
~LOGITECH

mODULA 2/86

on m/-dol (pc-dol)

LOGI'l'ECif SA - CB-1143 APFLES

Ph6ne (0)21 / 77 45 45 - Telex 458 217 - Fax (0)21 / 77 31 36

~ LOGITECH

Software Engineering Library

Modula-2/86, Release 1.0 February 29, 1984

Release notes for release 1.0 on DOS 2.0

1) File handling in DOS 2.0

Modula-2/86 now internally uses DOS 2.0 calls for file operations.
For this reason you must have a file 'CONFIG.SYS' on the the
disk you use to start (boot) your DOS 2.0 system. This file must
at least contain the command

FILES=12

in order to set the maximum number of open files in DOS 2.0 to
twelve. This minimum is required for proper operation of the
Modula-2/86 system (compiler, linker, debugger). By default,
DOS 2.0 allows opening four files only, which is not sufficient

operating Modula-2/86.
'- ,,/

If the proper number of files is not set in DOS, then an error
message 'file not found' will appear when operating the Modula-2/86
compiler. While the file in question may be present, it cannot
be opened due to a lack of file descr~ptors in the operating system.

Also it is recommended that you set the number of buffers
to at least thirteen (not just eight as stated
in the manual). This can be achieved by the command

BUFFERS=13

which also goes in the file 'CONFIG.SYS'. While this is not required,
it will improve the performance of the Modula-2/86 system.

A sample 'CONFIG.SYS' file is provided on your Modula-2/86
system diskette. After you have changed or install~d your
'CONFIG.SYS' file, be sure to re-start (boot) your operating
system, in order for these changes to become effective.

'2) Installation

The Modula-2/86 system has been greatly improved for operating
with DOS 2.0. For the best installation please refer to chapter
F·J 're on installation in the new Modula-2/86 manual.

3) Command line arguments

When a Modula-2/86 program is executed using the 'm2' command,
any text which follows the name of the program is taken as
keyboard input. This means, for example, that
it works to say 'm2 comp myprog/batch/noaquery'.
(The /noaquery compiler option tells the compiler not to
request user input when a file cannot be found, and the
/batch option tells the compiler not to read type-ahead.)
Of course this works for any Modula-2/86 program that
does keyboard input using the modules Terminal or InOut.

This allows Modula-2/86 programs to be used more easily with
the DOS Batch facility, which requires tha~,~ll.input to a
program be on the command line. Because the compiler, linker
and debugger accept a space (as well as <CR» to terminate an
argument, multiple arguments may be given on the, command line.
Example: 'm2 link overlayl/b mainline'

Differences from previous Releases of Modula-2/86

1) Using existing Modula-2 programs with release 1.0

All sources must be recompiled, because the new run-tima~system
(M2.EXE) is incompatible with the code generated by previous
versions of the Modula-2/86 compiler. Also, the old reference
files (.REF) are incompatible with the new debugger.

2) Running Modula Programs

The Modula-2/86 Resident Part that was present in earlier versions
of the system has ~ b7~n remo~e~~ 19<,,?;t;'p~),; t~ r~ Modul'a-2 programs
you now ehtet~)'·!, "c.-,:, .

m2 programname

This also holds for the Modula-2/86 compiler, linker and debugger,
which now are started l?y 'm2 .CQffiP'" r,'lrq?I,:J.A)l~': and 'm2:/idbug' 0

3) Ld:nkdmg.l~Molfti'Ia-2 Prcjg~arrls

BecatlSe11t'llEh ·Mbiru'l!a-2/86 Re~rdEmt' Part' !"ta~, q.eE\P. removeill, fthe
Modula-2/86 linker now by default links'programs so that they
can be run by 'm2 programname'. With previous versions of
Modula-2/86 only the modules that were not contained' ;i..n ,the
Resident Part were included when linking a program. Now all
imported modules are by.d~fault ~nclu4~dQY, the,llinker'intb
the r~sulting'~' ~L90;' 'fil~~:, .. ,,0",' •

a. : .. 1; ,,:.1.1 <II: c· n H!

4) Specifying _fil~,n~m~,~

When:~ti.fie ·Modu-la":'2/86' syst:~~,''(c6iitpi'le~,;' linker" debugCJ-er.)'~·prompts
f.ar.~Ia!'fq""lJienanie,:':Y()U now' 'gikt tb'e de'fault extension by just entering
the filename and carriage.,!=;etlp~". ,'l,'ne-qot;. ,whicbt was' required' -before
must nob1:bet -eytied ianymore!" ~ , ,~ ... '

0b-'.'-()} n~f':I~l :·(:(~l"(·

5) New library reodules

- DiskDirectory
- NumberConversions
- Strings
- RS232Code
- RS232Int
- DiskFiles => replaces module I DiskSystem'

6) The interfaces (i.e. definition modules) of the following
library modules have been changed:

- FileNames
- Options
- Terminal'
- Termbase
- Keyboard'
- System
- DiskSystem
- FileSystern
- Program

=> replaced by module 'Dis~Files'
(additions only)
(additions only)

7) The following libraray nlodu'ie~ are no' longer suppox:ted:,

- Comint
- Random

8) Improvedrhandling 6f com~ile~ti~e errors:

In case of compile time errors the comp~l.?t:ion i,s ;~4cppad,fa,fter'
the pass that found the error. The offending line and an error
message is displayed for every error found.~hi~ dli;nplay .•. can:' be!>
interrupted bY"hittin~" k~y.·1'

9) Other.~hangeB:

- The compiler canlnow gerieri~~:dode'~b~ sti~~~ni~;~est~~.a~raYl
index tests and arithmetic overflow checking, and this is
the default.

Pointer/address expressions will generate an error"expression
too complicated I in more cases tha,n .inPFre,vious, r.el~a~es. :!l'hiSI
problem. ,can 'tl.suallybe 'solved b.y .intr.od~qp~ng . tentp,or.a:J;',Y vClI.I',iables.·,

- All .;the, assembly prog·rams o'f the 't\.uf-ti",e:. syst~~ ,h.a,¥~1 be~n
changed. If you had to adapt these, you might need to re-do
your adapt ion with the new version.

Restrictions

- No emulation of floating point arithmetic is available.
The compiler option 'Emulator/Coprocessor' must not be set
to 'Emulator'.

- The largest amount of memory that can be allocated by one call
to procedure ALLOCATE exported from module Storage is 64K bytes
minus one paragraph, i.e. 65536 - 16 = 65520 bytes.

- Certain relatively simple pointer/address expressions may
cause the error 'expression too complicated'. This problem
can usually be solved by introducing temporary variables.

Bugs

- In the debugger When the text window is displayed for the first
time, the arrow indicating the current line is at the wrong position
(one line before the current line). The correct position is shown
after switchin to ~nother window and coming back to the text window.

- Incorrect test code is generated in case of expressions like:
k - i

where
CONST k = ••• (* 0 <= k <= 32767 *)
VAR i: INTEGER:

The compiler generates test code for CARDINAL (instead of INTEGER)
arithmetic, which causes a wrong CARDINAL overflow in case the
result is less than zero.

- It is suggested that you do not write a definition module
which exports both an enumeration type and also some or all
of its elements. There should be no real need to do this,
because exporting (the name of) an enumeration type implicitly
exports all of its elements.

~ LOGITECH
Systemes et logiciels pour Ie traitement du texte
et de I'information
LOGITECH SA CH -1143 APPLES
Tel (02t) 7745 45Telex 458217

MODULA-2/96

DISTRIBUTION DISKS

Modula-2/86, Release 1.0

Logitech S.A., February 29, 1984

Format: IBM-PC, double sided, 9 track (360K), PC-DOS 2.0

Number of disks: 3

Modula-2/86 Distribution Disks

Disk 1: ",System"

file description

M2.EXE
Run-time support for Modula-2/86. This program is used
to execute Modula-2 programs. Typing 'm2 prog' to the
command interpreter of your operating system will start
the Modula-2 program contained in the file 'PROG.LOD'.

*.BAT
., Command (batch) files for the installation of Modula-

2/86. For more information see the section on "Instal- /
lation" in the manual.

CONFIG.SYS
Example DOS configuration file. You will need to copy
(and maybe edit) this file if the disk you use to start
your operating system does not yet contain such a file.
If you already have your own DOS configuration file you
might need to adapt it to the requirements of the
Modula-2/86 system.

EXAMP*.MOD
Simple examples for Modula-2 programs.

*.DEF
Definition modules of the Modula-2/86 system and
library. These files have been added for documentation
only and must not be modified nor re-compiled, since
this would cause version conflict errors during execu
tion of the Modula-2/86 compiler and linker.

*.MOD
Implementation modules of some library modules. These
sources have been added mainly for your documentation.
They may however be adapted by you.

DISPLAY.MOD, KEYBOARD.MOD
These modules are part of the Modula-2/86 system.
Their implementations might need some adaptation to
your terminal.

COMP.LNK, LINK.LNK, DBUG.LNK
Modula-2 object files of the main programs for the
Modula-2/86 compiler, linker and debugger. These object
files are needed when re-linking the compil~r, linker
and debugger after an adaptation of the modules
"Displ~y" and/or "Keyboard".

COMPPARA.*
The compiler parameter module may be adapted, e.g. in
order to set different default values for the compiler
options.

M2COMP.LNK, PUBLIC.LNK, COMPFILE.LNK

0.1

Modula-2 object files for some compiler modules. These
object files are needed when re-linking 'M2COMP' after

Distribution Disks Modula-2/86

an adaptation of the compiler parameter module "Comp
Para" •

COMP.MAP
Map file for the main program of the Modula-2/86 com
piler. This map file is needed when re-linking
'M2COMP' after an adaptation of the compiler parameter
module "CompPara".

~ .ASM, .:;. INC

0.2

Sources of the run-time support, written in 8086 Macro
Assembler language (Intel, Microsoft compatible syn
tax). Modify this program with utmost care in case you
want to include assembly routines or if you have to
adapt it to your hardware.

Assembly command: 'MASM RTS:', 'MASM LOADER:', etc.
Generate an executable file with:

LINK RTS+SERVICES+TRANSFER+PMD+LOADER:

After successfull test rename RTS.EXE to M2.EXE.

Modula-2/86 Distribution Disks

Disk 2: "Compiler"

file description

COMP.LOD
Main program of the Modula-2/86 compiler.

M2COMP.LOD
Compiler base loaded by the compiler main program
'COMP' •

INIT.LOD
PASSI.LOD
PASS2.LOD
PASS3.LOD
PASS4.LOD
LISTER.LOD
SYMFILE.LOD

Overlays of the Modula-2/86 compiler. All compiler
overlays must reside on the same disk (directory) as
the compiler base and main program.

*.SYM

0.3

Symbol files of the Modula-2/86 system and library
modules. These files are required for compilation of
modules that use library modules.

Distribution Disks Modula-2/86

Disk 3: "Linker", "Debugger"

file description

LINK.LOD, M2LINK.LOD

*.LNK

Modula-2/86 linker for programs and sub-programs (over
lays).

Modula-2 object files of the system and library
modules. These files are required when linking pro
grams that use library modules.

DBUG.LOD, M2DBUG.LOD

*.REF

0.4

Modula-2/86 symbolic debugger.

Modula-2 reference files of the system and library
modules. These files are used for symbolic debugging.

MODULA-2/86
USER'S MANUAL

~ LOGITECH

COPYRIGHT

Copyright (C) 1984 Logitech, Inc.
All Rights Reserved.

No part of this document may be copied or reproduced in
any form or by .any means without the prior written consent
of Logitech, Inc.

CODE AND EDITION

LU-GUIOI-O
Initial issue: February 1984
Current revision: February 1984

This edition applies to Release 1.0 of the software.

Printed: February 8, 1984

TRADEMARKS

Modula-2/86 is a trademark of Logitech, Inc.
MS-DOS is a trademark of Microsoft Corporation.
CP/M-86, Concurrent CP/M-86 and MP/M-86 are trademarks of
Digital Research, Inc.

Logitech, Inc.,
805 Veterans Blvd., Redwood City, CA 94063, USA

Logitech SA,
CH-1143 Apples, Switzerland

Logitech SrI,
Corso Nigra 60, 10015 Ivrea TO, Italy

PREFACE

This manual is intended to allow a programmer, even one
who is inexperienced with the Modula-2 language, to begin
programming in Modula-2 using the Logitech Modula-2/86
system. It is not intended to teach Modula-2 programming,
as this is better presented in the book "Programming in
Modula-2" by Niklaus Wirth, Second, Corrected Edition,
Springer-Verlag 1983. This book defines the Modula-2
language and should be used as a reference for learning
the language. The primary purpose of this manual is to
familiarize the reader with the implementation-specific
features of the 'Logitech Modula-2/86 system.

Section 1 provides a brief introduction to the Logitech
Modula-2/86 system.

The system requirements for running Modula-2/86 are listed
in Section 2.

Section 3 provides a step-by-step introduction to using
the Modula-2/86 system. This section is intended to give
non Modula-2 programmers a head start on the language.
For experienced Modula-2 users, it provides a quick intro
duction to using the Modula-2/86 system.

Basic concepts are presented in Section 4.

Section 5 discusses the installation of the Modula-2 sys
tem on your computer.

Operation of the Compiler and Linker programs are
described in sections 6 and 7 respectively.

The symbolic debugger is described in section 8.

Section 9 contains a list of the library modules provided
with the Logitech Modula-2 system and a general discussion
of their use.

The first Appendix is a glossary of terms which have
specific meanings in this manual. Additional appendices
provide more detailed information on the following sub
ject~: version checking, system dependent facilities, com
piler error messages, memory organization, object file
format, the standard procedure DOSCALL, system configura
tion, and detailed descriptions of the library modules.

Modu1a-2/86 Table of Contents

1

2

3

4

5

6

7

'l'ABLE OF CON'fEN'fS

IN'fRODUC'l'ION

SYSTEM REQUIREMENTS ••••••••••••••••••••• ~ ••••••••

GETTING STARTED ••••••••••••••••••••••••••••••••••
3.1 Setting up ••••••••••••••••••••••••••••••••••
3.2 Sample program ••••••••••••••••••••••••••••.•

3.2.1 Compiling ••••••••••••••••••••••••••••
3.2~2 Linking ••••••••••••••••••••••••••••••
3.2.3 Execution •••••••••••••••••••••••••••.

3.3 Sample program 12 .•••••••••••••••••••••••••••

BASIC CONCEPTS •••••••••••••••••••••••••••••••••••
4.1

4.2

4.3
4.4

Module
4.1.1
4.1.2

types ..•....... ~ .•......•.•..........
Program Module •••••••••••••••••••••••
Definition Modules •••••••••••••••••••

4.1.3 Implementation Modules •••••••••••••••
How the system works ••••••••••••••••••••••••
4.2.1 Creation of an executable program ••
4.2.2 Library Module creation ••••••••••••••
Running Modula-2 programs •••••••••••••••••••
File naming conventions •••••••••••••••••••••

INSTALLATION
5.1 Configuring your operating system •••••••••••
5.2 Systems equipped with floppy disks only •••••
5.3 Systems equipped with a hard disk •••••••••••
5.4 Default names and search strategy •••••••••••

5.4.1 The default s~arch strategy ••••••••••
5.4.2 The query search strategy ••••••••••••

THE
6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9

COMPILER •••••••••••••••••••••••••••••••••••••
.Compiler Organization •••••••••••••••••••••••
Compiler output Files •••••••••••••••••••••••
Compilation of a Program Module •••••••••••••
Compilation of a Definition Module ••••••••••
Compilation of an Implementation Module •••••
Symbol Files Needed for Compilation •••••••••
Compiler options ••••••••••••••••••••••••••••
6.7.1 Table of available options •••••••••••
6.7.2 Description of the options •••••••••••
Compiler Directives in Modules ••••••••••••••
Compiler Error Messages •••••••••••• ~ ••••••••
6.9.1 Source text errors •••••••••••••••••••
6.9.2 Compiler Operational Errors ••••••••••

THE LINKER
7.1
7.2

How to use the Linker •••••••••••••••••••••••
Linking Options •••••••••••••••••••••••••••••

o

1

2
2
3
4
5
5
5

8
8
8
9
9

11
11
12
12
13

15
15
16
18
20
20
22

25
25
26
26·
27
28
29
30
30
32

·34
35
35
35

37
37
38

iii

Table of Contents Modula-2/86

8

9

7.3

THE
8.1
8.2

8.3

Linker Error Messages •••••••••••••••••••••••

SYMBbLIC DEBUGGER •••• ~o •• o •••••••••••••••••••

How to use the Debugger •••••••••••••••••••••
The Debugger Commands •••••••••••••••••••••••
8.2.1 Selecting a window •••••••••••••••••••
8.2.2 Selecting a process for debugging ••
8.2.3 Leaving' the debugger •••••••••••••••••
8.2.4 Positioning 0 •••••••••••••••••••••••••

8.2.5 Display mode •••••••••••••••••••••••••
The Four Windows ••••••••••••••••••••••••••••
8.3.1 Process Window •••••••••••••••••••••••
8.3.2 Data Window ••••••••••••••••••••••••••
8.3.3 Text Window ••••••••••••••••••••••••••
8.3.4 Memory Window ••••••••••••••••••••••••

SYSTEM AND LIBRARY MODULES •••••••••••••••••••••••
9.1
9.2

The system modules ••••••••••••••••••••••••••
The general library modules •••••••••••••••••
9.2.1 Brief descriptions of library

modules•.........•.•.....•.

APPENDIX A Glossary ~ ••••••••••••••••••••••••••••••

40

41
41
42
42
43
43
43
44
45
45
45
46
47

49
49
50

50

54

APPENDIX B Version Checking ••••••••••••••••••••••• 58
Module key, ahd version checking ••• ~............... 58
Version errors and how to fix them •••••••••••••••• 58
Version errors during compilation ••••••••••••••••• 59
Version errors during linking •••••••••••••• 0...... 59
Version eriors during loading ••••••••••••••••••••• 60

APPENDIX C ...;. System Dependent Facilities •••••••••••• 62
Language extensions ••••••••••••••••••••••••••••••• 62
The Module SYSTEM ••••••••••••••••••••••••••••••••• 63
Objects exported from Module SYSTEM ••••••••••••••• 63
Procedures ••••••••••••••••••••••••• ~~ •••• ~........ 64
Functions ~~, ••••• ~ •••• ~........................... 66

APPENDIX D Compiler error messages ••••••••••••••••

APPENDIX E ~ Module Priorities ••••••••••••••••••••••
Use of priorities at programmer's level Q ••••••••••

Range of possible priority levels •••••••••••••••••
Implementation notes •••••••••••••••••••••••••••• ,.

APPENDIX F - M~mory Organization ••••••••••••••••••••
Global Memory Organization •••••••••• ~ •••••••••••••
Over lays ,e ~ •••••••••• , •• 0 •••• lit •

Processe~·~~ ••••••••••••••••• o.o •••••••••••••••••••

Heap ••• ~ ' .••••••••••••••••••• 0 0 " 0 • 0 ••••••• ., • 0 •••••• 0

Stack •• •. ~· .• ·~'e _ ••• it lit 0 " 0 " 0 0 o ••••••••••••••• 0

Variable ~11ocation •••••••••••••••••••••••••••••••

iv

69

73
73
73
74

76
76
78
79
80
80
81

Modula-2/86 Table of Contents

Procedure Interface •••••••••••••••••••••••••••••••
Return values from functions ••••••••••••••••••••••

APPENDIX G - Object File Format •••••••••••••••••••••
General Format ••••••••••••••••••••••.•••••••••••••
Syntax of Object Files
Format of the different

............................
records •••••••••••••••••••

APPENDIX H - DOSCALL ••••••••••••••••••••••••••••••••
The standard procedure DOSCALL ••••••••••••••••••••
Extension for DOS 2.0 •••••••••••••••••••••••••••••

APPENDIX I - System Configuration •••••••••••••••••••
Configuration for display and keyboard ••••••••••••
Configuration of the compiler user interface ••••••
The library module CompPara •••••••••••••••••••••••

81
83

85
85
89
89

99
99

106

113
113
114
116

APPENDIX J - Library definitions .•••••••••••••••••••• 121

INDICES ••• 191
Index of library modules •••••••••••••••••••••••••• 193
Index of procedures of library modules •••••••••••• 195
General index ••••••••••••••••••••••••••••••••••••• 199

* * *

v

Modula-2/86 Preface

1. INTRODUCTION

Welcome to Modula-2 !

Modula-2 is a modern language suitable for system design.
It benefits from a decade of experience with Pascal by
building on its strengths and correcting many of its defi
ciencies. The "standard" language is powerful enough to'
prevent incompatable dialects from arising. Low level
routines may be implemented efficiently without sacrific
ing the benefits of a high level modular programming lan
gauge. Modula-2 allows true modular programming with
strong type checking while incorporating the flexibility
of routines for transfer of data between variables of dif
ferent types, interrupt handling, and access to underlying
hardware and operating software.

The Logitech Modula-2/86 system is a full standard implen
tation of Modula-2 on 8088/8086 based microcomputers.
Very large programs may be compiled in efficient native
machine code. Features of the Logitech Modula-2/86 system
include:

- extensive library of standard modules

- support for the 8087 for fast, accurate
math

- support for the full 1 Megabyte address space
of the 8086/8088

- access to underlying hardware and operating
system functions

- support for the creation of overlays on
very large systems

- a symbolic debugger

- capable of generating ROMable code

o

Modula-2/86 System Requirements

2. SYSTEM REQUIREMENTS

~o develop programs using the Logitech Modula-2/86 system,
the following minimum system configuration is required:

1. IBM PC or "compatible" with:

- 192K or more of RAM memory
- 2 double sided disk drives (300K+ each)
- PC-DOS, MS-DOS, or CP/M-86 operating system

2. Other systems or configurations supported:

- 8086 or 8088 based microcumputer running
MS-DOS, CP/M-86, Concurrent CP/M-86 or MP/M-86

- enough disk space to hold the compiler and the
other programs (600K minimum)

Contact Logitech for current list

A printer is not required but strongly recommended.
Software developers will find a hard disk system useful.

Compiled Modula-2/86 programs may be executed on any 8086
or 8088 CPU assuming that the target system's memory is
large enough to hold the executable program and data. No
references to a particular underlying operating systeru are
generated by the compiler.

The numeric data processor 8087 is also supported. How
ever, it is not required to run the compiler and the other
program development utilities.

1

Getting Started Modula-2/86

1. GETTING STARTED

This section provides a brief hands-on introduction to
using the Modula-2/86 system to program in Modula-
2. Commands are given for PC-DOS and MS-DOS. If you are
using a different operating system you may need to refer
to the documentation for your operating system.

The following syntactic conventions are used in this
manual:

In this manual, input a user must type on the key
board is underlined.

Special keys such as 'escape' and 'carriage return'
are abbreviated and enclosed in brackets (e.g. <ESC),
<CR».

Control characters (characters entered while the key
marked 'ctrl' is depressed) are preceded by a caret
(e.g C, X)

1.1. Setting·~

The first step is to remove the distribution diskettes
from their packaging!

Next, make copies· of all of the Modula-2 disks and put the
originals away in a safe placeo The documentation for
your operating system describes how to duplicate
diskettes.

Create a working system disk with your operating system
anu usual utilities on it, including a text editoro Leave
about l80~ for the Modula-2/86 system. Copy the following
files from the Modula-2/86 "SYSTEM" diskette (in drive b:)
to your new working disk (in drive a:)o This may be
accomplished on PC/MS-DOS system by typing b:installO <CR>

M2.EXE (for MS-DOS) or H2.CMD (for CP/M-86)
EXAMP*.MOD

Check your disk for the file 'CONFIGaSYS'o If your disk
does not contain such a file, you may copy the one that is
provided on the Modula-2/86 system diskette. If your disk

2

Modula-2/86 Getting Started

already contains a file 'CONFIG.SYS', then you must make
sure that this file contains the command 'FILES=12', i.e.
that it sets the number of open files to a value of twelve
or more. Afler installing or changing 'CONFIG.SYS', you must
re-start (boot) your system for this to take effect.

Hard disk system users may wish to copy all the files on
the diskettes onto one directory on the hard disk and to
work there. In the steps that follow, hard disk users can
ignore all references to disk drives and drive names:
everything happens on the hard disk!

Memory disk and other exotics: If you have enough memory
you may wish to run Modula-2/86 from a pseudo disk in RAM.
Otherwise, it is probably best to follow the dual-floppy
pattern, and treat your special device as the system
diskette (assumed to be drive A below) and use any floppy
for the second device (drive B below).

l.~. Sample program

To provide an example of how to compile and link programs
in the Modula-2/86 system, the Modula-2 source file
EXAMPI.MOD has been included on the "SYSTEM/INSTALLATION"
diskette and should be on your working disk.

MODULE
FROM
V~

Exampli
Terminal IMPORT WriteString, WriteLn, Read;

ch: C~;
BEGIN

WriteString
WriteLn;
Read (Ch)i

END Exampl.

('The program worked! (Hit a key)');

In Modula-2 programs, UPPER CASE AND LOWER CASE LETTERS
~E DISTINCT, so be sure you write keywords such as
'MODULE', 'FROM', etc. in upper case.

In the instruction 'FROM Terminal IMPORT ••• ', the module
'Terminal' refers to one of the library modules which is
included in your Modula-2/86 package. This module exports
the objects 'WriteString' (which writes a string on the
screen), 'WriteLn' (which writes <CR><LF> to the screen)
and 'Read' (which reads a character from the keyboard). In
order to use these objects, their names must be written
exactly as shown. (See the appendix on library defini
tions for more information about the module

3

Getting St.art.ed Modula-2/86

I-£.!. Compiling

Now insert the Modula-2/86 COMPILER disk in drive B, and
enter

m2 !!: comp<CR>

The compiler asks you to enter the filename of the program
with the prompt 'source file>'. Since the default device
and default filetype ('MOD') are correct in this case, you
need only enter

EXAMPI<CR>

The following should be displayed on the screen:

4

A>m2 !!:comp<CR>
Modula-2/86 Compiler V m.n
Copyright (c) 1983 Logitech
source file> EXAMP1<CR>.MOD

pI --
Terminal in file: B:Terminal.SYM

p2
p3
p4
termination

The setting of the options was:
emulator (E): off
stacktest (S): on.
rangetest (R): on
indextest (T): on

No code for 8087 Processor generated
Codesize: 90 bytes
Datasize: . 1 bytes

end compilation

A>

pl •• p4 denote the succession of activated compiler
passes.

Your compiled files have been written to the disk
drive where your source file was found. After the
compilation, you are back in the command interpreter
of your operating system. The successful compilation
will have created the files 'EXAMPI.LNK' (containing
the object code) and 'EXAMPl.REP' (containing
debugger information).

Modula-2/86 Getting Started

3.2.2. Linking

After successful compilation, your program must be linked.
Insert the LINKER disk in drive B:. Enter

m2 b:link<CR>. -----
The linker asks you to enter the filename of your compiled
program. Enter the filename followed by <CR>. The default
disk drive is the current disk drive, and the default
filetype is 'LNK'.

A>m2 b:link<CR>
Modula-2/86 Linker Vm.n
Copyright (C) 1983 Logitech

master file > EXAMP1<CR>.LNK
linked with: -

Terminal in file: B:Terminal.LNK
Termbase in file: B:Termbase.LNK
System in file: B:System.LNK
Keyboard in file: B:Keyboard.LNK
ASCII in file: B:ASCII.LNK
Display in file: B:Display.LNK

name of output file: A:EXAMPl.LOD
name of map file: A:EXAMPl.MAP

end linkage

A>

3.2.3. Execution

Your linked program has been written to your current disk
and can now be executed by the Modula-2 system. Simply
enter

m2 EXAMP1<CR>

and the following will appear on the screen:

A>m2 EXAMPl
T~e.program worked! (Hit a key)

3.3. Sample program #~

To allow non Modula-2 users to get a better understanding
of how to typical I/O functions are implemented in

5

Getting Started Modula-2/86

Modula-2, the following BASIC program was converted to
Modula-2.

100' routine to demonstrate file I/O
110 '
120 INPUT "enter filename, lines to read -"~F$,NL
130 OPEN "I",#l,F$
140 INPUT "enter output filename or device -"~FO$
150 IF FO$="" THEN FO$="scrn:"
160 OPEN "0",#2,FO$
170 PRINT CHR$(13)~"listing of file - "~F$
180 IF EOF(l) THEN 250
190 IF LN=NL THEN 250
200 LINE INPUT #l,L$
210 LN=LN+l
220 PRINT #2,L$
230 GOTO 180
240 '
250 CLOSE #1
260 IF LN(NL THEN PRINT #2,CHR$(13)i \

"onlY"iLNi" lines in file"
270 STOP

The same functionality is attained in Modula-2 by the fol
lowing program:

MODULE Examp2i
(* Program Module to demonstrate basic file I/O *)

INPORT InOuti
FROM InOut INPORT

Openlnput, OpenOutput, Closelnput,
CloseOutput, Read, Write, EOLi

INPORT Terminal;
(* get qualified access to Terminal routines *)

IMPORT CardinalIO;

CONST ESC = 33C;

VAR Ch: CHAR~

LinesToCopy, LinesCopied: CARDINALi

BEGIN

6

(* Note that interaction with user is done
* via Terminal and CardinalIO q

* because InOut input/output
* is being redirected to files.
*)

REPEAT
Terminal.WriteString("enter input file:")~
Terminal.WriteLn~
Openlnput("")~ (* input file, no default extension *)

Modula-2/86 Getting Started

UNTIL InOut.Done; (* keep trying until successful *)
RBPEAT

Terminal.WriteString("Lines to copy> H);
CardinalIO.ReadCardinal(LinesToCopy);
Terminal.WriteLn;
Terminal.Read(Ch);

UNTIL Ch <> ESC;
REPEAT

(* read terminator *)
(* keep until' , or EOL *)

Terminal.WriteString("enter output file:");
Terminal.WriteLn;
OpenOutput(""); (* output file, no default *)

UNTIL InOut.Done;
LinesCopied := 0;
LOOP

IF LinesCopied >= LinesToCopy THEN EXIT END;
Read(Ch); (* read from in file *)
IF NOT InOut.Done THEN EXIT END;
Write(Ch);
IF Ch = EOL THEN INC(LinesCopied) END;

END; (* LOOP *)
IF LinesCopied < LinesToCopy THEN

Terminal.WriteString("[Only H);
CardinalIO.WriteCardinal(LinesCopied,O);
Terminal.WriteString(" lines in file]");
Terminal.WriteLn;

END;
CloseOutput;
CloseInput;

END Examp2.

Modula-2 also allows the creation of libraries, so that
functions previously implemented need not be recoded.
Brief descriptions of the Library modules provided for use
by Modula-2/86 programmers are provided in the section
entitled 'System and Library Modules,' and more detailed
information appears in the appendix on library defini
tions.

7

Basic Concepts Modula-2/86

4. BASIC CONCEPTS

This section presents some of the basic concepts needed to
write programs using the Modula-2/86 system. First we
will present the concept of program modules, definition
modules and implementation modules which are the building
blocks of Modula-2. We will then present an overview of
how the Modula-2/86 system works - from library creation
to compilation of a user program. A brief explanation of
the file naming conventions is also provided.

4.1. Module ~

There are three types of modules in Modula-2. These are
program modules, definition modules and implementation
modules. Program modules contain the source code for a
user's main program. Program libraries are created from
matched pairs of definition modules and implementation
modules. The source code for all module types is stored
as standard DOS text files and may be modified by any text
editor capable of working with these files (note
Wordstar and some of the other common editors have program
file modes which work with these fil~s). The naming con
vention for Program and Implementation modules is .MOD.
Definition modules have the file extension .DEF.

!.!.!. Program Module

A progam module is the main user program. From it all the
procedures necessary to execute a user program are
called. The examples in the preceding section are program
modules. Program modules have the form:

8

MODULE <modulename>;

library modules to use
FROM <libname>

IMPORT <list of names separated by commas>;
or

IMPORT <libname>;

variable and procedure definitions (module body)

BEGIN

t-toclula-2/l:i6 Basic Concepts

executable program code

ENU <module-name>.

The list of names imported may contain the names of types,
variables and procedures exported from a library module.
'rhese names must be separated by commas. Refer to the
Wirth book for a more detailed explanation.

4.1.2. Definition Modules

Definition modules are used to define the interfaces
between modules. By separating the definition of the
interface between modules from the implementation of those
modules, the implementations may be modified without hav
ing to recompile the entire systemo As programmers
involved with large systems know, this can be a very time
consuming process. Definition modules have the form:

DEFINITION MODULE <modulename>;

library modules to include use
FROM <libname>

IMPORT <list of names separated by commas>;
or

IMPORT <libname>;

EXPORT QUALIFIED <list of names>;

type and variable declarations, procedure headings

END <modulename>.

i.l.2. Implementation Modules

Implementation modules contain the instructions required
to preform the functions defined in the definition
modules. They are similar in format to program modules
except their module body does not constitute a main pro
gram. Libraries are constructed from matching sets of
definition and implementation modules.

Implementation modules have the form:

9

Basic Concepts Modula-2/86

IMPLEMENTATION MODULE <mod~lename>;

library modules to use
FROM <libname> IMPORT <procedurename(s»

or"
"IMPORT <libname>

variable definitions
procedures

END <modulename>.

The type and variable definitions given in the correspond
ing definition module (with the same name) must not be
repeated in the implementation: they are known implicitly.
However, for every procedure specified in the definition
part, a complete procedure (with matching name and parame
ter list) must be contained in the implementation part.

10

Modula-2/86 Basic Concepts

!.~. How the system works

There are two primary operating modes of the Modula-2/86
system. These are the creation of executable programs and
the creation of .library modules. An example of creating
an executable program was presented under the section on
getting stakted. In this section we will explain what the
Modula-2 system is doing in each of these two modes.

4.2.1. Creation of an executable program

The creation of an executable program begins with a pro
gram module file (somename.MOD) which is converted into a
.LOD file and executed in the following way:

Symbol filets)
(.SYM) for ---)
libraries used

Program Module
(.MOD)

I
I

Compiler

I
link (.LNK) and Ref file (.REF) files

I

Link filets)
(.LNK) for ---)
libraries used

Linker

I
load file (.LOD)

I

m2

I

---) user
output

memory dump file (MEMORY.PMD)
created when run-time errors occur

Ref filets)
(.REF) of ---)
programs and
libraries used

I

debugger ---) screen
display

11

Basic Concepts Modula-2/86

4.2.2. Library Module creation

The creation of a library module begins with a definition
module (somename.DEF) and a matching implementation module
(somename.MOD). These are converted into .SYM and .LNK
files which may be used in the creation of user programs.
Library modules are created in the following way:

Definition
Module (.DEF) ---->

Implementation
Module (.MOD) ---->

Symbol filets) (.SYM)
for modules referenced

I
I

Compiler

I
Symbol file created (.SYM)
and symbol files for modules
referenced

I
I

Compiler ----> link file
(.LNK)

4.3. Running Modula-2 programs

In order to run Modula-2 programs you must call the pro
gram 'M2 B which is supplied with the Modula-2/86 system.
You should copy this program to the diskette or directory
which you use to develop your Modula-2 programs or to the
directory where you generally keep executable programs
(see the section on disk installation for details). The
program M2 consists mainly of the Modula-2 run-time sup
port (RTS) and has the ability to load and execute
Modula-2 programso The default extension for .executable
Modula-2 programs is 'LOD'.

A running Modula-2 program can be terminated by typing AC.
This will get you back to the operating system, which will
prompt for the next command. .

To run a Modula-2 program enter °M2 <programname>'o The
program name may also be preceded by a drive and/or a
directory name~ in which case the program is loaded from

12

Modula-2/86 Basic Concepts

the specified drive or directory. If a pure file name is
entered the Modula-2 program will be searched in the
current directory on the current drive, and (if not found)
in the directory '\m2lod' on the current drive.

Here is a brief example:

C>m2 sieve
Sieve of Eratosthenes benchmark
10 iterations
1899 primes
C>

The program 'sieve' has been loaded from the current drive
'C'. It may have been found in the current directory or
in the directory '\m2lod'. If the program exists in both
directories, the version from the current directory is
executed.

!.!. File naming conventions

The file naming conventions (file extensions) used in the
PC-DOS/MS-DOS version of Modula-2/86 are listed alphabeti
cally below.

• BAT

.DEF

.EXE

.LNK

Batch

Batch files contain commands to the operating system.
They are also known as command f~les.

Definition

Definition files are the definition parts of Modula-2
modules.

Executable program file

File directly executable under PC-DOS/MS-DOS. M2.EXE
is the only DOS executable program in the Modula-2/86
system.

Link

Compiler output file with the generated 8086 code in
linker format generated during the compilation of an
Implementation or Program module.

13

Basic Concepts Modula-2/86

. LaD

• LS'l'

Load

Linker output file with the generated 8086 code ready
for execution by M2.EXE.

List

Normally generated only if errors occur .

. MAP Map file

.PMD

Load map prpduced by the linker when overlays are to
be used.

Program Memory Dump

Output file produced when errors occur when running a
program. This is an input file required for the sym
bolic debugger •

. REF Reference file

.SYM

14

Compiler output file with debugger information, gen
erated during compilation of an implementation or a
program module.

Symbol file

Compiler output file with symbol table information.
This information is generated during compilation of a
definition module.

Modula-2/86 Installation

5. INSTALLATION

In the section "Getting Started", you created a Modula-
2/86 work disk. The following section provides more com
plete instructions on how to install your Modula-2/86 sys
tem, and on how to make the best use of it. This is quite
simple in the case of a system with floppy disks only. It
is a little bit more complicated if you have a hard disk
system, and you want to take full advantage of the
features of your Modula-2/86 system.

For both cases, some command (batch) files are provided on
the Modula-2/86 system diskette, that can help you to per
form the necessary operations. These files assume a stan
dard configuration (a floppy disk drive A, and either a
floppy disk drive B or a hard disk drive C). You might
have to modify them or to do the installation step by step
if your system configuration differs from the assumed
standard.

~.l. Configuring your operating system

As already mentioned under "Getting Started" you need to
configure your operating system in order to run Modula-
2/86. This must be done by setting up the file
·CONFIG.SYS· on the the disk that you start (boot) your
operating system from. It is recommended that this file
contain the following three commands:

FILES=12
BUFFERS=8
DEVICE=ANSI.SYS

FILES=12

Defines the number of files that can be open at the
same time; A value of twelve or more is required in
order to operate the Modula-2/86 compiler, linker,
and debugger properly.

BUFFERS=l3

It is recommended to set the number of buffers at
least to eight. An appropriate value will increase
the performance of the Modula-2/86 system. However,
this is not a requirement and you may omit this com
mand.

15

Installation Modula-2/86

DEVICE=ANSI.SYS

This command gives access to the "Extended Screen and
Keyboard Control. Some parts of Modula-2/86 assume
that this driver is used. If this command is omitted
in 'CONFIG.SYS' then certain control characters that
are written to the display may not have the effect as
specified in the definition module 'Terminal' (see
appendix on library definitions).

Because of the command 'DEVICE=ANSI.SYS' in
'CONFIG.SYS· you must also put a copy of the file
'ANSI.SYS' onto the disk that contains ·CONFIG.SYS'.
The file 'ANSI.SYS G is provided on one of the origi
nal diskettes of your operating system.

For more information, please refer to the documenta
tion for your operating systeme

For special installation of the Modula-2/86 system,
i.e. if you need to adapt the assembly part (run-time
system) or the implementation of heavily hardware
dependent modules (Keyboard, Display), please see the
appendix on "system configuration".

~.~. Systems equipped with floppy disks only

If you use the
installation, we
your disks:

Modula-2/86 system on a floppy-based
recommend the following organization of

First prepare a Modula-2 work disk. Insert a copy of the
Modula-2/86 system disk into drive B, and an empty (for
matted) diskette into drive A. Now copy the file GM2.EXE'
(the Modula-2/86 run-time support) from drive B to your
diskette in drive A. Your Modula-2 work disk is now ready,
no other files are required.

In order to perform this copy, you may simply type

~:installO<CR>

which will copy the file 'M2.EXE' and the sources of the
example Modula-2 programs to your diskette in drive A.

Prepare a copy of the Modula-2/86 compiler disk. Use this
disk when compiling Modula-2 programs. Your compiler disk
contains

- the Modula-2/86 compiler (.LOD),
- the symbol files (.SYM) of the system and

16

Nodula-2/86 Installation

library modules.

Prepare a copy of the Modula-2/86 linker disk. Use this
disk when linking Modula-2 programs. Your linker disk
contains

- the Modula-2/86 linker (.LOD),
- the link files (.LNK) of the system and

library modules.

If the Modula-2 linker and debugger disk are the same,
your preparations are complete. Otherwise, prepare a copy
of the Modula-2/86 debugger disk. Use this disk when
debugging Modula-2 programs. Your debugger disk contains

- the Modula-2/86 debugger (.LOD),
- the reference files (.REF) of some

library modules.

While you are working with Modula-2, drive A holds your
Modula-2 work disk with:

- the Modula-2/86 Run-Time System (M2.EXE),
- your Modula-2 source files,
- any other files you created with your Modula-2/86 systen

and which are needed for compiling, linking or debugging

While you prepare your programs, drive B holds a disk with
your text editor, and with your operating system and its
utilities.

In order to compile you insert a copy of the compiler disk
into drive B.

In order to link you insert a copy of the linker disk into
drive B.

After linking, you can execute your program on your work
disk in A by typing

m2 programname<CR)

If errors occur during execution that produce a memory
dump (A:MEMORY.PMD)., insert a 60py of the debugger disk
into drive B in order to debug.

Note that, depending on the capacity of your disks, you
can combine two or more of the above described disks in
one disk, e.g., the linker and the debugger disks could be
the same physical disk.

If your diskettes have a large capacity, it may even be
worthwile for you to study the following section on hard

17

Installation Modula-2/B6

disk systems and on the environment used by Modula-2/B6
(see also the section on 'search strategies').

5.3. Systems eguipped with ~ hard disk

If you use the Modula-2/B6 system on an installation
equipped with a hard disk, we recommend that you copy all
the files on the distribution disks to your hard disk.
This is by far the most convenient way to use Modula-2.

Of course, you can copy all the files into the same direc
tory where you intend to write your Modula-2 programs.
However p this is not very conveniente It is much better to
take advantage of the structured directory system (assum
ing that the version of DOS you are running supports
this). This will reduce the number of files in your direc
tories, and at the same time,· it will allow you to use the
Modula-2/B6 system from any directory you like. We recom
mend an organization as described in the following.

Copy the file 'M2.EXE' from the Modula-2/B6 system
diskette to the directory where you usually keep public
executable programs. This should be (one of) the
directory(ies) where DOS searches for files to be exe
cuted. (Under DOS you can set the search directories using
the 'PATH' command.) Of course, you can also copy the file
'M2.EXE' to the directory that you will use for develop
ping your Modula-2 software. In this case, however, you
need a copy of 'M2.EXE' in any directory where you want to
run Modula-2 programs (including your own Modula-2 pro
grams, as well as the Modula-2/B6 compiler, linker, and
debugger).

For the rest of the installation of your Modula-2/B6 sys
tem, command (batch) files are provided on the Modula-2/B6
system diskette8 They can be used to perform the rest of
the installation automatically. Only if you do not have a
standard system configuration will you need do it step by
step. The installation command files assume that your hard
disk is the current drive and that the Modula-2/B6
diskettes are being inserted into drive A of your system.

Insert a copy of the Modula-2/B6 system diskette into
drive A and type

~:INSTALLI<CR>

This command file creates two new directories 'm2Iod' and
'm21ibo in the root directory (1\0) of the current disk
(your hard disk). Then, in the directory I m2libo, it
creates the sub-directories Idef', 'mod', 'syml, lInk',

18

Modula-2/86 Installation

'ref', and 'map'.

Por a step by step installation, perform these DOS com
mands:

C>cd \
C>mkdir m210d
C>mkdir m21ib
C>cd m2lib
C>mkdir def
C>mkdir mod
C>mkdir sym
C>mkdir Ink
C>mkdir ref
C>mkdir map

After these directories have been created (by the running
the command file or step by step), your are ready for the
next step. With the Modula-2/86 system diskette in drive
A execute the second command file. Simply type

~:INSTALL2<CR>

and insert the compiler and linker (debugger) diskettes as
requested by the command file.

For a step by step installation copy all the files with
extension 'LOO' from the three distribution diskettes to
the directory '\m210d'. Then copy all the files according
to their extension into the corresponding directory. E.g.
copy the files with extension 'OEP' to the directory
'\m21ib\def', copy the files with extension 'MOD' to the
directory '\m2Iib\mod', and so on. If you think you will
need the sources of the RTS; too, then copy the files from
the system diskette with extension 'ASM', 'INC' and 'OBJ'
to the directory '\m2Iib'.

In order to allow the Modula-2/86 system to work properly,
you must insert some additional DOS commands into your
'AUTOEXEC.BAT' file. This file must be in the root direc
tory of your hard disk. The commands it contains are exe
cuted automatically every time. you start (boot) your
operating system. If you do not yet have such a file,
create it in the root directory, using your text editor.
Include the following commands in your 'AUTOEXEC. BAT ,
file:

SET M2SYM=\M2LIB\SYM
SET M2LNK=\M2LIB\LNK
SET M2REP=\M2LIB\REP
SET M2MAP=\M2LIB\MAP

These commands. will set up the environment for Modula-

19

Installation Modula-2/86

2/86. In this way your Modula-2/86 system can take full
advantage of the DOS features and your hard disk.

Some more information on the environment used by Modula-
2/86 can be found in the section on 'search strategies' of
this manual.

Before you start using Modula-2/86, be sure to re-start
(re-boot) your system, so that the commands of the
'AUTOEXEC.BAT' file will be executed.

~.!. Default names and search strategy

No special manipulation is required to build or to use the
library of modules. All on-line modules, residing on hard
disk or floppy disk, comprise the library. The compiler
and linker automatically search for referenced modules.
The default search strategy can be modified by command
options. This allows you to change disks during compila
tion and linkage, thus spreading your library over several
floppy disks. Note that during the operation of compiler
and linker, all needed files must be on-line.

The compiler, linker, and debugger construct the filename
for a library module from its module name, truncating the
module name if it is longer than a file name may be, and
appending the appropriate extension (SYM, LNK, etc.) to
the file name.

For the following discussion we will use the term 'path'
or 'path name' as an abbreviation for 'drive and/or direc
tory name'.

5.4.1. The default search strategy

When a library module is needed, several paths will be
checked automatically in order to find the corresponding
file. A search strategy, ,as explained below, is applied by
the compiler (for files with extension .SYM), by the
linker (for .LNK files), and by the debugger (for .REF
files).

The first search is always done using the 'source' or
'master' path. The source or master path is the path you
specify when entering the name of the file to compile or
link. If the file is not found using this path, the

20

Modula-2/86 Installation

current path (i.e. the current drive and directory as know
to DOS) is checked for the file. If it is not found there,
a third and last automatic search is done using the path
from where the compiler (or linker, debugger) was loaded.
If the file still cannot be opened, you will be prompted
to type in the (path and) file name.

(If your system has floppy disks only, you may ignore the
following, up to the end of this subsection.)

This default search strategy is very adequate if your sys
tem has floppy .disks only. For hard disk systems it is
recommened that you organize the disk as described above
and that you change the default search by setting up the
environment (in DOS) for Modula-2/86. This is done by the
following DOS commands:

SET M2SYM=\M2LIB\SYM
SET M2LNK=\M2LIB\LNK
SET M2REF=\M2LIB\REF
SET M2MAP=\M2LIB\MAP

It is recommended that these DOS commands be included .in
your I AUTOEXEC. BAT' file, which is executed by bos
automatically every time you boot your system. If these
environment strings (M2SYM, M2LNK, M2REF, M2MAP) :are
defined in DOS, they will be used by the Modula-2/86 sys
tem in order to determine which paths are searched
automatically. If these environment strings are not
defined, then three automatic searches as explained above
will be performed. If you use the recommended disk organi
zation, then you should define these environment strings.

Each of these environment strings can denote a number of
paths. Different paths must be separated by semicolons.
If the environment strings are defined, then the Modula-
2/86 system (i.e. the compiler, linker and debugger) will
search the library files using all the paths specified by
the corresponding environment string. However, the first
search is still done using the 'source i or 'master C path.
If it fails, then the paths specified in the corresponding
environment string are check one after the other according
to the order in which they appear. If the file is not
found, then you will be prompted to type in the (path and)
file name.

Note that empty paths are not allowed in environment strings
used by the Modula-2/86 system. The current disk ~nd directory
mu~t b r d0n0~~rl hy 'nK:'.

Example:

T,nt llS ;H~!Sume, that the M2SYM string has been set by

SET M2SYS=DK:;\mystuff\mylibi\m2Iib\sym

21

Installation

and that a compilation was started by
C> m2 comp

Modula-2/86

Modula-2/86 Compiler V m.n Copyright (C) 1983 Logitech
source file>a:myprog<CR>

In this case, the compiler will always perform a first search
for symbol files on drive 'Ali i.e. using the path you
specified with the source file. If the file is not found
there, it will try to open the file using the first path from
M2SYM. In our case, the first path is 'DK:' and denotes the
current directory on the current drive. If a symbol file is
n~t found using the current path, the second path '\mystuff\
mylib' is searched. And if this search and the last automatic
attempt to open a symbol file using the path '\m2lib\sym' both
fail, you will be prompted to type in the file 'name.

This way of searching library files gives you a lot of
flexibility in adding your own library modules. The sim
plest way is to put them into the directories with the
standard library. As the example shows, you can also add
new libraries of your own and organize it in your own way.
Note that (unlike in the case where no environment strings
are defined) the current directory is only searched if
either you did not specify a path when entering the source
file name, or when the path 'DK: I occurs in the environment
string.

~.!.£. The query search strategy

The query search strategy is always applied by the
Modula-2/86 system when you are prompted to type in the
(path and) file name of a library file.. This can happen
when a file is not found using the default search stra
tegy, or when you specify the 'query' option when compil
ing (or linking, or debugging).

When you
available ..
graphs.

are
They

prompted, several
are discussed in the

reponses are
following para-

You can enter <ESC>, which means 'no file'. This can be
used to indicate that the file is not available or (in the
case of the linker) that it should not be included.
Depending on the context, entering <ESC> may not allow the
successful completion of the program you are currently
using.

You can just enter <CR>, which means that the file name
should be constructed from the module name, and that the

22

Modula-2/86 Installation

default search strategy (as explained above) will be
applied.

You can enter a file name only, without specifying any
path name. If you do this, that file name will be used,
but the file will still be searched for automatically
according to the default search strategy. (Remark: Here
an empty path name does not denote the current path. If
you want to get a file from the current path then you must
denote it by 'OK:'.)

You can just enter a drive name (terminated by':'). In
this case the file name will be constructed from the
module name and searched for on the specified drive. Only
one attempt to open the file will be made.

You can enter a complete path and file name. In this case
also, there will be only one attempt to open the file.

23

Compiler Modula-2/86

6. THE COMPILER

This chapter describes the use of the Modula-2 compiler.
The compiler is run by typing 'm2 comp.'

After displaying 8source file>', the compiler is ready to
accept the filename of the module to be compiled, as ·well
as some options (see the subsection on options below.

Example:

A>m2 comp
Modula-2/86 Compiler V m.n - Copyright (C) 1983 Logitech
source file>

The default device is the current disk and the default
filetype is 'MOD n (for program modules and implementation
modules).

6.1. Compiler Organization

The compiler is organized in a base part and several
passes (overlays). The base part remains 1n memory during
the entire compilation and calls the passes sequentially.
When loading these passes, the compiler assumes that they
are on the same drive as the compiler base. The necessary
files are:

COMP.LOD
INIT.LOD
PASSl.LOD
PASS2.LOD
PASS3.LOD
PASS4.LOD
SYMFILE.LOD
LISTER.LOD

compiler base
initialization
syntax analysis
declaration analysis
body analysis
code generation
symbol file generator
lister

During compilation temporary work files are. created on the
current (default) drive. They are deleted before the ter
mination of a compilation.

24

Modula-2/86 Compiler

~.~. Compiler Output Files

Several files are generated by the compiler. They are
given the same file name, directory name and device as the
source file with the appropriate filetype attached as fol
lows:

.SYH symbol file

Compiler output file with symbol table information. This
information js generated during compilation of a defini
tion module.

.REF reference file

Compiler output file with debugger information,
during compilation of an implementation or
module.

.LNK Object (link) file

generated
a program

Compiler output file with the generated 8086 code in
linker format, generated during compilation of an imple-·
mentation or a program module.

.LST listing file

Normally generated only if errors occur.

6.3. Compilation of ~ Program Module

Compilation of a program module in which there are no
errors generates a linkable object file (.LNK) and a debug
reference file (.REF). If there are errors, the link and
reference files are not produced, but a listing file
is. The 'L' option (see section on compiler options
below) directs the compiler to generate a listing file
even if there are no errors.

A>m2 !!:comp<CR>
Modula-2/06 Compiler V m.n
Copyright (C) 1983 Logitech

source file> EXAMPI<CR>.MOD
pI -

Terminal in file: B:Terminal.SYM
p2
p3 the succession of activated

25

Compiler Hodula-2/86

p4 compiler passes is indicated
termination

end

A>

The setting of
emulatpr
stacktest
rangetest
indextest

the options 'was:
(E): off

No code for 8087
Codesize: 90
Datasize: 1

compilation

(S): on
(R): on
(T): on
Processor generated
bytes
bytes

If errors are detected by the compiler, compilation stops
after the pass that found the errore The errors are
displayed on the screen and a listing file with error mes
sages is generated.

A>m2 l!:comp<CR>
Modula-2/86 Compiler V m.n
Copyright (C) 1983 Logitech

source file> EXAMPl<CR).MOD
pI --

Terminal in file: B:Terminal.SYM
---- error

lister
3 •••• *.

• 37:

VAR ch CHAR;
"37

':' expected

termination
end compilation

A>

The error display can be interrupted by hitting a key (unless
c0'Tlpi ler option I /batch I is set).

~.i. Compilation of ~ Definition Module

Compilation of a definition module (filet¥pe IDEFI) is
similar to the compilation of program module. However, as
the result of a successful compilation, the compiler pro
duces a symbol file (filetype 'SYM') instead of a linkable
object (LNK). The symbol file contains the declarations
of the definition part in symbolic, compiler-readable for
mat. It also contains a unique module key which is used
for consistency checking. If errors are detected by the
compiler g then a listing file is generated instead of the
symbol fileo

26

A DEFINITION PART MUST BE COMPILED PRIOR
TO ITS IMPLEMENTATION PART.

Modula-2/86 Compiler

Example:

A DEFINITION PART MUST BE COMPILED PRIOR
TO ANY MODULE THAT IMPORTS IT

A>m2 ~:comp<CR>
Modula-2/86 Compiler V m.n
Copyright (c) 1983 Logitech

source file> EXAMP3.DEF<CR)
pI
p2
symfile
termination
end compilation

A>

~.1. Compilation of an Implementation Module

Compilation of an implementation module is very much the
same as the compilation of a program module. At compila
tion of an implementation module the symbol file for this
module is needed. This symbol file is produced by the com
pilation of the corresponding definition module, prior to
the compilation of the implementation module.

The compiler output files are the same as when compiling a
program module. A linkable object file (.LNK) and a debug
reference file (.REF) are generated as the result of a
successful compilation~ In case of errors only a listing
file is produced.

A>m2 ~:comp<CR>
Modula-2/86 Compiler V m.n
Copyright (c) 1983 Logitech

source file> EXAMP3<CR>.MOD
pI

Examp3
Storage

p2
p3
p4

in file: A:Examp3.SYM
in file: B:Storage.SYM

the succession of activated
compiler passes is indicated

termination
The setting of

emulator
stacktest
rangetest
indextest

the options was:
(E): off

No code for 8087
Codesize: 234
Datasize: 56

(S): on
(R): on
(T): on
Processor generated
bytes
bytes

27

Compiler Modula-2/86

end compilation

A>

~.~. Symbol Files Needed for Compilation

Symbol files are used by the compiler to provide full
inter-module checking. Upon compilation of a definition
module, a symbol file containing symbol table information
is generated. When the corresponding implementation part
is compiled, or when another module (a 'client') is com
piled which imports it, the appropriate symbol file must
be read.

By default, the compiler first searches for symbol files
on the disk containing the source file. It uses the
module name (truncated if necessary) as the filename, and
a filetype of 'SYMo. If a symbol file is not found by the
first search, additional searches (on other drives and/or
directories) are performed automatically. Please see the
section on search strategies for a complete description.

If a symbol file is not found at all, the compiler issues
a message and asks for the file. (This can be prevented,
see the option 'Autoquery' below). If the 'Query' option
(see compiler options below) is turned on, the compiler
will not perform any automatic searches. It will display.
the module name and let you enter the file name for every
symbol file needed.

When the compiler asks for a symbol file, the request is
repeated until an appropriate 'file is found or <ESC> is
hit. Hitting <ESC> means that the file is not available.
The compiler will stop at the end of the first pass, but
first it will list all the required symbol files. This
allows you to detect any other missing files.

28

Modula-2/86 Compiler

6.7. Compiler Options

When reading the source file name, the compiler can also
accept some options. Options are entered immediately fol
lowing the filename, with each option preceded by 'I'. An
option value is a predefined string that defines the state
of the corresponding option. The possible values for the
following compiler options are listed below, and an expla
nation of their effects is included thereafter.

~.l.l. Table of available options

option value for ON value for OFF default

query Query NOQuery NOQ

autoquery Aquery NOAquery AQ

interactive Interactive Batch I

listing Listing NOListing NOL

error listing EListing NOEListing EL

emulatorl
coprocessor Emulator Coprocessor C

version Version NOVersion NOV

statistics STATistics NOSTATistics STAT

stacktest S+ S- S+

r~ngetest R+ R- R+

overflowtest T+ T- T+

header in listing Header NOHeader H

footer in listing Footer NOFooter NOF

date in listing DAte NODAte NODA

debug info Debug NODebug D

The default value for all options can be set in the

29

Compiler Modula-2/86

compiler parameter module. The defaults shown are those
of the distributed compiler. If, after using the compiler
for a while, you want to alter the default settings, con
sult the appendix on system configuration. In the above
list of values, the portion in upper case letters is
required when specifing an option value. The complete name
may (optionally) be given. For the R, Sand T options the
'+' sign is optional.

30

Modula-2/86 COOlpjler

~.l.~. Description of the options

/Q /NOQ Query option

/A /NUA Autoquery option

These options define the search mechanism for the
symbol files of the imported modules. The following
table shows the possible combinations of the setting
of these options and the corresponding behavior of
the compiler:

/1 /B

query

Query
Query

default: NOQuery

NOQuery

autoquery

Aquery
NOAquery
Aquery

NOAquery

Interactive/Batch option

action

ask for filenames
ask for filenames
tries to find file
by default strategy
if not found it
asks for filename
if not found
compiler ends.

This option tells the compiler whether it runs
interactive or as a batch job. In the interactive
mode, it is possible to stop the display of the error
message by hitting a key. This facility is turned off
in the batch mode. NOTE: the autoquery option is not
affected by this option.

/L /NOL Listing option

/EL /NOEL Error listing option

These options define whether a listing is generated
or not. The following table shows the possible combi
nations of the setting of these options and the
corresponding behavior of the compiler:

Listing error listing action

Listing EListing always a listing file
is generated

Listing NOEListing as above
NOListing EListing if errors detected, a listing

file is generated
NOListing NOEListing no listing generated

31

Compiler Modula-2/86

In all cases the compiler writes the lines with
errors and the errormessage on the screen.

/E /C Emulator/Coprocessor option

This option affects the code generation for the
floating point arithmetic. If it is set to coproces
sor, the compiler generates inline code for the Intel
8087 numeric processor. In the other case it gen
erates code for the Intel B087 Emulator.
~ote: Version 1.0 of the Modula-2/86 system does not
Include a floating point emulator. Therefore, this option
must not be set to 'Emulator'.

Iv /NOV version option

The compiler displays information about the running
version, e.g. processor and operating system flags.

ISTAT /NOSTAT statistics option

At the end of a compilation the compiler displays
some statistics on the generated code.

/S+ IS

IR+ IR
IT+ /T-

Stacktest option

Range test option

Overflow test option

With these options the user can define the initial
value of the corresponding source file options. (See
th~ following sUbsection for more information.)

IH INOH Header listing option

IF INOF Footer listing option

/DA /NODA Date in listing option

32

These options define the format of the generated
listing file. The header option says whether a page
header line is generated or not. The footer option
defines whether a page footer line is generated or
not. The date option says whether the date informa
tion is generated within the header lineo The format
of a page header is:

Modula-2/86 filename. ext

f>1odula-2/ti6 Compi] er

Date Page nr.

The text for the footerline must be defined in the
parameter module.

/0 /NuD The option debug:

This option defines whether the reference file
(*.HEF) is generated or not. This file contains the
necessary information for the symbolic debugger.

6.8. Compiler Directives in Modules

Certain compiler directives may be specified in the source
text of a module. '..['hese directives must appear immedi
at.ely at. the beginning of a comment and consist of
$<Letter><setting> (without any intervening or preceding
spaces) •

Letter "leaning

R Subrange and arithmetic overflow test
(default R+).

T Index test (arrays, case) (default T+).
S Stack overflow test (default S+)&

Setting Effect

+ Test code is generated.
No test code is generated.
Revert to setting before last.

Example:

MODULE x;(*$T+*)

(*$'..['-*)
CASE i OF

END
(* $'..['::.,*)

END x.

test code is generated

no test code is generated

test code is generated (i&e.
the prior value is restored)

33

Compiler Modula-2/86

~.1. Compiler Error Messages

There are two types of compilation errors:

Errors detected in the source text, which are printed
on the listing and displayed on the screen.

Operational errors which are displayed on the screen.

6.9.1. Source text errors

These errors appear in the listing file, marked under the
offending line by a ,A, and the error number. The source
line and error message are also displayed on the screen as
they are written to the listing. Compiler error messages
are also listed in the appendix.

6.9.2. Compiler Operational Errors

----file not found

The source or symbol file was not found and the compiler
will repeatedly request the filename. You can exit this
loop either by typing the correct filename or by hitting
<ESC> if the required file is missing.

----error

The compiler detected errors in the source file. These
errors will appear in the listing and on the screen.

----~ymbol files missing

The compiler could not find all the symbol files for the
imported modules in your program. Therefore type checking
is impossible and compilation stops. Check that the
corresponding definition module has been compiled and that
all necessary symbol files have been correctly specified.

----code table overflow

34

Modula-2/B6 Compiler

The code length of each procedure and module initializa
tion is limited to 3500 bytes. To prevent this error you
must break up your large procedures into mUltiple small
procedures.

----output disk full

Because of insufficient space on your disk, the compiler
has stopped. You should delete superfluous files.

----file creation failed

Your disk directory is probably full.

----compiler error

We hope that this message will never occur. It is
displayed when a compiler self-check is not successful.
If you get this error please contact Logitech with a copy
of the program which caused the error.

35

Compiler Modula-2/86

7. THE LINKER

The linker combines all the separately compiled modules
into a single load and executable module.

7.1. How to use the Linker

The linker is run by typing 1m2 link'. After displaying
the version number, the linker will prompt for the
filename of the main module ('master file') of your pro
gram:

A>m2 b:link<CR>
Modula-2/86 Linker V m.n
Copyright (c) 1983 Logitech
master file =>

Enter the filename and any options you wish to specify
(see the subsection on Linker options below). The default
device is the current disk.and the default filetype is
'LNK' (for modules compiled and ready to link).

If you use the default values of the options, the linker
automatically links all other necessary modules. It also
lists all imported modules together with their correspond
ing file names.

Example:

36

A>m2 b:link<CR>
Modula-2/86 Linker Vm.n .
Copyright (c) 19B3 Logitech

master file > EXAMPl<CR>.LNK
linked with: --

~erminal in file: B:Terminal.LNK
Termbase in file: B:Termbase.LNK
System in file: B:System.LNK
Keyboard in file: B:Keyboard.LNK
ASCII in file: B:ASCII.LNK
Display in file: B:Display.LNK

name of output file: A:EXAMPl.I.OD
name of map file: A:EXAMPl.MAP

end linkage

A>

Modula-2/86 Linker

By default, the linker applies the search strategy
explained previously. First, it seeks for object files on
the disk containing the master file. It uses the module
name (truncated if necessary) as a filename, and a file
type of 'LNK'. If an object file is not found, the linker
issues a message and asks for a file to use (but see the
lA' option below). If the 'Qi option is turned on, the
linker will ask in this way for every object file.

When the linker asks for an object file, the request is
repeated until an appropriate file is found or <ESC) is
hit. Hitting <ESC) means that the file is not availabl~.
The linker will stop at the end of the first pass, but
first it will list all the required object files. This
allows you to detect any other missing files.

After successful linking, the program is written to a load
file with the same name and on the same disk as the master
file, filetype LOD.

7.2. Linking Options

The linker can accept several options, entered immediately
following the filename. Each option is preceded by '/',
and consists of a letter, specifying the switch and a sign
'+' or '_Ii indicating whether the switch is to be turned
on or off. If the '+' or '-' is omitted, '+' is assumed.

/B Base layer option (Default B-)

This option is used when linking a subprogram (over
lay). If this option is enabled, the linker will ask
for the name of a MAP file to use in determining
which modules will be resident when the current
(sub)program is run. Modules which are referenced by
the current program but are not in the map are linked
into the current program. The linker will only list
those imported modules that are actually linked into
the subprogranl.

If this option is turned off (default), your program
is linked without any base layer.

When the linker prompts for a file name during the
linking of a subprogram, (ESC> can be entered to indi
cate that this module will be in the base layer when
the program is run. When entering the file name for
the base map an additional option is available:

37

Linker Modula-2/86

/Q Query resident modules (Defaplt Q-)

If this option is turned on the linker will ask
whether each resident module should be linked. Type
'y' if it is to be linked and In' if this module will
already be in memory upon execution.

If you do not have the map file of the base, (e.g. if
you link the subprograms before you link the base)
simply type <ESC>. Note: In this case the Q option
for the main module must be on (see below).

1M Map file option (Default M+)

If this option is turned on, the linker generates the
map file. A map file is needed if this program will
be the base for other programs, i.e., if it has over
lays.

It is recommended that before executing your program
you consult your base map to verify that your modules
will be initialized in the correct order: The order
of initialization is the order of appearance in the
map.

IQ Query option (Default Q-)

If turned off (default) the linker will search for
each link file using a default name (the module name)
with the filetype 'LNK', on the disk where the master
file was found. The linker enters a query mode any
time a link file is not found. In this case, the
linker prompts for the correct name.

If the 'Q' option is turned on you are asked to enter
the name of each link file. You can specify the
default name with <CR>.

Whenever the linker asks you for the name of a link file,
and the file is not available and will not be in the base
at execution time, your program cannot be linked. In this
case, hit <ESC> to stop the linker. Note that the linker
will not stop until it has checked the list of all
imported modules.

/A Automatic query option (default A+)

If turned on (dcfault) the linkcr cntprs a temporary

38

Modula-2/86 Linker

query mode when a link file is not found. The A
option prevents this automati~ query mode and is use
ful in command files.

2.1. Linker Error Messages

During execution of the linker certain errors may occur.
The following error messages may appear:

----file not found

The link or map file was not found and the linker requests
the file name (again) if option A is turned on. This loop
is exited by typing the correct file name or by. entering
<ESC> (see option Q above).

----Linkage aborted: end of medium

Insufficient disk space to write the load file causes the
linker to stop execution. To solve the problem, delete
superfluous files or copy some files to the disk on the
other drive.. The load file is written to the disk where
the main module is found.

----map file incomplete: end of medium

This message appears when there is insufficient disk space
to write the map file. Generation of the load file is not
affected by this error. To solve the problem, make more
room on the output disk (the disk which holds the main
module) or turn off generation of the map file (see option
M above)Q

39

Symbolic Debugger Modula-2/86

H. THE SYMBOLIC DEBUGGER

This chapter describes the symbolic g postmortem debugger
distributed with Logitech's Modula-2 software development
system. When a program stops because of a run-time error,
because the HALT statement is executed or because Ctrl-C
(BREAK) is typed, the memory is dumped to disk in the fite
MEMORY.PMD. The debugger is used to inspect this dump
file.

When using the debugger, the reference files of the
modules which constitute the program should be present.
These reference files are generated by the compiler when
compiling an implementation module and have the filetype
'REF'. Without them no symbolic examination of program or
data is possible. Source files ('MOD') can be used to show
the text of the analyzed program inside the debugger.

8.1. How to use the Debugger

The debugger is run by typing 'm2 dbug'. The debugger
will display "Modula-2/86 Debugger" and the version number
and a copyrigth notice. It prompts you for the name of the
dumpfile to be used. The default for this filename is
'MEMORY.PMD', which will be opened on the current disk if
not otherwise specified. It will then ask if you want to
enter the names of the required files (files of type 'REF'
and file names. Any other response is interpreted as 'no'
and the debugger will use the default file names (composed
of the first 8 characters of the module name plus filetype
'REF' or 'MOD'). The debugger then tries to find these
files according to the search strategy explained above.
If a file cannot be found, the debugger asks you for the
correct filename. Hit <ESC) if the file is not available.
Without the 'REF' file, no symbolic debugging is possible
for that module.

Some modules are considered to belong to the 'system
library' and the debugger does not prompt for their
filenames, if they are not found with the default search
strategy. This concerns the modules: System, Keyboard,
Termbase, Terminal, Program.

The debugger displays 4 different types of information
which will be referred to as 'Process window', 'Data win
dow', 'Text window' and 'Memory window'. Only one of the
four windows can be displayed at anyone time. When you
initiate the debugger, the Process window is shown (with

40

t-lodulu - 2/8 6 Symbolic Debugger

the position at whjch the error occured).

B.2. ~he Debugger Commands

The following global commands are available in all four
windows and may be used whenever the debugger is ready to
accept commands:

~.~.l. Selecting ~ window

p go to Process window
Displays the process window of the process which
caused the dump, i.e the state and procedure call
chain of the dead process will be displayed.

D go to Data window
Displays the data of the last selected procedure or
module. This selection is made in either the Process
window or with the 'M' command in the .Data or Text
window.

T go to Text window
Displays the text of the last selected procedure or
moduleu This selection is made in either the Process
window or with the 'MI command in the Data or Text
window. If a procedure is selected in the Process
window, the portion of the text, containing the call
to the next procedure in the calling-chain is shown.
If a module is selected with the 'HI command, the
beginning of that module is shown.

C go to Memory window
The memory area around the current address will be
displayed in the selected display mode (see 'Memory
window'). The current address is the data address of
the selected procedure or module in the Process win
dow.

41

Symbolic Debugger Modula-2/86

8.2.2. Selecting ~ process for debugging

@ (at sign) go to process window of a new process
Its main use is to select a PROCESS variable in the
Data window and then entering this commande The state
and procedure call chain of the selected process will
be displayed.

If used in the Process window, the procedure call
chain of the dead process is shown.

In the Memory window, the current position is taken
as the new process descriptor and its state and pro
cedure call chain is shown.

This command is not available in the Text window.

~.~.l. Leaving the debugger

Q quit the debugger
quit the debugger You will be prompted for a veto.
Enter Iyl to terminate the debugging session.

8.2.4. Positioning

A number of commands in the debugger allow you to choose
the element in your program that you wish to analyze. When
you choose a new element (e.g., a variable in the Data
window), this becomes the current element for any subse
quent commands.

There are two ways of repositioning:

1) by typing a new element number, or

2) by moving the contents of the screen either up or
down relative to your current position with the fol
lowing commands:

42

Modula-2/86 Symbolic Debugger

(up arrow) move up by half of a screen
Multiple strikes of this key are possible, to move
faster. The debugger waits about one second before
executing.this command.

(underscore) move down by half screen
Multiple strikes of this key are possible, to move
faster. The debugger waits about one second before
executing this command.

(n)+ ·move n lines up
The parameter n is optionnal, default for n is 1.
This command is not available in the Memory window.

(n)- move n lines down
The parameter n is optional, default for n is 1.
This command is not available in the Memory window.

8.2.5. Display mode

<ESC>S Scroll Mode
Text is scrolled off the top of the screen and new
lines are added at the bottom or vice-versa.

<ESC>P Page Mode
Text is displayed a screen at a time. The screen is
cleared before being refilled. This mode is the
default.

<ESC>L Lines
You will be asked how many lines should be displayed
at once. This command can be used independently in
both scroll and page mode. Minimum value is 4.

<ESC>B Bell toggle
With this command you can turn on and off the bell,
which is used to signal erroneous input.

8.3. The Four Windows

43

Symbolic Debugger Modula-2/86

~.l.!. Process Window

Shows the procedure call chain together with the address
of the call to the next procedure in the chain. This
address is shown as the position relative to the beginning
of the module as well as the line number in the source
text. The address shown in the first procedure is the
instruction pointer at the moment when the dump occurred.
If a reference file is missing, the procedure names are
replaced by numbers within the module which refer to the
order of procedure declarations within a module.

Typical use: position to one procedure and go to the Data
or Text window.

8.3.2. Data Window

Shows variables and parameters of the current procedure or
module. It also allows you to view the contents of struc
tured variables. On the first line, the debugger shown the
name of the procedure or module being examined. If the
content of structured data is shown, the complete 'path'
is indicated. This 'path' includes the name of the pro
cedure or module, the name of the variable and the names
of the substructures, including indices in case of arrays.
The last displayed line gives the current position inside
the list of displayed datao Initially, this position is 1.
It can be modified by means of the global positioning com
mands. The current position is used by the commands'S'
and 'A' below.

M Modulename
Select data of another module. The list of all
modules in memory at the time when the dump was taken
is shown. Select a module from this list by entering
its number. This selection is valid for subsequent
operations in the Text and Data window.

S Son

44

Display the data structure beneath the current data
element i.e., if the current item is a record, then
's' will show the fields of this record. Local
modules are shown as data of the embedding module. To
view the data of the local module, position on that
module in the Data window and type'S'. Multiple'S'
may be typed to skip several levels of data struc
ture. The debugger waits about 1 second before exe
cuting the'S' command, to let the user enter

Modula-2/86 Symbolic Debugger

multiple'S'.

F Father
Displays the data structure above the current data
(the reverse of'S'). Multiple 'F' may be typed to
skip several levels of data structure. The debugger
waits about I second before executing the IF' com
mand, to let the user enter mUltiple 'F'.

A Address
Displays the address of the current data. This can
be used before a Ie' command to display the memory
area around a variable. This command has the side
effect of modifying the 'current address' of the
Memory window.

V Variable
Goes back to the first level of the current procedure
or module, i.e. shows its variables.

R Right

L Left
Displays the element to the right (or left) of the
current element, if the current position is an ele
ment of an array. If the current position is inside a
record, which is an element of an array, then this
command moves to the neighboring element of the
array, without changing the field in the record.

The global command '@' (at-sign) can be used most
conveniently in the Data window, by selecting a vari
able of type PROCESS and typing '@'. The Process win
dow of that selected process will be shown.

~.l.l. Text Window

Shows the text of the current module and procedure. An
arrow at the beginning of the line shows, where this pro
cedure has been left (call of next procedure or error
occurred).

rl'ext window commands are:

M Modulename - select another module for this window. The
list of all modules in memory at the time when the dump
was taken is shown. Select a module from this list by

45

Symbolic Debugger Modula-2/86

entering its number. This selection is valid for subse
quent operations in the Text and Data window.

8.3.4. Memory Window

Displays the content of memory around the· • current
address'. An arrow indicates the current position. When
entering the Memory window, that position is the data
address of the procedure, selected in the Process w.indow.

The representation of the data can be chosen by the fol
lowing commands (number sign, followed by a letter):

#u - unsigned CARDINAL format

II - INTEGER format

#W - WORDS (hex) format (default mode)

#B - BYTES (hex) format

IC - CHAR format

IT - Text format

IA - ADDRESS format

#R - REAL format

The display mode is kept unchanged, when leaving the
Memory window and re-entering it later on.

Modification of the current address:

The selection of a procedure in the Process window sets
the current address to the beginning of the procedure's
data area.

The global positionning commands modify the
address.

current

In the Memory window a new current address can be selected
by typing a number instead of one of the ilbove commands.
Just enter up to 5 hexadecimal digits (O •• OFFFFF'), ter-
minated by <CR) or space. .

Modifications to the current address are lost when leaving
the Memory window. When re-entering this window, the data
address of the procedure selected in the Process window is

46

Modula-2/86 Symbolic Debugger

always used as the current address.

47

System and Library Modules Modula-2/86

9. SYSTEM AND LIBRARY MODULES

Unlike many other programming languages, the Modula-2
language does not provide standard functions that handle
input and output. In Modula-2 systems, these functions
are typically provided by library modules. Library
modules that implement the typical, basic operating system
functions are also called 'system modules' or 'low level
modules'.

Besides these system modules the Modula-2/86 module
library contains a number of additional v more general
library modules. Examples are modules that provide for
formatted input/output, or modules that provide functions
that do not depend on the operating system (e.g. string
handling).

This section provides an overview about the system and
general library modules available with Modula-2/86o The
definition parts ~f all library modules are given in the
appendix on "library definitions".

~.!. The system modules

There is a number of system modules that constitute the
interface between the Modula-2/86 system and the applica
tion programs. They provide access to the underlying
operating system and to the Modula-2/86 system itself.
These modules may be used (imported) directly by applica-

. tion programs.

System modules rely on the support of the operating sys
tem. For some of them, even the definition part is
operating system dependent. These system modules should
be considered as internal modules of the Modula-2/86 sys
tem. They should not be used directly by application pro
grams, because this would severely affect program porta
bility.

Highly system dependent modules of the Modula-2/86 system
that should not be used directly (their filenames are
given in parentheses):

- DiskFiles
;
- Display
- Keyboard

(DISKFILE.DEF)

(DISPLAY.DEF)
(KEYBOARD.DEF)

Partially system dependent modules of the Modula-2/86

48

Modula-2/86 System and Library Modules

system (should be used with care):

- System
- 'fermbase

(SYS'l'EM. DEF)
('fERMBASE. DEF)

System modules that are part of the interface between the
Modula-2/86 system and application programs:

- DiskDirectory
- FileSystem
- Program
- Storage
- 'ferminal

(DISKDIRE.DEF)
(FILESYS'r. DEF)
(PROGRAM. DE1~)
(S'fORAGE. llEF)
(TERMINAL.DEF)

2.~. The general library modules

General library modules provide features that are not typ
ically part of operating systems. In some cases, they
provide access to operating system features through higher
level concepts.

The Modula-2/86 library includes the
library modules (their filenames
parentheses):

- ASCII
- CardinalIO
- Conversion
- FileMessage
- FileNames
- InOut
- MathLibO
- NumberConversion
- Options
- Processes
- ProgMessage
- RS232Code
- RS232Int
- RS232Polling
- ReallnOut
- Strings

(ASCII.DEF)
(CARDINAL.DEF)
(CONVERSI.DEF)
(FILEMESS.DEF)
(FILENAME.DEF)
(INOUT.DEF)
(MA'fHLI BO . DEF)
(NUMBERCO.DEF)
(OPTIONS.DEF)
(PROCESSE.DEF)
(PROGMESS.DEF)
(RS232COD.DEF)
(RS232INT.DEF)
(RS232POL.DEF)
(REALINOU.DEF)
(S'fRINGS. DEF)

following general
are given in

9.2.1. Brief descriptions of library modules

For quick reference, an alphabetical listing of the
library modules with brief functional descriptions of each
is provided here. More detailed information is available
in the appendix on library module definitions.

49

System and Library Modules Modula-2/86

MODULE ASCII

Symbolic constants [or non-printing ASCII characters

MODULE CardinalIO

Terminal input/output of CARDINALs in decimal and hex

MODULE Conversions

Convert from INTEGER and CARDINAL to string

MuDULE DiskDirectory

Interface to directory functions of the underlying os

MODULE DiskFiles

Interface to disk file functions of the underlying os

MODULE Display

Low-level Console Output

MODULE FileMessage

Write file status/response to the terminal

MODULE FileNames

Read a file specification from the terminal.

MODULE FileSystem

File manipulation routines

MODULE InOut

Standard high-level formatted input/output.

MODULE Keyboard

Default driver for terminal input.

MUDULE MathLibO

Real Math Functions

50

Modula-2/H6 System and Library Modules

MODULE NumberConversion

Conversion between numbers and strings

MODULE Options

Read a file specification, with options, from the
terminal

MODULE Processes

(pseudo-) concurrent programming with SEND/WAIT

MODULE ProgMessage
l . : ., l f 1 nf1 1-; I, ') n ' ·l

Write program status message to the terminal

MODULE Program

Sub-program loading and execution

MODULE RS232Code

High-speed inter~upt-driven input/output via the
serial port

MODULE RS232Int

Interrupt-driven input/output via the serial port

MUDULE RS232Polling

Polled input/output via the serial port

MODULE ReallnOut

Terminal input/output of REAL values

MODULE Storage

Standard dynamic storage management

MODULE Strings

Variable-length character strings handler.

51

System and Library Modules Modula-2/86

MODULE System

Additional system-dependent facilities

MODULE Termbase

Terminal input/output with redirection hooks

MODULE 'rermina 1

Terminal Input/Output

52

APPENDICES

Glossary Modula-2/86

APPENDIX A - Glossary

The following terms have specific meanings as used in the
manual.

Base layer

A program which calls another program is the base
layer of the called program. For instance the passes
of the Modula-2 compiler are called sequentially by
the compiler base, i.e. by their base layer.

Definition module

'rhe definition part of a module. Chapter 24 in "Pro
gramming in Modula-2 11 describes the use of definition
modules.

Development system

The entire system (hardware and software) needed to
develop a program. This system includes the runtime
support as well as the compiler, linker, debugger,
and the library-.

Language support

An assembly program, which can be viewed as the
extension to the hardware which gives the target sys
tem the ability td execute programs written in
Nodula-2. It is part of the run-time support.

Library

'l'he set of all available separutely comlJiled modul es.

Implementation module

'rhe actual implementation of the objects defined in
the corresponding definition module. 'l'he syntax of a
lIIodule as described in the Hoc1ula-2 report applies to
the implementation module.

53

Glossary Modula-2/86

Ubjects

Anything that can be given a name,' i.e. constants,
variables, procedures, types, and modules.

Overlay

Overlays in the Modula-2/86 system are provided by
the ability to call dynamically loaded (sub)programs.
The name 'overlay.' comes from the fact that if one
subprogram is called and returns, and then another is
called, the second one can re-use the memory used by
the first.

Program

A set of one or more separately compiled modules,
linked together into a load file. A program can be
viewed as a Modula-2 procedure that resides in memory
only during its execution. When called, it is loaded
into memory to perform a specified task and its
memory is released as soon as the task is completed.
A program can call other programs to any depth, li~
ited only by the size of the workspace. (see the
appendix on Global Memory Organization for more
details).

Program module

The module which contains the "main program". After
initialization of all imported modules, the body of
the main module is the actual starting point of the
program. A main module may be split into a definition
part and an implementation part.

Run-time support (RTS)

54

An assembly program which includes the language sup
port and further configuration-dependent functions.
These functions include typical operating system
features such as bootstrapping the resident software,
setting up the memory configuration, dumping memory
to disk, etc.

Modula-2/86 Glossary

Separately compiled module (SCM)

A module as described in "Programming in Modula-2"
which is contained in a separate file. These modules
can be compiled separately as long as the imported
definition modules have already been compiled. If an
SCM exports objects it must be split into a defini
tion module and an implementation module; the two
modules are then separate compilation units.

Subprogram

A program which is called by another (Nodula)
program. A subprogram can use objects exported by
the calling program. See the module 'Program', in the
appendix on library definitions.

System modules

A set of modules, written in Modula-2, that implement
higher level operating system functions such as
memory management, overlay loading, terminal rio,
file handling, etc.

Target system

The system (hardware and software) on which you exe
cute your application programs. In most cases the
target system is the same as the development system:
however, this is not a requirement. The hardware
configuration does not necessarily include a termi
nal, nor disks. The software configuration may be
reduced to the Modula-2 language support and your
program.

Workspace

The region of memory allocated to a process for
stack, program variables, heap, and subprograms.
When a Modula program is started, it begins execution
as the 'default process', and it claims the largest
available region of memory as its workspace. A sub
program shares the workspace of its base layer. How
ever, when a new process is created (see the appendix
on system dependent facilities and the appropriate
section of the book "Programming in Modula-2") it
must be assigned a workspace. This may be in a

55

Glossary Nodula-2/86

56

module's data area, on the hccJp, or even in a
procedure's local data area (on the stack). Just
make sure that the process doesn't have a longer
lifetime than its workspace!

ModuJa-2/86 Version Checking

APPENDIX B - Version Checking

Module key and version checking

All modules in a program must be compiled with a con
sistent version of module definitions. When a module
definition file is modified all Program and implementation
modules using the definition file must be recompiled befor
a new program load can be created. Modification of a
definition part means a particular compilation into a SYM
file. Each time a definition module is compiled, it will
produce a new version of that module, which is incon
sistent with any other compilation of that module. Even if
you do not change the text of the definition part, recom
pilation will create a new version of the SYM file.

Modula-2/86 checks for version type and will not allow
inconsistant versions to be compiled together. The ver
sion checking mechanism is simple in concept, but can be
complex in application. Each time a definition module is
compiled, a new module key is created and included in the
resulting SYM file. This key will be different each time
the module is compiled.

Once a definition part has been compiled, it becomes pos
sible to compile its implementation part, or another
module which uses the definition part (a 'client' module).
These other modules will mention the definition part, and
the compiler will find the compiled version of this defin
ition part, and use it to fully check the module being
compiled. The module key of the referenced definition
parts are included in the compiled output.

At compile, link or load time, it can be verified that all
the keys included for a given definitio~ module are the
same. This guarantees that all modules which share an
interface were compiled using the same version of that
interface. The purpose of this is to ensure that the
inter-module checking is as good as it would be if each
program was all one source file, compiled all at once.

Version errors and how to fix them -----

If the version consistency rule is broken, you will get a
version error during either compilation, linking, or

57

Version Checking Modula-2/86

(sub)program loading. The following sections describe the
typical cause and some possible corrections for version
errors.

Version errors duri~g compilation

A version error while compiling module A can only arise if
there is some definition module X that is imported by two
different paths into module A, and the version imported by
one path is not the same as the version imported on the
other path. Example:

A.MOD imports B and C
B.DEF imports X
C.DEF imports X

Suppose that we compile as follows:

X.DEF => X.SYM
B.DEF => B.SYM
X.DEF => X.SYM {version 2)
C.DEF => C.SYM
A.MOD => A.LNK

There will be a version inconsistency error when A.MOD is
compiled, because the version of X imported through B is
not the same as the version imported through C. The
recompilation of X.DEF is the source of the version
mismatch. Before A.MOD can be compiled, B.DEF must be
recompiled with the newer version of X.

Version errors during linking

When two or more modules are linked together, a version
error can occur if some definition module has been used in
two different versions by the linked modules. For exam
ple:

MAIN.MOD
imports InOut and Terminal.

INOUT.DEF
defines InOut and imports nothing.

INOU'1'.MOD
implements InOut, and imports Terminal.

58

Modula-2/86 Version Checking

'l'ERNINAL. DEF
defines Terminal and imports nothing.

TERMINAL. MOD
implements Terminal, and has no imports.

Now suppose these compilations are done:

TERMINAL.DEF
INOU'l'. DEF
INOUT.MOD
'l'ERMINAL.MOD
'l'BRMINAL.DEF

l>lAIN.MOD

=)

=)

=)

=)

=)

'fERHINAL. SYH
INOU'f.SYM
INOUT.LNK
TERMINAL.LNK
'fERMINAL. SYM

- source of inconsistency
=) MAIN.LNK

Now a link of MAIN, INOUT, and TERMINAL will generate
a version conflict between the version of
TERMINAL(.SYM) used by MAIN, and the version used by
TERMINAL and INOUT. A solution here is to recomp~le
INOUT.MOD and TERMiNAL. MOD with the new TERMINAL.SYM
and then link again •

. Version errors during loading

When loading a subprogram (overlay), it is possible to
have a version error between the program being loaded and
the modules already resident. This is always due to two
modules, one loading, one already resident, having been
compiled with different versions of some interface.

A typical case: There is a program which contains a module
'Windows e with an interface WINDOWS.DEF. This program
calls a subprogram, in which there is a module 'Edit'
which IMPORTs Windows.

Suppose that WINDOWS.DEF is recompiled after the base
(main program) has been compiled and linked. Then if EDIT
is compiled and linked into its subprogram, that subpro
gram will be inconsistent with the main program. An erro~
will occur when the main program tries to load the subpro
gram. (There is no way to detect it sooner.) The program
loader will return to its caller with an error status
indicating that there was a module version conflict.

The straightforward correction is to recompile WINDOWS.MOD
and relink the base, so both WINDOWS and EDIT agree on the
Windows interface. This will require recompiling any
other modules in the base which use Windows (so that the

59

Version Checking Modula-2/86

base is consistent), and rebuilding any other subprograms
which use the older version of the Windows interface.

60

Modula-2/86 System Dependent Facilities

APPENDIX C - System Dependent Facilities

The differences ~n programming for various implementations
can be attributed to the following causes:

1. Changes to the language proper.

2. Differences in the set of available procedures and
data types, particularly those of the standard module
SYSTEM.

3. Differences in the internal representation of data.

4. Differences in the set of available modules, in par
ticular those for handling files and peripheral dev
ices.

Whereas the first three causes affect "low-level" program
ming only, the fourth pervades all levels, because it
directly reflects the available software and hardware
resources. See "Programming 1'n Modula-2" for a more
detailed description of low-level facilities.

This chapter gives an overview of the Modula-2/86 specific
low-level features.

WARNING

All these features should be applied with utmost care,
since their use might conflict with the basic software,
e.g. Modula-2/86 file system, etc.

Language extensions

Modula-2/86 implements the Modula-2 language exactly as
defined in the "Report on 'l'he Programming Language
Modula-2", without any restrictions or extensions.

61

System Dependent Facilities Modula-2/86

The Module SYSTEM

The module SYSTEM offers further facilities to programs
written in the Modula-2 language. Host of them are depen
dent upon the implementation or are specific to the target
processor. SYSTEM also contains types and procedures which
allow very basic coroutine handling.

The module SYSTEM is directly known to the compiler
because its exported objects obey special rules that must
be checked by the compiler. If a compilation unit imports
objects from module SYSTEM, then no symbol file need be
supplied for this module. However, the declaration of
these objects in the import list is required.

For more detailed information see chapter 12 of the
Modula-2 report in "Programming in Modula-2".

Objects exported from Module SYSTEM

~

BYTE

An individually accessible storage unit (one byte). No
operations except type conversions are allowed for vari
ables of type BYTE. An actual parameter of any type that
uses one byte of storage may be passed to a formal BYTE
parameter. For convenience small CARDINAL constants
«=255) are also allowed as parameters.

WORD

One word of memory (two bytes). No operations except type
conversions are allowed for variables of type WORD. An
actual parameter of any type that uses one word of storage
may be passed to a formal WORD parameter.

ADDRESS

The address of any location in storage. The type ADDRESS
is compatible with all pointer types and is its~lf defined
as POINTER TO WORD. The arithmetic operators '+' and '-',
as well as all comparisons, apply to this type. The stan
dard procedures INC and DEC apply to ADDRESS with an
ADDRESS or with a CARDINAL as second parameter. CARDINALS
and ADDRESSES must not be mixed in expressions. It is,
however, possible to convert a CARDINAL k tb type
ADDRESS(k) (although CARDINALS and ADDRESSES differ in

62

Modula-2/86 System Dependent Facilities

size). Also, constants of type ADDRESS have the same form
as constants of the type CARDINAL. The compiler distin
guishes them by context and by the allowed range (U -
65535 for CARDINAL, U - OFFFFFH for ADDRESSES).

PROCESS

A type used for process handling.

Procedures

NEWPROCESS(p:PROC; a:ADDRESS; n:CARDINAL;
VAR pl:PROCESS)

Create a new process. p is the procedure to execute, a is
the address of the data area for the process (the
workspace), n is the size of the workspace in paragraphs,
and pI receives the created PROCESS object. A paragraph
is 16 bytes. Allow 10 paragraphs for system overhead in
each workspace. Please note: A common error in using
Modula-2/86 is to pass this procedure the workspace size
in bytes instead of paragraphs.

TRANSFER(VAR pl, p2:PROCESS)

Save the current process state in pI, resume execution of
the process in p2.

IOTRANSFER(VAR pI, p2:PROCESS; interruptNumber:CARDINAL)

Save the current process state in pl, resume execution of
the process in p2. The next occurrence of the designated
interrupt (up to program termination), has the effect of
TRANSFER(p2,pl).

PROCEDURE LISTEN()

Temporarily lower the priority of the calling process and
allow pending interrupts to come through.

PROCEDURE GETREG(reg CARDINAL; VAR w: WORD);
PROCEDURE SETREG(reg : CARDINAL; w: WORD);

These two procedures are used to set and to retrieve the
contents of machine registers. They generate in-line code,
and are particularly useful in conjunction with the spe
cial procedure& CODE and SWI (software interrupt)
described below. Only the following registers are acces
sible:

63

System Dependent Facilities Modula-2/86

AX =0 ex =1 ox = 2 BX = 3
SF =4 BP =5 SI = 6 01' = 7
ES =8 es =9 SS =10 OS =11
(These are availaLle as constants from module 'System') NOTE: The registers SP, BP, CS and SS cannot be set with SETREG.

If the actual argument for these two procedures is a vari
able in one byte, only the lower half of the register is
affected (e~g., in SetReg (0, ch), where ch is declared to
be a CHAR, only the AL register is modified).

WARNING

Utmost care must be exercised when using GETREG and
SETREG.

It is strongly recommended that only constants or simple
local or global variables or parameters are used as param
eters of these functions. Expressions and/or array index
ing should be avoided. It must be kept in mind that
expression evaluation and address computation use regis
ters and therefore might destroy the value of a register
already set by SETREG or to be read by GETREG. It is
impossible for the compiler to recognize such a situation
and the programmer must take the full responsibility.

Unpredictable effects may result from failure to heed this
warning.

CODE(bl, b2, ••• :BYTE)

A call to CODE inserts the (constant) values bl, b2, etc.,
in-line as executable code.

PROCEDURE SWI(interruptNumber: CARDINAL)J

This procedure is used to"generate a software interrupt.
It compiles into an 'INT' instruction. The parameter must
be a constant.

PROCEDURE ENABLEJ PROCEDURE DISABLE:

Calls to ENABLE and DISABLE compile into 'STI' and 'CLI'

64

Modula-2/86 System Dependent Facilities

instructions, respectively.

PROCBDURB INBYTE(port: CARDINAL; VAR w: WORD);
PROCBDURE OUTBYTE(port: CADINAL; w: WORD);
PROCEDURE INWORD(port: CARDINAL; VAR w: WORD);
PROCEDURE OUTWORD(port: CARDINAL; w: WORD);

~hese four procedures are used to handle the I/O ports.
~he first parameter must be a constant or a variable that
specifies the port number. Variables may only be of the
following numerical types: CARDINAL, INTEGER, sub-ranges
thereof, and WORD.

DOSCALL (fct: CARDINALi •••)

Generates a DOS function call (via software interrupt
224). The parameter list is variable, depending on the
first parameter, which must be a constant (the number of
the DOS function). The appendix contains a detailed
description of the available DOSCALLs.

WARNING

Utmost care must be exercised when using DOSCALL.

It is strongly recommended that only constants or simple
local or global variables or parameters are used as param
eters of these functions. Expressions and/or array index
ing should be avoided. It must be kept in mind that
expression evaluation and address computation use regis
ters. Because the parameters of DOSCALL must be given to
DOS in registers, the compiler might easily run out of
registers.

Functions

ADR(variable):ADDRESS

Storage address of the parameter variable.

SIZE(variable):CARDINAL

Returns the number of bytes used in storage by the parame
ter variable. If the variable is of a record type with

65

System Dependent Facilities Modula-2/86

variants, then a variant of maximal size is assumed.

TSIZE(type):cARDINAL
TSIZE(type, taglconst, tag2const,G ••):CARDINAL

Yields the number of bytes used in storage by a variable
of the substituted type. If the type is a record with
variants, then tag constants of the last FieldList (see
syntax in "Progranuning in Modula-2") may be substituted in
their nesting order. If some or all tag constants are
omitted, then the remaining variant wi~h maximal size is
assumed.

Data-representation

Standard data-types have the following internal represen
tation:

BOOLEAN 1 byte, TRUE=~, FALSE=O

CHAR 1 byte, ASCII character set

ENUMERATION 1 byte, elements are numbered 0 •• 255

INTEGER 2 bytes, -32768 •• 32767, 2's complement notation,
least significant byte first.

CARDINAL 2~tes, 0 •• 65535, least significant byte first.

SET

2 bytes, if we number the elements of a set from 0 to 15-;--th~
representation in a memory word is:

7 6 5 4 3 2 1 0
low byte

POINTER
PROCEDURE
ADDRESS

15 14 13 12 11 10 9 8
high byte

4 bytes, the first two bytes (lower address) hold the
offset value (with lower byte first) and the second two
bytes hold the segment value (lower byte first).

REAL

8 bytes, Intel 8087 double precision real form~t (IEEE
Floating .Point standard).

ARRAY

66

Modula-2/86 System Dependent Facilities

an array is stored as a contiguous sequence of elements,
with the indices in ascending order, the right-most index
varying most quickly. If the base type fits in one byte
(CHAR, BOOLEAN, ENUMERATION) the elements are stored in
sequential bytes. Otherwise, each element is stored on a
word (even) boundary.

RECORD

fields are allocated in the order that they are declared.
The first field has the lowest addresso Two fields each
containing data in one byte only (CHAR, BOOLEAN, ENUMERA
TION) are packed into one word, if declared immediately
one after the other. "Byte-fields" are not packed if there
is another field in between (order is not changed).

SUBRANGE

Same representation as the base type.

67

Error Messages Modula-2/86

APPENDIX D - Compiler error messages

o illegal character in source file
1
2 constant out of range
3 open comment at end of file
4 string terminator not on this line
5 too many errors
6 string too long
7 too many identifiers (identifier table full)
8 too many identifiers (hash table full)

20 identifier expected
21 integer constant expected
22 I • expected
23 Iii expected
24 block name at the END does not match
25 error in block
26 1:=1 expected
27 error in expression
28 THEN expected
29 error in LOOP statement

30 constant must not be CARDINAL
31 error in REPEAT statement
32 UNTIL expected
33 error in WHILE statement
34 DO expected
35 error in CASE statement
36 OF expected
37 1:1 expected
38 BEGIN expected
39 error in WITH statement

40 END expected
41 1)1 expected
42 error in constant
43 1=1 expected
44 error in TYPE declaration
45 I(I expected
46 MODULE expected
47 QUALIFIED expected
48 error in factor
49 error in simple type

50 I,' expec~ed
51 error in formal type
52 error in statement sequence
53 '.' expected
54 export at global level not allowed

68

Modula-2/86 Error Messages

55 body in definition module not allowed
56 TO expected
57 nested module in definition module not allowed
58 I I expected
59 1 •• 1 expected

60 error in FOR statement
61 IMPORT expected

70 identifier specified twice in importlist
71 identifier not exported from qualifying module
72 identifier declared twice
73 identifier not declared
74 type not declared
75 identifier already declared in module environ-

ment
76
77 too many nesting levels
78 value of absolute address must be of type

CARDINAL
79 scope table overflow in compiler

80 illegal priority
HI definition module belonging to implementation

not found
82 structure not allowed for implementation of

hidden type
83 procedure implementation different from

definition
84 not all defined procedures or hidden types

implemented
85 name conflict of exported object or enumera-

tion constant in environment
8~ incompatible versions of symbolic modules
H7
H8 function type is not scalar or basic type
89

-90 pointer-referenced type not declared
91 tagfieldtype expected
92 incompatible type of variant-constant
93 constant used twice
94 arithmetic error in evaluation of constant

expression
95 incorrect range
96 range only with scalar type
97 type-incompatible constructor element
9H element value out of bounds
99 set-type identifier expected

100 structured type too large
1.01 undeclared identifier in export list of the

module

69

Error Messages Modula-2/86

102 range not belonging to base type
103 wrong class of identifier
104 no such module name found
105 module name expected
106
107 set too large
108
109 scalar or subrange type expected

110 case label out of bounds
III illegal export from program module
112 code block for modules not allowed

120 incompatible types in conversion
121 this type is not expected
122 variable expected
123 incorrect constant
124 no procedure found for sUbstitution
125 unsatisfying parameters of substituted procedure

126 set constant out of range
127 error in standard procedure parameters
128 type incompatibility
129 type identifier expected

130 type impossible to index
131 field not belonging to a record ~ariable
132 too many parameters
133
134 reference not to a variable
135 illegal parameter sUbstitution
136 constant expected
137 expected parameters
138 BOOLEAN type expected
139 scalar types ~xpected

140 operation with incompatible type
141 only global procedure or function allowed in

expression
142 incompatible element type
143 type incompatible operands
144 no selectors allowed for procedures
145 only function call allowed in expression
146 arrow not belonging to a pointer variable
147 standard function or procedure must not be

assigned
148 constant not allowed as variant
149 SET type expected

150 illegal substitution to WORD parameter
151 EXIT only in LOOP
152 RETURN only in PROCEDURE
153 expression expected

70

Modula-2/86 Error Messages

154 expression not allowed
155 type of function expected
156 integer constant expected
157 procedure call expected
158 identifier not exported from qualifying module
159 code buffer overflow

160 illegal value for code
161 call of procedure with lower priority not

allowed

170 global data too large (more than 64K bytes)
171 local data too large (more than 32K bytes)
172 parameters too large (more than 32K bytes),

too many parameters

200 compiler error
201 implementation restriction
202 implementation restriction: FOR step too large.
203 implementation restriction: boolean expression

too long
204 implementation restriction: expression too

complicated
205 implementation restriction: procedure too long
206
207 implementation restriction: illegal type

conversion
208
209 expression too complicated: jump table overflow

210 too many globals, externals and calls (linker
table overflow)

220 not further specified error
221 division by zero
222 index out of range or conversion error
223 case label defined twice

7]

Modula-2/H6 Module Priorities

APPENDIX E - Module Priorities

Use of priorities at programmer'~ level

Priorities can be specified in the header of both inner
modules and compilation units. When entering such a module
(execution of module body or call of an exported pro
cedure) the interrupt priority mechanism of the system
(hardware and software) is set such, that interrupts of a
level lower or equal to the one specified in that module
are not passed to the processor. When leaving a priority
module, the interrupt priority system is reset to the
state it was prior to entering that module. The standard
procedure LISTEN (to be imported from module SYSTEM)
allows to lower the priority temporarily. During the exe
cution of the procedure LISTEN the interrupt priority sys
tem is set such that all pending interrupts are accepted.

Inside a priority module, calls to procedures of other
priority modules having a lower priority than the module
with the call statement ~re not allowed. This situation is
detected by the compiler and an approriate error message
is produced (error 161). If a procedure of' a module with
no specified priority is called, the current priority
remains unchanged. If a procedure of a module with higher
priority is called, that higher priority becomes effective
during execution of the called procedure. The old priority
is restored upon return from that procedure.

Priorities are attached to processes. Upon a TRANSFER or
IOTRANSFER to a process running at another priority, the
system's priority is switched to the one of the process to
be activated. The same holds for the implicit coroutine
transfer which occurs upon an interrupte

When a program terminates, the system's priority is set to
the value which was effective when the terminating program
was loaded.

Range of possible priority levels

Both the compiler and the Run-Time-Support (RTS) allow
only a fix range of values for priority levels. Eight lev
els are supported with values from 0 (lowest level) to 7
(highest level). If a module priority is specified with a

73

Module Priorities Modula-2/86

value that is not in this range, the compiler ~roduces an
appropriate error message (error 80).

The above values are defaults for the Modula-2/86 system.
These defaults may be changed during installation of
Modula-2/86:

a) limit in the compiler: The compiler-paraweter-module
initializes a variable to contain the upper limit of the
legal range. By assigning another value to that variable,
this upper limit can be modified.

b) limit in the RTS: Please refer to the source program
of the RTS for the changes required if another range of
priorities has to be supported.

Implementation notes

The field 'interruptMask' in the process descriptor holds
the mask which becomes effective upon activation of a
coroutine. When creating a new process (function NEWPRO
CESS), the interrupt mask, valid for the 'father process'
is copied into the process descriptor of the new process.
The 'father process' is the one which executes the NEWPRO
CESS instriction. If the procedure which constitutes the
process is declared within a priority module, its priority
becomes effective upon execution of the procedures entry
code. This code is executed after the first TRANSFER to
the new process.

When executing a coroutine transfer, i.e. call of
TRANSFER, IOTRANSFER or upon an interrupt, the interrupt
mask of the running process is updated with the actual
mask in the interrupt controller. This new mask is com
pared to the mask of the process to be activated. If they
are different, the mask of the new process is output to
the interrupt controllere

The compiler generates a call to the Run-Time-Support
(RTS) in the procedure entry. code (monitor entry function)
and the procedure exit code (monitor exit function) for
every procedure exported from a priority module. The stan
dard procedure LISTEN is translated to a RTS call (listen
function). These three RTS functions are accessed through
software interrupt OE4H. Their interface is as follows:

Monitor Entry: AL
Monitor Exit: AL
Listen: AL

74

5, BX. holds the new priority
6, no parameter
7, no parameter.

Modula-2/U6 Module Priorities

The monitor entry function is called after the possible
stack-test and after the stack pointer is decremented by
the size of the local data. It saves the current interrupt
mask on the stack of the entered procedure. The new prior
ity is used as an index in a table that contains the mask
for every priority level. This mask - combined with the
currently valid mask - is output to the interrupt con
troller and stored in the process descriptor. The table
containing the priority masks is defined in the HTS. The
default value masks bit 0 for priority 0, bit 0 and I for
priority 1, and so on. These values may be modified upon
configuration of the Modula-2/86 compiler, in order to
implement any priority schema.

The monitor exit function finds the old interrupt mask
topstack. This old mask is ouptut to the interrupt con
troller and stored in the process descriptor. The infor
mation on the stack relative to the priority is removed.

The listen function unmasks all the bits in the mask of
the interrupt controller and sets the processor's inter
rupt flag, thus allowing all pending interrupts to be
passed to the processor. After execution of a no-operation
instruction, the old mask as well as the old interrupt
flag are restored.

75

· Memory Organization Modula-2/86

APPENDIX F. - Memory organization

Global Memory Organization

The global memory organization after loading of the
Modula-2 Resident part is snown in Figure F-l:

address

OOOH

400H

RTS ADDR

RES AD DR

Interrupt Vector Table

Operating System

Modula-2 Run-time support

I Main program loaded by the
. I run-time support

Global data (of main program) I
I

FREE MEMORY ----------------------------------
Heap of main process

STACK LIMIT ----------------------------------

Stack of main process

Operating system

Figure F-l Initial memory organization

RTS ADDR

Load address of the Run-Time Support. Depends on the size
of the operating system. The RTS is a relocatable program,
containing a code and a data segment.

RES ADDR

Load address for a Modula-2 program. The Modula-2 code is
relocatable and loaded immediately after the end of the

76

Modula-2/66

RTS code by means of a loader, which is part of the RTS.

FREE MEMORY

Address of the first free paragraph after code and data of
a Modula-2 program are loaded by the RTS. At this address
the heap of the main process starts.

This value is a sort of 'high water marker' of the heap.
It varies during the execution of a process as a function
of the occupation of the heap. If the stackpointer of a
process becomes equal to or less than its STACK LIMIT,
there is a stack overflow. -

MEMORY MAX

End of RAM area.

77

Memory Organization . Modula-2/86

Overlays

The Modula-2/86 environment offers a standard overlay
schema, with the following characteristics:

The programmer is not concerned about where an overlay is
loaded. To load and execute an overlay, one simply calls
the procedure 'Call' from module 'Program'. This procedure
finds a memory area (on top of stack), large enough to
hold the overlay. The relocatable loader then loads the
program in that area and control is passed to it. After
termination of the overlay (either normal termination or
caused by an error) execution continues at the statement
that immediately follows the call to the procedure 'Call'
and the memory occupied by the overlay is freed.

The size on an overlay is limited only by the physical
address space, i.e a maximum of I MB.

After loading of an overlay, the memory layout is as shown
in Figure F-2 (only the higher part of memory is shown,
see also Figure F-I).

low address

FREE MEM

Code of main program

Global data (of main program) I
I

Heap of main process

Heap (overlay of main process) I
I

STACK LIMIT ----------------------------------

Stack of main process
LUAD ADDRESS ----------------------------------

MEMORY MAX

Overlay
Code (of overlay)

Global data (of overlay)

Stack (of main process)
first part

Operating system

Figure F-2 Loading an overlay

78

Modula-2/86 Memory Organization

Processes

The workspace of a process is the region of memory allo
cated to this process for its local and dynamic variables
(stack and heap). The workspace holds also code· and data
of subprograms (overlays) called by this process. A part
of the workspace is used for the proc~ss descriptor,
needed for the TRANSFER mechanism. This process descriptor
is initialized through a call of (the standard procedure)
NEWPROCESS. Figure F-3 shows an example of a process
workspace.

When starting the Modula-2 Run-Time System, the main pro
cess is automatically created. This 'default process' gets
the largest available region'of memory as its workspace.
The program which is loaded by the Run-time support runs
as the main process. Programs loaded by other Modula-2
programs (through module 'Program') run as overlays to the
main process, i.e no new process is created to execute
overlays.

When a new process is created (by means of NEWPROCESS), it
must be assigned a workspace. This region has to be expli
citly defined by the programmer. It is usually a variable,
owned by the father process. Such a variable can be global
(e.g. an ARRAY declared at the level of a module), dynamic
(created on the heap by a call to NEW) or local to a pro
cedure (placed on the stack). If a non-global variable is
used, make sure that the process doesn't have a longer
lifetime than its workspace!

Process descriptor

Heap (of this process)

STACK LIMIT ----------------------------------
(of process) I

I Stack of process
LOAD ADDRESS ----------------------------------

END AD DR

Overlay code
(called by process)

Global data of overlay

Stack of process

Figure F-3 Process workspace

79

Memory Organization Modula-2/86

The heap is the memory area between the bottom of the
workspace (after the process descriptor) and the top of
stack. The heap manager allocates and deallocates portions
of this memory upon request through the standard pro
cedures NEW and DISPOSE. To avoid unpredictable memory
occupation due to the concurrency of multiple processes,
the heap of every process is administrated independently.

The libra~y module 'Storage' implements the default heap
manager. The same strategy of allocation and deallocation
is used for the main process and all user processes. Upon
allocation of memory portions, collision with the stack is
detected and leads to a termination of the program with
the status 'heap-overflow'.

Stack

The stack holds 3 kinds of data:

1. procedure interfaces (parameters, return address)

2. local data of procedures, allocated upon entry in a
procedure

3. temporary values during the evaluation of an expres
sion

Every process has its own stack. Upon creation of a pro
cess (call of NEWPROCESS), the stack is set such, that the
first word pushed occupies the last word (highest even
address) in the workspace. The stack grows from the end of
the workspace (highest address) to the beginning of the
workspace (lowest address). After loading of an overlay,
the stack is set to continue at the address just below the
load address of the overlay.

The size of a stack can be at most 64K bytes, i.e
stack segment of a process is never modified, except
loading an overlay (which creates a new stack). In
applications however, a process' workspace will be
than 64KB and therefore the stack size is limited by
size of the workspace and the occupation of the heap.

tJo

the
when
most
less
the

Modula-2/86 Memory Organization

Variable allocation

All variables on 2 or more bytes, including elements of
arrays and fields of records, are word aligned. Two con
secutively declared variables 'of 1 byte are stored in the
same word. If a I-byte variable is declared between two
longer variables it occupies I word, with the significant
byte at the lower address. The unused byte is undefined.

Procedure Interface

A procedure is called with a FAR call if at least one of
the following conditions is true:

1. the procedure is imported from another module

2. the procedure is exported

3. the procedure is used in an assignement to a pro
cedure variable

4. the procedure is used as the body (starting point) of
a process.

If none of these conditions is true, the procedure is
called with a NEAR call.

Before calling a procedure,
pushed on the stack in
declared. A value-parameter
the stack g with the value
fined higher byte.

the parameters (if any) are
the same order as they are
on 1 byte occupies 2 bytes on
in the lower byte and an unde-

After the parameters are pushed on the stack, the static
link of the called procedure is pushed on the stack if its
level is higher than 0 (i.e. if the called procedure is
nested). The static link is the base pointer of the pro
cedure in which the called procedure is declared. A base
pointer is an address inside the stack, pointing to the
local data of a procedure. By means of the static link, a
nested procedure has access to the local data of its
embedding procedure.

After the parameters (if any) and the static link (if
needed) are passed, the procedure is called.

81

Memory Organization Modula-2/86

The stack layout at this point is shown in Figure F-4:

low address
I

I
high address

Figure F-4

return offset (IP)

return code segment (CS)

static link

last parameter

first parameter

local data of calling
procedure

Now the called procedure gains control and executes the
following procedure prologue:

1. The current value of BP is pushed on the stack (to be
restored upon return).

2. The new base pointer is set to the current value of
the stack pointer.

3. Space is reserved for the local data of the procedure
(if any) by reducing the current value of SP by the
size of these data.

Then, the executable statements of the procedure body are
executed.

Upon termination of the procedure body, the procedure epi
logue is executed, performing the following operations:

1. If the procedure has local data, the stack pointer is
incremented, to point to the procedure interface,
thus discarding the temporary data.

82

Hodula-2/86 Hemory Organization

2. The old UP is restored (POP BP).

3. A RET instruction is executed to pass control back to
the calling procedure. A FAR or NEAR return is used,
according to the type of call that was used to
activate the procedure. The parameters and the static
link are discarded automatically with the RET
instruction • .

Return values from functions

A function result is returned as follows, depending on the
size of the function type:

I byte in BL

2 bytes in BX

4 bytes in ES and BX.

REAL values are passed on top of the stack in the stack of
the coprocessor or of the emulator.

Note that in the current release, arrays and record type~
are not allowed as function types.

83

APPENDIX G - Object File Format

General Format

An object file is a sequence of records, each of which has
the following general format

tag (1 byte)

info
(n bytes)

checksum
(2 byt,es)

The "tag" gives the type of the record.

The "info" is the information to be read.

'l'he "checksum"
including the
checksums. For
considered as
modulo 2**16.

is the sum of all bytes in the file,
tag and the info fields, but without the

the computation of the checksum, info is
a sequence of bytes. The sum is computed

Numerical values on 2 bytes are represented with the lower
byte first, values on 3 bytes in the order : low, middle,
high.

The Name, file extension and description for each Tag are
described below:

o FormatVersion (.LNK, .LCD)

Defines the version of the object file format and the
target system. Used to check compatibility between
Compiler- Linker- Loader.

1 ProgramHeader (.LOD)

Gives number of SCModules in this program, total size
of code and data.

85

Object File Format Modula-2/86

2 SCHoduleHeader (.LNK, oLOD)

Contains name and key of a SCHodule. In addition, it
gives, for a link-file: size of code and size of
data; for a load-file: values of code and data seg
ment, relative to start of program. In both cases it
gives also the offset of procedure table (in Filled
Data).

3 ImportElement (.LNK, .LOD)

4

Gives the name and key of an imported SCHodule.
Assigns an internal number to this element, under
which it will be referenced in the fix-up records.

FilledData (.LNK)

Gives length and contents of initialized data of a
SCModule (string constants, value of OS and procedure
table with entries of exported procedures)

5 ProcedureCode (.LNK)

Gives length and contents of th~ code of a procedure.
Assigns a number to the procedure.

6 SCModlnitCode (.LNK)

7

8

86

Gives length and contents of module code of a SCHo
dule.

ModuleCode (.LOD)

Gives length and content of a complete SCModule (ini
tialized data, module code and all procedure blocks).
This allows for fast reading of the contiguous data
of one module upon loading.

SCModuleCall (.LNK)

Describes a reference to the Module Code of another
SCModule. There is exactly one such Call in a link
file; the module codes are called in a chain and the
linker has to replace the call in the last SCHodule
by NOP instructions. This reference is anonymous in
the sens that it does not specify which SCModule is
called, the order of execution is defined by the
linker.

Modula-2/86 Object File Format

9 Ref Ext Data (.LNK, .LOD)

Describes a reference to data in another SCModule.
In Link-files: ref. to any other SCModule In Load
files: ref. to a SCModule in base only. At the
described location, the specified OS has to be set.

10 RefExtCode (.LNK, .LOD)

Describes a reference to an
ment of another SCModule.
the specified CS has to be
to any other SCModule,
SCModule of base only.

11 RefExtProc (.LNK, .LOD)

object in the code seg
At the described location,
set. In Link-files: ref.
in Load-files: ref. to a

Describes a reference to an external procedure. At
the described location, the offset ot the specified
procedure has to be set. In Link-files: ref. to a
procedure in any other SCModule, in Load-files: ref.
to a proc. in the base only.

12 RefOwnData (.LOD)

Describes a reference to the own data segment.
Defines the location, where the OS is written in the
code segment. This reference is transformed into a
RefOwnCod by the linker, which is possible, since the
data segments are located immediately after the code
segments.

13 RefOwnCode (LOD)

Describes a reference to a segment of the own layer.
Since all segments of a program are contiguous and
the linker knows their sizes, these. references are
partly solved: the offset of the corres- ponding s~g
ment, relative to the code segment of the main module
is set in the fixup record. At load time, the abso
lute value of the main CS has to be added to that
offset.

14 RefOwnProc (.LNK)

Describes a reference to a procedure in the own SCMo
dule. These references are solved by the linker to
simplify the compiler (would require an additional
pass for forward ref.).

87

Object File Format Modula-2/86

15 SCModuleEnd (• LNK, • LOD)

Terminates the sequence of records v describing a
SCModule. No information- field in this record.

16 ProgramEnd (• LOD)

88

Terminates a sequence of SCModules, forming one pro
gram. No information-field in this record.

Modula-2/86 Object File Format

Syntax of Object Files

There are two kind of 'Object Files, which contain both a
subset of the record types, defined in the previous
chapter :

a) Link Files.

Output of the compiler, input for Linker or Loader.
One per separately compiled module.

b) Load Files.

Output of Linker, input for Loader. One per program,
containing a collection of modules.

Format of the different records

In the following description every box in a diagra~ stands
for one word (two bytes), except the header box that con
tains the tag. The tag always has a size of just one
byte. In special cases the number of bytes represented by
a box is indicated.

FormatVersion :

o

Object file format

Target system

Checksum

The "object file format- identifies the version of the
linker to be used for this object file.

'l'he "target system" is a code that defines the target pro
cessor and options.

The fields 'object file format' and 'target system' of the
record 'FormatVersion' are of size one byte only.

89

Object File Format Modula-2/86

ProgHeader :

1

code size

data size

number of SCMod

checksum

This record gives the size of a linked program. "code
size" is the number of paragraphs occupied by code seg
ments of all SCHodules, belonging to this program. "data
size" is the total number of paragraphs occupied by the
data segments. -number of SCMod" is the number of SCMo
dules included in this program.

Note:

1) No entry point of the program is specified. The pro
gram starts with procedure 0 of the first module.

2) The codes of all modules have to be loaded as they
are encountered in the load file. The room for the
data segments has to be reserved immediately after
the code.

SCModHeader :

90

2

SCModName
(24 bytes)

Module key
(6 bytes)

Offset of procedure
table

code size in bytes

data size in bytes

compiler internal use I

checksum

Modula-2/86 Object File Format

"SCModName" is the name of the module belonging to this
link file. A name, shorter than 24 characters is ter
minated with one Null- character, a longer name is trun
cated. The "module key" identifies the version of the
separate module (unique for every ~ompilation). It is used
to guarantee that we link together the same versions that
the compiler used for interface-checking.

"Offset of Procedure Table" gives the offset in the code
segment of a reserved area of 2 bytes per procedure. This
procedure table will be filled by the linker with the
offsets of the procedures of this module.

"code size" gives the total length of the code segment of
this module. It includes the code and all initialized
data. This information is redundant in link-files, it
allows for consistency checks and for loading unlinked
programs.

"data size" gives the total length of the code segment of
this module. The data segment contains the variables
declared at module level.

The field "internal use" is needed to compensate the
checksum of the field" "code size", which is filled at the
very end.

; 91

Object File Format Modula-2/86

ImportElement :

3

SCModName
(24 bytes)

Module key
(6 bytes)

imp SCModNr

checksum

This record describes a SCModule which is imported by this
module.

"SCModName" and "Module key" : see SCModHeader.

"imp SCModNr" is the number under which the imported SCMo
dule is referenced in the fixup records.

Note:
In load files only the referenced modules of the base
are imported. "In order not to leave holes in the
numbering, they are given new numbers by the linker.
Every module of a load file contains the complete
list of the modules imported by itself.

FilledOata :

4

length

data
"length" bytes

checksum

"data" are initialized data that will be loaded in the
code segment in the order they are encountered in the link
file. They include string constants as well as constants
generated by the compiler (value of OS, procedure table,
etc). "

"length" gives the number of bytes in the field "data".

92

t-lodula-2/86 Object File Format

ProcCode :

This record defines the code of one procedure or the ini
tialization code of an inner module.

5

procNr

entryOffset

length

code
"length" bytes

checksum

"procNr" is the number under which the procedure is refer
enced.

"entryoffset" is the entry point of the procedure, rela
tive to the first byte of its code (currently always 0).

"length" is the number of bytes contained in the "code".

93

bject File Format Modula-2/86

CModlnitCode :

'his record defines the initialization code of the current
CModule.

6

procNr=O

entryOffset

length

code
"length" bytes

checksum

'procNr" must be o. Other·fields see ProcCode.

loduleCode:

7

length

code
"length" bytes

checksum

rhis record contains the entire code segment of a SCModule
:memory image), including filled data, SCModule init code
lnd procedure codes. The "length" is rounded up to be a
~ultiple of 16 (paragraph boundary). The remaining bytes
Ln "code" are filled with zeros.

!}4

Modula-2/86 Object File Format

SCModCall:

8

reference location

checksum

Defines a call to the SCModInitCode of an imported module.·
There is exactly one such record per compilation unit.

RefExtData :

I . 9

reference location

impSCModNr

checksum

This record describes a reference to the data segment of
an imported SCModule. "reference location" is the offset
inside the code, where the linker or loader has to put the
paragraph address of the corresponding segment. This value
will be put at "reference location" (lower byte) and the
following byte (higher byte).

"impSCMod" identifies the imported SCModule referenced in
this record. Corresponds to the same field in the "Impor
tElement" record.

In load files, the "Ref Ext ••• " records describe references
to the base only.

95

Object File Format Modula-2/86

RefExtCode :

This record describes a reference to the code segment of
an imported SCModule.

10

reference location

impSCModNr

checksum

~reference location" and "impSCModNr" see RefExtData.

RefExtProc :

This record descibes a reference to a procedure in an
imported SCModule.

11

reference location

impSCModNr

procNr

checksum

"referenc~ location" is the offset inside the code, where
the linker or locater has to put the offset (relative to
the CS) of the procedure entry.

The code segment of that procedure will be set by means of
a record of type RefExtCode.

"impSCModNr" identifies the SCModule containing that pro
cedure.

"procNr" identifies the procedure inside the imported
SCModule.

If one of these two fields is 0 this record is illegal.

96

Modula-2/86 Object File Format

RefOwnOata:

12

reference location

checksum

This record describes a reference to the own data segment.

"reference location" is the offset in the code segment
where to put the value of the own os.

There is exactly one such record per link file.

RefOwnCode:

13

reference location

bias

checksum

This record describes a reference to the own code segment;
in load files only. Used for. references to other modules
in the same relocatable program.

"bias" is the offset in paragraphs of the referenced code
segment, relative to the start of the program.

"reference location" is the offset in the code segment of
current module, where the loader has to set the sum of the
paragraph address of the loaded program and the "bias".

97

Object File Format Modula-2/86

RpfOWnProc

14

reference location :

procNr

bias

checksum

This record describes a reference to a procedure in the
current module (= local procedure).

"reference location" is the offset where the linker or
loader has to put the offset (relative to the instruction
pointer) of the referenced procedure. The value of "bias"
has to be substracted from the entry address of "procNr A

to get the correct offset (fixup value).

"procNr" identifies the procedure.

SCModuleEnd :

15

checksum

ProgramEnd:

16

checksum

Modula-2/86 DOSCALL

APPENDIX H - DOSCALL

The standard procedure DOSCALL

The procedure DOSCALL must be imported from module SYSTEM.
It provides rather simple way to access the underlying
operating system from programs written in Modula-2. For
the description of each of these functions we refer to the
corresponding MS-DOS or PC-DOS Manual. The actual parame
ters of the procedures should not be too complicated. The
compiler could might easily run out of registers.

The first line is a Modula-2 procedure declaration. The
second line notes for each parameter the register(s) in
which it is passed. The type BYTEWORD (which doesn't exist
in Modula-2) means that any type compatible to BYTE or
WORD is possible for the actual parameter.

Example:

DOSCALL(15i FCBAddr:ADDRESSi VAR returnCode:BYTEWORD);
AH DS:DX AL

possible use:
VAR FCB: ARRAY(O ••• 35] OF CHARi

returnVal: CARDINAL

DOSCALL(15, ADR(FCB), returnVal)i
IF returnVal= ••• THEN

The standard procedure DOSCALL has a variable parameter
list. This parameter ,list depends on the first parameter
that must be a constant. This constant is the number of
the DOS function to be called.

The format of these functions are:

Function OH: Program Terminate

DOSCALL(OH)
AH

Function IH: Keyboard Input

99

DOSCALL

DOSCALL(lH; VAR char:BYTEWORD);
AH AL

Function 2H: Display Output

DOSCALL(2Hi char:BYTEWORD)i
AH· DL

Function 3H: Auxiliary Input

DOSCALL(3H: VAR char:BYTEWORD);
AH AL

Function 4H: Auxiliary Output

DOSCALL(4H; char:BYTEWORD);
AH DL

Function 5H: Printer output

DOSCALL(5Hi char:BYTEWORD);
AH DL

Function 6H: Direct Console I/O .
DOSCALL(6H; OFFH; VAR char:BYTEWORD:

AU DL AL

VAR ready:BOOLEAN); (input)
ZF

DOSCALL(6H: char:BYTEWORD): (output)
AH DL

Function 7H: Direct console Input without echo

DOSCALL(7H; VAR char:BYTEWORD):
AH AL

Function 8H: Console input without echo

DOSCALL(8H: VAR char:BYTEWORD):
AH AL

100

Modula-2/86

t-lodula-2/tJ6

Function 9H: Print String

DUSCALL(9Hi stringaddr:ADDRESS);
AH DS:DX

Function OAH: Buffered Keyboard input

DUSCALL(OAHi stringaddr:ADD~ESS)i
AH DS:DX

Function OBH: check standard input status

DOSCALL(OBHi VAR status:BYTEWORD)i
AH AL

DOSCALL

Function OCH: Clear standard input buffer and invoke a
standard input function

The second parameter (input funct ion) determines the form of
the parameter list. It must be one of the constants
(functions) lH, 6H, 7H, 8H or OAH.

DOSCALL(OCH; lH; VAR char: BYTEWORD);
AH AL AL

DOSCALL(OCH; 6H: VAR char: BYTEWORD);
All AL AL

VAR READY: BOOLEAN); (DL : OFFH
ZF

DOSCALL (OCH: 7H; VAR char: BYTEWORD) ;
AH AL AL

DOSCALL (OCH; 8H: VAR char: BYTEWORD);
AH AL AL

DOSCALL(OCH; OAH; stringaddr:ADDRESS;
All AL DS:DX

Function ODH: Disk reset

DOSCALL(ODH)
AH

Function DEB: Select Disk

DOSCALL(OFH; FCBaddr:ADDRESSi
AH DS:DX

implicitly)

VAR returnCode:BYTEWORD)i

101

DOSCALL

AL

FUNCTION OFH: Open File

DOSCALL(OFH; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTWORD);
AL

Function 10H: Close File

DOSCALL(10H; FCBaddr:ADDRESSi
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function IlH: Search for the first entry

DOSCALL(llH; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD)i
AL

Function 12H: Search for the next entry

DOSCALL(12H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD)i
AL

Function 13H: Delete File

DOSCALL(13H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 14H:' Sequential Read

DOSCALL(14H; FCBaddr:ADDRESSi
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function ISH: Sequential write

DOSCALL(15H; FCBaddr:ADDRESS;

102

Modula-2/66

Modula-2/86

AH DS:DX

VAR returnCode:BYTEWORD)i
AL

Function 16H: Create File

DOSCALL(1611; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 17H: Rename File

DOSCALL(17Hi FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD)i
AL

Function 19H: Current Disk

DOSCALL(19Hi VAR currDrive:BYTEWORD)i
AH AL

Function IAH: Set Disk Transfer Address

DOSCALL(IAHi DTA:ADDRESS)i
AH DS:DX

Function IBH: Allocation table information

DOSCALL(IBH; VAR FATaddr:ADDRESS;
AH DS:BX

VAR nrallocUnits, nrSectors 6

DX AL

sectSize:BYTEWORD)i
CX

Function lCH: (not implemenied)

Function 21H: Random Read

DOSCALL(21H; FCBaddr:ADDRESSi
AH DS:DX

VAR returnCode:BYTEWORD)i

DOSCALL

103

DOSCALL

AL

Function 22H: Random Write

DOSCALL(22H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 23H: File Size

DOSCALL{23H; FCBaddr:ADDRESS;
AH DS:DX
VAR returnCode:BYTEWORD);

AL

Function 24H: Se~ Random Record Field

DOSCALL{24H; FCBaddr:ADDRESS);
AH DS:DX

Function 25H: Set Interrupt Vector

Modula-2/86

DOSCALL(25H; vectorVal:ADDRESS; INTtype:BYTEWORD);
AH DS:DX AL

Function 26H: create a new program segment

DOSCALL(26H; progSegment:BYTEWORD);
Ali DX

Function 27H: Random Block Read

DOSCALL(27H; FCBaddr:ADDRESS;
AH DS:DX

VAR nrof Bytes: BY'l'EWORD;
ex

VAR returnCode:BYTEWURD)i
AL

Function 28H: Random Block Read

104

DUSCALL(28Hi FCBaddr:ADDRESSi
AH DS:DX

Modula-2/86

VAR nrofBytes:BYTEWORD;
CX

VAR returnCode:BYTEWORD);
AL

Function 29H: Parse FilenameG

DOSCALL(29H; FCBaddr:ADDRESS; mode: BYTEWORDi
AH ES:DI AL

VAR stringaddr:ADDRESSi
DS:SI

VAR returnCode:BYTEWORD)i
AL

Function 2AH: Get Date

DOSCALL

DOSCALL(2AH; VAR year:WORD; VAR monthday:WORD);
AH CX DX

Function 2BH: Set Date

DOSCALL(2BH; year:WORD; monthday:WORD;
AH CX DX

VAR returnCode:BYTEWORD);
AL

Function 2CH: Get Time

+
DOSCALL(2CH; VAR hourminute, secondmillisec:WORD)i

AH CX DX

Function 2DH: Set Time

DOSCALL(2DH; hourminute, secondmillisec:WORD;
AH ex DX

VAR returnCode:BYTEWORD)i
AL

Function 2EH: Set/Reset Verify Switch

DOSCALL(2EH; zero: BYTEWORDi onoff:BYTEWORD);
AH DL AL

105

DOSCALL Modula-2/86

Extension for DOS 2.0

Function 2FH: Get DTA

DOSCALL(2FH; VAR DTAaddr:ADDRYTEWORD;
AH AL DX

paragraphs:WORO);

Function 33H: Ctrl-Break-Check

DOSCALL(33H; mode:BYTEWORO; VAR state:BYTE);
AH AL OL

Function 35H: Get Vector

OOSCALL(35H: vector: BYTEWORO; VAR vector:ADDRESS
AH AL ES:DX

Function 36H: Get disk free space

.OOSCALL(36H; drive: BYTEWORO; VAR valid:BYTEWORO;
AH DL AX

VAR availClusters:BYTEWORO;
BX

VAR totclust:BYTBWORO;
OX

VAR bytesPerSect:BYTEWORO);
CX

Function 38H: 'Return Country dependent information

OOSCALL(38ll; buffAddr:ADDRESS; fctcode:BYTEWORD);
PS:OX

Function 39H: Create a sub-directory (MKOIR)

106

OUSCALL(39H; stringaddr:ADORBSS;
OS:OX

VAR error:WURD); error=O no error
AX,CF other values see:

table in DOS manual

Modula-2/86 DOSCALL

Function 3AH~ Remove ~ directory entry (RMDIR)

DOSCALL(3AH; stringaddr:ADDRBSS; VAR error:WORD);
AH DS:DX AX,CF

Function 3BH: Change the current directory (CHDIR)

DOSCALL(3BH: stringaddr:ADDRESS; VAR error:WORD);
AH DS:DX AX,CF

Function 3CH: Create a File

DOSCALL(3CH; stringaddr:ADDRBSS; attrib:BYTEWORD;
AH DS:DX CX

VAR handle:BYTEWORDi VAR error:WORD):
AX AX,CF

Function 3DH: Open a File

DOSCALL(3DHi stringaddr:ADDRESSi access:BYTEWORD;
AH DS:DX AL'

VAR handle:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 3EH: Close a file handle

DOSCALL(3EHi handle:WORDi VAR error:WORD);
BX AX,CF

Function 3FH: Read from a file or device

DOSCALL(3FH; handle:WORD: nrbytes:WORD:
ax CX

buffAddr:ADDRESS;
DS:DX

VAR readBytes:BYTEWORD:
AX

VAR error:WORD)i
AX,CF

Function 40H: Write to a file or device

DOSCALL(40H; handle:WORD; nrbytes:WORD:

107

DOSCALL Modula-2/86

AH BX

buffAddr:ADDRESS;
DS:DX

CX

VAR writtenBytes:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 41H: Delete a file from a specified directory

DOSCALL(41H; stringaddr:ADDRESS; VAR error:WORD);·
AH DS:DX AX,CF

Function 42H: Move file read/write pointer

DOSCALL(42H; handle:WORD; method: BYTEWORD;
AH BX AL

inHigh,inLow:WORD;
CX DX

VAR outHigh,outLow:WORD; VAR error:WORD)i
DX AX AX,CF

Function 43H: Change File Mode

DOSCALL(43H; stringaddr:ADDRESSi fctcode:BYTEWORDi
AH DS:DX AL

VAR mode:BYTEWORD; VAR error:WORD);
CX AX,CF

Function 44H: I/O control for devices

The procedure depends on the ~alue of the second
parameter that must be a constant. This parameter
determines the function to execute:

Get device info:

108

DOSCALL(44H; Oi handle:WORD;
AH AL BX

VAR device info: BYTEWORD;
DX

VAR error:WORD);
AX,CF

Nodula-2/86 DOSCALL

Set device info:

DUSCALL(44H~ I; handle:WURD~
AH AL BX

VAR device info:BYTEWURD~
DX

VAR error:WORD)~
AX,CF

Read Bytes from device control channel

DOSCALL(44H: 2; handle:WORD;
AH AL BX

nrBytes:BYTEWORD; buffAddr:ADDRESS;
CX DS:DX

VAR transferedbytes:BYTEWORD; VAR error:WORD)
AX AX,CF

Write Bytes to device control channel

DOSCALL(44H; 3; handle:WORD; nrBytes:BYTEWORD;
AH AL BX CX

buffAddr:ADDRESS;
DS:DX

VAR transferedbytes:BYTEWORD:
AX

VAR error:WORD):
AX,CF

Read Bytes from drive control channel

DOSCALL(44H; 4; drive:BYTEWORD; nrBytes:BYTEWORD;
AH AL BX CX

buffAddr:ADDRESS;
DS:DX

VAR xferredbytes:BYTEWORDi VAR error:WORD);
AX AX,CF

Write Bytes to drive control channel

109

DOSCALL Modula-2/86

DOSCALL(44Ili 5; drive: BYTEWORDi nrBytes:BYTEWORDi
AH AL BX CX

buffAddr:ADDRESS;
DS:DX

VAR xferredbytes:BYTEWORD; VAR error:WORD);
AX AX,CF

Get Input Status

DOSCALL(44H; 6; VAR status:BYTEWORD; VAR error:WORD);
AH AL AX AX#CF

Get Output Status

DOSCALL(44H; 7; VAR status:BYTEWORD; VAR error:WORD);
AH AL AX AX,CF

Function 45H: Duplicate a file handle

DOSCALL(45H; handlel:WORD; VAR handle2:BYTEWORD;
AH BX AX

VAR error:WORD);
AX,CF

Function 46H: Force a duplicate of a file

DOSCALL(46H; handlel:WORD; VAR handle2:BYTEWORDi
AH BX AX

VAR error:WORD);
AX,CF

Function 47H: Get Current Directory

DOSCALL(47H; drive: BYTEWORD; straddr:ADDRESS;
AH DL DS:SI

VAR error:WORD);
AX,CF

Function 48H: Allocate Memory

DOSCALL(48H; VAR paragraphs:BYTEWORDi
AU BX

110

Modula-2/86

VAR membase:BYTEWORD;
AX

V~R error:WORD):
AX,CF

Function 49H: Free allocated Memory

DOSCALL(49H: segaddr:ADDRES;VAR error:WORD}:
AH ES must be a AX,CF

paragraph address

DOSCALL

Fun~tion 4AH: SETBLOCK-Modify allocated memory blocks

DOSCALL(4AH; blockaddr:ADDRESS;
AH ES must be a paragr

address

VAR parzVagraphs:BYTEWORD:
aph BX

VAR error:WORD):
AX,CF

Function 4BH: Load or execute a program

DOSCALL(4BH: stringaddr:ADDRESS: paramblock:ADDRESS:
AH DS:DX ES:BX

fctval:BYTEWORD~
AL

VAR error:WORD}:
AX,CF

Function 4CH: Terminate a process(Exit)

DOSCALL(4CH: returnCode:BYTEWORD):
AH AL

Function 4DH: Retrieve the return code of a
sub-process (Wait)

DOSCALL(4DH; VAR retCode:BYTEWORD}:
AH AX

Function 4EH: Find first matching file

III

DOSCALL Modula-2/86

DOSCALL(4EHi stringaddr:ADDRESSi attribut:BYTEWORDi
AH DS:DX CX

VAR error:WORD)i
AX,.cF

Function 4FH: Find next matching file

DOSCALL(4FHi VAR error:WORD)i
AH AX,CF

Function 54H: Get Verify state

DOSCALL(54Hi VAR state:BYTE)i
AH AL

Function 56H: Rename a file

DOSCALL(56Hi fromstring,tostring:ADDRESS;
AH DS:DX ES:DI

VAR error:WORD):
AX,CF

Function 57H: Get/Set a file's date and time

112

DOSCALL(57Hi handle:WORD: mode: BYTEWORD;
AH BX AL

VAR date,time:BYTEWO~D;
DX CX

VAR error:WORD)i
AX,CF

Modula-2/86 System Configuration

APPENDIX I - System Configuration

Configuration for display and keyboard

The Modula-2/86 system comes with modules 'Display' and
'Keyboard' configured for the standard IBM PC and DOS ver
sion 25 If this is your system configuration, then there
is no need for any adaption. If your system configuration
is different, you may adapt these modules. In general,
these differences should not affect the operation of the
compiler and linker very much.

For this purpose you have received with your Modula-2/86
system the sources of these two modules. Look on the sys
tem diskette for the files 'DISPLAY.*' and 'KEYBOARD.~'.
You should find there the definition modules (extension
DEF) as well as the implementations (extension MOD).
Study both of them carefully.

When you know which changes you need to make, take a copy
of the implementation module(s) you want to change. After
you have made the changes, recompile the implementation
module(s). The compiler should find the necessary symbol
files as usual. Do not change or recompile the definition
modules because this would produce a new symbol file and
would introduce incompatibilities with other parts of the
Modula-2/86 ~ystem.

After this you can replace the old link filets) (extension
LNK) with the new ones. Do not destroy the original l'ink
filets)! Keep a copy of the original(s) in case something
has gone wrong. If you have a hard disk and you are using
the recommended disk organization, you should put the new
link files into the directory 'M2LIB

Now use a small test program that reads from the keyboard
and writes to the screen in order to check out the modi
fied version(s). The test program should not import the
modules 'Display' or 'Keyboard' directly. It can use the
regular read and write procedures from module 'Terminal'
or 'InOut'. ~hese modules perform reading and writing
through 'Keyboard' and 'Display' respectively.

If you want any existing program to use the new keyboard
and/or display implementation you have to re-link these
programs. This is also true for the compiler, linker and
debugger of the Modula-2/86 system. The debugger in par
ticular uses some of the special codes as defined in the
display module.

113

System Configuration Modula-2/86

Re-link these programs only when your are sure that your
new version works fine. Keep a backup copy of the files
'COMP.LOO' (on the compiler diskette), 'LINK.LOO' and
'OBUG.LOO' (on the linker/debugger diskette). Your system
diskette contains the link files 'COMP.LNK', 'LINK.LNK'
and 'OBUG.LNK' that are needed for re-linking. Take a copy
of these files and re-link them in the ordinary way. ,Try
the new compiler, linker and debugger.

When everything is fine, you can replace the old versions
of 'COMP.LOO', 'LINK.LOO' and 'OBUG.LOO' with the new
ones. If your system has a hard disk and you are using the
re,commended' disk organization, then you should copy the
new load files to the directory 'M2LOO'.

Configuration of the compiler user interface

The Modula-2/86 system allows you to configure the com
piler for the default settings of the compiler options. It
is strongly recommended to get first familiar with the
compiler and its options, before attempting this step. The
section on compiler options explains the use and the ini
tial default settings of these options.

If you want to change the default settings of the compiler
options, you have to modify the implementation of the com
piler module 'CompPara'. Check the sys~em diskette for
the files DCOMPPARA.*'. You can also find a copy of the
definition module 'CompPara' at the end of this appendix.
Study the definition and implementation modules.

When you have decided what to change, take a copy of the
implementation module 'COMPPARA.MOO'. Do nqt destroy the
original version. Also, you must not change or recompile
the definition module. This would produce a new symbol
file and introduce incompatibilities with other parts of
the compiler. You would not be able to re-link the com
piler properly because of version conflict errors. Change
and recompile only the implementation module. For the re
compilation you need to take a copy of the symbol file
'COMPPARAASYM', which is also contained on the system
diskette. Copy it to the diskette or directory where you
already have a copy of 'COMPPARA.MOO'.

After successfull compilation of the new implementation
m09ule of 'CompPara', you must relink the compiler overlay
'M2COMP'o You will find all the ne~essary map and link
files on the system diskette. Copy them to the diskette
or directory where you have already the link file

114

Modula-2/86 System Configuration

'COMPPARA.LNK'. Copy the following files:

- COMP.MAP
- COMPFILE.LNK
- PUBLIC.LNK
- M2COMP.LNK

Now you can re-link 'M2COMP Q
• You must link it as an over

lay to 'COMP'. See the chapter on the linker for informa
tion on linking overlays. Specify wM2COMpo as master file
to be linked, and use the linker option o/B' to indicate
that you are linking an overlay. Specify 'COl-tP.MAP' as
the base file for the linkage.

Be sure to keep a copy of the old version of 'H2COMP. 1,00'
before you replace it with the new one. If you are working
with diskettes make first a copy of your compiler diskette
and make the replacement and the testing with the copy.
Now you can replace the old version of 'M2COMP.LOO' with
the new one. If your system has a hard disk and you are
using the recommended disk organization, you should copy
the new load file 'M2COMP.LOO' to the directory 'M2LOO'.

115

System C~nfiguration

The library module CompPara

DEFINITION MODULE CompPara;

EXPORT QUALIFIED
CPpageLength, CPpageWidth,
CPffAtEnd, CPffAtBegin,
CPheader, CPdate,
CPfooter, CPfooterText,
CPpriorityLevels,

CPRTSfunctVector,

CPemulator,

CPinteractiv,
CPquery, CPautoquery,
CPdebug, CPversion,
CPlister, CPerrorLister,
CPafterPassl, CPafterPass2,
CPstacktest, CPrangetest,

CParithmetictest;

VAR

Modula-2/86

~isting definition

interrupt system
definition: 8259A
interrupt vector
to access RTS
default settings
of compiler options

time of listing gen.
default settings of
program-source options

the following variables are used to define the
format of the listing generated by the compiler:

CPpageLength,
number of lines per page : initial value is 60
valid range: 40 •• 65535 (if out of range: 60 is taken)

CPpageWidth: CARDINALi
number of characters per line initial value is 79
valid range: 50 •• 150 (if out of range: 79 is taken).

the next two parameters are used to define the
page eject

CPffAtEnd: BOOLEAN;
defines whether a formfeed at last character
is generated or not: initial value is TRUE

CPffAtBeg~n: BOOLEAN;
defines whether a formfeed at first character
is generated or not: initial value is FALSE

the next two parameters define the header of
each page

CPheader: BOOLEAN;

116

Modula-2/86 System Configuration

defines whether a header line is generated on each
page or not: initial value is TRUE

CPdatc: BOOLEAN;
defines whether date in headerline is generated
or not: initial value is FALSE

a header line has the following format:
Modula-2/86 filename.ext Date Page n

c.g.
Modula-2/86 COMPPARA.DEF Nov 16'83 Page 1

the next two parameters define the footer of each
page

CPfooter: BOOLEAN;
defines whether a footerline is generated on each
page or not: initial value is FALSE

CPfooterText: ARRAY [0 •• 149j OF CHAR;
string of pagewidth characters that defines the

footer line
normally used for Copyright text: initially an

empty string

definition of interrupt system: number of priority
levels

CPpriorityLevels: CARDINAL;
initial value of distributed version is 8:
defined by the (8259A) interrupt controller(s)

definition of interface to Run-Time-Support system

CPRTSfunctVector: CARDINAL;
defines the interrupt vector to acces the RTS
RTS: Runtime Support: Assembley part of Modula-2/86
System normally 228: may be only changed if RTS
is changed

the following boolean variable defines whether
code for an 8087 coprocessoror an 8087 emulator
is generated by the compiler

CPemulator: BOOLEAN; initial value is FALSE

the following options define the interactive
behavior of the compiler

117

System Configuration Modula-2/86

CPinteractiv: BOOLEAN; initial value is TRUE
whether compiler may be stopped by typing a key

CPquery: BOOLEAN; initial value is FAL5E
whether compiler asks for the symbol files of
the imported modules or tries to find them by
the default strategy:
build filename from module name by taking
the 8 first characters and the extension 'SYM'

CPautoquery: BOOLEAN; initial value is TRUE
whether compiler falls automatically in query mode
if it didn't find the file by the default mechanism

CPdebug: BOULEAN; initial value is TRUE
whether compiler generates a reference file
that would be used by the debugger, or not

CPversion: BOOLEAN; initial value is FALSE
whether compiler displays version info or not

CPlister: BOOLEAN; initial value is FALSE
whether compiler generates a listing file or not

CPerrorLister: BOOLEAN: initial value is TRUE
whether compiler generates automatically an
error listing if errors occured or not

moment of listing generation in case of errors

if both variables are set to FALSE the listing
will be generated after pass3
the functions of the different passes are:
passl checks syntactic of program
pass2 checks declaration parts (allocation)
pass3 checks bodys (compatibility test)

CPafterPassl: BOOLEAN; initial value: TRUE
whether'compiler goes to lister if error detected
in passl and terminates compilation, or not

CPafterPass2: BOOLEAN: initial value: FALSE

118

whether compiler goes to lister if error detected
in pass2 and terminates compilation, or not

the following boolean variables are used to define
the default setting of the corresponding testcode
options:

TRUE means: default is '+':
FALSE means: default is '-'

Modula-2/86 System Configuratio.

CPstacktest: BOOLEAN:
for option 's' : initial value is TRUE

'CPrangetest: BOOLEAN;
for option 'R' : initial value is TRUE

CParithmetictest: BOOLEAN;
for ,option "f' : initial value is TRUE

END CompPara.

119

Modula-2/86 Library definitions

1. APPENDIX J - Library definitions

DEFINITION MODULE ASCII;

Symbolic constants for non-printing ASCII characters·

EXPORT QUALIFIED

nul g soh, stx, etx v eot g enq, ack, bel,
bs, ht, If, vt, ff, cr, so, si,
dIe, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
del;

CONs'r

nul OOC; soh OlC; stx 02C; etx 03C;
eot 04C; enq 05C; ack 06C; bel 07C:
bs lOCi ht llC; If 12C; vt 13C;
ff 14C; cr 15C; so 16C; si 17C;
dIe 20C; dcl 21e: dc2 22C; dc3 23C;
dc4 24C; nak 25C: syn 26C; etb 27C;
can 30e; em 31C: sub 32C; esc 33C;
fs 34C; gs 35C; rs 36Ci us 37C;
del 177C;

END ASCII.

121

Library definitions Modula-2/86

DEFINITION MODULE CardinalIO;

Terminal input/output of CARDINALs in decimal and hex

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED

ReadCardinal, writeCardinal, ReadHex, WriteHexi

PROCEDURE ReadCardinal (VAR c: CARDINAL);

- Read an unsigned decimal number from the terminal.

out: c the value that was read.

The read terminates only on ESC 6 EOL, or
terminator must be re-read, for
Terminal.Read.

blank, and
example

the
with

If the read encounters a non-digit, or a digit 'which would
cause the number to exceed the maximum CARDINAL value, the
bell is sounded and that character is ignored. No more
than one leading '0' is allowed.

PROCEDURE WriteCardinal (c: CARDINAL; w: CARDINAL);

- Write a CARDINAL in decimal format to the terminal.

in: c
w

value to write,
minimum field width.

The value of c is written, even if it takes more than w
digits. If it takes fewer digits, leading blanks are out
put to make the field w characters wide.

PROCEDURE R£!adHex (VAR c: CARDINAL);

]22

Modula-2/H6 Library definitions

- Read a CARDINAL in hexadecimal format from the terminal.
[see ReadCardinal above]

PROCEDURE WriteHex (c: CARDINAL; digits: CARDINAL);

- Write a CARDINAL in hexadecimal format to the terminal.
lsee WriteCardinal above]

END CardinalIO.

123

Library definitions l-Iodula-2/86

DEFINITION MODULE Conversions;

convert from INTEGER and CARDINAL to string

Derived from the Lilith Modula-2.system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED
ConvertOctal, ConvertHex,
ConvertCardinal, Convertlnteger;

PROCEDURE
ConvertOctal(num, len: CARDINAL;

VAR str: ARRAY OF CHAR);

- Convert number to right-justified octal representation

in: value to be represented, num
len
str

minimum width of representation,
out: result string. .

If the representation of 'num' uses fewer than 'len'
digits, blanks are added on the left. If the representa
tion will not fit in 'str', it is truncated on the right.

PROCEDURE ConvertHex(num, len:
VAR str:

CARDINAL;
ARRAY OF CHAR);

- Convert number to right-justified hexadecimal represen
tation. [see ConvertOctal]

PROI:.;EDURE
ConvertCardinal(num, len: CARDINAL:

VAR str: ARRAY Of' CHAR):

Convert a CARDINAL to right-justified decimal

124

Modula-2/86 Library definitions

representation. Lsee ConvertOctalJ

PROCEDURE
ConvertInteger(num: INTEGER; len: CARDINAL;

VAR str: ARRAY OF CHAR);

- Convert an INTEGER to right-justified decimal represen
tation. [see ConvertOctall Note that a leading I_I is
generated if num < 0, but never a '+1.

END Conversions.

125

Library definitions Modula-2/86

DEFINITION MODULE DiskDirectory;

Interface to directory functions of the underlying OS

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED.
CurrentDrive, SelectDrive,
CurrentDirectory, ChangeDirectory,
MakeDir, RemoveDir,
ResetDiskSys, ResetDrive;

PROCEDURE CurrentDrive (VAR drive: CHAR):

- Returns the current default drive.

out: drive the default drive, given in character format.

PROCEDURE SelectDrive (drive: CHAR: VAR done: BOOLEAN):

- Set default drive.

in: drive name of drive to make default, specified
. in. char format.

out: done TRUE if operation was successful.

The default drive will be used by all routines referring
to DK:

PROCEDURE
CurrentDirectory (drive: CHAR;

VAR dir: ARRAY OF CHAR):

- Gets the current directory for the specified drive.

126

Modula-2/06 Library definitions

in: drive

out: dir

oe for the current drive,
Ie for drive "A", etc.

current directory for that drive.

Under DOS 1.1, dir[O] will be set to nul (OC).

PROCEDURE
ChangeDirectory (dir: ARRAY OF CHAR;

VAR done: BOOLEAN);

- Set the current directory

in: dir

out: done

drive and directory path name.

TRUE if successful; FALSE if the
directory does not exist.

Under DOS 1.1, this function has no effect and 'done' is
FALSE.

PROCEDURE MakeDir (dir: ARRAY OF CHAR;
VAR done: BOOLEAN);

- Create a sub-directory

in: dir

out: done

drive, optional pathname and name of
sub-directory to createc

TRUE if successful; FALSE if path or
drive does not existo

Under DOS 1.1, this function has no effect and 'done' is
FALSE.

PROCEDURE RemoveDir (dir: ARRAY OF CHAR;
VAR done: BOOLEAN);

127

Library definitions Modula-2/86

- Remove a directory

in: dir drive and name of the sub-directory
to remove.

out: done: TRUE if successfuliFALSE if directory
does not existo

The specified directory must be empty or the procedure
returns FALSE. Under DOS l~l, this function has no effect
and 'done' is FALSE.

PROCEDURE ResetDiskSYSi
- MS-DOS disk reset

PROCEDURE ResetDrive (d: CHAR): CARDINALi

- This function has no effect and always returns 255. It
.is part of this definition module for reasons of compati
bility with other implementations.

END DiskDirectory.

128

Modula-2/86 Library definitions

DEFINITION MODULE DiskFiles;

Interface to disk file functions of the underlying os.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

FROM FileSystem IMPORT File;

EXPORT QUALIFIED InitDiskSystem,
FileProc, DiskDirProc;

PROCEDURE InitDiskSystem;

- Initialize mediums for further disk file operations

Disk-

This procedure has to be imported by FileSystem. This has
the side-effect, that this module is referenced and will
therefore be linked to th~ user program.

PROCEDURE DiskFilePROC (VAR f: File);

- low-level interface for disk operations within a file

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.

PROCEDURE DiskDirProc (VAR f: File;
name: ARRAY OF CHAR);

- low-level interface for disk operations within a direc
tory

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.

129

Library definitions Modula-2/86

END DiskFiles.

130

Modula-2/86 Library definitions

DEFINITION MODULE Display;

Low-level Console Output

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.
[Private module of the Modula-2 system]

EXPORT QUALIFIED Write:

PROCEDURE Write (ch: CHAR);

- Display a character on the console.

in: ch character to be displayed.

The following codes are interpreted:
System.EOL (36C) go to beginning of next line
ASCII.ff (14C) clear screen and set cursor home
ASCII.del (177C) erase the last character on the

ASCII.bs
ASCII.cr
ASCII.lf

(IOC)
(15C)
(12C)

left
move I character to the left
go to beginning of current line
move I line down, same column

Write uses direct console I/O.

END Display.

131

Library definitions Modula-2/86

DEFINITION MODULE FileMessage;

Write file status/response to the terminal

FROM FileSystem IMPORT Response;

EXPORT QUALIFIED WriteResponse;

PROCEDURE WriteResponse (r: Response);

- Write a short description of a FileSystem response on
the terminal.

in: r the response from some FileSystem
operation.

The actual argument for Irl is typically the field message
is up to 32 characters long.

END FileMessage.

132

Modula-2/86 Library definitions

DEPINITION MODULE FileNames;

Head a file specification from the terminal.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED FNParts, FNPartSet, ReadFileName:

TYPE FNParts = (FNDrive, FNPath, FNName, FNExt);
FNPartSet = SET OF FNParts;

PROCEDURE
ReadFileName(VAR resultFN: ARRAY O'F CHARi

defaultFN: ARRAY OF CHAR);
VAR ReadlnName: FNPartSet)i

- Read a file specification from terminal.

in: defaultFN default file specification,

out: resultFN
ReadlnName

the specification that was accepted.
which parts are in specification

Reads until a <cr>, blank, <can>, or <esc> is typed.
After a call to ReadFileName, Terminal.Read must be called
to read the termination character. The format of the
specifications depends on the host operating system.

END FileNames.

133

Library definitions Nodula-2/86

DEFINIPION MODULE FileSystem;

File manipulation routines

Derived from the Modula-2 system developed by the group of
Prof. N. Wirth, ETH Zurich, Switzerland.

FROM SYS'l'EM IMPORT ADDRE,SS, WORD;

EXPORT QUALIFIED
file operations:

File, Response, Command,
Create, Close, Lookup, Rename, Delete,
SetRead, SetWrite, Set~odify, SetOpen,
Doio, SetPos, GetPos, Length,

Streamlike I/O:
Flag, FlagSet,
Reset, Again,
ReadWord, ReadChar, ReadByte, ReadNBytes,
WriteWord, WriteChar, WriteByte, WriteNBytes,

Medium Handling:
FileProc, DirectoryProc,
MediumType, CreateMedium, RemoveMedium,

FileNameChari

TYPE MediumHint = CARDINAL;
- medium index used in DiskFiles

MediumType = ARRAY [0 •• 2] OF CHAR;
- medium name (A, B •••)

Flag (er, ef, rd, wr, ag, txt);
- status flag for file operations

er = error occured, ef = end-of-file reached, rd =, in read
mode, wr in write mode, ag = "Again" has been called
after last read, txt = text-file (the last access to the
file was a 'WriteChar ' or 'ReadChar ').

134

FlagSet SET OF Flag;
- status flag set

Response = (done, notdone, notsupported,
callerror, unknownmedium,
unknownfile, paramerror,
toomanyfiles, eom,

[.\odula-2/B6 Library definitions

userdcverror);
- result of u file operation

Command (create, close, lookup, rename, delete,
sctread, setwrite, sctmodify,
setopen, doio, setposr getpos,
length) ;

- con~ands passed to DiskPiles

Huff Add = POINTBH 'fO ARRAY [0 •• OFFFEH] OF CHAR;
- file buffer pointer type

File RECORD
bufa: Buff Add;

Buffer Address
buflength: CARDINAL;

size of buffer in bytes. In the
current release
it is always a multiple of 128

validlength: CARDINAL;
Number of valid bytes in the buffer.

bufind: CARDINAL;
Byte-Index of current position in
the buffer

flags: FlagSet; status of the file
eof: BOOLEAN;

TRUE, if last access was past end of
file

res: Response;
result of last operation

lastRead:CARDINAL;
the last read word or byte (char)

mt: MediumType;
selects the driver that supports
that file

fHint: CARDINAL;
internally used by the device-driver

mHint: MediumHint;
internally used by medium-handler

CASE com: Command OF
lookup: new: BOOLEAN;

I setpos, getpos, length: highpos,
lowpos: CARDINAL;

END;
END;

- file structure used for bookkeeping
by DiskFiles

135

Library definitions Modula-2/86

PROCEDURE
Create (VAR f: File; mediumName: ARRAY OF CHAR);

- create a temporary file

in: mec1iumName name of medium to create file on,
in char format.

out: f initialized file structure

A t.emporary file is characterised by an empty name. 'fo
make the file permanent, it has to be renamed with a non
empty name before closing it. For subsequent operations
on this file, it is referenced by "f".

PROCEDURE Close (VAR f: File);

- Close a file

in: f structure referencing an open file

out: f the field f.res will be set appropriately.

Terminates the operations on file "f". If "f" is a tem
porary .file, it will be destroyed, whereas a file with a
non-empty name remains on its medium and is accessible
through "Lookup". When closing a text-file after writing,
the end-of-file code 32C is written on the file (HS-DOS
and CP/M convention).

PROCEDURE Lookup (VAR f: File; filename: ARRAY OF CHAR;
newFile: BOOLEAN);

- look for a file

in: filename
newFile

out: f

drive and name of file to search for
TRUE if file should be created if

not found

initialized file structure; f.res
will be set appropriately.

Searches the medium specified in "filename" for a file

136

Modula-2/86 Library definitions

that matches the name and type given in "filename". If
the file is not found "and "newFile" is TRUE, a new (per
manent) file with the given name and type is created. If
it is not foun<:l and "newFile" is FALSE, no action takes
place and "notdone" is returned in the result field of
"f".

PROCEDURE Rename (VAR f: File;
newname: ARRAY OF CHAR);

- rename a file

in: f structure referencing an open file

out:

newname filename to rename to, with device:
name.type specified

f file name in f will be changed and the
f.res, field will be set appropriately.

The medium on which the files reside can not be changed
with this command. The medium name inside "newname" has
to be the old one.

PROCEDURE Delete (name: ARRAY OF CHAR;
VAR f: File);

- delete a file

in: name name of file to delete,
dev:name.type specified

out: f the result field f.res
appropriately.

with

will be

PROCEDURE ReadWord (VAR f: File; VAR w: WORD);

set

- Returns the word at the current position in f

137

Library definitions Modula-2/86

in:

out:

f

w
f

structure referencing an open file

word read from file
the result field f.res will be set
appropriately.

the file will be positioned at the next word when the read
is done.

PROCEDURE WriteWord (VAR f: File; w: WORD);

- Write one word to a file

in:

out:

f
w

f

structure referencing an open file
word to write

the field f.res will be set appropriately.

PROCEDURE ReadChar (VAR f: File; VAR ch: CHAR);

- Read one character from a file

in:

out:

f

ch
f

~tructure referencing an open file

charatcter read from file
the result field f.res will be set
appropriately.

the file will be positioned at the next character when the
read is done.

PROCEDURE WriteChar (VAR f: File; ch: CHAR);

- Write one character to a file'

in:

13l:i

f
ch

structure referencing an open file
character to write

Nodula-2/86 Library definition

out: f the result field f.res will be set
apporopriately.

PROCEDURE ReadByte (VAR f: File; VAR b: CHAR);

- Read one byte from a file

in:

out:

f

b
f

structure referencing an open file

byte read from file
the result field f.res will be set
appropriately.

the file will be positioned at the next byte when the rea
is completed.

PROCEDURE WriteByte (VAR f: File; b: CHAR);

- Write one byte to a file

in:

out:

f
b

f

structure referencing an open file
byte to write

the result field f.res will'be set
appropriately.

PROCEDURE
ReadNBytes (VAR f: File; bufPtr: ADDRESS;

requestedBytes: CARDINAL;
VAR read: CARDINAL);

-Read a specified number of bytes from a file

in: f structure referencing an open
.file

bufPtr pointer to buffer area to read
bytes into

requestedBytes number of bytes to read

13

Library definitions Modula-2/86

out: bufPtr~

f

read

bytes read from file
the result field f.res will be
set appropriately.
the number of bytes actually read

the file will be positioned at the next byte after the
requested string.

PROCEDURE
WriteNBytes (VAR f: File; bufPtr: ADDRESS;

requestedBytes: CARDINAL;
VAR written: CARDINAL);

- Write a specified number of bytes to a file

in: f structure referencing an open file

out:

bufPtr pointer to string of bytes to write
requested Bytes number of bytes to write

f

written

the result field f.res will be
set appropriately.
the number of bytes actually written

PROCEDURE Again (VAR f: File);

- returns a character to the buffer to be read again

in: f structure referencing an open file

out: f the f.res field will be set appropriately.

This should be called after a read operation only (it has
no effect otherwise). It prevents the subsequent read
from reading the next element; the element just read
Lefore will be returned a second time. Multiple calls to
Again without a read in between have the san~ effect as
one call to Again. The position in the file is un~0fined
after a call to Again (it is defined again ~fter the next
read operation).

140

Hodula-2/B6 Libr.ary definitions

PROCEDURE'SetRead (VAR f: File):

- Set the file in reading-state, without changing the
current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetRead, the current position must be before
the eof. In reading-state, no writing is allowed.

PROCEDURE SetWrite (VAR f: File);

-Sets the file in writing-state, without changing the
current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetWrite, the current position must be a
legal position in the file (including eof). In writing
state, no reading is allowed, and a write always takes
place at the eof. The current implementation does not
truncate the file.

PROCEDURE SetModify (VAR f: File);

- Sets the file in modifying-state, without changing the
current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetModify, the current position must be
before the eof. In modifying-state, reading and writing
are allowed. Writing is done at the current position,
overwriting whatever element is already there. The file
is not truncated.

141

Library definitions 11odula-2/86

PROCEDURE SetOpen (VAR f: File);

- Set the file to opened-state, without changing the
current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

The buffer content is written back on the file,
file has been in writing or modifying status.
buffer content is undefined. In opened-state,
reading nor writing is allowed.

PROCEDURE Reset (VAR f: File);

if the
The new
neither

- Set the file to opened state and position it to the top
of file.

in:

out:

f

f

structure referencing an open file

f.res will be set appropriately.

PROCEDURE SetPos (VAR f: File; high, low: CARDINAL):

- Set the current position in file

in: f structure referencing an open
l1igh high part of the byte
low low part of the byte offset

out: f f.res will be set appropriately.

The file will be positioned (high*2 A I6 +low) bytes
top of file.

142

file
offset

from

Nodul~-2/H6 Library definitions

PRUCEOURE GetPos (VAR f: File; VAR high, low: CARDINAL);

- Return the current byte position in file

in:

out:

f

high
low

structure referencing an open file

high part of byte offset
low part of byte offset

The actual position is (high*2 A l6 +low) bytes from the top
of file.

PROCEDURE Length (VAR f: File; VAR high, low: CARDINAL);

- Return the length of the file in bytes.

in:

out:

f

high
low.

structure referencing an open file.

high part of byte offset
;pw part of byte offset

The actual length is (high*2 A 16 +low) bytes.

PROCEDURE Doio (VAR f: File);

Do various read/write operations on a file

in: f structure referencing an open file

out: f f.res will be set appropriately.

The exact effect of this command depends on the state of
the file (flags):

opened
reading

writing

NOOP.
reads the record that contains
the current byte from the file.
The old content of the buffer
is not written back.
the buffer is written back. It
is then assigned to the record,
that contains the current
position. Its content is not

143

Library definitions Modula-2/86

modifying

changed.

the buffer is written back and
the record containing the
current position is read.

Note that 'Doio' does not need to be used when reading
through the 'stream-like' "I/O routines. Its use is lim
ited to special applications.

PROCBDURE FileNameChar (c: CHAR): CHAR;

- Check the character c for legality in a MS-DOS filename.

in: c

)ut:

character to check

OC for illegal characters and c
otherwise; lowercase letters are
transformed into uppercase letters.

rYPB FileProc = PROCEDURE (VAR File);

- Procedure type to be used for internal file operations

procedure of this type will be ~alled for functions:
setread, setwrite, setmodify, setopen, doio,
setpos, getpos, length, setprotect, getprotect,
setpermanent, getpermanent.

)irectoryProc = PROCEDURE (VAR File, ARRAY OF CHAR);

. Procedure type to be used for operations on an entire
:ile

procedure of this type will be called for functions:
create, close, lookup, rename, delete.

44

Modula-2/86 Library definition!

PROCEDURE CreateMedium (mt: MediumType:
fproc: FileProc:
dproc: DirectoryProc:
VAR done: BOOLEAN);

- Install the medium "mt" in the file system

in: mt medium type to install
fproc
dproc

procedure to handle internal file operationf
procedure to handle operations on an
entire file

out: done TRUE if medium was successfully installed.

Before accessing or creating a file on a medium, thif
medium has to be announced to the file system by means oj
the routine GreateMedium. FileSystem calls "fproc" an~
"dproc" to perform operations on a file of this medium.
Up to 24 mediums can be announced.

PROCEDURE RemoveMedium (mt: MediumType;
VAR done: BOOLEAN);

- Remove the medium "mt" from the file system

in: mt medium type to remove

out: done true if medium was successfully removed

Attempts to access a file on this medium result in ar
error (unknownmedium).

END FileSystem.

145

Library definitions Modula-2/86

DEFINITION MODULE Inbut;

Standard. high-level formatted input/output

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

FROM SYSTEM IMPORT WORD;
FROM FileSystem I~lPORT File;
EXPORT QUALIFIED

EOL, Done, in, out, termCH,
OpenInput, OpenOutput, CloseInput, CloseOutput,
Read, ReadString, ReadInt, ReadCard, ReadWrd,
Write, WriteLn, WriteString, WriteInt,
WriteCard, WriteOct, WriteHex, WriteWrd;

CONST EOL = 36C;

VAR Done: BOOLEAN;
Done is set by several procedures, TRUE if the

* operation was successful, FALSE otherwise.
termCH: CHAR;

terminating character from ReadString, ReadInt,
ReadCard.

in, out: File;
The currently open input and output files,
respectively.

* Use for exceptional cases only.

PRO~EDURE Openlnput(defext: ARRAY OF CHAR);

- Accept a file name from the terminal and open it for
input.

in: defext default filetype or lextension l •

If thb file name that js read ends with 1.1, then 'defextl
is appended to the file name. If Openlnput succeeds, Done
= THUE and subsequent input is taken from the file until
CloseInput is called.

146

Modula-2/86 Library definitions

PROCEDURE OpenOutput(defext: ARRAY OF CHAR);

- Accept a file name from the terminal and open it for
output.

in: defext default filetype or 'extension'.

If the file name ends in v.', 'defext' is appended. If
OpenOutput succeeds, Done = TRUE and subsequent output is
written to the file until CloseOutput is called.

PROCEDURE CloseInput;

- Close current input file and revert to terminal for
input.

PROCEDURE CloseOutput;

- Close current output file and revert to terminal for
output.

PROCEDURE Read(VAR ch: CHAR);

- Read the next character from the current input.

out: ch the character read. (EOL for end-of-line.)

Done TRUE unless the input is at end of file.

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);

- Read a string from the current input.

147

Library definitions Modula-2/86

s the string that was read, excluding terminator.

Leading blanks are accepted and thrown away, then charac
ters are read into IS' ~ntil a blank or control character
is entered. ReadString truncates the input string if it
is too long for os'. The terminating character is left in
'termCH'. If input is from the terminal, BS and DEL are
allowed for editing.

PROCEDURE ReadInt(VAR x: INTEGER);

- Read an INTEGER representation from the current input.

out: x the value read.

ReadInt is like ReadString, but the string is converted to
an INTEGER value if possible, using the syntax: ["+"1"-"]
digit { digit}. Done = TRUE if some conversion took
place.

PROCEDURE ReadCard(VAR x: CARDINAL);

- Read an unsigned decimal number from the current input.

out: x the value read.

ReadCard is like Readlnt, but the syntax is: digit { digit
J.

PHUCEUUHE HeadWrd (VAl{ \v: WOIW);

- Head a vlOHD value from tlw current input.

out: the value recld.

Done is 'l'HUE if a \'JUHD W(lS read success 1'u J 1 y. (A \vORD
cannot be read f rom the terminal.) Note t.lJat the lIIeaning
of WORD is system-dependent.

14B

Hodula-2/U6 Library dcfinitiol

PROCEDURE Write(ch: CHAR);

- Write a character to the current output.

in: ch character to write.

PROCEDURE WriteLn; terminate line

- Write a new-line sequence to the current output.

PROCEDURE WriteString(s: ARRAY OF CHAR);

- Write a string to the current output.

in: s string to write.

PROCEDURE WriteInt(x: INTEGER; n: CARDINAL);

- Write an i~teger in right-justified decimal format.

in: x
n

value to
minimum field width.

be output

The decimal representation of 'x' (including '-' if x i:
negative) is output, using at least n characters (but mor~
if needed). Leading blanks are output if necessary.

PROCEDURE WriteCard(x,n: CARDINAL);

14 ~

Library definitions Modula-2/86

- Output a CARDINAL in decimal format.

in: x
n

value to
minimum field width.

be

The decimal representation of the value 'x' is
using at least ncharacters (but more if needed).
blanks are output if necessary.

PROCEDURE WriteOct(x,n: CARDINAL):

- Output a CARDINAL in octal format.

in:

aboveJ

x
n

value
minimum

to
field

be
width. [see

PROCEDURE WriteHex(x,n: CARDINAL);

- Output a CARDINAL in hexadecimal format.

in: x
n

value to be
minimum field width.

output,

output,
Leading

output,
WriteCard

output,

Four uppercase hex digits are written, with leading blanks
if n > 4.

PROCEDURE WriteWrd(w: WORD);

- Output a WORD

in: w WORD value to be output.

Note that the meaning of WORD is system-Qependent, and
that WORDs cannot be written to the terminal.

END InOut.

150

Hodula-2/t!6 Library definition:

UBFINITIUN MOUULE Keyboard:

Uefault driver for terminal input.

Derived fromtlw I,jUth Modula-2 system developed. by thE
group of Prof. N. Wirth at Erfll burich, Switzerland
lPrjvat.e module of the Hodula-2 systemJ

EXPUHT QUALIFIED RClId, KeyPressed:

PROCEDURE Read (VAH ch: CHAR):

- Read a character from the keyboard. out: ch

If necessary, Read waits for a character to be entered,
Characters that have been entered are returned immedi
ately, with no editing or buffering.

- CTRL-C terminates the current program
- ASCII.cr is transformed into System.EOL

PROCEDURE KeyPressed (): BOOLEAN:

- Test if a character is available from the keyboard;

END Keyboard.

15J

Library definitions Hodula-2/86

DEFINITION MODULE MathLibO;

Real Math Functions

From 'Programming in Modula-2' by N. Wirth, 2nd cd.

EXPOR'l' QUAI.IFIED
sqrt, exp, In, sin, cos, arctan, real, entier;

PROCEDURE sqrt(x: REAL): REAL;

x must be positive

PROCEDURE exp(x: REAL): REAL;

returns eAx where e = 2.71828 ••

PROCEDURE In(x: REAL): REAL:

returns natural logarithm with base e
where x must be positive and not zero

PROCEDURE sin(x: REAL): REAL:

2.71828 ••

returns sin(x) where x is given in radians

152

of x:

Modula-2/86 Library definitions

PROCBDURE cos(x: REAL): REALi

returns cos (x) where x is given in radians

PROCEDURE arctan(x: REAL): REALi

returns arctan(x) in radians

PROCEDURE real(x: INTEGER): REAL;

type conversion from INTEGER to REAL

PROCEDURE entier(x: REAL): INTEGER;

returns the integral part of x. If this cannot be
represented in an INTEGER, the result is undefined.

END MathLibO.

153

Library definitions Modula-2/86

DEFINiTION MODULE NumberConversion;

Cqnversion between numbers and strings

The routines that convert a string to a number:
- skip leading blanks,

accept always a 1+' sign and for integers
also a I_I sign
skip blanks between sign and number

Done is TRUE if the conversion is successful
The routines that convert a number to a string:

- if the string is too small the number is truncated
- if the number has less digits than width,leading

blanks are added

EXPORT QUALIFIED
MaxBase, BASE,
StringToCard, StringToInt, StringToNum,
CardToString, IntToString, NumToString;

CONST MaxBase = 16;

TYPE BASE = [2 •. MaxBasej;

PROCEDURE StringToCard(str: ARRAY OF CHAR:
VAR num: CARDINAL:
VAR done: BOOLEAN):

- Convert a string to a CARDINAL number.

in:

out:

str

num
done

string to convert

converted number
'l'RUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PHOCEDUHE String'folnt(str: ARHAY OF CHAH:
VAH llum: IN'L'EGEH:
Vfl.H done: HOOI,EAN);

154

Hodula-2/U6 Library definitions

- Convert a string to an INTEGER number.

in:

out:

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PROCEDURE StringToNum(str: ARRAY OF CHAR:
base: BASE:
VAR num: CARDINAL:
VAR done: BOOLEAN):

- Convert a string to a CARDINAL number.

in:

out:

str
base

num
done

string to convert
the base of the number represented in
the string

converted number
TRUE if successful conversion,
FALSE or number out of range,
or contents of string not within base.

PROCEDURE CardToString(num: CARDINAL:
VAR str: ARRAY OF CIIAR:
width: CARDINAL);

- Convert a CARDINAL number to a string.

in:

out:
number

in:

nurn

str

width

number to convert

returned string representation of

width of the returned string

the

155

I.i brary def ini tions Hodula-2/86

PROCEDURE IntToString(num: INTEGER;
VAR str: ARRAY OF CHAR;
width: CARDINAL);

- Convert an INTEGER number to a string.

in: num

out: str

number to convert

returned string representation of
number

in: width width of the returned string

PROCEDURE NumToString(num: CARDINAL;
base: BASE;
VAR str: ARHAY OF CHAH;
width: CARDINAL);

the

- Convert a number to the string representation in the
-specified base.

in:

out.:

num
base
width

str

number to convert
the base of conversion
width of the returned string

returned string representation of the
number

END NumberCollversion.

156

Modula-2/B6 Ljbrary definitions

DEFINITIUN MODULB Options;

Read a file specification v with options q from the
terminal

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED
NameParts, NamePartSet, Termination,
FileNameAndOptions, GetOption;

TYPE Termination = (norm, empty, can, esc);
NameParts = (NameDrive l NamePath, NameName

NameExt);
NamePartSet = SET OF NameParts;

PROCEDURE
PileNameAndOptions(default: ARRAY OF CHAR;

VAR name: ARRAY OF CHAR;
VAR term: Termination;
acceptOption: BOOLEAN);
VAR ReadInName: NamePartSet):

- Read file name and options from terminal.

in:

out:

default the file name to use if one
is not entered v

acceptOption if TRUE, allow options to be
entered,

name the filename,
term
ReadlnName

how the read ended.
which parts of the
specification are present

norm
empty
can
esc

normally terminated
normally terminated, but name is empty
<can> is typed, input line cancelled
<esc> is typed, no file specified.

Input is terminated by a <cr>, blank, <can>, or <esc>.
<bs> and are allowed while entering the file name.

157

Library Definitions

PROCEDURE GetOption(VAR optStr: ARRAY OF' CHAR;
VAR length: CARDINAL);

- Get another option from the last call to
FileNameAndOptions.

out: optStr
length

text of the option,
length of optStr.

Modula-2/86

Calls to GetOption return the options from the last call
to FileNameAndOptions, in the order they were entered.
When there are no more options, a length of 0 is returned.

END options.

158

Nodula-L/86 Library definitions

DEFl NITl ON l-10DULB Processes;

(pseudo-)concurrent programming with SEND/WAIT

From the book 'Programming in Modula-2' [WirthJ

EXPORT QUALIFIED
SIGNAL, SEND, WAIT,
StartProcess, Awaited, Init;

'l'YPE SIGNAL:

SIGNAL's are the means of synchronization between
processes.

PROCEDURE StartProcess (P: PROC; n: CARDINAL);

- Start up a new process.

in: P

n

top-level procedure that will execute
in this process.
number of bytes of workspace to be
allocated to it.

Allocates (from Storage) a wotkspace of n bytes, and
creates a process executing procedure P in that workspace.
Control is given to the new process.

Caution: The caller must ensure that the workspace size
is sufficient for P. Errors: StartProcess may fail due
to insufficient memory.

PROCEDURE SEND (VAR s: SIGNAL):

- Send a signal

in: s

out: s

the signal to be sent. [Must have been
Init'dJ

the signal with one less process

159

Library Definitions Modula-2/86

waiting [or it.

If no process is waiting for s, SEND has precisely no
effect. Otherwise, some process which is waiting for s is
given control and allowed to continue from WAIT.

PROCEDURE WAIT (VAR s: SIGNAL);

- Wait for some o~her process to send a signal.

in: s the signal to wait for. [Must have been
Init'd]

The current process waits for the signal s. At some later
time, a SEND(s) by some other process can cause this pro
cess to return from WAIT.

Errors: If all other processes are waiting, WAIT ter
minates the program.

PROCEDURE Awaited (s:SJGNAL): BOOLEAN;

- Test whether any process is waiting for a signal.

in: s the signal of interest. LMust have
been Init'd]

out: 'l'RUE if and only if at least one
process is waiting for s.

PROCEDURE Init (VAR s: SIGNAL);

- Initialize a SIGNAL object.

in:

out:

160

s

s

the signal to be initialized

the initialized signal (ready to be
used as above)

Modula-2/86 Library definitions

An object of type SIGNAL must be initialized with this
procedure before it can be used with any of the other
operations. After Init(S), Awaited(S) is FALSE.

END Processes.

161

Library Definitions Modula-2/86

DEFINITION MODULE ProgMessage;

Write program status message to the terminal

FROM System IMPORT Status;

EXPORT QUALIFIED WriteStatus;

PROCEDURE WriteStatus (st: Status);

- Write a short description of a program status on
the terminal.

in: st a Status, as returned by Program. Call

The message may be up to 32 characters long.

END ProgMessage.

162

Modula-2/86 Library definitions

DEFINITION MODULE Program;

Sub-program loading and execution

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

Under Modula-2/86, programs can be divided into sub
programs (we call them 'programs') which are loaded upon
request.

These programs are executed like procedures:

- they have only one entry-point (body of
program's main module).

- after termination, their data do not exist any
longer. In the case of programs the code also
disappears and will be reloaded from disk upon
the next activation.

- programs may themselves activate other programs.

FROM System IMPORT Status;

EXPORT QUALIFIED Call, GetErrorInfo;

PROCEDURE GetErrorInfo (VAR msg: ARRAY OF CHAR);

- Obtain more information about a load error.

out: msg a string ~elated to the last error.

After Call (below) has returned a Status value of 'modu
lenotfound' and 'incompatiblemodules', GetErrorInfo will
return the name of the offending module. (length is up to
24 characters). It returns an empty string in all other
cases.

163

Library Definitions Modula-2/86

PROCEDURE Call (programName: ARRAY OF CHAR;
shared: BOOLEAN;
VAR st: Status);

- Load and execute a (sub) program.

in: programName

shared

out: st

file specification for the
program,
whether to share resources,

terminating status of the
subprogram.

The file whose name is given in 'programName' is opened
'loaded, and started. There is no default device or file
type: these must be supplied by the caller. The file
must contain a linked, relocatable program.

The load address is defined by the default allocation
schema, in which programs are loaded on top of stack and a
new stack is created for execution of the new program.

If 'shared' = TRUE then all sharable resources allocated
by the called program are owned by the calling program (or
possibly the caller of the caller .••). Shared resources
are not released upon termination of the new program.

Upon termination of the program, its memory is freed and
the old stack is established. All the resources used by a
terminating program are released, if they are not shared
and if they have not been released explicitly by the pro
gram (files, heap, etc).

Any value of 'st' other than 'normal' indicates an abnor
mal termination of the subprogram. In some cases GctEr
rorlnfo (above) will provide additional details.

- Cautions -

In case of abnormal termination, Call does NOT print any
kind of error message.

Do not assign a 'procedure in the current program to a pro
cedure variable which could still exist after the current
program terminates (for example, a variable in a shared
resource or in the calling program). When the current
program terminates, a'll procedures in it must be con
sidered to cease to exist.

The loader in this module is not reentrant. This means
that interrupt processes must not load overlays!

164

Moclula-2/86 Library definitions

END Program.

165

Library Definitions Modula-2/B6

DEFINITION MODULE RS232Code~

High-speed interrupt-driven input/output via the serial
port

This module provides interrupt-driven I/O via the serial
port, but the Interrupt Service Routine is implemented
using in-line code (as opposed to IOTRANSFER). This
approach is NOT portable to other Modula-2 implementa
tions, but it allows for treatment of interrupts with high
frequency. There is a buffer of at least 128 characters
for received data.

Derived from the 'Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED Init, StartReading,
BusyRead, Read, Write;

StopReading,

PROCEDURE Init (baudRate: CARDINAL;
stopBits: CARDINAL;
parityBit: BOOLEAN;
evenParity: BOOLEAN;
nbrOfBits: CARDINAL;
VAR result: BOOLEAN);

- Initialize the serial port.

in:

out:

baudRate
stopBits

parityBit

evenParity

nbrOfBits

result

transmission speed,
number of stop bits (usually
1 or 2),
if TRUE, parity is used,
otherwise not,
if parity is used, this
indicates even/odd,
number of data bits
(usually 7 or 8),
TRUE if the initialization
was completed.

The legal values for the parameters depend on the imple
mentation (e.g. the range of supported baud rates).

166

HoduJa-2/U6 Library definitions

PRUCEDURE StartReading;

- Allow characters to be received from the serial port.

This procedure initializes the communication controller to
generate interrupts upon reception of a character. It
also un-masks the corresponding interrupt level in the
interrupt controller.

PROCEDURE StopReading;

- Disable receiving from the serial port.

A call to this procedure disables the communication con
troller from generating interrupts. In addition it ter
minates the coroutine which listens to the line. The old
interrupt vector as well as the old state of the interrupt
controller (mask) is restored.

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN);

- Read a character from serial port, if one has been
received.

out: ch
received

the character received, if any
TRUE if a character was received.

If no character has been received, ch
FALSE.

PROCEDURE Read (VAR ch: CHAR);

- Read a character from the serial port.

out: ch the character received.

OC, received

As opposed to BusyRead, Read waits for a character to
arrive.

167

Library Definitions Motlula-2/86

PROCEDURE Write (ch: CHAR);

- Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.

END RS232Code.

168

Modula-2/86 Library definitions

DEFINITION MODULE RS232Int;

Interrupt-driven input/output via the serial port

Interrupts are treated with the standard procedure
IOTRANSFER. Received characters are stored in a buffer of
100H characters. The module initializes the serial port
as follows:

baudRate = 1200 6 stopBits = lr
parityBit = FALSE, evenParity = don't care,
nbrOfBits = 8

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED
Init, StartReading, StopReading,
BusyRead, Read, Write;

PROCEDURE Init (baudRate: CARDINAL;
stopBits: CARDINAL;
parityBit: BOOLEAN;
evenParity: BOOLEAN;
nbrOfBits: CARDINAL;
VAR result: BOOLEAN);

- Initialize the serial port.

in:

out:

baudRate
stopBits

parityBit

evenParity

nbrOfBits

result

transmission speed,
number of stop bits (usually
1 or 2),
if TRUE, parity is used,
otherwise not,
if parity is used, this
indicates even/odd,
number of data bits (usually
7 or 8),
TRUE if the initialization
was completed.

The legal values for the parameters depend on the imple
mentation (e.g. the range of supported baud rates).

169

Library Definitions Modula-2/86

PROCEDURE StartReadingi

- Allow characters to be received from the serial port.

This procedure initializes the communication controller to
generate interrupts upon reception of a character. It
also un-masks the corresponding int~rrupt level in the
interrupt controller.

PROCEDURE StopReadingi

- Disable receiving from the serial port.

A call to this procedure disables the communication con~
troller from generating interrupts. In addition it ter
minates the coroutine which listens to the lineG The old
interrupt vector as well as the old state of the interrupt
controller (mask) is restored.

PROCEDURE BusyRead (VAR ch: CHARi
VAR received: BOOLEAN)i

- Read a character from serial port, if one
received. out: ch the character received,
received TRUE if a character was received.

has
if

been
any,

If no character has been received, ch
FALSE.

DC, received

PROCEDURE Read (VAR ch: CHAR)i

- Read a character from the serial port.

out: ch the character received.

170

Modula-2/86 Library definitions

As opposed to BusyRead, Read waits for a character to
arrive.

PROCEDURE Write (ch: CHAR);

- Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.

END RS232Int .•

171

Library Definitions Modula-2/86

DEFINITION MODULE RS232Polling;

Polled input/output via the serial port

Since this module does
responsibility of the
characters are lost.

not use interrupts, it is the
programmer to poll (by calling no

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPORT QUALIFIED Init, BusyRead, Read, Write:

PROCEDURE Init (baudRate: CARDINAL: stopBits: CARDINAL;
parityBit: BOOLEAN: evenParity: BOOLEAN;
nbrOfBits: CARDINAL: VAR result: BOOLEAN);

- Initialize the serial port.

in:

out:

baudRate
stopBits

parityBit

evenParity

nbrOfBits

result

transmission speed,
number of stop bits (usually 1
or 2),
if TRUE, parity is used,
otherwise not,
if parity is used, this
indicates even/odd,
number of data bits (usually 7
or 8),
TRUE if the initialization was
completed.

The legal values for the parameters depend on the imple
mentation (e.g. the range of supported baud rates).

PROCEDURE BusyRead (VAR ch: CHAR;
VAR received: BOOLEAN);

- Read a character from serial port, if one has been
received.

172

Modula-2/86 I,ibrary def ini tions

out: ch
received

the character received, if any,
TRUE if a character was received.

If no characte~ has been received, ch
FALSE.

DC, received

PROCEDURE Read (VAR ch: CHAR):

- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a charact.er to
arrive.

PROCEDURE Write (ch: CHAR);
Write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.

END RS232P011ing.

173

Library Definitions Modula-2/86

DEFINITION MODULE RealInOut;

Terminal input/output of REAL values

From 'Programming in Modula-2' by N. Wirth, 2nd edition.

EXPURT QUALIFIED
ReadReal, WriteReal, WriteRealOct, Done;

VAR Done: BOOLEAN;

PROCEDURE ReadReal(VAR x: REAL)~

- Read a REAL from the terminal.

out: x the number read.

The syntax accepted is:
l"+"I"-"J digit {digit} ["." digit {digit}]
["E"["+"I"-"J digit (digit])

If a number is found, Done is set to TRUE (otherwise FALSE).
At most 15 digits are significant, leading zeros not counting.
Maximum expon~nt is 307. Input terminates wi th <CR>. Also
accpeted are <ESC> and < "X> which terminate reading and set
'Done' to FALSE. The termination character is swallowed. DEL
may be used for backspaGing.

PROCEDURE WriteReal(x: REAL; n: CARDINAL);

- Write a REAL to the terminal, right-justified.

in: x
n

number to write,
minimum field width.

[f fewer than n characters ~re needed to represent X,
Leading blanks are output •

. 74

Modul<1-2/86 Library definitions

PIWCEDUHE WI" i tcHca lOct (x: HEJ\L);

- Write a REAL to terminal, in octal form with exponent
anJ mantissa.

END Rea1InOut.

175

Library Definitions t-lodula-2/86

DEFINITION MODULE Storage;

Standard dynamic storage management

Storage management for dynamic variables. Calls to the
Modula-2 standard procedures NEW and DISPOSE arc
trans la t.ed into ca lIs to ALLOCl\'l'E and DEJ\J,J,OCATE. 'l'he
standard way to provide these two procedures is to import.
them from this module 'Storage'.

Derived from the Lilith Modula-2 system developed by the
group of P~of. N. Wirth at ETH Zurich, Switzerland.

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
ALLOCATE, DEALLOCATE, Available, InstallHeap,
RemoveHeap;

PROCEDURE ALLOCATE (VAR a: ADDRESS; size: CARDINAL);

- Allocate some dynamic storage.

in: size numbe~ of bytes to allocate,

out: a ADDRESS of allocated storage.

The actual number of bytes allocated may be slightly
greater than 'size', due to administrative overhead. If
not enough space is available, the calling program is ter
minated with the status 'heapovf'.

PROCEDURE DEALLOCATE (VAR a: ADDRESS; size: CARDINAL);

- Release some dynamic storage.

in:

out:

176'

a
size

a

ADDRESS of the area to
number of bytes to be released,

set to NIL.

release,

Modula-2/86 Library definitions

PROCEDURE Available (size: CARDINAL) : BOOLEAN:

- Test whether some number of bytes could be allocated.

in: size number of bytes

out: TRUE if ALLOCATE(p,size) would succeed.

PROCEDURE InstallHeap:

- Used by the loader -

PROCEDURE RemoveHeap:

- Used by the loader -

END Storage.

177

Library Definitions Modula-2/86

DEFINITION MODULE Strings:

Variable-length character strings handler.

NOTE: For most of these string handling procedures,there
is the possibility of the user not providing a variable
larg~ enough to contain the result of a string operation.
Should this possibility arise truncation may result,as
there will be no other error notification. The implemen
tation of this module must not cause a range error, it
should instead silently truncate.

String variables have the following characteristics:
They are ARRAY OF CHAR
Lowest bound must be 0
The size of the string is the size of the string
variable unless the null character (OC) occurs in
the string to indicate end of string.'

EXPORT QUALIFIED
Assign, Insert, Delete, Pos,
Copy, Concat, Length, CompareStr:

PROCEDURE Assign (VAR source, dest: ARRAY OF CHAR):

- Assign the contents of string variable source into
string variable destination

in: source

out: dest

PROCEDURE Insert (substr: ARRAY OF CHAR:
VAR str: ARRAY OF CHAR:
inx: CARDINAL):

- Insert the string substr into str,starting at str[inx].

iD: substr

178

str
inx

Modula-2/86 Library definitions

out: str

If inx is equal or greater than Length(str) then substr is
appended to end of dest.

PROCEDURE Delete (VAR str: ARRAY OF CHAR;
inx: CARDINAL;
len: CARDINAL);

- Delete len characters from str, starting at str[inx].

in: str
inx
len

out: st.r

If inx)= Length(str) then nothing happens. If there are
not len characters to delete, characters to the end of
string are deleted.

PROCEDURE Pos (substr, str: ARRAY OF CHAR): CARDINAL;

- Return the index into str of the first occurrence of the
substr.

in: substr
str

Pos returns a value greater then HIGH(str)
occurrence of the substring is found

PROCEDURE Copy (str: ARRAY OF' CHAR;
inx: CARDINAL;
len: CARDINAL;
VAR result: ARRAY OF CHAR);

if

- Copy at most len characters from str into result.

in: str source string6

no

179

Library Definitions Modula-2/86

inx starting position in 'str',
len maximum number of characters to copy,

out: result copied. string

PROCEDURE Concat (sl, s2: ARRAY OF CHAR;
VAR result: ARRAY OF CHAR);

- Concatenate two strings.

in:

out:

sl
s2

result

left string,
right string,

receives left string followed by
right string.

PROCEDURE Length (VAR str: ARRAY OF CHAR): CARDINAL;

- Return the number of characters in a string.

in: str

PROCEDURE CompareStr (sl, s2: ARRAY OF CHAR): INTEGER;

- Compare two strings.

in: sl
s2

Returns an integer value indicating the comparj.son result:

-1 if s1 is less than s2;
o if sl equals s2;
1 if sl is greater than s2

END Strings.

180

Modula-2/86 Library definitions

DEFINITION MODULE System;

Additional system-dependent facilities

This module may be seen as an extension of the standard
pseudo-moduJe SYSTEM.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

FROM SYSTEM IMPORT ADDRESS, PROCESS;

EXPORT QUALIFIED
EOI.,
Status, Terminate,
ProcessDescriptor, ProcessPtr, curProcess,
targetSystem,
SetTime, GetTime, Time,
TermProcedure, CallTermProc,
InitProcedure, CallInitProc,
RTSCall,
RegAX,
RegCX,
RegSI,
RegES,
RegCS,
RegBP,

CONS'l'
EOL = 36C;

RegBX,
RegDX,
RegDI,
RegDS,
RegSS,
RegSP;

This constant defines the internal name of the End-Of-Line
character. Using this constant has the advantage, that
only one character is used to specify line ends (as
opposed to CR/LF). The standard I/O modules interpret
this character and transform it into the End-Of-Line
(sequence of) code(s) required by the device they support.
See definition modules of 'Terminal' and 'FileSystem ' •

TYPE
Status = (normal, warned,

duced for these two cases
no dump pro-

stopped, asserted, halted, caseerr,
stackovf u heapovf, functionerr,
addressoverflow, realoverflow e
cardinaloverflow, integeroverflow:
rangeerr, dividebyzero, coroutineend:

181

Library Definitions f.1odula-2/86

loaderr, callerr, programnotfound,
modulenotfound, incompatiblemodule,
filestructureerr, illegalinstr,
RTSfunctionerr, interrupterr):

This type defines the possible values for a program's
status. The meaning of these values can be printed to the
terminal by means of ProgMessage.WriteStatus •

PROCEDURE Terminate (st: Status):

- Terminate the current (sub) program.

in: st terminating status.

If the value of 'st' is different from 'normal' or
MEMORY.PMD, which can be used for subsequent debugging.
The value of est' will be returned to the caller of the
terminating program by means of the parameter est' of the
procedure 'Program.Call'.

This procedure never returns to the caller.

TYPE

TYPE

VAR

182

ProcessDescriptor = RECORD
AX, BX, CX, OX, SP, BP, SI, 01 CARDINAL:
OS, SS, ES, CS, IP : CARDINAL:
flags : BITSET:
status : Status;
programId, auxId, sharedId CARDINAL:
fatherProcess : PROCESS:
stackLimit : CARDINAL;
interruptMask : BJTSET:
r C" .. ~ ... " ," \(: ,.. 1. f-' rJ T I,' 1\ L ;

progEndStack : ADDRESS:
intVector : CARDINAL:
oldISR, interruptedProcess ADDRESS:
heapBase, heapTop : ADDRESS;
modTable : ADDRESS:

END;

ProcessPtr POINTER TO ProcessDescript~r;

curProcess: ProcessPtr:

NoduJa-2/H6 Library definitions

Point5 at any moment to the current
'l'hif'. var i alJle is 'read-only e and
application programs.

process's workspace.
must not be used in

WAHNING:

improper use of this variable may cause unpredictable
behaviour of the system.

CONS'l'
targetSystem = 0; first implementation

May be used to check compatibility of file or programs
with the present system.

TYPE Time = RECORD day, minute, mi1lisec: CARDINAL; END;

'day' is Bits 0 •• 4 = day of month (1 •. 31),
Bits 5 .• 8 = month of the year (1 .. 12),
Bits 9 •.• 15 = year - 1900.

'minute' is hour * 60 + minutes.
'mil1isec' is second * 1000 + milliseconds,

starting with 0 at every minute.

PRUCEDURE GetTime (VAR curTime: Time);

- Return the current date and time.

out: curTime record containing date and time.

On systems which do not keep date or time,
returns a pseudo-random number.

• Get'fime a

PROCEDURE SetTime (curTime: Time):

- Set the current date and time.

183

Library Definitions Modula-2/86

in: curTime record containing date and time.

On systems which do not keep date or time, this call has
no effect.

PROCEDURE TermProcedure (p: PROC):

- Declare a termination routine.

in: p termination procedure.

The procedure 'pI will be called upon termination of the
current program or subprogram. Typical use is for
drivers, which have to release resources used by the ter
minating program. Up to 20 ·termination routines can be
installed.

PROCEDURE CallTermProc:

- Call all termination procedures for the current program.

Calls all procedures declared with 'TermProcedure' in the
current program. 'CallTermProc' is automatically called
at the termination of a program or subprogram.

PROCEDURE InitProcedure (p: PROC):

- Declare an initialization routine.

in: p initialization procedure.

Analoguous to 'TermProcedure', but for routines that have
to be called before execution of a program. Up to 20 ini
tialization routines can be installed.

184

Modula-2/86 Library definitions

PROCBDURE CallInitProc;

- Call all initialization procedures for the current pro
gram.

Analoguous to 'CallTermProc'.

CONST
Rrl'SCall = 228;

Interrupt vector for general entry of RTS (for
Run-Time Support). The RTS is a resident assembly
program, providing the basic support for running
Modula-2 programs.

CONST
Define the processor's registers, which may be
used as parameters for the standard procedures
'SETREG' and 'GETREG'.

RegAX 0; RegCX = 1;
RegDX 2; RegBX = 3:
RegSP 4 ; RegBP ='5;
RegSI 6; RegDI 7;
RegES 8; RegCS 9;
RegSS 10; RegDS 11;

END System.

185

Library Definitions Modula-2/86

DEFINITION MODULE Termbase;

Terminal input/output with redirection hooks

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.
[Private module of the Modula-2 system]

EXPORT QUALIFIED
ReadProcedure, StatusProcedure, WriteProcedure
AssignRead, AssignWrite, UnAssignRead,
UnAssignWrite, Read, KeyPressed, Write;

TYPE ReadProcedure = PROCEDURE (VAR CHAR);

To assign a private read procedure (for redirection of
input) a procedure of type 'ReadProcedure' must be pro
vided. This procedure returns a character from the input
device. It waits until a character hes been entered.

TYPE StatusProcedure = PROCEDURE (): BOOLEAN;

To assign a private status-procedure (for redirection of
input) a procedure of type 'StatusProcedure' must be pro
vided. This procedure returns TRUE, if a character is
available to read, FALSE otherwise.

TYPE WriteProcedure = PROCEDURE (CHAR);

To assign a private write procedure (for redirection of
output) a procedure of type 'WriteProcedure' must be pro
vided. This is typically used to redirect output to a
file or to the screen and a file (log file). Special
inteipretation of characters sent to the screen can be
performed in such a private driver procedure.

PROCEDURE AssignRead (rp: ReadProcedure;
sp: StatusProcedure;
VAR done: BOOLBAN);

- Install read and status routines for terminal input.

186

Modula-2/86 Library definitions

in:

out:

rp
sp

done

read-a-character procedure
is-character-available function

TRUE if the installation was done.

Initially the corresponding procedures of 'Keyboard' are
installed.

Subsequent
handled in
assignments
exceeded.

assignments of read and status
a stack oriented way. Up to
are supported. Done FALSE if

procedures are
six levels of
t.his depth is

Upon termination of a (sub-)program the read and status
procedures installed by that program are always removed, i.e.
the stack is automatically set back to its level upon start of
the (sub-)program. This also holds for 'shared' program calls
(see module 'program'). In this respect, read procedures are
non-~harable resources. However, a (sub-)program that does not
install a read procedure of its own, will by default use the
read procedure most recently assigned by its 'father' program.

PROCEDURE AssignWrite (wp: WriteProcedure~
VAR done: BOOLEAN)~

- Install write routine for terminal output.

in:
out:

wp
done

character output procedure,
set 'l'RUE if the installation was done.

(See AssignRead above.]
Displ~y.Write is assigned.

Initially the procedure

PROCEDURE UnAssignRead (VAR done: BOOLEAN)~

- Undo the last AssignRead by the current program.

out: done set TRUE if there was something to
unassign.

The previously valid procedures become active again.

187

Library Definitions Modula-2/86

PRUCEDURE UnAssignWrite (VAR done: BOOLEAN");

- Undo the last AssignWrite by the current program.

out: done set TRUE if there was something to
unassign.

The previously valid procedure becomes active again.

PROCEDURE Read (VAR ch: CHAR):

- Read a character using the current input procedure.

out: ch the character read, or NUL.

If no character is available, NUL (DC) is returned.
the current status-procedure and read-procedure.

PRUCEDURE KeyPressed (): BOULEAN;

Uses

- Test if a character is available from the current i~put.

Uses the current status-procedure,
AssignRead.

PROCEDURE Write (ch: CHAR);

as

- Write a character to the current output.

in: ch character to write.

Uses the current
AssignWrite.

END 'l'ermbase.

188

write-procedure as

assigned by

assigned by

Modula-2/86 LiLrnry definitions

DEFINI'l'ION MODULE 'rermina 1 ;

Terminal Input/Output

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.

EXPURT QUALIFIED
Read, KeyPressed, ReadAgain, ReadString,
Write, WriteString, WriteLn;

PROCEDURE Read (VAR ch: CHAR);

- Read a character from the terminal.

out: ch character that was read.

The character is not ~choed. Code ASCII.cr from keyboard
is transformed into System.EOL.

PROCBDURE KeyPressed (): BOOLEAN;

- Test if a character is available to Read from terminal.

PROCEDURE ReadAgain;

- Undo the last read: Make the last character be re-read.

PROCEDURE ReadString(VAR string: ARRAY OF CHAR);

- Read a line from the terminal.

out: string receives the text of the line

Characters are accepted (and echoed)
until <cr> is entered. The <cr>

from the keyboard
is not returned or

189

Library Definitionn Modula-2/86

echoed. and <bs> can be used for editing. Tabs may
be entered, but are expanded into blanks immediately. No
other control characters may be entered.

PROCEDURE Write (ch: CHAR);

- Write a character to the terminal.

in: ch character to be written.

If terminal output has not been redirected, the following
interpretations are made:

System.EOL (36C)
ASCII.ff (14C)
ASCII.del (l77C)
ASCII. bs (IOC)
ASCII. cr (15C)
ASCII. If (12C)

go to beginning of next line
clear screen and set cursor home
erase the last character on the left
move 1 character to the left
go to beginning of current line
move 1 line down, same column

PROCEDURE WriteString (string: ARRAY OF CHAR);

- Write a string to the terminal.

in: string string to be written.

The string can be terminated by a NUL (OC).

PROCEDURE WriteLn;

- Write a new-line to the terminal.
Write(EOL)]

END Terminal.

190

[Equivalent to

JND1CES

191

Indices Modula-2/86

192

Modula-2/86 Indices

INDEX OF LIBRARY MODULES

l,ibrary module .ASCII 121

Library module CardinalIO · 122
Library module Conversion · 124

Library module DiskDire · 126
I,ibrary module DiskFiles 129
LibIary module Display · 131

Library module FileMessag · 132
Library module FileNames · 133
Library module FileSyst · 134

J,ibrary module InOut 146

Library module Keyboard · 151

Library module t-IathLibO · 152

Library module NumberCo · 154

Library module Options · ' 157

Library module Processes · 159
Library module ProgMessag 162
Library module Program · 163

Library module ReallnOut o 0 e _ •••••••••••••••••••••• II • 174
Library module RS232Code · 166
'Library module RS232Int · --...... -. -.... 169
Library module RS232Polling _ 0 ••••••••••••••••••••••• 172

l,ibrary module Storage · -. -. --....... -. -. -... -. -..... 176
Library module Strings • 0 e ____ ••••••• _ •• __ ••••••••••• 178
Library module System -.... ----. -..... -..... -.... -... 181

Library module 'fermbase · -........... -.... -...... 186
LibIary module 'ferminal · -. -.................. --..... 189

193

Indices Modula-2/86

194

Hodula-2/86

INDEX OF PROCEDURES
OF LIBRARY MODULES

Indices

in alphabetical order by procedure name

Again
ALLOCA'fE
arctan
Assign
AssignRead
AssignWrite
Available
Awaited

BusyRead
BusyRead
BusyRead

Call
Call1nitPro
CallTermPro
CardToString
ChangeDirectory
Close
Closelnput
CloseOutput
CompareStr
Concat
ConvertCardinal
ConvertHex
Convertlnteger
ConvertOctal
Copy
cos
Create
CreateMedium
CurrentDirectory
CurrentDrive

DEALLOCA'fH
Delete
Delete
DiskDirProc
DiskFilePRUC
Doio

entier
exp

FileNameAndOptions
FileNameChar

(FileSyst) •••••••••••••••••••••• 140
(Storage) .••••••••••••••.••••••• 176
(HathLibO) •••••••••••••••••••••. 153
(Strings) .•••••••••••.•••••••••• 178
(Termbase) •••••••.••••••••.••••• 186
('fermbase) ••••••••••••••••••••••]87
(Storage) •••••••••••••••.••••••• 177
(Processes) ••.•..••.••••...•••••• 160

(RS232Code) •••.••••••••••••••••• 167
(RS232Int) . ••••••••••••••••••••• 170
(RS232Polling) .••••••••••••••••• 172

(Program) ••••••••••••••••••••••• 164
(System) ••••••••.••••••••••••••• 185
(System) •••••••••••••••••••••••• 184
(NumberCo) •••••••••••••••••••••• 155
(DiskDire) •••••••••••••••••••••• 127
(FileSyst) •••••••••••••.••••••••• 136
(InOut) ••••••••••••••••••••••••• 147
(InOut) ••••••••••••••••••••••••. 147
(Strings) ••••••••••••••••••••••• 180
(Strings) ••••••••••••••••••••••• 180
(Conversion) •••••••••••••••••••• 124
(Conversion) •••••••••••••••••••• 124
(Conversion) •••••••••••••••••••. 125
(Conversion) •••••••••••••••••••• 124
(Strings) ••••••••••••••••••••••• 179
(N~thLibO) •••••••••••••••••••••• 153
(FileSyst) •••••••••••••••••••••• 135
(FileSyst) •••••••••••••••••••••. 144
(DiskDire) •••••••••••••••••••••• 126
(DiskDire) •••••••••••••••••••••• 126

(Storage) .••••••••••••••••••••••] 76
(Fi.leSyst) •••••••••••••••••••••• 137
(Strings) .•••••••.•••••••••••••• 179
(DiskFi1es) ••••••.•••••••••••••• 129
(DiskFi..1es) ••••••••••••••••...••• 129
(FileSyst) •••.•••••••••••••••••• 143

(NathLibO)
(r-tathI,ibO)

153.
152

(Options) •••••••••••••••••••••• 0 157
(Fi1eSyst) •••••••••••••••••••••• 144

195

Indices

GetErrorlrifo
GetOption
GetPos
GetTime

Init
Init
Init
Init
InitDiskSyste
InitProcedure
Insert
InstallHea
IntToString

KeyPressed
KeyPressed
KeyPressed

Length
Length
In
Lookup

MakeDir

Num'foString

OpenInput
OpenOutput

Pos

Read
Read
Read
Read
Read
Read
Head
HeadAgain
ReadByte
ReadCard
HeadCardinal
ReadChar
ReadFi1eName
ReadHex
ReadInt
ReadNBytcs
HeadReal
ReadString
HeadString
HeadWord

196

Hodula-2/86

(Program) 163
(Options) 158
(FileSyst) •••••••••••••••••••••• 143
(System) •••••••••••••••••••••••• 183

(Processes) ••••••••••••••••••••• 160
(RS232Code) ••••••••••••••••••••• 166
(RS232Int) •••••••••••••••••••••• 169
(RS232Polling) •••••••••••••••••• 172
(DiskFi1es) ••••••••••••••••••••• 129
(System) •••••••••••••••••••••••• 184
(Strings) ••••••••••••••••••••••• 178
(Storage) ••••••••••••••••••••••• 177
(NumberCo) •••••••••••••••••••••• 155

(Keyboard)
(Termbase)
('l'ermina 1)

151
188
189

(FileSyst) •••••••••••••••••••••• 143
(Strings) •••••••••••••••••• ••••• 180
(MathLibO) •••••••••••••••••••••• 152
(FileSyst) •••••••••••••••••••••• 136

(DiskDire) 127

(NumberCo) 156

(InOut) ••••••••••••.•••••••••••• 146
(InOut) ••••••••••••••••••••••••• 147

(Strings) ••••• ••• ••••••••••••••. 179

(InOut) ••••••••••••••••••••••••• 147
(Keyboard) •••••••••••••••••••••. 151
(RS232Code) ••••••••••••••••••••• 167
(RS232Int) •••••••• •••••• •••••••• 170
(RS232Polling) .••••••••••••••••• 173
('fermbase) ••••••••••••••••.••.•• 188
('I'erminal) •••••••••••.•••••••.•. 189
('fermina 1) •••••••••••.•••••...•. 189
(Fi1eSyst) ••••••••••••.•.•.••••. 139
(InOut) •••••••••.••••••••••••••. 148
(Cardina1IO) .•••.••.••••.••..••. 122
(FileSyst) •••••••••.•••••.•.••.. 138
(FileNames) • ••••••••••.••••.••.. 133
(CardinalIO) •••••••••••••••••••• 122
(InOut) .• ••••••••••.•••••••••..• 148
(Fi1eSyst.) ••••••••.••.•••••.•... 139
(RealInOut) ••.•••.•••••••••••••• 174
(InOut) ••••••••••••.•.••••.••... 147
('l'erminal) .••••••..••••••.•.•••• 189
(FileSyst) ••••.••••••.•••••••••. 137

Modu1a-2/86

ReadWrd
real
RemoveDir
RemoveHea
RemoveMedium
Rename
Reset
Resetl>iskSy
ResetDrive

SelectDrive
SEND
Sett-lodify
Set Open
SetPos
SetRead
Set'l'ime
SetWrite
sin
sqrt
StartProcess
StartReadin
StartReading
StopReadin
StopReading
Str ing'foCard
String'l'oInt
Str ing'foNum

Terminate
'l'ermProcedure

UnAssignRead
UnAssignWrite

WAIT
Write
Write
Write
Write
Write
Write
Write
WriteByte
WriteCard
WriteCardinal
WriteChar
WriteHex
WriteHex
Writelnt
WriteLn
WriteLn
·Wr i teNBytes

lndices

(InOut) •••••••••••••••••••••••••
(MathLibO) ••••••••••••••••••••••
(Disk Dire) ••••••••••••••••••••••
(Storage) •••••••••••••••••••••••
(J:o'ileSyst) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(DiskDire) ••••••••••••••••••••••
(DiskDire) ••••••••••••••••••••••

(DiskDire) ••••••••••••••••••••••
(Processes) •••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(System) ••••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(Ma thLibO) ••••••••••••••••••••••
(Ma thLibO) ••••••••••••••••••••••
(Processes) •••• 0 •••••••••••••••••

(RS232Int) ••••••••••••••••••••••
(RS232Code) •••••••••••••••••••••
(RS 2 3 2 In t) •••••••..••••••••• •••.
(RS232Code) ••••••••• ~ •••••••••••
(NumberCo) •••••••••••••••••••••.
(NumberCo) ••••••••••••••••••••••
(NumberCo) • 0 ••••••••••••••••••••

(System) ••••••••••••••••••••••••
(System) ••••••••••••••••••••••••

(Termbase) ••••••••••••••••••••••
(Termba se) ••••••••••••••••••••••

(Processes) •••••••••••••••••••••
(Display) •••••••••••••••••••••••
(InOut) •••••••••••••••••••••••••
(RS232Code) ••••••••••••••••••••.
(RS232Int) ••••••••••••••••••••••
(RS232Polling) ••••••••••••••••••
('l'ermbase) ••••••••••••••••••••••
(Terminal) ••••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(InOut) •••••••••••••••••••••••••
(CardinalIO) ••••••••••••••••••••
(FileSyst) ••••••••••••••••••••••
(CardinalIO) ••••••••••••••••••••
(InOut) •••••••••••••••••••••••••
(InOut) •••••••••••••••••••••••••
(Terminal) •••••••••••••••• 0 •••••

(InOut)
(FileSyst) ••••••••••••••••••••••

148
153
1 ~7
177
145
137
142
121J
128

126
159
141
142
142
141
183
141
152
152
159
170
167
170
167
154
154
155

182
184

187
187

160
131
149
168
171
173
188
190
139
149
122
138
123
150
149
190
149
140

197

Indices

Writeoct
writeRea1
WriteRca10ct
WriteResponse
WriteStatus
WriteString
WriteString
WriteWord
WriteWrd

198

Hodula-2/06

(InOut) • •••. .•....•••••••..•.•.. 150
(Rea1InOut) •••••••••••••••••..•. 174
(Rea1InOut) .. •••••••••.. ••••.••• 175
(Fi1eMessag) .••••••••••••••••••. 132
(ProgMessag) •••.•.••.••••••••••• 162
(InOut) ••••••••••••••••••••••••• 149
(Terminal) ••••••••••••••••••.••• 190
(Fi1eSyst) .••••.•.•.••..••.••••. 138
(InOut) ••••••••••••••••••••••••• 150

t-Iodu la -:.:!/U 6 Indice.s

GENERAl. INDEX

HUH7 support ••.•••.••.•••••••••.•..••••••••••••••.•• 1

Q lla s e I aye r •...•••••••••.•••.•.•.••.•.••••••••••••.•• 5 4

Compiler, compiling 17
Compiler, compiling................................. 25
Compiler, compiling •...••••••••.••••.•••••••••••••.• 33
Compiler directives .•.•••.•••••.•••••••••••••••••••• 34
Compiler error messages ••••••••••••••••••••••••••••• 35
Compiler error messages .••.•••••.•••••••••••.••••••• 36
Compiler errors ••.•.•••••••••.••••.••••••••••••••••• 69
Compiler options •••••••••••••••••••••••••••••••••••• 30
Compiling... 4
Compiling a Definition Hodule .•••••••••••••••••••••• 27
Compiling a Implemenation Module •••••••••••••••••••• 2U
Compiling a Program Module ••••.••••••••••••••••••••• 26
Compiling, Symbol files needed •••••••••••••••••••••• 29

Debugger ••.••• 41
Debugger commands ••••••••••••••••••••••••••••••••••• 42
Debugger, debugging .•••••••••••••••••••••••••••••••• 17
Definition module ••.••••••••••.••••••••••••••••••••• 54
Definition modules •••••••••••••••••••••••••••••••••• 9
Directory search strategy........................... 20
Disk setup •• 2

file naming conventions ••••••••••••••••••••••••••••• 13
floppy disks •• 16

hard disks .••. 3
hard disks .••• 18
Heap •••. 80

Implementation module ••••••••••••••••••••••••••••••. 54
Implementation Nodules •••••••••••••••••••••••••••••. 9
installation .•••••••.••••••••••••••••••••.•••••••••. 2

Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library

module
module
module
module
module
module
module
module
module
module
module
module

ASCII •••••••••••••••••••••••••••••••. 121
CardinalIO ••••••••••••••••••••••••••. 122
CompPara ••••••••••••••••••••••••••.•. 116
Conversion ••••••••••••••••••••••••••. 124
DiskDire ••••••••••••••••••••••••••••. 126
DiskFiles •••••••••••••.•••••••••••••. 129
Display •.•• ".......................... 131
FileMessag •••••••.•••..•••••.•••.•••. 132
FileNames ••.••••••••••••••••••••..••. 133
FileSyst ••••••••••••••.•••••••••••••. 134
InOut •••••••••••••••••••••••••••••••. 146
Keyboard •.••••••••••••••••••••••.••.. 151

199

Indices f.1odula-2/86

Library module
Library module
Library module
Library module
Library module
Library module
Library module
llibrary module
Library module
Library module
Library module
Library module
Library module
Library module
Library module

MathLibO
NumberCo ••••••••••••. 0 •••••••••••••••

options •••••.••••••••••.•.••••••••••.
Processes •••.•••••..•••••••••••.•.•..
ProgMessag ••••.••••••••••••.••.•••••.
Program .•••••••.••••••••••.••••.•.•.•
Reallnuut •••••••••••••••••••••••••••.
RS232Code •••••••••••••••••••••••••••.
RS232Int ••••••••• ~ •••••••••.••••••••.
RS232Polling •••••••••••••••••••••••••
Storage ••••••••••••••••••••••••••••••
Strings ••••••••••••••••••••••••••••••
System •••••••••••••••••••••••••••••••
rfermbase
Terminal

Linker error messages •••••••••••••••••••••••••••••••
Linker, linking •••••••••••••••••••••••••••••••••••••
Linker, linking •••••••••••••••••••••••••••••••••••••
~inker, linking •••••••••••••••••••••••••••••••••••••
Linker options ••••••••••••••••••••••••••••••••••••••
I.inking ..•..•....•.•.....•.....•..•••....••..•...•..

Modules,
Modules,
Modules,

Definition •••••••••••••••••••••••••••••••••
Implementation •••••••••••••••••••••••••••••
Program .••••...• 0 ••••••••••••••••••••••••••

MS-DOS ••

152
154
157
159
162
163
174
166
169
172
176
178
181
186
189

40
17
37
37
38

5

9
9
8
2

operating system •••••••••••••••••••••••••••••••••••• 33
operating system •••••••••••••••••••••••••••••••••••• 49
operating system •••••••••••••••••••••••••••••••••••• 50
Overlays ..•.•.•..................................... 55
Over lays ••••••••••••••••••••••••••••••••.••••••••••• 78

PC-DOS •• 2
Procedure interface ••••••••••••••••••••••••••••••••• 81
Program creation •••••••••••••••••••••••••••••••••••• 11
program execution ••••••••••••••••••••••••••••••••••• 5
program execution ••••••••••••••••••••••••••••••••••• 12
Program modules .•••••••••••••••••••••••••••••••••••• 8

running a program ••••••••••••••••••••••••••••••••••• 5
running programs ••••••••••••••••••••••••••••• 0.0.... 12
Run-time support •••••••••••••••••••••••••••••••••••• 55

Sample program •••••••••••••••••••• ; ••••••••• ~....... 3
sample program •••••••••••••••••••••••••••••••••••••• 5
Stack ••• 80
Symbol files •• 29
Symbolic debugger ••••••••••••••••••••••••••••••••••• 41
system disk creation ••••••••••••••••••••••••••• 0.... 2
System requirements ••••••••••••••••••••••••••••••••• 1

200

Modula-2/86 Indices

Variable allocation •••••• 0.......................... 81
Version checking •••••••••••••••••••••••••••••••••••• 58

Workspace •••• ~...................................... 56

201

Section

1

2

3

4

5

6

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5

Appendix 1

THE SYMBOLIC RUN-TIME DEBUGGER

Table of Contents

Contents Page

Introduction 1

How to Run the Run-Time Debugger 1

Run-Time Debugger Options " 2
Memory Requirements and Swappin9 3
Programs Taking Command Line Arguments 4

Control of Program Execu~ion 5

Breakpoints 5
Step Mode 6
Overview of Run-time.Debugger Commands 6
Run-Time Errors . 7
Stopping Programs During ex~cution~ 7
Debugging Programs That Use Overlays 7

Window Format 7

Markers 8
Selecting an Item for.Display 8

The Run-Time Debugger Comm~nd~ 8

Global Commands 8
Activating the Step Mode 9
Display of Information 10
Use of the Step Mode in

Multi-Process Program: 10

Run-Time Debugger Windows 10

Call Window 10
Module Window il
Data Window 12
Text Window 15
Raw Window 16

Error Messages 18

THE SYMBOLIC RUN-TIME DEBUGGER

1 Introduction

This chapter describes the symbolic run-time debugger (rtd)
distributed as a separate package for LOGITECH Modula-2/86.
The symbolic run-time debugger is a complement to, and
cannot be used without, the LOGITECH Modula-2/86 Base
Language System.

The symbolic run-time debugger allows the user to monitor
the execution of a program. The user executes the program in
steps, simulating slow motion. After each step, the user may
inspect the data and the current status of the program. He
can modify the values of the variables the program uses.
There are several ways the user can step through the
program. Depending on the situation, he may decide to
execute in larger or smaller steps.

The structure and user interface of the run-time debugger
are very similar to that of the post-mortem debugger. The
run-time debugger uses the same windows and screen layout as
the post-mortem debugger. The run-time debugger commands are
a superset of the post-mortem debugger commands:

o All global commands of the post-mortem debugger are
also valid in the run-time debugger.

o In any particular window, all local commands in the
post-mortem debugger are also valid in the run-time
debugger.

This chapter
are specific
debugger is
this chapter
common to
debugger.

describes those features and functions which
to the rUn-time debugger. The post-mortem

documented in another chapter. Please refer to
for a description of the commands that are

the post-mortem debugger and the run-time

2 How to Run the Run-Time Debugger

To initialize the rUn-time debugger, enter:

A> m2 rtd<CR)

-1-

The debugger responds with a sign-on message:

Modula-2/86 Run-Time Debugger

followed by the version number and a copyright notice. Then,
the debugger asks for the name of the program the user
wishes to debug. Enter the file name followed by <CR). The
debugger will then load your program into memory, and
display the Module window. At this point, the program has
not started to execute.

The user. may set breakpoints before executing the program.
The user instructs the debugger to start the execution of
the program by entering one of the Go commands.

When the program is terminated, the debugger prompts the
user to enter the name of the next program to debug. Enter
<ESC> to exit.

2.1 Run-Time Debugger Options

When the user starts the run-time debugger, he may also
specify, ·on the command line, various options. Options are
denoted by a slash (I) followed by the first character of
the option name. For example, to activate the query and swap
options, the user enters:

A> m2 rtd/g/s<CR>

when starting the run-time debugger.

The following options are available:

Option

LQuery

Action

The Query option indicates that
reference and source files should be
searched for according to the query
strategy (see corresponding section of
the Modula 2/86 manual for description).
The user will be prompted to enter the
reference and source file names. If the
Query option is not specified, the
debugger automatically searches for
these files according to the default
search strategy.

-2-

Option

LLarge

Lawap

LYersion

Action

The Large option enlarges the internal
workspace of the run-time debugger. This
workspace is used for storing
information on the program being
debugged. In particular, it contains
information for each module of the
program. When debugging large programs
consisting of many modules, the default
workspace of the run-time debugger may
be too small. This would lead to a stack
or heap overflow in the debugger itself.
The size of the default workspace is 16
K bytes. When the Large option is used,
this size is increased to 32 K bytes.

The Swap option enlarges the memory
available to the program being debugged.
This enlargement is made by swapping a
part of the run-time debugger code with
the program being debugged. A more
complete description of the Swap option
is given in the next section.

The Version option displays the date and
version of the run-time debugger.

2.2 Memory Reguirements and Swapping

The run-time debugger requires approximately 210 K bytes of
memory to run. The remaining memory can be used by the
program being debugged. For example, on a system with 256 K
bytes of memory, the user can debug a program that uses
approximately 55 K bytes.

The requirement of 210 K bytes includes approximately 34 K
bytes for the operating system (DOS 2.0), 8 K bytes for the
special verson of the MOdula-2/86 run-time support (file
M2S.EXE), and 168 K bytes for the run-time debugger itself.
If the user's operating system is larger than 34 K bytes, he
should compute the requirements accordingly.

A special version of the Modula-2/86 run-time support is
provided with the run-time debugger in the file M2S.EXE. The
regular run-time support (M2.EXE) preserves 17 K bytes for
the DOS command interpreter on top of the memory. This
special version makes this memory available to Modula-2
programs. If the run-time debugger is run with the regular
version of the run-time support, it will use approximately
227 K bytes. The only disadvantage of the special run-time
support is that DOS will need to load from disk its command
interpreter each time the debugger terminates.

-3-

with the Swap option, it is possible to enlarge the memory
space available to the program being debugged by
approximately 40 K bytes. On a system with 256 K bytes of
memory, this allows the user to debug programs that use up
to 95 K bytes.

When the user specifies the Swap option; part of the run
time debugger is kept in memory until needed. This part
includes the handling of the Call window, the Module window,
the Data window and the Raw window. When the program has
been stopped and the user invokes one of these windows, the
program is swapped out to disk. It will be swapped into
memory as soon as the user resumes execution.

Note that the handling of the Text window belongs to the
resident part of the run-time debugger. As long as the user
activates this window only, no swapping will occur. This
allows the user to step through a program avoiding the delay
caused by swapping.

When the user chooses the Swap option, the debugger creates
the two Swap files RTDSWAP.RTD and RTDPROG.RTD in the
current directory of the current drive. Both files have a
fixed size of approximately 45 K bytes. Therefore, when
using the Swap option the user should make sure 90 K bytes
of disk space are available.

2.3 Programs Taking Command Line Arguments

with the run-time debugger, the user can debug programs that
take arguments on the command line. When the debugger asks
for the program to be debugged, the user should enter the
arguments in the usual way. For example:

Assume the program Imycopyl is normally started under
DOS by entering:

A> m2 mycopy filel file2<CR>

With the run-time debugger, following will start the
program in the same way:

name of the program (MAIN.LOD» mycQPy filel file2<CR>

-4-

3 Control of Program Execution

There are two ~ays the user can control the program being
debugged. One ~s to set breakpoints on some specific
statements of the program. The other is to step through the
program, stopping at each statement or procedure call.

When the debugger stops the execution of the program, either
at a breakpoint or after a step has been executed, the user
can inspect and modify the content of variables in any part
of the program. The user may examine any process, and he may
view or change the data of any module or any active
procedure.

3.1 Breakpoints

One way for the user to monitor program execution is to
indicate to the rUn-time debugger certain points at which
the execution of the program should stop. These points are
called breakpoints. When the program executes a statement on
which a breakpoint is set, the program stops and the user
may examine the data structures and the status of the
program.

The user may set a breakpoint
program. The debugger sets no
breakpoints. The user may set or
he starts the execution of the
program is stopped.

on any statement of the
limit to the number of

remove breakpoints before
program or any time the

Each breakpoint has an occurrence counter associated with
it. Each time the user sets a breakpoint, the debugger
prompts him to specify a limit for the occurrence counter.
This counter tells the debugger how many times to execute
the statement before stopping the program. Once an
occurrence counter has reached its limit, the debugger stops
the program each time it encounters this breakpont.

For example, the user sets the limit of the counter for a
particular breakpoint to five. The run-time debugger will
execute the program until the fifth time it reaches the
statement on which this breakpoint is set. If the user
continues the execution of the program, the debugger will
stop the program each time this breakpoint is encountered.

-5-

3.2 Step Mode

The user can also instruct the debugger to execute the
program statement by statement or procedure call by
procedure call. The debugger 'steps' through the program
stopping its execution at the beginning of the next
statement or procedure call. Another possible step is to
execute the program up to the return from the current
procedure. If a breakpoint is encountered during the
execution of a step, the program will stop at the
breakpoint. Anytime the program is stopped, the user may
examine its current status and data.

3.3 Overview of Run-time pebugger Commands

There are five global commands which most clearly
distinguish the run-time debugger from the post-mortem
debugger. These commands allow the user to control the
execution of the program by stopping at specific points in
the program. Whenever the program is stopped, the user can
examine ~ts current status, and display and modify its data.
In this way the user can determine more specifically the
location and cause of problems in his program.

The five global commands are described in detail in the
corresponding section. The following list briefly defines
each command. The user invokes these global commands by
entering the letters of the command name, shown in upper
case on the command line. For example, the user activates
the Go Breakpoint command by typing 'GB'.

o Go Breakpoint
stop at the next breakpoint

o ~
Same meaning as 'Go Breakpoint'

o Go Statement
Stop on the next statement

o Go Procedure
Stop on the next procedure call

o Go Return
Stop on the return from the current procedure

o G.sLBnd
Execute the program until the end, ignoring breakpoints

-6-

3.4 Run-Time Errors

When a
or when
run-time
window.
run-time
cause of
program,
activates
message:

run-time error occurs in the program being debugged
the program calls the standard procedure HALT, the

debugger gains control and displays the Call
No memory dump (file MEMORY.PMD) is generated. The
debugger also indicates in the Call window the

the run-time error. The user can now inspect the
but he cannot resume the execution. When the user

a Go command, the debugger displays the following

Note: Program stopped due to error or HALT

Then, the debugger asks for a new program to debug, as when
the program terminates normally.

3.5 Stopping Programs During Execution

A program being debugged with
not be linked such that its
'Break'. Module 'Break' is aIr
debugger itself.

the run- ' e debugger should
ob' file contains module

y linked into the run-time

<5e.e. e\f'~tA..
The program
break> when
time it
display

gged can be stopped by typing <Ctrl
s into an infinite loop or at any other

cuting. The run-time debugger will then
th Call window, in the same way as when a run-time

rs. The run-time debugger handles the execution of
p ram stopped with <Ctrl-break> in the same way as

rams that stop because of a run-time error.

3.6 pebugging Programs That Use Overlays

Each time an overlay is called, the run-time debugger stops
the execution when the overlay has been loaded, but before
it has started execution. This is similar to what happens
when the user starts debugging a program. The debugger
displays the Module window when the overlay has been loaded.
The user may then set breakpoints or start the execution of
the overlay in step mode.

4 Window Format

The run-time debugger has the same windows as the post
mortem debugger the Call window, the Module window, the
Data window, the Text window and the Raw window. As in the
post-mortem debugger, the first two lines of each window
indicate the commands available.

-7-

LOGITECH MODULA-2/86 December 10, 1984

RUN-TIME DEBUGGER USER'S MANUAL

Errata

P4ge 7 (r(!placQ sub-s~ction 3. ~ by tho follwoing)

A progr~m being debugged, with or without tho run-timo
debugger, should import module 'Break I, so that its
obJ~ct fil~ will includo this module.

The program being debugged elln bo ~toppod b~ t~ping <Ctrl-C>
whQn it is waiting for input, or <Ctrl-br~ak> at any other
time it i~ exocuting. for instance whon it runs in an infinite
loop. If a progr~m that contains module 'Broak' i!l stopped in
this way. then tho run-time debugger handlo5 this situation in
tho 5ame way as when a run-timo error occurn. It display9 tho
Call window. and you can inspoct tho statuG and thQ data of the
program as they w~ro when <Ctrl-C> or <Ctrl-braak> was t~pad.

It in not possible to resume the execution of tho program.
Upon the next Go command, the run-tim~ debu~ger will display a
mQ511ago. It them prompts you to ontQr tho namo of the next
program to debug. as when tho program terminates normally.

If a program that doos not contain module 'Break' is stopped by
<Ctrl-C> or <Ctrl-break>. then the run-timo debugger will not
di5play tho Call window. InstQad. it will Just torminato the!
pr~gram. and prompt for tho next program to debug.

4.1 Markers

As in the post-mortem debugger, the greater-than (» sign is
used in the run-time debugger as an execution marker to
indicate active code. It appears in the Call, the Module and
the Text windows and its meaning is the same in the run-time
debugger as in the post-mortem debugger.

In the Call, the Module and the Text windows certain lines
are marked with an asterisk (*) to indicate where the user
has set breakpoints throughout the program. A breakpoint can
be set at any statement in any procedure or module.

The breakpoint at which a program stops is marked with a
pound sign (#) which replaces the asterisk.

4.2 Selecting an Item for pisplay

Like the post-mortem debugger the run-time debugger displays
the position of the selected item in the lower part of each
window. The user may select a different item using the
cursor keys or by entering a new position.

5 The Run-Time pebugger Commands

Like the post-mortem debugger, the run-time debugger has two
types of commands - global and local. The same definitions
apply to these commands in the run-time debugger as in the
post-mortem debugger. Local commands are only applicable to
the particular window in which they appear and are explained
in the appropriate sections.

5.1 Global Commands

In addition to the global commands available in the post
mortem debugger, six new global commands are available in
the run-time debugger. The global commands appear on the
second line of each window, below the window name and local
commands:

=[Call Hod Data Text Raw Init] Hexa Quit
#[P L N] Go[End Bpt Ret Proc Stat]

-8-

The following describes the global commands available in the
run-time debugger only:

Command

Goareakpoint

Instructs the
program until
breakpoints.

Action

debugger to execute the
the end, ignoring all

Instructs the debugger to execute the
program until the next breakpoint.

For the following commands, the debugger stops the program
at the next breakpoint it encounters, or after the specified
step has been completed, whichever comes first:

GoReturn

Go~rocedure

Go£tatement

Instructs the debugger to execute the
program until the return from the
current procedure, or to the next
breakpoint.

Instructs the debugger to execute the
program until the next procedure call,
or to the next breakpoint.

Instructs the debugger to execute the
program until the next statement, or to
the next breakpoint.

5.2 Actiyating the Step Mode

When the user invokes the Go Statement or the Go Procedure
command, the step mode is active only in certain modules.
The debugger executes the program and stops at each
statement or procedure in those modules in which the user
has enabled the step mode. Unless a breakpoint is
encountered, the program will not stop in a module where the
step mode is not enabled. When a program is loaded by the
debugger, by default the step mode is disabled in all
modules that belong to the system library. For all other
modules, the step mode is enabled.

In the Module window, the run-time debugger marks modules
where the step mode is enabled with a plus sign (+)
preceeding the module name. It does not mark modules with
step mode disabled. The user may change the default and
enable or disable the step mode in any module when the
Module window is displayed.

-9-

5.3 pisplay of Information

When the
breakpoint
the same
execution
the 'Go
debugger
executing

debugger stops executing the program at a
or after a step has been performed, it displays

window which was shown when the user initiated the
of the program. For example, if the user invokes
Procedure' command from the Text window, the

will again display the Text window when it stops
the program.

5.4 Use of the Step Mode in a Multi-Process Program

If the program to be debugged contains more than one
process, the step mode is only applicable to one process at
a time. The commands Go Statement, Go Procedure and Go
Return always refer to the current process only. When the
user invokes one of these commands, the debugger will stop
the program in the current process - the same process in
which it was stopped the last time.

If the user wishes to stop the program in another process,
he must· set a breakpoint on a statement in a procedure that
will be executed by this other process. When the debugger
encounters this breakpoint, the user selects the appropriate
step mode to examine this new process. The step mode is then
only applicable to the new process. Whenever the debugger
stops the execution of the program the user can set
appropriate breakpoints to stop the program in the original
process, or in any other process.

6 Run-time pebugger Windows

The following sections describe those aspects of the run
time debugger windows which differ from the post-mortem
debugger windows. They explain the local commands which are
available in the run-time debugger only.

6.1 Call Window

The Call window in the run-time debugger has the same major
components and functions as in the post-mortem debugger. It
displays the chain of procedure calls of a process. In the
run-time debugger the Call window cannot be invoked before
the user has started the program with the Go command.
Because no procedure of the program is active at that time,
the Call window would be empty. When this error occurs, the
debugger displays the following message:

-10-

Error: Cannot display Call window during loading

to indicate that the program has been loaded into memory but
has not been started yet. Because no procedure of the
program is active at that time, the Call window is empty.

There are no local commands available in the run-time
debugger Call window.

The following example shows the Call window. The message
'Status: procedure step' indicates that the program stopped
after it completed a Go Procedure command. The two
procedures marked with an asterisk have breakpoints in them.

CALL I
~[Call Mod Data Text Raw Init] Hexa Quit *[P L N] Go[End Bpt Ret Proc stat]

status: procedure step
procedure step for this process

1 *> RecursiveOne
2 *> RecursiveOne
3 > FirstOne
4 > initialization
5 > PROCESS

Position > 1

in De~o
in Demo
in Demo
of Demo

stops at line
at line
at line
at line

36 , statement 1
38 , statement 1
24 , statement 1
57 , statement 1

Note: Execution until next procedure or next breakpoint

SAMPLE SCREEN 1

6.2 Module Window

The Module window displays the list of modules that
constitute the program being debugged. The modules in which
the step mode is enabled are marked with a plus sign (+).

Local Commands in the Module Window

There are two local commands in the Module window of the run
time debugger. The user invokes them by entering the first
character (shown in upper case) of each command name. The
local commands appear on the first line of the window, to
the right of the window name as follows:

MODULE Enablestep Disablestep

-11-

Command

Enablestep

Uisablestep

6.3 Data Window

Action

Enables the step mode in the selected
module. When the user invokes the Go
Procedure and Go Statement commands to
step through the program, the program
will only stop in the modules where the
step mode is enabled.

Disables
module.
library,
default.

the step mode in the selected
For all modules of the system

the step mode is disabled by

The Data window displays the variables and/or parameters of
the selected procedure or module.

Local Commands in the Data Window

There is one additional local command in the Data window of
the run-time debugger. The Modify command appears at the end
of the first line of the window after the window name and
the other local commands.

Command

Modify

Action

Modifies the contents of the selected
variable or parameter. The debugger
prompts the user to enter the new value
according to the type of the data item:

o CARDINAL, INTEGER, REAL
The user enters the new value which must
be of the same type.

o BYTE, WORD
The user enters the new value as a
CARDINAL number.

o ADDRESS, POINTER
The user enters the new value in the
form <segment>:<offset>. Both parts are
four digit, hexadecimal numbers.

-12-

Command

o BOOLEAN
The user changes
by entering a T
FALSE.

Action

items of type BOOLEAN
for TRUE or an E for

o CHAR
The user
entering
'a' or
value.

modifies items of type CHAR by
a character in quotes, such as

nan, or by entering an octal

o BITSET
The user modifies items of type BITSET
by entering a binary number. The binary
number consists of up to 16 digits of
'one' or 'zero', indicating that the
corresponding bit should or should not
be set. If the user does not wish to
modify a certain bit, he can enter an X
at this position and the debugger will
retain the original value for this bit.

o SET
The user modifies items of type SET by
invoking the Son command to list the
contents of the set. The run-time
debugger then lists the possible
elements in the set and indicates
whether each element is in the set or
not. To change the elements included in
the set, the user must select a
particular element and activate the
Modify command. By responding with T for
TRUE or an £ for FALSE to the prompt 'In
set?' he can then include or exclude
that element into or from the set.

o Enumeration
The user modifies the value by entering
the name of the element to which he
wants to set the value. The element name
must be given as defined by the
declaration of the enumeration type.

-13-

The following sample screens show the path the user follows
to modify the content of an array element with a record
structure. First, he invokes the Son command to view the
elements of the variable 'node' of the module 'Demo'.
(Sample Screens 2 & 3) Next, he again invokes the Son
command to display the fields of the record 'node[l] " and
the value and type of each field. (Sample Screen 4) Finally,
the user modifies the value of the first field which is of
type CARDINAL. He invokes the Hodify command and enters a .2.
to change the value from 1 to 6. Sample Screen 5 shows the
mod if ied da ta •

DATA I Son Father Left(dec index) Right (inc) Var X Addr Examine(process) Modify
a[Call Mod Data Text Raw Init] Hexa Quit '[P L N] Go[End Bpt Ret Proc Stat]

Demo.

1 x
2 y
3 z
4 node-

Position > 4

1
2.0000000000E+OOO

3

InTEGER
REAL
INTEGER
ARRAY[1 •• 4] OF RECORD

SM1PLE SCREEN 2

DATA I Son Fnther Laft(dec index) Right (inc) Var X Addr Examine(process) Modify
-[Call Hod Data Text Raw Init] Hexa Quit '[P L Il] Go[End Bpt Ret Proc Stat]
--DeI:lo.node

1 [1]
2 [2]
3 [3]
4 [4]

Position > 1

RECORD
RECORD
RECORD
RECORD

SAMPLE SCREEN 3

-14-

DATA
DATA
DATA
DATA

1 datal
2 data2
3 data3

Position > 1

1 CARDINAL
2.0000000000E+OOO REAL

3 INTEGER

new value (cardinal) > 6

SAMPLE SCREEN 4

DATA I Son Father Left(dec index) Right(inc) Var X Addr Examine(process) Modify
=(Call Hod Data Text Raw Init] Hexa Quit '(P L N] Go(End Bpt Ret Proc stat]
--
Demo.node(l]

1 datal
2 data2
3 data3

Position > l.

6.4 Text Wjndow

6 CARDINAL
2.0000000000E+OOO REAL

3 INTEGER

SAMPLE SCREEN 5

The Text window displays the text of the module or procedure
in which the debugger stops the program. The greater-than
sign (» indicates the line in which the debugger stopped
the program, the call of the next procedure, or where the
last process transfer or interrupt occurred.

-15-

Local Commands in the Text Window

The three local commands specific to the Text window of the
run-time debugger allow the user to set and delete
breakpoints.

Command

aetbreakpoint

~learbreakpoint

Action

sets a breakpoint in the selected line.
If more than one statement is on the
line, the run-time debugger prompts the
user to indicate on which statement he
wishes to set the breakpoint.

The run-time debugger also prompts the
user to set a limit for the occurrence
counter associated with the breakpoint.
The user may type ~ for the default
value for this limit which is 1.

If a breakpoint is already set on the
selected statement the debugger replaces
the old value of the occurrence counter
with the new one.

Removes a breakpoint on the selected
line. If more than one statement is on
the line, the debugger prompts the user
to indicate from which statement he
wishes the breakpoint to be removed.

Killallbreakpoint Removes
program.

all breakpoints from the

6.5 Raw Window

The Raw window displays the memory contents around a given
address. The initial address of the selected memory location
depends on the window from which the user invokes the Raw
window. The values are set the same way as in the post
mortem debugger.

Local Commands in the Raw Window

There are three additional local commands in the Raw window
of the run-time debugger.

-16-

Command

Input/
Output

Modify

Action

Used to read in and write out data
through an I/O port. The debugger
prompts whether to read in or write out
a byte or a word. It then asks the user
to enter the address of the serial port
which will be used.

Allows the user to modify the memory
contents at the selected address. The
debugger asks the user for the new value
and specifies in which format it should
be entered. The format to be used
depends on the format in which the Raw
window currently displays the memory
contents.

-17-

Appendix t-

ERROR MESSAGES IN RUN-TIME DEBUGGER

The following is an alphabetical list of the run~time
debugger error messages. When error messages are caused ~y
certain commands only, these commands are listed ~n
brackets. For error messages not listed in this chapt~r,
please refer to the list of, error messages of the post
mortem debugger.

o Can not display call window during loading
[Ca 11 ,command]

The Call window shows the chain of active proc,edures. ,If
the program has not started execution, no procedures are
active; thus, the Call window would be empty.

o Local data can not be modified until past BEGIN
[Data window, Modify comman~]

The local data of a procedure does not exist before'the
procedure entry code, to Which the 'BEGiN' c~r!es~orids,
has been executed. .

o No breakpoint in definition module
[Text window, Set breakpoint command]

. .'

A breakpoint can only be s~t on a statement. Because the
definition module does not contain statements~ no
breakponts can be set there:

o No breakpoint to clear
[Text window, Clear breakpoint command]

No breakpoint is set at the
therefore it cannot be removed.

seiected' sttite'ment,
:.' i'·:

o No statement in this line
[Text window, Set breakpoint command]

The selected line does not' contain any statements. A
breakpoint can only be set on a statemen~~ A'line that
contains only a symbol like 'END', 'IF',' 'CASE';' 1LOOP'
or similar is considered to contai~ no statement~

o Not modified (new value out of range) .,
[Data and Raw windows, Modify command]

The new value the user entered is not ,within. the valid
range. No modification ~as been made.

-18-

o Process decriptor can not be modified
[Data window, Modify command]

The run-time debugger does not allow the user to modify
process descriptors. Modification of the process
descriptors may cause unpredictable behavior of the
program and the run-time debugger.

o Structured data cannot be modified (use Son command)
[Data window, Modify command]

The Modify command is applicable only when the selected
data item is of a simple type. The user should invoke
the Son command and select those elements or fields he
wants to modify.

o This type of data can not be modified
[Data window, Modify command]

Procedure variables, variables of opaque types and
variables of type PROCESS cannot be modified.

-19-

LOGITECH MODULA-2/86

DISTRIBUTION DISKS

RUN-TIME-DEBUGGER

Modula-2/86 Run-Time Debugger, Release 1.10

Logite~h SA, January 1985

Format: IBM-PC, double sided, 9 track (360K),
PC-DOS 2.0 or later

Number of disks: 1

~ LOGITECH

~ LOGITECH

LOGITECH Modula-2/86 Run-Time Debugger (RTD)
===========================~================

Release 1.10 - Dec 1984

Here is the list of the files on the RTD distribution disk,
together with some explanations what they contain:

f'r12.EXE

Modula-2/86 Run-Time Support (RTS):

standard RTS (same as on disk 1 of
Modula-2/86 Base Language System)

M2Sf'r1ALL .. EXE special version of RTS: This version of the RTS increases
the maximum size of an appliaction program that can be
debugged within a given memory size by 17K bytes.
When using this version, the MS-DOS Command Interpreter
is overwritten by the RTD and therefore we can
use its memory (17K bytes) for the RTD.
After termination of the RTD, DOS will reload its
Command Interpreter (file COMf'r1AND.COf'r1) from disk.
Note: The version f'r12Sf'r1ALL has be created with the
sources of the RTS (contained on disk 1 of f'r1odula-2/86
Base Language System) by changing the constant 'KEEP_COf'r1'
in file RTS.INC from TRUE to FALSE.

Executable f'r1odula-2/86 Run-Time Debugger (RTD):

RTD.LOD
M2RTD.LOD
RTDOVLAY.LOD

main program of RTD
overlay of RTD
overlay of RTD

The Run-Time Debugger source files:

These RTD source modules allow a user to customize the RTD
to a specific hardware (keyboard, size of RAf'r1, etc).
For details please refer to the commented source files.
After modification of these source modules, th~y must be compiled
by means of the command 'M2 camp DBXINOUT', resp .. 'M2 comp RTDWS'.
After successfull compilation, the main program of the RTD
must be re-linked (see below).
WARNING: DO NOT MODIFY OR RECOMPILE THESE DEFINITION MODULES!

DBXINOUT.DEF
DBXINOUT.SYM
DBXINOUT.MOD
RTDWS.DEF
RTDWS.SYM
RTDWS. t-10D

They are included for documentation only.

Contains definitions for keyboard and screen.

Conta~ns definitions for the RTD's workspace. With
these definitions the RTD may be adapted to the
memory size.

The Run-Time Debugger object files:

These files are needed to re-link the RTD after modification.
To re-link the RTD~ use the command ~M2 link rtd~. In addition
to the object files listed below, the RTD needs certain modules
of the Modula-2 Standard Library (contained on the distribution
disk 3 (~Linker~) of the Modula-2/86 Base Language System:

RTD.LNK
DBTYPE. LN~:::
DBXINOUT.LNK
DSXCL I. LN~:::
RTDX. LN~:::
RTDWS.LNK

The file containing this text:

READ-1"1E. RTD

