GENERAL SYSTEM BULLETIN

PROCESSOR INSTRUCTION SET

GB13020009103

G3

SUE PROCESSOR INSTRUCTION SET

GENERAL SYSTEM BULLETIN G3

Third Edition

This bulletin supercedes SUE Processor Instruction Set General System Bulletin G3, Rev. A dated June 1972

Bulletin GB13020009103 May 1973

©Copyright 1973 by Lockheed Electronics Company Los Angeles, California All rights reserved

EFFECTIVE PAGES

New pages introduced in this third edition include Processor Instruction Sets for SUE 1110A/B, 1111A/B, 1112A/B, and Appendices D and E.

Changes in the second edition, which included Processor Instruction Set SUE 1110, and Appendices A through C, are indicated by a heavy line in the outer margin of the changed page.

.

CONTENTS

<u>Title</u>

Page

SUE 1110 INSTRUCTION SET

Introduction 1	
Word Formats	
Data Words • • • • • • • • • • • • • • • • • • •	
Address Words 3	
Instruction Words · · · · · · · · · · · · · · · · · · ·	:
$\mathbf{Fields} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $,
Addressing	;
Byte-Word Addressing · · · · · · · · · · · · · · · · · · ·	; .
Absolute and Relative Addressing	;
Extended Addressing	;
Indexing	•
Auto Incrementing and Decrementing	•
Indirect Addressing	•
Register, Immediate and Literal Operands	1
Combination Addressing Modes	i i
Special Addresses 10)
Status Indicators	
Instruction Descriptions 12	}
General Register Instructions 12	: : :
General Operations 12	}
General Register Instruction Word Formats 13	ŀ
General Register Instruction Times	1
Branch Conditional Instructions 20)
Branch Conditions 21	-
Branch Instruction Word Formats 22	F.
Branch Instruction Times	

CONTENTS (continued)

Title

Page

Shift Instructions	24
Shift Instruction Word Formats	25
Shift Instruction Timing	2 7
Control Instructions	28
Control Instruction Word Formats	28
Control Instruction Times	33
Unimplemented Instructions	34
Input/Output Instructions	34
SUE 1110A INSTRUCTION SET	
Introduction	35
Store Key Instruction	35
SUE 1110B INSTRUCTION SET	
Introduction	37
Fetch and Clear Instructions	37
Fetch and Clear Operation	38
SUE 1111A INSTRUCTION SET	
Introduction	39
Temporary Storage	39
Instruction Format	40
Decimal Data Format	41
Character Data Format	41
Symbolic Coding for Operands	42
Instructions	42
SUE 1111B INSTRUCTION SET	
Introduction	46
Fetch and Clear Instructions	46
Fetch and Clear Operations	46

į

CONTENTS (continued)

<u>Title</u>

Page

SUE 1112A INSTRUCTION SET	
Introduction	49
Double Precision Data Format	49
Instruction Times	50
Bit Manipulation Instructions	50
Bit Manipulation Instruction Formats	51
Bit Manipulation Operations	52
Move Instructions	52
Move Instruction Format	52
Move Operations	53
Normalize and Count Instructions	53
Normalize and Count Instruction Format	53
Normalize and Count Operations	53
Double Length Shift Instructions	56
Double Length Shift Instruction Format [,]	5 7
Double-Length Shift Operations	57
Class B Instruction Set	60
Class B Instruction Format	60
Accumulator Registers	60
Single-Precision Fixed Point Instructions	60
Addressing Modes	60
One-Word Operand Format	61
Single Precision Fixed-Point Operations	61
Double Precision Fixed-Point Instructions	62
Addressing Modes	62
Double Precision Fixed Point Operations	63
Control Instructions	63
Control Instruction Formats	64

v

CONTENTS (continued)

<u>Title</u>

Page

SUE 1112B INSTRUCTION SET	
Introduction	65
Fetch and Clear Instructions	65
Fetch and Clear Operation	66
APPENDIX A, INSTRUCTION TIMES	
Single Shift Instruction Timing for SUE 1110 (Basic), 1110A/B, 1111A/B, 1112A/B	A-3
SUE 1111A/B CLASS C INSTRUCTION TIMES DECIMAL AND CHARACTER INSTRUCTIONS	
Decimal Add and Subtract Timing	A-5
Decimal Shift Timing	A-10
Move Timing	A-11
Compare-Field Timing	A-11
Decimal Compare Timing	A-13
APPENDIX B, INSTRUCTION SUMMARY AND INDEX	
SUE 1110 (Basic) Instructions Summary	B-1
SUE 1110 (Basic) Instruction Index	B-2

APPENDIX C, INPUT/OUTPUT ADDRESSES

APPENDIX D, SELF-INTERRUPT AND SYSTEM INTERRUPT EXECUTIVE SPACE

APPENDIX E, USASCII CHARACTER SET AND HEXADECIMAL CODES

G

LIST OF TABLES

Table	Title		Page
1	Combination Addressing Modes	•	9
2	Special Addresses	•	10
3	General Register Instruction Word Formats	•	14
4	SUE 1110 (Basic) General Register Instruction Times	•	19
5	Branch Instruction Times	•	24
6	SUE 1110 (Basic) Control Instruction Times	•	33
A-1	SUE 1110 (Basic) General Register Instruction Times		A-1
A-2	SUE 1110A/B, 1111A/B, and 1112A/B General Register Instruction Times	•••	A-2
A-3	SUE 1110 (Basic), 1110A/B, 1111A/B and 1112A/B Control Instruction Times		A-3
A-4	SUE 1110 (Basic) Branch Instruction Times		A-4
A-5	SUE 1110A/B, 1111A/B and 1112A/B Branch Instruction Times		A-4
A-6	Decimal Shift Timing Chart	• •	A-10
A-7	SUE 1112A/B Instruction Times		A-18
A- 8	SUE 1112A/B Single- and Double-Precision Fixed-Point Instruction Times	• •	A-20
C-1	Input-Output Device Addresses	• •	C-1

PREFACE

This bulletin contains instructions to program seven types of SUE processors:

	Number of Instructions
SUE 1110 (basic)	108
SUE 1110A	109
SUE 1110B	111
SUE 1111A, Decimal Arithmetic	118
SUE 1111B, Decimal Arithmetic	120
SUE 1112A, Scientific Double Precision	144
SUE 1112B, Scientific Double Precision	146

SUE 1110 basic is the first instruction set described in this bulletin. SUE 1110A performs the basic instruction set and one additional instruction, Store Key (SKEY). Both SUE 1111A and 1112A processors have the speed and capabilities of SUE 1110A, and each has an extended instruction set. Descriptions of these extended instructions follow the description of the SUE 1110B. Instruction times for all instructions are summarized in Appendix A.

Processors SUE 1110B, 1111B, and 1112B perform the same instructions as the respective A-series processors, and two additional instructions Fetch and Clear Word (FCLW), and Fetch and Clear Byte (FCLB). These two instructions can be used in multiprocessor systems as a synchronizing mechanism.

Instructions in this bulletin are described in machine language for the system user possessing a background in digital computer terminology and operation. Additional information on the basic instruction set is contained in the LAP-2 Assembler manual. Operation and maintenance of SUE processors is contained in the respective reference and maintenance bulletins designated by the processor model number.

SUE 1110 INSTRUCTION SET

INTRODUCTION

SUE 1110 instruction set includes 108 basic instructions exclusive of 16 addressing modes. Many of these instructions operate on either 16-bit data or 8-bit byte formats. Other instructions test one or more of the 16 status indicator bits. This bulletin presents a detailed description of word formats, addressing modes, and status indicators followed by a definition of each instruction operation.

The 108 instructions are divided into eleven classes according to type of instruction function. Seven of these classes are grouped as general register instructions. They contain arithmetic, logical, move, compare and test functions that involve the eight general registers of the processor. Two classes represent the branch instructions. They contain unconditional and conditional branch functions on the true or false condition of status indicators. The shift class contains full 15-bit shift capabilities with eight different operations and two address modes. The control class contains system control functions such as load/store of all general registers, load/store of status indicators and control of interrrupt operations.

The eleven instruction classes are:

Class Code

Description

1 Accumulator to Memory with Auto Decrement	
2 Accumulator to Memory with Auto Incremen	it
3 Accumulator to Memory	
4 Data to Accumulator, Jump to Subroutine, J	lump,
and Register to Register	
5 Memory to Accumulator with Auto Decrement	nt
6 Memory to Accumulator with Auto Incremen	nt
7 Memory to Accumulator	

GB13020009103

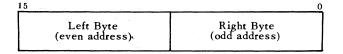
SUE G3

8 9	Branch False and No Operation Branch True and Unconditional
А	Shift
0	Control

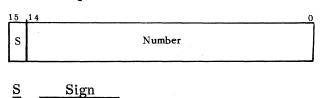
Class codes are specified in the instruction word format by the four-bit C field. (Fields are defined later under instruction words in this bulletin). Five class codes are not defined for the basic instruction set. They have been reserved for specification of additional general purpose instructions in the SUE 1111A, B and 1112A, B Processors; or, for special purpose instructions in future SUE processors with expanded ROM control memories.

SUE 1110 Processor contains eight, 16-bit general registers including the program counter. Seven of these registers may be used as accumulators or index registers. The arithmetic-logic unit processes 16-bit operands but memory data may be 8-bit bytes or 16-bit words.

Memory addresses are 16-bit numbers that select up to 60k (k = 1024) bytes. Addresses 60k to 64k are used to directly address registers within system modules other than program memory modules.


WORD FORMATS

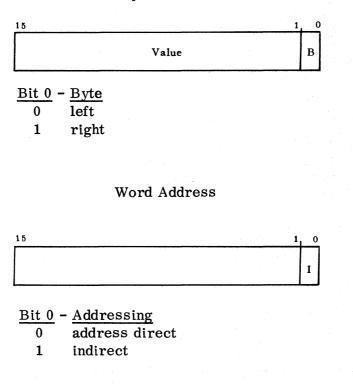
Bit positions within a word are numbered right to left starting with 0. Bit 0 is the least significant bit of the word and bit 15 is the most significant.


DATA WORDS

Two data word formats can be processed, an 8-bit byte and a 16-bit word. The most significant bit (15) represents the algebraic sign of numeric data. A ONE in bit position 15 represents a negative number, and a ZERO represents a positive number. Negative numbers are in twos complement form.

Byte Format

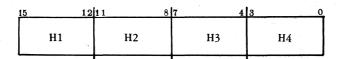
Word Format


 $\frac{5}{1} \frac{51\text{gm}}{\text{negative (-)}}$ 0 positive (+)

In byte operations, the entire selected 16-bit register is used in the operation with the byte operand. In register-to-memory instructions (byte mode), the right byte of the register operates on the designated byte in memory. In memory-to-register instructions (byte mode), the designated byte in memory operates on the full 16-bit register as though the memory operand has a left byte equal to ZERO attached to it. In either type of operation, arithmetic operations occur in a 16-bit register and carry and overflow are detected out of a 16-bit register.

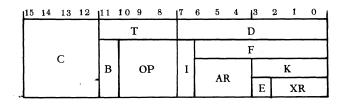
ADDRESS WORDS

The 16-bit address represents a byte address. Bit zero selects the left or right byte of a 16-bit word. On word addresses, bit zero is used to specify more than one level of indirect addressing.


Byte Address

INSTRUCTION WORDS

4


Instruction words are constructed to facilitate encoding and decoding of the machine language code. The words are defined so that the fields of the instruction do not overlap the four hexadecimal digits represented by H1, H2, H3, and H4. Those fields that are subsets of a hexadecimal digit are right-justified, with the high-order bit used to indicate the less common condition.

Digit

- H1 Class Designation 0 through 15
- H2 Operation Designator (usually)
- H3 Accumulator Designator (usually)
- H4 Index Designator (usually)

FIELDS. - A variety of word formats are interpreted by the processor. All of the fields used, and their positions, are defined below in a composite drawing. Functions of a given field may vary according to the instruction.

NOTE: Several fields have more than one function depending on the instruction that contains them. In the field definitions below, any function common to several instructions is defined. For descriptions of other functions, refer to corresponding instruction descriptions.

Field Definitions

Symbol

Description

- C Class Indicator (4 bits) Specifies 1 of 16 classes or divisions of the instruction set. Classes indicate the type of function.
- T Test Operation (4 bits) Defines operation codes for the Control and Branch classes.
- D Displacement Address (8 bits) Direct address (+ or -) to words relative to the address of the instruction. May be expressed as P (Program Counter) +D, where D is the range, -128 through +127. An exception, if the absolute-address mode of a Control instruction is specified, then D directly addresses the first 256 words in memory.
- B Byte Indicator (1 bit) Specifies whether the memory operand is a word (B=0) or a byte (B=1). Field of a Control instruction specifies the Relative (B=1) or Absolute (B=0) address mode.
- OP Operation Indicator (3 bits) Defines 1 of 8 operations available to certain classes. Several classes use the same set of operations, as explained in greater detail under Instruction Descriptions.
- I Indirect Addressing Indicator (1 bit) Specifies first level of indirect addressing if I=1.
- AR Accumulator Register Designator (3 bits) Designates 1 of 8 general registers as an A-Register during instruction execution.
- E Extended-Address Indicator (1 bit) Indicates (when 1) that the word following the instruction will be accessed as an extended-address part of the instruction.
- XR Index Register Designator (3 bits) Designates 1 of 7 general registers as an X-Register during instruction execution.
- K Constant (4 bits) Designates length of a Shift command, or an immediate constant. Also used to enable interrupts.
- F Status Bit-Pattern (7 bits) Comprises the bit pattern for changing control states for certain Control instructions.

ADDRESSING

SUE 1110 Processor develops a 16-bit operand address based on the mode that is selected by the instruction class code and other fields of the instruction word format.

BYTE-WORD ADDRESSING

A bit (B) in the instruction word specifies if the operand is to be a byte (8 bits) or a word (16 bits) in general register instructions. If B = 1 and bit zero of the effective operand address is ZERO, the left byte (bits 15 through 8) is used; the right byte (bits 7 through 0) is used if bit zero is ONE. If B = 0, a word operand is requested and the address of the word is treated as an even-numbered byte address.

ABSOLUTE AND RELATIVE ADDRESSING

Branch instructions use the relative displacement method to develop the branch address. The D field of the instruction is an 8-bit (7 bits plus sign) number that specifies a branch within +127 or -128 words (not bytes) from the current location. Negative numbers are represented in twos complement form.

Control instructions use the relative displacement as well as the absolute addressing modes. Bit B of the instruction word, when set to a ONE, selects the relative mode and, when ZERO, selects the absolute mode. In the absolute address mode the D field of the instruction is an 8 bit number that specifies direct address of the first 256 words (not bytes) of memory.

EXTENDED ADDRESSING

6

When the E bit of the instruction is a ONE, the word following the instruction becomes the base address and is used to develop the operand address. When E = 0 the base address is ZERO.

GB13020009103

INDEXING

Content of one of the seven general registers may be selected as an index register. The XR field of the instruction selects the register. When the XR field is all zeros, no indexing is specified. If neither extended addressing nor indexing is called for (i.e. bits 3-0 all ZEROs) then no address is specified and an unimplemented instruction trap is generated.

Two types of indexing are used:

Base Relative Indexing (indexing relative to the base address of the computer or user program). - In this type of indexing, the index register contains the complete address of the desired memory location. Base relative indexing together with autoincrement or autodecrement provide generalized push down and pop up stack processing capabilities.

Table Indexing (indexing relative to the base address of a table). - In this type of indexing the index register contains the variable n to fetch the quantity located at TABLE + n.

AUTO INCREMENTING AND DECREMENTING

Within the general register instructions, separate class codes are used to provide the option for automatic increment or decrement of the index register selected by the XR field of the instruction. When autodecrement is specified, the content of the index register is decremented before the operand address is generated. When autoincrement is specified, the content of the selected index register is incremented after the operand address is generated.

ONE is subtracted or added to the content of the index register when the instruction specifies a byte operand with autodecrement or autoincrement. TWO is subtracted or added when the instruction specifies a word operand with autodecrement or autoincrement.

INDIRECT ADDRESSING

If indirect bit I of the instruction is set to a ONE, the address developed by the processor points to the address of the operand.

Multi-level indirect addressing is provided in the word mode only. The processor tests the least significant bit of the indirect address. If this bit is a ONE, and the word mode is specified, the word pointed-to is also treated as an indirect address. If the least significant bit of the address is a ZERO, the processor stops the multi-level indirect addressing for this instruction. If the processor counts up to 16 levels of indirect addressing, an unimplemented instruction self-interrupt is generated and the instruction is trapped.

Only single level indirect addressing is available in the byte mode because the least significant bit of the operand address specifies left or right byte.

REGISTER, IMMEDIATE AND LITERAL OPERANDS

The data-to-accumulator (class code 4) general instruction provides for selection of register, literal or immediate operands. The register operand is the register specified by the XR field, and can be the program counter if XR=0. The literal operand may be the 16-bit word following the instruction or the 16-bit word following the instruction plus the contents of XR. An immediate operand is the 4-bit value in the instruction's K field.

COMBINATION ADDRESSING MODES

8

In most general register instructions, combinations of addressing modes may be specified to yield fourteen useful functions for memory operand selection. The processor develops addresses in combinations of the following in the sequence shown:

> Extended Address Autodecrement the Index Indexed Indirect Autoincrement the Index

Autodecrement and autoincrement functions apply to the contents of the general register selected by the XR field of the instruction.

On autodecrement the content of the index register is decremented by one for byte addresses or by two for word addresses before the index register contents is used as an index value. On autoincrement the content of the index register is incremented by one or two after it is used as an index value.

If the XR field of an instructions is all ZEROs, no indexing is specified. However, auto-increment or auto-decrement specified with a ZERO XR field affects the program counter.

Table 1 contains a summary of the fourteen combinational addressing modes.

Address Mode	M Effective Address	XR Index Register	Assembler Mnemonic	
Extended	Α	-	А	
Extended, Indexed	A + X		A(R)	
Extended, Indexed, Autoincrement	A + X	X + e	A(R+)	
Extended, Autodecrement, Indexed	A + X - e	Х-е	A(-R)	
Indexed	X	-	(R)	
Indexed, Autoincrement	X	X + e	(R+)	
Autodecrement, Indexed	Х-е	Х-е	(- R)	
Extended, Indirect	[A]		*A	
Extended, Indexed, Indirect	[A + X]	<u>-</u>	*A(R)	
Extended, Indexed, Autoincrement, Indirect	[A + X]	X + e	*A(R+)	
Extended, Autodecrement, Indexed, Indirect	$\left[A + X - e\right]$	Х-е	*A(-R)	
Indexed, Indirect	[x]	-	*(R)	
Indexed, Autoincrement, Indirect	[x]	X + e	*(R+)	
Autodecrement, Indexed, Indirect	[X - e]	Х-е	*(-R)	
NOTES: A - 16-bit word following instruction	1n	L	1	
X - Content of General register selected by XR field				
e - A ONE if byte address, a TWO if word address				
[] - 16-bit word at address specified	l in b rac kets	•	• •	

Table 1.	Com	bination	Addressi	ng	Modes

SPECIAL ADDRESSES

Even addresses 61,440 to 65,534 (hexadecimal F000 to FFFE) are reserved for addressing of system hardware registers within SUE system modules. The odd numbered addresses in this range are not used. Each system module is assigned a set of even (word) addresses as shown in table 2.

Addressing a system register for either a read or write function is allowed by master modules. The slave module always transmits or receives 16 data bits. If the selected register is less than 16 bits in length, the data is transmitted in the least significant bit positions and the most significant, unused, bit positions are ZEROS.

_		
	Addresses (Hexadecimal)	Module Assignment
	F000-F7FE	Reserved for special memory assignments
Γ	F800	I/O Device Controller #1, Status Register
	F802	I/O Device Controller #1, BTA Address Register
	F804	I/O Device Controller #1, BTA Block Length Register
	F806	I/O Device Controller #1, Control Register
	F808	I/O Device Controller #1, Data Register
	F80A-F80E	Reserved for I/O Device Controller #1
	F810-F81E	I/O Device Controller #2 as in #1
	F820-FAFE	Reserved for I/O Device Controllers as in #1. (see Appendix C)
F	FB00-FBFE	Auto Load Memory
	FC00-FEFE	Reserved for Auto Load
	FF00	Central Processor (#0) Register 0, (Program Counter)
	FF02-FF0E	Central Processor (#0), General Registers 1-7
	FF10	Central Processor (#0), Status Indicators
	FF12	Central Processor (#0), Instruction Register
	FF14-FF1C	Reserved for Central Processor #0
	FF1E	Central Processor (#0), Control Flip-Flops
	FF20-FF3E	Processor #1, same set as #0
	FF40-FF5E	Processor #2, same set as #0
	FF60-FF7E	Processor #3, same set as #0
	FF80	Control Panel #1 Address Register-Attention Interrupt
	FF82	Control Panel #1 Data Register
	FF84-FF86	Control Panel #2 as in #1
	FF88-FF8A	Control Panel #3 as in #1
	FF8C-FF8E	Control Panel #4 as in #1
	FF90-FFFF	Reserved for other System Modules to be assigned.

Table 2. Special Addresses

STATUS INDICATORS

SUE 1110 Processor has a 16-bit status indicator register. Status indicators may be affected by execution of general register and shift instructions. This is indicated by their symbol in INSTRUCTION DESCRIPTIONS. The status indicators may also be set or reset with special control instructions.

The status bit position within the status register, symbol, name, and description are as follows:

Bit	Symbol	Name and Description
0	EQ	Equal - In a compare operation, the source operand equals the target operand.
1	GT	Greater-Than - In a compare operation, the source operand is greater than the target operand.
2	OV	Overflow - Set during Add, Subtract, or Arithmetic Left Shift if the Carry out of bit 15 is different than the Carry in to bit 15. If the set condition is not caused, V remains unchanged.
3	CY .	Carry – Receives the Carry out of bit 15 during an Add, Subtract, Arithmetic Left Shift, or Left Linked Shift. Reset during an Arithmetic Right Shift. Receives bit 0 shifted out from a Right Linked Shift.
4	F1	
5	F2	Flags 1, 2, or 3 - Programmable flag bits.
6	F3)	
7 	LP	Loop Complete – Set if content of register selected by XR field equals ZERO at the completion of an Autoincrement or Autodecrement instruction. Reset if content of XR is NOT ZERO.
· 8	OD	Odd - For all general register instructions except Compare, the Odd indicator receives the least signi- ficant bit of the result.
9	ZE	Zero – For all general register instructions except Compare, set if the result is ZERO and reset if NOT ZERO.
10	NG	Negative – Receives the most significant bit of the result of any general register instruction except Compare.
11	A	Active - Indicates that the processor is executing instructions. A is set unless the processor is quiescent.
12 13 14	M1 M2 M3	Interrupt Mask - Bits M1 through M4 correspond to system interrupts 1 through 4. When any bit is set or reset, respectively, the Bus Controller is requested to ignore or allow interrupt requests for the corres-
15	M4)	ponding vector.

GB13020009103

INSTRUCTION DESCRIPTIONS

GENERAL REGISTER INSTRUCTIONS

Class codes 1 through 7 specify the general register instructions. They are all two-operand instructions with one set of eight general operations. In the definitions of these operations, the terms target (T) and source (S) are used. The target is the register or memory cell to be modified, the source is the register or memory cell used as an operand that is to remain unchanged.

GENERAL OPERATIONS. - The OP field of the instruction selects the operation for each class of general register instruction as follows:

OP Code (Hexadecimal	Operation	Description	Status Indicators Affected
0	MOVe	Transfer the source operand to the target operand. (S) \rightarrow (T)	NG, ZE, OD
1	SUBtract	Subtract the source operand from the target operand and store the result in the target operand. $-(S) + (T) \rightarrow (T)$	CY,OV,NG;ZE, OD
2	ADD	Form the sum of the source (S) and target (T) operands and store in (T). (S) + (T) \rightarrow (T)	CY, OV, NG, ZE, OD
3	AND	Form the logical product of the source and target operands and store the result in the target operand. (S). AND. (T) \rightarrow (T)	NG, ZE, OD
4	Inclusive OR	Form the logical sum of the source and target operands and store in the target operand. (S).OR. (T) \rightarrow (T)	NG,ZE,OD

NG, ZE, OD

5

6

7

Exclusive	Form the logical difference of the
OR	source and target operands and
	store in the target operand.
	(S). EOR. (T) \rightarrow (T)

CoMPare Compare logical, the source operand to the target operand. Register contents and memory contents are not affected. GT, EQ

	$\overline{\mathrm{GT}}$	EQ
If $(S) < (T)$	0	0
If $(S) = (T)$	0	1
If $(S) > (T)$	1	0

NOTE

Bit 15 of each word is considered a magnitude bit, not a sign bit. The compare result is unsigned based on the 16-bit magnitude.

TeST

Form the logical product of the NG, ZE, OD source and target operands. Register and memory contents are not affected. If (S). AND. (T) = 0, SET ZE, RESET NG, OD

If (S).AND. (T) \neq 0, RESET ZE

If (S) .AND. (T) is odd, SET OD (odd implies bit 0 is set)

If (S) .AND. (T) is negative, SET NG (negative implies bit 15 is set)

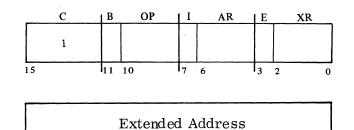
GENERAL REGISTER INSTRUCTION WORD FORMATS. - The instruction word formats used for the general register instructions is shown in table 3.

General Register Classes*		^H 1		H_2		$^{ m H}_{ m 3}$	H ₄				
		$15 \ 14 \ 13 \ 12$	11	10 9 8	7	654	3	2 1 0			
Accumulator	Auto Decrement	C=1	В	OP	I	AR	Е	XR			
То	Auto Increment	C=2	B	OP	Ι	AR	Ε	XR			
Memory		C=3	В	OP	Ι	AR	Ε	XR			
Jump to Subro	outine	C=4	0	0	Ι	AR	Ε	XR			
Jump		C=4	0	0	Ι	0	Ε	XR			
Data to	<u>{Literal/Register</u>	C=4	1	OP	0	AR	E	XR			
Accumulator		C=4	1	OP	1	AR		K			
Memory	(Auto Decrement	C=5	B	OP	Ι	AR	E	XR			
То	Auto Increment	<u>C=6</u>	B	OP	I	AR	E	XR			
Accumulator	(C=7	В	OP	Ι	AR	Ε	XR			
NOTES: C	Class Codes 1-7										
OP	Operation Code:0MOVMove1SUBSubtraction2ADDAddition3ANDLogical Product4IORLogical Inclusive OR5EORLogical Exclusive OR6CMPCompare7TSTTest										
В	Word when 0, Byte when 1										
Ι	Indirect when 1										
AR	Accumulator Regis	ster designator	c (0-	-7)							
E	Extended or two-w	ord instructio	n wł	nen 1							
XR	Index Register des	ignator (0-7),	no	indexing	ç N	hen 0					
К	4-bit Immediate da	ata constant									
register is se for class 4, F	XR≠0, XR provides lected (XR=0), and Register, where the	E=0, an instru PC is the sour	ictio rce	on trap c operand	•	curs, ex	cep	ot			
For E=1, XR=0, the next word provides the entire operand address. If E=1 and XR $\neq 0$, indexing operation is specified. In this case, the content of (XR) is added to the next word to produce the effective address of the memory operand or an indirect address.											

Table 3. Ge	neral Registe	r Instruction	Word	Formats
-------------	---------------	---------------	------	---------

*SUE 1112 Instruction Set contains more instructions in class code 4.

L

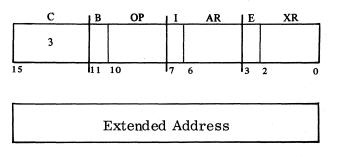

SUE G3

The following additional symbols are used in the instruction definitions:

- () Contents of
- M effective operand address
- PC Program Counter, general register 0.
- P Current instruction address

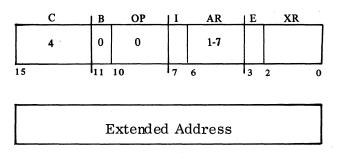

General Register Instruction Definitions

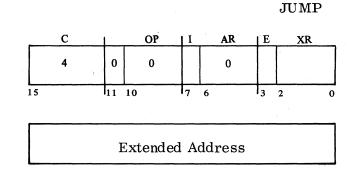
ACCUMULATOR TO MEMORY, AUTO DECREMENT


(AR) operates on (M). (XR) is decremented before use.

ACCUMULATOR TO MEMORY, AUTO INCREMENT

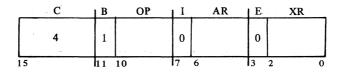
(AR) operates on (M). (XR) is incremented after use.


ACCUMULATOR TO MEMORY

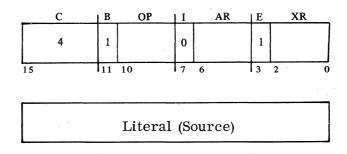

(AR) operates on (M). (XR) is not affected.

JUMP TO SUBROUTINE

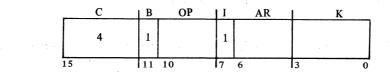
JS BR


P + 2 replaces (AR) for E = 0 and P + 4 replaces (AR) for E = 1. (M) operates on PC (content of general register 0). Thus, the return address is stored in AR and PC is set to the jump-location address.

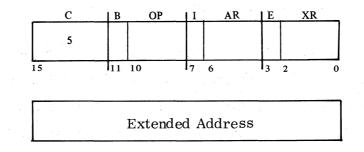
(M) operates on PC, setting it to the jump-location address. The jump function is the same as a MOV (M) to PC, but does not affect status indicators.



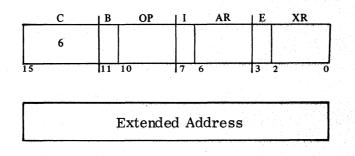
DATA TO ACCUMULATOR, INDEX REGISTER


A register-to-register instruction. (XR) operates on (AR).

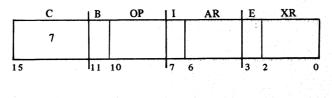
DATA TO ACCUMULATOR, LITERAL


The word following the instruction is the literal source operand. It operates on (AR). If XR is not 0, then (XR) is added to the literal before operating on (AR).

DATA TO ACCUMULATOR, IMMEDIATE


K operates on (AR). K is the 4-bit immediate constant operand.

MEMORY TO ACCUMULATOR, AUTO DECREMENT


(M) operates on (AR). (XR) is decremented before use.

MEMORY TO ACCUMULATOR, AUTO INCRÉMENT

(M) operates on (AR). (XR) is incremented after use.

MEMORY TO ACCUMULATOR

Extended Address

(M) operates on (AR). (XR) is not affected.

GENERAL REGISTER INSTRUCTION TIMES. - Instruction execution times depend on:

Operand addressing modes General operation code Program memory access and cycles INFIBUS availability

Table 4 contains a summary of typical general register instruction times assuming the INFIBUS is available to the processor and a SUE 3311 Core Memory is used for instruction and data storage. A memory cycle time of 850 nanoseconds, read access time of 750 nanoseconds, and a write access time of 550 nanoseconds is used. Access is the total time to access both the bus scheduler and memory. Microprogram steps of 160 nanoseconds are used for arithmetic operations and 130 nanoseconds for non-arithmetic operations.

Table 4. SUE 1110	(Basic) General	l Register	Instruction	Times
-------------------	-----------------	------------	-------------	-------

Indexed 3 3.94 4.03 3.70 3.35 ,	Auto- Increment 2 4.81 4.90 4.57 4.22	Auto- Decrement 1 4.81 4.90 4.57 4.22
3.94 4.03 3.70 3.35	4.81 4.90 4.57	4.81 4.90 4.57
4.03 3.70 3.35	4.90 4.57	4.90 4.57
3.70 3.35	4.57	4.57
3.35		
	4.22	4.22
4		
4		
2.79	_	-
2.85	_	
3.93	-	
4.12		· _
4	-	2 -
2.50		
2.69	-	- ¹
2.50	-	-
7	6	5.
3.35	4.09	4.09
3.64	4.38	4.38
3.67	4.41	4.41
3.35	4.09	4.09
	2.79 2.69 2.50 7 3.35 3.64 3.67	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

To compute the actual instruction execution time, it is necessary to add the time increments shown in Table 4 for each selected addressing mode. The minimum times shown in the table assume an indexed addressing mode. A more complete table of general instruction times is given in Appendix A.

For example, an ADD register-to-register instruction requires 2.79 microseconds with the SUE core memory. An ADD memory-to-accumulator instruction requires 3.64 microseconds when the operand address is held in an index register. If the address is located in the next word location (extended instruction mode), the time is 3.77 microseconds. Indexing the extended address does not add time to the instruction. Indirect addressing adds 1.14 microseconds for the first level and 1.01 for each subsequent level.

BRANCH CONDITIONAL INSTRUCTIONS

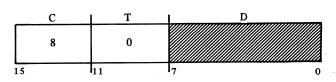
Thirteen conditions can be tested by branch conditional (TRUE or FALSE) instructions. Each condition can be tested to produce a branch or a fallthrough to the next instruction for either state (TRUE for class code 9 and FALSE for class code 8). The condition status is determined by testing the status indicators and programmable flags affected by the last operation.

GB13020009103

BRANCH CONDITIONS. – Following is a list of the 13 branch conditions and their meaning when TRUE.

<u>T Field</u>	Condition	Symbol	Meaning (TRUE Condition)
0	Unconditional	UN	The branch is made unconditionally.
1	Equal	EQ	The latest compare operation found the two operands to be equal to each other.
2	Greater-Than	GT	The latest compare operation found the source operand to be greater than the target operand.
3	Overflow	OV	An add, subtract, or shift operation produced a result outside of the range $-2^{15} \le R \le + (2^{15} - 1)$ since overflow was last reset.
4	Carry	СҮ	The latest add, subtract, or shift opera- tion produced a carry out of the most significant end of the arithmetic unit.
5	Flag 1	F1	These three programmable flags can be
6 7	Flag 2 Flag 3	F2 F3	set or reset by a set or reset status indicator instruction.
8	Loop Complete	LP	This indicator is set if the result of the latest autoincrement or autodecrement of any index register equals zero; other- wise it is reset.
9	Odd	OD	The result of the latest general operation (except compare), or shift operation is an odd number (Bit $0 = 1$).
А	Zero	ZE	The latest general operation (except compare), or shift operation results in all zeros.
В	Negative	NG	Result of the latest general operation (except compare), or shift operation is a negative number (Bit 15 = 1).
С	Less-Than	\mathbf{LT}	In the latest compare operation, the source operand was less than the target operand.
D, E, F			Cause an unimplemented instruction trap.

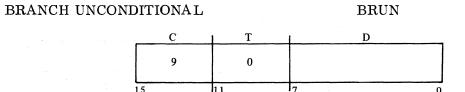
BRANCH INSTRUCTION WORD FORMATS. -


	Н1	H ₂	H ₃	H ₄
	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0
No Operation	C= 8	0		
Branch Unconditional	C= 9	0	I)
Branch False	C= 8	Т	I)
Branch True	C= 9	Т	I)

- D Displacement word address in twos complement form.
- T The T-Field specifies each Branch test. That is, which processor status indicator (if any) is to be tested. A list of each indicator, the corresponding value for T, and the operator assembler-mnemonics follows (z = T for true and F for false):

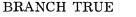
T (hexadecimal)	Indicator	Assembler Mnemonic
		XX
1	Equal	BÉQz
2	Greater Than	BGTz
3	Overflow	BOVz
4	Carry	BCYz
5	Flag 1	BF1z
6	Flag 2	BF2z
7	Flag 3	BF3z
8	Loop Complete	BLPz
9	Odd	BODz
Α	Zero	BZEz
В	Negative	BNGz
C	Less Than	BLTz
D, E, F,	(Instruction is trap	oped)

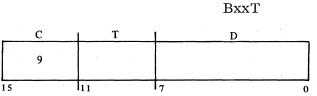
Branch Instruction Definitions


NO OPERATION

NOPR

A one-word NO-OP which does not affect status indicators.


May 73



An unconditional (no testing) branch is made to the relative address specified by D. $PC + 2 \times D$ replaces PC. D is in twos complement form with sign extended to represent a 16 bit number.

BRANCH FALSE BxxF

A Branch is made to the relative address specified by D if the indicator specified by T is false, or 0; otherwise, the next instruction in sequence is accessed.

A Branch is made to the relative address specified by D if the indicator specified by T is true, or 1; otherwise, the next instruction in sequence is accessed.

BRANCH INSTRUCTION TIMES. – Branch instruction execution times depend on whether or not the branch occurs, or the next instruction in sequence is executed. The branch-on-less-than operation (T = C) has different timing than the branch on other status bits. The branch instruction times are shown in Table 5.

Word All Others** 1.75	Bra 1110 Basic	All Others**								
Others**										
1.75										
the second se	– 1	-								
-	2.72	2.82								
1.75	2.72	2.82								
1.75	2.72	2.82								
1.75	3.08	3.21								
1.88	3.08	3.21								

Table 5. Branch Instruction Times

SHIFT INSTRUCTIONS

Class code A (hexadecimal) specifies a shift instruction. Up to 15 bit-position shifts may be specified in a single shift instruction. Two formats are provided to allow an option on the location of the shift count. When bit 7 of the instruction is a ZERO, the least significant four bits of the general register selected by XR, contains the shift count. When bit 7 is a ONE, the K field of the instruction word specifies the shift count.

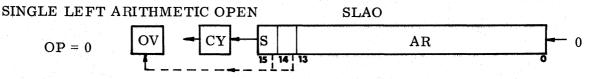
SHIFT INSTRUCTION WORD FORMATS. -

Two single-word formats are used. The formats illustrated are for the shift count defined by (XR) or K, respectively.

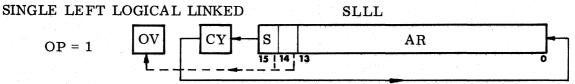
	н1			H ₂				H ₃				H ₄				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Shift Indexed	A ₁₆		0	OP		0	AR			0		XR				
Shift Immediate	A ₁₆		0	OP		1	AR			К						

- AR Accumulator Register designator (to be shifted).
- K Shift Count

XR Shift Count Source Register.

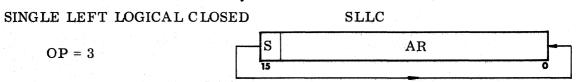

OP Shift Operation Code:

<u>OP</u>		Bits 9	8	Operation
0	0	0	0	Single Left Arithmetic Open
1	n an	0	1	Single Left Logical Linked
2	0 1	1	0	Single Left Logical Open
3	0	1	1	Single Left Logical Closed
4	1	0	0	Single Right Arithmetic Open
5		0	1	Single Right Logical Linked
6	1	1	0	Single Right Logical Open
7	1	1	1	Single Right Logical Closed

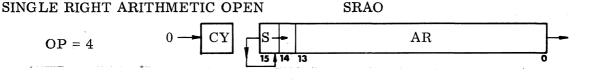

NOTE

SUE 1112 Processor provides double length shifts and also normalize instructions in addition to these basic single shifts.

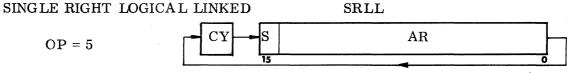
Shift Instruction Definitions

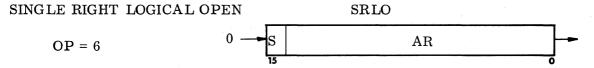


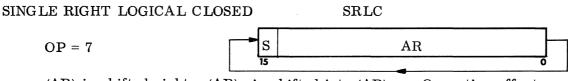
(AR) bits are shifted left out of $(AR)_{15}$ to the carry (CY) and zeros are shifted to $(AR)_0$. If any $(AR)_{14}$ bit is different than $(AR)_{15}$ preceding a shift, then the overflow indicator, OV, is set. Operation affects status indicators: CY, OV, NG, ZE, OD.



Carry (CY) is shifted into $(AR)_0$ and $(AR)_{15}$ is shifted into CY. If any $(AR)_{14}$ bit is different than $(AR)_{15}$ preceding a shift, then the overflow indicator, OV, is set. Operation affects status indicators: CY, OV, NG, ZE, OD.


(AR) is shifted left. For each bit shifted, $(AR)_{15}$ is lost and $(AR)_0$ equals 0. Operation affects status indicators: NG, ZE, OD.


(AR) is shifted left. $(AR)_{15}$ is shifted into $(AR)_0$. Operation affects status indicators; NG, ZE, OD.


(AR) is shifted right. (AR)₁₅, the sign bit, remains the same and is shifted into $(AR)_{14}$. $(AR)_0$ bits shifted out are lost. Carry (CY) is reset. Operation affects status indicators: CY, NG, ZE, OD.

Carry (CY) is shifted into $(AR)_{15}$, and $(AR)_0$ is shifted into CY. Operation affects status indicators: CY, NG, ZE, OD.

(AR) is shifted right. For each bit shifted, $(AR)_0$ is lost and $(AR)_{15}$ equals 0. Operation affects status indicators: NG, ZE, OD.

(AR) is shifted right. $(AR)_0$ is shifted into $(AR)_{15}$. Operation affects status indicators: NG, ZE, OD.

SHIFT INSTRUCTION TIMING. - Shift instruction execution times depend on the number of single bit shifts (N) specified in either the K field (immediate) or the selected register, XR. The time is calculated by the formula:

$$T_{s} = 2.76 + (0.26)N$$

where N = 0, 1, ..., 15.

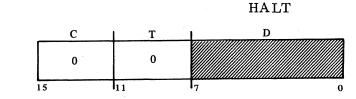
CONTROL INSTRUCTIONS

Class code 0^1 specifies a group of instructions that provide control of processor operation in a system. The instructions provide control of system interrupts, and storing and restoring status indicators and general registers.

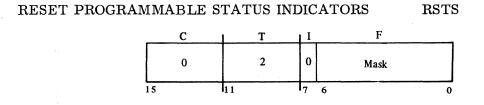
CONTROL INSTRUCTION WORD FORMATS. -

			For	mats		Assembler Mnemonic	Instructions
	H ₁	'	н2	H ₃	H ₄		
ſ	15 14 13 12	11	10 9 8	7 6 5 4	3 2 1 0		
Ī	C= 0		0			HALT	Halt
Γ	C= 0		2	0	F	RSTS	Reset Programmable Status Indicators
Γ	C= 0		2	1	F	SETS	Set Programmable Status Indicators
	C= 0		8	0	K	ENBL	Enable Interrupts
ſ	C= 0	—	8	4	K	ENBW	Enable and Wait
ſ	C= 0	Γ	8	8	K	DSBL	Disable Interrupt
Γ	C= 0		8	С	K	DSBW	Disable and Wait
ſ	C= 0	1	8	4/C	0	WAIT	Wait
ſ	C= 0	В	1	D		STSM	Status to Memory
ſ	C= 0	В	3	D		REGM	Registers to Memory
- 1	C= 0	B	4	D	an a	RETN	Return from Interrupt
ſ	C= 0	В	5	D		MSTS	Memory to Status
ľ	C= 0	B	7	D		MREG	Memory to Registers

Notes:


Shaded areas are ignored.

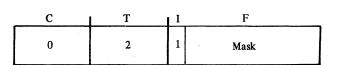
- F Programmable status bits to be reset (RST) or set (SET) (bit positions correspond with status register).
- K Interrupt mask bits to be reset (ENBL) or set (DSBL) (corresponding mask bits in status register).
- B Address mode, absolute when 0 or relative when 1.
- D Address field (words), twos complement form for relative.


¹More instructions in class code 0 are described under SUE 1110A and B, and 1112A and B Instruction Sets.

HALT

Control Instruction Definitions

Further instruction execution ceases. Execution resumes if the RUN switch on the control panel is pressed or if RUN is enabled by another processor. Return from a HALT is to the next instruction in sequence. Interrupts cause no resumption.



F is a mask for resetting status indicators. For each corresponding bit of F and the least significant seven bits of the status indicator word, if F is ONE, the indicator is reset to ZERO.

SETS

0

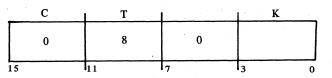
SET PROGRAMMABLE STATUS INDICATORS

F is a mask for setting status indicators. For each corresponding bit of F, and the least significant seven bits of the status indicator word, if F is ONE, the indicator is set to ONE.

F Bits for RSTS and SETS

<u>F bits set</u>		Status Indicators					
0	EC	Q EQUAL					
1	G	Γ GREATER THAN					
2	O	V OVERFLOW					
3	C	Y CARRY					
4	FI	FLAG 1					
5	Fź	2 FLAG 2					
6	F	B FLAG 3					

May 73


29

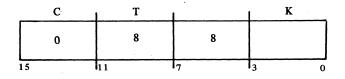
NOTE

In the following five interrupt control instructions, the K field (bits 3 through 0) corresponds to status register bits 15 through 12 that enable or disable interrupts 4 through 1, respectively.

ENABLE INTERRUPTS

ENBL

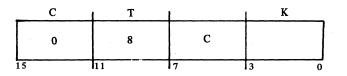
Each ZERO in the K field is ignored, each ONE in the K field enables the corresponding interrupt.


ENABLE and WAIT

2			ENBW
С	Т	an an thair an Thair an thair an thai	I K
0	8	4	
15	i ₁₁	7	3 0

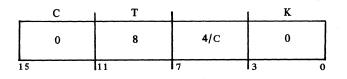
Each ZERO in the K field is ignored, each ONE in the K field enables the corresponding interrupt. The processor enters the WAIT state until an enabled interrupt occurs. If the enabled interrupt is 4, the interrupt is processed in the normal manner. If the enabled interrupt is 1, 2, or 3, execution continues at the next instruction in sequence. If no interrupts are enabled an instruction trap occurs.

DISABLE INTERRUPTS

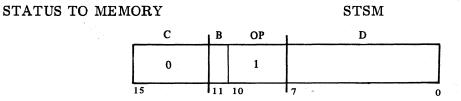

 DSBL

Each ZERO in the K field is ignored, each ONE causes an interrupt disable for the corresponding interrupt.

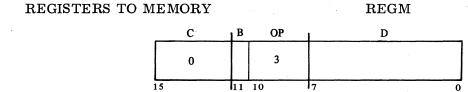
DISABLE and WAIT


DSBW

Each ZERO in the K field is ignored, each ONE in the K field disables the corresponding interrupt. The processor enters the WAIT state until a non-disabled interrupt occurs. If the enabled interrupt is 4, the interrupt will be processed in the normal manner. If the interrupt is 1, 2, or 3, execution continues at the next instruction in sequence. If no interrupts are enabled, an instruction trap occurs.


WAIT

WAIT



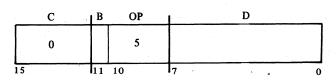
When the K-field is zero, no interrupt masking takes place, and the processor enters the WAIT state until an interrupt occurs. If the interrupt is level 4, it will be taken. The normal return after a level 4 interrupt is to the WAIT instruction.

If the interrupt level is 1, 2, or 3, execution continues at the next instruction in sequence. If no interrupts are enabled, an instruction trap occurs.

The content of the status indicator register replaces M. Relative (B = 1) or absolute (B = 0) addressing is used to determine M.

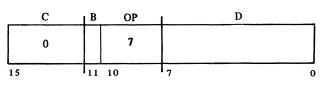
The general registers 1, 2, 3, 4, 5, 6, and 7 are stored into memory in words M, M + 2, ..., M + 12. Relative (B = 1) or absolute (B = 0) addressing is used to determine M.

RETURN FROM INTERRUPT


RETN

$\underline{L}^{(1,1)}$	C	B	OP	1 1 1	D y an an an an a	
						·
	0		4			
15		11	10	7	0	

(M) replaces the status indicator register, and M + 2 replaces the Program Counter, PC. Relative (B = 1) or Absolute (B = 0) addressing is used to determine M.


MSTS

(M) replaces the content of the status indicator register. Relative (B = 1) or absolute (B = 0) addressing is used to determine M.

ALC: N

MEMORY TO REGISTERS

General registers 1, 2, 3, 4, 5, 6, and 7 are loaded from memory, from words M, M + 2, ..., M + 12. Relative (B = 1) or absolute (B = 0) addressing is used to determine M.

MREG

CONTROL INSTRUCTION TIMES. - Table 6 contains a list of the instruction execution times for control instructions.

Instruction	Assembler Mnemonic	Time (microseconds)
Halt	HALT	1.01 + time to restart
Reset Programmable Status Indicators	RSTS	1.59
Set Programmable Status Indicators	SETS	1.72
Enable Interrupts	ENBL	1.85
Enable and Wait	ENBW	2.80 + time to interrupt
Disable Interrupts	DSBL	1.98
Disable and Wait	DSBW	2.80 + time to interrupt
Wait	WAIT	2.80 + time to interrupt
Status to Memory	STSM	2.14 Absolute, 2.46 Relative
Registers to Memory	RE GM	7.24 Absolute, 7.56 Relative
Return from Interrupt	RETN	4.26 Absolute, 4.58 Relative
Memory to Status	MSTS	2.47 Absolute, 2.79 Relative
Memory to Registers	MREG	7.93 Absolute, 8.25 Relative

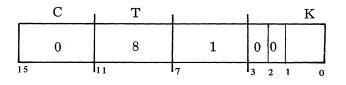
Table 6. SUE 1110 (basic) Control Instruction Times

UNIMPLEMENTED INSTRUCTIONS

Instruction class codes B_{16} to F_{16} (11-15) have not been implemented for SUE 1110 Processors. They are reserved for instruction set expansion, and some have been expanded to accommodate Processors SUE 1111A and B, and 1112A and B, as described in the last four sections of this bulletin. Use of these class codes for SUE 1110 causes the instruction to be trapped for software interpretation of the instruction. Trapping an instruction refers to the action taken on unimplemented instructions. When an unimplemented bit combination is detected, a transfer is made to an interpretive subroutine that can either simulate the instruction execution or perform some specialized system functions.

INPUT/OUTPUT INSTRUCTIONS

There are no dedicated input-output instructions. The upper 4K addresses (out of a total 64K) are reserved for device addresses, control words, status words, etc. Input/output functions may be accomplished by ordinary general instructions, and status checking by test instructions.


SUE 1110A INSTRUCTION SET

INTRODUCTION

Processor SUE 1110A, an improved design of SUE 1110, provides the capability to set the key bits of the address bus. The SUE 1110A instruction set includes all of the instructions for SUE 1110 (basic) plus the Store Key, SKEY, instruction.

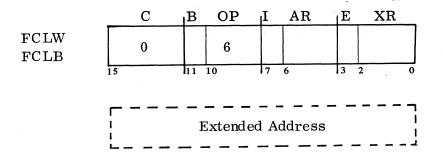
STORE KEY INSTRUCTION

A subclass of class code 0, the Store Key instruction has the following format:

K - A two bit value to be stored into the key bits.

Refer to Appendix A for instruction times.

SUE 1110B INSTRUCTION SET


INTRODUCTION

SUE 1110B Instruction Set includes all of the instructions performed by Processors SUE 1110 (basic), and 1110A, and the two Fetch and Clear (word or byte) instructions described below. Refer to Appendix A for instruction times.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code 0, Fetch and Clear allows implementation of multiprocessor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT

B - Word when 0 (FCLW), byte when 1 (FCLB)

I - Indirect when 1

- AR Accumulator register designator (0-7)
 - E Extended or two-word instruction when 1
- XR Index register designator (0-7), no indexing when 0

FETCH AND CLEAR OPERATION

This instruction reads and clears the designated memory word or byte and places the previous contents into the designated register. In particular, it allows a processor to read a memory operand without allowing another processor to read the same memory operand before it has been cleared by the first processor.

NOTE

Both the memory cell and the designated register are cleared by these instructions when performed by SUE 1110A, 1111A and 1112A processors. SUE 1110 (basic) processor traps on this instruction.

SUE 1111A INSTRUCTION SET

INTRODUCTION

The SUE 1111A Instruction Set includes all instructions described for processors SUE 1110 (basic), SUE 1110A, and instructions described in this section under SUE 1111A. Processor SUE 1111A can perform the following decimal arithmetic instructions:

	Operation	
<u>Mnemonic</u>	Code	Description
ZADD	2	Move decimal field
ADDD	3	Add decimal fields
SUBD	4	Subtract decimal fields
CMPD	5	Compare decimal fields
SFTR	8	Shift decimal field right
MOVR	9	Move field right to left
SFTL	А	Shift decimal field left
MOVL	В	Move field left to right
COMP	С	Compare fields
	ZADD ADDD SUBD CMPD SFTR MOVR SFTL MOVL	MnemonicCodeZADD2ADDD3SUBD4CMPD5SFTR8MOVR9SFTLAMOVLB

TEMPORARY STORAGE

The decimal instructions implemented in SUE 1111 use the storage locations associated with the unimplemented instruction trap as temporary storage. For example, locations 20, 22, and 24 for the CPU have the contents of registers 5, 6, and 7 during and after completion of a decimal instruction. If an unimplemented instruction routine is to use a decimal instruction, it must save and restore these locations.

l

GB13020009103

Word 0 Word 1

INSTRUCTION FORMAT

All decimal instructions except Shift Right (SFTR) and Shift Left (SFTL) are accommodated by one standard format as follows:

H1			H2			H3				H4					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
С		OP		0		R1		0		R2					
L1		L2		0	X1			0	X2						

A modification of this format accommodates SFTR and SFTL instructions:

	H1		H2			H3				H4					
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Word 0	C		OP		0	R1			0						
Word 1	L1		S			0	0 X1			0 X2					

C Class Code - All instructions use class code C₁₆

OP Operation Codes 2_{16} through 5_{16} and 8_{16} through C_{16} (see instruction description)

- R1 Register designator (1-7) for address of the most significant byte of the source field
- R2 Register designator (1-7) for the address of the most significant byte of the destination field
- L1 Source field length, minus 1 (bytes)

L2 Destination field length, minus 1 (bytes)

S Number of decimal digit positions to be shifted.

X1 Index register, content of which is appended to the L1 field, (only if X1 is non-zero). Length is then L1 + (X1) + 1.

X2 Index register, content of which is appended to the L2 or S field, (only if X2 is non-zero). Length is then L2 + (X2) + 1. For Shift instructions the content of X2 is appended to the S field. The total digit positions shifted is then S + (X2).

NOTES

All seven general registers may be used as the source for parameters. If zero is specified as the register for X1 or X2, then only the L or S field is used. R1 and R2 cannot be zero.

The target field must be large enough to hold each operation result, else the result is truncated without overflow status being set.

DECIMAL DATA FORMAT

Decimal data is formatted with two digits (4 bit fields or nibbles) per byte with the right-most nibble taken as a sign. The valid decimal digits are 0 to 9_{16} with A_{16} to F_{16} giving invalid results. Valid signs are C for plus and D for minus.

Two examples of decimal data format required for operation codes 2, 3, 4, 5, 8, and A follow:

Example 1

0 1	3 8	5 C] .
Byte 1	Byte 2	Byte 3	

Example 1 represents the number +1385.

Example	2	
---------	----------	--

3	5	5	7	3	D

Example 2 represents the number -35573.

CHARACTER DATA FORMAT

The character data format used with operation codes 9, B, and C follow:

А	В	С	
Byte 1	Byte 2	Byte 3	

GB13020009103

SUE G3

SYMBOLIC CODING FOR OPERANDS

Symbolic coding of the operand field for all instructions except Shift is: (R1), L1(X1), (R2), L2(X2). For Shift instructions, SFTR and SFTL, the coding is: (R1), L(X1), S(X2).

INSTRUCTIONS

ZERO AND ADD OP = 2

Zero And Add moves the source field to the destination field. If the destination field is longer than the source field, the excess high-order bytes are filled with zeros. If the destination field is shorter than the source field, the excess data is truncated. The move takes place from the right end first so that truncated data is in the most significant portion of the field.

ADD ADDD OP = 3

Add Decimal numerically adds the signed source field to the signed destination field with the sum placed into the destination field. If the sum is larger than the destination field, the excess high-order bytes are truncated. If the sum is smaller than the destination field, the excess high-order destination field bytes are filled with zeros.

Addition occurs from right to left one byte at a time. The sum contains the correct sign following the normal rules of algebra. If the result of the addition is zero, the result has the same sign as the original destination field.

SUBTRACT OP = 4

SUBD

ZADD

Subtract Decimal numerically subtracts the signed source field from the destination field with the difference placed into the destination field. If the difference is larger than the destination field, the excess high-order bytes are truncated. If the difference is smaller than the destination field, the excess high-order destination field bytes are filled with zeros.

SUE G3

Subtraction occurs from right to left one byte at a time. The difference contains the correct sign following the normal rules of algebra. If zero, the difference has the same sign as the original destination field.

COMPARE DECIMALCMPDOP = 5

Compare Decimal numerically compares the signed source field with the signed destination field. Status bits EQ (bit 0) and GT (bit 1) indicate the results of the compare. The status bits are affected as follows:

	\underline{GT}	EQ
Source = Destination	0	·. 1
Source > Destination	1	0
Source < Destination	0	0

Commensurate with the rules of order, positive and negative zeros are equal by the Decimal Compare instruction, and large negative numbers are smaller than small negative numbers.

The source and destination fields need not be the same length. The numeric values of the two fields are compared and leading zeros are ignored. Neither the source nor the destination field is altered by this instruction. To provide a faster decision algorithm, comparison is made first on the sign and units digits, then on digits in order of most significance.

SHIFT RIGHT SFTR OP = 8

Shift Right performs a decimal digit shift to the right. Digit positions on the left end of the field are filled with zeros as shifting proceeds. Digits on the right end are shifted out around the sign and lost, leaving the sign unchanged. Note that the number of shifts refers to the digit positions shifted and not the number of bytes. Also note that the true number of shifts is given and not the number minus 1. Therefore, zero shifts can be specified causing no operation to be performed. Shift Right provides a fast way to divide by a power of ten, and can be used for decimal point alignment, etc.

May 73

43

MOVE RIGHT

MOVR

MOVL

OP = 9

Move Right transfers the source field to the destination field. The right-most byte (units/sign byte in decimal field) is moved first. Then, the move proceeds to the left one byte at a time.

If the source field is smaller than the destination field, the remaining left end of the destination field is unchanged. If the destination field is smaller than the source field, the move proceeds to the left until the destination field is full; then the move aborts so that all right-end bytes are transferred correctly. The source field is left unchanged unless it overlaps the destination field.

Shift Left performs a decimal digit shift to the left. Digit positions on the right end of the field, except the sign position, are filled with zeros as shifting proceeds. The sign is not shifted and left unaltered. Digits on the left end are shifted out and lost.

Note that the number of shifts refers to the digit positions shifted and not the number of bytes. Also note that the true number of shifts is given and not the number minus 1. Therefore, zero shifts can be specified causing no operation to be performed. Shift Left provides a fast way to multiply by a power of ten, and can be used for decimal point alignment, etc.

MOVE LEFT OP = B

Move Left transfers the source field to the destination field. The left-most byte is moved first, then the move proceeds to the right one byte at a time.

If the source field is smaller than the destination field, the remaining right end of the destination field is left unchanged. If the destination field is smaller than the source field, the move proceeds to the right until the destination field is

SUE G3

full; then the move aborts so that all left-end bytes are transferred correctly. The source field is left unchanged unless it overlaps the destination field.

COMPARE FIELD COMP OP = C

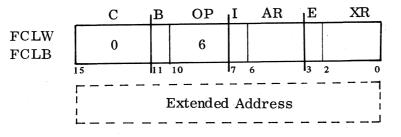
Compare Field compares the source field with the destination field. The compare operates from left to right. If either field is shorter than the other, the shorter field is considered to be extended to the right with ASCII blanks (A0) during the compare operation. Status bits EQ (bit 0) and GT (bit 1) indicate the compare results and are affected as follows:

	GT	EQ
Source = Destination	0	1
Source > Destination	1	0
Source < Destination	0	0

The compare assumes the collating sequence of ASCII (i.e. binary values of 8-bit characters as stored internally in core).

SUE 1111B INSTRUCTION SET

INTRODUCTION

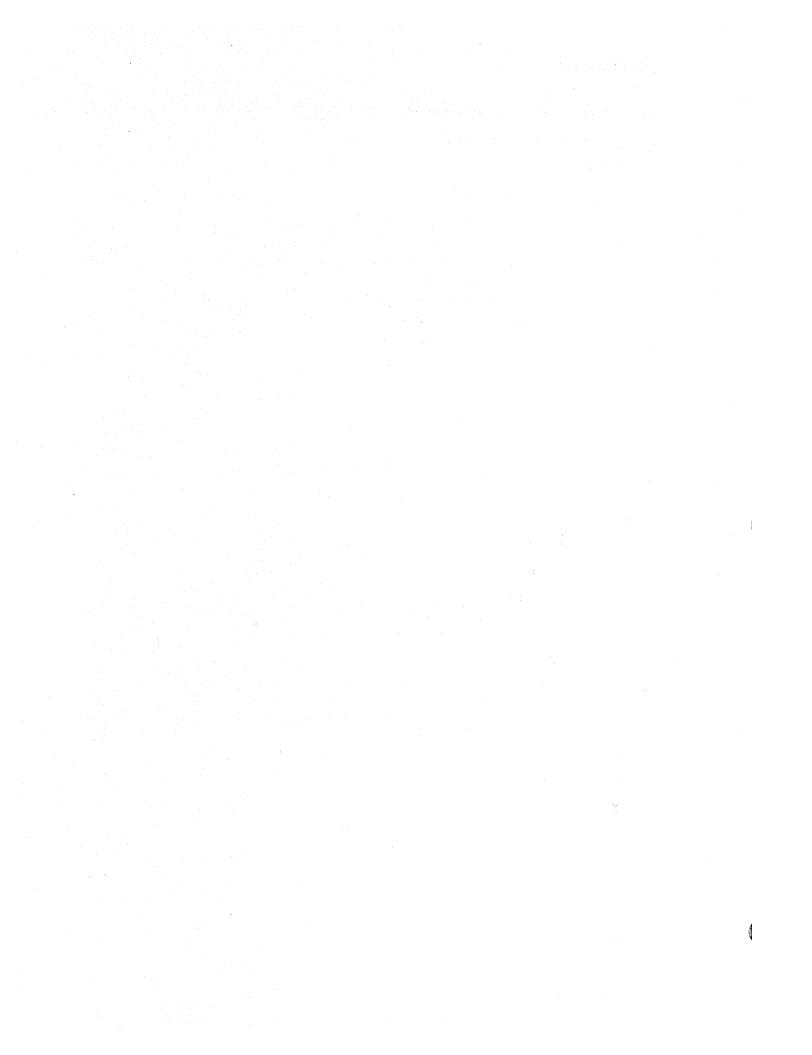

The SUE 1111B Instruction Set includes all instructions performed by processors SUE 1110 (basic), 1110A, and 1111A, and the two Fetch and Clear instructions described below. (Fetch and Clear, described for SUE 1110B and 1112B processors, is repeated here for programmer convenience.)

Refer to Appendix A for instruction times.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code 0, Fetch and Clear allows implementation of multiprocessor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT


- B Word when 0 (FCLW), byte when 1 (FCLB)
- I Indirect when 1
- AR Accumulator register designator (0-7)
 - E Extended or two-word instruction when 1
- XR Index register designator (0-7), no indexing when 0

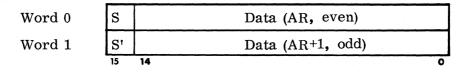
FETCH AND CLEAR OPERATIONS

This instruction reads and clears the designated memory word or byte and places the previous contents into the designated register. In particular it allows a processor to read a memory operand without allowing another processor to read the same memory operand before it has been cleared by the first processor.

NOTE

Both the memory cell and the designated register are cleared by this instruction when performed with SUE 1110A, 1111A, and 1112A processors. SUE 1110 (basic) processor traps on this instruction.

SUE 1112A INSTRUCTION SET


INTRODUCTION

The SUE 1112A Double Precision Processor performs all instructions described in this bulletin for SUE 1110 (basic), 1110A, and the extended instructions described in this section under SUE 1112A. Following is a list of the 1112A extended instructions and their class codes:

Instruction	Class Codes <u>(Hexadecimal)</u>
Bit Manipulation	4
Move	4
Normalize and Count	А
Double-Length Shift	Α
Single Precision Fixed Point	В
Double Precision Fixed Point	В
Control	0

DOUBLE PRECISION DATA FORMAT

Double-precision data operations are accommodated by the following format:

Word 0 - Most significant fifteen bits of the fixed-point number Word 1 - Least significant fifteen bits of the fixed-point number Range - $-(2^{30}) \leq$ Number < $+(2^{30})$

S - Sign bit of the 32-bit twos complement fixed-point number

S' - Sign bit extension in the least significant word

Upon termination of all

double-length arithmetic normalize,

double-length arithmetic shift, and

double-precision add, subtract, and multiply

instructions, sign S' is adjusted to reflect sign S unless bits 14 through 0 of word 1 are all zeros. In that event, sign S' also is zero. Also, on these double-length instructions, and double-length Load And Store: the zero indicator (ZE) reflects the condition of both words, the sign indicator (NG) reflects the sign of the most significant word, and the odd indicator (OD) reflects the value of the least significant bit of the least significant word.

NOTE

To take the two's complement of a double precision number, use the following procedure: If the least significant word is not zero, take the two's complement of the least significant word and the one's complement of the most significant word. If the least significant word is zero, take the two's complement of the most significant word.

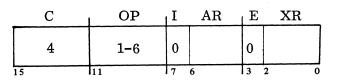
INSTRUCTION TIMES

Refer to Appendix A for timing of SUE 1112A arithmetic instructions.

BIT MANIPULATION INSTRUCTIONS

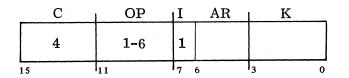
Bit Manipulation Instructions use a subclass of class code 4. Each of six operations in the bit manipulation instructions may alter status indicators NG, ZE, OD, and CY, for subsequent testing by Branch Conditional instructions. OV is unaffected. CY = 0 indicates the designated bit or bits are all ZEROs.

SUE G3


SUE G3

0

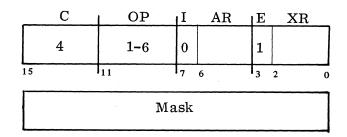
BIT MANIPULATION INSTRUCTION FORMATS


Three instruction word formats are used by bit manipulation instructions:

Single Bit Addressed by (XR)

- OP Operation code 1-6
- AR Accumulator register (0-7) that contains the operation result
- XR Index register of which the least significant four bits contain the bit number to be tested and modified.

Single Bit Explicitly Designated by K



OP - Operation code 1-6

AR - Designator (0-7) for the accumulator register that contains the operation result

K - A four-bit value that specifies the bit number to be tested.

Multiple Bits Selected by the Mask and (XR)

OP - Operation code 1-6

- AR Designator (0-7) for the accumulator register that contains the operation result
- Mask Second word of extended instruction to select the bits for testing and modification.
 - XR If 0, only the mask field is used to determine the bits to be tested; if 1-7, the mask is ANDed with the content of XR to select the bits to be tested and modified.

BIT MANIPULATION OPERATIONS

Following are bit manipulation operations. Each of the operations (OP codes 1-6) tests the designated bit or bits and sets CY if any are not zero; resets CY if all are zero.

Operation <u>Code</u>	Mnemonic	Description
1	RBIT	Make the designated bit or bits a 0, all others unchanged
2	SBIT	Make the designated bit or bits a 1, all others unchanged
3	CBIT	Change the designated bit or bits, all others unchanged
4	IBIT	Isolate the designated bit or bits, all others reset to 0
5	TSBT	Test the designated bit or bits and shift (AR) left one. The bit shifted out of (AR) ₁₅ is lost and a zero is shifted into (AR) ₀
6	TBIT	Only test the designated bit or bits

MOVE INSTRUCTIONS

Another subclass of class code 4 is used by the Move instructions. There are four operations, each of which may alter status indicators NG, ZE, and OD for subsequent testing by Branch Conditional instructions. CY and OV are unaffected.

MOVE INSTRUCTION FORMAT

С	OP	AR	XR
4	7	I	J
15	11	7 6	3 2 0

AR - Destination register designator

XR - Source register designator

MOVE OPERATIONS

Following are Move instruction operations:

I-J <u>Codes</u>	Mnemonic	Description
I=0, J=0	NEGT Mod T	Move the twos complement value of register XR to register AR. The content of XR is unchanged unless XR = AR.
I=0, J=1	CPLM Mov d	Move the ones complement value of register XR to register AR. The content of XR is unchanged.
I=1, J=0	MOVP	Move the positive magnitude of register XR to register AR. The content of XR is unchanged.
I=1, J=1	MOVM	Move the negative magnitude of register XR to register AR. The content of XR is unchanged.

NORMALIZE AND COUNT INSTRUCTIONS

A subclass of class A (Shift) instructions is used by the Normalize And Count instructions. There are 8 instructions, 4 single-, and 4 double-length.

NORMALIZE AND COUNT INSTRUCTION FORMAT

С	1	OP	1	AR	XR XR		
A ₁₆	В	Even	0		1		
15	11	10	7	6	3	2	0

B - 0 = single length shift, 1 = double length shift

AR – Designator of register to be shifted

XR - Designator of register to be incremented by shift count

NORMALIZE AND COUNT OPERATIONS

Following are Normalize And Count operations:

Operation Code	Mnemonic	Description
Single Length		
0	SLAN	Single left arithmetic normalize
2	SLLN	Single left logical normalize
4	SRAN	Single right arithmetic normalize
6	SRLN	Single right logical normalize

Mnemonic	Description
DLAN	Double left arithmetic normalize
DLLN	Double left logical normalize
DRAN	Double right arithmetic normalize
DRLN	Double right logical normalize
	DLAN DLLN DRAN

The register (AR), or pair of registers, (AR and AR+1, where AR is even) is shifted in the direction indicated until the requested condition is met. The count of positions shifted is added to (XR). A maximum shift of 15 (31 for double) may occur. If the register or registers indicated for normalize contain zero, the instruction sets only the status bits; AR and XR are not altered. Also, on double arithmetic normalize, the sign position of the odd register is ignored by the zero test; but the position is set to the sign of the even register, or it is cleared if the odd register bits 14 to 0 are all ZERO. Double-length arithmetic format is described under <u>INTRODUCTION</u> at the beginning of this section.

SINGLE LEFT ARITHMETIC NORMALIZE

 \mathbf{SLAN}

OP = 0

Shift stops when bits $(AR)_{15}$ and $(AR)_{14}$ are different

If any $(AR)_{14}$ is the same as $(AR)_{15}$, shift until these bits differ. Then add the shift count to (XR). ZEROs are shifted into $(AR)_0$ and bits shifted out of $(AR)_{15}$ are lost. Status bits NG, ZE, OD are affected accordingly. CY and OV are unaffected.

SINGLE LEFT LOGICAL NORMALIZE

SLLN

$$OP = 2$$

S AR 0 IShift stops when $(AR)_{15} = 1$

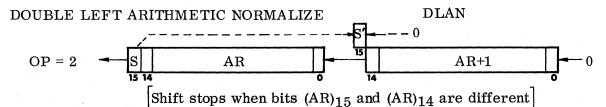
 $(AR)_{15}$ is tested for a set condition; if not set, (AR) is shifted left. Zero is shifted into $(AR)_0$. When $(AR)_{15}$ is set, the operation terminates and the shift count is added to (XR). Status bits NG, ZE, and OD reflect the shift result. CY and OV are unaffected.

SUE G3

 $(AR)_0$ is tested for a set condition. If not set, (AR) is shifted right. $(AR)_{15}$, the sign bit, remains the same and is shifted into $(AR)_{14}$. When $(AR)_0$ is set, the operation terminates and the shift count is added to (XR). Status bits NG, ZE, OD reflect the shift result. CY and OV are unaffected.

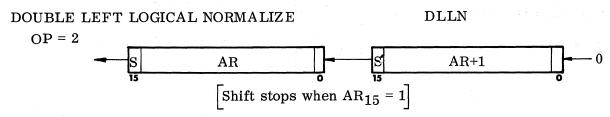
SINGLE RIGHT LOGICAL NORMALIZE

SRLN

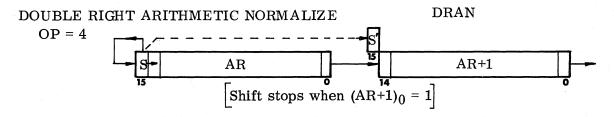

$$OP = 6$$

$$0 - S AR$$

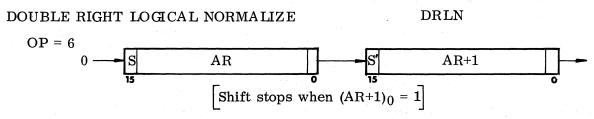
$$IS$$


$$Shift stops when (AR)_0 = 1$$

 $(AR)_0$ is tested for a set condition. If not set, (AR) is shifted right. Zero bits are shifted into $(AR)_{15}$. When $(AR)_0$ is set, the operation terminates and the shift count is added to (XR). Status bits NG, ZE, and OD reflect the shift result. CY and OV are unaffected.



If any $(AR)_{14}$ is the same as $(AR)_{15}$, shift until these bits differ. Then add the shift count to (XR). ZEROS are shifted into $(AR+1)_0$ and $(AR+1)_{14}$ is shifted into $(AR)_0$. When shift stops: $(AR+1)_{15} = 0$ if $(AR+1)_{14-0} = 0$; if not, $(AR+1)_{15} = (AR)_{15}$. Status bits NG, ZE, and OD are affected accordingly. CY and OV are unaffected.


55 -

 $(AR)_{15}$ is tested for a set condition; if not set, (AR) is shifted left. ZEROs are shifted into $(AR+1)_0$. $(AR+1)_{15}$ is shifted into $(AR)_0$. When $(AR)_{15}$ is set, the operation terminates and the shift count is added to (XR). Status bits NG, ZE, and OD reflect the shift result. CY and OV are unaffected.

 $(AR+1)_0$ is tested for a set condition. If not set, (AR) and (AR+1) are shifted right. $(AR)_{15}$, the sign bit, remains the same and is shifted into $(AR)_{14}$. $(AR)_0$ is shifted into $(AR+1)_{14}$. When $(AR+1)_0$ is set, the operation terminates. Upon termination, $(AR+1)_{15}$ is adjusted to reflect the sign of the even register.

Zero is shifted into $(AR)_{15}$. $(AR+1)_0$ is tested for a set condition. If not set, (AR) and (AR+1) are shifted right and $(AR)_0$ is shifted into $(AR+1)_{15}$. When $(AR+1)_0$ is set, the operation terminates and the shift count is added to XR. Status bits NG, ZE, and OD reflect the shift result. CY and OV are unaffected.

DOUBLE LENGTH SHIFT INSTRUCTIONS

A subclass of class A (Shift) instructions is used by the Double-Length Shift Instructions. There are 8 instructions, corresponding to the 8 single-length shifts.

SUE G3

DOUBLE-LENGTH SHIFT INSTRUCTION FORMAT

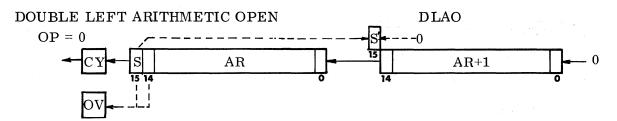
Two formats are shown below. The shift count is contained either in the register designated by XR (bit 7 = 0), or in instruction bits 4 through 0, designated by K (bit 7 = 1).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Shift Indexed		A	16		1		OP		0	A	R		0		XR	
Shift Immediate		A ₁	.6		1		OP		1	А	R		k	Σ		

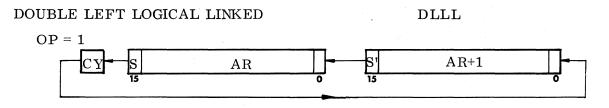
AR - Designates the register pair (2, 3; 4, 5; or 6, 7) to be shifted

- XR Designates register containing the shift count
 - K Shift count for immediate. Note that the field contains 5 bits, extending into bit position 4 (which is not used by AR).
- **OP** Shift operation code

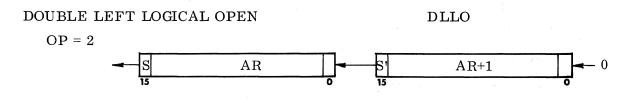
DOUBLE-LENGTH SHIFT OPERATIONS

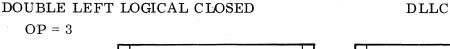

The double-length shift operations are similar to the single-length shift subclass, and are defined as follows:

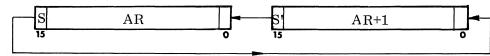
Operation Code	Mnemonic	Operation
0	DLAO	Double Left Arithmetic Open
1	DLLL	Double Left Logical Linked
2	DLLO	Double Left Logical Open
3	DLLC	Double Left Logical Closed
4	DRAO	Double Right Arithmetic Open
5	DRLL	Double Right Logical Linked
6	DRLO	Double Right Logical Open
7	DRLC	Double Right Logical Closed


On arithmetic shifts, the inter-register shift coupling is between bit 0 of the even register and bit 14 of the odd register.

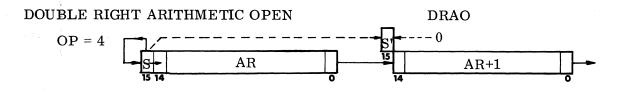
57 -

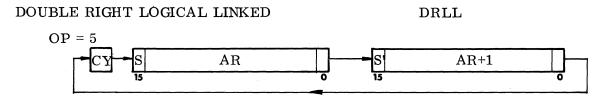

GB13020009103


(AR) and (AR+1) are shifted left. $(AR)_{15}$ is shifted to carry (CY), and zeros are shifted into $(AR+1)_0$. If any $(AR)_{14}$ bit shifted is different than $(AR)_{15}$, overflow indicator, OV, is set. When shift stops: $(AR+1)_{15} = 0$ if $(AR+1)_{14-0} = 0$; if not, $(AR+1)_{15} = (AR)_{15}$. Operation affects status indicators CY, OV, NG, ZE, OD.

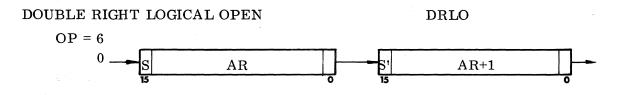


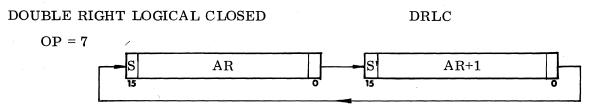
Carry (CY) is shifted into $(AR+1)_0$. $(AR)_{15}$ is shifted into CY. Operation affects status indicators: CY, NG, ZE, OD. (OV cannot set as in SLLL.)


(AR) and (AR+1) are shifted left. For each bit shifted, $(AR)_{15}$ is lost and $(AR+1)_0$ equals 0. Operation affects status indicators: NG, ZE, OD.



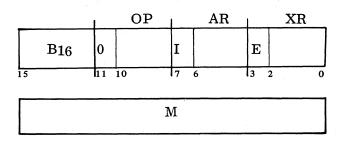
(AR) and (AR+1) are shifted left. $(AR)_{15}$ is shifted into $(AR+1)_0$. Operation affects status indicators: NG, ZE, OD.


6


(AR+1) and (AR) are shifted right. Sign bit $(AR)_{15}$ remains the same and is shifted into $(AR)_{14}$. $(AR+1)_0$ bits shifted out are lost. When shift stops: $(AR+1)_{15} = 0$ if $(AR+1)_{14-0} = 0$; if not, $(AR+1)_{15} = (AR)_{15}$. Operation affects status indicators: NG, ZE, OD.

Carry (CY) is shifted into $(AR)_{15}$. $(AR+1)_0$ is shifted into CY. Operation affects status indicators CY, NG, ZE, OD.

(AR) and (AR+1) are shifted right. For each bit shifted, $(AR+1)_0$ is lost, and $(AR)_{15}$ equals 0. Operation affects status indicators: NG, ZE, OD.


(AR) and (AR+1) are shifted right. $(AR+1)_0$ is shifted into $(AR)_{15}$. Operation affects status indicators: NG, ZE, OD.

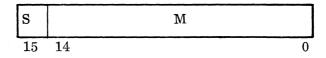
59

CLASS B INSTRUCTION SET

The Class B instruction set contains two sets of arithmetic instructions: singleprecision fixed point and double-precision fixed point.

CLASS B INSTRUCTION FORMAT

- **OP** Operation code
 - I Indirect address indicator
- AR Accumulator register pair for fixed point instructions (See definition below)
 - E Extended address indicator
- XR Index register designator
- M Extended address (if required)


ACCUMULATOR REGISTERS

A register pair beginning with an even-numbered register, such as (R2, R3), (R4, R5) or (R6, R7) are defined as one accumulator for some single-precision and all double-precision fixed point instructions. An attempt to use R0 or R1 as an accumulator causes a level-5 interrupt.

SINGLE-PRECISION FIXED POINT INSTRUCTIONS

Three single-precision fixed point instructions supplement the basic instruction set. These extended instructions have a one-word memory operand and a tworegister accumulator operand.

ADDRESSING MODES. - Standard memory-to-register addressing is permitted within this subclass. The accumulator registers are designated as a pair of registers addressed by the even-numbered register of the pair. The evennumbered register contains the most significant data. ONE-WORD OPERAND FORMAT. - Following is the one-word operand format:

S - Sign bit of the 16-bit twos complement fixed point number

M - Remaining 15 bits of the fixed point number

 $-(2^{15}) \leq \text{NUMBER} < +(2^{15})$

Format for double-length word is described under INTRODUCTION to this section.

SINGLE-PRECISION FIXED-POINT OPERATIONS

Three single-precision operations are described as follows:

Opera- tion _Code	AR	Mnemonic and Operation	Description	Status Indicators Affected
3	2,4,6	MLTA (Multiply, Add)	Multiply the data in the odd- numbered register by the effective operand, and add the contents of the even- numbered register. A two- word product is formed in the combined registers.	NG, ZE, OD, CY
3	3, 5, 7	MULT (Multiply)	Multiply the data in the odd- numbered register by the effective operand to form a two-word product in the even-odd register pair.	NG, ZE, OD
4	2-3, 4-5, 6-7	DIVD (Divide)	Divide the data in the two- register accumulator by the effective operand. A pro- perly-signed quotient results in the odd-numbered register, with the remainder (in the even-numbered regis- ter) having the same sign as the original dividend.	OV, NG, ZE, OD

NOTES

- a. If register 0 or 1 is specified as AR, the instruction traps as an unimplemented instruction.
- b. A multiplier or divisor of 8000 (i.e., -65, 536, the most negative number) has the same effect as if zero; results in setting OV on divide.
- c. A multiplicand or addend of 8000 is treated as -65, 536.
- d. A dividend of 8000 0000 (i.e., most negative double-precision number) causes a divide check result.

DOUBLE PRECISION FIXED-POINT INSTRUCTIONS

Four double-precision, fixed-point instructions are provided in the extended instructions. Each has a two-word memory operand and a two-register accumulator operand. Format for double precision fixed point words is described under <u>INTRODUCTION</u> to this instruction set.

ADDRESSING MODES. - Standard memory-to-register addressing is permitted within the extended class. No other addressing modes are permitted. The effective memory address is the address of two consecutive memory words, the first containing the most significant data. The accumulator registers are designated as a pair of registers, addressed by the even-numbered register of the pair (e.g. R2 of the R2, R3 pair). The even-numbered register contains the most significant data.

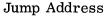
DOUBLE PRECISION FIXED POINT OPERATIONS

Four operations are described as follows:

Opera- tion <u>Code</u>	AR	Mnemonic and Operation	Description	Status Indicators Affected
5	2,4,6	DLOD (Double Load)	Move the contents of the two consecutive words located at the effective address to the combined registers.	NG, ZE, OD
0	2,4,6	DSTA (Double Store)	Move the contents of the two registers to the two consecutive words located at the effective address.	NG, ZE, OD
2	2,4,6	DADD (Double Add)	Add the contents of the consecutive words located at the effective address to the two registers.	CY,OV,NG,ZE,OD
1	2,4,6	DSUB (Double Subtract)	Subtract the contents of the two consecutive words located at the effective address from the two registers.	CY,OV,NG,ZE,OD

NOTE

If register 0 is specified as AR, the instruction traps as an unimplemented instruction.


CONTROL INSTRUCTIONS

Four control instructions (mnemonics SKEY, JKEY, LCPU, LKEY) are included in the SUE 1112A Instruction Set. Instruction Store Key (SKEY), described in the SUE 1110A Instruction Set, is repeated here for programming convenience.

CONTROL INSTRUCTION FORMATS

A subclass of class code 0, the control instructions use the following format:

E - See description below

K - A two-bit value to be stored into the key bits of the address bus

Mnemonic	E	Description
SKEY	0	Store the value K into the key bits
JKEY	1	Store the value K into the key bits and the jump address into the
		program counter (i.e. jump)

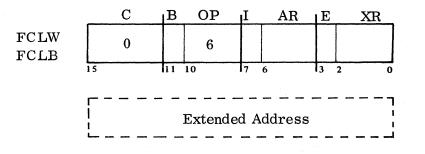
	C	I T	I OP	1	XR
LCPU LKEY	0	8	2-3	0	
	15	111	7	3	2 0

OP - Operation code 2-3

XR - Index register designator

Operation		
Code	Mnemonic	Description
2	LCPU	Load the processor number into (XR) 5, 6; all other bits in (XR) are cleared.
3	LKEY	Load the Lkey value into (XR) right justified.

SUE 1112B INSTRUCTION SET


INTRODUCTION

SUE 1112B Instruction Set includes all of the instructions performed by processors SUE 1110 (basic), 1110A, 1112A and the two Fetch and Clear (word or byte) instructions described below. The Fetch and Clear Instructions, described also in the SUE 1110B and 1111B Instruction Sets, are repeated here for programmer convenience.

FETCH AND CLEAR INSTRUCTIONS

A subclass of class code 0, Fetch and Clear allows implementation of multiprocessor systems with shared resources.

FETCH AND CLEAR INSTRUCTION WORD FORMAT

B - Word when 0 (FCLW), byte when 1 (FCLB)

I - Indirect when 1

AR - Accumulator register designator (0-7)

E – Extended or two-word instruction when 1

XR - Index register designator (0-7), no indexing when 0

FETCH AND CLEAR OPERATION

This instruction reads and clears the designated memory word or byte and places the previous contents into the designated register. In particular it allows a processor to read a memory operand without allowing another processor to read the same memory operand before it has been cleared by the first processor.

NOTE

Both the memory cell and the designated register are cleared by this instruction when performed with SUE 1110A, 1111A and 1112A processors. SUE 1110 (basic) processor traps on this instruction.

						Operatio	n Word or	Byte, Time	in Microsec	onds .	
General Instruction Class	Class	Address Mode	Assembler	MOV	SUB	ADD	AND	IOR	EOR	CMP	TST
· · ·	Code		Mnemonic	OP = 0	OP = 1	OP = 2	OP = 3	$\cdot OP = 4$	OP = 5	OP = 6	OP = 7
ACCUMULATOR TO MEMORY, AUTO	1	Indexed	R, (-R)	4.81	4.93	4.90	4.81	4.81	4.81	4.57	4.22
DECREMENT		Extended, Indexed	R, A(-R)	4.94	5.06	5.03	4.94	4.94	4.94	4.70	4.35
		Indexed, Indirect	R,*(-R)	5.95	6.07	6.04	5.95	5.95	5,95	5.71	5.36
		Extended, Indexed, Indirect	R, *A(-R)	6.23	6.33	6.30	6.23	6.23	6.23	5.97	6.21
ACCUMULATOR TO MEMORY, AUTO	2	Indexed	R, (R+)	4.81	4.93	4,90	4,81	4.81	4.81	4.57	4.22
NCREMENT		Extended, Indexed	R, A(R+)	4,94	5,06	5,03	4.94	4.94	4.94	4.70	4.35
		Indexed, Indirect	R.*(R+)	5,95	6.07	6.04	5.95	5.95	5.95	5,71	5,36
		Extended, Indexed, Indirect	R. *A(R+)	6.23	6,33	6.30	6,23	6.23	6.23	5.97	6.21
ACCUMULATOR TO MEMORY	3	Indexed	R, (R)	3,94	4.06	4.03	3,94	3.94	3.94	3.70	3.35
		Extended	R, A	4.07	4.19	4.16	4.07	4.07	4.07	3.83	3.48
		Extended, Indexed	R, A(R)	4.07	4.19	4.16	4.07	4,07	4.07	3.83	3,48
		Indexed, Indirect	R,*(R)	5.08	5.20	5.17	5.08	5.08	5.08	4.84	4.49
		Extended, Indirect	R, *A	5.34	5.46	5.43	5.34	5.34	5.34	5.10	5,34
		Extended, Indexed, Indirect	R, *A(R)	5.34	5.46	5.43	5.34	5.34	5.34	5.10	5.34
DATA TO ACCUMULATOR	4	Register to Register	R, R	2,50	2.79	2.79	2,50	2.50	2.50	2.69	2,50
		Immediate to Register	≊H)X,R	2.50	2.79	2.79	2,50	2,50	2.50	2.69	2.50
		Literal to Register	=H)XXXX, R	3.18	3.47	3.47	3.18	3,18	3.18	3.37	3.18
		Literal, Indexed to Register	=H)XXXX(R), R	3.34	3.63	3.63	3,34	3.34	3,34	3.53	3.34
MEMORY TO ACCUMULATOR, AUTO	5	Indexed	(-R), R	4.09	4,38	4.38	4.09	4.09	4.09	4.41	4.09
DECREMENT	-	Extended, Indexed	A(-R), R	4,22	4.51	4.51	4.22	4,22	4.22	4.54	4.22
		Indexed, Indirect	*(-R), R	5.23	5,52	5.52	5,23	5.23	5.23	5.55	5.23
		Extended, Indexed, Indirect	*A(-R), R	5.49	5.78	5.78	5.49	5.49	5.49	5.81	5,49
IEMORY TO ACCUMULATOR, AUTO	6	Indexed	(R+), R	4.09	4.38	4.38	4.09	4.09	4.09	4.41	4.09
NCREMENT	-	Extended, Indexed	A(R+), R	4,22	4.51	4,51	4.22	4.22	4.22	4.54	4.22
		Indexed, Indirect	*(R+), R	5.23	5.52	5.52	5.23	5.23	5.23	5.55	5.23
1		Extended, Indexed, Indirect	*A(R+), R	5.49	5.78	5.78	5.49	5.49	5.49	5,81	5.49
MEMORY TO ACCUMULATOR	7	Indexed	(R), R	3.35	3.64	3.64	3.35	3.35	3.35	3.67	3.35
		Extended	A.R	3.48	3.77	3.77	3.48	3.48	3,48	3.80	3,48
		Extended, Indexed	A(R), R	3.48	3.77	3.77	3.48	3.48	3.48	3.80	3.48
		Indexed, Indirect	*(R), R	4.49	4.78	4.78	4,49	4.49	4,49	4.81	4.49
and the second		Extended, Indirect	*A.R	4.75	5,04	5.04	4.75	4.75	4.75	5.07	4.75
		Extended, Indexed, Indirect	*A(R), R	4.75	5.04	5.04	4.75	4.75	4.75	5.07	4.75

Table A-1. SUE 1110 (Basic) General Register Instruction Times

APPENDIX A INSTRUCTION TIMES

A-1

Table A-2. SUE 1110A/B, 1111A/B, and 1112A/B General Register Instruction Times

GB13020009103

SUE G3

A-2

General Instruction Class	Class						Opera						
official more detroit crass		Address Mode		Inemonics	MOV (W/B)		ADD (W/B)					(W/B)	TST (W/B
	Code	Address Mode	OP Operands		OP = 0	OP = 1	OP = 2	OP = 3	OP = 4	OP = 5	OP = 6		OP = 7
		·	Code	L		L					Result≤	Result >	
CCUMULATOR TO MEMORY,	1	Register Address (Indexed)		R, (-R)	4.73	4.86	4.76	4.73	4.73	4.73	4.34	4,43	4.31
UTO DECREMENT		Extended (with/without Indexing)		R, A(-R)	4.73	4.89	4.79	4.76	4.76	4.76	4.37	4.46	4.34
		Register Address, Indirect (Word) ¹	W	R, *(-R)	6.71	6.87	6.77	6.74	6.74	6.74	6.35	6.44	6.32
		(Byte)	B	R, *(-R)	5.96	6.12	6.02	5,99	5,99	5,99	5.60	5.69	5,57
The second secon		Extended, Indirect (Word) ¹	W	R, *A(-R)	6.32	6.48	6.38	6.35	6.35	6.35	5.96	6.05	5,93
		(Byte)	B	R, *A(-R)	5.70	5.86	5.76	5.73	5.73	5.73	5.34	5.43	5.31
ACCUMULATOR TO MEMORY,	2	Register Address (Indexed)		R, (R+)	4.73	4.86	5.76	4.73	4.73	4.73	4.34	4.43	4.31
AUTO INCREMENT		Extended (with/without Indexing)		R, A(R+)	4.80	4.96	4.86	4.86	4.86	4.86	4.44	4.53	4.41
		Register Address, Indirect (Word) ¹	W	R, *(R+)	6.71	6, 87	6.77	6.74	6.74	6.74	6.35	6.44	6.32
		(Byte)	B	R, *(R+)	5,96	6.12	6.02	5,99	5.99	5.99	5.60	5.69	5.57
		Extended, Indirect (Word) ¹	W	R, *A(R+)	6.39	6.55	6.45	6.42	6.42	6.42	6.03	6.12	6.00
		(Byte)		R, *A(R+)	5,77	5.93	5.83	5.80	5.80	5.80	5.41	5.50	5.38
ACCUMULATOR TO MEMORY	3	Register Address (Indexed)		R, (R)	3.76	4.22	4.12	4.09	4.09	4.09	3.70	3.79	3.67
		Extended (with/without Indexing)		R, A(R) or R, A	3.83	4.16	4.06	4.03	4.03	4.03	3.64	3.73	3.61
		Register Address, Indirect (Word) ¹	W	R, *(R)	5.74	6.07	5.97	5.94	5.94	5.94	5.55	5.64	5.52
		(Byte)	B	R, *(R)	4,99	5.32	5.22	5, 19	5.19	5.19	4.80	4.89	4.77
		Extended, Indirect, (Word) ¹	W	R, *A(R) or R, *A	5.42	5.75	5.65	5.62	5.62	5.62	5.23	5.32	5.20
		(w/wo Indexing) (Byte)	B	R, *A(R) or R, *A	4.80	5.13	5,03	5.00	5.00	5.00	4.61	4.70	4.58
ACCUMULATOR/EXPLICIT	4	Register to Register		R, R	2.24	2.66	2.53	2.24	2.24	2.24	2.40	2.49	2.24
DATA TO ACCUMULATOR		Indexed, Literal		=H)XXXX, R	3.12	3.54	3.41	3.12	3,12	3.12	3.28	3,37	3.12
		Literal (Full Word)		=H)XXXX(R), R	2.96	3.38	3.25	2,96	2,96	2.96	3.12	3.21	2.96
		Immediate (Four-bits)		=H)X, R	2.24	2.66	2,53	2.24	2.24	2.24	2.40	2.49	2,24
MEMORY TO ACCUMULATOR,	5	Register Address (Indexed)		(-R), R	4.05	4.47	4.34	4.05	4.05	4.05	4.21	4.30	4.05
AUTO DECREMENT		Extended (with/without Indexing)		A(-R), R	4.08	4.50	4.37	4.08	4.08	4.08	4.24	4.33	4.08
		Register Address, Indirect (Word)1	W	*(-R), R	6.06	6.48	6.35	6.06	6.06	6.06	6.22	6.31	6.06
		(Byte)	B	*(-R), R	5.31	5.73	5.60	5.31	5.31	5,31	5.47	5.56	5.31
		Extended, Indirect (Word) ¹	W	*A(-R), R	5.67	6.09	5.96	5.67	5.67	5.67	5.83	5.92	5.67
		(Byte)	B	*A(-R), R	5.05	5.47	5.34	5,05	5.05	5.05	5.21	5.30	5.05
MEMORY TO ACCUMULATOR,	6	Register Address (Indexed)		(R+), R	4.05	4.47	4.34	4.05	4.05	4.05	4.21	4.30	4.05
AUTO INCREMENT	-	Extended (with/without Indexing)		A(R+), R	4.15	4.57	4.44	4,15	4.15	4.15	4.31	4.40	4.15
		Register Address, Indirect (Word)1	W	*(R+), R	6.06	5.48	6.35	6.06	6.06	6.06	6.22	6.31	6.06
		(Byte)		*(R+), R	5.31	5.73	5.60	5.31	5,31	5.31	5.47	5.56	5.31
		Extended, Indirect (Word) ¹		*A(R+), R	5.74	6.16	6.03	5.74	5.74	5.74	5.90	5.99	. 5.74
		(Byte)		*A(R+), R	5.12	5.54	5.41	5,12	5.12	5.12	5.28	5.37	5.12
MEMORY TO ACCUMULATOR	7	Register Address (indexed)		(R), R	3.54	3.96	3.83	3, 54	3,54	3.54	3.70	3.79	3.54
		Extended (with/without Indexing)		A(R), R or A, R	3.48	3.90	3.77	3.48	3.48	3.48	3.64	3.73	3.48
		Register Address, Indirect (Word) ¹	W	*(R), R	5.39	5.81	5.68	5,39	5.39	5.39	5.55	5.64	5.39
		(Byte)		*(R), R	4.64	5.06	4.93	4.64	4.64	4.64	4.80	4.89	4.64
		Extended, Indirect, (Word) ¹		*A(R), R or *A, R	5.07	5.49	5.36	5.07	5.07	5.07	5.23	5.32	5.07
		(w/wo Indexing) (Byte)		*A(R), R or *A, R	4.45	4.87	4.74	4,45	4.45	4.45	4.61	4.70	4.45
UMP OR CALL SUBROUTINE	4	Register Address (Indexed)	JUMP		14 14 C	1						19	
			JSBR		3.01								
		Extended (with/without Indexing)		A or A(R)					NOT	F			
				A, R or A(R), R	3.04								
		Register Address, Indirect ¹	JUMP		a la substance de la substance		¹ Add	1.01 micros	econds for ea	ch additional 1	level of indi	irect.	
	1.1		JS BR		5.02								
		Extended, Indirect ¹ (w/wo Indexing)	JUMP	*A or *A(R)									
			JS BR	*A, R or *A(R), R	4.63]							
FETCH AND CLEAR	0	Register Address (Indexed)		(R), R	5.02	1							
		Extended (with/without Indexing)		A(R), Ror A, R	4.96								
		Register Address, Indirect (Word) ¹		*(R), R	6.87								
		(Byte)		*(R), R	6, 12	1							
		Extended, Indirect (Word) ¹		*A(R), R or *A, R									
		(Byte)		*A(R), R or *A, R	5.93								

May 73

Instruction	Assembler Mnemonic	Time (microseconds)
Halt	HALT	1.01 + time to restart
Reset Programmable Status Indicators	RSTS	1.59
Set Programmable Status Indicators	SETS	1.72
Enable Interrupts	ENBL	1.85
Enable and Wait	ENBW	2.80 + time to interrupt
Disable Interrupts	DSBL	1.98
Disable and Wait	DSBW	2.80 + time to interrupt
Wait	WAIT	2.80 + time to interrupt
Status to Memory	STSM	2.14 Absolute, 2.46 Relative
Registers to Memory	REGM	7.24 Absolute, 7.56 Relative
Return from Interrupt	RETN	4.26 Absolute, 4.58 Relative
Memory to Status	MSTS	2.47 Absolute, 2.79 Relative
Memory to Registers	MREG	7.93 Absolute, 8.25 Relative
Store Key	SKEY*	2.6

Table A-3.	SUE 1110 (Basic), 1110A/B, 1111A/B and 1112A/B
	Control Instruction Times

*Not available in SUE 1110 (Basic) Processor

SINGLE SHIFT INSTRUCTION TIMING FOR SUE 1110 (Basic), 1110A/B, 1111A/B, 1112A/B

Shift instruction execution times depend on the number of single bit shifts specified in either the K field (immediate) or the selected register, XR. The time is calculated by the formula:

 $T_{s} = 2.76 + (0.26)N$

where N = 0, 1, ..., 15.

- .

Instruction	Assembler	Time (microseconds)			
Instruction	Mnemonic	Next Word	Branch		
No Operation	NOPR	1.78	_		
Branch Unconditional	BRUN	-	2.72		
Branch True	BxxT*	1.78	2.72		
Branch False	BxxF*	1.78	2.72		
Branch Less Than True	BLTT	1.75	3.08		
Branch Less Than False	BLTF	1.88	3.08		

Table A-4. SUE 1110 (Basic) Branch Instruction Times

Table A-5. SUE 1110A/B, 1111A/B and 1112A/B Branch Instruction Times

Tu stars sti su	Assembler	Time (microseconds)			
Instruction	Mnemonic	Next Word	Branch		
No Operation	NOPR	1.75			
Branch Unconditional	BRUN		2.82		
Branch True	BxxT*	1.75	2.82		
Branch False	BxxF*	1.75	2.82		
Branch Less Than True	BLTT	1.75	3.21		
Branch Less Than False	BLTF	1.88	3.21		
*where xx = EQ, GT, OV, CY, F1, F2, F3, LP, OD, ZE, NG.					

SUE 1111A/B CLASS C INSTRUCTION TIMES

DECIMAL AND CHARACTER INSTRUCTIONS

DECIMAL ADD AND SUBTRACT TIMING

Both the decimal add and subtract operations are started with a sign analysis to determine whether true addition (ADDD with like signs or SUBD with unlike signs), or true subtraction (ADDD with unlike signs or SUBD with like signs) is to occur. Timing for both situations can be calculated using the following case formats and procedures:

TRUE ADDITION CASE FORMATS

a.	Propagate					
	if final carry					
	out of L					

<u></u>					• L•
XX	XX	<99	=99	=99	DL
P ≥	0		-		SL
					DL > SL = L

b.	Propagate and
	overflow if
	final carry
	out of L

			• L•
=99	=99	=99	DL
-	- P -		${ m SL}$
DL	-SL=	=P>	0 DL > SL = L

c. No propagate and overflow, if final carry out of L

	 L	·
	DL	
	SL	
$\mathbf{P} = 0$	DL = SL = L	

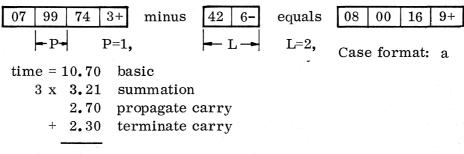
 \mathbf{SL}

SL > DL = L

 \mathbf{L}

DL

d. No propagate and overflow, if final carry out of L


May 73

 $\mathbf{P} = \mathbf{0}$

TRUE ADDITION TIMING PROCEDURES

Step	For Case Formats	Conditions (Times in Microseconds)	Times <u>(Microseconds</u>)
1	a, b, c, d	Start with the basic time of 10.70 and go to Step 2.	10.70
2	a, b, c, d	For each digit pair to be added (in- cluding units and signs) add in 3.21 and go to Step 3.	3.21L
3	a, b, c, d	STOP if no final carry from the sum- mation; otherwise take Step 4.	+0
4	c, d	Add in 0.26 and STOP if $SL \ge DL$; otherwise take Step 5.	+0.26
5	a, b	For each digit pair in the extension field (i.e. where DL >SL or P > 0) that equals 99, add in 2.7 until a non-99 pair is encountered (take Step 6), or the extension field runs out (take Step 8).	2.70P
6	a	Add in 2.30 and STOP if the LSD of an extension pair is not 9; otherwise take Step 7.	+2.30
7	a	Add in 2.33 and STOP when the MSD of an extension pair is not 9.	+2.33
8	b	Add in 0.26 and STOP when the exten- sion field runs out (i.e. only 99 is encountered).	+0.26

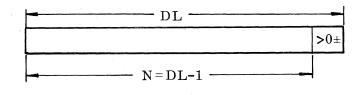
Example

22.12 microseconds total

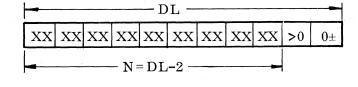
• L ·

SUE G3

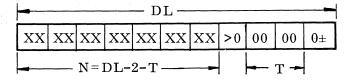
TRUE SUBTRACTION CASE FORMATS


e. Propagate if final borrow out of L

- f. Propagate and recomplement if final borrow out of L
- $DL SL = P \quad 0 \quad DL > SL = L$
- g. No propagate and recomplement if final borrow out of L
- L _____ L ____ DL ____ SL ____
 - $\mathbf{P} = \mathbf{0}$ $\mathbf{DL} = \mathbf{SL} = \mathbf{L}$
- h. No propagate and recomplement if final borrow out of L


		• L	
		DL	
		SL	
$\mathbf{P} = 0$	р. — 2 Г	SL > DL = L	

RECOMPLEMENT CASE FORMATS


j. Units digit ≠ 0, start nine's complement

k. Short ten's complement

l. Extended ten's complement



TRUE SUBTRACTION TIMING PROCEDURE

<u>Step</u>	For Case Formats	Conditions (Times in Microseconds)	Times <u>(Microseconds</u>)
1	e, f, g, h	Start with the basic time of 10.99 and go to Step 2.	10.99
2	e, f, g, h	Add in 3.21 for each digit pair to be subtracted (including units and signs) and go to Step 3.	3.21L
3	e, f, g, h	STOP if there is no final borrow from the subtraction process; otherwise take Step 4.	+0
4	g,h	Go to Step 7 if SL ≥DL; otherwise take Step 5.	
5	e,f	Add in 2.01 for each digit pair in the extension field (i.e. where DL > SL or P > 0) until a non-zero is encountered (take Step 6), or the extension field runs out (take Step 7).	2.01P
6	е	Add 2.01 and STOP when a non-zero digit is encountered in the extension field.	+2.01
7	j, k, 1	Add 2.43 (for first step of recomple- ment); go to Step 10 if the units digit is not zero; otherwise go to Step 8.	2.43
8	1	Add 1.33 for each digit pair in the destination field that is zero until a non-zero pair is encountered, then go to Step 9.	+1.33T
9	k,1	Add 2.14 if the LSD of a digit pair is not zero; add 2.40 if the LSD is zero and the MSD of a digit pair is not zero. Go to Step 10.	2.14 2.40
10	j, k, 1	Add 1.75 for each remaining digit pair in the destination field and STOP.	+1.75N

SUE G3

Four Examples of Subtract Timing.

78

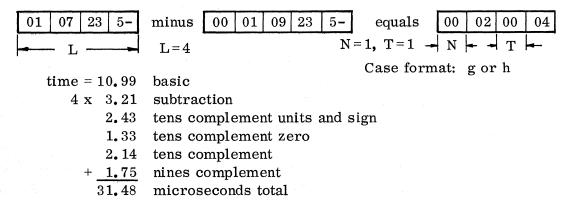
equals L=2

28 11 2-

Case format: e, f, g, or h

time = 10.99 basic

2 x 3.21 subtraction + 0.00 no borrow


17.41 microseconds total

2. Borrow Without Recomplement:

02	00	22	64	5+	minus	72	70	5+	equals	01	99	99	94	0+
	Ρ	-	P = 1	Ļ		-	- L-		L=3					
									Case	form	at:	e		

time = 10.99	basic
3 x 3.21	subtraction
2.01	propagate borrow
+ 2.01	terminate borrow
24.64	microseconds total

3. Recomplement:

4. Borrow and Recomplement:

DECIMAL SHIFT TIMING

Table A-6 lists times for Shift Left (SFTL) and Shift Right (SFTR) instructions.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.10 19.12 20.19 18.21 17.00	5 21.79 22.86 20.88 21.95 19.97 21.04	6 23.55 24.62 22.64 23.71 21.73 22.80	7 25.31 26.38 24.40 25.47 23.49	Shift Count 0 1 2 3 4 5	1	2 17.06 16.38	3 19.17 18.37 17.91 17.23	Yield Let 4 11.64 21.28 20.13 20.02	5 23.39 21.89 22.13	6 25.50 23.65 24.24	7 27.61 25.41 26.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 11. 14 - 20. 03 21. 10 19. 12 20. 19 18. 21 17. 00	21.79 22.86 20.88 21.95 19.97 21.04	23.55 24.62 22.64 23.71 21.73	25.31 26.38 24.40 25.47	0 1 2 3 4		17.06	19.17 18.37 17.91	11.64 21.28 20.13 20.02	23.39 21.89	25.50 23.65	27.61 25.41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.03 21.10 19.12 20.19 18.21 17.00	22.86 20.88 21.95 19.97 21.04	24.62 22.64 23.71 21.73	26.38 24.40 25.47	1 2 3 4		<u> </u>	18.37 17.91	21.28 20.13 20.02	21.89	23.65	25.41
2 3 4 5 6 7 13. 43 15. 30 19. 34 17. 36 16. 15 • • • • • • • • • • • • •	21.10 19.12 20.19 18.21 17.00	22.86 20.88 21.95 19.97 21.04	24.62 22.64 23.71 21.73	26.38 24.40 25.47	2 3 4		<u> </u>	18.37 17.91	20.13 20.02	21.89	23.65	25.41
3 17.36 4 16.15 5 • 6 • 7 13.43	19.12 20.19 18.21 17.00	20.88 21.95 19.97 21.04	22.64 23.71 21.73	24.40 25.47	3 4		16.38	17.91	20.02			
4 5 6 7 8 13.43	20.19 18.21 17.00	21.95 19.97 21.04	23.71 21.73	25.47	4		•	 		22.13	24, 24	26 35
5 6 7 8 13.43	18.21 17.00	19.97 21.04	21.73					17.23	10 00			20.00
6 7 8 13.43	17.00	21.04		23.49	5		1 1	L	19.22	20.98	22.74	24.50
7 13.43			22.80					•	18.76	20.87	22.98	25.09
8 13.43	+	10 00	•	24.56	6		1.		18.08	20.07	21.83	23.59
8		19.06	20.82	22.58	7	 13.14			•	19.61	21.72	23.83
		17.85	21.89	23.65	8	10.14	13.99			18,93	20,92	22.68
9 15.13		•	19.91	21.67	9		10.00	14.84		•	20.46	22.57
10	15.98		18.70	22.74	10			14.04	15.69		19.78	21.77
11		16.83	•	20.76	11				10.00	16.54	•	21.31
12		1	17.68	19.55	12	, and the second					17.39	20.63
13				18,53	13			, 7 (n. 17				18.24
14		•	a se ∳ a	18.53	14	•	•	• •	•	l i le sui	L.	18.24
Extrapolation	Formulae	Y. 4		for any second				• • • • • • •				
-	85 for eac		tional st	nift in ze	ro chara	eter	· · ·					
	76 for eac							ar Al se				
	76 for eac						on chift	count is	oven			
	11 for eac			0								

Table A-6. Decimal Shift Timing Chart

Note: Field length (SL) is in actual number of characters (i.e. digit pairs) and will be 1 greater than the length specified value in the instruction.

CLASS C NON-IMPLEMENTED OP-CODES

All SUE 1111A and 1111B, class C instructions (Operation Codes 0, 1, 6, 7, D, E and F) trap. Time to trap takes 16.28 microseconds.

MOVE TIMING

Time (T) for MOVR, MOVL, and ZADD is calculated using the following formulae:

Mnemonic	Formula
MOVR or MOVL	T = 11.36 + 1.76N
ZADD	T = 11.36 + 1.76N + 0.85Z

where:

N is the number of characters (i.e. DL or SL, whichever is smaller)

Z is the number of zeros (Z = DL - SL if DL > SL).

COMPARE-FIELD TIMING

The following general format applies to Compare-Field timing calculations.

	— B ———•	► X			
	SL or DL	< XK►			
	DL or SL				
- BK					

where:

SL = Source Length

DL = Destination Length

- X = Difference in Length in characters, SL DL
- B = Length of the shorter field, SL or DL
- XK = Number of leading blank characters (b) in the extension field (X) before a non-blank character is encountered.
- BK = Number of character pairs in the two body fields that are in corresponding positions, before a non-equal pair is encountered.

COMPARE FIELD TIME CALCULATIONS

Time (T) in microseconds can be calculated for the six distinct cases as follows:

Body Fields Equal,
$$SL = DL$$

• B — •					
А	В	C			
Α	В	C			

X = XK = 0B = BK > 0

T = 11.35 + 2.4B

Unequal Pair in Body Scan

B B	БК — —	в – t		
Z	Y	X	W	B > BK ≥ 0
Z	Y	A	В	

T = 13.72 + 2.4 BK

Body Fields Equal, SL >DL, or SL < DL, Extension Field Blank

	- B		t		
Z	Y	Х		Х —	t
Z	Y	Х	Ь	Ъ	

B = BK > 0 X = XK > 0

SL > DL:
T = 11.64 + 2.4B + 1.2X
SL < DL:
$T = 11_{\bullet}51 + 2_{\bullet}4B + 1_{\bullet}2X$

Body Fields Equal, SL >DL or SL < DL, Non-blank in Extension Field

-	.в_		• 2	X		SL > DL: T = $13.39 + 2.4B + 1.2XK$
Α	B	3	XK	-	B = BK > 0	SL < DL:
Α	E	3	Ь	D	$X > XK \ge 0$	$T = 13 \cdot 26 + 2 \cdot 4B + 1 \cdot 2XK$

DECIMAL COMPARE TIMING

Decimal comparison is done in a manner to provide the fastest comparison result. The fields are scanned in the following order of significance: signs and units digits, extension fields, body fields. The extension field (of length X) is the most significant portion of the longer comparand and includes all digits of more significance than the most significant digit of the shorter comparand. The body fields (of length B) are those portions of the comparands remaining (i. e. not units or signs, or extension). Comparison may take one of four basic formats based on the relative lengths of the fields:

 Source length = destination length = 1 (both fields are units digits and signs).

U	S
U	S

2. Source length \neq destination length, but one field = 1 (one comparand is units and sign).

	·U	S
	U	S
X		

Source length = destination length > 1
 (both fields are equal length and more than units and sign).

	U	S
	U	S
 B 		

 4. Source length ≠ destination length; both fields > 1 (not equal length but both fields are more than units and sign).

0 0	X X	ΥY		U	S
	хх	ХҮ	}	U	S
	← BK→	—— В			

where:

- X is the difference in field lengths in characters (digit pairs).
- B is the length of the shorter field minus one.
- XK is the number of leading zero characters in the extension field.
- BK is the number of leading characters in the body fields which are equal in corresponding positions (or are both zero in the case of Zero Scan), before non-equal (or non-zero) pair is encountered.

DECIMAL COMPARE TIME CALCULATIONS

Time (T) in microseconds can be calculated for three cases as follows:

<u>Case 1</u> - The signs are not equal and the units digits are not both zero.

0 C	$X \ge XK \ge 0$	T = 13.08
2 D	$B \ge BK \ge 0$	1 - 13, 00

<u>Case 2</u> - The signs are not alike and both units digits are zero. A zero scan is evoked.

Case 2 Formats:

a.

b.

00	00	00	0 C
	0D		
	- X-		1

0D

0 C

х	=	ХК	>	0
В	=	BK	=	0

 $X = XK \ge 0$

B = BK > 0

 $\mathbf{X} = \mathbf{X}\mathbf{K} = \mathbf{B} = \mathbf{B}\mathbf{K} = \mathbf{0}$

с	•

-X-		- B
	00	00
00	00	00

00	00	05	0C
	к		0D

00

00

0D

0 C

Х	>	XK	>
в		ΒK	=

0

0

e.

d.

00 00 00 10 0D 02 00 0 C 00 X-BK **B** :

X

 $X = XK \ge 0$ $\mathbf{B} > \mathbf{B}\mathbf{K} \ge \mathbf{0}$

SUE G3

DECIMAL COMPARE TIMING PROCEDURE FOR CASE 2

Stop	For Case	Conditions (Times in Microseconds)	Times (Microseconds)
Step	Formats	(Times in microseconds)	(microsecollus)
1	a, b, c, d, e	Start with basic time of 14.40 and go to Step 2.	14.40
2	a, b, c, d, e	Add 0.13 if destination comparand sign is positive, and go to Step 3.	0.13
3	b , c, d, e	Add 0.03 if SL >DL, and go to Step 4.	0.03
4	b , c, d, e	Add 1.17 for each leading zero char- acter in the extension field and go to Step 5.	1.17 XK
5	d	Add 1.69 and STOP (Note 1) if there is a non-zero character in the exten- sion field; otherwise go to Step 6.	+1.69
6	a, b	Add 0.42 and STOP (Note 2) if $B=0$ (i.e. no body) and if either the exten- sion field is all zero ([X] = 0) or there is no extension field (X=0); otherwise go to Step 7.	+0.42
7	c, e	Add 2.53 for each pair of leading zero characters in the body field. Go to Step 8.	2.53BK
8	е	Add 3.18 and STOP (Note 1) for the first non-zero character encountered in either body field; otherwise go to Step 9.	+3.18
		Step 9.	
9	С	Add 0.81 and STOP (Note 2) if both body fields are all zero (i.e. $+0$ and -0).	+0.81
Note	e 1 - The resu the signs	ult is Greater-Than or Less-Than depending 5.	g upon
	_		

Note 2 - The result is Equal (and specifically a positive zero equals a negative zero).

f.

g.

h.

<u>Case 3</u> - The signs are alike. A compare scan is evoked.

Case 3 Formats:

7 D	
3D	
	7D 3D

X = XK = B = BK = 0

X = XK > B = BK = 0

00 00 00 2C

	02	37	4C	
-X-	-]	B		

j.

00	90	73	8D
ХК	-		8D
	$-\mathbf{X}$		

 $X > XK \ge B = BK = 0$

k.

-X+	BK	 B	1	
	02	30	2D	
00	02	39	7D	

$X = XK \ge 0$ $B > BK \ge 0$

 $X = XK \ge 0$

 $\mathbf{B} = \mathbf{B}\mathbf{K} > \mathbf{0}$

May 73

. (

DECIMAL COMPARE TIMING PROCEDURE FOR CASE 3

Step	For Case Formats	Conditions (Times in Microseconds)	Times (Microseconds)
1	f, g, h, j, k	Start with basic time of 14.01 and go to Step 2.	14.01
2	f, g, h, j, k	Add 0.13 if the destination comparand sign is positive and go to Step 3.	0.13
3	g, h, j, k	Add 0.03 if SL >DL and go to Step 4.	0.03
4	g, h, j, k	Add 1.17 for each leading zero char- acter in the extension field and go to Step 5.	1.17XK
5	j	Add 1.98 and STOP (Note 3) if there is a non-zero character in the extension field; otherwise go to Step 6.	•+1 . 98
6	f , g	Add 0.42 and STOP (Note 4) if $B=0$ (i.e. no body) and if either the exten- sion field is all zero ([X]=0) or there is no extension field (X=0); otherwise, go to Step 7.	+0.42
7	h, k	Add 2.40 for each corresponding equal pair of leading characters in the body field and go to Step 8.	2.40BK
8	k	Add 4.34 and STOP (Note 5) for the first corresponding un-equal character pair in the body field; otherwise go to Step 9.	+4.34
9	h	Add 0.81 and STOP (Note 4) if all corresponding characters in the body fields are equal.	+0.81

Note 4 – Compare based on units and signs only

Note 5 - Not equal: compare based on sign and un-equal body characters.

	Instruction	Execution Time in Microseconds					
Dit Mar	vinulation .	Selected by					
Bit Manipulation		XR or K	Mask w/wo XR				
RBIT	Make the designated bit a zero	3.24	3.30				
SBIT	Make the designated bit a one	3.24	3.30				
CBIT	Change (complement) the designated bit	3.24	3.30				
IBIT	Isolate (extract) the designated bit	3.24	3.30				
TSBT	Test the designated bit and shift left	3.27	3.33				
TBIT	Only test the designated bit	3.24	3.30				
Move		Opera	nd Value				
Move		Positive	Negative				
NEGT	Move the twos complement value	2.49	2.49				
CPLM	Move the ones complement value	2.49	2.49				
MOVP	Move the positive magnitude	2.75	2.88				
MOVN	Move the negative magnitude	2.75	2.88				
Normal	ize and Count						
SxxN	Single Normalize, $AC = 0$	2.82					
SLAN	Single Left Arithmetic Normalize	3.24 + 0.	32 per shift				
SLLN	Single Left Logical Normalize	2.95 + 0.29 per shift					
SRAN	Single Right Arithmetic Normalize	2.95 + 0.29 per shift					
SRLN	Single Right Logical Normalize	2.95 + 0.29 per shift					
DxxN	DxxN Double Normalize, both AC's = 0						
DLAN	Double Left Arithmetic Normalize	5.21 + 0.	61 per shift				
DLLN	Double Left Logical Normalize	4.89 + 0.	48 per shift				
DRAN	Double Right Arithmetic Normalize	5.18 + 0.	97 per shift				
DRLN	Double Right Logical Normalize	4.31 + 0.	81 per shift				

Table A-7. SUE 1112A/B Instruction Times

Ç

	Instruction	Execution Time in Microseconds
Double-	Length Shift	
DLAO	Double Left Arithmetic Open With Zero Count	5.08 + 0.61 per shift 3.95
DLLL	Double Left Logical Linked With Zero Count	4.50 + 0.32 per shift 3.89
DLLO	Double Left Logical Open	3.95 + 0.48 per shift
DLLC	Double Left Logical Closed	4.11 + 0.64 per shift
DRAO	Double Right Arithmetic Open	4.11 + 0.97 per shift
DRLL	Double Right Logical Linked	3.89 + 0.81 per shift
DRLO	Double Right Logical Open	3.50 + 0.81 per shift
DRLC	Double Right Logical Closed	3.76 + 1.07 per shift

Table A-7. SUE 1112A/B Instruction Times (continued)

	Store DSTA	Load DLOD	Add DADD	Sub DSUB	Mult (See MLTA	tiply notes) MULT	Divide (See notes) DIVD
Register Address (Indexed)	5.06	4.44	5.96	5.96	≈16.87	≈15.35	≈15.29
Extended (w/wo Indexing)	5 . 13	4.54	6.06	6.06	≈16.97	≈15.45	≈15.39
Register Address, Indirect*	7.04	6.45	7.97	7.97	≈18.88	≈17.36	≈17.30
Extended, Indirect*	6.72	6.13	7.65	7.65	≈18.56	≈17.04	≈16.98

Table A-8. SUE 1112A/B Single- and Double-Precision Fixed-Point Instruction Times

Notes:

*Add 1.01 for each additional level of indirect

DIVIDE

- 1. Assumes divisor is positive and quotient is positive and even
- 2. Time is 4.10 if divide check occurs
- 3. Add 0.29 if divisor is negative
- 4. Subtract 0.06 if quotient is negative
- 5. Subtract 0.13 if quotient is odd
- 6. Total range (except divide check) for extended direct divide is 15.68 to 15.20

MULTIPLY

- 7. Assumes typically seven 'one' bits in the absolute value of the multiplier; if more (or less) add (or subtract) $N \ge 0.03$ to the time, where N is the additional number of significant multiplier bits.
- 8. Add 0.19 if the product is negative
- 9. Total range for extended direct multiply (w/o accumulate) is 15.24 to 15.88

٠.

APPENDIX B

INSTRUCTION SUMMARY AND INDEX

SUE 1110 (BASIC) INSTRUCTIONS SUMMARY

Status Regis	ster								Branch Instructions	s — Cla	asses	8-9					
15 14 13	12 11 10 9 8 7 6	5 4 3	2 1 0							15.14	13 12	11.10	0 8	7 6	5 4	3 2	1 0
									No Operation		3	0				x x	
L4 L3 L2	LIANZOLPF	5 F2 F1 C	VGE						Branch Unconditional		-	0			<u></u>		
Control Ins	tructions — Class O								Branch False		3	T					
15 14 13 12	11 10 9 8 7 6 5 4	3 2 1 0	MNEMO						Branch True		-	T	-+				
0		x x x x	HALT							L				-10			
0		C V G E	RSTS						D — Displacement wo	ora adar	ess in	twos	com	pieme	ent io	m.	
0		CVGE	SETS						т	INDI	САТО	R			N	NEMO	DNIC
0		4 L3 L2 L1	ENBL						1	Equa		-				EQx	
0		4 L3 L2 L1	ENBW						2 3	Grea Over	ter Th	an				GTx OVx	
0		4 L3 L2 L1	DSBL						3	Carry					-	CYx	
0		4 L3 L2 L1	DSBU						5	Flag					в	F1x	
		D	STSM						6	Flag						F2x	
		D	REGM						7	Flag	3 Com	lete				F3x LPx	
		D	4						9	Odd	Com	Jiele				ODx	
		D	RETN						Ă	Zeró					В	ZEx	
		_	MSTS						В	Nega						NGx	
		D	MREG						C D, E, F,		Than	ntod			В	LTx	
	solute, 1 if Relative.									Unin	pieni	enteu					
D — Addres	s field (words), two's com	plement forn	n for Relativ	e.					X = T or F								
General R	egister Instructions —	Classes 1-	7						Shift Instructions –	- Class	s A						
	[1	5 14 13 12	11 10 9	3 7	654	3	2 1 0		15 14 13 12 11		98		65		3	2 1	0
Accumulato	Auto Decrement	1	B OP	1	AR	E	XR		A B		OP	0	AF		X	XR	
То	Auto Increment	2	B OP	1	AR	E	XR		A B	L/R	OP	1	AF		1	к	
Memory		3	B OP	1	AR	E	XR										
	Jump	4	0 0	1	0	E	XR		B 0 = single length	1 = do	uble l	enath	(not i	mnler	nente	d on 1	110).
	Jump to Subroutine	4	0 0	ŀ	AR	E	XR		AR Accumulator Re							u on i	110).
	Data to	4	1 OP	0	AR	E	XR		K Shift Count	-	-						
	Accumulator	4	1 OP	1	AR		к		XR Shift Count Sour			- 1					
	Auto Decrement	5	B OP	T	AR	E	XR		L/R Left (L) when 0,	Right (F	() whe	n I.					
Memory To	Auto Increment	6	B OP	1	AR	E	XR		OP Shift Operation	Code:	0	0 = Ar	ithme	etic			
Accumulato	r F	7	B OP	T	AR	E	XR					1 = Lo					
Sequence:	-, E, XR, I, B, +.											0 = Lo 1 = Lo					
OP Opera	ation Code: 0 MO	V Move									'	r — L0	gicai	CIOS	eu		
	1 SU																
	2 AD							- 1									
	3 AN 4 IOF		Il Product	Dr													
	5 EO		I Exclusive														
	6 CM		are							·							
	7 TS	T Test						:									
B Word r	node if 0, byte mode if 1.																
I Indired	t when 1.																
	ulator Register designat																
	led or two word instruction Register designator (1-7)		if O.														
	teral constant data.																

SUE 1110 (BASIC) INSTRUCTION INDEX

Page

A. GENERAL REGISTER INSTRUCTIONS

ADDB	Add byte	12
SUBB	Subtract byte	12
CMPB	Compare byte	13
ANDB	Logical Product byte (and)	12
IORB	Logical sum byte (inclusive or)	12
EORB	Logical difference byte (exclusive or)	13
TSTB	Test byte	13
MOVB	Move byte	12
ADDW	Add word	12
SUBW	Subtract word	12
CMPW	Compare word	13
ANDW	Logical product word (and)	12
IORW	Logical sum word (inclusive or)	12
EORW	Logical difference word (exclusive or)	13
TSTW	Test word	13
MOVW	Move word,	12

B. JUMP INSTRUCTIONS

JSBR	Jump to subroutine	16
JUMP	Jump to location	16

C. BRANCH CONDITIONAL INSTRUCTIONS

NOPR	No operation • • • • • • • • • • • • • • • • • • •	22
BRUN	Branch unconditional	23
BEQT	Branch if equal true	21
BGTT	Branch if greater than true	21
BLTT	Branch if less than true	21
BZET	Branch if zero true	21
BNGT	Branch if negative true	21
BLPT	Branch if loop true	21
BODT	Branch if odd true	21
BOVT	Branch if overflow true	21
BCYT	Branch if carry true	21
BF1T	Branch if flag 1 true	21
BF2T	Branch if flag 2 true	21
BF3T	Branch if flag 3 true	21

Page

SUE G3

BEQF	Branch if equal false 2	21
BGTF	Branch if greater than false 2	21
BLTF	Branch if less than false 2	21
\mathbf{BZEF}	Branch if zero false 2	21
BNGF	Branch if negative false 2	21
BLPF	Branch if loop false 2	21
BODF	Branch if odd false 2	21
BOVF	Branch if overflow false 2	:1
BCYF	Branch if carry false 2	21
BF1F	Branch if flag 1 false 2	1
BF2F	Branch if flag 2 false 2	1
BF3F	Branch if flag 3 false 2	1

D. SHIFT INSTRUCTIONS

SLAO	Single left arithmetic open	26
SLLO	Single left logical open	26
\mathbf{S} LLC	Single left logical closed	26
SLLL	Single left logical linked	26
SRAO	Single right arithmetic open	27
SRLO	Single right logical open	27
SRLC	Single right logical closed	27
SRLL	Single right logical linked	27

E. CONTROL INSTRUCTIONS

RETN	Return from interrupt 32	
STSM	Status to memory 32	
REGM	Registers to memory 32	
MSTS	Memory to status 32	
MREG	Memory to registers 33	
HALT	Halt the computer 29	
WAIT	Wait for interrupt 31	
DSBL	Disable interrupts 31	
DSBW	Disable interrupts and wait ••••••••••••••••••••••••••••••••••••	
ENBL	Enable interrupts 30	
ENBW	Enable interrupts and wait 30	
SETS	Set programmable status indicators 29	
RSTS	Reset programmable status indicators 29	

SUE G3

SUE 1110A INSTRUCTIONS

Page

Includes all instructions listed under SUE 1110 (Basic) and the following:

SKEY	Store Kev .	 35
	20010 1109	00

SUE 1110B INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), 1111A, and the following:

FCLW	Fetch and Clear Word	37
FCLB	Fetch and Clear Byte	37

)

SUE 1111A INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), 1110A, and the following:

ZADD	Zero and Add 42
ADDD	Add 42
SUBD	Subtract
CMPD	Compare Decimal 43
SFTR	Shift Right
MOVR	Move Right 44
SFTL	Shift Left
MOVL	Move Left 44
COMP	Compare Field 45

SUE 1111B INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), 1110A, 1111A and the following:

FCLW	Fetch and Clear Word	46
FCLB	Fetch and Clear Byte	46

Page

SUE 1112A INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), 1110A, and the following:

A. BIT MANIPULATION INSTRUCTIONS

RBIT	Make the Designated Bit a Zero	52
SBIT	Make the Designated Bit a One	52
CBIT	Change (Complement) the Designated Bit	52
\mathbf{IBIT}	Isolate (Extract) the Designated Bit	52
TSBT	Test the Designated Bit and Shift Left	52
TBIT	Only Test the Designated Bit	52

B. MOVE INSTRUCTIONS

NEGT	Move the Twos Complement Value	53
\mathbf{CPLM}	Move the Ones Complement Value	53
MOVP	Move the Positive Magnitude	53
MOVN	Move the Negative Magnitude	53

C. NORMALIZE AND COUNT INSTRUCTIONS

SLAN	Single Left Arithmetic Normalize	54
\mathtt{SLLN}	Single Left Logical Normalize	54
SRAN	Single Right Arithmetic Normalize	55
\mathbf{SRLN}	Single Right Logical Normalize	55
DLAN	Double Left Arithmetic Normalize	55
DLLN	Double Left Logical Normalize	56
DRAN	Double Right Arithmetic Normalize	56
DRLN	Double Right Logical Normalize	56

D. DOUBLE LENGTH SHIFT

DLAO	Double Left Arithmetic Open	58
\mathbf{DLLL}	Double Left Logical Linked	58
DLLO	Double Left Logical Open	58
DLLC	Double Left Logical Closed	5 8
DRAO	Double Right Arithmetic Open	59
\mathbf{DRLL}	Double Right Logical Linked	59
DRLO	Double Right Logical open	59
DRLC	Double Right Logical Closed	59

Page

E. SINGLE PRECISION FIXED POINT

MLTA	Multiply and Add	61
MULT	Multiply (no add)	61
DIVD	Divide	61

F. DOUBLE PRECISION FIXED POINT

DLOD	Double Load Accumulator	63
DSTA	Double Store Accumulator	63
DADD	Double Add	63
DSUB	Double Subtract	63

G. CONTROL INSTRUCTIONS

SKEY	Store Value (K) in Key Bits	64
JKEY	Store Value (K) in Key Bits and Address M	
	into Program Counter	64
LCPU	Load Processor Number into (XR) Bits 5 and 6	64
LKEY	Load Key Bits into (XR)	64

SUE 1112B INSTRUCTIONS

Includes all instructions listed under SUE 1110 (Basic), 1110A, 1112A, and the following:

FCLW	Fetch and Clear Word	65
FCLB	Fetch and Clear Byte	65

APPENDIX C

INPUT/OUTPUT ADDRESSES

Table C-1. Input-Output Device Addresses*

Address (Hex)	Input/Output Device Controller					
F800	Teletypewriter No. 1					
F810	Teletypewriter No. 2					
F820	High Speed Paper Tape Reader No. 1					
F830	High Speed Paper Tape Punch No. 1					
F840	High Speed Paper Tape Reader No. 2					
F850	High Speed Paper Tape Punch No. 2					
F860	Card Reader No. 1					
F870	Card Reader No. 2					
F880	Card Punch No. 1					
F890	Card Punch No. 2					
F8A0	Line Printer No. 1					
F8B0	Line Printer No. 2					
F8C0	Magnetic Tape No. 1 (handles 4 Drives)					
F8D0	Magnetic Tape No. 2 (handles 4 Drives)					
F8E0	Bulk File No. 1 (Fixed Head)					
F8F0	Bulk File No. 2 (Fixed Head)					
F900	Disk File Unit No. 1 (Fixed and Removable)					
F910	Disk File Unit No. 2 (Fixed and Removable)					
F920	Cassette No. 1					
F930	Cassette No. 2					
FA00	CRT Display, Alphanumeric No. 1					
FA10	CRT Display, Alphanumeric No. 2					
	:					
FAF0	CRT Display, Alphanumeric No. 16					
FF90	Input Keyboard No. 1, Business System					
FFA0	CRT Display No. 1, Business System					
*Note: Device address assignment is variable by jumper wires connected on each controller. The addresses shown are recommended and are subject to change.						

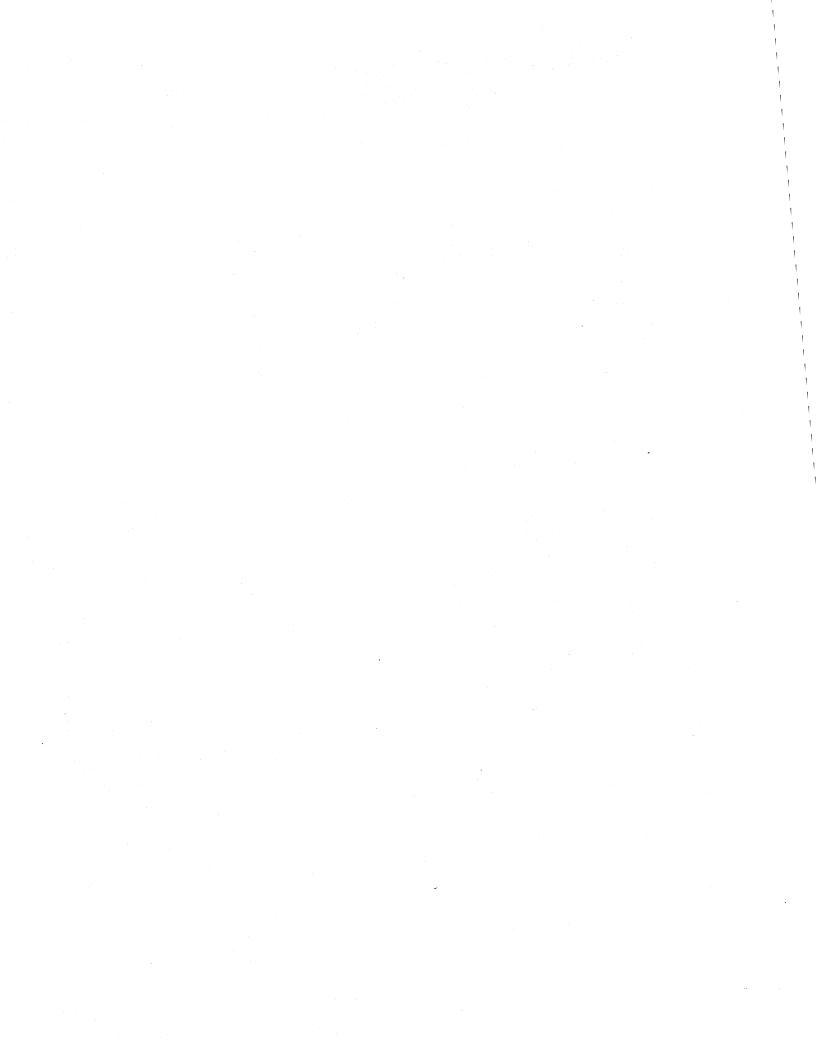
C-1

APPENDIX D

SELF-INTERRUPT AND SYSTEM INTERRUPT EXECUTIVE SPACE

- 1	1	1001	DEC	C TILLT								7	_	C C D I	LICE	DOUTIN	
Ld		AUUI	KE S	S THAT							ABOR			SERV		ROUTIN	
2	,	CAUSED ABORT				STATUS						CTION		VECTOR			
R	6										A D D R						
INTERRUPT			028	ADDR10	0048	ADDR00	002A	ADDR10	004 A	ADDR00	002C	ADDR10	004C	ADDR00	002E	ADDR10	004E
_ <u>a</u> {			038	ADDR11	0058	ADDR01	003 A	ADDR11	005 A	ADDR01	003C	ADDR11	005C	ADDR01	003E	ADDR11	005 E
r.)		UNI	MPLE	MENTED								EMENTE	D	I SERV	ICE	ROUTIN	E
SELF	-		три	CTION			STAT	US		I IN		CILON			VEC	TOR	
S	5		020	ADDR10	0040	ADDR00	0022	ADDR10	00.40		A D D F 0024	ADDR10	0044			ADDR10	0046
			020	ADDR10	0010	ADDR00	0022	ADDR10	0042 0052	ADDR00 ADDR01	0024	ADDR10	0044	ADDR00 ADDR01	0026 0036	ADDR10	0056
		ADDR01 U	030	ADDRII	0030	ADDROI	0032	ADDRII	0052	ADDROI	0034	ADDRII	0034	ADDROI	0036	ADDRII	0030
		· M	10 D (II F							000				SER	VICE	
							STAT	US							DOI	TINE	- E
	4	A D) D R I	ESS							CΟL	JNTER-					1
															VEC	CTOR	
					0018				001A				001C				001E
5	-		1001	11 5							000	GRAM		ł	SER	VICE	1
5							STAT	US			PRU	JUKAM			POI	JTINE	
E I	3	j Al	DDR	ESS							CO	UNTER					
1					0010				0012				0014		VEC	TOR	0016
SYSTEM INTERRUPT					0010				0012				0014				0010
N I		l N	AOD	ULF							PRO	GRAM			SER	VICE	
E.	2		_				STAT	US							ROI	TINE	
3,5	. 4	AL	DDR	ESS							C 0 I	JN TE R					
~	1.1				0008				000A				000C		VEC	CTOR	000E
	÷.				0000				00011								
		A	NOD	III E							PRO	GRAM			SER	VICE	
	1	1.00				STATUS							ROU	TINE			
	-	A	DDR	ESS							COL	JNTER		ļ			
					0000				0002				0004		AFC	: T O R	0006
,	- 1					L			0.500				0004	L	_		

1110-R03-72



APPENDIX E

USASCII CHARACTER SET AND HEXADECIMAL CODES

HEX	CHARACTER	HEX	CHARACTER
A0	space	C1	А
A1	1	C2	В
A2	11 -	C3	C ·
A3	#	C4	D
A4	\$	C5	E
A5	%	C6	F
A6	&	C7	G
A7	' (apostrophe)	C8	Н
A8	(C9	I
A9)	CA	J
AA	*	СВ	K
AB	+	CC	\mathbf{L}
AC	, (comma)	CD	M
AD		CE	N
AE	. (period)	CF	. O
AF	/	D0	Р
B0	0	D1	Q
B1	1	D2	R
B2	2	D3	S
B3	3	D4	\mathbf{T}
B4	4	D5	U
B5	5	D6	V
B6	6	D7	W
B7	7	D8	Х
B8	8	D9	Y
В9	9	DA	Z
BA	:	DB	left bracket
BB	;	DC	back slash
BC	< less than	DD	right bracket
BD	=	DE	↑up arrow
BE	> greater than	DF	← left arrow
BF	?		
C0	@	87	bell
		8A	line feed
		8D	carriage return

102665447

Lockheed Electronics Co., Inc. Data Products Division 6201 East Randolph Street Los Angeles, California 90040 (213) 722-6810

135