

This option specifies the name of the file to which the
executable program generated by LN is sent. If not specified, LN
generates the output file name from the name of the first object
module in the command tail as described above.

For example, to link exmpl.o and send the output to b:exmpl.exe,
enter

LN -0 b:exmpl.exe exmpl.o libc.lib

2. I_TI option

This option causes the linker to generate a symbol table which
can be read by the Digital Research debugger, SID86. The name of
the file to which the symbol table is sent is derived from that
of the file containing the executable program by changing its
extent to I.syml.

For example, to link exmpl.o and generate a symbol table in the
file exmpl.sym, enter:

LN -T exmpl.o libc.lib

To link exmpl.o, send the output to foo.exe, and send a symbol
table to foo.sym, enter:

Copyright 1983 (c) by Manx Software Systems Page V.2

AZTEC C86 LINKER

LN -T -0 foo.exe exmpl.o libc.lib

3. I_C I option

This option specifies the starting address for the code portion
of the output. If not specified, the starting code address is 3.
In bytes 0, 1, and 2 the linker places a jump instruction to
$begin, which performs system initialization functions.

The starting code address immediately follows the I_C I , with no
intervening spaces.

For example, to link exmpl.o, where the code starts at OX300,
enter:

LN -C300 exmpl.o libc.lib

4. I_DI option

This option specifies a starting address for the data and common
segments in the data block. It defaults to O. The address
immediately follows I_DI with no intervening spaces.

5. I_FI option

This option causes LN to merge the contents of a file with the
command tail. The name of the file follows the I_FI, with spaces
between the two.

For example, to link exmpl.o, subl.o, sub2.o, sub3.o, and edit
math. lib and libc.lib, the following could be entered:

where exmpl.lnk contains:

exmpl.o
subl.o
sub2.o
sub3.o
math. lib
libc.lib

6. '-5' option

LN -F exmpl.1nk

This option is used to explicitly select the amount of extra
space the linker includes in the data segment above the linked
data. The size defaults to 4096 bytes.

The size, in hex, immediately follows the 1-8 1 option, with no
intervening spaces.

Copyright 1983 (c) by Manx software Systems Page V.3

AZTEC C86 LINKER

For example, to link exmpl.o and give it lOOB extra bytes above
the data, enter

LN exmpl.o -SlOO

II. programmer's Information

The LN linker can create two physical segments for a program: a
code segment and a data segment. Each physical segment can be up
to 64 K bytes long. Logical segments from the assembler, ie,
those defined by the 'segment' and 'ends' directives in an
assembly language program, are grouped into physical segments as
follows: logical segments whose combinability type is 'common'
are included in the physical data segment. Segments whose class
name is 'code' are included in the physical code segment. All
other segments are included in the physical data segment.

Copyright 1983 (c) by Manx Software Systems Page V.4

Aztec C86 LIBUTIL LIBRARY UTILITY

LIBRARY MAINTENANCE

LIBUTIL

A. SUMMARY

The LIBUTIL LIBrary UTILity is used in order to:

1. create a library
2. append modules (-a)
3. produce an index list (-t)
4. extract modules (-x)
5. replace modules (-r)
6. create a library using an

extended command line (.)

1. LIBUTIL -0 example. lib x.o x.o

USE - to create a library
FUNCTION the following creates a private library,

example.lib, containing modules subl.o
and sub2.0

>LIBUTIL -0 example.lib subl.o sub2.0

2. LIBUTIL option-a

USE - to append to a library
FUNCTION- the following appends exmpl.o to the

example.lib

>LIBUTIL -0 example. lib -a exmpl.o

this function can be used to append any
number of .0 files to the library. For
example, the following appends
exmpl.o and smpl.o to the example. lib

>LIBUTIL -0 example.lib -a exmpl.o smpl.o

3. LIBUTIL option-t

NB If a large number of files need to
be appended to a library, it is
advantageous to use the SUBMIT option
(see item 7)

USE - to produce an index listing of modules
in a given library

FUNCTION- the following displays a listing of all

Copyright (c) 1983 by Manx Software Systems Page VI.l

Aztec C86 LIBUTIL LIBRARY UTILITY

modules in a particular library,
example.lib:

>LIBUTIL -0 example. lib -t

NB this function will allow only one
library to be listed at a time

4. LIBUTIL option-x

USE - a. copies a particular library module
into a relocatable object file

b. copies a complete library into
relocatable object files

FUNCTION- a. the following copies library module,
exmpl into a relocatable object file:

>LIBUTIL -0 example.lib -x exmpl

b. the following copies a complete
library, example.lib, (including all
modules contained within it) into
relocatable object files:

>LIBUTIL -0 example. lib -x

5. LIBUTIL option-r

NB. It should be noted that when
copying a single module the LIBUTIL
executes the command and returns.
When copying a complete library,
the LIBUTIL lists the modules being
copied.

USE - to replace a library module wi th the
contents of a relocatable object file

FUNCTION- th'e following replaces the library
module subl with the relocatable object
file subl.o

>LIBUTIL -0 example. lib -r subl.o

6. LIBUTIL -0 library name .

USE

FUNCTION

>xsub

to create a library using an
command line
the following creates a
charles.lib and appends to it
sub2.0, sub3.o, sub4.0, etc.

extended

library,
subl.o,

Copyright (c) 1983 by Manx Software Systems Page VI.2

Aztec C86 LIBUTIL LIBRARY UTILITY

LIBUTIL -0 charles lib .
subl.o sub2.0 sub3.0 sub4.0

B. DETAILED EXPLANATION

Creating a Library

The command for creating a library has the following two formats:

format 1:

LIBUTIL [-0 <output library name>] <input file list>

format 2:

LIBUTIL [-0 <output library name>] <input file list>
one or more lists, each an <input file list>

If the optional parameter [-0 <output library name>] is
specified, the name of the file containing the library to be
created is <output library name>; if this parameter is not
specified, the name of the file containing the library to be
created is "libc.lib". In either case, LIBUTIL proceeds by first
creating the library in a new file having a temporary name; if
the creation is successful, LIBUTIL then erases the file named
<output library file>, if it exists, and renames the file
containing the newly created library to <output library file>.

<input file list> defines the files containing the modules which
are to be placed in the library. An input file can be either (1)
a file created by the Manx assembler, AS, in which case it
contains a single relocatable object module, or it can be (2)
another library which was created by LIBUTIL. In either case, the
input files are not modified by LIBUTIL; LIBUTIL just copies the
modules in the input files to the output library.

An <input file list> is one or more names, separated by spaces. A
name can be one of the following: (1) a complete CP/M file name;
eg, b:subl.o; (2) a CP/M file name which doesn't specify the disk
drive on which the file resides; eg, subl.o; in this case,
LIBUTIL assumes the file is on the default disk drive; (3) a name
which doesn't specify an extension; in this case, LIBUTIL assumes
the file name is <name>.o. For example, if the name is subl,
LIBUTIL assumes the file name is subl.o and is on the default
disk drive. If the name is b:subl, LIBUTIL assumes the file name
is b:subl.o.

When an input file contains a single relocatable object module,
the name by which the module is known in the library is the
filename, less the disk drive identifier and the extension. For
example, if the input file is b:subl.o, then the module name
within the created library is subl.

Copyright (e) 1983 by Manx Software Systems Page VI.3

Aztec C86 LIBUTIL LIBRARY UTILITY

When an input file is itself a library, the member names in the
created library are the same as the member names in the input
library. For example, if an input file is a library containing
modules subl, sub2, and sub3, then the name of these modules in
the created library are also subl, sub2, and sub3.

To specify that there are additional lines of <input file lists>,
a period surrounded by at least one space on either side must
appear in the <input file· list> on the first line of the command.
Of course, LIBUTIL doesn't assume that such a period is a name;
it just acts as a flag to LIBUTIL, specifying that there are
additional lines of <input file list>s. Also, names can both
preceed and follow the period flag.

The order in which modules are placed in the created library is
specified by the order of the names in the input file lists.
If there is only one input file list, for example:

subl.o sub2.o sub3.o ,

where the input files each contain a single relocatable object
module, then the order of the modules in the library would be:
subl, sub2, sub3.

If an input module is itself a library, then its modules are
copied to the created library in the same order. If there is
only one input file list, for example

subl.o libl.lib sub2.o

where subl.o and sub2.o each contain a single relocatable object
module and libl.lib is a library containing modules sub3, sub4,
and subS, in that order, then the created library would contain
modules in the following order:

subl, sub3, sub4, subS, sub2.

If there are additional lines of input file lists, then modules
are placed in the created library in the following order: first,
the modules in the files preceeding the period flag are placed in
the created library, as defined above; second, the modules in the
additional input file lists are placed in the created library,
third, the modules in the files succeeding the period flag are
placed in the created library. For example, suppose LIBUTIL is
invoked with the following sequence:

LIBUTIL -0 newlib.lib subl.o • sub2.o
sub3.o sub4.o
subS.o sub6.o

I f each of the input files contains a single relocatable object
module, then the created library would contain the following
modules in the specified order: subl, sub3, sub4, subS, sub6,
sub2.

Copyright (c) 1983 by Manx Software Systems Page VI.4

Aztec C86 LIBUTIL LIBRARY UTILITY

Listing the modu1es in a 1ibrary

To have LIBUTIL produce a listing of the modules in a library,
LIBUTIL must be invoked with a "dash parameter" which contains
the character 't'. A dash parameter is simply a parameter which
has a dash (-) as its first character. LIBUTIL lists only the
modules in the library, not the functions.

The user can explicitly tell LIBUTIL the name of the library file
to be listed by including the character '0' in a dash parameter;
in this case, LIBUTIL assumes that the following parameter is the
name of the library file.

The user can implicitly tell LIBUTIL which library file is to be
listed by not including the character '0' in a dash parameter; in
this case, LIBUTIL assumes that the file libc.lib is to be
listed.

LIBUTIL will not perform multiple functions during a single
invocation. For example, you can't make it create a library and
then list the contents with only a single activation of LIBUTIL;
you would have to activate it to create the library, then
activate it again to list the contents.

The parameter list to LIBUTIL, when it is to perform a listing,
can include either one or two dash parameters. If one is used,
then both the It' character and the '0' character (if" specified)
are in it: in this case, they can appear in any order. If two
dash parameters are used, then one contains the single character
It I and the other the single character 10

1
• The only restriction

in this case is that the name of the library file must be the
parameter string immediately following the dash parameter which
has the 10

1
•

EXAMPLES:

LIBUTIL -t
lists the modules in the library file libc.lib

LIBUTIL -ot example. lib
LIBUTIL -t -0 example.lib
LIBUTIL -0 example.lib -t

each of these three lines causes LIBUTIL to list the
modules in the library example. lib

Adding modu1es to a 1ibrary and rep1acing modu1es in a 1ibrary

LIBUTIL can be told to add modules to a library or replace
modules in a library by including one of the characters la' or
I r' in a dash parameter. There is only one function, which

Copyright (e) 1983 by Manx Software Systems Page VI.S

Aztec C86 LIBUTIL LIBRARY UTILITY

performs both an 'add' operation and a 'replace' operation.
Either character, 'a' or Ire causes LIBUTIL to perform the
function. The user also tells LIBUTIL, either explicitly or
implicitly, the name of the library file on which the operation
is to occur arid gives LIBUTIL a list of files whose modules are
to be added to or replaced in the library. Each of these files
can contain either a single relocatable object module or can be
itself a library. In the following paragraphs, the library file
on which the operation is to occur is called the 'subject library
file' and each file which is to be added or replaced is called an
'input file'.

LIBUTIL proceeds as follows: it creates a library file with a
temporary name. Then it copies modules one at a time from the
subject library to the new library; before copying each module,
it checks whether there is a file in the input file list whose
name, less drive specification and extent, is the same as that of
the module; if not, the module is copied. If they do match,
LIBUTIL copies the contents of the matching file to the new
library, and the module from the subject library is not copied.
If, after LIBUTIL has processed all modules in "the subject
library in this manner, any files in the input file list remain
which haven't been copied to the new library, LIBUTIL then copies
the contents of these files to the new library. Finally, LIBUTIL
erases the original subject library and renames the new library,
giving it the name of the subject library file.

The user can give LIBUTIL the name of the subject library either
explicitly or implicitly. To explicitly define it, the user
includes the character '0' in a dash parameter; the parameter
immediately following this dash parameter must then be the name
of the subject library file. To implicitly define it, the user
simply doesn't include the '0' character in adash parameter:
LIBUTIL then assumes that the name of the subject library file is
, libc .lib' •

All parameters which follow the dash parameters and the subject
file name are names of input files. The drive identifier and/or
the extent of these names can be optionally ommitted. If the
drive identifier is omitted, LIBUTIL assumes the file is on the
default drive. If the extent is omitted, LIBUTIL assumes the
extent is 'ext'.

LIBUTIL can be told to read additional input file names from one
or more lines on the console device by including the character
'.' in place of one of the input file names on the LIBUTIL
command line. In this case, LIBUTIL will read input file names
from the console until another '.' is read where a file name was
expected. LIBUTIL then continues reading input file names from
the original command line.

Once LIBUTIL has finished its copy-with-replace function from the
subject library to the new library, it will append the input
files which haven't been copied to the the new library in the
same order in which it read their names from the command lines.

Copyright (c) 1983 by Manx Software Systems Page VI.6

Aztec C86 LIBUTIL LIBRARY UTILITY

EXAMPLES

1. Let example.lib be a library file on the default disk drive
which contains the modules subl, sub2, and sub3. To append the
module in the file newsub.o, which is also on the default drive,
to example.lib any of the following commands could be issued:

LIBUTIL -oa example.lib newsub
LIBUTIL -oa example. lib newsub.o
LIBUTIL -ao example.lib newsub
LIBUTIL -a -0 example. lib newsub.o
LIBUTIL -0 example.lib -a newsub

After LIBUTIL is done, there will be a new library file named
example.lib, and it will contain the following modules, in the
order specified: subl, sub2, sub3, and newsub. The module in the
file newsub.o doesn't have a name; it only gets one when a copy
of it is placed in a library. The name of the module is derived
from the name of the file in which it was originally contained by
stripping that file name of the disk drive prefix and extent
suffix. In this example, the name of the module which is appended
to example.lib is thus 'newsub'. Just to beat this example to
death, suppose that we are back at the point at which we have the
original example.lib, containing modules subl, sub2, and sub3,
and that we have the file newsub.o. After entering the following
commands:

rename sub4.0=newsub.o
LIBUTIL -oa example. lib sub4

example.lib will contain modules named subl, sub2, sub3, sub4.

2. Let example. lib contain the modules subl, sub2, and sUb3; and
let newlib.lib contain the modules newsubl, newsub2, and newsub3.
We can tell LIBUTIL to append the modules in newlib.lib to
example.lib by entering any of the following lines:

LIBUTIL -oa example. lib newlib.lib
LIBUTIL -a -0 example.lib newlib.lib
LIBUTIL -0 example. lib -a newlib.lib

After LIBUTIL is done, there will be a new example.lib, and it
will contain the following modules, in the specified order: subl,
sub2, sub3, newsubl, newsub2, newsub3.

To illustrate another point, let's rerun LIBUTIL again with the
comand specified above, starting with the original example.lib,
containing subl, sub2, and sub3, and with the library file
new lib.lib containing the modules sub3, newsubl, subl, and
newsub2. After LIBUTIL completes, there will be a new
example.lib, and it will contain the following modules, in the
specified order: subl, sub2, sub3, sub3, newsubl, subl, newsub2.
The first subl module in the new example.lib will be that from

Copyright (c) 1983 by Manx Software Systems Page VI.7

Aztec C86 LIBUTIL LIBRARY UTILITY

the original example. lib, and the second will be from newlib.lib.
The first sub3 module in the new example.lib will be from the
original example. lib, and the second will be from newlib.lib. The
point being exemplified is that LIBUTIL will not replace modules
in the original library with modules from an input library; it
will only append modules in the input library to the subject
library.

3. Let example.lib be a library containing the modules subl,
sub2, and sub3. To replace module sub2 with the contents of the
file named sub2.0 and to append the modules in the library file
newlib.lib (which are modI, mod2, and mod3) and the module in
the file
newsubl.o to example.lib any of the following commands could be
entered:

LIBUTIL -oa example.lib sub2 newlib.lib newsubl
LIBUTIL -a -0 example. lib sub2.0 newlib.lib newsubl.o

After LIBUTIL is done, there will be a new example.lib file, and
it will contain the following modules, in the order specified:
subl, sub2, sub3, modl, mod2, mod3, and newsubl. The sub2 module
in the new example.lib is the same as that in sub2.o.

4. Let example.lib be a library containing the modules subl,
sub2, and sub3. The following submit file, when
activated, will cause LIBUTIL to replace module sub2 with the
module in file sub2.o, and append the modules in the library
newlib.lib (which are modI, mod2, and mod3), and the modules in
the files newsubl.o, newsub2.o, newsub3.o, newsub4.o, newsub5.o,
newsub6.o, and newsub7.o:

xsub
LIBUTIL -oa example.lib newsubl.o • newsub7 sub2
newsub2 newsub3 newsub4
newlib.lib newsub5
newsub6

After LIBUTIL is done, there will be a new example.lib,
containing the following modules, in the specified order: subl,
sub2, sub3, newsubl, newsub2, newsub3, newsub4, modI, mod2, mod3,
newsub5, newsub6, newsub7. The module sub2 will be a copy of that
in the file sub2.o.

Copyright (c) 1983 by Manx Software Systems Page VI.S

Aztec C86 LIBRARY FUNCTIONS

STANDARD LIBRARY FUNCTIONS

A. SUMMARY

1. Buffered File I/O (" K & R chapter 7)

agetc
aputc
clrerror
fclose
feof
ferror
fgets
fopen
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
scanf
sscanf
ungetc

close
creat
lseek
open
posit
read
rename
unlink

2.

(stream) ASCII version of getc
(c,stream) ASCII version of putc
(stream) clear error on stream
(stream) closes an I/O stream
(stream) eof on stream?
(stream) error on stream?
(buffer, max, stream) reads text from stream to buffer
(name, how) opens file name according to how
(strm, format, argl •..) writes formatted print to stream
(cp, stream) writes string cp to stream
(buf, sz, cnt, strm) reads cnt items from strm to buffer
(fp, control, pI, p2, ...) converts input string
(stream, pos, mode) positions stream to pos
(stream) returns current file position

(buf, sz, cnt, strm) writes count items from buf to strm
(stream) gets a character from file stream
() read from standard input
(buffer) reads a line from the console
(stream) returns a word from stream
(format, argl, arg2 •••) writes formatted data on console
(c, stream) writes character c into stream
(c) writes to standard output
(cp) writes string cp onto console
(c, stream) writes a word c to stream
(control, pI, p2, ...) formats input from standard in
(str, control, pI, p2, .•.) reverse of sprintf

(c, stream) pushes c back into stream

Unbuffered I/O

(fd)
(name, mode)
(fd, pos, mode)
(name, rwmode)
(fd, num)
(fd, buf, BUFSIZE)
(oldname, newname)
(filename)

(K & R chapter 8)

closes file fd
creates a file
positions file desc according to mode
opens file according to read/write mode
positions file fd to number record
reads from fd to buf BUFSIZE bytes
renames a disk file
erases a disk file

Copyright 1983 (c) by Manx Software Systems Page VII.1

Aztec C86

write (fd,buf, BUFSIZE)

3. String Manipu1ation

atof
atoi
atol
ftoa
index
rindex
strcmp
strcpy
strlen
strncmp
strncpy

(cp)
(cp)
(cp)
(m, cp, prec, type)
(cp, c)
(cp, c)
(strl, str2)
(dest, src)
(cp)
(strl, str2, max)
(dest, src, max)

4. uti1ity Routines

alloc
blockmv
clear
exit
format
isdigit
islower
isupper
sprintf
tolower
toupper

(size)
(dest, src, length)
(area, length, value)
(n)
(func, format, argptr)
(c)
(c)
(c)
(buff, form, argl,arg2)
(c)
(c)

LIBRARY FUNCTIONS

writes from buffer to fd BUFSIZE bytes

converts ASCII to floating
converts ASCII to integer
converts ASCII to long
converts floating point to ASCII
returns cp from beginning of string
returns cp from end of string
compares strl with str2
string copy routine
returns length of string
compares srtl to str2 at most max
string copy at most max characters

allocate space
moves length bytes from src to dest
initializes area to value
stop program
formats data using routine function
checks for digits 0 ... 9
checks for lower case
checks for upper case
places string format data in buffer
converts to lower case
converts to upper case

5. Operating System Interface

bdos
exit
fcbinit
settop

(bc, de)
(n)
(name, fcbptr)
(size)

calls bdos
returns to the operating system
initializes file control blocks
bumps top of program memory

6. Math and Scientific Routines

acos
asin
atan
atan2
cos
cosh
cotan
exp
log
10glO
pow
random
sin
sinh

(x)
(x)
(x)
(x, y)
(x)
(x)
(x)
(x)
(x)
(x)
(x, y)
()
(x)
(x)

inverse cosine of x (arcos x)
inverse sine of x (arcsin x)
inverse tangent of (arctan x)
arctangent of x divided by y
cosine of x
hyperbolic cosine
cotangent of x
exponential function of x
natural log of x
logarithm basi of x
raise x to the y-th power
random number generator
sine of x
hyperbolic sine function

Copyright 1983 (c) by Manx Software Systems Page VII.2

Aztec C86

sqrt
tan
tanh

(x)
(x)
(x)

LIBRARY FUNCTIONS

returns the square root of x
tangent of x
hyperbolic tangent function

B. DETAILED LISTING OF LIBRARY FUNCTIONS

Explanation of Format of Library Descriptions

The following is a sample library function description. Each of
its parts is numbered and explained in the paragraphs below. All
the library functions found in this section of the manual follow
this format:

l.fseek

l.fseek

2.int

3.fseek

2.int 3.fseek 4. (stream, pos, mode)
5.FILE *stream;
6.int pos, mode

The word located in the left margin is the name of
the function to be described. The functions are
listed in alphabetical order according to
category.

This is
returned.
could be
etc) .

a definition of the type of value
Here, it is an integer. (other types

longs, characters, doubles, pointers,

This again is the name of the function.

4. (stream, pos, mode)
This is a prototype of the parameter list. In this
example, II stream II is a pointer (*) to a structure
of type "FILE". The parameters of IpOS" and
"mode" are integers.

5.FILE *stream This defines the "stream II parameter as type FILE.

6.int pos,mode

NOTES:

All parameters must be defined as they are in the
function definition.

This defines defines pos and mode as integers.

1. FILE is defined in file libc.h or stdio.h.

Standard I/O functions

Copyright 1983 (c) by Manx Software systems page VII.3

Aztec C86 LIBRARY FUNCTIONS

These functions provide a uniform I/O interface for all programs
written in Aztec C86 regardless of the operating system being
used. They also provide a byte stream orientated view of a file
even under systems which do not support byte I/O. To use the
standard I/O package you should insert the statement:

#include IIlibc.h ll

into your programs to define the FILE data type and miscellaneous
other things needed to use the functions.

1. Buffered File I/O (K & R chapter 7)

agetc

aputc

int agetc(stream)
FILE *stream;

This is an ASCII version of getc which recognizes an end
of line sequence (CR LF and returns it as a single
newline character (I\n l

). Also, an end of file sequence
(control Z) is recognized and returned as EOF. This
routine provides a uniform way of reading ASCII data
across several different systems.

int aputc(c, stream)
int c; FILE * stream;

ASCII version of putc which operates in the same manner as
putc. However, when a newline ('\n') is put into the file,
an end of line sequence is written to the file (CR LF).

Note: If a partial data block is written as the last block
in a file, it is padd'ed with an end of file sequence
(control Z) before being flushed.

clrerror

fclose

clrerror(stream)
FILE * stream;

Clears all error conditions on stream.

int fclose(stream)
FILE *stream;

The function IIfclose ll informs the system that the user's
program has completed its buffered i/o operations on a

Copyright 1983 (c) by Manx software Systems Page VII.4

Aztec C86 LIBRARY FUNCTIONS

feof

ferror

fgets

device or file which it had previously opened (by calling
the function II fopenll). fclose releases the control blocks
and buffers which it had allocated to the device or file,
thus allowing them to be used when other devices or files
are opened for buffered i/o. Also, when a disk file is
being closed, fclose writes the internally buffered
information, if any, to the file.

If the close operation is successful, fclose returns a
non-negative integer as its value. If it isn't successful,
"fclose ll returns -1 as its value, and sets an error code
in the global integer errno. If the close was successful,
errno is not modified.

feof(stream)
FILE * streami

Returns 0 if stream is not at EOFi otherwise, it returns
1.

ferror (stream)
FILE * streami

Returns 0 if no error has occurred on the stream;
otherwise it returns 1.

char *fgets (buffer, max, stream)
char *bufferi int maXi
FILE *stream

The function "fgets" reads characters from a device or
file which has been previously opened for buffered i/o (by
a call to "fopen") into the caller's buffer. The operation
continues until either (1) a newline character ('\n') is
read, or (2) the maximum number of characters specified by
the caller have been transferred. If the newline character
is read, it will appear in the caller's buffer.

If the read operation is successful, "fgets" returns as
its value a pointer to the start of the caller's buffer.
otherwise, it returns the pointer NULL and sets a code in
the global integer errno. If it is successful, errno is
not modified.

The parameter "stream" identifies the device or filei it
contains the pointer which was returned by the function
"fopen" when the device or file was opened for buffered
i/o.

Copyright 1983 (c) by Manx Software Systems Page VII.5

Aztec C86 LIBRARY FUNCTIONS

fopen

The parameter "buffer ll is a pointer to a character array
into which IIfgets" can put characters.

The parameter "max" is an integer speci fying the maximum
number of characters to be transferred.

FILE *fopen(name,how)
char *name; char *how;

The function IIfopen" prepares a device or disk file for
subsequent buffered i/o operations; this is called
"opening" the device or file.

If the device or file is successfully opened, fopen returns
as its value a pointer to a control block of type FILE.
When the user's program issues subsequent buffered i/o
calls to this device, the pointer to its control block must
be included in the list of parameters. In the descriptions
of the other buffered i/o functions which require this
pointer, the FILE pointer is called "stream".

If fopen can't open the device or file, it returns the
pointer NULL and sets an error code in the global integer
"errno". If the open was successful, errno isn't modified.

The parameter "name" is a pointer to a character array
which contains the name of the device or file to be opened.

Under MSDOS or PCDOS, the system console has the name
'con:'. Other devices have their standard MSDOS/PCDOS

names.

Under CPM86, the devices which can be opened have the
following names:

device name
con:
1st: or prn:
pun:
rdr:

device
system console
line printer
punch device
reader device

The device name can be in upper or lower case.

When a disk file is to be opened, the drive identifier in
the name parameter is optional. If its included, the file
is assumed to be on the specified drive; otherwise, its
assume to be on the default drive.

The "how" parameter specifies how the user's program
intends to access the device or file. The allowed values
and their meanings are:

Copyright 1983 (c) by Manx Software Systems Page VII.6

Aztec C86

fprintf

"how" value
"r"

"w"

II a"

"r+"

"w+"

"a+"

LIBRARY FUNCTIONS

meaning
Open for reading. The device or
file is opened. If a file is
opened, its current position is set
to the first character in the file.
If the device or file doesn't
exist, NULL is returned.

Open for writing. If a file is
being opened, and if it already
exists, it is truncated to zero
length. If it's a file and the file
doesn't exist, it is created.

Open for append. The calling
program is granted write-only
access to the device or file. For
disk files, if the file exists, the
its current posi tion is set to the
character which follows the last
character in the file. Also, for
disk files, if the file doesn't
exist, it is created and its
current position is set to the
start of the file.

Open for reading and writing. Same
as "r" but the device or file may
also be written to.

Open for reading and writing. Same
as "w" but the device or file may
also be read.

Open for append and read. Same as
"a" but the device or file may also
be read.

fprintf(stream,format,argl,arg2, .•.)
FILE *stream;
char * format; ...

The function "fprintf" formats the caller's parameters as
specified by the caller and writes the result to a device
or .disk file. Formatting is done as described in chapter
7, entitled "Input and output", of The C programming
Language.

The parameter "stream" identifies the device or file. It
contains the pointer which "fopen" returned to the caller
when the device or file was opened for buffered i/o.

The parameter "format" specifies how the formating is to

Copyright 1983 (c) by Manx Software Systems Page VII.7

Aztec C86 LIBRARY FUNCrIONS

fputs

be done.

The parameters "argl", etc, are the parameters which are
to be formatted.

int fputs(cp,stream)
char *cp: FILE *stream:

The function "fputs" writes a character string to a device
or disk file. "fputs" uses the function "aputc" to write
the string, so newline translation may occur.

If the operation is successful, IIfputs" returns zero as
its value. otherwise, it returns EOF.

The parameter "stream" identifies the device or file. It
contains the pointer which was returned by "fopen" to the
caller when the device or file was opened for buffered
i/o.

The parameter "cp" is a pointer to a character array
containing the string to be written.

fread

int fread(buffer,size,count, stream)
char *buffer:
int size,count:
FILE *stream:

Reads count items of size bytes into buffer from stream.
Returns the number of items actually read.

fscanf

fseek

int fscanf(stream,control, argl, arg2, ••.)
FILE *stream:
char *control:

Formats data according to control. Data is read from stream
file. Formating is done as described in chapter 7,
Input and Output, of The ~ programming Language.

int fseek (fp,pos,mode)
FILE *fp:
long pos:
int mode:

Copyright 1983 (c) by Manx Software Systems Page VII.8

Aztec C86 LIBRARY FUNCTIONS

ftell

positions the stream according to pas and mode. Mode is
interpreted as follows:

0- seek from O. Pas is treated as an unsigned number
and fp is positioned pas bytes from the beginning of
the file.

1- seek relative from the current position.

2- seek relative from the end of the file.

long ftell(stream)
FILE stream;

Returns the current byte position of stream from the
beginning of the file.

fwrite

getc

int fwrite(buffer,size,count,stream)
char *buffer;
int size,count;
FILE *stream;

Writes count items of size bytes from buffer into stream.
Returns the number of items actually w~itten.

int getc{stream)
FILE *stream;

Returns the next character from stream. The unique value
EOF is returned if an error is encountered or when reaching
end of file. The character is not sign extended so that
the unique value EOF (-I) is distinguishable from an Oxff
byte in the file.

getchar C MACRO

gets

int getchar{)

Returns the next character from standard input (stdin).

char *gets{buffer)
char *buffer;

Reads a line from the standard input. The returned value is
buffer. All of the usual line editing facilities are

copyright 1983 (e) by Manx software Systems Page VII.9

Aztec C86 LIBRARY FUNCTIONS

getw

printf

putc

available if input is from the console. This is not the
case with getchar. Note: the end of line sequence is not
left in the buffer. This is different from fgets for
compatibility reasons.

int getw(stream)
FILE *streami

Returns a word from stream. The least significant byte is
read first, followed by the most significant byte. Returns
EOF if errors or end of file occur. However, since EOF is a
good integer value, errno should be checked to determine if
an error has occurred.

printf(format,argl,arg2, ...)
char *formati

Formats data according to format and writes the result to
the console. Formating is done as described in chapter 7,
Input and Output, of The ~ programming Language.

int putc(c,stream)
int ci FILE *strearni

Writes character c into stream at the current position.
Returns c if all is okay and returns EOF if an error
occurs.

putchar

puts

putw

int putchar(c)
int Ci

Writes c to the standard output (stdout)

int puts(cp)
char *CPi

Writes string cp to the standard output (stdout). I\n l is
appended to the end of the string before sending it.

int putw(c stream)
int Ci FILE *strearni

Copyright 1983 (c) by Manx Software Systems Page VII.IO

Aztec C86 LIBRARY FUNCTIONS

scanf

ungetc

Writes a word, c, to stream. The least significant byte is
written first, followed by the most significant byte.
Returns c if all is okay and EOF if error occurs. However,
since EOF is a good integer value, errno should be checked
to determine if an error has occurred.

int scanf(control, argl, arg2, ...)
char *control;

Formats data according to control. Data is read from
standard in. Formating is done as described in chapter 7,
Input and Output, of The f programming Language.

int ungetc(c stream)
int C; FILE *stream;

Pushes c back onto stream so that the next call to getc
will return c. Normally returns c, and returns EOF if c
cannot be pushed back. Only one character of push back is
guaranteed and EOF cannot be pushed back.

~ Unbuffered I/O

close

Unbuffered I/O is described in chapter 8 of !he f
programming Language by Brian W. Kernighan and Dennis M.
Ritchie. the chapter is captioned liThe UNIX System
Interface".

close(fd)
int fd;

An open device or disk file is closed.

The parameter IIfd" specifies the device or file to be
closed. It is the file descriptor which was returned to the
caller by the open function when the device or file was
opened.

If the close operation is successful, close returns as its
value the value of the fd parameter.

If the close operation fails, close returns -1 and sets a
code in the global integer errno. If the close was
successful, errno is not modified. The only symbolic value
which close may set in errno is EBADF, meaning that the
file descriptor parameter was invalid.

Copyright 1983 (c) by Manx Software Systems Page VII.II

Aztec C86 LIBRARY FUNCTIONS

creat

1seek

creat(name, pmode)
char *namej
int pmodej

The function "creat" creates a file and opens it for write
only access. If the file already exists, it is truncated so
that nothing is in it (this is done by erasing and then
creating the file).

If "creat" is successful, it returns as its value a "file
descriptor", that is, a positive integer which is an index
into a table of device and file control blocks. Whenever a
call is made to one of the unbuffered i/o functions to
access the file, its file descriptor must·be included in
the function's parameters.

If "creat" fails, it returns -1 and sets a code in the
global integer "errno". If it succeeds, errno is not
modified.

The parameter "name" is a pointer to a character array
containing the name of the file. The drive identifier in
the name is optional. If its included, the file will be
created on the specified drive; otherwise, it will be
created on the default drive.

The parameter "pmode" is optionalj if specified, it is
ignored. The pmode parameter should be included, however,
for programs for which UNIX-compatibility is required,
since the UNIX creat function requires it. In this case,
pmode should have an octal value of 0666.

long int Iseek(fd, offset, origin)
int fd, origin;
long offset;

Iseek sets the current position in the file specified by
the fd parameter to the position specified by the offset
and origin parameters.

The current position is set to the location specified by
the origin parameter plus ehe offset specified by the
offset parameter,where the offset is a number of
characters.

The value of the parameter "origin" determines the basis
for the offset as follows:

Copyright 1983 (c) by Manx Software Systems Page VII.12

Aztec C86 LIBRARY FUNCTIONS

open

o offset is from beginning of file
1 offset from the current position
2 offset is from the end of file

If lseek is successful, it returns as its value the new
current position for the file; otherwise, it returns -1. In
the latter case, the global integer errno is set to a
symbolic value which defines the error. The symbolic values
which lseek may set in errno are: EBADF, if the fd
parameter is invalid; EINVAL, if the offset parameter is
invalid or if the requested current position is less than
zero. If lseek is successful, errno is not modified.

Examples:

1. To set the current position to the beginning of the
file:

lseek(fd, OL, 0)

lseek returns as its value 0, meaning that the current
position for the file is character O.

2. To set the current position to the character following
the last character in the file:

lseek(fd, OL, 2)

lseek returns as its value the current position of the
end of the file, plus 1.

3. To set the current position 5 characters before the
present current position:

Iseek(fd,-5L,1)

4. To set the current position 5 characters after the
present current position:

Iseek(fd,5L,1)

open(name,rwrnode)
c.har *name;

The function "open ll prepares a device or file for
unbuffered i/o and returns as its value an integer which
must be included in the list of parameters for the i/o
function calls which refer to this device or file.

The name parameter is a pointer to a character string which
is the name of the device or file which is to be opened.
When using PCDOS or MSDOS, the system console is named

Copyright 1983 (c) by Manx Software Systems Page VII.13

Aztec C86 LIBRARY FUNCTIONS

'con:'. Other devices have their standard MSDOS/PCDOS
names.

When using CPM86, the names of the devices which can be
opened are :

device name
con:
1st: or prn:
pun:
rdr:

device
system console
line printer
punch device
reader device

The names can be either upper or lower case.

When a disk file is to be opened, the name string can
be a complete name; for example, "b:sample.ext". The drive
identifier and the colon character can be omitted; in this
case the file is assumed to be on the default drive. The
extent and preceeding period can also be omitted, if the
file doesn't have an extent field.

The "mode" parameter specifies the type of access to the
device or file which is desired, and optionally, for a disk
file, specifies other functions which open should perform.
The mode values are:

mode value
o RDONLY
O-WRONLY
o RDWR
o CREAT
o TRUNC
o EXCL

meaning
read only
write only
read and write
create file, then open it
truncate file, then open it
if 0 EXCL and 0 CREAT are both
set, open will fail if the
file exists

The integer values associated with the symbolic values for
mode are defined in the file "fcntl.h", which can be
included in a user's program. To guarantee UNIX
compatibility, a program should set the "mode" parameter
using these symbolic names.

The calling program must specify the type of access desired
by including exactly one of 0 RDONLY, 0 WRONLY, or 0 RDWR
in the mode parameter. The-other values for mode are
optional, and if specified,are "or-ed" into one of the
type-of-access values.

I f only the 0 CREAT option is specified, the file will be
created, if it doesn't exist, and then opened. If the file
does exist it is simply opened.

If the 0 CREAT and 0 EXCL options are both specified, and
if it didn't previously exist, it will be created and then
opened. If it did previously exist, the open will fail.

Copyright 1983 (c) by Manx Software Systems Page VII.14

Aztec C86 LIBRARY FUNCTIONS

If the a_TRUNC option is specified, the file will be
truncated so that nothing is in it, and then will be
opened. The truncation is performed by erasing the file, if
it exists, then creating it. It's not an error to truncate
a file which doesn't previously exist.

If both a CREAT and a TRUNC are specified, open proceeds as
if only 0 TRUNC was specified.

If open doesn't detect an error, it returns as its value an
integer, called a IIfile descriptor ll

, which must be included
in the list of parameters which are passed to the other
unbuffered i/o functions when performing i/o operations on
the file. The file descriptor is different from the file
pointer which is used for buffered i/o.

If open does detect an error, it returns as its value -1,
and sets a code in the global integer errno which defines
the error. The symbolic values which open may set in errno
and their meanings are:

errno value
EMFILE

EACCES
ENFILE

EEXIST

ENOENT

meaning
maximum number of open devices and
files exceeded (Ills the limit)
invalid access requested
maximum number of open files
exceeded
file already exists (when a CREAT
and 0 EXCL are both specified)
unable to open file

The file errno.h defines the integer values of the symbolic
values. If open doesn't detect an error, errno isn't
modified.

Examples:

1. To open the system console for read access:

fd =" open ("con: II ,O_RDONLY)

2. To open the line printer for write access:

fd = open(lIlst",O_WRONLY)

3. To open the file "b:sample.ext" for read-only access
(the file must already exist):

fd = open (lib: sample. ext II ,0_ RDONLY)

4. To open the file subl.c on the default drive, for
read-write access (if the file doesn't exist, it will
be created first):

Copyright 1983 (c) by Manx software Systems Page VII.IS

Aztec C86 LIBRARY FUNCTIONS

posit

read

fd = open(lIsubl.c",O_RDWR+O_CREAT)

5. To create the file IImain.txt", if it doesn't exist, or
to truncate it to zero length, if it already exists,
and then to open it for write-only access:

fd = open("main.txt",O_WRONLY+O_TRUNC)

posit(fd,num)
int fd,num;

posit will set the current position for a disk file to a
specified l28-byte record.

This function should not be used when UNIX compatibility is
required, because it isn't supported by UNIX.

The parameter nfd" identifies the file; fd is the file
descriptor which was returned to the caller by open when
the file was opened.

The parameter unumll is the number of the specified record,
where the number of the first record in the is zero.

If posit is successful, it returns ° as its value.

If no error occurs, posit returns -1, and sets an error
code in the global integer errno. The only symbolic value
which may be set in errno is EBADF, in response to a bad
file descriptor. If no error occurs, errno isn't modified.

Examples:

1. to set the current position to the first byte in the
first record:

posit(fd,O)

2. To set the current position to the first byte of the
fourth record:

posit(fd,3)

Copyright 1983 (c) by Manx Software Systems Page VII.16

Aztec C86 LIBRARY FUNCTIONS

read (fd, buf,bufsize)
int fd, bufsizei char bufi

The read function reads characters from a device or disk
file into the caller's buffer. In most cases, the
characters are read directly into the caller's buffer.

The fd parameter specifies the filei it contains the file
descriptor which was returned to the caller when the file
was opened.

The parameter buf is a pointer to the buffer into which the
characters from the deive or file are to be placed.

The parameter bufsize specifies the number of characters to
be transfered.

If the read operation is successful, it returns as its
value the number of characters transfered.

If the operation isn't successful, read returns -1 and
places a code in the global integer errno.

For more information, see the description on the
unbuffered read operation for the various devices and for
disk files in the chapter on unbuffered i/o.

rename

rename (oldname , newname}
char oldname[],newname[]i

The function "rename" changes the name of a file.

The parameter "o ldname" is a pointer to a character array
containing the old file name, and "newname" is a pointer to
a character array containing the new name of the file.

If a file with the new name already exists, it is erased
before the rename occurs.

The value returned by rename is undefined. Unlike many
other i/o functions, rename never modifies the global
integer errno.

un1ink

unlink(name}
char name[]i

Copyright 1983 (c) by Manx Software Systems Page VII.17

Aztec C86 LIBRARY FUNCTIONS

write

The function lIunlinkll erases a file.

The parameter IIname ll is a pointer to a character array
containing the name of the file to be erased.

unlink returns 255 as its value if the operation wasn't
successful; otherwise it returns a value in the range 0 to
3. Unlike many other i/o functions, unlink never modifies
the global integer errno.

write(fd,buf,bufsize)
int fd, bufsize; char buf;

'The ~rite function writes characters to a device or disk
file from the caller's buffer. The characters are written
to the device or file directly from the caller's buffer.

The parameter IIfd ll specifies the device or file. It
contains the file descriptor which was returned by the open
function to the caller when the device or file was opened.

The parameter IIbuf" is a pointer to the buffer containing
the characters to be written.

The parameter "bufsize" specifies the number of characters
to be written.

If the operation is successful, write returns as its value
the number of characters written.

If the operation is unsuccessful, write returns -1 and
places a code in the global integer errno. If the operation
is successful, errno is not modified.

For more information on the detailed operation of the write
function when writing to the different devices and to disk
files, see the chapter on unbuffered i/o.

3. String Manipulation

atof

These functions allow manipUlation of lie" style strings as
described in The e programming Language by Kernighan and
Ritchie.

Copyright 1983 (c) by Manx Software Systems Page VII.I8

Aztec C86 LIBRARY FUNCTIONS

atoi

atol

ftoa

index

double atof(cp)
char *CPi

ASCII to float conversion routine.

int atoi(cp)
char *CPi

Converts ASCII string of decimal digits into an integer.
Atoi will stop as soon as it encounters a non-digit in the
string.

long atol(cp)
char *CPi

ASCII to long conversion routine.

int ftoa (m,cp,precision,type)
double mi
char *CPi
int precisioni
int type;

convert from float/double format to character format. The
value of m is converted to ans ASCII string and assigned to
*c. The precision operand specifies the number of digits to
the right of the decimal point. Type can be

o for E format

1 for F format.

char *index(cp,c)
char *cp, c;

Searches string cp for the letter specified by parameter
"e". If the letter is found then the function returns a
pointer to its position. Othersise a 0 is returned.

rindex

copyright 1983 (c) by Manx software Systems Page VII.19

Aztec C86 LIBRARY FUNCTIONS

char *rindex{cp,c)

Functions the same as index, but the scan begins from the
end of the string and moves towards the beginning.

sscanf

int sscanf{string,control, argl, arg2, ...)
char *string
char *controli

Formats string according to control. Formating is done as
described in chapter 7, Input and Output, of !he ~
programming Language.

strcmp

strcmp(strl,str2)
char *strl, *str2i

Compares strl to str2 and returns: 0 (zero) if strings are
equal, -1 {negative one} if strl is less than str2, and 1
(one) if strl is greater than str2.

strcpy

strcpy(dest,src)
char *dest, *srci
int maxi

Copies the string pointed to by src into destination.

str1en

strlen{str)
char *stri

Returns the length of str. The length does not include the
null at the end of the string.

strncmp

strncmp{strl,str2,max)
char *strl, *str2i
int maxi

Compares strl to str2 the same as strcmp, but compares at
most max characters.

strncpy

Copyright 1983 (c) by Manx Software Systems Page VII.20

Aztec C86 LIBRARY FUNCTIONS

strncpy{dest,src,max)
char *dest, *src;
int max;

copies the string pointed to by src into dest, but copies
at most max characters. The destination may not be null
terminated when copy is done.

4.utility Routines

alloe

char *alloc{size)
int size;

Allocates memory with size numer of bytes and returns
pointer to beginning.

bloekmv

clear

exit

blockmv{dest, src, length)
char *dest, *src;
int dest;

Moves data from src to dest. The number of bytes is
specified by parameter length. N 0 checking for overlap is
performed.

clear{area, length, value)
char *area; int length, value;

Initializes length bytes starting at area with value.

exit{n)
int n;

Returns to the operating system. Any streams which have
been opened with fopen but not closed with fclose will be
closed at this time. If N is non zero then any submit that
was in progress will abort.

format

format{function,format,argptr)
int (*function) ();

Copyright 1983 (c) by Manx Software Systems Page VII.2l

Aztec C86 LIBRARY FUNCTIONS

int C;

If c is upper case,c is mapped to lower case and the new
value returned; otherwise c is returned.

toupper

toupper(c)
int C;

If c is lower case, it is mapped to upper case and the new
value returned; otherwise c is returned.

5. Operating System Interface

bdos for MSDOS and PCDOS

bdos

exit

bdos(ah, dx, cx)
int ah, dx, cX;

Calls the bdos, by issuing lint 21 1
, with register AL set

to ,.<;l.~ reg ister AH._ set to 0, DX set to dx and CX set
to ex. The value returned in AL is the return value.

for CPM86

bdos(cx, dx)
int cX,dx;

Calls the bdos, by issuing lint 224 1
, with register CX set

to cx and register DX set to dx. The value returned from
the bdos in register AX is returned as the function value.

exit(n)
int n;

R~turns to the operating system. Any streams which have
been opened with fopen but not closed with fclose will be
closed at this time. N is the return code, which is ignored
in this release but may be used by future versions.

fcbinit

fcbinit(name,fcbptr)
char *name; struct fcb *fcbptr;

The fcb structure is initialized to zeros and name is
unpacked into the proper places. The fcb structure is
defined in lIio.c ll

• The structure need not be used;

Copyright 1983 (c) by Manx Software Systems Page VII.23

Aztec C86 LIBRARY FUNCTIONS

however, fcbptr must point to an area at least 36 bytes
long.

settop

char *settop(size)
unsigned size;

The current top of available memory is moved up by size
bytes and the old value of the top is returned. If the new
top is within 512 bytes of the stack pointer, NULL will be
returned.

6. Math and scientific Routines

sqrt

double sqrt(x);
double x:

sqrt is a function of one argument which returns as its
value the square root of the argument. The type of the
returned value is double.

The argument which is passed to sqrt must be of type double
and must be greater than or equal to zero.

If sqrt detects an error, it sets a code in the global
integer variable ERRNO and returns an arbitrary value to the
caller. If sqrt doesn't detect an error, it returns to the
caller without modifying ERRNO. Table 2.1.1 lists the
symbolic values which sqrt may set in ERRNO and their
meanings. The file MATH.H, which can be included in a user's
module, declares ERRNO to be a global integer and defines
the numeric value associated with each symbolic value.

EXAMPLE

In the following program sqrt computes the square root of 2.
If the computation returns a non-zero value in ERRNO, the
program prints an error message.

#include IIlibc.hll
#include lIerrno.h ll

main() {
double sqrt() ,a;

errno = 0:
a = sqrt«double) 2);
if (errno 1 = 0) {

if (errno == EDOM)
printf(lIerrno set to EDOM by sqrt\nll);

else

Copyright 1983 (c) by Manx Software Systems page VII.24

Aztec C86 LIBRARY FUNCTIONS

log

10g10

printf("inva1id errno=%d returned by sqrt\n");

Table 2.1.1 Error codes returned in ERRNO by sqrt

Code I sqrt(x) Meaning

EDOM I 0.0 x < 0.0

double log(x);
double x;

log is a function of one argument which returns the natural
logarithm of the argument as its value, as a double
precision floating point number.

The argument which is passed to log must be a double
precision floating point number and must be greater than
zero.

I f log detects an error, it sets a code in the global
variable ERRNO and returns an arbitrary value;otherwise, it
returns to the caller without modifying ERRNO. Table 2.2.1
lists the symbolic values which log may set in ERRNO, the
associated values returned by log, and the meaning.

Table 2.2.1 Error codes returned in ERRNO by log

Code log(x) I Meaning I

EDOM I -HUGE I x <= 0.0 I

double 10glO(X)i
double Xi

10glO is a function of one argument which returns as its
value the base-lO logarithm of the argument. The type of the
returned value is double.

The argument must be greater than zero, and must be of type
double.

If 10glO detects an error, it sets a code in the global

Copyright 1983 (c) by Manx Software Systems Page VII.25

Aztec e86 LIBRARY FUNCTIONS

exp

pow

integer ERRNO and returns an arbitrary value to the caller:
otherwise, it returns to the caller without modifying ERRNO.
Table 2.3.1 lists the symbolic values which 10glO may set in
ERRNO, the associated value returned by 10glO, and the
meaning.

Table 2.1.1 Error codes returned in ERRNO by 10glO

Code

EDOM

double exp(x)i
double x:

10glO(x) Meaning

-5.2e151 X <= 0.0

exp is a function of one argument which returns as its value
e**(argument). The type of the returned value is double.

The argument must be greater than -354.8 and less than
349.3: it must be of type double.

If exp is unable to perform the computation, it sets a code
in the global integer ERRNO and returns an arbitrary value:
otherwise, it returns the computed value without modifying
ERRNO. Table 2.4.1 lists the symbolic values that exp may
set in ERRNO, the associated value of exp, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by exp

Code exp(x) I Meaning

ERANGE I
ERANGE I

double pow(x,y) i
double x,y:

5.2e151
0.0

I x > 349.3
I x < -354.8

pow is a function of two arguments, for example, x and y,
which, when called, returns as its value x to the y-th
power (x**y, in FORTRAN notation). x is the first argument
to pow, and y the second. The value returned is of type
double.

Copyright 1983 (c) by Manx Software Systems page VII.26

Aztec C86 LIBRARY FUNCTIONS

sin

The arguments must meet the following requirements:
x cannot be less than zero;
if x equals zero, y must be greater than zero;
if x is greater than zero, then

-354.8 < y*log(x) < 349.3

If pow is unable to perform the calculation, it sets a code
in the global integer ERRNO and returns an arbitrary value;
otherwise it returns the computed number as its value
without modifying ERRNO. Table 2.6.1 lists the symbolic
codes which pow may set in ERRNO, the associated value
returned by pow, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by pow

Code

EDOM
ERANGE I
ERANGE

double sin(x)i
double Xi

pow(x,y)

-5.2el51
5.2el51

0.0

Meaning

I x<O or x=y=O
I y*log(x) > 349.3
I y*log(x) < -354.8

sin is a function of one argument which, when called,
returns as its value the sine of the argument. The value
returned is of type double.

The argument is in radians, and its absolute value must be
less than 6.7465e9. The type of the argument is double.

If sin can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed number, without modifying
ERRNO. Table 2.7.1 lists the symbolic codes which sin may
set in ERRNO, the associated values returned by sin, and the
meaning.

Table 2.1.1 Error codes returned in ERRNO by sin

Code sin(x) Meaning

ERANGE 0.0 labs(x) >= 6.7465e9 I

Copyright 1983 (c) by Manx Software Systems Page VII.27

Aztec C86 LIBRARY FUNCTIONS

cos

tan

double cos (x) i

double xi

cos is a function of one argument which, when called,
returns as its value the cosine of the argument. The
returned value is of type double.

The argument is in radians, and its absolute value must be
less than 6.7465e9. The type of the argument is double.

If cos can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value, without modifying
the associated value returned by cos, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by cos

Code I cos (x) Meaning

ERANGE I 0.0 labs(x) >= 6.7465e9 I

double tan(x)i
double Xi

tan is a function of one argument which, when called,
returns as its value the tangent of the argument. The type
of the value returned is double.

The argument is in radians, and its absolute value must be
less than 6.7465e9. The type of the argument is double.

If tan can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value without modifying
ERRNO. Table 2.8.1 lists the codes which tan may set in
ERRNO, the associated value returned by tan, and the meaning.

Table 2.1.1 Error codes returned in ERRNO by tan

Code I tan (x) Meaning

ERANGE I 0.0 labs(x) >= 6.7465e9 I

Copyright 1983 (c) by Manx Software Systems Page VII.28

Aztec C86 LIBRARY FUNCTIONS

cotan

asin

double cotan{x)i
double Xi

cotan is a function of one argument which, when called,
returns as its value the cotangent of the argument. The
returned value is of type double.

The argument is in radians, and its absolute value must be
greater than 1.9le-152 and less than 6.7465e9. The type of
the argument is double.

If cotan can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value without modifying
ERRNO. Table 2.9.1 lists the symbolic codes which cotan may
set in ERRNO, the associated value returned by cotan, and
the meaning.

Table 2.1.1 Error codes returned in ERRNO by cotan

Code

ERANGE
ERANGE
ERANGE

double asin{x)i
double Xi

cotan{x)

I 5.2e15l
I -5.2e151
I 0.0

Meaning

asin is a function of one argument which, when called,
returns as its value the arcsine of the argument. The
returned value is of type double.

The absolute value of the argument must be less than or
equal to 1.0. Its type is double.

If asin can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value without modifying
ERRNO. Table 2.10.1 lists the symbolic codes which asin may
set in ERRNO, the associated values returned by asin, and
the meaning.

Copyright 1983 (c) by Manx Software Systems Page VII.29

Aztec C86 LIBRARY FUNCTIONS

acos

atan

Table 2.1.1 Error codes returned in ERRNO by asin

I Code asin{x) Meaning

I EDOM 0.0 I abs{x) > 1.0

double acos(x)i
double Xi

acos is a function of one argument which, when called,
returns as its value the arcosine of the argument. The
returned value is of type double.

The absolute value of the argument must be less than or
equal to 1.0. It must be of type double.

If acos can'g perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value without modifying
ERRNO. Table 2.11.1 lists the symbolic codes which acos may
set in ERRNO, the associated value returned by acos, and the
meaning.

Table 2.1.1 Error codes returned in ERRNO by acos

Code I acos (x)

EDOM

double atan(x)i
double xi

0.0

Meaning

I abs(x) > 1.0

atan is a function of one argument which, when called,
returns as its value the arctangent of the argument. The
returned value is of type double.

The argument can be any real value, and must be of type
double.

Unlike many of the other math functions, atan never returns
code in ERRNO.

Copyright 1983 (c) by Manx Software Systems page VII.30

Aztec C86 LIBRARY FUNCTIONS

atan2

sinh

double atan2(y,x);
double y,x;

atan2 is a function of two arguments, say x and y, which,
when called, returns as its value the arctangent of y/x, in
radians. y is the first argument, and x is the second. The
returned value is of type double.

The arguments can assume any real values, except that x and
y cannot both be zero. If x equals zero, the value returned
is also zero.

If atan2 can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNO;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.12.1 lists the symbolic codes which atan2 may
set in ERRNO, the associated values returned by atan2, and
the meaning.

Table 2.1.1 Error codes returned in ERRNO by atan2

I Code I atan2(x) Meaning

I EDOM 0.0 I x = y = 0

double sinh(x);
double x;

sinh is a function of one argument which returns as its
value the hyperbolic sine of the argument. The returned
value is of type double.

The absolute value of the argument must be less than
348.606839, and is of type double.

If sinh can't perform the computation, it sets a code in the
global integer ERRNO and returns an arbitrary value;
otherwise, it returns the computed value without modifying
ERRNO. Table 2.13.1 lists the symbolic codes which sinh may
set in ERRNO, the value returned by sinh, and the meaning.

copyright 1983 (c) by Manx software Systems Page VII.31

Aztec C86 LIBRARY FUNCTIONS

cosh

tanh

Table 2.1.1 Error codes returned in ERRNO by sinh

I Code I sinh(x) Meaning
--
I ERANGE I 5.2e15l I abs(x) > 348.606839 I

double cosh(X)i
double Xi

cosh is a function of one argument which returns as its
value the hyperbolic cosine of the argument. The value
returned is of type double.

The absolute value of the argument must be less than
348.606839, and it must be of type double.

If cosh can't perform the computation, it returns an
arbitrary value and sets a code in the global integer ERRNOi
otherwise, it returns the computed value without modifying
ERRNO. Table 2.14.1 lists the symbolic codes which cosh may
set in ERRNO, the associated values returned by cosh, and
the meaning.

Table 2.1.1 Error codes returned in ERRNO by cosh

Code I cosh(x)

ERANGE I 5.2e15l

double tanh (x) i
double Xi

Meaning

I abs(x) > 348.606839 I

tanh is a function of one argument which returns as its
value the hyperbolic tangent of its argument. The value
returned is of type double.

The argument can be any real number whatsoever. It must,
however, be of type double.

Unlike some of the other math functions, tanh never modifies
ERRNO, and always returns the computed value.

Copyright 1983 (c) by Manx Software systems Page VII.32

Aztec C86 LIBRARY FUNCTIONS

random

double random()

returns a random number in the range 0 to 1.

copyright 1983 (e) by Manx software Systems page VII.33

Aztec C86 ERROR CODES

ERROR PROCESSING

During run time two variables are used to enhance error handling.
An external variable "errno" is an integer that is set to an
error code by the I/O and scientific math routines. IIflterr" is
set to indicate floating point arithmetic errors. IIflterr" set to
o indicates a good result, a non-zero value indicates a bad
result. See the section on floating point support for more
details.

"errnoll is set to 0 at the beginning of each I/O request and is
set to a non-zero value if an error occurred.

"errno" is set to a non-zero value if an error occurred in
processing a scientific math function see section VI, Library
Functions for more information.

The definition for the various settings for errno is in file
errno.h. The following is the contents of errno.h for vl.OS of
Aztec C86:

int errnOi
#define ENOENT
#define E2BIG
#define EBADF

#define ENOMEM

#define EEXIST
#define EINVAL
#define ENFILE
#define EMFILE

#define ENOTTY
#define EACCES

#define ERANGE

#define EDaM

-1
-2
-3

-4

-S
-6
-7
-8

-9
-10

-20

-21

file does not exist
not used
bad file descriptor - file is not open or
improper operation
insufficient memory for requested
operation
file already exists on create request
invalid argument
exceeded maximum number of disk files
exceeded maximum number of file
descriptors
not used
invalid access request

invalid argument to math function:
function value can't be computed
invalid argument to math function:
argument value illegal by definition

Copyright (e) 1983 by Manx Software Systems Page VIII.1

Aztec e86 Buffered I/O - r/o Redirection

I/O Redirection and Buffered I/O

lie" has two basic types of I/O, namely buffered, sometimes called
stream I/O, and unbuffered. Unbuffered r/o is discussed in
another section. Buffered r/o tends to be less efficient than
unbuffered r/o, but is easier to use.

There are three standard files in Aztec 086: stdin, stdout,
and stderr. When a program is started these three files are
opened automaticaly and file pointers are provided for them. The
getchar and scanf functions read from the stdin file. The
putchar and printf functions output to the stdout file. Run
time error messages are directed to stderr.

The default device for stdin, stdout, and stderr is "eON:". The
destination for stdin and stdout can be "redirected" to a disk
file or another device. To redirect stdin, specify on the command
line a 11<" followed by the file name or device, for example:

myprog parmI parm2 < input.fil

When "myprog" executes, all getchar requests and
requests will read from file input.fil.

scanf

To redirect stdout, specify on the command line a 11)11 followed by
the file name or device, for example:

myprog parmI parm2) prn:

When "myprog" executes, all output requests to putchar and
printf will be directed to the printer device PRN:.

"stdin" and "stdout" can be used just as any other file pointer.
Any r/o performed with these file pointers will be redirected if
redirection was requested.

r/o can be redirected to any file or device. Under PCDOS and
MSDOS, the console is referred to as 'con:': other devices are
called by their standard PCDOS/MSDOS names. Under CP/M-86,
devices have these names:

CON:
LST:
PRN:
PUN:
RDR:

Devices can be specified as the "file name" to fopen
and open. Any I/O to the returned file pointer (fp) or
,file descriptor (fd) will be directed to the specified device.
For example, using CPM86, the following program will send a
message to the printer:

Copyright 1983 (c) by Manx Software Systems PAGE IX.l

Aztec C86 Buffered I/O - I/O Redirection

#include "libc.h"
main ()
{
char Ci

FILE *fl i
fl=fopen ("lst: II , "W") i

fputs("this is going to the list device LST:\n",fl);

There are a number of library routines for buffered I/O. The
reader is directed to the LIBRARY section of this manual and
chapter 7 of The ~ programming Language for more information.

Copyright 1983 (c) by Manx Software Systems PAGE IX.2

Aztec C86 Unbuffered I/O

Unbuffered I/O

This section describes how a program accesses devices and files
using the functions defined in chapter 8 of the K&R text. A
program which acccesses devices and files using these functions
will also be able to run on a UNIX system.

The basic input/output support functions allow a program to
access the console, printer, reader, punch, and the files on any
disk. The support functions are:

creat
unlink
rename
open
close
read
write
posit
lseek

creates a disk file
deletes a disk file
renames a disk file
prepares a device or file for I/O
concludes the I/O operations on a device or file
reads data from a device or file
writes data to a device or file
positions a disk file to a specific record
positions a disk file to a specific character

Generally, to access a device or file, a program first must call
the "open" function, passing it the name of the device or file
and a code indicating the type of operations the program intends
to perform. Open returns a "file descriptor" which the program
must include in the parameters which are passed to other
functions when accessing the device or file. This file descriptor
is an integer which is an index into a table, called the "channel
table". Each entry in this table is a control block describing a
device or file on which the program is performing I/O operations.
For more details on the "open" function, see the chapter on the
unbuffered i/o functions.

The only exception to the rule requiring the opening of devices
and files prior to the issuance of program i/o with them regards
the logical devices stdin, stdout, and stderr. When the program
first gets control, these logical devices have already been
opened by the system; hence, the program can issue i/o calls to
them without opening them itself.

Generally,after a program has completed its i/o to a device or
file, it must call the "close" function to allow the system to
release the control blocks which it has allocated to the device
or file. The only exception to this rule is that the logical
devices stdin, stdout, and stderr never need be closed.

In the remainder of this section, the details of program i/o to
the various devices and disk files are presented.

Copyright 1983 (c) by Manx Software Systems PAGE X.I

Aztec C86 Unbuffered I/O

Conso1e I/O

There are two ways for a program to access the system console
using UNIX-compatible i/o functions. One is to issue read and
write calls to the "logical devices" stdin, stdout, and/or
stderr. These three devices are opened by the Aztec system before
a user's program gains control. Thus the user's program can
access these devices without performing an initial "open"
function on them, and without performing a "close" function on
them before terminating. The default condition is for these
"logical devices" to all be the system console. However, the
operator, when activating the user's program, can specify that
the stdin or stdout logical device be associated with another
device or a disk file; that is, that the stdin and stdout i/o be
"redirected". Thus, if the user's program must communicate with
the operator, and can't be assured that the stdin and/or stdout
i/o has been redirected, then the program must use the other
method of communicating with the console, which is described in
this section. For more information on using the UNIX-compatible
i/o functions to communicate with the stdin, stdout, and stderr
devices, see the appropriate section which follows.

The other method for a program to access the system console is to
explicitly open the conso~e, issue read and write function calls
to it, and then close it. The open and close calls were described
above, so the rest of this section just covers the details of
reading and writing to the console.

Conso1e input

To read characters from the system console, a program issues read
function calls, passing as parameters the file descriptor which
was returned to the program when it opened the console, the
address of a character buffer into which characters from the
console are to be placed, and a number which specifies the
maximum number of characters to be returned to the program. The
read function will place characters in the buffer, as described
below, and return as its value an integer specifying the number
of characters placed in the buffer.

The system maintains an internal 256-character buffer into which
it reads console keyboard input. The read function returns
characters to the calling program from this buffer. If the
internal buffer is empty when a program requests console input,
the read function will perform its own read operation to the
console, putting the characters obtained in its internal buffer.
While the read function's read operation is in progress, the
console operator can use the normal editing characters, such as
rub out, backspace, etc. These edi ting characters do not appear
in the internal read buffer. The read function's read opera tion
terminates when the operator depresses the carriage return key,
the line feed key, or ctl-z, or when there are 256 characters in
the internal buffer. Following the characters in the internal
buffer which were input by the user, the read function places a
carriage return, line feed sequence.

Copyright 1983 (c) by Manx Software Systems PAGE X.2

Aztec C86 Unbuffered I/O

The read function returns characters to the calling program from
the internal buffer. If there are characters in the buffer which
haven't yet been passed to the caller, the read function
transfers some to the caller's buffer, with the number transfered
being either the number requested by the caller, or the number
remaining in the internal buffer from the last actual console
read operation which haven't been passed to the caller. If the
internal buffer is empty when the caller makes a request of the
read function, the read function performs an actual console read
operation to refill the internal buffer, as described above, and
then transfers characters from it to the caller's buffer.

The read function returns to the caller as its value the number
of characters placed in the caller's buffer, or zero, if the
operator typed ctl-z in response to a console read operation by
the read function, or -1 if an error occurred. If an error
occurred, the read function also places a code in the global
integer errno which defines the error. If no error occurred, read
returns without modifying errno. The only symbolic value which
read may place in errno is EBADF, in response to an invalid file
descriptor from the caller. The integer value of EBADF is defined
in the file errno.h, which may be included in the user's program.

Writing to the system conso1e, the 1ine printer, or the punch

To send characters to the system console, the line printer, or
the punch device, a program calls the function "write", passing
it as parameters the file descriptor which was passed to it by
the function "open" when it opened the device, the address of a
buffer containing characters to be sent, and an integer
specifying the number of characters to be sent. The write
function sends the characters directly to the device and returns
as its value the number of characters sent. If the write function
encounters a carriage return character in the caller's buffer, it
sends it to the device, then sends a line feed character, then
continues with the next character in the caller's buffer.

If the write function detects an error, it returns -1 as its
value and places an error code in the global integer errno. If an
error was not detected, errno is not modified. The only symbolic
value which write may place in errno is EBADF, signifying that an
invalid file descriptor was passed to write. The file errno.h
defines the integer value of EBADF.

Reading from the "reader- device

A program gets characters from the IIreader" device by calling the
IIread ll function, passing it as parameters the file descriptor
which was passed to it by open when it opened the reader device,
the address of a buffer into which characters from the device are

Copyright 1983 (c) by Manx Software Systems PAGE X.3

Aztec C86 Unbuffered I/O

to be placed, and an integer specifying the number of character
to be read.

The read function reads characters directly into the caller's
buffer. The operation continues until "read" reads the number of
characters specified by the caller. It then returns as its value
the number of characters read.

If read detects an error, it returns as its value -1, and sets a
code in the global integer errno.h. If no error was detected,
errno.h is not modified. The only symbolic value which read may
set in errno is EBADFi this means that an invalid file descriptor
was passed to read. The file errno.h, which can be included in
the user's program, defines the integer value of EBADF.

UNIX-compatib1e I/O to the stdin, stdout, and stderr devices

As was mentioned in the section on console i/o, when a user's
program is activated, three "logical devices" are always openi
these are called "stdin", "stdout", and "stderr". By default,
these are associated with the system consolei however, the
operator can specify, when activating the program, that read
operations directed to stdin and write operations directed to
stdout be redirected to an operator-specified device or disk
file. The user's program needn't be aware of the actual device
associated with stdin, stdout, or stderri it simply issues read
and write function calls as it would to the system console.

If the user's program is to communicate with stdin and stdout
where the possibility exists that either or both of them are a
device, such as the console, then the user's program should
restrict itself to just issuing read and write function calls to
these logical devices. However, if the operator always redirects
the stdin or stdout i/o to a disk file, then the program can
access the redirected device as it would a normal disk file. That
is, it can reposition the "current position" of the logical
device using the "posit" and/or "lseek" function calls. These
calls are described below, in the section on file i/o.

When accessing any device or file, including stdin, stdout, or
stderr, the user's program must include a "file descriptor" with
the function call parameters which identifies the device with
which the user's program wants to communicate. In the case of
devices and files other than stdin, stdout, and stderr, the file
descriptor is that which the open function returned to the user's
program when it opened the device or file. Since the user's
program doesn't itself open the stdin, stdout, and stderr logical
devices, there has to be another way for it to determine the file
descriptors to use when commincating with these devices. The way
is this: to communicate with stdin, use a file descriptor having
value Oi for stdout, use li and for stderr, use 2.

Copyright 1983 (c) by Manx Software systems PAGE X.4

Aztec C86 Unbuffered I/O

Fil.e I/O

When communicating with disk files, in addition to the open and
close function calls, which were described above, and the read,
write, posit, and lseek function calls, which are desciibed
below, there are three other function calls which can be made:
creat, to create a non-existant file, or to truncate an existing
file so that it doesn't contain anything; unlink, to erase a disk
file; and rename, to rename a disk file. These function are
described in the library functions chapter.

programs call the functions read and write to transmit characters
between the program and a disk file. The transfer begins at the
"current position" of the file and proceeds until the number of
characters specified by the calling program have been transfered.

The current position of a file can be manipulated in various ways
by a program, allowing the program to access the file both
sequentially and randomly. To read a file sequentially from the
beginning of the file, the program simply issues repeated read
requests. After each read operation, the current position of the
file is set to the character following the last one returned to
the calling program. Similarly, to write a file sequentially from
the beginning of the file, the program issues repeated write
requests. After each write operation, the current position of the
file is set to the character following the last one written.

Two add i t i 0 na 1 fun c t ion s , .. 1 see k" and "po sit", are pro v ide d to
allow programs to access files randomly. lseek sets the current
position of a file to a specified character location. posit sets
the current position to a specified record. The program can then
issue read and/or write requests to transfer data beginning at
the new current position. If UNIX compatibility is a requirement,
don't use the function "posit" - it's not supported by UNIX.

To perform a sequential update of a file, a program would
repeatedly perform the following sequence: read in a buffer's
worth of data; update the buffer; reset the current position in
the file to the location before the read operation; and finally,
write the buffer back to the file. The sequence for updating a
file randomly would be the same, except that the program would
explicitly set the current position of the file before each read
operation.

Copyright 1983 (c) by Manx Software Systems PAGE X.S

Aztec C86 ASSEMBLY LANGUAGE SUPPORT

A. Imbedded Assembler Source

Assembly language statements can be imbedded in a "C" program
between an "#ASM" and "#ENDASM" statement. Both statements must
begin in column one. No assumptions should be made concerning the
contents of registers. The environment should be preserved and
restored. Caution should be used in writing code that depends on
the current code generating techniques of the compiler. There is
no guarantee that future releases will generate the same or
similar patterns.

B. Assembler subroutines

The calling conventions used by the Aztec C86 compiler are very
simple. The arguments to a function are pushed onto the stack in
reverse order, i.e. the first argument is pushed last and the
last argument is pushed first. The function is then called using
a near call instruction. When the function returns, the arguments
are removed from the stack. A function is required to return with
the arguments still on the stack unless something is pushed back
in place of them. The segment registers, and registers BP, SI,
and DI must be preserved by routines called from C. If the
function returns an integer as its value it is returned in
register AX; long integers are returned in the primary long
register, and doubles in the primary floating point register. For
examples of assembly code called by .. c.. programs refer to the
string.asm and toupper.asm files supplied with the package.

Example:

; Copyright (C) 1983 Thomas Fenwick
Cg group CODESEG
CODESEG segment word public 'code'

assume cs:Cg
public isupper -isupper_ proc near
mov bx,sp
mov al,2[bx]
cmp aI,' A'
jl false
cmp aI, • Z'
jg false

true:
sub ax,ax
inc ax
ret

public islower
islower

mov bx,sp
mov al,2[bx]
crop aI, • a'
jl false
crop al, • z'

Copyright (c) 1983 by Manx Software Systems Page XI.l

Aztec C86

jle true
false:

sub aX,ax
ret

ret
isupper endp
CODESEG-ends

end

ASS~mLY LANGUAGE SUPPORT

Copyright (c) 1983 by Manx Software Systems Page XI.2

Aztec C86 Data Formats

Data Formats

1. character

Characters are 8 bit ASCII.

Strings are terminated by a NULL (X·OO·).

For computation characters are promoted to signed integers.

2. pointer

Pointers are two bytes (16 bits) long. The internal
representation of the address FOAB stored in location 100
would be:

location

100
101

3. int, short

contents in hex format

AB
FO

Integers are two bytes long. A negative value is stored in
two·s compliment format. A -2 stored at location 100 would
look like:

location

100
101

4. long

contents in hex format

FE
FF

Long integers occupy four bytes. Negative values are
in two·s complement representation. Longs are
sequentially with the least significant byte stored
lowest memory addres and the most significant byte
highest memory address.

5. float and double

stored
stored
at the
at the

Floating point numbers are stored as 32 bits, doubles are
stored as 64 bits. They are in standard 8087 format.

Copyright (C) 1983 by Manx Software Systems Page XII.l

Aztec C86 FLOATING POINT SUPPORT

When a floating point exception occurs, in addition to returning
an indicator in 'flterr', the floating point support routines
will log an error message to the console. The error message
logged by the support routines define the type of error that has
occurred (overflow, underflow, or division by zero) and the
address, in hex, of the instruction in the user's program which
follows the call to the support routines.

Following the error-message-logging the floating point support
routines return to the user's program which called the support
routines.

Internal representation of floating point numbers

Floats are in the standard 8087 32-bit format, and doubles are in
the standard 8087 64-bit format.

Copyright (C) 1983 by Manx Software Systems page XIII.2

Aztec C86 S1D86 Debugging Support

The Digital Research SID86 symbolic debugger can be used with the
Aztec C86 system. The -T option in the link edit step will create
a symbol table.

Copyright 1983 (c) by Manx Software Systems PAGE XIV.l

