\triangle LINEAR

1995 Linear Databook Volume IV

QUICK REFERENCE INDEX

LF155	'90DB	2-271
LF156	'90DB	2-271
LF198	'90DB	9-97
LF355	'90DB	2-271
LF356	'90DB	2-271
LF398	'90DB	9-97
LF398S8	'90DB	9-113
LF412A	'90DB	2-275
LH0070	'90DB	3-65
LH2108A	'90DB	2-279
LM10	'90DB	2-281
LM101A	'90DB	2-297
LM107	'90DB	2-297
LM108	'90DB	2-303
LM108A	'90DB	2-303
LM	'90DB	6-85
LM117	'90DB	4-137
LM117HV	'90DB	4-145
LM118	'90DB	2-311
LM119	'90DB	6-93
LM123	'90DB	4-149
LM129	'90DB	3-83
LM134 Series	'90DB	3-87
LM136-2.5	'90DB	3-101
LM137	'90DB	4-157
LM137HV	'90DB	4-165
LM138	'90DB	4-169
LM150	'90DB	4-177
LM185-1.2	'90DB	3-105
LM185-2.5	'90DB	3-109
LM199	'90DB	3-115
LM199A	'90DB	3-115
LM301A	'90DB	2-297
LM307	'90DB	2-297
LM308	'90DB	2-303
LM308A	'90DB	2-303
LM311	'90DB	6-85
LM317	'90DB	4-137
LM317HV	'90DB	4-145
LM318	'90DB	2-311
LM318S8	'90DB	2-319
LM319	'90DB	6-93
LM323	'90DB	4-149
LM329	'90DB	3-83

LM334S8	'90DB	3-99
LM336-2.5	'90DB	3-101
LM337	'90DB	4-157
LM337HV	'90DB	4-165
LM338	'90DB	4-169
LM350	'90DB	4-177
LM385-1.2	' ${ }^{\text {OODB }}$	3-105
LM385-2.5	'90DB	3-109
LM385S8-1.2	'90DB	3-113
LM385S8-2.5	'90DB	3-113
LM399	'90DB	3-115
LM399A	'90DB	3-115
LT111A	'90DB	6-85
LT117A	'90DB	4-137
LT117AHV	'90DB	4-145
LT118A	'90DB	2-311
LT119A	'90DB	6-93
LT123A	'90DB	4-149
LT137A	'90DB	4-157
LT137AHV	'90DB	4-165
LT138A	'90DB	4-169
LT150A	'90DB	4-177
LTC201A	'92DB	11-4
LTC202	'92DB	11-4
LTC203	'92DB	11-4
LTC221	'92DB	11-15
LTC222	'92DB	11-15
LT311A	'90DB	6-85
LT317A	'90DB	4-137
LT317AHV	'90DB	4-145
LT318A	'90DB	2-311
LT319A	'90DB	6-93
LT323A	'90DB	4-149
LT337A	'90DB	4-157
LT337AHV	'90DB	4-165
LT338A	'90DB	4-169
LT350A	'90DB	4-177
LTC485	'92DB	5-6
LTC486	'92DB	5-16
LTC487	'92DB	5-24
LTC488	'94DB	5-158
LTC489	'94DB	5-158
LTC490.	'92DB	5-32
LTC491 ..	'92DB	5-40

LT574A		6-48
LT580	'90DB	3-121
LT581	'90DB	3-121
LTC660		4-53
LT685	'90DB	6-5
LTC690	'92DB	9-4
LTC691	'92DB	9-4
LTC692	'94DB	9-4
LTC693	'94DB	9-4
LTC694	'92DB	9-4
LTC694-3.3	'94DB	9-19
LTC695	'92DB	9-4
LTC695-3.3.	'94DB	9-19
LTC699	'92DB	9-18
LT1001	'90DB	2-11
LT1001CS8	'90DB	2-23
LT1002	'90DB	2-25
LT1003	'90DB	4-9
LT1004	'90DB	3-17
LT1004CS8-1.2	'90DB	3-25
LT1004CS8-2.5	'90DB	3-25
LT1005	'90DB	4-17
LT1006	'90DB	2-41
LT1006S8	'90DB	2-53
LT1007	'90DB	2-57
LT1007CS	'90DB	2-69
LT1007CS8.	'92DB	2-16
LT1008	'90DB	2-73
LT1009 Series	'90DB	3-27
LT1009S8	'90DB	3-31
LT1010	'90DB	2-85
LT1011	'90DB	6-9
LT1012	'90DB	2-105
LT1012S8	'90DB	2-117
LT1013	'92DB	2-19
LT1014	'92DB	2-19
LT1015	'92DB	10-4
LT1016	'90DB	6-25
LT1016CS8	'90DB	6-41
LT1017	'94DB	10-4
LT1018	'94DB	10-4
LT1019	, '90DB	3-33
LT1020	'90DB	4-29
LT1020CS .	'90DB	4-45

[^0]
"fROM YOUR MInD TO YOUR MARKET... ARD eVerfyting in between"

This is Volume IV of LTC's four volume series of databooks. This issue contains device data sheets and applications circuits for the products introduced since Volume III was printed in June of 1994.
Extraordinary growth in the high performance linear market has continued to drive the design efforts for these products. The result is increased complexity, higher efficiency, lower power and more cost-effective solutions. Included within the four book set are high performance products targeted to suit diverse applications within the Industrial, Test and Measurement, Telecom, Computer, Automotive and Military market segments.
In this edition, you will find a significant number of new products such as; A-to-D and D-to-A Converters, Multiplexers, High Performance Voltage References, High Speed Amplifiers, Ultralow Power Comparators, Low Power Advanced Interface Circuits for RS232 through V. 35 protocols, Infrared Receivers, High Frequency Switching Regulators, Fast Response Linear Regulators, PCMCIA devices and other advanced Power Control products.
For a complete set of information consult Volume I(1990), Volume II(1992), Volume III(1994) and this issue, Volume IV.
The Table of Contents and alphanumeric index in this volume provide guides to locate each LTC product within the four volume set. Use this guide to find the correct page in the appropriate volume.
LTC offers the latest in high performance wafer processing including bipolar, LTCMOS, micropower, high speed, complementary bipolar and BiCMOS technologies. These processes are used in two wafer fabrication facilities located in Milpitas, California with a third facility under construction in Camas, Washington at the time this data book went to print. A new assembly plant is located in Penang, Malaysia and our new Far East Headquarters is located in Singapore. The wafer fabrication and test facilities are certified to ISO 9001 by TÜV Rheinland and certified by DESC for JAN B and JAN S level microcircuits. These certifications are part of LTC's Quality and Reliability program in support of military/aerospace and radiation hardened requirements.
LTC appreciates your continued support and remains dedicated to providing the highest quality products, applications assistance and manufacturing knowledge to service your high performance analog requirements.

Linear Technology Corporation 1995 Linear Databook Volume IV

Abstract

Note: The 1995 Linear Databook is the fourth volume in our series of databooks to date totaling approximately 5800 pages of product and applications information for approximately 3000 individual products, presented in a four volume set of databooks. The 1990 Linear Databook is Volume l; the 1992 Linear Databook Supplement when reprinted will become Volume II. The 1994 Linear Databook Volume III Table of Contents references device types included in Volumes 1-3. Volume 4 Table of Contents references data in Volumes 1-4.

LT, LTC and LT are registered trademarks of Linear Technology Corporation.

LIFE SUPPORT POLICY

LINEAR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF LINEAR TECHNOLOGY CORPORATION. As used herein:
a. Life support devices or systems are devices or systems which (1) are intended for surgical implant into the body, or (2) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user.
b. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Information furnished herein by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits, as described herein, will not infringe on existing patent rights.

Linear Technology Corporation • 1630 McCarthy Blvd. •Milpitas, CA 95035 • (408) 432-1900 © Linear Technology Corporation 1995 Printed in USA
1995
Linear
Databook Volume IV
GEEERAL INFORMATION
AMPLIFIERS2
instrumentation amplifiers 3
POWER PRODUCTS4
interface
5
VOLTAGE REFERERCES
data conversion6
mOnOLITHIC FILTERS
microprocessor superivisory circuits7
COMPARATORS8
SPECIAL fUnCTIONS 11
mILITARY PRODUCTS 12
new products9
packace dimensions 1413
APPENDICES 15
SECTION 1—GENERAL INFORMATION
INDEX 1-2
GENERAL ORDERING INFORMATION 1-3
ALTERNATE SOURCE CROSS REFERENCE GUIDE 1-4
SECTION 2—AMPLIFIERS
INDEX 2-2
SELECTION GUIDES 2-3
PROPRIETARY PRODUCTS PRECISION OPERATIONAL AMPLIFIERS 2-13
LT1001, Precision Op Amp '90DB 2-11
LT1001CS8, Precision Op Amp '90DB 2-23
LT1002, Dual, Matched Precision Op Amp '90DB 2-25
LT1006, Precision, Single Supply Op Amp '90DB 2-41
LT1006S8, Precision, Single Supply Op Amp '90DB 2-53
LT1007, Low Noise, High Speed Precision Op Amp '90DB 2-57
LT1007CS/LT1037CS, Low Noise, High Speed Precision Op Amps '90DB 2-69
LT1007CS8/LT1037CS8, Low Noise, High Speed Precision Operational Amplifiers '92DBLT1008, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp'90DB2-73
LT1010, Fast $\pm 150 \mathrm{~mA}$ Power Buffer '90DB 2-85
LT1012, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp '90DB 2-105
LT1012S8, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp '90DB 2-117
LT1013/LT1014, Dual/Quad Precision Operational Amplifiers '92DB 2-19
LT1022, High Speed, Precision JFET Input Op Amp '90DB 2-145
LT1024, Dual, Matched Picoampere, Microvolt Input, Low Noise Op Amp. '90DB 2-153
LT1028, Ultra-Low Noise Precision High Speed Op Amp '94DB 2-12
LT1037, Low Noise, High Speed Precision Op Amp '90DB 2-57
LT1055, Precision, High Speed, JFET Input Op Amp '90DB 2-219
LT1056, Precision, High Speed, JFET Input Op Amp '90DB 2-219
LT1055S8/LT1056S8, Precision, High Speed, JFET Input Op Amps '90DB 2-231
LT1057, Dual JFET Input Precision, High Speed Op Amp '90DB 2-235
LT1057S/LT1057IS, LT1058S/LT1058IS, Dual/Quad JFET Input Precision High Speed Op Amps '92DB 2-41
LT1057S8/LT1057IS8, Dual JFET Input Precision High Speed Op Amps '92DB 2-44
LT1058, Quad JFET Input Precision, High Speed Op Amp '90DB 2-235
LT1077, Micropower, Single Supply, Precision Operational Amplifier '92DB 2-45
LT1078/LT1079, Micropower, Dual/Quad, Single Supply, Precision Operational Amplifiers '92DB 2-56
LT1097, Low Cost, Low Power Precision Operational Amplifier '92DB 2-74
LT1112/LT1114, Dual/Quad Low Power Precision, Picoamp Input Op Amps '94DB 2-29
LT1113, Dual Low Noise, Precision, JFET Input Op Amps '94DB 2-40
LT1115, Ultra-Low Noise, Low Distortion, Audio Operational Amplifier '92DB 2-82
LT1124/LT1125, Dual/Quad Low Noise, High Speed Precision Operational Amplifiers '92DB 2-94
LT1126/LT1127, Dual/Quad Decompensated Low Noise, High Speed Precision Operational Amplifiers '92DB 2-105
LT1128, Unity Gain Stable Ultra-Low Noise Precision High Speed Op Amp '94DB 2-12
LT1169, Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp '94DB 2-55

TABLE OF CONTENTS

LT1178/LT1179, 17 μ A Max, Dual/Quad, Single Supply, Precision Operational Amplifiers '92DB 2-112
LT1178S8, 20нA Max, Dual S0-8 Package, Single Supply Precision Op Amp '94DB 2-67
LT1366/LT1367/LT1368/LT1369, Dual and Quad Precision Rail-to-Rail Input and Output Op Amps 2-14
LT1413, Single Supply, Dual Precision Op Amp '94DB 2-68
LT1457, Dual, Precision JFET Input Op Amp '94DB 2-76
PRECISION OPERATIONAL AMPLIFIERS, ENHANCED AND SECOND SOURCE
LF155/LF355, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF155A/LF355A, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF156/LF356, JFET Input Op Amp, High Speed '90DB 2-271
LF156A/LF356A, JFET Input Op Amp, High Speed '90DB 2-271
LF412A, Dual Precision JFET Input Op Amp '90DB 2-275
LH2108A, Dual LM108 Op Amp '90DB 2-279
LM10/B(L)/C(L), Low Power Op Amp and Reference '90DB 2-281
LM101A/LM301A, Uncompensated General Purpose Op Amp '90DB 2-297
LM107/LM307, Compensated General Purpose Op Amp '90DB 2-297
LM108/LM308, Super Gain Op Amp '90DB 2-303
LM108A/LM308A, Super Gain Op Amp '90DB 2-303
LM118/LM318, High Slew Rate Op Amp '90DB 2-311
LM318S8, High Speed Op Amp '90DB 2-319
LT118A/LT318A, Improved LM118 Op Amp '90DB 2-311
OP-05, Internally Compensated Op Amp '90DB 2-321
OP-07, Precision Op Amp '90DB 2-329
OP-07CS8, Precision Op Amp '90DB 2-337
OP-15, Precision, High Speed JFET Input Op Amp '90DB 2-341
OP-16, Precision, High Speed JFET Input Op Amp '90DB 2-341
OP-27, Low Noise, Precision Op Amp '90DB 2-345
OP-37, Low Noise, High Speed Op Amp '90DB 2-345
OP-215, Dual Precision JFET Input Op Amp '90DB 2-275
OP-227, Dual Matched, Low Noise Op Amp '90DB 2-357
OP-237; Dual High Speed, Low Noise Op Amp '90DB 2-357
OP-270/OP-470, Dual/Quad Low Noise, Precision Operational Amplifiers '92DB 2-120
HIGH SPEED AMPLIFIERS 2-33
LT1122, Fast Settling, JFET Input Operational Amplifier '94DB 2-84
LT1187, Low Power Video Difference Amplifier '94DB 2-92
LT1189, Low Power Video Difference Amplifier '94DB 2-104
LT1190, Ultra High Speed Operational Amplifier (Av ≥ 1) '92DB 2-126
LT1191, Ultra High Speed Operational Amplifier (Av ≥ 1) '92DB 2-137
LT1192, Ultra High Speed Operational Amplifier (Av ≥ 5) '92DB 2-148
LT1193, Video Difference Amplifier, Adjustable Gain '92DB 2-159
LT1194, Video Difference Amplifier, Gain of 10 '92DB 2-171
LT1195, Low Power, High Speed Operational Amplifier '94DB 2-116
LT1200, Low Power High Speed Operational Amplifier '92DB 2-182
LT1201/LT1202, Dual and Quad 1mA, 12MHz, 50V/ μ s Op Amps '94DB 2-127
LT1206, 250mA/60MHz Current Feedback Amplifier '94DB 2-137
LT1208/LT1209, Dual and Quad 45MHz, 400V/us Op Amps '94DB 2-150

[^1]LT1211/LT1212, 14MHz, 7V/ μ s, Single Supply Dual and Quad Precision Op Amps '94DB 2-160
LT1213/LT1214, 28MHz, 12V/us, Single Supply Dual and Quad Precision Op Amps '94DB 2-176
LT1215/LT1216, 23MHz, 50V/ μ s, Single Supply Dual and Quad Precision Op Amps '94DB 2-192
LT1217, Low Power High Speed Current Feedback Amplifier. '92DB 2-190
LT1220, Very High Speed Operational Amplifier (Av ≥ 1) '92DB 2-198
LT1221, Very High Speed Operational Amplifier (Av ≥ 4) '92DB 2-210
LT1222, Low Noise, Very High Speed Operational Amplifier (Av ≥ 10) '92DB 2-218
LT1223, 100MHz Current Feedback Amplifier. '92DB 2-226
LT1224, Very High Speed Operational Amplifier (Av ≥ 1) '92DB 2-237
LT1225, Very High Speed Operational Amplifier (Av ≥ 5) '92DB 2-245
LT1226, Low Noise Very High Speed Operational Amplifier (Av ≥ 25) '92DB 2-253
LT1227, 140MHz Video Current Feedback Amplifier '94DB 2-208
LT1228, 100MHz Current Feedback Amplifier with DC Gain Control. '92DB 2-261
LT1229/LT1230, Dual and Quad 100MHz Current Feedback Amplifiers '92DB 2-280
LT1251/LT1256, 40MHz Video Fader and DC Gain Controlled Amplifiers '94DB 2-219
LT1252, Low Cost Video Amplifier '94DB 2-242
LT1253/LT1254, Low Cost Dual and Quad Video Amplifiers '94DB 2-249
LT1259/LT1260, Low Cost Dual and Triple 130MHz Current Feedback Amplifiers with Shutdown '94DB 2-256
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives 2-34
LT1354, 12MHz, 400V/us Op Amp '94DB 2-267
LT1355/LT1356, Dual and Quad 12MHz, 400V/us Op Amps '94DB 2-278
LT1357, 25MHz, 600V/us Op Amp '94DB 2-289
LT1358/LT1359, Dual and Quad 25MHz, 600V/ $\mu \mathrm{s}$ Op Amps '94DB 2-300
LT1360, 50MHz, 800V/ $\mu \mathrm{s}$ Op Amp '94DB 2-311
LT1361/LT1362, Dual and Quad 50MHz, 800V/ $\mu \mathrm{s}$ Op Amps '94DB 2-322
LT1363, 70MHz, 1000V/us Op Amp '94DB 2-333
LT1364/LT1365, Dual and Quad 70MHz, $1000 \mathrm{~V} / \mu \mathrm{s}$ Op Amps '94DB 2-344
ZERO-DRIFT OPERATIONAL AMPLIFIERS 2-41
LTC1047, Dual Micropower Zero-Drift Operational Amplifier with Internal Capacitors '92DB 2-292
LTC1049, Low Power Zero-Drift Operational Amplifier with Internal Capacitors. '92DB 2-299
LTC1050, Precision Zero-Drift Op Amp with Internal Capacitors '90DB 2-181
LTC1051/LTC1053, Dual/Quad Precision Zero-Drift Operational Amplifiers with Internal Capacitors '92DB 2-306
LTC1052, Zero-Dritt Op Amp '90DB 2-197
LTC1052CS, Zero-Drift Op Amp. '90DB 2-217
LTC1150, $\pm 15 \mathrm{~V}$ Zero-Drift Operational Amplifier with Internal Capacitors '92DB 2-321
LTC1151, Dual ± 15 V Zero-Drift Operational Amplifier '94DB 2-356
LTC1152, Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp 2-42
LTC1250, Very Low Noise Zero-Drift Bridge Amplifier. '94DB 2-364
ZERO-DRIFT OPERATIONAL AMPLIFIERS, ENHANCED AND SECOND SOURCE
LTC7652, Chopper Stabilized Op Amp '90DB 2-197
MULTIPLEXERS
LT1203/LT1205, 150MHz Video Multiplexers '94DB 2-374
LT1204, 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier '94DB 2-389

[^2]SECTION 3—INSTRUMENTATION AMPLIFIERS
INDEX 3-2
SELECTION GUIDE 3-3
PROPRIETARY PRODUCTS
LTC1043, Dual Instrumentation Switched Capacitor Building Block '90DB 11-15
LTC1100, Precision, Zero Drift Instrumentation Amplifier '92DB 3-4
LT1101, Precision, Micropower, Single Supply Instrumentation Amplifier (Fixed Gain $=10$ or 100) '92DB 3-11
LT1102, High Speed, Precision, JFET Input Instrumentation Amplifier (Fixed Gain = 10 or 100) '92DB 3-23
LT1193, Video Difference Amplifier, Adjustable Gain '92DB 2-159
LT1194, Video Difference Amplifier, Gain of 10 '92DB 2-171
SECTION 4-POWER PRODUCTS
INDEX 4-2
SELECTION GUIDES 4-4
PROPRIETARY PRODUCTS
INDUCTORLESS DC TO DC CONVERTERS 4-19
LT1026, Voltage Converter '90DB 5-3
LTC1044/7660, Switched Capacitor Voltage Converter '90DB 5-9
LTC1044A, 12V CMOS Voltage Converter '94DB 4-16
LTC1044CS8, Switched Capacitor Voltage Converter '90DB 5-21
LTC1046, 50mA Switched Capacitor Voltage Converter '92DB 4-16
LT1054, Switched-Capacitor Voltage Converter with Regulator. '94DB 4-26
LTC1144, Switched-Capacitor Wide Input Range Voltage Converter with Shutdown '94DB 4-38
LTC1261, Switched Capacitor Regulated Voltage Inverter 4-20
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LTC1429, Clock-Synchronized Switched Capacitor-Regulated Voltage Inverter 4-41
LTC1550/LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverters 13-142
INDUCTORLESS DC/DC CONVERTERS, ENHANCED AND SECOND SOURCE
LTC660, 100mA CMOS Voltage Converter 4-53
HIGH SIDE SWITCHES
LT1089, High Side Switch '90DB 11-45
LTC1155, Dual High Side Micropower N-Channel MOSFET Driver with Internal Charge Pump '92DB 4-26
LTC1156, Quad High Side Micropower N-Channel MOSFET Driver with Internal Charge Pump '92DB 4-41
LT1188, 1.5A High Side Switch '92DB 4-48
LINEAR REGULATORS 4-63
LT1003, 5 Volt, 5 Amp Voltage Regulator '90DB 4-9
LT1005, Logic Controlled Regulator 90DB 4-17
LT1020, Micropower Regulator and Comparator '90DB 4-29
LT1020CS, Micropower Regulator and Comparator '90DB 4-45
LT1033, 3A Negative Adjustable Regulator '90DB 4-49
LT1035, Logic Controlled Regulator '90DB 4-57
LT1036, Logic Controlled Regulator '90DB 4-69
LT1038, 10 Amp Positive Adjustable Voltage Regulator '90DB 4-77
LT1083/LT1084/LT1085, 7.5A, 5A, 3A Low Dropout Positive Adjustable Regulators '94DB 4-48

[^3] and '94DB = LTC's 1994 Databook).
LT1083/LT1084/LT1085, 7.5A, 5A, 3A Low Dropout Positive Fixed Output Regulators '94DB 4-61
LT1086 Series, 1.5A Low Dropout Positive Regulators Adjustable and 2.85V, 3.3V, 3.6V, 5V, 12 V '94DB 4-72
LT1087, Adjustable Low Dropout Regulator with Kelvin-Sense Inputs '92DB 4-56
LT1117/LT1117-2.85/LT1117-3.3/LT1117-5, 800mA Low Dropout Positive Regulators Adjustable and Fixed 2.85V, 3.3V, 5 V '94DB 4-85
LT1118-2.5/LT1118-2.85/LT1118-5, Low Ia, Low Dropout, 800mA Source and Sink Regulators Fixed 2.5V, 2.85V, 5V Output 4-64
LT1120, Micropower Regulator with Comparator and Shutdown '94DB 4-96
LT1120A, Micropower Regulator with Comparator and Shutdown '94DB 4-107
LT1121/LT1121-3.3/LT1121-5, Micropower Low Dropout Regulators with Shutdown '94DB 4-114
LT1123, 5V Low Dropout Regulator Driver. '92DB 4-75
LT1129/LT1129-3.3/LT1129-5, Micropower Low Dropout Regulators with Shutdown '94DB 4-125
LT1175, 500mA Negative Low Dropout Micropower Regulator 4-68
LT1185, Low Dropout Regulator with Adjustable Current Limit. '92DB 4-86
LT1521/LT1521-3/LT1521-3.3/LT1521-5, 300mA Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-79
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529/LT1529-3.3/LT1529-5, 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-101
LT1580/LT1580-2.5, 7A, Very Low Dropout Regulators 13-148
LT1584/LT1585/LT1587, 7A, 4.6A, 3A Low Dropout Fast Response Positive Regulators Adjustable and Fixed 4-112
LINEAR REGULATORS, ENHANCED AND SECOND SOURCE
LM117/LM317, Positive Adjustable Regulator '90DB 4-137
LT117A/LT317A, Improved LM117. '90DB 4-137
LM117HV/ LM317HV, High Voltage Positive Adjustable Regulator '90DB 4-145
LT117AHV/LT317AHV, Improved LM117HV. '90DB 4-145
LM123/LM323, 5 Volt, 3 Amp Regulator '90DB 4-149
LT123A/LT323A, Improved LM123 '90DB 4-149
LM137/LM337, Negative Adjustable Regulator '90DB 4-157
LT137A,/LT337A, Improved LM137. '90DB 4-157
LM137HV/LM337HV, High Voltage Negative Adjustable Regulator '90DB 4-165
LT137AHV/LT337AHV, Improved LM137HV. '90DB 4-165
LM138/LM338, 5 Amp Positive Adjustable Regulator '90DB 4-169
LT138ALLT338A, Improved LM138 '90DB 4-169
LM150/LM350, 3 Amp Positive Adjustable Regulator '90DB 4-177
LT150A/LT350A, Improved LM150 '90DB 4-177
POWER AND MOTOR CONTROL 4-125
LTC1153, Auto-Reset Electronic Circuit Breaker '94DB 4-138
LTC1154, High-Side Micropower MOSFET Driver '94DB 4-152
LTC1157, 3.3V Dual Micropower High-Side/Low-Side MOSFET Driver '94DB 4-167
LT1158, Half Bridge N-Channel Power MOSFET Driver '92DB 4-102
LT1160/LT1162, Half-/Full-Bridge N-Channel Power MOSFET Drivers 13-3
LT1161, Quad Protected High-Side MOSFET Driver '94DB 4-175
LTC1163/LTC1165, Triple 1.8V to 6V High-Side MOSFET Drivers '94DB 4-186
LTC1177-5/LTC1177-12, Isolated MOSFET Drivers. 13-16
LT1241-45, High Speed Current Mode Pulse Width Modulators '92DB 4-122

[^4] nd '94DB = LTC's 1994 Databook).
LT1246/LT1247, 1MHz Off-Line Current Mode PWM 4-126
LT1248, Power Factor Controller. '94DB 4-194
LT1249, Power Factor Controller '94DB 4-205
LTC1255, Dual 24V High-Side MOSFET Driver '94DB 4-215
LT1432, 5V High Efficiency Step-Down Switching Regulator Controller. '92DB 4-145
LT1432-3.3, 3.3V High Efficiency Step-Down Switching Regulator Controller 4-137
LTC1477/LTC1478, Single and Dual Protected High-Side Switches 13-112
POWER AND MOTOR CONTROL, ENHANCED AND SECOND SOURCE
SG1524/SG3524, Regulating Pulse Width Modulators '90DB 5-85
SG3524S, Regulating Pulse Width Modulator '90DB 5-93
LT1524/LT3524, Regulating Pulse Width Modulators '90DB 5-85
SG1525A/SG3525A, Regulating Pulse Width Modulators '90DB 5-97
LT1525A/LT3525A, Regulating Pulse Width Modulators '90DB 5-97
LT1526/LT3526, Regulating Pulse Width Modulators '90DB 5-105
SG1527A/SG3527A, Regulating Pulse Width Modulators '90DB 5-97
LT1527A/LT3527A, Regulating Pulse Width Modulators '90DB 5-97
LT1846/LT1847, Current Mode PWM Controller '90DB 5-113
LT3846/LT3847, Current Mode PWM Controller '90DB 5-113
SWITCHING REGULATORS 4-145
LT1070, 5A High Efficiency Switching Regulator '90DB 5-37
LT1071, 2.5A High Efficiency Switching Regulator '90DB 5-37
LT1072, 1.25A High Efficiency Switching Regulator '94DB 4-232
LT1073, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V. '92DB 4-174
LT1074/LT1076, Step-Down Switching Regulator '94DB 4-243
LT1076-5, 5V Step-Down Switching Regulator '92DB 4-208
LT1082, 1A High Voltage, High Efficiency Switching Voltage Regulator '94DB 4-257
LT1103/LT1105, Offline Switching Regulator'94DB '94DB 4-267
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LT1107, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V. '94DB 4-294
LT1108, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V '94DB 4-306
LT1109, Micropower Low Cost DC/DC Converter Adjustable and Fixed 5V, 12V '94DB 4-318
LT1109A, Micropower DC/DC Converter Flash Memory VPP Generator Adjustable and Fixed 5V, 12V. '94DB 4-325
LT1110, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V, High Frequency '92DB 4-245
LT1111, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V '94DB 4
LT1111, Micropower DC-to-DC Converter Adjustable and Fixed 5V, 12V, High Frequency. '92DB 4-260
LTC1142/LTC1142-ADJ, Dual High Efficiency Synchronous Step-Down Switching Regulators '94DB 4-346
LTC1143, Dual High Efficiency Step-Down Switching Regulator Controller. '94DB 4-365
LTC1147-3.3/LTC1147-5, High Efficiency Step-Down Switching Regulator Controllers '94DB 4-380
LTC1148/LTC1148-3.3/LTC1148-5, High Efficiency Synchronous Step-Down Switching Regulators '94DB 4-395
LTC1149/LTC1149-3.3/LTC1149-5, High Efficiency Synchronous Step-Down Switching Regulators '94DB 4-414
LTC1159/LTC1159-3.3/LTC1159-5, High Efficiency Synchronous Step-Down Switching Regulators 4-154
LT1170/LT1171/LT1172, 100kHz, 5A, 2.5A, and 1.25A High Efficiency Switching Regulators '94DB 4-433
LT1173, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V. '92DB 4-275
LTC1174/LTC1174-3.3/LTC1174-5, High Efficiency Step-Down and Inverting DC/DC Converter '94DB 4-447

[^5] and '94DB = LTC's 1994 Databook).
LT1176/LT1176-5, Step-Down Switching Regulator '94DB 4-462
LT1182/LT1183/LT1184/LT1184F, CCFL/LCD Contrast Switching Regulators 4-172
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-Nits ${ }^{\text {TM }}$) 4-196
LTC1265/LTC1265-3.3/LTC1265-5, 1.2A, High Efficiency Step-Down DC/DC Converters 4-212
LTC1266/LTC1266-3.3/LTC1266-5, Synchronous Regulator Controllers for \mathbf{N} - or P-Channel MOSFETS 4-228
LTC1267/LTC1267-ADJ/LTC1267-ADJ5, Dual High Efficiency Synchronous Step-Down Switching Regulators 4-248
LT1268B/LT1268, 7.5A, 150kHz Switching Regulators '94DB 4-466
LT1270/LT1270A, 8A and 10A High Efficiency Switching Regulators. '94DB 4-470
LT1271/LT1269, 4A High Efficiency Switching Regulators '94DB 4-474
LT1300, Micropower High Efficiency 3.3/5V Step-Up DC/DC Converter '94DB 4-478
LT1301, Micropower High Efficiency 5V/12V Step-Up DC/DC Converter with Flash Memory. '94DB 4-486
LT1302/LT1302-5, Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters 4-264
LT1303/LT1303-5, Micropower High Efficiency DC/DC Converters with Low-Battery Detector Adjustable and Fixed 5V. 4-279
LT1304/LT1304-3.3/LT1304-5, Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown 13-37
LT1305, Micropower High Power DC/DC Converter with Low-Battery Detector 4-290
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1371, 500kHz High Efficiency 3A Switching Regulator 4-298
LT1372/LT1377, 500kHz and 1MHz High Efficiency 1.5A Switching Regulators 4-310
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator. 4-322
LT1375/LT1376, 1.5A, 500kHz Step-Down Switching Regulators 4-334
LTC1430, High Power Step-Down Switching Regulator Controller 4-360
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LTC1574/LTC1574-3.3/LTC1574-5, High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode 4-385
PCMCIA HOST AND CARD POWER MANAGEMENT DEVICES 4-393
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LT1312, Single PCMCIA VPP Driver/Regulator 4-394
LT1313, Dual PCMCIA VPP Driver/Regulator. 4-405
LTC1314/LTC1315, PCMCIA Switching Matrix with Built-In N-Channel Vcc Switch Drivers 4-415
LTC1470/LTC1471, Single and Dual PCMCIA Protected 3.3V/5V Vcc Switches 4-426
LTC1472, Protected PCMCIA Vcc and VPP Switching Matrix 4-437
BATTERY MANAGEMENT CIRCUITS 4-453
LT1239, Backup Battery Management Circuit 4-454
LTC1325, Microprocessor-Controlled Battery Management System 4-466
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130
:ECTION 5-INTERFACE
INDEX 5-2
SELECTION GUIDES 5-3
PROPRIETARY PRODUCTS
RS232/562 5-9
LT1030, Quad Low Power Line Driver '90DB 10-5
LT1030CS, Quad Low Power Line Driver. '90DB 10-9

TABLE OF CONTENTS

LT1032, Quad Low Power Line Driver '90DB 10-11
LT1039, RS232 Driver/Receiver with Shutdown '90DB 10-19
LT1080, Advanced Low Power 5V RS232 Dual Driver/Receiver '90DB 10-43
LT1081, Advanced Low Power 5V RS232 Dual Driver/Receiver '90DB 10-43
LT1080CS/LT1081CS, 5V Powered RS232 Driver/Receiver with Shutdown '90DB 10-51
LT1130A, Advanced 5-Driver/5-Receiver RS232 Transceiver '94DB 5-10
LT1131A, Advanced 5-Driver/4-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1132A, Advanced 5-Driver/3-Receiver RS232 Transceiver '94DB 5-10
LT1133A, Advanced 3-Driver/5-Receiver RS232 Transceiver '94DB 5-10
LT1134A, Advanced 4-Driver/4-Receiver RS232 Transceiver '94DB 5-10
LT1135A, Advanced 5-Driver/3-Receiver RS232 Transceiver without Charge Pump '94DB 5-10
LT1136A, Advanced 4-Driver/5-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1137A, Advanced Low Power 5V RS232 Transceiver with Small Capacitors '94DB 5-20
LT1138A, Advanced 5-Driver/3-Receiver RS232 Transceiver with Shutdown '94DB
LT1139A, Advanced 4-Driver/4-Receiver RS232 Transceiver with Shutdown '94DBLT1140A, Advanced 5-Driver/3-Receiver RS232 Transceiver without Charge Pump'94DB 5-10
LT1141A, Advanced 3-Driver/5-Receiver RS232 Transceiver without Charge Pump '94DB
LT1180A, Low Power 5V RS232 Dual Driver/Receiver with 0.1 F Capacitors '94DB 5-27
LT1181A, Low Power 5V RS232 Dual Driver/Receiver with 0.1 1 F Capacitors '94DB 5-27
LT1237, 5 V RS232 Transceiver with Advanced Power Management and One Receiver Active in SHUTDOWN .'94DB 5-34
LT1280A, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-41
LT1281A, Low Power 5V RS232 Dual Driver/Receiver with 0.1 F C Capacitors '94DB 5-41
LTC1327, 3.3V Micropower EIA/TIA-562 Transceiver '94DB'
LT1330, 5V RS232 Transceiver with 3V Logic Interface and One Receiver Active in SHUTDOWN '94DB 5-54
LT1331, 3V RS232 or 5V/3V RS232 Transceiver with One Receiver Active in SHUTDOWN '94DB 5-61
LT1332, Wide Supply Range Low Power RS232 Transceiver with 12V VPP Output for Flash Memory '94DB 5-68
LTC1337, 5V Low Power RS232 3-Driver/5-Receiver Transceiver '94DB 5-76
LTC1338, 5V Low Power RS232 5-Driver/3-Receiver Transceiver '94DB 5-82
LT1341, 5V RS232 Transceiver with One Receiver Active in SHUTDOWN. '94DB 5-88
LT1342, 5V RS232 Transceiver with 3V Logic Interface '94DB 5-95
LTC1347, 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in SHUTDOWN '94DB 5-102
LTC1348, 3.3V Low Power RS232 3-Driver/5-Receiver Transceiver 5-10
LTC1349, 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 2 Receivers Active in SHUTDOWN '94DB 5-108
LTC1350, 3.3V Low Power EIA/TIA-562 3-Driver/5-Receiver Transceiver '94DB 5-114
LT1381, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-120
LTC1382, 5V Low Power RS232 Transceiver with Shutdown. '94DB 5-127
LTC1383, 5V Low Power RS232 Transceiver '94DB 5-133
LTC1384, 5V Low Power RS232 Transceiver with 2 Receivers Active in SHUTDOWN '94DB 5-139
LTC1385, 3.3V Low Power EIA/TIA-562 Transceiver '94DB 5-145
LTC1386, 3.3V Low Power EIA/TIA-562 Transceiver '94DB 5-151
LT1537, Advanced Low Power 5V RS232 Transceiver with Small Capacitors 5-18
RS485 5-25
LTC485, Low Power RS485 Interface Transceiver '92DB 5-6
LTC486, Quad Low Power RS485 Driver '92DB 5-16
LTC487, Quad Low Power RS485 Driver '92DB 5-24
LTC488/LTC489, Quad RS485 Line Receiver '94DB 5-158
LTC490, Low Power RS485 Interface Transceiver '92DB 5-32
LTC491, Low Power RS485 Interface Transceiver '92DB 5-40
LTC1480, 3.3V Ultra-Low Power RS485 Transceiver 5-26
LTC1481, Ultra-Low Power RS485 Transceiver with Shutdown 5-34
LTC1483, Ultra-Low Power RS485 Low EMI Transceiver with Shutdown 5-41
LTC1485, Differential Bus Transceiver '94DB 5-166
LTC1487, Ultra-Low Power RS485 with Low EMI, Shutdown and High Input Impedance 5-49
V. 35 5-57
LTC1345, Single Supply V. 35 Transceiver 5-58
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65
AppleTalk ${ }^{\text {® }}$ 5-69
LTC1318, Single 5V RS232/RS422/AppleTalk ${ }^{\circledR}$ Transceiver 5-70
LTC1320, AppleTalk ${ }^{\circledR}$ Transceiver 94DB 5-178
LTC1323, Single 5V AppleTalk ${ }^{\circledR}$ Transceiver 5-77
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LT1389, AppleTalk ${ }^{\circledR}$ Peripheral Interface Transceiver 13-73
INFRARED 5-89
LT1319, Multiple Modulation Standard Infrared Receiver 5-90
DIGITAL ISOLATORS
LTC1145/LTC1146, Low Power Digital Isolator '94DB 5-186
MIXED PROTOCOL 5-101
LTC1321/LTC1322/LTC1335, RS232/EIA562/RS485 Transceivers '94DB 5-198
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver 13-53
LEVEL TRANSLATOR
LTC1045, Programmable Micropower Hex Level Translator/Receiver/Driver '90DB 10-27
SECTION 6—DATA CONVERSION
INDEX 6-2
SELECTION GUIDES 6-3
PROPRIETARY PRODUCTS
ANALOG-TO-DIGITAL CONVERTERS 6-7
LTC1090, Single Chip 10-Bit Data Acquisition System '90DB 9-5
LTC1091, 1-Channel, 10-Bit Serial I/O Data Acquisition System '90DB 9-29
LTC1092, 2-Channel, 10-Bit Serial I/O Data Acquisition System '90DB 9-29
LTC1093, 6-Channel, 10-Bit Serial I/O Data Acquisition System. '90DB 9-29
LTC1094, 8-Channel, 10-Bit Serial I/O Data Acquisition System. 9-29
LTC1095, Complete 10-Bit Data Acquisition System with On Board Reference 9-57
LTC1096/LTC1098, Micropower Sampling 8-Bit Serial I/O A/D Converters 6-8
LTC1099, High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold. 9-81
LTC1196/LTC1198, 8-Bit, SO-8, 1MSPS ADCs with Auto-Shutdown Options 6-32
LTC1272, 12-Bit, 3 $\mu \mathrm{s}, 250 \mathrm{kHz}$ Sampling A/D Converter. 6-6
LTC1273/LTC1275/LTC1276, 12-Bit, 300ksps Sampling A/D Converters with Reference 6-58
LTC1274/LTC1277, 12-Bit, 10mW, 100ksps ADCs with 1 μ A Shutdown 13-22
LTC1278, 12-Bit, 500ksps Samping A/D Converter with Shutdown '94DB 6-80

TABLE OF CONTENTS

LTC1279, 12-Bit, 600ksps Sampling A/D Converter with Shutdown 6-8
LTC1282, 3V 140ksps 12-Bit Sampling A/D Converter with Reference '94DB 6-95
LTC1283, 3V Single Chip 10-Bit Data Acquisition System '94DB 6-117
LTC1285/LTC1288, 3V Micropower Sampling 12-Bit A/D Converters in SO-8 Packages 6-24
LTC1286/LTC1298, Micropower Sampling 12-Bit A/D Converters in SO-8 Packages '94DB 6-140
LTC1287, 3V Single Chip 12-Bit Data Acquisition System '92DB 6-25
LTC1289, 3V Single Chip 12-Bit Data Acquisition System '92DB 6-40
LTC1290, Single Chip 12-Bit Data Acquisition System '92DB 6-67
LTC1291, Single Chip 12-Bit Data Acquisition System '94DB 6-163
LTC1292/LTC1297, Single Chip 12-Bit Data Acquisition Systems '94DB 6-182
LTC1293/LTC1294/LTC1296, Single Chip 12-Bit Data Acquisition System '92DB 6-113
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LTC1522, 4-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134
ANALOG-TO-DIGITAL CONVERTERS, ENHANCED AND SECOND SOURCE
LT574A, Complete 12-Bit A/D Converter 6-48
DIGITAL-TO-ANALOG CONVERTERS 6-57
LTC1257, Complete Single Supply 12-Bit Voltage Output DAC in S0-8 '94DB 6-210
LTC1451/LTC1452/LTC1453, 12-Bit Rail-to-Rail Micropower DACs in SO-8 6-58
DIGITAL-TO-ANALOG CONVERTERS, ENHANCED AND SECOND SOURCELTC7541A, Improved Industry Standard CMOS 12-Bit Multiplying DAC6-69
LTC7543/LTC8143, Improved Industry Standard Serial 12-Bit Multiplying DACs 6-73
LTC8043, Serial 12-Bit Multiplying DAC in SO-8 6-80
MULTIPLEXERS 6-85
LTC1390, 8-Channel Analog Multiplexer with Serial Interface 6-86
SECOND SOURCE PRODUCTS (SAMPLE/HOLD CIRCUITS)
LF198A/LF398A, Precision Sample and Hold Amplifier '90DB 9-97
LF198/LF398, Precision Sample and Hold Amplifier '90DB 9-97
LF398S8, Precision Sample and Hold Amplifier '90DB 9-113
SECTION 7—VOLTAGE REFERENCES
INDEX 7-2
SELECTION GUIDES 7-3
PROPRIETARY PRODUCTS
LTZ1000, Ultra Precision Reference '90DB 3-9
LTZ1000A, Ultra Precision Reference '90DB 3-9
LT1004, Micropower Voltage Reference '90DB 3-17
LT1004CS8-1.2/LT1004CS8-2.5, Micropower Voltage References '90DB 3-25
LT1009 Series, 2.5 Volt Reference '90DB 3-27
LT1009S8, 2.5 Volt Reference '90DB 3-31
LT1019, 2.5V, 4.5V, 5.0V, 10.0V, Precision References '90DB 3-33
LT1021, 5.0V, 7.0V, 10.0V, Precision References '90DB 3-41
LT1021DCS8, 5.0V, 7.0V, 10.0V, Precision References '90DB 3-57
LT1027, Precision 5V Reference '92DB 7-6
LT1029, 5V Bandgap Reference '90DB 3-61
LT1031, Precision 10V Reference '90DB 3-65
LT1034-1.2/LT1034-2.5, Micropower Dual Reference '94DB 7-5
LT1236, Precision Reference 7-5
LT1431, Programmable Reference '92DB 7-13
SECOND SOURCE PRODUCTS
LH0070, Precision 10V Reference '90DB 3-65
LM129/LM329, 6.9V Precision Voltage Reference '90DB 3-83
LM134 Series, Constant Current Source and Temperature Sensor '90DB 3-87
LM334S8, Constant Current Source and Temperature Sensor '90DB 3-99
LM136-2.5/LM336-2.5, 2.5 Volt Reference '90DB 3-101
LM185-1.2/LM385-1.2, Micropower Voltage Reference '90DB 3-105
LM185-2.5/LM385-2.5, Micropower Voltage Reference '90DB 3-109
LM385S8-1.2/LM385S8-2.5, Micropower Voltage Reference '90DB 3-113
LM199/LM399/LM199A/LM399A, Precision Reference '90DB 3-115
LT580, Precision Reference '90DB 3-121
LT581, Precision Reference '90DB 3-121
REF-01/REF-02, Precision Voltage References '90DB 3-125
SECTION 8-MONOLITHIC FILTERS
INDEX 8-2
SELECTION GUIDES 8-3
PROPRIETARY PRODUCTS
LTC1059, High Peformance Switched Capacitor Universal Filter '90DB 7-3
LTC1059CS, High Performance Switched Capacitor Universal Filter '90DB 7-11
LTC1060, Universal Dual Filter Building Block '90DB 7-15
LTC1060CS, Universal Dual Filter Building Block. '90DB 7-35
LTC1061, High Performance Triple Universal Filter Building Block '90DB 7-39
LTC1061CS, High Performance Triple Universal Filter Building Block '90DB 7-55
LTC1062, 5th Order Lowpass Filter '94DB 8-5
LTC1063, DC Accurate, Clock-Tunable 5th Order Butterworth Lowpass Filter. '94DB 8-16
LTC1064, Low Noise, Fast, Quad Universal Filter Building Block '90DB 7-73
LTC1064-1, Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter 7-89
LTC1064-2, Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter 8-5
LTC1064-3, Low Noise, High Frequency, 8th Order Linear Phase Lowpass Filter. 8-13
LTC1064-4, Low Noise, 8th Order, Clock Sweepable Cauer Lowpass Filter 8-21
LTC1064-7, Linear Phase, 8th Order Lowpass Filter. 8-28
LTC1065, DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter 8-39
LTC1066-1, 14-Bit DC Accurate Clock-Tunable, 8th Order Elliptic or Linear Phase Lowpass Filter 8-51
LTC1164, Low Power, Low Noise, Quad Universal Filter Building Block 8-29
LTC1164-5, Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter 8-67
LTC1164-6, Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter '94DB 8-78

[^6] 1d '94DB = LTC's 1994 Databook).
LTC1164-7, Low Power, Linear Phase 8th Order Lowpass Filter '94DB 8-89
LTC1164-8, Ultra-Selective, Low Power 8th Order Elliptic Bandpass Filter with Adjustable Gain 8-5
LTC1264, High Speed, Quad Universal Filter Building Block '94DB 8-100
LTC1264-7, Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter '94DB 8-115
SECTION 9—MICROPROCESSOR SUPERVISORY CIRCUITS INDEX 9-2
SELECTION GUIDE 9-3
PROPRIETARY PRODUCTS
LTC690/LTC691/LTC694/LTC695, Microprocessor Supervisory Circuits '92DB 9-4
LTC692/LTC693, Microprocessor Supervisory Circuits '94DB 9-4
LTC694-3.3/LTC695-3.3, 3.3V Microprocessor Supervisory Circuits '94DB 9-19
LTC699, Microprocessor Supervisory Circuit '92DB 9-18
LTC1232, Microprocessor Supervisory Circuit '92DB 9-22
LTC1235, Microprocessor Supervisory Circuit with Conditional Battery Backup '92DB 9-29
SECTION 10-COMPARATORS
INDEX 10-2
SELECTION GUIDE 10-3
PROPRIETARY PRODUCTS
LT1011, Voltage Comparator. '90DB 6-9
LT1015, High Speed Dual Line Receiver. '92DB 10-4
LT1016, Ultra Fast Precision Comparator '90DB 6-25
LT1016CS8, Ultra Fast Precision Comparator. '90DB 6-41
LT1017/LT1018, Micropower Dual Comparator '94DB 10-4
LTC1040, Dual Micropower Comparator '90DB 6-57
LTC1041, BANG-BANG Controller. '90DB 6-69
LTC1042, Window Comparator '90DB 6-77
LT1116, 12ns, Single Supply Ground-Sensing Comparator 92DB 10-7
LTC1443/LTC1444/LTC1445, Low Power Quad Comparators 13-108
ENHANCED AND SECOND SOURCE PRODUCTS
LM111/LM311, Voltage Comparator '90DB 6-85
LT111A/LT311A, Improved LM111 '90DB 6-85
LM119/LM319, Dual Comparator '90DB 6-93
LT119ALLT319A, Improved LM119 '90DB 6-93
LT685, High Speed Comparator. '90DB 6-5
SECTION 11—SPECIAL FUNCTIONS
INDEX 11-2
SELECTION GUIDE 11-3
PROPRIETARY PRODUCTS
LTK001, Thermocouple Cold Junction Compensator and Matched Amplifier '90DB 11-3
LTC201ALLTC202/LTC203, Micropower, Low Charge Injection, Quad CMOS Analog Switches. '92DB 11-4
LTC221/LTC222, Micropower, Low Charge Injection, Quad CMOS Analog Switches with Data Latches '92DB 11-15
LT1025, Micropower Thermocouple Cold Junction Compensator '90DB 11-7Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).
LTC1043, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-15
LTC1043CS, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-31
LT1088, Wideband RMS-DC Converter Building Block '90DB 11-33
SECTION 12—MILITARY PRODUCTS
INDEX 12-2
MILITARY PRODUCTS/PROGRAMS 12-3
JAN 12-3
MIL-M-38510 Class B Flow (Figure 1) 12-4
MIL-M-38510 Class S Flow (Figure 2) 12-5
Standard Military Drawings 12-4
SMD Preparation Flowchart (Figure 3) 12-6
SMDs Get a New Part Numbering System 12-6
MIL-STD-883 Product 12-7
883 Group A Sampling Plan (Table 1) 12-7
Hi-Rel (SCDs) 12-7
Radiation Hardness Program 12-7
Representative "RH" Product Manufacturing Flow (Figure 4) 12-8
Military Market Commitment 12-7
883 Certificate of Conformance 12-9
MIL-STD-883 Test Methods 12-10
Military Parts List 12-14
SECTION 13—NEW PRODUCTS
INDEX 13-2
PROPRIETARY PRODUCTS
LT1160/LT1162, Half-/Full-Bridge N-Channel Power MOSFET Drivers 13-3
LTC1177-5/LT1177-12, Isolated MOSFET Drivers 13-16
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-Nits ${ }^{\text {TM }}$) 4-196
LT1236, Precision Reference 7-5
LT1239, Backup Battery Management Circuit 4-454
LTC1274/LTC1277, 12-Bit, 10mW, 100ksps A/D Converters with 1 μ A Shutdown 13-22
LT1304/LT1304-3.3/LT1304-5, Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown 13-37
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives 2-34
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver 13-53
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator 4-322
LT1375/LT1376, 1.5A, 500kHz Step-Down Switching Regulators 4-334
LT1389, AppleTalk ${ }^{\circledR}$ Peripheral Interface Transceiver 13-73
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LTC1429, Clock-Synchronized Switched Capacitor-Regulated Voltage Inverter 4-41

[^7]
TABLE OF CONTENTS

LTC1430, High Power Step-Down Switching Regulator Controller 4-360
LTC1443/LTC1444/LTC1445, Low Power Quad Comparators 13-108
LTC1477/LTC1478, Single and Dual Protected High-Side Switches 13-112
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130
LT1521/LT1521-3/LT1521-3.3/LT1521-5, 300mA Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-79
LTC1522, 4-ChanneI, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529/LT1529-3.3/LT1529-5, 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-101
LTC1550/LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverters 13-142
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LT1580/LT1580-2.5, 7A, Very Low Dropout Regulator 13-148
SECTION 14—PACKAGE INFORMATION
INDEX 14-2
PACKAGE CROSS REFERENCE 14-3
PACKAGE DIMENSIONS 14-5
SURFACE MOUNT PRODUCTS 14-36
TAPE AND REEL 14-47
TO-220 LEAD BEND OPTIONS 14-54
SECTION 15—APPENDICES
INDEX 15-2
INTRODUCTION TO QUALITY AND RELIABILITY ASSURANCE PROGRAMS 15-3
ISO 9001 QUALITY MANUAL 15-5
RELIABILITY ASSURANCE PROGRAM 15-30
QUALITY ASSURANCE PROGRAM 15-46
Wafer Fabrication Flowchart 15-52
Assembly Flowchart 15-61
Test and End-of-Line Flowchart 15-65
R-FLOW 15-66
ESD PROTECTION PROGRAM 15-67
STATISTICAL PROCESS CONTROL 15-78
DICE PRODUCTS 15-81
DESIGN TOOLS 15-83
Application Notes 15-83
Design Notes 15-87
Applications on Disk 15-90
Technical Publications 15-90

[^8]LF155, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF155A, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF156, JFET Input Op Amp, High Speed '90DB 2-271
LF156A, JFET Input Op Amp, High Speed '90DB 2-271
LF198, Precision Sample and Hold Amplifier '90DB 9-97
LF198A, Precision Sample and Hold Amplifier '90DB 9-97
LF355, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF355A, JFET Input Op Amp, Low Supply Current '90DB 2-271
LF356, JFET Input Op Amp, High Speed '90DB 2-271
LF356A, JFET Input Op Amp, High Speed '90DB 2-271
LF398, Precision Sample and Hold Amplifier '90DB 9-97
LF398A, Precision Sample and Hold Amplifier '90DB 9-97
LF398S8, Precision Sample and Hold Amplifier '90DB 9-113
LF412A, Dual Precision JFET Input Op Amp '90DB 2-275
LH0070, Precision 10V Reference '90DB 3-65
LH2108A, Dual LM108 Op Amp '90DB 2-279
LM10, Low Power Op Amp and Reference '90DB 2-281
LM10B, Low Power Op Amp and Reference '90DB 2-281
LM10BL, Low Power Op Amp and Reference '90DB 2-281
LM10C, Low Power Op Amp and Reference '90DB 2-281
LM10CL, Low Power Op Amp and Reference '90DB 2-281
LM101A, Uncompensated General Purpose Op Amp. '90DB 2-297
LM107, Compensated General Purpose Op Amp '90DB 2-297
LM108, Super Gain Op Amp '90DB 2-303
LM108A, Super Gain Op Amp '90DB 2-303
LM111, Voltage Comparator '90DB 6-85
LM117, Positive Adjustable Regulator '90DB 4-137
LM117HV, High Voltage Positive Adjustable Regulator '90DB 4-145
LM118, High Slew Rate Op Amp '90DB 2-311
LM119, Dual Comparator '90DB 6-93
LM123, 5 Volt, 3 Amp Regulator '90DB 4-149
LM129, 6.9V Precision Voltage Reference '90DB 3-83
LM134 Series, Constant Current Source and Temperature Sensor '90DB 3-87
LM136-2.5, 2.5 Volt Reference '90DB 3-101
LM137, Negative Adjustable Regulator '90DB 4-157
LM137HV, High Voltage Negative Adjustable Regulator '90DB 4-165
LM138, 5 Amp Positive Adjustable Regulator '90DB 4-169
LM150, 3 Amp Positive Adjustable Regulator '90DB 4-177
LM185-1.2, Micropower Voltage Reference '90DB 3-105
LM185-2.5, Micropower Voltage Reference '90DB 3-109
LM199, Precision Reference '90DB 3-115
LM199A, Precision Reference '90DB 3-115
LM301A, Uncompensated General Purpose Op Amp '90DB 2-297
LM307, Compensated General Purpose Op Amp '90DB 2-297

[^9]
ALPHANUMERIC INDEX

LM308, Super Gain Op Amp '90DB 2-303
LM308A, Super Gain Op Amp '90DB 2-303
LM311, Voltage Comparator '90DB 6-85
LM317, Positive Adjustable Regulator 90DB 4-137
LM317HV, High Voltage Positive Adjustable Regulator '90DB 4-145
LM318, High Slew Rate Op Amp '90DB 2-311
LM318S8, High Speed Op Amp '90DB 2-319
LM319, Dual Comparator '90DB 6-93
LM323, 5 Volt, 3 Amp Regulator '90DB 4-149
LM329, 6.9V Precision Voltage Reference '90DB 3-83
LM334S8, Constant Current Source and Temperature Sensor '90DB 3-99
LM336-2.5, 2.5 Volt Reference '90DB 3-101
LM337, Negative Adjustable Regulator '90DB 4-157
LM337HV, High Voltage Negative Adjustable Regulator '90DB 4-165
LM338, 5 Amp Positive Adjustable Regulator '90DB 4-169
LM350, 3 Amp Positive Adjustable Regulator '90DB 4-177
LM385-1.2, Micropower Voltage Reference '90DB 3-105
LM385-2.5, Micropower Voltage Reference '90DB 3-109
LM385S8-1.2, Micropower Voltage Reference '90DB 3-113
LM385S8-2.5, Micropower Voltage Reference '90DB 3-113
LM399, Precision Reference '90DB 3-115
LM399A, Precision Reference '90DB 3-115
LT111A, Improved LM111 '90DB 6-85
LT117A, Improved LM117 '90DB 4-137
LT117AHV, Improved LM117HV. '90DB 4-145
LT118A, Improved LM118 Op Amp '90DB 2-311
LT119A, Improved LM119 '90DB 6-93
LT123A, Improved LM123 '90DB 4-149
LT137A, Improved LM137 '90DB 4-157
LT137AHV, Improved LM137HV. '90DB 4-165
LT138A, Improved LM138 '90DB 4-169
LT150A, Improved LM150 '90DB 4-177
LTC201A, Micropower, Low Charge Injection, Quad CMOS Analog Switch '92DB 11-4
LTC202, Micropower, Low Charge Injection, Quad CMOS Analog Switch '92DB 11-4
LTC203, Micropower, Low Charge Injection, Quad CMOS Analog Switch '92DB 11-4
LTC221, Micropower, Low Charge Injection, Quad CMOS Analog Switch with Data Latches '92DB 11-15
LTC222, Micropower, Low Charge Injection, Quad CMOS Analog Switch with Data Latches '92DB 11-15
LT311A, Improved LM111 '90DB 6-85
LT317A, Improved LM117 '90DB 4-137
LT317AHV, Improved LM117HV. '90DB 4-145
LT318A, Improved LM118 Op Amp '90DB 2-311
LT319A, Improved LM119 '90DB 6-93
LT323A, Improved LM123 '90DB 4-149
LT337A, Improved LM137 '90DB 4-157
LT337AHV, Improved LM137HV. '90DB 4-165
LT338A, Improved LM138 '90DB 4-169
LT350A, Improved LM150 '90DB 4-177
LTC485, Low Power RS485 Interface Transceiver '92DB 5-6
LTC486, Quad Low Power RS485 Driver '92DB 5-16
LTC487, Quad Low Power RS485 Driver '92DB 5-24
LTC488, Quad RS485 Line Receiver. '94DB 5-158
LTC489, Quad RS485 Line Receiver. '94DB 5-158
LTC490, Low Power RS485 Interface Transceiver '92DB 5-32
LTC491, Low Power RS485 Interface Transceiver '92DB 5-40
LT574A, Complete 12-Bit A/D Converter 6-48
LT580, Precision Reference '90DB 3-121
LT581, Precision Reference '90DB 3-121
LTC660, 100mA CMOS Voltage Converter 4-53
LT685, High Speed Comparator '90DB 6-5
LTC690, Microprocessor Supervisory Circuit '92DB 9-4
LTC691, Microprocessor Supervisory Circuit '92DB 9-4
LTC692, Microprocessor Supervisory Circuit '94DB 9-4
LTC693, Microprocessor Supervisory Circuit '94DB 9-4
LTC694, Microprocessor Supervisory Circuit '92DB 9-4
LTC694-3.3, 3.3V Microprocessor Supervisory Circuit '94DB 9-19
LTC695, Microprocessor Supervisory Circuit '92DB 9-4
LTC695-3.3, 3.3V Microprocessor Supervisory Circuit '94DB 9-19
LTC699, Microprocessor Supervisory Circuit '92DB 9-18
LT1001, Precision Op Amp '90DB 2-11
LT1001CS8, Precision Op Amp '90DB 2-23
LT1002, Dual, Matched Precision Op Amp '90DB 2-25
LT1003, 5 Volt, 5 Amp Voltage Regulator '90DB 4-9
LT1004, Micropower Voltage Reference '90DB 3-17
LT1004CS8-1.2, Micropower Voltage Reference '90DB 3-25
LT1004CS8-2.5, Micropower Voltage Reference '90DB 3-25
LT1005, Logic Controlled Regulator '90DB 4-17
LT1006, Precision, Single Supply Op Amp '90DB 2-41
LT1006S8, Precision, Single Supply Op Amp '90DB 2-53
LT1007, Low Noise, High Speed Precision Op Amp '90DB 2-57
LT1007CS, Low Noise, High Speed Precision Op Amp '90DB 2-69
LT1007CS8, Low Noise, High Speed Precision Operational Amplifier '92DB 2-16
LT1008, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp '90DB 2-73
LT1009 Series, 2.5 Volt Reference '90DB 3-27
LT1009S8, 2.5 Volt Reference '90DB 3-31
LT1010, Fast $\pm 150 \mathrm{~mA}$ Power Buffer '90DB 2-85
LT1011, Voltage Comparator '90DB 6-9
LT1012, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp '90DB 2-105
LT1012S8, Picoamp Input Current, Microvolt Offset, Low Noise Op Amp '90DB 2-117
LT1013, Dual Precision Operational Amplifier '92DB 2-19
LT1014, Quad Precision Operational Amplifier '92DB 2-19

[^10]
ALPHANUMERIC INDEX

LT1015, High Speed Dual Line Receiver '92DB 10-4
LT1016, Ultra Fast Precision Comparator '90DB 6-25
LT1016CS8, Ultra Fast Precision Comparator. '90DB 6-41
LT1017, Micropower Dual Comparator '94DB 10-4
LT1018, Micropower Dual Comparator. '94DB 10-4
LT1019, 2.5V, 4.5V, 5.0V, 10.0V, Precision References '90DB 3-33
LT1020, Micropower Regulator and Comparator '90DB 4-29
LT1020CS, Micropower Regulator and Comparator '90DB 4-45
LT1021, 5.0V, 7.0V, 10.0V, Precision References '90DB 3-41
LT1021DCS8, 5.0V, 7.0V, 10.0V, Precision References '90DB 3-57
LT1022, High Speed, Precision JFET Input Op Amp '90DB 2-145
LT1024, Dual, Matched Picoampere, Microvolt Input, Low Noise Op Amp '90DB 2-153
LT1025, Micropower Thermocouple Cold Junction Compensator '90DB 11-7
LT1026, Voltage Converter '90DB 5-3
LT1027, Precision 5V Reference '92DB 7-6
LT1028, Ultra-Low Noise Precision High Speed Op Amp '94DB 2-12
LT1029, 5V Bandgap Reference '90DB 3-61
LT1030, Quad Low Power Line Driver '90DB 10-5
LT1030CS, Quad Low Power Line Driver. '90DB 10-9
LT1031, Precision 10V Reference '90DB 3-65
LT1032, Quad Low Power Line Driver '90DB 10-11
LT1033, 3A Negative Adjustable Regulator '90DB 4-49
LT1034-1.2, Micropower Dual Reference '94DB 7-5
LT1034-2.5, Micropower Dual Reference '94DB 7-5
LT1035, Logic Controlled Regulator '90DB 4-57
LT1036, Logic Controlled Regulator '90DB 4-69
LT1037, Low Noise, High Speed Precision Op Amp '90DB 2-57
LT1037CS, Low Noise, High Speed Precision Op Amp '90DB 2-69
LT1037CS8, Low Noise, High Speed Precision Operational Amplifier '92DB 2-16
LT1038, 10 Amp Positive Adjustable Voltage Regulator '90DB 4-77
LT1039, RS232 Driver/Receiver with Shutdown '90DB 10-19
LTC1040, Dual Micropower Comparator '90DB 6-57
LTC1041, BANG-BANG Controller '90DB 6-69
LTC1042, Window Comparator. '90DB 6-77
LTC1043, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-15
LTC1043CS, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-31
LTC1044, Switched Capacitor Voltage Converter '90DB 5-9
LTC1044A, 12V CMOS Voltage Converter '94DB 4-16
LTC1044CS8, Switched Capacitor Voltage Converter '90DB 5-21
LTC1045, Programmable Micropower Hex Translator/Receiver/Driver. '90DB 10-27
LTC1046, 50mA Switched Capacitor Voltage Converter '92DB 4-16
LTC1047, Dual Micropower Zero Drift Operational Amplifier with Internal Capacitors '92DB 2-292
LTC1049, Low Power Zero Drift Operational Amplifier with Internal Capacitors '92DB 2-299
LTC1050, Precision Zero Drift Op Amp with Internal Capacitors '90DB 2-181
LTC1051, Dual Precision Zero Dritt Operational Amplifier with Internal Capacitors '92DB 2-306
LTC1052, Zero Drift Op Amp '90DB 2-197
LTC1052CS, Zero Drift Op Amp '90DB 2-217
LTC1053, Quad Precision Zero Drift Operational Amplifier with Internal Capacitors '92DB 2-306
LT1054, Switched-Capacitor Voltage Converter with Regulator. '94DB 4-26
LT1055, Precision, High Speed, JFET Input Op Amp '90DB 2-219
LT1055S8, Precision, High Speed, JFET Input Op Amp '90DB 2-231
LT1056, Precision, High Speed, JFET Input Op Amp '90DB 2-219
LT1056S8, Precision, High Speed, JFET Input Op Amp '90DB 2-231
LT1057, Dual JFET Input Precision, High Speed Op Amp '90DB 2-235
LT1057IS, Dual JFET Input Precision High Speed Op Amp '92DB 2-41
LT1057IS8, Dual JFET Input Precision High Speed Op Amp. '92DB 2-44
LT1057S, Dual JFET Input Precision High Speed Op Amp '92DB 2-41
LT1057S8, Dual JFET Input Precision High Speed Op Amp '92DB 2-44
LT1058, Quad JFET Input Precision, High Speed Op Amp '90DB 2-235
LT1058IS, Quad JFET Input Precision High Speed Op Amp '92DB 2-41
LT1058S, Quad JFET Input Precision High Speed Op Amp '92DB 2-41
LTC1059, High Peformance Switched Capacitor Universal Filter '90DB 7-3
LTC1059CS, High Performance Switched Capacitor Universal Filter '90DB
LTC1060, Universal Dual Filter Building Block '90DB 7-15
LTC1060CS, Universal Dual Filter Building Block '90DB 7-35
LTC1061, High Performance Triple Universal Filter Building Block '90DB 7-39
LTC1061CS, High Performance Triple Universal Filter Building Block '90DB 7-55
LTC1062, 5th Order Lowpass Filter '94DB 8-5
LTC1063, DC Accurate,Clock-Tunable 5th Order Butterworth Lowpass Filter '94DB 8-16
LTC1064, Low Noise, Fast, Quad Universal Filter Building Block '90DB 7-73
LTC1064-1, Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter '90DB 7-89
LTC1064-2, Low Noise, High Frequency, 8th Order Butterworth Lowpass Filter '92DB
LTC1064-3, Low Noise, High Frequency, 8th Order Linear Phase Lowpass Filter. '92DB 8-13
LTC1064-4, Low Noise, 8th Order, Clock Sweepable Cauer Lowpass Filter. '92DB 8-21
LTC1064-7, Linear Phase, 8th Order Lowpass Filter. '94DB 8-28
LTC1065, DC Accurate, Clock-Tunable Linear Phase 5th Order Bessel Lowpass Filter '94DB
LTC1066-1, 14-Bit DC Accurate Clock-Tunable, 8th Order Elliptic or Linear Phase Lowpass Filter '94DB 8-51
LT1070, 5A High Efficiency Switching Regulator. '90DB $\quad 5-37$
LT1071, 2.5A High Efficiency Switching Regulator '90DB 5-37
LT1072, 1.25A High Efficiency Switching Regulator. '94DB 4-232
LT1073, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V. '92DB 4-174
LT1074, Step-Down Switching Regulator '94DB 4-243
LT1076, Step-Down Switching Regulator '94DB 4-243
LT1076-5, 5V Step-Down Switching Regulator '92DB 4-208
LT1077, Micropower, Single Supply, Precision Operational Amplifier '92DB 2-45
LT1078, Micropower, Dual, Single Supply, Precision Operational Amplifier '92DB 2-56
LT1079, Micropower, Quad, Single Supply, Precision Operational Amplifier '92DB 2-56
LT1080, Advanced Low Power 5V RS232 Dual Driver/Receiver '90DB 10-43
LT1080CS, 5V Powered RS232 Driver/Receiver with Shutdown '90DB 10-51
LT1081, Advanced Low Power 5V RS232 Dual Driver/Receiver '90DB 10-43

[^11]
ALPHANUMERIC INDEX

LT1081CS, 5V Powered RS232 Driver/Receiver with Shutdown '90D.B 10-51
LT1082, 1A High Voltage, High Efficiency Switching Voltage Regulator '94DB 4-257.
LT1083, 7.5A Low Dropout Positive Adjustable Regulator '94DB 4-48
LT1083, 7.5A Low Dropout Positive Fixed Output Regulator '94DB 4-61
LT1084, 5A Low Dropout Positive Adjustable Regulator '94DBLT1084, 5A Low Dropout Positive Fixed Output Regulator'94DB4-48LT1085, 3A Low Dropout Positive Adjustable Regulator'94DB4-61LT1085, 3A Low Dropout Positive Fixed Output Regulator'94DB
LT1086 Series, 1.5A Low Dropout Positive 2.85V, 3.3V, 3.6V, 5V, 12V and Adjustable Regulators '94DB4-484-61
LT1087, Adjustable Low Dropout Regulator with Kelvin-Sense Inputs '92DB 4-56
'90DB
LT1088, Wideband RMS-DC Converter Building Block 11-33
'90DB
LT1089, High Side Switch $11-45$
'90DB
LTC1090, Single Chip 10-Bit Data Acquisition System 9-5
'90DB
LTC1091, 1-Channel, 10-Bit Serial I/O Data Acquisition System 9-29
LTC1092, 2-Channel, 10-Bit Serial I/O Data Acquisition System '90DB 9-29
LTC1093, 6-Channel, 10-Bit Serial I/O Data Acquisition System '90DB 9-29
LTC1094, 8-Channel, 10-Bit Serial I/O Data Acquisition System '90DB
LTC1095, Complete 10-Bit Data Acquisition System with On Board Reference '90DB 9-57
LTC1096, Micropower Sampling 8-Bit Serial I/O A/D Converter '94DB 6-8
LT1097, Low Cost, Low Power Precision Operational Amplifier '92DB 2-749-29

LTC1098, Micropower Sampling 8-Bit Serial I/O A/D Converter

LTC1098, Micropower Sampling 8-Bit Serial I/O A/D Converter '94DB '94DB 6-8 6-8LTC1099, High Speed 8-Bit A/D Converter with Built-In Sample-and-Hold.'90DB
LTC1100, Precision, Zero Drift Instrumentation Amplifier '92DB 3-4
LT1101, Precision, Micropower, Single Supply Instrumentation Amplifier (Fixed Gain $=10$ or 100) '92DB 3-11
LT1102, High Speed, Precision, JFET Input Instrumentation Amplifier (Fixed Gain = 10 or 100) '92DB 3-239-81
LT1103, Offline Switching Regulator '94DB 4-267
LT1105, Offline Switching Regulator '94DB 4-267
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LT1107, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V. '94DB 4-294LT1108, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V'94DB
LT1109, Micropower Low Cost DC/DC Converter Adjustable and Fixed 5V, 12V '94DB 4-318
LT1109A, Micropower DC/DC Converter Flash Memory VPP Generator Adjustable and Fixed 5V, 12V '94DB 4-325
LT1110, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V, High Frequency '92DB 4-2454-306
'94DBLT1111, Micropower DC/DC Converter Adjustable and Fixed 5V, 12V.
LT1112, Dual Low Power Precision, Picoamp Input Op Amp '94DB 2-29
LT1113, Dual Low Noise, Precision, JFET Input Op Amps '94DB 2-40
LT1114, Quad Low Power Precision, Picoamp Input Op Amp '94DB 2-29
LT1115, Ultra-Low Noise, Low Distortion, Audio Operational Amplifier '92DBLT1116, 12ns, Single Supply Ground-Sensing Comparator'92DB4-331
LT1117, 800 mA Low Dropout Positive Regulator Adjustable and Fixed 2.85V, 3.3V, 5V. '94DB 4-85
LT1118-2.5, Low I , Low Dropout, 800 mA Source and Sink Regulator Fixed 2.5V Output
LT1118-2.85, Low Ia, Low Dropout, 800mA Source and Sink Regulator Fixed 2.85V Output
LT1118-5, Low Ia, Low Dropout, 800mA Source and Sink Regulator Fixed 5V Output2-82
LT1120, Micropower Regulator with Comparator and Shutdown '94DB10-7
LT1120A; Micropower Regulator with Comparator and Shutdown '94DB
Note: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' 92 DB = LTC's 1992 Databook Supplementand '94DB = LTC's 1994 Databook).
LT1121, Micropower Low Dropout Regulator with Shutdown '94DB 4-114
LT1121-3.3, Micropower Low Dropout Regulator with Shutdown 94DB 4-114
LT1121-5, Micropower Low Dropout Regulator with Shutdown '94DB 4-114
LT1122, Fast Settling, JFET Input Operational Amplifier '94DB 2-84
LT1123, 5V Low Dropout Regulator Driver '92DB 4-75
LT1124, Dual Low Noise, High Speed Precision Operational Amplifier '92DB 2-94
LT1125, Quad Low Noise, High Speed Precision Operational Amplifier '92DB 2-94
LT1126, Dual Decompensated Low Noise, High Speed Precision Operational Amplifier '92DB 2-105
LT1127, Quad Decompensated Low Noise, High Speed Precision Operational Amplifier '92DB 2-105
LT1128, Unity Gain Stable Ultra-Low Noise Precision High Speed Op Amp '94DB 2-12
LT1129, Micropower Low Dropout Regulator with Shutdown '94DB 4-125
LT1129-3.3, Micropower Low Dropout Regulator with Shutdown '94DB 4-125
LT1129-5, Micropower Low Dropout Regulator with Shutdown '94DB 4-125
LT1130, 5-Driver/5-Receiver RS232 Transceiver Refer to LT1130A
LT1130A, Advanced 5-Driver/5-Receiver RS232 Transceiver '94DB 5-10
LT1131, 5-Driver/4-Receiver RS232 Transceiver with Shutdown Refer to LT1131A
LT1131A, Advanced 5-Driver/4-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1132, 5-Driver/3-Receiver RS232 Transceiver. Refer to LT1132A
LT1132A, Advanced 5-Driver/3-Receiver RS232 Transceiver '94DB 5-10
LT1133, 3-Driver/5-Receiver RS232 Transceiver Refer to LT1133A
LT1133A, Advanced 3-Driver/5-Receiver RS232 Transceiver '94DB 5-10
LT1134, 4-Driver/4-Receiver RS232 Transceiver. Refer to LT1134A
LT1134A, Advanced 4-Driver/4-Receiver RS232 Transceiver '94DB 5-10
LT1135, 5-Driver/3-Receiver RS232 Transceiver without Charge Pump Refer to LT1135A
LT1135A, Advanced 5-Driver/3-Receiver RS232 Transceiver without Charge Pump '94DB 5-10
LT1136, 4-Driver/5-Receiver RS232 Transceiver with Shutdown Refer to LT1136A
LT1136A, Advanced 4-Driver/5-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1137, 3-Driver/5-Receiver RS232 Transceiver with Shutdown Refer to LT1137A
LT1137A, Advanced 3-Driver/5-Receiver Low Power 5V RS232 Transceiver with Small Capacitors '94DB 5-20
LT1138, 5-Driver/3-Receiver RS232 Transceiver with Shutdown Refer to LT1138A
LT1138A, Advanced 5-Driver/3-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1139, 4-Driver/4-Receiver RS232 Transceiver with Shutdown Refer to LT1139A
LT1139A, Advanced 4-Driver/4-Receiver RS232 Transceiver with Shutdown '94DB 5-10
LT1140, 5-Driver/3-Receiver RS232 Transceiver without Charge Pump Refer to LT1140A
LT1140A; Advanced 5-Driver/3-Receiver RS232 Transceiver without Charge Pump '94DB 5-10
LT1141, 3-Driver/5-Receiver RS232 Transceiver without Charge Pump Refer to LT1141A
LT1141A, Advanced 3-Driver/5-Receiver RS232 Transceiver without Charge Pump '94DB 5-10
LTC1142, Dual High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-346
LTC1142-ADJ, Dual High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-346
LTC1143, Dual High Efficiency Step-Down Switching Regulator Controller. '94DB 4-365
LTC1144, Switched-Capacitor Wide Input Range Voltage Converter with Shutdown '94DB 4-38
LTC1145, Low Power Digital Isolator '94DB 5-186
LTC1146, Low Power Digital Isolator '94DB 5-186
LTC1147-3.3, High Efficiency Step-Down Switching Regulator Controller '94DB 4-380
LTC1147-5, High Efficiency Step-Down Switching Regulator Controller '94DB 4-380

[^12]LTC1148, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-395
LTC1148-3.3, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-395
LTC1148-5, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-395
LTC1149, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-414
LTC1149-3.3, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-414
LTC1149-5, High Efficiency Synchronous Step-Down Switching Regulator '94DB 4-414
LTC1150, $\pm 15 \mathrm{~V}$ Zero Drift Operational Amplifier with Internal Capacitors '92DB 2-321
LTC1151, Dual ± 15 V Zero-Drift Operational Amplifier '94DB 2-356
LTC1152, Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp 2-42
LTC1153, Auto-Reset Electronic Circuit Breaker '94DB 4-138
LTC1154, High-Side Micropower MOSFET Driver. '94DB 4-152
LTC1155, Dual High Side Micropower N-Channel MOSFET Driver with Internal Charge Pump '92DB 4-26
LTC1156, Quad High Side Micropower N-Channel MOSFET Driver with Internal Charge Pump '92DB 4-41
LTC1157, 3.3V Dual Micropower High-Side/Low-Side MOSFET Driver '94DB 4-167
LT1158, Half Bridge N-Channel Power MOSFET Driver '92DB 4-102
LTC1159, High Efficiency Synchronous Step-Down Switching Regulator 4-154
LTC1159-3.3, High Efficiency Synchronous Step-Down Switching Regulator 4-154
LTC1159-5, High Efficiency Synchronous Step-Down Switching Regulator 4-154
LT1160, Half-Bridge N-Channel Power MOSFET Drivers. 13-3
LT1161, Quad Protected High-Side MOSFET Driver '94DB 4-175
LT1162, Full-Bridge N-Channel Power MOSFET Drivers 13-3
LTC1163, Triple 1.8V to 6V High-Side MOSFET Driver '94DB 4-186
LTC1164, Low Power, Low Noise, Quad Universal Filter Building Block '92DB 8-29
LTC1164-5, Low Power 8th Order Pin Selectable Butterworth or Bessel Lowpass Filter '94DB 8-67
LTC1164-6, Low Power 8th Order Pin Selectable Elliptic or Linear Phase Lowpass Filter '94DB 8-78
LTC1164-7, Low Power, Linear Phase 8th Order Lowpass Filter '94DB 8-89
LTC1164-8, Ultra-Selective, Low Power 8th Order Elliptic Bandpass Filter with Adjustable Gain 8-5
LTC1165, Triple 1.8V to 6 V High-Side MOSFET Driver '94DB 4-186
LT1169, Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp '94DB 2-55
LT1170, 100kHz, 5A High Efficiency Switching Regulator '94DB 4-433
LT1171, 100kHz, 2.5A High Efficiency Switching Regulator '94DB 4-433
LT1172, 100kHz, 1.25A High Efficiency Switching Regulator '94DB 4-433
LT1173, Micropower DC-DC Converter Adjustable and Fixed 5V, 12V. '92DB 4-275
LTC1174, High Efficiency Step-Down and Inverting DC/DC Converter. '94DB 4-447
LTC1174-3.3, High Efficiency Step-Down and Inverting DC/DC Converter '94DB 4-447
LTC1174-5, High Efficiency Step-Down and Inverting DC/DC Converter '94DB 4-447
LT1175, 500mA Negative Low Dropout Micropower Regulator 4-68
LT1176, Step-Down Switching Regulator '94DB 4-462
LT1176-5, Step-Down Switching Regulator. '94DB 4-462
LTC1177-5, Isolated MOSFET Driver 13-16
LTC1177-12, Isolated MOSFET Driver 13-16
LT1178, 17μ A Max, Dual, Single Supply, Precision Operational Amplifier '92DB 2-112
LT1178S8, 20 A Max, Dual SO-8 Package, Single Supply Precision Op Amp '94DB 2-67
LT1179, 17uA Max, Quad, Single Supply, Precision Operational Amplifier '92DB 2-112
LT1180, Advanced Low Power 5V RS232 Dual Driver/Receiver with Small Capacitors Refer to LT1180A
Note: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' 92 DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).
LT1180A, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-27
LT1181, Advanced Low Power 5V RS232 Dual Driver/Receiver with Small Capacitors Refer to LT1181A
LT1181A, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-27
LT1182, CCFL/LCD Contrast Switching Regulator 4-172
LT1183, CCFL/LCD Contrast Switching Regulator 4-172
LT1184, CCFL Switching Regulator 4-172
LT1184F, CCFL Switching Regulator 4-172
LT1185, Low Dropout Regulator with Adjustable Current Limit. '92DB 4-86
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-Nits ${ }^{\text {TM }}$) 4-196
LT1187, Low Power Video Difference Amplifier. '94DB 2-92
LT1188, 1.5A High Side Switch 92DB 4-48
LT1189, Low Power Video Difference Amplifier '94DB 2-104
LT1190, Ultra High Speed Operational Amplifier (Av ≥ 1) '92DB 2-126
LT1191, Ultra High Speed Operational Amplifier ($A v \geq 1$) '92DB 2-137
LT1192, Ultra High Speed Operational Amplifier (Av ≥ 5) '92DB 2-148
LT1193, Video Difference Amplifier, Adjustable Gain '92DB 2-159
LT1194, Video Difference Amplifier, Gain of 10 '92DB 2-171
LT1195, Low Power, High Speed Operational Amplifier '94DB 2-116
LTC1196, 8-Bit, S0-8, 1MSPS ADCs with Auto-Shutdown Options. '94DB 6-32
LTC1198, 8-Bit, S0-8, 750ksps ADCs with Auto-Shutdown Options '94DB 6-32
LT1200, Low Power High Speed Operational Amplifier '92DB 2-182
LT1201, Dual 1mA, 12MHz, 50V/ μ s Op Amp '94DB 2-127
LT1202, Quad 1mA, 12MHz, 50V/ μ s Op Amp '94DB 2-127
LT1203, 150MHz Video Multiplexer. '94DB 2-374
LT1204, 4-Input Video Multiplexer with 75MHz Current Feedback Amplifier '94DB 2-389
LT1205, 150MHz Video Multiplexer '94DB 2-374
LT1206, 250mA/60MHz Current Feedback Amplifier '94DB 2-137
LT1208, Dual 45MHz, 400V/ μ S Op Amp 94DB 2-150
LT1209, Quad 45MHz, 400V/ s Op Amp '94DB 2-150
LT1211, 14MHz, 7V/ μ s, Single Supply Dual Precision Op Amp 94DB 2-160
LT1212, 14MHz, 7V/ μ s, Single Supply Quad Precision Op Amp 94DB 2-160
LT1213, 28MHz, 12V/us, Single Supply Dual Precision Op Amp '94DB 2-176
LT1214, 28MHz, 12V/ $\mu \mathrm{s}$, Single Supply Quad Precision Op Amp '94DB 2-176
LT1215, 23MHz, 50V/ $\mu \mathrm{s}$, Single Supply Dual Precision Op Amp 94DB 2-192
LT1216, 23MHz, 50V/ μ s, Single Supply Quad Precision Op Amp 94DB 2-192
LT1217, Low Power High Speed Current Feedback Amplifier 92DB 2-190
LT1220, Very High Speed Operational Amplifier (Av ≥ 1) 92DB 2-198
LT1221, Very High Speed Operational Amplifier (Av ≥ 4) '92DB 2-210
LT1222, Low Noise, Very High Speed Operational Amplifier (Av ≥ 10) '92DB 2-218
LT1223, 100MHz Current Feedback Amplifier. '92DB 2-226
LT1224, Very High Speed Operational Amplifier (Av ≥ 1) '92DB 2-237
LT1225, Very High Speed Operational Amplifier (Av ≥ 5) '92DB 2-245
LT1226, Low Noise Very High Speed Operational Amplifier (Av ≥ 25) '92DB 2-253
LT1227, 140MHz Video Current Feedback Amplifier '94DB 2-208

[^13]
ALPHANUMERIC INDEX

LT1228, 100MHz Current Feedback Amplifier with DC Gain Control '92DB 2-261
LT1229, Dual 100MHz Current Feedback Amplifier '92DB 2-280
LT1230, Quad 100MHz Current Feedback Amplifier '92DB 2-280
LTC1232, Microprocessor Supervisory Circuit '92DB 9-22
LTC1235, Microprocessor Supervisory Circuit with Conditional Battery Backup '92DB 9-29
LT1236, Precision Reference 7-5
LT1237, 5V RS232 Transceiver with Advanced Power Management and One Receiver Active in SHUTDOWN '94DB 5-34
LT1239, Backup Battery Management Circuit 4-454
LT1241, High Speed Current Mode Pulse Width Modulator '92DB 4-122
LT1242, High Speed Current Mode Pulse Width Modulator '92DB 4-122
LT1243, High Speed Current Mode Pulse Width Modulator '92DB 4-122
LT1244, High Speed Current Mode Pulse Width Modulator '92DB 4-122
LT1245, High Speed Current Mode Pulse Width Modulator ,92DB 4-122
LT1246, 1MHz Off-Line Current Mode PWM 4-126
LT1247, 1MHz Off-Line Current Mode PWM 4-126
LT1248, Power Factor Controller '94DB 4-194
LT1249, Power Factor Controller 94DB 4-205
LTC1250, Very Low Noise Zero-Drift Bridge Amplifier '94DB 2-364
LT1251, 40MHz Video Fader '94DB 2-219
LT1252, Low Cost Video Amplifier '94DB 2-242
LT1253, Low Cost Dual Video Amplifier '94DB 2-249
LT1254, Low Cost Quad Video Amplifier '94DB 2-249
LTC1255, Dual 24V High-Side MOSFET Driver '94DB 4-215
LT1256, 40MHz DC Gain Controlled Amplifier '94DB 2-219
LTC1257, Complete Single Supply 12-Bit Voltage Output DAC in SO-8 '94DB 6-210
LT1259, Low Cost Dual 130MHz Current Feedback Amplifier with Shutdown '94DB 2-256
LT1260, Low Cost Triple 130MHz Current Feedback Amplifier with Shutdown '94DB 2-256
LTC1261, Switched Capacitor Regulated Voltage Inverter 4-20
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LTC1264, High Speed, Quad Universal Filter Building Block '94DB 8-100
LTC1264-7, Linear Phase, Group Delay Equalized, 8th Order Lowpass Filter '94DB 8-115
LTC1265, 1.2A, High Efficiency Step-Down DC/DC Converter 4-212
LTC1265-3.3, 1.2A, High Efficiency Step-Down DC/DC Converter 4-212
LTC1265-5, 1.2A, High Efficiency Step-Down DC/DC Converter 4-212
LTC1266, Synchronous Regulator Controller for N - or P-Channel MOSFETs 4-228
LTC1266-3.3, Synchronous Regulator Controller for N- or P-Channel MOSFETs 4-228
LTC1266-5, Synchronous Regulator Controller for N- or P-Channel MOSFETS 4-228
LTC1267, Dual High Efficiency Synchronous Step-Down Switching Regulator 4-248
LTC1267-ADJ, Dual High Efficiency Synchronous Step-Down Switching Regulator 4-248
LTC1267-ADJ5, Dual High Efficiency Synchronous Step-Down Switching Regulator 4-248
LT1268, 7.5A, 150kHz Switching Regulator '94DB 4-466
LT1268B, 7.5A, 150kHz Switching Regulator '94DB 4-466
LT1269, 4A High Efficiency Switching Regulator '94DB 4-474
LT1270, 8A High Efficiency Switching Regulator '94DB 4-470

[^14]LT1270A, 10A High Efficiency Switching Regulator '94DB 4-470
LT1271, 4A High Efficiency Switching Regulator '94DB 4-474
LTC1272, 12-Bit, $3 \mu \mathrm{~s}, 250 \mathrm{kHz}$ Sampling A/D Converter '92DB 6-6
LTC1273, 12-Bit, 300ksps Sampling A/D Converter with Reference '94DB 6-58
LTC1274, 12-Bit, 10 mW , 100ksps A/D Converter with $1 \mu A$ Shutdown 13-22
LTC1275, 12-Bit, 300ksps Sampling A/D Converter with Reference '94DB 6-58
LTC1276, 12-Bit, 300ksps Sampling A/D Converter with Reference '94DB 6-58
LTC1277, 12-Bit, 10mW, 100ksps A/D Converter with 1 $\mu \mathrm{A}$ Shutdown 13-22
LTC1278, 12-Bit, 500ksps SampIng A/D Converter with Shutdown '94DB 6-80
LTC1279, 12-Bit, 600ksps Sampling A/D Converter with Shutdown 6-8
LT1280, Advanced Low Power 5V RS232 Dual Driver/Receiver Refer to LT1280A
LT1280A, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-41
LT1281, Advanced Low Power 5V RS232 Dual Driver/Receiver Refer to LT1281A
LT1281A, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors '94DB 5-41
LTC1282, 3V 140ksps 12-Bit Sampling A/D Converter with Reference '94DB 6-95
LTC1283, 3V Single Chip 10-Bit Data Acquisition System '94DB 6-117
LTC1285, 3V Micropower Sampling 12-Bit A/D Converter in SO-8 Package 6-24
LTC1286, Micropower Sampling 12-Bit A/D Converter in SO-8 Package '94DB 6-140
LTC1287, 3V Single Chip 12-Bit Data Acquisition System '92DB 6-25
LTC1288, 3V Micropower Sampling 12-Bit A/D Converter in SO-8 Package 6-24
LTC1289, 3V Single Chip 12-Bit Data Acquisition System '92DB 6-40
LTC1290, Single Chip 12-Bit Data Acquisition System '92DB 6-67
LTC1291, Single Chip 12-Bit Data Acquisition System '94DB 6-163
LTC1292, Single Chip 12-Bit Data Acquisition System '94DB 6-182
LTC1293, Single Chip 12-Bit Data Acquisition System '92DB 6-113
LTC1294, Single Chip 12-Bit Data Acquisition System '92DB 6-113
LTC1296, Single Chip 12-Bit Data Acquisition System '92DB 6-113
LTC1297, Single Chip 12-Bit Data Acquisition System '94DB 6-182
LTC1298, Micropower Sampling 12-Bit A/D Converter in S0-8 Package '94DB 6-140
LT1300, Micropower High Efficiency 3.3/5V Step-Up DC/DC Converter '94DB 4-478
LT1301, Micropower High Efficiency 5V12V Step-Up DC/DC Converter with Flash Memory '94DB 4-486
LT1302, Micropower High Output Current Step-Up Adjustable DC/DC Converter 4-264
LT1302-5, Micropower High Output Current Step-Up Fixed 5V DC/DC Converter 4-264
LT1303, Micropower High Efficiency DC/DC Converter with Low-Battery Detector, Adjustable 4-279
LT1303-5, Micropower High Efficiency DC/DC Converter with Low-Battery Detector, Fixed 5V. 4-279
LT1304, Micropower DC/DC Converter with Low-Battery Detector Active in Shutdown 13-37
LT1304-3.3, Micropower DC/DC Converter with Low-Battery Detector Active in Shutdown 13-37
LT1304-5, Micropower DC/DC Converter with Low-Battery Detector Active in Shutdown 13-37
LT1305, Micropower High Power DC/DC Converter with Low-Battery Detector 4-290
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives 2-34
LT1312, Single PCMCIA VPP Driver/Regulator 4-394
LT1313, Dual PCMCIA VPP Driver/Regulator 4-405
LTC1314, PCMCIA Switching Matrix with Built-In N-Channel VCC Switch Drivers 4-415
LTC1315, PCMCIA Switching Matrix with Built-In N-Channel VCC Switch Drivers 4-415
LTC1318, Single 5V RS232/RS422/AppleTa/k ${ }^{\circledR}$ DCE Transceiver 5-70
LT1319, Multiple Modulation Standard Infrared Receiver 5-90
LTC1320, AppleTalk ${ }^{\circledR}$ Transceiver '94DB 5-178
LTC1321, 2-EIA562/RS232 Transceivers/2-RS485 Transceivers '94DB 5-198
LTC1322, 4-EIA562/RS232 Transceivers/2-RS485 Transceivers '94DB 5-198
LTC1323, Single 5V AppleTalk ${ }^{\circledR}$ Transceiver 5-77
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LTC1325, Microprocessor-Controlled Battery Management System 4-466
LTC1327, 3.3V Micropower EIA/TIA-562 Transceiver '94DB 5-48
LT1330, 5V RS232 Transceiver with 3V Logic Interface and One Receiver Active in SHUTDOWN '94DB 5-54
LT1331, 3V RS232 or 5V/3V RS232 Transceiver with One Receiver Active in SHUTDOWN '94DB 5-61
LT1332, Wide Supply Range Low Power RS232 Transceiver with 12V VPP Output for Flash Memory '94DB 5-68
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver 13-53
LTC1335, 4-EIA562 Transceivers/2-RS485 Transceivers with Output Enable '94DB 5-198
LTC1337, 5V Low Power RS232 3-Driver/5-Receiver Transceiver '94DB 5-76
LTC1338, 5V Low Power RS232 5-Driver/3-Receiver Transceiver '94DB 5-82
LT1341, 5V RS232 Transceiver with One Receiver Active in SHUTDOWN '94DB 5-88
LT1342, 5V RS232 Transceiver with 3V Logic Interface '94DB 5-95
LTC1345, Single Supply V. 35 Transceiver 5-58
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65
LTC1347, 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 5 Receivers Active in SHUTDOWN '94DB 5-102
LTC1348, 3.3V Low Power RS232 3-Driver/5-Receiver Transceiver 5-10
LTC1349, 5V Low Power RS232 3-Driver/5-Receiver Transceiver with 2 Receivers Active in SHUTDOWN '94DB 5-108
LTC1350, 3.3V Low Power EIA/TIA-562 3-Driver/5-Receiver Transceiver '94DB 5-114
LT1354, 12MHz, 400V/ μ s Op Amp '94DB 2-267
LT1355, Dual 12MHz, 400V/us Op Amp '94DB 2-278
LT1356, Quad 12MHz, 400V/ μ s Op Amp '94DB 2-278
LT1357, 25MHz, 600V/ $\mu \mathrm{s}$ Op Amp '94DB 2-289
LT1358, Dual 25MHz, 600V/us Op Amp '94DB 2-300
LT1359, Quad 25MHz, 600V/ μ s Op Amp '94DB 2-300
LT1360, 50MHz, 800V/ μs Op Amp '94DB 2-311
LT1361, Dual 50MHz, 800V/ $\mu \mathrm{s}$ Op Amp '94DB 2-322
LT1362, Quad 50MHz, 800V/ μ s Op Amp '94DB 2-322
LT1363, $70 \mathrm{MHz}, 1000 \mathrm{~V} / \mu \mathrm{s}$ Op Amp '94DB 2-333
LT1364, Dual 70MHz, 1000V/ μ s Op Amp '94DB 2-344
LT1365, Quad 70MHz, 1000V/ μ s Op Amp '94DB 2-344
LT1366, Dual Precision Rail-to-Rail Input and Output Op Amp 2-14
LT1367, Quad Precision Rail-to-Rail Input and Output Op Amp 2-14
LT1368, Dual Precision Rail-to-Rail Input and Output Op Amp 2-14
LT1369, Quad Precision Rail-to-Rail Input and Output Op Amp 2-14
LT1371, 500kHz High Efficiency 3A Switching Regulator 4-298
LT1372, 500kHz High Efficiency 1.5A Switching Regulator 4-310
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator 4-322

[^15]LT1375, 1.5A, 500kHz Step-Down Switching Regulator 4-334
LT1376, 1.5A, 500kHz Step-Down Switching Regulator 4-334
LT1377, 1MHz High Efficiency 1.5A Switching Regulator 4-310
LT1381, Low Power 5V RS232 Dual Driver/Receiver with 0.1μ F Capacitors 94DB 5-120
LTC1382, 5V Low Power RS232 Transceiver with Shutdown 94DB 5-127
LTC1383, 5V Low Power RS232 Transceiver '94DB 5-133
LTC1384, 5V Low Power RS232 Transceiver with 2 Receivers Active in SHUTDOWN 94DB 5-139
LTC1385, 3.3V Low Power EIA/TIA-562 Transceiver '94DB 5-145
LTC1386, 3.3V Low Power EIA/TIA-562 Transceiver '94DB 5-151
LT1389, AppleTalk ${ }^{\circledR}$ Peripheral Interface Transceiver 13-73
LTC1390, 8-Channel Analog Multiplexer with Serial Interface 6-86
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LT1413, Single Supply, Dual Precision Op Amp 94DB 2-68
LTC1429, Clock-Synchronized Switched Capacitor-Regulated Voltage Inverter 4-41
LTC1430, High Power Step-Down Switching Regulator Controller 4-360
LT1431, Programmable Reference '92DB 7-13
LT1432, 5V High Efficiency Step-Down Switching Regulator Controller '92DB 4-145
LT1432-3.3, 3.3V High Efficiency Step-Down Switching Regulator Controller 4-137
LTC1443, Low Power Quad Comparator and Reference 13-108
LTC1444, Low Power Quad Comparator and Reference 13-108
LTC1445, Low Power Quad Comparator and Reference 13-108
LTC1451, 12-Bit Rail-to-Rail Micropower DAC in SO-8 6-58
LTC1452, 12-Bit Rail-to-Rail Micropower DAC in SO-8 6-58
LTC1453, 12-Bit Rail-to-Rail Micropower DAC in SO-8 6-58
LT1457, Dual, Precision JFET Input Op Amp '94DB 2-76
LTC1470, PCMCIA Protected 3.3V/5V Vcc Switches 4-426
LTC1471, Dual PCMCIA Protected 3.3V/5V Vcc Switches 4-426
LTC1472, Protected PCMCIA Vcc and VPP Switching Matrix 4-437
LTC1477, Protected High-Side Switch 13-112
LTC1478, Dual Protected High-Side Switch 13-112
LTC1480, 3.3V Ultra-Low Power RS485 Transceiver 5-26
LTC1481, Ultra-Low Power RS485 Transceiver with Shutdown 5-34
LTC1483, Ultra-Low Power RS485 Low EMI Transceiver with Shutdown 5-41
LTC1485, Differential BusTransceiver. '94DB 5-166
LTC1487, Ultra-Low Power RS485 with Low EMI, Shutdown and High Input Impedance 5-49
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130
LT1521, 300mA Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-79
LT1521-3, 300mA Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-79
LT1521-3.3, 300mA Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-79
LT1521-5, 300mA Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-79
LTC1522, 4-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134

[^16]
ALPHANUMERIC INDEX

LT1524, Regulating Pulse Width Modulator '90DB 5-85
LT1525A, Regulating Pulse Width Modulator '90DB 5-97
LT1526, Regulating Pulse Width Modulator '90DB 5-105
LT1527A, Regulating Pulse Width Modulator '90DB 5-97
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529, 3A Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-101
LT1529-3.3, 3A Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-101
LT1529-5, 3A Low Dropout Regulator with Micropower Quiescent Current and Shutdown 4-101
LT1537, Advanced Low Power 5V RS232 Transceiver with Small Capacitors 5-18
LTC1550, Low Noise, Switched Capacitor-Regulated Voltage Inverter 13-142
LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverter 13-142
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LTC1574, High Efficiency Step-Down DC/DC Converter with Internal Schottky Diode 4-385
LTC1574-3.3, High Efficiency Step-Down DC/DC Converter with Internal Schottky Diode 4-385
LTC157'4-5, High Efficiency Step-Down DC/DC Converter with Internal Schottky Diode 4-385
LT1580, 7A, Very Low Dropout Regulator 13-148
LT1580-2.5, 7A, Very Low Dropout Regulator 13-148
LT1584, 7A Low Dropout Fast Response Positive Regulator Adjustable and Fixed 4-112
LT1585, 4.6A Low Dropout Fast Response Positive Regulator Adjustable and Fixed 4-112
LT1587, 3A Low Dropout Fast Response Positive Regulator Adjustable and Fixed 4-112
LT1846, Current Mode PWM Controller '90DB 5-113
LT1847, Current Mode PWM Controller '90DB 5-113
LT3524, Regulating Pulse Width Modulator '90DB 5-85
LT3525A, Regulating Pulse Width Modulator '90DB 5-97
LT3526, Regulating Pulse Width Modulator '90DB 5-105
LT3527A, Regulating Pulse Width Modulator '90DB 5-97
LT3846, Current Mode PWM Controller '90DB 5-113
LT3847, Current Mode PWM Controller '90DB 5-113
LTC7541A, Improved Industry Standard CMOS 12-Bit Multiplying DAC 6-69
LTC7543, Improved Industry Standard Serial 12-Bit Multiplying DAC 6-73
LTC7652, Chopper Stabilized Op Amp '90DB 2-197
LTC7660, Switched Capacitor Voltage Converter '90DB 5-9
LTC8043, Serial 12-Bit Multiplying DAC in SO-8 6-80
LTC8143, Improved Industry Standard Serial 12-Bit Multiplying DAC 6-73
LTK001, Thermocouple Cold Junction Compensator and Matched Amplifier 90DB 11-3
LTZ1000, Ultra Precision Reference '90DB 3-9
LTZ1000A, Ultra Precision Reference '90DB 3-9
OP-05, Internally Compensated Op Amp '90DB 2-321
OP-07, Precision Op Amp '90DB 2-329
OP-07CS8, Precision Op Amp '90DB 2-337
OP-15, Precision, High Speed JFET Input Op Amp '90DB 2-341
OP-16, Precision, High Speed JFET Input Op Amp '90DB 2-341
OP-27, Low Noise, Precision Op Amp '90DB 2-345
OP-37, Low Noise, High Speed Op Amp '90DB 2-345
OP-215, Dual Precision JFET Input Op Amp '90DB 2-275
OP-227, Dual Matched, Low Noise Op Amp '90DB 2-357
OP-237, Dual High Speed, Low Noise Op Amp '90DB 2-357
OP-270, Dual Low Noise, Precision Operational Amplifier '92DB 2-120
OP-470, Quad Low Noise, Precision Operational Amplifier '92DB 2-120
REF-01, Precision Voltage Reference '90DB 3-125
REF-02, Precision Voltage Reference '90DB 3-125
SG1524, Regulating Pulse Width Modulator '90DB 5-85
SG1525A, Regulating Pulse Width Modulator '90DB 5-97
SG1527A, Regulating Pulse Width Modulator '90DB 5-97
SG3524, Regulating Pulse Width Modulator '90DB 5-85
SG3524S, Regulating Pulse Width Modulator '90DB 5-93
SG3525A, Regulating Pulse Width Modulator '90DB 5-97
SG3527A, Regulating Pulse Width Modulator '90DB 5-97

NOTES

section l-General InFORMATION

SECTION 1-GENERAL INFORMATIONINDEX1-2
GENERAL ORDERING INFORMATION 1-3
ALTERNATE SOURCE CROSS REFERENCE GUIDE 1-4

I. ORDER ENTRY

Orders for products contained herein should be directed to: LINEAR TECHNOLOGY CORPORATION, 1630 McCarthy Boulevard, Milpitas, California 95035. Phone: 408-432-1900.
II. ORDERING INFORMATION

Minimum order value is $\$ 2000.00$ per order; minimum value per line item is $\$ 1000.00$.
Each item must be ordered using the complete part number exactly as listed on the data sheet.
F.O.B.: Milpitas, California.
III. RELIABILITY PROGRAMS

Linear Technology Corporation currently offers the following Reliability Programs:
A. JAN QPL devices.
B. DESC drawings.
C. MIL-STD-883, Level B, latest revision for all military temperature range devices.
D. "R-Flow" Burn-In Program for commercial temperature range devices. Consult Factory regarding burn-in program.
E. Radiation Hardened (RH) products.

IV. PART NUMBER EXPLANATION

V. PACKAGE SUFFIX EXPLANATION		
SUFFIX	GENERIC	
DESIGNATOR	PACKAGE	PACKAGE DESCRIPTION
D8	SIDE BRAZED	8-Lead Side Brazed Package (Hermetic)
D	SIDE BRAZED	14-, 16-, 18- and 20-Lead Side Brazed Package (Hermetic)
F	TSSOP	20-Lead TSSOP, Thin Shrink Small Outline Plastic Package (0.173) Notes 6, 7, 8
G	SSOP	$16-, 20-$ - 24- and 28-Lead SSOP, Shrink Small Outline Plastic Package (0.209) Notes 5, 6, 7, 8
GN	SSOP	16-, 20- and 24-Lead SSOP, Narrow Body, Shrink Small Outline Plastic Package (6, 150)
		Notes 5, 6, 7, 8
GW	SSOP	36- and 44-Lead SSOP, Wide Body, Shrink Small Outline Plastic Package (0.300) Notes 5, 6, 7, 8
H	"H" is used for Multiple Styles of Metal Cans, as follows:	
	METAL CAN	8- or 10-Lead TO-5 Metal Can Package
	METAL CAN	3- or 4-Lead TO-39 Metal Can Package
	METAL CAN	2-, 3- or 4-Lead TO-46 Metal Can Standard Package or in Thermal Caps
	METAL CAN	3-Lead TO-52 Metal Can Package

GENERAL ORDERING INFORMATION

SUFFIX	GENERIC
DESIGNATOR	PACKAGE
J8	CERDIP
J	CERDIP
JW	CERDIP
K	TO-3
L	LCC
LS	LCC
M	DD Pak
N8	PDIP
N	PDIP
NW	PDIP
P	TO-3P
Q	DD Pak
R	DD Pak
S8	SO
S	SO
SW	SO
ST	SOT-223
T	TO-220
T7	TO-220
W	FLATPAK
WB	FLATPAK
Z	TO-92

PACKAGE DESCRIPTION
8-Lead CERDIP, Narrow Body, Dual-In-Line Ceramic Package (0.150 Hermetic)
14-, 16-, 18-, 20- and 24-Lead CERDIP, Narrow Body, Dual-In-Line Ceramic Package (0.300 Hermetic)
28-Lead CERDIP, Wide Body, Dual-In-Line Ceramic Package (0.600 Hermetic) 3-Lead TO-3, Transistor Outline Metal Can Package
20-Pin LCC, Rectangular Shaped, Leadless Chip Carrier Package (Hermetic)
20-Pin LCC, Square Shaped, Leadless Chip Carrier Package (Hermetic)
3-Lead DD Pak, Plastic Package Notes 6, 7, 8
8-Lead PDIP, Narrow Body, Dual-In-Line Plastic Package (0.300) Notes 6, 7, 8
14-, 16-, 18-, 20- and 24-Lead PDIP, Narrow Body, Dual-In-Line Plastic Package (0.300) Notes 6, 7, 8
28-Lead PDIP, Wide Body, Dual-In-Line Plastic Package (0.600) Notes 6, 7, 8
3-Lead TO-3P, Transistor Outline Plastic Package (Similar to a TO-247) Notes 6, 7, 8
5-Lead DD Pak, Plastic Package Notes 6, 7, 8
7-Lead DD Pak, Plastic Package Notes 6, 7, 8
8-Lead SO, Narrow Body, Small Outline Plastic Package (0.150) Notes 3, 6, 7, 8
14- and 16-Lead SO, Narrow Body, Small Outline Plastic Package (0.150) Notes 1, 2, 6, 7, 8
16-, 18-, 20-, 24-, and 28-Lead SO, Wide Body, Small Outline Plastic Package (0.300) Notes 1, 2, 6, 7, 8
3-Lead SOT-223, Small Outline Transistor Plastic Package Notes 6, 7, 8
3- or 5-Lead TO-220, Transistor Outline Plastic Package Notes 4, 6, 7, 8
7-Lead TO-220, Transistor Outline Plastic Package (Formerly " Y " Pkg.) Notes 4, 6, 7, 8
10-Lead FLATPAK, Glass Sealed Package (Hermetic)
10- or 14-Lead FLATPAK, Metal Sealed, Bottom Brazed Package (Hermetic)
3-Lead TO-92, Transistor Outline Plastic Package Notes 6, 7, 8

(All Dimensions Shown in Inches)

Note 1: 16-Lead SO (Small Outline) package is delivered in either narrow (0.150) or wide body (0.300) package styles depending on the device die size. See specific data sheet for pin counts and package dimensions.
Note 2: 18-, 20-, 24- and 28-Lead SO (Small Outline) packages are wide body styles (0.300).
Note 3: Pinout and electrical specifications on S8 (8-Lead Small Outline) package may differ from a standard commercial grade N8 package. See SO (Small Outline) data sheets for specific information.
Note 4: SPECIAL FLOW Lead Form Configurations (trimmed and/or formed) are available for TO-220 packages. See "TO-220 Lead Bend Options" in the back of Section 14 or consult Factory for details.
Note 5: SSOP Shrink Small Outline Packages vary in lead pitch. $\mathrm{G}=0.0256, \mathrm{GN}=0.0250$, $\mathrm{GW}=0.03150$.
Note 6: FLAMMABILITY RATING: All plastic packages supplied by LTC have obtained Underwriters Laboratories' Flame Retardancy Certification Rating of UL94V-0.
Note 7: TOXIC MATERIALS: Molding compounds used by our assembly subcontractors do not contain toxic materials known as; Polybrominated Biphenyls (PBB), Polybrominated Biphenyl Ether (PBBE) or Polybrominated Biphenyl Oxide (PBBO).
Note 8: OXYGEN INDEX: All plastic packages supplied by LTC have an oxygen index of 28% minimum.

P/N	LTC DIRECT REPL						
AD101A	LM101A	AD7892-3	LTC1279**	EL4393	LT1260**	LM2940	LT1086**
AD232	LT1081*	AD8300	LTC1453**	EL4441	LT1204**	LM6181	LT1227**
AD235	LT1130A**	AD9617	LT1223	EL4094/5	LT1256**	LM6218	LT1203**
AD237	LT1138A**	AD9618	LT1223	GT4123	LT1256**	LM6361	LT1195**
AD238	LT1139A**	AD9686	LT1016**	GY4102	LT1203**	LP2950-5	LT1117-5**
AD239	LT1137A**	ADC0820	LTC1099*	GX4314	LT1205**	LP2951	LT1121**
AD241	LT1137A**	ADC0832	LTC1098*	HA2500	LT1220	$\mu \mathrm{A} 96172$	LTC486
AD381	LT1022**	ADC08061	LTC1198**	HA2502	LT1220	$\mu \mathrm{A} 96174$	LTC487
AD510	LT1001***	ADC08231	LTC1196	HA2505	LT1220	μ A96176	LTC485
AD517	LT1001**	ADC1031	LTC1091**	HA2510	LT118A**	MAX120	LT1278-5**
AD518	LM118**	ADC1034	LTC1093**		LM118****	MAX122	LTC1276**
	LT118A**	ADC1038	LTC1094**	HA2512	LT118A**	MAX153	LTC1198**
AD524	LT1101**	ADC12062	LTC1410**		LM118A**	MAX162	LTC1273*
AD536	LT1088**	ADG201A	LTC201A	HA2515	LT318A**	MAX163	LTC1273*
AD580	LT580	ADG202	LTC202		LM318**	MAX164	LTC1275************
AD581	LT581	ADG221	LTC221	HA2520	LT1220	MAX165	LTC1198**
	LT1031**	ADG222	LTC222	HA2541	LT1220	MAX167	LTC1275**
AD586	LT1027*	ADS7800	LTC1276**	HA2544	LT1224	MAX172	LTC1272*
AD589	LT1034**	ADS7803	LTC1293**	HA5004	LT1223	MAX202	LT1381*
AD636	LT1088**	ADS7804	LTC1272-8**	HA5130-2	OP07A	MAX207	LT1138A**
AD637	LT1088**	ADS7810	LTC1410**		LT1001AM*	MAX211	LTC1337**
AD642	LT1057**	ADS7819	LTC1410**	HA5130-5	OP07E	MAX212	LTC1348**
AD647	LT1057**	BT8920	LTC1279**		LT1001C*	MAX213	LTC1349**
AD704	LT1114*	CLC406	LT1227**	HA5135-2	OP07	MAX220	LT1281A**
AD705	LT1097	CLC414	LT1252		LT1001M*	MAX222	LT1280A*
AD706	LT1112*	CLC415	LT1230	HA5135-5	OP07C	MAX223	LT1237
AD707	LT1097	CLC430	LT1227**		LT1001C*	MAX232A	LT1281A*************
AD711	LT1056**	CLC520	LT1228**	HAOP07	OP07	MAX235A	LT1130A**
AD712	LT1057**	CLC532	LT1203**		LT1001M*	MAX237A	LT1138A**
AD713	LT1058**	CMP01	LT1011**	HAOP07A	OP07A	MAX238A	LT1139A**
AD736	LT1088**	CMP02	LT1011**		LT1001AM*	MAX239A	LT1137A**
AD737	LT1088**	DAC8043	LTC8043*	HAOP07C	OP07C	MAX241A	LT1136A**
AD743	LT1113*	DAC8143	LTC8143*		LT1001C*		LT1137A**
AD744	LT1122	DAC8512	LTC1451**	HAOP07E	OP07E	MAX242	LTC1384*
AD790	LT1016**	DG201A	LTC201		LT1001C*	MAX280	LTC1062
AD810	LT1252**	DG202	LTC202	HI508-X	LTC1390**	MAX281	LTC1065**
AD811	LT1252**	DG508-X	LTC1390**	HI5810	LTC1272-8	MAX400	LT1001
AD813	LT1260**	DS1232	LTC1232	ICL232	LT1081	MAX420	LTC1150*
AD817	LT1360*	DS14C335	LT1331**	ICL7650	LTC1050*	MAX422	LTC1150**
AD818	LT1363	DS3695	LTC485*		LTC1052**	MAX430	LTC1150
AD821	LT1006**	EL1224	LT1229*	ICL7652	LTC7652	MAX432	LTC1150**
AD822	LT1169*	EL2020	LT1223*		LTC1052*	MAX441	LT1204**
AD824	LT1014**	EL2028	LT1220	ICL7660	LTC1044*	MAX442	LT1205**
AD826	LT1361*	EL2029	LT1221		LTC1054**	MAX454	LT1204**
AD827	LT1229**	EL2030	LT1223	ICL7662	LTC1144*	MAX467	LT1260**
AD828	LT1364*	EL2038	LT1222	ICL8069C	LM385-1.2	MAX478	LT1178
AD840	LT1222**	EL2039	LT1222		LT1004C-1.2*	MAX479	LT1179
AD841	LT1220**	EL2040	LT1222	ICL8069M	LM185-1.2	MAX480	LT1077*
AD842	LT1221**	EL2041	LT1220		LT1004M-1.2*	MAX481	LTC1481
AD844	LT1223**	EL2044	LT1252**	ISO150	LTC1145**	MAX485	LTC485
AD845	LT1122	EL2045	LT1363*	LF400	LT1122DC	MAX487	LTC1487*
AD846	LT1223**	EL2082	LT1228**		LT1122CC	MAX492	LT1366**
AD847	LT1360	EL2090	LT1228**	LF400A	LT1122BC	MAX538	LTC1452
AD848	LT1192**	EL2099	LT1206**		LT1122AC	MAX539	LTC1452
AD849	LT1226	EL2120	LT1191**	LH0OO2	LT1010M**	MAX543	LTC8043*
	LT1192		LT1223**	LH0O44	LT1001M*	MAX560	LT1331**
AD1671	LTC1410**		LT1227**	LH0070	LH0070	MAX561	LTC1327**
AD7306	LT1318**	EL2130	LT1227**		LT1031M*	MAX563	LTC1386*
AD7541	LTC7541A*	EL2210	LT1361*	LH2108	LH2108	MAX603	LT1129-5**
AD7541A	LTC7541A*	EL2211	LT1364*	LH2108A	LH2108A	MAX604	LT1129-3.3**
AD7543		EL2224	LT1229**	LM10	LM10	MAX613	LT1313**
AD7572	LTC1272**		LT1208**	LM10B	LM10B		LT1315**
AD7579	LTC1091**	EL2232	LT1229**	LM10C	LM10C	MAX614	LT1312**
AD7580	LTC1092**	EL2242	LT1229**	LM399	LM399		LT1314**
AD7820	LTC1099*		LT1358*	LM399A	LM399A	MAX630	LT1173**
AD7821	LTC1096/	EL2244	LT1361**	LM399A-20	LM399A-20	MAX631	LT1173-5**
	LTC1098**	EL2245	LT1364*	LM399A-50	LM399A-50	MAX632	LT1173-12**
AD7870	LTC1275**	EL2260	LT1229	LM2574	LT1176	MAX633	LT1173**
AD7875	LTC1273**	EL2410	LT1362*	LM2575	LT1076**	MAX634	LT1173**
AD7876	LTC1276**	EL2411	LT1365*	LM2575N	LT1176	MAX635	LT1173-5**
AD7883	LTC1282**	EL2444	LT1362	LM2576	LT1074**	MAX636	LT1173-12**
AD7890	LTC1290**	EL2445	LT1254**	LM2577	LT1071**	MAX637	LT1173**
AD7892-1,2	LTC1278-5**	EL2460	LT1230	LM2587	LT1170	MAX638	LT1173-5**
		EL4089	LT1228**	LM2935	LT1005**	MAX639	LTC1174*

[^17]
ALTERNATE SOURCE CROSS REFERENCE GUIDE

P/N	LTC DIRECT REPL						
MAX640	LTC1174-3.3	ML4864	LT1182***		LTC1315**		
MAX641	LT1173-5**		LT1183**		LTC1472**		
MAX642	LT1173-12**	ML4876	LT1182**	Si9711	LTC1314**		
MAX643	LTC1147		LT1183**		LTC1315**		
MAX649	LTC1147-5**	MX7541	LTC7541A*		LTC1472**		
MAX651	LTC1147-3.3**	MX7541A	LTC7541A*	S19712	LTC1472**		
MAX652	LTC1147**	MX7572	LTC1272*				
MAX654	LT1073-5	MX7820	LTC1099*	SN75172	LTC486*		
MAX655	LT1173-5**	OPA177	LT1001A	SN75173	LTC488**		
MAX656	LT1073-5**		LT1097	SN75174	LTC487*		
MAX657	LT1073**	OPA404	LT1216**	SN57175	LTC489**		
MAX658	LT1108-5**	OPA603	LT1252	SN75176	LTC485*		
MAX659	LT1108-5**	OPA620	LT1227**	SN75179B	LTC490*		
MAX660	LTC660	OPA1013	LT1013	SN75ALS/80	LTC491*		
MAX662	LTC1262*		LT1211	SN75186	LT1134**		
MAX667	LT1129**	OPA2107	LT1169**	SP301	LTC1321*		
MAX680	LT1026	OPA2111	LT1169**	SP302	LTC1322*		
MAX690	LTC690	OPA2604	LT1124**	TL431A	LT1431**		
MAX691	LTC691	OP42	LT1122*	LT1431A	LT1431		
MAX692	LTC692*	OP77	LT1001*	TLC2543	LTC1296		
MAX693	LTC693*		LT1097*	TPS2010	LTC1477**		
MAX694	LTC694	OP97	LT1012	TPS2011	LTC1477**		
MAX695	LTC695		LT1097*	TPS2012	LTC1477*************)		
MAX699	LTC699	OP177	LT1001	TPS2013	LTC1477**		
MAX724	LT1074	OP207	LT1002	TSC04	LT1004-1.2		
MAX741D	LTC1147**	- 215	LT1057	TSC170	LT3846***		
MAX741U	LTC1266**	OP220	LT1078*	TSC171	LT3847**		
MAX756	LT1304**	OP221	LT1013*	TSC232	LT1080**		
MAX757	LT1304**	OP227	OP227		LT1081**		
MAX761	LT1309**	OP270	OP270	TSC911	LTC1050**		
MAX786	LTC1267**		LT1124************)	TSC913	LT1078**		
MAX850	LTC1550**	OP290	LT1078**	TSC914	LTC1051*		
MAX852	LTC1550/51**	OP297	LT1112*		LTC1053**		
MAX853	LTC155**	OP400	LT1014**	TSC918	LTC7652**		
MAX856	LT1303**		LT1114**	TSC962	LTC1046**		
MAX873 MAX875	LT1019-2.5	OP420	LT1079**	TSC7650 TSC7652	LTC1050*		
	LT1021-5	OP467	LT1359*		LTC1052		
	LT1027	OP470	OP470	TSC7660	LTC1044*		
MAX876	LT1019-10		LT1125**	TSC9491	LT1004-1.2		
	LT1021-10	OP490	LT1079**	TSC9495	REF02		
MAX882	LT1521-3.3**	OP497	LT1114*		LT1019M-5		
MAX883	LT1521-5**	PM1008	LT1008		LT1021-5**		
MAX884 MAX1044	LT1521-3.3**	PM1012	${ }_{\text {LT1012 }}{ }_{\text {LT1013M* }}$	TSC9496	REF01 LT1021-10**		
MAX1232	LTC1232	PM2108	LH2108	UC117	LM117		
MAX1649	LTC1147-5**	PM2108A	LH2108A		LT117A*		
MAX1651	LTC1147-3.3**	REF01	REF01 ${ }^{\text {a }}$	UC137	LM137		
MAX1771 MAX9686	LT1170/71** LT1016		LT1019-10*		LT137A* T1033M**		
MC78T05	LM323T	REF02	REF02	UC150	LM150		
	LT323AT*		LT1019-5*		LT150A*		
MC1400AU2	LT1019CN8-2.5**		LT1021-5***	UC317	LM317		
MC1400AU5	LT1019CN8-5***	REFO3	LT1019-2.5**		LT317A*		
MC1400AU10 MC1400U2	LT1019CN8-10**	$\begin{array}{\|l\|l} \text { REF43 } \\ \text { REF101 } \end{array}$	LT1019A-2.5*	UC337	$\begin{aligned} & \text { LM337 } \\ & \text { LT337A* } \end{aligned}$		
MC1400U5	LT1019CN8-5*		LT1021-10		LT1033C**		
MC1400U10	LT1019CN8-10*	REF102	LT1019-10	UC350	LM350		
MC1558	LT1013M*		LT1021-10		LT350A*		
MC3486	LTC488**	REF192	LT1019-2.5**	UC1524	SG1524		
MC145406	LT1039-16*	REG1117	LT1117-2.85	UC1525A	SG1525A		
MC34166	LT1074	SG1524	SG1524		LT1525A*		
MF5	LTC1059*		LT1524*	UC1527A	SG1527A		
MF10	LTC1060	SG1525A	SG1525A		LT1527A*		
MIC2557	LTC1060************	SG1527A	LT1525A*	UC1846 UC1847	LT1846		
MIC2558	LT1313**		LT1527A*	XRT3588/89	LTC1345**		
MIC2560	LTC1472**	Si9706	LTC1470**				
ML4861	$\begin{aligned} & \text { LT1073**} \\ & \text { LT1110** } \end{aligned}$	$\begin{aligned} & \text { Si9707 } \\ & \text { Si9710 } \end{aligned}$	LTC1471** LT1313**				

*LTC Improved Replacement: 100\% Pin-for-pin compatible with better electrical specifications.
**Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.

SECTIOn 2—AmPLIFIGRS

SECTION 2—AMPLIFIERS
INDEX 2-2
SELECTION GUIDES 2-3
PROPRIETARY PRODUCTS
PRECISION OPERATIONAL AMPLIFIERS 2-13
LT1366/LT1367/LT1368/LT1369, Dual and Quad Precision Rail-to-Rail Input and Output Op Amps 2-14
HIGH SPEED OPERATIONAL AMPLIFIERS 2-33
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives 2-34
ZERO-DRIFT OPERATIONAL AMPLIFIERS 2-41
LTC1152, Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp 2-42

Video Products

In addition to high speed amplifiers, LTC offers the following products tailored to video, multimedia and computer graphics applications.

Low Cost Dual/Triple 130MHz CFAs with Shutdown

- LT1260: Triple CFA for RGB Video
- LT1259: Dual CFA with Shutdown
- 90MHz Bandwidth on $\pm 5 \mathrm{~V}$
- 0.1dB Gain Flatness, 30MHz: Good for HDTV
- 1600V/us Slew Rate
- $\pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supply Range
- 100ns/40ns Turn On/Off Times
- Makes 2 or 3 Input MUX Amp
- Low Supply Current (5mA/Amp)
- Narrow SO Packages

\pm 5V Video Difference Amps

- 50dB CMRR @ 10MHz
- Input Voltage Range: (-2.5 V to 3.5 V)
- $\pm 4 \mathrm{~V}$ Output Voltage Swing
- Color Video Performance
- "Shutdown" Feature
- Can Directly Drive Cables
- 500V/ $\mu \mathrm{s}$ Slew Rate: LT1193/LT1194
- Low Power: LT1187/LT1189

	Gain	$\mathrm{A}_{\mathbf{V}}$ (Min) $\mathrm{V} N$	BW (Typ) MHz
LT1187	Adj.	2	50
LT1189	Adj.	10	35
LT1193	Adj.	2	70
LT1194	Fixed	10	350

Multimedia

Multimedia systems combine audio, composite video (broadcast quality TV) and high resolution computer graphics.
Typical requirements are:

Video: NTSC or PAL need minimum $50 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth HDTV needs 0.1 dB flatness to 30 MHz	
Suggested Products (Refer to above and reverse side):	
General Purpose Gain Blocks/Video A/D Buffers	LT1360/61/62/63/64/65: Single/Dual/Quad Voltage Feedback Op Amps with Current Feedback Speed
	LT1227/29/30: Single/Dual/Quad Current Feedback Amplifiers
	LT1252/3/4: Low Cost Current Feedback Amplifiers
Multiplexer	LT1204: 4:1 Video MUX with CFA
Video Distribution	LT1206: 250mA Output Current CFA
DC Restoration	LT1228: CFA with Gain Control
Gain Control	LT1228: CFA with Gain Control, LT1256: 40MHz Amplifier with DC Gain Control
COAX Loopthrough/ Twisted-Pair Receiver	LT1187/89/93/94: Video Difference Amplifiers

Video Distribution Amplifier

- LT1206: 250mA Minimum Output Current
- 60MHz, $900 \mathrm{~V} / \mathrm{us}$ Current Feedback Amplifier
- Drives Ten 150Ω Video Cables
- Drives Low Impedances and High Capacitances
- Color Video Performance
- Low Current "Shutdown" Mode Available

2:1 and 4:1 Video Multiplexers Very Fast for Pixel Switching

- LT1203 (2:1), LT1205 ($2 \times 2: 1$ or 4:1)
- $150 \mathrm{MHz},-3 \mathrm{~dB}$ Bandwidth
- 90dB Channel Separation
- $30 \mathrm{MHz}, 0.1 \mathrm{~dB}$ Gain Flatness (HDTV)
- 25ns Channel Switching Time
- 50 mV Switching Transient
- 10M Ω Disabled Output Impedance
- Expandable
- 8- and 16-Pin Narrow S0 Packages

Graphics: VGA needs $>50 \mathrm{MHz}$, 19" monitors need $>100 \mathrm{MHz}$
RGB, YUV, YC, Amps LT1259/60: Dual/Triple, $130 \mathrm{MHz}, 1800 \mathrm{~V} / \mu \mathrm{s}$ Current Feedback Amplifiers with Shutdown
Pixel Switching
LT1203/05: 2:1 and 4:1 Video Multiplexers

Audio: For $8 \times$ Oversampling, 200 kHz Bandwidth is Required Gain Blocks

4:1 Video Multiplexer with 75MHz Current Feedback Amplifier

- LT1204: 4:1 MUX w/ Current Feedback Amp
- 0.1 dB Gain Flatness to $>30 \mathrm{MHz}$: for HDTV
- 1000V/us Slew Rate
- 75MHz, -3dB Bandwidth ($A_{V}=2$)
- 90dB Channel Separation
- Expandable
- 16-Pin PDIP and SW Packages

Current Feedback Amp with DC Gain Control

- LT1228: 75MHz Transconductance Amp with 100 MHz Current Feedback Amplifier
- Color Video Performance
- Differential Input
- Operates on $\pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supplies
- For Auto-Gain, Tunable Filters, and Specialized Video Circuits.
- LT1251: 40MHz Video Fader
- LT1256: 40MHz Gain-Controlled Amplifier
- Accurate 1\% Linear Gain Control
- Low Differential Gain/Phase, 0.1\%/0.1
- 14-Pin PDIP and SO Packages

Video Fader/Gain-Controlled Amplifier

LT1115: Low Noise Preamplifier
LT1124/26: Dual Low Noise Preamplifier
LT1211/12: High Slew Rate, Single Supply Dual/Quad Op Amps
LT1122: Ultra-Low Distortion Op Amp with Symmetric Slew Rates.
LT1354/55/56: Ultra-High Slew Rate, Low Supply Current Op Amps

CD-ROM LT1311: Quad Precision I-to-V Converter for Optical Drivers

OP AMP SELECTION GUIDE

Commercial Precision Op Amps

$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \end{aligned}$	ELECTRICAL CHARACTERISTICS								IMPORTANT FEATURES
	$V_{0 S}$ MAX ($\mu \mathrm{V}$)	$\begin{gathered} \text { TC } \\ V_{0 S} \\ \left(\mu V /{ }^{\prime} \mathbf{C}\right) \end{gathered}$	I_{B} MAX $^{\prime}$ (nA)	$\begin{aligned} & \text { AVoL } \\ & \text { MIN } \\ & (\mathrm{V} / \mathrm{mV}) \end{aligned}$	$\begin{gathered} \hline \text { SLEW RATE } \\ \text { MIN } \\ (\mathbf{V} / \mu \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \text { NOISE } \\ \mathrm{MAX} 10 \mathrm{~Hz} \\ (\mathrm{nV} / \sqrt{\mathrm{Hz})} \end{gathered}$	PACKAGES AVAILABLE	$\begin{array}{\|l\|} \hline \text { MIL// } \\ \text { IND } \\ \text { TEMP } \\ \hline \end{array}$	
SINGLE									
LT1001AC	25	0.6	2.0	450	0.15	18	H, J8, N8	M	Extremely Low Offset Voltage, Low Noise, Low Drift
LT1001C	60	1.0	3.8	400	0.15	18	H, J8, N8, S8	M	
LT1006AC	50	1.3	15	1000	0.25	24^{+}	H, J8	M	Single Supply Operation, Fully Specified for 5V Supply
LT1006C	80	1.8	25	700	0.25	24^{+}	H, J8, N8	M	
LT1006S8	400	3.5	25	700	0.25	25	S8		
LT1007AC	25	0.6	35	7000	1.7	4.5	H, J8, N8	M	Extremely Low Noise, Low Drift
LT1007C	60	1.0	55	5000	1.7	4.5	H, J8, N8, S8	M, I	
LT1008C	120	1.5	0.1	200	0.1	30	H, N8	M, I	Low Bias Current, Low Power
LT1012C	25	0.6	0.1	300	0.1	30	H, N8	M, I	Low Vos, Low Power, C-Load ${ }^{\text {TM }}$ Stable
LT1012AC	50	1.5	0.15	200	0.1	30	H, N8	M	
LT1012D	60	1.7	0.15	200	0.1	30	H, N8		
LT1012S8	120	1.8	0.28	200	0.1	30	S8		
LT1022AC	250	5.0	0.05	150	23	50	H	M	Very High Speed JFET Input Op Amp with Very Good DC Specs
LT1022C	600	9.0	0.05	120	18	60	H	M	
LT1022CN8	1000	15.0	0.05	100	18	60	N8		
LT1028AC	40	0.8	90	7000	11	1.7	H, J8, N8	M	Lowest Noise, High Speed, Low Drift
LT1028C	80	1.0	180	5000	11	1.9	H, J8, N8, S8	M	
LT1037AC	25	0.6	35	7000	11	4.5	H, J8, N8	M	Extremely Low Noise, High Speed
LT1037C	60	1.0	55	5000	11	4.5	H, J8, N8, S8	M, I	
LT1055AC	150	4	0.05	150	10	50	H	M	Lowest Offset, JFET Input Op Amp Combines High Speed and Precision
LT1055C	400	8	0.05	120	7.5	60	H	M	
LT1055CN8	700	12	0.05	120	7.5	60	N8		
LT1055S8	1500	15	0.1	120	7.5	70	S8		
LT1056AC	180	4	0.05	150	12	50	H	M	
LT1056C	450	8	0.05	120	9	60	H	M	
LT1056CN8	800	12	0.05	120	9	60	N8		
LT1056S8	1500	15	0.1	120	9.0	70	58		
LT1077AC	40	0.4	9	250	0.12	40	H, J8, N8	M, I	Micropower, Single Supply, Precision, Low Noise
LT1077C	60	0.4	11	200	0.12	29^{+}	H, J8, N8	M, I	
LT1077S8	150	3.0	11	240	0.05	28^{+}	S8		
LT1097C	50	1.0	0.25	700	0.1	16^{+}	N8	1	Low Cost, Low Power Precision, C-Load Op Amp
LT1097S8	60	1.4	0.35	700	0.1	16^{+}	S8	1	
LT1115C	280	0.5 (Typ)	380	2000	10	1.8	N8, S		Lowest Noise, Ultra Low Distortion Audio Optimized Op Amp
LT1128AC	40	1.0	90	7000	5.0	1.7	J8, N8, $\mathrm{S8}$	M, I	Lowest Noise, High Speed, Precision
LT1128C	80	1.0	180	5000	4.5	1.9	J8, N8, $\mathrm{S8}$	M, I	
LTC1049C	10	0.1	0.050	3162	$0.8{ }^{+}$	$1.0 \mu \mathrm{~V}$ P. ${ }^{* *}$	J8, N8	M, I	Auto Zeroed Precision Op Amp, No External Capacitors Required
LTC1050AC	5	0.05	0.035	3162	4^{+}	$0.6 \mu V_{\text {P-P }}{ }^{* *}$	H, J8, N8, S8	M, I	
LTC1050C	5	0.05	0.050	1000	4^{\dagger}	$0.6 \mu \mathrm{~V}_{\text {p- }{ }^{* * *}}$	H, J8, N8, S8	M, I	
LTC1052C	5	0.05	0.03	1000	3^{\dagger}	$0.5 \mu \mathrm{~V}_{\text {P- }{ }^{* *}}$	H, N8, N	M, I	Low Noise, Auto Zeroed Precision Op Amp
LTC7652C	5	0.05	0.03	1000	3^{+}	$0.5 \mu V_{p-P^{* *}}$	H, N8	M, I	
LTC1150C	5	0.05	0.03	10000	3^{\dagger}	$0.6 \mu V_{p-p^{* *}}$	H, J8, N8, S8	M, I	Auto Zeroed Precision Op Amp That Operates on Standard $\pm 15 \mathrm{~V}$ Supplies. No External Capacitors Required
LTC1152C	10	0.1	0.1	316	1^{+}	$0.5 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	N8, S8		Rail-to-Rail Input and Output, Auto Zeroed Precision Op Amp. C-Load Stable.
LTC1250C	10	0.05	0.02	10000	10^{+}	$0.3 \mathrm{mV} \mathrm{Vp}_{\text {- }}{ }^{* *}$	J8, N8, S8	M	Low Noise, Auto Zeroed Precision Op Amp

${ }^{\dagger}$ Typical spec $\quad{ }^{*} 100 \mathrm{~Hz}$ noise $\quad{ }^{* *}$ DC to 1 Hz noise \quad C-Load is a trademark of Linear Technology Corporation
NOTE: See page 4-3 for DESC cross reference numbers. Check data sheet for specifications on industrial and military temperature produced and surface mount.

Commercial Precision Op Amps

PART NUMBER	ELECTRICAL CHARACTERISTICS								IMPORTANT FEATURES
	$V_{0 S}$ MAX $(\mu \mathrm{V})$		I_{B} MAX (nA)		SLEW RATE MIN (V/ μs)	$\begin{gathered} \text { NOISE } \\ \text { MAX 10Hz } \\ (\mathrm{nV} / \sqrt{\mathrm{Hz})} \\ \hline \end{gathered}$	PACKAGES AVAILABLE	$\begin{gathered} \text { MIL/ } \\ \text { IND } \\ \text { TEMP } \end{gathered}$	
SINGLE									
LF355A	2000	5	0.05	75	5	$25^{\dagger *}$	H, N8		JFET Inputs, Low I ${ }_{\text {B }}$, No Phase Reversal
LF356A	2000	5	0.05	75	10	$15^{\dagger *}$	H, N8		
LM10B	2000	2^{\dagger}	20	120	-	50^{\dagger}	H, J8	M	On-Chip Reference Operates with +1.2 V Single Battery
LM10BL	2000	2^{\dagger}	20	60	-	50^{\dagger}	H, J8		
LM10C	4000	5^{\dagger}	30	80	-	50^{\dagger}	H, J8, N8		
LM10CL	4000	5^{\dagger}	30	80	-	50^{\dagger}	H, J8, N8		
LM308A	500	5	7	60	0.1	30^{\dagger}	H, N8	M	Low Bias, Supply Current
LT318A	1000		250	200	50	42^{\dagger}	H, J8, N8	M	High Speed, 15MHz
LM318	10000		500	25	50	42^{\dagger}	H, J8, N8, S8	M	High Speed, 15MHz
OP-05C	1300	4.5	7	120	0.1	20	H, J8, N8	M	Low Noise, Low Offset Drift with Time
OP-05E	500	2.0	4	200	0.1	18	H, J8, N8	M	
OP-07C	150	1.8	7	120	0.1	20	H, J8, N8, S8	M	Low Initial Offset, Low Noise, Low Drift
OP-07E	75	1.3	4	200	0.1	18	H, J8, N8	M	
OP-15E	500	5	0.05	100	10	$20^{\dagger *}$	H, N8	M	Precision JFET Input, Low Bias Current, No Phase Reversal
OP-15F	1000	10	0.1	75	7.5	$20^{\dagger *}$	H, N8	M	
OP-15G	3000	15	0.2	50	5	$20^{\dagger *}$	H, N8	M	
OP-16E	500	5	0.05	100	18	$20^{\dagger *}$	H, N8	M	Precision JFET Input, High Speed, No Phase Reversal
OP-16F	1000	10	0.1	75	12	$20^{\dagger *}$	H, N8	M	
OP-16G	3000	15	0.2	50	9	$20^{\dagger *}$	H, N8	M	
OP-27E	25	0.6	40	1000	1.7	5.5	H, J8, N8	1	Very Low Noise, Unity Gain Stable
OP-27G	100	1.8	80	700	1.7	8.0	H, N8	1	
OP-37E	25	0.6	40	1000	11	5.5	H, J8, N8	1	Very Low Noise, Stable for Gains ≥ 5
OP-37G	100	1.8	80	700	11	8.0	H, N8	1	
OP-97E	25	0.6	± 0.1	300	0.1	30	H, N8	M	Low Power, Low I ${ }_{\text {B }}$, Precision
DUAL									
LT1002AC	60	0.9	3.0	400	0.15	20	J, N	M	Dual, Matched LT1001 High CMRR, PSRR Matching
LT1002C	100	1.3	4.5	350	0.15	20	J, N	M	
LT1013AC	150	2.0	20	1500	0.2	24^{+}	H, J8	M	Precision Dual Op Amp in 8-Pin Package
LT1013C	300	2.5	30	1200	0.2	24^{+}	H, J8, N8	M, I	
LT1013D	800	5.0	30	1200	0.2	24^{\dagger}	N8, S8		
LT1024AC	50	1.5	0.12	250	0.1	33	N	M	Low V ${ }_{\text {OS }}$, Low Power, Matching Specs
LT1024C	100	2.0	0.20	180	0.1	33	N	M	
LTC1047C	10	0.01	0.02	1000	0.2^{\dagger}	0.8mVp-p**	N8, S		No External Capacitors Required Dual, Precision Auto Zeroed Op Amp
LTC1051C	5	0.05	0.05	1000	4^{+}	$0.4 \mu \mathrm{Vp}$-p**	J8, N8, S	M, I	
LT1057AC	450	7	0.05	150	10	26^{\dagger}	H, J8	M	Low Offset JFET Input Multiple Op Amps Combine High Speed and Excellent DC Specs
LT1057ACN8	450	10	0.05	150	10	26^{+}	N8		
LT1057C	800	12	0.075	100	8	26^{+}	H, J8	M, I	
LT1057CN8	800	16	0.075	100	8	26^{\dagger}	N8, S8	I	
LT1078AC	70	2.0	8	250	0.07^{\dagger}	40	H, J8, N8	M	Micropower, Precision, Single Supply, Low Noise Dual
LT1078C	120	2.5	10	200	0.07^{\dagger}	29^{+}	H, J8, N8, S8	M, I	
LT1112A	60	0.50	0.25	1000	0.16	15^{\dagger}	J8, N8, S8	M, I	Low Power, Precision, Matching Specs, C-Load Op Amp
LT1112C	75	0.75	0.28	800	0.16	15^{\dagger}	J8, N8, S8	M, I	
LT1113AC	1500	15	0.45	1200	2.5	17^{\dagger}	N8, J8, S8	M, I	Dual Low Noise, Precision JFET Input
LT1113C	1800	20	0.48	1000	2.5	17^{\dagger}	N8, J8, S8	M, I	
LT1124AC	70	1	55	2000	3	5.5	N	M, I	Dual Precision Op Amp, Low Noise, High Speed
LT1124C	100	1.5	70	1500	2.7	5.5	J, N, S	M, I	

OP AMP SELECTION GUIDE

Commercial Precision Op Amps

	ELECTRICAL CHARACTERISTICS								IMPORTANT FEATURES
PART NUMBER	$\mathrm{V}_{\text {OS }}$ MAX $(\mu \mathrm{V})$		$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{MAX}^{(\mathrm{nA})} \\ \hline \end{gathered}$	Avol MIN (V/mV)	SLEW RATE MIN (V/ $/ \mathrm{s}$)	NOISE MAX 10Hz ($\mathrm{nV} / \sqrt{\mathrm{Hz}}$)	PACKAGES AVAILABLE	$\begin{array}{\|c\|} \hline \text { MIL/ } \\ \text { IND } \\ \text { TEMP } \\ \hline \end{array}$	
DUAL									
LT1126AC	70	1.0	20	2000	8	5.5	N8	M, I	Dual Precision Op Amp, Low Noise, High Speed
LT1126C	100	1.5	30	1500	8	5.5	J8, N8, S8	M, I	
LT1169A	1500	15	0.003	1200	2.4	17^{\dagger}	J8, N8, S8		Dual Low Noise, Picoampere Bias Current JFET Input Op Amp
LT1169C	1800	20	0.005	1000	2.4	17^{\dagger}	J8, N8, S8		
LT1178AC	70	2.2	5	140	0.013	75	H, J8, N8		17 μ A Max, Single Supply, Precision Dual
LT1178C	120	3.0	6	110	0.013	50^{\dagger}	H, J8, N8	1	
LT1211C	275	0.6	125	250	4	12.5	J8, N8, S8	M, I	Fast, Precise, Single Supply Op Amps. Industrial Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ Specs Included with Commercial Temperature Devices
LT1211AC	150	0.5	100	250	4	12.5	J8, N8, S8	M, I	
LT1213C	275	0.6	200	250	8.5	10	J8, N8, S8	M, I	
LT1213AC	150	0.5	160	250	8.5	10	J8, N8, S8	M, I	
LT1215C	450	1.0	600	150	30	15	J8, N8, S8	M, I	
LT1215AC	300	0.8	500	150	30	15	J8, N8, S8	M, I	
LT1366C	475	6	35	500	$0.12{ }^{\dagger}$	$29^{\dagger * * *}$	N8, S8	1	Rail-to-Rail Input and Output, Precision
LT1368C	475	6	35	500	-	$29^{+* * *}$	N8, S8	1	Rail-to-Rail Input and Output, Precision
LT1413AC	150	2	15	400	0.2	24^{\dagger}	N8	1	Dual Single Supply Precision Op Amp Optimized for 5 V and GND
LT1413C	280	2.5	18	350	0.2	24^{\dagger}	N8, S8	1	
LT1413S8	380	2.5	18	350	0.2	24^{\dagger}	S8	1	
LT1457AC	450	10	0.05	150	2	26^{\dagger}	N8	1	Dual Precision JFET Input Op Amp. C-Load Stable
LT1457C	800	16	0.075	100	2	28^{\dagger}	N8, S8	1	
LF412AC	1000	10	0.1	100	10	$20^{\dagger *}$	H, J8, N8	M	High Performance Dual JFET Input Op Amp
OP-215E	1000	10	0.1	150	10	$20^{\dagger *}$	H, J8, N8	M	
OP-215G	3000	20	0.2	50	8	$20^{\dagger *}$	H, J8, N8	M	
OP-227E	80	1.0	40	3000	1.7	6	J, N	M	Dual Matched OP-27
OP-227G	180	1.8	80	2000	1.7	9	J, N	M	
OP-237E	80	1.0	40	3000	10	6	J, N	M	Dual Matched OP-37
OP-237G	180	1.8	80	2000	10	9	J, N	M	
OP-270A	75	1	20	750	1.7	6.5	J	M	Dual Op Amp, Low Noise
OP-270C	250	3	60	350	1.7	$3 .{ }^{+}$	N, S	M	
QUAD									
LT1014AC	180	2.0	20	1500	0.2	24^{\dagger}	J	M	Precision Quad Op Amp in 14-Pin Package
LT1014C	300	2.5	30	1200	0.2	24^{\dagger}	J, N	M, I	
LT1014D	800	5.0	30	1200	0.2	24^{\dagger}	N, S		
LT1058AC	600	10	0.05	150	10	26^{\dagger}	J	M	Low Offset JFET Input Multiple Op Amps Combine High Speed and Excellent DC Specs
LT1058C	1000	15	0.075	100	8	26^{+}	J, N, S	M, I	
LT1079AC	120	2.0	8	250	$0.07{ }^{+}$	40	J, N	M	Micropower, Precision, Single Supply, Low Noise Quad
LT1079C	150	2.5	10	200	0.07^{\dagger}	29^{\dagger}	J, N, S	M, I	
LT1114AC	60	0.50	0.25	1000	0.16	15^{\dagger}	J8, N8, S8	M, I	Low Power, Precision, Matching Specs
LT1114C	75	0.75	0.28	800	0.16	15^{\dagger}	J8, N8, S8	M, I	
LT1125AC	90	1	20	2000	3	5.5	N	M	Precision Quad Op Amp, Low Noise, High Speed
LT1125C	140	1.5	30	1500	2.7	5.5	J, N, S	M, I	
LT1127AC	90	1.0	20	2000	8	5.5	N	M	
LT1127C	140	1.5	30	1500	8	5.5	N, J, S	M, I	
LT1179AC	100	2.2	5	140	0.013	75	J, N		17 μ A Max, Single Supply, Precision Quad
LT1179C	150	3.0	6	110	0.013	50^{\dagger}	J, N	1	
LT1212C	275	6	125	250	4	$12.5{ }^{\dagger}$	N, S	1	Fast, Precise, Single Supply Op Amps. Industrial Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$ Specs Included with Commercial Temperature Devices
LT1214C	275	6	200	250	8.5	10^{+}	N, S	1	
LT1216C	450	10	600	150	30	15^{\dagger}	N, S	1	
LT1367C	800	6	35	500	0.12^{+}	$29^{\dagger * * *}$	N8, S8	1	Rail-to-Rail Input and Output, Precision Can Handle 0.1 $\mu \mathrm{F}$ C-Load
LT1369C	800	6	35	500	-	$29^{\dagger * * *}$	N, S	1	Rail-to-Rail Input and Output, Precision Can Handle $0.1 \mu \mathrm{~F}$ C-Load
LTC1053C	5	0.05	0.05	1000	4^{\dagger}	$0.4 \mu \vee p-p^{* *}$	N, S	1	Quad, Precision Auto Zeroed Op Amp. No External Capacitors Required
OP-470A	400	2	25	500	1.4	6.5	J	M	Quad Op Amp, Low Noise
OP-470C	1000	2^{\dagger}	60	400	1.4	6.5	N, S		

${ }^{\dagger}$ Typical spec $\quad * 100 \mathrm{~Hz}$ noise $\quad{ }^{* *}$ DC to 1 Hz noise $\quad{ }^{* * *} 1 \mathrm{kHz}$ noise
NOTE: See page 4-3 for DESC cross reference numbers

High Speed Op Amps

	ELECTRICAL CHARACTERISTICS								
PART NUMBER	MIN SLEW RATE (V/ $/ \mathrm{s}$)	TYP SETTLING TIME TO 0.1 \% (ns)	TYPICAL GAIN BANDWIDTH PRODUCT (MHz)		$\begin{aligned} & \mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{OS}} \\ & (\mathrm{mV}) \end{aligned}$	I_{B} MAX ($\mu \mathrm{A}$)	PACKAGES AVAILABLE	$\begin{aligned} & \text { MIL/ } \\ & \text { IND } \\ & \text { TEMP } \end{aligned}$	IMPORTANT FEATURES
SINGLE									
LM118	50		15	50	4	0.25	H, 88	M	Industry Standard
LT118A	50		15	100	1	0.25	H, J8	M	Improvement Over LM118
LT318A	50		15	100	1	0.25	H, J8, N8		Commercial Temp Version of LT118A
LT1028AC	11		75	7000	0.04	0.09	H, J8, N8	M	Ultra-Low Noise, Precision, Low Drift
LT1028C	11		75	5000	0.08	0.18	H, J8, N8, S8	M	Ultra-Low Noise, Precision, Low Drift
LT1037AC	11		60	7000	0.025	0.035	H, J8, N8	M	$A_{V}=5$, Low Noise, Precision
LT1037C	11		60	5000	0.06	0.055	H, J8, N8, S8	M	$A_{V}=5$, Low Noise, Precision
LT1115C	10		70	2000	0.2	0.38	N8, SW16		Ultra-Low Noise, Low Distortion, Audio
LT1122AC	60	$\begin{gathered} 340^{*} \\ 540^{* *} \end{gathered}$	14	180	0.6	75pA	J8, N8	M	JFET Input. Faster and Better DC Specs Than OP-42. A and C Have
LT1122BC	60	$350 *$	14	180	0.6	75pA	J8, N8	M	Grades 100\% Tested Settling Time
LT1122CC	50	$\begin{aligned} & 350^{*} \\ & 590^{* *} \end{aligned}$	13	150	0.9	100 pA	J8, N8, S8	M	
LT1122DC	50	$360 *$	13	150	0.9	100 pA	J8, N8, S8	M	
LT1128AC	5		20	7000	0.04	0.09	N8		Ultra-Low Noise, Precision, Unity-Gain Stable
LT1128C	4.5		20	5000	0.08	0.18	N8, S8		Ultra-Low Noise, Precision, Unity-Gain Stable
LT1187C	130	100***	$50\left(A_{V}=2\right)$		10	2	N8, S8		Low Power Video Difference Amplifier
LT1189C	175	$1000^{* * *}$	$35\left(A_{V}=10\right)$		3	2	N8, S8		
LT1190C	450^{\dagger}	100	50	3.5	10	2.5	J8, N8, S8	M	$\pm 5 \mathrm{~V}$ Supply Color Video Op Amps
LT1191C	$450{ }^{\dagger}$	100	90	6	5	2.5	J8, N8, S8	M	
LT1192C	450^{\dagger}	100	$400\left(A_{V} \geq 5\right)$	16	2.5	2.5	J8, N8, S8	M	
LT1193C	450^{+}	100	70		12	3.5	J8, N8, S8	M	Color Video Differential Amplifier
LT1194C	450^{\dagger}	100	40		6	3.5	J8, N8, S8	M	
LT1195C	140	220***	50	0.5	8	2	J8, N8, S8	M	Low Power, High Speed
LT1200C	30	430	11.0	4	1	1	N8, S8		Low Supply Current Op Amp
LT1206C	600		50	0.6	15	5	N8, R, Y, S8		250mA Current Feedback Amplifier
LT1217C	100	280	10.0	3.2	3	0.5	N8, S8		Low Power Current Feedback Amplifier
LT1220C	200	75	45	20	1	0.3	H, J8, N8, S8		Ultra High Speed, Good DC Specs, C-Load
LT1221C	200	65	$150\left(A_{V} \geq 4\right)$	50	0.6	0.3	H, J8, N8, S8		Driving
LT1222C	200	75	500 ($A_{V} \geq 10$)	100	0.3	0.3	H, J8, N8, S8	M	
LT1223C	800	75	100	3.2	3	3	J8, N8, S8	M	Current Feedback Amplifier with Good DC Specs
LT1224C	250	90	45	3.3	2	8	J8, N8, S8	M	High Speed, DC Precision, Stable While Driving
LT1225C	250	70	$150\left(A_{V} \geq 5\right)$	12.5	1	8	J8, N8, S8	M	Unlimited Capacitive Load (C-Load)
LT1226C	250	75	$1000\left(A_{V} \geq 25\right)$	50	1	8	J8, N8, S8	M	
LT1227C	500	50	140.0	0.6	10	3	J8, N8, S8	M	Current Feedback Amplifier
LT1228C	300	45	100	0.6	10	3	J8, N8, S8	M	Electronic DC Gain Control
LT1252C	250		100	0.56	15	15	N8, S8		Low Cost Video Amplifier
LT1354C	200	230	12	12	0.8	0.3	N8, S8		$1 \mathrm{~mA}, 12 \mathrm{MHz}, 400 \mathrm{~V} / \mu \mathrm{s}$ C-Load
LT1357C	300	115	25	20	0.6	0.5	N8, S8		$2 \mathrm{~mA}, 25 \mathrm{MHz}, 600 \mathrm{~V} / \mu \mathrm{S}$ C-Load
LT1360C	600	60	50	4.5	1	1	N8, S8		$4 \mathrm{~mA}, 50 \mathrm{MHz}, 800 \mathrm{~V} / \mu \mathrm{s}$ C-Load
LT1363C	750	50	70	4.5	1.5	2	N8, S8		$6 \mathrm{~mA}, 70 \mathrm{MHz}, 1000 \mathrm{~V} / \mathrm{\mu s} \mathrm{C-Load}$
DUAL									
LT1124AC	3		12.5	5000	0.07	0.025	J8, N8	M	Dual, Low Noise, Precision
LT1124C	2.7		12.5	3000	0.1	0.03	J8, N8, S8	M	Dual, Low Noise, Precision
LT1126AC	8		45	5000	0.07	0.02	J8, N8	M	$A_{V}=10$, Dual, Low Noise, Precision
LT1126C	8		45	3000	0.1	0.03	J8, N8, S8	M	$A_{V}=10$, Dual, Low Noise, Precision
LT1201C	30	330	12	4	2	1	N8, S8		$1 \mathrm{~mA}, 12 \mathrm{MHz}, 50 \mathrm{~V} / \mu \mathrm{s}$ Dual C-Load
LT1208C	250	90	45	3.3	3	8	N8, S8		$45 \mathrm{MHz}, 450 \mathrm{~V} / \mu \mathrm{s}$ Dual C-Load

[^18]NOTE: See page 4-3 for DESC cross reference numbers

OP AMP SELECTION GUIDE

High Speed Op Amps

	ELECTRICAL CHARACTERISTICS								IMPORTANT FEATURES
$\begin{aligned} & \text { PART } \\ & \text { NUMBER } \end{aligned}$	MIN SLEW RATE ($\mathrm{V} / \mu \mathrm{s}$)	TYP SETTLING TIME TO 0.1 \% (ns)	TYPICAL GAIN BANDWIDTH PRODUCT (MHz)	$\begin{gathered} \mathrm{MIN} \\ \mathrm{Avol} \\ (\mathrm{~V} / \mathrm{mV}) \end{gathered}$	$\begin{aligned} & \text { MAX } \\ & V_{0 S} \\ & (\mu \mathrm{~V}) \end{aligned}$	$\begin{gathered} \operatorname{MAX}_{B}^{M_{2}} \\ (\mu A) \end{gathered}$	PACKAGES AVAILABLE	$\begin{aligned} & \text { MIL/ } \\ & \text { IND } \\ & \text { TEMP } \end{aligned}$	
DUAL									
LT1211C	5	2200	14	1200	0.55	0.12	J8, N8, S8	M	14MHz, $7 \mathrm{~V} / \mathrm{\mu s}$ S Single Supply Precision
LT1211AC	5	2200	14	1200	0.4	0.095	J8, N8, $\mathrm{S8}$	M	
LT1213C	10	1100	28	1200	0.55	0.19	J8, N8, S8	M	28MHz, 12V/us, Single Supply Precision
LT1213AC	10	1100	28	1200	0.4	0.15	J8, N 8 , $\mathrm{S8}$	M	
LT1215C	40	480	23	1000	0.65	0.55	J8, N 8 , $\mathrm{S8}$	M	23MHz, 50V/us, Single Supply Precision
LT1215 AC	40	480	23	1000	0.5	0.5	J8, N8, S8	M	
LT1229C	300	45	100	0.6	10	3	J8, N8, S8	M	Fast Slew Rate, Current Feedback Architecture
LT1253C	250		90	0.560	15	15	N8, S8		Low Cost Video Amplifier
LT1259C	900	75	130	0.71	10	3	N14, S14		Low Cost 130 MHz Dual CFAs with Individual Shutdowns
LT1355C	200	230	12	12	0.8	0.3	N8, $\mathrm{S8}$		$1 \mathrm{~mA}, 12 \mathrm{MHz}, 400 \mathrm{~V} / \mu \mathrm{s}$ Dual C-Load
LT1358C	300	115	25	20	0.6	0.5	N8, $\mathrm{S8}$		$2 \mathrm{~mA}, 25 \mathrm{MHz}, 600 \mathrm{~V} /$ /s Dual C-Load
LT1361C	600	60	50	4.5	1	1	N8, $\mathrm{S8}$		4mA, 50 MHz , 800V/ $/$ s Dual C-Load
LT1364C	750	50	70	4.5	1.5	2	N8, S8		$6 \mathrm{~mA}, 70 \mathrm{MHz}, 1000 \mathrm{~V} / \mathrm{\mu s}$ Dual C-Load
TRIPLE									
LT1260C	900	75	130	0.71	10	3	N16, S16		Low Cost Triple 130MHz CFAs with Individual Shutdowns
QUAD									
LT1125AC	3		12.5	5000	0.09	0.02	J14, N14	M	Quad, Low Noise, Precision
LT1125	2.7		12.5	3000	0.14	0.03	J14, N14, S16	M	Quad, Low Noise, Precision
LT1127AC	8		45	5000	0.09	0.02	J14, N14	M	$A_{v}=10$, Quad, Low Noise, Precision
LT1127C	8		45	3000	0.14	0.03	J14, N14, S16	M	$A_{V}=10$, Quad, Low Noise, Precision
LT1202C	30	330	12	4	2	1	N14, S16		$1 \mathrm{~mA}, 12 \mathrm{MHz}, 50 \mathrm{~V} /$ / Quad C-Load
LT1209C	250	90	45	3.3	3	8	N14, S16		45MHz, 450V/ μ s Quad C-Load
LT1212C	5	2200	14	1200	0.55	0.12	N14, S16		14MHz, $7 \mathrm{~V} / \mathrm{\mu s}$ S Single Supply Precision
LT1214C	10	1100	28	1200	0.55	0.19	N14, S16		$28 \mathrm{MHz}, 12 \mathrm{~V} / \mu \mathrm{s}$, Single Supply Precision
LT1216C	40	480	23	1000	0.65	0.55	N14, S16		23 MHz , 50V/ $\mu \mathrm{s}$, Single Supply Precision
LT1230C	300	45	100	0.6	10	3	J14, N14, S14	M	Fast Slew Rate, Current Feedback Architecture
LT1254C	250		90	0.560	15	15	N14, S14		Low Cost Video Amplifier
LT1356C	200	230	12	12	0.8	0.3	N14, S16		$1 \mathrm{~mA}, 12 \mathrm{MHz}, 400 \mathrm{~V} / \mu \mathrm{s}$ Quad C-Load
LT1359C	300	115	25	20	0.6	0.5	N14, S16		$2 \mathrm{~mA}, 25 \mathrm{MHz}, 600 \mathrm{~V} / \mu \mathrm{s}$ Quad C-Load
LT1362C	600	60	50	4.5	1	1	N14, S16		$4 \mathrm{~mA}, 50 \mathrm{MHz}, 800 \mathrm{~V} / \mu \mathrm{s}$ Quad C-Load
LT1365C	750	50	70	4.5	1.5	2	N14, S16		$6 \mathrm{~mA}, 70 \mathrm{MHz}, 1000 \mathrm{~V} / \mu \mathrm{s}$ Quad C-Load

${ }^{\dagger}$ Typical value *10V step, to 1 mV at sum node. ${ }^{* *}$ Maximum value, 10 V step, to 1 mV at sum node. ***3V Step
NOTE: See page 4-3 for DESC cross reference numbers

C-Load ${ }^{\text {TM }}$ Stable Op Amps c-Load Operational Amplifiers Are Stable with Any Capacitve Load.

PART NUMBER	\# OF AMPS	MIN A_{V}	MAX V ${ }_{0 S}$	MAX IB	MIN ${ }_{\text {OUT }}$	BANDWIDTH	SLEW RATE	Is/AMP
LT1097	Single	1	$60 \mu \mathrm{~V}$	350pA	5.7 mA	700 kHz	0.2V/us	$380 \mu \mathrm{~A}$
LT1012	Single	1	$50 \mu \mathrm{~V}$	150pA	5.7 mA	700 kHz	0.2V/us	$380 \mu \mathrm{~A}$
LT1112	Dual	1	$75 \mu \mathrm{~V}$	230 pA	5.7 mA	750 kHz	0.3V/us	$350 \mu \mathrm{~A}$
LT1114	Quad	1	$75 \mu \mathrm{~V}$	230pA	5.7 mA	750 kHz	$0.3 \mathrm{~V} / \mathrm{\mu s}$	350 $\mu \mathrm{A}$
LTC1152	Single	1	$10 \mu \mathrm{~V}$	100 pA	4 mA	1 MHz	$1 \mathrm{~V} / \mathrm{\mu s}$	$500 \mu \mathrm{~A}$
LT1200	Single	1	1 mV	$1 \mu \mathrm{~A}$	6 mA	11 MHz	50V/ $/ \mathrm{s}$	1 mA
LT1201	Dual	1	2 mV	$1 \mu \mathrm{~A}$	6 mA	12 MHz	$50 \mathrm{~V} / \mu \mathrm{s}$	1 mA
LT1202	Quad	1	2 mV	$1 \mu \mathrm{~A}$	6 mA	12 MHz	$50 \mathrm{~V} / \mu \mathrm{s}$	1 mA
LT1206	Single	1	10 mV	$5 \mu \mathrm{~A}$	250 mA	60 MHz	$900 \mathrm{~V} / \mu \mathrm{s}$	5 mA to 22 mA
LT1208	Dual	1	3 mV	$8 \mu \mathrm{~A}$	24 mA	45 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	7 mA
LT1209	Quad	1	3 mV	$8 \mu \mathrm{~A}$	24 mA	45 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	7 mA
LT1220	Single	1	1 mV	300 nA	24 mA	45 MHz	$250 \mathrm{~V} / \mu \mathrm{s}$	8 mA
LT1221	Single	4	0.6 mV	300 nA	24 mA	150 MHz	$250 \mathrm{~V} / \mu \mathrm{s}$	8 mA
LT1222	Single	10	0.3 mV	300 nA	24 mA	500 MHz	$200 \mathrm{~V} / \mu \mathrm{s}$	8 mA
LT1224	Single	1	2 mV	$8 \mu \mathrm{~A}$	20 mA	45 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	7 mA
LT1225	Single	5	1 mV	$8 \mu \mathrm{~A}$	20 mA	150 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	7 mA
LT1226	Single	25	1 mV	$8 \mu \mathrm{~A}$	20 mA	1 GHz	$400 \mathrm{~V} / \mu \mathrm{s}$	7 mA
LT1354	Single	1	$800 \mu \mathrm{~V}$	300 nA	30 mA	12 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	1 mA
LT1355	Dual	1	$800 \mu \mathrm{~V}$	300nA	30 mA	12 MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	1 mA
LT1356	Quad	1	$800 \mu \mathrm{~V}$	300nA	30 mA	12MHz	$400 \mathrm{~V} / \mu \mathrm{s}$	1 mA
LT1357	Single	1	$600 \mu \mathrm{~V}$	500 nA	30 mA	25MHz	$600 \mathrm{~V} / \mu \mathrm{s}$	2 mA
LT1358	Dual	1	$600 \mu \mathrm{~V}$	500 nA	30 mA	25 MHz	$600 \mathrm{~V} / \mu \mathrm{s}$	2 mA
LT1359	Quad	1	$600 \mu \mathrm{~V}$	500 nA	30 mA	25 MHz	$600 \mathrm{~V} / \mu \mathrm{s}$	2 mA
LT1360	Single	1	1 mV	$1 \mu \mathrm{~A}$	40 mA	50 MHz	$800 \mathrm{~V} / \mu \mathrm{s}$	4 mA
LT1361	Dual	1	1 mV	$1 \mu \mathrm{~A}$	40 mA	50 MHz	$800 \mathrm{~V} / \mu \mathrm{s}$	4 mA
LT1362	Quad	1	1 mV	$1 \mu \mathrm{~A}$	40 mA	50 MHz	$800 \mathrm{~V} / \mu \mathrm{s}$	4 mA
LT1363	Single	1	1.5 mV	$2 \mu \mathrm{~A}$	70 mA	70 MHz	1000V/ $/ \mathrm{s}$	6 mA
LT1364	Dual	1	1.5 mV	$2 \mu \mathrm{~A}$	70 mA	70 MHz	1000V/ $/ \mathrm{s}$	6 mA
LT1365	Quad	1	1.5 mV	$2 \mu \mathrm{~A}$	70 mA	70 MHz	1000V/ $/ \mathrm{s}$	6 mA
LT1368	Dual	1	$450 \mu \mathrm{~V}$	35 nA	30 mA	450 kHz	$0.15 \mathrm{~V} / \mu \mathrm{s}$	$375 \mu \mathrm{~A}$
LT1369	Quad	1	$450 \mu \mathrm{~V}$	35 nA	30 mA	450 kHz	$0.15 \mathrm{~V} / \mu \mathrm{s}$	$375 \mu \mathrm{~A}$
LT1457	Dual	1	$800 \mu \mathrm{~V}$	75pA	10 mA	1.7MHz	4V/ $/ \mathrm{s}$	1.8 mA

C-Load is a trademark of Linear Technology Corporation

NOTES

SECTION 2—AMPLIFIERS

PRECISION OPERATIONAL AMPLIFIERS
LT1366/LT1367/LT1368/LT1369, Dual and Quad Precision Rail-to-Rail Input and Output Op Amps
2-14

features

- Input Common-Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Low Input Offset Voltage: $150 \mu \mathrm{~V}$
- High Common-Mode Rejection Ratio: 90dB
- High Avol: $1 \mathrm{~V} / \mu \mathrm{V}$ Minimum Driving $2 \mathrm{k} \Omega$ Load
- Low Input Bias Current: 10nA
- Wide Supply Range: 1.8 V to $\pm 15 \mathrm{~V}$
- Low Supply Current: $375 \mu \mathrm{~A}$ per Amplifier
- High Output Drive: 30 mA
- 400 kHz Gain-Bandwidth Product
- Slew Rate: $0.13 \mathrm{~V} / \mu \mathrm{s}$
- Stable for Capacitive Loads up to 1000 pF

APPLICATIONS

- Rail-to-Rail Buffer Amplifiers
- Low Voltage Signal Processing
- Supply Current Sensing at Either Rail
- Driving A/D Converters

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1366 /$ LT1367/LT1368/LT1369 are dual and quad bipolar op amps which combine rail-to-rail input and output operation with precision specifications. These op amps maintain their characteristics over a supply range of 1.8 V to 36 V . Operation is specified for $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ supplies. Input offset voltage is typically $150 \mu \mathrm{~V}$, with a minimum open-loop gain Avol of 1 million while driving a 2 k load. Common-mode rejection is typically 90 dB over the full rail-to-rail input range, and supply rejection is 110 dB .

The LT1366/LT1367 have conventional compensation which assures stability for capacitive loads of 1000pF or less. The LT1368/LT1369 have compensation that requires a $0.1 \mu \mathrm{~F}$ output capacitor, which improves the amplifier's supply rejection and reduces output impedance at high frequencies. The output capacitor's filtering action reduces high frequency noise, which is beneficial when driving A/D converters.
The LT1366/LT1368 are available in plastic 8-pin PDIP and 8 -lead SO packages with the standard dual op amp pinout. The LT1367/LT1369 feature the standard quad pinout, which is available in a plastic 16-lead SO package. These devices can be used as plug-in replacements for many standard op amps to improve input/output range and precision.

TYPICAL APPLICATION

Positive Supply Rail Current Sense

Output Saturation Voltage vs Load Current

ABSOLUTE MAXIMUM RATINGS

TOP VEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
OUTA $1 \square 8 \mathrm{~V}^{+}$		$-\mathrm{INA} 2-\mathrm{A}<\mathrm{O}-15 \mathrm{IND}$	
-InA 2 A 7 OUTB	LT1366CS8	$+\operatorname{INA} 3+14+1 N D$	LT1369CS
	LT1368CN8		
	LT1368CS8		
8-LEAD PDIP S8 PACKAGE	S8 PART MARKING	0 OUTC 9nc	
		S PACKAGE	
$T_{\text {JMAX }}=150^{\circ}, \theta_{J A}=130^{\circ} \mathrm{C} /(\mathbb{} 8)$ $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=190^{\circ} \mathrm{W}$ (88)	1366	16-LEAD PLASTIC S0	
	1368	$\mathrm{T}_{\text {max }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{Ja}}=150^{\circ} \mathrm{C} / \mathrm{W}$	

Consult factory for Industrial and Military parts.

Available Options

PRODUCT NUMBER	NUMBER OF OP AMPS	LOAD CAPACITANCE	$\begin{aligned} & \operatorname{MAX} V_{0 S}\left(25^{\circ} \mathrm{C}\right) \\ & \text { AT } V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	ORDER PART NUMBER	
				PLASTIC (N)	SURFACE MOUNT(S)
LT1366	2	OpF $<\mathrm{C}_{L}<1000 \mathrm{pF}$	$475 \mu \mathrm{~V}$	LT1366CN8	LT1366CS8
LT1367	4	$0 \mathrm{pF}<\mathrm{C}_{L}<1000 \mathrm{pF}$	$800 \mu \mathrm{~V}$		LT1367CS
LT1368	2	$\mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	$475 \mu \mathrm{~V}$	LT1368CN8	LT1368CS8
LT1369	4	$C_{L}=0.1 \mu \mathrm{~F}$	$800 \mu \mathrm{~V}$		LT1369CS

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 800 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$		$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$		$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\begin{gathered} 650 \\ 1600 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{gathered} 0 \\ -35 \end{gathered}$	$\begin{array}{r} 10 \\ -10 \end{array}$	$\begin{gathered} 35 \\ 0 \end{gathered}$	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$		20	70	nA

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
los	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{gathered} 1 \\ 0.3 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	nA
$\Delta l_{0 S}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$	1	6	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C} \text { (Note 4) } \\ & V_{C M}=V_{E E} \text { (Note 4) } \end{aligned}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \end{array}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	nA
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$	29		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$	0.07		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		12		pF
Avol	Large-Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	5002000		V / mV
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	81 90 75 90		dB $d B$
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \\ & \hline \end{aligned}$	77 90 71 90		dB dB
PSRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel) (Note 4)	$\begin{aligned} & V_{S}=2.0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \\ & V_{S}=2.0 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} 90 & 105 \\ 84 & 100 \end{array}$		dB dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SINK }}=0.5 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \\ \hline \end{array}$	$\begin{gathered} 6 \\ 40 \\ 110 \end{gathered}$	$\begin{gathered} 12 \\ 70 \\ 200 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ \hline \end{array}$	$\begin{array}{ll} \hline V_{C C}-0.008 & V_{C C}-0.004 \\ V_{C C}-0.100 & V_{C C}-0.050 \\ V_{C C}-0.250 & V_{C C}-0.150 \\ \hline \end{array}$		V V V
ISC	Short-Circuit Current	(Note 1)	$\pm 15 \quad \pm 30$		mA
Is	Supply Current per Amplifier		375	520	$\mu \mathrm{A}$
GBW	Gain-Bandwidth Product (LT1366/LT1367) Gain-Bandwidth Product (LT1368/LT1369)	$\begin{aligned} & A_{V}=1000 \\ & A_{V}=1000 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.16 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\text {S }}$	Settling Time (LT1366/LT1367)	$A_{V}=1, V_{\text {STEP }}=4 \mathrm{~V}$ to 0.1%	30		$\mu \mathrm{S}$

$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{\mathrm{CM}}=V_{\mathrm{EE}} \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$		$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 575 \\ & 575 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 950 \\ & 900 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift	(Note 2)	\bullet		2	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4,5) } \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 425 \\ & 900 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4,5) } \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \bullet \\ \hline \end{array}$		$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{gathered} \hline 675 \\ 1900 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -45 \end{gathered}$	$\begin{array}{r} 15 \\ -10 \end{array}$	$\begin{gathered} 45 \\ 0 \end{gathered}$	nA $n A$
$\Delta \mathrm{I}_{\mathrm{B}}$	Input Bias Current Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{\text {CC }}$	\bullet		25	90	$n \mathrm{~A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{\mathrm{CM}}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA $n A$
$\triangle l_{0 S}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$	\bullet		2	15	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C} \text { (Note 4) } \\ & V_{C M}=V_{E E} \text { (Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA $n A$

ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
Avol	Large-Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	$500 \quad 2000$		V / mV
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{array}{ll} 80 & 87 \\ 74 & 87 \end{array}$		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C}(\text { Note 4) } \end{aligned}$	\bullet	77 87 71 87		dB dB
PSRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel) (Note 4)	$\begin{aligned} & V_{S}=2.3 \mathrm{~V} \text { to } 12 \mathrm{~V}, V_{C M}=V_{0}=0.5 \mathrm{~V} \\ & V_{S}=2.3 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \end{aligned}$	\bullet	88 105 82 100		dB dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{gathered} 9 \\ 45 \\ 120 \end{gathered}$	$\begin{gathered} 14 \\ 80 \\ 230 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & V_{C C}-0.010 V_{C C}-0.005 \\ & V_{C C}-0.110 \\ & V_{C C}-0.300 \\ & V_{C C}-0.055 \\ & \hline \end{aligned}$		V V V
ISC	Short-Circuit Current	(Note 1)	\bullet	± 15		mA
Is	Supply Current per Amplifier		\bullet	360	540	$\mu \mathrm{A}$

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathbf{O V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
Vos	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 900 \\ & 750 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & \hline 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 1150 \\ & 1000 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift	(Note 2)	\bullet		2	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\Delta \mathrm{V}_{0 S}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{gathered} \hline 650 \\ 1800 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{gathered} 725 \\ 2300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\begin{gathered} 0 \\ -45 \end{gathered}$	$\begin{gathered} \hline 45 \\ -10 \end{gathered}$	$\begin{gathered} 80 \\ 0 \end{gathered}$	nA	
$\Delta \\|_{B}$	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet		55	125	nA	
los	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	nA nA n	
$\bar{\Delta} \mathrm{l}_{\mathrm{OS}}$	Input Offset Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet		4	30	nA	
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	nA	
AVOL	Large Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $4.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	400	2000		V / mV	
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	$\begin{array}{\|l\|} \hline \bullet \\ \hline \end{array}$	$\begin{aligned} & \hline 77 \\ & 71 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 87 \\ & \hline \end{aligned}$		dB dB	
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{\text {CC }} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 76 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 87 \\ & 87 \end{aligned}$		dB dB	
PSRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel) (Note 4)	$\begin{aligned} & V_{S}=2.3 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \\ & V_{S}=2.3 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0}=0.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 88 \\ & 82 \end{aligned}$	$\begin{aligned} & 105 \\ & 100 \end{aligned}$		dB dB	
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing LOW	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} 9 \\ 45 \\ 130 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 80 \\ 230 \\ \hline \end{gathered}$	mV mV mV	

ELECTRICAL CHARACTERISTICS

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{0}=2.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{OH}	Output Voltage Swing HIGH	No Load $\mathrm{I}_{\text {SOURCE }}=0.5 \mathrm{~mA}$ $I_{\text {SOURCE }}=2.5 \mathrm{~mA}$	\bullet	$\begin{aligned} & V_{C C}-0.015 \\ & V_{C C}-0.110 \\ & V_{C C}-0.30 \end{aligned}$	$\begin{aligned} & V_{C C}-0.006 \\ & V_{C C}-0.055 \\ & V_{C C}-0.190 \\ & \hline \end{aligned}$		V V V
ISC	Short-Circuit Current	(Note 1)	\bullet	± 12			mA
Is	Supply Current per Amplifier		\bullet		375	575	$\mu \mathrm{A}$

$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 475 \\ & 475 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 850 \\ & 750 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\begin{gathered} 650 \\ 1700 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{array}{cr} \hline 0 & 10 \\ -35 & -10 \\ \hline \end{array}$	$\begin{gathered} 35 \\ 0 \\ \hline \end{gathered}$	nA $n A$
$\Delta{ }^{\text {b }}$	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	20	70	nA
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	nA nA
$\Delta \mathrm{l}_{0}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$	1	6	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	$\begin{array}{ll} \hline 0 & 1 \\ 0 & 1 \end{array}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	nA $n A$
AvoL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$500 \quad 1500$		V / mV
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	77 86 71 86		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	73 86 67 86		dB dB
$V_{0 L}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 6 \\ 40 \\ 110 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ 70 \\ 200 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}-0.008 \\ & V_{C C}-0.004 \\ & V_{C C}-0.100 \\ & V_{C C}-0.250 \\ & V_{C C}-0.050 \\ & \hline \end{aligned}$		V V V
ISC	Short-Circuit Current	(Note 1)	$\pm 10 \quad \pm 20$		mA
IS	Supply Current per Amplifier		350	500	$\mu \mathrm{A}$

$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
$V_{O S}$	Input Offset Voltage (LT1366/LT1368)	$V_{C M}=V_{C C}$	\bullet	200	575
		$V_{C M}=V_{E E}$	μV		
		$V_{C M}=V_{C C}$	200	575	μV
	Input Offset Voltage (LT1367/LT1369)	\bullet	200	950	μV
		$V_{C M}=V_{E E}$	\bullet	200	900

ELECTRICAL CHARACTERISTICS

$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4,5) } \end{aligned}$	\bullet	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 425 \\ & 900 \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4,5) } \end{aligned}$	\bullet	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{gathered} \hline 675 \\ 1900 \end{gathered}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift	(Note 2)	\bullet	2	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet	$\begin{array}{cr} \hline 0 & 15 \\ -45 & -10 \\ \hline \end{array}$	$\begin{gathered} 45 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
ΔI_{B}	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet	25	90	nA
$\mathrm{l}_{\text {OS }}$	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet	$\begin{aligned} & 2 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{Ll}_{0 S}$	Input Offset Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet	2	15	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{array}{ll} \hline 0 & 2 \\ 0 & 1 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	$300 \quad 1500$		V / mV
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{\text {CC }} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	76 83 70 83		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{\text {CC }} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	72 83 66 83		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\mathrm{SINK}}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet	$\begin{gathered} 9 \\ 45 \\ 120 \end{gathered}$	$\begin{gathered} 14 \\ 80 \\ 230 \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet	$\begin{array}{\|ll} \hline V_{C C}-0.010 & V_{C C}-0.005 \\ V_{C C}-0.110 & V_{C C}-0.055 \\ V_{C C}-0.300 & V_{C C}-0.180 \\ \hline \end{array}$		V V V
SC	Short-Circuit Current	(Note 1)	\bullet	± 10		mA
S	Supply Current per Amplifier		\bullet	350	520	$\mu \mathrm{A}$

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 900 \\ & 750 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1000 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\mathrm{V}} \mathrm{OS}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4, 5) } \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{gathered} 650 \\ 1800 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 775 \\ 2400 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
Jos TC	Input Offset Voltage Drift	(Note 2)	\bullet		2	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
B	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet	$\begin{gathered} 0 \\ -45 \\ \hline \end{gathered}$	$\begin{array}{r} 45 \\ -10 \\ \hline \end{array}$	$\begin{gathered} 80 \\ 0 \end{gathered}$	nA $n A$
I_{B}	Input Bias Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{\text {CC }}$	\bullet		55	125	nA
OS	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	nA $n A$
$\mathrm{s}_{0 \mathrm{~S}}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{\text {CC }}$	\bullet		4	30	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	nA nA

ELECTRICAL CHARACTERISTICS

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{C M}=1.5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}=50 \mathrm{mV}$ to $2.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	\bullet	2501000		V / mV
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	73 83 67 83		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \\ & \hline \end{aligned}$	\bullet	71 83 65 83		dB dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=2.5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\bullet \bullet$	$\begin{gathered} 9 \\ 45 \\ 130 \end{gathered}$	$\begin{array}{r} 20 \\ 80 \\ 230 \\ \hline \end{array}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ I_{\text {SOURCE }}=2.5 \mathrm{~mA} \\ \hline \end{array}$	$\bullet \bullet$	$\begin{aligned} & V_{C C}-0.015 V_{C C}-0.006 \\ & V_{C C}-0.110 \\ & V_{C C}-0.300 \\ & V_{C C}-0.055 \\ & V_{C C}-0.190 \end{aligned}$		V V V
ISC	Short-Circuit Current	(Note 1)	\bullet	± 10		mA
Is	Supply Current per Amplifier		\bullet	350	550	$\mu \mathrm{A}$

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{0}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}} \end{aligned}$		$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} 1000 \\ 900 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{gathered} \hline 500 \\ 1300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4, 5) } \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \end{aligned}$	$\begin{gathered} \hline 650 \\ 2000 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} \\ & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 0 \\ -35 \\ \hline \end{gathered}$	$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\begin{gathered} 35 \\ 0 \\ \hline \end{gathered}$	nA $n A$
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$V_{\text {CM }}=V_{\text {EE }}$ to $V_{\text {CC }}$		20	70	nA
Ios	Input Offset Current	$\begin{aligned} & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} \\ & V_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	nA $n A$
$\triangle l_{0 S}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{C C}$		1	6	$n \mathrm{~A}$
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	nA nA
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7.1		pF
AvoL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & 2000 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	Channel Separation	$\mathrm{V}_{0}=-10 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	120	135		dB
SR	Slew Rate (LT1366/LT1367)	$\begin{aligned} & A_{V}=-1, R_{L}=\text { Open, } V_{0}= \pm 10 \mathrm{~V} \\ & \text { Measured at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$		0.13		$\mathrm{V} / \mu \mathrm{S}$
	Slew Rate (LT1368/LT1369)	$\begin{aligned} & A_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=\text { Open, } \mathrm{V}_{0}= \pm 10 \mathrm{~V}, \\ & \text { Measured at } V_{0}= \pm 5 \mathrm{~V} \end{aligned}$		0.065		$\mathrm{V} / \mathrm{\mu s}$
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	$\begin{aligned} & 95 \\ & 89 \end{aligned}$	$\begin{aligned} & 106 \\ & 106 \end{aligned}$		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	$\begin{aligned} & 93 \\ & 87 \end{aligned}$	$\begin{aligned} & 106 \\ & 106 \\ & \hline \end{aligned}$		dB dB
PSRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel)	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \left.V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \text { (Note } 4\right) \end{aligned}$	$\begin{aligned} & 90 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 105 \end{aligned}$		dB dB

ELECTRICAL CHARACTERISTICS

$\Gamma_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{0}=\mathbf{O V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{0 \mathrm{LL}}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \hline V_{E E}+0.006 \\ & V_{E E}+0.040 \\ & V_{E E}+0.240 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}+0.012 \\ & \mathrm{~V}_{\mathrm{EE}}+0.070 \\ & \mathrm{~V}_{\mathrm{EE}}+0.500 \\ & \hline \end{aligned}$	V V V
1 OH	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & V_{C C}-0.008 \\ & V_{C C}-0.100 \\ & V_{C C}-0.800 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}-0.004 \\ & V_{C C}-0.050 \\ & V_{C C}-0.400 \\ & \hline \end{aligned}$		V V V
SC	Short-Circuit Current	(Note 1)	± 30	± 75		mA
S	Supply Current per Amplifier			385	550	$\mu \mathrm{A}$

$\mathrm{J}^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm \mathbf{1 5 V}, \mathrm{V}_{\mathrm{CM}}=\mathbf{0 V}, \mathrm{V}_{0}=\mathbf{O V}$, unless otherwise noted.

;YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
1 OS	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 850 \\ & 850 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1150 \\ & 1000 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\overline{\mathrm{JV}}$ OS	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes 4, 5) } \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{gathered} 525 \\ 1500 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Note } 4,5) \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{gathered} 750 \\ 2300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
Ios TC	Input Offset Voltage Drift	(Note 2)	\bullet		2	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
B	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet	$\begin{gathered} \hline 0 \\ -45 \end{gathered}$	$\begin{array}{r} 15 \\ -10 \end{array}$	$\begin{gathered} 45 \\ 0 \end{gathered}$	nA nA
${ }^{1}$	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet		25	90	nA
OS	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA
$\mathrm{I}_{0 \mathrm{~S}}$	Input Offset Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet		2	15	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C}(\text { Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA
IVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	\bullet	$\begin{aligned} & 1500 \\ & 1000 \end{aligned}$	$\begin{aligned} & 6000 \\ & 6000 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	Channel Separation	$V_{0}=-10 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	110	135		dB
MRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C}(\text { Note } 4) \end{aligned}$		$\begin{aligned} & 95 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 103 \\ & 103 \\ & \hline \end{aligned}$		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E} \text { to } V_{C C}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 92 \\ & 86 \end{aligned}$	$\begin{aligned} & 103 \\ & 103 \end{aligned}$		dB dB
'SRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel)	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \left.V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \text { (Note } 4\right) \end{aligned}$	\bullet	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 105 \\ & 100 \end{aligned}$		dB dB
${ }^{\prime} \mathrm{OL}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	$\bullet \bullet$		$\begin{aligned} & \hline V_{E E}+0.009 \\ & V_{E E}+0.045 \\ & V_{E E}+0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}+0.014 \\ & V_{E E}+0.080 \\ & V_{E E}+0.600 \\ & \hline \end{aligned}$	V V V
'OH	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & V_{C C}-0.01 \\ & V_{C C}-0.11 \\ & V_{C C}-0.95 \end{aligned}$	$\begin{aligned} & V_{C C}-0.005 \\ & V_{C C}-0.055 \\ & V_{C C}-0.500 \end{aligned}$		V V V
SC	Short-Circuit Current	(Note 1)		± 30			mA
3	Supply Current per Amplifier				360	575	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 3), $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{0}=\mathbf{O V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (LT1366/LT1368)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
	Input Offset Voltage (LT1367/LT1369)	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$	\bullet		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 1350 \\ & 1200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift (LT1366/LT1368) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$	\bullet		$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{gathered} 700 \\ 2000 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
	Input Offset Voltage Shift (LT1367/LT1369) Input Offset Voltage Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{E E} \text { to } V_{C C} \\ & V_{C M}=V_{E E}, V_{C C}(\text { Notes } 4,5) \end{aligned}$			$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	$\begin{gathered} 800 \\ 2700 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift	(Note 2)	\bullet		2	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$		$\begin{gathered} 0 \\ -45 \\ \hline \end{gathered}$	$\begin{array}{r} 45 \\ -10 \\ \hline \end{array}$	$\begin{gathered} 80 \\ 0 \\ \hline \end{gathered}$	nA nA d
$\Delta \mathrm{l}_{\mathrm{B}}$	Input Bias Current Shift	$V_{C M}=V_{E E}$ to $V_{C C}$	\bullet		55	125	nA
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=V_{C C} \\ & V_{C M}=V_{E E} \end{aligned}$			$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	$n A$ $n A$
$\overline{\Delta l_{0 S}}$	Input Offset Current Shift	$V_{C M}=V_{\text {EE }}$ to $V_{\text {CC }}$	\bullet		4	30	nA
	Input Bias Current Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{C C} \text { (Note 4) } \\ & V_{C M}=V_{E E}(\text { Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & \hline \end{aligned}$	nA nA
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{0}=-14.7 \mathrm{~V} \text { to } 14.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & V_{0}=-10 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	0	$\begin{gathered} 1000 \\ 800 \\ \hline \end{gathered}$	$\begin{aligned} & 6000 \\ & 6000 \\ & \hline \end{aligned}$		V / mV V / mV
	Channel Separation	$\mathrm{V}_{0}=-10 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	110	130		dB
CMRR	Common-Mode Rejection Ratio (LT1366/LT1368) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{\text {CC }} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 92 \\ & 86 \end{aligned}$	$\begin{aligned} & 103 \\ & 103 \end{aligned}$		dB dB
	Common-Mode Rejection Ratio (LT1367/LT1369) CMRR Match (Channel to Channel)	$\begin{aligned} & V_{C M}=V_{\text {EE }} \text { to } V_{\text {CC }} \\ & V_{C M}=V_{E E} \text { to } V_{C C} \text { (Note 4) } \end{aligned}$	\bullet	$\begin{aligned} & 91 \\ & 85 \end{aligned}$	$\begin{aligned} & 103 \\ & 103 \\ & \hline \end{aligned}$		dB dB
PSRR	Power Supply Rejection Ratio PSRR Match (Channel to Channel)	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \text { (Note } 4 \text {) } \end{aligned}$	\bullet	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 105 \\ & 100 \\ & \hline \end{aligned}$		dB dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	$\begin{aligned} & \text { No Load } \\ & \text { I }_{\text {SINK }}=0.5 \mathrm{~mA} \\ & \text { I }_{\text {SINK }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & V_{E E}+0.009 \\ & V_{E E}+0.045 \\ & V_{E E}+0.300 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{E E}+0.020 \\ & V_{E E}+0.080 \\ & V_{E E}+0.600 \\ & \hline \end{aligned}$	V V V
V_{OH}	Output Voltage Swing HIGH	$\begin{aligned} & \text { No Load } \\ & \text { I }_{\text {SOURCE }}=0.5 \mathrm{~mA} \\ & \text { I }_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{array}{\|l} \hline V_{C C}-0.015 \\ V_{C C}-0.110 \\ V_{C C}-1.100 \\ \hline \end{array}$	$\begin{aligned} & V_{C C}-0.006 \\ & V_{C C}-0.055 \\ & V_{C C}-0.550 \end{aligned}$		V V V
ISC	Short-Circuit Current	(Note 1)		± 30			mA
I_{S}	Supply Current per Amplifier				385	600	$\mu \mathrm{A}$

The denotes specifications that apply over the full operating temperature range.
Note 1: Applies to short circuits to ground for all split supplies and for single supplies less than 20V. Short circuits to either supply for supplies greater than 20 V total may permanently damage the part. A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 2: This parameter is not 100% tested.

Note 3: At $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, the LT1366, LT1367, LT1368, and LT1369 are neither tested nor quality assurance sampled. The specifications indicated are guaranteed by design; correlated, and/or inferred from the $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $70^{\circ} \mathrm{C}$ tests.
Note 4: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1367/LT1369; between the two amplifiers on the LT1366/LT1368.
Note 5: Input offset voltage match is the difference in offset voltage between amplifiers measured at both $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}}$.

ГYPICAL PERFORMANCE CHARACTERISTICS

'The data presented here applies to the LT1366/LT1367/LT1368/LT1369 unless otherwise noted.)

LT1366 TPC03

Input Bias Current vs Temperature

NPN Stage $V_{0 S}$ Distribution (LT1366/LT1368)

LT1366 TPC02

Supply Current vs Supply Voltage

LT1366 TPC05
Output Saturation Voltage vs
Load Current (Output HIGH)

$\Delta \mathrm{V}_{0 S}$-Shift Between PNP and NPN Stages (LT1366/LT1368)

LT1366 TPC01

Input Bias Current vs

 Common-Mode Voltage

LT1366 TPC06

TYPICAL PERFORMANCE CHARACTERISTICS

(The data presented here applies to the LT1366/LT1367/LT1368/LT1369 unless otherwise noted.)

ГYPICAL PGRFORMANCE CHARACTERISTICS

The data presented here applies to the LT1366/LT1367/LT1368/LT1369 unless otherwise noted.)

TYPICAL PERFORMANCE CHARACTERISTICS

(The data presented here applies to the LT1366/LT1367/LT1368/LT1369 unless otherwise noted.)

APPLICATIONS INFORMATION

Rail-to-Rail Operation

The LT1366 family differs from conventional op amps in the design of both the input and output stages. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4, which are active over
different portions of the input common-mode range. Lateral devices are used in both input stages, eliminating the need for clamps across the input pins. Each input stage is trimmed for offset voltage. A complementary output configuration (Q23 through Q26) is employed to create an output stage with rail-to-rail swing. The amplifier is fabri-

Figure 1. LT1366 Simplified Schematic Diagram

IPPLICATIONS Information

ated on Linear Technology's proprietary complementary ipolar process, which ensures very similar DC and AC רaracteristics for the output devices Q24 and Q26.
simple comparator 05 steers current from current jurce I1 between the two input stages. When the input ommon-mode voltage V_{CM} is near the negative supply, 5 is reverse biased, and 11 becomes the tail current for Ie PNP differential pair Q1/Q2. At the other extreme, hen V_{CM} is within about 1.3 V from the positive supply, 5 diverts I1 to the current mirror D3/Q6, which furnishes ie tail current for the NPN differential pair Q3/Q4.
he collector currents of the two input pairs are combined | the second stage, consisting of Q7 through Q11. Most F the voltage gain in the amplifier is contained in this age. Differential amplifier Q14/Q15 buffers the output of ie second stage, converting the output voltage to differitial currents. The differential currents pass through arrent mirrors D4/Q17 and D5/Q16, and are converted to fferential voltages by Q18 and Q19. These voltages are so buffered and applied to the output Darlington pairs 23/Q24 and Q25/Q26. Capacitors C1 and C2 form local edback loops around the output devices, lowering the stput impedance at high frequencies.

put Offset Voltage

ince the amplifier has two input stages, the input offset)ltage changes depending upon which stage is active. ie input offsets are random, but bounded voltages. 'hen the amplifier switches between stages, offset voltjes may go up, down, or remain flat; but will not exceed e guaranteed limits. This behavior is illustrated in three stribution plots of input offset voltage in the Typical arformance Characteristics section.

verdrive Protection

vo circuits prevent the output from reversing polarity hen the input voltage exceeds the common-mode range. 'hen the noninverting input exceeds the positive supply । approximately 300 mV , the clamp transistor Q12 (Fige 1) turns on, pulling the output of the second stage low, hich forces the output high. For inputs below the negae supply, diodes D1 and D2 turn on, overcoming the Ituration of the input pair Q1/Q2.

When overdriven, the amplifier draws input current that exceeds the normal input bias current. Figures 2 and 3 show some typical overdrive currents as a function of input voltage. The input current must be less than 1 mA of positive overdrive or less than 7 mA of negative overdrive, for the phase reversal protection to work properly. When the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current. In addition to overdrive protection, the amplifier is protected against ESD strokes up to 4 kV on all pins.

LT1366 F02
Figure 2. Input Bias Current vs Common-Mode Voltage

Figure 3. Input Bias Current vs Common-Mode Voltage

APPLICATIONS INFORMATION

Improved Supply Rejection in the LT1368/LT1369

The LT1368/LT1369 are variations of the LT1366/LT1367 offering greater supply rejection and lower high frequency output impedance. The LT1368/LT1369 require a $0.1 \mu \mathrm{~F}$ load capacitance for compensation. The output capacitance forms a filter, which reduces pickup from the supply and lowers the output impedance. This additional filtering is helpful in mixed analog/digital systems with common supplies, or systems employing switching supplies. Filtering also reduces high frequency noise, which may be beneficial when driving A / D converters.

Figure 4 shows the outputs of the LT1366/LT1368 perturbed by a $200 \mathrm{mV} V_{\text {p-p }} 50 \mathrm{kHz}$ square wave added to the positive supply. The LT1368's power supply rejection is about ten times greater than that of the LT1366 at 50 kHz Note the 5-to-1 scale change in the output voltage traces

The tolerance of the external compensation capacitor is not critical. The plots of Overshoot vs Load Current in the Typical Performance Characteristics section illustrate the effect of a capacitive load.

Figure 4b. LT1368 Power Supply Rejection Test

Figure 4a. LT1366 Power Supply Rejection Test

TYPICAL APPLICATIONS

Buffering A/D Converters

Figure 5 shows the LT1368 driving an LTC ${ }^{\text {® }} 1288$ twocharinel micropower A/D Converter (ADC). The LTC1288 can accommodate voltage references and input signals equal to the supply rails. The sampling nature of this ADC eliminates the need for an external sample-and-hold, but may call for a drive amplifier because of the ADC's $12 \mu \mathrm{~s}$ settling requirement. The LT1368's rail-to-rail operation and low input offset voltage make it well-suited for low power, low frequency A/D applications. Either the LT1366 or LT1368 could be used for this application. However, for low frequencies ($\mathrm{f}<1 \mathrm{kHz}$) the LT1368 provides better supply rejection.

Figure 5. Two-Channel Low Power A/D Converter

IPICAL APPLICATIONS

ecision Low Dropout Regulator

croprocessors and complex digital circuits frequently ecify tight control of power supply characteristics. The cuit shown in Figure 6 provides a precise $3.6 \mathrm{~V}, 1 \mathrm{~A}$ tput from a minimum 3.8V input voltage. The circuit's minal operating voltage is $4.75 \mathrm{~V} \pm 5 \%$. The voltage erence and resistor ratios determine output voltage suracy, while the LT1366's high gain enforces 0.2% line d load regulation. Quiescent current is about 1 mA and es not change appreciably with supply or load. All mponents are available in surface mount packages.
e regulator's main loop consists of A1 and a logic level T, Q1. The output is fed back to the op amp's positive out because of the phase inversion through Q1. The julator's frequency response is limited by Q1's roll-off d the phase lead introduced by the output capacitor's ective series resistance (ESR). Two pole-zero networks mpensate for these effects. The pole formed with R5 d C2 rolls off the gain set with the feedback network, ile the pole formed with R7 and C3 rolls off A1's gain ectly, which is the dominant influence on settling time. e zeros formed with R6 and C2, and R8 and C3 provide ase boost near the unity-gain crossover, which in-
creases the regulator's phase margin. Although not directly part of the compensation, R9 decouples the op amp's output from Q1's large gate capacitance.
A second loop provides a foldback current limit. A2 compares the sense voltage across R1 with 50 mV referenced to the positive rail. When the sense voltage exceeds the reference, A2's output drives Q1's gate positive via A1. In current limit, the output voltage collapses and the current limit LED (D1) turns on causing about 30 mV to drop across R3. A2 regulates Q1's drain current so that the deficit between the 50 mV reference and the voltage across R3 is made up across the sense resistor. The reduced sense voltage is 20 mV , which sets the current limit to about 400 mA . As the supply voltage increases, the voltage across R3 increases, and the current limit folds back to a lower level. The current limit loop deactivates when the load current drops below the regulated output current. When the supply turns on rapidly, C1 bypasses the fold back circuit allowing the regulator to start-up into a heavy load.

Q1 does not require a heat sink. When mounted on a type FR4 PC board, Q1 has a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$. At 1.4 W worst case dissipation, Q1 can operate up to $80^{\circ} \mathrm{C}$.

Figure 6. Precision 3.6V, 1A Low Dropout Regulator

LT1366/LT1367
 LT1368/LT1369

TYPICAL APPLICATIONS

High-Side Current Source

The wide-compliance current source shown in Figure 7 takes advantage of the LT1366's ability to measure small signals near the positive supply rail. The LT1366 adjusts Q1's gate voltage to force the voltage across the sense resistor (RSENSE) to equal the voltage from the supply to the potentiometer's wiper. A rail-to-rail op amp is needed because the voltage across the sense resistor must drop to zero when the divided reference voltage is set to zero. Q2 acts as a constant current sink to minimize error in the reference voltage when the supply voltage varies.

Figure 7. High-Side Current Source
The circuit can operate over a wide supply range (5 V < $\mathrm{V}_{\text {CC }}$ $<30 \mathrm{~V}$). At low input voltage, circuit operation is limited by the MOSFET's gate drive requirements. At high input
voltage, circuit operation is limited by the LT1366's absc lute maximum ratings and the output power require ments.

The circuit delivers 1 A at 200 mV of sense voltage. With 5 V input supply, the power dissipation is 5 W . For opera tion at $70^{\circ} \mathrm{C}$ ambient temperature, the MOSFET's heat sin must have a thermal resistance of:

$$
\begin{aligned}
& \theta_{\mathrm{HS}}=\theta_{\mathrm{JA}} \text { SYSTEM }-\theta_{\mathrm{JC}} \text { FET } \\
& =\left(125^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right) / 5 \mathrm{~W}-1.25^{\circ} \mathrm{C} / \mathrm{W} \\
& =11^{\circ} \mathrm{C} / \mathrm{W}-1.25^{\circ} \mathrm{C} / \mathrm{W} \\
& =9.75^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

which is easily achievable with a small heat sink. Inpı voltages greater than 5 V require the use of a larger hec sink or a reduction of the output current.
The circuit's supply regulation is about $0.03 \% / \mathrm{V}$. Th output impedance is equal to the MOSFET's output imped ance multiplied by the op amp's open-loop gain. Degrada tions in current-source compliance occur when the volt age across the MOSFET's on-resistance and the sens resistor drops below the voltage required to maintain th desired output current. This condition occurs when [V_{C} $\left.-V_{O U T}\right]<\left[I_{\text {LOAD }} \times\left(R_{\text {SENSE }}+R_{\text {ON }}\right)\right]$.

Single Supply, 1kHz, 4th Order Butterworth Filter

An LT1367 is used in Figure 8 to form a 4th orde Butterworth filter. The filter is a simplified state variabl architecture consisting of two cascaded 2nd order sec tions. Each section uses the 360 degree phase shift aroun

Figure 8. Four-Pole 1kHz, 3.3V Single Supply, State Variable Filter Using the LT1367

[YPICAL APPLICATIONS

he 2 op amp loop to create a negative summing junction it A1's positive input ${ }^{1}$. The circuit has low sensitivities for senter frequency and Q, which are set with the following zquations:

$$
\omega_{0}^{2}=1 /(\mathrm{R} 1 \times \mathrm{C} 1 \times \mathrm{R} 2 \times \mathrm{C} 2)
$$

where,

$$
R 1=1 /\left(\omega_{0} \times Q \times C 1\right) \text { and } R 2=Q /\left(\omega_{0} \times C 2\right)
$$

The DC bias applied to A2 and A4, half supply, is not leeded when split supplies are available. The circuit ;wings rail-to-rail in the passband making it an excellent inti-aliasing filter for ADCs. The amplitude response is flat o 01 kHz then rolls off at $80 \mathrm{~dB} /$ decade.

James Hahn, "State Variable Filter Trims Predecessor's Component Count," Electronics, April '1, 1982.

Figure 9. Frequency Response of 4th Order Butterworth Filter

Figure 10. Input Bias Current Cancellation

Figure 11. Rail-to-Rail Potentiometer Buffer

RELATED PARTS

'ART	DESCRIPTION	COMMENTS
.T1078/LT1079	Dual/Quad 55 A Max, Single Supply, Precision Op Amps	Input/Output Common-Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}$ and $2.5 \mathrm{LV} / \mathrm{C}$ Drift (Max), 200kHz GBW, 0.07V/ $/ \mathrm{s}$ Slew Rate
.TC1152	Rail-to-Rail Input, Rail-to-Rail Output, Zero-Drift Amplifier	High DC Accuracy, $10 \mu \mathrm{~V} \mathrm{~V}_{0 S(\mathrm{MAX})}, 100 \mathrm{nV} / \mathrm{C}$ Drift, 1 MHz GBW, 1V/ μ s Slew Rate, Supply Current 2.2 mA (Max), Single Supply, Can Be Configured for C-Load ${ }^{\text {TM }}$ Operation
.T1178/LT1179	Dual/Quad 17 4 A Max, Single Supply, Precision Op Amps	Input/Output Common-Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}$ and $4 \mu \mathrm{~V} / \mathrm{C}$ Drift (Max), 85 kHz GBW, $0.04 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
.T1211/LT1212	Dual/Quad 14MHz, 7V/us, Single Supply, Precision Op Amps	Input Common-Mode Includes Ground, $275 \mu \mathrm{~V} \mathrm{~V}_{0 S}(\mathrm{MAX})$ and $6 \mu \mathrm{~V} / \mathrm{C}$ Drift (Max), Supply Current 1.8mA per Op Amp (Max)

;-Load is a trademark of Linear Technology Corporation

NOTES

SECTION 2—AMPLIFIERS

HIGH SPEED OPERATIONAL AMPLIFIERS
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives
2-34 Precision Current-to-Voltage Converter for Optical Disk Drives

feATURES

- Four Complete Current-to-Voltage Converters
- 14-Lead Small Outline Package
- Accurate Gain: $20 \mathrm{mV} / \mu \mathrm{A}, \pm 4 \%$
- Low Offset Error: 250nA Max
- Low Offset Drift: $2.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ Max
- Fast Settling: 145 ns to 0.1% for a 2 V Step
- Wide Bandwidth: 12 MHz
- Low Noise: $5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Low Quiescent Current: 11mA Max
- Wide Supply Range: $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ or 4 V to 36 V

APPLICATIONS

- Optical Disk Drive

Photo Diode Amplifiers
Focus and Tracking Summing Amplifiers

- Color Scanners

RGB Amplifiers
Selectable Gain Amplifiers

- Matched Inverting Amplifiers

DESCRIPTION

The $L T{ }^{\circledR} 1311$ is a quad current-to-voltage converter designed for the demanding requirements of photo diode amplification. A new approach to current-to-voltage conversion provides excellent DC and AC performance without external DC trims or AC frequency compensation. The LT1311 is ideal for converting multiple photo diode currents to voltages and for general purpose matched inverting amplifier applications.

The LT1311 contains four current feedback amplifiers, each with an internal 20k feedback resistor. A supply bypass capacitor is the only external component required to convert four signal currents to voltages. Unlike voltage feedback-based current-to-voltage converters that operate with only a specified value of input capacitance, the current feedback LT1311 settles cleanly with any input capacitance up to 50 pF . Only in the most demanding applications will the LT1311 need to be mounted close to the photo diodes.

[^19]
TYPICAL APPLICATION

Photo Diode Current-to-Voltage Converter

Transient Response

INPUT $=100 \mu A$ STEP
$V_{S}= \pm 5 \mathrm{~V}$
1311 TAC2

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-}) 36 V
Input Current \qquad $\pm 15 \mathrm{~mA}$ Output Short-Circuit Duration (Note 1)........ Continuous Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Junction Temperature
©..
\qquad
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $v_{S}=10 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Current to Voltage Gain	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ to 8 $8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ to 5 V	\bullet	19.2	20	20.8	$\mathrm{mV} / \mu \mathrm{A}$
	Current to Voltage Gain Drift		\bullet		-70		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Current to Voltage Gain Mismatch	Between Amplifiers ($\Delta \mathrm{G} / 20 \mathrm{k}$) $\times 100 \%$	\bullet		0.1	1.0	\%
Ios	Input Offset Voltage	With Respect to V VIAS	\bullet		± 150	± 500	$\mu \mathrm{V}$
$\underline{\mathrm{JV}} \underline{\text { OS }}$ / T	Input Offset Voltage Drift				± 1		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Output Offset Voltage	With Respect to $V_{\text {BIAS }}$ $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=0 \mathrm{~V}$	\bullet		$\begin{gathered} \pm 1.5 \\ \pm 3 \end{gathered}$	$\begin{gathered} \pm 5 \\ \pm 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Output Offset Voltage Drift	$(A+B)-(C+D)$	\bullet		± 10	$\begin{aligned} & \pm 50 \\ & \pm 80 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Output Offset Voltage Mismatch	Between Amplifiers	\bullet		± 2	± 4	mV
	Bias Input Current	Pin 4	\bullet		± 5	± 20	$\mu \mathrm{A}$
	Output Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
n	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
in	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=40 \mathrm{~dB}$			4.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Input Impedance	$\begin{aligned} & \Delta V_{O S} / \Delta I_{\mathbb{N}}, D C, \Delta V_{O U T}=2 V \text { to } 8 V\left(I_{I N}= \pm 150 \mu A\right) \\ & \Delta V_{O S} / \Delta I_{I N}, f=10 \mathrm{MHz} \end{aligned}$	\bullet		$\begin{aligned} & \hline 0.2 \\ & 400 \end{aligned}$	2	Ω Ω
	Bias Voltage Range		\bullet	$\mathrm{V}^{-}+2 \mathrm{~V}$		$\mathrm{V}^{+}-2 \mathrm{~V}$	V
	Bias Rejection Ratio	$\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {BIAS }}, \mathrm{V}_{\text {BIAS }}=2 \mathrm{~V}$ to 8 V	\bullet	55	64		dB
	Bias Input Resistance	$\mathrm{V}_{\text {BIAS }}=2 \mathrm{~V}$ to 8V	\bullet	250	500		$\mathrm{k} \Omega$
	Bias Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$			18		pF
'SRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=0 \mathrm{~V}$	\bullet	90	103		dB
	Minimum Supply Voltage	$\mathrm{V}_{\text {BIAS }}=2 \mathrm{~V}$	\bullet	4			V
	Voltage Gain	$\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {OS }}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ to $8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ to 5 V	\bullet	10	100		V / mV
'OUT	Maximum Output Voltage Swing	Output High, No Load, $\mathrm{I}_{\mathrm{IN}}=-250 \mu \mathrm{~A}$ Output High, $I_{\text {SOURCE }}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}=-250 \mu \mathrm{~A}}$	\bullet	$\begin{aligned} & 8.8 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.8 \end{aligned}$		V
		Output Low, No Load, $\mathrm{I}_{\mathrm{N}}=250 \mu \mathrm{~A}$ Output Low, $\mathrm{I}_{\mathrm{IINK}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{IN}}=250 \mu \mathrm{~A}$	\bullet		$\begin{aligned} & 1.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	V
	Output Impedance	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=10 \mathrm{MHz}$			60		Ω
OUT	Maximum Output Current	$\mathrm{I}_{\text {IN }}= \pm 200 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	\bullet	± 30	± 55		mA
S	Supply Current	$\mathrm{I}_{\text {IN }}=0$	\bullet		7	11	mA
;	Slew Rate	$\mathrm{I}_{\text {IN }}= \pm 150 \mu \mathrm{~A}, \mathrm{~V}_{\text {OUT }}$ at $3 \mathrm{~V}, 7 \mathrm{~V}$			80		$\mathrm{V} / \mathrm{\mu s}$

ELECTRICAL CHARACTERISTICS $V_{S}=10 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BW	Small-Signal Bandwidth			12		MHz
	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\text {IN }}=20 \mathrm{~K}$		10		MHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$\begin{aligned} & 10 \% \text { to } 90 \%, V_{\text {OUT }}=6 V_{\text {P-P, }}, R_{\text {IN }}=20 \mathrm{k} \\ & 10 \% \text { to } 90 \%, V_{\text {OUT }}=100 \mathrm{~m} V_{\text {P-P }}, R_{\text {IN }}=20 \mathrm{k} \end{aligned}$		$\begin{aligned} & 65 \\ & 35 \end{aligned}$		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} \mathrm{V}_{\text {P-P, }}, \mathrm{R}_{\text {IN }}=20 \mathrm{k}$		0		\%
t_{S}	Settling Time	$\begin{aligned} & \Delta V_{\text {OUT }}=2 \mathrm{~V}, 0.1 \%, R_{\text {IN }}=20 \mathrm{k} \\ & V_{S}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}, 0.1 \%, \mathrm{R}_{\text {IN }}=20 \mathrm{k} \end{aligned}$		$\begin{aligned} & \hline 145 \\ & 210 \end{aligned}$		ns
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {RMS }}, 20 \mathrm{~Hz}$ to 20kHz, $\mathrm{R}_{\text {IN }}=20 \mathrm{k}$		0.004		\%
	Crosstalk	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V} \text { to } 7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } 5 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz},$ 3 Channels Driven		110		dB

The - denotes specifications which apply over the full specified temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Note 1: A heat sink may be required depending on the power supply voltage and the number of amplifiers that are shorted.

TYPICAL PERFORMAOCG CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMAOCG CHARACTERISTICS

Small-Signal Response

$V_{S}= \pm 5 \mathrm{~V}$
$A_{V}=-1$
$R_{L}=2 k$

Large-Signal Response

$V_{S}= \pm 15 \mathrm{~V}$
$A_{v}=-1$
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$

SIMPLIFIED SCHEmATIC

APPLICATIONS INFORMATION

Description

The LT1311 contains four identical current feedback amplifiers with their noninverting inputs tied together at pin 4. An external bias voltage is applied to this pin to set the quiescent output voltage of each amplifier. Each amplifier has an internal 20 k feedback resistor between the output and the inverting input. The amplifiers are packaged in a 14-pin SO (small outline) package with all four inverting inputs on one side and the outputs on the other. None of the inputs (or the outputs) are on adjacent pins for excellent channel separation.
The feedback resistors in the LT1311 are laser-trimmed at wafer sort to set the current-to-voltage gain. The gain is set to $20 \mathrm{mV} / \mu \mathrm{A}$; the change with temperature is typically $-70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The gain matching of the four amplifiers is ten times better. The input offset voltage and bias current are trimmed as well. The trimming also minimizes the resulting output offset drift. For more detailed circuit information, please see the May 1995 (Volume 5, Number 2) issue of Linear Technology magazine.

Supply Voltages

The LT1311 can be operated on single or split supplies. The total supply voltage must be greater than 4 V and less than 36V. The bias voltage applied to pin 4 can be any value from 2 V above the negative supply to 2 V below the positive supply. The outputs can swing to within IV of either supply.

The LT1311 is trimmed while operating on a single 10 V supply with a bias voltage of 5 V ; this is the equivalent of $\pm 5 \mathrm{~V}$ supplies with the bias at ground. Operation on a single 5 V supply with a bias voltage of 2.5 V results in very similar performance. Operation on $\pm 15 \mathrm{~V}$ supplies results in slightly more bandwidth and offset (see the electrical tables and the characteristic curves).
Bypassing the supplies and bias voltage pins requires no special care. For accurate settling, a $0.1 \mu \mathrm{~F}$ capacitor within an inch or two of the package works well.

Input Characteristics

The inputs of the LT1311 are low impedance summing nodes. The current feedback amplifiers in the LT1311 have an open-loop input impedance of only a few hundred ohms and therefore the closed-loop response is fairly independent of stray capacitance on the inputs. This is a significant advantage over voltage feedback amplifiers that have to be set up for a particular input capacitance. The LT1311 settles cleanly with any input capacitance from zero to 50 pF as shown in the characteristic curves. When the LT1311 is used to convert photo diode currents to signal voltages, the LT1311 does not have to be located close to the diodes.

Output Characteristics

The outputs of the LT1311 are complementary emitter followers. The outputs will swing to within IV of the supplies with no load, 1.2 V delivering 10 mA . The outputs are short-circuit protected with a 55 mA current limit.

Voltage Gain Applications

When the LT1311 is used with external input resistors to make an inverting voltage gain amplifier, the bandwidth remains fairly constant for gains of 10 or less. At high gains the bandwidth is limited by a gain bandwidth product of about 250 MHz . See the characteristic curves for details.

The bandwidth is also influenced by any stray capacitance in parallel with the input resistor. The parallel stray capacitance results in a zero that pushes out the bandwidth. This is particularly noticeable with large input resistors that give gains less than one. For example, a single 100k input resistor results in a bandwidth of 14 MHz but two 50 k resistors in series result in only 10 MHz bandwidth.

Overload Recovery

When one or more of the outputs is driven into the rail it will not affect the other amplifiers. However, the output that hit the rail will generate a glitch and take one to two microseconds to recover. Supply current will increase 2 mA to 3 mA for each amplifier while it is driven into the rail.

LT1311

TYPICAL APPLICATIONS

Basic Optical System Focus and Tracking Signal Generation

Wide Common-Mode Range Instrumentation Amplifier

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1113	Dual Low Noise, Precision, JFET Input Op Amp	Lowest Voltage Noise FET Op Amp
LT1169	Dual Low Noise, Picoampere Bias Current, JFET Input Op Amp	5pA Input Bias Current
LT1213/LT1214	$28 \mathrm{MHz}, 12 \mathrm{~V} / \mu \mathrm{s}$, Single Supply, Dual and Quad Precision Op Amps	Highest Bandwidth, Precision Single Supply Op Amps
LT1215/LT1216	$23 M H z, 50 V / \mu s$ Single Supply, Dual and Quad Precision Op Amps	Fastest Settling, Precision Single Supply Op Amps
LT1222	Low Noise, Very High Speed Op Amp	External Compensation and Output Clamping

SECTION 2—AMPLIFIERS

ZERO-DRIFT OPERATIONAL AMPLIFIERS
LTC1152, Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp
2-42

Rail-to-Rail Input Rail-to-Rail Output Zero-Drift Op Amp

features

- Input Common-Mode Range Includes Both Rails
- Output Swings Rail to Rail
- Output Will Drive $1 \mathrm{k} \Omega$ Load
- No External Components Required
- Input Offset Voltage: 10 1 V Max
- Input Offset Drift: $100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ Max
- Minimum CMRR: 115 dB
- Supply Current: 3.0mA Max
- Shutdown Pin Drops Supply Current to $5 \mu \mathrm{~A}$ Max
- Output Configurable to Drive Any Capacitive Load
- Operates from 2.7V to 14V Total Supply Voltage

APPLICATIONS

- Rail-to-Rail Amplifiers and Buffers
- High Resolution Data Acquisition Systems
- Supply Current Sensing in Either Rail
- Low Supply Voltage Transducer Amplifiers
- High Accuracy Instrumentation
- Single Negative Supply Operation

DESCRIPTIOn

The LTC ${ }^{\circledR} 1152$ is a high performance, low power zero-drift op amp featuring an input stage that common modes to both power supply rails and an output stage that provides rail-to-rail swing, even into heavy loads. The wide input common-mode range is achieved with a high frequency on-board charge pump. This technique eliminates the crossover distortion and limited CMRR imposed by competing technologies. The LTC1152 is a C-Load ${ }^{\text {TM }}$ of amp, enabling it to drive any capacitive load.
The LTC1152 shares the excellent DC performance specs of LTC's other zero-drift amplifiers. Typical offset voltage is $1 \mu \mathrm{~V}$ and typical offset drift is $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$. CMRR and PSRR are 130 dB and 120 dB and open-loop gain is 130 dB . Input noise voltage is $2 \mu \mathrm{~V}$ P-p from 0.1 Hz to 10 Hz . Gain-bandwidth product is 0.7 MHz and slew rate is $0.5 \mathrm{~V} / \mu \mathrm{s}$, all with supply current of 3.0 mA max over temperature. The LTC1152 also includes a shutdown feature which drops supply current to $1 \mu \mathrm{~A}$ and puts the output stage in a high impedance state.
The LTC1152 is available in 8-pin PDIP and 8-pin S0 packages and uses the standard op amp pinout, allowing it to be a plug-in replacement for many standard op amps.

[^20] C-Load is trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Input and Output Waveforms

absolute maximum ratings

Total Supply Voltage (V^{+}to V^{-}) 14 V
Input Voltage e..................... $\mathrm{V}^{+}+0.3 \mathrm{~V}$ to $\mathrm{V}^{-}-0.3 \mathrm{~V}$
Output Short-Circuit Duration (Pin 6).......... Indefinite
Operating Temperature Range
LTCC152C.. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC11521........................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range............. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).............. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

TOP VIEW	ORDER PART NUMBER
	LTC1152CN8
	LTC1152CS8
	LTC1152IN8
	LTC1152IS8
N8 PACKAGE 8-IEAD PDIP	S8 PART MARKING
S8 PACKAGE 8-LEAD PLASTIC So Sol	
$\mathrm{T}_{\text {JMax }}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{N} 8)$$\mathrm{T}_{\mathrm{JMAX}}=110^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=200^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{S} 8)$	1152
	11521

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{v}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ operating temperature range, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\checkmark_{0 S}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)			± 1	± 10	$\mu \mathrm{V}$
$\underline{\Delta V_{0 S}}$	Average Input Offset Drift	(Note 1)	\bullet		± 10	± 100	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$
	Long-Term Offset Drift				± 50		$\mathrm{nV} / \sqrt{\mathrm{Mo}}$
B	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	\bullet		± 10	$\begin{gathered} \pm 100 \\ \pm 1000 \end{gathered}$	pA pA
OS	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	\bullet		± 20	$\begin{aligned} & \pm 200 \\ & \pm 500 \end{aligned}$	pA pA
3_{n}	Input Noise Voltage (Note 3)	$\begin{aligned} & R_{S}=100 \Omega, 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & R_{S}=100 \Omega, 0.1 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \end{aligned}$			$\begin{gathered} 2 \\ 0.5 \end{gathered}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \mu V_{\text {P-P }} \\ & \mu V_{\text {P-P }} \end{aligned}$
n	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$			0.6		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
3MRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 5V	\bullet	115	130		dB
${ }^{\text {S }}$ SRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 12V	-	$\begin{aligned} & 110 \\ & 105 \end{aligned}$	120		dB $d B$
tyol	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 4.5 V	-	110	130		dB
JOUT	Maximum Output Voltage Swing (Note 4)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\mathrm{S}}=\text { Single } 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{~V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	4.0 ± 2.0	$\begin{array}{r} 4.4 \\ 2.2 \\ \pm 2.49 \\ \hline \end{array}$		V V V
3 R	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$			0.5		$\mathrm{V} / \mathrm{\mu s}$
3BW	Gain-Bandwidth Product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$			0.7		MHz
S	Supply Current	No Load Shutdown = 0V	\bullet		$\begin{gathered} 2.2 \\ 1 \end{gathered}$	$\begin{gathered} 3.0 \\ 5 \end{gathered}$	mA $\mu \mathrm{A}$
OSD	Output Leakage Current	Shutdown $=0 \mathrm{~V}$	\bullet		± 10	± 100	nA
$1{ }_{\text {CP }}$	Charge Pump Output Voltage	$\mathrm{I}_{\mathrm{CP}}=0$			7.3		V
IL	Shutdown Pin Input Low Voltage				2.5		V
IH	Shutdown Pin Input High Voltage				4		V
IN	Shutdown Pin Input Current	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		-1	-5	$\mu \mathrm{A}$
CP	Internal Charge Pump Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			4.7		MHz
SMPL	Internal Sampling Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.3		kHz

ELECTRICAL CHARACTERISTICS $v_{s}=3, T_{A}=$ operating temperatur range, unless onthemise speefirie.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1)			± 1	± 10	$\mu \mathrm{V}$
$\Delta V_{\text {OS }}$	Average Input Offset Drift	(Note 1)	\bullet		± 10	± 100	$\mathrm{nV} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	\bullet		± 5	$\begin{gathered} \pm 100 \\ \pm 1000 \end{gathered}$	pA pA
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)	-		± 10	$\begin{aligned} & \pm 200 \\ & \pm 500 \end{aligned}$	pA pA
e_{n}	Input Noise Voltage (Note 3)	$\begin{aligned} & R_{S}=100 \Omega, 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & R_{S}=100 \Omega, 0.1 \mathrm{~Hz} \text { to } 1 \mathrm{~Hz} \end{aligned}$			$\begin{gathered} 2 \\ 0.75 \end{gathered}$		$\begin{aligned} & \mu V_{p-p} \\ & \mu V_{p-p} \end{aligned}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$			0.6		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to 3V	\bullet		130		dB
AVOL	Large-Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 2.5 V	\bullet	106	130		dB
V OUT	Maximum Output Voltage Swing (Note 4)	$\begin{aligned} & R_{L}=1 \mathrm{k}, \mathrm{~V}_{\mathrm{S}}=\text { Single } 3 \mathrm{~V} \\ & R_{L}=100 \mathrm{k}, \mathrm{~V}_{S}= \pm 1.5 \mathrm{~V} \end{aligned}$	\bullet	2.0	$\begin{gathered} 2.5 \\ \pm 1.48 \end{gathered}$		V
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$			0.4		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain-Bandwidth Product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$			0.5		MHz
Is	Supply Current	No Load Shutdown $=0 \mathrm{~V}$	\bullet		$\begin{gathered} 1.8 \\ 1 \end{gathered}$	$\begin{gathered} 2.5 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\underline{\text { OSD }}$	Output Leakage Current	Shutdown $=0 \mathrm{~V}$	\bullet		± 10		nA
$\mathrm{V}_{\text {CP }}$	Charge Pump Output Voltage	$\mathrm{I}_{\mathrm{CP}}=0$			4.5		V
$\mathrm{V}_{\text {IL }}$	Shutdown Pin Input Low Voltage				1.2		V
$\mathrm{V}_{\text {IH }}$	Shutdown Pin Input High Voltage				2.3		V
1 IN	Shutdown Pin Input Current	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$			-1		$\mu \mathrm{A}$
f_{CP}	Internal Charge Pump Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			4.2		MHz
$\mathrm{f}_{\text {SMPL }}$	Internal Sampling Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.1		kHz

The - denotes specifications which apply over the full operating temperature range.
Note 1: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels during automated testing.
Note 2: At $\mathrm{T} \leq 0^{\circ} \mathrm{C}$ these parameters are guaranteed by design and not tested.
Note 3: 0.1 Hz to 10 Hz noise is specified DC coupled in a $10-\mathrm{sec}$ window; 0.1 Hz to 1 Hz noise is specified in a $100-\mathrm{sec}$ window with an RC highpass
filter at 0.1 Hz . Contact LTC factory for sample tested or 100% tested noise parts.
Note 4: All output swing measurements are taken with the load resistor connected from output to ground. For single supply tests, only the positive swing is specified (negative swing will be OV due to the pull-down effect of the load resistor). For dual supply operation, both positive and negative swing are specified.

TYPICAL PGRFORMANCE CHARACTERISTICS

1152601

Output Swing vs Load Resistance

1152 G04
Charge Pump Voltage vs Supply Voltage

Supply Current vs Supply Voltage

Output Short-Circuit Current vs Supply Voltage

1152005

Supply Current vs Temperature

Open-Loop Output Resistance vs Supply Voltage

Charge Pump Voltage vs Load Current

1152 G06

Input Bias Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

1152610

Gain and Phase Shift vs

Frequency

Common－Mode Rejection Ratio vs Frequency

1152 G13

1152 G15

Power Supply Rejection Ratio vs Frequency

0.1 Hz to 10 Hz Input Noise

1152618

Gain and Phase Shift vs Frequency

1152 G12 （Эヨロ）$\perp-I H S$ ヨSVHd

Small－Signal Transient Response

$V_{S}= \pm 2.5 \mathrm{~V}$
$A_{V}=1$

Large－Signal Transient Response

APPLICATIONS IMFORMATION

Rail-to-Rail Operation

The LTC1152 is a rail-to-rail input common-mode range, rail-to-rail output swing op amp. Most CMOS op amps, including the entire LTC zero-drift amplifier line, and even a few bipolar op amps, can and do, claim rail-to-rail output swing. One obvious use for such a device is to provide a unity-gain buffer for 0 V to 5 V signals running from a single 5 V power supply. This is not possible with the vast majority of so-called "rail-to-rail" op amps; although the output can swing to both rails, the negative input (which is connected to the output) will exceed the common-mode input range of the device at some point (generally about 1.5 V below the positive supply), opening the feedback loop and causing unpredictable and sometimes bizarre behavior.
The LTC1152 is an exception to this rule. It features both rail-to-rail output swing and rail-to-rail input commonmode range (CMR); the input CMR actually extends beyond either rail by about 0.3 V . This allows unity-gain buffer circuits to operate with any input signal within the power supply rails; input signal swing is limited only by the output stage swing into the load. Additionally, signals occurring at either rail (power supply current sensing, for example) can be amplified without any special circuitry.

Internal Charge Pump

The LTC1152 achieves its rail-to-rail input CMR by using a charge pump to generate an internal voltage approximately 2 V higher than V^{+}. The input stages of the op amp are run from this higher voltage, making signals at V^{+} appear to be 2 V below the front end's power supply (Figure 1). The charge pump is contained entirely within the LTC1152; no external components are required.
About $100 \mu V_{\text {P-p }}$ of residual charge pump switching noise will be present on the output of the LTC1152. This feedthrough is at 4.7 MHz , higher than the gain-bandwidth of the LTC1152, and will generally not cause any problems. Very sensitive applications can reduce this feedthrough by connecting a capacitor from the CP pin (pin 8) to V^{+}(pin 7); a $0.1 \mu \mathrm{~F}$ capacitor will reduce charge pump feedthrough to negligible levels. The LTC1152 includes an internal diode from pin 8 to pin 7 to prevent external parasitic capacitance from lengthening start-up

Figure 1. LTC1152 Internal Block Diagram
time. This diode can stand short-term peak currents of about 50 mA , allowing it to quickly charge external capacitance to ground or V^{-}. Large capacitors ($>1 \mu \mathrm{~F}$) should not be connected between pin 8 and ground or V^{-}to prevent excessive diode current from flowing at start-up. The LTC1152 can withstand continuous short circuits between pin 8 and V^{+}; however, short circuiting pin 8 to ground or V^{-}will cause large amounts of current to flow through the diode, destroying the LTC1152. Don't do it.

Output Drive

The LTC1152 features an enhanced output stage that can sink and source 10 mA with a single 5 V supply while maintaining rail-to-rail output swing under most loading conditions. The output stage can be modeled as a perfect rail-to-rail voltage source with a resistor in series with it; this open-loop output resistance limits the output swing by creating a resistor divider with the output load.
The output resistance drops as total power supply voltage increases, as shown in the typical performance curves. It is typically 140Ω with a single 5 V supply, allowing a 4.4 V output swing into a 1 k resistor with a single 5 V supply.

Figure 2. LTC1152 Output Resistance Model

APPLICATIONS InFORMATION

Compensation/Bandwidth Limiting

The LTC1152 is unity-gain stable with capacitive loads up to 1000pF. Larger capacitive loads can be driven by externally compensating the LTC1152. Adding 1000pF between COMP (pin 5) and OUT (pin 6) allows capacitive loading of up to $1 \mu F ; 0.1 \mu F$ between pins 5 and 6 allows the LTC1152 to drive infinite capacitive load (Figure 3).

Figure 3. Output Compensation Connection

Large compensation capacitors can also be used to limit the bandwidth of the LTC1152. With $0.1 \mu \mathrm{~F}$ from pin 5 to pin 6, the LTC1152's gain-bandwidth product is reduced from 700 kHz to around 200 Hz . Note that compensation capacitors greater than $1 \mu \mathrm{~F}$ can cause latch-up under severe output fault conditions; this can be prevented by clamping pin 5 to each supply with standard signal diodes, as shown in Figure 3.

Shutdown

The LTC1152 includes a shutdown pin (pin 1). When this pin is at V^{+}, the LTC1152 operates normally. An internal 1μ A pull-up keeps the pin high if it is left floating. When pin 1 is pulled low, the part enters shutdown mode; supply current drops to $1 \mu \mathrm{~A}$, all internal clocking stops and the output enters a high impedance state. During shutdown the voltage at the CP pin (pin 8) will drop to 0.5 V below V^{+}. When pin 1 is brought high again, about $10 \mu \mathrm{~s}$ will elapse before the charge pump regains full voltage. During this time the LTC1152 will operate normally, but the input CMR may not include V^{+}. Pin 1 is compatible with CMOS logic running from the same supply as the LTC1152. Additionally, the input trip levels allow ground referenced CMOS logic signals to interface directly to pin 1 when the LTC1152
is running from $\pm 5 \mathrm{~V}$ or $\pm 3 \mathrm{~V}$ supplies. The internal $1 \mu \mathrm{~A}$ pull-up also allows pin 1 to interface with open-collector/ open-drain devices or discrete transistors.

The high impedance output in shutdown allows several LTC1152s to be connected together as a MUX, with their outputs tied in parallel and the active channel selected by using the shutdown pins. Deselected (shutdown) channels will go to high impedance at the outputs, preventing them from fighting with the active channel. This works best when the individual LTC1152s are connected in noninverting feedback configurations to prevent the feedback resistors from passing signals through deselected channels. See the Typical Applications section for a circuit example.

Zero-Drift Operation

The LTC1152 is a zero-drift op amp. Like other LTC zerodrift op amps, it features virtually error-free DC performance, very little drift over time and temperature, and very low noise at low frequencies. The internal nulling clock runs at about 2.3 kHz (the charge pump frequency of 4.7 MHz divided by 2048) and is synchronized to the internal charge pump to prevent beat frequencies from appearing at the output. The self-nulling circuit constantly corrects the input offset voltage, keeping it typically below $\pm 1 \mu \mathrm{~V}$ over the entire input common-mode range. This has the added benefit of providing exceptional CMRR and PSRR at low frequencies-far better than competing rail-to-rail op amps.

Because it uses a sampling front end, the LTC1152 will exhibit aliasing behavior and clock noise at frequencies near the internal 2.3 kHz sampling frequency. The LTC1152 includes an internal anti-aliasing circuit to keep these error terms to a minimum. As a rule, alias frequencies will be down by ($80 \mathrm{~dB}-\mathrm{A}_{\mathrm{CLG}}$) in most standard amplifier configurations, where $A_{C L G}$ is the closed-loop gain of the LTC1152 circuit. Clock noise is also dependent on closedloop gain; it will generally consist of spikes of about $100 \mu \mathrm{~V}$ in amplitude, input referred. In general, these error terms are too small to affect most applications. For a more detailed explanation of zero-drift amplifier behavior, see the LTC1051/LTC1053 data sheet.

APPLICATIONS INFORMATION

High Gain Amplifier with $\pm 1.5 \mathrm{~V}$ Supplies

High Side Power Supply Current Sensing

High Precision Three-Input MUX

SELECT INPUTS ARE CMOS LOGIC COMPATIBLE. SELECT ONLY ONE CHANNEL AT ONCE! 1152 TAO

NOTES

seCTIOn 3-InSTRUMEnTATION Amplifiers

SECTION 3-INSTRUMENTATION AMPLIFIERS
INDEX 3-2
SELECTION GUIDE 3-3
PROPRIETARY PRODUCTS
LTC1043, Dual Instrumentation Switched Capacitor Building Block '90DB 11-15
LTC1100, Precision, Zero Drift Instrumentation Amplifier '92DB 3-4
LT1101, Precision, Micropower, Single Supply Instrumentation Amplifier (Fixed Gain =10 or 100) '92DB 3-11
LT1102, High Speed, Precision, JFET Input Instrumentation Amplifier (Fixed Gain = 10 or 100) '92DB 3-23
LT1193, Video Difference Amplifier, Adjustable Gain '92DB 2-159
LT1194, Video Difference Amplifier, Gain of 10 '92DB 2-171

Complete Instrumentation Amplifiers in 8-Pin Packages

- LTC1100: Zero Offset, Drift; Gain of 100
- LT1101: Micropower, Single Supply; Gain of 10 or 100
- LT1102: High Speed JFET Input; Gain of 10 or 100

PARAMETER	LTC1100A $V_{S}= \pm 5 \mathrm{~V}$	L.T1101A $V_{S}=5 \mathrm{~V}$	$\begin{gathered} \text { LT1102A } \\ V_{S}= \pm 15 V \end{gathered}$
Offset (Max)	$10 \mu \mathrm{~V}$	$160 \mu \mathrm{~V}$	$600 \mu \mathrm{~V}$
Offset Drift (Max)	$100 \mathrm{nV} /{ }^{\circ} \mathrm{C}$	$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Bias Current (Max)	50pA	8nA	40 pA
Noise (0.1 Hz to 10 Hz)	$1.9 \mu \mathrm{~V}$ P-p Typ	$0.9 \mu \mathrm{~V}_{\text {P-p }} \mathrm{Typ}$	$2.8 \mu \mathrm{~V}$ P-p Typ
Gain	100/10 (SOL PKG)	10/100	10/100
Gain Error (Max)	0.05\%	0.05\%	0.05\%
Gain Drift	4ppm/ ${ }^{\circ} \mathrm{C}$ Typ	$4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max	18ppm/ ${ }^{\circ} \mathrm{C}$ Max
Gain Nonlinearity (Max)	8ppm	8ppm	14ppm
CMRR (G=100)(Min)	104dB	95 dB	84dB
Power Supply (Max)	Single, Dual, 16V	Single, Dual, 44V	Dual, 44V
Supply Current (Max)	2.8 mA	$130 \mu \mathrm{~A}$	5 mA
Slew Rate	1.5V/ $\mu \mathrm{s}$ Typ	$0.06 \mathrm{~V} / \mu \mathrm{s} \mathrm{Min}$	$21 \mathrm{~V} / \mu \mathrm{s} \operatorname{Min}(6: 10)$
Bandwidth ($\mathrm{G}=10$)	18 kHz Typ	22 kHz Min	2 MHz Min

Differential Voltage Amplification from a Resistance Bridge (Single 5V Powered)

OUTPUT $= \pm 10 \mathrm{~V}$ INTO 75Ω T0 330 kHz ($\mathrm{R}=50 \Omega$) $\pm 10 \mathrm{~V}$ INTO 200Ω TO $330 \mathrm{kHz}(\mathrm{R}=200 \Omega$)
$\quad \pm 10 \mathrm{~V}$ INTO 200Ω TO $330 \mathrm{kHz}(\mathrm{R}=20$
DRIVES 2.2nF CAP LOAD
GAIN $=10$, DEGRADED 0.01% DUE TO LT1010

Wideband Instrumentation Amplifier with $\pm 150 \mathrm{~mA}$ Output Current

LTC1100CS

Dual Precision Instrumentation Switched Capacitor Building Block: LTC1043

- Up to 120dB CMRR
- Adjustable Gain-Set by Output Op Amp
- Offset and Offset Drift as Low as Output Amp Specs
- Precise, Charge-Balanced Switching
- Up to 5 MHz Clock Rate
- Internal or External Clock

\left.| PARAMETER | (USING LTC1050 AMPLIFIER) |
| :--- | :--- |$\right]$| Offset | $0.5 \mu \mathrm{~V}$ |
| :--- | :--- |
| Offset Drift | $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ |
| Bias Current | 10 pA |
| Noise $(0.1 \mathrm{Hzk}$ to 10Hz) | $1.6 \mu \mathrm{~V}$ |
| Gain | Resistor Programmable |
| Gain Error | Resistor Limited 0.001% Possible |
| Gain Drift | Resistor Limited <1ppm $/{ }^{\circ} \mathrm{C}$ Possible |
| Gain Nonlinearity | Resistor Limited 1ppm Possible |
| CMRR | 120 dB |
| Power Supply | Single, Dual $(18 \mathrm{~V}, \pm 9 \mathrm{~V}$ Max) |
| Supply Current | 2 mA |
| Slew Rate | $1 \mathrm{mV} / \mathrm{ms}$ |
| Bandwidth | 10 Hz |

NOTES

SECTIOП 4 —POWER PRODUCTS

SECTION 4—POWER PRODUCTS
INDEX 4-2
SELECTION GUIDES 4-4
PROPRIETARY PRODUCTS
INDUCTORLESS DC/DC CONVERTERS 4-19
LTC1261, Switched Capacitor Regulated Voltage Inverter 4-20
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LTC1429, Clock-Synchronized Switched Capacitor Regulated Voltage Inverter 4-41
LTC1550/LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverters 13-142
INDUCTORLESS DC/DC CONVERTERS, ENHANCED AND SECOND SOURCE
LTC660, 100mA CMOS Voltage Converter 4-53
LINEAR REGULATORS 4-63
LT1118-2.5/LT1118-2.85/LT1118-5, Low Ia, Low Dropout, 800mA Source and Sink Regulators Fixed 2.5V, 2.85V, 5V Output 4-64
LT1175, 500mA Negative Low Dropout Micropower Regulator 4-68
LT1521/LT1521-3/LT1521-3.3/LT1521-5, 300mA Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-79
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529/LT1529-3.3/LT1529-5, 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-101
LT1580/LT1580-2.5, 7A, Very Low Dropout Regulators 13-148
LT1584/LT1585/LT1587, 7A, 4.6A, 3A Low Dropout Fast Response Positive Regulators Adjustable and Fixed 4-112
POWER AND MOTOR CONTROL 4-125
LT1160/LT1162, Half-/Full-Bridge N-Channel Power MOSFET Drivers 13-3
LTC1177-5/LTC1177-12, Isolated MOSFET Drivers 13-16
LT1246/LT1247, 1MHz Off-Line Current Mode PWM 4-126
LT1432-3.3, 3.3V High Efficiency Step-Down Switching Regulator Controller 4-137
LTC1477/LTC1478, Single and Dual Protected High-Side Switches 13-112
SWITCHING REGULATORS 4-145
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LTC1159/LTC1159-3.3/LTC1159-5, High Efficiency Synchronous Step-Down Switching Regulators 4-154
LT1182/LT1183/LT1184/LT1184F, CCFL/LCD Contrast Switching Regulators 4-172
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-NitsTM) 4-196
LTC1265/LTC1265-3.3/LTC1265-5, 1.2A, High Efficiency Step-Down DC/DC Converters 4-212
LTC1266/LTC1266-3.3/LTC1266-5, Synchronous Regulator Controllers for \mathbf{N} - or P-Channel MOSFETs 4-228
LTC1267/LTC1267-ADJ/LTC1267-ADJ5, Dual High Efficiency Synchronous Step-Down Switching Regulators 4-248
LT1302/LT1302-5, Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters 4-264
LT1303/LT1303-5, Micropower High Efficiency DC/DC Converters with Low-Battery Detector Adjustable and Fixed 5V 4-279
LT1304/LT1304-3.3/LT1304-5, Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown 13-37
LT1305, Micropower High Power DC/DC Converter with Low-Battery Detector 4-290
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1371, 500kHz High Efficiency 3A Switching Regulator 4-298
LT1372/LT1377, 500kHz and 1MHz High Efficiency 1.5A Switching Regulators 4-310
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator 4-322
LT1375/LT1376, 1.5A, 500kHz Step-Down Switching Regulators 4-334
LTC1430, High Power Step-Down Switching Regulator Controller 4-360
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LTC1574/LTC1574-3.3/LTC1574-5, High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode 4-385
PCMCIA HOST AND CARD POWER MANAGEMENT DEVICES 4-393
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LT1312, Single PCMCIA VPP Driver/Regulator 4-394
LT1313, Dual PCMCIA VPP Driver/Regulator 4-405
LTC1314/LTC1315, PCMCIA Switching Matrix with Built-In N-ChanneI Vcc Switch Drivers 4-415
LTC1470/LTC1471, Single and Dual PCMCIA Protected 3.3V/5V VCC Switches 4-426
LTC1472, Protected PCMCIA VCc and VPP Switching Matrix 4-437
BATTERY MANAGEMENT AND CHARGING CIRCUITS 4-453
LT1239, Backup Battery Management Circuit 4-454
LTC1325, Microprocessor-Controlled Battery Management System 4-466
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130

LINEAR REGULATORS

LINEAR VOLTAGE REGULATOR SELECTION GUIDE

Positive Regulators

Iout	PART NUMBER	DROPOUT VOLTAGE	MICRO- POWER	$\begin{array}{\|c} \hline \text { ADJUST- } \\ \text { ABLE } \end{array}$	FIXED OUTPUT vOLTAGES AVAILABLE	REMOTE SENSE	SHUTDOWN	$\begin{gathered} \hline \text { DUAL } \\ \text { OUTPUT } \end{gathered}$	$\begin{gathered} \text { HIGH } \\ \text { vOLTAGE } \end{gathered}$	LOW BATT DETECTOR	SURFACE MOUNT PACKAGE
125 mA	LT1020	0.4 V	$\underline{1}$	0		$\underline{\square}$	$\underline{\square}$			$\underline{\square}$	SW
	LT1120	0.4 V	$\underline{\square}$	07		$\underline{\square}$	\underline{C}			0	S8
	LT1120A	0.4 V	$\underline{17}$	07		07	17			$\underline{C T}$	S8
150 mA	LT1121	0.42 V	17	0			\underline{O}				S8, SOT223
300 mA	LT1521	0.5 V	$\underline{C 7}$	$\underline{\square}$	3, 3.3, 5		$\underline{17}$				S8, SOT223
500 mA	LT317AH	3 V		$\underline{L T}$					(LT317AHVH)		
	LT1086	0.95V		07							
800 mA	LT1129	0.4 V	$\underline{17}$	$\underline{17}$		\underline{O}	\underline{O}				S8, DD, SOT223
	LT1117	1.1 V		$\underline{\square}$							SOT223, DD
1 A	LT1005	2 V			5		\underline{Q}	$\underline{C T}$			
1.5A	LT317A	3 V		$\underline{\square}$					(LT317AHVK)		
	LT1086	1.3 V		17	2.85, 3.3, 3.6, 5, 12						DD
3A	LT323A	2.5 V			5						
	LT350A	3 V		\underline{O}							
	LT1035	2.2 V			5V/3A, 5V/75m		0	17			
	LT1036	2.4 V			5V/75mA, 12V/3A		OT	Q			
	LT1085	1.3 V		07							DD (-3.3, -3.6 Only
	LT1528	0.6 V	17	07			0				DD
	LT1529	0.5 V	$\underline{1}$	\underline{O}	3.3, 5		17				DD
	LT1587	1.1 V		07	3.3, 3.45, 3.6						DD
4A/4.6A	LT1585	1.1 V		\underline{C}	3.3, 3.38* 3.45^{*}, 3.6*						DD (Also 3.38, 3.45V)
5A	LT338A	3 V		07							
	LT1003	2.5 V									
	LT1084	1.3 V		01	3.3, 5, 12						
	LT1087	1.3 V		\underline{O}		\boldsymbol{Q}					
7A	LT1580	0.5 V		$\underline{17}$	2.5	$\underline{\square}$					
	LT1584	1.1V		G	3.3, 3.38, 3.45, 3.6						
7.5 A	LT1083	1.3 V		$\underline{\square}$	5,12						
10A	LT1038	3 V		$\underline{\square}$							
-400/800	LT1118	IV		\underline{C}	2.5, 2.85, 5		$\boldsymbol{L T}(88)$				S8, S0T-223

Negative Regulators

500 mA	LT337A	3 V		$\underline{C T}$				(LT337AHVH)	
	LT1175	0.5 V	$\underline{\text { L }}$	17	-5	$\underline{C T}$	CY		S8, DD
1.5A	LT337A	3 V		$\underline{1}$				(LT337AHVK)	
3A	LT1033	3 V		\underline{C}					
	LT1185	0.8 V		07		17	17		

Discrete PNP Pass Element Driver and Regulators

Not all output voltage variations are available in the indicated surface mount packages. Please consult factory for availability

*The adiustable and fixed output 3.3 V versions of the LTT585 are 4.6 A rated, the rest are 4.0A.

LT1120A/LT1521: Lowest Quiescent Current, Best Efficiency

Easy 5V to VCc for New Microprocessors

$\mathbf{I}_{\text {OUT }}$	$\mathbf{2 . 5 V}$	$\mathbf{3 . 3 V}$	$\mathbf{3 . 3 8 V}$	$\mathbf{3 . 4 5 V}$	$\mathbf{3 . 6 V}$
1.5 A	-	LT1086-3.3	-	LT1086	LT1086-3.6
3 A	-	$\mathrm{LT} 1587-3.3$	-	$\mathrm{LT} 1587-3.45$	$\mathrm{LT} 1587-3.6$
4 A 4.6 A	-	$\mathrm{LT} 1585-3.3$	$\mathrm{LT} 1585-3.38$	$\mathrm{LT} 1585-3.45$	$\mathrm{LT} 1585-3.6$
7 A	$\mathrm{LT} 1580-2.5$	$\mathrm{LT} 1584-3.3$	$\mathrm{LT} 1584-3.38$	$\mathrm{LT} 1584-3.45$	$\mathrm{LT} 1584-3.6$
7.5 A	-	LT 1083	-	LT 1083	LT 1083
10A	-	$2 \times \mathrm{LT} 1087$	-	$2 \times$ LT1087	$2 \times$ LT1087

- Perfect for Pentium ${ }^{\oplus}$ Processors
- SMT Packages up to 4.6A
- Three Terminal Regulators; № Design Required
- LT1580 Recommended For Up to 7A Applications; 540 mV Dropout

SWITCHING REGULATOR SELECTION GUIDE

		OPTIMIZED FOR STEP-UP OR FLYBACK CONFIGURATIONS							OPTIMIZED FORSTEP-DOWN ORINVERTING APPLICATIONS		$\begin{gathered} \text { OFF-LINE } \\ \text { AND/0R } \\ \text { PWM CONTROLLERS } \end{gathered}$		
		OSCILLATOR FREQUENCY											
		40kHz	60kHz	100kHz	150kHz	250kHz	500kHz	1MHz	100kHz	500kHz	200kHz	500kHz	1MHz
	10A		LT1270A										
	8A		LT1270										
	7.5A				LT1268								
	5 A	LT1070		LT1170					LT1074				
	4A		LT1271	LT1269									
	3A						LT1371						
	2.5 A	LT1071		LT1171									
	2A								LT1076*		LT1103		
	1.5A					LT1373	LT1372	LT1377					
	1.25A	LT1072		LT1172*					LT1176*	LT1375/6			
	1 A		LT1082										
	External										LT1105	LT124x	LT1246/47

*LT1572 has built-in Schottky diode.
$\left.\begin{array}{|l|c|c|c|c|}\hline & \begin{array}{c}\text { INPUT VOLTAGE (V) } \\ \text { MIN }\end{array} & \begin{array}{c}\text { MAXIMUM } \\ \text { SWITCH VOLTAGE (V) }\end{array} & \begin{array}{c}\text { MAX RATED } \\ \text { SWITCH CURRENT (A) }\end{array} & \begin{array}{c}\text { PACKAGES } \\ \text { AVAILABLE }\end{array} \\ \hline \text { LT1070 } & 3 & 40 & 65 & 5\end{array}\right]$ K, T
*Fixed 5V output version available

Commercial Temperature

CURRENT (AMPS)	POS OR NEG OUTPUT	PART NUMBER	$\begin{aligned} & \text { PACKAGE } \\ & \text { TYPEE } \end{aligned}$	$V_{\text {IN }} / V_{\text {DIIFF }}$ MAX (V)	V_{0} NOMINAL REGULATED OUTPUT (V)	$\begin{aligned} & \text { MIL/ } \\ & \text { IND } \\ & \text { TEMP } \end{aligned}$	FEATURE/COMMENTS
10.0	Pos Adj	LT1038CK	Steel T0-3	35	1.2 to 33	M	$2 \% \mathrm{~V}_{\text {out }}$ Tol, Plug In Compatible with 317, 350, 338 Types
	Switching	LT1270ACT	T0-220	30	Adjustable		Self-Contained 60kHz PWM and $10 \mathrm{Amp} \mathrm{Switch} \mathrm{in} \mathrm{a} \mathrm{5-Pin} \mathrm{Package}$
8.0	Switching	LT1270CT	T0-220	30	Adjustable		Self-Contained 60kHz PWM and 8 Amp Switch in a 5-Pin Package
7.5	Pos Fixed	$\begin{aligned} & \text { LT1083CK-5 } \\ & \text { LT1083CP-5 } \\ & \text { TT1083CK-12 } \\ & \text { T1083CP-12 } \end{aligned}$	Steel T0-3 Plastic TO-3P Steel TO-3 Plastic TO-3P	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 12 \\ & 12 \end{aligned}$	M	Low Dropout (1.2V), 1\% V $\mathrm{V}_{\text {OUT }}$ Tol
	Pos Adj	LT1083CK LT1083CP	Steel TO-3 Plastic T0-3P	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 29 \\ & 1.2 \text { to } 29 \\ & \hline \end{aligned}$	M, I	Low Dropout (1.2V), Pin Compatible with 317, 350, 338 Types
	Switching	$\begin{aligned} & \text { LT1268C0 } \\ & \text { LT1268CT } \end{aligned}$	$\begin{aligned} & \text { Plastic DD } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	Adjustable Adjustable		Self-Contained 150kHz PWM and 7.5A Switch in 5-Pin Package
7.0	Pos Fixed	LT1584CT-3.3 LT1584CT-3.38 LT1584CT-3.45 LT1584CT-3.6	Plastic TO-220 Plastic TO-220 Plastic T0-220 Plastic T0-220	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.38 \\ & 3.45 \\ & 3.3 \end{aligned}$		Low Dropout, Fast Transient Response for Microprocessor Applications
	Pos Adj	LT1584CT	Plastic T0-220	7	Adjustable		
5.0	Pos Fixed	$\begin{aligned} & \text { LT1003CK } \\ & \text { LT1003CP } \end{aligned}$	Steel T0-3 Plastic T0-3P	$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	M	$2 \% \mathrm{~V}_{\text {OUT }}$ Tol
		LT1084CT-3.3 LT1084CK-5 LTT084CP-5 LT1084CT-5 LTT084CK-12 LT108CP-12 LT1084CT-12	TO-220 Steel TO-3 Plastic TO-3P TO-220 Steel TO-3 Plastic TO-3P TO-220 Stio-3	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3.3 \\ 5 \\ 5 \\ 5 \\ 12 \\ 12 \\ 12 \\ \hline \end{gathered}$	M M	Low Dropout (1.2V), 1\% V $\mathrm{V}_{\text {Out }}$ Tol
	Pos Adj	LT338AK LM338K LT338AP LM338P	$\begin{array}{\|l\|} \hline \text { Steel TO-3 } \\ \text { Plastic TO-3P } \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 32 \\ & 1.2 \text { to } 32 \\ & \hline \end{aligned}$	M	LT338A Has 1\% $\mathrm{V}_{\text {REF }}$ Tol
		LT1084CK LT1084CP LT1084CT	$\begin{aligned} & \text { Steel TO-3 } \\ & \text { Plastic TO-3P } \\ & \text { TO-220 } \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 29 \\ & 1.2 \text { to } 29 \\ & \text { Adjustable } \end{aligned}$	M, I	Low Dropout (1.2V), Pin Compatible with 317, 350, 338 Types
		LT1087CT	T0-220	30	1.2 to 29		Low Dropout (1.2V) with Kelvin Sense
	Switching		$\begin{array}{\|l\|} \hline \text { Steel TO-3 } \\ \text { To-220 } \\ \text { Steel T0-3 } \\ \text { TO-220 } \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable Adjustable	$\begin{gathered} M, I \\ 1 \\ M \\ 1 \end{gathered}$	Self-Contained 40kHz PWM and 5A Switch in a 5-Pin Package
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { LT1074CK } \\ \text { LT1074CT } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Steel T0-3 } \\ \text { T0-220 } \\ \hline \end{array}$	$\begin{aligned} & \hline 45 \\ & 45 \\ & \hline \end{aligned}$	Adjustable Adjustable	$\begin{gathered} \hline \text { M } \\ 1 \\ \hline \end{gathered}$	Self-Contained 100kHz PWM and 5A Switch in a 5-Pin Package, Step-Down
		LT1074CY	7-Lead T0-220	45	Adjustable		Self-Contained 100kHz PWM and 5A Switch in a 7-Pin Package, Step-Down
		LT1074HVCK LT1074HVCT	$\begin{aligned} & \text { Steel TO-3 } \\ & \text { T0-220 } \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 64 \end{aligned}$	Adjustable Adjustable	1	Self-Contained 100kHz PWM and 5A Switch in a 5-Pin Package, Step-Down
		LT1074HVCY	7-Lead T0-220	64	Adjustable		Self-Contained 100kHz PWM and 5A Switch in a 7-Pin Package, Step-Down
		LT1170CK LT1170C0 LTT1170CT LT1170HVCT	Steel T0-3 Plastic DD T0-220 T0-220	$\begin{aligned} & 40 \\ & 30 \\ & 40 \\ & 60 \\ & \hline \end{aligned}$		M	Self-Contained 100 kHz PWM and 5A Switch in a 5-Pin Package, Step-Up/Flyback
4.6	Pos Fixed	LT1585CM-3.3 LT1585CT-3.3	$\begin{aligned} & \text { Plastic DD } \\ & \text { Plastic TO-220 } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		Low Dropout, Fast Transient Response for Microprocessor Applications
	Pos Adj	LT1585CM LT1585CT	$\begin{aligned} & \text { Plastic DD } \\ & \text { Plastic TO-220 } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	Adjustable Adjustable		
4.0	Pos Fixed	LT1585CM-3.38 LT1585CT-3.38 LT1585CM-3.45 LT11585CT- 3.45 LT585CM 3.6 LT1585CT-3.6	Plastic DD Plastic T0-220 Plastic DD Plastic T0-220 Plastic DD Plastic T0-220	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 3.38 \\ & 3.38 \\ & 3.45 \\ & 3.45 \\ & 3.6 \\ & 3.6 \\ & \hline \end{aligned}$		Low Dropout, Fast Transient Response for Microprocessor Applications
	Switching	$\begin{aligned} & \text { LT1269C0 } \\ & \text { LT1269CT } \end{aligned}$	$\begin{aligned} & \text { Plastic DD } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	Adjustable Adjustable		Self-Contained 100kHz PWM and 4A Switch in 5-Pin Package
		LT1269CS	20-Lead S0	30	Adjustable		Self-Contained 100kHz PWM and 4A Switch in 20-Lead SO Pkg
		$\begin{array}{\|l\|} \hline \text { LT1271CQ } \\ \text { LT1271CT } \\ \hline \end{array}$	$\begin{aligned} & \text { Plastic DD } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	Adjustable Adjustable		Self-Contained 60 kHz PWM and 4A Switch in 5 -Pin Package
3.0	Pos Fixed	LT1587CM-3.3 LT1587CT-3.3 LT1587CM-3.45 LT1587CT-3.45 LT1587CM-3.6 LT1587CT-3.6	Plastic DD Plastic T0-220 Plastic DD Plastic TO-220 Plastic DD T0-220	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 3.45 \\ & 3.45 \\ & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		Low Dropout, Fast Transient Response for Microprocessor Applications
		$\begin{aligned} & \text { LT1528CT } \\ & \text { LT1528CQ } \end{aligned}$	$\begin{aligned} & \text { 5-Lead TO-220 } \\ & 5 \text {-Lead DD } \end{aligned}$	15	Adjustable Adjustable		Low Dropout (0.6 V at 3 A), Fast Transient Response for Microprocessor Applications
		LT1529CT LT1529-3.3 LT1529-5 LT1529C0 LT1529-3.3 LT1529-5	$\begin{aligned} & \text { 5-Lead TO-220 } \\ & \text { 5-Lad T0-220 } \\ & \text { 5-Lead TO-220 } \\ & \text { 5-Lead DD } \\ & \text { 5-Lead DD } \\ & \text { 5-Lead DD } \\ & \hline \end{aligned}$	15 15	Adjustable 3.3 V 5 V Adjustable 3.3 V 5 V		Micropower ($50 \mu \mathrm{~A}$ Quiescent Current) Ultra Low Dropout (0.5V at 3A)
		$\begin{aligned} & \text { LT323AK LM323K } \\ & \text { LT323AT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Steel TO-3 } \\ & \text { T0-220 } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	M	LT323A Has $1 \% V_{\text {OUT }}$ Tol LT323A Has 1\% Vout Tol
		LT1085CT-3.3	T0-220	30	3.3		Low Dropout (1.2V), $1 \% \mathrm{~V}_{\text {Out }}$ Tol
		$\begin{aligned} & \text { LT1085CM-3.3 } \\ & \text { LT1085CM- } 3.6 \end{aligned}$	Plastic DD Plastic DD	$\begin{aligned} & \hline 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.6 \\ & \hline \end{aligned}$		Low Dropout (1.2V), 1\% V Out Tol $^{\text {- Pin Surface Mount Package }}$
		LT1085CT-3. 6 LT1085CK-5	$\begin{aligned} & \text { TO-220 } \\ & \text { Steel TO-3 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 3.6 \\ 5 \end{gathered}$	M, I	Low Dropout (1.2V), $1 \% \mathrm{~V}_{\text {Out }}$ Tol

POWER SUPPLY PRODUCTS SELECTION GUIDE

Commercial Temperature

CURRENT (AMPS)	$\begin{aligned} & \text { POS OR NEG } \\ & \text { OUTPUT } \end{aligned}$	PART NUMBER	PACKAGE TYPE	$V_{\text {IN }} N_{\text {DIFF }}$ MAX (V)	V_{0} NOMINAL REGULATED OUTPUT (V)	$\begin{array}{\|c\|} \hline \text { MIL/ } \\ \text { IND } \\ \text { TEMP } \end{array}$	FEATURE/COMMENTS
3.0	Pos Fixed	$\begin{aligned} & \text { LT1085CT-5 } \\ & \text { LT1085CK-12 } \\ & \text { LT1085CT-12 } \end{aligned}$	$\begin{aligned} & \text { TO-220 } \\ & \text { Steel TO-3 } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 12 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & M_{1} 1 \end{aligned}$	Low Dropout (1.2V), 1\% V $\mathrm{V}_{\text {Out }}$ Tolerance
	Pos Adj	$\begin{aligned} & \text { LT1587CM } \\ & \text { LT1587CT } \end{aligned}$	$\begin{aligned} & \text { Plastic DD } \\ & \text { T0-220 } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	Adjustable Adjustable		Low Dropout, Fast Transient Response for Microprocessor Applications
		LT350AK LM350K LT350AT LM350T LT350AP LM350P	$\begin{aligned} & \text { Steel TO-3 } \\ & \text { T0-220 } \\ & \text { Plastic TO-3P } \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 33 \\ & 1.2 \text { to } 33 \\ & 1.2 \text { to } 33 \end{aligned}$	M	LT350A Has 1\% V $\mathrm{REFF}^{\text {Tol }}$
		$\begin{aligned} & \text { LT1085CK } \\ & \text { LT1085CT } \end{aligned}$	$\begin{aligned} & \text { Steel TO-3 } \\ & \text { TO-220 } \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ \hline \end{array}$	$\begin{array}{r} 1.2 \text { to } 29 \\ 1.2 \text { to } 29 \\ \hline \end{array}$	$M_{1} 1$	Low Dropout (1.2V), Pin Compatible with 317, 350 Types
	Neg Adj	$\begin{aligned} & \text { LT1033CK } \\ & \text { LT1033CP } \\ & \text { LT1033CT } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Steel TO-3 } \\ \text { Plastic TO-3P } \\ \text { TO-220 } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.2 \text { to }-32 \\ & -1.2 \text { to }-322 \\ & -1.2 \text { to }-32 \end{aligned}$	M	$2 \% \mathrm{~V}_{\text {REF }}$ Tol
		LT1185CT	T0-220	35	-2.5 to -25	M, I	Low Dropout (0.75V) with Prog Current Limit and Shutdown
	Dual Pos Fixed	$\begin{aligned} & \text { LT1035CK } \\ & \text { LT1035CT } \end{aligned}$	$\begin{aligned} & \hline \text { Steel TO-3 } \\ & \mathrm{TO}-220 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	Two 5V Outputs Two 5V Outputs	M	Logic Controlled Main Output Voltage, 75mA Auxiliary Output
	Positive	$\begin{aligned} & \text { LT1036CK } \\ & \text { LT1036CT } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Steel TO-3 } \\ \mathrm{TO}-220 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12,5 \\ & 12,5 \end{aligned}$	M	Logic Controlled 12V, 3A Output, 5V, 75mA Auxiliary Output
	Switching	$\begin{aligned} & \text { LT1371CR } \\ & \text { LT1371CS } \end{aligned}$	$\begin{aligned} & 7-\text { Lead DD } \\ & 20-\text { Lead SW } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	Adjustable Adjustable		Self-Contained 500 kHz PWM and 3A Switch
2.5	Switching	LT1071CK LT1071CT LT1071HVCK LT1071HVCT	$\begin{aligned} & \hline \text { Steel TO-3 } \\ & \text { TO-220 } \\ & \text { Steel T0-3 } \\ & \text { T0-220 } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable	$\begin{gathered} M \\ 1 \\ M \\ 1 \\ \hline \end{gathered}$	Self-Contained 40kHz PWM and 2.5A Switch in a 5-Pin Package
		$\begin{aligned} & \text { LT1171CK } \\ & \text { LT1171CT } \\ & \text { LT1171HVCT } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Steel TO-3 } \\ \text { TO-220 } \\ \mathrm{T} 0-220 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable	\bar{M}	Self-Contained 100kHz PWM and 2.5A Switch in a 5-Pin Package
		LT1171CQ	Plastic DD	40	Adjustable		Self-Contained 100kHz PWM and 2.5A Switch in a 5-Pin Sur Mt Pack
2.0	Switching	LT1076CK	Steel T0-3	45	Adjustable	M	Self-Contained 100 kHz PWM and 2A Switch
		LT1076CR	Plastic DD	45	Adjustable		Self-Contained 100kHz PWM and 2 A Switch in a 7-Pin Sur Mt Pack
		$\begin{aligned} & \text { LT1076CT } \\ & \text { LT1076HVCK } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TO-220 } \\ \text { Steel TO-3 } \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 64 \\ & \hline \end{aligned}$	Adjustable Adjustable	1	Self-Contained 100 kHz PWM and 2A Switch
		LT1076HVCT	T0-220	64	Adjustable	1	Self-Contained 100kHz PWM and 2A Switch in a 5-Pin Package
		LT1076CY-5 LT1076HVCY-5	$\begin{aligned} & 7-\operatorname{Lead} T 0-220 \\ & 7-\operatorname{Lead} T 0-220 \end{aligned}$	$\begin{aligned} & 45 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$		100 kHz PWM and 2 A Switch in 7 -Pin Package with Shutdown and Fixed 5V Output
		LT1076CR-5	Plastic DD	45	5		Self-Contained 100kHz PWM and 2A Switch in a 7-Pin Sur Mt Pack
		LT1076CY LT1076HVCY	$\begin{aligned} & 7 \text { 7-Lead TO-220 } \\ & 7-\text { Lead TO-220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 64 \\ & \hline \end{aligned}$	Adjustable Adjustable		Self-Contained 100kHz PWM and 2A Switch in a 7-Pin Package
		LT1103CY	7-Lead T0-220	30	Adjustable	1	Designed for AC Line Powered Applications, Minimum External Components Required for 75W Isolated Power Supply
		$\begin{array}{\|l\|} \hline \text { LT1302CN8 } \\ \text { LT1302CS8 } \\ \hline \end{array}$	$\begin{aligned} & 8 \text { 8-Pin PDIP } \\ & 8 \text {-Pin Plastic S0 } \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	Adjustable Adjustable		Micropower Switching Regulator Works Down to 2 V Input and Produces 5 V at 600 mA
		$\begin{array}{\|l} \hline \text { LT1302CN8-5 } \\ \text { LT1302CS8-5 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 8-Pin PDIP } \\ 8 \text {-Pin Plastic S0 } \\ \hline \end{array}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$		Micropower Switching Regulator Works Down to 2V Input and Produces 5 V at 600 mA
1.5	Pos Fixed	LT1086CT-2.85	T0-220	30	2.85		Intended for SCSI-2 Active Termination
	Switching	$\begin{array}{\|l\|} \hline \text { LT1372CN8 } \\ \text { LT1372CS8 } \end{array}$	8-Pin PDIP 8-Pin Plastic SO	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	Adjustable Adjustable		Self-Contained 500 kHz PWM and 1.5A Switch in a 8-Pin Package
		$\begin{array}{\|l} \hline \text { LT1372CN8-12 } \\ \text { LT1372CS8-12 } \\ \hline \end{array}$	$\begin{aligned} & \text { 8-Pin PDIP } \\ & 8 \text {-Pin Plastic } 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$		Self-Contained 500 kHz PWM and 1.5A Switch in a 8-Pin Package
0.5 to 1.5	Pos Fixed	$\begin{aligned} & \hline \text { LT1086CT-3.3 } \\ & \text { LT1086CM-3.3 } \end{aligned}$	$\begin{aligned} & \text { TO-220 } \\ & \text { Plastic DD } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		Low Dropout (1.2V), $1 \% \mathrm{~V}_{\text {OUT }}$ Tol
		$\begin{aligned} & \text { LT1086CT-3.6 } \\ & \text { LTT086CM-3.6 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TO-220 } \\ \text { Plastic DD } \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \\ & \hline \end{aligned}$		Low Dropout (1.2V) $1 \% \mathrm{~V}_{\text {Out }}$ Tol
		LT1086CK-5 LT1086CT-5 LTT086K-12 LT1086CT-12	$\begin{aligned} & \text { Steel TO-3 } \\ & \text { TO-220 } \\ & \text { Steel TO-3 } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 5 \\ 12 \\ 12 \end{gathered}$	$\begin{gathered} M_{1}, 1 \\ 1 \\ M_{1}, \\ i \end{gathered}$	Low Dropout (1.2V), $1 \% \mathrm{~V}_{\text {Out }}$ Tol
	Pos Adj	LT317AK LM317K LT317AH LM317H LT317AT LM317T	$\begin{array}{\|l\|} \hline \text { Steel TO-3 } \\ \text { TO-39 } \\ \text { TO-220 } \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 37 \\ & 1.2 \text { to } 37 \\ & 1.2 \text { to } 37 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{M} \end{aligned}$	LT317A Has 1\% $\mathrm{V}_{\text {REF }}$ Tol
		LT1086CK LT1086CT LTT10866H LT1086CM	Steet TO-3 TO-220 T0-39 Plastic DD	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 29 \\ & \hline \end{aligned}$	$\begin{gathered} M_{1} I \\ I \end{gathered}$	Low Dropout (1.2V), 1% V Ref Tol Pin-Compatible with 317 Types Low Dropout (1.2V), 1\% VREF Tol 3-Pin Surface Mount Package
	Neg Adj	LT337AK LM337K LT337AH LM337H LT337AT LM337H	$\begin{array}{\|l} \hline \text { Steel TO-3 } \\ \text { TO-39 } \\ \hline \text { TO-220 } \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.2 \text { to }-37 \\ & -1.2 \text { to }-37 \\ & -1.2 \text { to }-37 \end{aligned}$	$\begin{aligned} & \hline M \\ & M \end{aligned}$	LT337A Has 1\% VREF Tol
	Pos Adj High Voltage	LT317AHVK LM317HVK LT317AHVH LM317HVH	$\begin{array}{\|l\|l\|} \hline \text { Steel TO-3 } \\ \mathrm{TO}-39 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.2 \text { to } 57 \\ 1.2 \text { to } 57 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \hline \end{aligned}$	LT317AHV Has 1\% V $\mathrm{V}_{\text {REF }}$ Tol
	Neg Adj High Voltage	LT337AHVK LM337HVK LT337AHVH LM337HVH	$\begin{aligned} & \text { Steel TO-3 } \\ & \mathrm{TO}-39 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & -1.2 \text { to }-47 \\ & -1.2 \text { to }-47 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \hline \end{aligned}$	LT337AHV Has 1\% V $\mathrm{VEFF}^{\text {Tol }}$
1.25	Switching	$\begin{aligned} & \text { LT1072CK } \\ & \text { LT1072CT } \\ & \text { LT1072HCK } \\ & \text { LT1072HVCT } \\ & \hline \end{aligned}$	\square	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable	$\begin{gathered} M_{1} I \\ M, 1 \\ M, 1 \end{gathered}$	Self-Contained 40kHz PWM and 1.25A Switch in a 5-Pin Package
		$\begin{aligned} & \text { LT1072CJ8 } \\ & \text { LT1072CN } \\ & \text { LT1072CS8 } \end{aligned}$	8-Pin CERDIP 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable	$\underset{\substack{M}}{ }$	Self-Contained 40kHz PWM and 1.25A Switch
		$\begin{aligned} & \hline \text { LT1172CK } \\ & \text { LT1172CT } \\ & \text { LT1172HVCT } \end{aligned}$	$\begin{aligned} & \hline \text { Steel TO-3 } \\ & \text { TO-220 } \\ & \text { T0-220 } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$	Adjustable Adjustable Adjustable	M	Self-Contained 100 kHz PWM and 1.25A Switch

POWER SUPPLY PRODUCTS SELECTION GUIDE

Commercial Temperature

CURRENT (AMPS)	POS OR NEG OUTPUT	PART NUMBER	PACKAGE TYPE	$\mathrm{V}_{\mathrm{IN}} / V_{\text {DIFF }}$ MAX (V)	V_{0} NOMINAL REGULATED OUTPUT (V)	$\begin{aligned} & \text { MIL/ } \\ & \text { IND } \\ & \text { TEMP } \end{aligned}$	FEATURE/COMMENTS
1.25	Switching	$\begin{aligned} & \text { LT1172CJ8 } \\ & \text { LT1172CN8 } \\ & \text { TT1172C0 } \\ & \text { TT1172CS8 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 8-Pin CERDIP } \\ \text { 8-Pin PDIP } \\ \text { Plastic DD } \\ \text { 8-Pin Plastic SO } \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable Adjustable	$\begin{aligned} & \hline \text { M } \\ & \text { । } \\ & \hline \end{aligned}$	Self-Contained 100 kHz PWM and 1.25A Switch
		$\begin{array}{\|l\|} \hline \text { LT176CN8 } \\ \text { LT1176CN8-5 } \\ \hline \end{array}$	$\begin{aligned} & \text { 8-Pin PDIP } \\ & \text { 8-Pin PDIP } \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Adjustable } \\ \hline \end{gathered}$		Self-Contained 100kHz PWM and 1.2A Switch in 8-Pin DIP Package
		$\begin{array}{\|l\|} \hline \text { LT1176CS } \\ \text { LT1176CS-5 } \\ \hline \end{array}$	$\begin{aligned} & 20-\operatorname{Lead} \text { SO } \\ & 20-L \text { Lead SO } \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{gathered} \text { Adjustable } \\ 5 \end{gathered}$		Self-Contained 100 kHz PWM and 1.2A Switch in 20-Lead SO
		LTC1265CN LTC1265CS LTC 265CN-3.3 LTC1265CC-3.3 LTC265CN-5 LTC1265CS-5	$\begin{array}{\|l} \text { 14-Pin PDIP } \\ \text { 14-Pin PDP } \\ \text { 14-Pin PDIP } \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & \hline \end{aligned}$	Adjustable Adjustable 3.3 3.3 5 5 5		Micropower 1A Step-Down Switching Regulator Achieves 90\% Efficiency
		LT1572CS	16-Pin SO	40	Adjustable		Built-In 1A Schottky Diode, otherwise similar to LT1172
1.0	$\begin{aligned} & \text { Dual Pos } \\ & \text { Fixed } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LT1005CK } \\ & \text { LT1005CT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Steel TO-3 } \\ & \text { TO-220 } \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	Two 5V Outputs Two 5V Outputs	M	Logic Controlled Main Output Voltage
	Switching	LT1073CN8 LT1073CS8 LT1033CN8-5 LT1073CS88-5 LT1033CN8 12 LT1073CS8-12	8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic S0	15 15 15 15 15 15	Adjustable Adjustable 5 5 12 12		Micropower Switching Regulator Works Down to 1V Input. Requires Only 3 External Components ($-5,-12$ Versions)
		$\begin{aligned} & \text { LT1082CN8 } \\ & \text { LT1082CT } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 8-Pin PDIP } \\ & \text { TO-220 } \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 75 \\ & \hline \end{aligned}$	Adjustable		60 kHz PWM and 1A, 100V Switch 60 kHz PWM and 1A, 100V Switch
		LT1107CN8 LT1107CS8 LT1107CN8-5 LT1107CS88 LT1107CN8.12 LT1107CS8-12	8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	Adjustable Adjustable 5 5 12 12	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	Micropower Switching Regulator Works Down to 2 V Input. Requires Only 3 External Components ($-5,-12$ Versions). Optimized for $\mathrm{V}_{\mathbb{I N}} \geq 2 \mathrm{~V}$, Allows Use of Surface Mount inductors.
		LT1108CN8 LT1108CS8 LT1108CN8-5 LT1108CS88 LT1108CN8-12 LT1108CS8-12	8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & \hline 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	Adjustable Adjustable 5 5 12 12		Micropower Switching Regulator Works Down to 2 V Input. Requires Only 3 External Components ($-5,-12$ Versions) Optimized for $\mathrm{V}_{\mathbb{N}} \geq 2 \mathrm{~V}$
		LT1109CZ-5 LT1109CZ-12 LT1109CN8 LT1109CS88-12 LT1109CN8.5 LT109CS8-12	$\begin{array}{\|l\|} \hline \text { 3-Pin TO-92 } \\ \text { 3-Pin TO-92 } \\ \text { 8-Pin PDIP } \\ \text { 8-Pin Plastic SO } \\ \text { 8-Pin PDIP } \\ \text { 8-Pin Plastic SO } \\ \hline \end{array}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5 \\ 12 \\ 5 \\ 5 \\ 12 \\ 12 \\ \hline \end{gathered}$		Micropower Switching Regulator Works Down to 2V Input. Requires Only 3 External Components ($-5,-12$ Versions). Optimized for $\mathrm{V}_{1 N} \geq 2$ V. Available in 3-Pin T0-92 Package. N8/S8 Versions Also Offer Shutdown Feature. 12 V Version Ideal for Flash Memory Vpp Pulse Generation from 5V or 3V
		LT1109ACN8 LT1109AAS8 LT109CN8-5 LT1109ACS8-5 LT109CN8-12 LT1109ACS8-12	8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	Adjustable Adjustable 5 5 12 12		Micropower Switching Regulator Works Down to 2 V Input. Requires Only 3 External Components ($-5,-12$ Versions). Optimized for $\mathrm{V}_{\mathrm{IN}} \geq 2 \mathrm{~V}$. 12 V Version Ideal for Flash Memory Vpp Pulse Generation from 5 V or 2 V . Includes Shutdown Feature.
		LT1110CN8 LT1110CS8 LT1110CN8-5 LT1110CS88 LT1110CN8-12 LT1110CS8-12	8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	Adjustable Adjustable 5 5 12 12		Micropower Switching Regulator Works Down to 1V Input. Requires Only 3 External Components ($-5,-12$ Versions). 60 kHz Oscillator Allows Use of Surface Mount Inductors
		LT1111CN8 LT1111CS8 LT111CN8-5 LT1111CS8-5 LT111CN8 LT1111CS8-12	8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \end{aligned}$	Adjustable Adjustable 5 5 12 12	$\begin{aligned} & M \\ & M \\ & 1 \\ & M \\ & M \end{aligned}$	Micropower Switching Regulator Works Down to 2 V Input. Requires Only 3 External Components ($-5,-12$ Versions). Optimized for $V_{\mathbb{N}} \geq 2 \mathrm{~V}$. 70kHz Oscillator Allows Use of Surface Mount Inductors
		LT1173CN8 LT113CS8 LT173CN8-5 LT1173CS88-5 LT1733CN8-12 LT1173CS8-12	8-Pin PDIP 8-Pin 8-Pin Plastic So 8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	Adjustable Adjustable 5 5 12 12		Micropower Switching Regulator Works Down to 2V Input. Requires Only 3 External Components ($-5,-12$ Versions). Optimized for $V_{\mathbb{I N}} \geq 2 \mathrm{~V}$
		LT1303CN8-5 LT1303CS8-5	8-Pin PDIP 8-Pin Plastic SO	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 5 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$		Micropower Switching Regulator Works Down to 1.8V Input. Includes Low-Battery Detector
		LT1304CN8-5 LT1304CS8-5 LT1304CN8 LT1304CS8 LT1304CN8-3.3 LT1304CS8-3.3	8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & \hline 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$	5 V 5 V Adjustable Adjustable 12 V 12 V		Micropower Switching Regulator Works Down to 1.8 V Input. Includes Low-Battery Detector
	Switching (Positive Boost)	$\begin{aligned} & \hline \text { LT1300CN8 } 8 \\ & \text { LT1300CS8 } \end{aligned}$	$\begin{aligned} & \text { 8-Pin PDIP } \\ & \text { 8-Pin Plastic SO } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 3.3 / 5 \\ & 3.3 / 5 \end{aligned}$		Micropower Switching Regulator Works Down to 1.8 V Input. Includes Selectable 3.3V or 5V Output and Shutdown
		$\begin{aligned} & \hline \text { LT1301CN8 } 8 \\ & \text { LT1301CS8 } \end{aligned}$	$\begin{aligned} & \text { 8-Pin PDIP } \\ & \text { 8-Pin Plastic SO } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 / 12 \\ & 5 / 12 \end{aligned}$	I	Micropower Switching Regulator Works Down to 1.8 V Input. Optimized for Flash Memory VPP Generation from 5V or 2V
	Switching	$\begin{array}{\|l\|} \hline \text { LT1303CN8 } \\ \text { LT1303CS8 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 8-Pin PDIP } \\ 8 \text {-Pin Plastic SO } \\ \hline \end{array}$	$\begin{aligned} & 7 \\ & 7 \\ & \hline \end{aligned}$	Adjustable Adjustable		Micropower Switching Regulator Works Down ot 1.8 V Input. Includes Low-Battery Detector
800 mA	Pos Fixed	LT1117CST LT1117CST-2.85 LTT117CST-3.3 LT1117CST-5	3-Pin SOT-223 3-Pin SOT-223 3-Pin SOT-23 3-Pin SOT-223	$\begin{aligned} & 15 \\ & 12 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	Adjustable 2.85 3.3 5		Adjustable Low Dropout Regulator, SOT-223 Package Active SCSI-2 Terminator, SOT-223 Package 3.3 Low Dropout Regulator, SOT-223 Package 5 V Low Dropout Regulator, SOT-223 Package
700 mA	Pos	LT1129CS8 LT1129CS8-3.3 LT1129CS8-5	$\begin{array}{\|l\|l\|} \hline 8-\text { Pin SO } \\ \text { 8-Pin SO } \\ 8-\text { Pin SO } \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} \text { Adjustable } \\ 3.3 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & \hline \end{aligned}$	Micropower Regulator With Shutdown, Dropout Voltage $=0.4 \mathrm{~V}$, Reverse Battery Protection in Low Thermal Resistance SO-8 Package

POWER SUPPLY PRODUCTS SELECTION GUIDE

Commercial Temperature

CURRENT (AMPS)	$\begin{aligned} & \text { POS OR NEG } \\ & \text { OUTPUT } \end{aligned}$	PART NUMBER	PACKAGE TYPE	$\mathrm{V}_{\mathrm{IN}} / V_{\mathrm{DIFF}}$ MAX (V)	V_{0} NOMINAL REGULATED OUTPUT (V)		FEATURE/COMMENTS
700 mA	Pos	$\begin{array}{\|l} \text { LT1129CT } \\ \text { LT1129CQ } \\ \text { LT11129CT-3.3 } \\ \text { LT1129CST-3.3 } \\ \text { LT1129CO-3.3 } \\ \text { LT1129CT-5 } \\ \text { LT1129CST-5 } \\ \text { LT1129CQ-5 } \\ \hline \end{array}$	5-Pin T0-220 Plastic DD 5-Pin TO-220 3-Pin SOT-223 5-Pin DD 5-Pin TO-220 3-Pin SOT-223 5-Pin DD	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	Adjustable Adjustable 3.3 3.3 3.3 5 5 5	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Micropower Regulator With Shutdown, Dropout Voltage $=0.4 \mathrm{~V}$, Reverse Battery Protection
500 mA	Negative	$\begin{aligned} & \text { LT1175CS8 } \\ & \text { LT1175CN8 } \\ & \text { LT1175C0 } \\ & \text { LT1175CT } \end{aligned}$	$\begin{aligned} & \text { 8-Pin Plastic SO } \\ & \text { 8-Pin PDIP } \\ & \text { 5-Pin DD } \\ & \text { 5-Pin TO-220 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-25 \\ & -25 \\ & -25 \\ & -25 \\ & \hline \end{aligned}$	Adjustable Adjustable Adjustable		Negative Low Dropout has Low Quiescent Current, Adjustable Current Limit
		$\begin{aligned} & \text { LT1175CS8-5 } \\ & \text { LT1175CN8-5 } \\ & \text { LTT175CO-5 } \\ & \text { LT1175CT-5 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 8-Pin Plastic SO } \\ \text { 8-Pin PDIPIP } \\ \text { 5-Pin DD } \\ \text { 5-Pin TO-220 } \end{array}$	$\begin{aligned} & -25 \\ & -25 \\ & -25 \\ & -25 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -5 \\ & -5 \end{aligned}$		Negative Low Dropout has Low Quiescent Current, Adjustable Current Limit
	Switching (Positive Boost)	LT1106CF	20-Pin TSSOP	7	12 V or 5 V		Thin Package and 500kHz Operation Allows use in Type I PCMCIA Cards
	Switching (Positive Boost)	LT1309CS8	8-Pin Plastic SO	7	12 V		500 kHz Operation Allows Use of Smallest Inductors/ Capacitors
400 mA	Switching (Positive Step-Down)	LTC1174CN8 LTC1174CN8-3.3 LC1174CN8.5 LTC1174CS8 LT1174CS8-3.3 LTC1174CS8-5	$\begin{array}{\|l\|l\|} \hline \text { 8-Pin DIP } \\ \text { 8-Pin DIP } \\ \text { 8-Pin DIP } \\ \text { 8-Pin SO } \\ \text { 8-Pin S0 } \\ \text { 8-Pin S0 } \end{array}$	13.5 13.5 13.5 13.5 13.5 13.5	Adjustable 3.3 5 Adjustable 3.3 5	I	Micropower Step-Down Switching Regulator With 90% Efficiency. Selectable 200 mA or 400 mA Current Limit. Intended for $6 \mathrm{~V}-9 \mathrm{~V}$ Battery Applications
		LTC1174HVCN8 LTC1174HVCN8 LTC1174HVCN8-3.3 LTC1174HVCS8-3.3 LTC1174HVCN8-5 LTC1174HVCS8-5	8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic SO 8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 18.5 \\ & 18.5 \\ & 18.5 \\ & 18.5 \\ & 18.5 \\ & 18.5 \\ & \hline \end{aligned}$	Adjustable Adjustable 3.3 3.3 5 5		Micropower Step-Down Switching Regulator with 90% Efficiency and High Input Voltage Capability
		LTC1574CS LTC1574CS-3.3 LTC1574CS-5	$\begin{aligned} & \text { 16-Pin Plastic SO } \\ & \text { 16-Pin Plastic SO } \end{aligned}$ 16-Pin Plastic SO	$\begin{aligned} & 18.5 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \text { Adjustable } \\ & 3.3 \\ & 5 \end{aligned}$		Micropower Step-Down Switching Regulator with On-Chip Schottky Diode and 90% Efficiency
300 mA	Pos	LTC1521CS8 LTC1521CS8-3 LTC1521CS8-3.3 LTC1521CS8-5 TC1521CST-3 LTC1521CST-3.3 LTC1521CST-5	8-Pin Plastic S0 8-Pin Plastic SO 8-Pin Plastic SO 8-Pin Plastic SO 3-Lead SOT-223 3-Lead SOT-223 3-Lead SOT-223	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	Adjustable 3 3.3 5 3 3.3 3 5		Micropower Regulator With SHutdown: Ultra-Low Dropout (0.5 V) and Quiescent Current ($12 \mu \mathrm{~A}$). 3-Pin Versions Have Shutdown
150 mA	Pos	LT1121ACS8 LT1121ACS8-3.3 LT1121ACS8-5	$\begin{array}{\|l\|} \hline 8 \text { 8-Lead SO } \\ 8-L e a d ~ S 0 \\ 8-L e a d ~ S O \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { Adjustable } \\ & 3.3 \\ & 5 \\ & \hline \end{aligned}$	1	Micropower Regulator With Shutdown, Dropout Voltage $=0.4 \mathrm{~V}$, Reverse Battery Protection in Low Thermal Resistance S0-8 Package
		LT1121CN8 LT1121CS8 LT1121CN8-3.3 LT1121CS8-3.3 LT1121CST-3.3 LT1121CN8-5 LT1121CS8-5 LT1121CST-5	8-Pin PDIP 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic SO 3-Pin SOT-223 8-Pin PDIP 8-Pin Plastic SO 3-Pin SOT-223	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	Adjustable Adjustable 3.3 3.3 3.3 3 5 5 5 5	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Micropower Regulator With Shutdown, Dropout Voltage $=0.4 \mathrm{~V}$, Reverse Battery Protection
125 mA	Pos Adj	$\begin{aligned} & \text { LT1020CJ } \\ & \text { LT1020CN } \\ & \text { LT1020CS } \end{aligned}$	$\begin{aligned} & \text { 14-Pin CERDIP } \\ & \text { 14-Pin PDIP } \\ & 16-\text {-in Plastic SW } \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \text { to } 30 \\ & 4 \text { to } 30 \\ & 4 \text { to } 30 \end{aligned}$		Dropout Voltage $=0.4 \mathrm{~V}, 40 \mu \mathrm{~A} \mathrm{Q}$, Reference and Comparator
		$\begin{aligned} & \text { LT1120CJ8 } \\ & \text { LT1120CN8 } \\ & \text { LT1120CH } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 8-Pin CERDIP } \\ \text { 8-Pin PDIP } \\ \text { 8-Pin TO-5 } \end{array}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \text { to } 30 \\ & 4 \text { to } 30 \\ & 4 \text { to } 30 \end{aligned}$	$\stackrel{M}{\mathrm{M}}$	Dropout Voltage $=0.4 \mathrm{~V}, 40 \mu \mathrm{~A} \mathrm{I}_{0}$, Reference, Comparator, Shutdown, 8-Pin Package
		LT1120ACN8 LT1120ACS8	$\begin{aligned} & \text { 8-Pin PDIP } \\ & \text { 8-Pin PDIP } \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 4 \text { to } 30 \\ & 4 \text { to } 30 \end{aligned}$		Dropout Voltage $=0.4 \mathrm{~V}, 20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$, Reference, Comparator, Shutdown, 8-Pin Package
100 mA	Pos Adj	LT1431CJ88 LT1431CN8 LT1431CS8 LT1431CZ	$\begin{aligned} & \hline \text { 8-P-Pin CERDIP } \\ & \text { 8-Pin PDIP } \\ & \text { 8-Pin Plastic SO } \\ & \text { TO-92 } \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & \hline \end{aligned}$	2.5 to 36 2.5 to 36 2.5 to 36 2.5 to 36	$\begin{aligned} & \hline \text { M } \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	0.4\% Initial Tolerance, 1\% Over Temperature
$\begin{aligned} & 20 \mathrm{~mA} \text { to } \\ & \\ & 100 \mathrm{~mA} \end{aligned}$	Switched Capacitor	$\begin{aligned} & \begin{array}{l} \text { LT1026CJ8 } \\ \text { LT1026CN8 } \\ \text { LT1026CH } \\ \text { LT1026CS8 } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 8-Pin CERDIP } \\ \text { 8-Pin PDIP } \\ \text { 8-Pin TO-5 Can } \\ 8 \text {-Pin SO } \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	*	$\begin{aligned} & M \\ & M \end{aligned}$	Dual Voltage Converter, 10 mA Output, $5 \mathrm{~V}_{\text {IN }}, \pm 10 \mathrm{~V}_{\text {Out }}$
		LTC1044CJ8 LTC1044CN8 LTC1044CH LTC1044CS8 LTC1044ACN8 LTC1044ACS8	8-Pin CERDIP 8-Pin PDIP 8-Pin TO-5 Can 8-Pin Plastic S0 8-Pin PDIP 8-Pin Plastic SO	$\begin{aligned} & 9.5 \\ & 9.5 \\ & 9.5 \\ & 9.5 \\ & 13 \\ & 13 \\ & \hline \end{aligned}$		$\begin{gathered} \hline \mathrm{M} \\ \mathrm{M} \\ \mathrm{I} \\ \hline \end{gathered}$	Voltage Converter, 20mA Output
		$\begin{array}{\|l} \hline \text { LTC1046CN8 } \\ \text { LTC1046CS8 } \\ \hline \end{array}$	8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & \hline 6 \\ & 6 \\ & \hline \end{aligned}$	*	1	50 mA Output Current, $165 \mu \mathrm{~A}$ Supply Current, 35Ω Max Output Impedance
		LT1054CJ8 LT1054CN8 LT1054CH LT1054CS8	$\begin{aligned} & \text { 8-Pin CERDIP } \\ & \text { 8-Pin PDIP } \\ & \text { 8-Pin TO-5 Can } \\ & \text { 8-Pin Plastic S0 } \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & t \\ & + \\ & + \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \end{aligned}$	Voltage Converter and Regulator, 100 mA Output, 25 kHz Switching Rate
		LTC1144CN8 LTC1144CS8	8-Pin PDIP 8-Pin Plastic S0	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	*	1	Voltage Converter, 20 mA Output, Up to 18 V Operation

* These devices are nonregulating converters.
${ }^{\dagger}$ The available output voltage range is dependent upon the mode of operation selected.

POWER SUPPLY PRODUCTS SELECTION GUIDE

Battery Management and Charging

PART NUMBER	DESCRIPTION	PACKAGE OPTIONS	FEATURES
LTC1325	μ Processor Controlled Battery Management System	N18, SW18	Fast Charge NiCd, NiMH, Li-Ion, or Pb-Acid Batteries Under μ P Control. Also Provides Full Charge/Discharge Management
LT1510	Constant-Voltage, Constant-Current Battery Charger	S8, N16, S16	Charges NiCd, NiMH and Li-Ion Batteries, 1 Resistor Required to Program Charge Current. Step-Down Topology, 200kHz Switching
LT1512	SEPIC Constant CurrentVoltage Battery Charger	N8, S8	SEPIC Topology Means Charger ViN can be Higher or Lower than Battery Voltage

Power Factor Correction Controllers

PART NUMBER	DESCRIPTION	PACKAGE OPTIONS	FEATURES
LT1248	Average Current-Mode Power Factor Corrector	N16, S16	Low Line Current Distortion, >0.99 Power Factor, Synchronization, Overvoltage Protection
LT1249	Average Current-Mode Power Factor Corrector	N8, S8	Low Parts Count, Full Feature Power Factor Correction

Regulating Pulse-Width Modulators

PART NUMBER	DESCRIPTION	PACKAGE OPTIONS	FEATURES
LT1105	Off-Line Regulating Pulse Width Modulator	N8, N14	Designed for AC Line Powered Applications
LT1241 Series	500 kHz Regulating Pulse Width Modulators	J8, N8, S8	Improved Replacements for UC1842, 1843, 1844, 1845
LT1246/LT1247	1MHz Regulating Pulse Width Modulators	N8, S8	1MHz Current Mode PWM, 1.5\% V ReF, 30ns Current Sense
LT1524/LT3524	Regulating Pulse Width Modulator	J, N, S	Improved SG1524, 2\% V ${ }_{\text {REF }}$, Guaranteed Oscillator Accuracy
LT1525A/LT3525A LT1527A/LT3527A	Regulating Pulse Width Modulator	J, N	Improved SG1525A/1527A Switching Regulator with Undervoltage Lockout, Guaranteed Long Term Stability
SG1524/SG3524	Regulating Pulse Width Modulator	J, N	Industry Standard Switching Power Supply Control Circuit
SG1525A/SG3525A	Regulating Pulse Width Modulator	J, N	More Features Than 1524 Series, 100mA Source/Sink Outputs
SG1527A/SG3527A	Regulating Pulse Width Modulator	J, N	Same as SG1525A with Inverted Output Logic
LT1846/3846 LT1847/3847	Current Mode Regulating Pulse Width Modulator	J, N	Current Mode PWM with UV Lockout, Soft Start, 1% V REF, 500 kHz Operation, 200mA Totem Pole Outputs

Ultra-High Efficiency Switching Regulator Controllers

PART NUMBER	DESCRIPTION	PACKAGE OPTIONS	FEATURES
LTC1142	Dual Step-Down Switching Regulator Controller	SSOP	Dual Synchronous Switching Regulator Controllers with both 3.3V and 5V Outputs
LTC1142HV	Dual Step-Down Switching Regulator Controller	SSOP	20V Max Input Voltage Dual 3.3V/5V or Adjustable Output Synchronous Switching Regulator
LTC1143	Dual Step-Down Switching Regulator Controller	SW16	Dual Switching Regulator Controller with Low Parts Count and both 3.3V and 5V Outputs
LTC1147, LTC1147L	Step-Down Switching Regulator Controller	N8, S8	Low Parts Count, 90\% Efficiency Using a Single External P-Channel MOSFET
LTC1148, LTC1148L	Step-Down Switching Regulator Controller	N, S	Synchronized Switching Regulator Controller Using Two External MOSFETs for 95\% Efficiency. Up to 16V Inputs
LTC1148HV	Step-Down Switching Regulator Controller	N,S	Synchronized Switching Regulator Controller Using Two External MOSFETs for 95\% Efficiency. Up to 20V Inputs
LTC1149	Step-Down Switching Regulator Controller	N, S	Synchronized Switching Regulator Controller Using Two External MOSFETs for 95\% Efficiency. Up to 48V Inputs
LTC1159	Step-Down Switching Regulator Controller	Gynchronized Switching Regulator Controller Using Two External MOSFETs for 95\% Efficiency. Operation to 5V Min, 40V Max Inputs	
LTC1266	Step-Down Switching Regulator Controller	S	Synchronized Switching Regulator Using Two External N-Channel MOSFETs for 95\% Efficiency. Ideal for 5V to 3.3V Applications
LTC1267	Dual Step-Down Switching Regulator Controller	SSOP	40V Max Input Voltage Dual 3.3V, 5V or Adjustable Output Synchronous Switching Regulator Controller
LTC1430	Step-Down Switching Regulator Controller for PCs	S8, S16	High Current Synchronous Switching Regulator for High Current, $5 V$ to 3.XX or 2.XX Supplies

CCFL Backlight Inverters and LCD Contrast Switching Regulator

Part Number	Package	CCFL Supply? Floating Bulb		
LT1182	S016	Y	Grounded Bulb	Brightness Control
LT1183	S016	Y	Y	I, V, PWM
LT1184F	S016	Y	Y , PWM	
LT1184	S016	N	Y	I, V, PWM
LT1186	S016	Y	Y , PWM	

LT1103/1105 Off-Line Switching Regulators
Regulator Drivers

$\begin{gathered} \text { BASE } \\ \text { DRIVE } \\ \text { CURRENT } \end{gathered}$	PART NUMBER	PACKAGE TYPE	$V_{\text {IN }}$ MAX (V)	V_{0} NOMINAL REGULATED OUTPUT VOLTAGE	FEATURES/ COMMENTS
150 mA	LT1123CZ	T0-92	30	5.0	Requires External PNP, 1\% Output Tolerance, $600 \mu \mathrm{~A}$ Quiescent Current

APPLICATION	LT1105	LT1103 (Internal Sense Resistor)
Universal Off-Line	10W to Over 100W	10W to 50W
Battery Charger, Isolated Off-Line	OK	OK
Telecom, -48V Input Isolated	OK	OK
Low Voltage Isolated DC/DC ($\leq 24 \mathrm{~V})$	Requires External MOSFET	Needs No MOSFET
High Voltage Isolated DC/DC	OK	OK

LTC BATTERY-POWERED DC/DC CONVERSION SOLUTIONS

Inductor and Capacitor Part Numbers/Manufacturers

INDUCTOR VALUE ($\mu \mathrm{H}$)	COILTRONICS ${ }^{\dagger}$	COILCRAFT ${ }^{\dagger}$	SUMIDA ${ }^{\dagger}$
15	-	DT3316-153	CD54-150LC
18	CTX20-1	-	CD54-180LC
20	CTX20-1	-	-
22	CTX20-1	DT3316-223	CD54-220LC
27	-	-	CD54-270LC
33	-	DT3316-473	CD54-330LC
47	CTX50-1	DT3316-683	CD74-470LC
68	-	DT3316-104	CD74-680LC
82	CTX82-1	DT3316-154	CD74-820LC
100	CTX100-1	-	CD105-101MC
120	CTX100-1	-	CD105-121MC
180	CTX250-4	-	CDR125-181MC
220	CTX250-4	-	CDR125-221MC
470	-	-	CDR125-471MC

Device Pinouts (DIP and SO Packages)

Linear Technology Micropower DC/DC Converter Family

DEVICE	$\begin{gathered} V_{\text {IN }} \\ (M / N) \end{gathered}$	V VMX) (MAX)	$\begin{aligned} & \operatorname{Isw}(\mathrm{A}) \\ & (\mathrm{MAX}) \\ & \hline \end{aligned}$	$\underset{\text { UP }}{\text { STEP- }}$	STEP- DOWN	$\begin{gathered} 1 \\ (\mu \mathrm{~A}) \end{gathered}$	S/D	$\begin{array}{\|c\|} \hline \text { LOW } \\ \text { BATT } \\ \text { DETECT } \end{array}$	DROPOUT VOLTAGE (V)	$\begin{aligned} & 3.3 V \\ & \text { OUT } \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { OUT } \\ \hline \end{gathered}$	$\begin{aligned} & 12 \mathrm{~V} \\ & \mathrm{OUT} \end{aligned}$	ADJ	$\begin{aligned} & \text { \#OF } \\ & \text { PINS } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { SO } \\ \text { PACK } \\ \hline \end{array}$	APPLICATION EXAMPLE
LT1073	1	15	1	X	X	95		X			X	X	X	8	X	1 Cell to 5V, 40mA
LT1107	2	30	1	X	X	300		X			X	X	X	8	X	2 Cells to 5V, 150 mA
LT1108	2	30	1	X	X	110		X			X	X	X	8	X	2 Cells to 5V, 150 mA
LT1109	2	30	0.5	X		320					X	X	X	3,8	X	5 V to 12 V VPP, 60 mA (Flash Memory)
LT1109A	2	20	1	x		320					X	X	X	8	X	5 V to 12V VPP, 120mA (Flash Memory)
LT1110	1	15	1	X	X	350		X			X	X	X	8	X	1 Cell to 5V, 40 mA
LT1111	2	30	1	X	X	300		X			X	X	X	8	X	2 Cells to $5 \mathrm{~V}, 90 \mathrm{~mA}$
LTC1142	6	16	Ext.		X	320	X		0	X	X			16	X	6-8 Cells to both 5 V and 3.3V
LTC1142HV	6	20	Ext.		X	320	X		0	X	X			28	X	$8-10$ Cells NiCad to 5 V and 3.3V or ADJ
LTC1143	6	16	Ext.		X	320	X		0	X	X			28	X	6-8 Cells to both 5 V and 3.3V
LTC1147	6	16	Ext.		X	160	X		0	X	X			8	X	6-8 Cells NiCd to 5 V or 3.3 V or ADJ at 1A+
LTC1148	6	16	Ext.		X	160	X		0	X	X		X	14	X	$6-8$ Cells NiCd to 5 V or 3.3 V at 2 A
LTC1148HV	6	20	Ext.		X	160	X		0	X	X		X	14	X	$8-10$ Cells NiCd to 5 V or 3.3 V at 2A
LTC1149	7	48	Ext.		X	600	X		2	X	X		X	16	X	≥ 8 Cells NiCd to 5 V or 3.3 V at 2 A
LTC1159	5	40	Ext.		X	300	X		0	X	X	X	X	16	X	≥ 6 Cells NiCd to 5 V or 3.3V at 2A
LT1173	2	30	1	X	X	110		X			X	X	X	8	X	2 Cells to $5 \mathrm{~V}, 90 \mathrm{~mA}$
LTC1174	3.5	13.5	0.6		X	450	X	X	0.5	X	X		X	8	X	9 V to 5 V at up to $400 \mathrm{mA5}$
LTC1265	3.5	13.5	1		X	160	X	X	0.5	X	X		X	14	X	9 V to 5 V at 800 mA
LTC1266	3.5	20	Ext.		X	170	X	X	0	X	X		X	16	X	5 V to 3.3 V at 10A
LTC1267	4	40	Ext.		X	300	X		0	X	X		X	28	X	>8 Cells NiCad to 5V and 3.3V or ADJ
LT1300	2	6	1	X		120	X			X	X			8	X	2 Cells to 3.3 V or 5 V at 250 mA
LT1301	2	6	1	X		120	X				X	X		8	X	2 Cells to 5 V or 12 V at 220 mA or 50 mA
LT1302	2	10	2	X		200	X						X	8	X	2 Cells to 5 V at 600 mA
LT1303	2	6	1	X		120	X	X			X		X	8	X	2 Cells to 5 V at 220 mA
LT1304	2	6	1	X		120	X	X		X	X		X	8	X	2 Cells to 5 V at 220 mA , LBD Active in Shutdown
LT1305	2	6	2	X		120	X	X					X	8	X	Ideal for EL panel supply
LT1309	3.3	5	0.5	X		500	X					X		8	X	3.3 V or 5V to 12V VPP (PCMCIA)
LTC1574	4	16	0.6		X	450	X	X	X	X	X		X	16	X	9 V to 5 V at up to 400 mA . No External Schottky Diode Needed.

LTC BATTERY-POWERED DC/DC CONVERSION SOLUTIONS

ULTRA-HIGH EFFICIENCY REGULATORS WITH Burst Mode ${ }^{T M}$ OPERATION

- Very High Efficiency: Over 95\% Possible
- Current-Mode Operation for Excellent Line and Load Transient Response
- High Efficiency Maintained Over 3 Decades of Output Current
- Short-Circuit Protection
- Very Low Dropout Operation (100\% Duty Cycle)
- Dual 3.3V and 5V Outputs (LTC1142 and LTC1143)

Burst Mode is a trademark of Linear Technology Corporation.

LTC1147: Up to 95\% Efficient Step-Down Regulator in 8-Pin SO LTC1143: Dual Output (3.3V/5V), Up to 95\% Efficiency Step-Down Regulator in 16-Pin SO

LTC1148: 95\% Efficient 3.3V or 5V Battery-Powered Regulator (Synchronous Rectifier) LTC1142: Dual Output (3.3V/5V), 95\% Efficient Regulator in SSOP Package

For High Current 5V to 3.3V, See LTC1266 All N-Channel Solution

148/3a/5 \cdot TAD2

- $160 \mu A$ Standby Current at Light Loads
- Micropower Shutdown: $I_{Q}<20 \mu A$
- Wide $\mathrm{V}_{\text {IN }}$ Range: 4 V to 18 V
- Short-Circuit Protection
- Very Low Dropout Operation
- Adaptive Non-Overlap Gate Drives
- Output Can be Externally Held High in Shutdown
- LTC1148 Available in 14-Pin Narrow SO Package
- LTC1148L for Low Dropout 3.3V Applications

LTC1159: Highest Efficiency for VIN Up to 40V, 3.3V or 5V Output (Synchronous Rectifier) LTC1267: Dual Output (3.3V/5V or Adjustable) in SSOP Package

LTC BATTERY-POWERED DC/DC CONVERSION SOLUTIONS

The following tables form a shortform component selection guide for a collection of commonly used batterypowered $D C / D C$ conversion applications. No design is required since inductor, capacitor and resistor values are completely specified. Choose the appropriate LTC DC/DC converter for your application from the following tables.
The LT1073, LT1107, LT1108, LT1110, LT1111, LT1173, LTC1174, LT1303, and LT1304 all have low-battery detection capability.

Step-Up From One Cell (1V)

$\mathbf{V}_{\text {OUT }}$ $\mathbf{(V)}$	$\mathbf{I}_{\text {OUT }}$ $\mathbf{(m A)}$	DEVICE	$\mathbf{I}_{\mathbf{0}}$ $(\mu \mathbf{A})$	\mathbf{L} $(\boldsymbol{\mu} \mathbf{H})$	\mathbf{C} $\mathbf{(\mu \mathbf { F })}$	\mathbf{R} $\mathbf{(\Omega)}$	FIG	COMMENTS
5	40	LT1073-5	95	82	100	0	1	Lowest I I
	40	LT1110-5	350	27	33	0	1	Best For Surface Mount
12	15	LT1073-12	95	82	100	0	1	${\text { Lowest } I_{Q}}^{2}$
	15	LT1110-12	350	27	33	0	1	Best For Surface Mount

Adjustable versions also available for $V_{\text {out }}$ up to 50 V

Step-Up From Two Cells (2V)

$V_{\text {OUT }}$ (V)	$\begin{array}{\|l\|} \hline \mathrm{I}_{\text {OUT }} \\ (\mathrm{mA}) \end{array}$	DEVICE	$\begin{gathered} \mathrm{I}_{0} \\ (\mu \mathrm{~A}) \end{gathered}$	$\begin{gathered} L \\ (\mu H) \end{gathered}$	$\begin{gathered} \text { C } \\ (\mu \mathrm{F}) \end{gathered}$	$\begin{gathered} \mathbf{R} \\ (\Omega) \end{gathered}$	FIG	COMMENTS
3.3	400	LT1300**	120	10	100	-	2	Selectable 3.3V/5V Out
5	90	LT1173-5 LT1111-5	$\begin{aligned} & \hline 110 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47 \\ & 18 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 33 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 47 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Lowest I_{0} Surface Mount
	150	$\begin{aligned} & \text { LT1107-5 } \\ & \text { LT1108-5 } \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 110 \\ & \hline \end{aligned}$	$\begin{gathered} 33 \\ 100 \end{gathered}$	$\begin{gathered} \hline 33 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	Surface Mount Lowest Io
	220	$\begin{aligned} & \text { LT1300** }^{*} \\ & \text { LT1301** } \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Selectable 3.3V/5V Out Selectable 5V/12V Out
	600	LT1302	200	10	100	-	*	Highest Power Output
12	20	LT1173-12 LT1111-12	$\begin{aligned} & \hline 110 \\ & 300 \end{aligned}$	$\begin{aligned} & 47 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 47 \\ & 22 \end{aligned}$	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Lowest Io Surface Mount
	40	LT1107-12 LT1108-12	$\begin{aligned} & \hline 300 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 27 \\ & 82 \end{aligned}$	$\begin{gathered} 33 \\ 100 \end{gathered}$	$\begin{aligned} & \hline 47 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	Surface Mount Lowest IQ
	50	LT1301**	120	10	100	-	2	Selectable 5V/12V Out
	120	$\begin{aligned} & \text { LT1302 } \\ & \text { LT1305 } \end{aligned}$	$\begin{aligned} & 200 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 10 \end{aligned}$	$\begin{gathered} 66 \\ 100 \end{gathered}$	-	2	Highest Power Output High Power Output

*See LT1302 data sheet **For low-battery detection use LT1303 or LT1304

Step-Up From 5V To 12V

$V_{\text {OUT }}$ $\mathbf{(V)}$	$\mathbf{I}_{\text {OUT }}$ $(\mathbf{m A})$	DEVICE	$\mathbf{I}_{\mathbf{Q}}$ $(\mu \mathbf{A})$	\mathbf{L} $(\mu \mathbf{H})$	\mathbf{C} $(\mu \mathrm{F})$	\mathbf{R} $(\boldsymbol{\Omega})$	FIG	COMMENTS
12	90	LT1173-12	110	120	100	0	1	Lowest I I
		LT1111-12	300	47	33	0	1	Surface Mount
	175	LT1107-12	300	60	32	0	1	Surface Mount
		LT1108-12	110	180	100	0	1	Lowest I I
	200	LT1301**	120	33	47	-	2	True Shutdown
	250	LT1373	1000	22	47	-	$* * *$	Fixed Frequency

For low-battery detection use LT1303 or LT1304 * See data sheet

Flash Memory VPP (12V) Generation

$\mathbf{V}_{\text {IN }}$ (\mathbf{V})	$\mathbf{V}_{\text {OUT }}$ $\mathbf{(V)}$	$\mathbf{I}_{\text {OUT }}$ $(\mathbf{m A})$	DEVICE	$\mathbf{I}_{\mathbf{a}}$ $(\mu \mathbf{A})$	\mathbf{L} $(\mu \mathbf{H})$	\mathbf{C} $(\mu \mathbf{F})$	FIG	COMMENTS
5	12	60	LT1109-12	320	33	22	3	Small, SMT
		120	LT1109A-12	320	27	47	3	Small, SMT
		200	LT1301**	120	27	47	2	True Shutdown
2 Cells	12	60	LT1109A-12	320	10	22	1	All Surface Mount
		80	LT1301**	120	10	47	2	True Shutdown

[^21]
Step-Down Conversion to 3.3V

$\begin{aligned} & V_{\text {IN }} \\ & (V) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}} \\ & (\mathrm{~mA}) \end{aligned}$	DEVICE	$\begin{gathered} \mathrm{I}_{0} \\ (\mu \mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mu \mathrm{~F}) \end{gathered}$	IPGM	Fig	COMMENTS
$\begin{gathered} \hline 4.5 \text { to } \\ 12.5 \end{gathered}$	$\begin{aligned} & 200 \\ & 425 \end{aligned}$	LTC1174-3.3	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 2 \times 33 \\ & 2 \times 33 \end{aligned}$	To GND To VIN	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Low Dropout, Surface Mount
$\begin{aligned} & \hline 4.5 \text { to } \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 425 \end{aligned}$	LTC1574-3.3	$\begin{aligned} & 450 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 2 \times 33 \\ & 2 \times 33 \\ & \hline \end{aligned}$	To GND To VIN	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Low Dropout, SMT No External Diode
$\begin{gathered} 5 \text { to } \\ 16 \\ \hline \end{gathered}$	2A	LTC1148-3.3	160	-	-	-	-	See Ultra-High Efficiency Regs - Pg 4
$\begin{gathered} 12 \text { to } \\ 60 \end{gathered}$	2 A	LTC1149-3.3	600	-	-	-	-	See Ultra-High Efficiency Regs - Pg 4

Step-Down Conversion to 5V

$\begin{aligned} & V_{\text {IN }} \\ & (\operatorname{Max}) \end{aligned}$	Iout (mA)	DEVICE	$\begin{array}{\|c\|} \hline \mathbf{I}_{0} \\ (\mu \mathrm{~A}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{L} \\ (\mu \mathrm{H}) \\ \hline \end{gathered}$	$\underset{(\mu \mathrm{F})}{\mathrm{C}}$	$\begin{gathered} \mathrm{R} / \\ \text { IPGM } \end{gathered}$	Fig	COMMENTS
$\begin{gathered} 5.5 \text { to } \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	LTC1174-5	$\begin{aligned} & 450 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 2 \times 33 \\ 2 \times 33 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { To GND } \\ \text { To } V_{\text {IN }} \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Low Dropout, Surface Mount
$\begin{gathered} 5.5 \text { to } \\ 16 \end{gathered}$	$\begin{aligned} & \hline 200 \\ & 400 \end{aligned}$	LTC1574-5	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 2 \times 33 \\ & 2 \times 33 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { To GND } \\ \text { To } V_{\text {IN }} \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	Low Dropout, SMT No External Diode
$\begin{gathered} 12 \text { to } \\ 20 \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	LT1107-5 LT1108-5	$\begin{array}{\|l\|} \hline 300 \\ 110 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 60 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 330 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Surface Mount Lowest Io
$\begin{gathered} 20 \text { to } \\ 30 \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	LT1173-5 LT1111-5	$\begin{array}{\|l\|} \hline 110 \\ 300 \end{array}$	$\begin{array}{\|l\|} \hline 470 \\ 180 \\ \hline \end{array}$	$\begin{aligned} & 470 \\ & 220 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Lowest Io Surface Mount
$\begin{gathered} 6 \text { to } \\ 16 \\ \hline \end{gathered}$	$2 \mathrm{~A}+$	LTC1147/8-5	160	-	-	-	-	See Ulltra-High Efficiency Regs - Pg 4
$\begin{gathered} 12 \text { to } \\ 60 \end{gathered}$	$2 \mathrm{~A}+$	LTC1149-5	600	-	-	-	-	See Ulltra-High Efficiency Regs - Pg 4

Idjustable output voltages up to 6.2 V can be obtained with the adjustable versions of .T1173, LT1111, LT1107, LT1108, or LT1110.

Positive-to-Negative Voltage Conversion

$\mathbf{V}_{\text {IN }}$ (\mathbf{V})	$\mathbf{V}_{\text {OUT }}$ (\mathbf{V})	$\mathbf{I}_{\text {OUT }}$ $(\mathbf{m A})$	DEVICE	$\mathbf{I}_{\mathbf{0}}$ $(\mu \mathbf{A})$	\mathbf{L} $(\mu \mathbf{H})$	\mathbf{C} $(\mu \mathrm{F})$	\mathbf{R} (Ω)	Fig	COMMENTS
5	-5	75	LT1108-5	110	100	100	100	6	Lowest I Q_{0}
			LT1107-5	300	33	33	100	6	Surface Mount
	150	LTC1174-5	450	50	2×33	-	7	Surface Mount	
12	-5	250	LT1173-5	110	470	220	100	6	Lowest I Q_{0}
		250	LT1111-5	300	180	82	100	6	Surface Mount
4	-5	110	LTC1574-5	450	50	100	-	7	SMT, No Ext. Schottky Diode 8
	170								
12.5		235							

Figure 5

Positive-to-Negative Converters

*SEE TABLES FOR RECOMMENDED PART, INDUCTOR, CAPACITOR, AND RESISTOR VALUES

Figure 6

Figure 7

PCMCIA, POWER AND MOTOR CONTROL CIRCUITS

High Side Switch Drivers

LTC1153 - Electronic Circuit Breaker w/ Programmable Trip, Reset, Current Level
LTC1154 - Single N-Ch FET Switch Driver w/ Short-Circuit Protection
LTC1155 - Dual N-Ch FET Switch Drivers w/ Short-Circuit Protection
LTC1156 - Quad N-Ch FET Switch Drivers w/ Short-Circuit Protection
LTC1157 - Dual N-Ch FET Switch Drivers for 3.3V Operation (Also for Low Cost 5V Applications)
LT1161 - Quad High Voltage N-Channel FET Switch Drivers with Reset and Short-Circuit Portection
LTC1163 - Triple N-Ch FET Switch Drivers for 1.8 V Operation (and up to 5 V Applications)
LTC1165 - Triple N-Ch FET Switch Drivers for 1.8 V Operation (and up to 5 V Applications)
LTC1177 - UL Recognized Isolated MOSFET Driver
LTC1255 - Dual N-Ch FET Switch Drivers w/ Short Circuit Protection, 24V Operation

Integrated High Side Switches

LT1188-1.5A HSS, Output Protected Against Inductive Kickback Controlled Slew Rate/Low RF Noise STATUS Line for Diagnostics Protected Against Overtemp, Load Faults
LT1089-7.5A HSS Low Loss, Only 1.5V at 7.5A Protected Against Overtemp, Overcurrent Low Quiescent Current
LTC1477/78 - Single/Dual Protected 1.5A HSS. Low 0.07Ω ON Resistance, Operates From 2.7V to 5.5V, No Parasitic Body Diode

Half-/Full-Bridge N-Ch MOSFET Drivers

LT1158-5V to 30V Operation, Drives DC Motors and Switching Power Supply N-Ch MOSFET Switch Gates, On-Chip Charge Pump, Adaptive Anti-Shoot-Through, Fully Protected, 150ns Transition Times Driving 3000pF
LT1160 - 10V to 60V Operation, Drives DC Motors and Switching Power Supply N-CH MOSFET Switch Gates, Adaptive Anti-Shoot Through, 180ns Transition Times Driving 10,000pF
LT1162 - Full-Bridge Version of LT1160

PRODUCT	PACKAGES	FUNCTION	$\begin{gathered} \text { MIN } \\ \mathrm{V}_{\text {SUPPLY }} \end{gathered}$	$\begin{gathered} \operatorname{MAX}_{1} \\ V_{\mathrm{IN}} \end{gathered}$	COMMENTS
LT1089	T0-220, T0-3	7.5A High-Side Switch	4V	20 V	Low loss, Low I_{0}
LT1106	20-Pin TSSOP	VPP Flash Memory Supply	5 V	7 V	500 kHz Operation, 1.1 mm Component Height
LTC1153	8-Pin DIP, SO	Electronic Circuit Breaker	4.5 V	22 V	Has Adjustable Reset Time
LTC1154	8 -Pin DIP, SO	Single High Side Driver	4.5 V	22 V	Single Version of LTC1155
LTC1155	8-Pin DIP, SO	Dual High Side Driver	4.5 V	22 V	Good for Power Management
LTC1156	16-Pin DIP, S0	Quad High Side Driver	4.5 V	22 V	Good for Multiple Supply Switching
LTC1157	8-Pin DIP, SO	Dual 3.3V High Side Driver	2.7 V	7 V	Good for 3.3V Power Management
LT1158	16-Pin DIP, S0	Half-Bridge Driver	4.5 V	36 V	Synchronous Switching Regulators Too
LT1160	14-Pin DIP, S0	Half-Bridge Driver	10 V	60 V	Dual N-Channel MOSFET Driver
LT1161	20-Pin DIP, S0	Quad High Side Driver	8 V	60 V	Good for Industrial (24V) Applications
LT1162	24-Pin DIP, S0	Full-Bridge Driver	10 V	60 V	Dual Version of LT1160
LTC1163	8-Pin DIP, SO	Triple High Side Driver	1.8 V	6 V	Good for 2-Cell Power Management
LTC1165	8-Pin DIP, SO	Triple High Side Driver	1.8 V	6 V	Inverted Logic Version of LTC1163
LTC1177	18-Pin SO Wide	Isolated MOSFET Driver	5/12	-	No Secondary Power Required. UL Recognized
LT1188	T0-220, TO-3	1.5A High Side Switch	5 V	30V	Good for Automotive
LTC1255	8-Pin DIP, SO	Dual High Side Driver	9 V	30 V	Good for Industrial (24V) Applications
LT1312	8 -Pin S0	Single VPP Regulator	13 V	20 V	SafeSIot ${ }^{\text {TM }}$ Protection, Low Ia
LT1313	16 -Pin S0	Dual VPP Regulator	13 V	20 V	SafeSlot Protection, Low I_{0}
LTC1314	14 -Pin S0	Single VPP Switch/ $N_{\text {cC }}$ Driver	5 V	13.2 V	Drives Low Cost N-Channels, Low $0.1 \mu \mathrm{~A} \mathrm{I}$
LTC1315	24-Pin SSOP	Dual VPP Switch $N_{C C}$ Driver	5 V	13.2 V	Drives Low Cost N-Channels, Low $0.1 \mu \mathrm{~A} \mathrm{I} \mathrm{I}^{2}$
LTC1470	8 -Pin S0	Protected $\mathrm{V}_{\text {cC }} 5 \mathrm{~V} / 3 \mathrm{~V}$ Switch	5 V	-	Internal 1A MOSFET Switches
LTC1471	16 -Pin S0	Dual Protected $\mathrm{V}_{\text {cC }}$ Switch	5 V	-	Internal 1A MOSFET Switches
LTC1472	16 -Pin S0	Single VPP/ $N_{\text {CC }}$ Switch	5 V	-	Internal VPP and V ${ }_{\text {CC }}$ MOSFET Switches

[^22]
PCMCIA HOST AND CARD POWER SOLUTIONS

PCMCIA Power Switching Solutions
$V_{\text {CC: }}$ 3.3V or 5 V
VPP: OV, VCC 12 V , High-Z

Cards

On-Card DC/DC Conversion Solutions
(See pages 3-23 to 3-26)

${ }^{\circ} \mathrm{C}$ Card Host Power Interface

inear Technology PCMCIA Product Family

DEVICE	DESCRIPTION	PACKAGE
LT1312	Single PCMCIA VPP Driver/Regulator	8 -Pin S0
LT1313	Dual PCMCIA VPP Driver/Regulator	16 -Pin SO*
LTC1314	Single PCMCIA Switch Matrix	14 -Pin S0
LTC1315	Dual PCMCIA Switch Matrix	24 -Pin SSOP
LTC1470	Protected VCC 5V/3.3V Switch Matrix	8 -Pin S0
LTC1471	Dual Protected VCC 5V/3.3V Switch Matrix	16-Pin SO*
LTC1472	Protected VCC and VPP Switch Matrix	16 -Pin SO*

Narrow Body

MEMBER COMPANY
16-Lead SO
(Narrow Body)

(Packages Enlarged for Clarity)

.TC1472 Protected PCMCIA VCc and VPP Switching Matrix

Both $V_{C C}$ and VPP Switching in a
Single Package
Built-In SafeSlot ${ }^{\text {TM }}$ Current Limit and
Thermal Shutdown
16-Pin (Narrow) SO Package
Inrush Current Limited (Drives 150 $\mu \mathrm{F}$ Loads)
Continuous 12V Power Not Required Extremely Low R $\mathrm{RS}_{\text {(ON) }}$ NMOS
Switches
Guaranteed 1A VCC Current and 120 mA
VPP Current
$1 \mu \mathrm{~A}$ Quiescent Current in Standby
No External Components Required
Compatible with Industry Standard Controllers
Break-Before-Make Switching
Controlled Rise and Fall Times
Compatible with Cirrus Logic CL-PD6720, Intel 365-type and Other PCMCIA Host Adaptor Chips

IfeSlot is a trademark of Linear Technology Corporation.

$V_{\text {CC }}$ Switch Truth Table			VPP Switch Truth Table		
$\mathrm{v}_{\text {cc }}$ ENO	v_{cc} EN1	$\mathrm{V}_{\text {cc(0ut) }}$	VPP ENO	VPP EN1	VPP out
0	0	Off	0	0	OV
1	0	5 V	0	1	$\mathrm{V}_{\text {cc(IN) }}$
0	1	3.3 V	1	0	VPP ${ }_{\text {IN }}$
1	1	Off	1	1	Hi-Z

LTC1470/LTC1471 Single/Dual PCMCIA Protected 5V/3.3V VCc Switch

- $3.3 \mathrm{~V} / 5 \mathrm{~V}$ Switching in $8-\mathrm{Pin}$ S0 Package
- Built-In SafeSlot Current Limit and Thermal Shutdown
- Extremely Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ MOSFET Switches
- 1A Output Current Capability
- $1 \mu \mathrm{~A}$ Quiescent Current in Standby
- Built-In Charge Pump (No 12V Required)
- Compatible with Industry Standard Controllers
- Break-Before-Make Switching
- Controlled Rise and Fall Times
- Logic Compatible with Standard PCMCIA Controllers
- LTC1470 (Single) and LTC1471 (Dual)

LTC1314/LTC1315 Single/Dual PCMCIA Switching Matrix with Built-In N-Channel MOSFET VCc Switch Drivers

- Output Current Capability: 120 mA
- 12V Regulator Can Be Shut Down
- Built-In N-Channel VCC Switch Drivers
- Digital Selection of OV, $\mathrm{V}_{\mathrm{CC}(\mathrm{IN})}$, VPP $_{\text {IN }}$ or $\mathrm{Hi}-\mathrm{Z}$
- 3.3 V or 5 V VCC Supply

- Break-Before-Make Switching
- $0.1 \mu \mathrm{~A}$ Quiescent Current in Hi-Z or OV Mode
- No VPPout Overshoot
- Logic Compatible with Standard PCMCIA Controllers
- LTC1314 (Single) and LTC1315 (Dual)

LT1312/LT1313 Single/Dual PCMCIA Vcc Driver/Regulator

- Digital Selection of $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$, 12 V or $\mathrm{Hi}-\mathrm{Z}$
- Output Current Capability: 120 mA
- Internal Current Limiting and Thermal Shutdown
- Automatic Switching from 3.3 V to 5 V
- Powered from Unregulated 13 V to 20 V Supply
- Logic Compatible with Standard PCMCIA Controllers
- Output Capacitors: $1 \mu \mathrm{~F}$
- Quiescent Current in Hi-Z or OV Mode: $60 \mu \mathrm{~A}$
- Independent VPP Valid Status Feedback Signals
- No VPP Overshoot

16-LEAD NARROW PLASTIC SO
SECTION 4-POWER PRODUCTS
INDUCTORLESS DC/DC CONVERTERS 4-19
LTC1261, Switched Capacitor Regulated Voltage Inverter 4-20
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LTC1429, Clock-Synchronized Switched Capacitor Regulated Voltage Inverter 4-41
LTC1550/LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverters 13-142
INDUCTORLESS DC/DC CONVERTERS, ENHANCED AND SECOND SOURCE
LTC660, 100mA CMOS Voltage Converter 4-53

LTC1261

Switched Capacitor Regulated Voltage Inverter

feATURES

- Regulated Negative Voltage from a Single Positive Supply

- Can Provide Regulated -5V from a 3V Supply
- REG Pin Indicates Output is in Regulation
- Low Output Ripple: 5mV Typ
- Supply Current: 600 1 A Typ
- Shutdown Mode Drops Supply Current to $5 \mu \mathrm{~A}$
- Up to 15mA Output Current
- Adjustable or Fixed Output Voltages
- Requires Only Three or Four External Capacitors
- Available in SO-8 Packages

APPLICATIONS

- GaAs FET Bias Generators
- Negative Supply Generators
- Battery-Powered Systems
- Single Supply Applications

DESCRIPTION

The LTC ${ }^{\circledR} 1261$ is a switched-capacitor voltage inverter designed to provide a regulated negative voltage from a single positive supply. The LTC1261CS operates from a single 3 V to 8 V supply and provides an adjustable output voltage from -1.25 V to -8 V . An on-chip resistor string allows the LTC1261CS to be configured for output voltages of $-3.5 \mathrm{~V},-4 \mathrm{~V},-4.5 \mathrm{~V}$ or -5 V with no external components. The LTC1261CS8 is optimized for applications which use a 5 V or higher supply or which require low output voltages. It requires a single external $0.1 \mu \mathrm{~F}$ capacitor and provides adjustable and fixed output voltage options in 8-pin SO packages. The LTC1261CS requires one or two external $0.1 \mu \mathrm{~F}$ capacitors, depending on input voltage. Both versions require additional external input and output bypass capacitors. An optional compensation capacitor at ADJ/COMP can be used to reduce the output voltage ripple.
Each version of the LTC1261 will supply up to 15 mA output current with guaranteed output regulation of 5%. The LTC1261 includes an open-drain REG output which pulls low when the output is within 5% of the set value. Output ripple is typically as low as 5 mV . Quiescent current is typically $600 \mu \mathrm{~A}$ when operating and $5 \mu \mathrm{~A}$ in shutdown.

The LTC1261 is available in a 14-pin narrow body S0 package and an 8-pin SO package.
$\overline{\boldsymbol{Q T}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

-4V Generator with Power Valid

$0.2 \mathrm{mS} / \mathrm{DIV}$
ABSOLUTE MAXIMUU RATINGSVote 1)
upply Voltage (Note 2) 9 V
lutput Voltage (Note 5) 0.3 V to -9 V
otal Voltage, $\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {OUT }}$ (Note 2) 12 V
iput Voltage
SHDN Pin -0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
REG Pin -0.3 V to 12 V
ADJ, R $\mathrm{R}, \mathrm{R1}, \mathrm{R}_{\mathrm{ADJ}}$ $\mathrm{V}_{\text {OUT }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$
lutput Short-Circuit Duration
\qquad Indefinite Iperating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ itorage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult factory for Industrial or Military grade parts.

:LECTRICAL CHRRACTERISTICS $V_{C C}=3 V$ to $6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

YMBOL	PARAMETER	CONDITIONS		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ \text { (Note 7) } \end{gathered}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
3EF	Reference Voltage		\bullet	1.20	1.24	1.28	1.20	1.24	1.28	V
	Supply Current	No Load, SHDN Floating No Load, $V_{\text {SHDN }}=V_{\text {CC }}$	\bullet		$\begin{gathered} 600 \\ 5 \end{gathered}$	$\begin{gathered} 1000 \\ 20 \end{gathered}$		$\begin{gathered} 600 \\ 5 \end{gathered}$	$\begin{gathered} 1500 \\ 20 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SC	Internal Oscillator Frequency				550			550		kHz
	Power Efficiency				65			65		\%
$\underline{\mathrm{JL}}$	REG Output Low Voltage	$\mathrm{I}_{\text {REG }}=1 \mathrm{~mA}$	\bullet		0.1	0.8		0.1	0.8	V
EG	REG Sink Current	$\begin{aligned} & V_{\text {REG }}=0.8 \mathrm{~V}, V_{\text {CC }}=3.3 \mathrm{~V} \\ & V_{\text {REG }}=0.8 \mathrm{~V}, V_{C C}=5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ 15 \end{gathered}$		$\begin{aligned} & \hline 5 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
DJ	Adjust Pin Current	$\mathrm{V}_{\text {ADJ }}=1.24 \mathrm{~V}$	\bullet		0.01	1		0.01	1	$\mu \mathrm{A}$
H	SHDN Input High Voltage		\bullet	2			2			V
L	SHDN Input Low Voltage		\bullet			0.8			0.8	V
1	SHDN Input Current	$\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {CC }}$	\bullet		5	20		5	25	$\mu \mathrm{A}$
N	Turn-On Time	$\mathrm{I}_{\text {OUT }}=15 \mathrm{~mA}$			500			500		$\mu \mathrm{S}$

ELECTRICAL CHARACTERISTICS

Doubler Mode. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=0$ (Note 4$), \mathrm{C}_{\mathrm{OUT}}=3.3 \mu \mathrm{~F}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ \quad \text { (Note 7) } \end{gathered}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\bar{V}_{\text {OUT }}$	Output Regulation	$\begin{aligned} & -1.24 \mathrm{~V} \geq V_{\text {OUT }} \geq-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA} \\ & -4 \mathrm{~V} \geq V_{\text {OUT }} \geq-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA} \text { (Note 6) } \\ & -1.24 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA} \\ & -4 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA} \text { (Note } 6 \text {) } \end{aligned}$	-		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	5		$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	5	\% $\%$ $\%$ $\%$
$\overline{V_{\text {OUT }}}$	Output Voltage (Note 6)	$V_{\text {OUT }}$ Set to $-3.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4 V, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4.5 \mathrm{~V}, 0 \leq \mathrm{l}_{\text {OUT }} \leq 8 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$ -	$\begin{aligned} & -3.33 \\ & -3.80 \\ & -3.80 \\ & -3.80 \end{aligned}$	$\begin{aligned} & -3.5 \\ & -4.0 \\ & -4.5 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \\ & -4.73 \\ & -5.25 \end{aligned}$	$\begin{array}{\|l\|} \hline-3.33 \\ \\ \\ -3.80 \\ -3.80 \\ -3.80 \\ \hline \end{array}$	$\begin{aligned} & \hline-3.5 \\ & \\ & -4.0 \\ & -4.5 \\ & -5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -3.68 \\ & \\ & -4.20 \\ & -4.73 \\ & -5.25 \\ & \hline \end{aligned}$	V V V V V V V V
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet		60	125		60	125	mA
VRIP	Output Ripple Voltage	I OUT $=5 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=-4 \mathrm{~V}$			10			10		mV

LTC1261CS Only. Tripler Mode. $\mathrm{V}_{C C}=2.7 \mathrm{~V}, \mathrm{C1}=\mathrm{C2}=0.1 \mu \mathrm{~F}$ (Note 4), $\mathrm{C}_{\text {OUT }}=3.3 \mu \mathrm{~F}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ \text { (Note 7) } \end{gathered}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\triangle \mathrm{V}_{\text {OUT }}$	Output Regulation	$-1.24 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA}$	\bullet		1	5		1	5	\%
VOUT	Output Voltage	$V_{\text {OUT }}$ Set to $-3.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 6 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~mA}$	\bullet	$\begin{aligned} & -3.33 \\ & -3.80 \end{aligned}$	$\begin{aligned} & -3.5 \\ & -4.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \end{aligned}$	$\begin{array}{\|l} -3.33 \\ -3.80 \end{array}$	$\begin{aligned} & \hline-3.5 \\ & -4.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \end{aligned}$	V
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet		25	75		25	75	mA
VRIP	Output Ripple Voltage	$\mathrm{I}_{\text {OUT }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=-4 \mathrm{~V}$			5			5		mV

LTC1261CS Only. Tripler Mode. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$ (Note 4), $\mathrm{C}_{\text {OUT }}=3.3 \mu \mathrm{~F}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ \quad \text { (Note 7) } \end{gathered}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OUT }}$	Output Regulation	$\begin{aligned} & -1.24 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 12 \mathrm{~mA} \\ & -4 \mathrm{~V} \geq \mathrm{V}_{\text {OUT }} \geq-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	5	\%
V OUT	Output Voltage	$V_{\text {OUT }}$ Set to $-3.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4 V, 0 \leq I_{\text {OUT }} \leq 12 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 8 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 6 \mathrm{~mA}$	$\stackrel{+}{\bullet}$	$\begin{aligned} & -3.33 \\ & -3.80 \\ & -4.28 \\ & -4.75 \end{aligned}$	$\begin{aligned} & -3.5 \\ & -4.0 \\ & -4.5 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \\ & -4.73 \\ & -5.25 \end{aligned}$	$\begin{array}{\|l} -3.33 \\ -3.80 \\ -4.28 \\ \\ -4.75 \end{array}$	$\begin{array}{r} -3.5 \\ -4.0 \\ -4.5 \\ -5.0 \end{array}$	$\begin{aligned} & -3.68 \\ & -4.20 \\ & -4.73 \\ & -5.25 \end{aligned}$	V V V V V
ISC	Output Short-Circuit Current	$V_{\text {OUT }}=0 \mathrm{~V}$	\bullet		35	75		35	75	mA
VIP	Output Ripple Voltage	$\mathrm{I}_{\text {OUT }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=-4 \mathrm{~V}$			5			5		mV

LTC1261CS Only. Tripler Mode. $V_{C C}=5 V \pm 10 \%, C 1=C 2=0.1 \mu F$ (Note 4), $\mathrm{C}_{\text {OUT }}=3.3 \mu \mathrm{~F}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS (Note 2)		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \text { (Note 7) } \\ & \text { MIN }{ }^{\text {TYP }} \text { MAX } \end{aligned}$			UNITS
				MIN	TYP	MAX				
$\Delta \mathrm{V}_{\text {OUT }}$	Output Regulation	$\begin{aligned} & -1.24 \mathrm{~V} \geq V_{\text {OUT }} \geq-4 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 12 \mathrm{~mA} \\ & -4 V \geq V_{\text {OUT }} \geq-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	\%
$\overline{\text { VOUT }}$	Output Voltage	$V_{\text {OUT }}$ Set to $-3.5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 15 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4 V, 0 \leq \mathrm{I}_{\text {OUT }} \leq 12 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-4.5 \mathrm{~V}, 0 \leq$ I OUT $\leq 10 \mathrm{~mA}$ $V_{\text {OUT }}$ Set to $-5 \mathrm{~V}, 0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & -3.33 \\ & -3.80 \\ & -4.28 \\ & -4.75 \end{aligned}$	$\begin{aligned} & -3.5 \\ & -4.0 \\ & -4.5 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \\ & -4.73 \\ & -5.25 \end{aligned}$	$\begin{array}{\|l} \hline-3.33 \\ -3.80 \\ -4.28 \\ -4.75 \end{array}$	$\begin{aligned} & -3.5 \\ & -4.0 \\ & -4.5 \\ & -5.0 \end{aligned}$	$\begin{aligned} & -3.68 \\ & -4.20 \\ & -4.73 \\ & -5.25 \end{aligned}$	V V V V
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet		70	125		70	125	mA
VRIP	Output Ripple Voltage	$\mathrm{I}_{\text {OUT }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=-4 \mathrm{~V}$			7			7		mV

LECTRICAL CHARACTERISTICS

- denotes specifications which apply over the full operating aperature range.
te 1: The absolute maximum ratings are those values beyond which the of a device may be impaired.
te 2: All currents into device pins are positive; all currents out of device s are negative. All voltages are referenced to ground unless otherwise зcified.
te 3: All typicals are given at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
te 4: $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$ means the specifications apply to tripler mode ere $V_{C C}-V_{\text {OUT }}=3 V_{\text {CC }}$ (LTC1261CS only; the LTC1261CS8 cannot be inected in tripler mode) with C 1 connected between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$and connected between C^{+}and $\mathrm{C2}^{-}$. $\mathrm{C} 2=0$ implies doubler mode where
$V_{\text {CC }}-V_{\text {OUT }}=2 V_{\text {CC }}$; for the LTC1261CS this means $\mathrm{C1}$ connects from $\mathrm{C1}^{+}$ to $\mathrm{C2}^{-}$with $\mathrm{C1}^{-}$and $\mathrm{C2}^{+}$floating. For the LTC1261CS8 in doubler mode, C 1 connects from $\mathrm{C1}^{+}$to $\mathrm{C1}{ }^{-}$; there are no C 2 pins.
Note 5: Setting output to <-7V will exceed the absolute voltage maximum rating with a 5 V supply. With supplies higher than 5 V , the output should never be set to exceed $\mathrm{V}_{\mathrm{Cc}}-12 \mathrm{~V}$.
Note 6: For output voltages below - 4.5V the LTC1261 may reach 50\% duty cycle and fall out of regulation with heavy load or low input voltages. Beyond this point, the output will follow the input with no regulation.
Note 7: This data is guaranteed by correlation and not tested over the $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

YPICAL PERFORMARNCE CHARACTERISTICS (See Test Circuits)

Output Voltage
vs Output Current

Maximum Output Current vs Supply Voltage

LTC1261•TPC04

Output Voltage (Doubler Mode)
vs Supply Voltage

Supply Current vs Supply Voltage

Output Voltage (Tripler Mode) vs Supply Voltage

LTC1261•TPC03

Supply Current vs Temperature

TEST CIRCUITS

Tripler Mode

PIn functions

Pin numbers are shown as (LTC1261CS/LTC1261CS8).
NC (Pin 1/NA): No Internal Connection.
C1+ (Pin 2/Pin 2): C1 Positive Input. Connect a $0.1 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$. With the LTC1261CS in doubler mode, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to C^{-}.
C1$^{-}$(Pin 3/Pin 3): C1 Negative Input. Connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$. With the LTC1261CS in doubler mode only, $\mathrm{C1}^{-}$should float.
C2 ${ }^{+}$(Pin 4/NA): C2 Positive Input. In tripler mode connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C2}^{+}$to $\mathrm{C} 2^{-}$. This pin is used with the LTC1261CS in tripler mode only; in doubler mode this pin should float.
C2- (Pin 5/NA): C2 Negative Input. In tripler mode connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C2}^{+}$to $\mathrm{C2}^{-}$. In doubler mode connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to C^{-}.
GND (Pin 6/Pin 4): Ground. Connect to a low impedance ground. A ground plane will help to minimize regulation errors.
RO (Pin 7/NA): Internal Resistor String, 1st Tap. See Table 2 in the Applications Information section for information on internal resistor string pin connections vs output voltage.
R1 (Pin 8/NA): Internal Resistor String, 2nd Tap.
RADJ (Pin 9/NA): Internal Resistor String Output. Con- $^{\text {P }}$ nect this pin to ADJ to use the internal resistor divider.

See Table 2 in the Applications Information section fo information on internal resistor string pin connections v : output voltage.
ADJ (COMP for fixed versions) (Pin 10/Pin 5): Outpu Adjust/Compensation Pin. For adjustable parts this pini: used to set the output voltage. The output voltage shoull be divided down with a resistor divider and fed back to this pin to set the regulated output voltage. The resisto divider can be external or the internal divider string cal be used if it can provide the required output voltage Typically the resistor string should draw $\geq 10 \mu \mathrm{~A}$ from th output to minimize errors due to the bias current at th adjust pin. Fixed output parts have the internal resisto string connected to this pin inside the package. The pii can be used to trim the output voltage if desired. It cal also be used as an optional feedback compensation pii to reduce output ripple on both adjustable and fixe, output voltage parts. See Applications Information sec tion for more information on compensation and outpu ripple.
OUT (Pin 11/Pin 6): Negative Voltage Output. This pii must be bypassed to ground with a $1 \mu \mathrm{~F}$ or larger capaci tor; it must be at least $3.3 \mu \mathrm{~F}$ to provide specified outpu ripple. The size of the output capacitor has a strong effec on output ripple. See the Applications Information sec tion for more details.
REG (Pin 12/Pin 7): This is an open drain output that pull low when the output voltage is within 5% of the set value

In functions

will sink 8 mA to ground with a 5 V supply. The external rcuitry must provide a pull-up or REG will not swing gh. The voltage at REG may exceed $V_{C C}$ and can be illed up to 12 V above ground without damage.

IDN (Pin 13/Pin 8): Shutdown. When this pin is at ound the LTC1261 operates normally. An internal $5 \mu \mathrm{~A}$ ill-down keeps SHDN low if it is left floating. When IDN is pulled high, the LTC1261 enters shutdown ode. In shutdown the charge pump stops, the output
collapses to OV and the quiescent current drops to $5 \mu \mathrm{~A}$ typically.
$\mathbf{V}_{\text {cc }}$ (Pin 14/Pin 1): Power Supply. This requires an input voltage between 3 V and 6.5 V . Certain combinations of output voltage and operating mode may place additional restrictions on the input voltage. $V_{C C}$ must be bypassed to ground with at least a $0.1 \mu \mathrm{~F}$ capacitor placed in close proximity to the chip. See the Applications Information section for details.

PPLICATIONS INFORMATION

ODES OF OPERATION

ie LTC1261 uses a charge pump to generate a negative itput voltage that can be regulated to a value either gher or lower than the original input voltage. It has two odes of operation: a "doubler" inverting mode, which n provide a negative output equal to or less than the sitive power supply and a "tripler" inverting mode, lich can provide negative output voltages either larger or naller in magnitude than the original positive supply. The pler offers greater versatility and wider input range but quires four external capacitors and a 14-pin package. ie doubler offers the S0-8 package and requires only ree external capacitors.

Jubler Mode

)ubler mode allows the LTC1261 to generate negative itput voltage magnitudes up to that of the supply voltage, eating a voltage between $V_{C C}$ and OUT of up to two times ;. In doubler mode the LT1261 uses a single flying pacitor to invert the input supply voltage, and the output Itage is stored on the output bypass capacitor between ritch cycles. The LTC1261CS8 is always configured in ubler mode and has only one pair of flying capacitor 1s (Figure 1a). The LTC1261CS can be configured in ubler mode by connecting a single flying capacitor tween the $\mathrm{C1}^{+}$and $\mathrm{C2}^{-}$pins. $\mathrm{C1}^{-}$and $\mathrm{C} 2^{+}$should be left ating (Figure 1b).

ipler Mode

e LTC1261CS can be used in a tripler mode which can nerate negative output voltages up to twice the supply
voltage. The total voltage between the $\mathrm{V}_{\text {CC }}$ and OUT pins can be up to three times V_{S}. For example, tripler mode can be used to generate -5 V from a single positive 3.3 V supply. Tripler mode requires two external flying capacitors. The first connects between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$and the second between $\mathrm{C2}^{+}$and C^{-}(Figure 1c). Because of the relatively high voltages that can be generated in this mode, care must be taken to ensure that the total input-to-output voltage never exceeds 12 V or the LTC1261 may be damaged. In most applications the output voltage will be kept in check by the regulation loop. Damage is possible however, with supply voltages above 4V in tripler mode and above 6 V in doubler mode. As the input supply voltage rises the allowable output voltage drops, finally reaching -4 V with an 8.5 V supply. To avoid this problem use doubler mode whenever possible with high input supply voltages.

Figure 1. Flying Capacitor Connections

THEORY OF OPERATION

A block diagram of the LTC1261 is shown in Figure 2. The heart of the LTC1261 is the charge pump core shown in the dashed box. It generates a negative output voltage by first

APPLICATIONS INFORMATION

Figure 2. Block Diagram
charging the flying capacitors between V_{CC} and ground. It then stacks the flying capacitors on top of each other and connects the top of the stack to ground forcing the bottom of the stack to a negative voltage. The charge on the flying capacitors is transferred to the output bypass capacitor, leaving it charged to the negative output voltage. This process is driven by the internal clock.
Figure 2 shows the charge pump configured in tripler mode. With the clock low, C1 and C2 are charged to V_{CC} by S1, S3, S5 and S7. At the next rising clock edge, S1, S3, S5 and S7 open and S2, S4 and S6 close, stacking C1 and C2 on top of each other. S2 connects $\mathrm{C1}^{+}$to ground, S4 connects $\mathrm{C1}^{-}$to C^{+}and C^{-}is connected to the output by S6. The charge in C 1 and C 2 is transferred to $\mathrm{C}_{0 U T}$, setting it to a negative voltage. Doubler mode works the same way except that the single flying capacitor (C1) is connected between $\mathrm{C1}^{+}$and $\mathrm{C} 2^{-}$. S3, S4 and S5 don't do anything useful in doubler mode. C1 is charged initially by $S 1$ and S7 and connected to the output by S2 and S6.
The output voltage is monitored by COMP1 which compares a divided replica of the output at ADJ (COMP for
fixed output parts) to the internal reference. At the begin ning of a cycle the clock is low, forcing the output of the AND gate low and charging the flying capacitors. The nex rising clock edge sets the RS latch, setting the charge pump to transfer charge from the flying capacitors to the output capacitor. As long as the output is below the se point, COMP1 stays low, the latch stays set and the charge pump runs at the full 50% duty cycle of the clock gatec through the AND gate. As the output approaches the se voltage, COMP1 will trip whenever the divided signa exceeds the internal 1.24 V reference relative to OUT. This resets the RS latch and truncates the clock pulses, reduc ing the amount of charge transferred to the output capaci tor and regulating the output voltage. If the output exceeds the set point, COMP1 stays high, inhibiting the RS latch and disabling the charge pump.

COMP2 also monitors the divided signal at ADJ but it is connected to a 1.18 V reference, 5% below the mair reference voltage. When the divided output exceeds this lower reference voltage indicating that the output is withir 5% of the set value, COMP2 goes high turning on the REC output transistor. This is an open drain N -channel devict

APPLICATIONS INFORMATION

;apable of sinking 5 mA with a $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and 8 mA with a 5 V $I_{\text {CC }}$. When in the "off" state (divided output more than 5% jelow $V_{\text {REF }}$) the drain can be pulled above $V_{\text {CC }}$ without damage up to a maximum of 12 V above ground. Note that he REG output only indicates if the magnitude of the)utput is below the magnitude of the set point by 5% (i.e., $I_{\text {OUT }}>-4.75 \mathrm{~V}$ for a -5 V set point). If the magnitude of the Jutput is forced higher than the magnitude of the set point i.e., to -6 V when the output is set for -5 V) the REG Jutput will stay low.

JUTPUT RIPPLE

)utput ripple in the LTC1261 comes from two sources; oltage droop at the output capacitor between clocks and requency response of the regulation loop. Voltage droop s easy to calculate. With a typical clock frequency of $; 50 \mathrm{kHz}$, the charge on the output capacitor is refreshed mee every $1.8 \mu \mathrm{~s}$. With a 15 mA load and a $3.3 \mu \mathrm{~F}$ output ;apacitor, the output will droop by:

$$
\mathrm{I}_{\mathrm{LOAD}} \times\left(\frac{\Delta \mathrm{t}}{\mathrm{C}_{O U T}}\right)=15 \mathrm{~mA} \times\left(\frac{1.8 \mu \mathrm{~s}}{3.3 \mu \mathrm{~F}}\right)=8.2 \mathrm{mV}
$$

his can be a significant ripple component when the output is heavily loaded, especially if the output capacitor s small. If absolute minimum output ripple is required, a $0 \mu \mathrm{~F}$ or greater output capacitor should be used.
Segulation loop frequency response is the other major ontributor to output ripple. The LTC1261 regulates the iutput voltage by limiting the amount of charge transerred to the output capacitor on a cycle-by-cycle basis. he output voltage is sensed at the ADJ pin (COMP for ixed output versions) through an internal or external esistor divider from the OUT pin to ground. As the flying apacitors are first connected to the output, the output oltage begins to change quite rapidly. As soon as it xceeds the set point COMP1 trips, switching the state of he charge pump and stopping the charge transfer. Beause the RC time constant of the capacitors and the witches is quite short, the ADJ pin must have a wide AC andwidth to be able to respond to the output in time. xternal parasitic capacitance at the ADJ pin can reduce le bandwidth to the point where the comparator cannot espond by the time the clock pulse finishes. When this
happens the comparator will allow a few complete pulses through, then overcorrect and disable the charge pump until the output drops below the set point. Under these conditions the output will remain in regulation but the output ripple will increase as the comparator "hunts" for the correct value.

To prevent this from happening, an external capacitor can be connected from ADJ (or COMP for fixed output parts) to ground to compensate for external parasitics and increase the regulation loop bandwidth (Figure 3). This sounds counterintuitive until we remember that the internal reference is generated with respect to OUT, not ground.

Figure 3. Regulator Loop Compensation
The feedback loop actually sees ground as its "output," thus the compensation capacitor should be connected across the "top" of the resistor divider, from ADJ (or COMP) to ground. By the same token, avoid adding capacitance between ADJ (or COMP) and $\mathrm{V}_{\text {OUT }}$. This will slow down the feedback loop and increase output ripple. A 100pF capacitor from ADJ or COMP to ground will compensate the loop properly under most conditions.

OUTPUT FILTERING

If extremely low output ripple ($<5 \mathrm{mV}$) is required, additional output filtering is required. Because the LTC1261 uses a high 550 kHz switching frequency, fairly low value RC or LC networks can be used at the output to effectively filter the output ripple. A 10Ω series output resistor and a $3.3 \mu \mathrm{~F}$ capacitor will cut output ripple to below 3 mV (Figure 4). Further reductions can be obtained with larger filter capacitors or by using an LC output filter.

APPLICATIONS INFORMATION

Figure 4. Output Filter Cuts Ripple Below 3mV

CAPACITOR SELECTION

Capacitor Sizing

The performance of the LTC1261 can be affected by the capacitors it is connected to. The LTC1261 requires bypass capacitors to ground for both the V_{CC} and OUT pins. The input capacitor provides most of LTC1261's supply current while it is charging the flying capacitors. This capacitor should be mounted as close to the package as possible and its value should be equal to or larger than the flying capacitor in doubling mode and at least twice the value of the flying capacitors in tripling mode. Ceramic capacitors generally provide adequate performance but avoid using a tantalum capacitor as the input bypass unless there is at least a $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with it. The charge pump capacitors are somewhat less critical since their peak currents are limited by the switches inside the LTC1261. Most applications should use $0.1 \mu \mathrm{~F}$ as the flying capacitor value. Conveniently, ceramic capacitors are the most common type of $0.1 \mu \mathrm{~F}$ capacitor and they work well here. Usually the easiest solution is to use the same capacitor type for both the input bypass and the flying capacitors.

In applications where the maximum load current is welldefined and output ripple is critical or input peak currents need to be minimized, the flying capacitor values can be tailored to the application. Reducing the value of the flying capacitors reduces the amount of charge transferred with each clock cycle. This limits maximum output current, but also cuts the size of the voltage step at the output with each clock cycle. The smaller capacitors draw smaller pulses of current out of $\mathrm{V}_{\text {CC }}$ as well, limiting peak currents and reducing the demands on the input
supply. Table 1 shows recommended values of flying capacitor vs maximum load capacity.
Table 1. Typical Max Load (mA) vs Flying Capacitor Value at

FLYING CAPACITOR VALUE (μ F)	$\begin{gathered} \text { MAX LOAD (mA) } \\ V_{\text {CC }}=5 \mathrm{~V} \text { DOUBLER MODE } \end{gathered}$	MAX LOAD (mA) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ TRIPLER MODE
0.1	22	20
0.047	16	15
0.033	8	11
0.022	4	5
0.01	1	3

The output capacitor performs two functions: it provides output current to the load during half of the charge pump cycle and its value helps to set the output ripple voltage. For applications that are insensitive to output ripple, the output bypass capacitor can be as small as 1μ F. To achieve specified output ripple with $0.1 \mu \mathrm{~F}$ flying capacitors, the output capacitor should be at least $3.3 \mu \mathrm{~F}$. Larger output capacitors will reduce output ripple further at the expense of turn-on time.

Capacitor ESR

Output capacitor Equivalent Series Resistance (ESR) is another factor to consider. Excessive ESR in the output capacitor can fool the regulation loop into keeping the output artificially low by prematurely terminating the charging cycle. As the charge pump switches to recharge the output a brief surge of current flows from the flying capacitors to the output capacitor. This current surge can be as high as 100 mA under full load conditions. A typical $3.3 \mu \mathrm{~F}$ tantalum capacitor has 1Ω or 2Ω of ESR; $100 \mathrm{~mA} \times$ $2 \Omega=200 \mathrm{mV}$. If the output is within 200 mV of the set point this additional 200 mV surge will trip the feedback comparator and terminate the charging cycle. The pulse dissipates quickly and the comparator returns to the correct state, but the RS latch will not allow the charge pump to respond until the next clock edge. This prevents the charge pump from going into very high frequency oscillation under such conditions but it also creates an output error as the feedback loop regulates based on the top of the spike, not the average value of the output (Figure 5). The resulting output voltage behaves as if a resistor of value $\mathrm{C}_{\mathrm{ESR}} \times\left(\mathrm{I}_{\mathrm{PK}} \|_{\mathrm{AVE}}\right) \Omega$ was placed in series with the output. To

IPPLICATIONS InFORMATION

ivoid this nasty sequence of events connect a $0.1 \mu \mathrm{~F}$ seramic capacitor in parallel with the larger output capacior. The ceramic capacitor will "eat" the high frequency ipike, preventing it from fooling the feedback loop, while he larger but slower tantalum or aluminum output capacior supplies output current to the load between charge :ycles.

Figure 5. Output Ripple with Low and High ESR Capacitors
Jote that ESR in the flying capacitors will not cause the :ame condition; in fact, it may actually improve the situaion by cutting the peak current and lowering the ampliude of the spike. However, more flying capacitor ESR is iot necessarily better. As soon as the RC time constant ipproaches half of a clock period (the time the capacitors lave to share charge at full duty cycle) the output current ;apability of the LTC1261 will begin to diminish. For $0.1 \mu \mathrm{~F}$ lying capacitors, this gives a maximum total series resisance of:

$$
\frac{1}{2}\left(\frac{\mathrm{t}_{\mathrm{CLK}}}{\mathrm{C}_{\mathrm{FLY}}}\right)=\frac{1}{2}\left(\frac{1}{550 \mathrm{kHz}}\right) / 0.1 \mu \mathrm{~F}=9.1 \Omega
$$

Aost of this resistance is already provided by the internal witches in the LTC1261 (especially in tripler mode). More han 1Ω or 2Ω of ESR on the flying capacitors will start to ffect the regulation at maximum load.

IESISTOR SELECTION

\}esistor selection is easy with the fixed output versions of he LTC1261-no resistors are needed! Selecting the ight resistors for the adjustable parts is only a little more lifficult. A resistor divider should be used to divide the
signal at the output to give 1.24 V at the ADJ pin with respect to Vout (Figure 6). The LTC1261 uses a positive reference with respect to $\mathrm{V}_{\text {OUT }}$, not a negative reference with respect to ground (Figure 2 shows the reference connection). Be sure to keep this in mind when connecting the resistors! If the initial output is not what you expected, try swapping the two resistors.

Figure 6. External Resistor Connections
The 14-pin adjustable parts include a built-in resistor string which can provide an assortment of output voltages by using different pin-strapping options at the R0, R1, and $\mathrm{R}_{\text {ADJ }}$ pins (Table 2). The internal resistors are roughly 124k, 226k, 100k, and 50k (see Figure 2) giving output options of $-3.5 \mathrm{~V},-4 \mathrm{~V},-4.5 \mathrm{~V}$, and -5 V . The resistors are carefully matched to provide accurate divider ratios, but the absolute values can vary substantially from part to part. It is not a good idea to create a divider using an external resistor and one of the internal resistors unless the output voltage accuracy is not critical.

Table 2. Output Voltages Using the Internal Resistor Divider

PIN CONNECTIONS	OUTPUT VOLTAGE
ADJ to $R_{A D J}$	-5 V
ADJ to $R_{A D J}, R 0$ to GND	-4.5 V
ADJ to $R_{A D J}, R 1$ to R0	-4 V
ADJ to $R_{A D J}, R 1$ to GND	-3.5 V
ADJ to R1	-1.77 V
ADJ to R0	-1.38 V
ADJ to GND	-1.24 V

There are some oddball output voltages available by connecting ADJ to R0 or R1 and shorting out some of the internal resistors. If one of these combinations gives you the output voltage you want, by all means use it!
The internal resistor values are the same for the fixed output versions of the LTC1261 as they are for the adjust-

APPLICATIONS INFORMATION

able. The output voltage can be trimmed, if desired, by connecting external resistance from the COMP pin to OUT or ground to alter the divider ratio. As in the adjustable parts, the absolute value of the internal resistors may vary significantly from unit to unit. As a result, the further the trim shifts the output voltage the less accurate the output voltage will be. If a precise output voltage other than one of the available fixed voltages is required, it is better to use
an adjustable LTC1261 and use precision external resistors. The internal reference is trimmed at the factory to within 3.5% of 1.24 V ; with 1% external resistors the output will be within 5.5% of the nominal value, even under worst case conditions.

The LTC1261 can be internally configured with nonstandard fixed output voltages. Contact the Linear Technology Marketing Department for details.

TYPICAL APPLICATIONS

3.3V Input, -4.5V Output GaAs FET Bias Generator

5V Input, -4V Output GaAs FET Bias Generator

TYPICAL APPLICATIONS

7 Cells to -1.24V Output GaAs FET Bias Generator

1mV Ripple, 5V Input, -4V Output GaAs FET Bias Generator

High Supply Voltage, -5V Output GaAs FET Bias Generator

TYPICAL APPLICATIONS

5V Input, - 0.5V Output GaAs FET Bias Generator

-5V Supply Generator

Low Output Voltage Generator

Minimum Parts Count - 4V Generator

TYPICAL APPLICATIONS

This circuit uses the LTC1261CS8 to generate a -1.24 V jutput at 20 mA . Attached to this output is a 312Ω resistor o make the current/voltage conversion. 4 mA through 312Ω generates 1.24 V , giving a net 0 V output. 20 mA hrough 312Ω gives 6.24 V across the resistor, giving a net $j \mathrm{~V}$ output. If the 4 mA to 20 mA source requires an operatng voltage greater than 8 V , it should be powered from a
separate supply; the LTC1261 can then be powered from any convenient supply, $3 \mathrm{~V} \leq \mathrm{V}_{S} \leq 8 \mathrm{~V}$. The Schottky diode prevents the external voltage from damaging the LTC1261 in shutdown or under fault conditions. The LTC1261's reference is trimmed to 3.5% and the resistor adds 1% uncertainty, giving 4.5\% total output error.
-1.24V Generator for 4mA-20mA to OV-5V Conversion

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
TC1550/LTC1551	Low Noise Switched Capacitor Regulated Voltage Inverter	GaAs FET Bias with Linear Regulator 1mV Ripple
TC1429	Clock Synchronized Switched Capacitor Regulated Voltage Inverter	GaAs FET Bias
T1121	Micropower Low Dropout Regulators with Shutdown	$0.4 V$ Dropout Voltage at 150mA, Low Noise, Switched Capacitor Regulated Voltage Inverter

features

- Regulated $12 \mathrm{~V} \pm 5 \%$ Output Voltage
- No Inductors
- Supply Voltage Range: 4.75 V to 5.5 V
- Guaranteed 30mA Output
- Low Power: Icc $=500 \mu \mathrm{~A}$
- ICC in Shutdown: $0.5 \mu \mathrm{~A}$
- 8-Pin PDIP or SO-8 Package

APPLICATIONS

- 12V Flash Memory Programming Supplies
- Compact 12V Op Amp Supplies
- Battery-Powered Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1262$ is a regulated $12 \mathrm{~V}, 30 \mathrm{~mA}$ output DC/DC converter. It is designed to provide the $12 \mathrm{~V} \pm 5 \%$ output necessary to program byte-wide flash memories. The output will provide up to 30 mA from input voltages as low as 4.75 V without using any inductors. Only four external capacitors are required to complete an extremely small surface mountable circuit.

The TTL compatible shutdown pin can be directly connected to a microprocessor and reduces the supply current to less than $0.5 \mu \mathrm{~A}$. The LTC1262 offers improved shutdown current performance and requires fewer external components than competing solutions.
The LTC1262 is available in an 8-pin PDIP or SO-8 package.
$\boldsymbol{\mathcal { G }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

In/Out of Shutdown

absolute maximum ratings

(Note 1)

Supply Voltage (VCC) 6 V
Input Voltage (SHDN) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ Output Current (lout) 50 mA Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

TOP VIEW	ORDER PART
C1- \square^{\square} - 8 SHDN	
	LTC1262CN8
	LTC1262CS8
N8 PACKAGE S8 PACKAGE 8-LEAD PDIP 8-LEAD PLASTIC SO	S8 PART MARKING
$\begin{aligned} & \mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JAJ}}=100^{\circ} \mathrm{C} /(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{N}(\mathrm{S8}) \end{aligned}$	1262

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $V_{C C}=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, (N otes 2, 3), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$0 \mathrm{~mA} \leq 1_{\text {OUT }} \leq 30 \mathrm{~mA}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet	11.4		12.6	V
ICC	Supply Current	No Load, $\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		0.5	1	mA
ISHDN	Shutdown Supply Current	No Load, $\mathrm{V}_{\text {SHDN }}=\mathrm{V}_{\text {CC }}$	\bullet		0.5	10	$\mu \mathrm{A}$
fosc	Oscillator Frequency	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$			300		kHz
	Power Efficiency	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$			74		\%
$\mathrm{R}_{\text {SW }}$	$V_{\text {CC }}$ to $\mathrm{V}_{\text {OUT }}$ Switch Impedance	$\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {SHON }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	\bullet		0.18	2	k Ω
V_{IH}	SHDN Input High Voltage		\bullet	2.4			V
VIL	SHDN Input Low Voltage		-			0.8	V
	SHDN Input Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, V_{S H D N}=0 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V}, V_{S H D N}=5 \mathrm{~V} \end{aligned}$	\bullet	-20	$\begin{aligned} & \hline-10 \\ & 0.06 \\ & \hline \end{aligned}$	$\begin{aligned} & -5 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Ion	Turn-On Time	$\mathrm{C} 1=\mathrm{C} 2=0.22 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}$, (Figures 1,2$)$			500		$\mu \mathrm{S}$
SOFF	Turn-Off Time	$\mathrm{C} 1=\mathrm{C} 2=0.22 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}$, (Figures 1,2$)$			3.3		ms

The denotes specifications which apply over the full operating emperature range.
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 3: All typicals are given at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PGRFORMAOCE CHARACTERISTICS

PIn functions

C1-(Pin 1): $\mathrm{C1}$ Negative Input. Connect a $0.22 \mu \mathrm{~F}$ capacitor C 1 between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
C1 ${ }^{+}$(Pin 2): C1 Positive Input. Connect a $0.22 \mu \mathrm{~F}$ capaci- $^{\text {(}}$ tor C 1 between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
C2-(Pin 3): C2 Negative Input. Connect a $0.22 \mu \mathrm{~F}$ capacitor C 2 between C^{+}and C^{-}.
C2 ${ }^{+}$(Pin 4): C2 Positive Input. Connect a $0.22 \mu \mathrm{~F}$ capacitor C 2 between C^{+}and C^{-}.
$V_{\text {cc }}$ (Pin 5): Positive Supply Input Where $4.75 \mathrm{~V} \leq \mathrm{V}_{\text {cc }}$ $\leq 5.5 \mathrm{~V}$. Connect a $4.7 \mu \mathrm{~F}$ bypass capacitor $\mathrm{C}_{\text {IN }}$ to ground.
$\mathrm{V}_{\text {OUT }}$ (Pin 6): 12V Output. Connecta $4.7 \mu \mathrm{~F}$ bypass capacitor $\mathrm{C}_{\text {out }}$ to ground. When in the shutdown mode $\mathrm{V}_{\text {OUT }}=$ Vcc.
GND (Pin 7): Ground.
SHDN (Pin 8): Logic Level Shutdown Pin. Application of a logic low at SHDN pin will place the regulator in normal operation. With no external connection, or with SHDN tied to V_{cc}, the device will be put into shutdown mode. Connect to GND for normal operation. In shutdown mode the charge pump is turned off and $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}$.

BLOCK DIAGRAM

timing DIAGRAms

Figure 1. LTC1262 Timing Diagram

Figure 2. LTC1262 Timing Circuit

APPLLCATIONS InFORMATION

Operation

The LTC1262 uses a charge pump tripler to generate 12 V from a $\mathrm{V}_{\text {CC }}$ of 5 V . The charge pump operates when clocked by a 300 kHz oscillator. When the oscillator output is low, $C 1$ and $C 2$ are connected between $V_{C C}$ and GND, charging them to V_{Cc}. When the oscillator output goes high, C1 and C 2 are stacked in series with the bottom plate of C 1 pulled to V_{CC}. The top plate of C 2 is switched to charge $\mathrm{C}_{0 U T}$ and $V_{\text {OUT }}$ rises. $V_{\text {OUT }}$ is regulated to within 5% of 12 V by an oscillator pulse gating scheme. A resistor divider senses $V_{\text {OUT }}$. When the output of the divider ($\mathrm{V}_{\text {DIV }}$) is less than the output of a bandgap (VGGAP) by the hysteresis voltage ($\mathrm{V}_{\mathrm{HYST}}$) of the comparator, oscillator pulses are applied to the charge pump to raise $\mathrm{V}_{\text {OUT }}$. When $\mathrm{V}_{\text {DIV }}$ is above $\mathrm{V}_{\text {BGAP }}$ by $\mathrm{V}_{\text {HYST }}$, the oscillator pulses are prevented from clocking the charge pump. $V_{\text {OUT }}$ drops until $V_{\text {DIV }}$ is below $V_{\text {BGAP }}$ by V HYST again. The gates of all internal switches are driven between $V_{0 U T}$ and GND. An internal diode ensures that the LTC1262 will start up under load by charging $\mathrm{C}_{\text {OUT }}$ to one diode drop below $V_{\text {Cc }}$.
To reduce supply current the LTC1262 may be put into shutdown mode by floating the SHDN pin or taking it to $V_{\text {cc. }}$ In this mode the bandgap, comparator, oscillator and resistor divider are switched off to reduce supply current to typically $0.5 \mu \mathrm{~A}$. At the same time an internal switch shorts $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {CC }} ; \mathrm{V}_{\text {OUT }}$ takes 3.3 ms to reach 5.1 V (see toff in Figure 1). When the SHDN pin is low, the LTC1262 exits shutdown and the charge pump operates to raise $V_{\text {Out }}$ to 12 V . $\mathrm{V}_{\text {Out }}$ takes 500μ to reach the lower regulation limit of 11.4 V (see t_{ON} in Figure 1).

Choice of Capacitors

The LTC1262 is tested with the capacitors shown in Figure 2. C 1 and C 2 are $0.22 \mu \mathrm{~F}$ ceramic capacitors and $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$ are $4.7 \mu \mathrm{~F}$ tantalum capacitors. Refer to Table 1 if other choices are desired.

Table 1. Recommended Capacitor Types and Values

CAPACITOR	CERAMIC	TANTALUM	ALUMINUM
$\mathrm{C} 1, \mathrm{C} 2$	$0.22 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$	Not Recommended	Not Recommended
$\mathrm{C}_{\text {OUT }}$	$2 \mu \mathrm{~F}(\mathrm{Min})$	$4.7 \mu \mathrm{~F}(\mathrm{Min})$	$10 \mu \mathrm{~F}(\mathrm{Min})$
$\mathrm{C}_{\text {IN }}$	$1 \mu \mathrm{~F}(\mathrm{Min})$	$4.7 \mu \mathrm{~F}(\mathrm{Min})$	$10 \mu \mathrm{~F}(\mathrm{Min})$

C 1 and C 2 should be ceramic capacitors with values in the range of $0.22 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$. Higher values provide better load regulation. Tantalum capacitors are not recommended as the higher ESR of these capacitors degrades performance when the load current is above 25 mA with $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.
$\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {Out }}$ can be ceramic, tantalum or electrolytic capacitors. The ESR of Cout introduces steps in the $\mathrm{V}_{\text {OUT }}$ waveform whenever the charge pump charges $\mathrm{C}_{\text {Out }}$. This tends to increase $\mathrm{V}_{\text {OUT }}$ ripple. Ceramic or tantalum capacitors are recommended for Cout if minimum ripple is desired. The LTC1262 does not require a 0.1 HF capacitor between V_{CC} and $\mathrm{V}_{\text {Out }}$ for stability.

Maximum Load Current

The LTC1262 will source up to 50 mA continuously without any damage to itself. Do not short the $\mathrm{V}_{\text {Out }}$ pin to ground. If the $V_{\text {out }}$ pin is shorted to ground, irreversible damage to the device will result.

TYPICAL APPLICATIONS

5V to 3.3V/10A Converter

Paralleling Devices

NOTE: KEEP DEVICES CLOSE TOGETHER OR
USE SEPARATE $4.7 \mu \mathrm{~F}$ TANTALUM
CAPACITORS IF THIS IS NOT POSSBILE.

Burst Mode is a trademark of Linear Technology Corporation.

LTC1262

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1106*	Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory	PCMCIA Card Power Control, 9 μA ISHDN, Small SMT Components, Requires External Inductor
LT1109-12	Micropower Low Cost DC/DC Converter Adjustable and Fixed 12V	Three-Lead Z Package, Requires External Inductor
LT1109A-12	Micropower DC/DC Converter Flash Memory VPP Generator Adjustable and Fixed 12V	Requires External Inductor
LT1301	Micropower High Efficiency 5V/12V Step-Up DC/DC Converter for Flash Memory	$7 \mu \mathrm{~A}$ ISHDN, SMT Inductor and Capacitors
LT1309	$500 k H z$ Micropower DC/DC Converter for Flash Memory	Small SMT Inductor and Capacitors, 6 6 A I ISHDN

* See also LT1312/LT1313 PCMCIA VPP drivers/regulators, LT1314/LT1315 PCMCIA switch matrix and the LTC1470/LTC1471/LTC1472 Protected VCC and VPP switching matrices

Clock-Synchronized Switched Capacitor Regulated Voltage Inverter

feftures

- Regulated Negative Voltage from a Single Positive Supply

- External Clock for Synchronization in Noise Sensitive Systems
- REG Output Indicates Output is in Regulation
- Low Output Ripple: 5mV Typ
- Can Provide Regulated -5V from a 3V Supply
- Supply Current: 600uA Typ
- Shutdown Mode Drops Supply Current to $0.2 \mu \mathrm{~A}$
- Up to 12mA Output Current
- Adjustable or Fixed Output Voltages
- Requires Only Three or Four External Caps
- Output Regulation: 5\%
- Available in S0-8 Packages

APPLICATIONS

- GaAs FET Bias Generators
- Negative Supply Generators
- Battery Powered Systems
- Single Supply Applications

DESCRIPTION

The LTC ${ }^{\circledR} 1429$ is a switched-capacitor voltage inverter designed to provide a regulated negative voltage from a single positive supply and permits clock synchronization in noise sensitive systems. The LTC1429CSoperates from a single3V to 8 V supply and provides an adjustable output voltage from -1.25 V to -8 V . An on-chip resistor string allows the LTC1429CS to be configured for output voltages of -3.5 V , $-4 \mathrm{~V},-4.5 \mathrm{~V}$ or -5 V . The LTC1429CS8 is optimized for applications which require a fixed -4 V output from a 5 V supply and requires only a single external $0.1 \mu \mathrm{~F}$ flying capacitor. The LTC1429CS requires one or two external $0.1 \mu \mathrm{~F}$ capacitors, depending on input voltage. Both versions require additional external input and output bypass capacitors. An optional compensation capacitor at ADJ/COMP can be used to reduce the output voltage ripple.

Each version of the LTC1429 guarantees output regulation of 5%. The LTC1429 includes an open-drain REG output which pulls low when the output is within 5% of the set value. Output ripple is typically as low as 5 mV . The LTC1429 requires an external clock applied to the SYNC/SD for normal operation and consumes a typical quiescent current of $600 \mu \mathrm{~A}$. Holding the SYNC/SD either high or low brings the device into shutdown and the supply current drops to $0.2 \mu \mathrm{~A}$. For applications which don'thaveaclocksignalavailable, the LTC1261 provides the same functionality with an internal oscillator. For applications which require output ripple below 1 mV , see the LTC1550/LTC1551. The LTC1429CS is available in a 14-pin SO package and the LTC1429CS8 is available in an 8-pin SO package.

TYPICAL APPLICATION

-4V Generator with Power Valid

*OPTIONAL

$0.2 \mathrm{~ms} / \mathrm{DIV} \quad$ LTC1429. TA02

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage (Note 2) .. 9V
Output Voltage ..0.3V to -9V
Total Voltage, VCC to $\mathrm{V}_{\text {OUT }}$ (Note 2) \qquad 12 V
Input Voltage (SYNC/SD Pin) \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ Input Voltage (REG Pin)............................ -0.3 V to 12 V

Input Voltage (ADJ, RO-1, R RADJ)
.................................... $\left(\mathrm{V}_{\text {OUT }}-0.3 \mathrm{~V}\right)$ to ($\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$)
Output Short Circuit DurationIndefinite Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	TOPVIEW	ORDER PART NUMBER
$\mathrm{V}_{\mathrm{cc}} 5 \square 8 \mathrm{~s}$ SYNc/sd	LTC1429CS8-4*	C1+ ${ }^{-1}$ - 13 SYuc/sd	LTC1429CS
GND 4 5 Comp	S8 PART MARKING	GND ${ }^{\text {C2 }}$	
$\mathrm{T}_{\text {max }}=150^{\circ} \mathrm{C}, \theta_{\text {J }}=150^{\circ} \mathrm{C} / \mathrm{W}$		$\mathrm{T}_{\text {max }}=150^{\circ} \mathrm{C}, \theta_{\text {J }}=110^{\circ} \mathrm{C} / \mathrm{W}$	

Consult factory for Industrial and Military grade parts. *Contact factory for other output voltages or 8-pin adjustable parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 6.5 V . $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$ (Note 4), $\mathrm{C}_{\text {OUT }}=3.3 \mu \mathrm{~F}, \mathrm{~F}_{\text {SYNC }}=700 \mathrm{kHz}$ with 50% duty cycle square wave, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1429CS8/LTC1429CS			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {REF }}$	Reference Voltage		\bullet	1.20	1.24	1.28	V
IS	Supply Current	$\begin{aligned} & \hline V_{C C}=3.3 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \\ & V_{\text {SYNC } / \mathrm{D}}=V_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 600 \\ & 600 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} 1500 \\ 1500 \\ 5 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$F_{\text {SYNC }}$	Synchronous Clock Frequency (Note 8)	$\begin{aligned} & V_{C C} \leq 5 \mathrm{~V} \\ & V_{C C}=6.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 60 \\ 100 \end{gathered}$	$\begin{aligned} & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	kHz kHz
PEFF	Power Efficiency				65		\%
$\mathrm{V}_{\text {OL }}$	REG Output Low Voltage	$\mathrm{I}_{\text {REG }}=1 \mathrm{~mA}$	\bullet		0.1	0.8	V
TREG	REG Sink Current	$\begin{aligned} & V_{\text {REG }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {REG }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{gathered} \hline 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IADJ	Adjust Pin Current	$\mathrm{V}_{\text {ADJ }}=1.24 \mathrm{~V}$ (Note 5)	\bullet		0.01	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	SYNC/SD Input High Voltage	$V_{\text {CC }}=5 \mathrm{~V}$	\bullet	2.0			V
$\mathrm{V}_{\text {IL }}$	SYNC/SD Input Low Voltage	$V_{\text {CC }}=5 \mathrm{~V}$	\bullet			0.8	V
IN	SYNC/SD Input Current	$V_{\text {SYNC/SD }}=V_{\text {CC }}$ or GND	\bullet			± 1	$\mu \mathrm{A}$
Ton	Turn On Time	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$			200		$\mu \mathrm{S}$

ELECTRICAL CHARACTERISTICS Tripler Mode, $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}, \mathrm{C} 1=\mathrm{C2}=0.1 \mu \mathrm{~F}$ (Note 4), $\mathrm{C}_{\text {OUT }}=3.3 \mu \mathrm{~F}$, $\mathrm{F}_{\text {SYNC }}=700 \mathrm{kHz}$ with 50% duty cycle square wave, unless otherwise noted.

			LTC1429CS SYMBOL		PARAMETER

Doubler Mode, $V_{C C}=5 V, C 1=0.1 \mu F, C 2=0($ Note 4$), C_{\text {OUT }}=3.3 \mu F, F_{S Y N C}=700 \mathrm{kHz}$ with 50% duty cycle, unless otherwise noted.

\left.| | | | LTC1429CS8/LTC1429CS | | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |$\right)$ UNITS

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: Setting output to <-7V will exceed the total voltage maximum rating with a 5 V supply. With supplies higher than 4 V the output should never be set to exceed ($\mathrm{V}_{C C}-12 \mathrm{~V}$).
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground, unless otherwise specified. All typicals are given at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$ means the specifications apply to tripler mode where $V_{\text {CC }}-V_{\text {OUT }}=3.3 V_{\text {CC }}$ (LTC1429CS only; the LTC1429CS8 cannot be
connected in tripler mode), with C 1 connected between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$and C 2 connected between $\mathrm{C2}^{+}$and C^{-}. $\mathrm{C} 2=0$ implies doubler mode where $V_{\text {CC }}-V_{\text {OUT }}=2 V_{\text {CC }}$; for the LTC1429CS, this means C1 connects from $\mathrm{C1}^{+}$ to $\mathrm{C2}^{-}$with $\mathrm{C1}^{-}$and $\mathrm{C2}^{+}$floating. For the LTC1429CS8 in doubler mode, C 1 connects from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$; there are no C 2 pins.
Note 5: Adjustable output parts only; does not apply to fixed output parts.
Note 6: For output voltages below -4.5V, the LTC1429 may reach 50\% duty cycle and fall out of regulation with heavy load or low input voltages. Beyond this point, the output will follow the input with no regulation.
Note 7: LTC1429 will operate with square wave of 40% to 60% duty cycle. For best performance, use a square wave with 50% duty cycle.
Note 8: Maximum frequency is not tested. Typical part can be used beyond 2 MHz .

TYPICAL PGRFORMAOCE CHARACTERISTICS

(See Test Circuits; Figure 1 for Doubler Mode, Figure 2 for Tripler Mode)

Output Voltage vs Output Current

LTC1429•TPCOT

Output Voltage vs Supply Voltage

LTC1429 •TPCO2

Maximum Output Current vs Supply Voltage

LTC1429•TPC03

LIMER

TYPICAL PGRFORMANCE CHARACTERISTICS

(See Test Circuits: Figure 1 for Doubler Mode, Figure 2 for Tripler Mode)

PIn functions

Pin numbers are shown as (LTC1429CS/LTC1429CS8).
NC (Pin 1/NA): No Internal Connection.
$\mathrm{C1}^{+}$(Pin 2/Pin 2): C1 Positive Input. Connect an 0.1 $\mu \mathrm{F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$. With the LTC1429CS in doubler mode, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to $\mathrm{C2}^{-}$.
C1- (Pin 3/Pin 3): C1 Negative Input. Connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$. With the LTC1429CS in doubler mode only, $\mathrm{C1}^{-}$should float.

C2+ (Pin 4/NA): C2 Positive Input. In tripler mode, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C2}^{+}$to C^{-}. This pin is used with the LTC1429CS in tripler mode only; in doubler mode, this pin should float.
C2- (Pin 5/NA): C2 Negative Input. In tripler mode, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C2}^{+}$to C^{-}. In doubler mode, connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to C^{-}.

GND (Pin 6/Pin 4): Ground. Connect to a low-impedance ground. A ground plane will help to minimize regulation errors.

RO (Pin 7/NA): Internal Resistor String-1st Tap. See Table 3 in the Applications Information section for information on internal resistor string pin connections vs output voltage.
R1 (Pin 8/NA): Internal Resistor String-2nd Tap.
$\mathbf{R}_{\text {ADJ }}$ (Pin 9/NA): Internal Resistor String Output. Connect this pin to ADJ to use the internal resistor divider. See Table 3 in the Applications Information section for information on internal resistor string pin connections vs output voltage.
ADJ (COMP for fixed output versions) (Pin 10/Pin 5): Output Adjust/Compensation. For adjustable parts, this pin is used to set the output voltage. The output voltage should be divided down with a resistor divider and fed back to this pin to set the regulated output voltage. The resistor divider can be external or the internal divider string can be used if it can provide the required output voltage. Typically the resistor string should draw $\geq 10 \mu \mathrm{~A}$ from the output to minimize errors due to the bias current at the adjust pin. Fixed output parts have the internal resistor string connected to this pin inside the package; the pin can be used to trim the output voltage if desired. It can also be used as an optional feedback compensation pin to reduce output ripple on both adjustable and fixed output voltage parts. See the Applications Information section for more on compensation and output ripple.
OUT (Pin 11/Pin 6): Negative Voltage Output. This pin must be bypassed to ground with a $1.0 \mu \mathrm{~F}$ or larger capacitor; it must be at least $3.3 \mu \mathrm{~F}$ to provide specified output ripple. The size of the output capacitor has a strong

PIn functions

effect on output ripple; see the Applications Information section for more details.

REG (Pin 12/Pin 7): This is an open drain output that pulls low when the output voltage is within 5% of the set value. It will sink 10 mA to ground with a 5 V supply. The external circuitry must provide a pull-up or REG will not swing high. The voltage at REG may exceed $V_{C C}$; it can be pulled up to 12 V above ground without damage.
SYNC/SD (Pin 13/Pin 8): Synchronous Clock Input. A minimum input clock frequency (60 kHz with $\mathrm{V}_{\mathrm{CC}} \leq 5 \mathrm{~V}$ and 100 kHz with $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$) must be applied to this input to keep the LTC1429 operating normally. An input clock below the minimum frequency may cause the charge
pump to operate erratically or the device to shut down. A logic high or low at the SYNC/SD pin will put the device into SHUTDOWN and drop the supply current to $0.2 \mu \mathrm{~A}$. The LTC1429 will operate with input square wave of 40% to 60% duty cycle. For best performance, use a square wave of 50% duty cycle.
$\mathbf{V}_{\text {CC }}$ (Pin 14/Pin 1): Power Supply. This requires an input voltage between 3 V and 6.5 V . Certain combinations of output voltage and operating mode may place additional restrictions on the input voltage; see the Applications Information section for details. $V_{C C}$ must be bypassed to ground with at least a $0.1 \mu \mathrm{~F}$ capacitor, placed in close proximity to the chip; again, see the Applications Information section.

TEST CIRCUITS

Figure 1. Doubler Mode

Figure 2. Tripler Mode

APPLICATIONS INFORMATION

MODES OF OPERATION

The LTC1429 uses a charge pump to generate a negative output voltage that can be regulated to a value either higher or lower than the original input voltage. It has two modes of operation: a doubler inverting mode, which can provide a negative output equal to or less than the positive power supply, and a tripler inverting mode, which can provide negative output voltages either larger or smaller in magnitude than the original positive supply. The tripler
offers greater versatility and wider input range but requires four external capacitors and a 14-pin package; the doubler offers the S0-8 package and requires only three external capacitors. The optional compensation capacitor at ADJ/COMP is used to reduce the ripple output voltage.

Doubler Mode

This mode allows the LTC1429 to generate negative output voltage magnitudes up to that of the supply voltage,

APPLLCATIONS InFORMATION

creating a voltage between $\mathrm{V}_{C C}$ and OUT of up to $2 \times \mathrm{V}_{C C}$. In doubler mode, the LTC1429 uses a single flying capacitor to invert the input supply voltage and the output voltage is stored on the output bypass capacitor between switch cycles. The LTC1429CS8 is always configured in doubler mode and has only one pair of flying capacitor pins (Figure 3a). The LTC1429CS can be configured in doubler mode by connecting a single flying capacitor between the $\mathrm{C1}^{+}$and $\mathrm{C2}^{-}$pins; $\mathrm{C1}^{-}$and $\mathrm{C2}^{+}$should be left floating (Figure 3b).

(a)

SO-8 DOUBLER MODE

Figure 3. Flying Capacitor Connections

Tripler Mode

The LTC1429CS can be used in a tripler mode which can generate negative output voltages up to twice the supply
voltage; the total voltage between the $\mathrm{V}_{C C}$ and OUT pins is $3 \times V_{\text {cc }}$. Tripler mode can be used to generate -5 V from a single positive 3.3 V supply, for example. Tripler mode requires two external flying capacitors. The first connects between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$and the second between $\mathrm{C2}^{+}$and $\mathrm{C2}^{-}$ (Figure 3c). Because of the relatively high voltages that can be generated in this mode, care must be taken to ensure that the total input-to-output voltage never exceeds 12V, or the LTC1429 may be damaged. This is possible with supply voltages above 4 V in tripler mode and above 6 V in doubler mode, although in most applications the output voltage will be kept in check by the regulation loop. As the input supply voltage rises, the allowable output voltage drops, finally reaching -4 V with a 8.5 V supply. To avoid this problem, use doubler mode whenever possible with high input supply voltages.

THEORY OF OPERATION

A block diagram of the LTC1429 is shown in Figure 4. The heart of the LTC1429 is the charge pump core, shown in the dashed line. It generates a negative output voltage by first charging the flying caps between $V_{C C}$ and ground. It then

Figure 4. Block Diagram

APPLLCATIONS InFORMATION

stacks the flying caps on top of each other and connects the top of the stack to ground; this forces the bottom of the stack to a negative voltage. The charge on the flying capacitors is transferred to the output bypass cap, leaving it charged to the negative output voltage. This process is driven by the external 700 kHz clock via the SYNC/SD pin.
Figure 4 shows the charge pump configured in tripler mode. With the external input clock low, C1 and C2 are charged to V_{CC} by $\mathrm{S} 1, \mathrm{~S} 3, \mathrm{~S} 5$ and S 7 . At the next rising clock edge, S1, S3, S5 and S7 open and S2, S4 and S6 close, stacking C1 and C2 on top of each other. S2 connects $\mathrm{C1}^{+}$to ground, S 4 connects $\mathrm{C1}^{-}$to $\mathrm{C2}^{+}$and $\mathrm{C2}^{-}$ is connected to the output by S 6 . The charge in C 1 and C 2 is transferred to $\mathrm{C}_{0 \mathrm{ut}}$, setting it to a negative voltage. Doubler mode works the same way except that the single flying capacitor (C 1) is connected between C^{+}and C^{-}. S3, S4 and S5 don't do anything useful in doubler mode. C1 is charged initially by S1 and S7, and connected to the output by S2 and S6.

The output voltage is monitored by COMP1, which compares a divided replica of the outputat ADJ (COMP for fixed output parts) to the internal reference. At the beginning of a cycle, the clock is low, forcing the output of the AND gate low and charging the flying caps. The next rising clock edge sets the RS latch, setting the charge pump to transfer charge from the flying caps to the output capacitor. As long as the output is below the set point, COMP1 stays low, the latch stays set and the charge pump runs at the duty cycle of the input clock signal, gated through the AND gate. As the output approaches the set voltage, COMP1 will trip whenever the divided signal exceeds the internal 1.24 V reference, relative to OUT. This resets the RS latch and truncates the clock pulses, internally reducing the amount of charge transferred to the output capacitor and regulating the output voltage. If the output exceeds the set point, COMP1 stays high, inhibiting the RS latch and disabling the charge pump.
COMP2 also monitors the divided signal at ADJ, but it is connected to a 1.18 V reference, 5% below the main reference voltage. When the divided output exceeds this lower reference voltage, indicating that the output is within 5% of the set value, COMP2 goes high, turning on the REG output transistor. This is an open drain N -channel device capable of sinking

8 mA with a $3.3 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ and 15 mA with a $5 \mathrm{~V} \mathrm{~V}_{\text {CC }}$. When in "off" state (divided output more than 5% below $\mathrm{V}_{\text {REF }}$) the drain can be pulled above $V_{C C}$ without damage, up to a maximum of 12 V above ground. Note that the REG output only indicates if the magnitude of the output is below the magnitude of the set point by 5% (i.e., $V_{\text {OUT }}>-4.75 \mathrm{~V}$ for $\mathrm{a}-5 \mathrm{~V}$ set point). If the magnitude of the output is forced higherthan the magnitude of the set point (i.e., to - 6 V when the output is set for 5 V) the REG output will stay low.

OUTPUT RIPPLE

Output ripple in the LTC1429 comes from two sources: voltage droop at the output capacitor between clocks and frequency response of the regulation loop. Voltage droop is easy to calculate. With a typical external input clock frequency of 700 kHz , the charge on the output capacitor is refreshed once every $1.43 \mu \mathrm{~s}$. With a 15 mA load and a $3.3 \mu \mathrm{~F}$ output capacitor, the output will droop by:

$$
\mathrm{I}_{\text {LOAD }} \times\left(\frac{\Delta \mathrm{t}}{\mathrm{C}_{O U T}}\right)=15 \mathrm{~mA} \times\left(\frac{1.43 \mu \mathrm{~s}}{3.3 \mu \mathrm{~F}}\right)=6.5 \mathrm{mV}
$$

There can be a significant ripple component when the output is heavily loaded, especially if the output capacitor is small or the external input clock frequency is low. If absolute minimum output ripple is required, a $10 \mu \mathrm{~F}$ or greater output capacitor, high input clock rate ($\mathrm{F}_{\text {SYNC }}$) and lower value $(<0.1 \mu \mathrm{~F})$ of flying capacitor should be used.
Regulation loop frequency response is the other major contributor to output ripple. The LTC1429 regulates the output voltage by limiting the amount of charge transferred to the output capacitor on a cycle-by-cycle basis. The output voltage is sensed at the ADJ pin (COMP for fixed output versions) through an internal or external resistor divider from the OUT pin to ground. As the flying caps are first connected to the output, the output voltage begins to change quite rapidly. As soon as it exceeds the set point, COMP1 trips, switching the state of the charge pump and stopping the charge transfer. Because the RC time constant of the capacitors and the switches is quite short, the ADJ pin must have a wide AC bandwidth to be able to respond to the output in time. External parasitic capacitance at the ADJ pin can reduce the bandwidth to the point where the comparator cannot respond by the time

APPLLCATIONS InFORMATION

the clock pulse finishes. When this happens, the comparator will allow a few complete pulses through, then overcorrect and disable the charge pump until the output drops below the set point. Under these conditions, the output will remain in regulation, but the output ripple will increase as the comparator "hunts" for the correct value.

To help prevent this from happening, an external capacitor can be connected from ADJ (or COMP for fixed output parts) to ground to compensate for external parasitics and increase the regulation loop bandwidth (Figure 5). This sounds counter-intuitive until we remember that the internal reference is generated with respect to OUT, not ground. The feedback loop actually sees ground as its "output"; thus the compensation capacitor should be connected across the "top" of the resistor divider from ADJ (or COMP) to ground. By the same token, avoid adding capacitance between ADJ (or COMP) and Vout; this will slow down the feedback loop and increase output ripple. A 1000pF capacitor from ADJ or COMP to ground will compensate the loop properly under most conditions.

Figure 5. Regulator Loop Compensation

EXTERNAL CLOCK

The LTC1429 requires an external clock to operate. This clock signal should be TTL or CMOS compatible and should be applied to the SYNC/SD pin. The external clock allows the user to control the frequency at which the LTC1429 operates, preventing it from interfering with other frequency-sensitive circuitry. The LTC1429 can be synchronized to any frequency between $60 \mathrm{kHz}(100 \mathrm{kHz}$ for $\mathrm{V}_{\mathrm{CC}}>5$) and 2 MHz . Higher clock frequencies can help reduce output ripple at the cost of additional quiescent
current. The clock signal should have a duty cycle between 40% and 60% for proper regulation loop performance.

The LTC 1429 can be shut down by stopping the clock. An internal circuit monitors the time between clock edges at the SYNC/SD pin. If a $10 \mu \mathrm{~s}$ period elapses without a rising or falling edge, LTC1429 assumes the clock has stopped and goes into shutdown mode and the quiescent current drops to below $1 \mu \mathrm{~A}$. The next clock edge at the SYNC/SD pin will reawaken the LTC1429. At clock frequencies below 50 kHz (50% duty cycle) the LTC1429 may enter shutdown mode briefly during each clock cycle causing erratic operation. Minimum operating frequency should be kept above 60 kHz (above 100 kHz with $\mathrm{V}_{\mathrm{CC}}>5$) to prevent this from happening.

Radiation from the clock signal at the SYNC/SD pin can interfere with the feedback node at the ADJ/COMP pin causing errors in the output voltage. The clock line should be routed away from the circuitry at the ADJ/COMP pin and should be shielded with a ground plane or with coaxial cable. A compensation capacitor from the ADJ/COMP pin to ground can also help to reduce this effect: $0.001 \mu \mathrm{~F}$ is adequate for most applications.

OUTPUT FILTERING

If extremely low output ripple ($<10 \mathrm{mV}$) is required, additional output filtering is required. Because the LTC1429 uses a high, external control switching frequency, fairly low value RC or LC networks can be used at the output to effectively filter the output ripple. With $\mathrm{F}_{\text {SYNC }}=700 \mathrm{kHz}$, a 10Ω series output resistor and a $3.3 \mu \mathrm{~F}$ capacitor will cut output ripple to below 3mV (see Figure 6). Further reduc-

Figure 6. Output Filter Cuts Ripple Below 3mV

APPLICATIONS Information

tions can be obtained with larger filter capacitors or by using an LC output filter or higher $\mathrm{F}_{\text {SYNC }}$ clock rate with a lower value $(<0.1 \mu \mathrm{~F})$ of flying capacitor. Also see the section on Output Capacitor ESR. For applications requiring ripple below 1 mV , see the LTC1550/LTC1551 data sheet.

CAPACITOR SELECTION

Capacitor Sizing

The performance is dependent on the type of capacitors used. The LTC1429 requires bypass caps to ground for both the V_{CC} and OUT pins. The input cap provides most of the LTC1429's supply current while it is charging the flying caps. It should be mounted as close to the package as possible, its value should be equal to or larger than the flying cap in doubling mode and at least twice the value of the flying caps in tripling mode. Ceramic capacitors generally provide adequate performance; avoid using a tantalum capacitor as the input bypass unless there is at least a $0.1 \mu \mathrm{~F}$ ceramic cap in parallel with it. The charge pump caps are somewhat less critical, since their peak currents are limited by the switches inside the LTC1429. Most applications should use $0.1 \mu \mathrm{~F}$ as the flying cap value; conveniently, ceramic caps are the most common type of $0.1 \mu \mathrm{~F}$ cap and they work well here. Usually the easiest solution is to use the same type of capacitor for both the input bypass and flying caps.
The output cap performs two functions; it provides output current to the load during half of the charge pump cycle and its value helps to set the output ripple voltage. For applications that are insensitive to output ripple, the output bypass cap can be as small as $1 \mu \mathrm{~F}$. To achieve specified low output ripple, a $3.3 \mu \mathrm{~F}$ or greater output capacitor, high input clock rate ($\mathrm{F}_{\text {SYNC }}$) and lower value ($<0.1 \mu \mathrm{~F}$) of flying capacitor should be used. Larger output caps will reduce output ripple further, at the expense of turn on time.

In an application where the maximum load current is welldefined and output ripple is critical or input peak currents need to be minimized, the flying capacitor values can be tailored to the application. Reducing the value of the flying capacitors reduces the amount of charge transferred with
each clock cycle. The smaller capacitors draw smaller pulses of current out of $V_{C C}$ as well, limiting peak currents and reducing the demands on the input supply. Tables 1 and 2 show recommended values of flying capacitors vs maximum load capacity at $\mathrm{F}_{\text {SYNC }}=400 \mathrm{kHz}$ and 700 kHz respectively.

Table 1. Typical Max Load (mA) vs Flying Capacitor Value at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=-4 \mathrm{~V}, \mathrm{~F}_{\text {SYNC }}=400 \mathrm{kHz}$

FLYING CAPACITOR VALUE ($\mu \mathrm{F})$	MAX LOAD (mA) VCC $^{\text {(5V }}$ DOUBLER MODE	MAX LOAD (mA) VCC = 3.3V TRIPLER MODE
0.1	22	20
0.047	16	15
0.033	8	11
0.022	4	5
0.01	1	3

Table 2. Typical Max Load (mA) vs Flying Capacitor Value at

FLYING CAPACITOR VALUE ($\mu \mathrm{F}$)	$\begin{aligned} & \text { MAX LOAD (mA) } \\ & \text { VCC = } 5 \mathrm{~V} \\ & \text { DOUBLER MODE } \end{aligned}$	$\begin{aligned} & \text { MAX LOAD }(\mathrm{mA}) \\ & V_{\text {CC }}=3.3 \mathrm{~V} \\ & \text { TRIPLER MODE } \end{aligned}$
0.1	18	25
0.047	17	22
0.033	14	20
0.022	12	17
0.01	3	9

Output Capacitor ESR

Output capacitor the Equivalent Series Resistance (ESR) is another factor to consider. Excessive ESR in the output capacitor can fool the regulation loop into keeping the output artificially low by prematurely terminating the charging cycle. As the charge pump switches to recharge the output, a brief surge of current flows from the flying caps to the output cap. This current surge can be as high as 100 mA under full load conditions. A typical $3.3 \mu \mathrm{~F}$ tantalum capacitor has 1Ω or 2Ω of $\mathrm{ESR} ; 100 \mathrm{~mA} \times 2 \Omega=200 \mathrm{mV}$. If the output is within 200 mV of the set point, this additional 200 mV surge will trip the feedback comparator and terminate the charging cycle. The pulse dissipates quickly and the comparator returns to the correct state, but the RS latch will not allow the charge pump to respond until the next clock edge. This prevents the charge pump from

APPLICATIONS INFORMATION

going into very high frequency oscillation under such conditions. It also creates an output error as the feedback loop regulates based on the top of the spike, not the average value of the output (Figure 7). The resulting output voltage behaves as if a resistor of value $\mathrm{C}_{\mathrm{ESR}} \times\left(I_{\text {PK }} \|_{\mathrm{AVE}}\right) \Omega$ was placed in series with the output. To minimize this effect, output capacitor ESR should be as low as possible or smaller value high frequency bypass (typically a 0.1μ F ceramic) should be added in parallel with the output capacitor.

Figure 7. Output Ripple with Low and High ESR Caps
Note that ESR in the flying caps will not cause the same condition; in fact, it may actually improve the situation by cutting the peak currents and lowering the amplitude of the spike. More flying cap ESR is not necessarily better, however; as soon as the RC time constant approaches half of a clock period (the time the capacitors have to share charge at full duty cycle) the output current capability of the LTC1429 will begin to diminish. For $0.1 \mu \mathrm{~F}$ flying capacitors and typical 700 kHz external clock, this gives a maximum total series resistance of:

$$
\frac{1}{2}\left(\frac{\mathrm{t}_{\mathrm{CLK}}}{\mathrm{C}_{\mathrm{FLY}}}\right)=\frac{1}{2}\left(\frac{1}{700 \mathrm{kHz}}\right) / 0.1 \mu \mathrm{~F}=7.14 \Omega
$$

Most of this resistance is already provided by the internal switches in the LTC1429 (especially in tripler mode). More than 1Ω or 2Ω of ESR on the flying caps will start to affect the regulation at maximum load.

RESISTOR SELECTION

Resistor selection is easy with the fixed output versions of the LTC1429; no resistors are needed! Selecting the right resistors for the adjustable parts is only a little more
difficult. A resistor divider should be used to divide the signal at the output to give 1.24 V at the ADJ pin with respect to $V_{\text {OUT }}$ (Figure 8). The LTC1429 uses a positive reference with respect to $\mathrm{V}_{\text {OUT }}$, not a negative reference with respect to ground (Figure 4 shows reference connection). Be sure to keep this in mind when connecting the resistors! If the initial output is not what you expected, try swapping the two resistors.

Figure 8. External Resistor Connections
The 14-pin adjustable parts include a built-in resistor string which can provide an assortment of output voltages by using different pin-strapping options at the R0, R1 and $\mathrm{R}_{\text {ADJ }}$ pins (Table 3). The internal resistors are roughly 124k, 226k, 100k and 50k (see Figure 4) giving output options of $-3.5 \mathrm{~V},-4 \mathrm{~V},-4.5 \mathrm{~V}$ and -5 V . The resistors are carefully matched to provide accurate divider ratios, but the absolute values can vary substantially from part to part. It's not a good idea to create a divider using an external resistor and one of the internal resistors unless the output voltage accuracy is not critical.

Table 3. Output Voltages Using the Internal Resistor Divider

PIN CONNECTIONS	OUTPUT VOLTAGE
ADJ - R ADJ	-5.0V
ADJ - R ADJ , RO-GND	-4.5V
ADJ - R $\mathrm{ADJ}, \mathrm{R1}$ - R0	-4.0V
ADJ - R ADJ , R1-GND	-3.5V
ADJ-R1	-1.77V
ADJ - R0	-1.38V
ADJ - GND	-1.24V

There are some oddball output voltages available as well. They are obtained by connecting ADJ to R0 or R1 and shorting out some of the internal resistors. If one of them gives you the output voltage you want, by all means use it!

APPLICATIONS INFORMATION

The internal resistor values are the same for the fixed output versions of the LTC1429 as they are for the adjustable parts. The output voltage can be trimmed, if desired, by connecting external resistance from the COMP pin to OUT or ground to alter the divider ratio. As in the adjustable parts, the absolute value of the internal resistors may vary significantly from unit to unit. As a result, the further the trim shifts the output voltage, the less accurate the output voltage will be. If a precise output voltage other than one
of the available fixed voltages is required, it's better to use an adjustable LTC1429 and use precision external resistors. The internal reference is trimmed at the factory to within 3.5% of 1.24 V . With 1% external resistors, the output will be within 5.5% of the nominal value, even under worst case conditions.

The LTC1429 can be internally configured with nonstandard fixed output voltages. For details, contact the Linear Technology Marketing Department.

TYPICAL APPLICATIONS

3.3V In, -4.5V Out GaAs FET Bias Generator

-5V Supply Generator

TYPICAL APPLICATIONS

1mV Ripple, 5V In, -4V Out GaAs FET Bias Generator

RGLATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1121	Micropower Low Dropout Regulators with Shutdown	$0.4 V$ Dropout Voltage at 150mA, Low Noise, Switched Capacitor Regulated Voltage Inverter
LTC1261	Switched Capacitor Regulated Voltage Inverter	Selectable Fixed Output Voltage
LTC1550/LTC1551	Low Noise Switched Capacitor Regulated Voltage Inverter	GaAs FET Bias with Linear Regulator 1mV Ripple

feATURES

- Simple Conversion of 5V to -5V Supply
- Output Drive: 100 mA
- Rout: 6.5Ω (0.65 V Loss at 100 mA)
- Boost Pin (Pin 1) for Higher Switching Frequency
- Inverting and Doubling Modes
- Minimum Open Circuit Voltage Conversion Efficiency: 99\%
- Typical Power Conversion Efficiency with a 100 mA Load: 88%
- Easy to Use

applications

- Conversion of 5 V to $\pm 5 \mathrm{~V}$ Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems
- High Current Upgrade to LTC1044 or 7660

DESCRIPTION

The LTC ${ }^{\oplus} 660$ is a monolithic CMOS switched-capacitor voltage converter. It performs supply voltage conversion from positive to negative from an input range of 1.5 V to 5.5 V , resulting in complementary output voltages of -1.5 V to -5.5 V . It also performs a doubling at an input voltage range of 2.5 V to 5.5 V , resulting in a doubled output voltage of 5 V to 11 V . Only two external capacitors are needed for the charge pump and charge reservoir functions.

The converter has an internal oscillator that can be overdriven by an external clock or slowed down when connected to a capacitor. The oscillator runs at a 10 kHz frequency when unloaded. A higher frequency outside the audio band can also be obtained if the Boost pin is tied to V^{+}.

The LTC660 contains an internal oscillator, divide-by-two, voltage level shifter and four power MOSFETs.

[^23]
TYPICAL APPLICATION

Output Voltage vs Load Current for $\mathrm{V}^{+}=5 \mathrm{~V}$

ABSOLUTE MAXIMUM RATINGS(Note 1)
Supply Voltage (V^{+}) 6 V
Input Voltage on Pins 1, 6, 7(Note 2) $-0.3 \mathrm{~V}<\mathrm{V}_{1 N}<\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Output Short-Circuit Duration to GND (Note 5) 1 sec
Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$
PACKAGE/ORDER INFORMATION

	TOP VEW	ORDER PART
	$\begin{aligned} & 8 \sqrt[8]{\mathrm{V}^{+}} \\ & 7 \mathrm{osc} \\ & 6 \mathrm{sc} \\ & 65 \mathrm{Lv} \\ & 5 \end{aligned}$	$\begin{aligned} & \text { LTC660CN8 } \\ & \text { LTC660CS8 } \end{aligned}$
		S8 PART MARKING
		660

Consult Factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{C} 1$ and $\mathrm{C} 2=150 \mu \mathrm{~F}$, Boost $=0$ pen, $\mathrm{C}_{\mathrm{OSC}}=0 \mathrm{PF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
	Supply Voltage	$R_{L}=1 k$	$\begin{aligned} & \text { Inverter, LV }=\text { Open } \\ & \text { Inverter, LV }=\text { GND } \\ & \text { Doubler, LV }=V_{\text {OUT }} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 3 \\ 1.5 \\ 2.5 \end{gathered}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$	V V V
Is	Supply Current	No Load	$\begin{aligned} & \text { Boost }=\text { Open } \\ & \text { Boost }=\mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.08 \\ & 0.23 \end{aligned}$	$\begin{gathered} 0.5 \\ 3 \end{gathered}$	mA
IOUT	Output Current	Vout More Negative Than -4V		\bullet	100			mA
R ${ }_{\text {OUT }}$	Output Resistance	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$ (Note 3)		\bullet		6.5	10	Ω
fosc	Oscillator Frequency	$\begin{aligned} & \text { Boost }=\text { Open } \\ & \text { Boost }=V^{+}(\text {Note } 4) \end{aligned}$				$\begin{aligned} & 10 \\ & 45 \end{aligned}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
	Power Efficiency	$\begin{aligned} & R_{L}=1 \mathrm{k} \text { Connected Between } \mathrm{V}^{+} \text {and } V_{\text {OUT }} \\ & R_{L}=500 \Omega \text { Connected Between } V_{\text {OUT }} \text { and GND } \\ & I_{L}=100 \mathrm{~mA} \text { to } G N D \end{aligned}$		\bullet	$\begin{aligned} & 96 \\ & 92 \end{aligned}$	$\begin{aligned} & 98 \\ & 96 \\ & 88 \end{aligned}$		\% $\%$ $\%$
	Voltage Conversion Efficiency	No Load			99	99.96		\%
	Oscillator Sink or Source Current	$\begin{aligned} & \text { Boost }=\text { Open } \\ & \text { Boost }=V^{+} \end{aligned}$				$\begin{aligned} & \pm 1.1 \\ & \pm 5.0 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$

The denotes specifications which apply over the full operating temperature range; all other limits and typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: Connecting any input terminal to voltages greater than V^{+}or less than ground may cause destructive latch-up. It is recommended that no inputs from source operating from external supplies be applied prior to power-up of the LTC660.
Note 3: The output resistance is a combination of internal switch resistance and external capacitor ESR. To maximize output voltage and efficiency, keep external capacitor ESR $<0.2 \Omega$.

Note 4: $\mathrm{f}_{\text {OSC }}$ is tested with $\mathrm{C}_{\text {OSC }}=100 \mathrm{pF}$ to minimize the effects of test fixture capacitance loading. The OpF frequency is correlated to this 100 pF test point, and is intended to simulate the capacitance at pin 7 when the device is plugged into a test socket and no external capacitor is used. Note 5: OUT may be shorted to GND for 1 sec without damage, but shorting OUT to V^{+}may damage the device and should be avoided. Also, for temperatures above $85^{\circ} \mathrm{C}$, OUT must not be shorted to GND or V^{+}, even instantaneously, or device damage may result.

TYPICAL PGRFORMANCE CHARACTERISTICS (Using Test Circuit in figure 1)

LTC660•601

Supply Current vs Oscillator Frequency

LTC660. 602

Output Resistance vs Oscillator Frequency

LTC660 • TPC03

Output Voltage and Efficiency
 vs Load Current, $\mathrm{V}^{+}=5 \mathrm{~V}$

LTC660 • TPC06

Efficiency vs Load Current

Efficiency vs Load Current

LTC660•TPC05

TYPICAL PGRFORMANCE CHARACTERISTICS (Using Test Cireuiti in figure 1)

PIn functions

PIN	NAME	INVERTER	DOUBLER
1	BOOST	Internal Oscillator Frequency Control Pin. Boost $=$ Open, $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{kHz}$ typ; Boost $=\mathrm{V}^{+}, \mathrm{f}_{0 S \mathrm{C}}=45 \mathrm{kHz}$ typ; when OSC is driven externally Boost has no effect.	Same
2	CAP ${ }^{+}$	Positive Terminal for Charge Pump Capacitor	Same
3	GND	Power Supply Ground Input	Positive Voltage Input
4	CAP ${ }^{-}$	Negative Terminal for Charge Pump Capacitor	Same
5	$\mathrm{V}_{\text {OUT }}$	Negative Voltage Output	Power Supply Ground Input
6	LV	Tie LV to GND when the input voltage is less than 3 V . LV may be connected to GND or left open for input voltages above 3 V . Connect LV to GND when overdriving OSC.	LV must be tied to $\mathrm{V}_{\text {OUT }}$ for all input voltages.
7	OSC	An external capacitor can be connected to this pin to slow the oscillator frequency. Keep stray capacitance to a minimum. An external oscillator can be applied to this pin to overdrive the internal oscillator.	Same except standard logic levels will not be able to overdrive OSC pin.
8	V+	Positive Voltage Input	Positive Voltage Output

Figure 1. Test Circuit

APPLICATIONS INFORMATION

Theory of Operation

To understand the theory of operation for the LTC660, a review of a basic switched-capacitor building block is helpful. In Figure 2, when the switch is in the left position, capacitor C 1 will charge to voltage V1. The total charge on C 1 will be $\mathrm{q} 1=\mathrm{C1V1}$. The switch then moves to the right, discharging C 1 to voltage V 2 . After this discharging time, the charge on C 1 is $\mathrm{q} 2=\mathrm{C} 1 \mathrm{~V} 2$. Note that charge has been transferred from the source V1 to the output V2. The amount of charge transferred is:

$$
\Delta q=q 1-q 2=C 1(V 1-V 2)
$$

If the switch is cycled " f " times per second, the charge transfer per unit time (i.e., current) is:

$$
I=f \times \Delta q=f \times C 1(V 1-V 2)
$$

Rewriting in terms of voltage and impedance equivalence,

$$
I=\frac{V 1-V 2}{1 / f C 1}=\frac{V 1-V 2}{R_{\text {EQUIV }}}
$$

A new variable $R_{\text {EQUIV }}$ has been defined such that $R_{\text {EQUIV }}=1 /$ fC1. Thus, the equivalent circuit for the switchedcapacitor network is as shown in Figure 3.
Figure 4 shows that the LTC660 has the same switching action as the basic switched-capacitor building block.

Figure 2. Switched-Capacitor Building Block

Figure 3. Switched-Capacitor Equivalent Circuit

Figure 4. LTC660 Switched-Capacitor Voltage Converter Block Diagram

This simplified circuit does not include finite on-resistance of the switches and output voltage ripple, however, it does give an intuitive feel for how the device works. For example, if you examine power conversion efficiency as a function of frequency this simple theory will explain how the LTC660 behaves. The loss and hence the efficiency is set by the output impedance. As frequency is decreased, the output impedance will eventually be dominated by the 1/fC1 term and voltage losses will rise decreasing the efficiency. As the frequency increases the quiescent current increases. At high frequency this current loss becomes significant and the power efficiency starts to decrease.

The LTC660 oscillator frequency is designed to run where the voltage loss is a minimum. With the external $150 \mu \mathrm{~F}$ capacitors the effective output impedance is determined by the internal switch resistances and the capacitor ESRs.

LV (Pin 6)

The internal logic of the LTC660 runs between V^{+}and LV (pin 6). For $\mathrm{V}^{+} \geq 3 \mathrm{~V}$, an internal switch shorts $L V$ to ground (pin 3). For $\mathrm{V}^{+}<3 \mathrm{~V}$, the LV pin should be tied to ground. For $\mathrm{V}^{+} \geq 3 \mathrm{~V}$, the LV pin can be tied to ground or left floating.

OSC (Pin 7) and Boost (Pin 1)

The switching frequency can be raised, lowered or driven from an external source. Figure 5 shows a functional diagram of the oscillator circuit.

APPLICATIONS InFORMATION

Figure 5. Oscillator
By connecting the Boost pin (pin 1) to V^{+}, the charge and discharge current is increased and, hence, the frequency is increased by approximately four and a half times. Increasing the frequency will decrease output impedance and ripple for high load currents.

Loading pin 7 with more capacitance will lower the frequency. Using the Boost (pin 1) in conjunction with external capacitance on pin 7 allows user selection of the frequency over a wide range.

Driving the LTC660 from an external frequency source can be easily achieved by driving pin 7 and leaving the Boost pin open, as shown in Figure 6. The output current from pin 7 is small, typically $1.1 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$, so a logic gate is capable of driving this current. (A CMOS logic gate can be used to drive the OSC pin.) For 5 V applications, a TTL logic gate can be used by simply adding an external pull-up resistor (see Figure 6).

Figure 6. External Clocking

Capacitor Selection

While the exact values of C 1 and C 2 are noncritical, good quality, low ESR capacitors are necessary to minimize voltage losses at high currents. For C1 the effect of the ESR of the capacitor will be multiplied by four, due to the fact the switch currents are approximately two times higher than the output current and losses will occur on both the charge and discharge cycle. This means using a capacitor with 1Ω of ESR for C1 will have the same effect as increasing the output impedance of the LTC660 by 4Ω. This represents a significant increase in the voltage losses. For C2 the effect of ESR is less dramatic. A C2 with 1Ω of ESR will increase the output impedance by 1Ω. The size of C 2 and the load current will determine the output voltage ripple. It is alternately charged and discharged at a current approximately equal to the output current. This will cause a step function to occur in the output voltage at the switch transitions. For example, for a switching frequency of 5 kHz (one-half the nominal 10 kHz oscillator frequency) and $C 2=150 \mu \mathrm{~F}$ with an ESR of 0.2Ω, ripple is approximately 90 mV with a 100 mA load current.

TYPICAL APPLLCATIONS

Negative Voltage Converter

Figure 7 shows a typical connection which will provide a negative supply from an available positive supply. This circuit operates over full temperature and power supply ranges without the need of any external diodes. The LV pin (pin 6) is shown grounded, but for $\mathrm{V}^{+} \geq 3 \mathrm{~V}$, it may be floated, since LV is internally switched to ground (pin 3) for $\mathrm{V}^{+} \geq 3 \mathrm{~V}$.

Figure 7. Voltage Inverter

The output voltage (pin 5) characteristics of the circuit are those of a nearly ideal voltage source in series with a 6.5Ω resistor. The 6.5Ω output impedance is composed of two terms: 1) the equivalent switched-capacitor resistance (see Theory of Operation), and 2) a term related to the onresistance of the MOS switches.
At an oscillator frequency of 10 kHz and $\mathrm{C} 1=150 \mu \mathrm{~F}$, the first term is:

$$
\begin{aligned}
& R_{\text {EQUIV }}=\frac{1}{\left(\mathrm{f}_{\mathrm{OSC}} / 2\right) \times \mathrm{Cl}}= \\
& \frac{1}{5 \times 10^{3} \times 150 \times 10^{-6}}=1.3 \Omega
\end{aligned}
$$

Notice that the equation for R RQUIV is not a capacitive reactance equation $\left(X_{C}=1 / \omega C\right)$ and does not contain a 2π term.

The exact expression for output impedance is complex, but the dominant effect of the capacitor is clearly shown on the typical curves of output impedance and power efficiency versus frequency. For $\mathrm{C} 1=\mathrm{C} 2=150 \mu \mathrm{~F}$, the output impedance goes from 6.5Ω at $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{kHz}$ to 110Ω at $\mathrm{f}_{\mathrm{OSC}}=100 \mathrm{~Hz}$. As the $1 / \mathrm{fC}$ term becomes large compared to the switch on-resistance term, the output resistance is determined by $1 / f \mathrm{f}$ only.

Voltage Doubling

Figure 8 shows the LTC660 operating in the voltage doubling mode. The external Schottky (1N5817) diode is for start-up only. The output voltage is $2 \times \mathrm{V}_{\text {IN }}$ without a load. The diode has no effect on the output voltage.

Figure 8. Voltage Doubler

Ultra-Precision Voltage Divider

An ultra-precision voltage divider is shown in Figure 9. To achieve the 0.002% accuracy indicated, the load current should be kept below 100 nA . However, with a slight loss in accuracy, the load current can be increased.

Figure 9. Ultra-Precision Voltage Divider

Battery Splitter

A common need in many systems is to obtain positive and negative supplies from a single battery or single power supply system. Where current requirements are small, the circuit shown in Figure 10 is a simple solution. It provides symmetrical positive or negative output voltages, both equal to one-half the input voltage. The output voltages are both referenced to pin 3 (Output Common).

TYPICAL APPLICATIONS

Figure 10. Battery Splitter

Paralleling for Lower Output Resistance

Additional flexibility of the LTC660 is shown in Figures 11 and 12. Figure 11 shows two LTC660s connected in parallel to provide a lower effective output resistance. If, however, the output resistance is dominated by $1 / \mathrm{fC} 1$, increasing the capacitor size (C1) or increasing the frequency will be of more benefit than the paralleling circuit shown.

Stacking for Higher Voltage

Figure 12 makes use of "stacking" two LTC660s to provide even higher voltages. In Figure 12, a negative voltage doubler or tripler can be achieved depending upon how pin 8 of the second LTC660 is connected, as shown schematically by the switch.

Figure 11. Paralleling for 200 mA Load Current

Figure 12. Stacking for High Voltage

reLATED PARTS

PART NUMBER	OUTPUT CURRENT	MAXIMUM $V_{\text {IN }}$	COMMENTS
 Unregulated Output Voltage LTC660 100 mA 6 V Highest Current LTC1046 50 mA 6 V LTC1044 20 mA 9.5 V Lowest Cost LTC1044A 20 mA 13 V LTC1144 20 mA 20 V Highest Voltage			

Regulated Output Voltage

LT1054	100 mA	16 V	Adjustable Output
LTC1262	30 mA	6 V	12V Fixed Output
LTC1261	10 mA	9 V	$-4 \mathrm{~V},-4.5 \mathrm{~V}$ and Adjustable Outputs

All devices are available in plastic 8-lead S0 and PDIP packages
SECTION 4—POWER PRODUCTS
LINEAR REGULATORS 4-63
LT1118-2.5/LT1118-2.85/LT1118-5, Low Ia, Low Dropout, 800mA Source and Sink Regulators Fixed 2.5V, 2.85V, 5V Output 4-64
LT1175, 500mA Negative Low Dropout Micropower Regulator 4-68
LT1521/LT1521-3/LT1521-3.3/LT1521-5, 300mA Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-79
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529/LT1529-3.3/LT1529-5, 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-101
LT1580/LT1580-2.5, 7A, Very Low Dropout Regulators 13-148
LT1584/LT1585/LT1587, 7A, 4.6A, 3A Low Dropout Fast Response Positive Regulators Adjustable and Fixed 4-112

Low l_{Q}, Low Dropout, 800mA Source and Sink Regulators Fixed 2.5 V , 2.85 V , 5 V Output

features

- Regulates While Sourcing or Sinking Current
- Provides Termination for up to 27 SCSI Lines
- 600 A A Quiescent Current
- Ultra-Low Power Shutdown Mode
- Current Limit and Thermal Shutdown Protection
- Stable for Any $\mathrm{C}_{\mathrm{LOAD}} \geq 0.22 \mu \mathrm{~F}$
- Fast Settling Time
- 1V Dropout Voltage

APPLICATIONS

- Active Negation SCSI Terminations
- Computers
- Disk Drives
- CD-ROM
- Supply Splitter

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1118$ family of low dropout regulators has the unique capability of maintaining output regulation while sourcing or sinking load current. The 2.85 V output voltage regulator is ideal for use as a Boulay termination of up to 27 SCSI data lines. The regulator maintains regulation while both sourcing and sinking current, enabling the use of active negation drivers for improved noise immunity on the data lines. Regulation of output voltage is maintained for TERMPWR voltages as low as 4.0V. When unloaded, quiescent supply current is a low $600 \mu \mathrm{~A}$, allowing continuous connection to the TERMPWR lines. An ultra-low power shutdown mode is also available on the S0-8 version. In Shutdown the output is high impedance and supply current drops to less than $10 \mu \mathrm{~A}$.
Current limits in both sourcing and sinking modes, plus on-chip thermal shutdown make the circuit tolerant of output fault conditions.
The LT1118 is available in 3-lead SOT-223 and 8-lead SO packages.

TYPICAL APPLICATION

Load Transient Response

ABSOLUTE MAXIMUM RATINGS

Note 1)
jupply Voltage (VCC)
nput Voltage (Enable) \qquad
Jutput Voltage \qquad -0.2 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Short-Circuit Duration Indefinite Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1118CS8-2.5 LT1118CS8-2.85 LT1118CS8-5		LT1118CST-2.5 LT1118CST-2.85 LT1118CST-5
	S8 PART MARKING		
$T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{J C}=15^{\circ} \mathrm{C} / \mathrm{W}$	$\begin{aligned} & 111825 \\ & 111828 \\ & 11185 \end{aligned}$	$\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JC}}=15^{\circ} \mathrm{C} / \mathrm{W}$	

¡onsult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

(Note 2)

'ARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
2uiescent Current (VIN)		$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	\bullet		0.6	1	mA
2uiescent Current in Shutdown (VIN)		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	\bullet		1	10	$\mu \mathrm{A}$
:nable Input Thresholds		Input Low Level Input High Level	\bullet	0.8	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	2.0	V
:nable Input Current		$0 \mathrm{~V} \leq \mathrm{V}_{\text {EN }} \leq 5 \mathrm{~V}$	\bullet	-1		25	$\mu \mathrm{A}$
Jutput Voltage	LT1118-2.5	No Load $\left(25^{\circ} \mathrm{C}\right)$ All Operating Conditions (Note 3)	\bullet	$\begin{aligned} & 2.47 \\ & 2.45 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.53 \\ & 2.55 \end{aligned}$	V
	LT1118-2.85	No Load $\left(25^{\circ} \mathrm{C}\right)$ All Operating Conditions (Note 3)	\bullet	$\begin{aligned} & 2.82 \\ & 2.79 \end{aligned}$	$\begin{aligned} & 2.85 \\ & 2.85 \end{aligned}$	$\begin{aligned} & 2.88 \\ & 2.91 \end{aligned}$	V
	LT1118-5	No Load $\left(25^{\circ} \mathrm{C}\right)$ All Operating Conditions (Note 3)	\bullet	$\begin{aligned} & 4.95 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 5.10 \end{aligned}$	V
.ine Regulation (Note 4)	LT1118-2.5 LT1118-2.85 LT1118-5	$\begin{aligned} & I_{L}=0 \mathrm{~mA}, 4.2 \mathrm{~V} \leq V_{I N} \leq 15 \mathrm{~V} \\ & I_{L}=0 \mathrm{~mA}, 4.75 \mathrm{~V} \leq V_{I N} \leq 15 \mathrm{~V} \\ & I_{L}=0 \mathrm{~mA}, 6.5 \mathrm{~V} \leq V_{I N} \leq 15 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} 6 \\ 6 \\ 10 \end{gathered}$	$m V$ $m V$ $m V$
.oad Regulation (Note 4)	LT1118-2.5	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 800 \mathrm{~mA} \\ & -400 \mathrm{~mA} \leq I_{\mathrm{L}} \leq 0 \mathrm{~mA} \end{aligned}$				$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	LT1118-2.85	$\begin{aligned} & 0 \mathrm{~mA} \leq I_{L} \leq 800 \mathrm{~mA} \\ & -400 \mathrm{~mA} \leq I_{L} \leq 0 \mathrm{~mA} \end{aligned}$	\bullet			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	LT1118-5	$0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 800 \mathrm{~mA}$ $-400 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 0 \mathrm{~mA}$	\bullet			$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Iropout Voltage (Note 5)		$\begin{aligned} & I_{L}=100 \mathrm{~mA} \\ & I_{L}=800 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.85 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \end{aligned}$	V
lipple Rejection		$\begin{aligned} & f_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }} \end{aligned}$		60	80		dB

ELECTRICAL CHARACTERISTICS
(Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Load Transient Settling Time, $\Delta V=1 \%$	$\begin{aligned} & 0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 800 \mathrm{~mA}, C_{L O A D}=1 \mu \mathrm{~F} \\ & -400 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 0 \mathrm{~mA}, \mathrm{C}_{\mathrm{LOAD}}=1 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\begin{aligned} & \hline \text { Output Short-Circuit Current, } \mathrm{I}_{\mathrm{SC}}{ }^{+} \\ & \mathrm{ISC}^{-} \end{aligned}$	$\begin{aligned} & V_{\text {OUT }}=0 V \\ & V_{\text {OUT }}=V_{\text {IN }} \end{aligned}$	800	$\begin{array}{r} 1200 \\ -700 \end{array}$	-400	mA mA
Thermal Shutdown Junction Temperature	No Load		170		${ }^{\circ} \mathrm{C}$
Enable Turn-On Delay	No Load		50		$\mu \mathrm{S}$

The - denotes specifications which apply over the operating temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$ for commercial grade).
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Unless otherwide specified, testing done at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
(LT1118-2.5, LT1118-2.85) or $V_{C C}=7 \mathrm{~V}\left(\right.$ LT1118-5). $V_{E N}=V_{C C}$. Output $C_{\text {LOAD }}=1 \mu F, I_{\text {LOAD }}=0$.

Note 3: All operating conditions include the combined effects of load current, input voltage, and temperature over each parameter's full range.
Note 4: Load and line regulation are tested at a constant junction temperature by low duty cycle pulse testing.
Note 5: Dropout voltage is defined as the minimum input to output voltage measured while sourcing the specified current.

TYPICAL PGRFORMANCG CHARACTGRISTICS

PIn functions

IN: Input Supply Pin. This pin should be decoupled with a $1 \mu \mathrm{~F}$ or larger low ESR capacitor. The two IN pins on the S0-8 package must be directly connected on the printed circuit board to prevent voltage drops between the two inputs. When used as a SCSI active termination, IN connects to term power. When used as a supply splitter, IN is also the positive supply output.
GND: Ground Pin. The three GND pins on the S0-8 package are internally connected, but lowest load regulation errors will result if these pins are tightly connected on the printed circuit board. This will also aid heat dissipation at high power levels.

EN: TTL/CMOS Logic Input. A high level allows normal operation. A low level reduces supply current to zero. This pin is internally connected to $\mathrm{V}_{\text {IN }}$ on 3-lead ST packaged devices.

OUT: Regulated Output Voltage. Output can source or sink current. Current limit for sourcing and sinking current is provided to protect the device from fault conditons. The output must have a low ESR output filter capacitor. Cout $\geq 0.22 \mu \mathrm{~F}$ to guarantee stability. $\mathrm{A} 0.1 \mu \mathrm{~F}$ ceramic capacitor may be needed if the ESR of the main $\mathrm{C}_{\text {OUT }} \geq 0.22 \mu \mathrm{~F}$ is too high.

'YPICAL APPLICATIONS

SCSI Active Terminator

Power Supply Splitter

ielated parts

IRT NUMBER	DESCRIPTION	COMMENTS
1005	Logic Controlled Regulator	$5 \mathrm{~V}, 1 \mathrm{~A}$ Main Output Plus 35mA Auxilliary Output
1117	800 mA Low Dropout Regulator	Fixed $2.85 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ or Adjustable Outputs
1120 A	Micropower Regulator with Comparator and Shutdown	$20 \mu \mathrm{~A}$ Supply Current, 2.5V Reference Output
1121	Micropower Low Dropout Regulator with Shutdown	Reverse Voltage and Reverse Current Protection

500mA Negative Low Dropout Micropower

 Regulator
feATURES

- Stable with Wide Range of Output Capacitors
- Operating Current: $45 \mu A$
- Shutdown Current: $10 \mu \mathrm{~A}$
- Adjustable Current Limit
- Positive or Negative Shutdown Logic
- Low Voltage Linear Dropout Characteristics
- Fixed 5V and Adjustable Versions
- Tolerates Reverse Output Voltage

APPLICATIONS

- Analog Systems
- Modems
- Instrumentation
- A/D and D/A Converters
- Interface Drivers
- Battery-Powered Systems

DESCRIPTION

The $\mathrm{LT}^{\oplus} 1175$ is a negative micropower low dropout regulator. It features $45 \mu \mathrm{~A}$ quiescent current, dropping to $10 \mu \mathrm{~A}$ in shutdown. A new reference amplifier topology gives precision DC characteristics along with the ability to maintain good loop stability with an extremely wide range of output capacitors. Very low dropout voltage and high efficiency are obtained with a unique power transistor antisaturation design. Adjustable and fixed 5 V versions are available.

Several new features make the LT1175 very user-friendly. The shutdown pin can interface directly to either positive or negative logic levels. Current limit is user-selectable at $200 \mathrm{~mA}, 400 \mathrm{~mA}, 600 \mathrm{~mA}$ and 800 mA . The output can be forced to reverse voltage without damage or latch-up. Unlike some earlier designs, the increase in quiescent current during a dropout condition is actively limited.
The LT1175 has complete blowout protection with current limiting, power limiting, and thermal shutdown. Special attention was given to the problem of high temperature operation with micropower operating currents, preventing output voltage rise under no-load conditions. The LT1175 is available in 8-pin CERDIP, plastic DIP and SO packages, as well as 5-pin surface mount DD and through-hole TO220 packages. The 8 -pin SO package is specially constructed for low thermal resistance.

TYPICAL APPLICATION

Typical LT1175 Connection

${ }^{*} \mathrm{C}_{\text {IN }}$ IS NEEDED ONLY IF REGULATOR IS MORE THAN 6" FROM INPUT SUPPLY CAPACITOR. SEE APPLICATIONS INFORMATION SECTION FOR DETAILS

Minimum Input-to-Output Voltage

IBSOLUTE MAXIMUM RATINGS

Iput Voltage (Transient 1 sec , Note 10) 25V
iput Voltage (Continuous) 20 V
ıput-to-Output Differential Voltage...................... 20 V
\checkmark Sense Pin (with Respect to GND Pin) $2 \mathrm{~V},-10 \mathrm{~V}$
DJ Sense Pin
(with Respect to Output Pin) $20 \mathrm{~V},-0.5 \mathrm{~V}$
\checkmark Sense Pin
(with Respect to Output Pin) 20V, - 7 V
utput Reverse Voltage \qquad
$\overline{\text { SHDN }}$ Pin to $\mathrm{V}_{\text {IN }}$ Pin Voltage 30V, -5 V

Operating Junction Temperature Range
LT1175C
$.0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1175M $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range
LT1175C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1175M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$
Operating Junction Temperature Range LT1175C $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Ambient Operating Temperature Range LT1175C $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
300°

'ACKAGE/ORDER INFORMATION

msult factory for Industrial grade parts.

LECTRICAL CHARACTERISTICS

$I_{U T}=5 V$; $V_{I N}=7 V, I_{O U T}=0, V_{S H D N}=3 V, I_{\text {LIM } 2}$ and $I_{\text {LIM4 }}$ tied to $V_{I N}, T_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted. To avoid confusion with nin" and "max" as applied to negative voltages, all voltages are shown as absolute values except where polarity is not obvious.

IRAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
edback Sense Voltage	Adjustable Part Fixed 5V Part		$\begin{aligned} & 3.743 \\ & 4.93 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.857 \\ & 5.075 \end{aligned}$	V
Itput Voltage Initial Accuracy	Adjustable, Measured at 3.8 V Sense Fixed 5V			$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	\%
Itput Voltage Accuracy (All Conditions)	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=1 \mathrm{~V} \text { to } V_{\text {II }}=25 \mathrm{~V}, \text { I OUT }=0 \mathrm{~A} \text { to } 500 \mathrm{~mA} \\ & P=0 \text { to } P_{\text {MAX }}, T_{J}=T_{\text {MIN }} \text { to } T_{\text {MAX }} \text { (Note 2) } \end{aligned}$	\bullet		1.5	2.5	\%

ELECTRICAL CHARACTERISTICS

$V_{\text {OUT }}=5 V ; V_{I N}=7 V, I_{\text {OUT }}=0, V_{\text {SHDN }}=3 V, \mathrm{I}_{\text {LIM2 }}$ and $\mathrm{I}_{\text {LIM4 }}$ tied to $V_{I N}, T_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted. To avoid confusion with "min" and "max" as applied to negative voltages, all voltages are shown as absolute values except where polarity is not obvious.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Quiescent Input Supply Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ Up to 12V	\bullet		45	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	μf μ
GND Pin Current Increase with Load (Note 3)		\bullet		10	20	$\mu \mathrm{A} / \mathrm{mf}$
Input Supply Current in Shutdown	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		10	$\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$	$\mu \mathrm{f}$ $\mu \mathrm{f}$
Shutdown Thresholds (Note 8)	Either Polarity on Shutdown Pin	\bullet	0.8		2.5	1
$\overline{\text { Shutdown Pin Current (Note 1) }}$	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$ to 10 V (Flows Into Pin) $\mathrm{V}_{\text {SHDN }}=-15 \mathrm{~V}$ to 0 V (Flows Into Pin)	\bullet		$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	μf μ
Output Bleed Current in Shutdown (Note 5)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$	\bullet		$\begin{aligned} & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Sense Pin Input Current	(Adjustable Part Only, Current Flows Out of Pin) (Fixed Voltage Only, Current Flows Out of Pin)	\bullet		$\begin{aligned} & 75 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 20 \\ & \hline \end{aligned}$	nf μ
Dropout Voltage (Note 6)	$\begin{aligned} & I_{\text {OUT }}=25 \mathrm{~mA} \\ & I_{\text {OUT }}=100 \mathrm{~mA} \\ & I_{\text {OUT }}=500 \mathrm{~mA} \\ & I_{\text {LIM2 }} O \text { pen, } I_{\text {OUT }}=300 \mathrm{~mA} \\ & I_{\text {LIM4 }} \text { Open, } I_{\text {OUT }}=200 \mathrm{~mA} \\ & I_{\text {LIM2 }}, I_{\text {LIM4 }} \text { Open, } I_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$	$\bullet \bullet$		12 0.1 0.18 0.5 0.33 0.3 0.26	$\begin{aligned} & \hline 0.2 \\ & 0.26 \\ & 0.7 \\ & 0.5 \\ & 0.45 \\ & 0.4 \\ & \hline \end{aligned}$	1 1 1 1 1 1
Current Limit (Note 10)	$\begin{aligned} & \mathrm{V}_{\text {IN }}-V_{\text {OUT }}=1 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & \mathrm{I}_{\text {LIM2 }} \text { Open } \\ & \text { ILIM4 }^{\text {Open }} \\ & \text { LIIM2, }^{\text {LIIM4 }} \text { Open } \\ & \hline \end{aligned}$		520 390 260 130	$\begin{aligned} & 800 \\ & 600 \\ & 400 \\ & 200 \\ & \hline \end{aligned}$		mf $\mathrm{m} /$ $\mathrm{m} /$ $\mathrm{m} t$
Line Regulation (Note 9)	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ to $\mathrm{V}_{\text {IN }}=25 \mathrm{~V}$	\bullet		0.003	0.015	\%/\}
Load Regulation (Note 4, 9)	$\mathrm{I}_{\text {OUT }}=0$ to 500 mA	\bullet		0.1	0.25	\%
Thermal Regulation	$\begin{array}{ll}\mathrm{P}=0 \text { to } \mathrm{P}_{\text {max }} \text { (Notes 2, 7) } & \text { 5-Pin Packages } \\ & \text { 8-Pin Packages }\end{array}$			$\begin{aligned} & 0.04 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \% / प \\ & \% / И \end{aligned}$
Output Voltage Temperature Drift	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {JMIN }}$, or $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {JMAX }}$			0.25	1.25	\%

The \bullet denotes specifications which apply over the operating temperature range.
Note 1: Shutdown pin maximum positive voltage is 30 V with respect to $-V_{I N}$ and 15 V with respect to $G N D$. Maximum negative voltage is -20 V with respect to ground and -5 V with respect to $-\mathrm{V}_{\mathrm{IN}}$.
Note 2: $P_{\text {max }}=1.5 \mathrm{~W}$ for 8 -pin packages, and 6 W for 5 -pin packages. This power level holds only for input-to-output voltages up to 12 V , beyond which internal power limiting may reduce power. See Guaranteed Current Limit curve in Typical Performance Characteristics section. Note that all conditions must be met.
Note 3: Ground pin current increases because of power transistor base drive. At low input-to-output voltages ($<1 \mathrm{~V}$) where the power transistor is in saturation, Ground pin current will be slightly higher. See Typical Performance Characteristics.
Note 4: With $\mathrm{L}_{\text {LOAD }}=0$, at $\mathrm{T}_{\mathrm{J}}>125^{\circ} \mathrm{C}$, power transistor leakage could increase higher than the $10 \mu \mathrm{~A}$ to $25 \mu \mathrm{~A}$ drawn by the output divider or fixed voltage Sense pin, causing the output to rise above the regulated value. To prevent this condition, an internal active pull-up will automatically turn on, but supply current will increase.
Note 5: This is the current required to pull the output voltage to within 1V of ground during shutdown.

Note 6: Dropout voltage is measured by setting the input voltage equal to the normal regulated output voltage and measuring the difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$. For currents between 100 mA and 500 mA , with both $\mathrm{I}_{\text {LIM }}$ pins tied to $V_{\mathbb{N}}$, maximum dropout can be calculated from $V_{D O}=0.15+1.1 \Omega$ ($l_{\text {OUT }}$).
Note 7: Thermal regulation is a change in the output voltage caused by die temperature gradients, so it is proportional to chip power dissipation. Temperature gradients reach final value in less than 100 ms . Output voltage changes after 100 ms are due to absolute die temperature changes and reference voltage temperature coefficient.
Note 8: The lower limit of 0.8 V is guaranteed to keep the regulator in shutdown. The upper limit of 2.5 V is guaranteed to keep the regulator active. Either polarity may be used, referenced to Ground pin.
Note 9: Load and line regulation are measured on a pulse basis with pulse width of 20 ms or less to keep chip temperature constant. DC regulation will be affected by thermal regulation (Note 7) and chip temperature changes. Load regulation specification also holds for currents up to the specified current limit when ILIM2 or ILIM4 are left open.
Note 10: Current limit is reduced for input-to-output voltage above 12V. See the graph in Typical Performance Characteristics for guaranteed limits above 12V.

'YPICAL PERFORMANCE CHARACTERISTICS

Typical Current Limit

Minimum Input-to-Output Voltage

1175604

Shutdown Input Current

Minimum Input-to-Output Voltage

1175605

Output Voltage Temperature Drift

1175603
Sense Bias Current (Adjustable Part)

1175606

$\overline{\text { Shutdown Pin Characteristics }}$

TYPICAL PERFORMAOCG CHARACTGRISTICS

RIPPLE REJECTION IS RELATIVELY INDEPENDENT OF INPUT VOLTAGE AND LOAD FOR CURRENTS BETWEEN 25 mA AND 500 mA . LARGER OUTPUT CAPACITORS DO NOT IMPROVE REJECTION FOR FREQUENCIES BELOW 50 kHz . AT VERY LIGHT LOADS, REJECTION WILL IMPROVE WITH LARGER OUTPUT CAPACITORS 1175 611

PIn functions

SENSE Pin: The Sense pin is used in the adjustable version to allow custom selection of output voltage, with an external divider set to generate 3.8 V at the Sense pin. Input bias current is typically 75 nA flowing out of the pin. Maximum forced voltage on the Sense pin is 2 V and -10 V with respect to Ground pin.

The fixed 5 V version utilizes the Sense pin to give true Kelvin connections to the load or to drive an external pass transistor for higher output currents. Bias current out of the 5 V Sense pin is approximately $12 \mu \mathrm{~A}$. Separating the Sense and Output pins also allows for a new loop compensation technique described in the Applications Information section.
SHDN Pin: The $\overline{\text { Shutdown }}$ pin is specially configured to allow it to be driven from either positive voltage logic or with negative only logic. Forcing the Shutdown pin 2V either above or below the Ground pin will turn the regulator on. This makes it simple to connect directly to positive logic signals for active low shutdown. If no positive voltages are available, the Shutdown pin can be driven below the Ground pin to turn the regulator on. When left open, the Shutdown pin will default low to a regulator "on" condition. For all voltages below absolute maximum ratings, the Shutdown pin draws only a few microamperes of
current (see Typical Performance Characteristics). Maximum voltage on the Shutdown pin is $15 \mathrm{~V},-20 \mathrm{~V}$ with respect to the Ground pin and $35 \mathrm{~V},-5 \mathrm{~V}$ with respect to the negative Input pin.
$I_{\text {LIM }}$ Pins: The two Current Limit pins are emitter sections of the power transistor. When left open, they float several hundred millivolts above the negative input voltage. When shorted to the input voltage, they increase current limit by a minimum of 200 mA for $\mathrm{I}_{\text {LIM } 2}$ and 400 mA for $\mathrm{I}_{\text {LIM4 } 4}$. These pins must be connected only to the input voltage, either directly or through a resistor.
OUTPUT Pin: The Output pin is the collector of the NPN power transistor. It can be forced to the input voltage, to ground or up to 2 V positive with respect to ground without damage or latch-up (see Output Voltage Reversal in Applications Information section). The LT1175 has foldback current limit, so maximum current at the Output pin is a function of input-to-output voltage. See Typical Performance Characteristics.

GND Pin: The Ground pin has a quiescent current of $45 \mu \mathrm{~A}$ at zero load current, increasing by approximately $10 \mu \mathrm{~A}$ per mA of output current. At 500 mA output current, Ground pin current is about 5 mA . Current flows into the Ground pin.

PPLICATIONS INFORMATION

lote to Reader: To avoid confusion when working with egative voltages (is -6 V more or less than -5 V ?), I have ecided to treat the LT1175 as if it were a positive agulator and express all voltages as positive values, both itext and in formulas. If you do the same and simply add negative sign to the eventual answer, confusion should e avoided. Please don't give me a hard time about preciseness" or "correctness." I have to field phone calls om around the world and this is my way of dealing with multitude of conventions. Thanks for your patience.

:tting Output Voltage

le LT1175 adjustable version has a feedback sense Itage of 3.8 V with a bias current of approximately 75 nA ıwing out of the Sense pin. To avoid output voltage rors caused by this current, the output divider string ee Figure 1) should draw about $25 \mu \mathrm{~A}$. Table 1 shows ggested resistor values for a range of output voltages. le second part of the table shows resistor values which aw only 10μ A of current. Output voltage error caused by as current with the lower valued resistors is about 0.4% aximum and with the higher values, about 1% maxium. A formula is also shown for calculating the resistors r any output voltage.
ble 1.

UTPUT JLTAGE	R1 IDIV = 25 $\mu \mathrm{A}$	R2 NEAREST 1\%	R1 IDIV = 10 $\mu \mathrm{A}$	R2 NEAREST 1\%
5 V	150 k	47.5 k	383 k	121 k
6 V	150 k	86.6 k	383 k	221 k
8 V	150 k	165 k	383 k	422 k
10 V	150 k	243 k	383 k	619 k
12 V	150 k	324 k	383 k	825 k
15 V	150 k	442 k	383 k	1.13 M

$\mathrm{R} 1=\frac{3.8 \mathrm{~V}}{\mathrm{I}_{\mathrm{DIV}}}$
$\mathrm{R} 2=\frac{\mathrm{R} 1\left(\mathrm{~V}_{\text {OUT }}-3.8 \mathrm{~V}\right)}{3.8 \mathrm{~V}}$ (Simple formula)
$R 2=\frac{\mathrm{R} 1\left(\mathrm{~V}_{\text {OUT }}-3.8 \mathrm{~V}\right)}{3.8 \mathrm{~V}+\mathrm{R1}\left(\mathrm{l}_{\text {FB }}\right)}\binom{$ Taking Sense pin bias }{ current into account }
$\mathrm{I}_{\text {DIV }}=$ Desired divider current

The LT1175-5 is a fixed 5 V design with the Sense pin acting as a Kelvin connection to the output. Normally the Sense pin and the Output pin are connected directly together, either close to the regulator or at the remote load point.

Figure 1. Typical LT1175 Adjustable Connection

Setting Current Limit

The LT1175 uses two LIM $^{\text {Lins }}$ pio set current limit (typical) at $200 \mathrm{~mA}, 400 \mathrm{~mA}, 600 \mathrm{~mA}$ or 800 mA . The corresponding minimum guaranteed currents are $130 \mathrm{~mA}, 260 \mathrm{~mA}, 390 \mathrm{~mA}$ and 520 mA . This allows the user to select a current limit tailored to his specific application and prevents the situation where short-circuit current is many times higher than full-load current. Problems with input supply overload or excessive power dissipation in a faulted load are prevented. Power limiting in the form of foldback current limit is built-in and reduces current limit as a function of input-to-output voltage differential for differentials exceeding 14 V . See the graph in Typical Performance Characteristics. The LT1175 is guaranteed to be blowout-proof regardless of current limit setting. The power limiting combined with thermal shutdown protects the device from destructive junction temperatures under all load conditions.

Shutdown

In shutdown, the LT1175 draws only about 10 1 A. Special circuitry is used to minimize increases in shutdown current at high temperatures, but a slight increase is seen above $125^{\circ} \mathrm{C}$. One option not taken was to actively pull down on the output during shutdown. This means that the output will fall slowly after shutdown is initiated, at a rate determined by load current plus the $12 \mu \mathrm{~A}$ internal load, and the size of the output capacitor. Active pull-down is

APPLICATIONS InFORMATION

normally a good thing when the regulator is used by itself, but it prevents the user from shutting down the regulator when a second power source is connected to the LT1175 output. If active output pull-down is needed in shutdown, it can be added externally with a depletion mode PFET as shown in Figure 2. Note that the maximum pinch-off voltage of the PFET must be less than the positive logic high level to ensure that the device is completely off when the regulator is active. The Motorola J 177 device has 300Ω on resistance for zero gate source voltage.

Figure 2. Active Output Pull-Down During Shutdown

Minimum Dropout Voltage

Dropout voltage is the minimum voltage required between input and output to maintain proper output regulation. For older three-terminal regulator designs, dropout voltage was typically 1.5 V to 3 V . The LT1175 uses a saturating power transistor design which gives much lower dropout voltage, typically 100 mV at light loads and 450 mV at full load. Special precautions were taken to ensure that this technique does not cause quiescent supply current to be high under light load conditions. When the regulator input voltage is too low to maintain a regulated output, the pass transistor is driven hard by the error amplifier as it tries to maintain regulation. The current drawn by the driver transistor could be tens of milliamperes even with little or no load on the output. This indeed was the case for older IC designs that did not actively limit driver current when the power transistor saturated. The LT1175 uses a new anti-saturation technique that prevents high driver cur-
rent, yet allows the power transistor to approach it theoretical saturation limit.

Output Capacitor

Several new regulator design techniques are used to mak the LT1175 extremely tolerant of output capacitor selec tion. Like most low dropout designs which use a collecto or drain of the power transistor to drive the output node the LT1175 uses the output capacitor as part of the overa loop compensation. Older regulators generally requirei the output capacitor to have a minimum value of $1 \mu \mathrm{~F} t$ $100 \mu \mathrm{~F}$, a maximum ESR (Effective Series Resistance) 0 0.1Ω to 1Ω and a minimum ESR in the range of 0.03Ω t 0.3Ω. These restrictions usually could be met only witl good quality solid tantalum capacitors. Aluminum capaci tors have problems with high ESR unless much highe values of capacitance are used (physically large). The ESF of ceramic or film capacitors was too low, which made th capacitance/ESR zero frequency too high to maintail phase margin in the regulator. Even with optimum capaci tors, loop phase margin was very low in previous design: when output current was low. These problems led to a nev design technique for the LT1175 error amplifier and inter nal frequency compensation as shown in Figure 3.
A conventional regulator loop consists of error amplifie A1, driver transistor Q2 and power transistor Q1. Added ti this basic loop are secondary loops generated by Q3 an C_{F}. A DC negative feedback current fed into the erro amplifier through $Q 3$ and R_{N} causes overall loop curren gain to be very low at light load currents. This is not problem because very little gain is needed at light loads. It addition to low gain, the parasitic pole frequency at Q: base is extended by the DC feedback. The combination o these two effects dramatically improves loop phase mar gin at light loads and makes the loop tolerant of large ESI in the output capacitor. With heavy loads, loop phase an gain are not nearly as troublesome and large negativ feedback could degrade regulation. The logarithmic behav ior of the base emitter voltage of Q1 reduces Q3 negativ feedback at heavy loads to prevent poor regulation.

In a conventional design, even with the nonlinear feed back, poor loop phase margin would occur at medium t heavy loads if the ESR of the output capacitor fell belo

APPLICATIONS INFORMATION

Figure 3.
0.3Ω. This condition can occur with ceramic or film capacitors which often have an ESR under 0.1Ω. With previous designs, the user was forced to add a real resistor in series with the capacitor to guarantee loop stability. The LT1175 uses a unique AC feedforward technique to eliminate this problem. C_{F} is a conventional feedforward ca pacitor often used in regulators to cancel the pole formed by the output capacitor. It would normally be connected from the regulated output node to the feedback node at the R1/R2 junction or to an internal node on the amplifier as shown. In this case, however, the capacitor is connected to the internal structure of the power transistor. R_{C} is the unavoidable parasitic collector resistance of the power transistor. Access to the node at the bottom of R_{C} is available only in monolithic structures where Kelvin conlections can be made to the NPN buried collector layer. The loop now responds as if R_{C} were in series with the
output capacitor and good loop stability is achieved even with extremely low ESR in the output capacitor.
The end result of all this attention to loop stability is that the output capacitor used with the LT1175 can range in value from $0.1 \mu \mathrm{~F}$ to hundreds of microfarads, with an ESR from 0Ω to 10Ω. This range allows the use of ceramic, solid tantalum, aluminum and film capacitors over a wide range of values.
The optimum output capacitor type for the LT1175 is still solid tantalum, but there is considerable leeway in selecting the exact unit. If large load current transients are expected, larger capacitors with lower ESR may be needed to control worst case output variation during transients. If transients are notan issue, the capacitor can be chosen for small physical size, low price, etc. Concerns about surge currents in tantalum capacitors are not an issue for the

APPLICATIONS INFORMATION

output capacitor because the LT1175 limits inrush current to well below the level which can cause capacitor damage. Surges caused by shorting the regulator output are also not a problem because tantalum capacitors do not fail during a "shorting out" surge, only during a "charge up" surge.
The output capacitor should be located within several inches of the regulator. If remote sensing is used, the output capacitor can be located at the remote sense node, but the ground pin of the regulator should also be connected to the remote site. The basic rule is to keep Sense and Ground pins close to the output capacitor, regardless of where it is.

Input Capacitor

The LT1175 requires a separate input bypass capacitor only if the regulator is located more than six inches from the raw supply output capacitor. $\mathrm{A} 1 \mu \mathrm{~F}$ or larger tantalum capacitor is suggested for all applications, but if low ESR capacitors such as ceramic or film are used for the output and input capacitors, the input capacitor should be at least three times the value of the output capacitor. If a solid tantalum or aluminum electrolytic output capacitor is used, the input capacitor is very noncritical.

High Temperature Operation

The LT1175 is a micropower design with only $45 \mu \mathrm{~A}$ quiescent current. This could make it perform poorly at high temperatures ($>125^{\circ} \mathrm{C}$), where power transistor leakage might exceed the output node loading current ($5 \mu \mathrm{~A}$ to $15 \mu \mathrm{~A})$. To avoid a condition where the output voltage drifts uncontrolled high during a high temperature no-load condition, the LT1175 has an active load which turns on when the output is pulled above the nominal regulated voltage. This load absorbs power transistor leakage and maintains good regulation. There is one downside to this feature, however. If the output is pulled high deliberately, as it might be when the LT1175 is used as a backup to a slightly higher outputfrom a primary regulator, the LT1175 will act as an unwanted load on the primary regulator. Because of this, the active pull-down is deliberately "weak." It can be modeled as a 2 k resistor in series with an internal clamp voltage when the regulator output is being pulled
high. If a 4.8 V output is pulled to 5 V , for instance, the load on the primary regulator would be $(5 \mathrm{~V}-4.8 \mathrm{~V}) / 2 \mathrm{k} \Omega=$ $100 \mu \mathrm{~A}$. This also means that if the internal pass transistor leaks $50 \mu \mathrm{~A}$, the output voltage will be $(50 \mu \mathrm{~A})(2 \mathrm{k} \Omega)=$ 100 mV high. This condition will not occur under normal operating conditions, but could occur immediately after an output short circuit had overheated the chip.

Thermal Considerations

The LT1175 is available in a special 8-pin surface mount package which has pins 1 and 8 connected to the die attach paddle. This reduces thermal resistance when pins 1 and 8 are connected to expanded copper lands on the PC board. Table 2 shows thermal resistance for various combinations of copper lands and backside or internal planes. Table 2also shows thermal resistance for the 5-pin DD surface mount package and the 8 -pin DIP and CERDIP packages.

Table 2. Package Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)

LAND AREA	DIP	CERDIP	SO	Q
Minimum	140	120	170	60
Minimum with Backplane	110	100	150	50
1cm				
with Backplane	100	90	135	35
10cm				
with Backplane	80	90	120	27

To calculate die temperature, maximum power dissipation or maximum input voltage, use the following formulas with correct thermal resistance numbers from Table 2. For through-hole T0-220 applications use $\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$ without a heat sink and $\theta_{\mathrm{JA}}=5^{\circ} \mathrm{C} / \mathrm{W}$ + heat sink thermal resistance when using a heat sink.

Die Temp $=T_{A}+\theta_{J A}\left(V_{\text {IN }}-V_{\text {OUT }}\right)\left(\operatorname{L}_{\text {LOAD }}\right)$
Maximum Power Dissipation $=\frac{T_{M A X}-T_{A}}{\theta_{J A}}$
Maximum Input Voltage
for Thermal Considerations

IPPLICATIONS INFORMATION

${ }^{-}$A $=$Maximum ambient temperature
Max = Maximum LT1175 die temperature $\left(125^{\circ} \mathrm{C}\right.$ for commercial and industrial, $150^{\circ} \mathrm{C}$ for military)
$)_{\mathrm{JA}}=$ LT1175 thermal resistance, junction to ambient
$I_{\mathrm{IN}}=$ Maximum continuous input voltage at maximum load current

LOAD $=$ Maximum load current
:xample: LT1175S8 with $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $I_{\mathrm{IN}}=7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$. Maximum die temperature for the . T 1175 S 8 is $125^{\circ} \mathrm{C}$. Thermal resistance from Table 2 is ound to be $80^{\circ} \mathrm{C} / \mathrm{W}$.

Die Temperature $=60+80(0.2 \mathrm{~A})(8-5)=108^{\circ} \mathrm{C}$

Maximum Power Dissipation $=\frac{125-60}{80}=0.81 \mathrm{~W}$
Maximum Continuous
Input Voltage
(for Thermal Considerations)

$$
=\frac{125-60}{80(0.2)}+5=9 \mathrm{~V}
$$

Jutput Voltage Reversal

he LT1175 is designed to tolerate an output voltage eversal of up to 2 V . Reversal might occur, for instance, if he output was shorted to a positive 5 V supply. This would Imost surely destroy IC devices connected to the negative iutput. Reversal could also occur during start-up if the ositive supply came up first and loads were connected retween the positive and negative supplies. For these easons, it is always good design practice to add a reverse liased diode from each regulator output to ground to limit lutput voltage reversal. The diode should be rated to andle full negative load current for start-up situations, or he short-circuit current of the positive supply if supply-toupply shorts must be tolerated.

nput Voltage Lower Than Output

inear Technology's positive low dropout regulators T1121 and LT1129, will not draw large currents if the iput voltage is less than the output. These devices use a iteral PNP power transistor structure that has 40 V emitter ase breakdown voltage. The LT1175, however, uses an

NPN power transistor structure that has a parasitic diode between the input and output of the regulator. Reverse voltages between input and output above 1 V will damage the regulator if large currents are allowed to flow. Simply disconnecting the input source with the output held up will not cause damage even though the input-to-output voltage will become slightly reversed.

High Frequency Ripple Rejection

The LT1175 will sometimes be powered from switching regulators that generate the unregulated or quasi-regulated input voltage. This voltage will contain high frequency ripple that must be rejected by the linear regulator. Special care was taken with the LT1175 to maximize high frequency ripple rejection, but as with any micropower design, rejection is strongly affected by ripple frequency. The graph in the Typical Performance Characteristics section shows 60 dB rejection at 1 kHz , but only 15 dB rejection at 100 kHz for the 5 V part. Photographs in Figures 4a and 4b show actual output ripple waveforms with square wave and tri-wave input ripple.

Figure 4a.

Figure 4b.

APPLICATIONS INFORMATION

To estimate regulator output ripple under different conditions, the following general comments should be helpful:

1. Output ripple at high frequency is only weakly affected by load current or output capacitor size for medium to heavy loads. At very light loads (<10mA), higher frequency ripple may be reduced by using larger output capacitors.
2. A feedforward capacitor across the resistor divider used with the adjustable part is effective in reducing ripple only for output voltages greater than 5 V and only for frequencies less than 100 kHz .
3. Input-to-output voltage differential has little effect on ripple rejection until the regulator actually enters a dropout condition of 0.2 V to 0.6 V .

If ripple rejection needs to be improved, an input filter can be added. This filter can be a simple RC filter using a 1Ω to 10Ω resistor. A 3.3Ω resistor for instance, combined with a 0.3Ω ESR solid tantalum capacitor, will give an additional 20 dB ripple rejection. The size of the resistor will be dictated by maximum load current. If the maximum voltage drop allowable across the resistor is " V_{R}," and maximum load current is $l_{\text {LOAD }}, R=V_{R} / l_{\text {LOAD }}$. At light loads, larger resistors and smaller capacitors can be used
to save space. At heavier loads an inductor may have to be used in place of the resistor. The value of the inductor can be calculated from:

$$
L_{\text {FIL }}=\frac{\text { ESR }}{2 \pi(f)\left(10^{\mathrm{rr} / 20}\right)}
$$

ESR $=$ Effective series resistance of filter capacitor. This assumes that the capacitive reactance is small compared to ESR, a reasonable assumption for solid tantalum capacitors above $2.2 \mu \mathrm{~F}$ and 50 kHz .
$\mathrm{f}=$ Ripple frequency
rr $=$ Ripple rejection ratio of filter in dB
Example: $\mathrm{ESR}=1.2 \Omega, f=100 \mathrm{kHz}, \mathrm{rr}=-25 \mathrm{~dB}$.

$$
\mathrm{L}_{\text {FIL }}=\frac{1.2}{6.3\left(10^{5}\right)\left(10^{-25 / 20}\right)}=34 \mu \mathrm{H}
$$

Solid tantalum capacitors are suggested for the filter to keep filter Q fairly low. This prevents unwanted ringing at the resonant frequency of the filter and oscillation problems with the filter/regulator combination.

RELATGD PARTS

LT1121	150mA Positive Micropower Low Dropout Regulator with Shutdown
LT1129	700 mA Positive Micropower Low Dropout Regulator with Shutdown
LT1185	3A Negative Low Dropout Regulator
LT1521	300mA Positive Micropower Low Dropout Regulator with Shutdown
LT1529	3A Positive Micropower Low Dropout Regulator with Shutdown

:EATURES

- Dropout Voltage: 0.5 V
- Output Current: 300mA

I Quiescent Current: 12 2 A

- No Protection Diodes Needed
- Adjustable Output from 3.8 V to 20 V
- Fixed Output Voltages: 3V, 3.3V, 5 V

I Controlled Quiescent Current in Dropout

- Shutdown $\mathrm{I}_{\mathrm{Q}}=6 \mu \mathrm{~A}$
- $5 \mu \mathrm{~A}$ Quiescent Current in Shutdown
- Reverse Battery Protection
- No Reverse Current

I Thermal Limiting

IPPLICATIONS

- Low Current Regulator

Regulator for Battery-Powered Systems

- Post Regulator for Switching Supplies

DESCRIPTION

The $\mathrm{LT}^{\oplus} 1521 / \mathrm{LT} 1521-3 / \mathrm{LT} 1521-3.3 / \mathrm{LT} 1521-5$ are low dropout regulators with micropower quiescent current and shutdown. These devices are capable of supplying 300 mA of output current with a dropout voltage of 0.5 V . Designed for use in battery-powered systems, the low quiescent current, $12 \mu \mathrm{~A}$ operating and $6 \mu \mathrm{~A}$ in shutdown, makes them an ideal choice. The quiescent current is well controlled; it does not rise in dropout as it does with many other low dropout PNP regulators.
Other features of the LT1521/LT1521-3/LT1521-3.3/ LT1521-5 include the ability to operate with very small output capacitors. They are stable with only $1.5 \mu \mathrm{~F}$ on the output while most older devices require between $10 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ for stability. Small ceramic capacitors can be used, enhancing manufacturability. Also, the input may be connected to voltages lower than the output voltage, including negative voltages, without reverse current flow from output to input. This makes the LT1521 series ideal for backup power situations where the output is held high and the input is low or reversed. Under these conditions only $5 \mu \mathrm{~A}$ will flow from the output pin to ground.

[^24]
[YPICAL APPLICATION

5V Battery-Powered Supply with Shutdown

Dropout Voltage

LT1521/LTI521-3

ABSOLUTE MAXImUM RATINGS

Input Voltage .. $\pm 20 \mathrm{~V}$
Output Pin Reverse Current 10 mA
Adjust Pin Current
Shutdown Pin Input Voltage (Note 1) 10 mA

Shutdown Pin Input Current (Note 1) $6.5 \mathrm{~V},-0.6 \mathrm{~V}$

Output Short-Circuit Duration \qquad 5 mA Indefinite

Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Operating Junction Temperature Range (Note 2)

Commercial \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$
*For applications requiring input voltage ratings greater than 20V, contact the factory.

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER		ORDER PART NUMBER
	LT1521CS8		LT1521CST-3
	LT1521CS8-3		LT1521CST-3.3
	LT1521CS8-3.3		LT1521CST-5
	LT1521CS8-5		
	S8 PART MARKING	3-LEAD PLASTIC SOT-223	ST PART MARKING
*PIN 2 = SENSE FOR LT1521-3/LT1521-3.3/TT1521-5 = ADJ FOR LT1521		$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}$ SEE THE APPLICATIONS INFORMATION SECTION	15213
	$\begin{aligned} & 1521 \\ & 15213 \end{aligned}$		152133
	152133		15215

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Regulated Output Voltage (Note 3)	LT1521-3	$\begin{aligned} & V_{\text {IN }}=3.5 \mathrm{~V}, \text { I OUT }=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\text { IOUT }^{2} 300 \mathrm{~mA} \end{aligned}$	-	$\begin{aligned} & 2.950 \\ & 2.900 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.000 \\ & 3.000 \end{aligned}$	$\begin{aligned} & 3.050 \\ & 3.100 \\ & \hline \end{aligned}$	V
	LT1521-3.3	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 4.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.250 \\ & 3.200 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.300 \\ & 3.300 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.350 \\ & 3.400 \\ & \hline \end{aligned}$	V
	LT1521-5	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 6 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{OUT}}<300 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 4.925 \\ & 4.850 \end{aligned}$	$\begin{aligned} & 5.000 \\ & 5.000 \end{aligned}$	$\begin{aligned} & 5.075 \\ & 5.150 \end{aligned}$	V
	LT1521 (Note 4)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & 4.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<300 \mathrm{~mA} \end{aligned}$	-	$\begin{aligned} & 3.695 \\ & 3.640 \end{aligned}$	$\begin{aligned} & 3.750 \\ & 3.750 \end{aligned}$	$\begin{aligned} & 3.805 \\ & 3.860 \end{aligned}$	V
Line Regulation	LT1521-3	$\Delta \mathrm{V}_{\text {IN }}=4.5$ to $20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	20	mV
	LT1521-3.3	$\Delta \mathrm{V}_{\text {IN }}=4.8$ to $20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	20	mV
	LT1521-5	$\Delta \mathrm{V}_{\text {IN }}=5.5$ to $20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	20	mV
	LT1521 (Note 4)	$\Delta \mathrm{V}_{\text {IN }}=4.3$ to $20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	20	mV
Load Regulation	LT1521-3	$\Delta l_{\text {LOAD }}=1 \mathrm{~mA}$ to 300 mA	\bullet		-20	-45	mV
	LT1521-3.3	$\Delta L_{\text {LOAD }}=1 \mathrm{~mA}$ to 300 mA	\bullet		-20	-45	mV
	LT1521-5	$\Delta L_{\text {LOAD }}=1 \mathrm{~mA}$ to 300 mA	\bullet		-25	-50	mV
	LT1521 (Note 4)	$\Delta L_{\text {LOAD }}=1 \mathrm{~mA}$ to 300 mA	\bullet		-20	-45	mV

:LECTRICAL CHARACTERISTICS

ARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
ropout Voltage (Note 5)	$\begin{aligned} & I_{\text {LOAD }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{OAD}}=1 \mathrm{~mA} \end{aligned}$		\bullet		130	$\begin{aligned} & 170 \\ & 250 \end{aligned}$	mV mV
	$\begin{aligned} & l_{\text {LOAD }}=50 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA} \end{aligned}$		\bullet		290	$\begin{aligned} & 350 \\ & 450 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~L}_{\mathrm{LOAD}}=100 \mathrm{~mA} \end{aligned}$		\bullet		350	$\begin{aligned} & 420 \\ & 550 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=150 \mathrm{~mA} \end{aligned}$		\bullet		400	$\begin{aligned} & 470 \\ & 600 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=300 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=300 \mathrm{~mA} \end{aligned}$		\bullet		500	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	mV mV
round Pin Current (Note 6)			\bullet		12	20	$\mu \mathrm{A}$
	$l_{\mathrm{LOAD}}=1 \mathrm{~mA}$		\bullet		65	100	$\mu \mathrm{A}$
	$\begin{aligned} & l_{\text {LOAD }}=1 \mathrm{~mA} \\ & \hline \mathrm{I}_{\text {LOAD }}=10 \mathrm{~m} \end{aligned}$		\bullet		300	450	$\mu \mathrm{A}$
			\bullet		0.8	1.5	mA
	$\text { LOAD }=100 \mathrm{~mA}$		\bullet		1.4	2.5	mA
	$\mathrm{L}_{\text {LOAD }}=150 \mathrm{~mA}$		\bullet		2.2	4.0	mA
	$\mathrm{L}_{\text {LOAD }}=300 \mathrm{~mA}$		\bullet		6.5	12.0	mA
djust Pin Bias Current (Notes 4, 7)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				50	100	nA
hutdown Threshold	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{ff} \text { to } 0 \mathrm{n} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{On} \text { to } \mathrm{Off} \end{aligned}$		\bullet	0.25	$\begin{aligned} & 1.20 \\ & 0.75 \end{aligned}$	2.80	V
hutdown Pin Current (Note 8)	$V_{\overline{S H D N}}=0 \mathrm{~V}$		\bullet		2.0	5.0	$\mu \mathrm{A}$
uiescent Current in Shutdown (Note 9)	$\mathrm{V}_{\text {II }}=6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$		\bullet		6	12	$\mu \mathrm{A}$
ipple Rejection	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=1 \mathrm{~V}(A v g), V_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }}, \\ & f_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\text {LOAD }}=150 \mathrm{~mA} \end{aligned}$			50	58		dB
arrent Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=7 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {IN }}=V_{\text {OUT }}(\text { NOMINAL })+1.5 \mathrm{~V}, \Delta V_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$		\bullet	320	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	800	mA mA
put Reverse Leakage Current	$\mathrm{V}_{\text {IN }}=-20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		\bullet			1.0	mA
3verse Output Current (Note 10)	LT1521-3 LT1521-3.3 LT1521-5 LT1521 (Note 4)	$\begin{aligned} & V_{\text {OUT }}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<3 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<3.3 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<3.75 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \end{aligned}$			5 5 5 5	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	μA μA μA μA

ie denotes specifications which apply over the full operating mperature range.

ote 1: The shutdown pin input voltage rating is required for a low ipedance source. Internal protection devices connected to the shutdown n will turn on and clamp the pin to approximately 7 V or -0.6 V . This nge allows the use of 5 V logic devices to drive the pin directly. For high ipedance sources or logic running on supply voltages greater than 5.5 V , e maximum current driven into the shutdown pin must be limited to less an 5 mA .
Jte 2: For junction temperatures greater than $110^{\circ} \mathrm{C}$, a minimum load of $n A$ is recommended. For $\mathrm{T}_{\mathrm{J}}>110^{\circ} \mathrm{C}$ and $\mathrm{I}_{\text {OUT }}<1 \mathrm{~mA}$, output voltage ay increase by 1%.
Jte 3: Operating conditions are limited by maximum junction mperature. The regulated output voltage specification will not apply for possible combinations of input voltage and output current. When lerating at maximum input voltage, the output current range must be nited. When operating at maximum output current, the input voltage nge must be limited.

Note 4: The LT1521 (adjustable version) is tested and specified with the adjust pin connected to the output pin.
Note 5: Dropout voltage is the minimum input/output voltage required to maintain regulation at the specified output current. In dropout the output voltage will be equal to: ($\left.\mathrm{V}_{\text {IN }}-V_{\text {DROPOUT }}\right)$
Note 6: Ground pin current is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (nominal) and a current source load. This means the device is tested while operating in its dropout region. This is the worst-case ground pin current. The ground pin current will decrease slightly at higher input voltages.
Note 7: Adjust pin bias current flows into the adjust pin.
Note 8: Shutdown pin current at $\overline{\mathrm{SHDN}}=0 \mathrm{~V}$ flows out of the shutdown pin.
Note 9: Quiescent current in shutdown is equal to the total sum of the shutdown pin current $(2 \mu \mathrm{~A})$ and the ground pin current $(4 \mu \mathrm{~A})$.
Note 10: Reverse output current is tested with the input pin grounded and the output pin forced to the rated output voltage. This current flows into the output pin and out of the ground pin.

TYPICAL PERFORMANCE CHARACTERISTICS

LT1521 - TPCOT
LT1521-3
Output Voltage

LT1521•TPC04
LT1521
Adjust Pin Voltage

LT1521•TPC07

Dropout Voltage

LT1521•TPC02
LT1521-3.3
Output Voltage

LT1521•TPC05
LT1521-3
Quiescent Current

LT1521•TPC08

Quiescent Current

LT1521 •TPC03
LT1521-5
Output Voltage

LT1521•TPC06
LT1521-3.3
Quiescent Current

LT1521•TPC09

LT1521/LT1521-3
 LT1521-3.3/LT1521-5

TYPICAL PERFORMANCE CHARACTERISTICS

LTT521••PC10
LT1521-3
Ground Pin Current

LT1521•TPC13
LT1521-5
Ground Pin Current

LT1521•TPC16

LT1521
Quiescent Current

LT1521•TPC11
LT1521-3.3
Ground Pin Current

LT1521•TPC14
LT1521-5
Ground Pin Voltage

LT1521•TPC17

LT1521-3
Ground Pin Current

LT1521 • TPC12
LT1521-3.3
Ground Pin Current

LT1521•TPC15
LT1521
Ground Pin Current

LT1521•TPC18

TYPICAL PGRFORMANC CHARACTERISTICS

LT1521•TPC19

Shutdown Pin Threshold

 (Off-to-On)

LT1521•TPC22

LT1521•TPC25

Ground Pin Current

LT1521•TPC20

Shutdown Pin Threshold (On-to-Off)

LT1521•TPC21

Shutdown Pin Input Current

LT1521 •TPC24
Current Limit

LT1521• ${ }^{\text {PPC27 }}$

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1521•TPC28

Reverse Output Current

LT1521•TPC29

Ripple Rejection

LT1521•TPC30

Ripple Rejection

LT1521-5
Transient Response

Load Regulation

LT1521•TPC32
LT1521-5
Transient Response

PIn functions

OUT (Pin 1): The output pin supplies power to the load. A minimum output capacitor of $1.5 \mu \mathrm{~F}$ is required to prevent oscillations, but larger values of output capacitor will be necessary to deal with larger load transients. See the Applications Information section for more on output capacitance and reverse output characteristics.

SENSE (Pin 2): For fixed voltage versions of the LT1521 (LT1521-3, LT1521-3.3, LT1521-5), the sense pin is the input to the error amplifier. Optimum regulation will be obtained at the point where the sense pin is connected to the output pin of the regulator. In critical applications small voltage drops caused by the resistance (R_{P}) of PC traces between the regulator and the load, which would normally degrade regulation, may be eliminated by connecting the sense pin to the output at the load as shown in Figure 1 (Kelvin Sense Connection). Note that the voltage drop across the external PC traces will add to the dropout voltage of the regulator. The sense pin bias current is $5 \mu \mathrm{~A}$ at the nominal regulated output voltage. This pin is internally clamped to -0.6 V (one V_{BE}).
ADJ (Pin 2): For adjustable LT1521, the adjust pin is the input to the error amplifier. This pin is internally clamped to 6 V and -0.6 V (one V_{BE}). It has a bias current of 50 nA which flows into the pin. See Adjust Pin Bias Current vs Temperature in the Typical Performance Characteristics section. The adjust pin reference voltage is 3.75 V referenced to ground. The output voltage range that can be produced by this device is 3.75 V to 20 V .
SHDN (Pin 5): The shutdown pin is used to put the device into shutdown. In shutdown the output of the device is turned off. This pin is active low. The device will be shut down if the shutdown pin is pulled low. The shutdown pin current with the pin pulled to ground will be $1.7 \mu \mathrm{~A}$. The shutdown pin is internally clamped to 7 V and -0.6 V (one
$V_{B E}$). This allows the shutdown pin to be driven directly by 5 V logic or by open collector logic with a pull-up resistor. The pull-up resistor is only required to supply the leakage current of the open collector gate, normally several microamperes. Pull-up current must be limited to a maximum of 5 mA . A curve of the shutdown pin input current as a function of voltage appears in the Typical Performance Characteristics. If the shutdown pin is not used it can be left open circuit. The device will be active (output on) if the shutdown pin is not connected.
IN (Pin 8): Power is supplied to the device through the input pin. The input pin should be bypassed to ground if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of battery rises with frequency, so it is advisable to include a bypass capacitor in battery-powered circuits. A bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient. The LT1521 is designed to withstand reverse voltages on the input pin with respect to ground and the output pin. In the case of reversed input, which can happen if a battery is plugged in backwards, the LT1521 will act as if there is a diode in series with its input. There will be no reverse current flow into the LT1521 and no reverse voltage will appear at the load. The device will protect both itself and the load.

LT1521•F01
Figure 1. Kelvin Sense Connection

APPLICATIONS INFORMATION

The LT1521 is a 300 mA low dropout regulator with micropower quiescent current and shutdown. The device is capable of supplying 300 mA at a dropout of 0.5 V and operates with very low quiescent current $(12 \mu \mathrm{~A})$. In shutdown, the quiescent current drops to only $6 \mu \mathrm{~A}$. In addition to the low quiescent current, the LT1521 incorporates
several protection features which make it ideal for use in battery-powered systems. The device is protected against both reverse input voltages and reverse output voltages. In battery backup applications where the output can be held up by a backup battery when the input is pulled to

APPLICATIONS IOFORMATION

fround, the LT1521 acts like it has a diode in series with ts output and prevents reverse current flow.

Idjustable Operation

he adjustable version of the LT1521 has an output 'oltage range of 3.75 V to 20 V . The output voltage is set by he ratio of two external resistors as shown in Figure 2. The levice servos the output voltage to maintain the voltage at he adjust pin at 3.75 V . The current in R1 is then equal to i.75V/R1. The current in R2 is equal to the sum of the ;urrent in R1 and the adjust pin bias current. The adjust pin ias current, 50 nA at $25^{\circ} \mathrm{C}$, flows through R2 into the djust pin. The output voltage can be calculated using the ormula in Figure 2. The value of R1 should be less than 00k to minimize errors in the output voltage caused by he adjust pin bias current. Note that in shutdown the iutput is turned off and the divider current will be zero. ;urves of Adjust Pin Voltage vs Temperature and Adjust 'in Bias Current vs Temperature appear in the Typical 'erformance Characteristics. The reference voltage at the djust pin has a positive temperature coefficient of aproximately $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The adjust pin bias current has a legative temperature coefficient. These effects will tend to ancel each other.

Figure 2. Adjustable Operation
he adjustable device is specified with the adjust pin tied〕 the output pin. This sets the output voltage to 3.75 V . ipecifications for output voltages greater than 3.75 V will e proportional to the ratio of the desired output voltage to .75 V ; ($\mathrm{V}_{\text {OUT }} / 3.75 \mathrm{~V}$). For example: load regulation for an utput current change of 1 mA to 300 mA is -20 mV typical $t \mathrm{~V}_{\text {OUT }}=3.75 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$, load regulation would be:

$$
(12 \mathrm{~V} / 3.75 \mathrm{~V}) \times(-20 \mathrm{mV})=-64 \mathrm{mV}
$$

Thermal Considerations

The power handling capability of the device will be limited by the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device will be made up of two components:

1. Output current multiplied by the input/output voltage differential: $I_{\text {OUT }} \times\left(V_{\text {IN }}-V_{\text {OUT }}\right)$, and
2. Ground pin current multiplied by the input voltage: $I_{G N D} \times V_{I N}$
The ground pin current can be found by examining the Ground Pin Current curves in the Typical Performance Characteristics. Power dissipation will be equal to the sum of the two components listed above.
The LT1521 series regulators have internal thermal limiting designed to protect the device during overload conditions. For continuous normal load conditions the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction to ambient. Additional heat sources mounted nearby must also be considered.
For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.
The following tables list thermal resistance for each package. Measured values of thermal resistance for several different board sizes and copper areas are listed for each package. All measurements were taken in still air on 3/32" FR-4 board with one ounce copper. All NC leads were connected to the ground plane.
Table 1. 58 Package*

COPPER AREA			THERMAL RESISTANCE
TOPSIDE**	BACKSIDE	BOARD AREA	

Table 2. SOT-223 Package
(Thermal Resistance Junction-to-Tab $20^{\circ} \mathrm{C} / \mathrm{W}$)

COPPER AREA			THERMAL RESISTANCE
TOPSIDE*	BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)

* Tab of device attached to topside copper.

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V , an input voltage range of 4.5 V to 7 V , an output current range of 0 mA to 150 mA and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?
The power dissipated by the device will be equal to:

$$
\mathrm{I}_{\text {OUT }(\operatorname{MAX)}} \times\left(\mathrm{V}_{\operatorname{IN}(\text { MAX })}-\mathrm{V}_{\text {OUT }}\right)+\left(\operatorname{IGND} \times \mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}\right)
$$

Where,

$$
\begin{aligned}
& I_{\text {OUT }(M A X)}=150 \mathrm{~mA} \\
& \mathrm{~V}_{\text {IN(MAX })}=7 \mathrm{~V} \\
& I_{G N D} \text { at }\left(\mathrm{I}_{\mathrm{OUT}}=150 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}\right)=2.1 \mathrm{~mA}
\end{aligned}
$$

So,

$$
\mathrm{P}=150 \mathrm{~mA} \times(7 \mathrm{~V}-3.3 \mathrm{~V})+(2.1 \mathrm{~mA} \times 7 \mathrm{~V})=0.57 \mathrm{~W}
$$

If we use a SOT-223 package, then the thermal resistance will be in the range of $50^{\circ} \mathrm{C} / \mathrm{W}$ to $65^{\circ} \mathrm{C} / \mathrm{W}$ depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$0.57 \mathrm{~W} \times 60^{\circ} \mathrm{C} / \mathrm{W}=34.2^{\circ} \mathrm{C}$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+34.2^{\circ} \mathrm{C}=84.2^{\circ} \mathrm{C}
$$

Output Capacitance and Transient Performance

The LT1521 is designed to be stable with a wide range of output capacitors. A minimum output capacitor of $1.5 \mu \mathrm{~F}$ is required to prevent oscillations. The LT1521 is a micropower device and output transient response will be a function of output capacitance. See the Transient Re-
sponse curves in the Typical Performance Characteristics. Larger values of output capacitance will decrease the peak deviations and provide improved output transient response for larger load current deltas. Bypass capacitors, used to decouple individual components powered by the LT1521, will increase the effective value of the output capacitor.

Protection Features

The LT1521 incorporates several protection features which make it ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the device is protected against reverse input voltages, reverse output voltages and reverse voltages from output to input.

Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperatures should not exceed $125^{\circ} \mathrm{C}$.

The input of the device will withstand reverse voltages of 20V. Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the load. This provides protection against batteries that can be plugged in backward.
For fixed voltage versions of the device, the output can be pulled below ground without damaging the device. If the input is left open circuit or grounded, the output can be pulled below ground by 20 V . The output will act like an open circuit, no current will flow out of the pin. If the input is powered by voltage source, the output will source the short-circuit current of the device and will protect itself by thermal limiting. For the adjustable version of the device, the output pin is internally clamped at one diode drop below ground. Reverse current for the adjustable device must be limited to 5 mA .

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left open circuit. Current flow back into the output will vary depending on the conditions. Many battery-powered circuits

APPLICATIONS INFORMATION

ncorporate some form of power management. The folowing information will help optimize battery life. Table 3 summarizes the following information.
The reverse output current will follow the curve in Figure 3 when the input is pulled to ground. This current flows hrough the output pin to ground. The state of the shutlown pin will have no effect on output current when the nput pin is pulled to ground.
n some applications it may be necessary to leave the input on the LT1521 unconnected when the output is held high. This can happen when the LT1521 is powered from a ectified AC source. If the AC source is removed, then the nput of the LT1521 is effectively left floating. The reverse sutput current also follows the curve in Figure 3 if the input
pin is left open. The state of the shutdown pin will have no effect on the reverse output current when the input pin is floating.
When the input of the LT1521 is forced to a voltage below its nominal output voltage and its output is held high, the output current will follow the curve shown in Figure 3. This can happen if the input of the LT1521 is connected to a discharged (low voltage) battery and the output is held up by either a backup battery or by second regulator circuit. When the input pin is forced below the output pin or the output pin is pulled above the input pin, the input current will typically drop to less than $2 \mu \mathrm{~A}$ (see Figure 4). The state of the shutdown pin will have no effect on the reverse output current when the output is pulled above the input.

Figure 3. Reverse Output Current

Figure 4. Input Current
able 3. Fault Conditions

INPUT PIN	SHDN PIN	OUTPUT/SENSE PINS	RESULTING CONDITIONS
$<V_{\text {OUT }}$ (Nominal)	Open (High)	Forced to $V_{\text {OUT }}$ (Nominal)	Reverse Output Current $\approx 5 \mu A$ (See Figure 3) Input Current $\approx 1 \mu A($ See Figure 4)
$<V_{\text {OUT }}$ (Nominal)	Grounded	Forced to $V_{\text {OUT (Nominal) }}$	Reverse Output Current $\approx 5 \mu \mathrm{~A}$ (See Figure 3) Input Current $\approx 1 \mu \mathrm{~A}($ See Figure 4)
Open	Open (High)	$>1 \mathrm{~V}$	Reverse Output Current $\approx 5 \mu \mathrm{~A}($ See Figure 3)
Open	Grounded	$>1 \mathrm{~V}$	Reverse Output Current $\approx 5 \mu \mathrm{~A}$ (See Figure 3)
$\leq 0.8 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=0$
$\leq 0.8 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$
$>1.5 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=$ Short-Circuit Current
$-20 \mathrm{~V}<\mathrm{V}_{\mathbb{I N}}<20 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC ${ }^{\circledR} 1174$	425 mA High Efficiency Step-Down Switching Regulator	$>90 \%$ Efficiency, S0-8 Package
LT1175	500 mA Micropower Low Dropout Negative Linear Regulator	Selectable Current Limit
LT1120A	125mA Micropower Low Dropout Linear Regulator	$20 \mu \mathrm{~A}$ Quiescent Current, Includes Comparator
LT1304	Micropower Step-Up DC/DC Converter	$15 \mu \mathrm{~A}$ Quiescent Current, 1.5 Minimum Input
LT1529	3A Micropower Low Dropout Regulator	$50 \mu \mathrm{~A}$ Quiescent Current

feATURES

- Dropout Voltage: $\mathbf{0 . 6 V}$ at DUT $=3 \mathrm{~A}$
- Fast Transient Response
- Output Current: 3A
- Quiescent Current: $400 \mu \mathrm{~A}$
- No Protection Diodes Needed
- Fixed Output Voltage: 3.3V
- Controlled Quiescent Current in Dropout
- Shutdown $\mathrm{I}_{\mathrm{Q}}=125 \mu \mathrm{~A}$
- Stable with $3.3 \mu \mathrm{~F}$ Output Capacitor
- Reverse Battery Protection
- No Reverse Output Current
- Thermal Limiting

APPLICATIONS

- Microprocessor Applications
- Post Regulator for Switching Supplies
- 5V to 3.3V Logic Regulator

DESCRIPTIOn

The $L T^{\circledR} 1528$ is a 3 A low dropout regulator optimized to handle the large load current transients associated with the current generation of microprocessors. This device has the fastest transient response of currently available PNP regulators and is very tolerant of variations in capacitor ESR. Dropout voltage is 75 mV at 10 mA , rising to 300 mV at 1 A and 600 mV at 3 A . The device has a quiescent current of $400 \mu A$. Quiescent current is well controlled; it does not increase significantly as the device enters dropout. The regulator can operate with output capacitors as small as $3.3 \mu \mathrm{~F}$, although larger capacitors will be needed to achieve the performance required in most microprocessor applications. The LT1528 is available with a fixed output voltage of 3.3 V . An external Sense pin allows adjustment to output voltages greater than 3.3 V , using a simple resistive divider. This allows the device to be adjusted over a wide range of output voltages, including the 3.3 V to 4.2 V range required by a variety of processors from Intel, IBM, AMD, and Cyrix.

The LT1528 has both reverse input and reverse output protection and includes a shutdown feature. Quiescent current drops to $125 \mu \mathrm{~A}$ in shutdown. The LT1528 is available in 5-lead T0-220 and 5-lead DD packages.

[^25]
TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

Input Voltage\qquad $\pm 15 \mathrm{~V}$ *
Output Pin Reverse Current 10 mA
Sense Pin Current 10 mA
Shutdown Pin Input Voltage (Note 1) $6.5 \mathrm{~V},-0.6 \mathrm{~V}$
Shutdown Pin Input Current (Note 1)

\qquad

Output Short-Circuit Duration \qquad Indefinite Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Operating Junction Temperature Range LT1528C \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$ *For applications requiring input voltage ratings greater than 15 V , contact the factory.

PACKAGE/ORDER Information

Consult factory for Industrial and Military grade parts.

eLeCTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Regulated Output Voltages (Notes 2, 3)	$\begin{aligned} & V_{\text {IN }}=3.8 \mathrm{~V}, I_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & 4.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<15 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<3 \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 3.250 \\ & 3.200 \end{aligned}$	$\begin{aligned} & 3.300 \\ & 3.300 \end{aligned}$	$\begin{aligned} & 3.350 \\ & 3.400 \end{aligned}$	V
Line Regulation (Note 3)	$\Delta \mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	10	mV
Load Regulation (Note 3)	$\begin{aligned} & \Delta I_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{I N}=4.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \Delta I_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=4.3 \mathrm{~V} \end{aligned}$	-		$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	mV mV
Dropout Voltage (Note 4)	$\begin{aligned} & I_{\text {LOAD }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA} \end{aligned}$	\bullet		70	$\begin{aligned} & 110 \\ & 150 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$	-		150	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA} \end{aligned}$	\bullet		280	$\begin{aligned} & 320 \\ & 420 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A} \end{aligned}$	\bullet		390	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=3 A, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=3 A \end{aligned}$	-		570	$\begin{aligned} & 670 \\ & 850 \end{aligned}$	mV mV

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Ground Pin Current (Note 5)	$\begin{aligned} & I_{\text {LOAD }}=0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$			$\begin{aligned} & 450 \\ & 1.9 \end{aligned}$	750	$\mu \mathrm{A}$ mA
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=100 \mathrm{~mA}, T_{J}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$			$\begin{aligned} & 1.2 \\ & 2.7 \end{aligned}$	2.5	mA mA
	$\begin{aligned} & I_{\text {LOAD }}=300 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=300 \mathrm{~mA}, T_{J}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$			$\begin{aligned} & 2.6 \\ & 4.1 \\ & \hline \end{aligned}$	4.0	mA mA
	$\begin{aligned} & I_{\text {LOAD }}=700 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=700 \mathrm{~mA}, T_{J}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$			$\begin{aligned} & 7.3 \\ & 8.8 \\ & \hline \end{aligned}$	12.0	mA mA
	$L_{\text {LOAD }}=1.5 \mathrm{~A}$	\bullet		22	40	mA
	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	\bullet		85	140	mA
Sense Pin Current (Notes 3, 7)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		90	130	250	$\mu \mathrm{A}$
Shutdown Threshold	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{ff}-\text { to-0n } \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{n} \text {-to-Off } \end{aligned}$	\bullet	0.25	$\begin{aligned} & 1.20 \\ & 0.75 \end{aligned}$	2.80	V
Shutdown Pin Current (Note 8)	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	\bullet		37	100	$\mu \mathrm{A}$
Quiescent Current in Shutdown (Note 9)	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$	\bullet		110	220	$\mu \mathrm{A}$
Ripple Rejection	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=1 V(A v g), V_{\text {RIPPLE }}=0.5 V_{\text {P-P }} \\ & f_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A} \end{aligned}$		50	67		dB
Current Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=7 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {IN }}=4.3 \mathrm{~V}, \Delta V_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$	\bullet	3.2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$		A
Input Reverse Leakage Current	$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet			1.0	mA
Reverse Output Current (Note 10)	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$			120	250	$\mu \mathrm{A}$

The - denotes specifications which apply over the full operating temperature range.
Note 1: The Shutdown pin input voltage rating is required for a low impedance source. Internal protection devices connected to the Shutdown pin will turn on and clamp the pin to approximately 7 V or -0.6 V . This range allows the use of 5 V logic devices to drive the pin directly. For high impedance sources or logic running on supply voltages greater than 5.5 V , the maximum current driven into the Shutdown pin must be less than 5 mA .
Note 2: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current must be limited. When operating at maximum output current, the input voltage range must be limited.
Note 3: The LT1528 is tested and specified with the Sense pin connected to the Output pin.

Note 4: Dropout voltage is the minimum input/output voltage required to maintain regulation at the specified output current. In dropout the output voltage will be equal to: ($\left.\mathrm{V}_{I N}-\mathrm{V}_{\text {DROPOUT }}\right)$.
Note 5: Ground pin current is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (nominal) and a current source load. This means that the device is tested while operating in its dropout region. This is the worst-case Ground pin current. The Ground pin current will decrease slightly at higher input voltages.
Note 6: Ground pin current will rise at $\mathrm{T}_{\mathrm{J}}>75^{\circ} \mathrm{C}$. This is due to internal circuitry designed to compensate for leakage currents in the output transistor at high temperatures. This allows quiescent current to be minimized at lower temperatures, yet maintain output regulation at high temperatures with light loads. See quiescent current curve in typical performance characteristics section.
Note 7: Sense pin current flows into the Sense pin.
Note 8: Shutdown pin current at $\bigvee_{\overline{\text { SHDN }}}=0 \mathrm{~V}$ flows out of the Shutdown pin.
Note 9: Quiescent current in shutdown is equal to the total sum of the Shutdown pin current $(40 \mu \mathrm{~A})$ and the Ground pin current $(70 \mu \mathrm{~A})$.
Note 10: Reverse output current is tested with the input pin grounded and the Output pin forced to the rated output voltage. This current flows into the Output pin and out of the Ground pin.

TYPICAL PGRFORmANCE CHARACTERISTICS

LT1528•TPC01

LT1528•TPC04

Ground Pin Current

Dropout Voltage

LT1528•TPC02

LT1528•TPC05

Ground Pin Current

Quiescent Current

LT1528•TPC03
Ground Pin Current

LT1528•TPC06

Shutdown Pin Threshold (On-to-Off)

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

OUTPUT (Pin 1): The Output pin supplies power to the load. A minimum output capacitor of $3.3 \mu \mathrm{~F}$ is required to prevent oscillations. Larger values will be needed to achieve the transient performance required by high speed microprocessors. See the Applications Information section for more on output capacitance and reverse output characteristics.
SENSE (Pin 2): The Sense pin is the input to the error amplifier. Optimum regulation will be obtained at the point where the Sense pin is connected to the Output pin. For most applications the Sense pin is connected directly to the Outputpin atthe regulator. In critical applications small voltage drops caused by the resistance (R_{P}) of PC traces
between the regulator and the load, which would normally degrade regulation, may be eliminated by connecting the Sense pin to the Output pin at the load as shown in Figure 1 (Kelvin Sense Connection). Note that the voltage drop across the external PC traces will add to the dropout voltage of the regulator. The Sense pin bias current is $150 \mu \mathrm{~A}$ at the nominal regulated output voltage. See Sense Pin Current vs Temperature in the Typical Performance Characteristics section. This pin is internally clamped to -0.6 V (one V_{BE}).
The Sense pin can also be used with a resistor divider to achieve output voltages above 3.3 V . See the Applications Information section for information on adjustable operation.

PIn functions

3HDN (Pin 4): This pin is used to put the device into shutdown. In shutdown the output of the device is turned jff. This pin is active low. The device will be shut down if he Shutdown pin is actively pulled low. The Shutdown pin surrent with the pin pulled to ground will be $60 \mu \mathrm{~A}$. The shutdown pin is internally clamped to 7 V and -0.6 V (one J_{BE}). This allows the Shu'down pin to be driven directly by jV logic or by open collector logic with a pull-up resistor. The pull-up resistor is only required to supply the leakage ;urrent of the open collector gate, normally several microimperes. Pull-up current must be limited to a maximum of 5 mA . A curve of Shutdown pin input current as a unction of voltage appears in the Typical Performance Jharacteristics section. If the Shutdown pin is not used it ;an be left open circuit. The device will be active output on f the Shutdown pin is not connected.
$I_{\mathbb{N}}(\operatorname{Pin} 5)$: Power is supplied to the device through the nput pin. The input pin should be bypassed to ground if
the device is more than six inches away from the main input filter capacitor. The LT1528 is designed to withstand reverse voltages on the input pin with respect to ground and the Output pin. In the case of reversed input, the LT1528 will act as if there is a diode in series with its input. There will be no reverse current flow into the LT1528 and no reverse voltage will appear at the load. The device will protect both itself and the load.

LT1528•F01
Figure 1. Kelvin Sense Connection

APPLICATIONS INFORMATION

The LT1528 is a 3A low dropout regulator optimized for nicroprocessor applications. Dropout voltage is only 0.6 V it 3A output current. With the Sense pin shorted to the Jutput pin, the output voltage is set to 3.3 V . The device sperates with a quiescent current of $400 \mu \mathrm{~A}$. In shutdown, he quiescent current drops to only $125 \mu \mathrm{~A}$. The LT1528 ncorporates several protection features, including protecion against reverse input voltages. If the output is held at he rated output voltage when the input is pulled to ground, he LT1528 acts like it has a diode in series with its output ind prevents reverse current flow.

Idjustable Operation

he LT1528 can be used as an adjustable regulator with an lutput voltage range of 3.3 V to 14 V . The output voltage is et by the ratio of two external resistors as shown in igure 2. The device servos the output voltage to maintain he voltage at the Sense pin at 3.3 V . The current in R1 is hen equal to $3.3 \mathrm{~V} / \mathrm{R} 1$. The current in R2 is equal to the sum if the current in R1 and the Sense pin current. The Sense in current, $130 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$, flows through R2 into the iense pin. The output voltage can be calculated using the
formula in Figure 2. The value of R1 should be less than 330Ω to minimize errors in the output voltage caused by the Sense pin current. Note that in shutdown the output is turned off and the divider current will be zero. Curves of Sense Pin Voltage vs Temperature and Sense Pin Current vs Temperature appear in the Typical Performance Characteristics section.

Figure 2. Adjustable Operation

The LT1528 is specified with the Sense pin tied to the Output pin. This sets the output voltage to 3.3 V . Specifications for output voltage greater than 3.3 V will be proportional to the ratio of the desired output voltage to 3.3 V ($\mathrm{V}_{\text {OUT }} / 3.3 \mathrm{~V}$). For example, load regulation for an output current change of 1 mA to 1.5 A is -5 mV (typical) at $\mathrm{V}_{\text {OUT }}$ $=3.3 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$, load regulation would be:

$$
(12 \mathrm{~V} / 3.3 \mathrm{~V}) \times(-5 \mathrm{mV})=(-18 \mathrm{mV})
$$

Thermal Considerations

The power handling capability of the device will be limited by the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device will be made up of two components:

1. Output current multiplied by the input/output voltage differential, $\mathrm{I}_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$, and
2. Ground pin current multiplied by the input voltage, $I_{G N D} \times V_{I N}$.
The Ground pin current can be found by examining the Ground Pin Current curves in the Typical Performance Characteristics. Power dissipation will be equal to the sum of the two components listed above.

The LT1528 has internal thermal limiting designed to protect the device during overload conditions. For continuous normal load conditions the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction-to-ambient. Additional heat sources mounted nearby must also be considered.
For surface mount devices heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Experiments have shown that the heat spreading copper layer does not have to be electrically connected to the tab of the device. The PC material can be very effective at transmitting heat between the pad area, attached to the tab of the device, and a ground or power plane either inside or on the opposite side of the board. Although the actual thermal resistance of the PC material is high, the length/area ratio of the thermal resistor between layers is small. Copper board stiffeners and plated through holes can also be used to spread the heat generated by power devices.

Table 1a lists thermal resistance for the DD package. For the T0-220 package (Table 1b) thermal resistance is given for junction-to-case only since this package is usually mounted to a heat sink. Measured values of thermal resistance for several different copper areas are listed for the DD package. All measurements were taken in still air on 3/32" FR-4 board with one ounce copper. This data can be used as a rough guideline in estimating thermal resistance. The thermal resistance for each application will be affected by thermal interactions with other components as well as board size and shape. Some experimentation will be necessary to determine the actual value.
Table 1a. Q-Package, 5-Lead DD

COPPER AREA			THERMAL RESISTANCE TOPSIDE*
BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)	

*Device is mounted on topside.
Table 1b. T Package, 5-Lead T0-220

Thermal Resistance (Junction-to-Case)	$2.5^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V , an input voltage range of 4.5 V to 5.5 V , an output current range of 0 mA to 500 mA and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?
The power dissipated by the device will be equal to:

$$
\mathrm{I}_{\text {OUT }(M A X)} \times\left(\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}-\mathrm{V}_{\text {OUT }}\right)+\left[\mathrm{I}_{G N D} \times \mathrm{V}_{\text {IN(MAX })}\right]
$$

where,

$$
\begin{aligned}
& I_{\text {OUT }}(\mathrm{MAX})=500 \mathrm{~mA} \\
& \mathrm{~V}_{\text {IN }(\mathrm{MAX})}=5.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{GND}} \text { at }\left(\mathrm{I}_{\mathrm{OUT}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}\right)=4 \mathrm{~mA}
\end{aligned}
$$

SO,

$$
P=500 \mathrm{~mA} \times(5.5 \mathrm{~V}-3.3 \mathrm{~V})+(4 \mathrm{~mA} \times 5.5 \mathrm{~V})=1.12 \mathrm{~W}
$$

If we use a DD package, the thermal resistance will be in the range of $23^{\circ} \mathrm{C} / \mathrm{W}$ to $33^{\circ} \mathrm{C} / \mathrm{W}$ depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$$
1.12 \mathrm{~W} \times 28^{\circ} \mathrm{C} / \mathrm{W}=31.4^{\circ} \mathrm{C}
$$

APPLLCATIONS InFORMATION

The maximum junction temperature will be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+31.4^{\circ} \mathrm{C}=81.4^{\circ} \mathrm{C}
$$

Output Capacitance and Transient Performance

The LT1528 is designed to be stable with a wide range of output capacitors. The minimum recommended value is $3.3 \mu \mathrm{~F}$ with an ESR of 2Ω or less. The LT1528 output transient response will be a function of output capacitance. See the Transient Response curves in the Typical Performance Characteristics. Larger values of output capacitance will decrease the peak deviations and provide improved output transient response for larger load transients. Bypass capacitors, used to decouple individual components powered by the LT1528, will increase the effective value of the output capacitor.

Microprocessor Applications

The LT1528 has been optimized for microprocessor applications, with the fastest transient response of current PNP low dropout regulators. In order to deal with the large load transients associated with current generation microprocessors, output capacitance must be increased. To meet worst-case voltage specifications for many popular processors, four $47 \mu \mathrm{~F}$ solid tantalum surface mount sapacitors are recommended for decoupling at the microprocessor. These capacitors should have an ESR of approximately 0.1Ω to 0.2Ω to minimize transient response under worst-case load deltas. The Typical Application shows connections needed to supply power for several
different processors. This application allows the output voltage to be jumper selectable.

Protection Features

The LT1528 incorporates several protection features, such as current limiting and thermal limiting, in addition to the normal protection features associated with monolithic regulators. The device is protected against reverse input voltages and reverse voltages from output to input.
Current limit protection and thermal overload protection are intended to protect the device against overload conditions. For normal operation the junction temperatures should not exceed $125^{\circ} \mathrm{C}$.

The input of the device will withstand reverse voltages of 15V. Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the load.

The Sense pin is internally clamped to one diode drop below ground. If the Sense pin is pulled below ground, with the input open or grounded, current must be limited to less than 5 mA .

Several different input/output conditions can occur in regulator circuits. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage or is left open circuit. Current flow back into the output will vary depending on the conditions. Many circuits incorporate some form of power management. The following information summarized in Table 2 will help optimize power usage.
rable 2. Fault Conditions

INPUT PIN	$\overline{\text { SHDN PIN }}$	OUTPUT/SENSE PINS	RESULTING CONDITIONS
$<\mathrm{V}_{\text {OUT }}$ (Nominal)	Open (High)	Forced to VOUT (Nominal)	Reverse Output Current $\approx 150 \mu \mathrm{~A}$ (See Figure 3) Input Current $\approx 1 \mu \mathrm{~A}($ See Figure 4)
$<\mathrm{V}_{\text {OUT }}$ (Nominal)	Grounded	Forced to VOUT (Nominal)	Reverse Output Current $\approx 150 \mu \mathrm{~A}$ (See Figure 3) Input Current $\approx 1 \mu \mathrm{~A}($ See Figure 4)
Open	Open (High)	$>1 \mathrm{~V}$	Reverse Output Current $\approx 150 \mu \mathrm{~A}$ (See Figure 3)
Open	Grounded	$>1 \mathrm{~V}$	Reverse Output Current $\approx 150 \mu \mathrm{~A}$ (See Figure 3)
$\leq 0.8 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=0$
$\leq 0.8 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$
$>1.5 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=$ Short-Circuit Current
$-15 \mathrm{~V}<\mathrm{V}_{\text {IN }}<15 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$

LT1528

APPLICATIONS InFORMATION

The reverse output current will follow the curve in Figure 3 when the input is pulled to ground. This current flows through the Output pin to ground. The state of the Shutdown pin will have no effect on output current when the input pin is pulled to ground.
In some applications it may be necessary to leave the input on the LT1528 unconnected when the output is held high. This can happen when the LT1528 is powered from a rectified AC source. If the AC source is removed, then the input of the LT1528 is effectively left floating. The reverse output currentalso follows the curve in Figure 3 if the input pin is left open. The state of the Shutdown pin will have no effect on the reverse output current when the input pin is floating.

When the input of the LT1528 is forced to a voltage below its nominal output voltage and its output is held high, the output current will follow the curve shown in Figure 3. This can happen if the input of the LT1528 is connected to a low voltage and the output is held up by a second regulator circuit. When the input pin is forced below the Output pin or the Output pin is pulled above the input pin, the input current will typically drop to less than $2 \mu \mathrm{~A}$ (see Figure 4). The state of the Shutdown pin will have no effect on the reverse output current when the output is pulled above the input.

Figure 3. Reverse Output Current

Figure 4. Input Current

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC ${ }^{\oplus} 1265$	High Efficiency Step-Down Switching Regulator	$>90 \%$ Efficient 1A, 5V to 3.3V Conversion
LTC1266	Synchronous Switching Controller	$>90 \%$ Efficient High Current Microprocessor Supply
LT1521	300mA Micropower Low Dropout Regulator	$15 \mu \mathrm{~A}$ Quiescent Current
LT1584	7A Low Dropout Fast Transient Response Regulator	For High Performance Microprocessors
LT1585	4.6A Low Dropout Fast Transient Response Regulator	For High Performance Microprocessors

3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown

features

- Dropout Voltage: 0.6 V at $\mathrm{I}_{0 U T}=3 \mathrm{~A}$
- Output Current: 3A
- Quiescent Current: 50 A A
- No Protection Diodes Needed
- Adjustable Output from 3.8 V to 14 V
- 3.3 V and 5 V Fixed Output Voltages
- Controlled Quiescent Current in Dropout
- Shutdown $I_{Q}=16 \mu \mathrm{~A}$
- Stable with $3.3 \mu \mathrm{~F}$ Output Capacitor
- Reverse Battery Protection
- No Reverse Current
- Thermal Limiting

APPLICATIONS

- High Efficiency Regulator
- Regulator for Battery-Powered Systems
- Post Regulator for Switching Supplies
- 5V to 3.3V Logic Regulator

DESCRIPTION

The LT ${ }^{\circledR}$ 1529/LT1529-3.3/LT1529-5 are 3A low dropout regulators with micropower quiescent current and shutdown. The devices are capable of supplying 3A of output current with a dropout voltage of 0.6 V . Designed for use in battery-powered systems, the low quiescent current, $50 \mu \mathrm{~A}$ operating and $16 \mu \mathrm{~A}$ in shutdown, make them an ideal choice. The quiescent current is well controlled; it does not rise in dropout as it does with many other low dropout PNP regulators.

Other features of the LT1529 /LT1529-3.3/LT1529-5 include the ability to operate with small output capacitors. They are stable with only $3.3 \mu \mathrm{~F}$ on the output while most older devices require between $10 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ for stability. Small ceramic capacitors can be used, enhancing manufacturabiltiy. Also the input may be connected to voltages lower than the output voltage, including negative voltages, without reverse current flow from output to input. This makes the LT1529/LT1529-3.3/LT1529-5 ideal for backup power situations where the output is held high and the input is at ground or reversed. Under these conditions, only $16 \mu \mathrm{~A}$ will flow from the output pin to ground. The devices are available in 5-lead T0-220 and 5-lead DD packages.
$\overline{\mathbf{Q Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

5V Supply with Shutdown

Dropout Voltage

ABSOLUTG MAXIMUM RATIOGS

Input Voltage

\qquad
$\pm 15 \mathrm{~V}^{*}$Output Pin Reverse Current 10mShut (Note 1) 5mA10 mA Output Short-Circuit Duration
\qquad Indefinite
\qquad10 mAStorage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Adjust Pin Current10 mA
Shutdown Pin Input Voltage (Note 1)
Operating Junction Temperature Range $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

* For applications requiring input voltage ratings greater than 15 V , contact the factory.

PACKAGE/ORDER Information

Consult factory for Industrial or Military grade parts.

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Regulated Output Voltage (Note 2)	LT1529-3.3	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & 4.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<15 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<3 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 3.250 \\ & 3.200 \end{aligned}$	$\begin{aligned} & 3.300 \\ & 3.300 \end{aligned}$	$\begin{aligned} & 3.350 \\ & 3.400 \end{aligned}$	V
	LT1529-5	$\begin{aligned} & V_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & 6 \mathrm{~V}<\mathrm{V}_{\text {IN }}<15 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<3 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 4.925 \\ & 4.850 \end{aligned}$	$\begin{aligned} & 5.000 \\ & 5.000 \end{aligned}$	$\begin{aligned} & \hline 5.075 \\ & 5.150 \end{aligned}$	V
	LT1529 (Note 3)	$\begin{aligned} & V_{\text {IN }}=4.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & 4.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<15 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<3 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 3.695 \\ & 3.640 \end{aligned}$	$\begin{aligned} & 3.750 \\ & 3.750 \end{aligned}$	$\begin{aligned} & 3.805 \\ & 3.860 \end{aligned}$	V
Line Regulation	LT1529-3.3	$\Delta \mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	10	mV
	LT1529-5	$\Delta \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	10	mV
	LT1529 (Note 3)	$\Delta \mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet		1.5	10	mV
Load Regulation	LT1529-3.3	$\begin{aligned} & \Delta l_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=4.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \Delta I_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{I N}=4.3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 5 \\ 12 \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	mV mV
	LT1529-5	$\begin{aligned} & \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 5 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$	mV mV
	LT1529 (Note 3)	$\begin{aligned} & \Delta_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{I N}=4.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \Delta_{\mathrm{I} O A D}=1 \mathrm{~mA} \text { to } 3 \mathrm{~A}, \mathrm{~V}_{I N}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 5 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	mV mV
Dropout Voltage (Note 4)	$\begin{aligned} & I_{\text {LOAD }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~L}_{\mathrm{LOAD}}=10 \mathrm{~mA} \end{aligned}$		\bullet		110	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	mV mV
	$\begin{aligned} & L_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~L}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$		\bullet		200	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	mV mV

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Dropout Voltage (Note 4)	$\begin{aligned} & I_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA} \end{aligned}$		\bullet		320	$\begin{aligned} & 430 \\ & 550 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{LOAD}}=1.5 \mathrm{~A} \end{aligned}$		\bullet		430	$\begin{aligned} & 550 \\ & 700 \end{aligned}$	mV mV
	$\begin{aligned} & I_{\text {LOAD }}=3 A, T_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=3 A \end{aligned}$		\bullet		600	$\begin{aligned} & \hline 750 \\ & 950 \end{aligned}$	mV mV
Ground Pin Current (Note 5)	$\begin{aligned} & I_{\text {LOAD }}=0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$				$\begin{gathered} 50 \\ 400 \end{gathered}$	100	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=100 \mathrm{~mA}, T_{J}=125^{\circ} \mathrm{C}(\text { Note } 6) \end{aligned}$				$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$	1.0	mA mA
	$\mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}$		\bullet		5.5	12	mA
	$\mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A}$		\bullet		20	40	mA
	$\mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$		\bullet		80	160	mA
Adjust Pin Bias Current (Notes 3, 7)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				150	300	nA
Shutdown Threshold	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{ff} \text { to } 0 \mathrm{n} \\ & V_{\text {OUT }}=0 \mathrm{n} \text { to } 0 \mathrm{ff} \end{aligned}$		\bullet	0.2	$\begin{aligned} & 1.20 \\ & 0.75 \end{aligned}$	2.8	V
Shutdown Pin Current (Note 8)	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$		\bullet		4.5	10	$\mu \mathrm{A}$
Quiescent Current in Shutdown (Note 9)	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~V}^{\text {SHDN }}=0 \mathrm{~V}$		\bullet		15	30	$\mu \mathrm{A}$
Ripple Rejection	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=1 \mathrm{~V}(\mathrm{Avg}), V_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }}, \\ & f_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A} \end{aligned}$			50	62		dB
Current Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=7 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & V_{\text {IN }}=V_{\text {OUT }}(\text { Nominal })+1.5 \mathrm{~V}, \Delta V_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$		\bullet	3.2	$\begin{gathered} 5 \\ 4.7 \end{gathered}$		A A
Input Reverse Leakage Current	$\mathrm{V}_{\text {IN }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		\bullet			1.0	mA
Reverse Output Current (Note 10)	LT1529-3.3 LT1529-5 LT1529 (Note 4)	$\begin{aligned} & V_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \\ & V_{\text {OUT }}=3.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$			16 16 16		μA μA μA

The denotes specifications which apply over the operating temperature range.
Note 1: The shutdown pin input voltage rating is required for a low impedance source. Internal protection devices connected to the shutdown pin will turn on and clamp the pin to approximately 7 V or -0.6 V . This range allows the use of 5 V logic devices to drive the pin directly. For high impedance sources or logic running on supply voltages greater than 5.5 V , the maximum current driven into the shutdown pin must be limited to less than 5 mA .
Note 2: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current the input voltage range must be limited.
Note 3: The LT1529 is tested and specified with the adjust pin connected to the output pin.
Note 4: Dropout voltage is the minimum input/output voltage required to maintain regulation at the specified output current. In dropout the output voltage will be equal to ($\left.\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {DROPOUT }}\right)$.

Note 5: Ground pin current is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (nominal) and a current source load. This means that the device is tested while operating in its dropout region. This is the worst-case ground pin current. The ground pin current will decrease slightly at higher input voltages.
Note 6: Ground pin current will rise at $\mathrm{T}_{j}>75^{\circ} \mathrm{C}$. This is due to internal circuitry designed to compensate for leakage currents in the output transistor at high temperatures. This allows quiescent current to be minimized at lower temperatures, yet maintain output regulation at high temperatures with light loads. See quiescent current curve in typical performance characteristics.
Note 7: Adjust pin bias current flows into the adjust pin.
Note 8: Shutdown pin current at $\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$ flows out of the shutdown pin.
Note 9: Quiescent current in shutdown is equal to the sum total of the shutdown pin current $(5 \mu \mathrm{~A})$ and the ground pin current $(10 \mu \mathrm{~A})$.
Note 10: Reverse output current is tested with the input pin grounded and the output pin forced to the rated output voltage. This current flows into the output pin and out of the ground pin.

LT1529
LT 1529-3.3/LT 1529-5
TYPICAL PGRFORMANCE CHARACTERISTICS

ГYPICAL PERFORMANCE CHARACTERISTICS

LT1529•G10
LT1529-3.3 Ground Pin Current

LT1529•G13

Ground Pin Current

LT1529•G16

LT1529-5
Ground Pin Current

LT1529•G11
LT1529-5
Ground Pin Current

LT1529•G14

Shutdown Pin Threshold

 (On-to-Off)

LT1529
Ground Pin Current

LT1529•G12

LT1529

Ground Pin Current

LT1529•G15

Shutdown Pin Threshold (Off-to-On)

TYPICAL PERFORMANCE CHARACTERISTICS

[YPICAL PERFORmANCE CHRRACTERISTICS

In functions

'out (Pin 1): Output Pin. The output pin supplies power to le load. A minimum output capacitor of $3.3 \mu \mathrm{~F}$ is required J prevent oscillations. Larger values will be required to ptimize transient response for large load current deltas. iee the Applications Information section for further inforlation on output capacitance and reverse output characaristics.

ENSE (Pin 2): Sense Pin. For fixed voltage versions of the T1529 (LT1529-3.3, LT1529-5) the sense pin is the input) the error amplifier. Optimum regulation will be obtained t the point where the sense pin is connected to the output in. For most applications the sense pin is connected irectly to the output pin at the regulator. In critical pplications small voltage drops caused by the resistance R_{p}) of PC traces between the regulator and the load, thich would normally degrade regulation, may be elimiated by connecting the sense pin to the output pin at the jad as shown in Figure 1 (Kelvin Sense Connection). Note lat the voltage drop across the external PC traces will add) the dropout voltage of the regulator. The sense pin bias urrent is $15 \mu \mathrm{~A}$ at the nominal regulated output voltage. his pin is internally clamped to -0.6 V (one V_{BE}).
DJ (Pin 2): Adjust Pin. For the LT1529 (adjustable ersion) the adjust pin is the input to the error amplifier. his pin is internally clamped to 6 V and -0.6 V (one V_{BE}).

Figure 1. Kelvin Sense Connection
This pin has a bias current of 150nA which flows into the pin. See Bias Current curve in the Typical Performance Characteristics. The adjust pin reference voltage is equal to 3.75 V referenced to ground.
SHDN (Pin 4): Shutdown Pin. This pin is used to put the device into shutdown. In shutdown the output of the device is turned off. This pin is active low. The device will be shut down if the shutdown pin is actively pulled low. The shutdown pin current with the pin pulled to ground will be $6 \mu \mathrm{~A}$. The shutdown pin is internally clamped to 7 V and -0.6 V (one V_{BE}). This allows the shutdown pin to be driven directly by 5 V logic or by open-collector logic with a pullup resistor. The pull-up resistor is only required to supply the leakage current of the open-collector gate, normally several microamperes. Pull-up current must be limited to a maximum of 5 mA . A curve of shutdown pin input current as a function of voltage appears in the Typical Perfor-

PIn functions

mance Characteristics. If the shutdown pin is not used it can be left open circuit. The device will be active, output on, if the shutdown pin is not connected.
$V_{\mathbb{N}}$ (Pin 5): Input Pin. Power is supplied to the device through the input pin. The input pin should be bypassed to ground if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency so it is advisable to include a bypass capacitor in battery-powered circuits. A
bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient The LT1529 is designed to withstand reverse voltages or the input pin with respect to ground and output pin. In the case of a reversed input, which can happen if a battery is plugged in backwards, the LT1529 will act as if there is ε diode in series with its input. There will be no reverse current flow into the LT1529 and no reverse voltage wil appear at the load. The device will protect both itself anc the load.

APPLICATIONS Information

The LT1529 is a 3A low dropout regulator with micropower quiescent current and shutdown capable of supplying 3A of output current at a dropout voltage of 0.6 V . The device operates with very low quiescent current $(50 \mu \mathrm{~A})$. In shutdown the quiescent current drops to only $16 \mu \mathrm{~A}$. In addition to the low quiescent current the LT1529 incorporates several protection features which make it ideal for use in battery-powered systems. The device is protected against reverse input voltages. In battery backup applications where the output can be held up by a backup battery when the input is pulled to ground, the LT1529 acts like it has a diode in series with its output and prevents reverse current flow.

Adjustable Operation

The adjustable version of the LT1529 has an output voltage range of 3.75 V to 14 V . The output voltage is set by the ratio of two external resistors as shown in Figure 2. The device servos the output voltage to maintain the voltage at the adjust pin at 3.75 V . The current in R1 is then equal to $3.75 \mathrm{~V} / \mathrm{R} 1$. The current in R 2 is equal to the sum of the current in R1 and the adjust pin bias current. The adjust pin bias current, 150 nA at $25^{\circ} \mathrm{C}$, flows through R2 into the adjust pin. The output voltage can be calculated according to the formula in Figure 2. The value of R1 should be less than 400 k to minimize errors in the output voltage caused by the adjust pin bias current. Note that in shutdown the output is turned off and the divider current will be zero. Curves of Adjust Pin Voltage vs Temperature and Adjust

Figure 2. Adjustable Operation
Pin Bias Current vs Temperature appear in the Typica Performance Characteristics. The reference voltage at the adjust pin has a positive temperature coefficient of approximately $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The adjust pin bias current has ε negative temperature coefficient. These effects will tend tc cancel each other.

The adjustable device is specified with the adjust pin tiec to the output pin. This sets the output voltage to 3.75 V Specifications for output voltage greater than 3.75 V will be proportional to the ratio of the desired output voltage tc 3.75 V ($\mathrm{V}_{\text {OUT }} / 3.75 \mathrm{~V}$). For example: load regulation for ar output current change of 1 mA to 3 A is -0.5 mV typical at $V_{\text {OUT }}=3.75 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$, load regulation would be:

$$
\left(\frac{12 \mathrm{~V}}{3.75 \mathrm{~V}}\right) \times(-0.5 \mathrm{mV})=(-1.6 \mathrm{mV})
$$

APPLICATIONS IMFORMATION

Chermal Considerations

The power handling capability of the device will be limited yy the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The رower dissipated by the device will be made up of two ;omponents:
I. Output current multiplied by the input/output voltage differential: $I_{\text {OUT }} \times\left(V_{I N}-V_{\text {OUT }}\right)$, and
?. Ground pin current multiplied by the input voltage: $I_{G N D} \times V_{I N}$.
he ground pin current can be found by examining the iround Pin Current curves in the Typical Performance 'haracteristics. Power dissipation will be equal to the sum If the two components listed above.
he LT1529 series regulators have internal thermal limitng designed to protect the device during overload condiions. For continuous normal load conditions the maxinum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be :xceeded. It is important to give careful consideration to ill sources of thermal resistance from junction to ambient. Idditional heat sources mounted nearby must also be :onsidered.
or surface mount devices heat sinking is accomplished y using the heat spreading capabilities of the PC board .nd its copper traces. Experiments have shown that the leat spreading copper layer does not need to be electrially connected to the tab of the device. The PC material an be very effective at transmitting heat between the pad rea, attached to the tab of the device, and a ground or rower plane layer either inside or on the opposite side of he board. Although the actual thermal resistance of the PC naterial is high, the length/area ratio of the thermal esistor between layers is small. Copper board stiffeners nd plated through-holes can also be used to spread the eat generated by power devices.
he following tables list thermal resistances for each ackage. For the T0-220 package, thermal resistance is iven for junction-to-case only since this package is sually mounted to a heat sink. Measured values of vermal resistance for several different copper areas are sted for the DD package. All measurements were taken in till air on $3 / 32$ " $F R-4$ board with $1-0 z$ copper. This data can e used as a rough guideline in estimating thermal resis-
tance. The thermal resistance for each application will be affected by thermal interactions with other components as well as board size and shape. Some experimentation will be necessary to determine the actual value.

Table 1. Q Package, 5-Lead DD

COPPER AREA			THERMAL RESISTANCE
TOPSIDE*	BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)

* Device is mounted on topside.

T Package, 5-Lead T0-220

Thermal Resistance (Junction-to-Case) $=2.5^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V , an input voltage range of 4.5 V to 5.5 V , an output current range of 0 mA to 500 mA , and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?
The power dissipated by the device will be equal to:
where, $I_{\text {OUT(MAX) }}=500 \mathrm{~mA}$

$$
V_{\operatorname{IN}(M A X)}=5.5 \mathrm{~V}
$$

$$
I_{G N D} \text { at }\left(l_{\text {OUT }}=500 \mathrm{~mA}, V_{I N}=5.5 \mathrm{~V}\right)=3.6 \mathrm{~mA}
$$

so, $\quad P=500 \mathrm{~mA} \times(5.5 \mathrm{~V}-3.3 \mathrm{~V})+(3.6 \mathrm{~mA} \times 5.5 \mathrm{~V})$

$$
=1.12 \mathrm{~W}
$$

If we use a DD package, then the thermal resistance will be in the range of $23^{\circ} \mathrm{C} / \mathrm{W}$ to $33^{\circ} \mathrm{C} / \mathrm{W}$ depending on copper area. So the junction temperature rise above ambient will be approximately equal to:

$$
1.12 \mathrm{~W} \times 28^{\circ} \mathrm{C} / \mathrm{W}=31.4^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
T_{\text {JMAX }}=50^{\circ} \mathrm{C}+31.4^{\circ} \mathrm{C}=81.4^{\circ} \mathrm{C}
$$

Output Capacitance and Transient Performance

The LT1529 is designed to be stable with a wide range of output capacitors. The minimum recommended value is $3.3 \mu \mathrm{~F}$ with an ESR of 2Ω or less. The LT1529 is a

APPLICATIONS InFORMATION

micropower device and output transient response will be a function of output capacitance. See the Transient Response curves in the Typical Performance Characteristics. Larger values of output capacitance will decrease the peak deviations and provide improved output transient response for larter load current deltas. Bypass capacitors, used to decouple individual components powered by the LT1529, will increase the effective value of the output capacitor.

Protection Features

The LT1529 incorporates several protection features which make it ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the device is protected against reverse input voltages, and reverse voltages from output to input.
Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperature should not exceed $125^{\circ} \mathrm{C}$.

The input of the device will withstand reverse voltages of 15 V . Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the load. This provides protection against batteries that can be plugged in backwards.
For fixed voltage versions of the device, the sense pin is internally clamped to one diode drop below ground. For the adjustable version of the device, the output pin is internally clamped at one diode drop below ground. If the
output pin of an adjustable device, or the sense pin of a fixed voltage device, is pulled below ground, with the input open or grounded, current must be limited to less than 5 mA .

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage, or is left open circuit. Current flow back into the output will vary depending on the conditions. Many battery-powered circuits incorporate some form of power management. The following information will help optimize battery life. Table 2 summarizes the following information.

The reverse output current will follow the curve in Figure 3 when the input is pulled to ground. This current flows through the device to ground. The state of the shutdown pin will have no effect on output current when the input pin is pulled to ground.

Figure 3. Reverse Output Current

Table 2. Fault Conditions

INPUT PIN	$\overline{\text { SHDN PIN }}$	OUTPUT/SENSE PINS	
$<V_{\text {OUT }}$ (Nominal)	Open (High)	Forced to $V_{\text {OUT }}$ (Nominal)	Reverse Output Current $\approx 15 \mu \mathrm{~A}$ (See Figure 3), Input Current $\approx 1 \mu \mathrm{~A}$ (See Figure 4)
$<V_{\text {OUT }}$ (Nominal)	Grounded	Forced to $V_{\text {OUT }}$ (Nominal)	Reverse Output Current $\approx 15 \mu \mathrm{~A}$ (See Figure 3), Input Current $\approx 1 \mu \mathrm{~A}$ (See Figure 4)
Open	Open (High)	$>1 \mathrm{~V}$	Reverse Output Current $\approx 15 \mu \mathrm{~A}$ Peak (See Figure 3)
Open	Grounded	$>1 \mathrm{~V}$	Reverse Output Current $\approx 15 \mu \mathrm{~A}$ (See Figure 3)
$\leq 0.8 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=0$
$\leq 0.8 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$
$>1.5 \mathrm{~V}$	Open (High)	$\leq 0 \mathrm{~V}$	Output Current $=$ Short-Circuit Current
$-15 \mathrm{~V}<V_{\mathbb{I N}}<15 \mathrm{~V}$	Grounded	$\leq 0 \mathrm{~V}$	Output Current $=0$

IPPLICATIONS INFORMATION

isome applications it may be necessary to leave the input i the LT1529 unconnected when the output is held high. is can happen when the LT1529 is powered from a :ctified AC source. If the AC source is removed, then the put of the LT1529 is effectively left floating. The reverse atput currentalso follows the curve in Figure 3 if the input n is left open. The state of the shutdown pin will have no fect on the reverse output current when the input pin is jating.
'hen the input of the LT1529 is forced to a voltage below ; nominal output voltage and its output is held high, the stput current will follow the curve shown in Figure 3. This in happen if the input of the LT1529 is connected to a scharged (low voltage) battery and the output is held up / either a backup battery or by a second regulator circuit. 'hen the input pin is forced below the output pin or the atput pin is pulled above the input pin, the input current
will typically drop to less than $2 \mu \mathrm{~A}$ (see Figure 4). The state of the shutdown pin will have no effect on the reverse output current when the output is pulled above the input.

Figure 4. Input Current

ELATED PARTS

IRT NUMBER	DESCRIPTION	COMMENTS
1120 A	125 mA Low Dropout Regulator with $20 \mu \mathrm{~A} \mathrm{I}_{Q}$	Includes 2.5V Reference and Comparator
$C^{\oplus} 1174$	High Efficiency 425mA Step-Down DC/DC Converter	Over 90% Efficiency, Includes Comparator
1303	Micropower Step-Up DC/DC Converter	Includes Comparator, Good for EL Displays
1376	500 kHz 1.25 A Step-Down DC/DC Converter	Uses Extremely Small External Components
1521	$300 \mu \mathrm{~A}$ Low Dropout Regulator with $15 \mu \mathrm{~A} \mathrm{I}_{Q}$	Lowest I I_{Q} Low Dropout Regulator

feATURES

- Fast Transient Response
- Guaranteed Dropout Voltage at Multiple Currents
- Load Regulation: 0.05\% Typ
- Trimmed Current Limit
- On-Chip Thermal Limiting
- Standard 3-Pin Power Package

APPLICATIONS

- Pentium ${ }^{\text {TM }}$ Processor Supplies
- PowerPC ${ }^{\text {TM }}$ Supplies
- Other 2.5V to 3.6V Microprocessor Supplies
- Low Voltage Logic Supplies
- Battery-Powered Circuitry
- Post Regulator for Switching Supply

LT1585/7CM, LT1584/5/7CT	Adjustable
LT1585/7CM-3.3, LT1584/5/7CT-3.3	$3.3 V$ Fixed
LT1585CM-3.38, LT1584/5CT-3.38	3.38 V Fixed
LT1585/7CM-3.45, LT1584/5/7CT-3.45	$3.45 V$ Fixed
LT1585/7CM-3.6, LT1584/5/7CT-3.6	3.6 V Fixed

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1584 / \mathrm{LT} 1585 / \mathrm{LT} 1587$ are low dropout three terminal regulators with 7A, 4.6A and 3A output curren capability, respectively. Design has been optimized for lov voltage applications where transient response and mini mum input voltage are critical. Similar to the LT1083/4/! family, it has lower dropout voltage and faster transien response. These improvements make it ideal for low volt age microprocessor applications requiring a regulatec 2.5 V to 3.6 V output with an input supply below 7 V .

Current limit is trimmed to ensure specified output curren and controlled short-circuit current. On-chip thermal lim iting provides protection against any combination of over load that would create excessive junction temperatures.

The LT1585/LT1587 are available in both the through-hol and surface mount versions of the industry standard 3-pir T0-220 power package. The LT1584 is available in thi through-hole 3-pin T0-220 power package.

TYPICAL APPLICATION

Dropout Voltage vs Output Current

1585 TA02

BSOLUTE MAXIMUM RATIOGS

\qquad
,erating Junction Temperature Range Control Section \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Power Transistor \qquad $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

preconditioning

100\% Thermal Limit Functional Test

ACKAGE/ORDER INFORMATION

lith package soldered to 0.5 square inch copper area over backside Consult factory for Industrial and Military grade parts. round plane or internal power plane. θ_{JA} can vary from $20^{\circ} \mathrm{C} / \mathrm{W}$ to $40^{\circ} \mathrm{C} / \mathrm{W}$ with other mounting techniques.

LECTRICAL CHARACTERISTICS

RAMETER		CONDITIONS		MIN$1.225(-2 \%)$	TYP1.250	MAX1.275 (+2\%)	UNITS
erence Voltage	$\begin{aligned} & \text { LT1584 } \\ & \text { LT1585 } \\ & \text { LT1587 } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 3 V, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq 7 \mathrm{~A} \\ & 1.5 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 5.75 \mathrm{~V}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq 4.6 \mathrm{~A}, \mathrm{~T}_{J} \geq 25^{\circ} \mathrm{C} \\ & 1.5 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }} \leq 5.75 \mathrm{~V}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq 4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}<25^{\circ} \mathrm{C}\right. \\ & 1.5 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 5.75 \mathrm{~V}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$	\bullet				
put Voltage	LT1584-3.3 LT1585-3.3 LT1587-3.3	$\begin{aligned} & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 6.3 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7 \mathrm{~A} \\ & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq 4.6 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}} \geq 25^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq 4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}<25^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$	\bullet	3.235 (-2\%)	3.300	3.365 (+2\%)	V
	LT1584-3.38 LT1585-3.38	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.38 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7 \mathrm{~A} \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 4 \mathrm{~A} \end{aligned}$	\bullet	3.313 (-2\%)	3.380	3.465 (+2.5\%)	V
	LT1584-3.45 LT1585-3.45 LT1587-3.45	$\begin{aligned} & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 6.45 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7 \mathrm{~A} \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 4 \mathrm{~A} \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A} \end{aligned}$	-	3.381 (-2\%)	3.450	3.519 (+2\%)	V
	LT1584-3.6 LT1584-3.6 LT1584-3.6 LT1584-3.6	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 6 \mathrm{~A} \\ & 4.80 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 6 \mathrm{~A} \\ & 4.80 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.6 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7 \mathrm{~A} \\ & 4.85 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.6 \mathrm{~V}, 0 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 7 \mathrm{~A} \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 3.400(-5.5 \%) \\ & 3.450(-4 \%) \\ & 3.431(-4.7 \%) \\ & 3.481(-3.3 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.600 \\ & 3.600 \\ & 3.600 \\ & 3.600 \end{aligned}$	$\begin{aligned} & 3.672(+2 \%) \\ & 3.672(+2 \%) \\ & 3.672(+2 \%) \\ & 3.672(+2 \%) \end{aligned}$	V V V V

LIMEAD

LT1584/LT1585/LT1587

ELECTRICAL CHARACTERISTICS

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNIT:
Output Voltage	LT1585/7-3.6 LT1585/7-3.6 LT1585-3.6 LT1585-3.6	$\begin{aligned} & 4.75 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq 3 \mathrm{~A} \\ & 4.80 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq 3 \mathrm{~A} \\ & 4.80 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, \mathrm{~mA} \leq I_{\text {OUT }} \leq 4 \mathrm{~A} \\ & 4.85 \mathrm{~V} \leq V_{\text {IN }} \leq 7 \mathrm{~V}, \mathrm{OmA} \leq I_{\text {OUT }} \leq 4 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 3.474(-3.5 \%) \\ & 3.528(-2 \%) \\ & 3.450(-4 \%) \\ & 3.492(-3 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.600 \\ & 3.600 \\ & 3.600 \\ & 3.600 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.672(+2 \%) \\ & 3.672(+2 \%) \\ & 3.672(+2 \%) \\ & 3.672(+2 \%) \end{aligned}$	'
Line Regulation (Notes 1, 2)	LT1584/5/7 LT1584/5/7-3.3 LT1584/5-3.38 LT1584/5/7-3.45 LT1584/5/7-3.6		\bullet		0.005	0.2	9
Load Regulation (Notes 1, 2, 3)	LT1584/5/7 LT1584/5/7-3.3 LT1584/5-3.38 LT1584/5/7-3.45 LT1584/5/7-3.6	$\begin{aligned} & \left(V_{N}-V_{\text {OUT }}\right)=3 V, T_{J}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL }} \text { LOAD } \\ & V_{I N}=5 V, T_{J}=25^{\circ} \mathrm{C}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL LOAD }} \\ & V_{I N}=5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL LOAD }} \\ & V_{I N}=5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL LOAD }} \\ & V_{I N}=5.25 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, 0 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL LOAD }} \end{aligned}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \\ & \hline \end{aligned}$	\%
Dropout Voltage	LT1585/7 LT1585/7-3.3 LT1585-3.38 LT1585/7-3.45 LT1585/7-3.6	$\begin{aligned} & \Delta V_{\text {REF }}=1 \%, I_{\text {OUT }}=3 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=3 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=3 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=3 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=3 \mathrm{~A} \end{aligned}$	\bullet		1.150	1.300	
	LT1585 LT1585-3.3 LT1585-3.38 LT1585-3.45 LT1585-3.6	$\begin{aligned} & \Delta V_{\text {REF }}=1 \%, \text { I OUT }=4.6 \mathrm{~A}, \mathrm{~T}_{J} \geq 25^{\circ} \mathrm{C} \\ & \Delta V_{\text {REF }}=1 \%, \text { IOUT }=4 \mathrm{~A}, T_{J}<25^{\circ} \mathrm{C} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I IUT }=4.6 \mathrm{~A}, \mathrm{~T}_{J} \geq 25^{\circ} \mathrm{C} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I IUT }=4 \mathrm{~A}, \mathrm{~T}_{J}<25^{\circ} \mathrm{C} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I IUT }=4 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I IUT }=4 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I OUT }=4 \mathrm{~A} \end{aligned}$	\bullet		1.200	1.400	
	LT1584 LT1584-3.3 LT1584-3.38 LT1584-3.45 LT1584-3.6	$\begin{aligned} & \Delta V_{\text {REF }}=1 \%, I_{\text {OUT }}=6 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, l_{\text {OUT }}=6 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, l_{\text {OUT }}=6 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, l_{\text {OUT }}=6 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=6 \mathrm{~A} \\ & T_{J} \geq 25^{\circ} \mathrm{C} \\ & T_{J}<25^{\circ} \mathrm{C} \end{aligned}$	\bullet		$\begin{aligned} & 1.200 \\ & 1.200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.300 \\ & 1.350 \\ & \hline \end{aligned}$	
	LT1584 LT1584-3.3 LT1584-3.38 LT1584-3.45 LT1584-3.6	$\begin{aligned} & \Delta V_{\text {REF }}=1 \%, I_{\text {OUT }}=7 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I OUT }=7 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=7 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, I_{\text {OUT }}=7 \mathrm{~A} \\ & \Delta V_{\text {OUT }}=1 \%, \text { I OUT }=7 \mathrm{~A} \end{aligned}$	\bullet		1.250	1.400	
Current Limit (Note 3)	LT1584 LT1584-3.3 LT1584-3.38 LT1584-3.45 LT1584-3.6	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=3 V \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=3 V \\ & \left(V_{\text {IN }}-V_{\text {OUTT }}\right)=3 V \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=3 V \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=3 V \end{aligned}$	\bullet	7.100	8.250		
	$\begin{aligned} & \hline \text { LT1585 } \\ & \text { LT1585-3.3 } \end{aligned}$	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{I N}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & T_{J} \geq 25^{\circ} \mathrm{C} \\ & T_{J}<25^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 4.600 \\ & 4.100 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$		
	LT1585-3.38 LT1585-3.45 LT1585-3.6	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \end{aligned}$	\bullet	4.100	4.750		
	LT1587 LT1587-3.3 LT1587-3.45 LT1587-3.6	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=5.5 \mathrm{~V} \end{aligned}$	\bullet	3.100	3.750		

ELECTRICAL CHARACTERISTICS

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Adjust Pin Current	LT1584/5/7		-		55	120	$\mu \mathrm{A}$
Adjust Pin Current Jhange (Note 3)	$\begin{aligned} & \text { LT1584 } \\ & \text { LT1585/7 } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~V} \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 3 V, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL }} \text { LOAD } \\ & 1.5 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 5.75 \mathrm{~V}, 10 \mathrm{~mA} \leq I_{\text {OUT }} \leq I_{\text {FULL LOAD }} \end{aligned}$	-		0.2	5	$\mu \mathrm{A}$
Иinimum _oad Current	LT1584/5/7	$1.5 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 5.75 \mathrm{~V}$	-		2	10	mA
2uiescent Current	LT1584/5/7-3.3 LT1584/5-3.38 LT1584/5/7-3.45 LT1584/5/7-3.6	$\begin{aligned} & V_{\text {IN }}=5 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V} \\ & V_{\text {IN }}=5 \mathrm{~V} \end{aligned}$	\bullet		8	13	mA
\}ipple Rejection	LT1584 LT1584-3.3 LT1584-3.38 LT1584-3.45 LT1584-3.6 LT1585 LT1585-3.3 LT1585-3.38 LT1585-3.45 LT1585-3.6 LT1587 LT1587-3.3 LT1587-3.45 LT1587-3.6		-	60	72		dB
Thermal Regulation	LT1584/5/7 LT1584/5/7-3.3 LT1584/5-3.38 LT1584/5/7-3.45 LT1584/5/7-3.6	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse $T_{A}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse $T_{A}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse			0.004	0.02	\%/W
「emperature Stability			\bullet		0.5		\%
-ong-Term Stability		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$.			0.03	1.0	\%
3MS Output Noise \% of VOUT)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$			0.003		\%
Thermal Resistance lunction to Case	LT1584 LT1585 LT1585 LT1587 LT1587	T Package: Control Circuitry/Power Transistor T Package: Control Circuitry/Power Transistor M Package: Control Circuitry/Power Transistor T Package: Control Circuitry/Power Transistor M Package: Control Circuitry/Power Transistor				$\begin{aligned} & \hline 0.65 / 2.7 \\ & 0.7 / 3.0 \\ & 0.7 / 3.0 \\ & 0.7 / 3.0 \\ & 0.7 / 3.0 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

he denotes specifications which apply over the specified operating emperature range.
Jote 1: See thermal regulation specifications for changes in output voltage lue to heating effects. Load and line regulation are measured at a constant unction temperature by low duty cycle pulse testing.
Jote 2: Line and load regulation are guaranteed up to the maximum power lissipation (25W for the LT1584 in T package, 26.5W for the LT1585 in T lackage, 18 W for the LT1587 in T package). Power dissipation is letermined by input/output differential and the output current. Guaranteed naximum output power will not be available over the full input/output 'oltage range.

Note 3: I IfULL LOAD is defined as the maximum value of output load current as a function of input-to-output voltage. IFULL LOAD is equal to 7 A for the LT1584, 4.6A at $\mathrm{T}_{\mathrm{J}} \geq 25^{\circ} \mathrm{C}$ and 4 A at $\mathrm{T}_{\mathrm{J}}<25^{\circ} \mathrm{C}$ for the LT1585/LT1585-3.3 and 3 A for the LT1587. The remaining LT1585 fixed voltage versions are 4A. The LT1585 and LT1587 have constant current limit with changes in input-to-output voltage. The LT1584 has variable current limit which decreases about 4A as input-to-output voltage increases from 3 V to 7 V .

LT1584/LT1585/LT1587

TYPICAL PGRFORMANCE CHARACTERISTICS

IPICAL PERFORMANCE CHARACTERISTICS

LT1584•TPC10

LT1584/5/7 Minimum Load

 Current vs Temperature

LT1584•TPC13

LT1584/5/7 Ripple Rejection vs Frequency

Output Voltage vs Temperature Using Adjustable LT1584/5/7

LT1584•TPC11
LT1584/5/7 Adjust Pin Current vs Temperature

LT1585/7 Maximum Power Dissipation*

*AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE

LT1584/5/7-3.XX Output Voltage vs Temperature

LT1584•TPC12
LT1584/5/7-3.XX Quiescent Current vs Temperature

LT1584•TPC15

LT1584 Maximum Power

 Dissipation*
*AS LIMITED BY MAXIMUM JUNCTION TEMPERATURE

LT1584/LT1585/LT1587

SIMPLIFIGD SCHEMATIC

APPLICATIONS INFORMATION

General

The LT1584/LT1585/LT1587 family of three-terminal regulators is easy to use and has all the protection features expected in high performance linear regulators. The devices are short-circuit protected, safe-area protected, and provide thermal shutdown to turn off the regulators should the junction temperature exceed about $150^{\circ} \mathrm{C}$. The LT1584/LT1585/LT1587 family includes adjustable and fixed voltage versions.

These ICs are pin compatible with the LT1083/LT1084/ LT1085 family of linear regulators but offer lower dropout voltage and faster transient response. The trade-off for this improved performance is a 7 V maximum supply voltage. Similar to the LT1083/LT1084/LT1085 family, the LT1584/ LT1585/LT1587 regulators require an output capacitor for stability. However, the improved frequency compensation permits the use of capacitors with much lowerESR while still maintaining stability. This is critical in addressing the needs of modern, low voltage, high speed microprocessors.

Current generation microprocessors cycle load current from almost zero to amps in tens of nanoseconds. Output voltage tolerances are tighter and include transient response as part of the specification. The LT1584/LT1585/

LT1587 family is specifically designed to meet the fa current load-step requirements of these microprocessol and saves total cost by needing less output capacitance order to maintain regulation.

Stability

The circuit design in the LT1584/LT1585/LT1587 fami requires the use of an output capacitor as part of tr frequency compensation. For all operating conditions, tt addition of a $22 \mu \mathrm{~F}$ solid tantalum or a $100 \mu \mathrm{~F}$ aluminu electrolytic on the output ensures stability. Normally, tr LT1584/LT1585/LT1587 can use smaller value capacitor Many different types of capacitors are available and has widely varying characteristics. These capacitors differ capacitor tolerance (sometimes ranging up to $\pm 100 \%$ equivalent series resistance, equivalent series inductanc and capacitance temperature coefficient. The LT158. LT1585/LT1587 frequency compensation optimizes fri quency response with low ESR capacitors. In general, us capacitors with an ESR of less than 1Ω.

On the adjustable LT1584/LT1585/LT1587, bypassing tt adjust terminal improves ripple rejection and transie response. Bypassing the adjust pin increases the require output capacitor value. The value of $22 \mu \mathrm{~F}$ tantalum 1

PPLICATIONS INFORMATION

O HF aluminum covers all cases of bypassing the adjust minal. With no adjust pin bypassing, smaller values of Jacitors provide equally good results.
rmally, capacitor values on the order of several hundred crofarads are used on the output of the regulators to sure good transient response with heavy load current anges. Output capacitance can increase without limit λ larger values of output capacitance further improve the bility and transient response of the LT1584/LT1585/ 1587 family.
ge load current changes are exactly the situation preited by modern microprocessors. The load current step itains higher order frequency components that the tput decoupling network must handle until the regulator ottles to the load current level. Capacitors are not ideal ments and contain parasitic resistance and inductance. ese parasitic elements dominate the change in output tage at the beginning of a transient load step change. \because ESR of the output capacitors produces an instantajus step in output voltage ($\Delta \mathrm{V}=\Delta \mathrm{I} \times \mathrm{ESR}$). The ESL of output capacitors produces a droop proportional to the e of change of output current $(\mathrm{V}=\mathrm{L} \times \Delta \mathrm{I} / \Delta \mathrm{t})$. The output sacitance produces a change in output voltage propornal to the time until the regulator can respond ($\Delta \mathrm{V}=\Delta \mathrm{t}$ I / C). These transient effects are illustrated in Figure 1.

Figure 1
3 use of capacitors with low ESR, low ESL, and good high quency characteristics is critical in meeting the output tage tolerances of these high speed microprocessors. ase requirements dictate a combination of high quality, face mount tantalum capacitors and ceramic capacis. The location of the decoupling network is critical to nsient response performance. Place the decoupling work as close as possible to the processor pins because se runs from the decoupling capacitors to the processor s are inductive. The ideal location for the decoupling
network is actually inside the microprocessor socket cavity. In addition, use large power and ground plane areas to minimize distribution drops.

A possible stability problem that occurs in monolithic linear regulators is current limit oscillations. The LT1585/LT1587 essentially have a flat current limit over the range of input supply voltage. The lower current limit rating and 7 V maximum supply voltage rating for these devices permit this characteristic. Current limit oscillations are typically nonexistent, unless the input and output decoupling capacitors for the regulators are mounted several inches from the terminals. The LT1584 differs from the LT1585/ LT1587 and provides current limit foldback as input-tooutput differential voltage increases. This safe-area characteristic exhibits a negative impedance because increasing voltage causes output current to decrease. Negative resistance during current limit is not unique to the LT1584 devices and is present on many power IC regulators. The value of the negative resistance is a function of how fast the current limit is folded back as input-to-output voltage increases. This negative resistance can react with capacitors and inductors on the input and output to cause oscillation during current limit. Depending on the values of series resistances, the overall system may end up unstable. However, the oscillation causes no problem and the IC remains protected. In general, if this problem occurs and is unacceptable, increasing the amount of output capacitance helps dampen the system.

Protection Diodes

In normal operation, the LT1584/LT1585/LT1587 family does not require any protection diodes. Older three-terminal regulators require protection diodes between the output pin and the input pin or between the adjust pin and the output pin to prevent die overstress.

On the adjustable LT1584/LT1585/LT1587, internal resistors limit internal current paths on the adjust pin. Therefore, even with bypass capacitors on the adjust pin, no protection diode is needed to ensure device safety under shortcircuit conditions.

A protection diode between the input and output pins is usually not needed. An internal diode betweenthe input and output pins on the LT1584/LT1585/LT1587 family can

APPLICATIONS InFORMATION

handle microsecond surge currents of 50A to 100A. Even with large value output capacitors it is difficult to obtain those values of surge currents in normal operation. Only with large values of output capacitance, such as $1000 \mu \mathrm{~F}$ to $5000 \mu \mathrm{~F}$, and with the input pin instantaneously shorted to ground can damage occur. A crowbar circuit at the input of the LT1584/LT1585/LT1587 can generate those levels of current, and a diode from output to input is then recommended. This is shown in Figure 2. Usually, normal power supply cycling or system "hot plugging and unplugging" will not generate current large enough to do any damage.

The adjust pin can be driven on a transient basis $\pm 7 \mathrm{~V}$ with respect to the output, without any device degradation. As with any IC regulator, exceeding the maximum input-tooutput voltage differential causes the internal transistors to break down and none of the protection circuitry is then functional.

Figure 2

Overload Recovery

The LT1584 devices have safe-area protection similar to the LT1083/LT1084/LT1085. The safe-area protection decreases current limit as input-to-output voltage increases. This behavior keeps the power transistor inside a safe operating region for all values of input-to-output voltage. The LT1584 protection circuitry provides some output current at all values of input-to-output voltage up to the 7 V
maximum supply voltage. When power is first applied, th input voltage rises and the output voltage follows the inpu The input-to-output voltage remains small and the regule tor can supply large output currents. This action permit the regulator to start-up into very heavy loads.
With higher input voltages, a problem can occur where th removal of an output short does not permit the outpi voltage to recover. This problem is not unique to th LT1584 devices and is present on the LT1083/LT1084 LT1085 family and older generation linear regulators. Th problem occurs with a heavy output load, a high inpt voltage, and a low output voltage. An example is immed ately after the removal of a short circuit. The load line c such a load may intersect the output current curve at tw points. If this happens, two stable output operating point exist for the regulator. With this double intersection, th power supply may require cycling down to zero and bac up again to make the output recover. This situation doe not occur with the LT1585/LT1587 because no foldbac circuitry is required to provide safe-area protection.

Ripple Rejection

The typical curve for ripple rejection reflects values for th LT1584/LT1585/LT1587 fixed output voltage parts be tween 3.3 V and 3.6 V . In applications that require improve ripple rejection, use the adjustable devices. A bypas capacitor from the adjust pin to ground reduces the outpl ripple by the ratio of $\mathrm{V}_{\text {OUT }} / 1.25 \mathrm{~V}$. The impedance of th adjust pin capacitor at the ripple frequency should be les than the value of R1 (typically in the range of $100 \Omega \mathrm{t}$ 120Ω) in the feedback divider network in Figure 2. There fore, the value of the required adjust pin capacitor is function of the input ripple frequency. For example, if R equals 100Ω and the ripple frequency equals 120 Hz , th adjust pin capacitor should be $22 \mu \mathrm{~F}$. At 10 kHz , only 0.22μ is needed.

Output Voltage

The LT1584/LT1585/LT1587 adjustable regulators develo a 1.25 V reference voltage between the output pin and th adjust pin (see Figure 3). Placing a resistor R1 betwee these two terminals causes a constant current to flo through R1 and down through R2 to set the overall outpl voltage. Normally, this current is the specified minimur

PPLICATIONS INFORMATION

ad current of 10 mA . The current out of the adjust pin adds the current from R1 and is typically $55 \mu \mathrm{~A}$. Its output Itage contribution is small and only needs consideration ien very precise output voltage setting is required.

Figure 3. Basic Adjustable Regulator

ad Regulation

is not possible to provide true remote load sensing cause the LT1584/LT1585/LT1587 are three-terminal vices. Load regulation is limited by the resistance of the re connecting the regulators to the load. Load regulation r the data sheet specification is measured at the bottom the package.
r fixed voltage devices, negative side sensing is a true Ivin connection with the ground pin of the device rened to the negative side of the load. This is illustrated in jure 4.

Figure 4. Connection for Best Load Regulation
r adjustable voltage devices, negative side sensing is a e Kelvin connection with the bottom of the output divider urned to the negative side of the load. The best load julation is obtained when the top of resistor divider R1 nnects directly to the regulator output and not to the id. Figure 5 illustrates this point. If R1 connects to the id, the effective resistance between the regulator and the id is:
$\times(1+\mathrm{R} 2 / \mathrm{R} 1), \mathrm{R}_{\mathrm{P}}=$ Parasitic Line Resistance

The connection shown in Figure 5 does not multiply Rp by the divider ratio. As an example, Rp_{p} is about four milliohms per foot with 16 -gauge wire. This translates to 4 mV per foot at 1 A load current. At higher load currents, this drop represents a significant percentage of the overall regulation. It is important to keep the positive lead between the regulator and the load as short as possible and to use large wire or PC board traces.

Figure 5. Connection for Best Load Regulation

Thermal Considerations

The LT1584/LT1585/LT1587 family protects the device under overload conditions with internal power and thermal limiting circuitry. However, for normal continuous load conditions, do not exceed maximum junction temperature ratings. It is important to consider all sources of thermal resistance from junction-to-ambient. These sources include the junction-to-case resistance, the case-to-heat sink interface resistance, and the heat sink resistance. Thermal resistance specifications have been developed to more accurately reflect device temperature and ensure safe operating temperatures. The electrical characteristics section provides a separate thermal resistance and maximum junction temperature for both the control circuitry and the power transistor. Older regulators, with a single junction-to-case thermal resistance specification, use an average of the two values provided here and allow excessive junction temperatures under certain conditions of ambient temperature and heat sink resistance. Calculate the maximum junction temperature for both sections to ensure that both thermal limits are met.

Junction-to-case thermal resistance is specified from the IC junction to the bottom of the case directly below the die.

APPLLCATIONS InFORMATION

This is the lowest resistance path for heat flow. Proper mounting ensures the best thermal flow from this area of the package to the heat sink. Linear Technology strongly recommends thermal compound at the case-to-heat sink interface. Use a thermally conductive spacer if the case of the device must be electrically isolated and include its contribution to the total thermal resistance. Please consult "Mounting Considerations for Power Semiconductors" 1990 Linear Applications Handbook, Volume I, Pages RR3-1 to RR3-20. The output connects to the case of all devices in the LT1584/LT1585/LT1587 series.

For example, using an LT1585CT-3.3 (TO-220, commercial) and assuming:

$$
\begin{aligned}
& V_{\text {IN }}(\text { Max Continuous })=5.25 \mathrm{~V}(5 \mathrm{~V}+5 \%), \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \\
& I_{\text {OUT }}=4.6 \mathrm{~A} \\
& T_{A}=70^{\circ} \mathrm{C}, \theta_{\text {HEAT }} \text { SINK }=4^{\circ} \mathrm{C} / \mathrm{W} \\
& \left.\theta_{\text {CASE-TO-HEAT SINK }}=1^{\circ} \mathrm{C} / \mathrm{W} \text { (with Thermal Compound }\right)
\end{aligned}
$$

Power dissipation under these conditions is equal to:

$$
P_{D}=\left(V_{\text {IN }}-V_{\text {OUT }}\right)\left(I_{\text {OUT }}\right)=(5.25-3.3)(4.6)=9 \mathrm{~W}
$$

Junction temperature will be equal to:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{PD}_{\mathrm{D}}\left(\theta_{\text {HEAT SINK }}+\theta_{\text {CASE-TO-HEAT SINK }}+\theta_{\mathrm{JC}}\right)
$$

For the Control Section:

```
T}=7\mp@subsup{0}{}{\circ}\textrm{C}+9\textrm{W}(\mp@subsup{4}{}{\circ}\textrm{C}/\textrm{W}+\mp@subsup{1}{}{\circ}\textrm{C}/\textrm{W}+0.\mp@subsup{7}{}{\circ}\textrm{C}/\textrm{W})=121.\mp@subsup{3}{}{\circ
121.3}\mp@subsup{}{}{\circ}\textrm{C}<12\mp@subsup{5}{}{\circ}\textrm{C}=\mathrm{ TJmax (Control Section Commerciz
range)
```

For the Power Transistor:

$$
\begin{aligned}
& T_{J}=70^{\circ} \mathrm{C}+9 \mathrm{~W}\left(4^{\circ} \mathrm{C} / \mathrm{W}+1^{\circ} \mathrm{C} / \mathrm{W}+3^{\circ} \mathrm{C} / \mathrm{W}\right)=142^{\circ} \mathrm{C} \\
& 142^{\circ} \mathrm{C}<150^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{JMAX}} \text { (Power Transistor Commercia } \\
& \text { Range) }
\end{aligned}
$$

In both cases the junction temperature is below the maxi mum rating for the respective sections, ensuring reliabl operation.

TYPICAL APPLICATIONS

Recommended LT1587-3.45 Circuit for the Intel $486^{T M}$ DX4 ${ }^{T M}$ Overdrive Microprocessor

LT1585 Transient Response for 3.8A Load Current Step*

*TRANSIENT RESPONSE MEASURED WITH AN INTI POWER VALIDATOR. VOUT IS MEASURED AT THE POWER VALIDATOR

486 and DX4 are trademarks of intel Corporation.

YPICAL APPLICATIONS

Guaranteed LT1584/LT1431 Circuit for the Intel 90MHz and 100MHz Pentium Processors (Meets Intel Specifications with Worst-Case Tolerances)

ELATED PARTS

1T NUMBER	DESCRIPTION	COMMENTS
083/84/85	7.5A, 5A, 3A Low Dropout Linear Regulators	Fixed Output at 3.3V, 3.6V, 5 V and 12V, $\mathrm{V}_{\text {IN }}$ to 25 V
083/84/85	7.5A, 5A, 3A Low Dropout Linear Regulators	Adjustable Output with up to $30 \mathrm{~V}\left(\mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$ Differential
086	1.5A Low Dropout Linear Regulator	Both Fixed and Adjustable Versions, ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$) to 30 V
521	300 mA Low Dropout Linear Regulator with $12 \mu \mathrm{~A}$ Quiescent Current and Shutdown	Both Fixed and Adjustable Versions, Surface Mount Package Available
529	3A Low Dropout Linear Regulator with 50 AA Quiescent Current and Shutdown	Both Fixed and Adjustable Versions, Surface Mount Package Available
580	7A Very Low Dropout Linear Regulator	540 mV Dropout at 7A, Remote Sensing

NOTES
ECTION 4-POWER PRODUCTS
POWER AND MOTOR CONTROL 4-125
LT1160/LT1162, Half-/Full-Bridge N-Channel Power MOSFET Drivers 13-3
LTC1177-5/LTC1177-12, Isolated MOSFET Drivers 13-16
LT1246/LT1247, 1MHz Off-Line Current Mode PWM 4-126
LT1432-3.3, 3.3V High Efficiency Step-Down Switching Regulator Controller 4-137
LTC1477/LTC1478, Single and Dual Protected High-Side Switches 13-112

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1246 / \mathrm{LT1247}$ are 8 -pin, fixed frequency, curren mode, pulse width modulators. These devices are designed to be improved plug compatible versions of the industry standard UC1842 PWM circuit. The LT1246, LT1247 are optimized for off-line and DC/DC converte applications. They contain a temperature compensatec reference, high gain error amplifier, current sensing comparator, and a high current totem pole output stage idealls suited to driving power MOSFETs. Start-up current has been reduced to less than $250 \mu \mathrm{~A}$. Cross-conduction current spikes in the totem pole output stage have beer eliminated, making 1 MHz operation practical. Several nen features have been incorporated. Leading edge blankinç has been added to the current sense comparator. This minimizes or eliminates the filter that is normally required Eliminating this filter allows the current sense loop tc operate with minimum delays. Trims have been added tc the oscillator circuit for both frequency and sink current and both of these parameters are tightly specified. The output stage is clamped to a maximum $\mathrm{V}_{\text {OUT }}$ of 18 V in the on state. The output and the reference output are activels pulled low during under-voltage lockout.
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

feATURES

- Current Mode Operation to 1 MHz
- 30ns Current Sense Delay
- <250uA Low Start-Up Current
- Current Sense Leading Edge Blanking
- Pin Compatible with UC1842
- Undervoltage Lockout with Hysteresis
- No Cross-Conduction Current
- Trimmed Bandgap Reference
- 1A Totem Pole Output
- Trimmed Oscillator Frequency and Sink Current
- Active Pull-Down on Reference and Output During Undervoltage Lockout
- 18V High Level Output Clamp

APPLICATIONS

- Off-Line Converters
- DC/DC Converters

Device	Start-Up Threshold	Minimum Operating Voltage	Maximum Duty Cycle	Replaces
LT1246	16 V	10 V	100%	UC1842
LT1247	8.4 V	7.6 V	100%	UC1843

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... 25V
Output Current ... $\pm 1 \mathrm{~A}^{*}$
Output Energy (Capacitive Load per Cycle) $5 \mu \mathrm{~J}$ Analog Inputs (Pins 2, 3) -0.3 to 6V Error Amplifier Output Sink Current.................... 10mA Power Dissipation at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$.............................. 1W Operating Junction Temperature Range
LT1246C/LT1247C $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad
*The 1 A rating for output current is based on transient switching requirements.

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT1246CN8 LT1246CS8 LT1247CN8 LT1247CS8
N8 PACKAGE	
S8 PACKAGE 8-LEAD PLASTIC SO	S8 PART MARKING
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JJ}}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=150^{\circ} \mathrm{C} / \mathrm{W}(S 8) \end{aligned}$	$\begin{aligned} & 1246 \\ & 1247 \end{aligned}$

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (Noles 1,2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Reference Section						
Output Voltage	$\mathrm{I}_{0}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.925	5.000	5.075	V
Line Regulation	$12 \mathrm{~V}<\mathrm{V}_{\text {CC }}<25 \mathrm{~V}$	\bullet		3	20	mV
Load Regulation	$1 \mathrm{~mA}<\mathrm{I}_{\text {REF }}<20 \mathrm{~mA}$	\bullet		-6	-25	mV
Temperature Stability				0.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation	Line, Load, Temperature	\bullet	4.87		5.13	V
Output Noise Voltage	$10 \mathrm{~Hz}<\mathrm{F}<10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			50		$\mu \mathrm{V}$
Long-Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$.			5	25	mV
Output Short-Circuit Current		\bullet	-30	-90	-180	mA
Dscillator Section						
Initial Accuracy	$\begin{aligned} & R_{T}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{T}=6.2 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=500 \mathrm{pF}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 47.5 \\ & 465 \end{aligned}$	$\begin{gathered} 50 \\ 500 \end{gathered}$	$\begin{aligned} & 52.5 \\ & 535 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Voltage Stability	$12 \mathrm{~V}<\mathrm{V}_{\text {CC }}<25 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				1	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{J}}<\mathrm{T}_{\text {MAX }}$			-0.05		\% $/{ }^{\circ} \mathrm{C}$
Amplitude	Pin 4			1.7		V
Jlock Ramp Reset Current	$\mathrm{V}_{0 S C}($ Pin 4$)=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		7.9	8.2	8.5	mA
Error Amplifier Section						
-eedback Pin Input Voltage	$V_{\text {PIN } 1}=2.5 \mathrm{~V}$	\bullet	2.42	2.50	2.58	V
nput Bias Current	$V_{\text {FB }}=2.5 \mathrm{~V}$	\bullet			-2	$\mu \mathrm{A}$
Jpen-Loop Voltage Gain	$2<\mathrm{V}_{0}<4 \mathrm{~V}$	\bullet	65	90		dB
Jnity-Gain Bandwidth	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1	2		MHz
${ }^{\text {Jower Supply Rejection Ratio }}$	$12 \mathrm{~V}<\mathrm{V}_{\text {CC }}<25 \mathrm{~V}$	\bullet	60			dB
Jutput Sink Current	$V_{\text {PIN 2 }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {PIN } 1}=1.1 \mathrm{~V}$	\bullet	2	6		mA
Jutput Source Current	$\mathrm{V}_{\text {PIN 2 }}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {PIN 1 }}=5 \mathrm{~V}$	\bullet	-0.5	-0.75		mA

ELECTRICAL CHARACTERISTICS (Noes 1,2$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Error Amplifier Section						
Output Voltage High Level	$V_{\text {PIN } 2}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k}$ to GND	\bullet	5	5.6		V
Output Voltage Low Level	$\mathrm{V}_{\text {PIN } 2}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k}$ to Pin 8	\bullet		0.2	1.1	V

Current Sense Section

Gain		\bullet	2.85	3.00	3.15
Maximum Current Sense Input Threshold	VPIN 3 < 1.1V	\bullet	0.90	1.00	1.10
Power Supply Rejection Ratio				70	
Input Bias Current		\bullet		V	
Delay to Output			-1	dB	
Blanking Time		30	$\mu \mathrm{~A}$		
Blanking Override Voltage				60	ns

Output Section

Output Low Level	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.25 \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.4 \\ 2.2 \\ \hline \end{array}$	V
Output High Level	$\begin{aligned} & I_{\text {OUT }}=20 \mathrm{~mA} \\ & I_{\text {OUT }}=200 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{gathered} 12.0 \\ 11.75 \end{gathered}$			V
Rise Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			30	70	
Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			20	60	
Output Clamp Voltage	$\mathrm{I}_{0}=1 \mathrm{~mA}$	\bullet		18	19	V
Undervoltage Lockout						
Start-Up Threshold	$\begin{aligned} & \text { LT1246 } \\ & \text { LT1247 } \end{aligned}$	\bullet	$\begin{aligned} & 15 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 16 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 17 \\ & 9.0 \end{aligned}$	V
Minimum Operating Voltage	$\begin{aligned} & \text { LT1246 } \\ & \text { LT1247 } \end{aligned}$	\bullet	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 11 \\ & 8.2 \end{aligned}$	V
Hysteresis	$\begin{aligned} & \text { LT1246 } \\ & \text { LT1247 } \end{aligned}$	\bullet	$\begin{aligned} & 5.5 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 0.8 \end{aligned}$		V

PWM

Maximum Duty Cycle	$T_{J}=25^{\circ} \mathrm{C}$		94	100	$\%$
Minimum Duty Cycle	$T_{J}=25^{\circ} \mathrm{C}$			0	$\%$

Total Device

Start-Up Current		\bullet	170	250	$\mu \mathrm{~A}$
Operating Current		\bullet	13	20	mA

The - denotes those specifications which apply over the full operating temperature range.
Note 1: Unless otherwise specified, $V_{C C}=15 \mathrm{~V}, R_{T}=10 \mathrm{k}, C_{T}=3.3 n F$.

Note 2: Low duty cycle pulse techniques are used during test to maintain junction temperature close to ambient.

'YPICAL PERFORmANCE CHARACTERISTICS

Oscillator Sink Current

Supply Current

Reference Short-Circuit Current

LT1246•TPC03

Oscillator Frequency

TYPICAL PERFORmANCE CHARACTERISTICS

${ }_{\text {LT1246. TPC17 }}$

-YPICAL PERFORMANCE CHARACTERISTICS

Output Deadtime vs
Oscillator Frequency

OSCILLATOR FREQUENCY (kHz)
LT1246•TPC18*

Timing Resistor vs
Oscillator Frequency

OSCILLATOR FREQUENCY (Hz)
LT1246•TPC19

IIn functions

OMP (Pin 1): Compensation Pin. This pin is the output of ıe Error Amplifier and is made available for loop compenation. It can also be used to adjust the maximum value of le current sense clamp voltage to less than 1V. This pin an source a minimum of $0.5 \mathrm{~mA}(0.8 \mathrm{~mA}$ typ.) and sink a inimum of 2 mA (4 mA typ.)
B (Pin 2): Voltage Feedback. This pin is the inverting iput of the Error Amplifier. The output voltage is normally 3d back to this pin through a resistive divider. The oninverting input of the Error Amplifier is internally ommitted to a 2.5 V reference point.
$I_{\text {SENSE }}$ (Pin 3): Current Sense. This is the input to the current sense comparator. The trip point of the comparator is set by, and is proportional to, the output voltage of the Error Amplifier.
$\mathbf{R}_{T} / \mathbf{C}_{\mathbf{T}}($ Pin 4$)$: The oscillator frequency and the deadtime are set by connecting a resistor (R_{T}) from $\mathrm{V}_{\text {REF }}$ to $\mathrm{R}_{T} / \mathrm{C}_{T}$ and a capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$ from $\mathrm{R}_{T} / \mathrm{C}_{\mathrm{T}}$ to GND .
The rise time of the oscillator waveform is set by the RC time constant of R_{T} and C_{T}. The fall time, which is equal to the output deadtime, is set by a combination of the RC time constant and the oscillator sink current (8.2 mA typ.).

PIn functions

GND (Pin 5): Ground.
OUTPUT (Pin 6): Current Output. This pin is the output of a high current totem pole output stage. It is capable of driving up to ± 1 A of current into a capacitive load such as the gate of a MOSFET.
$\mathbf{V}_{\text {CC }}$ (Pin 7): Supply Voltage. This pin is the positive supply of the control IC.
$V_{\text {REF }}$ (Pin 8): Reference. This is the reference output of the IC. The reference output is used to supply charging current to the external timing resistor R_{T}. The reference provides biasing to a large portion of the internal circuitry, and is used to generate several internal reference levels including the V_{FB} level and the current sense clamp voltage.

APPLICATIONS INFORMATION

Device	Start-Up Threshold	Minimum Operating Voltage	Maximum Duty Cycle	Replaces
LT1246	16 V	10 V	100%	UC1842
LT1247	8.4 V	7.6 V	100%	UC1843

Oscillator

The LT1246/LT1247 are fixed frequency current mode pulse width modulators. The oscillator frequency and the oscillator discharge current are both trimmed and tightly specified to minimize the variations in frequency and deadtime. The oscillator frequency is set by choosing a resistor and capacitor combination, R_{T} and C_{T}. This RC combination will determine both the frequency and the maximum duty cycle. The resistor R_{T} is connected from $V_{\text {REF }}$ (pin 8) to the R_{T} / C_{\top} pin (pin 4). The capacitor $\mathrm{C}_{\boldsymbol{T}}$ is connected from the R_{T} / C_{\top} pin to ground. The charging current for C_{T} is determined by the value of R_{T}. The discharge current for C_{T} is set by the difference between the current supplied by R_{T} and the discharge current of the LT1246/LT1247. The discharge current of the device is trimmed to 8.2 mA . For large values of R_{T} discharge time will be determined by the discharge current of the device and the value of C_{T}. As the value of R_{T} is reduced it will have more effect on the discharge time of C_{T}. During an oscillator cycle capacitor C_{\top} is charged to approximately 2.8 V and discharged to approximately 1.1 V . The output is enabled during the charge time of C_{\top} and disabled, in an off state, during the discharge time of $\mathrm{C}_{\boldsymbol{\top}}$. The deadtime of the circuit is equal to the discharge time of C_{T}. The maximum duty cycle is limited by controlling the deadtime of the oscillator. There are many combinations of R_{T} and C_{T} that will yield a given oscillator frequency, however there is only one combination that will yield a specific
deadtime at that frequency. Curves of oscillator frequency and deadtime for various values of $\mathrm{R}_{\boldsymbol{T}}$ and C_{\top} appear in the Typical Performance Characteristics section. Frequency and deadtime can also be calculated using the following formulas:

$$
\text { Oscillator Rise Time: } \mathrm{t}_{\mathrm{r}}=0.583 \bullet \mathrm{RC}
$$

Oscillator Discharge Time: $\mathrm{t}_{\mathrm{d}}=\frac{3.46 \bullet \mathrm{RC}}{0.0164 \mathrm{R}-11.73}$
Oscillator Period: $\mathrm{t}_{0 \mathrm{SC}}=\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{d}}$
Oscillator Frequency: $\mathrm{f}_{\mathrm{OSC}}=\frac{1}{\mathrm{t}_{\mathrm{OSC}}}$
Maximum Duty Cycle: $D_{\text {MAX }}=\frac{t_{r}}{t_{\text {OSC }}}=\frac{t_{\text {OSC }}-t_{d}}{t_{\text {OSC }}}$
The above formulas will give values that will be accurate to approximately $\pm 5 \%$, at the oscillator, over the full operating frequency range. This is due to the fact that the oscillator trip levels are constant versus frequency and the discharge current and initial oscillator frequency are trimmed. Some fine adjustment may be required to achieve more accurate results. Once the final R_{T} / C_{T} combination is selected, the oscillator characteristics will be repeatable from device to device. Note that there will be some slight differences between maximum duty cycle at the oscillator and maximum duty cycle at the output due to the finite rise and fall times of the output.

Error Amplifier

The LT1246/LT1247 contain a fully compensated error amplifier with a DC gain of 90 dB and a unity-gain frequency of 2 MHz . Phase margin at unity-gain is 80°. The noninverting input is internally committed to a 2.5 V reference point derived from the 5 V reference of pin 8 . The

APPLICATIONS INFORMATION

nverting input (pin 2) and the output (pin 1) are made ivailable to the user. The output voltage in a regulator ;ircuit is normally fed back to the inverting input of the irror amplifier through a resistive divider. The output of he error amplifier is made available for external loop ;ompensation. The output current of the error amplifier is imited to approximately 0.8 mA sourcing and approxinately 6 mA sinking.
n a current mode PWM the peak switch current is a unction of the output voltage of the error amplifier. In the .T1246/LT1247 the output of the error amplifier is offset y two diodes (1.4 V at $25^{\circ} \mathrm{C}$), divided by a factor of three, ind fed to the inverting input of the current sense commarator. For output voltages less than 1.4 V the duty cycle If the output stage will be zero. The maximum offset that ;an appear at the current sense input is limited by a 1 V lamp. This occurs whenthe error amplifier output reaches 1.4 V at $25^{\circ} \mathrm{C}$. The output of the error amplifier can be lamped below 4.4 V in order to reduce the maximum 'oltage allowed across the current sensing resistor to less han 1 V . The supply current will increase by the value of he output source current when the output voltage of the rror amplifier is clamped.

;urrent Sense Comparator and PWM Latch

.T1246/LT1247 are current mode controllers. Under nornal operating conditions the output (pin 6) is turned on at he start of every oscillator cycle, coincident with the rising dge of the oscillator waveform. The output is then turned iff when the switch current reaches a threshold level roportional to the error voltage at the output of the error mplifier. Once the output is turned off it is latched off until he start of the next cycle. The peak switch current is thus roportional to the error voltage and is controlled on a ycle by cycle basis. The peak switch current is normally ensed by placing a sense resistor in the source lead of the utput MOSFET. This resistor converts the switch current ja voltage that can be fed into the current sense input. For ormal operating conditions the peak inductor current, thich is equal to the peak switch current, will be equal to:

$$
\mathrm{I}_{\mathrm{PK}}=\frac{\left(\mathrm{V}_{\mathrm{PIN1} 1}-1.4 \mathrm{~V}\right)}{\left(3 R_{\mathrm{S}}\right)}
$$

During fault conditions the maximum threshold voltage at the input of the current sense comparator is limited by the internal 1 V clamp at the inverting input. The peak switch current will be equal to:

$$
\mathrm{I}_{\mathrm{PK}(\mathrm{MAX})}=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
$$

In certain applications such as high power regulators it may be desirable to limit the maximum threshold voltage to less than 1V in order to limit the power dissipated in the sense resistor or to limit the short-circuit current of the regulator circuit. This can be accomplished by clamping the output of the error amplifier. A voltage level of approximately 1.4 V at the error amplifier output will give a threshold voltage of 0 V . A voltage level of approximately 4.4 V at the output of the error amplifier will give a threshold level of 1 V . Between 1.4 V and 4.4 V the threshold voltage will change by a factor of one third of the change in the error amplifier output voltage. The threshold voltage will be 0.333 V for an error amplifier voltage of 2.4 V . To reduce the maximum current sense threshold to less than 1V the error amplifier output should be clamped to less than 4.4V.

Blanking

A unique feature of the LT1246/LT1247 is the built-in blanking circuit at the output of the current sense comparator. A common problem with current mode PWM circuits is erratic operation due to noise at the current sense input. The primary cause of noise problems is the leading edge current spike due to transformer interwinding capacitance and diode reverse recovery time. This current spike can prematurely trip the current sense comparator causing an instability in the regulator circuit. A filter at the current sense input is normally required to eliminate this instability. This filter will in turn slow down the current sense loop. A slow current sense loop wil increase the minimum pulse width which will increase the short-circuit current in an overload condition. The LT1246/LT1247 blank (lock out) the signal at the output of the current sense comparator for a fixed amount of time after the switch is turned on. This prevents the PWM latch from tripping due to the leading edge current spike. The blanking time will be a function of the voltage at the feedback pin (pin 2). The blanking time will be 60 ns for normal operat-

APPLICATIONS INFORMATION

ing conditions $\left(\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}\right)$. The blanking time goes to zero as the feedback pin is pulled to 0 V . This means that the blanking time will be minimized during start-up and also during an output short-circuit fault. This blanking circuit eliminates the need for an input filter at the current sense input except in extreme cases. Eliminating the filter allows the current sense loop to operate with minimum delays, reducing peak currents during fault conditions.

Undervoltage Lockout

The LT1246/LT1247 incorporate an undervoltage lockout comparator which prevents the internal reference circuitry and the output from starting up until the supply voltage reaches the start-up threshold voltage. The quiescent current, below the start-up threshold, has been reduced to less than $250 \mu \mathrm{~A}(170 \mu \mathrm{~A}$ typ.). This minimizes the power loss due to the start-up resistor used in off-line converters. In undervoltage lockout both $V_{\text {REF }}$ (pin 8) and the Output (pin 6) are actively pulled low by Darlington connected PNP transistors. They are designed to sink a few milliamps of current and will pull down to about 1 V . The pull-down transistor at the reference pin can be used to reset the external soft start capacitor. The pull-down transistor at the output eliminates the external pull-down resistor required, with earlier devices, to hold the external MOSFET gate low during undervoltage lockout.

Output

The LT1246/LT1247 incorporate a single high current totem pole output stage. This output stage is capable of driving up to $\pm 1 \mathrm{~A}$ of output current. Cross-conduction current spikes in the output totem pole have been eliminated. These devices are primarily intended for driving MOSFET switches. Rise time is typically 30 ns and fall time is typically 20 ns when driving a 1.0 nF load. A clamp is built into the device to prevent the output from rising above 18 V in order to protect the gate of the MOSFET switch. The output is actively pulled low during undervoltage lockout by a Darlington PNP. This PNP is designed to sink several milliamps and will pull the output down to approximately 1V. This active pull-down eliminates the need for the external resistor which was required in older designs.
The output pin of the device connects directly to the emitter of the upper NPN drive transistor and the collector of the lower NPN drive transistor in the totem pole. The
collector of the lower transistor, which is n-type silicon, forms a p-n junction with the substrate of the device. The substate of the device is tied to ground. This junction is reverse biased during normal operation. In some applications the parasitic LC of the external MOSFET gate can ring and pull the output pin below ground. If the output pin is pulled negative by more than a diode drop, the parasitic diode formed by the collector of the output NPN and the substrate will turn on. This can cause erratic operation of the device. In these cases a Schottky clamp diode is recommended from output to ground.

Reference

The internal reference of the LT1246/LT1247 is a 5 V Bandgap reference, trimmed to within $\pm 1 \%$ initial tolerance. The reference is used to power the majority of the internal logic and the oscillator circuitry. The oscillator charging current is supplied from the reference. The feedback pin voltage and the clamp level for the current sense comparator are derived from the reference voltage. The reference can supply up to 20 mA of current to power external circuitry. Note that using the reference in this manner, as a voltage regulator, will significantly increase the power dissipation in the device, which will reduce the operating ambient temperature range.

Design/Layout Considerations

LT1246/LT1247 are high speed circuits capable of generating pulsed output drive currents of up to 1A peak. The rise and fall time for the output drive current is in the range of 10 ns to 20 ns . High Speed circuit layout techniques must be used to insure proper operation of the devices. Do not attempt to use Proto-boards or wire-wrap techniques to breadboard high speed switching regulato circuits. They will not work properly.
Printed circuit layouts should include separate ground paths for the voltage feedback network, oscillator capacitor, and switch drive current. These ground paths should be connected together directly at the ground pin (pin 5) ot the LT1246/LT1247. This will minimize noise problems due to pulsed ground pin currents. $V_{C C}$ should be bypassed, with a minimum of $0.1 \mu \mathrm{~F}$, as close to the device as possible. High current paths should be kept short and they should be separated from the feedback voltage network with shield traces if possible.

TYPICAL APPLICATIONS

External Clock Synchronization

Soft Start

Adjustable Clamp Level with Soft Start

LT1246/LT1247

TYPICAL APPLICATIONS
Slope Compensation at I ISENSE Pin

Slope Compensation at Error Amp

RELATED PARTS

PART NUMBER	DESCRIPTION
LT1105	Off-Line Switching Regulator Controller
LT1170/LT1171/LT1172	High Efficiency 100kHz Switching Regulators
LT1241-5	500 kHz Low Power Current Mode Pulse Width Modulator
LT1248/LT1249	Power Factor Controllers
LT1372	High Efficiency 500kHz Boost Switching Regulator
LT1376	1.5A, 500kHz Step-Down Switching Regulator
LT1377	1MHz High Efficiency Boost Switching Regulator
LT1431	Programmable Reference

FEATURES

- Accurate Preset 3.3V Output
- Up to 87\% Efficiency
- Optional Burst Mode ${ }^{\text {TM }}$ Operation for Light Loads
- Can Be Used with Many LTC Switching ICs
- Accurate Ultra-Low-Loss Current Limit
- Operates with Inputs from 4.5V to 30V
- Shutdown Mode Draws Only $15 \mu \mathrm{~A}$
- Uses Small 30 H H Inductor

APPLICATIONS

- Laptop and Palmtop Computers
- Portable Data-Gathering Instruments
$\overline{\mathbf{L T}}$, LTC and LT are registered trademarks of Linear Technology Corporation. 3urst Mode is a trademark of Linear Technology Corporation.

DESCRIPTIOn

The LT ${ }^{\circledR} 1432-3.3$ is a control chip designed to operate with the LT1171/LT1271 family of switching regulators to make a very high efficiency 3.3 V step-down (buck) switching regulator. A minimum of external components is needed.
Included is an accurate current limit which uses only 60 mV sense voltage and uses "free" PC board trace material for the sense resistor. Logic controlled electronic shutdown mode draws only $15 \mu \mathrm{~A}$ battery current. The switching regulator operates down to 4.5 V input.
The LT1432-3.3 has a logic controlled Burst Mode operation to achieve high efficiency at very light load currents (0 mA to 100 mA) such as memory keep-alive. In normal switching mode, the standby power loss is about 30 mW , limiting efficiency at light loads. In Burst Mode operation, standby loss is reduced to approximately 11 mW . Output current in this mode is typically in the 5 mA to 100 mA range.
The LT1432-3.3 is available in 8-pin S0 and PDIP packages. The LT1171/LT1271 is also available in surface mount DD packages.

TYPICAL APPLICATION

Figure 1. High Efficiency 5V Buck Converter

abSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\text {IN }}$ Pin ... 30V
V^{+}Pin .. 40V
V_{C} 35 V
$V_{\text {LIM }}$ and $V_{\text {Out }}$ Pins... 7 V
Diode Pin Voltage .. 30V
Mode Pin Current (Note 2) 1mA
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
	LT1432CN8-3.3 LT1432CS8-3.3
$\begin{array}{lr}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ 8 \text {-LEAD PDIP } & \text { 8-LEAD PLASTIC SO }\end{array}$	
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=150^{\circ} \mathrm{C} \mathrm{~W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=170^{\circ} \mathrm{CW}(58) \end{aligned}$	

Consult factory for Military and Industrial grade parts.

ELECTRICAL CHARACTERISTICS

$V_{C}=4 V, V_{I N}=4 V, V^{+}=8 V, V_{\text {DIODE }}=$ Open, $V_{\text {LIM }}=V_{\text {OUT }}, V_{\text {MODE }}=0 V, T_{J}=25^{\circ} \mathrm{C}$
Device is in standard test loop unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Regulated Output Voltage	$\mathrm{V}_{\text {C }}$ Current $=220 \mu \mathrm{~A}$	\bullet	3.24	3.30	3.36	V
Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to 30 V	\bullet		5	20	mV
Input Supply Current (Note 1)	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{~V}^{+}=\mathrm{V}_{\text {IN }}+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {IN }}+1 \mathrm{~V}$	\bullet		0.3	0.5	mA
Quiescent Output Load Current				0.9	1.2	mA
Mode Pin Current	$\begin{array}{\|l} \hline V_{\text {MODE }}=0 \mathrm{~V} \text { (Current Is Out of Pin) } \\ \mathrm{V}_{\text {MODE }}=3.3 \mathrm{~V} \text { (Shutdown) } \\ \hline \end{array}$	\bullet		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	${ }_{\mu}^{\mu}$
Mode Pin Threshold Voltage (Normal to Burst)	$\mathrm{I}_{\text {MODE }}=10 \mu \mathrm{~A}$ (Out of Pin)	\bullet	0.6	0.9	1.5	V
V_{C} Pin Saturation Voltage	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ (Forced)	\bullet		0.25	0.45	V
V_{C} Pin Maximum Sink Current	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ (Forced)	\bullet	0.45	0.8	1.5	mA
V_{C} Pin Source Current	$\mathrm{V}_{\text {OUT }}=3.0 \mathrm{~V}$ (Forced)	\bullet	35	60	100	$\mu \mathrm{A}$
Current Limit Sense Voltage (Note 3)	Device in Current Limit Loop		56	60	64	mV
V LIM Pin Current	Device in Current Limit Loop (Current Is Out of Pin)	\bullet	30	45	70	$\mu \mathrm{A}$
Supply Current in Shutdown	$\mathrm{V}_{\text {MODE }}>3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<30 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$ and $\mathrm{V}^{+}=0 \mathrm{~V}$			15	60	$\mu \mathrm{A}$
Burst Mode Operation Output Ripple	Device in Burst Test Circuit			100		$m V_{p-p}$
Burst Mode Operation Average Output Voltage	Device in Burst Test Circuit	\bullet	3.15	3.30	3.45	V
Clamp Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$, All Other Pins Open	\bullet		0.5	0.65	V
Start-up Drive Current	$\begin{aligned} & V_{\text {OUT }}=1.5 \mathrm{~V} \text { (Forced), } \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { to } 26 \mathrm{~V}, \\ & \mathrm{~V}^{+}=\mathrm{V}_{\text {IN }}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {IN }}-1.5 \mathrm{~V} \end{aligned}$	\bullet	30	45		mA
Restart Time Delay	(Note 4)		0.7	1.2	10	ms
Transconductance, Output to V_{C} Pin	$\mathrm{I}_{\mathrm{C}}=150 \mu \mathrm{~A}$ to $250 \mu \mathrm{~A}$	\bullet	2700	3600	5000	$\mu \mathrm{mho}$

ELECTRICAL CHARACTERISTICS

Operating parameters in standard circuit configuration.
$V_{I N}=7 V$, $I_{O U T}=0$, unless otherwise noted. These parameters guaranteed where indicated, but not tested.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Burst Mode Operation Quiescent Input Supply Current			1.6	2.2	mA
Burst Mode Operation Output Ripple Voltage	$\begin{aligned} & \text { IOUT }=0 \\ & \text { IOUT }=50 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 80 \\ 120 \\ \hline \end{gathered}$		$\begin{aligned} & m V_{p-p} \\ & m V_{p-p} \end{aligned}$
Normal Mode Equivalent Input Supply Current	Extrapolated from $\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}$		3.0		mA
Normal Mode Minimum Operating Input Voltage	100 mA < $\mathrm{I}_{\text {OUT }}<1.5 \mathrm{~A}$		4.5		V
Burst Mode Operation Minimum Operating Input Voltage	$5 \mathrm{~mA}<$ IOUT $^{\text {< }} 50 \mathrm{~mA}$	4.1		V	
Efficiency	Normal Mode $\quad I_{\text {OUT }}=0.5 \mathrm{~A}$ Burst Mode Operation $I_{\text {OUT }}=25 \mathrm{~mA}$		$\begin{aligned} & 86 \\ & 70 \end{aligned}$		\%
Load Regulation	$\begin{array}{ll}\text { Normal Mode } & 50 \mathrm{~mA}<\text { l }_{0 \text { UT }}<2 \mathrm{~A} \\ \text { Burst Mode Operation } & 0<I_{\text {OUT }}<50 \mathrm{~mA}\end{array}$		$\begin{gathered} 5 \\ 30 \\ \hline \end{gathered}$	15	mV

The denotes specifications which apply over the full operating temperature range.
Note 1: Does not include current drawn by the power IC. See operating parameters in standard circuit.
Note 2: Breakdown voltage on the Mode pin is 7V. External current must be limited to value shown.

Note 3: Current limit sense voltage temperature coefficient is $+0.33 \% /{ }^{\circ} \mathrm{C}$ to match TC of copper trace material.
Note 4: $V_{\text {OUT }}$ pin switched from 3.6 V to 3.0 V .

EQUIVALENT SCHEmATIC

Figure 2

TYPICAL PERFORmANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

More applications information on the LT1432-3.3 is available in the LT1432 data sheet.

Basic Circuit Description

The LT1432-3.3 is a dedicated 3.3V buck converter driver chip intended to be used with an IC switcher from the LT1171/ LT1271 family. This family of current mode switchers includes current ratings from 1.25A to 10A, and switching frequencies from 40 kHz to 100 kHz as shown in the table below.

DEVICE	SWITCH CURRENT	FREQUENCY	OUTPUT CURRENT IN BUCK CONVERTER
LT1270A	10 A	60 kHz	7.5 A
LT1270	8 A	60 kHz	6 A
LT1170	5 A	100 kHz	3.75 A
LT1070	5 A	40 kHz	3.75 A
LT1269	4 A	100 kHz	3 A
LT1271	4 A	60 kHz	3 A
LT1171	2.5 A	100 kHz	1.8 A
LT1071	2.5 A	40 kHz	1.8 A
LT1172	1.25 A	100 kHz	0.9 A
LT1072	1.25 A	40 kHz	0.9 A

The maximum load current which can be delivered by these chips in a buck converter is approximately 75% of their switch current rating. This is partly due to the fact that buck converters must operate at very high duty cycles when input voltage is low. The current mode nature of the LT1271 family requires an internal reduction of peak current limit at high duty cycles, so these devices are rated at only 80% of theirfull current rating when duty cycle is 80%. A second factor is inductor ripple current, half of which subtracts from maximum available load current. The LT1271 family was originally intended for topologies which have the negative side of the switch grounded, such as boost converters. It has an extremely efficient quasi-saturating NPN switch which mimics the linear resistive nature of a MOSFET but consumes much less die area. Driver losses are kept to a minimum with a patented adaptive antisat drive that maintains a forced beta of 40 over a wide range of switch currents. This family is attractive for high efficiency buck converters because of the low switch loss, but to operate as a positive buck converter, the GND pin of the IC must be floated to act as the switch output node. This requires a floating power supply for the chip and some means for level shifting the feedback signal. The LT1432-3.3 performs these functions as well as adding
current limiting, micropower shutdown, and dual mode operation for high conversion efficiency with both heavy and very light loads.
The circuit in Figure 1 is a basic 3.3 V positive buck converter which can operate with input voltage from 4.5 V to 30 V . The power switch is located between the $\mathrm{V}_{\text {SW }}$ pin and GND pin on the LT1271. Its current and duty cycle are controlled by the voltage on the V_{C} pin with respect to the GND pin. This voltage ranges from 1 V to 2 V as switch current increases from zero to full-scale. Correct output voltage is maintained by the LT1432-3.3 which has an internal reference and error amplifier (see Equivalent Schematic in Figure 2). The amplifier output is level shifted with an internal open collector NPN to drive the V_{C} pin of the switcher. The normal resistor divider feedback to the switcher feedback pin cannot be used because the feedback pin is referenced to the GND pin, which is switching up and down. The Feedback pin (FB) is simply bypassed with a capacitor. This forces the switcher V_{C} pin to swing high with about $200 \mu \mathrm{~A}$ sourcing capability. The LT1432-3.3 V_{C} pin then sinks this current to control the loop. Transconductance from the regulator output to the V_{C} pin current is controlled to approximately $3600 \mu \mathrm{mhos}$ by local feedback around the LT1432-3.3 error amplifier (S2 closed in Figure 2). This is done to simplify frequency compensation of the overall loop. A word of caution about the FB pin bypass capacitor (C6): this capacitor value is very non-critical, but the capacitor must be connected directly to the GND pin or tab of the switcher to avoid differential spikes created by fast switch currents flowing in the external PCB traces. This is also true for the frequency compensation capacitor C5. C5 forms the dominant loop pole.

A floating power supply for the switcher is generated by D2 and C 3 which peak detect the input voltage during switch off time. This is different than the 5 V version of the LT1432 which connects the anode of the diode to the output rather than the input. The output connection is more efficient because the floating voltage is a constant 5 V (or 3.3 V), independent of input voltage, but in the case of the 3.3 V circuit, minimum required input voltage for starting is several volts higher (see the Typical Performance Characteristics curves). When the diode is connected to the input, the suggested type is a

APPLICATIONS INFORMATION

Schottky 1 N5818. Diode type is more critical for the output connection because the high capacitance of Schottky diodes creates narrow output spikes. These spikes will be eliminated if a secondary output filter is used or if there is sufficient lead length between the regulator output and the load bypass capacitors. Low capacitance diodes like the 1N4148 do not create large spikes, but their high forward resistance requires even higher input voltage to start.

D1, L1 and C2 act as the conventional catch diode and output filter of the buck converter. These components should be selected carefully to maintain high efficiency and acceptable output ripple. See the original LT1432 (5V) data sheet for detailed discussions of these parts.

Current limiting is performed by R2. Sense voltage is only 60 mV to maintain high efficiency. This also reduces the value of the sense resistor enough to utilize a printed circuit board trace as the sense resistor. The sense voltage has a positive temperature coefficient of $0.33 \% /{ }^{\circ} \mathrm{C}$ to match the temperature coefficient of copper.
The basic regulator has three different operating modes, defined by the Mode pin drive. Normal operation occurs when the Mode pin is grounded. A low quiescent current Burst Mode operation can be initiated by floating the Mode pin. Input supply current is typically 1.3 mA in this mode, and output ripple voltage is $100 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$. Pulling the Mode pin above 2.5 V forces the entire regulator into micropower shutdown where it typically draws less than $20 \mu \mathrm{~A}$.

Burst Mode Operation

Burst Mode operation is initiated by allowing the Mode pin to float, where it will assume a DC voltage of approximately 1 V . If AC pickup from surrounding logic lines is likely, the Mode pin should be bypassed with a 200pF capacitor. Burst Mode operation is used to reduce quiescent operating current when the regulator output current is very low, as in sleep mode in a lap-top computer. In this mode, hysteresis is added to the error amplifier to make it switch on and off, rather than maintain a constant amplifier output. This forces the switching IC to either provide a rapidly increasing current or to go into full micropower shutdown. Current is delivered to the output capacitor in pulses of higher amplitude and low duty cycle rather than a continuous stream of low amplitude
pulses. This maximizes efficiency at light load by eliminating quiescent current in the switching IC during the period between bursts.

The result of pulsating currents into the output capacitor is that output ripple amplitude increases and ripple frequency becomes a function of load current. The typical output ripple in Burst Mode operation is $100 \mathrm{mVp}-\mathrm{p}$, and ripple frequency can vary from 50 Hz to 2 kHz . This is not normally a problem for the logic circuits which are kept alive during sleep mode.
Some thought must be given to proper sequencing between normal mode and Burst Mode operation. A heavy ($>100 \mathrm{~mA}$) load in Burst Mode operation can cause excessive output ripple, and an abnormally light load (10 mA to 30 mA , see Figure 3) in normal mode can cause the regulator to revert to a quasi-Burst Mode operation that also has higher output ripple. The worst condition is a sudden, large increase in load current ($>100 \mathrm{~mA}$) during this quasi-Burst Mode operation or just after a switch from Burst Mode operation to normal mode. This can cause the output to sag badly while the regulator is establishing normal mode operation ($\approx 100 \mu \mathrm{~s}$). To avoid problems, it is suggested that the power-down sequence consist of reducing load current to below 100 mA , but greater than the minimum for normal mode, then switching to Burst Mode operation, followed by a reduction of load current to the final sleep value. Power-up would consist of increasing the load current to the minimum for

Figure 3. Minimum Normal Mode Load Current

APPLICATIONS IMFORMATION

normal mode, then switching to normal mode, pausing for 1 ms , followed by return to full load.

If this sequence is not possible, an alternative is to increase the output capacitor to $>680 \mu \mathrm{~F}$. This modification will often allow the power-down sequence to consist of simultaneous turn-off of load current and switch to Burst Mode operation. Power-up is accomplished by switching to normal mode and simultaneously increasing load currentto the lowest possible value (30 mA to 500 mA), followed by a short pause and return to full load current.

Full Shutdown

When the Mode pin is driven high, full shutdown of the regulator occurs. Regulator input current will then consist of the LT1432 shutdown current $(\approx 15 \mu \mathrm{~A})$ plus the switch leakage of the switching IC ($\approx 1 \mu \mathrm{~A}$ to $25 \mu \mathrm{~A}$). Mode input current ($\approx 15 \mu \mathrm{~A}$ at 5 V) must also be considered. Start-up from shutdown can be in either normal or Burst Mode operation, but one should always check start-up overshoot, especially if the output capacitor or frequency compensation components have been changed.

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1148	High Efficiency Step-Down Switching Regulator Controller	5V Regulated Output Voltage
LT1432	High Efficiency Synchronous Step-Down Switching Regulator	Adjustable and Fixed 5V or 3.3V Outputs
LT1507	$1.5 A, 500 \mathrm{kHz}$ Step-Down Switching Regulator	Fixed Frequency PWM for Low Input Voltages from 4.5V to 12V

SECTION 4—POWER PRODUCTS
SWITCHING REGULATORS 4-145
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LTC1159/LTC1159-3.3/LTC1159-5, High Efficiency Synchronous Step-Down Switching Regulators 4-154
LT1182/LT1183/LT1184/LT1184F, CCFL/LCD Contrast Switching Regulators 4-172
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-Nits ${ }^{\text {TM }}$) 4-196
LTC1265/LTC1265-3.3/LTC1265-5, 1.2A, High Efficiency Step-Down DC/DC Converters 4-212
LTC1266/LTC1266-3.3/LTC1266-5, Synchronous Regulator Controllers for N- or P-Channel MOSFETs 4-228
LTC1267/LTC1267-ADJ/LTC1267-ADJ5, Dual High Efficiency Synchronous Step-Down Switching Regulators 4-248
LT1302/LT1302-5, Micropower High Output Current Step-Up Adjustable and Fixed 5V DC/DC Converters 4-264
LT1303/LT1303-5, Micropower High Efficiency DC/DC Converters with Low-Battery Detector Adjustable and Fixed 5V 4-279
LT1304/LT1304-3.3/LT1304-5, Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown 13-37
LT1305, Micropower High Power DC/DC Converter with Low-Battery Detector 4-290
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1371, 500kHz High Efficiency 3A Switching Regulator 4-298
LT1372/LT1377, 500kHz and 1MHz High Efficiency 1.5A Switching Regulators 4-310
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator. 4-322
LT1375/LT1376, 1.5A, 500kHz Step-Down Switching Regulators 4-334
LTC1430, High Power Step-Down Switching Regulator Controller 4-360
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LTC1574/LTC1574-3.3/LTC1574-5, High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode 4-385

DC/DC Converter for PCMCIA Card Flash Memory

Micropower Step-Up

feATURES

- 60mA Output Current at 12V from 3V Supply
- Shutdown to $10 \mu \mathrm{~A}$
- Programmable 12 V or 5 V Output
- Up to 85\% Efficiency
- Quiescent Current: 750 A A
- Low $V_{\text {CESAT }}$ Switch: 300 mV at 0.5 A Typical
- Uses Low Value, Thin, Surface Mount Inductors
- Ultra-Thin 20-Lead TSSOP Package

APPLICATIONS

- PCMCIA Card Flash Memory VPP Generator
- Portable Computers
- Portable Instruments
- DC/DC Converter Module Replacements

DESCRIPTION

The $L T^{\circledR} 1106$ is the industry's first DC/DC converter designed for use on Type I and Type II PCMCIA cards. The device senses the VPP1 and VPP2 lines at the PCMCIA socket and generates a regulated $12 \mathrm{~V}, 60 \mathrm{~mA}$ programming supply if the socket does not provide it. Internal logic simplifies the interface to PCMCIA card microcontrollers. One input selects a 12 V or 5 V regulated output, while another input controls micropower shutdown. Two logic outputs indicate when the selected programming voltage is valid and whether the input supply is 3.3 V or 5 V .
The regulator features Burst Mode ${ }^{\mathrm{TM}}$ operation with a 0.5 A , 300 mV switch for efficiency up to 85%. High frequency 500 kHz switching permits the use of small value, flat inductors that fit neatly on PCMCIA cards. The device requires just $1 \mu \mathrm{~F}$ of output capacitance.
Quiescent current is $750 \mu \mathrm{~A}$ which drops to $350 \mu \mathrm{~A}$ when the card runs off the socket supply. The shutdown pin reduces supply current to only $10 \mu \mathrm{~A}$. The device includes a soft start feature which limits supply current transients when the card is inserted into a hot socket.
$\boldsymbol{\triangle}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

12V, 60 mA Flash Memory Programming Supply

12V Output Efficiency

absolute maximum ratings

$V_{\text {CC }}$ Voltage 7V
$V_{\text {SW }}$ Voltage 20V
AVPP Voltage 20 V
VPP1, VPP2 Voltage 20V
G1, G2 Voltage 20V
$V_{\text {ON/OFF }}$ Voltage 7 V
$V_{\text {SEL }}$ Voltage 7V
LIM Voltage 7 V
Maximum Power Dissipation 500 mW
Operating Temperature Range ge
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
..

\qquad
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

Consult factory for Industrial and Military grade parts

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} C, V_{C C}=5 V, v_{O N / \overline{O F F}}=3 V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Quiescent Current	$\mathrm{V}_{\text {SEL }}=0.2 \mathrm{~V}, \mathrm{AVPP}=12 \mathrm{~V}$			750	900	$\mu \mathrm{A}$
	Quiescent Current, Shutdown	$V_{\text {ON/ } / \text { OFF }}=0.2 \mathrm{~V}$			9	15	$\mu \mathrm{A}$
	"Doze" Mode Current	$\mathrm{V}_{\text {SEL }}=0.2 \mathrm{~V}$, VPP1 or VPP2 $=12 \mathrm{~V}$			320		$\mu \mathrm{A}$
	Input Voltage Range			2		6	V
	Output Sense Voltage	$V_{\text {SEL }}=3 \mathrm{~V}, \mathrm{VPP} 1$ and VPP2 Floating $V_{\text {SEL }}=0.2 \mathrm{~V}, \mathrm{VPP1}$ and VPP2 Floating	\bullet	$\begin{array}{r} 4.75 \\ 11.50 \end{array}$	$\begin{gathered} 5 \\ 12 \end{gathered}$	$\begin{array}{r} 5.25 \\ 12.60 \end{array}$	V
	Output Referred Comparator Hysteresis	$\begin{aligned} & V_{\text {SEL }}=3 \mathrm{~V} \\ & V_{\text {SEL }}=0.2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 15 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
fosc	Oscillator Frequency	Current Limit Not Asserted		400	500	700	kHz
DC	Maximum Duty Cycle		\bullet	80	85	92	\%
ton	Switch On-Time				1.7		$\mu \mathrm{S}$
	Reference Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$			0.06	0.15	\% N
$\underline{V}_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$			230	350	mV
	Switch Leakage Current	$V_{\text {SW }}=12 \mathrm{~V}$, Switch Off			0.1	10	$\mu \mathrm{A}$
	Switch Current Limit	$V_{I N}=5 \mathrm{~V}$, Soft Start Floating $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$, Soft Start Floating		$\begin{aligned} & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\begin{aligned} & 900 \\ & 950 \end{aligned}$	mA mA
	Soft Start Pin Current	Soft Start Grounded			80	120	$\mu \mathrm{A}$
	Select Input Voltage Low					0.8	V
	Select Input Voltage High			1.6			V
	ON/ $\overline{\text { FFF }}$ Input Voltage Low					0.8	V
	ON/ $\overline{\text { FFF }}$ Input Voltage High			1.6			V
	ON/ $\overline{\text { OFF }}$ Bias Current	$V_{\text {ON/ } / \overline{F F}}=5 \mathrm{~V}$ $V_{0 N / \overline{\text { FF }}}=3 \mathrm{~V}$ $V_{O N / \overline{\text { FF }}}=0 \mathrm{~V}$			16.0 8.0 0.1	$\begin{array}{r} 24.0 \\ 14.0 \\ 1.1 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON/ } / \overline{\mathrm{FF}}}=3 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Select Pin Bias Current	$0 \mathrm{~V}<\mathrm{V}_{\text {SEL }}<5 \mathrm{~V}$			0.1	1	$\mu \mathrm{A}$
	VPP1/VPP2 Input Sense Threshold			11.0	11.5	11.9	V
	AVPP Pin Input Current	$V_{\text {ON/ } / \overline{\text { FF }}}=0.2 \mathrm{~V}$			$\begin{aligned} & 50 \\ & 0.1 \end{aligned}$	$\begin{gathered} 90 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	VPP1/VPP2 Pin Input Current	$V_{\text {ON/ } / \text { FFF }}=0.2 \mathrm{~V}$			$\begin{aligned} & 50 \\ & 0.1 \end{aligned}$	$\begin{gathered} 90 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	$\overline{\text { VPP VALID Threshold }}$	AVPP Rising (High to Low Transition)	\bullet	11.4		12	V
	VPP VALID Output Voltage Low	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.13	0.3	V
	VPP VALID Output Voltage High	$\mathrm{I}_{\text {SOURCE }}=2.5 \mu \mathrm{~A}$		4	4.5		V
	$\overline{3} / 5$ Comparator Threshold		\bullet	3.6	3.75	4.2	V
	$\overline{3} / 5$ Comparator Output High	$\mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}$		3.65	3.8		V
	$\overline{3} / 5$ Comparator Output Low	$\mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}$			0.75	0.9	V
	Off State Current at G1/G2	$\begin{aligned} & V P P 1=10 \mathrm{~V}, V G 1=12 \mathrm{~V} \text { or } V P P 2=10 \mathrm{~V}, \\ & V G 2=12 \mathrm{~V} \text { or } V_{0 N / O F F}=0 \mathrm{~V} \end{aligned}$			0.1	1	$\mu \mathrm{A}$

The denotes specifications which apply over the full operating temperature range.

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1106.TPC01

Switch Current Limit

LT1106•TPC02

Switch Saturation Voltage

LT1106•TPC03

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1106• TPC04
Supply Current in Shutdown

LT1106•TPC07

AVPP Sense Voltage

${ }^{\text {LT1106 - TPCO5 }}$
Supply Current

LT1106•TPC08
Start-Up Waveforms with Soft
Start, L LOAD $=10 \mathrm{~mA}$

AVPP Sense Voltage

LT1106•TPC06
Maximum Duty Cycle

LT1106•TPC09
Load Transient Response,
$C_{\text {OUT }}=1 \mu \mathrm{~F}$

PIn functions

SELECT $\overline{12} / 5$ (Pin 1): Tie to $\mathrm{V}_{\text {IN }}$ or logic 1 for 5 V output; tie to GND or logic 0 for 12V output.

SOFT START (Pin 2): A $0.1 \mu \mathrm{~F} / 1 \mathrm{M} \Omega$ parallel RC from this pin to GND provides a Soft Start function upon device turn-on. Initially about $80 \mu \mathrm{~A}$ will flow from the pin into the capacitor. When the voltage at the pin reaches approximately 0.4 V , current ceases flowing out of the pin. See Applications Information section.
$\mathbf{V}_{\text {CC }}$ (Pins 3, 4): Input Supply. Both pins should be tied together. At least $1 \mu \mathrm{~F}$ input bypass capacitance is required. More capacitance reduces ringing on the supply line.
$\overline{3} / \mathbf{5}$ (Pin 5): Supply Comparator Output. This pin provides logic output indicating the value of the input supply. High when $V_{C C}=5 \mathrm{~V}$; low when $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
PGND (Pins 6, 7): Power Ground. Connect to ground plane.
$\mathbf{V}_{\text {Sw }}$ (Pins 9, 10, 11): Collector of Power Switch. High dV/ dt present on this pin. To minimize radiated noise keep layout short and direct.
GND (Pin 13): Signal Ground. Connect of ground plane.
$\overline{\text { VPP VALID (Pin 14): This pin provides a logic signal }}$ indicating that ouput voltage is greater than 11.4 V . Active low with internal 200k pull-up resistor.

G1, G2 (Pins 16, 15): External MOSFET Gate Drives. When VPP1 or VPP2 is greater than 11.7V, G1 or G2 is driven to about 0.8 V . When VPP1 or VPP2 is less than 11.7 V , the drives assume a high impedance state pulled up to the AVPP pin through an internal 100k resistor.
VPP1, VPP2 (Pins 18, 17): Programming Power Inputs. The LT1106 senses both VPP1 and VPP2 supplies at the PCMCIA card socket. If VPP1 or VPP2 is greater than 11V, the LT1106 operates in "Doze" Mode-the switching regulator turns off and the drive to external P-channel MOSFETs turns on. Supply current in Doze Mode is about $350 \mu \mathrm{~A}$. Input current into VPP1 and VPP2 is about $1 \mu \mathrm{~A}$ when the device is shut down.

AVPP (Pin 19): Output Sense Pin. This pin connects to a $1 \mathrm{M} \Omega$ resistive divider that sets the output voltage. In shutdown, the resistor string is disconnected and current into this pin is reduced to $<1 \mu \mathrm{~A}$.
ON/DFF (Pin 20): Shutdown Control. When pulled below 1.5 V , this pin disables the LT1106 and reduces supply current to $10 \mu \mathrm{~A}$. All circuitry except the $\overline{3} / 5$ comparator is disabled in shutdown. The part is enabled when $0 \mathrm{~N} / \overline{\mathrm{OFF}}$ is greater than 1.5 V .

BLOCK DIAGRAM

APPLICATIONS INFORMATION

"unctional Description

The LT1106 is a micropower, step-up DC/DC converter ;pecifically configured for PCMCIA flash memory card /PP generation. The device generates a 5 V or 12 V output ;electable via the $\overline{12} / 5$ Select pin. If 12 V is present on ;ither the VPP1 or VPP2 pins, gate drive outputs G1 and之2 are driven low, turning on external PMOS devices. The ;witching regulator inside the LT1106 is idled when 12 V s present on VPP1 or VPP2.
-he VPP VALID output goes low when the voltage at AVPP :xceeds 11.4 V This signal can be used to indicate presnce of a valid programming voltage. The $\overline{3} / 5$ comparator ndicates whether the input voltage is 3.3 V or 5 V .

The Soft Start pin can be used to limit inrush current upon start-up. A $0.1 \mu \mathrm{~F}$ capacitor in parallel with a 1 M resistor is connected between this pin and ground to limit peak inductor current at start-up.

Switching Regulator Operation

When 12 V is not present on the VPP1 or VPP2 pins and the device is enabled ($O N / \overline{\mathrm{OFF}}=1$), the LT1106 generates a regulated voltage at the AVPP pin. This voltage is programmable between 5 V or 12 V depending on the state of the $\overline{12} / 5$ Select pin. Referring to the block diagram, hysteretic comparatorC1 monitors AVPP via the resistor divider. When the negative input of C 2 falls below $1.24 \mathrm{~V}, \mathrm{C} 1$'s

APPLICATIONS INFORMATION

output goes high, enabling the oscillator. Switch Q1 alternately turns on causing current build-up in the inductor; then turns off allowing the built-up current to flow into the output capacitor via the catch diode. As the output voltage increases, so does the voltage at C1's negative input. When it exceeds the reference voltage plus C1's hysteresis, C1 turns the oscillator off.

Switch current is limited to approximately 600 mA by Q2, R1 and C3. Two percent of Q1's collector current flows in Q2; this current flows through R1 causing a voltage drop in R1 proportional to Q1's collector current. When R1's drop equals 36 mV , comparator C3 forces the oscillator off. This action results in varying on-time, fixed off-time operation that keeps peak switch current controlled. By connecting a $0.1 \mu \mathrm{~F}$ capacitor from the Soft Start pin to ground, a current will flow in Q3 upon start-up. The current flows through 700Ω resistor R2, reducing the amount of current needed from Q2 to force the oscillator off. As current flows into the $0.1 \mu \mathrm{~F}$ capacitor, the voltage at pin 2 increases and eventually current ceases to flow in Q3.

Inductor Selection

All components for use in PCMCIA Type I cards must be less than 1.1 mm high. This somewhat limits the selection of appropriate inductors. Dale Electronics (605-665-9301) manufactures the ILS-3825-01, a monolithic ferrite inductor that meets Type I height requirements. Generally, inductors used with the LT1106 must fulfill several requirements. It must be able to carry 0.95 A (the maximum switch current) without saturation. DCR should be kept low to maintain efficiency. The switching frequency of the LT1106 is quite high, over 500 kHz so magnetic material is important. Ferrite core material works well in this frequency range. Avoid low cost iron powder cores which
have substantial AC loss at the LT1106's switching frequency. Inductance value need not be over $10 \mu \mathrm{H}$.

Capacitor Selection

The LT1106 will operate with $1 \mu \mathrm{~F}$ of output capacitance. Output ripple voltage is approximately 400 mV with this value and can be reduced significantly by increasing output capacitance. The ripple voltage, although on the high side, poses no problems for programming flash memory. If operating the device in 5 V ouput mode the capacitance should be increased. Ceramic capacitors are suitable for the output. Distributed capacitance, i.e., $0.1 \mu \mathrm{~F}$ or $0.2 \mu \mathrm{~F}$ units next to individual flash memory chips, is acceptable. The input capacitor should have at least some tantalum capacitance (low Q) to minimize resonance on the input. Flash memory cards are typically several inches away from a solid low impedance supply due to sockets, connectors, etc. If just ceramic capacitors are used at the supply pin of the LT1106, switching currents will resonate the supply line causing ringing that can exceed $500 \mathrm{mV} V_{\text {p.p. The }}$ high Q, low ESR nature of ceramic capacitors causes this. A few microfarad's worth of tantalum capacitors with moderate ESR and low Q characteristics will reduce or eliminate the problem.

Diode Selection

As with inductors, most good power Schottky diodes are in packages that exceed the 1.1 mm height limit of the Type IPCMCIA card. Motorola manufactures the MBRO530 Schottky diode, ideal for use with the LT1106. This diode's maximum height however, is 1.35 mm , making it difficult to use in Type 1 cards. Philips Components manufactures the BAT54C. Four units in parallel make an adequate diode.

TYPICAL APPLICATION

Alternative Scheme Allows 12V from VPP1/VPP2 to Provide Power When LT1106 is in Shutdown

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1109	5 V to $12 \mathrm{~V} / 60 \mathrm{~mA}$ VPP Generator	$300 \mu \mathrm{I} \mathrm{I}_{Q}, 120 \mathrm{kHz}$ Oscillator
LT1109A	5 V to $12 \mathrm{~V} / 120 \mathrm{~mA}$ VPP Generator	$300 \mu \mathrm{I} \mathrm{I}_{Q}, 120 \mathrm{kHz}$ Oscillator
LT1301	5 V to $12 \mathrm{~V} / 200 \mathrm{~mA}$ VPP Generator	$120 \mu \mathrm{~A} \mathrm{I}_{Q}, 155 \mathrm{kHz}$ Oscillator
LT1309	5 V to $12 \mathrm{~V} / 60 \mathrm{~mA}$ VPP Generator	$650 \mu \mathrm{I} \mathrm{I}_{Q}, 650 \mathrm{kHz}$ Oscillator

feATURES

- Operation from 4V to 40V Input Voltage
- Ulitra-High Efficiency: Up to 95\%
- 20μ A Supply Current in Shutdown
- High Efficiency Maintained Over Wide Current Range
- Current Mode Operation for Excellent Line and Load Transient Response
- Very Low Dropout Operation: 100\% Duty Cycle
- Short-Circuit Protection
- Synchronous FET Switching for High Efficiency
- Adaptive Non-Overlap Gate Drives
- Available in SSOP and SO Packages

APPLICATIONS

- Step-Down and Inverting Regulators
- Notebook and Palmtop Computers
- Portable Instruments
- Battery-Operated Digital Devices
- Industrial Power Distribution
- Avionics Systems
- Telecom Power Supplies

DESCRIPTION

The LTC ${ }^{\circledR} 1159$ series is a family of synchronous step-down switching regulator controllers featuring automatic Burst Mode ${ }^{T M}$ operation to maintain high efficiencies at low output currents. These devices drive external complementary powerMOSFETs at switching frequencies up to 250 kHz using a constant off-time current-mode architecture.
A separate pin and on-board switch allow the MOSFET driver power to be derived from the regulated output voltage providing significant efficiency improvement when operating at high input voltages. The constant off-time current-mode architecture maintains constant ripple current in the inductor and provides excellent line and load transient response. The output current level is user programmable via an external current sense resistor.
The LTC1159 automatically switches to power saving Burst Mode operation when load current drops below approximately 15% of maximum current. Standby current is only $300 \mu \mathrm{~A}$ while still regulating the output and shutdown current is a low $20 \mu \mathrm{~A}$.
$\overline{\boldsymbol{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$ Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. High Efficiency Step-Down Regulator

LTC1159/LTC1159-3.3/LTC1159-5

IBSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=135^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Extended Commercial Temperature Range \qquad Junction Temperature (Note 1) $125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

;onsult factory for Industrial and Military grade parts.

ELECTRICAL CHPRACTERIST|CS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SHDN } 1}=0 \mathrm{~V}$ (Note 2), unless otherwise noted.

;YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
'FB	Feedback Voltage (LTC1159 Only)		\bullet	1.21	1.25	1.29	V
-B	Feedback Current (LTC1159 Only)		\bullet		0.2		$\mu \mathrm{A}$
OUT	Regulated Output Voltage LTC1159-3.3 LTC1159-5	$\begin{aligned} & V_{I N}=9 \mathrm{~V} \\ & I_{\text {LOAD }}=700 \mathrm{~mA} \\ & I_{\text {LOAD }}=700 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.23 \\ & 4.90 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.33 \\ 5.05 \\ \hline \end{array}$	$\begin{array}{r} 3.43 \\ 5.20 \\ \hline \end{array}$	V
, $\mathrm{V}_{\text {OUT }}$	Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$ to 40 V		-40	0	40	mV
	Output Voltage Load Regulation LTC1159-3.3 LTC1159-5	$\begin{aligned} & 5 \mathrm{~mA}<l_{\text {LOAD }}<2 \mathrm{~A} \\ & 5 \mathrm{~mA}<l_{\text {LOAD }}<2 \mathrm{~A} \\ & \hline \end{aligned}$	\bullet		$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$	$\begin{gathered} 65 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Burst Mode Output Ripple	$\mathrm{I}_{\text {LOAD }}=0 \mathrm{~A}$			50		$\mathrm{mV} \mathrm{P}-\mathrm{p}$
N	$V_{\text {IN }}$ Pin Current (Note 3) Normal Mode Shutdown	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, \text { EXTV }_{\text {CC }}=5 \mathrm{~V} \\ & V_{\text {IN }}=40 \mathrm{~V}, \text { EXTV }_{\text {CC }}=5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 200 \\ & 300 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {SHDN2 } 2}=2 \mathrm{~V} \\ & V_{\text {IN }}=40 \mathrm{~V}, V_{\text {SHDN2 }}=2 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 25 \end{aligned}$		μA μA
EXTVCC	EXTV ${ }_{\text {CC }}$ Pin Current (Note 3)	EXTV $_{\text {CC }}=5 \mathrm{~V}$, Sleep Mode			250		$\mu \mathrm{A}$
CC	Internal Regulator Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{EXTV}_{\text {CC }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}$	\bullet	4.25	4.5	4.75	V
$\underline{I_{\text {IN }}-V_{C C}}$	$V_{\text {CC }}$ Dropout Voltage	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$, EXTV $_{\text {CC }}=0$ pen, $\mathrm{I}_{\text {CC }}=10 \mathrm{~mA}$			300	400	mV

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {EXT }}-\mathrm{V}_{\text {CC }}$	EXTV ${ }_{\text {CC }}$ Switch Drop	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, EXTV $_{\text {CC }}=5 \mathrm{~V}, \mathrm{I}_{\text {SWITCH }}=10 \mathrm{~mA}$			250	350	mV
$V_{\text {P-GATE }}-V_{\text {IN }}$	P-Gate to Source Voltage (Off)	$\begin{aligned} & V_{I N}=12 \mathrm{~V} \\ & V_{I N}=40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -0.2 \\ & -0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		V
$\begin{aligned} & \hline \mathrm{V}_{\text {SENSE }^{+-}} \\ & \mathrm{V}_{\text {SENSE }^{-}} \end{aligned}$	Current Sense Threshold Voltage LTC1159 LTC1159-3.3	$\begin{aligned} & V_{\text {SENSE }^{-}}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=1.32 \mathrm{~V} \text { (Forced) } \\ & \mathrm{V}_{\text {SENSE }^{-}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.15 \mathrm{~V} \text { (Forced) } \end{aligned}$	\bullet	130	$\begin{gathered} 25 \\ 150 \\ \hline \end{gathered}$	170	mV mV
		$\begin{aligned} & V_{\text {SENSE }^{-}}=3.4 \mathrm{~V} \text { (Forced) } \\ & \mathrm{VSENSE}^{-}=3.1 \mathrm{~V} \text { (Forced) } \end{aligned}$	\bullet	130	$\begin{gathered} 25 \\ 150 \end{gathered}$	170	mV mV
	LTC1159-5	$\begin{aligned} & \mathrm{V}_{\text {SENSE }^{-}=5.2 \mathrm{~V}(\text { Forced })} \\ & \mathrm{SSNSSE}^{-}=4.7 \mathrm{~V} \text { (Forced) } \end{aligned}$	\bullet	130	$\begin{gathered} 25 \\ 150 \\ \hline \end{gathered}$	170	mV mV
$\mathrm{V}_{\text {SNDN1 }}$	SHDN1 Threshold LTC1159CG, LTC1159-3.3, LTC1159-5			0.6	0.8	2	V
$\mathrm{V}_{\text {SHDN2 }}$	SHDN2 Threshold			0.8	1.4	2	V
$\underline{I S H D N 2}$	Shutdown 2 Input Current	$\mathrm{V}_{\text {SHDN2 }}=5 \mathrm{~V}$			12	20	$\mu \mathrm{A}$
$I_{C T}$	C_{T} Pin Discharge Current	$V_{\text {OUT }}$ in Regulation $V_{\text {OUT }}=0 \mathrm{~V}$		50	$\begin{gathered} 70 \\ 2 \end{gathered}$	$\begin{aligned} & 90 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\underline{t}_{\text {OFF }}$	Off-Time (Note 4)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}$		4	5	6	$\mu \mathrm{S}$
$\mathrm{tr}_{\text {r }}, \mathrm{t}_{\text {f }}$	Driver Output Transition Times	$\mathrm{C}_{\mathrm{L}}=3000 \mathrm{pF}$ (Pins P-Drive and N-Gate), $\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$			100	200	ns

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {FB }}$	Feedback Voltage (LTC1159 Only)		1.2	1.25	1.3	V
$V_{\text {OUT }}$	Regulated Output Voltage LTC1159-3.3 LTC1159-5	$\begin{aligned} & V_{I N}=9 \mathrm{~V} \\ & I_{\text {LOAD }}=700 \mathrm{~mA} \\ & I_{\text {LOAD }}=700 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 3.17 \\ 4.85 \\ \hline \end{array}$	$\begin{array}{r} 3.30 \\ 5.05 \\ \hline \end{array}$	$\begin{array}{r} 3.43 \\ 5.25 \\ \hline \end{array}$	V
1 IN	$V_{\text {IN }}$ Pin Current (Note 3) Normal Shutdown	$\begin{aligned} & V_{I N}=12 \mathrm{~V}, \text { EXTV }_{C C}=5 \mathrm{~V} \\ & V_{I N}=40 \mathrm{~V}, \text { EXTV }_{C C}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 200 \\ 300 \\ \hline \end{array}$			μA $\mu \mathrm{~A}$
		$\begin{aligned} & V_{\mathbb{I N}}=12 \mathrm{~V}, V_{\text {SHDN } 2}=2 \mathrm{~V} \\ & V_{\text {IN }}=40 \mathrm{~V}, V_{\text {SHDN } 2}=2 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15 \\ & 25 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
EXXVCC	EXTV ${ }_{\text {CC }}$ Pin Current (Note 3)	EXTV $_{\text {cC }}=5 \mathrm{~V}$, Sleep Mode		250		$\mu \mathrm{A}$
$V_{C C}$	Internal Regulator Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{EXTV}_{\text {CC }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}$		4.5		V
$\begin{aligned} & \hline V_{\text {SENSE }^{+}} \\ & V_{\text {SENSE }^{-}} \end{aligned}$	Current Sense Threshold Voltage	Low Threshold (Forced) High Threshold (Forced)	125	$\begin{gathered} 25 \\ 150 \end{gathered}$	175	mV mV
$\mathrm{V}_{\text {SHDN2 }}$	SHDN2 Threshold		0.8	1.4	2	V
toff	Off-Time (Note 4)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}$	3.5	5	6.5	$\mu \mathrm{S}$

The denotes specifications which apply over the full operating temperature range.
Note 1: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formulas:

$$
\begin{aligned}
& \text { LTC1159CG, LTC1159CG-3.3, LTC1159CG-5: } T_{J}=T_{A}+\left(P_{D} \times 135^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LTC1159CN, LTC1159CN-3.3, LTC1159CN-5: } T_{J}=T_{A}+\left(P_{D} \times 80^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LTC1159CS, LTC1159CS-3.3, LTC1159CS-5: } T_{J}=T_{A}+\left(P_{D} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

Note 2: On LTC1159 versions which have a SHDN1 pin, it must be at ground potential for testing.
Note 3: The LTC1159 V ${ }_{\text {IN }}$ and EXTV CC $^{\text {c current measurements exclude }}$ MOSFET driver currents. When $V_{C C}$ power is derived from the output via

EXTV $_{\text {cC }}$, the input current increases by (IGATECHG \times Duty Cycle)/(Efficiency). See Typical Performance Characteristics and Applications Information.
Note 4: In applications where RSENSE is placed at ground potential, the offtime increases approximately 40%.
Note 5: The LTC1159, LTC1159-3.3, and LTC1159-5 are not tested and not quality assurance sampled at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design and/or correlation.
Note 6: The logic-level power MOSFETs shown in Figure 1 are rated for $V_{D S(M A X)}=30 \mathrm{~V}$. For operation at $\mathrm{V}_{I N}>30 \mathrm{~V}$, use standard threshold MOSFETs with EXTV CC powered from a 12 V supply. See Applications Information.

YPICAL PERFORMANCE CHARACTERISTICS

LTC1159•TPC01

LTC1159•TPCO4
EXTV ${ }_{\text {CC }}$ Switch Drop

Line Regulation

LT1159•TPC02

LTC1159•TPC05

Off-Time vs $V_{\text {Out }}$

LTC1159•TPC08

Load Regulation

LTC1159•TPC03
Operating Frequency
vs $\left(V_{I N}-V_{\text {OUT }}\right)$

LTC1159•TPC06
Current Sense Threshold Voltage

LTC1159•TPC09

PIn functions

V_{IN} : Main Supply Input Pin.
S-GND: Small Signal Ground. Must be routed separately from other grounds to the $(-)$ terminal of $\mathrm{C}_{\text {OUT }}$.
P-GND: Driver Power Grounds. Connect to source of N channel MOSFET and the $(-)$ terminal of C_{IN}.
$\mathbf{V}_{\text {CC }}$: Outputs of internal 4.5 V linear regulator, EXTV ${ }_{\text {CC }}$ switch, and supply inputs for driver and control circuits. The driver and control circuits are powered from the higher of the 4.5 V regulator or EXTV $C C$ voltage. Must be closely decoupled to power ground.
\mathbf{C}_{\top} : External capacitor $\mathrm{C}_{\boldsymbol{T}}$ from this pin to ground sets the operating frequency. (The frequency is also dependent on the ratio $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$.)
$I_{\text {TH: }}$: Gain Amplifier Decoupling Point. The current comparator threshold increases with the $I_{T H}$ pin voltage.
\mathbf{V}_{FB} : For the LTC1159 adjustable version, the $\mathrm{V}_{F B}$ pin receives the feedback voltage from an external resistive divider used to set the output voltage.
Sense ${ }^{-}$: Connects to internal resistive divider which sets the output voltage in fixed output versions. The Sense ${ }^{-}$pin is also the $(-)$ input of the current comparator.

Sense ${ }^{+:}$: The (+) Input for the Current Comparator. A builtin offset between the Sense ${ }^{+}$and Sense $^{-}$pins, in conjunction with RSENSE, sets the current trip threshold.
N-Gate: High Current Drive for the Bottom N-Channel MOSFET. The N -Gate pin swings from ground to V_{CC}.
P-Gate: Level-Shifted Gate Drive Signal for the Top P -Channel MOSFET. The voltage swing at the P -gate pin is from $V_{\text {IN }}$ to $V_{\text {IN }}-V_{C C}$.
P-Drive: High Current Gate Drive for the Top P-Channel MOSFET. The P-drive pin(s) swing(s) from $V_{C C}$ to ground.
CAP: Charge Compensation Pin. A capacitor to $V_{C C}$ provides charge required by the P-gate level-shift capacitor during supply transitions. The charge compensation capacitor must be larger than the gate drive capacitor.
SHDN1: This pin shuts down the control circuitry only (VCC is not affected). Taking SHDN1 pin high turns off the control circuitry and holds both MOSFETs off. This pin must be at ground potential for normal operation.
SHDN2: Master Shutdown Pin. Taking SHDN2 high shuts down V_{CC} and all control circuitry.

OPERATOM (Refer to Functional Diagram)

The LTC1159 uses a current mode, constant off-time architecture to synchronously switch an external pair of complementary power MOSFETs. Operating frequency is set by an external capacitor at the C_{T} pin.
The output voltage is sensed either by an internal voltage divider connected to the Sense ${ }^{-}$pin (LTC1159-3.3 and LTC1159-5) or an external divider returned to the V_{FB} pin (LTC1159). A voltage comparator V, and a gain block G, compare the divided output voltage with a reference voltage of 1.25 V . To optimize efficiency, the LTC1159 automatically switches between two modes of operation, burst and continuous.
A low dropout 4.5 V regulator provides the operating voltage $\mathrm{V}_{\text {CC }}$ for the MOSFET drivers and control circuitry during start-up. During normal operation, the LTC1159 family powers the drivers and control from the output via the EXTV C c pin to improve efficiency. The N -gate pin is referenced to ground and drives the N-channel MOSFET
gate directly. The P-channel gate drive must be referenced to the main supply input V_{IN}, which is accomplished by level-shifting the P-drive signal via an internal 550 k resistor and external capacitor.
During the switch "ON" cycle in continuous mode, current comparator C monitors the voltage between the Sense ${ }^{+}$and Sense ${ }^{-}$pins connected across an external shunt in series with the inductor. When the voltage across the shunt reaches its threshold value, the P-gate output is switched to V_{IN}, turning off the P-channel MOSFET. The timing capacitor C_{\top} is now allowed to discharge at a rate determined by the off-time controller. The discharge current is made proportional to the output voltage to model the inductor current, which decays at a rate which is also proportional to the outpul voltage. While the timing capacitor is discharging, the N -gate output is high, turning on the N -channe MOSFET.

DPERFTO

Vhen the voltage on C_{T} has discharged past $\mathrm{V}_{\mathrm{TH} 1}$, comarator T trips, setting the flip-flop. This causes the N -gate utput to go low (turning off the N-channel MOSFET) and le P-gate output to also go low (turning the P-channel IOSFET back on). The cycle then repeats. As the load urrent increases, the output voltage decreases slightly. his causes the output of the gain stage to increase the urrent comparator threshold, thus tracking the load urrent.
he sequence of events for Burst Mode operation is very imilar to continuous operation with the cycle interrupted y the voltage comparator. When the output voltage is at or bove the desired regulated value, the P-channel MOSFET ; held off by comparator V and the timing capacitor ontinues to discharge below $\mathrm{V}_{\mathrm{TH} 1}$. When the timing apacitor discharges past $\mathrm{V}_{\mathrm{TH} 2}$, voltage comparator S ips, causing the internal SLEEP line to go low and the -channel MOSFET to turn off.

The circuit now enters sleep mode with both power MOSFETs turned off. In sleep mode, much of the circuitry is turned off, dropping the supply current from several milliamps (with the MOSFETs switching) to $300 \mu \mathrm{~A}$. When the output capacitor has discharged by the amount of hysteresis in comparatorV, the P-channel MOSFET is again turned on and this process repeats. To avoid the operation of the current loop interfering with Burst Mode operation, a built-in offset is incorporated in the gain stage.

To prevent both the external MOSFETs from being turned on at the same time, feedback is incorporated to sense the state of the driver output pins. Before the N -gate output can go high, the P-drive output must also be high. Likewise, the P-drive output is prevented from going low when the N gate output is high.

UПCTO 1 AL DIAGRAII Internal divider broken at $v_{\text {FB }}$ for adjustable versions.

APPLICATIONS InFORMATION

The LTC1159 Compared to the LTC1148/LTC1149 Families

The LTC1159 family is closest in operation to the LTC1149 and shares much of the applications information. In addition to reduced quiescent and shutdown currents, the LTC1159 adds an internal switch which allows the driver and control sections to be powered from an external source for higher efficiency. This change affects Power MOSFET Selection, EXTV CC Pin Connection, Important Information About LTC1159 Adjustable Applications, and Efficiency Considerations found in this section.
The basic LTC1159 application circuit shown in Figure 1 is limited to a maximum input voltage of 30 V due to MOSFET breakdown. If the application does not require greater than 18 V operation, then the LTC1148 or LTC1148HV should be used. For higher input voltages where quiescent and shutdown current are not critical, the LTC1149 may be a better choice since it is set up to drive standard threshold MOSFETs.

Rense Selection for Output Current

$R_{\text {SENSE }}$ is chosen based on the required output current. The LTC1159 current comparator has a threshold range which extends from a minimum of $0.025 \mathrm{~V} / \mathrm{R}_{\text {SENSE }}$ to a maximum of $0.15 \mathrm{~V} / \mathrm{R}_{\text {SENSE }}$. The current comparator threshold sets the peak of the inductor ripple current, yielding a maximum output current $I_{\text {MAX }}$ equal to the peak value less half the peak-to-peak ripple current. For proper Burst Mode operation, IRIPPLE(P-P) must be less than orequal to the minimum current comparator threshold.

Since efficiency generally increases with ripple current, the maximum allowable ripple current is assumed, i.e., $I_{\text {RIPPLE }(P-P)}=0.025 \mathrm{~V} / \mathrm{R}_{\text {SENSE }}$ (see C_{T} and L Selection for Operating Frequency). Solving for RSENSE and allowing a margin for variations in the LTC1159 and external component values yields:

$$
\mathrm{R}_{\text {SENSE }}=\frac{100}{l_{\mathrm{MAX}}} \mathrm{~m} \Omega
$$

A graph for selecting $R_{\text {SENSE }}$ versus maximum output current is given in Figure 2. The LTC1159 series works well with values of $R_{\text {SENSE }}$ from 0.02Ω to 0.2Ω.
The load current below which Burst Mode operation commences, I IURST, and the peak short-circuit current, ISC(PK),
both track $I_{\text {MAX }}$. Once Rense has been chosen, $I_{\text {BURST }}$ and $I_{S C(P K)}$ can be predicted from the following equations:

$$
\begin{aligned}
& I_{\text {BURST }} \approx \frac{15 \mathrm{mV}}{R_{\text {SENSE }}} \\
& I_{S C(P K)}=\frac{150 \mathrm{mV}}{R_{S E N S E}}
\end{aligned}
$$

The LTC1159 automatically extends tofF during a shor circuit to allow sufficient time for the inductor current to decay between switch cycles. The resulting ripple current causes the average short-circuit current ISC(AVG) to be reduced to approximately $l_{\text {max }}$.

LTC1159•F02
Figure 2. R ${ }_{\text {SENSE }}$ vs Maximum Output Current

L and C_{T} Selection for Operating Frequency

The LTC1159 uses a constant off-time architecture with $t_{\text {OFF }}$ determined by an external timing capacitor $\mathrm{C}_{\boldsymbol{T}}$. The value of $\mathrm{C}_{\boldsymbol{T}}$ is calculated from the desired continuous mode operating frequency, f :

$$
C_{T}=\frac{7.8 \times 10^{-5}}{f}\left(1-\frac{V_{\text {OUT }}}{V_{I N}}\right)
$$

A graph for selecting C_{T} versus frequency including the effects of input voltage is given in Figure 3.
As the operating frequency is increased the gate charge losses will be higher, reducing efficiency (see Efficiency Considerations). The complete expression for operatinc frequency is given by:

IPPLICATIONS INFORMATION

LTC1159 - F03
Figure 3. Timing Capacitor Selection
$f=\frac{1}{t_{0 F F}}\left(1-\frac{V_{O U T}}{V_{I N}}\right)$
where $\mathrm{t}_{\text {OFF }}=1.3 \times 10^{4} \times \mathrm{C}_{\mathrm{T}}$
ince the frequency has been set by C_{T}, the inductor L lust be chosen to provide no more than $0.025 \mathrm{~V} / \mathrm{R}_{\text {SENSE }}$ f peak-to-peak inductor ripple current. This results in a linimum required inductor value of:

$$
L_{\text {MIN }}=5.1 \times 10^{5} \times R_{\text {SENSE }} \times C_{T} \times V_{\text {REG }}
$$

sthe inductor value is increased from the minimum value, ıe ESR requirements for the output capacitor are eased at le expense of efficiency. If too small an inductor is used, ie LTC1159 may not enter Burst Mode operation and ficiency will be severely degraded at low currents.

Iductor Core Selection

nce the minimum value for L is known, the type of iductor must be selected. High efficiency converters mnerally cannot afford the core loss found in low cost owdered iron cores, forcing the use of more expensive trite, molypermalloy, or Kool $\mathrm{M} \mu^{\circledR}$ cores. Actual core loss independent of core size for a fixed inductor value, but it very dependent on the inductance selected. As inducnce increases, core losses go down but copper (I2R) sses will increase.
mrite designs have very low core loss, so design goals can uncentrate on copper loss and preventing saturation. mrrite core material saturates "hard," which means that
inductance collapses abruptly when the peak design current is exceeded. This results in an abrupt increase in inductor ripple current and consequent output voltage ripple which can cause Burst Mode operation to be falsely triggered in the LTC1159. Do not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a low loss core material for toroids, but it is more expensive than ferrite. A reasonable compromise from the same manufacturer is Kool $\mathrm{M} \mu$. Toroids are very space efficient, especially when you can use several layers of wire. Because they generally lack a bobbin, mounting is more difficult. However, new surface mount designs available from Coiltronics do not increase the height significantly.

Power MOSFET Selection

Two external power MOSFETs must be selected for use with the LTC1159: a P-channel MOSFET for the main switch and an N -channel MOSFET for the synchronous switch.

The peak-to-peak drive levels are set by the $\mathrm{V}_{\text {cc }}$ voltage on the LTC1159. This voltage is typically 4.5 V during start-up and 5 V to 7 V during normal operation (see EXTV ${ }_{\text {CC }}$ Pin Connection). Consequently, logic-level threshold MOSFETs must be used in most LTC1159 family applications. The only exception is applications in which EXTV $C C$ is powered from an external supply greater than 8 V , in which standard threshold MOSFETs $\left(V_{G S}(T H)<4 V\right)$ may be used. Pay close attention to the $\mathrm{BV}_{\text {DSS }}$ specification for the MOSFETs as well; many of the logic-level MOSFETs are limited to 30 V .
Selection criteria for the power MOSFETs include the "ON" resistance $\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$, reverse transfer capacitance $\mathrm{C}_{\text {RSS }}$, input voltage, and maximum output current. When the LTC1159 is operating in continuous mode, the duty cycle for the P-channel MOSFET is given by:

$$
\begin{aligned}
& \text { P-Ch Duty Cycle }=\frac{V_{\text {OUT }}}{V_{\text {IN }}} \\
& \text { N-Ch Duty Cycle }=\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}}
\end{aligned}
$$

The MOSFET dissipations at maximum output current are given by:

APPLICATIONS InFORMATION

$$
\begin{aligned}
\text { P-Ch } P_{D}= & \frac{V_{O U T}}{V_{I N}}\left(I_{M A X}\right)^{2}\left(1+\partial_{P}\right) R_{D S(O N)}+ \\
& k\left(V_{I N}\right)^{2}\left(I_{M A X}\right)\left(C_{R S S}\right)(f) \\
N-C h P_{D}= & \left.\frac{V_{I N}-V_{O U T}}{V_{I N}}\left(I_{M A X}\right)^{2}\left(1+\partial_{N}\right) R_{D S(O N)}\right)
\end{aligned}
$$

where ∂ is the temperature dependency of $R_{D S(O N)}$ and k is a constant inversely related to the gate drive current.

Both MOSFETs have $I^{2} R$ losses while the P-channel equation includes an additional term for transition losses, which are highest at high input voltages. For $\mathrm{V}_{\text {IN }}<20 \mathrm{~V}$ the high current efficiency generally improves with larger MOSFETs, while for $V_{\text {IN }}>20 \mathrm{~V}$ the transition losses rapidly increase to the point that the use of a higher $\mathrm{R}_{\mathrm{DS}(O N)}$ device with lower $\mathrm{C}_{\text {RSS }}$ actually provides higher efficiency. The N -channel MOSFET losses are the greatest at high input voltage or during a short circuit when the N channel duty cycle is nearly 100%.
The term $(1+\partial)$ is generally given for a MOSFET in the form of a normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Temperature curve, but $\partial=0.007 /{ }^{\circ} \mathrm{C}$ can be used as an approximation for low voltage MOSFETs. C CRS is usually specified in the MOSFET electrical characteristics. The constant $\mathrm{k}=5$ can be used for the LTC1159 to estimate the relative contributions of the two terms in the P-channel dissipation equation.
The Schottky diode D1 shown in Figure 1 only conducts during the dead time between the conduction of the two power MOSFETs. D1 prevents the body diode of the N -channel MOSFET from turning on and storing charge during the dead time, which could cost as much as 1% in efficiency (although there are no other harmful effects if D1 is omitted). Therefore, D1 should be selected for a forward voltage of less than 0.6 V when conducting $\mathrm{I}_{\mathrm{max}}$.

C_{IN} and $\mathrm{C}_{\text {OUt }}$ Selection

In continuous mode, the source current of the P-channel MOSFET is a square wave of duty cycle $\mathrm{V}_{\text {OUT }} / V_{\text {IN }}$. To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$
\mathrm{C}_{I N} \text { Required } \mathrm{I}_{\mathrm{RMS}} \approx \frac{\mathrm{I}_{\mathrm{MAX}}\left[\mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2}}{\mathrm{~V}_{\text {IN }}}
$$

This formula has a maximum at $\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\text {OUT }}$, where $I_{\text {RMS }}=I_{\text {MAX }} / 2$. This simple worst case condition is commonly used for design because even significant deviations do not offer much relief. Note that capacitor manufacturer's ripple current ratings are often based on only 2000 hours of life. This makes it advisable to further derate the capacitor, or to choose a capacitor rated at a higher temperature than required. Several capacitors may be paralleled to meet size or height requirements in the design. An additional $0.1 \mu \mathrm{~F}$ ceramic capacitor may also be required on $V_{\text {IN }}$ for high frequency decoupling.
The selection of $\mathrm{C}_{\text {OUT }}$ is driven by the required effective series resistance (ESR). The ESR of Cout must be less than twice the value of RSENSE for proper operation of the LTC1159:

Cout Required ESR < $2 \mathrm{R}_{\text {SENSE }}$

Optimum efficiency is obtained by making the ESR equal to RSENSE. Manufacturers such as Nichicon, Chemicon, and Sprague should be considered for high performance capacitors. The OS-CON semiconductor dielectric capacitor available from Sanyo has the lowest ESR for its size at a somewhat higher price. Once the ESR requirement for Cout has been met, the RMS current rating generally far exceeds the $\mathrm{I}_{\text {RIPPLE(P-P) }}$ requirement.
In surface mount applications multiple capacitors may have to be paralleled to meet the capacitance, ESR, or RMS current handling requirements of the application. Aluminum electrolytic and dry tantalum capacitors are both available in surface mount configurations. In the case of tantalum, it is critical that the capacitors are surge tested for use in switching power supplies. An excellent choice is the AVX TPS series of surface mount tantalums, available in case heights ranging from 2 mm to 4 mm . For example, if $200 \mu \mathrm{~F} / 10 \mathrm{~V}$ is called for in an application requiring 3 mm height, two AVX 100 $\mu \mathrm{F} / 10 \mathrm{~V}$ (P/N TPSD107K010) could be used. Consult the manufacturer for other specific recommendations.
At low supply voltages, a minimum value of $\mathrm{C}_{0 U t}$ is suggested to prevent an abnormal low frequency operating mode (see Figure 4). When Cout is too small, the output ripple at low frequencies will be large enough to trip the voltage comparator. This causes the Burst Mode operation to be activated when the LTC1159 would normally be in continuous operation. The effect is most

IPPLICATIONS INFORMATION

Figure 4. Minimum Suggested Cout
'onounced with low values of R RENSE and can be iproved by operating at higher frequencies with lower lues of L . The output remains in regulation at all times.

jad Transient Response

witching regulators take several cycles to respond to a ep in DC (resistive) load current. When a load step ;curs, $\mathrm{V}_{\text {OUT }}$ shifts by an amount equal to $\Delta \mathrm{I}_{\text {LOAD }} \times E S R$, here ESR is the effective series resistance of Cout. $l_{\text {LOAD }}$ also begins to charge or discharge $\mathrm{C}_{\text {OUT }}$ until the gulator loop adapts to the current change and returns jut to its steady state value. During this recovery time Jut can be monitored for overshoot or ringing which ould indicate a stability problem. The $I_{T H}$ external mponents shown in the Figure 1 circuit will provide lequate compensation for most applications.
second, more severe transient is caused by switching in ads with large ($>1 \mu \mathrm{~F}$) supply bypass capacitors. The scharged bypass capacitors are effectively put in parallel th $\mathrm{C}_{\text {OUt }}$, causing a rapid drop in $\mathrm{V}_{\text {OUt }}$. No regulator can :liver enough current to prevent this problem if the load vitch resistance is low and it is driven quickly. The only lution is to limit the rise time of the switch drive so that e load rise time is limited to approximately $25 \times \mathrm{C}_{\text {LOAD }}$. Ius a $10 \mu \mathrm{~F}$ capacitor would require a $250 \mu \mathrm{~s}$ rise time, niting the charging current to about 200 mA .

Line Transient Response

The LTC1159 has better than 60 dB line rejection and is generally impervious to large positive or negative line voltage transients. However, one rarely occurring condition can cause the output voltage to overshoot if the proper precautions are not observed. This condition is a negative $V_{\text {IN }}$ transition of several volts followed within $100 \mu \mathrm{~s}$ by a positive transition of greater than $0.5 \mathrm{~V} / \mu \mathrm{s}$ slew rate.

The reason this condition rarely occurs is because it takes tens of amps to slew the regulator input capacitor at this rate! The solution is to add a diode between the cap and V_{IN} pins of the LTC1159 as shown in several of the typical application circuits. If you think your system could have this problem, add the diode. Note that in surface mount applications it can be combined with the P-gate diode by using a low cost common cathode dual diode.

EXTV ${ }_{\text {cc }}$ Pin Connection

The LTC1159 contains an internal PNP switch connected between the EXTV ${ }_{C C}$ and $V_{C C}$ pins. The switch closes and supplies the $\mathrm{V}_{C C}$ power whenever the $E X T V_{C C}$ pin is higher in voltage than the 4.5 V internal regulator. This allows the MOSFET driver and control power to be derived from the output during normal operation and from the internal regulator when the output is out of regulation (start-up, short circuit).
Significant efficiency gains can be realized by powering $V_{C C}$ from the output, since the V_{IN} current resulting from the driver and control currents will be scaled by a factor of (Duty Cycle)/(Efficiency). For 5V regulators this simply means connecting the EXTV ${ }_{\text {CC }}$ pin directly to $\mathrm{V}_{\text {OUT }}$. However, for 3.3 V and other low voltage regulators, additional circuitry is required to derive $V_{C C}$ power from the output.

The following list summarizes the four possible connections for EXTV ${ }_{\text {CC }}$:

1. EXTV $V_{C C}$ Left Open. This will cause $V_{C C}$ to be powered only from the internal 4.5 V regulator resulting in reduced MOSFET gate drive levels and an efficiency penalty of up to 10% at high input voltages.

APPLICATIONS INFORMATION

2. EXTV ${ }_{\text {CC }}$ Connected Directly to $\mathrm{V}_{\text {OUT }}$. This is the normal connection for a 5 V regulator and provides the highest efficiency.
3. EXTV ${ }_{C C}$ Connected to an Output-Derived Boost Network. For 3.3V and other low voltage regulators, efficiency gains can still be realized by connecting EXTV C C to an output-derived voltage which has been boosted to greater than 4.5 V . This can be done either with the inductive boost winding shown in Figure 5a or the capacitive charge pump shown in Figure 5b. The charge pump has the advantage of simple magnetics and generally provides the highest efficiency at the expense of a slightly higher parts count.
4. EXTV ${ }_{\text {CC }}$ Connected to an External Supply. If an external supply is available in the 5 V to 12 V range, it may be used

Figure 5a. Inductive Boost Circuit for EXTV ${ }_{\text {CC }}$

Figure 5b. Capacitive Charge Pump for EXTV ${ }_{\text {cC }}$
to power EXTV ${ }_{\text {CC }}$ providing it is compatible with the MOSFET gate drive requirements. There are no restrictions on the EXTV ${ }_{\text {CC }}$ voltage relative to $\mathrm{V}_{\text {IN }}$. EXTV V_{CC} may be higher than $\mathrm{V}_{\text {IN }}$ providing EXTV ${ }_{\text {CC }}$ does not exceec the 15 V absolute maximum rating.
When driving standard threshold MOSFETs, the exter. nal supply must always be present during operation to prevent MOSFET failure due to insufficient gate drive The LTC1149 family should also be considered fol applications which require the use of standard thresholo MOSFETs.

Important Information About LTC1159 Adjustable Applications

When an output voltage other than 3.3 V or 5 V is required the LTC1159 adjustable version is used with an externa resistive divider from $V_{\text {OUT }}$ to the $V_{F B}$ pin (Figure 6). The regulated voltage is determined by:

$$
V_{\text {OUT }}=\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right) 1.25 \mathrm{~V}
$$

The $V_{F B}$ pin is extremely sensitive to pickup from the inductor switching node. Care should be taken to isolate the feedback network from the inductor, and the 100pF capacitor should be connected between the $\mathrm{V}_{\text {FB }}$ and S-GND pins next to the package.
In LTC1159N and LTC1159S applications with VOUT > 5.5 V , the $\mathrm{V}_{C C}$ pin may self-power through the Sense pins when SHDN2 is taken high, preventing shutdown. In these applications, a pull-down must be added to the Sense ${ }^{-}$pir as shown in Figure 6. This pull-down effectively takes the place of the SHDN1 pin, ensuring complete shutdown. Note: For versions in which both the SHDN1 and SHDN2 pins are available (LTC1159G and all fixed output versions), the two pins are simply connected to each other and driven together to guarantee complete shutdown.
The Figure 6 circuit cannot be used to regulatea $\mathrm{V}_{\text {OUT }}$ which is greater than the maximum voltage allowed on the LTC1159 Sense pins (13V). In applications with $V_{\text {OUT }}$ > 13 V , R RENSE must be moved to the ground side of the output capacitor and load. This operates the current sense

PPLICATIONS INFORMATION

Figure 6. High Efficiency Adjustable Regulator with $5.5 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<13 \mathrm{~V}$
mparator at 0 V common mode, increasing the off-time proximately 40% and requiring the use of a smaller ling capacitor C_{T}.

rerting Regular Applications

e LTC1159 can also be used to obtain negative output Itages from positive inputs. In these inverting applicans, the current sense resistor connects to ground while : LTC1159 and N-channel MOSFET connections, which uld normally go to ground, instead ride on the negative tput. This allows the negative output voltage to be set by : same process as in conventional applications, using her the internal divider (LTC1159-3.3, LTC1159-5) or an ernal divider with the adjustable version.
ure 15 in the Typical Applications shows a synchronous V to -12 V converter which can supply up to 1 A with ter than 85% efficiency. By grounding the EXTV ${ }_{\text {CC }}$ pin in : Figure 15 circuit, the entire 12 V output voltage is placed oss the driver and control circuits since the LTC1159 und pins are at -12 V . During start-up or short-circuit oditions, operating power is supplied by the internal iV regulator. The shutdown signal is level-shifted to the jative output rail by Q3, and Q4 ensures that Q1 and Q2 nain off during the entire shutdown sequence.

Efficiency Considerations

The percent efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Percent efficiency can be expressed as:

$$
\% \text { Efficiency }=100-(L 1+L 2+L 3+\ldots)
$$

where L1, L2, etc., are the individual losses as a percentage of input power.
Although all dissipative elements in the circuit produce losses, four main sources usually account for most of the losses in LTC1159 circuits: 1) LTC1159 V $\mathrm{V}_{\text {IN }}$ current, 2) LTC1159 V ${ }_{\text {CC }}$ current, 3) I ${ }^{2}$ R losses, and 4) P-channel transition losses.

1. LTC1159 $\mathrm{V}_{\text {IN }}$ current is the DC supply current given in the electrical characteristics which excludes MOSFET driver and control currents. $V_{\text {IN }}$ current results in a small ($<1 \%$) loss which increases with $V_{\text {IN }}$.
2. LTC1159 V_{CC} current is the sum of the MOSFET driver and control circuit currents. The MOSFET driver current results from switching the gate capacitance of the power MOSFETs. Each time a MOSFET gate is switched from

APPLICATIONS InFORMATION

low to high to low again, a packet of charge dQ moves from $V_{\text {CC }}$ to ground. The resulting dQ/dt is a current out of V_{CC} which is typically much larger than the control circuit current. In continuous mode, $I_{\text {GATECHG }} \approx f\left(Q_{p}+\right.$ Q_{N}, where Q_{p} and Q_{N} are the gate charges of the two MOSFETs.

By powering EXTV ${ }_{\text {CC }}$ from an output-derived source, the additional $\mathrm{V}_{\mathbb{N}}$ current resulting from the driver and control currents will be scaled by a factor of (Duty Cycle)/(Efficiency). For example in a 20 V to 5 V application, 10 mA of $\mathrm{V}_{\text {CC }}$ current results in approximately 3 mA of $\mathrm{V}_{\text {IN }}$ current. This reduces the mid-current loss from 10% or more (if the driver was powered directly from V_{IN}) to only a few percent.
3. $I^{2} R$ losses are easily predicted from the $D C$ resistances of the MOSFET, inductor, and current shunt. In continuous mode all of the output current flows through L and R RENSE, but is "chopped" between the P-channel and N -channel MOSFETs. If the two MOSFETs have approximately the same $R_{D S(O N)}$, then the resistance of one MOSFET can simply be summed with the resistances of L and $R_{\text {SENSE }}$ to obtain $I^{2} R$ losses. For example, if each $R_{D S}(O N)=0.1 \Omega, R_{L}=0.15 \Omega$, and $R_{\text {SENSE }}=0.05 \Omega$, then the total resistance is 0.3Ω. This results in losses ranging from 3% to 12% as the output current increases from 0.5 A to $2 \mathrm{~A} . I^{2} \mathrm{R}$ losses cause the efficiency to roll-off at high output currents.
4. Transition losses apply only to the P-channel MOSFET, and only when operating at high input voltages (typically 20V or greater). Transition losses can be estimated from:

Transition Loss $\approx 5\left(\mathrm{~V}_{\mathrm{IN}}\right)^{2}\left(\mathrm{I}_{\mathrm{MAX}}\right)\left(\mathrm{C}_{\mathrm{RSS}}\right)(\mathrm{f})$
Other losses including $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {OUT }}$ ESR dissipative losses, Schottky conduction losses during dead time, and inductor core losses, generally account for less than 2% total additional loss.

Auxiliary Windings - Suppressing Burst Mode Operation

The LTC1159 synchronous switch removes the normal limitation that power must be drawn from the inductor primary winding in order to extract power from auxiliary
windings. With synchronous switching, auxiliary ou puts may be loaded without regard to the primary outpi load, providing that the loop remains in continuol mode operation.

Burst Mode operation can be suppressed at low outpi currents with a simple external network which cancels tr 0.025 V minimum current comparator threshold. This tecl nique is also useful for eliminating audible noise frol certain types of inductors in high current (lout $>5 \mathrm{l}$ applications when they are lightly loaded.

An external offset is put in series with the Sense ${ }^{-}$pin 1 subtract from the built-in 0.025 V offset. An example of th technique is shown in Figure 7. Two 100Ω resistors al inserted in series with the leads from the sense resisto With the addition of R3, a current is generated through R causing an offset of:

$$
V_{\text {OFFSET }}=V_{\text {OUT }}\left(\frac{R 1}{R 1+R 3}\right)
$$

If $\mathrm{V}_{\text {OFFSET }}>0.025 \mathrm{~V}$, the minimum threshold will t cancelled and Burst Mode operation is prevented frol occurring. Since $V_{\text {OFFSET }}$ is constant, the maximum loz current is also decreased by the same offset. Thus, to g back to the same $I_{\text {MAX }}$, the value of the sense resistor mu: be reduced:

$$
\mathrm{R}_{\text {SENSE }} \approx \frac{75}{1_{\text {MAX }}} \mathrm{m} \Omega
$$

To prevent noise spikes from erroneously tripping tr current comparator, a 1000pF capacitor is needed acros the Sense ${ }^{-}$and Sense ${ }^{+}$pins.

Figure 7. Suppressing Burst Mode Operation

PPLICATIONS INFORMATION

ard Layout Checklist

ven laying out the printed circuit board, the following ecklist should be used to ensure proper operation of the C1159. These items are also illustrated graphically in layout diagram of Figure 8. Check the following in your 'out:
Are the signal and power grounds segregated? The LTC1159 signal ground must connect separately to the (-) plate of $\mathrm{C}_{\text {OUT }}$. The other ground pin(s) should return to the source of the N -channel MOSFET, anode of the Schottky diode, and (-) plate of C_{IN}, which should have as short lead lengths as possible.

Does the LTC1159 Sense ${ }^{-}$pin connect to a point close to $\mathrm{R}_{\text {SENSE }}$ and the (+) plate of $\mathrm{C}_{\text {OUT }}$? In adjustable applications, the resistive divider R1, R2 must be connected between the $(+)$ plate of $\mathrm{C}_{\text {OUt }}$ and signal ground. Are the Sense ${ }^{-}$and Sense ${ }^{+}$leads routed together with minimum PCtrace spacing? The differential decoupling capacitor between the two Sense pins should be as
close as possible to the LTC1159. Up to 100Ω may be placed in series with each sense lead to help decouple the Sense pins. However, when these resistors are used, the capacitor should be no larger than 1000 pF .
4) Does the (+) plate of $\mathrm{C}_{1 N}$ connect to the source of the P-channel MOSFET as closely as possible? An additional $0.1 \mu \mathrm{~F}$ ceramic capacitor between V_{IN} and power ground may be required in some applications.
5) Is the $V_{C C}$ decoupling capacitor connected closely between the $\mathrm{V}_{\text {CC }}$ pins of the LTC1159 and power ground? This capacitor carries the MOSFET driver peak currents.
6) In adjustable versions, the feedback pin is very sensitive to pickup from the switch node. Care must be taken to isolate $\mathrm{V}_{\text {FB }}$ from possible capacitive coupling of the inductor switch signal.
7) Is the SHDN1 pin actively pulled to ground during normal operation? SHDN1 is a high impedance pin and must not be allowed to float.

Figure 8. LTC1159 Layout Diagram (N and S Packages)

LTC1159/LTC1159-3.3/LTC1159-5

APPLICATIONS Information

Troubleshooting Hints

Since efficiency is critical to LTC1159 applications it is very important to verify that the circuit is functioning correctly in both continuous and Burst Mode operation. The waveform to monitor is the voltage on the C_{T} pin.
In continuous mode ($\left.\right|_{\text {LOAD }}>\left.\right|_{\text {BURST }}$) the voltage should be a sawtooth with a $0.9 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ swing. This voltage should never dip below 2 V as shown in Figure 9a. When the load current is low (lload < l BURST), Burst Mode operation should occur with the C_{T} waveform periodically falling to ground as shown in Figure 9b.

If the C_{T} pin is observed falling to ground at high output currents, it indicates poor decoupling or improper grounding. Refer to the Board Layout Checklist.

Figure 9. C_{T} Pin 6 Waveforms

TYPICAL APPLICATIONS

Figure 10. High Efficiency 8 V to 20V Input 2.5/5A Output Regulator

YPICAL APPLICATIONS

Figure 11. 5:1 Input Range (4V to 20V) High Efficiency 3.3V/2.5A Regulator

Figure 12. High Current, High Efficiency 15V to 40V Input 5V/10A Output Regulator

LTC1159/LTC1159-3.3/LTC1159-5

TYPICAL APPLICATIONS

Figure 13. High Efficiency 15V to 40V Input 12V/5A Output Regulator

Figure 14. 17W Dual Output High Efficiency 5V and 3.3V Regulator

ГYPICAL APPLICATIONS

Figure 15. High Efficiency 12V to -12V 1A Converter

IELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
TC1142	Dual High Efficiency Synchronous Step-Down Switching Regulator	Dual Version of LTC1148
TC1143	Dual High Efficiency Step-Down Switching Regulator Controller	Dual Version of LTC1147
TC1147	High Efficiency Step-Down Switching Regulator Controller	Nonsynchronous, 8 -Lead, $\mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$
TC1148	High Efficiency Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 20 \mathrm{~V}$
TC1149	High Efficiency Step-Down Switching Regulator	Synchronous, $\mathrm{V}_{\text {IN }} \leq 48 \mathrm{~V}$, for Standard Threshold FETs
TC1174	High Efficiency Step-Down and Inverting DC/DC Converter	0.5 A Switch, $\mathrm{V}_{\text {IN }} \leq 18.5 \mathrm{~V}$, Comparator
「C1265	High Efficiency Step-Down DC/DC Converter	1.2A Switch, $\mathrm{V}_{\text {IN }} \leq 13 \mathrm{~V}$, Comparator
「C1267	Dual High Efficiency Synchronous Step-Down Switching Regulators	Dual Version of LTC1159

feATURES

- Wide Input Voltage Range: 3V to 30V
- Low Quiescent Current
- High Switching Frequency: 200 kHz
- CCFL Switch: 1.25A, LCD Switch: 625mA
- Grounded or Floating Lamp Configurations
- Open-Lamp Protection
- Positive or Negative Contrast Capability

APPLICATIONS

- Notebook and Palmtop Computers
- Portable Instruments
- Automotive Displays
- Retail Terminals

DESCRIPTION

The LT ${ }^{\circledR} 1182 /$ LT1183 are dual current mode switching regulators that provide the control function for Cold Cathode Fluorescent Lighting (CCFL) and Liquid Crystal Display (LCD) Contrast. The LT1184/LT1184F provide only the CCFL function. The ICs include high current, high efficiency switches, an oscillator, a reference, output drive logic, control blocks and protection circuitry. The LT1182 permits positive or negative voltage LCD contrast operation. The LT1183 permits unipolar contrast operation and pins out an internal reference. The LT1182/LT1183 support grounded and floating lamp configurations. The LT1184F supports grounded and floating lamp configurations. The LT1184 supports only grounded lamp configurations. The

TYPICAL APPLICATION

$\mathbf{9 0 \%}$ Efficient Floating CCFL Configuration with Dual Polarity LCD Contrast

)eSCRIPTION

.T1184/LT1184F pin out the reference for simplified projramming of lamp current.
he LT1182/LT1183/LT1184/LT1184F operate with input ;upply voltages from 3 V to 30 V . The ICs also have a lattery supply voltage pin that operates from 4.5 V to 30 V . he LT1182/LT1183 draw 9mA typical quiescent current vhile the LT1184/LT1184F draw 6 mA typical quiescent
current. An active low shutdown pin typically reduces total supply current to $35 \mu \mathrm{~A}$ for standby operation. A 200 kHz switching frequency minimizes the size of required magnetic components. The use of current mode switching techniques with cycle-by-cycle limiting gives high reliability and simple loop frequency compensation. The LT1182/ LT1183/LT1184/LT1184F are all available in 16-pin narrow SO packages.

ABSOLUTE MAXIMUM RATINGS

$I_{\text {IN }}$, BAT, Royer, Bulb ... 30 V
3CFL V ${ }_{\text {SW }}$, LCD V ${ }_{\text {SW }}$.. 60 V
jhutdown ... 6V
CCFL Input Current ... 10 mA
) 10 Input Current (Peak, < 100 ms) 100 mA
.T1182: FBP, FBN, LT1183: FB Pin Current $\pm 2 \mathrm{~mA}$

LT1183/LT1184/1184F: REF Pin Source Current 1mA Junction Temperature (Note 1)........................... $100^{\circ} \mathrm{C}$ Operating Ambient Temperature Range... $.0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$
'ACKAGE/ORDER INFORMATION

[^26]
LT1182/LT1183/LT1184/LT1184F

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1 N}=5 \mathrm{~V}, \mathrm{BAT}=$ Royer $=$ Bulb $=12 \mathrm{~V}, \mathrm{I}_{\text {CCFL }}=\overline{\text { SHUTDOWN }}=$ CCFL $\mathrm{V}_{\text {SW }}=$ Open, DIO $=$ GND, CCFL $\mathrm{V}_{\mathrm{C}}=0.5 \mathrm{~V}$, (LT1182/LT1183) LCD $V_{C}=0.5 V$, LCD $V_{S W}=$ Open, (LT1182) FBN = FBP $=$ GND, (LT1183) FB = GND, (LT1183/LT1184/LT1184F) REF = Open, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Supply Current	LT1182/LT1183: 3V $\leq V_{\text {IN }} \leq 30 \mathrm{~V}$ LT1184/LT1184F: $3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	\bullet		$\begin{aligned} & 9 \\ & 6 \end{aligned}$	$\begin{aligned} & 14 \\ & 9.5 \end{aligned}$	mA mA
$\overline{\text { SHDN }}$	SHUTDOWN Supply Current	$\overline{\text { SHUTDOWN }}=0 \mathrm{~V}, \mathrm{CCFL} \mathrm{V}_{\mathrm{C}}=$ LCD $\mathrm{V}_{C}=$ Open (Note 2)			35	70	$\mu \mathrm{A}$
	SHUTDOWN Input Bias Current	$\overline{\text { SHUTDOWN }}=0 \mathrm{~V}$, CCFL $V_{C}=$ LCD $V_{C}=$ Open			3	6	$\mu \mathrm{A}$
	SHUTDOWN Threshold Voltage		\bullet	0.6	0.85	1.2	V
f	Switching Frequency	Measured at CCFL $V_{S W}$ and $L C D V_{S W}, I_{S W}=50 \mathrm{~mA}$, $I_{\text {CCFL }}=100 \mu A, C C F L V_{C}=$ Open, $(L T 1182)$ FBN $=F B P=$ 1V, (LT1183) FB $=1 \mathrm{~V}$, (LT1182/LT1183) LCD $V_{C}=$ Open	\bullet	$\begin{aligned} & 175 \\ & 160 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	225 240	kHz kHz
DC(MAX)	Maximum Switch Duty Cycle	Measured at CCFL $V_{\text {SW }}$ and LCD $V_{\text {SW }}$	-	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		\%
BV	Switch Breakdown Voltage	Measured at CCFL $V_{\text {SW }}$ and LCD $\mathrm{V}_{\text {SW }}$		60	70		V
	Switch Leakage Current	$V_{S W}=12 \mathrm{~V}$, Measured at CCFL $V_{S W}$ and LCD $V_{S W}$ $V_{S W}=30 \mathrm{~V}$, Measured at CCFL $V_{S W}$ and LCD $V_{S W}$				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	ICCFL Summing Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$, Measured on LT1182/LT1183	-	$\begin{aligned} & 0.41 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.54 \end{aligned}$	V
		$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$, Measured on LT1184/LT1184F	-	$\begin{aligned} & 0.425 \\ & 0.385 \end{aligned}$	$\begin{aligned} & 0.465 \\ & 0.465 \end{aligned}$	$\begin{aligned} & 0.505 \\ & 0.555 \end{aligned}$	V
	$\Delta l_{\text {CCFL }}$ Summing Voltage for Δ Input Programming Current	$I_{\text {CCFL }}=0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$			5	15	mV
	CCFL V_{C} Offset Sink Current	CCFL $\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$, Positive Current Measured into Pin		-5	5	15	$\mu \mathrm{A}$
	$\triangle C C F L V_{C}$ Source Current for $\Delta_{\text {CCFL }}$ Programming Current	$\begin{aligned} & I_{\text {CCFL }}=25 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 75 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, \\ & \text { CCFL }_{\text {C }}=1.5 \mathrm{~V} \end{aligned}$	\bullet	4.70	4.95	5.20	$\mu \mathrm{A} / \mu \mathrm{A}$
	CCFL V ${ }_{\text {C }}$ to DIO Current Servo Ratio	DIO $=5 \mathrm{~mA}$ out of Pin, Measure lvc at CCFL $V_{C}=1.5 \mathrm{~V}$	\bullet	94	99	104	$\mu \mathrm{A} / \mathrm{mA}$
	CCFL V ${ }_{\text {C }}$ Low Clamp Voltage	$\mathrm{V}_{\text {BAT }}-\mathrm{V}_{\text {BULB }}=$ Bulb Protect Servo Voltage	\bullet		0.1	0.3	V
	CCFL V ${ }_{\text {C }}$ High Clamp Voltage	$I_{\text {CCFL }}=100 \mu \mathrm{~A}$	\bullet	1.7	2.1	2.4	V
	CCFL V ${ }_{C}$ Switching Threshold	CCFL V ${ }_{\text {SW }}$ DC $=0 \%$	\bullet	0.6	0.95	1.3	V
	CCFL High-Side Sense Servo Current	$\mathrm{I}_{\text {CCFL }}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{VC}}=0 \mu \mathrm{~A}$ at $\mathrm{CCFL} \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	0.93	1.00	1.07	A
	CCFL High-Side Sense Servo Current Line Regulation	$\begin{aligned} & B A T=5 \mathrm{~V} \text { to } 30 \mathrm{~V}, I_{\mathrm{CCFL}}=100 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{VC}}=0 \mu \mathrm{~A} \text { at } \mathrm{CCFL} \mathrm{~V}_{\mathrm{C}}=1.5 \mathrm{~V} \end{aligned}$			0.1	0.16	\%/V
	CCFL High-Side Sense Supply Current	Current Measured into BAT and Royer Pins	\bullet	50	100	150	$\mu \mathrm{A}$
	Bulb Protect Servo Voltage	$\begin{aligned} & I_{\text {CCFL }}=100 \mu A, I_{\text {VC }}=0 \mu A \text { at } C C F L V_{C}=1.5 \mathrm{~V}, \\ & \text { Servo Voltage Measured Between BAT and Bulb Pins } \end{aligned}$	\bullet	6.5	7.0	7.5	V
	Bulb Input Bias Current	$I_{\text {CCFL }}=100 \mu A, I_{V C}=0 \mu A$ at CCFL $V_{C}=1.5 \mathrm{~V}$			5	9	$\mu \mathrm{A}$
ILIM1	CCFL Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=75 \% \text { (Note 3) } \end{aligned}$	\bullet	$\begin{gathered} 1.25 \\ 0.9 \end{gathered}$	$\begin{aligned} & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$	A
$\mathrm{V}_{\text {SAT1 }}$	CCFL Switch On-Resistance	CCFL $\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		0.6	1.0	Ω
$\frac{\Delta \mathrm{I}_{Q}}{\Delta \mathrm{I}_{\mathrm{SW} 1}}$	Supply Current Increase During CCFL Switch On-Time	CCFL I ${ }_{\text {SW }}=1 \mathrm{~A}$			20	30	mA/A
$V_{\text {REF }}$	Reference Voltage	Measured at REF (Pin 11) on LT1183/LT1184/LT1184F	\bullet	$\begin{aligned} & 1.224 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.264 \\ & 1.274 \end{aligned}$	V
	Reference Output Impedance	Measured at REF (Pin 11) on LT1183 Measured at REF (Pin 11) on LT1184/LT1184F	\bullet	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 45 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 30 \end{aligned}$	Ω Ω

: LECTRICAL CHARACTERISTICS

$A=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=5 \mathrm{~V}$, BAT $=$ Royer $=$ Bulb $=12 \mathrm{~V}, \mathrm{I}_{\text {CCFL }}=\overline{\text { SHUTDOWN }}=$ CCFL $\mathrm{V}_{\text {SW }}=$ Open, DIO $=$ GND, CCFL $V_{C}=0.5 \mathrm{~V}$, $. T 1182 / L T 1183$) LCD $V_{C}=0.5 V$, LCD $V_{S W}=$ Open, (LT1182) FBN $=F B P=G N D$, (LT1183) FB = GND, -T1183/LT1184/LT1184F) REF = Open, unless otherwise specified.

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	$\mathrm{V}_{\text {REF }}-I_{\text {CCFL }}$ Summing Voltage	Measured on LT1183	-	$\begin{aligned} & 0.760 \\ & 0.725 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 0.795 \end{aligned}$	$\begin{aligned} & 0.830 \\ & 0.865 \end{aligned}$	V
	$\mathrm{V}_{\text {REF }}-I_{\text {CCFL }}$ Summing Voltage	Measured on LT1184/LT1184F	-	$\begin{aligned} & 0.740 \\ & 0.705 \end{aligned}$	$\begin{aligned} & 0.775 \\ & 0.775 \end{aligned}$	$\begin{aligned} & 0.810 \\ & 0.845 \end{aligned}$	V
EF1	LCD FBP/FB Reference Voltage	LT1182: Measured at FBP Pin, FBN $=1 \mathrm{~V}, \mathrm{LCD} \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$ LT1183: Measured at FB Pin, LCD $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & \hline 1.224 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.264 \\ & 1.274 \end{aligned}$	V
	REF1 Voltage Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$, LCD $\mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.03	\%/V
	FBP/FB Input Bias Current	LT1182: FBP $=$ REF1, FBN $=1 \mathrm{~V}, \mathrm{LCD} V_{C}=0.8 \mathrm{~V}$ LT1183: FB $=$ REF1, LCD V $V_{C}=0.8 \mathrm{~V}$	\bullet		0.35	1.0	$\mu \mathrm{A}$
	LCD FBN/FB Offset Voltage	LT1182: Measured at FBN Pin, FBP $=0 \mathrm{~V}, \mathrm{LCD} \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$ LT1183: Measured at FB Pin, LCD $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & -20 \\ & -27 \end{aligned}$	$\begin{aligned} & -12 \\ & -12 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -1 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Offset Voltage Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$, LCD $\mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	-		0.01	0.2	\%/V
	FBN/FB Input Bias Current	LT1182: FBN $=$ Offset Voltage, FBP $=0 \mathrm{~V}, \mathrm{LCD} \mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$ LT1183: FB $=$ Offset Voltage, LCD $V_{C}=0.8 \mathrm{~V}$	\bullet	-3.0	-1.0		$\mu \mathrm{A}$
n	FBP/FB to LCD V ${ }_{\text {c }}$ Transconductance	LT1182: $\Delta l_{\mathrm{VC}}= \pm 25 \mu \mathrm{~A}, \mathrm{FBN}=1 \mathrm{~V}$ LT1183: $\Delta l_{V C}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 650 \\ & 500 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & 1150 \\ & 1300 \end{aligned}$	$\mu \mathrm{mhos}$ $\mu \mathrm{mhos}$
	FBN/FB to LCD V ${ }_{\text {C }}$ Transconductance	LT1182: $\Delta l_{V C}= \pm 25 \mu A, F B P=G N D$ LT1183: $\Delta l_{\mathrm{VC}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 550 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & 1050 \\ & 1200 \\ & \hline \end{aligned}$	$\mu \mathrm{mhos}$ $\mu \mathrm{mhos}$
	LCD Error Amplifier Source Current	$\begin{aligned} & \text { LT1182: FBP }=F B N=1 V \text { or } 0.25 \mathrm{~V} \text {, } \\ & L T 1183: F B=1 V \text { or } 0.25 \mathrm{~V} \end{aligned}$	-	50	100	175	$\mu \mathrm{A}$
	LCD Error Amplifier Sink Current	LT1182: $\mathrm{FBP}=\mathrm{FBN}=1.5 \mathrm{~V}$ or -0.25 V , LT1183: $\mathrm{FB}=1.5 \mathrm{~V}$ or -0.25 V	-	35	100	175	$\mu \mathrm{A}$
	LCD V ${ }_{\text {c }}$ Low Clamp Voltage	LT1182: FBP $=$ FBN $=1.5 \mathrm{~V}, \mathrm{LT1183}$: $\mathrm{FB}=1.5 \mathrm{~V}$			0.01	0.3	V
	LCD V ${ }_{\text {c }}$ High Clamp Voltage	LT1182: FBP = FBN = 1V, LT1183: FB = 1V		1.7	2.0	2.4	V
	LCD V ${ }_{\text {c }}$ Switching Threshold	LT1182: FBP $=$ FBN = 1V, LT1183: FB $=1 \mathrm{~V}, \mathrm{~V}_{\text {SW }}$ DC $=0 \%$		0.6	0.95	1.3	V
IM2	LCD Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=75 \% \text { (Note 3) } \end{aligned}$	\bullet	$\begin{aligned} & 0.625 \\ & 0.400 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.85 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \\ & \hline \end{aligned}$	A
3 AT2	LCD Switch On-Resistance	LCD ISW $=0.5 \mathrm{~A}$	\bullet		1.0	1.65	Ω
$\frac{\mathrm{s}_{\mathrm{Q}}}{\mathrm{sw} 2}$	Supply Current Increase During LCD Switch On-Time	LCD $I_{\text {SW }}=0.5 \mathrm{~A}$			20	30	mA / A
	Switch Minimum On-Time	Measured at CCFL $\mathrm{V}_{\text {SW }}$ and LCD $\mathrm{V}_{\text {SW }}$			0.45		$\mu \mathrm{S}$

ie - denotes specifications which apply over the specified operating mperature range.
Jte 1 : T_{J} is calculated from the ambient temperature T_{A} and power ssipation P_{D} according to the following formula:
${ }^{-1182 C S} / L T 1183 C S / L T 1184 C S / L T 1184 F C S: ~ T_{J}=T_{A}+\left(P_{D} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)$

Note 2: Does not include switch leakage.
Note 3: For duty cycles (DC) between 50% and 75%, minimum guaranteed switch current is given by $\mathrm{L}_{\mathrm{LIM}}=1.4(1.393-\mathrm{DC})$ for the CCFL regulator and $\mathrm{LIM}_{\mathrm{L}}=0.7(1.393-\mathrm{DC})$ for the LCD contrast regulator due to internal slope compensation circuitry.

TYPICAL PERFORMANCE CHARACTERISTICS

-YPICAL PERFORmANCE CHARACTERISTICS

LT1182•G10
\triangle CCFL V_{C} Source Current for $\Delta_{C C F L}$ Programming Current vs Temperature

LT1182•G13
CCFL V ${ }_{C}$ to DIO Current Servo Ratio vs Temperature

ICCFL Summing Voltage Load Regulation

LT1182-611

Positive DIO Voltage vs Temperature

LT1182•G14
CCFL $V_{\text {C }}$ Low Clamp Voltage vs Temperature

CCFL V_{C} Offset Sink Current vs Temperature

LT1182•G12

LT1182•G15
CCFL V ${ }_{\text {C }}$ High Clamp Voltage vs Temperature

TYPICAL PGRFORmANCE CHARACTERISTICS

זYPICAL PERFORMAOCG CHARACTGRISTICS

LT1182•G28

FBN to LCD V_{C} Transconductance vs Temperature

LT1182•G34

FBP Reference Voltage Line Regulation vs Temperature

LT1182•G29
FBN Input Bias Current vs Temperature

LT1182•G32
LT1183 REF Output Impedance vs Temperature

FBP Input Bias Current vs Temperature

LT1182•G30
FBP to LCD V ${ }_{\text {C }}$ Transconductance vs Temperature

LT1182•633
LT1184/84F REF Output Impedance vs Temperature

LT1182/LT1183/LT1184/LT1184F

TYPICAL PERFORMAOCE CHARACTERISTICS

LCD V $_{\text {Sw }}$ Sat Voltage vs Switch Current

CCFL $\mathrm{V}_{\text {SW }}$ Current Limit vs Duty Cycle

LCD V ${ }_{\text {SW }}$ Current Limit

 vs Duty Cycle

LT1182•G40

Forced Beta vs Isw $_{\text {on }}$ LCD V $_{\text {Sw }}$

PIn functions

LT1182/LT1183/LT1184/LT1184F

CCFL PGND (Pin 1): This pin is the emitter of an internal NPN power switch. CCFL switch current flows through this pin and permits internal, switch-current sensing. The regulators provide a separate analog ground and power ground(s) to isolate high current ground paths from low current signal paths. Linear Technology recommends the use of star-ground layout techniques.
$I_{\text {CCFL }}$ (Pin 2): This pin is the input to the CCFL lamp current programming circuit. This pin internally regulates to 450 mV (LT1182/LT1183) or 465mV (LT1184/LT1184F). The pin accepts a DC input current signal of $0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ full scale. This input signal is converted to a $0 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ source current at the CCFL V_{C} pin. By shunt regulating the $I_{\text {CCFL }}$ pin, the input programming current can be set with DAC, PWM or potentiometer control. As input programming current increases, the regulated lamp current increases. For a typical 6 mA lamp, the range of input programming current is about $0 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$.

DIO (Pin 3): This pin is the common connection between the cathode and anode of two internal diodes. The remaining terminals of the two diodes connect to ground. In a grounded lamp configuration, DIO connects to the low voltage side of the lamp. Bidirectional lamp current flows in the DIO pin and thus the diodes conduct alternately on half cycles. Lamp current is controlled by monitoring onehalf of the average lamp current. The diode conducting on negative half cycles has one-tenth of its current diverted to the CCFL V_{C} pin. This current nulls against the source current provided by the lamp-current programmer circuit. A single capacitor on the CCFL V_{C} pin provides both stable loop compensation and an averaging function to the half-wave-rectified sinusoidal lamp current. Therefore, input programming current relates to one-half of average lamp surrent. This scheme reduces the number of loop compensation components and permits faster loop transient response in comparison to previously published circuits. If a floating-lamp configuration is used, ground the DIO jin.
CCFL V_{C} (Pin 4): This pin is the output of the lamp current orogrammer circuit and the input of the current compara-
tor for the CCFL regulator. Its uses include frequency compensation, lamp-current averaging for grounded lamp circuits, and current limiting. The voltage on the CCFL V_{C} pin determines the current trip level for switch turnoff. During normal operation this pin sits at a voltage between 0.95 V (zero switch current) and 2.0 V (maximum switch current) with respect to analog ground (AGND). This pin has a high impedance output and permits external voltage clamping to adjust current limit. A single capacitor to ground provides stable loop compensation. This simplified loop compensation method permits the CCFL regulator to exhibit single-pole transient response behavior and virtually eliminates transformer output overshoot.
AGND (Pin 5): This pin is the low current analog ground. It is the negative sense terminal for the internal 1.24 V reference and the $\mathrm{I}_{\text {CCFL }}$ summing voltage in the LT1182/ LT1183/LT1184/LT1184F. It is also a sense terminal for the LCD dual input error amplifier in the LT1182/LT1183. Connect external feedback divider networks that terminate to ground and frequency compensation components that terminate to ground directly to this pin for best regulation and performance.
$\overline{\text { SHUTDOWN }}$ (Pin 6): Pulling this pin low causes complete regulator shutdown with quiescent current typically reduced to $35 \mu \mathrm{~A}$. The nominal threshold voltage for this pin is 0.85 V . If the pin is not used, it can float high or be pulled to a logic high level (maximum of 6V). Carefully evaluate active operation when allowing the pin to float high. Capacitive coupling into the pin from switching transients could cause erratic operation.
CCFL $V_{\text {SW }}$ (Pin 16): This pin is the collector of the internal NPN power switch for the CCFL regulator. The power switch provides a minimum of 1.25A. Maximum switch current is a function of duty cycle as internal slope compensation ensures stability with duty cycles greater than 50%. Using a driver loop to automatically adapt base drive current to the minimum required to keep the switch in a quasi-saturation state yields fast switching times and high efficiency operation. The ratio of switch current to driver current is about 50:1.

PIn functions

Bulb (Pin 15): This pin connects to the low side of a 7 V threshold comparator between the BAT and Bulb pins. This circuit sets the maximum voltage level across the primary side of the Royer converter under all operating conditions and limits the maximum secondary output under start-up conditions or open lamp conditions. This eases transformer voltage rating requirements. Set the voltage limit to insure lamp start-up with worst-case, lamp start voltages and cold-temperature system operating conditions. The Bulb pin connects to the junction of an external divider network. The divider network connects from the center tap of the Royer transformer or the actual battery supply voltage to the top side of the current source "tail inductor". A capacitor across the top of the divider network filters switching ripple and sets a time constant that determines how quickly the clamp activates. When the comparator activates, sink current is generated to pull the CCFL V_{C} pin down. This action transfers the entire regulator loop from current mode operation into voltage mode operation.
BAT (Pin 14): This pin connects to the battery or battery charger voltage from which the CCFL Royer converter and LCD contrast converter operate. This voltage is typically higher than the $\mathrm{V}_{\mathbb{I N}}$ supply voltage but can be equal or less than V_{IN}. However, the BAT voltage must be at least 2.1 V greater than the internal 2.4 V regulator or 4.5 V minimum up to 30 V maximum. This pin provides biasing for the lamp current programming block, is used with the Royer pin for floating lamp configurations, and connects to one input for the open lamp protection circuitry. For floating lamp configurations, this pin is the noninverting terminal of a high-side current sense amplifier. The typical quiescent current is $50 \mu \mathrm{~A}$ into the pin. The BAT and Royer pins monitor the primary side Royer converter current through an internal 0.1Ω top side current sense resistor. A0A to 1 A primary side, center tap converter current is translated to an input signal range of 0 mV to 100 mV for the current sense amplifier. This input range translates to a $0 \mu \mathrm{~A}$ to $500 \mu A$ sink current at the CCFL V_{C} pin that nulls against the source current provided by the programmer circuit. The BAT pin also connects to the top side of an internal clamp between the BAT and Bulb pins.

Royer (Pin 13): This pin connects to the center-tapped primary of the Royer converter and is used with the BAT pin in a floating lamp configuration where lamp current is controlled by sensing Royer primary side converter current. This pin is the inverting terminal of a high-side current sense amplifier. The typical quiescent current is $50 \mu \mathrm{~A}$ into the pin. If the CCFL regulator is not used in a floating lamp configuration, tie the Royer and BAT pins together. This pin is only available on the LT1182/LT1183/ LT1184F.
$\mathbf{V}_{\text {IN }}$ (Pin 12): This pin is the supply pin for the LT1182/ LT1183/LT1184/LT1184F. The ICs accept an input voltage range of 3 V minimum to 30 V maximum with little change in quiescent current (zero switch current). An internal, low dropout regulator provides a 2.4 V supply for most of the internal circuitry. Supply current increases as switch current increases at a rate approximately $1 / 50$ of switch current. This corresponds to a forced Beta of 50 for each switch. The ICs incorporate undervoltage lockout by sensing regulator dropout and lockout switching for input voltages below 2.5 V . Hysteresis is not used to maximize the useful range of input voltage. The typical input voltage is a 3.3 V or 5 V logic supply.

LT1182/LT1183

LCD \mathbf{V}_{C} (Pin 7): This pin is the output of the LCD contrast error amplifier and the input of the current comparator for the LCD contrast regulator. Its uses include frequency compensation and current limiting. The voltage on the LCD V_{C} pin determines the current trip level for switch turnoff. During normal operation, this pin sits at a voltage between 0.95 V (zero switch current) and 2.0 V (maximum switch current). The LCD V_{C} pin has a high impedance output and permits external voltage clamping to adjust current limit. A series R/C network to ground provides stable loop compensation.

LCD PGND (Pin 8): This pin is the emitter of an internal NPN power switch. LCD contrast switch current flows through this pin and permits internal, switch-current sensing. The regulators provide a separate analog ground and power ground(s) to isolate high current ground paths from low current signal paths. Linear Technology recommends star-ground layout techniques.

गIn functions

.CD V_{sw} (Pin 9): This pin is the collector of the internal JPN power switch for the LCD contrast regulator. The rower switch provides a minimum of 625 mA . Maximum iwitch current is a function of duty cycle as internal slope :ompensation ensures stability with duty cycles greater han 50%. Using a driver loop to automatically adapt base Irive current to the minimum required to keep the switch n a quasi-saturation state yields fast switching times and ligh efficiency operation. The ratio of switch current to Iriver current is about 50:1.

.T1182

:BN (Pin 10): This pin is the noninverting terminal for the legative contrast control error amplifier. The inverting erminal is offset from ground by -12 mV and defines the :rror amplifier output state under start-up conditions. The BN pin acts as a summing junction for a resistor divider letwork. Input bias current for this pin is typically $1 \mu \mathrm{~A}$ lowing out of the pin. If this pin is not used, force FBN to reater than 0.5 V to deactivate the negative contrast :ontrol input stage. The proximity of FBN to the LCD $V_{S W}$ in makes it sensitive to ringing on the switch pin. A small apacitor ($0.01 \mu \mathrm{~F}$) from FBN to ground filters switching ipple.
BP (Pin 11): This pin is the inverting terminal for the ositive contrast control error amplifier. The noninverting erminal is tied to an internal 1.244 V reference. Input bias urrent for this pin is typically $0.5 \mu \mathrm{~A}$ flowing into the pin. fthis pin is not used, ground FBP to deactivate the positive ontrast control input stage. The proximity of FBP to the CD $V_{\text {SW }}$ pin makes it sensitive to ringing on the switch in. A small capacitor $(0.01 \mu \mathrm{~F})$ from FBP to ground filters witching ripple.

T1183

B (Pin 10): This pin is the common connection between ne noninverting terminal for the negative contrast error
amplifier and the inverting terminal for the positive-contrasterror amplifier. In comparison to the LT1182, the FBN and the FBP pins tie together and come out as one pin. This scheme permits one polarity of contrast to be regulated. The proximity of FB to the $\mathrm{LCD} \mathrm{V}_{\text {SW }}$ pin makes it sensitive to ringing on the switch pin. A small capacitor $(0.01 \mu \mathrm{~F})$ from FB to ground filters switching ripple.
The FB pin requires attention to start-up conditions when generating negative contrast voltages. The pin has two stable operating points; regulating to 1.244 V for positive contrast voltages or regulating to -12 mV for negative contrast voltages. Under start-up conditions, the FB pin heads to a positive voltage. If negative contrast voltages are generated, tie a diode from the FB pin to ground. This ensures that the FB pin will clamp before reaching the positive reference voltage. Switching action then pulls the FB pin back to its normal servo voltage.

LT1183/LT1184/LT1184F

REF (Pin 11): This pin brings out the 1.244 V reference. Its functions include the programming of negative contrast voltages with an external resistor divider network (LT1183 only) and the programming of lamp current for the ICCFL pin. LTC does not recommend using the REF pin for both functions at once. The REF pin has a typical output impedance of 45Ω on the LT1183 and a typical output impedance of 15Ω on the LT1184/LT1184F. Reference load current should be limited to a few hundred microamperes, otherwise reference regulation will be degraded. REF is used to generate the maximum programming current for the I ${ }_{\text {CcFL }}$ pin by placing a resistor between the pins. PWM or DAC control subtracts from the maximum programming current. Asmall decoupling capacitor (0.1uF) is recommended to filter switching transients.

LT1182/LT1183/LT1184/LT1184F

BLOCK DIAGRAM

LT1182/LT1183 CCFL/LCD Contrast Regulator Top Level Block Diagram

BLOCK DIAGRAM

LT1184/LT1184F CCFL Regulator Top Level Block Diagram

APPLICATIONS INFORMATION

Introduction

Jurrent generation portable computers and instruments ıse backlit Liquid Crystal Displays (LCDs). These displays also appear in applications extending to medical equipnent, automobiles, gas pumps, and retail terminals. Cold Jathode Fluorescent Lamps (CCFLs) provide the highest available efficiency in backlighting the display. Providing :he most light out for the least amount of input power is the nost important goal. These lamps require high voltage AC :o operate, mandating an efficient high voltage DC/AC
converter. The lamps operate from DC, but migration effects damage the lamp and shorten its lifetime. Lamp drive should contain zero DC component. In addition to good efficiency, the converter should deliver the lamp drive in the form of a sine wave. This minimizes EMI and RF emissions. Such emissions can interfere with other devices and can also degrade overall operating efficiency. Sinusoidal CCFL drive maximizes current-to-light conversion in the lamp. The circuit should also permit lamp intensity control from zero to full brightness with no hysteresis or "pop-on".

APPLLCATIONS InFORMATION

Manufacturers offer a wide array of monochrome and color displays. LCD display types include passive matrix and active matrix. These displays differ in operating voltage polarity (positive and negative contrast voltage displays), operating voltage range, contrast adjust range, and power consumption. LCD contrast supplies must regulate, provide output adjustment over a significant range, operate over a wide input voltage range, and provide load currents from milliamps to tens of milliamps.
The small size and battery-powered operation associated with LCD equipped apparatus dictate low component count and high efficiency for these circuits. Size constraints place severe limitations on circuit architecture and long battery life is a priority. Laptop and handheld portable computers offer an excellent example. The CCFL and its power supply are responsible for almost 50% of the battery drain. Displays found in newer color machines can have a contrast power supply battery drain as high as 20%.
Additionally, all components including PC board and hardware, usually must fit within the LCD enclosure with a height restriction of 5 mm to 10 mm .

The CCFL switching regulator in the LT1182/LT1183/ LT1184/LT1184F typically drives an inductor that acts as a switched mode current source for a current driven Royer class converter with efficiencies as high as 90%. The control loop forces the regulator to pulse-width modulate the inductor's average current to maintain constant current in the lamp. The constant current's value, and thus lamp intensity is programmable. This drive technique provides a wide range of intensity control. A unique lamp current programming block permits either groundedlamp or floating-lamp configurations. Grounded-lamp circuits directly control one-half of actual lamp current. Floating-lamp circuits directly control the Royer's primary side converter current. Floating-lamp circuits provide differential drive to the lamp and reduce the loss from stray lamp-to-frame capacitance, extending illumination range.

The LCD contrast switching regulator in the LT1182/ LT1183 is typically configured as a flyback converter and generates a bias supply for contrast control. Other topology choices for generating the bias supply include a boost converter or a boost/charge pump converter. The supply's variable output permits adjustment of contrast for the
majority of available displays. Some newer types of displays require a fairly constant supply voltage and provide contrast adjustmentthrough a digital control pin. A unique, dual polarity, error amplifier and the selection of a flyback converter topology allow either positive or negative LCD contrast voltages to be generated with minor circuit changes. The difference between the LT1182 and LT1183 is found in the pinout for the inputs of the LCD contrast error amplifier. The LT1182 brings out the error amplifier inputs individually for setting up positive and negative polarity contrast capability. This feature allows an output connector to determine the choice of contrast operating polarity by a ground connection. The LT1183 ties the error amplifier inputs together and brings out an internal reference. The reference may be used in generating negative contrast voltages or in programming lamp current.

Block Diagram Operation

The LT1182/LT1183/LT1184/LT1184F are fixed frequency, current mode switching regulators. Fixed frequency, current mode switchers control switch duty cycle directly by switch current rather than by output voltage. Referring to the block diagram for the LT1182/LT1183, the switch for each regulator turns ON atthe start of each oscillator cycle. The switches turn OFF when switch current reaches a predetermined level. The operation of the CCFL regulator in the LT1184/LT1184F is identical to that in the LT1182/ LT1183. The control of output lamp current is obtained by using the output of a unique programming block to set current trip level. The contrast voltage is controlled by the output of a dual-input-stage error amplifier, which sets current trip level. The current mode switching technique has several advantages. First, it provides excellent rejection of input voltage variations. Second, it reduces the 90° phase shift at mid-frequencies in the energy storage inductor. This simplifies closed-loop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or short-circuit conditions.
The LT1182/LT1183/LT1184/LT1184F incorporate a low dropout internal regulator that provides a 2.4 V supply for most of the internal circuitry. This low dropout design allows input voltage to vary from 3 V to 30 V with little

APPLLCATIONS INFORMATION

change in quiescent current. An active low shutdown pin typically reduces total supply current to $35 \mu \mathrm{~A}$ by shutting off the 2.4 V regulator and locking out switching action for standby operation. The ICs incorporate undervoltage lockout by sensing regulator dropout and locking out switching below about 2.5 V . The regulators also provide thermal shutdown protection that locks out switching in the presence of excessive junction temperatures.
A 200kHz oscillator is the basic clock for all internaltiming. The oscillator turns on an output via its own logic and driver circuitry. Adaptive anti-sat circuitry detects the onset of saturation in a power switch and adjusts base drive current instantaneously to limit switch saturation. This minimizes driver dissipation and provides rapid turnoff of the switch. The CCFL power switch is guaranteed to provide a minimum of 1.25 A in the LT1182/LT1183/ LT1184/LT1184F and the LCD power switch is guaranteed to provide a minimum of 0.625 A in the LT1182/LT1183. The anti-sat circuitry provides a ratio of switch current to driver current of about 50:1.

Simplified Lamp Current Programming

A programming block in the LT1182/LT1183/LT1184/ LT1184Fcontrols lamp current, permitting either groundedlamp or floating-lamp configurations. Grounded configurations control lamp current by directly controlling onehalf of actual lamp current and converting it to a feedback signal to close a control loop. Floating configurations control lamp current by directly controlling the Royer's primary side converter current and generating a feedback signal to close a control loop.
Previous backlighting solutions have used a traditional error amplifier in the control loop to regulate lamp current. This approach converted an RMS current into a DC voltage for the input of the error amplifier. This approach used several time constants in order to provide stable loop frequency compensation. This compensation scheme meant that the loop had to be fairly slow and that output overshoot with startup or overload conditions had to be carefully evaluated in terms of transformer stress and breakdown voltage requirements.

The LT1182/LT1183/LT1184/LT1184F eliminate the error amplifier concept entirely and replace it with a lamp
current programming block. This block provides an easy-to-use interface to program lamp current. The programmer circuit also reduces the number of time constants in the control loop by combining the error signal conversion scheme and frequency compensation into a single capacitor. The control loop thus exhibits the response of a single pole system, allows for faster loop transient response and virtually eliminates overshoot under startup or overload conditions.

Lamp current is programmed at the input of the programmer block, the $I_{\text {CCFL }}$ pin. This pin is the input of a shunt regulator and accepts a DC input current signal of $0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$. This input signal is converted to a $0 \mu \mathrm{~A}$ to 500 u A source current at the CCFLV V_{C} pin. The programmer circuit is simply a current-to-current converter with a gain of five. By regulating the $\mathrm{I}_{\text {CCFL }}$ pin, the input programming current can be set with DAC, PWM or potentiometer control. The typical input current programming range for 0 mA to 6 mA lamp current is $0 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$.

The $I_{\text {CCFL }}$ pin is sensitive to capacitive loading and will oscillate with capacitance greater than 10 pF . For example, loading the ICCFL pin with a $1 \times$ or $10 \times$ scope probe causes oscillation and erratic CCFL regulator operation because of the probe's respective input capacitance. A current meter in series with the ICCFL pin will also produce oscillation due to its shunt capacitance. Use a decoupling resistor of several kilo-ohms between the $I_{\text {CCFL }}$ pin and the control circuitry if excessive stray capacitance exists. This is basically free with potentiometer or PWM control as these control schemes use resistors. A current output DAC should use an isolating resistor as the DAC can have significant output capacitance that changes as a function of input code.

Grounded-Lamp Configuration

In a grounded-lamp configuration, the low voltage side of the lamp connects directly to the LT1182/LT1183/LT1184/ LT1184F DIO pin. This pin is the common connection between the cathode and anode of two internal diodes. In previous grounded-lamp solutions, these diodes were discrete units and are now integrated onto the IC, saving cost and board space. Bi-directional lamp current flows in the DIO pin and thus, the diodes conduct alternately on half

applications information

cycles. Lamp current is controlled by monitoring one-half of the average lamp current. The diode conducting on negative half cycles has one-tenth of its current diverted to the CCFL pin and nulls against the source current provided by the lamp current programmer circuit. The compensation capacitor on the CCFL V_{C} pin provides stable loop compensation and an averaging function to the rectified sinusoidal lamp current. Therefore, input programming current relates to one-half of average lamp current.
The transfer function between lamp current and input programming current must be empirically determined and is dependent on the particular lamp/display housing combination used. The lamp and display housing are a distributed loss structure due to parasitic lamp-to-frame capacitance. This means that the current flowing at the high voltage side of the lamp is higher than what is flowing at the DIO pin side of the lamp. The input programming current is set to control lamp current at the high voltage side of the lamp, even though the feedback signal is the lamp current at the bottom of the lamp. This insures that the lamp is not overdriven which can degrade the lamp's operating lifetime.

Floating-Lamp Configuration

In a floating-lamp configuration, the lamp is fully floating with no galvanic connection to ground. This allows the transformer to provide symmetric, differential drive to the lamp. Balanced drive eliminates the field imbalance associated with parasitic lamp-to-frame capacitance and reduces "thermometering" (uneven lamp intensity along the lamp length) at low lamp currents.

Carefully evaluate display designs in relation to the physical layout of the lamp, it leads and the construction of the display housing. Parasitic capacitance from any high voltage point to DC or AC ground creates paths for unwanted current flow. This parasitic current flow degrades electrical efficiency and losses up to 25% have been observed in practice. As an example, at a Royer operating frequency of $60 \mathrm{kHz}, 1 \mathrm{pF}$ of stray capacitance represents an impedance of $2.65 \mathrm{M} \Omega$. With an operating lamp voltage of 400 V and an operating lamp current of 6 mA , the parasitic current is $150 \mu \mathrm{~A}$. The efficiency loss is 2.5\%. Layout techniques that increase parasitic capaci-
tance include long high voltage lamp leads, reflective metal foil around the lamp, and displays supplied in metal enclosures. Losses for a good display are under 5\% whereas losses for a bad display range from 5% to 25%. Lossy displays are the primary reason to use a floatinglamp configuration. Providing symmetric, differential drive to the lamp reduces the total parasitic loss by one-half.

Maintaining closed-loop control of lamp current in a floating lamp configuration now necessitates deriving a feedback signal from the primary side of the Royer transformer. Previous solutions have used an external precision shunt and high side sense amplifier configuration. This approach has been integrated onto the LT1182/ LT1183/LT1184F for simplicity of design and ease of use. An internal 0.1 W resistor monitors the Royer converter current and connects between the input terminals of a high-side sense amplifier. A 0A to 1A Royer primary side, center tap current is translated to a $0 \mu \mathrm{~A}$ to 500 uA sink current at the CCFL V_{C} pin to null against the source current provided by the lamp current programmer circuit. The compensation capacitor on the CCFL V_{C} pin provides stable loop compensation and an averaging function to the error sink current. Therefore, input programming current is related to average Royer converter current. Floatinglamp circuits operate similarly to grounded-lamp circuits, except for the derivation of the feedback signal.
The transfer function between primary side converter current and input programming current must be empirically determined and is dependent upon a myriad of factors including lamp characteristics, display construction, transformer turns ratio, and the tuning of the Royer oscillator. Once again, lamp current will be slightly higher at one end of the lamp and input programming current should be set for this higher level to insure that the lamp is not overdriven.

The internal 0.1Ω high-side sense resistor on the LT1182/ LT1183/LT1184F is rated for a maximum DC current of 1 A . However, this resistor can be damaged by extremely high surge currents at start-up. The Royer converter typically uses a few microfarads of bypass capacitance at the center tap of the transformer. This capacitor charges up when the system is first powered by the battery pack or an AC wall adapter. The amount of current delivered at start-up can be

APPLICATIONS INFORMATION

very large if the total impedance in this path is small and the voltage source has high current capability. Linear Technology recommends the use of an aluminum electrolytic for the transformer center tap bypass capacitor with an ESR greater than or equal to 0.5Ω. This lowers the peak surge currents to an acceptable level. In general, the wire and trace inductance in this path also help reduce the di/ dt of the surge current. This issue only exists with floating lamp circuits as grounded-lamp circuits do not make use of the high-side sense resistor.

Optimizing Optical Efficiency vs Electrical Efficiency

Evaluating the performance of an LCD backlight requires the measurement of both electrical and photometric efficiencies. The best optical efficiency operating point does not necessarily correspond to the best electrical efficiency. However, these two operating points are generally close. The desired goal is to maximize the amount of light out for the least amount of input power. It is possible to construct backlight circuits that operate with over 90% electrical efficiency, but produce significantly less light output than circuits that operate at 80% electrical efficiency.
The best electrical efficiency typically occur's just as the CCFL's transformer drive waveforms begin to exhibit artifacts of higher order harmonics reflected back from the Royer transformer secondary. Maximizing electrical efficiency equates to smaller values for the Royer primary side, resonating capacitor and larger values for the Royer secondary side ballast capacitor. The best optical efficiency occurs with nearly ideal sinusoidal drive to the lamp. Maximizing optical efficiency equates to larger values for the Royer primary side resonating capacitor and smaller values for the Royer secondary side ballast capacitor. The preferred operating point for the CCFL converter is somewhere in between the best electrical efficiency and the best optical efficiency. This operating point maximizes photometric output per watt of input power.
Making accurate and repeatable measurements of electrical and optical efficiency is difficult under the best circumstances. Requirements include high voltage measurements and equipment specified for this operation, special-
ized calibrated voltage and current probes, wideband RMS voltmeters, a photometer, and a calorimeter (for the backlight enthusiast). Linear Technology's Application Note 55 and Design Note 101 contain detailed information regarding equipment needs.

Input Supply Voltage Operating Range

The backlight/LCD contrast control circuits must operate over a wide range of input supply voltage and provide excellent line regulation for the lamp current and the contrast output voltage. This range includes the normal range of the battery pack itself as well as the AC wall adapter voltage, which is normally much higher than the maximum battery voltage. A typical input supply is 7 V to 28 V ; a 4 to 1 supply range.
Operation of the CCFL control circuitry from the AC wall adapter generates the worst-case stress for the CCFL transformer. Evaluations of loop compensation for overshoot on startup transients and overload conditions are essential to avoid destructive arcing, overheating, and transformer failure. Open-lamp conditions force the Royer converter to operate open-loop. Component stress is again worst-case with maximum input voltage conditions. The LT1182/LT1183/LT1184/LT1184F open-lamp protection clamps the maximum transformer secondary voltage to safe levels and transfers the regulator loop from current mode operation into voltage mode operation. Other fault conditions include board shorts and component failures. These fault conditions can increase primary side currents to very high levels, especially at maximum input voltage conditions. Solutions to these fault conditions include electrical and thermal fuses in the supply voltage trace.
Improvements in battery technology are increasing battery lifetimes and decreasing battery voltages required by the portable systems. However, operation at reduced battery voltages requires higher, turns-ratio transformers for the CCFL to generate equivalent output drive capability. The penalty incurred with high ratio transformers is higher, circulating currents acting on the same primary side components. Loss terms increase and electrical efficiency often decreases.

APPLICATIONS InFORMATION

Size Constraints

Tighter length, width, and height constraints for CCFL and LCD contrast control circuitry are the result of LCD display enclosure sizes remaining fairly constant while display screen sizes have increased. Space requirements for connector hardware include the input power supply and control signal connector, the lamp connector, and the contrast output voltage connector.
Even though size requirements are shrinking, the high voltage AC required to drive the lamp has not decreased. In some cases, the use of longer bulbs for color, portable equipment has increased the high voltage requirement. Accommodating the high voltage on the circuit board dictates certain layout spacings and routings, involves providing creepages and clearances in the transformer design, and most importantly, involves routing a hole underneath the CCFL transformer. Routing this hole minimizes high voltage leakage paths and prevents moisture buildup that can result in destructive arcing. In addition to high voltage layout techniques, use appropriate layout techniques for isolating high current paths from lowcurrent signal paths.
This leaves the remaining space for control circuitry at a premium. Minimum component count is required and minimum size for the components used is required. This squeeze on component size is often in direct conflict with the goals of maximizing battery life and efficiency. Compromise is often the only remaining choice.

LCD Contrast Circuits

The LCD contrast switching regulator on the LT1182/ LT1183 operates in many standard switching configurations and is used as a classic $D C / D C$ converter. The dual-input-stage error amplifier easily regulates either positive or negative contrast voltages. Topology choices for the converter include single inductor and transformer-based solutions. The switching regulator operates equally well either in continuous mode or discontinuous mode. Efficiencies for LCD contrast circuits range from 75% to 85% and depend on the total power drain of the particular display. Adjustment control of the LCD contrast voltage is provided by either potentiometer, PWM, or DAC control.

Applications Support

Linear Technology invests an enormous amount of time, resources, and technical expertise in understanding, designing and evaluating backlight/LCD contrast solutions for system designers. The design of an efficient and compact LCD backlight system is a study of compromise in a transduced electronic system. Every aspect of the design is interrelated and any design change requires complete re-evaluation for all other critical design parameters. Linear Technology has engineered one of the most complete test and evaluation setups for backlight designs and understands the issues and tradeoffs in achieving a compact, effficient and economical customer solution. Linear Technology welcomes the opportunity to discuss, design, evaluate, and optimize any backlight/LCD contrast system with a customer. For further information on backlight/LCD contrast designs, consult the references listed below.

References

1. Williams, Jim. August 1992: Illumination Circuitry for Liquid Crystal Displays. Linear Technology Corporation, Application Note 49.
2. Williams, Jim. August 1993. Techniques for 92% Efficient LCD IIlumination. Linear Technology Corporation, Application Note 55.
3. Bonte, Anthony. March 1995. LT1182 Floating CCFL with Dual Polarity Contrast. Linear Technology Corporation, Design Note 99.
4. Williams, Jim. April 1995. A Precision Wideband Current Probe for LCD Backlight Meaasurement. Linear Technology Corporation, Design Note 101.

TYPICAL APPLICATIONS

$\mathbf{9 0 \%}$ Efficient Grounded CCFL Configuration with Negative Polarity LCD Contrast

LT1182/LT1183/LT1184/LT1184F

TYPICAL APPLICATIONS

LT1184F Floating CCFL with Potentiometer Control of Lamp Current

[YPICAL APPLICATIONS

LT1182/LT1183 ICCFL PWM Programming

LT1184/LT1184F ICCFL PWM Programming

LT1183 ICCFL Programming with Potentiometer Control

LT1184/LT1184F ICCFL Programming with Potentiometer Control

R1 AND R2 ARE IDEAL VALUES.
USE NEAREST 1\% VALUE.
${ }^{\text {CCFL }}=12 \mu \mathrm{~A}$ TO $50 \mu \mathrm{~A}$.

LT1182/LT1183/LT1184/LT1184F ICCFL Programming with DAC Control

R1 DECOUPLES THE DAC OUTPUT CAPACITANCE
FROM THE ICCFL PIN.
1182 TA12

LT1183 ICCFL PWM Programming with $\mathrm{V}_{\text {REF }}$

1182 TA0B

LT1184/LT1184F ICCFL PWM Programming with VREF

1182 TAT0

LT1184/LT1184F ICCFL PWM Programming with VREF

LT1182/LT1183/LT1 184/LT1184F

TYPICAL APPLICATIONS

LT1182 LCD Contrast Positive Boost Converter

LT1182 LCD Contrast Positive Boost/Charge Pump Converter

TYPICAL APPLICATIONS

LT1182 LCD Contrast Positive to Negative/Charge Pump Converter

reLated parts

PART NUMBER	FREQUENCY	SWITCH CURRENT	DESCRIPTION
LT1107	63 kHz Hysteretic	1 A	Micropower DC/DC Converter for LCD Contrast Control
LT1172	100 kHz	1.25 A	Current Mode Switching Regulator for CCFL or LCD Contrast Control
LT1173	24 kHZ Hysteretic	1 A	Micropower DC/DC Converter for LCD Contrast Control
LT1186	200 kHz	1.25 A	CCFL Switching Regulator with DAC for "Bits to Brightness Control"
LT1372	500 kHz	1.5 A	Current Mode Switching Regulator for CCFL or LCD Contrast Control

DAC Programmable CCFL Switching Regulator

 (Bits-to-Nits ${ }^{\top}$)
features

- Wide Battery Input Range: 4.5 V to 30 V
- Grounded Lamp or Floating Lamp Configurations
- Open Lamp Protection
- Precision 50uA Full-Scale DAC Programming Current
- Standard SPI Mode or Pulse Mode
- DAC Setting Is Retained in Shutdown

APPLICATIONS

- Notebook and Palmtop Computers
- Portable Instruments
- Retail Terminals

DESCRIPTION

The LT ${ }^{\circledR} 1186$ is a fixed frequency, current mode, switching regulator that provides the control function for Cold Cathode Fluorescent Lighting (CCFL). The IC includes an efficient high current switch, an oscillator, output drive logic, control circuitry and a micropower 8 -bit $50 \mu \mathrm{~A}$ fullscale current output DAC. The DAC provides simple "bits-to-lamp current control" and communicates in two inter-
face modes including standard SPI mode and pulse mode. On power-up, the DAC counter resets to half-scale and the DAC configures to SPI or pulse mode depending on the $\overline{C S}$ signal level. In SPI mode, the system microprocessor serially transfers the present 8 -bit data and reads back the previous 8 -bit data. In pulse mode, the upper six bits of the DAC configure as increment-only (single-wire interface) or increment/decrement (two-wire interface) operation depending on the $\mathrm{D}_{\text {IN }}$ signal level.
The LT1186 control circuitry operates from a logic supply voltage of 3.3 V or 5 V . The IC also has a battery supply voltage pin that operates from 4.5 V to 30 V . The LT1186 draws 6 mA typical quiescent current. An active low shutdown pin reduces total supply current to $35 \mu \mathrm{~A}$ for standby operation and the DAC retains its last setting. A 200 kHz switching frequency minimizes magnetic component size. Current mode switching techniques with cycle-by-cycle limiting gives high reliability and simple loop frequency compensation. The LT1186 is available in a 16 -pin narrow SO package.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. Bits-to-Nits is a trademark of Linear Technology Corporation. 1 Nit $=1$ Candela/meter ${ }^{2}$

TYPICAL APPLICATION

90\% Efficient Floating CCFL with Single-Wire (Increment Only) Pulse Mode Control of Lamp Current

ABSOLUTE MAXIMUM RATINGS
VCC 7 V
BAT, Royer, Bulb 30 V
CCFL VSW 60 V
Shutdown 6 V
ICCFL Input Current 10 mA
DIO Input Current (Peak, <100ms) 100 mA
Digital Inputs -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Digital Outputs -0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
DAC Output Voltage -20 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Junction Temperature (Note 1)

\qquad
Operating Ambient Temperature Range ... $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$Storage Temperature Range
\qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=\overline{\text { SHUTDOWN }}=\mathrm{D}_{\mathrm{IN}}=\overline{C S}=3.3 \mathrm{~V}, \mathrm{BAT}=$ Royer $=$ Bulb $=12 \mathrm{~V}$, $\mathrm{I}_{\text {CFFL }}=$ CCFL $\mathrm{V}_{\text {SW }}=$ Open, $\mathrm{D}_{\text {OUT }}=$ Three-State, $\mathrm{DIO}=\mathrm{I}_{\text {OUT }}=$ CLK = GND, CCFL $V_{C}=0.5 V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Supply Current	$3 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 6.5 \mathrm{~V}, 1 / 2$ Full-Scale DAC Output Current	-		6	9.5	mA
$\underline{\text { STMDN }}$	SHUTDOWN Supply Current	$\overline{\text { SHUTDOWN }}=0 \mathrm{~V}$, CCFL V_{C} Open (Note 2)			35	70	$\mu \mathrm{A}$
	SHUTDOWN Input Bias Current	$\overline{\text { SHUTDOWN }}=0 \mathrm{~V}, \mathrm{CCFL} V_{C}=$ Open			5	10	$\mu \mathrm{A}$
	SHUTDOWN Threshold Voltage		\bullet	0.45	0.85	1.2	V
;	Switching Frequency	Measured at CCFL $V_{S W}$, $I_{S W}=50 \mathrm{~mA}$, $I_{C C F L}=100 \mu A, C C F L V_{C}=0$ pen	\bullet	$\begin{aligned} & 175 \\ & 160 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 225 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
JC(MAX)	Maximum Switch Duty Cycle	Measured at CCFL V SW	\bullet	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		\%
3 V	Switch Breakdown Voltage	Measured at CCFL $V_{\text {SW }}$		60	70		V
	Switch Leakage Current	$V_{S W}=12 \mathrm{~V}$, Measured at CCFL $V_{\text {SW }}$ $V_{S W}=30 \mathrm{~V}$, Measured at CCFL $V_{S W}$				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	I CCFL Summing Voltage	$3 \mathrm{~V} \leq \mathrm{V}_{\text {cC }} \leq 6.5 \mathrm{~V}$	-	$\begin{aligned} & 0.425 \\ & 0.385 \end{aligned}$	$\begin{aligned} & 0.465 \\ & 0.465 \end{aligned}$	$\begin{aligned} & 0.505 \\ & 0.555 \end{aligned}$	V
	$\Delta l_{\text {CCFL }}$ Summing Voltage for Δ Input Programming Current	$\mathrm{I}_{\text {CCFL }}=0 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$			5	15	mV
	CCFL V $\mathrm{V}_{\text {c }}$ Offset Sink Current	CCFL $V_{C}=1.5 \mathrm{~V}$, Positive Current Measured into Pin		-5	5	15	$\mu \mathrm{A}$
	\triangle CCFL V ${ }_{C}$ Source Current for $\Delta l_{\text {CCFL }}$ Programming Current	$\begin{aligned} & I_{\text {CCFL }}=25 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 75 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, \\ & \text { CCFL } V_{\mathrm{C}}=1.5 \mathrm{~V} \end{aligned}$	\bullet	4.70	4.95	5.20	$\mu \mathrm{A} / \mu \mathrm{A}$
	CCFL V ${ }_{\text {c }}$ to DIO Current Servo Ratio	DIO $=5 \mathrm{~mA}$ out of Pin, Measure $\mathrm{I}\left(\mathrm{V}_{\mathrm{C}}\right)$ at CCFL $\mathrm{V}_{C}=1.5 \mathrm{~V}$	-	94	99	104	$\mu \mathrm{A} / \mathrm{mA}$
	CCFL V ${ }_{\text {C L }}$ Low Clamp Voltage	$\mathrm{V}_{\text {BAT }}-\mathrm{V}_{\text {Bulb }}=$ Bulb Protect Servo Voltage	\bullet		0.1	0.3	V
	CCFL V ${ }_{\text {C }}$ High Clamp Voltage	$I_{\text {CCFL }}=100 \mu \mathrm{~A}$	\bullet	1.7	2.1	2.4	V
	CCFL V ${ }_{\mathrm{C}}$ Switching Threshold	CCFL V ${ }_{\text {SW }}$ DC $=0 \%$	\bullet	0.6	0.95	1.3	V
	CCFL High-Side Sense Servo Current	$\mathrm{I}_{\text {CCFL }}=100 \mu \mathrm{~A}, \mathrm{I}(\mathrm{V} \mathrm{C})=0 \mu \mathrm{~A}$ at CCFL $\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	0.93	1.00	1.07	A
	CCFL High-Side Sense Servo Current Line Regulation	$\begin{aligned} & \mathrm{BAT}=5 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\text {CCFL }}=100 \mu \mathrm{~A}, \\ & \mathrm{I}\left(\mathrm{~V}_{C}\right)=0 \mu \mathrm{~A} \text { at } C C L L V_{C}=1.5 \mathrm{~V} \end{aligned}$			0.1	0.16	\%/V

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=\overline{\text { SHUTDOWN }}=\mathrm{D}_{1 \mathrm{~N}}=\overline{\mathrm{CS}}=3.3 \mathrm{~V}, \mathrm{BAT}=$ Royer $=$ Bulb $=12 \mathrm{~V}, \mathrm{I}_{\text {CCFL }}=$ CCFL $V_{S W}=$ Open, $D_{\text {OUT }}=$ Three-State,$D I O=I_{\text {OUT }}=$ $C L K=G N D, C C F L V_{C}=0.5 V$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
	CCFL High-Side Sense Supply Current	Current Measured into BAT and Royer Pins	\bullet	50	100	150	$\mu \mathrm{A}$
	Bulb Protect Servo Voltage	$I_{C C F L}=100 \mu \mathrm{~A}, \mathrm{I}\left(\mathrm{~V}_{\mathrm{C}}\right)=0 \mu \mathrm{~A} \text { at } C C F L V_{C}=1.5 \mathrm{~V} \text {, }$ Servo Voltage Measured between BAT and Bulb Pins	\bullet	6.5	7.0	7.5	V
	Bulb Input Bias Current	$\mathrm{I}_{\text {CCFL }}=100 \mu \mathrm{~A}, \mathrm{I}\left(\mathrm{V}_{\mathrm{C}}\right)=0 \mu \mathrm{~A}$ at CCFL $\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$			5	9	$\mu \mathrm{A}$
ILIM	CCFL Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=75 \% \text { (Note 3) } \end{aligned}$	\bullet	$\begin{gathered} 1.25 \\ 0.9 \end{gathered}$	$\begin{aligned} & 1.9 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$	A
$\frac{\frac{V_{S A T}}{\Delta I_{Q}}}{\frac{\Delta I_{S W}}{}}$	CCFL Switch On Resistance	CCFL ISW $=1 \mathrm{~A}$	\bullet		0.6	1.0	Ω
	Supply Current Increase During CCFL Switch On Time	CCFL $\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$			20	30	mA/A
	DAC Resolution				8		Bits
	DAC Full-Scale Current	$\mathrm{V}\left(\mathrm{I}_{\text {OUT }}\right)=0.465 \mathrm{~V}$, Measured in SPI Mode	\bullet	$\begin{aligned} & 48.75 \\ & 47.50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 51.25 \\ & 52.50 \end{aligned}$	$\overline{\mu \mathrm{A}}$ $\mu \mathrm{A}$
	DAC Zero Scale Current	$\mathrm{V}\left(\mathrm{I}_{\text {OUT }}\right)=0.465 \mathrm{~V}$, Measured in SPI Mode				200	nA
	DAC Differential Nonlinearity		\bullet			± 2.0	LSB
	DAC Supply Voltage Rejection	$3 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 6.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=$ Full Scale, $\mathrm{V}\left(\mathrm{l}_{\text {OUT }}\right)=0.465 \mathrm{~V}$	\bullet		2	4	LSB
	Logic Input Current	$0 \leq V_{\text {IN }} \leq V_{\text {CC }}$	\bullet			± 1	$\mu \mathrm{A}$
$V_{\text {IH }}$	High Level Input Voltage	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} 1.9 \\ 2 \\ \hline \end{gathered}$			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V} \\ & V_{C C}=5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 0.45 \\ & 0.80 \\ & \hline \end{aligned}$	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V}, I_{0}=400 \mu \mathrm{~A} \\ & V_{C C}=5 \mathrm{~V}, I_{0}=400 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 2.1 \\ & 2.4 \\ & \hline \end{aligned}$			V V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{0}=2 \mathrm{~mA} \end{aligned}$	\bullet			$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	V V
l_{02}	Three-State Output Leakage	$V_{\overline{C S}}=V_{C C}$	\bullet			± 5	$\mu \mathrm{A}$

SERIAL INTERFACE (Notes 4, 5)

${ }_{\text {flek }}$	Clock Frequency		\bullet		2	MHz
$\mathrm{t}_{\text {CKS }}$	Setup Time, CLK \downarrow Before $\overline{C S} \downarrow$		\bullet	150		ns
${ }^{\text {t CSS }}$	Setup Time, $\overline{\mathrm{CS}} \downarrow$ Before CLK \uparrow		\bullet	400		ns
tov	$\overline{\mathrm{CS}} \downarrow$ to D DUT Valid	See Test Circuits	\bullet	150		ns
$\mathrm{t}_{\text {D }}$	Data in Setup Time Before CLK \uparrow		\bullet	150		ns
$\mathrm{t}_{\text {DH }}$	Data in Hold Time After CLK \uparrow		\bullet	150		ns
t_{DO}	$C L K \downarrow$ to D ${ }_{\text {OUT }}$ Valid	See Test Circuits	\bullet	150		ns
${ }_{\text {t }}^{\text {CKHI }}$	CLK High Time		-	200		ns
$\mathrm{t}_{\text {CKLO }}$	CLK Low Time		\bullet	250		ns
${ }^{\text {t CSH }}$	CLK \downarrow Before $\overline{C S} \uparrow$		\bullet	150		ns
$t_{D Z}$	$\overline{\mathrm{CS}} \uparrow$ to D ${ }_{\text {OUT }}$ In Hi-Z	See Test Circuits	\bullet		400	ns
$\mathrm{t}_{\text {CKH }}$			\bullet		400	ns
${ }^{\text {t CSLO }}$	$\overline{\text { CS }}$ Low Time	$\mathrm{f}_{\text {CLK }}=2 \mathrm{MHz}$	\bullet	4550		ns
${ }_{\underline{\text { cheri }}}$	$\overline{\text { CS }}$ High Time		\bullet	400		ns

:LECTRICAL CHARACTERISTICS

ie denotes specifications which apply over the specified operating mperature range.
ste 1: T_{J} is calculated from the ambient temperature T_{A} and power ssipation P_{D} according to the following formula:
LT1186CS: $T_{J}=T_{A}+\left(P_{D} \times 100^{\circ} \mathrm{C} / \mathrm{W}\right)$
ste 2: Does not include switch leakage.

Note 3: For duty cycles (DC) between 50% and 80%, minimum guaranteed switch current is given by $\mathrm{L}_{\mathrm{LIM}}=1.4(1.393-\mathrm{DC})$ for the LT1186 due to internal slope compensation circuitry.
Note 4: Timings for all input signals are measured at 0.8 V for a High-toLow transition and 2.0 V for a Low-to-High transition.
Note 5: Timings are guaranteed but not tested.

YPICAL PGRFORMANCE CHARACTERISTICS

Shutdown Threshold Voltage vs Temperature

LT1186•G04

Shutdown Current vs Temperature

Frequency vs Temperature

Shutdown Input Bias Current vs Temperature

Maximum Duty Cycle

 vs Temperature

LT1186•605

TYPICAL PERFORMANCG CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

High-Side Sense Supply Current vs Temperature

LT1186•G19

Bulb Protect Servo Voltage vs Temperature

High-Side Sense Null Current vs Temperature

Lr1186•G20

Bulb Input Bias Current vs Temperature

High-Side Sense Null Current Line Regulation vs Temperature

Forced Beta vs $\mathrm{I}_{\text {sw }}$ on $\mathrm{V}_{\text {Sw }}$

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

CCFL PGND (Pin 1): This pin is the emitter of an internal NPN power switch. CCFL switch current flows through this pin and permits internal, switch-current sensing. The regulator provides a separate analog ground and power. ground to isolate high current ground paths from low current signal paths. Linear Technology recommends the use of star-ground layout techniques.
ICCFL (Pin2): This pin is the input to the CCFL lamp current programming circuit. This pin internally regulates to 465 mV . The pin accepts a DC input current signal of $0 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$ full scale from the DAC. This input signal is converted to a $0 \mu A$ to $250 \mu A$ source current at the CCFL V_{C} pin. As input programming current increases, the regulated lamp current increases. For a typical 6 mA lamp, the range of input programming current is about $0 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$.
DIO (Pin 3): This pin is the common connection between the cathode and anode of two internal diodes. The remaining terminals of the two diodes connect to ground. In a grounded-lamp configuration, DIO connects to the low voltage side of the lamp. Bidirectional lamp current flows in the DIO pin and thus the diodes conduct alternately on half cycles. Lamp current is controlled by monitoring onehalf of the average lamp current. The diode conducting on negative half cycles has one-tenth of its current diverted to the CCFL V_{C} pin. This current nulls against the source
current provided by the lamp-current programmer circuit. A single capacitor on the CCFL V_{C} pin provides both stable loop compensation and an averaging function to the half-wave-rectified sinusoidal lamp current. Therefore, input programming current relates to one-half of average lamp current. This scheme reduces the number of loop compensation components and permits faster loop transient response in comparison to previously published circuits. If a floating lamp configuration is used, ground the DIO pin.
CCFL V_{C} (Pin 4): This pin is the output of the lamp current programmer circuit and the input of the current comparator for the CCFL regulator. Its uses include frequency compensation, lamp-current averaging for grounded-lamp circuits and current limiting. The voltage on the CCFL V_{C} pin determines the current trip level for switch turn-off. During normal operation this pin sits at a voltage between 0.95 V (zero switch current) and 2.0 V (maximum switch current) with respect to analog ground (AGND). This pin has a high impedance output and permits external voltage clamping to adjust current limit. A single capacitor to ground provides stable loop compensation. This simplified loop compensation method permits the CCFL regulator to exhibit single-pole transient response behavior and virtually eliminates transformer output overshoot.

PIn functions

AGND (Pin 5): This is the low current analog ground. It is the negative sense terminal for the internal 1.24 V reference and the I CCFL summing voltage in the LT1186. Connect low current signal paths that terminate to ground and frequency compensation components that terminate to ground directly to this pin for best regulation and performance.
$\overline{\text { SHDN (Pin 6): Pulling this pin low causes complete }}$ regulator shutdown with quiescent current typically reduced to $35 \mu \mathrm{~A}$. If the pin is not used, use a pull-up resistor to force a logic high level (maximum of 6V) or tie directly to $V_{\text {CC }}$. In a shutdown condition, the DAC retains its last output current setting and returns to this level when the logic-low signal at the shutdown pin is removed.
CLK (Pin 7): This pin is the shift clock for the DAC. This clock synchronizes the serial data and is a Schmitt trigger input. In standard SPI mode, the clock shifts data into $D_{\text {IN }}$ and out of $D_{\text {OUT }}$ on the rising and falling edges of the clock respectively. In pulse mode, the rising edge of the clock either increments or decrements the counter. This action depends on the choice of a single-wire interface (increment only) or a two-wire interface (increment/decrement).
$\overline{\mathbf{C S}}$ (Pin 8): This pin is the chip select input for the DAC. In SPI mode, a logic low on the $\overline{C S}$ pin enables the DAC to receive and transfer 8-bit serial data. After the serial input data is shifted in, a rising edge of $\overline{C S}$ transfers the data into the counter, the DAC assumes the new Iout value and the $D_{\text {Out }}$ pin returns to the high impedance state. On power up, a logic high places the DAC into pulse mode. Pulling $\overline{C S}$ low after this places the DAC into SPI mode until $V_{C C}$ resets.
$D_{\text {IN }}$ or UP/DN (Pin 9): This pin is the digital input for the DAC. In SPI mode, the 8 -bit serial data is shifted into the $D_{I_{N}}$ input on each rising edge of the clock signal. In pulse mode, on power up, a logic high at $D_{I N}$ transfers the pin function from $D_{\text {IN }}$ to UP/DN, puts the counter into incre-ment-only mode and the pin function shifts to up or down increment control of DAC output current. If UP/DN receives a logic-low signal, the counter configures to increment/decrement mode until $\mathrm{V}_{\text {CC }}$ resets.
$D_{\text {OUT }}$ (Pin 10): This pin is the digital output for the DAC. In SPI mode, $D_{\text {OUT }}$ is in three-state until $\overline{\mathrm{CS}}$ falls low. The $\mathrm{D}_{\text {OUT }}$ pin then serially transfers the previous 8-bit data on every falling edge of the clock. When $\overline{\mathrm{CS}}$ rises high again, $\mathrm{D}_{\text {OUT }}$ returns to a three-state condition. In pulse mode, $\mathrm{D}_{\text {OUT }}$ is always three-stated.
$I_{\text {OUT }}$ (Pin 11): This pin is the analog current output for the DAC and provides an output current of $50 \pm 2.5 \mu \mathrm{~A}$ over temperature. This pin can be biased from -20 V to 2 V for a 3.3V VCC supply voltage or from -20 V to 2.5 V for a 5 V $V_{\text {CC }}$ supply voltage. However, this pin istied to the $\mathrm{I}_{\text {CCFL }}$ pin and provides the programming current which sets operating lamp current. The I IOUT pin has very little bias voltage change when it is tied to the $I_{\text {CCFL }}$ pin as $I_{\text {CCFL }}$ is regulated. The programming current is sourced from the lout pin and sunk by the ICCFL pin.
$\mathbf{V}_{\text {CC }}$ (Pin 12): This is the supply pin for the LT1186. The IC accepts an input voltage range of 3 V minimum to 6.5 V maximum with little change in quiescent current (zero switch current). An internal, low-dropout regulator provides a 2.4 V supply for most of the internal circuitry. Supply current increases as switch current increases at a rate approximately $1 / 50$ of switch current. This corresponds to a forced Beta of 50 for the power switch. The IC incorporates undervoltage lockout by sensing regulator dropout and locking out switching for input voltages below 2.5 V . Hysteresis is not used to maximize the useful range of input voltage. The typical input voltage is a 3.3 V or 5V logic supply.
ROYER (Pin 13): This pin connects to the center-tapped primary of the Royer converter and is used with the BAT pin in a floating-lamp configuration where lamp current is controlled by sensing Royer primary-side converter current. This pin is the inverting terminal of a high-side current sense amplifier. The typical quiescent current is $50 \mu \mathrm{~A}$ into the pin. If the CCFL regulator is not used in a floating-lamp configuration, tie the Royer and BAT pins together.

LTI 186

PIn functions

BAT (Pin 14): This pin connects to the battery or AC wall adapter voltage from which the CCFL Royer converter operates. This voltage is typically higher than the $V_{C C}$ supply voltage but can equal $\mathrm{V}_{\text {CC }}$ if $\mathrm{V}_{\text {CC }}$ is a 5 V logic supply. The BAT voltage must be at least 2.1 V greater than the internal 2.4 V regulator or 4.5 V . This pin provides biasing for the lamp-current programming block, is used with the Royer pin for floating-lamp configurations and connects to one input for the open-lamp protection circuitry. For floating-lamp configurations, this pin is the noninverting terminal of a high-side current sense amplifier. The typical quiescent current is $50 \mu \mathrm{~A}$ into the pin. The BAT and Royer pins monitor the primary-side Royer converter current through an internal 0.1Ω topside current sense resistor. A 0 A to 1 A primary-side, center tap converter current is translated to an input signal range of 0 mV to 100 mV for the current sense amplifier. This input range translates to a $0 \mu A$ to $500 \mu A$ sink current at the CCFL V_{C} pin that nulls against the source current provided by the programmer circuit. The BAT pin also connects to the top side of the internal clamp between the BAT and Bulb pins that is used for open-lamp protection.
BULB (Pin 15): This pin connects to the low side of a 7 V threshold comparator between the BAT and Bulb pins. This circuit sets the maximum voltage level across the primary side of the Royer converter under all operating
conditions and limits the maximum secondary output under start-up conditions or open-lamp conditions. This eases transformer voltage rating requirements. Set the voltage limit to ensure lamp start-up with worst-case, lamp start voltages and cold temperature, system operating conditions. The Bulb pin connects to the junction of an external divider network. The divider network connects from the center tap of the Royer transformer or the actual battery supply voltage to the top side of the current source "tail inductor." A capacitor across the top of the divider network filters switching ripple and sets a time constant that determines how quickly the clamp activates. When the comparator activates, sink current is generated to pull the CCFL V_{C} pin down. This action transfers the entire regulator loop from current mode operation into voltage mode operation.

CCFL $V_{\text {SW }}$ (Pin 16): This pin is the collector of the internal NPN power switch for the CCFL regulator. The power switch provides a minimum of 1.25 A . Maximum switch current is a function of duty cycle as internal slope compensation ensures stability with duty cycles greater than 50%. Using a driver loop to automatically adapt base drive current to the minimum required to keep the switch in a quasi-saturation state yields fast switching times and high efficiency operation. The ratio of switch current to driver current is about 50:1.

TEST CIRCUITS

Load Circuit for $\mathrm{t}_{\mathrm{DZ}}, \mathrm{t}_{\mathrm{DV}}$

Voltage Waveforms for $\mathrm{t}_{\mathrm{DZ}}, \mathrm{t}_{\mathrm{DV}}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY $\overline{C S}$
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY $\overline{C S}$

BLOCK DIAGRAM

LT1186 DAC Programmable CCFL Switching Regulator

APPLLCATIONS InFORMATION

Introduction

Current generation portable computers and instruments use backlit Liquid Crystal Displays (LCDs). Cold Cathode Fluorescent Lamps (CCFLs) provide the highest available efficiency in back lighting the display. Providing the most light out for the least amount of input power is the most important goal. These lamps require high voltage AC to operate, mandating an efficient high voltage DC/AC converter. The lamps operate from DC, but migration effects damage the lamp and shorten its lifetime. Lamp drive should contain zero DC component. In addition to good efficiency, the converter should deliver the lamp drive in the form of a sine wave. This minimizes EMI and RF emissions. Such emissions can interfere with other devices and can also degrade overall operating efficiency. Sinusoidal CCFL drive maximizes current-to-light conversion in the lamp. The circuit should also permit lamp intensity control from zero to full brightness with no hysteresis or "pop-on."
The small size and battery-powered operation associated with LCD equipped apparatus dictate low component count and high efficiency for these circuits. Size constraints place severe limitations on circuit architecture and long battery life is a priority. Laptop and handheld portable computers offer an excellent example. The CCFL and its power supply are responsible for almost 50% of the battery drain. Additionally, all components, including PC board and hardware, usually must fit within the LCD enclosure with a height restriction of 5 mm to 10 mm .
The CCFL regulator drives an inductor that acts as a switched-mode current source for a current-driven Royerclass converter with efficiencies as high as 90%. The control loop forces the CCFL PWM to modulate the average inductor current to maintain constant current in the lamp. The constant current value, and thus lamp intensity; is programmable. This drive technique provides a wide range of intensity control. A unique lamp-current programming block permits either grounded lamp or floating lamp configurations. Grounded lamp circuits directly sense one-half of average lamp current. Floating lamp circuits directly sense the Royer's primary-side converter current. Floating-lamp circuits provide symmetric differential drive
to the lamp and reduce the parasitic loss from stray lamp-to-frame capacitance, extending illumination range.

Block Diagram Operation

The LT1186 is a fixed frequency, current mode switching regulator. A fixed frequency, current mode switcher controls switch duty cycle directly by switch current rather than by output voltage. Referring to the block diagram for the LT1186, the switch turns ON at the start of each oscillator cycle. The switch turns OFF when switch current reaches a predetermined level. The control of output lamp current is obtained by using the output of a unique programming block to set current trip level. The current mode switching technique has several advantages. First, it provides excellent rejection of input voltage variations. Second, it reduces the 90° phase shift at mid-frequencies in the energy storage inductor. This simplifies closed-loop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or short-circuit conditions.
The LT1186 incorporates a low dropout internal regulator that provides a 2.4 V supply for most of the internal circuitry. This low dropout design allows input voltage to vary from 3 V to 6.5 V with little change in quiescent current. An active low shutdown pin typically reduces total supply current to $35 \mu \mathrm{~A}$ by shutting off the 2.4 V regulator and locks out switching action for standby operation. The IC incorporates undervoltage lockout by sensing regulator dropout and locking out switching below about 2.5 V . The regulator also provides thermal shutdown protection that locks out switching in the presence of excessive junction temperatures.
A 200kHz oscillator is the basic clock for all internal timing. The oscillator turns on the output switch via its own logic and driver circuitry. Adaptive anti-sat circuitry detects the onset of saturation in the power switch and adjusts base drive current instantaneously to limit switch saturation. This minimizes driver dissipation and provides rapid turnoff of the switch. The CCFL power switch is guaranteed to provide a minimum of 1.25 A in the LT1186. The anti-sat

IPPLICATIONS INFORMATION

rcuitry provides a ratio of switch current to driver current f about 50:1.

-Bit Current Output DAC

he 8-bit current outputDAC is guaranteed monotonic and digitally adjustable by the 8 -bit counter in 256 equal eps. On power up, the counter resets to 80 H and the DAC ssumes its mid-range value. The current output IOUT rives the $I_{\text {CCFL }}$ pin and sets control current for the lamp arrent programming block. The DAC has its own 1.24 V andgap reference and a voltage to current converter that trimmed at wafer sort to provide the precision full-scale arrent reference. Over temperature, the current output of e DAC is $50 \mu \mathrm{~A} \pm 5 \%$.

igital Interface

n power-up, a logic high at $\overline{C S}$ configures the DAC into alse mode. If CS is ever pulled low, the chip configures to SPI mode until $V_{C C}$ resets. On power-up in pulse ode, a logic high at $D_{\text {IN }}$ puts the counter into incremently mode. If UP/DN $\left(D_{\mid N}\right)$ is ever pulled low, the counter unfigures into increment/decrement mode until $\mathrm{V}_{\text {CC }}$ reits. These modes are illustrated in Figure 1.

Figure 1a. Tree Diagram (LT1186 DAC Operating Modes)

Figure 1b. SPI Mode Setup

Figure 1c. Pulse Mode Setup (Increment Only)

Figure 1d. Pulse Mode Setup (Increment/Decrement)

Standard SPI Mode

Refer to the serial interface operating sequence in Figure 2. A falling edge at $\overline{\mathrm{CS}}$ initiates the data transfer. After the falling $\overline{C S}$ is recognized, $D_{\text {OUT }}$ comes out of three-state. The clock (CLK) synchronizes the data transfer. Each input bit shifts into $\mathrm{D}_{\text {IN }}$ beginning with the MSB on the rising CLK edge and each previous data bit shifts out of $D_{\text {Out }}$ beginning with the MSB on the falling CLK edge. After the 8-bit serial input data is shifted in, a rising edge at $\overline{C S}$ transfers the data into the counter, the DAC assumes the new value $\mathrm{I}_{\text {OUT }}=\left(8\right.$-bit serial input data) $\times 50 \mu \mathrm{~A} / 255$ and the $\mathrm{D}_{\text {OUT }}$ pin returns to a high impedance state.

Single-Wire Interface (Pulse Mode)

In increment-only pulse mode, each rising edge of CLK increments the upper six bits of the counter by one count. When incremented beyond 11111100B, the counter rolls over and sets the DAC to the minimum value 00000000B. Therefore, a single pulse applied to CLK increases the upper 6-bit counter by one-step, and 63 pulse applied to CLK decreases the counter by one-step. The last two LSBs are always zero in this mode. $I_{\text {OUT }}=\left(\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5} \mathrm{~B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}\right)$ $\times 50 \mu \mathrm{~A} / 255$. The upper 6 -bit counter $=\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5} \mathrm{~B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2}$ and $B_{1}=B_{0}=0$. To configure the LT1186 into increment-only mode, tie $\overline{C S}$ and $D_{I N}$ to $V_{C C}$.

APPLLCATIONS InFORMATION

Figure 2. SPI Interface Timing Specification

Two-Wire Interface (Pulse Mode)

In increment/decrement pulse mode, a logic high at UP/ $\overline{\mathrm{DN}}$ programs the counter into increment mode and each rising edge of CLK increments the upper six bits of the counter by one. The counter stops incrementing at 11111100B. A logic low at UP/DN programs the counter into decrement mode and each rising edge of CLK decrements the upper six bits of the counter by one. The counter stops decrementing at 00000000B. The last two LSBs are always zero in this mode. I Iout $=\left(\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5} \mathrm{~B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}\right) \times$ $50 \mu \mathrm{~A} / 255$. The upper 6 -bit counter $=\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5} \mathrm{~B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2}$ and $B_{1}=B_{0}=0$. To configure the LT1186 into increment/ decrement mode, tie $\overline{C S}$ to $V_{C C}$ and pulse the UP/DN pin once on power-up.

Simplified Lamp Current Programming

A programming block in the LT1186 controls lamp current, permitting either grounded lamp or floating lamp configurations. Grounded configurations control lamp current by directly controlling one-half of actual lamp current and converting it to a feedback signal to close a control loop. Floating configurations control lamp current by directly controlling the Royer's primary-side converter current and generating a feedback signal to close a control loop.

Previous backlighting solutions have used a traditional error amplifier in the control loop to regulate lamp current. This approach converted an RMS current into a DC voltage for the input of the error amplifier. This approach used several time constants in order to provide stable loop
frequency compensation. This compensation scheme meant that the loop had to be fairly slow and that output overshoot with start-up or overload conditions had to be carefully evaluated in terms of transformer stress and breakdown voltage requirements.

The LT1186 eliminates the error amplifier concept entirely and replaces it with a lamp current programming block. This block provides an easy-to-use interface to program lamp current. The programmer circuit also reduces the number of time constants in the control loop by combining the error signal conversion scheme and frequency compensation into a single capacitor. The control loop thus exhibits the response of a single pole system, allows for faster loop transient response and virtually eliminates overshoot under start-up or overload conditions.
Lamp current is programmed at the input of the programmer block, the $I_{\text {CCFL }}$ pin. This pin is the input of a shunt regulator and accepts a DC input current signal of $0 \mu \mathrm{~A}$ to $50 \mu A$ from the $D A C$. This input signal is converted to a $0 \mu A$ to 250μ A source current at the CCFL V_{C} pin. The programmer circuit is simply a current-to-current converter with a gain of five. The typical input current programming range for 0 mA to 6 mA lamp current is $0 \mu \mathrm{~A}$ to $50 \mu \mathrm{~A}$.

The I ICcL pin is sensitive to capacitive loading and will oscillate with capacitance greater than 10 pF . For example, loading the $I_{\text {CCFL }}$ pin with a $1 \times$ or $10 \times$ scope probe causes oscillation and erratic CCFL regulator operation because of the probe's respective input capacitance. A current meter in series with the $I_{\text {CCFL }}$ pin will also produce oscillation due to its shunt capacitance. Use a decoupling

PPLICATIONS Information

sistor of several kilohms between the I ${ }_{\text {CCFL }}$ pin and the л pin if excessive trace stray capacitance exists. Norilly, this resistor is not required.
some applications, the maximum programming current juired at the I ${ }_{\text {CCFL }}$ pin for a maximum lamp current will less than the full-scale output current of the DAC, which $50 \mu \mathrm{~A}$. The system designer can either limit the maxiim programming current through software built into the stem, or use a current splitter which shunts a percente of the full-scale current from the ICCFL pin. A splitter cuit is illustrated in Figure 3. A divider string is used m a reference voltage to set up a voltage level equal to : ICCFL summing voltage, or 465 mV . The main current wing in the divider string should be chosen to swamp t the effects of the shunted current into the divider ing.

Figure 3

ounded Lamp Configuration

a grounded lamp configuration, the low voltage side of : lamp connects directly to the LT1186 DIO pin. This pin the common connection between the cathode and ode of two internal diodes. In previous grounded lamp utions, these diodes were discrete units and are now egrated onto the IC, saving cost and board space. lirectional lamp current flows in the DIO pin and thus, : diodes conduct alternately on half cycles. Lamp curit is controlled by monitoring one-half of the average p current. The diode conducting on negative half lles has one-tenth of its current diverted to the CCFL pin y nulls against the source current provided by the lamp rent programmer circuit. The compensation capacitor the CCFL V_{C} pin provides stable loop compensation and averaging function to the rectified sinusoidal lamp rent. Therefore, input programming current relates to 3-half of average lamp current.

The transfer function between lamp current and input programming current must be empirically determined and is dependent on the particular lamp/display housing combination used. The lamp and display housing are a distributed loss structure due to parasitic lamp-to-frame capacitance. This means that the current flowing at the highvoltage side of the lamp is higher than what is flowing at the DIO pin side of the lamp. The input programming current is set to control lamp current at the high-voltage side of the lamp, even though the feedback signal is the lamp current at the bottom of the lamp. This ensures that the lamp is not overdriven which can degrade the lamp's operating lifetime. Therefore, the full scale current of the DAC does not necessarily correspond to the current required to set maximum lamp current.

Floating Lamp Configuration

In a floating lamp configuration, the lamp is fully floating with no galvanic connection to ground. This allows the transformer to provide symmetric differential drive to the lamp. Balanced drive eliminates the field imbalance associated with parasitic lamp-to-frame capacitance and reduces "thermometering" (uneven lamp intensity along the lamp length) at low lamp currents.
Carefully evaluate display designs in relation to the physical layout of the lamp, its leads and the construction of the display housing. Parasitic capacitance from any high voltage point to DC or AC ground creates paths for unwanted current flow. This parasitic current flow degrades electrical efficiency and losses up to 25% have been observed in practice. As an example, at a Royer operating frequency of $60 \mathrm{kHz}, 1 \mathrm{pF}$ of stray capacitance represents an impedance of $2.65 \mathrm{M} \Omega$. With an operating lamp voltage of 400 V and an operating lamp current of 6 mA , the parasitic current is $150 \mu \mathrm{~A}$. This additional current must be supplied by the transformer secondary. Layout techniques that increase parasitic capacitance include long high voltage lamp leads, reflective metal foil around the lamp and displays supplied in metal enclosures. Losses for a good display are under 5%, whereas, losses for a bad display range from 5% to 25%. Lossy displays are the primary reason to use a floating lamp configuration. Providing symmetric, differential drive to the lamp reduces the total parasitic loss by one-half.

APPLICATIONS INFORMATION

Maintaining closed-loop control of lamp current in a floating lamp configuration necessitates deriving a feedback signal from the primary side of the Royer transformer. Previous solutions have used an external precision shunt and high-side sense amplifier configuration. This approach has been integrated onto the LT1186 for simplicity of design and ease of use. An internal 0.1Ω resistor monitors the Royer converter current and connects between the input terminals of a high-side sense amplifier. A 0-1 Amp Royer primary-side, center-tap current is translated to a $0 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ sink current at the CCFL V_{C} pin to null against the source current provided by the lamp current programmer circuit. The compensation capacitor on the CCFL V_{C} pin provides stable loop compensation and an averaging function to the error sink current. Therefore, input programming current is related to average Royer converter current. Floating lamp circuits operate similarly to grounded lamp circuits except for the derivation of the feedback signal.
The transfer function between lamp current and input programming current must be empirically determined and is dependent upon a myriad of factors including lamp characteristics, display construction, transformer turns ratio and the tuning of the Royer oscillator. Once again, lamp current will be slightly higher at one end of the lamp and input programming current should be set for this higher level to ensure that the lamp is not overdriven.

The internal 0.1Ω high-side sense resistor on the LT1186 is rated for a maximum DC current of 1 A . This resistor can be damaged by extremely high surge currents at start-up. The Royer converter typically uses a few microfarads of bypass capacitance at the center tap of the transformer. This capacitor charges up when the system is first powered by the battery pack or an AC wall adapter. The amount of current delivered at start-up can be very large if the total impedance in this path is small and the voltage source has high current capability. Linear Technology recommends the use of an aluminum electrolytic for the transformer center-tap bypass capacitor with an ESR greater than or equal to 0.5Ω. This lowers the peak surge currents to an acceptable level. In general, the wire and trace inductance in this path also help reduce the di/dt of the surge current. This issue only exists with floating lamp circuits as
grounded lamp circuits do not make use of the high-sid sense resistor.

Input Capacitor Type

Caution must be used in selecting the input capacitor typ for switching regulators. Aluminum electrolytics are elec trically rugged and the lowest cost, but are physically larg to meet required ripple current ratings, and size cor straints (especially height) may preclude their use. Ct ramic capacitors are now available in larger values an their high ripple current and voltage rating make ther ideal for input bypassing. Cost is fairly high and footprir can be large.

Solid tantalum capacitors would be a good choice excer for a history of occasional failure when subjected to larg current surges during start-up. The input bypass capac tor of regulators can see these high surges when a batter or high capacitance source is connected. Some manufac turers have developed tantalum capacitor lines speciall tested for surge capability (AVX TPS series for instance but even these units may fail if the input voltage surg approaches the capacitor's maximum voltage rating. AV recommends derating the capacitor voltage by $2: 1$ for hig surge applications.

Applications Support

Linear Technology invests an enormous amount of time resources and technical expertise in understanding, de signing and evaluating backlight/LCD contrast solution for system designers. The design of an efficient an compact LCD backlight system is a study of compromis in a transduced electronic system. Every aspect of th design is interrelated and any design change require complete re-evaluation for all other critical design paran eters. Linear Technology has engineered one of the mos complete test and evaluation setups for backlight design and understands the issues and tradeoffs in achieving compact, efficient and economical customer solution Linear Technology welcomes the opportunity to discus: design, evaluate and optimize any backlight/LCD contras system with a customer. For further information on bact light/LCD contrast designs, consult the References.

APPLICATIONS InFORMATION

References

1. Williams, Jim. August 1992. Illumination Circuitry for Liquid Crystal Displays. Linear Technology Corporation, Application Note 49.
2. Williams, Jim. August 1993. Techniques for 92\% Efficient LCD Illumination. Linear Technology Corporation, Application Note 55.
3. Bonte, Anthony. March 1995. LT1182 Floating CCFL with Dual Polarity Contrast. Linear Technology Corporation, Design Note 99.
4. Williams, Jim. April 1995. A Precision Wideband Current Probe for LCD Backlight Measurement. Linear Technology Corporation, Design Note 101.
5. LT1182/LT1183/LT1184/LT1184F Data Sheet. CCFL/ LCD Contrast Switching Regulators. April 1995. Linear Technology Corporation.

belated parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1107	Micropower DC/DC Converter for LCD Contrast Control	$1 \mathrm{~A}, 63 \mathrm{kHz}$, Hysteretic
LT1172	Current Mode Switching Regulator for CCFL or LCD Contrast Control	$1.25 \mathrm{~A}, 100 \mathrm{kHz}$
LT1173	Micropower DC/DC Converter for LCD Contrast Control	$1 \mathrm{~A}, 24 \mathrm{kHz}$, Hysteretic
LT1182	Dual Current Mode Switching Regulator for CCFL and LCD Contrast Control	$1.25 \mathrm{~A}, 0.625 \mathrm{~A}, 200 \mathrm{kHz}$
LT1183	Dual Current Mode Switching Regulator for CCFL and LCD Contrast Control	$1.25 \mathrm{~A}, 0.625 \mathrm{~A}, 200 \mathrm{kHz}$
LT1184	Current Mode Switching Regulator for CCFL Control	$1.25 \mathrm{~A}, 200 \mathrm{kHz}$
LT1184F	Current Mode Switching Regulator for CCFL Control	$1.25 \mathrm{~A}, 200 \mathrm{kHz}$
LT1372	Current Mode Switching Regulator for CCFL or LCD Contrast Contol	$1.5 \mathrm{~A}, 500 \mathrm{kHz}$

1.2A, High Efficiency Step-Down DC/DC Converter

feATURES

- High Efficiency: Up to 95\%
- Current Mode Operation for Excellent Line and Load Transient Response
- Internal 0.3Ω Power Switch ($\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$)
- Short-Circuit Protection
- Low Dropout Operation: 100\% Duty Cycle
- Low-Battery Detector
- Low $160 \mu \mathrm{~A}$ Standby Current at Light Loads
- Active-High Micropower Shutdown: $\mathrm{I}_{0}<15 \mu \mathrm{~A}$
- Peak Inductor Current Independent of Inductor Value
- Available in 14 -pin SO Package

APPLICATIONS

- 5 V to 3.3 V Conversion
- Distributed Power Systems
- Step-Down Converters
- Inverting Converters
- Memory Backup Supply
- Portable Instruments
- Battery-Powered Equipment
- Cellular Telephones

DESCRIPTION

The LTC ${ }^{\circledR} 1265$ is a monolithic step-down current mode DC/DC converter featuring Burst Mode ${ }^{\text {TM }}$ operation at low output current. The LTC1265 incorporates a 0.3Ω switch $\left(\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}\right.$) allowing up to 1.2A of output current.
Under no load condition, the converter draws only $160 \mu \mathrm{~A}$. In shutdown it typically draws a mere $5 \mu \mathrm{~A}$ making this converter ideal for current sensitive applications. In dropout the internal P-channel MOSFET switch is turned on continuously maximizing the life of the battery source. The LTC1265 incorporates automatic power saving Burst Mode operation to reduce gate charge losses when the load currents drop below the level required for continuous operation.

The inductor current is user-programmable via an external current sense resistor. Operation up to 700 kHz permits the use of small surface mount inductors and capacitors.
For applications requiring higher output currents, see the LTC1148 data sheet. For applications requiring less than 450mA, see the LTC1174 data sheet.
$\overline{\mathbf{Q T}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$ Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. High Efficiency Step-Down Converter
BSOLUTE MAXIMUM RATINGSoltages Refer to GND Pin)
put Supply Voltage (Pins 1, 2, 13) -0.3 V to 13 V
〕 Switch Current (Pin 14) 1.2A
zak Switch Current (Pin 14) 1.6A
witch Voltage (Pin 14) $V_{\text {IN }}-13.0$
jerating Temperature Range 0° to $70^{\circ} \mathrm{C}$
inction Temperature (Note 1)

\qquad
$125^{\circ} \mathrm{C}$
orage Temperature Range

\qquad
-65° to $150^{\circ} \mathrm{C}$:ad Temperature (Soldering, 10 sec).
\qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

LECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=10 \mathrm{~V}$, $\mathrm{V}_{\text {SHUTDown }}=0 \mathrm{~V}$, unless otherwise specified.

MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Feedback Current into Pin 9	LTC1265			0.2	1	$\mu \mathrm{A}$
3	Feedback Voltage	LTC1265	\bullet	1.22	1.25	1.28	V
JT	Regulator Output Voltage	$\begin{aligned} & \text { LTC1265-3.3: } I_{\text {LOAD }}=800 \mathrm{~mA} \\ & \text { LTC1265-5: } I_{\text {LOAD }}=800 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.22 \\ & 4.9 \end{aligned}$	$\begin{gathered} 3.3 \\ 5 \end{gathered}$	$\begin{aligned} & 3.40 \\ & 5.2 \end{aligned}$	V
OUT	Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=6.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$		-40	0	40	mV
	Output Voltage Load Regulation	LTC1265-3.3: 10 mA < LOAD $^{2} 800 \mathrm{~mA}$ LTC1265-5: 10 mA < $\mathrm{I}_{\text {LOAD }}<800 \mathrm{~mA}$			$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{gathered} 65 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Burst Mode Output Ripple	$\mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$		50			$\mathrm{m} \mathrm{VP}_{\text {P-P }}$
	Input DC Supply Current (Note 2)	Active Mode: $3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<10 \mathrm{~V}$ Sleep Mode: $3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<10 \mathrm{~V}$ Sleep Mode: 5 V < $\mathrm{V}_{\text {IN }}<10 \mathrm{~V}$ (LTC1265-5) Shutdown: $\mathrm{V}_{\text {SHUTDOWN }}=\mathrm{V}_{\text {IN }}, 3.5 \mathrm{~V}<\mathrm{V}_{\mathbb{I N}}<10 \mathrm{~V}$			$\begin{gathered} 1.8 \\ 160 \\ 160 \\ 5 \end{gathered}$	$\begin{gathered} 2.4 \\ 230 \\ 230 \\ 15 \end{gathered}$	$m A$ μA μA μA
ITRIP	Low-Battery Trip Point			1.15	1.25	1.35	V
N	Current into Pin 4					0.5	$\mu \mathrm{A}$
Jut	Current Sunk by Pin 3	$\begin{aligned} & V_{\text {LBOUT }}=0.4 \mathrm{~V}, V_{\text {LBIN }}=0 \mathrm{~V} \\ & V_{\text {LBOUT }}=5 \mathrm{~V}, V_{\text {LBIN }}=10 \mathrm{~V} \end{aligned}$		0.5	1.0	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	mA $\mu \mathrm{A}$
- V_{7}	Current Sense Threshold Voltage		-	$\begin{aligned} & 135 \\ & 135 \\ & 135 \end{aligned}$	$\begin{gathered} \hline 25 \\ 150 \\ 25 \\ 150 \\ 25 \\ 150 \\ \hline \end{gathered}$	$\begin{aligned} & 180 \\ & 180 \\ & 180 \end{aligned}$	mV mV mV mV mV mV
\checkmark	ON Resistance of Switch		\bullet		0.3	0.60	Ω
	C_{\top} Pin Discharge Current	$V_{\text {OUT }} \text { in Regulation, } V_{\text {SENSE }}=V_{\text {OUT }}$ $V_{\text {OUT }}=0 \mathrm{~V}$		50	$\begin{gathered} 70 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
:	Switch Off-Time (Note 3)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\text {LOAD }}=800 \mathrm{~mA}$	\bullet	4	5	6	$\mu \mathrm{S}$
	Shutdown Pin High	Min Voltage at Pin 10 for Device to be in Shutdown		1.2			V
	Shutdown Pin Low	Max Voltage at Pin 10 for Device to be Active				0.6	V
	Shutdown Pin Input Current	$\mathrm{V}_{\text {SHUTDOWN }}=8 \mathrm{~V}$				0.5	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

The - denotes specifications which apply over the full operating temperature range.

Note 1: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formulas:
LTC1265CS, LTC1265CS-3.3, LTC1265CS-5:

Note 2: Dynamic supply current is higher due to the gate charge being delivered at the switching frequency.
Note 3: In applications where RENSE is placed at ground potential, the off-time increases by approximately 40%.

TYPICAL PGRFORMANCE CHARACTERISTICS

IPICAL PGRFORMANCE CHARACTGRISTICS

LTC1265 TPC07

Supply Current in Shutdown

Gate Charge Losses

LTC1265 G09

In FUNCTIONS

VR VIN $_{\text {IN }}$ (Pins 1, 13):Supply for the Power MOSFET and Driver. Must decouple this pin properly to ground. Must vays tie pins 1 and 13 together.
(Pin 2): Main Supply for all the control circuitry in the C1265.
out (Pin 3): Open Drain Output of the Low-Battery mparator. This pin will sink current when pin 4 ($\mathrm{LB}_{\text {IN }}$) es below 1.25 V . During shutdown, this pin is high pedance.
${ }_{10}($ Pin 4$)$:The $(-)$ Input of the Low-Battery Comparator. $\mathrm{e}(+)$ Input is connected to a reference voltage of 1.25 V .
(Pin 5): External capacitor C_{\top} from pin 5 to ground sets : switch off-time. The operating frequency is dependent the input voltage and C_{\top}.
(Pin 6): Feedback Amplifier Decoupling Point. The rent comparator threshold is proportional to pin 6 tage.
NSE- (Pin 7): Connect to the (-) Input of the current nparator. For LTC1265-3.3 and LTC1265-5, it also mects to an internal resistive divider which sets the iput voltage.

SENSE ${ }^{+}$(Pin 8): The (+) Pin to the Current Comparator. A built-in offset between pins 7 and 8 in conjunction with $\mathrm{R}_{\text {SENSE }}$ Sets the current trip threshold.
N/C, $V_{\text {FB }}$ (Pin 9): For the LTC1265 adjustable version, this pin serves as the feedback pin from an external resistive divider used to set the output voltage. On the LTC1265-3.3 and LTC1265-5 versions, this pin is not used.
Shutdown (Pin 10): Pulling this pin HIGH keeps the internal switch off and puts the LTC1265 in micropower shutdown. De not float this pin.
SGND (Pin 11): Small-Signal Ground. Must be routed separately from other grounds to the $(-)$ terminal of $\mathrm{C}_{\text {OUT }}$.
PGND (Pin 12): Switch Driver Ground. Connects to the $(-)$ terminal of C_{IN}. Anode of the Schottiky diode must be connected close to this pin.
SW (Pin 14): Drain of the P-Channel MOSFET Switch. Cathode of the Schottky diode must be connected close to this pin.

FUMGIOMAL DIFGRPII (Pin 9 connection shown for LTC1265-3.3 and LTC1265-5; change create LTC1265)

OPERATIOП (Refer to Functional Diagram)

The LTC1265 uses a constant off-time architecture to switch its internal P-channel power MOSFET. The off-time is set by an external timing capacitor at C_{T} (pin 5). The operating frequency is then determined by the off-time and the difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$.

The output voltage is set by an internal resistive divider (LTC1265-3.3 and LTC1265-5) connected to Sense ${ }^{-}$(pin 7) or an external divider returned to $V_{F B}$ (pin9for LTC1265). A voltage comparator V, and a gain block G, compare the divided output voltage with a reference voltage of 1.25 V .
To optimize efficiency, the LTC1265 automatically switches between continuous and Burst Mode operation. The voltage comparator is the primary control element when the device is in Burst Mode operation, while the gain block controls the output voltage in continuous mode.
When the load is heavy, the LTC1265 is in continuous operation. During the switch ON time, current comparator C monitors the voltage between pins 7 and 8 connected across an external shunt in series with the inductor. When the voltage across the shunt reaches the comparator's
threshold value, its output signal will change state, settin! the flip flop and turning the internal P-channel MOSFET of The timing capacitor connected to pin 5 is now allowed ti discharge at a rate determined by the off-time controller
When the voltage on the timing capacitor has discharge past $\mathrm{V}_{T H 1}$, comparator Ttrips, sets the flip flop and cause the switch to turn on. Also, the timing capacitor is re charged. The inductor current will again ramp up until th current comparator C trips. The cycle then repeats.

When the load current increases, the output voltage de creases slightly. This causes the output of the gain stag (pin 6) to increase the current comparator threshold, thu tracking the load current.

When the load is relatively light, the LTC1265 automati cally goes into Burst Mode operation. The current loop i interrupted when the output voltage exceeds the desire regulated value. The hysteretic voltage comparator V trip when $\mathrm{V}_{\text {OUT }}$ is above the desired output voltage, shuttin off the switch and causing the capacitor to discharge. Thi capacitor discharges past $\mathrm{V}_{\mathrm{TH} 1}$ until its voltage drop

IPERATIOी (Refer to Functional Diagram)

Iow $\mathrm{V}_{\text {TH2 }}$. Comparator S then trips and a sleep signal is nerated. The circuit now enters into sleep mode with the iwer MOSFET turned off. In sleep mode, the LTC1265 is standby and the load current is supplied by the output pacitor. All unused circuitry is shut off, reducing quiesnt current from 2 mA to $160 \mu \mathrm{~A}$. When the output capacir discharges by the amount of the hysteresis of the mparatorV, the P-channel switch turns on again and the ocess repeats itself. During Burst Mode operation the ak inductor current is set at $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$.
I avoid the operation of the current loop interfering with irst Mode operation, a built-in offset $\mathrm{V}_{\text {OS }}$ is incorporated
in the gain stage. This prevents the current from increasing until the output voltage has dropped below a minimum threshold.
Using constant off-time architecture, the operating frequency is a function of the voltage. To minimize the frequency variation as dropout is approached, the off-time controller increases the discharge current as $V_{I N}$ drops below $\mathrm{V}_{\text {OUT }}+2 \mathrm{~V}$. In dropout the P-channel MOSFET is turned on continuously (100% duty cycle) providing low dropout operation with $\mathrm{V}_{\text {OUT }} \cong \mathrm{V}_{\mathrm{IN}}$.

PPLICATIONS INFORMATION

e basic LTC1265 application circuit is shown in Figure External component selection is driven by the load juirement, and begins with the selection of RSENSEce $\mathrm{R}_{\text {SENSE }}$ is known, $\mathrm{C}_{\boldsymbol{T}}$ and L can be chosen. Next, the hottky diode $D 1$ is selected followed by $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {OUT }}$.

ense Selection for Output Current

ENSE is chosen based on the required output current. th the current comparator monitoring the voltage develed across R RENSE, the threshold of the comparator termines the peak inductor current. Depending on the d current condition, the threshold of the comparator ; between $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ and $150 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. The maxiim output current of the LTC1265 is:
$\operatorname{IOUT}(\mathrm{MAX})=\frac{150 \mathrm{mV}}{\mathrm{RSENSE}^{2}}-\frac{\mathrm{I}_{\text {RIPPLE }}}{2}(\mathrm{~A})$
ere $I_{\text {RIPPLE }}$ is the peak-to-peak inductor ripple current. a relatively light load, the LTC1265 is in Burst Mode sration. In this mode the peak inductor current is set at $\mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. To fully benefit from Burst Mode operation, : inductor current should be continuous during burst tods. Hence, the peak-to-peak inductor ripple current ist not exceed $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$.
account forlightand heavy load conditions, the lout(MAX) hen given by:

$$
\begin{aligned}
& \operatorname{IOUT}(\mathrm{MAX})=\frac{150 \mathrm{mV}}{\text { RSENSE }}-\frac{25 \mathrm{mV}}{2 \times \mathrm{R}_{\text {SENSE }}}(\mathrm{A}) \\
& =\frac{137.5 \mathrm{mV}}{\text { RSENSE }}(\mathrm{A})
\end{aligned}
$$

Solving for R RENSE and allowing a margin of variations in the LTC1265 and extended component values yields:

$$
\begin{equation*}
\mathrm{R}_{\text {SENSE }}=\frac{100 \mathrm{mV}}{\text { IOUT(MAX) }} \tag{1}
\end{equation*}
$$

The LTC1265 is rated with a capability to supply a maximum of 1.2 A of output current. Therefore, the minimum value of $R_{\text {SENSE }}$ that can be used is 0.083Ω. A graph for selecting $R_{\text {SENSE }}$ versus maximum output is given in Figure 2.

LTC12656010
Figure 2. Selecting R RENSE

APPLICATIONS InFORMATION

Under short-circuit condition, the peak inductor current is determined by:

$$
\operatorname{ISC}(P K)=\frac{150 \mathrm{mV}}{\operatorname{RSENSE}}(\mathrm{~A})
$$

In this condition, the LTC1265 automatically extends the off-time of the P-channel MOSFET to allow the inductor current to decay far enough to prevent any current buildup. The resulting ripple current causes the average shortcircuit current to be approximately I IOUT(MAX).

C_{T} and L Selection for Operating Frequency

The LTC1265 uses a constant off-time architecture with $t_{0 F F}$ determined by an external capacitor C_{\dagger}. Each time the P-channel MOSFET turns on, the voltage on C_{T} is reset to approximately 3.3 V . During the off-time, C_{T} is discharged by a current which is proportional to $\mathrm{V}_{\text {OUT }}$. The voltage on C_{\top} is analogous to the current in inductor L, which likewise, decays at a rate proportional to $V_{\text {Out. Th }}$ Thus the inductor value must track the timing capacitor value.
The value of $\mathrm{C}_{\boldsymbol{T}}$ is calculated from the desired continuous mode operating frequency:

$$
\begin{equation*}
C_{T}=\frac{1}{1.3 \times 10^{4} \times f}\left(\frac{V_{I N}-V_{O U T}}{V_{I N}+V_{D}}\right)(\tag{F}
\end{equation*}
$$

where V_{D} is the drop across the Schottky diode.
As the operating frequency is increased the gate charge losses will reduce efficiency. The complete expression for operating frequency is given by:

$$
f \approx \frac{1}{t_{\text {OFF }}}\left(\frac{V_{\text {IN }}-V_{O U T}}{V_{\text {IN }}+V_{D}}\right)(H z)
$$

where:

$$
t_{0 F F}=1.3 \times 10^{4} \times \mathrm{C}_{\mathrm{T}} \times\left(\frac{\mathrm{V}_{\text {REG }}}{\mathrm{V}_{\text {OUT }}}\right)(\mathrm{sec})
$$

$V_{\text {REG }}$ is the desired output voltage (i.e. $5 \mathrm{~V}, 3.3 \mathrm{~V}$). $\mathrm{V}_{\text {OUT }}$ is the measured output voltage. Thus $\mathrm{V}_{\mathrm{REG}} / \mathrm{V}_{\text {OUT }}=1$ in regulation.
Note that as V_{IN} decreases, the frequency decreases. When the input-to-output voltage differential drops below

2V, the LTC1265 reduces toff by increasing the discharg current in C_{T}. This prevents audible operation prior ti dropout. (See shelving effect shown in the Operatin! Frequency curve under Typical Performance Characteris tics.)

To maintain continuous inductor current at light load, thi inductor must be chosen to provide no more than 25 mV $R_{\text {SENSE }}$ of peak-to-peak ripple current. This results in thi following expression for L :

$$
\begin{equation*}
L \geq 5.2 \times 10^{5} \times \text { RSENSE } \times C_{T} \times V_{\text {REG }} \tag{3}
\end{equation*}
$$

Using an inductance smaller than the above value wil result in the inductor current being discontinuous. I consequence of this is that the LTC1265 will delay enterin! Burst Mode operation and efficiency will be degraded a low currents.

Inductor Core Selection

With the value of L selected, the type of inductor must bi chosen. Basically, there are two kinds of losses in al inductor; core and copper losses.
Core losses are dependent on the peak-to-peak rippli current and core material. However it is independent of th, physical size of the core. By increasing the inductance, thi peak-to-peak inductor ripple current will decrease, there fore reducing core loss. Utilizing low core loss material such as molypermalloy or Kool $M \mu^{\oplus}$ will allow user t_{1} concentrate on reducing copper loss and preventing satu ration.

Although higher inductance reduces core loss, it increase: copper loss as it requires more windings. When space i: not at a premium, larger wire can be used to reduce th, wire resistance. This also prevents excessive heat dissipa tion.

CATCH DIODE SELECTION

Losses in the catch diode depend on forward drop anı switching times. Therefore Schottky diodes are a goor choice for low drop and fast switching times.
The catch diode carries load current during the off-time The average diode current is therefore dependent on th Kool $\mathrm{M} \mu$ is a registered trademark of Magnetics, Inc.

IPPLICATIONS INFORMATION

-channel switch duty cycle. At high input voltages, the iode conducts most of the time. As $\mathrm{V}_{\text {IN }}$ approaches $\mathrm{V}_{\text {OUT }}$, ie diode conducts only a small fraction of the time. The iost stressful condition for the diode is when the output short circuited. Under this condition, the diode must afely handle ISC(PK) at close to 100% duty cycle. Most TC1265 circuits will be well served by either a 1N5818 or MBRS130LT3 Schottky diode. An MBRS0520 is a good loice for $\mathrm{I}_{\text {OUt(MAX) }} \leq 500 \mathrm{~mA}$.

IN

I continuous mode, the input current of the converter is square wave of duty cycle $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$. To prevent large Jltage transients, a low ESR input capacitor must be sed. In addition, the capacitor must handle a high RMS arrent. The C_{IN} RMS current is given by:
iMS $\approx \frac{\operatorname{IOUT}\left[\operatorname{VOUT}\left(V_{\text {IN }}-V_{\text {OUT }}\right)\right]^{1 / 2}}{V_{\text {IN }}}\left(A_{\text {RMS }}\right)$
is formula has a maximum at $V_{I N}=2 V_{O U T}$, where $I_{\text {RMS }}$ $l_{\text {Out }} / 2$. This simple worst case is commonly used for zsign because even significant deviations do not offer uch relief. Note that capacitor manufacturer's ripple urrent ratings are often based on only 2000 hours lifene. This makes it advisable to further derate the capacir, or to choose a capacitor rated at a higher temperature an required. Do not underspecify this component. An Iditional $0.1 \mu \mathrm{~F}$ ceramic capacitor is also required on $N R V_{\text {IN }}$ for high frequency decoupling.

JUT

ie selection of $\mathrm{C}_{\text {Out }}$ is based upon the effective series sistance (ESR) for proper operation of the LTC1265. ie required $E S R$ of $\mathrm{C}_{0 u t}$ is:

ESRCOUT $<50 \mathrm{mV} /$ IRIPPLE

here $I_{\text {RIPPLE }}$ is the ripple current of the inductor. For the Ise where the I IIPPLE is $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$, the required ESR Cout is:

ESRCOUT < 2RSENSE

) avoid overheating, the output capacitor must be sized handle the ripple current generated by the inductor. The
worst case RMS ripple current in the output capacitor is given by:

$$
\mathrm{I}_{\mathrm{RMS}} \approx \frac{150 \mathrm{mV}}{2 \times \mathrm{RSENSE}}\left(\mathrm{~A}_{\mathrm{RMS}}\right)
$$

Generally, once the ESR requirement for $\mathrm{C}_{0 u t}$ has been met, the RMS current rating far exceeds the $\mathrm{I}_{\text {RIPPLE(P-P) }}$ requirement.
ESR is a direct function of the volume of the capacitor. Manufacturers such as Nichicon, AVX and Sprague should be considered for high performance capacitors. The OSCON semiconductor dielectric capacitor available from Sanyo has the lowest ESR for its size at a somewhat higher price.

In surface mount applications, multiple capacitors may have to be paralleled to meet the capacitance, ESR or RMS current handling requirement of the application. Aluminum electrolyte and dry tantalum capacitors are both available in surface mount configurations. In the case of tantalum, it is critical that the capacitors are both available in surface mount configuration and are surge tested for use in switching power supplies. An excellent choice is the AVX TPS series of surface mount tantalums, available in case heights ranging from 2 mm to 4 mm . Consult the manufacturer for other specific recommendations.

When the capacitance of $\mathrm{C}_{\text {OUT }}$ is made too small, the output ripple at low frequencies will be large enough to trip the voltage comparator. This causes Burst Mode operation to be activated when the LTC1265 would normally be in continuous operation. The effect will be most pronounced with low value of $R_{\text {SENSE }}$ and can be improved at higher frequencies with lower values of L.

Low-Battery Detection

The low-battery comparator senses the input voltage through an external resistive divider. This divided voltage connects to the (-) input of a voltage comparator (pin 4) which is compared with a 1.25 V reference voltage. Neglecting pin 4 bias current, the following expression is used for setting the trip limit:

$$
\mathrm{V}_{\mathrm{LB}_{-} T R I P}=1.25\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)
$$

LTC1265/LTC1265-3.3/LTC1265-5

APPLLCATIONS InFORMATION

The output, pin 3 , is an N-channel open drain which goes low when the battery voltage is below the threshold set by R3 and R4. In shutdown, the comparator is disabled and pin 3 is in a high impedance state.

Figure 3. Low-Battery Comparator

LTC1265 ADJUSTABLE APPLICATIONS

The LTC1265 develops a 1.25 V reference voltage between the feedback (pin 9) terminal and signal ground (see Figure 4). By selecting resistor R1, a constant current is caused to flow through R1 and R2 to set overall output voltage. The regulated output voltage is determined by:

$$
V_{\text {OUT }}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

For most applications a 30k resistor is suggested for R1. To prevent stray pickup, a 100 pF capacitor is suggested across R1 located close to the LTC1265.

LTC1265 F04

Figure 4. LTC1265 Adjustable Configuration

THERMAL CONSIDERATIONS

In a majority of applications, the LTC1265 does not dissipate much heat due to its high efficiency. However, in applications where the switching regulator is running at high duty cycles or the part is in dropout with the switch turned on continuously (DC), the user will need to do some thermal analysis. The goal of the thermal analysis is to determine whether the power dissipated by the regulator exceeds the maximum junction temperature of the part. The temperature rise is given by:

$$
\mathrm{T}_{\mathrm{R}}=\mathrm{P} \times \theta_{\mathrm{JA}}
$$

where P is the power dissipated by the regulator and θ_{JA} is the thermal resistance from the junction of the die to the ambient temperature.

The junction temperature is simply given by:

$$
T_{J}=T_{R}+T_{A}
$$

As an example, consider the LTC1265 is in dropout at an input voltage of 4 V with a load current of 0.5 A . From the Typical Performance Characteristics graph of Switch Resistance, the ON resistance of the P -channel is 0.55Ω. Therefore power dissipated by the part is:

$$
P=I^{2} \times R_{\text {DSON }}=0.1375 \mathrm{~W}
$$

For the SO package, the θ_{JA} is $110^{\circ} \mathrm{C} / \mathrm{W}$.
Therefore the junction temperature of the regulator when it is operating in ambient temperature of $25^{\circ} \mathrm{C}$ is:

$$
T_{J}=0.1375 \times 110+25=40.1^{\circ} \mathrm{C}
$$

Remembering that the above junction temperature is obtained from a $\mathrm{R}_{\text {DSON }}$ at $25^{\circ} \mathrm{C}$, we need to recalculate the junction temperature based on a higher $\mathrm{R}_{\text {DSON }}$ since it increases with temperature. However, we can safely assume that the actual junction temperature will not exceed the absolute maximum junction temperature of $125^{\circ} \mathrm{C}$.

Now consider the case of a 1 A regulator with $\mathrm{V}_{I N}=4 \mathrm{~V}$ and $T_{A}=65^{\circ} \mathrm{C}$. Starting with the same 0.55Ω assumption for $\mathrm{R}_{\text {DSON }}$, the T_{J} calculation will yield $125^{\circ} \mathrm{C}$. But from the graph, this will increase the RDSON to 0.76Ω, which when used in the above calculation yields an actual $\mathrm{T}_{\mathrm{J}}>148^{\circ} \mathrm{C}$. Therefore the LTC1265 would be unsuitable for a 4 V input, 1 A output regulator operating at $\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$.

PPLICATIONS INFORMATION

lard Layout Checklist
hen laying out the printed circuit board, the following ecklist should be used to ensure proper operation of the C1265. These items are also illustrated graphically in a layout diagram of Figure 5. Check the following in your 'out:

Are the signal and power grounds segregated? The LTC1265 signal ground (pin 11) must return to the (-) plate of Cout. The power ground (pin 12) returns to the anode of the Schottky diode, and the $(-)$ plate of C_{i}, whose leads should be as short as possible.
Does the (+) plate of the $\mathrm{C}_{\text {IN }}$ connect to the power $\mathrm{V}_{\text {IN }}$ (pins 1,13) as close as possible? This capacitor provides the AC current to the internal P-channel MOSFET and its driver.

Is the input decoupling capacitor $(0.1 \mu \mathrm{~F})$ connected closely between power $V_{I N}$ (pins 1,13) and power ground (pin 12)? This capacitor carries the high frequency peak currents.
4. Is the Schottky diode closely connected between the power ground (pin 12) and switch (pin 14)?
5. Does the LTC1265 Sense ${ }^{-}$(pin 7) connect to a point close to RSENSE and the (+) plate of $\mathrm{C}_{\text {OUT }}$? In adjustable applications, the resistive divider, R1 and R2, must be connected between the $(+)$ plate of $\mathrm{C}_{\text {OUT }}$ and signal ground.
6. Are the Sense ${ }^{-}$and Sense ${ }^{+}$leads routed together with minimum PC trace spacing? The 1000pF capacitor between pins 7 and 8 should be as close as possible to the LTC1265.
7. Is Shutdown (pin 10) actively pulled to ground during normal operation? The Shutdown pin is high impedance and must not be allowed to float.

Figure 5. LTC1265 Layout Diagram (See Board Layout Checklist)

APPLICATIONS InFORMATION

Troubleshooting Hints

Since efficiency is critical to LTC1265 applications, it is very important to verify that the circuit is functioning correctly in both continuous and Burst Mode operation. As the LTC1265 is highly tolerant of poor layout, the output voltage will still be regulated. Therefore, monitoring the output voltage will not tell you whether you have a good or bad layout. The waveform to monitor is the voltage on the timing capacitor pin 5.
In continuous mode the voltage on the $\mathrm{C}_{\boldsymbol{T}}$ pin is a sawtooth with approximately $0.9 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ swing. This voltage should never dip below 2V as shown in Figure 6a.

When the load currents are low ($l_{\text {LOAD }}<I_{\text {BURST }}$) Bur: Mode operation occurs. The voltage on C_{\top} pin now falls 1 ground for periods of time as shown in Figure 6b. Durin this time the LTC1265 is in sleep mode with quiescel current reduced to $160 \mu \mathrm{~A}$.
The inductor current should also be monitored. If th circuit is poorly decoupled, the peak inductor current w be haphazard as in Figure 7a. A well decoupled LTC126 has a clean inductor current as in Figure 7b.

Figure 6. C_{T} Waveforms

Figure 7. Inductor Waveforms

IPPLICATIONS IIFORMATION

lesign Example

Is a design example, assume $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$, $\mathrm{I}_{\text {MAX }}$ $: 0.8 \mathrm{~A}$ and $\mathrm{f}=250 \mathrm{kHz}$. With this information we can easily alculate all the important components.
rom (1),
RSENSE $=100 \mathrm{mV} / 0.8=0.125 \Omega$
rom (2) and assuming $\mathrm{V}_{\mathrm{D}}=0.4 \mathrm{~V}$,

$$
\mathrm{C}_{\mathrm{T}} \cong 100 \mathrm{pF}
$$

Jsing (3), the value of the inductor is:
$. \geq 5.2 \times 10^{5} \times 0.125 \times 100 \mathrm{pF} \times 3.3 \mathrm{~V}=22 \mu \mathrm{H}$
or the catch diode, a MBRS130LT3 or 1N5818 will be ufficient in this application.
in will require an RMS current rating of at least 0.4A at emperature, and COUT will require an ESR of (from 5):

ESRCOUT $<0.25 \Omega$

he inductor ripple current is given by:

$$
I_{\text {RIPPLE }}=\left(\frac{V_{\text {OUT }}+V_{D}}{L}\right) t_{\text {OFF }}=0.22 \mathrm{~A}
$$

t t light loads the peak inductor current is at:

$$
I_{\text {PEAK }}=25 \mathrm{mV} / 0.125=0.2 \mathrm{~A}
$$

herefore, at load current less than 0.1 A the LTC1265 will e in Burst Mode operation. Figure 8 shows the complete ircuit and Figure 9 shows the efficiency curve with the bove calculated component values.

Figure 8. Design Example Circuit

LTC1265 G11
Figure 9. Design Example Efficiency Curve

LTC 1265/LTC 1265-3.3/LTC1265-5

TYPICAL APPLICATIONS

High Efficiency 5V to 3.3V Converter

Positive-to-Negative (-5V) Converter

[YPICAL APPLICATIONS

5V Buck-Boost Converter

$\mathbf{V}_{\text {IN }}(\mathbf{V})$	$\mathbf{I}_{\mathbf{O U T}(\text { MAX })}(\mathrm{mA})$
3.5	240
4.0	275
5.0	365
6.0	490
7.0	610
7.5	665

*SANYO OS-CON CAPACITOR **IRC LRC2010-01-R162-J +L1A, L2A SELECTION

MANUFACTURER	PART NO.
COILTRONICS	CTX33-4
DALE	LPT4545-330LA

9V to 12V and - 12V Outputs

LTC1265/LTC1265-3.3/LTC1265-5

TYPICAL APPLICATIONS

2.5mm Max Height 5V-to-3.3V (500 mA)

LTC1265 F12

Logic Selectable OV/3.3V/5V 700mA Regulator

LTC1265 F13

LTC1265/LTC1265-3.3/LTC1265-5

YPICAL APPLICATIONS

iELATED PARTS

IRT NUMBER	DESCRIPTION	COMMENTS
C1142	Dual Step-Down Switching Regulator Controller	Dual Version of LTC1148
C1143	Dual Step-Down Switching Regulator Controller	Dual Version of LTC1147
C1147	Step-Down Switching Regulator Controller	Nonsynchronous, 8-Pin, $\mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$
C1148	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 20 \mathrm{~V}$
C1149	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 48 \mathrm{~V}$, for Standard Threshold FETs
C1159	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$, for Logic Level FETs
C1174	Step-Down Switching Regulator with Internal 0.5A Switch	$\mathrm{V}_{\text {IN }} \leq 18.5 \mathrm{~V}$, Comparator/Low Battery Detector
C1266	Step-Up/Down Switching Regulator Controller	Synchronous N- or P-Channel FETs, Comparator/Low Battery Detector
C1574	Step-Down Switching Regulator with Internal 0.5A Switch and Schottky Diode	$\mathrm{V}_{\text {IN }} \leq 18.5 \mathrm{~V}$, Comparator

features

- Ultra-High Efficiency: Over 95\% Possible
- Drives N-Channel MOSFET for High Current or P-Channel MOSFET for Low Dropout
- Pin Selectable Burst Mode Operation
- 1\% Output Accuracy (LTC1266A)
- Pin Selectable Phase of Topside Driver for Boost or Step-Down Operation
- Wide $\mathrm{V}_{\text {IN }}$ Range: 3.5 V to 20 V
- On-Chip Low-Battery Detector
- High Efficiency Maintained over Large Current Range
- Low $170 \mu A$ Standby Current at Light Loads
- Current Mode Operation for Excellent Line and Load Transient Response
- Logic Controlled Micropower Shutdown: $I_{Q}<40 \mu \mathrm{~A}$
- Short Circuit Protection
- Synchronous Switching with Nonoverlaping Gate Drives
- Available in 16-Pin Narrow SO Package

APPLICATIONS

- Notebook and Palmtop Computers
- Portable Instruments
- Cellular Telephones
- DC Power Distribution Systems
- GPS Systems

N - or P-Channel MOSFETs
 DESCRIPTIO

The LTC ${ }^{\circledR} 1266$ series is a family of synchronous switchinc regulator controllers featuring automatic Burst Mode ${ }^{\text {TN }}$ operation to maintain high efficiencies at low output currents. These devices drive external power MOSFETs a switching frequencies up to 400 kHz using a constant offtime current mode architecture providing constant ripple current in the inductor. They can drive either an N-channe or a P-channei topside MOSFET.

The operating current level is user-programmable via ar external current sense resistor. Wide input supply range allows operation from 3.5 V to 18 V (20 V maximum) Constant off-time architecture provides low dropout regulation limited only by the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of the topside MOSFET (when using the P-channel) and the resistance of the inductor and current sense resistor.

The LTC1266 series combines synchronous switching foı maximum efficiency at high currents with an automatic low current operating mode, called Burst Mode operation which reduces switching losses. Standby power is reduced to only 1 mW at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ (at $\mathrm{I}_{\text {OUT }}=0$). Load currents in Burst Mode operation are typically 0 mA to 500 mA .

[^27]
TYPICAL APPLICATION

LTC1266-3.3 Efficiency

Figure 1. High Efficiency Step-Down Converter

IBSOLUTE MAXIMUM RATIIGS

iput Supply Voltage (Pins 2, 5) \qquad 20 V to -0.3 V
ontinuous Output Current (Pins 1, 16) \qquad 50 mA
ense Voltages (Pins 8, 9) 13 V to -0.3 V
INV, BINH, SHDN, LB ${ }_{\text {IN }}$
(Pins 3, 4, 11, 13) \qquad 20 V to -0.3 V Bout Output Current \qquad 12 mA perating Ambient Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ xtended Commercial
Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unction Temperature (Note 1)........................... $125^{\circ} \mathrm{C}$ torage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

Consult factory for Industrial and Military grade parts.

LECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {BINH }}=0 \mathrm{~V}$ unless otherwise noted.

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
B	Feedback Voltage LTC1266ACS LTC1266CS	$\begin{aligned} & V_{\text {IN }}=9 \mathrm{~V}, I_{\text {LOAD }}=700 \mathrm{~mA}, V_{\text {PINV }}=V_{\text {PWR }}, \\ & \text { Topside Switch }=N-C h \end{aligned}$	\bullet	1.210	$\begin{gathered} 1.275 \\ 1.25 \end{gathered}$	1.290	V
3	Feedback Current (LTC1266 Only)		\bullet		0.2	1	$\mu \mathrm{A}$
JUT	Regulated Output Voltage LTC1266CS-3.3 LTC1266CS-5	$\begin{aligned} & V_{\text {IN }}=9 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}, V_{\text {PINV }}=V_{\text {PWR }}, \\ & \text { Topside Switch }=N-C h, V_{\text {PWR }}=14 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 3.23 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 3.33 \\ & 5.05 \end{aligned}$	$\begin{aligned} & 3.43 \\ & 5.20 \end{aligned}$	V
	Output Ripple (Burst Mode Operation)	$\mathrm{I}_{\text {LOAD }}=150 \mathrm{~mA}$		50			$\mathrm{m} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
$V_{\text {OUT }}$	Output Voltage Line Regulation	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA} \\ & V_{\text {PINV }}=0 \mathrm{~V}, \text { Topside Switch }=P-C h, V_{\text {IN }}=7 \mathrm{~V} \text { to } 12 \mathrm{~V} \\ & V_{\text {PINV }}=V_{\text {PWR }}, \text { Topside Switch }=\mathrm{N}-\mathrm{Ch}, V_{\text {IN }}=7 \mathrm{~V} \text { to } 12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -40 \\ & -40 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ \hline \end{array}$	mV mV
	Output Voltage Load Regulation LTC1266-3.3 LTC1266-3.3 LTC1266-5 LTC1266-5	$\begin{aligned} & 5 \mathrm{~mA}<l_{\text {LOAD }}<2 \mathrm{~A}, \mathrm{R}_{\text {SENSE }}=0.05 \Omega \\ & \text { Burst Mode Operation Enabled, } \mathrm{V}_{\text {BINH }}=0 \mathrm{~V} \\ & \text { Burst Mode Operation Inhibited, } V_{\text {BINH }}=2 \mathrm{~V} \\ & \text { Burst Mode Operation Enabled, } V_{\text {BINH }}=0 \mathrm{~V} \\ & \text { Burst Mode Operation Inhibited, } V_{\text {BINH }}=2 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 40 \\ & 15 \\ & 60 \\ & 25 \\ & \hline \end{aligned}$	$\begin{gathered} 65 \\ 25 \\ 100 \\ 40 \\ \hline \end{gathered}$	$m V$ $m V$ $m V$ $m V$
1	$V_{\text {IN }}$ Pin DC Supply Current (Note 2) Normal Mode Sleep Mode Shutdown	$\begin{aligned} & 3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ & 3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ & V_{\text {SHDN }}=2.1 \mathrm{~V}, 3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \end{aligned}$			$\begin{gathered} 2.1 \\ 170 \\ 25 \end{gathered}$	$\begin{gathered} 3.0 \\ 250 \\ 50 \end{gathered}$	$m A$ μA μA
?	PWR VIN DC Supply Current (Note 2) Normal Mode Sleep Mode Shutdown	$\begin{aligned} & 3.5 \mathrm{~V}<\text { PWR } V_{\mathbb{I N}}<18 \mathrm{~V} \\ & 3.5 \mathrm{~V}<\text { PWR } V_{\text {IN }}<18 \mathrm{~V} \\ & V_{\text {SHIN }}=2.1 \mathrm{~V}, 3.5 \mathrm{~V}<\text { PWR } V_{\text {IN }}<18 \mathrm{~V} \end{aligned}$			$\begin{gathered} 20 \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 5 \\ 5 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
SENSE 1	Current Sense Threshold (Burst Mode Operation Enabled) LTC1266 LTC1266-3.3 LTC1266-5	$\begin{aligned} & V_{\text {BINH }=0 \mathrm{~V}} \\ & V_{\text {SENSE }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=V_{\text {OUT }} / 2.64+25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=V_{\text {OUT }} / 2.64-25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) } \end{aligned}$	-	$\begin{aligned} & 135 \\ & 135 \\ & 135 \end{aligned}$	$\begin{gathered} 25 \\ 155 \\ 25 \\ 155 \\ 25 \\ 155 \end{gathered}$	$\begin{array}{r} 175 \\ 175 \\ 175 \end{array}$	$m V$ $m V$ $m V$ $m V$ $m V$ $m V$

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{~V}_{S H D N}=\mathrm{V}_{\text {BINH }}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
VSENSE 2	Current Sense Threshold (Burst Mode Operation Disabled) LTC1266 LTC1266-3.3 LTC1266-5	$\begin{aligned} & V_{\text {BINH }=2.1 \mathrm{~V}} \\ & V_{\text {SENSE }^{-}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=\mathrm{V}_{\text {OUT }} / 2.64+25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=\mathrm{V}_{\text {OUT }} / 2.64-25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) } \\ & \hline \end{aligned}$		$\begin{aligned} & 135 \\ & 135 \\ & 135 \\ & \hline \end{aligned}$	$\begin{array}{r} -20 \\ 155 \\ -20 \\ 155 \\ -20 \\ 155 \end{array}$	$\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$	m m m m m m m
$\mathrm{V}_{\text {SHDN }}$	Shutdown Pin Threshold			0.6	0.8	2	
$\mathrm{I}_{\text {SHDN }}$	Shutdown Pin Input Current	OV $<\mathrm{V}_{\text {SHDN }}<8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=16 \mathrm{~V}$			1.2	5	μ
IPINV	Phase Invert Pin Input Current	OV < $\mathrm{V}_{\text {PINV }}<18 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=18 \mathrm{~V}$			0.2	1	μ
$\mathrm{V}_{\text {BINH }}$	Burst Mode Operation Inhibit Pin Threshold			0.8	1.2	2	
IBINH	Burst Mode Operation Inhibit Pin Input Current	$\mathrm{OV}<\mathrm{V}_{\text {BINH }}<18 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=18 \mathrm{~V}$			0.2	1	μ
$I_{\text {CT }}$	$\mathrm{C}_{\text {T }}$ Pin Discharge Current	$\begin{aligned} & V_{\text {SENSE }}+=V_{\text {OUT }}-100 \mathrm{mV}, V_{\text {SENSE }^{-}}=V_{\text {OUT }}-300 \mathrm{mV} \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		50	$\begin{gathered} 70 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & 90 \\ & 10 \\ & \hline \end{aligned}$	μ μ
$\mathrm{t}_{\text {OFF }}$	Off-Time (Note 3)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}$		4	5	6	$\stackrel{ }{ }$
$\mathrm{t}_{\text {MAX }}$	Max On-Time	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=18 \mathrm{~V}$			60		$\underline{ }$
$\mathrm{tr}_{\underline{\text { r }}} \mathrm{t}_{\mathrm{f}}$	Driver Output Transition Times	$C_{L}=3000 \mathrm{pF}$ (Pins 1, 16), $\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$			100	200	n
$V_{\text {CLAMP }}$	Output Voltage Clamp in Burst Mode Operation Inhibit LTC1266 LTC1266-3.3 LTC1266-5	$\begin{aligned} & V_{\text {BINH }}=2.1 \mathrm{~V} \\ & \text { Measured at } V_{\text {FB }} \\ & \text { Measured at } V_{\text {SENSE }} \\ & \text { Measured at } V_{\text {SENSE }} \\ & \hline \end{aligned}$			$\begin{aligned} & 1.30 \\ & 3.43 \\ & 5.20 \end{aligned}$		
$\overline{V_{\text {LBTRIP }}}$	Low-Battery Trip Point	$\begin{aligned} & V_{I N}=5 \mathrm{~V} \\ & V_{I N}=12 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.14 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.42 \end{aligned}$	
ILBLEAK	Max Leakage Current into Pin 14	$\mathrm{V}_{\text {LBOUT }}=18 \mathrm{~V}, \mathrm{~V}_{\text {LBIN }}=2 \mathrm{~V}$			25	200	n
LLBSINK	Max Sink Current into Pin 14	$\mathrm{V}_{\text {LBOUT }}=1 \mathrm{~V}, \mathrm{~V}_{\text {LBIN }}=0 \mathrm{~V}, 2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V}$		1	8		m
LBIN	Max Leakage Current into Pin 13	$\mathrm{V}_{\text {LBIN }}=18 \mathrm{~V}$			0.2	1	μ

$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ (Note 4), $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {FB }}$	Feedback Voltage (LTC1266 only)	$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}$	1.21	1.25	1.29	
V ${ }_{\text {OUT }}$	Regulated Output Voltage LTC1266-3.3 LTC1266-5	$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}$	$\begin{array}{r} 3.23 \\ 4.90 \\ \hline \end{array}$	$\begin{array}{r} 3.33 \\ 5.05 \\ \hline \end{array}$	$\begin{array}{r} 3.43 \\ 5.20 \\ \hline \end{array}$	
I_{01}	$V_{\text {IN }}$ Pin DC Supply Current (Note 2) Normal Mode Sleep Mode Shutdown	$\begin{aligned} & 3.5 \mathrm{~V}<V_{I N}<18 \mathrm{~V} \\ & 3.5 \mathrm{~V}<V_{I N}<18 \mathrm{~V} \\ & V_{\text {SHUTDOWN }}=2.1 \mathrm{~V}, 3.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<18 \mathrm{~V} \end{aligned}$		$\begin{gathered} 2.1 \\ 170 \\ 25 \end{gathered}$	$\begin{gathered} 3.3 \\ 260 \\ 60 \\ \hline \end{gathered}$	m μ
$\mathrm{I}_{\text {Q2 }}$	PWR VIN DC Supply Current (Note 2) Normal Mode Sleep Mode Shutdown	$\begin{aligned} & 3.5 \mathrm{~V}<\mathrm{PWR} \mathrm{~V}_{\mathrm{IN}}<18 \mathrm{~V} \\ & 3.5 \mathrm{~V}<\mathrm{PWR} \mathrm{~V}_{\text {IN }}<18 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHUTDOWN }}=2.1 \mathrm{~V}, 3.5 \mathrm{~V}<\text { PWR }^{\text {IN }}<18 \mathrm{~V} \end{aligned}$		20 1 1	$\begin{gathered} 50 \\ 7 \\ 7 \end{gathered}$	μ μ μ

ELECTRICAL CHARACTERISTICS

;YMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
'SENSE1	Current Sense Threshold (Burst Mode Operation Enabled) LTC1266 LTC1266-3.3, LTC1266-5	$\begin{aligned} & V_{\text {BINH }}=0 \mathrm{~V} \\ & V_{\text {SENSE }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=V_{\text {OUT }} / 2.64+25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=V_{\text {OUT }} / 2.64-25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }^{-}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) }} \mathrm{V}_{\text {SENSE }^{-}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) }} \text { (For } \end{aligned}$	135 135	$\begin{gathered} 25 \\ 155 \\ 25 \\ 155 \end{gathered}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
iense 2	$\begin{aligned} & \text { Current Sense Threshold } \\ & \text { (Burst Mode Operation Disabled) } \\ & \text { LTC1266 } \\ & \text { LTC1266-3.3, LTC1266-5 } \end{aligned}$	$\begin{aligned} & V_{\text {BINH }}=2.1 \mathrm{~V} \\ & V_{\text {SENSE }}-3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=\mathrm{V}_{\text {OUT }} / 2.64+25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }} 3.3 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=V_{\text {OUT }} / 2.64-25 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }}=V_{\text {OUT }}+100 \mathrm{mV} \text { (Forced) } \\ & V_{\text {SENSE }}=V_{\text {OUT }}-100 \mathrm{mV} \text { (Forced) } \end{aligned}$	130 130	$\begin{aligned} & -20 \\ & 155 \\ & -20 \\ & 155 \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
SHDN	Shutdown Pin Threshold		0.55	0.8	2	V
JFF	Off-Time (Note 3)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\mathrm{LOAD}}=700 \mathrm{~mA}$	3.8	5	6.5	$\mu \mathrm{S}$

he - denotes specifications which apply over the full operating emperature range.
Iote 1: T_{j} is calculated from the ambient temperature T_{A} and power lissipation P_{D} according to the following formula:

$$
T_{J}=T_{A}+\left(P_{D} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

lote 2: Dynamic supply current is higher due to the gate charge being elivered at the switching frequency. See Applications Information.

Note 3: In applications where RSENSE is placed at ground potential, the offtime increases approximately 40\%.
Note 4: The LTC1266, LTC1266-3.3, and LTC1266-5 are not tested and not quality assurance sampled at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design and/or correlation.
Note 5: Unless otherwise noted the specifications for the LTC1266A are the same as those for the LTC1266.

ГYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORmANCE CHARACTERISTICS

PIn functions

TDrive (Pin 1): High Current Drive for Topside MOSFET. This MOSFET can be either P-channel or N-channel, user selectable by Pin 3. Voltage swing at this pin is from PWR $V_{\text {IN }}$ to ground.
PWR $V_{I N}$ (Pin 2): Power Suppy for Drive Signals. Must be closely decoupled to power ground (Pin 15).
PINV (Pin 3): Phase Invert. Sets the phase of the topside driver to drive either a P-channel or an N-channel MOSFET as follows:

P-channel: Pin $3=0 \mathrm{~V}$
N-channel: Pin $3=$ PWR $V_{I N}$
BINH (Pin 4): Burst Mode Opsration Inhibit. A CMOS logic high on this pin will disable the Burst Mode operation feature forcing continuous operation down to zero load.
$V_{I N}$ (Pin 5): Main Supply Pin.
$\mathbf{C}_{\boldsymbol{T}}$ (Pin 6): External Capacitor. $\mathrm{C}_{\boldsymbol{T}}$ from Pin 4 to ground sets the operating frequency. The actual frequency is also dependent on the input voltage.
$I_{\text {TH }}$ (Pin 7): Gain Amplifier Decoupling Point. The current comparator threshold increases with the Pin 7 voltage.
Sense- (Pin 8): Connects to internal resistive divider which sets the output voltage in LTC1266-3.3 and LTC1266-5 versions. Pin 8 is also the (-) input for the current comparator.

Sense ${ }^{+}$(Pin 9): The (+) Input to the Current Comparator. A built-in offset between Pins 8 and 9 in conjunction with $\mathrm{R}_{\text {SENSE }}$ sets the current trip threshold.
$\mathbf{V}_{\text {FB }}$ (Pin 10): For the LTC1266 adjustable version, Pin 10 serves as the feedback pin from an external resistive divider used to set the output voltage. On LTC1266-3.3 and LTC1266-5 versions this pin is not used.
SHDN (Pin 11): When grounded, the LTC1266 series operates normally. Pulling Pin 11 high holds both MOSFETs off and puts the LTC1266 in micropower shutdown mode. Requires CMOS logic signal with $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}<1 \mu$ s. Should not be left floating.
SGND (Pin 12): Small-Signal Ground. Must be routed separately from other grounds to the $(-)$ terminal of $\mathrm{C}_{\text {Out }}$. $\mathrm{LB}_{\mathbf{1 N}}$ (Pin 13): Input to the Low-Battery Comparator. This input is compared to an internal 1.25 V reference.
LBout (Pin 14): Open Drain Output of the Low-Battery Comparator. This pin will sink current when Pin 13 is below 1.25 V .
PGND (Pin 15): Driver Power Ground. Connects to source of N -channel MOSFET and the $(-)$ terminal of C_{I}.
BDrive (Pin 16): High Current Drive for Bottom N-Channel MOSFET. Voltage swing at Pin 16 is from ground to PWR Vin.

OPGRATION

The LTC1266 series uses a current mode, constant offtime architecture to synchronously switch an external pair of power MOSFETs. Operating frequency is set by an external capacitor at the timing capacitor Pin 6.
The output voltage is sensed by an internal voltage divider connected to Sense ${ }^{-}$, Pin 8, (LTC1266-3.3 and LTC12665) or external divider returned to V_{FB}, Pin 10 , (LTC1266). A voltage comparator V , and a gain block G , compare the divided output voltage with a reference voltage of 1.25 V . Tooptimize efficiency, the LTC1266 automatically switches between two modes of operation, burst and continuous. The voltage comparator is the primary control element when the device is in Burst Mode operation, while the gain block controls the output voltage in continuous mode.

During the switch ON cycle in continuous mode, current comparator C monitors the voltage between Pins 8 and 9 connected across an external shunt in series with the inductor. When the voltage across the shunt reaches its threshold value, the topside driver output is switched to turn off the topside MOFSET (Power V ${ }_{\text {IN }}$ for P-channel or ground for N -channel). The timing capacitor connected to Pin 6 is now allowed to discharge at a rate determined by the off-time controller. The discharge current is made proportional to the output voltage (measured by Pin 8) to model the inductor current, which decays at a rate which is also proportional to the output voltage. While the timing capacitor is discharging, the bottom-side drive output is switched to power $\mathrm{V}_{\text {IN }}$ to turn on the bottom-side N -channel MOSFET.

Jperation

Vhen the voltage on the timing capacitor has discharged last $\mathrm{V}_{\mathrm{TH} 1}$, comparator T trips, setting the flip-flop. This ;auses the bottom-side output to switch off and the opside output to switch on (ground for P-channel and 'ower $\mathrm{V}_{\text {IN }}$ for N -channel). The cycle then repeats.

Is the load current increases, the output voltage decreases ilightly. This causes the output of the gain stage (Pin 7) to ncrease the current comparator threshold, thus tracking he load current.
he sequence of events for Burst Mode operation is very imilar to continuous operation with the cycle interrupted iy the voltage comparator. When the output voltage is at rrabove the desired regulated value, the topside MOSFET s held off by comparator V and the timing capacitor ;ontinues to discharge below $\mathrm{V}_{\mathrm{TH} 1}$. When the timing apacitor discharges past $\mathrm{V}_{T H 2}$, voltage comparator S rips, causing the internal sleep line to go low and the lottom-side MOSFET to turn off.
he circuit now enters sleep mode with both power NOSFETs turned off. In sleep mode, a majority of the ircuitry is turned off, dropping the quiescent current rom 2.1 mA to $170 \mu \mathrm{~A}$. The load current is now being upplied from the output capacitor. When the output 'oltage has dropped by the amount of hysteresis in omparator V, the topside MOSFET is again turned on nd this process repeats.
' 0 avoid the operation of the current loop interfering with iurst Mode operation, a built-in offset $\mathrm{V}_{\text {OS }}$ is incorporated 1 the gain stage. This prevents the current comparator hreshold from increasing until the output voltage has ropped below a minimum threshold.

To prevent both the external MOSFETs from ever being turned on at the same time, feedback is incorporated to sense the state of the driver output pins. Before the bottom-side drive output can turn on, the topside output must be off. Likewise, the topside output is prevented from turning on while the bottom-side drive output is still on.

The LTC1266 has two select pins which provide the user with choice of topside switch and with the option of inhibiting Burst Mode operation. The phase select pin allows the user to choose whether the topside MOSFET is a P -channel or an N -channel. The phase select pin does two things: sets the proper phase of the drive signal (ON $=$ Power V_{IN} for N -channel and $\mathrm{ON}=0 \mathrm{~V}$ for P-channel) and also sets an upper limit for the on-time $(60 \mu \mathrm{~s})$ when set to the N -channel. The on-time limit ensures proper start-up when used in a single supply bootstrap circuit configuration (see Applications Information). InP-channel mode there is no on-time limit and thus, in dropout, the P-channel MOSFET is turned on continuously (100% duty cycle).

The Burst Mode operation inhibit (BINH, Pin 4) allows the Burst Mode operation to be disabled by applying a CMOS logic high to this pin. With Burst Mode operation disabled, the LTC1266 will remain in continuous mode down to zero load. Burst Mode operation is disabled by allowing the lower current threshold limit to go below zero so that the voltage comparator will never trip. The voltage comparator trip point is also raised up so that it will not be tripped by transients. It is still active to provide a voltage clamp to prevent the output from overshooting.

IPPLICATIONS Information

Ine of the three basic LTC1266 application circuits is hown in Figure 1. This circuit uses an N-channel opside driver and a single supply. The other two circuit onfigurations (see Typical Applications) use an I-channel topside driver and dual supply, and a -channel topside driver. Selections of other external omponents are driven by the load requirement and are าe same for all three circuit configurations. The first
step is the selection of $\mathrm{R}_{\text {SENSE }}$. Once $\mathrm{R}_{\text {SENSE }}$ is known, C_{\top} and L can be chosen. Next, the power MOSFETs and D1 are selected. Finally, $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$ are selected and the loop is compensated. Using an N -channel topside switch, input voltages are limited to a maximum of about 15V. With a P-channel, the input voltage may be as high as 20 V .

applications information

RSENSE Selection for Output Current

$\mathrm{R}_{\text {SENSE }}$ is chosen based on the required output current. The LTC1266 series current comparator has a threshold range which extends from a minimum of $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ (when Burst Mode operation is enabled) to a maximum of $155 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. The current comparator threshold sets the peak of the inductor ripple current, yielding a maximum output current $I_{\text {MAX }}$ equal to the peak value less half the peak-to-peak ripple current. For proper Burst Mode operation, $\mathrm{I}_{\text {RIPPLE(P-P) }}$ must be less than or equal to the minimum current comparator threshold.
Since efficiency generally increases with ripple current, the maximum allowable ripple current is assumed, i.e., $I_{\text {RIPPLE(P-P) }}=25 \mathrm{mV} /$ R $_{\text {SENSE }}$ (see C_{\top} and L Selection for Operating Frequency). Solving for RSENSE and allowing a margin for variations in the LTC1266 series and external component values yields:

$$
R_{\text {SENSE }}=\frac{100 \mathrm{mV}}{I_{\text {MAX }}}
$$

A graph for selecting RSENSE vs maximum output current is given in Figure 2.

Figure 2. Selecting R SENSE
The load current, below which Burst Mode operation commences, ($l_{\text {BURST }}$), and the peak short circuit current, ($I_{S C(P K)}$), both track $I_{\text {MAX }}$. Once R Rense has been chosen, $I_{\text {BURST }}$ and $I_{S C(P K)}$ can be predicted from the following:

$$
\begin{aligned}
& I_{\text {BURST }} \approx \frac{15 \mathrm{mV}}{R_{\text {SENSE }}} \\
& I_{\text {SC(PK })}=\frac{155 \mathrm{mV}}{R_{\text {SENSE }}}
\end{aligned}
$$

The LTC1266 series automatically extends $t_{0 F F}$ during a short circuit to allow sufficient time for the inductor current to decay between switch cycles. The resulting ripple current causes the average short circuit current $I_{S C(A V G)}$ to be reduced to approximately $I_{\text {MAX }}$.

L and C_{\top} Selection for Operating Frequency

The LTC1266 series uses a constant off-time architecture with $t_{0 F F}$ determined by an external timing capacitor C_{T}. Each time the topside MOSFET switch turns on, the voltage on $\mathrm{C}_{\boldsymbol{T}}$ is reset to approximately 3.3 V . During the off-time, $\mathrm{C}_{\boldsymbol{T}}$ is discharged by a current which is proportional to $V_{\text {OUT }}$. The voltage on C_{T} is analogous to the current in inductor L, which likewise decays at a rate proportional to $V_{\text {OUT }}$. Thus the inductor value must track the timing capacitor value.
The value of $\mathrm{C}_{\boldsymbol{T}}$ is calculated from the desired continuous mode operating frequency, f:

$$
C_{T}=\frac{1}{2.6 \times 10^{4} \times f}
$$

assumes $\mathrm{V}_{I N}=2 \mathrm{~V}_{\text {OUT }}$, (Figure 1 circuit).
A graph for selecting $\mathrm{C}_{\boldsymbol{T}}$ vs frequency including the effects of input voltage is given in Figure 3.

LTC1266 • 103
Figure 3. Timing Capacitor Value

APPLICATIONS INFORMATION

As the operating frequency is increased the gate charge losses will be higher, reducing efficiency (see Efficiency Considerations). The complete expression for operating frequency of the circuit in Figure 1 is given by:

$$
f=\frac{1}{t_{0 F F}}\left(1-\frac{V_{O U T}}{V_{I N}}\right)
$$

where:

$$
\mathrm{t}_{\mathrm{OFF}}=1.3 \times 10^{4} \times \mathrm{C}_{\mathrm{T}} \times\left(\frac{\mathrm{V}_{\mathrm{REG}}}{\mathrm{~V}_{\mathrm{OUT}}}\right)
$$

$V_{\text {REG }}$ is the desired output voltage (i.e., $5 \mathrm{~V}, 3.3 \mathrm{~V}$). $\mathrm{V}_{\text {OUT }}$ is the measured output voltage. Thus $\mathrm{V}_{\text {REG }} V_{\text {OUT }}=1$ in regulation.
Once the frequency has been set by C_{T}, the inductor L must be chosen to provide no more than $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ of peak-to-peak inductor ripple current. This results in a minimum required inductor value of:

$$
\mathrm{L}_{\text {MIN }}=5.1 \times 10^{5} \times \mathrm{R}_{\text {SENSE }} \times \mathrm{C}_{T} \times \mathrm{V}_{\text {REG }}
$$

As the inductor value is increased from the minimum value, the ESR requirements for the output capacitor are eased at the expense of efficiency. If too small an inductor is used, the inductor current will decrease past zero and change polarity. A consequence of this is that the LTC1266 series may not enter Burst Mode operation and efficiency will be slightly degraded at low currents.

Inductor Core Selection

Once the minimum value for L is known, the type of inductor must be selected. The highest efficiency will be obtained using ferrite, Kool $\mathrm{M} \mu^{\circledR}$ on molypermalloy (MPP) cores. Lower cost powdered iron cores provide suitable performance but cut efficiency by 3% to 7%. Actual core loss is independent of core size for a fixed inductor value, but it is very dependent on inductance selected. As inductance increases, core losses go down. Unfortunately, increased inductance requires more turns of wire and therefore copper losses increase.
Ferrite designs have very low core loss, so design goals can concentrate on copper loss and preventing saturation. Ferrite core material saturates "hard," which means that inductance collapses abruptly when the peak design cur-

[^28]rent is exceeded. This results in an abrupt increase in inductor ripple current and consequent output voltage ripple which can cause Burst Mode operation to be falsely triggered. Do not allow the core to saturate!

Kool $M \mu$ is a very good, low loss core material for toroids, with a "soft" saturation characteristic. Molypermalloy is slightly more efficient at high ($>200 \mathrm{kHz}$) switching frequency. Toroids are very space efficient, especially when you can use several layers of wire. Because they generally lack a bobbin, mounting is more difficult. However, new designs for surface mount are available from Coiltronics and Beckman Industrial Corp. which do not increase the height significantly.

Power MOSFET and D1 Selection

Two external power MOSFETs must be selected for use with the LTC1266 series: either a P-channel MOSFET or an N -channel MOSFET for the main switch and an N -channel MOSFET for the synchronous switch. The main selection criteria for the power MOSFETs are the type of MOSFET, threshold voltage $\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$ and on-resistance $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$.
The cost and maximum output current determine the type of MOSFET for the topside switch. N-channel MOSFETs have the advantage of lower cost and lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ at the expense of slightly increased circuit complexity. For lower current applications where the losses due to $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ are small, a P-channel MOSFET is recommended due to the lower circuit complexity. However, at load currents in excess of 3 A where the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ becomes a significant portion of the total power loss, an N -channel is strongly recommended to maximize efficiency.

The maximum output current $\left.\right|_{\text {MAX }}$ determines the $\mathrm{R}_{\mathrm{DS}(O N)}$ requirement for the two MOSFETs. When the LTC1266 series is operating in continuous mode, the simplifying assumption can be made that one of the two MOSFETs is always conducting the average load current. The duty cycles for the two MOSFETs are given by:

TopSide Duty Cycle $=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$
Bottom-Side Duty Cycle $=\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$

APPLICATIONS INFORMATION

From the duty cycles, the required $\mathrm{RDS}_{\mathrm{DS}(\mathrm{ON})}$ for each MOSFET can be derived:

$$
\begin{aligned}
T S R_{D S(O N)} & =\frac{V_{I N} \times P_{T}}{V_{O U T} \times I_{M A X}^{2} \times\left(1+\delta_{T}\right)} \\
B S R_{D S(O N)} & =\frac{V_{\text {IN }} \times P_{B}}{\left(V_{\text {IN }}-V_{O U T}\right) \times I_{M A X} \times\left(1+\delta_{B}\right)}
\end{aligned}
$$

where P_{T} and P_{B} are the allowable power dissipations and δ_{T} and δ_{B} are the temperature dependencies of $R_{D S}(O N) . P_{T}$ and P_{B} will be determined by efficiency and/or thermal requirements (seeEfficiencyConsiderations). ForaMOSFET, $(1+\delta)$ is generally given in the form of a normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs temperature curve, but $\delta_{\mathrm{PCH}}=0.007 /{ }^{\circ} \mathrm{C}$ and $\delta_{\mathrm{NCH}}=0.005 /{ }^{\circ} \mathrm{C}$ can be used as an approximation for low voltage MOSFETs.

The minimum input voltage determines whether standard threshold or logic-level threshold MOSFETs must be used. For $\mathrm{V}_{\mathrm{IN}}>8 \mathrm{~V}$, standard threshold MOSFETs $\left(\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})<4 \mathrm{~V}\right)$ may be used. If $\mathrm{V}_{\text {IN }}$ is expected to drop below 8 V , logiclevel threshold MOSFETs ($\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}<2.5 \mathrm{~V}$) are strongly recommended. The LTC1266 series Power $V_{\text {IN }}$ must always be less than the absolute maximum $V_{G S}$ ratings for the MOSFETs.

The Schottky diode D1 shown in Figure 1 only conducts during the deadtime between the conduction of the two power MOSFETs. D1's sole purpose in life is to prevent the body diode of the bottom-side MOSFET from turning on and storing charge during the deadtime, which could cost as much as 1% in efficiency (although there are no other harmful effects if D1 is omitted). Therefore, D1 should be selected for a forward voltage of less than 0.7 V when conducting $\mathrm{I}_{\text {MAX }}$.

$\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUt }}$ Selection

In continuous mode, the current through the topside MOSFET is a square wave of duty cycle $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$. To prevent large voltage transients, a low ESR (Effective Series Resistance) input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$
\mathrm{C}_{\text {IN }} \text { Required } \mathrm{I}_{\mathrm{RMS}} \approx \mathrm{I}_{\mathrm{MAX}} \frac{\left[\mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2}}{\mathrm{~V}_{\text {IN }}}
$$

This formula has a maximum at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {OUT }}$, where $I_{\text {RMS }}=I_{\text {OUT }} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that capacitor manufacturer's ripple current ratings are often based on only 2000 hours of life. This makes it advisable to further derate the capacitor, or to choose a capacitor rated at a higher temperature than required. Always consult the manufacturer if there is any question. An additional $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ ceramic capacitor is also required on Power V_{IN} (Pin 2) for high frequency decoupling.
The selection of $\mathrm{C}_{\text {OUT }}$ is driven by the required ESR. The ESR of COUT must be less than twice the value of R RENSE for proper operation of the LTC1266 series:

$C_{\text {OUT }}$ Required ESR $<2 R_{\text {SENSE }}$

Optimum efficiency is obtained by making the ESR equal to $R_{\text {SENSE }}$. As the ESR is increased up to $2 R_{\text {SENSE }}$, the efficiency degrades by less than 1%. If the ESR is greater than $2 R_{\text {SENSE }}$, the voltage ripple on the output capacitor will prematurely trigger Burst Modeoperation, resulting in disruption of continuous mode and an efficiency hit which can be several percent. If Burst Mode operation is disabled, the ESR requirement can be relaxed and is limited only by the allowable output voltage ripple.
Manufacturers such as Nichicon and United Chemicon should be considered for high performance capacitors. The OS-CON semiconductor dielectric capacitor available from Sanyo has the lowest ESR/size ratio of any aluminum electrolytic at a somewhat higher price. Once the ESR requirement for $\mathrm{C}_{\text {OUT }}$ has been met, the RMS current rating generally far exceeds the $\mathrm{I}_{\mathrm{RIPPLE}(\mathrm{P}-\mathrm{P})}$ requirement.
In surface mount applications multiple capacitors may have to be paralleled to meet the capacitance, ESR or RMS current handling requirements of the application. An excellent choice is the AVX TPS series of surface mount tantalums.

At low supply voltages, a minimum capacitance at $\mathrm{C}_{\text {OUT }}$ is needed to prevent an abnormal low frequency operating mode (see Figure 4). When $\mathrm{C}_{0 U T}$ is made too small, the output ripple at low frequencies will be large enough to trip the voltage comparator. This causes Burst Modeoperation to be activated when the LTC1266

APPLICATIONS INFORMATION

Figure 4. Minimum Value of $\mathrm{C}_{\text {OUt }}$
series would normally be in continuous operation. The output remains in regulation at all times. This minimum capacitance requirement may be relaxed if Burst Mode operation is disabled.

N-Channel vs P-Channel MOSFETs

The LTC1266 has the capability to drive either an N -channel or a P-channel topside switch to give the user more flexibility. N-channel MOSFETs are superior in performance to P-channel due to their lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and lower gate capacitance and are typically less expensive; however, they do have a slightly more complicated gate drive requirement and a more limited input voltage range (see following sections).

Driving P-Channel Topside MOSFETs

The P -channel topside switch circuit configuration is the most straightforward due to the requirement of only one supply voltage level. This is due to the negative gate threshold of the P-channel MOSFET which allows the MOSFET to be switched on and off by swinging the gate between $\mathrm{V}_{\text {IN }}$ and ground. The phase invert (Pin 3) is tied to ground to choose this operating mode. Normally, the converter input $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is connected to the LTC1266 supply Pins 2 and 5 and can go as high as 20V. Pin 2 supplies the high frequency current pulses to switch the MOSFETs and should be decoupled with a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ ceramic capacitor. Pin 5 supplies most of the quiescent power to the rest of the chip.

Driving N-Channel Topside MOSFETs

Driving an N-channel topside MOSFET (PINV, Pin 3, tied to PWR V_{IN}) is a little trickier than driving a P-channel since the gate voltage must be positive with respect to the source to turn it on, which means that the gate voltage must be higher than $\mathrm{V}_{\mathbb{I N}}$. This requires either a second supply at least $\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}$ above $\mathrm{V}_{\text {IN }}$ or a bootstrapping circuit to boost the $V_{\text {IN }}$ to the proper level. The easiest method is using a higher supply (see Figure 14) but if one is not available, the bootstrap method can be used at the expense of an additional diode (see Figure 1). The bootstrap works by charging the bootstrap capacitor to V_{IN} during the off-time. During the on-time, the bottom plate of the capacitor is pulled up to $\mathrm{V}_{\mathbb{I N}}$ so that the voltage at Pin 2 is now twice $\mathrm{V}_{\text {IN }}$ (plus any ringing on the switch node).
Since the maximum allowable voltage at Pin 2 is 20 V , the Figure 1 bootstrap circuit limits $V_{\text {IN }}$ to less than 10 V . A higher $\mathrm{V}_{\text {IN }}$ can be achieved if the bootstrap capacitor is charged to a voltage less than V_{IN}, in which case $V_{I N(M A X)}=20-V_{C A P}$.
N -channel mode, internal circuitry limits the maximum on-time to $60 \mu \mathrm{~s}$ to guarantee start-up of the bootstrap circuit. This maximum on-time reduces the maximum duty cycle to:

$$
\text { Max Duty Cycle }=\frac{60 \mu \mathrm{~s}}{60 \mu \mathrm{~s}+\mathrm{t}_{0 F F}}
$$

which slightly increases the minimum input voltage at which dropout occurs. However, because of the superior on-conductance of the N -channel, the dropout performance of an all N -channel regulator is still better (see Figure 5) even with the duty cycle limitation, except at light loads.

Low-Battery Comparator

The LTC1266 has an on-chip low-battery comparator which can be used to sense a low-battery condition when implemented as shown in Figure 6. The resistor divider R1, R2 sets the comparator trip point as follows:

$$
\mathrm{V}_{\mathrm{TRIP}}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

APPLICATIONS InFORMATION

Figure 5. Comparison of Dropout Performance

Figure 6. Low-Battery Comparator
The divided down voltage at the "-" input to the comparator is compared to an internal 1.25 V reference. This reference is separate from the 1.25 V reference used by the voltage comparator and current comparator for regulation and is not disabled by the shutdown pin, therefore the low-battery detection is operational even when the rest of the chip is shut down. The comparator is functional down to an input voltage of 2.5 V . Thus, the output will provide a valid state even when the rest of the chip does not have sufficient voltage to operate. For best performance, the value of the pull-up resistor should be high enough that the output is pulled down to ground when sinking $200 \mu \mathrm{~A}$ or less.

Suppressing Burst Mode Operation

Normally, enabling Burst Mode operation is desired due to its superior efficiency at low load currents (see Figure 7).
However, in certain applications it may be desirable to inhibit this feature. Some reasons for doing so are:

1. To eliminate audible noise from certain types of inductors at light loads.

Figure 7. Effect of Disabling Burst Mode Operation on Efficiency
2. If the load is never expected to drop low enough to benefit from the efficiency advantages of Burst Mode operation, the output capacitor ESR and minimum capacitance requirements (which may falsely trigger Burst Mode operation if not met) can be relaxed if Burst Mode operation is disabled.
3. If an auxiliary winding is used. Disabling Burst Mode operation guarantees switching independent of the load on the primary. This allows power to be taken from the auxiliary winding independently.
4. Tighter load regulation (< 1%).

Burst Mode operation is disabled by applying a CMOS logic high voltage (>2.1V) to Pin 4. When it is disabled, the voltage comparator limit is raised high enough so that it no longer is involved in regulation; however it is still active and is useful as a voltage clamp to keep the output from overshooting.
Note that since the inductor current must reverse to regulate the output at zero load when Burst Mode operation is disabled, the minimum inductance ($\mathrm{L}_{\text {MIN }}$) specified during Inductor Core Selection is no longer applicable.

Checking Transient Response

The regulator loop response can be checked by looking at the load transient response. Switching regulators take several cycles to respond to a step in DC (resistive) load current. When a load step occurs, $\mathrm{V}_{\text {OUT }}$ shifts by an amount equal to $\Delta_{\text {LOAD }}$ (ESR), where ESR is the effective series resistance of $\mathrm{C}_{\text {OUT }}$. $\Delta_{\text {LOAD }}$ also begins to charge or

APPLICATIONS InFORMATION

discharge $\mathrm{C}_{\text {OUT }}$ until the regulator loop adapts to the current change and returns $\mathrm{V}_{\text {OUT }}$ to its steady-state value. During this recovery time $V_{\text {OUt }}$ can be monitored for overshoot or ringing which would indicate a stability problem. The Pin 7 external components shown in the Figure 1 circuit will prove adequate compensation for most applications.

Efficiency Considerations

The percent efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Percent efficiency can be expressed as:

$$
\% \text { Efficiency }=100 \%-(L 1+L 2+L 3+\ldots)
$$

where L1, L2, etc., are the individual losses as a percentage of input power. (For high efficiency circuits, only small errors are incurred by expressing losses as a percentage of output power).
Although all dissipative elements in the circuit produce losses, three main sources usually account for most of the losses in LTC1266 series circuits: 1) LTC1266 DC bias current, 2) MOSFET gate charge current and 3) $I^{2} \mathrm{R}$ losses.

1. The DC supply current is the current which flows into $V_{\text {IN }}$ (Pin 2). For $V_{I N}=10 \mathrm{~V}$ the LTC1266 DC supply current is $170 \mu \mathrm{~A}$ for no load, and increases proportionally with load up to a constant 2.1 mA after the LTC1266 series has entered continuous mode. Because the DC bias current is drawn from $V_{I N}$, the resulting loss increases with input voltage. For $\mathrm{V}_{I N}=5 \mathrm{~V}$ the DC bias losses are generally less than 1% for load currents over 30 mA . However, at very low load currents the DC bias current accounts for nearly all of the loss.
2. MOSFET gate charge current results from switching the gate capacitance of the power MOSFETs. Each time a MOSFET gate is switched from low to high to low again, a packet of charge dQ moves from Power $V_{\text {IN }}$ to ground. The resulting dQ/dt is a current flowing into Power $V_{I N}$ (Pin 5) which is typically much larger than the DC supply current. In continuous mode, $I_{\text {GATECHG }}=f\left(Q_{N}+\right.$ Qp). The typical gate charge for a $0.05 \Omega \mathrm{~N}$-channel
power MOSFET is 15 nC . This results in $\mathrm{I}_{\text {GATECHG }}=6 \mathrm{~mA}$ in 200 kHz continuous operation for a 2% to 3% typical mid-current loss with $\mathrm{V}_{I N}=5 \mathrm{~V}$.
Note that the gate charge loss increases directly with both input voltage and operating frequency. This is the principal reason why the highest efficiency circuits operate at moderate frequencies. Furthermore, it argues against using larger MOSFETs than necessary to control $I^{2} \mathrm{R}$ losses, since overkill can cost efficiency as well as money!
3. $I^{2} \mathrm{R}$ losses are easily predicted from the $D C$ resistances of the MOSFET, inductor and current shunt. In continuous mode the average output current flows through L and REENSE, but is "chopped" between the topside and bottom-side MOSFETs. If the two MOSFETs have approximately the same $R_{D S(O N)}$, then the resistance of one MOSFET can simply be summed with the resistances of L and $R_{\text {SENSE }}$ to obtain $1^{2} R$ losses. For example, if each $R_{D S(O N)}=0.05 \Omega, R_{L}=0.05 \Omega$ and $R_{\text {SENSE }}=0.02 \Omega$, then the total resistance is 0.12Ω. This results in losses ranging from 3.5% to 15% as the output current increases from 1A to 5 A . $I^{2} \mathrm{R}$ losses cause the efficiency to roll off at high output currents.
Figure 8 shows how the efficiency losses in a typical LTC1266 series regulator end up being apportioned. The gate charge loss is responsible for the majority of the efficiency lost in the mid-current region. If Burst Mode operation was not employed at low currents, the gate charge loss alone would cause efficiency to drop to

Figure 8. Efficiency Loss

APPLICATIONS INFORMATION

unacceptable levels (see Figure 7). With Burst Mode operation, the DC supply current represents the lone (and unavoidable) loss component which continues to become a higher percentage as output current is reduced. As expected the I^{2} R losses dominate at high load currents.

Other losses including C_{IN} and $\mathrm{C}_{0 \cup \mathrm{~T}}$ ESR dissipative losses, MOSFET switching losses, Schottky conduction losses during deadtime and inductor core losses, generally account for less than 2% total additional loss.

Design Example

As a design example, assume $\mathrm{V}_{I N}=5 \mathrm{~V}$ (nominal), $V_{\text {OUT }}=3.3 V, I_{\text {MAX }}=5 \mathrm{~A}$ and $\mathrm{f}=200 \mathrm{kHz}$; $\mathrm{R}_{\text {SENSE }}, \mathrm{C}_{\mathrm{T}}$ and L can immediately be calculated:

$$
\begin{aligned}
& R_{\text {SENSE }}=100 \mathrm{mV} / 5=0.02 \Omega \\
& \mathrm{t}_{\text {OFF }}=(1 / 200 \mathrm{kHz}) \times[1-(3.3 / 5)]=1.7 \mu \mathrm{~S} \\
& C_{T}=1.7 \mu \mathrm{~s} /\left(1.3 \times 10^{4}\right)=130 \mathrm{pF} \\
& L_{\text {MIN }}=5.1 \times 10^{5} \times 0.02 \Omega \times 130 \mathrm{pF} \times 3.3 \mathrm{~V}=5 \mu \mathrm{H}
\end{aligned}
$$

Assume that the MOSFET dissipations are to be limited to $P_{T}=P_{B}=2 W$.
If $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ and the thermal resistance of each MOSFET is $50^{\circ} \mathrm{C} / \mathrm{W}$, then the junction temperatures will be $140^{\circ} \mathrm{C}$ and $\delta_{T}=\delta_{B}=0.60$. The required $R_{D S(O N)}$ for each MOSFET can now be calculated:

$$
\begin{aligned}
& \operatorname{TS} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{5(2)}{3.3(5)^{2}(1.60)}=0.076 \Omega \\
& \mathrm{BS} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{5(2)}{1.7(5)^{2}(1.60)}=0.147 \Omega
\end{aligned}
$$

The topside FET requirement can be met by an N -channel Si9410DY which has an $R_{D S(O N)}$ of about 0.04Ω at $V_{G S}=5 \mathrm{~V}$. The bottom-side FET requirement is exceeded by an Si 9410 DY . Note that the most stringent requirement for the bottom-side MOSFET is with $\mathrm{V}_{\text {OUT }}=0$ (i.e., short circuit). During a continuous short circuit, the worst-case dissipation rises to:

$$
P_{B}=I_{S C(A V G)}{ }^{2} \times R_{D S(O N)} \times\left(1+\delta_{B}\right)
$$

With the 0.02Ω sense resistor, $I_{S C(A V G)} \approx 6 \mathrm{~A}$ will result, increasing the 0.04Ω bottom-side FET dissipation to 2.3W.
$\mathrm{C}_{\text {IN }}$ will require an RMS current rating of at least 2.5 A at temperature and $\mathrm{C}_{0 \text { ut }}$ will require an ESR of 0.02Ω for optimum efficiency.
Now allow V IN to drop to its minimum value. The minimum $V_{\text {IN }}$ can be calculated from the maximum duty cycle and voltage drop across the topside FET,

$$
\mathrm{V}_{\text {MIN }}=\frac{\mathrm{V}_{\text {OUT }}+\mathrm{I}_{\mathrm{LOAD}} \times\left(\mathrm{R}_{\mathrm{DS}(O N)}+\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{SENSE}}\right)}{\mathrm{D}_{\text {MAX }}}=4.0 \mathrm{~V}
$$

At this lower input voltage, the operating frequency decreases and the topside FET will be conducting most of the time, causing the power dissipation to increase. At dropout,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{MIN}}=\frac{1}{\mathrm{t}_{\mathrm{ON}(\mathrm{MAX})}+\mathrm{t}_{\mathrm{OFF}}}=16 \mathrm{kHz} \\
& \mathrm{P}_{\mathrm{T}}=\mathrm{I}_{\mathrm{LOAD}} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times\left(1+\delta_{\mathrm{T}}\right) \times \mathrm{D}_{\mathrm{MAX}}
\end{aligned}
$$

This last step is necessary to assure that the power dissipation and junction temperature of the topside FET are not exceeded.
These last calculations assume that Power $V_{I N}$ is high enough to keep the topside FET fully turned on at dropout, as would be the case with the Figure 11circuit. If this isn't true (as with the Figure 1 circuit) the $R_{D S(O N)}$ will increase which in turn increases $V_{\text {MIN }}$ and P_{T}.

Adjustable Applications

When an output voltage other than 3.3 V or 5 V is required, the LTC1266 adjustable version is used with an external resistive divider from $V_{\text {OUT }}$ to V_{FB}, Pin 10 . The regulated voltage is determined by:

$$
V_{\text {OUT }}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

To prevent stray pickup a 100 pF capacitor is suggested across R1 located close to the LTC1266.

For Figure 1 applications with $\mathrm{V}_{\text {OUT }}$ below 2 V , or when $\mathrm{R}_{\text {SENSE }}$ is moved to ground, the current sense comparator inputs operate near ground. When the current comparator is operated at less than 2 V common mode, the off-time increases approximately 40%, requiring the use of a smaller timing capacitor C_{T}.

APPLICATIONS InFORMATION

Troubleshooting Hints

Since efficiency is critical to LTC1266 series applications, it is very important to verify that the circuit is functioning correctly in both continuous and Burst Mode operation. The waveform to monitor is the voltage on the timing capacitor, Pin 6.

In continuous mode ($I_{\text {LOAD }}>I_{\text {BURST }}$) the voltage on the C_{T} pin should be a sawtooth with a $0.9 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ swing. This voltage should never dip below 2 V as shown in Figure 9a.
When load currents are low (I LOAD < I $\mathrm{I}_{\text {BURST }}$) Burst Mode operation should occur with the C_{\top} pin waveform periodically falling to ground for periods of time as shown in Figure 9b.

(a) Continuous Mode Operation

(b) Burst Mode Operation

If Pin 6 is observed falling to ground at high output currents, it indicates poor decoupling or improper grounding. Refer to the Board Layout Checklist.

Board Layout Checklist

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC1266 series. These items are also illustrated graphically in the layout diagram of Figure 10. Check the following in your layout:

1. Are the signal and power grounds segregated? The LTC1266 signal ground (Pin 12) must return to the $(-)$ plate of $\mathrm{C}_{\text {OUT }}$. The power ground returns to the source of the bottom-side MOSFET, anode of the Schottky diode and (-) plate of C_{IN}, which should have as short lead lengths as possible.
2. Does the LTC1266 Sense ${ }^{-}$(Pin 8) connect to a point close to RSENSE and the (+) plate of $\mathrm{C}_{\text {OUT }}$? In adjustable applications, the resistive divider R1 and R2 must be connected between the $(+)$ plate of $\mathrm{C}_{\text {OUT }}$ and signal ground.

Figure 9. C_{T} Waveforms

Figure 10. LTC1266 Layout Diagram (See Layout Checklist)

APPLICATIONS INFORMATION

3. Are the Sense ${ }^{-}$and Sense ${ }^{+}$leads routed together with minimum PC trace spacing? The 1000pF capacitor between Pins 8 and 9 should be as close as possible to the LTC1266.
4. Does the (+) plate of $\mathrm{C}_{\text {IN }}$ connect to the source of the topside MOSFET as closely as possible? This capacitor provides the AC current to the topside MOSFET.
5. A $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ decoupling capacitor connected between $\mathrm{V}_{\text {IN }}$ (Pin 5) and ground is optional, but is some-
times helpful in eliminating instabilities at high input voltage and high output loads.
6. Is the Shutdown (Pin 11) actively pulled to ground during normal operation? The Shutdown pin is high impedance and must not be allowed to float. The Select (Pins 3 and 4) are also high impedance and must be tied high or low depending on the application.

TYPICPL APPLICPTODS (Layout Assist Schematics)

Figure 11. Low Dropout, 3.3V/3A High Efficiency Regulator

TYPICAL APPLICATIONS (Layout Assists shemantis)

Figure 12. 5V to 12V/500mA High Efficiency Boost Regulator

Figure 13. All N-Channel 5V to 3.3V/5A Converter with Drivers Powered from External PWR VIN Supply

TYPICAL APPLICATIONS (Layout Assist Schematics)

Figure 14. All N-Channel 5 V to $3.3 \mathrm{~V} / 10 \mathrm{~A}$ High Efficiency Regulator

*COILTRONICS CTX0212801
Figure 15. All N -Channel 5V to 2.5V/5A High Efficiency Regulator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1142	Dual High Efficiency Synchronous Step-Down Switching Regulator	Dual Version of LTC1148
LTC1143	Dual High Efficiency Step-Down Switching Regulator Controller	Dual Version of LTC1147
LTC1147	High Efficiency Step-Down Switching Regulator Controller	Nonsynchronous, 8-Lead, VIN \leq 16V
LTC1148	High Efficiency Step-Down Switching Regulator Controller	Synchronous, VIN $\leq 20 \mathrm{~V}$
LTC1149	High Efficiency Step-Down Switching Regulator	Synchronous, VIN $\leq 48 \mathrm{~V}$, for Standard Threshold FETs
LTC1159	High Efficiency Synchronous Step-Down Switching Regulator	V VIN $\leq 40 \mathrm{~V}$, for Logic Level FETs $^{\text {LTC1174 }}$
High Efficiency Step-Down and Inverting DC/DC Converter	0.5 Switch, VIN $\leq 18.5 \mathrm{~V}$, Comparator	
LTC1265	High Efficiency Step-Down DC/DC Converter	1.2 Switch, VIN $\leq 13 \mathrm{~V}$, Comparator
LTC1267	Dual High Efficiency Synchronous Step-Down Switching Regulators	Dual Version of LTC1159

Dual High Efficiency Synchronous Step-Down Switching Regulators

features

- Dual Outputs: 3.3V and 5V, Two Adjustables or Adjustable and 5V
- Wide V_{IN} Range: 4V to 40V
- Ultra-High Efficiency: Up to 95\%
- Low Supply Current in Shutdown: 20 A A
- Current Mode Operation for Excellent Line and Load Transient Response
- High Efficiency Maintained Over a Wide Output Current Range
- Independent Micropower Shutdown
- Very Low Dropout Operation: 100\% Duty Cycle
- Synchronous FET Switching for High Efficiency
- Available in Standard 28-Pin SSOP

APPLICATIONS

- Notebook and Palmtop Computers
- Battery-Operated Digital Devices
- Portable Instruments
- DC Power Distribution Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1267$ series are dual synchronous step-down switching regulator controllers featuring automatic Burst Mode ${ }^{\text {TM }}$ operation to maintain high efficiencies at low output currents. The LTC1267 is composed of two separate regulator blocks, each driving a pair of external complementary power MOSFETs at switching frequencies up to 400 kHz . The LTC1267 uses a constant off-time currentmode architecture to provide constant ripple current in the inductor and provide excellent line and load transient response.
A separate pin and on-board switch allow the MOSFET driver power to be derived from the regulated output voltage, providing significantefficiency improvement when operating at high input voltage. The output current level is user-programmable via an external current sense resistor.
The LTC1267 series is ideal for applications requiring dual output voltages with high conversion efficiencies over a wide load current range in a small amount of board space.

[^29]
TYPICAL APPLICATION

Figure 1. High Efficiency Dual 3.3V, 5V

absolute maximum ratings

Input Supply Voltage (Pin 2).................. -0.3V to 40V
$V_{\text {cc }}$ Output Current (Pin 1) 50 mA
EXT V ${ }_{\text {cc }}$ Input Voltage (Pin 28) 10V
Continuous Output Current (Pins 5, 6, 23, 24) 50mA
Sense Voltages
LTC1267 (Pins 13, 14, 17, 18) V VC $^{\text {to }}$-0.3V
LTC1267-ADJ (Pins 12, 13, 17, 18) $\mathrm{V}_{\text {cc }}$ to -0.3V
LTC1267-ADJ5 (Pins 12, 13, 17, 18) ... V $\mathrm{V}_{\text {cc }}$ to -0.3V
Shutdown Voltages
LTC1267 (Pins 12, 19, 27) 7 V
LTC1267-ADJ (Pins 11, 27) 7V
LTC1267-ADJ5 (Pins 11, 19, 27) 7V
Operating Ambient Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Extended Commercial
Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature (Note 1)....................... $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$

$V_{C C}$ Output Current (Pin 1) 50 mA
EXT VCC Input Voltage (Pin 28) 10V
Continuous Output Current (Pins 5, 6, 23, 24) 50mA
Sense Voltages
LTC1267 (Pins 13, 14, 17, 18) VCC to - 0.3 V LTC1267-ADJ5 (Pins 12, 13, 17, 18) ... $\mathrm{V}_{\text {CC }}$ to -0.3 V Shutdown Voltages

LTC1267 (Pins 12, 19, 27) 7V
LTC1267-ADJ (Pins 11, 27) 7V
LTC1267-ADJ5 (Pins 11, 19, 27) 7V
Operating Ambient Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Extended Commercial
Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature (Note 1
\qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec). \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

[^30]
ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {MSHDN }}, V_{\text {SHDN } 1,3,5}=\mathrm{OV}$ (Note 2), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {FB1, } 2}$	Feedback Voltage	LTC1267-ADJ, LTC1267-ADJ5: $\mathrm{V}_{\mathbb{I N}}=9 \mathrm{~V}$	\bullet	1.21	1.25	1.29	V
${ }_{\text {IFB1, } 2}$	Feedback Current	LTC1267-ADJ, LTC1267-ADJ5	\bullet		0.2	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Regulated Output Voltage 3.3V Output 5 V Output	$\begin{aligned} & \text { LTC1267: } V_{I N}=9 V, I_{\text {LOAD }}=700 \mathrm{~mA} \\ & \text { LTC1267, } L T C 1267-A D J 5: V_{I N}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=700 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 3.23 \\ & 4.90 \end{aligned}$	$\begin{aligned} & 3.33 \\ & 5.05 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.43 \\ 5.20 \\ \hline \end{array}$	V V
$\mathrm{LV}_{\text {OUT }}$	Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$ to 40 V		-40	0	40	mV
	Output Voltage Load Regulation 3.3V Output 5 V Output	$\begin{aligned} & \text { Figure } 1 \text { Circuit } \\ & 5 \mathrm{~mA}<I_{\text {LOAD }}<2.0 \mathrm{~A} \\ & 5 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<2.0 \mathrm{~A} \end{aligned}$	\bullet		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{gathered} 65 \\ 100 \end{gathered}$	mV mV
	Burst Mode Output Ripple	$\mathrm{I}_{\text {LOAD }}=0 \mathrm{~A}$		50			$m V_{p-p}$
$V_{\text {CC }}$	Internal Regulator Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to 40V, EXT $\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=10 \mathrm{~mA}$	\bullet	4.25	4.5	4.75	V
$V_{\text {IN }}-V_{C C}$	$V_{C C}$ Dropout Voltage	$V_{I N}=4 V$, EXT $V_{C C}=0$ pen, $I_{C C}=10 \mathrm{~mA}$			200	300	mV
IEXTVCC	EXT V ${ }_{\text {CC }}$ Pin Current (Note 3)	EXT $V_{\text {CC }}=5 \mathrm{~V}$, Sleep Mode		360			$\mu \mathrm{A}$
1 N	$V_{\text {IN }}$ Pin Current (Note 3) Normal Shutdown	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, \operatorname{EXT} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & V_{I N}=40 \mathrm{~V}, \text { EXT }_{\text {CC }}=5 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {MSHDN }}=2 \mathrm{~V} \\ & V_{\text {IN }}=40 \mathrm{~V}, V_{\text {MSHDN }}=2 \mathrm{~V} \end{aligned}$		$\begin{gathered} 320 \\ 550 \\ 15 \\ 25 \\ \hline \end{gathered}$			μA μA μA $\mu \mathrm{~A}$
$\mathrm{V}_{\text {EXTVCC }}{ }^{-}$ $V_{C C}$	EXT V ${ }_{\text {CC }}$ Switch Drop	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{EXT} \mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{I}_{\text {SWITCH }}=10 \mathrm{~mA}$			200	300	mV
$V_{\text {PGATE }}-$ $V_{\text {IN }}$	PGate to Source Voltage (0ff)	$\begin{aligned} & V_{I N}=12 \mathrm{~V} \\ & V_{I N}=40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		V V
$\mathrm{V}_{\text {SENSE }}{ }^{+} 1,2^{-}$ $V_{\text {SENSE }}{ }^{-1,2}$	Current Sense Threshold Voltage	LTC1267-ADJ, LTC1267-ADJ5 $\mathrm{V}_{\text {SENSE }}{ }^{-1} 1,2=5.1 \mathrm{~V}, \mathrm{~V}_{\text {FB1, } 2}=\mathrm{V}_{\text {OUT }} / 4+25 \mathrm{mV}$ (Forced) $\mathrm{V}_{\text {SENSE }}{ }^{1,2}=4.9 \mathrm{~V}, \mathrm{~V}_{\text {FB1,2 }}=\mathrm{V}_{\text {OUT }} / 4-25 \mathrm{mV}$ (Forced)	\bullet	135	$\begin{gathered} 25 \\ 160 \end{gathered}$	180	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\text {SENSE }^{+} 3,5-} \\ & \mathrm{V}_{\text {SENE }}^{-} 3,5 \end{aligned}$	Current Sense Threshold Voltage	LTC1267 $\mathrm{V}_{\text {SENSE }}{ }^{-} 3,5=\mathrm{V}_{\text {OUT }}+100 \mathrm{mV}$ (Forced) $V_{\text {SENSE }}{ }^{-} 3,5=V_{\text {OUT }}-100 \mathrm{mV}$ (Forced)	-	135	$\begin{gathered} 25 \\ 160 \\ \hline \end{gathered}$	180	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
$V_{\text {SHDN }}$	Shutdown Threshold MSHDN SHDN1, 3, 5			$\begin{aligned} & 0.8 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	V
IMSHDN	MSHDN Input Current	$\mathrm{V}_{\text {MSHDN }}=5 \mathrm{~V}$			12	20	$\mu \mathrm{A}$
$I_{\text {CT }}$	$\mathrm{C}_{\text {T }}$ Pin Discharge Current	$V_{\text {Out }}$ in Regulation $V_{\text {OUT }}=0 \mathrm{~V}$		50	$\begin{gathered} 70 \\ 2 \end{gathered}$	$\begin{aligned} & 90 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{t}_{\text {OFF }}$	Off-Time (Note 4)	$\mathrm{C}_{T}=390 \mathrm{pF}, \mathrm{L}_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}$		4	5	6	$\mu \mathrm{S}$
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Driver Output Transition Times	$C_{L}=3000 \mathrm{pF}$ (PDrive and NGate Pins), $\mathrm{V}_{1 \text { I }}=6 \mathrm{~V}$			100	200	ns

ELECTRICAL CHARACTERISTICS

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {MSHDN }}, \mathrm{V}_{\text {SHDN } 1,3,5}=\mathrm{OV}$ (Notes 2, 5), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {FB1, } 2}$	Feedback Voltage	LTC1267-ADJ, LTC1267-ADJ5: $\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$	1.2	1.25	1.3	V
$\mathrm{V}_{\text {OUT }}$	Regulated Output Voltage 3.3V Output 5 V Output	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=700 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LOAD}}=700 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.17 \\ & 4.85 \end{aligned}$	$\begin{array}{r} 3.30 \\ 5.05 \\ \hline \end{array}$	$\begin{array}{r} 3.48 \\ 5.25 \\ \hline \end{array}$	V
I_{N}	$V_{\text {IN }}$ Pin Current (Note 3) Normal Shutdown	$\begin{aligned} & V_{I N}=12 V, \text { EXT } V_{C C}=5 V \\ & V_{I N}=40 V, \text { EXT } V_{C C}=5 V \\ & V_{I N}=12 V, V_{M S H D N}=2 V \\ & V_{I N}=40 V, V_{M S H D N}=2 V \end{aligned}$		$\begin{gathered} 320 \\ 550 \\ 15 \\ 25 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IEXTVCC	EXT V ${ }_{\text {CC }}$ Pin Current (Note 3)	EXT $V_{\text {CC }}=5 \mathrm{~V}$, Sleep Mode		360		$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$	Internal Regulator Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ to 40V, EXT $\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=20 \mathrm{~mA}$		4.5		V
$\begin{aligned} & \mathrm{V}_{\text {SENSE }^{+}-} \\ & \mathrm{V}_{\text {SENSE }^{-}} \end{aligned}$	Current Sense Threshold Voltage	Low Threshold (Forced) High Threshold (Forced)	130	$\begin{gathered} 25 \\ 160 \end{gathered}$	185	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {MSHDN }}$	Shutdown Threshold MSHDN		0.8	1.4	2.0	V
$\mathrm{t}_{\text {OfF }}$	Off-Time (Note 4)	$\mathrm{C}_{\mathrm{T}}=390 \mathrm{pF}, \mathrm{I}_{\text {LOAD }}=700 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}$	3	5	7	$\mu \mathrm{S}$

The denotes specifications which apply over the full operating temperature range.
Note 1: T_{j} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formula:

LTC1267/LTC1267-ADJ/LTC1267ADJ5: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times 95^{\circ} \mathrm{C} / \mathrm{W}\right)$
Note 2: On LTC1267 versions which have MSHDN and SHDN1, 3, 5 pins, they must be at ground potential for testing.
Note 3: The LTC1267 VIN and EXT V ${ }_{\text {CC }}$ current measurements exclude MOSFET driver currents. When $V_{C C}$ power is derived from the output via EXT $V_{\text {CC }}$, the input current increases by ($I_{\text {GATECHG }} \times$ Duty Cycle)/Efficiency. See Typical Performance Characteristics and Applications Information.

Note 4: In applications where RSENSE is placed at ground potential, the off-time increases approximately 40\%.
Note 5: The LTC1267/LTC1267-ADJ/LTC1267-ADJ5 are not tested and quality-assurance sampled at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design and/or correlation.
Note 6: The logic level power MOSFETs shown in Figure 1 are rated for $V_{D S(M A X)}=30 \mathrm{~V}$. For operation at $\mathrm{V}_{\mathbb{I N}}>30 \mathrm{~V}$, use standard threshold MOSFETS with EXT VCC powered from a 9V supply. See applications information.
Note 7: LTC1267-ADJ and LTC1267-ADJ5 are tested at an output of 3.3V

TYPICAL PERFORMANCE CHARACTERISTICS

LTC1267•G01

3.3V Output Efficiency

vs Load Current

LTC1267•G03

TYPICAL PERFORMANCE CHARACTERISTICS

LTC1267•G04
Operating Frequency
vs ($V_{\text {IN }}-V_{\text {OUT }}$)

3.3V Output Efficiency vs Line Voltage

LTC1267•G05

Line Regulation

LT1267-606

Current Sense Threshold Voltage

PIn functions

(Applies to both regulator sections)
$V_{\text {IN: }}$: Main Supply Input Pin.
EXT $V_{\text {cc: }}$: External $V_{\text {CC }}$ Supply for the Regulators. See EXT $V_{C C}$ Pin Connection.
V_{CC} : Output of the Internal 4.5 V Linear Regulator, EXTV V_{CC} Switch, and Supply Inputs for Driver and Control Circuits. The driver and control circuits are powered from the higher of the 4.5 V regulator or EXT $\mathrm{V}_{\text {CC }}$ voltage. Must be closely decoupled to the power ground.
PGND: Power Ground. Connecttothe source of N-channel MOSFET and the $(-)$ terminal of $\mathrm{C}_{\text {IN }}$.

SGND: Small-Signal Ground. Must be routed separately from other grounds to the $(-)$ terminal of $\mathrm{C}_{\text {Out }}$.
PGATE: Level Shifted Gate Drive for the Top P-channel MOSFET. The voltage swing at the P Gate pin is from $\mathrm{V}_{1 \mathrm{~N}}$ to ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{CC}}$).
PDRIVE: High Current Gate Drive for the Top P-channel MOSFET. The PDrive pin swings from $V_{C C}$ to GND.

NGATE: High Current Drive for the Bottom N-channel MOSFET. The NGate pin swings from GND to V_{cc}.

pIn functions

CAP: Charge Compensation Pin. A capacitor to V ${ }_{C C}$ profides charge required by the PGate level shift capacitor during supply transitions. The charge compensation cajacitor must be larger than the gate drive capacitor.
${ }^{\circ} \boldsymbol{\square}$: External Capacitor. From this pin to ground sets the jperating frequency. (The frequency is also dependent apon the ratio $\left.\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$.
TH: Gain Amplifier Decoupling Point. The regulator curent comparator threshold increases with the $I_{\text {TH }}$ pin oltage.
3ENSE ${ }^{-}$: Connects to internal resistive divider which sets he output voltage. The Sense ${ }^{-}$pin is also the (-) input of he current comparator.

SENSE+: The (+) Input for the Current Comparator. A built-in offset between the Sense ${ }^{+}$and Sense ${ }^{-}$pins, in conjunction with R RENSE, sets the current trip threshold.
$\mathbf{V}_{\text {FB1, 2 }}$: These pins receive the feedback voltage from an external resistive divider used to set the output voltage of the adjustable section.
MSHDN: Master Shutdown Pin. Taking MSHDN high shuts down $\mathrm{V}_{C C}$ and all control circuitry.
SHDN1, 3, 5: These pins shut down the individual regulator control circuitry (VCC is not affected). Taking SHDN1, 3,5 pins high turns off the control circuitry of adjustable $1,3.3 \mathrm{~V}, 5 \mathrm{~V}$ sections and holds both MOSFETs off. Must be at ground potential for normal operation.

:UnCTIOnAL DIAGRAM

Internal divider broken at $\mathrm{V}_{\mathrm{FB} 1,2}$ for adjustable versions. Only one regulator block shown.)

4-253

OPERFTOM (Refer to Functional Diagram)

The LTC1267 series consists of two individual regulator blocks, each using current mode, constant off-time architectures to synchronously switch an external pair of complementary power MOSFETs. The two regulators are internally set to provide output voltages of 3.3 V and 5 V for the LTC1267. The LTC1267-ADJ is configured to provide two adjustable output voltages, each set by their individual external resistor dividers. The LTC1267-ADJ5 has adjustable and 5 V output voltages. Operating frequency is individually set on each section by the external capacitors attached to the C_{T} pin.

The output voltage is sensed by an internal voltage divider connected to the Sense ${ }^{-}$pin or external divider returned to the $\mathrm{V}_{\text {FB }}$ pin (LTC1267-ADJ, LTC1267-ADJ5). A voltage comparator V and a gain block G compare the divided output voltage with a reference voltage of 1.25 V . To optimize efficiency, the LTC1267 series automatically switches between two modes of operation, Burst Mode and continuous mode. The voltage comparator is the primary control element when the device is in Burst Mode operation, while the gain block controls the output voltage in continuous mode.
A low dropout 4.5 V regulator provides the operating voltage $\mathrm{V}_{\text {CC }}$ for the MOSFET drivers and control circuitry during start-up. During normal operation, the LTC1267 family powers the drivers and control from the output via the EXT $V_{\text {CC }}$ pin to improve efficency. The NGate pin is referenced to ground and drives the N -channel MOSFET gate directly. The P-channel gate drive must be referenced to the main supply input $\mathrm{V}_{1 N}$, which is accomplished by level-shifting the PDrive signal via an internal 550 k resistor and an external capacitor.

During the switch "ON" cycle in continuous mode, current comparator C monitors the voltage between Sense ${ }^{+}$and Sense ${ }^{-}$pins connected across an external shunt in series with the inductor. When the voltage across the shunt reaches its threshold value, the PGate output is switched to V_{IN}, turning off the P-channel MOSFET. The timing capacitor $\mathrm{C}_{\boldsymbol{T}}$ is now allowed to discharge at a rate determined by the off-time controller. The discharge current is made proportional to the output voltage to model the inductor current, which decays at a rate that is also
proportional to the output voltage. While the timing capacitor is discharging, the NGate output is high, turning on the N -channel MOSFET.

When the voltage on the timing capacitor has discharged past $\mathrm{V}_{\mathrm{TH} 1}$, comparator T trips, setting the flip-flop. This causes the NGate output to go low (turning off the N-channel MOSFET) and the PGate output to also go low (turning the P-channel MOSFET back on). The cycle then repeats. As the load current increases, the output voltage decreases slightly. This causes the output of the gain stage to increase the current comparator threshold, thus tracking the load current.
The sequence of events for Burst Mode operation is very similar to continuous operation with the cycle interrupted by the voltage comparator. When the output voltage is at or above the desired regulated value, the P-channel MOSFET is held off by comparator V and the timing capacitor continues to discharge below $\mathrm{V}_{\mathrm{TH} 1}$. When the timing capacitor discharges past $\mathrm{V}_{\text {TH2 }}$, voltage comparator S trips, causing the internal SLEEP line to go low and the N -channel MOSFET to turn off.
The circuit now enters sleep mode with both power MOSFETs turned off. In sleep mode a majority of the circuitry is turned off, dropping the quiescent current from several mA (with the MOSFETs switching) to $360 \mu \mathrm{~A}$. The load current is now being supplied by the output capacitor. When the output voltage has dropped by the amount of hysteresis in comparator V, the P-channel MOSFET is again turned on and this process repeats.

To avoid the operation of the current loop interfering with Burst Mode operation, a built-in offset $\mathrm{V}_{0 \text { S }}$ is incorporated in the gain stage. This prevents the current comparator threshold from increasing until the output voltage has dropped below a minimum threshold.
To prevent both the external MOSFETs from ever being turned on at the same time, feedback is incorporated to sense the state of the driver output pins. Before the NGate output can go high, the PDrive output must also be high. Likewise, the PDrive output is prevented from going low while the NGate output is high.

IPPLICATIONS INFORMATION

「he LTC1267 Compared to the LTC1159, LTC1149 and .TC1142 Family

The LTC1267 family is a dual LTC1159. Identical to the -TC1159, the LTC1267 can reduce the quiescent and ;hutdown currents by making use of an internal switch which allows the driver and control sections to be oowered from an external source to improve efficiency.

The basic LTC1267 application circuit shown in Figure I is limited to a maximum input voltage of 30 V due to ixternal MOSFET breakdown. If the application does 1ot require greater than 18 V operation the LTC1142HV ;hould be used.

;omponent Selection

The basic LTC1267 application circuit is shown in Figure I. External component selection is driven by the load equirement and begins with the selection of $\mathrm{R}_{\text {SENSE }}$.)nce $R_{\text {SENSE }}$ is known, C_{T} and L can be chosen. Next, the lower MOSFETs and diode are selected. Finally, C_{IN} and ;out are selected and the loop is compensated. Since the idjustable, 3.3 V and 5 V sections in the LTC1267 are dentical, the process of component selection is the same or both sections.

Isense Selection for Output Current

isense is chosen based on the required output current. he LTC1267 current comparators have a threshold range which extends from a minimum of $25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ to a naximum of $150 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. The current comparator hreshold sets the peak of the inductor ripple current, 'ielding a maximum output current $l_{\text {MAX }}$ equal to the peak 'alue less half the peak-to-peak ripple current. For proper 3urst Mode operation, $I_{\text {RIPPLE }(P-P)}$ must be less than or qual to the minimum current comparator threshold.
ince efficiency generally increases with ripple current, he maximum allowable ripple current is assumed, i.e., ZIPPLE(P-P) $=25 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ (see C_{T} and L Selection for perating Frequency). Solving for RSENSE and allowing a nargin for variations in the LTC1267 and external compoent values yields:

$$
R_{\text {SENSE }}=\frac{100 \mathrm{mV}}{I_{\mathrm{MAX}}}
$$

The LTC1267 works well with values of $\mathrm{R}_{\text {SENSE }}$ from 0.02Ω to 0.2Ω. Figure 2 shows the selection of RSENSE VS maximum output current.

Figure 2. Selecting Rense
The load current below which Burst Mode operation commences, $I_{\text {BURST }}$ and the peak short-circuit current $I_{S C(P K)}$ both track $I_{\text {MAX }}$. Once ReNENS has been chosen, I $_{\text {BURST }}$ and $I_{S C(P K)}$ can be predicted from the following:

$$
\begin{aligned}
& I_{\text {BURST }} \approx \frac{15 \mathrm{mV}}{R_{\text {SENSE }}} \\
& I_{S C(P K)}=\frac{150 \mathrm{mV}}{R_{\text {SENSE }}}
\end{aligned}
$$

The LTC1267 automatically extends $t_{0 F F}$ during a short circuit to allow sufficient time for the inductor current to decay between switch cycles. The resulting ripple current causes the average short-circuit current ISC(AVG) to be reduced to approximately $I_{\text {MAX }}$.

C_{T} and L Selection for Operating Frequency

Each regulator section of the LTC1267 uses a constant offtime architecture with $\mathrm{t}_{\text {OFF }}$ determined by an external timing capacitor C_{\top}. The value of $\mathrm{C}_{\boldsymbol{T}}$ is calculated from the desired continuous mode operating frequency (f_{0}):

$$
C_{T}=\frac{7.8 \times 10^{-5}}{f_{0}}\left(1-\frac{V_{0 U T}}{V_{I N}}\right)
$$

A graph for selecting C_{T} vs frequency including the effects of input voltage is given in Figure 3.

APPLICATIONS INFORMATION

Figure 3. Timing Capacitor Value
As the operating frequency is increased the gate charge losses will be higher, reducing efficiency (see Efficiency Considerations). The complete expression for operating frequency is given by:

$$
f_{0}=\frac{1}{t_{\text {OFF }}}\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)
$$

where:

$$
\mathrm{t}_{\text {OFF }}=1.3 \times 10^{4} \times \mathrm{C}_{\mathrm{T}}
$$

Once the frequency has been set by C_{T}, the inductor L must be chosen to provide no more than $0.025 \mathrm{~V} / \mathrm{R}_{\text {SENSE }}$ of peak-to-peak inductor ripple current. This results in a minimum required inductor value of:

$$
L_{\text {MIN }}=5.1 \times 10^{5} \times R_{\text {SENSE }} \times C_{T} \times V_{\text {OUT }}
$$

As the inductor value is increased from the minimum value, the ESR requirements for the output capacitor are eased at the expense of efficiency. If too small an inductor is used, the LTC1267 may not enter Burst Mode operation and efficiency will be severely degraded at low currents.

Inductor Core Selection

Once the minimum value for L is known, the type of inductor must be selected. High efficiency converters generally cannot afford the core loss found in low cost powdered iron cores, forcing the use of more expensive ferrite, molypermalloy (MPP), or Kool M μ^{\circledR} cores. Actual core loss is independent of core size for a fixed inductor
value, but it is very dependent on inductance selected. As inductance increases, core losses go down but copper I^{2} R losses increase. For additional information regarding inductor selection, please refer to the LTC1159 data sheet.

Power MOSFET and Diode Selection

Two external power MOSFETs must be selected for use with each section of the LTC1267: a P-channel MOSFET for the main switch, and an N -channel MOSFET for the synchronous switch.
The peak-to-peak gate drive levels are set by the $V_{\text {CC }}$ voltage on the LTC1267. This voltage is typically 4.5 V during start-up and 5 V to 7 V during normal operation (see EXTV ${ }_{C C}$ PinConnection). Consequently, logic-levelthreshold MOSFETs must be used in most LTC1267 family applications. The only exceptions are applications in which EXTV $V_{\text {CC }}$ is powered from an external supply greater than 8V, in which standard threshold MOSFETs ($\mathrm{VGS}_{\mathrm{GS}}$ (TH) $>4 \mathrm{~V}$) may be used. Pay close attention to the BV DSS specification for the MOSFETs as well; many of the logiclevel MOSFETs are limited to 30V.

Selection criteria for the power MOSFETs include the onresistance $R_{D S}(O N)$, reverse transfer capacitance $C_{R S S}$, input voltage, and maximum output current. When the LTC1267 is operating in continuous mode, the duty cycles for the two MOSFETs are given by:

Duty Cycle $=\frac{V_{\text {OUT }}}{V_{\text {IN }}}$
N-Channel Duty Cycle $=\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}}$
The MOSFET dissipations at maximum output current are given by:

$$
\begin{aligned}
& \text { P-Ch } P_{D}=\frac{V_{\text {OUT }}}{V_{I N}}\left(l_{\text {MAX }}\right)^{2}\left(1+\delta_{P}\right) R_{D S(O N)} \\
& +\mathrm{k}\left(\mathrm{~V}_{\text {IN }}\right)^{2}\left(\mathrm{l}_{\text {MAX }}\right)\left(\mathrm{C}_{\text {RSS }}\right) \mathrm{f}_{0} \\
& N-C h P_{D}=\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}}\left(I_{\text {MAX }}\right)^{2}\left(1+\delta_{\mathrm{N}}\right) R_{\text {DS(ON) }}
\end{aligned}
$$

IPPLICATIONS Information

Vhere δ is the temperature dependency of $R_{D S(O N)}$ and k ; a constant inversely related to the gate drive current.
ioth MOSFETs have $I^{2} R$ losses, while the P-channel quation includes an additional term for transition losses, thich are highest at high input voltages. For $\mathrm{V}_{\text {IN }}<20 \mathrm{~V}$, the igh current efficiency generally improves with larger 1OSFETs, while for $\mathrm{V}_{\text {IN }}>20 \mathrm{~V}$, the transition losses rapidly Icrease to the point that the use of a higher $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ device ith lower $\mathrm{C}_{\text {RSS }}$ actually provides higher efficiency. The I-channel MOSFET losses are the greatest at high input oltage or during a short circuit when the N -channel duty ycle is nearly 100%.
he term $(1+\delta)$ is generally given for a MOSFET in the)rm of a normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs temperature curve, but δ $0.007 /{ }^{\circ} \mathrm{C}$ can be used as an approximation for low oltage MOSFETs. C RSs $^{\text {is usually specified in the MOSFET }}$ lectrical characteristics. The constant $\mathrm{k}=5$ can be used or the LTC1267 to estimate the relative contributions of le two terms in the P-channel dissipation equation.
he Schottky diodes D3 and D5 shown in Figure 1 only onduct during the dead-time between the conduction of le respective power MOSFETs. The sole purpose of D3 nd D5 is to prevent the body diode of the N -channel IOSFET from turning on and storing charge during the ead-time, which could cost as much as 1% in efficiency although there are no other harmful effects if D3 and D5 re omitted). Therefore, D3 and D5 should be selected for forward voltage of less than 0.6 V when conducting $\mathrm{I}_{\mathrm{MAX}}$.

in and Cout Selection

I continuous mode, the source current of the P -channel IOSFET is a square wave of duty cycle $V_{0 U T} / V_{\text {IN }}$. To revent large voltage transients, a low ESR input capacirr sized for the maximum RMS current must be used. The laximum RMS capacitor current is given by:

$$
\mathrm{C}_{\mathrm{IN}} \text { Required } \mathrm{I}_{\mathrm{RMS}} \approx \mathrm{I}_{\mathrm{MAX}} \frac{\left[\mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2}}{\mathrm{~V}_{\text {IN }}}
$$

his formula has a maximum at $\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\text {OUT }}$ where $\mathrm{I}_{\text {RMS }}=$ $\mathrm{IUT} / 2$. This simple worst-case condition is commonly sed for design because even significant deviations do not Ifer much relief. Note that capacitor manufacturer's pple current ratings are often based on only 2000 hours
of life. This makes it advisable to further derate the capacitor or to choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design. Always consult the manufacturer if there is any question. An additional $0.1 \mu \mathrm{~F}$ ceramic capacitor is also required on $\mathrm{V}_{\text {IN }}$ for high frequency decoupling.
The selection of $\mathrm{C}_{\text {OUt }}$ is driven by the required Effective Series Resistance (ESR). The ESR of COUT must be less than twice the value of $R_{\text {SENSE }}$ for proper operation of the LTC1267:

$C_{\text {OUT }}$ Required ESR $<2 R_{\text {SENSE }}$

Optimum efficiency is obtained by making the ESR equal to R RENSE. As the ESR is increased up to 2 Rense $_{\text {SEN }}$, the efficiency degrades by less than 1%. If the ESR is greater than $2 R_{\text {SENSE }}$, the voltage ripple on the output capacitor will prematurely trigger Burst Modeoperation, resulting in disruption of continuous mode and an efficiency hit which can be several percent.
Manufacturers such as Nichicon, United Chemicon, and Sprague should be considered for high performance capacitors. In surface mount applications multiple capacitors may have to be paralleled to meet the capacitance, ESR, or RMS current handling requirements of the application. For additional information regarding capacitor selection, please refer to the LTC1159 data sheet.
At low supply voltages, a minimum capacitance at $\mathrm{C}_{0 \mathrm{U}}$ is needed to prevent an abnormal low frequency operating mode (see Figure 4). When $\mathrm{C}_{\text {Out }}$ is made too small, the output ripple at low frequencies will be large enough to trip

Figure 4. Minimum Suggested $\mathrm{C}_{\text {Out }}$

APPLICATIONS InFORMATION

the voltage comparator. This causes Burst Mode operation to be activated when the LTC1267 would normally be in continuous operation. The effect is most pronounced with low values of RSENSE and can be improved by operating at higher frequencies with lower values of L. The output remains in regulation at all times.

EXT V CC Pin Connection

The LTC1267 contains an internal PNP switch connected between the EXT $V_{C C}$ and $V_{C C}$ pins. The switch closes and supplies the $\mathrm{V}_{C C}$ power whenever the EXTV V_{CC} pin is higher in voltage than the 4.5 V internal regulator. This allows the MOSFET driver and control power to be derived from the output during normal operation and from the internal regulator when the output is out of regulation (start-up, short circuit).

Significant efficiency gain can be realized by powering $\mathrm{V}_{\text {CC }}$ from the output, since the VIN current resulting from the driver and control currents will be scaled by a factor of Duty Cycle/Efficiency. For LTC1267, LTC1267-ADJ or LTC1267-ADJ5 this simply means connecting the EXT V_{CC} pin directly to $\mathrm{V}_{\text {OUT }}$ of the 5 V regulator.
The following list summarizes the four possible connections for EXT $V_{\text {CC }}$:

1. EXT $V_{C C}$ left open. This will cause $V_{C C}$ to be powered only from the internal 4.5 V regulator, resulting in reduced MOSFET gate drive levels and an efficiency penalty of up to 10% at high input voltages.
2. EXT $V_{C C}$ connected directly to highest $V_{O U T}$ of the two regulators. This is the normal connection for LTC1267/ LTC1267-ADJ/LTC1267-ADJ5 and provides the highest efficiency.
3. EXT VCC connected to an output-derived boost network. For 3.3 V and other low voltage regulators, efficiency gains can still be realized by connecting EXT $V_{\text {CC }}$ to an output-derived voltage which has been boosted to greater than 4.5 V . This can be done either with the inductive boost winding shown in Figure 5a or the capacitive charge pump shown in Figure 5b. The charge pump has the advantage of simple magnetics and generally provides the highest efficiency at the expense of a slightly higher parts count.

Figure 5a. Inductive Boost Circuit for EXT VCC

Figure 5b. Capacitive Charge Pump for EXT $\mathbf{V}_{\text {CC }}$
4. EXT $V_{C C}$ connected to an external supply. If an external supply is available in the 5 V to 10 V range it may be used to power EXT $V_{C C}$ providing it is compatible with the MOSFET gate drive requirements. When driving standard threshold MOSFETs, the external supply must always be present during operation to prevent MOSFET failure due to insufficient gate drive.

Under the condition that EXT $\mathrm{V}_{\text {CC }}$ is connected to $\mathrm{V}_{\text {OUT1 }}$ which is greater than 5.5 V , to power down the whole regulator, both the pins MSHDN and SHDN1 have to be pulled high. If SHDN1 is left floating or grounded the EXT $V_{\text {CC }}$ may self-power from $V_{\text {OUT1 }}$, preventing complete shutdown.

LTC1267 Adjustable Applications

When an output voltage other than 3.3 V or 5 V is required, the LTC1267-ADJ and LTC1267-ADJ5 adjustable versions are used with an external resistive divider from $V_{\text {OUT }}$ to the $\mathrm{V}_{\mathrm{FB} 1,2}$ pins. This is shown in Figure 6. The regulated voltage is determined by:

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) 1.25 \mathrm{~V}
$$

APPLICATIONS InFORMATION

The $\mathrm{V}_{\mathrm{FB} 1,2}$ pin is extremely sensitive to pickup from the inductor switching node. Care should be taken to isolate the feedback network from the inductor and a 100pF capacitor should be connected between the $\mathrm{V}_{\mathrm{FB} 1,2}$ and SGND pins next to the package.

The circuit in Figure 6 cannot be used to regulate a $\mathrm{V}_{\text {OUT }}$ which is greater than the maximum voltage allowed on the LTC1267 EXT V ${ }_{\text {CC }}$ pin (10V). In applications with $V_{\text {OUT }}>10 \mathrm{~V}, \mathrm{R}_{\text {SENSE }}$ must be moved to the ground side of the output capacitor and load. This operates the current sense comparator at 0 V common mode, increasing the off-time approximately 40% and requiring the use of a smaller timing capacitor C_{T}.

Figure 6. LTC1267-ADJ/LTC1267-ADJ5 External Feedback Network

Efficiency Considerations

The percent efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Percent efficiency can be expressed as:

$$
\% \text { Efficiency }=100 \%-(L 1+L 2+L 3+\ldots)
$$

where L1, L2, etc., are the individual losses as a percentage of input power. (For high efficiency circuits, only small errors are incurred by expressing losses as a percentage of output power.)
Although all dissipative elements in the circuit produce losses, four main sources usually account for most of the losses in LTC1267 circuits:

1. LTC1267 $\mathrm{V}_{\text {IN }}$ current
2. LTC1267 V $\mathrm{VCC}_{\text {c }}$ current
3. $I^{2} \mathrm{R}$ losses
4. P-channel transition losses
5. LTC1267 $V_{\text {IN }}$ current is the $D C$ supply current given in the electrical characteristics which excludes MOSFET driver and control currents. $V_{\text {IN }}$ currents results in a small ($<1 \%$) loss which increases with $V_{I N}$.
6. LTC1267 $\mathrm{V}_{\text {CC }}$ current is the sum of the MOSFET driver and control circuits currents. The MOSFET driver current results from switching the gate capacitance of the power MOSFETs. Each time a MOSFET gate is switched from low to high to low again, a packet of charge dQ moves from $V_{C C}$ to ground. The resulting $d Q / d t$ is a current out of V_{CC} which is typically much larger than the control circuit current. In continuous mode I ${ }_{\text {GATECHG }}$ $\approx f_{0}\left(Q_{P}+Q_{N}\right)$, where Q_{P} and Q_{N} are the gate charges of the two MOSFETs.

By powering EXT $V_{C C}$ from an output-derived source, the additional $\mathrm{V}_{\text {IN }}$ current resulting from the driver and control currents will be scaled by a factor of Duty Cycle/ Efficiency. For example, in a 20 V to 5 V application, 10 mA of $\mathrm{V}_{C C}$ current results in approximately 3 mA of $V_{I N}$ current. This reduces the mid-current loss from 10% or more (if the driver was powered directly from $V_{\text {IN }}$) to only a few percent.
3. $I^{2} \mathrm{R}$ losses are easily predicted from the DC resistances of the MOSFET, inductor, and current shunt. In continuous mode all the output current flows through L and $R_{\text {SENSE }}$, but is "chopped" between the P -channel and N channel MOSFETs. If the two MOSFETs have approximately the same $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, then the resistance of one MOSFET can simply be summed with the resistances of L and $R_{\text {SENSE }}$ to obtain $I^{2} R$ losses. For example, if each $R_{D S(O N)}=0.1 \Omega, R_{L}=0.15 \Omega$, and $R_{S E N S E}=0.05 \Omega$, then the total resistance is 0.3Ω. This results in losses ranging from 3% to 12% as the output current increases from 0.5 A to 2 A . $I^{2} \mathrm{R}$ losses cause the efficiency to roll off at high output currents.
4. Transition losses apply only to the P-channel MOSFET and only when operating at high input voltages (typically 20 V or greater). Transition losses can be estimated from:

$$
\text { Transition Loss } \approx 5 \times \mathrm{V}_{\mathrm{IN}^{2}}^{2} \times \mathrm{I}_{\mathrm{MAX}} \times \mathrm{C}_{\mathrm{RSS}} \times \mathrm{f}_{0}
$$

Other losses including $\mathrm{C}_{I N}$ and $\mathrm{C}_{\text {OUT }}$ ESR dissipative losses, Schottky conduction losses during dead-time,

APPLICATIONS InFORMATION

and inductor core losses, generally account for less than 2% total additional loss.

Auxiliary Windings-Suppressing Burst Mode Operation

The LTC1267 synchronous switch removes the normal limitation that power must be drawn from the inductor primary winding in order to extract power from auxiliary windings. With synchronous switching, auxiliary outputs may be loaded without regard to the primary output load, providing that the loop remains in continuous mode operation.
Burst Mode operation can be suppressed at low output currents with a simple external network which cancels the 25 mV minimum current comparator threshold. This technique is also useful for eliminating audible noise from certain types of inductors in high current ($l_{\text {OUT }}>5 \mathrm{~A}$) applications when they are lightly loaded.
An external offset is put in series with the Sense ${ }^{-}$pin to subtract from the built-in 25 mV offset. An example of this technique is shown in Figure 7. Two 100Ω resistors are inserted in series with the sense leads from the sense resistor.

Figure 7. Suppressing Burst Mode Operation
With the addition of R3 a current is generated through R1 causing an offset of:

$$
V_{\text {OFFSET }}=V_{\text {OUT }}\left(\frac{R 1}{R 1+R 3}\right)
$$

If $\mathrm{V}_{\text {OFFSET }}>25 \mathrm{mV}$, the built-in offset will be cancelled and Burst Mode operation is prevented from occurring. Since $V_{\text {OFFSET }}$ is constant, the maximum load current is also decreased by the same offset. Thus, to get back to the same $I_{\text {max }}$, the value of the sense resistor must be reduced:

$$
\mathrm{R}_{\mathrm{SENSE}} \approx \frac{75}{l_{\mathrm{MAX}}} \mathrm{~m} \Omega
$$

To prevent noise spikes from erroneously tripping the current comparator, a 1000pF capacitor is needed across Sense ${ }^{+}$and Sense ${ }^{-}$pins.

Board Layout Checklist

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC1267. These items are also illustrated graphically in the layout diagram of Figure 8. In general each block should be self-contained with little cross coupling for best performance. Check the following in your layout:

1. Are the signal and power grounds segregated? The LTC1267 signal ground must return to the $(-)$ plate of $\mathrm{C}_{\text {OUT }}$. The power ground returns to the source of the N-channel MOSFET, anode of the Schottky diode, and (-) plate of C_{IN}, which should have as short lead lengths as possible.
2. Does the LTC1267 Sense ${ }^{-}$pin connect to a point close to R RENSE and the (+) plate of $\mathrm{C}_{\text {OUT }}$? In adjustable applications the resistive divider R1 and R2 must be connected between the $(+)$ plate of $\mathrm{C}_{\text {OUT }}$ and signal ground.
3. Are the Sense ${ }^{-}$and Sense ${ }^{+}$leads routed together with minimum PC trace spacing? The 1000pF capacitor between the two Sense pins should be as close as possible to the LTC1267. Up to 100Ω may be placed in series with each Sense lead to help decouple the Sense pins. However, when these resistors are used the capacitor should be no larger than 1000 pF .
4. Does the $(+)$ plate of $\mathrm{C}_{\mathbb{N}}$ connect to the source of the P-channel MOSFET as closely as possible? An additional $0.1 \mu \mathrm{~F}$ ceramic capacitor between $\mathrm{V}_{\text {IN }}$ and power ground may be required in some applications.
5. Is the $V_{C C}$ decoupling capacitor connected closely between the $V_{C C}$ pins of the LTC1267 and power ground? This capacitor carries the MOSFET driver peak currents.

APPLICATIONS INFORMATION

6. In adjustable versions, the feedback pin is very sensitive to pickup from the switch node. Care must be taken to isolate $\mathrm{V}_{\mathrm{FB} 1,2}$ from possible capacitive coupling of the inductor switch signal.
7. Are MSHDN and SHDN1, 3, 5 actively pulled to ground during normal operation? These shutdown pins are high impedance and must not be allowed to float.

Troubleshooting Hints

Since efficiency is critical to LTC1267 applications, it is very important to verify that the circuit is functioning sorrectly in both continuous and Burst Mode operation. The waveform to monitor is the voltage on the C_{T} pin.
In continuous mode ($l_{\text {LOAD }}>I_{\text {BURST }}$) the voltage on the C_{T} oin should be a sawtooth with a $0.9 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ swing. This voltage should never dip below 2 V as shown in Figure 9a.
When load currents are low (l LOAD < I BURST) Burst Mode jperation occurs. The voltage on the C_{\top} pin now falls to ground for periods of time as shown in Figure 9b.

If the C_{T} is observed falling to ground at high output currents, it indicates poor decoupling or improper grounding. Refer to the Board Layout Checklist.

Inductor current should also be monitored. Look to verify that the peak-to-peak ripple current in continuous mode operation is approximately the same as in Burst Mode operation.

Figure 9. C_{\top} Waveforms

TYPICAL APPLICATIONS

LTC1267-ADJ Dual Regulator with 3.6V/2.5A and 5V/2A Outputs

LTC1267-ADJ5 Dual Regulator with 3.45V/2.5A and 5V/2A Outputs

RELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
TC1142	Dual Step-Down Switching Regulator Controller	Dual Version of LTC1148
TC1143	Dual Step-Down Switching Regulator Controller	Dual Version of LTC1147
TC1147	Step-Down Switching Regulator Controller	Nonsynchronous, 8-Pin, $\mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$
TC1148	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 20 \mathrm{~V}$
TC1149	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 48 \mathrm{~V}$, for Standard Threshold FETs
TC1159	Step-Down Switching Regulator Controller	Synchronous, $\mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}$, for Logic Level FETs
TC1174	Step-Down Switching Regulator with Internal 0.5A Switch	$\mathrm{V}_{\text {IN }} \leq 18.5 \mathrm{~V}$, Comparator/Low Battery Detector
TC1265	Step-Down Switching Regulator with Internal 1A Switch	$\mathrm{V}_{\text {IN }} \leq 13 \mathrm{~V}$, Comparator/Low Battery Detector
TC1266	Step-Up/Down Switching Regulator Controller	Synchronous N- or P-Channel FETs, Comparator/Low Battery Detector
TC1574	Step-Down Switching Regulator with Internal 0.5A Switch and Schottky Diode	$\mathrm{V}_{\text {IN }} \leq 18.5 \mathrm{~V}$, Comparator

feATURES

- 5 V at 600 mA or 12 V at 120 mA from 2-Cell Supply
- $200 \mu A$ Quiescent Current
- Logic Controlled Shutdown to $15 \mu \mathrm{~A}$
- Low VCESAT Switch: 310 mV at 2A Typical
- Burst Mode ${ }^{\text {TM }}$ Operation at Light Load
- Current Mode Operation for Excellent Line and Load Transient Response
- Available in 8-Lead SO or PDIP
- Operates with Supply Voltage as Low as 2V

APPLICATIONS

- Notebook and Palmtop Computers
- Portable Instruments
- Personal Digital Assistants
- Cellular Telephones
- Flash Memory

DESCRIPTIOn

The LT ${ }^{\circledR}$ 1302/LT1302-5 are micropower step-up DC/DC converters that maintain high efficiency over a wide range of output current. They operate from a supply voltage as low as 2 V and feature automatic shifting between Burst Mode operation at light load, and current mode operation at heavy load.

The internal low loss NPN power switch can handle current in excess of $2 A$ and switch at frequencies up to 400 kHz . Quiescent current is just $200 \mu \mathrm{~A}$ and can be further reduced to $15 \mu \mathrm{~A}$ in shutdown.

Available in 8-pin PDIP or 8-pin SO packaging, the LT1302/ LT1302-5 have the highest switch current rating of any similarly packaged switching regulators presently on the market.

[^31]
TYPICAL APPLICATION

Figure 1. 2-Cell to $5 \mathrm{~V} / 600 \mathrm{~mA}$ DC/DC Converter

IBSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

IC ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}$, unless otherwise noted.

'MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Quiescent Current	$\begin{aligned} & V_{S H D N}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1.3 \mathrm{~V} \\ & V_{S H D N}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 200 \\ 15 \end{gathered}$	$\begin{gathered} 300 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
V	Input Voltage Range		\bullet	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		8	V
B	Feedback Voltage (LT1302)	$V_{C}=0.4 \mathrm{~V}$	\bullet	1.22	1.24	1.26	V
	Feedback Pin Bias Current (LT1302)	$V_{\text {FB }}=1 \mathrm{~V}$			100		nA
	Output Sense Voltage (LT1302-5)	$\mathrm{V}_{\mathrm{C}}=0.4 \mathrm{~V}$	\bullet	4.85	5.05	5.25	V
	Output Ripple Voltage (LT1302-5)	$\mathrm{V}_{\mathrm{C}}=0.4 \mathrm{~V}$			50		mV
	Sense Pin Resistance to Ground (LT1302-5)				420		k Ω
is	Offset Voltage	See Block Diagram			15		mV
	Comparator Hysteresis	(Note 1)			5		mV
	Oscillator Frequency	Current Limit Not Asserted (Note 2)	\bullet	$\begin{aligned} & 175 \\ & 160 \\ & \hline \end{aligned}$	220	$\begin{aligned} & 265 \\ & 310 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHZ} \end{aligned}$
:	Maximum Duty Cycle			75	86	95	\%
V	Switch On Time	Current Limit Not Asserted			3.9		$\mu \mathrm{S}$
F	Switch Off Time				0.7		$\mu \mathrm{S}$
	Output Line Regulation	$2<\mathrm{V}_{\text {IN }}<8 \mathrm{~V}$	\bullet		0.06	0.15	\%/V
ESAT	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=2 \mathrm{~A}$	\bullet		310	$\begin{aligned} & 400 \\ & 475 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch 0ff	\bullet		0.1	10	$\mu \mathrm{A}$
	Switch Current Limit	$V_{C}=0.4 \mathrm{~V}$ (Burst Mode Operation) $V_{C}=1.25 \mathrm{~V}$ (Full Power) (Note 3)	\bullet	2.0	$\begin{gathered} 1 \\ 2.8 \end{gathered}$	3.9	A
	Error Amplifier Voltage Gain	$0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 1.2 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{C}} / \Delta \mathrm{V}_{\mathrm{FB}}$		50	75		V/V
HDNH	Shutdown Pin High		\bullet	1.8			V
HDNL	Shutdown Pin Low		\bullet			0.5	V
IDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{\text {SHDN }}=5 \mathrm{~V} \\ & V_{\text {SHDN }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} \hline 8 \\ 3 \\ 0.1 \end{gathered}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	I_{T} Pin Resistance to Ground				3.9		$\mathrm{k} \Omega$

e denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ nperature range.
te 1: Hysteresis is specified at DC. Output ripple depends on capacitor e and ESR.

Note 2: The LT1302 operates in a variable frequency mode. Switching frequency depends on load inductance and operating conditions and may be above specified limits.
Note 3: Minimum switch current 100% tested. Maximum switch current guaranteed by design.

TYPICAL PERFORMANCE CHARACTERISTICS

ГYPICAL PERFORMANCE CHARACTERISTICS

In functions

iND (Pin 1): Signal Ground. Feedback resistor and $0.1 \mu \mathrm{~F}$ eramic bypass capacitor from $\mathrm{V}_{\mathbb{1 N}}$ should be connected lirectly to this pin.
I_{c} (Pin 2): Frequency Compensation Pin. Connect series iC to GND. Keep trace short.
iHDN (Pin 3): Shutdown. Pull high to effect shutdown; tie 0 ground for normal operation.
B/Sense (Pin 4): Feedback/Sense. On the LT1302 this in connects to CMP1 input. On the LT1302-5 this pin onnects to the output resistor string.
I_{T} (Pin 5): Normally left floating. Addition of a 3.3k resistor to GND forces the LT1302 into current mode at light loads. Efficiency drops at light load but increases at medium loads. See Applications Information section.
$\mathbf{V}_{\mathbf{I N}}$ (Pin6):Supply Pin. Must be bypassed with: (1) a $0.1 \mu \mathrm{~F}$ ceramic to GND, and (2) a large value electrolytic to PGND. When $\mathrm{V}_{\text {IN }}$ is greater than 5 V , a low value resistor (2Ω to 10Ω) is recommended to isolate the $V_{\mathbb{N}}$ pin from input supply noise.

LT1302/LTI302-5

PIn functions

SW (Pin 7): Switch Pin. Connect inductor and diode here.
Keep layout short and direct.
PGND (Pin 8): Power Ground. Pins 8 and 1 should be connected under the package. In the SO package, pins 1
and 8 are thermally connected to the die. One square inch of PCB copper provides an adequate heat sink for the device.

BLOCK DIAGRAMS

Figure 2. LT1302 Block Diagram

3LOCK DIAGRAMS

Figure 3. LT1302-5 Block Diagram

JPERATION

he LT1302's operation can best be understood by xamining the block diagram in Figure 2. The LT1302 perates in one of two modes, depending on load. With ght loads, comparator CMP1 controls the output; with eavy loads, control is passed to error amplifier A1. urst Mode operation consists of monitoring the FB pin oltage with hysteretic comparator CMP1. When the FB oltage, related to the output voltage by external attenutor R1 and R2, falls below the 1.24 V reference voltage, le oscillator is enabled. Switch Q4 alternately turns on, ausing current buildup in inductor L1, then turns off, llowing the built-up current to flow into output capacior C3 via D1. As the output voltage increases, so does ie FB voltage; when it exceeds the reference plus

CMP1's hysteresis (about 5mV) CMP1 turns the oscillator off. In this mode, peak switch current is limited to approximately 1A by A2, Q2, and Q3. Q2's current, set at $34 \mu \mathrm{~A}$, flows through R5, causing A2's negative input to be 25 mV lower than $\mathrm{V}_{\text {IN }}$. This node must fall more than 36 mV below $\mathrm{V}_{\text {IN }}$ for A 2 to trip and turn off the oscillator. The remaining 11 mV is generated by Q3's current flowing through R4. Emitter-area scaling sets Q3's collector current to 0.625% of switch Q4's current. When Q4's current is $1 \mathrm{~A}, \mathrm{Q}$'s current is 6.25 mA , creating an 11 mV drop across R4 which, added to R5's 25 mV drop, is enough to trip A2.
When the output load is increased to the point where the 1A peak current cannot support the output voltage,

LT1302/LT1302-5

OpGRATION

CMP1 stays on and the peak switch current is regulated by the voltage on the V_{C} pin (A1's output). V_{C} drives the base of Q1. As the V_{C} voltage rises, $Q 2$ conducts less current, resulting in less drop across R5. Q4's peak current must then increase in order for A2 to trip. This current mode control results in good stability and immunity to input voltage variations. Because this is a linear,
closed-loop system, frequency compensation is required. A series RC from V_{C} to ground provides the necessary pole-zero combination.
The LT1302-5 incorporates feedback resistors R1 and R2 into the device. Output voltage is set at 5.05 V in Burst Mode, dropping to 4.97 V in current mode.

APPLICATIONS INFORMATION

Inductor Selection

Inductors used with the LT1302 must fulfill two requirements. First, the inductor must be able to handle current of 2.5 A to 3 A without runaway saturation. Rod or drum core units usually saturate gradually and it is acceptable to exceed manufacturers' published saturation currents by 20% or so. Second, it should have low DCR, under 0.05Ω so that copper loss is kept low. Inductance value is not critical. Generally, for low voltage inputs down to 2 V , a 10 μ Hinductor is recommended (such as Coilcraft D03316103). For inputs above 4 V to 5 V use a $22 \mu \mathrm{H}$ unit (such as Coilcraft D03316-223). Switching frequency can reach up to 400 kHz so the core material should be able to handle high frequency without loss. Ferrite or molypermalloy cores are a better choice than powdered iron. If EMI is a concern atoroidal inductor is suggested, such as Coiltronics CTX20-4.
For a boost converter, duty cycle can be calculated by the following formula:

$$
D C=1-\left(\frac{V_{I N}}{V_{\text {OUT }}}\right)
$$

A special situation exists where the $\mathrm{V}_{\text {OUT }} / V_{\text {IN }}$ differential is high, such as a $2 \mathrm{~V}-\mathrm{to}-12 \mathrm{~V}$ converter. The required duty cycle is higher than the LT1302 can provide, so the converter must be designed for discontinuous operation. This means that inductor current goes to zero during the switch off-time. In the 2V-to-12V case, inductance must be low enough so that current in the inductor can reach 2 A in a single cycle. Inductor value can be defined by:

$$
L \leq \frac{\left(V_{I N}-V_{S W}\right) \times t_{O N}}{2 A}
$$

With the 2 V input a value of $3.3 \mu \mathrm{H}$ is acceptable. Since the inductance is so low, usually a smaller core size can be used. Efficiency will not be as high as for the continuous case since peak currents will necessarily be higher.
Table 1 lists inductor suppliers along with appropriate part numbers.

Table 1. Recommended Inductors

VENDOR	PART NO.	VALUE (μH)	PHONE NO.
Coilcraft	D03316-103	10	$(708) 639-6400$
	D03316-153	15	
	D03316-223	22	
Coiltronics	CTX10-2	10	$(407) 241-7876$
	CTX20-4	20	
Dale	LPT4545-100LA	10	$(605) 665-9301$
	LPT4545-200LA	20	
Sumida	CD105-100	10	(708) 956-0666
	CD105-150	15	
	CDR125-220	22	

Capacitor Selection

The output capacitor should have low ESR for proper performance. A high ESR capacitor can result in "modehopping" between current mode and Burst Mode at high load currents because the output voltage will increase by $I_{S W} \times$ ESR when the inductor current is flowing into the diode. Figure 4 shows output voltage of an LT1302-5 boost converter with two 220 FFAVX TPS capacitors at the output. Ripple voltage at a 510 mA load is about 30 mV P-p

APPLICATIONS INFORMATION

and there is no low frequency component. The total ESR is under 0.03Ω. If a single $100 \mu \mathrm{~F}$ aluminum electrolytic capacitor is used instead, the converter mode-hops between current mode and Burst Mode due to high ESR, causing the voltage comparator to trip as shown in Figure 5 . The ripple voltage is now over $500 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{p}}$ and contains a low frequency component. Maximum allowable output capacitor ESR can be calculated by the following formula:

$$
\mathrm{ESR}_{\text {MAX }}=\frac{V_{\text {OS }} \times V_{\text {OUT }}}{V_{\text {REF }} \times 1 \mathrm{~A}}
$$

where,
$V_{0 S}=15 \mathrm{mV}$
$V_{\text {REF }}=1.24 \mathrm{~V}$

Figure 4. Low ESR Output Capacitor Results in Stable Operation. Ripple Voltage is Under 30mV.p.p

Figure 5. Inexpensive Electrolytic Capacitor Has High ESR, Resulting in Mode-Hop, Ripple Voltage Amplitude Is Over 500mVp-p and Includes Low Frequency Component

Input Capacitor

The input supply should be decoupled with a good quality electrolytic capacitor close to the LT1302 to provide a stable input supply. Long leads or traces from power source to the switcher can have considerable impedance at the LT1302's switching frequency. The input capacitor provides a low impedance at high frequency. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is required right at the $\mathrm{V}_{\mathbb{I N}}$ pin. When the input voltage can be above 5 V , a $10 \Omega / 1 \mu \mathrm{~F}$ decoupling network for $V_{I N}$ is recommended as detailed in Figure 6. This network is also recommended when driving a transformer.

Figure 6. A $10 \Omega / 14$ F Decoupling Network at $V_{I N}$ Is Recommended When Input Voltage Is Above 5 V

Table 2 lists capacitor vendors along with device types.
Table 2. Recommended Capacitors

VENDOR	SERIES	TYPE	PHONE NO.
AVX	TPS	Surface Mount	$(803) 448-9411$
Sanyo	OS-CON	Through Hole	$(619) 661-6835$
Sprague	595D	Surface Mount	$(603) 224-1961$

Diode Selection

A 2A Schottky diode such as Motorola MBRS130LT3 has been found to be the best available. Other choices include 1N5821 or MBRS130T3. Do not use "general purpose" diodes such as 1 N 4001 . They are much too slow for use in switching regulator applications.

APPLICATIONS INFORMATION

Frequency Compensation

Obtaining proper RC values for the frequency compensation network is largely an empirical procedure, since variations in input and output voltage, topology, capacitor ESR and inductance make a simple formula elusive. As an example, consider the case of a 2.5 V to 5 V boost converter supplying 500 mA . To determine optimum compensation, the circuit is built and a transient load is applied to the circuit. Figure 7 shows the setup.

In Figure 7a, the V_{C} pin is simply left floating. Although output voltage is maintained and transient response is good, switch current rises instantaneously to the internal current limit upon application of load. This is an undesirable situation as it places maximum stress on the switch and the other power components. Additionally, efficiency is well down from its optimal value. Next, a $0.1 \mu \mathrm{~F}$ capacitor is connected with no resistor. Figure 7b details response. Although the circuit eventually stabilizes, the loop is quite underdamped. Initial output "sag" exceeds 5\%. Aberrant
behavior in the 4th graticule is the result of the LT1302's Burst Mode comparator turning offall switching as output voltage rises above its threshold.

In Figure 7 c , the $0.1 \mu \mathrm{~F}$ capacitor has been replaced by a $0.01 \mu \mathrm{~F}$ unit. Undershoot is less but the response is still underdamped. Figure 7 d shows the results of the $0.1 \mu \mathrm{~F}$ capacitor and a 10 k resistor in series. Now some amount of damping is observed, and behavior is more controlled. Figure 7 e details response with a $0.01 \mu \mathrm{~F} / 10 \mathrm{k}$ series network. Undershoot is down to around 100 mV , or 2%. A slight underdamping is still noticeable.

Finally, a $0.01 \mu \mathrm{~F} / 24 \mathrm{k}$ series network results in the response shown in Figure 7f. This has optimal damping, undershoot less than 100 mV and settles in less than 1 ms .

The V_{C} pin is sensitive to high frequency noise. Some layouts may inject enough noise to modulate peak switch current at $1 / 2$ the switching frequency. A small capacitor connected from V_{C} to ground will eliminate this. Do not exceed $1 / 10$ of the compensation capacitor value.

Figure 7. Boost Converter with Simulated Load

Figure 7a. \mathbf{V}_{C} Pin Left Unconnected. Output Shows Low Frequency Components Under Load

Figure $7 \mathrm{~b} .0 .1 \mu \mathrm{~F}$ from V_{C} to Ground. Better, but More Improvement Needed

APPLICATIONS INFORMATION

Figure 7c. $0.01 \mu \mathrm{~F}$ from $\mathrm{V}_{\mathbf{C}}$ to Ground. Underdamped Response Requires Series R

Figure 7d. 0.1μ F with 10 k Series RC. Classic Overdamped Response

Figure 7e. 0.01 HF , 10k Series RC Shows Good Transient Response. Slight Underdamping Still Noticeable

Figure 7f. 0.01 FF , 24k Series RC Results in Optimum Response

$I_{T} \mathrm{Pin}$

The I_{T} pin is used to disable Burst Mode, forcing the LT1302 to operate in current mode even at light load. To disable Burst Mode, 3.3 k resistor R 1 is connected from I_{T} to gound. More conservative frequency compensation must be used when in this mode. A $0.1 \mu \mathrm{~F}$ capacitor and 4.7 k resistor from V_{C} to ground has been found to be adequate. Low frequency Burst Mode ripple can be reduced or eliminated using this technique in many applications.

To illustrate, the transient load response of Figure 8's circuit is pictured without and with R1. Figure 8a shows output voltage and inductor current without the resistor. Note the 6 kHz burst rate when the converter is delivering 25 mA . By adding the 3.3 k resistor, the low frequency bursting is eliminated, as shown in Figure 8b. This feature is useful in systems that contain audio circuitry. At very light or zero load, switching frequency drops and eventu-

Figure 8. Addition of R1 Eliminates Low Frequency Output Ripple in This 2.5V to 5V Boost Converter

Figure 8a. IT Pin Floating. Note 6kHz Burst Rate at $\mathrm{L}_{\text {LOAD }}=25 \mathrm{~mA}$. $0.14 \mathrm{~F} / 4.7 \mathrm{k}$ Compensation Network Causes 220mV Undershoot

APPLICATIONS INFORMATION

ally reaches audio frequencies, but at a much lighter load than without the I_{T} feature. At some input voltage/load current combinations, some residual bursting may occur at frequencies out of the audio band.

Figure 8b. 3.3k Resistor from I_{\top} Pin to Ground Forces LT1302 into Current Mode Regardless of Load. Audio Frequency Component Eliminated

Figure 8c. 3.3k Resistor for I_{T} to Ground Increases Efficiency at Moderate Load, Decreases at Light Load

The I_{T} pin cannot be used as a soft-start. Large capacitors connected to the pin will cause erratic operation. If operating the device in Burst Mode, let the pin float. Keep high dV/dt signals away from the pin.

Figure 8c details efficiency with and without the addition of R1. Burst Mode operation keeps efficiency high at light load with I_{T} floating. Efficiency falls off at light load with R1 added because the LT1302 cannot transition into Burst Mode.

Layout

The high speed, high current switching associated with the LT1302 mandates careful attention to layout. Follow the suggested component placement in Figure 9 for proper operation. High current functions are separated by the package from sensitive control functions. Feedback resistors R1 and R2 should be close to the feedback pin (pin4). Noise can easily be coupled into this pin if care is not taken. A small capacitor (100pF to 200pF) from FB to ground provides a high frequency bypass. If the LT1302 is operated off a three-cell or higher input, R3 (2Ω to 10Ω) in series with $\mathrm{V}_{\text {IN }}$ is recommended. This isolates the device from noise spikes on the input supply. Do not put in R3 if the device must operate from a 2 V input, as input current will cause the voltage at the LT1302's $\mathrm{V}_{\text {IN }}$ pin to go below 2 V . The $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor C 3 (use X7R, not $\mathrm{Z5U}$) should be mounted as close as possible to the package. When R3 is used, C3 should be a $1 \mu \mathrm{~F}$ tantalum unit. Grounding should be segregated as illustrated. C3's ground trace should not carry switch current. Run a

Figure 9. Suggested Component Placement for LT1302

APPLICATIONS INFORMATION

separate ground trace up under the package as shown. The battery and load return should go to the power side of the ground copper.

Thermal Considerations

The LT1302 contains a thermal shutdown feature which protects against excessive internal (junction) temperature. If the junction temperature of the device exceeds the protection threshold, the device will begin cycling between normal operation and an off state. The cycling is not harmful to the part. The thermal cycling occurs at a slow rate, typically 10 ms to several seconds, which depends on the power dissipation and the thermal time constants of the package and heat sinking. Raising the ambient temperature until the device begins thermal shutdown gives a good indication of how much margin there is in the thermal design.

For surface mount devices heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Experiments have shown that the heat spreading copper layer does not need to be electrically connected to the tab of the device. The PCB material can be very effective at transmitting heat between the pad area attached to pins 1 and 8 of the device, and a ground or power plane layer either inside or on the opposite side of the board. Although the actual thermal resistance of the PCB material is high, the length/area ratio of the thermal resistance between the layer is small. Copper board stiffeners and plated through holes can also be used to spread the heat generated by the device.

Table 3 lists thermal resistance for the SO package. Measured values of thermal resistance for several different board sizes and copper areas are listed for each surface mount package. All measurements were taken in still air on $3 / 32^{\prime \prime}$ FR-4 board with 10z copper. This data can be used as a rough guideline in estimating thermal resistance. The thermal resistance for each application will be affected by thermal interactions with other components as well as board size and shape.

Table 3. S8 Package, 8-Lead Plastic SO

COPPER AREA			THERMAL RESISTANCE
TOPSIDE*	BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)
$2500 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$60^{\circ} \mathrm{C} / \mathrm{W}$
$1000 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$62^{\circ} \mathrm{C} / \mathrm{W}$
$225 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$65^{\circ} \mathrm{C} / \mathrm{W}$
$100 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$69^{\circ} \mathrm{C} / \mathrm{W}$
$100 \mathrm{sq} . \mathrm{mm}$	$1000 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$73^{\circ} \mathrm{C} / \mathrm{W}$
$100 \mathrm{sq} . \mathrm{mm}$	$225 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$80^{\circ} \mathrm{C} / \mathrm{W}$
$100 \mathrm{sq} . \mathrm{mm}$	$100 \mathrm{sq} . \mathrm{mm}$	$2500 \mathrm{sq} . \mathrm{mm}$	$83^{\circ} \mathrm{C} / \mathrm{W}$

* Pins 1 and 8 attached to topside copper N8 Package, 8-Lead DIP:
Thermal Resistance (Junction-to-Ambient) $=100^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Temperature Rise

Power dissipation internal to the LT1302 in a boost regulator configuration is approximately equal to:

The first term in this equation is due to switch "onresistance." The second term is from the switch driver. R is switch resistance, typically $0.15 \Omega . V_{D}$ is the diode forward drop.

The temperature rise can be calculated from:

$$
\Delta T=P_{D} \times \theta_{J A}
$$

where:
$\Delta T=$ Temperature Rise
$P_{D}=$ Device Power Dissipation
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-Ambient)

LT1302/LT1302-5

APPLICATIONS INFORMATION

As an example, consider a boost converter with the following specifications:

$$
\begin{aligned}
& \mathrm{V}_{\text {IN }}=3 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V} \\
& \mathrm{I}_{\text {OUT }}=700 \mathrm{~mA}
\end{aligned}
$$

Total power loss in the LT1302, assuming $R=0.15 \Omega$ and $V_{D}=0.45 \mathrm{~V}$, is:

$$
P_{D}=(700 \mathrm{~mA})^{2}(0.15 \Omega)\left[\left(\frac{6+0.45}{3-\frac{0.7 \times 6 \times 0.15}{3}}\right)^{2}-\left(\frac{6+0.45}{3-\frac{0.7 \times 6 \times 0.15}{3}}\right)\right]+\frac{(0.7)(6+0.45-3)}{27}
$$

$$
=223 \mathrm{~mW}+89 \mathrm{~mW}=312 \mathrm{~mW}
$$

Using the CS8 package with 100 sq . mm topside and backside heat sinking:

$$
\Delta \mathrm{T}=(312 \mathrm{~mW})\left(84^{\circ} \mathrm{C} / \mathrm{W}\right)=25.9^{\circ} \mathrm{C} \text { rise }
$$

With the N8 package:

$$
\Delta \mathrm{T}=31.2^{\circ} \mathrm{C}
$$

At a $70^{\circ} \mathrm{C}$ ambient, die temperature would be $101.2^{\circ} \mathrm{C}$.

TYPICAL APPLICATIONS

Single Cell to 5V/150mA Converter

2V to 12V/120mA Converter

LT1302/LT1302-5

TYPICAL APPLICATIONS

3 Cell to 3.3V Buck-Boost Converter with Auxiliary 12V Regulated Output

T1 = DALE LPE-6562-A069, 1:3:1:1:1 TURNS RATIO, $10 \mu \mathrm{H}$ PRIMARY. DALE (605) 665-9301
D1, D2 = MOTOROLA MBRS130LT3
C1 = AVX TPSE107016R0100
C2 = AVX TPSE337006R0100
C3 = AVX TPSD476016R0150

2 Li-Ion Cell to $5.8 \mathrm{~V} / 600 \mathrm{~mA}$ DC/DC Converter

feATURES

- 5V at 200 mA from a 2 V Input
- Supply Voltage As Low As 1.8 V
- Up to 88\% Efficiency
- $120 \mu A$ Quiescent Current
- Low-Battery Detector
- Low $V_{\text {CESAT }}$ Switch: 170 mV at 1A Typ
- Uses Inexpensive Surface Mount Inductors
- 8-Lead PDIP or SO Package

APPLICATIONS

- EL Panel Drivers
- 2-Cell and 3-Cell to 5 V Conversion
- Palmtop Computers
- Portable Instruments
- Bar-Code Scanners
- PDAs
- Wireless Systems

DESCRIPTION

The $\mathrm{LT}{ }^{\text {® }} 1303 /$ LT1303-5 are micropower step-up high efficiency DC/DC converters using Burst Mode ${ }^{\text {TM }}$ operation. They are ideal for use in small, low-voltage batteryoperated systems. The LT1303-5 accepts an input voltage between 1.8 V and 5 V and converts it to a regulated 5 V . The LT1303 is an adjustable version that can supply an output voltage up to 25 V . Quiescent current is only $120 \mu \mathrm{~A}$ from the battery and the shutdown pin further reduces current to $10 \mu \mathrm{~A}$. The low-battery detector provides an opencollector output that goes low when the input voltage drops below a preset level. The on-chip NPN power switch has a low 170 mV saturation voltage at a switch current of 1A. The LT1303/LT1303-5 are available in 8-lead PDIP or SO packages, easing board space requirements.

For higher output current, please see the LT1305 or LT1302.
$\boldsymbol{\mathcal { V }}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. 2-Cell to 5V DC/DC Converter with Low-Battery Detect

ABSOLUTE MAXIMUM RATINGS

VIN Voltage 10V
SW1 Voltage 25 V
Sense Voltage (LT1303-5) 20V
FB Voltage (LT1303) 10V
Shutdown Voltage 10 V
LBO Voltage 10V
LBI Voltage 10 V
Maximum Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

	ORDER PART NUMBER
LBO 2 7 7 SW	LT1303CN8
SHDN 3 - 6 V $\mathrm{V}^{1 N}$	LT1303CS8
FB (SENSE)* 4 年 5 LBI	LT1303CN8-5
N8 PACKAGE	LT1303CS8-5
8-LEAD PDIP	
S8 PACKAGE	S8 PART MARKING
*FIXED VERSION	1303
$\begin{aligned} & \mathrm{T}_{\text {JMAX }}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} \mathrm{~W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{N}(\mathrm{SB}) \end{aligned}$	13035

Consult factory for Industrial and Military grade parts.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Quiescent Current	$\begin{aligned} & V_{\text {SHDN }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 120 \\ 7 \end{gathered}$	$\begin{gathered} 200 \\ 15 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{V_{\text {IN }}}$	Input Voltage Range		\bullet	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	1.55		V
	Feedback Voltage	LT1303	\bullet	1.22	1.24	1.26	V
	Output Sense Voltage	LT1303-5	\bullet	4.8	5.0	5.2	V
	Comparator Hysteresis	LT1303 (Note 1)	\bullet		6	12.5	mV
	Output Hysteresis	LT1303-5 (Note 1)	\bullet		22	50	mV
	Feedback Pin Bias Current	LT1303, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$	\bullet		7	20	nA
	Oscillator Frequency	Current Limit Not Asserted		120	155	185	kHz
	Oscillator TC				0.2		$\% /{ }^{\circ} \mathrm{C}$
DC	Maximum Duty Cycle		\bullet	75	86	95	\%
t_{ON}	Switch On Time	Current Limit Not Asserted			5.6		$\mu \mathrm{S}$
	Output Line Regulation	$1.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$	\bullet		0.06	0.15	\% N
$V_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=700 \mathrm{~mA}$	\bullet		130	200	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch Off	\bullet		0.1	10	$\mu \mathrm{A}$
	Peak Switch Current	$\begin{aligned} & V_{I N}=2 V \\ & V_{I N}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 0.75 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.15 \end{aligned}$	A A
	LBI Trip Voltage		\bullet	1.21	1.24	1.27	V
	LBI Input Bias Current	$\mathrm{V}_{\mathrm{LBI}}=1 \mathrm{~V}$	\bullet		7	20	nA
	LBO Output Low	$\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$	\bullet		0.11	0.4	V
	LBO Leakage Current	$\mathrm{V}_{\mathrm{LBI}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBO}}=5 \mathrm{~V}$	\bullet		0.1	5	${ }_{\mu}$
$\mathrm{V}_{\text {SHDNH }}$	Shutdown Pin High		\bullet	1.8			V
$V_{\text {SHDNL }}$	Shutdown Pin Low					0.5	V
ISHDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{S H D N}=5 \mathrm{~V} \\ & V_{\text {SHON }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 8.0 \\ & 3.0 \\ & 0.1 \\ & \hline \end{aligned}$	20 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

The denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.

Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive.

TYPICAL PGRFORMAOCE CHARACTERISTICS

LT1303 FB Voltage

LBI Pin Bias Current

$\mathbf{V}_{\text {CESAT }}$ vs Temperature

LT1303 G02
LT1303-5 Sense Voltage

FB Pin Bias Current

LT1303 608

LT1303-5 Sense Pin Resistance to Ground

LT1303 G03
Low Battery Detect Trip Point

Switch Current Limit

LT1303 G09

LT1303/LT1303-5

TYPICAL PGRFORmANCE CHARACTERISTICS

PIn functions

GND (Pin 1): Signal Ground. Tie to PGND under the package.
LBO (Pin 2): Open-Collector Output of Low-Battery Comparator. Can sink $100 \mu \mathrm{~A}$. Disabled when device is in shutdown.

SHDN (Pin 3): Shutdown. Pull high to shut down the device. Ground for normal operation.
FB/Sense (Pin 4): On 1303 (adjustable) this pin connects to the main comparator C1 input. On LT1303-5 this pin connects to the resistor string that sets output voltage at 5 V .

LBI (Pin 5): Low-Battery Comparator Input. When voltage on this pin below 1.24 V , LBO is low.
$\mathbf{V}_{\mathbb{N}}$ (Pin 6): Supply Pin. Must be bypassed with a large value electrolytic to ground. Keep bypass within $0.2^{\prime \prime}$ of the device.

SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize radio frequency interference.

PGND (Pin 8): Power ground. Tie to signal ground (pin1) under the package. Bypass capacitor from $V_{\text {IN }}$ should be tied directly to PGND within $0.2^{\prime \prime}$ of the device.

block diagrams

Figure 2. LT1303 Block Digram

BLOCK DIAGRAMS

Figure 3. LT1303-5 Block Diagram

OPERATION

Operation of the LT1303 is best understood by referring to the Block Diagram in Figure 2. When C1's negative input, related to the output voltage by the appropriate resistordivider ratio, is higher than the 1.24 V reference voltage, C1's output is low. C2, A3 and the oscillator are turned off, drawing no current. Only the reference and C 1 consume current, typically $140 \mu \mathrm{~A}$. When C1's negative input drops below 1.24 V and overcomes C1's 6 mV hysteresis, C1's output goes high, enabling the oscillator, current comparator C2 and driver A3. Quiescent current increases to 2 mA as the device goes into active switching mode. Q1 then turns on in controlled saturation for nominally $6 \mu \mathrm{~s}$ or until current comparator C 2 trips, whichever comes first. The switch then turns off for approximately $1.5 \mu \mathrm{~s}$, thenturns on again. The LT1303's switching causes current to alternately build up in L1 and dump into output capacitor C 4 via D 1 , increasing the output voltage. When the output is high enough to cause C1's output to go high, switching action ceases. Capacitor C4 is left to supply current to the load until V VuT decreases enough to force C1's output high, and the entire cycle repeats. Figure 4 details relevant waveforms. C1's cycling causes low-to-mid-frequency ripple voltage on the output. Ripple can be reduced by making the
output capacitor large. The $100 \mu \mathrm{~F}$ unit specified results in ripple of 50 mV to 100 mV on the 5 V output. A $220 \mu \mathrm{~F}$ capacitor will decrease ripple by approximately 50%.

Figure 4. Burst Mode Operation in Action

If switch current reaches 1A, causing C2 to trip, switch ontime is reduced and off-time increases slightly. This allows continuous operation during bursts. C2 monitors the voltage across 3Ω resistor R1 which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 18 mV , corresponding to 1 A switch current, C2's output goes high, truncating the ontime portion of the oscillator cycle and increasing off-time

OPERATION

to about $2 \mu \mathrm{~s}$. Response time of C 2 , which determines minimum on-time, is approximately 300 ns .

Low Battery Detector

The low battery detector is enabled when SHDN is low and disabled when SHDN is high. The comparator has no

$\mathrm{R} 1=\left(\mathrm{V}_{\text {TRIP }}-1.24 \mathrm{~V}\right)(43.5 \mathrm{k})$ HYSTERESIS $\approx 30 \mathrm{mV}$

LT1303 F05

Figure 5. R3 Adds Hysteresis to Low-Battery Detector
hysteresis built in, but hysteresis can be added by connecting a high-value resistor from LBI to LBO as shown in Figure 5. The internal reference can be accessed via the comparator as shown in Figure 6.

Figure 6. Accessing Internal Reference

APPLICATIONS INFORMATION

Inductor Section

Inductors suitable for use with the LT1303 usually fall in the $5 \mu \mathrm{H}$ to $50 \mu \mathrm{H}$ range. The inductor must: (1) handle current of 1.25 A without saturating, (2) have enough inductance to provide a di/dt lower than $400 \mathrm{~mA} / \mu \mathrm{s}$, and (3) have low enough DC resistance to avoid excessive heating or efficiency losses. Higher value inductors will deliver more power but tend to be physically larger. Most ferrite core drum or rod inductors such as those specified in Table 1 are suitable for use. It is acceptable to bias openflux inductors (e.g. Sumida CD54) into saturation by 10 to 20% without adverse effects.
Table 1. Recommended Inductors

VENDOR	SERIES	APPROPRIATE VALUES	PHONE NUMBERS
Coilcraft	D03316 D01608	$10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$ $10 \mu \mathrm{H}$	$(708) 639-6400$
Coiltronics	OCTAPAK CTX20-1	$20 \mu \mathrm{H}$ CTX20-2 CTX33-4	20 H $33 \mu \mathrm{H}$
Sumida	CD54	$10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$	(407) 241-7876
Gowanda	GA10	$10 \mu \mathrm{H}$ to $33 \mu \mathrm{H}$	(708) 956-0666

Figure 7 shows inductor current of a suitable inductor, di/dt is controlled at all times. The rapid rise in current shown in Figure 8 results from this inductor saturating at approximately 1A. Saturation occurs when the inductor cannot hold any more magnetic energy in the core. Current then increases rapidly, limited only by the resistance of the winding. Figure 9's inductor has high DC resistance which results in the exponential time constant shape of the inductor current.

Figure 7. Properly Chosen Inductor Does Not Saturate

APPLICATIONS INFORMATION

Figure 8. This Inductor Saturates at $\mathrm{I}_{\mathrm{L}} \sim 1 \mathrm{~A}$. A Poor Choice

Figure 9. Slight Exponential Shape to Inductor Current Waveform Indicates Excessive DC Resistance

Diode Selection

The LT1303's high switching speed demands a high speed rectifier. Schottky diodes are preferred for their low forward drop and fast recovery. Suitable choices include the 1N5817, MBRS120LT3, and MBR0520LT1. Do not use signal diodes such as 1N4148. They cannot carry 1A current. Also avoid "general-purpose" diodes such as 1N4001. These are far too slow and are unsuitable for any switching regulator application. For high temperature applications a silicon diode such as the MUR105 will have less leakage.

Capacitor Selection

Input and output capacitors should have low ESR for best efficiency. Recommended capacitors include AVX TPS series, Sprague 595D series, and Sanyo OS-CON. The output capacitor's ESR determines the high frequency ripple amplitude. A $100 \mu \mathrm{~F}$ capacitor is the minimum recommended for a 5 V output. Higher output voltages can use lower capacitance values. For example, a 12 V output can use a $33 \mu \mathrm{~F}$ or $47 \mu \mathrm{~F}$ capacitor. The $\mathrm{V}_{\text {IN }}$ pin of the LT1303 should be decoupled with a 47μ F or $100 \mu \mathrm{~F}$ capacitor at the pin. When driving a transformer, an additional decoupling network of 10Ω and $0.1 \mu \mathrm{~F}$ ceramic is recommended as shown in Figure 10.

Figure 10. 10 Ω-1 μ F Network to LT1303 V_{IN} Pin Provides Additional Decoupling. Recommended When Driving Transformers.

Table 2. Recommended Capacitors

VENDOR	SERIES	TYPE	PHONE NUMBERS
AVX	TPS	Surface Mount	$(803) 448-9411$
Sanyo	OS-CON	Through-Hole	$(619) 661-6835$
Panasonic	HFQ	Through-Hole	$(201) 348-5200$
Sprague	595D	Surface Mount	$(603) 224-1961$

TYPICAL APPLICATIONS

Setting Output Voltage on LT1303

5V Step-Up Converter with Reference Output

[^32]
TYPICAL APPLICATIONS

4-, 5-Cell to 5V Converter with Output Disconnect

3-Cell to 3.3V Boost/Linear Converter with Output Disconnect

TYPICAL APPLICATIONS

EL Panel Driver

*ADD C1 FOR OPEN-PANEL PROTECTION
**DALE LPE5047-A132 1:15 TURNS RATIO (605) 666-9301
${ }^{\dagger}$ R1 ADJUSTS VOUT $83 V_{\text {RMS }}$ TO 115V RMS $^{\text {LTr30s TA06 }}$

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1129	Micropower Low Dropout Regulator	700 mA Output Current in S0-8 Package
LT1182/83/84	LCD and CCFL Backlight Controller	High Efficiency and Excellent Backlight Control Range
LT1301	5 V to 12V/200mA Step-Up DC/DC Converter	$120 \mu \mathrm{~A}$ Quiescent Current
LT1302	2-Cell to 5V/600mA Step-Up DC/DC Converter	$200 \mu \mathrm{~A}$ Quiescent Current
LT1305	Micropower 2A Switch DC/DC Converter with Low-Battery Detect	2 V to 5V at 400mA
LT1372	500kHz Step-Up PWM, 1.5A Switch	Low Noise, Fixed Frequency Operation
LTC 1472	PCMCIA Host Switch with Protection	Includes Current Limit and Thermal Shutdown

feftures

- 5 V at $\mathbf{4 0 0} \mathrm{mA}$ from 2 V Input
- Supply Voltage As Low As 1.8 V
- 120uA Quiescent Current
- Low-Battery Detector
- Low V CESAT Switch: 310 mV at 2A Typ
- Uses Inexpensive Surface Mount Inductors
- 8-Lead SO Package

APPLICATIONS

- 2-Cell and 3-Cell to 5V Conversion
- EL Panel Drivers
- Portable Instruments

DESCRIPTION

The $\mathrm{LT}^{\oplus} 1305$ is a micropower step-up DC/DC converter that uses Burst Mode ${ }^{\text {TM }}$ operation. Similar to the LT1303, the LT1305 features a 2A internal low-loss switch and can deliver up to four times the output power of the LT1303.

Quiescent current is only $120 \mu \mathrm{~A}$ and the Shutdown pin further reduces current to $10 \mu \mathrm{~A}$. A low-battery detector provides an open-collector output that goes low when the input voltage drops below a preset level. The LT1305 is available in an 8 -pin SO, easing board space requirements.
$\overline{\boldsymbol{C T}}$, LTC and LT are registered trademarks of Linear Technology Corporation.
Burst Mode is a trademark of Linear Technology Corporation

TYPICAL APPLICATION

2-Cell and 3-Cell to $5 \mathrm{~V} / 400 \mathrm{~mA} \mathrm{DC/DC}$ Converter with Low-Battery Detect

absolute maximum ratings

VIN Voltage 10 V
SW1 Voltage 25 V
FB Voltage 10 V
Shutdown Voltage 10 V
LBO Voltage 10 V
LBI Voltage 10 V
Maximum Power Dissipation 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\qquad
$300^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec)

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
Lbo 2	LT1305CS8
S8 Package	S8 PART MARKING
$\mathrm{T}_{\text {JMAX }}=100^{\circ} \mathrm{C}, \theta_{J A}=80^{\circ} \mathrm{C} / \mathrm{W}$	1305

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{IN}}=2.0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{Q}	Quiescent Current	$\begin{aligned} & V_{S H D N}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\text {SHDN }}=1.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 120 \\ 7 \end{gathered}$	$\begin{gathered} 200 \\ 15 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{V_{\text {IN }}}$	Input Voltage Range		\bullet	$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	1.55		V
	Feedback Voltage		\bullet	1.22	1.24	1.26	V
	Comparator Hysteresis		\bullet		6	12.5	mV
	Feedback Pin Bias Current	$V_{F B}=1 \mathrm{~V}$	\bullet		7	20	nA
	Oscillator Frequency	Current Limit Not Asserted		120	155	185	kHz
	Oscillator TC				0.2		$\% /{ }^{\circ} \mathrm{C}$
DC	Maximum Duty Cycle		\bullet	75	86	95	\%
t_{ON}	Switch On Time	Current Limit Not Asserted			5.6		$\mu \mathrm{S}$
	Output Line Regulation	$1.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$	\bullet		0.06	0.15	\% N
$V_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		140	280	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$, Switch Off	\bullet		0.1	10	$\mu \mathrm{A}$
	Peak Switch Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.35 \\ & 1.20 \end{aligned}$	2	$\begin{aligned} & 2.35 \\ & 2.50 \end{aligned}$	A
		$V_{\text {IN }}=5 \mathrm{~V}$		1.15		2.15	A
	LBI Trip Voltage	(Note 2)	\bullet	1.21	1.24	1.27	V
	LBI Input Bias Current	$\mathrm{V}_{\mathrm{LBI}}=1 \mathrm{~V}$	\bullet		7	20	nA
	LBO Output Low	$\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$	\bullet		0.11	0.4	V
	LBO Leakage Current	$\mathrm{V}_{\mathrm{LBI}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LB} 0}=5 \mathrm{~V}$	\bullet		0.1	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SHDNH }}$	Shutdown Pin High		\bullet	1.8			V
$\mathrm{V}_{\text {SHDNL }}$	Shutdown Pin Low					0.5	V
ISHDN	Shutdown Pin Bias Current	$\begin{aligned} & V_{\text {SHDN }}=5 \mathrm{~V} \\ & V_{\text {SHDN }}=2 \mathrm{~V} \\ & V_{\text {SHDN }}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 8.0 \\ & 3.0 \\ & 0.1 \\ & \hline \end{aligned}$	20 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

The - denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.
Note 1: Hysteresis specified is DC. Output ripple may be higher if output capacitance is insufficient or capacitor ESR is excessive.

Note 2: Low-battery detector comparator is inoperative when device is in shutdown.

TYPICAL PGRFORMANCE CHARACTGRISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

GND (Pin 1): Signal Ground. Tie to PGND under the package.
LBO (Pin 2): Open-Collector Output of Comparator C3. Can sink $100 \mu \mathrm{~A}$. High impedance when device is in shutdown.
SHDN (Pin 3): Shutdown. Pull high to shut down the LT1305. Ground for normal operation.

FB (Pin 4): Feedback Input. Connects to main comparator C1 input.

LBI (Pin 5): Low-Battery Comparator Input. When voltage on this pin is below 1.24 V , LBO is low.
$\mathbf{V}_{\text {IN }}$ (Pin 6): Supply Pin. Must be bypassed with a large value capacitor to gound. Keep bypass within 0.2 " of the device.

SW (Pin 7): Switch Pin. Connect inductor and diode here. Keep layout short and direct to minimize radio frequency interference.

PGND (Pin 8): Power Ground. Tie to signal ground (pin 1) under the package. Bypass capacitor from $V_{I N}$ should be tied directly to PGND within 0.2 " of the device.

BLOCK DIAGRAM

Figure 1. LT1305 Block Diagram

OPERATION

Operation of the LT1305 is best understood by referring to the Block Diagram in Figure 1. When C1's negative input, related to the output voltage by the appropriate resistordivider ratio, is higher than the 1.24 V reference voltage, C1's output is low. C2, A3 and the oscillator are turned off, drawing no current. Only the reference and C1 consume current, typically $120 \mu \mathrm{~A}$. When C1's negative input drops below 1.24 V and overcomes C1's 6 mV hysteresis, C1's output goes high, enabling the oscillator, current comparator C 2 and driver A 3 . Quiescent current increases to 2 mA as the device goes into active switching mode. Q1 then turns on in controlled saturation for nominally 6μ s or until current comparator C2 trips, whichever comes first. The switch thenturns off for approximately $1.5 \mu \mathrm{~s}$, then turns on again. The LT1305's switching causes current to alternately build up in L1 and dump into output capacitor C 4 via D1, increasing the output voltage. When the output is high enough to cause C1's output to go high, switching action ceases. Capacitor C4 is left to supply current to the load
until $V_{\text {OUT }}$ decreases enough to force C1's output high, and the entire cycle repeats. Figure 2 details relevant waveforms. C1's cycling causes low-to-mid-frequency ripple voltage on the output. Ripple can be reduced by making the output capacitor large. The $220 \mu \mathrm{~F}$ unit specified results in ripple of 50 mV to 100 mV on the 5 V output. Paralleling two capacitors will decrease ripple by approximately 50%.

Figure 2. Burst Mode Operation

OPERATION

If switch current reaches 2 A , causing C 2 to trip, switch on time is reduced and off time increases slightly. This allows continuous operation during bursts. C2 monitors the voltage across 3Ω resistor R 1 which is directly related to the switch current. Q2's collector current is set by the emitter-area ratio to 0.6% of Q1's collector current. When R1's voltage drop exceeds 36 mV , corresponding to 2 A switch current, C2's output goes high, truncating the on time portion of the oscillator cycle and increasing off time to about $2 \mu \mathrm{~s}$. Response time of C 2 , which determines minimum on time, is approximately 300 ns .

Low-Battery Detector

The low-battery detector is enabled when SHDN is low and disabled when SHDN is high. The comparator has no hysteresis built in, but hysteresis can be added by connecting a high-value resistor from LBI to LBO as shown in Figure 3. The internal reference can be accessed via the comparator as shown in Figure 4.

$R 1=\left(V_{\text {TRIP }}-1.24 \mathrm{~V}\right)(43.5 \mathrm{k})$
HYSTERESIS $\approx 30 \mathrm{mV}$
LT1305•F03
Figure 3. R3 Adds Hysteresis to Low-Battery Detector

$V_{\text {REF }}=1.24 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R1}}\right)$
$V_{I N} \geq V_{\text {REF }}+200 \mathrm{mV}$
$R 1+R 2 \approx 33 k$

Inductor Selection

Inductors used with the LT1305 must fulfill two requirements. First, the inductor must be able to handle current of 2 A to 2.5 A without runaway saturation. Rod or drum core units usually saturate gradually and it is acceptable to exceed manufacturer's published saturation current by 20% or so. Second, the unit must have low DCR, under 0.05Ω so that copper loss is kept low and excess heating is avoided. Inductance value is not critical. Generally, for low voltage inputs below 3 V a $10 \mu \mathrm{H}$ inductor is recommended (such as Coilcraft D03316-103). For inputs above 4 V to 5 V use a $22 \mu \mathrm{H}$ unit (such as Coilcraft D03316-223). Switching frequency can reach up to 300 kHz so the core material should be able to operate at high frequency without excessive core loss. Ferrite or molypermalloy cores are a better choice than powdered iron. If EMI is a concern, a toroidal inductor is suggested, such as Coiltronics CTX20-4.

Capacitor Selection

Output and input capacitors should have low ESR for best performance. Inexpensive aluminum electrolytics sometimes have ESR above 1Ω, even for relatively large values such as $100 \mu \mathrm{~F}, 16 \mathrm{~V}$ units. Since the LT1305 has a 2 A current limit, 2 V of ripple voltage would result with such a capacitor at the output. Keep ESR below 0.05Ω to 0.1Ω for reasonable ripple voltage. Tantalum capacitors such as AVX TPS series or Sprague 593D have Iow ESR and are surface mount components. For lowest ESR, use Sanyo OS-CON units (OS-CON is also available from Vishay). These capacitors have superior ESR, small size and perform well at cold temperatures.

Diode Selection

A 2A Schottky diode such as Motorola MBRS130LT3 is a good choice for the rectifier diode. A 1 N5821 or MBRS130T3 are suitable as well. Do not use "general purpose" diodes such as 1 N 4001 . They are much too slow for use in switching regulator applications.

Figure 4. Accessing Internal Reference

TYPICAL APPLICATIONS

Setting Output Voltage

4-Cell-to-5V Converter

5V Step-Up Converter with Reference Output

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1129	Micropower Low Dropout Regulator	700mA Output Current in S0-8 Package
LT1182/83/84	LCD and CCFL Backlight Controller	High Efficiency and Excellent Backlight Control Range
LT1301	5V to 12V/200mA Step-Up DC/DC Converter	$120 \mu \mathrm{~A}$ Quiescent Current
LT1302	2-Cell to 5V/600mA Step-Up DC/DC Converter	$200 \mu \mathrm{~A}$ Quiescent Current
LT1303	Micropower DC/DC Converter with Low-Battery Detect	2V to 5V at 200mA
LT1372	500kHz Step-Up PWM, 1.5A Switch	Low Noise, Fixed Frequency Operation
LTC ${ }^{\oplus} 1472$	PCMCIA Host Switch with Protection	Includes Current Limit and Thermal Shutdown

500 kHz High Efficiency 3A Switching Regulator

feATURES

- Faster Switching with Increased Efficiency
- Uses Small Inductors: $4.7 \mu \mathrm{H}$
- All Surface Mount Components
- Low Minimum Supply Voltage: 2.7V
- Quiescent Current: 4mA Typ
- Current Limited Power Switch: 3A
- Regulates Positive or Negative Outputs
- Shutdown Supply Current: $12 \mu \mathrm{~A}$ Typ
- Easy External Synchronization

APPLICATIONS

- Boost Regulators
- Laptop Computer Supplies
- Multiple Output Flyback Supplies
- Inverting Supplies

DESCRIPTION

The LT ${ }^{\circledR} 1371$ is a monolithic high frequency current mode switching regulator. It can be operated in all standard switching configurations including boost, buck, flyback, forward, inverting and "Cuk." A 3A high efficiency switch is included on the die, along with all oscillator, control and protection circuitry.
The LT1371 typically consumes only 4 mA quiescent current and has higher efficiency than previous parts. High frequency switching allows for very small inductors to be used.
New design techniques increase flexibility and maintain ease of use. Switching is easily synchronized to an external logic level source. A logic low on the Shutdown pin reduces supply current to $12 \mu \mathrm{~A}$. Unique error amplifier circuitry can regulate positive or negative output voltage while maintaining simple frequency compensation techniques. Nonlinear error amplifier transconductance reduces output overshoot on start-up or overload recovery. Oscillator frequency shifting protects external components during overload conditions.
$\boldsymbol{\mathcal { L T }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

5V-to-12V Boost Converter

12V Output Efficiency

ABSOLUTE MAXIMUM RATINGS

Switch Voltage \qquad S/S, SHDN, SYNC Pin Voltage Feedback Pin Voltage (Transient, Feedback Pin Current. \qquad Negative Feedback Pin Voltage

Operating Junction Temperature Range Operating.. $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Short Circuit $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{I N}=5 V, V_{C}=0.6 V, V_{F B}=V_{\text {REF }}, V_{S W}, S / S, \overline{S H D N}$, SYNC and NFB pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$	-	$\begin{aligned} & 1.230 \\ & 1.225 \end{aligned}$	$\begin{aligned} & 1.245 \\ & 1.245 \end{aligned}$	$\begin{aligned} & 1.260 \\ & 1.265 \end{aligned}$	V
${ }_{\text {FB }}$	Feedback Input Current	$V_{\text {FB }}=V_{\text {REF }}$	\bullet		250	$\begin{aligned} & 550 \\ & 900 \end{aligned}$	nA
	Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.03	\%/V
$\checkmark_{\text {NFR }}$	Negative Feedback Reference Voltage	Measured at Negative Feedback Pin Feedback Pin Open, $\mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & -2.535 \\ & -2.570 \end{aligned}$	$\begin{aligned} & -2.490 \\ & -2.490 \end{aligned}$	$\begin{aligned} & -2.445 \\ & -2.410 \end{aligned}$	V V
NFB	Negative Feedback Input Current	$V_{\text {NFB }}=V_{\text {NFR }}$	\bullet	-45	-30	-15	$\mu \mathrm{A}$
	Negative Feedback Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.05	\%N
3 m	Error Amplifier Transconductance	$\Delta l_{C}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{gathered} 1100 \\ 700 \end{gathered}$	1500	$\begin{aligned} & 1900 \\ & 2300 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$

ELECTRICAL CHARACTERISTICS

$V_{I N}=5 V, V_{C}=0.6 V, V_{F B}=V_{R E F}, V_{S W}, S / S, \overline{S H D N}$, SYNC and NFB pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	Error Amplifier Source Current	$V_{\text {FB }}=V_{\text {REF }}-150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	120	200	350	$\mu \mathrm{A}$
	Error Amplifier Sink Current	$V_{\text {FB }}=V_{\text {REF }}+150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet		1400	2400	$\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	High Clamp, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$ Low Clamp, $\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		$\begin{aligned} & 1.70 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.95 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.52 \end{aligned}$	V
Av	Error Amplifier Voltage Gain			500			V/V
	V_{C} Pin Threshold	Duty Cycle $=0 \%$		0.8	1	1.25	V
f	Switching Frequency	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	$\begin{aligned} & 460 \\ & 440 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 540 \\ & 560 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
	Maximum Switch Duty Cycle		\bullet	85	95		\%
	Switch Current Limit Blanking Time				130	260	ns
BV	Output Switch Breakdown Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	35	47		V
$\mathrm{V}_{\text {SAT }}$	Output Switch ON Resistance	$\mathrm{I}_{\text {SW }}=2 \mathrm{~A}$	\bullet		0.25	0.45	Ω
IIM	Switch Current Limit	$\begin{array}{\|l\|} \hline \text { Duty Cycle }=50 \% \\ \text { Duty Cycle }=80 \% \text { (Note 1) } \\ \hline \end{array}$	\bullet	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.4 \end{aligned}$	A
$\frac{\Delta l_{\mathrm{IN}}}{\Delta l_{\mathrm{SW}}}$	Supply Current Increase During Switch ON Time				15	25	mA/A
	Control Voltage to Switch Current Transconductance				4		A/V
	Minimum Input Voltage		-		2.4	2.7	V
I_{0}	Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet		4	5.5	mA
	Shutdown Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} / \mathrm{S}} \leq 0.6 \mathrm{~V}$	\bullet		12	30	$\mu \mathrm{A}$
	Shutdown Threshold	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	0.6	1.3	2	V
	Shutdown Delay		\bullet	5	12	25	$\mu \mathrm{S}$
	S/S or SHDN Pin Input Current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{S} / \mathrm{S}}$ or $\mathrm{V}_{\overline{S H D N}} \leq 5 \mathrm{~V}$	\bullet	-10		12	$\mu \mathrm{A}$
	Synchronization Frequency Range		\bullet	600		800	kHz

The denotes specifications which apply over the full operating temperature range.

Note 1: For duty cycles (DC) between 50% and 85%, minimum guaranteed switch current is given by $\mathrm{I}_{\mathrm{LIM}}=1.33(2.75-\mathrm{DC})$.

זYPICAL PERFORMAOCE CHARACTERISTICS

Shutdown Delay and Threshold vs Temperature

LT1371•G04
S/S or $\overline{\text { SHDN }}$ Pin Input Current vs Voltage

[1371•607

Switch Current Limit vs Duty Cycle

LT1371•G02
Minimum Synchronization Voltage vs Temperature

LT1371•G05

Switching Frequency vs Feedhack Pin Voltage

Minimum Input Voltage vs Temperature

LT1371•G03
Error Amplifier Output Current vs Feedback Pin Voltage

Error Amplifier Transconductance vs Temperature

LT1371•G09

TYPICAL PERFORMANCE CHARACTERISTICS

Feedback Input Current vs Temperature

Negative Feedback Input Current vs Temperature

LT1371•G12

PIn functions

$V_{\mathbf{C}}$: The compensation pin is used for frequency compensation, current limiting and soft start. It is the output of the error amplifier and the input of the current comparator. Loop frequency compensation can be performed with an RC network connected from the V_{C} pin to ground.
FB: The feedback pin is used for positive output voltage sensing and oscillator frequency shifting. It is the inverting input to the error amplifier. The noninverting input of this amplifier is internally tied to a 1.245 V reference.
NFB: The negative feedback pin is used for negative output voltage sensing. It is connected to the inverting input of the negative feedback amplifier through a 100k source resistor.
S/S (R Package Only): Shutdown and Synchronization Pin. The S / S pin is logic level compatible. Shutdown is active low and the shutdownthreshold is typically 1.3V. For normal operation, pull the S / S pin high, tie it to V_{10} or leave it floating. To synchronize switching, drive the S / S pin between 600 kHz and 800 kHz .

SHDN: (SW Package Only): The Shutdown pin is active low and the shutdown threshold is typically 1.3 V . For normal operation, pull the SHDN pin high, tie it to $\mathrm{V}_{\mathbb{N}}$ or leave it floating.
SYNC (SW Package Only): To synchronize switching, drive the SYNC pin between 600 kHz and 800 kHz . If not used, the SYNC pin can be tied high, low or left floating.
$V_{\mathbb{I N}}$: Bypass input supply pin with a low ESR capacitor, $10 \mu \mathrm{~F}$ or more. The regulator goes into undervoltage lockout when $\mathrm{V}_{\mathbb{I N}}$ drops below 2.5V. Undervoltage lockout stops switching and pulls the V_{C} pin low.
$\mathrm{V}_{\text {sw }}$:The switch pin is the collector of the power switch and has large currents flowing through it. Keep the traces to the switching components as short as possible to minimize radiation and voltage spikes.
GND: Tie all ground pins to a good quality ground plane.

3LOCK DIAGRAm

JPERATION

he LT1371 is a current mode switcher. This means that witch duty cycle is directly controlled by switch current ather than by output voltage. Referring to the block iagram, the switch is turned ON at the start of each scillator cycle. It is turned OFF when switch current zaches a predetermined level. Control of output voltage is btained by using the output of a voltage sensing error mplifier to set current trip level. This technique has everal advantages. First, it has immediate response to iput voltage variations, unlike voltage mode switchers hich have notoriously poor line transient response. econd, it reduces the 90° phase shift at mid-frequencies I the energy storage inductor. This greatly simplifies losed-loop frequency compensation under widely varyig input voltage or output load conditions. Finally, it llows simple pulse-by-pulse current limiting to provide laximum switch protection under output overload or hort conditions. A low dropout internal regulator prodes a 2.3 V supply for all internal circuitry. This low ropout design allows input voltage to vary from 2.7 V to 5 V with virtually no change in device performance. A 00kHz oscillator is the basic clock for all internal timing. turns ON the output switch via the logic and driver rcuitry. Special adaptive anti-sat circuitry detects onset I saturation in the power switch and adjusts driver
current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turnoff of the switch.

A 1.245 V bandgap reference biases the positive input of the error amplifier. The negative input of the amplifier is brought out for positive output voltage sensing. The error amplifier has nonlinear transconductance to reduce output overshoot on start-up or overload recovery. When the feedback voltage exceeds the reference by 40 mV , error amplifier transconductance increases 10 times, which reduces output overshoot. The feedback inputalso invokes oscillator frequency shifting, which helps protect components during overload conditions. When the feedback voltage drops below 0.6 V , the oscillator frequency is reduced $5: 1$. Lower switching frequency allows full control of switch current limit by reducing minimum switch duty cycle.
Unique error amplifier circuitry allows the LT1371 to directly regulate negative output voltages. The negative feedback amplifier's 100 k source resistor is brought out for negative output voltage sensing. The NFB pin regulates at -2.49 V while the amplifier output internally drives the FB pin to 1.245 V . This architecture, which uses the same main error amplifier, prevents duplicating functions and
maintains ease of use. Consult LTC, Marketing for units that can regulate down to -1.25 V .
The error signal developed at the amplifier output is brought out externally. This pin $\left(\mathrm{V}_{\mathrm{C}}\right)$ has three different functions. It is used for frequency compensation, current limit adjustment and soft starting. During normal regulator operation this pin sits at a voltage between 1V (low
output current) and 1.9 V (high output current). The error amplifier is a current output $\left(\mathrm{g}_{\mathrm{m}}\right)$ type, so this voltage can be externally clamped for lowering current limit. Likewise, a capacitor coupled external clamp will provide sofl start. Switch duty cycle goes to zero if the V_{C} pin is pulled below the control pin threshold, placing the LT1371 in an idle mode.

APPLICATIONS InFORMATION

Positive Output Voltage Setting

The LT1371 develops a 1.245 V reference $\left(\mathrm{V}_{\text {REF }}\right)$ from the FB pin to ground. Output voltage is set by connecting the FB pin to an output resistor divider (Figure 1). The FB pin bias current represents a small error and can usually be ignored for values of R2 up to 7 k . The suggested value for $R 2$ is 6.19 k . The NFB pin is normally left open for positive output applications. Positive fixed voltage versions are available (consult LTC, Marketing).

Negative Output Voltage Setting

The LT1371 develops a -2.49 V reference $\left(\mathrm{V}_{\text {NFR }}\right)$ from the NFB pin to ground. Output voltage is set by connecting the NFB pin to an output resistor divider (Figure 2). The $-30 \mu \mathrm{~A}$ NFB pin bias current (${ }_{\mathrm{NFB}}$) can cause output voltage errors and should not be ignored. This has been accounted for in the formula in Figure 2. The suggested value for $R 2$ is 2.49 k . The FB pin is normally left open for negative output applications.

Dual Polarity Output Voltage Sensing

Certain applications benefit from sensing both positive and negative output voltages. One example is the "Dual Output Flyback Converter with Overvoltage Protection" circuit shown in the Typical Applications section. Each output voltage resistor divider is individually set as described above. When both the FB and NFB pins are used, the LT1371 acts to prevent either output from going beyond its set output voltage. For example, in this application if the positive output were more heavily loaded than the negative, the negative output would be greater and would regulate at the desired set-point voltage. The positive output would sag slightly below its set-point voltage.

Figure 1. Positive Output Resistor Divider

Figure 2. Negative Output Resistor Divider
This technique prevents either output from going unregulated high at no load.

Shutdown and Synchronization

The 7-pin R package device has a dual function S / S pin which is used for both shutdown and synchronization. The SW package device has both a Shutdown ($\overline{\mathrm{SHDN}}$) pin and a Synchronization (SYNC) pin which can be used separately or tied together. These pins are logic level compatible and can be pulled high, tied to V_{IN} or left floating for normal operation. A logic low on the S/S pin or SHDN pin activates shutdown, reducing the part's supply current to $12 \mu \mathrm{~A}$. Typical synchronization range is from 1.05 to 1.8 times the part's natural switching frequency, but is only guaranteed between 600 kHz and 800 kHz . A $12 \mu \mathrm{~s}$ resetable shutdown delay network guarantees the part will not go into shutdown while receiving a synchronization signal when the functions are combined.

IPPLICATIONS INFORMATION

aution should be used when synchronizing above 700 kHz ecause at higher sync frequencies the amplitude of the iternal slope compensation used to prevent subharmonic witching is reduced. This type of subharmonic switching nly occurs when the duty cycle of the switch is above 50%. igher inductor values will tend to eliminate problems.

hermal Considerations

are should be taken to ensure that the worst-case input oltage and load current conditions do not cause excesive die temperatures. Typical thermal resistance is $0^{\circ} \mathrm{C} / \mathrm{W}$ for the R package and $50^{\circ} \mathrm{C} / \mathrm{W}$ for the SW package ut these numbers will vary depending on the mounting echniques (copper area, air flow, etc.). Heat is transferred om the R package via the tab and from the SW package ia pins 4 to 7 and 14 to 17.
verage supply current (including driver current) is:
$I_{I N}=4 \mathrm{~mA}+D C\left[I_{S W} / 60+I_{S W}(0.004)\right]$
$I_{\text {SW }}=$ switch current
DC = switch duty cycle
witch power dissipation is given by:
$\mathrm{P}_{\mathrm{SW}}=\left(\mathrm{I}_{\mathrm{SW}}\right)^{2}\left(\mathrm{R}_{\mathrm{SW}}\right)(\mathrm{DC})$
$\mathrm{R}_{\text {SW }}=$ output switch ON resistance
otal power dissipation of the die is the sum of supply urrent times supply voltage, plus switch power:

$$
P_{D(\text { TOtAL })}=\left(I_{I N}\right)\left(V_{\text {IN }}\right)+P_{S W}
$$

urface mount heat sinks are also becoming available hich can lower package thermal resistance by 2 or 3 mes. One manufacturer is Wakefield Engineering who Ifers surface mount heat sinks for both the R package)D) and SW package (SW20) and can be reached at (617) 45-5900.

hoosing the Inductor

ur most applications the inductor will fall in the range of $2 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$. Lower values are chosen to reduce physi${ }^{1}$ l size of the inductor. Higher values allow more output arrent because they reduce peak current seen by the ower switch, which has a 3A limit. Higher values also iduce input ripple voltage and reduce core loss.

When choosing an inductor you might have to consider maximum load current, core and copper losses, allowable component height, output voltage ripple, EMI, fault current in the inductor, saturation and, of course, cost. The following procedure is suggested as a way of handling these somewhat complicated and conflicting requirements.

1. Assume that the average inductor current for a boost converter is equal to load current times $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$ and decide whether or not the inductor must withstand continuous overload conditions. If average inductor current at maximum load current is $1 A$, for instance, a $1 A$ inductor may not survive a continuous $3 A$ overload condition. Also be aware that boost converters are not short circuit protected and that, under output short conditions, inductor current is limited only by the available current of the input supply.
2. Calculate peak inductor current at full load current to ensure that the inductor will not saturate. Peak current can be significantly higher than output current, especially with smaller inductors and lighter loads, so don't omit this step. Powdered iron cores are forgiving because they saturate softly, whereas ferrite cores saturate abruptly and other core materials fall in between. The following formula assumes continuous mode operation but it errs only slightly on the high side for discontinuous mode, so it can be used for all conditions.
$I_{\text {PEAK }}=\left(I_{\text {OUT }}\right)\left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)+\frac{V_{\text {IN }}\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{2(f)(\mathrm{L})\left(V_{\text {OUT }}\right)}$
$\mathrm{V}_{\mathrm{IN}}=$ Minimum Input Voltage
$\mathrm{f}=500 \mathrm{kHz}$ Switching Frequency
3. Decide if the design can tolerate an "open" core geometry, like a rod or barrel, which has high magnetic field radiation, or whether it needs a closed core, like a toroid, to prevent EMI problems. One would not want an open core next to a magnetic storage media, for instance! This is a tough decision because the rods or barrels are temptingly cheap and small and there are no helpful guidelines to calculate when the magnetic field radiation will be a problem.

APPLICATIONS InFORMATION

4. Start shopping for an inductor which meets the requirements of core shape, peak current (to avoid saturation), average current (to limit heating) and fault current. If the inductor gets too hot, wire insulation will melt and cause turn-to-turn shorts. Keep in mind that all good things like high efficiency, low profile and high temperature operation will increase cost, sometimes dramatically.
5. After making an initial choice, consider the secondary things like output voltage ripple, second sourcing, etc. Use the experts in the LTC, Applications Department if you feel uncertain about the final choice. They have experience with a wide range of inductor types and can tell you about the latest developments in low profile, surface mounting, etc.

Output Capacitor

The output capacitor is normally chosen by its effective series resistance (ESR), because this is what determines output ripple voltage. At 500 kHz any polarized capacitor is essentially resistive. To get low ESR takes volume, so physically smaller capacitors have high ESR. The ESR range needed for typical LT1371 applications is 0.025Ω to 0.2Ω. A typical output capacitor is an AVX type TPS, $22 \mu \mathrm{~F}$ at 25 V (2 each), with a guaranteed ESR less than 0.2Ω. This is a " D " size surface mount solid tantalum capacitor. TPS capacitors are specially constructed and tested forlow ESR, so they give the lowest ESR for a given volume. To further reduce ESR, multiple output capacitors can be used in parallel. The value in microfarads is not particularly critical, and values from $22 \mu \mathrm{~F}$ to greater than $500 \mu \mathrm{~F}$ work well, but you cannot cheat mother nature on ESR. If you find a tiny $22 \mu \mathrm{~F}$ solid tantalum capacitor, it will have high ESR and output ripple voltage will be terrible. Table 1 shows some typical solid tantalum surface mount capacitors.
Table 1. Surface Mount Solid Tantalum Capacitor ESR and Ripple Current

E CASE SIZE	ESR (MAX Ω)	RIPPLE CURRENT (A)
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.7 to 0.9	0.4
D CASE SIZE		
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.9 to 2.0	0.36 to 0.24

C CASE SIZE	ESR (MAX Ω)	RIPPLE CURRENT (A)
AVX TPS	0.2 (Typ)	0.5 (Typ)
AVX TAJ	1.8 to 3.0	0.22 to 0.17
B CASE SIZE		
AVX TAJ	2.5 to 10	0.16 to 0.08

Many engineers have heard that solid tantalum capacitors are prone to failure if they undergo high surge currents This is historically true and AVX type TPS capacitors are specially tested for surge capability, but surge ruggednes؟ is not a critical issue with the output capacitor. Solic tantalum capacitors fail during very high turn-on surges which do not occur at the output of regulators. Higt discharge surges, such as when the regulator output is dead-shorted, do not harm the capacitors.

Single inductor boost regulators have large RMS ripple current in the output capacitor, which must be rated tc handle the current. The formula to calculate this is:

Output Capacitor Ripple Current (RMS)

$$
\begin{aligned}
I_{\text {RIPPLE }}(R M S) & =I_{\text {OUT }} \sqrt{\frac{D C}{1-D C}} \\
& =I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}-V_{\text {IN }}}{V_{\text {IN }}}}
\end{aligned}
$$

DC = Switch Duty Cycle

Input Capacitors

The input capacitor of a boost converter is less critical due to the fact that the input current waveform is triangular anc does not contain large squarewave currents as is found ir the output capacitor. Capacitors in the range of $10 \mu \mathrm{Ftc}$ $100 \mu F$, with an ESR of 0.2Ω or less, work well up to full $3 f$ switch current. Higher ESR capacitors may be acceptable at low switch currents. Input capacitor ripple current for : boost converter is :

$$
I_{\text {RIPPLE }}=\frac{0.3\left(V_{\text {IN }}\right)\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{(f)(L)\left(V_{\text {OUT }}\right)}
$$

$f=500 \mathrm{kHz}$ Switching Frequency

The input capacitor can see a very high surge current wher a battery or high capacitance source is connected "live" and solid tantalum capacitors can fail under this condition

IPPLICATIONS InFORMATION

ieveral manufacturers have developed tantalum capaciors specially tested for surge capability (AVX TPS series, or instance) but even these units may fail if the input oltage approaches the maximum voltage rating of the apacitor during a high surge. AVX recommends derating apacitor voltage by $2: 1$ for high surge applications. ieramic, OS-CON and aluminum electrolytic capacitors nay also be used and have a high tolerance to turn-on urges.

'eramic Capacitors

ligher value, lower cost ceramic capacitors are now ecoming available in smaller case sizes. These are temptig for switching regulator use because of their very low SR. Unfortunately, the ESR is so low that it can cause jop stability problems. Solid tantalum capacitor ESR enerates a loop "zero" at 5 kHz to 50 kHz that is instruרental in giving acceptable loop phase margin. Ceramic apacitors remain capacitive to beyond 300 kHz and usuIly resonate with their ESL before ESR becomes effective. hey are appropriate for input bypassing because of their igh ripple current ratings and tolerance of turn-on surges.

lutput Diode

he suggested output diode (D1) is a 1N5821 Schottky or s Motorola equivalent MBR330. It is rated at 3A average urward current and 30V reverse voltage. Typical forward oltage is 0.6 V at 3 A . The diode conducts current only uring switch OFF time. Peak reverse voltage for boost onverters is equal to regulator output voltage. Average urward current in normal operation is equal to output urrent.

requency Compensation

oop frequency compensation is performed on the output f the error amplifier (V_{C} pin) with a series RC network. he main pole is formed by the series capacitor and the utput impedance ($\approx 500 \mathrm{k} \Omega$) of the error amplifier. The ole falls in the range of 2 Hz to 20 Hz . The series resistor reates a "zero" at 1 kHz to 5 kHz , which improves loop tability and transient response. A second capacitor, pically one-tenth the size of the main compensation apacitor, is sometimes used to reduce the switching equency ripple on the V_{C} pin. V_{C} pin ripple is caused by
output voltage ripple attenuated by the output divider and multiplied by the error amplifier. Without the second capacitor, V_{C} pin ripple is:

$$
\begin{aligned}
& V_{C} \text { Pin Ripple }=\frac{1.245\left(V_{\text {RIPPLE }}\right)\left(\mathrm{g}_{\mathrm{m}}\right)\left(\mathrm{R}_{\mathrm{C}}\right)}{\left(\mathrm{V}_{\text {OUT }}\right)} \\
& \mathrm{V}_{\text {RIPPLE }}=\text { Output ripple }\left(\mathrm{V}_{P-p}\right) \\
& \mathrm{g}_{\mathrm{m}}=\text { Error amplifier transconductance } \\
& (\approx 15000 \mu \mathrm{mo}) \\
& \mathrm{R}_{\mathrm{C}}=\text { Series resistor on } \mathrm{V}_{\mathrm{C}} \text { pin } \\
& \mathrm{V}_{\text {OUT }}=\mathrm{DC} \text { output voltage }
\end{aligned}
$$

To prevent irregular switching, V_{C} pin ripple should be kept below $50 \mathrm{~m} V_{\text {P-p. }}$. Worst-case V_{C} pin ripple occurs at maximum output load current and will also be increased if poor quality (high ESR) output capacitors are used. The addition of a $0.0047 \mu \mathrm{~F}$ capacitor on the V_{C} pin reduces switching frequency ripple to only a few millivolts. A low value for R_{C} will also reduce V_{C} pin ripple, but loop phase

Switch Node Considerations

For maximum efficiency, LT1371 switch rise and fall times are made as short as possible. To prevent radiation and high frequency resonance problems, proper layout of the components connected to the switch node is essential. B field (magnetic) radiation is minimized by keeping output diode, Switch pin and output bypass capacitor leads as short as possible. Figures 3 and 4 show recommended

Figure 3. Layout Considerations-R Package

CONNECT ALL GROUND PINS TO GROUND PLANE
LT1371•F04
Figure 4. Layout Considerations-SW Package

positions for these components. E field radiation is kep low by minimizing the length and area of all traces connected to the Switch pin. A ground plane should always be used under the switcher circuitry to prevent interplane coupling.

The high speed switching current path is shown schematically in Figure 5. Minimum lead length in this path is essential to ensure clean switching and low EMI. The patr including the switch, output diode and output capacitor is the only one containing nanosecond rise and fall times Keep this path as short as possible.

More Help

For more detailed information on switching regulatol circuits, please see Application Note 19. Linear Technology also offers a computer software program SwitcherCAD, to assist in designing switching converters In addition, our Applications Department is always read) to lend a helping hand.

TYPICAL APPLICATIONS

Positive-to-Negative Converter with Direct Feedback

Dual Output Flyback Converter with Overvoltage Protection

ГYPICAL APPLICATIONS

3ELATED PARTS

'ART NUMBER	DESCRIPTION	COMMENTS
T1171	100 kHz 2.5 A Boost Switching Regulator	Good for Up to $\mathrm{V}_{\text {IN }}=40 \mathrm{~V}$
TC ${ }^{\text {126 }}$	12V 1.2A Monolithic Buck Converter	Converts 5V to 3.3V at 1 A with 90% Efficiency
T1302	Micropower 2A Boost Converter	Converts 2 V to 5 V at 600 mA in S0-8 Packages
T1372	500 kHz 1.5 A Boost Switching Regulator	Also Regulates Negative Flyback Outputs
T1373	Low Supply Current 250kHz 1.5A Boost Switching Regulator	90\% Efficient Boost Converter with Constant Frequency
T1376	500 kHz 1.5 A Buck Switching Regulator	Steps Down from Up to 25V Using 4.7 $\mu \mathrm{H}$ Inductors
T1512	500 kHz 1.5 A SEPIC Battery Charger	Input Voltage May Be Greater or Less Than Battery Voltage
T1513	500 kHz 3A SEPIC Battery Charger	Input Voltage May Be Greater or Less Than Battery Voltage

500 kHz and 1 MHz High Efficiency 1.5A Switching Regulators

feATURES

- Faster Switching with Increased Efficiency
- Uses Small Inductors: $4.7 \mu \mathrm{H}$
- All Surface Mount Components
- Only 0.5 Square Inch of Board Space
- Low Minimum Supply Voltage: 2.7V
- Quiescent Current: 4mA Typ
- Current Limited Power Switch: 1.5A
- Regulates Positive or Negative Outputs
- Shutdown Supply Current: $12 \mu \mathrm{~A}$ Typ
- Easy External Synchronization
- 8-Pin SO or PDIP Packages

APPLICATIONS

- Boost Regulators
- CCFL Backlight Driver
- Laptop Computer Supplies
- Multiple Output Flyback Supplies
- Inverting Supplies

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1372 / \mathrm{LT} 1377$ are monolithic high frequency switching regulators. They can be operated in all standard switching configurations including boost, buck, flyback, forward, inverting and "Cuk." A1.5A high efficiency switch is included on the die, along with all oscillator, control and protection circuitry. All functions of the LT1372/LT1377 are integrated into 8-pin SO/PDIP packages.

The LT1372/LT1377 typically consumes only 4mA quiescent current and has higher efficiency than previous parts. High frequency switching allows for very small inductors to be used. All surface mount components consume less than 0.5 square inch of board space.
New design techniques increase flexibility and maintain ease of use. Switching is easily synchronized to an external logic level source. A logic low on the shutdown pin reduces supply current to $12 \mu \mathrm{~A}$. Unique error amplifier circuitry can regulate positive or negative output voltage while maintaining simple frequency compensation techniques. Nonlinear error amplifier transconductance reduces output overshoot on start-up or overload recovery. Oscillator frequency shifting protects external components during overload conditions.
$\overline{\mathbf{L T}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

5V-to-12V Boost Converter

12V Output Efficiency

LT1372•TA01

*COILCRAFT D01608-472 (4.7 $\mu \mathrm{H}$) OR COILCRAFT DT3316-103 ($10 \mathrm{\mu H}$) OR SUMIDA CD43-4R7 (4.7 $\mu \mathrm{H}$) OR SUMIDA CD73-100KC ($10 \mu \mathrm{H}$) OR **AVX TPSD226M025R0200 | ${ }^{\text {tMAX }}$ | IOUT |
| :---: | :---: |
| L1 | IOUT |
| $4.7 \mu \mathrm{H}$ | 0.25 A |

$10 \mu \mathrm{H} \quad 0.35 \mathrm{~A}$

IBSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION
iupply Voltage ... 30V
iwitch Voltage ... 35V
i/S Pin Voltage ... 30V
eedback Pin Voltage (Transient, 10ms) $\pm 10 \mathrm{~V}$
eedback Pin Current.. 10mA
legative Feedback Pin Voltage
(Transient, 10ms) $\pm 10 \mathrm{~V}$
Jperating Junction Temperature Range Operating \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{*}$
Short Circuit $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ torage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ead Temperature (Soldering, 10 sec) \qquad

TOP VIEW	ORDER PART NUMBER
$v_{0} 1$ - $\mathrm{v}_{\text {sw }}$	LT1372CN8
FB 2×7 GND	(1372CS8
	LT1372CS8
$s / 54$	LT1377CS8
$\underset{\substack{\text { N8 PACKAGE } \\ 8 \text {-LEAD PDIP }}}{\text { S8 PACKAGE }}$	
	S8 PART MARKING
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=120^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{SB}) \end{aligned}$	1372
	1377

Consult factory for Industrial and Military grade parts.

Units shipped prior to Date Code 9552 are rated at $100^{\circ} \mathrm{C}$ maximum jerating temperature.

: LECTRICAL CHARACTERISTICS

IN $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{SW}}, \mathrm{S} / \mathrm{S}$ and NFB pins open, unless otherwise noted.

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
REF	Reference Voltage	Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.230 \\ & 1.225 \end{aligned}$	$\begin{aligned} & 1.245 \\ & 1.245 \end{aligned}$	$\begin{aligned} & 1.260 \\ & 1.265 \end{aligned}$	V
B	Feedback Input Current	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}$	\bullet		250	$\begin{aligned} & 550 \\ & 900 \end{aligned}$	nA
	Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.03	\%/V
VFR	Negative Feedback Reference Voltage	Measured at Negative Feedback Pin Feedback Pin Open, $\mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & -2.535 \\ & -2.570 \end{aligned}$	$\begin{aligned} & -2.490 \\ & -2.490 \end{aligned}$	$\begin{aligned} & -2.445 \\ & -2.410 \end{aligned}$	V
FB	Negative Feedback Input Current	$\mathrm{V}_{\text {NFB }}=\mathrm{V}_{\text {NFR }}$	\bullet	-45	-30	-15	$\mu \mathrm{A}$
	Negative Feedback Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.05	\%N
n	Error Amplifier Transconductance	$\Delta \mathrm{I}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{gathered} 1100 \\ 700 \\ \hline \end{gathered}$	1500	$\begin{aligned} & 1900 \\ & 2300 \\ & \hline \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
	Error Amplifier Source Current	$V_{\text {FB }}=V_{\text {REF }}-150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	120	200	350	$\mu \mathrm{A}$
	Error Amplifier Sink Current	$V_{\text {FB }}=\mathrm{V}_{\text {REF }}+150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet		1400	2400	$\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	High Clamp, $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$ Low Clamp, $\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		$\begin{aligned} & 1.70 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.95 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.52 \\ & \hline \end{aligned}$	V
1	Error Amplifier Voltage Gain				500		V/V
	V_{C} Pin Threshold	Duty Cycle $=0 \%$		0.8	1	1.25	V
	Switching Frequency	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V} \\ & \mathrm{LT} 1372 \end{aligned}$ LT1377	\bullet	$\begin{aligned} & 460 \\ & 440 \\ & 0.92 \\ & 0.88 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 500 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 540 \\ & 560 \\ & 1.08 \\ & 1.12 \\ & \hline \end{aligned}$	kHz kHz MHz MHz
	Maximum Switch Duty Cycle		\bullet	90	95		\%
	Switch Current Limit Blanking Time				130	260	ns
1	Output Switch Breakdown Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	35	47		V
;AT	Output Switch "On" Resistance	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		0.5	0.8	Ω

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\mathrm{SW}}, \mathrm{S} / \mathrm{S}$ and NFB pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ILIM	Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=80 \% \text { (Note 1) } \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	A A
$\frac{\Delta l_{\mathbb{N}}}{\Delta I_{\mathrm{SW}}}$	Supply Current Increase During Switch On-Time				15	25	mA / A
	Control Voltage to Switch Current Transconductance				2		A/V
	Minimum Input Voltage		\bullet		2.4	2.7	v
$\underline{1}$	Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet		4	5.5	mA
	Shutdown Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\text {S/S }} \leq 0.6 \mathrm{~V}$	\bullet		12	30	$\mu \mathrm{A}$
	Shutdown Threshold	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	0.6	1.3	2	v
	Shutdown Delay		-	5	12	25	μs
	S/S Pin Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {S/S }} \leq 5 \mathrm{~V}$	\bullet	-10		12	$\mu \mathrm{A}$
	Synchronization Frequency Range	LT1372 LT1377	\bullet	$\begin{aligned} & 600 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 800 \\ & 1.6 \end{aligned}$	$\begin{gathered} \mathrm{kH}_{2} \\ \mathrm{MH}_{2} \end{gathered}$

The denotes specifications which apply over the full operating temperature range.
Note 1: For duty cycles (DC) between 50% and 90%, minimum guaranteed switch current is given by $\mathrm{I}_{\text {LIM }}=0.667(2.75-D C)$.

TYPICAL PERFORMAOCE CHARACTERISTICS

IPICAL PGRFORMANCE CHARACTERISTICS

LT1372•604

S/S Pin Input Current vs Voltage

V_{c} Pin Threshold and High
Clamp Voltage vs Temperature

Minimum Synchronization
Voltage vs Temperature

LT1372•605

Switching Frequency

vs Feedback Pin Voltage

Feedback Input Current vs Temperature

Error Amplifier Output Current vs Feedback Pin Voltage

LT1372•606

LT1372•G09
Negative Feedback Input Current vs Temperature

PIn functions

V_{C} (Pin 1): The compensation pin is used for frequency compensation, current limiting and soft start. It is the output of the error amplifier and the input of the current comparator. Loop frequency compensation can be performed with an RC network connected from the V_{C} pin to ground.
FB (Pin 2): The feedback pin is used for positive output voltage sensing and oscillator frequency shifting. It is the inverting input to the error amplifier. The noninverting input of this amplifier is internally tied to a 1.245 V reference.

NFB (Pin 3): The negative feedback pin is used for negative output voltage sensing. It is connected to the inverting input of the negative feedback amplifier through a 100 k source resistor.

S/S (Pin 4): Shutdown and Synchronization Pin. The S/S pin is logic level compatible. Shutdown is active low and the shutdown threshold is typically 1.3 V . For normal operation, pull the S / S pin high, tie it to $V_{I N}$ or leave it floating. To synchronize switching, drive the S/S pin between 600 kHz and 800 kHz (LT1372) or 1.2 MHz to 1.6 MHz (LT1377).
$\mathrm{V}_{\text {IN }}$ (Pin5): Bypass inputsupply pin with 10μ F or more. Tr part goes into undervoltage lockout when $\mathrm{V}_{\text {IN }}$ drops belo 2.5V. Undervoltage lockout stops switching and pulls th V_{C} pin low.

GND S (Pin 6): The ground sense pin is a "clean" grouni The internal reference, error amplifier and negative feer back amplifier are referred to the ground sense pin. Cor nect it to ground. Keep the ground path connection to th output resistor divider and the V_{C} compensation netwo free of large ground currents.

GND (Pin 7): The ground pin is the emitter connection 1 the power switch and has large currents flowing throughi It should be connected directly to a good quality groun plane.
$\mathrm{V}_{\text {SW }}$ (Pin 8): The switch pin is the collector of the powt switch and has large currents flowing through it. Keep th traces to the switching components as shortas possible t minimize radiation and voltage spikes.

BLOCK DIAGRAM

jperation

he LT1372/LT1377 are current mode switchers. This leans that switch duty cycle is directly controlled by witch current rather than by output voltage. Referring to le block diagram, the switch is turned "On" at the start of ach oscillator cycle. It is turned "Off" when switch current zaches a predetermined level. Control of output voltage is btained by using the output of a voltage sensing error mplifier to set current trip level. This technique has everal advantages. First, it has immediate response to iput voltage variations, unlike voltage mode switchers thich have notoriously poor line transient response. econd, it reduces the 90° phase shift at mid-frequencies 1 the energy storage inductor. This greatly simplifies losed-loop frequency compensation under widely varyig input voltage or output load conditions. Finally, it llows simple pulse-by-pulse current limiting to provide laximum switch protection under output overload or hort conditions. A low dropout internal regulator proides a 2.3 V supply for all internal circuitry. This low ropout design allows input voltage to vary from 2.7 V to 5 V with virtually no change in device performance. A 00 kHz (LT1372) or 1 MHz (LT1377) oscillator is the basic lock for all internal timing. It turns "On" the output switch ia the logic and driver circuitry. Special adaptive anti-sat ircuitry detects onset of saturation in the power switch nd adjusts driver current instantaneously to limit switch aturation. This minimizes driver dissipation and provides sry rapid turn-off of the switch.
1.245 V bandgap reference biases the positive input of ie error amplifier. The negative input of the amplifier is rought out for positive output voltage sensing. The error mplifier has nonlinear transconductance to reduce out-
put overshoot on start-up or overload recovery. When the feedback voltage exceeds the reference by 40 mV , error amplifier transconductance increases ten times, which reduces output overshoot. The feedback inputalso invokes oscillator frequency shifting, which helps protect components during overload conditions. When the feedback voltage drops below 0.6 V , the oscillator frequency is reduced $5: 1$. Lower switching frequency allows full control of switch current limit by reducing minimum switch duty cycle.
Unique error amplifier circuitry allows the LT1372/LT1377 to directly regulate negative output voltages. The negative feedback amplifier's 100 k source resistor is brought out for negative output voltage sensing. The NFB pin regulates at -2.49 V while the amplifier output internally drives the FB pin to 1.245 V . This architecture, which uses the same main error amplifier, prevents duplicating functions and maintains ease of use. Consult Linear Technology marketing for units that can regulate down to -1.25 V .

The error signal developed at the amplifier output is brought out externally. This pin $\left(\mathrm{V}_{C}\right)$ has three different functions. It is used for frequency compensation, current limit adjustment and soft starting. During normal regulator operation this pin sits at a voltage between 1V (low output current) and 1.9 V (high output current). The error amplifier is a current output (g_{m}) type, so this voltage can be externally clamped for lowering current limit. Likewise, a capacitor coupled external clamp will provide soft start. Switch duty cycle goes to zero if the V_{C} pin is pulled below the control pin threshold, placing the LT1372/ LT1377 in an idle mode.

IPPLICATIONS Information

ositive Output Voltage Setting

he LT1372/LT1377 develops a 1.245V reference (VREF) om the FB pin to ground. Output voltage is set by onnecting the FB pin to an output resistor divider تigure 1). The FB pin bias current represents a small ror and can usually be ignored for values of $R 2$ up to 7 k . he suggested value for R2 is 6.19 k . The NFB pin is ormally left open for positive output applications.

Figure 1. Positive Output Resistor Divider

APPLICATIONS InFORMATION

Positive fixed voltage versions are available (consult Linear Technology marketing).

Negative Output Voltage Setting

The LT1372/LT1377 develops a -2.49 V reference ($\mathrm{V}_{\text {NFR }}$) from the NFB pin to ground. Output voltage is set by connecting the NFB pin to an output resistor divider (Figure 2). The $-30 \mu \mathrm{~A}$ NFB pin bias current (1_{NFB}) can cause output voltage errors and should not be ignored. This has been accounted for in the formula in Figure 2. The suggested value for R 2 is 2.49 k . The FB pin is normally left open for negative output application.

Figure 2. Negative Output Resistor Divider

Dual Polarity Output Voltage Sensing

Certain applications benefit from sensing both positive and negative output voltages. One example is the "Dual Output Flyback Converter with Overvoltage Protection" circuit shown in the Typical Applications section. Each output voltage resistor divider is individually set as described above. When both the FB and NFB pins are used, the LT1372/LT1377 acts to prevent either output from going beyond its set output voltage. For example in this application, if the positive output were more heavily loaded than the negative, the negative output would be greater and would regulate at the desired set-point voltage. The positive output would sag slightly below its set-point voltage. This technique prevents either output from going unregulated high at no load.

Shutdown and Synchronization

The dual function S / S pin provides easy shutdown and synchronization. It is logic level compatible and can be pulled high, tied to $\mathrm{V}_{\text {IN }}$ or left floating for normal operation. A logic low on the S / S pin activates shutdown, reducing the part's supply current to $12 \mu \mathrm{~A}$. Typical synchronization
range is from 1.05 to 1.8 times the part's natural switchins frequency, but is only guaranteed between 600 kHz anc 800 kHz (LT1372) or 1.2 MHz and 1.6 MHz (LT1377). $/$ $12 \mu \mathrm{~s}$ resetable shutdown delay network guarantees thi part will not go into shutdown while receiving a synchro nization signal.
Caution should be used when synchronizing above 700 kH : (LT1372) or 1.4 MHz (LT1377) because at higher sync frequencies the amplitude of the internal slope compensa tion used to prevent subharmonic switching is reduced This type of subharmonic switching only occurs when thi duty cycle of the switch is above 50%. Higher inducto values will tend to eliminate problems.

Thermal Considerations

Care should be taken to ensure that the worst-case inpu voltage and load current conditions do not cause exces sive die temperatures. The packages are rated at $120^{\circ} \mathrm{C} / \mathrm{M}$ for SO (S8) and $130^{\circ} \mathrm{C} / \mathrm{W}$ for PDIP (N8).
Average supply current (including driver current) is:

$$
\begin{aligned}
& I_{\mathbb{N}}=4 \mathrm{~mA}+\mathrm{DC}\left(I_{\mathrm{IWW}} / 60+I_{\mathrm{SW}} \times 0.004\right) \\
& I_{\mathrm{SW}}=\text { switch current } \\
& D C=\text { switch duty cycle }
\end{aligned}
$$

Switch power dissipation is given by:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{SW}}=\left(\mathrm{I}_{\mathrm{SW}}\right)^{2} \times \mathrm{R}_{\mathrm{SW}} \times \mathrm{DC} \\
& \mathrm{R}_{\mathrm{SW}}=\text { output switch "On" resistance }
\end{aligned}
$$

Total power dissipation of the die is the sum of suppl! current times supply voltage plus switch power:

$$
P_{\text {D(TOTAL })}=\left(I_{\mathbb{N}} \times V_{I N}\right)+P_{S W}
$$

Choosing the Inductor

For most applications the inductor will fall in the range 0 $2.2 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$. Lower values are chosen to reduce physi cal size of the inductor. Higher values allow more outpu current because they reduce peak current seen by thi power switch, which has a 1.5 A limit. Higher values als reduce input ripple voltage and reduce core loss.
When choosing an inductor you might have to conside maximum load current, core and copper losses, allowablı component height, output voltage ripple, EMI, faul

PPLICATIONS INFORMATION

irrent in the inductor, saturation, and of course, cost. ie following procedure is suggested as a way of handling ese somewhat complicated and conflicting requirements.

Assume that the average inductor current for a boost converter is equal to load current times $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$ and decide whether or not the inductor must withstand continuous overload conditions. If average inductor current at maximum load current is 0.5 A , for instance, a 0.5 A inductor may not survive a continuous 1.5 A overload condition. Also be aware that boost converters are not short circuit protected, and that under output short conditions, inductor current is limited only by the available current of the input supply.

Calculate peak inductor current at full load current to ensure that the inductor will not saturate. Peak current can be significantly higher than output current, especially with smaller inductors and lighter loads, so don't omit this step. Powdered iron cores are forgiving because they saturate softly, whereas ferrite cores saturate abruptly. Other core materials fall in between somewhere. The following formula assumes continuous mode operation but it errors only slightly on the high side for discontinuous mode, so it can be used for all conditions.
$I_{\text {PEAK }}=I_{\text {OUT }} \times \frac{V_{\text {OUT }}}{V_{\text {IN }}}+\frac{V_{\text {IN }}\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{2(f)(L)\left(V_{\text {OUT }}\right)}$
$\mathrm{V}_{\text {IN }}=$ Minimum Input Voltage
$\mathrm{f}=500 \mathrm{kHz}$ Switching Frequency (LT1372) or
1MHz Switching Frequency (LT1377)
Decide if the design can tolerate an "open" core geometry like a rod or barrel, which have high magnetic field radiation, or whether it needs a closed core like a toroid to prevent EMI problems. One would not want an open core next to a magnetic storage media for instance! This is a tough decision because the rods or barrels are temptingly cheap and small, and there are no helpful guidelines to calculate when the magnetic field radiation will be a problem.
4. Start shopping for an inductor which meets the requirements of core shape, peak current (to avoid saturation), average current (to limit heating) and fault current. If the inductor gets too hot, wire insulation will melt and cause turn-to-turn shorts. Keep in mind that all good things like high efficiency, low profile and high temperature operation will increase cost, sometimes dramatically.
5. After making an initial choice, consider the secondary things like output voltage ripple, second sourcing, etc. Use the experts in the Linear Technology application department if you feel uncertain about the final choice. They have experience with a wide range of inductor types and can tell you about the latest developments in low profile, surface mounting, etc.

Output Capacitor

The output capacitor is normally chosen by its effective series resistance, (ESR), because this is what determines output ripple voltage. At 500 kHz , any polarized capacitor is essentially resistive. To get low ESR takes volume, so physically smaller capacitors have high ESR. The ESR range for typical LT1372 and LT1377 applications is 0.05Ω to 0.5Ω. A typical output capacitor is an AVX type TPS, $22 \mu \mathrm{~F}$ at 25 V , with a guaranteed ESR less than 0.2Ω. This is a "D" size surface mount solid tantalum capacitor. TPS capacitors are specially constructed and tested for low ESR, so they give the lowest ESR for a given volume. To further reduce ESR, multiple output capacitors can be used in parallel. The value in microfarads is not particularly critical, and values from $22 \mu \mathrm{~F}$ to greater than $500 \mu \mathrm{~F}$ work well, but you cannot cheat mother nature on ESR. If you find a tiny 22μ F solid tantalum capacitor, it will have high ESR, and output ripple voltage will be terrible. Table 1 shows some typical solid tantalum surface mount capacitors.

APPLICATIONS InFORMATION
Table 1. Surface Mount Solid Tantalum Capacitor ESR and Ripple Current

E CASE SIZE	ESR (MAX Ω)	RIPPLE CURRENT (A)
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.7 to 0.9	0.4
D CASE SIZE		
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.9 to 2.0	0.36 to 0.24
C CASE SIZE		
AVX TPS		
AVX TAJ	0.2 (Typ)	0.5 (Typ)
B CASE SIZE	1.8 to 3.0	0.22 to 0.17
AVX TAJ		

Many engineers have heard that solid tantalum capacitors are prone to failure if they undergo high surge currents. This is historically true and type TPS capacitors are specially tested for surge capability, but surge ruggedness is not a critical issue with the output capacitor. Solid tantalum capacitors fail during very high turn-on surges, which do not occur at the output of regulators. High discharge surges, such as when the regulator output is dead shorted, do not harm the capacitors.
Single inductor boost regulators have large RMS ripple current in the output capacitor, which must be rated to handle the current. The formula to calculate this is:
Output Capacitor Ripple Current (RMS)

$$
\begin{aligned}
I_{\text {RIPPLE }}(R M S) & =I_{\text {OUT }} \sqrt{\frac{D C}{1-D C}} \\
& =I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}-V_{\text {IN }}}{V_{\text {IN }}}}
\end{aligned}
$$

Input Capacitors

The input capacitor of a boost converter is less critical due to the fact that the input current waveform is triangular and does not contain large squarewave currents as is found in the output capacitor. Capacitors in the range of $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ with an ESR of 0.3Ω or less work well up to full 1.5 A switch current. Higher ESR capacitors may be acceptable at low switch currents. Input capacitor ripple current for boost converter is :

$$
\mathrm{I}_{\text {RIPPLE }}=\frac{0.3\left(\mathrm{~V}_{\text {IN }}\right)\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)}{(\mathrm{f})(\mathrm{L})\left(\mathrm{V}_{\text {OUT }}\right)}
$$

$\mathrm{f}=500 \mathrm{kHz}$ Switching frequency (LT1372) or, 1 MHz Switching frequency (LT1377)

The input capacitor can see a very high surge current whe a battery or high capacitance source is connected "live and solid tantalum capacitors can fail under this conditior Several manufacturers have developed a line of soli tantalum capacitors specially tested for surge capabilit (AVX TPS series, for instance), but even these units ma fail if the input voltage approaches the maximum voltag rating of the capacitor. AVX recommends derating capac tor voltage by $2: 1$ for high surge applications. Ceramic an aluminum electrolytic capacitors may also be used an have a high tolerance to turn-on surges.

Ceramic Capacitors

Higher value, lower cost ceramic capacitors are nol becoming available in smaller case sizes. These are temp: ing for switching regulator use because of their very loo ESR. Unfortunately, the ESR is so low that it can caus loop stability problems. Solid tantalum capacitor ES generates a loop "zero" at 5 kHz to 50 kHz that is instrumer tal in giving acceptable loop phase margin. Ceramic ce pacitors remain capacitive to beyond 300 kHz and usuall resonate with their ESL before ESR becomes effectivt They are appropriate for input bypassing because of the high ripple current ratings and tolerance of turn-on surge: Linear Technology plans to issue a Design Note on the us of ceramic capacitors in the near future.

Output Diode

The suggested output diode (D1) is a 1 N5818 Schottky c its Motorola equivalent, MBR130. It is rated at 1 A averag forward current and 30V reverse voltage. Typical forwar voltage is 0.42 V at 1 A . The diode conducts current onl during switch off time. Peak reverse voltage for boos converters is equal to regulator output voltage. Averag forward current in normal operation is equal to outpi current.

IPPLICATIONS INFORMATION

:requency Compensation

oop frequency compensation is performed on the output If the error amplifier (V{C} pin) with a series RC network. The main pole is formed by the series capacitor and the utput impedance ($\approx 500 \mathrm{k} \Omega$) of the error amplifier. The ole falls in the range of 2 Hz to 20 Hz . The series resistor ;reates a "zero" at 1 kHz to 5 kHz , which improves loop ;tability and transient response. A second capacitor, ypically one-tenth the size of the main compensation ;apacitor, is sometimes used to reduce the switching requency ripple on the V_{C} pin. V_{C} pin ripple is caused by lutput voltage ripple attenuated by the output divider and nultiplied by the error amplifier. Without the second ;apacitor, V_{C} pin ripple is:
V_{C} Pin Ripple $=\frac{1.245\left(V_{\text {RIPPLE }}\right)\left(g_{m}\right)\left(R_{C}\right)}{\left(V_{\text {OUT }}\right)}$
$V_{\text {RIPPLE }}=$ Output ripple (VP-p)
$g_{m}=$ Error amplifier transconductance ($\approx 1500 \mu \mathrm{mho}$)
$\mathrm{R}_{\mathrm{C}}=$ Series resistor on V_{C} pin
$V_{\text {OUT }}=$ DC output voltage
o prevent irregular switching, V_{C} pin ripple should be ept below 50 mV p_p. Worst-case V_{C} pin ripple occurs at naximum output load current and will also be increased ; poor quality (high ESR) output capacitors are used. The .ddition of a $0.0047 \mu \mathrm{~F}$ capacitor on the V_{C} pin reduces witching frequency ripple to only a few millivolts. A low alue for R_{C} will also reduce V_{C} pin ripple, but loop phase nargin may be inadequate.

;witch Node Considerations

or maximum efficiency, switch rise and fall time are nade as short as possible. To prevent radiation and high requency resonance problems, proper layout of the comonents connected to the switch node is essential. B field
(magnetic) radiation is minimized by keeping output diode, switch pin, and output bypass capacitor leads as short as possible. E field radiation is kept low by minimizing the length and area of all traces connected to the switch pin. A ground plane should always be used under the switcher circuitry to prevent interplane coupling.
The high speed switching current path is shown schematically in Figure 3. Minimum lead length in this path is essential to ensure clean switching and low EMI. The path including the switch, output diode, and output capacitor is the only one containing nanosecond rise and fall times. Keep this path as short as possible.

Figure 3

More Help

For more detailed information on switching regulator circuits, please see Application Note 19. Linear Technology also offers a computer software program, SwitcherCAD, to assist in designing switching converters. SwitcherCAD will be updated in late 1995 for the LT1372 and LT1377. In addition, our applications department is always ready to lend a helping hand.

TYPICAL APPLICATIONS

Positive-to-Negative Converter with Direct Feedback

Dual Output Flyback Converter with Overvoltage Protection

Low Ripple 5V to -3V "Cuk" ${ }^{\text {" }}$ Converter

$\mathbf{9 0 \%}$ Efficient CCFL Supply

TYPICAL APPLICATIONS

2 Li-lon Cell to 5V SEPIC Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1172	100kHz 1.25A Boost Switching Regulator	Good for Up to VIN $=40 \mathrm{~V}$
LTC 1265	12V 1.2A Monolithic Buck Converter	Converts 5V to 3.3V at 1 A with 90% Efficiency
LT1302	Micropower 2A Boost Converter	Converts 2V to 5V at 600 mA in S08 Packages
LT1376	500kHz 1.5A Buck Switching Regulator	Steps Down from Up to 25V Using 4.7uH Inductors
LT1373	Low Supply Current 250kHz 1.5A Boost Switching Regulator	90% Efficient Boost Converter with Constant Frequency

LT1373

250kHz Low Supply Current High Efficiency 1.5A Switching Regulator

feATURES

- $1 \mathrm{~mA} \mathrm{I}_{0}$ at 250 kHz
- Uses Small Inductors: $15 \mu \mathrm{H}$
- All Surface Mount Components
- Only 0.6 Square Inch of Board Space
- Low Minimum Supply Voltage: 2.7V
- Constant Frequency Current Mode
- Current Limited Power Switch: 1.5A
- Regulates Positive or Negative Outputs
- Shutdown Supply Current: $12 \mu \mathrm{~A}$ Typ
- Easy External Synchronization
- 8-Pin SO or PDIP Packages

APPLICATIONS

- Boost Regulators
- CCFL Backlight Driver
- Laptop Computer Supplies
- Multiple Output Flyback Supplies
- Inverting Supplies

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1373$ is a low supply current high frequency current mode switching regulator. It can be operated in all standard switching configurations including boost, buck, flyback, forward, inverting and "Cuk." A 1.5A high efficiency switch is included on the die, along with all oscillator, control, and protection circuitry. All functions of the LT1373 are integrated into 8-pin SO/PDIP packages.

Compared to the 500 kHz LT1372, which draws 4 mA of quiescent current, the LT1373 switches at 250 kHz , typically consumes only 1 mA and has higher efficiency. High frequency switching allows for small inductors to be used. All surface mount components consume less than 0.6 square inch of board space.

New design techniques increase flexibility and maintain ease of use. Switching is easily synchronized to an external logic level source. A logic low on the shutdown pin reduces supply current to $12 \mu \mathrm{~A}$. Unique error amplifier circuitry can regulate positive or negative output voltage while maintaining simple frequency compensation techniques. Nonlinear error amplifier transconductance reduces output overshoot on start-up or overload recovery. Oscillator frequency shifting protects external components during overload conditions.
$\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

5V-to-12V Boost Converter

12V Output Efficiency

ABSOLUTG MAXIMUM RATIOGS

PACKAGE/ORDER INFORMATION
Supply Voltage .. 30V
Switch Voltage .. 35V
S/S Pin Voltage .. 30V
Feedback Pin Voltage (Transient, 10ms) $\pm 10 \mathrm{~V}$
Feedback Pin Current.. 10mA
Negative Feedback Pin Voltage
(Transient, 10ms) $\pm 10 \mathrm{~V}$
Operating Junction Temperature Range Operating $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{*}$
Short Circuit $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$
*Units shipped prior to Date Code 9552 are rated at $100^{\circ} \mathrm{C}$ maximum operating temperature.

TOP VIEW	ORDER PART NUMBER
$\mathrm{v}_{6} 1$ - $\mathrm{v}_{\text {Sw }}$	
FB $2 \times 7 \mathrm{GND}$	LT1373CN8
Nf8 3 年 6 gnd	LT1373CS8
$\mathrm{s} / 54$ 5 5	
$\begin{array}{lc}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ \text { 8-LEAD PDIP } & 8 \text {-LEAD PLASTIC SO }\end{array}$	S8 PART MARKING
$\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{A A}=130^{\circ} \mathrm{C} / \mathrm{W}$ (N8) $\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=120^{\circ} / \mathrm{W}$ (S8)	1373

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{I N}=5 V, V_{C}=0.6 V, V_{F B}=V_{\text {REF }}, V_{S W}, S / S$ and NFB pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$	-	$\begin{aligned} & 1.230 \\ & 1.225 \end{aligned}$	$\begin{aligned} & 1.245 \\ & 1.245 \end{aligned}$	$\begin{aligned} & 1.260 \\ & 1.265 \end{aligned}$	V
$I_{\text {FB }}$	Feedback Input Current	$V_{\text {FB }}=V_{\text {REF }}$	\bullet	50		$\begin{aligned} & 150 \\ & 275 \end{aligned}$	nA
	Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet	0.01		0.03	\%/V
$\mathrm{V}_{\text {NFR }}$	Negative Feedback Reference Voltage	Measured at Negative Feedback Pin Feedback Pin Open, $\mathrm{V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & \hline-2.490 \\ & -2.490 \\ & \hline \end{aligned}$			V V
$\mathrm{I}_{\text {NFB }}$	Negative Feedback Input Current	$\mathrm{V}_{\text {NFB }}=\mathrm{V}_{\text {NFR }}$	\bullet	-12	-7	-2	$\mu \mathrm{A}$
	Negative Feedback Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.05	\%/V
g_{m}	Error Amplifier Transconductance	$\Delta \mathrm{I}_{C}= \pm 5 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 250 \\ & 150 \end{aligned}$	375	$\begin{aligned} & 500 \\ & 600 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
	Error Amplifier Source Current	$V_{\text {FB }}=V_{\text {REF }}-150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	25	50	90	$\mu \mathrm{A}$
	Error Amplifier Sink Current	$V_{\text {FB }}=V_{\text {REF }}+150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet		850	1500	$\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	High Clamp, $\mathrm{V}_{\text {FB }}=1 \mathrm{~V}$ Low Clamp, $\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		$\begin{aligned} & \hline 1.70 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.95 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.30 \\ & 0.52 \\ & \hline \end{aligned}$	V V
A_{V}	Error Amplifier Voltage Gain			250			V/V
	V_{C} Pin Threshold	Duty Cycle $=0 \%$		0.8	1	1.25	V
f	Switching Frequency	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	$\begin{aligned} & 225 \\ & 210 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 275 \\ & 290 \end{aligned}$	kHz kHz
	Maximum Switch Duty Cycle		\bullet	90	95		\%
	Switch Current Limit Blanking Time				340	500	ns
BV	Output Switch Breakdown Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	35	47		V
$\mathrm{V}_{\text {SAT }}$	Output Switch "On" Resistance	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		0.5	0.85	Ω

electrichl characteristics

$\mathrm{V}_{\mathbb{I}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{SW}}, \mathrm{S} / \mathrm{S}$ and NFB pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
lim	Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=80 \% \text { (Note 1) } \end{aligned}$	\bullet	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	A A
$\frac{\Delta{l_{\mathbb{N}}}_{\Delta I_{\mathrm{SW}}}}{}$	Supply Current Increase During Switch On-Time				10	20	mA / A
	Control Voltage to Switch Current Transconductance				2		A/V
	Minimum Input Voltage		\bullet		2.4	2.7	V
$\underline{l_{0}}$	Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet		1	1.5	mA
	Shutdown Supply Current	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} / \mathrm{S}} \leq 0.6 \mathrm{~V}$	\bullet		12	30	$\mu \mathrm{A}$
	Shutdown Threshold	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	0.6	1.3	2	V
	Shutdown Delay		\bullet	5	12	100	$\mu \mathrm{S}$
	S/S Pin Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S} / \mathrm{S}} \leq 5 \mathrm{~V}$	\bullet	-10		12	$\mu \mathrm{A}$
	Synchronization Frequency Range		\bullet	300		360	kHz

The denotes specifications which apply over the full operating temperature range.
Note 1: For duty cycles (DC) between 50% and 90%, minimum guaranteed switch current is given by $\mathrm{I}_{\mathrm{LIM}}=0.667(2.75-\mathrm{DC})$.

TYPICAL PGRFORMAOCE CHARACTERISTICS

LT1373•G01

Switch Current Limit vs Duty Cycle

Minimum Input Voltage vs Temperature

LT1373•G02
LT1373.G03

TYPICAL PERFORMAOCE CHARACTGRISTICS

pin functions

V_{C} (Pin 1): Compensation Pin. The V_{C} pin is used for frequency compensation, current limiting and soft start. It is the output of the error amplifier and the input of the current comparator. Loop frequency compensation can be performed with an RC network connected from the V_{C} pin to ground.
FB (Pin 2): The feedback pin is used for positive output voltage sensing and oscillator frequency shifting. It is the inverting input to the error amplifier. The noninverting input of this amplifier is internally tied to a 1.245 V reference.

NFB (Pin 3): The negative feedback pin is used for negative output voltage sensing. It is connected to the inverting input of the negative feedback amplifier through a 400 k source resistor.
S/S (Pin 4): Shutdown and Synchronization Pin. The S/S pin is logic level compatible. Shutdown is active low and the shutdown threshold is typically 1.3 V . For normal operation, pull the S / S pin high, tie it to $V_{I N}$ or leave it floating. To synchronize switching, drive the S/S pin between 300 kHz and 360 kHz .
$\mathbf{V}_{\text {IN }}$ (Pin 5): Input Supply Pin. Bypass $V_{I N}$ with $10 \mu \mathrm{~F}$ or more. The part goes into undervoltage lockout when $V_{I N}$ drops below 2.5V. Undervoltage lockout stops switching and pulls the V_{C} pin low.
GND S (Pin 6): The ground sense pin is a "clean" ground. The internal reference, error amplifier and negative feedback amplifier are referred to the ground sense pin. Connect it to ground. Keep the ground path connection to the output resistor divider and the V_{C} compensation network free of large ground currents.
GND (Pin 7): The ground pin is the emitter connection of the power switch and has large currents flowing through it. It should be connected directly to a good quality ground plane.
$V_{\text {SW }}$ (Pin 8): The switch pin is the collector of the power switch and has large currents flowing through it. Keep the traces to the switching components as short as possible to minimize radiation and voltage spikes.

BLOCK DIAGRAM

OPERATION

The LT1373 is a current mode switcher. This means that switch duty cycle is directly controlled by switch current rather than by output voltage. Referring to the block diagram, the switch is turned "On" at the start of each oscillator cycle. It is turned "Off" when switch current reaches a predetermined level. Control of output voltage is obtained by using the output of a voltage sensing error amplifier to set current trip level. This technique has several advantages. First, it has immediate response to input voltage variations, unlike voltage mode switchers which have notoriously poor line transient response. Second, it reduces the 90° phase shift at mid-frequencies in the energy storage inductor. This greatly simplifies closed-loop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or short conditions. A low dropout internal regulator provides a 2.3 V supply for all internal circuitry. This low dropout design allows input voltage to vary from 2.7 V to 25 V with virtually no change in device performance. A 250kHz oscillator is the basic clock for all internal timing. It turns "On" the output switch via the logic and driver circuitry. Special adaptive anti-sat circuitry detects onset of saturation in the power switch and adjusts driver current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn-off of the switch.
A 1.245V bandgap reference biases the positive input of the error amplifier. The negative input of the amplifier is brought outfor positive outputvoltage sensing. The error amplifier has nonlinear transconductance to reduce out-
put overshoot on start-up or overload recovery. When the feedback voltage exceeds the reference by 40 mV , error amplifier transconductance increases ten times, which reduces output overshoot. The feedbackinput also invokes oscillator frequency shifting, which helps protect components during overload conditions. When the feedback voltage drops below 0.6 V , the oscillator frequency is reduced $5: 1$. Lower switching frequency allows full control of switch current limit by reducing minimum switch duty cycle.
Unique error amplifier circuitry allows the LT1373 to directly regulate negative output voltages. The negative feedback amplifier's 400k source resistor is brought out for negative output voltage sensing. The NFB pin regulates at -2.49 V while the amplifier output internally drives the FB pin to 1.245 V . This architecture, which uses the same main error amplifier, prevents duplicating functions and maintains ease of use. (Consult Linear Technology Marketing for units that can regulate down to -1.25 V .)
The error signal developed at the amplifier output is brought out externally. This pin $\left(V_{C}\right)$ has three different functions. It is used for frequency compensation, current limit adjustment and soft starting. During normal regulator operation this pin sits at a voltage between 1 V (low output current) and 1.9 V (high output current). The error amplifier is a current output (g_{m}) type, so this voltage can be externally clamped for lowering current limit. Likewise, a capacitor coupled external clamp will provide soft start. Switch duty cycle goes to zero if the V_{C} pin is pulled below the control pin threshold, placing the LT1373 in an idle mode.

APPLICATIONS INFORMATION

Positive Output Voltage Setting

The LT1373 develops a 1.245 V reference $\left(V_{\text {REF }}\right)$ from the FB pin to ground. Output voltage is set by connecting the FB pin to an output resistor divider (Figure 1). The FB pin bias current represents a small error and can usually be ignored for values of R2 up to 25 k . The suggested value for R2 is 24.9 k . The NFB pin is normally left open for positive jutput applications. Positive fixed voltage versions are zvailable. (Consult Linear Technology Marketing.)

Figure 1. Positive Output Resistor Divider

APPLICATIONS INFORMATION

Negative Output Voltage Setting

The LT1373 develops a -2.49 V reference $\left(\mathrm{V}_{\text {NFR }}\right)$ from the NFB pin to ground. Output voltage is set by connecting the NFB pin to an output resistor divider (Figure 2). The $-7 \mu \mathrm{~A}$ NFB pin bias current ($l_{\text {NFB }}$) can cause output voltage errors and should not be ignored. This has been accounted for in the formula in Figure 2. The suggested value for R2 is 2.49k. The FB pin is normally left open for negative output applications.

Figure 2. Negative Output Resistor Divider

Dual Polarity Output Voltage Sensing

Certain applications benefit from sensing both positive and negative output voltages. One example is the Dual Output Flyback Converter with Overvoltage Protection circuit shown in the Typical Applications section. Each output voltage resistor divider is individually set as described above. When both the FB and NFB pins are used, the LT1373 acts to prevent either output from going beyond its set output voltage. For example in this application, if the positive output were more heavily loaded than the negative, the negative output would be greater and would regulate at the desired set-point voltage. The positive output would sag slightly below its set-point voltage. This technique prevents either output from going unregulated high at no load.

Shutdown and Synchronization

The dual function S/S pin provides easy shutdown and synchronization. It is logic level compatible and can be pulled high, tied to $\mathrm{V}_{\text {IN }}$ or left floating for normal operation. A logic low on the S/S pin activates shutdown, reducing the part's supply current to $12 \mu \mathrm{~A}$. Typical synchronization range is from 1.05 and 1.8 times the part's natural switching frequency, but is only guaranteed between 300 kHz and 360 kHz . A $12 \mu \mathrm{~s}$ resetable shutdown delay network guar-
antees the part will not go into shutdown while receiving a synchronization signal.

Caution should be used when synchronizing above 330 kHz because at higher sync frequencies the amplitude of the internal slope compensation used to prevent subharmonic switching is reduced. This type of subharmonic switching only occurs when the duty cycle of the switch is above 50%. Higher inductor values will tend to eliminate problems.

Thermal Considerations

Care should be taken to ensure that the worst-case input voltage and load current conditions do not cause excessive die temperatures. The packages are rated at $120^{\circ} \mathrm{C} / \mathrm{W}$ for S0 (S8) and $130^{\circ} \mathrm{C} / \mathrm{W}$ for PDIP (N8).
Average supply current (including driver current) is:

$$
\begin{aligned}
& I_{I_{N}}=1 \mathrm{~mA}+D C\left(I_{S W} / 60+I_{S W} \times 0.004\right) \\
& I_{S W}=\text { switch current } \\
& D C=\text { switch duty cycle }
\end{aligned}
$$

Switch power dissipation is given by:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{SW}}=\left(\mathrm{I}_{\mathrm{SW}}\right)^{2} \times \mathrm{R}_{\mathrm{SW}} \times \mathrm{DC} \\
& \mathrm{R}_{\mathrm{SW}}=\text { output switch "On" resistance }
\end{aligned}
$$

Total power dissipation of the die is the sum of supply current times supply voltage plus switch power:

$$
P_{D(T O T A L)}=\left(l_{\mathbb{N}} \times V_{I N}\right)+P_{S W}
$$

Choosing the Inductor

For most applications the inductor will fall in the range of $10 \mu \mathrm{Hto} 50 \mu \mathrm{H}$. Lower values are chosen to reduce physical size of the inductor. Higher values allow more output current because they reduce peak current seen by the power switch which has a 1.5 A limit. Higher values also reduce input ripple voltage, and reduce core loss.

When choosing an inductor you might have to consider maximum load current, core and copper losses, allowable component height, output voltage ripple, EMI, fault current in the inductor, saturation, and of course, cost. The following procedure is suggested as a way of handling these somewhat complicated and conflicting requirements.

APPLICATIONS InFORMATION

1. Assume that the average inductor current (for a boost converter) is equal to load current times $\mathrm{V}_{\text {OUT }} N_{\mathbb{I N}}$ and decide whether or not the inductor must withstand continuous overload conditions. If average inductor current at maximum load current is 0.5 A , for instance, a 0.5 A inductor may not survive a continuous 1.5 A overload condition. Also, be aware that boost converters are not short-circuit protected, and that under output short conditions, inductor current is limited only by the available current of the input supply.
2. Calculate peak inductor current at full load current to ensure that the inductor will not saturate. Peak current can be significantly higher than output current, especially with smaller inductors and lighter loads, so don't omit this step. Powered iron cores are forgiving because they saturate softly, whereas ferrite cores saturate abruptly. Other core materials fall in between somewhere. The following formula assumes continuous mode operation, but it errors only slightly on the high side for discontinuous mode, so it can be used for all conditions.

$$
I_{\text {PEAK }}=I_{\text {OUT }} \times \frac{V_{\text {OUT }}}{V_{\text {IN }}}+\frac{V_{\text {IN }}\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{2(f)(L)\left(V_{\text {OUT }}\right)}
$$

$\mathrm{V}_{\mathrm{IN}}=$ minimum input voltage
$\mathrm{f}=250 \mathrm{kHz}$ switching frequency
3. Decide if the design can tolerate an "open" core geometry like a rod or barrel, which have high magnetic field radiation, or whether it needs a closed core like a toroid to prevent EMI problems. One would not want an open core next to a magnetic storage media for instance! This is a tough decision because the rods or barrels are temptingly cheap and small, and there are no helpful guidelines to calculate when the magnetic field radiation will be a problem.
4. Start shopping for an inductor which meets the requirements of core shape, peak current (to avoid saturation), average current (to limit heating), and fault current, (if the inductor gets too hot, wire insulation will melt and cause turn-to-turn shorts). Keep in mind that all good things like high efficiency, low profile and high temperature operation will increase cost, sometimes dramatically.
5. After making an initial choice, consider the secondary things like output voltage ripple, second sourcing, etc. Use the experts in the Linear Technology application department if you feel uncertain about the final choice. They have experience with a wide range of inductor types and can tell you about the latest developments in low profile, surface mounting, etc.

Output Capacitor

The output capacitor is normally chosen by its effective series resistance (ESR), because this is what determines output ripple voltage. At 500 kHz , any polarized capacitor is essentially resistive. To get low ESR takes volume, so physically smaller capacitors have high ESR. The ESR range for typical LT1373 applications is 0.05Ω to 0.5Ω. A typical output capacitor is an AVX type TPS, 22 $\mu \mathrm{F}$ at 25 V , with a guaranteed ESR less than 0.2Ω. This is a " D " size surface mount solid tantalum capacitor. TPS capacitors are specially constructed and tested for low ESR, so they give the lowest ESR for a given volume. To further reduce ESR, multiple output capacitors can be used in parallel. The value in microfarads is not particularly critical and values from $22 \mu \mathrm{~F}$ to greater than $500 \mu \mathrm{~F}$ work well, but you cannot cheat mother nature on ESR. If you find a tiny $22 \mu \mathrm{~F}$ solid tantalum capacitor, it will have high ESR and output ripple voltage will be terrible. Table 1 shows some typical solid tantalum surface mount capacitors.
Table 1. Surface Mount Solid Tantalum Capacitor ESR and Ripple Current

E CASE SIZE	ESR (MAX Ω)	RIPPLE CURRENT (A)
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.7 to 0.9	0.4
D CASE SIZE		
AVX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
AVX TAJ	0.9 to 2.0	0.36 to 0.24
C CASE SIZE		
AVX TPS	0.2 (Typ)	0.5 (Typ)
AVX TAJ	1.8 to 3.0	0.22 to 0.17
B CASE SIZE		
AVX TAJ	2.5 to 10	0.16 to 0.08

Many engineers have heard that solid tantalum capacitors are prone to failure if they undergo high surge currents. This is historically true and type TPS capacitors are

APPLICATIONS InFORMATION

specially tested for surge capability, but surge ruggedness is not a critical issue with the output capacitor. Solid tantalum capacitors fail during very high turn-on surges, which do not occur at the output of regulators. High discharge surges, such as when the regulator output is dead shorted, do not harm the capacitors.

Single inductor boost regulators have large RMS ripple current in the output capacitor, which must be rated to handle the current. The formula to calculate this is:

Output Capacitor Ripple Current (RMS)

$$
\begin{aligned}
I_{\text {RIPPLE }}(R M S) & =I_{\text {OUT }} \sqrt{\frac{D C}{1-D C}} \\
& =I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}-V_{I N}}{V_{I N}}}
\end{aligned}
$$

Input Capacitors

The input capacitor of a boost converter is less critical due to the fact that the input current waveform is triangular, and does not contain large squarewave currents as is found in the output capacitor. Capacitors in the range of $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ with an ESR (effective series resistance) of 0.3Ω or less work well up to a full 1.5 A switch current. Higher ESR capacitors may be acceptable at low switch currents. Input capacitor ripple current for boost converter is:

$$
\mathrm{I}_{\text {RIPPLE }}=\frac{0.3\left(\mathrm{~V}_{\text {IN }}\right)\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)}{(\mathrm{f})(\mathrm{L})\left(\mathrm{V}_{\text {OUT }}\right)}
$$

$f=250 \mathrm{kHz}$ switching frequency
The input capacitor can see a very high surge current when a battery or high capacitance source is connected "live", and solid tantalum capacitors can fail under this condition. Several manufacturers have developed a line of solid tantalum capacitors specially tested for surge capability (AVX TPS series, for instance), but even these units may fail if the input voltage approaches the maximum voltage rating of the capacitor. AVX recommends derating capacitor voltage by 2:1 for high surge applications. Ceramic and aluminum electrolytic capacitors may also be used and have a high tolerance to turn-on surges.

Ceramic Capacitors

Higher value, lower cost ceramic capacitors are now becoming available in smaller case sizes. These are tempting for switching regulator use because of their very low ESR. Unfortunately, the ESR is so low that it can cause loop stability problems. Solid tantalum capacitor ESR generates aloop "zero" at 5 kHz to 50 kHz that is instrumental in giving acceptable loop phase margin. Ceramic capacitors remain capacitive to beyond 300 kHz and usually resonate with their ESL before ESR becomes effective. They are appropriate for input bypassing because of their high ripple current ratings and tolerance of turn-on surges. Linear Technology plans to issue a Design Note on the use of ceramic capacitors in the near future.

Output Diode

The suggested output diode (D1) is a 1 N5818 Schottky or its Motorola equivalent, MBR130. It is rated at 1 A average forward current and 30 V reverse voltage. Typical forward voltage is 0.42 V at 1 A . The diode conducts current only during switch-off time. Peak reverse voltage for boost converters is equal to regulator output voltage. Average forward current in normal operation is equal to output current.

Frequency Compensation

Loop frequency compensation is performed on the output of the error amplifier (V_{C} pin) with a series R_{C} network. The main pole is formed by the series capacitor and the output impedance ($\approx 1 \mathrm{M} \Omega$) of the error amplifier. The pole falls in the range of 5 Hz to 30 Hz . The series resistor creates a "zero" at 2 kHz to 10 kHz , which improves loop stability and transient response. A second capacitor, typically one tenth the size of the main compensation capacitor, is sometimes used to reduce the switching frequency ripple on the V_{C} pin. V_{C} pin ripple is caused by output voltage ripple attenuated by the output divider and multiplied by the error amplifier. Without the second capacitor, V_{C} pin ripple is:

$$
\mathrm{V}_{\mathrm{C}} \text { Pin Ripple }=\frac{1.245\left(\mathrm{~V}_{\text {RIPPLE }}\right)\left(\mathrm{g}_{\mathrm{m}}\right)\left(\mathrm{R}_{\mathrm{C}}\right)}{\mathrm{V}_{\text {OUT }}}
$$

APPLICATIONS INFORMATION

```
\(V_{\text {RIPPLE }}=\) output ripple ( \(\mathrm{V}_{\text {P-p }}\) )
\(g_{\mathrm{m}}=\) error amplifier transconductance ( \(\approx 375 \mu \mathrm{mho}\) )
\(R_{C}=\) series resistor on \(V_{C}\) pin
\(V_{\text {OUT }}=\) DC output voltage
```

To prevent irregular switching, V_{C} pin ripple should be kept below 50 mV P-p. Worst-case V_{C} pin ripple occurs at maximum output load current and will also be increased if poor quality (high ESR) output capacitors are used. The addition of a $0.001 \mu \mathrm{~F}$ capacitor on the V_{C} pin reduces switching frequency ripple to only a few millivolts. A low value for R_{C} will also reduce V_{C} pin ripple, but loop phase margin may be inadequate.

Switch Node Considerations

For maximum efficiency, switch rise and fall time are made as short as possible. To prevent radiation and high frequency resonance problems, proper layout of the components connected to the switch node is essential. B field (magnetic) radiation is minimized by keeping output diode, switch pin and output bypass capacitor leads as short as possible. E field radiation is kept low by minimizing the length and area of all traces connected to the switch pin. A ground plane should always be used under the switcher circuitry to prevent interplane coupling.

The high speed switching current path is shown schematically in Figure 3. Minimum lead length in this path is essential to ensure clean switching and low EMI. The path including the switch, output diode and output capacitor is the only one containing nanosecond rise and fall times. Keep this path as short as possible.

Figure 3

More Help

For more detailed information on switching regulator circuits, please see AN19. Linear Technology also offers a computer software program, SwitcherCAD, to assist in designing switching converters. SwitcherCAD will be updated in late 1995 for the LT1373. In addition, our applications department is always ready to lend a helping hand.

TYPICAL APPLICATIONS

Positive-to-Negative Converter with Direct Feedback

Dual Output Flyback Converter with Overvoltage Protection

4-331

TYPICAL APPLICATIONS

Two Li-Ion Cells to 5V SEPIC Conveter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1172	100kHz 1.25A Boost Switching Regulator	Also for Flyback, Buck and Inverting Configurations
LTC ${ }^{\oplus} 1265$	13V 1.2A Monolithic Buck Converter	Includes PMOS Switch On-Chip
LT1302	Micropower 2A Boost Converter	Converts 2V to 5V at 600mA
LT1372	500 kHz 1.5A Boost Switching Regulator	Also Regulates Negative Flyback Outputs
LT1376	500 kHz 1.5 A Buck Switching Regulator	Handles Up to 25V Inputs
LT1377	1MHz 1.5A Boost Switching Regulator	Only 1MHz Integrated Switching Regulator Available

feATURES

- Constant 500kHz Switching Frequency
- Easily Synchronizable
- Uses All Surface Mount Components
- Inductor Size Reduced to $5 \mu \mathrm{H}$
- Saturating Switch Design: 0.4Ω
- Effective Supply Current: 2.5 mA
- Shutdown Current: $20 \mu \mathrm{~A}$
- Cycle-by-Cycle Current Limiting

APPLICATIONS

- Portable Computers
- Battery-Powered Systems
- Battery Charger
- Distributed Power

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1375 / \mathrm{LT} 1376$ are 500 kHz monolithic buck mode switching regulators. A 1.5 A switch is included on the die along with all the necessary oscillator, control, and logic circuitry. High switching frequency allows a considerable reduction in the size of external components. The topology is current mode for fast transient response and good loop stability. Both fixed output voltage and adjustable parts are available.
A special high speed bipolar process and new design techniques achieve high efficiency at high switching frequency. Efficiency is maintained over a wide output current range by using the output to bias the circuitry and by utilizing a supply boost capacitor to saturate the power switch. A shutdown signal will reduce supply current to $20 \mu \mathrm{~A}$ on both parts. The LT1375 can be externally synchronized from 550 kHz to 1 MHz with logic level inputs.
The LT1375/LT1376 fit into standard 8-pin PDIP and S0 packages. Full cycle-by-cycle short-circuit protection and thermal shutdown are provided. Standard surface mount external parts are used, including the inductor and capacitors.

For low input voltage applications with 3.3 V output, see LT1507. This is a functionally identical part that can operate with input voltages between 4.5 V and 12 V .

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

nput Voltage .. 25 V
300st Pin Voltage .. 35V
3HDN Pin Voltage ... 7V
3ias Pin Voltage .. 7V
:B Pin Voltage (Adjustable Part) 3.5V
:B Pin Current (Adjustable Part) 1 mA
jense Voltage (Fixed 5V Part) 7V
jync Pin Voltage ... 7V

Operating Ambient Temperature Range
LT1375C/LT1376C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LT1375I/LT1376I............................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating Junction Temperature Range
LT1375C/LT1376C \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1375I/LT1376I............................ $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

ionsult factory for Military grade parts.

ELECTRICAL CHARACTGRISTICS

$j_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=1.5 \mathrm{~V}$, boost open, switch open, unless otherwise noted.

'ARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
leference Voltage (Adjustable)	All Conditions	\bullet	$\begin{aligned} & 2.39 \\ & 2.36 \end{aligned}$	2.42	$\begin{aligned} & 2.45 \\ & 2.48 \end{aligned}$	V
iense Voltage (Fixed 5V)	All Conditions	\bullet	$\begin{aligned} & 4.94 \\ & 4.90 \end{aligned}$	5.0	$\begin{aligned} & 5.06 \\ & 5.10 \end{aligned}$	V V
ense Pin Resistance			7	10	14	k Ω
leference Voltage Line Regulation	$5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$			0.01	0.03	\%/V
eedback Input Bias Current		\bullet		0.5	1.5	$\mu \mathrm{A}$
rror Amplifier Voltage Gain	$\mathrm{V}_{\overline{\text { SHDN }}}=1 \mathrm{~V}($ Notes 1, 7)		200	400		
rror Amplifier Transconductance	$V_{\overline{\text { SHDN }}}=1 \mathrm{~V}, \Delta \mathrm{l}\left(\mathrm{V}_{\mathrm{C}}\right)= \pm 10 \mu \mathrm{~A}($ Note 7)	\bullet	$\begin{aligned} & 1500 \\ & 1100 \end{aligned}$	2000	$\begin{aligned} & 2700 \\ & 3000 \end{aligned}$	$\mu \mathrm{Mho}$ $\mu \mathrm{Mho}$

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1 \mathrm{~N}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=1.5 \mathrm{~V}$, boost open, switch open, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{C} Pin to Switch Current Transconductance				2		A/V
Error Amplifier Source Current	$\mathrm{V}_{\text {SHDN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=2.7 \mathrm{~V}$ or $\mathrm{V}_{\text {SENSE }}=4.4 \mathrm{~V}$	\bullet	150	225	280	$\mu \mathrm{A}$
Error Amplifier Sink Current	$\mathrm{V}_{\text {SHDN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=2.7 \mathrm{~V}$ or $\mathrm{V}_{\text {SENSE }}=5.6 \mathrm{~V}$			2		mA
V_{C} Pin Switching Threshold	Duty Cycle $=0$			0.9		V
V_{C} Pin High Clamp	$V_{\text {SHDN }}=1 \mathrm{~V}$			2.1		,
Switch Current Limit	$\begin{aligned} & V_{C} \text { Open, } V_{\text {FB }}=2.1 \mathrm{~V} \text { or } V_{\text {SENSE }}=4.4 \mathrm{~V}, \\ & \begin{array}{l} V_{\text {BOOST }}=V_{I N}+5 \mathrm{~V} \end{array} \\ & \hline D C=80 \% \end{aligned}$	\bullet	$\begin{aligned} & 1.50 \\ & 1.35 \end{aligned}$	2	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	A
Switch On Resistance (Note 6)	$\mathrm{I}_{\text {SW }}=1.5 \mathrm{~A}, \mathrm{~V}_{\text {BOOST }}=\mathrm{V}_{\text {IN }}+5 \mathrm{~V}$	-		0.3	$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	Ω Ω
Maximum Switch Duty Cycle	$\begin{aligned} & V_{\text {FB }}=2.1 \mathrm{~V} \text { or } V_{\text {SENSE }}=4.4 \mathrm{~V} \\ &-55^{\circ} \mathrm{C} \leq T_{J} \leq 125^{\circ} \mathrm{C} \\ & T_{J}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 90 \\ & 86 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 93 \\ & 93 \\ & \hline \end{aligned}$		\% $\%$ $\%$
Switch Frequency	$\begin{aligned} & \text { V }_{C} \text { Set to Give } 50 \% \text { Duty Cycle } \\ & \qquad \begin{aligned} & \\ &-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 150^{\circ} \mathrm{C} \\ & T_{j} \leq-25^{\circ} \mathrm{C} \end{aligned} \end{aligned}$		$\begin{aligned} & 460 \\ & 440 \\ & 440 \\ & \hline \end{aligned}$	500	$\begin{aligned} & \hline 540 \\ & 560 \\ & 570 \\ & \hline \end{aligned}$	kHz kHz kHz
Switch Frequency Line Regulation	$5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet		0.05	0.15	\%/V
Frequency Shifting Threshold on FB Pin	$\Delta \mathrm{f}=10 \mathrm{kHz}$	\bullet	0.8	1.0	1.3	V
Minimum Input Voltage (Note 2)		\bullet		5.0	5.5	V
Minimum Boost Voltage (Note 3)	$\mathrm{I}_{\mathrm{SW}} \leq 1.5 \mathrm{~A}$	\bullet		3	3.5	V
Boost Current (Note 4)		\bullet		$\begin{aligned} & 12 \\ & 25 \end{aligned}$	$\begin{aligned} & 22 \\ & 35 \end{aligned}$	mA mA
Input Supply Current (Note 5)	$\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$	\bullet		0.9	1.4	mA
Output Supply Current (Note 5)	$\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$	\bullet		3.2	4.0	mA
Shutdown Supply Current	$V_{\text {SHDN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$ Open	\bullet		15	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Lockout Threshold	V_{C} Open	\bullet	2.3	2.38	2.46	V
Shutdown Thresholds	V_{C} Open Device Shutting Down Device Starting Up	\bullet	$\begin{aligned} & 0.15 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.60 \end{aligned}$	V
Minimum Synchronizing Amplitude (LT1375 Only)	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	\bullet		1.5	2.2	V
Synchronizing Range (LT1375 Only)			580		900	kHz
Sync Pin Input Resistance				40		$\mathrm{k} \Omega$

The - denotes specifications which apply over the full operating temperature range.
Note 1: Gain is measured with a V_{C} swing equal to 200 mV above the low clamp level to 200 mV below the upper clamp level.
Note 2: Minimum input voltage is not measured directly, but is guaranteed by other tests. It is defined as the voltage where internal bias lines are still regulated so that the reference voltage and oscillator frequency remain constant. Actual minimum input voltage to maintain a regulated output will depend on output voltage and load current. See Applications Information.
Note 3: This is the minimum voltage across the boost capacitor needed to guarantee full saturation of the internal power switch.
Note 4: Boost current is the current flowing into the boost pin with the pin held 5 V above input voltage. It flows only during switch-on time.

Note 5: Input supply current is the bias current drawn by the input pin when the bias pin is held at 5 V with switching disabled. Output supply current is the current drawn by the bias pin when the bias pin is held at 5 V . Total input referred supply current is calculated by summing input supply current ($I_{\mathrm{S}_{1}}$) with a fraction of output supply current (I_{SO}):

$$
I_{T O T}=I_{S I}+\left(I_{S O}\right)\left(V_{O U T} / N_{I N}\right)(1.15)
$$

With $V_{I N}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, I_{\mathrm{SI}}=0.9 \mathrm{~mA}, I_{S O}=3.6 \mathrm{~mA}, I_{T O T}=2.28 \mathrm{~mA}$.
Note 6: Switch-on resistance is calculated by dividing $V_{\text {IN }}$ to $V_{S W}$ voltage by the forced current (1.5A). See Typical Performance Characteristics for the graph of switch voltage at other currents.
Note 7: Transconductance and voltage gain refer to the internal amplifier exclusive of the voltage divider. To calculate gain and transconductance refer to sense pin on fixed voltage parts. Divide values shown by the ratio $\mathrm{V}_{\text {OUT }} / 2.42$.

TYPICAL PERFORMAOCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

Maximum Load Current
at $V_{\text {OUT }}=10 \mathrm{~V}$

1375/76 613

Maximum Load Current
at $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$

1375/76 G14

LT1376 Minimum Input Voltage with 5V Output

1375/76 G12

Maximum Load Current

at $V_{\text {OUT }}=5 \mathrm{~V}$

1375/76 G15

Switch Voltage Drop

PIn functions

BOOST (Pin 1): The boost pin is used to provide a drive voltage, higher than the input voltage, to the internal bipolar NPN power switch. Without this added voltage, the typical switch voltage loss would be about 1.5 V . The additional boost voltage allows the switch to saturate and voltage loss approximates that of a 0.3Ω FET structure, but with much smaller die area. Efficiency improves from 75% for conventional bipolar designs to $>87 \%$ for these new parts.
$\mathbf{V}_{\text {Sw }}$ (Pin 3): The switch pin is the emitter of the on-chip power NPN switch. It is driven up to the input pin voltage during switch on time. Inductor current drives the switch pin negative during switch off time. Negative voltage is clamped with the external catch diode. Maximum negative switch voltage allowed is -0.8 V .
SHDN (Pin 4 for LT1375, Pin 5 for LT1376): The shutdown pin is used to turn off the regulator and to reduce input drain current to a few microamperes. Actually, this pin has two separate thresholds, one at 2.38 V to disable switching, and a second at 0.4 V to force complete micropower shutdown. The 2.38 V threshold functions as an accurate undervoltage lockout (UVLO). This is sometimes used to prevent the regulator from operating until the input voltage has reached a predetermined level.

BIAS (Pin 4, LT1376 Only):The bias pin is used to improve efficiency when operating at higher input voltages and light load current. Connecting this pin to the regulated output voltage forces most of the internal circuitry to draw its operating current from the output voltage rather than the input supply. This is a much more efficient way of
doing business if the input voltage is much higher than the output. Minimum output voltage setting for this mode of operation is 3.3 V . Efficiency improvement at $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$, $V_{\text {OUT }}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {OUT }}=25 \mathrm{~mA}$ is over 10%.
SYNC (Pin 5, LT1375 Only): The sync pin is used to synchronize the internal oscillator to an external signal. It is directly logic compatible and can be driven with any signal between 10% and 90% duty cycle. The synchronizing range is equal to initial operating frequency, up to 900 kHz . See Synchronizing section in Applications Information for details.

FB/SENSE (Pin 7): The feedback pin is used to set output voltage, using an external voltage divider that generates 2.42 V at the pin with the desired output voltage. The fixed voltage (-5) parts have the divider included on the chip, and the FB pin is used as a sense pin, connected directly to the 5 V output. Two additional functions are performed by the FB pin. When the pin voltage drops below 1.7 V , switch current limit is reduced. Below 1V, switching frequency is also reduced. See Feedback Pin Function section in Applications Information for details.
V_{C} (Pin 8): The V_{C} pin is the output of the error amplifier and the input of the peak switch current comparator. It is normally used for frequency compensation, but can do double duty as a current clamp or control loop override. This pin sits at about 1 V for very light loads and 2 V at maximum load. It can be driven to ground to shut off the regulator, but if driven high, current must be limited to 4 mA .

BLOCK DIAGRAM

The LT1376 is a constant frequency, current mode buck converter. This means that there is an internal clock and two feedback loops that control the duty cycle of the power switch. In addition to the normal error amplifier, there is a current sense amplifier that monitors switch current on a cycle-by-cycle basis. A switch cycle starts with an oscillator pulse which sets the RS flip-flop to turn the switch on. When switch current reaches a level set by the inverting input of the comparator, the flip-flop is reset and the
switch turns off. Output voltage control is obtained by using the output of the error amplifier to set the switch current trip point. This technique means that the error amplifier commands current to be delivered to the output rather than voltage. A voltage fed system will have low phase shift up to the resonant frequency of the inductor and output capacitor, then an abrupt 180° shift will occur. The current fed system will have 90° phase shift at a much lower frequency, but will not have the additional 90° shift

LT1375/LT1376

BLOCK DIAGRAM

until well beyond the LC resonant frequency. This makes it much easier to frequency compensate the feedback loop and also gives much quicker transient response.
Most of the circuitry of the LT1376 operates from an internal 2.9 V bias line. The bias regulator normally draws power from the regulator input pin, but if the BIAS pin is connected to an external voltage higher than 3 V , bias power will be drawn from the external source (typically the regulated output voltage). This will improve efficiency if the bias pin voltage is lower than regulator input voltage.

High switch efficiency is attained by using the boost pin to provide a voltage to the switch driver which is higher than the input voltage, allowing switch to be saturated. This boosted voltage is generated with an external capacitor and diode. Two comparators are connected to the shutdown pin. One has a 2.38 V threshold for undervoltage lockout and the second has a 0.4 V threshold for complete shutdown.

Figure 1. Block Diagram

APPLICATIONS INFORMATION

FEEDBACK PIN FUNCTIONS

The feedback (FB) pin on the LT1376 is used to set output voltage and also to provide several overload protection features. The first part of this section deals with selecting resistors to set output voltage and the remaining part talks about foldback frequency and current limiting created by the FB pin. Please read both parts before committing to a final design. The fixed 5V LT1376-5 has internal divider resistors and the FB pin is renamed SENSE, connected directly to the output.
The suggested value for the output divider resistor (see Figure 2) from FB to ground (R2) is 5 k or less, and a formula for R1 is shown below. The output voltage error caused by ignoring the input bias current on the FB pin is less than 0.25% with R2 $=5 \mathrm{k}$. A table of standard 1% values is shown in Table 1 for common output voltages. Please read the following if divider resistors are increased above the suggested values.

$$
\mathrm{R} 1=\frac{\mathrm{R} 2\left(\mathrm{~V}_{\text {OUT }}-2.42\right)}{2.42}
$$

Table 1.

OUTPUT VOLTAGE (\mathbf{V})	R2 $(\mathbf{k} \Omega)$	R1 (NEAREST 1\%) $(\mathbf{k} \Omega)$	\% ERROR AT OUTPUT DUE TO DISCREET 1\% RESISTOR STEPS
3	4.99	1.21	+0.23
3.3	4.99	1.82	+0.08
5	4.99	5.36	+0.39
6	4.99	7.32	-0.5
8	4.99	11.5	-0.04
10	4.99	15.8	+0.83
12	4.99	19.6	-0.62
15	4.99	26.1	+0.52

More Than Just Voltage Feedback

The feedback pin is used for more than just output voltage sensing. It also reduces switching frequency and current limit when output voltage is very low (see the Frequency Foldback graph in Typical Performance Characteristics). This is done to control power dissipation in both the IC and in the external diode and inductor during short-circuit conditions. A shorted output requires the switching regulator to operate at very low duty cycles, and the average current through the diode and inductor is equal to the short-circuit current limit of the switch (typically 2A for the

Figure 2. Frequency and Current Limit Foldback

APPLLCATIONS InFORMATION

LT1376, folding back to less than 1A). Minimum switch on time limitations would prevent the switcher from attaining a sufficiently low duty cycle if switching frequency were maintained at 500 kHz , so frequency is reduced by about 5:1 when the feedback pin voltage drops below IV (see Frequency Foldback graph). This does not affect operation with normal load conditions; one simply sees a gear shift in switching frequency during start-up as the output voltage rises.
In addition to lower switching frequency, the LT1376 also operates at lower switch current limit when the feedback pin voltage drops below 1.7V. Q2 in Figure 2 performs this function by clamping the V_{C} pin to a voltage less than its normal 2.3 V upper clamp level. This foldback current limit greatly reduces power dissipation in the IC, diode and inductor during short-circuit conditions. Again, it is nearly transparent to the user under normal load conditions. The only loads which may be affected are current source loads which maintain full load current with output voltage less than 50% of final value. In these rare situations the feedback pin can be clamped above 1.5 V with an external diode to defeat foldback current limit. Caution: clamping the feedback pin means that frequency shifting will also be defeated, so a combination of high input voltage and dead shorted output may cause the LT1376 to lose control of current limit.

The internal circuitry which forces reduced switching frequency also causes current to flow out of the feedback pin when output voltage is low. The equivalent circuitry is shown in Figure 2. Q1 is completely off during normal operation. If the FB pin falls below $1 \mathrm{~V}, \mathrm{Q} 1$ begins to conduct current and reduces frequency at the rate of approximately $5 \mathrm{kHz} / \mu \mathrm{A}$. To ensure adequate frequency foldback (under worst-case short-circuit conditions), the external divider Thevinin resistance must be low enough to pull $150 \mu \mathrm{~A}$ out of the FB pin with 0.6 V on the pin ($\mathrm{R}_{\mathrm{DIV}}$ $\leq 4 \mathrm{k}$). The net result is that reductions in frequency and current limit are affected by output voltage divider impedance. Although divider impedance is not critical, caution should be used if resistors are increased beyond the suggested values and short-circuit conditions will occur with high input voltage. High frequency pickup will increase and the protection accorded by frequency and current foldback will decrease.

MAXIMUM OUTPUT LOAD CURRENT

Maximum load current for a buck converter is limited by the maximum switch current rating (l_{p}) of the LT1376. This current rating is 1.5 A up to 50% duty cycle (DC), decreasing to 1.35 A at 80% duty cycle. This is shown graphically in Typical Performance Characteristics and as shown in the formula below:

$$
\begin{aligned}
& I_{P}=1.5 A \text { for } D C \leq 50 \% \\
& I_{P}=1.65 A-0.15(D C)-0.26(D C)^{2} \text { for } 50 \%<D C<90 \%
\end{aligned}
$$

$D C=$ Duty cycle $=V_{\text {OUT }} / V_{\text {IN }}$
Example: with $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=8 \mathrm{~V} ; \mathrm{DC}=5 / 8=0.625$, and;

$$
I_{S W(M A X)}=1.64-0.15(0.625)-0.26(0.625)^{2}=1.44 \mathrm{~A}
$$

Current rating decreases with duty cycle because the LT 1376 has internal slope compensation to prevent current mode subharmonic switching. For more details, read Application Note 19. The LT1376 is a little unusual in this regard because it has nonlinear slope compensation which gives better compensation with less reduction in current limit.
Maximum load current would be equal to maximum switch current for an infinitely large inductor, but with finite inductor size, maximum load current is reduced by one-half peak-to-peak inductor current. The following formula assumes continuous mode operation, implying that the term on the right is less than one-half of I .

$$
\begin{aligned}
& I_{\text {OUT (MAX })}= \\
& \text { Continuous Mode }
\end{aligned} \quad I_{p}-\frac{\left(V_{\text {OUT }}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{2(L)(f)\left(V_{\text {IN }}\right)}
$$

For the conditions above;

$$
\begin{aligned}
\operatorname{IOUT}(\text { max }) & =1.44-\frac{(5)(8-5)}{2\left(10 \mathrm{e}^{-6}\right)\left(500 \mathrm{e}^{3}\right)(8)} \\
& =1.44-0.19=1.25 \mathrm{~A}
\end{aligned}
$$

At $\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$, duty cycle is 33%, so I_{p} is just equal to a fixed 1.5 A , and $\mathrm{I}_{\text {OUT(MAX) }}$ is equal to:

APPLICATIONS INFORMATION

$$
1.5-\frac{(5)(15-5)}{2\left(10 e^{-6}\right)\left(500 e^{3}\right)(15)}=1.5-0.33=1.17 \mathrm{~A}
$$

Vote that there is less load current available at the higher nput voltage because inductor ripple current increases. This is not always the case. Certain combinations of nductor value and input voltage range may yield lower ivailable load current at the lowest input voltage due to educed peak switch current at high duty cycles. If load surrent is close to the maximum available, please check naximum available current at both input voltage exremes. To calculate actual peak switch current with a jiven set of conditions, use:

$$
I_{\text {SW }}(\text { PEAK })=I_{\text {OUT }}+\frac{V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{2(L)(f)\left(V_{\text {IN }}\right)}
$$

Eor lighter loads where discontinuous operation can be ased, maximum load current is equal to:

Example: with $\mathrm{L}=2 \mu \mathrm{H}, \mathrm{VOUT}=5 \mathrm{~V}$, and $\mathrm{VIN}(\mathrm{MAX})=15 \mathrm{~V}$,

$$
\operatorname{IOUT}(\operatorname{MAX})=\frac{(1.5)^{2}\left(500 \mathrm{e}^{3}\right)\left(2 \mathrm{e}^{-6}\right)(15)}{2(5)(15-5)}=338 \mathrm{~mA}
$$

The main reason for using such a tiny inductor is that it is mysically very small, but keep in mind that peak-to-peak nductor current will be very high. This will increase output ipple voltage. If the output capacitor has to be made larger o reduce ripple voltage, the overall circuit could actually vind up larger.

CHOOSING THE INDUCTOR AND OUTPUT CAPACITOR

For most applications the output inductor will fall in the range of $3 \mu \mathrm{H}$ to $20 \mu \mathrm{H}$. Lower values are chosen to reduce physical size of the inductor. Higher values allow more output current because they reduce peak current seen by the LT1376 switch, which has a 1.5A limit. Higher values also reduce output ripple voltage, and reduce core loss. Graphs in the Typical Performance Characteristics section show maximum output load current versus inductor size and input voltage. A second graph shows core loss versus inductor size for various core materials.

When choosing an inductor you might have to consider maximum load current, core and copper losses, allowable component height, output voltage ripple, EMI, fault current in the inductor, saturation, and of course, cost. The following procedure is suggested as a way of handling these somewhat complicated and conflicting requirements.

1. Choose a value in microhenries from the graphs of maximum load current and core loss. Choosing a small inductor with lighter loads may result in discontinuous mode of operation, but the LT1376 is designed to work well in either mode. Keep in mind that lower core loss means higher cost, at least for closed core geometries like toroids. The core loss graphs show both absolute loss and percent loss for a 5 W output, so actual percent losses must be calculated for each situation.

Assume that the average inductor current is equal to load current and decide whether or not the inductor must withstand continuous fault conditions. If maximum load current is 0.5 A , for instance, a 0.5 A inductor may not survive a continuous 1.5A overload condition. Dead shorts will actually be more gentle on the inductor because the LT1376 has foldback current limiting.
2. Calculate peak inductor current at full load current to ensure that the inductor will not saturate. Peak current can be significantly higher than output current, especially with smaller inductors and lighter loads, so don't omit this step. Powdered iron cores are forgiving because they saturate softly, whereas ferrite cores saturate abruptly. Other core materials fall in between somewhere. The following formula assumes continu-

APPLICATIONS InFORMATIO

ous mode of operation, but it errs only slightly on the high side for discontinuous mode, so it can be used for all conditions.

$$
I_{\text {PEAK }}=I_{\text {OUT }}+\frac{V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{2\left(f(\mathrm{f})\left(\mathrm{V}_{\text {IN }}\right)\right.}
$$

$\mathrm{V}_{\text {IN }}=$ Maximum input voltage
$\mathrm{f}=$ Switching frequency, 500 kHz
3. Decide if the design can tolerate an "open" core geometry like a rod or barrel, which have high magnetic field radiation, or whether it needs a closed core like a toroid to prevent EMI problems. One would not want an open core next to a magnetic storage media, for instance! This is a tough decision because the rods or barrels are temptingly cheap and small and there are no helpful guidelines to calculate when the magnetic field radiation will be a problem.
4. Start shopping for an inductor (see representative surface mount units in Table 2) which meets the requirements of core shape, peak current (to avoid saturation), average current (to limitheating), and fault current (if the inductor gets too hot, wire insulation will melt and cause turn-to-turn shorts). Keep in mind that all good things like high efficiency, low profile, and high temperature operation will increase cost, sometimes dramatically. Get a quote on the cheapest unit first to calibrate yourself on price, then ask for what you really want.
5. After making an initial choice, consider the secondary things like output voltage ripple, second sourcing, etc. Use the experts in the Linear Technology's applications department if you feel uncertain about the final choice. They have experience with a wide range of inductor types and can tell you about the latest developments in low profile, surface mounting, etc.

Table 2.

VENDOR/ PART NO.	VALUE $(\mu \mathrm{H})$	DC (Amps)	CORE TYPE	SERIES RESIS- TANCE (Ω)	CORE MATER- IAL	HEIGHT (mm)
Coiltronics						
CTX5-1	5	2.3	Tor	0.027	$\mathrm{KM} \mu$	4.2
CTX10-1	10	1.9	Tor	0.039	$\mathrm{KM} \mu$	4.2
CTX20-1	20	1.0	Tor	0.137	$\mathrm{KM} \mu$	4.2
CTX15-2	15	1.8	Tor	0.058	$\mathrm{KM} \mu$	6.0
CTX20-3	20	1.5	Tor	0.093	$\mathrm{KM} \mu$	4.7
CTX20-4	20	2.2	Tor	0.059	$\mathrm{KM} \mu$	6.4
CTX5-1P	5	1.8	Tor	0.021	52	4.2
CTX10-1P	10	1.6	Tor	0.030	52	4.2
CTX15-1P	15	1.2	Tor	0.046	52	4.2
CTX20-1P	20	1.0	Tor	0.081	52	4.2
CTX20-2P	20	1.3	Tor	0.052	52	6.0
CTX20-4P	20	1.8	Tor	0.039	52	6.35

Sumida

CDRH64	10	1.7	SC	0.084	Fer	4.5
CDRH74	22	1.2	SC	0.077	Fer	4.5
CDRH73	10	1.7	SC	0.055	Fer	3.4
CDRH73	22	1.1	SC	0.15	Fer	3.4
CD73	10	1.4	Open	0.062	Fer	3.5
CD73	18	1.1	Open	0.085	Fer	3.5
CD104	10	2.4	Open	0.041	Fer	4.0
CD104	18	1.7	Open	0.062	Fer	4.0

Gowanda

SM20-102K	10	1.3	Open	0.038	Fer	7.0
SM20-152K	15	1.3	Open	0.049	Fer	7.0
SM20-222K	22	1.3	Open	0.059	Fer	7.0

Dale

IHSM-4825	10	3.1	Open	0.071	Fer	5.6
IHSM-4825	22	1.7	Open	0.152	Fer	5.6
IHSM-5832	10	4.3	Open	0.053	Fer	7.1
IHSM-5832	22	2.8	Open	0.12	Fer	7.1
IHSM-7832	22	3.8	Open	0.054	Fer	7.1

Tor = Toroid
SC = Semi-closed geometry
Fer = Ferrite core material
52 = Type 52 powdered iron core material
$K M \mu=K o o l M \mu$

IPPLICATIONS InFORMATION

Jutput Capacitor

The output capacitor is normally chosen by its Effective jeries Resistance (ESR), because this is what determines sutput ripple voltage. At 500 kHz , any polarized capacitor s essentially resistive. To get low ESR takes volume, so)hysically smaller capacitors have high ESR. The ESR ange for typical LT1376 applications is 0.05Ω to 0.5Ω. A ypical output capacitor is an AVX type TPS, $100 \mu \mathrm{~F}$ at 10 V , vith a guaranteed ESR less than 0.1Ω. This is a " D " size ;urface mount solid tantalum capacitor. TPS capacitors ire specially constructed and tested for low ESR, so they jive the lowest ESR for a given volume. The value in nicrofarads is not particularly critical, and values from $!2 \mu \mathrm{~F}$ to greater than $500 \mu \mathrm{~F}$ work well, but you cannot ;heat mother nature on ESR. If you find a tiny $22 \mu \mathrm{~F}$ solid antalum capacitor, it will have high ESR, and output ripple 'oltage will be terrible. Table 3 shows some typical solid antalum surface mount capacitors.
able 3. Surface Mount Solid Tantalum Capacitor ESR ind Ripple Current

Case Size	ESR (Max., Ω)	Ripple Current (A)
VX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
VX TAJ	0.7 to 0.9	0.4
I Case Size		
VX TPS, Sprague 593D	0.1 to 0.3	0.7 to 1.1
VX TAJ	0.9 to 2.0	0.36 to 0.24
Case Size		
VX TPS	0.2 (typ)	0.5 (typ)
VX TAJ 1.8 to 3.0 Case Size 0.22 to 0.17 VX TAJ 2.5 to 10		

Лany engineers have heard that solid tantalum capacitors re prone to failure if they undergo high surge currents. his is historically true, and type TPS capacitors are pecially tested for surge capability, but surge ruggedness ; not a critical issue with the output capacitor. Solid antalum capacitors fail during very high turn-on surges, which do not occur at the output of regulators. High lischarge surges, such as when the regulator output is lead shorted, do not harm the capacitors.
Inlike the input capacitor, RMS ripple current in the utput capacitor is normally low enough that ripple cur-
rent rating is not an issue. The current waveform is triangular with a typical value of $200 \mathrm{~mA}_{\text {RMS }}$. The formula to calculate this is:
Output Capacitor Ripple Current (RMS):

$$
\mathrm{I}_{\text {RIPPLE }(\mathrm{RMS})}=\frac{0.29\left(\mathrm{~V}_{\text {OUT }}\right)\left(\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\text {OUT }}\right)}{(\mathrm{L})(\mathrm{f})\left(\mathrm{V}_{\text {IN }}\right)}
$$

Ceramic Capacitors

Higher value, lower cost ceramic capacitors are now becoming available in smaller case sizes. These are tempting for switching regulator use because of their very low ESR. Unfortunately, the ESR is so low that it can cause loop stability problems. Solid tantalum capacitor's ESR generates a loop "zero" at 5 kHz to 50 kHz that is instrumental in giving acceptable loop phase margin. Ceramic capacitors remain capacitive to beyond 300 kHz and usually resonate with their ESL before ESR becomes effective. They are appropriate for input bypassing because of their high ripple current ratings and tolerance of turn-on surges. Linear Technology plans to issue a design note on the use of ceramic capacitors in the near future.

OUTPUT RIPPLE VOLTAGE

Figure 3 shows a typical output ripple voltage waveform for the LT1376. Ripple voltage is determined by the high frequency impedance of the output capacitor, and ripple current through the inductor. Peak-to-peak ripple current through the inductor into the output capacitor is:

$$
I_{P-P}=\frac{\left(V_{O U T}\right)\left(V_{\text {IN }}-V_{O U T}\right)}{\left(V_{\text {IN }}\right)(L)(f)}
$$

For high frequency switchers, the sum of ripple current slew rates may also be relevant and can be calculated from:

$$
\Sigma \frac{\mathrm{dI}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~L}}
$$

APPLICATIONS INFORMATION

Peak-to-peak output ripple voltage is the sum of a triwave created by peak-to-peak ripple current times ESR, and a square wave created by parasitic inductance (ESL) and ripple current slew rate. Capacitive reactance is assumed to be small compared to ESR or ESL.

$$
V_{\text {RIPPLE }}=\left(\mathrm{l}_{\mathrm{P}-\mathrm{P}}\right)(\mathrm{ESR})+(\mathrm{ESL}) \Sigma \frac{\mathrm{dl}}{\mathrm{dt}}
$$

Example: with $\mathrm{V}_{I N}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{ESR}=0.1 \Omega$, ESL = 10nH:

$$
\begin{aligned}
& I_{P-P}=\frac{(5)(10-5)}{(10)\left(10 e^{-6}\right)\left(500 e^{3}\right)}=0.5 \mathrm{~A} \\
& \Sigma \frac{d I}{d t}=\frac{10}{10 e^{-6}}=1 e^{6} \\
& V_{\text {RIPPLE }}=(0.5 \mathrm{~A})(0.1)+\left(10 e^{-9}\right)\left(1 e^{6}\right) \\
& =0.05+0.01=60 \mathrm{mV} V_{\text {P-P }}
\end{aligned}
$$

Figure 3. LT1376 Ripple Voltage Waveform

CATCH DIODE

The suggested catch diode (D1) is a 1 N5818 Schottky, or its Motorola equivalent, MBR130. It is rated at $1 A$ average forward current and 30V reverse voltage. Typical forward voltage is 0.42 V at 1 A . The diode conducts current only during switch off time. Peak reverse voltage is equal to regulator input voltage. Average forward current in normal operation can be calculated from:

$$
I_{D(A V G)}=\frac{I_{O U T}\left(V_{I N}-V_{O U T}\right)}{V_{I N}}
$$

This formula will not yield values higher than 1A with maximum load current of 1.25A unless the ratio of input to output voltage exceeds $5: 1$. The only reason to consider a larger diode is the worst-case condition of a high input voltage and overloaded (not shorted) output. Under shortcircuit conditions, foldback current limit will reduce diode current to less than 1 A , but if the output is overloaded and does not fall to less than $1 / 3$ of nominal output voltage, foldback will not take effect. With the overloaded condition, output current will increase to a typical value of 1.8 A , determined by peak switch current limit of 2A. With $\mathrm{V}_{I N}=15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}$ (5V overloaded) and $\mathrm{I}_{\text {OUT }}=1.8 \mathrm{~A}:$

$$
\mathrm{I}_{\mathrm{D}(\mathrm{AVG})}=\frac{1.8(15-4)}{15}=1.32 \mathrm{~A}
$$

This is safe for short periods of time, but it would be prudent to check with the diode manufacturer if continuous operation under these conditions must be tolerated.

BOOST PIN CONSIDERATIONS

For most applications, the boost components are a $0.1 \mu \mathrm{~F}$ capacitor and a 1N914 or 1N4148 diode. The anode is connected to the regulated output voltage and this generates a voltage across the boost capacitor nearly identical to the regulated output. In certain applications, the anode may instead be connected to the unregulated input voltage. This could be necessary if the regulated output voltage is very low ($<3 \mathrm{~V}$) or if the input voltage is less than 6 V . Efficiency is not affected by the capacitor value, but the capacitor should have an ESR of less than 2Ω to ensure that it can be recharged fully under the worst-case condition of minimum input voltage. Almost any type of film or ceramic capacitor will work fine.
WARNING! Peak voltage on the boost pin is the sum of unregulated input voltage plus the voltage across the boost capacitor. This normally means that peak boost pin voltage is equal to input voltage plus output voltage, but when the boost diode is connected to the regulator input, peak boost pin voltage is equal to twice the input voltage.

APPLICATIONS InFORMATION

3e sure that boost pin voltage does not exceed its maxinum rating.
:or nearly all applications, a 0.1 uF boost capacitor works ust fine, but for the curious, more details are provided lere. The size of the boost capacitor is determined by ;witch drive current requirements. During switch on time, Irain current on the capacitor is approximately $10 \mathrm{~mA}+$ out $/ 75$. At peak load current of 1.25 A , this gives a total Irain of 27 mA . Capacitor ripple voltage is equal to the roduct of on time and drain current divided by capacitor ralue; $\Delta \mathrm{V}=\mathrm{t}_{0 \mathrm{~N}} \times 27 \mathrm{~mA} / \mathrm{C}$. To keep capacitor ripple voltage 0 less than 0.5 V (a slightly arbitrary number) at the worstiase condition of $\mathrm{t}_{0 \mathrm{~N}}=1.8 \mu \mathrm{~s}$, the capacitor needs to be). $1 \mu \mathrm{~F}$. Boost capacitor ripple voltage is not a critical sarameter, but if the minimum voltage across the capacior drops to less than 3 V , the power switch may not iaturate fully and efficiency will drop. An approximate ormula for absolute minimum capacitor value is:

$$
\mathrm{C}_{\text {MII }}=\frac{\left(10 \mathrm{~mA}+\mathrm{I}_{\text {OUT }} / 75\right)\left(\mathrm{V}_{\text {OUT }} / V_{\text {IV }}\right)}{(\mathrm{f})\left(\mathrm{V}_{\text {OUT }}-3 \mathrm{~V}\right)}
$$

= Switching frequency
'OUT = Regulated output voltage
${ }^{\prime}$ IN $=$ Minimum input voltage
his formula can yield capacitor values substantially less han $0.1 \mu \mathrm{~F}$, but it should be used with caution since it does ot take into account secondary factors such as capacitor eries resistance, capacitance shift with temperature and utput overload.

iHUTDOWN FUNCTION AND UNDERVOLTAGE .OCKOUT

igure 4 shows how to add undervoltage lockout (UVLO) ग the LT1376. Typically, UVLO is used in situations where าe input supply is current limited, or has a relatively high ource resistance. A switching regulator draws constant ower from the source, so source current increases as ource voltage drops. This looks like a negative resistance jad to the source and can cause the source to current limit r latch low under low source voltage conditions. UVLO revents the regulator from operating at source voltages here these problems might occur.

Threshold voltage for lockout is about 2.38V, slightly less than the internal 2.42 V reference voltage. A $3.5 \mu \mathrm{~A}$ bias current flows out of the pin at threshold. This internally generated current is used to force a default high state on the shutdown pin if the pin is left open. When low shutdown current is not an issue, the error due to this current can be minimized by making $R_{\text {LO }} 10 \mathrm{k}$ or less. If shutdown current is an issue, $\mathrm{R}_{\mathrm{L} 0}$ can be raised to 100 k , but the error due to initial bias current and changes with temperature should be considered.

$$
\begin{aligned}
& R_{\mathrm{LO}}=10 \mathrm{k} \text { to } 100 \mathrm{k}(25 \mathrm{k} \text { suggested }) \\
& \mathrm{R}_{\mathrm{HI}}=\frac{\mathrm{R}_{\mathrm{LO}}\left(\mathrm{~V}_{\text {IN }}-2.38 \mathrm{~V}\right)}{2.38 \mathrm{~V}-\mathrm{R}_{\mathrm{LO}}(3.5 \mu \mathrm{~A})}
\end{aligned}
$$

$V_{I N}=$ Minimum input voltage
Keep the connections from the resistors to the shutdown pin short and make sure that interplane or surface capacitance to the switching nodes are minimized. If high resistor values are used, the shutdown pin should be bypassed with a 1000 pF capacitor to prevent coupling problems from the switch node. If hysteresis is desired in the undervoltage lockout point, a resistor $\mathrm{R}_{\text {FB }}$ can be added to the output node. Resistor values can be calculated from:

$$
\begin{aligned}
& R_{H I}=\frac{R_{\mathrm{LO}}\left[\mathrm{~V}_{\text {IN }}-2.38\left(\Delta \mathrm{~V} / \mathrm{V}_{\text {OUT }}+1\right)+\Delta \mathrm{V}\right]}{2.38-\mathrm{R} 2(3.5 \mu \mathrm{~A})} \\
& \mathrm{R}_{\mathrm{FB}}=\left(\mathrm{R}_{\mathrm{HI}}\right)\left(\mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}\right)
\end{aligned}
$$

25 k suggested for $\mathrm{R}_{\mathrm{L} 0}$
$\mathrm{V}_{\text {IN }}=$ Input voltage at which switching stops as input voltage descends to trip level
$\Delta \mathrm{V}=$ Hysteresis in input voltage level
Example: output voltage is 5 V , switching is to stop if input voltage drops below 12 V and should not restart unless input rises back to $13.5 \mathrm{~V} . \Delta \mathrm{V}$ is therefore 1.5 V and $\mathrm{V}_{I N}=$ 12 V . Let $\mathrm{R}_{\mathrm{L} 0}=25 \mathrm{k}$.

APPLICATIONS InFORMATION

Figure 4. Undervoltage Lockout

$$
\begin{aligned}
\mathrm{R}_{\mathrm{HI}} & =\frac{25 \mathrm{k}[12-2.38(1.5 / 5+1)+1.5]}{2.38-25 \mathrm{k}(3.5 \mu \mathrm{~A})} \\
& =\frac{25 \mathrm{k}(10.41)}{2.29}=114 \mathrm{k} \\
\mathrm{R}_{\mathrm{FB}} & =114 \mathrm{k}(5 / 1.5)=380 \mathrm{k}
\end{aligned}
$$

SWITCH NODE CONSIDERATIONS

For maximum efficiency, switch rise and fall times are made as short as possible. To prevent radiation and high frequency resonance problems, proper layout of the components connected to the switch node is essential. B field (magnetic) radiation is minimized by keeping catch diode, switch pin, and input bypass capacitor leads as short as possible. E field radiation is kept low by minimizing the length and area of all traces connected to the switch pin and boost pin. A ground plane should always be used under the switcher circuitry to prevent interplane coupling. A suggested layout for the critical components is shown in Figure 5. Note that the feedback resistors and compensation components are kept as far as possible from the switch node. Also note that the high current
ground path of the catch diode and input capacitor are kept very short and separate from the analog ground line.
The high speed switching current path is shown schematically in Figure 6 . Minimum lead length in this path is essential to ensure clean switching and low EMI. The path including the switch, catch diode, and input capacitor is the only one containing nanosecond rise and fall times. If you follow this path on the PC layout, you will see that it is irreducibly short. If you move the diode or input capacitor away from the LT1376, get your resumé in order. The other paths contain only some combination of DC and 500 kHz triwave, so are much less critical.

PARASITIC RESONANCE

Resonance or "ringing" may sometimes be seen on the switch node (see Figure 7). Very high frequency ringing following switch rise time is caused by switch/diode/input capacitor lead inductance and diode capacitance. Schottky diodes have very high " Q " junction capacitance that can ring for many cycles when excited at high frequency. If total lead length for the input capacitor, diode and switch path is 1 inch, the inductance will be approximately 25 nH . Schottky diode capacitance of 100 pF will create a resonance at 100 MHz . This ringing is not harmful to the LT1376 and can normally be ignored.

APPLICATIONS INFORMATION

Figure 5. Suggested Layout

Figure 6. High Speed Switching Path

APPLICATIONS InFORMATION

Overshoot or ringing following switch fall time is created by switch capacitance rather than diode capacitance. This ringing per se is not harmful, but the overshoot can cause problems if the amplitude becomes too high. The negative voltage can forward bias parasitic junctions on the IC chip and cause erratic switching. The LT1376 has special circuitry inside which mitigates this problem, but negative voltages over 1V lasting longer than 10ns should be avoided. Note that 100 MHz oscilloscopes are barely fast enough to see the details of the falling edge overshoot in Figure 7.

A second, much lower frequency ringing is seen during switch off time if load current is low enough to allow the inductor current to fall to zero during part of the switch off time (see Figure 8). Switch and diode capacitance resonate with the inductor to form damped ringing at 1 MHz to 10 MHz . Again, this ringing is not harmful to the regulator and it has not been shown to contribute significantly to EMI. Any attempt to damp it with a resistive snubber will degrade efficiency.

Figure 7. Switch Node Resonance

Figure 8. Discontinuous Mode Ringing

INPUT BYPASSING AND VOLTAGE RANGE

Input Bypass Capacitor

Step-down converters draw current from the input supply in pulses. The average height of these pulses is equal to load current, and the duty cycle is equal to $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$. Rise and fall time of the current is very fast. A local bypass capacitor across the input supply is necessary to ensure proper operation of the regulator and minimize the ripple current fed back into the input supply. The capacitor also forces switching current to flow in a tight local loop, minimizing EMI.

Do not cheat on the ripple current rating of the Input bypass capacitor, but also don't get hung up on the value in microfarads. The input capacitor is intended to absorb all the switching current ripple, which can have an RMS value as high as one half of load current. Ripple current ratings on the capacitor must be observed to ensure reliable operation. The actual value of the capacitor in microfarads is not particularly important because at 500 kHz , any value above $5 \mu \mathrm{~F}$ is essentially resistive. RMS ripple current rating is the critical parameter. Actual RMS current can be calculated from:

$$
I_{\text {RIPPLE }}(\mathrm{RMS})=I_{\text {OUT }} \sqrt{V_{\text {OUT }}\left(V_{\text {IN }}-V_{O U T}\right) / V_{I N}{ }^{2}}
$$

The term inside the radical has a maximum value of 0.5 when input voltage is twice output, and stays near 0.5 for a relatively wide range of input voltages. It is common practice therefore to simply use the worst-case value and assume that RMS ripple current is one half of load current. At maximum output current of 1.5A for the LT1376, the input bypass capacitor should be rated at 0.75 A ripple current. Note however, that there are many secondary considerations in choosing the final ripple current rating. These include ambient temperature, average versus peak load current, equipment operating schedule, and required product lifetime. For more details, see Application Notes 19 and 46, and Design Note 95.

Input Capacitor Type

Some caution must be used when selecting the type of capacitor used at the input to regulators. Aluminum

IPPLICATIONS InFORMATION

lectrolytics are lowest cost, but are physically large to chieve adequate ripple current rating, and size contraints (especially height), may preclude their use. Ce amic capacitors are now available in larger values, and leir high ripple current and voltage rating make them leal for input bypassing. Cost is fairly high and footprint lay also be somewhat large. Solid tantalum capacitors rould be a good choice, except that they have a history of ccasional spectacular failures when they are subjected to ırge current surges during power-up. The capacitors can hort and then burn with a brilliant white light and lots of asty smoke. This phenomenon occurs in only a small ercentage of units, but it has led some OEM companies) forbid their use in high surge applications. The input ypass capacitor of regulators can see these high surges then a battery or high capacitance source is connected. everal manufacturers have developed a line of solid intalum capacitors specially tested for surge capability AVX TPS series for instance, see Table 3), but even these nits may fail if the input voltage surge approaches the laximum voltage rating of the capacitor. AVX recomlends derating capacitor voltage by $2: 1$ for high surge pplications. The highest voltage rating is 50 V , so 25 V lay be a practical upper limit when using solid tantalum apacitors for input bypassing.
arger capacitors may be necessary when the input voltje is very close to the minimum specified on the data neet. Small voltage dips during switch on time are not ormally a problem, but at very low input voltage they may גuse erratic operation because the input voltage drops elow the minimum specification. Problems can also ccur if the input-to-output voltage differential is near inimum. The amplitude of these dips is normally a inction of capacitor ESR and ESL because the capacitive lactance is small compared to these terms. ESR tends to 3 the dominate term and is inversely related to physical xpacitor size within a given capacitor type.

linimum Input Voltage (After Start-Up)

linimum input voltage to make the LT1376 "run" corctly is typically 5 V , but to regulate the output, a buck unverter input voltage must always be higher than the atput voltage. To calculate minimum operating input
voltage, switch voltage loss and maximum duty cycle must be taken into account. With the LT1376, there is the additional consideration of proper operation of the boost circuit. The boost circuit allows the power switch to saturate for high efficiency, but it also sometimes results in a start-up or operating voltage that is several volts higher than the standard running voltage, especially at light loads. An approximate formula to calculate minimum running voltage at load currents above 100 mA is:

$$
V_{\text {IN }(\text { MIN })}=\frac{V_{\text {OUT }}+\left(\mathrm{l}_{\text {OUT }}\right)(0.4 \Omega)}{0.88}
$$

Minimum Start-Up Voltage and Operation at Light Loads

The boost capacitor supplies current to the Boost pin during switch on time. This capacitor is recharged only during switch off time. Under certain conditions of light load and low input voltage, the capacitor may not be recharged fully during the relatively short off time. This causes the boost voltage to collapse and minimum input voltage is increased. Start-up voltage at light loads is higher than normal running voltage for the same reasons. The graph in Figure 9 shows minimum input voltage for a 5 V output, both for start-up and for normal operation.

Figure 9. Minimum Input Voltage

APPLICATIONS INFORMATION

The circuit in Figure 10 will allow operation at light load with low input voltages. It uses a small PNP to charge the boost capacitor C2, and an extra diode D3 to complete the power path from $V_{S W}$ to the boost capacitor.

Figure 10. Reducing Minimum Input Voltage

SYNCHRONIZING (Available on LT1375 Only)

The LT1375 has the bias pin replaced with a sync pin, which is used to synchronize the internal oscillator to an external signal. It is directly logic compatible and can be driven with any signal between 10% and 90% duty cycle. The synchronizing range is equal to initial operating frequency up to 900 kHz . This means that minimum practical
sync frequency is equal to the worst-case high selfoscillating frequency (560 kHz), not the typical operating frequency of 500 kHz . Caution should be used when synchronizing above 700 kHz because at higher sync frequencies the amplitude of the internal slope compensation used to prevent subharmonic switching is reduced. This type of subharmonic switching only occurs at input voltages less than twice output voltage. Higher inductor values will tend to eliminate problems. See Frequency Compensation section for a discussion of an entirely different cause of subharmonic switching before assuming that the cause is insufficient slope compensation. Application Note 19 has more details on the theory of slope compensation.

FREQUENCY COMPENSATION

Loop frequency compensation of switching regulators can be a rather complicated problem because the reactive components used to achieve high efficiency also introduce multiple poles into the feedback loop. The inductor and output capacitor on a conventional step-down converter actually form a resonant tank circuit that can exhibit peaking and a rapid 180° phase shift at the resonant frequency. By contrast, the LT1376 uses a "current mode" architecture to help alleviate phase shift created by the inductor. The basic connections are shown in Figure 11. Figure 12 shows a Bode plot of the phase and gain of the

Figure 11. Model for Loop Response

1375/76 F12
${ }^{1375 / 76 \mathrm{~F} 11}$
Figure 12. Response from V_{C} Pin to Output

IPPLICATIONS InFORMATION

ower section of the LT1376, measured from the V_{C} pin to le output. Gain is set by the $2 \mathrm{~A} / \mathrm{V}$ transconductance of the T1376 power section and the effective complex impednce from output to ground. Gain rolls off smoothly above le 100 Hz pole frequency set by the $100 \mu \mathrm{~F}$ output capaciur. Phase drop is limited to about 85°. Phase recovers and ain levels off at the zero frequency ($\approx 16 \mathrm{kHz}$) set by apacitor ESR (0.1 Ω).
rror amplifier transconductance phase and gain are shown ו Figure 13. The error amplifier can be modeled as a ansconductance of $2000 \mu \mathrm{Mh}$, with an output impednce of $200 \mathrm{k} \Omega$ in parallel with 12 pF . In all practical pplications, the compensation network from V_{C} pin to round has a much lower impedance than the output npedance of the amplifier at frequencies above 500 Hz . his means that the error amplifier characteristics themelves do not contribute excess phase shift to the loop, and le phase/gain characteristics of the error amplifier secon are completely controlled by the external compensaon network.

I Figure 14, full loop phase/gain characteristics are hown with a compensation capacitor of $0.0033 \mu \mathrm{~F}$, giving le error amplifier a pole at 240 Hz , with phase rolling off) 90° and staying there. The overall loop has a gain of 7 dB at low frequency, rolling off to unity-gain at 20 kHz . hase shows a two-pole characteristic until the ESR of the utput capacitor brings it back above 10kHz. Phase marin is about 60° at unity-gain.

1375/76 F13

Figure 13. Error Amplifier Gain and Phase

Figure 14. Overall Loop Characteristics

Analog experts will note that around 1 kHz , phase dips very close to the zero phase margin line. This is typical of switching regulators, especially those that operate over a wide range of loads. This region of low phase is not a problem as long as it does not occur near unity-gain. In practice, the variability of output capacitor ESR tends to dominate all other effects with respect to loop response. Variations in ESR will cause unity-gain to move around, but at the same time phase moves with it so that adequate phase margin is maintained over a very wide range of ESR $(\geq \pm 3: 1)$.

What About a Resistor in the Compensation Network?

It is common practice in switching regulator design to add a "zero" to the error amplifier compensation to increase loop phase margin. This zero is created in the external network in the form of a resistor $\left(R_{C}\right)$ in series with the compensation capacitor. Increasing the size of this resistor generally creates better and better loop stability, but there are two limitations on its value. First, the combination of output capacitor ESR and a large value for R_{C} may cause loop gain to stop rolling off altogether, creating a gain margin problem. An approximate formula for R_{C} where gain margin falls to zero is:

$$
\mathrm{R}_{\mathrm{C}}(\text { Loop Gain }=1)=\frac{\mathrm{V}_{\text {OUT }}}{\left(\mathrm{G}_{\mathrm{MP}}\right)\left(\mathrm{G}_{\mathrm{MA}}\right)(\mathrm{ESR})(2.42)}
$$

APPLICATIONS InFORMATION

$\mathrm{G}_{\mathrm{MP}}=$ Transconductance of power stage $=2 \mathrm{~A} / \mathrm{V}$
$\mathrm{G}_{\text {MA }}=$ Error amplifier transconductance $=2 \mathrm{e}^{-3}$
ESR = Output capacitor ESR
$2.42=$ Reference voltage
With $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ and $\mathrm{ESR}=0.1 \Omega$, a value of 5.17 k for R_{C} would yield zero gain margin, so this represents an upper limit. There is a second limitation however which has nothing to do with theoretical small signal dynamics. This resistor sets high frequency gain of the error amplifier, including the gain at the switching frequency. If switching frequency gain is high enough, output ripple voltage will appear at the V_{C} pin with enough amplitude to muck up proper operation of the regulator. In the marginal case, subharmonic switching occurs, as evidenced by alternating pulse widths seen at the switch node. In more severe cases, the regulator squeals or hisses audibly even though the output voltage is still roughly correct. None of this will show on a theoretical Bode plot because Bode is an amplitude insensitive analysis. Tests have shown that if ripple voltage on the V_{C} is held to less than $100 \mathrm{mV} V_{P-p}$, the LT1376 will be well behaved. The formula below will give an estimate of V_{C} ripple voltage when R_{C} is added to the loop, assuming that R_{C} is large compared to the reactance of C_{C} at 500 kHz .

$$
V_{C(\text { RIPPLE })}=\frac{\left(R_{C}\right)\left(G_{\text {MA }}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)(E S R)(2.4)}{\left(V_{\text {IN }}\right)(L)(\mathrm{f})}
$$

$\mathrm{G}_{\mathrm{MA}}=$ Error amplifier transconductance $(2000 \mu \mathrm{Mho})$
If a computer simulation of the LT1376 showed that a series compensation resistor of 3 k gave best overall loop response, with adequate gain margin, the resulting V_{C} pin ripple voltage with $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{ESR}=0.1 \Omega$, $L=10 \mu H$, would be:

$$
\left.V_{C(R I P P L E}\right)=\frac{(3 \mathrm{k})\left(2 \mathrm{e}^{-3}\right)(10-5)(0.1)(2.4)}{(10)\left(10 \mathrm{e}^{-6}\right)\left(500 \mathrm{e}^{3}\right)}=0.144 \mathrm{~V}
$$

This ripple voltage is high enough to possibly create subharmonic switching. In most situations a compromise value (<2k in this case) for the resistor gives acceptable
phase margin and no subharmonic problems. In other cases, the resistor may have to be larger to get acceptable phase response, and some means must be used to control ripple voltage at the V_{C} pin. The suggested way to do this is to add a capacitor $\left(C_{F}\right)$ in parallel with the R_{C} / C_{C} network on the V_{C} pin. Pole frequency for this capacitor is typically set at one-fifth of switching frequency so that it provides significant attenuation of switching ripple, but does not add unacceptable phase shift at loop unity-gain frequency. With $\mathrm{R}_{\mathrm{C}}=3 \mathrm{k}$,

$$
C_{F}=\frac{5}{(2 \pi)(\mathrm{f})\left(\mathrm{R}_{\mathrm{C}}\right)}=\frac{5}{2 \pi\left(500 \mathrm{e}^{3}\right)(3 \mathrm{k})}=531 \mathrm{pF}
$$

How Do I Test Loop Stability?

The "standard" compensation for LT1376 is a 3.3 nF capacitor for C_{C}, with $\mathrm{R}_{\mathrm{C}}=0$. While this compensation will work for most applications, the "optimum" value for loop compensation components depends, to various extent, on parameters which are not well controlled. These include inductor value ($\pm 30 \%$ due to production tolerance, load current and ripple current variations), output capacitance ($\pm 20 \%$ to $\pm 50 \%$ due to production tolerance, temperature, aging and changes at the load), output capacitor ESF ($\pm 200 \%$ due to production tolerance, temperature and aging), and finally, DC input voltage and output loao current. This makes it important for the designer to check out the final design to ensure that it is "robust" and tolerant of all these variations.
I check switching regulator loop stability by pulse loading the regulator output while observing transient response at the output, using the circuit shown in Figure 15. Thie regulator loop is "hit" with a small transient AC load current at a relatively low frequency, 50 Hz to 1 kHz . This causes the output to jump a few millivolts, then settle back to the original value, as shown in Figure 16. A well behaved loop will settle back cleanly, whereas a loop with poor phase or gain margin will "ring" as it settles. The number of rings indicates the degree of stability, and the frequency of the ringing shows the approximate unity-gain frequency of the loop. Amplitude of the signal is not particularly important, as long as the amplitude is not so high that the loop behaves nonlinearly.

IPPLICATIONS INFORMATION

Figure 15. Loop Stability Test Circuit

Figure 16. Loop Stability Check
he output of the regulator contains both the desired low equency transient information and a reasonable amount f high frequency (500 kHz) ripple. The ripple makes it ifficult to observe the small transient, so a two-pole, 00 kHz filter has been added. This filter is not particularly ritical; even if it attenuated the transient signal slightly, is wouldn't matter because amplitude is not critical.
fter verifying that the setup is working correctly, I start arying load current and input voltage to see if I can find ny combination that makes the transient response look uspiciously "ringy." This procedure may lead to an adistment for best loop stability or faster loop transient zsponse. Nearly always you will find that loop response loks better if you add in several $k \Omega$ for R_{C}. Do this only necessary, because as explained before, R_{C} above 1 k lay require the addition of C_{F} to control V_{C} pin ripple. If verything looks 0 K , I use a heat gun and cold spray on the ircuit (especially the output capacitor) to bring out any imperature-dependent characteristics.

Keep in mind that this procedure does not take initial component tolerance into account. You should see fairly clean response under all load and line conditions to ensure that component variations will not cause problems. One note here: according to Murphy, the component most likely to be changed in production is the output capacitor, because that is the component most likely to have manufacturer variations (in ESR) large enough to cause problems. It would be a wise move to lock down the sources of the output capacitor in production.

A possible exception to the "clean response" rule is at very light loads, as evidenced in Figure 16 with $\mathrm{I}_{\text {LOAD }}=50 \mathrm{~mA}$. Switching regulators tend to have dramatic shifts in loop response at very light loads, mostly because the inductor current becomes discontinuous. One common result is very slow but stable characteristics. A second possibility is low phase margin, as evidenced by ringing at the output with transients. The good news is that the low phase margin at light loads is not particularly sensitive to component variation, so if it looks reasonable under a transient test, it will probably not be a problem in production. Note that frequency of the light load ringing may vary with component tolerance but phase margin generally hangs in there.

THERMAL CALCULATIONS

Power dissipation in the LT1376 chip comes from four sources: switch DC loss, switch AC loss, boost circuit current, and input quiescent current. The following formulas show how to calculate each of these losses. These

APPLICATIONS INFORMATION

formulas assume continuous mode operation, so they should not be used for calculating efficiency at light load currents.

Switch loss:

$$
\mathrm{P}_{\mathrm{SW}}=\frac{\mathrm{R}_{\mathrm{SW}}\left(\mathrm{l}_{\mathrm{OUT}}\right)^{2}\left(\mathrm{~V}_{\text {OUT }}\right)}{\mathrm{V}_{\text {IN }}}+16 \mathrm{~ns}\left(\mathrm{l}_{\text {OUT }}\right)\left(\mathrm{V}_{\text {IN }}\right)(f)
$$

Boost current loss:

$$
\mathrm{P}_{\text {BOOST }}=\frac{\mathrm{V}_{\text {OUT }}^{2}\left(0.008+\mathrm{I}_{\text {OUT }} / 75\right)}{V_{\text {IN }}}
$$

Quiescent current loss:

$$
P_{Q}=V_{I N}(0.001)+V_{\text {OUT }}(0.005)+\frac{\left(V_{\text {OUT }}{ }^{2}\right)(0.002)}{V_{I N}}
$$

$\mathrm{R}_{\mathrm{SW}}=$ Switch resistance (≈ 0.4)
$16 \mathrm{~ns}=$ Equivalent switch current/voltage overlap time $\mathrm{f}=$ Switch frequency
Example: with $V_{I N}=10 \mathrm{~V}, V_{O U T}=5 \mathrm{~V}$ and $\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$:

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}_{\mathrm{SW}} & =\frac{(0.4)(1)^{2}(5)}{10}+\left(16 \mathrm{e}^{-9}\right)(1)(10)\left(500 \mathrm{e}^{3}\right) \\
& =0.2+0.08=0.28 \mathrm{~W}
\end{aligned} \\
& \mathrm{P}_{\text {BOOST }}=\frac{(5)^{2}(0.008+1 / 75)}{10}=0.053 \mathrm{~W}
\end{aligned} \quad \begin{aligned}
& P_{\mathrm{Q}}=10(0.001)+5(0.005)+\frac{(5)^{2}(0.002)}{10}=0.04 \mathrm{~W}
\end{aligned}
$$

Total power dissipation is $0.28+0.053+0.04=0.37 \mathrm{~W}$.
Thermal resistance for LT1376 package is influenced by the presence of internal or backside planes. With a full plane under the SO package, thermal resistance will be about $120^{\circ} \mathrm{C} / \mathrm{W}$. No plane will increase resistance to about $160^{\circ} \mathrm{C} / \mathrm{W}$. To calculate die temperature, use the proper thermal resistance number for the desired package and add in worst-case ambient temperature:

$$
T_{J}=T_{A}+\theta_{\mathrm{JA}}\left(\mathrm{P}_{\mathrm{TOT}}\right)
$$

With the S0-8 package $\left(\theta_{\mathrm{JA}}=120^{\circ} \mathrm{C} / \mathrm{W}\right)$, at an ambient temperature of $70^{\circ} \mathrm{C}$,

$$
T_{J}=70+120(0.37)=114.4^{\circ} \mathrm{C}
$$

Die temperature is highest at low input voltage, so use lowest continuous input operating voltage for thermal calculations.

POSITIVE-TO-NEGATIVE CONVERTER

The circuit in Figure 17 is a classic positive-to-negative topology using a grounded inductor. It differs from the standard approach in the way the IC chip derives its feedback signal, however. Because the LT1376 accepts only positive feedback signals, the ground pin must be tied to the regulated negative output. A resistor divider to ground or, in this case, the sense pin, then provides the proper feedback voltage for the chip.

* INCREASE L1 TO $10 \mu \mathrm{H}$ OR $20 \mu \mathrm{H}$ FOR HIGHER CURRENT APPLICATIONS. SEE APPLICATIONS INFORMATION
** MAXIMUM LOAD CURRENT DEPENDS ON MINIMUM INPUT VOLTAGE AND INDUCTOR SIZE. SEE APPLICATIONS INFORMATION

Figure 17. Positive-to-Negative Converter

Inverting regulators differ from buck regulators in the basic switching network. Current is delivered to the output as square waves with a peak-to-peak amplitude much greater than load current. This means that maximum load current will be significantly less than the LT1376's 1.5A maximum switch current, even with large inductor values. The buck converter in comparison, delivers current to the output as a triangular wave superimposed on a DC level equal to load current, and load current can approach 1.5A

APPLICATIONS INFORMATION

with large inductors. Output ripple voltage for the positive-to-negative converter will be much higher than a buck converter. Ripple current in the output capacitor will also be much higher. The following equations can be used to calculate operating conditions for the positive-to-negative converter.
Maximum load current:

$$
I_{\text {MAX }}=\frac{\left[I_{P}-\frac{\left(V_{\text {IN }}\right)\left(V_{\text {OUT }}\right)}{2\left(V_{\text {OUT }}+V_{\mathbb{N}}\right)(f)(L)}\right]\left(V_{\text {OUT }}\right)\left(V_{\text {IN }}-0.5\right)}{\left(V_{\text {OUT }}+V_{\text {IN }}-0.5\right)\left(V_{\text {OUT }}+V_{F}\right)}
$$

$I_{p}=$ Maximum rated switch current
$\mathrm{V}_{\mathrm{IN}}=$ Minimum input voltage
$V_{\text {OUT }}=$ Output voltage
$V_{F}=$ Catch diode forward voltage
$0.5=$ Switch voltage drop at 1.5 A
Example: with $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}=4.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{V}_{\mathrm{F}}=$ $0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{P}}=1.5 \mathrm{~A}: \mathrm{I}_{\mathrm{max}}=0.52 \mathrm{~A}$. Note that this equation does not take into account that maximum rated switch current
(I_{P}) on the LT1376 is reduced slightly for duty cycles above 50%. If duty cycle is expected to exceed 50% (input voltage less than output voltage), use the actual Ip value from the Electrical Characteristics table.
Operating duty cycle:

$$
D C=\frac{V_{\text {OUT }}+V_{F}}{V_{\text {IN }}-0.3+V_{\text {OUT }}+V_{F}}
$$

(This formula uses an average value for switch loss, so it may be several percent in error.)
With the conditions above:

$$
D C=\frac{5+0.5}{4.7-0.3+5+0.5}=56 \%
$$

This duty cycle is close enough to 50% that I_{p} can be assumed to be 1.5A.

OUTPUT DIVIDER

If the adjustable part is used, the resistor connected to $V_{\text {OUt }}$ (R2) should be set to approximately 5 k. R1 is calculated from:

$$
\mathrm{R} 1=\frac{\mathrm{R} 2\left(\mathrm{~V}_{\text {out }}-2.42\right)}{2.42}
$$

INDUCTOR VALUE

Unlike buck convertors, positive-to-negative converters cannot use large inductor values to reduce output ripple voltage. At 500 kHz , values larger than $25 \mu \mathrm{H}$ make almost no change in output ripple. The graph in Figure 18 shows peak-to-peak output ripple voltage for a 5 V to -5 V converter versus inductor value. The criteria for choosing the inductor is therefore typically based on ensuring that peak switch current rating is not exceeded. This gives the lowest value of inductance that can be used, but in some cases (lower output load currents) it may give a value that creates unnecessarily high output ripple voltage. A compromise value is often chosen that reduces output ripple. As you can see from the graph, large inductors will not give arbitrarily low ripple, but small inductors can give high ripple.

1375/76 F18
Figure 18. Ripple Voltage on Positive-to-Negative Converter

APPLICATIONS INFORMATION

The difficulty in calculating the minimum inductor size needed is that you must first know whether the switcher will be in continuous or discontinuous mode at the critical point where switch current is 1.5 A . The first step is to use the following formula to calculate the load current where the switcher must use continuous mode. If your load current is less than this, use the discontinuous mode formula to calculate minimum inductor needed. f load current is higher, use the continuous mode formula.
Output current where continuous mode is needed:

$$
I_{\mathrm{CONT}}=\sqrt{\frac{\left(V_{\text {IIN }}\right)^{2}\left(I_{P}\right)^{2}}{4\left(V_{\text {IN }}+V_{\text {OUT }}\right)\left(V_{\text {IN }}+V_{\text {OUT }}+V_{F}\right)}}
$$

Minimum inductor discontinuous mode:

$$
\mathrm{L}_{\mathrm{MIN}}=\frac{2\left(\mathrm{~V}_{\text {OUT }}\right)\left(\mathrm{I}_{\text {OUT }}\right)}{(\mathrm{f})\left(\mathrm{I}_{\mathrm{P}}\right)^{2}}
$$

Minimum inductor continuous mode:

$$
L_{\text {MIN }}=\frac{\left(V_{\text {IN }}\right)\left(V_{\text {OUT }}\right)}{2(f)\left(V_{I N}+V_{\text {OUT }}\right)\left[I_{P}-I_{\text {OUT }}\left(1+\frac{\left(V_{\text {OUT }}+V_{F}\right)}{V_{\text {IN }}}\right)\right]}
$$

For the example above, with maximum load current of 0.25 A :

$$
\mathrm{I}_{\mathrm{CONT}}=\sqrt{\frac{(5)^{2}(1.5)^{2}}{4(5+5)(5+5+0.5)}}=0.37 \mathrm{~A}
$$

This says that discontinuous mode can be used and the minimum inductor needed is found from:

$$
\mathrm{L}_{\text {MIN }}=\frac{2(5)(0.25)}{\left(500 \mathrm{e}^{3}\right)(1.5)^{2}}=2.2 \mu \mathrm{H}
$$

In practice, the inductor should be increased by about 30% over the calculated minimum to handle losses and variations in value. This suggests a minimum inductor of $3 \mu \mathrm{H}$ for this application, but looking at the ripple voltage chart shows that output ripple voltage could be reduced by a factor of two by using a $15 \mu \mathrm{H}$ inductor. There is no rule of thumb here to make a final decision. If modest ripple is needed and the larger inductor does the trick, go for it. If ripple is noncritical use the smaller inductor. If ripple is extremely critical, a second tilter may have to be added in any case, and the lower value of inductance can be used. Keep in mind that the output capacitor is the other critical factor in determining output ripple voltage. Ripple shown on the graph (Figure 18) is with a capacitor ESR of 0.1Ω. This is reasonable for an AVX type TPS "D" or "E" size surface mount solid tantalum capacitor, but the final capacitor chosen must be looked at carefully for ESR characteristics.

Ripple Current in the Input and Output Capacitors

Positive-to-negative converters have high ripple current in both the input and output capacitors. For long capacitor lifetime, the RMS value of this current must be less than the high frequency ripple current rating of the capacitor. The following formula will give an approximate value for RMS ripple current. This formula assumes continuous mode and large inductor value. Small inductors will give somewhat higher ripple current, especially in discontinuous mode. The exact formulas are very complex and appear in Application Note 44, pages 30 and 31. For our purposes here I have simply added a fudge factor (ff). The value for ff is about 1.2 for higher load currents and $\mathrm{L} \geq 10 \mu \mathrm{H}$. It increases to about 2.0 for smaller inductors at lower load currents.

$$
\text { Capacitor } I_{\mathrm{RMS}}=(\mathrm{ff})\left(\mathrm{I}_{\mathrm{OUT}}\right) \sqrt{\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}}
$$

$\mathrm{ff}=$ Fudge factor 1 (1.2 to 2.0)

Diode Current

Average diode current is equal to load current. Peak diode current will be considerably higher.

[^33]
IPPLICATIONS INFORMATION

eak diode current:
Continuous Mode $=$
$I_{\text {OUT }} \frac{\left(V_{\text {IN }}+V_{\text {OUT }}\right)}{V_{\text {IN }}}+\frac{\left(V_{\text {IN }}\right)\left(V_{\text {OUT }}\right)}{2(L)(f)\left(V_{\text {IN }}+V_{\text {OUT }}\right)}$
Discontinuous Mode $=\sqrt{\frac{2\left(I_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)}{(L)(f)}}$
зер in mind that during start-up and output overloads, serage diode current may be much higher than with rrmal loads. Care should be used if diodes rated less than 4 are used, especially if continuous overload conditions ust be tolerated.

Dual Output SEPIC Converter

The circuit in Figure 19 generates both positive and negative 5 V outputs with a single piece of magnetics. The two inductors shown are actually just two windings on a standard Coiltronics inductor. The topology for the 5 V output is a standard buck converter. The -5 V topology would be a simple flyback winding coupled to the buck converter if C4 were not present. C4 creates the SEPIC (Single-Ended Primary Inductance Converter) topology which improves regulation and reduces ripple current in L1. For details on this circuit see Design Note 100.

Figure 19. Dual Output SEPIC Converter

iELATED PARTS

IRT NUMBER	DESCRIPTION	COMMENTS
$1074 /$ /LT1076	Step-Down Switching Regulator	40V Input, 100kHz, 5A and 2A
C1148	High Efficiency Synchronous Step-Down Switching Regulator	External FET Switches
C1149	High Efficiency Synchronous Step-Down Switching Regulator	External FET Switches
C1174	High Efficiency Step-Down and Inverting DC/DC Converter	0.5 A, 150kHz Burst Mode ${ }^{\text {TM }}$ Operation
1176	Step-Down Switching Regulator	PDIP LT1076
$1372 /$ LT1377	500kHz and 1MHz High Efficiency 1.5A Switching Regulators	Boost Topology

st Mode is a trademark of Linear Technology Corporation.

feATURES

- High Power 5V to 3.xV Switching Controller: Can Exceed 10A Output
- All N-Channel External MOSFETs
- Constant Frequency Operation-Small L
- Excellent Output Regulation: $\pm 1 \%$ Over Line, Load and Temperature Variations
- High Efficiency: Over 95\% Possible
- Fixed Frequency Operation
- No Low Value Sense Resistor Needed
- Outputs Can Drive External FETs with Up to 10,000pF Gate Capacitance
- Quiescent Current: $350 \mu \mathrm{~A}$ Typ, $1 \mu \mathrm{~A}$ in Shutdown
- Fast Transient Response
- Adjustable or Fixed 3.3V Output
- Available in 8 - and 16-Lead PDIP and SO Packages

APPLICATIONS

- Power Supply for $\mathrm{P} 6^{\text {TM }}$ and Pentium ${ }^{\circledR}$ Microprocessors
- High Power 5V to 3.xV Regulators
- Local Regulation for Dual Voltage Logic Boards
- Low Voltage, High Current Battery Regulation

DESCRIPTION

The LTC ${ }^{\circledR} 1430$ is a high power, high efficiency switching regulator controller optimized for 5 V to $3 . x \mathrm{~V}$ applications. It includes a precision internal reference and an internal feedback system that can provide output regulation of $\pm 1 \%$ over temperature, load current and line voltage shifts. The LTC1430 uses a synchronous switching architecture with two N-channel output devices, eliminating the need for a high power, high cost P-channel device. Additionally, it senses output current across the drain source resistance of the upper N -channel FET, providing an adjustable current limit without an external low value sense resistor.
The LTC1430 includes a fixed frequency PWM oscillator for low output ripple under virtually all operating conditions. The 200 kHz free-running clock frequency can be externally adjusted from 100 kHz to above 500 kHz . The LTC1430 features low $350 \mu \mathrm{~A}$ quiescent current, allowing greater than 90% efficiency operation in converter designs from 1 A to greater than 50A output current. Shutdown mode drops the LTC1430 supply current to $1 \mu \mathrm{~A}$.

[^34]
TYPICAL APPLICATION

Efficiency

LTC1430•TA02

BSOLUTE MAXIMUM RATINGS

ote 1)
ipply Voltage
\qquad
PVCC1,2
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ put Voltage
$I_{\text {FB }}$ -0.3 V to 18 V Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

ACKAGE/ORDER InFORMATION

1sult factory for Industrial and Military grade parts.
LECTRICAL CHARACTERISTICS
(Note 2) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
;	Supply Voltage		-	4		8	V
3 C	PV $\mathrm{CC1}, \mathrm{PV} \mathrm{CCL2}$		\bullet			13	V
JT	Output Voltage	Figure 1	-	3.30			V
	Feedback Voltage	Figure 1, SENSE ${ }^{+}$and SENSE ${ }^{-}$Floating	\bullet	1.25	1.265	1.28	V
JUT	Output Load Regulation Output Line Regulation	Figure 1, I IOUT $=0 \mathrm{~A}$ to 10 A (Note 3) Figure 1, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V (Note 3)	\bullet		$\begin{aligned} & 5 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 5 \\ \hline \end{gathered}$	mV mV
C	Supply Current (VCC Only)	$\begin{aligned} & \text { Figure 2, } \mathrm{V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V} \end{aligned}$	-		$\begin{gathered} 350 \\ 1 \end{gathered}$	$\begin{gathered} 700 \\ 10 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
CC	Supply Current ($\mathrm{PV}_{\text {CC }}$)	$\begin{aligned} & \text { Figure 2, } P V_{C C}=5 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}(\text { Note } 4) \\ & \mathrm{V} \overline{\text { SHDN }}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 0.1 \\ & \hline \end{aligned}$		mA $\mu \mathrm{A}$
3	Internal Oscillator Frequency	FREQSET Floating	\bullet	140	200	260	kHz
	$\overline{\text { SHDN }}$ Input High Voltage		\bullet	2.4			V
	$\overline{\text { SHDN }}$ Input Low Voltage		\bullet			0.8	V
	$\overline{\text { SHDN }}$ Input Current		\bullet		± 0.1	± 1	$\mu \mathrm{A}$
V	Error Amplifier Transconductance				650		$\mu \mathrm{Mho}$
1	ILIM Amplifier Transconductance	(Note 5)			1300		$\mu \mathrm{Mho}$

ELECTRICAL CHARACTERISTICS (Note 2) $\mathrm{V}_{\mathrm{Cc}}=5 V, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
$I_{\text {MaX }}$	$I_{\text {max }}$ Sink Current	$V_{\text {I(MAX }}=V_{C C}$	\bullet	8	12	16	1
ISS	Soft Start Source Current	$\mathrm{V}_{\text {SS }}=0$	\bullet	-8	-12	-16	1
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {s }}$	Driver Rise/Fall Time	Figure 3, $\mathrm{PV}_{\mathrm{CC1}}=\mathrm{PV}_{\mathrm{CC} 2}=5 \mathrm{~V}$			80	250	
$\mathrm{t}_{\text {NOV }}$	Driver Non-Overlap Time	Figure 3, $\mathrm{PV}_{C C 1}=\mathrm{PV}_{C C 2}=5 \mathrm{~V}$		25	130	250	1
$\mathrm{DC}_{\text {max }}$	Maximum Duty Cycle	$V_{\text {COMP }}=V_{\text {CC }}$	\bullet		90	96	

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.
Note 3: This parameter is guaranteed by correlation and is not tested directly.

Note 4: Supply current in normal operation is dominated by the current needed to charge and discharge the external FET gates. This will vary witt the LTC1430 operating frequency, operating voltage and the external FET: used.
Note 5: The ILM amplifier can sink but cannot source current. Under normal (not current limited) operation, the I LIM output current will be zerc

PIn functions

(16-Lead Package/8-Lead Package)

G1 (Pin 1/Pin 1): Driver Output 1. Connect this pin to the gate of the upper N-channel MOSFET, M1. This output will swing from $\mathrm{PV}_{\mathrm{CC} 1}$ to PGND . It will always be low when G2 is high.
$\mathrm{PV}_{\text {cc1 }}$ (Pin 2/Pin 2): Power $\mathrm{V}_{\text {cc }}$ for Driver 1. This is the power supply input for G1. G1 will swing from PGND to $\mathrm{PV}_{\text {cc1 }}$. $\mathrm{PV}_{\text {CC1 }}$ must be connected to a potential of at least $\mathrm{PV}_{\mathrm{CC}}+\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}(\mathrm{M} 1)$. This potential can be generated using an external supply or a simple charge pump connected to the switching node between the upper MOSFET and the lower MOSFET; see Applications Information for details.

PGND (Pin 3/Pin 3): Power Ground. Both drivers return to this pin. Itshould be connected to a low impedance ground in close proximity to the source of M 2.8 -lead parts have PGND and GND tied together at pin 3.
GND (Pin 4/Pin 3): Signal Ground. All low power internal circuitry returns to this pin. To minimize regulation errors due to ground currents, GND should be connected to PGND right at the LTC1430. 8-lead parts have PGND and GND tied together internally at pin 3 .
SENSE- FB, SENSE ${ }^{+}$(Pins 5, 6, 7/Pin 4): These three pins connect to the internal resistor divider and to the internal feedback node. To use the internal divider to set the outputvoltage to 3.3 V , connect SENSE ${ }^{+}$to the positive terminal of the output capacitor and SENSE- to the nega-
tive terminal. FB should be left floating in applications thi use the internal divider. To use an external resistor divids to set the output voltage, float SENSE ${ }^{+}$and SENSE ${ }^{-}$an connect the external resistor divider to FB.

SHDN (Pin 8/Pin 5): Shutdown. A TTL compatible lo level at SHDN for longer than 50μ s puts the LTC1430 int shutdown mode. In shutdown, G1 and G2 go low, a internal circuits are disabled and the quiescent currel drops to $10 \mu \mathrm{~A}$ max. A TTL compatible high level at SHD allows the part to operate normally.
SS (Pin 9/NA): Soft Start. The SS pin allows an extern capacitor to be connected to implement a soft start func tion. An external capacitor from SS to ground controls th start-up time and also compensates the current limit loo| allowing the LTC1430 to enter and exit current lim cleanly. See Applications Information for more details.

COMP (Pin 10/Pin 6): External Compensation. The COM pin is connected directly to the output of the error amplifis and the input of the PWM. An RC network is used at th node to compensate the feedback loop to provide opt mum transientresponse. See Applications Informationf(compensation details.

FREQSET (Pin 11/NA): Frequency Set. This pin is used 1 set the free running frequency of the internal oscillato With the pin floating, the oscillator runs at about 200kH A resistor from FREQSET to ground will speed up tr

II FUПCTIOnS (16-Lead Package/8-Lead Package)

scillator; a resistor to $\mathrm{V}_{C C}$ will slow it down. See Applicaons Information for resistor selection details.
nax (Pin 12/NA): Current Limit Set. I MAX sets the threshId for the internal current limit comparator. If $I_{\text {FB }}$ drops elow $\mathrm{I}_{\mathrm{MAX}}$ with G1 on, the LTC1430 will go into current mit. I IMAX has a 12μ A pull-down to GND. It can be adjusted ith an external resistor to PV CC or an external voltage jurce.
B (Pin 13/NA): Current Limit Sense. Connect to the witched node at the source of M1 and the drain of M2 ırough a 1 k resistor. The 1 k resistor is required to prevent Jltage transients from damaging I_{FB}. This pin can be ken up to 18 V above GND without damage.

VCC (Pin 14/Pin 7): Power Supply. All low power internal circuits draw their supply from this pin. Connect to a clean power supply, separate from the main $\mathrm{PV}_{C C}$ supply at the drain of M1. This pin requires a $4.7 \mu \mathrm{~F}$ bypass capacitor. 8-lead parts have $V_{C C}$ and $P V_{C C 2}$ tied together at pin 7 and require a $10 \mu \mathrm{~F}$ bypass to GND.
PV ${ }_{\text {CC2 }}$ (Pin 15/Pin 7): Power $V_{C C}$ for Driver 2. This is the power supply input for G2. G2 will swing from GND to $\mathrm{PV}_{\text {CC2 }}$. $\mathrm{PV}_{\mathrm{CC2}}$ is usually connected to the main high power supply. The 8-lead parts have $V_{C C}$ and $P V_{C C 2}$ tied together at pin 7 and require a $10 \mu \mathrm{~F}$ bypass to GND.

G2 (Pin 16/Pin 8): Driver Output 2. Connect this pin to the gate of the lower N-channel MOSFET, M2. This output will swing from $\mathrm{PV}_{\mathrm{CC} 2}$ to PGND . It will always be low when G1 is high.

ILOCK DIAGRAM

TEST CIRCUITS

Figure 1

Figure 2

Figure 3

APPLICATIONS INFORMATION

OVERVIEW

The LTC1430 is a voltage feedback PWM switching regulator controller (see Block Diagram) designed for use in high power, low voltage step-down (buck) converters. It includes an onboard PWM generator, a precision reference trimmed to $\pm 0.5 \%$, two high power MOSFET gate drivers and all necessary feedback and control circuitry to form a complete switching regulator circuit. The PWM loop nominally runs at 200 kHz .
The 16-lead versions of the LTC1430 include a current limit sensing circuit that uses the upper external power

MOSFET as a current sensing element, eliminating thi need for an external sense resistor.

Also included in the 16-lead version is an internal soft star feature that requires only a single external capacitor ti operate. In addition, 16-lead parts feature an adjustabli oscillator which can run at frequencies from 50 kHz t beyond 500 kHz , allowing added flexibility in external com ponent selection. The 8 -lead versions do not includi current limit, internal soft start or frequency adjustability

IPPLICATIONS INFORMATION

HEORY OF OPERATION

'rimary Feedback Loop

he LTC1430 senses the output voltage of the circuit at the utput capacitor with the SENSE ${ }^{+}$and SENSE $^{-}$pins and zeds this voltage back to the internal transconductance mplifier FB. FB compares the resistor-divided output oltage to the internal 1.26 V reference and outputs an rror signal to the PWM comparator. This is then comared to a fixed frequency sawtooth waveform generated y the internal oscillator to generate a pulse width modutted signal. This PWM signal is fed back to the external 10SFETs through G1 and G2, closing the loop. Loop ompensation is achieved with an external compensation etwork at COMP, the output node of the FB transconducance amplifier.

IIN, MAX Feedback Loops

wo additional comparators in the feedback loop provide igh speed fault correction in situations where the FB mplifier may not respond quickly enough. MIN compares le feedback signal to a voltage 40 mV (3\%) below the iternal reference. At this point, the MIN comparator verrides the FB amplifier and forces the loop to full duty ycle, set by the internal oscillator at about 90%. Similarly, ie MAX comparator monitors the output voltage at 3% bove the internal reference and forces the output to 0% uty cycle when tripped. These two comparators prevent xtreme output perturbations with fast output transients, hile allowing the main feedback loop to be optimally ompensated for stability.

urrent Limit Loop

he 16-lead LTC1430 devices include yet another feedack loop to control operation in current limit. The current mit loop is disabled in 8-lead devices. The l Lim amplifier ionitors the voltage drop across external MOSFET M1 ith the $I_{F B}$ pin during the portion of the cycle when G1 is igh. It compares this voltage to the voltage at the $I_{\text {MAX }}$ pin. s the peak current rises, the drop across M1 due to its DS(ON) increases. When $I_{F B}$ drops below $I_{M A X}$, indicating lat M1's drain current has exceeded the maximum level, IM starts to pull current out of the external soft start
capacitor, cutting the duty cycle and controlling the output current level. At the same time, the lim comparator generates a signal to disable the MIN comparator to prevent it from conflicting with the current limit circuit. If the internal feedback node drops below about 0.8 V , indicating a severe output overload, the circuitry will force the internal oscillator to slow down by a factor of as much as 100. If desired, the turn on time of the current limit loop can be controlled by adjusting the size of the soft start capacitor, allowing the LTC1430 to withstand short overcurrent conditions without limiting.
By using the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of M 1 to measure the output current, the current limit circuit eliminates the sense resistor that would otherwise be required and minimizes the number of components in the external high current path. Because power MOSFET $R_{D S(O N)}$ is not tightly controlled and varies with temperature, the LTC1430 current limit is not designed to be accurate; it is meant to prevent damage to the power supply circuitry during fault conditions. The actual current level where the limiting circuit begins to take effect may vary from unit to unit, depending on the power MOSFETs used. See Soft Start and Current Limit for more details on current limit operation.

MOSFET Gate Drive

Gate drive for the top N -channel MOSFET M1 is supplied from $\mathrm{PV}_{\mathrm{CC} 1}$. This supply must be above $\mathrm{PV}_{\mathrm{CC}}$ (the main power supply input) by at least one power MOSFET $V_{G S(O N)}$ for efficient operation. An internal level shifter allows $\mathrm{PV}_{\text {CC1 }}$ to operate at voltages above $\mathrm{V}_{\text {CC }}$ and $\mathrm{PV}_{\text {CC }}$, up to 13 V maximum. This higher voltage can be supplied with a separate supply, or it can be generated using a simple charge pump as shown in Figure 4. When using a separate $\mathrm{PV}_{\mathrm{CC1}}$ supply, the $\mathrm{PV}_{C C}$ input may exhibit a large inrush current if $\mathrm{PV}_{\mathrm{CC} 1}$ is present during power up. The 90% maximum duty cycle ensures that the charge pump will always provide sufficient gate drive to M1. Gate drive for the bottom MOSFET M2 is provided through $\mathrm{PV}_{\mathrm{CC2}}$ for 16-lead devices or $\mathrm{V}_{\mathrm{CC}} / P V_{\text {CC2 }}$ for 8-lead devices. $\mathrm{PV}_{\text {CC2 }}$ can usually be driven directly from $\mathrm{PV}_{C C}$ with 16-lead parts, although it can also be charge pumped or connected to an alternate supply if desired. The 8-lead parts require an RC filter from $\mathrm{PV}_{\text {CC }}$ to ensure proper operation; see Input Supply Considerations.

APPLICATIONS INFORMATION

Figure 4. Doubling Charge Pump

EXTERNAL COMPONENT SELECTION

Power MOSFETs

Two N-channel power MOSFETs are required for most LTC1430 circuits. These should be selected based primarily on threshold and on-resistance considerations; thermal dissipation is often a secondary concern in high efficiency designs. Required MOSFET threshold should be determined based on the available power supply voltages and/or the complexity of the gate drive charge pump scheme. In 5 V input designs where an auxiliary 12 V supply is available to power $P V_{C C 1}$ and $P V_{C C 2}$, standard MOSFETs with $\mathrm{R}_{\mathrm{DS}(O N)}$ specified at $\mathrm{V}_{G S}=5 \mathrm{~V}$ or 6 V can be used with good results. The current drawn from this supply varies with the MOSFETs used and the LTC1430's operating frequency, but is generally less than 50 mA .

LTC1430 designs that use a doubler charge pump to generate gate drive for M1 and run from PVCC voltages below 7 V cannot provide enough gate drive voltage to fully enhance standard power MOSFETs. When run from 5 V , a doubler circuit may work with standard MOSFETs, but the MOSFET R ON may be quite high, raising the dissipation in the FETs and costing efficiency. Logic level FETs are a better choice for 5 V PV ${ }_{\text {CC }}$ systems; they can be fully enhanced with a doubler charge pump and will operate at maximum efficiency. Doubler designs running from $P V_{\text {CC }}$ voltages near 4 V will begin to run into efficiency problems even with logic level FETs; such designs should be built with tripler charge pumps (see Figure 5) or with newer,

Figure 5. Tripling Charge Pump
super low threshold MOSFETs. Note that doubler charge pump designs running from more than 7 V and all tripler charge pump designs should include a zener clamp diode D_{Z} at $V_{C C 1}$ to prevent transients from exceeding the absolute maximum rating at that pin.

Once the threshold voltage has been selected, $R_{0 N}$ should be chosen based on input and output voltage, allowable power dissipation and maximum required output current. In a typical LTC1430 buck converter circuit operating in continuous mode, the average inductor current is equal to the output load current. This current is always flowing through either M1 or M2 with the power dissipation split up according to the duty cycle:

$$
\begin{aligned}
& D C(M 1)=\frac{V_{\text {OUT }}}{V_{\text {IN }}} \\
& \begin{aligned}
D C(M 2) & =1-\frac{V_{\text {OUT }}}{V_{\text {IN }}} \\
& =\frac{\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }}}
\end{aligned}
\end{aligned}
$$

The $R_{\text {ON }}$ required for a given conduction loss can now be calculated by rearranging the relation $P=I^{2} R$:

$$
\begin{aligned}
R_{\text {ON }}(\mathrm{M} 1) & =\frac{P_{\text {MAX }}(\mathrm{M} 1)}{\mathrm{DC}(\mathrm{M} 1) \times I_{\text {MAX }}{ }^{2}} \\
& =\frac{\mathrm{V}_{\text {IN }} \times \mathrm{P}_{\text {MAX }}(\mathrm{M} 1)}{\mathrm{V}_{\text {OUT }} \times I_{\text {MAX }}{ }^{2}}
\end{aligned}
$$

APPLICATIONS INFORMATION

$$
\begin{aligned}
R_{\text {ON }}(\mathrm{M} 2) & =\frac{P_{\text {MAX }}(\mathrm{M} 2)}{\mathrm{DC}(\mathrm{M} 2) \times I_{\text {MAX }}} \\
& =\frac{V_{\text {IN }} \times P_{\text {MAX }}(M 2)}{\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right) \times I_{\text {MAX }}{ }^{2}}
\end{aligned}
$$

$P_{\text {MAX }}$ should be calculated based primarily on required efficiency. A typical high efficiency circuit designed for 5 V in, 3.3 V at 10 A out might require no more than 3% efficiency loss at full load for each MOSFET. Assuming roughly 90% efficiency at this current level, this gives a $\mathrm{P}_{\text {MAX }}$ value of $(3.3 \mathrm{~V} \times 10 \mathrm{~A} / 0.9) \times 0.03=1.1 \mathrm{~W}$ per FET and a required R_{ON} of:

$$
\begin{aligned}
& \mathrm{R}_{\text {ON }}(\mathrm{M} 1)=\frac{5 \mathrm{~V} \times 1.1 \mathrm{~W}}{3.3 \mathrm{~V} \times 10 \mathrm{~A}^{2}}=0.017 \Omega \\
& \mathrm{R}_{\mathrm{ON}}(\mathrm{M} 2)=\frac{5 \mathrm{~V} \times 1.1 \mathrm{~W}}{(5 \mathrm{~V}-3.3 \mathrm{~V}) \times 10 \mathrm{~A}^{2}}=0.032 \Omega
\end{aligned}
$$

Note that the required R_{ON} for M 2 is roughly twice that of M1 in this example. This application might specify a single 0.03Ω device for M2 and parallel two more of the same devices to form M1. Note also that while the required $R_{O N}$ values suggest large MOSFETs, the dissipation numbers are only 1.1W per device or less - large T0-220 packages and heat sinks are not necessarily required in high efficiency applications. Siliconix Si4410DY (in SO-8) and Motorola MTD20N03HL (in DPAK) are two small, surface mount devices with $R_{\text {ON }}$ values of 0.03Ω or below with 5 V of gate drive; both work well in LTC1430 circuits with up to 10 A output current. A higher $\mathrm{P}_{\text {MAX }}$ value will generally decrease MOSFET cost and circuit efficiency and increase MOSFET heat sink requirements.

Inductor

The inductor is often the largest component in an LTC1430 design and should be chosen carefully. Inductor value and type should be chosen based on output slew rate requirements and expected peak current. Inductor value is primarily controlled by the required current slew rate. The maximum rate of rise of the current in the inductor is set by its value, the input-to-output voltage differential and the maximum duty cycle of the LTC1430. In a typical 5V to 3.3 V application, the maximum rise time will be:

$$
90 \% \times \frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{\mathrm{L}} \frac{\mathrm{AMPS}}{\mathrm{SECOND}}=\frac{1.53 \mathrm{~A}}{\mu \mathrm{~S}} \frac{\mathrm{l}}{\mathrm{~L}}
$$

where L is the inductor value in $\mu \mathrm{H}$. A $2 \mu \mathrm{H}$ inductor would have a $0.76 \mathrm{~A} / \mu \mathrm{s}$ rise time in this application, resulting in a $6.5 \mu \mathrm{~s}$ delay in responding to a 5 A load current step. During this $6.5 \mu \mathrm{~s}$, the difference between the inductor current and the output current must be made up by the output capacitor, causing a temporary droop at the output. To minimize this effect, the inductor value should usually be in the $1 \mu \mathrm{H}$ to $5 \mu \mathrm{H}$ range for most typical 5 V to $3 . \mathrm{xV}$ LTC1430 circuits. Different combinations of input and output voltages and expected loads may require different values.
Once the required value is known, the inductor core type can be chosen based on peak current and efficiency requirements. Peak current in the inductor will be equal to the maximum output load current added to half the peak-to- peak inductor ripple current. Ripple current is set by the inductor value, the input and output voltage and the operating frequency. If the efficiency is high and can be approximately equal to 1 , the ripple current is approximately equal to:

$$
\begin{aligned}
& \Delta I=\frac{\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{f_{\text {OSC }} \times L} \times D C \\
& D C=\frac{V_{\text {OUT }}}{V_{\text {IN }}} \\
& f_{\text {OSC }}=L T C 1430 \text { oscillator frequency } \\
& L=\text { inductor value }
\end{aligned}
$$

Solving this equation with our typical 5 V to 3.3 V application, we get:

$$
\frac{1.7 \times 0.66}{200 \mathrm{kHz} \times 2 \mu \mathrm{H}}=2.8 \mathrm{Ap}_{\mathrm{P}-\mathrm{P}}
$$

Peak inductor current at 10A load:

$$
10 \mathrm{~A}+\frac{2.8 \mathrm{~A}}{2}=11.4 \mathrm{~A}
$$

The inductor core must be adequate to withstand this peak current without saturating, and the copper resistance in the winding should be kept as low as possible to minimize resistive power loss. Note that the current may rise above

APPLICATIONS InFORMATION

this maximum level in circuits under current limit or under fault conditions in unlimited circuits; the inductor should be sized to withstand this additional current.

Input and Output Capacitors

A typical LTC1430 design puts significant demands on both the input and output capacitors. Under normal steady load operation, a buck converter like the LTC1430 draws square waves of current from the input supply at the switching frequency, with the peak value equal to the output current and the minimum value near zero. Most of this current must come from the input bypass capacitor, since few raw supplies can provide the current slew rate to feed such a load directly. The resulting RMS current flow in the input capacitor will heat it up, causing premature capacitor failure in extreme cases. Maximum RMS current occurs with 50% PWM duty cycle, giving an RMS current value equal to $\mathrm{I}_{0 \mathrm{~T}} / 2$. A low ESR input capacitor with an adequate ripple current rating must be used to ensure reliable operation. Note that capacitor manufacturers' ripple current ratings are often based on only 2000 hours (3 months) lifetime; further derating of the input capacitor ripple current beyond the manufacturer's specification is recommended to extend the useful life of the circuit.

The output capacitor in a buck converter sees much less ripple current under steady-state conditions than the input capacitor. Peak-to-peak current is equal to that in the inductor, usually a fraction of the total load current. Output capacitor duty places a premium not on power dissipation but on ESR. During an output load transient, the output capacitor must supply all of the additional load current demanded by the load until the LTC1430 can adjust the inductor current to the new value. ESR in the output capacitor results in a step in the output voltage equal to the ESR value multiplied by the change in load current. A 5A load step with a 0.05Ω ESR output capacitor will result in a 250 mV output voltage shift; this is a 7.6% output voltage shift for a 3.3 V supply! Because of the strong relationship between output capacitor ESR and output load transient response, the output capacitor is usually chosen for ESR, not for capacitance value; a capacitor with suitable ESR will usually have a larger capacitance value than is needed to control steady-state output ripple.

Electrolytic capacitors rated for use in switching power supplies with specified ripple current ratings and ESR can be used effectively in LTC1430 applications. OS-CON electrolytic capacitors from Sanyo give excellent performance and have a very high performance/size ratio for an electrolytic capacitor. Surface mount applications can use either electrolytic or dry tantalum capacitors. Tantalum capacitors must be surge tested and specified for use in switching power supplies; low cost, generic tantalums are known to have very short lives followed by explosive deaths in switching power supply applications. AVX TPS series surface mount devices are popular tantalum capacitors that work well in LTC1430 applications. A common way to lower ESR and raise ripple current capability is to parallel several capacitors. A typical LTC1430 application might require an input capacitor with a 5 A ripple current capacity and 2% output shift with a 10A output load step, which requires a 0.007Ω output capacitor ESR. Sanyo OS-CON part number 10SA220M ($220 \mu \mathrm{~F} / 10 \mathrm{~V}$) capacitors feature 2.3 A allowable ripple current at $85^{\circ} \mathrm{C}$ and 0.035Ω ESR; three in parallel at the input and six at the output will meet the above requirements.

Input Supply Considerations/Charge Pump

The 16-lead LTC1430 requires four supply voltages to operate: $P V_{C C}$ for the main power input, $\mathrm{PV}_{C C 1}$ and $\mathrm{PV}_{\mathrm{CC}}$ for MOSFET gate drive and a clean, low ripple $V_{\text {CC }}$ for the LTC1430 internal circuitry (Figure 6). In many applications, $P V_{C C}$ and $P V_{C C 2}$ can be tied together and fed from a common high power supply, provided that the supply voltage is high enough to fully enhance the gate of external MOSFET M2. This can be the 5 V system supply if a logic level MOSFET is used for M2. V_{CC} can usually be filtered

Figure 6. 16-Lead Power Supplies

APPLICATIONS INFORMATION

with an RC from this same high power supply; the low quiescent current (typically $350 \mu \mathrm{~A}$) allows the use of relatively large filter resistors and correspondingly small filter capacitors. 100Ω and $4.7 \mu \mathrm{~F}$ usually provide adequate filtering for $V_{C C}$.
The 8-lead versions of the LTC1430 have the PV ${ }_{\text {CC2 }}$ and $V_{C C}$ pins tied together inside the package (Figure 7). This pin, brought out as $\mathrm{V}_{\mathrm{CC}} / P V_{C C 2}$, has the same low ripple requirements as the 16-lead part, but must also be able to supply the gate drive current to M 2 . This can be obtained by using a larger RC filter from the $P V_{C C}$ pin; 22Ω and $10 \mu \mathrm{~F}$ work well here. The $10 \mu \mathrm{~F}$ capacitor must be VERY close to the part (preferably right underneath the unit) or output regulation may suffer.

Figure 7. 8-Lead Power Supplies
For both versions of the LTC1430, $\mathrm{PV}_{\mathrm{CC}}$ must be higher than $\mathrm{PV}_{\mathrm{CC}}$ by at least one external MOSFETV $\mathrm{VGS}_{(0 \mathrm{ON})}$ to fully enhance the gate of M1. This higher voltage can be provided with a separate supply (typically 12 V) which should power up after PVCC, or it can be generated with a simple charge pump (Figure 4). The charge pump consists of a 1 N 4148 diode from $\mathrm{PV}_{\text {CC }}$ to $\mathrm{PV}_{\text {CC1 }}$ and a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{PV}_{\mathrm{CC} 1}$ to the switching node at the drain of M2. This circuit provides $2 P V_{C C}-V_{F}$ to $P V_{C C 1}$ while $M 1$ is $O N$ and $P V_{C C}-V_{F}$ while $M 1$ is OFF where V_{F} is the $O N$ voltage of the 1N4148 diode. Ringing at the drain of M2 can cause transients above $2 P V_{C C}$ at $P V_{C C 1}$; if $P V_{C C}$ is higher than 7 V , a 12 V zener diode should be included from PV ${ }_{C C 1}$ to $P G N D$ to prevent transients from damaging the circuitry at $\mathrm{PV}_{\mathrm{CC2}}$ or the gate of M1.
More complex charge pumps can be constructed with the 16-lead versions of the LTC1430 to provide additional voltages for use with standard threshold MOSFETs or very
low $\mathrm{PV}_{C C}$ voltages. A tripling charge pump (Figure 5) can provide $2 P V_{\text {cc }}$ and $3 P V_{\text {CC }}$ voltages. These can be connected to $\mathrm{PV}_{\mathrm{CC} 2}$ and $\mathrm{PV}_{\mathrm{CC} 1}$ respectively, allowing standard threshold MOSFETs to be used with 5 V at PV CC or 5 V logic level threshold MOSFETs to be used with 3.3 V at $\mathrm{P} \mathrm{V}_{\text {CC }} . \mathrm{V}_{\text {CC }}$ can be driven from the same potential as $\mathrm{PV}_{\text {CC2 }}$, allowing the entire system to run from a single 3.3 V supply. Tripling charge pumps require the use of Schottky diodes to minimize forward drop across the diodes at start-up. The tripling charge pump circuit will tend to rectify any ringing at the drain of M2 and can provide well more than $3 \mathrm{PV}_{\mathrm{CC}}$ at $\mathrm{PV}_{C C 1}$; all tripling (or higher multiplying factor) circuits should include a 12 V zener clamp diode D_{Z} to prevent overvoltage at $\mathrm{PV} \mathrm{CC}_{\text {. }}$.

Compensation and Transient Response

The LTC1430 voltage feedback loop is compensated at the COMP pin; this is the output node of the internal g_{m} error amplifier. The loop can generally be compensated properly with an RC network from COMP to GND and an additional small C from COMP to GND (Figure 8). Loop stability is affected by inductor and output capacitor values and by other factors. Optimum loop response can be obtained by using a network analyzer to find the loop poles and zeros; nearly as effective and a lot easier is to empirically tweak the R_{C} values until the transient recovery looks right with an output load step. Table 1 shows recommended compensation components for 5 V to 3.3 V applications based on the inductor and output capacitor values. The values were calculated using multiple paralleled $330 \mu \mathrm{~F}$ AVX TPS series surface mount tantalum capacitors as the output capacitor.

Figure 8. Compensation Pin Hook-Up

APPLICATIONS INFORMATION

Table 1. Recommended Compensation Network for 5V to 3.3V Application Using Multiple 330 FF AVX Output Capacitors

$\mathbf{L 1}(\mu \mathbf{H})$	$\mathbf{C}_{\mathbf{0 U T}}(\mu \mathbf{F})$	$\mathbf{R}_{\mathbf{C}}(\mathbf{k} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mu \mathbf{F})$	$\mathbf{\mathbf { C 1 } _ { 1 } (\mathbf { p F })}$
1	990	1.8	0.022	820
1	1980	3.6	0.01	470
1	4950	9.1	0.0047	150
1	9900	18	0.0022	82
2.7	990	3.6	0.01	470
2.7	1980	7.5	0.0047	220
2.7	4950	18	0.0022	82
2.7	9900	39	0.001	39
5.6	990	9.1	0.0047	150
5.6	1980	18	0.0022	82
5.6	4950	47	$820 p F$	33
5.6	9900	91	470 pF	15
10	990	18	0.0022	82
10	1980	39	0.001	39
10	4950	91	470 pF	15
10	9900	180	220 pF	10

Outputtransientresponse is set by three major factors: the time constant of the inductor and the output capacitor, the ESR of the output capacitor, and the loop compensation components. The first two factors usually have much more impact on overall transient recovery time than the third; unless the loop compensation is way off, more improvement can be had by optimizing the inductor and the output capacitor than by fiddling with the loop compensation components. In general, a smaller value inductor will improve transient response at the expense of ripple and inductor core saturation rating. Minimizing output capacitor ESR will also help optimize output transient response. See Input and Output Capacitors for more information.

Soft Start and Current Limit

The 16 -lead versions of the LTC1430 include a soft start circuit at the SS pin; this circuit is used both for initial startup and during current limit operation. The soft start and current limit circuitry is disabled in 8 -lead versions. SS requires an external capacitor to GND with the value determined by the required soft start time. An internal $12 \mu \mathrm{~A}$ current source is included to charge the external
capacitor. Soft start functions by clamping the maximum voltage that the COMP pin can swing to, thereby controlling the duty cycle (Figure 9). The LTC1430 will begin to operate at low duty cycle as the SS pin rises to about 2 V below V_{cc}. As SS continues to rise, the duty cycle will increase until the error amplifier takes over and begins to regulate the output. When SS reaches 1 V below V_{cc} the LTC1430 will be in full operation. An internal switch shorts the SS pin to GND during shutdown.

Figure 9. Soft Start Clamps COMP Pin
The LTC1430 detects the output current by watching the voltage at I_{FB} while M 1 is 0 N . The $\mathrm{L}_{\text {LIM }}$ amplifier compares this voltage to the voltage at $I_{\text {max }}$ (Figure 10). In the ON state, M1 has a known resistance; by calculating backwards, the voltage generated at I_{FB} by the maximum output current in M1 can be determined. As I_{FB} falls below $I_{\text {MAX, }}$ LIIM will begin to sink current from the soft start pin, causing the voltage at SS to fall. As SS falls, it will limit the output duty cycle, limiting the current at the output. Eventually the system will reach equilibrium, where the pull-up current at the SS pin matches the pull-down current in the LIM amplifier; the LTC1430 will stay in this state until the overcurrent condition disappears. At this time $\mathrm{I}_{\text {FB }}$ will rise, $\mathrm{I}_{\text {LIM }}$ will stop sinking current and the internal pull-up will recharge the soft start capacitor, restoring normal operation. Note that the I_{FB} pin requires an external 1 k series resistor to prevent voltage transients at the drain of M 2 from damaging internal structures.
The I LIm amplifier pulls current out of SS in proportion to the difference between $I_{\text {FB }}$ and $I_{\text {max }}$. Under mild overload conditions, the SS pin will fall gradually, creating a time delay before current limit takes effect. Very short, mild overloads may not trip the current limit circuit at all. Longer overload conditions will allow the SS pin to reach

APPLICATIONS INFORMATION

Figure 10. Current Limit Operation
a steady level, and the output will remain at a reduced voltage until the overload is removed. Serious overloads will generate a larger overdrive at lim, allowing it to pull SS down more quickly and preventing damage to the output somponents.
The I LIM amplifier output is disabled when M1 is OFF to Jrevent the low I_{FB} voltage in this condition from activating he current limit. It is re-enabled a fixed 170ns after M1 urns on; this allows for the I_{FB} node to slew back high and he $\mathrm{I}_{\text {LIM }}$ amplifier to settle to the correct value. As the _TC1430 goes deeper into current limit, it will reach a point where the M1 on-time needs to be cut to below 170 ns to zontrol the output current. This conflicts with the mininum settling time needed for proper operation of the LIIM implifier. At this point, a secondary current limit circuit Jegins to reduce the internal oscillator frequency, lengthening the off-time of M1 while the on-time remains con;tant at 170 ns . This further reduces the duty cycle, allowng the LTC1430 to maintain control over the output ;urrent.

Jnder extreme output overloads or short circuits, the l LIM implifier will pull the SS pin more than 2 V below $\mathrm{V}_{\text {CC }}$ in a ;ingle switching cycle, cutting the duty cycle to zero. At his point all switching stops, the output current decays hrough M2 and the LTC1430 runs a partial soft start cycle ind restarts. If the short is still present the cycle will epeat. Peak currents can be quite high in this condition,
but the average current is controlled and a properly designed circuit can withstand short circuits indefinitely with only moderate heat rise in the output FETs. In addition, the soft start cycle repeat frequency can drop into the low kHz range, causing vibrations in the inductor which provide an audible alarm that something is wrong.

Oscillator Frequency

The LTC1430 includes an onboard current controlled oscillator which will typically free-run at 200 kHz . An internal $20 \mu \mathrm{~A}$ current is summed with any current in or out of the FREQSET pin (pin 11), setting the oscillator frequency to approximately $10 \mathrm{kHz} / \mu \mathrm{A}$. FREQSET is internally servoed to the LTC1430 reference voltage (1.26V). With FREQSET floating, the oscillator is biased from the internal $20 \mu \mathrm{~A}$ source and runs at 200 kHz . Connecting a 50 k resistor from FREQSET to ground will sink an additional $25 \mu A$ from FREQSET, causing the internal oscillator to run at approximately 450 kHz . Sourcing an external $10 \mu \mathrm{~A}$ current into FREQSET will cut the internal frequency to 100 kHz . An internal clamp prevents the oscillator from running slower than about 50kHz. Tying FREQSET to $\mathrm{V}_{\text {CC }}$ will cause it to run at this minimum speed.

Shutdown

The LTC1430 includes a low power shutdown mode, controlled by the logic at the SHDN pin. A high at SHDN allows the part to operate normally. A low level at SHDN stops all internal switching, pulls COMP and SS to ground internally and turns M1 and M2 off. In shutdown, the LTC1430 itself will drop below $1 \mu \mathrm{~A}$ quiescent current typically, although off-state leakage in the external MOSFETs may cause the total PV ${ }_{C C}$ current to be somewhat higher, especially at elevated temperatures. When SHDN rises again, the LTC1430 will rerun a soft start cycle and resume normal operation. Holding the LTC1430 in shutdown during $\mathrm{PV}_{\text {CC }}$ power up removes any $\mathrm{PV}_{\mathrm{CC}} 1$ sequencing constraints.

LAYOUT CONSIDERATIONS

Grounding

Proper grounding is critical for the LTC1430 to obtain specified output regulation. Extremely high peak currents

APPLICATIONS INFORMATION

(as high as several amps) can flow between the bypass capacitors and the $\mathrm{PV}_{\mathrm{CC}}, \mathrm{PV}_{\mathrm{CC} 2}$ and PGND pins. These currents can generate significant voltage differences between two points that are nominally both "ground." As a general rule, GND and PGND should be totally separated on the layout, and should be brought together at only one point, right at the LTC1430 GND and PGND pins. This helps minimize internal ground disturbances in the LTC1430 by keeping PGND and GND at the same potential, while preventing excessive current flow from disrupting the operation of the circuits connected to GND. The PGND node should be as compact and low impedance as possible, with the negative terminals of the input and output capacitors, the source of M2, the LTC1430 PGND node, the output return and the input supply return all clustered at one point. Figure 11 is a modified schematic showing the common connections in a proper layout. Note that at 10A current levels or above, current density in the PC board itself can become a concern; traces carrying high currents should be as wide as possible.

Output Voltage Sensing

The LTC1430 provides three pins for sensing the output voltage: SENSE ${ }^{+}$, SENSE $^{-}$and FB. SENSE ${ }^{+}$and SENSE $^{-}$ connect to an internal resistor divider which is connected to FB. To set the output of the LTC1430 to 3.3V, connect SENSE ${ }^{+}$to the output as near to the load as practical and connect SENSE ${ }^{-}$to the common GND/PGND point. Note
that SENSE ${ }^{-}$is not a true differential input sense input; it is just the bottom of the internal divider string. Connecting SENSE ${ }^{-}$to the ground near the load will not improve load regulation. For any other output voltage, the SENSE ${ }^{+}$and SENSE ${ }^{-}$pins should be floated and an external resistor string should be connected to FB (Figure 12). As before, connect the top resistor (R1) to the output as close to the load as practical and connect the bottom resistor (R2) to the common GND/PGND point. In both cases, connecting the top of the resistor divider (either SENSE ${ }^{+}$or R1) close to the load can significantly improve load regulation by compensating for any drops in PC traces or hookup wires between the LTC1430 and the load.

Power Component Hook-Up/Heat Sinking

As current levels rise much above 1A, the power components supporting the LTC1430 start to become physically large (relative to the LTC1430, at least) and can require special mounting considerations. Input and output capacitors need to carry high peak currents and must have

Figure 12. Using External Resistors to Set Output Voltages

Figure 11. Typical Schematic Showing Layout Considerations

APPLICATIONS INFORMATION

ow ESR; this mandates that the leads be clipped as short as possible and PC traces be kept wide and short. The jower inductor will generally be the most massive single somponent on the board; it can require a mechanical holdlown in addition to the solder on its leads, especially if it s a surface mount type.

The power MOSFETs used require some care to ensure uroper operation and reliability. Depending on the current evels and required efficiency, the MOSFETs chosen may je as large as T0-220s or as small as S0-8s. High ifficiency circuits may be able to avoid heat sinking the oower devices, especially with T0-220 type MOSFETs. As in example, a 90% efficient converter working at a steady $3.3 \mathrm{~V} / 10 \mathrm{~A}$ output will dissipate only $(33 \mathrm{~W} / 90 \%) \times 10 \%=$
3.7W. The power MOSFETs generally account for the majority of the power lost in the converter; even assuming that they consume 100% of the power used by the converter, that's only 3.7 W spread over two or three devices. A typical S0-8 MOSFET with a RON suitable to provide 90% efficiency in this design can commonly dissipate 2 W when soldered to an appropriately sized piece of copper trace on a PC board. Slightly less efficient or higher output current designs can often get by with standing a T0-220 MOSFET straight up in an area with some airflow; such an arrangement can dissipate as much as 3 W without a heat sink. Designs which must work in high ambient temperatures or which will be routinely overloaded will generally fare best with a heat sink.

reLated parts

JART NUMBER	DESCRIPTION	COMMENTS
-TC1142	Current Mode Dual Step-Down Switching Regulator Controller	Dual Version of LTC1148
-TC1148	Current Mode Step-Down Switching Regulator Controller	Synchronous, VIN $\leq 20 \mathrm{~V}$
-TC1149	Current Mode Step-Down Switching Regulator Controller	Synchronous, VIN $\leq 48 \mathrm{~V}$, For Standard Threshold FETs
-TC1159	Current Mode Step-Down Switching Regulator Controller	Synchronous, VIN \leq 40V, For Logic Threshold FETs
TC1266	Current Mode Step-Up/Down Switching Regulator Controller	Synchronous N- or P-Channel FETs, Comparator/ Low-Battery Detector
.TC1267	Current Mode Dual Step-Down Switching Regulator Controller	Dual Version of LTC1159

100kHz, 1.25A Switching Regulator with Catch Diode

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1572$ is a 1.25 A 100 kHz monolithic switching regulator with on-board switch and catch diode included in one package. It combines an LT1172 with a 1A Schottky catch diode. The LT1572 can be operated in all standard switching configurations, including boost, buck, SEPIC, flyback, forward, inverting and "Cuk". All necessary control, oscillator and protection circuitry is included on the die with the high efficiency switch. This makes the part extremely easy to use and provides "bustproof" operation similar to that obtained with 3-pin linear regulators.

The LT1572 operates with supply voltages from 3V to 30V and draws only 6 mA quiescent current. It can deliver load power up to 15 W with no external power devices. By utilizing a current mode switching technique, the LT1572 achieves excellent response to load and line transients.

The LT1572 has many unique features not found on the more difficult to use control chips presently available. It uses adaptive anti-sat switch drive to allow very wide ranging load currents with no loss in efficiency. An externally activated shutdown mode reduces total supply current to $50 \mu \mathrm{~A}$ typical for standby operation. External synchronizing of switching frequency is possible, with a range of 120 kHz to 160 kHz .

TYPICAL APPLICATION

5V-to-12V Boost Converter

Boost Converter Efficiency

ABSOLUTG MAXIMUM RATIOGS
Supply Voltage (Note 4)... 40V
Switch Output Voltage (Note 4) 60V
Feedback Pin Voltage (Transient, 1ms) $\pm 15 \mathrm{~V}$
Operating Junction Temperature Range
Operating $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Short Circuit .. $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$
DIODE
Average Forward Current ... 1A
Peak Repetitive Forward Current 2A
Peak Non-Repetitive Forward Current....................... 3A
Peak Repetitive Reverse Voltage 20V
Continuous (Average) Reverse Voltage 15V
Operating Junction Temperature $125^{\circ} \mathrm{C}$

Note 1: Minimum effective switch "on" time for the LT1572 (in current limit only) is $\approx 0.6 \mu \mathrm{~s}$. This limits the maximum safe input voltage during an output shorted condition. Buck mode and inverting mode input voltage during an output shorted condition is limited to:
$\begin{aligned} & V_{\text {IV }}(\text { max, output shorted }) \\ & \text { buck and inverting mode }\end{aligned}=15 \mathrm{~V}+\frac{R \times I_{L}+V_{f}}{t \times f}$
$R=$ Inductor DC resistance
$\mathrm{I}_{\mathrm{L}}=2.5 \mathrm{~A}$
$V_{f}=$ Output catch diode forward voltage at I_{L}
$t=0.6 \mu \mathrm{~s}, \mathrm{f}=100 \mathrm{kHz}$ switching frequency

PACKAGG/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

Maximum input voltage can be increased by increasing R or V_{f}.
External current limiting such as that shown in AN19, Figure 39, will provide protection up to the full supply voltage rating. C1 in Figure 39 should be reduced to 200 pF .
Transformer designs will tolerate much higher input voltages because leakage inductance limits rate of rise of current in the switch. These designs must be evaluated individually to assure that current limit is well controlled up to maximum input voltage.
Boost mode designs are never protected against output shorts because the external catch diode and inductor connect input to output.

ELECTRICAL CHARACTERISTICS $V_{I N}=15 V, V_{C}=0.5 V, V_{F B}=V_{\text {REF }}$, output pin open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$	Reference Voltage	Measured at Feedback Pin $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.224 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 1.244 \\ & 1.244 \end{aligned}$	$\begin{aligned} & 1.264 \\ & 1.274 \end{aligned}$	V
I_{B}	Feedback Input Current	$\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {REF }}$	\bullet		350	$\begin{gathered} 750 \\ 1100 \end{gathered}$	nA
gm_{m}	Error Amplifier Transconductance	$\Delta \mathrm{l}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{aligned} & 3000 \\ & 2400 \end{aligned}$	4400	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
	Error Amplifier Source or Sink Current	$V_{C}=1.5 \mathrm{~V}$	\bullet	$\begin{aligned} & 150 \\ & 120 \\ & \hline \end{aligned}$	200	$\begin{aligned} & 350 \\ & 400 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	$\begin{aligned} & \text { Hi Clamp, } V_{F B}=1 \mathrm{~V} \\ & \text { Lo Clamp, } V_{F B}=1.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.80 \\ & 0.25 \end{aligned}$	0.38	$\begin{aligned} & 2.30 \\ & 0.52 \end{aligned}$	V
	Reference Voltage Line Regulation	$\begin{aligned} & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & V_{C}=0.8 \mathrm{~V} \end{aligned}$	-			0.03	\%/V
A_{V}	Error Amplifier Voltage Gain	$0.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{C}} \leq 1.4 \mathrm{~V}$		500	800		V/V
	Minimum Input Voltage (Note 3)		\bullet		2.6	3.0	V
1_{0}	Supply Current	$3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.6 \mathrm{~V}$			6	9	mA

ELECTRICRL CHARACTERISTICS $V_{I N}=15 V, V_{C}=0.5 V, V_{F B}=V_{\text {REF }}$, output pin open, unless otherwise noted.

DIODE

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Forward Voltage (Note 5)	$\begin{aligned} & I_{f}=200 \mathrm{~mA} \\ & I_{f}=500 \mathrm{~mA} \\ & I_{f}=1 \mathrm{~A} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 0.45 \\ & 0.52 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.65 \\ & 0.70 \end{aligned}$	V V V
Reverse Leakage (Note 5)	$\begin{aligned} & V_{R}=5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{R}=5 \mathrm{~V}, \mathrm{~T}_{J}=75^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{gathered} 5 \\ 100 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\begin{aligned} & V_{R}=20 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{R}=20 \mathrm{~V}, \mathrm{~T}_{J}=75^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 3 \\ 70 \end{gathered}$	$\begin{aligned} & 15 \\ & 300 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Diode Thermal Resistance	(Note 6)			90		${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $v_{I N}=15 v, v_{C}=0.5 v, v_{F B}=v_{\text {REF }}$, output pin open, unless otherwise noted.

The denotes the specifications which apply over the full operating temperature range, $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for the regulator chip and $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the diode.
Note 1: Measured with V_{C} in hi clamp, $\mathrm{V}_{F B}=0.8 \mathrm{~V}$. $\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A}$.
Note 2: For duty cycles (DC) between 50% and 80%, minimum juaranteed switch current is given by lLIM $=0.833(2-D C)$.
Note 3: Minimum input voltage for isolated flyback mode is 7 V .
Note 4: Because the catch diode has a peak repetitive reverse voltage of 20V, diode breakdown may be the limiting factor on input voltage or switch voltage in many applications.

Note 5: See graphs for guaranteed forward voltage and reverse leakage current over temperature. Parameters are 100% tested at $25^{\circ} \mathrm{C}$ and guaranteed at other temperatures by design and QA sampling.
Note 6: Package soldered to FR4 board with $\geq 10 z$ copper and an internal or backside plane underneath the package to aid thermal transfer. Diode is partly thermally coupled to regulator section. See Application Information section for details on thermal calculations.

TYPICAL PERFORMAOCE CHARACTERISTICS

1572601

Line Regulation

Minimum Input Voltage

Reference Voltage vs Temperature

Switch Saturation Voltage

1572 G03
Feedback Bias Current vs Temperature

TYPICRL PGRFORMANCE CHARACTERISTICS

1572 G07

Driver Current* vs Switch Current

* AVERAGE POWER SUPPLY CURRENT IS FOUND BY MULTIPLYING DRIVER CURRENT BY DUTY CYCLE, THEN ADDING QUIESCENT CURRENT.

Supply Current vs Input Voltage*

* UNDER VERY LOW OUTPUT CURRENT CONDITIONS, DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH 10\% OR LESS.

Error Amplifier Transconductance

$\mathbf{V}_{\mathbf{C}}$ Pin Characteristics

Idle Supply Current

vs Temperature

Feedback Pin Clamp Voltage

Switch "Off" Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS

Flyback Blanking Time

Isolated Mode Flyback Reference Voltage

Transconductance of Error Amplifier

Normal/Flyback Mode Threshold on
Feedback Pin

BLOCK DIAGRAM

OPERATION

The LT1572 is a current mode switcher. This means that switch duty cycle is directly controlled by switch current rather than by output voltage. Referring to the block diagram, the switch is turned "on" at the start of each oscillator cycle. It is turned "off" when switch current reaches a predetermined level. Control of output voltage is obtained by using the output of a voltage sensing error amplifier to set current trip level. This technique has several advantages. First, it has immediate response to input voltage variations, unlike ordinary switchers which have notoriously poor line transient response. Second, it reduces the 90° phase shift at mid-frequencies in the energy storage inductor. This greatly simplifies closedloop frequency compensation under widely varying input voltage or output load conditions. Finally, it allows simple pulse-by-pulse current limiting to provide maximum switch protection under output overload or short conditions.

A low dropout internal regulator provides a 2.3 V supply for all internal circuitry on the LT1572. This low dropout design allows input voltage to vary from 3 V to 40 V with virtually no change in device performance. A 100 kHz oscillator is the basic clock for all internal timing. It turns "on" the output switch via the logic and driver circuitry. Special adaptive anti-sat circuitry detects onset of saturation in the power switch and adjusts driver current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn-off of the switch.
A 1.2V bandgap reference biases the positive input of the error amplifier. The negative input is brought out for output voltage sensing. This feedback pin has a second function; when pulled low with an external resistor, it programs the LT1572 to disconnect the main error amplifier output and connects the output of the flyback amplifier

operation

to the comparator input. The LT1572 will then regulate the value of the flyback pulse with respect to the supply voltage. ${ }^{1}$ This flyback pulse is directly proportional to output voltage in the traditional transformer coupled flyback topology regulator. By regulating the amplitude of the flyback pulse, the output voltage can be regulated with no direct connection between input and output. The output is fully floating up to the breakdown voltage of the transformer windings. Multiple floating outputs are easily obtained with additional windings. A special delay network inside the LT1572 ignores the leakage inductance spike at the leading edge of the flyback pulse to improve output regulation.
The error signal developed at the comparator input is brought out externally. This pin $\left(\mathrm{V}_{\mathrm{C}}\right)$ has four different functions. It is used for frequency compensation, current limit adjustment, soft starting, and total regulator shutdown. During normal regulator operation this pin sits at a voltage between 0.9 V (low output current) and 2.0 V (high output current). The error amplifiers are current output $\left(g_{m}\right)$ types, so this voltage can be externally clamped for adjusting current limit. Likewise, a capacitor coupled external clamp will provide soft start. Switch duty cycle goes to zero if the V_{C} pin is pulled to ground through a diode, placing the LT1572 in an idle mode. Pulling the V_{C} pin below 0.15 V causes total regulator shutdown, with only $50 \mu \mathrm{~A}$ supply current for shutdown circuitry biasing. See AN19 for full application details.

E1 and E2 Pins

The LT1572 has the emitters of the power transistor brought out separately from the ground pin. This eliminates errors due to ground pin voltage drops and allows the user to reduce switch current limit 2:1 by leaving the second emitter (E2) disconnected. The first emitter (E1) should always be connected to the ground pin. Note that switch "on" resistance doubles when E2 is left open, so afficiency will suffer somewhat when switch currents exceed 300 mA . Also, note that chip dissipation will actually increase with E2 open during normal load operation, aven though dissipation in current limit mode will decrease.

Other Application Help

More circuits and application help for the LT1572 can be found in the LT1172 data sheet, both in loose form and in the 1994 Linear Databook Volume III. Extensive additional help is contained in Application Note 19. All application circuits using the LT1172 can also use the LT1572 as long as the 20 V maximum reverse voltage of the diode is not exceeded. A CAD program called SwitcherCAD is also available. This program can be used with the LT1572 by simply treating the LT1572 as an LT1172 and ignoring the predicted die temperature results obtained from SwitcherCAD itself.

Thermal Management

Thermal management is particularly important with the LT1572 because both switch and diode power dissipation increase rapidly at low input voltage when using the popular boost topology. Regulator and diode die temperature must be calculated separately because they are not connected to an isothermal plane inside the package. Diode plus regulator thermal resistance is approximately $70^{\circ} \mathrm{C} / \mathrm{W}$ when the LT1572 is soldered to $10 z$ copper traces over an internal or backside copper plane using FR4 board material. However, individual calculation of die temperature must take thermal coupling into account. To accomplish this, thermal resistance is broken into two sections, a common (coupled) section and a second uncoupled section. Die temperatures are calculated from:

$$
\begin{aligned}
& T_{\text {REG }}=T_{A}+P_{\text {REG }}\left(90^{\circ} \mathrm{C} / \mathrm{W}\right)+P_{\text {DIODE }}\left(45^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& T_{\text {DIODE }}=T_{\text {A }}+P_{\text {DIODE }}\left(90^{\circ} \mathrm{C} / \mathrm{W}\right)+P_{\text {REG }}\left(45^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

$T_{A}=$ ambient temperature
$T_{\text {REG }}=$ regulator die temperature
$\mathrm{T}_{\text {DIODE }}$ = diode die temperature
$P_{\text {REG }}=$ total regulator power dissipation
PDIODE $=$ diode power dissipation
The following formulas can be used as a rough guide to calculate LT1572 power dissipation. For more details, the reader is referred to Application Note 19 (AN19), "Efficiency Calculations" section.

[^35]
OPERATION

Average supply current (including driver current) is:

$$
I_{I N} \approx 6 \mathrm{~mA}+I_{S W}(0.004+D C / 40)
$$

$I_{\text {SW }}=$ switch current
DC = switch duty cycle
Switch power dissipation is given by:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{SW}}=\left(\mathrm{I}_{\mathrm{SW}}\right)^{2} \times \mathrm{R}_{\mathrm{SW}} \times \mathrm{DC} \\
& \mathrm{R}_{\mathrm{SW}}=\mathrm{LT} 1572 \text { switch "on" resistance (1 } \Omega \text { maximum) }
\end{aligned}
$$

Total power dissipation is the sum of supply current times input voltage plus switch power:

$$
P_{R E G}=I_{I N} \times V_{I N}+P_{S W}
$$

In a typical example, using a boost converter to generate 12 V at 0.12 A from a 5 V input, duty cycle is approximately 60%, and switch current is about 0.65 A , yielding:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{IN}}=6 \mathrm{~mA}+0.65(0.004+\mathrm{DC} / 40)=18 \mathrm{~mA} \\
& \mathrm{P}_{\mathrm{SW}}=(0.65)^{2} \times 1 \Omega \times 0.6=0.25 \mathrm{~W} \\
& \mathrm{P}_{\text {REG }}=5 \mathrm{~V} \times 0.018 \mathrm{~A}+0.25=0.34 \mathrm{~W}
\end{aligned}
$$

Approximate diode power dissipation for boost and buck converters is shown below. For other topologies or more accurate results, see Application Note 19 or use SwitcherCAD.

$$
\begin{aligned}
& \text { Boost: } P_{\text {DIODE }}=I_{\text {OUT }} \times V_{f} \\
& \text { Buck: } P_{\text {DIODE }}=I_{\text {OUT }} \times V_{f} \times\left(V_{I N}-V_{\text {OUT }}\right) V_{I N}
\end{aligned}
$$

$V_{f}=$ diode forward voltage at a current equal to $I_{\text {OUT }}$ for a buck converter and $\mathrm{I}_{\text {OUT }} \times \mathrm{V}_{\text {OUT }} / V_{\text {IN }}$ for a boost converter.

In most applications, full load current is used to calculate die temperature. However, if overload conditions must also be accounted for, three approaches are possible. First, if loss of regulated output is acceptable under overload conditions, the internal thermal limit of the LT1572 will protect the die in most applications by shutting off switch current. Thermal limit is not a tested parameter, however, and should be considered only for noncritical applications with temporary overloads.

The second approach for lower current applications is to leave the second switch emitter (E2) open. This increases
switch "on" resistance by 2:1, but reduces switch current limit by $2: 1$ also, resulting in a net $2: 1$ reduction in $I^{2} R$ switch dissipation under current limit conditions.
The third approach is to clamp the V_{C} pin to a voltage less than its internal clamp level of 2 V . The LT1172 switch current limit is zero at approximately 1 V on the V_{C} pin and $2 A$ at $2 V$ on the V_{C} pin. Peak switch current can be externally clamped between these two levels with a diode. See AN19 for details.

Diode Characteristics

The catch diode used in the LT1572 is a power Schottky diode with a very low storage time and low forward voltage. This gives good efficiency in switching regulator applications, but some thought must be given to maximum operating voltage and high temperature reverse leakage. Peak repetitive reverse voltage rating on the diode is 20V. In a boost converter, maximum diode reverse voltage is equal to regulated output voltage, so this limits maximum output voltage to 20 V . In a negative-to-positive converter, maximum diode voltage will be equal to the sum of output voltage plus input voltage. Use the equations in Application Note 19 or SwitcherCAD or calculate maximum diode voltage for other topologies.
Diode reverse leakage increases rapidly with temperature. This leakage is not high enough to significantly impact efficiency or diode power dissipation, but it can be of concern in shutdown mode if the diode is connected in such a way that the leakage adds to regulator shutdown current. Use the graphs of diode leakage versus voltage and temperature to ensure proper high temperature system performance.
The LT1572 diode is internally bonded to more than two package pins to reduce internal bond wire currents. All pins must be used to prevent excessive current in the individual internal bond wires. This is important in low load current applications because the LT1572 will draw high surge currents during start-up (to charge the output capacitor) even with no output load current.

OPGRATION

Synchronizing

The LT1572 can be externally synchronized in the frequency range of 120 kHz to 160 kHz . This is accomplished as shown in the accompanying figures. Synchronizing occurs when the V_{C} pin is pulled to ground with an external transistor. To avoid disturbing the DC characteristics of the internal error amplifier, the width of the synchronizing pulse should be under $0.3 \mu \mathrm{~s}$. C2 sets the pulse width at \cong $0.2 \mu \mathrm{~s}$. The effect of a synchronizing pulse on the LT1572 amplifier offset can be calculated from:

$$
\Delta V_{O S}=\frac{\left(\frac{K T}{q}\right)\left(\mathrm{t}_{\mathrm{s}}\right)\left(\mathrm{t}_{\mathrm{s}}\right)\left(\mathrm{I}_{\mathrm{C}}+\frac{V_{C}}{R 3}\right)}{I_{C}}
$$

$\frac{\mathrm{KT}}{\mathrm{q}}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$
$t_{S}=$ pulse width
$\mathrm{f}_{\mathrm{S}}=$ pulse frequency
$I_{C}=V_{C}$ source current $(\approx 200 \mu \mathrm{~A})$
$\mathrm{V}_{\mathrm{C}}=$ operating V_{C} voltage (1 V to 2 V)
R3 = resistor used to set mid-frequency "zero" in frequency compensation network.
With $\mathrm{t}_{\mathrm{S}}=0.2 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{S}}=150 \mathrm{kHz}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$, and $\mathrm{R} 3=2 \mathrm{k}$, offset voltage shift is $\approx 3.8 \mathrm{mV}$. This is not particularly bothersome, but note that high offsets could result if R3 were reduced to a much lower value. Also, the synchronizing transistor must sink higher currents with low values of R3, so larger drives may have to be used. The transistor must כe capable of pulling the V_{C} pin to within 200 mV of ground to ensure synchronizing.

Synchronizing with Bipolar Transistor

Synchronizing with MOS Transistor

TYPICAL APPLICATIONS

Negative Buck Converter

Backlight CCFL Supply (see AN55 for details)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1172	100kHz, 1.25A High Efficiency Switching Regulator	LT1572 Without Diode
LT1173	Micropower DC/DC Converter Adjustable and Fixed 5V, 12V	Operates Down to 2V Input
LT1372	500kHz High Efficiency 1.5A Step-Up Switching Regulator	Latest Technology, Uses Tiny Inductors
LTC1574	High Efficiency Step-Down DC/DC Converter with Internal Schottky Diode	LTC1174 with Diode

High Efficiency Step-Down DC/DC Converters with Internal Schottky Diode

features

- High Efficiency: Up to 94\%
- Usable in Noise-Sensitive Products
- Peak Inductor Current Independent of Inductor Value
- Short-Circuit Protection
- Internal Low Forward Drop Schottky Diode
- Only Three External Components Required
- Wide $\mathrm{V}_{\text {IN }}$ Range: 4 V to 18.5 V (Absolute Maximum)
- Low Dropout Operation
- Low-Battery Detector
- Pin Selectable Current Limit
- Internal 0.9Ω Power Switch: $V_{I N}=12 \mathrm{~V}$
- Standby Current: 130 1 A
- Active Low Micropower Shutdown

APPLICATIONS

- Inverting Converters
- Step-Down Converters
- Memory Backup Supply
- Portable Instruments
- Battery-Powered Equipment
- Distributed Power Systems
$\overline{\mathbf{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

DESCRIPTION

The LTC ${ }^{\circledR} 1574$ is a family of easy-to-use current mode DC/DC converters ideally suited for 9 V to $5 \mathrm{~V}, 5 \mathrm{~V}$ to 3.3 V and inverting operation. With an internal 0.9Ω switch (at a supply voltage of 12 V) and a low forward drop Schottky diode (0.450 V typ at $200 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$), the LTC1574 requires only three external components to construct a complete high efficiency DC/DC converter.
Under no load condition, the LTC1574 draws only $130 \mu \mathrm{~A}$. In shutdown, it draws a mere $2 \mu \mathrm{~A}$ making this converter ideal for battery-powered applications. In dropout, the internal P-channel MOSFET switch is turned on continuously allowing the user to maximize the life of the battery source.

The maximum inductor current of the LTC1574 family is pin selectable to either 340 mA or 600 mA , optimizing efficiency for a wide range of applications. Operation up to 200 kHz permits the use of small surface mount inductors and capacitors.
For applications requiring higher output current or ultrahigh efficiency, see the LTC1148 and LTC1265 data sheets. For detailed applications information, see the LTC1174 data sheet.

TYPICAL APPLICATION

High Efficiency Step-Down Converter

LTC1574-5 Efficiency

LTC 1574

ABSOLUTE MAXIMUM RATInGS

(Voltage Referred to GND Pin)
Input Supply Voltage (Pin 5).................. -0.3 V to 18.5 V
Switch Current (Pin 3, 14) 1A
Switch Voltage (Pin 3, 14) $\mathrm{V}_{\mathrm{IN}}-18.5 \mathrm{~V}$
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Junction Temperature (Note 1)........................... $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V}, \mathrm{v}_{\text {SHUTDOWN }}=\mathrm{V}_{\mathrm{IN}}, \mathrm{I}_{\mathrm{IGM}}=0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {FB }}$	Feedback Current into Pin 10	LTC1574					1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	LTC1574		\bullet	1.20	1.25	1.30	V
$\mathrm{V}_{\text {OUT }}$	Regulated Output Voltage	LTC1574-3.3 LTC1574-5		\bullet	$\begin{aligned} & 3.14 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 3.46 \\ & 5.25 \end{aligned}$	V
$\triangle \mathrm{V}_{\text {OUT }}$	Output Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 12V, $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}, \mathrm{I}_{\text {PGM }}=\mathrm{V}_{\text {IN }}$ (Note 2)				10	70	mV
	Output Voltage Load Regulation	LTC1574-3.3 (Note 2)	$\begin{aligned} & 20 \mathrm{~mA}<I_{\text {LOAD }}<175 \mathrm{~mA}, I_{P G M}=0 V \\ & 20 \mathrm{~mA}<I_{\text {LOAD }}<400 \mathrm{~mA}, I_{\text {PGM }}=\mathrm{V}_{I \mathrm{~N}} \end{aligned}$			$\begin{gathered} -5 \\ -45 \\ \hline \end{gathered}$	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	mV mV
		LTC1574-5 (Note 2)	$\begin{aligned} & 20 \mathrm{~mA}<I_{\text {LOAD }}<175 \mathrm{~mA}, I_{\mathrm{PGM}}=0 \mathrm{~V} \\ & 20 \mathrm{~mA}<I_{\text {LOAD }}<400 \mathrm{~mA}, I_{\mathrm{PGM}}=\mathrm{V}_{I \mathrm{IN}} \end{aligned}$			$\begin{gathered} \hline-5 \\ -50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-70 \\ & -70 \\ & \hline \end{aligned}$	mV mV
10	$\begin{aligned} & \text { Input DC Supply Current (Note 3) } \\ & \text { Active Mode } \\ & \text { Sleep Mode } \\ & \text { Shutdown (Note 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 4 V<V_{\text {IN }}<16 \mathrm{~V}, \mathrm{IPGM}=0 \mathrm{~V} \\ & 4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<16 \mathrm{~V} \\ & V_{\overline{\text { SHUTDOWN }}}=0 \mathrm{~V}, 4 \mathrm{~V}<\mathrm{V}_{\text {IN }}<16 \mathrm{~V} \end{aligned}$				$\begin{gathered} 450 \\ 130 \\ 2 \end{gathered}$	$\begin{aligned} & 600 \\ & 180 \\ & 25 \end{aligned}$	μA μA μA
$\mathrm{V}_{\text {LBTRIP }}$	Low-Battery Trip Point					1.25	1.4	V
ILBIN	Current into Pin 12						0.5	$\mu \mathrm{A}$
Ilbout	Current Sunk by Pin 11	$\begin{aligned} & V_{\text {LBOUT }}=0.4 \mathrm{~V}, V_{\text {LBIN }}=0 \mathrm{~V} \\ & V_{\text {LBOUT }}=5 \mathrm{~V}, V_{\text {LBIN }}=10 \mathrm{~V} \end{aligned}$			0.5	1.0	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	mA $\mu \mathrm{A}$
$\mathrm{V}_{\text {HYST }}$	Comparator Hysteresis				7.5	15	30	mV
IPEAK	Current Limit	$\begin{aligned} & I_{\text {PGM }}=V_{I N}, V_{\text {OUT }}=0 V \\ & I_{\text {PGM }}=0 V, V_{\text {OUT }}=O V \end{aligned}$			$\begin{aligned} & 0.54 \\ & 0.27 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & 0.50 \\ & \hline \end{aligned}$	A A
$\underline{\mathrm{R}_{\text {ON }}}$	ON Resistance of Switch			\bullet		0.9	1.55	Ω
$\mathrm{t}_{\text {OFF }}$	Switch Off Time	$V_{\text {OUT }}$ at Regulated Value			3	4	5	$\mu \mathrm{S}$
$\underline{V_{1 H}}$	Shutdown Pin High	Minimum Voltage at Pin 7 for Device to Be Active			1.2			V
VIL	Shutdown Pin Low	Maximum Voltage at Pin 7 for Device to Be in Shutdown					0.75	V
$\mathrm{IIH}^{\text {l }}$	Shutdown Pin Input Current	$V_{\overline{\text { SHUTDOWN }}}=16 \mathrm{~V}$					2	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=9 \mathrm{~V}, \mathrm{v}_{\text {SHUTDOWN }}=\mathrm{V}_{\mathbb{I N}}, \operatorname{lpgM}=0 \mathrm{~V}$, unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :---: | :---: | :---: | UNITS

The - denotes specifications which apply over the full operating temperature range.
Note 1: T_{J} is calculated from the ambient temperature T_{A} and power dissipation P_{D} according to the following formulas:
$T_{J}=T_{A}+\left(P_{D} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right)$

Note 3: Does not include Schottky reverse current. Dynamic supply current is higher due to the gate charge being delivered at the switching frequency.
Note 4: Current into Pin 5 only, measured without electrolytic input capacitor.

Note 2: Guaranteed by Design.

TYPICAL PGRFORMANCE CHARACTERISTICS

Efficiency Using Different Types of Inductor Core Material

Efficiency vs Load Current

Switch Leakage Current vs Temperature

$1574 \cdot$ TPC05

Efficiency vs Input Voltage

1574•TPC03

Switch Resistance vs Input Voltage

1574•TPC06

PIn functions

NC (Pins 1, 8, 9, 16):No Connection.
GND (Pins 2, 4, 13, 15):Ground.
SW (Pins 3, 14):Drain of P-Channel MOSFET Switch and Cathode of Schottky Diode.
V_{IN} (Pin 5): Input Supply Voltage. It must be decoupled close to ground (Pin 4).

IPgM (Pin 6): This pin selects the current limit of the P-channel switch. With $\mathrm{IPGM}_{\mathrm{PI}}=\mathrm{V}_{\mathbb{I}}$, the current trip point is 600 mA and with $\mathrm{I}_{\mathrm{PgM}}=0 \mathrm{~V}$, the current trip point is reduced to 340 mA .

SHDN (Pin 7): Pulling this pin to ground keeps the internal switch off and puts the LTC1574 in micropower shutdown.
$\mathbf{V}_{\text {OUT }}$ or $\mathrm{V}_{\text {FB }}$ (Pin 10): For the LTC1574, this pin connects to the main voltage comparator input. On the LTC1574-5 and LTC1574-3.3, this pin goes to an internal resistive divider which sets the output voltage.
 This pin will sink current when (Pin 12) LB/|N goes below 1.25 V .
$\mathrm{LB}_{\text {IN }}$ (Pin 12): The (-) Input of the Low-Battery Voltage Comparator. The (+) input is connected to a reference voltage of 1.25 V .

APPLICATIONS INFORMATION

Operating Frequency and Inductor

Since the LTC1574 utilizes a constant off-time architecture, its operating frequency is dependent on the value of V_{IN}. The frequency of operation can be expressed as:

$$
\begin{equation*}
f=\frac{1}{t_{\text {OFF }}}\left(\frac{V_{\text {IN }}-V_{\text {OUT }}}{V_{\text {IN }}+V_{D}}\right) \tag{Hz}
\end{equation*}
$$

where $\mathrm{t}_{\text {OFF }}=4 \mu \mathrm{~s}$ and V_{D} is the voltage drop across the internal Schottky diode. Note that the operating frequency is a function of the input and output voltage.
Although the size of the inductor does not affect the frequency or inductor peak current, it does affect the ripple current. The peak-to-peak ripple current is given by:

$$
I_{\text {RIPPLE }}=4 \times 10^{-6}\left(\frac{V_{\text {OUT }}+V_{D}}{L}\right) \quad\left(A_{P-P}\right)
$$

By choosing a smaller inductor, a low ESR (Effective Series Resistance) output filter capacitor has to be used. Core loss will increase due to higher ripple current.

Short-Circuit Protection

The LTC1574 is protected from output short circuits by its internal current limit. Depending on the condition of the

Ipga pin, the limit is either set to 340 mA or 600 mA . In addition, the off-time of the switch is increased to allow the inductor current to decay far enough to prevent any current build-up (see Figure 1).

Figure 1. Inductor Current with Output Shorted

Low-Battery Detector

The low-battery indicator senses the input voltage through an external resistive divider. This divided voltage connects to the "-" input of a voltage comparator (Pin 12) which is compared with a 1.25 V reference voltage. With the current

APPLICATIONS INFORMATION

going into Pin 12 being negligible, the following expression is used for setting the trip limit:

$$
\mathrm{V}_{\mathrm{LBTRIP}}=1.25\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 3}\right)
$$

Figure 2. Low-Battery Comparator

LTC1574 Adjustable Applications

The LTC1574 develops a 1.25 V reference voltage between the feedback terminal (Pin 10) and ground (see Figure 3). By selecting resistor R1, a constant current is caused to flow through R1 and R2 to set the overall output voltage. The regulated output voltage is determined by:

$$
V_{\text {OUT }}=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

For most applications, a 30k resistor is suggested for R1. To prevent stray pickup, a 100 pF capacitor is suggested across R1 located close to the LTC1574.

Figure 3. LTC1574 Adjustable Configuration

Inverting Applications

The LTC1574 can easily be set up for a negative output voltage. If -5 V is desired, the LTC1574-5 is ideal for this application as it requires the least components. Figure 4 shows the schematic for this application. Note that the output voltage is now taken off the GND pins. Therefore, the maximum input voltage is now determined by the
difference between the absolute maximum voltage rating and the output voltage. A maximum of 12 V is specified in Figure 4 , giving the circuit 1.5 V of headroom for V_{IN}. Note that the circuit can operate from a minimum of 4 V , making it ideal for a four NiCd cell application. For a higher output current circuit, please refer to the Typical Applications section.

Figure 4. Positive-to-Negative 5V Converter

Low Noise Regulators

In some applications it is important not to introduce any switching noise within the audio frequency range. Due to the nature of the LTC1574 during Burst Mode ${ }^{\text {TM }}$ operation, there is a possibility that the regulator will introduce audio noise at some load currents. To circumvent this problem, a feed-forward capacitor can be used to shift the noise spectrum up and out of the audio band. Figure 5 shows the low noise connection with C 2 being the feed-forward capacitor. The peak-to-peak output ripple is reduced to 30 mV over the entire load range. A toroidal surface mount
Burst Mode is a trademark of Linear Technology Corporation

Figure 5. Low Noise 5V to 3.3V Regulator

APPLICATIONS InFORMATION

inductor L1 is chosen for its excellent self-shielding properties. Open magnetic structures such as drum and rod cores are to be avoided since they inject high flux levels into their surroundings. This can become a major source of noise in any converter circuit.

Design Example

As a design example, assume $\mathrm{V}_{I N}=9 \mathrm{~V}$ (nominal), $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ and $\mathrm{I}_{\text {OUT }}=350 \mathrm{~mA}$ maximum. The LTC1574-5 is used for this application with IPGM (Pin 6) connected to $V_{I N}$. The minimum value of L is determined by assuming the LTC1574-5 is operating in continuous mode.

Figure 6. Continuous Inductor Current
With $I_{\text {OUT }}=350 \mathrm{~mA}$ and $I_{\text {PEAK }}=0.6 \mathrm{~A}\left(I_{\text {PGM }}=V_{I N}\right), I_{V}=0.1 \mathrm{~A}$. The peak-to-peak ripple inductor current, $\mathrm{I}_{\text {RIPPLE }}$, is 0.5 A and is also equal to:

$$
I_{\text {RIPPLE }}=4 \times 10^{-6}\left(\frac{V_{O U T}+V_{D}}{L}\right) \quad\left(A_{P-P}\right)
$$

Solving for L in the above equation and with $V_{D}=0.5 \mathrm{~V}$, $L=44 \mu \mathrm{H}$. The next higher standard value of L is $50 \mu \mathrm{H}$ (example: Coiltronics CTX50-4). The operating frequency, ignoring voltage across diode V_{D} is:

$$
\begin{aligned}
f & \approx 2.5 \times 10^{5}\left(1-\frac{V_{O U T}}{V_{I N}}\right) \\
& =111 \mathrm{kHz}
\end{aligned}
$$

With the value of L determined, the requirements for $\mathrm{C}_{I N}$ and $\mathrm{C}_{\text {OUT }}$ are calculated. For C_{IN}, its RMS current rating should be at least:

$$
\begin{aligned}
I_{\text {RMS }} & =\frac{I_{\text {OUT }}\left[V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)\right]^{1 / 2}}{V_{\text {IN }}}\left(A_{\text {RMS }}\right) \\
& =174 \mathrm{~mA}
\end{aligned}
$$

For $\mathrm{C}_{0 \mathrm{UT}}$, the RMS current rating should be at least:

$$
\begin{aligned}
I_{\mathrm{RMS}} & \approx \frac{I_{\text {PEAK }}}{2} \quad\left(\mathrm{~A}_{\mathrm{RMS}}\right) \\
& =300 \mathrm{~mA}
\end{aligned}
$$

TYPICAL APPLICATIONS

Low Noise, High Efficiency 3.3V Regulator

TYPICAL APPLICATIONS

Low Dropout 5V Step-Down Regulator with Low-Battery Detection

High Efficiency 3.3V Regulator

Positive to -5V Converter

LOW-BATTERY INDICATOR IS SET TO TRIP AT $V_{I N}=4.4 \mathrm{~V}$ AVX TPSD106K035 AVX TPSD107K010		
\dagger SELECTION		
MANUFACTURER	PART NO.	TYPE
COILTRONICS	CTX50-3	SURFACE MOUNT
COILCRAFT	DT3316-473	SURFACE MOUNT
SUMIDA	CD54-470	SURFACE MOUNT
GOWANDA	GA10-472K	THROUGH HOLE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT $^{\oplus} 1076$	Step-Down Switching Regulator	2A Monolithic Bipolar Switcher for VIN to 60V
LTC1174	High Efficiency Step-Down/Inverting DC/DC Converter	Same as LTC1574 Without Schottky Diode in S0-8 Package
LTC1265	1.2A, High Efficiency Step-Down DC/DC Converter	Current Mode with 0.3 Switch for Higher Current
LT1375/LT1376	1.5A, 500kHz Step-Down Switching Regulator	High Frequency, Synchronizable in S0-8 Package

SECTION 4—POWER PRODUCTS
PCMCIA HOST AND CARD POWER MANAGEMENT DEVICES 4-393
LT1106, Micropower Step-Up DC/DC Converter for PCMCIA Card Flash Memory 4-146
LTC1262, 12V, 30mA Flash Memory Programming Supply 4-34
LT1312, Single PCMCIA VPP Driver/Regulator 4-394
LT1313, Dual PCMCIA VPP Driver/Regulator 4-405
LTC1314/LTC1315, PCMCIA Switching Matrix with Built-In N-Channel Vcc Switch Drivers 4-415
LTC1470/LTC1471, Single and Dual PCMCIA Protected 3.3V/5V Vcc Switches 4-426
LTC1472, Protected PCMCIA Vcc and VPP Switching Matrix 4-437

Single PCMCIA VPP Driver/Regulator

features

- Digital Selection of OV, $\mathbf{V}_{\text {CC }}, \mathbf{1 2 V}$ or Hi-Z
- 120mA Output Current Capability
- Internal Current Limiting and Thermal Shutdown
- Automatic Switching from 3.3 V to 5 V
- Powered from Unregulated 13 V to 20 V Supply
- Logic Compatible with Standard PCMCIA Controllers
- $1 \mu \mathrm{~F}$ Output Capacitor
- 30uA Quiescent Current in Hi-Z or OV Mode
- VPP Valid Status Feedback Signal
- No VPP Overshoot
- 8-Pin SO Packaging

APPLICATIONS

- Notebook Computers
- Palmtop Computers
- Pen-Based Computers
- Handi-Terminals
- Bar-Code Readers
- Flash Memory Programming

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1312$ is a member of Linear Technology Corporation's family of PCMCIA drivers/regulators. The LT1312 provides $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and $\mathrm{Hi}-\mathrm{Z}$ regulated power to the VPP pin of a PCMCIA card slot from a single unregulated 13 V to 20 V supply. When used in conjunction with a PC card interface controller, the LT1312 forms a complete minimum component-count interface for palmtop, pen-based and notebook computers. The VPP output voltage is selected by two logic compatible digital inputs which interface directly with industry standard PC card interface controllers.

Automatic 3.3 V to 5 V switching is provided by an internal comparator which continuously monitors the PC card $V_{\text {CC }}$ supply and automatically adjusts the regulated VPP output to match $V_{C C}$ when the VPP $=V_{C C}$ mode is selected.
An open-collector VPP VALID output is driven low when VPP is in regulation at 12 V .
The LT1312 is available in an 8-pin S0 package.
$\overline{\boldsymbol{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

TYPICAL APPLICATION
Typical PCMCIA Single Slot VPP Driver

Linear Technology PCMCIA Product Family

DEVICE	DESCRIPTION	PACKAGE
LT1312	SINGLE PCMCIA VPP DRIVER/REGULATOR	8-PIN SO
LT1313	DUAL PCMCIA VPP DRIVER/REGULATOR	16-PIN SO*
LTC $^{\circledR} 1314$	SINGLE PCMCIA SWITCH MATRIX	14-PIN S0
LTC1315	DUAL PCMCIA SWITCH MATRIX	24-PIN SSOP
LTC1470	PROTECTED VC, 5V/3.3V SWITCH MATRIX	8-PIN S0
LTC1472	PROTECTED VCC AND VPP SWITCH MATRIX	16-PIN S0*

*NARROW BODY

ABSOLUTE MAXIMUM RATINGS
jupply Voltage \qquad 22V
Jigital Input Voltage 7V to (GND - 0.3V)
jense Input Voltage 7 V to (GND - 0.3V)
/alid Output Voltage 15V to (GND - 0.3V)
Jutput Short-Circuit DurationIndefinite
)perating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Iunction Temperature $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
3torage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
.ead Temperature (Soldering, 10 sec)
.................. $300^{\circ} \mathrm{C}$
package/order information

TOP VIEW		ORDER PART
	8 VPPout 7 N.C. 6 v_{s} 5 SENSE	
		LT1312CS8
		S8 PART MARKING
$\underset{ }{\text { S-LEAD PLASTIC }}$		1312

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $v_{S}=13 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

iYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
'PPOUT	Output Voltage	$\begin{aligned} & \text { Program to } 12 \mathrm{~V} \text {, I IOUT } \leq 120 \mathrm{~mA} \text { (Note 1) } \\ & \text { Program to } 5 \mathrm{~V} \text {, I IUT } \leq 30 \mathrm{~mA} \text { (Note 1) } \\ & \text { Program to } 3.3 \mathrm{~V} \text {, Iout } \leq 30 \mathrm{~mA} \text { (Note 1) } \\ & \text { Program to } 0 \mathrm{~V} \text {, IOUT }=-300 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{gathered} \hline 11.52 \\ 4.75 \\ 3.135 \end{gathered}$	$\begin{array}{r} 12.00 \\ 5.00 \\ 3.30 \\ 0.42 \end{array}$	$\begin{gathered} 12.48 \\ 5.25 \\ 3.465 \\ 0.60 \end{gathered}$	V V V V
-KG	Output Leakage	Program to Hi-Z, OV $\leq \mathrm{VPP}_{\text {Out }} \leq 12 \mathrm{~V}$	\bullet	-10		10	$\mu \mathrm{A}$
3	Supply Current	Program to OV Program to $\mathrm{Hi}-\mathrm{Z}$ Program to 12V, No Load Program to 5V, No Load Program to 3.3V, No Load Program to $12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$ Program to 5 V , I IOUT $=30 \mathrm{~mA}$ Program to $3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 30 \\ 30 \\ 230 \\ 75 \\ 55 \\ 126 \\ 31 \\ 31 \end{gathered}$	$\begin{gathered} \hline 50 \\ 50 \\ 360 \\ 120 \\ 90 \\ 132 \\ 33 \\ 33 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ μA mA mA mA
IM	Current Limit	Program to $3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V			330	500	mA
ENH	Enable Input High Voltage		\bullet	2.4			V
ENL	Enable Input Low Voltage		\bullet			0.4	V
: NH	Enable Input High Current	$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$			20	50	$\mu \mathrm{A}$
:NL	Enable Input Low Current	$\mathrm{OV} \leq \mathrm{V}_{\text {IN }} \leq 0.4 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
SEN5	$\mathrm{V}_{\text {CC }}$ Sense Threshold	VPP ${ }_{\text {OUT }}=3.3 \mathrm{~V}$ to 5 V	\bullet	3.60	4.05	4.50	V
SEN3	$\mathrm{V}_{\text {CC }}$ Sense Threshold	VPP ${ }_{\text {OUT }}=5 \mathrm{~V}$ to 3.3 V	\bullet	3.60	4.00	4.50	V
iEN	$V_{\text {CC }}$ Sense Input Current	$\begin{aligned} & V_{\text {SENSE }}=5 \mathrm{~V} \\ & V_{\text {SENSE }}=3.3 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 38 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
VALID TH	VPP $\overline{\text { VALID }}$ Threshold Voltage	Program to 12V	\bullet	10.5	11	11.5	V
$\overline{\text { ILLID }}$	VPP VALID Output Drive Current	Program to 12V, $\mathrm{V}_{\overline{\text { VALID }}}=0.4 \mathrm{~V}$		1	3.3		mA
	VPP $\overline{\text { VALID }}$ Output Leakage Current	Program to $0 \mathrm{~V}, \mathrm{~V}_{\overline{\text { VALID }}}=12 \mathrm{~V}$			0.1	10	$\mu \mathrm{A}$

he - denotes the specifications which apply over the full operating mperature range.

Note 1: For junction temperatures greater than $110^{\circ} \mathrm{C}$, a minimum load of 1 mA is recommended.

TYPICAL PGRFORMANCE CHARACTERISTICS

Ground Pin Current (12V Mode)

Ground Pin Current

Quiescent Current (12V Mode)

Ground Pin Current (5V Mode)

LT1312 G5

Quiescent Current (3.3V/5V Mode)

Ground Pin Current (3.3V Mode)

Current Limit

LT1312 G7

TYPICAL PGRFORmANCE CHARACTERISTICS

PIn functions

Supply Pin: Power is supplied to the device through the supply pin. The supply pin should be bypassed to ground if the device is more than 6 inches away from the main supply capacitor. A bypass capacitor in the range of $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ is sufficient. The supply voltage to the LT1312 can be loosely regulated between 13 V and 20 V . See Applications Information section for more detail.

VPP ${ }_{\text {OUT }}$ Pin: This regulated output supplies power to the PCMCIA card VPP pins which are typically tied together at the card socket. The VPP ${ }_{\text {OUT }}$ output is current limited to approximately 330 mA . Thermal shutdown provides a second level of protection. A $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum output capacitor is recommended. See Applications Information section for more detail on output capacitor considerations.
Input Enable Pins: The two digital input pins are high impedance inputs with approximately $20 \mu \mathrm{~A}$ input current
at 2.4V. The input thresholds are compatible with CMOS controllers and can be driven from either 5 V or 3.3 V CMOS logic. ESD protection diodes limit input excursions to 0.6 V below ground.
VALID Output Pin: This pin is an open-collector NPN output which is driven low when the VPP ${ }_{\text {OUt }}$ pin is in regulation, i.e., when it is above 11V. An external 51 k pullup resistor is connected between this output and the same 5 V or 3.3 V logic supply powering the PCMCIA compatible control logic.
$V_{\text {CC }}$ Sense Pin: A built-in comparator and 4 V reference automatically switches the VPP out from 5 V to 3.3 V depending upon the voltage sensed at the PCMCIA card socket $V_{C C}$ pin. The input current for this pin is approximately $30 \mu \mathrm{~A}$. For 5 V only operation, connect the Sense pin directly to ground. An ESD protection diode limits the input voltage to 0.6 V below ground.

BLOCK DIAGRAM

OPERATION

The LT1312 is a programmable output voltage, lowdropout linear regulator designed specifically for PCMCIA VPP drive applications. Input power is typically obtained from a loosely regulated input supply between 13 V and 20 V (see Applications Information section for more detail on the input power supply). The LT1312 consists of the following blocks:
Low Dropout Voltage Linear Regulator: The heart of the LT1312 is a PNP-based low-dropout voltage regulator which drops the unregulated supply voltage from 13 V to 20 V down to $12 \mathrm{~V}, 5 \mathrm{~V}, 3.3 \mathrm{~V}$, 0 V or Hi-Z depending upon the state of the two Enable inputs and the V_{CC} Sense input. The regulator has built-in current limiting and thermal shutdown to protect the device, the load, and the socket against inadvertent short circuiting to ground.

Voltage Control Logic: The LT1312 has five possible output modes: $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and $\mathrm{Hi}-\mathrm{Z}$. These five modes are selected by the two Enable inputs and the $V_{C C}$ Sense input as described by the Truth Table.
$V_{\text {CC }}$ Sense Comparator: When the $V_{\text {CC }}$ mode is selected, the LT1312 automatically adjusts the regulated VPP output voltage to 3.3 V or 5 V depending upon the voltage present at the PC card $V_{C C}$ supply pin. The threshold voltage for the comparator is set at 4 V and there is approximately 50 mV of hysteresis provided to ensure clean switching between 3.3 V and 5 V .
VPP VALID Comparator: A voltage comparator monitors the output voltage when the 12 V mode is selected and is driven low when the output is in regulation above 11 V .

APPLICATIONS Information

The LT1312 is a voltage programmable linear regulator designed specifically for PCMCIA VPP driver applications. The device operates with very low quiescent current ($30 \mu \mathrm{~A}$) in the OV and $\mathrm{Hi}-\mathrm{Z}$ modes of operation. In the $\mathrm{Hi}-\mathrm{Z}$ node, the output leakage current falls to $1 \mu \mathrm{~A}$. Unloaded quiescent current rises to only $55 \mu \mathrm{~A}$ and $75 \mu \mathrm{~A}$ when rogrammed to 3.3 V and 5 V respectively. In addition to he low quiescent currents, the LT1312 incorporates sev3ral protection features which make it ideal for PCMCIA ipplications. The LT1312 has built-in current limiting 330 mA) and thermal shutdown to protect the device and he socket VPP pins against inadvertent short-circuit ;onditions.

IUXILIARY WINDING POWER SUPPLIES

3ecause the LT1312 provides excellent output regulation, he input power supply may be loosely regulated. One ;onvenient (and economic) source of power is an auxiliary vinding on the main 5 V switching regulator inductor in the nain system power supply.

.TC ${ }^{\circledR} 1142 \mathrm{HV}$ Auxiliary Winding Power Supply

:igure 1 is a schematic diagram which describes how a oosely regulated 14 V power supply is created by adding
an auxiliary winding to the 5 V inductor in a split $3.3 \mathrm{~V} / 5 \mathrm{~V}$ LTC1142HV power supply system. A turns ratio of $1: 1.8$ is used for transformer T1 to ensure that the input voltage to the LT1312 falls between 13 V and 20 V under all load conditions. The 9V output from this additional winding is rectified by diode D2, added to the main 5V output and applied to the input of the LT1312. (Note that the auxiliary winding must be phased properly as shown in Figure 1.)
The auxiliary winding is referenced to the 5 V output which provides DC current feedback from the auxiliary supply to the main 5 V section. The AC transient response is improved by returning the negative lead of C 5 to the 5 V output as shown.
When the 12 V output is activated by a TTL high on the Enable line, the 5 V section of the LTC1142HV is forced into continuous mode operation. A resistor divider composed of R2, R3 and switch Q3 forces an offset which is subtracted from the internal offset at the Sense-input (pin 14) of the LTC 1142 HV . When this external offset cancels the built-in 25 mV offset, Burst Mode ${ }^{\mathrm{TM}}$ operation is inhibited and the LTC1142HV is forced into continuous mode operation. (See the LTC1142HV data sheet for further detail). In this mode, the 14 V auxiliary supply can be

[^36]
APPLICATIONS InFORMATION

Figure 1. Deriving 14V Power from an Auxiliary Winding on the LTC1142HV 5V Regulator
loaded without regard to the loading on the 5 V output of the LTC1142HV.

Continuous mode operation is only invoked when the LT1312 is programmed to 12 V . If the LT1312 is programmed to $0 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V , power is obtained directly from the main power source (battery pack) through diode D1. Again, the LT1312 output can be loaded without regard to the loading of the main 5 V output.
R4 and C4 absorb transient voltage spikes associated with the leakage inductance inherent in $\mathrm{T1}$'s secondary winding and ensure that the auxiliary supply does not exceed 20 V .

Figure 2 is a graph of output voltage versus output current for the auxiliary 14 V supply shown in Figure 1. Note that the auxiliary supply voltage is slightly higher when the 5 V output is heavily loaded. This is due to the increased energy flowing through the main 5 V inductor.

LTC1142 Auxiliary Power from the 3.3V Output

The circuit of Figure 1 can be modified for operation with low-battery count applications (6 cell). As the input voltage falls, the 5 V duty cycle increases to the point where
there is simply not enough time to transfer energy from the 5 V primary to the auxiliary winding. For applications where heavy 12 V load currents exist in conjunction with low input voltages ($<6.5 \mathrm{~V}$), the auxiliary winding can be derived from the 3.3 V section instead of the 5 V section of the LTC1142. In this case, a transformer with a turns ratio of $1: 3.4$ to $1: 3.6$ should be used in place of the 3.3 V section

Figure 2. LTC1142 Auxiliary Supply Voltage

IPPLICATIONS INFORMATION

Iductor as shown in Figure 3. MOSFET Q4 and diode D4 ave been added and diode D1 is no longer used. In the revious circuit, power is drawn directly from the batteries rough D1, when the LTC1142 is in Burst Mode operation nd the VPP pin requires 3.3 V or 5 V . For these lower input oltages this technique is no longer valid as the input will ill below the LT1312 regulator's dropout voltage. To orrect for this situation, the additional switch Q4 forces le switching regulator into continuous mode operation /henever $3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V is selected.

INE POWERED SUPPLIES

I line operated products such as: desktop computers, edicated PC card readers/writers, medical equipment, ist and measurement equipment, etc., it is possible to erive power from a relatively "raw" source such as a 5 V $r 12 \mathrm{~V}$ power supply. The 12V supply line in a desktop omputer however, is usually too "dirty" to apply directly) the VPP pins of a PCMCIA card socket. Power supply witching and load transients may create voltage spikes
on this line that may damage sensitive PCMCIA flash memory cards if applied directly to the VPP pins.

Flash Memory Card VPP Power Considerations

PCMCIA compatible flash memory cards require tight regulation of the 12 V VPP programming supply to ensure that the internal flash memory circuits are never subjected to damaging conditions. Flash memory circuits are typically rated with an absolute maximum of 13.5 V and VPP must be maintained at $12 \mathrm{~V} \pm 5 \%$ under all possible load conditions during erase and program cycles. Undervoltage can decrease specified flash memory reliability and overvoltage can damage the device ${ }^{1}$.

Generating 14V from 5V or 12V

It is important that the 12V VPP supply for the two VPP lines to the card be free of voltage spikes. There should be little or no overshoot during transitions to and from the 12 V level.
${ }^{1}$ See Application Note AP-357, "Power Supply Solutions for Flash Memory," Intel Corporation, 1992.

Figure 3. Deriving Auxiliary 14V Power from an LTC1142 3.3V Regulator

APPLICATIONS INFORMATION

Figure 4. Local 5V to 15V Boost Regulator for Line Operated Applications

Figure 5. Local 12V to 15V Boost Regulator for Line Operated Applications

This is easily accomplished by generating a local 14 V supply from a relatively "dirty" 5V or 12 V supply as shown in Figures 4 and 5. Precise voltage control (and further filtering) is provided by the LT1312 driver/regulator. A further advantage to this scheme is that it adds current limit in series with the VPP pins to eliminate possible damage to the card socket, the PC card, or the switching power supply in the event of an accidental short circuit.

Output Capacitance

The LT1312 is designed to be stable with a wide range of output capacitors. The minimum recommended value is a $1 \mu \mathrm{~F}$ with an ESR of 3Ω or less. The capacitor is connected directly between the output pin and ground as shown in Figure 6.

For applications where space is very limited, capacitors as low as $0.33 \mu \mathrm{~F}$ can be used. Extremely low ESR ceramic capacitors with values less than $1 \mu \mathrm{~F}$ must have a 2Ω resistor added in series with the output capacitor as shown in shown in Figure 7.

Figure 6. Recommended >1 PF Tantalum Output Capacitor

Figure 7. Using a $0.33, \mathrm{~F}$ to $1 \mu \mathrm{~F}$ Output Capacitor

TPPLICATIONS INFORMATION

'ransient and Switching Performance

he LT1312 is designed to produce minimal overshoot with ;apacitors in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$. Larger capacitor 'alues can be used with a slowing of rise and fall times.
he positive output slew rate is determined by the 330 mA ;urrent limit and the output capacitor. The rise time for a IV to 12 V transition is approximately $40 \mu \mathrm{~s}$, the rise time or a $10 \mu \mathrm{~F}$ capacitor is roughly $400 \mu \mathrm{~s}$ (see the Transient lesponse curves in the Typical Performance Characterisics section).
he fall time from 12 V to 0 V is set by the output capacitor nd an internal pull-down current source which sinks bout 30 mA . This source will fully discharge a $1 \mu \mathrm{~F}$ capacior in less than 1 ms .

hermal Considerations

'ower dissipated by the device is the sum of two compoients: output current multiplied by the input-output differntial voltage $\mathrm{I}_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$, and ground pin current nultiplied by supply voltage $\mathrm{I}_{\mathrm{GND}} \times \mathrm{V}_{\mathrm{IN}}$.
he ground pin current can be found by examining the iround Pin Current curves in the Typical Performance 'haracteristics section.
leat sinking, for surface mounted devices, is accomlished by using the heat spreading capabilities of the PC oard and its copper traces.
he junction temperature of the LT1312 must be limited to $25^{\circ} \mathrm{C}$ to ensure proper operation. Use Table 1 in conjuncon with the typical performance graphs, to calculate the ower dissipation and die temperature for a particular pplication and ensure that the die temperature does not xceed $125^{\circ} \mathrm{C}$ under any operating conditions.

Table 1. S8 Package*

COPPER AREA			THERMAL RESISTANCE TOPSIDE		
BACKSIDE				BOARD AREA	(JUNCTION-TO-AMBIENT)
:---:					

*Device is mounted topside.

Calculating Junction Temperature

Example: given an output voltage of 12V, an input supply voltage of 14 V , an output current of 100 mA , and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?

Power dissipated by the device will be equal to:

$$
I_{O U T} \times\left(V_{S}-V_{P P} P_{O U T}\right)+\left(I_{G N D} \times V_{I N}\right)
$$

where:

$$
\begin{aligned}
& I_{\text {OUT }}=100 \mathrm{~mA} \\
& V_{I N}=14 \mathrm{~V} \\
& I_{G N D} \text { at }\left(I_{\text {OUT }}=100 \mathrm{~mA}, V_{I N}=14 \mathrm{~V}\right)=5 \mathrm{~mA}
\end{aligned}
$$

SO,

$$
P_{D}=100 \mathrm{~mA} \times(14 \mathrm{~V}-12 \mathrm{~V})+(5 \mathrm{~mA} \times 15 \mathrm{~V})=0.275 \mathrm{~W}
$$

Using Table 1, the thermal resistance will be in the range of $120^{\circ} \mathrm{C} / \mathrm{W}$ to $131^{\circ} \mathrm{C} / \mathrm{W}$ depending upon the copper area. So the junction temperature rise above ambient will be less than or equal to:

$$
0.275 \mathrm{~W} \times 131^{\circ} \mathrm{C} / \mathrm{W}=36^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\text {JMAX }}=50^{\circ} \mathrm{C}+36^{\circ} \mathrm{C}=86^{\circ} \mathrm{C} .
$$

TYPICAL APPLICATIONS

Single Slot Interface to CL-PD6710

Single Slot Interface to "365" Type Controller

RELATED PARTS

See PCMCIA Product Family table on the first page of this data sheet.

Dual PCMCIA VPP Driver/Regulator

FGATURES

- Digital Selection of OV, VCC, 12V or Hi-Z
- Output Current Capability: 120 mA

I Internal Current Limiting and Thermal Shutdown

- Automatic Switching from 3.3V to 5V
- Powered from Unregulated 13 V to 20 V Supply
- Logic Compatible with Standard PCMCIA Controllers
- Output Capacitors: $1 \mu \mathrm{~F}$
- Quiescent Current in Hi-Z or OV Mode: $60 \mu \mathrm{~A}$
- Independent VPP Valid Status Feedback Signals
- No VPP Overshoot

IPPLICATIONS

- Notebook Computers
- Palmtop Computers
- Pen-Based Computers
- Handi-Terminals
- Bar-Code Readers

I Flash Memory Programming

DESCRIPTION

The $\mathrm{LT}^{\circledR} 1313$ is a member of Linear Technology Corporation's PCMCIA driver/regulator family. It provides $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and $\mathrm{Hi}-\mathrm{Z}$ regulated power to the VPP pins of two PCMCIA card slots from a single unregulated 13 V to 20 V supply. When used in conjunction with a PC Card Interface Controller, the LT1313 forms a complete minimum component-count interfaceforpalmtop, pen-based and notebook computers. The two VPP output voltages are independently selected by four logic compatible digital inputs which interface directly with industry standard PC Card Interface Controllers.

Automatic 3.3 V to 5 V switching is provided by two independent comparators which continuously monitor each PC card $V_{C C}$ supply voltage and automatically adjust the VPP output to match the associated $V_{C C}$ pin voltage when the VPP $=\mathrm{V}_{\text {CC }}$ mode is selected.
Two open-collector VPP VALID outputs are provided to indicate when the VPP outputs are in regulation at 12V.

The LT1313 is available in 16-pin SO packaging.

[^37]
IYPICAL APPLICATION

Typical PCMCIA Dual Slot VPP Driver

Linear Technology PCMCIA Product Family

DEVICE	DESCRIPTION	PACKAGE
LT1312	SINGLE PCMCIA VPP DRIVER/REGULATOR	8-PIN SO
LT1313	DUAL PCMCIA VPP DRIVER/REGULATOR	16 -PIN S0*
LTC 1314	SINGLE PCMCIA SWITCH MATRIX	14-PIN S0
LTC1315	DUAL PCMCIA SWITCH MATRIX	24-PIN SSOP
LTC1470	PROTECTED VCC 5 S/3.3V SWITCH MATRIX	8-PIN S0
LTC1472	PROTECTED VCC AND VPP SWITCH MATRIX	16-PIN S0*

*NARROW BODY

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 22 V
Digital Input Voltage 7 V to (GND - 0.3 V)
Sense Input Voltage.......................7V to (GND - 0.3V)
VALID Output Voltage 15V to (GND - 0.3V)
Output Short-Circuit Duration Indefinite
Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Junction Temperature............................ $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $V_{S}=13 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 1), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
VPPOUT	Output Voltage	$\begin{aligned} & \text { Program to } 12 \mathrm{~V}, \mathrm{I}_{\text {OUT }} \leq 120 \mathrm{~mA} \text { (Note } 2 \text {) } \\ & \text { Program to } 5 \mathrm{~V}, \mathrm{I}_{\text {OUT }} \leq 30 \mathrm{~mA} \text { (Note 2) } \\ & \text { Program to } 3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }} \leq 30 \mathrm{~mA} \text { (Note 2) } \\ & \text { Program to } 0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-300 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{gathered} 11.52 \\ 4.75 \\ 3.135 \end{gathered}$	$\begin{gathered} 12.00 \\ 5.00 \\ 3.30 \\ 0.42 \end{gathered}$	$\begin{gathered} 12.48 \\ 5.25 \\ 3.465 \\ 0.60 \end{gathered}$	V V V V
ILKG	Output Leakage	Program to Hi-Z, $\mathrm{OV} \leq \mathrm{VPP}_{\text {OUT }} \leq 12 \mathrm{~V}$	\bullet	-10		10	$\mu \mathrm{A}$
I_{S}	Supply Current	Both Channels Programmed to OV Both Channels Programmed to $\mathrm{Hi}-\mathrm{Z}$ One Channel Programmed to 12V, No Load (Note 3) One Channel Programmed to 5V, No Load (Note 3) One Channel Programmed to 3.3V, No Load (Note 3) One Channel Programmed to $12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=120 \mathrm{~mA}$ (Note 3) One Channel Programmed to 5 V , $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$ (Note 3) One Channel Programmed to 3.3 V , $\mathrm{I}_{\text {OUT }}=30 \mathrm{~mA}$ (Note 3)			$\begin{gathered} 60 \\ 60 \\ 260 \\ 105 \\ 85 \\ 126 \\ 31 \\ 31 \end{gathered}$	$\begin{aligned} & \hline 100 \\ & 100 \\ & 400 \\ & 150 \\ & 120 \\ & 132 \\ & 33 \\ & 33 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA mA
ILIM	Current Limit	Program to 3.3V, 5V or 12V (Note 3)			330	500	mA
$\mathrm{V}_{\text {ENH }}$	Enable Input High Voltage		\bullet	2.4			V
$\mathrm{V}_{\text {ENL }}$	Enable Input Low Voltage		\bullet			0.4	V
IENH	Enable Input High Current	$2.4 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$			20	50	$\mu \mathrm{A}$
IENL	Enable Input Low Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 0.4 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SEN5 }}$	$V_{\text {CC }}$ Sense Threshold	VPP ${ }_{\text {OUT }}=3.3 \mathrm{~V}$ to 5V (Note 4)	\bullet	3.60	4.05	4.50	V
$\mathrm{V}_{\text {SEN } 3}$	$V_{\text {CC }}$ Sense Threshold	VPP ${ }_{\text {OUT }}=5 \mathrm{~V}$ to 3.3V (Note 4)	\bullet	3.60	4.00	4.50	V
$\mathrm{I}_{\text {SEN }}$	$V_{\text {CC }}$ Sense Input Current	$\begin{aligned} & V_{\text {SENSE }}=5 \mathrm{~V} \\ & V_{\text {SENSE }}=3.3 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 38 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {VALID TH }}$	VPPPALID Threshold Voitage	Program to 12V, (Note 5)	-	10.5	11	11.5	V
$\overline{\text { VALID }}$	VPPVALID Output Drive Current	Program to 12V, $\mathrm{V}_{\text {VALID }}=0.4 \mathrm{~V}$, (Note 5)		1	3.3		mA
	VPP VALID Output Leakage Current	Program to OV, V VALID $=12 \mathrm{~V}$, (Note 5)			0.1	10	$\mu \mathrm{A}$

The denotes the specifications which apply over the full operating temperature range.
Note 1: Both V_{S} pins $(10,14)$ must be connected together, and both ground pins $(1,5)$ must be connected together.
Note 2: For junction temperatures greater than $110^{\circ} \mathrm{C}$, a minimum load of 1 mA is recommended.

Note 3: The other channel is programmed to the OV mode (XENO = XEN1 $=0 \mathrm{~V}$) during this test.
Note 4: The $V_{C C}$ sense threshold voltage tests are performed independently.
Note 5: The VPP VALID tests are performed independently.

YPICAL PERFORmANCE CHARACTERISTICS

Quiescent Current (3.3V/5V Mode)

Ground Pin Current (3.3V Mode)

1313 G07

Current Limit

Current Limit

LT1313
TYPICAL PGRFORMANC CHARACTERISTICS

12V Turn-On Waveform

Line Transient Response (12V)

Load Transient Response (12V)

In functions

ipply Pins: Power is supplied to the device through the '0 supply pins which must be connected together at all nes. The supply pins should be bypassed to ground if e device is more than six inches away from the main pply capacitor. A bypass capacitor in the range of $0.1 \mu \mathrm{~F}$ $1 \mu \mathrm{~F}$ is sufficient. The supply voltage to the LT1313 can loosely regulated between 13 V and 20 V .
${ }^{\prime} P_{\text {OUT }}$ Pins: Each regulated output supplies power to the 'o PCMCIA card VPP pins which are typically tied tother at the socket. Each VPP OUT output is current limited approximately 330 mA . Thermal shutdown provides a cond level of protection. A $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum output pacitor is recommended.
put Enable Pins: The four digital input pins are high ipedance inputs with approximately $20 \mu \mathrm{~A}$ input current 2.4 V . The input thresholds are compatible with CMOS ntrollers and can be driven from either 5 V or 3.3V CMOS gic. ESD protection diodes limit input excursions to 0.6 V low ground.

VALID Output Pins: These pins are open-collector NPN outputs which are driven low when the corresponding VPP ${ }_{\text {OUT }}$ pin is in regulation, i.e., when it is above 11V. Two external 51k pull-up resistors are connected between these outputs and the same 5 V or 3.3 V logic supply powering the PCMCIA compatible control logic.
$\mathbf{V}_{\text {cc }}$ Sense Pins: Two independent comparators and 4V references automatically switch the VPP OUT outputs from 5 V to 3.3 V depending upon the voltage sensed at the corresponding PCMCIA card socket $\mathrm{V}_{C C}$ pin. The input current for these pins is approximately $30 \mu \mathrm{~A}$. For 5 V only operation, connect the Sense pins directly to ground. An ESD protection diode limits the input voltage to 0.6 V below ground.
Ground Pins: The two ground pins must be connected together at all times.

LOCK DIAGRAm
 (One Channel)

operation

The LT1313 is two programmable output voltage, lowdropoutlinear regulators designed specifically for PCMCIA VPP drive applications. Input power is typically obtained from a loosely regulated input supply between 13 V and 20V. The LT1313 consists of the following blocks:
Two Low Dropout Voltage Linear Regulators: The heart of the LT1313 is two PNP-based low-dropout voltage regulators which drop the unregulated supply voltage from 13 V to 20 V down to $12 \mathrm{~V}, 5 \mathrm{~V}, 3.3 \mathrm{~V}$, 0 V or $\mathrm{Hi}-\mathrm{Z}$ depending upon the state of the four Enable inputs and the two $V_{C C}$ Sense inputs. The regulators have built-in current limiting and thermal shutdown to protect the device, the loads, and the sockets against inadvertent short circuiting to ground.

Voltage Control Logic: The two VPP ${ }_{\text {OUT }}$ outputs have five possible output modes: $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and $\mathrm{Hi}-\mathrm{Z}$. These five modes are selected by the four Enable inputs and the two $V_{C C}$ Sense inputs as described by the Truth Table.
$V_{c c}$ Sense Comparators: When the $V_{C C}$ mode is selected, the LT1313 automatically adjusts each regulated VPP output voltage to 3.3 V or 5 V depending upon the voltage present
at the corresponding PC card $\mathrm{V}_{C C}$ supply pin. The thresh old voltage for these comparators is set at 4 V and there i approximately 50 mV of hysteresis provided to ensur clean switching between 3.3 V and 5 V .
VPP VALID Comparator: Two voltage comparators moni tor each outputvoltage when the 12 V mode is selected anı are driven low when the output is in regulation above 11V These two outputs function separately.
LT1313 Truth Table

AENO	AEN1	ASENSE	AVPP	
0	0	X	$\overline{\text { AVALID }}$	
1	0	X	12 V	1
0	1	3.0 V to 3.6 V	3.3 V	0
0	1	4.5 V to 5.5 V	5 V	1
1	1	X	$\mathrm{Hi}-\mathrm{Z}$	1
$\mathrm{X}=$ Don't Care				
BEN0	BEN1	BSENSE	BVPPout	$\overline{\text { BVALID }}$
0	0	X	0 V	1
1	0	X	12 V	0
0	1	3.0 V to 3.6 V	3.3 V	1
0	1	4.5 V to 5.5 V	5 V	1
1	1	X	$\mathrm{Hi}-\mathrm{Z}$	1

Note: Each channel is independently controlled.

APPLICATIONS IIFORMATION

The LT1313 is two voltage programmable linear regulators designed specifically for PCMCIA VPP driver applications. The device operates with very low quiescent current $(60 \mu \mathrm{~A})$ in the OV and $\mathrm{Hi}-\mathrm{Z}$ modes of operation. In the $\mathrm{Hi}-\mathrm{Z}$ mode, the output leakage current falls to $1 \mu \mathrm{~A}$. In addition to the low quiescent currents, the LT1313 incorporates several protection features which make it ideal for PCMCIA applications. The LT1313 has built-in current limiting (330 mA) and thermal shutdown to protect the device and the socket VPP pins against inadvertent short-circuit conditions.

Output Capacitance

The LT1313 is designed to be stable with a wide range of output capacitors. The minimum recommended value is a $1 \mu \mathrm{~F}$ with an ESR of 3Ω or less. The capacitor is connected directly between the output pin and ground. For applications where space is very limited, capacitors as low as $0.33 \mu \mathrm{~F}$ can
be used. Extremely low ESR ceramic capacitors with values less than $1 \mu \mathrm{~F}$ must have a 2Ω resistor added in series witl the output capacitor.

Transient and Switching Performance

The LT1313 is designed to produce minimal overshoo with capacitors in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$. Large capacitor values can be used with a slowing of rise anc fall times.
The positive output slew rate is determined by the $330 \mathrm{~m} /$ current limit and the output capacitor. The rise time for : 0 V to 12 V transition is approximately $40 \mu \mathrm{~s}$ and the rist time for a $10 \mu \mathrm{~F}$ capacitor is roughly $400 \mu \mathrm{~s}$ (see the Transient Response curves in the Typical Performance Characteristics section).

IPPLICATIONS INFORMATION

he fall time from 12 V to 0 V is set by the output capacitor nd an internal pull-down current source which sinks bout 30 mA . This source will fully discharge a $1 \mu \mathrm{~F}$ capacior in less than 1 ms .

hermal Considerations

'ower dissipated by the device is the sum of two compoents: output current multiplied by the input-output differntial voltage: $I_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$, and ground pin current iultiplied by supply voltage: ($\left.\mathrm{I}_{\mathrm{GND}} \times \mathrm{V}_{\mathrm{IN}}\right)$.
he ground pin current can be found by examining the iround Pin Current curves in the Typical Performance haracteristics section.
leat sinking, for surface mounted devices, is accomlished by using the heat spreading capabilities of the PC oard and its copper traces.
he junction temperature of the LT1313 must be limited to $25^{\circ} \mathrm{C}$ to ensure proper operation. Use Table 1, in coninction with the typical performance graphs, to calculate le power dissipation and die temperature for a particular pplication and ensure that the die temperature does not xceed $125^{\circ} \mathrm{C}$ under any operating conditions.
able 1. 16-Pin SO Package*

COPPER AREA			THERMAL RESISTANCE
JPSIDE	BACKSIDE	BOARD AREA	

Jevice is mounted on topside.

Calculating Junction Temperature

Example: given an output voltage of 12 V , an input supply voltage of 14 V , and an output current of 100 mA (one VPP output), and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?

Power dissipated by the device will be equal to:

$$
I_{O U T} \times\left(V_{S}-V_{P P} \text { OUT }\right)+\left(I_{G N D} \times V_{I N}\right)
$$

where,

$$
\begin{aligned}
& I_{\text {OUT }}=100 \mathrm{~mA} \\
& V_{\text {IN }}=14 \mathrm{~V} \\
& I_{\text {GND }} \text { at }\left(I_{\text {OUT }}=100 \mathrm{~mA}, V_{\text {IN }}=14 \mathrm{~V}\right)=5 \mathrm{~mA}
\end{aligned}
$$

SO,

$$
P_{D}=100 \mathrm{~mA} \times(14 \mathrm{~V}-12 \mathrm{~V})+(5 \mathrm{~mA} \times 15 \mathrm{~V})=0.275 \mathrm{~W}
$$

Using Table 1, the thermal resistance will be in the range of $120^{\circ} \mathrm{C} / \mathrm{W}$ to $131^{\circ} \mathrm{C} / \mathrm{W}$ depending upon the copper area. So the junction temperature rise above ambient will be less than or equal to:

$$
0.275 \mathrm{~W} \times 131^{\circ} \mathrm{C} / \mathrm{W}=36^{\circ} \mathrm{C}
$$

The maximum junction temperature will then be equal to the junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+36^{\circ} \mathrm{C}=86^{\circ} \mathrm{C}
$$

Formore detailed applications information, see the LT1312 Single PCMCIA VPP Driver/Regulator data sheet.

TYPICAL APPLICATIONS

Dual Slot PCMCIA Interface to CL-PD6720

YPICAL APPLICATIONS

Dual Slot PCMCIA Interface to "365" Type Controller

LT1313

TYPICAL APPLICATIONS

Dual Slot PCMCIA Driver/Regulator Powered from
Auxiliary Winding on 5V Inductor of LTC1142HV Dual 5V/3.3V Switching Regulator

RELATED PARTS

See PCMCIA Product Family table on the first page of this data sheet.

:EATURES

I Output Current Capability: 120 mA
I External 12V Regulator Can Be Shut Down
I Built-In N-Channel VCC Switch Drivers
I Digital Selection of OV, $\mathrm{V}_{\text {CCIN }}$, VPP IN or $\mathrm{Hi}-Z$
1 3.3V or 5V VCC Supply
I Break-Before-Make Switching
I 0.1 $\mu \mathrm{A}$ Quiescent Current in Hi-Z or OV Mode
I No VPP
I Logic Compatible with Standard PCMCIA Controllers

APPLICATIONS

I Notebook Computers
I Palmtop Computers
I Pen-Based Computers
I Handi-Terminals
I Bar-Code Readers

DESCRIPTIOn

The LTC ${ }^{\circledR} 1314 /$ LTC1315 provide the power switching necessary to control Personal Computer Memory Card International Association (PCMCIA) Release 2.0 card slots. When used in conjunction with a PC card interface controller, these devices form a complete minimum component count interface for palmtop, pen-based and notebook computers.
The LTC1314/LTC1315 provide 0V, 3.3V, 5V, 12V and $\mathrm{Hi}-\mathrm{Z}$ power output for flash VPP programming. A built-in charge pump produces 12 V of gate drive for inexpensive N -channel $3.3 \mathrm{~V} / 5 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ switching. The 12 V regulator can be shut down when 12 V is not required at VPP Out. All digital inputs are TTL compatible and interface directly with industry standard PC card interface controllers.
The LTC1314 is available in 14-pin S0 and the LTC1315 in 24-pin SSOP.
$\overline{\boldsymbol{Q Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

ГYPICAL APPLICATION

Typical PCMCIA Single Slot Driver

DEVICE	DESCRIPTION	PACKAGE
LT1312	SINGLE PCMCIA VPP DRIVER/REGULATOR	8-PIN SO
LT1313	DUAL PCMCIA VPP DRIVER/REGULATOR	16-PIN S0*
LTC®1314	SINGLE PCMCIA SWITCH MATRIX	14-PIN SO
LTC1315	DUAL PCMCIA SWITCH MATRIX	24-PIN SSOP
LTC1470	PROTECTED VCC 5V/3.3V SWITCH MATRIX	8-PIN S0
LTC1472	PROTECTED VCC AND VPP SWITCH MATRIX	16-PIN S0*
*NARROW BODY		

LTC1314 Truth Table

ENO	EN1	V $_{\text {CCO }}$	V $_{\text {CC1 }}$	VPP $_{\text {OUT }}$	DRV3	DRV5
0	0	X	X	GND	X	X
0	1	X	X	$\mathrm{V}_{\text {CCIN }}$	X	X
1	0	X	X	$\mathrm{VPP}_{\text {IN }}$	X	X
1	1	X	X	$\mathrm{Hi}-\mathrm{Z}$	X	X
X	X	1	0	X	1	0
X	X	0	1	X	0	1
X	X	0	0	X	0	0
X	X	1	1	X	0	0
$\mathrm{X}=$ DON'T CARE						

absolute maximum ratings

Topuew	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1314CS	AEN1 ${ }^{4}$	LTC1315CG
Nc 2×1－${ }^{13}$		AVco 5 通 20 ADVV3	
SHON 3 团 VPPout		$\mathrm{AVCOCO}_{6} 6$	
Eno 4 团 Gno			
ENT 5 可 V_{0}		bshon 8 －17 evppour	
Vcoo 6 包 DRV3		beno 9 16 Gno	
Vcci 7 － 8 DRV5		BEN1 10 10 V_{0}	
SPACKGGE		$\mathrm{BVCco} \mathrm{a}^{10}$ 14 boRv3	
$T_{\text {max }}=125^{\circ} \mathrm{C}, \mathrm{\theta}_{\text {a }}=110^{\circ} \mathrm{C} / \mathrm{W}$		$\begin{gathered} \text { G PACKAGE } \\ \text { 24-LEAD PLASTIC SSOP } \end{gathered}$	
		$\mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\text {AA }}=95^{\circ} \mathrm{C} / \mathrm{W}$	

Consult factory for Industrial and Military grade parts．

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {CCIN }}=5 \mathrm{~V}, \mathrm{VPP}_{I N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

SYMBOL	PARAMETER	CONDITIONS		LTC1314／LTC1315			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {CCIN }}$	Input Voltage Range		\bullet	3		5.5	V
VPPIN	Input Voltage Range		\bullet	0		12.6	V
$\mathrm{V}_{\text {DD }}$	Supply Voltage Range		\bullet	4.5		5.5	V
ICC	$V_{\text {CCIN }}$ Supply Current，No Load	VPP ${ }_{\text {OUT }}=$ VPPIN,$~ \mathrm{~V}_{\text {CCIN }}$ ，OV or Hi－Z	\bullet		0.1	1	$\mu \mathrm{A}$
lpp	VPP IN Supply Current，No Load	$\begin{aligned} & \mathrm{VPP}_{\text {OUT }}=\mathrm{VPP} \text { IN }, \mathrm{V}_{\text {CCIN }} \\ & \text { VPP }_{\text {OUT }}=0 \mathrm{~V}, \mathrm{Hi}-\mathrm{Z} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 0.1 \end{aligned}$	$\begin{gathered} 40 \\ 1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{I_{D D}}$	$V_{\text {DD }}$ Supply Current，No Load	$\begin{aligned} & \text { VPPOUT }=\text { VPP IN or } V_{\text {CCIN }} \\ & \text { VPPOUT }=0 \mathrm{~V} \text { or Hi-Z } \\ & \text { VPPOUT }=0 \mathrm{~V} \text { or Hi-Z, DRV3 or DRV5 On } \end{aligned}$	\bullet		$\begin{aligned} & 60 \\ & 0.1 \\ & 85 \end{aligned}$	$\begin{gathered} 120 \\ 10 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IN	Input Current：EN0，EN1， $\mathrm{V}_{\text {CCO }}$ or $\mathrm{V}_{\text {CC1 }}$	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DD }}$	\bullet			± 1	$\mu \mathrm{A}$
IOUT	High Impedance Output Leakage Current	EN0 $=$ EN1 $=5 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{VPP} 0 \mathrm{OT}$＜ 12 V	\bullet		0.1	10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	$\begin{aligned} & \text { On Resistance, VPPout }=\text { VPP }{ }_{\text {IN }} \\ & \text { On Resistance, VPPOUT }=V_{\text {CII }} \\ & \text { On Resistance, VPPOUT }=\text { GND } \end{aligned}$	$\begin{aligned} & V_{P P_{I N}}=12 \mathrm{~V}, I_{\text {LOAD }}=120 \mathrm{~mA} \\ & V_{C C I N}=5 \mathrm{~V}, \mathrm{I}_{\text {LAD }}=5 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{I}, \mathrm{I}_{\text {SINK }}=1 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 0.55 \\ 2 \\ 100 \end{gathered}$	$\begin{gathered} \hline 1.2 \\ 5 \\ 250 \end{gathered}$	Ω Ω Ω
$\mathrm{V}_{\text {INH }}$	Input High Voltage，Digital Inputs		\bullet	2			V
$\mathrm{V}_{\text {INL }}$	Input Low Voltage，Digital Inputs		\bullet			0.8	V

ELECTRICAL CHARACTGRISTICS $\mathrm{v}_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCIN}}=5 \mathrm{~V}, \mathrm{VPP}_{I N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

3YMBOL	PARAMETER	CONDITIONS		LTC1314/LTC1315			UNITS
				MIN	TYP	MAX	
${ }^{\mathrm{OH}}$	SHDN Output High Voltage	VPPPOT $=\mathrm{V}_{\text {CCIN }}$, OV or Hi-Z, $\mathrm{I}_{\text {LOAD }}=400 \mu \mathrm{~A}$	\bullet	3.5			V
10 L	SHDN Output Low Voltage	VPP ${ }_{\text {OUT }}=\mathrm{VPP}_{\text {IN }}, \mathrm{I}_{\text {IINK }}=400 \mu \mathrm{~A}$	\bullet			0.4	V
$\mathrm{I}_{\mathrm{G}}-\mathrm{V}_{\mathrm{DD}}$	Gate Voltage Above Supply	$V_{\text {DRV3 }}$ or $V_{\text {DRV5 }}$	\bullet	6	7	13	V
ON	Turn-On Time, DRV3 and DRV5	$\mathrm{C}_{\text {GATE }}=1000 \mathrm{pF}$, Time for $\mathrm{V}_{\text {GATE }}>\mathrm{V}_{\text {DD }}+1 \mathrm{~V}$		50	150	500	$\mu \mathrm{S}$
OFF	Turn-Off Time, DRV3 and DRV5	$\mathrm{C}_{\text {GATE }}=1000 \mathrm{pF}$, Time for $\mathrm{V}_{\text {GATE }}<0.5 \mathrm{~V}$		3	10	30	$\mu \mathrm{S}$
1	Delay + Rise Time	VPP ${ }_{\text {OUT }}=$ GND to $\mathrm{V}_{\text {CIIN }}$, VPP IIN $=0 \mathrm{~V}$, Note 1		5	15	50	$\mu \mathrm{s}$
2	Delay + Rise Time	VPP ${ }_{\text {OUT }}=$ GND to VPP IN ((Note 1)		5	15	50	$\mu \mathrm{S}$
3	Delay + Rise Time	VPPPOUT $=\mathrm{V}_{\text {CCIN }}$ to VPPIN (Note 1)		5	15	50	$\mu \mathrm{S}$
4	Delay + Fall Time	VPPPOUT $=$ VPP ${ }_{\text {IN }}$ to $\mathrm{V}_{\text {CIIN }}($ Note 3)		2	6	20	$\mu \mathrm{s}$
5	Delay + Fall Time	VPP ${ }_{\text {OUT }}=\mathrm{VPP}_{\text {IN }}$ to GND (Note 2)		15	50	150	$\mu \mathrm{S}$
6	Delay + Fall Time	VPP ${ }_{\text {OUT }}=\mathrm{V}_{\text {CIIN }}$ to GND, $\mathrm{VPP}_{\text {IN }}=0 \mathrm{~V}$ (Note 2)		10	25	100	μs
7	Output Turn-On Delay	$\mathrm{VPP}_{\text {OUT }}=\mathrm{Hi}-\mathrm{Z}$ to $\mathrm{VPP}_{\text {IN }}$ or $\mathrm{V}_{\text {CCIN }}($ Notes 1, 6)		5	15	50	$\mu \mathrm{S}$

he \bullet denotes specifications which apply over the full operating emperature range.
Jote 1: To 90% of the final value, $\mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUT }}=2.9 \mathrm{k}$.
Jote 2: To 10% of the final value, $\mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUT }}=2.9 \mathrm{k}$.

Note 3: $\mathrm{To} 50 \%$ of the initial value, $\mathrm{C}_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUT }}=2.9 \mathrm{k}$.
Note 4: Measured current data is per channel.
Note 5: Input logic low equal to 0 V , high equal to 5 V .
Note 6: VPP $_{\mathrm{IN}}=0 \mathrm{~V}$ when switching from $\mathrm{Hi}-\mathrm{Z}$ to $\mathrm{V}_{\text {CCIN }}$.

ГYPICAL PERFORMAOCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

1314/15 G04

PIn functions

LTC1314

VPPIN (Pin 1): 12V Power Input.
NC (Pin 2): Not Connected.
SHDN (Pin 3): Shutdown Output. When the output is high, the external 12 V regulator can be shut down to conserve power consumption.
ENO, EN1 (Pins 4, 5): Logic inputs that control the voltage output on VPP with TTL/CMOS levels. Refer to Truth Table.
$\mathbf{V}_{\text {CCO }}$ (Pin 6): Logic input that controls the state of the MOSFET gate driver DRV3. ESD protection device limits input excursions to 0.6 V below ground.
$\mathbf{V}_{\text {CC1 }}$ (Pin 7): Logic input that controls the state of the MOSFET gate driver DRV5. ESD protection device limits input excursions to 0.6 V below ground.

DRV5, DRV3 (Pins 8, 9): Gate driver outputs that control the external MOSFETs that switch the V_{CC} pin of card slot to $\mathrm{Hi}-\mathrm{Z}, 3.3 \mathrm{~V}$, or 5 V .
$V_{D D}$ (Pin 10): Positive Supply, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. This pin supplies the power to the control logic and the charge pumps and must be continuously powered.
GND (Pin 11): Ground Connection.
VPP ${ }_{\text {OUT }}$ (Pin 12): Switched output that provides 0V, 3.3V, $5 \mathrm{~V}, 12 \mathrm{~V}$, or Hi-Z to the VPP pin of the card slot. Refer to Truth Table.

NC (Pin 13): Not Connected.
VCIN (Pin 14): 5V or 3.3V Power Input.

PIn functions

LTC1315

VPPIN (Pins 1, 7): 12V Power Inputs.
SHDN (Pins 2, 8): Shutdown Outputs. When the output is ligh, the external 12 V regulator can be shut down to zonserve power consumption.

ENO, EN1 (Pins 3, 4, 9, 10): Logic inputs that control the soltage output on VPPout. The input thresholds are zompatible with TTL/CMOS levels. Refer to the Truth「able.
$J_{\text {Cco }}$ (Pins 5, 11): Logic inputs that control the state of the VOSFET gate driver DRV3. ESD protection device limits nput excursions to 0.6 V below ground.
$I_{\text {CC1 }}$ (Pins 6, 12): Logic inputs that control the state of the UOSFET gate driver DRV5. ESD protection device limits nput excursions to 0.6 V below ground.

DRV5, DRV3 (Pins 13, 14, 19, 20): Gate driver outputs that control the external MOSFETs that switch the $V_{C C}$ pin of card slot to $\mathrm{Hi}-\mathrm{Z}, 3.3 \mathrm{~V}$, or 5 V .
\mathbf{V}_{DD} (Pins 15, 21): Positive Supplies, $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. These pins supply the power to the control logic and the charge pumps and must be continuously powered.
GND (Pins 16, 22): Ground Connections.
VPP ${ }_{\text {OUT }}$ (Pins 17, 23): Switched outputs that provide OV, $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or $\mathrm{Hi}-\mathrm{Z}$ to the VPP pin of the card slot. Refer to the Truth Table.
$\mathbf{V}_{\text {CCIN }}$ (Pins 18, 24): 5V or 3.3V Power Inputs.

3LOCK DIAGRAM

LTC1314 or 1/2 LTC1315

SWITCHInG TIme WAVEfORMS

APPLICATIONS INFORMATION

PCMCIA VPP control is easily accomplished using the LTC1314 or LTC1315 switching matrix. Two control bits (LTC1314) or four control bits (LTC1315) determine the output voltage and standby/operate mode conditions. Output voltages of $0 \mathrm{~V}, \mathrm{~V}_{\text {CCIN }}\left(3.3 \mathrm{~V}\right.$ or 5 V), $\mathrm{VPP}_{\text {IN }}$, or a high impedance state are available. When either the high impedance or low voltage (OV) conditions are selected, the device switches into "sleep" mode and draws $0.1 \mu \mathrm{~A}$ of current from the $V_{D D}$ supply.
The LTC1314/LTC1315 are low resistance power MOSFET switching matrices that operate from the computer system main power supply. Device power is obtained from $V_{D D}$, which is $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$. The gate drives for the NFETs (both internal and external) are derived from internal charge pumps, therefore VPP ${ }_{I N}$ is only required when it's switched to VPP ${ }_{\text {OUT }}$. Internal break-before-make switches determine the output voltage and device mode.

Flash Memory Card VPP Power Considerations

PCMCIA compatible flash memory cards require tight regulation of the 12 V VPP programming supply to ensure that the internal flash memory circuits are never subjected to damaging conditions. Flash memory circuits are typi-
cally rated with an absolute maximum of 13.5 V and VPP must be maintained at $12 \mathrm{~V} \pm 5 \%$ under all possible load conditions during erase and program cycles. Undervoltage can decrease specified flash memory reliability and overvoltage can damage the device.

$V_{\text {CC }}$ Switch Driver and VPP Switch Matrix

Figures 1 and 2 show the approach that is very space and power efficient. The LTC1314/LTC1315 used in conjunction with the LT1301 DC/DC converter, provide complete power management for a PCMCIA card slot. The LTC1314/ LTC1315 and LT1301 combination provides a highly efficient, minimal parts count solution. These circuits are especially good for applications that are adding a PCMCIA socket to existing systems that currently have only 5 V or 3.3 V available.

The LTC1314 drives three N-channel (LTC1315 six N -channel) MOSFETs that provide $\mathrm{V}_{\text {CC }}$ pin power switching. On-chip charge pumps provide the necessary voltage to fully enhance the switches. With the charge pumps onchip, the MOSFET drive is available without the need for a 12V supply. The LTC1314/LTC1315 provide a natural break-before-make action and smooth transitions due to

APPLICATIONS INFORMATION

Figure 1. LTC1314 Switch Matrix with the LT1301 Boost Regulator

Figure 2. Typical Two-Socket Application Using the LTC1315 and the LT1301

APPLICATIONS INFORMATION

the asymmetrical turn-on and turn-off of the MOSFETs. The LT1301 switching regulator is in shutdown mode and consumes only $10 \mu \mathrm{~A}$ until the VPP pins require 12 V .
The VPP switching is accomplished by a combination of the LTC1314/LTC1315 and LT1301. The LT1301 is in shutdown mode to conserve power until the VPP pins require 12V. When the VPP pins require 12V, the LT1301 is activated and the LTC1314/LTC1315's internal switches route the VPP in pin to the VPP ${ }_{\text {OUt }}$ pin. The LT1301 is capable of delivering 12 V at 120 mA maintaining high efficiency. The LTC1314/LTC1315's break-before-make and slope-controlled switching will ensure that the output voltage transition will be smooth, of moderate slope, and without overshoot. This is critical for flash memory products to prevent damaging parts from overshoot and ringing exceeding the 13.5 V device limit.

With Higher Voltage Supplies Available

Often systems have an available supply voltage greater than 12V. The LTC1314/LTC1315 can be used in conjunction with an LT1121 linear regulator to supply the PC card socket with all necessary voltages. Figures 3 and 4 show these circuits. The LTC1314/LTC1315 enable the LT1121 linear regulator only when 12 V is required at the VPP pins. In all other modes the LT1121 is in shutdown mode and consumes only $16 \mu \mathrm{~A}$. The LT1121 also provides thermal shutdown and current limiting features to protect the socket, the card and the system regulator.

Supply Bypassing

For best results, bypass $\mathrm{V}_{\text {CCIN }}$ and VPP $_{\text {IN }}$ at their inputs with 1μ F capacitors. VPP ${ }_{0 U T}$ should have a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor for noise reduction and electrostatic discharge (ESD) damage prevention. Larger values of output capacitor will create large current spikes during transitions, requiring larger bypass capacitors on the $\mathrm{V}_{\text {CIIN }}$ and $\mathrm{VPP}_{\text {IN }}$ pins.

Figure 3. LTC1314 with the LT1121 Linear Regulator

APPLICATIONS INFORMATION

Figure 4. Typical Two-Socket Application Using the LTC1315 and the LT1121

TYPICAL APPLICATIONS

Single Slot Interface to CL-PD6710

TYPICAL APPLICATIONS

Dual Slot Interface to CL-PD6720

Single Slot Interface to " 365 " Type Controller

TYPICAL APPLICATIONS

Dual Slot Interiae to "365" Type Controller

Typical PCMCIA Dual Slot Driver

LTC1315 Truth Table

EN0	EN1	$\mathbf{V}_{\text {CC0 }}$	$\mathbf{V}_{\text {CC1 }}$	VPPP OUT	DRV3	DRV5
0	0	X	X	GND	X	X
0	1	X	X	$\mathrm{V}_{\text {CCIN }}$	X	X
1	0	X	X	VPP $_{\text {IN }}$	X	X
1	1	X	X	$\mathrm{Hi}-\mathrm{Z}$	X	X
X	X	1	0	X	1	0
X	X	0	1	X	0	1
X	X	0	0	X	0	0
X	X	1	1	X	0	0
$\mathrm{X}=$ DONTT CARE						

RELATED PARTS

See PCMCIA Product Family table on the first page of this data sheet.

features

- Single 3.3V/5V Switch in 8-Pin SO Package
- Dual 3.3V/5V Switch in 16-Pin SO Package
- Built-In Current Limit and Thermal Shutdown
- Built-In Charge Pumps (No 12V Required)
- Extremely Low R $\mathrm{DS}_{(0 \mathrm{O})}$ MOSFET Switches
- Output Current Capability: 1 A
- Inrush Current Limited (Drives 150 μ F Loads)
- Quiescent Current in Standby: $1 \mu \mathrm{~A}$
- No Parasitic Body Diodes
- Built-In XOR Function Eliminates "Glue" Logic
- Break-Before-Make Switching
- Controlled Rise and Fall Times

APPLICATIONS

- Notebook Computers
- Palmtop Computers
- Pen-Based Computers
- Handi-Terminals
- PC Card Reader/Writers
- 3.3V/5V Power Supply Switch

DESCRIPTIOn

The LTC ${ }^{\text {® }} 1470$ switches the $V_{C C}$ pins of a Personal Computer Memory Card International Association (PCMCIA) card slot between three operating states: OFF, 3.3V and 5 V . Two low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$-channel power MOSFETs are driven by a built-in charge pump which generates a voltage higher than the supply voltage to fully enhance each switch when selected by the input control logic.

The LTC1470 inputs are compatible with industry standard PCMCIA controllers. A built-in XOR ensures that both switches are never on at the same time. This function also makes the LTC1470 compatible with both active-low and active-high controllers (see Applications Information section). The switch rise times are controlled to eliminate power supply glitching.
The LTC1470 features built-in SafeSlot ${ }^{\text {TM }}$ current limit and thermal shutdown. The output is limited to 1A during short circuit to ground but 2A of peak operating current is allowed.
The LTC1471 is a dual version of the LTC1470 and is available in a 16 -pin SO package.
$\overline{\boldsymbol{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.
SafeSlot is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Dual Slot PCMCIA 3.3V/5V Vcc Switch

Linear Technology PCMCIA Product Family

DEVICE	DESCRIPTION	PACKAGE
LT*1312	Single PCMCIA VPP Driver/Regulator	8 -Pin S0
LT1313	Dual PCMCIA VPP Driver/Regulator	$16-$ Pin SO*
LTC1314	Single PCMCIA Switch Matrix	$14-$-in S0
LTC1315	Dual PCMCIA Switch Matrix	24 -Pin SSOP
LTC1470	Single Protected VCC 3.3V/5V Switch Matrix	8-Pin S0
LTC1471	Dual Protected VCC 3.3V/5V Switch Matrix	16-Pin S0*
LTC1472	Protected VCC and VPP Switch Matrix	16-Pin S0*

*Narrow Body

ABSOLUTE MAXIMUM BATINGS

3.3V Supply Voltage (Note 1) 7V	Operating Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
5 V Supply Voltage (Note1) 7V	Junction Temperature $100^{\circ} \mathrm{C}$
Enable Input Voltage 7 V to (GND - 0.3V)	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output Voltage (OFF) (Note 1) 7 V to (GND - 0.3V)	Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$
Output Short-Circuit Duration Indefinite	

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
		$\mathrm{AFV}_{\mathrm{N}} 2$	LTC1471CS
OUT 1 - 8 OUT	LTC1470CS8	AEN1 3	
$5 v_{10} \square^{2} \quad 73 V_{1 N}$		AENO 4 - 13 GND	
EN1 3 - $63 \mathrm{~V}_{\text {IN }}$	S8 PART MARKING	GNo 5 5 12 beno	
eno 4 - 5 GND	1470	$B^{3} V_{1 N} 6$	
S8 PACKAGE		$\mathrm{BSV}_{1 / 2} 7 \quad 10{ }^{85} \quad 1 \mathrm{IN}$	
8 -LEAD PLASTIC S0		bout 8 8 bout	
$\mathrm{T}_{\text {max }}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W}$		$\begin{gathered} \text { SPACKAGE } \\ \text { 16-LEAD PLASTIC SO } \\ T_{J M A x}=100^{\circ} \mathrm{C}, \theta_{J J A}=100^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $3 V_{I N}=3.3 V, 5 V_{I N}=5 V$ (Note 2), $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$3 \mathrm{~V}_{\text {IN }}$	3.3V Supply Voltage Range			2.70		3.60	V
$\underline{5 V_{\text {IN }}}$	5V Supply Voltage Range			4.75		5.25	V
3VIN	3.3V Supply Current	Program to Hi-Z (Note 3) Program to 3.3V, No Load (Note 3) Program to 5V, No Load (Note 3)	\bullet		$\begin{gathered} 0.01 \\ 40 \\ 0.01 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 80 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
5VIN	5V Supply Current	Program to Hi-Z (Note 3) Program to 3.3V (Note 3) Program to 5V (Note 3)	\bullet		$\begin{aligned} & 0.01 \\ & 100 \\ & 140 \end{aligned}$	$\begin{gathered} 10 \\ 160 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$q_{\text {ON }}$	3.3V Switch ON Resistance 5V Switch ON Resistance	Program to $3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$ Program to $5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}$			$\begin{aligned} & 0.12 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.18 \end{aligned}$	Ω Ω
LKG	Output Leakage Current OFF	Program to Hi-Z, $0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$ (Note 3)	\bullet			± 10	$\mu \mathrm{A}$
LIM3V	3.3V Current Limit	Program to 3.3V, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 4)			1		A
LIM5V	5V Current Limit	Program to 5V, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 4)			1		A
$I_{\text {ENH }}$	Enable Input High Voltage		\bullet	2.0			V
${ }_{\text {I ENL }}$	Enable Input Low Voltage		\bullet			0.8	V
EN	Enable Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {EN }} \leq 5 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $3 V_{W}=3.3 V, 5 V_{W H}=5 V$ (Nole 2), $T_{A}=255^{5}$, unless dutemisen noed.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t_{0} to t_{3}	Delay and Rise Time (Note 5)	Transition from OV to $3.3 \mathrm{~V}, \mathrm{R}_{0 U T}=100 \Omega, \mathrm{C}_{0 U T}=1 \mu \mathrm{~F}$	0.2	0.32	1.0	ms
t_{3} to t_{5}	Delay and Rise Time (Note 5)	Transition from 3.3 V to $5 \mathrm{~V}, \mathrm{R}_{0 U T}=100 \Omega, \mathrm{C}_{0 U T}=1 \mu \mathrm{~F}$	0.2	0.52	1.0	ms
t_{0} to t_{5}	Delay and Rise Time (Note 5)	Transition from 0 V to $5 \mathrm{~V}, \mathrm{R}_{\text {OUT }}=100 \Omega, \mathrm{C}_{0 U T}=1 \mu \mathrm{~F}$	0.2	0.38	1.0	ms

The denotes the specifications which apply over the full operating temperature range.
Note 1: For the LTC1470, the two output pins $(1,8)$ must be connected together and the two 3.3 V supply input pins $(6,7)$ must be connected together. For the LTC1471, the two AOUT pins $(1,16)$ must be connected together, the two BOUT pins $(8,9)$ must be connected together, the two A3VIN supply input pins $(14,15)$ must be connected together, the two B3V ${ }_{\text {IN }}$ supply pins $(6,7)$ must be connected together and the two GND pins $(5,13)$ must be connected together.

Note 2: Power for the input logic and charge pump circuitry is derived from the $5 \mathrm{~V}_{\mathbb{I N}}$ supply pin(s) which must be continuously powered.
Note 3: Measured current is per channel with the other channel programmed off for the LTC1471.
Note 4: The output is protected with foldback current limit which reduces the short-circuit (OV) currents below peak permissible current levels at higher output voltages.
Note 5: To 90% of final value.

TYPICAL PGRFORMANCE CHARACTERISTICS (LTC1470 or 1/2 LTC1471)

PIn functions

LTC1470

OUT (Pins 1, 8): Output Pins. The outputs of the LTC1470 are switched between three operating states: OFF, 3.3V and 5 V . These pins are protected against accidental short circuits to ground by SafeSlot current limit circuitry which protects the socket, the card, and the system power supplies against damage. A second level of protection is provided by thermal shutdown circuitry which protects both switches against over-temperature conditions.
$5 \mathrm{~V}_{\mathrm{IN}}$ (Pin 2): 5V Input Supply Pin. The $5 \mathrm{~V}_{\mathrm{IN}}$ supply pin serves two purposes. The first purpose is as the power supply input for the 5V NMOS switch. The second purpose is to provide power for the input, gate drive, and protection circuitry for both the 3.3 V and $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ switches. This pin must therefore be continuously powered.
EN1, ENO (Pins 3, 4):Enable Inputs. The two $V_{C C}$ Enable inputs are designed to interface directly with industry standard PCMCIA controllers and are high impedance CMOS gates with ESD protection diodes to ground, and
should not be forced below ground. Both inputs have about 100 mV of built-in hysteresis to ensure clean switching between operating modes. The LTC1470 is designed to operate without 12 V power. The gates of the $\mathrm{V}_{\text {CC }}$ NMOS switches are powered by charge pumps from the $5 \mathrm{~V}_{\text {IN }}$ supply pins (see Applications Information section for more detail). The Enable inputs should be turned off (both asserted high or both asserted low) at least 100μ s before the $5 \mathrm{~V}_{\text {IN }}$ power is removed to ensure that both $\mathrm{V}_{\text {CC }}$ NMOS switch gates are fully discharged and both switches are in the high impedance mode.
GND (Pin 5): Ground Connection.
$3 \mathrm{~V}_{\text {IN }}$ (Pins 6, 7): 3 V Input Supply Pins. The $3 \mathrm{~V}_{\mathrm{IN}}$ supply pins serve as the power supply input for the 3.3 V switches. These pins do not provide any power to the internal control circuitry and therefore do not consume any power when unloaded or turned off.

PIn functions

LTC1471

AOUT, BOUT(Pins 1, 16, 8, 9):Output Pins. The outputs of the LTC1471 are switched between three operating states: $0 \mathrm{FF}, 3.3 \mathrm{~V}$ and 5 V . These pins are protected against accidental short circuits to ground by SafeSlot current limit circuitry which protects the socket, the card, and the system power supplies against damage. A second level of protection is provided by thermal shutdown circuitry.
$5 \mathrm{~V}_{\text {IN }}$ (Pins 2, 10): 5 V Input Supply Pins. The $5 \mathrm{~V}_{\text {IN }}$ supply pins serve two purposes. The first purpose is as the power supply input for the 5V NMOS switches. The second purpose is to provide power for the input, gate drive, and protection circuitry. These pins must therefore be continuously powered.
EN1, ENO (Pins 3, 4, 11, 12):Enable Inputs. The enable inputs are designed to interface directly with industry standard PCMCIA controllers and are high impedance CMOS gates with ESD protection diodes to ground, and
should not be forced below ground. All four inputs have about 100 mV of built-in hysteresis to ensure clean switching between operating modes. The LTC1471 is designed to operate without 12 V power. The gates of the V_{CC} NMOS switches are powered by charge pumps from the $5 \mathrm{~V}_{\mathbb{1}}$ supply pins (see Applications Information section for more detail). The enable inputs should be turned off at least $100 \mu \mathrm{~s}$ before the $5 \mathrm{~V}_{\text {IN }}$ power is removed to ensure that all NMOS switch gates are fully discharged and are in the high impedance mode.
GND (Pins 5, 13): Ground Connections.
$3 V_{\text {IN }}$ (Pins 6, 7, 14, 15):3V Input Supply Pins. The $3 \mathrm{~V}_{\text {IN }}$ supply pins serve as the power supply input for the 3.3 V switches. These pins do not not provide any power to the internal control circuitry, and therefore, do not consume any power when unloaded or turned off.

BLOCK DIAGRAM (LTC1470 or 1/2 LTC1471)

operation

The LTC1470 (or 1/2 of the LTC1471) consists of the 'ollowing functional blocks:

Input TTL/CMOS Converters

The enable inputs are designed to accommodate a wide ange of 3 V and 5 V logic families. The input threshold soltage is approximately 1.4 V with approximately 100 mV of hysteresis. The inputs enable the bias generator, the jate charge pumps and the protection circuity which are jowered from the 5V supply. Therefore, when the inputs are turned off, the entire circuit is powered down and the jV supply current drops below $1 \mu \mathrm{~A}$.

KOR Input Circuitry

3y employing an XOR function, which locks out the 3.3V ;witch when the 5 V switch is turned on and locks out the $j \mathrm{~V}$ switch when the 3.3 V switch is turned on, there is no langer of both switches being on at the same time. This <OR function also makes it possible to work with either ictive-low or active-high PCMCIA $V_{C C}$ switch control logic see Applications Information section for further details).

3reak-Before-Make Switch Control

3uilt-in delays are provided to ensure that the 3.3 V and 5 V ;witches are non-overlapping. Further, the gate charge oump includes circuitry which ramps the NMOS switches
on slowly (400μ s typical rise time) but turns them off much more quickly (typically $10 \mu \mathrm{~s}$).

Bias, Oscillator and Gate Charge Pump

When either the 3.3 V or 5 V switch is enabled, a bias current generator and high frequency oscillator are turned on. The on-chip capacitive charge pump generates approximately 12 V of gate drive for the internal low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ NMOS $\mathrm{V}_{\text {CC }}$ Switches from the $5 \mathrm{~V}_{\text {IN }}$ power supply. Therefore, an external 12 V supply is not required to switch the $V_{\text {CC }}$ output. The $5 \mathrm{~V}_{\text {IN }}$ supply current drops below $1 \mu \mathrm{~A}$ when both switches are turned off.

Gate Charge and Discharge Control

All switches are designed to ramp on slowly (400μ s typical rise time). Turn-off time is much quicker (typically $10 \mu \mathrm{~s}$). To ensure that both V CC NMOS switch gates are fully discharged, program the switch to the high impedance mode at least 100μ s before turning off the 5 V power supply.

Switch Protection

Both switches are protected against accidental short circuits with SafeSlot foldback current limit circuits which limit the output current to typically 1 A when the output is shorted to ground. Both switches also have thermal shutdown which limits the power dissipation to safe levels.

IPPLICATIONS INFORMATION

he LTC1470/LTC1471 are designed to interface directly jith industry standard PCMCIA card controllers.

nterfacing with the CL-PD6710

igure 1 is a schematic diagram showing the LTC1470 iterfaced with a standard PCMCIA slot controller. The TC1470 accepts logic control directly fromtheCL-PD6710.
he XOR input function allows the LTC1470 to interface irectly to the active-low $V_{C C}$ control outputs of the CL'D6710 for $3.3 \mathrm{~V} / 5 \mathrm{~V}$ voltage selection (see the following witch Truth Table). Therefore, no "glue" logic is required) interface to this PCMCIA compatible card controller.

Figure 1. Direct Interface to CL-PD6710 PCMCIA Controller

APPLLCATIONS InFORMATION

Truth Table for CL-PD6710 Controller

A_VCC_3	A_VCC_5	OUT
ENO	EN1	
0	0	$\mathrm{Hi}-\mathrm{Z}$
0	1	3.3 V
1	0	5 V
1	1	Hi-Z

Interfacing with " 365 " Type Controllers

The LTC1470 also interfaces directly with " 365 " type controllers as shown in Figure 2. Note that the $\mathrm{V}_{c c}$ Enable inputs are connected differently than to the CL-PD6710 controller because the "365" type controllers use activehigh logic control of the $V_{C C}$ switches (see the following Switch Truth Table). No "glue" logic is required to interface to this type of PCMCIA compatible controller.

Figure 2. Direct Interface with "365" Type PCMCIA Controller

Truth Table for " 365 " Type Controller

A_V $_{\text {CC_ENO }}$	A_V $_{\text {CC_EN1 }}$	
EN0	EN1	
0	0	$\mathrm{Hi}-Z$
0	1	3.3 V
1	0	5 V
1	1	$\mathrm{Hi}-\mathrm{Z}$

Supply Bypassing

For best results bypass the supply input pins with $1 \mu \mathrm{~F}$ capacitors as close as possible to the LTC1470. Sometimes much larger capacitors are already available at the outputs of the 3.3 V and 5 V power supply. In this case it is still good practice to use 0.1 FF capacitors as close as possible to the device, especially if the power supply output capacitors are more than $2^{\prime \prime}$ away on the printed circuit board.

Output Capacitors and Pull-Down Resistor

The output pin is designed to ramp on slowly, typically $400 \mu \mathrm{~s}$ rise time. Therefore, capacitors as large as $150 \mu \mathrm{~F}$ can be driven without producing voltage spikes on the $3 \mathrm{~V}_{\text {IN }}$ or $5 \mathrm{~V}_{\text {IN }}$ supply pins (see graphs in Typical Performance Characteristics section). The output pin should have a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ capacitor for noise reduction and smoothing.
A 10k pull-down resistor is recommended at the output to ensure that the output capacitor is fully discharged when the output is switched OFF. This resistor also ensures that the output is discharged between the 3.3 V and 5 V transition.

Supply Sequencing

Because the 5V supply is the source of power for both of the switch control circuits, it is best to sequence the power supplies such that the 5 V supply is powered before, or simultaneous to, the application of 3.3 V .
It is interesting to note, however, that the switches are NMOS transistors which require charge pumps to generate gate voltages higher than the supply rails for full enhancement. Because the gate voltages start at 0 V when the supplies are first activated, the switches always start in the off state and do not produce glitches at the outputs when powered.
Ifthe 5 V supply must be turned off, itis important to program all switches to the $\mathrm{Hi}-\mathrm{Z}$ or OV state at least $100 \mu \mathrm{~s}$ before the 5 V power is removed to ensure that the NMOS switch gates are fully discharged to 0 V . Whenever possible, however, it is best to leave the $5 \mathrm{~V}_{\text {IN }}$ pin(s) continuously powered. The LTC1470/LTC1471 quiescent current drops to <1 μ A with all the switches turned off and therefore no 5 V power is consumed in the standby mode.

APPLICATIONS INFORMATION

TOTAL SYSTEM COST CONSIDERATIONS

The cost of an additional step-up switching regulator, inductor, rectifier and capacitors to produce 12V for VPP can be eliminated by using an auxiliary winding on either the 3.3 V or 5 V output of the system switching regulator to produce an auxiliary 15 V supply for VPP power.
And, because the LTC1470/LTC1471 do not require 12V power to operate (only 5 V), the 12 V VPP regulation and switching may be operated separately from the $3.3 \mathrm{~V} / 5 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ switching. This increases system configuration flexibility and reduces total system cost by eliminating the need for a third regulator for 12 V power.

LTC1142HV Auxiliary Winding Power Supply

Figure 3 is a schematic diagram which describes how a loosely regulated 15 V power supply is created by adding an auxiliary winding to the 5 V inductor in a split $3.3 \mathrm{~V} / 5 \mathrm{~V}$ LTC1142HV power supply system. An LT1313, dual VPP regulator/driver with SafeSlot protection, produces "clean" $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V power from this loosely regulated 15 V output for the PC card slot VPP pins. (See LT1312 and LT1313 data sheets for further detail.)

A turns ratio of $1: 1.8$ is used for transformerT1 to ensure that the input voltage to the LT1313 falls between 13 V and 20 V under all load conditions. The 9 V output from this additional

Figure 3. Cost Effective Complete SafeSlot Dual PCMCIA Power Management System (with 15V Auxiliary Supply from LTC1142HV 5V Regulator Inductor)

APPLLCATIONS InFORMATION

winding is rectified by diode D 2 , added to the main 5 V output and applied to the input of the LT1313. (Note that the auxiliary winding must be phased properly as shown in Figure 3.)

When the 12V output is activated by a TTL high on either VPP enable lines, the 5 V section of the LTC1142HV is forced into continuous mode operation. A resistor divider composed of R2, R3 and switch Q3 forces an offset which is subtracted from the internal offset at the Sense ${ }^{-}$input (pin 14) of the LTC1142HV. When this external offset cancels the built-in 25 mV offset, Burst Mode ${ }^{T M}$ operation is inhibited and the LTC1142HV is forced into continuous mode operation. (See LTC1142HV data sheet for further detail.) In this mode, the 15 V auxiliary supply can be loaded without regard to the loading on the 5 V output of the LTC1142HV.

Continuous mode operation is only invoked whenthe LT1313 is programmed to 12 V . If the LT 1313 is programmed to 0 V , 3.3 V or 5 V , power is obtained directly from the main power source (battery pack) through diode D1. Again, the LT1313 output can be loaded without regard to the loading of the main 5 V output.

R4 and C4 absorb transient voltage spikes associated with the leakage inductance inherent in T1's secondary winding and ensure that the auxiliary supply does not exceed 20 V .

Auxiliary Power from the LTC1142 3.3V Output

For low-battery count applications ($<6.5 \mathrm{~V}$) it is necessary to modify the circuit of Figure 3. As the input voltage falls, the 5 V duty cycle increases to the point where there is simply not enough time to transfer energy from the 5 V primary winding to the auxiliary winding. For applications where 12V load currents exist in conjunction with these low input voltages, use the circuit shown in Figure 4. In this circuit, the auxiliary 15 V supply is generated from an overwinding on the 3.3 V inductor of the LTC1142 regulator output.
In Figure 3, power is drawn directly from the batteries through D1 when the regulator is in Burst Mode operation and the VPP pins require 3.3V or 5 V . In this circuit, however, Q3 and Q4 force the LTC11423.3V regulator into continuous mode operation whenever $3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V is programmed at the VPPOUT pins of the LT1313. (See the LT1312 and LT1313 data sheets for further detail.)

Figure 4. Deriving 15V from the 3.3V Output of the LTC1142 for VPP Power

TYPICAL APPLICATIONS

Dual Slot 3.3V/5V PCMCIA Controller with SafeSlot Current Limit (Systems with No 12V Power Requirements)

Single Slot PCMCIA Controller with SafeSlot Current Limit Protection Using LT1312 Single VPP Regulator/Driver

* FROM OVERWINDING ON 3.3V OR 5V INDUCTOR IN SYSTEM POWER SUPPLY.

SEE FIGURES 3,4 FOR FURTHER DETAIL

TYPICAL APPLICATIONS

Dual Slot PCMCIA Controller with SafeSlot Current Limit Protection Using LT1313 Dual VPP Regulator/Driver

* FROM OVERWINDING ON 3.3V OR 5V INDUCTOR IN SYSTEM POWER SUPPLY. SEE FIGURES 3, 4 FOR FURTHER DETAILS

RELATED PARTS

See PCMCIA Product Family table on the first page of this data sheet.

feATURES

- Both $V_{C C}$ and VPP Switching in a Single Package
- Built-In Current Limit and Thermal Shutdown
- 16-Pin (Narrow) SOIC Package
- Inrush Current Limited (Drives 150 HF Loads)
- Continuous 12V Power Not Required
- Extremely Low RDS(ON) NMOS Switches
- Guaranteed 1A VCC Current and 120mA VPP Current
- $1 \mu \mathrm{~A}$ Quiescent Current in Standby
- No External Components Required
- Compatible with Industry Standard Controllers
- Break-Before-Make Switching
- Controlled Rise and Fall Times

APPLICATIONS

- Notebook Computers
- Palmtop Computers
- Pen-Based Computers
- Handi-Terminals
- Bar-Code Readers

DESCRIPTIOn

The LTC ${ }^{\circledR} 1472$ switching matrix routes power to both the $V_{C C}$ and VPP power supply pins of the PCMCIA compatible card socket. The $V_{\text {CC }}$ output of the LTC1472 is switched between three operating states: $0 \mathrm{FF}, 3.3 \mathrm{~V}$, and 5 V . The VPP output is switched between four operating states: 0 V , $\mathrm{V}_{\text {CC }}, 12 \mathrm{~V}$, and Hi-Z. The output voltages are selected by two sets of digital inputs which are compatible with industry standard PC Card controllers (see Truth Tables).
The $V_{\text {CC }}$ output of the LTC1472 can supply up to 1A of current and the VPP output up to 120 mA . Both switches have built-in SafeSlot ${ }^{\text {TM }}$ current limiting and thermal shutdown to protect the card, socket and power supply against accidental short-circuit conditions.
The LTC1472 is designed to conserve power by automatically dropping to $1 \mu \mathrm{~A}$ standby current when the two outputs are switched OFF. A shutdown pin is provided which holds the external 12 V regulator in standby mode except when required for VPP power.
The LTC1472 is available in 16-pin SO.
LT, LTC and LT are registered trademarks of Linear Technology Corporation. SafeSlot is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Protected PCMCIA $V_{\text {CC }}$ and VPP Card Driver

Linear Technology PCMCIA Product Family

DEVICE	DESCRIPTION	PACKAGE
LT ${ }^{\text {® }} 1312$	Single PCMCIA VPP Driver/Regulator	8-Pin S0
LT1313	Dual PCMCIA VPP Driver/Regulator	16-Pin SO*
LTC1314	Single PCMCIA Switch Matrix	14-Pin SO
LTC1315	Dual PCMCIA Switch Matrix	24-Pin SSOP
LTC1470	Protected V ${ }_{\text {CC }} 5 \mathrm{~V} / 3.3 \mathrm{~V}$ Switch Matrix	8-Pin SO
LTC1471	Dual Protected VCC 5V/3.3V Switch Matrix	16-Pin S0*
LTC1472	Protected V C c and VPP Switch Matrix	16-Pin SO*

*Narrow Body

ABSOLUTE MAXIMUM RATINGS

$5 \mathrm{~V}_{\text {IN }}$ Supply Voltage \qquad -0.3 V to 7 V
$3 V_{\text {IN }}$ Supply Voltage -0.3 V to 7 V
VPP $_{\text {IN }}$ Supply Voltage-0.3V to 13.2 V
$V_{C C(I N)}$ Supply Voltage -0.3 to 7V
$V_{\text {DD(IN }}$ Supply Voltage -0.3 V to 7 V
VPP ${ }_{\text {OUt }}$ (OFF)-0.3V to 13.2 V
$\mathrm{V}_{\text {CC(OUT) }}$ (OFF) .. -0.3 V to 7 V
Enable Inputs .. 0.3 V to 7 V
VPP ${ }_{\text {OUT }}$ Short-Circuit Duration Indefinite
$V_{\text {CC(OUT) }}$ Short-Circuit Duration Indefinite
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Junction Temperature...................................... $100^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTGRISTICS ${ }_{\left(V_{c c} \text { Switch Section) }\right.}$

$5 V_{I N}=5 \mathrm{~V}, 3 \mathrm{~V}_{I N}=3.3 \mathrm{~V}$, VPP EN0 $=$ VPP EN1 $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$5 \mathrm{~V}_{\text {IN }}$	5 V IN Supply Voltage Range	(Note 2)		4.75		5.25	V
$3 \mathrm{~V}_{\text {IN }}$	$3 \mathrm{~V}_{\text {IN }}$ Supply Voltage Range	(Note 3)		0		3.60	V
I5VIN	$5 \mathrm{~V}_{\text {IN }}$ Supply Current	Program to $\mathrm{Hi}-\mathrm{Z}$ Program to 5V, No Load Program to 3.3V, No Load	\bullet		$\begin{aligned} & \hline 0.01 \\ & 140 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10 \\ 200 \\ 160 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{3 \mathrm{VIN}}$	$3 \mathrm{~V}_{\text {IN }}$ Supply Current	Program to $\mathrm{Hi}-\mathrm{Z}$. Program to 5V, No Load Program to 3.3V, No Load	$\bullet \bullet$		$\begin{gathered} 0.01 \\ 0.01 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 80 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	5V Switch On Resistance 3.3V Switch On Resistance	Program to $5 \mathrm{~V}, \mathrm{I}_{0 U T}=500 \mathrm{~mA}$ Program to $3.3 \mathrm{~V}, \mathrm{I}_{0 U T}=500 \mathrm{~mA}$			$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.16 \end{aligned}$	Ω Ω
ILKG	Output Leakage Current OFF	$V_{\text {CC }}$ ENO $=\mathrm{V}_{\text {CC }}$ EN1 $=0 \mathrm{~V}$ or $5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {CC(}}$ OUT $) \leq 5 \mathrm{~V}$	\bullet			± 10	$\mu \mathrm{A}$
LIIM5V	$\mathrm{V}_{\text {CC(OUT }}$ 5 5 V Current Limit	Program to 5V, $\mathrm{V}_{\text {CC(OUT }}=0 \mathrm{~V}$ (Note 4)			1		A
lılm3V	$\mathrm{V}_{\text {CCOUT }}$ 3.3V Current Limit	Program to 3.3V, $\mathrm{V}_{\text {CC(OUT }}=0 \mathrm{~V}$ (Note 4)			1		A
$\mathrm{V}_{\text {CCENH }}$	$V_{\text {CC }}$ Enable Input High Voltage		\bullet	2			V
$\mathrm{V}_{\text {CCENL }}$	$V_{\text {CC }}$ Enable Input Low Voltage		\bullet			0.8	V
IVCCEN	$V_{\text {CC }}$ Enable Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {CCEN }} \leq 5 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
tvcc1	Delay + Rise Time	From OV to 3.3V, $\mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}$ (Note 5)		0.2	0.32	1	ms
tvcc2	Delay + Rise Time	From 3.3V to 5V, $\mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}$ (Note 5)		0.2	0.52	1	ms
tvccu	Delay + Rise Time	From 0 V to $5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=100 \Omega, \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}$ (Note 5)		0.2	0.38	1	ms

ELECTRICAL CHARACTERISTICS (VPP Switch Section)

$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {CCIN }}=5 \mathrm{~V}, \mathrm{VPP}_{I N}=12 \mathrm{~V}, \mathrm{~V}_{\text {CCENO }}=\mathrm{V}_{\text {CCEN } 1}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 1), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {CC(IN) }}$	$V_{\text {CC }}$ Input Voltage Range		\bullet	3		5.5	V
$\underline{\text { VPP }}$ IN	VPP Input Voltage Range	(Note 6)	\bullet	0		12.6	V
$\mathrm{V}_{\text {DD }}$	Logic Supply Voltage Range	(Note 7)	\bullet	4.5		5.5	V
ICCIN	V CC(IN) Supply Current, No Load	Program to VPP $_{\text {IN }}$ or $\mathrm{V}_{\text {CC(IN })} \mathrm{VPP}_{\text {IN }}=12 \mathrm{~V}$ Program to OV or $\mathrm{Hi}-\mathrm{Z}$	\bullet		$\begin{gathered} 35 \\ 0.01 \end{gathered}$	$\begin{aligned} & 60 \\ & 10 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IPPIN	VPP IN Supply Current, No Load	Program to VPP $_{\text {IN }}$ or $\mathrm{V}_{\mathrm{CC}(\mathbb{N})}$ Program to OV or $\mathrm{Hi}-\mathrm{Z}$	\bullet		$\begin{gathered} 40 \\ 0.01 \end{gathered}$	$\begin{aligned} & 80 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$I_{\text {DD }}$	$V_{D D}$ Supply Current, No Load	Program to VPP ${ }_{\text {IN }}$ Program to $\mathrm{V}_{\mathrm{CC}(\mathbb{N}),}, \mathrm{VPP}_{\mathrm{IN}}=0 \mathrm{~V}$ Program to $\mathrm{V}_{\mathrm{CC}(\mathbb{N})}, \mathrm{VPP}_{\mathbb{N}}=12 \mathrm{~V}$ Program to OV or Hi-Z			$\begin{gathered} 70 \\ 85 \\ 40 \\ 0.01 \end{gathered}$	$\begin{gathered} 120 \\ 150 \\ 80 \\ 10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IvPPOUT	Hi-Z Output Leakage Current	Program to Hi-Z, OV < VPP ${ }_{\text {OUT }}<12 \mathrm{~V}$	\bullet		0.01	10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	On Resistance VPP Out to VPPIN On Resistance VPP OUT to $\mathrm{V}_{\text {CC(IN) }}$ On Resistance VPP OUT to GND	$\begin{aligned} & V_{P P} I_{I N}=12 \mathrm{~V}, I_{\text {LOAD }}=120 \mathrm{~mA} \\ & V_{C C(I N)}=5 \mathrm{~V}, I_{\text {LOAD }}=5 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V}, I_{S I N K}=1 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.50 \\ & 1.70 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 5 \\ 250 \\ \hline \end{gathered}$	Ω Ω Ω
$\mathrm{VPP}_{\text {ENH }}$	VPP Enable Input High Voltage	$V_{D D}=5 \mathrm{~V}$	\bullet	2			V
$\mathrm{VPP}_{\text {ENL }}$	VPP Enable Input Low Voltage	$V_{D D}=5 \mathrm{~V}$	\bullet			0.8	V
IVPPEN	VPP Enable Input Current	OV < VPP EN < VDD	\bullet			± 1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SDH }}$	SHDN Output High Voltage	Program to OV, $\mathrm{V}_{\text {CC(IN) }}$ or $\mathrm{Hi}-\mathrm{Z}, \mathrm{I}_{\text {LOAD }}=400 \mu \mathrm{~A}$	\bullet	3.5			V
$\mathrm{V}_{\text {SDL }}$	SHDN Output Low Voltage	Program to VPP ${ }_{\text {IN }}$, $\mathrm{ISINK}=400 \mu \mathrm{~A}$	\bullet			0.4	V
LIIMVCC	VPP ${ }_{\text {OUT }}$ Current Limit, $\mathrm{V}_{\text {CC(IN) }}$	Program to $\mathrm{V}_{\text {CC(IN })}, \mathrm{VPP}_{0}$ OUT $=0 \mathrm{~V}$ (Note 4)			60		mA
LIMVPP	VPP ${ }_{\text {OUT }}$ Current Limit, VPP ${ }_{\text {IN }}$	Program to VPP ${ }_{\text {IN }}$, VPPOUT $=0 \mathrm{~V}$ (Note 4)			100		mA
tvPP1	Delay and Rise Time	From OV to $\mathrm{V}_{\mathrm{CC}(1 \mathrm{~N})}, \mathrm{VPP}_{\text {IN }}=0 \mathrm{~V}$ (Note 8)		5	15	50	$\mu \mathrm{s}$
tvPP2	Delay and Rise Time	From OV to VPPIN (Note 8)		25	85	250	$\mu \mathrm{s}$
tvPP3	Delay and Rise Time	From $\mathrm{V}_{\text {CC(IN) }}$ to VPP ${ }_{\text {IN }}$ ((Note 8)		30	100	300	$\mu \mathrm{s}$
tvPP4	Delay and Fall Time	From VPPIIN to $\mathrm{V}_{\text {CC(IN) }}$ (Note 9)		5	15	50	$\mu \mathrm{s}$
tvPP5	Delay and Fall Time	From VPP ${ }_{\text {IN }}$ to OV (Note 10)		10	35	100	$\mu \mathrm{S}$
tvpp6	Delay and Fall Time	From $\mathrm{V}_{\text {CC(IN) }}$ to OV, $\mathrm{VPP}_{\text {IN }}=0 \mathrm{~V}$ (Note 10)		10	30	100	$\mu \mathrm{S}$
tvpP7	Output Turn-On Delay	From Hi-Z to $\mathrm{V}_{\mathrm{CC}(1 \mathrm{IN})}$ (Note 8)		5	15	50	$\mu \mathrm{S}$
tvPP8	Output Turn-On Delay	From Hi-Z to VPPIIN (Note 8)		25	85	250	$\mu \mathrm{s}$

The denotes the specifications which apply over the full operating temperature range.
Note 1: $\mathrm{V}_{\text {ENH }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ENL }}=0 \mathrm{~V}$. See $\mathrm{V}_{\text {CC }}$ and VPP Switch Truth Tables for programming enable inputs for desired output states.
Note 2: Power for the $\mathrm{V}_{\text {CC }}$ input logic and charge pump circuitry is derived from the $5 \mathrm{~V}_{\text {IN }}$ power supply which must be continuously powered. 12V and 3.3 V power is not required to control the NMOS $V_{C C}$ switches. (See Applications Information.)
Note 3: The two $3 \mathrm{~V}_{\mathbb{N}}$ supply input pins (14 and 15) must be connected together and the two $\mathrm{V}_{\mathrm{CC}(\mathrm{OUT})}$ output pins (1 and 16) must be connected together. The $3 \mathrm{~V}_{\mathbb{N}}$ supply pins do not need to be continuously powered and may drop to OV when not required.
Note 4: The $V_{C C}$ and VPP output are protected with foldback current limit which reduces the short-circuit (OV) currents below peak permissible current levels at higher output voltages.

Note 5: To 90% of final value.
Note 6: 12 V power is only required when $\mathrm{VPP}_{\text {Out }}$ is programmed to 12 V . The external 12 V regulator can be shutdown at all other times. Built-in charge pumps power the internal NMOS switches from the $5 \mathrm{~V} \mathrm{~V}_{D D}$ supply when 12 V is not present.
Note 7: Power for the VPP input logic and charge pump circuitry is derived from the $V_{D D}$ power supply which must be continuously powered.
Note 8: To 90% of the final value, $\mathrm{C}_{0 U t}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUt }}=2.9 \mathrm{k}$.
Note 9: To 10% of the final value, $\mathrm{C}_{0 U T}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUT }}=2.9 \mathrm{k}$.
Note 10: To 50% of the initial value, $C_{\text {OUT }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {OUT }}=2.9 \mathrm{k}$.

TYPICAL PGRFORMAOCG CHARACTGRISTICS (VCC Section) VPP ENO = VPP EN1 = ov

TYPICAL PGRFORMANCE CHARACTERISTICS (vPP Section) $v_{c c}$ ENO $=v_{c c}$ EN1 $=0 v$

LTC1472 TPC10

LTC1472 TPC13

VPPIN Supply Current (0FF)

LTC1472 TPC11

LTC1472 TPC14

LTC 1472 TPC12

Switch Resistances

LTC1472 TPC16

PIn functions

Enable Input (Pins 3,4,7,8)

The two $V_{\text {CC }}$ and two VPP Enable inputs are designed to interface directly with industry standard PCMCIA controllers. They are high impedance CMOS gates with ESD protection diodes to ground, and should not be forced below ground. Both sets of inputs have about 100 mV of built-in hysteresis to ensure clean switching between operating modes.

Shutdown Output (Pin 6)

The LTC1472 is designed to operate without continuous 12 V power. The gates of the $\mathrm{V}_{\text {CC }}$ NMOS switches are powered by charge pumps from the $5 \mathrm{~V}_{\text {IN }}$ supply, and the gates of the VPP NMOS switches are powered by charge pumps powered from the $V_{D D}$ supply when 12 V is not present at the VPPIN pin (see Application Information for more details). Therefore, the external 12 V regulator can be shut down most of the time, and only turned on when programming the socket VPP pin to 12 V .

The shutdown output is active high; i.e. the system 12 V regulator is shut down when this output is held high and turned on when this output is held low.

VPP ${ }_{\text {IN }}$ Supply (Pin 5)

The VPP ${ }_{\text {IN }}$ supply pin serves two purposes. The first purpose is to provide power and gate drive for the VPP ${ }_{\text {IN }}{ }^{-}$ VPPOUT switch. The second purpose is to provide optional 12 V gate drive for the $\mathrm{V}_{\mathrm{CC}(I N)}-\mathrm{VPP}_{\text {OUT }}$ switch. If, however, this 12 V power is not available, gate drive is obtained automatically from the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ supply by an internal 5 V to 12 V charge pump converter.

$V_{D D}$ Supply (Pin 9)

The $V_{D D}$ pin provides power for the input, charge pump and control circuitry for the VPP section of the LTC1472 and therefore must be continuously powered. The standby quiescent current is typically $0.1 \mu \mathrm{~A}$ when the VPP is programmed to 0 V or $\mathrm{Hi}-\mathrm{Z}$ and only rises to micropower levels when the VPP switches are active.

$\mathbf{V}_{\text {CC(IN) }}$ Supply (Pin 12)

The $\mathrm{V}_{\text {CC(IN) }}$ supply pin is typically connected directly to the $V_{\text {CC(OUT) }}$ pin from the $V_{\text {CC }}$ switch section of the LTC1472. It can also be connected directly to a 3.3 V or 5 V power supply if desired. This supply pin does not provide any power to the internal control circuitry and is simply the input to the $\mathrm{V}_{\mathrm{CC}(I N)}$-VPP ${ }_{\text {OUT }}$ switch and therefore does not consume any power when unloaded or turned off.

$5 \mathrm{~V}_{\mathrm{IN}}$ Supply (Pin 2)

The $5 \mathrm{~V}_{\text {IN }}$ supply pin serves two purposes. The first purpose is as the power supply input for the 5V NMOS switch. The second purpose is to provide power for the input, gate drive and protection circuitry for both the 3.3 V and $5 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ switches, this pin must be continuously powered.

The enable inputs should be turned off (both asserted high or both asserted low) at least 100μ s before the $5 \mathrm{~V}_{\text {IN }}$ power is removed to ensure that both $\mathrm{V}_{C C}$ NMOS switch gates are fully discharged and both switches are in the high impedance mode.

$3 V_{\text {IN }}$ Supply (Pins 14,15)

The $3 \mathrm{~V}_{\text {IN }}$ supply pin serves as the power supply input for the 3.3 V switch. This pin does not provide any power to the internal control circuitry and therefore does not consume any power when unloaded or turned off.

$\mathbf{V}_{\text {CC(OUT) }}$ and VPP ${ }_{\text {OUT }}$ Output (Pins $1,11,16$)

The $V_{\text {CC }}$ output of the LTC1472 is switched between the three operating states: OFF, 3.3 V , and 5 V . The VPP output is switched between four operating states: $0, \mathrm{~V}_{\mathrm{CC}}, 12 \mathrm{~V}$ and $\mathrm{Hi}-\mathrm{Z}$. Both pins are protected against accidental shortcircuit conditions to ground by independent SafeSlot foldback current-limit circuitry which protects the socket, card and the system power supplies against damage. A second level of protection is provided by independent thermal shut down circuitry which protects each switch against overtemperature conditions.

BLOCK DIAGRAM

OPERATION

The LTC1472 protected switch matrix is designed to be a complete single slot solution for $V_{c C}$ and VPP switching in a PCMCIA compatible card system. The LTC1472 consists of two independent functional sections: the $\mathrm{V}_{\text {cc }}$ switching section, and the VPP switching section.

THE V ${ }_{\text {cc }}$ SWITCHING SECTION

The $\mathrm{V}_{\text {CC }}$ switching section of the LTC1472 consist of the following functional blocks:

$V_{\text {CC }}$ Switch Input TTL-CMOS Converters

The LTC1472 $\mathrm{V}_{\text {cC }}$ inputs are designed to accommodate a wide range of 3 V and 5 V logic families. The input threshold voltage is approximately 1.4 V with approximately 100 mV of hysteresis. The inputs enable the bias generator, the gate charge pumps and the protection circuity which are powered from the $5 \mathrm{~V}_{\text {IN }}$ supply. Therefore, when the inputs are turned off, the entire circuit is powered down and the $5 \mathrm{~V}_{\text {IN }}$ supply current drops below $1 \mu \mathrm{~A}$.

operation

$V_{\text {cc }}$ XOR Input Circuitry

The LTC1472 ensures that the 3.3 V and 5 V switches are never turned on at the same time by employing an XOR function which locks out the 3.3 V switch when the 5 V switch is turned on, and locks out the 5 V switch when the 3.3 V switch is turned on. This XOR function also makes it possible for the LTC1472 to work with either active-low or active-high PCMCIA V ${ }_{\text {CC }}$ switch control logic (see Applications Information for further details).

$V_{\text {cc }}$ Break-Before-Make Switch Control

The LTC1472 has built-in delays to ensure that the 3.3 V and 5 V switch are non-overlapping. Further, the gate charge pumps include circuity which ramps the NMOS switches on slowly (400μ s typical rise time) but turn off much more quickly (typically $10 \mu \mathrm{~s}$).

$V_{\text {CC }}$ Bias, Oscillator and Gate Charge Pump

When either the 3.3 V or 5 V switch is enabled, a bias current generator and high frequency oscillator are turned on. An on-chip capacitive charge pump generates approximately 12 V of gate drive for the internal low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ NMOS $V_{\text {CC }}$ Switches from the $5 \mathrm{~V}_{\text {IN }}$ power supply. Therefore, an external 12 V supply is not required to switch the $\mathrm{V}_{\text {CC }}$ output. The $5 \mathrm{~V}_{\text {IN }}$ supply current drops below $1 \mu \mathrm{~A}$ when both switches are turned off.

$V_{\text {CC }}$ Gate Charge and Discharge Control

Both $V_{\text {CC }}$ switches are designed to ramp on slowly ($400 \mu \mathrm{~s}$ typical rise time). Turn off time is much quicker (typically $10 \mu \mathrm{~s}$).

To ensure that both $V_{C C}$ NMOS switch gates are fully discharged, program the switch to the high impedance mode at least 100μ s before turning off the $5 \mathrm{~V}_{\text {IN }}$ power supply.

$V_{C C}$ Switch Protection

Two levels of protection are designed into each of the power switches in the LTC1472. Both VCC switches are protected against accidental short circuits with SafeSlot fold-back current limit circuits which limit the output current to typically 1 A when the $\mathrm{V}_{\text {CC(OUT }}$ output is shorted
to ground. Both switches also have independent thermal shutdown which limits the power dissipation to safe levels.

$\mathbf{V}_{\text {CC }}$ Switch Truth Table		
$\mathrm{V}_{\text {CC ENO }}$	$\mathrm{V}_{\text {CC EN1 }}$	$\mathrm{V}_{\text {CC(OUT })}$
0	0	OFF
1	0	5 V
0	1	3.3 V
1	1	0 FF

THE VPP SWITCHING SECTION

The VPP switching section of the LTC1472 consists of the following functional blocks:

VPP Switch Input TTL-CMOS Converters

The VPP inputs are designed to accommodate a wide range of 3 V and 5 V logic families. The input threshold voltage is 1.4 V with $\approx 100 \mathrm{mV}$ of hysteresis. The inputs enable the bias generator, the gate charge pumps and the protection circuitry. When the inputs are turned off, the entire circuit is powered down and the V_{DD} and $\mathrm{VPP}_{\mathrm{IN}}$ supply currents drop below $1 \mu \mathrm{~A}$.

VPP Break-Before-Make Switch Control

The VPP input section has built-in delays to ensure that the VPP switchs are non-overlapping. Further, the gate charge pumps include circuitry which ramps the NMOS switches on slowly but turns them off quickly.

VPP Bias, Oscillator and Gate Charge Pump

When either the VPPIIN-VPP is enabled, a bias current generator and high frequency oscillator are turned on. An on-chip capacitive charge pump generates approximately 23 V of gate drive for the internal low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ NMOS VPPIN-VPPOUT switch from the VPP IN power supply. The gate of the $\mathrm{V}_{\mathrm{CC}(\text { IN })}-\mathrm{VPP}$ OUT NMOS switch is either powered by the external 12 V regulator (ifleft on) or automatically from a built-in charge pump powered from the $V_{D D}$ supply when the external 12 V supply drops below 10 V . The V_{DD} supply current drops below $1 \mu \mathrm{~A}$ when switched to either the OV or $\mathrm{Hi}-\mathrm{Z}$ mode.

IPGRATION

IPP Gate Charge and Discharge Control

-he VPP switches are designed to ramp slowly (typically ens of $\mu \mathrm{s}$) between output modes to reduce supply رlitching when powering large capacitive loads.

IPP Switch Protection

3oth VPP power switches are protected against accidental hort circuits with SafeSlot fold-back current limit circuits which limit the short-circuit (OV) output current to typi-
cally 100 mA when protecting the 12 V VPP ${ }_{\text {IN }}$ supply and 60 mA when protecting the V_{CC} (IN) supply. (Higher operating currents are allowed at higher output voltages). Both switches also have thermal shutdown.

VPP Switch Truth Table

VPP EN0	VPP EN1	VPP $_{\text {OUT }}$
0	0	0 V
0	1	$\mathrm{~V}_{\mathrm{CC}(\mathrm{IN})}$
1	0	$\mathrm{VPP}_{\mathrm{IN}}$
1	1	$\mathrm{Hi}-\mathrm{Z}$

IPPLICATIONS IIFORMATION

he LTC1472 is a complete single slot $V_{C C}$ and VPP power iupply switch matrix with SafeSlot current limit protection in both outputs. It is designed to interface directly with ndustry standard PCMCIA card controllers and to indusry standard 12 V regulators.

nterfacing to the CL-PD6710 and the LT ${ }^{\oplus} 1301$

igure 1 shows the LTC1472 interfaced to a standard 'CMCIA slot controller and an LT1301 step-up switching egulator. The LTC1472 accepts logic control directly rom the CL-PD6710 and in turn, controls the LT1301 to rrovide clean 12V VPP programming power when repuired. The LT1301 is then shutdown ($10 \mu \mathrm{~A}$ standby urrent) at all other times to conserve power.
he XOR $V_{\text {CC }}$ input function allows the LTC1472 to interace directly to the active-low $V_{C C}$ control outputs of the ;L-PD6710 for $3.3 \mathrm{~V} / 5 \mathrm{~V}$ voltage selection (see the $\mathrm{V}_{\text {CC }}$ iwitch Truth Table). Therefore, no "glue" logic is required \supset interface to this PCMCIA compatible controller.
he LTC1472 provides SafeSlot current-limit protection or the LT1301 step-up regulator, the system 3.3 V and 5 V egulators, the socket and the card. Further, depending pon the system regulator's own current limits, it may llow the system power supplies to continue operation uring a card/slot short circuit without losing data, etc.

Figure 1. Direct Interface to Industry Standard PCMCIA Controller and LT1301 Step-Up Switching Regulator

APPLICATIONS INFORMATION

Interfacing to "365" Type Controllers

The LTC1472 also interfaces directly with "365" type controllers as shown in Figure 2. The V CC Enable inputs are connected differently than to the CL-PD6710 controller because the " 365 " type controllers use active-high logic control of the $V_{C C}$ switches (see the $V_{C C}$ Switch Truth Table). No "glue logic" is required to interface to this type of PCMCIA compatible controller.

12V Power Requirements

Note that in Figure 2, a "local" 5 V to 12 V converter is not used. The LTC1472 works equally well with or without continuous 12 V power. If the main power supply system has 12 V continuously available, simply connect it to the VPP in pin. Internal circuitry automatically senses its presence and uses it to switch the internal VPP switches.

The 12 V shutdown output can be used to shut down the system 12 V power supply (if not required for any purpose other than VPP programming).

5V Power Requirements

The LTC1472 has been designed to operate without continuous 12 V power, but continuous 5 V power is required
at the $\mathrm{V}_{D D}$ and $5 \mathrm{~V}_{\text {IN }}$ supply pins for proper operation and should always be present when a card is powered (whether it is a 5 V or 3.3 V only card).
If the 5 V power must be turned off, for example, to enter a 3.3 V only full system "sleep" mode, the 5 V supply must be turned off at least 100μ s after the $V_{\text {CC }}$ and VPP switches have been programmed to the $\mathrm{Hi}-\mathrm{Z}$ or OV states. This ensures that the gates of the NMOS switches are completely discharged.
Also, the $\mathrm{V}_{C C}$ switches cannot be operated properly without 5 V power. They must be programmed to the off state at least $100 \mu \mathrm{~s}$ prior to turning the 5 V supply off, or they may be left in an indeterminate state.

Supply Bypassing

For best results, bypass the supply input pins with $1 \mu \mathrm{~F}$ capacitors as close as possible to the LTC1472. Sometimes, much larger capacitors are already available at the outputs of the $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V power supply. In this case, it is still good practice to use $0.1 \mu \mathrm{~F}$ capacitors as close as possible to the LTC1472, especially if the power supply output capacitors are more than 2" away on the printed circuit board.

Figure 2. Direct Interface to Industry Standard PCMCIA Controller and LT1301 Step-Up Switching Regulator

IPPLICATIONS INFORMATION

Jutput Capacitors

he $\mathrm{V}_{\mathrm{CC} \text { (OUT) }}$ pin is designed to ramp on slowly, typically $.00 \mu \mathrm{~s}$ rise time. Therefore, capacitors as large as $150 \mu \mathrm{~F}$ an be driven without producing voltage spikes on the $\mathrm{V}_{\text {IN }}$ or $3 \mathrm{~V}_{\text {IN }}$ supply pins (see graphs in Typical Perfornance Characteristics). The $\mathrm{V}_{\text {CC(OUT }}$ pin should have a $1.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ capacitor for noise reduction and smoothing.
he VPP or noise reduction. The VPPIN capacitors should be at zast equal to the VPP ${ }_{\text {OUT }}$ capacitors to ensure smooth ransitions between output voltages without creating spikes in the system power supply lines.

iupply Sequencing

lecause the 5 V supply is the source of power for both the 'cc and VPP switch control logic, it is best to sequence the ower supplies such that the 5 V supply is powered before r simultaneous to the application of 3.3 V or 12 V power.
: is interesting to note however, that all of the switches in e LTC1472 are NMOS transistors which require charge umps to generate gate voltages higher than the supply ails for full enhancement. Because the gate voltages start
a $0 V$ when the supplies are first activated, the switches always start in the off state and do not produce glitches at the output when powered.

Some PCMCIA switch matrix products employ PMOS switches for 12 V VPP control and great care must be taken to ensure that the 5 V control logic is powered before the 12 V supply is turned on. If this sequence is not followed, the PMOS VPP switch gate may start at ground potential and the VPP output may be inadvertently forced to 12 V .
Although, not advisable, it is possible to power the 12 V VPP ${ }_{\text {IN }}$ supply pin of the LTC1472 prior to application of 5 V power. Only about $50 \mu \mathrm{~A}$ flows to the VPP these conditions.
If the 5 V supply must be turned off, it is important to program all switches to the $\mathrm{Hi}-\mathrm{Z}$ or 0 V state at least $100 \mu \mathrm{~s}$ before the 5 V power is removed to ensure that all NMOS switch gates are fully discharged to 0 V .
Whenever possible however, it is best to leave the $5 \mathrm{~V}_{\text {IN }}$ and $V_{D D}$ pins continuously powered. The LTC1472 quiescent current drops to < $1 \mu \mathrm{~A}$ with all the switches turned off and therefore no 5 V power is consumed in the standby mode.

TYPICAL APPLICATIONS

Dual Protected PCMCIA Power Management System

*FOR 5V TO 12 V CONVERSION USE $10 \mu \mathrm{H}$, COILCRAFT D01608-103. SEE LT1301 DATA SHEET FOR MORE DETAILED INFORMATION ON INDUCTOR AND CAPACITOR SELECTION.

TYPICAL APPLICATIONS

Single Protected PCMCIA Power Management System Using the LT1301 Powered from 3.3V or 5V

TYPICAL APPLICATIONS

Single Protected PCMCIA Power Management System
Using the LT1121 Powered from an Auxiliary Winding for 12V VPP Power

*SEE THE LTC1142 DATA SHEET FOR AN EXAMPLE OF A 3.3V/5V DUAL REGULATOR WITH AUXILIARY WINDING 15V OUTPUT

[YPICAL APPLICATIONS

Dual Protected PCMCIA Power Management System Powered by System 12V Supply

IELATED PARTS

ee PCMCIA Product Family table on the first page of this ata sheet.

NOTES

4-452
SECTION 4—POWER PRODUCTS
BATTERY MANAGEMENT AND CHARGING CIRCUITS 4-453
LT1239, Backup Battery Management Circuit 4-454
LTC1325, Microprocessor-Controlled Battery Management System 4-466
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130

features

- Micropower Operation ($\mathrm{I}_{\mathrm{a}}=20 \mu \mathrm{~A}$)
- Adjustable Regulator for Battery Charging
- 4.85V Regulator for Battery Regulation
- Cell Voltage Equalization in 2-Cell Systems
- Low-Battery Detector Protects Lithium Cells
- Comparator for Automatic Power Switching
- Shutdown
- Output Current Sensing
- Current and Thermal Limiting
- Reverse Output Protection
- 16-Pin SO Package
- Operates on 7V to 30V Input

applications

- Backup Battery Management Systems for Portable Computers
- Lithium-Ion Backup Systems
- NiCd Backup Systems

DESCRIPTION

The $L T^{\circledR} 1239$ is a micropower backup battery management system for portable computers and instrumentation. It contains two regulators for regulating the battery voltage and memory voltage and a comparator for switching between main power and backup power. The first regulator provides a constant voltage charge for the backup batteries and is adjustable from 3.75 V up to 20 V . An equalization amplifier combined with the first regulator provides precision charge equalization for a 2-cell lithium-ion system. A second regulator with 4.85 V output provides a regulated backup battery voltage to the memory when main power is lost. The second regulator also isolates the backup battery from the main 5 V supply during normal operation when the memory is being powered by the 5 V supply.

A comparator is included which provides automatic switchover from main 5 V power to backup power ensuring uninterrupted power for memory and power monitor-

TYPICAL APPLICATION

IESCRIPTION

g circuitry. A low-battery detector with a 5 V threshold נwers down the second regulator and the error amplifier limit the discharge voltage of the backup cells. This
prevents deep discharge damage to the lithium cells. Both regulators have independent shutdown and current monitor functions.

BSOLUTE MAXIMUM RATINGS

ote 1)

put 1 Voltage .. $\pm 30 \mathrm{~V}$
put 2 Voltage .30V, -0.6 V
Itput 1 Voltage $30 \mathrm{~V},-0.6 \mathrm{~V}$
Itput 2 Voltage $6 \mathrm{~V},-0.6 \mathrm{~V}$
ljust Pin Current 10 mA
tDN1, SHDN2 (Note 2)
Input Voltage \qquad $6 \mathrm{~V},-0.6 \mathrm{~V}$
Input Current 5 mA
ON1 Voltage
(Note 3) \qquad $\left(\mathrm{V}_{\text {IN1 }}-30 \mathrm{~V}\right)<\mathrm{I}_{\text {MON } 1}<\mathrm{V}_{\text {IN1 }}$ ON2 Voltage
(Note 4) \qquad $\left(\mathrm{V}_{\text {IN2 }}-30 \mathrm{~V}\right)<\mathrm{I}_{\text {MON2 }}<\mathrm{V}_{\text {IN2 }}$ A Output Voltage (Note 5) $-0.6 \mathrm{~V}<\mathrm{V}_{\text {E/A(OUT) }}<\mathrm{V}_{\text {IN2 }}$ A Input Voltage (Note 5) $-0.6 \mathrm{~V}<\mathrm{V}_{\mathrm{E} / \mathrm{A}(\mathrm{IN})}<\mathrm{V}_{\text {IN2 }}$ I Input Voltage $6 \mathrm{~V},-0.6 \mathrm{~V}$ serating Temperature Range 0 to $70^{\circ} \mathrm{C}$ nction Temperature Range \qquad (Note 6)
orage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ad Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

LECTRICAL CHARACTERISTICS

RAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
gulator 1 (Notes 7, 8)						
gulated Output Voltage ($\mathrm{V}_{\text {ADJ }}=\mathrm{V}_{\text {OUT1 }}$)	$\begin{aligned} & V_{\text {IN1 } 1}=4.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IN1 }}=4.8 \mathrm{~V} \text { to } 24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \text { to } 30 \mathrm{~mA} \end{aligned}$	-	$\begin{aligned} & 3.700 \\ & 3.650 \end{aligned}$	$\begin{aligned} & 3.750 \\ & 3.750 \end{aligned}$	$\begin{aligned} & 3.800 \\ & 3.825 \end{aligned}$	V
e Regulation	$\mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA}, \mathrm{~V}_{1 N 1}=4.3 \mathrm{~V}$ to 30 V	\bullet		2	10	mV
ad Regulation	$\begin{aligned} & V_{I N 1}=5 \mathrm{~V}, \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 30 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & V_{I N 1}=5 \mathrm{~V}, \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 30 \mathrm{~mA} \\ & V_{I N 1}=5 \mathrm{~V}, \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & V_{I N 1}=5 \mathrm{~V}, \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA} \end{aligned}$	-		$\begin{aligned} & -12 \\ & -20 \\ & -20 \\ & -30 \end{aligned}$	$\begin{aligned} & -25 \\ & -50 \end{aligned}$	mV mV mV mV
)pout Voltage (Note 9)	$\begin{aligned} & I_{L O A D}=1 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & I_{\text {LOAD }}=30 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & I_{L O A D}=50 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.15 \\ & 0.25 \\ & 0.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	V V V
)und Pin Current (Notes 10, 11)	$\begin{aligned} & I_{\mathrm{LOAD}}=0 \mathrm{~mA}, V_{I N 1}=3.75 \mathrm{~V} \\ & I_{\mathrm{LOAD}}=30 \mathrm{~mA}, V_{I N 1}=3.75 \mathrm{~V} \\ & I_{L O A D}=50 \mathrm{~mA}, V_{I N 1}=3.75 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 20 \\ 0.80 \\ 1.35 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 1.2 \end{aligned}$	$\mu \mathrm{A}$ mA mA
ust Pin Bias Current (Note 12)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			40	120	nA

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Regulator 1 (Notes 7, 8)						
Shutdown Threshold	$\begin{aligned} & V_{\text {OUT1 }}=0 \mathrm{ff} \text { to } 0 \mathrm{n} \\ & \mathrm{~V}_{\text {OuT1 }}=\text { On to Off } \end{aligned}$	\bullet	0.25	$\begin{aligned} & 1.20 \\ & 0.75 \end{aligned}$	2.8	\checkmark
Shutdown Pin Current (Note 13)	$\mathrm{V}_{\text {SHDN1 }}=0 \mathrm{~V}$	\bullet		2	4	$\mu \mathrm{f}$
Quiescent Current in Shutdown (Note 10)	$\mathrm{V}_{\text {IN1 }}=24 \mathrm{~V}, \mathrm{~V}_{\text {SHDN1 }}=0 \mathrm{~V}$	\bullet		10	16	$\mu \mathrm{f}$
Ripple Rejection	$\begin{aligned} & V_{\text {IN1 } 1}=5 \mathrm{~V}(\mathrm{Avg}), V_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }} \\ & f_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{LOAD}}=20 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$		50	59		dE
Current Limit	$\begin{aligned} & V_{\text {INI }}=7 \mathrm{~V}, V_{\text {OUT1 }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT1 }}=V_{\text {OUT1 (NOM) }}-100 \mathrm{mV}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Reverse Output Current	$\begin{aligned} & V_{\text {OUT1 }}=3.75 \mathrm{~V}, V_{\text {IN1 }}<3.75 \mathrm{~V} \\ & V_{\text {OUT1 }}=3.75 \mathrm{~V}, \mathrm{~V}_{\text {IN1 }}=\text { Open Circuit } \end{aligned}$			$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\mu \mathrm{f}$ $\mu \mathrm{f}$
Current Monitor Pin Output Current	$\begin{aligned} & V_{\text {OUT1 }}=3.75 \mathrm{~V}, V_{\text {IMON1 }}=0 \mathrm{~V}, I_{\text {OUT1 }}=1 \mathrm{~mA} \\ & V_{\text {OUT1 }}=3.75 \mathrm{~V}, V_{\text {IMON1 }}=0 \mathrm{~V}, I_{\text {OUT1 }}=10 \mathrm{~mA} \\ & V_{\text {OUT1 }}=3.75 \mathrm{~V}, V_{\text {IMON } 1}=0 \mathrm{~V}, I_{\text {OUT1 }}=50 \mathrm{~mA} \end{aligned}$	-	38	$\begin{aligned} & 4.6 \\ & 44 \\ & 215 \\ & \hline \end{aligned}$	50	μf $\mu \mathrm{f}$ $\mu \mathrm{f}$
Comparator						
Output Saturation Voltage ($\mathrm{V}_{5 \mathrm{VIN}}-\mathrm{V}_{\text {OUT2 }}$)	$\begin{aligned} & V_{\text {IN1 }}=7 \mathrm{~V}, V_{\text {IN2 }}=0 \mathrm{~V}, V_{5 \mathrm{VIN}}=5 \mathrm{~V}, I_{\text {OUT2 }}=1 \mathrm{~mA} \\ & V_{\text {IN1 }}=7 \mathrm{~V}, V_{\text {IN2 }}=0 \mathrm{~V}, V_{5 V I N}=5 \mathrm{~V}, I_{\text {OUT2 } 2}=30 \mathrm{~mA} \\ & V_{\text {IN1 }}=7 \mathrm{~V}, V_{\text {IN2 } 2}=0 \mathrm{~V}, V_{5 V I N}=5 \mathrm{~V}, I_{\text {OUT2 }}=50 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 12 \\ 110 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ 150 \\ 220 \\ \hline \end{gathered}$	ml ml ml

Low-Battery Detector

Turn-Off Threshold	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.85	5.00	5.15
Turn-On Threshold	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		5.3	\vee
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.2	0.3

Regulator 2

Regulated Output Voltage	$\mathrm{V}_{\text {IN2 }}=6.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.775	4.850	4.925	\checkmark
Output Voltage Temperature Coefficient				-0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Line Regulation	$\mathrm{I}_{\text {OUT2 }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {IN2 }}=5.4 \mathrm{~V}$ to 10 V	\bullet		2	5	mV
Load Regulation	$\begin{aligned} & V_{I_{\text {IN2 }}}=6.8 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 30 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {IN2 }}=6.8 \mathrm{~V}, I_{\text {LAD }}=1 \mathrm{~mA} \text { to } 30 \mathrm{~mA} \\ & V_{\text {IN2 }}=6.8 \mathrm{~V}, \mathrm{I}_{\text {LAD }}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA}, T_{J}=25^{\circ} \mathrm{C} \\ & V_{I_{\text {IN2 }}}=6.8 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 50 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & -12 \\ & -20 \\ & -20 \\ & -30 \end{aligned}$	$\begin{aligned} & -25 \\ & -50 \end{aligned}$	mV mV mV mV
Ground Pin Current	$\begin{aligned} & I_{\mathrm{LOAD}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN} 2}=5.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OAD}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN2}}=5.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{LOAD}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN} 2}=5.4 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 16 \\ 0.80 \\ 1.35 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 1.2 \end{gathered}$	μA $m A$ $m A$
Shutdown Threshold	$\begin{aligned} & V_{\text {OUT2 }}=0 \mathrm{ff} \text { to } 0 \mathrm{n} \\ & V_{\text {OUT2 }}=0 \mathrm{n} \text { to Off } \end{aligned}$	\bullet	0.25	$\begin{aligned} & 1.20 \\ & 0.75 \end{aligned}$	2.8	\checkmark
Shutdown Pin Current	$V_{\text {SHDN2 }}=0 \mathrm{~V}$	\bullet		1.7	4	$\mu \mathrm{f}$
Ripple Rejection	$\begin{aligned} & V_{\text {IN2 }}=6.4 \mathrm{~V}(\mathrm{Avg}), V_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }} \\ & \mathrm{f}_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{LOAD}}=20 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$		50	58		dE
Current Limit	$\begin{aligned} & V_{\text {IN2 }}=6.8 \mathrm{~V}, V_{\text {OUT2 }}=0 \mathrm{~V}, T_{J} 25^{\circ} \mathrm{C} \\ & V_{\text {OUT2 }}=V_{\text {OUT2(NOM) }}-100 \mathrm{mV}, T_{J}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$		mf mf
Reverse Output Current	$\begin{aligned} & V_{\text {OUT2 }}=4.85 \mathrm{~V}, \mathrm{~V}_{\text {IN2 }}<4.85 \mathrm{~V} \\ & V_{\text {OUT2 } 2}=4.85 \mathrm{~V}, \mathrm{~V}_{\text {IN2 }}=\text { Open Circuit } \end{aligned}$	\bullet		$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\mu \mathrm{f}$ $\mu \mathrm{f}$
Current Monitor Pin Output Current	$\begin{aligned} & V_{\text {OUT2 }}=6.8 \mathrm{~V}, \mathrm{~V}_{\text {IMON2 }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=1 \mathrm{~mA} \\ & V_{\text {OUT2 }}=6.8 \mathrm{~V}, \mathrm{~V}_{\text {IMON2 }}=0 \mathrm{~V}, \text { IOUT2 }=10 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT2 }}=6.8 \mathrm{~V}, \mathrm{~V}_{\text {IMON2 }}=0 \mathrm{~V}, \text { I IUT2 }=50 \mathrm{~mA} \end{aligned}$	\bullet	35	$\begin{gathered} 4.7 \\ 41 \\ 210 \end{gathered}$	47	μf μf μf

Error Amplifier

Bias Current	$\mathrm{V}_{\mathrm{E} / \mathrm{A}(\mathrm{IN})}=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=6.8 \mathrm{~V}$	\bullet	3	20

LECTRICAL CHARACTERISTICS

ZAMETER	CONDITIONS	MIN	TYP	MAX
Uet Voltage		\bullet	0	15
put Current Sourcing	$V_{I N 2}=6.8 \mathrm{~V}, V_{E / A}(I N)=3.4 \mathrm{~V}, T_{J}=25^{\circ} \mathrm{C}$	mV		
Sinking	$V_{I N 2}=6.8 \mathrm{~V}, \mathrm{~V}_{E / A}(\mathbb{I N})=3.4 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		3	5
mA				

julator 2, Low Battery Detector and Error Amplifier

escent Current	$\mathrm{V}_{\text {IN2 } 2}=6.8 \mathrm{~V}, 5 \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {E/A }(\mathbb{N})}=3.4 \mathrm{~V}$	\bullet	20	30	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN2 } 2}=6.8 \mathrm{~V}, 5 \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {E/A } /(1 \mathrm{I})}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {PIN6 }}=0 \mathrm{~V}$	\bullet	8	12	$\mu \mathrm{A}$
	$\mathrm{V}_{1 \mathrm{IN} 2}=4.8 \mathrm{~V}, 5 \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{E} / \mathrm{A}(\mathrm{IN})}=2.4 \mathrm{~V}$	\bullet	3	6	$\mu \mathrm{A}$

- denotes specifications which apply over the full operating perature range.
e 1: All voltages are with respect to the ground pins of the device is $2,4,5$) unless otherwise specified.
e 2: The shutdown pin input voltage rating is required for a low edance source. Internal protection devices connected to the shutdown will turn on and clamp the pin to approximately 7 V or -0.6 V . This je allows the use of 5 V logic devices to drive the pin directly. For high edance sources or logic running on supply voltages greater than 5.5 V , maximum current driven into the shutdown pin must be limited to 4.
e 3: The current monitor pin for regulator 1 (pin 15) can be pulled 30 V Jw the input pin (pin 14). The current monitor pin must not be pulled ve the input pin.
e 4: The current monitor pin for regulator 2 (pin 11) can be pulled 30V Jw the input pin (pin 10). The current monitor pin must not be pulled ve the input pin.
e 5 : E/A (OUT) pin should not be pulled below ground or above voltage at Input 2.
e 6 : The device is specified to an operating temperature range of $0^{\circ} \mathrm{C}$ to C. The device is guaranteed to be functional up to the thermal tdown temperature. The thermal shutdown temperature for this device oproximately $100^{\circ} \mathrm{C}$.

Note 7: Operating conditions are limited by maximum junction temperature. The regulated output specification will not apply for all possible combinations of input voltage and output current. When operating at maximum output current, the input voltage range must be limited. When operating at maximum input voltage, the output current range must be limited.
Note 8: Regulator 1 of the LT1239 is tested and specified with the adjust pin (pin 1) tied to the output pin (pin 16). See Applications Information.
Note 9: Dropout voltage is the minimum input/output voltage required to maintain regulation at the specified output current. In dropout, the output voltage measured at the package pins will be equal to ($\left.\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {DROPOUT }}\right)$.
Note 10: The quiescent current of the comparator is included in the ground pin current and quiescent current specifications for regulator 1. The comparator output is turned off (pin $13=0 \mathrm{~V}$, pin $12=5 \mathrm{~V}$) during these tests.
Note 11: Ground pin current for regulator 1 is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}$ (nominal) and a current source load. This means that the device is tested in it's dropout region. Ground pin current will decrease slightly at higher input voltages.
Note 12: Adjust pin current flows into the adjust pin.
Note 13: Shutdown pin current at $V_{\overline{\text { SHDN }}}=0 \mathrm{~V}$ flows out of the shutdown pin.
Note 14: 6.8 V is the nominal voltage of two lithium-ion cells.

IPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

Shutdown Pin Threshold

LT1239•TPC10

Regulator 2, Error Amp, LowBattery Detector Quiescent Current

LT1239•TPC11

In functions

DJ (Pin 1): Adjust Pin of Regulator 1. The regulator will ?rvo the adjust pin to 3.75 V referred to ground. Bias urrent will be approximately 50 nA and will flow into the ljust pin.
ND (Pin 2): Ground Pin for Regulator 1. Note that the ree ground pins (pins 2, 4,5) are connected together ternally and should all be grounded externally.
TDN1 (Pin 3): Shutdown Pin for Regulator 1. Regulator output will be on if the shutdown pin is either: 1) Left , ating (open circuit) or 2) pulled up to the 5 V rail. If the lutdown function is not used, the shutdown pin is norally left open circuit. Regulator 1 output will be off if the lutdown pin is pulled to ground. The shutdown pin irrent with the pin pulled to ground will be in the range of aA flowing out of the pin. The shutdown pin current with e pin pulled up to 5 V will be zero.
ND (Pin 4): Ground. This ground pin is tied to the ibstrate of the die, between regulator 1 and the rest of the rcuit. It is used as an isolation barrier between regulator and the rest of the circuitry.
VD (Pin 5): Ground Pin for Regulator 2.
$\overline{\text { IDN2 (Pin 6): Shutdown Pin for Regulator 2. Regulator }}$ output will be on if the shutdown pin is either: 1) Left rating (open circuit) or 2) pulled up to the 5 V rail. If the utdown function is not used, the shutdown pin is norally left open circuit. Regulator 2 output will be off if the utdown pin is pulled to ground. The shutdown pin rrent with the pin pulled to ground will be in the range of A flowing out of the pin. The shutdown pin current with e pin pulled up to 5 V will be zero.

E/A (IN) (Pin 7): Noninverting Input of the Error Amplifier. This pin should be tied to the center tap point in the output divider for regulator 1 . The bias current for this pin will be in the range of $3 n A$ and it will flow out of the pin.
E/A (OUT) (Pin 8): Output of the Error Amplifier. This is normally connected to the center tap of the backup cells.
NC (Pin 9): Not Connected.
INPUT 2 (Pin 10): Input Pin (VCC) for Regulator2, the Error Amplifier, and the Low-Battery Detection Circuit.
$I_{\text {MON }} 2$ (Pin 11): Current Monitor Pin for Regulator 2. If the current monitor function is not used, this pin should be tied to the output pin of regulator 2.
OUT 2 (Pin 12): Output of Regulator 2. It is also the inverting input and output of the comparator. If the main 5 V system supply is up and running then the comparator output will pull the output of regulator 2 up to 5 V .
$5 V_{\text {IN }}$ (Pin 13): Noninverting Input of the comparator and the collector of the output driver. The collector of the output driver is normally connected to the main 5 V system supply.
INPUT 1 (Pin 14): Input Pin (V_{CC}) of Regulator 1.
$I_{\text {MoN }} 1$ (Pin 15): Current Monitor Pin for Regulator 1. The current flowing out of this pin will be approximately $1 / 200$ of the output current of regulator 1 . If the current monitor function is not used, this pin should be tied to the output pin of regulator 1 .
OUT 1 (Pin 16): Output of Regulator 1.

JnCTIONAL DESCRIPTIO

!gulator 1: Regulator 1 is used to supply the charging rrent to the backup batteries. It converts the voltage on 3 main battery to a fixed output voltage to charge the ckup cells. The output voltage is set with a voltage sider connected between the output and ground with a) point of the divider connected to the adjust pin. The julator servos its output in order to maintain the adjust 1 at 3.75 V referred to ground. The resistor divider ould be chosen such that the divider current is approxi-
mately $5 \mu \mathrm{~A}$. This means the impedance from the adjust pin to ground should be approximately $750 \mathrm{k} \Omega$. For safety requirements a resistor can be placed between the output pin and the top of the divider that sets the regulated output voltage. The regulator will regulate the voltage at the top of the divider. Quiescent current will be $10 \mu \mathrm{~A}$ to $15 \mu \mathrm{~A}$. Output short-circuit current will be approximately 70 mA .

functional description

Comparator: The output of the comparator is connected to the output of regulator 2. This point provides power to memory and power management circuitry. The comparator looks at the main 5 V power line and the output voltage of regulator 2 . If the main 5 V line is up and regulating the comparator output will pull up to 5 V and supply power to the memory from the main 5 V regulator. If the main 5 V power line drops below 4.85 V the comparator switches off and regulator 2 will supply power to the memory from the backup batteries. The comparator is powered from the raw battery voltage at the input of regulator 1.
Error Amplifier: The Error Amplifier is used to equalize the cell voltages of two lithium-ion cells connected in series. The error amplifier is designed to source or sink 5 mA .

Low-Battery Detector: The low-battery detector circuit acts as an undervoltage lockout. This circuit turns regulator 2 and the error amplifier off if the backup battery voltage drops below 5 V . The low-battery detector circuit will turn regulator 2 and the error amplifier back on wher the backup battery voltage rises above 5.3V. This circuit has a quiescent current of approximately $3 \mu \mathrm{~A}$ in the undervoltage condition.
Regulator 2: Regulator 2 is used to regulate the voltage 0 the backup batteries and isolate the backup batteries from the main 5 V line. This regulator will prevent reverse current flow from the main 5 V supply back into the backur cells.

BLOCK DIAGRAM

GROUND PINS 2, 4, 5 ARE TIED TO SUBSTRATE

APPLICATIONS INFORMATION

Device Overview

The LT1239 provides several functions needed for backup battery management. It provides:

1. Battery Charging: The LT1239 can be set up to charge lithium-ion or nickel cadmium batteries in either constant voltage or constant current mode.
2. Memory Power Control: The LT1239 provides power for the memory and includes automatic switchover
between the backup battery and the main 5 V systen power. When the 5 V system supply is up and running i is used to power the memory, the regulator prevent reverse current flow back into the backup battery Automatic switchover occurs when the 5 V systen supply drops below 4.85 V and the regulator then pro vides power to the memory from the backup cells Memory power is uniterruptable.

IPPLICATIONS INFORMATION

Protection: Regulator 1 allows the use of current limiting resistors to prevent overcharging lithium-ion cells. A low-battery detector shuts down regulator 2 and the error amplifier to prevent over discharging the lithium cells. An error amplifier is included to provide voltage equalization for two series connected lithium-ion cells.

ljusting Output Voltage

3gulator 1 is an adjustable regulator. This allows the itput voltage to be set for various battery types and Itages. The output voltage is adjustable from 3.75 V up 20 V . The regulator will servo its output voltage in order maintain the adjust pin at 3.75 V with respect to ground. ie output voltage is set with a resistor divider from output ground as shown in Figure 1. The resistor values should : chosen so that the current in the divider is approxiately $5 \mu \mathrm{~A}$. This means that the impedance from the just pin to ground should be approximately $750 \mathrm{k} \Omega$. The as current at the adjust pin is 50 nA (typical) and will flow to the adjust pin. The error in the output voltage, due to e adjust pin bias current will be equal to the bias current ultiplied by the value of $\mathrm{R} 2\left(I_{A D J} \times R 2\right)$. This error is small d is compensated for in the formulas shown in Figure 1.

Figure 1. Adjusting Output Voltage
ample: To set the output voltage to 6.8 V for a 2 -cell lium-ion system, use $\mathrm{R} 1=750 \mathrm{k}$ and $\mathrm{I}_{\mathrm{ADJ}}=50 \mathrm{nA}$. en:
$\mathrm{R} 2=\frac{6.8 \mathrm{~V}-3.75 \mathrm{~V}}{(3.75 \mathrm{~V} / 750 \mathrm{k})+50 \mathrm{nA}}=604 \mathrm{k}$

Equalizing Lithium-Ion Cells

The error amplifier on the LT1239 is used to equalize the cell voltages in a 2 -cell lithium-ion backup system. The error amplifier is internally connected as a unity-gain follower and is designed to sink or source about 3 mA . The bias current for the error amplifier will be approximately 3nA and will flow out of the pin. The output voltage of the error amplifier can be set by connecting the input to a tap point on the resistor divider used to set the output voltage for regulator 1 as shown in Figure 2. The error amplifier will then equalize the cell voltages by charging the cell with the lowest output voltage. The output voltage of regulator 1 controls the total cell voltage and the error amplifier forces the cell voltages to be equal. The error amplifier output current will go to zero when the cell voltages are equal and the total cell voltage is equal to the output voltage of regulator 1.

Figure 2. Equalizing Lithium-Ion Cells
For battery voltages greater than the low-battery detection threshold the error amplifier is active. For battery voltages lower than the low-battery detection threshold the output of the error amplifier is inactive. When the error amplifier is active it can source or sink approximately 3 mA . When the error amplifier is inactive its output is a high impedance, as long as it is not forced above $\mathrm{V}_{\text {IN2 }}$ or below ground.
The error amplifier is powered from the same supply pin as regulator 2. In most applications the backup batteries and the output of regulator 1 will provide power to this point. This means that the protection resistors (R4 in Figure 5) in series with the output of regulator 2 will limit the output current capability of the error amplifier in a fault condition.

APPLLCATIONS Information

Using the Current Monitor Function

The current monitor pin outputs a current proportional to the output current of the regulator. Both regulator 1 and regulator 2 have independent current monitor pins. The current monitor function can be used to monitor charge in the backup cells, to set up a constant current output or to adjust the current limit of the regulator. The current monitor pin should be tied to the output pin if the current monitor function is not used. This will minimize quiescent current.

The current output of the current monitor pin can be converted to a voltage by feeding the current monitor pin output current through a resistor. The voltage across the resistor will be proportional to output current. This signal can be used to monitor the output current for either regulator. Regulator 1 output current is equal to the charge current for the backup batteries plus the load current of regulator 2. If regulator 1 output current is greater than regulator 2 output current, the difference between the currents is the charge current for the backup cells. If regulator 2 output current is greater than regulator 1 output current, the difference between the currents is the discharge current for the backup cells. By integrating the difference between regulator 1 output current and regulator 2 output current the total charge in the backup cells can be determined.

Constant Current Charging

NiCd backup batteries are normally charged with a constant current trickle charge. This can be accomplished

Figure 3. Constant Current Charging
using regulator 1 and the circuit shown in Figure 3 In this circuit the voltage at the adjust pin is proportiona to the output current. Regulator 1 will servo its output tc force 3.75 V at the adjust pin. The output current will be scaled from the current monitor pin current by a ratio 0 220:1. Output current is equal to $220 \times$ current monitor pir current. The output current is set by choosing resistor R1 in the formula shown in Figure 3. Regulator 1 will source a constant current as long as the voltage at its input is greater than the battery voltage plus the dropout voltage 0 regulator 1 . External power monitoring circuitry can bf used to shutdown regulator 1 to terminate charge when : low current sleep mode is desired.

Setting Current Limit Using the Current Monitor Pin

With the addition of some simple external circuitry the current monitor pin can be used to control the outpu short-circuit current of the regulator. As shown in Figure 4, the current monitor pin can be tied to ground througt a resistor to generate a voltage proportional to outpu current. When the voltage across R3 is equal to approximately 0.6 V (one V_{BE}) Q1 will turn on and pull down on the shutdown pin of the regulator. Q1 effectively steals drive current from the regulator to limit the output current. C1 is needed to roll off the gain of Q1. Current limit can be se using the formula shown in Figure 4. This circuit can be used with either regulator. The shutdown function car also be used. An open-collector gate connected in paralle with Q1 can shut down the regulator.

Figure 4. Reducing Current Limit

Using the Comparator

The comparator in the LT1239 is intended to be used as ar automatic switchover circuit between the main $5 \backslash$

APPLICATIONS InFORMATION

system power and the backup batteries. The comparator output will be driven high if the output of the 5 V system supply is greater than the 4.85 V output of regulator 2 . Regulator 2 will act as a diode to prevent current flow from the 5V system supply back into the backup battery. Current flow into the output of regulator 2 , with the output pulled up to 5 V , will be limited to approximately $6 \mu \mathrm{~A}$ and will flow to ground. If the main 5 V system supply drops below the 4.85 V output of regulator 2 the comparator will switch off and regulator 2 will provide power to the memory. The comparator combined with regulator 2 and the batteries provide an uninterruptable power source to the memory and power monitoring circuitry.

Choosing Current Limiting Resistors

Due to UL safety considerations, circuits used to charge lithium-ion batteries must have external resistors (passive components) to limit the available charge current in the event of a failure in the charging circuit. The LT1239 allows these resistors to be placed in series with the output transistor of the regulator 1 as shown in Figure 5. The current limiting resistor (R4) will be in series with the main charge current path but will be inside the feedback loop of regulator 1 . Because the resistors are inside the feedback loop they will not affect output voltage regulation in normal operating conditions. The resistors should be selected so that they limit the charge current below the maximum level specified by the battery manufacturer. For a typical 3.4V, 50mA rechargeable backup cell (Panasonic VL2330) the maximum charge current is specified at 300 mA . Most users will choose to limit the current well below the maximum charge current. It is important to note that these resistors can also limit the charge current during normal operation. Since the charge current for a typical lithium-ion button cell is normally less than 20 mA , limited by the internal impedance of the cells during a zonstant voltage charge, the current limiting resistors do not significantly affect the charge times for the backup sells. The worst case would occur if the regulator failed as a short and the main battery is at its maximum charge voltage. The current limiting resistor (R4) must be chosen to limit the current to less than the manufacturers maxinum charging current with the difference between the nain battery voltage and the backup battery voltage dropped גcross it.

For example with a main battery voltage of 24 V max, a backup battery voltage of 6.8 V and a maximum charge current of 300 mA , R 4 must be greater than ($24 \mathrm{~V}-6.8 \mathrm{~V}$)/ $300 \mathrm{~mA}, \mathrm{R} 4>57 \Omega$.

R4 can also be used to limit the power dissipated by regulator 1 as shown in the following section. C1 is needed for stability in circuits with protection resistors (R4).
The power dissipation in R4 during fault conditons can be significant. it will be equal to:

$$
\frac{\left(V_{\text {INL }}-V_{\text {BATTERY }}\right)^{2}}{R 4}
$$

Power resistors with ratings greater than 0.25 W or fusable resistors may be required.

Thermal Considerations

The power dissipation of this device is made up of several components. They are the power dissipation of each regulator, the comparator and the error amplifier. The largest component will be due to the power in regulator 1 , when the charge current for the batteries is the highest and the input voltage to regulator 1 is at the maximum. In most systems this condition only occurs for a short period after the backup battery has been completely discharged. Both regulators have thermal limiting circuitry which limits the power in the regulator when the junction temperature reaches about $100^{\circ} \mathrm{C}$. The thermal limit temperature is set low because the device is designed to work with batteries specified to run at ambient temperatures below $60^{\circ} \mathrm{C}$. The power in regulator 1 can be limited with external resistors placed in the feedback loop as shown in Figure 5. In lithium-ion systems these resistors are required for safety reasons.

The power in regulator 1 will be equal to:

$$
\left[\left(V_{\text {MAINBATtERY }}-V_{\text {BACKUPBATTERY }}\right) \times I_{\text {CHG }}\right]-(\text { ICHG } \times \text { R4 })
$$

Note that for circuits with a current limiting resistor (R4) the worst-case power point occurs when $I_{\text {CHG }}$ is equal to the maximum charging current/2.

$$
\begin{aligned}
& \text { Example: }[(24 \mathrm{~V}-6.8 \mathrm{~V}) \times(71 \mathrm{~mA} / 2)]-[(71 \mathrm{~mA} / 2) \times 240] \\
& =300 \mathrm{~mW}
\end{aligned}
$$

This is the only significant component of power dissipation in the device and this condition will only occur when the

APPLICATIONS INFORMATION

backup batteries have been completely discharged. Once the backup batteries are charged the power in regulator 1 drops significantly. The power in regulator 2 when regulator 2 is providing power to the memory will be equal to:

$$
\left(\mathrm{V}_{\text {BACKUPBATtery }}-4.85 \mathrm{~V}\right) \times \mathrm{I}_{\text {OUT }}
$$

$I_{\text {Out }}$ is the current needed to power the memory and power monitoring circuitry.

$$
\text { Example: }(6.8 \mathrm{~V}-4.85 \mathrm{~V}) \times 30 \mathrm{~mA}=58.5 \mathrm{~mW}
$$

The power in the comparator when the comparator is providing power to the memory will be equal to:

$$
\left(\mathrm{V}_{\mathrm{SAT}} \times \mathrm{I}_{\mathrm{OUT}}\right)
$$

$I_{\text {OUT }}$ is the current needed to power the memory and power monitoring circuitry. Comparator Output Saturation Voltage vs Output Current can be found in the Typical Performance Characteristics.

Example: $\left(V_{\text {SAT }} \times I_{\text {LOAD }}\right)=(0.15 \mathrm{~V} \times 30 \mathrm{~mA})=4.5 \mathrm{~mW}$

Note that power for memory will be supplied by either regulator 2 or the comparator. The power in the error amplifier when the cells are unequalized will be equal to:
($V_{\text {BACKUPBATTERY }} / 2$) $\times 3 \mathrm{~mA}$
Example: $(6.8 \mathrm{~V} / 2) \times 3 \mathrm{~mA}=10.2 \mathrm{~mW}$
This component goes to zero when the cell voltages are equalized.
The thermal resistance of the LT1239 is $120^{\circ} \mathrm{C} / \mathrm{W}$ when the device is mounted to a PC board with at least one ground or power plane. The junction temperature rise will be equal to the total power in the device multiplied by $120^{\circ} \mathrm{C} / \mathrm{W}$ or ($\mathrm{P}_{\text {TOTAL }} \times 120^{\circ} \mathrm{C} / \mathrm{W}$). For 300 mW dissipation the junction temperature rise will be ($300 \mathrm{~mW} \times 120^{\circ} \mathrm{C} / \mathrm{W}$) $=36^{\circ} \mathrm{C}$. Given that the thermal limit temperature is approximately $100^{\circ} \mathrm{C}$, this allows for a maximum ambient temperature of roughly $60^{\circ} \mathrm{C}$ before the device thermal limits. This temperature is near the maximum ambient allowed for most battery types.

Figure 5. Adding a Protection Resistor for Lithium-Ion Charger

TYPICAL APPLICATIONS

NiCd Backup System with 20mA Charge Current

RELATED PARTS

'ART NUMBER	DESCRIPTION	COMMENTS
T1111	Micropower DC/DC Converter with Adjustable or Fixed 5V or 12V Output	Low-Battery Detector
T1120A	Micropower Regulator and Comparator with Shutdown	$20 \mu A$ Supply Current
T1121	Micropower Regulator with Shutdown	$0.4 V$ Dropout Voltage at 150mA
TC1232	Microprocessor Supervisory Circuit	Minimum External Components
TC1325	Microprocessor-Controlled Battery Management System	Charges Battery and Provides Gas Gauge
TC1443/LTC1444/LTC1445	Quad Micropower Comparators with Reference	$6 \mu A$ Quiescent Current
T1510	Programmable PWM Battery Charger with 2A Peak Current Capability	Charges NiCd, NiMH

$\mathcal{C Y}$ IIER

feATURES

- Fast Charge Nickel-Cadmium, Nickel-Metal-Hydride, Lithium Ion or Lead-Acid Batteries under μ P Control
- Flexible Current Regulation:
- Programmable 111kHz PWM Current Regulator with Built-In PFET Driver
- PFET Current Gating for Use with External Current Regulator or Current Limited Transformer
- Discharge Mode
- Measures Battery Voltage, Battery Temperature and Ambient Temperature with Internal 10-Bit ADC
- Battery Voltage, Temperature and Charge Time

Fault Protection

- Built-In Voltage Regulator and Programmable Battery Attenuator
- Easy-to-Use 3- or 4-Wire Serial μ P Interface
- Accurate Gas Gauge Function
- Wide Supply Range: $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16 V
- Can Charge Batteries with Voltages Greater Than VDD
- Can Charge Batteries from Charging Supplies Greater Than VDD
- Digital Input Pins Are High Impedance in Shutdown Mode

APPLICATIONS

- System Integrated Battery Charger

DESCRIPTION

The LTC ${ }^{\circledR} 1325$ provides the core of a flexible, cost-effective solution for an integrated battery management system. The monolithic CMOS chip controls the fast charging of nickel-cadmium, nickel-metal-hydride, lead-acid or lithium batteries under microprocessor control. The device features a programmable 111 kHz PWM constant current source controller with built-in FET driver, 10-bit ADC, internal voltage regulator, discharge-before-charge controller, programmable battery voltage attenuator and an easy-to-use serial interface.
The chip may operate in one of five modes: power shutdown, idle, discharge, charge or gas gauge. In power shutdown the supply current drops to $30 \mu \mathrm{~A}$ and in the idle mode, an ADC reading may be made without any switching noise affecting the accuracy of the measurement. In the discharge mode, the battery is discharged by an external transistor while the battery is being monitored by the LTC1325 for fault conditions. The charge mode is terminated by the $\mu \mathrm{P}$ while monitoring any combination of battery voltage and temperature, ambient temperature and charge time. The LTC1325 also monitors the battery for fault conditions before and during charging. In the gas gauge mode the LTC1325 allows the total charge leaving the battery to be calculated.
$\boldsymbol{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
$V_{D D}$ to GND. 17V
All Other Pins -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Operating Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
$\mathrm{D}_{\text {OUT }} 2$	
$\mathrm{D}_{\text {IN }} 3$	LTC1325CN
$\overline{C S} 4$	LTC1325CSW
CLK 5 5 $\quad 14 \mathrm{~T}_{\text {bat }}$	
LTF 6 6 13 T $\mathrm{T}_{\text {AMB }}$	
MCV 7 7 $12 \mathrm{~V}_{\mathrm{IN}}$	
GND 9 10 FILTER	
N PACKAGE SW PACKAGE 18-LEAD PDIP 18-LEAD PLASTIC SO WIDE	
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=75^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N}) \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{SW}) \end{aligned}$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $V_{D D}=12 V \pm 5 \%, T_{A}=25^{\circ} C$, unless otherwise noted.

3YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{\text { DD }}$	$\mathrm{V}_{\text {D }}$ Supply Voltage		\bullet	4.5		16	V
DD	$V_{D D}$ Supply Current	All TTL Inputs $=0 \mathrm{~V}$ or 5V, No Load on REG	\bullet		1200	2000	$\mu \mathrm{A}$
PD	$V_{D D}$ Supply Current	Power-Down Mode, All TTL Inputs $=0 \mathrm{~V}$ or 5 V	\bullet		30	50	$\mu \mathrm{A}$
IREG	Regulator Output Voltage	No Load	\bullet	3.047	3.072	3.097	V
- ${ }_{\text {REG }}$	Regulator Load Regulation	Sourcing Only, $\mathrm{I}_{\text {REG }}=0 \mathrm{~mA}$ to 2mA			-1	-5	$\mathrm{mV} / \mathrm{mA}$
- IREG	Regulator Line Regulation	No Load, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16V			-60	-100	$\mu \mathrm{V} / \mathrm{N}$
${ }_{\text {CREG }}$	Regulator Output Tempco	No Load, $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$			50		ppm $/{ }^{\circ} \mathrm{C}$
${ }_{\text {dac }}$	DAC Output Voltage	$\begin{aligned} & \text { VR1 }=1, V \text { VRO }=1,100 \% \text { Duty Ratio, } I_{C H R G}=I(\text { Note } 7) \\ & \text { VR1 })=1, V R 0=0,100 \% \text { Duty Ratio, } I_{\text {CRHG }}=1 / 3 \\ & \text { VR1 }=0, V R 0=1,100 \% \text { Duty Ratio, } I_{C H R G}=1 / 5 \\ & \text { VR1 }=0, \text { VRO }=0,100 \% \text { Duty Ratio, } I_{\text {CHRG }}=1 / 10 \end{aligned}$		$\begin{aligned} & 140 \\ & 48 \\ & 30 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 160 \\ & 55 \\ & 34 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 62 \\ & 38 \\ & 21 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\overline{\text { HYST }}$	Fault Comparator Hysteresis	$\begin{aligned} & V_{\text {HTF }}=1 \mathrm{~V}, V_{\text {EDV }}=0.9 \mathrm{~V}, V_{\text {BATR }}=100 \mathrm{mV} \\ & V_{\text {MCV }}=V_{\text {LTF }}=2 \mathrm{~V} \end{aligned}$			$\begin{aligned} & \pm 20 \\ & \pm 10 \\ & \hline \end{aligned}$		mV mV
los	Fault Comparator Offset	$\begin{aligned} & V_{\text {HTF }}=1 \mathrm{~V}, V_{\text {EDV }}=0.9 \mathrm{~V}, V_{\text {BATR }}=100 \mathrm{mV} \\ & V_{\text {MCV }}=V_{\text {LTF }}=2 \mathrm{~V} \end{aligned}$			± 50		mV
IBATR	$V_{\text {BAT }}$ for BATR $=1$				100		mV
BATP	$V_{\text {BAT }}$ for BATP $=1$		\bullet	$\mathrm{V}_{\mathrm{DD}}-1.8$			V
EED	Internal EDV Voltage		\bullet	860	900	945	mV
LTTF, $\mathrm{V}_{\text {MCV }}$	LTF, MCV Voltage Range			1.6		2.8	V
${ }_{\text {HTF }}$	HTF Voltage Range			0.5		1.3	V
tGg	Gas Gauge Gain	$-0.4 \mathrm{~V}<\mathrm{V}_{\text {SENSE }}<0 \mathrm{O}$			-4		
OS(GG)	Gas Gauge Offset	$-0.4 \mathrm{~V}<\mathrm{V}_{\text {SENSE }}<0 \mathrm{OV}$ (Note 6)			± 1		LSB
${ }_{F}$	Internal Filter Resistor				1000		Ω
$\underline{O L}_{\text {BATD }}$	Battery Divider Tolerance	All Division Ratios	-	-2		2	\%
IL	Input Low Voltage	CLK, $\overline{C S}, \mathrm{D}_{\text {IN }}$	\bullet	0.8	1.3		V
IH	Input High Voltage	CLK, $\overline{\mathrm{CS}}$, $\mathrm{D}_{\text {IN }}$	\bullet		1.7	2.4	V
$\underline{1 L}$	Low Level Input Current	$\mathrm{V}_{\text {CLK }}, \mathrm{V}_{\text {CS }}$ or $\mathrm{V}_{\text {DIN }}=0 \mathrm{~V}$	\bullet	-2.5		2.5	$\mu \mathrm{A}$
$\underline{\text { H }}$	High Level Input Current	$\mathrm{V}_{\text {CLK }}, \mathrm{V}_{\text {CS }}$ or $\mathrm{V}_{\text {DIN }}=5 \mathrm{~V}$	\bullet	-2.5		2.5	$\mu \mathrm{A}$

©LECTRICAL CHARACTGRISTICS $V_{00}=12 V \pm 5 \%, T_{A}=25^{\circ}$, unless otherwise noled.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{D}_{\text {OUT, }}$, OUT $=1.6 \mathrm{~mA}$	\bullet			0.4	V
$\mathrm{V}_{\text {OH }}$	Output High Voltage	DOUT, l $_{\text {OUT }}=-1.6 \mathrm{~mA}$	\bullet	2.4			V
102	Hi-Z Output Leakage	$V_{\overline{C S}}=5 \mathrm{~V}$	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OHFET }}$	DIS or PGATE Output High	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16 V	\bullet	$V_{D D}-0.05$			V
$\mathrm{V}_{\text {OLFET }}$	DIS or PGATE Output Low	$V_{D D}=4.5 \mathrm{~V}$ to 16 V	\bullet			0.05	V
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to D Out Valid	See Test Circuits	\bullet			650	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to Dout Hi-Z	See Test Circuits	\bullet			510	ns
ten	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {Out }}$ Enabled	See Test Circuits	\bullet			400	ns
thDo	Time D ${ }_{\text {Out }}$ Remains Valid After CLK \downarrow	See Test Circuits	\bullet		30		ns
$\mathrm{t}_{\text {rDOUT }}$	Dout Rise Time	See Test Circuits	\bullet			250	ns
tidout	D Out Fall Time	See Test Circuits	\bullet			100	ns
flek	Serial I/O Clock Frequency	CLK Pin	\bullet	25		500	kHz
trPGATE	PGATE Rise Time	$\mathrm{C}_{\text {LOAD }}=1500 \mathrm{pF}$	\bullet			150	ns
$\mathrm{t}_{\text {tPGATE }}$	PGATE Fall Time	$\mathrm{C}_{\text {LOAD }}=1500 \mathrm{pF}$	\bullet			150	ns
fosc	Internal Oscillator Frequency	Charge Mode, Fail-Safes Disabled		90	111	130	kHz

A/D Converter

	Offset Error	$V_{I N}$ Channel (Note 3)	\bullet	± 2	LSB
	Linearity Error	$V_{I N}$ Channel (Notes 3, 4)	\bullet	± 0.5	LSB
	Full-Scale Error	$V_{I N}$ Channel (Note 3)	\bullet	± 1	LSB
	On-Channel Leakage	$V_{I N}$ Channel ON Only (Notes 3, 5)	\bullet	± 10	$\mu \mathrm{~A}$
	Off-Channel Leakage	$V_{I N}$ Channel OFF (Notes 3, 5)	\bullet	± 10	$\mu \mathrm{~A}$

RECOMmEnDED CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
thol	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow		150			ns
$\mathrm{t}_{\text {dsuCS }}$	Setup Time, $\overline{C S}$ Before First CLK \uparrow		1			$\mu \mathrm{S}$
$\mathrm{t}_{\text {dsuDI }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before First CLK \uparrow		400			ns
${ }^{\text {twHCLK }}$	CLK High Time		0.8			$\mu \mathrm{S}$
twLCLK	CLK Low Time		1			$\mu \mathrm{S}$
${ }^{\text {twh }}$ (${ }_{\text {cs }}$	$\overline{\text { CS }}$ High Time Between Data Transfers		1			$\mu \mathrm{s}$
twLCS	$\overline{\overline{C S}}$ Low Time During Data Transfer	$\begin{aligned} & \text { MSBF }=1 \\ & M S B F=0 \end{aligned}$	$\begin{aligned} & 43 \\ & 52 \end{aligned}$			CLK Cycles CLK Cycles

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to the GND pin.
Note 3: VREG within specified min and max limits, CLK (Pin 5) $=500 \mathrm{kHz}$, unless otherwise stated. ADC clock is the serial CLK.

Note 4: Linearity error is specified between the actual end points of the A/D transfer curve.
Note 5: Channel leakage is measured after channel selection.
Note 6: Gas gauge offset excludes A/D offset error.
Note 7: I = $V_{\text {DAC }}$ (Duty Ratio)/R SENSE , where $V_{\text {DAC }}$ is the DAC output voltage with control bits $V R 1=V R 0=1$, duty ratio $=1$ and RSENSE is determined by the user.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORmANC CHARACTERISTICS

PIn functions

REG (Pin 1): Internal Regulator Output. The regulator provides a steady 3.072 V to the internal analog circuitry and provides a temperature stable reference voltage for generating MCV, HTF, LTF and thermistor bias voltages with external resistors. Requires a 4.7μ F or greater bypass capacitor to ground.
$D_{\text {OUt }}$ (Pin 2): TTL Data Output Signal for the Serial Interface. $D_{\text {OUT }}$ and $D_{\text {IN }}$ may be tied together to form a 3 -wire interface, or remain separated to form a 4-wire interface. Data is transmitted on the falling edge of CLK (Pin 5).
$\mathrm{D}_{\mathbf{I N}}$ (Pin 3): TTL Data Input Signal for the Serial Interface. The data is latched into the chip on the rising edge of the CLK (Pin 5).
$\overline{\mathbf{C S}}$ (Pin 4): TTL Chip Select Signal for the Serial Interface.
CLK (Pin 5): TTL Clock for the Serial Interface.
LTF (Pin 6): Minimum Allowable Battery Temperature Analog Input. LTF may be generated by a resistive divider between REG (Pin 1) and ground.
MCV (Pin 7): Maximum Allowable Cell Voltage Analog Input. MCV may be generated by a resistive divider between REG (Pin 1) and ground.

HTF (Pin 8): Maximum Allowable Battery Temperature Analog Input. HTF may be generated by a resistive divider between REG (Pin 1) and ground.

GND (Pin 9): Ground.

FILTER (Pin 10): The external filter capacitor C_{F} is connected to this pin. The filter capacitor is connected to the output of the internal resistive divider across the battery to reduce the switching noise while charging. In the gas gauge mode, C_{F} along with an internal $R_{F}=1 \mathrm{k}$ form a lowpass filter to average the voltage across the sense resistor.

SENSE (Pin 11): The Sense pin controls the switching of the 111 kHz PWM constant current source in the charging mode. The Sense pin is connected to an external sense resistor RSENSE and the negative side of the battery. The charging loop forces the average voltage at the Sense pin to equal a programmable internal reference voltage $V_{D A C}$. The battery charging current is equal to $\mathrm{V}_{\mathrm{DAC}} / \mathrm{R}_{\text {SENSE }}$.
In the gas gauge mode the voltage across the Sense pin is filtered by an $R C$ network (R_{F} and C_{F}), amplified by an inverting gain of four, then multiplexed to the ADC so the average discharge current through the battery may be measured and the total charge leaving the battery calculated.
$V_{I N}$ (Pin 12): General Purpose ADC Input.
$\mathrm{T}_{\text {AMB }}$ (Pin 13): Ambient Temperature Input. Connect to an external thermistor network. Tie to REG if not used. May be used as another general purpose ADC input.
$\mathrm{T}_{\mathrm{BAT}}$ (Pin 14): Battery Temperature Input. Connect to an external NTC thermistor network. Tie to REG if not used.
$\mathbf{V}_{\text {BAT }}$ (Pin 15): Battery Input. An internal voltage divider is connected between the $V_{B A T}$ and Sense pins to normalize all battery measurements to one cell voltage. The divider is programmable to the following ratios: $1 / 1,1 / 2,1 / 3 \ldots$ $1 / 15,1 / 16$. In shutdown and gas gauge modes the divider is disconnected.
DIS (Pin 16): Active High Discharge Control Pin. Used to turn on an external transistor which discharges the battery.
PGATE (Pin 17): FET Driver Output. Swings from GND to $V_{D D}$.
$V_{D D}$ (Pin 18): Positive Supply Voltage. $4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<16 \mathrm{~V}$.

BLOCK DIAGRAM

TEST CIRCUITS

Load Circuit for $t_{d D O}, t_{r}$ and t_{f}

Load Circuit for $\mathrm{t}_{\text {dis }}$ and t_{en}

TEST CIRCUITS

Voltage Waveforms for $D_{\text {OUT }}$ Delay Time, $\mathrm{t}_{\mathrm{d} D 0}$

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for $\mathrm{t}_{\text {dis }}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY CC.
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNLESS DISABLED BY $\overline{C S}$.

Voltage Waveforms for t_{en}

timing DIAGRAm

MSB-FIRST DATA (MSBF = 0)

functional description

GENERAL DESCRIPTION

During normal operation, a command word is shifted into the chip via the serial interface, then an ADC measurement is made and the 10 -bit reading and chip status word are shifted out. The command word configures the LTC1325 and forces it into one of five modes: power shutdown, idle, discharge, charge or gas gauge mode.
In the power shutdown mode, the analog section is turned off and the supply current drops to $30 \mu \mathrm{~A}$. The voltage regulator, which provides power to the internal analog circuitry and external bias networks, is shut down. The voltage divider across the battery is disconnected and only the voltage regulator for the serial interface logic is left on.
During the idle mode, the chip is fully powered but the discharge, charge, and gas gauge circuits are off. The chip may be placed in the idle mode momentarily while charging the battery, allowing an ADC measurement to be made without any switching noise from the PWM current source affecting the accuracy of the reading. The mode command bits are picked off as they appear at D_{IN}, allowing the charging loop to turn off and settle while the remainder of the command word is being shifted in.

During the discharge mode, the battery is discharged by an external transistor and series resistor. The battery is monitored for fault conditions.

In the charge mode, the μ P monitors the battery's voltage, temperature and ambient temperature via the 10-bit ADC. Termination methods such as $-\Delta V_{B A T}, \Delta V_{B A T} / \Delta T i m e$, $\Delta T_{B A T}, \Delta T_{B A T} / \Delta T i m e, \Delta\left(T_{B A T}-T_{A}\right)$, maximum temperature, maximum voltage and maximum charge time may be accurately implemented in software. The LTC1325 also monitors the battery for fault conditions.
In the gas gauge mode, the average voltage across the sense resistor can be measured to determine the average battery load current. The sense voltage is filtered by an RC circuit, multiplied by an inverting gain of four, then converted by the $A D C$. The μP can then accumulate the ADC measurements and do a time average to determine the total charge leaving the battery. The RC circuit consists of an internal 1 k resistor R_{F} and an external capacitor C_{F} connected to the Filter pin.

FUnCTIONAL DESCRIPTION

COMMAND WORD

The command word is 22 bits long and contains all the information needed to configure and control the chip. On power-up all bits are cleared to logical "0."

Figure 1. Command Word

Bit 1: Start Bit (Start)

The first "logical one" clocked into the $D_{\text {IN }}$ input after $\overline{\mathrm{CS}}$ goes low is the start bit. The start bit initiates the data transfer and all leading zeros which precede this logical one will be ignored. After the start bit is received, the remaining bits of the command word will be clocked in.

Bits 2 and 3: Mode Select (MODO and MOD1)

The two mode bits determine which of four modes the chip will be in: idle, discharge, charge or gas gauge.

MOD1	MODO	DESCRIPTION
0	0	Idle
0	1	Discharge
1	0	Charge
1	1	Gas Gauge

Bit 4: Single-Ended Differential Conversion (SGL/DIFF)

SGL/DIFF determines whether the ADC makes a singleanded measurement with respect to ground or a differential measurement with respect to the Sense pin.

SGL/DIFF	DESCRIPTION
0	Single-Ended ADC Conversion
1	Differential ADC Conversion (with respect to Sense)

Bit 5: MSB-First/LSB-First (MSBF)

The ADC data is programmed for MSB-first or LSB-first sequence using the MSBF bit. See Serial I/O description for details.

MSBF	DESCRIPTION
0	LSB-First Data Follows MSB-First Data
1	MSB-First Data Only

Bits 6 to 8: ADC Data Input Select (DSO to DS2)

DS2, DS1 and DS0 select which circuit is connected to the ADC input. Do not use unlisted combinations.

DS2	DS1	DS0	DESCRIPTION
0	0	0	Gas Gauge Output
0	0	1	Battery Temperature Pin, $\mathrm{T}_{\text {BAT }}$
0	1	0	Ambient Temperature Pin, $\mathrm{T}_{\text {AMB }}$
0	1	1	Battery Divider Output Voltage, $\mathrm{V}_{\text {CELL }}$
1	0	0	$\mathrm{~V}_{\text {IN }}$ Pin

Bits 9 to 12: Battery Divider Ratio Select (DIVO to DIV3)
DIV3, DIV2, DIV1 and DIV0 select the division ratio for the voltage divider across the battery.

DIV3	DIV2	DIV1	DIVO	DESCRIPTION
0	0	0	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 1$
0	0	0	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 2$
0	0	1	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 3$
0	0	1	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 4$
0	1	0	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 5$
0	1	0	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 6$
0	1	1	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 7$
0	1	1	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 8$
1	0	0	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 9$
1	0	0	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 10$
1	0	1	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 11$
1	0	1	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 12$
1	1	0	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 13$
1	1	0	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 14$
1	1	1	0	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 15$
1	1	1	1	$\left(V_{\text {BAT }}-V_{\text {SENSE }}\right) / 16$

fUnCTIONAL DESCRIPTION

Bit 13: Power Shutdown (PS)

PS selects between the normal operating mode, or the shutdown mode.

PS	DESCRIPTION
0	Normal Operation
1	Shutdown All Circuits Except Digital Inputs

Bits 14 to 16: Duty Ratio Select (DRO to DR2)

DR2, DR1 and DR0 select the duty cycle of the charging loop operation (not 111kHz PWM duty cycle). The last three selections place the chip into a test mode and should not be used.

DR2	DR1	DR0	DESCRIPTION
0	0	0	$1 / 16$
0	0	1	$1 / 8$
0	1	0	$1 / 4$
0	1	1	$1 / 2$
1	0	0	1
1	0	1	Test Mode 1
1	1	0	Test Mode 2
1	1	1	Test Mode 3

Bit 17: Fail-Safe Latch Clear (FSCLR)

When FSCLR bit is set to one, the internal fail-safe timer is reset to 0 , and the fail-safe latches are reset. FSCLR is automatically reset to 0 when $\overline{\mathrm{CS}}$ goes high.

FSCLR	DESCRIPTION
0	No Action
1	Reset Fail-Safe Timer and Latches

Bits 18 to 20: Timeout Period Select (TOO to TO2)
T02, T01 and T00 select the desired fail-safe timeout period, tout. On power-up, the default timeout is 5 minutes.

TO2	TO1	TO0	TIMEOUT (MINUTES)
0	0	0	5
0	0	1	10
0	1	0	20
0	1	1	40
1	0	0	80
1	0	1	160
1	1	0	320
1	1	1	Indefinite (No Timeout)

Bits 21 and 22: Charging Loop Reference Voltage Select (VR0 and VR1)
VR1 and VR0 select the desired reference voltage $\mathrm{V}_{\text {CHRG }}$ for the charging loop. The charging loop will force the average voltage at the Sense pin to be equal to $V_{D A C}$. The average charging current is $V_{\text {DAC }} / R_{\text {SENSE }}$ (see Figure 4).

VR1	VRO	$\mathbf{V}_{\text {DAC }}(\mathbf{m V})$
0	0	18
0	1	34
1	0	55
1	1	160

STATUS WORD

The status word is 8 bits long and contains the status of the internal fail-safe circuits.

Figure 2. Status Word

Bit 1: Battery Present (BATP)

The BATP bit $=1$ indicates the presence of the battery. The bit is set to 1 when the voltage at the $\mathrm{V}_{\mathrm{BAT}}$ pin falls below ($\mathrm{V}_{\mathrm{DD}}-1.8 \mathrm{~V}$). BATP $=0$ when the battery is removed and $V_{B A T}$ is pulled high by $R_{T R K}$ (see Figure 3).

BATP	CONDITIONS
0	$\left(V_{D D}-1.8\right)<V_{B A T}<V_{D D}$
1	$V_{B A T}<\left(V_{D D}-1.8\right)$

Bit 2: Battery Reversed (BATR) or Shorted

The BATR bit indicates when the battery is connected backwards or shorted. The bit is set when the battery cell voltage at the output of the battery divider $\mathrm{V}_{\text {CELL }}$ is below 100 mV .

BATR	CONDITIONS
0	$V_{\text {CELL }}>100 \mathrm{mV}$
1	$V_{\text {CELL }}<100 \mathrm{mV}$

:UNCTIONAL DESCRIPTION

3it 3: Maximum Cell Voltage (FMCV)

Fhe MCV bit indicates when the battery cell voltage has sxceeded the preset limit. The bit is set when $V_{\text {CELL }}$ is yreater than the voltage at the MCV pin.

FMCV	CONDITIONS
0	$V_{\text {CELL }}<V_{\text {MCV }}$
1	$V_{\text {CELL }}>V_{\text {MCV }}$

3it 4: End Discharge Voltage (FEDV)

The EDV bit indicates when the battery cell voltage has yropped below an internally preset limit. The bit is set when the battery cell voltage at the output of the voltage divider $V_{\text {CELL }}$ is less than 900 mV .

FEDV	CONDITIONS
0	$V_{\text {CELL }}>900 \mathrm{mV}$
1	$V_{\text {CELL }}<900 \mathrm{mV}$

3it 5: High Temperature Fault (FHTF)

The HTF bit indicates when the battery temperature is too ligh. Using a negative TC thermistor, the bit is set when he voltage at the $\mathrm{T}_{\mathrm{BAT}}$ pin is less than the voltage at the -TF pin.

FHTF	CONDITIONS
0	$\mathrm{~T}_{\text {BAT }}>$ V HTF
1	$\mathrm{~T}_{\text {BAT }}<\mathrm{V}_{\text {HTF }}$

3it 6: Low Temperature Fault (FLTF)

The LTF bit indicates when the battery temperature is too ow. Using a negative TC thermistor, the bit is set when the 'oltage at the $\mathrm{T}_{\mathrm{BAT}} \mathrm{pin}$ is greater than the voltage at the .TF pin.

FLTF	CONDITIONS
0	$\mathrm{~T}_{\text {BAT }}<\mathrm{V}_{\text {LTF }}$
1	$\mathrm{~T}_{\text {BAT }}>\mathrm{V}_{\text {LTF }}$

3it 7: Timeout ($\mathrm{t}_{\text {Out }}$)

he $t_{\text {OUT }}$ bit indicates that the battery charging time has :xceeded the preset limit. The bit is set when the internal imer exceeds the limit set by the command bits T00, T01 ind TO2.

$\mathrm{T}_{\text {OUT }}$	CONDITIONS
0	No Timeout Has Occurred
1	Timeout Has Occurred

Bit 8: Fail-Safe Occurred (FS)

The FS bit indicates that one of the fault detection circuits halted the discharging or charging cycle. The bit is set when an EDV, LTF, HTF, or tout fault occurs during discharge. During charging, the bit is set when a MCV, LTF, HTF, or $\mathrm{t}_{\text {OUT }}$ fault occurs. The bit is reset by the command word bit FSCLR.

FS	CONDITIONS
0	No Fail-Safe Has Occurred
1	Fail-Safe Has Occurred

DETAILED DESCRIPTION

Fault Conditions

The LTC1325 monitors the battery for fault conditions before and during discharge and charge (see Figure 3). They include: battery removed/present (BATP), battery reversed/shorted (BATR), maximum cell voltage exceeded

Figure 3. Fail-Safe or Fault Detection Circuitry

functional description

(MCV), minimum cell voltage exceeded (EDV), high temperature limit exceeded (HTF), low temperature limit exceeded (LTF) and time limit exceeded ($\mathrm{t}_{\mathrm{OUT}}$). When a fault condition occurs, the discharge and charge loops are disabled or prevented from turning on and the fail-safe bit (FS) is set. The chip is reset by shifting in a new command word with the fail-safe clear FSCLR bit set. The 8-bit status word contains the state of each fault condition.

Power Shutdown Mode

Command: $\mathrm{MOD1}=\mathrm{X}, \mathrm{MODO}=\mathrm{X}, \mathrm{PS}=1$
Status: $\quad B A T P=X, B A T R=X, F M C V=X, F E D V=X$, FHTF $=X, F L T F=X, t_{\text {OUT }}=X$

In the power shutdown mode, the analog section is turned off and the supply current drops to $30 \mu \mathrm{~A}$. The voltage regulator, which provides power to the internal analog circuitry and external bias networks, is shut down. The voltage divider across the battery is disconnected and the only circuit left on is the voltage regulator for the serial interface logic.

Idle Mode

Command: $\mathrm{MOD1}=0, \mathrm{MODO}=0, \mathrm{PS}=0$
Status: $\quad B A T P=X, B A T R=X, F M C V=X, F E D V=X$, FHTF $=X, F L T F=X, t_{\text {OUT }}=X$

The chip enters the idle mode when the proper mode command bits are set and the power shutdown command bit is cleared. During the idle mode, the chip is fully powered, but the discharge, charge and gas gauge circuits are off. The chip may be placed in the idle mode momentarily while charging the battery, allowing an ADC measurement to be made without any switching noise from the PWM current source affecting the accuracy of the reading. The mode command bits are picked off as they appear at D_{IN}, so that while the rest of the command word is being shifted in, the charging loop has time to settle before an ADC measurement is made.

Discharge Mode

Command: MOD1 $=0, \mathrm{MODO}=1, \mathrm{PS}=0$
Status: \quad BATP $=1$, BATR $=0, F M C V=X, F E D V=0$, $\mathrm{FH} T \mathrm{~F}=0, \mathrm{FLTF}=0, \mathrm{t}_{\text {OUT }}=0$

The chip enters the discharge mode when the proper mode command bits are set and the power shutdown command bit is clear. If a fault condition does not exist, then the DIS pin is pulled up to $V_{D D}$ by the internal driver. The DIS voltage is used to turn on an external transistor which discharges the battery through an external series resistor R RIS.

Discharging will continue until a new command word is input to change the mode or a fault condition occurs.

Charge Mode

Command: $\mathrm{MOD1}=1, \mathrm{MODO}=0, \mathrm{PS}=0$
Status: \quad BATP $=1, B A T R=0, F M C V=0, F E D V=X$, FHTF $=0$, FLTF $=0, \mathrm{t}_{\text {OUT }}=0$
The chip enters the charge mode when the proper mode command bits are set and the power shutdown command bit is clear. If a fault condition does not exist then charging can begin. Charging will continue until a new command word is input to change the mode or a fault condition occurs.

The charge current may be regulated by a programmable 111 kHz PWM buck current regulator, or by using the PFET to gate an external current regulator or current limited transformer.

111kHz PWM Controller

The block diagram of the charging loop connected as a PWM buck current regulator is shown in Figure 4. The PWM may operate in either continuous or discontinuous mode. The loop forces the average voltage across the sense resistor to be equal to the voltage at the output of the DAC, so that the charging current becomes $\mathrm{V}_{\text {DAC }} / \mathrm{R}_{\text {SENSE }}$.

With switch S2 on and the others off, amplifier A1 along with C1, R1 and R2 are configured as an integrator with 16 kHz bandwidth. The output of the integrator is the average difference between the voltage across the sense resistor and the DAC output voltage.

The rising edge of the oscillator waveform triggers the one shot which sets the flip-flop output high. This turns on the external PFET P1 by pulling its gate low via the FET driver. With P1 on, the current through the inductor L1 starts to

:UNCTIONAL DESCRIPTION

Figure 4. Charging Loop Block Diagram
ise as does the voltage across the sense resistor. When he voltage across the sense resistor is greater than the iutput of the integrator, comparator A2 changes state. his resets the flip-flop and P1 is turned off. Catch diode)1 clamps the drain of P1 one diode drop below ground vhen the inductor flies back and the current through the iductor starts to drop. The voltage across the sense esistor also drops and may reach zero and stay there until he next clock cycle begins.
he average charging current is set by the output of the IAC ($V_{D A C}$) and the duty ratio generator. $V_{D A C}$ can be rogrammed to one of four values with the following atios: $1,1 / 3,1 / 5$ or $1 / 10$. The duty ratio can be set to $/ 16,1 / 8,1 / 4,1 / 2$ or 1 . When the duty ratio is 1 , the duty atio generator output is always low and the charge loop perates continuously (see Figure 4). At other duty ratio ettings, the duty generator output is a square wave with period of 42 seconds. The time for which the generator utput is low varies with the duty ratio setting. For ex-
ample, if a duty ratio of $1 / 2$ is programmed, the generator output is low only for $42 / 2=21$ seconds. Since the loop operates for only 21 out of every 42 seconds, the average charging current is halved. In general, the average charging current is:

$$
I_{C H R G}=V_{\text {DAC }}(\text { Duty Ratio }) / R_{\text {SENSE }}
$$

Gated PFET Controller

When using an external current regulator or current limited wall pack, simply remove the inductor L1 and catch diode D1. Set the DAC control bits VR1 $=1$ and $V R 0=1$, and select the desired duty ratio. By insuring that the voltage at the Sense pin is never greater than 140 mV , the output of the integrator A1 will saturate high and the comparator A2 will never trip and turn the loop off. This can be achieved by removing the sense resistor and grounding the Sense pin or if the gas gauge is to be used, selecting $R_{\text {SENSE }}$ so that $R_{\text {SENSE }} / I_{\text {CHRG }}<140 \mathrm{mV}$.

functional description

Gas Gauge Mode

Command: \quad MOD1 $=1, \mathrm{MODO}=1, \mathrm{PS}=0$
Status: $\quad B A T P=X, B A T R=X, F M C V=X, F E D V=X$, FHTF $=X$, FLTF $=X, t_{\text {OUT }}=X$

In the gas gauge mode, the average voltage across the sense resistor can be measured to determine the average battery load current. The output of the DAC is set to ground and switches S1, S3 and S4 are closed. A1 is configured as an inverting amplifier with R1 and R2 setting the gain to -4. The voltage across the sense resistor is filtered by an $R C$ circuit (R_{F}, C_{F}) amplified by A1, then converted by the ADC.

The microprocessor can then accumulate the ADC measurements and do a time average to determine the total charge leaving the battery. The Sense pin voltage should not be more negative than -450 mV to ensure linearity.
The $R_{F} C_{F}$ circuit consists of an internal 1 k resistor and an external capacitor connected to the Filter pin. $R_{F} C_{F}$ should be longer than the measurement interval. With the serial clock running at 100 kHz , it take 380μ s to shift in the command word and shift out the ADC measurement and status word.

Trickle Resistor

An external trickle resistor has several functions. First, it provides a continuous trickle charge current for topping off the battery and countering the effects of self-discharge. Second, it can be used to condition a deeply discharged battery for charging. The LTC1325 will not charge a battery unless its cell voltage is above 100 mV (BATR). Finally, the resistor is required by the battery detect circuit to pull the $V_{\text {BAT }}$ pin high when the battery is removed.

SERIAL INTERFACE

The LTC1325 communicates with microprocessors and other external circuitry via a synchronous, half duplex, 4-wire serial interface. The clock CLK synchronizes the data transfer with each bit being transmitted on the falling edge and captured on the rising CLK edge in both transmitting and receiving systems. The LTC1325 first receives input data and then transmits back the A/D conversion result and status word (half duplex). Because of the half
duplex operation, $D_{\text {IN }}$ and $D_{\text {OUt }}$ may be tied together allowing transmission over just three wires: $\overline{C S}, \mathrm{CLK}$ and DATA ($D_{\text {IN }} / D_{\text {OUT }}$).
Data transfer is initiated by a falling chip select $\overline{\mathrm{CS}}$ signal. After $\overline{\mathrm{CS}}$ falls, the LTC1325 looks for a start bit on $\mathrm{D}_{\text {IN }}$. The start bit is the first "logical one" clocked into the $D_{\text {IN }}$ input after $\overline{\text { CS }}$ goes low. The LTC1325 will ignore all leading zeros which precede this logical one. After the start bit is received, the 21 other control bits are shifted into the $D_{\text {IN }}$ pin to configure the LTC1325 and start a conversion. After the last command bit, the $\mathrm{D}_{\text {OUT }}$ pin remains in three-state for one clock period before it is taken low for one null bit. Following the null bit, the conversion results and the 8 status bits are shifted out on the $D_{0 u t}$ pin. At the end of the data exchange, $\overline{C S}$ should be brought high.

MSB-First/LSB-First (MSBF Control Bit)

The output data of the LTC1325 is programmed for MSBfirst or LSB-first sequence using the MSFB control bit. When MSBF $=1$, data will appear on DOut in MSB-first format. This is followed by the 8 status bits. Logical zeros will be filled in indefinitely following the last data bit to accommodate longer word lengths required by some microprocessors. When MSBF $=0$, LSB-first data will follow the MSB-first data. Regardless of the state of MSBF, the status bits are always shifted out in the same order (see Figure 2).

Accommodating Microprocessors with Different Word Lengths

The LTC1325 will fill zeros indefinitely after the transmitted data until $\overline{\mathrm{CS}}$ is brought high. At that time $\mathrm{D}_{\text {OUT }}$ is disabled (three-stated). This makes for easy interfacing to MPU serial ports with different transfer increments including 4 bits (e.g., COP400) and 8 bits (e.g., SPI and MICROWIRE/PLUS ${ }^{\text {TM }}$). Any word length can be accommodated by the correct positioning of the start bit in the input word.

Operation with $D_{I N}$ and $D_{\text {OUT }}$ Tied Together

The LTC1325 can be operated with $D_{I N}$ and $D_{0 U T}$ tied together. This eliminates one of the lines required to

[^38]
fUnCTIONAL DESCRIPTION

communicate with the microprocessor. Data is transmitted in both directions on a single wire. The processor pin connected to this data line should be configurable as either an input or an output. The LTC1325 will take control of the data line and drive it low after the 23rd falling CLK edge after the start bit is received. Therefore the processor port must be switched to an input before this happens to avoid a conflict.

Power-Up After Shutdown

When a control word with the PS bit set to one is written to the LTC1325, it enters shutdown mode in which the $V_{D D}$ supply current is reduced to $30 \mu \mathrm{~A}$. In this mode the onchip 3 V regulator and all circuits powered off it are shut down. The only circuits that remain alive are $D_{I N}, \overline{C S}$ and CLK input buffers. To take the LTC1325 out from shutdown mode, a high to low edge must be applied to the CS pin. Either $D_{I N}$ or CLK must be low when $\overline{C S}$ is low to prevent a false control word from being transmitted to the LTC1325. The 3V output decays with a time constant of 300 ms with $\mathrm{C}_{\text {REG }}=4.7 \mu \mathrm{~F}$. The microprocessor should wait three seconds before applying a wake-up edge to the CS pin to ensure proper power-up.

TEMPERATURE SENSING

NTC (Negative Temperature Coefficient) Thermistors

The simplest method to sense temperature (battery or ambient) with an NTC thermistor is to use a voltage divider powered by the REG pin. This divider consists of a load resistor R_{L} in series with a thermistor R_{T} as shown in Figure 3. For a given thermistor, there is a value of R_{L} which makes $V_{\text {DIV }}(T)$ linear over a narrow but adequate temperature range. The easiest method (Inflection Point Method) to calculate R_{L} is to set the second temperature derivative of the divider output to 0 . The equations relevant to this method are:

$$
\begin{equation*}
\frac{V_{\text {DIV }}(T)}{V_{\text {REG }}}=\frac{1}{\left(\frac{1+R_{L}}{R_{T}}\right)}=f(T) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{R_{T}}{R_{T 0}}=\exp \left[\beta\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right] \tag{2}\\
& R_{L}=R_{T 0}\left(\frac{\beta-2 T_{0}}{\beta+2 T_{0}}\right) \tag{3}\\
& \beta=\left[T\left(\frac{T_{0}}{T_{0}-T}\right)\right] \ln \left(\frac{R_{T}}{R_{T 0}}\right) \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\alpha=\frac{1}{R_{T}}\left(\frac{d R_{T}}{d T}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\alpha=\frac{-\beta}{\mathrm{T}^{2}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d V_{\text {DIV }}}{d T}=V_{D I V}\left(T_{0}\right)\left(-\frac{-\beta}{2 T_{0}{ }^{2}}+\frac{1}{T_{0}}\right) \tag{7}
\end{equation*}
$$

where,
$V_{\text {DIV }}(T)$ is the output of the divider,
$V_{\text {REG }}$ is the voltage at the REG pin (3.072V nominal),
R_{T} is the thermistor resistance at some temperature T,
$\mathrm{R}_{\text {TO }}$ is the thermistor resistance at some reference temperature T_{0},
β is a constant dependent on thermistor material, α is the temperature coefficient (in $\% /{ }^{\circ} \mathrm{C}$) of R_{T} at T_{0}, and
all temperatures are in ${ }^{\circ} \mathrm{K}$ (i.e., $\mathrm{T}^{\circ} \mathrm{C}+273$)
There are two assumptions in the derivation of the above equations. β is assumed to be constant and the temperature coefficient of R_{L} is small compared to that of the thermistor.

Most thermistor data sheets specify $\mathrm{R}_{T 0}, \beta, \mathrm{R}_{T} / \mathrm{R}_{\text {TO }}$ ratios for two temperatures, α, and tolerances for β and $\mathrm{R}_{\mathrm{T} 0}$. Given β, and $\mathrm{R}_{\mathrm{T} 0}$, it is easy to calculate R_{L} from equation

APPLLCATIONS InfORMATION

(3). Alternatively, β may be calculated from the $\mathrm{R}_{T} / \mathrm{R}_{\text {To }}$ ratio using equation (4) or from α, using equation (6).

As a numerical example, consider the Panasonic ERT-D2FHL103S thermistor which has the following characteristics:

1. $\mathrm{R}_{\mathrm{T}}\left(25^{\circ} \mathrm{C}\right)=\mathrm{R}_{\mathrm{TO}}=10 \mathrm{k}$
2. $\alpha=-4.6 \% /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{0}=25^{\circ} \mathrm{C}$
3. Ratio $R_{25} / R_{50}=2.9$

Using equation (4) and $\mathrm{R}_{25} / \mathrm{R}_{50}=2.9, \beta=(323 \times 298) \mathrm{In}$ $(2.9) /(298-323)=4099 \mathrm{k}$. Alternatively, using equation (6) and $\alpha=-4.6 \% /{ }^{\circ} \mathrm{C}, \beta=-(-0.046)(298)^{2}=4085 \mathrm{k}$.

Both values of β are close to each other. Substituting $\beta=4085 \mathrm{k}$ into equation (3) gives $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}[4085-(2 \times$ $298)] /[4085+(2 \times 298)]=7.45 \mathrm{k}$. The nearest 1% resistor value is 7.5 k . Figure 5 shows a plot of $\mathrm{V}_{\text {DIV }}(\mathrm{T})$ measured at various temperatures for this thermistor with a $7.5 \mathrm{~K} \mathrm{R}_{\mathrm{L}}$.

Figure 5. ERT-D2FHL103S Divider

There are two methods of calculating battery or ambient temperature from $A D C$ readings of the $T_{B A T}$ or $T_{A M B}$ channels. The first method is to store the $\mathrm{V}_{\text {DIV }}(\mathrm{T})$ vs T curve as a lookup table. The second method is to use a straight line approximation. The equation of this line may be calculated from the slope $\mathrm{dV}_{\text {DIV }} / \mathrm{dT}$ at T_{0} [see equation (7)] and assuming that the line passes through the point [$\mathrm{T}_{0}, \mathrm{~V}_{\text {DIV }}\left(\mathrm{T}_{0}\right)$] on the curve. For the ERT-D2FHL103S, the slope is minus $34 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and the equation of the line is
$\mathrm{T}=\left[2.605-\mathrm{V}_{\text {DIV }}(\mathrm{T})\right] / 0.034$. The straight line approximation is accurate to within $2^{\circ} \mathrm{C}$ over a temperature range of $5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$, assuming $3 \% \beta$ and $10 \% \mathrm{R}_{\text {TO }}$ tolerances.

PTC (Positive Temperature Coefficient) Thermistors

Positive Temperature Coefficient (PTC) thermistors may be used in battery chargers that do not require accurate temperature measurements. The resistance vs temperature characteristics of PTC exhibits a sharp increase at a selectable switch temperature T_{s}. This sharp change is exploited in chargers which use TCO (Temperature Cutoff) or \triangle TCO (Difference between battery and ambient temperature). With TCO termination, a voltage divider consisting of a PTC and a low temperature coefficient load resistor is connected between REG and GND with the top end of the PTC at REG. The PTC is mounted on the battery to sense its temperature. The divider output is tied to $\mathrm{T}_{\mathrm{BAT}}$. When the switch temperature is reached, the PTC resistance increases sharply causing $T_{B A T}$ to fall below HTF. This causes an HTF fault and charging is terminated. To implement \triangle TCO termination, the load resistor can, in principle, be replaced by a matching PTC and the divider now responds to differences between battery and ambient temperature. With both TCO and \triangle TCO terminations, the position of the battery temperature PTC can be swapped with the load resistor or ambient temperature PTC. In both cases, an LTF fault terminates charge when the trip point is reached. Note that in practice, matched PTCs are not readily available and for \triangle TCO termination, NTC thermistors are recommended.

HARDWARE DESIGN PROCEDURE

This section discusses the considerations in selecting each component of a simple battery charger (see Figures 3 and 4). Further applications assistance is provided in Application Note 64, using the LTC1325 Battery Management IC.

1. RSENSE: There are three factors in selecting RSENSE:
a. LTC1325 $\mathrm{V}_{\text {REF }}$ and Duty Ratio Settings
b. Sense Resistor Dissipation
c. $I_{\text {LOAD }}\left(R_{\text {SENSE }}\right)<-450 \mathrm{mV}$ for Gas Gauge Linearity

APPLICATIONS INFORMATION

The LTC1325 has five duty ratio and four $V_{\text {DAC }}$ settings giving 20 possible charge rates (for a given value of $R_{\text {SENSE }}$) as shown in the following table. For any combination of $V_{D A C}$ and duty ratio, the average charging current is given by:
AVG $I_{\text {CHRG }}=V_{\text {DAC }}$ (Duty Ratio)/R SENSE

NORMALIZED $V_{\text {DAC }}$	DUTY RATIO				
	$\mathbf{1}$	$\mathbf{1} / 2$	$\mathbf{1} / 4$	$\mathbf{1 / 8}$	$\mathbf{1} / 16$
	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$
$1 / 3(\mathrm{VRR} 1=1, \mathrm{VR} 0=0)$	$1 / 3$	$1 / 6$	$1 / 12$	$1 / 24$	$1 / 48$
$1 / 5(\mathrm{VR} 1=0, \mathrm{VR} 0=1)$	$1 / 5$	$1 / 10$	$1 / 20$	$1 / 40$	$1 / 80$
$1 / 10(\mathrm{VR} 1=0, \mathrm{VR} 0=0)$	$1 / 10$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$

Note that the table entries give relative charge rates assuming that the $\mathrm{VR} 1=1, \mathrm{VRO}=1$, duty ratio $=1$ entry is equivalent to a 1 C charge rate. Therefore, the charge rate (in C-units) for other VR1, VR0, and duty ratio settings may be read directly from the table. In general, the $\mathrm{VR} 1=1, \mathrm{VRO}=1$, duty ratio $=1$ entry can be equivalent to any charge rate, say k times $1 C$. Then all entries in the table should be multiplied by k. In general, $\mathrm{V}_{\mathrm{DAC}}$ and duty ratio settings are changed by the microprocessor to charge batteries of different capacities or to alter charge rates when charging the same battery in several stages. For best accuracy, VR1 and VRO should be set to 1 where possible.

The power dissipation of the sense resistor varies between charge, discharge and gas gauge modes and should be calculated for all three modes. Typically, dissipation is higher in discharge and gas gauge modes since batteries can deliver higher currents than they can be charged with.
In gas gauge mode, the load current supplied by the battery should not exceed $450 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ for the gas gauge to remain linear in response. RSENSE should be low enough to ensure that $l_{\text {LOAD }}\left(\mathrm{R}_{\text {SENSE }}\right)$ does not fall below ground by more than 1 diode drop.
2. $V_{D D}$ Supply: $V_{D D}$ should be at least 1.8 V above the maximum battery voltage to prevent a BATP $=0$ error when the LTC1325 is in charge or discharge mode. If this requirement cannot be met in a specific application, an external battery divider should be connected
between the $V_{B A T}$ and Sense pins and the internal divider should be set to divide-by-1.

The minimum $V_{D D}$ supply must be greater than the end-of-charge voltage $\mathrm{V}_{\text {EC }}$ times the number of cells (n) in the battery plus drops across the on-resistance of the PFET, inductor (V_{L}), battery internal resistance $\mathrm{R}_{\text {INT }}$ and sense resistor $\mathrm{R}_{\text {SENSE }}$.
Minimum $V_{D D}$ should be the greater voltage of the results from these two equations:

$$
\begin{aligned}
& \operatorname{Min} V_{D D}=I_{C H R G}\left[R_{D S(O N)}(P 1)+R_{\text {SENSE }}+\right. \\
& \left.n\left(R_{\text {INT }}\right)\right]+n\left(V_{E C}\right)+V_{L}
\end{aligned}
$$

or,

$$
\operatorname{Min} V_{D D}=n\left(V_{E C}\right)+1.8 V
$$

Assuming $\mathrm{V}_{\text {EC }}=1.6 \mathrm{~V}$, the LTC1325 will charge up to 8 cells with a 16 V supply. For a higher number of cells, an external level shifter and regulator are needed.
In some applications, there are other circuits attached to the charging supply. When the charging supply $\left(V_{D C}\right)$ is powered down or removed, the battery may supply current to these circuits through the PFET body diode. To prevent this, a blocking diode can be added in series with $V_{D C}$ as shown in the circuit in the Typical Application section.
3. Inductor L: To minimize losses, the inductor should have low winding resistance. It should be able to handle expected peak charging currents without saturation. If the inductor saturates, the charging current is limited only by the total PFET $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, inductor winding resistance, R RENSE and $V_{D D}$ source resistance. This fault current may be high enough to damage the battery or cause the maximum power ratings of the PFET, inductor or RSENSE to be exceeded.
4. Catch Diode D1: The catch diode should have a low forward drop and fast reverse recovery time to minimize power dissipation. Total power loss is given by:

$$
P_{d D 1}=V_{F}\left(I_{F}\right)+\left(V_{R}\right)(f)\left(t_{R R}\right)\left(I_{F}^{\prime}\right)
$$

APPLICATIONS InFORMATION

where,
$I_{F}=$ forward diode current,
$I_{F}{ }^{\prime}=$ forward diode current just prior to turn off,
$V_{F}=$ forward drop,
$V_{R}=$ reverse diode voltage (approximately equal to $V_{D D}$),
$f=P W M$ frequency (111 kHz), and
$t_{\text {RR }}=$ reverse recovery time
The power and maximum reverse voltage ratings of the diode should be greater than $\mathrm{P}_{\mathrm{dD1}}$ and V_{DD} respectively. The catch diode should also have fast turn-on times to reduce the voltage glitch at its cathode when turning on.
Schottky diodes have fast switching times and low forward drops and are recommended for D1.
5. Trickle Resistor RTRK: RTRK sets the desired trickle current in the battery to compensate for self-discharge which is in the order 1% and 2% of capacity per day for NiCd and NiMH batteries respectively. Trickle charge rates are typically in the $\mathrm{C} / 30$ to $\mathrm{C} / 50$ range, where C is battery capacity.
$I_{T R K}=\left(V_{D D}-V_{B A T}\right) / R_{T R K}$
where $V_{B A T}$ is the voltage of a full charged battery. Note that I TRK varies as the battery is being charged.
6. Thermistor R_{T} and L oad R_{L} : The total resistance of the thermistor network should be greater than 30k at the high temperature extreme to minimize effects of load regulation (see REG pin loading).
7. Fault Setting Resistors R1, R2, R3 and R4: The voltage levels at the LTF, HTF and MCV pins are tapped from a resistor divider powered by the REG pin. The voltage levels are selected taking into account:
a. Manufacturer Recommended Temperature and Voltage limits,
b. Loading on the REG Pin (<2mA)
C. Input Voltage Ranges of the LTF, HTF and MCV Comparators:

$$
1.6 \mathrm{~V}<\mathrm{V}_{\mathrm{LTF}}, \mathrm{~V}_{\mathrm{MCV}}<2.8 \mathrm{~V} \text { and } 0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{HTF}}<1.3 \mathrm{~V}
$$

d. Thermistor Divider Temperature Curve

Typical temperature limits for both NiCd and NiMH batteries are shown below.

BATTERY TYPE	DISCHARGE TEMP RANGE $\left({ }^{\circ}\right.$ C)		CHARGE TEMP RANGE $\left({ }^{\circ}\right.$ C)	
	MIN	MAX	MIN	MAX
	-20	45 to 50	0	45 to 50
Quick	-20	45 to 50	10	45 to 50
Fast or Rapid	-20	45 to 50	15	45 to 50
Trickle	-20	45 to 50	0	45 to 50

Note that the discharge limits are wider than the charge limits. To prolong battery life, manufacturers generally recommend discharge temperatures that are similar to the charge limits. For this reason, the LTC1325 recognizes the same LTF and HTF limits in both charge and discharge modes. MCV should be set just above the charging voltage per cell given in battery specifications. The voltage at the LTF and HTF pins should be set to correspond to narrowest temperature range. These are typically $15^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$. The corresponding voltages may be read from the thermistor divider temperature curve such as that shown in Figure 5. For this thermistor, it works out to be about for 2.12 V for LTF and for 1.13 V for HTF. The MCV may be conveniently tied to LTF since MCV is typically 2 V . If desired, external analog switches under microprocessor control may be used to vary the LTF, HTF and MCV voltages between modes or for different charge rates. The values of R1, R2, R3 and R4 in Figure 3 can be calculated from the following equations:

$$
\begin{aligned}
& R 4=V_{\text {HTF }}\left(R E / V_{\text {REG }}\right) \\
& R 3=V_{\text {MCV }}(R E-R 4) \\
& R 2=V_{\text {LTF }}(R E)-(R 3+R 4) \\
& R 1=R E-(R 2+R 3+R 4)
\end{aligned}
$$

where $R E=R 1+R 2+R 3+R 4$ is chosen to minimize loading on the REG pin. A minimum value of 30 k is recommended. Note that $V_{\text {LTF }}$ is assumed to be greater than $\mathrm{V}_{\text {MCV }}$. If this is not the case, $\mathrm{V}_{\text {LTF }}$ and $\mathrm{V}_{\text {MCV }}$ in the above equations should be swapped. If the MCV and LTF pins are shorted to the same point, R2 should be set to 0 .

APPLICATIONS INFORMATION

8. REG Pin Loading: The 3.072 V regulator has a load regulation specification of $-5 \mathrm{mV} / \mathrm{mA}$. Since the ADC uses the same regulator as reference, it is desirable to reduce loading effects on the REG pin especially over temperature. Thermistors with $\mathrm{R}_{\text {TO }}$ values of at least 10 k at $25^{\circ} \mathrm{C}$ are recommended. At $50^{\circ} \mathrm{C}$, the thermistor resistance could drop by a factor of 3 from its value at $25^{\circ} \mathrm{C}$. R_{L} is chosen as explained in the section on Temperature Sensing. The temperature coefficient of R_{L} is not critical since the thermistor tempco dominates the sensing circuit.
9. $R_{D I S}: R_{D I S}$ is selected to limit the discharge current to a value within the battery discharge specifications and must have a power rating above $\mathrm{I}_{\text {DIS }}{ }^{2}\left(\mathrm{R}_{\text {DIS }}\right)$ where:

$$
I_{D I S}=V_{B A T} /\left[R_{D I S}+R_{D S(O N)}(N 1)\right]
$$

10. PFET(P1) and NFET(N1): For operation of the charge and discharge loops, $\left|V_{G S}\right|<V_{D D}$ since the PGATE and DIS pins swing between 0 and $V_{D D} .\left|V_{G S}\right| \ll V_{D D}$ to minimize power dissipation. The power ratings of P 1 and N 1 should be above $\mathrm{I}_{\mathrm{CHRG}}{ }^{2}\left[\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}(\mathrm{P} 1)\right]$ and $\mathrm{I}_{\mathrm{DIS}}{ }^{2}\left[\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}(\mathrm{N} 1)\right]$ respectively. $\mathrm{V}_{\mathrm{DS}(\mathrm{MAX})}$ should be above $V_{D D}$.

Charging from Supplies Above 16V

In many applications, the charging supply is greater than the 16 V maximum $V_{D D}$ rating of the LTC1325. The LTC1325 can easily be adapted to charge the batteries from a charging supply $V_{D C}$ that is above 16 V by adding three external sub-circuits:

1. A regulator to drop $V_{D C}$ down to within the supply range of the LTC1325.
2. A level shifter between the PGATE and the gate of the PFET, P1, to ensure that P1 can be completely turned off when PGATE rises to $V_{D D}$.
3. A voltage clamp on the $V_{B A T}$ pin to prevent $R_{\text {TRK }}$ from pulling $V_{B A T}$ above $V_{D D}$.
The Wide Voltage Battery Charger circuit in the Typical Application section shows low cost implementations of all three sub-circuits. C1, R11 and D4 generate a $15 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ for the LTC1325. D3, R12 and C2 form a level shifter. The zener D3 is chosen to clamp the source gate voltage of the

PFET to within the maximum gate source voltage rating of the latter. Finally, D2 clamps $\mathrm{V}_{\mathrm{BAT}}$ to 15 V .

Charging Batteries with Voltages Above 16V

To charge a battery with a maximum (fully charged) voltage of above 16 V , the charging supply $\mathrm{V}_{D C}$ must be above 16 V . Thus the charger will need the regulator, level shifter and clamp mentioned in the previous section. In addition, an external battery divider must be added to limit the voltage at the $V_{B A T}$ pin to less than $V_{D D}$. This is shown in the typical application circuit, Wide Voltage Battery Charger. The resistors R9 and R10 are selected to divide the battery voltage by the number of cells in the battery and the battery divider internal to the LTC1325 is set to divide-by-1. The external divider prevents $V_{B A T}$ from ever rising to $V_{D D}$ and this causes the BATP (Battery Present Flag) to be high regardless of whether the battery is physically present or not. This does not affect the other operations of the LTC1325.

SOFTWARE DESIGN

A general charging algorithm consists of the following stages:

Discharge Before Charge
Fast Charge
Top Off Charge
Trickle Charge
Under some operating and storage conditions, NiCd and NiMH batteries may not provide full capacity. In particular, repeated shallow charge and discharge cycles cause the "memory effect" in NiCd batteries. In order to restore full capacity (battery conditioning), these batteries have to be subjected to several deep discharge/charge cycles which will be provided by repetitions of the above algorithm.
Figure 6 shows a simplified flowchart of a charging algorithm. In practice, this flowchart has to be augmented to take into account the occurrence of fail-safes at any point in the algorithm. For example, the battery temperature could rise above HTF during discharging or charging. General programming notes are as follows:

1. The start bit is always high.
2. The SGL/DIFF bit is generally set to low so that the ADC makes conversions with respect to ground.

APPLICATIONS INFORMATION

3. The MSBF bit is set depending on whether the microprocessor clocks in serial data with MSB- or LSB-first.
4. The DSO to DS2 bits can be anything except when entering idle mode or when requesting for ADC readings. In these cases, DSO to DS2 are set to select the desired reading: $T_{B A T}, V_{\text {CELL }}$ or $T_{A M B}$.
5. The PS bit should always be 0 so that the LTC1325 does not go into shutdown mode.
6. The DR0 to DR2 should not select any of the test modes. It may assume different settings between Fast charge and Top Off charge in order to alter the charging current.
7. The FSCLR bit should be set to 1 to clear any faults and reset the timer when starting Discharge, Fast charge or Top Off. The status bits that the LTC1325 returns
during the same I/O operation (that FSCLR is set to 1) should be checked to determine if faults were indeed cleared, i.e., discharging or charging has begun. This is not shown in the simplified flowchart of Figure 6. For commands other than the START commands, FSCLR should be set to 0 so as not to reset the timer.
8. The TOO to TO 2 bits should all be set to 1 in discharge mode to ensure discharge does not end prematurely due to a timeout fault. During Fast charge or Top Off charge, these bits are set to a value suitable for the charge rate used. For example, if the charge rate is 1 C , the timeout period should be set to 80 minutes.
9. In charge mode, the C_{F} capacitor filters the $\mathrm{V}_{\text {CELL }}$ node and sees a small ripple due to ripple at the Sense pin. Prior to taking an ADC reading, the LTC1325 is put in

Figure 6. Simple Charging Algorithm

APPLICATIONS InFORMATION

idle mode to minimize noise. The microprocessor should either disregard readings or wait for a second or so before taking a reading. This is to allow $\mathrm{V}_{\text {CELL }}$ to decay to the correct cell voltage. The worst case time constant is $150 \mathrm{k} \Omega\left(\mathrm{C}_{\mathrm{F}}\right)$.
10. Prior to the first START command, the battery divider setting may be incorrect so that C_{F} may charge to a voltage that causes EDV, BATR or MCV faults. The worst case time constant is as in (9). The microprocessor should check faults during the transmission of a START command and resend the START command again when C_{F} has been given enough time to charge up to the correct value.

MICROPROCESSOR INTERFACES

The LTC1325 can interface directly to either synchronous, serial or parallel I/O ports of most popular microprocessors. With a parallel port, 3 or 4 I/O lines can be programmed to form a serial link to the LTC1325.

Motorola SPI (68HC11)

The $68 \mathrm{HC11}$ has a dedicated synchronous serial interface called the Serial Peripheral Interface (SPI) which transfers data with MSB-firstand in 8-bit increments. To communicate with this microprocessor, the LTC1325 MSBF control bit should be set to 1. The SPI has four lines: Master In Slave Out (MISO), Master Out Slave In (MOSI), Serial Clock (SCK) and Slave Select ($\overline{\mathrm{SS}}$). The 68 HC 11 is configured as a Master by tying the $\overline{S S}$ line high. A control byte is written to the Serial Peripheral Control Register (SPCR) to select master mode, set baud rate and clock timing relationship. Another byte is written to the Port D Direction Register (DDRD) to set MOSI, 3CK and bit 0 ($\overline{\mathrm{CS}}$ of LTC1325) as outputs. The $68 \mathrm{HC11}$ slocks in data from the LTC1325 simultaneously under the zontrol of SCK. The microprocessor transmits the LTC1325 jommand word in 4 bytes. This is followed by 2 more dummy jytes (with all bits set low) in order to clock in the remaining _TC1325 ADC and status bits.

This software example allows you to verify communicaions with the LTC1325. The command word configures :he LTC1325 to perform an A/D conversion on the general jurpose $\mathrm{V}_{\mathbb{I N}}$ input. $\mathrm{V}_{\text {IN }}$ can be tied to GND or REG or to a
wiper on a potentiometer between these two. Table 1 illustrates a complete 6-byte exchange. Note that the first byte is padded with zeroes to align the A / D data and status with byte boundaries.

$$
\begin{aligned}
\text { SPCR }= & (\text { SPIE }=0, \text { SPE }=1, \text { DWOM }=0, \text { MSTR }=1, \\
& C P O L=0, C P H A=0, \text { SPR1 }=0, \text { SPRO }=1) \\
\text { DDRD }= & (\text { BIT7 }=0, B I T 6=0, \text { DDR5 }=1, \text { DDR4 }=1, \\
& \text { DDR3 }=1, \text { DDR2 }=0, \text { DDR1 }=0, D D R 0=1)
\end{aligned}
$$

Table 1. 6-Byte Exchange SPI Communication with LTC1325

07	06	05	04	03	D2	01	do	BYTE ${ }^{\text {5 }}$ RX
\times	\times	x	x	\times	x	x	x	BTE \#6 TX
вatp	ватв	fucv	fevo	fit	flif	tout	fs	BYTE $6_{6} \mathrm{BX}$

[^39]APPLICATIONS INFORMATION

LABEL	MNEMONIC	OPERAND	COMMENTS	LABEL	MNEMONIC	OPERAND	COMMENTS
CSLOW	LDAA	\#\$51	Write control byte to the SPCR	LOOP4	TST	\$1029	Check for SPI transfer
	STAA	\$1028			BPL	L00P4	complete bit
	LDAA	\#\$39	Setup Port D DDRD		LDAA	\$102A	Get A/D high byte
	STAA	\$1009	Port D Bit 0 is $\overline{C S}$		ANDA	\#\$03	Mask off unwanted bits
	LDX	\#\$1000	Load port base ADDR		STAA	HIDATA	Store in user memory
	BCLR	\$08,X,\#\$01	Take CS low		LDAA	\#\$00	Send dummy Byte \#1
	LDAA	\#\$02	Send Byte \#1 (MSB) with		STAA	\$102A	
	STAA	\$102A	START bit	L00P5	TST	\$1029	Check for SPI transfer
L00P1	TST	\$1029	Check for SPI transfer		BPL	L00P5	complete bit
	BPL	L00P1	complete bit		LDAA	\$102A	Get A/D low byte
	LDAA	\#\$24	Send Byte 2		STAA	LODATA	Store in user memory
	STAA	\$102A			LDAA	\#\$00	Send dummy Byte \#2
L00P2	TST	\$1029	Check for SPI transfer		STAA	\$102A	
	BPL	LOOP2	complete bit	L00P6	TST	\$1029	Check for SPI transfer
	LDAA	\#\$03	Send Byte 3		BPL	L00P6	complete bit
	STAA	\$102A			LDAA	\$102A	Get STATUS byte
L00P3	TST	\$1029	Check for SPI transfer		STAA	STATUS	Store in user memory
	BPL	LOOP3	complete bit		BSET	$\$ 08, \mathrm{X}, \# \$ 01$	Raise $\overline{C S}$ high
	LDAA STAA	$\begin{aligned} & \# \$ C 0 \\ & \$ 102 A \end{aligned}$	Send Byte 4		BRA	CSLOW	Loop for continuous readings

TYPICAL APPLICATION

Wide Voltage Battery Charger

NOTE 1: NEEDED WHEN $V_{D C}>16 \mathrm{~V}$ OR MAXIMUM BATTERY VOLTAGE, $\mathrm{V}_{\text {BAT }}>16 \mathrm{~V}$.
NOTE 2: REGULATOR. OMIT THIS BLOCK AND SHORT VDD TO $V_{D C}$ WHEN $V_{D C}<16 \mathrm{~V}$.
NOTE 3: LEVEL SHIFTER. OMIT THIS BLOCK AND SHORT PGATE TO P1 GATE WHEN $V_{D C}<16 \mathrm{~V}$.

NOTE 4: ZENER TO CLAMP $V_{\text {BAT }}$ TO BELOW $V_{D D}$. OMIT WHEN $V_{D C}<16 \mathrm{~V}$.
NOTE 5: EXTERNAL BATTERY DIVIDER. NEEDED WHEN MAXIMUM BATTERY VOLTAGE, VBAT $>16 \mathrm{~V}$.
NOTE 6: VIN IS AN UNCOMMITTED AID CHANNEL.

NOTE 7: OPTIONAL DIODE TO PREVENT BATTERY DRAIN WHEN THE CHARGING SUPPLY IS POWERED DOWN (SEE SECTION 2, HARDWARE DESIGN PROCEDURE).

iELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
$T^{\oplus} 1510$	Constant Voltage/Constant Current Battery Charger	$1.3 A$, Li-lon, NiCd, NiMH, Pb-Acid Charger
T1512	SEPIC Constant Current/Constant Voltage Battery Charger	$0.75 A, \mathrm{~V}_{\text {IN }}$ Greater or Less Than V VAT

NOTES

SECTION 5—InTERFACE

SECTION 5—INTERFACE
INDEX 5-2
SELECTION GUIDES 5-3
PROPRIETARY PRODUCTS
RS232/562 5-9
LTC1348, 3.3V Low Power RS232 3-Driver/5-Receiver Transceiver. 5-10
LT1537, Advanced Low Power 5V RS232 Transceiver with Small Capacitors 5-18
RS485 5-25
LTC1480, 3.3V Ultra-Low Power RS485 Transceiver 5-26
LTC1481, Ultra-Low Power RS485 Transceiver with Shutdown 5-34
LTC1483, Ultra-Low Power RS485 Low EMI Transceiver with Shutdown 5-41
LTC1487, Ultra-Low Power RS485 with Low EMI, Shutdown and High Input Impedance 5-49
V. 35 5-57
LTC1345, Single Supply V. 35 Transceiver 5-58
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65
AppleTalk ${ }^{\text {® }}$ 5-69
LTC1318, Single 5V RS232/RS422/AppleTalk ${ }^{\otimes}$ DCE Transceiver. 5-70
LTC1323, Single 5V AppleTalk ${ }^{\circledR}$ Transceiver 5-77
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LT1389, AppleTalk ${ }^{\oplus}$ Peripheral Interface Transceiver 13-73
INFRARED 5-89
LT1319, Multiple Modulation Standard Infrared Receiver 5-90
MIXED PROTOCOL 5-101
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver 13-53

INTERFACE

RS232 INTERFACE SOLUTIONS

Complete RS232 PC Serial Ports: 3 Drivers, 5 Receivers

- $\pm 15 \mathrm{kV}$ ESD Protection (LT1137A)
- $\pm 10 \mathrm{kV}$ ESD Protection (All Others)
- 3V Logic Compatible
- Receiver Keep-Alive in Shutdown
- SO, SSOP Packages
- Ultra-Low Power (LTC1337: 1.5mW)
- Flowthrough Architecture
- $0.1 \mu \mathrm{~F}$ Capacitors
- Low Power Shutdown
- 120kBaud Operation
- Capable of Mouse Driving
- 3.3V or 5V Powered

SUPPLY VOLTAGE	$\begin{gathered} 3 V \\ \text { OR 5V } \\ \text { LOGIC } \end{gathered}$	$\begin{gathered} \text { TYP } \\ \text { POWER } \\ \text { DISS(mW) } \end{gathered}$	$\underset{\text { ACTIVE }}{\text { RX }}$ IN SHDN	$\mathrm{I}_{\mathrm{a}} \mathrm{IN}$ SHDN ($\mu \mathrm{A}$)	DRIVER DISABLE	$\begin{gathered} \text { 10kV } \\ \text { ESD } \end{gathered}$	$\left.\begin{aligned} & 0.1 \mu \mathrm{~F} \\ & \text { CAPS } \end{aligned} \right\rvert\,$	DEVICE TYPE
5	5	60	0	1	X	X^{\dagger}	X	LT1137A
5	5	30	1	60	X	X	X^{*}	LT1237
3	3	1.5	0	1	-	X	X	LTC1327
5 \& 3	3	30	1	60	X	X	X^{*}	LT1330
3	3	42	1	60	X	X	X	LT1331
5 \& 3	3	34	1	60	X	X	X*	LT1331
3	3	1.5	1	70	-	X	X	LT1332**
5	5	1.5	0	1	-	X	X	LTC1337
5	5	60	1	60	X	X	X	LT1341
5 \& 3	3	60	0	1	X	X	X	LT1342
5	5	1.5	5	80	-	X	X	LTC1347
3	3	1.5	0 or 5	0.2 or 10	-	X	X	LTC1348
5	5	1.5	2	35	-	X	X	LTC1349
3	3	1.5	2	35	-	X	X	LTC1350
5	5	40	0	1	X	X	X	LT1537

*Requires one $1 \mu \mathrm{~F}$ capacitor
** Works with switching power supply to generate full RS232 output levels from 3 V supplies
$\dagger 15 \mathrm{kV}$ ESD protection

5V Powered RS232 2 Driver/2 Receiver Circuits

- Rugged Bipolar Construction
- $\pm 10 \mathrm{kV}$ ESD Protection
- 0.1μ F Charge Pump Capacitors

SHUTDOWN/ RS232 AND TTL THRE- STATE OUTPUTS	FAULT TOLERANT T0 $\pm 25 V$	COMMENTS	PART NUMBER
Yes	Yes	Ideal for Surface Mount, 10kV ESD	LT1180A
No	Yes	Replaces MAX202, 232A, 10kV ESD	LT1181A
Yes	Yes	Low Power LT1080	LT1280A
No	Yes	Low Power LT1081	LT1281A
No	$\pm 15 \mathrm{~V}$	Replaces MAX202	LT1381*
Yes	Yes	Ultra-Low Power LT1180A	LTC1382
No	Yes	Ulitra-Low Power LT1181A, MAX232A Replacement	LTC1383*
Yes	Yes	Ultra-Low Power LT1180A w/ 2Rx Alive in SHDN	LTC1384
Yes	Yes	Ulitra-Low Power 3V LT1180A	LTC1385
No	Yes	Ultra-Low Power 3V LT1181A	LTC1386*

*Narrow 16-lead SO package

- Immune to Latch-Up
- Low Power Shutdown
- Three-State Outputs When Shut Down
T1280A

$$
[1381
$$

TC1382

TC138
LTC1385
LTC1386*

LT1180A, LT1280A, LTC1382/4/5 2 Dx, 2 Rx

LT1181A, LT1281A,
LT1381, LTC1383
2 Dx, 2 RX

)ther RS232 Driver/Receiver Combinations

IRIVERS	RECEIVERS	SUPPLIES REQUIRED	SHUTDOWN/ RS232 and TLL THREESTATE OUTPUTS	$\begin{gathered} \text { FAULT } \\ \text { TOLERANT } \\ \text { to } \pm 25 \mathrm{~V} \end{gathered}$	REQ'D CHARGE PUMP CAP SIZE	COMMENTS	PART NUMBER
4	0	$\pm 12 \mathrm{~V}$	Yes	Yes	N/A	Low Power 1488 Upgrade	LT1030
4	0	$\pm 12 \mathrm{~V}$	Yes	Yes	N/A	Low Power 1488 Upgrade Also Supports RS423	LT1032
3	3	$5 \mathrm{~V}, \pm 12 \mathrm{~V}$	Yes	Yes	N/A	One Receiver Active in Shutdown	LT1039
3	3	$5 \mathrm{~V}, \pm 12 \mathrm{~V}$	No	Yes	N/A	Rugged MC145406 Replacement	LT1039-16
5	5	5 V	No	Yes	$0.1 \mu \mathrm{~F}$	Synchronous Communications, $\pm 10 \mathrm{kV}$ ESD	LT1130A
5	4	5 V	Yes	Yes	$0.1 \mu \mathrm{~F}$	Synchronous Modem/DCE Interface, $\pm 10 \mathrm{kV} \mathrm{ESD}$	LT1131A
5	3	5 V	No	Yes	0.14 F	Modem/DCE Interface, $\pm 10 \mathrm{kV} \mathrm{ESD}$	LT1132A
3	5	5 V	No	Yes	$0.1 \mu \mathrm{~F}$	PC/DTE Interface, $\pm 10 \mathrm{kV}$ ESD	LT1133A
4	4	5 V	No	Yes	$0.1 \mu \mathrm{~F}$	5V Only 1488/1489 Replacement, $\pm 10 \mathrm{kV}$ ESD	LT1134A
5	3	$5 \mathrm{~V}, \pm 12 \mathrm{~V}$	No	Yes	N/A	Modem/DCE Interface, $\pm 10 \mathrm{kV}$ ESD	LT1135A
4	5	5 V	Yes	Yes	$0.1 \mu \mathrm{~F}$	Synchronous PC/DTE Interface, $\pm 10 \mathrm{kV}$ ESD	LT1136A
5	3	5 V	Yes	Yes	$0.1 \mu \mathrm{~F}$	Modem/DCE Interface, $\pm 10 \mathrm{kV} \mathrm{ESD}$	LT1138A
4	4	5V, 12V	Yes	Yes	$0.1 \mu \mathrm{~F}$	1488/1489 Replacement, $\pm 10 \mathrm{kV} \mathrm{ESD}$	LT1139A
5	3	$5 \mathrm{~V}, \pm 12 \mathrm{~V}$	Yes	Yes	N/A	Modem/DCE Interface, $\pm 10 \mathrm{kV}$ ESD	LT1140A
3	5	$5 \mathrm{~V}, \pm 12 \mathrm{~V}$	Yes	Yes	N/A	PC/DTE Interface, $\pm 10 \mathrm{kV} \mathrm{ESD}$	LT1141A
5	3	5 V	Yes	Yes	$0.1 \mu \mathrm{~F}$	Ultra-Low Power, 1 Receiver Keep-Alive in SHDN, $\pm 10 \mathrm{kV}$ ESD	LTC1338

'rogrammable EIA/TIA562/RS232 and RS485 I/O Ports

Low Supply Current: 1mA Typical $15 \mu \mathrm{~A}$ Supply Current in Shutdown 5V Powered (LTC1334) 120kBaud in EIATIA562 or RS232 10MBaud in RS485/RS422
Self-Testing Capability in Loopback Mode LTC1321/LTC1322 Have the Same Pinout as SP301/SP302

- LTC1335 Features Receiver Three-State Outputs
- Power-Up/Down Glitch-Free Outputs
- Driver Maintains High Impedance in Three-State, Shutdown, or With Power Off
- Thermal Shutdown Protection
- Protection: I/O Lines Can Withstand $\pm 25 \mathrm{~V}$
- Withstands Repeated $\pm 10 \mathrm{kV}$ ESD Pulses
- SO Wide or Dual-In-Line Packages

RS232 OR EIA/TIA562 TRANSCEIVERS	RS485 TRANSCEIVERS	OUTPUT LEVELS	DRIVER ENABLE	SELF TEST LOOPBACK	PART NUMBER
2	2	$232 / 562$	-	Yes	LTC1321
4	2	$232 / 562$	-	Yes	LTC1322
4	2	232	Yes	Yes	LTC1334
4	2	562	Yes	Yes	LTC1335

LTC1321
2 RS485 DRIVERS/RECEIVERS EIA/TIA562 DRIVERS/RECEIVERS

LTC1322

2 RS485 DRIVERS/RECEIVERS 4 EIA/TIA562 DRIVERS/RECEIVERS

ISOLATED AND APPLETALK ${ }^{\circledR}$ INTERFACE SOLUTIONS

Low Power Digital Isolators

- UL Recognized 7】 (LTC1145A,LTC1146A) File E151738 to UL1577
- Low Input Current

LTC1145: 700 $\mu \mathrm{A}$, LTC1146: $70 \mu \mathrm{~A}$

- Maximum Input Frequency

LTC1145: 200kHz, LTC1146: 20kHz

- TTL Level Output
- Noise Filter Prevents Glitches at the Output
- Output Can Be Synchronized to and External Clock

Digital Isolation Interface Data Rate Up to 200 kHz

- Low Power Opto-Isolator Replacemen
- Isolated Serial Data Interfaces
- Isolated Power MOSFET Drivers

ISOLATION VOLTAGE	INPUT CURRENT	MAX INPUT FREQUENCY	GLITCH-FREE OUTPUT FILTER	EXT CLOCK SYNCH	UL RECOGNIZED	PART NUMBER
2500	$700 \mu \mathrm{~A}$	200 kHz	Yes	Yes	$\mathbf{R I}$	LTC1145A
2500	$70 \mu \mathrm{~A}$	20 kHz	Yes	Yes	$\mathbf{R I}$	LTC1146A
500	$700 \mu \mathrm{~A}$	200 kHz	Yes	Yes		LTC1145
500	$70 \mu \mathrm{~A}$	20 kHz	Yes	Yes		LTC1146

Complete AppleTalk/LocalTalk ${ }^{\circledR}$ Transceivers

- Single Chip Complete AppleTalk DCE/DTE Solutions - 5V Powered
- Low Power
- Micropower Shutdown (LTC1320/LTC1323/LTC1323-16)
- Micropower Receiver Keep Alive (LTC1323)
(LTC1323/LTC1323-16/LTC1318)
- Surface Mount Packages
- Thermal/Short Circuit Protection
- Small Charge Pump Capacitors
- Drivers High Impedance in Shutdown/Power Off States

DCE/DTE	REQUIRED SUPPLIES	SUPPLY CURRENT	SHUTDOWN FUNCTION	1 RECEIVER KEEP ALIVE	SUPPLY IN SHUTDOWN	PART NUMBER
DTE	$\pm 5 \mathrm{~V}$	1.2 mA	Yes	-	$30 \mu A$	LTC1320
DTE	5 V	2.4 mA	Yes	Yes	$65 \mu A$	LTC1323
DTE	5 V	2.4 mA	Yes	-	$65 \mu \mathrm{~A}$	LTC1323-16
DCE	5 V	18 mA	No	-	-	LTC1318
DTE/DCE	5 V	1 mA	Yes	-	$1 \mu \mathrm{~A}$	LTC1324
DCE	5 V	$8 \mathrm{mAl}-3 \mathrm{~mA}$	Yes	-	$10 \mu \mathrm{~A}$	LT1389

AppleTalk and LocalTalk are registered trademarks of Apple Computer, Inc.

V. 35 Interface

- Single Chip Provides All V. 35 Differential Clock and Data Signals
- Operates From Single 5V Supply (LTC1345)
- Shutdown Mode Reduces Icc to 1μ A Typ
- Software Selectable DTE or DCE Configuration
- $\pm 10 \mathrm{kV}$ ESD Protection
- 10MBaud Transmission Rate
- Transmitter Maintains High Impedance When Disabled, Shut Down or with Power Off
- Meets CCITT V. 35 Specification
- Transmitters are Short-Circuit Protected
- Available in Surface Mount SW Packages
- 5V Powered (LTC1345) $\pm 5 \mathrm{~V}$ Powered (LTC1346)

RS485 Family Features

- Ultra-Low Power
- CMOS Schottky Process
- Designed for RS485 and RS422 Applications
- Three-State RS485 Outputs When Shut Down
- Power-Up/Down Glitch Free Outputs
- Power-Saving Shutdown Mode (LTC1481, LTC1483, LTC1487)
- Low EMI (LTC1483, LTC1487)
- 10MB Operation (LTC486-489, LTC1485)
- Industry Standard Pinouts

The LTC RS485 Advantage: Low Power

- SO Available

RS485/RS422 Interface

DRIVERS	RECEIVERS	SUPPLIES REQUIRED	MAX DATA RATE	MAX SUPPLY CURRENT	$\begin{array}{\|c\|} \hline \text { SHUTDOWN } \\ \text { SUPPLY } \\ \text { CURRENT } \end{array}$	DRIVERS DISABLE SUPPLY CURENT	$\begin{array}{\|c\|} \hline \text { INDUSTRY } \\ \text { STANDARD } \\ \text { PINOUT } \end{array}$	COMMENTS	PART NUMBER
1	1	5 V	2.5MB	$500 \mu \mathrm{~A}$			75176	Half Duplex 2-Wire RS485	LTC485
4	0	5 V	10MB	$150 \mu \mathrm{~A}$			75172	Good For RS449, RS530, V. 35 Interface	LTC486
4	0	5 V	10 MB	$150 \mu \mathrm{~A}$			75174	Good For RS449, RS530, V. 35 Interface	LTC487
0	4	5 V	10MB	10 mA			75173	Good For RS449, RS530, V. 35 Interface	LTC488
0	4	5 V	10MB	10 mA			75175	Good For RS449, RS530, V. 35 Interface	LTC489
1	1	5 V	2.5 MB	$500 \mu \mathrm{~A}$			75179	Full Duplex 4-Wire RS485	LTC490
1	1	5 V	2.5MB	$500 \mu \mathrm{~A}$			75ALS180	Full Duplex 4-Wire RS485	LTC491
1	1	5 V	2.5MB	$500 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$	75176	Ulitra-Low Power Half Duplex 2-Wire RS485 w/SD	LTC1481
1	1	5 V	150kB	$500 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$	75176	Low EMI Ultra-Low Power 2-Wire RS485 w/SD	LTC1483
1	1	5 V	10MB	3.5 mA			75ALS176B	High Speed/Half Duplex	LTC1485
1	1	5 V	250kB	$200 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$	75176	High Input Impedance, Ultra-Low Power, Low EMI 2-Wire RS485 w/Shutdown	LTC1487

LTC485, LTC1481, LTC1483, LTC1485, LTC1487 1Dx, 1 Rx

RS485 I/0
LTC490
$1 \mathrm{Dx}, 1 \mathrm{Rx}$

Interface Standards

SPECIFICATION	RS232	RS423	RS422	RS485	RS562
Mode of Operation	Single-Ended	Single-Ended	Differential	Differential	Single-Ended
Number of Drivers and Receivers Allowed on One Line	1 Driver, 1 Receiver	1 Driver, 10 Receivers	1 Driver, 10 Receivers	32 Drivers, 32 Receivers	1 Driver, 1 Receiver
Maximum Cable Length	50 feet*	4000 feet	4000 feet	4000 feet	50 feet*
Maximum Data Rate	20kb/s	$100 \mathrm{~kb} / \mathrm{s}$	$10 \mathrm{Mb} / \mathrm{s}$	$10 \mathrm{Mb} / \mathrm{s}$	64kb/s
Maximum Voltage Applied to Driver Output	$\pm 25 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	-0.25 V to 6 V	-7V to 12V	$\pm 25 \mathrm{~V}$
Driver Output Signal	$\pm 5 \mathrm{~V}$	$\pm 3.6 \mathrm{~V}$	$\pm 2 \mathrm{~V}$	$\pm 1.5 \mathrm{~V}$	$\pm 3.7 \mathrm{~V}$
Unloaded	$\pm 15 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 13.2 \mathrm{~V}$
Driver Load	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	450Ω (Min)	100Ω	54Ω	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$
Maximum Driver Output Current ${ }^{\text {Power ON }}$	-	-	-	-	60 mA
(High-Impedance State)	$\mathrm{V}_{\text {MAX }} / 300 \Omega$	$\pm 100 \mu \mathrm{~A}$	$\pm 100 \mu \mathrm{~A}$	$\pm 100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {MAX }} / 300 \Omega$
Output Slew Rate	$30 \mathrm{~V} / \mu \mathrm{s}$ (Max)	Controls Provided	-	-	$30 \mathrm{~V} / \mathrm{\mu s}$ (Max)
Receiver Input Voltage Range	$\pm 15 \mathrm{~V}$	$\pm 12 \mathrm{~V}$	$\pm 7 \mathrm{~V}$	-7V to 12V	$\pm 25 \mathrm{~V}$
Receiver Input Sensitivity	$\pm 3 \mathrm{~V}$	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$	$\pm 3 \mathrm{~V}$
Receiver Input Resistance	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$	$4 \mathrm{k} \Omega$ (Min)	$4 \mathrm{k} \Omega$ (Min)	$12 \mathrm{k} \Omega$ (Min)	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$

*or 2500pF cable capacitance, as per EIA 232E

NOTESIECTION 5—INTERFACERS232/562LTC1348, 3.3V Low Power RS232 3-Driver/5-Receiver Transceiver5-10
LT1537, Advanced Low Power 5V RS232 Transceiver with Small Capacitors 5-18

features

■ Low Supply Current: $500 \mu \mathrm{~A}$

- Supply Current in Shutdown: $0.2 \mu \mathrm{~A}$
- Supply Current in Receiver Alive Mode: $15 \mu \mathrm{~A}$
- ESD Protection over $\pm 10 \mathrm{kV}$
- Operates from a Single 3.3 V or 5 V Supply
- Operates to 120 kBaud with $0.1 \mu \mathrm{~F}$ Flying Capacitors
- Three-State Outputs Are High Impedance When Off
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to $\pm 25 \mathrm{~V}$ Without Damage
- Flowthrough Architecture

APPLICATIONS

- Notebook Computers
- Palmtop Computers
- Printers
- Portable Instruments

DESCRIPTION

The LTC ${ }^{\circledR} 1348$ is a 3-driver/5-receiver RS232 transceiver with very low supply current. The charge pump only requires five $0.1 \mu \mathrm{~F}$ capacitors. The LTC1348 provides full RS232 output levels when operated over a wide supply range of 3.0 V to 5.5 V
The transceiver operates in one of four modes: Normal, Receiver Disable, Receiver Alive and Shutdown. In Normal or Receiver Disable mode, $I_{c c}$ is only $500 \mu A$ in the no load condition. In Shutdown mode, the supply current is further reduced to $0.2 \mu \mathrm{~A}$. In Receiver Alive mode, all five receivers are kept alive and the supply current is $15 \mu \mathrm{~A}$. All RS232 outputs assume a high impedance state in Shutdown or Receiver Alive mode or with the power off. The receiver outputs assume a high impedance state in Receiver Disable or with the power off.
The LTC1348 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver operates up to 120kbaud with all drivers loaded with 1000pF, $3 \mathrm{k} \Omega$. Both driver outputs and receiver inputs can be forced to $\pm 25 \mathrm{~V}$ without damage and can survive multiple $\pm 10 \mathrm{kV}$ ESD strikes.
©T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Supply Current

LTT348-TA02

7BSOLUTE MAXIMUM RATInGS

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

X ELECTRICAL CHARACTERISTICS

${ }^{\prime} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C}=\mathrm{C} 4=\mathrm{C} 5=0.1 \mu \mathrm{~F}$, unless otherwise noted.

'ARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ny Driver						
lutput Voltage Swing	3k to GND $\begin{aligned} & \text { Positive } \\ & \text { Negative }\end{aligned}$	\bullet	$\begin{array}{r} 5.0 \\ -5.0 \\ \hline \end{array}$	$\begin{array}{r} 6.7 \\ -6.5 \end{array}$		V V
ogic Input Voltage Level	Input Low Level (VOUT $=$ High $)$ Input High Level (VOUT $=$ Low)	\bullet	2.0	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	0.8	V
ogic Input Current	$\begin{aligned} & V_{I N}=V_{C C} \\ & V_{I N}=O V \end{aligned}$	\bullet		-5	$\begin{gathered} 5 \\ -20 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Iutput Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			± 12		mA
utput Leakage Current	Shutdown (Note 3) or Receiver Alive (Note 4), $\mathrm{V}_{\text {OUT }}= \pm 20 \mathrm{~V}$	\bullet		± 10	± 500	$\mu \mathrm{A}$
ny Receiver						
וput Voltage Thresholds	Input Threshold (Receiver Alive Mode) Input Low Threshold (Normal Mode) Input High Threshold (Normal Mode)	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	V V V
ysteresis	Normal Mode	\bullet	0.1	0.4	1	V
וput Resistance	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$		3	5	7	k Ω
utput Voltage	$\begin{aligned} & \text { Output Low, } \mathrm{I}_{\text {OUT }}=-1.6 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right) \\ & \text { Output High, } \mathrm{I}_{\text {OUT }}=160 \mu \mathrm{~A}\left(\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right) \end{aligned}$	\bullet	3.0	$\begin{aligned} & 0.2 \\ & 3.2 \end{aligned}$	0.4	V
utput Short-Circuit Current	Sinking Current, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$		-3	-20		mA
utput Leakage Current	Shutdown (Note 3), OV $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	\bullet		1	10	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C}=\mathrm{C}=0.1 \mu \mathrm{~F}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply Generator						
V^{+}Output Voltage	$\begin{aligned} & I_{\text {OUT }}=0 \mathrm{~mA} \\ & I_{\text {OUT }}=8 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$		V V
V- Output Voltage	$\begin{aligned} & I_{\text {OUT }}=0 \mathrm{~mA} \\ & I_{\text {OUT }}=-8 \mathrm{~mA} \end{aligned}$			$\begin{array}{r} -8.0 \\ -7.0 \\ \hline \end{array}$		V V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
Power Supply						
$V_{\text {CC }}$ Supply Current	No Load (Note 2) $V_{C C}=3.3 \mathrm{~V}$ or 5 V Receiver Alive Mode (Note 4) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or 5 V	\bullet		$\begin{array}{r} 0.5 \\ 15.0 \end{array}$	$\begin{array}{r} 1.5 \\ 30.0 \\ \hline \end{array}$	$m A$ μA
Supply Leakage Current (VCC)	Shutdown (Note 3)	\bullet		0.2	10	$\mu \mathrm{A}$
Driver/Receiver Enable Threshold Low	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	\bullet		1.4	0.8	V
Driver/Receiver Enable Threshold High	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	\bullet	2.0	1.4		V

AC ELECTRICAL CHARACTGRISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=0.1 \mu \mathrm{~F}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Maximum Data Rate	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$, One Driver Switching	\bullet	120	250		kbps
Slew Rate	$\begin{aligned} & R_{L}=3 k, C_{L}=51 p F \\ & R_{L}=3 k, C_{L}=2500 p F \end{aligned}$			$\begin{aligned} & 8 \\ & 4 \end{aligned}$	30	$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Driver Propagation Delay (TTL to RS232)	$\mathrm{t}_{\text {HLD }}$ (Figure 1) $t_{\text {LHD }}$ (Figure 1)	\bullet		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	μs μs
Receiver Propagation Delay (RS232 to TTL)	$\mathrm{t}_{\text {HLR }}$ (Figure 2) (Normal Mode) $t_{\text {LHR }}$ (Figure 2) (Normal Mode) $t_{\text {HLR }}$ (Figure 2) (Receiver Alive Mode) $\mathrm{t}_{\text {LHR }}$ (Figure 2) (Receiver Alive Mode)			$\begin{aligned} & 0.3 \\ & 0.2 \\ & 1.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 2.0 \\ & 2.0 \end{aligned}$	μS μS μs μs

The - denotes specifications which apply over the operating temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Supply current is measured with driver and receiver outputs
unloaded. The $V_{D R _E N}$ and $V_{R X _E N}=V_{C C}$.

Note 3: Supply current measurement in Shutdown is performed with $V_{\text {DR_EN }}$ and $V_{R X _E N}=0 V$.
Note 4: Supply current measurement in Receiver Alive mode is performed with $V_{D R _E N}=O V$ and $V_{\text {RX_EN }}=V_{C C}$.

YPICAL PERFORmANCE CHARACTERISTICS

Driver Output Voltage High/Low
vs. Temperature (${ }^{\circ} \mathrm{C}$)

Driver Output Voltage High/Low
vs. Load Capacitance (C_{L})

Driver Short-Curcuit Current vs. Temperature (${ }^{\circ} \mathrm{C}$)

With $V_{\text {CC }}=3.3 \mathrm{~V}$
All Driver Outputs Loaded with
$3 \mathrm{k} \Omega$, 1000pF. 1 Driven at 250 kbps

Supply Current
vs. Driver Data Rate

Driver Leakage in SHUTDOWN
vs. Temperature (${ }^{\circ} \mathrm{C}$)

LTC1348 G06

PIn functions

$\mathbf{V}_{\text {cc }}: 3.3 \mathrm{~V}$ or 5 V Input Supply Pin. This pin should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
GND: Ground Pin.
RX_EN:TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description.

DR_EN:TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description.

\mathbf{V}^{+}: Positive Supply Output (RS232 Drivers). This pin requires an external capacitor $\mathrm{C}=0.1 \mu \mathrm{~F}$ for charge storage. The capacitor may be tied to ground or $V_{C c}$. With multiple devices, the V^{+}and V^{-}pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.
V-: Negative Supply Output (RS232 Drivers). This pin requires an external capacitor $C=0.1 \mu \mathrm{~F}$ for charge storage.
$\mathbf{C 1}^{+}, \mathrm{C1}^{-}, \mathrm{C2}^{+}, \mathrm{C2}^{-}, \mathrm{C3}^{+}, \mathrm{C3}^{-}$: Commutating Capacitor Inputs. These pins require three external capacitors $\mathrm{C}=$ $0.1 \mu \mathrm{~F}$: one from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$, another from $\mathrm{C2}^{+}$to $\mathrm{C2}^{-}$and another from $\mathrm{C3}^{+}$to $\mathrm{C3}^{-}$. To maintain charge pump
efficiency, the capacitor's effective series resistance shoulc be less than 1Ω. Ceramic capacitors are recommended.
DR IN: RS232 Driver Input Pins. Inputs are TTL/CMO؛ compatible. The inputs of unused drivers can be lef unconnected since 300 k input pull-up resistors to $\mathrm{V}_{\text {CC }}$ ari included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from V_{Cl} in the Shutdown or Receiver Alive mode.

DR OUT: Driver Outputs at RS232 Voltage Levels. Output: are in a high impedance state when in the Shutdown Receiver Alive mode or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. The driver outputs art protected against ESD to $\pm 10 \mathrm{kV}$ for human body mode discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 251 without damage. The receiver inputs are protected agains ESD to $\pm 10 \mathrm{kV}$ for human body model discharges. Eact receiver provides 0.4 V of hysteresis for noise immunity. It Receiver Alive mode all receivers have no hysteresis.
RX OUT: Receiver Outputs with TTL/CMOS Voltage Lev els. Outputs are in a high impedance state when in the Shutdown or Receiver Disable mode to allow data linc sharing.

Table 1. Functional Description

MODE	RX ENABLE	DR ENABLE	DRIVERS	RECEIVERS	ICC TYI
Shutdown	0	0	All Drivers Shutdown. All Driver Outputs Assume High Impedance. All Driver Pull-Up Resistors Disconnect From VCC.	All Receivers Shutdown. All Receiver Outputs Assume High Impedance.	0.2μ
Receiver Disable	0	1	All Drivers Alive.	All Receiver Outputs in Three-State.	500μ
Receiver Alive	1	0	All Drivers Shutdown. All Driver Outputs in Three-State. All Driver Pull-Up Resistors Disconnect From VCC.	All Receivers Alive.	15μ
Normal	1	1	All Drivers Alive.	All Receivers Alive.	500μ

iWITCHING TIm€ WAVEfORMS

Figure 1. Driver Propagation Delay Timing

Figure 2. Receiver Propagation Delay Timing

IEST CIRCUITS

Figure 3. Driver Timing Test Load

Figure 4. Receiver Timing Test Load

IPPLICATIONS INFORMATION

'ower Supply

he LTC1348 includes an on-board voltage-tripling charge lump capable of generating $\pm 8 \mathrm{~V}$ from a single 3.3 V iupply. This allows the LTC1348 drivers to provide guarinteed $\pm 5 \mathrm{~V}$ RS232-compliant voltage levels with a 3.3 V upply. With all outputs loaded with $3 \mathrm{k} \Omega$, the LTC1348 an typically swing $\pm 5 \mathrm{~V}$ with voltages as low as 2.85 V . It vill meet the $\pm 3.7 \mathrm{~V}$ EIA562 levels with supply voltages as
low as 2.2 V . The charge pump requires three external flying capacitors to operate; $0.1 \mu \mathrm{~F}$ ceramic capacitors are adequate for most applications. For applications requiring extremely high data rates or abnormally heavy output loads, 0.33μ Fflying capacitors are recommended. Bypass and output capacitor values should match those of the flying capacitors and all capacitors should be mounted as close to the package as possible.

APPLICATIONS InFORMATION

High Data Rates

The LTC1348 maintains true RS232 $\pm 5 \mathrm{~V}$ minimum driver output even at high data rates. Figure 5 shows a test circuit with $2 m$ wires connecting the two test chips. Both chips are run from 3.3 V supplies. Figure 6 shows the typical line waveforms with all three drivers, loaded with 1000pF and $3 \mathrm{k} \Omega$, toggling simultaneously at 120 kbaud . Figure 7 shows

Figure 5. Data Rate Evaluation Circuit
the same circuit with a single $1000 \mathrm{pF} / 3 \mathrm{k} \Omega$ loaded driver driven at 250 kbaud , and the other two drivers loaded but not toggling. This closely approximates the actual behavior of an RS232 serial port, with only one driver (TX) driven at high speed and the other two drivers (RTS and DTR) driven at a relatively low data rate or at DC. Under the same conditions, the LTC1348 can go as fast as 350 kbaud and still meet EIA562 $(\pm 3.7 \mathrm{~V})$ minimum driver output levels.

Figure 6. Driver Test Result at 120kbps

Figure 7. Driver Test Results at 250kbps

ELATED PARTS

IRT NUMBER	DESCRIPTION	COMMENTS
1137A	3-DR/5-RX RS232 Transceiver	$\pm 15 \mathrm{kV}$ IEC-801-2 ESD Protection
C1327	3-DR/5-RX RS562 Transceiver	3.3V Operation
$1330-$	3-DR/5-RX RS232	3V Logic Interface
1331	3-DR/5-RX RS232/RS562 Transceiver	5V RS232 or 3V RS562 Operation
C1347	3-DR/5-RX Micropower RS232 Transceiver	5 Receivers Active in Shutdown

Advanced Low Poweı 5V RS232 Transceiver witr Small Capacitors

feATURES

- Low Cost
- Uses Small Capacitors: $0.1 \mu \mathrm{~F}, 0.2 \mu \mathrm{~F}$
- $1 \mu \mathrm{~A}$ Supply Current in Shutdown
- 120kBaud Operation for $R_{L}=3 k, C_{L}=2500 \mathrm{pF}$
- 250kBaud Operation for $R_{L}=3 k, C_{L}=1000 \mathrm{pF}$
- CMOS Comparable Low Power: 40 mW
- Operates from a Single 5V Supply
- Easy PC Layout: Flow-through Architecture
- Rugged Bipolar Design
- Outputs Assume a High Impedance State When Off or Powered Down
- Improved Protection: RS232 I/O Lines Can Be Forced to $\pm 25 \mathrm{~V}$ Without Damage
- Output Overvoltage Does Not Force Current Back into Supplies
- Absolutely No Latch-Up
- Available in SO Package

APPLICATIONS

- Notebook Computers
- Palmtop Computers

DESCRIPTIOn

The LT ${ }^{\circledR} 1537$ is a three-driver, five-receiver RS232 trans ceiver, pin compatible with the LT1137A, offering perfor mance improvements and two shutdown modes. The LT1537's charge pump is designed for extended compli ance and can deliver over 35 mA of load current. Supply current is typically 8 mA , competitive with similar CMO§ devices. An advanced driver output stage operates up tc 250 kbaud while driving heavy capacitive loads.
The LT1537 is fully compliant with all RS232 specifica tions. Special bipolar construction techniques protect the drivers and receivers beyond the fault conditions stipu lated for RS232. Driver outputs and receiver inputs can bt shorted to $\pm 25 \mathrm{~V}$ without damaging the device or the power supply generator. In addition, the RS232 I/O pins are resilient to multiple $\pm 5 \mathrm{kV}$ ESD strikes.

The transceiver has two shutdown modes. One mode disables the drivers and the charge pump, the other shuts down all circuitry. While shut down, the drivers anc receivers assume high impedance output states.

TYPICAL APPLICATION

Output Waveforms

LT1537* TAA

absolute maximum ratings

(Note 1)

Supply Voltage ($\mathrm{V}_{\text {CC }}$) .. 5.5V
V^{+}... 13.2V
V- (Note 7) .. -6.5V
input Voltage
Driver V^{-}to V^{+}
Receiver .. -25V to 25V

Output Voltage

Driver
$\mathrm{V}^{+}-25 \mathrm{~V}$ to $\mathrm{V}^{-}+25 \mathrm{~V}$
Receiver -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Short Circuit Duration

V+
30 sec
V30 sec
Driver Output Indefinite
Receiver Output ... Indefinite Operating Temperature Range LT1537C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (Note 2)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Power Supply Generator							
${ }^{+}$Output					8.6		V
V^{-}Output					-7.0		V
Supply Current (VCC)	(Note 3)		\bullet		8	17	mA
Supply Current When OFF (VCC)	Shutdown (Note 4) DRIVER DISABLE		\bullet		$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	10	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
Shutdown to Turn-On	$\mathrm{C}^{+}, \mathrm{C}^{-}=0.1 \mu \mathrm{~F}, \mathrm{C} 1, \mathrm{C} 2=0.2 \mu \mathrm{~F}$				0.2		ms
JN/ $\overline{\text { FFF }}$ Pin Thresholds	Input LOW Level (Device Shutdown) Input HIGH Level (Device Enabled)		\bullet	2.4	$\begin{array}{r} 1.4 \\ 1.4 \\ \hline \end{array}$	0.8	V
JN/ $\overline{\text { OFF }}$ Pin Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {ON/OFF }} \leq 5 \mathrm{~V}$		\bullet	-15		80	$\mu \mathrm{A}$
Jriver Disable Pin Thresholds	Input LOW Level (Drivers Enabled) Input HIGH Level (Drivers Disabled)		\bullet	2.4	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	0.8	V
Jriver Disable Pin Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {DRIVER }}$ DISABLE $\leq 5 \mathrm{~V}$		\bullet	-10		500	$\mu \mathrm{A}$
Jscillator Frequency					130		kHz
Iny Driver							
Jutput Voltage Swing	Load $=3 \mathrm{k}$ to GND	Positive Negative	\bullet	5.0	$\begin{array}{r} 7.5 \\ -6.3 \\ \hline \end{array}$	-5.0	V
.ogic Input Voltage Level	Input LOW Level ($V_{\text {OUT }}=$ HIGH $)$ Input HIGH Level ($\mathrm{V}_{\text {OUT }}=$ LOW)		\bullet	2	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	0.8	V
- ogic Input Current	$0.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 2 \mathrm{~V}$		\bullet		5	20	$\mu \mathrm{A}$
Jutput Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$				± 17		mA

ELECTRICAL CHARACTERISTICS

(Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Any Driver						
Output Leakage Current	Shutdown $\mathrm{V}_{\text {OUT }}= \pm 15 \mathrm{~V}$ (Note 4)	\bullet		10	100	$\mu \mathrm{A}$
Data Rate	$\begin{aligned} & R_{L}=3 k, C_{L}=2500 \mathrm{pF} \\ & R_{L}=3 k, C_{L}=1000 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 120 \\ & 250 \\ & \hline \end{aligned}$			kBaud kBaud
Slew Rate	$\begin{aligned} & R_{L}=3 k, C_{L}=51 \mathrm{pF} \\ & R_{L}=3 k, C_{L}=2500 \mathrm{pF} \end{aligned}$		4	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	30	$\begin{aligned} & V / \mu S \\ & V / \mu s \end{aligned}$
Propagation Delay	Output Transition thL HIGH to LOW (Note 5) Output Transition LLH $_{\text {LOW }}$ to HIGH			$\begin{aligned} & \hline 0.6 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
Any Receiver						
Input Voltage Thresholds	Input LOW Threshold (VOUT $=$ HIGH) Input HIGH Threshold (VOUT = LOW)	\bullet	0.8	$\begin{aligned} & 1.3 \\ & 1.7 \end{aligned}$	2.4	V
Hysteresis		\bullet	0.1	0.4	1.0	V
Input Resistance	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$		3	5	7	k Ω
Output Voltage	$\begin{aligned} & \text { Output LOW, I IOUT }=-1.6 \mathrm{~mA} \\ & \text { Output HIGH, } I_{\text {OUT }}=160 \mu \mathrm{~A}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right) \end{aligned}$	\bullet	3.5	$\begin{aligned} & \hline 0.2 \\ & 4.2 \\ & \hline \end{aligned}$	0.4	V
Output Leakage Current	Shutdown (Note 4) $0 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	\bullet		1	10	$\mu \mathrm{A}$
Output Short-Circuit Current	Sinking Current, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ Sourcing Current, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		10	$\begin{array}{r} \hline-20 \\ 20 \\ \hline \end{array}$	-10	mA mA
Propagation Delay	Output Transition thL HIGH to LOW (Note 6) Output Transition tLH LOW to HIGH			$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & \hline \end{aligned}$	ns ns

The denotes specifications which apply over the operating temperature range $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right.$ for commercial grade and $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ for industrial grade).
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: Testing done at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\text {ON } / \overline{O F F}}=3 \mathrm{~V} . \mathrm{C} 1=\mathrm{C} 2=0.2 \mu \mathrm{~F}$, $\mathrm{C}^{+}=\mathrm{C}^{-}=0.1 \mu \mathrm{~F}$.
Note 3: Supply current is measured with driver and receiver outputs unloaded and the driver inputs tied high.
Note 4: Supply current and leakage current measurements in shutdown are performed with $V_{O N / O F F}=0.1 \mathrm{~V}$. Supply current measurements using DRIVER DISABLE are performed with $\mathrm{V}_{\text {DRIVER DISABLE }}=3 \mathrm{~V}$.

Note 5: For driver delay measurements, $R_{L}=3 k$ and $C_{L}=51 \mathrm{pF}$. Trigger points are set between the driver's input logic threshold and the output transition to the zero crossing ($\mathrm{t}_{\mathrm{HL}}=1.4 \mathrm{~V}$ to OV and $\mathrm{t}_{\mathrm{LH}}=1.4 \mathrm{~V}$ to 0 V).
Note 6: For receiver delay measurements, $C_{L}=51 p F$. Trigger points are set between the receiver's input logic threshold and the output transition to standard TTL/CMOS logic threshold $\left(\mathrm{t}_{\mathrm{HL}}=1.3 \mathrm{~V}\right.$ to 2.4 V and $\mathrm{t}_{\mathrm{LH}}=1.7 \mathrm{~V}$ to 0.8 V).

Note 7: Absolute maximum externally applied voltage. Internal charge pump may force a larger value on this pin.

TYPICAL PGRFORMANCE CHARACTERISTICS

LT1537•TPC01

Receiver Input Thresholds

Supply Current vs Data Rate

TYPICAL PERFORMANCE CHARACTERISTICS

Positive Supply Output Compliance Curve

On/Off Thresholds

LT1537 • TPC07

Negative Supply Output Compliance Curve

LT1537• PPCO5

Driver Disable Threshold

Driver Leakage in Shutdown

Driver Output Short-Circuit Current

Receiver Short-Circuit Current

LT1537 • TPC11

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

$V_{\text {cc: }}$ 5V Input Supply Pin. Supply current drops to zero in the shutdown mode. This pin should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor close to the package pin. Insufficient supply bypassing can result in low output drive levels and erratic charge pump operation.

GND: Ground Pin.

ON/DFF: TTL/CMOS Compatible Operating Mode Control. A logic LOW puts the device in the shutdown mode which reduces input supply current to zero and places all of the drivers and receivers in high impedance state. A logic HIGH fully enables the transceiver.

DRIVER DISABLE: This pin provides an alternate control for the charge pump and RS232 drivers. A logic HIGH on this pin shuts down the charge pump and places all drivers in a high impedance state. Receivers remain active under these conditions. Floating the driver disable pin or driving it to a logic LOW level fully enables the transceiver. A logic LOW on the On/Off pin supersedes the state of the Driver Disable pin. Supply current drops to 1.5 mA when in DRIVER DISABLE mode.
V^{+}: Positive Supply Output (RS232 Drivers). $\mathrm{V}^{+} \approx 2 \mathrm{~V}_{\text {CC }}{ }^{-}$ 1.5 V . This pin requires an external charge storage capacitor $\mathrm{C} \geq 0.1 \mu \mathrm{~F}$, tied to ground or V_{CC}. Larger value capacitors may be used to reduce supply ripple. With multiple transceivers, the V^{+}and V^{-}pins may be paralleled into common capacitors. For large numbers of transceivers, increasing the size of the shared common storage capacitors is recommended to reduce ripple.
\mathbf{V}^{-}: Negative Supply Output (RS232 Drivers). $\mathrm{V}^{-} \approx$ $-\left(2 \mathrm{~V}_{\text {CC }}-2.5 \mathrm{~V}\right)$. This pin requires an external charge storage capacitor $\mathrm{C} \geq 0.1 \mu \mathrm{~F} . \mathrm{V}^{-}$is short-circuit proof for 30 seconds.
$\mathbf{C 1}^{+}, \mathbf{C 1}^{-}, \mathbf{C 2}^{+}, \mathbf{C 2}^{-}$: Commutating Capacitor Inputs. These pins require two external capacitors $\mathrm{C} \geq 0.2 \mu \mathrm{~F}$: one from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$and another from C^{+}to C^{-}. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω. Low ESR ceramic capacitors work well in this application.
DRIVER IN: RS232 Driver Input Pins. These inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC}.
DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Driver output swing meets RS232 levels for loads up to 3 k . Slew rates are controlled for lightly loaded lines. Output current capability is sufficient for load conditions up to 2500 pF . Outputs are in a high impedance state when in shutdown mode, $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or when the driver disable pin is active. Outputs are fully short-circuit protected from V^{-} +25 V to $\mathrm{V}^{+}-25 \mathrm{~V}$. Applying higher voltages will not damage the device if the overdrive is moderately current limited. Short circuits on one output can load the power supply generator and may disrupt the signal levels of the other outputs. The driver outputs are protected against ESD to $\pm 5 \mathrm{kV}$ for human body model discharges.

PIn functions

RX IN: Receiver Inputs. These pins accept RS232 level signals ($\pm 25 \mathrm{~V}$) into a protected 5 k terminating resistor. The receiver inputs are protected against ESD to $\pm 5 \mathrm{kV}$ for human body model discharges. Each receiver provides 0.4 V of hysteresis for noise immunity. Open receiver inputs assume a logic low state.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in shutdown mode to allow data line sharing. Outputs are fully short-circuit protected to ground or $V_{C C}$ with the power on, off, or in shutdown mode.

ESD PROTECTION

The RS232 line inputs of the LT1537 have on-chip protec:ion from ESD transients up to $\pm 5 \mathrm{kV}$ during shutdown or jower ON state. The protection structures act to divert the static discharge safely to system ground. In order for the ESD protection to function effectively, the power supply and ground pins of the LT1537 must be connected to jround through low impedances. The power supply decoupling capacitors and charge pump storage capaci:ors provide this low impedance in normal application of :he circuit. The only constraint is that low ESR capacitors nust be used for bypassing and charge storage. ESD esting must be done with pins $\mathrm{V}_{c \mathrm{c}}, \mathrm{V}^{+}, \mathrm{V}^{-}$and GND shorted to ground or connected with low ESR capacitors.

ESD Test Circuit

IYPICAL APPLICATIONS

LT1537 Driving Remote Powered LTC1382

TYPICAL APPLICATIONS

Typical Mouse Driving Application

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1137A	5V 3-Driver/5-Receiver RS232 Transceiver with Shutdown	Premium Performance Upgrade to LT1537
LT1138A	5 5V 5-Driver/3-Receiver RS232 Transceiver	Premium Performance DCE, Compliment to LT1537
LT1237	5V 3-Driver/5-Receiver RS232 Transceiver with One Receiver Active in Shutdown	Lower Power, Premium Performance Upgrade to LT1537
LT1330	5V 3-Driver/5-Receiver RS232 Transceiver with 3V Logic Interface and Shutdown	Premium Performance Device for 5V Systems with 3V Logic Supplies
LT1331	5V 3-Driver/5-Receiver RS232 Transceiver with 3V Logic Interface and Receiver Active in Shutdown	LT1330 with Low Power Receiver That Stays Active During Shutdown
LTC1337	Ultra-Low Power 5V 3-Driver/5-Receiver RS232 Transceiver with Shutdown	Ultra-Low Power, Premium Performance Upgrade to LT1537
LTC1338	5V 5-Driver/3-Receiver RS232 Transceiver with Shutdown	Ultra-Low Power, Peripheral-Side Compliment to LT1537

SECTION 5—INTERFACERS485
LTC1480, 3.3V Ultra-Low Power RS485 Transceiver 5-26
LTC1481, Ultra-Low Power RS485 Transceiver with Shutdown 5-34
LTC1483, Ultra-Low Power RS485 Low EMI Transceiver with Shutdown 5-41
LTC1487, Ultra-Low Power RS485 with Low EMI, Shutdown and High Input Impedance 5-49

3.3V Ultra-Low Power RS485 Transceiver

feATURES

- True RS485 from a Single 3.3V Supply
- Low Power: Icc $=500 \mu \mathrm{~A}$ Max with Driver Disabled
- Icc $=600 \mu \mathrm{~A}$ Max with Driver Enabled, No Load
- $1 \mu \mathrm{~A}$ Quiescent in Shutdown Mode
- ESD Protection to $\pm 10 \mathrm{kV}$ on Receiver Inputs and Driver Outputs
- -7 V to 12 V Common-Mode Range Permits $\pm 7 \mathrm{~V}$ Ground Difference Between Devices on the Data Line
- Thermal Shutdown Protection
- Power Up/Down Glitch-Free Driver Outputs Permit Live Insertion or Removal of Transceiver
- Driver Maintains High Impedance in Three-State or with the Power Off
- Up to 32 Transceivers on the Bus
- 50 ns Typical Driver Propagation Delays with 10ns Skew
- Pin Compatible with the LTC485

APPLICATIONS

- Battery-Powered RS485/RS422 Applications
- Low Power RS485/RS422 Transceiver
- Level Translator

DESCRIPTION

The LTC ${ }^{\circledR} 1480$ is an ultra-low power differential line transceiver which provides full RS485 compatibility while operating from a single 3.3 V supply. It is designed for data transmission standard RS485 applications with extended common-mode range (12 V to -7 V). It also meets the requirements of RS422 and features high speed operation up to $2.5 \mathrm{Mb} / \mathrm{s}$. The CMOS design offers significant power savings without sacrificing ruggedness against overload or ESD damage. Typical quiescent current is only $300 \mu \mathrm{~A}$ while operating and $1 \mu \mathrm{~A}$ in shutdown.
The driver and receiver feature three-state outputs, with the driver outputs maintaining high impedance over the entire common-mode range. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit which forces the driver outputs into a high impedance state. The receiver has a fail-safe feature which guarantees a high output state when the inputs are left open. I/O pins are protected against multiple ESD strikes of up to $\pm 10 \mathrm{kV}$.
The LTC1480 is fully specified over the commercial and extended industrial temperature range. The LTC1480 is available in 8 -pin SO and DIP packages.

TYPICAL APPLICATION

3.3V RS485 Network

Driver Differential Output Voltage vs Output Current

ABSOLUTE MAXIMUUM RATINGS
(Note 1)
Supply Voltage (VCC) ... 7V
Control Input Voltage
-0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
Driver Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Driver Output Voltage .. $\pm 14 \mathrm{~V}$
Receiver Input Voltage ... $\pm 14 \mathrm{~V}$
Receiver Output Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range
LTC1480C \qquad $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
LTC14801................................... $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
1 R ${ }^{\text {Vcc }}$	LTC1480CN8
2	LTC1480IN8
	LTC1480CS8
5	LTC1480IS8
$\begin{array}{ll}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ \text { 8-LEAD PDIP } \\ 8 \text {-LEAD PLASTIC So }\end{array}$	S8 PART MARKING
$\mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{Ja}}=130{ }^{\circ} \mathrm{C} / \mathrm{W}$ (B 8$)$	1480
$\mathrm{T}_{\text {JMAX }}=1255^{\circ} \mathrm{C}, \theta_{\mathrm{J}} \mathrm{A}=150^{\circ} \mathrm{C} / \mathrm{W}$ (58)	14801

Consult factory for Military grade parts.

ELECTRICAL CHRRACTERISTICS $v_{\text {cc }}=3.3 \mathrm{~V}$ (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 \text { D1 }}$	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0 \mathrm{~V}$	\bullet			3.3	V
$V_{0 D 2}$	Differential Driver Output Voltage (with Load)	$\begin{aligned} & \mathrm{R}=27 \Omega \text { (RS485), Figure } 1 \\ & \mathrm{R}=50 \Omega \text { (RS422) } \end{aligned}$	\bullet	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		3.3	V
$\overline{\Delta V_{0 D}}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			0.2	V
V_{0}	Driver Common-Mode Output Voltage	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			2	V
$\Delta\left\|V_{0 C}\right\|$	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			0.2	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet	2			V
VIL	Input LOW Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet			0.8	V
IIN1	Input Current	DE, DI, $\overline{\mathrm{RE}}$	\bullet			± 2	$\mu \mathrm{A}$
IIN2	Input Current (A, B)	$\begin{aligned} & \mathrm{DE}=0, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{I N}=12 \mathrm{~V} \\ & \mathrm{DE}=0, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{IN}}=-7 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet			$\begin{array}{r} 1.0 \\ -0.8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	$V_{C M}=0 \mathrm{~V}$			70		mV
$\mathrm{V}_{\text {OH }}$	Receiver Output HIGH Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	\bullet	2			V
$\mathrm{V}_{0 \mathrm{~L}}$	Receiver Output LOW Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{1 D}=-200 \mathrm{mV}$	\bullet			0.4	V
IOZR	Three-State (High Impedance) Output Current at Receiver	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, 0.4 \mathrm{~V} \leq \mathrm{V}_{0} \leq 2.4 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
RIN	Receiver Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	12			k Ω
ICC	Supply Current	No Load, Output Enabled No Load, Output Disabled	\bullet		$\begin{aligned} & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISHDN	Supply Current in Shutdown Mode	$D E=0, \overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}$			1	10	$\mu \mathrm{A}$
$\underline{\text { IOSD1 }}$	Driver Short-Circuit Current, V OUT $^{\text {S }}$ HIGH	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	-	35		250	mA
IoSD2	Driver Short-Circuit Current, V ${ }_{\text {OUT }}=$ LOW	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
IOSR	Receiver Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA

SWITCHING CHARACTERISTICS $v_{c c}=3.3$ (Noes 2,3$)$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {PLL }}$	Driver Input to Output	$R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}$ (Figures 3 and 5)	\bullet	25	50	80	ns
$\mathrm{tPHL}^{\text {chen }}$	Driver Input to Output		\bullet	25	50	80	
$t_{\text {SKEW }}$	Driver Output to Output		\bullet		10	20	
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Driver Rise or Fall Time		\bullet	5	15	40	
$\mathrm{t}_{\text {zH }}$	Driver Enable to Output HIGH	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet		70	120	ns
tzL	Driver Enable to Output LOW	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet		70	120	ns
thz	Driver Disable Time from LOW	$C_{L}=15 \mathrm{pF}$. (Figures 4, 6), S1 Closed	\bullet		70	120	ns
$\mathrm{thz}^{\text {r }}$	Driver Disable Time from HIGH	$C_{L}=15 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet		70	120	ns
tPLH	Receiver Input to Output	$\begin{aligned} & R_{D I F F}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}, \\ & \text { (Figure } 3,7 \text {) } \end{aligned}$	\bullet	30	140	200	ns
${ }^{\text {tpHL }}$	Receiver Input to Output		\bullet	30	140	200	ns
${ }_{\text {t }}^{\text {SKD }}$	$\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ Differential Receiver Skew				13		ns
$\mathrm{t}_{\underline{L L}}$	Receiver Enable to Output LOW	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet		50	80	ns
t_{ZH}	Receiver Enable to Output HIGH	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet		50	80	ns
thz	Receiver Disable from LOW	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S 1 Closed	\bullet		50	80	ns
$\mathrm{thz}^{\text {H }}$	Receiver Disable from HIGH	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	-		50	80	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate		\bullet	2.5			Mbits/s
$\mathrm{t}_{\text {SHDN }}$	Time to Shutdown	$D E=0, \overline{\mathrm{RE}}=\Psi$	\bullet	50	200	600	ns
$\mathrm{t}_{\text {zH(SHDN }}$	Driver Enable from Shutdown to Output HIGH	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet		70	120	ns
tZL(SHDN)	Driver Enable from Shutdown to Output LOW	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	-		70	120	ns
$\mathrm{t}_{\text {ZH(SHDN }}$	Receiver Enable from Shutdown to Output HIGH	$\mathrm{C}_{L}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet			4500	ns
$\mathrm{t}_{\underline{\text { L }} \text { (SHDN) }}$	Receiver Enable from Shutdown to Output LOW	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet			4500	ns

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those beyond which the safety of the device cannot be guaranteed.

Note 2: All currents into device pins are positive; all currents out ot device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMAOCE CHARACTGRISTICS

PIn FUNCTIONS

RO (Pin 1): Receiver Output. If the receiver output is enabled ($\overline{\mathrm{RE}} \mathrm{LOW}$) and $A>B$ by 200 mV , then $R O$ will be HIGH. If $A<B$ by 200 mV , then RO will be LOW.
$\overline{\mathbf{R E}}$ (Pin 2): Receiver Output Enable. A LOW enables the receiver output, RO. A HIGH input forces the receiver output into a high impedance state.
DE (Pin 3): Driver Outputs Enable. A HIGH on DE enables the driver output. A, B and the chip will function as a line driver. A low input will force the driver outputs into a high impedance state and the chip will function as a line receiver. If $\overline{R E}$ is high and $D E$ is LOW, the part will enter a low power $(1 \mu A)$ shutdown state. If $\overline{R E}$ is low and $D E$ is
high, the driver outputs will be fed back to the receiver and the receive output will correspond to the driver input.
DI (Pin 4): Driver Input. If the driver outputs are enabled (DE HIGH) then a low on DI forces the outputs A LOW and B HIGH. A HIGH on DI with the driver outputs enabled will force A HIGH and B LOW.
GND (Pin 5): Ground.
A (Pin 6): Driver Output/Receiver Input.
B (Pin 7): Driver Output/Receiver Input.
$\mathbf{V}_{\text {CC }}$ (Pin 8): Positive Supply. 3.0V $<\mathrm{V}_{\text {CC }}<3.6 \mathrm{~V}$.

function tables

LTC1480 Transmitting

INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	\mathbf{B}	\mathbf{A}
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
$\mathbf{1}$	0	X	Z^{*}	Z^{*}

*Shutdown mode

LTC1480 Receiving

INPUTS			OUTPUTS
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{A - B}$	$\mathbf{R O}$
0	0	$\geq 0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open	1
1	0	X	Z^{\star}

*Shutdown mode

TEST CIRCUITS

Figure 1. Driver DC Test Load

Figure 3. Driver/Receiver Timing Test Circuit

Figure 2. Receiver Timing Test Load

Figure 4. Driver Timing Test Load

SWITCHInG TIM€ WAVЄfORmS

Figure 5. Driver Propagation Delays

;WITCHIng time waveforms

Figure 6. Driver Enable and Disable Times

Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

IPPLICATIONS INFORMATION

3MOS Output Driver

The LTC1480 transceiver provides full RS485 compatibilty while operating from a single 3.3 V supply. The RS485 ;pecification requires that a transceiver withstand com-non-mode voltages of up to 12 V or -7 V at the RS485 line ;onnections. Additionally, the transceiver must be imnune to both ESD and latch-up, This rules out traditional ;MOS drivers, which include parasitic diodes from their Iriver outputs to each supply rail (Figure 9). The LTC1480 ises a proprietary process enhancement which adds a sair of Schottky diodes to the output stage (Figure 10), reventing current from flowing when the common-mode

Figure 9. Conventional CMOS Output Stage

Figure 10. LTC1480 Output Stage

APPLICATIONS InFORMATION

voltage exceeds the supply rails. Latch-up at the output drivers is virtually eliminated and the driver is prevented from loading the line under RS485 specified fault conditions. A proprietary output protection structure protects the transceiver line terminals against ESD strikes of up to $\pm 10 \mathrm{kV}$.

When two or more drivers are connected to the same transmission line, a potential condition exists whereby more than two drivers are simultaneously active. If one or more drivers is sourcing current while another driver is sinking current, excessive power dissipation may occur within either the sourcing or sinking element. This condition is defined as driver contention, since multiple drivers are competing for one transmission line. The LTC1480 provides a current limiting scheme to prevent driver contention failure. When driver contention occurs, the current drawn is limited to about 70 mA preventing excessive power dissipation within the drivers.

The LTC1480 has a thermal shutdown feature which protects the part from excessive power dissipation. Under extreme fault conditions, up to 250 mA can flow through the part causing rapid internal temperature rise. The thermal shutdown circuit will disable the driver outputs when the internal temperature reaches $150^{\circ} \mathrm{C}$ and turns them back on when the temperature cools to $130^{\circ} \mathrm{C}$. This cycle will repeat as necessary until the fault condition is removed.

Receiver Inputs

The LTC1480 features an input common-mode range covering the entire RS485 specified range of -7 V to 12 V . Differential signals of greater than $\pm 200 \mathrm{mV}$ within the specified input common-mode range will be converted to a TTL compatible signal at the receiver output. A small amount of input hysteresis is included to minimize the effects of noise on the line signals. If the receiver inputs are floating (unterminated) an internal pull-up of $10 \mu \mathrm{~A}$ at the A input will force the receiver output to a known high state.

Low Power Operation

The LTC1480 draws very little supply current whenever the driver outputs are disabled. In shutdown mode the quiescent current is typically less than $1 \mu \mathrm{~A}$. With the
receiver active and the driver outputs disabled, the LTC1480 will typically draw $300 \mu \mathrm{~A}$ quiescent current. With the driver outputs enabled but unterminated, quiescent current will rise as one of the two outputs sources current into the internal receiver input resistance. With the minimum receiver input resistance of 12 k and the maximum output swing of 3.3 V , the quiescent current will rise by a maximum of $275 \mu \mathrm{~A}$. Typical quiescent current rise with the driver enabled is about $100 \mu \mathrm{~A}$.
The quiescent current rises significantly if the driver is enabled when it is externally terminated. With $1 / 2$ termination load (120Ω between the driver outputs) the quiescent current will jump to at least 13 mA as the drivers force a minimum of 1.5 V across the termination resistance. With a fully terminated 60Ω line attached, the current will rise to greater than 25 mA with the driver enabled, completely overshadowing the extra $100 \mu \mathrm{~A}$ drawn by internal receiver inputs.

Shutdown Mode

Both the receiver output ($\overline{\mathrm{RO}}$) and the driver outputs (A, B) can be placed in three-state mode by bringing RE HIGH and DE LOW respectively. In addition, the LTC1480 will enter shutdown mode when $\overline{R E}$ is HIGH and DE is LOW.
In shutdown the LTC1480 typically draws only $1 \mu \mathrm{~A}$ of supply current. In order to guarantee that the part goes into shutdown, $\overline{\mathrm{RE}}$ must be high and DE must be LOW for at least 600 ns simultaneously. If this time duration is less than 50ns the part will not enter shutdown mode.

Propagation Delay

Many digital encoding schemes are dependent upon the difference in the propagation delay times of the driver and receiver. Figure 11 shows the test circuit for the LTC1480 propagation delay.
The receiver delay times are:

$$
\left|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right|=13 \mathrm{~ns} \text { Typ, } \mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}
$$

The driver's skew times are:

$$
\begin{aligned}
\mathrm{t}_{\text {SKEW }}= & 10 \mathrm{~ns} \text { Typ, } \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\
& 20 \mathrm{~ns} \operatorname{Max}, \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
\end{aligned}
$$

APPLICATIONS INFORMATION

Figure 11. Receiver Propagation Delay Test Circuit

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC485	5V Low Power RS485 Interface Transceiver	Low power
LTC1481	5V Ultra-Low Power RS485 Transceiver with Shutdown	Lowest power
LTC1483	5V Ulitra-Low Power RS485 Low EMI Transceiver with Shutdown	Low EMI/lowest power
LTC1485	5V Differential Bus Transceiver	Highest speed
LTC1487	5V Ultra-Low Power RS485 with Low EMI Shutdown and High Input Impendance	High input impendance/low EMI/lowest power

Ultra-Low Power RS485 Transceiver with Shutdown

features

- Low Power: $I_{c c}=120 \mu A$ Max with Driver Disabled
- $I_{C C}=500 \mu A$ Max with Driver Enabled, No Load
- Drivers/Receivers Have $\pm 10 \mathrm{kV}$ ESD Protection
- 1 $\mu \mathrm{A}$ Quiescent Current in Shutdown Mode
- High Speed: Up to 2.5Mbits/s Data Rate
- Single 5V Supply
- -7 V to 12 V Common-Mode Range Permits $\pm 7 \mathrm{~V}$ Ground Difference Between Devices on the Data Line
- Thermal Shutdown Protection
- Power Up/Down Glitch-Free Driver Outputs Permit Live Insertion or Removal of Transceiver
- Driver Maintains High Impedance in Three-State or with the Power Off
- Up to 32 Transceivers on the Bus
- 30ns Typical Driver Propagation Delays with 5ns Skew
- Pin Compatible with the LTC485

APPLICATIONS

- Battery-Powered RS485/RS422 Applications
- Low Power RS485/RS422 Transceiver
- Level Translator

DESCRIPTIO

The LTC ${ }^{\circledR} 1481$ is an ultra-low power differential line transceiver designed for data transmission standard RS485 applications. It will also meet the requirements of RS422. The CMOS design offers significant power savings over its bipolar counterparts without sacrificing ruggedness against overload or ESD damage. Typical quiescent current is only $80 \mu \mathrm{~A}$ while operating and less than $1 \mu \mathrm{~A}$ in shutdown.
The driver and receiver feature three-state outputs, with the driver outputs maintaining high impedance over the entire common-mode range. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit which forces the driver outputs into a high impedance state. The receiver has a fail-safe feature which guarantees a high output state when the inputs are left open.
The LTC1481 is fully specified over the commercial and extended industrial temperature range and is available in 8-pin DIP and SO packages.

[^40]
TYPICAL APPLICATION

Supply Current vs Temperature

1481 TA02

abSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage (VCC) 12 V
Control Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Driver Input Voltage. -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Driver Output Voltage $\pm 14 \mathrm{~V}$
Receiver Input Voltage ... $\pm 14 \mathrm{~V}$
Receiver Output Voltage -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Operating Temperature Range
LTC1481C
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
LTC1481I $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

$\underset{\text { TOP VIEW }}{\text { OTS }}$	ORDER PART NUMBER
R0 4 Ros $8 \mathrm{~V}_{\text {cc }}$	LTC1481CN8
	LTC1481IN8
3 N-6 ${ }^{\circ}$	LTC1481CS8
D1 4	LTC1481IS8
$\begin{array}{lc}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ \text { 8-LEAD PDIP } & 8 \text {-LEAD PLASTIC SO }\end{array}$	S8 PART MARKING
	1481
	14811

Consult factory for Military grade parts.

ELECTRICAL CHARACTERIST|CS $v_{c c}=5 V$ (Notes 2,3) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 \text { D1 }}$	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0$	\bullet			5	V
$\mathrm{V}_{\text {OD2 }}$	Differential Driver Output Voltage (with Load)	$\begin{aligned} & R=50 \Omega \text { (RS422) } \\ & R=27 \Omega \text { (RS485), Figure } 1 \end{aligned}$	\bullet	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$		5	V V
$\Delta V_{0 D}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			0.2	V
$V_{0 C}$	Driver Common-Mode Output Voltage	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			3	V
$\Delta\left\|V_{0 C}\right\|$	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			0.2	V
V_{IH}	Input High Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet	2			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet			0.8	V
$\mathrm{I}_{\text {IN1 }}$	Input Current	DE, DI, $\overline{\mathrm{RE}}$	\bullet			± 2	$\mu \mathrm{A}$
IIN2	Input Current (A, B)	$\begin{aligned} & D E=0, V_{C C}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{I N}=12 \mathrm{~V} \\ & D E=0, V_{C C}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{I N}=-7 \mathrm{~V} \end{aligned}$	\bullet			$\begin{array}{r} 1.0 \\ -0.8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	$V_{C M}=0 \mathrm{~V}$	-		45		mV
V_{OH}	Receiver Output High Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}, V_{\text {ID }}=200 \mathrm{mV}$	\bullet	3.5			V
$\mathrm{V}_{0 \mathrm{~L}}$	Receiver Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$	\bullet			0.4	V
IOZR	Three-State (High Impedance) Output Current at Receiver	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, 0.4 \mathrm{~V} \leq \mathrm{V}_{0} \leq 2.4 \mathrm{~V}$	-			± 1	$\mu \mathrm{A}$
RIN	Receiver Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	12			k Ω
$I_{\text {CC }}$	Supply Current	No Load, Output Enabled No Load, Output Disabled	\bullet		$\begin{gathered} 300 \\ 80 \end{gathered}$	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISHDN	Supply Current in Shutdown Mode	$D E=0, \overline{\mathrm{RE}}=\mathrm{V}_{C C}$			1	10	$\mu \mathrm{A}$
IOSD1	Driver Short-Circuit Current, V OUT $^{\text {H HIGH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
IOSD2	Driver Short-Circuit Current, $\mathrm{V}_{\text {OUT }}=$ LOW	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
losR	Receiver Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA

SWITCHING CHARACTERISTICS $v_{c c}=5($ Notoses 23) unless othemisen noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
tPLH	Driver Input to Output	$R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF},$ (Figures 3, 5)	\bullet	10	30	60	ns
${ }_{\text {tPHL }}$	Driver Input to Output		\bullet	10	30	60	ns
${ }_{\text {t }}^{\text {SKEW }}$	Driver Output to Output		\bullet		5	10	ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Driver Rise or Fall Time		\bullet	3	15	40	ns
$\mathrm{t}_{\text {th }}$	Driver Enable to Output High	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet		40	70	ns
$\mathrm{t}_{\text {zl }}$	Driver Enable to Output Low	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet		40	70	ns
tLz	Driver Disable Time from Low	$C_{L}=15 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet		40	70	ns
${ }_{\text {thZ }}$	Driver Disable Time from High	$\begin{array}{\|l} C_{L}=15 \mathrm{pF}(\text { Figures } 4,6), \text { S2 Closed } \\ \hline R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF}, \\ \text { (Figures } 3,7 \text {) } \end{array}$	\bullet		40	70	ns
${ }_{\text {tPLH }}$	Receiver Input to Output	$\begin{aligned} & R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF} \\ & \text { (Figures } 3,7 \text {) } \end{aligned}$	-	30	140	200	ns
${ }_{\text {tPHL }}$	Receiver Input to Output		-	30	140	200	ns
${ }_{\text {t }}^{\text {SKD }}$	$\mid \mathrm{t}_{\text {PLH }}$ - $\mathrm{t}_{\text {PHL }} \mid$ Differential Receiver Skew		\bullet		13		ns
$\mathrm{t}_{\underline{\text { L }}}$	Receiver Enable to Output Low	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet		20	50	ns
$\mathrm{t}_{\text {ZH }}$	Receiver Enable to Output High	$\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet		20	50	ns
tLz	Receiver Disable from Low	$\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	-		20	50	ns
t_{HZ}	Receiver Disable from High	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S 2 Closed	-		20	50	ns
${ }_{\text {f MAX }}$	Maximum Data Rate		\bullet	2.5			Mbits/s
${ }_{\text {tsHDN }}$	Time to Shutdown	$D E=0, \overline{R E}=\Sigma$	\bullet	50	200	600	ns
$\mathrm{t}_{\text {th(SHDN }}$	Driver Enable from Shutdown to Output High	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet		40	100	ns
$\mathrm{t}_{\text {zL(SHDN })}$	Driver Enable from Shutdown to Output Low	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet		40	100	ns
$\mathrm{t}_{\text {ZH(SHDN }}$	Receiver Enable from Shutdown to Output High	$C_{L}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet			3500	ns
tzL(SHDN)	Receiver Enable from Shutdown to Output Low	$C_{L}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet			3500	ns

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those beyond which the safety of the device cannot be guaranteed.

Note 2: All currents into device pins are positive; all currents out ot device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PGRFORmANCG CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS

pin functions

RO (Pin 1): Receiver Output. If the receiver output is enabled ($\overline{\mathrm{RE}}$ low), then if $\mathrm{A}>\mathrm{B}$ by 200 mV , $R 0$ will be high. If $A<B$ by 200 mV , then $R 0$ will be low.
$\overline{\mathbf{R E}}$ (Pin 2): Receiver Output Enable. A low enables the receiver output, RO. A high input forces the receiver output into a high impedance state.

DE (Pin 3): Driver Outputs Enable. A high on DE enables the driver output. A, B and the chip will function as a line driver. A low input will force the driver outputs into a high impedance state and the chip will function as a line receiver. If $\overline{R E}$ is high and $D E$ is low, the part will enter a low power $(1 \mu \mathrm{~A})$ shutdown state.

DI (Pin 4): Driver Input. If the driver outputs are enabled (DE high) then a low on DI forces the outputs A low and B high. A high on DI with the driver outputs enabled will force A high and B low.
GND (Pin 5): Ground.
A (Pin 6): Driver Output/Receiver Input.
B (Pin 7): Driver Output/Receiver Input.
$V_{\text {CC }}$ (Pin 8): Positive Supply. $4.75 \mathrm{~V}<\mathrm{V}_{\text {CC }}<5.25 \mathrm{~V}$.

function tables

LTC1481 Transmitting

INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	DI	\mathbf{B}	\mathbf{A}
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
1	0	X	Z^{*}	Z^{*}

*Shutdown mode for LTC1481

LTC1481 Receiving

INPUTS			OUTPUTS
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{A - B}$	RO
0	0	$\geq 0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open	1
1	0	X	Z^{*}

*Shutdown mode for LTC1481

TEST CIRCUITS

Figure 1. Driver DC Test Load

Figure 2. Receiver Timing Test Load

Figure 3. Driver/Receiver Timing Test Circuit

Figure 4. Driver Timing Test Load

SWITCHInG TIm€ WAVЄfORMS

Figure 5. Driver Propagation Delays

Figure 6. Driver Enable and Disable Times

SWITCHInG TIME WAVEfORMS

Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

APPLICATIONS INFORMATION

Basic Theory of Operation

Traditionally, RS485 transceivers have been designed using bipolar technology because the common-mode range of the device must extend beyond the supplies and the device must be immune to ESD damage and latch-up. Unfortunately, most bipolar devices draw a large amount of supply current, which is unacceptable for the numerous applications that require low power consumption. The LTC1481 is a CMOS RS485/RS422 transceiver which features ultra-low power consumption without sacrificing ESD and latch-up immunity.

The LTC1481 uses a proprietary driver output stage, which allows a common-mode range that extends beyond the power supplies while virtually eliminating latch-up and providing excellent ESD protection. Figure 9 shows the LTC1481 output stage while Figure 10 shows a conventional CMOS output stage.
When the conventional CMOS output stage of Figure 10 enters a high impedance state, both the P-channel (P1) and the N -channel (N 1) are turned off. If the output is then driven above $\mathrm{V}_{C C}$ or below ground, the $\mathrm{P}+/ \mathrm{N}$-well diode
(D1) or the $\mathrm{N}+/ \mathrm{P}$-substrate diode (D2) respectively will turn on and clamp the output to the supply. Thus, the output stage is no longer in a high impedance state and is not able to meet the RS485 common-mode range requirement. In addition, the large amount of current flowing through either diode will induce the well-known CMOS latch-up condition, which could destroy the device.
The LTC1481 output stage of Figure 9 eliminates these problems by adding two Schottky diodes, SD3 and SD4. The Schottky diodes are fabricated by a proprietary modification to the standard N-well CMOS process. When the output stage is operating normally, the Schottky diodes are forward biased and have a small voltage drop across them. When the output is in the high impedance state and is driven above $\mathrm{V}_{\text {CC }}$ or below ground, the parasitic diode D1 or D2 still turns on, butSD3 or SD4 will reverse bias and prevent current from flowing into the N -well or the substrate. Thus the high impedance state is maintained even with the output voltage beyond the supplies. With no minority carrier current flowing into the N-well or substrate, latch-up is virtually eliminated under power-up or power-down conditions.

APPLICATIONS InfORMATION

Figure 9. LTC1481 Output Stage

Figure 10. Conventional CMOS Output Stage

The LTC1481 output stage will maintain a high impedance state until the breakdown of the N -channel or P -channel is reached when going positive or negative respectively. The output will be clamped to either $V_{C C}$ or ground by a Zener voltage plus a Schottky diode drop, but this voltage is well beyond the RS485 operating range. Because the ESD injected current in the N -well or substrate consists of majority carriers, latch-up is prevented by careful layout techniques. An ESD cell protects output against multiple 10kV human body model ESD strikes.

Low Power Operation

The LTC1481 is designed to operate with a quiescent current of $120 \mu \mathrm{~A}$ max. With the driver in three-state, I_{CC} will drop to this $120 \mu \mathrm{~A}$ level. With the driver enabled there will be additional current drawn by the internal 12 k resistor. Under normal operating conditions this additional current is overshadowed by the current drawn by the external bus impedance.

Shutdown Mode

Both the receiver output (RO) and the driver outputs (A, B) can be placed in three-state mode by bringing $\overline{\mathrm{RE}}$ high and DE low respectively. In addition, the LTC1481 will enter shutdown mode when $\overline{\mathrm{RE}}$ is high and DE is low.
In shutdown the LTC1481 typically draws only $1 \mu \mathrm{~A}$ of supply current. In order to guarantee that the part goes into shutdown, DE must be low and $\overline{R E}$ must be high for at least 600 ns simultaneously. If this time duration is less than50ns the part will not enter shutdown mode. Toggling either $\overline{\mathrm{RE}}$ or DE will wake the LTC1481 back up within $3.5 \mu \mathrm{~s}$.

Propagation Delay

Many digital encoding schemes are dependent upon the difference in the propagation delay times of the driver and receiver. Figure 11 shows the test circuit for the LTC1481 propagation delay.
The receiver delay times are:

$$
\left|t_{P L H}-t_{\text {PHL }}\right|=13 n s \text { Typ, } V_{C C}=5 \mathrm{~V}
$$

The drivers skew times are:

$$
\begin{aligned}
\text { Skew }= & 5 \text { ns Typ, } V_{C C}=5 \mathrm{~V} \\
& 10 \text { ns } \operatorname{Max}, V_{C C}=5 \mathrm{~V}, T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
\end{aligned}
$$

Figure 11. Receiver Propagation Delay Test Circuit

Ultra-Low Power RS485 Low EMI Transceiver with Shutdown

feATURES

- Low Power: Icc $=120 \mu \mathrm{~A}$ Max with Driver Disabled
- I $\mathrm{CC}=500 \mu \mathrm{~A}$ Max with Driver Enabled, No Load
- 1 μ A Quiescent Current in Shutdown Mode
- Controlled Slew Rate Driver for Reduced EMI
- Single 5V Supply
- Drivers/Receivers Have $\pm 10 \mathrm{kV}$ ESD Protection
- -7V to 12 V Common-Mode Range Permits $\pm 7 \mathrm{~V}$

Ground Difference Between Devices on the Data Line

- Thermal Shutdown Protection
- Power Up/Down Glitch-Free Driver Outputs Permit Live Insertion or Removal of Transceiver
- Driver Maintains High Impedance in Three-State or with the Power Off
- Up to 32 Transceivers on the Bus
- Pin Compatible with the LTC485

APPLICATIONS

- Battery-Powered RS485/RS422 Applications
- Low Power RS485/RS422 Transceiver
- Level Translator

DESCRIPTIOn

The $\mathrm{LTC}{ }^{\circledR} 1483$ is an ultra-low power differential line transceiver designed for data transmission standard RS485 applications with extended common-mode range (-7 V to 12 V). It will also meet the requirements of RS422. The LTC1483 features output drivers with controlled slew rate, decreasing the EMI radiated from the RS485 lines, and improving signal fidelity with misterminated lines. The CMOS design offers significant power savings over its bipolar counterparts without sacrificing ruggedness against overload or ESD damage. Typical quiescent current is only $80 \mu \mathrm{~A}$ while operating and less than $1 \mu \mathrm{~A}$ in shutdown.

The driver and receiver feature three-state outputs, with the driver outputs maintaining high impedance over the entire common-mode range. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit which forces the driver outputs into a high impedance state. The receiver has a fail-safe inputs are left open. I/O pins are protected against multiple ESD strikes of over $\pm 10 \mathrm{kV}$.

The LTC1483 is fully specified over the commercial and extended industrial temperature range and is available in 8-pin DIP and SO packages.

TYPICAL APPLICATION

absolute maximum ratings

(Note 1)
Supply Voltage (VCC) \qquad 12 V
Control Input Voltage -0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$
Driver Input Voltage -0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$
Driver Output Voltage .. $\pm 14 \mathrm{~V}$
Receiver Input Voltage ... $\pm 14 \mathrm{~V}$
Receiver Output Voltage -0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$ Operating Temperature Range LTC1483C \qquad $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ LTC1483I $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
RO 1	LTC1483CN8
$\overline{\mathrm{RE}} 2 \rightarrow-7 \mathrm{~B}$	LTC1483IN8
DE 3 N 6	LTC1483CS8
DI 4 GND	LTC1483IS8
$\begin{array}{lc}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ \text { 8-LEAD PDIP } & \text { 8-LEAD PLASTIC SO }\end{array}$	S8 PART MARKING
$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=130^{\circ} \mathrm{C} / \mathrm{W}$ (N 8$)$	1483
$\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{J A}=150^{\circ} \mathrm{C} / \mathrm{W}$ (S8)	14831

Consult factory for Military grade parts.

ELGCTRICAL CHARACTERISTICS $v_{C C}=5 V$, (Notes 2, 3) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{001}	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0$	\bullet			5	V
$V_{0 D 2}$	Differential Driver Output Voltage (with Load)	$\begin{aligned} & \hline R=50 \Omega \text { (RS422) } \\ & R=27 \Omega \text { (RS485), Figure } 1 \end{aligned}$	\bullet	$\begin{gathered} 2 \\ 1.5 \end{gathered}$		5	V
$\Delta \mathrm{V}_{\text {OD }}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			0.2	V
$V_{0 C}$	Driver Common-Mode Output Voltage	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			3	V
$\Delta\left\|V_{0 C}\right\|$	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			0.2	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet	2			V
VIL	Input Low Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet			0.8	V
IN1	Input Current	DE, DI, $\overline{\mathrm{RE}}$	\bullet			± 2	$\mu \mathrm{A}$
IIN2	Input Current (A, B)	$\begin{aligned} & D E=0, V_{C C}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V} \\ & D E=0, V_{C C}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-7 \mathrm{~V} \end{aligned}$	\bullet			$\begin{array}{r} 1.0 \\ -0.8 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver	$-7 \mathrm{~V} \leq \mathrm{V}_{C M} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	$V_{C M}=0 \mathrm{~V}$	\bullet		45		mV
V_{OH}	Receiver Output High Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	\bullet	3.5			V
$\mathrm{V}_{0 \mathrm{~L}}$	Receiver Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$	\bullet			0.4	V
IOZR	Three-State (High Impedance) Output Current at Receiver	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, 0.4 \mathrm{~V} \leq \mathrm{V}_{0} \leq 2.4 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
R ${ }_{\text {IN }}$	Receiver Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	12	25		k Ω
ICC	Supply Current	No Load, Output Enabled No Load, Output Disabled	\bullet		$\begin{gathered} 300 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 120 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {SHDN }}$	Supply Current in Shutdown Mode	$D E=0, \overline{\mathrm{RE}}=V_{C C}$			1	10	$\mu \mathrm{A}$
IOSD1	Driver Short-Circuit Current, V OUT $^{\text {H HIGH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
IOSD2	Driver Short-Circuit Current, V $\mathrm{V}_{\text {OUT }}=$ LOW	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
$\mathrm{I}_{\text {OSR }}$	Receiver Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA

SWITCHING CHARACTERISTICS
 $V_{C C}=5 V$, (Notes 2, 3) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1483			UNITS
				MIN	TYP	MAX	
tplH	Driver Input to Output	$R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L 2}=100 \mathrm{pF},$ (Figures 3, 5)	\bullet	150		1200	ns
$\mathrm{tpHL}^{\text {chen }}$	Driver Input to Output		\bullet	150		1200	ns
$\mathrm{t}_{\text {SKEW }}$	Driver Output to Output		\bullet		100	600	ns
$\mathrm{tr}_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	Driver Rise or Fall Time		\bullet	150		1200	ns
$\mathrm{t}_{\text {zH }}$	Driver Enable to Output High	$C_{L}=100 \mathrm{~F}$ F (Figures 4, 6), S2 Closed	\bullet	100		1500	ns
$\underline{t_{\text {zl }}}$	Driver Enable to Output Low	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet	100		1500	ns
tLz	Driver Disable Time from Low	$C_{L}=15 \mathrm{pF}$ (Figures 4,6), S1 Closed	\bullet	150		1500	ns
t_{HZ}	Driver Disable Time from High	$C_{L}=15 p F$ (Figures 4,6), S2 Closed	\bullet	150		1500	ns
tPLH	Receiver Input to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \\ & \text { (Figures } 3,7 \text {) } \end{aligned}$	\bullet	30	140	200	ns
tpHL	Receiver Input to Output		\bullet	30	140	200	ns
$\mathrm{t}_{\text {SKD }}$	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ Differential Receiver Skew		\bullet		13		ns
t_{zL}	Receiver Enable to Output Low	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet		20	50	ns
$\underline{t_{z H}}$	Receiver Enable to Output High	$\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet		20	50	ns
tLZ	Receiver Disable from Low	$\mathrm{C}_{\text {RL }}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet		20	50	ns
t_{HZ}	Receiver Disable from High	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet		20	50	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate		\bullet	250			kbits/s
${ }_{\text {t }}^{\text {SHDN }}$	Time to Shutdown	$\mathrm{DE}=0, \overline{\mathrm{RE}}=\Sigma$	\bullet	50	200	600	ns
$\mathrm{t}_{\text {zH(SHDN }}$	Driver Enable from Shutdown to Output High	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet			2000	ns
$\mathrm{tzL}_{\text {(SHDN })}$	Driver Enable from Shutdown to Output Low	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet			2000	ns
$\underline{\text { tzH(SHDN })}$	Receiver Enable from Shutdown to Output High	$C_{L}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	-			3500	ns
$\mathrm{t}_{\text {ZL(SHDN })}$	Receiver Enable from Shutdown to Output Low	$C_{L}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet			3500	ns

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those beyond which the safety of the device cannot be guaranteed.

Note 2: All currents into device pins are positive; all currents out ot device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

1483 GO

Receiver $\mid \mathbf{t}_{\text {PLH }}-$ tphL \mid vs Temperature

Driver Differential Output Voltage vs Output Current

1483 G02

TYPICAL PERFORMANCE CHARACTERISTICS

Driver Output Low Voltage vs Output Current

Driver Output High Voltage vs Output Current

1483604

pIn functions

RO (Pin 1): Receiver Output. If the receiver output is enabled (RE low), then if $\mathrm{A}>\mathrm{B}$ by 200 mV , RO will be high. If $A<B$ by 200 mV , then $R 0$ will be low.
$\overline{\operatorname{RE}}$ (Pin 2): Receiver Output Enable. A low enables the receiver output, RO. A high input forces the receiver output into a high impedance state.
DE (Pin 3): Driver Outputs Enable. A high on DE enables the driver output. A, B and the chip will function as a line driver. A low input will force the driver outputs into a high impedance state and the chip will function as a line receiver. If $\overline{R E}$ is high and $D E$ is low, the part will enter a low power $(1 \mu \mathrm{~A})$ shutdown state.

DI (Pin 4): Driver Input. If the driver outputs are enabled (DE high) then a low on Dl forces the outputs A low and B high. A high on DI with the driver outputs enabled will force A high and B low.
GND (Pin 5): Ground.
A (Pin 6): Driver Output/Receiver Input.
B (Pin 7): Driver Output/Receiver Input.
$V_{\text {CC }}$ (Pin 8): Positive Supply. 4.75 V < $\mathrm{V}_{\text {CC }}<5.25 \mathrm{~V}$.

function taßles

LTC1483 Transmitting

INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	\mathbf{B}	\mathbf{A}
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
$\mathbf{1}$	0	X	Z^{*}	Z^{*}

*Shutdown mode for LTC1483

LTC1483 Receiving

INPUTS			OUTPUTS
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{A}-\mathbf{B}$	$\mathbf{R O}$
0	0	$\geq 0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open	1
1	0	X	Z^{*}

*Shutdown mode for LTC1483

TEST CIRCUITS

Figure 1. Driver DC Test Load

Figure 3. Driver/Receiver Timing Test Circuit

Figure 2. Receiver Timing Test Load

Figure 4. Driver Timing Test Load

SWITCHInG TIme WhVeforms

Figure 5. Driver Propagation Delays

Figure 6. Driver Enable and Disable Times

SWITCHING TIm€ WAVEfORms

Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

APPLICATIONS INFORMATION

Basic Theory of Operation

Traditionally RS485 transceivers have been designed using bipolar technology because the common-mode range of the device must extend beyond the supplies and the device must be immune to ESD damage and latch-up. Unfortunately, most bipolar devices draw a large amount of supply current, which is unacceptable for the numerous applications that require low power consumption. The LTC1483 is a CMOS RS485/RS422 transceiver which features ultra-low power consumption without sacrificing ESD and latch-up immunity.
The LTC1483 uses a proprietary driver output stage, which allows a common-mode range that extends beyond the power supplies while virtually eliminating latch-up and providing excellent ESD protection. Figure 9 shows the LTC1483 output stage while Figure 10 shows a conventional CMOS output stage.

When the conventional CMOS output stage of Figure 10 enters a high impedance state, both the P-channel (P1) and the N -channel (N 1) are turned off. If the output is then driven above $\mathrm{V}_{C C}$ or below ground, the $\mathrm{P}+/ \mathrm{N}$-well diode
(D1) or the $\mathrm{N}_{+} /$P-substrate diode (D2) respectively will turn on and clamp the output to the supply. Thus, the output stage is no longer in a high impedance state and is not able to meet the RS485 common-mode range requirement. In addition, the large amount of current flowing through either diode will induce the well-known CMOS latch-up condition, which could destroy the device.

Figure 9. LTC1483 Output Stage

Figure 10. Conventional CMOS Output Stage

APPLICATIONS InFORMATION

The LTC1483 output stage of Figure 9 eliminates these problems by adding two Schottky diodes, SD3 and SD4. The Schottky diodes are fabricated by a proprietary modification to the standard N-well CMOS process. When the output stage is operating normally, the Schottky diodes are forward biased and have a small voltage drop across them. When the output is in the high impedance state and is driven above $V_{\text {CC }}$ or below ground, the parasitic diode D1 or D2 still turns on, but SD3 or SD4 will reverse bias and prevent current from flowing into the N -well or the substrate. Thus the high impedance state is maintained even with the output voltage beyond the supplies. With no minority carrier current flowing into the N -well or substrate, latch-up is virtually eliminated under power-up or power-down conditions.

The LTC1483 output stage will maintain a high impedance state until the breakdown of the N -channel or P -channel is reached when going positive or negative respectively. The output will be clamped to either $V_{\text {CC }}$ or ground by a Zener voltage plus a Schottky diode drop, but this voltage is well beyond the RS485 operating range. An ESD cell protects output against multiple $\pm 10 \mathrm{kV}$ human body model ESD strikes. Because the ESD injected current in the N-well or substrate consists of majority carriers, latch-up is prevented by careful layout techniques.

Slew Rate

The LTC1483 is designed for systems that are sensitive to electromagnetic radiation. The part features a slew rate limited driver that reduces high frequency electromagnetic emissions, while improving signal fidelity by reducing reflections due to misterminated cables. Figures 11 and 12 show the spectrum of the signal at the driver output for a standard slew rate RS485 driver and the slew rate limited LTC1483. The LTC1483 shows significant reduction of the high frequency harmonics. Because the driver is slew rate limited, the maximum operating frequency is limited to $250 \mathrm{kbits} / \mathrm{s}$.

Low Power Operation

The LTC1483 is designed to operate with a quiescent current of $120 \mu \mathrm{~A}$ max. With the driver in three-state I_{C} will

Figure 11. Typical RS485 Driver Output Spectrum Transmitting at 150 kHz

Figure 12. Slew Rate Limited LTC1483 Driver Output Spectrum Transmitting at 150 kHz
drop to this $120 \mu \mathrm{~A}$ level. With the driver enabled there will be additional current drawn by the internal 12 k resistor. Under normal operating conditions this additional current is overshadowed by the current drawn by the external bus impedance.

APPLICATIONS InFORMATION

Shutdown Mode

Both the receiver output (RO) and the driver outputs (A, B) can be placed in three-state mode by bringing RE high and DE low respectively. In addition, the LTC1483 will enter shutdown mode when $\overline{R E}$ is high and $D E$ is low.
In shutdown the LTC1483 typically draws only $1 \mu \mathrm{~A}$ of supply current. In order to guarantee that the part goes into shutdown, $\overline{R E}$ must be high and $D E$ must be low for at least 600 ns simultaneously. If this time duration is less
than 50ns the part will not enter shutdown mode. Toggling either $\overline{\mathrm{RE}}$ or DE will wake the LTC1483 back up within $3.5 \mu \mathrm{~s}$.
If the slow slew rate driver was active immediately prior to shutdown, the supply current will not drop to $1 \mu \mathrm{~A}$ until the driver outputs have reached a steady state; this can take as long as $2.6 \mu \mathrm{~s}$ under worst case conditions. If the driver was disabled prior to shutdown the supply current will drop to $1 \mu \mathrm{~A}$ immediately.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC485	5V Low Power RS485 Interface Transceiver	Low Power
LTC1480	3.3V Ultra-Low Power RS485 Transceiver	World's First 3V Powered 485 Transceiver with Low Power Consumption
LTC1481	5V Ultra-Low Power RS485 Transceiver with Shutdown	Lowest Power
LTC1485	5V Differential Bus Transceiver	Highest Speed
LTC1487	5V Ultra-Low Power RS485 with Low EMI Shutdown and High Input Impendance	High Input Impendance/Low EMI/Lowest Power

Ultra-Low Power RS485 with Low EMI, Shutdown and High Input Impedance

feATURES

- High Input Impedance: Up to 256 Transceivers on the Bus
- Low Power: Icc $=120 \mu \mathrm{~A}$ Max with Driver Disabled
- $I_{c c}=200 \mu \mathrm{~A}$ Max with Driver Enabled, No Load
- $1 \mu \mathrm{~A}$ Quiescent Current in Shutdown Mode
- Controlled Slew Rate Driver for Reduced EMI
- Single 5V Supply
- ESD Protection to $\pm 10 \mathrm{kV}$ On Receiver Inputs and Driver outputs
- -7 V to 12 V Common-Mode Range Permits $\pm 7 \mathrm{~V}$ Ground Difference Between Devices on the Data Line
- Thermal Shutdown Protection
- Power Up/Down Glitch-Free Driver Outputs Permit Live Insertion or Removal of Transceiver
- Driver Maintains High Impedance in Three-State or with the Power Off
- Pin Compatible with the LTC485

APPLICATIONS

- Battery-Powered RS485/RS422 Applications
- Low Power RS485/RS422 Transceiver

Level Translator

DESCRIPTIOn

The LTC ${ }^{\circledR} 1487$ is an ultra-low power differential line transceiver designed with high impedance inputs allowing up to 256 transceivers to share a single bus. It meets the requirements of RS485 and RS422. The LTC1487 features output drivers with controlled slew rate, decreasing the EMI radiated from the RS485 lines, and improving signal fidelity with misterminated lines. The CMOS design offers significant power savings without sacrificing ruggedness against overload or ESD damage. Typical quiescent current is only $80 \mu \mathrm{~A}$ while operating and $1 \mu \mathrm{~A}$ in shutdown.
The driver and receiver feature three-state outputs, with the driver outputs maintaining high impedance over the entire common-mode range. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit which forces the driver outputs into a high impedance state. The receiver has a fail-safe feature which guarantees a high output state when the inputs are left open. $1 / O$ pins are protected against multiple ESD strikes of over $\pm 10 \mathrm{kV}$ using the Human Body Model.
The LTC1487 is fully specified over the commercial temperature range and is available in 8 -pin DIP and SO packages.

[^41]
IYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS(Note 1)
Supply Voltage (VCC) 12V
Control Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Driver Input Voltage
... -0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
Driver Output Voltage $\pm 14 \mathrm{~V}$
Receiver Input Voltage $\pm 14 \mathrm{~V}$
Receiver Output Voltage -0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
Operating Temperature Range

\qquad
$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$Lead Temperature (Soldering, 10 sec).
\qquad

packace/order information

					ORDER PART
NUMBER					

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$ (Notes 2,3) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{0011}	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0$	\bullet			5	V
$V_{0 D 2}$	Differential Driver Output Voltage (with Load)	$\begin{aligned} & \mathrm{R}=50 \Omega \text { (RS422) } \\ & \mathrm{R}=27 \Omega \text { (RS485), Figure } 1 \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$		5	V
$\Delta \mathrm{V}_{0 \mathrm{D}}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			0.2	V
V_{0}	Driver Common-Mode Output Voltage	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			3	V
$\Delta\left\|V_{0 C}\right\|$	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	$\mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$, Figure 1	\bullet			0.2	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet	2			V
VIL	Input Low Voltage	DE, DI, $\overline{\mathrm{RE}}$	\bullet			0.8	V
$\underline{1 / 21}$	Input Current	DE, DI, $\overline{\mathrm{RE}}$	\bullet			± 2	$\mu \mathrm{A}$
$1{ }_{\text {IN2 }}$	Input Current (A, B)	$\begin{aligned} & \mathrm{DE}=0, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V} \\ & \mathrm{DE}=0, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=-7 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet			$\begin{array}{r} 0.30 \\ -0.15 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta V_{\text {TH }}$	Receiver Input Hysteresis	$V_{C M}=0 \mathrm{~V}$	\bullet		45		mV
V_{OH}	Receiver Output High Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}, \mathrm{~V}_{1 D}=200 \mathrm{mV}$	\bullet	3.5			V
$\mathrm{V}_{\text {OL }}$	Receiver Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, V_{1 D}=-200 \mathrm{mV}$	\bullet			0.4	V
IOZR	Three-State (High Impedance) Output Current at Receiver	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, 0.4 \mathrm{~V} \leq \mathrm{V}_{0} \leq 2.4 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
RIN	Receiver Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	70	96		$\mathrm{k} \Omega$
ICC	Supply Current	No Load, Output Enabled No Load, Output Disabled	\bullet		$\begin{aligned} & 120 \\ & 80 \end{aligned}$	$\begin{aligned} & 200 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\underline{I S H D N}$	Supply Current in Shutdown Mode	$D E=0 V, \overline{\mathrm{RE}}=\mathrm{V}_{C C}$			1	10	$\mu \mathrm{A}$
IOSD1	Driver Short-Circuit Current, V OUT $^{\text {- HIGH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
IoSD2	Driver Short-Circuit Current, V ${ }_{\text {OUT }}=$ LOW	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$	\bullet	35		250	mA
$\underline{\text { IOSR }}$	Receiver Short-Circuit Current	$\mathrm{OV} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA

ELETRICPL CHPRFCTERISTICS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (Note 4) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{0011}	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0$	\bullet			5	V
$V_{0 D 2}$	Differential Driver Output Voltage (with Load)	$\begin{aligned} & R=50 \Omega \text { (RS422) } \\ & R=27 \Omega \text { (RS485), Figure } 1 \end{aligned}$	\bullet	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$		5	V
$\mathrm{V}_{\text {OC }}$	Driver Common-Mode Output Voltage	$R=27 \Omega$ or $R=50 \Omega$, Figure 1	\bullet			3	V
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage for Receiver	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysteresis	$V_{C M}=0 \mathrm{~V}$	\bullet		45		mV
$I_{\text {CC }}$	Supply Current	No Load, Output Enabled No Load, Output Disabled	\bullet		$\begin{gathered} 120 \\ 80 \end{gathered}$	$\begin{aligned} & 200 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISHDN	Supply Current in Shutdown Mode	$D E=O V, \overline{R E}=V_{C C}$			1	10	$\mu \mathrm{A}$
$\mathrm{tPLH}^{\text {l }}$	Driver Input to Output	$\begin{aligned} & R_{\text {DIFF }}=54 \Omega, C_{L 1}=C_{L .2}=100 \mathrm{pF} \\ & \text { (Figures } 3,5 \text {) } \end{aligned}$	\bullet	150		1200	ns
$\mathrm{t}_{\text {PHL }}$	Driver Input to Output		\bullet	150		1200	ns
$t_{\text {tKEW }}$	Driver Output to Output		\bullet		100	600	ns
t_{r}, t_{f}	Driver Rise or Fall Time		\bullet	150		2000	ns
tPLH	Receiver Input to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \\ & \text { (Figures } 3,7 \text {) } \end{aligned}$	\bullet	30	140	250	ns
${ }_{\text {tPHL }}$	Receiver Input to Output		\bullet	30	140	250	ns
${ }_{\text {t }}^{\text {SKD }}$	$\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$ Differential Receiver Skew		\bullet		13		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate		\bullet	250			kbps

SUTTCHIC CHARPCTERSTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}($ Notes 2,3$)$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
tpLH	Driver Input to Output	$\mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, (Figures 3, 5)	\bullet	150		1200	ns
${ }_{\text {tPHL }}$	Driver Input to Output		\bullet	150		1200	ns
tSKEW	Driver Output to Output		\bullet		250	600	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Driver Rise or Fall Time		\bullet	150		1200	ns
$\mathrm{t}_{\text {zH }}$	Driver Enable to Output High	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	\bullet	100		1500	ns
tzL	Driver Enable to Output Low	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet	100		1500	ns
LLZ	Driver Disable Time from Low	$C_{L}=15 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet	150		1500	ns
$\mathrm{thz}^{\text {H }}$	Driver Disable Time from High	$\mathrm{C}_{L}=15 \mathrm{pF}$ (Figures 4,6), S2 Closed	\bullet	150		1500	ns
	Receiver Input to Output	$\mathrm{R}_{\mathrm{DIFF}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$, (Figures 3, 7)	\bullet	30	140	250	ns
${ }_{\text {l PHL }}$	Receiver Input to Output		\bullet	30	140	250	ns
SKD	\mid tpLH $^{-t_{\text {PHL }}}$ \| Differential Receiver Skew		\bullet		13		ns
liz	Receiver Enable to Output Low	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S 1 Closed	\bullet		20	50	ns
tz H	Receiver Enable to Output High	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet		20	50	ns
LZ	Receiver Disable from Low	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet		20	50	ns
Hz	Receiver Disable from High	$\mathrm{C}_{\mathrm{RL}}=15 \mathrm{pF}$ (Figures 2, 8), $\mathrm{S}^{\text {C Closed }}$	\bullet		20	50	ns
MAX	Maximum Data Rate		\bullet	250			kbps
SHDN	Time to Shutdown	$D E=0, \overline{\mathrm{RE}}=$	\bullet	50	200	600	ns

SWITCHING CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (Notes 2,3) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\underline{\text { zH(SHON }} \text {) }}$	Driver Enable from Shutdown to Output High	$C_{L}=100 \mathrm{pF}$ (Figures 4, 6), S2 Closed	-			2000	ns
$\mathrm{t}_{\text {ZL(SHDN }}$	Driver Enable from Shutdown to Output Low	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 4, 6), S1 Closed	\bullet			2000	ns
$\mathrm{t}_{\text {zH(SHDN }}$	Receiver Enable from Shutdown to Output High	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2, 8), S2 Closed	\bullet			2000	ns
tzL(SHDN)	Receiver Enable from Shutdown to Output Low	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 2, 8), S1 Closed	\bullet			2000	ns

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those beyond which the safety of the device cannot be guaranteed.
Note 2: All currents into device pins are positive; all currents out ot device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: The LTC1487 is not tested and is not quality-assurance sampled at $-40^{\circ} \mathrm{C}$ and at $85^{\circ} \mathrm{C}$. These specifications are guaranteed by design, correlation, and/or inference from $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $/$ or $70^{\circ} \mathrm{C}$ tests.

TYPICAL PGRFORMANCE CHARACTERISTICS

Driver Output Low Voltage vs Output Current

LTC1487•TPC04

Driver Differential Output Voltage vs Output Current

LTC1487•TPC02

Driver Output High Voltage

 vs Output Current

Driver Differential Output Voltage vs Temperature

LTC1487• PPC03

Driver Skew vs Temperature

PIn functions

RO (Pin 1): Receiver Output. If the receiver output is snabled ($\overline{\mathrm{RE}} \mathrm{LOW}$), and $\mathrm{A}>\mathrm{B}$ by 200 mV , RO will be HIGH. If $A<B$ by 200 mV , then RO will be LOW.
$\overline{\mathrm{RE}}$ (Pin 2): Receiver Output Enable. A LOW enables the receiver output, RO. A HIGH input forces the receiver Jutput into a high impedance state.

DE (Pin 3): Driver Outputs Enable. A HIGH on DE enables the driver output. A and B and the chip will function as a line triver. A LOW input will force the driver outputs into a high mpedance state and the chip will function as a line eceiver. If $\overline{\mathrm{RE}}$ is HIGH and DE is LOW, the part will enter a low power $(1 \mu \mathrm{~A})$ shutdown state.

DI (Pin 4): Driver Input. If the driver outputs are enabled (DEHIGH) then a LOW on DI forces the outputs A LOW and B HIGH. A HIGH on DI with the driver outputs enabled will force A HIGH and B LOW.
GND (Pin 5): Ground.
A (Pin 6): Driver Output/Receiver Input.
B (Pin 7): Driver Output/Receiver Input.
$V_{\text {CC }}$ (Pin 8): Positive Supply. $4.75 \mathrm{~V}<\mathrm{V}_{\text {CC }}<5.25 \mathrm{~V}$.

function tables

LTC1487 Transmitting

INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{D I}$	\mathbf{B}	\mathbf{A}
X	1	1	0	1
X	1	0	1	0
0	0	X	Z	Z
1	0	X	Z^{*}	Z^{\star}

*Shutdown mode

LTC1487 Receiving

INPUTS			OUTPUTS
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{A - B}$	$\mathbf{R O}$
0	0	$\geq 0.2 \mathrm{~V}$	1
0	0	$\leq-0.2 \mathrm{~V}$	0
0	0	Inputs Open	1
1	0	X	Z^{*}

*Shutdown mode

IEST CIRCUITS

Figure 1. Driver DC Test Load

Figure 2. Receiver Timing Test Load

Figure 4. Driver Timing Test Load

switching time whveforms

Figure 5. Driver Propagation Delays

Figure 6. Driver Enable and Disable Times

Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

APPLICATIONS InFORMATION

High Input Impedance

The LTC1487 is designed with a $96 \mathrm{k} \Omega$ (typ) input impedance to allow up to 256 transceivers to share a single RS485 differential data bus. The RS485 specification requires that a transceiver be able to drive as many as 32 "unit loads." One unit load (UL) is defined as an impedance that draws a maximum of 1 mA with up to 12 V across it. Typical RS485 transceivers present between 0.5 and 1 unit load at their inputs. The $96 \mathrm{k} \Omega$ input impedance of the LTC1487 will draw only $125 \mu \mathrm{~A}$ under the same 12 V zondition, presenting only 0.125 UL to the bus. As a result, 256 LTC1487 transceivers (32UL/0.125UL = 256) can be sonnected to a single RS485 data bus without exceeding the RS485 driver load specification. The LTC1487 meets all other RS485 specifications, allowing it to operate squally well with standard RS485 transceiver devices or nigh impedance transceivers.

CMOS Output Driver

The RS485 specification requires that a transceiver withstand common-mode voltages of up to 12 V or -7 V at the ZS485 line connections. Additionally, the transceiver must je immune to both ESD and latch-up. This rules out raditional CMOS drivers, which include parasitic diodes rom their driver outputs to each supply rail (Figure 9). The _TC1487 uses a proprietary process enhancement which xdds a pair of Schottky diodes to the output stage (Figure 10), preventing current from flowing when the commonnode voltage exceeds the supply rails. Latch-up at the jutput drivers is virtually eliminated and the driver is orevented from loading the line under RS485 specified ault conditions. A proprietary output protection structure Jrotects the transceiver line terminals against ESD strikes 'Human Body Model) of up to $\pm 10 \mathrm{kV}$.

Figure 9. Conventional CMOS Output Stage

Figure 10. LTC1487 Output Stage
When two or more drivers are connected to the same transmission line, a potential condition exists whereby more than two drivers are simultaneously active. If one or more drivers is sourcing current while another driver is sinking current, excessive power dissipation may occur within either the sourcing or sinking element. This condition is defined as driver contention, since multiple drivers are competing for one transmission line. The LTC1487 provides a current limiting scheme to prevent driver contention failure. When driver contention occurs, the current drawn is limited to about 70 mA , preventing excessive power dissipation within the drivers.

The LTC1487 has a thermal shutdown feature which protects the part from excessive power dissipation. Under extreme fault conditions, up to 250 mA can flow through the part, causing rapid internal temperature rise. The thermal shutdown circuit will disable the driver outputs when the internal temperature reaches $150^{\circ} \mathrm{C}$ and turns them back on when the temperature cools to $130^{\circ} \mathrm{C}$. This cycle will repeat as necessary until the fault condition is removed.

Receiver Inputs

The LTC1487 receiver features an input common-mode range covering the entire RS485 specified range of -7 V to 12 V . Internal 96 k input resistors from each line terminal to ground provide the 0.125 UL load to the RS485 bus. Differential signals of greater than $\pm 200 \mathrm{mV}$ within the specified input common-mode range will be converted to a TTL-compatible signal at the receiver output. A small amount of input hysteresis is included to minimize the

APPLICATIONS INFORMATION

effects of noise on the line signals. If the line is terminated or the receiver inputs are shorted together, the receiver output will retain the last valid line signal due to the 45 mV of hysteresis incorporated in the receiver circuit. If the LTC1487 transceiver inputs are left floating (unterminated), an internal pull-up of $10 \mu \mathrm{~A}$ at the A input will force the receiver output to a known high state.

Low Power Operation

The LTC1487 draws very little supply current whenever the driver outputs are disabled. In shutdown mode, the quiescent current is typically less than $1 \mu \mathrm{~A}$. With the receiver active and the driver outputs disabled, the LTC1487 will typically draw $80 \mu \mathrm{~A}$ quiescent current. With the driver outputs enabled but unterminated, quiescent current will rise slightly as one of the two outputs sources current into the internal receiver input resistance. With the minimum receiver input resistance of 70k and the maximum output swing of 5 V , the quiescent current will rise by a maximum of $72 \mu \mathrm{~A}$. Typical quiescent current rise with the driver enabled is about $40 \mu \mathrm{~A}$.

The quiescent current rises significantly if the driver is enabled when it is externally terminated. With $1 / 2$ termination load (120Ω between the driver outputs), the quiescent current will jump to at least 13 mA as the drivers force a minimum of 1.5 V across the termination resistance. With a fully terminated 60Ω line attached, the current will rise to greater than 25 mA with the driver enabled, completely overshadowing the extra $40 \mu \mathrm{~A}$ drawn by the internal receiver inputs.

Shutdown Mode

Both the receiver output (RO) and the driver outputs (A, B) can be placed in three-state mode by bringing $\overline{\mathrm{RE}} \mathrm{HIGH}$ and DE LOW respectively. In addition, the LTC1487 will enter shutdown mode when $\overline{\mathrm{RE}}$ is HIGH and DE is LOW.

In shutdown the LTC1487 typically draws only $1 \mu \mathrm{~A}$ of supply current. In order to guarantee that the part goes into shutdown, $\overline{\mathrm{RE}}$ must be HIGH and DE must be LOW for at least 600 ns simultaneously. If this time duration is less than 50ns the part will not enter shutdown mode. Toggling either $\overline{R E}$ or DE will wake the LTC1487 back up within $3.5 \mu \mathrm{~s}$.

If the driver is active immediately prior to shutdown, the supply current will not drop to $1 \mu \mathrm{~A}$ until the driver outputs have reached a steady state; this can take as long as $2.6 \mu \mathrm{~s}$ under worst case conditions. If the driver is disabled prior to shutdown the supply current will drop to $1 \mu \mathrm{~A}$ immediately.

Slew Rate and Propagation Delay

Many digital encoding schemes are dependent upon the difference in the propagation delay times of the driver and receiver. Figure 11 shows the test circuit for the LTC1487 propagation delay.

Figure 11. Receiver Propagation Delay Test Circuit
The receiver delay times are:

$$
\left|t_{\text {PLH }}-t_{\text {PHL }}\right|=13 n s \text { Typ, } V_{C C}=5 \mathrm{~V}
$$

The LTC1487 drivers feature controlled slew rate to reduce system EMI and improve signal fidelity by reducing reflections due to misterminated cables.

The driver's skew times are:

$$
\begin{aligned}
\text { Skew }= & 250 \mathrm{~ns} \text { Typ, } \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\
& 600 \mathrm{~ns} \text { Max, } \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}
\end{aligned}
$$

;ECTION 5-INTERFACEV. 35
LTC1345, Single Supply V. 35 Transceiver 5-58
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65

$\angle Y$ IIIER

Single Supply V. 35 Transceiver

feftures

- Single Chip Provides All V. 35 Differential Clock and Data Signals
- Operates From Single 5V Supply
- Shutdown Mode Reduces ICC to $1 \mu \mathrm{~A}$ Typ
- Software Selectable DTE or DCE Configuration
- Transmitters and Receivers Will Withstand Repeated $\pm 10 \mathrm{kV}$ ESD Pulses
- 10MBaud Transmission Rate
- Transmitter Maintains High Impedance When Disabled, Shut Down, or with Power Off
- Meets CCITT V. 35 Specification
- Transmitters are Short-Circuit Protected

APPLICATIONS

- Modems
- Telecommunications
- Data Routers

DESCRIPTION

The LTC ${ }^{\circledR} 1345$ is a single chip transceiver that provides the differential clock and data signals for a V. 35 interface from a single 5 V supply. Combined with an external resistor termination network and an LT ${ }^{\circledR}$ 1134A RS232 transceiver for the control signals, the LTC1345 forms a complete low power DTE or DCE V. 35 interface port operating from a single 5 V supply.

The LTC1345 features three current output differential transmitters, three differential receivers, and a charge pump. The transceiver can be configured for DTE or DCE operation or shut down using two Select pins. In the Shutdown mode, the supply current is reduced to $1 \mu \mathrm{~A}$.

The transceiver operates up to 10Mbaud. All transmitters feature short-circuit protection and a Receiver Output Enable pin allows the receiver outputs to be forced into a high impedance state. Both transmitter outputs and receiver inputs feature $\pm 10 \mathrm{kV}$ ESD protection. The charge pump features a regulated V_{EE} output using three external $1 \mu \mathrm{~F}$ capacitors.

[^42]
TYPICAL APPLICATION

Clock and Data Signals for V. 35 Interface

BSOLUTE MAXIMUM RATINGS

ote 1)
upply Voltage, VCC
put Voltage
Transmitters \qquad -0.3 V to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
Receivers \qquad -18 V to 18 V
S1, S2, $\overline{\mathrm{OE}}$ \qquad -0.3 V to $(\mathrm{V} C \mathrm{C}+0.3 \mathrm{~V})$ utput Voltage
Transmitters -18 V to 18 V
Receivers - 0.3 V to ($\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$)
$V_{E E}$ -10 V to 0.3 V
1ort-Circuit Duration
Transmitter Output Indefinite
Receiver Output .. Indefinite
$V_{E E}$ \qquad 30 sec
serating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ orage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ sad Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

	ORDER PART NUMBER
Cl^{+}2 ${ }^{\text {a }}$ - V_{EE}	
$v_{c c}{ }^{3}$ - ${ }^{26}$	LTC1345CNW
$\mathrm{Cl}^{-} 4 \sim 25$	LTC1345CSW
GND 5	LTC1345INW
6	LTC1345ISW
T2 7	
T3 8 - 217	
S1 9	
S2 10 O-19 АЗ	
R3 $11-18$ B2	
R2 12 A2	
R1 13	
$\overline{0 E} 14$ OT 15 A1	
NW PACKAGE SW PACKAGE 28-LEAD PDIP WIDE 28-LEAD PLASTIC SO WIDE	
THREE V. 35 TRANSMITTERS AND THREE RECEIVERS	
$\begin{aligned} & T_{J M A X}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=56^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NW}) \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=85^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{SW}) \end{aligned}$	

Consult factory for Military grade parts.

IC ELECTRICAL CHARACTERISTICS $V_{C C}=5 V \pm 5 \%$ (Notes 2,3), unless otherwise speciified.

MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
D	Transmitter Differential Output Voltage	Figure $1,-4 \mathrm{~V} \leq \mathrm{V}_{0 S} \leq 4 \mathrm{~V}$	\bullet	0.44	0.55	0.66	V
C	Transmitter Common-Mode Output Voltage	Figure 1, $\mathrm{V}_{0 S}=0 \mathrm{~V}$	\bullet	-0.6	0	0.6	V
1	Transmitter Output High Current	$V_{Y, Z}=0 \mathrm{~V}$	\bullet	-12.6	-11	-9.4	mA
	Transmitter Output Low Current	$V_{Y, ~}=0 \mathrm{~V}$	\bullet	9.4	11	12.6	mA
	Transmitter Output Leakage Current	$\mathrm{S} 1=\mathrm{S} 2=0 \mathrm{~V},-5 \mathrm{~V} \leq \mathrm{V}_{Y, \mathrm{Z}} \leq 5 \mathrm{~V}$	\bullet		± 1	± 100	$\mu \mathrm{A}$
	Transmitter Output Impedance	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}, \mathrm{Z}} \leq 2 \mathrm{~V}$			100		$\mathrm{k} \Omega$
1	Differential Receiver Input Threshold Voltage	$-7 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) / 2 \leq 7 \mathrm{~V}$	\bullet		25	200	mV
TH	Receiver Input Hysterisis	$-7 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) / 2 \leq 7 \mathrm{~V}$			50		mV
	Receiver Input Current (A, B)	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq 7 \mathrm{~V}$	\bullet			0.4	mA
1	Receiver Input Impedance	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq 7 \mathrm{~V}$	\bullet	17.5	30		k Ω
4	Receiver Output High Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}, \mathrm{A}}=0.2 \mathrm{~V}$	\bullet	3	4.5		V
-	Receiver Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{B}, \mathrm{A}}=-0.2 \mathrm{~V}$	\bullet		0.2	0.4	V
R	Receiver Output Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA
R	Receiver Three-State Output Current	S1 = S2 $=0 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet			± 10	$\mu \mathrm{A}$
1	Logic Input High Voltage	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet	2			V
	Logic Input Low Voltage	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet			0.8	V
	Logic Input Current	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet			± 10	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CC }}$ Supply Current	Figure $1, \mathrm{~V}_{0 S}=0, \mathrm{~S} 1=\mathrm{S} 2=\mathrm{HIGH}$ No Load, S1 = S2 $=$ HIGH Shutdown, $\mathrm{S} 1=\mathrm{S} 2=0 \mathrm{~V}$	$\bullet-$		$\begin{gathered} 118 \\ 19 \\ 1 \end{gathered}$	$\begin{gathered} 170 \\ 30 \\ 100 \end{gathered}$	mA mA $\mu \mathrm{A}$
	VEE Voltage	No Load, S1 = S2 = HIGH			-5.5		V

AC ELECTRICAL CHARACTERISTICS $v_{c c}=5 \pm 5 \%$, NNotes 2,3 , unless olthemiss specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
$t_{\text {R }}, t_{F}$	Transmitter Rise or Fall Time	Figures 1 and $3, \mathrm{~V}_{0 S}=0 \mathrm{~V}$	\bullet		7	40	n
$\mathrm{tPLH}^{\text {l }}$	Transmitter Input to Output F	Figures 1 and 3, $\mathrm{V}_{0 S}=0 \mathrm{~V}$	\bullet		25	70	n
tpHL	Transmitter Input to Output \bar{z}	Figures 1 and $3, \mathrm{~V}_{0 S}=0 \mathrm{~V}$	\bullet		25	70	n
$\mathrm{t}_{\text {SKEW }}$	Transmitter Output to Output	Figures 1 and $3, \mathrm{~V}_{0 S}=0 \mathrm{~V}$			0		n
$\mathrm{t}_{\text {PLH }}$	Receiver Input to Output I	Figures 1 and $4, \mathrm{~V}_{0 S}=0 \mathrm{~V}$	\bullet		49	100	n
$\mathrm{t}_{\text {PHL }}$	Receiver Input to Output z	Figures 1 and $4, \mathrm{~V}_{0 S}=0 \mathrm{~V}$	\bullet		52	100	n
$\mathrm{t}_{\text {SKEW }}$	Differential Receiver Skew, $\mathrm{tPLH}^{\text {- }}$ tPHL	Figures 1 and $4, \mathrm{~V}_{0 S}=0 \mathrm{~V}$			3		n
t_{ZL}	Receiver Enable to Output LOW	Figures 2 and 5, $\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{S1}$ Closed	\bullet		40	70	n
tzH	Receiver Enable to Output HIGH	Figures 2 and 5, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, S2 Closed	\bullet		35	70	n
tiz	Receiver Disable From LOW	Figures 2 and 5, $\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{S} 1$ Closed	\bullet		30	70	n
$t_{\text {Hz }}$	Receiver Disable From HIGH	Figures 2 and 5, $C_{L}=15 \mathrm{pF}$, 22 Closed	\bullet		35	70	n
$\mathrm{f}_{\text {OSC }}$	Charge Pump Oscillator Frequency				200		kH
$\mathrm{BR}_{\text {MAX }}$	Maximum Data Rate (Note 4)		\bullet	10	15		Mbau

The denotes specifications which apply over the full operating temperature range.
Note 1: The absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed.
Note 2: All currents into device pins are termed positive; all currents out of device pins are termed negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=1 \mu \mathrm{~F}$ ceramic capacitors and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Maximum data rate is specified for NRZ data encoding scheme.
The maximum data rate may be different for other data encoding schemes Data rate is guaranteed by correlation and is not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

LTC1345•TPCO1

Transmitter Output Current vs Output Voltage

LTC1345•TPC02

Transmitter Output Skew vs Temperature

LTC1345 • TPC03

YPICAL PERFORMARCE CHARACTERISTICS

LTC1345 • TPC04

Supply Current vs Temperature

Receiver Output Waveforms

In functions

$2^{+}(\operatorname{Pin} 1):$ Capacitor C2 Positive Terminal.
1^{+}(Pin 2): Capacitor C1 Positive Terminal.
cc (Pin 3): Positive Supply, $4.75 \leq \mathrm{V}_{\text {CC }} \leq 5.25 \mathrm{~V}$.
1^{-1} (Pin 4): Capacitor C1 Negative Terminal.
ND (Pin 5): Ground. The positive terminal of C3 is mnected to ground.
I (Pin 6): Transmitter 1 Input.
? (Pin 7): Transmitter 2 Input.
3 (Pin 8): Transmitter 3 Input.
1 (Pin 9): Select Input 1.
? (Pin 10): Select Input 2.

R3 (Pin 11): Receiver 3 Output.
R2 (Pin 12): Receiver 2 Output.
R1 (Pin 13): Receiver 1 Output.
$\overline{\mathbf{O E}}$ (Pin 14): Receiver Output Enable.
A1 (Pin 15): Receiver 1 Inverting Input.
B1 (Pin 16): Receiver 1 Noninverting Input.
A2 (Pin 17): Receiver 2 Inverting Input.
B2 (Pin 18): Receiver 2 Noninverting Input.
A3 (Pin 19): Receiver 3 Inverting Input.
B3 (Pin 20): Receiver 3 Noninverting Input.
Z3 (Pin 21): Transmitter 3 Inverting Output.

PIn functions

Y3 (Pin 22): Transmitter 3 Noninverting Output.
Z2 (Pin 23): Transmitter 2 Inverting Output.
Y2 (Pin 24): Transmitter 2 Noninverting Output Z1 (Pin 25): Transmitter 1 Inverting Output.

Y1 (Pin 26): Transmitter 1 Noninverting Output.
V_{EE} (Pin 27): Charge Pump Output. Connected to negative terminal of capacitor C3.
C2 ${ }^{-}$(Pin 28): Capacitor C2 Negative Terminal.

function tables

Transmitter and Receiver Configuration

S1	S2	TX\#	RX\#	REMARKS
0	0	-	-	Shutdown
1	0	$1,2,3$	1,2	DCE Mode, RX3 Shut Down
0	1	1,2	$1,2,3$	DTE Mode, TX3 Shut Down
1	1	$1,2,3$	$1,2,3$	All Active

Transmitter

CONFIGURATION	INPUTS			OUTPUTS				
	S1	S2	T	Y1 AND Y2	Z1 AND Z2	Y3	Z3	
DTE	0	1	0	0	1	Z	Z	
DTE	0	1	1	1	0	Z	Z	
DCE or All ON	1	X	0	0	1	0	1	
DCE or All ON	1	X	1	1	0	1	0	
Shutdown	0	0	X	Z	Z	Z	Z	

TEST CIRCUITS

Receiver

CONFIGURATION	INPUTS			OUTPUTS		
	S1	S2	$\overline{\mathbf{0 E}}$	B - A	R1 AND R2	R3
	X	1	0	$\geq 0.2 \mathrm{~V}$	1	1
DTE or All ON	X	1	0	$\leq-0.2 \mathrm{~V}$	0	0
DCE	1	0	0	$\geq 0.2 \mathrm{~V}$	1	Z
DCE	1	0	0	$\leq-0.2 \mathrm{~V}$	0	Z
Disabled	X	X	1	X	Z	Z
Shutdown	0	0	X	X	Z	Z

Figure 1. V. 35 Transmitter/Receiver Test Circuit

Figure 2. Receiver Output Enable/Disable Timing Test Load

UITCHING TIME WAVEFORMS

Figure 3. V. 35 Transmitter Propagation Delays

Figure 4. V. 35 Receiver Propagation Delays

Figure 5. Receiver Enable and Disable Times

APPLICATIONS InFORMATION

Review of CCITT Recommendation V. 35
 Electrical Specifications

V. 35 is a CCITT recommendation for synchronous data transmission via modems. Appendix 2 of the recommendation describes the electrical specifications which are summarized below:

1. The interface cable is balanced twisted-pair with 80Ω to 120Ω impedance.
2. The transmitter's source impedance is between 50Ω and 150Ω.
3. The transmitter's resistance between shorted terminals and ground is $150 \Omega \pm 15 \Omega$.
4. When terminated by a 100Ω resistive load, the terminal-to-terminal voltage should be $0.55 \mathrm{~V} \pm 20 \%$.
5. The transmitter's rise time should be less than 1% of the signal pulse or 40 ns , whichever is greater.
6. The common-mode voltage at the transmitter output should not exceed 0.6 V .
7. The receiver impedance is $100 \Omega \pm 10 \Omega$.
8. The receiver impedance to ground is $150 \Omega \pm 15 \Omega$.
9. The transmitter or receiver should not be damaged by connection to earth ground, short-circuiting, or cross connection to other lines.
10. No data errors should occur with $\pm 2 \mathrm{~V}$ common-mode change at either the transmitter or receiver, or $\pm 4 \mathrm{~V}$ ground potential difference between transmitter and receiver.

Cable Termination

Each end of the cable connected to an LTC1345 must be terminated by either one of two electrically equivalen external Y or Δ resistor networks for proper operation. The Y-termination has two series connected 50Ω resistors anc a 125Ω resistor connected between ground and the cente) tap of the two 50Ω resistors as shown in Figure 6A.

Figure 6. Y and Δ Termination Networks
The alternative Δ-termination has a 120Ω resistor across the twisted wires and two 300Ω resistors between eact wire and ground as shown in Figure 6B. Standard 1/8W 5% surface mount resistors can be used for the terminatior network. To maintain the proper differential output swing the resistor tolerance must be 5\% or less. A terminatior network that combines all the resistors into an S0-14 package is available from:

BI Technologies (Formerly Beckman Industrial) Resistor Networks
4200 Bonita Place
Fullerton, CA 92635
Phone: (714) 447-2357
FAX: (714) 447-2500
Part \#: BI Technologies 627T500/1250 (SOIC) 899TR50/125 (DIP)

APPLICATIONS INFORMATION

Theory of Operation

The transmitter output consists of complementary switched-current sources as shown in Figure 7.

Figure 7. Simplified Transmitter Schematic

With a logic zero at the transmitter input, the inverting output Z sources 11 mA and the noninverting output Y sinks 11 mA . The differential transmitter output voltage is then set by the termination resistors. With two differential 50Ω resistors at each end of the cable, the voltage is set to $(50 \Omega \times 11 \mathrm{~mA})=0.55 \mathrm{~V}$. With a logic 1 at the transmitter input, output Z sinks 11 mA and Y sources 11 mA . The common-mode voltage of Y and Z is 0 V when both current sources are matched and there is no ground potential difference between the cable terminations. The transmitter current sources have a common-mode range of $\pm 2 \mathrm{~V}$, which allows for a ground difference between cable terminations of $\pm 4 \mathrm{~V}$.

Each receiver input has a 30 k resistance to ground and requires external termination to meet the V .35 input impedance specification. The receivers have an input hysteresis of 50 mV to improve noise immunity. The receiver output
may be forced into a high impedance state by pulling the output enable ($\overline{\mathrm{OE}}$) pin high. For normal operation $\overline{\mathrm{OE}}$ should be pulled low.
A charge pump generates the regulated negative supply voltage (V_{EE}) with three $1 \mu \mathrm{~F}$ capacitors. Commutating capacitors C 1 and C 2 form a voltage doubler and inverter while C3 acts as a reservoir capacitor. To insure proper operation, the capacitors must have an ESR less than 1Ω. Monolithic ceramic or solid tantalum capacitors are good choices. Under light loads, regulation at about -5.2 V is provided by a pulse-skipping scheme. Under heavy loads the charge pump is on continuously. A small ripple of about 500 mV will be present on $V_{E E}$.
Two Select pins, S1 and S2, configure the chip for DTE, DCE, all transmitters and receivers on, or Shutdown. In Shutdown mode, ICC drops to $1 \mu \mathrm{~A}$. The outputs of the transmitters and receivers are in high impedance states, the charge pump stops and V_{EE} is clamped to ground.

ESD Protection

LTC1345 transmitter outputs and receiver inputs have onchip protection from multiple $\pm 10 \mathrm{kV}$ ESD transients. ESD testing is done using the Human Body ESD Model. ESD testing must be done with an $A C$ ground on the $V_{C C}$ and $V_{E E}$ supply pins. The low ESR supply decoupling and $V_{E E}$ reservoir capacitors provide this AC ground during normal operation.

Complete V. 35 Port

Figure 8 shows the schematic of a complete surface mounted, single 5V DTE and DCE V. 35 port using only three ICs and eight capacitors per port. The LTC1345 is used to transmit the clock and data signals, and the LT1134A to transmit the control signals. If test signals 140, 141, and 142 are not used, the transmitter inputs should be tied to $V_{C C}$.

APPLICATIONS INFORMATION

Figure 8. Complete Single 5V V. 35 Interface

IPPLICATIONS INFORMATION

2S422/RS485 Applications

The receivers on the LTC1345 are ideal for RS422 and iS485 applications. Using the test circuit in Figure 9, the -TC1345 receivers are able to successfully reconstruct he data stream with the common-mode voltage meeting 3 S422 and RS485 requirements (12 V to -7 V).
تigures 10 and 11 show that the LTC1345 receivers are 'ery capable of reconstructing data at rates up to 10Mbaud.

Figure 9 RS422/RS485 Receiver Interface

Figure 10. -7V Common Mode

Figure 11. 12V Common Mode

NOTES
IECTION 5-INTERFACE
AppleTalk ${ }^{\text {® }}$
LTC1318, Single 5V RS232/RS422/AppleTalk ${ }^{\otimes}$ DCE Transceiver 5-70
LTC1323, Single 5V AppleTalk ${ }^{\circledR}$ Transceiver 5-77
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LT1389, AppleTalk ${ }^{\oplus}$ Peripheral Interface Transceiver 13-73

Single 5V
 RS232/RS422/AppleTalk ${ }^{\circledR}$ DCE Transceiver

features

- Single Chip Provides DCE RS232 or RS422/AppleTalk DCE Port
- Operates from a Single 5V Supply
- Charge Pump Uses $0.1 \mu \mathrm{~F}$ Capacitors
- Output Common-Mode Voltage Range Exceeds Power Supply Rails for All Drivers
- Driver Outputs Are High Impedance with Power Off
- Pin Selectable RS232/RS422 Receiver
- Thermal Shutdown Protection
- Drivers Are Short-Circuit Protected

APPLICATIONS

- Dual-Mode RS232/RS422 Peripherals
- AppleTalk Peripherals
- Single 5V Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1318$ is a single 5V, RS232/RS422 transceiver for connection to the DCE, or peripheral side of an interface link. It includes an on-board charge pump to generate a $\pm 8 \mathrm{~V}$ supply which allows true RS232 output swings. The charge pump requires only four external $0.1 \mu \mathrm{~F}$ capacitors. The LTC1318 includes two RS232 drivers, a differential RS422 driver, a dedicated RS232 receiver, and a pin selectable RS232/RS422 receiver which can receive either single-ended or differential signals.
The LTC1318 features driver outputs which can be taken to common-mode voltages outside the power supply rails without damage. Additionally, the driver outputs assume a high impedance state when the power is shut off, preventing externally applied signals from feeding back into the power supplies. The RS232 devices will operate at speeds up to 100 kb aud. The RS422 devices will operate up to 2Mbaud.
The LTC1318 is available in a 24 -lead SO Wide package.
$\overline{\mathbf{\Omega},}$ LTC and LT are registered trademarks of Linear Technology Corporation. AppleTalk and LocalTalk are registered trademarks of Apple Computer, Inc.

TYPICAL APPLICATION

7BSOLUTE MAXIMUM RATINGS

Note 1)
Jupply Voltage:
\qquad

V^{-}. -13.2V
nput Voltage:
All Drivers -0.3 to $\left(V_{C C}+0.3 \mathrm{~V}\right)$
All Receivers
\qquad - 3 to $\mathrm{VCC}+0.3 \mathrm{~V}$)

RXMODE Pin -0.3 V to $\left(\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}\right)$
Jutput Voltage:
RS232 Drivers \qquad $\left(\mathrm{V}^{+}-30 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}+30 \mathrm{~V}\right)$
RS422 Drivers
S.

All Receivers -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ jhort-Circuit Duration:

$$
\mathrm{V}^{+} \text {or } \mathrm{V}^{-} \text {to GND }
$$ 30 sec

Driver or Receiver Outputs Indefinite)perating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.ead Temperature (Soldering, 10 sec). $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

Consult factory for Industrial and Military grade parts

ELECTRICAL CHARACTERISTICS

$I_{S}=5 \mathrm{~V} \pm 5 \%, \mathrm{C} 1=\mathbf{C 2}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified. (Notes 2, 3)

;YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
iupplies							
SC	Supply Current	No Load	-		9	30	mA
$1+$	Positive Charge Pump Output Voltage	$\begin{aligned} & I_{\text {OUT }}=0 \mathrm{~mA} \\ & I_{\text {OUT }}=10 \mathrm{~mA}, V_{C C}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 7.8 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 7.4 \end{aligned}$		V
1-	Negative Charge Pump Output Voltage	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}=-5 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{array}{r} -7.3 \\ -6.3 \\ \hline \end{array}$	$\begin{aligned} & \hline-8.6 \\ & -7.3 \end{aligned}$		V

lifferential Driver

'00	Differential Driver Output Voltage	$\begin{aligned} & \text { No Load (Figure 1) } \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (Figure 1) } \end{aligned}$	\bullet	$\begin{aligned} & \pm 4 \\ & \pm 2 \end{aligned}$		V V
V_{00}	Change in Magnitude of Differential Output Voltage	$R_{L}=100 \Omega$ (Figure 1)	\bullet		0.2	V
'0c	Common-Mode Output Voltage	$\mathrm{R}_{L}=100 \Omega$ (Figure 1)	\bullet		3	V
JSS	Short-Circuit Output Current	$-1 \mathrm{~V}<\mathrm{V}_{\text {CMR }}<7 \mathrm{~V}$	\bullet	35	200	mA
'IL	Input Low Voltage		\bullet		0.8	V
IH	Input High Voltage		\bullet	2.0		V

ingle-Ended Driver

0	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}$	\bullet	± 5	$7.3 /-6.5$	V
JSS	Short-Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	\bullet	± 5	17	mA
IL	Input Low Voltage		\bullet		0.8	V
IH	Input High Voltage		\bullet	2		V
R	Output Slew Rate	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=51 \mathrm{pF}$	\bullet	4	20	30

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \pm 5 \%, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise specified. (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS

Differential Receiver

$\mathrm{V}_{\text {TH }}$	Differential Receiver Threshold		\bullet	-0.2	0.2	V
CMR	Common-Mode Input Range		\bullet	-7	7	V
	Hysteresis	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet		30	mV
RIN	Input Resistance	TA $=25^{\circ} \mathrm{C}$		3	$5 \quad 7$	$\mathrm{k} \Omega$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	$\mathrm{I}_{\text {OUT }}=-1.6 \mathrm{~mA}$			0.4	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\text {OUT }}=160 \mu \mathrm{~A}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}$	\bullet	3.5		V
Ioss	Short-Circuit Output Current	$\mathrm{V}_{0}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	\bullet	± 7	± 85	mA

Single-Ended Receiver

$\mathrm{V}_{\text {L }}$	Input Voltage Low Threshold		\bullet	0.8	1.4		V
V_{IH}	Input Voltage High Threshold		\bullet		1.8	2.4	V
	Hysteresis		\bullet	0.1	0.4	1.0	V
$\underline{\text { RIN }}$	Input Resistance	$\mathrm{TA}=25^{\circ} \mathrm{C}$		3	5	7	$\mathrm{k} \Omega$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	$\mathrm{I}_{\text {OUT }}=-4 \mathrm{~mA}$	\bullet		0.2	0.4	V
$\mathrm{V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{\text {OUT }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}$	\bullet	3.5	4.8		-V
Ioss	Short-Circuit Output Current	$\mathrm{V}_{0}=\mathrm{GND}$ or $\mathrm{V}_{\text {CC }}$	-	± 7		± 85	mA
VILRXM	RXMODE Input Low Voltage		\bullet	0.8	1.6		V
$\underline{V_{\text {IHRXM }}}$	RXMODE Input High Voltage	-	-		1.6	2.0	V
IINRXM	RXMODE Input Current	$\mathrm{V}_{\text {IN }}=O \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$	\bullet			± 2	$\mu \mathrm{A}$

Switching Characteristics

$t_{P L H, H L}$	Differential Driver Propagation Delay	$R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$ (Figures 2,3)	\bullet	35	100	ns
$t_{\text {SKEW }}$	Differential Driver Output to Output	$R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$ (Figures 2,3)	\bullet	5	35	ns
$t_{R, F}$	Differential Driver Rise, Fall Time	$R_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$ (Figures 2,3)	\bullet	15	50	ns
$t_{\text {PLH,HL }}$	Differential Receiver Propagation Delay	$C_{L}=15 p F$, (Figures 4)	\bullet	110	200	ns
$\mathrm{t}_{\text {SEL }}$	Receiver Mode Switching Time		\bullet	25	100	ns

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: All currents into device pins are negative, all currents out of device pins are positive. All voltages are referenced to ground unless otherwise specified.
Note 3: All typicals are given at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

RS422 Driver Differential Output Swing vs Load Current

RS232 Driver Slew Rate vs Load Capacitance

Charge Pump Output Voltage vs Load Current

1318602
RS422 Driver Single-Ended Output Swing vs Load Current

13 G05
RS232 Driver Output Swing vs Resistive Load

TTL Input Threshold vs Temperature

1318 G03

RS422 Driver Short-Circuit Current vs Temperature

$1318 G 06$
RS232 Driver Short-Circuit Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

pin functions

\mathbf{V}^{+}(Pin 1): Charge Pump Positive Output. This pin requires a $0.1 \mu \mathrm{~F}$ capacitor to ground. Under normal operation this pin maintains a voltage of about 8.8 V above ground. An external load can be connected between this pin and ground or V^{-}.
C1 ${ }^{+}$, C1 $^{-}$(Pins 2, 3): C1 Inputs. Connect a $0.1 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.

RXI1 (Pin 4): First RS232 Single-Ended Receiver Input. This is an inverting receiver.

TX01, TX02 (Pins 5,6): RS232 Single-Ended Driver Outputs.
$V_{\text {CC }}$ (Pin 7): Positive Supply Input. Apply $4.75 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq$ 5.25 V to this pin. A $0.1 \mu \mathrm{~F}$ bypass capacitor is required.
$\mathbf{R X D}^{+}($Pin 8): When RXMODE (pin 15) is low, this pin acts as the differential RS422 receiver positive input. When RXMODE is high, this pin is disabled.
RXD-/RXI2 (Pin 9): When RXMODE (pin 15) is low, this pin acts as the differential RS422 receiver negative input. When RXMODE is high, this pin acts as the second RS232 receiver input. The receiver is inverting in RS232 mode.
TXD+ (Pin 10): Differential RS422 Driver Noninverting Output.

TXDㄹ (Pin 11): Differential RS422 Driver Inverting Output. NC (Pins 12,13): No Internal Connection.
GND (Pins 14, 18): Power Supply Ground. Connect both pins to each other and to the ground.
RXMODE (Pin 15): This pin controls the state of the differential/single-ended receiver. When RXMODE is low, the receiver is in differential mode and will receive RS422 compatible signals at RXD^{+}and $\mathrm{RXD}^{-} / \mathrm{RXI} 2$ (pins 8 and 9). When RXMODE goes high, the receiver enters single-ended mode and will receive RS232 compatible signals at $\mathrm{RXD}^{-} / \mathrm{RXI} 2 . \mathrm{RXD}{ }^{+}$is disabled in single-ended mode. Both modes use the RXDO/RX02 pin (pin 17) as their output.
TXD (Pin 16): Differential RS422 Driver Input (TTL Compatible).
RXDO/RX02 (Pin 17): This is the output of the configurable differential/single-ended receiver.

TXI1, TXI2 (Pins 20, 19): RS232 Driver Inputs (TTL Compatible). Both are inverting inputs.
RX01 (Pin 21): First RS232 Receiver Outputs (TTL compatible).

pin functions

C2 ${ }^{+}$, C2$^{-}$(Pins 22, 23): C2 inputs. Connecta $0.1 \mu F$ capacitor between C^{+}and $\mathrm{C2}^{-}$.
\mathbf{V}^{-}(Pin 24): Charge Pump Negative Output. This pin requires a $0.1 \mu \mathrm{~F}$ capacitor to ground. Under normal opera-
tion, this pin maintains a voltage of about 8.6 V below ground. An external load can be connected between this pin and ground or V^{+}.

TEST CIRCUITS

Figure 1.

Figure 2.

sWITCHInG WAVGFORMS

Figure 3. Differential Driver

Figure 4. Differential Receiver

APPLICATION INFORMATION

Interface Standards

The LTC1318 provides compatibility with both RS232 and RS422/AppleTalk/LocalTalk standards in a single chip, enabling a system to communicate using either protocol as necessary. The LTC1318 provides two RS232 singleended drivers, one RS422 differential driver, and two receivers. One of the receivers is a dedicated RS232 single-ended receiver, while the other can be configured for RS232 (single-ended) or RS422 (differential) operation by controlling the logic state of the select pin. All single-ended drivers and receivers meet the RS232C specification for output swing, load driving capacity and input range, and can additionally transmit and receive signals as high as 100 kbaud . The differential driver and receiver can interface to both RS422 and AppleTalk networks, and can transmit and receive signals at rates exceeding 2Mbaud.

Fault Protection

The LTC1318 incorporates many protection features to make it as "bustproof" as possible. All driver outputs and receiver inputs are protected against ESD strikes to $\pm 6 \mathrm{KV}$, eliminating the need for external protection devices in most applications. All driver outputs can be taken outside the power supply rails without damage and will not allow current to be forced back into the supplies, preventing the output fault from affecting other logic circuits using the same power supply. Additionally, the driver outputs enter a high impedance state when the power is removed, preventing the system from loading the data lines when it is shut off. All driver and receiver outputs are protected against short circuits to ground or to the supply rails.

Charge Pump Power Supply

The LTC1318 includes an on-board charge pump to generate the voltages necessary for true RS232 compatible output swing. This charge pump requires just four external $0.1 \mu \mathrm{~F}$ capacitors to operate; two flying caps connected
to the $\mathrm{C1}^{+} / \mathrm{C1}^{-}$and $\mathrm{C2}^{+} / \mathrm{C} 2^{-}$pins, and two hold caps, one from V^{+}to ground and one from V^{-}to ground. The charge pump has enough extra capacity to drive light external loads and still meet RS232 specifications; it will support a 10 mA load from V^{+}to ground or a 5 mA from V^{+}to V^{-} (Figure 5).

Figure 5.

Configurable RS422/RS232 Receiver

There are two line receivers in the LTC1318. One is a dedicated RS232 receiver; the other can receive both single-ended RS232 signals and differential RS422 signals. This second receiver has two inputs: RXD ${ }^{+}$(pin 8) and RXD^{-}(pin 9) to accept differential signals. The RXD ${ }^{+}$ input is disabled in single-ended mode. The receiver mode is set by the RXMODE (pin 15). A low level on RXMODE configures the receiver in differential mode; it accepts input at RXD^{+}and RXD^{-}and outputs the data at RXDO (pin 17). A high level at RXMODE forces the receiver into single-ended mode; RXD ${ }^{+}$is disabled, pin 9 switches identity from RXD ${ }^{-}$to RXI2, and pin 17 switches from RXDO to RXO2, the single-ended data output. In this mode the receiver accepts RS232 signals at RXI2 and outputs the data through RX02. The receiver becomes inverting in single-ended mode. This receiver can switch between its two modes within 100 ns , allowing the system to sense the input signal and configure itself accordingly.

Single 5V AppleTalk ${ }^{\circledR}$ Transceiver

features

\author{

- Single Chip Provides Complete LocalTalk ${ }^{\oplus}$ /AppleTalk Port
 - Operates From a Single 5V Supply
 - ESD Protection to $\pm 10 \mathrm{kV}$ on Receiver Inputs and Driver Outputs
 - Low Power: Icc = 2.4mA Typ
 - Shutdown Pin Reduces Icc to $0.5 \mu \mathrm{~A}$ Typ
 - Receiver Keep-Alive Function: $I_{c C}=65 \mu$ A Typ
 - Differential Driver Drives Either Differential AppleTalk or Single-Ended EIA562 Loads
 - Drivers Maintain High Impedance in Three-State or with Power Off
 - Thermal Shutdown Protection
 - Drivers are Short-Circuit Protected
}

APPLICATIONS

- LocalTalk Peripherals
- Notebook/Palmtop Computers
- Battery-Powered Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1323$ is a multi-protocol linetransceiver designed to operate on AppleTalk or EIA562-compatible singleended networks while operating from a single 5 V supply. There are two versions of the LTC1323 available: a 16 -pin version designed to connect to an AppleTalk network, and a 24 -pin version which also includes the additional single-ended drivers and receivers necessary to create an Apple-compatible serial port. An on-board charge pump generates a -5 V supply which can be used to power external devices. Additionally, the 24-pin LTC1323 features a micropower keep-alive mode during which one of the single-ended receivers is kept active to monitor external wake-up signals. The LTC1323 draws only 2.4 mA quiescent current when active, $65 \mu \mathrm{~A}$ in receiver keepalive mode, and $0.5 \mu \mathrm{~A}$ in shutdown, making it ideal for use in battery-powered systems.
The differential driver can drive either differential AppleTalk loads or conventional single-ended loads. The driver outputs three-state when disabled, during shutdown, in receiver keep-alive mode, or when the power is off. The driver outputs will maintain high impedance even with output common-mode voltages beyond the power supply rails. Both the driver outputs and receiver inputs are protected against ESD damage to $\pm 10 \mathrm{kV}$.

TYPICAL APPLICATION

absolute maximum ratings

Supply Voltage (VCC) ... 7 V
Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Logic Inputs \qquad
Receiver Inputs \qquad
Driver Output Voltage (Forced)

Driver Short-Circuit Duration Indefinite Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

package/order information

Consult factory for Industrial and Military grade parts.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Supplies							
$I_{C C}$	Normal Operation Supply Current	$\begin{aligned} & \text { No Load, SHDN }=0 \mathrm{~V}, \overline{\mathrm{CPEN}}=0 \mathrm{~V}, \overline{\mathrm{TXDEN}}=0 \mathrm{~V}, \\ & \overline{\mathrm{RXEN}}=0 \mathrm{~V} \end{aligned}$	-		2.4	4	mA
	Receiver Keep-Alive Supply Current	$\begin{aligned} & \text { No Load, SHDN }=0 \mathrm{~V}, \overline{\mathrm{CPEN}}=\mathrm{V}_{C C}, \overline{\mathrm{TXDEN}}=0 \mathrm{~V}, \\ & \overline{\mathrm{RXEN}}=0 \mathrm{~V} \end{aligned}$	\bullet		65	100	$\mu \mathrm{A}$
	Shutdown Supply Current	$\begin{aligned} & \text { No Load, SHDN }=V_{\text {CC }}, \overline{\mathrm{CPEN}}=\mathrm{X}, \overline{\mathrm{TXDEN}}=\mathrm{X}, \\ & \overline{\text { RXEN }}=0 \mathrm{~V} \end{aligned}$	\bullet		0.5	10	$\mu \mathrm{A}$
$\overline{V_{E E}}$	Negative Supply Output Voltage	$\begin{array}{\|l\|} \hline \mathrm{L}_{\text {LOAD }} \leq 10 \mathrm{~mA}(\text { Note 4), } \\ V_{C C}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (Figure 1), } \\ \mathrm{TXI}^{2} V_{C C}, \mathrm{R}_{T X O}=3 \mathrm{k} \text { (Figure 5) } \\ \hline \end{array}$	\bullet	-5.5	-5	-4.5	V
fosc	Charge Pump Oscillator Frequency				200		kHz

Differential Driver

$V_{O D}$	Differential Output Voltage	No Load $R_{L}=100 \Omega$ (Figure 1)	± 8 ± 2	V
$\Delta V_{O D}$	Change in Magnitude of Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Figure 1)	0.2	V

Differential Driver

Voc	Differential Common-Mode Output Voltage	$R_{L}=100 \Omega$		3			V
$\mathrm{V}_{0 S}$	Single-Ended Output Voltage	No Load $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \text { to } \mathrm{GND}$	\bullet	$\begin{aligned} & \pm 4.0 \\ & \pm 3.7 \end{aligned}$			V
$V_{\text {CMR }}$	Common-Mode Range	SHDN $=\mathrm{V}_{\text {CC }}$ or $\overline{\text { CPEN }}=\mathrm{V}_{\text {CC }}$ or Power Off	\bullet			± 10	V
ISS	Short-Circuit Current	$-5 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$	\bullet	35	120	500	mA
102	Three-State Output Current	$\begin{aligned} & \text { SHDN }=V_{C C} \text { or } \overline{\text { CPEN }}=V_{C C} \text { or Power Off, } \\ & -10 \mathrm{~V} \leq V_{0} \leq 10 \mathrm{~V} \end{aligned}$	\bullet		± 2	± 200	$\mu \mathrm{A}$

Single-Ended Driver (Note 5)

$\mathrm{V}_{\text {OS }}$	Single-Ended Output Voltage	No Load $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \text { to } \mathrm{GND}$	\bullet	$\begin{aligned} & \pm 4.5 \\ & \pm 3.7 \end{aligned}$			V
$V_{\text {CMR }}$	Common-Mode Range	$\begin{aligned} & \text { SHDN }=V_{C C} \text { or } \overline{C P E N}=V_{\text {CC }} \text { or } \overline{T X D E N}=V_{C C} \\ & \text { or Power Off } \end{aligned}$	\bullet			± 10	V
ISS	Short-Circuit Current	$-5 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$	\bullet	35	220	500	mA
$10 Z$	Three-State Output Current	SHDN $=V_{C C}$ or $\overline{\text { CPEN }}=V_{C C}$ or $\overline{\text { TXDEN }}=V_{C C}$ or Power Off, $-10 \mathrm{~V} \leq \mathrm{V}_{0} \leq 10 \mathrm{~V}$	\bullet		± 2	± 200	$\mu \mathrm{A}$

Receivers

$\underline{\mathrm{RIN}^{\text {I }}}$	Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	\bullet	12			$\frac{\mathrm{k} \Omega}{\mathrm{mV}}$
	Differential Receiver Threshold Voltage	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$	\bullet	-200		200	
	Differential Receiver Input Hysteresis	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$	\bullet		70		mV
	Single-Ended Input, Low Voltage	(Note 5)	\bullet			0.8	V
	Single-Ended Input, High Voltage	(Note 5)	\bullet	2			V
$\mathrm{V}_{\text {OH }}$	Output High Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}$	\bullet	3.5			V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}$	\bullet			0.4	V
ISS	Output Short-Circuit Current	$-5 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$	\bullet	7		85	mA
102	Output Three-State Current	$-5 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}, \overline{\mathrm{RXEN}}=\mathrm{V}_{\text {CC }}$	\bullet		± 2	± 100	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Notes 2 and 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Logic Inputs							
$\mathrm{V}_{\text {IH }}$	Input High Voltage	All Logic Input Pins	\bullet	2.0			V
VIL	Input Low Voltage	All Logic Input Pins	\bullet			0.8	V
${ }_{\text {I }}$	Input Current	All Logic Input Pins	\bullet		± 1.0	± 20	$\mu \mathrm{A}$

Switching Characteristics

tplh, $^{\text {t }}$ PHL	Differential Driver Propagation Delay	$\mathrm{R}_{L}=100 \Omega, C_{L}=100 \mathrm{pF}$ (Figures 2, 7)	\bullet	40	120	ns
	Differential Driver Propagation Delay with Single-Ended Load	$R_{L}=3 \mathrm{k}, \mathrm{C}_{L}=100 \mathrm{pF}$ (Figures 3, 9)	\bullet	120	180	ns
	Single-Ended Driver Propagation Delay	$\mathrm{R}_{L}=3 \mathrm{k}, \mathrm{C}_{L}=100 \mathrm{pF}$, (Figures 5, 10) (Note 5)	\bullet	40	120	ns
	Differential Receiver Propagation Delay	$\mathrm{C}_{L}=15 \mathrm{pF}$ (Figures 2, 11)	\bullet	70	160	ns
	Single-Ended Receiver Propagation Delay	$C_{L}=15 \mathrm{pF}($ Figures 6, 12) (Note 5)	\bullet	70	160	ns
	Inverting Receiver Propagation Delay in Keep-Alive Mode, $\mathrm{SHDN}=0 \mathrm{~V}, \overline{\mathrm{CPEN}}=\mathrm{V}_{\mathrm{CC}}$	$C_{L}=15 \mathrm{pF}$ (Figures 6, 12) (Note 5)	-	150	600	ns
tskew	Differential Driver Output to Output	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 2, 7)	\bullet	10	50	ns
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Differential Driver Rise/Fall Time	$R_{L}=100 \Omega, C_{L}=100 p F$ (Figures 2, 7)	\bullet	50	150	ns
	Differential Driver Rise/Fall Time with Single-Ended Load	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 3, 9)	\bullet	50	150	ns
	Single-Ended Driver Rise/Fall Time	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 5, 10) (Note 5)	\bullet	15	80	ns
thDIS, ${ }_{\text {LDIS }}$	Differential Driver Output Active to Disable	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 4, 8)	-	180	250	ns
	Any Receiver Output Active to Disable	$\mathrm{C}_{L}=15 \mathrm{pF}$ (Figures 4, 13)	\bullet	30	100	ns
$\mathrm{t}_{\text {ENH }}, \mathrm{t}_{\text {ENL }}$	Differential Driver Enable to Output Active	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 4, 8)	\bullet	180	250	ns
	Any Receiver, Enable to Output Active	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (Figures 4, 13)	\bullet	30	100	ns
$\mathrm{V}_{\text {EER }}$	Supply Rise Time from Shutdown or Receiver Keep-Alive	$\mathrm{C} 1=\mathrm{C} 2=0.33 \mu \mathrm{~F}, \mathrm{CVEEE}=1 \mu \mathrm{~F}$	\bullet	0.2		ms

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 3: All typicals are given at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: I LOAD is an external current being sunk into the $V_{E E}$ pin.
Note 5: These specifications apply to the 24 -pin SO Wide package only.

TYPICAL PGRFORMAOCE CHARACTERISTICS

Charge Pump Output Voltage
vs Load Current

Supply Current vs Temperature

Differential Driver Swing vs Load Resistance

Differential Driver Swing vs Temperature

LTC1323•TPC05

Single-Ended Driver Swing vs Load Resistance

Single-Ended Driver Swing vs Temperature

LTC1323 •TPCO6

PIn functions

C1: C1 Positive Input. Connect a $0.33 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.

C1-: C1 Negative Input. Connect a $0.33 \mu \mathrm{~F}$ capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
$\overline{\text { CPEN: }}$:TLL Level Charge Pump Enable Input. With CPEN held low, the charge pump is enabled and the chip operates normally. When CPEN is pulled high, the charge pump is disabled as well as both drivers, the noninverting single-ended receiver, and the differential receiver. The inverting single-ended receiver (RXI) is kept alive to monitor the control line and $I_{C C}$ drops to $65 \mu \mathrm{~A}$. To turn off the receiver and drop I_{CC} to $0.5 \mu \mathrm{~A}$, pull the SHDN pin high.
TXD: Differential Driver Input (TTL compatible).
TXI: Single-Ended Driver Input (TTL compatible).
TXDEN: Differential Driver Output Enable (TTL compatible). A high level on this pin forces the differential driver into three-state; a low level enables the driver. This input does not affect the single-ended driver.
SHDN: Shutdown Input (TTL compatible). When this pin is high, the chip is shut down. All driver and receiver outputs are three-state, the charge pump turns off, and the supply current drops to $0.5 \mu \mathrm{~A}$. A low level on this pin allows normal operation.

RXEN: Receiver Enable (TTL compatible). A high level on this pin disables the receivers and three-states the logic outputs; a low level allows normal operation.
RXO: Inverting Single-Ended Receiver Output. Remains active in the receiver keep-alive mode.
RXO: Noninverting Single-Ended Receiver Output.
RXDO: Differential Receiver Output.
GND: Signal Ground. Connect to PGND with 24-pin package.
PGND: Power ground is connected internally to the charge pump and differential driver. Connect to the GND pin.
RXD ${ }^{+}$: Differential Receiver Noninverting Input. When this pin is $\geq 200 \mathrm{mV}$ above RXD^{-}, RXDO will be high; when this pin is $\geq 200 \mathrm{mV}$ below RXD^{-}, RXDO will be low.
RXD-: Differential Receiver Inverting Input.
RXI: Noninverting Receiver Input. This input controls the RXO output.
$\overline{\mathrm{RXI}}$: Inverting Receiver Input. This input controls the $\overline{\mathrm{RXO}}$ output. In receiver keep-alive mode (CPEN high, SHDN low), this receiver can be used to monitor a wake-up control signal.

PIn functions

TXO: Single-Ended Driver Output.
TXD+: Differential Driver Noninverting Output.
TXD ${ }^{-}$: Differential Driver Inverting Output.
$\mathbf{V E E}_{\mathrm{EE}}$: Negative Supply Charge Pump Output. Requires a $1 \mu \mathrm{~F}$ bypass capacitor to ground. If an external load is connected to the $\mathrm{V}_{\mathrm{EE}} \mathrm{pin}$, the bypass capacitor value should be increased to 4.7μ F.

C2 ${ }^{-}$: C2 Negative Input. Connect a $0.33 \mu \mathrm{~F}$ capacitor between C^{+}and C^{-}.

C2+: C2 Positive Input. Connect a $0.33 \mu \mathrm{~F}$ capacitor between C^{+}and $\mathrm{C2}^{-}$.
$\mathrm{V}_{\text {CC }}$: Positive Supply Input. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$. Requires a $1 \mu \mathrm{~F}$ bypass capacitor to ground.

TEST CIRCUITS

Figure 1

Figure 2

Figure 3

Figure 4

SWITCHInG WAVEfORMS

Figure 7. Differential Driver

SWITCHInG WAVGfORms

Figure 8. Differential Driver Enable and Disable

Figure 9. Differential Driver With Single-Ended Load

Figure 10. Single-Ended Driver

Figure 11. Differential Receiver

SWITCHInG WAVEfORMS

Figure 12. Single-Ended Receiver

Figure 13. Receiver Enable and Disable

APPLICATIONS INFORMATION

Functional Description

The "serial port" on the back of an Apple-compatible computer or peripheral is a fairly versatile "multi-protocol" connector. It must be able to connect to a wide bandwidth LAN (an AppleTalk/LocalTalk network), which requires a high speed differential transceiver to meet the AppleTalk specification, and it must also be able to connect directly to a printer or modem through a short RS232 style link. The LTC1323 is designed to provide all the functions necessary to implement such a port on a single chip. Two versions of the LTC1323 are available: a 16 -pin SO version which provides the minimum solution for interfacing to an AppleTalk network in a smaller package, and a larger 24-pin SO Wide version which additionally includes all the handshaking lines required to implement a complete AppleTalk/ modem/printer serial port. All LTC1323s run from a single 5 V power supply while providing true single-ended compatibility, and include a $0.5 \mu \mathrm{~A}$ low power shutdown mode
to improve lifetime in battery-powered devices. The 24pin SO Wide version also includes a receiver keep-alive mode for monitoring external signals while drawing $65 \mu \mathrm{~A}$ typically.

The LTC1323 includes an RS422-compatible differential driver/receiver pair for data transmission, with the driver specified to drive 2 V into the 100Ω primary of a typical LocalTalk interface transformer/RFI interference network. Either output of the differential RS422 driver can also act as an single-ended driver, allowing the LTC1323 to communicate over a standard serial connection. The 24-pin SO Wide LTC1323 also includes an extra single ended only driver and two extra RS232-compatible single-ended receivers for handshaking lines. All versions include an onboard charge pump to provide a regulated -5 V supply required for the single-ended drivers. The charge pump can also provide up to 10 mA of external load current to power other circuitry.

APPLICATIONS INFORMATION

Driving Differential AppleTalk or Single-Ended Loads

The differential driver is able to drive either an AppleTalk load or a single-ended load such as a printer or modem. With a differential AppleTalk load, TXD ${ }^{+}$and TXD ${ }^{-}$will typically swing between 1.2 V and 3.5V (Figure 14a). With a single-ended 3 k load such as a printer, either TXD ${ }^{+}$or TXD ${ }^{-}$will meet the single-ended voltage swing requirement of $\pm 3.7 \mathrm{~V}$ (Figure 14b). An automatic switching circuit prevents the differential driver from overloading the charge pump if the outputs are shorted to ground while driving single-ended signals. This allows the second single-ended driver to continue to operate normally when the first is shorted, and allows external circuitry attached to the charge pump output to continue to operate even if there are faults at the driver outputs.

Figure 14

Thermal Shutdown Protection

The LTC1323 includes a thermal shutdown circuit which protects against prolonged shorts at the driver outputs. If a driver output is shorted to another output or to the power supply, the current will be initially limited to a maximum of 500 mA . When the die temperature rises above $150^{\circ} \mathrm{C}$, the thermal shutdown circuit disables the driver outputs. When the die cools to about $130^{\circ} \mathrm{C}$, the outputs are reenabled. If the short still exists, the part will heat again and the cycle will repeat. This oscillation occurs at about 10 Hz and prevents the part from being damaged by excessive power dissipation. When the short is removed, the part will return to normal operation.

Power Shutdown

The power shutdown feature of the LTC1323 is designed for battery-powered systems. When SHDN is forced high the part enters shutdown mode. In shutdown the supply current typically drops from 2.4 mA to $0.5 \mu \mathrm{~A}$, the charge pump turns off, and the driver and receiver outputs are three-stated.

Receiver Keep-Alive Mode (24-Pin SO Wide Only)

The 24-pin SO Wide version of the LTC1323 also features a power saving receiver keep-alive mode. When CPEN is pulled high the charge pump is turned off and the outputs of both drivers, the noninverting single-ended receiver and the differential receiver are forced into three-state. The inverting single-ended receiver ($\overline{\mathrm{RXI}}$) is kept alive with ICC dropping to $65 \mu \mathrm{~A}$ and the receiver delay time increasing to a maximum of 400 ns . The receiver can then be used to monitor a wake-up control signal.

Charge Pump Capacitors and Supply Bypassing

The LTC1323 requires two external $0.33 \mu \mathrm{~F}$ capacitors for the charge pump to operate: one from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$and one from C^{+}to C^{-}. These capacitors should be low ESR types and should be mounted as close as possible to the LTC1323. Monolithic ceramic capacitors work well in this application. Do not use capacitors greater than $2 \mu \mathrm{~F}$ at the charge pump pins or internal peak currents can rise to destructive levels. The LTC1323also requires that both $V_{C C}$ and $V_{E E}$ be well bypassed to ensure proper charge pump operation and prevent data errors. A $1 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\text {CC }}$ to ground is adequate. $\mathrm{A} 1 \mu \mathrm{~F}$ capacitor is required from $V_{E E}$ to ground and should be increased to $4.7 \mu \mathrm{~F}$ if an external load is connected to the V_{EE} pin. Ceramic or tantalum capacitors are adequate for power supply bypassing; aluminum electrolytic capacitors should only be used if their ESR is low enough for proper charge pump operation. Inadequate bypass or charge pump capacitors will cause the charge pump output to go out of regulation prematurely, degrading the output swing at the SINGLEENDED driver outputs.

APPLICATIONS INFORMATION

Driving an External Load from V_{EE}

An external load may be connected between ground and the $\mathrm{V}_{\text {EE }}$ pin as shown in Figure 15. The LTC1323 V_{EE} pin will sink up to a maximum of 10 mA while maintaining the pin voltage between -4.5 V and -5.5 V . If an external load is connected, the V_{EE} bypass capacitor should be increased to $4.7 \mu \mathrm{~F}$. Both LTC1323 and the external chip should have separate $V_{C C}$ bypass capacitors but can share the V_{EE} capacitor.

EMI Filter

Most LocalTalk applications use an electromagnetic interference (EMI) filter consisting of a resistor-capacitor T network between each driver and receiver and the connector. Unfortunately, the resistors significantly attenuate the drivers output signals before they reach the cable. Because

the LTC1323 uses a single supply differential driver, the resistor values should be reduced to 5Ω to 10Ω to guarantee adequate voltage swing on the cable (Figure 16a). In most applications, removing the resistors completely does not cause an increase in EMI as long as a shielded connector and cable are used (Figure 16b). With the resistors removed the only DC load is the primary resistance of the LocalTalk transformer. This will increase the DC standby current when the driver outputs are active, but does not adversely affect the drivers because they can handle a direct indefinite short circuits without damage. Transformer primary resistance should be above 15Ω to keep the LTC1323 operating normally and prevent it from entering thermal shutdown. For maximum swing and EMI immunity, a ferrite bead and capacitor T network can be used (Figure 16c).

Figure 16. EMI Filters

TYPICAL APPLICATION

Typical LocalTalk Connection

NOTES

SECTION 5—INTERFACE

INFRARED
LT1319, Multiple Modulation Standard Infrared Receiver ... 5-90

feATURES

- Receives Multiple IR Modulation Methods
- Low Noise, High Speed Preamp: $2 \mathrm{pA} / \sqrt{\mathrm{Hz}}, 7 \mathrm{MHz}$
- Low Frequency Ambient Rejection Loops
- Dual Gain Channels: $8 \mathrm{MHz}, 400 \mathrm{~V} / \mathrm{V}$
- 25 ns and 60 ns Comparators
- 16-Lead SO Package
- 5V Single Supply Operation
- Supply Current: 14 mA
- Shutdown Supply Current: $500 \mu \mathrm{~A}$
- External Comparator Threshold Setting

MODULATION STANDARDS

- IRDA: SIR, FIR
- Sharp/Newton
- TV Remote
- High Data Rate Modulation Methods

DESCRIPTION

The $L T^{\circledR} 1319$ is a general purpose building block that contains all the circuitry necessary to transform modulated photodiode signals back to digital signals. The circuit's flexibility permits it to receive multiple modulation methods. A low noise, high frequency preamplifier performs a current-to-voltage conversion while rejecting low frequency ambient interference with an AC coupling loop. Two separate high impedance filter buffer inputs are provided so that off-chip filtering can be tailored for specific modulation schemes. The filterbuffers drive separate differential gain stages that end in comparators with internal hysteresis. The comparator thresholds are adjustable externally by the current into pin 11 . One channel has a high speed 25 ns comparator required for high data rates. The second channel's comparator has a 60 ns response time and is well suited to more modest data rates. A power saving shutdown feature is useful in portable applications.

[^43]
TYPICAL APPLICATION

IRDA and Sharp/Newton Data Receiver

absolute maximum ratings

PACKAGE/ORDER InFORMATION
Total Supply Voltage (VCC to GND) 6 V
Differential Voltage (Any Two Pins) 6 V
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Operating Temperature Range

\qquad
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Specified Temperature Range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

\qquad
$300^{\circ} \mathrm{C}$

Consult factory for Industrial or Military grade parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{15}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{12}=\mathrm{VV}, \mathrm{V}_{6}=\mathrm{V}_{8}=\mathrm{V}_{14}=2 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VOS	Preamp Input Offset Voltage	$V($ Pin 2$)-V($ Pin 5$)$		4	15	mV
	Preamp Output Offset Voltage	$V(\operatorname{Pin} 4)-V(\operatorname{Pin} 5)$		10	25	mV
	Preamp Loop Offset Voltage	$V(\operatorname{Pin} 3)-V(\operatorname{Pin} 5)$	50	150	250	mV
	High Gain Loop Offset Voltage	$V(\operatorname{Pin} 9)-V(\operatorname{Pin} 5)$	600	800	950	mV
	Low Gain Loop Offset Voltage	$V($ Pin 7$)-V($ Pin 5$)$	600	800	950	mV
Avp	Preamp Transimpedance	$\pm 10 \mu \mathrm{~A}$ Into Pin 2, Measure ΔV (Pin 4), Fix Pin 3	10	15	17	k Ω
	Preamp Output Swing, Positive Preamp Output Swing, Negative	$100 \mu \mathrm{~A}$ Out of Pin 2, Measure $\Delta V(\operatorname{Pin} 4)$, Fix Pin 3 $100 \mu \mathrm{~A}$ Into Pin 2, Measure ΔV (Pin 4), Fix Pin 3	$\begin{array}{r} 0.25 \\ -0.55 \end{array}$	$\begin{array}{r} 0.4 \\ -0.4 \end{array}$	$\begin{array}{r} 0.55 \\ -0.25 \end{array}$	V
BWP	Preamp Bandwidth	$\mathrm{C}($ Pin 3$)=1 \mu \mathrm{~F}$, Measure $f_{-3 \mathrm{~dB}}$		7		MHz
$\underline{i_{n}}$	Preamp Input Noise Current	$\mathrm{C}($ Pin 3$)=1 \mu \mathrm{~F}, \mathrm{f}=10 \mathrm{kHz}$		2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	Preamp Loop Rejection, Positive Preamp Loop Rejection, Negative	$50 \mu \mathrm{~A}$ Into $\operatorname{Pin} 2$, Measure $\Delta \mathrm{V}(\operatorname{Pin} 4)$ $50 \mu \mathrm{~A}$ Out of Pin 2, Measure ΔV (Pin 4)	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{array}{r} -1 \\ 1 \end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	mV mV
	Preamp Loop Output Current, Positive Preamp Loop Output Current, Negative	100 A A Out of Pin 2, Measure I (Pin 3), (Note 1) $100 \mu \mathrm{~A}$ Into Pin 2, Measure I (Pin 3), (Note 1)	$\begin{array}{r} -150 \\ 50 \end{array}$	$\begin{array}{r} -100 \\ 100 \end{array}$	$\begin{array}{r} -50 \\ 150 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {BIAS }}$	Bias Voltage	V (Pin 5)	1.7	1.9	2.1	V
V BYPASS	Bypass Voltage	V (Pin 16)	4.75	4.9	4.95	V
I_{B}	Filter Buffer Input Bias Current	I (Pin 6), I (Pin 8)	0.1	0.5	1.4	$\mu \mathrm{A}$
R IN	Filter Buffer Input Resistance	$\Delta V=0.1 \mathrm{~V}$, Measure $\Delta \mathrm{I}_{\mathrm{B}}$ Pin 6, Pin 8		40		$\mathrm{M} \Omega$
	Gain Stage Loop Rejection, Positive Gain Stage Loop Rejection, Negative	$\Delta V=50 \mathrm{mV}(\operatorname{Pin} 6, \operatorname{Pin} 8)$, Measure $\Delta V(\operatorname{Pin} 7, \operatorname{Pin} 9)$ $\Delta V=-50 \mathrm{mV}(\operatorname{Pin} 6, \operatorname{Pin} 8)$, Measure $\Delta V(\operatorname{Pin} 7, \operatorname{Pin} 9)$	$\begin{array}{r} 0.33 \\ -0.57 \end{array}$	$\begin{array}{r} 0.45 \\ -0.45 \end{array}$	$\begin{array}{r} 0.57 \\ -0.33 \end{array}$	V
AVG	Gain Stages Voltage Gain	(Note 2)		400		V/V
BW_{G}	Gain Stages Bandwidth	$C(\operatorname{Pin} 7)=C(\operatorname{Pin} 9)=1 \mu \mathrm{~F}$		8		MHz
t_{r}	Fast Comparator Response Time Slow Comparator Response Time	10 mV Overdrive 10 mV Overdrive		$\begin{aligned} & 25 \\ & 60 \end{aligned}$		ns ns
$\overline{V_{\text {HYS }}}$	Fast Comparator Hysteresis Voltage Slow Comparator Hysteresis Voltage	(Note 3) (Note 3)		$\begin{aligned} & 35 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V_{OH}	Fast Comparator Output High Voltage Slow Comparator Output High Voltage	$\begin{aligned} & \Delta V(\text { Pin } 9)=-200 \mathrm{mV}, 1 \mathrm{~mA} \text { Out of Pin } 10 \text { (Note 4) } \\ & \Delta V(\operatorname{Pin} 7)=-200 \mathrm{mV}, 0.1 \mathrm{~mA} \text { Out of Pin } 13 \text { (Note 4) } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.9 \end{aligned}$		V
$\mathrm{V}_{0 \mathrm{~L}}$	Fast Comparator Output Low Voltage Slow Comparator Output Low Voltage	$\Delta V(\operatorname{Pin} 9)=200 \mathrm{mV}, 800 \mu \mathrm{~A}$ Into Pin 10 $\Delta V($ Pin 7$)=200 \mathrm{mV}, 800 \mu \mathrm{~A}$ Into Pin 13		$\begin{aligned} & 0.35 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{15}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{12}=0 \mathrm{~V}, \mathrm{~V}_{6}=\mathrm{V}_{8}=\mathrm{V}_{14}=2 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Threshold Transimpedance	$100 \mu \mathrm{~A}$ Into Pin 11 (Note 5)		2		k Ω
$\mathrm{V}_{\text {TH }}$	Threshold External Voltage	$100 \mu \mathrm{~A}$ Into Pin 11, V (Pin 11)	0.8	0.9	1.2	V
$\mathrm{V}_{\text {IH }}$	Shutdown Input High Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Shutdown Input Low Voltage				0.8	V
$\underline{\text { IH }}$	Shutdown Input High Current	$V(\operatorname{Pin} 14)=2.4 \mathrm{~V}$	-140	-60	-10	$\mu \mathrm{A}$
IL	Shutdown Input Low Current	$\mathrm{V}($ Pin 14) $=0.4 \mathrm{~V}$	-400	-260	-130	$\mu \mathrm{A}$
Is	Supply Current	$V(\operatorname{Pin} 14)=2 \mathrm{~V}$	10	14	18	mA
ISHDN	Supply Current in Shutdown	$\mathrm{V}(\operatorname{Pin} 14)=0.8 \mathrm{~V}, \mathrm{~V}(\operatorname{Pin} 6)=\mathrm{V}(\operatorname{Pin} 8)=0 \mathrm{~V}$	300	500	800	$\mu \mathrm{A}$

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{15}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{12}=\mathbf{O V}, \mathrm{V}_{6}=\mathrm{V}_{8}=\mathrm{V}_{14}=2 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Preamp Input Offset Voltage	$V($ Pin 2$)-V($ Pin 5$)$		4	17	mV
	Preamp Output Offset Voltage	$V($ Pin 4$)-V($ Pin 5$)$		10	27	mV
	Preamp Loop Offset Voltage	$V($ Pin 3$)-V($ Pin 5$)$	30	150	350	mV
	High Gain Loop Offset Voltage	$V(\operatorname{Pin} 9)-\mathrm{V}(\operatorname{Pin} 5)$	400	800	1200	mV
	Low Gain Loop Offset Voltage	$V(\operatorname{Pin} 7)-\mathrm{V}(\operatorname{Pin} 5)$	400	800	1200	mV
AvP	Preamp Transimpedance	$\pm 10 \mu \mathrm{~A}$ Into Pin 2, Measure $\Delta \mathrm{V}$ (Pin 4)	8.5	15	18.5	k Ω
	Preamp Output Swing, Positive Preamp Output Swing, Negative	$100 \mu A$ Out of Pin 2, Measure $\Delta V($ Pin 4) $100 \mu \mathrm{~A}$ Into Pin 2, Measure $\Delta \mathrm{V}$ (Pin 4)	$\begin{array}{r} 0.2 \\ -0.6 \end{array}$	$\begin{array}{r} 0.4 \\ -0.4 \end{array}$	$\begin{array}{r} 0.6 \\ -0.2 \end{array}$	V
	Preamp Loop Rejection, Positive Preamp Loop Rejection, Negative	$50 \mu \mathrm{~A}$ Into Pin 2, Measure $\Delta V(\operatorname{Pin} 4)$ $50 \mu \mathrm{~A}$ Out of Pin 2, Measure ΔV (Pin 4)	$\begin{aligned} & -3.5 \\ & -3.5 \end{aligned}$	$\begin{array}{r} -1 \\ 1 \end{array}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	mV
	Preamp Loop Output Current, Positive Preamp Loop Output Current, Negative	$100 \mu \mathrm{~A}$ Out of Pin 2, Measure I (Pin 3), (Note 1) $100 \mu \mathrm{~A}$ Into Pin 2, Measure I (Pin 3), (Note 1)	$\begin{array}{r} -160 \\ 40 \end{array}$	$\begin{array}{r} -100 \\ 100 \end{array}$	$\begin{aligned} & -40 \\ & 160 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {BIAS }}$	Bias Voltage	V (Pin 5)	1.5	1.9	2.3	V
VBYPASS	Bypass Voltage	$V(\operatorname{Pin} 16)$	4.7	4.9	4.97	V
I_{B}	Filter Buffer Input Bias Current	I (Pin 6), I (Pin 8)	0.05	0.5	1.6	$\mu \mathrm{A}$
	Gain Stage Loop Rejection, Positive Gain Stage Loop Rejection, Negative	$\Delta V=50 \mathrm{mV}(\operatorname{Pin} 6, \operatorname{Pin} 8)$, Measure $\Delta V(\operatorname{Pin} 7, \operatorname{Pin} 9)$ $\Delta V=-50 \mathrm{mV}($ Pin 6, Pin 8$)$, Measure $\Delta V(\operatorname{Pin} 7, \operatorname{Pin} 9)$	$\begin{array}{r} 0.3 \\ -0.6 \\ \hline \end{array}$	$\begin{array}{r} 0.45 \\ -0.45 \\ \hline \end{array}$	$\begin{array}{r} 0.6 \\ -0.3 \\ \hline \end{array}$	V
V_{OH}	Fast Comparator Output High Voltage Slow Comparator Output High Voltage	$\begin{aligned} & \Delta \mathrm{V}(\text { Pin } 9)=-200 \mathrm{mV}, 1 \mathrm{~mA} \text { Out of Pin } 10 \text { (Note 4) } \\ & \Delta \mathrm{V}(\text { Pin } 7)=-200 \mathrm{mV}, 0.1 \mathrm{~mA} \text { Out of Pin } 13 \text { (Note 4) } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.9 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Fast Comparator Output Low Voltage Slow Comparator Output Low Voltage	$\begin{aligned} & \Delta V(\operatorname{Pin} 9)=200 \mathrm{mV}, 800 \mu \mathrm{~A} \text { Into Pin } 10 \\ & \Delta \mathrm{~V}(\operatorname{Pin} 7)=200 \mathrm{mV}, 800 \mu \mathrm{~A} \text { Into Pin } 13 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V
$\mathrm{V}_{\text {TH }}$	Threshold External Voltage	$100 \mu \mathrm{~A}$ Into Pin 11, V (Pin 11)	0.7	0.9	1.3	V
$\mathrm{V}_{\text {IH }}$	Shutdown Input High Voltage		2			V
VIL	Shutdown Input Low Voltage				0.8	V
$\underline{I_{1 H}}$	Shutdown Input High Current	$V($ Pin 14) $=2.4 \mathrm{~V}$	-160	-60	0	$\mu \mathrm{A}$
ILL	Shutdown Input Low Current	$\mathrm{V}(\operatorname{Pin} 14)=0.4 \mathrm{~V}$	-450	-260	-80	$\mu \mathrm{A}$
$\underline{\text { I }}$	Supply Current	$V(\operatorname{Pin} 14)=2 \mathrm{~V}$	9	14	20	mA
ISHDN	Supply Current in Shutdown	$\mathrm{V}(\operatorname{Pin} 14)=0.8 \mathrm{~V}, \mathrm{~V}(\operatorname{Pin} 6)=\mathrm{V}(\operatorname{Pin} 8)=0 \mathrm{~V}$	200	500	900	$\mu \mathrm{A}$

Note 1: Measure V (Pin 3) without input current for pin 2. Force pin 3 to this measured voltage (which disables the preamp loop). Measure the current into and out of Pin 3 when Pin 2 is driven.
Note 2: The gain is the differential voltage at the comparator inputs divided by the differential voltage between the filter buffer output and VBIAS. This parameter is not tested.
Note 3: Hysteresis is the difference in comparator trip point measured when the output is high and when the output is low. This parameter is not tested.

Note 4: Measure V (Pin 7) and V (Pin 9). Force these voltages to 200 mV below their nominal value to switch the comparators high.
Note 5: The current into Pin 11 is multiplied by 4 and then applied to a 500Ω resistor on the positive comparator inputs. The threshold is $I($ Pin 11$) \times 4 \times 500 \Omega$.

ГYPICAL PGRFORMANCE CHARACTERISTICS

EIRCUIT DESCRIPTION

he LT1319 is a general purpose low noise, high speed, ligh gain, infrared receiver designed to easily provide IR ommunications with portable computers, PDAs, desktop omputers and peripherals. The receiver takes the photourrent from an infrared photodiode (Siemens BPW34FA ir Temic BPV22NF) and performs a current-to-voltage onversion. After external filtering that is tailored for the lesired communication standard, two filter buffers are rovided. There are dual gain chains with nominal gain of $00 \mathrm{~V} / \mathrm{V}$ that feed internal comparators with hysteresis. The omparator thresholds are set externally with a current into ie VTH pin. The high frequency comparator has a reponse time of 25 ns and is well-suited to high data rates.

The low frequency comparator responds in 60 ns and is useful for more modest data rates such as Sharp/Newton and IRDA-SIR. The circuit also contains shutdown circuitry to reduce power consumption. Rejection of ambient interference is accomplished with AC coupling loops around the preamp and the two gain stages. The rejection frequency is set with an internal resistor and an external capacitor to ground. This feature allows changing of the break frequency by simply switching in additional capacitors. To aid in rejection of power supply noise there is internal supply regulation and a fully differential topology after the filter buffers.

BLOCK DIAGRAM

APPLICATIONS InFORMATION

ayout and Passive Components

The LT1319 requires careful layouttechniques to minimize sarasitic signal coupling to the preamp input. A sample joard layout for the circuit on the first page is shown in the「ypical Application section. The lead lengths on the photodiode must be as short as possible to Pin 2. Shielding is ecommended over the entire circuit. A ground plane must ee used and connected to Pin 1 . The ground plane should xxtend under the package and surround Pins 1 to 9 and Pin 16. A single point connection should be made to the jround plane at Pin 12 (DIG_GND). The leads on Pins 6 and 3 should be short to prevent pickup into the gain stages. The comparator output leads (Pins 10 and 13) should be is short as possible to minimize coupling back to the input ria parasitic capacitance.
Japacitance on Pin 10 should be minimized as the comsarator output is pulled up by an internal 5 k resistor. The Issociated digital circuitry should be located on the oppo;ite side of the PC board from the LT1319 or separated as nuch as possible if on the same side of the board. Filter ;omponents should be located on the analog ground side If the package. Bypass capacitors should be used on Pins ; 11, 15 and 16 for best supply rejection.

'reamp

he LT1319 preamp is a low noise, high speed current-to'oltage converter that has been optimized for an input ;apacitance of 30 pF (which corresponds to the capaciance of the above-mentioned photodiodes with approxinately 2 V of back bias). A range of 0 pF to 50 pF is cceptable. The amplifier obtains high bandwidth by proiding a low impedance input so that the input current is not iltered by the photodiode capacitance.
he dynamic range of the circuit will be limited at the low nd by the input-referred current noise of the preamplifier nd the desired signal-to-noise ratio. At the other extreme ifthe dynamic range for very large input signals, the output If the preamp is clamped by Schottky diodes across the sedback resistor.
he noise bandwidth is shaped by filtering at the output of ne preamplifier and by the AC coupling loop. The input apacitance causes noise peaking for high bandwidth pplications. Noise peaking can be explained by consider-
ing the voltage noise gain. Referring to the Block Diagram, at frequencies beyond the corner frequency of the AC coupling loop, the preamp is in a noise gain of 2.5 due to the ratio of $\left(R_{F B}+R_{L 1}\right) / R_{L 1}$. At high frequencies the input capacitance approaches the same impedance as $R_{L 1}$ so the noise gain increases. For example, at 500 kHz the 30 pF input capacitance looks like $10.6 \mathrm{k} \Omega$ which increases the noise gain to almost 4. The preamp is compensated to provide a flat current-to-voltage frequency response with a -3 dB corner at 7 MHz . The input current noise peaks up considerably if full bandwidth is used. To obtain best noise performance, the output of the preamp should be filtered to the minimum bandwidth required for the desired modulation scheme. The graph of input-referred noise versus lowpass filtering on the preamp output shows the noise penalty for higher bandwidths.

AC Coupling Loops

There are three AC loops in the circuit that reject low frequency inputs. The first loop is around the preamp and provides rejection of ambient light sources. The operation can be explained by looking at the Block Diagram. For low frequency signals the transconductance amplifier, GM1, compares the preamp output to the VBIAS voltage. This differential voltage is transformed into a current that is fed into the high impedance node at Pin 3 and transformed back to a voltage. There is a voltage gain of approximately 60 dB to this point which is then buffered to drive a 10k resistor that is connected back to the input of the preamp. This high gain loop attenuates the effect of low frequency signals by the amount of the loop gain times the ratio of $R_{L 1}$ to $R_{F B}$ (i.e., $1000 \mathrm{~V} / \mathrm{V} \times 10 / 15=667$). Forhigher frequencies the attenuation decreases due to the external capacitor on Pin 3. At frequencies beyond wherethe loop gain equals 15/ 10 , signals are no longer attenuated. This high frequency cutoff is at:
$\mathrm{f}=(15 / 10) /\left(2 \pi \times 4 \mathrm{k} \Omega \times \mathrm{C}_{\mathrm{PIN} 3}\right)$
where $1 /(4 \mathrm{k} \Omega)$ is the transconductance of the loop amplifier. For example, if $\mathrm{C}_{\text {PIN } 3}=300 \mathrm{pF}$, the highpass frequency is 200 kHz which can aid in rejection of a wide range of ambient interference.

The other two loops operate similarly around the gain stages and also provide low frequency rejection. In addi-

APPLICATIONS InFORMATION

tion, the loops around the gain stages provide an accurate DC threshold setting for the comparators. At DC, the loops force the differential voltages at the output of the gain stages to zero. The comparator threshold is set by the currents provided by the $\mathrm{V}_{\text {TH }}$ generator through the 500Ω resistors $\mathrm{R}_{\mathrm{C} 1}$ and R_{C3}. These currents are equal to 4 times the current into pin 11. For $100 \mu A$ into pin 11, the comparator thresholds are nominally 200 mV .

Power Supply Rejection and Biasing

The LT1319 has very high gain and bandwidth so great care is taken to reduce false output transitions due to power supply noise. As a first step the $\mathrm{V}_{\text {Cc }}$ input is regulated down to approximately 4 V to power all the analog sections of the circuit which are also tied to Analog Ground (Pin 1) as is the substrate of the die. Additionally, the internal 4 V is bypassed at Pin 16. The digital circuitry (the comparators and shutdown logic) is powered directly off of $V_{C C}$ and is returned to Digital Ground (Pin 12). To provide a clean bias point for the preamp, filter buffers and the gain stages, a 1.9 V reference is generated from the 4 V rail and is bypassed at Pin 5. The gain stages are pure differential designs which inherently reject supply variations.

Filtering

Filtering is needed for two main reasons: sensitivity and ambient rejection. Lowpass filtering is needed to limit the bandwidth in order to minimize the noise. Low noise permits reliable detection of smaller input signals over a larger distance. Highpass filtering is used to reject interfering ambient signals. Interference includes low frequency sources of infrared light such as sunlight, incandescent lights, and ordinary fluorescent lights, as well as high frequency sources such as TV remote controls (40 kHz) and high frequency fluorescent lighting (40 kHz to 80 kHz).

The circuittopology allows for filtering between the preamplifier and the filter buffers as well as filtering with the three internal highpass loops. With two channels the filtering can be optimized for different modulation schemes. The high speed channel (with a 25 ns comparator) is ideal for modulation schemes using frequencies above 1 MHz . Carrierbased methods as well as narrow pulse schemes can have
superior ambient rejection by adding in a dedicated highpass filter network. The application on the first page of the data sheet is repeated in the Block Diagram and can be used to illustrate the filtering for IRDA-SIR and Sharp/Newton. The preamp highpass zero is set by GM1 and $\mathrm{C}_{\mathrm{F} 1}$. The break frequency is located at:

$$
f=(15 \mathrm{k} \Omega / 10 \mathrm{k} \Omega) /(2 \pi \times 4 \mathrm{k} \Omega \times 10 \mathrm{nF})=6 \mathrm{kHz}
$$

On the low speed channel there is a lowpass filter at 800 kHz set by $R_{F 2}$ and $C_{F 3}$. The gain stage has a highpass filter set by GM2 and $\mathrm{C}_{\mathrm{F} 4}$ at approximately 500 kHz . The high speed channel has an LC tank circuit at 500 kHz with $\mathrm{Q}=3$ set by $\mathrm{R}_{\mathrm{F} 1}$. The high speed gain stage has a highpass characteristic set by GM3 and $\mathrm{C}_{F 5}$ with a break frequency of 1.1 kHz . These filters are suitable for the $1.6 \mu \mathrm{~s}$ pulses and up to 115 kbaud data rates of IRDA-SIR on the slow channel. The fast channel is used for Sharp/Newton ASK Modulation with 500 kHz bursts at data rates up to 38.4 kbaud .
A second circuit is shown in the Typical Applications section for IRDA SIR/FIR. The first filter is the preamp highpass loop set at 4 kHz by $\mathrm{C}_{\mathrm{F} 1}$. SIR is run on the low speed channel and is next filtered by an 800 kHz lowpass formed by $R_{F 2}$ and $C_{F 3}$ to reduce the noise bandwidth. A final highpass for the lower speed channel is set by $C_{F 4}$ at 400 kHz . The high speed channel is used by FIR which uses $220 n s$ wide pulses. A lowpass formed by $R_{F 1}$ and $C_{F 2}$ limit the noise bandwidth. A 480kHz highpass filter is set by $C_{F 6}$ and $R_{F 3}$. Note that $R_{F 3}$ is also used to bias the filter buffer input to VBIAS (Pin 5). A final highpass at 110 kHz is set by $\mathrm{C}_{\mathrm{F} 5}$. The squelch circuit formed by $\mathrm{Q1}, \mathrm{Q} 2$ and $\mathrm{R}_{\mathrm{C} 1}$ to $R_{C 4}$ extends the short range performance and will be discussed later.

In designing custom filters for different applications, the following guidelines should be used.

1. Limit the noise bandwidth with a lowpass filter that has a rise time equal to half the pulse width. For example, for $1 \mu \mathrm{~s}$ pulses a 700 kHz lowpass filter has a 10% to 90% rise time of $0.35 / 700 \mathrm{kHz}=500 \mathrm{~ns}$.
2. Limit the maximum highpass to $1 /(4 \times$ pulse width $)$. For $1 \mu \mathrm{~s}$ pulses, $1 / 4 \mu \mathrm{~s}=250 \mathrm{kHz}$.

APPLICATIONS INFORMATION

3. In setting the highpass filters, space the filters apart by a factor of 5 to 10 to reduce overshoot due to filter interaction. Overshoot becomes especially important for high input levels because it can cause false pulses which may not be tolerated in certain modulation schemes. It is also more of a problem in modulation schemes such as IRDA-SIR and FIR where the duty cycle can get very low (i.e., transmitting data with lots of ones which are signaled with the absence of pulses). AC coupled receivers when faced with low duty cycle data set their thresholds close to the baseline DC level of the data stream which converts small overshoots into erroneously received pulses.
4. As a general rule, place the lowest frequency highpass around the preamp and the highest highpass around the gain stage or between the preamp and gain stage. The reason for this is again due to high signal levels where there can be slow photocurrent tails. The tail response can be filtered out by high enough frequency filters.
5. In all cases with custom filtering, or when modifying one of the applications presented in this data sheet, try the system over the full distance range with a full range of duty cycle data streams. Modulation methods with fixed or limited duty cycle are superior because they have little or no data dependent problems.

Dynamic Range

The calculation of dynamic range can only be made in the sontext of a specific modulation scheme and with the system variations taken into account. The required infornation includes: minimum signal-to-noise ratio (or BER, 3it Error Rate requirement), photodiode capacitance at 1.9 V back bias, preamp noise spectrum, preamp output iiltering, AC loop cutoff frequencies, modulation method, demodulation method including allowable pulse widths and the effect of missing or extra pulses, photodiode rise and fall times, and ambient interference. The best solution s to experimentally determine the maximum and minimum distances at which a desired $B E R$ is obtained. This measure of dynamic range is more meaningful in terms of the overall system than any analytic solution.
Jsing the IRDA-SIR modulation scheme as an example, lowever, we can illustrate how some limits on the required
receiver/photodiode combination can be obtained. The minimum light intensity in the angular range is $40 \mathrm{~mW} / \mathrm{sr}$ which translates to a photodiode current as follows (using the BPW34FA data sheet specs):

$$
\begin{aligned}
\operatorname{IPD}(\mathrm{MIIN}) & =(40 \mathrm{~mW} / \mathrm{sr}) \times\left(\frac{7 \mathrm{~mm}^{2}}{(1000 \mathrm{~mm})^{2}}\right) \\
& \times(0.65 \mathrm{~A} / \mathrm{W})(0.95)(0.95)=164 \mathrm{nA}
\end{aligned}
$$

The $7 \mathrm{~mm}^{2}$ term is the photodiode area. The 1000 mm is the distance from the light source. The 0.65AW is the spectral sensitivity at 880 nm wavelength. The first 0.95 term is the relative sensitivity at 850 nm wavelength and the second term is the sensitivity at 15° off axis. Similar calculations are detailed in the Infrared Data Association Serial Infrared (SIR) Physical Layer Link Specification, version 1.0. This minimum photocurrent implies that the input-referred noise current of the receiver be less than 13.7 nA rms for a bit error rate of $1 \mathrm{E}-9$. With an 800 kHz lowpass filter on the preamp outputthe LT1319 has approximately 3.6 nA rms of input-referred current noise. The maximum photodiode current at 20 mm , on-axis with $500 \mathrm{~mW} / \mathrm{sr}$ intensity:

$$
\begin{aligned}
I_{\mathrm{PD}(\mathrm{MAX})} & =(500 \mathrm{~mW} / \mathrm{sr}) \times\left(\frac{7 \mathrm{~mm}^{2}}{(20 \mathrm{~mm})^{2}}\right) \\
& \times(0.65 \mathrm{~A} / \mathrm{W})(0.95)=5.4 \mathrm{~mA}
\end{aligned}
$$

so we see that the dynamic range requirement is 90.4 dB . What is not obvious, however, is that the photodiode output current is not simply a pulse of current, there is a significant tail at high current levels that has a time constant of more than $1 \mu \mathrm{~s}$ which can cause distortion in the output pulse width of the LT1319. This tail can be shown in the following photograph which shows the voltage across a 5 k resistor that is connected between the anode of a photodiode and ground. The cathode of the photodiode is connected to 2 V . There is a 2 pF Schottky diode across the resistor to clamp the voltage swing to less than 0.5 V . With about 30 pF photodiode capacitance and 10 pF for an oscil-

APPLICATIONS INFORMATION

loscope probe, any tail observed with a time constant greater than 210 ns is due to decaying photocurrent. The first trace in the photograph shows the current with the photodiode 10 cm from a source with $100 \mathrm{~mW} / \mathrm{sr}$ intensity. At $200 \mathrm{mV} / \mathrm{div}$, there is about $40 \mu \mathrm{~A}$ of peak current and the decay is consistent with the 210 ns time constant. The lower trace shows the current with the photodiode 2 cm from the LEDs where the photodiode current is theoretically 25 times greater than at 10 cm . The voltage is clamped by the photodiode to nearly 0.4 V , but what is now noticeable is that there is a tail with a time constant a bit greater than $1 \mu \mathrm{~s}$. If the signal is $A C$ coupled and has a low duty cycle, the waveform will be centered at the very bottom which can result in very wide output pulses. This issue will be discussed later in more detail and a method to circumvent it will be shown.

Photocurrent Waveforms

Threshold Adjustment

The comparator thresholds are set by the current into Pin 11. The simplest method of setting this current is by a resistor, $\mathrm{R}_{\mathrm{T} 1}$ tied between Pin 11 and $\operatorname{Pin} 15\left(\mathrm{~V}_{\mathrm{CC}}\right)$. Pin 11 should be bypassed. The current is given by:

$$
I_{T H}=\frac{\left(V_{C C}-0.9 \mathrm{~V}\right)}{\left(\mathrm{R}_{\mathrm{T} 1}+2 k \Omega\right)}
$$

The threshold referred to the input of the filter buffer is:

$$
V_{T H}=\frac{I_{T H} \times 4 \times 500 \Omega}{400 \mathrm{~V} / \mathrm{V}}
$$

or nominally 0.68 mV for $\mathrm{R}_{\mathrm{T} 1}=30 \mathrm{k}$. The largest practical value of $R_{T 1}$ is 39 k . The limitation tends to be switching transients at the comparator outputs parasitically coupling to the FILTIN or FILTINL inputs and is layout dependent.

Extending Short Range Performance

The short range performance of the LT1319 is normally limited by the photocurrent tail, but in some instances the peak current level cannot be supported by the output of the preamplifier and the input will sag at Pin 2. Typically the maximum input current is 6 mA . To increase this current to 20 mA or more, place an NPN transistor with its emitter tied to Pin 2, the base to Pin 4 and collector to the 5 V supply. The choice of transistor is dependent on the bandwidth required for the preamp. The base-emitter capacitance of the transistor (C_{JE}), is in parallel with the 15 k feedback resistor of the preamplifier and performs a lowpass filtering function. For modest data rates such as IRDA-SIR and Sharp/Newton a 2N3904 limits the bandwidth to 2 MHz which is ample. For the highest data rates, a transistor with f_{T} greater than 1 GHz is needed such as MMBR941LT1.
Another issue with large input signals is the photocurrent tail. When this tail is AC coupled and the data has a low duty cycle, the output pulse width can become so wide that it extends into the next bit interval. A highpass filter can reject this tail, but for the case of IRDA-SIR, rejecting the $1 \mu \mathrm{~s}$ time constant can cause rejection of the 1.6μ s pulse which leads to a loss of sensitivity and reduced maximum link distance. The circuit on the front page of the data sheet uses a 500 kHz highpass that trades off some sensitivity for rejection of this tail. Unfortunately both maximum and minimum distance are compromised. An alternative is shown in the IRDA-SIR/FIR application. Inthis instance the final highpass filter for SIR and FIR is moved into 400 kHz , but a clamp/ squelch circuit consisting of $Q 1, Q 2$, and $R_{C 1}$ to $R_{C 4}$ is added. Q1 is used as described above to clamp the input, but the input current level at which the clamp engages has been modified by $R_{C 1}$ and $R_{C 2}$.
Without the resistors, Q1 would turn on when the voltage across the 15 k resistor in the preamp reaches about 0.7 V (a current of $0.7 \mathrm{~V} / 15 \mathrm{k} \Omega=47 \mu \mathrm{~A}$). The drop across $\mathrm{R}_{\mathrm{C} 1}$ reduces this voltage by about 480 mV . The drop is set by the

APPLICATIONS INFORMATION

current through $\mathrm{R}_{\mathrm{C} 2}$ which is $\left[\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{V}_{\text {BIAS }}+0.48 \mathrm{~V}\right)\right] / 11 \mathrm{k} \Omega$ $=238 \mu A$ where $\mathrm{V}_{\text {BIAS }}=1.9 \mathrm{~V}$. At this new level $(0.22 \mathrm{~V} / 15 \mathrm{k} \Omega$ $=14.7 \mu \mathrm{~A})$, Q1 turns on which clamps the preamp output. The collector current of Q1 provides base drive for Q2 which saturates and pulls its collector close to 5 V . The FILT2L and FILT2 inputs are now pulled positive by R_{C3} and $R_{C 4}$ which forces an offset at the inputs to the gain stages. Referring to the Block Diagram, pulling FILT2L or FILT2 positive a voltage $\Delta \mathrm{V}$ provides a voltage of $\Delta \mathrm{V} / 11$ at the inverting input of the first gain stage. This offset effectively cuts off a portion of the tail at high input levels. The magnitude of ΔV is set by the value of $R_{C 3}$, the current sinking capability of the transconductance stages $(100 \mu \mathrm{~A})$, the value of $\mathrm{C}_{\mathrm{F4}}, \mathrm{C}_{\mathrm{F} 5}$ and the duty cycle of the data pulses.

LED Drive Circuits

There are several simple circuits for driving LEDs. For low speed modulation methods such as IRDA-SIR and Sharp/ Newton with pulses over $1 \mu \mathrm{~s}$, a 2 N 3904 in a SOT-23 package can be used as a switch with a series resistor in the collector to limit the current drive. This circuit is shown below with a suggested limiting resistor of 16Ω which typically sets the current at 200 mA . The supply voltage must be well bypassed at the connection to the LED in order for the supply not to sag when hit with a fast current pulse. A 10 μ Flow ESR capacitor should be used as well as a $0.1 \mu \mathrm{~F}$ RF quality capacitor to reduce the high frequency spikes.

The current must be selected to achieve the minimum output light intensity at a given angle and must be lower than the manufacturer's maximum current rating at the maximum duty cycle of the modulation method. The optimum current is a function of the LED output, the LED forward voltage, the drop across the transistor and the minimum supply voltage.

$$
I_{\text {LED }}=\frac{\left(V_{C C}-V_{\text {LED }}-V_{S W}\right)}{R_{\text {SERIES }}}
$$

The minimum light output then can be obtained from the LED data sheet. For IRDA-SIR the minimum intensity at 15° off axis is $40 \mathrm{~mW} / \mathrm{sr}$. For IRDA-FIR the spec rises to $100 \mathrm{~mW} / \mathrm{sr}$. To increase light output and distance of the link, a second LED can be inserted in series with the first to obtain twice the light output without consuming additional supply current. The current variation will now be greater because two LED forward drops must be accounted for and the drop across the series resistor is greatly reduced.
For pulse widths less than 500 ns the NPN should be replaced by an N-channel MOSFET with on-resistance of less than 1Ω with 5 V on the gate. The FET can turn off much more quickly than the saturated NPN and provides a lower effective on-resistance. A suggested circuit is shown below and includes two devices available in the SOT-23 package.

TYPICAL APPLICATIONS

Optional Clamp Circuit

LED Drive Circuit for IRDA-SIR and Sharp/Newton

2 LED Drive Circuit for IRDA-FIR

TYPICAL APPLICATIONS

IRDA-SIR/FIR Data Receiver

PC Board Layout for IRDA-SIR and Sharp/Newton Data Receiver with LED Drive Circuit

IECTION 5-INTERFACE

MIXED PROTOCOL
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver
13-53

NOTES

¡ECTION 6-DATA CONVERSION

SECTION 6-DATA CONVERSION
INDEX 6-2
SELECTION GUIDES 6-3
PROPRIETARY PRODUCTS
ANALOG-TO-DIGITAL CONVERTERS 6-7
LTC1274/LTC1277, 12-Bit, 10mW, 100ksps ADCs with 1μ A Shutdown 13-22
LTC1279, 12-Bit, 600ksps Sampling A/D Converter with Shutdown 6-8
LTC1285/LTC1288, 3V Micropower Sampling 12-Bit A/D Converters in SO-8 Packages 6-24
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LTC1522, 4-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134
ANALOG-TO-DIGITAL CONVERTERS, ENHANCED AND SECOND SOURCE
LT574A, Complete 12-Bit A/D Converter 6-48
DIGITAL-TO-ANALOG CONVERTERS 6-57
LTC1451/LTC1452/LTC1453, 12-Bit Rail-to-Rail Micropower DACs in SO-8 6-58
DIGITAL-TO-ANALOG CONVERTERS, ENHANCED AND SECOND SOURCE
LTC7541A, Improved Industry Standard CMOS 12-Bit Multiplying DAC 6-69
LTC7543/LTC8143, Improved Industry Standard Serial 12-Bit Multiplying DACs 6-73
LTC8043, Serial 12-Bit Multiplying DAC in SO-8 6-80
MULTIPLEXERS 6-85
LTC1390, 8-Channel Analog Multiplexer with Serial Interface 6-86

Analog-to-Digital Converters

)igital-to-Analog Converters

$\boldsymbol{C Y}$ UNER

DATA CONVERSION PRODUCTS

Complete Linear Technology 12-Bit A/D Feature Matrix

*Average supply current drops with sample rate. Supply current listed is at fsAMPLE(MAX)

High Speed 12-Bit A/D Converters

- LTC1400: 400ksps in SO-8 Package!!

Comparison of Specs and Features

$\begin{aligned} & \text { DEVICE } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \hline \text { SAMPLING } \\ \text { FREQ } \end{gathered}$	$\begin{gathered} \mathrm{S} /(\mathrm{N}+\mathrm{D}) \\ \text { AT NYQUIST } \end{gathered}$	INPUT RANGE	$\begin{array}{\|l\|} \hline \text { POWER } \\ \text { SUPPLY } \end{array}$	$\begin{aligned} & \text { POWER } \\ & \text { DISSIPATION } \end{aligned}$
LTC1272	250ksps	65 dB	OV-5V	5 V	75 mW
LTC1273	300ksps	70dB	OV-5V	5 V	75 mW
LTC1274	100ksps	73dB	$\begin{aligned} & \text { OV-4.096V } \\ & \text { or } \pm 2.048 \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~mW} \\ 5 \mu \mathrm{~W} \text { (Shutdown) } \end{gathered}$
LTC1275	300ksps	70dB	$\pm 2.5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	75 mW
LTC1276	300ksps	70dB	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	75 mW
LTC1277	100ksps	73dB	$\begin{aligned} & \text { OV-4.096V } \\ & \text { or } \pm 2.048 \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{~mW} \\ 0.8 \mathrm{~mW} W^{*} \end{gathered}$
LTC1278-4	400ksps	70dB	$\begin{gathered} \hline \mathrm{OV}-5 \mathrm{~V} \\ \text { or } \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \end{gathered}$	75 mW 5 mW *
LTC1278-5	500 ksps	70dB	$\begin{gathered} 0 \mathrm{~V}-5 \mathrm{~V} \\ \text { or } \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \end{gathered}$	75 mW 5 mW *
LTC1279	600ksps	70dB	$\begin{gathered} 0 \mathrm{~V}-5 \mathrm{~V} \\ \text { or } \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \mathrm{~mW} \\ 7.5 \mathrm{~mW} \end{gathered}$
LTC1282	140ksps	68 dB	$\begin{aligned} & \hline 0 \mathrm{~V}-2.5 \mathrm{~V} \\ & \mathrm{or} \pm 1.25 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3 \mathrm{~V} \\ \text { or } \pm 3 \mathrm{~V} \end{gathered}$	12 mW
LTC1400	400ksps	70dB	$\begin{array}{l\|} \hline 0 \mathrm{~V}-4.096 \mathrm{~V} \\ \text { or } \pm 2.048 \mathrm{~V} \end{array}$	$\begin{gathered} 5 \mathrm{~V} \\ \text { or } \pm 5 \mathrm{~V} \end{gathered}$	75 mW
LTC1410	1.25Msps	71dB	± 2.5	$\pm 5 \mathrm{~V}$	160 mW

[^44]
DATA CONVERSION PRODUCTS

Serial I/O 12-Bit A/D Converters

12-Bit Serial Interface A/D Converter Systems

Comparison of Specs and Features

Device Type	Analog Input Channels	Supply Voltage (V)	Sample Rate (ksps)	Number of Pins	Full/Half Duplex I/0	Auto Shutdown	Shutdown Status Pin
LTC1287	1	3	30	8	Half		
LTC1289	8	$3 / \pm 3$	25	20	Full		
LTC1290	8	$5 / \pm 5$	50	20	Full		
LTC1291	2	5	54	8	Half		
LTC1292	1	5	60	8	Half		
LTC1293	6	$5 / \pm 5$	46	16	Half		
LTC1294	8	$5 / \pm 5$	46	20	Half		
LTC1296	8	$5 / \pm 5$	46	20	Half		
LTC1297	1	5	50	8	Half	X	
LTC1522	4	3	10.5	16	Half	X	

Vicropower 12-Bit A/D Converters in SO-8 Packages

$12 \mu \mathrm{~W}$, S0-8 Package, 12-Bit ADC Samples at 200 Hz and Runs Off a 3 V Battery

Norld's Lowest Power 12-Bit ADCs

12-Bit Resolution
8-Pin SO Plastic Package
Low Cost
Low Supply Current: 160 1 A Typ (LTC1285)
Guaranteed $\pm 3 / 4$ LSB Max DNL
Auto-Shutdown to 1nA Typ
Single Supply 3 V to 6V Operation
(LTC1285/88) or 5V to 9V (LTC1286/98)
On-Chip Sample-and-Hold
100 $\mu \mathrm{s}$ Conversion Time
Sampling Rates: 12.5ksps (LTC1286)
11.1ksps (LTC1298)

I/O Compatible with SPI, Microwire, etc.
Differential Inputs (LTC1285, LTC1286)
2-Channel MUX (LTC1288, LTC1298)

Supply Current vs Sample Rate
(LTC1285)

8-Lead Plastic SO

LTC12as/88•TA02

DATA CONVERSION PRODUCTS

8-Bit A/D Converters in 8-Pin SO Packages

Lowest Power: LTC1096/LTC1098

- $80 \mu \mathrm{~A}$ Maximum Supply Current
- 1nA Supply Current in Shutdown
- Operate from 2.7 V to 9 V Single Supply
- 33ksps Sample Rate

Highest Speed: LTC1196/LTC1198

- 8-Bit Resolution
- 1Msps Sample Rate
- 100ns Sample/Hold Acquisition Time
- Single Supply 2.7 V to 6 V Operation
- Low Power: 10 mW at $3 \mathrm{~V}, 50 \mathrm{~mW}$ at 5 V
- Auto-Shutdown to 1nA (LTC1198)

N8 Package: 8-Lead PDIP
S8 Package: 8-Lead Plastic SO

10-Bit A/D Converter "Systems on a Chip"

					1	50,										
LTCiogo	30	22	1		$\boldsymbol{L r}$	8	\boldsymbol{J}	$\boldsymbol{\square}$		\boldsymbol{L}	\boldsymbol{O}		0.2	J, N, SW	20	9.90
LTC1091	31	20	1.5		Δ	2	\boldsymbol{O}		\boldsymbol{O}		$\boldsymbol{L T}$		N/A	J, N	8	9.90
LTC1092	38	20	1		Δ		$\boldsymbol{\sigma}$		\boldsymbol{O}				0.2	J, N	8	9.90
LTC1093	26	20	1		\boldsymbol{O}	6	$\boldsymbol{\sigma}$	\boldsymbol{O}	$\Delta 7$		ΔT		0.2	J, N, SW	16	9.90
LTC1094	26	20	1		$\boldsymbol{\square}$	8	$\boldsymbol{\square}$	\boldsymbol{O}	Δ		\boldsymbol{O}		0.2	J, N	20	9.90
LTC1095	26	20	2.3		\square	6	$\boldsymbol{\sigma}$	\boldsymbol{O}	$\boldsymbol{\square}$		\boldsymbol{L}	\boldsymbol{O}	N/A	J	18	12.00
LTC1283	15	44	0.15	\square		8	$\boldsymbol{L T}$	\boldsymbol{O}		\boldsymbol{O}	\boldsymbol{O}		0.2	J, N	20	11.40

Representative Pin Configurations

LTC1257/LTC1451/LTC1453: Complete Single Supply 12-Bit Voltage Output DACs in SO-8 Packages

Features

- 8-Pin SO Package
- Buffered Voltage Output
- Built-In Reference (Except LTC1452)
- $500 \mu \mathrm{~V} / \mathrm{LSB}$ with 2.048 V Full Scale (LTC1257)
- $1 \mathrm{mV} / \mathrm{LSB}$ with 4.095 V Full Scale (LTC1451)
- 1/2 LSB Max DNL Error
- Guaranteed 12-Bit Monotonic
- 3-Wire Cascadable Serial Interface
- Wide Single Supply Range: (LTC1257)
$V_{C C}=4.75 \mathrm{~V}$ to 15.75 V
- Low Power: ICC Typ = $350 \mu \mathrm{~A}$ with 5V Supply
- Power-On Reset: LTC1451/52/53

Applications

Typical Application

1257 Tans

- Digital Offset/Gain Adjustment
- Industrial Process Control
- Automatic Test Equipment
ECTION 6-DATA CONVERSION
ANALOG-TO-DIGITAL CONVERTERS 6-7
LTC1274/LTC1277, 12-Bit, 10mW, 100ksps ADCs with 1 μ A Shutdown 13-22
LTC1279, 12-Bit, 600ksps Sampling A/D Converter with Shutdown 6-8
LTC1285/LTC1288, 3V Micropower Sampling 12-Bit A/D Converters in SO-8 Packages 6-24
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LTC1522, 4-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134
ANALOG-TO-DIGITAL CONVERTERS, ENHANCED AND SECOND SOURCE
LT574A, Complete 12-Bit A/D Converter 6-48

A/D Converter with Shutdown

fertures

- Single Supply 5 V or $\pm 5 \mathrm{~V}$ Operation
- Sample Rate: 600ksps
- 70dB S/(N + D) and 74dB THD at Nyquist
- Power Dissipation: 60 mW Typ
- Power Shutdown with Instant Wake-Up
- Internal Reference Can Be Overdriven Externally
- Internal Synchronized Clock; No Clock Required
- High Impedance Analog Input
- Input Range: 0 V to 5 V or $\pm 2.5 \mathrm{~V}$
- New Flexible, Friendly Parallel Interface Eases Connections to DSPs and FIFOs
- 24-Pin SO Wide Package

APPLICATIONS

- High Speed Data Acquisition
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- Audio and Telecom Processing
- Spectrum Analysis

DESCRIPTION

The LTC ${ }^{6} 1279$ is a $1.4 \mu \mathrm{~s}, 600 \mathrm{ksps}$, sampling 12 -bit A / D converter which draws only 60 mW from a single 5 V or $\pm 5 \mathrm{~V}$ supplies. This easy-to-use device comes complete with a 160 ns sample-and-hold, a precision reference and an internally trimmed clock. Unipolar and bipolar conversion modes add to the flexibility of the ADC. The low power dissipation is reduced even more, drawing only 8.5 mW in power shutdown mode. Instant wake-up from power shutdown allows the converter to be powered down even during brief inactive periods.
The LTC1279 converts 0 V to 5 V unipolar inputs from a single 5 V supply and $\pm 2.5 \mathrm{~V}$ bipolar inputs from $\pm 5 \mathrm{~V}$ supplies. Maximum DC specs include ± 1 1SB INL and ± 1 LSB DNL. Outstanding guaranteed AC performance includes $70 \mathrm{~dB} \mathrm{~S} /(\mathrm{N}+\mathrm{D})$ and 78 dB THD at the input frequency of 100 kHz over temperature.
The internal clock is trimmed for $1.4 \mu \mathrm{~S}$ conversion time. The clock automatically synchronizes to each sample command, eliminating problems with asynchronous clock noise found in competitive devices. A separate conversion start input and a data-ready signal (BUSY) ease connections to FIFOs, DSPs and microprocessors.

[^45]
TYPICAL APPLICATION

Single 5V Supply, 600kHz, 12-Bit Sampling A/D Converter

Effective Bits and Signal-to-(Noise + Distortion) vs Input Frequency

IBSOLUTE MAXIMUM RATINGS

$V_{D D}=D V_{D D}=V_{D D}$ (Notes 1, 2) upply Voltage (VDD) .. 7V egative Supply Voltage ($V_{S S}$) Bipolar Operation Only \qquad -6 V to GND
otal Supply Voltage (V_{DD} to $\mathrm{V}_{S S}$)
Bipolar Operation Only 12V
nalog Input Voltage (Note 3)
Unipolar Operation \qquad -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Bipolar Operation............... $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
igital Input Voltage (Note 4)
Unipolar Operation
-0.3 V to 12 V
Bipolar Operation......................... $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to 12 V
igital Output Voltage
Unipolar Operation -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Bipolar Operation.................... - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
ower Dissipation \qquad 500 mW
perating Temperature Range
LTC1279C... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC12791.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ torage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ zad Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

*Consult factory for plastic DIP package. Consult factory for Military grade parts.

OnVERTER CHARACTERISTICS with Internal Reference (Notes 5, 6)

IRAMETER	CONDITIONS	MIN	TYP	MAX
UNITS				
solution (No Missing Codes)		\bullet	12	
egral Linearity Error	(Note 7)	\bullet	Bits	
Iferential Linearity Error		\bullet	± 1	LSB
jolar Offset Error	(Note 8)		± 1	LSB
ipolar Offset Error				± 4
in Error			LSB	
in Error Tempco		\bullet	± 6	LSB

INALOG INPUT (Note 5)

'MBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
\checkmark	Analog Input Range (Note 9)	$4.95 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V}$ (Unipolar)	0	0 to 5	
		$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-2.45 \mathrm{~V}$ (Bipolar)	\bullet	V	
	Analog Input Leakage Current	$\overline{\mathrm{CS}=\text { High }}$	\bullet	V	
\checkmark	Analog Input Capacitance	Between Conversions (Sample Mode)	± 1	$\mu \mathrm{~A}$	
		During Conversions (Hold Mode)	25	pF	

LTC1279

DYNAmIC ACCURACY (Notes, 5 , 10

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	100kHz Input Signal 300kHz Input Signal	-	70	$\begin{aligned} & 72 \\ & 70 \end{aligned}$		dB dB
THD	Total Harmonic Distortion First 5 Harmonics	100kHz Input Signal 300kHz Input Signal	-		$\begin{aligned} & -82 \\ & -74 \end{aligned}$	-78	dB $d B$
	Peak Harmonic or Spurious Noise	100kHz Input Signal 300kHz Input Signal	-		$\begin{aligned} & -82 \\ & -80 \end{aligned}$	-78	dB $d B$
IMD	Intermodulation Distortion	$\mathrm{f}_{\mathrm{IN} 1}=94.189 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN} 2}=97.705 \mathrm{kHz}$ 2nd Order Terms 3rd Order Terms			$\begin{aligned} & -81 \\ & -78 \end{aligned}$		dB dB
		$\begin{aligned} & \hline \mathrm{f}_{\mathrm{IN} 1}=299.26 \mathrm{kHz}, \mathrm{f}_{\mathrm{I} 2}=305.12 \mathrm{kHz} \\ & \text { 2nd Order Terms } \\ & \text { 3rd Order Terms } \\ & \hline \end{aligned}$			$\begin{aligned} & -77 \\ & -74 \end{aligned}$		dB dB
	Full Power Bandwidth				5		MHz
	Full Linear Bandwidth ($\mathrm{S} /(\mathrm{N}+\mathrm{D}$) $\geq 68 \mathrm{~dB}$)				500		kHz

InTeRnal reference characteristics (Not s)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {REF }}$ Output Voltage	$\mathrm{I}_{\text {OUT }}=0$	2.400	2.420	2.440	V
$V_{\text {REF }}$ Output Tempco	$\mathrm{I}_{\text {OUT }}=0$	\bullet	± 10	± 45	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$V_{\text {REF }}$ Line Regulation	$4.95 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 5.25 \mathrm{~V}$		0.01	$\mathrm{LSB} / \mathrm{V}$	
	$-5.25 \mathrm{~V} \leq \mathrm{V}_{\text {SS }} \leq-4.95 \mathrm{~V}$		0.01	$\mathrm{LSB} / \mathrm{V}$	
$V_{\text {REF }}$ Load Regulation	$-5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 800 \mu \mathrm{~A}$		2	$\mathrm{LSB} / \mathrm{mA}$	

DIGITAL INPUTS ARD DIGITAL OUTPUTS (Note 5)

$\left.\begin{array}{l|l|l|l|l|c}\hline \text { SYMBOL } & \text { PARAMETER } & \text { CONDITIONS } & \text { MIN } & \text { TYP } & \text { MAX } \\ \hline V_{\text {IH }} & \text { High Level Input Voltage } \\ V_{I L} & \text { Low Level Input Voltage } & V_{D D}=5.25 \mathrm{~V} \\ V_{D D}=4.95 \mathrm{~V}\end{array}\right)$

IOWER REQUIREMENTS (Note 5)

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX
UD	Positive Supply Voltage (Notes 11, 12)	Unipolar	4.95	5.25	V	
		Bipolar		4.75	5.25	V
SS	Negative Supply Voltage (Note 11, 12)	Bipolar Only		-2.45	-5.25	V
JD	Positive Supply Current	$\mathrm{f}_{\text {SAMPLE }}=600 \mathrm{ksps}$	\bullet	12	24	mA
		SHDN $=0 \mathrm{~V}$	\bullet	1.7	3	mA
SS	Negative Supply Current	$\mathrm{f}_{\text {SAMPLE }}=600 \mathrm{ksps}, \mathrm{V}$ SS $=-5 \mathrm{~V}$	\bullet	0.12	0.30	mA
D	Power Dissipation	$\mathrm{f}_{\text {SAMPLE }}=600 \mathrm{ksps}$	\bullet	60	120	mW
		SHDN $=0 \mathrm{~V}$	\bullet	8.5	15	mW

IIMING CHARACTGRISTICS (Note 5)

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
jAMPLE(MAX)	Maximum Sampling Frequency		\bullet	600			kHz
;AMPLE(MIN)	Minimum Throughput Time (Acquisition Time Plus Conversion Time)		\bullet			1.66	$\mu \mathrm{S}$
OONV	Conversion Time		\bullet		1.4	1.6	$\mu \mathrm{S}$
ICQ	Acquisition Time				160		ns
	$\overline{\mathrm{CS}} \downarrow$ to $\overline{\mathrm{RD}} \downarrow$ Setup Time	(Notes 9, 11)	-	0			ns
!	$\overline{\text { CS }} \downarrow$ to $\overline{\text { CONVST }} \downarrow$ Setup Time	(Notes 9, 11)	-	20			ns
;		(Note 11)		350			ns
!	$\overline{\text { CONVST Low Time }}$	(Notes 11, 13)	-	40			ns
;	$\overline{\text { CONVST }} \downarrow$ to $\overline{\text { BUSY }} \downarrow$ Delay	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Commercial } \\ & \text { Industrial } \end{aligned}$	\bullet		50	$\begin{aligned} & 110 \\ & 130 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
	Data Ready Before $\overline{\text { BUSY }} \uparrow$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	\bullet	20	40		ns
.	Wait Time $\overline{\mathrm{RD}} \downarrow$ After $\overline{\mathrm{BUSY}} \uparrow \uparrow$	Mode 2, (See Figure 14) (Note 9)	\bullet	-20			ns
;	Data Access Time After $\overline{\mathrm{R}} \downarrow$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}(\text { Note } 9) \\ & \text { Commercial } \\ & \text { Industrial } \end{aligned}$	\bullet		35	$\begin{gathered} 90 \\ 110 \\ 120 \end{gathered}$	ns ns ns
		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \quad \text { Commercial } \\ \text { Industrial } \end{gathered}$	\bullet		50	$\begin{aligned} & 125 \\ & 150 \\ & 170 \\ & \hline \end{aligned}$	ns ns ns
	Bus Relinquish Time	```(3k and 10pF Connected as Shown in Test Circuits) Commercial Industrial```	\bullet	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	30	$\begin{aligned} & 75 \\ & 85 \\ & 90 \end{aligned}$	ns ns ns
0	$\overline{\mathrm{RD}}$ Low Time	(Note 9)	\bullet	t_{8}			ns
1	$\overline{\text { CONVST }}$ High Time	(Notes 9, 13)	-	40			ns
2	Aperture Delay of Sample-and-Hold	Jitter < 50ps			12		ns

TIMING CHARACTERISTICS (Note 5)

The indicates specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND and AGND wired together (unless otherwise noted).
Note 3: When the analog input voltage is taken below V_{SS} (ground for unipolar mode) or above $V_{D D}$, it will be clamped by internal diodes. This product can handle input currents greater than 80 mA below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode) or above $V_{D D}$ without latch-up.
Note 4: When these pin voltages are taken below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode), they will be clamped by internal diodes. This product can handle input currents greater than 60 mA below $\mathrm{V}_{S S}$ (ground for unipolar mode) without latch-up. These pins are not clamped to $V_{D D}$.
Note 5: $A V_{D D}=D V_{D D}=V_{D D}=5 V,\left(V_{S S}=-5 V\right.$ for bipolar mode $), f_{\text {SAMPLE }}=$ $600 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise specified.
Note 6: Linearity, offset and full scale specifications apply for unipolar and bipolar modes.

Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. Th deviation is measured from the center of the quantization band.
Note 8: Bipolar offset is the offset voltage measured from $-1 / 2$ LSB when the output code flickers between 000000000000 and 111111111111.
Note 9: Guaranteed by design, not subject to test.
Note 10: The AC test is for bipolar mode. The signal-to-noise plus distortion ratio is about 1 dB lower for unipolar mode, so the typical $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ at 100 kHz in unipolar mode is 71 dB .
Note 11: Recommended operating conditions.
Note 12: $A_{I N}$ must not exceed $V_{D D}$ or fall below $V_{S S}$ by more than 50 mV fo specified accuracy. Therefore the minimum supply voltage for the unipolar mode is 4.95 V . The minimum for the bipolar mode is $4.75 \mathrm{~V},-2.45 \mathrm{~V}$.
Note 13: The falling CONVST edge starts a conversion. If $\overline{\text { CONVST }}$ returns high at a bit decision point during the conversion it can create small errors For best performance ensure that CONVST returns high either within 120 n after conversion start (i.e., before the first bit decision) or after BUSY rises (i.e., after the last bit test). See mode 1a and 1b (Figures 12 and 13) timinc diagrams.

TYPICAL PGRFORMANCE CHARACTERISTICS

'YPICAL PERFORMANCE CHARACTERISTICS

Peak Harmonic or Spurious Noise vs Input Frequency

Supply Current vs Temperature

Signal-to-Noise Ratio (Without Harmonics) vs Input Frequency

Intermodulation Distortion Plot

Power Supply Feedthrough vs Ripple Frequency

Distortion vs Input Frequency

Acquisition Time vs
Source Impedance

Reference Voltage vs Load Current

PIn functions

$A_{\text {IN }}$ (Pin 1): Analog Input. 0 V to 5 V (Unipolar), $\pm 2.5 \mathrm{~V}$ (Bipolar).
$\mathbf{V}_{\text {REF }}$ (Pin 2): 2.42V Reference Output. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).
AGND (Pin 3): Analog Ground.
D11 to D4 (Pins 11 to 4): Three-State Data Outputs.
D11 is the Most Significant Bit.
DGND (Pin 12): Digital Ground.
D3 to DO (Pins 13 to 16): Three-State Data Outputs.
DV DD (Pin17): Digital Power Supply, 5V. Tie to AV ${ }_{D D}$ pin.
SHDN (Pin 18): Power Shutdown. The LTC1279 powers down when SHDN is low.
CONVST (Pin 19): Conversion Start Input. It is active low. The falling edge of the CONVST signal initiates a
conversion. The LTC1279 responds to CONVST signal only if the signal applied to $\overline{\mathrm{CS}}$ is a logic low.
$\overline{\mathbf{R D}}$ (Pin 20): READ Input. A logic low signal applied to this pin enables the output data drivers when the signal applied to the $\overline{C S}$ pin is a logic low.
$\overline{\mathbf{C S}}$ (Pin 21): The CHIP SELECT input must be a logic low for the ADC to recognize the signals applied to the $\overline{\text { CONVST }}$ and $\overline{\mathrm{RD}}$ inputs.
$\overline{B U S Y}$ (Pin 22): The $\overline{B U S Y}$ output shows the converter status. It is a logic low during a conversion.
VSS (Pin 23): Negative Supply. -5 V will select bipolar operation. Bypass to AGND with $0.1 \mu \mathrm{~F}$ ceramic. Tie to analog ground to select unipolar operation.
AV ${ }_{\text {DD }}$ (Pin 24): Positive Supply, 5V. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).

fUNCTIONAL BLOCK DIAGRAM

TEST CIRCUITS

Load Circuits for Access Timing

A) $\mathrm{HIGH}-Z$ TO $\mathrm{V}_{\mathrm{OH}}\left(\mathrm{t}_{8}\right)$ AND $V_{O L}$ TO $V_{\mathrm{OH}}\left(\mathrm{t}_{6}\right)$

B) $\mathrm{HIGH}-Z \mathrm{TO} \mathrm{V}_{\mathrm{OL}}\left(\mathrm{t}_{8}\right)$ AND $\mathrm{V}_{\mathrm{OH}} \mathrm{TO} \mathrm{V}_{\mathrm{OL}}\left(\mathrm{t}_{6}\right)$

Load Circuits for Output Float Delay

1279 Tc02

timing diacrams

APPLICATIONS INFORMATION

CONVERSION DETAILS

The LTC1279 uses a successive approximation algorithm and an internal sample-and-hold circuit to convert an analog signal to a 12-bit parallel output. The ADC is complete with a precision reference and an internal clock. The control logic provides easy interface to microprocessors and DSPs. (Please refer to the Digital Interface section for the data format.)
Conversion start is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\text { CONVST }}$ inputs. At the start of conversion the successive approximation register (SAR) is reset. Once a conversion cycle has begun it cannot be restarted.
During conversion, the internal 12-bit capacitive DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). Referring to Figure 1, the $A_{I N}$ input connects to the sample-and-hold capacitor during the acquire phase, and the comparator offset is nulled by the feedback switch. In this acquire phase, a minimum delay of 160 ns will provide enough

time for the sample-and-hold capacitor to acquire the analog signal. During the convert phase, the comparator feedback switch opens, putting the comparator into the compare mode. The input switch switches CSAMPLE to ground, injecting the analog input charge onto the summing junction. This input charge is successively com-

APPLICATIONS InFORMATION

pared with the binary-weighted charges supplied by the capacitive DAC. Bit decisions are made by the high speed comparator. At the end of a conversion, the DAC output balances the A A input charge. The SAR contents (a 12-bit data word) which represent the $A_{I N}$ are loaded into the 12-bit output latches.

DYNAMIC PERFORMANCE

The LTC1279 has excellent high speed sampling capability. FFT (Fast Fourier Transform) test techniques are used to test the ADC's frequency response, distortion and noise at the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FFT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental. Figures 2 a and $2 b$ show typical LTC1279 FFT plots.

Figure 2a. LTC1279 Nonaveraged, 4096 Point FFT Plot with 100kHz Input Frequency

1279 F02
Figure 2b. LTC1279 Nonaveraged, 4096 Point FFT Plot with 300 kHz Input Frequency

Signal-to-Noise Ratio

The Signal-to-Noise plus Distortion Ratio $[\mathrm{S} /(\mathrm{N}+\mathrm{D})$] is the ratio between the RMS amplitude of the fundamental input frequency to the RMS amplitude of all other frequency components at the A/D output. The output is band limited to frequencies above DC and below half the sampling frequency. Figure 2a shows a typical spectral content with a 600 kHz sampling rate and a 100 kHz input. The dynamic performance is excellent for input frequencies up to the Nyquist limit of 300 kHz as shown in Figure 2 b .

Effective Number of Bits

The Effective Number of Bits (ENOBs) is a measurement of the resolution of an ADC and is directly related to the $S /(N+D)$ by the equation:

$$
N=[S /(N+D)-1.76] / 6.02
$$

where N is the Effective Number of Bits of resolution and $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ is expressed in dB . At the maximum sampling rate of 600 kHz the LTC1279 maintains very good ENOBs up to the Nyquist input frequency of 300 kHz . Refer to Figure 3.

Figure 3. Effective Bits and Signal/(Noise + Distortion) vs Input Frequency

Total Harmonic Distortion

Total Harmonic Distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

APPLICATIONS INFORMATION

$$
T H D=20 \log \frac{\sqrt{V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2} \ldots+V_{N}{ }^{2}}}{V_{1}}
$$

where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{N} are the amplitudes of the second through Nth harmonics. THD versus input frequency is shown in Figure 4. The LTC1279 has good distortion performance up to the Nyquist frequency and beyond.

Figure 4. Distortion vs Input Frequency

Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.
If two pure sine waves of frequencies fa and fb are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$, where m and $\mathrm{n}=0,1,2,3$, etc. For example, the 2nd order IMD terms include ($\mathrm{fa}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$) while the 3rd order IMD terms include ($2 \mathrm{fa}+\mathrm{fb}$), ($2 \mathrm{fa}-\mathrm{fb}$), (fa +2 fb), and (fa - 2fb). If the two input sine waves are equal in magnitude, the value (in decibels) of the 2nd order IMD products can be expressed by the following formula:

$$
\text { IMD }(\mathrm{fa} \pm \mathrm{fb})=20 \log \frac{\text { Amplitude at }(\mathrm{fa} \pm \mathrm{fb})}{\text { Amplitude at } \mathrm{fa}}
$$

Figure 5 shows the IMD performance at a 100 kHz input.

1279 G08
Figure 5. Intermodulation Distortion Plot

Peak Harmonic or Spurious Noise

The peak harmonic or spurious noise is the largest spectral component excluding the input signal and DC. This value is expressed in decibels relative to the RMS value of a full scale input signal.

Full Power and Full Linear Bandwidth

The full power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full scale input signal.
The full linear bandwidth is the input frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ has dropped to 68 dB (11 effective bits). The LTC1279 has been designed to optimize input bandwidth, allowing ADC to undersample input signals with frequencies above the converter's Nyquist Frequency. The noise floor stays very low at high frequencies; $S /(N+D)$ becomes dominated by distortion at frequencies far beyond Nyquist.

Driving the Analog Input

The LTC1279's analog input is easy to drive. It draws only one small current spike while charging the sample-andhold capacitor at the end of conversion. During conversion the analog input draws no current. The only requirement is that the amplifier driving the analog input must settle after the small current spike before the next conversion starts. Any op amp that settles in 160 ns to small current transients will allow maximum speed operation. If slower

APPLLCATIONS InFORMATION

op amps are used, more settling time can be provided by increasing the time between conversions. Suitable devices capable of driving the ADC's $A_{\text {IN }}$ input include the LT ${ }^{\circledR} 1360$, LT1220, LT1223 and LT1224 op amps.

Internal Reference

The LTC1279 has an on-chip, temperature compensated, curvature corrected, bandgap reference that is factory trimmed to 2.42V. It is internally connected to the DAC and is available at pin 2 to provide up to $800 \mu \mathrm{~A}$ current to an external load.

For minimum code transition noise, the reference output should be decoupled with a capacitor to filter wideband noise from the reference ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic).

The $V_{\text {REF }}$ pin can be driven with a DAC or other means to provide input span adjustment in bipolar mode. The $\mathrm{V}_{\text {REF }}$ pin must be driven to at least 2.45 V to prevent conflict with the internal reference. The reference should be driven to no more than 4.8 V to keep the input span within the $\pm 5 \mathrm{~V}$ supplies.
Figure 6 shows an LT1006 op amp driving the $\mathrm{V}_{\text {REF }}$ pin. (In the unipolar mode, the input span is already 0 V to 5 V with

Figure 6. Driving the $V_{\text {REF }}$ with the LT1006 Op Amp

Figure 7. Supplying a 2.5V Reference Voltage to the LTC1279 with the LT1019A-2.5
the internal reference so driving the reference is not recommended, since the input span will exceed the supply and codes will be lost at the full scale.) Figure 7 shows a typical reference, the LT1019A-2.5 connected to the LTC1279. This will provide an improved drift (equal to the LT1019A-2.5's maximum of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) and a $\pm 2.582 \mathrm{~V}$ full scale.

UNIPOLAR/BIPOLAR OPERATION AND ADJUSTMENT

Figure 8a shows the ideal input/output characteristics for the LTC1279. The code transitions occur midway between successive integer LSB values (i.e., $0.5 \mathrm{LSB}, 1.5 \mathrm{LSB}$, $2.5 \mathrm{LSB}, \ldots \mathrm{FS}-1.5 \mathrm{LSB}$). The output code is naturally binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=5 \mathrm{~V} / 4096=1.22 \mathrm{mV}$. Figure 8 b shows the input/output transfer characteristics for the bipolar mode in two's complement format.

Figure 8a. LTC1279 Unipolar Transfer Characteristics

Figure 8b. LTC1279 Bipolar Transfer Characteristics

APPLICATIONS INFORMATION

Unipolar Offset and Full-Scale Error Adjustments

In applications where absolute accuracy is important, offset and full-scale errors can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 9a shows the extra components required for full-scale error adjustment. If both offset and full-scale adjustments are needed, the circuit in Figure 9b can be used. For zero offset error apply 0.61 mV (i.e., 0.5 LSB) at the input and adjust the offset trim until the LTC1279 output code flickers between 000000000000 and 000000000001 . For zero full-scale error apply an analog input of 4.99817 V (i.e., FS -1.5LSB or last code transition) at the input and adjust R5 until the LTC1279 output code flickers between 1111 11111110 and 111111111111.

Figure 9a. Full-Scale Adjust Circuit

تigure 9b. LTC1279 Unipolar Offset and Full-Scale Adjust Circuit

Figure 9c. LTC1279 Bipolar Offset and Full-Scale Adjust Circuit

Bipolar Offset and Full-Scale Error Adjustments

Bipolar offset and full-scale errors are adjusted in a similar fashion to the unipolar case. Again, bipolar offset must be adjusted before full-scale error. Bipolar offset error adjustment is achieved by trimming the offset of the op amp driving the analog input of the LTC1279 while the input voltage is 0.5 LSB below ground. This is done by applying an input voltage of $-0.61 \mathrm{mV}(-0.5 \mathrm{LSB})$ to the input in Figure 9 c and adjusting the R8 until the ADC output code flickers between 000000000000 and 111111111111. For full scale adjustment, an input voltage of 2.49817 V (FS - 1.5LSBs) is applied to the input and R5 is adjusted until the output code flickers between 011111111110 and 011111111111.

BOARD LAYOUT AND BYPASSING

Wire wrap boards are not recommended for high resolution or high speed A / D converters. To obtain the best performance from the LTC1279, a printed circuit board is required. The printed circuit board's layout should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital trace alongside an analog signal trace or underneath the ADC. The analog input should be screened by AGND.

High quality tantalum and ceramic bypass capacitors should be used at the $A V_{D D}$ and $V_{\text {REF }}$ pins as shown in Figure 10. For the bipolar mode, a $0.1 \mu \mathrm{~F}$ ceramic provides

APPLICATIONS InFORMATION

Figure 10. Power Supply Grounding Practice
adequate bypassing for the V_{SS} pin. The capacitors must be located as close to the pins as possible. The traces connecting the pins and the bypass capacitors must be kept short and should be made as wide as possible.
Input signal traces to $A_{\text {IN }}$ (pin 1) and signal return traces from AGND (pin 3) should be kept as short as possible to minimize input noise coupling. In applications where this is not possible, a shielded cable between the signal source and ADC is recommended. Also, since any potential difference in grounds between the signal source and ADC appears as an error voltage in series with the input signal, attention should be paid to reducing the ground circuit impedances as much as possible.
A single point analog ground, separate from the logic system ground, should be established with an analog ground plane at pin 3 (AGND) or as close as possible to the ADC. Pin 12 (DGND) and all other analog grounds should be connected to this single analog ground point. No other digital grounds should be connected to this analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible. In applications where the ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in conversion results. These errors are due to feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a WAIT state during conversion or by using three-state buffers to isolate the ADC data bus.

DIGITAL INTERFACE

The A/D converter is designed to interface with microprocessors as a memory mapped device. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ control inputs are common to all peripheral memory interfacing. A separate CONVST is used to initiate a conversion.

Internal Clock

The A/D converter has an internal clock that eliminates the need of synchronization between the external clock and the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals found in other ADCs. The internal clock is factory trimmed to achieve a typical conversion time of $1.4 \mu \mathrm{~s}$. No external adjustments are required, and with the typical acquisition time of 160 ns , throughput performance of 600 ksps is assured.

Power Shutdown

The LTC1279 provides a power shutdown feature that saves power when the ADC is in inactive periods. To power down the ADC, pin 18 (SHDN) needs to be driven low. When in power shutdown mode, the LTC1279 will not start a conversion even though the CONVST goes low. All the power is off except the Internal Reference which is still active and provides 2.42 V output voltage to the other circuitry. In this mode the ADC draws 8.5 mW instead of 60 mW (for minimum power, the logic inputs must be within 600 mV of the supply rails). The wake-up time from the power shutdown to active state is 350 ns .

APPLICATIONS INFORMATION

Timing and Control

Conversion start and data read operations are controlled by three digital inputs: $\overline{\mathrm{CS}}, \overline{\mathrm{CONVST}}$ and $\overline{\mathrm{RD}}$. Figure 11 shows the logic structure associated with these inputs. A logic " 0 " for CONVST will start a conversion after the ADC has been selected (i.e., $\overline{\mathrm{CS}}$ is low). Once initiated, it cannot be restarted until the conversion is complete. Converter status is indicated by the BUSY output, and this is low while conversion is in progress.
Figures 12 through 16 show several different modes of operation. In modes 1a and 1b (Figures 12 and 13) $\overline{C S}$ and $\overline{\mathrm{RD}}$ are both tied low. The falling CONVST starts the conversion. The data outputs are always enabled and data can be latched with the BUSY rising edge. Mode 1a shows operation with a narrow logic low CONVST pulse. Mode 1b shows a narrow logic high CONVST pulse.
In mode 2 (Figure 14) $\overline{\mathrm{CS}}$ is tied low. The falling CONVST signal again starts the conversion. Data outputs are in three-state until read by MPU with the $\overline{\mathrm{RD}}$ signal. Mode 2 can be used for operation with a shared MPU databus.

In Slow memory and ROM modes (Figures 15 and 16) $\overline{C S}$ is tied low and $\overline{C O N V S T}$ and $\overline{R D}$ are tied together. The MPU starts conversion and reads the output with the $\overline{\mathrm{RD}}$ signal. Conversions are started by the MPU or DSP (no external sample clock).

In Slow memory mode the processor applies a logic low to $\overline{\mathrm{RD}}$ (= $\overline{\text { CONVST }}$), starting the conversion. BUSY goes low, forcing the processor into a WAIT state. The previous conversion result appears on the data outputs. When the conversion is complete, the new conversion results appear on the data outputs; $\overline{\text { BUSY }}$ goes high, releasing the processor; the processor applies a logic high to $\overline{\mathrm{RD}}$ (= CONVST) and reads the new conversion data.

In ROM mode, the processor applies a logic low to $\overline{R D}$ ($=\overline{\text { CONVST }}$), starting a conversion and reading the previous conversion result. After the conversion is complete, the processor can read the new result (which will initiate another conversion).

Figure 11. Internal Logic for Control Inputs $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{CONVST}}$ and $\overline{\mathrm{SHDN}}$

Figure 12. Mode 1a. $\overline{\text { CONVST }}$ Starts a Conversion. Data Ouputs Always Enabled. ($\overline{\text { CONVST }}=\boldsymbol{\square} \boldsymbol{\square})$

APPLICATIONS INFORMATION

Figure 13. Mode 1b. CONVST Starts a Conversion. Data Outputs Always Enabled. ($\overline{\text { CONVST }}=\sqrt{\square} \quad$ 亿 $)$

Figure 14. Mode 2. $\overline{\text { CONVST }}$ Starts a Conversion. Data is Read by $\overline{\mathrm{RD}}$

Figure 15. Slow Memory Mode

Figure 16. ROM Mode Timing

RELATED PARTS ${ }_{(12 \text { Bii) }}$

PART NUMBER	DESCRIPTION	COMMENTS
LTC1272	12 -Bit, 3 $\mu \mathrm{s}, 250 \mathrm{kHz}$ Sampling A/D Converter	Single 5V, Sampling 7572 Upgrade
LTC1273/LTC1275/LTC1276	12 -Bit, 300ksps Sampling A/D Converters with Reference	Complete with Clock, Reference
LTC1274/LTC1277	12 -Bit, 10mW, 100ksps A/D Converters with 1 μ A Shutdown	Complete with Clock, Reference
LTC1278	12 -Bit, 500 ksps Sampling A/D Converter with Shutdown	70dB SINAD at Nyquist, Low Power
LTC1282	$3 V, 140 \mathrm{ksps} 12-$ Bit Sampling A/D Converter with Reference	3V or $\pm 3 V$ ADC with Reference, Clock
LTC1409	12 -Bit, 800ksps Sampling A/D Converter with Shutdown	Fast, Complete Low Power ADC
LTC1410	12-Bit, 1.25Msps Sampling A/D Converter with Shutdown	Fast, Complete, Wideband ADC

3 V Micropower Sampling 12-Bit A/D Converters in SO-8 Packages

features

- 12-Bit Resolution
- 8-Pin SO Plastic Package
- Low Cost
- Low Supply Current: 160uA Typ
- Auto Shutdown to 1nA Typ
- Guaranteed $\pm 3 / 4$ LSB Max DNL
- Single Supply 3V to 6V Operation
- Differential Inputs (LTC1285)
- 2-Channel MUX (LTC1288)
- On-Chip Sample-and-Hold
- $100 \mu \mathrm{~s}$ Conversion Time
- Sampling Rates:
7.5ksps (LTC1285)
6.6ksps (LTC1288)
- I/O Compatible with SPI, Microwire, etc.

APPLICATIONS

- Pen Screen Digitizing
- Battery-Operated Systems
- Remote Data Acquisition
- Isolated Data Acquisition
- Battery Monitoring
- Temperature Measurement

DESCRIPTION

The LTC ${ }^{\circledR}$ 1285/LTC1288 are $3 V$ micropower, 12 -bit, successive approximation sampling A/D converters. They typically draw only $160 \mu \mathrm{~A}$ of supply current when converting and automatically power down to a typical supply current of 1 nA whenever they are not performing conversions. They are packaged in 8-pin SO packages and operate on 3 V to 6 V supplies. These 12 -bit, switchedcapacitor, successive approximation ADCs include sample-and-holds. The LTC1285 has a single differential analog input. The LTC1288 offers a software selectable 2-channel MUX.

On-chip serial ports allow efficient data transfer to a wide range of microprocessors and microcontrollers over three wires. This, coupled with micropowerconsumption, makes remote location possible and facilitates transmitting data through isolation barriers.

These circuits can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (to 1.5 V full scale) allow direct connection to sensors and transducers in many applications, eliminating the need for gain stages.
$\mathbf{1 7}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATIONS

$12 \mu \mathrm{~W}$, S0-8 Package, 12-Bit ADC
Samples at 200 Hz and Runs Off a 3V Supply

LTC1285/88•TA02

ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)

Power Dissipation Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec.)............... $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1285CN8		LTC1285CS8
			PART MARKING
			1285C
	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1288CN8		LTC1288CS8
			PART MARKING
			1288C

Consult factory for Industrial and Military grade parts.

RECOMmERDED OPGRATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {CC }}$	Supply Voltage (Note 3)	LTC1285 LTC1288	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	V
${ }_{\text {fCLK }}$	Clock Frequency	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	(Note 4)		120	kHz
$\mathrm{t}_{\text {cyc }}$	Total Cycle Time	$\begin{array}{r} \text { LTC1285, fCLK }=120 \mathrm{kHz} \\ \text { LTC1288, } \mathrm{f}_{\text {CLK }}=120 \mathrm{kHz} \end{array}$	$\begin{aligned} & 125.0 \\ & 141.5 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
$t_{\text {h }}$	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$V_{C C}=2.7 \mathrm{~V}$	450			ns
$\mathrm{t}_{\text {su }} \overline{C s}$	Setup Time $\overline{C S} \downarrow$ Before First CLK \uparrow (See Operating Sequence)	LTC1285, $V_{C C}=2.7 \mathrm{~V}$ LTC1288, $V_{C C}=2.7 \mathrm{~V}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{t}_{\text {sudi }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before CLK \uparrow	$V_{\text {CC }}=2.7 \mathrm{~V}$	600			ns
${ }^{\text {tw }}$ HCLK	CLK High Time	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	3.5			$\mu \mathrm{S}$
twLCLK	CLK Low Time	$V_{C C}=2.7 \mathrm{~V}$	3.5			$\mu \mathrm{S}$
${ }^{\text {twhCS }}$	$\overline{\text { CS }}$ High Time Between Data Transfer Cycles	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	2			$\mu \mathrm{S}$
${ }_{\text {twL }}$ LSS	$\overline{\text { CS }}$ Low Time During Data Transfer	$\begin{aligned} & \text { LTC1285, } \mathrm{f} \text { CLK }=120 \mathrm{kHz} \\ & \text { LTC1288, } \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz} \end{aligned}$	$\begin{array}{r} 123.0 \\ 139.5 \\ \hline \end{array}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$

CONVERTER AND MULTIPLEXER CHARACTERISTICS (Note 5)

PARAMETER	CONDITIONS			TC128			TC128		
PARAMEIER	CONDITIONS		MIN		MAX	MIN		MAX	UNITS
Resolution (No Missing Codes)		\bullet	12			12			Bits
Integral Linearity Error	(Note 6)	\bullet		$\pm 3 / 4$	± 2		$\pm 3 / 4$	± 2	LSB
Differential Linearity Error		\bullet		$\pm 1 / 4$	$\pm 3 / 4$		$\pm 1 / 4$	$\pm 3 / 4$	LSB
Offset Error		\bullet		$\pm 3 / 4$	± 3		$\pm 3 / 4$	± 3	LSB
Gain Error		\bullet		± 2	± 8		± 2	± 8	LSB
Analog Input Range	(Note 7 and 8)	\bullet	-0.05 V to $\mathrm{V}_{\text {cc }}+0.05 \mathrm{~V}$						V
REF Input Range (LTC1285) (Notes 7, 8, and 9)	$2.7 \leq \mathrm{V}_{\mathrm{CC}} \leq 6 \mathrm{~V}$		1.5 V to $\mathrm{V}_{\text {CC }}+0.05 \mathrm{~V}$						V
Analog Input Leakage Current (Note 10)		\bullet			± 1			± 1	$\mu \mathrm{A}$

DIGITAL AND DC ELECTRICAL CHARACTERISTICS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$	-	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	\bullet			0.8	V
$\underline{l_{1 H}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			2.5	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=2.7 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 2.4 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.30 \end{aligned}$		V
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.4	V
$10 z$	Hi-Z Output Leakage	$\overline{C S}=$ High	-			± 3	$\mu \mathrm{A}$
ISOURCE	Output Source Current	$V_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			15		mA
$\mathrm{R}_{\text {REF }}$	Reference Input Resistance (LTC1285)	$\begin{aligned} & \overline{\overline{C S}}=V_{I H} \\ & \overline{C S}=V_{I L} \end{aligned}$			$\begin{gathered} 2700 \\ 54 \\ \hline \end{gathered}$		$\mathrm{M} \Omega$ $\mathrm{k} \Omega$
$I_{\text {REF }}$	Reference Current (LTC1285)	$\begin{aligned} & \overline{\overline{C S}}=V_{C C} \\ & t_{\mathrm{CYC}} \geq 640 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 25 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}}=134 \mu \mathrm{f}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} 0.001 \\ 50 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{\mathrm{ICC}}$	Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{C C}$	\bullet		0.001	± 3.0	$\mu \mathrm{A}$
		LTC1285, $\mathrm{t}_{\mathrm{CYC}} \geq 640 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 25 \mathrm{kHz}$ LTC1285, $\mathrm{t}_{\mathrm{CYC}}=134 \mu \mathrm{~S}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$	\bullet		$\begin{aligned} & 150 \\ & 160 \end{aligned}$	320	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		LTC1288, $\mathrm{t}_{\mathrm{CYC}} \geq 720 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 25 \mathrm{kHz}$ LTC1288, $\mathrm{t}_{\mathrm{CYC}}=150 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$	-		$\begin{aligned} & 200 \\ & 210 \end{aligned}$	390	$\mu \mathrm{A}$ $\mu \mathrm{A}$

DYПAIMIC ACCURACY $\mathrm{f}_{\text {SMPL }}=7.5 \mathrm{kHz}$ (LTC1285), $\mathrm{f}_{\text {SMPL }}=6.6 \mathrm{kHz}$ (LTC1288) (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	1 kHz Input Signal	67	dB	
THD	Total Harmonic Distortion (Up to 5th Harmonic)	1 kHz Input Signal	-80	dB	
SFDR	Spurious-Free Dynamic Range	1 kHz Input Signal	88	dB	
	Peak Harmonic or Spurious Noise	1 kHz Input Signal	-88	dB	

AC CHARACTERISTICS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
${ }_{\text {tsMPL }}$	Analog Input Sample Time	See Operating Sequence			1.5		CLK Cycles
${ }^{\text {f SMPL(MAX) }}$	Maximum Sampling Frequency	LTC1285 LTC1288	\bullet	$\begin{aligned} & 7.5 \\ & 6.6 \end{aligned}$			kHz kHz
tconv	Conversion Time	See Operating Sequence			12		CLK Cycles
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to D ${ }_{\text {Out }}$ Data Valid	See Test Circuits	\bullet		600	1500	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to D ${ }_{\text {Out }} \mathrm{Hi}-\mathrm{Z}$	See Test Circuits	\bullet		220	660	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {Out }}$ Enable	See Test Circuits	\bullet		180	500	ns
thoo	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			520		ns
t_{f}	D Out Fall Time	See Test Circuits	\bullet		60	180	ns
t_{r}	Dout Rise Time	See Test Circuits	\bullet		80	180	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Inputs, On Channel Analog Inputs, Off Channel Digital Input			$\begin{gathered} 20 \\ 5 \\ 5 \end{gathered}$		pF pF pF

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.
Note 3: These devices are specified at 3V. For 5V specified devices, see LTC1286 and LTC1298.
Note 4: Increased leakage currents at elevated temperatures cause the sample-and-hold to droop, therefore it is recommended that $\mathrm{f}_{\mathrm{CLK}} \geq 75 \mathrm{kHz}$ at 70° and $f_{\text {CLK }} \geq 1 \mathrm{kHz}$ at $25^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$ and $C L K=120 \mathrm{kHz}$ unless otherwise specified.
Note 6: Linearity error is specified between the actual end points of the A/D transfer curve.

Note 7: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below GND or one diode drop above Vcc. This spec allows 50 mV forward bias of either diode for $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 6 \mathrm{~V}$. This means that as long as the reference or analog input does not exceed the supply voltage by more than 50 mV the output code will be correct. To achieve an absolute 0 V to 2.7 V input voltage range will therefore require a minimum supply voltage of 2.650 V over initial tolerance, temperature variations and loading. For 2.7V $<\mathrm{V} C \mathrm{CC} \leq 6 \mathrm{~V}$, reference and analog input range cannot exceed 6.05 V . If reference and analog input range are greater than 6.05 V , the output code will not be guaranteed to be correct.
Note 8: The supply voltage range for the LTC1285 and the LTC1288 is from 2.7 V to 6 V .
Note 9: Recommended operating conditions
Note 10: Channel leakage current is measured after the channel selection.

TYPICAL PGRFORMAOCE CHARACTERISTICS

LTC1285/88•TPC01

Supply Current vs Temperature

LTC1285/88•TPC02

Shutdown Supply Current vs Clock Rate with $\overline{C S}$ High and $\overline{C S}$ Low

LTC1285/88 • TPCO3

tYPICAL PGRFORMANCE CHARACTERISTICS

Effective Bits and $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ vs Input Frequency

LTC1285/88•TPC12

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTGRISTICS

Minimum Clock Frequency for 0.1 LSB Error vs Temperature

Input Channel Leakage Current

 vs Temperature

pin functions

LTC1285

$V_{\text {REF }}$ (Pin 1): Reference Input. The reference input defines the span of the A/D converter.
$\mathbf{N N}^{+}$(Pin 2): Positive Analog Input.
IN $^{-}$(Pin 3): Negative Analog Input.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
$\overline{\text { CS/SHDN (Pin 5): Chip Select Input. A logic Iow on this }}$ input enables the LTC1285. A logic high on this input disables and powers down the LTC1285.
Dout (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.

CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer and determines conversion speed.
$V_{\text {cc }}$ (Pin 8): Power Supply Voltage. This pin provides power to the A/D converter. It must be kept free of noise and ripple by bypassing directly to the analog ground plane.

LTC1288

$\overline{\mathrm{CS}} / \mathrm{SHDN}$ (Pin 1): Chip Select Input. A logic low on this input enables the LTC1288. A logic high on this input disables and powers down the LTC1288.

CHO (Pin 2): Analog Input.
CH1 (Pin 3): Analog Input.
GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
$\mathrm{D}_{\text {IN }}$ (Pin 5): Digital Data Input. The multiplexer address is shifted into this input.
$D_{\text {OUt }}$ (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.

CLK (Pin 7): Shift Clock. This clock synchronizes the serial data transfer and determines conversion speed.
$\mathbf{V}_{\text {Cc }} / V_{\text {ReF }}$ (Pin 8): Power Supply and Reference Voltage. This pin provides power and defines the span of the A/D converter. It must be kept free of noise and ripple by bypassing directly to the analog ground plane.

BLOCK DIAGRAM

PIN NAMES IN PARENTHESES REFER TO THE LTC1288

TEST CIRCUITS

Load Circuit for $t_{d D 0}, t_{r}$ and t_{f}

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Delay Times, $\mathrm{t}_{\mathrm{d} D \mathrm{O}}$

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Load Circuit for $\mathrm{t}_{\text {dis }}$ and $\mathrm{t}_{\text {en }}$

LTC1285/LTC1288

TEST CIRCUITS

 THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL.

Voltage Waveforms for t_{en}

APPLICATION INFORMATION

OVERVIEW

The LTC1285 and LTC1288 are 3V micropower, 12-bit, successive approximation sampling A/D converters. The LTC1285 typically draws $160 \mu \mathrm{~A}$ of supply current when sampling at 7.5 kHz while the LTC1288 nominally consumes $210 \mu \mathrm{~A}$ of supply current when sampling at 6.6 kHz . The extra $50 \mu \mathrm{~A}$ of supply current on the LTC1288 comes from the reference input which is intentionally tied to the supply. Supply current drops linearly as the sample rate is reduced (see Supply Current vs Sample Rate). The ADCs automatically power down when not performing conversions, drawing only leakage current. They are packaged in 8 -pin SO and DIP packages. The LTC1285 and LTC1288 operate on a single supply from 2.7 V to 6 V .
Both the LTC1285 and the LTC1288 contain a 12-bit, switched-capacitor ADC, a sample-and-hold, and a serial port (see Block Diagram). Although they share the same
basic design, the LTC1285 and LTC1288 differ in some respects. The LTC1285 has a differential input and has an external reference input pin. It can measure signals floating on a DC common-mode voltage and can operate with reduced spans to 1.5 V . Reducing the spans allows it to achieve $366 \mu \mathrm{~V}$ resolution. The LTC1288 has a two-channel input multiplexer and can convert either channel with respect to ground or the difference between the two. The reference input is tied to the supply pin.

SERIAL INTERFACE

The 2-channel LTC1288 communicates with microprocessors and other external circuitry via a synchronous, half duplex, 4-wire serial interface. The single channel LTC1285 uses a 3-wire interface (see Operating Sequence in Figures 1 and 2).

*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH $\overline{C S}$ LOW, THE ADC WILL OUTPUT LSB-FIRST DATA THEN FOLLOWED WITH ZEROS INDEFINITELY.

*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH $\overline{C S}$ LOW, THE ADC WILL OUTPUT ZEROS INDEFINITELY.
tDATA: DURING THIS TIME, THE BIAS CIRCUIT AND THE COMPARATOR POWER DOWN AND THE REFERENCE INPUT
BECOMES A HIGH IMPEDANCE NODE, LEAVING THE CLK RUNNING TO CLOCK OUT LSB-FIRST DATA OR ZEROES.
LTC1285/88 • 101
Figure 1. LTC1285 Operating Sequence

APPLICATION InFORMATION

MSB-First Data (MSBF $=0$)

MSB-First Data ($M S B F=1$)

*AFTER COMPLETING THE DATA TRANSFER, IF FURTHER CLOCKS ARE APPLIED WITH CS LOW, THE ADC WILL OUTPUT ZEROS INDEFIIITELY.
$t_{D A T A}$: DURING THIS TIME, THE BIAS CIRCUIT AND THE COMPARATOR POWER DOWN AND THE REFERENCE INPUT BECOMES A HIGH IMPEDANCE NODE, LEAVING THE CLK RUNNING TO CLOCK OUT LSB-FIRST DATA OR ZEROES.

Figure 2. LTC1288 Operating Sequence Example: Differential Inputs ($\mathrm{CH}^{+}, \mathrm{CH}^{-}$)

APPLICATION INFORMATION

Data Transfer

The CLK synchronizes the data transfer with each bit being transmitted on the falling CLK edge and captured on the rising CLK edge in both transmitting and receiving systems.
The LTC1285 does not require a configuration input word and has no $\mathrm{D}_{\text {IN }}$ pin. A falling $\overline{\mathrm{CS}}$ initiates data transfer as shown in the LTC1285 operating sequence. After CS falls the second CLK pulse enables Dout. After one null bit the A/D conversion result is output on the $D_{\text {out }}$ line. Bringing $\overline{\text { CS }}$ high resets the LTC1285 for the next data exchange.
The LTC1288 first receives input data and then transmits back the A / D conversion result (half duplex). Because of the half duplex operation, D_{IN} and $\mathrm{D}_{\text {Out }}$ may be tied together allowing transmission over just 3 wires: $\overline{C S}, ~ C L K$ and DATA ($\mathrm{DiN}_{\text {IN }} / \mathrm{D}_{\text {OUT }}$).
Data transfer is initiated by a falling chip select ($\overline{(\bar{S})}$) signal. After CS falls the LTC1288 looks for a start bit. Atter the start bit is received, the 3 -bit input word is shifted into the $\mathrm{D}_{\text {IN }}$ input which configures the LTC1288 and starts the conversion. After one null bit, the result of the conversion is output on the $D_{\text {Out }}$ line. At the end of the data exchange $\overline{\text { CS }}$ should be brought high. This resets the LTC1288 in preparation for the next data exchange.

Input Data Word

The LTC1285 requires no $\mathrm{D}_{\text {IN }}$ word. It is permanently configured to have a single differential input. The conversion result appears on the Dout line. The data format is MSB first followed by the LSB sequence. This provides easy interface to MSB or LSB first serial ports. For MSB first data the $\overline{\mathrm{CS}}$ signal can be taken high after BO (see Figure 1). The LTC1288 clocks data into the D_{IN} input on
the rising edge of the clock. The input data words are defined as follows:

Start Bit

The first "logical one" clocked into the $D_{\text {IN }}$ input after $\overline{C S}$ goes low is the start bit. The start bit initiates the data transfer. The LTC1288 will ignore all leading zeros which precede this logical one. After the start bit is received, the remaining bits of the input word will be clocked in. Further inputs on the $D_{\text {IN }}$ pin are then ignored until the next $\overline{C S}$ cycle.

Multiplexer (MUX) Address

The bits of the input word following the START bit assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the " + " and " - " signs in the selected row of the following tables. In single-ended mode, all input channels are measured with respect to GND.

LTC1288 Channel Selection

	MUX ADDRESS		CHANNEL \#		GND
	SGL/DIFF	ODD/SIGN	0	1	
SINGLE-ENDED MUX MODE	1	0	+		-
	1	1		+	-
DIFFERENTIAL MUX MODE	0	0	+	-	
	0	1	-	+	

MSB First/LSB First (MSBF)

The output data of the LTC1288 is programmed for MSB first or LSB first sequence using the MSBF bit. When the MSBF bit is a logical one, data will appear on the Dout line in MSB first format. Logical zeros will be filled in indefinitely following the last data bit. When the MSBF bit is a logical zero, LSB first data will follow the normal MSB first data on the Dout line (see Operating Sequence).

LTC1285/LTC1288

APPLICATION INFORMATION

Transfer Curve

The LTC1285/LTC1288 are permanently configured for unipolar only. The input span and code assignment for this conversion type are shown in the following figures.

Output Code

OUTPUT CODE	INPUT VOLTAGE	INPUT VOLTAGE $\left(V_{\text {REF }}=5.000 \mathrm{~V}\right)$
11111111111111111	$V_{\text {REF }}-1$ LSB	4.99878 V
1111111111111110	$V_{\text {REF }}-2 L S B$	4.99756 V
\vdots	\vdots	\vdots
0000000000000001	1LSB	0.00122 V
000000000000000	0 V	0 V

Operation with $D_{\text {IN }}$ and $D_{\text {OUT }}$ Tied Together

The LTC1288 can be operated with $D_{\text {IN }}$ and $D_{\text {OUT }}$ tied together. This eliminates one of the lines required to communicate to the microprocessor (MPU). Data is transmitted in both directions on a single wire. The processor pin connected to this data line should be configurable as
either an input or an output. The LTC1288 will take control of the data line and drive it low on the 4th falling CLK edge after the start bit is received (see Figure 3). Therefore the processor port line must be switched to an input before this happens to avoid a conflict.

In the Typical Applications section, there is an example of interfacing the LTC1288 with $\mathrm{D}_{\text {IN }}$ and $\mathrm{D}_{\text {OUT }}$ tied together to the Intel 8051 MPU.

ACHIEVING MICROPOWER PERFORMANCE

With typical operating currents of $160 \mu \mathrm{~A}$ and automatic shutdown between conversions, the LTC1285/LTC1288 achieves extremely low power consumption over a wide range of sample rates (see Figure 4). The auto-shutdown allows the supply curve to drop with reduced sample rate.

Figure 4. Automatic Power Shutdown Between Conversions Allows Power Consumption to Drop with Sample Rate

Figure 3. LTC1288 Operation with $D_{\text {IN }}$ and $D_{\text {OUT }}$ Tied Together

APPLICATION INFORMATION

Several things must be taken into account to achieve such a low power consumption.

Shutdown

The LTC1285/LTC1288 are equipped with automatic shutdown features. They draw power when the $\overline{C S}$ pin is low and shut down completely when that pin is high. The bias circuit and comparator powers down and the reference input becomes high impedance at the end of each conversion leaving the CLK running to clock out the LSB first data or zeroes (see Figures 1 and 2). If the $\overline{\mathrm{CS}}$ is not running rail-to-rail, the input logic buffer will draw current. This current may be large compared to the typical supply current. To obtain the lowest supply current, bring the $\overline{\mathrm{CS}}$ pin to ground when it is low and to supply voltage when it is high.
When the $\overline{C S}$ pin is high (= supply voltage), the converter is in shutdown mode and draws only leakage current. The status of the $D_{I N}$ and CLK input have no effect on supply current during this time. There is no need to stop $D_{\text {IN }}$ and CLK with $\overline{\mathrm{CS}}=$ high; they can continue to run without drawing current.

Minimize $\overline{C S}$ Low Time

In systems that have significant time between conversions, lowest power drain will occur with the minimum $\overline{C S}$ low time. Bringing $\overline{\text { CS }}$ low, transferring data as quickly as possible, and then bringing it back high will result in the

LTC1285/88 • TPC03
Figure 5. Shutdown Current with $\overline{C S}$ High is 1 nA Typically, Regardless of the Clock. Shutdown Current with $\mathrm{CS}=$ Ground Varies From $1 \mu \mathrm{~A}$ at 1 kHz to $9 \mu \mathrm{~A}$ at 120 kHz
lowest current drain. This minimizes the amount of time the device draws power. After a conversion the ADC automatically shuts down even if $\overline{C S}$ is held low (see Figures 1 and 2). If the clock is left running to clock out LSB-data or zero, the logic will draw a small current. Figure 5 shows that the typical supply current with $\overline{\mathrm{CS}}=$ ground varies from $1 \mu \mathrm{~A}$ at 1 kHz to $9 \mu \mathrm{~A}$ at 120 kHz . When $\overline{C S}=V_{C C}$, the logic is gated off and no supply current is drawn regardless of the clock frequency.

Dout Loading

Capacitive loading on the digital output can increase power consumption. A 100pF capacitor on the $D_{\text {OUT }}$ pin can add more than $16.2 \mu \mathrm{~A}$ to the supply current at a 120 kHz clock frequency. An extra $16.2 \mu \mathrm{~A}$ or so of current goes into charging and discharging the load capacitor. The same goes for digital lines driven at a high frequency by any logic. The $\mathrm{C} \times \mathrm{V} \times \mathrm{f}$ currents must be evaluated and the troublesome ones minimized.

OPERATING ON OTHER THAN 3V SUPPLIES

Both the LTC1285 and the LTC1288 operate from a 2.7 V to 6 V supply. To operate the LTC1285/LTC1288 on other than 3 V supplies a few things must be kept in mind.

Input Logic Levels

The input logic levels of $\overline{C S}, C L K$ and $D_{\text {IN }}$ are made to meet TTL on a 3 V supply. When the supply voltage varies, the input logic levels also change. For the LTC1285/ LTC1288 to sample and convert correctly, the digital inputs have to be in the proper logical low and high levels relative to the operating supply voltage (see typical curve of Digital Input Logic Threshold vs Supply Voltage). If achieving micropower consumption is desirable, the digital inputs must go rail-to-rail between supply voltage and ground (see ACHIEVING MICROPOWER PERFORMANCE section).

Clock Frequency

The maximum recommended clock frequency is 120 kHz for the LTC1285/LTC1288 running off a 3V supply. With the supply voltage changing, the maximum clock frequency for the devices also changes (see the typical curve

APPLICATION INFORMATION

of Maximum Clock Rate vs Supply Voltage). If the maximum clock frequency is used, care must be taken to ensure that the device converts correctly.

Mixed Supplies

It is possible to have a microprocessor running off a 5 V supply and communicate with the LTC1285/LTC1288 operating on a 3 V supply. The inputs of $\overline{C S}$, CLK and $D_{I N}$ of the LTC1285/LTC1288 have no problem to take a voltage swing from OV to 5 V . With the LTC1285 operating on a 3 V supply, the output of $\mathrm{D}_{\text {OUT }}$ may only go between 0 V and 3 V . The 3 V output level is higher enough to trip a TTL input of the MPU. Figure 6 shows a 3 V powered LTC1285 interfacing a 5V system.

Figure 6. Interfacing a 3V Powered LTC1285 to a 5V System

BOARD LAYOUT CONSIDERATIONS

Grounding and Bypassing

The LTC1285/LTC1288 are easy to use if some care is taken. They should be used with an analog ground plane and single point grounding techniques. The GND pin should be tied directly to the ground plane.
The $V_{C C}$ pin should be bypassed to the ground plane with a $10 \mu \mathrm{~F}$ tantalum capacitor with leads as short as possible. If the power supply is clean, the LTC1285/LTC1288 can also operate with smaller $1 \mu \mathrm{~F}$ or less surface mount or ceramic bypass capacitors. All analog inputs should be referenced directly to the single point ground. Digital inputs and outputs should be shielded from and/or routed away from the reference and analog circuitry.

SAMPLE-AND-HOLD

Both the LTC1285 and the LTC1288 provide a built-in sample-and-hold (S\&H) function to acquire signals. The S\&H of the LTC1285 acquires input signals from " + " input relative to "-" input during the $\mathrm{t}_{\text {SMPL }}$ time (see Figure 1). However, the S\&H of the LTC1288 can sample input signals in the single-ended mode or in the differential inputs during the tsMPL time (see Figure 7).

Figure 7. LTC1288 " + " and " - " Input Settling Windows

APPLICATION INFORMATION

Single-Ended Inputs

The sample-and-hold of the LTC1288 allows conversion of rapidly varying signals. The input voltage is sampled during the tsMPL time as shown in Figure 7. The sampling interval begins as the bit preceding the MSBF bit is shifted in and continues until the falling CLK edge after the MSBF bit is received. On this falling edge, the S\&H goes into hold mode and the conversion begins.

Differential Inputs

With differential inputs, the ADC no longer converts just a single voltage but rather the difference between two voltages. In this case, the voltage on the selected " + " input is still sampled and held and therefore may be rapidly time varying just as in single-ended mode. However, the voltage on the selected "-" input must remain constant and be free of noise and ripple throughout the conversion time. Otherwise, the differencing operation may not be performed accurately. The conversion time is 12 CLK cycles. Therefore, a change in the "-" input voltage during this interval can cause conversion errors. For a sinusoidal voltage on the "-" input this error would be:

$$
V_{\text {ERROR (MAX) }}=V_{\text {PEAK }} \times 2 \times \pi \times f\left(\text { "-") } \times 12 / f_{\text {CLK }}\right.
$$

Where $f($ "-") is the frequency of the "-" input voltage, $V_{\text {PEAK }}$ is its peak amplitude and $\mathrm{f}_{\text {CLK }}$ is the frequency of the CLK. In most cases $V_{\text {ERROR }}$ will not be significant. For a 60 Hz signal on the "-" input to generate a $1 / 4$ LSB error $(152 \mu \mathrm{~V})$ with the converter running at $\mathrm{CLK}=120 \mathrm{kHz}$, its peak value would have to be 4.03 mV .

ANALOG INPUTS

Because of the capacitive redistribution A / D conversion techniques used, the analog inputs of the LTC1285/ LTC1288 have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem. However, if large source resistances are used or if slow settling op amps drive the inputs, care must be taken to insure that the transients caused by the current spikes settle completely before the conversion begins.

" + " Input Settling

The input capacitor of the LTC1285 is switched onto " + " input during the $\mathrm{t}_{\mathrm{SMPL}}$ time (see Figure 1) and samples the input signal within that time. However, the input capacitor of the LTC1288 is switched onto " + " input during the sample phase (tsmpl, see Figure 7). The sample phase is $11 / 2$ CLK cycles before conversion starts. The voltage on the " + " input must settle completely within tsMPLE for the LTC1285 and the LTC1288 respectively. Minimizing RSOURCE $^{+}$and C 1 will improve the input settling time. If a large " + " input source resistance must be used, the sample time can be increased by using a slower CLK frequency.

"-" Input Settling

At the end of the $\mathrm{t}_{\text {SMPL }}$, the input capacitor switches to the "-" input and conversion starts (see Figures 1 and 7). During the conversion, the " + " input voltage is effectively "held" by the sample-and-hold and will not affect the conversion result. However, it is critical that the "-" input voltage settles completely during the first CLK cycle of the conversiontime and be free of noise. Minimizing R SOURCE $^{-}$ and C2 will improve settling time. If a large "-" input source resistance must be used, the time allowed for settling can be extended by using a slower CLK frequency.

Input Op Amps

When driving the analog inputs with an op amp it is important that the op amp settle within the allowed time (see Figure 7). Again, the" + " and "-" input sampling times can be extended as described above to accommodate slower op amps. Most op amps, including the LT1006 and LT1413 single supply op amps, can be made to settle well even with the minimum settling windows of $12.5 \mu \mathrm{~s}$ ("+" input) which occur at the maximum clock rate of 120 kHz .

Source Resistance

The analog inputs of the LTC1285/LTC1288 look like a 20 pF capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ in series with a 500Ω resistor (R_{ON}) as shown in Figure $8 . \mathrm{C}_{\mathrm{IN}}$ gets switched between the

APPLICATION INFORMATION

selected " + " and " - " inputs once during each conversion cycle. Large external source resistors and capacitances will slow the settling of the inputs. It is important that the overall RC time constants be short enough to allow the analog inputs to completely settle within the allowed time.

Figure 8. Analog Input Equivalent Circuit

RC Input Filtering

It is possible to filter the inputs with an RC network as shown in Figure 9. For large values of $\mathrm{C}_{\mathrm{F}}(\mathrm{e} . \mathrm{g} ., 1 \mu \mathrm{~F})$, the capacitive input switching currents are averaged into a net DC current. Therefore, a filter should be chosen with a small resistor and large capacitor to prevent DC drops across the resistor. The magnitude of the DC current is approximately $I_{D C}=20 \mathrm{pF} \times \mathrm{V}_{\mathrm{IN}} / \mathrm{t}_{\mathrm{CYC}}$ and is roughly proportional to $\mathrm{V}_{\text {IN }}$. When running at the minimum cycle time of $133.3 \mu \mathrm{~s}$, the input current equals $0.375 \mu \mathrm{~A}$ at V_{IN} $=2.5 \mathrm{~V}$. In this case, a filter resistor of 160Ω will cause 0.1 LSB of full-scale error. If a larger filter resistor must be used, errors can be eliminated by increasing the cycle time.

Figure 9. RC Input Filtering

Input Leakage Current

Input leakage currents can also create errors if the source resistance gets too large. For instance, the maximum input leakage specification of $1 \mu \mathrm{~A}$ (at $125^{\circ} \mathrm{C}$) flowing through a source resistance of 240Ω will cause a voltage drop of $240 \mu \mathrm{~V}$ or 0.4 LSB . This error will be much reduced at lower temperatures because leakage drops rapidly (see typical curve of Input Channel Leakage Current vs Temperature).

REFERENCE INPUTS

The reference input of the LTC1285 is effectively a $50 \mathrm{k} \Omega$ resistor from the time $\overline{\mathrm{CS}}$ goes low to the end of the conversion. The reference input becomes a high impedence node at any other time (see Figure 10). Since the voltage on the reference input defines the voltage span of the A/D converter, the reference input should be driven by a reference with low RouT (ex. LT1004, LT1019 and LT1021) or a voltage source with low Rout.

Figure 10. Reference Input Equivalent Circuit

Reduced Reference Operation

The minimum reference voltage of the LTC1288 is limited to 2.7 V because the $\mathrm{V}_{\text {CC }}$ supply and reference are internally tied together. However, the LTC1285 can operate with reference voltages below 1.5 V .
The effective resolution of the LTC1285 can be increased by reducing the input span of the converter. The LTC1285 exhibits good linearity and gain over a wide range of reference voltages (see typical curves of Change in Linearity vs Reference Voltage and Change in Gain vs Reference

APPLICATION INFORMATION

Voltage). However, care must be taken when operating at low values of $\mathrm{V}_{\text {REF }}$ because of the reduced LSB step size and the resulting higher accuracy requirement placed on the converter. The following factors must be considered when operating at low $V_{\text {REF }}$ values:

1. Offset

2. Noise
3. Conversion speed (CLK frequency)

Offset with Reduced $\mathrm{V}_{\text {REF }}$

The offset of the LTC1285 has a larger effect on the output code. When the ADC is operated with reduced reference voltage. The offset (which is typically a fixed voltage) becomes a larger fraction of an LSB as the size of the LSB is reduced. The typical curve of Change in Offset vs Reference Voltage shows how offset in LSBs is related to reference voltage for a typical value of $\mathrm{V}_{0 S}$. For example, a $V_{0 S}$ of $122 \mu \mathrm{~V}$ which is 0.2 LSB with a 2.5 V reference becomes 1 LSB with a 1 V reference and 5 LSBs with a 0.2 V reference. If this offset is unacceptable, it can be corrected digitally by the receiving system or by offsetting the "-" input of the LTC1285.

Noise with Reduced $V_{\text {REF }}$

The total input referred noise of the LTC1285 can be reduced to approximately $400 \mu \mathrm{~V}$ peak-to-peak using a ground plane, good bypassing, good layout techniques and minimizing noise on the reference inputs. This noise is insignificant with a 2.5 V reference but will become a larger fraction of an LSB as the size of the LSB is reduced.
For operation with a 2.5 V reference, the $400 \mu \mathrm{~V}$ noise is only 0.66 LSB peak-to-peak. In this case, the LTC1285 noise will contribute a little bit of uncertainty to the output code. However, for reduced references the noise may become a significant fraction of an LSB and cause undesirable jitter in the output code. For example, with a 1.25 V reference this same $400 \mu \mathrm{~V}$ noise is 1.32 LSB peak-to-peak. This will reduce the range of input voltages over which a stable output code can be achieved by 1 LSB . If the reference is further reduced to 1 V , the $400 \mu \mathrm{~V}$
noise becomes equal to 3.3LSBs and a stable code may be difficult to achieve. In this case averaging multiple readings may be necessary.
This noise data was taken in a very clean setup. Any setup induced noise (noise or ripple on $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {REF }}$ or $\mathrm{V}_{\text {IN }}$) will add to the internal noise. The lower the reference voltage to be used the more critical it becomes to have a clean, noise free setup.

Conversion Speed with Reduced $V_{\text {REF }}$

With reduced reference voltages, the LSB step size is reduced and the LTC1285 internal comparator overdrive is reduced. Therefore, it may be necessary to reduce the maximum CLK frequency when low values of $V_{\text {REF }}$ are used.

DYNAMIC PERFORMANCE

The LTC1285/LTC1288 have exceptional sampling capability. Fast Fourier Transform (FFT) test techniques are used to characterize the ADC's frequency response, distortion and noise at the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FFT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental. Figure 11 shows a typical LTC1285 plot.

LTC1285/88• PPC16
Figure 11. LTC1285 Non-Averaged, 4096 Point FFT Plot

APPLICATION INFORMATION

Signal-to-Noise Ratio

The Signal-to-Noise plus Distortion Ratio ($\mathrm{S} / \mathrm{N}+\mathrm{D}$) is the ratio between the RMS amplitude of the fundamental input frequency to the RMS amplitude of all other frequency components at the ADC's output. The output is band limited to frequencies above DC and below one half the sampling frequency. Figure 12 shows a typical spectral content with a 7.5 kHz sampling rate.

Figure 12. Effective Bits and $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ vs Input Frequency

Effective Number of Bits

The Effective Number of Bits (ENOBs) is a measurement of the resolution of an ADC and is directly related to $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ by the equation:

$$
\text { ENOB }=[\mathrm{S} /(\mathrm{N}+\mathrm{D})-1.76] / 6.02
$$

where $S /(N+D)$ is expressed in $d B$. At the maximum sampling rate of 7.5 kHz with a 2.7 V supply, the LTC1285 maintains above 10.7 ENOBs at 10kHz input frequency. Above 10 kHz the ENOBs gradually decline, as shown in Figure 12, due to increasing second harmonic distortion. The noise floor remains low.

Total Harmonic Distortion

Total Harmonic Distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half of the sampling frequency. THD is defined as:
$T H D=20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots+V_{N}^{2}}}{V_{1}}$
where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{N} are the amplitudes of the second through the $\mathrm{N}^{\text {th }}$ harmonics. The typical THD specification in the Dynamic Accuracy table includes the 2nd through 5th harmonics. With a 1 kHz input signal, the LTC1285/LTC1288 have typical THD of 80dB with $V_{C C}=2.7 \mathrm{~V}$.

Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.

If two pure sine waves of frequencies f_{a} and f_{b} are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at sum and difference frequencies of $m f_{a} \pm n f_{b}$, where m and $n=0,1,2,3$, etc. For example, the 2 nd order IMD terms include ($f_{a}+f_{b}$) and $\left(f_{a}-f_{b}\right)$ while 3rd order IMD terms include $\left(2 f_{a}+f_{b}\right)$, $\left(2 f_{a}-f_{b}\right),\left(f_{a}+2 f_{b}\right)$, and $\left(f_{a}-2 f_{b}\right)$. If the two input sine waves are equal in magnitudes, the value (indB) of the 2 nd order IMD products can be expressed by the following formula:

$$
\operatorname{IMD}\left(\mathrm{f}_{\mathrm{a}} \pm \mathrm{f}_{\mathrm{b}}\right)=20 \log \left[\frac{\text { amplitude }\left(\mathrm{f}_{\mathrm{a}} \pm \mathrm{f}_{\mathrm{b}}\right)}{\text { amplitude at } \mathrm{f}_{\mathrm{a}}}\right]
$$

For input frequencies of 2.05 kHz and 3.05 kHz , the IMD of the LTC1285/LTC1288 is 72 dB with a 2.7 V supply.

Peak Harmonic or Spurious Noise

The peak harmonic or spurious noise is the largest spectral component excluding the input signal and DC. This value is expressed in dBs relative to the RMS value of a fullscale input signal.

TYPICAL APPLICATIONS

MICROPROCESSOR INTERFACES

The LTC1285/LTC1288 can interface directly without external hardware to most popular microprocessor (MPU) synchronous serial formats (see Table 1). If an MPU without a dedicated serial port is used, then 3 or 4 of the MPU's parallel port lines can be programmed to form the serial link to the LTC1285/LTC1288. Included here is one serial interface example and one example showing a parallel port programmed to form the serial interface.

Motorola SPI (MC68HC11)

The MC68HC11 has been chosen as an example of an MPU with a dedicated serial port. This MPU transfers data MSB -first and in 8-bit increments. The $D_{I N}$ word sent to the data register starts with the SPI process. With three 8-bit transfers, the A/D result is read into the MPU. The second 8-bit transfer clocks B11 through B8 of the A/D conversion result into the processor. The third 8-bit transfer clocks the remaining bits, B 7 through BO , into the MPU. The data is right justified into two memory locations. ANDing the second byte with $\mathrm{OF}_{\text {HEX }}$ clears the four most significant bits. This operation was not included in the code. It can be inserted in the data gathering loop or outside the loop when the data is processed.

MC68HC11 Code

In this example the $\mathrm{D}_{\text {IN }}$ word configures the input MUX for a single-ended input to be applied to CHO . The conversion result is output MSB-first.

Table 1. Microprocessor with Hardware Serial Interfaces Compatible with the LTC1286/LTC1298

PART NUMBER	TYPE OF INTERFACE
Motorola	
MC6805S2,S3	SPI
MC68HC11	SPI
MC68HC05	SPI
RCA	
CDP68HC05	SPI
Hitachi	
HD6305	SCI Synchronous
HD63705	SCI Synchronous
HD6301	SCI Synchronous
HD63701	SCI Synchronous
HD6303	SCI Synchronous
HD64180	CSI/O
National Semiconductor	
COP400 Family	MICROWIRE ${ }^{\dagger}$
COP800 Family	MICROWIRE/PLUS ${ }^{\dagger}$
NS8050U	MICROWIRE/PLUS ${ }^{\dagger}$
HPC16000 Family	MICROWIRE/PLUS ${ }^{\dagger}$
Texas Instruments	
TMS7002	Serial Port
TMS7042	Serial Port
TMS70C02	Serial Port
TMS70C42	Serial Port
TMS32011*	Serial Port
TMS32020	Serial Port

* Requires external hardware
${ }^{\dagger}$ MICROWIRE and MICROWIRE/PLUS are trademarks of National Semiconductor Corp.

TYPICAL APPLICATIONS

Timing Diagram for Interface to the MC68HC11

Hardware and Software Interiace to the MC68HC11

LABEL	MNEMONIC	OPERAND	COMMENTS	LABEL	MNEMONIC	OPERAND	COMMENTS
LOOP	LDAA	\#550	CONFIGURATION DATA FOR SPCR	WAIT1	BPL	WAIT1	CHECK IF TRANSFER IS DONE
	STAA	\$1028	LOAD DATA INTO SPCR (\$1028)		LDAA	\$51	LOAD DIN INTO ACC A FROM \$51
	LDAA	\#\$1B	CONFIG. DATA FOR PORT D DDR		STAA	\$102A	LOAD DIN INTO SPI, START SCK
	STAA	\$1009	LOAD DATA INTO PORT D DDR	WAIT2	LDAA	\$1029	CHECK SPI STATUS REG
	LDAA	\#\$01	LOAD DIN WORD INTO ACC A		BPL	WAIT2	CHECK IF TRANSFER IS DONE
	STAA	\$50	LOAD DIN DATA INTO \$50		LDAA	\$102A	LOAD LTC1288 MSBs INTO ACC A
	LDAA	\#\$A0	LOAD DIN WORD INTO ACC A		STAA	\$62	STORE MSBS IN \$62
	STAA	\$51	LOAD DIN DATA INTO \$51		LDAA	\$52	LOAD DUMMY INTO ACC A
	LDAA	\#\$00	LOAD DUMMY DIN WORD INTO ACC A		StAA	\$102A	FROM \$52 LOAD DUMMY DIN INTO SPI,
	STAA	\$52	LOAD DUMMY DIN DATA INTO \$52				START SCK
	LDX	\#\$1000	LOAD INDEX REGISTER X WITH	WAIT3	LDAA	\$1029	CHECK SPI STATUS REG
			\$1000		BPL	WAIT3	CHECK IF TRANSFER IS DONE
	BCLR	\$08,X,\#\$01	DO GOES LOW (CS GOES LOW)		BSET	\$08, $\mathrm{\#}$ \$01	DO GOES HIGH (('S GOES HIGH)
	LDAA	\$50	LOAD DIN INTO ACC A FROM \$50		LDAA	\$102A	LOAD LTC1288 LSBs IN ACC
	STAA	\$102A	LOAD DIN INTO SPI, START SCK		STAA	\$63	STORE LSBs IN \$63
	LDAA	\$1029	CHECK SPI STATUS REG		JMP	LOOP	START NEXT CONVERSION

TYPICAL APPLICATIONS

Interfacing to the Parallel Port of the INTEL 8051 Family

The Intel 8051 has been chosen to demonstrate the interface between the LTC1288 and parallel port microprocessors. Normally the $\overline{C S}, ~ C L K$ and $D_{I N}$ signals would be generated on 3 port lines and the Dout signal read on a 4th port line. This works very well. However, we will demonstrate here an interface with the $D_{\mathbb{I N}^{1}}$ and $D_{\text {OUT }}$ of the LTC1288 tied together as described in the SERIAL INTERFACE section. This saves one wire.

The 8051 first sends the start bit and MUX address to the LTC1288 over the data line connected to P1.2. Then P1. 2 s reconfigured as an input (by writing to it a one) and the 3051 reads back the 12-bit A/D result over the same data ine.

TYPICAL APPLICATIONS

A "Quick Look" Circuit for the LTC1285

Users can get a quick look at the function and timing of the LT1285 by using the following simple circuit (Figure 13). $\mathrm{V}_{\text {REF }}$ is tied to $\mathrm{V}_{\text {CC }} . \mathrm{V}_{\text {IN }}$ is applied to the $+\mathbb{N}$ input and the - IN input is tied to the ground. $\overline{\mathrm{CS}}$ is driven at $1 / 16$ the clock rate by the 74 C 161 and $D_{\text {OUT }}$ outputs the data. The output data from the $D_{\text {OUT }}$ pin can be viewed on an oscilloscope that is set up to trigger on the falling edge of $\overline{C S}$ (Figure 14). Note the LSB data is partially clocked out before $\overline{\mathrm{CS}}$ goes high.

Figure 13. "Quick Look" Circuit for the LTC1285

Figure 14. Scope Trace the LTC1285 "Quick Look" Circuit Showing A/D Output 101010101010 (AAA HEX)

Micropower Battery Voltage Monitor

A common problem in battery systems is battery voltage monitoring. This circuit monitors the 10 cell stack of NiCad or NiMH batteries found in laptop computers. It draws only $40 \mu \mathrm{~A}$ from the 2.7 V supply at $\mathrm{f}_{\mathrm{SMPL}}=0.1 \mathrm{kHz}$ and $30 \mu \mathrm{~A}$ to $62 \mu \mathrm{~A}$ from the battery. The 12 -bits of resolution of the LTC1285 are positioned over the desired range of 8 V to 16 V . This is easily accomplished by using the ADC's differential inputs. Tying the -input to the reference gives an ADC input span of $\mathrm{V}_{\text {REF }}$ to $2 \mathrm{~V}_{\text {REF }}(1.2 \mathrm{~V}$ to 2.4 V). The resistor divider then scales the input voltage for 8 V to 16 V .

Figure 15. Micropower Battery Voltage Monitor

RELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
TC1096/LTC1098	8-Pin SOIC, Micropower 8-Bit ADC	Low Power, Small Size, Low Cost
TC1196/LTC1198	8-Pin SOIC, 1Msps 8-bit ADC	Low Power, Small Size, Low Cost
TC1282	3V High Speed Parallel 12-Bit ADC	Complete, V REF, CLK, Sample-and-Hold, 140ksps
TC1289	Multiplexed 3V, 1A 12-Bit ADC	8-Channel, 12-Bit Serial I/0
TC1522	16-Pin SOIC, 3V Micropower 12-Bit ADC	4-Channel, 12-Bit Serial I/0

fGATURES

- Industry-Standard 574A Compatible
- Complete 12-Bit A/D Converter with Reference and Clock
- Improved Reference Output Current Capability
- $25 \mu \mathrm{~s}$ Maximum Conversion Time
- Fast Bus Access Time
- 8- or 16-Bit Microprocessor Interface
- Guaranteed Linearity over Temperature

APPLICATIONS

- Signal Processing
- Data Acquisition
- Process Monitoring and Control

DESCRIPTION

The $\mathrm{LT}^{\oplus} 574 \mathrm{~A}$ is a complete 12 -bit A / D converter in the industry-standard 574A pinout. The three-state output buffers interface directly to an 8-or 16-bit microprocessor bus. A high precision 10 V reference and clock are included on-chip, and the device provides full-rated performance without external circuitry or clock signals.

The LT574A provides several advantages over other 574A type devices. External load driving capability of the reference has been improved to up to 8.5 mA beyond the ADC current required. Maximum $V_{C C}$ has been increased to 22 V and the reference can source full load current at a V_{CC} of 11.4 V without requiring an external buffer. The reference is trimmed to 10.00 V with 0.2% maximum error and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical TC. Bus timing specifications are significantly faster than original 574A specifications, easing microprocessor interface concerns.

[^46]
TYPICAL PERFORMAOCE

Integral Linearity

ABSOLUTE MAXIMUM RATIIGS

'cc to Digital Common \qquad 0 V to 22 V
'EE to Digital Common 0 V to -16.5 V
${ }^{\prime}$ LOGIC to Digital Common \qquad 0 V to 7 V
Inalog Common to Digital Common \qquad $\pm 1 \mathrm{~V}$
)igital Inputs to
Digital Common \qquad -0.5 V to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$ Inalog Inputs (REF In, BIP Off, $10 \mathrm{~V}_{\text {IN }}$) to Analog Common \qquad $V_{E E}$ to 16.5 V
. OV IN to Analog Common $V_{E E}$ to 24 V
3EF Out \qquad Indefinite Short to Analog Common Momentary Short to $V_{C C}$
'ower Dissipation 1000 mW
unction Temperature $165^{\circ} \mathrm{C}$
)perating Temperature Range
J, K, L Grades $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
;torage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.ead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InfORmATION

Consult factory for Industrial and Military grade parts.

:ONVERTGR ELECTRICAL CHARACTERISTICS

$A=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ or $15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=5 \mathrm{~V}$, unless otherwise specified.

ARAMETER		LT574AJ			LT574AK			LT574AL			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
esolution	\bullet			12			12			12	Bits
Itegral Linearity Error	\bullet			± 1			± 0.5			± 0.5	LSB
ifferential Linearity Error (Minimum Resolution for Which 0 Missing Codes are Guaranteed)	\bullet	11			12			12			Bits
nipolar Offset (Adjustable to Zero)				± 2			± 1			± 1	LSB
ipolar Offset (Adjustable to Zero)				± 4			± 4			± 2	LSB
ill-Scale Calibration Error (With Fixed 50Ω EF Out to REF In (Adjustable to Zero)				± 10			± 10			± 4	LSB
mperature Coefficients Unipolar Offset Bipolar Offset Full-Scale Calibration	$\bullet \bullet$			$\begin{aligned} & \pm 2(10) \\ & \pm 2(10) \\ & \pm 9(50) \end{aligned}$			$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 5(27) \end{gathered}$			$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 2(10) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{LSB}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{LSB}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{LSB}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \end{aligned}$
$\begin{aligned} & \hline \text { upply Sensitivity (Change in Full Scale Calibration) } \\ & 13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16.5 \mathrm{~V} \text { or } 11.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 12.6 \mathrm{~V} \\ & -16.5 \mathrm{~V} \leq \mathrm{V}_{\text {EE }} \leq-13.5 \mathrm{~V} \text { or } 12.6 \mathrm{~V} \leq \mathrm{V}_{\text {EE }} \leq-11.4 \mathrm{~V} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {LOGIC }} \leq 5.5 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet			$\begin{aligned} & \pm 2.0 \\ & \pm 2.0 \\ & \pm 0.5 \end{aligned}$			$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 0.5 \end{aligned}$			$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
put Ranges Unipolar Bipolar	$\stackrel{\bullet}{\bullet}$	$\begin{array}{r} 0 \\ 0 \\ -5 \\ -10 \end{array}$		$\begin{gathered} 10 \\ 20 \\ 5 \\ 10 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ -5 \\ -10 \end{array}$		$\begin{gathered} 10 \\ 20 \\ 5 \\ 10 \end{gathered}$	$\begin{array}{r} 0 \\ 0 \\ -5 \\ -10 \end{array}$		$\begin{gathered} 10 \\ 20 \\ 5 \\ 10 \end{gathered}$	V V V V
put Impedance 10 V Span 20V Span	\bullet	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 14 \end{gathered}$	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 14 \\ \hline \end{gathered}$		$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 14 \end{gathered}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$

InTERNAL REfGRENCE ELECTRICAL CHARACTGRISTICS

PARAMETER		LT574AJ			LT574AK			LT574AL			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
REF OUT Voltage (No Load)		9.98		10.02	9.98		10.02	9.99		10.01	1
Line Regulation, $11.4 \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V}$	\bullet		1	$\begin{gathered} \hline 5 \\ 10 \\ \hline \end{gathered}$		1	$\begin{gathered} \hline 5 \\ 10 \\ \hline \end{gathered}$		1	$\begin{gathered} \hline 5 \\ 10 \\ \hline \end{gathered}$	ppm/ ppm/
Load Regulation (Sourcing Current), $0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$	-		12	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\mathrm{ppm} / \mathrm{m} /$ $\mathrm{ppm} / \mathrm{m} /$
Reference Temperature Coefficient	\bullet			50			27			10	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

DIGITAL AND DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS		LT574A, All Grades			UNITS
				MIN	TYP	MAX	
	VLOGIC Supply Range		\bullet	4.5	5.0	5.5	1
	$V_{\text {EE }}$ Supply Range		-	-11.4		-16.5	1
	$V_{\text {CC }}$ Supply Range		\bullet	11.4		22.0	1
	$V_{\text {LOGIC }}$ Operating Current		\bullet		27	40	$\mathrm{m} /$
	$\mathrm{V}_{\text {EE }}$ Operating Current		\bullet		-15	-25	mf
	$\mathrm{V}_{\text {CC }}$ Operating Current		\bullet		1.7	3.5	mf
	Power Dissipation		\bullet		390	700	mW
$\mathrm{V}_{\text {IH }}$	Logic High Input Voltage	12/8, CE, $A_{0}, \mathrm{R} / \mathrm{C}, \mathrm{CE}$	\bullet	2.0		5.5	1
VIL	Logic Low Input Voltage	12/8, CE, $A_{0}, \mathrm{R} / \mathrm{C}, \mathrm{CE}$	\bullet	-0.5		0.8	1
IN	Logic Input Current		\bullet	-100		100	$\mu \mathrm{f}$
$\mathrm{C}_{\text {IN }}$	Digital Input Pin Capacitance				5		pl
V_{OH}	Logic Output Voltage	$I_{\text {SOURCE }} \leq 600 \mu \mathrm{~A}$		2.4			1
$\mathrm{V}_{\text {OL }}$	Logic Low Output Voltage	$\mathrm{I}_{\text {SINK }} \leq 1.6 \mathrm{~mA}$				0.4	1
	Leakage Current	High-Z State		-20		20	μ
COUT	Output Capacitance				5		pl

The denotes the specifications which apply over the full operating temperature range.

DIGITAL TImInG ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} C, V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{\text {LOGIC }}=5 \mathrm{~V}$, unless otherwise specified.

	SYMBOL	PARAMETER	LT574A, All Grades			UNITS
			MIN	TYP	MAX	
Read Timing, Full Control Mode	$\mathrm{t}_{\text {D }}$	Access Time (from CE)		75	150	n!
	thD	Data Valid After CE Low	25			n
	thL	Output Float Delay			150	ns
	$\mathrm{t}_{\text {SSR }}$	$\overline{\overline{C S}}$-to-CE Setup	50			ns
	$\mathrm{t}_{\text {SRR }}$	R/C/-to-CE Setup	0			n!
	$\mathrm{t}_{\text {SAR }}$	AO-to-CE Setup	50			n !
	$\mathrm{t}_{\text {HSR }}$	$\overline{\text { CS Valid After CE Low }}$	50			nt
	thRR	R/C̄ High After CE Low	0			n!
	$\mathrm{thar}^{\text {H }}$	A_{0} Valid After CE Low	50			n!

DIGITAL TIming electrichl characteristics

$T_{A}=25^{\circ} C, V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=5 \mathrm{~V}$, unless otherwise specified.

	SYMBOL	PARAMETER	LT574A, All Grades		UNITS
			MIN	TYP MAX	
Convert Start Timing, Full Control Mode	$t_{\text {DSC }}$	STS Delay from CE		200	ns
	$\mathrm{t}_{\text {HEC }}$	CE Pulse Width	50		ns
	tssc	CS-to-CE Setup	50		ns
	$\mathrm{t}_{\text {HSC }}$	CS Low During CE High	50		ns
	$t_{\text {SRC }}$	R/C-to-CE Setup	50		ns
	$\mathrm{t}_{\text {HRC }}$	R/C Low During CE High	50		ns
	$t_{\text {SAC }}$	AO-to-CE Setup	0		ns
	thac $^{\text {che }}$	AO Valid During CE High	50		ns
	t_{C}	Conversion Time 8-Bit Cycle 12-Bit Cycle	$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 25 \end{aligned}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$
Stand-Alone Mode Timing	$t_{\text {HRL }}$	Low R/C Pulse Width	50		ns
	t_{DS}	STS Delay From R/C		200	ns
	$t_{\text {HDR }}$	Data Valid After R/C Low	25		ns
	t_{HS}	STS Delay After Data Valid	25	600	ns
	thrH	High R/C Pulse Width	150		ns
	$\mathrm{t}_{\text {DDR }}$	Data Access Time		150	ns

BLOCK DIAGRAM

DISCUSSION OF SPECIFICATIONS

Integral Linearity Error

Integral linearity (INL) error refers to the deviation of each code from a theoretical line drawn from "full scale." Zero is defined as the input voltage occurring $0.5 \mathrm{LSB}(1.22 \mathrm{mV}$ for 10V full scale) before the first code transition (0 to 1) and "full scale" is defined as the voltage occurring 1.5LSB beyond the last code transition (4094 to 4095).

Differential Linearity Error

A guaranteed "no missing codes" specification requires that every code combination appears in a monotonically increasing sequence. Thus LT574A grades which guarantee no missing codes to 12-bit resolution have a maximum DNL error of ± 1 LSB; grades which guarantee no missing code to an 11-bit level means that all code combinations of the upper 11 bits are present. In practice very few of the 12 -bit codes are missing on the lower grade(s).

Unipolar Offset

Unipolar offset error is defined as the deviation of the first code transition from a level 0.5LSB above analog common. Unipolar offset can be adjusted as shown on the following pages. The unipolar offset temperature coeffi-
cient specifies the change of the first transition value versus a change in ambient temperature.

Bipolar Offset

The major carry transition (2047 to 2048) should occur for an analog value 0.5 LSB above analog common in the bipolar mode. Bipolar offset error can also be adjusted as shown on the following pages. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error versus temperature.

Quantization Uncertainty

Analog-to-digital converters have inherent quantization uncertainty of $\pm 0.5 \mathrm{LSB}$. This uncertainty is a fundamental property of the conversion process and cannot be reduced for a converter of a given resolution.

Left-Justified Data

The LT574A uses a left-justified data format. The analog input is represented as a fraction of full scale, ranging from 0 to 4095/4096. A binary point to the left of the MSB is implied.

Figure 2. Op Amp/LT574A Interface

DISCUSSION Of SPECIFICATIONS

Full-Scale Calibration Error

The last output code transition (4094 to 4095) should occur for an analog value 1.5LSB below the nominal full scale (9.9963 V for 10.000 V full scale). The deviation of the actual level at which this transition occurs from the ideal level is the full-scale calibration error. Typically less than 0.1% of full scale, this error can be adjusted to zero as shown in Figures 3 and 4.

Temperature Coefficients

The temperature coefficients for unipolar offset, bipolar offset and full-scale calibration specify the maximum change from the nominal $\left(25^{\circ} \mathrm{C}\right)$ value to $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

Power Supply Sensitivity

The LT574A is specified using 5 V and $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ supplies. The major effect of power supply voltage deviations from the rated values will be a small change in fullscale calibration. This change results in a proportional change in all code values.

Code Width

Code width is defined as the range of analog values for which a given output code will occur. The ideal value of a code width is equivalent to 1 LSB (least significant bit) of the full-scale range. In a 10 V full-scale range one LSB corresponds to 2.44 mV .

Figure 3. Unipolar Input Connections

Figure 4. Bipolar Input Connections

OPERATION

Circuit Operation

The LT574A provides the complete 12-bit analog-to-digital function with no external components. A block diagram of the LT574A is shown in Figure 1. After a conversion is initiated via the control section (described later) the clock is enabled and the SAR is set to 100000000000 . Once a conversion is started it cannot be stopped or restarted. The output buffers go into the Hi-Z state. The SAR, driven by the internal clock, will sequence through the conversion cycle and return a signal indicating end-of-conversion to the control section. The control section then
disables the clock, bring the Status output low, and enables control functions to allow data read functions via external command.

During a conversion, the internal 12-bit current-output DAC is sequenced by the SAR starting with the most significant bit (MSB) and ending with the least significant bit (LSB). At the end of the process the DAC outputs a current which accurately balances the input signal current through the 5 k (10k) input resistor. The comparator looks at the summing node at every bit test. If the DAC current sum is greater than the input current, the bit is turned off;

operation

if less, the bit is left on. After all 12 bits have been tested, the SAR contains a 12-bit digital representation of the analog input signal accurate to 12 bits $\pm 0.5 \mathrm{LSB}$. Two 5 k input scaling resistors allow either 10 V or 20 V span operation. The 10 k bipolar offset resistor is connected to the 10 V reference for bipolar operation, or grounded for unipolar operation.

Internal 10.00V Reference

An LT1021-10 low noise, high stability, buried-zener reference is used inside the LT574A device and guarantees superior stability over time and temperature. This reference provides improved performance over other 574-type references in both voltage range and output current sourcing capability. The reference is trimmed to $10.00 \mathrm{~V} \pm 2 \%$. It can supply up to 8.5 mA to an external load in addition to the current required by the reference input resistor (0.5 mA) and the bipolar offset resistor (1 mA). This is an additional 7 mA over most other 574A-type devices. (The external load should not change during a conversion.) The LT574A also has an improved $\mathrm{V}_{C C}$ supply range; the $\mathrm{V}_{C C}$ input can range from 11.2 V to 22 V . If operating from $\pm 12 \mathrm{~V}$ supplies, improved driving capability eliminates the need for an external buffer to source external loads at room temperature or over the specified temperature range.

Driving the LT574A Analog Inputs

The signal source driving the LT574A input looks into a 5 k or 10k impedance. However, the current drawn out of the input pins is abruptly modulated as the ADC steps through the bit tests. Low source impedance at high frequency, necessary to hold the input voltage constant through the conversion cycle, is required for 12-bit accurate conversions. The output impedance of an op amp is equal to its open-loop output impedance divided by the loop gain available at the frequency of interest. Acceptable loop gain at 500 kHz is needed for use with the LT574A. An op amp can be checked for suitability by monitoring the LT574A's input with an oscilloscope while a conversion is in progress. Each of the 12 disturbances should settle in $1 \mu \mathrm{~s}$ or less. Suitable op amps include the LT1055 or LT1122.

Layout Precautions and Supply Decoupling

It is critically important the LT574A power supplies be well regulated and free of high frequency noise. Noisy supplies will cause unstable output codes. If switching power supplies must be used, considerable care must be used to ensure that switching spikes are eliminated. (For more information on constructing switching power supplies suitable for use with precision analog circuits, please see Linear Technology’s Application Note 29). Just a few millivolts of high frequency noise on the power supply will result in several counts of error.
Decoupling capacitors should be used on all power supply pins. V LOGIC decoupling should be connected directly from pin 1 to pin 15 (digital common) and V_{CC} and V_{EE} pins should be decoupled directly to analog common (pin9). A $4.7 \mu \mathrm{~F}$ tantalum unit in parallel with a $0.1 \mu \mathrm{~F}$ ceramic type makes a suitable decoupling capacitor.

The LT574A should be located as far as possible from digital circuitry on the board layout. Coupling between analog and digital lines should be minimized. If analog and digital lines must cross, they should do so at right angles. Parallel analog and digital lines should be separated by a pattern connected to common. Wire-wrap construction is not recommended; careful printed circuit layout is preferred instead.

Grounding Considerations

The analog common (pin 9) is the internal reference ground and should be connected directly to the analog reference point of the system. It is the "high quality" ground point. Pin 9 should be connected to digital common (pin 15) at the package to achieve all the high performance accuracy available from the LT574A in noisy digital environments. This single-point grounding is the preferred method for grounding mixed analog/digital systems. Be sure there are no digital ground returns on the analog side of the line; input signal returns should be isolated from digital ground and returned directly to the single-point ground at the LT574A package.

JPERATION

ange Connections

he LT574A has four standard input ranges: 0 V to 10 V , V to $20 \mathrm{~V},-5 \mathrm{~V}$ to 5 V , and -10 V to 10 V . To use the 10 V inge, connect the inputsignal between pins 13 and 9 . To se the 20 V range, connect the input signal between pins 4 and 9 . In both cases, the other pin of the two is left nconnected. Full-scale and offset adjustments are shown | Figure 3. If full-scale trim is not needed, connecta 50Ω, $\%$ metal film resistor between pins 8 and 10 . To extend le 10 V range to $10.24 \mathrm{~V}(2.5 \mathrm{mV} /$ bit) with gain trim otentiometer (R2) should be replaced by a 50Ω resistor 1d a 200Ω potentiometer should be placed in series ith the $10 \mathrm{~V}_{\text {IN }}$ pin. To obtain a full-scale range of 20.48 V imV/bit), a 500Ω potentiometer should be used in aries with pin 14. Gain trim is now implemented with lese potentiometers.

nipolar Calibration

ee first transition of the LT574A occurs at a value 0.5LSB jove analog common, so that the exact analog input for given code will be halfway between the code transitions.

This 0.5 LSB offset is built into the LT574A. The unit will behave in this manner, within specifications, if pin 12 is connected to analog common (pin 9). Referring to Figure 3, R1 performs the offset adjust function. It should be adjusted so that the first transition falls at exactly 0.5LSB above the analog common potential (nominally ground). The circuit, as shown, will give approximately $\pm 15 \mathrm{mV}$ of offset trim range. The full-scale trim is calibrated by applying a voltage 1.5 LSB below full scale (9.9963 V for 10 V full scale) and adjusting R2 such that the unit outputs the codes 4096 and 4097 (111111111110 and 11111111 1111).

Bipolar Operation

Bipolar operation connections are shown in Figure 4. The trim potentiometers can be replaced by $50 \Omega, 1 \%$ resistors if offset and gain specifications are sufficient. To calibrate, apply an input signal 0.5 LSB above negative full scale (000000000000 to 000000000001), then apply a signal 1.5 LSB below positive full scale (4.9963V for the $\pm 5 \mathrm{~V}$ range) and adjust R 2 so that the last transition (11111111 1110 to 11111111 1111) is output.

NOTES
;ECTION 6-DATA CONVERSIONDIGITAL-TO-ANALOG CONVERTERS
LTC1451/LTC1452/LTC1453, 12-Bit Rail-to-Rail Micropower DACs in SO-8 6-58
DIGITAL-TO-ANALOG CONVERTERS, ENHANCED AND SECOND SOURCE
LTC7541A, Improved Industry Standard CMOS 12-Bit Multiplying DAC 6-69
LTC7543/LTC8143, Improved Industry Standard Serial 12-Bit Multiplying DACs 6-73
LTC8043, Serial 12-Bit Multiplying DAC in SO-8 6-80

FGATURES

- 12-Bit Resolution
- Buffered True Rail-to-Rail Voltage Output
- 3V Operation (LTC1453), Icc: 250 $\mu \mathrm{A}$ Typ
- 5V Operation (LTC1451), Icc: 400 $\mu \mathrm{A}$ Typ
- 3V to 5V Operation (LTC1452), Icc: 225uA Typ
- Built-In Reference: 2.048V (LTC1451)
1.220V (LTC1453)
- Multiplying Version (LTC1452)
- Power-On Reset
- SO-8 Package
- 3-Wire Cascadable Serial Interface
- Maximum DNL Error: 0.5LSB
- Low Cost

APPLICATIONS

- Digital Calibration
- Industrial Process Control
- Automatic Test Equipment
- Cellular Telephones

DESCRIPTIOn

The LTC ${ }^{\text {® }} 1451 /$ LTC1452/LTC1453 are complete singlf supply, rail-to-rail voltage output 12-bit digital-to-analocs converters (DACs) in an S0-8 package. They include ar output buffer amplifier and an easy-to-use 3-wirt cascadable serial interface.

The LTC1451 has an onboard reference of 2.048 V and : full-scale output of 4.095 V . It operates from a single $4.5 \backslash$ to 5.5 V supply.

The LTC1452 is a multiplying DAC with a full-scale outpu of twice the reference input voltage. It operates from : single supply of 2.7 V to 5.5 V .

The LTC1453 has an onboard 1.22V reference and a full. scale output of 2.5 V . It operates from a single supply 0 2.7 V to 5.5 V .

The low power supply current makes the LTC1451 family ideal for battery-powered applications. The space savinc 8-pin SO package and operation with no external components provide the smallest 12-bit DAC system available.

[^47]
TYPICAL APPLICATION

Daisy-Chained Control Outputs

Differential Nonlinearity vs Input Code

1451/2/3 TA02

1BSOLUTE MAXIMUM RATINGS

'cc to GND -0.5 V to 7.5 V
TL Input Voltage -0.5 V to 7.5 V
'OUT .. -0.5 V to $\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$
IEF
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
^aximum Junction Temperature

Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Industrial .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

'ACKAGG/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER		S8 PART MARKING
CLK 1			
DIN^{2} 2 7 V $\mathrm{V}_{\text {OUT }}$	LTC1451CN8	LTC1451CS8	1451C
$\overline{C S / L D} 3$ 3 6 REF	LTC1452CN8	LTC1452CS8	1451]
$\mathrm{DOUT}^{4} \quad 5 \mathrm{GND}$	LTC1453CN8	LTC1453CS8	1452C
	LTC1451IN8	LTC1451IS8	14521
$\begin{array}{ll}\text { N8 PACKAGE } & \text { S8 PACKAGE } \\ 8 \text {-LEAD PDIP } & \text { 8-LEAD PLASTIC SO }\end{array}$	LTC1452IN8	LTC1452IS8	1453C
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} \mathrm{~N} \text { (N8) } \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} \mathrm{~W} \text { (S8) } \end{aligned}$	LTC1453IN8	LTC1453IS8	14531

Jnsult factory for Military grade parts.

:LECTRICAL CHARACTERISTICS

CC $=4.5 \mathrm{~V}$ to 5.5 V (LTC1451), 2.7V to 5.5 V (LTC1452/LTC1453), internal or external reference ($\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {CC }} / 2$), $\mathrm{V}_{\text {OUT }}$ and REF nloaded, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
AC							
	Resolution		\bullet	12			Bits
VL	Differential Nonlinearity	Guaranteed Monotonic (Note 1)	\bullet			± 0.5	LSB
L	Integral Nonlinearity	$T_{A}=25^{\circ} \mathrm{C}$ (Note 1)	-			$\begin{gathered} \pm 3.5 \\ \pm 4 \end{gathered}$	$\begin{aligned} & \mathrm{LSB} \\ & \mathrm{LSB} \end{aligned}$
)S	Offset Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	\bullet			$\begin{aligned} & \pm 12 \\ & \pm 18 \end{aligned}$	$\begin{aligned} & \overline{m V} \\ & m V \end{aligned}$
,sTC	Offset Error Temperature Coefficient				± 15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
S	Full-Scale Voltage	When Using Internal Reference, LTC1451, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ LTC1451	\bullet	$\begin{aligned} & 4.065 \\ & 4.045 \end{aligned}$	$\begin{aligned} & 4.095 \\ & 4.095 \end{aligned}$	$\begin{aligned} & 4.125 \\ & 4.145 \end{aligned}$	V V
		External 2.048V Reference, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, LTC1452	\bullet	4.075	4.095	4.115	V
		When Using Internal Reference, LTC1453, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ LTC1453	\bullet	$\begin{aligned} & 2.470 \\ & 2.460 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \end{aligned}$	$\begin{aligned} & 2.530 \\ & 2.540 \end{aligned}$	V
sTC	Full-Scale Voltage Temperature Coefficient	When Using Internal Reference, LTC1451 When Using External 2.048V Reference, LTC1452 When Using Internal Reference, LTC1453			$\begin{aligned} & \pm 0.10 \\ & \pm 0.02 \\ & \pm 0.10 \end{aligned}$		$\begin{aligned} & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} /{ }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V (LTC1451), 2.7V to 5.5 V (LTC1452/LTC1453), internal or external reference ($\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\mathrm{CC}} / 2$), $\mathrm{V}_{\text {OUT }}$ and REF unloaded, $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Reference (LTC1451/LTC1453)							
	Reference Output Voltage	LTC1451 LTC1453	\bullet	$\begin{aligned} & 2.008 \\ & 1.195 \end{aligned}$	$\begin{aligned} & 2.048 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 2.088 \\ & 1.245 \end{aligned}$	1
	Reference Output Temperature Coefficient				± 0.08		LSB/ ${ }^{\circ} \mathrm{C}$
	Reference Line Regulation		\bullet		0.7	± 2	LSB/\}
	Reference Load Regulation	$\begin{array}{r} 0 \leq I_{\text {OUT }} \leq 100 \mu \mathrm{~A}, \text { LTC1451 } \\ \text { LTC1453 } \end{array}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 3 \end{gathered}$	$\begin{aligned} & \mathrm{LSE} \\ & \mathrm{LSE} \end{aligned}$
	Reference Input Range	$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {CC }}-1.5 \mathrm{~V}$	\bullet			$\mathrm{V}_{\mathrm{CC}} / 2$	V
	Reference Input Resistance		\bullet	8	14	30	ks.
	Reference Input Capacitance				15		pl
	Short-Circuit Current	REF Shorted to GND	\bullet			80	mf

Power Supply

$V_{c c}$	Positive Supply Voltage	For Specified Performance,LTC1451 LTC1452 LTC1453	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 4.5 \\ & 2.7 \\ & 2.7 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & 5.5 \end{aligned}$	1
1 CC	Supply Current	$\begin{aligned} & 4.5 \mathrm{~V} \leq V_{\text {cc }} \leq 5.5 \mathrm{~V} \text { (Note 4), LTC1451 } \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\text {cC }} \leq 5.5 \mathrm{~V} \text { (Note 4), LTC1452 } \\ & 2.7 \mathrm{~V} \leq V_{\text {CC }} \leq 5.5 \mathrm{~V} \text { (Note 4), LTC1453 } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	300 120 150	$\begin{aligned} & 400 \\ & 225 \\ & 250 \end{aligned}$	$\begin{aligned} & 620 \\ & 350 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu f \\ & \mu f \\ & \mu f \end{aligned}$

Op Amp DC Periormance

Short-Circuit Current Low	$V_{\text {OUT }}$ Shorted to GND	\bullet		100	mf
Short-Circuit Current High	$\mathrm{V}_{\text {Out }}$ Shorted to $\mathrm{V}_{\text {cc }}$	\bullet		120	mf
Output Impedance to GND	Input Code $=0$	\bullet	40	120	S.

AC Performance

	Voltage Output Slew Rate	(Note 2)	\bullet	0.51 .0	$\mathrm{V} / \mu \mathrm{s}$
	Voltage Output Settling Time	(Notes 2, 3) to ± 0.5 LSB		14	μ
	Digital Feedthrough			0.3	$\mathrm{nV} \cdot \mathrm{s}$
	AC Feedthrough	REF $=1 \mathrm{kHz}$, 2V $\mathrm{V}_{\text {-p, }}$, LTC1452		-95	dE
SINAD	Signal-to-Noise + Distortion	REF = 1kHz, 2Vp-.p, (Code: All 1s) LTC1452		85	dE

ELECTRICAL CHARACTERISTICS

$I_{\text {CC }}=5 \mathrm{~V}$ (LTC1451LTC1452), $\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$ (LTC1453), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$

;YMBOL	PARAMETER	CONDITIONS		LTC1451/LTC1452		LTC1453		UNITS
				MIN	TYP MAX	MIN	TYP MAX	
Jigital I/O								
/ IH	Digital Input High Voltage		\bullet	2.4		2.0		V
IIL	Digital Input Low Voltage		\bullet		0.8		0.6	V
${ }^{1} \mathrm{OH}$	Digital Output High Voltage	$I_{\text {OUT }}=-1 \mathrm{~mA}$	\bullet		$\mathrm{V}_{\text {CC }}-1.0$		$V_{\text {CC }}-0.7$	V
10 L	Digital Output Low Voltage	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$	\bullet	0.4		0.4		V
LEAK	Digital Input Leakage	$\mathrm{V}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$	\bullet		± 10		± 10	$\mu \mathrm{A}$
准	Digital Input Capacitance	Guaranteed by Design Not Subject to Test	\bullet		10		10	pF
;witching								
1	$\mathrm{D}_{\text {IN }}$ Valid to CLK Setup		\bullet		40		60	ns
2	DIN Valid to CLK Hold		\bullet		0		0	ns
3	CLK High Time		\bullet		40		60	ns
4	CLK Low Time		\bullet		40		60	ns
5	$\overline{\text { CS/LD Pulse Width }}$		\bullet		50		80	ns
6	LSB CLK to $\overline{\mathrm{CS}} / \mathrm{LD}$		\bullet		40		60	ns
7	$\overline{\text { CS/LD Low to CLK }}$		\bullet		20		30	ns
8	Dout Output Delay	$\mathrm{C}_{\text {LOAD }}=15 \mathrm{pF}$	\bullet		150		220	ns
9	CLK Low to $\overline{\mathrm{CS}} / \mathrm{LD}$ Low		\bullet		20		30	ns

he denotes specifications which apply over the full operating emperature range.
lote 1: Nonlinearity is defined from the first code that is greater than or qual to the maximum offset specification to code 4095 (full scale).

Note 2: Load is $5 \mathrm{k} \Omega$ in parallel with 100 pF .
Note 3: DAC switched between all 1 s and the code corresponding to $\mathrm{V}_{0 S}$ for the part, i.e., LTC1451: code 18; LTC1453: code 30.
Note 4: Digital inputs at 0 V or V_{CC}.

ГYPICAL PGRFORMANCE CHARACTERISTICS

LTC1451 Minimum Supply Voltage vs Load Current

1451/2/3 G01

LTC1453 Minimum Supply Voltage vs Load Current

LTC1451
Supply Current vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

LTC1452
Total Harmonic Distortion + Noise vs Frequency

LTC1451
Broadband Output Noise

$5 \mathrm{~ms} /$ DIV
CODE = FFFH
$\mathrm{BW}=3 \mathrm{~Hz}$ TO 1.4 MHz
GAIN $=1000$
1451/2/3610

PIn functions

CLK: The TTL Level Input for the Serial Interface Clock.
D_{IN} : The TTL Level Input for the Serial Interface Data. Data on the $D_{\text {IN }}$ pin is latched into the shift register on the rising edge of the serial clock.
$\overline{\mathbf{C S}} / \mathbf{L D}$: The TTL Level Input for the Serial Interface Enable and Load Control. When $\overline{C S} / L D$ is low the CLK signal is enabled, so the data can be clocked in. When $\overline{C S} / L D$ is pulled high, data is loaded from the shift register into the DAC register, updating the DAC output.
$D_{\text {Out: }}$ The Output of the Shift Register which Becomes Valid on the Rising Edge of the Serial Clock.

GND: Ground.
REF: The Output of the Internal Reference and the Input to the DAC Resistor Ladder. An external reference with voltage up to $V_{C C} / 2$ may be used for the LTC1452.
$\mathbf{V}_{\text {OUt: }}$: The Buffered DAC Output.
$V_{\text {CC: }}$: The Positive Supply Input. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ (LTC1451), $2.7 \leq \mathrm{V}_{\text {CC }} \leq 5.5 \mathrm{~V}$ (LTC1452/LTC1453). Requires a bypass capacitor to ground.

BLOCK DIAGRAM

TImInG DIAGRAM

DEFInITIONS

Resolution (\mathbf{n}): Resolution is defined as the number of digital input bits, n. It defines the number of DAC output states $\left(2^{n}\right)$ that divide the full-scale range. The resolution does not imply linearity.

Full-Scale Voltage ($V_{\text {FS }}$): This is the output of the DAC when all bits are set to 1 .

Voltage Offset Error ($\mathrm{V}_{\mathbf{O S}}$): The theoretical voltage at the output when the DAC is loaded with all zeros. The output amplifier can have a true negative offset, but because the part is operated from a single supply, the output cannot go below zero. If the offset is negative, the output will remain near OV resulting in the transfer curve shown in Figure 1.
The offset of the part is measured at the code that corresponds to the maximum offset specification:

$$
V_{O S}=V_{O U T}-\left[\left(\operatorname{Code} \times V_{F S}\right) /\left(2^{n}-1\right)\right]
$$

Least Significant Bit (LSB): One LSB is the ideal voltage difference between two successive codes.

$$
L S B=\left(V_{F S}-V_{O S}\right) /\left(2^{n}-1\right)=\left(V_{F S}-V_{O S}\right) / 4095
$$

Nominal LSBs:
LTC1451 LSB $=4.095 \mathrm{~V} / 4095=1 \mathrm{mV}$
LTC1452 $\quad L S B=V($ REF $) / 4095$
LTC1453 LSB $=2.5 \mathrm{~V} / 4095=0.610 \mathrm{mV}$

Integral Nonlinearity (INL): End-point INL is the maximum deviation from a straight line passing through the end-points of the DAC transfer curve. Because the part operates from a single supply and the output cannot go below zero, the linearity is measured between full scale and the code corresponding to the maximum offset specification. The INL error at a given input code is calculated as follows:

$$
\begin{aligned}
\text { INL }= & {\left[V_{\text {OUT }}-V_{\text {OS }}-\left(V_{F S}-V_{\text {OS }}\right)(\text { code } / 4095)\right] / / L S B } \\
V_{\text {OUT }}= & \text { The output voltage of the DAC measured at } \\
& \text { the given input code }
\end{aligned}
$$

Differential Nonlinearity (DNL): DNL is the difference between the measured change and the ideal 1LSB change between any two adjacent codes. The DNL error between any two codes is calculated as follows:

$$
\begin{aligned}
\mathrm{DNL} & =\left(\Delta \mathrm{V}_{\text {OUT }}-\mathrm{LSB}\right) / \mathrm{LSB} \\
\Delta \mathrm{~V}_{\text {OUT }}= & \text { The measured voltage difference between } \\
& \text { two adjacent codes }
\end{aligned}
$$

Digital Feedthrough: The glitch that appears at the analog output caused by AC coupling from the digital inputs when they change state. The area of the glitch is specified in $\mathrm{nV} \times \mathrm{sec}$.

Figure 1. Effect of Negative Offset

OPERATION

Serial Interface

The data on the $D_{\text {IN }}$ input is loaded into the shift register on the rising edge of the clock. The MSB is loaded first. The DAC register loads the data from the shift register when $\overline{C S} / L D$ is pulled high. The CLK is disabled internally when $\overline{C S} / L D$ is high. Note: CLK must be low before $\overline{C S} / L D$ is pulled low to avoid an extra internal clock pulse.

The buffered output of the 12-bit shift register is available on the $D_{\text {OUT }}$ pin which swings from GND to $V_{\text {CC }}$.
Multiple LTC1451/LTC1452/LTC1453s may be daisychained together by connecting the $D_{\text {OUT }}$ pin to the $D_{\text {IN }}$ pin of the next chip, while the CLK and $\overline{C S} / L D$ signals remain common to all chips in the daisy chain. The serial data is clocked to all of the chips, then the $\overline{C S} / L D$ signal is pulled high to update all of them simultaneously.

Reference

The LTC1451 includes an internal 2.048 V reference, making 1 LSB equal to 1 mV (gain of 2). The LTC1453 has an internal reference of 1.22 V with a full scale of 2.5 V (gain of 2.05). The internal reference output is turned off when the pin is forced above the reference voltage, allowing an external reference to be connected to the reference pin. The LTC1452 has no internal reference and the REF pin must be driven externally. The buffer gain is 2 , so the external reference must be less than $\mathrm{V}_{\mathrm{CC}} / 2$ and be capable of driving the 8 k minimum DAC resistor ladder.

Voltage Output

The LTC1451 family's rail-to-rail buffered output can source or sink 5mA over the entire operating temperature range while pulling to within 300 mV of the positive supply voltage or ground. The output swings to within a few millivolts of either supply rail when unloaded and has an equivalent output resistance of 40Ω when driving a load to the rails. The output can drive 1000pF without going into oscillation.

TYPICAL APPLICATIONS

An Isolated 4 mA to 20 mA Process Controller
Has 3.3V Minimum Loop Voltage

This circuit shows how to use an LTC1453 to make an opto-isolated digitally controlled 4 mA to 20 mA process controller. The controller circuitry, including the optoisolation, is powered by the loop voltage that can have a wide range of 3.3 V to 30 V . The 1.22 V reference output of the LTC1453 is used for the 4 mA offset current and $\mathrm{V}_{\text {OUT }}$
is used for the digitally controlled 0 mA to 16 mA current. R_{S} is a sense resistor and the op amp modulates the transistor Q1 to provide the 4 mA to 20 mA current through this resistor. The potentiometers allow for offset and fullscale adjustment. The control circuitry dissipates well under the 4 mA budget at zero-scale.

TYPICAL APPLICATIONS

12-Bit 3V to 5V Voltage Output DAC

Digitally Programmable Current Source

This circuit shows a digitally programmable current source from an external voltage source using an external op amp, an LT1077 and an NPN transistor (2N3440). Any digital word from 0 to 4095 is loaded into the LTC1451 and its output correspondingly swings from 0 V to 4.095 V . In the configuration shown, this voltage will be forced across the
resistor R_{A}. If R_{A} is chosen to be 410Ω the output current will range from 0 mA at zero-scale to 10 mA at full-scale. The minimum voltage for V_{S} is determined by the load resistor R_{L} and Q1's $V_{\text {CESAT }}$ Voltage. With a load resistor of 50Ω, the voltage source can be as low as 5 V .

TYPICAL APPLICATIONS

A Wide Swing, Bipolar Output 12-Bit DAC

This circuit shows how to make a bipolar output 12-bit DAC with a wide output swing using an LTC1451 and an LT^{\oplus} 1077. R1 and R2 resistively divide down the LTC1451 output and an offset is summed in using the LTC1451 onboard 2.048 V reference and R3 and R4. R5 ensures that
the onboard reference is always sourcing current and never has to sink any current even when $\mathrm{V}_{\text {OUT }}$ is at fullscale. The LT1077 output will have a wide bipolar output swing of -4.096 V to 4.094 V as shown in the figure above. With this output swing $1 \mathrm{LSB}=2 \mathrm{mV}$.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Single 12-Bit $V_{\text {OUT }}$ DAC, Full Scale: 2.048V, VCc: $^{4} .75 \mathrm{~V}$ to 15.75V. Reference Can Be Overdriven Up to 12V, i.e., FS MAX $=12 \mathrm{~V}$	5V to 15V Single Supply, Complete Vout DAC in S0-8 Package
LTC7541	12-Bit Multiplying Parallel I IOUT DAC	5V to 16V Supply, 12-Bit Wide Interface
LTC7543/LTC8143	12-Bit Multiplying Serial I IOUT DAC	5V Supply, Clear Pin and Serial Data Output (LTC8143)
LTC8043	12-Bit Multiplying Serial I IOUT DAC	5V Supply, SO-8 Package

LTC7541A

Industry Standard CMOS 12-Bit Multiplying DAC

feATURES

- Improved Direct Replacement for AD7541A and AD7541
- 4-Quadrant Multiplication
- 12-Bit End-Point Linearity: ± 0.5 LSB DNL and INL Over Temperature
- All Grades Guaranteed Monotonic
- Maximum Gain Error: ± 1 LSB
- Single 5V to 15 V Supply
- TTL and CMOS Logic Compatible
- Reduced Sensitivity to Op Amp Offset
- Low Power Consumption
- Virtually Latch-Up Proof
- Low Cost

APPLICATIONS

- Motion Control Systems
- Microprocessor-Controlled Calibration
- Automatic Test Equipment
- Programmable Gain Amplifiers
- Digitally Controlled Filters

DESCRIPTIOn

The $\mathrm{LTC}^{\circledR} 7541 \mathrm{~A}$ is a 12 -bit resolution multiplying digital-to-analog converter (DAC).
Laser-trimmed thin-film resistors provide excellent absolute accuracy. Precision matched resistors and CMOS circuitry result in remarkable stability with temperature and supply variations.
The LTC7541A is a superior pin compatible replacement for the industry standard AD7541A/AD7541. Improvements include better typical accuracy and stability and reduced sensitivity to outputamplifier offset. The LTC7541A is also very resistant to latch-up.
In addition to 2-quadrant and 4-quadrant multiplying configurations, the LTC7541A performs well in digitally programmable gain and noninverting voltage output applications. Low cost, improved performance and versatility make the LTC7541A the best choice for many new designs and for upgrading existing systems. Parts are available in 18-pin PDIP and 18-pin SO Wide packages.

TYPICAL APPLICATION

2-Quadrant Multiplying DAC Has Less Than 0.5 LSB (Typ) Total Unadjusted Error

Integral Nonlinearity Over Temperature

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND ... - 0.5 V to 17 V
$V_{\text {REF }}$ to GND.. $\pm 25 \mathrm{~V}$
R $_{\text {FB }}$ to GND ... $\pm 25 \mathrm{~V}$
Digital Inputs to GND -0.5 V to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
OUT 1, OUT 2 to GND -0.5 V to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
Power Dissipation 450 mW
(Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $75^{\circ} \mathrm{C}$)
Maximum Junction Temperature \qquad $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range Commercial (J, K Versions) \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

eLECTRICAL CHARACTERISTICS

$V_{D D}=15 V, V_{\text {REF }}=10 V$, OUT $1=0 U T 2=G N D=0 V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		LTC7541AJ			LTC7541AK/LTC7541AB			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Accuracy										
	Resolution		\bullet	12			12			Bits
INL	Integral Nonlinearity (Relative Accuracy)	(Note 1)	\bullet			± 1			± 0.5	LSE
DNL	Differential Nonlinearity	Guaranteed Monotonic, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	\bullet			± 1			± 0.5	LSE
GE	Gain Error	(Note 2) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	\bullet			$\begin{aligned} & \pm 6 \\ & \pm 8 \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	LSE LSE
	Gain Temperature Coefficient	(Note 3)	\bullet		1	5		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ILKG	Output Leakage Current	(Note 4) $\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	\bullet			$\begin{gathered} \pm 5 \\ \pm 10 \end{gathered}$			$\begin{gathered} \pm 5 \\ \pm 10 \end{gathered}$	nf
PSRR	Power Supply Rejection	$V_{D D}=15 \mathrm{~V} \pm 5 \%$	\bullet			± 0.002			± 0.002	\%/\%
Reference Input										
R ${ }_{\text {REF }}$	$V_{\text {REF }}$ Input Resistance		\bullet	7	11	15	7	11	15	ks
	$V_{\text {REF }}$ Input Resistance Temperature Coefficient				-100			-100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V_{D D}=15 V, V_{\text {REF }}=10 \mathrm{~V}$, OUT $1=0 U T 2=G N D=O V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	ALL GRADES	

Power Supply

$V_{D D}$	Operating Supply Range		\bullet	5	15	16	V
$I_{D D}$	Suppy Current	Digital Inputs $=V_{I H}$ or $V_{I L}$					
	Digital I nputs $=0 V$ or $V_{D D}$	\bullet		2	mA		

Digital Inputs

$\mathrm{V}_{\text {IH }}$	Digital Input High Voltage			\bullet	2.4		V
$\mathrm{V}_{\text {IL }}$	Digital Input Low Voltage			\bullet		0.8	V
IN	Digital Input Current			\bullet	0.001	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance	(Note 3), $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		\bullet		8	pF
AC Performance							
	Propagation Delay	(Notes 5, 6)			100		ns
	Digital-to-Analog Glitch Impulse	(Notes 5, 7)			1000		nV -sec
	Multiplying Feedthrough Error	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$			1.0		$\mathrm{m} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
	Output Current Settling Time	(Note 5), To 0.01\% for Full-Scale Change			0.6		us
Cout	Output Capacitance (Note 3)	Digital Inputs $=\mathrm{V}_{\text {IH }}$	Cout1 Cout2			$\begin{gathered} 200 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
		Digital Inputs $=\mathrm{V}_{\text {IL }}$	Cout1 Cout2			$\begin{aligned} & 70 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

The - denotes specifications which apply over the full operating temperature range.
Note 1: $\pm 0.5 \mathrm{LSB}= \pm 0.012 \%$ of full scale.
Note 2: Using internal feedback resistor.
Note 3: Guaranteed by design, not subject to test.
Note 4: I IOUT1 with all digital inputs $=0 \mathrm{~V}$ or $\mathrm{I}_{\text {OUT2 }}$ with all digital inputs $=V_{D D}$.

Note 5: OUT 1 load $=100 \Omega$ in parallel with 13 pF .
Note 6: Measured from digital input change to 90% of final analog value. Digital inputs $=0 \mathrm{~V}$ to $\mathrm{V}_{D D}$ or $\mathrm{V}_{D D}$ to OV .
Note 7: $V_{\text {REF }}=0 \mathrm{~V}$. All digital inputs 0 V to V_{DD} or V_{DD} to OV . Measured using LT1363 as output amplifier.

BLOCK DIAGRAM

LTC7541A

TYPICAL APPLICATIONS

Unipolar Operation (2-Quadrant Multiplication)

Table 2. Bipolar Offset Binary Code Table

DIGITAL INPUT			ANALOG OUTPUT $V_{\text {OUT }}$
MSB		LSB	
1111	1111	1111	$V_{\text {REF }}(2047 / 2048)$
1000	0000	0001	$V_{\text {REF }}(1 / 2048)$
1000	0000	0000	OV
0111	1111	1111	- $\mathrm{V}_{\text {REF }}(1 / 2048)$
0000	0000	0000	- $\mathrm{V}_{\text {REF }}$

7541 TA04

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Complete Serial I/O V 0 0ut 12-Bit DAC	5V to 15V Single Supply in 8-Pin S0 and PDIP
LTC1451/LTC1452/LTC1453	Complete Serial I/O V 0 0uT 12-Bit DACs	3V/5V Single Supply in 8-Pin S0 and PDIP
LTC7543/LTC8143	Serial I/0 Muliplying 12-Bit DACs	Clear Pin, Serial Data Output (LTC8143)
LTC8043	Serial Mulitplying 12-Bit DAC	8-Pin S0 and PDIP

feATURES

- Improved Direct Replacement for AD7543 and DAC-8143
- Low Cost
- DNL and INL Over Temperature: $\pm 0.5 \mathrm{LSB}$
- Easy, Fast and Flexible Serial Interface
- Daisy-Chain 3-Wire Interface for Multiple DAC Systems (LTC8143)
- 1LSB Maximum Gain Error Over Temperature Eliminates Adjustment
- Asynchronous Clear Input for Initialization
- Four-Quadrant Multiplication
- Low Power Consumption
- 16-Pin PDIP and SO Packages

APPLICATIONS

- Process Control and Industrial Automation
- Remote Microprocessor-Controlled Systems
- Digitally Controlled Filters and Power Supplies
- Programmable Gain Amplifiers
- Automatic Test Equipment

DESCRIPTIOn

The LTC ${ }^{\circledR} 7543 /$ LTC8143 are serial-input 12-bit multiplying digital-to-analog converters (DACs). They are superior pin compatible replacements for the AD7543 and DAC-8143. Improvements include better accuracy, better stability over temperature and supply variations, lower sensitivity to output amplifier offset, tighter timing specifications and lower output capacitance.
An easy-to-use serial interface includes an asynchronous CLEAR input for systems requiring initialization to a known state. The LTC8143 has a serial data output to allow daisychaining multiple DACs on a 3-wire interface bus.
These DACs are extremely versatile. They can be used for 2-quadrant and 4-quadrant multiplying, programmable gain and single supply applications, such as noninverting voltage output and biased or offset ground mode.

Parts are available in 16-pin PDIP and S0 packages and are specified over the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^48]
TYPICAL APPLICATION

Multiplying DAC Has Easy 3-Wire Serial Interface

Integral Nonlinearity Over Temperature

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ACCURACY CHARACTGRISTICS - LTC7543

$V_{D D}=5 V, V_{\text {REF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=A G N D=D G N D=0 V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS			LTC7543GK			LTC7543K			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
	Resolution			-	12			12			Bits
INL	Integral Nonlinearity (Relative Accuracy)	(Note 1)		\bullet			± 0.5			± 0.5	LSB
DNL	Differential Nonlinearity	Guaranteed Monotonic, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		\bullet			± 0.5			± 0.5	LSB
GE	Gain Error	(Note 2)	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet			$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Gain Temperature Coefficient (Δ Gain/sTemp)	(Note 3)		\bullet		1	5		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ILKG	Output Leakage Current	(Note 4)	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet			$\begin{gathered} \pm 1 \\ \pm 10 \\ \hline \end{gathered}$			$\begin{array}{r} \pm 1 \\ \pm 10 \\ \hline \end{array}$	nA nA
	Zero-Scale Error		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet			$\begin{aligned} & \pm 0.006 \\ & \pm 0.06 \end{aligned}$			$\begin{aligned} & \pm 0.006 \\ & \pm 0.06 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
PSRR	Power Supply Rejection Ratio	$V_{D D}=5 \mathrm{~V} \pm 5 \%$		\bullet	$\pm 0.0001 \pm 0.002$			$\pm 0.0001 \pm 0.002$			\%/\%

ACCURACY CHARACTERISTICS - LTC8143

$V_{D D}=5 V, V_{\text {REF }}=10 V, V_{0 U T 1}=V_{\text {OUT2 }}=A G N D=D G N D=0 V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS			LTC8143E			LTC8143F			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
	Resolution			\bullet	12			12			Bits
INL	Integral Nonlinearity (Relative Accuracy)	(Note 1)		\bullet			± 0.5			± 1	LSB
DNL	Differential Nonlinearity	Guarante	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	\bullet			± 0.5			± 1	LSB
$\overline{\mathrm{GE}}$	Gain Error	(Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	\bullet			$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Gain Temperature Coefficient (Δ Gain/ Δ Temp)	(Note 3)		-		1	5		1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\overline{\text { LKG }}$	Output Leakage Current	(Note 4)	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet			$\begin{gathered} \pm 5 \\ \pm 25 \\ \hline \end{gathered}$			$\begin{gathered} \pm 5 \\ \pm 25 \\ \hline \end{gathered}$	nA $n \mathrm{~A}$
	Zero-Scale Error		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet			$\begin{aligned} & \pm 0.03 \\ & \pm 0.15 \end{aligned}$			$\begin{aligned} & \pm 0.03 \\ & \pm 0.15 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
PSRR	Power Supply Rejection Ratio	$V_{D D}=5 \mathrm{~V}$		\bullet		± 0.000	± 0.002		± 0.0001	± 0.002	\%/\%

ELECTRICAL CHARACTERISTICS - LTC7543/LTC8143

$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=A G N D=D G N D=0 \mathrm{~V}, \mathrm{~T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise specified.

			LTC7543/LTC8143 ALL GRADES	
SYMBOL	PARAMETER	CONDITIONS	MINTYP MAX	UNITS

Reference Input

R REF	$V_{\text {REF }}$ Input Resistance	(Note 5)	\bullet	8	11	15
AC Performance (Note 3)	$\mathrm{k} \Omega$					
	Output Current Settling Time	(Notes 6, 7)	\bullet	0.25	1	$\mu \mathrm{~s}$
	Multiplying Feedthrough Error	V $_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ Sinewave	\bullet	0.8	2	mV P-P
	Digital-to-Analog Glitch Energy	(Notes 6, 8)	\bullet	2	20	$\mathrm{nV}-\mathrm{sec}$
THD	Total Harmonic Distortion	(Note 9)	\bullet	-108	-92	dB
	Output Noise Voltage Density	(Note 10)	\bullet		13	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Analog Outputs (Note 3)

Cout	Output Capacitance	DAC Register Loaded to All 1 s	Cout1 Cout2	\bullet	$\begin{aligned} & 60 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & \hline \end{aligned}$	pF pF
		DAC Register Loaded to All Os	Cout1 Cout2	\bullet	30 50	$\begin{aligned} & 60 \\ & 90 \end{aligned}$	pF pF

Digital Inputs

$V_{I H}$	Digital Input High Voltage		\bullet	2.4	V
$\mathrm{~V}_{\mathrm{IL}}$	Digital Input Low Voltage		\bullet	0.8	V
I_{IN}	Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet	0.001	± 1
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance	(Note 3), $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	$\bullet \mathrm{~A}$		

Digital Outputs: SRO (LTC8143 Only)

$V_{O H}$	Digital Output High	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	\bullet	4	V
$\mathrm{~V}_{\mathrm{OL}}$	Digital Output Low	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	\bullet	0.4	

LTC7543/LTC8143

ELECTRICAL CHARACTERISTICS - LTC7543/LTC8143

$V_{D D}=5 V, V_{\text {REF }}=10 V, V_{\text {OUT } 1}=V_{\text {OUT2 }}=A G N D=D G N D=0 V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		LTC7543/LTC8143 ALL GRADES			UNITS
				MIN	TYP	MAX	
Timing Characteristics (Note 3)							
$\mathrm{t}_{\text {DS1 }}$	Serial Input to Strobe Setup Time (t stB $=80 \mathrm{~ns}$)	STB1 Used as the Strobe	\bullet	50	5		ns
$\mathrm{t}_{\text {DS2 }}$		STB2 Used as the Strobe	\bullet	20	-5	.	ns
tos3		$\overline{\text { STB3 }}$ Used as the Strobe	\bullet	0	-30		ns
$\mathrm{t}_{\text {DS } 4}$		STB4 Used as the Strobe	\bullet	0	-30		ns
$\mathrm{t}_{\text {DH1 }}$	Serial Input to Strobe Hold Time (t stв $=80 \mathrm{~ns}$)	STB1 Used as the Strobe	\bullet	30	10		ns
${ }_{\text {t }{ }^{\text {H } 2}}$		STB2 Used as the Strobe	\bullet	50	25		ns
$\mathrm{t}_{\text {DH3 }}$		$\overline{\text { STB3 }}$ Used as the Strobe	\bullet	80	55		ns
$\mathrm{t}_{\text {DH4 }}$		STB4 Used as the Strobe	\bullet	80	55		ns
${ }_{\text {t }}^{\text {SRI }}$	Serial Input Data Pulse Width		\bullet	80.			ns
${ }_{\text {tsTB1 }}, \mathrm{t}_{\text {STB2 }}$, $\mathrm{t}_{\text {STB3 }}, \mathrm{t}_{\text {STB } 4}$	Strobe Pulse Width	(Note 11)	\bullet	80			ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{STB1}}}, \overline{\mathrm{t}_{\mathrm{tTB}} 2} \\ & \mathrm{t}_{\mathrm{STB3}}, \overline{\mathrm{t}_{\mathrm{STB}}} \end{aligned}$	$\overline{\text { Strobe Pulse Width }}$	(Note 12)	\bullet	80			ns
$\mathrm{t}_{\text {LD1 }} \mathrm{t}_{\text {LD2 }}$	Load Pulse Width		\bullet	140			ns
$\mathrm{t}_{\text {ASB }}$	LSB Strobed into Input Register to Load DAC Register Time		-	0			ns
${ }_{\text {t CLR }}$	Clear Pulse Width		\bullet	80			ns

SR0 Timing Characteristics (LTC8143 Only)

tPD 2	STB2, $\overline{\text { STB3 }}$, STB4 Strobe to SRO Propagation Delay	$C_{L}=50 \mathrm{pF}$	\bullet	220	120
tPD1	STB1 to SRO Propagation Delay	$C_{L}=50 \mathrm{pF}$	\bullet	150	80

Power Supply

$V_{D D}$	Supply Voltage		\bullet	4.75	5	5.25
IDD	Supply Current	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}	\bullet	V		
		Digital Inputs $=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	\bullet	0.1	mA	
			2	mA		

The e denotes specifications which app.'y over the full operating temperature range.
Note 1: $\pm 0.5 \mathrm{LSB}= \pm 0.012 \%$ of full scale.
Note 2: Using internal feedback resistor.
Note 3: Guaranteed by design, not subject to test.
Note 4: I IOUT1 with DAC register loaded with all Os or I IOUT2 with DAC register loaded with all 1 s .
Note 5: Typical temperature coefficient is $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Note 6: OUT 1 load = 100Ω in parallel with 13 pF .
Note 7: To 0.01% for a full-scale change, measured from falling edge of $\overline{\mathrm{LD} 1}$ or $\overline{\mathrm{LD} 2}$.

Note 8: $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$. DAC register contents changed from all 0 s to all 1 s or from all 1s to all Os.
Note 9: $V_{\text {REF }}=6 V_{\text {RMS }}$ at 1 kHz . DAC register loaded with all 1 s .
Note 10: Calculation from $\mathrm{e}_{\mathrm{n}}=\sqrt{4 \mathrm{KTRB}}$ where: $\mathrm{K}=$ Boltzmann constant $\left(\mathrm{J} / \mathrm{K}^{\circ}\right) ; \mathrm{R}=$ resistance $(\Omega) ; \mathrm{T}=$ resistor temperature $\left({ }^{\circ} \mathrm{K}\right) ; \mathrm{B}=$ bandwidth (Hz).
Note 11: Minimum high time for STB1, STB2, STB4. Minimum low time for STB3.
Note 12. Minimum low time for STB1, STB2, STB4. Minimum high time for STB3.

BLOCK DIAGRAM

TIMING DIAGRAM

TRUTH TABLES

Table 1. LTC7543/LTC8143 Input Register

CONTROL INPUTS				Input Register Operation (LTC8143: SRO Operation)
STB1	STB2	STB3	STB4	
5	0	1	0	Serial Data Bit on SRI Loaded into Input
0	5	1	0	Register, MSB First
0	0	z	0	(LTC8143: Data Bit or SRI Appears on
0	0	1	5	SRO Pin After 12 Clocked Bits)
1	X	X	X	No Input Register Operation
X	1	X	X	(LTC8143: No SRO Operation)
X	X	0	X	
X	X	X	1	

Table 2. LTC7543/LTC8143 DAC Register

CONTROL INPUTS				
$\overline{\text { CLR }}$	$\overline{\text { LD1 }}$	$\overline{\mathbf{L D 2}}$		
	DAC Register Operation			
0	X	X		Reset DAC Register to All 0s (Asynchronous
:---				
Operation; No Effect on Input Register)				

TYPICAL APPLICATIONS

Unipolar Operation (2-Quadrant Multiplication)

Unipolar Binary Code Table

$\begin{array}{c}\text { DIGITAL INPUT } \\ \text { BINARY NUMBER IN } \\ \text { DAC REGISTER }\end{array}$		$\begin{array}{c}\text { ANALOG OUTPUT } \\ V_{\text {OUT }}\end{array}$
MSB	LSB	
1111	1111	1111

TYPICAL APPLICATIONS

Bipolar Operation (4-Quadrant Multiplication)

Bipolar Offset Binary Code Table

DIGITAL INPUT BINARY NUMBER IN DAC REGISTER		ANALOG OUTPUT $V_{\text {OUT }}$
MSB	LSB	
1111	1111	1111
1000	0000	0001
1000	0000	0000
0111	1111	1111

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Complete Serial I/O V OUT $^{\text {12-Bit DAC }}$	5 V to 15V Single Supply in 8-Pin S0 and PDIP
LTC1451/LTC1452/LTC1453	Complete Serial I/O V ${ }_{\text {OUT }}$ 12-Bit DACs	$3 \mathrm{~V} / 5 \mathrm{~V}$ Single Supply in 8-Pin SO and PDIP
LTC7541A	Parallel I/O Mulitplying 12-Bit DAC	12-Bit Wide Input
LTC8043	Serial Mulitplying 12-Bit DAC	8-Pin S0 and PDIP

feATURES

- Improved Direct Replacement for DAC-8043 and MAX543
- SO-8 Package
- DNL and INL Over Temperature: $\pm 0.5 L S B$
- Easy, Fast and Flexible Serial Interface
- ± 1 LSB Maximum Gain Error
- 4-Quadrant Multiplication
- Low Power Consumption
- Low Cost

APPLICATIONS

- Process Control and Industrial Automation
- Remote Microprocessor-Controlled Systems
- Digitally Controlled Filters and Power Supplies
- Programmable Gain Amplifiers
- Automatic Test Equipment

DESCRIPTIOn

The LTC ${ }^{\circledR} 8043$ is a serial-input 12 -bit multiplying digital-to-analog converter (DAC). It is a superior pin compatible replacement for the DAC-8043. Improvements include better accuracy, better stability over temperature and supply variations, lower sensitivity to output amplifier offset, tighter timing specifications and lower output capacitance.
An easy-to-use 3-wire serial interface is well-suited to remote or isolated applications

The LTC8043 is extremely versatile. It can be used for 2-quadrant and 4-quadrant multiplying, programmable gain and single supply applications, such as noninverting voltage output mode.

Parts are available in 8-pin SO and PDIP packages and are specified over the extended industrial temperature range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^49]
TYPICAL APPLICATION

S0-8 Multiplying DAC Has Easy 3-Wire Serial Interface

Integral Nonlinearity Over Temperature

LTC8043•TPC02

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION
$V_{D D}$ to GND - 0.5 V to 7 V
Digital Inputs to GND -0.5 V to (V $\mathrm{VD}+0.5 \mathrm{~V})$
$V_{\text {IOUT }}$ to GND -0.5 V to ($\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$)
$V_{\text {REF }}$ to GND.. $\pm 25 \mathrm{~V}$
$V_{\text {RFB }}$ to GND .. $\pm 25 \mathrm{~V}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

Consult factory for Military grade parts.

ACCURACY CHARACTERISTICS

$V_{D D}=5 V, V_{\text {REF }}=10 V, V_{\text {IOUT }}=G N D=0 V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMB0L	PARAMETER	CONDITIONS			LTC8043E		LTC8043F		UNITS
					MIN	TYP MAX	MIN	TYP MAX	
	Resolution			\bullet	12		12		Bits
INL	Integral Nonlinearity	(Note 1)		\bullet		± 0.5		± 1	LSB
DNL	Differential Nonlinearity	Guaranteed Mo	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	\bullet		± 0.5		± 1	LSB
GE	Gain Error	(Note 2)	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	\bullet		$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Gain Temperature Coefficient (Δ Gain/ Δ Temp)	(Note 3)		\bullet		15		15	ppm/ ${ }^{\circ} \mathrm{C}$
$\overline{\text { LKG }}$	Output Leakage Current	(Note 4)	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet		$\begin{gathered} \pm 5 \\ \pm 25 \end{gathered}$		$\begin{gathered} \pm 5 \\ \pm 25 \end{gathered}$	nA nA
	Zero-Scale Error		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.03 \\ & \pm 0.15 \end{aligned}$		$\begin{aligned} & \pm 0.03 \\ & \pm 0.15 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
PSRR	Power Supply Rejection Ratio	$V_{D D}=5 \mathrm{~V} \pm 5 \%$		\bullet		$\pm 0.0001 \pm 0.002$		$\pm 0.0001 \pm 0.002$	\%/\%

ELECTRICAL CHARACTERISTICS

$V_{D D}=5 V, V_{\text {REF }}=10 \mathrm{~V}, V_{\text {IOUT }}=G N D=O V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		ALL GRADES			UNITS
				MIN	TYP	MAX	
Reference Input							
$\mathrm{R}_{\text {REF }}$	$V_{\text {REF }}$ Input Resistance	(Note 5)	-	7	11	15	$\mathrm{k} \Omega$
AC Performance (Note 3)							
	Output Current Settling Time	(Notes 6, 7)	\bullet		0.25	1	$\mu \mathrm{S}$
	Multiplying Feedthrough Error	$\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz}$ Sinewave	\bullet		0.7	1	mV P-P
	Digital-to-Analog Glitch Energy	(Notes 6, 8)	\bullet		2	20	nVSEC
THD	Total Harmonic Distortion	(Note 9)	\bullet		-108	-92	dB
	Output Noise Voltage Density	(Note 10)	\bullet			17	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Analog Outputs (Note 3)

$C_{\text {out }}$	Output Capacitance	DAC Register Loaded to All 1s	\bullet	60	90	pF
		DAC Register Loaded to All Os	\bullet	30	60	pF

ELECTRICAL CHARACTERISTICS

$V_{D D}=5 V, V_{\text {REF }}=10 V, V_{\text {IOUT }}=G N D=O V, T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		ALL GRADES			UNITS
				MIN	TYP	MAX	
Digital Inputs							
$\mathrm{V}_{\text {IH }}$	Digital Input High Voltage		\bullet	2.4			V
$\mathrm{V}_{\text {IL }}$	Digital Input Low Voltage		\bullet			0.8	V
IN	Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet		0.001	± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$,(Note 3)	-			8	pF
Timing Characteristics (Note 3)							
$\mathrm{t}_{\text {DS }}$	Serial Input to Clock Setup Time		-	30	-5		ns
${ }_{\text {t }{ }_{\text {D }}}$	Serial Input to Clock Hold Time		\bullet	60	25		ns
$\mathrm{t}_{\text {SRI }}$	Serial Input Data Pulse Width		-	80			ns
t_{CH}	Clock Pulse Width High		\bullet	80			ns
t_{CL}	Clock Pulse Width Low		\bullet	80			ns
tLD	Load Pulse Width		\bullet	140			ns
$t_{\text {ASB }}$	LSB Clocked into Input Register to Load DAC Register Time		-	0			ns
Power Supply							
V_{DD}	Supply Voltage		\bullet	4.75	5	5.25	V
$I_{D D}$	Supply Current	$\begin{aligned} & \text { Digital Inputs }=0 \mathrm{~V} \text { or } V_{D D} \\ & \text { Digital Inputs }=V_{I H} \text { or } V_{I N} \end{aligned}$	\bullet			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

The denotes specifications which apply over the full operating temperature range.
Note 1: $\pm 0.5 \mathrm{LSB}= \pm 0.012 \%$ of full scale.
Note 2: Using internal feedback resistor.
Note 3: Guaranteed by design, not subject to test.
Note 4: I IOUT with DAC register loaded with all 0s.
Note 5: Typical temperature coefficient is $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Note 6: $I_{\text {OUT }}$ load $=100 \Omega$ in parallel with 13 pF .

Note 7: To 0.01% for a full-scale change, measured from falling edge of $\overline{\mathrm{LD}}$.
Note 8: $V_{\text {REF }}=0 \mathrm{~V}$. DAC register contents changed from all 0 s to all 1 s or from all is to all 0 s.
Note 9: $\mathrm{V}_{\text {REF }}=6 \mathrm{~V}_{\text {RMS }}$ at 1 kHz . DAC register loaded with all 1 s .
Note 10: 10 Hz to 100 kHz between $R_{\text {FB }}$ and $\mathrm{I}_{\text {Out }}$. Calculation from $\mathrm{e}_{\mathrm{n}}=$ $\sqrt{4 \mathrm{KTRB}}$ where: $\mathrm{K}=$ Boltzmann constant $\left(\mathrm{J} / \mathrm{K}^{\circ}\right) ; \mathrm{R}=$ resistance (Ω); $\mathrm{T}=$ resistor temperature $\left({ }^{\circ} \mathrm{K}\right) ; \mathrm{B}=$ bandwidth (Hz).

BLOCK DIAGRAM

TIMING DIAGRAM

TYPICAL APPLICATIONS

Unipolar Operation (2-Quadrant Multiplication)

Table 1. Unipolar Binary Code Table

DIGITAL INPUT BINARY NUMBER IN DAC REGISTER			ANALOG OUTPUT $V_{\text {OUT }}$
MSB		LSB	
1111	1111	1111	- $\mathrm{V}_{\text {REF }}(4095 / 4096)$
1000	0000	0000	$-V_{\text {REF }}(2048 / 4096)=-V_{\text {REF }} / 2$
0000	0000	0001	- $V_{\text {REF }}(1 / 4096)$
0000	0000	0000	OV

Bipolar Operation (4-Quadrant Multiplication)

Table 2. Bipolar Offset Binary Code Table

DIGITAL INPUT BINARY NUMBER IN DAC REGISTER			ANALOG OUTPUT $V_{\text {OUt }}$
MSB		LSB	
1111	1111	1111	$+V_{\text {ReF }}(2047 / 2048)$
1000	0000	0001	$+V_{\text {REF }}(1 / 2048)$
1000	0000	0000	OV
0111	1111	1111	- $V_{\text {REF }}(1 / 2048)$
0000	0000	0000	$-V_{\text {REF }}(2048 / 2048)=-V_{\text {REF }}$

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Complete Serial I/0 V 2 out 12-Bit DAC	5 V to 15V Single Supply in 8-Pin S0 and PDIP
LTC1451/LTC1452/LTC1453	Complete Serial I/0 Vout 12-Bit DACs	3V/5V Single Supply in 8-Pin S0 and PDIP
LTC7541A	Parallel I/0 Multiplying 12-Bit DAC	12-Bit Wide Input
LTC7543/LTC8143	Serial I/0 Mulitplying 12-Bit DACs	Clear Pin and Serial Data Output (LTC8143)

NOTES
SECTION 6—DATA CONVERSIONMULTIPLEXERSLTC1390, 8-Channel Analog Multiplexer with Serial Interface6-86

features

- 3-Wire Serial Digital Interface
- Data Retransmission Allows Series Connection with Serial A/D Converters
- Single 3V to $\pm 5 \mathrm{~V}$ Supply Operation
- Analog Inputs May Extend to Supply Rails
- Low Charge Injection
- Low Ron: 75Ω Max
- Low Leakage: $\pm 5 \mathrm{nA}$ Max
- Guaranteed Break-Before-Make
- TTL/CMOS Compatible for All Digital Inputs
- Cascadable to Allow Additional Channels
- Can Be Used as a Demultiplexer

APPLICATIOOS

- Data Acquisition Systems
- Communication Systems
- Signal Multiplexing/Demultiplexing

DESCRIPTIOn

The LTC ${ }^{\circledR} 1390$ is a high performance CMOS 8-to-1 analog multiplexer. It features a 3-wire digital interface with a bidirectional data retransmission feature, allowing it to be wired in series with a serial A/D converter while using only one serial port. The interface also allows several LTC1390s to be wired in series or parallel, increasing the number of MUX channels available using only a single digital port. All the above features are also valid when LTC1390 operates as a demultiplexer such as with a D/A converter.
The LTC1390 features a typical $R_{O N}$ of 45Ω, typical switch leakage of 50 pA , and guaranteed break-before-make operation. Charge injection is $\pm 10 \mathrm{pC}$ maximum. All digital inputs are TTL and CMOS compatible when operated from single or dual supplies. The inputs can withstand 100 mA fault currents.
The LTC1390 is available in 16-pin PDIP and narrow S0 packages.
$\overline{\boldsymbol{\square}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

LTC1390•TA02

ABSOLUTG MAXIMUM RATIOGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-}).......................... 15 V
Input Voltage
Analog Inputs $\mathrm{V}^{-}-0.3 \mathrm{~V}$ to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Digital Inputs -0.3 V to 15 V
Digital Outputs. \qquad -0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Power Dissipation \qquad 500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

	ORDER PART NUMBER
S1 2	
S2 3 14] V^{-}	LTC1390CN
S3 4 13 data 2	LTC1390CS
S4 5 12 data 1	
S5 6 -11 cs	
S6 7 - 10 CLK	
578 8 8 GND	
$\underset{\substack{\text { N PACKAGE } \\ \text { 16-LAD PDIP }}}{\substack{\text { SPACKAGE } \\ \text { 16-LEAD PLASTIC SO }}}$	
$T_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{N})$ $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{S})$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ operating temperature unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch							
$V_{\text {ANALOG }}$	Analog Signal Range	(Note 2)	-	-5		5	V
$\mathrm{R}_{\text {ON }}$	On Resistance	$\begin{aligned} & V_{S}= \pm 3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \\ & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MAX }} \end{aligned}$			45	$\begin{gathered} 75 \\ 75 \\ 120 \end{gathered}$	Ω Ω Ω
	$\Delta R_{\text {ON }}$ vs V_{S}				20		\%
	$\Delta \mathrm{R}_{\text {ON }}$ vs Temperature				0.5		$\% /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {(0FF) }}$	Off Input Leakage	$V_{S}=4 \mathrm{~V}, V_{D}=-4 \mathrm{~V} ; \mathrm{V}_{S}=-4 \mathrm{~V}, V_{D}=4 \mathrm{~V}$ Channel Off	\bullet		0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA
$I_{\text {d (OFF })}$	Off Output Leakage	$V_{S}=4 V, V_{D}=-4 V ; V_{S}=-4 V, V_{D}=4 V$ Channel Off	\bullet		0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA $n A$
$I_{\text {d }}(\mathrm{ON})$	On Channel Leakage	$V_{S}=V_{D}= \pm 4 V$ Channel On	\bullet		0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA nA
Input							
$\mathrm{V}_{\text {INH }}$	High Level Input Voltage	$\mathrm{V}^{+}=5.25 \mathrm{~V}$	\bullet	2.4			V
$\mathrm{V}_{\text {INL }}$	Low Level Input Voltage	$\mathrm{V}^{+}=4.75 \mathrm{~V}$	\bullet			0.8	V
$\underline{\text { INL, } \mathrm{I}_{\text {INH }}}$	Low or High Level Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=4.75 \mathrm{~V}, \mathrm{I}_{0}=10 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=4.75 \mathrm{~V}, \mathrm{I}_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	2.4	$\begin{aligned} & 4.74 \\ & 4.50 \end{aligned}$		V V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}^{+}=4.75 \mathrm{~V}, \mathrm{I}_{0}=0.5 \mathrm{~mA}$	\bullet		0.16	0.8	V

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ operating temperature unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP

Dynamic

$\mathrm{f}_{\text {CLK }}$	Clock Frequency			5	MHz
ton	Enable Turn-On Time	$\mathrm{V}_{S}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	260	400	ns
$\mathrm{t}_{\text {OFF }}$	Enable Turn-Off Time	$\mathrm{V}_{S}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{L}=35 \mathrm{pF}$	100	200	ns
topen	Break-Before-Make Interval		$35 \quad 155$		ns
OIRR	Off Isolation	$V_{S}=2 V_{\text {P-P, }}, R_{L}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{kHz}$	70		dB
$00^{\text {INJ }}$	Charge Injection	$\mathrm{R}_{S}=0, C_{L}=1000 \mathrm{pF}, \mathrm{V}_{S}=1 \mathrm{~V}$ (Note 2)	± 2	± 10	pC
$\mathrm{C}_{\text {S(OFF) }}$	Source Off Capacitance		5		pF
$\mathrm{C}_{\mathrm{D} \text { (OFF) }}$	Drain Off Capacitance		10		pF

Supply

I^{+}	Positive Supply Current	All Logic Inputs Tied Together, $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$	\bullet	15	40
I^{-}	Negative Supply Current	All Logic Inputs Tied Together, $\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$	\bullet	$\mu \mathrm{~A}$	

$\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathbf{G N D}=\mathbf{O V}, \mathrm{T}_{\mathrm{A}}=$ operating temperature unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch							
$V_{\text {ANALOG }}$	Analog Signal Range	(Note 2)	\bullet	0		3	V
$\mathrm{R}_{\text {ON }}$	On Resistance	$\begin{aligned} & \mathrm{V}_{S}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \\ & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MAX }} \end{aligned}$			200	$\begin{aligned} & 255 \\ & 255 \\ & 300 \\ & \hline \end{aligned}$	Ω Ω Ω
	$\Delta \mathrm{R}_{\text {ON }}$ Vs $\mathrm{V}_{\text {S }}$				20		\%
	$\Delta \mathrm{R}_{\text {ON }}$ vs Temperature				0.5		\% ${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {(OFF) }}$	Off Input Leakage	$V_{S}=2.5 \mathrm{~V}, \mathrm{~V}_{D}=0.5 \mathrm{~V} ; \mathrm{V}_{S}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.5 \mathrm{~V} \text { (Note 3) }$ Channel Off	-		± 0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA $n A$
$I_{\text {(}(\text { OFF })}$	Off Output Leakage	$V_{S}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.5 \mathrm{~V} ; \mathrm{V}_{S}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.5 \mathrm{~V} \text { (Note 3) }$ Channel Off	-		± 0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA nA
ID(ON)	On Channel Leakage	$V_{S}=V_{D}=0.5 \mathrm{~V}, V_{S}=V_{D}=2.5 \mathrm{~V} \text { (Note 3) }$ Channel On	-		± 0.05	$\begin{gathered} \pm 5 \\ \pm 50 \end{gathered}$	nA

Input

$\mathrm{V}_{\text {INH }}$	High Level Input Voltage	$\mathrm{V}^{+}=3.3 \mathrm{~V}$	\bullet	2.4			V
$\mathrm{V}_{\text {INL }}$	Low Level Input Voltage	$\mathrm{V}^{+}=2.7 \mathrm{~V}$	\bullet			0.8	V
$\mathrm{I}_{\text {INL, }} \mathrm{I}_{\text {INH }}$	Low or High Level Current	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{I}_{0}=20 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=2.7 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A} \end{aligned}$	\bullet	2	$\begin{aligned} & 2.68 \\ & 2.27 \end{aligned}$		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{I}_{0}=20 \mu \mathrm{~A} \\ & \mathrm{~V}^{+}=2.7 \mathrm{~V}, \mathrm{I}_{0}=300 \mu \mathrm{~A} \end{aligned}$	\bullet		$\begin{aligned} & 0.01 \\ & 0.15 \\ & \hline \end{aligned}$	0.8	V

ELECTRICAL CHAßACTERISTICS

$I^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ operating temperature unless otherwise noted.

;YMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Jynamic						
CLK	Clock Frequency				5	MHz
ON	Enable Turn-On Time	$V_{S}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Note 4)		490	700	ns
OFF	Enable Turn-Off Time	$V_{S}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Note 4)		190	300	ns
OPEN	Break-Before-Make Interval	(Note 4)	125	290		ns
)IRR	Off Isolation	$V_{S}=2 V_{P-p}, R_{L}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{kHz}$		70		dB
) ${ }_{\text {INJ }}$	Charge Injection	$\mathrm{R}_{S}=0, \mathrm{C}_{L}=1000 \mathrm{pF}, \mathrm{V}_{S}=1 \mathrm{~V}$ (Note 2)		± 1	± 5	pC
'S(0FF)	Source Off Capacitance			5		pF
D(0FF)	Drain Off Capacitance			10		pF

iupply

+	Positive Supply Current	All Logic Inputs Tied Together, $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{N}}=3 \mathrm{~V}$	\bullet	0.2	2

he denotes specifications which apply over the full operating emperature range.
lote 1: Absolute maximum ratings are those beyond which the safety of he device may be impaired.
Iote 2: Guaranteed by design.

Note 3: Leakage current with a single 3 V supply is guaranteed by correlation with the leakage current of the $\pm 5 \mathrm{~V}$ supply.
Note 4: Timing specifications with a single 3 V supply is guaranteed by correlation with the timing specifications of the $\pm 5 \mathrm{~V}$ supply.

ГYPICAL PERFORMANCE CHARACTERISTICS

TC1390•G01

Driver Output Low Voltage vs Output Current

LTC1390•G01

Driver Output High Voltage vs Output Current

PIn fUnCTIOnS

S0 to S7 (Pins 1 to 8): Analog Multiplexer Inputs/Analog Demultiplexer Outputs.
GND (Pin 9): Digital Ground. Connect to system ground.
CLK (Pin 10): System Clock (TTL/CMOS Compatible). The clock synchronizes the channel selection bits and the serial data transfer from Data 1 to Data 2.
$\overline{\mathbf{C S}}$ (Pin 11): Chip Select Input (TTL/CMOS Compatible). A logic high on this input enables LTC1390 to read in the channel selection bits and allow data transfer from Data 1 to Data 2. A logic low enables the desired channel for
analog signal transmission and allows data transfer from Data 2 to Data 1.

Data 1 (Pin 12): Bidirectional Digital Input/Output (TTL/ CMOS Compatible). Input for the channel selection bits.
Data 2 (Pin 13): Bidirectional Digital Input/Output (TTL/ CMOS Compatible).
V^{-}(Pin 14): Negative Supply.
D (Pin 15): Analog Multiplexer Output/Analog Demultiplexer Input.
V+ (Pin 16): Positive Supply.

APPLICATIONS INFORMATION

Multiplexer Operation

Figure 1 shows the block diagram of the components within the LTC1390 required for MUX operation. The LTC1390 uses Data 1 to select its 8 channels and a chip select input $\overline{\mathrm{CS}}$ to switch on the selected channel as shown in Figure 2.

Figure 1: Simplified Block Diagram of the MUX Operation

When $\overline{\mathrm{CS}}$ is high, the input data on the Data 1 pin is latched into the 4-bit shift register on each rising clock edge. The input data consists of an "EN" bit and a string of three bits for channel selection. If "EN" bit is logic high as illustrated in the first input data sequence, it enables the selected channel. To ensure correct operation, the $\overline{\mathrm{CS}}$ must be pulled low before the next rising clock edge.

Once the $\overline{\mathrm{CS}}$ is pulled low, all channels are simultaneously switched off to ensure a break-before-make interval. After a delay of $t_{O N}$, the selected channel is switched on allowing signal transmission. The selected channel remains on until the next falling edge of $\overline{C S}$, and after a delay of $t_{0 f F}$, it terminates the analog signal transmission and subsequently allows the selection of the next channel. If "EN" bit is logic low, as illustrated in the second data sequence, it disables all channels and there will be no analog signal

Figure 2: Multiplexer Operation

APPLICATIONS INFORMATION

transmission. Table 1 shows the various bit combinations for channel selection.

Table 1. Logic Table for Channel Selection

CHANNEL STATUS	EN	B2	B1	BO
All Off	0	X	X	X
S0	1	0	0	0
S1	1	0	0	1
S2	1	0	1	0
S3	1	0	1	1
$S 4$	1	1	0	0
S5	1	1	0	1
S6	1	1	1	0
$S 7$	1	1	1	1

Digital Data Transfer Operation

The block diagram of Figure 3 shows the components contained within the LTC1390 required for digital data transfer. Digital data transfer operation can be performed from Data 1 to Data 2 and vice versa as shown in Figure 4. When $\overline{C S}$ is high, Buffer 1 is enabled and Buffer 2 is disabled. The digital input data is fed into the 4-bit shift register and then shifted to the MUX switches for channel

Figure 3. Simplified Block Diagram of the Digital Data Transfer Operation

Figure 4. Digital Data Transfer Operation
selection or to Data 2 via Buffer 1 for data transfer. Data appears at Data 2 after the fourth rising edge of the clock. When $\overline{C S}$ is low, Buffer 2 is enabled and Buffer 1 is disabled, thus digital input data is directly transferred from Data 2 to Data 1 without any clock delay.

Multiplexer Expansion

Several LTC1390s can be daisy-chained to expand the number of multiplexer inputs. No additional interface ports are required for the expansion. Figure 5 shows two LTC1390s connected at their analog outputs to form a 16-to-1 multiplexer at the input to an LTC1286 A/D converter.

Figure 5. Daisy-Chaining Two LTC1390s for Expansion
To ensure that only one channel is switched on at any one time, two sets of channel selection bits are needed for Data as shown in Figure 6. The first data sequence is used to switch off one MUX and the second data sequence is used to select one channel from the other MUX, or vice versa. In other words, if bit "ENA" is high and bit "ENB" is low, one channel of MUX A is switched on and all channels of MUX B are switched off. If bit "ENA" is low and bit "ENB" is high, all channels of MUX A are switched off and one channel of MUX B is switched on.

APPLICATIONS InFORMATION

Figure 6. Timing Diagram for Figure 5

TYPICAL APPLICATIONS

Daisy-Chaining Five LTC1390s

TYPICAL APPLICATIONS

Interfacing LTC1390 with LTC1257 for Demultiplex Operation

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC201A/LTC202/LTC203	Micropower, Low Charge Injection, Quad CMOS Analog Switches	Each Channel is Independently Controlled
LTC221/LTC222	Micropower, Low Charge Injection, Quad CMOS Analog Switches with Data Latches	Parallel Controlled with Data Latches
LTC128x/LTC129x	Serial A/Ds with Integral MUXs	

NOTES

seCTIOn 7-VOLTAGE REferences

SECTION 7-VOLTAGE REFERENCES
INDEX 7-2
SELECTION GUIDES 7-3
PROPRIETARY PRODUCTSLT1236, Precision Reference7-5

Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

$\begin{gathered} \text { VOLTAGE } \\ V_{\mathrm{Z}} \\ \text { (V) } \\ \hline \end{gathered}$	VOLTAGE TOLERANCE MAXIMUM $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PART NUMBER	TEMPETATURE DRIFT, ppm/ ${ }^{\circ} \mathrm{C}$ OR mV CHANGE	$\begin{gathered} \text { MIL/IND } \\ \text { TEMP } \end{gathered}$	$\begin{gathered} \text { OPERATING } \\ \text { CURRENT RANGE } \\ \text { (OR SUPPLY CURRENT) } \end{gathered}$	PACKAGE TYPE	IMPORTANT FEATURES
1.235	$\begin{aligned} & \pm 0.32 \% \\ & \pm 1 \% \\ & \pm 1 \% \\ & \pm 2 \% \\ & \pm 1 \% \end{aligned}$	LT1004-1.2 LT1034B-1.2 LT1034-1.2 LM385-1.2 LM385B-1.2	20ppm (typ) 20ppm (max) 40ppm (max) 20ppm (typ) 20ppm (typ)	$\begin{aligned} & M, I \\ & M, I \\ & M, I \\ & M, I \\ & M \end{aligned}$	$10 \mu \mathrm{~A}$ to 20 mA $20 \mu \mathrm{~A}$ to 20 mA $20 \mu \mathrm{~A}$ to 20 mA $15 \mu \mathrm{~A}$ to 20 mA $15 \mu \mathrm{~A}$ to 20 mA	H, S, Z H, S, Z H, S, Z H, Z H, Z	Micropower Low TC Micropower with 7V Aux Reference Low TC Micropower with 7 V Aux Reference Micropower Micropower
2.5	$\begin{aligned} & \pm 0.8 \% \\ & \pm 0.2 \% \\ & \pm 0.4 \% \\ & \pm 0.05 \% \\ & \pm 0.2 \% \\ & \pm 1 \% \\ & \pm 1 \% \\ & \pm 4 \% \\ & \pm 2 \% \\ & \pm 3 \% \\ & \pm 1.5 \% \\ & \pm 3 \% \\ & \pm 1 \% \\ & \pm 0.4 \% \\ & \pm 0.4 \% \end{aligned}$	LT1004-2.5 LT1009 LT1009S8 LT1019A-2.5 LT1019-2.5 LT1034B-2.5 LT1034-2.5 LM336-2.5 LM336B-2.5 LM385-2.5 LM385B-2.5 LT580J LT580K/K LT580L/U LT580M	20ppm (typ) 6 mV (max) 25 ppm (max) 5ppm (max) 20ppm (max) 20ppm (max) 40ppm (max) $6 m V$ (max) $6 \mathrm{mV}(\max)$ 20ppm (typ) 20ppm (typ) 85ppm (max) 40ppm (max) 25ppm (max) 10ppm (max)	M, I M, I M, I M M, I M, I M, I M M M, I M M M	$20 \mu \mathrm{~A}$ to 20 mA $400 \mu \mathrm{~A}$ to 10 mA $400 \mu \mathrm{~A}$ to 20 mA 1.0 mA 1.2 mA $20 \mu \mathrm{~A}$ to 20 mA $20 \mu \mathrm{~A}$ to 20 mA $400 \mu \mathrm{~A}$ to 10 mA $400 \mu \mathrm{~A}$ to 10 mA $20 \mu \mathrm{~A}$ to 20 mA $20 \mu \mathrm{~A}$ to 20 mA 1.5 mA 1.5 mA 1.5 mA 1.5 mA	H, S, Z H, Z S H, N H, N, S H, S, Z H, S, Z H, Z H, Z H, Z H, Z H H H H	Micropower Precision Precision Precision Bandgap Precision Bandgap Low TC Micropower with 7V Aux Reference Low TC Micropower with 7V Aux Reference General Purpose General Purpose Micropower Micropower 3 Terminal Low Drift
4.5	$\begin{aligned} & \pm 0.05 \% \\ & \pm 0.2 \% \end{aligned}$	LT1019A-4.5 LT1019-4.5	$\begin{aligned} & \text { 5ppm (max) } \\ & \text { 20ppm (max) } \end{aligned}$	$\begin{gathered} M \\ M, I \end{gathered}$	$\begin{aligned} & 1.2 \mathrm{~mA} \\ & 1.2 \mathrm{~mA} \end{aligned}$	$\begin{gathered} H, N \\ H, N, S \end{gathered}$	Precision Bandgap Precision Bandgap
5.0	$\pm 0.05 \%$ $\pm 0.2 \%$ $\pm 1 \%$ $\pm 0.05 \%$ $\pm 1 \%$ $\pm 0.02 \%$ $\pm 0.05 \%$ $\pm 0.05 \%$ $\pm 0.05 \%$ $\pm 0.1 \%$ $\pm 0.2 \%$ $\pm 1 \%$ $\pm 0.05 \%$ $\pm 0.1 \%$ $\pm 0.1 \%$ $\pm 1 \%$ $\pm 2 \%$ $\pm 0.3 \%$ $\pm 0.5 \%$	LT1019A-5 LT1019-5 LT1021B-5 LT1021C-5 LT1021D-5 LT1027A LT1027B LT1027C LT1027D LT1027E LT1029A LT1029 LT1236A-5 LT1236B-5 LT1236C-5 REF02C REF02D REF02E/A REFO2H	5ppm (max) 20ppm (max) 5 ppm (max) 20ppm (max) 20ppm (max) 2ppm (max) 2 ppm (max) 3 ppm (max) 5 ppm (max) 7.5ppm (max) 20ppm (max) 34 ppm (max) 5 ppm (max) 10ppm (max) 15 ppm (max) 65ppm (max) 250ppm (max) 8.5 ppm (max) 25ppm (max)	M M, I M, I M, I M, I M M 1 M	1.2 mA 2 mA $700 \mu \mathrm{~A}$ to 10 mA $700 \mu \mathrm{~A}$ to 10 mA 1.2 mA 1.2 mA 1.2 mA 1.6 mA 2.0 mA 1.4 mA 1.4 mA	H, N H, N, S H, N H, N H, J, N, S H H, N H, N N, H, S N, H, S H, Z H, Z N, S N, S N, S H, J, N H, J, N H, J, N H, J, N	Precision Bandgap Precision Bandgap Very Low Drift Very Tight Initial Tolerance Low Cost, High Performance Precision, Enhanced Dynamics Precision Bandgap Precision Bandgap Tight Tolerance and Low TC Together Tight Tolerance and Low TC Together Tight Tolerance and Low TC Together Precision Bandgap Bandgap Precision Bandgap Precision Bandgap
6.9	$\begin{aligned} & \pm 3 \% \\ & \pm 5 \% \\ & \pm 5 \% \\ & \pm 5 \% \\ & \pm 4 \% \end{aligned}$	LM329A LM329B LM329C LM329D LTZ1000	10ppm (max) 20ppm (max) 50ppm (max) 100ppm (max) 0.1 ppm	$\begin{aligned} & M \\ & M \\ & M \end{aligned}$	$600 \mu \mathrm{~A}$ to 15 mA 4 mA	$\begin{gathered} H, Z \\ H, Z \\ H, Z \\ H, Z \\ H \end{gathered}$	Low Drift Low Drift General Purpose General Purpose Ultra Low Drift, 2ppm Long Term Stability*
6.95	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	$\begin{aligned} & \text { LM399 } \\ & \text { LM399A } \end{aligned}$	$\begin{aligned} & \text { 2ppm (max) } \\ & \text { 1ppm (max) } \end{aligned}$	$\begin{aligned} & M \\ & M \end{aligned}$	$500 \mu \mathrm{~A}$ to 10 mA $500 \mu \mathrm{~A}$ to 10 mA	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Ultra Low Drift Ultra Low Drift
7.0	$\begin{aligned} & \pm 0.7 \% \\ & \pm 0.7 \% \end{aligned}$	$\begin{aligned} & \text { LT1021B-7 } \\ & \text { LT1021D-7 } \end{aligned}$	$\begin{aligned} & \text { 5ppm (max) } \\ & \text { 20ppm (max) } \end{aligned}$	$\begin{aligned} & M \\ & M \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~mA} \\ & 1.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} H, N \\ H, N, S \end{gathered}$	Low Drift/Noise, Exc Stability Low Cost, High Performance
10.0	$\begin{aligned} & \pm 0.05 \% \\ & \pm 0.2 \% \\ & \pm 0.5 \% \\ & \pm 0.05 \% \\ & \pm 0.5 \% \\ & \pm 0.05 \% \\ & \pm 0.1 \% \\ & \pm 0.2 \% \\ & \pm 0.05 \% \\ & \pm 0.1 \% \\ & \pm 0.1 \% \\ & \pm 0.3 \% \\ & \pm 0.1 \% \\ & \pm 0.05 \% \\ & \pm 1 \% \\ & \pm 0.3 \% \\ & \pm 0.5 \% \end{aligned}$	LT1019A-10 LT1019-10 LT1021B-10 LT1021C-10 LT1021D-10 LT1031B LT1031C LT1031D LT1236A-10 LT1236B-10 LT1236C-10 LT581J/S LT581K/T LT581L/U REF01C REF01E/A REF01H	5 ppm (max) 20ppm (max) 5 ppm (max) 20ppm (max) 20ppm (max) 5ppm (max) 15ppm (max) 25ppm (max) 5ppm (max) 10ppm (max) 15 ppm (max) 30ppm (max) 15 ppm (max) 5ppm (max) 65 ppm (max) 8.5ppm (max) 25ppm (max)	M M, I M, I M, I M, I M M M 1 1 I M M M M M M	1.2 mA 1.2 mA 1.7 mA 1.2 mA 1.2 mA 1.2 mA 1.0 mA 1.0 mA 1.0 mA 1.6 mA 1.4 mA 1.4 mA	$\begin{gathered} \mathrm{H}, \mathrm{~N} \\ \mathrm{H}, \mathrm{~N}, \mathrm{~S} \\ \mathrm{H}, \mathrm{~N} \\ \mathrm{H}, \mathrm{~N} \\ \mathrm{H}, \mathrm{~N}, \mathrm{~S} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~N}, \mathrm{~S} \\ \mathrm{~N}, \mathrm{~S} \\ \mathrm{~N}, \mathrm{~S} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{H}, \mathrm{~J}, \mathrm{~N} \\ \mathrm{H}, \mathrm{~J}, \mathrm{~N} \\ \mathrm{H}, \mathrm{~J}, \mathrm{~N} \end{gathered}$	Precision Bandgap Precision Bandgap Very Low Drift Very Tight Initial Tolerance Low Cost, High Performance Very Low Drift Very Tight Initial Tolerance Low Cost, High Performance Tight Tolerance and Low TC Together Tight Tolerance and Low TC Together Tight Tolerance and Low TC Together 3 Terminal Low Drift 3 Terminal Low Drift 3 Terminal Low Drift Precision Bandgap Precision Bandgap Precision Bandgap

[^50]
features

- Ultra-Low Drift: 5ppm/ ${ }^{\circ} \mathrm{C}$ Max
- Trimmed to High Accuracy: 0.05\% Max
- Industrial Temperature Range SO Package
- Operates in Series or Shunt Mode
- Pin Compatible with AD586, AD587
- Output Sinks and Sources in Series Mode
- Very Low Noise < 1ppm p-p (0.1Hz to 10Hz)
- 100% Noise Tested
- > 100dB Ripple Rejection
- Minimum Input/Output Differential of 1V

APPLICATIONS

- A / D and D / A Converters
- Precision Regulators
- Precision Scales
- Inertial Navigation Systems
- Digital Voltmeters

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1236$ is a precision reference that combines ultralow drift and noise with excellent long-term stability and high output accuracy. The reference output will both source and sink up to 10 mA and is almost totally immune to input voltage variations. Two voltages are available: 5 V and 10 V . The 10 V version can be used as a shunt regulator (two-terminal zener) with the same precision characteristics as the three-terminal connection. Special care has been taken to minimize thermal regulation effects and temperature induced hysteresis.

The LT1236 combines both superior accuracy and temperature coefficient specifications without the use of high power, on-chip heaters. The LT1236 references are based on a buried zener diode structure which eliminates noise and stability problems with surface breakdown devices. Further, a subsurface zener exhibits better temperature drift and time stability than even the best band-gap references.
$\overline{\boldsymbol{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

TYPICAL APPLICATION

LT1236 TA01

Typical Distribution of Temperature Drift

LT1236 TAO2

absolute maximum ratings

Input Voltage ... 40V	Output Short-Circuit Duration
Input/Output Voltage Differential 35V	$V_{\text {IN }}=35 \mathrm{~V}$... 10 sec
Output-to-Ground Voltage (Shunt Mode Current Limit)	$V_{\text {IN }} \leq 20 \mathrm{~V}$.. Indefinite
LT1236-5.. 10V	Operating Temperature Range
LT1236-10... 16V	LT1236AC, BC, CC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Trim Pin-to-Ground Voltage	LT1236AI, BI, CI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Positive.. Equal to V $\mathrm{V}_{\text {OUT }}$	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Negative ... - 20V	Lead Temperature (Soldering, 10 sec).............. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS
 $V_{I N}=10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETER	CONDITIONS		LT1236-5			UNITS
			MIN	TYP	MAX	
Output Voltage (Note 1)	LT1236A-5 LT1236B-5/LT1236C-5		$\begin{aligned} & 4.9975 \\ & 4.9950 \end{aligned}$	$\begin{aligned} & 5.000 \\ & 5.000 \end{aligned}$	$\begin{aligned} & 5.0025 \\ & 5.0050 \end{aligned}$	V
Output Voltage Temperature Coefficient (Note 2)	$\begin{gathered} T_{\text {MIN }} \leq T_{J} \leq T_{\text {MAX }} \\ \text { LT1236A-5 } \\ \text { LT1236B-5 } \\ \text { LT1236C-5 } \end{gathered}$			2 5 10	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line Regulation (Note 3)	$\begin{aligned} & 7.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 10 \mathrm{~V} \\ & 10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$			$\begin{gathered} 12 \\ 20 \\ 6 \\ 10 \end{gathered}$	ppm/N ppm N ppm/N ppm/
Load Regulation (Sourcing Current) (Note 3)	$0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$	\bullet		10	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\mathrm{ppm} / \mathrm{mA}$ ppm/mA

ELECTRICAL CHARACTERISTICS $V_{m}=10$, lour $=0, T T_{A}=255^{\circ}$, uness othemisise noted.

| 'ARAMETER | CONDITIONS | $\begin{array}{c}\text { LT1236-5 } \\ \text { TYP }\end{array}$ | | MAX |
| :--- | :--- | :--- | :--- | :--- |$]$ UNITS

$I_{I N}=15 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

'ARAMETER	CONDITIONS		LT1236-10			UNITS
			MIN	TYP	MAX	
Jutput Voltage (Note 1)	$\begin{aligned} & \text { LT1236A-10 } \\ & \text { LT1236B-10/LT1236C-10 } \end{aligned}$		$\begin{aligned} & 9.995 \\ & 9.990 \end{aligned}$	$\begin{aligned} & 10.000 \\ & 10.000 \end{aligned}$	$\begin{aligned} & 10.005 \\ & 10.010 \end{aligned}$	V
Iutput Voltage Temperature Coefficient (Note 2)	$\begin{gathered} \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }} \\ \text { LT1236A-10 } \\ \text { LT1236B-10 } \\ \text { LT1236C-10 } \end{gathered}$			2 5 10	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ine Regulation (Note 3)	$\begin{aligned} & 11.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 14.5 \mathrm{~V} \\ & 14.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \end{aligned}$		1.0 0.5	$\begin{aligned} & \hline 4 \\ & 6 \\ & 2 \\ & 4 \end{aligned}$	$\mathrm{ppm} / \mathrm{N}$ $\mathrm{ppm} / \mathrm{N}$ $\mathrm{ppm} / \mathrm{N}$ $\mathrm{ppm} / \mathrm{N}$
oad Regulation (Sourcing Current) Vote 3)	$0 \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA}$	-		12	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	ppm/mA ppm/mA
oad Regulation (Shunt Mode) Votes 3, 4)	$1.7 \mathrm{~mA} \leq \mathrm{I}_{\text {SHUNT }} \leq 10 \mathrm{~mA}$	\bullet		50	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\mathrm{ppm} / \mathrm{mA}$ ppm/mA
eries Mode Supply Current		-		1.2	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	mA mA
hunt Mode Minimum Current	$\mathrm{V}_{\text {IN }}$ is Open	-		1.1	$\begin{aligned} & 1.5 \\ & 1.7 \end{aligned}$	mA mA
utput Voltage Noise (Note 5)	$\begin{aligned} & 0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 1 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & 6.0 \\ & 3.5 \\ & \hline \end{aligned}$	6	$\begin{array}{r} \mu V_{P-P} \\ \mu V_{\text {RMS }} \end{array}$
ong-Term Stability of Output Voltage (Note 6)	$\Delta t=1000 \mathrm{Hrs}$ Non-Cumulative			30		ppm
emperature Hysteresis of Output (Note 7)	$\Delta \mathrm{T}= \pm 25^{\circ} \mathrm{C}$			5		ppm

he denotes specifications which apply over the specified temperature inge.
ote 1: Output voltage is measured immediately after turn-on. Changes ue to chip warm-up are typically less than 0.005%.
ote 2: Temperature coefficient is measured by dividing the change in utput voltage over the temperature range by the change in temperature. icremental slope is also measured at $25^{\circ} \mathrm{C}$.
ote 3: Line and load regulation are measured on a pulse basis. Output langes due to die temperature change must be taken into account zparately.
ote 4: Shunt mode regulation is measured with the input open. With the put connected, shunt mode current can be reduced to 0 mA . Load :gulation will remain the same.

Note 5: RMS noise is measured with a 2-pole highpass filter at 10 Hz and a 2 -pole lowpass filter at 1 kHz . The resulting output is full-wave rectified and then integrated for a fixed period, making the final reading an average as opposed to RMS. Correction factors are used to convert from average to RMS, and 0.88 is used to correct for the non-ideal bandbass of the filters. Peak-to-peak noise is measured with a single highpass filter at 0.1 Hz and a 2 -pole lowpass filter at 10 Hz . The unit is enclosed in a still-air environment to eliminate thermocouple effects on the leads. Test time is 10 seconds.
Note 6: Long-term stability typically has a logarithmic characteristic and therefore, changes after 1000 hours tend to be much smaller than before that time. Total drift in the second thousand hours is normally less than one third that of the first thousand hours, with a continuing trend toward reduced drift with time. Significant improvement in long-term drift can be

ELECTRICAL CHRRACTERISTICS $V_{I N}=15 V, I_{O U T}=0, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

realized by preconditioning the IC with a $100-200$ hour, $125^{\circ} \mathrm{C}$ burn in. Long term stability will also be affected by differential stresses between the IC and the board material created during board assembly. Temperature cycling and baking of completed boards is often used to reduce these stresses in critical applications.
Note 7: Hysteresis in output voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower
temperature. Output voltage is always measured at $25^{\circ} \mathrm{C}$, but the IC is cycled to $50^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ before successive measurements. Hysteresis is roughly proportional to the square of temperature change. Hysteresis is not normally a problem for operational temperature excursions, but can be significant in critical narrow temperature range applications where the instrument might be stored at high or low temperatures.

TYPICAL PERFORMANCG CHARACTERISTICS

YPICAL PERFORmANCE CHARACTERISTICS

Quiescent Current, LT1236-5

LTT236 G10

Load Transient Response,

LT1236-5, $\mathrm{C}_{\text {LOAD }}=0$

Output Voltage Temperature Drift LT1236-5

LT1236G08
Sink Mode* Current Limit, LT1236-5

*NOTE THAT AN INPUT VOLTAGE IS REQUIRED FOR 5V UNITS.

LT1236G11

Load Transient Response,
LT1236-5, $\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$

Load Regulation LT1236-5

Thermal Regulation, LT1236-5

*INDEPENDENT OF TEMPERATURE COEFFICIENT LT1236G12

Output Noise 0.1 Hz to 10 Hz , LT1236-5

LT1236

TYPICAL PGRFORMANCG CHARACTGRISTICS

Output Voltage Temperature

Drift, LT1236-10

Shunt Characteristics, LT1236-10

LT1236 G19
Load Transient Response,
LT1236-10, $\mathrm{C}_{\text {LOAD }}=0$

NOTE VERTICAL SCALE CHANGE BETWEEN SOURCING AND SINKING

Load Regulation, LT1236-10

Shunt Mode Current Limit,
LT1236-10

LT1236 G20
Load Transient Response, LT1236-10, $\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}$

NOTE VERTICAL SCALE CHANGE
BETWEEN SOURCING AND SINKING

Input Supply Current, LT1236-10

LT1236 G18

Thermal Regulation, LT1236-10

*INDEPENDENT OF TEMPERATURE COEFFICIENT
LT1236 G21
Output Noise 0.1Hz to 10Hz, LT1236-10

LT1236 624

IPPLICATIONS InfORmATION

ffect of Reference Drift on System Accuracy

large portion of the temperature drift error budget in lany systems is the system reference voltage. This graph dicates the maximum temperature coefficient allowable the reference is to contribute no more than 0.5 LSB error the overall system performance. The example shown is 12-bit system designed to operate over a temperature nge from $25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. Assuming the system calibraon is performed at $25^{\circ} \mathrm{C}$, the temperature span is $40^{\circ} \mathrm{C}$. can be seen from the graph that the temperature coeffient of the reference must be no worse than $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ if is to contribute less than 0.5LBS error. For this reason, e LT1236 family has been optimized for low drift.

Maximum Allowable Reference Drift

-imming Output Voltage

ıe LT1236-10 has a trim pin for adjusting output voltage. ie impedance of the trim pin is about $12 \mathrm{k} \Omega$ with a mminal open circuit voltage of 5 V . It is designed to be iven from a source impedance of $3 \mathrm{k} \Omega$ or less to miniize changes in the LT1236 TC with output trimming. tenuation between the trim pin and the output is 70:1. is allows $\pm 70 \mathrm{mV}$ trim range when the trim pin is tied to e wiper of a potentiometer connected between the stput and ground. A $10 \mathrm{k} \Omega$ potentiometer is recomended, preferably a 20 turn cermet type with stable laracteristics over time and temperature.
ie LT1236-10 "A" version is pre-trimmed to $\pm 5 \mathrm{mV}$ and erefore can utilize a restricted trim range. A 75k resistor
in series with a $20 \mathrm{k} \Omega$ potentiometer will give $\pm 10 \mathrm{mV}$ trim range. Effect on the output TC will be only $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the $\pm 5 \mathrm{mV}$ trim needed to set the " A " device to 10.000 V .

LT1236-5

The LT1236-5 does have an output voltage trim pin, but the TC of the nominal 4 V open circuit voltage at pin 5 is about $-1.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. For the voltage trimming not to affect reference output TC, the external trim voltage must track the voltage on the trim pin. Input impedance of the trim pin is about $100 \mathrm{k} \Omega$ and attenuation to the output is $13: 1$. The technique shown below is suggested for trimming the output of the LT1236-5 while maintaining minimum shift in output temperature coefficient. The R1/R2 ratio is chosen to minimize interaction of trimming and TC shifts, so the exact values shown should be used.

LT1236 A102

Capacitive Loading and Transient Response

The LT1236 is stable with all capacitive loads, but for optimum settling with load transients, output capacitance should be under 1000pF. The output stage of the reference is class $A B$ with a fairly low idling current. This makes transient response worse-case at light load currents. Because of internal current drain on the output, actual worst-case occurs at $I_{\text {LOAD }}=0$ on LT1236-5 and LIOAD $=$ 1.4 mA (sinking) on LT1236-10. Significantly better load transient response is obtained by moving slightly away from these points. See Load Transient Response curves for details. In general, best transient response is obtained when the output is sourcing current. In critical applications, a $10 \mu \mathrm{~F}$ solid tantalum capacitor with several ohms in series provides optimum output bypass.

APPLICATIONS InFORMATION

Kelvin Connections

Although the LT1236 does not have true force/sense capability atits outputs, significant improvements in ground loop and line loss problems can be achieved with proper hook-up. In series mode operation, the ground pin of the LT1236 carries only $\approx 1 \mathrm{~mA}$ and can be used as a sense line, greatly reducing ground loop and loss problems on the low side of the reference. The high side supplies load current so line resistance must be kept low. Twelve feet of \#22 gauge hook-up wire or 1 foot of 0.025 inch printed circuit trace will create 2 mV loss at 10 mA output current. This is equivalent to 1 LSB in a $10 \mathrm{~V}, 12$-bit system.

The following circuits show proper hook-up to minimize errors due to ground loops and line losses. Losses in the output lead can be greatly reduced by adding a PNP boost transistor if load currents are 5mA or higher. R2 can be added to further reduce current in the output sense lead.

Effects of Air Movement on Low Frequency Noise

The LT1236 has very low noise because of the buried zener used in its design. In the 0.1 Hz to 10 Hz band, peak-to-peak noise is about 0.5 ppm of the DC output. To achieve this low noise, however, care must be taken to shield the reference from ambient air turbulence. Air movement can create noise because of thermoelectric differences between IC package leads and printed circuit board materials and/or sockets. Power dissipation in the reference, even though it rarely exceeds 20 mW , is enough to cause small
temperature gradients in the package leads. Variations ir thermal resistance, caused by uneven air flow, create differential lead temperatures, thereby causing thermoelectric voltage noise at the output of the reference.

Series Mode with Boost Transistor

*OPTIONAL—REDUCES CURRENT IN OUTPUT SENSE LEAD: R2 $=2.4 \mathrm{k}$ (LT1236-5), 5.6k (LT1236-10)

TYPICAL APPLICATIONS

Restricted Trim Range for Improved Resolution, 10V, "A" Version Only

TRIM RANGE $\approx \pm 10 \mathrm{mV}$
LT1236 TA10

LT1236-10 Full Trim Range ($\pm 0.7 \%$)

*CAN BE RAISED TO 20k FOR LESS CRITICAL APPLICATIONS

Negative Series Reference

YPICAL APPLICATIONS

Boosted Output Current with No Current Limit

Boosted Output Current with Current Limit

*GLOWS IN CURRENT LIMIT,
DO NOT OMIT
LT1236 TA06
$\pm 10 \mathrm{~V}$ Output Reference

Handling Higher Load Currents

*SELECT R1 TO DELIVER TYPICAL LOAD CURRENT. LT1236 WILL THEN SOURCE OR SINK AS NECESSARY TO MAINTAIN PROPER OUTPUT. DO NOT REMOVE LOAD AS OUTPUT WILL BE DRIVEN UNREGULATED HIGH. LINE REGULATION IS DEGRADED IN THIS APPLICATION

Operating 5V Reference from 5V Supply

*FOR HIGHER FREQUENCIES C1 AND C2 MAY BE DECREASED
**PARALLEL GATES FOR HIGHER REFERENCE CURRENT LOADING

Trimming 10V Units to $\mathbf{1 0 . 2 4 V}$
CMOS DAC with Low Drift Full-Scale Trimming**

*MUST BE WELL REGULATED

$$
\frac{\mathrm{dV}_{\mathrm{OUT}}}{\mathrm{dV}^{-}}=\frac{15 \mathrm{mV}}{\mathrm{~V}}
$$

TYPICAL APPLICATIONS

Strain Gauge Conditioner for 350Ω Bridge

Negative Shunt Reference Driven by Current Source

-11V TO -40V
LT1236 TA13
*THIS RESISTOR PROVIDES POSITIVE FEEDBACK TO THE BRIDGE TO ELIMINATE LOADING EFFECT OF THE AMPLIFIER. EFFECTIVE ZIN OF AMPLIFIER STAGE IS $\geq 1 \mathrm{M} \Omega$. IF R2 TO R5 ARE CHANGED, SET R6 = R3
**BRIDGE IS ULTRA-LINEAR WHEN ALL LEGS ARE ACTIVE, TWO IN COMPRESSION AND TWO IN TENSION, OR WHEN ONE SIDE IS ACTIVE WITH ONE COMPRESSED AND ONE TENSIONED LEG
${ }^{\dagger}$ OFFSET AND DRIFT OF LM301A ARE VIRTUALLY ELIMINATED BY DIFFERENTIAL CONNECTION OF LT1012C

LT1236 TA08

Precision DAC Reference with System TC Trim
2-Pole Lowpass Filtered Reference

[YPICAL APPLICATIONS

Ultra-Linear Platinum Temperature Sensor*

EPUVALEПT SCHEMATIC

related parts

PART NUMBER	DESCRIPTION	COMMENTS
LT1019	Precision Bandgap Reference	$0.05 \%, 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LT1027	Precision 5V Reference	$0.02 \%, 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

SECTIOn 8—mONOLITHIC FILTERS

SECTION 8-MONOLITHIC FILTERSINDEX8-2
SELECTION GUIDES 8-3
PROPRIETARY PRODUCTS
LTC1164-8, Ultra-Selective, Low Power 8th Order Elliptic Bandpass Filter with Adjustable Gain 8-5

ANALOG FILTER SELECTION GUIDE

Introduction

The LTC family of switched-capacitor filters offers the system designer cost effective and space saving alternatives to filter designs implemented with op amps. A single IC filter can be used to replace multiple amplifiers and external capacitors.

Since their center frequencies are set by a stable external clock, switchedcapacitor filters virtually eliminate the temperature drift problems associated with active RC filter designs. This clock tuning also allows the adjustment of corner frequency over a wide range (greater than $10^{6}: 1$ for the LTC1064 family), permitting one filter to do the job of multiple active RC filters.

LTC's filter offerings include single, dual, triple, and quad block products and range in performance from improved replacements for the industry standard MF5 and MF10, to state-of-the-art products such as the LTC1064/1164/1264 families. The LTC1064/1164/1264 "Dash Series" products are one chip solutions requiring no external components. Our semi-custom programs offer an ASIC solution to high performance or higher volume system needs.

Features

- Clock-Tunable Center Frequencies
- Stable, Selectable Clock-to-Center Frequency Ratios
- Center Frequencies to 200 kHz
- Noise Performance As Low As $80 \mu V_{\text {RMS }}$
- Available with Zero DC Offset
- Filter CAD Program Available for Low-Effort Design
- Available as Universal Filter Blocks, Dedicated Filters, or Semi-Custom Fixed Filters
- Improved Replacements for Industry Standard MF5 and MF10
- Available in Surface Mount Packages

Applications

- Anti-Aliasing Filters
- Smoothing Filters
- Telecom Filters
- Spectral Analysis
- Loop Filters
- Audio

PART NUMBER	FILTER ORDER	f_{0} MAX	f0/fCLK	TCf ${ }_{0}$	$\begin{gathered} \hline \text { SO } \\ \text { PKG } \end{gathered}$	MIL TEMP AVAIL	$\begin{aligned} & \text { PIN } \\ & \text { COUNT } \end{aligned}$	FEATURES
LTC1059	2	40kHz	100, 50:1	$5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Noise, Low Crosstalk, Universal Filter Block
LTC1060	4	20 kHz	100, 50:1	10ppm/ $/{ }^{\circ} \mathrm{C}$	Y	Y	20	Improved MF5 Replacement
LTC1061	6	35 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	20	Improved MF10 Replacement
LTC1062	5	20 kHz	100:1	$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	8	Fifth Order Low Pass Filter, No DC Offset
LTC1063	5	50 kHz	100:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	N	8	Clock-Tunable DC Accurate Butterworth
LTC1064	8	140kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	24	Universal, Low Noise, Fast Quad Filter
LTC1064-1	8	50 kHz	100:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Noise, Cauer Lowpass Filter
LTC1064-2	8	140kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Noise, High Frequency Butterworth Lowpass Fllter
LTC1064-3	8	100kHz	150, 75:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Noise, Linear Phase Bessel Lowpass Filter
LTC1064-4	8	100kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Noise, High Speed Cauer Lowpass Filter
LTC1064-7	8	100 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Constant Group Delay, Lowpass Filter
LTC1064-XX	8	to 140 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Semi-Custom Low Noise, High Speed Filter
LTC1065	5	60 kHz	100:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	N	8	Clock-Tunable DC Accurate Bessel
LTC1066-1	8	100kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	N	18	14-Bit DC Accurate, Pin Selectable Cauer/Bessel
LTC1164	8	20 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	24	Universal, Low Noise, Low Power, Wide Dynamic Range Filter
LTC1164-5	8	20 kHz	100, $50: 1$	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Power, Butterworth/Bessel Lowpass Filter
LTC1164-6	8	20 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Low Power, Elliptic Lowpass Filter
LTC1164-7	8	20 kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Constant Group Delay, Low Power, Lowpass Filter
LTC1164-8	8	7 kHz	100:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	N	14	Ultra-Selective Elliptic Bandpass Filter w/Adjustable Gain
LTC1164-XX	8	to 20kHz	100, 50:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Semi-Custom Low Noise, Low Power Filter
LTC1264	8	200kHz	20:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	24	Very High Speed Universal Quad Filter
LTC1264-7	8	200 kHz	50, 25:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Constant Group Delay, High Speed, Lowpass Filter
LTC1264-XX	8	to 200 kHz	50, 25:1	$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Y	Y	14	Semi-Custom Very High Speed Filter

$\mathcal{C Y}$ LITER
 Ultra-Selective, Low Power 8th Order Elliptic Bandpass Filter with Adjustable Gain

FGATURES

- Ultra-Selectivity (50dB Attenuation at $\pm 4 \%$ of Center Frequency)
- Adjustable Passband Gain
- Noise Independent of Gain
- Filter Noise: $270 \mu \mathrm{~V}_{\mathrm{RMS}}, \mathrm{V}_{\mathrm{S}}=$ Single 5V Supply
- Clock-Tunable (Center Frequency $=\mathrm{f}_{\mathrm{CLK}} / 100$)
- Center Frequencies up to $5 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
(Typical $I_{\text {SUPPLY }}=3.2 \mathrm{~mA}$)
- Center Frequencies up to $4 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=$ Single 5V Supply
(Typical $I_{\text {SUPPLY }}=2.3 \mathrm{~mA}$)

APPLICATIONS

- Asynchronous Narrowband Signal Detectors
- Low Frequency Asynchronous Demodulators
- Handheld Spectrum Analyzers
- In-Band Tone Signaling Detectors

DESCRIPTIOn

The LTC ${ }^{\circledR} 1164-8$ is a monolithic ultra-selective, 8 th order, elliptic bandpass filter. The passband of the LTC1164-8 is tuned with an external clock and the clock-to-center frequency ratio is $100: 1$. The -3 dB pass bandwidth is typically 1% of the filter center frequency. The stopband attenuation of the LTC1164-8 is greater than 50dB. The lower and upper stopband frequencies are less than 0.96 \times center frequency and greater than $1.04 \times$ center frequency, respectively.

The LTC1164-8 requires an external op amp and two external resistors (see the circuit below). The filter's gain at center frequency is set by the ratio $R_{I N} / R_{F}$. For a gain equal to one and an optimum dynamic range, R_{F} should be set to 61.9 k and R_{IN} should be 340 k . For gains other than one, $R_{I N}=340 \mathrm{k} /$ Gain. Gains up to 1000 are obtainable. Setting the filter's gain with input resistor $R_{I N}$ does not increase the filter's wideband noise. The $270 \mu V_{\text {RMS }}$ wideband noise of the LTC1164-8 is independent of the filter's center frequency.

The LTC1164-8 is available in a 14-pin PDIP or a 16-pin surface mount SO Wide package.

[^51]
TYPICAL APPLICATION

Ultra-Narrow 1 kHz Bandpass Filter with Gain $=10$ Gain $=340 k / R_{I N}, 1 /\left(2 \pi \times R_{F} \times C_{F}\right) \geq 10 \times$ Center Frequency

Frequency Response

ABSOLUTG MAXIMUM RATINGS

Total Supply Voltage (V^{+}to V^{-})
16.5 V

Burn-In Voltage 16.5 V

Voltage at Any Input $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right) \leq \mathrm{V}_{\mathbb{I N}} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ Operating Temperature Range* \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range. \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)

Maximum Clock Frequency
$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$... 720 kHz
$V_{S}= \pm 5 \mathrm{~V}$
540kHz
$\mathrm{V}_{\mathrm{S}}=$ Single 5 V
430kHz
*For an extended operating temperature range contact LTC Marketing for details.

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (see Test Ciruit)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Center Frequency $=\mathrm{f}_{\mathrm{CLK}} / 100, \mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$ (the clock signal is a TTL or CMOS square wave, clock rise or fall time $\leq 1 \mu \mathrm{~s}$), the $A C$ test signal level is $1 V_{\text {RMS }}$ for $V_{S}= \pm 5 \mathrm{~V}$ or $0.5 V_{\text {RMS }}$ for $V_{S}= \pm 2.375 \mathrm{~V}$, unless otherwise specified.

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Gain at Center Frequency	$V_{S}= \pm 2.375 \mathrm{~V}$	$\mathrm{fiN}^{\mathrm{N}}=1000 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -3 \\ & -4 \end{aligned}$	$\begin{aligned} & 0 \pm 1.5 \\ & 0 \pm 2.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	dB dB
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$\mathrm{f}_{\mathrm{IN}}=1000 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -3 \\ & -4 \end{aligned}$	$\begin{aligned} & 0 \pm 1.5 \\ & 0 \pm 2.0 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$	dB dB
Gain at $0.995 \times$ Center Frequency and $1.005 \times$ Center Frequency (Referenced to Gain at Center Frequency)	$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$	$\mathrm{f}_{\mathrm{IN}}=995 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -8 \\ & -9 \end{aligned}$	-3 ± 2	$\begin{gathered} -1 \\ 0 \end{gathered}$	dB dB
		$\mathrm{f}_{\mathrm{I}}=1005 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -8 \\ & -9 \end{aligned}$	-3 ± 2	$\begin{gathered} -1 \\ 0 \end{gathered}$	dB dB
	$V_{S}= \pm 5 \mathrm{~V}$	$\begin{aligned} & f_{I N}=995 \mathrm{~Hz} \\ & f_{I N}=1005 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & -3 \pm 2 \\ & -3 \pm 2 \end{aligned}$		dB dB
Lower Stopband Attenuation (Referenced to Gain at Center Frequency)	$V_{S}= \pm 2.375 \mathrm{~V}$	$\mathrm{f}_{\mathrm{IN}}=960 \mathrm{~Hz}$ (Note 1)		-48	-52		dB
		$\mathrm{f}_{\mathrm{IN}}=800 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -50 \\ & -48 \end{aligned}$	-52	$\begin{aligned} & -58 \\ & -60 \end{aligned}$	dB dB
	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=960 \mathrm{~Hz}(\text { Note } 1) \\ & \mathrm{f}_{\mathrm{IN}}=800 \mathrm{~Hz} \end{aligned}$		-48	$\begin{aligned} & \hline-52 \\ & -52 \end{aligned}$		dB dB

ELECTRICAL CHARACTERISTICS (See Test Ciruwit)

$\dot{A}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Center Frequency $=\mathrm{f}_{\text {CLK }} / 100, \mathrm{f}_{\text {CLK }}=100 \mathrm{kHz}$ (the clock signal is a TTL or CMOS square wave, clock rise or fall time $\leq 1 \mu \mathrm{~s}$), he AC test signal level is $1 \mathrm{~V}_{\text {RMS }}$ for $V_{S}= \pm 5 \mathrm{~V}$ or $0.5 \mathrm{~V}_{\text {RMS }}$ for $\mathrm{V}_{S}= \pm 2.375 \mathrm{~V}$, unless otherwise specified.

'ARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Ipper Stopband Attenuation Referenced to Gain at Center Frequency)	$V_{S}= \pm 2.375 \mathrm{~V}$	$\mathrm{f}_{\mathrm{IN}}=1040 \mathrm{~Hz}$ (Note 1)		-48	-52		dB
		$\mathrm{f}_{\mathrm{IN}}=1200 \mathrm{~Hz}$	\bullet	$\begin{aligned} & -50 \\ & -48 \end{aligned}$	-52	$\begin{aligned} & -58 \\ & -60 \end{aligned}$	dB $d B$
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	$\begin{aligned} & f_{\mathrm{IN}}=1040 \mathrm{~Hz}(\text { Note } 1) \\ & \mathrm{f}_{\mathrm{IN}}=1200 \mathrm{~Hz} \end{aligned}$		-48	$\begin{aligned} & -52 \\ & -52 \end{aligned}$		dB dB
1aximum Output for < 0.25\% otal Harmonic Distortion	$\begin{aligned} & V_{S}= \pm 2.5 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{f}_{I N}=1000 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{IN}}=1000 \mathrm{~Hz} \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$		$V_{\text {RMS }}$ $V_{\text {RMS }}$
Iutput DC Offset	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ (At the Output of External Op Amp)$V_{S}= \pm 5 \mathrm{~V}$				$\begin{aligned} & -40 \pm 50 \\ & -50 \pm 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
'ower Supply Current (Note 2)	$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$		\bullet		2.3	$\begin{aligned} & \hline 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	$V_{S}= \pm 5 \mathrm{~V}$		-		3.2	$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	mA
	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$		\bullet		4.5	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Ower Supply Range				± 2.375		± 8	V

he denotes specifications which apply over the full operating mperature range.
lote 1: The minimum stopband attenuation at 960 Hz and 1040 Hz is uaranteed by design and test correlation.

Note 2: The maximum current over temperature is at $0^{\circ} \mathrm{C}$. At $70^{\circ} \mathrm{C}$ the maximum current is less than its maximum value at $25^{\circ} \mathrm{C}$.

IYPICAL PERFORMANCE CHARACTERISTICS

Gain vs Frequency

Passband Variations vs Power Supply

LTC1164-8•TPC02

Passband Gain and Phase vs Frequency

LTC1164-8 • TPC03

TYPICAL PERFORMANCE CHARACTERISTICS

LTC1164-8•TPC04

THD + Noise vs Input Voltage

LTC1164-8•TPC07

THD + Noise vs Input Voltage

LTC11648•TPC05

LTC1164-8•TPC08

THD + Noise vs Input Voltage

LTC1164-8•TPC06

PIn functions (14-Lead PDIP)

$\mathbf{V}^{+}, \mathbf{V}^{-}$(Pins 4, 12): Power Supply Pins. The $\mathrm{V}^{+}($pin 4$)$ and the V^{-}(pin 12) should be bypassed with a $0.1 \mu \mathrm{~F}$ capacitor to a reliable ground plane. The filter's power supplies should be isolated from other digital or high voltage analog supplies. A low noise linear supply is recommended. Using a switching power supply will lower the signal-to-noise ratio of the filter. The power supply during power-up should have a slew rate of less than $1 \mathrm{~V} / \mu \mathrm{s}$.
For dual supply operation if the V^{+}supply is applied before the V^{-}supply or the V^{-}supply is applied before the V^{+} supply, a signal diode on each supply pin to ground will prevent latch-up. Figures 1 and 2 show typical connections for dual and single supply operation.
$\mathrm{f}_{\text {CLK }}$ (Pin 11): Clock Input Pin. Any TTL or CMOS clock source with a square wave output and 50% duty cycle $(\pm 10 \%)$ is an adequate clock source for the device. The
power supply for the clock source should not be the filter's power supply. The analog ground for the filter should be connected to the clock's ground at a single point only. Table 1 shows the clock's low and high level threshold values for dual or single supply operation. A pulse generator can be used as a clock source provided the high level on-time is at least $1 \mu \mathrm{~s}$. Sine waves are not recommended for clock input frequencies less than 100kHz. The clock's rise or fall time should be equal to or less than $1 \mu \mathrm{~s}$.

Table 1. Clock Source High and Low Threshold Levels

POWER SUPPLY	HIGH LEVEL	LOW LEVEL
Single Supply $=5 \mathrm{~V}$	$>1.45 \mathrm{~V}$	$<0.5 \mathrm{~V}$
Single Supply $=12 \mathrm{~V}$	$>7.80 \mathrm{~V}$	$<6.5 \mathrm{~V}$
Dual Supply $= \pm 2.5 \mathrm{~V}$	$>0.73 \mathrm{~V}$	$<-2.0 \mathrm{~V}$
Dual Supply $= \pm 5 \mathrm{~V}$	$>1.45 \mathrm{~V}$	$<0.5 \mathrm{~V}$
Dual Supply $= \pm 7.5 \mathrm{~V}$	$>2.18 \mathrm{~V}$	$<0.5 \mathrm{~V}$

Figure 1. Dual Power Supply Operation (Gain =1)

Figure 2. Single Power Supply Operation (Gain = 1)

PIn functions

AGND (Pins 3, 5): Analog Ground Pins. For dual supply operation, pins 3 and 5 (AGND) are connected to an analog ground plane. For single supply operation, pins 3 and 5 should be biased at $1 / 2$ of the V^{+}supply and be bypassed to the analog ground plane with a $1 \mu \mathrm{~F}$ (tantalum or better) capacitor (Figure 2). For optimum gain linearity and single 5 V supply operation, the analog ground pins 3 and 5 should be biased at 2 V . Under these conditions the typical output AC swing is 0.5 V to 3.5 V (please refer to the THD + Noise vs Input Voltage graph). The filter performance depends on the quality of the analog ground. For either a dual or a single supply operation, an analog ground plane surrounding the package is necessary. The analog ground plane for the filter should be connected to any digital ground plane at a single point.

INVB, INVA, I IOUT, [R (h, I]) (Pins 2, 7, 9, 14): External Connection Pins. Pin 2 (INVB) is the inverting input on an op amp. Pin 9 (lout) is the junction of two internal
resistors. $\operatorname{Pin} 7$ (INVA) is the inverting input of an op amp, pin $14[\mathrm{R}(\mathrm{h}, \mathrm{I})]$ is the junction of two internal resistors. For normal filter operation an external input resistor (R_{IN}) should be connected to input pin 2 and the output pin 9 should be connected to the inverting input of an external op amp with a feedback resistor (R_{F}). Also pins 7 and 14 should be connected together (Figures 1 and 2). On a printed circuit board the external connections should be less than one inch and surrounded by a ground plane. The input resistor and output op amp with feedback resistor determine the filter's gain and dynamic range. Please refer to the Applications Information section for more information.

NC (1, 6, 8, 10, 13): NC Pins. Pins 1, 6, 8, 10 and 13 are not connected to any circuit point on the device and should be tied to analog ground for dual or single supply operation.

TEST CIRCUIT

APPLICATIONS INFORMATION

Passband Gain and Dynamic Range

The filter's gain at $\mathrm{f}_{\text {CENTER }}$ is set with an external op amp and resistors $R_{I N}$ and R_{F} (Figure 1). The filter's center frequency ($f_{\text {CENTER }}$) is equal to the clock frequency divided by 100. The output dynamic range of LTC1164-8 is optimized for minimum noise and maximum voltage swing when resistor R_{F} is $61.9 k$. The value of resistor $R_{I N}$ depends on the filter's gain, and it is calculated by the equation $R_{I N}=340 \mathrm{k} /$ Gain. Table 2 lists the values of $R_{I N}$ and R_{F} for some typical gains. Increasing the filter's gain with resistor $R_{/ N}$ does not increase the noise generated by the filter. Table 3 shows the noise generated by the filter with its input grounded.
Table 2. Passband Gain at Center Frequency, $\mathbf{R}_{I N}$ and \mathbf{R}_{F}

GAIN	$\mathbf{R}_{\mathbf{I N}}(\pm \mathbf{1 \%)}$	$\mathbf{R}_{\mathbf{F}}(\pm \mathbf{1 \%)}$	GAIN IN dB	$\mathbf{R}_{\mathbf{I N}}(\pm \mathbf{1 \%)}$	$\mathbf{R}_{\mathbf{F}}(\pm \mathbf{1 \%)}$
$\mathbf{1}$	340 k	61.9 k	0	340 k	61.9 k
2	169 k	61.9 k	10	107 k	61.9 k
5	68.1 k	61.9 k	15	60.4 k	61.9 k
10	34 k	61.9 k	20	34 k	61.9 k
20	16.9 k	61.9 k	25	19.1 k	61.9 k
50	6.81 k	61.9 k	30	10.7 k	61.9 k
100	3.4 k	61.9 k	35	6.01 k	61.9 k
200	1.69 k	61.9 k	40	3.4 k	61.9 k
500	680Ω	61.9 k	45	1.91 k	61.9 k
1000	340Ω	61.9 k	50	1.07 k	61.9 k

Table 3. LTC1164-8 Noise with Its Input Grounded

POWER SUPPLY	NOISE $\left(\mu \boldsymbol{V}_{\text {RMS }}\right)$
$\pm 5 \mathrm{~V}$	$360 \pm 10 \%$
Single 5V	$270 \pm 10 \%$

The passband of the LTC1164-8 is from $0.995 \times \mathrm{f}_{\text {CENTER }}$ to $1.005 \times \mathrm{f}_{\text {CENTER }}$. At the passband's end points the typical filter gain is $-3 \mathrm{~dB} \pm 2 \mathrm{~dB}$ relative to the gain at $f_{\text {CENTER. }}$. Figure 3 shows typical passband gain variations versus percent of frequency deviation from fenter. Outside the filter's passband, signal attenuation increases to -50 dB for frequencies less than $0.96 \times \mathrm{f}_{\text {CENTER }}$ and greater than $1.04 \times \mathrm{f}_{\text {CENTER }}$.
In applications where a signal is to be detected in the presence of wideband noise, the ultra-selectivity of the LTC1164-8 can improve the output signal-to-noise ratio. When wideband noise (white noise) appears at the input to

Figure 3. Typical Passband Variations
the filter, only a small amount of input noise will reach the filter's output. If the output noise of the LTC1164-8 is neglected, the signal-to-noise ratio at the output of the filter divided by the signal-to-noise ratio at the input of the filter equals:

$$
(\mathrm{S} / \mathrm{N})_{\text {OUT }} /(\mathrm{S} / \mathrm{N})_{\mathrm{IN}_{N}}=20 \times \log \sqrt{(\mathrm{BW})_{\text {IN }} /(\mathrm{BW})_{\mathrm{f}}}
$$

where,
$(\mathrm{BW})_{\text {IN }}=$ noise bandwidth at the input of the filter
$(B W)_{f}=0.01 \times f_{\text {CENTER }}=$ noise equivalent filter bandwidth

Example: A small 1 kHz signal is sent through a cable that also conducts random noise. The cable bandwidth is 3.4 kHz . An LTC1164-8 is used to detect the 1 kHz signal. The signal-to-noise ratio at the output of the filter is 25.3 dB larger than the signal-to-noise ratio at the input of the filter $\left(20 \times \log \sqrt{(B W)_{I N} /(B W)_{f}}=20 \times \log \sqrt{3.4 \mathrm{kHz} / 0.01 \times 1 \mathrm{kHz}}\right.$ $=25.3 \mathrm{~dB}$).

The AC output swing with $\pm 5 \mathrm{~V}$ supplies is $\pm 4 \mathrm{~V}$, with a single 5 V supply it is 1 V to 4 V , when AGND (pins 3,5) is biased at 2.5 V . Table 4 lists op amps that are recommended for use with an LTC1164-8. The LTC1164-8 is designed and specified for a dual $\pm 5 \mathrm{~V}$ or single 5 V supply operation. The filter's passband gain linearity is optimum at single 5 V supply and with pins 3,5 (AGND) biased at 2 V . Filter operation at $\pm 7.5 \mathrm{~V}$ supplies is not tested or specified. At $\mathrm{V}_{S}=7.5 \mathrm{~V}$, the filter will operate with center frequencies up to 7 kHz . Please refer to the Passband

APPLLCATIONS InFORMATION

Variations vs Power Supply graph in the Typical Performance Characteristics.

Table 4. Recommended Op Amps for LTC1164-8

SINGLE	DUAL	QUAD
LT1006	LT1013	LT1014
LT1012	LT1078	LT1079
LT1077	LT1112	LT1114
	LT1413	

Aliasing

At the filter's output, alias signals will appear when signals at the filter's input have substantial energy very near the clock frequency or any of its multiples $\left(2 \times f_{\text {CLK }}\right.$, $3 \times \mathrm{f}_{\text {CLK }}, \ldots$ etc.). For example, if an LTC1164-8 filter operates with a 100 kHz clock and has a $99 \mathrm{kHz}, 10 \mathrm{mV}$ signal at its input, a $1 \mathrm{kHz}, 10 \mathrm{mV}$ alias signal will appear at the filter's output. Table 5 shows details.

Table 5. Aliasing (fclk $=100 \mathrm{kHz}$)

INPUT FREQUENCY	OUTPUT LEVEL (RELATIVE TO INPUT)	OUTPUT FREQUENCY (ALIAS FREQUENCY)
99.04 kHz (or 100.96 kHz)	$<-50 \mathrm{~dB}$	960 Hz
99.02 kHz (or 100.98 kHz)	$<-40 \mathrm{~dB}$	980 Hz
99.01 kHz (or 100.99 kHz)	$<-6 \mathrm{~dB}$	990 Hz
99.005 kHz		
(or 100.995 Hz)	$-3 \mathrm{~dB} \pm 2 \mathrm{~dB}$	995 Hz
99.00 kHz		
(or 101.00 kHz)	$0 \mathrm{~dB} \pm 1 \mathrm{~dB}$	1000 Hz
98.995 kHz		
(or 101.005 kHz)	$-3 \mathrm{~dB} \pm 2 \mathrm{~dB}$	1005 Hz
98.99 kHz		
(or 101.01 kHz)	$<-6 \mathrm{~dB}$	1010 Hz
98.98 kHz		
(or 101.02 kHz)	$<-40 \mathrm{~dB}$	1020 Hz
98.96 kHz		
(or 101.04 kHz)	$<-50 \mathrm{~dB}$	1040 Hz

Clock Feedthrough

Figure 4. Clock Feedthrough at the Output of External Op Amp A. With No Capacitor Across Feedback Resistor R_{F}
B. With Capacitor C_{F} Across Feedback Resistor R_{F} $1 /\left(2 \pi \times R_{F} \times C_{F}\right)=10 \times f_{\text {CENTER }}$

Transient Response

Figure 5. Square Wave Input $(\pm 2.5 \mathrm{~V})$

Figure 6. Sine Wave Burst Input

APPLICATIONS INFORMATION

Printed Circuit Layout

For optimum filter performance, an LTC1164-8 should be operating on a printed circuit board that has been laid out for precision analog signal processing circuits. On a printed circuit board, an LTC1164-8 should be surrounded with an adequate analog signal ground plane and its power supply pins bypassed to ground with $0.1 \mu \mathrm{~F}$ capacitors. The ground plane of an LTC1164-8 and any digital ground plane should preferably meet at a single point on a system ground (star system ground).
The following external filter connections should be one inch or less:

N Package

Resistor RIN to Pin 2
Pin 14 to Pin 7

Pin 9 to the Inverting Node of an External Op Amp Ground Pins 1, 3, 5, 6, 8, 10 and 13

SW Package

Resistor RiN to Pin 2
Pin 16 to Pin 8
Pin 9 to the Inverting Node of External Op Amp Ground Pins 1, 3, 5, 6, 7, 10, 11, 13 and 15

Any signal or power supply printed circuit traces should be at least 0.2 inches away from the above mentioned connections (this rule applies also to the routing of the printed circuit trace originating from a clock source in a digital circuit and terminating at a clock input pin of an LTC1164-8). Operating an LTC1164-8 in an IC socket is not recommended.

TYPICAL APPLICATIONS

Tone Detector and Average Value Circuit

TYPICAL APPLICATIONS

Tone Detector—Detecting a Low Level Signal Buried in Wideband Noise

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1064	Universal Filter Building Block	This Part, with External Resistors, Allows Design of Bandpass Filters Similar to LTC1164-8 (Up to 50kHz)
LTC1164	Universal Filter Building Block	This Part, with External Resistors, Allows Design of Bandpass Filters Similar to LTC1164-8 (Low Power Up to 20kHz)
LTC1264	Universal Filter Building Block	This Part, with External Resistors, Allows Design of Bandpass Filters Similar to LTC1164-8 (Up to 100kHz)

See Table 4 for additional information

SECTION 9—MICROPROCESSOR SUPERVISORY CIRCUITS

SECTION 9—MICROPROCESSOR SUPERVISORY CIRCUITS
INDEX 9-2
SELECTION GUIDE 9-3
PROPRIETARY PRODUCTS
LTC690/LTC691/LTC694/LTC695, Microprocessor Supervisory Circuits '92DB 9-4
LTC692/LTC693, Microprocessor Supervisory Circuits '94DB 9-4
LTC694-3.3/LTC695-3.3, 3.3V Microprocessor Supervisory Circuits '94DB 9-19
LTC699, Microprocessor Supervisory Circuit '92DB 9-18
LTC1232, Microprocessor Supervisory Circuit '92DB 9-22
LTC1235, Microprocessor Supervisory Circuit with Conditional Battery Backup '92DB 9-29

LTC Family of Supervisory Circuit Products

FUNCTION	$\mathbf{1 2 3 5}$	$\mathbf{6 9 0}$	$\mathbf{6 9 1}$	$\mathbf{6 9 2}$	$\mathbf{6 9 3}$	$\mathbf{6 9 4 / 6 9 4 - 3 . 3}$	$\mathbf{6 9 5 / 6 9 5 - 3 . 3}$	$\mathbf{6 9 9}$	$\mathbf{1 2 3 2}$
Pushbutton Reset	X								
Battery Backup Switching-UL Recognized	X	X	X	X	X	X	X		
Conditional Battery Backup	X								
RAM Write Protect	X		X		X		X		
Watchdog Timer	X	X	X	X	X	X	X	X	X
Power Fail Warning	X	X	X	X	X	X	X		
Power Up/Down Reset	X	X	X	X	X	X	X	X	X
Reset Threshold (V)	4.65	4.65	4.65	4.40	4.40	$4.65 / 2.90$	$4.65 / 2.90$	4.65	4.62^{1}
Reset Pulse Width (ms)	200	50	50	200	200	200	200	200	610
Guaranteed VCC Reset Level (V)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Power Supply Current ($\mu \mathrm{AA})$	600	600	600	600	600	600	600	600	500
Packages: Plastic	16	8	16	8	16	8	16	8	8
CERDIP		8	16			8	16		
SO	16^{2}	8^{3}	16^{2}	8^{3}	16^{2}	8^{3}	16^{2}	8^{3}	8^{3}
Temperature Ranges	C	C, I	C	C					

Notes: 1.4 .62 V or 4.37 V threshold selectable
2. $0.300^{\circ} \mathrm{SO}$ wide package
3. 0.150 " S0 narrow package
4. Temperature ranges: $\mathrm{C}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} \quad \mathrm{I}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} \quad \mathrm{M}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Definitions of Functions

Pushbutton Reset: Provides a manual reset input, usually triggered by a pushbutton switch, which is debounced and will initiate the usual reset sequence.

Battery Backup Switching: When $\mathrm{V}_{\text {CC }}$ drops below the battery voltage, $\mathrm{V}_{\text {OUT }}$ is connected to $\mathrm{V}_{\text {BATT }}$ and the device is placed in standby mode to conserve power. This provides backup power to the CMOS RAM while consuming less than $1 \mu \mathrm{~A}$ of supply current. LTC devices are UL recognized for lithium battery backup.
Conditional Battery Backup: Electrically disconnects the battery during shipment and storage to prevent unnecessary discharge. Disconnection is done by detecting the power down sequencing of the supply and battery inputs.
RAM Write Protect: The system RAM enable line is gated by the supervisory circuit. When the supply voltage drops below the reset voltage threshold,
the enable line is inhibited, preventing erroneous data from being written into the RAM when $V_{C C}$ is at an invalid level. The maximum enable delay for LTC's supervisors is 45 ns .
Watchdog Timer: Monitors the activity of the $\mu \mathrm{P}$. The processor must toggle this input line before the given timeout period expires, or a reset will be initiated. This function is intended to prevent $\mu \mathrm{P}$'s from becoming accidentally stalled in microcode loops indefinitely.
Power Fail Warning: Provides early warning to the $\mu \mathrm{P}$ of an impending power failure by monitoring the unregulated power supply. This gives the processor time to perform shutdown activities before all regulated power is lost.
Power Up/Down Reset: Resets the $\mu \mathrm{P}$ when the power supply line drops below the preset threshold. LTC's supervisors will hold the reset line low down to supply voltages of 1.0 V , providing a reliable reset through V_{CC} voltages which may allow the processor to begin operation.

Pin Configurations

NOTES

section 10-COMPARATORS

SECTION10-COMPARATORS
INDEX 10-1
SELECTION GUIDE 10-2
PROPRIETARY PRODUCTS
LTC1443/LTC1444/LTC1445, Low Power Quad Comparators 13-108

COMPARATOR SELECTION GUIDE

Comparators

Response Time	$V_{0 S}$ (MAX)								TL OUTPUTS	$\begin{gathered} \text { ECL } \\ \text { OUTPUTS } \end{gathered}$	QUAD	DUAL	GROUND SENSE	MICROPOWER	ADDITIONAL COMMENTS
	20 mV	10 mV	3mV	2.5 mV	2 mV	1.5 mV	1mV	0.5 mV							
100 $\mu \mathrm{s}$								LTC1040				LTC1040	LTC1040	LTC1040	Sampling: Consumes $1.5 \mu \mathrm{~W}$ at 1 Sample/Sec.
								LTC1041					LTC1041	LTC1041	Bang-Bang Controller: $1.5 \mu \mathrm{~W}$ at $1 \mathrm{Sample} / \mathrm{Sec}$.
							LTC1042						LTC1042	LTC1042	Sampling Window Comp.: $1.5 \mu \mathrm{~W}$ at $1 \mathrm{Sample} / \mathrm{Sec}$.
$15 \mu \mathrm{~s}$							LT1017					LT1017	LT1017	LT1017	60 $\mu \mathrm{A}$ Max. Icc/Operates to 1.1 V
$12 \mu \mathrm{~s}$		LTC1443/4/5									LTC1443/4/5		LTC1443/4/5	LTC1443/4/5	Built-In Reference, 8.5 $\mu \mathrm{A}$ Supply Current
$4 \mu \mathrm{~s}$							LT1018					LT1018	LT1018	LT1018	$250 \mu \mathrm{~A}$ Max. ICC/Operates to 1.1 V
250ns						LT1011		LT1011A							12-Bit Accurate
14ns	LT1015								LT1015			LT1015			High Speed 2-Channel Line Receiver
			LT1116						LT1116				LT1116		Ground Sense/Single Supply
12ns				LT1016					LT1016						No Min. Input Slew Rate Requirement/Latched Output
6.5ns					LT685					LT685					Latched Outputs

LT1017 Provides Lower Power Operation than CMOS as Input Frequency Increases

†OUTPUTS UNLOADED, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

LT1016 Doesn't Oscillate with Slowly Changing Input Signals

NOTES

$$
10-4 \quad \boldsymbol{\operatorname { C V }} \text { UINER }
$$

SECTION 11-SPECIAL fUnCTIOn

SECTION 11—SPECIAL FUNCTIONS
INDEX11-2
SELECTION GUIDE 11-3
PROPRIETARY PRODUCTS
LTK001, Thermocouple Cold Junction Compensator and Matched Amplifier '90DB 11-3
LTC201A/LTC202/LTC203, Micropower, Low Charge Injection, Quad CMOS Analog Switches '92DB 11-4
LTC221/LTC222, Micropower, Low Charge Injection, Quad CMOS Analog Switches with Data Latches '92DB 11-15
LT1025, Micropower Thermocouple Cold Junction Compensator '90DB 11-7
LTC1043, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-15
LTC1043CS, Dual Precision Instrumentation Switched Capacitor Building Block '90DB 11-31
LT1088, Wideband RMS-DC Converter Building Block '90DB 11-33

Analog Switches

Family Features

- Micropower: $40 \mu \mathrm{~A}$ Max Supply Current
- Single 5 V or $\pm 15 \mathrm{~V}$ Operation
- 8pC Charge Injection
- Low ON Resistance
- Low Leakage
- Guaranteed Break Before Make

PART NUMBER	NUMBER OF CHANNELS	LATCHED INPUTS	MAX ON RESISTANCE	MAX INPUT AND OUTPU OFF LEAKAGE	MAX SUPPLY CURRENT	MAX $\mathbf{T O N}_{\text {ON }} / T_{\text {OFF }}$	FEATURES
LTC201A	4		125Ω	5 nA	$40 \mu \mathrm{~A}$	$400 \mathrm{~ns} / 300 \mathrm{~ns}$	Lower ON Resistance, Charge Injection, Supply Current Than DG201A. Single 5V to $\pm 15 V$ Supply Operation
LTC202	4		125Ω	5 nA	$40 \mu \mathrm{~A}$	$400 \mathrm{~ns} / 300 \mathrm{~ns}$	Lower ON Resistance, Charge Injection, Supply Current Than DG202. Single 5V to $\pm 15 \mathrm{~V}$ Supply Operation
LTC203	4		125Ω	5 nA	$40 \mu \mathrm{~A}$	$400 \mathrm{~ns} / 300 \mathrm{~ns}$	Low ON Resistance, Charge Injection, Supply Current
LTC221	4	X	90Ω	5 nA	$40 \mu \mathrm{~A}$	$400 \mathrm{~ns} / 300 \mathrm{~ns}$	Lower Charge Injection, Supply Current Than DG221
LTC222	4	X	90Ω	5 nA	$40 \mu \mathrm{~A}$	$400 \mathrm{~ns} / 300 \mathrm{~ns}$	Lower Charge Injection, Supply Current Than DG222

Other Products

PART NUMBER	DESCRIPTION	PACKAGE OPTIONS	FEATURES

NOTES

SECTION 12—mILITARY PRODUCTS

SECTION 12-MILITARY PRODUCTS
INDEX 12-2
MILITARY PRODUCTS/PROGRAMS 12-3
JAN 12-3
MIL-M-38510 Class B Flow (Figure 1) 12-4
MIL-M-38510 Class S Flow (Figure 2) 12-5
Standard Military Drawings 12-4
SMD Preparation Flowchart (Figure 3) 12-6
SMDs Get a New Part Numbering System 12-6
MIL-STD-883 Product 12-7
883 Group A Sampling Plan (Table 1) 12-7
Hi-Rel (SCDs) 12-7
Radiation Hardness Program 12-7
Representative "RH" Product Manufacturing Flow (Figure 4) 12-8
Military Market Commitment 12-7
883 Certificate of Conformance 12-9
MIL-STD-883 Test Methods 12-10
Military Parts List 12-14

NOTE

Military product data sheets are available from your local LTC Sales Representative, or by calling LTC Communications at (800) 637-5545.

LINEAR TECHNOLOGY MILITARY PRODUCTS/ PROGRAMS

Linear Technology Corporation (LTC) offers a comprehensive range of high performance analog/linear integrated circuits including; Data Converters, Interface devices, High Speed Amplifiers, Precision Operational Amplifiers, Comparators, Voltage References, DC-DC Converters, Switches, Voltage Regulators, Switching Regulators, PWMs, and other special function products serving the rigorous demands of the military marketplace.

The Company's specification system, quality procedures and policies were set up from the beginning to meet the exacting demands of MIL-Q-9858 (Quality Program Requirements), MIL-I-45208 (Inspection System Requirements), MIL-M-38510 (General Specification for Vicrocircuits), MIL-STD-976 (Certification Requirements for Microcircuits), MIL-STD-883 (Test Methods and Procedures for Microelectronics) and more recently the SO 9000 (Internal Standards for Quality Management).
n addition, the Company has introduced a line of radiation :olerant devices which are offered with two different inrouse levels of enhanced reliability processing to serve jround, air and/or space applications, including customer jenerated Source Controlled Drawings (SCDs) for a varisty of missions.
_TC's military programs include:

- JAN Class S
- JAN Class B
- Standard Military Drawings (SMDs)
- 883
- Hi-Rel (SCDs)
- LTC "RH", Radiation hardened devices

LTC JAN

At the end of 1969, the Solid State Applications Branch of the Rome Air Development Center (RADC) issued the first copy of MIL-M-38510. This general specification for microcircuits established the procedures that a manufacturer must follow to have products listed on the Qualified Parts List (QPL).

One major problem faced by defense contractors using semiconductor devices was the inability to interchange devices caused by a proliferation of non-standard electrical specifications. The 38510 (JAN) program addressed this problem by publishing detailed electrical specifications (slash sheets) for each component to be listed on the QPL.

JAN devices are completely processed in the United States or its territories and all wafer fabrication, wafer sort, assembly, testing, and conformance testing are performed onshore.

In August 1984, LTC was visited by a team of Defense Electronics Supply Center (DESC) personnel. This team spent almost four days auditing LTC and at the end of the visit they awarded the Company "Class B Line Certification." This was a first for any company to receive this distinction on their first audit!

In early 1985, LTC joined the ranks of the eighteen existing QPL suppliers. Of these eighteen, only a handful of suppliers participate in the linear military JAN market. LTC believes its analog design experience and manufacturing strength has and will continue to make significant contributions to this market.

LTC 's first QPL listing was achieved in February 1985, one year after the Company made JAN Class B a corporate
goal. Other companies have typically taken 2 to 3 years to achieve this status. The line certification and QPL approvals were awarded to MIL-M-38510 and MIL-STD-883 specifications. Since that time the Company has been reaudited to the latest revisions of these specifications and has maintained an uninterrupted certification record for the manufacture of JAN QPL products.

In November 1987, LTC was audited by a team from DESC, Naval Weapons Support Center and Aerospace Corporation and was awarded "Class S Line Certification."

LTC 's policy of providing JAN linear components supports the United States Government's position of standardization to decrease the number of active part types maintained by DESC. This number is currently in excess of 85,000 for all types of components (contrasted to approximately 8,000 industry standard components). Standardization will clearly decrease costs and assist in the maintenance of military weapons systems and equipment now in the field.

LTC maintains its JAN product offerings under the current revision of MIL-I-38535, Appendix A. LTC now offers 45
products listed on the Class B Qualified Parts List (Part 1) and 40 products on the Class S Qualified Parts List (Part 1). To receive an updated copy of LTC's current JAN QPL product offering, contact your local LTC sales office or LTC Military Marketing.

For JAN Flows see Figure 1 and Figure 2.
In June 1994, LTC was granted transitional Qualified Manufacturers List (QML) certification to MIL-I-38535 by DESC, and will be pursuing full QML certification.

LTC Standard Military Drawings

DESC drawings were initiated in 1976 to standardize the electrical requirements for full temperature-tested military components. These DESC drawings (or minispecs) were initially issued for low power Schottky devices (54LS) used by defense subcontractors on the Air Force's F16. The program accomplished standardization of testing, without the delays associated with the qualification process for JAN components.

Figure 1. MIL-M-38510 Class B Flow

* IN THE CASE WHERE THERE IS NO APPLICABLE MIL-M38510 SLASH SHEET, THE BURN-IN SCHEMATIC AS WELL AS THE APPLICABILITY OF 100\% DYNAMIC BURN-IN SHALL BE NEGOTIATED BETWEEN THE CUSTOMER AND LINEAR TECHNOLOGY CORPORATION.
** APPLICABLE DEVICE SPECIFICATION SHALL BE THE MIL-M38510 DEVICE SPECIFICATION, OR A DEVICE SPECIFICATION AGREED UPON BETWEEN THE CUSTOMER AND LINEAR TECHNOLOGY CORPORATION.
* CUSTOMER SOURCE INSPECTION WILL BE ADDED AS SPECIFIED IN CUSTOMER'S PURCHASE ORDER.

Figure 2. MIL-M-38510 Class S Flow

The DESC drawing was viewed as a preliminary specification prior to JAN approval, and it ranks second in the order of purchasing hierarchy to JAN. This order is defined in Requirement 64 of MIL-STD-454. If JJAN partis available, it is still preferred, however, there are many types of devices where the volume is such that the cost of a full JAN qualification may not be justified, but where a need exists for electrical standardization.

CMOS and analog circuits were added to the DESC Drawing Program in 1977, 1978 and 1979, but widespread
acceptance of these parts was not achieved. Today with more emphasis being placed on standardization, the interest level in DESC drawings has accelerated. This category of product can be built offshore with 883 -level processing and the electrical parameters are tested specifically to the DESC drawing.
To provide parts to a DESC drawing, a manufacturer has to have at least one part on the 38510 QPL. He must also provide DESC with a certificate of compliance agreeing to the tests and conditions listed on the drawing.

Figure 3. SMD Preparation Flowchart

In 1986 a new program named Standard Military Drawings (SMDs) was launched by DESC. This replaced the previous DESC Drawing Program. This new program is aimed directly at standardizing electrical requirements with the objective to decrease the time required to issue a military drawing. To achieve this, we have set up a computer link-up with the DESC Standardized Mil Drawing Group. LTC is actively supporting this Standard Military Drawing program and we are working closely with DESC and OEMs to participate in this government plan toward a greater level of standardization in military specifications.

LTC has over 134 devices listed on DESC and Mil drawings, and we are actively supporting these standardization programs by having parts available off the shelf from LTC and from distribution outlets.

For SMD Flow see Figure 3.

SMDs Get A New Part Numbering System

A new numbering system has been introduced to standardize the part numbering system for JAN 38510 and SMD (Standard Military Drawing) products.

Under the new system, the SMD number 5962XXXXXZZZ(_)YY will be used, with a minor change for the 38510 qual'd devices. This will make one part have one part number with just the grade identification being different ($\mathrm{M}=\mathrm{SMD}, \mathrm{B}=\mathrm{JAN} B$ and $\mathrm{S}=\mathrm{JAN}$ S). An example of this follows:

Old System

LTC PART NUMBER	"OLD" SMD NO.	JAN PART NUMBER
LT1021CMH-5/883	$5962-8876202 \mathrm{GA}$	JM38510/12407BGA

New System

LTC PART NUMBER	"NEW" SMD ONE PART NUMBER SYSTEM
LT1021CMH-5/883	$5962-8876202(M, B$ or S)GA

This was implemented on January 1, 1990, for all SMDs and slash sheets created after this date. Devices listed or approved in the past will retain their respective existing part numbers.

LTC MIL-STD-883 Product

The semiconductor industry 883 designation on military semiconductor components established a defacto standard in response to a significant demand from the military defense contractors. The Government recognized the existence of 883 components in the recent revisions of MIL-STD-883. Requirements for compliant 883 components are now defined very specifically in paragraph 1.2.1 of this document.

MIL-STD-883 is a test procedures and methods document which is revised periodically and defines the conditions for two categories of product, Class B and Class S. Class B is intended for applications where maintenance is difficult or expensive and where reliability is vital. Class S is intended for space and critical applications where replacement is extremely difficult or impossible and where reliability is imperative.

On December 31, 1984, a key clause was added to MIL-STD-883, "paragraph 1.2.1." This states that if a manufacturer advertises, certifies, or marks parts as compliant with MIL-STD-883 those parts must meet all of the provisions of MIL-STD-883, a practice consistent with "Truth in Advertising."

According to the Defense Electronics Supply Center (a ranch of the Defense Department's Logistics Agency), the intent of paragraph 1.2.1 was to link MIL-STD-883 with the controls and details contained in MIL-M-38510, and, by extension, MIL-I-38535, Appendix A.
LTC can state that all of its 883 products are in full compliance with the latest revision of MIL-STD-883. We lave over 333 versions of our 883 products listed in our surrent catalog, including operational amplifiers, voltage egulators, voltage references, comparators, and our adsanced line of proprietary CMOS circuits.

「able 1. LTC 883 Group A Sampling Plan

		$\mathbf{8 8 3}$	
TEST	CONDITION	SAMPLE SIZE	ACCEPT
DC ParametriC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	116	0
DC Parametric	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$		
	$+125^{\circ} \mathrm{C}$	116	0
	116	0	
AC Parametric	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	116	0

LTC Hi-Rel (SCDs)

LTC recognizes the need for Source Controlled Drawings (SCDs) and the Company's DESC-certified line is well equipped to handle these requirements for space and hi-rel applications. The Company has a comprehensive specification review procedure and emphasis is placed on compliance to test methods and procedures. Over 8,000 specifications have been reviewed to date with fast feedback to our customers.

LTC has serviced SCD orders including "S" level specifications with an emphasis on compliance with customer purchase order requirements and on-time delivery performance. A dedicated SL traveller is initiated to baseline the manufacturing and test flow requirements to service each order.

LTC's Product Marketing Group can provide you with more details on a case-by-case basis.

LTC's Radiation Hardness Program

LTC has developed a proprietary design/wafer fabrication process for RAD HARD (RH prefix) products, complemented by a separate set of RH data sheets. Each RH data sheet specifies the end point electrical test requirements for Total Dose irradiation testing performed on a sample basis. We offer in certain cases, the option of using the slash sheet electricals for the pre-radiation test limits instead of the LTC RH data sheet electricals. But in all cases the post-radiation electricals are per LTC's RH data sheets.

Due to the unique wafer processing required to make RH products, the RH products are not totally compliant with all the Class S requirements of MIL-STD-883. Since MIL-STD-883 specifically prohibits the marking of noncompliant products with the 883 compliance (c) indicator, LTC's RH products are marked with the LTC RH prefix part number or with a special mark specified by the customer.

Military Market Commitment

LTC is a focused, dedicated company servicing the needs of the linear military marketplace. We are shipping to the top U.S. defense electronics contractors who have qualified and approved our products. LTC is committed to being the best and most proficient high quality supplier of analog military components.

NOTE: 1. APPLICABLE DEVICE SPECIFICATION SHALL BE THE MIL-M-38510 DEVICE SPECIFICATION, OR A DEVICE SPECIFICATION AGREED UPON BETWEEN THE CUSTOMER AND LTC.
2. CUSTOMER SOURCE INSPECTION WILL BE ADDED AS SPECIFIED ON CUSTOMER'S PURCHASE ORDER.

* DENOTES PROCESS STEPS THAT ARE NON-COMPLIANT TO THE CLASS S REQUIREMENTS OF MIL-STD-883. FOR MORE DETAILS CONSULT THE FACTORY.

Figure 4. LTC Representative "RH" Product Manufacturing Flow

883 CERTIFICATE OF CONFORMANCE - LEVEL B
\qquad
.ot Traceability No.
'urchase Order No. \qquad

QUALITY ASSURANCE INSPECTOR	
DATE	SIGNATURE

;ustomer Name __ P/N \qquad Qty \qquad
Jate Code \qquad Shipper \# \qquad Traveller Lot \# \qquad
ìroup $A=$ \qquad Group B = \qquad Group C $=$ \qquad Group $D=$ \qquad àroup $\mathrm{B} / 3 \mathrm{Re}$-Inspection Date, If Applicable \qquad
.INEAR TECHNOLOGY CORPORATION HEREBY DECLARES THAT THE COMPONENTS SPECIFIED ON THE ABOVE 'URCHASE ORDER COMPLY WITH YOUR SPECIFICATIONS AND REQUIREMENTS OF MIL-STD-883. ALL ;UPPORTING DOCUMENTATION AND RECORDS ARE RETAINED ON FILE BY LTC AND ARE AVAILABLE FOR NSPECTION. THE MAJOR ELEMENTS OF THE 883 PROGRAM ARE SHOWN BELOW.

Operation Screening Procedure MIL-STD-883, Method 5004

NOTE: Each operation is performed on a 100% basis unless otherwise stated.

INEAR TECHNOLOGY CORPORATION
630 McCarthy Blvd.
Milpitas, CA 95035-7487

LINEAR TECHNOLOGY CORPORATION
1630 McCarthy Blvd.
Milpitas, CA 95035-7487

GROUP A DATA
 Mil-Std-883, METHOD 5005

LTC P/N: \qquad LOT \#:
GENERIC TYPE: \qquad PKG: \qquad DATE CODE: \qquad
ASSEMBLY LOC: \qquad

	ACC $\#$	S/S	\# FAILED	DATE TESTED	OPER NUMBER
SUBGROUP 1 Static tests at $25^{\circ} \mathrm{C}$	0	116			
SUBGROUP 2 Static tests at maximum rated operating temperature	0	116			
SUBGROUP 3 Static tests at minimum rated operating temperature	0	116			
SUBGROUP 4 Dynamic tests at $25^{\circ} \mathrm{C}$	0				
SUBGROUP 5 Dynamic tests at maximum rated operating temperature	0	116			
SUBGROUP 6 Dynamic tests at minimum rated operating temperature	0	116			
SUBGROUP 7 Functional tests at 25					
SUBGROUP 8 Functional tests at maximum and minimum operating temperature	0	116			
SUBGROUP 9 Switching tests at 25					
SUBGROUP 10					
Switching tests at maximum rated operating temperature	0	116			
SUBGROUP 11 Switching tests at minimum rated operating temperature	0	116			

QA APPROVAL: \qquad DATE: \qquad
FORM No. 00-03-6037

LINEAR TECHNOLOGY CORPORATION 1630 McCarthy Blvd.
Milpitas, CA 95035-7487
GROUP B DATA (Class B)
Mil-Std-883, METHOD 5005

LTC P/N: \qquad GENERIC TYPE: \qquad LOT \#: \qquad PKG: \qquad DATE CODE: \qquad ASSEMBLY LOC:

TEST	METHOD	CONDITION	SAMPLE SIZE SERIES	ACC $\#$	S/S	\# FAILED	DATE TESTED	OPER
SUBGROUP 2 Resistance to Solvents	2015			0	3			
SUBGROUP 3 Solderability	2003	Soldering Temp. of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	10	0				
SUBGROUP 5 Bond Strength	2011	C or D	15	0				

QA APPROVAL: \qquad DATE: \qquad
FORM No. 00-03-6006

LINEAR TECHNOLOGY CORPORATION

1630 McCarthy Blvd.
Milpitas, CA 95035-7487
GROUP C DATA (Class B)
Mil-Std-883, METHOD 5005
LTC P/N:
GENERIC TYPE:
\qquad
PKG: \qquad DATE CODE:
CT. GROUP: \qquad

TEST	METHOD	CONDITION	SAMPLE SIZE SERIES	ACC $\#$	S/S	$\#$ FAILED	DAT
SUBGROUP 1 Steady State Life Test Electrical Endpoints	1005	$T_{A}=125^{\circ} \mathrm{C}$ $(1000 \text { Hours or Equiv. })^{\text {Test \# }}$		0	45		

QA APPROVAL: \qquad DATE: \qquad

GROUP B DATA (Class S)
Mil-Std-883, METHOD 5005

LTC P/N: \qquad LOT \#: \qquad
GENERIC TYPE: \qquad PKG: \qquad DATE CODE: \qquad ASSEMBLY LOC:

TEST	METHOD	CONDITION	$\begin{gathered} \text { SAMPLE } \\ \text { SIZE } \\ \text { SERIES } \\ \hline \end{gathered}$	ACC	S/S		DATE TESTED	OPER \#
SUBGROUP 1 Physical Dimensions Internal Water-Vapor Content	$\begin{aligned} & 2016 \\ & 1018 \end{aligned}$	5000 ppm Max						
SUBGROUP 2 Resistance to Solvents Internal Visual and Mechanical Bond Strength Die Shear Test	$\begin{aligned} & 2015 \\ & 2013, \\ & 2014 \\ & 2011 \\ & 2019 \end{aligned}$	Design and Construction Requirements Cor D	10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3 2 22 Wires 3			
SUBGROUP 3 Solderability	$\begin{gathered} 2003 \\ \text { or } 2022 \end{gathered}$	Soldering Temp. of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	10	0	22 Leads			
SUBGROUP 4 Lead Integrity Seal Fine Gross Lid Torque	$\begin{aligned} & 2004 \\ & 1014 \\ & 2024 \end{aligned}$	B_{2} (Lead Fatigue) Glass Frit Seal Only	5	0	45 Leads			
SUBGROUP 5 Electrical End-Points Steady State Life Electrical End-Points	1005	Test \# C, D, or E Test \#	5	0	45			
SUBGROUP 6 Electrical End-Points Temperature Cycling Constant Acceleration Seal Fine Gross Electrical End-Points	$\begin{aligned} & 1010 \\ & 2001 \\ & 1014 \end{aligned}$	Test \# C 100 Cycles E Y ${ }_{1}$ Only (TO-3 at Condition D, 20 Kg) Test \#	15	0	15			
SUBGROUP 7 ESD Classification	3015	Qual or Re-Design Only	15	N/A	-			

\qquad DATE: \qquad

INEAR TECHNOLOGY CORPORATION 630 McCarthy Blvad.
lilpitas, CA 95035-7487

GROUP D DATA (Class B or S)
 Mil-Std-883, METHOD 5005

LTC P/N: \qquad
GENERIC TYPE: \qquad
LOT \#: \qquad
PKG: \qquad DATE CODE: \qquad
ASSEMBLY LOC: \qquad

TEST	METHOD	CONDITION	$\begin{gathered} \text { SAMPLE } \\ \text { SIZE } \\ \text { SERIES } \end{gathered}$	$\begin{gathered} \text { ACC } \\ \# \end{gathered}$	S/S	FAILED	$\begin{aligned} & \text { DATE } \\ & \text { TESTED } \end{aligned}$	OPER \#
SUBGROUP 1 Physical Dimensions	2016		15	0	15			
SUBGROUP 2 Lead Integrity Fine Leak Gross Leak	$\begin{aligned} & 2004 \\ & 1014 \\ & 1014 \end{aligned}$	B_{2} (Lead Fatigue)	5	0	45 Leads			
SUBGROUP 3 Thermal Shock Temperature Cycle Moisture Resistance Fine Leak Gross Leak Visual Examination Electrical End-Points	1011 1010 1004 1014 1014 1004/ 1010	B 15 Cycles C 100 Cycles Test \#	15	0	15			
SUBGROUP 4 Mechanical Shock Vibration, Variable Frequency Constant Acceleration Fine Leak Gross Leak Visual Examination Electrical End-Points	$\begin{aligned} & 2002 \\ & 2007 \\ & \\ & 2001 \\ & 1014 \\ & 1014 \\ & 1010 / \\ & 1011 \end{aligned}$	B A E Y1 Only (TO-3 at Condition D, 20Kg) Test \#	15	0				
SUBGROUP 5 Salt Atmosphere Fine Leak Gross Leak Visual Examination	$\begin{aligned} & 1009 \\ & 1014 \\ & 1014 \\ & 1009 \end{aligned}$	A Visual Criteria		15	0	15		
SUBGROUP 6 Internal Water-Vapor	1018	5000 ppm Max		0	3			
SUBGROUP 7 Adhesion of Lead Finish	2025		15	0	15			
SUBGROUP 8 Lid Torque	2024	Glass Frit Seal Only		0	5			

\qquad DATE: \qquad

MILITARY PARTS LIST

883	LF155AH/883	LM101AJ8/883	LT1007AMH/883	LT1078AMH/883	LTC1050AMJ/883	OP-07AJ8/883	OP-37AJ8/883
Operational	LF155H/883	LM107H/883	LT1007AMJ8/883	LT1078AMJ8/883	LTC1050MH/883	OP-07H/883	OP-37BJ8/883
Amplifiers	LF156AH/883	LM107J8/883	LT1007MH/883	LT1078MH/883	LTC1050MJ8/883	OP-07J8/883	OP-37CH/883
	LF156H/883	LM108AH/883	LT1007MJ8/883	LT1078MJ8/883	LTC1050M./883	OP-15AH/883	OP-37CJ8/883
	LF156J8/883	LM108H/883	LT1008MH/883	LT1079AMJ/883	LTC1051AMH/883	OP-15BH/883	OP-227AJ/883
	LF156W/883	LM108AJ8/883	LT1012AMH/883	LT1079MJ/883	LTC1051AMJ8/883	OP-15CH/883	OP-227CJ/883
	LF412AMH/883	LT118AH/883	LT1012MD/883	LT1124AMJ81883	LTC1051MJ8/883	OP-15CJ8/883	OP-237AJ/883
	LF412MH/883	LT118AJ8/883	LT1012MH/883	LT1124MJ8/883	LTC1052MH/883	OP-16AH/883	OP-237CJ/883
	LF412AMJ8/883	LT1001AMH/883	LT1013AMH/883	LT1125AMJ8/883	LTC1052MJ/883	OP-16BH/883	
	LF412MU8/883	LT1001AMJ8/883	LT1013AMJ8/883	LT1125MJ8/883	LTC1052MU8/883	OP-16CH/883	
	LH0070-0H/883	LT1001MH/883	LT1013MH/883	LT1126AMJ8/883	LTC1150MJ8/883	OP-16CJ8/883	
	LH0070-1 $\mathrm{H} / 883$	LT1001MJ8/883	LT1013MJ8/883	LT1126MJ8/883	OP-05AH/883	OP-27AH/883	
	LH0070-2H/883	LT1002AMJ/883	LT1014AMJ/883	LT1127AMJ8/883	OP-05AJ8/883	OP-27AJ8/883	
	LH2108AD/883	LT1002MJ/883	LT1014MJ/883	LT1127MJ/883	OP-05H/883	OP-27BJ8/883	
	LH2108D/883	LT1006AMH/883	LT1024AMD/883	LT1172MJ8/883	OP-05J8/883	OP-27BH/883	
	LM10H/883	LT1006AMJ8/883	LT1024MD/883	LT1228MJ8/883	OP-05AW/883	OP-27CH/883	
	LM10J8/883	LT1006MH/883	LT1055AMH/883	LTC1050AMH/883	OP-05W/883	OP-27CJ8/883	
	LM101AH/883	LT1006MJ8/883	LT1055MH/883	LTC1050AMJ8/883	OP-07AH/883	OP-37AH/883	
883 High Speed Op Amps	LM118H/883	LT1028AMH/883	LT1037AMJ8/883	LT1057AMH/883	LT1058AML/883	LT1191MJ8/833	LT1223MJ8/883
	LM118J8/883	LT1028AMJ8/883	LT1037MH/883	LT1057AMJ8/883	LT1058MJ/883	LT1192MJ8/883	LT1229MJ8/883
	LM118W/883	LT1028MH/883	LT1037MJ8/883	LT1057MH/883	LT1187MJ8/883	LT1193MJ8/883	LT1230MJ/883
	LT1022AMH/883	LT1028MJ8/883	LT1056AMH/883	LT1057MJ8/883	LT1189MJ8/883	LT1194MJ8/883	
	LT1022MH/883	LT1037AMH/883	LT1056MH/883	LT1058AMJ/883	LT1190MJ8/883	LT1195MJ8/883	
883 Regulators	LM117H/883	LM137HVK/883	LT117AK/883	LT150AK/883	LT1035MK/883	LT1076HVMK/883	LT1086MH/883
	LM117HVH/883	LM137K/883	LT123AK/883	LT1003MK/883	LT1036MK/883	LT1083MK-5/883	LT1086MK/883
	LM117HVK/883	LM138K/883	LT137AH/883	LT1005MK/883	LT1054MJ8/883	LT1083MK-12/883	LT1086MK-5/883
	LM117K/883	LM150K/883	LT137AHVH/883	LT1020MJ/883	LT1054MH/883	LT1084MK/883	LT1086MK-12/883
	LM123K/883	LT117AH/883	LT137AHVK/883	LT1026MJ8/883	LT1074MK/883	LT1084MK-5/883	LT1120MJ8/883
	LM137H/883	LT117AHVH/883	LT137AK/883	LT1026MH8/883	LT1074HVMK/883	LT1084MK-12/883	
	LM137HVH/883	LT117AHVK/883	LT138AK/883	LT1033MK/883	LT1076MK/883	LT1085MK/883	
883 References	LM129AH/883	LM199AH/883	LT1004MH-2.5/883	LT1021BMH-5/883	LT1031BMH/883	REF-01J8/883	
	LM129BH/883	LM199AH-20/883	LT1009MH/883	LT1021CMH-5/883	LT1031CMH/883	REF-02AH/883	
	LM129CH/883	LM199H/883	LT1019AMH-2.5/883	LT1021DMH-5/883	LT1031DMH/883	REF-02AJ8/883	
	LM134H/883	LT580SH/883	LT1019AMH-4.5/883	LT1021BMH-7/883	LT1034BMH-1.2/883	REF-02H/883	
	LM134H-3/883	LT580TH/883	LT1019AMH-5/883	LT1021DMH-7/883	LT1034BMH-2.5/883	REF-02J8/883	
	LM134H-6/883	LT580UH/883	LT1019AMH-10/883	LT1021BMH-10/883	LT1034MH-1.2/883		
	LM136AH-2.5/883	LT581SH/883	LT1019MH-2.5/883	LT1021CMH-10/883	LT1034MH-2.5/883		
	LM136H-2.5/883	LT581TH/883	LT1019MH-4.5/883	LT1021DMH-10/883	REF-01AH/883		
	LM185H-1.2/883	LT581UH/883	LT1019MH-5/883	LT1029AMH/883	REF-01AJ8/883		
	LM185H-2.5/883	LT1004MH-1.2/883	LT1019MH-10/883	LT1029MH/883	REF-01H/883		
883 Comparators	LM111H/883	LM119W/883	LT119AJ/883	LT1011AMJ8/883	LT1016MJ/883	LT1017MJ8/883	
	LM111J8/883	LT111AH/883	LT685MH/883	LT101 M M/883	LT1016MJ8/883	LT1018MH/883	
	LM119H/883	LT111AJ8/883	LT685MJ/883	LT1011MJ8/883	LT1016ML/883	LT1018MJ8/883	
	LM119J/883	LT119AH/883	LT1011AMH/883	LT1016MH/883	LT1017MH/883	LTC1042MJ8/883	
883 Switched-Mode Control Circuits	LT1070MK/883	LT1072MK/883	LT1242MJ8/883	LT1524J/883	LT1847J/883		
	LT1070HVMK/883	LT1072HVMK/883	LT1243MJ8/883	LT1525AJ/883	SG1524J/883		
	LT1071MK/883	LT1072MJ8/883	LT1244MJ8/883	LT1527AJ/883	SG1525AJ/883		
	LT1071HVMK/883	LT1241MJ8/883	LT1245MJ8/883	LT1846J/883	SG1527AJ/883		
883 Interface	LT1032MJ/883	LT1080MJ/883	LT1180AMJ/883	LT1280MJ/883	LTC1045MJ/883		
	LT1039MJ/883	LT1081MJ/883	LT1181AMJ/883	LT1281MJ/883			
	LT1039MJ16/883	LT1180MJ/883	LT1181MJ/883	LTC485MJ8/883			
883 Filters	LTC1059AMJ/883	LTC1061AMJ/883	LTC1064MJ/883	LTC1064-2ML883	LTC1164AMJ/883 LTC $1164-5 \mathrm{MJ} / 883$ LTC1164-7MJ/883		
	LTC1059MJ/883	LTC1061MU/883	LTC1064-1AMJ/883	LTC1064-4MJ/883			
	LTC1060AMJ/883	LTC1062MJ8/883	LTC1064-1MJ/883	LTC1064-4ML883			
	LTC1060MJ/883	LTC1063MJ8/883	LTC1064-2MJ/883	LTC1164MJ/883			
883 Data Converters	LTC1094MJ/883	LTC1290DMJ/883	LTC1293DMJ/883	LTC1294DMJ/883			
	LTC1290BMJ/883	LTC1293BMJ/883	LTC1294BMJ/883				
	LTC1290CMJ/883	LTC1293CMJ/883	LTC1294CMJ/883				
Other 883	LF198AH/883	LT1010MK/883	LTC1043MD/883				
	LF198H/883	LTC201AMJ/883	LTC1044MH/883				
	LT1010MH/883	LTC1041MJ8/883	LTC1044MJ8/883				

NOTES

јECTION 13-neW PRODUCTS

SECTION 13—NEW PRODUCTS
INDEX 13-2
PROPRIETARY PRODUCTS
LT1160/LT1162, Half-/Full-Bridge N-Channel Power MOSFET Drivers 13-3
LTC1177-5/LT1177-12, Isolated MOSFET Drivers 13-16
LT1186, DAC Programmable CCFL Switching Regulator (Bits-to-Nits ${ }^{T M}$) 4-196
LT1236, Precision Reference 7-5
LT1239, Backup Battery Management Circuit 4-454
LTC1274/LTC1277, 12-Bit, 10mW, 100ksps A/D Converters with $1 \mu A$ Shutdown 13-22
LT1304/LT1304-3.3/LT1304-5, Micropower DC/DC Converters with Low-Battery Detector Active in Shutdown 13-37
LT1309, 500kHz Micropower DC/DC Converter for Flash Memory 13-41
LT1311, Quad 12MHz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives 2-34
LTC1324, Single Supply LocalTalk ${ }^{\circledR}$ Transceiver 13-45
LTC1334, Single 5V RS232/RS485 Multi-Protocol Transceiver 13-53
LTC1346, 10Mbps DCE/DTE V. 35 Transceiver 13-65
LT1373, 250kHz Low Supply Current High Efficiency 1.5A Switching Regulator 4-322
LT1375/LT1376, 1.5A, 500kHz Step-Down Switching Regulators 4-334
LT1389, AppleTalk ${ }^{\circledR}$ Peripheral Interface Transceiver 13-73
LTC1392, Micropower Temperature, Power Supply and Differential Voltage Monitor 13-77
LTC1400, Complete SO-8, 12-Bit, 400ksps A/D Converter with Shutdown 13-86
LTC1410, 12-Bit, 1.25Msps Sampling A/D Converter with Shutdown 13-97
LTC1429, Clock-Synchronized Switched Capacitor-Regulated Voltage Inverter 4-41
LTC1430, High Power Step-Down Switching Regulator Controller. 4-360
LTC1443/LTC1444/LTC1445, Low Power Quad Comparators 13-108
LTC1477/LTC1478, Single and Dual Protected High-Side Switches 13-112
LT1510, Constant-Voltage/Constant-Current Battery Charger 13-120
LT1512, SEPIC Constant-Current/Constant-Voltage Battery Charger 13-130
LT1521/LT1521-3/LT1521-3.3/LT1521-5, 300mA Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-79
LTC1522, 4-ChanneI, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter 13-134
LT1528, 3A Low Dropout Regulator for Microprocessor Applications 4-91
LT1529/LT1529-3.3/LT1529-5, 3A Low Dropout Regulators with Micropower Quiescent Current and Shutdown 4-101
LTC1550/LTC1551, Low Noise, Switched Capacitor-Regulated Voltage Inverters 13-142
LT1572, 100kHz, 1.25A Switching Regulator with Catch Diode 4-374
LT1580/LT1580-2.5, 7A, Very Low Dropout Regulator 13-148

Half-/Full-Bridge N-Channel Power MOSFET Drivers

July 1995

: ©ATURES

I Floating Top Driver Switches Up to 60V
I Drives Gate of Top N-Channel MOSFET above Load HV Supply
(180ns Transition Times Driving 10,000pF
I Adaptive Nonoverlapping Gate Drives Prevent Shoot-Through
I Top Drive Protection at High Duty Cycles

- TTL/CMOS Input Levels

I Undervoltage Lockout with Hysteresis
I Operates at Supply Voltages from 10V to 15 V
I Separate Top and Bottom Drive Pins

IPPLICATIONS

PWM of High Current Inductive Loads
Half-Bridge and Full-Bridge Motor Control
Synchronous Step-Down Switching Regulators
3-Phase Brushless Motor Drive
High Current Transducer Drivers
Class D Power Amplifiers

DESCRIPTIOn

The $L T^{\circledR} 1160 /$ LT1162 are cost effective half-/full-bridge N -channel power MOSFET drivers. The floating driver can drive the top side N -channel power MOSFETs operating off a high voltage (HV) rail of up to 60 V (absolute maximum).
The internal logic prevents the inputs from turning the power MOSFETs in a half-bridge on at the same time. Its unique adaptive protection against shoot-through currents eliminates all matching requirements for the two MOSFETs. This greatly eases the design of high efficiency motor control and switching regulator systems.

During low supply or start-up conditions, the undervoltage lockout actively pulls the driver outputs low to prevent the power MOSFETs from being partially turned on. The 0.5 V hysteresis allows reliable operation even with slowly varying supplies.

The LT1162 is a dual version of the LT1160 and is available in a 24 -pin PDIP or in a 24 -pin SO Wide package.

[^52]
IYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Note 1)... 20V
Boost Voltage ... 75V
Peak Output Currents (<10 Ls) 1.5A
Input Pin Voltages -0.3 V to $\mathrm{V}^{+}+0.3 \mathrm{~V}$
Top Source Voltage ge -5 V to 60V
Boost to Source Voltage -0.3 V to 20 V

Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature (Note 2) $125^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

TOP VIEW	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
INTOP 2 13 TGATE DR		In Bottom a 3 - 22 TGATE FB A	LT1162CN
in botrom 3 3 ${ }^{\text {12 T Gate fb }}$		UVOUTA 4	LT1162CSW
UVOUT 4 11 TSOURCE	LT1160CS LT1160IN LT1160IS		LT1162IN LT1162ISW
SGND 5 5 $10 \mathrm{PV}^{+}$			
PGND 6 年 9 bgatedr	LT1160IS	INTVP $\frac{1}{8-8}$	
NC 7 7 B GATE FB		in bottom b 9 16 tgatefb b	
		UVOUT 101015 T SOURCE B	
14-LEAA PDIP		GND B 11 14 1	
S PACKAGE		bgatefb 12 12 bgatedrb	
14-LEAD PLASTIC So		NPACKAGE SW PACKAGE	
$\begin{aligned} & \mathrm{JJMAX}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N}) \\ & \mathrm{T}_{\mathrm{JMAX}}=122^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S} \end{aligned}$		24-LEAD PDIP 24-LEAD PLASTIC SO WIDE	
		$\begin{gathered} \mathrm{T}_{\mathrm{Jmax}}=12215^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=58^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N}) \\ \mathrm{T}_{\mathrm{JMAX}}=122^{\circ} \mathrm{C}, \theta_{\mathrm{A}}=80^{\circ} / \mathrm{W}(\mathrm{SW} \end{gathered}$	

Consult factory for Military grade parts.

ELECTRICAL CHPRACTERISTICS Test Circuit, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\mathrm{V}_{\text {BOOST }}=12 \mathrm{~V}$, $\mathrm{V}_{\text {TSOURCE }}=0 \mathrm{~V}, \mathrm{C}_{\text {GATE }}=3000 \mathrm{pF}$. Gate Feedback pins connected to Gate Drive pins, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IS	DC Supply Current (Note 3)	$\begin{aligned} & V^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {INTOP }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {INTOP }}=2 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=0.8 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {INTOP }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=0.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 11 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	mA mA mA
$I_{\text {boost }}$	Boost Current (Note 3)	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\text {TSOURCE }}=60 \mathrm{~V}, \mathrm{~V}_{\text {BOOST }}=75 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INTOP }}=V_{\text {INBOTTOM }}=0.8 \mathrm{~V} \end{aligned}$		3	4.5	6	mA
VIL	Input Logic Low		\bullet		1.4	0.8	V
$\mathrm{V}_{\text {IH }}$	Input Logic High		\bullet	2	1.7		V
IN	Input Current	$\mathrm{V}_{\text {INTOP }}=\mathrm{V}_{\text {INBOTTOM }}=4 \mathrm{~V}$	\bullet		7	25	$\mu \mathrm{A}$
V^{+}UVH	V + Undervoltage Start-Up Threshold			8.3	8.8	9.3	v
V^{+}UVL	V + Undervoltage Shutdown Threshold			7.8	8.3	8.8	V
$\mathrm{V}_{\text {BUVH }}$	$V_{\text {BOOST }}$ Undervoltage Start-Up Threshold	$\mathrm{V}_{\text {TSOURCE }}=60 \mathrm{~V}\left(\mathrm{~V}_{\text {BOOST }}-\mathrm{V}_{\text {TSOURCE }}\right)$		8.8	9.3	9.8	V
VBUVL	$\mathrm{V}_{\text {BOOST }}$ Undervoltage Shutdown Threshold	$\mathrm{V}_{\text {TSOURCE }}=60 \mathrm{~V}\left(\mathrm{~V}_{\text {BOOST }}-\mathrm{V}_{\text {TSOURCE }}\right)$		8.2	8.7	9.2	V

LECTRICAL CHARACTERISTICS Test Circuit, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=\mathrm{V}_{\text {BOost }}=12 \mathrm{~V}, \mathrm{~V}_{\text {TSOURCE }}=0 \mathrm{~V}, \mathrm{C}_{\text {GATE }}=3000 \mathrm{pF}$. te Feedback pins connected to Gate Drive pins, unless otherwise specified.

MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
AK	Undervoltage Output Leakage	$\mathrm{V}^{+}=15 \mathrm{~V}$	-		0.1	5	$\mu \mathrm{A}$
HT	Undervoltage Output Saturation	$\mathrm{V}^{+}=7.5 \mathrm{~V}, \mathrm{I}_{4}=2.5 \mathrm{~mA}$	\bullet		0.2	0.4	V
1	Top Gate ON Voltage	$\mathrm{V}_{\text {INTOP }}=2 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=0.8 \mathrm{~V}$	\bullet	11	11.3	12	V
	Bottom Gate ON Voltage	$\mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=2 \mathrm{~V}$	\bullet	11	11.3	12	V
-	Top Gate OFF Voltage	$\mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=2 \mathrm{~V}$	\bullet		0.4	0.7	V
	Bottom Gate OFF Voltage	$\mathrm{V}_{\text {INTOP }}=2 \mathrm{~V}, \mathrm{~V}_{\text {INBOTTOM }}=0.8 \mathrm{~V}$	\bullet		0.4	0.7	V
	Top Gate Rise Time	$\mathrm{V}_{\text {INTOP }}\left(+\right.$) Transition, $\mathrm{V}_{\text {INBOTTOM }}=0.8 \mathrm{~V}$, Measured at $V_{\text {TGATE DR }}$ (Note 4)	\bullet		130	200	ns
	Bottom Gate Rise Time	$\mathrm{V}_{\text {INBOTTOM }}\left(+\right.$) Transition, $\mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V}$, Measured at $V_{\text {BGATE DR }}$ (Note 4)	\bullet		90	200	ns
	Top Gate Fall Time	$\mathrm{V}_{\text {INTOP }}(-) \text { Transition, } \mathrm{V}_{\text {INBOTTOM }}=0.8 \mathrm{~V} \text {, }$ Measured at $V_{\text {TGATE DR }}$ (Note 4)	\bullet		60	140	ns
	Bottom Gate Fall Time	$\mathrm{V}_{\text {INBOTtOM }}(-)$ Transition, $\mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V}$, Measured at $V_{\text {BGATE DR }}$ (Note 4)	\bullet		60	140	ns
	Top Gate Turn On Delay	$\begin{aligned} & \mathrm{V}_{\text {INTOP }}(+) \text { Transition, } \mathrm{V}_{\text {INBOTTOM }}=0.8 \mathrm{~V} \text {, } \\ & \text { Measured at } \mathrm{V}_{\text {TGATE }} \text { (Note 4) } \end{aligned}$	-		250	500	ns
	Bottom Gate Turn On Delay	$\begin{aligned} & \hline \mathrm{V}_{\text {INBOTTOM }}(+) \text { Transition, } \mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V} \text {, } \\ & \text { Measured at } \mathrm{V}_{\text {BGATE }} \text { (Note 4) } \\ & \hline \end{aligned}$	\bullet		200	400	ns
	Top Gate Turn Off Delay	$\begin{aligned} & V_{\text {INTOP }}(-) \text { Transition, } V_{\text {INBOTTOM }}=0.8 \mathrm{~V} \text {, } \\ & \text { Measured at } \mathrm{V}_{\text {TGATE }} \text { (Note 4) } \end{aligned}$	-		300	600	ns
	Bottom Gate Turn Off Delay	$\mathrm{V}_{\text {INBOTTOM }}(-)$ Transition, $\mathrm{V}_{\text {INTOP }}=0.8 \mathrm{~V}$, Measured at $V_{\text {BGATE DR }}$ (Note 4)	\bullet		200	400	ns
	Top Gate Lockout Delay	$\mathrm{V}_{\text {INBOTTOM }}\left(+\right.$) Transition, $\mathrm{V}_{\text {INTOP }}=2 \mathrm{~V}$, Measured at $V_{\text {TGATE DR }}$ (Note 4)	\bullet		300	600	ns
	Bottom Gate Lockout Delay	$\mathrm{V}_{\text {INTOP }}\left(+\right.$) Transition, $\mathrm{V}_{\text {INBOTTOM }}=2 \mathrm{~V}$, Measured at $V_{\text {BGATE DR }}$ (Note 4)	\bullet		250	500	ns
	Top Gate Release Delay	$\mathrm{V}_{\text {INBOTTOM }}(-)$ Transition, $\mathrm{V}_{\text {INTOP }}=2 \mathrm{~V}$, Measured at $V_{\text {tgate dr }}$ (Note 4)	\bullet		250	500	ns
	Bottom Gate Release Delay	$\mathrm{V}_{\text {INTOP }}(-) \text { Transition, } \mathrm{V}_{\text {INBOTTOM }}=2 \mathrm{~V} \text {, }$ Measured at $V_{\text {BGATE DR }}$ (Note 4)	\bullet		200	400	ns

- denotes specifications which apply over the full operating iperature range.
e 1: For the LT1160, Pins 1, 10 should be connected together. For the 162, Pins $1,7,14,20$ should be connected together.
e 2: T_{j} is calculated from the ambient temperature T_{A} and power sipation P_{D} according to the following formulas:
LT1160CN/LT1160IN: $T_{J}=T_{A}+\left(P_{D} \times 70^{\circ} \mathrm{C} / \mathrm{W}\right)$ LT1160CS/LT1160IS: $T_{J}=T_{A}+\left(P_{D} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1162CN/LT1162IN: $T_{J}=T_{A}+\left(P_{D} \times 58^{\circ} \mathrm{C} / \mathrm{W}\right)$
LT1162CS/LT1162IS: $T_{J}=T_{A}+\left(P_{D} \times 80^{\circ} \mathrm{C} / \mathrm{W}\right)$

Note 3: IS is the sum of currents through $\mathrm{SV}^{+}, \mathrm{PV}^{+}$and Boost pins. $I_{\text {BOOST }}$ is the current through the Boost pin. Dynamic supply current is higher due to the gate charge being delivered at the switching frequency. See Typical Performance Characteristics and Applications Information sections. The LT1160 $=1 / 2$ LT1162.
Note 4: Gate rise times are measured from 2 V to 10 V and fall times are measured from 10 V to 2 V . Delay times are measured from the input transition to when the gate voltage has risen to 2 V or decreased to 10 V .

TYPICAL PGRFORMANCE CHARACTERISTICS (LT160 or 1/2LT1162)

1160/62 G01

DC Supply Current vs Temperature

1160/62 G02

DC + Dynamic Supply Current vs Input Frequency

1160/62 G03

1160/62 604
Input Threshold Voltage vs
Temperature

DC + Dynamic Supply Current vs Input Frequency

1160/62 G05
Top or Bottom Input Pin Current vs Temperature

1160/62 608

Undervoltage Lockout ($\mathrm{V}_{\text {BOOST }}$)

1160/62 G0
Top or Bottom Input Pin Current vs Input Voltage

ГYPICAL PGRFORMANCE CHARACTERISTICS (LT1160 or 1/2LT1162)

1160/62 G14
Release Delay Time vs Temperature

1160/62 G17

PIn functions

LT1160

SV ${ }^{+}$(Pin 1):Main Signal Supply.Mustbe closely decoupled to the signal ground Pin 5 .
INTOP (Pin 2): Top Driver Input. Pin2 is disabled when Pin 3 is high. A 3 k input resistor followed by a 5 V internal clamp prevents saturation of the input transistors.
IN BOTTOM (Pin 3): Bottom Driver Input. Pin 3 is disabled when Pin 2 is high. A 3 k input resistor followed by a 5 V internal clamp prevents saturation of the input transistors.
$\overline{\text { UV OUT }}$ (Pin 4): Undervoltage Output. Open collector NPN output which turns on when V^{+}drops below the undervoltage threshold.
SGND (Pin 5): Small Signal Ground. Must be routed separately from other grounds to the system ground.
PGND (Pin 6): Bottom Driver Power Ground. Connects to source of bottom N-channel MOSFET.
B GATE FB (Pin 8): Bottom Gate Feedback. Must connect directly to the bottom power MOSFET gate. The top MOSFET turn-on is inhibited until Pin 8 has discharged to below 2.5 V .
B GATE DR (Pin 9): Bottom Gate Drive. The high current drive point for the bottom MOSFET. When a gate resistor is used it is inserted between Pin 9 and the gate of the MOSFET.

PV ${ }^{+}$(Pin 10): Bottom Driver Supply. Must be connected to the same supply as Pin 1.
T SOURCE (Pin 11): Top Driver Return. Connects to the top MOSFET source and the low side of the bootstrap capacitor.

T GATE FB (Pin 12): Top Gate Feedback. Must connect directly to the top power MOSFET gate. The bottom MOSFET turn-on is inhibited until $\mathrm{V}_{12}-\mathrm{V}_{11}$ has discharged to below 2.9 V .
TGATEDR (Pin 13):Top Gate Drive. The high current drive point for the top MOSFET. When a gate resistor is used it is inserted between Pin 13 and the gate of the MOSFET.
BOOST (Pin 14): Top Driver Supply. Connects to the high side of the bootstrap capacitor.

LT1162

$\mathbf{S V}^{+}$(Pins 1, 7): Main Signal Supply. Must be closely decoupled to ground Pins 5 and 11.
IN TOP (Pins 2, 8): Top Driver Input. The Input Top is disabled when the Input Bottom is high. A 3k input resistor followed by a 5 V internal clamp prevents saturation of the input transistors.
IN BOTTOM (Pins 3, 9): Bottom Driver Input. The Input Bottom is disabled when the Input Top is high. A 3 k input resistor followed by a 5 V internal clamp prevents saturation of the input transistors.
$\overline{\text { UV OUT }}$ (Pins 4, 10):Undervoltage Output. Open collector NPN output which turns on when V^{+}drops below the undervoltage threshold.
GND (Pins 5, 11): Ground Connection.
B GATE FB (Pins 6, 12): Bottom Gate Feedback. Must connect directly to the bottom power MOSFET gate. The top MOSFET turn-on is inhibited until Bottom Gate Feedback pins have discharged to below 2.5 V .
B GATE DR (Pins 13, 19): Bottom Gate Drive. The high current drive point for the bottom MOSFET. When a gate resistor is used it is inserted between Bottom Gate Drive pin and the gate of the MOSFET.
PV ${ }^{+}$(Pins 14, 20): Bottom Driver Supply. Must be connected to the same supply as Pins 1 and 7 .
T SOURCE (Pins 15, 21):Top Driver Return. Connects to the top MOSFET source and the low side of the bootstrap capacitor.
T GATE FB (Pins 16, 22): Top Gate Feedback. Must connect directly to the top power MOSFET gate. The bottom MOSFET turn-on is inhibited until $\mathrm{V}_{\text {TGF }}-\mathrm{V}_{\text {TSOURCE }}$ has discharged to below 2.9 V .
TGATE DR (Pins 17, 23):Top Gate Drive. The high current drive point for the top MOSFET. When a gate resistor is used it is inserted between the Top Gate Drive pin and the gate of the MOSFET.
BOOST (Pins 18, 24):Top Driver Supply. Connects to the high side of the bootstrap capacitor.

FUnCTIONAL DIAGRAM (LT1160 or 1/2 LT1162)

IEST CIRCUIT (LT1160 or 1/2LT1162)

LT1160/LT1162

timing diagram

OPERATIOी (Refer to Functional Diagram)

The LT1160 (or 1/2 LT1162) incorporates two independentdriver channels with separate inputs and outputs. The inputs are TTL/CMOS compatible; they can withstand input voltages as high as $\mathrm{V}^{\mathrm{+}}$. The 1.4 V input threshold is regulated and has 300 mV of hysteresis. Both channels are noninverting drivers. The internal logic prevents both outputs from simultaneously turning on under any input conditions. When both inputs are high both outputs are actively held low.

The floating supply for the top driver is provided by a bootstrap capacitor between the Boost pin and the Top Source pin. This capacitor is recharged each time the negative plate goes low in PWM operation.

The undervoltage detection circuit disables both channels when V^{+}is below the undervoltage trip point. A separate

UV detect block disables the high side channel when $V_{\text {BOOST }}-V_{\text {TSOURCE }}$ is below its own undervoltage trip point.
The top and bottom gate drivers in the LT1160 each utilize two gate connections: 1) a gate drive pin, which provides the turn on and turn off currents through an optional series gate resistor, and 2) a gate feedback pin which connects directly to the gate to monitor the gate-to-source voltage.
Whenever there is an input transition to command the outputs to change states, the LT1160 follows a logical sequence to turn off one MOSFET and turn on the other. First, turn off is initiated, then $V_{G S}$ is monitored until it has decreased below the turn off threshold, and finally the other gate is turned on.

IPPLICATIONS INFORMATION

Jwer MOSFET Selection

nce the LT1160 (or 1/2 LT1162) inherently protects the p and bottom MOSFETs from simultaneous conduction, ere are no size or matching constraints. Therefore selecin can be made based on the operating voltage and JS(ON) requirements. The MOSFET BV DSS should be eater than the HV and should be increased to $2 \times \mathrm{HV}$ in irsh environments with frequent fault conditions. For the ${ }^{-} 1160$ maximum operating HV supply of 60V, the MOSFET IDSS should be from 60 V to 120 V .
ie MOSFET $R_{D S(O N)}$ is specified at $T_{J}=25^{\circ} \mathrm{C}$ and is merally chosen based on the operating efficiency relired as long as the maximum MOSFET junction temrature is not exceeded. The dissipation while each OSFET is on is given by:
$P=D\left(I_{D S}\right)^{2}(1+\partial) R_{D S(O N)}$
here D is the duty cycle and ∂ is the increase in $R_{D S(O N)}$ the anticipated MOSFET junction temperature. From this uation the required $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ can be derived:

$$
R_{D S}(O N)=\frac{P}{D\left(I_{D S}\right)^{2}(1+\partial)}
$$

r example, if the MOSFET loss is to be limited to 2 W en operating at 5 A and a 90% duty cycle, the required)S(ON) would be $0.089 \Omega /(1+\partial) .(1+\partial)$ is given for each OSFET in the form of a normalized $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs temperare curve, but $\partial=0.007 /{ }^{\circ} \mathrm{C}$ can be used as an approximain for low voltage MOSFETs. Thus, if $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ and the ailable heat sinking has a thermal resistance of $20^{\circ} \mathrm{C} / \mathrm{W}$, a MOSFET junction temperature will be $125^{\circ} \mathrm{C}$ and $=0.007(125-25)=0.7$. This means that the required $\mathrm{IS}(\mathrm{ON})$ of the MOSFET will be $0.089 \Omega / 1.7=0.0523 \Omega$, lich can be satisfied by an International Rectifier IRFZ34.
ansition losses result from the power dissipated in each OSFET during the time it is transitioning from off to on, from on to off. These losses are proportional to $\mathrm{f} \times(\mathrm{HV})^{2}$ d vary from insignificant to being a limiting factor on erating frequency in some high voltage applications.

Paralleling MOSFETs

When the above calculations result in a lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ than is economically feasible with a single MOSFET, two or more MOSFETs can be paralleled. The MOSFETs will inherently share the currents according to their $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ ratio as long as they are thermally connected (e.g., on a common heat sink). The LT1160 top and bottom drivers can each drive five power MOSFETs in parallel with only a small loss in switching speeds (see Typical Performance Characteristics). A low value resistor (10Ω to 47Ω) in series with each individual MOSFET gate may be required to "decouple" each MOSFET from its neighbors to prevent high frequency oscillations (consult manufacturer's recommendations). If gate decoupling resistors are used the corresponding gate feedback pin can be connected to any one of the gates as shown in Figure 1.
Driving multiple MOSFETs in parallel may restrict the operating frequency to prevent overdissipation in the LT1160 (see the following Gate Charge and Driver Dissipation).

Figure 1. Paralleling MOSFETs

Gate Charge and Driver Dissipation

A useful indicator of the load presented to the driver by a power MOSFET is the total gate charge Q_{G}, which includes the additional charge required by the gate-to-drain swing. Q_{G} is usually specified for $V_{G S}=10 \mathrm{~V}$ and $V_{D S}=0.8 V_{D S(M A X)}$. When the supply current is measured in a switching application, it will be larger than given by the DC electrical characteristics because of the additional supply current associated with sourcing the MOSFET gate charge:

$$
I_{S U P P L Y}=I_{D C}+\left(\frac{d Q_{G}}{d t}\right)_{T O P}+\left(\frac{d Q_{G}}{d t}\right)_{\text {BOTTOM }}
$$

APPLICATIONS INFORMATION

The actual increase in supply current is slightly higher due to LT1160 switching losses and the fact that the gates are being charged to more than 10 V . Supply Current vs Input Frequency is given in the Typical Performance Characteristics.
The LT1160 junction temperature can be estimated by using the equations given in Note 2 of the Electrical Characteristics. For example, the LT1160IS is limited to less than 31 mA from a 12 V supply:

$$
\begin{aligned}
\mathrm{T}_{J} & =85^{\circ} \mathrm{C}+\left(31 \mathrm{~mA} \times 12 \mathrm{~V} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =126^{\circ} \mathrm{C} \text { exceeds absolute maximum }
\end{aligned}
$$

In order to prevent the maximum junction temperature from being exceeded, the LT1160 supply current must be verified while driving the full complement of the chosen MOSFET type at the maximum switching frequency.

Ugly Transient Issues

In PWM applications the drain current of the top MOSFET is a square wave at the input frequency and duty cycle. To prevent large voltage transients at the top drain, a low ESR electrolytic capacitor must be used and returned to the power ground. The capacitor is generally in the range of $25 \mu \mathrm{~F}$ to $5000 \mu \mathrm{~F}$ and must be physically sized for the RMS current flowing in the drain to prevent heating and premature failure. In addition, the LT1160 requires a separate $10 \mu \mathrm{~F}$ capacitor connected closely between Pins 1 and 5 (the LT1162 requires two 10 HF capacitors connected between Pins 1 and 5, and Pins 7 and 11).
The LT1160 top source is internally protected against transients below ground and above supply. However, the gate drive pins cannot be forced below ground. In most applications, negative transients coupled from the source to the gate of the top MOSFET do not cause any problems.

Switching Regulator Applications

The LT1160 (or $1 / 2$ LT1162) is ideal as a synchronous switch driver to improve the efficiency of step-down (buck) switching regulators. Most step-down regulators use a high current Schottky diode to conduct the inductor current when the switch is off. The fractions of the oscil-
lator period that the switch is on (switch conducting) an off (diode conducting) are given by:

Switch $\mathrm{ON}=\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{HV}}\right) \times$ Total Period
Switch OFF $=\left(\frac{\mathrm{HV}-\mathrm{V}_{\text {OUT }}}{\mathrm{HV}}\right) \times$ Total Period
Note that for $\mathrm{HV}>2 \mathrm{~V}_{\text {OUT }}$ the switch is off longer than it i on, making the diode losses more significant than th switch. The worst case for the diode is during a shol circuit, when $V_{\text {OUT }}$ approaches zero and the diode con ducts the short-circuit current almost continuously.
Figure 2 shows the LT1160 used to synchronously drive pair of power MOSFETs in a step-down regulator applica tion, where the top MOSFET is the switch and the botton MOSFET replaces the Schottky diode. Since both conduc tion paths have low losses, this approach can result in ver high efficiency (90% to 95%) in most applications. Fo regulators under 10A, using low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ N-channe MOSFETs eliminates the need for heat sinks. R_{GS} holds th top MOSFET off when HV is applied before the 12 V supply
One fundamental difference in the operation of a step down regulator with synchronous switching is that it neve becomes discontinuous at light loads. The inductor cur rent doesn't stop ramping down when it reaches zero bu actually reverses polarity resulting in a constant rippl current independent of load. This does not cause a signifi cant efficiency loss (as might be expected) since th negative inductor current is returned to HV when th switch turns back on. However, I^{2} R losses will occu under these conditions due to the recirculating currents
The LT1160 performs the synchronous MOSFET drive in step-down switching regulator. A reference and PWM ar required to complete the regulator. Any voltage mode 0 current mode PWM controller may be used but the LT352 is particularly well-suited to high power, high efficienc applications such as the 10A circuit shown in Figure 4. I higher current regulators a small Schottky diode across th bottom MOSFET helps to reduce reverse-recovery switchin losses.

APPLICATIONS IMFORMATION

Figure 2. Adding Synchronous Switching to a Step-Down Switching Regulator

Motor Drive Applications

In applications where rotation is always in the same direction, a single LT1160 controlling a half-bridge can be used to drive a DC motor. One end of the motor may be connected either to supply or to ground as seen on Figure 3. A motor in this configuration is controlled by its inputs which give three alternatives: run, free running stop (coasting) and fast stop ("plugging" braking, with the motor shorted by one of the MOSFETs).
To drive a DC motor in both directions the LT1162 can be used to drive an H -bridge output stage. In this configuration the motor can be made to run clockwise, counterslockwise, stop rapidly ("plugging" braking) or free run (coast) to a stop. A very rapid stop may be achieved by eversing the current, though this requires more careful design to stop the motor dead. In practice a closed-loop control system with tachometric feedback is usually רecessary.

The motor speed in these examples can be controlled by switching the drivers with pulse width modulated square waves. This approach is particularly suitable for microcomputers/DSP control loops.

Figure 3. Driving a Supply Referenced Motor

LT1160/LT1162

TYPICAL APPLLCATIONS

Figure 4. 90\% Efficiency, 40V to 5V 10A Low Dropout Voltage Mode Switching Regulator

Figure 5. 90\% Efficiency, 40V to 5V 10A Low Dropout Current Mode Switching Regulator

TYPICAL APPLLCATIONS

Figure 6. 200W Class D, 10Hz to $\mathbf{1 k H z}$ Amplifier
Kool $M \mu$ is a registered trademark of Magnetics, Inc.

PART NUMBER	DESCRIPTION	COMMENTS
LT1158	Half-Bridge N-Channel Power MOSFET Driver	Single Input, Continuous Current Protection and Internal Charge Pump for DC Operation

features

- UL Recognized © $\mathbf{7}$

File E151738 to UL1577

- No Secondary Power Supply
- Drives Any Logic Level FET
- Low Input Current: 1mA Typ (LTC1177-5), 2.5mA Typ (LTC1177-12)
- Turns On in 1 ms Typ and Turns Off in 1 ms Typ
- $2500 \mathrm{~V}_{\text {RMS }}$ of Isolation Voltage
- Isolates Input from High Voltage Transients at Load
- Clean, Bounce-Free Switching
- Current Limit
- Small Outline Package

APPLICATIONS

- Solid State Relay
- Isolated Solenoid Driver
- Isolated Motor Driver
- Isolated Lamp Driver

DESCRIPTIOn

The LTC ${ }^{\circledR 1177-5 / L T C 1177-12 ~ a r e ~ i s o l a t e d ~ h i g h-s i d e ~}$ MOSFET drivers. When used with an external N-channel MOSFET, the LTC1177-5/LTC1177-12 form an isolated solid state switch for reliable bounce-free switching operation. The output does not require an auxiliary power supply to maintain an on-state condition.
Two lead frame capacitors are used to transfer energy from the input to drive the gate of the MOSFET and provide the necessary isolation. Unlike opto-isolated FET drivers, the input current for the LTC1177-5 is only 1 mA and 2.5 mA for LTC1177-12. It also does not have the aging problems endemic to opto-couplers.
Both devices provide $2500 V_{\text {RMS }}$ (1 minute) or $3000 V_{\text {RMS }}$ (1 second) of output-to-input isolation.

The LTC1177-5/LTC1177-12 are available in the 18-pin PDIP or 28-pin SO Wide package.

[^53]
TYPICAL APPLICATION

Isolated High-Side Switch

ABSOLUTE MAXIMUM RATINGS

nput Voltages
VIN (LTC1177-5) \qquad 6 V to (GND1 - 0.3 V)
13.2 V to (GND1 - 0.3V)
$V_{\text {IN }}$ (LTC1177-12) \qquad . V to (GND2 - 0.3 V)
12 V to (GND2-0.3V)
Sense (LTC1177-12) . 12 V to (GND2 - 0.3V)
Jutput Voltages \qquad

Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\qquad

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LTC1177CN-5 LTC1177CN-12 LTC1177IN-5 LTC1177IN-12		$\begin{aligned} & \text { LTC1177CSW-5 } \\ & \text { LTC1177CSW-12 } \\ & \text { LTC1177ISW-5 } \\ & \text { LTC1177ISW-12 } \end{aligned}$

;onsult factory for Military grade parts.
ELECTRICAL CHARACTERISTICS
$V_{I N}=5 V, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1177-5			UNITS
				MIN	TYP	MAX	
IOUT	Output Voltage (Refer to GND2)	$\begin{aligned} & C_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load }(\mathrm{N} \mathrm{Pkg}) \\ & \mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load, } \mathrm{V}_{\text {IN }}=4.75 \mathrm{~V}(\mathrm{~N} \mathrm{Pkg}) \\ & \mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load }(\mathrm{SW} \text { Pkg }) \\ & C_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load, } \mathrm{V}_{\text {IN }}=4.75 \mathrm{~V}(\mathrm{SW} \text { Pkg }) \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \\ & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	V V V V
IN	Input Current	$\mathrm{C}_{\text {IN }}=1000 \mathrm{pF}$	\bullet		1.0	1.5	mA
LIM	Current Limit	$\begin{aligned} & \mathrm{R}_{\text {SENSE }}=1 \Omega(\text { LTC1177C-5 }) \\ & \mathrm{R}_{\text {SENSE }}=1 \Omega(\text { LTC1177l-5 }) \end{aligned}$	\bullet	$\begin{aligned} & 400 \\ & 350 \end{aligned}$	$\begin{aligned} & 620 \\ & 620 \end{aligned}$	$\begin{aligned} & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ON	Turn On Time	$\begin{aligned} & C_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load (LTC1177C-5) } \\ & C_{\text {OUT }}=1000 \mathrm{pF}, \text { No Load (LTC1177I-5) } \end{aligned}$	\bullet		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	ms ms
OFF	Turn Off Time	$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}$, No Load	\bullet		1.0	1.8	ms
IISO	Isolation Voltage	$\begin{aligned} & 1 \text { Minute (Note 1) } \\ & 1 \text { Second } \end{aligned}$		$\begin{aligned} & 2500 \\ & 3000 \end{aligned}$			$V_{\text {RMS }}$ $V_{\text {RMS }}$
CM	Common-Mode Slew Rate	$\mathrm{V}_{\text {OUT }}<1.5, \mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}$				1000	V/ $/ \mathrm{s}$

ELECTRICAL CHARACTERISTICS $v_{m}=12, T_{n}=25^{\circ}$ unless ontiemise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1177-12			UNITS
				MIN	TYP	MAX	
$V_{\text {OUT }}$	Output Voltage (Refer to GND2)	$\mathrm{C}_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC1177C-12, N Pkg)	\bullet	4.65	5.2	8	V
		Cout $=1000 \mathrm{pF}$, No Load (LTC1177C-12, SW Pkg)	\bullet	5.00	5.7	8	V
		$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}, \mathrm{V}_{\text {IN }}=11.4 \mathrm{~V}$ (LTC1177C-12, N Pkg)	\bullet	4.40	4.9	7	V
		$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}, \mathrm{V}_{\text {IN }}=11.4 \mathrm{~V}$ (LTC1177C-12, SW Pkg)	\bullet	4.60	5.3	7	V
		$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}$, No Load (LTC11771-12, N Pkg)	\bullet	4.50	5.2	8	V
		$\mathrm{C}_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC1177l-12, SW Pkg)	\bullet	4.75	5.7	8	V
		$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}, \mathrm{V}_{\text {IN }}=11.4 \mathrm{~V}$ (LTC11771-12, SW Pkg)	\bullet	4.50	5.3	7	V
IN	Input Current	$\mathrm{C}_{\text {IN }}=1000 \mathrm{pF}$ (LTC1177C-12)	\bullet		2.5	3.0	mA
		$\mathrm{C}_{\mathrm{IN}}=1000 \mathrm{pF}$ (LTC1177I-12)	\bullet		2.5	3.4	mA
LIM	Current Limit	$\mathrm{R}_{\text {SENSE }}=1 \Omega$ (LTC1177C-12)	\bullet	400	620	800	mA
		$\mathrm{R}_{\text {SENSE }}=1 \Omega$ (LTC11771-12)	\bullet	350	620	900	mA
t_{ON}	Turn On Time	$\mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}$, No Load (LTC1177C-12)	\bullet		1.0	2.5	ms
		$\mathrm{C}_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC11771-12, N Pkg)			1.0		ms
		$C_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC1177l-12, SW Pkg)	\bullet		1.0	2.5	ms
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	$\mathrm{C}_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC1177C-12)	\bullet		1.0	1.2	ms
		$\mathrm{C}_{\text {Out }}=1000 \mathrm{pF}$, No Load (LTC11771-12, N Pkg)			1.0		ms
		$\mathrm{C}_{\text {OUt }}=1000 \mathrm{pF}$, No Load (LTC11771-12, SW Pkg)	\bullet		1.0	1.5	ms
$\mathrm{V}_{\text {ISO }}$	Isolation Voltage	1 Minute (Note 1)		2500			$\mathrm{V}_{\mathrm{RMS}}$
		1 Second		3000			$V_{\text {RMS }}$
TCM	Common-Mode Slew Rate	$\mathrm{V}_{\text {OUT }}<1.5 \mathrm{~V}, \mathrm{C}_{\text {OUT }}=1000 \mathrm{pF}$				1000	V/ $\mu \mathrm{s}$

The - denotes specifications which apply over the full operating temperature range.

Note 1: Value derived from 1 second test.

TYPICAL PERFORMAOCE CHARACTERISTICS

LTC1177-12
Turn Off Time vs Temperature

LTC1177-12
Turn On Time vs Temperature

1177-12 G02

LTC1177-12
Turn On Time to $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$ vs Output Capacitance

1177-12-603

ГYPICAL PGRFORMANCE CHARACTERISTICS

LTC1177-12
Turn-Off Time to $\mathrm{V}_{\text {0ut }}=1 \mathrm{~V}$ vs Output Capacitance

LTC1177-12
Input Current vs Temperature

1177-12 G07

LTC1177-12
Output Current vs Output Voltage

1177-12 G05
LTC1177-12
Output Voltage vs Input Voltage

1777-12G08

LTC1177-12
Output Voltage vs Temperature

1177-12 G06
LTC1177-12
Input Current vs Input Voltage

1177-12 609

ग \boldsymbol{I} functions

${ }^{\prime}{ }_{1 N}:$ Voltage Input, $5.25 \mathrm{~V} \geq \mathrm{V}_{\mathbb{I N}} \geq 4.75 \mathrm{~V}$ (LTC1177-5) and $2.6 \mathrm{~V} \geq \mathrm{V}_{\mathbb{I N}} \geq 11.4 \mathrm{~V}$ (LTC1177-12). Connect a $0.01 \mu \mathrm{~F}$ apacitor between $\mathrm{V}_{\text {IN }}$ and GND1 when the source impednce is high or the $\mathrm{V}_{\text {IN }}$ connection is long.
IUT: Output Voltage. The output voltage level is 8 V (typ) or SW package and 7.5V (typ) for N package (LTC1177i) with 5 V at V_{IN} pin; 5.7 V (typ) for SW package and 5.2 V typ) for N package (LTC1177-12) with 12 V at $\mathrm{V}_{\text {IN }}$ pin. This in is to drive the gate of the external N -channel MOSFET.

SENSE: Current Limit Sense Input. Connecting a 1Ω resistor from the Sense pin to GND2 would limit the current through the power MOSFET at around 620 mA (typ). ILIM $=$ $620 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$.
GND2: Floating Ground Connects to the source of the external N -channel MOSFET.

GND1: Input Ground. The ground connection of the input control signal.

BLOCK DIAGRAM

SWITCHING WAVEFORMS

TYPICAL APPLICATIONS

Solid State Relay

Isolated High-Side Switch with Fold-Back Current Limit

TYPICAL APPLICATIONS

Solid State Relay

Fully Floating $50^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$ Thermostat

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1145/LTC1146	Low Power Digital Isolator	Can Pass Digital Information Across Isolation Barrier
LT1158	Half-Bridge N-Channel Power MOSFET Driver	Can Be Used for Motor Speed Control
LTC1255	Dual 24V High-Side MOSFET Driver	User Set Current Limiting

12-Bit, $10 \mathrm{~mW}, 100 \mathrm{ksps}$ ADCs with $1 \mu \mathrm{~A}$ Shutdown

June 1995

feATURES

- Low Power Dissipation: 10mW Typical
- Sample Rate: 100ksps
- Samples Inputs Well Beyond Nyquist, 71dB S/(N + D) and 77dB THD Minimum at $f_{\mathrm{iN}}=100 \mathrm{kHz}$
- Single Supply 5 V or $\pm 5 \mathrm{~V}$ Operation
- ± 0.5 LSB Maximum INL and $\pm 0.75 \mathrm{LSB}$ Maximum DNL (A Grade)
- Power Shutdown to $1 \mu \mathrm{~A}$ in Sleep Mode
- 160 $\mu \mathrm{A}$ Nap Mode (LTC1277) with Instant Wake-Up
- $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Max) Internal Reference (A Grade) Can Be Overdriven
- Internal Synchronized Clock
- 0 V to 4.096 V or $\pm 2.048 \mathrm{~V}$ Input Ranges ($1 \mathrm{mV} / \mathrm{LSB}$)
- 24-Lead SO Wide Package

APPLICATIONS

- Battery-Powered Portable Systems
- High Speed Data Acquisition for PCs
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- Audio and Telecom Processing
- Spectrum Analysis

DESCRIPTIOn

The LTC ${ }^{\circledR} 1274 /$ LTC1277 are $8 \mu \mathrm{~s}$ sampling 12 -bit A/D converters which draw only 2 mA (typ) from a single 5V or $\pm 5 \mathrm{~V}$ supplies. These easy-to-use devices come complete with a $2 \mu \mathrm{~s}$ sample-and-hold, a precision reference and an internally trimmed clock. Unipolar and bipolar conversion modes add to the flexibility of the ADCs.

Two power-down modes are available in the LTC1277. In Nap mode, the LTC1277 draws only $160 \mu \mathrm{~A}$ and the instant wake-up from Nap mode allows the LTC1277 to be powered down even during brief inactive periods. In Sleep mode only $1 \mu \mathrm{~A}$ will be drawn. A REFRDY signal is used to show the ADC is ready to sample after waking up from Sleep mode. The LTC1274 also provides the Sleep mode and REFRDY signal.
The A/D converters convert OV to 4.096 V unipolar inputs from a single 5 V supply or $\pm 2.048 \mathrm{~V}$ bipolar inputs from $\pm 5 \mathrm{~V}$ supplies.
The LTC1274 has a single-ended input and a 12 -bit parallel data format. The LTC1277 offers a differential input and a 2 -byte read format. The bipolar mode is formatted as 2's complement for the LTC1274 and offset binary for the LTC1277.

TYPICAL APPLICATION

Single 5V Supply, 10mW, 100kHz, 12-Bit ADC

Effective Bits and Signal-to-(Noise + Distortion) vs Input Frequency

LTC1274/77 • TA02

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage (VDD) ... 7V
Negative Supply Voltage (VS)
Bipolar Operation Only \qquad -6V to GND
Total Supply Voltage (V_{DD} to $\mathrm{V}_{S S}$)
Bipolar Operation Only \qquad
Analog Input Voltage (Note 3)
Unipolar Operation \qquad -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Bipolar Operation............... $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage (Note 4)
Unipolar Operation \qquad -0.3 V to 12 V
Bipolar Operation.......................... $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to 12 V

Digital Output Voltage
Unipolar Operation -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Bipolar Operation -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation. 500 mW
Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec). $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

Consult factory for Military grade parts.

COMVERTER CHARACTERISTICS With Internal Reference (Notes 5, 6)

PARAMETER	CONDITIONS		LTC1274A/LTC1277A			LTC1274/LTC1277			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Resolution (No Missing Codes)		\bullet	12			12			Bits
Integral Linearity Error	(Note 7)	\bullet			± 0.5			± 1	LSB
Differential Linearity Error		\bullet			± 0.75			± 1	LSB
Offset Error	(Note 8)	\bullet			$\begin{aligned} & \pm 4 \\ & \pm 5 \end{aligned}$			$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	LSB LSB
Gain Error					± 15			± 20	LSB
Gain Error Tempco	$\mathrm{I}_{\text {OUT(REF) }}=0$	\bullet		± 5	± 30		± 10	± 45	ppm/ ${ }^{\circ} \mathrm{C}$

AחALOG InPUT

(Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277A LTC1274/LTC1277			UNITS
				MIN	TYP	MAX	
VIN	Analog Input Range (Note 10)	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \text { (Unipolar) } \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{D D} \leq 5.25 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq-2.45 \mathrm{~V} \text { (Bipolar) } \end{aligned}$	\bullet		$\begin{gathered} 0 \text { to } 4.096 \\ \pm 2.048 \end{gathered}$		V
IN	Analog Input Leakage Current	$\overline{C S}=$ High	\bullet			± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance	Between Conversions (Sample Mode) During Conversions (Hold Mode)			$\begin{gathered} 45 \\ 5 \end{gathered}$		pF pF

DYMAMIC ACCURACY

(Notes 5, 9)

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277A			LTC1274/LTC1277			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$	Signal-to-Noise Plus Distortion Ratio	50 kHz Input Signal 100kHz Input Signal	\bullet	71	$\begin{gathered} 73 \\ 72.5 \end{gathered}$		70	$\begin{gathered} \hline 73 \\ 72.5 \end{gathered}$		dB dB
THD	Total Harmonic Distortion Up to 5th Harmonic	50 kHz Input Signal 100kHz Input Signal	\bullet		$\begin{aligned} & \hline-84 \\ & -82 \end{aligned}$	-77		$\begin{aligned} & \hline-84 \\ & -82 \end{aligned}$	-76	dB dB
	Peak Harmonic or Spurious Noise	50 kHz Input Signal 100kHz Input Signal	-		$\begin{aligned} & \hline-84 \\ & -82 \end{aligned}$	-77		$\begin{aligned} & \hline-84 \\ & -82 \end{aligned}$	-76	dB dB
IMD	Intermodulation Distortion	$\begin{aligned} & \mathrm{f}_{\text {IN1 }}=96.95 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN2} 2}=97.68 \mathrm{kHz} \\ & \text { 2nd Order Terms } \\ & \text { 3rd Order Terms } \end{aligned}$			$\begin{aligned} & -78 \\ & -81 \end{aligned}$			$\begin{aligned} & -78 \\ & -81 \end{aligned}$		dB dB
	Full Power Bandwidth				2			2		MHz
	Full Linear Bandwidth $[S /(N+D) \geq 68 d B]$	*			400			400		kHz

InTERNAL RGFERERCE CHARACTGRISTICS (Note 5)

PARAMETER	CONDITIONS		LTC1274A/LTC1277A			LTC1274/LTC1277			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {REF }}$ Output Voltage	$\mathrm{I}_{\text {OUT }}=0$		2.400	2.420	2.440	2.400	2.420	2.440	V
$\mathrm{V}_{\text {REF }}$ Output Tempco	$\mathrm{I}_{\text {OUT }}=0$	\bullet		± 5	± 30		± 10	± 45	ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {REF }}$ Line Regulation	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \\ & -5.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq-4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \text { LSB } N \\ & \text { LSB } N \end{aligned}$
$\mathrm{V}_{\text {REF }}$ Load Regulation	$70 \mu \mathrm{~A} \geq \mathrm{I}_{\text {OUT }} \geq-5 \mathrm{~mA}$		2			2		LSB/mA	

DIGITAL InPUTS AnD DIGITAL OUTPUTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277A LTC1274/LTC1277			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=5.25 \mathrm{~V}$	-	2.4			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=4.75 \mathrm{~V}$	\bullet			0.8	V
IN	Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance				5		pF
V_{OH}	High Level Output Voltage, All Logic Outputs	$\begin{aligned} V_{D D} & =4.75 \mathrm{~V} \\ I_{0} & =-10 \mu \mathrm{~A} \\ I_{0} & =-200 \mu \mathrm{~A} \end{aligned}$	\bullet	4.0	4.7		V

DIGITAL INPUTS AND DIGITAL OUTPUTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		$\begin{aligned} & \text { LTC1274A/LTC1277A } \\ & \text { LTC1274/LTC1277 } \end{aligned}$			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage, All Logic Outputs	$\begin{aligned} V_{D D} & =4.75 \mathrm{~V} \\ I_{0} & =160 \mu \mathrm{~A} \\ I_{0} & =1.6 \mathrm{~mA} \end{aligned}$	-		$\begin{aligned} & 0.05 \\ & 0.10 \\ & \hline \end{aligned}$	0.4	V
I_{02}	High-Z Output Leakage D11 to D0/8	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \overline{\mathrm{CS}}$ High	\bullet			± 10	$\mu \mathrm{A}$
C_{02}	High-Z Output Capacitance D11 to D0/8	$\overline{C S}$ High (Note 10)	\bullet			15	pF
$\underline{I S O U R C E ~}^{\underline{S}}$	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$V_{\text {OUT }}=V_{\text {DD }}$			10		mA

POWER REQUIREMERTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277A LTC1274/LTC1277		UNITS
				MIN TYP	MAX	
$V_{\text {DD }}$	Positive Supply Voltage (Notes 11, 12)	Unipolar and Bipolar Mode		4.75	5.25	V
$\mathrm{V}_{S S}$	Negative Supply Voltage (Note 11)	Bipolar Mode Only		-2.45	-5.25	V
$1{ }_{\text {DD }}$	Positive Supply Current	$\begin{aligned} & \mathrm{f}_{\text {SAMPLE }}=100 \mathrm{ksps} \\ & \text { NAPP }=0 \mathrm{~V}(\mathrm{LTC1} 277 \text { Only }) \\ & \overline{\text { SLEEP }}=0 \mathrm{~V} \end{aligned}$	\bullet	$\begin{gathered} \hline 2 \\ 160 \\ 0.3 \end{gathered}$	$\begin{gathered} \hline 4 \\ 320 \\ 5 \end{gathered}$	$m A$ μA μA
ISS	Negative Supply Current	$\mathrm{f}_{\text {SAMPLE }}=100 \mathrm{ksps}$, Bipolar Mode Only $\overline{S L E E P}=0 \mathrm{~V}$	\bullet	$\begin{aligned} & 40 \\ & 0.3 \end{aligned}$	$\begin{gathered} 70 \\ 5 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
PDISS	Power Dissipation	$\begin{aligned} & \hline \text { fSAMPLE }=100 \mathrm{ksps} \\ & \text { NAP }=0 \mathrm{~V} \text { (LTC1277 Only) } \\ & \text { SLEEP }=0 \mathrm{~V} \text { (Unipolar/Bipolar) } \\ & \hline \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 10 \\ & 0.8 \end{aligned}$	$\begin{gathered} 20 \\ 1.8 \\ 25 / 50 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mu \mathrm{~W} \end{aligned}$

TImING CHARACTERISTICS (Note 5) See Figures 4 to 8.

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277ALTC1274/LTC1277			UNITS
				MIN	TYP	MaX	
$\mathrm{f}_{\text {SAMPLE(MAX) }}$	Maximum Sampling Frequency	(Note 11)	\bullet	100			ksps
tconv	Conversion Time		\bullet		6	8	${ }_{\mu}$
$\mathrm{taca}^{\text {a }}$	Acquisition Time		\bullet		0.35	2	Ms
t_{1}	$\overline{\text { CS }} \downarrow$ to $\overline{\mathrm{RD}} \downarrow$ Setup Time	(Note 10)	\bullet	0			ns
t_{2}	$\overline{\text { CS }} \downarrow$ to $\overline{\text { CONVST }} \downarrow$ Setup Time	(Note 10)	\bullet	30			ns
t_{3}	$\overline{\text { NAP }} \uparrow$ to $\overline{\text { CONVST }} \downarrow$ Wake-Up Time	(LTC1277 Only) (Note 11)			2		$\mu \mathrm{s}$
t_{4}	CONVST Low Time	(Note 13)	\bullet	40			ns
t5	$\overline{\text { CONVST } \downarrow ~ t o ~} \overline{\text { UUSY }} \downarrow$ Delay	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	\bullet		70	150	ns
t_{6}	Data Ready Before $\overline{\text { BUSY }}$ ¢	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	\bullet	20	65		ns
t_{7}	Delay Between Conversions	(Note 11)	\bullet		0.35	2	بS
t_{8}	Wait Time $\overline{\mathrm{R}} \downarrow$ \downarrow Atter $\overline{\overline{U U S Y}} \uparrow$	(Note 10)	\bullet	-20			ns
t_{9}	Data Access Time After $\overline{\mathrm{R} D} \downarrow$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (Note 10)	\bullet		50	$\begin{aligned} & \hline 110 \\ & 140 \end{aligned}$	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	-		65	$\begin{aligned} & \hline 125 \\ & 170 \end{aligned}$	ns ns
t_{10}	Bus Relinquish Time	$C_{L}=100 \mathrm{pF}$	\bullet	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	60	$\begin{gathered} 90 \\ 100 \\ \hline \end{gathered}$	ns

TIMING CHARACTGRISTICS

(Note 5) See Figures 4 to 8.

SYMBOL	PARAMETER	CONDITIONS		LTC1274A/LTC1277A LTC1274/LTC1277		UNITS
t_{11}	$\overline{\mathrm{RD}}$ Low Time	(Note 10)	\bullet	t_{9}		ns
t_{12}	CONVST High Time	(Notes 10, 13)	\bullet	40		ns
t_{13}	Aperture Delay of Sample-and-Hold			35		ns
t_{14}		$10 \mu \mathrm{~F}$ Bypass at $\mathrm{V}_{\text {REF }}$ Pin		4		ms
t_{15}	HBEN \uparrow to High Byte Data Valid	$C_{L}=100 \mathrm{pF}$ (LTC1277 Only)	\bullet	35	100	ns
t_{16}	HBEN \downarrow to Low Byte Data Valid	$C_{L}=100 \mathrm{pF}$ (LTC1277 Only)	\bullet	45	100	ns
t_{17}	HBEN \uparrow to $\overline{\mathrm{RD}} \downarrow$ Setup Time	(Note 10) (LTC1277 Only)	\bullet	10		ns
t_{18}	$\overline{\mathrm{R}} \uparrow$ to HBEN \downarrow Setup Time	(Note 10) (LTC1277 Only)	\bullet	10		ns

The denotes specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND and AGND wired together (unless otherwise noted).
Note 3: When these pin voltages are taken below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode) or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents greater than 60 mA below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode) or above $V_{D D}$ without latch-up.
Note 4: When these pin voltages are taken below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode), they will be clamped by internal diodes. This product can handle input currents greater than 60 mA below $\mathrm{V}_{S S}$ (ground for unipolar mode) without latch-up. These pins are not clamped to V_{DD}.
Note 5: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\left(\mathrm{~V}_{S S}=-5 \mathrm{~V}\right.$ for bipolar mode $)$, $\mathrm{f}_{\text {SAMPLE }}=100 \mathrm{ksps}$, $t_{r}=t_{f}=5 n s$ unless otherwise specified.
Note 6: Linearity, offset and full-scale specifications apply for unipolar and bipolar modes.
Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.

Note 8: For LTC1274, bipolar offset is the offset voltage measured from -0.5 LSB when the output code flickers between 000000000000 and 11111111 1111. For LTC1277, bipolar offset voltage is measured from -0.5LSB when the output code flickers between 011111111111 and 100000000000.

Note 9: The AC tests apply to bipolar mode only and the $S /(N+D)$ is $71 d B$ (typ) for unipolar mode at 100 kHz input frequency.
Note 10: Guaranteed by design, not subject to test.
Note 11: Recommended operating conditions.
Note 12: $A_{I N}$ must not exceed $V_{D D}$ or fall below $V_{S S}$ by more than 50 mV to specified accuracy.
Note 13: The falling CONVST edge starts a conversion. If CONVST returns high at a bit decision point during the conversion it can create small errors. For best performance ensure that CONVST returns high either within 400 ns after conversion start (i.e., before the first bit decision) or after BUSY rises (i.e., after bit test). See timing diagrams mode 1a and 1b (Figures 4,5).

PIn functions

LTC1274

$A_{\text {IN }}$ (Pin 1): Analog Input. OV to 4.096V (unipolar) or $\pm 2.048 \mathrm{~V}$ (bipolar).
$\mathbf{V}_{\text {REF }}$ (Pin 2): 2.42V Reference Output. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic). $\mathrm{V}_{\text {REF }}$ Can be overdriven positive with an external reference voltage.
AGND (Pin 3): Analog Ground.
D11 to D4 (Pins 4 to 11): Three-State Data Outputs. D11 is the Most Significant Bit.

DGND (Pin 12): Digital Ground.

D3 to DO (Pins 13 to 16): Three-State Data Outputs.
REFRDY (Pin 17): Reference Ready Signal. It goes HIGH when the reference has settled after SLEEP and the ADC is ready to sample.
SLEEP (Pin 18): Sleep Mode Input. Tie this pin to LOW to put the ADC in Sleep mode and save power (REFRDY will go LOW). The device will draw $1 \mu \mathrm{~A}$ in this mode.
CONVST (Pin 19): Conversion Start Signal. This active LOW signal starts a conversion on its falling edge (to recognize CONVST, CS has to be LOW.)

pIn functions

$\overline{\mathrm{RD}}$ (Pin 20): Read Input. This enables the output drivers when $\overline{C S}$ is LOW.
$\overline{\mathrm{CS}}$ (Pin 21): The Chip Select input must be low for the ADC to recognize $\overline{\text { CONVST }}$ and $\overline{\mathrm{RD}}$ inputs.
$\overline{\text { BUSY (Pin 21): The Busy output shows the converter }}$ status. It is LOW when a conversion is in progress. The rising Busy edge can be used to latch the conversion result.
$\mathrm{V}_{\text {SS }}$ (Pin 23): Negative 5V Supply. -5 V will select bipolar operation. Bypass to AGND with $0.1 \mu \mathrm{~F}$ ceramic. Tie this pin to analog ground to select unipolar operation.
$V_{D D}$ (Pin 24): Positive 5V Supply. Bypass to AGND (10 $\mu \mathrm{F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).

LTC1277

$A_{I N}{ }^{+}$(Pin 1): Positive Analog Input. $\left(A_{I N}{ }^{+}-A_{I N}{ }^{-}\right)=0 \mathrm{~V}$ to 4.096 V (unipolar) or $\pm 2.048 \mathrm{~V}$ (bipolar).
$\mathbf{A}_{\text {IN }^{-}}{ }^{-}$(Pin 2): Negative Analog Input. This pin needs to be free of noise during conversion. For single-ended inputs tie $\mathrm{A}_{\mathrm{IN}^{-}}$to analog ground.
VREF (Pin 3): 2.42V Reference Output. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic). $\mathrm{V}_{\text {REF }}$ can be overdriven positive with an external reference voltage.

AGND (Pin 4): Analog Ground.

REFRDY (Pin 5): Reference Ready Signal. It goes HIGH when the reference has settled after SLEEP and the ADC is ready to sample.
SLEEP (Pin 6): Sleep Mode Input. Tie this pin to LOW to put the ADC in Sleep mode and save power (REFRDY will go LOW). The device will draw $1 \mu \mathrm{~A}$ in this mode.
$\overline{\text { NAP }}$ (Pin 7): Nap Mode Input. Pulling this pin LOW will shut down all currents in the ADC except the reference. In this mode the ADC draws $160 \mu \mathrm{~A}$. Wake-up from Nap mode is about $2 \mu \mathrm{~s}$.

D7 to D4* (Pins 8 to 11): Three-State Data Outputs.
DGND (Pin 12): Digital Ground.
D3/11 to D0/8* (Pins 13 to 16): Three-State Data Outputs. D11 is the Most Significant Bit.
V Logic (Pin 17): 5V or 3V Digital Power Supply. This pin allows a 5 V or 3 V logic interface with the processor. All logic outputs (Data Bits, $\overline{B U S Y}$ and REFRDY) will swing between OV and V LOGIC.
HBEN (Pin 18): High Byte Enable Input. The four Most Significant Bits will appear at pins 13 to 16 when this pin is HIGH. The LTC1277 uses straight binary for unipolar mode and offset binary for bipolar mode.
CONVST (Pin 19): Conversion Start Signal. This active low signal starts a conversion on its falling edge (to recognize CONVST, $\overline{C S}$ has to be LOW).
$\overline{\mathbf{R D}}$ (Pin 20): Read Input. This enables the output drivers when $\overline{C S}$ is LOW.
$\overline{\mathbf{C S}}$ (Pin 21): The Chip Select input must be LOW for the ADC to recognize CONVST and $\overline{\mathrm{RD}}$ inputs.
$\overline{B U S Y}$ (Pin 22): The $\overline{B U S Y}$ output shows the converter status. It is LOW when a conversion is in progress.
VSS (Pin 23): -5 V negative supply will select bipolar operation. Bypass to AGND with a $0.1 \mu \mathrm{~F}$ ceramic. Tie this pin to analog ground to select unipolar operation.
$\mathbf{V}_{\text {DD }}$ (Pin 24): 5V Positive Supply. Bypass to AGND (10 $\mu \mathrm{F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).
*The LTC1277 bipolar mode is in offset binary.
Table 1. LTC1277 Two-Byte Read Data Bus Status

DATA								
OUTPUTS	D7	D6	D5	D4	D3/11	D2/10	D1/9	D0/8
LOW Byte	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
HIGH Byte	LOW	LOW	LOW	LOW	DB11	DB10	DB9	DB8

BLOCK DIAGRAms

LTC1274

LTC1277

TIMING DIAGRAM

APPLICATIONS INFORMATION

Driving the Analog Input

The analog input of the LTC1274/LTC1277 is easy to drive. It draws only one small current spike while charging the sample-and-hold capacitor at the end of conversion. During conversion the analog input draws only a small leakage current. The only requirement is that the amplifier driving the analog input must settle after the small current spike before the next conversion starts. Any op amp that settles in 2μ s to small current transients will allow maximum speed operation. If slower op amps are used, more settling time can be provided by increasing the time between conversions. Suitable devices capable of driving the ADCS' $A_{\text {IN }}$ input include the $\mathrm{LT}^{\circledR} 1006$, LT1007, LT1220, LT1223 and LT1224 op amps.

LTC1277 $\mathrm{A}_{\mathrm{IN}^{+}}{ }^{\left(A_{I N}\right.}{ }^{-}$Input Settling

The input capacitor for the LTC1277 is switched onto the $\mathrm{A}_{\text {IN }}{ }^{+}$input during the sample phase. The voltage on the $\mathrm{A}_{1 \mathrm{~N}}{ }^{+}$input must settle completely within the sample period. At the end of the sample phase the input capacitor switches to the $A_{I N}{ }^{-}$input and the conversion starts. During the conversion, the $\mathrm{A}_{1 \mathrm{~N}}{ }^{+}$input voltage is effectively "held" by the sample-and-hold and will not affect
the conversion result. It is critical that the $A_{I N}{ }^{-}$input voltage be free of noise and settles completely during the conversion.

Internal Reference

The ADCs have an on-chip, temperature compensated, curvature corrected, bandgap reference which is factory trimmed to 2.42V. It is internally connected to the DAC and is available at pin 2 (LTC1274) or pin 3 (LTC1277) to provide up to 1 mA current to an external load.
For minimum code transition noise the reference output should be decoupled with a capacitor to filter wideband noise from the reference ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic).
The $V_{\text {REF }}$ pin can be driven with a DAC or other means to provide input span adjustment. The $\mathrm{V}_{\text {REF }}$ pin must be driven to at least 2.45 V to prevent conflict with the internal reference. The reference should be driven to no more than 3 V to keep the input span within the 5 V supply in unipolar mode. In bipolar mode the reference should be driven to no more than 5 V , the positive supply voltage of the chip.

APPLICATIONS INFORMATION

Figure 1 shows an LT1006 op amp driving the reference pin. In unipolar mode, the reference can be driven up to 2.95 V at which point it will provide a OV to 5 V input span. For the bipolar mode, the reference can be driven up to 5 V at which point it will provide a $\pm 4.23 \mathrm{~V}$ input span. Figure 2 shows a typical reference, the LT1019A-2.5 connected to the LTC1274. This will provide an improved drift (equal to the maximum $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of the LT1019A-2.5) and a $\pm 2.115 \mathrm{~V}$ (bipolar) or 4.231 V (unipolar) full scale.

Figure 1. Driving the $V_{\text {REF }}$ with the LT1006 Op Amp

BOARD LAYOUT AND BYPASSING

Wire wrap boards are not recommended for high resolution or high speed A / D converters. To obtain the best performance from the LTC1274/LTC1277, a printed circuit board is required. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC. The analog input should be screened by AGND.
High quality tantalum and ceramic bypass capacitors should be used at the $V_{D D}$ and $V_{\text {REF }}$ pins as shown in Figure 3. For bipolar mode, a $0.1 \mu \mathrm{~F}$ ceramic provides adequate bypassing for the V_{SS} pin. The capacitors must be located as close to the pins as possible. The traces connecting the pins and bypass capacitors must be kept short and should be made as wide as possible.
Input signal leads to $\mathrm{A}_{\text {IN }}$ and signal return leads from AGND (pin 3 for LTC1274, pin 4 for LTC1277) should be kept as short as possible to minimize input noise coupling. In applications where this is not possible a shielded cable between source and ADC is recommended.

Also, since any potential difference in grounds between the signal source and the ADC appears as an error voltage in series with the input signal, attention should be paid to reducing the ground circuit impedances as much as possible.

Figure 2. Supplying a 2.5V Reference Voltage to the LTC1274 with the LT1019A-2.5

Figure 3. LTC1274 Typical Circuit

APPLICATIONS INFORMATION

A single point analog ground separate from the logic system ground should be established with an analog ground plane at AGND or as close as possible to the ADC. Pin 12 (DGND) and all other analog grounds should be connected to this single analog ground point. No other digital grounds should be connected to this analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible. In applications where the ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in conversion results. These errors are due to feedthrough from the microprocessor to the successive approximation cornparator. The problem can be eliminated by forcing the microprocessor into a Wait state during conversion or by using three-state buffers to isolate the $A D C$ data bus.

DIGITAL INTERFACE

The ADCs are designed to interface with microprocessors as a memory mapped device. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ control inputs are common to all peripheral memory interfacing. A separate CONVST is used to initiate a conversion. Figures 4a to 4c are the input/output characteristics of the ADCs.

Figure 4a. LTC1274/LTC1277 Unipolar Transfer Characteristics

Figure 4b. LTC1274 Bipolar Transfer Characteristics (2's Complement)

Figure 4c. LTC1277 Bipolar Transier Characteristics (Offset Binary)

Unipolar Offset and Full-Scale Error Adjustments

In applications where absolute accuracy is important, then offset and full-scale errors can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 5 a shows the extra components required for full-scale error adjustment. If both offset and full-scale adjustments are needed, the circuit in Figure 5b can be used. For zero offset error apply 0.50 mV (i.e., 0.5 LSB) at the input and adjust the offset trim until the LTC1274/LTC1277 output code

APPLICATIONS INFORMATION

flickers between 000000000000 and 000000000001. For zero full-scale error apply an analog input of 4.0945 V (i.e., FS - 1.5LSB or last code transition) at the input and adjust R5 until the ADC's output code flickers between 111111111110 and 111111111111.

Figure 5a. Full-Scale Adjust Circuit

Figure 5b. LTC1274/LTC1277 Unipolar Offset and Full-Scale Adjust Circuit

LTC1274 Bipolar Offset and Full-Scale Error Adjustments

Bipolar offset and full-scale errors for LTC1274 are adjusted in a similar fashion to the unipolar case. Again, bipolar offset must be adjusted before full-scale error. Bipolar offset error adjustment is achieved by trimming the offset of the op amp driving the analog input of the

Figure 5c. LTC1274/LTC1277 Bipolar Offset and Full-Scale Adjust Circuit

LTC1274 while the input voltage is 0.5 LSB below ground. This is done by applying an input voltage of -0.50 mV $(-0.5 \mathrm{LSB})$ to the input in Figure 5 c and adjusting the R8 until the ADC output code flickers between 00000000 0000 and 111111111111 . For full-scale adjustment, an input voltage of 2.0465 V ($\mathrm{FS}-1.5 \mathrm{LSBs}$) is applied to the input and R5 is adjusted until the output code flickers between 011111111110 and 011111111111.

LTC1277 Bipolar Offset and Full-Scale Error Adjustments

Bipolar offset and full-scale errors are adjusted in a similar fashion to the unipolar case. Again, bipolar offset must be adjusted before full-scale error. Bipolar offset error adjustment is achieved by trimming the offset of the op amp driving the analog input of the LTC1277 while the input voltage is 0.5 LSB below ground. This is done by applying an input voltage of $-0.50 \mathrm{mV}(-0.5 \mathrm{LSB})$ to the input in Figure 5 c and adjusting the R8 until the ADC output code flickers between 011111111111 and 100000000000. For full-scale adjustment, an input voltage of 2.0465 V (FS -1.5 LSBs) is applied to the input and R5 is adjusted until the output code flickers between the input 11111111 1110 and 111111111111.

APPLICATIONS Information

Power Shutdown

The LTC1274/LTC1277 provide shutdown features that will save power when the ADC is in inactive periods. Both ADCs have a Sleep mode. To power down the ADCs, SLEEP (pin 18 in LTC1274 or pin 6 in LTC1277) needs to be tied low. When in Sleep mode, the LTC1274/LTC1277 will not start a conversion even though the CONVST goes low. The parts are drawing $1 \mu \mathrm{~A}$. After releasing from the Sleep mode, the ADCs need 4ms ($10 \mu \mathrm{~F}$ bypass capacitor on $V_{\text {REF }}$ pin) to wake up and a REFRDY signal will go to high to indicate the ADC is ready to do conversions.
For the LTC1277, it has an additional Nap mode. When pin 7 ($\overline{\text { NAP }}$ pin the LTC1277) is tied low, all the power is off except the internal reference which is still active and provides 2.42V output voltage to the other circuitry. In this mode the ADC draws 0.8 mW instead of 10 mW (for minimum power, the logic inputs must be within 600 mV from the supply rails). The wake-up time from the power shutdown to active state is $2 \mu \mathrm{~s}$.

Timing and Control

Conversion start and data read operations are controlled by three digital inputs in the LTC1274: $\overline{\mathrm{CS}}, \overline{\mathrm{CONVST}}$ and $\overline{\mathrm{RD}}$. For the LTC1277 there are four digital inputs: $\overline{\mathrm{CS}}$, CONVST, $\overline{R D}$ and HBEN. A logic "0" for CONVST will start a conversion after the ADC has been selected (i.e., $\overline{C S}$ is low). Once initiated, it cannot be restarted until the conversion is complete. Converter status is indicated by the BUSY output and this is LOW while conversion is in progress. The High Byte Enable input (HBEN) in the LTC1277 is to multiplex the 12 bits of conversion data onto the lower D7 to D0/8 outputs.

Figures 6 through 10 show several different modes of operation. In modes 1 a and 1 b (Figures 6 and 7) $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both tied low. The falling edge of CONVST starts the conversion. The data outputs are always enabled and data can be latched with the $\overline{B U S Y}$ rising edge. Mode 1a shows operation with a narrow logic low CONVST pulse. Mode 1b shows a narrow logic high CONVST pulse.
In mode 2 (Figure 8) $\overline{\mathrm{CS}}$ is tied low. The falling edge of CONVST signal again starts the conversion. Data outputs are in three-state until read by the MPU with the $\overline{\mathrm{RD}}$ signal. Mode 2 can be used for operation with a shared MPU databus.
In slow memory and ROM modes (Figures 9 and 10) $\overline{\mathrm{CS}}$ is tied low and CONVST and $\overline{\mathrm{RD}}$ are tied together. The MPU starts the conversion and reads the output with the $\overline{\mathrm{RD}}$ signal. Conversions are started by the MPU or DSP (no external sample clock).
In slow memory mode the processor applies a logic low to $\overline{\mathrm{RD}}(=\overline{\mathrm{CONVST}})$, starting the conversion. $\overline{\mathrm{BUSY}}$ goes low, forcing the processor into a Wait state. The previous conversion result appears on the data outputs. When the conversion is complete, the new conversion results appear on the data outputs; $\overline{\mathrm{BUSY}}$ goes high releasing the processor; the processor applies a logic high to $\overline{\mathrm{RD}}$ ($=\overline{\text { CONVST }}$) and reads the new conversion data.
In ROM mode, the processor applies a logic low to $\overline{\mathrm{RD}}$ (= CONVST), starting a conversion and reading the previous conversion result. After the conversion is complete, the processor can read the new result and initiate another conversion.

APPLICATIONS INFORMATION

Figure 6．Mode 1a．$\overline{\text { CONVST }}$ Starts a Conversion．Data Outputs Always Enabled （CONVST $=$ を を）

Figure 7．Mode 1b．CONVST Starts a Conversion．Data Outputs Always Enabled
（ $\overline{\text { CONVST }}=\sqrt{2}$ 厄 $)$

APPLICATIONS INFORMATION

Figure 8. Mode 2. $\overline{\text { CONVST }}$ Starts a Conversion. Data is Read by $\overline{\mathrm{RD}}$

Figure 9. Slow Memory Mode

LTC1274/LTC1277

APPLICATIONS InFORMATION

Figure 10. ROM Mode Timing

feLATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1272	12-Bit, 3 $\mu \mathrm{s}$, 250kHz Sampling A/D Converter	Single 5V, Sampling 7572 Upgrade
LTC1273/75/76	12-Bit, 300ksps Sampling A/D Converters with Reference	Complete with Clock, Reference
LTC1278	12-Bit, 500ksps Sampling A/D Converter with Shutdown	70dB SINAD at Nyquist, Low Power
LTC1279	12-Bit, 600ksps Sampling A/D Converter with Shutdown	70dB SINAD at Nyquist, Low Power
LTC1282	12-Bit, 140ksps Sampling A/D Converter with Reference	3 V or $\pm 3 V$ ADC with Reference, Clock
LTC1409	12-Bit, 800ksps Sampling A/D Converter with Shutdown	Fast, Complete Low Power ADC
LTC1410	12-Bit, 1.25Msps Sampling A/D Converter with Shutdown	Fast, Complete Wideband ADC

feATURES

- 5 V at 200 mA from Two Cells
- $10 \mu \mathrm{~A}$ Quiescent Current in Shutdown
- Operates with $\mathrm{V}_{\text {IN }}$ as Low as 1.5 V
- Low-Battery Detector Active in Shutdown
- Low Switch $\mathrm{V}_{\text {CESAT: }} 500 \mathrm{mV}$ at 1 A Typical
- $120 \mu \mathrm{~A}$ Quiescent Current in Active Mode
- Frequency Up to 300 kHz
- Programmable Peak Current with One Resistor
- 8-Lead SO Package

APPLICATIONS

- 2-, 3-, or 4-Cell to 5 V or 3.3 V Step-Up
- Portable Instruments
- Bar-Code Scanners
- Palmtop Computers
- Diagnostic Medical Instrumentation
- Personal Data Communicators/Computers

DESCRIPTION

The LT ${ }^{\otimes} 1304$ is a micropower step-up $D C / D C$ converter ideal for use in small, low voltage battery-operated systems. The devices operate from a wide input supply range of 1.6 V to 8 V . The LT1304-3.3 and LT1304-5 generate regulated outputs of 3.3 V and 5 V and the adjustable LT1304 can deliver output voltages up to 25V. Quiescent current, $120 \mu \mathrm{~A}$ in active mode, decreases to just $10 \mu \mathrm{~A}$ in shutdown, with the low-battery detector still active. Peak switch current, internally set at 1 A , can be reduced by adding a single resistor from the $\mathrm{I}_{\text {LIM }}$ pin to ground. The high speed operation of the LT1304 allows the use of small, surface-mountable inductors and capacitors. The LT1304 is available in an 8 -lead SO package.

[^54]
TYPICAL APPLICATION

2-Cell to 5V Step-Up Converter

Efficiency

LT1304/LT1304-3.3/LT1304-5

ABSOLUTE MAXImUM RATINGS

$V_{\text {IN }}$ Voltage 8 V
SW Voltage ... -0.4 V to 25 V
FB Voltage (LT1304) $V_{I N}+0.3 \mathrm{~V}$
Sense Voltage (LT1304-3.3/LT1304-5) 8 V
LIM Voltage 5 V
SHDN Voltage .. 6 V
LBI Voltage $V_{1 N}$
LBO Voltage 8 V
Maximum Power Dissipation 500 mW
Junction Temperature $125^{\circ} \mathrm{C}$
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................ $300^{\circ} \mathrm{C}$

PACKAGG/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
	LT1304CS8 LT1304CS8-3.3 LT1304CS8-5
S8 PACKAGE	S8 PART MARKING
* FIXED OUTPUT VERSION	1304
$\mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{CW}$	13043
	13045

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARFCTERISTICS $v_{I N}=2 V, v_{\text {SHDN }}=2 V$ unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage		\bullet		1.5	1.65	V
Operating Voltage Range		\bullet			8	V
Quiescent Current	$\mathrm{V}_{\overline{\text { SHDN }}}=2 \mathrm{~V}$, Not Switching	\bullet		120	200	$\mu \mathrm{A}$
Quiescent Current in Shutdown	$\begin{aligned} & V_{\overline{\text { SHDN }}}=0 \mathrm{~V}, V_{I N}=2 \mathrm{~V} \\ & V_{\overline{S H D N}}=0 \mathrm{~V}, \mathrm{~V}_{1 N}=5 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} \hline 7 \\ 27 \\ \hline \end{gathered}$	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Comparator Trip Point	LT1304	\bullet	1.22	1.24	1.26	V
FB Pin Bias Current	LT1304	\bullet		10	25	nA
Sense Pin Leakage in Shutdown	$V_{\overline{\text { SHDN }}}=0 \mathrm{~V}$, Fixed Output Versions	\bullet		0.002	1	$\mu \mathrm{A}$
Output Sense Voltage	$\begin{aligned} & \text { LT1304-3.3 } \\ & \text { LT1304-5 } \end{aligned}$	\bullet	$\begin{aligned} & 3.17 \\ & 4.80 \end{aligned}$	$\begin{gathered} 3.3 \\ 5.05 \end{gathered}$	$\begin{aligned} & 3.43 \\ & 5.25 \end{aligned}$	V
Line Regulation	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 8 \mathrm{~V}$	\bullet		0.04	0.15	\%/V
LBI Input Threshold	Falling Edge	\bullet	1.10	1.17	1.24	V
LBI Bias Current		\bullet		6	20	nA
LBI Input Hysteresis		\bullet		35	65	mV
LBO Output Voltage Low	$\mathrm{I}_{\text {SINK }}=500 \mu \mathrm{~A}$	\bullet		0.2	0.4	V
LBO Output Leakage Current	$\mathrm{LBI}=1.5 \mathrm{~V}, \mathrm{LBO}=5 \mathrm{~V}$	\bullet		0.01	0.1	$\mu \mathrm{A}$
SHDN Input Voltage High SHDN Input Voltage Low		\bullet	1.4		0.4	V
$\overline{\text { SHDN }}$ Pin Bias Current	$\begin{aligned} & V_{\overline{S H D N}}=5 \mathrm{~V} \\ & V \overline{S H D N}=0 \mathrm{~V} \end{aligned}$	\bullet	-5	$\begin{gathered} 5 \\ -2 \end{gathered}$	8	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Switch Off Time		\bullet	1	1.5	2	$\mu \mathrm{s}$
Switch On Time	Current Limit Not Asserted	\bullet	4	6	8	$\mu \mathrm{S}$
Maximum Duty Cycle	Current Limit Not Asserted	\bullet	76	80	88	\%
Peak Switch Current	Lim Pin Open, $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ 20 k from LIIM 2 to GND		0.8	$\begin{gathered} 1 \\ 500 \end{gathered}$	-. 1.2	A mA
Switch Saturation Voltage	$\begin{aligned} & I_{\mathrm{SW}}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{SW}}=700 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.50 \\ & 0.26 \end{aligned}$	0.35	V
Switch Leakage	Switch Off, V $\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$	\bullet		0.01	7	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS $v_{\text {IN }}=2 v, v_{S H O N}=2 v$ unless otherwise noted.

The - denotes specifications which apply over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ operating temperature range.

PIn functions

LBI (Pin 1): Low-Battery Detector Input. When voltage on this pin is less than 1.17 V , detector output is low.
LBO (Pin 2): Low-Battery Detector Output. Open collector can sink up to $500 \mu \mathrm{~A}$. Low-battery detector remains active when device is shut down.
$\mathbf{V}_{\mathbb{N}}$ (Pin 3): Input Supply. Must be bypassed with a large value capacitor close ($<0.2^{\prime \prime}$) to the pin. See required layout in the Typical Applications.

SW (Pin 4): Collector of Power NPN. Keep copper traces on this pin short and direct to minimize RFI.

GND (Pin 5): Device Ground. Must be low impedance; solder directly to ground plane.
$l_{\text {LIM (Pin 6): Current Limit Set Pin. Float for } 1 \text { A peak switch }}$ current; a resistor to ground will lower peak current.
$\overline{\text { SHDN }}$ (Pin 7): Shutdown Input. When low, switching regulator is turned off. The low-battery detector remains active.
FB/SENSE (Pin 8): On the LT1304 (adjustable) this pin goes to the comparator input. On the fixed-output versions, the pin connects to the resistor divider which sets output voltage. The divider is disconnected from the pin during shutdown.

BLOCK DIAGRAMS

LT1304 Block Diagram

LT1304-3.3/LT1304-5 Block Diagram

TYPICAL APPLICATIONS

Ultra-Low I_{Q} 2-Cell Boost Converter

4-Cell to 5 V Converter

Required Layout for Specified Performance. Input Capacitor Must be Placed as Shown

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1073	Single Cell, Micropower DC/DC Converter	$95 \mu \mathrm{~A}$ Quiescent Current, 1V Minimum Input
LT1121	150mA Low Dropout Regulator	$45 \mu \mathrm{~A}$ Quiescent Current, 400mV Dropout at Full Load
LTC $^{\top} 1174$	Micropower Step-Down DC/DC Converter	Over 90% Efficiency at $5 \mathrm{~V} / 425 \mathrm{~mA}$ Output
LT1301	Fixed 5V/12V Micropower DC/DC Converter	$12 \mathrm{~V} / 200 \mathrm{~mA}$ from $5 \mathrm{~V}, 120 \mu \mathrm{~A} \mathrm{I}, 88 \%$ Efficiency
LT1302	High Output Current Micropower DC/DC Converter	$5 \mathrm{~V} / 600 \mathrm{~mA}$ from $2 \mathrm{~V}, 2 \mathrm{~A}$ Internal Switch, $200 \mu \mathrm{~A} \mathrm{I}_{Q}$

FEATURES

1 60mA Output Current at 12 V from 3V or 5V Supply

- Shutdown to $9 \mu \mathrm{~A}$
- VPP VALID Comparator

I Up to 85\% Efficiency
I Switching Frequency: 650kHz (Typical)
I Quiescent Current: $500 \mu \mathrm{~A}$
I Low VCESAT Switch: 300 mV at 0.5A (Typical)
I Soft Start Reduces Supply Current Transients
I Uses Low Value, Small Size,
Surface Mount Inductors

- Available in 8-Lead S0 Package

IPPLICATIONS

I Flash Memory VPP Generators
I Type II and III PCMCIA Card DC/DC Converters
I 3 V to $12 \mathrm{~V}, 5 \mathrm{~V}$ to 12 V Converters
I Portable Computers and Instruments

- Cellular Telephones

I DC/DC Converter Module Replacements

DESCRIPTIO

The LT ${ }^{\circledR} 1309$ is a 500 kHz micropower DC/DC converter for Flash Memory. The regulator features Burst Mode ${ }^{\text {TM }}$ operation with a $0.5 \mathrm{~A}, 300 \mathrm{mV}$ switch, enabling 85% efficiency at the fixed 12 V output. High frequency operation permits the use of small value, and therefore small size, surface mount inductors and capacitors. The LT1309 comes in an 8-lead S0 package allowing extremely compact PC board layouts. These features make the device attractive for PCMCIA cards, cellular phones and other applications where PC board space is limited.
Quiescent current is $650 \mu \mathrm{~A}$ decreasing to $9 \mu \mathrm{~A}$ when the part shuts down. The device includes a Soft Start feature which limits supply current transients during turn-on.
The LT1309 contains a VPP VALID comparator with a logic output that goes low when the output voltage is ready to program 12V Flash Memory. This comparator simplifies the interface to external control logic.
$\overline{\boldsymbol{\beta}}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

FYPICAL APPLICATION

12V, 60mA Flash Memory Programming Supply

LT1309 - TAO2

ABSOLUTE MAXIMUM RATINGS

$V_{\text {CC }}$ Voltage .. 20 V
$V_{\text {SW }}$ Voltage
$V_{\text {SENSE }}$ Voltage 20 V
V ON/DFF Voltage ... 7 V
$V_{\text {SEL }}$ Voltage 7 V
LIM Voltage 7 V
Maximum Power Dissipation 500 mW Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON} / \overline{0 F F}}=3 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{0}	Quiescent Current	$V_{\text {SENSE }}=12 \mathrm{~V}$			650	900	$\mu \mathrm{A}$
	Quiescent Current, Shutdown	$V_{\text {ON/OFF }}=0.2 \mathrm{~V}$			9	15	$\mu \mathrm{A}$
	Input Voltage Range			2		6	V
	Output Sense Voltage		-	11.5	12	12.6	V
	Output Referred Comparator Hysteresis			35			mV
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency	Current Limit Not Asserted		400	500	700	kHz
DC	Maximum Duty Cycle		\bullet	80	85	92	\%
t_{ON}	Switch On Time			1.7			$\mu \mathrm{s}$
	Reference Line Regulation	$2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<6 \mathrm{~V}$			0.06	0.15	\%/V
$\mathrm{V}_{\text {CESAT }}$	Switch Saturation Voltage	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$			230	350	mV
	Switch Leakage Current	$\mathrm{V}_{\text {SW }}=12 \mathrm{~V}$, Switch 0ff			0.1	10	$\mu \mathrm{A}$
	Switch Current Limit	$V_{I N}=5 \mathrm{~V}$, Soft Start Floating $V_{I N}=3 V$, Soft Start Floating		$\begin{aligned} & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 600 \\ & 650 \end{aligned}$	$\begin{aligned} & 900 \\ & 950 \end{aligned}$	mA
	Soft Start Current	Soft Start Grounded			80	120	$\mu \mathrm{A}$
	ON/ $\overline{\text { PFF }}$ Input Voltage Low					0.8	V
	ON/ $\overline{\text { FFF }}$ Input Voltage High			1.6			V
	ON/ $\overline{\text { FFF }}$ Bias Current	$V_{\text {ON/ } / \overline{F F}}=5 \mathrm{~V}$ $V_{0 N / \overline{F F}}=3 \mathrm{~V}$ $V_{0 N / \overline{F F}}=0 \mathrm{~V}$			$\begin{array}{r} 16.0 \\ 8.0 \\ 0.1 \\ \hline \end{array}$	$\begin{array}{r} 24.0 \\ 14.0 \\ 1.0 \end{array}$	μA μA μA
	Sense Pin Input Current	$V_{\text {ON/OFF }}=0.2 \mathrm{~V}$			$\begin{array}{r} 50.0 \\ 0.1 \\ \hline \end{array}$	$\begin{gathered} 90 \\ 1 \\ \hline \end{gathered}$	μA μA
	$\overline{\text { VPP VALID }}$ Threshold	$\mathrm{V}_{\text {SENSE }}$ Rising (High to Low Transition)	\bullet	11.4		12	V
	$\overline{\text { VPP VALID }}$ Output Voltage Low	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$			0.13	0.3	V
	VPP VALID Output Voltage High	$\mathrm{I}_{\text {SOURCE }}=2.5 \mu \mathrm{~A}$		4	4.5		V

The denotes specifications which apply over the full operating
temperature range.

TYPICAL PGRFORMANCE CHARACTGRISTICS

LT1309•TPCO1
Supply Current In Shutdown

LT1309•TPC02
Maximum Duty Cycle

LT1309•TPC03
LT1309•TPC04

Start-Up Waveforms, $\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$

Load Transient Response, $\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}$

PIn fUnCTIONS

SOFT START (Pin 1): A $0.1 \mu \mathrm{~F} / 1 \mathrm{M} \Omega$ parallel RC from this pin to GND provides a Soft Start function upon device turn-on. Initially about $80 \mu \mathrm{~A}$ will flow from the pin into the capacitor. When the voltage at the pin reaches approximately 0.4 V , current ceases flowing out of the pin.
$V_{\text {cc }}$ (Pin 2): Input Supply. Both pins should be tied together. At least $1 \mu \mathrm{~F}$ input bypass capacitance is required. More capacitance reduces ringing on the supply line.
PGND (Pin 3): Power Ground. Connect to ground plane.
$\mathbf{V}_{\text {sw }}$ (Pin 4): Collector of Power Switch. High dV/dt present on this pin. To minimize radiated noise keep layout short and direct.

GND (Pin 5): Signal Ground. Connect to ground plane.
VPP VALID (Pin 6): This pin provides a logic signal indicating that output voltage is greater than 11.4 V . Active low with internal 200k pull-up resistor.
SENSE (Pin 7): Output Sense Pin. This pin connects to a resistive divider that sets the output voltage. In shutdown, the resistor string is disconnected and current into this pin reduces to $<1 \mu \mathrm{~A}$.
ON/ $\overline{0 F F}$ (Pin 8): Shutdown Control. When pulled below 1.5 V , this pin disables the LT1309 and reduces supply current to $9 \mu \mathrm{~A}$. All circuitry is disabled in shutdown. The part is enabled when $0 \mathrm{~N} / \mathrm{OFF}$ is greater than 1.5 V .

BLOCK DIAGRAM

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1106	Micropower Step-Up DC/DC Converter, 12V at 60mA	Thin TSSOP Package for Type I PCMCIA Card
LT1109-12	Micropower Step-Up DC/DC Converter, 12V at 60 mA	Flash Memory VPP Generator, Adjustable Also
LT1109A-12	Micropower Step-Up DC/DC Converter, 12V at 120mA	VPP Generator, Adjustable Also
LTC ${ }^{\oplus} 1262$	Inductorless Flash Memory Programming Supply, 12V at 30mA	Switched Capacitor Converter, No Inductor
LT1303	Micropower High Efficiency DC/DC Converter with Low-Battery Detector	Adjustable and Fixed 5V, Iout up to 200mA

feATURES

- Single Chip 5V LocalTalk Port

- Low Power: Icc = 1mA Typ
- Shutdown Pin Reduces I Icc to 1μ A Typ
- Digitally Selectable Low Slew Rate Mode for Reduced EMI Emmisions
- ESD Protection to $\pm 10 \mathrm{KV}$ on Receiver Inputs and Driver Outputs
- Drivers Maintain High Impedance in Three-State or with Power Off
- Thermal Shutdown Protection
- Drivers Are Short-Circuit Protected

APPLICATIONS

- LocalTalk Peripherals
- Notebook and Palmtop Computers
- Battery-Powered Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1324$ is a single 5 V line transceiver designed to operate on Apple ${ }^{\circledR}$ LocalTalk networks. The driver features a digitally selectable low slew rate mode for reduced EMI emissions. The chip draws only 1 mA quiescent current when active and $1 \mu \mathrm{~A}$ in shutdown. The differential driver outputs three-state when disabled, during shutdown or when the power is off. The driver outputs will maintain high impedance even with output common-mode voltages beyond the power supply rails. Both the driver outputs and receiver inputs are protected against ESD damage to $\pm 10 \mathrm{kV}$.

The LTC1324 is available in a 16-pin S0 Wide packade.
©, LTC and LT are registered trademarks of Linear Technology Corporation. Apple and LocalTalk are registered trademarks of Apple Computer, Inc.

TYPICAL APPLICATION

Typical LocalTalk Connection for Low EMI

Waveform of Driver

ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage (VCC) 7 V
Input Voltage (Logic Inputs) -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0\right.$ 3V)
Input Voltage (Receiver Inputs) $\pm 15 \mathrm{~V}$
Driver Output Voltage (Forced) $\pm 15 \mathrm{~V}$
Driver Short-Circuit Duration ..
Indefinite
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $v_{C C}=5 V, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Notes 2, 3), unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supplies						
ICC	Normal Operation Supply Current	No Load, SHDN $=0 \mathrm{~V}, \overline{\text { TXDEN }}=0 \mathrm{~V}, \overline{\mathrm{RXEN}}=0 \mathrm{~V}$	\bullet	1	2	mA
	Shutdown Supply Current	No Load, SHDN $=V_{C C}$	\bullet	1	10	$\mu \mathrm{~A}$

Differential Driver

$V_{O D}$	Differential Output Voltage	No Load $R_{L}=50 \Omega$ (Figure 1)	\bullet	$\begin{aligned} & \pm 4.0 \\ & \pm 2.0 \end{aligned}$			V
$\Delta V_{0 D}$	Change in Magnitude of Differential Output Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 1)		0.2			V
$V_{O C}$	Differential Common-Mode Output Voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 1)		3.0			V
ISS	Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$	\bullet	35	120	250	mA
102	Three-State Output Current	$\begin{aligned} & \left(\overline{\text { TXDEN }}=V_{C C} \text { and } \text { TXDEN }=\text { GND }\right) \text { or } \\ & \text { SHDN }=V_{C C} \text { or or Power Off },-10 V \leq V_{0} \leq 10 \mathrm{~V} \end{aligned}$	\bullet		± 2	± 200	$\mu \mathrm{A}$

Logic Inputs

$\mathrm{V}_{\text {IH }}$	Input High Voltage	All Logic Input Pins	\bullet	2.4	v
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	All Logic Input Pins	\bullet	0.8	V
IIN	Input Current	SHDN, $\overline{\text { TXDEN, }}$, $\overline{\text { XXDEN, }}$, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $V_{C C}$	\bullet	$\pm 1 . \pm 20$	$\mu \mathrm{A}$
IDN	Pull-Down Current	RXDEN, TXDEN, SR, $\mathrm{V}_{1 N}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	\bullet	1560	$\mu \mathrm{A}$

LECTRICL CHARACERISTCS $V_{C C}=5 V, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Notes 2, 3), unless otherwise noted.

'MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
:ceiver							
N	Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		12			k Ω
	Receiver Threshold Voltage	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 7 \mathrm{~V}$	\bullet	-200		200	mV
	Receiver Input Hysteresis	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 7 \mathrm{~V}$			70		mV
H	Output High Voltage	$\mathrm{I}_{0}=-4 \mathrm{~mA}$	\bullet	3.5			V
M	Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}$	\bullet			0.4	V
;	Output Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}$	\bullet	7		85	mA
$\underline{7}$	Output Three-State Current	$\mathrm{OV} \leq \mathrm{V}_{0} \leq 5 \mathrm{~V}, \overline{\mathrm{RXEN}}=\mathrm{V}_{C C}, \mathrm{RXEN}=\mathrm{GND}$	\bullet		± 2	± 100	$\mu \mathrm{A}$

vitching Characteristics

.$_{\text {- }}$, tPHL	Driver Propagation Delay Without Slew Rate Control	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=100 \Omega \text { (Figures 2, 4) } \\ & S R=G N D \end{aligned}$	-	40	120	ns
	Driver Propagation Delay with Slew Rate Control	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(\text { Figures } 2,4) \\ & \mathrm{SR}=V_{C C} \end{aligned}$	\bullet	0.4	1	$\mu \mathrm{s}$
	Receiver Propagation Delay	$C_{L}=15 \mathrm{pF}$ (Figures 2, 6)	\bullet	70	160	ns
(EW	Driver Output to Output Without Slew Rate Control	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=100 p F(\text { Figures } 2,4) \\ & S R=G N D \end{aligned}$	-	10	50	ns
	Driver Output to Output with Slew Rate Control	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=100 p F \text { (Figures 2, 4) } \\ & S R=G N D \end{aligned}$	-	25	100	lis
t_{f}	Driver Rise/Fall Time Without Slew Rate Control	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=100 \mathrm{pF} \text { (Figures 2,4) } \\ & S R=G N D \end{aligned}$	\bullet	50	150	ns
	Driver Rise/Fall Time with Slew Rate Control	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}(\text { Figures } 2,4) \\ & \mathrm{SR}=V_{C C} \end{aligned}$	\bullet	0.4	1	$\mu \mathrm{S}$
dis, $\mathrm{t}_{\text {Ldis }}$	Driver Output Active to Disable Without Slew Rate Control	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}(\text { Figures } 3,5) \\ & \mathrm{SR}=\mathrm{GND} \end{aligned}$	\bullet	50	150	ns
	Driver Output Active to Disable with Slew Rate Control	$\begin{aligned} & C_{L}=15 \mathrm{pF}(\text { Figures } 3,5) \\ & S R=V_{C C} \end{aligned}$	\bullet	0.7	2	$\mu \mathrm{S}$
	Receiver Output Active to Disable	$C_{L}=15 \mathrm{pF}$ (Figures 3, 7)	\bullet	30	100	ns
JH, $\mathrm{t}_{\text {ENL }}$	Driver Enable to Output Active Without Slew Rate Control	$\begin{aligned} & C_{L}=15 \mathrm{pF}(\text { Figures } 3,5) \\ & \mathrm{SR}=\mathrm{GND} \end{aligned}$	\bullet	50	150	ns
	Driver Enable to Output Active with Slew Rate Control	$\begin{aligned} & C_{L}=15 \mathrm{pF}(\text { Figures } 3,5) \\ & S R=V_{C C} \end{aligned}$	\bullet	250	750	ns
	Receiver Enable to Output Active	$C_{L}=15 p F($ Figures 3, 7)	\bullet	30	100	ns

e - denotes specifications which apply over the full operating nperature range.
ite 1: Absolute maximum ratings are those values beyond which the life a device may be impaired.

Note 2: All currents into device pins are positive and all currents out of device pins are negative. All voltages are reference to ground unless otherwise specified.
Note 3: All typicals are given at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Driver Output High Voltage vs Output Current

1324603

Driver Short-Circuit Current

 vs Temperature

Driver Skew vs Temperature

ГYPICAL PERFORMANCE CHARACTERISTICS

1324 G10
Driver Differential Output Voltage vs Temperature

1324 G12

1324 G 11
Receiver $\left|t_{\text {PLH }}-t_{\text {PHL }}\right|$ vs Temperature

1324 G13

In functions

C (Pin 1, 13): No Internal Connection.
R (Pin 2): Slew Rate Control (TTL Compatible). A high vel on this pin forces the RS485 driver into the low slew te mode. A low level enables the driver into the high slew te or normal mode. Connected to an internal pull-down.
XD (Pin 3): RS485 Driver Input (TTL Compatible).
XDEN (Pin 4): Driver Output Enable (TTL Compatible). A gh level on this pin and a low level on TXDEN (pin 15) irces the RS485 driver into three-state. A low level lables the driver.

SHDN (Pin 5): Shutdown Input (TTL Compatible). When this pin is high, the chip is shut down; the driver and receiver outputs three-state; and the supply current drops to $1 \mu \mathrm{~A}$. A low level on this pin allows normal operation.
RXEN (Pin 6): Receiver Enable (TTL Compatible). A high level on this pin and a low level on RXEN (pin 14) disables the receiver and three-states the logic outputs. A low level allows normal operation.
RXDO (Pin 7): RS485 Receiver Output.
GND (Pin 8): Ground.

PIn fUnCTIOnS

RXD ${ }^{+}$(Pin 9): RS485 Receiver Noninverting Input. When this pin is $\geq 200 \mathrm{mV}$ above RXD^{-}, RXDO will be high. When this pin is $\geq 200 \mathrm{mV}$ below RXD^{-}, RXDO will be low.
RXD $^{-}$(Pin 10): RS485 Receiver Inverting Input.
TXD + (Pin 11): RS485 Driver Noninverting Output.
TXD ${ }^{-}$(Pin 12): RS485 Driver Inverting Output.
RXEN (Pin 14): Receiver Enable (TTL Compatible). A low level on this pin and a high level on RXEN (pin 6) disables
the receiver and three-states the logic outputs. A high level allows normal operation. Connected to an internal pulldown.
TXDEN (Pin 15): Driver Output Enable (TTL Compatible). A low level on this pin and a high level on TXDEN (pin 4) forces the RS485 driver into three-state. A high level enables the driver. Connected to an internal pull-down.
$V_{\text {CC }}$ (Pin 16): The Positive Supply Input. $4.75 \mathrm{~V} \leq V_{\text {CC }} \leq$ 5.25 V . Requires a $1 \mu \mathrm{~F}$ bypass capacitor to ground.

TEST CIRCUITS

Figure 1.

Figure 2.

Figure 3.

SWITCHInG WAVEfORMS

Figure 4. Differential Driver

SWITCHING WAVEFORMS

Figure 5. Differential Driver Enable and Disable

Figure 6. Differential Receiver

Figure 7. Receiver Enable and Disable

APPLICATIONS INFORMATION

Thermal Shutdown Protection

The LTC1324 includes a thermal shutdown circuit which rotects against prolonged shorts at the driver outputs. If a driver output is shorted to another output or to the power supply, the current will be initially limited to a maximum of 250 mA . When the die temperature rises above $150^{\circ} \mathrm{C}$, the hermal shutdown circuit turns off the driver outputs. N hen the die cools to about $130^{\circ} \mathrm{C}$, the outputs re-enable. fthe short still exists, the part will heat again and the cycle will repeat. This oscillation occurs at about 10 Hz and
prevents the part from being damaged by excessive power dissipation. When the short is removed, the part will return to normal operation.

Power Shutdown

The power shutdown feature of the LTC1324 is designed for battery-powered systems. When SHDN is forced high, the part events shutdown mode. In shutdown, the supply current typically drops from 1 mA to $1 \mu \mathrm{~A}$ and the driver and receiver outputs are three-stated.

APPLICATIONS InFORMATION

Supply Bypassing

The LTC1324 requires $V_{C C}$ be bypassed to prevent data errors. $\mathrm{A} 1 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\text {CC }}$ to ground is adequate.

EMI Filters and Slew Rate Control

Most LocalTalk applications need to use an electromagnetic interference (EMI) filter consisting of a resistorcapacitor T network between each driver, receiver and the connector. Unfortunately, the resistors will attenuate the driver's output signal applied to the cable. Because the LTC1324 uses a single 5V supply, the resistors' values should be reduced from 22Ω which is normally used to 5.1Ω to insure enough voltage swing on the cable (Figure 8). Another way to get maximum swing and EMI immunity is to use a ferrite bead and capacitor as the T network

Figure 8.

Figure 9.
(Figure 9). For data rates below $250 \mathrm{~kb} / \mathrm{s}$, the LTC1324 features a low EMI mode which limits the rise time of the drivers to 400 ns. With a lower rise time, the EMI network can be eliminated, allowing more signal voltage to reach the cable. Figures 10 and 11 show the output signals of the driver with different slew rates.

Figure 10. High Slew Rate Mode

Figure 11. Low Slew Rate Mode

related parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1318	Single 5V Powered RS232/RS422 Transceiver	Pin Selectable RS232/RS422 Receiver. Available in 24-Pin S0 Wide Package
LTC1320	RS422/RS562 Transceiver	Available in 18-Pin S0 Wide Package
LTC1323	Single 5V Powered RS422/RS562 Transceiver	Available in 16-Pin and 24-Pin SO Wide Package

Single 5V RS232/RS485 Multi-Protocol Transceiver

feATURES

- Four RS232 Transceivers or Two RS485 Transceivers on One Chip
- Operates from a Single 5V Supply
- Withstands Repeated $\pm 10 \mathrm{kV}$ ESD Pulses
- Uses Small Charge Pump Capacitors: $0.1 \mu \mathrm{~F}$
- Low Supply Current: 8mA Typical
- 10uA Supply Current in Shutdown
- 250 kBaud in RS232 Mode
- 10MBaud in RS485/RS422 Mode
- Self-Testing Capability in Loopback Mode
- Power-Up/Down Glitch-Free Outputs
- Driver Maintains High Impedance in Three-State, Shutdown or with Power Off
- Thermal Shutdown Protection
- I/O Lines Can Withstand $\pm 25 \mathrm{~V}$

APPLICATIONS

- Low Power RS485/RS422/RS232/EIA562 Interface
- Software-Selectable Multi-Protocol Interface Port
- Cable Repeaters
- Level Translators

DESCRIPTIOn

The LTC ${ }^{\circledR} 1334$ is a low power CMOS bidirectional transceiver featuring two reconfigurable interface ports. It can be configured as two RS485 differential ports, as two dual RS232 single-ended ports or as one RS485 differential port and one dual RS232 single-ended port. An onboard charge pump requires four $0.1 \mu \mathrm{~F}$ capacitors to generate boosted positive and negative supplies, allowing the RS232 drivers to meet the RS232 $\pm 5 \mathrm{~V}$ output swing requirement with only a single 5 V supply. A shutdown mode reduces the $I_{C C}$ supply current to $10 \mu \mathrm{~A}$.

The RS232 transceivers operate to 250kbaud typical and are in full compliance with RS232 specifications. The RS485 transceivers operate to 10Mbaud and are in full compliance with RS485 and RS422 specifications. All interface drivers feature short-circuit and thermal shutdown protection. An enable pin allows RS485 driver outputs to be forced into high impedance, which is maintained even when the outputs are forced beyond supply rails or power is off. Both driver outputs and receiver inputs feature $\pm 10 \mathrm{kV}$ ESD protection. A loopback mode allows the driver outputs to be connected back to the receiver inputs for diagnostic self-test.

TYPICAL APPLICATION

absolute maximum ratings

PACKAGE/ORDER InFORMATION
(Note 1)
Supply Voltage (VCC) ... 6.5V
Input Voltage
Drivers \qquad -0.3 V to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$

Receivers \qquad -25 V to 25 V
ON/ $\overline{\mathrm{OFF}}, \overline{\mathrm{LB}}, \mathrm{SEL} 1, \mathrm{SEL} 2 \ldots-0.3 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$ Output Voltage

Drivers \qquad -18 V to 18 V
Receivers -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Short-Circuit Duration
Output \qquad Indefinite
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{EE}}, \mathrm{C1}^{+}, \mathrm{C1}^{-}, \mathrm{C2}^{+}, \mathrm{C2}^{-}$ 30 sec
Operating Temperature Range
Commercial \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

TWO: RS485 TRANSCEIVERS FOUR: RS232 TRANSCEIVERS TOP VIEW	ORDER PART NUMBER
\bigcirc	
C1	LTC1334CNW
$\mathrm{C1}^{-} 2$	LTE334CNW
$\checkmark V_{D D} 3$	LTC1334CSW
A1 4 25 $\mathrm{R}_{B 1}$	
$B 1.5$	
Y 166	
$\mathrm{Z1} 7 \quad 7 \quad 22 \mathrm{D}_{\mathrm{Y} 1}$	
SEL1 8 21 $\overline{L B}$	
SEL2 9 9 20 ON/DFF	
Z2 10 10 $19 \mathrm{D}_{2}$	
Y2 11 18 D 18	
B 212 12 $17 \mathrm{R}_{\mathrm{A} 2}$	
A2 13	
GND 14 15 $\mathrm{V}_{\text {EE }}$	
NW PACKAGE SW PACKAGE 28-LEAD PDIP WIDE 28-LEAD PLASTIC SO WIDE	
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=56^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NW}) \\ & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \mathrm{\theta}_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{SW}) \end{aligned}$	

Consult factory for Industrial and Military grade parts.

DC ELECTRICAL CHARACTERISTICS $v_{C C}=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.1 \mu \mathrm{~F}$ (Notes 2,3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
RS485 Driver (SEL1 = SEL2 = HIGH)							
V_{001}	Differential Driver Output Voltage (Unloaded)	$\mathrm{I}_{0}=0$	\bullet			6	V
V_{002}	Differential Driver Output Voltage (With Load)	Figure 1, $\mathrm{R}=50 \Omega$ (RS422) Figure 1, $R=27 \Omega$ (RS485)		$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	V
$\Delta V_{0 D}$	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	Figure $1, \mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$	-			0.2	V
$V_{0 C}$	Driver Common-Mode Output Voltage	Figure $1, \mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$	\bullet			3	V
${ }_{\Delta}\left\|V_{0 C}\right\|$	Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	Figure $1, \mathrm{R}=27 \Omega$ or $\mathrm{R}=50 \Omega$	\bullet			0.2	V
IOSD	Driver Short-Circuit Current	$\begin{aligned} & -7 V \leq V_{0} \leq 12 V, V_{0}=\text { HIGH } \\ & \left.-7 V \leq V_{0} \leq 12 V, V_{0}=\text { LOW (Note } 4\right) \end{aligned}$	\bullet	$\begin{aligned} & 35 \\ & 10 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	mA mA
IOZD	Three-State Output Current (Y,Z)	$-7 \mathrm{~V} \leq \mathrm{V}_{0} \leq 12 \mathrm{~V}$			± 5		$\mu \mathrm{A}$

RS232 Driver (SEL1 = SEL2 = LOW)

V_{0}	Output Voltage Swing	Figure 4, $R_{L}=3 k$, Positive Figure 4, $R_{L}=3 k$, , Negative	\bullet	5	6.5	
-5	-6.5		V			
IOSD	Output Short-Circuit Current	$V_{0}=0 \mathrm{~V}$	\bullet	V	± 11	± 60

Driver Inputs and Control Inputs

$\mathrm{V}_{\text {IH }}$	Input High Voltage	D, DE, ON/ $\overline{\text { FFF }}$, SEL1, SEL2, $\bar{L} \bar{B}$	\bullet	2		V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	D, DE, ON/ $\overline{\text { FFF }}$, SEL1, SEL2, $\overline{L B}$	\bullet		0.8	V
1 IN	Input Current	$\begin{aligned} & \text { D, SEL1, SEL2 } \\ & \text { DE, ON/OFF, } \overline{L B} \end{aligned}$	\bullet	-4	$\begin{aligned} & \pm 10 \\ & -15 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS $v_{C C}=5 V, C 1=C 2=C 3=C 4=0.1 \mu \mathrm{~F}($ Notes 2,3$)$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
RS485 Receiver (SEL1 = SEL2 = HIGH)							
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold Voltage	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	\bullet	-0.2		0.2	V
$\Delta \mathrm{V}_{\text {TH }}$	Input Hysteresis	$V_{C M}=0 \mathrm{~V}$			70		mV
1 l	Input Current (A, B)	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 12 \mathrm{~V}$	\bullet			± 1	mA
RIN	Input Resistance	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 12 \mathrm{~V}$	\bullet	12	24		$\mathrm{k} \Omega$
RS232 Receiver (SEL1 = SEL2 = LOW)							
$\mathrm{V}_{\text {TH }}$	Receiver Input Threshold Voltage	Input Low Threshold Input High Threshold	\bullet	0.8		2.4	V
$\Delta V_{\text {TH }}$	Receiver Input Hysteresis				0.6		V
$\mathrm{R}_{\text {IN }}$	Receiver Input Resistance	$V_{\text {IN }}= \pm 10$		3	5	7	$\mathrm{k} \Omega$
Receiver Output							
$\mathrm{V}_{\text {OH }}$	Receiver Output High Voltage	$\mathrm{I}_{0}=-3 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{SEL} 1=$ SEL2 $=$ LOW	\bullet	3.5	4.6		V
$\mathrm{V}_{\text {OL }}$	Receiver Output Low Voltage	$\mathrm{I}_{0}=3 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{SEL} 1=\mathrm{SEL} 2=$ LOW	\bullet		0.2	0.4	V
IOSR	Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7		85	mA
IOZR	Three-State Output Current	ON/OFF $=0 \mathrm{~V}$	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{R}_{0 B}$	Inactive "B" Output Pull-Up Resistance (Note 5)	ON/ $\overline{\text { OFF }}=\mathrm{HIGH}, \mathrm{SEL} 1=$ SEL2 $=$ HIGH			50		$\mathrm{k} \Omega$
Power Supply Generator							
V_{DD}	$V_{D D}$ Output Voltage	No Load, ON/ $\overline{\mathrm{FF}}=\mathrm{HIGH}$ $I_{D D}=-10 \mathrm{~mA}, O N / \overline{O F F}=H I G H$			$\begin{gathered} 8 \\ 6.5 \\ \hline \end{gathered}$		V
V_{EE}	$\mathrm{V}_{\text {EE }}$ Output Voltage	No Load, ON/OFF $=$ HIGH $\mathrm{I}_{\mathrm{EE}}=10 \mathrm{~mA}, 0 \mathrm{~N} / \overline{\mathrm{OFF}}=\mathrm{HIGH}$			$\begin{aligned} & -7.6 \\ & -6.5 \end{aligned}$		V
Power Supply							
${ }_{\text {ICC }}$	$\mathrm{V}_{\text {CC }}$ Supply Current	No Load, SEL1 = SEL2 $=$ HIGH Shutdown, $0 \mathrm{~N} / \overline{\mathrm{OFF}}=0 \mathrm{~V}$			$\begin{gathered} 8 \\ 10 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

AC ELECTRICRL CHARACTERISTICS $V_{C C}=5 V, C 1=C 2=C 3=C 4=0.1 \mu \mathrm{~F}($ Notes 2,3$)$

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :---: | UNITS

RS485 Mode (SEL1 = SEL2 = HIGH)

BR MAX	Maximum Data Rate (Note 6)	Figures $2,6, \mathrm{R}_{L}=54 \Omega, \mathrm{C}_{L}=100 \mathrm{pF}$	15	MBaud
tPLH	Driver Input to Output	Figures 2, 6, $\mathrm{R}_{L}=54 \Omega, \mathrm{C}_{L}=100 \mathrm{pF}$	40	ns
$\mathrm{t}_{\text {PHL }}$	Driver Input to Output	Figures 2, 6, $\mathrm{R}_{L}=54 \Omega, \mathrm{C}_{L}=100 \mathrm{pF}$	40	ns
$\mathrm{t}_{\text {SKEW }}$	Driver Output to Output	Figures 2, 6, $\mathrm{R}_{L}=54 \Omega, \mathrm{C}_{L}=100 \mathrm{pF}$	5	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Driver Rise and Fall Time	Figures 2, 6, $\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	15	ns

AC ELECTRICAL CHARACTERISTICS $\quad \mathrm{v}_{\mathrm{cc}}=5 \mathrm{VV}, \mathrm{C1}=\mathrm{C2}=\mathrm{C3}=\mathrm{C4}=0.1 \mathrm{THF}$ (Notes 2,3)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :---: | UNITS

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C1}=\mathrm{C} 2=\mathrm{C3}=\mathrm{C} 4=0.1 \mu \mathrm{~F}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Note 4: Short-circuit current for RS485 driver output low state folds back above $V_{\text {CC }}$. Peak current occurs around $V_{0}=3 \mathrm{~V}$.
Note 5: The "B" RS232 receiver output is disabled in RS485 mode
(SEL1 = SEL2 = HIGH). The unused output goes into a high impedance mode and has a resistor to Vcc. See Applications Information section for more details.
Note 6: The maximum data rate is specified for NRZ data encoding scheme. The maximum data rate may be different for other data encoding schemes. Data rate is guaranteed by correlation and is not tested.

PIn functions

C1 ${ }^{+}$(Pin 1): Commutating Capacitor C1 Positive Terminal. Requires $0.1 \mu \mathrm{~F}$ external capacitor between Pins 1 and 2. C1 (Pin 2): Commutating Capacitor C1 Negative Terminal.
$V_{D D}$ (Pin 3): Positive Supply Output for RS232 Drivers. Requires an external $0.1 \mu \mathrm{~F}$ capacitor to ground.
A1 (Pin 4): Receiver Input.
B1 (Pin 5): Receiver Input.
Y1 (Pin 6): Driver Output.
Z1 (Pin 7): Driver Output.
SEL1 (Pin 8): Interface Mode Select Input.
SEL2 (Pin 9): Interface Mode Select Input.
Z2 (Pin 10): Driver Output.
Y2 (Pin 11): Driver Output.
B2 (Pin 12): Receiver Input.
A2 (Pin 13): Receiver Input.
GND (Pin 14): Ground.
$\mathrm{V}_{\text {EE }}$ (Pin 15): Negative Supply Output. Requires an external $0.1 \mu \mathrm{~F}$ capacitor to ground.
$\mathrm{R}_{\mathrm{B} 2}$ (Pin 16): Receiver Output.
$\mathrm{R}_{\mathrm{A} 2}$ (Pin 17): Receiver Output.
Dz/DE2 (Pin 18): RS232 Driver Input in RS232 Mode. RS485 Driver Enable with internal pull-up in RS485 mode.

pin functions

$D_{\text {Y2 }}$ (Pin 19): Driver Input.
ON/DFF (Pin 20): A HIGH logic input enables the transceivers. A LOW puts the device into shutdown mode and reduces $I_{C C}$ to $10 \mu A$. This pin has an internal pull-up.
$\overline{\text { LB (Pin 21): Loopback Control Input. A LOW logic level }}$ enables internal loopback connections. This pin has an internal pull-up.
$\mathrm{D}_{\mathrm{Y} 1}$ (Pin 22): Driver Input.
$\mathrm{D}_{\mathrm{Z} 1} / \mathrm{DE1}$ (Pin 23): RS232 Driver Input in RS232 Mode. RS485 Driver Enable with internal pull-up in RS485 mode.
$\mathbf{R}_{\text {A1 }}$ (Pin 24): Receiver Output.
$\mathbf{R}_{\text {B1 }}$ (Pin 25): Receiver Output.
$V_{\text {CC }}$ (Pin 26): Positive Supply; $4.75 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 5.25 \mathrm{~V}$
C2 ${ }^{-}$(Pin 27): Commutating Capacitor C2 Negative Terminal. Requires $0.1 \mu \mathrm{~F}$ external capacitor between Pins 27 and 28.
C2 ${ }^{+}$(Pin 28): Commutating Capacitor C2 Positive Terminal.

function tables

RS485 Driver Mode

INPUTS					OUTPUTS	
ON/OFF	SEL	DE	D	CONDITIONS	Z	Y
1	1	1	0	No Fault	0	1
1	1	1	1	No Fault	1	0
1	1	1	X	Thermal Fault	Z	Z
1	1	0	X	X	Z	Z
0	1	X	X	X	Z	Z

RS485 Receiver Mode

INPUTS			OUTPUTS	
ON/ $\overline{\text { OFF }}$	SEL	$\mathbf{B}-\mathbf{A}$	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{B}}{ }^{\boldsymbol{}}$
1	1	$<-0.2 \mathrm{~V}$	0	1
1	1	$>0.2 \mathrm{~V}$	1	1
1	1	Inputs Open	1	1
0	1	X	Z	Z

[^55]RS232 Driver Mode

INPUTS			CONDITIONS	$\begin{gathered} \text { OUTPUTS } \\ \mathbf{Y}, \mathbf{Z} \end{gathered}$
ON/ $\overline{\text { OFF }}$	SEL	D		
1	0	0	No Fault	1
1	0	1	No Fault	0
1	0	X	Thermal Fault	Z
0	0	X	X	Z

RS232 Receiver Mode

INPUTS			OUTPUTS
$\mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}$			
$\mathbf{0 N} / \overline{\mathbf{O F F}}$	SEL	\mathbf{A}, \mathbf{B}	1
1	0	0	0
1	0	1	1
1	0	Inputs Open	Z
0	0	X	

BLOCK DIAGRAMS

Interface Configuration with Loopback Disabled

Interface Configuration with Loopback Enabled

test circuits

Figure 1. RS485 Driver Test Load

Figure 3. RS485 Driver Output Enable/Disable Timing Test Load

Figure 4. RS232 Driver Timing Test Circuit

Figure 5. RS232 Receiver
Timing Test Circuit

;WITCHING WAVGFORMS

Figure 6. RS485 Driver Propagation Delays

switching whveforms

Figure 7. RS485 Driver Enable and Disable Times

Figure 8. RS485 Receiver Propagation Delays

Figure 9. RS232 Driver Propagation Delays

Figure 10. RS232 Receiver Propagation Delays

APPLICATIONS INFORMATION

Basic Theory of Operation

The LTC1334 has two interface ports. Each port may be zonfigured as a pair of single-ended RS232 transceivers or as a differential RS485 transceiver by forcing the jort's selection input to a LOW or HIGH, respectively. The _TC1334 provides two RS232 drivers and two RS232 eceivers or one RS485 driver and one RS485 receiver jer port. All the interface drivers feature three-state jutputs. Interface outputs are forced into high impedance when the driver is disabled in the shutdown mode or with the power off.
All the interface driver outputs are fault-protected by a zurrent limiting and thermal shutdown circuit. The thernal shutdown circuit disables both the RS232 and RS485 driver outputs when the die temperature reaches $150^{\circ} \mathrm{C}$. Fhe thermal shutdown circuit re-enables the drivers when he die temperature cools to $130^{\circ} \mathrm{C}$.
n RS485 mode, Shutdown mode or with the power off, he input resistance of the receiver is 24 k . The input esistance drops to 5k in RS232 mode.
\forall logic LOW at the ON/ $\overline{\text { FFF }}$ pin shuts down the device and orces all the outputs into a high impedance state. A logic

HIGH enables the device. An internal 4μ A current source to $V_{\text {CC }}$ pulls the ON/OFF pin HIGH if it is left open.

In RS485 mode, an internal $4 \mu \mathrm{~A}$ current source pulls the driver enable pin HIGH if left open. The RS485 receiver has a $4 \mu \mathrm{~A}$ current source at the noninverting input. If both the RS485 receiver inputs are open, the output goes to a high state. Both the current sources are disabled in the RS232 mode. The receiver output B is inactive in RS485 mode and has a 50 k pull-up resistor to provide a known output state in this mode.

A loopback mode enables internal connections from driver outputs to receiver inputs for self-test when the $\overline{\mathrm{LB}}$ pin has a LOW logic state. The driver outputs are not isolated from the external loads. This allows transmitter verification under the loaded condition. An internal $4 \mu A$ current source pulls the LB pin HIGH if left open and disables the loopback configuration.

RS232/RS485 Applications

The LTC1334 can support both RS232 and RS485 levels with a single 5V supply as shown in Figure 11.

Figure 11. RS232/RS485 Interfaces

APPLICATIONS INFORMATION

Figure 12. Multi-Protocol Interface

Multi-Protocol Applications

The LTC1334 is well-suited for software controlled interface mode selection. Each port has a selection pin as shown in Figure 12. The single-ended transceivers support both RS232 and EIA562 levels. The differential transceivers support both RS485 and RS422.

Typical Applications

A typical RS232/EIA562 interface application is shown in Figure 13 with the LTC1334.

Figure 13. Typical Connection for RS232/EIA562 Interface
A typical connection for a RS485 transceiver is shown in Figure 14. A twisted pair of wires connects up to 32 drivers and receivers for half duplex multipoint data transmission The wires must be terminated at both ends with resistors equal to the wire's characteristic impedance. An optiona shield around the twisted pair helps to reduce unwantec noise and should be connected to ground at only one end

LTC1334 514
Figure 14. Typical Connection for RS485 Interface

APPLICATIONS INFORMATION

A typical RS422 connection (Figure 15) allows one driver and ten receivers on a twisted pair of wires terminated with a 100Ω resistor at one end.

A typical twisted-pair line repeater is shown in Figure 16. As data transmission rate drops with increased cable length, repeaters can be inserted to improve transmission rate or to transmit beyond the RS422 4000-foot limit.
The LTC1334 can be used to translate RS232 to RS422 interface levels or vice versa as shown in Figure 17. One
port is configured as an RS232 transceiver and the other as an RS485 transceiver.

Using two LTC1334s as level translators, the RS232/ EIA562 interface distance can be extended to 4000 feet with twisted-pair wires (Figure 18).

AppleTalk ${ }^{\circledR} /$ LocalTalk ${ }^{\oplus}$ Applications

An AppleTalk application is shown in Figure 19 with the LTC1323 and the LTC1334.

Figure 15. Typical Connection for RS422 Interface

Figure 16. Typical Cable Repeater for RS422 Interface

Figure 17. Typical RS232/EIA562 to RS422 Level Translator

Figure 18. Typical Cable Extension for RS232/EIA562 Interface

APPLICATIONS INFORMATION

Figure 19. AppleTalk/LocalTalk Implemented Using the LTC1323CS-16 and LTC1334 Transceivers

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC485	Low Power RS485 Interface Transceiver	Single 5V Supply, Wide Common-Mode Range
LT $^{\circledR} 1137$ A	Low Power RS232 Transceiver	$\pm 15 \mathrm{kV}$ IEC-801 ESD Protection, Three Drivers, Five Receivers
LTC1320	AppleTalk Transceiver	AppleTalk/Local Talk Compliant
LTC1321/LTC1322/LTC1335	RS232/EIA562/RS485 Transceivers	Configurable, 10kV ESD Protection
LTC1323	Single 5V AppleTalk Transceiver	LocalTalk/AppleTalk Compliant 10kV ESD
LTC1347	5V Low Power RS232	Three Drivers/Five Receivers, Five Receivers Alive in Shutdown

features

- Single Chip Provides Complete Differential Signal Interface for V. 35 Port
- Drivers and Receivers Will Withstand Repeated $\pm 10 \mathrm{kV}$ ESD Pulses
- 10MBaud Transmission Rate
- Meets CCITT V. 35 Specification
- Operates from $\pm 5 \mathrm{~V}$ Supplies
- Shutdown Mode Reduces ICC to Below 1 $\mu \mathrm{A}$
- Selectable Transmitter and Receiver Configurations
- Transmitter Maintains High Impedance When Disabled, Shutdown or with Power Off
- Transmitters Are Short-Circuit Protected

APPLICATIONS

- Modems
- Telecommunications
- Data Routers

10Mbps DCE/DTE V. 35 Transceiver

DESCRIPTIO

June 1995

The LTC ${ }^{\circledR} 1346$ is a single chip transceiver that provides the differential clock and data signals for a V. 35 interface from $\pm 5 \mathrm{~V}$ supplies. Combined with an external resistor termination network and an LT ${ }^{\circledR} 1134 \mathrm{~A}$ RS232 transceiver for the control signals, the LTC1346 forms a complete low power DTE or DCE V. 35 interface port.
The LTC1346 features three current output differential transmitters and three differential receivers. The transceiver can be configured for DTE or DCE operation or Shutdown using two Select pins. In the Shutdown mode, the supply current is reduced to below $1 \mu \mathrm{~A}$.
The LTC1346 transceiver operates up to 10MBaud. All transmitters feature short-circuit protection and a Receiver Output Enable pin that allows the receiver outputs to be forced into a high impedance state. Both transmitter outputs and receiver inputs feature $\pm 10 \mathrm{kV}$ ESD protection.

For single 5 V applications that do not have -5 V available, the LTC1345 provides the same functionality as the LTC1346 and includes an on-board -5V generator.

TYPICAL APPLICATION

Clock and Data Signals for V. 35 Interface

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage
VCC 6.5 V
$V_{E E}$
$-6.5 \mathrm{~V}$
Input Voltage
Transmitters \qquad -0.3 V to $(\mathrm{V}$ CC $+0.3 \mathrm{~V})$
Receivers -18 V to 18 V
S1, S2, $\overline{\mathrm{OE}}$ E... -0.3 V to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$ Output Voltage

Transmitters \qquad
\qquad -18 V to 18 V
Receivers -0.3V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Short-Circuit Duration
Transmitter Output
Indefinite
Receiver Output Indefinite
Operating Temperature Range
Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
THREE V. 35 TRANSMITTERS AND THREE RECEIVERS $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}$	LTC1346CSW LTC1346ISW

Consult factory for Military grade parts.

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \pm 5 \%$ (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 \mathrm{D}}$	Transmitter Differential Output Voltage	$-4 \mathrm{~V} \leq \mathrm{V}_{0 S} \leq 4 \mathrm{~V}$ (Figure 1)	\bullet	0.44	0.55	0.66	V
$\mathrm{V}_{0 C}$	Transmitter Common-Mode Output Voltage	$\mathrm{V}_{0 S}=0 \mathrm{~V}$ (Figure 1)	\bullet	-0.6	0	0.6	V
$\mathrm{IOH}^{\text {l }}$	Transmitter Output High Current	$V_{Y, Z}=0 \mathrm{~V}$	\bullet	-12.6	-11	-9.4	mA
POL	Transmitter Output Low Current	$V_{Y, Z}=0 V$	\bullet	9.4	11	12.6	mA
l_{02}	Transmitter Output Leakage Current	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}, \mathrm{Z}} \leq 5 \mathrm{~V}, \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V}$	\bullet		± 1	$\begin{gathered} \pm 20 \\ \pm 100 \end{gathered}$	μA μA
R_{0}	Transmitter Output Impedance	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}, \mathrm{Z}} \leq 2 \mathrm{~V}$			100		k Ω
$\mathrm{V}_{\text {TH }}$	Differential Receiver Input Threshold Voltage	$-7 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) / 2 \leq 7 \mathrm{~V}$	\bullet		25	200	mV
$\Delta \mathrm{V}_{\text {TH }}$	Receiver Input Hysterisis	$-7 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) / 2 \leq 7 \mathrm{~V}$			50		mV
IN	Receiver Input Current (A, B)	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq 7 \mathrm{~V}$	\bullet			0.4	mA
R IN	Receiver Input Impedance	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq 7 \mathrm{~V}$	\bullet	17.5	30		$\mathrm{k} \Omega$
V_{OH}	Receiver Output High Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}, \mathrm{B}}=0.2 \mathrm{~V}$	\bullet	3	4.5		V
$\mathrm{V}_{0 \mathrm{~L}}$	Receiver Output Low Voltage	$\mathrm{I}_{0}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}, \mathrm{B}}=-0.2 \mathrm{~V}$	\bullet		0.2	0.4	V
IOSR	Receiver Output Short-Circuit Current	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet	7	40	85	mA
$\underline{\text { IOZR }}$	Receiver Three-State Output Current	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}, 0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\text {CC }}$	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Logic Input High Voltage	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet	2			V
V ${ }_{\text {IL }}$	Logic Input Low Voltage	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet			0.8	V
IN	Logic Input Current	T, S1, S2, $\overline{\mathrm{OE}}$	\bullet			± 10	$\mu \mathrm{A}$
ICC	VCC Supply Current	$\begin{aligned} & V_{O S}=O V, S 1=S 2=\text { HIGH } \\ & \text { No Load, } \mathrm{S} 1=\mathrm{S} 2=\mathrm{HIGH} \\ & \text { Shutdown, } \mathrm{S} 1=\mathrm{S} 2=0 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} 40 \\ 6 \\ 0.1 \end{gathered}$		mA mA $\mu \mathrm{A}$
$\overline{I_{E E}}$	V_{EE} Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{OV}, \mathrm{~S} 1=\mathrm{S} 2=\text { HIGH } \\ & \text { No Load, } \mathrm{S} 1=\mathrm{S} 2=\mathrm{HIGH} \\ & \text { Shutdown, } \mathrm{S} 1=\mathrm{S} 2=0 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} \hline-40 \\ -6 \\ -0.1 \\ \hline \end{gathered}$		mA mA $\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \pm 5 \%$ (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	Transmitter Rise or Fall Time	$\mathrm{V}_{\text {OS }}=0 \mathrm{~V}$ (Figures 1, 3)	\bullet		7	40	ns
${ }_{\text {tPLH }}$	Transmitter Input to Output IT	$V_{0 S}=0 V($ Figures 1, 3)	\bullet		25	70	ns
$\mathrm{tpHL}^{\text {chen }}$	Transmitter Input to Output Z	$\mathrm{V}_{\text {OS }}=0 \mathrm{~V}$ (Figures 1, 3)	\bullet		30	70	ns
tsKEW	Transmitter Output to Output	$\mathrm{V}_{0 S}=0 \mathrm{~V}$ (Figures 1, 3)			5		ns
tpLH	Receiver Input to Output IT	$\mathrm{V}_{0 S}=0 \mathrm{~V}$ (Figures 1, 4)	\bullet		60	100	ns
$\mathrm{tPHL}^{\text {cter }}$	Receiver Input to Output Z	$V_{O S}=0 V($ Figures 1, 4)	\bullet		65	100	ns
tSKEW	Differential Receiver Skew, $\left\|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|$	$\mathrm{V}_{0 S}=0 \mathrm{~V}($ Figures 1, 4)			5		ns
$\mathrm{t}_{\text {ZL }}$	Receiver Enable to Output LOW	$\mathrm{C}_{L}=15 \mathrm{pF}$, SW1 Closed (Figures 2, 5)	\bullet		40	70	ns
$\mathrm{t}_{\text {z }}$	Receiver Enable to Output HIGH	$C_{L}=15 \mathrm{pF}$, SW2 Closed (Figures 2, 5)	\bullet		35	70	ns
tLZ	Receiver Disable From LOW	$C_{L}=15 \mathrm{pF}$, SW1 Closed (Figures 2, 5)	\bullet		30	70	ns
t_{HZ}	Receiver Disable From HIGH	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, SW2 Closed (Figures 2, 5)	\bullet		35	70	ns
$\mathrm{BR}_{\text {max }}$	Maximum Data Rate (Note 3)		\bullet	10	15		MBaud

The denotes specifications which apply over the full operating temperature range.
Note 1: The absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed.
Note 2: All currents into device pins are termed positive; all currents out of device pins are termed negative. All voltages are referenced to device ground unless otherwise specified.

Note 3: Maximum data rate is specified for NRZ data encoding scheme.
The maximum data rate may be different for other data encoding schemes. Data rate is guaranteed by a propagation delay test.

PIn functions

V_{EE} (Pin 1): Negative Supply, $-4.75 \mathrm{~V} \geq \mathrm{V}_{\mathrm{EE}} \geq-5.25 \mathrm{~V}$.
$\mathrm{V}_{\text {cc }}$ (Pin 2): Positive Supply, $4.75 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 5.25 \mathrm{~V}$.
GND (Pin 3): Ground.
T1 (Pin 4): Transmitter 1 Input.
T2 (Pin 5): Transmitter 2 Input.
T3 (Pin 6): Transmitter 3 Input.
S1 (Pin 7): Select Input 1.
S2 (Pin 8): Select Input 2.
R3 (Pin 9): Receiver 3 Output.
R2 (Pin 10): Receiver 2 Output.
R1 (Pin 11): Receiver 1 Output.
$\overline{\mathbf{0 E}}$ (Pin 12): Receiver Output Enable. To ensure shutdown mode, both S 1 and S 2 should be LOW and $\overline{\mathrm{OE}}$ should be HIGH.

B1 (Pin 13): Receiver 1 Inverting Input.
A1 (Pin 14): Receiver 1 Noninverting Input.
B2 (Pin 15): Receiver 2 Inverting Input.
A2 (Pin 16): Receiver 2 Noninverting Input.
B3 (Pin 17): Receiver 3 Inverting Input.
A3 (Pin 18): Receiver 3 Noninverting Input.
Z3 (Pin 19): Transmitter 3 Inverting Output.
Y3 (Pin 20): Transmitter 3 Noninverting Output.
Z2 (Pin 21): Transmitter 2 Inverting Output.
Y2 (Pin 22): Transmitter 2 Noninverting Output
Z1 (Pin 23): Transmitter 1 Inverting Output.
Y1 (Pin 24): Transmitter 1 Noninverting Output.

function tables

Transmitter and Receiver Configuration

$\mathbf{S 1}$	$\mathbf{S 2}$	TX\#	RX\#	REMARKS
0	0	-	-	All Shut Down*
1	0	$1,2,3$	1,2	DCE Mode, RX3 Shut Down
0	1	1,2	$1,2,3$	DTE Mode, TX3 Shut Down
1	1	$1,2,3$	$1,2,3$	All Active

Transmitter

CONFIGURATION	INPUTS			OUTPUTS				
	S1	S2	$\overline{\text { OE }}$	T	Y1 AND Y2	Z1 AND Z2	Y3	Z3
	0	1	X	0	0	1	Z	Z
DTE	0	1	X	1	1	0	Z	Z
DCE or All ON	1	X	X	0	0	1	0	1
DCE or All ON	1	X	X	1	1	0	1	0
Shutdown *	0	0	1	X	Z	Z	Z	Z

Receiver

CONFIGURATION	INPUTS			OUTPUTS		
	S1	S2	$\overline{\mathbf{O E}}$	A - B	R1 AND R2	R3
DTE or All ON	X	1	0	$\geq 0.2 \mathrm{~V}$	1	1
DTE or All ON	X	1	0	$\leq-0.2 \mathrm{~V}$	0	0
DCE	1	0	0	$\geq 0.2 \mathrm{~V}$	1	Z
DCE	1	0	0	$\leq-0.2 \mathrm{~V}$	0	Z
Disabled	X	X	1	X	Z	Z
Shutdown *	0	0	1	X	Z	Z

*To ensure shutdown mode, both S1 and S2 should be LOW and $\overline{\mathrm{OE}}$ should be HIGH

TEST CIRCUITS

Figure 1. V. 35 Transmitter/Receiver Test Circuit

Figure 2. Receiver Output Enable and Disable Timing Test Load

SUITCHInG TIM€ WAVEfORMS

Figure 3. V. 35 Transmitter Propagation Delays

SUITCHING TIME WAVEfORMS

Figure 4. V. 35 Receiver Propagation Delays

Figure 5. Receiver Enable and Disable Times

APPLICATIONS INFORMATION

Review of CCITT Recommendation V. 35 Electrical Specifications

V. 35 is a CCITT recommendation for synchronous data transmission via modems. Appendix 2 of the recommendation describes the electrical specifications which are summarized below:

1. The interface cable is a balanced twisted-pair with 80Ω to 120Ω impedance.
2. The transmitter's source impedance is between 50Ω and 150Ω.
3. The transmitter's resistance between shorted terminals and ground is $150 \Omega \pm 15 \Omega$.
4. When terminated by a 100Ω resistive load, the termi-nal-to-terminal voltage should be $0.55 \mathrm{~V} \pm 20 \%$.
5. The transmitter's rise time should be less than 1% of the signal pulse or 40ns, whichever is greater.
6. The common-mode voltage at the transmitter output should not exceed 0.6 V .
7. The receiver impedance is $100 \Omega \pm 10 \Omega$.
8. The receiver impedance to ground is $150 \Omega \pm 15 \Omega$.
9. The transmitter or receiver should not be damaged by connection to earth ground, short-circuiting, or cross connection to other lines.
10. No data errors should occur with $\pm 2 \mathrm{~V}$ commonmode change at either the transmitter or receiver, or $\pm 4 \mathrm{~V}$ ground potential difference between transmitter and receiver.

Cable Termination

Each end of the cable connected to an LTC1346 must be terminated by an external Y or Δ resistor network for proper operation. The Y-termination has two series connected 50Ω resistors and a 125Ω resistor connected between ground and the center tap of the two 50Ω resistors as shown in Figure 6.

APPLICATIONS InFORMATION

Figure 6. Y and Δ Termination Networks
The alternative Δ-termination has a 120Ω resistor across the twisted wires and two 300Ω resistors between each wire and ground. Standard $1 / 8 \mathrm{~W}, 5 \%$ surface mount resistors can be used for the termination network. To maintain the proper differential output swing, the resistor tolerance must be 5% or less. A termination network that combines all the resistors into an 14-pin SO package is available from:

BI Technologies (Formerly Beckman Industrial)
Resistor Networks
4200 Bonita Place
Fullerton, CA 92635
Phone: (714) 447-2357
FAX: (714) 447-2500
Part \#: BI Technologies 627T500/1250 (SO)
899TR50/125 (DIP)

Theory of Operation

The transmitter output consists of complementary switched-current sources as shown in Figure 7.

With a logic zero at the transmitter input, the inverting output Z sources 11 mA and the noninverting output Y sinks 11 mA . The differential transmitter output voltage is then set by the termination resistors. With two differential 50Ω resistors at each end of the cable, the voltage is set to $(50 \Omega \times 11 \mathrm{~mA})=0.55 \mathrm{~V}$. With a logic 1 at the transmitter input, output Z sinks 11 mA and Y sources 11 mA . The common-mode voltage of Y and Z is OV when both current sources are matched and there is no ground potential

Figure 7. Simplified Transmitter Schematic
difference between the cable terminations. The transmitter current sources have a common-mode range of $\pm 2 \mathrm{~V}$, which allows for a ground difference between cable terminations of $\pm 4 \mathrm{~V}$.
Each receiver input has a 30 k resistance to ground and requires external termination to meet the V .35 input impedance specification. The receivers have an input hysteresis of 50 mV to improve noise immunity. The receiver output may be forced into a high impedance state by pulling the output enable ($\overline{\mathrm{OE}}$) pin HIGH. For normal operation $\overline{\mathrm{OE}}$ should be pulled LOW.
Two Select pins, S1 and S2, configure the chip for DTE, DCE, all transmitter and receivers ON, or Shutdown. To ensure shutdown mode, both S1 and S2 should be LOW and $\overline{O E}$ should be HIGH. In Shutdown mode, I ICC drops to $1 \mu \mathrm{~A}$. The outputs of the transmitters and receivers are in high impedance states.

Complete V. 35 Port

Figure 8 shows the schematic of a complete surface mounted, single 5V DTE and DCE V. 35 port using only three ICs and six capacitors per port. The LTC1346 is used to transmit the clock and data signals, and the LT1134A to transmit the control signals. If test signals 140, 141, and 142 are not used, the transmitter inputs should be tied to $V_{\text {CC }}$.

APPLICATIONS INFORMATION

Figure 8. Complete $\pm 5 \mathrm{~V}$ V. 35 Interface

APPLICATIONS INFORMATION

RS422/RS485 Applications

The receivers on the LTC1346 are ideal for RS422 and RS485 applications. Using the test circuit in Figure 9, the LTC1346 receivers are able to successfully reconstruct the data stream with the common-mode voltage meeting RS422 and RS485 requirements (12 V to -7 V).
Figures 10 and 11 show that the LTC1346 receivers are very capable of reconstructing data at frequencies up to 10MHz.

Figure 9 RS422/RS485 Receiver Interface

Figure 10. -7V Common Mode

Figure 11. 12V Common Mode

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1345	Single Supply V.35 Transceiver	Requires Only Single 5V Power

AppleTalk ${ }^{\circledR}$ Peripheral Interface Transceiver

June 1995

feATURES

- Provides Complete AppleTalk DCE Interface
- Supports Direct Connect or LocalTalk ${ }^{\circledR}$
- Transmit Enable Controls Three-State Driver Outputs
- Flow-Through Architecture for Easy PC Layout
- Rugged Bipolar Design
- Thermal Shutdown Protection
- Outputs Assume a High Impedance State when Off or Powered Down
- Short-Circuit Protection on All Outputs

APPLICATIONS

- Printers
- Modems
- Local Area Networks

DESCRIPTION

The LT ${ }^{\circledR} 1389$ is a complete AppleTalk DCE interface transceiver. The circuit includes one differential driver, one differential receiver, two high speed single-ended drivers and one RS232/RS562 receiver. Logic inputs provide driver and receiver three-state modes and a low power shutdown control. The differential driver may be used as an additional single-ended driver, supporting RS562 output levels.
The high speed single-ended driver and differential driver support data clock rates to 1 Mbaud , allowing direct connect operation with all Macintosh peripheral devices.
The Transmit and Receive Enable controls provide flexible operating mode control for sharing data lines between multiple circuits.
The LT1389 is available in 18-lead PDIP and S0 Wide packages.
$\overline{\boldsymbol{L Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation. AppleTalk and LocalTalk are registered trademarks of Apple Computer, Inc.

TYPICAL APPLICATION

Typical LocalTalk Application

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage
VCC .. 6V
$V_{E E}$.
vo -6V
Input Voltage
Driver -0.2 V to 6 V
$\overline{T X E N}, \overline{R X E N}$, ON/OFF -0.2 V to 6 V
Single-Ended Receiver.......................... -30 V to 30 V
Differential Receiver -7 V to 12 V

Output Voltage

Driver -30 V to $\mathrm{V}_{C C}+12 \mathrm{~V}$
Receiver -0.3 V to $\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$

Short-Circuit Duration

Driver Output.
Indefinite
Receiver Output Indefinite Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	$V_{\text {CC }}$	$\mathrm{V}_{\text {ON/ } / \overline{\mathrm{FF}}}=5 \mathrm{~V}$		8	15	mA
	$V_{\text {EE }}$			3	5	mA
Supply Current in Shutdown	$V_{\text {CC }}$	$V_{0 N / \overline{F F F}}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
	V_{EE}				10	$\mu \mathrm{A}$
Logic Input Thresholds (TXEN, ON/OFF, TS IN, TD IN)		Input Low Level	0.8	1.4		V
		Input High Level		1.4	2.0	V

Differential/Single-Ended Driver					
Differential Output Voltage, V_{00}	$\begin{aligned} & \hline \text { No Load (Figure 1) } \\ & R_{L}=100 \Omega \\ & R_{L}=50 \Omega \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ 2 \\ 1.5 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 3 \\ & 3 \end{aligned}$	10	V V V
Output Common-Mode Voltage, V_{0}	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Figure 1)	2.0		$3: 0$	V
Single-Ended Output Voltage	$\begin{aligned} & \text { Output High, } \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \text { (Figure 2) } \\ & \text { Output Low, } \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \end{aligned}$	3.7	$\begin{array}{r} 4.2 \\ -4.0 \end{array}$	-3.7	V
Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}$	-10		10	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{V}_{\text {TXEN }}=2 \mathrm{~V},-5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$	-100		100	$\mu \mathrm{A}$
Output Short-Circuit Current	$\begin{aligned} & \mathrm{Isc}^{+} \\ & \mathrm{Isc}^{-}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{Isc}^{-}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} 35 \\ -200 \\ -20 \end{array}$	150	$\begin{array}{r} -35 \\ -8 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Differential Mode Propagation Delay	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		40	75	ns
Driver Disable Delay			40	75	ns
Driver Enable Delay			40	75	ns
Single-Ended Output Fall Time	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$ to -3 V		1	2	$\mu \mathrm{s}$
Single-Ended Output Rise Time	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}, \mathrm{C}_{L}=2500 \mathrm{pF}, \mathrm{V}_{\text {OUT }}=-3 \mathrm{~V}$ to 3 V		1	2	$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS
 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Receiver					
Differential Input Voltage Thresholds	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$	-0.2		0.2	V
Receiver Input Hysteresis	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq 12 \mathrm{~V}$		70		mV
Input Resistance		12			$k \Omega$
Input Common-Mode Voltage		-7		12	V
Output Voltage	Output High, $\mathrm{I}_{\text {OUT }}=160 \mu \mathrm{~A}$ Output Low, Iout $=-1.6 \mathrm{~mA}$	2.4	$\begin{aligned} & 4.0 \\ & 0.2 \end{aligned}$	0.4	V
Output Short-Circuit Current	Sinking Current, $V_{\text {OUT }}=V_{C C}$ Sourcing Current, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	$\begin{array}{r} -10 \\ 10 \end{array}$	20	mA mA
Propagation Delay			40	70	ns

Single-Ended Receiver					
Input Voltage Threshold	Input Low Threshold Input High Threshold	0.8	$\begin{aligned} & 1.3 \\ & 1.7 \end{aligned}$	2.4	V V
Hysteresis		0.1	0.4	1.0	V
Input Resistance	$-5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 5 \mathrm{~V}$	3	5	7	k Ω
Output Voltage	Output Low, Iout $=-1.6 \mathrm{~mA}$ Output High, $\mathrm{I}_{\text {OUT }}=160 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}\right)$	3.5	$\begin{aligned} & \hline 0.2 \\ & 4.2 \\ & \hline \end{aligned}$	0.4	V
Output Short-Circuit Current	Sinking Current, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ Sourcing Current, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-20	$\begin{array}{r} -10 \\ 10 \end{array}$	20	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Propagation Delay	Output Transition High to Low, t_{HL} Output Transition Low to High, t_{LH}		$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	ns ns

Single-Ended Drivers

| Output Voltage | Output High, $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}$
 Output Low, $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}$ | 3.7 | 4.0 |
| :--- | :--- | ---: | ---: | :---: |

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: Unless otherwise specified, testing done at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$ and $\mathrm{V}_{\overline{T X E N}}=0 \mathrm{~V}$. Outputs and single-ended receiver inputs are open. Driver inputs are tied to V_{CC}. Differential receiver input RD^{-}is biased at 2.6 V , RD^{+}at 2.4 V .

Note 3: For driver delay measurements, $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k}$ and $\mathrm{C}_{\mathrm{L}}=51 \mathrm{pF}$. Trigger points are set between the driver's input logic threshold and the output transition to the zero crossing. ($\mathrm{t}_{\mathrm{HL}}=\mathrm{t}_{\mathrm{LH}}=1.4 \mathrm{~V}$ to 0 V)
Note 4: For receiver delay measurements, $C_{L}=51 p F$. Trigger points are set between the receiver's input logic threshold and the output transition to standard TTL/CMOS logic threshold. $\left(\mathrm{t}_{\mathrm{HL}}=1.3 \mathrm{~V}\right.$ to 2.4 V and $\mathrm{t}_{\mathrm{LH}}=1.7 \mathrm{~V}$ to 0.8 V)

PIn functions

$\overline{\text { RXEN }}$ (Pin 1): Receiver Enable Control. An open pin or a logic low allows normal operation of the receivers. A logic high causes receiver outputs to become high impedance, allowing sharing of the receiver output data lines.

GND (Pin 2): Ground Pin.
RS OUT (Pin 3): Single-Ended Receiver Output with TTL/ CMOS Voltage Levels. The output is fully short-circuit protected to GND or V_{CC}.

PIn functions

RD OUT (Pin 4): Differential Receiver Output Pin with TTL/ CMOS Voltage Levels. The output is fully short-circuit protected to GND or VCC.
TS IN (Pins 5, 6): Single-Ended Driver Input Pins. These inputs are TTL/CMOS compatible. An input logic low causes a driver output high. Tie unused inputs to GND.

TD IN (Pin 7): Differential Driver Input Pin. A TTL/CMOS compatible logic input. A logic high causes driver output RD^{+}to swing high and RD^{-}low. Tie input to V_{CC} when not in use.
$\overline{T X E N}$ (Pin 8): A TTL/CMOS logic high places the driver outputs into a high impedance state. A logic low fully enables the transmit capabilities. Transitions occur at data rate speeds to facilitate data line multiplexing.
\mathbf{V}_{EE} ((Pin 9): -5V Input Supply Pin. This pin should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

VCC (Pin 10): 5V Input Supply Pin. This pin should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
TD OUT ${ }^{+}$, TD OUT${ }^{-}$(Pins 11, 12): Differential Driver Output Pins. Outputs drive 100Ω differential loads to RS422 levels, and are also capable of supplying RS562 levels to single-ended loads greater than $3 \mathrm{k} \Omega$. Outputs are
in a high impedance state when $\overline{T X E N}$ is high or $V_{C C}=0 \mathrm{~V}$. Outputs are fully short-circuit protected from $V_{O U T}=V_{E E}$ +20 V to $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}-20 \mathrm{~V}$. Applying higher voltages will not damage the device if the overdrive is moderately current limited.
TS OUT (Pins 13, 14): Single-Ended Driver Outputs at RS562 Voltage Levels. Outputs are in a high impedance state when TXEN is high or $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. Outputs are fully short-circuit protected from $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{EE}}+20 \mathrm{~V}$ to $\mathrm{V}_{\text {OUT }}=$ $\mathrm{V}_{\text {CC }}-20 \mathrm{~V}$. Applying higher voltage will not damage the device if the overdrive is moderately current limited.

RD$^{-}$, RD+ (Pins 15, 16): Differential Receiver Input Pins. Common-mode input range is -7 V to 12 V . Receiver inputs have 50 mV of hysteresis for noise immunity.
RS IN (Pin 17): Single-Ended Receiver Input. This pin accepts RS232 or RS562 level signals ($\pm 30 \mathrm{~V}$) into a protected 5 k terminating resistor. The receiver input provides 0.4 V of hysteresis for noise immunity. Data rates to 120 kbaud are supported.
ON/ $\overline{\operatorname{OFF}}$ (Pin 18): A logic low level on this pin shuts down the circuit. All receiver and driver outputs are high impedance. A logic high allows normal operation of the circuit.

TEST CIRCUITS

Figure 1. Differential Output Test Circuit

Figure 2. Single-Ended Output Test Circuit

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC1320	Appletalk Transceiver	Complete DTE Port
LTC1334	RS232/RS485 Multi-Protocol Transceiver	Appletalk Compatible
LTC1337	5V 3-Driver/5-Receiver Micropower RS232 Transceiver	$500 \mu A$ Quiescent Current
LTC1345	V.35 Differential Transceiver	Low Power V.35 Solution
LTC1348	3.3V 3-Driver/5-Receiver RS232 Transceiver	True RS232 from 3.3V Supplies

Micropower Temperature, Power Supply and Differential Voltage Monitor

July 1995

feATURES

- Complete Ambient Temperature Sensor Onboard
- Power Supply Monitor
- 10-Bit Resolution Rail-to-Rail Common-Mode Differential Voltage Input
- Available in $8-\mathrm{Pin}$ SO
- $0.2 \mu \mathrm{~A}$ Supply Current When Idle
- $350 \mu \mathrm{~A}$ Supply Current When Converting
- Single Supply Voltage: 4.5 V to 6 V
- Three-Wire Half-Duplex Serial I/O
- Communicates with Most MPU Serial Ports and All MPU Parallel I/O Ports

APPLICATIONS

- Temperature Measurement
- Power Supply Measurement
- Current Measurement
- Remote Data Acquisition

DESCRIPTIOn

The LTC ${ }^{\circledR} 1392$ is a micropower data acquisition system designed to measure ternperature, on-chip supply voltage and differential rail-to-rail common-mode voltage. The device features a temperature sensor, a 10-Bit A/D converter with sample-and-hold, a high accuracy bandgap reference and a three-wire half-duplex serial interface.
The LTC1392 can be programmed to measure ambient temperature, power supply voltage and external voltage at the differential input pins, which can be used for current measurement. When measuring temperature, the output code of the A / D converter is linearly proportional to the temperature in ${ }^{\circ}$ Celsius. Wafer level trimming achieves $\pm 2^{\circ} \mathrm{C}$ initial accuracy at room temperature and $\pm 4^{\circ} \mathrm{C}$ over the full $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range.
The on-chip serial port allows efficient data transfer to a wide range of MPUs over three wires. This, coupled with low power consumption, makes remote location sensing possible and facilitates transmitting data through isolation barriers.
$\overline{\mathbf{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

TYPICAL APPLICATION

Complete Temperature, Supply Voltage and Supply Current Monitor

Output Temperature Error

ABSOLUTG maximum ratings

(Note 1)
Supply Voltage (VCC) ... 7 V
Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output Voltage \qquad -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range Commercial \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Industrial .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature ... $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

TOP VIEW	ORDER PART NUMBER
$\mathrm{D}_{1} \sqrt{1} 8 \mathrm{v}_{\mathrm{CC}}$	LTC1392CN8
Dout 2 2 7 - $\mathrm{V}_{\text {IN }}$	LTC1392CS8
CLK 3 - $6+V_{\text {IN }}$	LTC1392IN8
$\overline{\text { Cs }} 4 \square 5 \mathrm{GND}$	LTC1392IS8
	S8 PART MARKING
$\begin{aligned} & \mathrm{T}_{\mathrm{JMax}}=155^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB}) \\ & \left.\mathrm{T}_{\mathrm{JMax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=150^{\circ} \mathrm{C} / \mathrm{W} \text { (} 88\right) \end{aligned}$	$\begin{aligned} & 1392 \\ & 1392 \mid \end{aligned}$

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS (Note 3)

ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IONLEAKAGE	On-Channel Leakage Current (Note 6)		\bullet			± 1	$\mu \mathrm{A}$
$\underline{\text { IOFF LEAKAGE }}$	Off-Channel Leakage Current (Note 6)		\bullet			± 1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$	\bullet	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$	\bullet			0.4	V
$\underline{\mathrm{I}_{\mathrm{H}}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			5	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, I_{\text {OUT }}=10 \mu \mathrm{~A} \\ & V_{C C}=4.75 \mathrm{~V}, I_{\text {OUT }}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 4.5 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.74 \\ & 4.72 \\ & \hline \end{aligned}$		V V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}$	\bullet			0.4	V
$10 z$	Hi-Z Output Current	$\overline{\text { CS }}$ High	\bullet			± 5	$\mu \mathrm{A}$
I SOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-25		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			45		mA
ICC	Supply Current	$\begin{aligned} & \hline \overline{\mathrm{CS}} \mathrm{High} \\ & \mathrm{t}_{\mathrm{CYC}}=76 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \end{aligned}$	-		$\begin{gathered} \hline 0.1 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 \\ 500 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	See Figure 1			1.5		CLK Cycles
tconv	Conversion Time	See Figure 1			10		CLK Cycles
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, CLK \downarrow to D ${ }_{\text {OUt }}$ Data Valid	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$	\bullet		150	300	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {OUT }}$ Data Enabled	$\mathrm{C}_{\text {LOAD }}=100 \mathrm{pF}$	\bullet		60	150	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{C S} \uparrow$ to D ${ }_{\text {Out }} \mathrm{Hi}-\mathrm{Z}$		\bullet		170	450	ns
thDo	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			30		ns
${ }_{\text {t }}$	Dout Fall Time	$C_{\text {LOAD }}=100 \mathrm{pF}$	\bullet		70	250	ns
tr_{r}	Dout Rise Time	$C_{\text {LOAD }}=100 \mathrm{pF}$	\bullet		25	100	ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Input On-Channel Analog Input Off-Channel			$\begin{gathered} 30 \\ 5 \\ \hline \end{gathered}$		pF pF
		Digital Input			5		pF

RECOMmEnDED OPGRATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {cC }}$	Supply Voltage		4.5		6	V
$\mathrm{f}_{\text {CLK }}$	Clock Frequency	$V_{C C}=5 \mathrm{~V}$	50		250	kHz
$\mathrm{t}_{\text {CYC }}$	Total Cycle Time	$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ Temperature Conversion Only	$\begin{gathered} 74 \\ 144 \end{gathered}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
thDI	Hold Time, $\mathrm{D}_{\mathbb{N}}$ After CLK \uparrow	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	150			ns
$\mathrm{t}_{\text {suCs }}$	Setup Time $\overline{C S} \downarrow$ Before First CLK \uparrow (See Figure 1)	$V_{C C}=5 \mathrm{~V}$	2			$\mu \mathrm{S}$
$t_{\text {WAKEUP }}$	Wakeup Time $\overline{\mathrm{CS}} \downarrow$ Before Start Bit \uparrow (See Figure 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \text { Temperature Conversion Only } \end{aligned}$	$\begin{aligned} & 10 \\ & 80 \end{aligned}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{t}_{\text {suDI }}$	Setup Time, $\mathrm{D}_{\text {IN }}$ Stable Before CLK \uparrow	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	150			ns
twHCLK	Clock High Time	$V_{C C}=5 \mathrm{~V}$	1.6			$\mu \mathrm{S}$
twLCLK	Clock Low Time	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	2			$\mu \mathrm{S}$
${ }^{\text {twh }}$ WS	$\overline{\text { CS }}$ High Time Between Data Transfer Cycles	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$	2			$\mu \mathrm{S}$
$\mathrm{t}_{\text {WLCS }}$	$\overline{\mathrm{CS}}$ Low Time During Data Transfer	$\begin{aligned} & \mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=250 \mathrm{kHz} \\ & \text { Temperature Conversion Only } \end{aligned}$	$\begin{gathered} 72 \\ 142 \end{gathered}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$

RECOMmEnDED OPGRATING CONDITIONS

The - denotes specifications which apply over the operating temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$ for commercial grade and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for industrial grade).
Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.
Note 2: All voltage values are with respect to GND.
Note 3: Testing done at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{CLK}=250 \mathrm{kHz}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Note 4: Temperature integral nonlinearity is defined as the deviation of the A/D code versus temperature curve from the best-fit straight line over the device's rated temperature range.
Note 5: Voltage integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual end points of the transfer curve.
Note 6: Channel leakage current is measured after the channel selection.
Note 7: See guaranteed temperature limit curves vs temperature range on the first page of this data sheet.

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

D_{IN} (Pin 1): Digital Input. The A/D configuration word is shifted into this input.
$D_{\text {out }}$ (Pin 2): Digital Output. The A/D result is shifted out of this output.
CLK (Pin 3): ShiftClock. This clock synchronizes the serial data.
CS (Pin 4): Chip Select Input. A logic low on this input enables the LTC1392.
GND (Pin 5): Ground Pin. GND should be tied directly to an analog ground plane.
$+V_{\mathbb{N}}$ (Pin 6): Positive Analog Differential Input. The pin can be used as a single-ended input by grounding $-V_{\text {IN }}$.
$-V_{\mathbb{N}}$ (Pin 7): Negative Analog Differential Input. The input must be free from noise.
$\mathrm{V}_{\text {cc }}$ (Pin8): Positive Supply. This supply must be kept free from noise and ripple by bypassing directly to the ground plane.

BLOCK DIAGRAM

TEST CIRCUITS

Load Circuit for $t_{d D O}, t_{r}$ and t_{f}

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Rise and Fall Times, t_{r} and t_{f}

Load Circuit for $\mathrm{t}_{\text {dis }}$ and $\mathrm{t}_{\text {en }}$

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Delay Time, $\mathrm{t}_{\mathrm{dDO}}$

Voltage Waveforms for $\mathrm{t}_{\mathrm{d} \text { is }}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNTIL DISABLED BY THE OUTPUT CONTROL. NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS LOW UNTIL DISABLED BY THE OUTPUT CONTROL.

LTC1392•TCO6

APPLICATIONS InFORMATION

The LTC1392 is a micropower data acquisition system designed to measure temperature, on-chip power supply voltage and differential input voltage. The LTC1392 contains the following functional blocks:

1. On-chip temperature sensor
2. 10-bit successive approximation capacitive ADC
3. Bandgap reference
4. Analog multiplexer (MUX)
5. Sample-and-hold (S/H)
6. Synchronous, half-duplex serial interface
7. Control and timing logic

DIGITAL CONSIDERATIONS

Serial Interface

The LTC1392 communicates with microprocessors and other external circuitry via a synchronous, half-duplex, three-wire serial interface (see Figure 1). The clock (CLK) synchronizes the data transfer with each bit being transmitted on the falling CLK edge and captured on the rising CLK edge in both transmitting and receiving systems. The input data is first received and then the A / D conversion result is transmitted (half-duplex). Half-duplex operation allows $\mathrm{D}_{\text {IN }}$ and $\mathrm{D}_{\text {OUT }}$ to be tied together allowing transmission over three wires: $\overline{C S}, C L K$ and DATA ($\left.D_{\text {IN }} / D_{\text {OUT }}\right)$. Data transfer is initiated by a falling chip select ($\overline{\mathrm{CS}}$) signal. After the falling $\overline{\mathrm{CS}}$ is recognized, an $80 \mu \mathrm{~s}$ delay is needed for temperature measurement or a $10 \mu \mathrm{~s}$ delay for other measurements, followed by a 4-bit input word which configures the LTC1392 for the current conversion. This data word is shifted into the $D_{I N}$ input. $D_{I N}$ is then disabled from shifting in any data and the $D_{\text {Out }}$ pin is configured from three-state to an output pin. A null bit and the result of the current conversion are serially transmitted on the falling CLK edge onto the $D_{\text {Out }}$ line. The format of the A / D result can be either MSB-first sequence or MSB-first sequence followed by an LSB-first sequence. This provides easy interface to MSB- or LSB-first serial ports. Bringing CS high resets the LTC1392 for the next data exchange.

INPUT DATA WORD

The LTC1392 4-bit input word is clocked into the $\mathrm{D}_{\text {IN }}$ input on the first four rising CLK edges after $\overline{\mathrm{CS}}$ is recognized. Further inputs on the $D_{\text {IN }}$ input are then ignored until the next $\overline{\mathrm{CS}}$ cycle. The four bits of the input word are defined as follows:

BIT 3	BIT 2	BIT 1	BIT 0
Start	Select 1	Select 0	MSBF

Start Bit

The first "logic one" clocked into the $D_{\text {IN }}$ input after $\overline{C S}$ goes low is the Start Bit. The Start Bit initiates the data transfer and all leading zeros which precede this logical one will be ignored. After the Start Bit is received the remaining bits of the input word will be clocked in. Further input on the $D_{\text {IN }}$ pin are then ignored until the next $\overline{C S}$ cycle.

Measurement Modes Selection

The two bits of the input word following the Start Bit assign the measurement mode for the requested conversion. Table 1 shows the modes selection. Whenever there is a mode change from another mode to temperature measurement, a temperature mode initializing cycle is needed. The first temperature data measurement after a mode change should be ignored.
Table 1. Measurement Modes Selection

SELECT $\mathbf{1}$	SELECT $\mathbf{0}$	MEASUREMENT MODE
0	0	Temperature
0	1	Power Supply Voltage
1	0	Differential Input, 1V Full Scale
1	1	Differential Input, 0.5 V Full Scale

MSB-First/LSB-First (MSBF)

The output data of the LTC1392 is programmed for MSB-first or LSB-first sequence using the MSBF bit. When the MSBF bit is a logical one, data will appear on the $D_{0 u T}$

APPLICATIONS INFORMATION

MSB-First Data ($M S B F=1$)

MSB-First Data (MSBF $=0$)

Figure 1.
line in MSB-first format. Logical zeros will be filled in indefinitely following the last data bit to accommodate longer word lengths required by some microprocessors. When the MSBF bit is a logical zero, LSB-first data will follow the normal MSB-first data on the $D_{0 U T}$ line.

CONVERSIONS

Temperature Conversion

The LTC1392 measures temperature through the use of an on-chip, proprietary temperature measurement technique. The temperature reading is provided in a 10-bit, unipolar format. Table 2 describes the exact relationship of output data to measured temperature or equation 1 can be used to calculate the temperature.

Temperature $\left({ }^{\circ} \mathrm{C}\right)=$ Output Code $/ 4-130$

Note that the LTC1392l is only specified for use over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range. Temperature outside this range may have errors greater than those shown in the electrical characteristic table.

Table 2. Codes for Temperature Conversion

OUTPUT CODE	TEMPERATURE (${ }^{\circ}$ C)
1111111111	125.75
1111111110	125.50
\ldots	\ldots
1001110101	27.25
1001110100	27.00
1001110011	26.75
\ldots	\ldots
0000000001	-129.75
0000000000	-130.00

APPLICATIONS INFORMATION

Voltage Supply (Vcc) Monitor

The LTC1392 measures supply voltage through the onchip $V_{C C}$ supply line. The $V_{C C}$ reading is provided in a 10-bit, unipolar format. Table 3 describes the exact relationship of output data to measured $V_{C C}$ or equation (2) can be used to calculate the measured $V_{\text {CC }}$.

$$
\begin{equation*}
\text { Measured } V_{c c}= \tag{2}
\end{equation*}
$$

(7.26-2.42) \times Output Code/1024 +2.42

The guaranteed supply voltage monitor range is from 4.5 V to 6 V . Typical parts are able to maintain the measurement accuracy with $V_{\text {CC }}$ as low as 3.25 V . The typical INL and DNL error plots shown on page 4 are measured with $V_{C C}$ from 3.63 V to 6.353 V .

Table 3. Codes for Voltage Supply Conversion

OUTPUT CODE	Supply Voltage (VCC)
1011110110	6.003 V
1011110101	5.998 V
\ldots	\ldots
1000100010	5.001 V
\ldots	\ldots
0110111001	4.504 V
0110111000	4.500 V

Differential Voltage Conversion

The LTC1392 measures the differential input voltage through pins $+\mathrm{V}_{\text {IN }}$ and $-\mathrm{V}_{\text {IN }}$. Input ranges of 0.5 V or 1 V full scale are available for differential voltage measurement
with resolutions of 10 bits. Tables $4 a$ and $4 b$ describe the exact relationship of output data to measured differential input voltage in the 1 V and 0.5 V input range. Equations (3) and (4) can be used to calculate the differential voltage in the 1 V and 0.5 V input voltage range respectively. The output code is in unipolar format.

$$
\begin{align*}
& \text { Differential Voltage }=10 \text {-bit code } / 1024 \tag{3}\\
& \text { Differential Voltage }=0.5 \times(10-\text { bit code }) / 1024 \tag{4}
\end{align*}
$$

Table 4a. Codes for 1V Differential Voltage Range

OUTPUT CODE	INPUT VOLTAGE	INPUT RANGE $=1 V$	REMARKS
1111111111	$1 \mathrm{~V}-1$ LSB	999.0 mV	
1111111110	$1 \mathrm{~V}-2 \mathrm{LSB}$	998.0 mV	
\ldots	\ldots	\ldots	
0000000001	1 LSB	0.977 mV	$1 \mathrm{LSB}=1 / 1024$
0000000000	0 LSB	0.00 mV	

Table 4b. Codes for 0.5 V Differential Voltage Range

OUTPUT CODE	INPUT VOLTAGE	INPUT RANGE $=\mathbf{0 . 5 V}$	REMARKS
1111111111	$0.5 \mathrm{~V}-1 \mathrm{LSB}$	499.0 mV	
1111111110	$0.5 \mathrm{~V}-2 \mathrm{LSB}$	498.1 mV	
\ldots	\ldots	\ldots	
0000000001	1 LSB	0.488 mV	$1 \mathrm{LSB}=0.5 / 1024$
0000000000	OLSB	0.00 mV	

TYPICAL APPLICATIONS

System Monitor for Two Supply Voltages and Ambient Temperature

System Monitor for Relative Humidity, Supply Voltage and Ambient Temperature

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENT
-T1025	Micropower Thermocouple Cold Junction Compensator	Compatible with Standard Thermocouples (E, J, K, R, S, T)
-TC1285/LTC1288	3V Micropower 12-Bit ADC with Auto Shutdown	Differential or 2-Channel Multiplexed, Single Supply
-TC1286/LTC1298	Micropower 12-Bit ADC with Auto Shutdown	Differential or 2-Channel Multiplexed, Single Supply
-TC1390	Low Power, Precision 8-to-1 Analog Multiplexer	SPI, QSPI Compatible, Single 5V or 3V, Low RoN, Low Charge Injection

Complete SO-8, 12-Bit, 400ksps ADC with Shutdown

May 1995

feATURES

- Complete 12-Bit ADC in SO-8
- Single Supply 5V or $\pm 5 \mathrm{~V}$ Operation
- Sample Rate: 400ksps
- Power Dissipation: 75mW (Typ)
- 70 dB S/(N + D) and 74dB THD at Nyquist
- No Missing Codes over Temperature
- NAP Mode with Instant Wake-Up: 6mW
- SLEEP Mode: $30 \mu \mathrm{~W}$
- High Impendance Analog Input
- Input Range ($1 \mathrm{mV} / \mathrm{LSB}$): 0 V to 4.096 or $\pm 2.048 \mathrm{~V}$
- Internal Reference Can Be Overdriven Externally
- 3-Wire Interface to DSPs and Processors

APPLICATIONS

- High Speed Data Acquisition
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- Audio and Telecom Processing
- Digital Radio
- Spectrum Analysis
- Low Power and Battery-Operated Systems
- Handheld or Portable Instruments

DESCRIPTIOn

The LTC ${ }^{\circledR} 1400$ is a complete $400 \mathrm{ksps}, 12$-bit A/D converter which draws only 75 mW from a 5 V or $\pm 5 \mathrm{~V}$ supplies. This easy-to-use device comes complete with a 200 ns sample-and-hold and a precision reference. Unipolar and bipolar conversion modes add to the flexibility of the ADC. The LTC1400 is capable of going into two power saving modes: NAP and SLEEP. In SLEEP mode, it consumes only 6 mW of power and can wake up and convert immediately. In the SLEEP mode, it consumes $30 \mu \mathrm{~W}$ of power typically. Upon power-up from SLEEP mode, a reference ready (REFRDY) signal is available in the serial data word to indicate that the reference has settled and the chip is ready to convert.

The LTC1400 converts 0 V to 4.096 V unipolar inputs from a single 5 V supply and $\pm 2.048 \mathrm{~V}$ bipolar inputs from $\pm 5 \mathrm{~V}$ supplies. Maximum DC specs include ± 1 LSB INL, ± 1 LSB DNL and $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over temperature. Guaranteed AC performance includes $70 \mathrm{~dB} \mathrm{~S} /(\mathrm{N}+\mathrm{D})$ and 76 dB THD at an input frequency of 100 kHz , over temperature.
The 3-wire serial port allows compact and efficient data transfertoa wide range ofmicroprocessors, microcontrollers and DSPs.
$\boldsymbol{\square}$, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

Single 5V Supply, 400kHz, 12-Bit Sampling A/D Converter

Power Consumption vs Sample Rate

LTC1400•TAO2

IBSOLUTE MAXIMUM RATINGS

Notes 1, 2)
jupply Voltage (V_{CC}) .. 7 V
Jegative Supply Voltage (VSS).................... 6 V to GND
-otal Supply Voltage (VCC to $V_{S S}$)
Bipolar Operation Only 12 V
Inalog Input Voltage (Note 3)
Unipolar Operation \qquad -0.3 V to $(\mathrm{V} \mathrm{CC}+0.3 \mathrm{~V})$
Bipolar Operation........... $\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
)igital Input Voltage (Note 4)
Unipolar Operation \qquad .-0.3 V to 12 V
Bipolar Operation $\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$ to 12 V
Jigital Output Voltage
Unipolar Operation \qquad -0.3 V to $(\mathrm{V} C C+0.3 \mathrm{~V})$
Bipolar Operation........... $\left(\mathrm{V}_{S S}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{C C}+0.3 \mathrm{~V}\right)$
'ower Dissipation \qquad 500 mW
)peration Temperature Range
LTC1400C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC14001 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Btorage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
.ead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

TOP VIEW	ORDER PART NUMBER
$v_{c c} \frac{1}{8} 8 \mathrm{v}_{\text {ss }}$	LTC1400CN8
AIN 2 2 conv	LTC1400CS8
VEE 3	LTC1400IN8
GND $4 \square 5$ Dout	LTC1400IS8
N8 PACLAGE S8 PACKAGE 8-LEAD PDIP 8-LEAD PLASTIC So	S8 PART MARKING
$\begin{aligned} & T_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{J A}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB}) \\ & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=175^{\circ} \mathrm{C} / \mathrm{W}(88) \end{aligned}$	$\begin{aligned} & 1400 \\ & 14001 \end{aligned}$

Consult factory for Military grade parts.

JOWER REQUIREMENTS
(Note 5)

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
CC	Positive Supply Voltage (Note 6)	Unipolar Bipolar		$\begin{aligned} & 4.75 \\ & 4.75 \end{aligned}$		$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	V
SS	Negative Supply Voltage (Note 6)	Bipolar Only		-2.45		-5.25	V
JD	Positive Supply Current	$\mathrm{f}_{\text {SAMPLE }}=400 \mathrm{ksps}$ NAP Mode SLEEP Mode	\bullet		$\begin{aligned} & \hline 15 \\ & 1.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 30 \\ 3.0 \\ 20.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
is	Negative Supply Current	$\mathrm{f}_{\text {SAMPLE }}=400 \mathrm{ksps}, \mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$ NAP Mode SLEEP Mode	\bullet		$\begin{gathered} 0.3 \\ 0.2 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 0.6 \\ 0.5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ $\mu \mathrm{A}$
D	Power Dissipation	$\mathrm{f}_{\text {SAMPLE }}=400 \mathrm{ksps}$ NAP Mode SLEEP Mode	\bullet		$\begin{gathered} 75 \\ 6 \\ 30 \end{gathered}$	$\begin{gathered} 160 \\ 20 \\ 125 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mu W \end{aligned}$

INALOG INPUT (Note 5)

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IN	Analog Input Range (Note 7)	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V} \text { (Unipolar) } \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-2.45 \mathrm{~V} \text { (Bipolar) } \end{aligned}$	\bullet		$\begin{gathered} 0 \text { to } 4.096 \\ \pm 2.048 \end{gathered}$		V
N	Analog Input Leakage Current	During Conversions (Hold Mode)	\bullet			± 1	$\mu \mathrm{A}$
IN	Analog Input Capacitance	Between Conversions (Sample Mode) During Conversions (Hold Mode)			$\begin{gathered} 45 \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Resolution (No Missing Codes)		\bullet	12		Bits
Integral Linearity Error	(Note 9)	\bullet		± 1	LSB
Differential Linearity Error		\bullet	± 1	LSB	
Offset Error	(Note 10)			± 4	LSB
			± 6	LSB	
Full-Scale Error		\bullet	± 15	LSB	
Full-Scale Tempco	IOUT(REF) $=0$		± 10	± 45	ppm $/{ }^{\circ} \mathrm{C}$

DYOAMIC ACCURACY
 (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	100kHz Input Signal 200kHz Input Signal	-	70	$\begin{aligned} & 72 \\ & 70 \\ & \hline \end{aligned}$		dB dB
THD	Total Harmonic Distortion Up to 5th Harmonic	100kHz Input Signal 200kHz Input Signal	\bullet		$\begin{aligned} & -80 \\ & -74 \end{aligned}$	-76	dB dB
	Peak Harmonic or Spurious Noise	100kHz Input Signal 200kHz Input Signal	\bullet		$\begin{aligned} & \hline-84 \\ & -74 \end{aligned}$	-76	dB dB
IMD	Intermodulation Distortion	$\begin{aligned} & f_{I N 1}=99.3 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN2}}=102.4 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN} 1}=199.37 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN} 2}=202.4 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & -82 \\ & -70 \end{aligned}$		dB dB
	Full Power Bandwidth				4		MHz
	Full Linear Bandwidth ($\mathrm{S} /(\mathrm{N}+\mathrm{D}$) $\geq 68 \mathrm{~dB}$)				350		kHz

InTERMAL REFERERCE CHARACTERISTICS (Note 5)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$V_{\text {REF }}$ Output Voltage	$\mathrm{I}_{\text {OUT }}=0$		2.400	2.420	2.440	V
$V_{\text {REF }}$ Output Tempco	$\mathrm{I}_{\text {OUT }}=0$	\bullet		± 10	± 45	ppm/ ${ }^{\circ} \mathrm{C}$
$V_{\text {REF }}$ Line Regulation	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V} \\ & -5.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq 0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \text { LSB } / V \\ & \text { LSB/V } \end{aligned}$
$V_{\text {REF }}$ Load Regulation	$0 \leq\| \|$ OUT $\mid \leq 1 \mathrm{~mA}$			2		LSB/mA

DIGITAL INPUTS ARD OUTPUTS (Note 5)

IIMING CHARACTERISTICS (Note 5)

;YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
SAMPLE(MAX)	Maximum Sampling Frequency	(Note 6)	\bullet			400	kHz
30 NV	Minimum Conversion Time		\bullet	2.1			$\mu \mathrm{S}$
ACO	Acquisition Time (Unipolar Mode) (Bipolar Mode $\mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}$)	(Note 7)			$\begin{aligned} & 230 \\ & 200 \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \end{aligned}$	ns
3LK	CLK Frequency		\bullet	0.1		6.4	MHz
NK(NAP)	Time to Wake Up from NAP Mode	(Note 7)			350		ns
1	Minimum CLK Pulse Width to Return to Active Mode		\bullet		20	50	ns
?	Minimum CONV \uparrow to CLK \uparrow Setup Time		\bullet		40	80	ns
3	Maximum CONV \uparrow After Leading CLK \uparrow		\bullet		-20	0	ns
t	Minimum CONV Pulse Width	(Note 11)	\bullet		20	50	ns
;	Time from CLK \uparrow to Sample Mode	(Note 7)	\bullet		80		ns
;	Aperture Delay of Sample-and-Hold (Note 7)	Jitter < 50ps	\bullet		45	65	ns
,	Minimum Delay Between Conversion (Unipolar Mode) (Bipolar Mode $\mathrm{V}_{S S}=-5 \mathrm{~V}$)		\bullet		$\begin{aligned} & 265 \\ & 235 \end{aligned}$	$\begin{aligned} & 385 \\ & 355 \end{aligned}$	ns
3	Delay Time, CLK \uparrow to $\mathrm{D}_{\text {Out }}$ Valid	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		40	65	ns
,	Delay Time, CLK \uparrow to $\mathrm{D}_{\text {Out }} \mathrm{Hi}-\mathrm{Z}$	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		40	80	ns
10	Time from Previous Data Remain Valid After CLK \uparrow	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$	\bullet	14	25		ns

he - denotes specifications which apply over the full operating mperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
ote 1: Absolute maximum ratings are those values beyond which the life ; a device may be impaired.
ote 2: All voltage values are with respect to GND.
ote 3: When these pin voltages are taken below $\mathrm{V}_{S S}$ (ground for unipolar Iode) or above $V_{C C}$, they will be clamped by internal diodes. This product in handle input currents greater than 40 mA below V_{SS} (ground for lipolar mode) or above $V_{\text {CC }}$ without latch-up.
ote 4: When these pin voltages are taken below $\mathrm{V}_{\text {SS }}$ (ground for unipolar ode), they will be clamped by internal diodes. This product can handle put currents greater than 40 mA below $\mathrm{V}_{S S}$ (ground for unipolar mode) ithout latch-up. These pins are not clamped to V_{CC}.
ote 5: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=400 \mathrm{kHz}, \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise)ecified.

Note 6: Recommended operating conditions.
Note 7: Guaranteed by design, not subject to test.
Note 8: Linearity, offset and full-scale specifications apply for unipolar and bipolar modes.
Note 9: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 10: Bipolar offset is the offset voltage measured from -0.5LSB when the output code flickers between 000000000000 and 111111111111.
Note 11: The rising edge of CONV starts a conversion. If CONV returns low at a bit decision point during the conversion, it can create small errors. For best performance ensure that CONV returns low either within 120ns after conversion starts (i.e., before the first bit decision) or after the 14 clock cycle. (Figure 9 Timing Diagram).

PIn functions

$V_{\text {Cc }}$ (Pin 1): Positive Supply, 5V. Bypass to GND (10 $\mu \mathrm{F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).
$\mathrm{A}_{\text {IN }}$ (Pin2):Analog Input. 0 V to 4.096 V (Unipolar),$\pm 2.048 \mathrm{~V}$ (Bipolar).
Vref $^{\text {(Pin 3): } 2.42 \mathrm{~V} \text { Reference Output. Bypass to GND }}$ ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).
GND (Pin 4): Ground. GND should be tied directly to an analog ground plane.
$D_{\text {out }}$ (Pin 5):The A/D conversion result is shifted out from this pin.

CLK (Pin 6): Clock. This clock synchronizes the serial data transfer. A minimum CLK pulse of 50 ns will cause the ADC to wake up from NAP or SLEEP mode.
CONV (Pin 7): Conversion Start Signal. This active high signal starts a conversion on its rising edge. Keeping CLK low and pulsing CONV two/four times will put the ADC into NAP/SLEEP mode.
$\mathrm{V}_{\text {ss }}$ (Pin 8): Negative Supply. -5 V for bipolar operation. Bypass to GND with $0.1 \mu \mathrm{~F}$ ceramic. $\mathrm{V}_{S S}$ should short to GND for unipolar operation.

fUnCTIONAL BLOCK DIAGRAM

TEST CIRCUITS

LTC1400.TCO1

APPLICATIONS INFORMATION

Conversion Details

The LTC1400 uses a successive approximation algorithm and an internal sample-and-hold circuit to convert an analog signal to a 12-bit serial output based on a precision internal reference. The control logic provides easy interface to microprocessors and DSPs through 3-wire connections.

Start of conversion is controlled by the CONV input. At the start of conversion the successive approximation register (SAR) is reset. Once a conversion cycle has begun it cannot be restarted.

During conversion, the internal 12-bit capacitive DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). Referring to Figure 1, the $A_{\text {IN }}$ input connects to the sample-and-hold capacitor during the acquired phase and the comparator offset is nulled by the feedback switch. In this acquire phase, a minimum delay of 200 ns will provide enough time for the sample-and-hold capacitor to acquire the analog signal. During the convert phase, the comparator feedback switch opens, putting the comparator into the compare mode. The input switches $\mathrm{C}_{\text {SAMPLE }}$ to ground, njecting the analog input charge onto the summing junction. This input charge is successively compared with the jinary-weighted charges supplied by the capacitive DAC. 3it decisions are made by the high speed comparator. At the end of a conversion, the DAC output balances the AIN nput charge. The SAR contents (a 12-bit data word) which 'epresent the $A_{\text {IN }}$, are output through the serial pin $D_{\text {OUT }}$.

Driving the Analog Input

The analog input of the LTC1400 is easy to drive. It draws only one small current spike while charging the sample-and-hold capacitor at the end of conversion. During conversion, the analog input draws only a small leakage current. The only requirement is that the amplifier driving the analog input must settle after the small current spike before the next conversion starts. Any op amp that settles in 200 ns to small current transients will allow maximum speed operation. If a slower op amp is used, more settling time can be provided by increasing the time between conversions. Suitable devices capable of driving the ADC's A IN $^{\text {input include }}$ LT ${ }^{\circledR} 1006$, LT1007, LT1220, LT1223 and LT1224 op amps.

Internal Reference

The LTC1400 has an on-chip, temperature compensated, curvature corrected, bandgap reference, which is factory trimmed to 2.42V. It is internally connected to the DAC and is available at Pin 3 to provide up to 1 mA of current to an external load. For minimum code transition noise, the reference output should be decoupled with a capacitor to filter wideband noise from the reference ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic). The $\mathrm{V}_{\text {REF }}$ pin can be driven with a DAC or other means to provide input span adjustment in bipolar mode. The $\mathrm{V}_{\text {REF }}$ pin must be driven to at least 2.45 V to prevent conflict with the internal reference. The reference should not be driven to more than 5 V . Figure 2 shows an LT1006 op amp driving the reference

Figure 2. Driving the $\mathrm{V}_{\text {REF }}$ with the LT1006 Op Amp

APPLICATIONS INFORMATION

pin. Figure 3 shows a typical reference, the LT1019A-5 connected to the LTC1400. This will provide an improved drift (equal to the maximum $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ of the LT1019A-5) and $\mathrm{a} \pm 4.231 \mathrm{~V}$ full scale.

Figure 3. Supplying a 5V Reference Voltage to the LTC1400 with the LT1019A-5

UNIPOLAR / BIPOLAR OPERATION AND ADJUSTMENT

Figure 4 shows the ideal input/output characteristics for LTC1400. The code transitions occur midway between successive integer LSB values (i.e., $0.5 \mathrm{LSB}, 1.5 \mathrm{LSB}$, $2.5 \mathrm{LSB}, \ldots \mathrm{FS}-1.5 \mathrm{LSB}$). The output code is naturally binary with $1 \mathrm{LSB}=4.096 / 4096=1 \mathrm{mV}$. Figure 5 shows the input/output transfer characteristics for the bipolar mode in two's complement format.

Figure 4. LTC1400 Unipolar Transfer Characteristics

Figure 5. LTC1400 Bipolar Transfer Characteristics

Unipolar Offset and Full-Scale Error Adjustments

In applications where absolute accuracy is important, offset and full-scale errors can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 6a shows the extra components required for full-scale error adjustment. Zero offset is achieved by adjusting the offset of the op amp driving $A_{I N}$ (i.e., A1 in Figure 6b). For zero offset error, apply 0.5 mV (i.e., 0.5 LSB) at the input and adjust the offset trim until the LTC1400 output code flickers between 000000000000 and 000000000001. For zero full-scale error, apply an analog input of 4.0945 V (FS-1.5LSB or last code transition) at the input and adjust R5 until the LTC1400 output code flickers between 1111 11111110 and 111111111111.

Figure 6a. Full-Scale Adjust Circuit

APPLICATIONS INFORMATION

Figure 6b. LTC1400 Offset and Full-Scale Adjust Circuit

3ipolar Offset and Full-Scale Error Adjustments

3ipolar offset and full-scale errors are adjusted in a similar ashion to the unipolar case. Bipolar offset error adjustnent is achieved by trimming the offset of the op amp uriving the analog input of the LTC1400 while the input oltage is 0.5 LSB below ground. This is done by applying in input voltage of $-0.5 \mathrm{mV}(-0.5 \mathrm{LSB})$ to the input in تigure 6 c and adjusting the op amp until the ADC output ;ode flickers between 000000000000 and 11111111 |111. For full-scale adjustment, an input voltage of 2.0465 V FS -1.5 LSBs) is applied to the input and R5 is adjusted intil the output code flickers between 011111111110 and 011111111111.

Figure 6c. LTC1400 Bipolar Offset and Full-Scale Adjust Circuit

BOARD LAYOUT AND BYPASSING

Wire-wrap boards are not recommended for high resolution or high speed A / D converters. To obtain the best performance from the LTC1400, a printed circuit board is required. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC. The analog input should be screened by GND.
High quality tantalum and ceramic bypass capacitors should be used at the $V_{C C}$ and $V_{\text {REF }}$ pins as shown in the Typical Application on the first page of this data sheet. For the bipolar mode, a $0.1 \mu \mathrm{~F}$ ceramic provides adequate bypassing for the $V_{S S}$ pin. The capacitors must be located as close to the pins as possible. The traces connecting the pins and the bypass capacitors must be kept short and should be made as wide as possible.

Input signal leads to $A_{\text {IN }}$ and signal return leads from GND (Pin 4) should be kept as short as possible to minimize noise coupling. In applications where this is not possible, a shielded cable between source and ADC is recommended. Also, since any potential difference in grounds between the signal source and ADC appears as an error voltage in series with the input signal, attention should be paid to reducing the ground circuit impedance as much as possible.
Figure 7 shows the recommended system ground connections. All analog circuitry grounds should be terminated at the LTC1400GND pin. The ground return fromthe LTC1400

Figure 7. Power Supply Connection

APPLICATIONS INFORMATION

Pin 4 to the power supply should be low impedance for noise free operation. Digital circuitry grounds must be connected to the digital supply common.
In applications where the ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in the conversion results. These errors are due to feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a Wait state during conversion or by using three-state buffers to isolate the ADC data bus.

Power-Down Mode

Upon power-up, the LTC1400 is initialized to the active state and is ready for conversion. However, the chip can be easily placed into the NAP or SLEEP mode by exercising the right combination of CLK and CONV signal. In the NAP mode all power is off except the internal reference, which is still active and provides 2.42 V output voltage to the other circuitry. In this mode, the ADC draws only 6 mW of
power instead of 75 mW (for minimum power, the logic inputs must be within 500 mV of the supply rails). The wake-up time from the NAP mode to the active mode is 350 ns . In the SLEEP mode, the power consumption is reduced to minimum by cutting off the supply to all internal circuitry including the reference. Figure 8 shows the ways to power down LTC1400. The chip can enter the NAP mode by keeping the CLK signal low and pulsing the CONV signal twice. For SLEEP mode operation, CONV signal should be activated four times while CLK is kept low.

The LTC1400 can be returned to active mode easily. This can be achieved by pulsing the CLK signal. During the transition from SLEEP mode to active mode, the $\mathrm{V}_{\text {REF }}$ voltage ramp-up time is a function of the loading conditions. With a $10 \mu \mathrm{~F}$ bypass capacitor, the wake-up time from SLEEP mode is typically 4ms. A REFRDY signal will be activated once the reference has settled and is ready for A / D conversion. This REFRDY bit is output to the $D_{\text {OUT }}$ pin before the rest of the A/D converted code.

LTC1400•F08
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS. REFRDY APPEARS AS A BIT IN THE DOUT WORD.
Figure 8. NAP Mode and SLEEP Mode Waveforms

IPPLICATIONS INFORMATION

IGITAL INTERFACE

he digital interface requires only three digital lines. CLK nd CONV are both inputs, and the DOUT output provides ie conversion result in serial form.
igure 9 shows the digital timing diagram of the LTC1400 uring the A/D conversion. The CONV rising edge starts le conversion. Once initiated, it can not be restarted until
the conversion is completed. If the time from CONV signal to CLK rising edge is less than t_{2}, the digital output will be delayed by one clock cycle.

The digital output data is updated on the rising edge of the CLK line. DOUT data should be captured by the receiving system on the rising CLK edge. Data remains valid for a minimum time of t_{10} after the rising CLK edge to allow capture to occur.

Figure 9. ADC Digital Timing Diagram

Figure 10. CLK to $D_{\text {OUT }}$ Delay

TYPICAL APPLICATION

LTC1400 with Parallel Output

RELATGD PARTS

12-Bit Parallel Output ADCs

PART NUMBER	SAMPLE RATE	POWER DISSIPATION	DESCRIPTION
LTC1272	250 ksps	75 mW	Single 5V, 7572 Upgrade
LTC1273/LTC1275/LTC1276	300 ksps	75 mW	With Clock and Reference
LTC1274/LTC1277	100 ksps	10 mW	Low Power ADCs with $1 \mu A$ Shutdown
LTC1278/LTC1279	$500 / 600 \mathrm{ksps}$	75 mW	70 dB at Nyquist, Low Power, Single 5V
LTC1282	140 ksps	12 mW	3 V or $\pm 3 \mathrm{~V}$ ADC with Clock and Reference
LTC1410	1.25 Msps	160 mW	70 dB at Nyquist, Differential Input

12-Bit Serial Output ADCs

PART NUMBER	VCC	SAMPLE RATE	POWER DISSIPATION	DESCRIPTION
LTC1285/LTC1288	3 V	$7.5 / 6.6 \mathrm{ksps}$	0.48 mW	3 V, One or Two Input, Micropower, S0-8
LTC1286/LTC1298	5 V	$12.5 / 11.1 \mathrm{ksps}$	1.25 mV	One or Two Input, Micropower, S0-8
LTC1290	$5 / \pm 5 \mathrm{~V}$	50 ksps	30 mW	8 Input, Full-Duplex Serial I/0
LTC1296	$5 / \pm 5 \mathrm{~V}$	46.5 ksps	30 mW	8 Input, Half-Duplex Serial I/O, Power Shutdown Output

eAtures

Complete 1.25Msps ADC
Power Dissipation: 160mW (Typ)
Nap (7mW) and Sleep ($10 \mu \mathrm{~W}$) Shutdown Modes
Operates with Internal $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Reference
or External Reference
True Differential Inputs Reject Common-Mode Noise $71 \mathrm{~dB} \mathrm{~S} /(\mathrm{N}+\mathrm{D})$ and 82dB THD at Nyquist 20MHz Full Power Bandwidth $\pm 2.5 \mathrm{~V}$ Bipolar Input Range Internal Synchronized Clock
28-Pin SO Wide Package

PPLICATIONS

Telecommunications
Digital Signal Processing
Multiplexed Data Acquisition Systems
High Speed Data Acquisition
Spectrum Analysis
Imaging Systems

DESCRIPTION

The LTC ${ }^{\circledR} 1410$ is a $650 \mathrm{~ns}, 1.25 \mathrm{Msps}$, sampling 12-bit A/D converter which draws only 160 mW from $\pm 5 \mathrm{~V}$ supplies. This easy-to-use device includes a high dynamic range sample-and-hold, a precision reference and a trimmed internal clock. Two digitally selectable power shutdown modes provide flexibility for low power systems.
The LTC1410's full-scale input range is $\pm 2.5 \mathrm{~V}$. Maximum DC specs include ± 1 LSB INL and ± 1 LSB DNL over temperature. Outstanding AC performance includes 71 dB $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ and 82 dB THD at the Nyquist input frequency of 625 kHz .

The unique differential input sample-and-hold can acquire single-ended or differential input signals up to its 20 MHz bandwidth. The 60 dB common-mode rejection allows users to eliminate ground loops and common-mode noise by measuring signals differentially from the source.
The internal clock is trimmed for 750 ns maximum conversion time. The clock automatically synchronizes to each sample command. A separate convert start input and a data ready signal ($\overline{\mathrm{BUSY}}$) ease connections to FIFOs, DSPs and microprocessors.
$\boldsymbol{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation.

YPICAL APPLICATION

Complete 1.25MHz, 12-Bit Sampling A/D Converter

Effective Bits and Signal-to-(Noise + Distortion) vs Input Frequency

ABSOLUTE MAXImUM RATINGS
$A V_{D D}=D V_{D D}=V_{D D}$ (Notes 1, 2)
Supply Voltage (VDD) 6 V
Negative Supply Voltage (VSS) -6V
Total Supply Voltage (VD to $\mathrm{V}_{S S}$) 12 V
Analog Input Voltage
(Note 3) $V_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage (Note 4) $\ldots V_{S S}-0.3 V$ to 10 V
Digital Output Voltage -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation 500 mW
Operating Temperature Range
LTC1410C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC14101 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

COMVERTER CHARACTERISTICS With Internal Reterence (Notes 5, $\mathbf{6}$)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNI
Resolution (No Missing Codes)		\bullet	12			B
Integral Linearity Error	(Note 7)	\bullet			± 1	LS
Differential Linearity Error		\bullet			± 1	LS
Offset Error	(Note 8)	\bullet			$\begin{aligned} & \pm 6 \\ & \pm 8 \end{aligned}$	Li
Full-Scale Error					± 15	Li
Full-Scale Tempco	$\mathrm{I}_{\text {OUT }(\text { REF })}=0$	\bullet		± 15		ppm/

AחALOG IMPUT
 (Note 5)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :---: | :---: | UNI7

DYNAMIC ACCURACY
 (Note 5)

; YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$3 /(N+D)$	Signal-to-Noise Plus Distortion Ratio	100kHz Input Signal (Note 12) 600 kHz Input Signal (Note 12)	\bullet	$\begin{aligned} & 70 \\ & 68 \end{aligned}$			dB dB
-HD	Total Harmonic Distortion	100 kHz Input Signal, First Five Harmonics 600 kHz Input Signal, First Five Harmonics	\bullet		$\begin{aligned} & -85 \\ & -82 \end{aligned}$	-74	dB $d B$
	Peak Harmonic or Spurious Noise	600 kHz Input Signal	\bullet		-84	-74	dB
MD	Intermodulation Distortion	$\mathrm{f}_{\mathbb{N} 1}=29.37 \mathrm{kHz}, \mathrm{f}_{\mathrm{N} 2}=32.446 \mathrm{kHz}$			-84		dB
	Full Power Bandwidth				20		MHz
	Full Linear Bandwidth	$(\mathrm{S} /(\mathrm{N}+\mathrm{D}) \geq 68 \mathrm{~dB})$			2.5		MHz

חTGROAL RGFGRENCE CHARACTGRISTICS (Note 5)

'ARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
'REF Output Voltage	$I_{\text {OUT }}=0$	2.480	2.500	2.520	V
'REF Output Tempco	$\mathrm{I}_{\text {OUT }}=0$		± 15	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
'REF Line Regulation	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 5.25 \mathrm{~V}$		0.01	$\mathrm{LSB} / \mathrm{V}$	
	$-5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-4.75 \mathrm{~V}$	0.01	LSB $/ \mathrm{V}$		
'REF Output Resistance	$0.1 \mathrm{~V} \leq \mathrm{I}_{\text {OUT }} \leq 0.1 \mathrm{~mA}$		2	$\mathrm{k} \Omega$	
'EFCOMP Output Voltage	$\mathrm{I}_{\text {OUT }}=0$		4.06	V	

JIGITAL InPUTS AחD DIGITAL OUTPUTS (Note 5)

iYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
' H	High Level Input Voltage	$V_{D D}=5.25 \mathrm{~V}$	\bullet	2.4			V
'IL	Low Level Input Voltage	$V_{D D}=4.75 \mathrm{~V}$	\bullet			0.8	V
N	Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet			± 10	$\mu \mathrm{A}$
'IN	Digital Input Capacitance				5		pF
'OH	High Level Output Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =4.75 \mathrm{~V} \\ I_{0} & =-10 \mu \mathrm{~A} \\ I_{0} & =-200 \mu \mathrm{~A} \end{aligned}$	\bullet	4.0	4.5		V
'0L	Low Level Output Voltage	$\begin{aligned} V_{D D} & =4.75 \mathrm{~V} \\ I_{0} & =160 \mu \mathrm{~A} \\ I_{0} & =1.6 \mathrm{~mA} \end{aligned}$	-		$\begin{aligned} & 0.05 \\ & 0.10 \end{aligned}$	0.4	V
)2	High-Z Output Leakage D11 to D0	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \overline{\mathrm{CS}}$ High	\bullet			± 10	$\mu \mathrm{A}$
$\underline{O 2}$	High-Z Output Capacitance D11 to DO	$\overline{\text { CS High (Note } 9 \text {) }}$	-			15	pF
SOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
jINK	Output Sink Current	$V_{\text {OUT }}=V_{\text {DD }}$			10		mA

IOWEß REQUIREMENTS (Note 5)

YMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DD	Positive Supply Voltage	(Notes 10, 11)		4.75		5.25	V
SS	Negative Supply Voltage	(Note 10)		-4.75		-5.25	V
10	Positive Supply Current Nap Mode Sleep Mode		\bullet		$\begin{aligned} & 12 \\ & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 16 \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$

POUER REQUIREMENTS
 (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Iss	Negative Supply Current Nap Mode Sleep Mode		\bullet		$\begin{gathered} 20 \\ 10 \\ 1 \end{gathered}$	$\begin{gathered} 30 \\ 200 \end{gathered}$	$m A$ μA $\mu \mathrm{~A}$
PDISS	Power Dissipation Nap Mode Sleep Mode	$\begin{aligned} \overline{\mathrm{CS}} \text { High } \\ \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=5 \mathrm{~V} \\ \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \mathrm{SLP}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 160 \\ & 7.5 \\ & 0.01 \end{aligned}$	$\begin{gathered} 230 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$

TIMING CHARACTERISTICS (Note 5)

The indicates specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute maximum ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND and AGND wired together (unless otherwise noted).
Note 3: When these pin voltages are taken below $\mathrm{V}_{S S}$ or above V_{DD}, they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below $\mathrm{V}_{S S}$ or above $\mathrm{V}_{D D}$ without latch-up.
Note 4: When these pin voltages are taken below $V_{S S}$ they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below $\mathrm{V}_{S S}$ without latch-up. These pins are not clamped to V_{DD}.

Note 5: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1.25 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise specified.
Note 6: Linearity, offset and full-scale specifications apply for a singleended $+A_{I N}$ input with $-A_{I N}$ grounded.
Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 8: Bipolar offset is the offset voltage measured from - 0.5 LSB when the output code flickers between 000000000000 and 111111111111.
Note 9: Guaranteed by design, not subject to test.
Note 10: Recommended operating conditions.

riming Characteristics

Note 11: The falling $\overline{\text { CONVST }}$ edge starts a conversion. If $\overline{\text { CONVST }}$ returns high at a critical point during the conversion it can create small errors. For jest performance ensure that CONVST returns high either within 425 ns after conversion start or after $\overline{B U S Y}$ rises.

Note 12: Signal-to-noise ratio (SNR) is measured at 100 kHz and distortion is measured at 600 kHz . These results are used to calculate signal-to-noise plus distortion (SINAD).

PIn fUnCTIOnS

$+A_{\text {IN }}$ (Pin 1): Analog Input, $\pm 2.5 \mathrm{~V}$. The ADC converts he difference voltage between $+A_{I N}$ and $-A_{I N}$ with a differential range of $\pm 2.5 \mathrm{~V}$.
$-A_{I N}$ (Pin 2): Negative Analog Input, $\pm 2.5 \mathrm{~V}$.

$V_{\text {REF }}$ (Pin 3): 2.500V Reference Output.

3EFCOMP (Pin 4): 4.06V Reference Compensation Jin. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with J. $1 \mu \mathrm{~F}$ ceramic).

AGND (Pin 5): Analog Ground.
J11 to D4 (Pins 6 to 13): Three-State Data Outputs.
JGND (Pin 14): Digital Ground for Internal Logic.
J3 to DO (Pins 15 to 18): Three-State Data Outputs.
JGND (Pin 19): Digital Ground for Output Drivers.
VAP/SLP (Pin 20): Power Shutdown Mode. Defines sower down mode when SHDN goes low. High for łuick wake-up Nap mode. Low for Sleep.
$\overline{\text { SHDN (Pin 21): Power Shutdown. }}$
$\overline{\mathbf{R D}}$ (Pin 22): Read Input. This enables the output drivers when $\overline{\mathrm{CS}}$ is low.
CONVST (Pin 23): Conversion Start Signal. This active low signal starts a conversion on its falling edge when $\overline{\mathrm{CS}}$ is low.
$\overline{\text { CS }}$ (Pin 24): The Chip Select input must be low for the ADC to recognize CONVST and $\overline{\mathrm{RD}}$ inputs.
$\overline{\text { BUSY (Pin 25): The BUSY output shows the converter }}$ status. It is low when a conversion is in progress. Data valid on the rising edge of BUSY.
Vss (Pin 26): -5V Negative Supply. Bypass to AGND with $10 \mu \mathrm{~F}$ tantalum in parallel $0.1 \mu \mathrm{~F}$ ceramic.
DV DD $^{\text {(Pin 27): } 5 V}$ Positive Supply. Short to pin 28.
AV $\mathrm{DD}_{\mathrm{DD}}$ (Pin 28): 5V Positive Supply. Bypass to AGND with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic.

FUNCTIONAL BLOCK DIAGRAM

TEST CIRCUITS

Load Circuits for Access Timing

A) $\mathrm{Hi}-\mathrm{Z}$ to V_{OH} AND V_{OL} TO V_{OH}

A) $\mathrm{VOH}_{\mathrm{OH}} \mathrm{TOHi}-\mathrm{Z}$

B) $\mathrm{V}_{\mathrm{OL}} \mathrm{TO} \mathrm{Hi}-\mathrm{Z}$

APPLICATIONS INFORMATION

Driving the Analog Input

The differential analog inputs of the LTC1410 are easy to drive. The inputs may be driven differentially or as a single-ended input (i.e., the - $A_{\text {IN }}$ input is grounded). The $+A_{I N}$ and $-A_{I N}$ inputs are sampled at the same instant. Any unwanted signal that is common-mode to both inputs will be reduced by the 60 dB common-mode rejection of the sample-and-hold circuit. The inputs draw only one small current spike while charging the sample-and-hold capacitors at the end of conversion. During conversion the analog inputs draw only a small leakage current. If the source impedance of the driving circuit is low then the LTC1410 inputs can be driven directly. As source impedance increases so will acquisition time (see Figure 1). For minimum acquisition time, with high source impedance, a buffer amplifier should be used. The only requirement is that the amplifier driving the analog

Figure 1 Acquisition Time vs Source Resistance
input(s) must settle after the small current spike before the next conversion starts (settling time must be 100 ns for full throughput rate).

Choosing an input amplifier is easy if a few requirements are taken into consideration, First, choose an amplifier that has a low output impedance ($<100 \Omega$) at the closedloop bandwidth frequency. For example, if an amplifier is used in a gain of +1 and has a closed-loop bandwidth of 50 MHz , then the output impedance at 50 MHz must be less than 100Ω. The second requirement is that the closed-loop bandwidth must be greater than 20 MHz to ensure adequate small-signal settling for full throughput rate. If slower op amps are used, more settling time can be provided by increasing the time between conversions. Suitable devices capable of driving the ADC's inputs include the LT ${ }^{\circledR}$ 1360, LT1220, LT1223 and LT1224 op amps.

The noise and the distortion of the input amplifier must also be considered since they will add to the LTC1410 noise and distortion. The small-signal bandwidth of the sample-and-hold circuit is 20 MHz . Any noise that is present at the analog inputs will be summed over this entire bandwidth. Noisy input signals should be filtered prior to the analog inputs to minimize noise. A simple one-pole RC filter is usually sufficient. For example, a 1000 pF capacitor from $+A_{\text {IN }}$ to ground and a 100Ω source resistor will limit the input bandwidth to 1.6 MHz . Simple RC filters work well for AC applications, but they will limit the transient response. Raising the bandwidth of the RC filter will improve the transient response. For full speed operation, fast settling, low noise amplifiers should be chosen.

APPLICATIONS INFORMATION

Internal Reference

The LTC1410 has an on-chip, temperature compensated, curvature corrected, bandgap reference which is factory trimmed to 2.50 V . It is connected internally to a reference amplifier and is available at pin 3 . A 2 k resistor is in series with the output so that it can be easily overdriven in applications where an external reference is required. The reference buffer compensation pin, REFCOMP (pin 4), must be bypassed with a capacitor to ground. The reference is stable with capacitors of $1 \mu \mathrm{~F}$ or greater. For the best noise performance, Linear Technology recommends $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ ceramic (see Figure 2).
The $V_{\text {REF }}$ pin can be driven with a DAC or other means to provide input span adjustment. The reference should be kept in the range of 2.25 V to 2.75 V for specified linearity.

Figure 2. Using the LT1019-2.5 as an External Reference

Full-Scale and Offset Adjustment

Figure 3 shows the ideal input/output characteristics for the LTC1410. The code transitions occur midway between successive integer LSB values (i.e., - FS/ $2+0.5 L S B$, $-F S / 2+1.5 L S B,-F S / 2+2.5 L S B, \ldots F S / 2-1.5 L S B$, FS/2 - 2.5LSB. The output is two's complement binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=5 \mathrm{~V} / 4096=1.22 \mathrm{mV}$.

In applications where absolute accuracy is important, offset and full-scale errors can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 4 shows the extra components required for full-scale error adjustment. Zero offset is achieved by adjusting the offset applied to the $-A_{\text {IN }}$ input. For zero offset error apply -0.61 mV (i.e., -0.5 LSB at $+\mathrm{A}_{\text {IN }}$ and adjust the voltage at
the - A Ain input until the output code flickers between 0000 00000000 and 11111111 1111. For full-scale adjustment, an input voltage of 2.49817 V ($\mathrm{FS} / 2-1.5 \mathrm{LSBs}$) is applied to $A_{\text {IN }}$ and R2 is adjusted until the output code flickers between 011111111110 and 011111111111.

LTC1410•F03
Figure 3. LTC1410 Transfer Characteristics

Figure 4. Offset and Full-Scale Adjust Circuit

BOARD LAYOUT AND BYPASSING

Wire wrap boards are not recommended for high resolution or high speed A / D converters. To obtain the best performance from the LTC1410, a printed circuit board with ground plane is required. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC. The analog input should be screened by AGND.

APPLICATIONS INFORMATION

High quality tantalum and ceramic bypass capacitors should be used at the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and REFCOMP pins as shown in the Typical Application on the first page of this data sheet. Bypass capacitors must be located as close to the pins as possible. The traces connecting the pins and bypass capacitors must be kept short and should be made as wide as possible.
The LTC1410 has differential inputs to minimize noise coupling. Common-mode noise on the $+A_{I_{N}}$ and $-A_{I N}$ leads will be rejected by the input CMRR. The - $A_{\text {IN }}$ input can be used as a ground sense for the $+A_{\text {IN }}$ input; the LTC1410 will hold and convert the voltage difference between $+A_{I N}$ and $-A_{I N}$. The leads to $+A_{I_{N}}$ (pin 1) and $-A_{I_{N}}$ (pin 2) should be kept as short as possible. In applications where this is not possible, the $+\mathrm{A}_{\text {IN }}$ and $-\mathrm{A}_{\text {IN }}$ traces should be run side by side to equalize coupling.
A single point analog ground separate from the logic system ground should be established with an analog ground plane atpin 5 (AGND) or as close as possible to the ADC. Pin 14 and pin 19 (ADC's DGND) and all other analog grounds should be connected to this single analog ground point. No other digital ground should be connected to this analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible. In applications where the ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in the conversion results. These errors are due to feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a wait state during conversion or by using three-state buffers to isolate the ADC data bus.

DIGITAL INTERFACE

The A / D converter is designed to interface with microprocessors as a memory mapped device. The $\overline{C S}$ and $\overline{\mathrm{RD}}$ control inputs are common to all peripheral memory interfacing.

Internal Clock

The A/D converter has an internal clock that eliminates the need of synchronization between the external clock and the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals found in other ADCs. The internal clock is factory trimmed to achieve a typical conversion time of $0.65 \mu \mathrm{~s}$ and a maximum conversion time over the full operating temperature range of $0.75 \mu \mathrm{~s}$. No external adjustments are required. The guaranteed maximum acquisition time is 100 ns . In addition, throughput performance is also guaranteed at 800 ns so that 1.25 Msps is assured.

Power Shutdown

The LTC1410 provides two power shutdown modes, Nap and Sleep, to save power during inactive periods. The Nap mode reduces the power by 95% and leaves only the digital logic and reference powered up. The wake-up time from NAP to active is 200 ns . Follow the setup time shown in Figure 5 a to avoid inadvertently invoking sleep mode. In Sleep mode all bias currents are shut down and only leakage current remains, about $1 \mu \mathrm{~A}$. Wake-up time from Sleep mode is much slower since the reference circuit must power up and settle to 0.01% for full 12 -bit accuracy. Sleep mode wake-up time is dependent on the value of the capacitor connected to the REFCOMP (pin 4). The wake-up time is 10 ms with the recommended $10 \mu \mathrm{~F}$ capacitor. (See Figure 5b).

Figure 5a. NAP/SLP to $\overline{\text { SHDN }}$ Timing to Ensure Nap Mode

Figure 5b. $\overline{\text { SHDN }}$ to $\overline{\text { CONVST }}$ Wake-Up Timing

APPLICATIONS INFORMATION

Shutdown is controlled by pin 21 （SHDN），the ADC is in shutdown when it is low．The shutdown mode is selected with pin 20 （NAP／SLP）；high selects NAP．

Timing and Control

Conversion start and data read operations are controlled by three digital inputs：$\overline{\mathrm{CONVST}}, \overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ ．（See Figure 6．）A falling edge applied to the CONVST pin will start a conversion after the ADC has been selected（i．e．，$\overline{\mathrm{CS}}$ is low）．Once initiated，it cannot be restarted until the conversion is complete．Converter status is indicated by the $\overline{B U S Y}$ output．$\overline{B U S Y}$ is low during a conversion．

Figure 6．$\overline{C S}$ to $\overline{\text { CONVST }}$ Setup Timing
Figures 7 through 11 show several different modes of operation．In modes 1a and 1 b （Figures 7 and 8）$\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both tied low．The falling edge of CONVST starts the conversion．The data outputs are always enabled and data
can be latched with the $\overline{B U S Y}$ rising edge．Mode 1a shows operation with a narrow logic low CONVST pulse．Mode 1b shows a narrow logic high CONVST pulse．
In mode 2 （Figure 9）$\overline{\mathrm{CS}}$ is tied low．The falling edge of CONVST signal again starts the conversion．Data outputs are in three－state until read by the MPU with the $\overline{\mathrm{RD}}$ signal． Mode 2 can be used for operation with a shared MPU databus．

In slow memory and ROM modes（Figures 10 and 11）$\overline{\mathrm{CS}}$ is tied low and $\overline{C O N V S T}$ and $\overline{R D}$ are tied together．The MPU starts the conversion and reads the output with the $\overline{\mathrm{RD}}$ signal．Conversions are started by the MPU or DSP（no external sample clock）．
In slow memory mode the processor applies a logic low to $\overline{\mathrm{RD}}$（ $=\overline{\mathrm{CONVST}}$ ）starting the conversion．$\overline{\mathrm{BUSY}}$ goes low forcing the processor into a wait state．The previous conversion result appears on the data outputs．When the conversion is complete，the new conversion results ap－ pear on the data outputs；BUSY goes high releasing the processor，and the processor takes $\overline{\mathrm{RD}}$（＝$\overline{\mathrm{CONVST}}$ ）back high and reads the new conversion data．
In ROM mode，the processor takes $\overline{\mathrm{RD}}$（＝$\overline{\mathrm{CONVST}}$ ）low， starting a conversion and reading the previous conversion result．After the conversion is complete，the processor can read the new result and initiate another conversion．

Figure 7．Mode 1a．CONVST Starts a Conversion．Data Outputs Always Enabled （CONVST $=$ 乙 〕 〕）

APPLICATIONS InFORMATION

Figure 8．Mode 1b．CONVST Starts a Conversion．Data Outputs Always Enabled （ $\overline{\text { CONVST }}=$ 几 几ـ 几 ）

Figure 9．Mode 2．$\overline{\text { CONVST }}$ Starts a Conversion．Data is Read by $\overline{\mathrm{RD}}$

Figure 10．Slow Memory Mode Timing

APPLICATIONS INFORMATION

Figure 11. ROM Mode Timing

reLated parts

12-Bit Sampling A/D Converters

PART NUMBER	SAMPLE RATE	DESCRIPTION	COMMENTS
LTC1273/5/76	300ksps	Complete 5V Sampling 12-Bit ADCs with 70dB SINAD at Nyquist	Lower Power and Cost Effective for fsampLe \leq 300ksps
LTC1274/77	100ksps	Low Power 12-Bit ADCs with Nap and Sleep Mode Shutdown	Lowest Power for fsAMPLE \leq 100ksps
LTC1278/79	$500 / 600 \mathrm{ksps}$	High Speed Sampling 12-Bit ADCs with Shutdown	Cost Effective 12-Bit ADCs - Best for 2-Pair HDSL
LTC1282	140ksps	Complete 3V 12-Bit ADCs with 12mW Power Dissipation	Fully Specified for 3V-Powered Applications

Micropower Quad Comparators

May 1995

FGATURES

- Ultra-Low Quiescent Current: 8.5uA Max Over Extended Temperature Range
- Reference Output Drives 0.01यF Capacitor
- Reference Output Can Source $100 \mu \mathrm{~A}$ (Min)
- Power Supplies

Single: 2 V to 11 V
Dual: $\pm 1 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$

- Input Voltage Range Includes Negative Supply
- Adjustable Hysteresis (LTC1444/LTC1445)
- TTL/CMOS Compatible Outputs
- Propagation Delay: $12 \mu \mathrm{~s}$ (10mV Overdrive)
- No Crowbar Current
- 40 mA Continuous Source Current
- Pin Compatible to MAX924 (LTC1443)

APPLICATIONS

- Battery-Powered Systems
- Threshold Detectors
- Window Comparators
- Oscillator Circuits

DESCRIPTION

The LTC ${ }^{\circledR}$ 1443/LTC1444/LTC1445 quad micropower, low voltage comparators feature $8.5 \mu \mathrm{~A}$ over extended temperature range. Four comparators and a reference draw less than $8.5 \mu \mathrm{~A}$ supply current over temperature and include an internal reference ($1.182 \mathrm{~V} \pm 1 \%$ for LTC1443, $1.221 \mathrm{~V} \pm 1 \%$ for LTC1444/LTC1445), programmable hysteresis (LTC1444/LTC1445) and TTL/CMOS outputs that sink and source current. The reference output can drive up to a $0.01 \mu \mathrm{~F}$ capacitor without oscillation.
Ideal for 3 V or 5 V single supply applications, the LTC1443/ LTC1444/LTC1445 operate from a single 2V to 11V supply or a $\pm 1 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply; each comparator's input voltage range swings from the negative supply rail to within 1.3 V of the positive supply.
The LTC1443/LTC1445's unique output stage continuously sources as much as 40 mA . The LTC1444 is an opendrain output with active pull-down NMOS. By eliminating power supply glitches that commonly occur when comparators change logic states, the LTC1443/LTC1444/ LTC1445 minimize parasitic feedback, which makes them easier to use.
Simply by using the HYST pin and two resistors the LTC1444/LTC1445 provide a unique and simple method for adding hysteresis without feedback and complicated equations.

TYPICAL APPLICATION

Bar Graph Level Gauge

ABSOLUTE MAXIMUM RATINGS

Voltage:
V^{+}to $\mathrm{V}^{-}, \mathrm{V}^{+}$to GND , GND to V^{-}............... 12 V to -0.3 V
IN^{+}, IN^{-}, HYST $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
OUT, REF \qquad $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$
Lead Temperature Range (Soldering, 10 sec)....... $300^{\circ} \mathrm{C}$

Current:

REF ... 20 mA
OUT .. 50mA
IN ${ }^{+}$, IN^{-}, HYST .. 20 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
OUTA 2		OUTA 2	
$\mathrm{V}^{+} 3$	LTC1443CN	$\mathrm{V}^{+} 3$ HYST	LTC1444CN
INA ${ }^{-1}$ - 13 IND ${ }^{+}$	LTC1443CS	INA ${ }^{-4}$ - 13 IND ${ }^{+}$	LTC1444CS
		INA+ 5 - $12 \mathrm{IND}^{-}$	LTC1445CN
INB ${ }^{-6}$		$\mathrm{INB}^{-6} \quad 11 \mathrm{INC}$	LTC1445CS
$\mathrm{INB}^{+} 7$ 7 10 INC-		$\mathrm{INB}^{+} 78$	
REF 8 8 9 V		REF 8 8 9 V ${ }^{-}$	
N PACKAGE S PACKAGE 16-LEAD PDIP 16-LEAD PLASTIC SO		N PACKAGE SPACKAGE 16-LEAD PDIP 16-LEAD PLASTIC SO	
$\begin{aligned} & \mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=70^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N}) \\ & \mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=90^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S}) \end{aligned}$		$\begin{aligned} & T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{J A}=70^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N}) \\ & \mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{J A}=90^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~S}) \end{aligned}$	

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V^{+}	Supply Voltage Range		\bullet	2.0		11.0	V
ICC	Supply Current	$\begin{aligned} & I \mathrm{~N}^{+}=\mathrm{IN}^{-}+80 \mathrm{mV} \\ & \text { HYST }=\text { REF (LTC1444/LTC1445) } \end{aligned}$	\bullet		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Vos	Comparator Input Offset Voltage	$V_{C M}=2.5 \mathrm{~V}$				± 10	mV
In	Input Leakage Current		\bullet			± 1	nA
$\mathrm{V}_{\text {CM }}$	Comparator Input Common-Mode Range		\bullet	V^{-}		$\mathrm{V}^{+}-1.3$	V
CMRR	Common-Mode Rejection Ratio	V^{-}to ($\left.\mathrm{V}^{+}-1.3 \mathrm{~V}\right)$	\bullet		0.1	1.0	mVN
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 11 V	\bullet		0.1	1.0	mVN
$t_{\text {PD }}$	Propagation Delay	$\begin{aligned} & \text { Overdrive }=10 \mathrm{mV}, \mathrm{C}_{\text {OUT }}=100 \mathrm{pF} \\ & \text { Overdrive }=100 \mathrm{mV}, C_{\text {Out }}=100 \mathrm{pF} \end{aligned}$			$\begin{gathered} 12 \\ 4 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{V}_{\text {HYST }}$	Hysteresis Input Voltage Range	LTC1444/LTC1445		REF - 50mV		REF	V
V_{OH}	Output High Voltage	$I_{\text {SOURCE }}=17 \mathrm{~mA}$; LTC1443/LTC1445	\bullet	4.6			V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {SINK }}=1.8 \mathrm{~mA}$	\bullet			0.4	V
VREF	Reference Voltage	$\begin{aligned} & \text { No Load, LTC1443C } \\ & \text { No Load, LTC1445C/LTC1444C } \end{aligned}$	\bullet	$\begin{aligned} & 1.170 \\ & 1.209 \end{aligned}$	$\begin{aligned} & 1.182 \\ & 1.221 \end{aligned}$	$\begin{aligned} & 1.194 \\ & 1.233 \end{aligned}$	V
I SOURCE	Reference Output Source Current	LTC1443 LTC1444/LTC1445	\bullet	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\text {IINK }}$	Reference Output Sink Current	LTC1443/LTC1444/LTC1445	\bullet	4	15		$\mu \mathrm{A}$
Noise	100 Hz to 100 kHz , REF	LTC1443/LTC1444/LTC1445			100		$\mu \mathrm{V}_{\text {RMS }}$

LTC1443/LTC1444/LTC1445

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V^{+}	Supply Voltage Range		\bullet	2.0		11.0	V
ICC	Supply Current	$\begin{aligned} & 1 \mathrm{~N}^{+}=\mathrm{IN}^{-}+80 \mathrm{mV} \\ & \text { HYST }=\text { REF (LTC1444/LTC1445) } \end{aligned}$	\bullet		5.2	$\begin{aligned} & \hline 6.2 \\ & 8.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{0 S}$	Comparator Input Offset Voltage	$V_{\text {CM }}=1.5 \mathrm{~V}$				± 10	mV
IN	Input Leakage Current		\bullet			± 1	nA
$\mathrm{V}_{\text {CM }}$	Comparator Input Common-Mode Range		\bullet	V^{-}		$\mathrm{V}^{+}-1.3$	V
CMRR	Common-Mode Rejection Ratio	V^{-}to ($\left.\mathrm{V}^{+}-1.3 \mathrm{~V}\right)$	\bullet		0.1	1.0	mVN
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to 11 V	\bullet		0.1	1.0	mVN
tpd	Propagation Delay	$\begin{aligned} & \text { Overdrive }=10 \mathrm{mV}, \mathrm{C}_{\text {OUT }}=100 \mathrm{pF} \\ & \text { Overdrive }=100 \mathrm{mV}, C_{\text {OUT }}=100 \mathrm{pF} \end{aligned}$			$\begin{gathered} 14 \\ 5 \end{gathered}$		$\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{V}_{\text {HYST }}$	Hysteresis Input Voltage Range	LTC1444/LTC1445		REF - 50mV		REF	V
V_{OH}	Output High Voltage	$\mathrm{I}_{\text {SOURCE }}=10 \mathrm{~mA}$; LTC1443/LTC1445	\bullet	2.6			V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{I}_{\text {SINK }}=0.8 \mathrm{~mA}$	\bullet			0.4	V
VREF	Reference Voltage	No Load, LTC1443C No Load, LTC1445C/LTC1444C	\bullet	$\begin{aligned} & 1.170 \\ & 1.209 \end{aligned}$	$\begin{aligned} & 1.182 \\ & 1.221 \end{aligned}$	$\begin{aligned} & 1.194 \\ & 1.233 \end{aligned}$	V
ISOURCE	Reference Output Source Current	LTC1443 LTC1444/LTC1445	\bullet	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$		μA μA
I SINK	Reference Output Sink Current	LTC1443/LTC1444/LTC1445	\bullet	4	15		$\mu \mathrm{A}$
Noise	100 Hz to 100 kHz , REF	LTC1444/LTC1444/LTC1445			100		$\mu \mathrm{V}_{\text {RMS }}$

The denotes specifications which apply over the operating temperature
range.

PIn functions

OUTB (Pin 1): Comparator B Output. (Open-drain output for LTC1444.)
OUTA (Pin 2): Comparator A Output. (Open-drain output for LTC1444.)
\mathbf{V}^{+}(Pin 3): Positive Supply.
INA- (Pin 4): Inverting Input of Comparator A.
INA ${ }^{+}(\operatorname{Pin} 5)$: Noninverting Input of Comparator A.
INB $^{-}$(Pin 6): Inverting Input of Comparator B.
INB $^{+}$(Pin 7): Noninverting Input of Comparator B.
REF (Pin 8): Reference Output. With respect to V^{-}.
\mathbf{V}^{-}(Pin 9): Negative Supply. Connect to ground for single supply operation.

INC- (Pin 10): Inverting Input of Comparator C.
INC ${ }^{+}$(Pin 11): Noninverting Input of Comparator C .
IND $^{-}$(Pin 12): Inverting Input of Comparator D.
IND ${ }^{+}$(Pin 13): Noninverting Input of Comparator D.
GND (Pin 14): LTC1443 Ground. Connect to V^{-}for single supply operation.
HYST (Pin 14): LTC1444/LTC1445 Hysteresis Input. Connect to REF if not used. Input voltage range is from $V_{\text {REF }}$ to $V_{\text {REF }}-50 \mathrm{mV}$.
OUTD (Pin 15): Comparator D Output. (Open-drain output for LTC1444.)
OUTC (Pin 16): Comparator C Output. (Open-drain output for LTC1444.)

APPLICATIONS INFORMATION

The LTC1443/LTC1444/LTC1445 is comprised of a micropower 1.182V/1.221V reference and four micropower comparators. Each comparator continuously sources up to 40 mA , and the unique output stage eliminates crowbar glitches during output transitions. This makes them immune to parasitic feedback (which can cause instability) and provides excellent performance, even when circuit board layout is not optimal.
Internal hysteresis in the LTC1444/LTC1445 provides the easiest method for implementing hysteresis. It also produces faster hysteresis action and consumes much less current than circuits using external positive feedback.

Power Supply and Input Signal Ranges

This family of devices operates from a single 2 V to 11 V power supply. The LTC1443 has a separate ground for the output driver, allowing operation with dual supplies ranging from $\pm 1 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$. Connect V^{-}to GND when operating the LTC1443 from a single supply. The maximum supply voltage in this case is still 11 V .

For proper comparator operation, the input signal can swing from the negative supply $\left(\mathrm{V}^{-}\right)$to within one volt of the positive supply $\left(\mathrm{V}^{+}-1 \mathrm{~V}\right)$. The guaranteed commonmode input voltage range extends from V^{-}to $\left(\mathrm{V}^{+}-1.3 \mathrm{~V}\right)$. The inputs can be taken above and below the supply rails by up to 300 mV without damage.

Comparator Output

With 100 mV of overdrive, propagation delay is typically $4 \mu \mathrm{~s}$. The LTC1443 output swings from V^{+}to GND so TTL compatibility is assured by using a $5 \mathrm{~V} \pm 10 \%$ supply. The negative supply does not affect the output swing and can range from 0 V to $-5 \mathrm{~V} \pm 10 \%$.

The LTC1444 and LTC1445 have no GND pin and their outputs swing from V^{+}to V^{-}. Connect V^{-}to ground and V^{+}to a 5 V supply to achieve TTL compatibility.
The LTC1443/LTC1445's unique design achieves an output source current of more than 40 mA and a sink current of over 5 mA , while keeping quiescent currents in the microampere range. The output can source 100 mA (at V^{+} $=5 \mathrm{~V}$) for short pulses, as long as the package's maximum power dissipation is not exceeded. The output stage does not generate crowbar switching currents during transitions, which minimizes feedback through the supplies and helps ensure stability without bypassing.

Voltage Reference

The internal bandgap voltage reference has an output of 1.182 V above V^{-}for the LTC1443 and 1.221V for the LTC1444/LTC1445. Note that the REF voltage is referenced to V^{-}, not to GND. Its accuracy is $\pm 1 \%$ in the commercial range. The REF output is typically capable of sourcing $30 \mu A$ and sinking $10 \mu A$. The REF output can drive up to $0.01 \mu \mathrm{~F}$ of output capacitance without oscillation.

Noise Considerations

Although the comparators have a very high gain, useful gain is limited by noise. As the input voltage approaches the comparator's offset, the output begins to bounce back and forth; this peaks when $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{0 S}$. Consequently, the comparator has an effective wideband peak-to-peak noise of around 0.3 mV . The voltage reference has peak-to-peak noise approaching 1 mV . Thus, when a comparator is used with the reference, the combined peak-to-peak noise is above 1 mV . This, of course, is much higher than the RMS noise of the individual components. Care should be taken in the layout to avoid capacitive coupling from any output to the reference pin. Crosstalk can significantly increase the actual noise of the reference.

RGLATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1034	Micropower Dual Reference	1.2 V or 2.5 V with 7V Auxiliary Reference
LT1179	Quad Micropower Single Supply Precision Op Amp	$17 \mu \mathrm{~A}$ Max per Amplifier
LTC1285/LTC1288	3V Micropower Sampling 12-Bit ADCs	S0-8 Package, Auto Shutdown to 1nA
LT1521	300mA Low Dropout Regulator	$12 \mu \mathrm{~A}$ Quiescent Current

features

- Extremely Low R $\mathrm{RS}_{\mathrm{D}(\mathrm{ON})}$ Switch: 0.07Ω
- No Parasitic Body Diode
- Built-In Short Circuit Protection: 2A
- Built-In Thermal Overload Protection
- Operates from 2.7V to 5.5 V
- Inrush Current Limited
- Ultra-Low Standby Current: $0.01 \mu \mathrm{~A}$
- Built-In Charge Pump
- Controlled Rise and Fall Times: $\mathrm{t}_{\mathrm{R}}=1 \mathrm{~ms}$
- Single Switch in 8-Pin SO Package
- Dual Switch in 16-Pin SO Package

APPLICATIONS

- Notebook Computer Power Management
- Power Supply/Load Protection
- Supply/Battery Switch-Over Circuits
- Circuit Breaker Function
- "Hot Swap" Board Protection
- Peripheral Power Protection

DESCRIPTIOn

The LTC ${ }^{\circledR 1} 1477 /$ LTC1478 protected high-side switches provide extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ switching with built-in protection against short-circuit and thermal overload conditions. A built-in charge pump generates gate drive higher than the supply voltage to fully enhance the internal NMOS switch. This switch has no parasitic body diode and therefore no current flows through the switch when it is turned off and the output is forced above the input supply voltage. (DMOS switches have parasitic body diodes that become forward biased under these conditions.)
Two levels of protection are provided by the LTC1477/LTC1478. The first level of protection is shortcircuit current limit which is set at 2A. The short-circuit current can be reduced to as low as 0.85A by disconnecting portions of the power device (see Applications Information). The second level of protection is provided by thermal overload protection which limits the die temperature to approximately $130^{\circ} \mathrm{C}$.
The LTC1477 single is available in 8 -lead S0 packaging. The LTC1478 dual is available in 16-lead S0 packaging.
$\boldsymbol{\mathcal { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

SImplified Block diagram

LTC1477/1478•TPO2
*NMOS SWITCHES WITH NO PARASITIC BODY DIODES

ABSOLUTE MAXIMUM RATINGS

Supply Voltage $7 V$
Enable Input Voltage (7V) to (GND -0.3V)
Output Voltage (OFF) (Note 1) (7V) to (GND -0.3V)
Output Short-Circuit Duration \qquad Indefinite Junction Temperature $110^{\circ} \mathrm{C}$

Operating Temperature
LTC1477C/LTC1478C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{I N S}=V_{I N 1}=V_{I N 2}=V_{I N 3}=5 \mathrm{~V}$ (Note 2), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. Each channel of the LTC1478 is tested separately (Note 3).

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range			2.7		5.5	V
IVIN	Supply Current	$\begin{aligned} & \text { Switch OFF, Enable }=0 \mathrm{~V} \\ & \text { Switch ON, Enable }=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V} \\ & \text { Switch ON, Enable }=3.3 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} 0.01 \\ 120 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 180 \\ 120 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{\mathrm{R}_{\text {ON }}}$	ON Resistance	$\begin{aligned} & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=5 \mathrm{~V}, I_{\text {OUT }}=1 \mathrm{~A} \\ & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=3.3 V, I_{\text {OUT }}=1 \mathrm{~A} \\ & V_{\text {ISS }}=V_{\text {IN1 }}=5 \mathrm{VV}, V_{\text {IN2 }}=V_{\text {IN3 }}=N C, I_{\text {OUT }}=0.5 \mathrm{~A} \\ & V_{\text {INS }}=V_{\text {IN1 }}=3.3 V, V_{\text {IN2 } 2}=V_{\text {IN3 }}=N C, I_{\text {OUT }}=0.5 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.07 \\ & 0.08 \\ & 0.12 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.12 \\ & 0.20 \\ & 0.20 \end{aligned}$	Ω Ω Ω Ω
LLKG	Output Leakage Current OFF	Switch OFF, Enable $=0 \mathrm{~V}$	\bullet			± 20	$\mu \mathrm{A}$
ISC	Short-Circuit Current Limit	$\begin{aligned} & V_{\text {INS }}=V_{\text {IN1 }}=V_{\text {IN2 }}=V_{\text {IN3 }}=5 V, V_{\text {OUT }}=0 V \text {, (Note 4) } \\ & V_{\text {INS }}=V_{\text {IN1 }}=5 V, V_{\text {IN2 } 2}=V_{\text {IN3 }}=N C, V_{O U T}=0 V \text {, (Note 4) } \end{aligned}$		$\begin{aligned} & 1.60 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 2.40 \\ & 1.02 \end{aligned}$	A
$\mathrm{V}_{\text {ENH }}$	Enable Input High Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {INS }} \leq 5.5 \mathrm{~V}$	\bullet	2.0			V
$\mathrm{V}_{\text {ENL }}$	Enable Input Low Voltage	$3.0 \mathrm{~V} \leq \mathrm{V}_{\text {INS }} \leq 5.5 \mathrm{~V}$	\bullet			0.8	V
IEN	Enable Input Current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {EN }} \leq 5.5 \mathrm{~V}$	\bullet			± 1	$\mu \mathrm{A}$
$t_{\text {d }+R}$	Delay and Rise Time	$\mathrm{R}_{\text {OUT }}=100 \Omega, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}$, to 90% of Final Value		0.50	1.00	2.00	ms

The denotes specifications which apply over the full operating temperature range.
Note 1: The $V_{\text {Out }}$ pins must be connected together.
Note 2: The $\mathrm{V}_{\text {INS }}$ and $\mathrm{V}_{\text {IN1 }}$ pins must be connected together. The $\mathrm{V}_{\text {IN2 }}$ and $V_{\text {IN3 }}$ pins are typically connected to $V_{\text {INS }}$ and $V_{\text {IN } 1}$ pins but can be selectively disconnected to reduce the short-circuit current limit and
increase the ON resistance of the switch. The LTC1478 GND pins must be connected together. (See Pin Functions and Block Diagram for more detail.)
Note 3: Other channel turned OFF, i.e. AEN and BEN $=0 \mathrm{~V}$.
Note 4: The output is protected with fold-back current limit which reduces the short-circuit (OV) currents below peak permissible current levels at higher output voltages. (See Typical Performance Characteristics for further detail on output current versus output voltage).

TYPICAL PGRFORMANCE CHARACTERISTICS

PIn functions

LTC1477

EN (Pin 4): The enable input is a high impendance CMOS gate with an ESD protection diode to ground and should not be forced below ground. This input has about 100 mV of built-in hysteresis to ensure clean switching.
$\mathbf{V}_{\text {INS }}, \mathbf{V}_{\text {IN1 }}$ (Pins 3,2):The $\mathrm{V}_{\text {INS }}$ supply pin must always be connected to the $\mathrm{V}_{\text {IN1 }}$ supply pin (see Block Diagram). The $V_{\text {INS }}$ supply pin provides power for the input control logic, the current limit and thermal shutdown circuitry; plus provides a sense connection to the input power supply. The gate of the NMOS switch is powered by a charge pump from the $\mathrm{V}_{\text {INS }}$ supply pin (see Block Diagram). The $\mathrm{V}_{\text {IN1 }}$ supply pin provides connection to the drain of $1 / 2$ of the output power device.
$\mathbf{V}_{\mathbb{I N} 2}, \mathbf{V}_{\mathbb{I N 3}}$ (Pins 7,6): The $\mathrm{V}_{\text {IN2 }}$ and $\mathrm{V}_{\text {IN3 }}$ supply pins are typically tied to the $\mathrm{V}_{\text {INS }}$ and $\mathrm{V}_{\text {IN } 1}$ supply pins for lowest on resistance; i.e., when all four $V_{\text {IN }}$ pins are connected together the entire power device is connected (see Block Diagram). Each auxiliary supply pin, $\mathrm{V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$, is connected to the drain of $1 / 4$ of the power device. The $\mathrm{V}_{\text {IN2 }}$ and $V_{\text {IN3 }}$ pins can be selectively disconnected to reduce the short-circuit current limit at the expense of higher $R_{D S(O N) \text {. (See Applications Information section for more }}$ detail.)
$\mathbf{V}_{\text {OUT }}$ (Pins 1,8): The output pins of the LTC1477 must always be tied together. The output is protected against accidental short-circuits to ground by a current-limit circuit which protects the system power supply and load against damage. A second level of protection is provided by thermal shutdown circuitry which limits the die temperature to $130^{\circ} \mathrm{C}$.

LTC1478

AEN, BEN (Pins 4,12):The enable inputs are high impedance CMOS gates with ESD protection diodes to ground and should not be forced below ground. These inputs have about 100 mV of built-in hysteresis to ensure clean switching.
$\mathrm{AV}_{\text {INS }}, \mathrm{AV}_{\mathbb{I} 1}, \mathrm{BV}_{\text {INS }}, \mathrm{BV}_{\mathbb{I N} 1}$ (Pins 3,2; 11,10):The $\mathrm{AV}_{\text {INS }}$ or $\mathrm{BV}_{\text {INS }}$ supply pin must always be connected to the $\mathrm{AV}_{\text {IN1 }}$ or $\mathrm{BV}_{\text {IN } 1}$ supply pin (see Block Diagram). The $\mathrm{AV}_{\text {INs }}$ and $\mathrm{BV}_{\text {INS }}$ supply pins provide power for the input control logic, the current limit and thermal shutdown circuitry; plus provides a sense connection to the input power supply. The gate of the NMOS switch is powered by a charge pump from the $A V_{\text {INS }}$ and $B V_{\text {INS }}$ supply pins (see Block Diagram). The $\mathrm{AV}_{\text {IN } 1}$ and $\mathrm{BV}_{\text {IN1 }}$ supply pins provide connection to the drain of $1 / 2$ of the output power device.
 $\mathrm{AV}_{\mathbb{I N} 3}, \mathrm{BV}_{\mathrm{IN}^{1} 2}$ and $\mathrm{BV}_{\mathbb{N} 3}$ supply pins are typically tied to the $\mathrm{AV}_{\text {INS }}, \mathrm{AV}_{\mathrm{IN}_{1 N}}, \mathrm{BV}_{\text {INS }}$ and $\mathrm{BV}_{\mathrm{IN}_{1}}$ supply pins for lowest on resistance; i.e., when all four $\mathrm{AV}_{\mathrm{IN}^{\prime}}, \mathrm{BV}_{\text {IN }}$ pins are connected together the entire power device is connected (see Block Diagram). Each auxiliary supply pin, $\mathrm{AV}_{\mathrm{IN} 2}, \mathrm{AV}_{\mathrm{IN3}}$, $\mathrm{BV}_{\mathrm{IN2} 2}$ and $\mathrm{BV}_{\mathrm{IN3}}$, is connected to the drain of approximately $1 / 4$ of the corresponding power device. The $\mathrm{AV}_{\mathrm{IN}_{2}}$, $\mathrm{AV}_{\mathrm{IN} 3}, \mathrm{BV}_{\mathrm{IN2} 2}$ and $\mathrm{BV}_{\mathrm{IN} 3}$ pins can be selectively disconnected to reduce the short-circuit limit at the expense of higher $\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \text {. (See Applications Information section for }}$ more detail.)
$\mathrm{AV}_{\text {OUT }}, \mathrm{BV}_{\text {OUT }}$ (Pins 1,16;8,9):The outputs of the LTC1478 are protected against accidental short-circuits to ground by a current-limit circuit which protects the system power supplies and loads against damage. A second level of protection is provided by thermal shutdown circuitry which limits the die temperature to approximately $130^{\circ} \mathrm{C}$.

operation
 (LTC1477 or single channel of LTC1478)

Input TTL-CMOS Converter

The LTC1477 enable input is designed to accommodate a wide range of 3 V and 5 V logic families. The input threshold voltage is approximately 1.4 V with 100 mV of hysteresis. The input enables the bias generator, the gate charge pump and the protection circuitry. Therefore, when the enable input is turned off, the entire circuit is powered down and the supply current drops below $1 \mu \mathrm{~A}$.

Ramped Switch Control

The LTC1477 gate charge pump includes circuitry which ramps the NMOS switch on slowly (1ms typical rise time) but turns it off much more quickly (typically $20 \mu \mathrm{~s}$).

Bias, Oscillator and Gate Charge Pump

When the switch is enabled, a bias current generator and high frequency oscillator are turned on. The on-chip capacitive charge pump generates approximately 12 V of gate drive for the internal low $R_{D S(O N)} N M O S$ switch from the power supply. No external 12 V supply is required to switch the output.

Switch Protection

Two levels of protection are designed into the power switch in the LTC1477. The switch is protected against accidental short-circuits with a current limit circuit which limits the output current to typically $2 A$ when the output is shorted to ground. The LTC1477 also has thermal shutdown set at approximately $130^{\circ} \mathrm{C}$ which limits the power dissipation to safe levels.

LTC1478 Operation

The LTC1478 dual protected switch can be thought of as two independent LTC1477 single protected switches. The inputsupply voltages may be from separate power sources. The ground connection, however, is common to both channels and must be connected to the same potential.

BLOCK DIAGRAM (LTC1477 or single channel of LTC1478)

APPLICATIONS INFORMATION

Tailoring lumit and RDS(ON) $^{\text {for Load Requirements }}$

The LTC1477 is designed to current limit at approximately 2A during a short-circuit with all the $\mathrm{V}_{\text {IN }}$ pins connected to the input power supply. It is possible however, to reduce this current by selectively disconnecting two of the four power supply pins ($\mathrm{V}_{\mathrm{IN} 2}$ and $\mathrm{V}_{\mathrm{IN} 3}$). Table 1 lists the effects of disconnecting these pins on $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and short-circuit current limit

Table 1. Effects of Disconnecting $V_{\mathbb{I N}_{2}}$ and $V_{V_{N 3}}$

	ALL $V_{\text {IN }}$ PINS CONNECTED	$\begin{gathered} \text { VIN3 }^{\prime} \\ \text { DISCONNECTED } \end{gathered}$	$\begin{aligned} & V_{\text {IN2 } 2} \text { AND } V_{\text {IN3 }} \\ & \text { DISCONNECTED } \end{aligned}$
$\mathrm{R}_{\text {DS(ON) }}$	0.07Ω	0.09Ω	0.12Ω
limit	2A	1.5A	0.85A

Note: 5V Operation
Note that there is an inverse relationship between output current limit and switch resistance. This allows the tailoring of the switch parameter to the expected load current and system current limit requirements.
A couple of examples are helpful:

1. If a nominal load of 1 A was controlled by the switch configured to current limit at 2 A (all $\mathrm{V}_{\text {IN }}$ pins connected together), the $R_{D S(O N)}$ would be 0.07Ω and the voltage drop across the switch would be 70 mV . The power dissipated by the switch would only be 70 mW .
2. If a nominal load of 0.5 A was controlled by the switch configured to current limit at 0.85 A ($\mathrm{V}_{\text {IN2 }}$ and $\mathrm{V}_{\text {IN3 }}$ disconnected), the $R_{D S(O N)}$ would increase to 0.14Ω. But the voltage drop would remain at 70 mV and the switch power dissipation would drop to 35 mW .

Supply Bypassing

For best results, bypass the supply input pins with a single $1.0 \mu \mathrm{~F}$ capacitor as close as possible to the LTC1477. Sometimes, much larger capacitors are already available at the output of the power supply. In this case, it is still good practice to use a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the LTC1477, especially if the power supply output capacitor is more than 2" away on the printed circuit board.

Output Capacitor

The output pin is designed to ramp on slowly, typically 1 ms rise time. Therefore, very large output capacitors can be driven without producing voltage spikes on the supply pins (see graphs in Typical Performance Characteristics). The output pin should have a $1 \mu \mathrm{~F}$ capacitor for noise reduction and smoothing.

Supply and Input Sequencing

The LTC1477 is designed to operate with continuous power (quiescent current drops to < $1 \mu \mathrm{~A}$ when disabled). If the power must be turned off, for example to enter a system "sleep" mode, the enable input must be turned off 100μ s before the input supply is turned off to ensure that the gate of the NMOS switch is completely discharged before power is removed. However, the input control and power can be applied simultaneously during power up.

TYPICAL APPLICATIONS

TYPICAL APPLICATIONS

0.85A Protected Switch

2A Protected Switch Driving a Large Capacitive Load

Adding Short-Circuit Protection to an LT1301 Step-Up Switching Regulator (0.01 μ A Standby Current)

5V to 3.3V Selector Switch with Slope Control and $0.01 \mu \mathrm{~A}$ Standby Current

*ALLOW AT LEAST 100 ms BETWEEN 5V AND 3.3V SWITCHING FOR DISCHARGE OF $100 \mu \mathrm{~F}$ OUTPUT CAPACITOR

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1153	Electronic Circuit Breaker	MOSFET Driver with Adjustable Reset Time
LTC1154	Single High-Side Driver	MOSFET Driver with Switch Status Output
LTC1155	Dual High-Side Driver	Dual M0SFET Driver with Protection
LTC1470	5 V and 3.3V V VC Switch	SafeSlot ${ }^{\text {TM }}$ Protected Switch in 8-Lead S0
LTC1471	Dual 5V and 3.3V VCC Switch	Dual Version of LTC1470 in 16-Lead S0
LTC1472	PCMCIA $V_{\text {CC }}$ and VPP Switches	Complete Single Channel SafeSlot Protection
SafeSlot is a trademark of Linear Technology Corporation.		

SafeSlot is a trademark of Linear Technology Corporation.

Constant-Voltage/ Constant-Current Battery Charger

feATURES

- Charges NiCd, NiMH and Lithium-Ion Batteries One Resistor Is Needed to Program Charging Current
- High Efficiency Current Mode PWM with 2A Internal Switch and Sense Resistor
- Precision 5\% Accuracy at Full Charging Current
- Precision 0.5\% Voltage Reference for Voltage Mode Charging or Overvoltage Protection
- Current Sensing Can Be at Either Terminal of the Battery
- Low Reverse Battery Drain Current: $3 \mu \mathrm{~A}$
- Charging Current Soft Start
- Shutdown Control

APPLICATIONS

- Chargers for NiCd, NiMH and Lithium Batteries
- Step-Down Switching Regulator with Precision Adjustable Current Limit

DESCRIPTION

The LT ${ }^{\circledR} 1510$ current mode PWM battery charger is the simplest, most efficient solution to fast-charge modern rechargeable batteries including lithium-ion (Li-Ion), nickel-
metal-hydride (NiMH)* and nickel-cadmium (NiCd)* that require constant-current and/or constant-voltage charging. The internal switch is capable of delivering 1.5A DC current (2 A peak current). The 0.1Ω onboard current sense resistor makes the charging current programming very simple. One resistor (or a programming current from a DAC) is required to set the full charging current (1.5A) to within 5% or the trickle charge current $(150 \mathrm{~mA})$ to 10% accuracy. The LT1510 with 0.5% reference voltage accuracy meets the critical constant-voltage charging requirement for lithium cells.

The LT1510 can charge batteries ranging from 2 V to 20 V . Ground sensing of current is not required and the battery's negative terminal can be tied directly to ground. A saturating switch running at 200 kHz gives high charging efficiency and small inductor size. A blocking diode is not required between the chip and the battery because the chip goes into sleep mode and drains only $3 \mu A$ when the wall adaptor is unplugged. Soft start and shutdown features are also provided. The LT1510 is available in a 16-pin fused lead power SO package with a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$, an 8 -pin SO and a 16 -pin PDIP.
$\overline{\mathbf{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

* NiCd and NiMH batteries require charge termination circuitry (not shown in Figure 1).

TYPICAL APPLLCATIONS

Figure 1. Charging NiMH or NiCd Batteries (Efficiency at $0.5 \mathrm{~A} \approx 90 \%$)

Figure 2. Charging Lithium Batteries (Efficiency at $1.3 \mathrm{~A}>87 \%$)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VMaX) 27 V
Switch Voltage with Respect to GND -3V
Switch Current (Peak) 2A
Boost Pin Voltage with Respect to $V_{C C}$ 30 V
Boost Pin Voltage with Respect to GND $-5 \mathrm{~V}$
V_{C}, PROG, OVP Pin Voltage 8 V
Operating Junction
Temperature Range

\qquad
$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
$I_{\text {BAT }}$ (Average) 1.5A

PACKAGE/ORDER INFORMATION

TOPYEW	ORDER PART NUMBER	$\xrightarrow{\text { ToP VIEN }}$	ORDER PART NUMBER
			$\begin{aligned} & \text { LT1510CN } \\ & \text { LT1510CS } \end{aligned}$
	LT1510CS8		
	S8 PART MARKING		
$\underset{\substack{\text { Sb Pbackage } \\ \text {-LEAPLASTIC } \\ \text { so }}}{ }$		N-	
$T_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\text {A }}=1225^{\circ} \mathrm{C} / \mathrm{W}$	1510		- four corner pma ar fused
		$\xrightarrow{\text { Spackage* }}$	
			Cownect thes mour pms To

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{C C}=16 \mathrm{~V}, \mathrm{~V}_{\text {BAT }}=8 \mathrm{~V}, \mathrm{~V}_{\text {MAX }}$ (maximum operating $\mathrm{V}_{\text {CC }}$) $=25 \mathrm{~V}$, no load on any outputs, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Overall						
Supply Current	$\begin{aligned} & V_{\text {PROG }}=2.7 \mathrm{~V}, V_{\text {CC }} \leq 20 \mathrm{~V} \\ & V_{\text {PROG }}=2.7 \mathrm{~V}, 20 \mathrm{~V}<V_{\text {CC }} \leq V_{\text {MAX }} \end{aligned}$	\bullet		$\begin{aligned} & 2.90 \\ & 2.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.1 \end{aligned}$	mA mA
DC Battery Current, $\mathrm{I}_{\text {BAT }}$ (Note 1)	$\begin{aligned} & 8 \mathrm{~V} \leq V_{\text {CC }} \leq V_{\text {MAX }}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {BAT }} \leq 20 \mathrm{~V} \\ & \mathrm{RPRRG}=4.93 \mathrm{k} \\ & R_{\text {PROG }}=3.28 \mathrm{k}(\text { Note } 4) \\ & R_{\text {PROG }}=49.3 \mathrm{k} \end{aligned}$	\bullet	$\begin{gathered} 0.950 \\ 1.425 \\ 90 \end{gathered}$	$\begin{array}{r} 1.0 \\ 1.5 \\ 100 \end{array}$	$\begin{gathered} 1.050 \\ 1.575 \\ 110 \\ \hline \end{gathered}$	A A mA
$V_{\text {CC }}$ Undervoltage Lockout (Switch OFF) Threshold		\bullet	6	7	8	V
Reverse Current from Battery (When VCC Is Not Connected, V ${ }_{\text {SW }}$ Is Floating)	$\begin{aligned} & V_{B A T} \leq 20 V \\ & 20 \mathrm{~V}<V_{B A T} \leq V_{M A X} \end{aligned}$	\bullet		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Boost Pin Current	$\begin{aligned} & V_{C C}-V_{\text {BOOST }} \leq 20 \mathrm{~V} \\ & 20 \mathrm{~V}<V_{C C}-V_{\text {BOOST }} \leq V_{\text {MAX }} \\ & 2 V \leq V_{\text {BOOST }}-V_{C C} \leq 8 V \text { (Switch ON) } \\ & 8 V<V_{\text {BOOST }}-V_{C C} \leq 25 V \text { (Switch ON) } \end{aligned}$	$\stackrel{+}{\bullet}$		$\begin{gathered} 0.10 \\ 0.25 \\ 6 \\ 8 \end{gathered}$	$\begin{gathered} 10 \\ 20 \\ 9 \\ 12 \end{gathered}$	μA μA $m A$ $m A$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{BAT}}=8 \mathrm{~V}, \mathrm{~V}_{\text {MAX }}$ (maximum operating V_{CC}) $=25 \mathrm{~V}$, no load on any outputs, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Switch						
Switch ON Resistance	$\begin{aligned} 8 V & \leq V_{C C} \leq V_{M A X} \\ I_{S W} & =1.5 A, V_{B O O S T}-V_{S W} \geq 2 V(\text { Note 4) } \\ I_{S W} & =1 A, V_{B O O S T}-V_{S W}<2 V \end{aligned}$	\bullet		0.3	$\begin{aligned} & 0.42 \\ & 1.50 \end{aligned}$	Ω Ω
$\Delta I_{\text {B00ST }} / \Delta l_{\text {SW }}$ During Switch ON	$\mathrm{V}_{\text {BOOST }}=24 \mathrm{~V}$			25	35	mA/A
Switch OFF Leakage Current	$\begin{aligned} & V_{S W}=0 \mathrm{~V}, \mathrm{~V}_{C C} \leq 20 \mathrm{~V} \\ & 20 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Maximum $\mathrm{V}_{\text {BAT }}$ with Switch ON		\bullet			$\mathrm{V}_{\text {CC }}-2$	V
Minimum IPROG for Switch ON		\bullet	2	4	7	$\mu \mathrm{A}$
Minimum IPROG for Switch OFF at $\mathrm{V}_{\text {PROG }} \leq 1 \mathrm{~V}$		\bullet	1	1.2		mA
Current Sense Amplifier Inputs (SENSE, BAT)						
Sense Resistance ($\mathrm{R}_{\text {S1 }}$)				0.08	0.12	Ω
Total Resistance from SENSE to BAT (Note 3)				0.2	0.25	Ω
Input Bias Current		\bullet		-100	-200	$\mu \mathrm{A}$
Input Common-Mode Low		\bullet	-0.25			V
Input Common-Mode High		\bullet			$\mathrm{V}_{\text {CC }}-2$	V

Reference

Reference Voltage (Note 1) S8 Package	R PROG $=4.93 \mathrm{k}$, Measured at PROG Pin		2.430	2.465	2.495	V
Reference Voltage (Note 2) N16, S16 Packages	RPROG $=3.28 k$, Measured at OVP with VA Supplying IPROG and Switch OFF		2.453	2.465	2.477	V
Reference Voltage Tolerance	All Conditions of VCC, Temperature	\bullet	2.441	2.489	V	

Oscillator

Switching Frequency			190	200	210	kHz
Switching Frequency Tolerance	All Conditions of VCC, Temperature	\bullet	180	200	220	kHz
Maximum Duty Cycle		\bullet	85	93		$\%$

Current Amplifier (CA2)

Transconductance	$V_{C}=1 \mathrm{~V}, I_{V C}= \pm 1 \mu \mathrm{~A}$		150	250
Maximum V_{C} for Switch OFF		\bullet	400	$\mu \mathrm{mho}$
IVC Current (Out of Pin)	$V_{C} \geq 0.45 \mathrm{~V}$	\bullet	0.7	V

Voltage Amplifier (VA)

Transconductance (Note 2)	Output Currrent from $100 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$		0.4	0.6	1
Output Source Current	V PROG $=2.5 \mathrm{~V}, \mathrm{~V}_{\text {OVP }}=2.5 \mathrm{~V}$	\bullet	1.1	mho	
OVP Input Bias Current	At 0.75 mA VA Output Current	\bullet		50	mA

The denotes specifications which apply over the full operating temperature range.
Note 1: Tested with Test Circuit 1.

Note 2: Tested with Test Circuit 2.
Note 3: Sense resistor $\mathrm{R}_{\mathrm{S} 1}$ and package bond wires.
Note 4: Applies to 16 -pin only.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS

Switch Current vs Boost Current vs Boost Voltage

BLOCK DIAGRAM

OPERATION

The LT1510 is a current mode PWM step-down (buck) switcher. The battery DC charging current is programmed by a resistor RPROG (or a DAC output current) at the PROG pin (see Block Diagram). Amplifier CA1 converts the charging current through $\mathrm{R}_{\mathrm{S} 1}$ to a much lower current $I_{\text {PROG }}(500 \mu \mathrm{~A} / \mathrm{A})$ fed into the PROG pin. Amplifier CA2 compares the output of CA1 with the programmed current and drives the PWM loop to force them to be equal. High DC accuracy is achieved with averaging capacitor CPROG. Note that IPROG has both AC and DC components. IPROG goes through R1 and generates a ramp signal that is fed to the PWM control comparator C1 through buffer B1 and
level shift resistors R2 and R3, forming the current mode inner loop. The Boost pin drives the switch NPN $Q_{\text {Sw }}$ into saturation and reduces power loss. For batteries like lithium-ion that require both constant-current and con-stant-voltage charging, the $0.5 \%, 2.465 \mathrm{~V}$ reference and the amplifier VA reduce the charging current when battery voltage reaches the preset level. For NiMH and NiCd, VA can be used for overvoltage protection. When input voltage is not present, the charger goes into low current ($3 \mu \mathrm{~A}$ typically) sleep mode as input drops down to 0.7 V below battery voltage. To shut down the charger, simply pull the V_{C} pin low with a transistor.

APPLICATIONS INFORMATION

Input and Output Capacitors

The input capacitor is assumed to absorb all input switching ripple current in the converter, so it must have adequate ripple current rating. Worst-case RMS ripple current will be equal to one half of output charging current. Actual capacitance value is not important. Solid tantalum capacitors such as the AVX TPS and Sprague 593D series have high ripple current rating in a relatively small surface mount package, but caution must be used when tantalum capacitors are used for input bypass. High input surge currents can be created when the adapter is hot-plugged to the charger and solid tantalum capacitors have a known failure mechanism when subjected to very high turn on surge currents. Highest possible voltage rating on the capacitor will minimize problems. Consult with the manufacturer before use. Alternatives include new high capacity ceramic ($5 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$) from Tokin, et al., and the old standby, aluminum electrolytic, which will require more microfarads to achieve adequate ripple rating.
The output capacitor is also assumed to absorb all output switching ripple, which has a worst-case RMS value of approximately ($10 \mathrm{e}^{-6}$)/(inductance L) or 0.33 A for a $30 \mu \mathrm{H}$ inductor. EMI considerations usually make it desirable to
minimize ripple current in the battery leads, and beads or inductors mazy be added to increase battery impedance at the 200 kHz switching frequency. Output switching ripple will then split between the battery and the output capacitor depending on the ESR of the output capacitor and the battery impedance.

Thermal Calculations

If the LT1510 is used for charging currents above 0.4 A , a thermal calculation should be done to ensure that junction temperature will not exceed $125^{\circ} \mathrm{C}$. Power dissipation in the IC is caused by bias and driver current, switch resistance, switch transition losses and the current sense resistor. The following equations show that maximum practical charging current for the 8-pin SO package (125° C/W thermal resistance) is about 0.8 A for an 8.4 V battery and 1.1 A for a 4.2 V battery. This assumes a $60^{\circ} \mathrm{C}$ maximum ambient temperature. The 16-pin S0, with a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$, can provide a full 1.5 A charging current in many situations. The 16-pin PDIP falls between these extremes. Graphs are shown in the Typical Performance Characteristics section.

TEST CIRCUITS

Test Circuit 1

Test Circuit 2

APPLICATIONS INFORMATION

$$
\begin{aligned}
& \mathrm{P}_{\text {BIAS }}=(3.5 \mathrm{~mA})\left(\mathrm{V}_{\text {IN }}\right)+1.5 \mathrm{~mA}\left(\mathrm{~V}_{\text {BAT }}\right) \\
&+\frac{\left(\mathrm{V}_{\text {BAT }}\right)^{2}}{V_{\text {IN }}}\left[7.5 \mathrm{~mA}+(0.012)\left(\left(_{\mathrm{IAAT}}\right)\right]\right. \\
& \mathrm{P}_{\text {DRIVER }}= \frac{\left(\mathrm{I}_{\text {BAT }}\right)\left(\mathrm{V}_{\text {BAT }}\right)^{2}}{50\left(\mathrm{~V}_{\text {IN }}\right)} \\
& \mathrm{P}_{\text {SW }}=\frac{\left(\mathrm{I}_{\text {BAT }}\right)^{2}\left(\mathrm{R}_{\text {SWW }}\right)\left(\mathrm{V}_{\text {BAT }}\right)}{V_{\text {IN }}}+\left(\mathrm{t}_{0 \mathrm{~L}}\right)\left(\mathrm{V}_{\text {II }}\right)\left(\mathrm{l}_{\text {BAT }}\right)(\mathrm{f}) \\
& \mathrm{P}_{\text {SENSE }}=(0.18 \Omega)\left(\mathrm{l}_{\text {BAT }}\right)^{2}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{SW}}=$ Switch ON resistance $\approx 0.35 \Omega$
$\mathrm{t}_{0 \mathrm{~L}}=$ Effective switch overlap time $\approx 10 \mathrm{~ns}$
$\mathrm{f}=200 \mathrm{kHz}$
Example: $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\text {BAT }}=8.4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{BAT}}=1.2 \mathrm{~A}$;

$$
\begin{aligned}
& \mathrm{P}_{\text {BIAS }}=(3.5 \mathrm{~mA})(15)+1.5 \mathrm{~mA}(8.4) \\
& +\frac{(8.4)^{2}}{15}[7.5 \mathrm{~mA}+(0.012)(1.2)]=0.17 \mathrm{~W} \\
& \mathrm{P}_{\text {DIIVER }}=\frac{(1.2)(8.4)^{2}}{50(15)}=0.11 \mathrm{~W} \\
& \mathrm{P}_{\text {SW }}=\frac{(1.2)^{2}(0.35)(8.4)}{15}+10 \mathrm{e}^{-9}(15)(1.2)(200 \mathrm{kHz}) \\
& \quad=0.28+0.04=0.32 \mathrm{~W} \\
& \mathrm{P}_{\text {SENSE }}=(0.18)(1.2)^{2}=0.26 \mathrm{~W}
\end{aligned}
$$

Total Power in the IC is:
$0.17+0.11+0.32+0.26=0.86 \mathrm{~W}$

Nickel-Cadmium and Nickel-Metal-Hydride Charging

The circuit in Figure 1 on the first page of this data sheet uses the 8-pin LT1510 to charge NiCd or NiMH batteries up to 12 V with charging currents of 0.5 A when Q1 is on and 50 mA when $Q 1$ is off. The basic formula for charging current is:

$$
I_{\text {CHRG }}=\frac{(2000)(2.465)}{R_{\text {PROG }}}
$$

$I_{\text {CHRG }}=$ Battery charging current
$R_{\text {PROG }}=$ Total resistance from PROG pin to ground
For a 2-level charger, R1 and R2 are found from;

$$
R 1=\frac{(2.465)(2000)}{l_{\text {LOW }}}
$$

$$
R 2=\frac{(2.465)(2000)}{I_{H I}-I_{\text {LOW }}}
$$

All battery chargers with fast-charge rates require some means to detect full charge state in the battery to terminate the high charging current. NiCd batteries are typically charged at high current until temperature rise or battery voltage decrease is detected as an indication of near full charge. The charging current is then reduced to a much lower value and maintained as a constant trickle charge. An intermediate "top off" current may be used for a fixed time period to reduce 100% charge time.
NiMH batteries are similar in chemistry to NiCd but have two differences related to charging. First, the inflection characteristic in battery voltage as full charge is approached is not nearly as pronounced. This makes it more difficult to use dV/dt as an indicator of full charge, and change of temperature is more often used with a temperature sensor in the battery pack. Secondly, constant trickle charge may not be recommended. Instead, a moderate level of current is used on a pulse basis ($\approx 1 \%$ to 5% duty cycle) with the time-averaged value substituting for a constant low trickle.

When a microprocessor DAC output is used to control charging current, it must be capable of sinking current at a compliance up to 2.5 V if connected directly to the PROG pin.

Lithium-Ion Charging

The circuit in Figure 2 uses the 16-pin LT1510 to charge lithium-ion batteries at a constant 1.3A until battery voltage reaches a limit set by R3 and R4. The charger will then automatically go into a constant-voltage mode with current decreasing to zero over time as the battery reaches full charge. This is the normal regimen for lithium-ion charg-

APPLICATIONS INFORMATION

ing, with the charger holding the battery at "float" voltage indefinitely. In this case no external sensing of full charge is needed.

Current through the R3/R4 divider is set at a compromise value of $25 \mu \mathrm{~A}$ to minimize battery drain when the charger is off and to avoid large errors due to the 50nA bias current of the OVP pin. Q3 can be added if it is desired to eliminate even this low current drain. A 47k resistor from adapter output to ground should be added if Q3 is used to ensure that the gate is pulled to ground.
With divider current set at $25 \mu \mathrm{~A}, \mathrm{R} 4=2.465 / 25 \mu \mathrm{~A}=100 \mathrm{k}$ and,

$$
\begin{aligned}
R 3 & =\frac{(R 4)\left(V_{B A T}-2.465\right)}{2.465+R 4(0.05 \mu \mathrm{~A})}=\frac{100 \mathrm{k}(8.4-2.465)}{2.465+100 \mathrm{k}(0.05 \mu \mathrm{~A})} \\
& =240 \mathrm{k}
\end{aligned}
$$

Lithium-ion batteries typically require float voltage accuracy of 1% to 2%. Accuracy of the LT1510 OVP voltage is $\pm 0.5 \%$ at $25^{\circ} \mathrm{C}$ and $\pm 1 \%$ over full temperature. This leads to the possibility that very accurate (0.1%) resistors might
be needed for R3 and R4. Actually, the temperature of the LT1510 will rarely exceed $50^{\circ} \mathrm{C}$ in float mode because charging currents have tapered off to a low level, so 0.25\% resistors will normally provide the required level of overall accuracy.
Some battery manufacturers recommend termination of constant-voltage float mode after charging current has dropped below a specified level (typically 50 mA to 100 mA) and a further timeout period of 30 minutes to 90 minutes has elapsed. This may extend the life of the battery, so check with manufacturers for details. The circuit in Figure 3 will detect when charging current has dropped below 75 mA . This logic signal is used to initiate a timeout period, after which the LT 1510 can be shut down by pulling the V_{C} pin low with an open collector or drain. Some external means must be used to detect the need for additional charging if needed, or the charger may be turned on periodically to complete a short float-voltage cycle.
Current trip level is determined by the battery voltage, R1 through R3, and the internal LT1510 sense resistor ($\approx 0.18 \Omega$ pin-to-pin). D2 generates hysteresis in the trip level to avoid multiple comparator transitions.

Figure 3. Current Comparator for Initiating Float Timeout

TYPICAL APPLICATION

Adjustable Voltage Regulator with Precision Adjustable Current Limit

reLated parts

PART NUMBER	DESCRIPTION	COMMENTS
LTC ${ }^{\circledR} 1325$	Microprocessor-Controlled Battery Management System	Can Charge, Discharge and Gas Gauge NiCd, NiMH and Pb-Acid Batteries with Software Charging Profiles
LT1372/LT1377	$500 \mathrm{kHz/1MHz}$ Step-Up Switching Regulators	High Frequency, Small Inductor, High Efficiency Switchers, 1.5A Switch
LT1373	250 kHz Step-Up Switching Regulator	High Efficiency, Low Quiescent Current, 1.5A Switch
LT1376	500 kHz Step-Down Switching Regulator	High Frequency, Small Inductor, High Efficiency Switcher, 1.5A Switch
LT1512	SEPIC Battery Charger	VIN Can Be Higher or Lower Than Battery Voltage

SEPIC Constant－Current／ Constant－Voltage Battery Charger

May 1995

feATURES

－Charger Input Voltage May Be Higher or Lower Than Battery Voltage

－Charges Any Number of Cells Up to 20V
－ 1% Voltage Feedback Accuracy for Lithium Batteries
－ 100 mV Current Sense Voltage for High Efficiency
－Battery Can Be Grounded Directly
－500kHz Switching Frequency Minimizes Inductor Size
－Charging Current Easily Programmable or Shut Down

APPLICATIONS

－Battery Charging of NiCd，NiMH or Lithium Cells
－Precision Current Limited Power Supply
－Constant－Voltage，Constant－Current Supply
－Transducer Excitation

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1512$ is a 500 kHz current mode switching regula－ tor specially configured to create a constant－current， constant－voltage battery charger．In addition to the usual voltage feedback node，it has a current sense feedback circuit for accurately controlling output current of a flyback or SEPIC topology charger．These topologies allow the current sense circuit to be ground referred and completely separated from the battery itself，simplifying battery switch－ ing and eliminating ground loop errors．In addition，these topologies allow charging even when the input voltage is lower than the battery voltage．
Maximum switch current on the LT1512 is 1．5A．This allows battery charging currents up to 0.75 A ．Overall size of the charger circuit is typically less than $0.7 \mathrm{in}^{2}$ ，and all components can be low profile surface mount．Accuracy of 1% in constant－voltage mode is perfect for lithium battery applications．Charging current can be easily pro－ grammed for NiCd or NiMH batteries．A 3A version of the LT1512 will be available in the near future．

[^56]
TYPICAL APPLICATION

SEPIC Charger with 0．5A Output Current

Maximum Charging Current

LT1512

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 30 V
Switch Voltage 35 V
S/S Pin Voltage 30 V
$V_{\text {FB }}$ Pin Voltage (Transient, 10 ms)........................ $\pm 10 \mathrm{~V}$
$V_{\text {FB }}$ Pin Current 10 mA
$I_{\text {FB }}$ Pin Voltage (Transient, 10ms) $\pm 10 \mathrm{~V}$
Operating Junction Temperature Range Operating $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Short Circuit $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$
package/order information

TOP VIEW	ORDER PART NUMBER
$v_{c} 1$	LT1512CN8
$\mathrm{V}_{\mathrm{FB}} 2$	LT1512CS8
Fs 3	LT1512CS8
$\mathrm{s} / 54$	
N8 PACKAGE$8-$ LEAD PDIP \quadS8 PACKAGE $8-$ LEAD PLASTC so	S8 PART MARKING
$T_{J M a x}=125^{\circ} \mathrm{C}, \theta_{J A}=130^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{NB})$ $\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{J A}=120^{\circ} / \mathrm{W}(\mathrm{S} 8)$	1512

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS

$V_{I N}=5 V, V_{C}=0.6 V, V_{F B}=V_{R E F}, I_{F B}=0 V, V_{S W}$ and S / S pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {REF }}$	$V_{\text {FB }}$ Reference Voltage	Measured at $V_{F B}$ Pin $V_{C}=0.8 \mathrm{~V}$	\bullet	$\begin{aligned} & 1.233 \\ & 1.228 \end{aligned}$	$\begin{aligned} & 1.245 \\ & 1.245 \end{aligned}$	$\begin{aligned} & 1.257 \\ & 1.262 \end{aligned}$	V
	$V_{\text {FB }}$ Input Current	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}$	-		250	$\begin{aligned} & 550 \\ & 600 \end{aligned}$	nA
	$V_{\text {FB }}$ Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.03	\%/V
$\mathrm{I}_{\text {REF }}$	$I_{\text {FB }}$ Reference Voltage	Measured at I_{FB} Pin $V_{F B}=0 \mathrm{~V}, V_{C}=0.8 \mathrm{~V}$	-		$\begin{aligned} & -100 \\ & -100 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	$I_{\text {FB }}$ Input Current	$\mathrm{V}_{\text {IFB }}=\mathrm{V}_{\text {IREF }}$	\bullet		-20		$\mu \mathrm{A}$
	$I_{\text {FB }}$ Reference Voltage Line Regulation	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.8 \mathrm{~V}$	\bullet		0.01	0.05	\% N
g_{m}	Error Amplifier Transconductance	$\Delta \mathrm{I}_{\mathrm{C}}= \pm 25 \mu \mathrm{~A}$	\bullet	$\begin{gathered} 1100 \\ 700 \end{gathered}$	1500	$\begin{aligned} & 1900 \\ & 2300 \end{aligned}$	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
	Error Amplifier Source Current	$V_{\text {FB }}=V_{\text {REF }}-150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet	120	200	350	$\mu \mathrm{A}$
	Error Amplifier Sink Current	$V_{\text {FB }}=V_{\text {REF }}+150 \mathrm{mV}, \mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}$	\bullet		1400	2400	$\mu \mathrm{A}$
	Error Amplifier Clamp Voltage	High Clamp, $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$ Low Clamp, $\mathrm{V}_{\mathrm{FB}}=1.5 \mathrm{~V}$		$\begin{aligned} & 1.70 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.95 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.52 \end{aligned}$	V V
A_{V}	Error Amplifier Voltage Gain				500		V/V
	V_{C} Pin Threshold	Duty Cycle $=0 \%$		0.8	1	1.25	V
f	Switching Frequency	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	-	$\begin{aligned} & 460 \\ & 440 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 540 \\ & 560 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
	Maximum Switch Duty Cycle		\bullet	90	95		\%
	Switch Current Limit Blanking Time				130	260	ns
BV	Output Switch Breakdown Voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 25 \mathrm{~V}$	\bullet	35	47		V
$\mathrm{V}_{\text {SAT }}$	Output Switch "On" Resistance	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	\bullet		0.5	0.8	Ω
LIIM	Switch Current Limit	$\begin{aligned} & \text { Duty Cycle }=50 \% \\ & \text { Duty Cycle }=80 \% \text { (Note 1) } \end{aligned}$	\bullet	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	A
$\frac{\Delta{l_{\mathbb{N}}}_{\Delta l_{\mathrm{SW}}}}{}$	Supply Current Increase During Switch On Time				15	25	mA / A

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}}, \mathrm{I}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}$ and S / S pins open, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
	Control Voltage to Switch Current				
	Transconductance				

The denotes specifications which apply over the full operating temperature range.

Note 1: For duty cycles (DC) between 50% and 90%, minimum guaranteed switch current is given by $\mathrm{I}_{\text {LIM }}=0.667(2.75-D C)$.

BLOCK DIAGRAM

OPERATION

The LT1512 is a current mode switcher. This means that switch duty cycle is directly controlled by switch current rather than by output voltage or current. Referring to the Block Diagram, the switch is turned "on" at the start of each oscillator cycle. It is turned "off" when switch current reaches a predetermined level. Control of output voltage and current is obtained by using the output of a dual feedback voltage sensing error amplifier to set switch current trip level. This technique has the advantage of simplified loop frequency compensation. A low dropout internal regulator provides a 2.3 V supply for all internal circuitry on the LT1512. This low dropout design allows input voltage to vary from 2.7 V to 25 V . A 500 kHz oscillator is the basic clock for all internal timing. It turns "on" the output switch via the logic and driver circuitry. Special adaptive anti-sat circuitry detects onset of saturation in the power switch and adjusts driver current instantaneously to limit switch saturation. This minimizes driver dissipation and provides very rapid turn-off of the switch.

A unique error amplifier design has two inverting inputs which allow for sensing both output voltage and current. A 1.245 V bandgap reference biases the noninverting input. The first inverting input of the error amplifier is brought out for positive output voltage sensing. The second inverting input is driven by a "current" amplifier which is sensing output current via an external current sense resistor. The current amplifier is set to a fixed gain of ≈-12 which provides a -100 mV current limit sense voltage.
The error signal developed at the amplifier output is brought out externally and is used for frequency compensation. During normal regulator operation this pin sits at a voltage between 1 V (low output current) and 1.9 V (high output current). Switch duty cycle goes to zero if the V_{C} pin is pulled below the V_{C} pin threshold, placing the LT1512 in an idle mode.

APPLICATIONS INFORMATION

The LT1512 is an IC battery charger chip specifically optimized to use the SEPIC converter topology. A complete charger schematic is shown in the Typical Application. The SEPIC (Single-Ended Primary Inductance Converter) topology has unique advantages for battery charging. It will operate with input voltages above or below the battery voltage, has no path for battery discharge when turned off, and eliminates the snubber losses of flyback designs. It also has a current sense point that is ground referred and need not be connected directly to the battery. The two inductors shown are actually just two identical windings on one inductor core, althoughtwo separate inductors can be used.
A current sense voltage of -100 mV is generated with respect to ground across R3. This sets maximum charging surrent to 0.5 A when the battery is below float voltage ($\mathrm{I}_{\mathrm{MAX}}$ $=100 \mathrm{mV} / \mathrm{R} 3$). The average current through R3 is always dentical to the current delivered to the battery. R4 and C4 'ilter the current signal to deliver a smooth feedback to the ${ }_{\text {FB }}$ pin. R1 and R2 form a divider for battery voltage sensing and set the battery float voltage. The suggested value for R2 s 12.4k. R1 is calculated from:

$$
\mathrm{R} 1=\frac{\mathrm{V}_{\text {OUT }}-1.245}{\frac{1.245}{\mathrm{R} 2}+\left(3 \times 10^{-7}\right)}
$$

$\mathrm{V}_{\text {OUT }}=$ battery float voltage
Maximum input voltage for this circuit is partly determined by battery voltage. A SEPIC converter has an off-state switch voltage equal to input voltage plus output voltage. The LT1512 has a maximum input voltage of 30 V and a maximum switch voltage of 35 V , so this limits maximum input voltage to 30 V , or $35 \mathrm{~V}-\mathrm{V}_{\text {BATTERY, }}$, whichever is less.
The dual function S / S pin provides easy shutdown and synchronization. It is logic level compatible and can be pulled high or left floating for normal operation. A logic low on the S / S pin activates shutdown, reducing input supply current to $12 \mu \mathrm{~A}$. To synchronize switching, drive the S / S pin between 600 kHz and 800 kHz .

More Information

For further LT1512 characteristics and applications information, please consultthe LT1372 data sheet. Except for the error amplifiercircuitry, the LT1512 is similar to the LT1372.

4-Channel, 3V Micropower Sampling 12-Bit Serial I/O A/D Converter

feAtures

- 12-Bit Resolution
- Auto Shutdown to 1nA
- Guaranteed $\pm 3 / 4$ LSB Max DNL
- Low Supply Current: $160 \mu \mathrm{~A}$
- Single Supply 3V Operation
- 4-Channel Multiplexer
- On-Chip Sample-and-Hold
- Conversion Time: 60 $\mathrm{\mu s}$
- Sampling Rates: 10.5 ksps
- I/O Compatible with SPI, MICROWIRE ${ }^{\text {TM }}$, etc.
- 16-Pin SO Package

APPLICATIONS

- Pen Screen Digitizing
- Battery-Operated Systems
- Remote Data Acquisition
- Isolated Data Acquisition
- Battery Monitoring
- Temperature Measurement

DESCRIPTION

The LTC ${ }^{\circledR} 1522$ is a 4-channel, 3 V micropower, 12-bit sampling A / D converter. Whenever it is not performing conversions, it typically draws only $160 \mu \mathrm{~A}$ of supply current when converting and automatically powering down to a typical supply current of 1 nA . The LTC1522 is available in a 16-pin SOIC package and operates on a 3 V supply. The 12-bit, switched-capacitor, successive approximation ADC includes a software configurable 4-channel MUX as well as sample-and-hold.
On-chip serial ports allow efficient data transfer to a wide range of microprocessors and microcontrollers over three wires. This, coupled with micropowerconsumption, makes remote location possible and facilitates transmitting data through isolation barriers.
The circuit can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (to 1.5 V full scale) allow direct connection to sensors and transducers in many applications, eliminating the need for gain stages.

[^57]
TYPICAL APPLICATION

$12 \mu \mathrm{~W}$, 4-Channel, 12-Bit ADC Samples at 200 Hz and Runs Off a 3V Battery

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage (VCC) to GND 12V
Voltage
Analog Reference -0.3 V to $\left(\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}\right)$
Analog Input - 0.3 V to ($\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$)
Digital Inputs-0.3V to 12 V
Digital Output - 0.3 V to ($\mathrm{V}_{\text {CC }}+0.3 \mathrm{~V}$)
Power Dissipation
500 mW
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORmATIO

	ORDER PART NUMBER
$\mathrm{CH1} 2$	LTC1522CS
$\mathrm{CH2} 23$	
$\mathrm{CH} 34{ }^{4} \overline{\mathrm{CS}}$	
SHAIN 5 5 ${ }^{\text {a }}$ (12 CLK	
$V_{\text {REF }} 6$ 年 $11 V_{\text {CC }}$	
$\operatorname{com} 7$ 7 10 Dout	
GND 8 - 9 cs	
S PACKAGE 16-LEAD PLASTIC SO	
$T_{\text {Jmax }}=125^{\circ} \mathrm{C}, \theta_{J A}=120^{\circ} \mathrm{C} / \mathrm{W}$	

Consult factory for Industrial and Military grade parts.

RECOMmEnDED OPGRATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
$\mathrm{V}_{\text {CC }}$	Supply Voltage (Note 3)		2.7	3.6	V
CLK	Clock Frequency	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	(Note 4)	200	kHz
CYC	Total Cycle Time	$\mathrm{f}_{\text {CLK }}=200 \mathrm{kHz}$	95		$\mu \mathrm{S}$
hDI	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	450		ns
SuCS	Setup Time $\overline{\text { CS }} \downarrow$ Before First CLK \uparrow (See Operating Sequence)	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	2		$\mu \mathrm{S}$
SuDI	Setup Time, DIN Stable Before CLK \uparrow	$V_{\text {CC }}=2.7 \mathrm{~V}$	600		ns
WHCLK	CLK High Time	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	1.5		$\mu \mathrm{s}$
WLCLK	CLK Low Time	$V_{\text {CC }}=2.7 \mathrm{~V}$	1.5		$\mu \mathrm{S}$
WHCS	$\overline{\mathrm{CS}}$ High Time Between Data Transfer Cycles	$\mathrm{f}_{\text {CLK }}=200 \mathrm{kHz}$	25		$\mu \mathrm{S}$
WLCS	$\overline{\text { CS }}$ Low Time During Data Transfer	$\mathrm{f}_{\text {CLK }}=200 \mathrm{kHz}$	70		$\mu \mathrm{s}$

CONVERTER ARD MULTIPLEXER CHARACTERISTICS (Note 5)

'ARAMETER	CONDITIONS		MIN	TYP MAX	UNITS
Tesolution (No Missing Codes)		-	12		Bits
ntegral Linearity Error	(Note 6)	\bullet		± 3	LSB
)ifferential Linearity Error		\bullet		$\pm 3 / 4$	LSB
)ffset Error		-		± 3	LSB
a ain Error		\bullet		± 8	LSB
IEF Input Range	(Notes 7, 8)			$\mathrm{V}_{\text {CC }}+0.05 \mathrm{~V}$	V
Inalog Input Range	(Notes 7, 8)			to $\mathrm{V}_{\text {cc }}+0.05 \mathrm{~V}$	V
Inalog Input Leakage Current	(Note 9)	\bullet		± 1	$\mu \mathrm{A}$

DYNAMIC ACCURACY
 (Note 5) $\mathrm{f}_{\text {SMPL }}=10.5 \mathrm{kHz}$

;YMBOL	PARAMETER	CONDITIONS	MIN TYP	MAX	UNITS
$3 /\left(\begin{array}{l}\text { a }\end{array}\right.$	Signal-to-Noise Plus Distortion Ratio	1kHz Input Signal	68		dB
HD	Total Harmonic Distortion (Up to 5th Harmonic)	1 kHz Input Signal	-78		dB
;FDR	Spurious-Free Dynamic Range	1 kHz Input Signal	80		dB
	Peak Harmonic or Spurious Noise	1kHz Input Signal	-80		dB

DIGITAL ARD DC ELECTRICAL CHARACTERISTICS (Not 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$	-	2.0			V
VIL	Low Level Input Voltage	$V_{C C}=2.7 \mathrm{~V}$	\bullet			0.8	V
$\underline{I_{H}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			2.5	$\mu \mathrm{A}$
IL	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=2.7 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{array}{r} 2.40 \\ 2.10 \\ \hline \end{array}$	$\begin{aligned} & 2.64 \\ & 2.30 \\ & \hline \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.4	V
102	Hi-Z Output Leakage	$\overline{\overline{S S}}=$ High	\bullet			± 3	$\mu \mathrm{A}$
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
ISINK	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$			15		mA
$\mathrm{R}_{\text {REF }}$	Reference Input Resistance	$\begin{aligned} & \overline{\overline{C S}}=V_{\mathrm{IH}} \\ & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$			$\begin{gathered} 2700 \\ 60 \end{gathered}$		$\begin{array}{r}M \Omega \\ \mathrm{k} \Omega \\ \hline\end{array}$
$\overline{I_{\text {REF }}}$	Reference Current	$\begin{aligned} & \overline{\overline{C S}}=V_{\text {CC }} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 760 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 25 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 95 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 200 \mathrm{kHz} \end{aligned}$	\bullet \bullet		$\begin{gathered} 0.001 \\ 50 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\overline{I C C}$	Supply Current	$\begin{aligned} & \overline{C S}=V_{C C}, C L K=V_{C C}, D_{I N}=V_{C C} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 760 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 25 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{CYC}} \geq 95 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{CLK}} \leq 200 \mathrm{kHz} \end{aligned}$	\bullet		$\begin{gathered} \hline 0.001 \\ 160 \\ 160 \\ \hline \end{gathered}$	$\begin{array}{r} \pm 3 \\ 320 \\ \hline \end{array}$	μA μA μA

AC CHARACTERISTICS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sample Time	See Operating Sequence 1			1.5		CLK Cycles
tsMPL(MAX)	Maximum Sampling Frequency	See Operating Sequence 1		10.5			kHz
tconv	Conversion Time	See Operating Sequence 1			12		CLK Cycles
$\mathrm{t}_{\text {dDO }}$	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {OUT }}$ Data Valid	See Test Circuits	\bullet		600	1500	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, CST to Dout Hi-Z	See Test Circuits	\bullet		220	600	ns
ten	Delay Time, CLK \downarrow to $\mathrm{D}_{\text {OUT }}$ Enabled	See Test Circuits	\bullet		180	500	ns
thDo	Time Output Data Remains Valid After CLK \downarrow	$C_{\text {LOAD }}=100 \mathrm{pF}$			520		ns
$t_{\text {f }}$	Dout Fall Time	See Test Circuits	\bullet		60	180	ns
t_{r}	Dout Rise Time	See Test Circuits	\bullet		80	180	ns
$\mathrm{tan}^{\text {a }}$	Enable Turn-On Time	See Operating Sequence 1			490	700	ns
toff	Enable Turn-Off Time	See Operating Sequence 2			190	300	ns
topen	Break-Before-Make Interval			125	290		ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Analog Inputs On-Channel Off-Channel Digital Input			20 5 5		pF pF pF

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.
Note 3: This device is specified at 2.7V. Consult factory for 5 V specified devices.
Note 4: Increased leakage currents at elevated temperatures cause the S/H to droop, therefore it is recommended that $\mathrm{f}_{\mathrm{CLK}} \geq 120 \mathrm{kHz}$ at $70^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}} \geq 1 \mathrm{kHz}$ at $25^{\circ} \mathrm{C}$.
Note 5: $V_{C C}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$ and $C L K=200 \mathrm{kHz}$ unless otherwise specified.

Note 6: Linearity error is specified between the actual end points of the A/D transfer curve.
Note 7: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below GND or one diode drop above V_{Cc}. This spec allows 50 mV forward bias of either diode for $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$. This means that as long as the reference or analog input does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 3 V input voltage range will therefore require a minimum supply voltage of 2.950 V over initial tolerance, temperature variations and loading.

Note 8: Recommended operating condition.
Note 9: Channel leakage current is measured after the channel selection.

PIn fUnCTIOnS

CHO (Pin 1): Analog Multiplexer Input.
CH1 (Pin 2): Analog Multiplexer Input.
CH2 (Pin 3): Analog Multiplexer Input.
CH3 (Pin 4): Analog Multiplexer Input.
SHA IN (Pin 5): Sample-and-Hold Amplifier Input. This input is the positive analog input to the ADC. Tie to MUX OUT for normal operation.
$\mathbf{V}_{\text {REF }}$ (Pin 6): Reference Input. The reference input defines the span of the A / D converter.
COM (Pin 7): Negative Analog Input. This input is the negative analog input to the ADC and must be free of noise with respect to GND.

GND (Pin 8): Analog Ground. GND should be tied directly to an analog ground plane.
$\overline{\mathbf{C S}}$ (Pin 9): Chip Select Input. A logic high on this input allows the LTC1522 to select a particular channel. A logic
low on this input enables the LTC1522 to sample the selected channel and start the conversion.
$\mathrm{D}_{\text {OUt }}$ (Pin 10): Digital Data Output. The A/D conversion result is shifted out of this output.
$\mathbf{V}_{\text {CC }}$ (Pin 11): Power Supply Voltage. This pin provides power to the A/D converter. It must be bypassed directly to the analog ground plane.

CLK (Pin 12): Shift Clock. This clock synchronizes the serial data transfer.
$\overline{\mathbf{C S}}$ (Pin 13): Chip Select Input. This input should be tied to pin 9.
D_{IN} (Pin 14): Digital Data Input. The multiplexer address is shifted into this input.
MUX OUT (Pin 15): MUX Output. This pin is the output of the multiplexer. Tie to SHA IN for normal operation.
$V_{\text {CC }}$ (Pin 16): Power Supply Voltage. This pin should be tied to pin 11.

TEST CIRCUITS

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Delay Times, $\mathrm{t}_{\mathrm{dDO}}$

Voltage Waveforms for $\mathrm{D}_{\text {OUT }}$ Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for t_{en}

TEST CIRCUITS

Load Circuit for $\mathrm{t}_{\text {dis }}$ and $\mathrm{t}_{\text {en }}$

Voltage Waveforms for $t_{\text {dis }}$

APPLICATIONS INFORMATION

INPUT DATA WORD

The LTC1522 uses $\overline{C S}$ and $D_{I N}$ to select one of its four channels as shown in the operating sequence figures and Table 1.

When $\overline{\mathrm{CS}}$ is high, the input data on the D_{IN} pin is latched into the four-bit shift register on the rising edge of the clock. The input data word consists of an "EN" bit and a string of three bits for channel selection. If the "EN" bit is logic high as illustrated in Operating Sequence 1, it enables the selected channel. To ensure correct operation, the $\overline{C S}$ must be pulled low before the next rising edge of the clock. More than four input bits can be sent to the ADC without problems. The channel will be determined by the last four bits clocked in before $\overline{\mathrm{CS}}$ falls.

Once the $\overline{C S}$ is pulled low, all channels are simultaneously switched off to ensure a break-before-make interval. After a delay of $t_{O N}$, the selected channel is switched on allowing signal transmission. The selected channel remains on until the next falling edge of $\overline{\mathrm{CS}}$; and after a delay of $t_{0 F F}$, it turns off and subsequently allows the selection of the next channel. If the "EN" bit is logic low, as illustrated in Operating Sequence 2, it disables all channels. Table 1 shows the various bit combinations for channel selection.

Table 1. Logic Table for Channel Selection

Channel Status	EN	D2	D1	DO
All Off	0	X	X	X
CHO	1	0	0	0
CH 1	1	0	0	1
CH 2	1	0	1	0
CH 3	1	0	1	1

ANALOG CONSIDERATIONS

Grounding

The LTC1522 should be used with an analog ground plane and single-point grounding techniques. Do not use wirewrapping techniques to breadboard and evaluate the device. To achieve the optimum performance use a printed circuit board. The Ground pin (Pin 8) should be tied directly to the ground plane with minimum lead length.

Bypassing

For good performance, the LTC1522 $\mathrm{V}_{\text {CC }}$ and $\mathrm{V}_{\text {REF }}$ pins must be free of noise and ripple. Any changes in the $V_{C C} / V_{\text {REF }}$ voltage with respect to ground during the conversion cycle can induce errors or noise in the output code. Bypass the $\mathrm{V}_{\text {CC }} / \mathrm{V}_{\text {REF }}$ pin directly to the analog ground plane with a minimum of a $0.1 \mu \mathrm{~F}$ capacitor and leads as short as possible.

IPPLICATIONS INFORMATION

nalog Inputs

ecause of the capacitive redistribution A / D conversion ichniques used, the analog inputs of the LTC1522 have apacitive switching input current spikes. These current
spikes settle quickly and do not cause a problem. But if large source resistances are used or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.

Operating Sequence 1
Example: (CH2, GND)

COM = GND

TYPICAL APPLICATIONS

Microprocessor Interfaces

The LTC1522 can interface directly (without external hardware) to most popular microprocessors' (MPU) synchronous serial formats (see Table 2). If an MPU without a dedicated serial port is used, then three of the MPU's parallel port lines can be programmed to form the serial link to the LTC1522. Included here is one serial interface example.
Table 2. Microprocessor with Hardware Serial Interfaces Compatible with the LTC1522**

PART NUMBER	TYPE OF INTERFACE
Motorola	
MC6805S2, S3	SPI
MC68HC11	SPI
MC68HC05	SPI
RCA	
CDP68HC05	SPi
Hitachi	
HD6305	SCI Synchronous
HD6301	SCI Synchronous
HD63701	SCI Synchronous
HD6303	SCI Synchronous
HD64180	
National Semiconductor	MICROWIRE
COP400 Family	MICROWIRE/PLUS ${ }^{\text {TM }}$
COP800 Family	MICROWIRE/PLUS
NS8050U	MICROWIRE/PLUS
HPC16000 Family	
Texas Instruments	Serial Port
TMS7002	Serial Port
TMS7042	Serial Port
TMS70C02	Serial Port
TMS70C42	Serial Port
TMS32011*	SMS32020*

* Requires external hardware.
** Contact factory for interface information for processors not on this list. MICROWIRE/PLUS is a trademark of National Semiconductor Corp.

Motorola SPI (MC68HCO5)

The MC68HC05 has been chosen as an example of an MPL with a dedicated serial port. This MPU transfers data MSB first and in 8 -bit increments. The $D_{1 N}$ word sent to the dati register starts the SPI process. With three 8 -bit transfer: the A/D result is read into the MPU. The second 8 -bi transfer clocks B11 through B7 of the A/D conversior result into the processor. The third 8 -bit transfer clock the remaining bits $\mathrm{B6}$ through B 0 into the MPU. ANDins the second byte with $1 \mathrm{~F}_{\text {HEx }}$ clears the three most signifi cant bits and ANDing the third byte with $\mathrm{FE}_{\text {HEx }}$ clears the least significant bit.

MC68HCO5 CODE		
START	LDA \#\$52	Configuration data for serial peripheral control register (Interrupts disabled, output enabled, master, $\mathrm{Norm}=0, \mathrm{Ph}=0, \mathrm{Clk} / 16$)
	STA \$0A	Load configuration data into location \$0A (SPCR)
	LDA \#\$FF	Configuration data for $1 / 0$ ports (all bits are set as outputs)
	STA \$04	Load configuration data into Port A DDR (\$04)
	STA \$05	Load configuration data into Port B DDR (\$05)
	STA \$06	Load configuration data into Port C DDR (\$06)
	LDA \#\$08	Put $\mathrm{D}_{\text {IN }}$ word for LTC1522 into Accumulator (CHO with respect to GND)
	STA \$50	Load $\mathrm{D}_{\text {IN }}$ word into memory location \$50
	BSET 0,\$02	Bit 0 Port C (\$02) goes high ($\overline{C S}$ goes high)
	LDA \$50	Load $\mathrm{D}_{\text {IN }}$ word at \$50 into Accumulator
	STA \$0C	Load $\mathrm{D}_{\text {IN }}$ word into SPI data register (\$OC) and start clocking data
L00P1	TST \$0B	Test status of SPIF bit in SPI status register (\$0B)
	BPL L00P1	Loop if not done with transfer to previous instruction
	BCLR 0 , \$02	Bit 0 Port C (\$02) goes low ($\overline{\mathrm{CS}}$ goes low)
	LDA \$0C	Load contents of SPI data register into Accumulator
	STA \$0C	Start next SPI cycle
L00P2	TST \$0B	Test status of SPIF
	BPL LOOP2	Loop if not done
	LDA \$0C	Load contents of SPI data register into Accumulator
	STA \$0C	Start next SPI cycle
	AND \#SIF	Clear 3 MSBs of first Dout word
	STA \$00	Load Port A (\$00) with MSBs
L00P3	TST \$0B	Test status of SPIF
	BPL LOOP3	Loop if not done
	LDA \$0C	Load contents of SPI data register into Accumulator
	AND \#\$FE	Clear LSB of second Dout word
	STA \$01	Load Port B (\$01) with LSBs
	JMP START	Go back to start and repeat program

TYPICAL APPLICATIONS

Data Exchange Between LTC1522 and MC68HC05

Hardware and Software Interface to Motorola MC68HCO5

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1096/LTC1098	8-Pin S0, Micropower 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1196/LTC1198	8-Pin S0, 1Msps 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1282	3V High Speed Parallel 12-Bit ADC	140ksps, Complete with V REF, CLK, Sample-and-Hold
LTC1285/LTC1288	8-Pin S0, 3V Micropower 12-Bit ADC	12-Bit ADC in S0-8
LTC1289	Mutiplexed 3V 1A 12-Bit ADC	8-Channel 12-Bit Serial I/0

$\angle \mathcal{O I N E R}$

Low Noise, Switched Capacitor-Regulated Voltage Inverters

features

- Regulated Negative Voltage from Single Positive Supply

- Low Output Ripple: Less Than 1mV Typ
- High Charge Pump Frequency: 900kHz Typ
- REG Output Indicates Output Is in Regulation
- Small Charge Pump Capacitors: $0.1 \mu \mathrm{~F}$
- Requires Only Four External Capacitors
- Fixed -4.1V or Adjustable Output
- Shutdown Mode Drops Supply Current to $1 \mu \mathrm{~A}$
- Output Current: Up to 20 mA
- Output Regulation: 5\%
- Available in $8-\mathrm{Pin}$ S0 and 16-Pin SSOP Packages

APPLICATIONS

- GaAs FET Bias Generators
- Negative Supply Generators
- Battery-Powered Systems
- Single Supply Applications

DESCRIPTION

June 1995

The LTC ${ }^{\circledR}$ 1550/LTC1551 are switched-capacitor voltage inverters with internal linear post regulators. Each is available in a fixed -4.1V version while the LTC1550 also offers an adjustable output voltage version. Typical output ripple is below 1 mV . The LTC1550/LTC1551 are designed for use as bias voltage generators for GaAs transmitter FETs in portable RF and cellular telephone applications.

The LTC1550/LTC1551 operate from a single 4.5 V to 6.5 V supply, with a typical quiescent current of 5 mA at $\mathrm{V}_{C C}=5 \mathrm{~V}$. Both devices include a TTL compatible shutdown pin which drops supply currentto 0.2μ A typically. The LTC1550 shutdown pin is active low (SHDN) while the LTC1551 shutdown pin is active high (SHDN). Only four external components are required for fixed output parts: an input bypass capacitor, two $0.1 \mu \mathrm{~F}$ charge pump capacitors and a $10 \mu \mathrm{~F}$ filter capacitor at the linear regulator output. Adjustable parts require two additional resistors to set the output voltage.
Each version of the LTC1550/LTC1551 will supply up to 20 mA output current with guaranteed output regulation of $\pm 5 \%$. The 16 -pin version of the LTC1550/LTC1551 includes an open-drain REG output which pulls low to indicate that the output is within 5% of the set value.
For applications with $V_{\text {CC }}$ supplies as low as 3V, see the LTC1261. For applications requiring an external synchronization clock and $V_{C C}$ as low as 3 V , see the LTC1429.

TYPICAL APPLICATION

IBSOLUTE MAXIMUM RATINGS

lote 1)
upply Voltage (Note 2)... 7V
Output Short-Circuit Duration Indefinite
utput Voltage 0.3 V to ($\mathrm{V}_{\mathrm{CC}}-14 \mathrm{~V}$)
otal Voltage, $\mathrm{V}_{\text {CC }}$ to $\mathrm{CP}_{\text {OUT }}$ (Note 2) 14V
iput Voltage (SHDN Pin) \qquad
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................. $300^{\circ} \mathrm{C}$ iput Voltage (REG Pin) \qquad -0.3 V to 12 V
'ACKAGE/ORDER InFORMATION

nsult factory for Industrial and Military grade parts.

[^58]
LECTRICAL CHARACTERISTICS
 (Note 3)

$\mathrm{C}=4.5 \mathrm{~V}$ to $6.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F}$, unless otherwise specified.

'MBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
C	Supply Voltage	(Note 2)		4.5		6.5	V
iEF	Reference Voltage				1.24		V
	Supply Current	$\begin{aligned} & V_{\text {SHDN }}=\text { GND (LTC1551)or } V_{\text {CC }}(\text { LTC1550 }) \\ & V_{\text {SHDN }}=V_{C C}=5 V(L T C 1551) \text { or GND (LTC1550) } \end{aligned}$	\bullet		$\begin{aligned} & 5.0 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 7.0 \\ 10.0 \end{array}$	$m A$ $\mu \mathrm{~A}$
3 C	Internal Oscillator Frequency				900		kHz
L	REG Output Low Voltage	$\mathrm{I}_{\text {REG }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}$	\bullet		0.1	0.8	V
EG	REG Sink Current	$\mathrm{V}_{\text {REG }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}$	\bullet	8	15		mA
1	SHDN Input High Voltage		\bullet	2.0			V
	SHDN Input Low Voitage		\bullet			0.8	V
	SHDN Input Current	$V_{\text {SHDN }}=V_{\text {CC }}$	\bullet		0.1	1	$\mu \mathrm{A}$
V	Turn On Time	$\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$			1		ms

ELECTRICAL CHARACTERISTICS (Note 3)

$V_{S}=4.5 \mathrm{~V}$ to $6.5 \mathrm{~V}, \mathrm{C1}=\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{C}_{O U T}=10 \mu \mathrm{~F}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OUT }}$	Output Regulation (LTC1550 Only)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, 0 \leq I_{\text {OUT }} \leq 10 \mathrm{~mA} \\ & V_{C C}=6 \mathrm{~V}, 0 \leq I_{\text {OUT }} \leq 20 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	\%
V OUT	Output Voltage (LTC1550-4.1, LTC1551-4.1)	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, 0 \leq I_{\text {OUT }} \leq 5 \mathrm{~mA} \\ & V_{C C}=5 \mathrm{~V}, 0 \leq 1_{\text {OUT }} \leq 10 \mathrm{~mA} \\ & V_{\text {CC }}=6 \mathrm{~V}, 0 \leq I_{\text {OUT }} \leq 20 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & -3.9 \\ & -3.9 \\ & -3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.1 \\ & -4.1 \\ & -4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-4.3 \\ -4.3 \\ -4.3 \\ \hline \end{array}$	V V V
ISC	Output Short-Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, V_{\text {CC }}=5 \mathrm{~V} \\ & V_{\text {OUT }}=0 \mathrm{~V}, V_{\text {CC }}=6 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	mA mA
VRIPPLE	Output Ripple Voltage				1		mV

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The output should never be set to exceed $V_{C C}-14 \mathrm{~V}$.
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. All typicals are given at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PIn functions

SHDN: Shutdown (TTL Compatible). This pin is active low ($\overline{\mathrm{SHDN}}$) for the LTC1550 and active high (SHDN) for the LTC1551. When this pin is at VCC (GND for LTC1551), the LTC1550 operates normally. When SHDN is pulled LOW (HIGH for LTC1551), the LTC1550 enters shutdown mode. In shutdown, the charge pump stops, the output collapses to 0 V , and the quiescent current drops typically to $0.2 \mu \mathrm{~A}$.
$V_{c c}$: Power Supply. $V_{C c}$ requires an input voltage between 4.5 V and 6.5 V . The difference between the input voltage and output should never be set to exceed 14 V or damage to the chip may occur. VCC must be bypassed to PGND (GND for the 8 -pin package) with at least a $1 \mu \mathrm{~F}$ capacitor placed in close proximity to the chip. A $4.7 \mu \mathrm{~F}$ or larger bypass capacitor is recommended to minimize noise and ripple at the output.
C1+: C1 Positive Input. Connecta 0.1μ F capacitor between $\mathrm{C1}^{+}$and $\mathrm{C1}^{-}$.
$V_{\text {OUT: }}$: Negative Voltage Output. This pin must be bypassed to ground with a $4.7 \mu \mathrm{~F}$ or larger capacitor to ensure regulator loop stability. At least $10 \mu \mathrm{~F}$ is recommended to provide specified output ripple. An additional low ESR $0.1 \mu \mathrm{~F}$ capacitor is recommended to minimize high frequency spikes at the output.

C1-: C1 Negative Input. Connect a $0.1 \mu \mathrm{~F}$ capacitor from $\mathrm{C1}^{+}$to $\mathrm{C1}^{-}$.

GND: Ground. Connect to a low impedance ground. A ground plane will help minimize regulation errors.
$\mathrm{CP}_{\text {out: }}$: Negative Charge Pump Output. This pin requires a $0.1 \mu \mathrm{~F}$ storage capacitor to ground.
SENSE: Connect to VOUT. The LTC1550/LTC1551 internal regulator uses this pin to sense the output voltage. For optimum regulation, SENSE should be connected close to the output load.

16-Pin SSOP Only

PGND: Power Ground. Connect to alow impedance ground. PGND should be connected to the same potential as AGND.

AGND: Analog Ground. Connect to a low impedance ground. AGND should be connected to a ground plane to minimize regulation errors.
REG: This is an open-drain output that pulls low when the output voltage is within 5% of the set value. It will sink 8 mA to ground with a 5 V supply. The external circuitry must provide a pull-up or REG will not swing high. The voltage at REG may exceed $\mathrm{V}_{C C}$ and can be pulled up to 12 V above ground without damage.

II functions

DJ: For adjustable versions only, this is the feedback lator. See the Applications Information section for hookoint for the external resistor divider string. Connect a ivider string from AGND to $V_{\text {OUT }}$ with the divided tap onnected to ADJ. Note that the resistor string needs to be onnected "upside-down" fromatraditional negative reguup details.
NC: No Internal Connection.

ILOCK DIAGRAM

APPLICATIONS INFORMATION

THEORY OF OPERATION

The LTC1550/LTC1551 are switched-capacitor, inverting charge pumps with integral linear post regulators to provide a regulated, low ripple negative output voltage. The charge pump runs at a high 900 kHz frequency to keep noise out of the 400 kHz to 600 kHz IF bands commonly used by portable radio frequency systems, and to minimize the size of the external capacitors required. The LTC1550/LTC1551 require only two external $0.1 \mu \mathrm{~F}$ charge pump capacitors: an input bypass capacitor and a single output capacitor. At least 4.7 यF is required at the output to maintain loop stability; for optimum output stability over temperature and minimum ripple, $10 \mu \mathrm{~F}$ or greater is recommended.
The LTC1550 features an active-low shutdown pin which drops quiescent current to below 1μ A. The LTC1551 is identical to the LTC1550 but the shutdown pin is active high. Both the LTC1550/LTC1551 are available with fixed -4.1 V output voltage, and the LTC1550 is also available in an adjustable output version. Both devices can be configured with other output voltages. Contact the Linear Technology marketing for more information.

Minimizing Output Noise and Ripple

Output ripple is largely eliminated by the internal linear regulator. It is typically below $1 \mathrm{~m} V_{\mathrm{p} \text {-p }}$ with output loads between zero and 10 mA . Residual ripple is at the 900 kHz switching frequency of the charge pump and is usually not a problem in most systems. This high frequency ripple can be minimized by using a low ESR capacitor at the output. An $0.1 \mu \mathrm{~F}$ ceramic capacitor in parallel with a $10 \mu \mathrm{~F}$ tantalum makes a good combination.
Figure 1a shows the testcircuit used for spectrum analysis with test conditions $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=5 \mathrm{~mA}$. Figures 1 b and 1c are the $V_{\text {Out }}$ Spectrum plots for the test circuit in Figure 1a, covering from 100 Hz to 1 MHz and to 10 MHz respectively. The fundamental switching frequency appears at 900kHz.

Output ripple can be further reduced by increasing the size of the output capacitor, or by including a small external RC or LC filter at the output. A ferrite bead in series with the output capacitor will reduce the output ripple to negligible levels.

Figure 1a. Test Circuit Used for Spectrum Analysis

Figure 1b. Spectrum Plot of $\mathrm{V}_{\text {OUT }}$ from 100 Hz to 1 MHz

Figure 1c. Spectrum Plot of $\mathrm{V}_{\text {OUT }}$ from 100 kHz to 10 MHz
Output load and line transient response can be optimized by increasing the size of the output bypass capacitor. Adjustable parts can further improve transient response by bypassing the upper resistor R1 (Figure 2) in the feedback divider with a capacitor. A 100pF bypass capacitor is usually adequate.

APPLICATIONS INFORMATION

Adjustable Hookup

The LTC1550 is available in an adjustable output version n the 16 -pin SSOP package. The output voltage is set with a resistor divider from GND to SENSE/VOUT (Figure 2). Vote that the internal reference and the internal feedback amplifier are set up as a positive-output regulator referanced to the SENSE pin, not a negative regulator referenced to ground. The output resistor divider must be set oo provide a 1.24 V at the ADJ pin with respect to $\mathrm{V}_{\text {OuT }}$. For 3xample, a-3.0V output would require a 13 k resistor from and to ADJ, and a 9.1 k resistor to SENSE/N OUT. If, after sonnecting the divider resistors, the output voltage is not what you expected, try swapping them.

Figure 2. External Resistor Connections

ГYPICAL APPLICATION

Minimum Part Count, Negative -4.1V Generator

3ELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
T1054	Switched Capacitor Voltage Converter with Regulator	100 mA Switched Capacitor Converter
TC1261	Switched Capacitor Regulated Voltage Inverter	Selectable Fixed Output Voltages
TC1429	Clock-Synchronized Switched Capacitor Voltage Inverter	Synchronizable

$\angle \mathcal{O}$ INER

7A, Very Low Dropout Regulator

features

- Low Dropout, 540 mV at 7A Output Current in Dual Supply Mode
- Fast Transient Response
- Remote Sense
- 1 mV Load Regulation
- Fixed 2.5V Output and Adjustable Output
- No Supply Sequencing Problems in Dual Supply Mode

APPLICATIONS

- Microprocessor Supplies
- Post Regulators for Switching Supplies
- High Current Regulators
- 5V to 3.XXV for Pentium ${ }^{\circledR}$ Processors Operating at $90 \mathrm{MHz}, 100 \mathrm{MHz}, 120 \mathrm{MHz}$ and Beyond
- 3.3 V to 2.9 V for Portable Pentium Processor
- Power PC ${ }^{\text {TM }}$ Series

DESCRIPTION

The LT ${ }^{\circledR} 1580$ is a 7A low dropout regulator designed to power the new generation of microprocessors. The dropout voltage of this device is 100 mV at light loads rising to just 540 mV at 7 A . To achieve this dropout a second low current input voltage, 1 V greater than the output voltage, is required. The device can also be used as a single supply device where dropout is comparable to an LT1584. Several other new features have been added to this device.

A remote Sense pin is brought out. This feature virtually eliminates output voltage variations due to load changes. Typical load regulation, measured at the Sense pin, for a load current step of 100 mA to 7 A is less than 1 mV .

The LT1580 has fast transient response, equal to the LT1584. On fixed voltage devices, the Adjust pin is brought out. A small capacitor on the Adjust pin further improves transient response.
This device is ideal for generating processor supplies of 2 V to 3 V on motherboards where both 5 V and 3.3 V supplies are available.

TYPICAL APPLICATION

2.5V Microprocessor Supply

Load Current Step Response

ABSOLUTE MAXIMUM RATINGS

$V_{\text {Power }}$ Input Voltage .. 6V
V ControL Input Voltage 13V
Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Junction Temperature Range
Control Section \qquad $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Power Transistor $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) c). \qquad $300^{\circ} \mathrm{C}$

PRECONDITIONING

100% Thermal Limit Functional Test

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grade parts.

ELECTRICAL CHARACTERISTICS (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage - LT1580-2.5	$\begin{aligned} & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA} \\ & V_{\text {CONTROL }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, I_{\text {LOAD }}=0 \mathrm{~mA} \text { to } 4 \mathrm{~A} \\ & V_{\text {CONTROL }}=4 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3.3 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA} \text { to } 7 \mathrm{~A} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 2.485 \\ & 2.475 \\ & 2.475 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \\ & 2.500 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.515 \\ & 2.525 \\ & 2.525 \end{aligned}$	V V V
Reference Voltage - LT1580 $\left(V_{A D J}=0\right)$	$\begin{aligned} & V_{\text {CONTROL }}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=2 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA} \\ & V_{\text {CONTROL }}=2.7 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=1.75 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \text { to } 4 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.7 \mathrm{~V} \text { to } 12 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=2.05 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA} \text { to } 7 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 1.243 \\ & 1.237 \\ & 1.237 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.250 \\ & 1.250 \\ & 1.250 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.257 \\ & 1.263 \\ & 1.263 \\ & \hline \end{aligned}$	V V V
Line Regulation - LT1580-2.5 LT1580	$\mathrm{V}_{\text {CONTROL }}=3.65 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$ $V_{\text {CONTROL }}=2.5 \mathrm{~V}$ to 12 V , $\mathrm{V}_{\text {POWER }}=1.75 \mathrm{~V}$ to 5.5 V , $\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	mV mV
$\begin{array}{r} \text { Load Regulation - LT1580-2.5 } \\ \text { LT1580 }\left(V_{\text {ADJ }}=0 \mathrm{~V}\right) \end{array}$	$\begin{aligned} & V_{\text {CONTROL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA} \text { to } 7 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=2.1 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA} \text { to } 7 \mathrm{~A} \end{aligned}$	\bullet		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	mV mV
Minimum Load Current - LT1580	$\mathrm{V}_{\text {CONTROL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {ADJ }}=0 \mathrm{~V}$ (Note 3)	\bullet		5	10	mA
Control Pin Current - LT1580-2.5 (Note 4)	$\begin{aligned} & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3.3 \mathrm{~V}, I_{\text {LOAD }}=100 \mathrm{~mA} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3.3 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3.3 \mathrm{~V}, I_{\text {LOAD }}=7 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} 6 \\ 30 \\ 33 \\ 60 \end{gathered}$	$\begin{gathered} 10 \\ 60 \\ 70 \\ 120 \\ \hline \end{gathered}$	$m A$ $m A$ $m A$ $m A$
Control Pin Current - LT1580 (Note 4)	$\begin{aligned} & V_{\text {CONTROL }}=2.75 \mathrm{~V}, V_{\text {POWER }}=2.05 \mathrm{~V}, I_{\text {LOAD }}=100 \mathrm{~mA} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, V_{\text {POWER }}=2.05 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, V_{\text {POWER }}=1.75 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, V_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=7 \mathrm{~A} \end{aligned}$			$\begin{gathered} \hline 6 \\ 30 \\ 33 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 60 \\ 70 \\ 120 \\ \hline \end{gathered}$	mA mA mA mA
Ground Pin Current - LT1580-2.5	$\mathrm{V}_{\text {CONTROL }}=5 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$	\bullet		6	10	mA
Adjust Pin Current - LT1580 (VaDJ $=0 \mathrm{~V}$)	$\mathrm{V}_{\text {CONTROL }}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$	\bullet		50	120	$\mu \mathrm{A}$
Current Limit - LT1580-2.5 LT1580 (V $\left.{ }_{\text {ADJ }}=0 \mathrm{~V}\right)$	$\begin{aligned} & V_{\text {CONTROL }}=5 \mathrm{~V}, V_{\text {POWER }}=3.3 \mathrm{~V}, \Delta V_{\text {OUT }}=100 \mathrm{mV} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, V_{\text {POWER }}=2.05 \mathrm{~V}, \Delta V_{\text {OUT }}=100 \mathrm{mV} \end{aligned}$	\bullet	$\begin{aligned} & 7.1 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		A A
$\begin{gathered} \hline \text { Ripple Rejection - LT1580-2.5 } \\ \text { LT1580 } \end{gathered}$	$\begin{aligned} & V_{C}=V_{P}=5 \mathrm{~V} \text { Avg, } V_{\text {RIPPLE }}=1 V_{\text {P-P, }}, I_{\text {OUT }}=4 A, T_{J}=25^{\circ} \mathrm{C} \\ & V_{C}=V_{P}=3.75 \mathrm{~V} \text { Avg, } V_{\text {RIPPLE }}=1 V_{P-P}, V_{\text {ADJ }}=0 \mathrm{~V}, I_{\text {OUT }}=4 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		dB dB

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Thermal Regulation	30ms Pulse		0.002	0.020	\%/W
Thermal Resistance, Junction-to-Case	T, T7 Packages, Control Circuitry/Power Transistor		0.65	2.70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Dropout Voltage (Note 2)					
$\begin{aligned} & \text { Minimum } V_{\text {CONTROL }}-\text { LT1580-2.5 } \\ & \left(V_{\text {CONTROL }}-V_{\text {OUT }}\right) \end{aligned}$	$\begin{aligned} & V_{\text {POWER }}=3.3 \mathrm{~V}, I_{\text {LOAD }}=100 \mathrm{~mA} \\ & V_{\text {POWER }}=3.3 V, I_{\text {LOAD }}=1 \mathrm{~A} \\ & V_{\text {POWER }}=3.3 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {POWER }}=3.3 \mathrm{I}, I_{\text {LOAD }}=7 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.06 \\ & 1.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.20 \\ & 1.30 \end{aligned}$	V V V
$\begin{aligned} & \text { Minimum } V_{\text {CONTROL }}-L T 1580 \\ & \left(V_{\text {CONTROL }}-V_{\text {OUT }}\right) \\ & \left(V_{\text {ADJ }}=0\right) \end{aligned}$	$V_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$ $V_{\text {POWER }}=2.05 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~A}$ $V_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2.75 \mathrm{~A}$ $\mathrm{V}_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=4 \mathrm{~A}$ $\mathrm{V}_{\text {POWER }}=2.05 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=7 \mathrm{~A}$		$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \\ & 1.06 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.15 \\ & 1.18 \\ & 1.20 \\ & 1.30 \\ & \hline \end{aligned}$	V V V V V V
$\begin{aligned} & \text { Minimum } V_{\text {POWER }} \text { - LT1580-2.5 } \\ & \left(V_{\text {POWER }}-V_{\text {OUT }}\right) \end{aligned}$	$\begin{aligned} & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=100 \mathrm{~mA} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~A} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=7 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & V_{\text {CONTROL }}=5 \mathrm{~V}, I_{\text {LOAD }}=7 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.10 \\ & 0.15 \\ & 0.34 \\ & \\ & 0.54 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.17 \\ & 0.22 \\ & 0.40 \\ & 0.50 \\ & 0.62 \\ & 0.80 \\ & \hline \end{aligned}$	V V V V V V V
$\begin{aligned} & \text { Minimum } V_{\text {POWER }} \text { - LT1580 } \\ & \left(\text { V POWER }-V_{\text {OUT }}\right) \\ & \left(V_{\text {ADJ }}=0\right) \end{aligned}$	$\begin{aligned} & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=100 \mathrm{~mA} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=1 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }} 2.75 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=4 \mathrm{~A} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & V_{\text {CONTROL }}=2.75 \mathrm{~V}, I_{\text {LOAD }}=7 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0.10 \\ & 0.15 \\ & 0.26 \\ & 0.34 \\ & \\ & 0.54 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.22 \\ & 0.38 \\ & 0.40 \\ & 0.50 \\ & 0.62 \\ & 0.80 \\ & \hline \end{aligned}$	V V V V V V V

The - denotes specifications which apply over the full operating temperature range.
Note 1: Unless otherwise specified $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SENSE }}$. For the LT1580 adjustable device $\mathrm{V}_{\mathrm{ADJ}}=0 \mathrm{~V}$.
Note 2: For the LT1580, dropout is caused by either minimum control voltage ($\mathrm{V}_{\text {CONTROL }}$) or minimum power voltage ($\mathrm{V}_{\text {POWER }}$). Both parameters are specified with respect to the output voltage. The specifications represent the minimum input/output voltage required to maintain 1% regulation.

Note 3: For the LT1580 adjustable device the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.
Note 4: The control pin current is the drive current required for the output transistor. This current will track output current with roughly a 1:100 ratio. The minimum value is equal to the quiescent current of the device.

PIn functions

(5-Lead TO-220/7-Lead TO-220)
SENSE (Pin 1): This pin is the positive side of the reference voltage for the device. With this pin it is possible to Kelvin Sense the output voltage at the load.

ADJUST (Pin 2/5): This pin is the negative side of the reference voltage for the device. Transient response can be improved by adding a small bypass capacitor from the Adjust pin to ground. For fixed voltage devices the Adjust pin is also brought out to allow the user to add a bypass capacitor.

GND (Pin 2, 7-Lead Only): For fixed voltage devices this is the bottom of the resistor divider that sets the output voltage.
$V_{\text {POWER }}$ (Pin 5/6): This is the collector to the power device of the LT1580. The output load current is supplied through this pin. For the device to regulate, the voltage at this pin must be between 0.1 V and 0.8 V greater than the output voltage (see Dropout specifications).
$V_{\text {CONTROL }}$ (Pin 4/3): This pin is the supply pin for the control circuitry of the device. The current flow into this pin will be about 1% of the output current. For the device to regulate, the voltage at this pin must be between 1.0 V and 1.3 V greater than the output voltage (see Dropout specifications).
OUTPUT (Pin 3/4): This is the power output of the device.

APPLICATIONS IIFORMATION

The LT1580 is a low dropout regulator designed to power he new generation of microprocessors. The device uses Itwo supply approach to maximize efficiency. The collecor of the output power device is brought out to minimize he dropout at high current. A separate input control coltage with an input current of approximately 1% of the jutput current requires a slightly higher input voltage (1V 01.5 V). The device is designed to take advantage of the act that most motherboards will have both 5 V and 3.3 V ;upplies available. The main output current will come from he 3.3 V supply while the 5 V supply only has to supply a elatively small drive current.
wo other new features have been added to this device. An uutput sense pin has been added to allow true Kelvin iensing of the output voltage. This feature can virtually :liminate errors in the output voltage due to load regulaion. Regulation will be optimum at the point where the iense pin is tied to the outputpin. For fixed voltage devices he adjust pin, not normally available, is brought out to lllow bypassing. Bypassing the adjust pin with a small :apacitor in the range of $0.1 \mu \mathrm{~F}$ to $0.3 \mu \mathrm{~F}$ can improve ransient response significantly. Good transient response lecomes even more important as processor operating nargins continue to shrink.
ipecial care has been taken to ensure that there are no iupply sequencing problems. The output voltage will not urn on until both supplies are operating. If the control 'oltage comes up first, the output current will be limited to
a few milliamperes until the power input voltage comes up. If the power input comes up first the output will not turn on at all until the control voltage comes up. The output can never come up unregulated.
The LT1580 can also be used as a single supply device with the control and power inputs tied together. In this mode, the dropout will be determined by the minimum control voltage (1.15 V to 1.3 V).

Adjustable Operation

The output voltage of the LT1580 can be adjusted using a resistor divider as shown in Figure 1. The reference voltage of the device is connected between the sense pin and the adjust pin. R1 should be 100Ω or less to ensure that the minimum load current specification is met.

Figure 1. Adjustable Operation

iELATED PARTS

ART NUMBER	DESCRIPTION	COMMENTS
TC 1266	Synchronous Switching Controller	$>90 \%$ Efficient High Current Microprocessor Supply
TC1267	Dual High Efficiency Synchronous Switching Regulator	$>90 \%$ Efficiency with Fixed 5V, 3.3V or Adjustable Outputs
T1430	High Power Synchronous Step-Down Switching Regulator	$>90 \%$ Efficient High Current Microprocessor Supply
T1584	7A Low Dropout Fast Transient Response Regulator	For High Performance Microprocessors
T1585	4.6A Low Dropout Fast Transient Response Regulator	For High Performance Microprocessors
T1587	3A Low Dropout Fast Transient Response Regulator	For High Performance Microprocessors

NOTES

SECTION 14—PACKAGE InfORMATION

SECTION 14-PACKAGE DIMENSIONS
INDEX 14-2
PACKAGE CROSS REFERENCE 14-3
PACKAGE DIMENSIONS 14-5
SURFACE MOUNT PRODUCTS 14-36
TAPE AND REEL 14-47
TO-220 LEAD BEND OPTIONS 14-54

	PACKAGE OUTLINE	DESCRIPTION	LTC	NSC	ADI／PMI		MOT	TI	LINFIN	MAXIM	
	满	8－Lead Side Brazed（Hermetic）	D8	D	D	－	1	－	－	DA	
	\％ongo axpraver	14－，16－，18－and 20－Lead Side Brazed（Hermetic）	D	D		$\begin{aligned} & \hline Y B \\ & Q B \\ & X B \end{aligned}$	L	－	－	$\begin{aligned} & \text { DD, DE, } \\ & \mathrm{DN}, \mathrm{DP} \end{aligned}$	
		20－Lead Plastic TSSOP（0．173）	F			－		$\begin{aligned} & \hline D L \\ & \text { PW } \end{aligned}$	－	$\begin{aligned} & \text { UP, } \\ & U G, \\ & U, \end{aligned}$	
$\stackrel{\text { 른 }}{\underline{\underline{E}}}$		$\begin{aligned} & \text { 16-, 20-, 24- and 28-Lead } \\ & \text { Plastic SSOP (0.209) } \end{aligned}$	G	MSA	RS		－	DB		$\begin{aligned} & \hline \mathrm{AP}, \\ & \mathrm{AG}, \\ & \mathrm{AT} \end{aligned}$	
	\square 	16－，20－and 24－Lead Plastic SSOP（Narrow 0．150）	GN								
旁		36－and 44－Lead Plastic SSOP（Wide 0．300）	GW	MSA		－		DB		AX	
		8－or 10－Lead T0－5 Metal Can	H	H		$\begin{aligned} & \mathrm{H} \\ & \mathrm{~J} \\ & \mathrm{~K} \end{aligned}$	G	－	T	$\begin{aligned} & \hline \text { TV, } \\ & \text { TW, } \\ & \text { vs } \end{aligned}$	
$\sum_{\mathbb{J}}^{\infty}$	\square \therefore	3－or 4－Lead T0－39 Metal Can	H	H		$\begin{gathered} \mathrm{H} \\ \mathrm{~J} \\ \mathrm{~K} \end{gathered}$	G	－	T	$\begin{aligned} & \text { TV, } \\ & \text { TW, } \\ & \text { VS } \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{E}} \\ & \stackrel{\rightharpoonup}{\mathbf{~}} \end{aligned}$		2－，3－or 4－Lead Standard T0－46 Metal Can or in Thermal Caps	H	H	H		－	－	T	－	
	Tivi e	3－Lead TO－52 Metal Can	H							SR	
	song 留斯	8－Lead Ceramic DIP（Hermetic）	J8	$\begin{gathered} \hline J \\ \mathrm{~J} \end{gathered}$		Z	U	JG	Y	JA	
		14－，16－，18－，20－and 24－Lead Ceramic DIP （Narrow 0.300 ，Hermetic）	J	$\begin{gathered} \mathrm{J} \\ \mathrm{~J} 14 \\ \mathrm{~J} 16 \end{gathered}$	D	$\begin{aligned} & \hline Y \\ & Q \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~J} \end{aligned}$	J	J	$\begin{aligned} & \mathrm{RD}, \mathrm{RN}, \\ & \mathrm{RE}, \mathrm{RP} \end{aligned}$	
	$\square \longdiv { \square }$	28－Lead Ceramic DIP （Wide 0．600，Hermetic）	JW	－	Q	T	L			$\begin{gathered} \mathrm{JG}, \\ \mathrm{JI} \end{gathered}$	
2	$\sqrt{1}$	2－Lead T0－3 Metal Can	K	$\begin{gathered} \mathrm{K} \\ \text { Steel } \end{gathered}$		－	K	－	K	KQ	
$\begin{aligned} & \overrightarrow{\mathbf{4}} \\ & \stackrel{\mathbf{y}}{\Sigma} \end{aligned}$	$\frac{\sqrt{\\|}}{\circ} \circ$	4－Lead T0－3 Metal Can	K	K		－	－	KJ	K	KS	
S		20－Pin Leadless Chip Carrier （Rectangular，Hermetic）	L	E	E	F	FN	$\begin{aligned} & \hline \text { FN } \\ & \text { FK } \end{aligned}$	L	L	
－		20－Pin Leadless Chip Carrier （Square 0．350，Hermetic）	LS	E		F	FN	$\begin{aligned} & \text { FN } \\ & \text { FK } \end{aligned}$	L	L	
	Proprietary De	vice Prefixes	$\begin{aligned} & \hline \text { LT } \\ & \text { LTC } \end{aligned}$	$\begin{gathered} \text { LF LP } \\ \text { LH MF } \\ \text { LM } \\ \hline \end{gathered}$	AD	$\begin{aligned} & \hline \text { OP } \\ & \text { REF } \\ & \text { CMP } \end{aligned}$	MC	TL	$\begin{aligned} & \hline \mathrm{LX} \\ & \mathrm{SG} \end{aligned}$	MAX	

PACKAGE CROSS REFERENCE

	PACKAGE OUTLINE	DESCRIPTION	LTC	NSC	ADI/	PMI	PMI	TI	LINFIN	MAXIM
$\begin{aligned} & \text { 츨 } \\ & \text { a } \end{aligned}$	\square_{4}^{\square}	3-Lead Plastic DD Pak	M	-	$-$		-	-	-	-
		5-Lead Plastic DD Pak	Q	-		-	-	-	-	-
	$\sum_{5} \square_{\text {\#\#BeBt }}$	7-Lead Plastic DD Pak	R	-			-	-	-	-
		8-Lead PDIP, Plastic Dual-In-Line	N8	$\begin{aligned} & \hline N \\ & \text { N8 } \end{aligned}$		P	P1	P	M	P
		14-, 16-, 18-, 20- and 24-Lead PDIP, Plastic Dual-In-Line (Narrow 0.300)	N	$\begin{gathered} \text { N } \\ N+4 \end{gathered}$	N	P	P2	$\begin{gathered} \hline N \\ N E \end{gathered}$	N	$\begin{gathered} \text { ND, NE, NN, } \\ \text { NP, NG } \end{gathered}$
		$\begin{aligned} & \text { 28-Lead PDIP, Plastic Dual-In-Line } \\ & \text { (Wide 0.600) } \end{aligned}$	NW	-			P	N	-	PI
		3-Lead Plastic T0-3P (Similar to T0-247)	P	-		-	-	-	-	K
号喜		8-Lead Plastic S0 (Narrow 0.150)	S8	M		S08	D	D	-	SA
		14- and 16-Lead Plastic S0 (Narrow 0.150)	S	M		$\begin{aligned} & \hline \text { S014 } \\ & \text { S016 } \end{aligned}$	D	D	-	$\begin{aligned} & \hline \mathrm{SD} \\ & \mathrm{SE} \end{aligned}$
	\square 	$\begin{aligned} & 16-, 18-, 20-, 24-\text { and } 28 \text {-Lead } \\ & \text { Plastic SO (Wide } 0.300 \text {) } \end{aligned}$	SW	M	R	S016 S018 S020 S024 S028	D	D	-	WE, WN, WP, WF WG, WI
		$\begin{aligned} & \text { 3-Lead Plastic SOT-223 } \\ & \text { Small Outline Transistor } \end{aligned}$	ST	-		-	-	-	-	UR
స్స్ㅁ	\&	3- or 5-Lead Plastic T0-220	$\begin{aligned} & T \\ & T \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~T} \end{aligned}$		-	T	$\begin{aligned} & \hline \mathrm{KC} \\ & \mathrm{KV} \end{aligned}$	$\begin{aligned} & \hline P \\ & P \end{aligned}$	$\begin{aligned} & C \\ & C \end{aligned}$
		7-Lead Plastic TO-220 (Formerly Y Package)	T7	-	-	-	-	-	-	C
$\begin{aligned} & \frac{x}{x} \\ & \frac{2}{4} \\ & \frac{1}{4} \end{aligned}$		10-Lead Flatpak, Glass Sealed (Hermetic)	W	W		RC	F	U010	F	FB
		10- or 14-Lead Flatpak, Metal Sealed, Bottom Brazed (Hermetic)	WB	F	$\begin{array}{\|c\|} \hline \text { AH-148 } \\ \text { LM } \end{array}$	$\mathrm{OH}-148$	-	$\begin{aligned} & \text { W010 } \\ & \text { W014 } \end{aligned}$	-	M
$\stackrel{\underset{\circ}{\circ}}{\stackrel{\sim}{\circ}}$	\square	3-Lead, Plastic T0-92 Package	Z	Z		-	P	LP	-	ZR
Proprietary Device Prefixes			$\begin{aligned} & \hline \text { LT } \\ & \text { LTC } \end{aligned}$	$\begin{gathered} \hline \text { LF LP } \\ \text { LH MF } \\ \text { LM } \end{gathered}$	$A D$	OP REF CMP	MC	TL	$\begin{aligned} & \hline \text { LX } \\ & \mathrm{SG} \end{aligned}$	MAX

D8 Package
8-Lead Side Brazed (Hermetic)
(LTC DWG \# 05-08-1210)

D Package
14-Lead Side Brazed (Hermetic)
(LTC DWG \# 05-08-1210)

PACKAGE DIMENSIONS

D Package

16-Lead Side Brazed (Hermetic)
(LTC DWG \# 05-08-1210)

D Package
18-Lead Side Brazed (Hermetic)
(LTC DWG \# 05-08-1210)

D Package
20-Lead Side Brazed (Hermetic)
(LTC DWG \# 05-08-1210)

F Package

20-Lead Plastic TSSOP (0.173)
(LTC DWG \# 05-08-1650)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED $0.006^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

G Package
16-Lead Plastic SSOP (0.209)
(LTC DWG \# 05-08-1640)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED $0.006^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD

$$
\text { FLASH SHALL NOT EXCEED } 0.010^{\prime \prime}(0.254 \mathrm{~mm}) \text { PER SIDE }
$$

G16 SSOP 0795

G Package
20-Lead Plastic SSOP (0.209)
(LTC DWG \# 05-08-1640)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " (0.152 mm) PER SIDE
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

PACKAGE DIMENSIONS

G Package

24-Lead Plastic SSOP (0.209)
(LTC DWG \# 05-08-1640)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

G Package

28-Lead Plastic SSOP (0.209)
(LTC DWG \# 05-08-1640)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

GN Package

16-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

GN Package

20-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

GN Package

24-Lead Plastic SSOP (Narrow 0.150)
(LTC DWG \# 05-08-1641)

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH

SHALL NOT EXCEED $0.006^{n}(0.152 \mathrm{~mm})$ PER SIDE
GN24 (SSOP) 0595
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

GW Package
36-Lead Plastic SSOP (Wide 0.300)
(LTC DWG \# 05-08-1642)

PACKAGE DIMENSIONS

GW Package
44-Lead Plastic SSOP (Wide 0.300)
(LTC DWG \# 05-08-1642)

H Package
8-Lead T0-5 Metal Can (0.200 PCD)
(LTC DWG \# 05-08-1320)

H8(T0-5) 0.200 PCD 0595

14-13

H Package
3-Lead TO-39 Metal Can
(LTC DWG \# 05-08-1330)

*LEAD diameter is uncontrolled between the reffrence plane AND 0.045" BELOW THE REFERENCE PLANE
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{0.016-0.024}{(0.406-0.610)}$

H Package 4-Lead TO-39 Metal Can
(LTC DWG \# 05-08-1331)

*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE
${ }^{\star \star}$ FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{0.016-0.024}{(0.406-0.610)}$

H Package
2-Lead and 3-Lead T0-46 Metal Can
(LTC DWG \# 05-08-1340)

LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045^{} BELOW THE REFERENCE PLANE
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{0.016-0.024}{(0.406-0.610)}$

H Package
4-Lead TO-46 Metal Can
(LTC DWG \# 05-08-1341)

H Package
3-Lead TO-52 Metal Can
(LTC DWG \# 05-08-1350)

J8 Package
8-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.

J Package
14-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

PACKAGE DIMENSIONS

J Package
16-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

CORNER LEADS OPTION (4 PLCS)

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.

J Package
18-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

CORNER LEADS OPTION
(4 PLCS)

J Package
20-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG \# 05-08-1110)

J Package
24-Lead CERDIP (Narrow 0.300, Hermetic)
(DWG \# 05-08-1110)

PACKAGE DIMENSIONS

JW Package
28-Lead CERDIP (Wide 0.600, Hermetic)
(LTC DWG \# 05-08-1120)

K Package
4-Lead TO-3 Metal Can
(LTC DWG \# 05-08-1311)

L Package
20-Pin Leadless Chip Carrier (Rectangular, Hermetic)
(LTC DWG \# 05-08-1250)

14
L20(REC) 0694

PACKAGE DIMENSIONS

LS Package

20-Pin Leadless Chip Carrier (Square 0.350, Hermetic)
(LTC DWG \# 05-08-1260)

M Package
3-Lead Plastic DD Pak
(LTC DWG \# 05-08-1460)

BOTTOM VIEW OF DD PAK HATCHED AREA IS SOLDER PLATED COPPER HEAK SINK

N8 Package

8-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

N Package

14-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

PACKAGE DIMENSIONS

N Package
16-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

N Package
18-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

N Package

18-Lead PDIP Isolation Barrier (Narrow 0.300)
(LTC DWG \# 05-08-1590)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

N Package

20-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

PACKAGE DIMENSIONS

N Package
24-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

NW Package
28-Lead PDIP (Wide 0.600)
(LTC DWG \# 05-08-1520)

P Package
3-Lead Plastic TO-3P (Similar to TO-247)
(LTC DWG \# 05-08-1450)

BOTTOM VIEW OF DD PAK ITCHED AREA IS SOLDER PLATED COPPER HEAK SINK

Q Package
5-Lead Plastic DD Pak
(LTC DWG \# 05-08-1461)

Q(DD5) 0695

PACKAGE DIMENSIONS

R Package
 7-Lead Plastic DD Pak
 (LTC DWG \# 05-08-1462)

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006^{\prime \prime}$ (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

PACKAGE DIMENSIONS

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
S140695
SHALL NOT EXCEED $0.006^{\prime \prime}$ (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

S Package
16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

SW Package

16-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

SW Package
18-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

NOTE:

1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006{ }^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\circ \prime}(0.254 \mathrm{~mm})$ PER SIDE

SW Package
20-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

NOTE:

1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006^{}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE
SW Package
24-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

NOTE:
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006{ }^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\circ}(0.254 \mathrm{~mm})$ PER SIDE

PACKAGE DIMENSIONS

SW Package
28-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

SW Package
28-Lead Plastic Small Outline Isolation Barrier (Wide 0.300)
(LTC DWG \# 05-08-1690)

ST Package
3-Lead Plastic SOT-223
(LTC DWG \# 05-08-1630)

T Package
3-Lead Plastic T0-220
(LTC DWG \# 05-08-1420)

For Lead Bend Options See Page 14-54
T. Package

5-Lead Plastic T0-220 (Straight Lead)
(Nonstandard Flow 06)
(LTC DWG \# 05-08-1421)

For Lead Bend Options See Page 14-54

T Package
5-Lead Plastic TO-220 (Standard)
(LTC DWG \# 05-08-1421)

For Lead Bend Options See Page 14-54

PACKAGE DIMENSIONS

T7 Package

7-Lead Plastic T0-220 (Straight Lead)
(Nonstandard Flow 06)
(LTC DWG \# 05-08-1422)

For Lead Bend Options See Page 14-54

T7 Package
7-Lead Plastic TO-220 (Standard)
(LTC DWG \# 05-08-1422)

For Lead Bend Options See Page 14-54

PACKAGE DIMENSIONS

W Package

10-Lead Flatpak Glass Sealed (Hermetic)
(LTC DWG \# 05-08-1130)

NOTES:
*THIS DIMENSION ALLOWS FOR OFF-CENTER LID,
MENISCUS AND GLASS OVERRUN.
**INCREASE DIMENSIONS BY 0.003 INCHES (0.076 mm) WHEN LEAD FINISH A IS APPLIED (SOLDER DIPPED).

WB Package
10-Lead Flatpak Metal Sealed Bottom Brazed (Hermetic)
(LTC DWG \# 05-08-1230)

WB Package

14-Lead Flatpak Metal Sealed Bottom Brazed (Hermetic)
(LTC DWG \# 05-08-1240)

Z Package
3-Lead Plastic TO-92 (Similar to TO-226)
(LTC DWG \# 05-08-1410)

Introduction

Linear Technology Corporation (LTC) was founded in 1981 to address the growing demand for high performance and superior quality linear integrated circuits.
Today, LTC has successfully established a leadership position by introducing and supplying leading edge products in each of the industry's basic functional groupsop amps, comparators, voltage regulators, references, switched-capacitor filters, interface, data conversion, and a variety of special function CMOS devices, in all major package styles.
Early on, LTC made the commitment to provide advanced technology, surface mount packaging. This made Linear Technology the first company to offer true precision and high performance linear devices across the full range of functional categories, plus many of the popular secondsource devices in JEDEC Standard packages:

SO (0.150) 8, 14, 16
SO (0.300) 16, 18, 20, 24, 28
SSOP (0.150) 16, 20, 24
SSOP (0.209) 16, 20, 24, 28
SSOP (0.300) 36,44
TSSOP (0.173) 20
The continuing demand for more complete surface mount designs has spurred the introduction of two power surface mount packages by LTC-the 3 -lead SOT-223 and the DD package available in $3-$, 5 - and 7 -lead versions. Many LTC power products are now being introduced in these packages which, for the first time, enable high power designs to be realized using 100% surface mount devices. Support for LTC's surface mount devices includes service for tape and reel, antistatic rails, quality and reliability data, and data sheets on each product.
LTC intends to address customer demand for surface mount devices where technology and die sizes permit, making the combination of small package size and high performance linear devices readily available to our users.

This section contains information summarizing LTC's capabilities and services for surface mount packaged products, as well as specific device data sheets.

Package Descriptions

LTC's SO packages conform to Standard JEDEC Small Outine drawings.

In some instances, an LTC product available in an 8 -pin standard DIP package is offered in a 16 -pin SO package. This covers the situation where the die is too large to be accommodated by the smaller SO-8 package. Although it is preferable for an SO-8 device to have the same pinoutas the standard 8 -pin dual-in-line version, some devices necessitate a rotation of the die to fit in the SO-8 package. Please refer to the applicable SO device data sheet, or consult with the factory to verify exact pinouts for each device.

Electrical Specifications

Wherever possible, electrical specifications for a surface mount technology (SMT)* device are the same as the plastic molded equivalent. Exceptions to this are identified by the omission of the standard product electrical grade designator from the part number.
For example:

- LT1013DS8 has the same electrical specifications as LT1013DN8, since the " D " is common to both product numbers.
- LT1012S8 has one or more different electrical specifications than LT1012CN8, as the "C" is missing from this product designator suffix.
Please consult the appropriate SMT package data sheet for complete electrical specifications.

[^59]
SURFACE MOUNT PRODUCTS

Marking

Because of the limited space available for part marking on some SMT packages, abbreviated marking codes are used to identify the device. These codes, if used, are identified in the individual SMT package data sheets.

Lead Finish and Solderability
Lead finish is electroplated, lead-tin, with a low carbon content. Solderability meets the requirements of MIL-STD-883C, Method 2003. Recommended solder pads are given in Figure 1.

Recommended Solder Pads

F Package (0.173)
TSSOP-20

NOTE: ALL DIMENSIONS ARE IN INCHES SMP o8

G Package (0.209)
SSOP-20, SSOP-24, SSOP-28

GN Package Narrow (0.150)
SSOP-16, SSOP-20, SSOP-24

NOTE: ALL DIMENSIONS ARE IN INCHES
SMP 08 A
NOTE: ALL DIMENSIONS ARE IN INCHES
SMP 07

Figure 1. Recommended Solder Pads

SURFACE MOUNT PRODUCTS

Figure 1. Recommended Solder Pads (Continued)

SURFACE MOUNT PRODUCTS

Vave and Reflow Soldering

ollowing are the recommended procedures for soldering urface mount packages to PC boards.

. Wave Soldering

- Use solder plating boards.
- Dispense adhesive to hold components on board.
- Place components on board.
- Cure adhesive per adhesive manufacturer's specification.
- Foam flux using RMA (Rosin Mildly Activating) flux.
- Wave solder using a dual wave soldering system at $240^{\circ} \mathrm{C}$ to $260^{\circ} \mathrm{C}$ for 2 seconds per wave.
- Clean board.

. Reflow Soldering

- Use of solder plating boards is recommended.
- Screen solder paste on board.
- Mount components on board.
- Infrared or forced hot air convection reflow is recommended for best performance.
- Preheat peak temperature $125^{\circ} \mathrm{C} \pm 15^{\circ} \mathrm{C}$ and $2^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ per second rise.
- Activation temperature $130^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
- Reflow begins at $183^{\circ} \mathrm{C}(63 \mathrm{Sn} / 37 \mathrm{~Pb})$.
- Time above $183^{\circ} \mathrm{C}$ for at least 30 seconds.
- Peak package body temperature $220^{\circ} \mathrm{C}$ maximum.
- Cooling rate $2^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ per second.
- Clean boards.
- For Vapor Phase Reflow, recommended parameter ranges for:
- Heating rate: $6^{\circ} \mathrm{C}$ per second maximum
- Preheat temperature: $45^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
- Time above $200^{\circ} \mathrm{C}: 50$ seconds to 90 seconds
- Peak package temperature: $212^{\circ} \mathrm{C}$ to $219^{\circ} \mathrm{C}$
- Hand soldering of DD and SOT-223 package is not recommended.

hermal Information

able 1 shows the range of junction-to-ambient thermal sistance of SO devices mounted on a PCB of FR4
material with copper traces, in still air at $25^{\circ} \mathrm{C} . \theta_{\mathrm{JA}}$ with a ceramic substrate is about 70\% of the FR4 value. Maximum power dissipation may be calculated by the following formula:

$$
P_{\mathrm{DMAX}}\left(T_{A}\right)=\frac{T_{\mathrm{JMAX}}-T_{\mathrm{A}}}{\theta_{\mathrm{JA}}}
$$

where,
$T_{J M A X}=$ Maximum operating junction temperature.
$T_{A}=$ Desired ambient operating temperature.
$\theta_{\mathrm{JA}}=$ Junction-to-ambient thermal resistance.
Table 1. Typical Thermal Resistance Values

SO-8	$150^{\circ} \mathrm{C} / \mathrm{W}$ to $200^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{SO}-18$	$70^{\circ} \mathrm{C} / \mathrm{W}$ to $100^{\circ} \mathrm{C} / \mathrm{W}$
S0-14	$100^{\circ} \mathrm{C} / \mathrm{W}$ to $140^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{SO}-20$	$70^{\circ} \mathrm{C} / \mathrm{W}$ to $90^{\circ} \mathrm{C} / \mathrm{W}$
SO-16 (0.150)	$90^{\circ} \mathrm{C} / \mathrm{W}$ to $130^{\circ} \mathrm{C} / \mathrm{W}$	$\mathrm{SO}-24$	$60^{\circ} \mathrm{C} / \mathrm{W}$ to $80^{\circ} \mathrm{C} / \mathrm{W}$
SO-16 (0.300)	$85^{\circ} \mathrm{C} / \mathrm{W}$ to $100^{\circ} \mathrm{C} / \mathrm{W}$	SO-28	$55^{\circ} \mathrm{C} / \mathrm{W}$ to $75^{\circ} \mathrm{C} / \mathrm{W}$

Conditions: PCB mount on FR4 material, still air at $25^{\circ} \mathrm{C}$, copper trace.
Thermal resistance for power packages (DD and SOT-223) depends greatly on the individual device type. Please consult the device data sheets for thermal information.

More current data, by device type, may be obtained by contacting LTC, Marketing Department.

Tape and Reel Packing (See Tape and Reel Section)

Plastic Tube Packing

LTC's Surface Mount products are packed in "antistatic" plastic tubes with the tube dimensions indicated in Figure 2. Unit quantities packaged per tube are listed below in Table 2.

Table 2. Devices Per Tube

LTC Package Code Designator	LTC Package Style	Actual Lead Count	Number of Units
F	$\operatorname{TSSOP}(0.173)$	20	74
G	$\operatorname{SSOP}(0.209)$	16	77
G	$\operatorname{SSOP}(0.209)$	20	66
G	$\operatorname{SSOP}(0.209)$	24	59
G	$\operatorname{SSOP}(0.209)$	28	47
GN	$\operatorname{SSOP}(0.150)$	16	100
GN	$\operatorname{SSOP}(0.150)$	20,24	55
GW	$\operatorname{SSOP}(0.300)$	36	32
GW	$\operatorname{SSOP}(0.300)$	44	27

SURFACE MOUNT PRODUCTS

Table 2. Devices Per Tube

LTC Package Code Designator	LTC Package Style	Actual Lead Count	Number of Units
M, Q, R	DD	$3,5,7$	50
S8	S8 (0.150)	8	100
S	$\mathrm{~S}(0.150)$	14	55
S	$\mathrm{~S}(0.150)$	16	50
ST	SOT-223	3	78

PLASTIC TUBE SPECIFICATIONS

LTC Package Code Designator	LTC Package Style	Actual Lead Count	Number of Units
SW	SW (0.300)	16	47
SW	SW (0.300)	18	40
SW	SW (0.300)	20	38
SW	SW (0.300)	24	32
SW	SW (0.300)	28	27

SW (0.300)
SO Package Shipping Tube

LENGTH: $20.755_{-1 / 16}^{+1 / 32}$
NOTE: ALL DIMENSIONS ARE IN INCHES

Note 1: Tolerances: ± 0.010 unless otherwise specified.
Note 2: Material: antistatic treated rigid transparent PVC or rigid black conductive.
Note 3: Printing: "LTC logo, Linear Technology Corp., Antistatic" on topside of tube.

Figure 2

SURFACE MOUNT PRODUCTS

urface Mount Small Outline (SO), DD and SOT Device Packaging

near Technology now offers a continually increasing number of high :rformance CMOS and bipolar linear devices in surface mount packages. sted in the next several pages are device types now available in the DD power ickages and the JEDEC standard outline packages; SO (Small Outline 0.150 id 0.300 body widths), SSOP (Shrink Small Outline $0.150,0.209$ and 0.300
body widths), TSSOP (Thin Shrink Small Outline 0.173 body width) and SOT-223 (Small Outline Transistor). For pinout configurations and electrical specification limits, consult either your LTC sales representative or the factory.

Surface Mount Packages:	DD	SO	SOT-223	SSOP	TSSOP
LTC Package Suffix:	M, Q, R	S8, S, SW	ST	G, GN, GW	F

PRODUCT		DESCRIPTION
Operational Amplifiers		
LF398	S8	Sample \& Hold Amp
-M318	S8	Fast Op Amp
LT1001C	S8	Precision Op Amp
-T1006	S8	Precision Single Supply Op Amp
-T1007C	S8	Low Noise, High Speed, Precision Op Amp
LT1008	S8	Uncompensated, Picoamp Input, Precision Op Amp
_T1012	S8	Picoamp Input Current, Precision Op Amp, C-Load ${ }^{\text {TM }}$
-T1013D	S8	Dual Precision Single Supply Op Amp
-T10131	S8	Dual Precision Single Supply Op Amp
-T1014D	SW	Quad Precision Single Supply Op Amp
-T10141	SW	Quad Precision Single Supply Op Amp
-T1028C	S8	Ultra Low Noise Op Amp
-T1037C	S8	Low Noise, High Speed Precision Op Amp
_TC1047C	SW	Dual Micropower Zero-Drift Op Amp w/Internal Caps
-TC1049C	S8	Low Power Zero-Drift Op Amp w/Internal Caps
-TC1050C	S8	Zero-Drift Op Amp w/Internal Caps
-TC1051C	SW	Dual Zero-Drift Op Amp w/Internal Caps
-TC1052C	SW	Low Noise Zero-Drift Op Amp
-TC1053C	SW	Quad Precision Zero-Drift Op Amp w/Internal Caps
-T1055	S8	JFET Input, High Speed, Precision Op Amp
-T1056	S8	JFET Input, High Speed, Precision Op Amp
-T1057	S8	Dual JFET Input, High Speed, Precision Op Amp
-T10571	S8	Dual JFET Input, High Speed, Precision Op Amp
-T1058	SW	Quad JFET Input, High Speed, Precision Op Amp
-T1058\|	SW	Quad JFET Input, High Speed, Precision Op Amp
-T1077	S8	Precision Micropower Op Amp
-T1078	S8	Dual Precision Micropower Op Amp
-11078\|	S8	Dual Precision Micropower Op Amp
-T1079	SW	Quad Precision Micropower Op Amp
-T1079\|	SW	Quad Precision Micropower Op Amp
-T1097	S8	Low Cost, Low Power, Precision Op Amp
.T1112	S8	Dual Precision Op Amp, C-Load
-T1113C	S8	Dual Low Noise, Precision, JFET Input Op Amp
.T1114	SW	Quad Precision Op Amp, C-Load
-T1115C	SW	$50 \mathrm{MHz}, 11 \mathrm{~V} / \mathrm{ss}, 1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Audio Op Amp
-T1122C	S8	Fast Settling, JFET Input Op Amp
-T1122D	S8	Fast Settling, JFET Input Op Amp
-T1124C	S8	Dual Low Noise, High Speed, Precision Op Amp
. 11125 C	SW	Quad Low Noise, High Speed, Precision Op Amp
. 11126 C	S8	Decomp Dual Low Noise, High Speed, Precision Op Amp
- 11127 C	SW	Decomp Dual Low Noise, High Speed, Precision Op Amp
.T1128C	S8	Unity-Gain Stable Ultra Low Noise Op Amp
.TC1150C	S8	$\pm 15 \mathrm{~V}$ Zero-Drift Op Amp w/Internal Caps
.TC1151C	SW	Dual $\pm 15 \mathrm{~V}$ Zero-Drift Op Amp
.TC1152C	S8	Rail-to-Rail Input/Output Zero-Drift Op Amp, C-Load
.TC1152\|	S8	Rail-to-Rail Input/Output Zero-Drift Op Amp
.T1178	S8	Dual Precision Micropower Op Amp
.T1179	SW	Quad Precision Micropower Op Amp
. 71187 C	S8	Low Power Video Difference Amp
.T1189C	S8	Low Power Video Difference Amp
T1190C	S8	50 MHz High Speed Video Op Amp
. 71191 C	S8	90 MHz High Speed Video Op Amp
.T1192C	S8	$350 \mathrm{MHz}\left(\mathrm{A}_{V} \geq 25\right)$ High Speed Video Op Amp
T1193C	S8	80MHz (Adj Gain) High Speed Video Op Amp
.T1194C	S8	$35 \mathrm{MHz}\left(\mathrm{A}_{V}=10\right)$ Fixed Differential Video Op Amp
T1195C	S8	Low Power, High Speed Op Amp

PRODUCT		DESCRIPTION
LT1200C	S8	Low Power, High Speed Op Amp, C-Load
LT1201C	S8	Dual Low Power, High Speed Op Amp, C-Load
LT1202C	S	Quad Low Power, High Speed Op Amp, C-Load
LT1206C	S8, R	$250 \mathrm{~mA}, 60 \mathrm{MHz}$ Current Feedback Amplifier, C-Load
LT1208C	S8	Dual Very High Speed Op Amp, C-Load
LT1209C	S	Quad Very High Speed Op Amp, C-Load
LT1211C	S8	14MHz Dual Precision Op Amp
LT1212C	S	14MHz Quad Precision Op Amp
LT1213C	S8	28MHz Dual Precision Op Amp
LT1214C	S	28MHz Quad Precision Op Amp
LT1215C	S8	23MHz Dual Precision Op Amp
LT1216C	S	23 MHz Quad Precision Op Amp
LT1217C	S8	Low Power, 10MHz Current Feedback Amplifier
LT1220C	S8	Very High Speed Op Amp
LT1221C	S8	Very High Speed Op Amp ($\mathrm{A}_{V} \geq 4$)
LT1222C	S8	Very High Speed Op Amp ($A_{V} \geq 10$,Ext Comp)
LT1223C	S8	100MHz Current Feedback Amplifier
LT1224C	S8	45MHz Very High Speed Op Amp, C-Load
LT1225C	S8	$150 \mathrm{MHz}\left(\mathrm{A}_{v} \geq 5\right)$ High Speed Op Amp
LT1226C	S8	$1 \mathrm{GHz}\left(\mathrm{A}_{\nu} \geq 25\right)$ High Speed Op Amp
LT1227C	S8	140MHz High Sneed Current Feedback Op Amp
LT1228C	S8	100MHz Current Feedback Amplifier w/DC Gain Control
LT1229C	S8	Dual 100MHz Current Feedback Amplifier
LT1230C	S	Quad 100MHz Current Feedback Amplifier
LTC1250C	S8	Ulitra Low Noise Zero-Drift Op Amp
LT1251C	5	40MHz Video Fader/Amplifier
LT1252C	S8	Low Cost Video Amplifier
LT1253C	S8	Low Cost Dual Video Amplifier
LT1254C	S	Low Cost Quad Video Amplifier
LT1256C	S	40MHz DC Gain Controller Amplifier
LT1259C	S	Dual 130 MHz CFA with SHUTDOWN
LT1260C	S	Triple 130MHz CFA with SHUTDOWN
LT1311C	S	Quad 12Mhz, 145ns Settling Precision Current-to-Voltage Converter for Optical Disk Drives
LT1354C	S8	12MHz, 400V/us Op Amp, C-Load
LT1355C	S8	Dual 12MHz, 400V/us Op Amp, C-Load
LT1356C	S	Quad 12MHz, 400V/ $/$ s Op Amp, C-Load
LT1357C	S8	$25 \mathrm{MHz}, 600 \mathrm{~V} / \mu \mathrm{s}$ Op Amp, C-Load
LT1358C	S8	Dual 25MHz, 600V/us Op Amp, C-Load
LT1359C	S	Quad 25MHz, 600V/us Op Amp, C-Load
LT1360C	S8	$50 \mathrm{MHz}, 800 \mathrm{~V} / \mu \mathrm{s}$ Op Amp, C-Load
LT1361C	S8	Dual $4 \mathrm{~mA}, 50 \mathrm{MHz}, 800 \mathrm{~V} / \mathrm{\mu s}$ Op Amp, C-Load
LT1362C	S	Quad $50 \mathrm{MHz}, 800 \mathrm{~V} / \mu \mathrm{s}$ Op Amp, C-Load
LT1363C	S8	$70 \mathrm{MHz}, 1000 \mathrm{~V} / \mathrm{\mu s}$ Op Amp, C-Load
LT1364C	S8	Dual $6 \mathrm{~mA}, 70 \mathrm{MHz}, 1000 \mathrm{~V} / \mathrm{\mu s}$ Op Amp, C-Load
LT1365C	S	Quad 70MHz, 1000V/us Op Amp, C-Load
LT1366C	S8	Dual Rail-to-Rail Input/Output Op Amp
LT1367C	S	Quad Rail-to-Rail Input/Output Op Amp
LT1368C	S8	Dual Rail-to-Rail Input/Output Op Amp
LT1369C	S	Quad Rail-to-Rail Input/Output Op Amp
LT1413	S8	Dual Single-Supply, Precision Op Amp
LT1457	S8	Dual Precision JFET Op Amp, C-Load
OP-07C	S8	Precision Op Amp
OP-27G	S8	Low Noise, High Speed, Precision Op Amp
OP-37G	S8	Low Noise, High Speed, Precision Op Amp
OP-470G	S	Quad Low Noise, Precision Op Amp

Surface Mount Small Outline (SO), DD and SOT Device Packaging

PRODUCT		DESCRIPTION
Battery Management/Charging		
LT1239C	S	Backup Battery Management IC, Li-lon or NiCd
LT1510C	S8	Battery Charger
LT1510C	S	Battery Charger
LT1512C	S8	SEPIC Battery Charger
LTC1325C	SW	$\mu \mathrm{P}$-Controlled Battery Management System
Instrumentation Amps		
LTC1100AC	S8	Consult Factory
LTC1100C	SW	Chopper Stabilized Instrumentation Amp
LT1101	SW	Precision Micropower Instrumentation Amp
LT11011	SW	Precision Micropower Instrumentation Amp
Comparators		
LT1011C	S8	Precision Volt Comparator
LT1016C	S8	High Speed Comparator
LT10161	S8	High Speed Comparator
LT1017C	S8	Micropower Dual Comparator
LT1017	S8	Micropower Dual Comparator
LT1018C	S8	Micropower Dual Comparator
LTC1040C	SW	Micropower Dual Sampling Comparator
LTC1041C	S8	Bang-Bang Controller
LT1116C	S8	High Speed, Ground-Sensing Comparator
LTC1443C	S	Quad Micropower Comparator and Reference
LTC1444C	S	Quad Micropower Comparator and Reference
LTC1445C	S	Quad Micropower Comparator and Reference
Data Acquisition		
LTC1090C	SW	10-Bit A/D with 8-Channel MUX \& S/H
LTC1093C	SW	$10-\mathrm{Bit} A / D$ with 6 -Channel MUX \& S/H
LTC1096AC	S8	8 -Bit Micropower A/D with S/H
LTC1096C	S8	8 -Bit Micropower A/D with S/H
LTC1098AC	S8	8 -Bit Micropower A/D with S/H
LTC1098C	S8	8 -Bit Micropower A/D with S/H
LTC1099C	SW	8 -Bit High Speed ADC with S/H
LTC10991	SW	8-Bit High Speed ADC with S/H
LTC1196-1AC	S8	8 -Bit, 600 ns , 1 MHz Sampling ADC
LTC1196-1BC	S8	8 -Bit, 600 ns , 1 MHz Sampling ADC
LTC1196-2AC	S8	8 -Bit, $710 \mathrm{~ns}, 800 \mathrm{kHz}$ Sampling ADC
LTC1196-2BC	S8	8 -Bit, $710 \mathrm{~ns}, 800 \mathrm{kHz}$ Sampling ADC
LTC1198-1AC	S8	2-Channel, 8-Bit, 600 ns , 750 kHz , Sampling ADC
LTC1198-1BC	S8	2-Channel, 8 -Bit, $600 \mathrm{~ns}, 750 \mathrm{kHz}$, Sampling ADC
LTC1198-2AC	S8	2-Channel, 8 -Bit, $710 \mathrm{~ns}, 750 \mathrm{kHz}$, Sampling ADC
LTC1198-2BC	S8	2 -Channel, 8 -Bit, $710 \mathrm{~ns}, 750 \mathrm{kHz}$, Sampling ADC
LTC1257C	S8	12-Bit Complete V ${ }_{\text {OUT }}$ DAC
LTC12571	S8	12-Bit Complete V ${ }_{\text {Out }}$ DAC
LTC1272-3AC	SW	12-Bit $3 \mu \mathrm{~s}$ Parallel I/O A/D with S / H
LTC1272-3BC	SW	12 -Bit $3 \mu \mathrm{~S}$ Parallel I/ A / D with S / H
LTC1272-3CC	SW	12 -Bit 3us Parallel I/O A/D with S/H
LTC1272-8AC	SW	12 -Bit $8 \mu \mathrm{SP}$ Parallel I/O A/D with S/H
LTC1272-8BC	SW	12-Bit $8 \mu \mathrm{SP}$ Parallel I/O A/D with S / H
LTC1272-8CC	SW	12 -Bit $8 \mu \mathrm{~s}$ Parallel I/O A/D with S/H
LTC1273AC	SW	12-Bit 3 s P Parallel I/O with S/H \& Reference
LTC1273BC	SW	12 -Bit $3 \mu \mathrm{~s}$ Parallel $\mathrm{I} / 0$ with S / H \& Reference
LTC1274AI	SW	12-Bit $6 \mu \mathrm{~S}$ Parallel I/O A/D with Reference and Shutdown
LTC1274C	SW	12-Bit $6 \mu \mathrm{~S}$ Parallel I/O A/D with Reference and Shutdown
LTC12741	SW	12 -Bit $6 \mu \mathrm{~S}$ Parallel I/O A/D with Reference and Shutdown
LTC1275AC	SW	12-Bit 3 $\mu \mathrm{s}$ Parallel I/O with S/H \& Reference
LTC1275BC	SW	12-Bit $3 \mu \mathrm{~s}$ Parallel I/ $/ 0$ with S / H \& Reference
LTC1276AC	SW	12-Bit 3 $\mu \mathrm{S}$ Parallel $\mathrm{I} / 0$ with S / H \& Reference
LTC1276BC	SW	12-Bit 3 $\mu \mathrm{s}$ Parallel $\mathrm{I} / 0$ with S / H \& Reference
LTC1277AI	SW	12 -Bit $6 \mu \mathrm{~s}$ Parallel I/O with S/H \& Reference
LTC1277C	SW	12-Bit $6 \mu \mathrm{~s}$ Parallel I/O with S/H \& Reference
LTC12771	SW	12-Bit $6 \mu \mathrm{~s}$ Parallel I/O with S/H \& Reference
LTC1278-4C	SW	12-Bit $2.5 \mu \mathrm{~s}$ High Speed Sampling A/D
LTC1278-41	SW	12-Bit 2.5 $\mu \mathrm{s}$ High Speed Sampling A/D
LTC1278-5C	SW	12-Bit 2.5 s S High Speed Sampling A/D
LTC1278-51	SW	12-Bit $2.5 \mu \mathrm{~S}$ High Speed Sampling A/D

PRODUCT		DESCRIPTION
LTC1279C	SW	12-Bit $1.6 \mu \mathrm{SParallel} \mathrm{I} / \mathrm{O}$ with S/H \& Reference
LTC12791	SW	12-Bit $1.6 \mu \mathrm{SP}$ Parallel I/O with S/H \& Reference
LTC1282AC	SW	12-Bit $6 \mu \mathrm{~S}$ Parallel I/O with S/H \& Reference
LTC1282BC	SW	12-Bit $6 \mu \mathrm{~s}$ Parallel I/O with S/H \& Reference
LTC1285C	S8	12-Bit 3V Micropower ADC with S/H
LTC1285	S8	12-Bit 3V Micropower ADC with S/H
LTC1286C	S8	12-Bit Micropower A/D with S/H
LTC1286I	S8	12-Bit Micropower A/D with S/H
LTC1288C	S8	12-Bit 3V Micropower ADC with S/H
LTC12881	S8	12-Bit 3V Micropower ADC with S/H
LTC1289BC	SW	12-Bit 3V 8-Channel MUX, S/H Full Duplex I/O
LTC1289CC	SW	12-Bit 3V 8-Channel MUX, S/H Full Duplex I/O
LTC1290BC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1290BI	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1290CC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1290CI	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1290DC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1290DI	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1293BC	SW	12-Bit A/D with 6-Channel MUX \& S/H
LTC1293CC	SW	12-Bit A/D with 6-Channel MUX \& S/H
LTC1293DC	SW	12-Bit A/D with 6-Channel MUX \& S/H
LTC1294BC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1294BI	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1294CC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1294DC	SW	12-Bit A/D with 8-Channel MUX \& S/H
LTC1296BC	SW	12 -Bit A/D with 8 -Channel MUX \& S/H, Single Supply
LTC1296BI	SW	12 -Bit A/D with 8 -Channel MUX \& S/H, Single Supply
LTC1296CC	SW	12 -Bit A/D with 8 -Channel MUX \& S/H, Single Supply
LTC1296Cl	SW	12 -Bit A/D with 8 -Channel MUX \& S/H, Single Supply
LTC1296DC	SW	$12-\mathrm{Bit}$ A/D with 8 -Channel MUX \& S/H, Single Supply
LTC1296DI	SW	$12-\mathrm{Bit} A / D$ with 8 -Channel MUX \& S/H, Single Supply
LTC1298C	S8	12-Bit Micropower A/D with S/H
LTC12981	S8	12-Bit Micropower A/D with S/H
LTC1390C	S	8-Channel Serial I/O Analog MUX
LTC1392C	S8	10-Bit Environment Monitor ADC
LTC1392\|	S8	10-Bit Environment Monitor ADC
LTC1400C	S8	Complete S0-8, 12-Bit 400ksps ADC with Shutdown
LTC1400I	S8	Complete S0-8, 12-Bit 400ksps ADC with Shutdown
LTC1410AC	SW	12-Bit 700ns Parallel I/O ADC with Reference and Shutdown
LTC1410BC	SW	12-Bit 700ns Parallel I/O ADC with Reference and Shutdown
LTC1410AI	SW	12-Bit 700ns Parallel I/O ADC with Reference and Shutdown
LTC1410BI	SW	12-Bit 700ns Parallee I/O ADC with Reference and Shutdown
LTC1410C	SW	12-Bit 700ns Paralle I/O ADC with Reference and Shutdown
LTC14101	SW	12-Bit 700ns Parallel I/O ADC with Reference and Shutdown
LTC1451C	S8	12-Bit Complete $\mathrm{V}_{\text {OUT }}$ DAC
LTC14511	S8	12-Bit Complete V ${ }_{\text {Out }}$ DAC
LTC1452C	S8	12 -Bit $\mathrm{V}_{\text {OUT }}$ Mulitplying Rail-to-Rail DAC
LTC1452	S8	12 -Bit V Out $^{\text {Mulitplying Rail-to-Rail DAC }}$
LTC1453C	S8	12-Bit Complete V ${ }_{\text {OUT }}$ DAC 3V/5V Operation
LTC14531	S8	12-Bit Complete $\mathrm{V}_{\text {Out }}$ DAC 3V/5V Operation
LTC1522C	S	4-Channel 3V Micropower Sampling 12-Bit Serial I/O ADC
LTC7541AJ	S	Improved Industry Std CMOS 12-Bit Multiplying DAC
LTC7541AK	SW	Improved Industry Std CMOS 12-Bit Multiplying DAC
LTC7543GK	SW	Improved Industry Std Serial 12-Bit Multiplying DAC
LTC7543K	SW	Improved Industry Std Serial 12-Bit Multiplying DAC
LTC8043E	S8	Serial 12-Bit Multiplying DAC in SO-8
LTC8043F	S8	Serial 12-Bit Multiplying DAC in S0-8
LTC8143E	SW	Improved Industry Std Serial 12-Bit Multiplying DAC
LTC8143F	SW	Improved Industry Std Serial 12-Bit Multiplying DAC

SURFACE MOUNT PRODUCTS

jurface Mount Small Outline (SO), DD and SOT Device Packaging

PRODUCT		DESCRIPTION
Regulators, PWMs, DC/DC Converters		
LT1020C	SW	μ Power Low Dropout Regulator with Comparator
LT1020	SW	uPower Low Dropout Regulator with Comparator
LT1072C	S8	40kHz 1.25A Switching Regulator
LT1073C	$\begin{aligned} & \text { S8 } \\ & \text { S8-5,12 } \end{aligned}$	μ Power Switching Regulator Works Down to 1 V Input, Adjustable \& Fixed 5V, 12V Outputs
LT1076C	Q	2A Step-Down Switching Regulator
LT1076C	Q	2A Step-Down Switching Regulator, +5 V Output
LT1076C	R	2A Step-Down Switching Regulator with Shutdown, 5-Lead DD Package, Adjustable Output
LT1076C	R-5	2A Step-Down Switching Regulator with Shutdown, 7-Lead DD Package, 5V
LT1076H	R	2A Step-Down Switching Regulator, 7-Lead DD Pkg
LT1084C	M	5A Low Dropout Regulator, 3-Lead DD Package
LT1085C	M	Adjustable Low Dropout Pos Voltage Regulator, 3A
LT1085C	M-3.3	3.3V Low Dropout Voltage Regulator, 3A
LT1085C	M-3.6	3.6V Low Dropout Voltage Regulator, 3A
LT1086C	M	1.5A Low Dropout Regulator, 3-Lead DD Pkg
LT1086C	M-3.3	3.3V Low Dropout Positive Voltage Regulator, 1.5A
LT1086C	M-3.6	3.6V Low Dropout Positive Voltage Regulator, 1.5A
LT1107C	$\begin{aligned} & \text { S8 } \\ & \text { S8-5,12 } \end{aligned}$	μ Power DC/DC Converter Works Down to 2 V Input, Adjustable \& Fixed 5V, 12V Outputs
LT1108C	$\begin{aligned} & \text { S8, } 8 \text {, } 8-5, \\ & \text { S8-12 } \end{aligned}$	μ Power DC/DC Converter Works Down to 2V Input, Adjustable \& Fixed 5V, 12V Outputs
LT1109AC	S8	μ Power DC/DC Converter with Shutdown \& 100 kHz Swtiching Frequency, Adjustable \& Fixed 5V, 12V Outputs
LT1109AC	S8-5	μ Power Switching Regulator, 5V Output
LT1109AC	S8-12	μ Power Switching Regulator, 12V Output
LT1109C	S8, S8-5,	μ Power DC/DC Converter with Shutdown \& 100kHz
	S8-12	Switching Frequency, Adjustable \& Fixed 5V, 12V Outputs
LT1110C	$58,58-5,$	μ Power DC/DC Converter Works Down to IV Input, Adiustable \& Fived 5V, 12V Outputs
LT1111C	$\begin{aligned} & \mathrm{S} 8, \mathrm{~S} 8-5, \\ & \mathrm{S8}-12 \end{aligned}$	MPower Switching Regulator Works Down to 2V Input, Adjustable \& Fixed 5V, 12 V Outputs
LT11111	S8	μ Power Adjustable Switching Regulator
LT1117C	M	Adjustable Low Dropout Regulator
LT1117C	M-3.3	3.3V Low Dropout Regulator
LT1117C	M-5	5V Low Dropout Regulator
LT1117C	ST	Low Dropout 800mA Adjustable Regulator
LT1117C	ST-5	Low Dropout 800mA Regulator, 5V
LT117C	ST-2.85	Active SCSI-2 Terminator, 2.85 V
LT1117C	ST-3.3	Low Dropout 800 mA Fixed 3.3V Regulator
LT1118C	S8-2.5	2.5V Source/Sink Low Dropout Regulator
LT1118C	S8-2.85	SCSI Source/Sink Terminator
LT1118C	S8-5	5V Source/Sink Low Dropout Regulator
LT1118C	ST-2.5	2.5V Source/Sink Low Dropout Regulator
LT1118C	ST-2.85	SCSI Source/Sink Terminator
LT1118C	ST-5	5V Source/Sink Low Dropout Regulator
LT1120AC	S8	μ Power Voltage Regulator and Comparator with Shutdown
LT1120C	S8	μ Power Low Dropout Regulator with Shutdown
LT1121AC	S8, S8-3.3, 5	μ Power Low Dropout Regulator with Shutdown, Adjustable \& Fixed $3.3 \mathrm{~V}, 5 \mathrm{~V}$ Outputs
LT1121AI	S8	Adjustable Low Dropout $\mu \mathrm{P}$ Regulator
LT1121AI	S8-3.3	3.3V Low Dropout μ Power Regulator
LT1121AI	S8-5	5 L Low Dropout μ Power Regulator
LT1121C	S8, S8-3.3, 5	μ Power Low Dropout Regulator with Shutdown, Adjustable \& Fixed 3.3V, 5 V Outputs
LT1121C	ST-3.3, 5	HPower Low Dropout Regulator, Fixed 3.3V, 5V Output
LT1121I	S8	Adjustable Low Dropout μ Power Regulator
LT1121	S8-3.3	3.3V Low Dropout μ Power Regulator
LT1121I	S8-5	5V Low Dropout μ Power Regulator
LT1121I	ST-3.3	3.3V Low Dropout μ Power Regulator
LT1121I	ST-5	5 V Low Dropout μ Power Regulator
LT1123C	ST	Low Dropout Regulator Driver
LT1129C	Q, Q-3.3	$700 \mathrm{~mA} \mu$ Power Low Dropout Voltage Regulator
LT1129C	Q-5	μ Power Low Dropout Regulator, Fixed 5V Output
LT1129C	S8	Adjustable $700 \mathrm{~mA} \mu$ Power Low Droput Regulator
LT1129C	S8-3.3	$3.3 \mathrm{~V} 700 \mathrm{~mA} \mu$ Power Low Droput Regulator

PRODUCT		DESCRIPTION
LT1129C	S8-5	5V 700mA μ Power Low Droput Regulator
LT1129C	ST-3.3	$700 \mathrm{~mA} \mu$ Power Low Droput Regulator
LT1129C	ST-5	μ Power Low Dropout Regulator, Fixed 5V Output
LT1129	$\begin{aligned} & Q, Q-3.3, \\ & Q-5 \end{aligned}$	$700 \mathrm{~mA} \mu$ Power Low Dropout Voltage Regulator
LT1129	S8	Adjustable $700 \mathrm{~mA} \mu$ Power Low Droput Regulator
LT1129	S8-3.3, 5	3.3 V and $5 \mathrm{~V} 700 \mathrm{~mA} \mu$ Power Low Droput Regulator
LT1129	ST-3.3, 5	$700 \mathrm{~mA} \mu$ Power Low Droput Regulator, 3.3V and 5V Fixed
LTC1142C	G	Dual High Efficiency Switching Regulator Controller
LTC1142H	VC G	HV Dual High Efficiency Switching Regulator Controller
LTC1142HV	VC G-ADJ	Adjustable HV Dual High Efficiency Sw. Reg. Controller
LTC1143C	SW	Dual High Efficiency Switching Regulator Controller
LTC1144C	S8	20 V Switched Capacitor Voltage Converter
LTC1144I	S8	20V Switched Capacitor Voltage Converter
LTC1147C	S8-3.3, 5	High Efficiency Step-Down Switching Regulator Controller
LTC1147LC	$\begin{aligned} & C \text { S8, } \\ & \text { S8-3.3 } \end{aligned}$	High Efficiency Step-Down Switching Regulator Controller
LTC1148C	S,	High Efficiency Step-Down Synchronous Switching Regulator Controller
LTC1148H		High Efficiency Step-Down Synchronous Switching
	S-3.3, 5	Regulator Controller
LTC1148LC	C S, S-3	High Efficiency Step-Down Synchronous Switching Regulator Controller
LTC1149C	S,	High Efficiency Step-Down Synchronous Switching
	S-3.3, 5	Regulator Controller, 48V Inputs
LTC1159C	S,	High Efficiency Step-Down Synchronous Switching
	S-3.3, 5	Regulator Controilier
LTC1159C		High Efficiency Step-Down Synchronous Switching
	G-3.3, 5	Regulator Controller
LT1170C	Q	100kHz 5A Switching Regulator, 5-Lead DD Pkg
LT1171C	Q	100kHz 2.5A Switching Regulator, 5-Lead DD Pkg
LT1172C	SW	100 kHz 1.25 A Switching Regulator
LT1172C	S8	1.25A High Efficiency 100 kHz Switching Regulator
LT1172C	Q	100kHz 1.25A Switching Regulator, 5-Lead DD Pkg
LT11721	S8	100kHz 1.25A Power Switching Regulator
LT1173C	S8	μ Power Switching Regulator for Inputs Greater than
	S8-5,12	2V, Adjustable \& Fixed 5V, 12V Versions
LTC1174C	S8, S8-3.3, 5	High Efficiency, 400 mA Step-Down Switching Regulator
LTC1174HVC		HV Adjustable μ Power Step-Down DC/DC Converter
LTC1174HVC	VC S8-3.3	HV 3.3 V нPower Step-Down DC/DC Converter
LTC1174HV	VC S8-5	HV 5V μ Power Step-Down DC/DC Converter
LTC11741	S8	Adjustable μ Power Step-Down DC/DC Converter
LT1175C	S8-5	-5V Micropower Low Dropout Regulator
LT1175C	S8-ADJ	Negative Adjustable Low Dropout Regulator
LT1176C	SW	100kHz 1A Step-Down Switching Regulator with Shutdown
LT1176C	SW-5	5V 1A Step-Down Switching Regulator
LT1182C	S	LCD/CCFL Dual Switching Regulator
LT1183C	S	LTC/CCFL Dual Switching Regulator
LT1184C	S	CCFL Switching Regulator for Grounded Bulbs
LT1184FC	S	CCFL Switching Regulator for Floating or Grounded Bulbs
LT1186C	S	CCFL Switching Regulator w/Digital Brightness Control
LT1241C	S8	Current Mode PWM Controller
LT1241।	S8	Current Mode PWM Controller
LT1242C	S8	Current Mode PWM Controller
LT12421	S8	Current Mode PWM Controller
LT1243C	S8	Current Mode PWM Controller
LT12431	S8	Current Mode PWM Controller
LT1244C	S8	Current Mode PWM Controller
LT1244	S8	Current Mode PWM Controller
LT1245C	S8	Current Mode PWM Controller
LT12451	S8	Current Mode PWM Controller
LT1246C	S8	1MHz Current Mode PWM Controller
LT1247C	S8	1MHz Current Mode PWM Controller
LT1248C	S	Power Factor Correction Contoller
LT12481	S	Power Factor Correction Contoller
LT1249C	S8	8-Pin Power Factor Correction Controller
LT1249\|	S8	8-Pin Power Factor Correction Controller

Surface Mount Small Outline (SO), DD and SOT Device Packaging

PRODUCT		DESCRIPTION	PRODUCT		DESCRIPTION
$\begin{aligned} & \text { LTC1262C } \\ & \text { LTC1265C } \end{aligned}$	S8 S, S-3.3, 5	12V, 30mA VPP Generator 1.2A High Efficiency Step-Down DC/DC Converter in Adjustable, Fixed 3.3 V and 5 V Output High Efficiency Synchronous Switching Regulator Controller in Adjustable, Fixed 3.3 V and 5 V Output Dual High Voltage High Efficiency Synchronous Switching Regulator Controller	Switched-Capacitor Voltage Converters		
			LTC660C		High Current Switched-Capacitor Voltage Converter
LTC1266C	$\begin{aligned} & S, \\ & S-3.3,5 \end{aligned}$		LT1026C		5 V to $\pm 10 \mathrm{~V}$ Switched-Capacitor Voltage Converter
					Dual Precision Instrumentation Switched Capacitor Building Block
LTC1267C	G, G-ADJ, G-ADJ5		LTC1044AC S8		Switched-Capacitor Voltage Converter, 13 V
			LTC1044C S8		Switched-Capacitor Voltage Converter
			LTC1044AI S8		Switched-Capacitor Voltage Converter, 13 V
LT1268C	Q	7.5A, 150kHz Switching Regulator	LTC1046C S8		50 mA Switched-Capacitor Voltage Converter
LT1269C	Q	4A, Power Switching Regulator, 5-Lead DD Package	LTC10461 S8		-Capacitor Voltage Converter
LT1269C	SW	100 kHz 4 A Switching Regulator, 20-Lead SOIC	LT1054C S8	S8, SW	Capacitor Voltage Converter
LT1271C	Q		LT1054 S		-Capacitor Voltage Converter
LT1300C	S8	μ Power Step-Up DC/DC Converter, 1.8 V Input	LTC1144C S8		pacitor Voltage Converter
LT1301C	S8	μ Power Step-Up DC/DC Converter, 1.8V Input	LTC12610 S		pacitor Voltage Converter
LT13011	S8	$5 \mathrm{~V} / 12 \mathrm{~V} \mu \mathrm{P}$ Pwer DC/DC Boost Converter	1261C S	S,	ched-Capacitor Voltage Inverter for GaAs FET Bia
LT1302C	S8	μ Power High Current Step-Up DC/DC Converter			
	S8-5	μ Power High Current Step-Up Fixed 5V Output DC/DC Converter	LTC1429C S,	S, 58-4	(+)-to-(-) Converter w/Regulation, External Clock
			LTC1550C G,	G, G-4.1	Low Noise, (+ -to(-) Switched-Capacitor Converter
LT1303C	S8	Converter $5 \mathrm{~V} / 12 \mathrm{~V} \mu \mathrm{Power} \mathrm{DC} / D C$ Boost Converter with LBD $5 \mathrm{~V} \mu \mathrm{P}$ ower DC/DC Boost Converter with LBD Micropower DC/DC Converter with Low-Batery Detector Active in Shutdown			
LT1304C	S8, S8-3.3, 5		LTC1550C	$\begin{aligned} & \text { S, S8- } \\ & \text { G-4.1 } \end{aligned}$	Low Noise, (+)-to(-) Switched-Capacitor Converter Low Noise, (+)-to $(-)$ Switched-Capacitor Converter
LT1305C	S8	Micropower High Current DC/DC Converter500 kHz Micropower $\mathrm{DC/DC}$ Converter	$\begin{gathered} \text { G8-4.1 } \\ S-4.1 \end{gathered}$		
LT1309C			S8-4.1		
LT1371C	R	$3 A / 500 \mathrm{kHz}$ High Efficiency Switching Regulator $3 / / 500 \mathrm{kHz}$ High Efficiency Swithing Regulator	Switched-Capacitor Filters		
LT1371C	SW	3A/500kHz High Efficiency Switching Regulator			
LT1373C	S8	$1.5 \mathrm{~A} / 250 \mathrm{kHz}$ Step-Up Switching Regulator	LTC1060C	SW	Dual 2nd Order Universal Filter
LT1375C	S8, S8-5	1.5A/500kHz Step-Down Switching Regulator in	LTC1061C	SW	Triple 2nd Order Universal Filter
		Adjustable and Fixed 5V Outputs	LTC1062C	SW	5th Order Lowpass Filter (Patented)
LT1375	S8, S8-5	$1.5 \mathrm{~A} / 500 \mathrm{kHz}$ Step-Down Switching Regulator in	LTC1063C	SW	Low Offset Clock-Tunable Lowpass Filter
		Adjustable and Fixed 5V Outputs	LTC1064C	SW	100kHz Quad 2nd Order Universal Filter
LT1376C	S8, S8-5	1.5A/500kHz Step-Down Switching Regulator in	LTC1064-1C	SW	8th Order Cauer Lowpass Filter
		Adjustable and Fixed 5V Outputs	LTC1064-2C	SW	8th Order Butterworth Lowpass Filter
LT1376\|	S8, S8-5	1.5A/500kHz Step-Down Switching Regulator in	LTC1064-3C	SW	8th Order Bessel (Linear Phase) Lowpass Filter
		Adjustable and Fixed 5V Outputs	LTC1064-4C	SW	8th Order Cauer/Transitional Lowpass Filter
$\begin{aligned} & \text { LT1377C } \\ & \text { LTC1430C } \end{aligned}$	S8	1.5A/1MHz Step-Up Switching Regulator	LTC1064-7C	SW	100 kHz Phase Corrected Lowpass Filter
	S, S8	High Power Step-Down Switching Regulator	LTC1064-XXC	CWW	High Speed, Low Noise Quad Semi-Custom Filter
LT1432C	S8	High Efficiency Switching Regulator Controller	LTC1065C	SW	Low Offset Clock-Tunable Lowpass Filter
LT1432C	S8-3.3	High Efficiency 3.3V Controller	LTC10651	SW	Low Offset Clock Sweep. Bessel Filter
LT1521C	S8	$300 \mathrm{~mA} \mu$ Power Low Dropout Adjustable Voltage Regulator	LTC1066-1C	SW	14-Bit Accurate, 8th Order, LP Filter
LT1521C	S8-3.0	$300 \mathrm{~mA} \mu$ Power Low Dropout 3V Voltage Regulator	LTC1164C	SW	Low Power Quad 2nd Order Universal Filter
LT1521C	S8-3.3	$300 \mathrm{~mA} \mu$ Power Low Dropout 3.3V Voltage Regulator	LTC1164AC	SW	Quad 20kHz Low Power
LT1521C	S8-5	300 mA ¢Power Low Dropout 5V Voltage Regulator	LTC1164-5C	SW	Low Power, 8th Order, Butterworth Filter
LT1521C	ST-3.0	$300 \mathrm{~mA} \mu \mathrm{P}$ Pwer Low Dropout 3V Voltage Regulator	LTC1164-6C	SW	Low Power, 8th Order, Cauer Filter
LT1521C	ST-3.3	$300 \mathrm{~mA} \mu \mathrm{P}$ ower Low Dropout 3.3V Voltage Regulator	LTC1164-7C	SW	Low Power, 8th Order, Linear Phase Filter
LT1521C	ST-5	$300 \mathrm{~mA} \mu$ Power Low Dropout 5V Voltage Regulator	LTC1164-8	SW	Ulitra-Selective Elliptic Bandpass Filter w/Adjustable Gain
LT1521\|	S88	$300 \mathrm{~mA} \mu \mathrm{Power}$ Low Dropout Adj Voltage Regulator	LTC1164-XXC	CW	Low Power, Low Noise Quad Semi-Custom Filter
		$300 \mathrm{~mA} \mu \mathrm{P}$ Pwer Low Dropout 3V Voltage Regulator	LTC1264C	SW	High Speed, Quad 2nd Order Universal Filter
LT15211	S8-3.3	$300 \mathrm{~mA} \mu$ Power Low Dropout 3.3 V Voltage Regulator	LTC1264-7C	SW	High Speed, 8th Order, Linear Phase Filter
$\begin{array}{ll}\text { LT1521I } & \text { S8-5 } \\ & \end{array}$		$300 \mathrm{~mA} \mu$ Power Low Dropout 3V Voltage Regulator	References		
LT1521]	$\begin{aligned} & \text { ST-3.0 } \\ & \text { ST-3.3 } \end{aligned}$	$300 \mathrm{~mA} \mu$ Power Low Dropout 3.3V Voltage Regulator	LM334	S8	Constant Current Source \& Temperature Sensor Reference
LT15211	ST-5	$300 \mathrm{~mA} \mu$ Power Low Dropout 5 V Voltage Regulator	LM385	S8-1.2	1.2V Bandgap Voltage Reference
LT1572C	S	1.5A Switching Regulator w/Built-In Schottky Rectifier	LM385	S8-2.5	2.5V Bandgap Voltage Reference
LTC1574C	$\begin{aligned} & \text { S, S-3.3, } \\ & \mathrm{S}-5 \end{aligned}$	High Efficiency Step-Down Switching Regulator with	LM385B	S8-1.2	1.2V Bandgap Voltage Reference
		Internal Schottky Rectifier	LM385B	S8-2.5	2.5V Bandgap Voltage Reference
LT1585C	M	4A and 4.6A Low Dropout Regulator, 3-Lead DD Package,	LT1004C	S8-1.2	1.2V Bandgap Voltage Reference
		Fixed Output	LT1004C	S8-2.5	2.5V Bandgap Voltage Reference
LT1585C	M-3.3, M-3.38, M-3.45, M-3.6	$3.3 \mathrm{~V}, 3.38 \mathrm{~V}, 3.45 \mathrm{~V}, 3.6 \mathrm{~V}$ and Adjustable Outputs	LT1004\|	S8-1.2	1.2V Bandgap Voltage Reference
			LT1004	S8-2.5	2.5V Bandgap Voltage Reference
			LT1009	S8	2.5V Reference
			LT1009	S8	2.5V Reference
LT1587C	$\begin{aligned} & M, M-3.3 \\ & M-3.45 \\ & M-3.6 \end{aligned}$	3A Low Dropout Regulator, 3-Lead DD Package, Fixed and Adjustable Output Voltage	LT1019C	S8-2.5	2.5V Precision Reference
			LT1019C	S8-4.5	4.5V Precision Reference
			LT1019C	S8-5	5 V Precision Reference
SG3524		Pulse Width Modulator	LT1019C	S8-10	10V Precision Reference

jurface Mount Small Outline (SO), DD and SOT Device Packaging

PRODUCT		DESCRIPTION
LT1021DC	S8-5	5V Precision Reference
LT1021DC	S8-7	7V Precision Reference
LT1021DC	S8-10	10 V Precision Reference
LT1027DC	S8-5	5V 5.Oppm Buried Zener Precision Reference
LT1027EC	S8-5	5V 7.5ppm Buried Zener Precision Reference
LT1034C	S8-1.2	Micropower Dual Reference: 1.2V, 7V
LT1034C	S8-2.5	Micropower Dual Reference: 2.5 V , 7 V
LT1034	S8-2.5	2.5V Reference, $40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Max TC
LT1236AC	S8-5	5 V Precision Reference
LT1236AC	S8-10	10 V Precison Reference
LT1236AI	S8-10	10 V Precison Reference
LT1236BC	S8-5	5 V Precision Reference
LT1236BC	S8-10	10 V Precison Reference
LT1236BI	S8-5	5 V Precision Reference
LT1236BI	S8-10	10V Precision Reference
LT1236CC	S8-5	5 V Precision Reference
LT1236CC	S8-10	10V Precision Reference
LT1236CI	S8-5	5V Precision Reference
LT1236CI	S8-10	10V Precision Reference
LT1431C	S8	Programmable Reference
LT14311	S8	Programmable Reference
Interface Circuits		
LTC485C	S8	Ultralow Power RS485 Transceiver
LTC4851	S8	Ultralow Power RS485 Transceiver
LTC486C	SW	Ultralow Power RS485 Interface Device
LTC4861	SW	Ultralow Power RS485 Interface Device
LTC487C	SW	Ultralow Power RS485 Interface Device
LTC4871	SW	Ultralow Power RS485 Interface Device
LTC488C	SW	Ultralow Power RS485 Quad Receiver
LTC488\|	SW	Ultralow Power RS485 Quad Receiver
LTC489C	SW	Ultralow Power RS485 Quad Receiver
LTC489\|	SW	Ultralow Power RS485 Quad Receiver
LTC490C	S8	Ultralow Power RS485 Full-Duplex Transceiver
LTC4901	S8	Ultralow Power RS485 Full-Duplex Transceiver
LTC491C	S	Ultralow Power RS485 Full-Duplex Transceiver
LTC4911	S	Ultralow Power RS485 Full-Duplex Transceiver
LT1030C	SW	Quad Low Power Line Driver
LT1032C	SW	Quad Low Power Line Driver with Response Time Control
LT1039C	SW16	3-DX/3-RX RS232 Transceiver with Shutdown
LT10391	SW16	3-DX/3-RX RS232 Transceiver with Shutdown
LT1039C	SW18	3-DX/3-RX RS232 Transceiver
LT1080C	SW	Dual RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT10801	SW	Dual RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1081C	SW	Dual RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1081I	SW	Dual RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1130AC	SW	5-DX/5-RX RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1131AC	SW	$5-\mathrm{DX} / 4-\mathrm{RX}$ RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1132AC	SW	5-DX/3-RX RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1133AC	SW	$3-\mathrm{DX} / 5-\mathrm{RX}$ RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1134AC	SW	4-DX/4-RX RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1134AI	SW	4-DX/4-RX 5V RS232 Transceiver
LT1135AC	SW	5-DX/3-RX RS232 Transceiver
LT1136AC	SW	4-DX/5-RX RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1137AC	G, SW	3-DX/5-RX RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown \& $\pm 10 \mathrm{kV}$ ESD
LT1137AI	SW	3-DX/5-RX RS232 Transceiver with 5 V and Shutdown
LT1138AC	G, SW	5-DX/3-RX RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1139AC	SW	4-DX/4-RX RS232 Transceiver, 5V/12V Powered with Shutdown

PRODUCT		DESCRIPTION
LT1140AC	SW	5-DX/3-RX RS232 Transceiver with Shutdown
LT1141AC	SW	3-DX/5-RX RS232 Transceiver with Shutdown
LT1180AC	SW	$\pm 10 \mathrm{kV}$, 5V RS232 DX/RX with Shutdown, 0.14F
LT1180AI	SW	Dual RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1181AC	SW	Dual RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump
LT1237C	G, SW	3-DX/5-RX RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump, Single RX Keep-Alive \& Shutdown
LT1280AC	SW	Dual RS232 Transceiver with 5 V to $\pm 9 \mathrm{~V}$ Pump \& Shutdown
LT1281AC	SW	Dual RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LT1281I	SW	Low Power Dual RS232 Transceiver with 5V to $\pm 9 \mathrm{~V}$ Pump
LTC1318C	SW	Single 5V AppleTalk ${ }^{\text {® }}$ DCE Transceiver
LT1319C	S	Infrared Receiver, Dual Channel
LTC1320C	S	AppleTalk Transceiver
LTC1321C	S	Programmable EIA/TIA562/RS232 and RS485 Transceiver
LTC1321I	S	Programmable EIA/TIA562/RS232 and RS485 Transceiver
LTC1322C	S	Programmable EIA/TIA562/RS232 and RS485 Transceiver
LTC13221	S	Programmable EIATIA562/RS232 and RS485 Transceiver
LTC1323C	G, SW	Single 5V AppleTalk Transceiver
LTC1324C	SW	5 V Powered Apple/LocalTak ${ }^{\text {® }}$ Transceiver
LTC1327C	G, SW	3V Low Power EIA562 3-DX/5-RX Transceiver
LT1330C	G, S	5V RS232 Transceiver with 3V Logic Interface and 1 RX Active in Shutdown
LT1331C	G, SW	3-DX/5-RX RS232 Transceiver with 3V-Only Supply
LT1332C	G, SW	3-DX/5-RX RS232 Transceiver with Low Power
LTC1334C	SW	5 V Powered Programmable EIA/TIA232/485 Transceiver
LTC13341	SW	5V Powered Programmable EIA/TIA232/485 Transceiver
LTC1335C	SW	Programmable EIA/TIA562 and RS485 Transceiver
LTC13351	SW	Programmable EIATTA562 and RS485 Transceiver
LTC1337C	G, SW	3-DX/5-RX RS232 Transceiver with μ Power
LTC1338C	G, SW	5V Low Power RS232 Transceiver with μ Power
LTC13381	G, SW	5 V Low Power RS232 Transceiver with μ Power
LT1341C	G, SW	3-DX/5-RX RS232 Transceiver with Shutdown and DX Disable
LT1342C	G, SW	3-DX/5-RX RS232 Transceiver with 3V \& 5V Logic Supplies
LTC1345C	SW	Single Supply V. 25 Transceiver
LTC13451	SW	Single Supply V. 35 Transceiver
LTC1346C	SW	$\pm 5 \mathrm{~V}$ powered V. 35 Transceiver
LTC1346I	SW	$\pm 5 \mathrm{~V}$ powered V. 35 Transceiver
LTC1347C	G, SW	5V Low Power RS232 3-DX/5-RX Transceiver with 5 RX Active in Shutdown
LTC1348C	G, SW	3.3V Low Power RS232 3-DX/5-RX Transceiver
LTC1349C	G, SW	5V Low Power RS232 3-DX/5-RX Transceiver with 2 RX Active in Shutdown
LTC13491	G, SW	5V Low Power RS232 3-DX/5-RX Transceiver with 2 RX Active in Shutdown
LTC1350C	G, SW	3.3V Low Power EIATIA562 3-DX/5-RX Transceiver
LTC13501	G, SW	3.3V Low Power EIA/TIA562 3-DX/5-RX Transceiver
LT1381C		Dual RS232 Transceiver with Narrow 16-Lead SOIC
LT1381\|	S	Dual RS232 Transceiver with Narrow 16-Lead SOIC
LTC1382C	SW	5V Low Power RS232 Transceiver
LTC1383C	S	5V Low Power RS232 Transceiver
LTC1384C	G, SW	5V Low Power RS232 Transceiver with 3 RX Active in Shutdown
LTC1385C	G, SW	3V Low Power EIA/TIA562 Transceiver with 2 RX Active in Shutdown
LTC1386C	S	RS232 2-DX/2-RX in Narrow SOIC
LTC1480C	S8	3V powered RS485 Transceiver
LTC1480\|	S8	3V powered RS485 Transceiver
LTC1481C	S8	Ultralow Power RS485 Transceiver with Shutdown
LTC1482C	S8	Low Power RS485 Transceiver with Carrier Detect
LTC1482I	S8	Low Power RS485 Transceiver with Carrier Detect

JpleTalk is a registered trademark of Apple Computer, Inc.

SURFACE MOUNT PRODUCTS

Surface Mount Small Outline (SO), DD and SOT Device Packaging

PRODUCT		DESCRIPTION
LTC1483C	S8	Low EMI Ultralow Power RS485 Transceiver with Shutdown
LTC1483I	S8	Low EMI Ultralow Power RS485 Transceiver with Shutdown
LTC1484C	S8	Low Power RS485 Transceiver w/Fail-Safe Receiver Input
LTC14841	S8	Low Power RS485 Transceiver w/Fail-Safe Receiver Input
LTC1485C	S8	10Mbit/s Low Power RS485 Half-Duplex Transceiver
LTC14851	S8	High Speed RS485 DX/RX
LTC1487C	S8	High Input Impedance Ulitralow Power RS485 Transceiver with Shutdown
LTC14871	S8	High Input Impedance Ultralow Power RS485 Transceiver with Shutdown
LT1537C LT15371	$\begin{aligned} & \text { G, SW } \\ & \text { G, SW } \end{aligned}$	$\pm 15 \mathrm{kV}$ ESD Protected RS232 3-DX/5-RX $\pm 15 \mathrm{kV}$ ESD Protected RS232 3-DX/5-RX
Analog Switches		
LTC201AC	S	Micropower, Low Charge Injection, Quad CMOS Analog Switch
LTC202C	S	Micropower, Low Charge Injection, Quad CMOS Analog Switch
LTC203C	S	Micropower, Low Charge Injection, Quad CMOS Analog Switch
LTC221C	S	Micropower, Low Charge Injection, Quad CMOS Analog Switch with Data Latches
LTC222C	S	Micropower, Low Charge Injection, Quad CMOS Analog Switch with Data Latches
High Side Switches and Drivers		
LTC1153C	S8	Electronic Circuit Breaker
LTC1154C	S8	Single High Side MOSFET Switch Driver
LTC1155C	S8	Dual High Side MOSFET Switch Driver
LTC11551	S8	Dual High Side MOSFET Switch Driver
LTC1156C	SW	Quad High Side MOSFET Switch Driver
LTC1157C	S8	Dual 3.3V Supply High-Side MOSFET Switch Driver
LT1158C	SW	Half-Bridge N -Channel Power MOSFET Driver
LT11581	SW	Half-Bridge N -Channel Power MOSFET Driver
LT1161C	SW	Quad High Side MOSFET Driver
LT1161I	SW	Quad High Voltage, High Side N-Channel MOSFET Driver
LTC1163C	S8	Triple 1.8V Supply High-Side MOSFET Switch
LTC1165C	S8	Triple 1.8V Supply High-Side MOSFET Switch
LTC1177C	$\begin{aligned} & \text { S, S-5 } \\ & \text { S-12 } \end{aligned}$	High Side Switch Driver
LTC1255C	S8	Dual 24V High Side Switch Driver
LTC12551	S8	Dual 24V High Side Switch Driver
LTC1477C	S8	High Side Switches and Drivers
LTC1478C	S8	High Side Switches and Drivers

PRODUCT		DESCRIPTION
Watchdog Timer/Microprocessor Supervisory		
LTC690C	S8	Microprocessor Supervisory Circuit
LTC6901	S8	Microprocessor Supervisory Circuit
LTC691C	SW	Microprocessor Supervisory Circuit
LTC6911	SW	Microprocessor Supervisory Circuit
LTC692C	S8	Microprocessor Supervisory Circuit
LTC6921	S8	Microprocessor Supervisory Circuit
LTC693C	SW	Microprocessor Supervisory Circuit
LTC6931	SW	Microprocessor Supervisory Circuit
LTC694C	S8	Microprocessor Supervisory Circuit
LTC694C	58-3.3	3.3V Microprocessor Supervisory Circuit
LTC6941	S8	Microprocessor Supervisory Circuit
LTC694I	58-3.3	3.3V Microprocessor Supervisory Circuit
LTC695C	SW	Microprocessor Supervisory Circuit
LTC695C	S-3.3	3.3V Microprocessor Supervisory Circuit
LTC6951	SW	Microprocessor Supervisory Circuit
LTC6951	S-3.3	3.3V Microprocessor Supervisory Circuit
LTC699C	58	Microprocessor Supervisory Circuit
LTC6991	S8	Microprocessor Supervisory Circuit
LTC1232C	S8	Microprocessor Supervisory Circuit
LTC12321	S8	Microprocessor Supervisory Circuit
LTC1235C	SW	Microprocessor Supervisory Circuit
LTC12351	SW	Microprocessor Supervisory Circuit
Video Mulitplexers		
LT1203	S8	150MHz, 2:1 Video Multiplexer
LT1204	SW	4-Input Video Multiplexer with 75MHz CFA
LT1205	S	Dual 150MHz, 2:1 or 4:1 Video Multiplexer
PCMCIA Power Management		
LT1106C	F	uPower DC/DC Converter for PCMCIA Flash Memory Cards
LT1312C	S8	Single PCMCIA VPP Regulator
LT1313C	S	Dual PCMCIA VPP Regulator
LTC1314C	G, S	Single PCMCIA VPP Switch $N_{\text {CC }}$ Driver
LTC1315C	G, S	Dual PCMCIA VPP Switch/ $N_{\text {cc }}$ Driver
LTC1470C	S8	Single Protected 1A PCMCIA V ${ }_{C C}$ Switch
LTC1471C	S	Dual Protected 1A PCMCIA Vcc Switch
LTC1472C	S	Single Protected PCMCIA VPP and $\mathrm{V}_{\text {CC }}$ Switch

TAPE AnD REEL SPECIFICATIONS—SURFACE MOUNT

Tape and Reel Packing

Tape and reel packing is available for all SO, SOT-223, SSOP, TSSOP and DD packages in accordance with EIA Specification 481-A. Table 1 lists the applicable tape
widths, dimensions and quantities for all LTC small outline products. Consult factory for tape and reel pricing and minimum order requirements.

Table 1. Tape and Reel Specifications

LTC Package Code Designator	LTC Package Style	Number of Leads Offered	W Tape Width	P Component Pitch	$P_{\mathbf{0}}$ Hole Pitch	Reel Diameter	Units per Reel
F	TSSOP (0.173)	20	16 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
G	SSOP (0.209)	16	16 mm	12 mm	4 mm	$13^{\prime \prime}$	2,000
G	SSOP (0.209)	20,24	16 mm	12 mm	4 mm	$13^{\prime \prime}$	1,800
G	SSOP (0.209)	28	24 mm	12 mm	4 mm	$13^{\prime \prime}$	2,000
GN	SSOP (0.150)	16	12 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
GN	SSOP (0.150)	20,24	16 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
GW	SSOP (0.300)	36,44	24 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000
M, Q, R	DD	3,5 or 7	24 mm	16 mm	4 mm	$13^{\prime \prime}$	750
S8	S8 (0.150)	8	12 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
S	S (0.150)	14	16 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
S	S (0.150)	16	16 mm	8 mm	4 mm	$13^{\prime \prime}$	2,500
ST	SOT-223	3	16 mm	12 mm	4 mm	$13^{\prime \prime}$	2,000
SW	SW (0.300)	16	16 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000
SW	SW (0.300)	18	24 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000
SW	SW (0.300)	20	24 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000
SW	SW (0.300)	24	24 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000
SW	SW (0.300)	28	24 mm	12 mm	4 mm	$13^{\prime \prime}$	1,000

Embossed Carrier Dimensions (12mm, 16mm, 24mm Tape Only)

TAPE AND REEL

TAPE AND REEL SPECIFICATIONS—SURFACE MOUNT

Embossed Tape - Constant Dimensions

Tape Size	\mathbf{D}	\mathbf{E}	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{t}($ Max. $)$	$\mathbf{A}_{0} \mathbf{B}_{\mathbf{0}} \mathbf{K}_{\mathbf{0}}$	
12 mm	1.5	+0.10	1.75 ± 0.10	4.0 ± 0.10	$\frac{0.600}{}$	See Note 1
16 mm		-0.0	(0.069 ± 0.004)	(0.157 ± 0.004)	(0.024)	
24 mm	$(0.059)+0.004$					
		-0.0				

Embossed Tape Variable Dimensions

Tape Size	B_{1} Max.	D_{1} Min.	F	K Max.	P_{2}	R Min.	W
12 mm	$\begin{gathered} 8.2 \\ (0.323) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 5.5 \pm 0.05 \\ (0.217 \pm 0.002) \end{gathered}$	$\begin{gathered} 6.5 \\ (0.256) \end{gathered}$	$\begin{gathered} 2.0 \pm 0.05 \\ (0.079 \pm 0.002) \end{gathered}$	$\begin{gathered} 30 \\ (1.181) \end{gathered}$	$\begin{gathered} 12.0 \pm 0.30 \\ (0.472 \pm 0.012) \end{gathered}$
16 mm	$\begin{gathered} 12.1 \\ (0.476) \\ \hline \end{gathered}$		$\begin{gathered} 7.5 \pm 0.10 \\ (0.295 \pm 0.004) \\ \hline \end{gathered}$		$\begin{gathered} 2.0 \pm 0.10 \\ (0.079 \pm 0.004) \end{gathered}$	$\begin{gathered} 40 \\ (1.575) \\ \hline \end{gathered}$	$\begin{gathered} 16 \pm 0.30 \\ (0.630 \pm 0.012) \\ \hline \end{gathered}$
24 mm	$\begin{gathered} 20.1 \\ (0.791) \end{gathered}$		$\begin{gathered} 11.5 \pm 0.10 \\ (0.453 \pm 0.004) \end{gathered}$			$\begin{gathered} 50 \\ (1.969) \end{gathered}$	$\begin{gathered} 24 \pm 0.30 \\ (0.945 \pm 0.012) \end{gathered}$

Note 1: $A_{0} B_{0} K_{0}$ are determined by component size. The clearance between the component and the cavity must be within $0.05(0.002)$ min. to 0.65 (0.026) max. for 12 mm tape, 0.05 (0.002) min. to 0.90 (0.035) max. for 16 mm tape and $0.050(0.002)$ min. to $1.00(0.039)$ max. for 24 mm tape and larger. The component cannot rotate more than 10° within the determined cavity.

Note 2: Tape and components shall pass around radius "R" without damage.
Note 3: Dimensions are in millimeters (inches) unless otherwise noted.

Bending Radius

TAPE ARD REEL SPECIFICATIONS-SURFACE MOUNT

Component Rotation

Tape Camber (Top View)

Tape Leader (Start/End) Specification

TAPE AND REEL

TAPE AND REEL SPECIFICATIONS-SURFACE MOUNT

ST
SOT-223 Devices

REEL DIMENSIONS-SURFACE MOUNT

TAPE SIZE	$\begin{gathered} \text { A } \\ \text { MAX } \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { MIN } \end{gathered}$	C	$\begin{gathered} \mathbf{D}^{\star} \\ \text { MIN } \end{gathered}$	$\underset{\text { MIN }}{N}$	$\begin{gathered} G \\ \text { MAX } \end{gathered}$	$\begin{gathered} W_{2} \\ \text { MAX } \end{gathered}$
12 mm	$\begin{gathered} 330 \\ (12.992) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.20 \\ (0.512 \pm 0.008) \end{gathered}$	$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 50 \\ (1.969) \end{gathered}$	$\begin{gathered} 12.4_{-0.0}^{+2.0} \\ \left(\begin{array}{c} 0.488 \\ -0.078 \\ -0.00 \end{array}\right) \end{gathered}$	$\begin{gathered} 18.4 \\ (0.724) \end{gathered}$
16 mm	$\begin{gathered} 330 \\ (12.992) \end{gathered}$	$\begin{gathered} \hline 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.20 \\ (0.512 \pm 0.008) \end{gathered}$	$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 50 \\ (1.969) \end{gathered}$	$\left.\begin{array}{c} 16.4+2.0 \\ -0.00 \\ (0.646+0.078 \\ -0.00 \end{array}\right)$	$\begin{gathered} 22.4 \\ (0.882) \end{gathered}$
24 mm	$\begin{gathered} 330 \\ (12.992) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.059) \end{gathered}$	$\begin{gathered} 13.0 \pm 0.20 \\ (0.512 \pm 0.008) \end{gathered}$	$\begin{gathered} 20.2 \\ (0.795) \end{gathered}$	$\begin{gathered} 50 \\ (1.969) \end{gathered}$	$\left.\begin{array}{c} 24.4+2.0 \\ -0.00 \\ (0.961+0.078 \\ -0.00 \end{array}\right)$	$\begin{gathered} 30.4 \\ (1.197) \end{gathered}$

hetric dimensions will govern.
Note 1: All dimensions in millimeters (inches) unless otherwise noted.
Note 2: English measurements rounded and for reference only.

TAPG AnD REGL SPECIFICATIONS-TO-92

T0-92 Tape Dimension

Table 1

SYMBOL	DESCRIPTION	DIMENSION (mm)
D	Sprocket Hole Diameter	4 ± 0.2
H	Length from Seating Plane	16 ± 0.5
H1	Sprocket Hole Location	9 ± 0.5
H4	Component Base Height	20 Max
P	Sprocket Hole Pitch	12.7 ± 0.2
P0	Pitch of Component	12.7 ± 0.5
P1	Lead Location	3.85 ± 0.5
P2	Center of Seating Plane Location	6.35 ± 0.4
S	Component Lead Spacing	$5+8,-0.2$
W	Carrier Tape Width	$18+1,-0.5$
W1	Adhesive Tape Width	6.0 ± 1.0
F1, F2	Lead-to-Lead Distance	$2.5+0.4,-0.1$

T0-92 Reel Dimensions

TAPG AnD REGL SPGCIFICATIONS-TO-92

Ammo Pak Tape Orientation Inside Box

Package Orientation on Tape

STYLE E: Standard
(Flat Side of Package Faces Toward the Adhesive Tape)

STYLE A: Special Lot
(Rounded Side of Package Faces Toward the Adhesive Tape)

Introduction

On the following pages are a variety of lead bend options available for T0-220 packages from Linear Technology Corporation. The special adders, flows, and minimums that have been established for these lead bend options are:

It is important to remember orders for these nonstandard flows require a minimum 90-day notification for cancellation or rescheduling. Also note that special flow orders for U.S. distribution must be approved in advance.

Flows 30 to 37 Special Lead Bends for TO-220
(Minimum Order: 1,000 units)

$\frac{1,000 \text { to } 4,999 \text { units }}{}$	Special lead bends subject to additional charges and
10,000 to 9,999 units	order conditions. Contact
$>25,000$ units	LTC, Sales/Marketing for more information.

T0-220 5-Lead Package Outline (Flow 30)

TO-220 5-Lead Package Outline (Flow 31)

T0-220 3-Lead Package Outline (Flow 32)

TO-220 5-Lead Package Outline (Flow 33)

T5 (SURFACE) 0694

T0-220 3-Lead Package Outline (Flow 34)

TO-220 7-Lead Package Outline (Flow 35)

TO-220 3-Lead Package Outline (Flow 36)

TO-220 LEAD BEND OPTIONS

T7 7-Lead Package Outline (Flow 37)

SECTION 15—APPERDICES

SECTION 15-APPENDICES
INDEX 15-2
INTRODUCTION TO QUALITY AND RELIABILITY ASSURANCE PROGRAMS 15-3
ISO 9001 QUALITY MANUAL 15-5
RELIABILITY ASSURANCE PROGRAM 15-30
QUALITY ASSURANCE PROGRAM 15-46
Wafer Fabrication Flowchart 15-52
Assembly Flowchart 15-61
Test and End-of-Line Flowchart 15-65
R-FLOW 15-66
ESD PROTECTION PROGRAM 15-67
STATISTICAL PROCESS CONTROL 15-78
DICE PRODUCTS 15-81
DESIGN TOOLS 15-83
Application Notes 15-83
Design Notes 15-87
Applications on Disk 15-90
Technical Publications 15-90

Quality and Reliability Assurance Programs

Linear Technology Corporation (LTC) has a wide-ranging program integrating vendor participation, design engineering, and manufacturing to produce the most reliable and highest quality linear integrated circuits available on the market. Our modern manufacturing facility in Milpitas, California is DESC Class S and Class B line certified; MIL-I-38535 QML transitional certified, and ISO 9001 certified. We have successfully completed over 90 major OEM quality system surveys to MIL-Q-9858 and MIL-I-45208 including achieving several major customer quality awards. Our Quality and Reliability Assurance Programs are summarized below:

- Wafer Fabrication - A modern class 100 area modular clean room construction with full environmental monitors. Emphasis is placed on statistical process control, CV plots, SEM monitors and on our proprietary dual layer passivation system.
- SPC (Statistical Process Control) — LTC is committed to SPC as the cornerstone of our continuous quality improvement and Total Quality Management System (TQMS) programs. SPC is fully implemented in all manufacturing areas.
- Assembly and End of Line - Incoming inspection of all materials and piece-parts, line surveillance and process control monitors.
- Testing - Incoming inspection and acceptance of all offshore lots prior to release to test. LTX and Eagle testers, multipass testing with closed-loop binning to reduce outgoing electrical defective levels. Many "beyond data sheet" tests and full temperature QA lot buy-offs are performed as standard processing.
- Traceability - A backside or side mark is placed on all units, where space permits, to give information on each unit to identify the wafer fab lot, assembly, end of line (e.o.l.) and test lots. The information provided exceeds the seal week traceability control required by MIL-STD883.
- ESD (Electrostatic Discharge) - A full program is in place from design through manufacturing. Products are fully characterized to MIL-STD-883 (Method 3015) and strict controls on handling and packaging are observed.
- Training and Certification - Operator training has been established for all operations and recertification is performed every 6 months.
- Major Change Control - Major change controls are in place to notify our customers in accordance with MIL-I-38535, LTC internal specifications, or specific customer specifications as required.
- Quality Assurance - Full monitoring and reporting of quality data with emphasis on Statistical Process Control (SPC) charts and continuous quality improvement. Refer to our section on Quality Assurance Program.
- Failure Analysis and Reporting - A full analytical lab and formal program exists to record, analyze and take appropriate corrective action on all returns. A report is generated and sent to the customer stating our findings and action.
- Reliability Flows - LTC reliability flows include Class S and Class B JAN-38510, Standard Military Drawings (SMD), DESC Drawings, 883, R-Flow, LTC proprietary Hi-Rel Radiation Hardered (RH) products, and Hi-Rel (Source Controlled Drawings). In addition, specialized processing such as SEM, PIND and other tests can be performed as required.
- Reliability Monitor - LTC has a unique reliability structure built into each wafer that is used to obtain rapid feedback on reliability. This data is obtained in less than one week, versus 40 weeks for a typical reliability audit. See the LTC Reliability Assurance Program for more details. LTC has a comprehensive Quick Reaction Reliability ($Q R^{2}$) monitor program for plastic packaged devices. A variety of tests are performed on every oneweek date code, for every package type and lead count and real time feedback to the assembly facilities.
- Reliability Reporting - Data is gathered on a monthly basis for selected process technology/product family/ package combinations. This data is summarized each quarter and published in a Reliability Data Pack showing Operating Life, 85/85, HAST, Autoclave, Temperature Cycle, Thermal Shock, 883 Group C, and 883 Group D summary data. Copies of Reliability Data Pack summaries are available by writing or calling Linear Technology Corporation, 1630 McCarthy Blvd., Milpitas, CA 95035. 1-800-4-LINEAR (1-800-454-6327).

CERTIFICATE

DAR $\operatorname{Min}_{\tan 80 \operatorname{mox}}$

The TÜV-Zertifizierungsgemeinschaft e.V. hereby certifies that Linear Technology Corporation

Milpitas, CA
has established and applies
a quality system for
Design and manufacturing of a broad line of high performance linear integrated circuits

An audit was performed, Report No. 3098
Proof has been furnished that the requirements according to
DIN ISO 9001 / EN 29001
are fulfilled.
The certificate is valid until
March 31, 1996
Certificate Registration No. 091003098

Cologne, 07.00.1993

QUALITY, RELIABILITY, AND SERVICE POLICY STATEMENT

The cornerstone of Linear Technology's Quality, Reliability, \& Service (QRS) Program is to achieve 100% customer satisfaction by producing the most technically advanced product with the best quality, on-time delivery, and service. Top management is fully committed to this goal, but to achieve this goal requires the involvement and dedication of every employee.

Since 1983 when the first product was shipped, Linear Technology has achieved numerous accomplishments in the area of quality and service, among which are:

- 1st company in the industry to achieve the Department Of Defense line certification for MLL-M-38510 Class B products during its first audit in 1984.
- Among the first group of manufacturers to be certified in the Ship-To-Stock Program at Compaq Computers in 1986.
- 1st company in Silicon Valley to achieve the Ford Q1 Award for Excellence in Quality in 1988.

The above achievements were made possible by the commitment and dedication of employees who pay attention to details and whose motto is "Do the job right the first time".

Customer requirements and expectations in the areas of Quality and Service are becoming increasingly more demanding. Linear Technology not only intends to meet those requirements and expectations for survival, but also to exceed them to maintain a world-class leadership position.

The standard will be error-free products and error-free performance. This standard commits all of Linear Technology's employees to a QRS Policy that takes precedence over all other considerations and leaves no room for error or failures. LTC's goal is zero defects.
 ISO 9001 QUALITY MANUAL

QUALITY SYSTEM FOR DESIGN, DEVELOPMENT, PRODUCTION, AND SERVICING

O INTRODUCTION

This policy defines the organization and policies of Linear Technology Corporation (LTC) and assures conformance to requirements during design, development, production, testing, inspection and shipment of products. It sets out the general quality policies, procedures and practices of LTC.

1.0 SCOPE

The requirements specified in this Quality Manual are designed to prevent and detectany nonconformances during design, development, production, testing and inspection.

2.0 FIELD OF APPLICATION

The Quality Program specified herein is designed to ensure 100% customer satisfaction by ensuring product conformance to achieve and maintain the highest level of product quality and reliability and to ensure a program for continuous improvement. This manual applies to all manufacturing locations and to all military and commercial products manufactured by LTC.

REFERENCES		
ISO 8402	Quality Vocabulary	
ISO 9000	Quality Management and Quality Assurance	
Standards: Guidelines for Selection and Use ISO 9001 Quality Systems: Models for Quality Assurance in Design/Development, Production, Installation and Servicing ISO 9002 Quality Systems: Model for Quality Assurance in Production and Installation. ISO 9004 Quality Management and Quality System Elements Guidelines ISO 10011-1 Guidelines for Auditing Quality Systems, Part 1 ISO 10011-2 Guidelines for Auditing Quality Systems, Part 2 ISO 10013-3 Guidelines for Auditing Quality Systems, Part 3 ISO 10012-1 Quality Assurance Requirements for Measuring		

3.0 DEFINITIONS

For the purpose of this quality manual, the definitions given in ISO 8402 shall apply.
Below is a list of acronyms used by LTC:
CMR Customer Material Return
CSI Customer Source Inspection
DI
DMR
DRC
ECN
EOL
F/A
GAUGE R\&R
GSI
IFR
IQC
MPS
MRB
MSE
OCAP
PO
PAT
PG
QA
QAP
QAR
QCT
RMA
RPL
SL
SOP
SPC
SSS
TECN
TML
TQMS
VCAR

De-Ionized
Discrepant Material Report
Design Rules Check
Engineering Change Notice
End-of-Line
Failure Analysis
Gauge Repeatability and Reproducibility
Government Source Inspection
Inspection Failure Report
Incoming Quality Control
Material Procurement Specifications
Material Review Board
Measurement System Evaluation
Out-of-Control Action Plan
Purchase Order
Process (or Preventive) Action Team
Pattern Generation
Quality Assurance
Quality Assurance Policy
Quality Audit Report
Quality Control Teams
Return Material Authorization
Released Product Listing
Special Lot
Standard Operating Procedure
Statistical Process Control
Stop/Start Sheet
Temporary Engineering Change Notice
Top Mark Layout
Total Quality Management System
Vendor Corrective Action Request

4.0 QUALITY SYSTEM REQUIREMENT

LTC's Total Quality Management System (TQMS) encompasses the concept of strategic quality planning and management to ensure a program of continuous quality and reliability improvement.
The quality system is designed to meet the requirements of:

- ISO 9001
- MIL-STD-883
- MIL-STD-976
- MIL-M-38510 (Class B and Class S)
- MIL-I-38535, Appendix A
- MIL-I-45208
- MIL-STD-45662
- MIL-Q-9858
- ANSI/NCSL Z540-1-1994
- Our commercial customers
- Our goal of defect-free products

LTC pledges that its products shall be manufactured in accordance with the applicable specifications or to specific customer requirements.

4.1 MANAGEMENT RESPONSIBILITY

LTC's management with executive responsibility shall ensure that the Quality policy is understood, implemented, and maintained at all levels in the organization.

4.1.1 Quality Policy

See Policy Statement in the front of this manual.

4.1.2 Organizational Chart

A current organizational chart showing senior management and the organizational reporting structure is available upon request from the secretary of the Vice President of Finance.

LTC Organizational Chart

4.1.2.1 Responsibility and Authority

A) All employees in this organization have the authority to initiate action to prevent the occurrence of product, process, and quality system nonconformity by notifying the appropriate support or management personnel.
B) Inspectors have the responsibility to identify and record product and process problems via a Stop/Start or Inspection Failure Report.
C) Any employee in the organization has the organizational freedom and authority to initiate, recommend, or provide solutions relating to product, process and quality system nonconformances.
D) Engineering, Quality Assurance and management have the responsibility to verify the implementation of solutions.
E) Any employee in the factory that is running a process at an SPC location has the responsibility to suspend an operation in the event of an out-of-control process or to control further processing in accordance with the associated Out-of-Control Action Plan (OCAP) by issuing a Stop/Start.
Quality Assurance, Engineering, Production Control and Customer Service have the responsibility to suspend or control the further processing and delivery of nonconforming product until the deficiency or unsatisfactory condition has been corrected. This can be done via the issuance of a Stop/ Start or Inspection Failure Report (IFR) via an ECN/TECN to a specification or via a ship-hold.

4.1.2.2 Verification Resources and Personnel

All verification activities and requirements shall be documented in the appropriate standard operating procedures (SOP) or detailed specifications to include inspection, test, and monitoring of the design, production, and product. Design reviews and audits of the quality system, processes, and/or product shall be carried out by personnel independent of those having responsibility for the work being performed.
All verification personnel are required to be trained and certified per the LTC training and certification program (spec 06-09-0002 and 05-06-0007), and records of training are to be maintained. Adequate resources shall be identified and assigned for the areas of management, performance of work and verification activities, including internal quality audits.

4.1.2.3 Management Representative

The Manager of Quality Assurance and Reliability has the authority and responsibility for ensuring that the requirements of this Quality Manual are implemented and maintained.

A multidisciplinary approach is used for decision-making and to manage concept development through production and shipping.

4.1.3 Management Review

The Quality and Reliability Manager shall assure that the effectiveness of the quality system is reviewed and reported on, as shown below:
A) Annual strategic quality planning and goal setting to drive continuous quality and reliability improvement programs. This meeting is held at the beginning of each fiscal year with all department heads participating. The resulting goals are reviewed and approved by the management.
B) Quarterly management review of company performance vs. the Corporate Quality goals. The performance to goals is summarized by the Quality Assurance manager and distributed to the department heads. Semiannual reviews are distributed to the President and Vice Presidents.
C) Quality systems audit results shall be reviewed annually and at the end of each period by middle and upper management to determine the adequacy of, and compliance to, the documented quality system. Upper management includes the COO and President/CEO.
D) Quarterly Cpk reports of all critical process nodes by the SPC Manager.
E) Monthly QA reports to management including the President and COO, to report detailed results and trend analysis of QA monitors and gates.
F) On a real-time basis, the following reviews and/or actions are performed:

* Quality system audit results shall be reviewed to determine the effectiveness of the quality system.
* Failure analysis, root cause identification, and corrective action.
* Customer request for corrective action.
* Process/Preventive Action Teams (PATs) findings and recommendations.
* Review of nonconforming material/product reports.
G) The Quality Manual and/or procedures shall be revised when necessary to reflect the decisions of management reviews.
H) Records of all reviews shall be maintained for evaluation, as required.

4.2 QUALITY SYSTEM

4.2.1 General

The quality system of LTC consists of the Quality Manual, quality procedures for inspection, surveillance, and monitoring to ensure that our products conform to customer requirements.

4.2.2 Quality System Procedures

Documented and implemented procedures consistent with the requirements of ISO 9001 and stated quality policy shall form a part of the quality system.

4.2.3 Quality Planning

The system is designed to meet the requirements of ISO 9001, and the other requirements outlined in Section 4.0. The quality planning process covers all processes from incoming inspection through shipping.
Quality planning includes:
A) The preparation of quality plans in accordance with the specific requirements.
B) The identification and acquisition of any controls, processes, inspection equipment, fixtures, and total production resources and skills that may be needed to achieve the required quality.
C) Ensuring the compatibility of the design, the production process installation, servicing, inspection and test procedures, and the applicable documentation.
D) The updating, as necessary of quality control; inspection, and testing techniques, including the development of new instrumentation.
E) The identification of any measurement requirement involving capability that exceeds the known state of the art in sufficient time for the needed capability to be developed.
F) The identification of suitable verification at all required test, and inspection gates.
G) The clarification of standards of acceptability for all features and requirements, including those which contain a subjective element (i.e., workmanship standards).
H) The identification and preparation of quality records. (For records, see Section 4.16.)

REFERENCES

Spec Number	Title
$06-03-5000$	Customer Specification Review
$06-03-5001$	Internal SL Specification Procedure
$06-04-0011$	Design to RPL Flowchart
$00-01-1006$	SOP: Engineering Change Notice
$08-07-1001$	Calibration Program Requirements
$05-03-8082$	Assembly Workmanship Standards
$06-03-7050$	Record Keeping

4.3 CONTRACT REVIEW

4.3.1 General

Documented procedures shall be implemented and maintained for the performance of contract review and for the coordination of these activities.

4.3.2 Review

Prior to acceptance of a contract or order, it shall be reviewed in accordance with the referenced specifications herein, resolving issues, and determining the capability of the organization to meet customer requirements. Any differences identified during contract review will be documented and defined by an "SL" (Specified Lot) or by a special flow per the specifications below. If LTC cannot agree to any portion of the contract, a waiver agreement must be approved by the end-customer before the product is delivered.
(For records, see Section 4.16.)

REFERENCES

Spec Number	Title
$06-03-5000$	Customer Specification
$06-03-5001$	SL (Special Lot) Specification Procedure
Current Rev.	Device Catalogs, Data Book, Supplements

4.4 DESIGN CONTROL

4.4.1 General

LTC produces a broad line of standard, high performance linear integrated circuits which are defined in the marketing catalogs and data books. Design criteria and manufacturing capabilities have been established to support these products. (For records, see Section 4.16.)

4.4.2 Design and Development Planning

LTC Spec 06-04-0011 provides a guideline flowchart from design conception to product qualification and RPL. Since LTC manufactures primarily standard products, as opposed to custom products, there is no need to establish milestone
charts for the customer. Design and verification activities are planned and assigned to qualified personnel equipped with adequate resources.

4.4.3 Organizational and Technical Interfaces

A design review meeting is held weekly with engineering and management to review the status, document progress, and technical requirements of each design.

4.4.4 Design Input

Inputs for design typically come from review of customer's requirements, contract review, and marketing research to identify features which should be incorporated into a product. The primary goal is to provide customers with designs that reduce their component and board level costs, while providing leading edge technology. LTC manufactures primarily standard (non-custom) products. Based on the above inputs, the final design concept is developed in-house.

4.4.5 Design Output

The design output, an integrated circuit, is defined and described in a data sheet, which is released when the product is qualified. Product characterization and qualification are conducted to verify conformance to data sheet requirements.
The data sheet specifies the product performance limits as well as any other pertinent information pertaining to the product, e.g., design considerations that are critical in the safe and proper functioning of the product, regulatory requirements, etc.

4.4.6 Design Review

Design shall plan, conduct design reviews which are documented, and assigned to competent personnel representing all applicable functions.

4.4.7 Design Verification

Design verification shall establish that the product meets the data sheet requirements. Since the products designed by LTC are proprietary products (defined by LTC), LTC may change the final data sheet to match the characterization results prior to release. This further ensures that the design input matches the design output.

4.4.8 Design Validation

Design validation shall be performed prior to release to ensure that the product conforms to design requirements in accordance with Quality Assurance and Reliability Assurance Qualification requirements, 06-04-0001.

4.4.9 Design Documentation

The identification, documentation, and appropriate review and approval of all changes and modifications are accomplished via ECNs to the Mask Sequence Specification, 02-01-xxxx .
Design changes are controlled via LTC-supplied designs and bills of material to subcontractors.
(For records, see Section 4.16.)
REFERENCES (Company proprietary)

Spec Number	Title
$80-01-\mathrm{xxxx}$	CMOS Design Rules
$80-02-\mathrm{xxxx}$	Bipolar Design Rules
$02-01-\mathrm{xxxx}$	Mask Sequence Specifications
$02-02-1000$	LTC Milpitas Fab New Product Documentation Requirements
$02-02-1002$	LTC Product Release to Fab Procedure
$05-01-\mathrm{xxxx}$	Assembly Bonding Diagram and Bill of Materials
$06-04-0001$	Quality Assurance/Reliability Assurance Qualification Requirements
$06-04-0011$	Design to RPL Flowchart
$09-01-0001$	Released Product Listing/Top Mark Content and Layout Procedure

4.5 DOCUMENT AND DATA CONTROL

4.5.1 General

Documented and implemented procedures shall govern the control of all documents and data relating to the quality system.

4.5.2 Document and Data Approval and Issue

Pertinent issues of appropriate documents are available at all locations where operations are essential to the effective functioning of the quality system. Any initiation or change of the documentation required forprocurement, manufacturing, and inspection of materials and product is controlled by the Document Control department to ensure review and approval by authorized personnel prior to issue.
Data associated with this Quality System shall be maintained and documented per Section 4.16, Control of Quality Records.
The Document Control group is responsible for the maintenance, control, reproduction, distribution and historical archiving of all of LTC's product and procedural documentation. Document Control services all internal areas in which Document Control Books (DCBs) are located, per the internal specifications listed on following page:

REFERENCES

Spec Number	Title
$00-01-0010$	Specification ID Master Plan
$00-01-0005$	Temporary Engineering Change Notice Procedure
$00-01-1006$	Standard Operating Procedure (SOP): Engineering Change Notice
$00-01-1008$	SOP: Specification Format and Organization
$00-01-3100$	ECN Approval Matrix
$00-01-0001$	Standard Operating Procedure: Document Control
$00-01-0003$	Distribution of Level 1 Specifications
$00-01-3111$	DCB Locations Report

4.5.3 Document and Data Changes

Document Control shall promptly post or route ECNs (Engineering Change Notices) and TECNs (Temporary Engineering Change Notices) to the appropriate locations when ECN approval is complete. The information on the ECN shall contain, as a minimum, the affected document number, description of the change, effective date and duration, affected documentation, justification for the change, documentation of material disposition, distribution, and approval signatures.
Previous revision history is available from the Document Control department. Additional justification and background information shall be provided by the ECN originator upon request of the designated signatory.
Document Control maintains a Master Spec Listing which includes the revision letter, effectivity date, specification number, product number (when applicable), and title. See 00-01-0001, SOP: Document Control.
When any change is made, LTC's standard practice is to generate an ECN or TECN to a specification or process. Each time an ECN or a TECN is generated, the revision changes and spec copies are reissued to all required Level 1 and Level 2 Document Control Book locations within the factory and all satellite locations as called out on the document footer.

REFERENCES

Spec Number	Title
$00-01-1006$	SOP: Engineering Change Notice
$00-01-3100$	ECN Approval Matrix
$00-01-1008$	SOP: Specification Format and Organization
$00-01-0005$	Temporary Engineering Change Notice
$00-01-0001$	SOP: Document Control

4.6 PURCHASING

4.6.1 General

Purchasing shall ensure that material purchased from suppliers and subcontractors is in conformance to specified requirements. Records of qualified suppliers shall be maintained.

4.6.1.1 Supplier Responsibility

It is the responsibility of the supplier to provide and maintain a quality system which will assure compliance with the requirements of the applicable material procurement specification, $01-x x-x x x x$ and the specifications listed below.

REFERENCES

Spec Number	Title
$06-09-0003$	Purchasing Procedure
$01-x x-x x x x$	Material Procurement Specification
$09-01-0004$	Qualified Vendor Listing Procedure
$09-01-0008$	Approved Subcontractor Listing
$06-01-0011$	Vendor Corrective Action
$06-09-0018$	SOP: Inventory Control
$06-01-0006$	Incoming Inspection, General
$06-01-0007$	Incoming Inspection, Subcontracted Materials
$01-x x-x x x x$	Applicable Drawing And Stores Item Numbers

4.6.2 Assessment of Subcontractors

Selection of sources to be qualified will be made upon the supplier's ability to conform to agreed upon requirements for quality, cost, delivery, and based upon previous performance.
LTC exercises tight control over critical subcontractors to prevent field reliability problems. The effectiveness of these controls is continually assessed through on-site engineering surveillances, incoming inspection results, reliability monitor results, and subcontractor-supplied SPC and Cpk data. This is defined in Specification 06-01-0020.
Previously qualified suppliers may continue to be used as long as they demonstrate the capability to meetall conditions and requirements.
Suppliers and subcontractors are granted approval after qualification testing and inspection of materials purchased under preliminary approval status. A monthly record of approved suppliers' and subcontractors' history is maintained and updated after completion of inspections and the disposition of all lots.
juppliers and subcontractors that consistently demonstrate zxceptionally high acceptance rates will become candidates or participation in the Preferred Vendor Program. Jetermination of suitability will be based on the following:
t) Consistently high acceptance rate through Incoming Inspection.
3) No field-related problems.
j) Recommendation by LTC's Preferred Vendor Board after reviewing the survey results from the vendor.
J) Willingness on the part of the supplier to provide periodic statistical data on the critical nodes/parameters that have been identified.
;) Suppliers and subcontractors that qualify for the partnership program will be placed on a reduced surveillance schedule, and they will be awarded a greater share of the business.

jeFERENCES

ipec Number	Title
16-09-0003	Purchasing Procedure
11-xx-xxxx	Material Procurement Specifications
19-01-0004	Approved Vendor List
16-01-0007	Incoming Inspection, Subcontracted Material
19-01-0008	Approved Subcontractor Listing
16-01-0020	Distributor/Supplier/Subcontractor Survey and Audit for Qualification and Disqualification Procedures
16-06-0001	Statistical Process Control (SPC)
16-04-0002	Reliability Audit Program
16-05-7001	Failure Analysis Program
16-09-0008	Preferred Vendor Program

I.6.3 Purchasing Data

he purchase order shall list the LTC stock number, the lescription of the part, and designate the material as Type A, 3, C, or D if applicable. The purchase order shall also state he drawing number or part number and the current revision evel, the quantity needed, the applicable material rocurement spec. and revision (for Type A \& B materials inly), the required delivery date(s) and the negotiated price. t shall also include inspection, test, and packaging equirements, as applicable. All Type A and B parts and naterials shall be purchased from original equipment nanufacturers, approved vendors and subcontractors, and uthorized distributors. Below is a list of the categories:
ype A: Direct material that has distinct value-added identity on the finished product.

Type B: Indirect material consists of all material other than direct that is directly used in the manufacture of a product.
Type C: Indirect material consists of all material not directly used in the manufacture of a product.
Type D: Engineering evaluations consist of material specifically purchased for evaluations purposes and which Engineering will inspect. Type D material is not used as direct material, and will not be stored in an area where Type A material is stored. Type D material can be upgraded to Type A by having the requester complete a "Request to Enter a Part into Stores" and by having QA perform an incoming inspection on the material.
The purchase order is reviewed and approved by the management of the originating department. Additionally, Quality Assurance reviews and approves Purchase Orders for Type A and B material.

REFERENCES

Spec Number Title

06-09-0003 Purchasing Procedure
$01-x x-x x x x \quad$ Material Procurement Specifications

4.6.4 Verification of Purchased Products

When specified in the contract, the purchaser or his/her representative shall be afforded the right to verify at source or upon receipt that the purchased product conforms to specific requirements. Verification by the purchaser shall not absolve the supplier/subcontractor of his/her responsibility to provide acceptable products, nor shall it preclude subsequent rejection.
When the purchaser or his/her representative elects to carry out verification at the subcontractor's plant, such verification shall not be used by the supplier or subcontractor as evidence of effective controls of quality by the supplier/ subcontractor.

4.7 CONTROL OF CUSTOMER-SUPPLIED PRODUCT

It is currently not LTC's practice to include purchasersupplied materials in products. Therefore, this clause of ISO 9001 does not apply. In the event that LTC should agree contractually to accept/use purchaser-supplied product, LTC will document the procedures to verify, store, and maintain such product. Verification by the supplier does not absolve the customer of the responsibility to provide acceptable product.

4.8 PRODUCT IDENTIFICATION AND TRACEABILITY

Inventory identification and traceability shall be controlled through the assignment of product numbers, run numbers, lot numbers, serial numbers, date codes and back mark codes as appropriate.
Run card and lot traveler must, as a minimum, specify the lot number or run number, operation, device type or stock number, quantity in/out or quantity inspected/rejected (for inspection points). Runcards and lot travelers accompany the material through the factory until it reaches Boxstock.
Offshore subcontracted material shall be identified by general back mark codes.

The device back mark code is used to provide complete traceability to test lot traveler, assembly lot traveler, wafer fab traveler, and raw materials used. Where space allows, the complete backside mark code is imprinted, as follows: (For records, see Section 4.16.)

$\mathbf{C / A A / B B B / X X / Y Y}$, where:	
C	Denotes Plant of Origin: Country of Origin (COO)
AA	Denotes Device Type
BBB	Denotes Assembly Lot Number
$X X$	Denotes Year
$Y Y$	Denotes Seal Week

REFERENCES

Spec Number	Title
05-03-4601	Country of Origin and Backside Mark
MIL-M-38510	Slash Sheet Drawings
SMD	Standard Military Drawings
DESC Drawing	SMD or Slash Sheet Drawings
MIL-STD-883	Compliant Data Sheets, LTC Data Book

4.9 PROCESS CONTROL

4.9.1 General

Processes which directly affect the quality of products or services delivered by LTC shall be carried out under controlled conditions. Controlled conditions include a production plan as well as appropriate controls for material, production and servicing equipment, processes and procedures, computer software, personnel, associated supplies, facilities, and environment.
A) Documented workinstructions and necessary equipment and facilities shall be available and approved for all processes that affect the quality of the product.
B) It is the responsibility of each organization that handles product to monitor and control its processes.
C) Each organization has the responsibility for establishing requirements for the approval of processes and equipment.
D) Standards for workmanship shall be defined in each area either in documents called "workmanship standards" or "standard operating procedures," or by physical examples of product that conforms to requirement.
E) It is the responsibility of each department to assure its equipment is suitably maintained.
F) Only certified personnel perform qualified processes.
G) For records, see Section 4.16.

REFERENCES

Spec Number	Title
00-01-1008	SOP: Specification Format and Organization
06-02-XXXX	Quality Process Monitor Specs
06-08-XXXX	Procedures, Quality Audit
06-09-XXXX	Procedures, QA Standard Operating
05-03-8082	Assembly Workmanship Standards
08-07-1001	Calibration Program Requirements
06-09-0002	Operator Training and Certification Program
06-03-7050	Record Keeping
08-07-1003	Fab Maintenance P.M.
08-07-0656	Special Facilities Safety Guidelines and Procedures

4.9.2 Special Processes

Statistical Process Control (SPC) is implemented on all critical processes throughout the manufacturing flow.
All products shipped by LTC are 100\% tested and inspected several times. All new products are fully characterized and qualified before release.LTC's Reliability program is designed to continually assess the performance of LTC devices in the field.
All of the above controls work together to ensure that any processing deficiencies become apparent before the product is delivered to the end customer. Therefore, LTC does not have any "special processes." See specifications listed on following page.

3EFERENCES

Spec Number	Title
）0－01－1006	SOP：Engineering Change Notice
J6－03－5001	SL（Special Lot）Specification Procedure
）6－06－0001	Statistical Process Control（SPC）
36－04－0002	Reliability Audit Program
）6－04－0011	Reliability Monitor Program
36－04－0012	QR2（Quick Reaction Reliability）Program
）6－04－0001	Quality Assurance／Reliability Assurance Qualification Requirements
$(x-x x-x x y x$	Applicable Standard Operating Procedures
（ $x-x x-x x x^{\prime}$	（Also，Specifications referenced in 4．10．2 apply to 4．9．）

4．10 INSPECTION AND TESTING

4．10．1 General

All final inspection and testing shall be performed in iccordance with referenced procedures to verify acceptance o specified requirements．

4．10．2 Receiving Inspection and Testing

Zeceiving／Production Control shall be responsible for jegregating all incoming material until completion of IQC nspection and for routing subcontracted assembly lots to QC for inspection．

4．10．2．1

n accordance with LTC＇s Quality Assurance procedures，all「ype A and Type B purchased materials shall be subjected to 2 A Incoming Inspection．
「ype A：Direct material that has distinct value－added identity on the finished product．
「ype B：Indirect material consists of all material other than direct that is directly used in the manufacture of a product．

1．10．2．2

＿ots may be released for further processing prior to ；ompletion of incoming inspection．However，IQC must be ；ompleted within 24 hours or 72 hours，depending upon the ype of material that was released．If the sample fails，IQC otifies Production Control who works together to recapture he lot，provided that PC ensures that the affected lot（s）are lot shipped prior to completion of IQC inspection．

Lots which pass all the criteria specified shall be considered acceptable．All logs，lot travelers，and boxes are stamped with a box IQC accept－date stamp prior to releasing the appropriate location．
If a lot fails any criteria，the lot is rejected and an inspection failure report（IFR）is initiated．All reject samples must be segregated and attached to the IFR．The responsible QA and Manufacturing Engineer must review and disposition the rejects and complete the IFR form．
The applicable Package and QA Engineers shall be responsible for notifying the supplier of any rejections and for following up on corrective action Discrepant Material Reports（DMR）．

REFERENCES

Spec Number	Title
$06-09-0003$	Purchasing Procedure
$06-01-0006$	Incoming Inspection，General
$06-01-0007$	Incoming Inspection，Sub－Material
$06-01-0011$	Vendor Corrective Action
$06-02-0020$	Inspection Failure Report（IFR）Procedure
$01-x x-x x x x$	Material Procurement Specifications
$06-08-0013$	Control of Age／Temperature Sensitive Materials
$08-07-1001$	Calibration Program Requirements

4．10．3 In－Process Inspection and Testing

 LTC shall：A）Inspect，test and identify product as required by the quality plan or documented procedures．
B）Establish productconformanceto specified requirements by use of process monitoring and control methods．See Section 4.20 for specifics．
C）Hold product until the required inspections and tests have been completed or necessary reports have been received and verified except when product is released under positive recall procedures．See Section 4．10．1． Release under positive recall procedures shall not preclude the activities outlined in Section 4．10．2A．
D）Identify nonconforming products．
See specifications listed on following page．

REFERENCES (Representative)

Inspection	Hold	Monitors	Test	Records
$06-02-0001$	$06-02-0020$	$06-02-0002$	$06-02-0006$	$06-03-7050$
$06-02-0003$		$06-02-0004$	$06-02-0011$	$06-03-7051$
$06-02-0005$		$06-02-0008$	$06-02-0019$	$06-03-5000$
$06-02-0007$		$06-02-0012$	$06-02-0031$	$06-03-5001$
$06-02-0009$		$06-02-0017$	$06-03-0011$	$06-03-7068$
$06-02-0014$		$06-02-0022$	$06-03-0012$	$09-01-0002$
$06-02-7002$		$06-02-5001$	$06-03-7001$	$09-01-0004$
$06-02-7003$		$06-02-7036$	$06-03-7003$	$09-01-0005$
$06-02-7004$		$06-08-0002$	$06-03-7004$	$09-01-0008$
$06-02-7070$		$06-08-0003$	$06-03-7006$	
$06-03-7028$	$06-08-0004$	$06-03-7007$		
$06-03-7029$	$06-08-0005$	$06-03-7008$		
$06-03-7030$	$06-08-0015$	$06-03-7009$		
$06-03-7031$	$06-09-0018$	$06-03-7011$		
$06-03-7035$	$06-09-0019$	$06-03-7012$		
$06-03-7036$	$06-09-9001$	$06-03-7016$		
$06-03-7038$		$06-09-9003$	$06-03-7017$	
$06-03-7061$		$06-03-7018$		
$06-03-7062$		$06-03-7019$		
$06-03-7066$		$06-03-7025$		
$06-06-0001$		$06-03-7026$		
$06-08-0014$		$06-03-7027$		
$08-07-1001$		$06-03-7032$		
			$06-03-7033$	
		$06-03-7034$		
		$06-03-7063$		
			$06-03-7064$	
			$06-03-03-7065$	

4.10.4 Final Inspection and Testing

All products will undergo a final test according to the applicable test procedure, and will be inspected for completeness of specified requirements, appearance against applicable workmanship standards, and all associated data and documentation are available and authorized.
Electrical test and visual/mechanical acceptance shall precede transfer to the Finished Goods inventory area. Finished Goods inventory consists only of products formally on the released product listing (RPL). Additionally, it is impossible to ship product that is not on the RPL, as the computer will not print a shipper. Inspection of product prior to shipment shall assure compliance to contractual requirements as described by referenced procedures and applicable "SL" or special flow requirements.
The government shall be allowed access to LTC and subcontractor facilities to verify acceptability, when contractually required.

REFERENCES

Spec Number	Title
$06-02-0014$	Outgoing QA Electrical Test for 883, STANDARD MIL, and Commercial Devices
$06-02-0013$	QA External Visual Inspection
$06-02-7002$	QA Post Pack Inspection
$06-02-7003$	QA Shipbench Inspection
$04-04-X X X X$	Final Test Set-Up Specifications

4.10.5 All Inspection and Test Records

Records that product has passed all required inspections and tests as defined in the Quality plan must be maintained. These include records from: Test, Visual/Mechanical, Postpack, Boxstock, Shipbench, SL, and Flows.
Specific procedures defining acceptance criteria for inspection and test records may be found by referring to the specifications listed below, or on the applicable lot travelers. Records shall identify the inspection authority responsible for the release of product, and shall clearly show the acceptance or failure of required inspections or tests (reference Section 4.12).
Nonconforming material shall be identified, segregated, and dispositioned in accordance with Section 4.13 and referenced procedures. See Section 4.16 for specifics.
REFERENCES

Spec Number	Title
$06-03-7050$	Record Keeping
$00-01-1006$	SOP: Engineering Change Notice

4.10.6 Test Software Control

Test software shall be approved before use by Test Engineering. Test software shall be stored for use in a controlled access "server," from which only the most current and approved software shall be used to test product.
Adocument-controlled Test Program Book contains released (04-12-xxxx) test program listings, including the program name and latest revision for each device type for Wafer Sort, Final Test, and QA tests. Revisions used are recorded on the test flow traveler, which also serves as a test specification.
Changes to test procedures can only be made after an ECN has been approved and signed off. Major changes to software (as defined in spec 06-04-0007) can only be made after an ECN has been approved and signed off.

Whenever possible, equipment accuracy to parameter tolerance shall be of at least a 10:1 ratio. However, when 10:1 accuracy is not possible, electrical quality is guaranteed by guard banding test limits against the published data sheet.
Guard bands are set by a combination of published test equipment specifications and SPC techniques. This ensures that parametric readings outside device specifications are deleted, resulting in the faulty unit being rejected.
Additionally, a final QA sampling plan guarantees acceptance to quality limits inside of published data sheet parameters.

REFERENCES

Spec Number	Title
$00-01-1006$	SOP: Engineering Change Notice
$04-04-6300$	Test Area SOP
$04-01-x x x x$	Standard Product Test Flows
$04-13-x x x x$	SL Product Test Flows
$04-21-x x x x$	SMD and DESC Drawing Test Flows
$04-12-x x x x$	Test Program List
$04-14-x x x x$	SL Product Test Program Index
$04-25-x x x x$	SMD and DESC Drawing Test Programs
$06-04-0007$	Customer Notification of Major Changes
$06-04-0009$	Datasheet Change Control

4.11 CONTROL OF INSPECTION, MEASURING, AND TEST EQUIPMENT

A) LTC measuring and test equipment shall be controlled, calibrated, and maintained prior to release for use during production, installation, or servicing to demonstrate the conformance of product to the specified requirements. Subcontractors and vendors shall demonstrate conformance to the intent of MIL-STD-45662.
B) Aunique identification mustbe provided for all equipment and tools requiring calibration. This will be included on the calibration recall list which includes the department number, equipment type and due date.
C) The re-calibration frequency must be determined and recorded. The calibration of inspection, measuring and test equipment, including torque tools, shall be checked before use or if the equipment is dropped (or otherwise subjected to impact).
D) LTC uses outside calibration laboratories or services provided by the original equipment manufacturer.
Prior to any contractual agreement, all outside calibration labs used to calibrate any of LTC's test and measurement equipment must be audited by QA to MIL-STD-45662
and 08-07-1001 "Calibration Program" requirements. The outside calibration system and controls must comply with MIL-STD-45662 requirements.
Outside calibration labs shall be responsible for maintaining a complete and accurate list of instruments and equipment from LTC under the service agreement. The list shall identify the instruments to be serviced by means of coded symbols to identify the service performed and recall period.
The outside lab shall furnish data sheets or certification for each calibration performed.
E) Criteria are established for review of equipment to determine if calibration is required. If any of the following conditions is met, calibration will not be required.

1) Equipment performs a particular function, but it is required that other calibrated equipment be used with equipment at initial setup.
2) The performance of equipment is monitored through the use of calibrated equipment.
3) Equipment is used for indication only.
4) Equipment where calibration has no meaning or cannot be performed.
5) Equipment will be identified with a sticker stating, "calibration not required."
F) New equipment calibrated directly by original manufacturers shall be accepted if they meet the following requirements:
6) Calibrates equipment inaccordance with established written calibration procedures.
7) Records all out-of-spec conditions with before and after values.
8) Supplies original calibration data and paperwork which satisfy these requirements:
a) The appropriate inspection, measuring, and test equipment are selected to provide the required accuracy for all measurements to be made. The equipment to be used and measurements to be made shall be defined in the detailed procedures or travelers.
b) Calibration and adjustment are performed as required by the individual calibration procedure and/or manufacturer's specifications. Primary, secondary, and working standards are to be traceable to the National Institute of Standards and Technology (NIST) or to natural physical constants.
G) Where test hardware or test software is used, correlation units are tested to ensure equipment has been set up and running properly. Correlation units are run at the frequency defined in the applicable procedures. Correlation wafer/units are also used to verify the setups and test programs if the operators are experiencing a large number of rejects.
In general, test hardware, software, and techniques are considered proprietary to LTC. Such information is not released except by non-disclosure agreement and by authorization of the Chief Operating Officer. However, to resolve correlation difficulties with customers, LTC can provide serialized and data logged devices.
H) Procedures describing the verification of calibrated equipment are listed below:
9) The accuracy, precision, and capability of inspection and measurement equipment must be sufficient to provide meaningful results. Equipment is selected based on manufacturers' guaranteed operating specifications and tolerances. During initial inspection/test development, correlation studies are conducted to verify desired results.
10) For critical inspections or where an SPC control chart is to be used, a Measurement System Evaluation (MSE) or Gauge Repeatability and Reproducibility (Gauge $R \& R$) is conducted to ensure capability.
11) Every user is responsible forchecking the calibration status of a calibrated tool or piece of equipment before it is used and is responsible to see that it is not used if calibration is required before use. This is done by verifying the data on the calibration sticker and/or as defined in the applicable detailed procedure.
I) Records of recall notices shall also be maintained along with calibration certificates of conformance (C of C) in the applicable equipment history file.
A history file shall be kept by QA for each piece of calibrated equipment. The file shall consist of calibration data sheets, calibration certificate of conformance, and out-of-tolerance evaluation forms (if applicable).
The test maintenance group shall be responsible for maintaining the calibration data sheets on equipment under their calibration program, with a copy going to QA for the history file.
Records shall be kept a minimum period of 5 years (or longer, if required by customer contract).
J) In the event that a piece of equipment is found to be out of calibration, consideration is given to review all previous work completed with the equipment since the previous calibration.
Any out-of-calibration condition that is determined to adversely affect product quality or reliability will require rectification, customer notification and possible recall of product.
K) Calibration procedures shall have the specified temperature and humidity for specific environmental conditions listed in the various equipment calibration specifications. Areas where operations are sensitive to surrounding environment shall be specified, monitored, and controlled.
L) Upon receipt and before use, equipment is inspected for damage and verification that appropriate calibration stickers have been affixed to the equipment.
M) Production tooling used as inspection media shall be controlled and checked for accuracy at set intervals, according to calibration procedures.
N) As deemed necessary to verify acceptability, government and customer representatives shall be allowed access to personnel and use of calibrated equipment.
0) Any advanced metrology requirement (exceeding the known state-of-the-art technology) identified during contract review shall be addressed by Test Engineering and reported on the spec review form.

REFERENCES

Spec Number	Title
MIL-STD-45662	Calibration Systems Requirements
$08-07-1001$	Calibration Program Requirements
$04-05-x x x x$	Applicable Test Preventive Maintenance (PM) Calibration Procedures
$02-05-x x x x$	Applicable Fabrication P.M. Calibration Procedures
$08-07-1003$	Fab Maintenance P.M. Specification
$06-06-0001$	Statistical Process Control (SPC)
$06-08-0002$	Controlled Environment Surveillance
$08-07-x x x x$	Applicable Facilities P.M. Procedures

4.12 INSPECTION AND TEST STATUS

Inspection stamps serve to identify the inspector who has accepted or made an authorized disposition of material or product. Trained and certified inspectors shall be issued inspection stamps which are to be used to indicate completion of acceptance testing.
Inspection stamp design is unique to LTC.

Each inspection area shall segregate inventory according to inspection status and implement positive controls to segregate accepted materials from rejected material.
Manufacturing lot travelers shall accompany all material. The traveler shall show at least those manufacturing steps from the last quality gate function and/or all manufacturing operations which describe work operations being inspected. Lot travelers shall indicate completion of manufacturing operations by operator initials or number, date and quantity out.
The identification of inspection and test status shall be maintained (as defined in the procedures referenced herein); throughout production of the product to ensure that only product that has passed the required inspections and tests is shipped.
Each gate inspection shall include verification that specified manufacturing and inspection steps have been completed.
Only accepted material which passes QA Final Inspection is allowed in the Boxstock area. All containers are identified with a QA stamp on the label of the box. Only product which is fully qualified and on the Released Products List (RPL) can be shipped from Boxstock.

REFERENCES

Spec Number	Title
06-02-0001	Quality Assurance Inspection, Wafer Sort
$06-02-1000$	Quality Control Checkpoints
$06-06-0002$	QA Inspection Stamp Control
$06-02-0020$	Inspection Failure Report
$06-02-7003$	QA Boxstock Inspection
$06-02-7002$	QA Post-Pack Inspection
$06-02-0003$	QA 2nd Optical Inspection
$06-02-0007$	QA 3rd Optical Inspection
$06-02-0009$	Group-A Electrical Test
$06-02-0014$	Outgoing QA Electrical Test for 883, STANDARD
$09-01-0002$	Released Product Listing

4.13 CONTROL OF NONCONFORMING PRODUCT

4.13.1 General

Nonconforming material shall be identified and segregated to prevent unauthorized or accidental use. Where nonconformance is detected during a verification step, the
nonconformance shall be recorded and corrected before the product is moved to the next step in the process, with notification to the functions concerned.
All processes, work operations, quality records, service reports, and customer complaints are analyzed to detect and eliminate potential causes of nonconforming product.

4.13.2 Review and Disposition of Nonconforming Material

Where a nonconformance is detected in process, the product shall be scrapped, reworked, or returned to the preceding step for correction. MRB dispositions for raw materials are as specified in \#06-01-0006.
All rework shall be performed per approved procedures and results shall be recorded on the appropriate rework traveler. Reworked product shall be re-inspected/re-screened in accordance with documented procedures.
LTC does not perform repair on any shippable product.
The responsibility for review and the authority for disposition of nonconforming product and materials are described in the following procedures:

REFERENCES

Spec Number	Title
$06-02-0020$	Inspection Failure Report
$06-01-0006$	Incoming Inspection, General (\$9.8-9.16)
$06-01-x x x x$	Applicable Incoming Inspection Procedures
$06-02-x x x x$	Applicable Inspections and Monitoring Procedures
$06-03-x x x x$	Applicable Inspection and Test Operational Procedures
$06-09-0018$	SOP: Inventory Control
$06-09-0019$	Engineering Alert: Minimum Yield Requirements
$06-09-0022$	Nonconforming Material Control Procedure
$02-04-1102$	Stop/Start Procedure
$06-02-3000$	CMR

4.14 CORRECTIVE AND PREVENTIVE ACTION

4.14.1 General

Prevention procedures and corrective action procedures to ensure that the product conforms to established specification and quality standards are vital parts of LTC's continuous quality improvement program.
A) The intent is to identify the root cause of a nonconformance and for correction and prevention of recurrence. This applies to all manufacturing and support operations responsible for the manufacture of product, and shall apply to (but not be limited to): Design, Purchasing, Manufacturing, Testing, Final Packaging for Shipment, Customer Material Returns and Failure Analysis.
Emphasis shall be placed on identifying the root cause and the prevention of recurrence of the nonconformance. This may include containment, an interim corrective action, a final corrective action, and subsequent audits to ensure that the required corrective action measures are in place and are effective in preventing recurrence of nonconformances.
The response time goals are:

- Containment within 24 hours.
- Verification within 48 hours.
- Root cause and corrective action identification plan within 10 days.
B) Discrepancies found during incoming inspection of raw material lots are documented on a Discrepant Material Report (DMR) by the QA group. Once a rejection is determined by the MRB to be valid, the QA Group is required to generate a VendorCorrective Action Request (VCAR). Upon receipt of the completed VCAR from the supplier, Quality Engineering shall determine if the corrective action is sufficient to prevent a recurrence of the problem. If a supplier does not provide effective corrective action, the supplier may be disqualified.
Discrepancies found during in-process or outgoing inspection are documented on an Inspection Failure Report (IFR) by QA, or on a Stop/Start by Production if the in-process inspection is performed by the production group. The IFR or Stop/Start is reviewed by the appropriate Engineering group to determine lot disposition and appropriate corrective action. All IFRs are summarized in a monthly trend report by the QA department. The report is issued to the responsible Production and Engineering groups for review with emphasis placed on eliminating recurring problems.
Other activities which may identify the need for initiating corrective action are:
- calibration (out of tolerance)
- failures from a QA inspection step (IFR)
- results from reliability monitoring
- results from quality measurement analysis
- corrective action reports
- SPC chart OCAPs
- findings from process audits and quality system audits
- management reviews of the quality system and quality trends
- customer feedback
- vendor ratings and audits
- failure analysis
C) When quality problems or undesirable trends occur, the Quality Control Team (QCT) is responsible for initiating a meeting or series of meetings to establish a Process Action Team (PAT) to identify and define corrective action measures. These meetings are held until the problems are resolved or when quality levels are improved to an acceptable level.
D) The responsibility for taking appropriate preventive and corrective action is to be shared among Production, Quality Assurance, Reliability, and Engineering groups. Representation on the PATs should reflect this shared responsibility of preventive/corrective action. All of the above groups are responsible for ensuring that the corrective actions are effective.
E) Any changes in procedures which result from a corrective action are documented through the Engineering Change Notice (ECN) procedure and are recorded in the Document Control department.
F) All customer failure analysis reports are distributed to management, including the president and chief operating officer.

REFERENCES

Spec Number	Title
$06-02-0020$	Inspection Failure Report (IFR) Procedure
$06-01-0011$	Vendor Corrective Action
$02-04-1102$	Stop/Start Procedure
$06-02-3000$	Customer Material Return Processing Procedure
$06-05-7001$	Failure Analysis Program
$06-06-0001$	Statistical Process Control
$06-08-0014$	Quality Audit Procedure
$06-01-0006 / 06-09-0003$	Material Review Board (MRB) Procedures
$06-06-0003$	Team Problem-Solving
$06-09-0020$	Corrective and Preventive Action Program

4.14.2 Corrective Action

The procedures for corrective action shall include:
A) the effective handling of customer complaints and reports of product nonconformities;
B) investigation of the cause of nonconformities relating to product, process, and quality system, and recording the results of the investigation (see 4.16);
C) determination of the corrective action needed to eliminate the cause of nonconformities;
D) application of controls to ensure that corrective action is taken and that it is effective.

4.14.3 Preventive Action

The procedures for preventive action shall include:
A) the use of appropriate sources of information such as processes and work operations which affect product quality, audit results, quality records, service reports, and customer complaints to detect, analyze, and eliminate potential causes of nonconformities;
B) determination of the steps needed to deal with any problems requiring preventive action;
C) initiation of preventive action and application of controls to ensure that it is effective;
D) confirmation that relevant information on actions taken is submitted for management review (see 4.1.3).

4.15 HANDLING, STORAGE, PACKAGING, AND DELIVERY

4.15.1 General

Documented procedures define the system for the oreservation, segregation, and handling of all items and jovernment-owned property throughout the entire nanufacturing and inspection flow through storage and snipping. Precautions shall be taken to protect naterial from abuse, misuse, damage, deterioration, and inauthorized use.

4.15.2 Handling

All production parts, supplies, and components shall be handled in a manner that will prevent damage or deterioration. Handling requirements are further defined in the following:

REFERENCES

Spec Number	Title
$06-09-0015$	SOP to Prevent Product Mixing
$06-09-9001$	Electrostatic Discharge Control Requirements
$06-08-0005$	Environment Requirements for Processing and Storage
$06-09-0018$	SOP: Inventory Control
$04-04-6300$	Test Area SOP
$05-03-7903$	Mark and Pack SOP
$06-01-0006$	Incoming Inspection, General
$06-01-0007$	Incoming Inspection, Subcontracted Material
$06-09-0001$	Quality Assurance Policy

4.15.3 Storage

All materials processed shall be stored in a manner that will minimize the possibility of incurring damage or deterioration. During the scheduled quality system audit, samples of stock shall be checked for damage and deterioration of packaging. Access to the Stores, Boxstock, and Dispatch areas shall be limited to authorized personnel.

The condition of product in stock shall be assessed at appropriate intervals for the detection of deterioration.
Procedures for receipt, dispatch, and storage of material are referenced in the following specifications:

REFERENCES

Spec Number	Title
$06-07-0001$	Dispatch Procedure
$06-07-0002$	Boxstock Procedure
$06-08-0005$	Environment Requirements for Processing and Storage
$06-09-0004$	SOP: Stores
$06-09-0018$	SOP: Inventory Control
$06-09-9001$	Electrostatic Discharge Control Requirement
$09-07-0003$	Special Flows
$06-04-0011$	Reliability Monitor Program (Boxstock Audit)

4.15.4 Packaging

All materials shall be packaged in a manner that will minimize the possibility of incurring damage or deterioration during storage and handling. Procedures defining further requirements for packaging may be found by referencing procedures in the following specs:

REFERENCES

Spec Number	Title
$05-03-2000$	Wafer Pack
$05-03-2003$	Break and Plate
$05-03-4601$	Back/Side Mark
$05-03-4604$	Mark and Pack Incoming Procedure
$05-03-7899$	Pack Partial Finish Product Singapore
$05-03-7900$	Pack
$05-03-7901$	Die Pack
$05-03-7903$	Mark and Pack SOP
$06-01-0026$	Incoming Inspection Age Sensitive Material
$06-01-0010$	Incoming Inspection Anti-Static/Conductive
$06-02-7002$	Packaging Material
$06-07-0002$	Qoxstock Post-Pack Inspection
$06-08-0013$	Control of Age/Temperature Sensitive Materials
$06-09-9001$	Electrostatic Discharge Control Requirements
$09-01-0005$	Top Mark Layout Listing (TML)
$09-07-0003$	Special Flows

4.15.5 Preservation

(Does not apply)

4.15.6 Delivery

Unless specified in the contract, the Customer Service department is responsible for the selection of carriers and the arrangement of shipments. The final boxing and shipping of finished products is the responsibility of the shipping department to ensure protection of product quality after final inspection and during transit to its final destination.

Specific procedures defining the details of these processes are listed below:

REFERENCES

Spec Number	Title
$06-07-0002$	Boxstock Procedure
$06-02-7003$	QA Shipbench Inspection
$06-09-9001$	Electrostatic Discharge Control Requirements

4.16 CONTROL OF QUALITY RECORDS

Quality records shall be retained in such a manner as to be retrievable. These records document conformance to specifications and the effective operation of the quality system.
All records used to substantiate controls for military/ aerospace, high reliability, MIL-M-38510 and MIL-STD-883 product shall be retained for a minimum of five (5) years.
For commercial products not covered by customer purchase order record retention requirements, records of manufacturing, quality assurance, and support groups are retained for a period shown below.
All quality records shall be legible and traceable to the product involved. Quality records shall be stored and maintained so that they are readily retrievable in facilities that provide a suitable environment to minimize deterioration, damage, or loss.
Where contractually agreed upon, quality records shall be made available for evaluation by the customer or the customer's representative for an agreed period.
The following procedures contain additional requirements regarding record keeping:

REFERENCES

Spec Number	Title
$06-03-7050$	Record Keeping
$06-03-7051$	Electronic Archiving Operating Procedure

4.16.1 Quality Records Matrix

The following table (Quality Records Matrix) identifies the types of quality record, where the record is kept, the method of ;torage, the position or function responsible and the minimum retention period.

luality Records Matrix

luality Record	Location	Method	Responsible	Period
luality System Review Report	QA	File	QA	Min. 3 Years
Jesign Verification	Engineering	File	P.E./D. Engr.	Life of Product
Jontract Review	Cust. Spec. Review	File	QA	5 Years
nspection Records	QA/IQC	Elect. File	QA/IQC	Min. 5 Years
ailure Analysis Reports	QA/Rel.	Elect. File/Data Base	QA/Rel.	Min. 5 Years
nitial Documentation/Subsequent Changes	QA/Hi Rel.	Elect. File/Data Base	QA/Hi Rel.	Min. 5 Years

n Design Material or Processing,
2ualification Test and Change Records

jpecification (Documents, Applicable Forms)	Doc. Control	File/Data Base	Doc. Control	Life of Document
, alibration	QA/Test Maint.	File/Data Base	QA/Test Maint.	Life of Equipment
n-Process Monitor Inspection Logs ;ontrol Charts Stop/Start Sheets/ IFRs	QA/IQC	Elect. File	QA/IQC	Min. 5 Years
III JAN 38510, 883, Customer Rel, Wafer Fab Assembly, icreening Qualification, Quality Inspection Records including all printouts, read/record data)	Hi Rel/JAN Prog/QA	Elect. File	Hi Rel/Jan Prog/QA	Min. 5 Years
tII Commercial Fab Travellers, Wafer Sort Summaries, inal Electrical Screening, QA Inspection Records, and Mark and Pack Travellers	QA/Manufacturing	Manufacturing/ VAX File/QA Elect. File	Wafer Fab, Test, Mark \& Pack	Min. 3 Years
III Commercial Assembly, Qualification and	QA	Elect. File/File	QA	Min. 1 Year

luality Inspection Records, (including all printouts, ead/record data)

UII Procurement Documents	Purchasing	File/Data Base	Purchasing	Min. 5 Years
III QA Inspection Stamp Control Records	Doc. Control	File	Doc. Control	Min. 5 Years
Luality Audit Reports (QARs), Audit Logs (two years),	QA Audit	File	QA Audit	Min. 5 Years
'endor/Sub-Contractor Audits, Customer Audits, Quality				
leficiency Records (QDRs) generated by DESC				
Ir DCMC, Distributor Audit Reports	Personnel/	File	Personnel	Active File, 1 Yr.
Iperator Training/	Applicable Trainer	Elect. File	Applicable Trainer	Active File, 1 Yr.
'ertification	Applicable Area	File	Area Supervisor	Min. 3 Years
'ontrol Charts (SPC)	QA	File	QA	Life of Document
AIL-SPEC Library	SPC Dept.	File	QA	Min. 5 Years
IOE Results, Problem Analysis and				
'referred Vendor Records				

4.17 INTERNAL QUALITY AUDITS

Internal audits of the quality system shall be conducted according to a schedule established by the Corporate Quality Audit department. The schedule shall ensure that all areas operating under the quality system described in this quality manual are audited at least once per year.
The results of these audits shall be documented and communicated to the management of the area being audited. Management will ensure that corrective actions are taken to resolve audit findings. (See Section 4.16).
Quality system audit results shall be reviewed to determine the adequacy of, and compliance to, the documented quality system.
The corporate auditor will follow-up until corrective action is implemented. (See Section 4.16).
The results of internal quality audits shall be part of the input to management review activities. (See Section 4.1.3).
The audit process is detailed in the following procedures:

REFERENCES

Spec Number	Title
$06-08-0014$	Quality Audit
$06-08-0015$	MIL-M-38510 Quality Audit Checklist
$06-01-0020$	Distributor/Supplier/Sub-Contractor/ Vendor Survey/Audit Qualification/Disqualification Procedure
$09-01-0008$	Approved Subcontractor Listing
$09-01-0004$	Approved Vendor Listing
$06-03-7050$	Record Keeping
$06-03-7051$	Electronic Archiving Operating Procedure

4.18 TRAINING

Each department shall establish training requirements for all jobs that effect the quality of product shipped to customers. Individual departments shall maintain records to indicate that a person has satisfactorily completed the appropriate training for his/her assigned job.
It is the responsibility of each functional manager to insure that his/her personnel receive proper training. All employees are to be trained and motivated to provide excellence in workmanship throughout the manufacturing process and to provide the service to our customers which is the standard by which other companies are judged.

Personnel performing specific assigned tasks shall be qualified on the basis of appropriate education, training and/ or experience, as required.
Training records shall be maintained by each functional supervisor, and a copy is to be sent to Human Resources. Records shall indicate: Employee Name, Date of Hire, Badge Number, Department Number, Supervisor, Spec Trained to (Title of Spec and Number), number of training hours, Initials of Trainer, Operator's Initials, Date Certified. (See Section 4.16).
It shall be the responsibility of the quality systems audit department to monitor the training and certification records to ensure compliance with the documented requirements.

REFERENCES	
Spec Number	Title
$06-09-0002$	Operator Training and Certification Program
$05-06-0007$	EOL Operator Training and Certification Program
$06-09-0007$	LTC Safety Policy (Required By 06-09-0002)
$06-09-9001$	ESD Control Procedure
$06-08-0005$	Environmental Requirements for Processing and Storage
$08-07-0028$	Wafer Fab Smock Procedure
$06-03-7050$	Record Keeping Procedure
$x x-x x-x x x x$	Applicable Specifications / Training Specifications per Work Area

4.19 SERVICING (FAILURE ANALYSIS)

Failure analysis of devices returned from customers is the only service which is provided by LTC.
Failure analysis is the joint responsibility of the Reliability group, Product Engineering, and Design Engineering. Outside analytical labs are utilized in special areas which require capabilities beyond the scope of the in-house equipment.
Procedures for identification, handling, and analysis of reject or defective devices shall be documented. This information will be conveyed to the customer and government representative via a formal Failure Analysis Report in accordance with established industry standards including, but not limited to, MIL-M-38510, MIL-I-38535 Appendix A, and MIL-Q-9858.
A summary report of failure analysis activity findings shall be prepared and submitted to management on a quarterly basis, or more frequently, if necessary.

REFERENCES

Spec Number	Title
06-05-7001	Failure Analysis Program
MIL-I-38535	General Spec for Microcircuits
MIL-Q-9858	Quality Program Requirement

4.20 STATISTICAL TECHNIQUES

4.20.1 Identification of Need

A Statistical Process Control (SPC) program is in place to improve process capability, reduce process variations, provide continuous improvement, and provide robust designs along with the statistical sampling plans used as an integral part of inspection and testing.
The SPC program is applicable to all manufacturing processes, to operations which use statistical sampling for control or acceptance purposes, and to designs that are deemed critical.
Statistical techniques are employed by LTC to analyze process data and to identify the root causes of process variation so that the process can be modified to achieve:
A) Continuous reduction of variability around the desired target;
B) Consistency over time;
C) Conformance to requirements.

The SPC program comprises the following key elements:
A) AnSPC structure: Steering Committee (Corporate level), Quality Control Teams (area SPC facilitators/ management), and Process Action Teams (PATs).
B) Employee training: Basic SPC, Advanced SPC, Design of Experiments, and Team Organization.
C) Establishment and documentation of Critical Nodes in manufacturing/related processes via flow charts and Control Plan Detail tables.
D) LTC's Self-Audit program of the SPC program.
E) Application of SPC to manufacturing, inspection, calibration, maintenance, preventive maintenance, environmental control, document control, purchasing materials, service data, and other areas as the need arises.
F) Formation of SPC Process Action Teams (PATs) composed of representation from manufacturing, engineering, maintenance, (and as applicable, quality engineering) with the objective of applying SPC to solve problems, improve process capabilities and reduce process variation.
G) Reports shall be established to measure progress made in terms of improved process capabilities (Cp \& Cpk indexes) and quality improvements.
H) Statistical Sampling procedures are employed for those operations not requiring 100% inspection or which are destructive in nature.
I) Goal setting for continuous quality improvement.

Specific statistical methods and applications available include, but are not limited to, the following:
A) Design of Experiments/factorial analysis
B) Analysis of variance/factorial analysis
C) Safety evaluation/risk analysis
D) Tests of significance
E) Quality control charts/Cum-Sum techniques
F) Statistical sampling inspection

4.20.2 Procedures

Documented procedures shall be implemented and maintained for controlling the application of the identified statistical techniques.

REFERENCES

Spec Number	Title
MIL-STD-105	Sampling Procedures and Tables for Inspection by Attributes
06-06-0001	Statistical Process Control (SPC) Procedure
$06-06-0003$	Team Problem Solving

4.21 QUALITY COST

Quality cost data, the cost of scrap, rework, and prevention of defective material are of primary concern at LTC.
Quality cost data shall be collected, analyzed, and used to improve effectiveness, efficiency, and control waste. This data is in the form of yield reports and scrap reports, which are compared to their respective specified goals.
The overall operating expenses of the Quality Assurance Department are forecast and budgeted on an annual basis. The cost of department operation is broken down into specific categories. Each category is reviewed on a monthly basis to assess actual cost versus planned cost.
Allyield, scrap, and costdata are considered LTC Confidential, and may only be reviewed with customers upon the express, written permission of LTC's Chief Operating Officer.

APPENDIX A-RELIABILITY ASSURANCE

- The Reliability Assurance group shall be made up of professional individuals with training and experience in environmental stress testing, failure analysis techniques, reliability calculations, and reliability predictions of integrated circuits.
- The activities of the Reliability Assurance group shall focus on measurements of product reliability, as well as the identification and timely elimination of design and processing deficiencies which limit or otherwise compromise product reliability.
- Reliability Assurance shall exercise full authority over the qualification of all products, processes, materials, and manufacturing locations.
- The Reliability Assurance group shall prepare and implement written program plans and detailed procedures covering, as a minimum, these areas:
Wafer Fabrication Reliability Monitor Program
Quick Reaction Reliability Audit Program
Long-Term Reliability Audit Program
New Product/Process/Material Qualification Program Major Change Qualification
Assembly Subcontractor Qualification
Failure Analysis and Corrective Action Program
- Achieving extremely low failure rates during product life in the field demands that the integrated circuit manufacturer audit reliability performance of outgoing products.
- Product reliability audits are the responsibility of the Reliability group, with immediate responsibility for program implementation, performance, and reporting assigned to the Manager of Quality and Reliability Assurance.
- A summary data file shall be maintained on all product families. This summary shall include, as a minimum, the device type tested, the package type, the assembly location, the manufacturing date code, the actual test condition used, the sample size, the duration of the test, and the number of failures observed.
- Management shall be apprised immediately of any audit results which indicate that failure rate goals are not being met or that significant degradation in performance is evident.

PRODUCT QUALIFICATION PROGRAM

- New products will not be released without acceptable reliability data as defined by Reliability and Quality Assurance and the responsible engineering groups.
- Before any major design or process change is considered qualified, sufficient test data shall be collected to demonstrate that the processes used conform to applicable government, industry, customer, and internal specifications. The finished devices must be capable of passing all tests as required by applicable government, industry, customer and LTC specifications.
- A major change is defined as a significant departure from the existing approved process/design, as agreed by Reliability Assurance and Manufacturing, or Design and documented in LTC's 06-04-0001 and 06-04-0006 Qualification Specifications.
- Similarity in materials and design to previously qualified products shall be considered sufficient for purposes of new product or process change qualification. Similarity data may be supplemented with test data on the product in question in those areas where similarity does not justify blanket qualification of the product or change approval.
- Life test data on one device within a product family can be used to generically qualify other devices within the same product family, providing the devices are encapsulated in packages made from the same materials and sealed using the same sealing process. For purposes of qualification, a product family includes all microcircuit chips of equivalent complexity or function made in the same wafer fab area using the same process.
- Qualification requirements shall be established and documented for all products and processes. Documentation shall include the tests, test conditions, and pass/fail criteria which must be met before the product or process is considered fully qualified.
- Qualification tests shall include environmental tests and mechanical tests as specified in the LTC 06-04-0001 spec, but shall not necessarily be limited to these tests where device service conditions are known to be more severe than the test conditions in the standard qualification.
- Qualification requirements on MIL-STD-883, SMD (standard military device), and MIL-M-38510 devices shall be per Method 5005 of MIL-STD-883, as a minimum.
- Major changes on MIL-M-38510 devices shall be as defined in MIL-M-38510 and qualification requirements as specified in MIL-M-38510.
- Qualification test reports shall be retained for a minimum period of five years.

REFERENCES

Spec Number	Title
$06-04-0001$	Quality Assurance/Reliability Assurance Qualification Requirements
$06-04-0006$	Qualification of Changes on 38510 Products
$06-04-0011$	Reliability Monitor Program
$06-04-0012$	QR2 (Quick Reaction Reliability) Program

IPPENDIX B—MAJOR CHANGE NOTIFICATION

- The major change definitions and requirements per MIL-M-38510 for military products, LTC's major change requirements for commercial products, and specific customer change requirements shall be fully documented by the Quality Assurance group.
- The responsible Engineering group and/or Quality Assurance group is responsible for initiating a major change via an ECN processed through the Document Control group. Appropriate qualification and test data justifying the major change shall support the ECN.
- The Quality Assurance and Reliability manager is responsible for maintaining a database of customers who require major change notification.
- The Quality Assurance and Reliability manager is responsible for ensuring that a major change is not implemented until customers who have major change notification requirements are notified and have approved the major change.
- The Quality Assurance and Reliability manager is responsible for sending the customer appropriate qualification and test data justifying the major change and for maintaining a record of all customer major change notifications.

REFERENCES

Spec Number	Title
06-04-0007	Customer Notification of Major Changes
$06-04-0006$	Qualification of Changes on 38510 Products

APPENDIX C-ENVIRONMENTAL CONTROL

- The Facilities and Maintenance departments are responsible for control of following items to support the manufacture of integrated circuits:

Temperature and humidity control
Controlled filtered air hoods
Airborne particle control
De-ionized (DI) water
Gases
Clean dry air

- It shall be the responsibility of the Facilities Engineering and Maintenance departments to establish and maintain the necessary equipment and controls to provide the services listed above.
- It shall be the responsibility of the Facilities Engineering and Maintenance departments to define and document the requirements for such facilities based on the requirements of the various product groups.
- It shall be the responsibility of the Quality Assurance and Systems Quality Audit departments to monitor the quality of these services listed above.
- The Quality and Reliability Assurance department shall perform a periodic surveillance of the environmental controls.
- Surveillance inspection records shall be maintained by Quality Assurance and shall include as a minimum a monthly report of hood/area temperature, humidity and particle count, and DI water bacteria count and resistivity.
- Surveillance inspection records shall be maintained for a minimum of five years, per MIL-M-38510.

REFERENCES

Spec Number	Title
$06-08-0002$	Controlled Environment Surveillance
$06-08-0004$	Deionized Water Monitor
$06-01-0016$	Incoming Inspection: Gases
$01-07-0001$	MPS: Gases
$06-01-0005$	Incoming Inspection: Chemicals
$01-65-0001$	MPS: Chemicals

ISO 9001 QUALITY MANUAL

IPPENDIX D—MILITARY STANDARD CROSS REFERENCE MATRIX

j-09-0005 3ction Number	Quality System Element	$\begin{gathered} \text { ISO } 9001 \\ 1994 \end{gathered}$	MIL-Q-9858	MIL-I-45208	MIL-I-38535 Appendix C	MIL-STD-45662
eface	Quality Policy	4.1.1	N/A	N/A	N/A	N/A
1.2	Organizational Chart	4.1.2	3.1	N/A	30.1.3.1	N/A
1	Management Responsibility	4.1.2.1-4.1.3	1.3	3.1	30.1	4.1
2	Quality System	4.2	1.3	3.1	30.1, 30.1.3	4.1, 5.1
3	Contract Review	4.3	3.2	N/A	30.1.1.1	N/A
4	Design Control	4.4	1.3	N/A	30.1.1.6	N/A
5	Document and Data Control	4.5	3.3, 4.1	3.2.1, 3.2.4	30.1.1.8, 30.1.2.4	5.5, 5.8
6	Purchasing	4.6	5.1, 5.2, 7.1	3.11.2, 3.11.3	30.1.1.1	5.11
7	Control of Customer Supplied Product	4.7	7.2	3.6	N/A	N/A
8	Product Identification and Traceability	4.8	6.1	3.5	30.1.1.12, 30.1.2	5.2, 5.10
9	Process Control	4.9	6.2	3.4	30.1.1.4, 30.1.2.6	N/A
10	Inspection and Testing	4.10	6.1-6.3, 7.1	3.1, 3.10-3.12	$\begin{aligned} & 30.1 .1 .3,30.1 .1 .5 \\ & 30.1 .1 .6,30.1 .1 .12 \end{aligned}$	N/A
11	Control of Inspection, Measuring, and Test Equipment	4.11	4.2-4.5	3.3	30.1.1.9, 30.1.2.5	5.2, 5.4
12	Inspection and Test Status	4.12	6.7	3.5	30.1.2.2	5.10
13	Control of Nonconforming Product	4.13	6.5	3.7	30.1.1.10	5.6
14	Corrective and Preventive Action	4.14	3.5	3.2.3	30.1.1.11	5.6, 5.7
15	Handling, Storage, Packaging, and Delivery	y 4.15	6.4	N/A	30.1.1.14	5.12
16	Control of Quality Records	4.16	3.4	3.2.2	30.1.2, 30.1.2.2	5.9
17	Internal Quality Audits	4.17	N/A	N/A	40.3.1	5.7
18	Training	4.18	N/A	N/A	30.1.1.2, 30.1.2.1	N/A
19	Servicing (Failure Analysis)	4.19	3.5	N/A	30.1.1.10, 30.1.2.3	N/A
$\underline{2}$	Statistical Techniques	4.20	6.6	3.9	30.1.1.3	N/A
$\underline{21}$	Quality Cost	N/A	3.6	N/A	N/A	N/A
pendix A	Reliability Assurance	N/A	N/A	N/A	N/A	5.4
pendix B	Major Change Notification	N/A	N/A	3.1	30.1.2.4	5.6
pendix C	Environmental Control	N/A	6.2	N/A	30.1.1.7	5.3

INTRODUCTION

In 1981 Linear Technology Corporation was founded with the intention of becoming a world leader in high performance analog semiconductors. To achieve this goal Linear Technology Corporation committed itself to consistently meet its customers' needs in four areas:
\square Functional Value
\square Quality
\square Reliability
\square Service

Linear Technology Corporation has achieved its primar goal and is now focused to achieve 100\% custome satisfaction.

This brochure defines the key elements of LinearTechnolog Corporation's Reliability Assurance Program which is divide into three groups:
\square Reliability Planning
\square Manufacturing for Reliability
\square Reliability Assessment and Improvement

IELIABILITY PLANNING

eliability planning takes three forms at Linear Technology orporation (LTC). The first is the establishment of the liability requirements for a product to be released to anufacturing. The second is the definition and iplementation of a predictive reliability system. The third is zsigning for reliability, which includes new product zvelopment, materials selection, and construction chniques.
'e fully realize that the cost of failure in the field is many ders of magnitude more than the initial component cost. lerefore, the goal of the reliability planning process is to ovide reliable product to reduce the cost of ownership to ir customers.

eliability Criteria

key element of reliability planning is LTC's internal Jecification entitled "Quality Assurance/Reliability ssurance Qualification Requirement."It contains a complete iscription of the interrelationships of the various groups volved in meeting LTC's reliability objectives and defines e guidelines for release decisions which affect quality and liability of the device.

redictive Reliability System

-C has developed a predictive reliability system which imbines quality and reliability information in a database to ovide reliability summaries and trend analysis. A block agram of the system is shown on this page.

esigning for Reliability

mnsiderable planning goes into the design of LTC's products. lis planning includes device layout considerations, selection input and output protection schemes, selection of fab ocessing technology, and specification of materials and anufacturing techniques.
stringent set of bipolar and CMOS design rules have been ;tablished to enhance reliability and optimize anufacturability through robust design. At the design age the reliability of the circuit is heavily dependent I layout considerations. The rules for thickness and width metallization have been defined to minimize the current nsity and prevent electromigration. Current density Iculations are required to be performed on all products to sure that the designs are conservative. The routing of the etal pattern is designed to eliminate potential inversion or akage failures and guard ring structures are used where propriate. The positions of bonding pads are carefully
selected to optimize device performance and also to fit easily into a variety of packages without creating potential bond loop problems that could result in shorted wires.

The Predictive Reliability System

The thermal layout of our circuits also receives considerable attention to minimize parametric drift and optimize performance. In the case of voltage regulators, for any given power dissipation, there will be some temperature difference between the power transistor and the control circuitry due to their separation on the die. This temperature difference is a desirable situation which is used to reduce the power transistor's temperature effect on the control circuitry. Additionally, the power transistor has a higher maximum

RELABILITY ASSURANCE PROGRAM

junction temperature rating than that of the control circuitry and may be allowed to run warmer without degradation. Such LTC products are also designed for maximum efficiency to reduce power dissipation and thereby improve reliability and reduce the cost of heat sinking in the customer's product.

All of our voltage regulators include thermal limiting in the circuitry to shut down the device if the temperature exceeds the safe operating conditions. Additional insurance is provided by employing short-circuit current protection to safeguard against catastrophic failure. The philosophy of incorporating fault-tolerant designs with innovative circuit protection concepts is a fundamental design rule at LTC.

Another major design consideration in circuit reliability is tolerance to electrostatic discharge (ESD) and electrical overstress (EOS). ESD is a problem encountered both in normal handling and circuit assembly. It also affects the reliability of the final product when cables are exposed to ESD such as in line drivers and receivers.

The implementation of ESD protection structures in linear integrated circuits is much more difficult than in digital circuits. The linearcircuit must provide protection for electrical overstress while maintaining the ability to measure current levels in the picoamp range. Interface circuits have input and output connections that normally operate at voltages in excess of the power supply, thereby precluding the use of clamp structures to the power supply for ESD protection. LTC, using a combination of circuit design and proprietary structures, provides high levels of overstress immunity to its devices which enhances their reliability. As a goal, all devices are designed for a minimum of $2,000 \mathrm{~V}$ ESD protection with some devices achieving $5,000 \mathrm{~V}$ to $10,000 \mathrm{~V}$ ESD protection.

Linear circuits with total supply currents in the microam range cannot tolerate leakages induced by contaminatior Whether the circuit is bipolar, CMOS or complementar bipolar, the circuit must withstand high operating voltag and hightemperature for thousands of hours without leakag currents degrading device performance. LTC uses advance process techniques to shield the die from sodiur contamination while preventing electron accumulatio causing surface inversions. This, combined with continuou monitoring of the assembly process, ensures high reliabilit devices.

LTC utilizes state-of-the-art processes in manufacturing it products. Our high voltage bipolar process provides hig gain, low noise general purpose devices as well as hig power integrated circuits. CMOS can provide high complexit ICs with a large digital content. Complementary bipolar, new process developed in-house by LTC, provides hig speed NPNs and PNPs on the same monolithic dit Complementary bipolar enables an expanded product rang forlinearcircuits and is suitable for very high speed amplifiers general purpose linear signal processing or even high spee D/A converters. All of these products are characterized b high reliability, low power consumption and the ability t operate from a wide range of power supplies and over a wid range of ambient temperatures.

LTC's Process Structures

1

3

5

1. N -Well CMOS/BiCMOS
2. Poly J-FET
3. High Speed Bipolar
4. Complementary Bipolar
5. Super Beta Structure
6. BiFET Structure
7. Silicon Gate CMOS Structure

In order to ensure that device performance and reliability goals are achieved on new products, design review meetings are held regularly during the design and development phase.

Material Selection

LTC has selected assembly processes and materials that are closely matched to achieve the highest reliability level in both ultra-precision and high power devices. Compatibility between the different package elements, such as the molding compound and lead frame, are carefully researched and qualified. The choice of materials and assembly processes is especially critical in surface mount devices, which must maintain reliability after being subjected to harsh board soldering environments. At LTC we are using the latest state-of-the-art assembly equipment and materials to guarantee reliability. Our low stress epoxy molding compound is extremely low in ionic impurities.
Similar improvements have been made in hermetic packages in the modern low temperature glass ceramic seals and improved die attach materials.

To protect the die from degradation before assembly, and from the long term effects of the package environment, LTC has developed a proprietary dual layer passivation. This dual layer passivation system is free from cracks and pinhole defects and offers an outstanding moisture barrier without detrimental side effects to device performance.

Design of Experiments

LTC is committed to the use of design of experiments (DOE) when developing new products and processes. We firmly believe that design of experiments will be the new industry standard for product and process development.

DOE has been successfully utilized on numerous products and processes at LTC. DOE, coupled with response surface methodology, has provided LTC the ability to solve complex problems that were previously unsolvable. We have used DOE to characterize wafer fab processes and provided this information to our IC designers which enabled them to produce devices that were less sensitive to manufacturing variations.

Response Surface Model of PIND Yield after Welding Operation

RELIABILITY ASSURANCE PROGRAM

MANUFACTURING FOR RELIABILITY

LTC is keenly aware of the influence which the manufacturing process has on the quality and reliability of the finished product. For this reason, LTC has placed critical emphasis on the manufacturing facility and associated process controls. LTC's claims of outstanding manufacturing capability and controls are validated by the fact that we achieved Class S Certification by DESC in November of 1987.

LTC's strategy in manufacturing for reliability includes the use of automated state-of-the-art equipment, protection of the product as it moves through manufacturing, effective inspection and screening, device traceability and statistical process control. These and other similar tight controls are applied from wafer fabrication through product shipment.

Wafer Fab

In wafer fabrication, the key to a reliable process is process control. Two major thrusts of process control in the wafer fab are the application of statistical process control (SPC) and the use of automated processing equipment. Automated equipment employing cassette-to-cassette wafer transfer, proximity mode aligners and projection steppers has significantly reduced handling related defects.

Microprocessor-controlled furnaces are used to eliminate the effects of process variations and human errors. Thin film processing employs fully automated sputtering and metal etch systems.

All of these equipment enhancements work together to yield a process that is consistent and repeatable with a minimum of wafer handling. Quality control monitors and inspections at various points in the process, coupled with the use of control charting throughout the fab area, ensure consistent processing. The quality of the oxide is checked regularly using CV plots to check for contamination and surface state anomalies. Scanning electron microscope inspection is performed periodically each day to ensure the integrity of the metallization system.

Assembly

The introduction of new equipment and techniques in the assembly process has had a tremendous impact on device reliability. The use of automated equipment has reduced the handling and subsequent damage of die and wafers. In situations where die or wafers must be handled, vacuum wands and vacuum pens have replaced tweezers and thereby decreased damage due to scratches. Automated wire bonding machines have produced more consistent wire bonding quality and improved productivity.

All products receive a thorough visual inspection per Mil-Std-883 Method 2010 Condition B or an equivalent visual criteria prior to encapsulation.

RELIABILITY ASSURANCE PROGRAM

High Speed Automatic Bonder

rraceability

_TC has an outstanding traceability control system. A backside nark or a side mark is used to code information including he country of assembly, assembly facility, exact assembly ot seal date, wafer fab lot, die type and revision. Additionally, his backside mark will identify any nonstandard processing which may have been required using a custom flow. At the vafer level, each wafer is laser-scribed to include the fab un number and wafer serial number. This traceability benefit s offered as a standard feature on all packages where space lllows and is part of the "added value" of LTC products.

Traceability Control Using Backside Mark or Side Mark Coding

\% enhance traceability LTC is using the latest state-of-thert document archival system. This computerized system ncorporates a document scanner which digitizes and ompresses documents to be stored on optical disks. As the
documents are stored, their ID number, date and classification are recorded in the system's database to facilitate retrieval. This system allows fab travelers, test travelers and other critical documents to be retrieved in minutes as opposed to hours or days.

Optical Disk Archive System

Reliability Screening

Although our standard product families are recognized for their very low infant mortality, customer-requested additional reliability screening can be provided by LTC. This added reliability screening for commercial or industrial level products is offered for both hermetic and plastic devices and is designated as our " R " flow process signified by a /R symbol as a suffix to the part number.

The "R" flow includes temperature cycle, burn-in and QA testing at $0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $70^{\circ} \mathrm{C}$. A simplified flow chart of the " R " flow is shown in Table 1 at the end of the Reliability Assurance Program section. The hermetic devices are also offered as JAN Class S or Class B, Standardized Military Drawings (SMDs) and also as MIL-STD-883 devices.

LTC offers a cost-effective reliability screen for hermetic product using the MIL-STD-883 screening and quality conformance inspection. This flow is defined in our "MIL-STD-883" brochure and depicted in a brief flow diagram shown in Table 2.

The MIL-STD-883 burn-in at $125^{\circ} \mathrm{C}$ for 160 hours is roughly equivalent to 80,000 hours or approximately 9 years of continuous operation at a normal operating temperature of around $55^{\circ} \mathrm{C}$ (assuming an activation energy of 1.0 electron volts).

RELIABILITY ASSURANCE PROGRAM

Whether testing plastic or hermetic devices, the engineers at LTC routinely add tests in addition to the standard data sheet tests. These added tests are used to detect potential flaws that could impact reliability and provide additional device compatibility with subtle application-related performance characteristics. Examples of such additional tests are the exercising of thermal shutdown mode of regulators prior to burn-in or the stressing of on-chip capacitors with voltages in excess of the device maximum rating to induce failure in substandard lots.

Data sheet electrical parameters are measured before and after the specified stress testing to ensure the electrical integrity of the devices.

Statistical Process Control

At LTC we believe that quality and reliability should be built into a product as opposed to simply screening out bad devices. Statistical process control (SPC) is ideally suited to our manufacturing goals. SPC has enabled us to run processes with uniform and centered distributions which have not only optimized yields, but have also produced a finished product that is rugged and reliable.

Example of Control Chart for SOIC Coplanarity

Control charting at all critical processes is used to identify the need for corrective action before an out-of-control situation occurs, thus reducing the overall process variation. LTC has an active SPC program. The generic process from
wafer fabrication through shipping has been flow-charted with critical nodes defined. The Control Plan Detail outlines the various attributes of the activities surrounding that particular activity. Organization for SPC is comprised of the:

- Steering Committee
- SPC Quality Control Teams (QCTs)
- Process/Preventive Action Teams (PATs)

The Steering Committee provides the leadership for the SPC process, while the QCTs are responsible for the implementation and maintenance of SPC within their respective operational groups. PATs are formed by the QCTs to implement certain initial or corrective measures with specific stated goals using SPC tools. There are four QCTs in place:

- Wafer Fab

- Quality and Reliability
- Local Assembly
- End-of-Line (which includes Test, Mark, Pack, Product and Test Engineering)

Since, by definition, a PAT functions until its stated goal is attained, their number and tasks are constantly changing. We have had as many as 23 active PATs which include operators and maintenance personnel.

Training is provided in-house for a majority of LTC's employees, who receive test materials and 135 to 279 hours of instruction in one or more of the following courses:

- Basic SPC
- Advanced SPC
- Design of Experiments
- Team Organization

An important aspect of the SPC program at LTC involves the use of Design of Experiments to solve specific problems, develop new products/processes, and characterize new products and/or processes.
LTC is driving SPC beyond our own factory. A Preferred Supplier Program has been implemented with our raw materials suppliers, wherein parameters deemed critical to the manufacturing process at LTC are controlled statistically by the raw material supplier. Evidence of this control is supplied to LTC on a regular basis. This system of customersupplier cooperation ensures the integrity of the materials and maintains a mutual focus on improvement.

RELIABILITY ASSESSMENT AND IMPROVEMENT

LTC combines a traditional approach to reliability which incorporates product qualification and long term reliability assessment with a "leading edge" approach, which incorporates wafer level reliability testing and in-line assembly reliability monitoring.

Qualification Testing

Before a new product can be released to production, strict qualification testing requirements must be met. These same qualification requirements apply to new processes, new materials, new designs and major changes in any of these areas. The guidelines for qualification of process or product changes are detailed in MIL-M-38510. At LTC we adhere to those guidelines and in many cases impose additional testing per our own requirements. Examples of some of the qualification tests which are used by LTC are shown in Table 3 at the end of the Reliability Assurance Program.

As part of new product qualification, LTC performs ESD sensitivity classification testing of devices to Method 3015 of MIL-STD-883. This ESD sensitivity testing uses both the human body model and the machine model. During this rigorous testing, every pin combination on at least three devices is subjected to three positive pulses followed by three negative pulses at the specified voltage increment with a one-second cool down period between pulses. Following this ESD testing, the device is tested for opens or shorts on a curve tracer and then must pass the full data sheet limits on the automatic test equipment.
Additionally for CMOS circuits, latch-up testing is performed on every pin to determine the device's ability to source or sink current without destructive latch-up. We require new LTC products to handle increasingly high currents without latch-up and subsequently meet all data sheet parameters.

Reliable radiation-hardened devices are produced by LTC using a proprietary process technology designed to meet or exceed 100k RADS total dose. Qualification testing of these devices using a Cobalt 60 source has demonstrated excellent results on a number of products. Data sheets for our RADhard product line are available from your local sales representative.

Wafer Level Reliability Assessment

As an additional reliability control, LTC has innovated a strategy for auditing the wafer fab process. Diagnostic structures, in addition to the device structures, are specifically designed as either bipolar or CMOS reliability test patterns and are stepped into all wafers. These structures are tested during fabrication using a parametric analyzer. Then these test vehicles are used to investigate and detect potential yield and reliability hazards after assembly.

The bipolar process version of this structure is optimized to accelerate, under temperature and bias, the two most common failure mechanisms in linear circuits; mobile positive ions and surface charge-induced inversions. This threeterminal structure is scribed from a wafer and assembled in either a hermetic or plastic package. These devices are burned in for a predetermined temperature and time. The same structures becomes sensitive to either failure mechanism depending upon the bias scheme used during burn-in. A limit is defined for the leakage current change during burn-in; a failure indicates a wafer fab problem which will be addressed by the process engineering group.

The CMOS process version allows measurements of thresholds of various sizes and kinds of N -channel and P-channel MOSFETs. Body effects, L effective, sheet resistance, zenerbreakdown voltage, contact metal resistance and impact ionization current are measurable with this chip which is assembled in a 20 -lead DIP.

Bipolar Test Pattern

RELIABILITY ASSURANCE PROGRAM

Electrical testing is performed on the structure before and after burn-in. After evaluating any sample population shifts or failures, process engineering is apprised of the results of this process monitor.

The use of test patterns allows any device to be monitored and also gives faster unambiguous feedback than is normally achieved by performing reliability testing on assembled product. Reliability data is generated in less than one week, giving immediate feedback to the production line.

LTC utilizes this new reliability control technique in addition to the conventional reliability audit on randomly pulled finished product. Operating Life tests are performed and the distributions of key parameters before and after testing are evaluated for stability and control.

Quick Reaction Reliability Monitor

As a complement to the wafer level reliability program, a monitor program focused on assembly-related issues has been fully implemented: This reliability monitor program, known as the Quick Reaction Reliability ($Q R^{2}$) monitor, has been specifically tailored to provide quick feedback of reliability assessment of the assembly operation. The tests in the $Q R^{2}$ program are designed to identify reliability weaknesses associated with wire bonding, die attach, package encapsulation and contamination-related failures. The actual tests performed in the QR^{2} Monitor Program are shown in Table 4.

In order to ensure that representative reliability assessment is made, the $Q R^{2}$ sampling matrix requires $Q R^{2}$ testing of every date code from each assembly location on each package type and lead count from that assembly location. This provides a weekly snapshot of the reliability of all packages from all assembly locations. The basic strategy is to evaluate as many production lots as possible to provide maximum confidence to our customers.

Should a failure occur during $Q R^{2}$ testing, the entire production lot is impounded before shipment. Failures are analyzed to determine validity and the root cause of any valid failure. Quite often additional samples are pulled and tested for an extended period of time. Lots with substandard reliability performance are scrapped. The data generated from this program is used to establish a program for continuous quality improvement with our assembly facilities.

Long Term Reliability Monitor

LTC also conducts a traditional long term reliability monitor program on devices pulled from Boxstock. This long-term reliability monitor is used for extended life and end-of-life approximations such as Failure in Time (FIT) calculations. The Iong term reliability monitor also serves as a check against our short-term reliability estimates.

The long-term reliability tests are designed to evaluate design, waferfaband assembly-related weaknesses. Industry standard reliability tests and the relatively new Highly Accelerated Stress Test (HAST) have been incorporated into this program. The long term reliability monitor tests are shown in Table 5.

The most severe tests for plastic package devices are the temperature and humidity tests, particularly HAST testing. We have included HAST testing in the long-term reliability monitor program due to the highly accelerated nature of this test. This testaccelerates the penetration of moisture through the external protective encapsulant or along the interface between the encapsulant and the metallic lead frame. Additionally, the HAST test is conducted with the device under bias. The HAST test places the plastic devices in a humid environment of 85% relative humidity under 45 psi of pressure at $130^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{C}$. Under these conditions, 24 hours of HAST testing at $140^{\circ} \mathrm{C}$ is roughly equivalent to 1,000 hours of $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ testing. The employment of HAST testing has dramatically reduced the length of time required for qualification.

Qual Samples Being Loaded into the HAST System

RELIABILITY ASSURANCE PROGRAM

Acceleration Factor Using HAST Compared to 85/85

Group C and D Testing

Since LTC is a certified producer of JAN 38510 and 883 product, we perform Group C and D testing regularly on our devices. This data is also incorporated into the reliability datapack (consult LTC). The Group C and D test lists are shown in Tables 6 and 7.

Failure Analysis and Corrective Action

LTC is extremely concerned with all failures whether they occur in-house or at a customer location. We have focused significant resources in the area of failure verification and analysis.
LTC offers failure analysis services to its customers, free of charge. In an emergency situation a preliminary failure analysis report can be issued within 24 hours. Our failure analysis database revealed that the vast majority of all devices returned for failure analysis are invalid due to improper application, gross misuse, or they are fully functional and meet all data sheet parameters. LTC also offers outstanding applications assistance to help the customer achieve the full value of our products.

Scanning Electron Microscope with X-RAY Dispersive Analysis

We are equally concerned with failures that are identified during reliability and qualification testing. As with field failures, the in-house failures are analyzed in detail to pinpoint the exact failure mechanism and to identify the root cause. In many cases where ESD or EOS is the suspected cause of the failure, fault simulation is carried out by over-stressing good devices to recreate the fault condition.

LTC has invested in failure analysis resources in the form of experienced, seasoned engineers, and equipment such as a full metallurgical lab, IC deprocessing equipment and a scanning electron microscope with voltage contrasts, Electron Beam-Induced Current (EBIC), Energy Dispersive X-ray Analysis (EDAX), and a computerized database.

All failure analysis reports are documented in detail and distributed appropriately. All valid failure analyses require prompt and effective corrective action which is driven to completion by the quality and reliability organization.

Corrective actions are implemented in accordance with LTC's internal document "Corrective Action Procedure" which details the method and responsibilities for timely corrective action. This procedure is summarized in a separate brochure which is available to our customers upon request.

Typical Failure Analysis Flow

8. Decapsulation or delidding.
9. Internal visual microscopic inspection from 5X to 400X.
10. Read and record all parameters at all temperatures noting failing and shifting parameters.

Failure Rate Calculations

Failure rates at LTC are calculated using MIL-STD-690B which is based upon the exponential distribution model for predicting microelectronic device reliability. Examples of FIT and Mean Time Between Failure (MTBF) are shown in the sample calculation below.
Sample Calculation:
Step 1. Calculate Failure Rate at Test Condition $\left(150^{\circ} \mathrm{C}\right)$.

Assume 77 units of $0 p$-Life for 1000 hours with Ø failures:
Device Hours at Test Condition $=77$ Units $\times 1000$ Hours equals 77,000 Device Hours at $150^{\circ} \mathrm{C}$

$$
\begin{aligned}
\text { Fail Rate } & =\frac{\text { Value from Table A }-1(\text { MIL }- \text { STD }-690 \mathrm{~B})}{\text { Device Hours }} \\
& =\frac{91,641}{77,000}=1.19 \% 1 \mathrm{kHours}(11,900 \text { FITs })
\end{aligned}
$$

The Arrhenius model is used to extrapolate a failure rate from an accelerated test condition to a use temperature condition.

Step 2. Calculate Acceleration Factor and Extrapolate Equivalent Failure Rate to $55^{\circ} \mathrm{C}$.

Af $=$ Acceleration Factor
$A f=e^{\frac{E_{2}}{K}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}$
$A f=e^{\frac{E_{a}}{K}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}$
$A f=e^{\left(\frac{1.0}{0.0000863}\right)\left(\frac{1}{328}-\frac{1}{423}\right)}$
$A f=2791$

Where:
$\mathrm{E}_{\mathrm{a}}=$ Activation Energy (Assume 1.0 eV)
K = Boltzmann's Constant $=8.63 \times 10^{-5} \mathrm{eV} /{ }^{\circ}$ Kelvin
$\mathrm{T}_{2}=$ Test Condition Temperature in ${ }^{\circ}$ Kelvin
$\mathrm{T}_{1}=$ Use Condition Temperature in ${ }^{\circ} \mathrm{Kelvin}$
e $=2.71828$ (Natural Antilog)
Now the equivalent failure rate is calculated:
Failure Rate $\left(55^{\circ} \mathrm{C}\right)=\frac{\text { Failure Rate at Test Condition }}{\text { Acceleration Factor }}$

$$
\begin{aligned}
& =\frac{11,900 \mathrm{FITs}}{2791} \\
& =4.2637 \mathrm{FITS}
\end{aligned}
$$

Reliability Datapack

On a quarterly basis, the reliability department compiles and publishes a report which summarizes all the reliability testing results. This report is intended to provide our customers with a means of determining system reliability. The data is presented at $150^{\circ} \mathrm{C}$ and at $125^{\circ} \mathrm{C}$ for those customers who wish to perform their own failure rate calculations. Contact LTC for this report.

In addition, up to the minute reliability summary data reports on particular devices can be generated from the computerized reliability database. ESD simulation testing reports and current density calculations of individual device types are also available upon request.
Should you desire additional information, please contact your local LTC representative.

Finally MTBF is calculated:

$$
M T B F=\frac{100,000}{0.000426}=\frac{234,700,000 \text { Hours }}{\text { or } 26,778 \text { Years. }}
$$

Table 1. "R" Flow for Plastic Dual-In-Line Packages

Table 2. Screening Flow per MIL-STD-883, Method 5004

Table 3. Reliability Qualification Test Guidelines for Plastic Packages

TEST	METHOD	CONDITIONS	FULL RELEASE DURATION	$\begin{aligned} & \text { CONTINGENT } \\ & \text { RELEASE } \\ & \text { DURATION } \end{aligned}$	FULL AND CONTINGENT RELEASE LTPD
High Temperature Bias Operating Life (Op-Life)	MIL-STD-883 Method 1005	Continuous Operation at Max Rated Supply Voltage $\begin{aligned} & T_{A}=125^{\circ} \mathrm{C} \text { or } \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	1000 Hours 500 Hours	500 Hours 168 Hours	$\begin{aligned} & 5 \%, A_{C C}=0 \\ & 5 \%, A_{C C}=0 \end{aligned}$
Temperature Humidity Bias Life (85/85)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	1000 Hours	500 Hours	$5 \%, A_{C C}=0$
Highly Accelerated Stress Test (HAST)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current $\mathrm{T}_{\mathrm{A}}=140^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 3$ Atmospheres	Equivalent to 1000 Hours 85/85	Equivalent to 500 Hours 85/85	$5 \%, A_{C C}=0$
Temperature Cycle (T/C)	MIL-STD-883 Method 1010 Condition C	Air-to-Air, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, >10 Minutes Dwell Time	1000 Cycles	500 Cycles	$5 \%, A_{C C}=0$
Thermal Shock (T/S)	MIL-STD-883 Method 1011 Condition C	Liquid-to-Liquid, $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, >5 Minutes Dwell Time	1000 Cycles	500 Cycles	$5 \%, A_{C C}=0$
Autoclave (Pressure Pot with Bias) (BPPT)	JEDEC Spec 22	Continuous Storage at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$, 100\% RH, 1.67 Atmospheres, Max Rated Supply Voltage for the Last 3 Hours	350 Hours	350 Hours	$5 \%, A_{C C}=0$
Autoclave (Pressure Pot without Bias) (PPT)	JEDEC Spec 22	Continuous Storage at $\mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}$, 100% RH, 2 Atmospheres	350 Hours	350 Hours	$5 \%, A_{C C}=0$
Power Cycle (PW) Regulators Only	MIL-STD-883 Method 1006	Power Cycled "ON" and "OFF" as Required to Cycle Case Temperature Between $60^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$	50,000 Cycles	10,000 Cycles	$15 \%, A_{C C}=0$
Thermal Resistance (TMLR)	MIL-STD-883 Method 1012 Condition C	Junction to Case or Junction to Ambient as Appropriate	N/A	N/A	$15 \%, A_{c c}=0$
Dye Penetrant (DY)	MIL-STD-883 Method 1014	Immersion in Dye Penetrant at 60 PSIG for 2 Hours Minimum	N/A	N/A	$15 \%, A_{C C}=0$
X-Ray Inspection Radiography (XRAY)	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Method } 2012 \end{aligned}$	Top View Only	N/A	N/A	$15 \%, A_{C C}=0$

RELIABILITY ASSURANCE PROGRAM

Table 4. Quick Reaction Reliability ($\mathbf{Q R}^{2}$) Monitor Program

TEST	METHOD	CONDITIONS	TEST DURATION	SAMPLE SIZE	LTPD, ACC NO.
Operating Life Test (Op-Life)	MIL-STD-883 Method 1005	Continuous Operation at Max Rated Supply Voltage, $T_{A}=125^{\circ} \mathrm{C}$ or $T_{A}=150^{\circ} \mathrm{C}$	168 Hours	45	$5 \%, A c c=0$
Biased Moisture Life Test (85/85)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	168 Hours	45	$5 \%, A c c=0$
Highly Accelerated Stress Test (HAST)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current, $\mathrm{T}_{\mathrm{A}}=140^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 3$ Atmospheres	48 Hours	45	$5 \%, A c c=0$
Temperature Cycle (T/C)	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Method } 1010 \\ & \text { Condition C } \\ & \hline \end{aligned}$	Air-to-Air, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, >10 Minutes Dwell Time	100 Cycles	45	$5 \%, A c c=0$
Thermal Shock (T/S)	MIL-STD-883 Method 1011 Condition C	Liquid-to-Liquid, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, >5 Minutes Dwell Time	100 Cycles	45	$5 \%, \mathrm{Acc}=0$
Autoclave (Pressure Pot without Bias) (PPT)	JEDEC Spec 22	Continuous Storage at $\mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}$, 100\% RH, 2 Atmospheres	48 Hours	45	$5 \%, \mathrm{Acc}=0$
X-Ray Inspection Radiography (XRAY)	MIL-STD-883 Method 2012	Top View Only	N/A	45	$5 \%, \mathrm{Acc}=0$
Package Separation Visual Inspection	N/A	30X Magnification	N/A	45	$5 \%, \mathrm{Acc}=0$
Unmolded Strip Evaluation	N/A	30X Magnification	N/A	1 Strip	N/A
Hot Intermittent Opens Test at Subcontractor	N/A	Automated Electrical Test at $125^{\circ} \mathrm{C}$	N/A	250	N/A

Table 5. Long-Term Reliability Monitor Program

TEST	METHOD	CONDITIONS	TEST DURATION	SAMPLE SIZE	$\begin{aligned} & \text { LTPD, } \\ & \text { ACC NO. } \end{aligned}$
Operating Life Test (Op-Life)	MIL-STD-883 Method 1005	Continuous Operation at Max Rated Supply Voltage, $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ or $T_{A}=+150^{\circ} \mathrm{C}$	1000 Hours	45	5%, Acc $=0$
Biased Moisture Life Test (85/85)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	1000 Hours	45	$5 \%, \mathrm{Acc}=0$
Highly Accelerated Stress Test (HAST)	JEDEC Spec 22	Continuous Operation at Max Rated Supply Voltage, Min Supply Current, $\mathrm{T}_{\mathrm{A}}=140^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 3$ Atmospheres	48 Hours	45	$5 \%, \mathrm{Acc}=0$
Temperature Cycle (T/C)	MIL-STD-883 Method 1010 Condition C	Air-to-Air, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, >10 Minutes Dwell Time	1000 Cycles	45	$5 \%, \mathrm{Acc}=0$
Thermal Shock (T/S)	MIL-STD-883 Method 1011 Condition B	Liquid-to-Liquid, $-65^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, >5 Minutes Dwell Time	1000 Cycles	45	$5 \%, \mathrm{Acc}=0$
Autoclave (Pressure Pot without Bias) (PPT)	JEDEC Spec 22	Continuous Storage at $\mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}$, 100% RH, 2 Atmospheres	1000 Hours	45	$5 \%, A c c=0$

Table 6. Group C per MIL-STD-883C Method 5005

TEST	METHOD	CONDITIONS	TEST DURATION	SAMPLE SIZE	$\begin{aligned} & \text { LTPD, } \\ & \text { ACC NO. } \end{aligned}$
Group C-1 Operating Life Test (Op-Life)	MIL-STD-883 Method 1005	Continuous Operation at Max Rated Supply Voltage $\begin{aligned} & T_{A}=+125^{\circ} \mathrm{C} \text { or } \\ & T_{A}=+150^{\circ} \mathrm{C} \end{aligned}$	1000 Hours 500 Hours	45	$5 \%, A c c=0$

Table 7. Group D per MIL-STD-883C Method 5005

TEST	METHOD	CONDIIIONS	TEST DURATION	SAMPLE SIZE	$\begin{aligned} & \text { LTPD, } \\ & \text { ACC NO. } \end{aligned}$
Group D-1 Physical Dimensions	MIL-STD-883 Method 2016	N/A	N/A	15	15\%, Acc $=0$
Group D-2 Lead Integrity	MIL-STD-883 Method 2004	Condition B2 (Lead Fatigue)	N/A	15	15\%, Acc = 0
Group D-3 Thermal Shock Temperature Cycle Moisture Resistance Hermeticity Visual Exam End Point Electricals	MIL-STD-883 Method 1011 Method 1010 Method 1004 Method 1014 Method 1004/10	Condition B Condition C	15 Cycles 100 Cycles	15	15\%, Acc $=0$
Group D-4 Mechanical Shock Vib. Variable Frequency Constant Acceleration Hermeticity Visual Exam End Point Electricals	MIL-STD-883 Method 2002 Method 2007 Method 2001 Method 1014 Method 1010/11	Condition B Condition A Condition E (Y1 Only)	N/A	15	15%, Acc $=0$
Group D-5 Salt Atmosphere Hermeticity Visual Exam	MIL-STD-883 Method 1009 Method 1014 Method 1009	Condition A	24 Hours	15	15\%, Acc = 0
Group D-6 Internal Water Vapor	$\begin{aligned} & \text { MIL-STD-883 } \\ & \text { Method } 1018 \end{aligned}$	< 5000ppm	N/A	3	0
Group D-7 Adhesion of Lead Finish	MIL-STD-883 Method 2025	N/A	N/A	15	15\%, Acc = 0
Group D-8 Lid Torque	MIL-STD-883 Method 2024	(Glass Frit Seal Only)	N/A	5	15\%, Acc = 0

\int LIMEAR Ruaulr assurance program

At Linear Technology Corporation (LTC) our overriding commitment is to achieve excellence in Quality, Reliability and Service (QRS) and total customer satisfaction. We interpret the word "excellence" to mean delivering products that consistently exceed all the requirements and expectations of our customers. The commitment to QRS extends from the president to every employee, from design to product qualification, and from manufacturing to shipping. To meet this commitment, LTC has established a comprehensive program called "Quality for the Nineties."

This program is divided into four separate, but highly interrelated programs; Quality Environment, Total Quality Management System (TQMS), Vendor Participation, and Focus for the Nineties.

Quality Environment

The first program, Quality Environment, serves as the building block for three other programs. It entails establishing an environment that is conducive to the participation of each and every employee in helping to build quality into our products. This program encourages every employee to identify any quality problem and participate in recommending solutions.

Quality for the '90s

A comprehensive operator training and certification program has been established that covers every area of manufacturing from incoming raw material inspection, waferfabrication, assembly, and testto shipping. Emphasis is placed on compliance with specifications, statistical process control (SPC) performance to quality goals, electrostatic discharge damage (ESD) awareness and controls, encouraging operators to think quality and recommend quality improvement ideas.

To ensure compliance with specifications, a Quality Audit Team performs a systems audit of key manufacturing areas and suppliers at periodic intervals. Compliance with process specifications and the detailed programs of the Corporate IS09001 Quality Policy are verified, and discrepancies reported for quick resolution with special emphasis to eliminate recurring problems. The performance of each area is then rated, providing a strong incentive for each area to excel.

With the philosophy that each department, starting from incoming raw materials, is considered a customer of the preceding department, every effort is made by working closely together to meet or exceed our end-customer requirements and goals.

Systems Quality Audit-Tracking Recurring Problems

Total Quality Management System (TQMS)

The second program starts with the incorporation of innovative but conservative design and layout rules to achieve the best performance without sacrificing quality and reliability. During the design and development cycle, design, product, package, manufacturing, quality and reliability engineering groups participate in design reviews to ensure that all program aspects are covered, ranging from product performance objectives to ensuring reproducibility and repeatability in wafer fabrication and assembly. Special emphasis is placed on devising input protection circuitry to minimize susceptibility to voltage spikes and ESD, optimizing thermal layout to minimize parametric drift, and optimizing bond pad layout to maximize assembly and electrical test yields, at the same time allowing the die to be assembled in a wide selection of packages.
Once the design is approved, a stringent manufacturing qualification test plan is conducted on the initial engineering runs. The test plan is selected to bring out any weaknesses in the design and any manufacturability problems, and includes reliability stress tests such as high

Raw Material Controls

temperature Operational Life and HAST (Highly Accelerated Stress Testing) for plastic packages, and MIL-STD883 method 5005 qualification testing for hermetic packages. Product performance on these tests must be equal to or better than similar products within the same generic group to be considered qualified. Major design, package, material and process changes are also subjected to these same stringent qualification requirements. In addition to achieving the required reliability performance, an engineering change must also achieve manufacturing yield and quality performance levels equal to or better than the original product to be considered qualified. A major change control procedure is in place to notify customers of major changes for approval prior to implementation when required.

In manufacturing, process controls start with vendor qualification on raw material piece parts. A Qualified Vendor List is maintained and performance of each vendor is continuously monitored on a Vendor Rating Program. A dimensional, visual, functional and, where applicable, compositional analysis is performed on each direct raw material lot. Automated state-of-the-art wafer fabrication, assembly and test equipment, cassette-to-cassette handling in wafer fabrication and automated handling in assembly are utilized, where possible, to maintain manufacturing consistency and quality. Only fully trained and certified operators are allowed to work on production material.

Stringent statistical process controls, typically beyond industry standards, are established for each critical manufacturing step in wafer fabrication, wafer test, assembly,

SEM Monitor of Metallization Quality

QUALITY ASSURANCE PROGRAM

package finishing, mark and pack and shipping as depicted in the Wafer Fabrication, Assembly,Test and End-of-Line flowcharts.

The process controls include monitors of critical assembly processes and lot acceptance inspection for operations requiring 100\% production inspection. Preseal visual inspection is performed per MIL-STD-883 Method 2010 Test Condition B. Statistical process control techniques are employed in optimizing process parameters, and monitoring process performance through the use of control charts with action limits and upper and lower control limits, and in parametric distribution analysis at electrical test.

Electrical quality is guaranteed by conservative guardbanding on production test programs of a minimum of three machine guardbands, by using state-of-the-art test equipment and 0.04% AQL for lot acceptance testing at $25^{\circ} \mathrm{C}$ for all military and commercial lots. Additional tests, like rack burn-in, beyond the data sheet specifications on regulator products are performed by exercising the parts in a thermal shutdown mode. These tests are incorporated into the test flow to improve reliability and weed out infant mortality failures. Visual and mechanical quality is optimized by minimizing handling of parts in assembly, test

Actual $\overline{\mathrm{X}}$ and R Chart of Aluminum Sputter Deposition Using

 Sensor Number Control| DM1\% | $4 / 3$ | $1 / 3$ | $4 / 3$ | 4 | Y/3 | ${ }^{1} 3$ | 43 | 43 | H3 | 朋 | ${ }^{3}$ | 为 | $14 / 3$ | 4/3 | | 4/9 | $4 / 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tnecorr - | 1 | , | 1 | 7 | 1 | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 |
| P1000 | 49 | 50 | 51 | 52 | 53 | st | 6\% | 26. | 51 | 58 | 59 | 100 | 4 | 62 | 63 | 64 | 65 |
| an mages | . 4 Mri. | . $124{ }^{\circ}$ | .0247 | , 0 24) | val | sete | W\% 6 | ben | 10243 | . 02211 | . 2289 | , 2×171 | . 224 | .0343 | .0340 | .0243 | asu |
| | wrayl. | .0241 | sund | Auric | , 0 Wry | Q 2 2. | 1238. | m 31 | 2238 | 10231 | .029. | .0242 | .2942 | conc | , 034 | -0842 | 329 |
| Sin Arwast | . 2446 | jovra | , 2 M | w-1 | . 046 | .0.4 | .0242 | ,0212 | L024 | 1039 | . 0272 | .0xts | , 2344 | . 244 ' | .0243 | -294, | 02 |
| minmon | 000410 | 0004 | 0.: 5 | losob! | 0004 | .102 | 500 1. | 0010 | Sune | not | (Jxi) | (7x) 5 | .0023 | , 0003. | 0284 | 2000 | 004 |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | $\underline{\square}$ | | | | | |
| | -... | | | | | | | | | | | 1...id | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| $\text { Ucr. } 02800$ | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| SEASOR CUM | 0 | 0 | 0 | 0 | 0 | 0° | 0 | 0 | 12 | -2 | 82 | 0 | 0 | 0 | 12 | 10 | 0 |
| | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | |
| | | | | - | | | - | | -- | | | | | | | - | |
| | | | | | - | | | | | | | | | | | | |
| | | | | | | | z | | | | | | | | - | | |
| | \ldots | | + | | | | | | | | | , | | | | \% | |

and end-of-line operations. Lead finish processes have been selected that minimize solderability problems and all lots are subjected to a stringent major visual/mechanical inspection. Administrative errors due to mixed and wrong parts are minimized by strictly adhering to a one lot per station policy, and double-checking orders at order entry and shipping. Before shipment of a lot to the customer each lot is inspected to ensure that it meets internal and customer specifications and purchase order requirements. The level of attention paid to each unit is demonstrated by the fact that each unit is traceable to the wafer fabrication lot number via a side or back mark on both 883 and commercial products on all packages, except where there is a physical constraint.

Through the use of automated equipment, strict process controls (utilizing proven statistical process control techniques), periodic systems and quality audits (conducted by the Quality Audit Team), stringent facilities and environmental controls and monitors, LTC is able to ensure that quality is built into the product and to guarantee a consistently high quality level.

The manufacturing quality controls are complimented by a reliability audit program designed to weed out design, fabrication, packaging and assembly deficiencies. Additionally, controls are supported by a comprehensive failure analysis and corrective action program designed to provide timely feedback of findings to all operating groups for resolution. The analysis of customer returns, and corrective action taken, completes the closed loop of our Total Quality Management System.

Military and Commerical Products Share the Same Stringent Inspections and Controls

- WAFER FABRICATION PROCESS CONTROLS AND CLASS 100 PROCESSING.
- REGULAR SEM MONITORS.
- PRE-SEAL VISUAL INSPECTION PER MIL-STD-883 METHOD 2010. TEST CONDITION B.
- DIE SHEAR TEST PER MIL-STD-883 METHOD 2019.
- BOND PULL TEST PER MIL-STD-883 METHOD 2011.
- SOLDERABILITY TEST PER MIL-STD-883 METHOD 2003.
- MARK PERMANENCY TEST PER MIL-STD-883 METHOD 2015.
- HERMETICITY TESTING PER MIL-STD-883 METHOD 1014.
- QA ELECTRICAL TEST TO 0.04% AQL AT $25^{\circ} \mathrm{C}$, AND TEMPERATURE TESTING.
- EXTERNAL VISUAL PER MIL-STD-883 METHOD 2009.

Bond Strength Histogram

Failure Analysis Photomicrographs

QUALITY ASSURANCE PROGRAM

Vendor Participation

The requirements of high quality raw materials for integrated circuit manufacture range from ppb (parts per billion) impurity levels for electronic grade chemicals to ppm (parts per million) defective levels for lead frame packaging materials. It is not only essential, but critical for the semiconductor manufacturer to work closely with its vendors to attain the high quality levels needed in raw materials. At LTC a program has been established and implemented to allow vendor participation in formulating specifications and establishing percentage defective and lot rejection rate goals. This vendor participation ensures that the direct and raw material quality levels received are consistent with our manufacturing and end-product quality goals. Clearly, achieving optimum quality product requires the use of the best possible materials available and with continuous communication and feedback from our vendors to improve in this key area. A Preferred Vendor Program helps to drive vendors to manufacturing excellence.

Focus for the '90s

The following key quality improvements programs have been established to meet the quality requirements of the ' 90 s .

PPM Goals

As demand for quality semiconductor components becomes increasingly more stringent, the percentage goals from the 1970s have given way to ppm goals in the '80s and '90s. At LTC ppm quality goals are established for every major operation, from incoming inspection to customer returns. Performance to goals is reviewed quarterly and, where goals are not met, quality improvement programs are defined and implemented. Quality goals are updated and tightened on an annual basis, and quality
programs are redefined to achieve the new goals established. One of the early benefits of this program is demonstrated by the excellent average outgoing electrical quality (AOQ).

Statistical Process Control (SPC)

The increased reliance on automated manufacturing and test equipment underlines the need for strict process control techniques. SPC is a valuable tool and at LTC we realize the importance of these methods. Engineering analysis is performed regularly using SPC techniques to establish the process capability. Various variable and attribute control charts are used to ensure that processes are within normal limits and action and shutdown limits are established for critical operations. The process capability of key processes are calculated using the Cpk capability index on an ongoing basis to ensure a program for continuous quality improvement.

Actual Normalized X and Moving R Chart of Epitaxial Growth Reactor Controlling Resistivity and Deposition Rate

QAP. O6

ESD Control

A comprehensive ESD control program has been established which encompasses design, handling, testing, storage and final packaging for shipment. The program includes the use of grounded table tops, floor mats, wrist straps and heel straps, topical antistatic treatment of floor coverings, banning of static bearing materials from the manufacturing environment, ionizers, and use of conductive or antistatic materials for handling and final packaging. Areas where ESD control must be enforced are designated as ESD Protected areas. ESD awareness training programs help to increase the operator's awareness for successful implementation of this program. Every effort is made to stamp out this silent chip killer. The benefits of this program are improved quality and reliability to the customer.

Quality System Surveys MIL-Q-9858 and MIL-I-45208 Approval

Based on the foregoing quality programs, Linear Technology Corporation is positioned to continuously improve its product quality and exceed the demands of its customers in the '90s and beyond.

ISO 9001 Certification

Realizing the importance of the ISO 9000 international standard for quality management, LTC received ISO 9001 certification in 1993 covering the company's design, manufacturing and service organizations. This has also helped to solidify customer confidence that they are dealing with a manufacturer with a proven international quality system.

Customer Ship-To-Stock Program

LTC is working hand-in-hand with customers to consistently supply high quality products to achieve a ship-tostock program by eliminating the need to do an incoming inspection. We recognize the benefits to our customers of a ship-to-stock program, namely, savings in the need to purchase and maintain incoming test equipment, savings in the need to maintain a safety stock in case of incoming lot rejections, and reduction in board failures and rework costs because of higher component quality.

Ship-To-Stock Program Flow

WAFER FABRICATION FLOWCHART

Generic Bipolar Process

Vendor:	Linear Technology Corporation	∇ incoming
Package:	Plastic SOIC/DIP	D auality inspection and gate
Location of Wafer Fab:	Linear Technology Corporation, Milpitas, CA	O manufacturing process
Assembly:	Carsem Unisem Penang Malaysia, ASAT Hong Kong	
Final Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	O Quality Monitorsurvellance
Q.C. Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	\square Rework
Source Accept Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	
Quality Contact:	QA Manager, LTC, Milpitas, CA (408) 432-1900	

FLOWCHART INCOMING FAB REWORK	$\begin{aligned} & \hline \text { PROCESS } \\ & \text { STEP } \end{aligned}$	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	SPC TECHNIQUE
	Base Mask	Resist Mask HF Etchant Bath	Final Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	\bar{X} and R
	ISO Diode Check	Curve Tracer BVCSO	BVCSO	Curve Tracer	4 Wafers/Run >1 Per 12 Readings Is Fail	Logbook
	Base Predeposition	Deposition Furnace	Visual	UV Lamp	100\% < 10 Defects/ Wafer	\bar{X} and R
				20X Microscope	2 Wafers/Run < 4 Defects/Field of View	
			R_{\square}	4 Point Probe	2 Test Wafers/Run	
	Base Diffusion	Diffusion Furnace	Visual	UV Lamp	$100 \%<10$ Defects/ Wafer	Trend Chart
				20X Microscope	2 Wafers/Run < 4 Defects/Field of View	
			R_{F}	4 Point Probe	2 Test Wafers/Run	
			TOX	Nanospec	2 Product Wafers/ Run	
$8-0$	Emitter Mask	Resist Mask HF Etchant Bath	Final Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
0	CB Diode Check	Curve Tracer	BVCBO	Curve Tracer	< 1 Out of 16 Readings is Fail	Logbook
	Emitter Diffusion	Deposition Furnace	$\mathrm{R}^{\text {I }}$	4 Point Probe	2 Test Chip/Cycle	Logbook
			Beta/LV	Curve Tracer	3 Sites/Wafer Every Fourth Wafer > 2 Readings Out of Spec	
	Contact Mask	Resist Mask HF Etchant Bath	Final Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
				Optical Microscope 1000X	Critical Dimension Measure. 2 Wafers/ Run Lot, Accept on 0 Failures	Trend Chart
	Metal Deposition	Deposition Sputter Machine	Visual	UV Lamp	$\begin{aligned} & <5 \text { Defects/Wafer } \\ & 100 \% \end{aligned}$	\bar{X} and R
			$\mathrm{R}_{\square} /$ Thickness	4 Point Probe	2 Readings/Pass	
	Metal Mask	Resist Mask Etchant Bath	Final Inspection	Optical Microscope 200X	"Z" Pattern Scan 100% of the Wafers	Production Log
				Optical Microscope 1000X	Critical Dimension Measure. 2 Wafers/ Run Lot, Accept on 0 Failures	CD Logbook

FLOWCHART INCOMING FAB REWORK	PROCESS	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	$\begin{gathered} \text { SPC } \\ \text { TECHNIQUE } \end{gathered}$
	Alloy	Anneal Furnace	Visual	UV Lamp	100\% < 10 Defects/ Wafer	Logbook
	Electrical Test	To Evaluate Electrical Parameters LOMAC			2 Wafers/Run	Logbook
	LPOM	Passivation LPCVD Furnace	Visual	UV Lamp	$100 \%,>2$ Color Changes is Fail	$\overline{\mathrm{X}}$ and R
				10X Microscope	3 Wafers/Cycle <3 Defects/Field of View	
			TOX	Nanospec	3 Wafers/Cycle	
			Phosphorous Concentration	10:1 HP Etch Rate	3 Wafers/Cycle	
	PEN	PECVD Nitride Deposition Furnace	Visual	UV Lamp	$100 \%,>2$ Color Changes Is Fail	Trend Chart
				10X Microscope	2 Wafers/Run, < 5 Defects/Field of View	
			Thickness	Nanospec	3 Wafers/Cycle	
			Index of Refraction	Elipsometer	3 Wafers/Cycle	
	Pad Mask	Resist Mask RF Plasma Etch and Oxide Wet Etchant Bath	Final Inspection	$\begin{aligned} & \text { Optical Microscope } \\ & \text { 100X } \end{aligned}$	"Z" Pattern Scan 100% of the Wafers	Production Log
	Electrical Test	Evaluate Electrical Parameters			100\%	Logbook
\bigcirc	Backlap	Disco.	N/A	N/A	N/A	Logbook
Q	Backside Metal	Backside Metallization	Visual	Unaided Eye	100\%	Logbook
	SEM	Step Coverage	2 Photos	Scanning	1 Wafer/Week	Logbook
		General Metallization	1 Photo	Electron Microscope		

WAFER FABRICATION FLOWCHART

Generic CMOS Process

Vendor:
Package:
Location of Wafer Fab:
Assembly:
Final Test:
Q.C. Test:

Source Accept Test: Quality Contact:

Linear Technology Corporation
Plastic SOIC/DIP
Linear Technology Corporation, Milpitas, CA
Carsem Unisem Penang Malaysia, ASAT Hong Kong
Linear Technology Corporation, Milpitas, CA, or Singapore
Linear Technology Corporation, Milpitas, CA, or Singapore
Linear Technology Corporation, Milpitas, CA, or Singapore
QA Manager, LTC, Milpitas, CA
(408) 432-1900

FLOWCHART INCOMING FAB REWORK	PROCESS	DESCRIPTION	INSPECTION/	METHOD AND EQUIPMENT	$\begin{aligned} & \text { SAMPLING } \\ & \text { PLAN } \end{aligned}$	$\begin{gathered} \text { SPC } \\ \text { TECHNIQUE } \end{gathered}$
	P-Well Implant	Implant				Logbook
	P-Well Drive	Furnace	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			Oxide Thickness	Nanospec	3 Waters/Cycle	
\bigcirc	Strip All Oxide	HF Etchant Bath				Logbook
	Pad Oxidation	Oxidation Furnace	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			Oxide Thickness	Nanospec	3 Waters/Cycle	
	Nitride Deposition	Nitride Furnace	Visual	UP Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			Nitride Thickness	Nanospec	3 Wafers/Cycle	
	Active Mask	Etch	Visual Inspection Critical Dimensions	Microscope 400X	"Z" Pattern Scan 100% of the Wafers	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Production } \\ \text { Log } \end{array} \\ \hline \end{array}$
8	Field Implant Mask	Resist Mask HF Etchant Bath	Visual Inspection	Microscope 400X	"Z" Pattern Scan 100% of the Wafers	Production Log
8	Boron Field Implant	Implant				Logbook
1	CMOS Strip Resist	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100\% of the Wafers	Logbook
	N -Field Implant Mask	Resist Mask HF Etchant Bath	UV Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	$\begin{array}{\|l} \hline \begin{array}{l} \text { Production } \\ \text { Log } \end{array} \\ \hline \end{array}$
			Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	
8	Photo Field Implant	Implant				Logbook
0	CMOS Strip Resist	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Logbook
	LOCOS Oxide	Oxidation Furnace	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			Oxide Thickness	Nanospec	3 Wafers/Cycle	
	Plasma Nitride Strip	RF Plasma Etch	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
8	CMOS Cap Mask	Resist Mask HF Etchant Bath	Critical Dimensions	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	$\begin{array}{\|l\|} \hline \text { Production } \\ \text { Log } \\ \hline \end{array}$
\bigcirc	Cap Implant	Implant				Logbook
0	CMOS Strip Resist	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Logbook
	Etch Pad Oxide	HF Etchant Bath				Logbook

FLOWCHART INCOMING FAB REWORK	$\begin{aligned} & \text { PROCESS } \\ & \text { STEP } \end{aligned}$	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	SPC TECHNIQUE
ζ	Gate Oxide	Oxidation Furnace	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run < 2 Defects/Field of View	Logbook
			P-Channel Oxide Thickness	Nanospec	3 Wafers/Cycle	
			Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	
			N -Channel Oxide Thickness	Nanospec	3 Wafers/Cycle	
	VTP Implant Mask	Resist Mask HF Etchant Bath	Visual	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
8	Boron VT Implant	Implant				Logbook
8	CMOS Strip Resist	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Logbook
0	Poly Deposition	Furnace	Poly Thickness			Logbook
8	Back Etch Mask	Resist Mask RF Plasma and HF Etchant Bath	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run < 2 Defects/Field of View	Logbook
	Sinker PreDesposition	Deposition Furnace	Visual	UV Lamp (100\%) 20X Microscope	100\% < 10 Defects/ Wafer	Trend Chart
			RS (Ω / sq)	4 Point Probe	2 Test Wafers/Run	
	CMOS Gate Mask	Resist Mask RF Plasma and HF Etchant Bath	Visual Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
	P + Implant Mask	Resist Mask	Visual Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
9	P and S / D Implant	Implant				Logbook
8	$\begin{aligned} & \hline \text { CMOS Strip } \\ & \text { Resist } \end{aligned}$	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log
8	$\begin{array}{\|l} \mathrm{N}+\text { Implant } \\ \text { Mask } \end{array}$	Resist Mask	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Logbook
8	$\begin{array}{\|l} \mathrm{N}+\mathrm{S} / \mathrm{D} \\ \text { Implant } \end{array}$	Implant				Logbook
8	CMOS Strip Resist	RF Plasma Sulfuric Acid	Visual Inspection	Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Logbook
	Source Drain Re-0x	Oxidation Furnace	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			P + Oxide Thickness	Nanospec	3 Wafers/Cycle	
			Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run < 2 Defects/Field of View	
			N+ Oxide Thickness	Nanospec	3 Wafers/Cycle	

FLOWCHART INCOMING FAB REWORK	PROCESS STEP	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	SPC TECHNQUE
	LPOE	$\begin{aligned} & \text { LPOE } \\ & \text { LPCVD } \\ & \text { Furnace } \end{aligned}$	Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Logbook
			LPOE Thickness	Nanospec	3 Wafers/Cycle	
0	CMOS Getter	Furnace	RS (Ω / sq)	4 Point Probe	2 Test Wafers/Run	Trend Chart
	CMOS Contact Mask	Resist Mask HF Etchant Bath	UV Visual	UV Lamp (100\%) 20X Microscope	2 Wafers/Run <2 Defects/Field of View	Production Log
			Visual Inspection	Microscope 100X	"Z" Pattern Scan 100\% of the Wafers	
	Aluminum Desposition	Deposition Sputter Machine	Visual	UV Lamp	$\begin{aligned} & \text { <5 Defects/Wafer } \\ & 100 \% \end{aligned}$	Logbook
			RS (Ω / sq)	4 Point Probe	2 Test Chip/Cycle	
$1-0$	CMOS MetalMask	Resist Mask Metal Etchant Bath	Final Inspection Critical Dimensions	Optical Microscope 2 200X	"Z" Pattern Scan 100% of the Wafers	Production\log
				Optical Microscope 2 1000X	Critical Dimension Measure 2 Wafers/ Run Lot, Accept On 0 Failures	
0	Alloy	Anneal Furnace	Visual	UV Lamp	100\% < 10 Defects/ Wafer	Logbook
	Electrical Test	LOMAC Parametric Analyzer			2 Wafers/Run	Logbook
	LPOM	Passivation LPCVD Furnace	Visual	UV Lamp	100\%, More Than 2 Color Change Is Fail	Trend Chart
				10X Microscope	3 Wafers/Cycle <3 Defects/Field of View	
			LPOM Thickness	Nanospec	3 Wafers/Cycle	
			Phosphorous Concentration	10:1 HF Etch Rate	3 Wafers/Cycle	
	PEN	PECVD Nitride Deposition Furnace	Visual	UV Lamp	100\%, More Than 2 Color Change Is Fail	Trend Chart
				10X Microscope	3 Wafers/Cycle < 5 Defects/Field of View	
			LPOM Thickness	Nanospec	3 Wafers/Cycle	
			Index of Refraction	Elipsometer	3 Wafers/Cycle	
	Pad Mask	Resist Mask RF Plasma Etch and HF Etchant Bath	Final Inspection	Optical Microscope 100X	"Z" Pattern Scan 100% of the Wafers	Production Log

QUALITY ASSURANCE PROGRAM

FLOWCHART INCOMING FAB REWORK	$\begin{aligned} & \text { PROCESS } \\ & \text { STEP } \\ & \hline \end{aligned}$	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	SPC TECHNIQUE
	Electrical Test	LOMAC Parametric Analyzer			100\%	Logbook
-0	Backlap	DISCO	N/A	N/A	N/A	Logbook
9	Backside Gold	Backside Metallization	Visual	Unaided Eye	100\%	
	SEM	Step Coverage	2 Photos	Scanning Electron Microscope	$\begin{aligned} & \text { CMOS = } 1 \text { Wafer/ } \\ & \text { Week } \end{aligned}$	Logbook
		General Metal	1 Photo		N -Well and P -Well = 1 Wafer Every Run	

QUALITY ASSURANCE PROGRAM

ASSEMBLY FLOWCHART
 Generic CMOS or Bipolar Process

Vendor:	Linear Technology Corporation	∇ incoming
Package:	Plastic SOIC	D oualty inspection and gate
Location of Wafer Fab:	Linear Technology Corporation, Milpitas, CA	O manufacturing process
Assembly:	Carsem/Unisem/Penang-Malaysia, ASAT-Hong Kong	
Final Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	dualit monitor/Survelliance
Q.C. Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	\square Rework
Source Accept Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	
Quality Contact:	QA Manager, LTC, Milpitas, CA (408) 432-1900	

FLOWCHART INCOMING ASSY REWORK	$\begin{aligned} & \text { PROCESS } \\ & \text { STEP } \end{aligned}$	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	$\begin{aligned} & \text { SAMPLING } \\ & \text { PLAN } \end{aligned}$	$\begin{gathered} \text { SPC } \\ \text { TECHNIQUE } \end{gathered}$
∇	Incoming Raw Material Inspection	Wafers	Visual; Scratches Pits, Haze, Craters Dimples, Contamination Oxygen/Carbon Measurement Resistivity/ Conductivity Dimentional Thickness and Taper/Bow Orientation C of C Verification Against "MPS"	1X Inspection Infrared Spectrometer Magnetron V/I Meter Calipers Dial Thickness Gauge Break Test	1.0\% AQL to 2.5\% AQL Level I $\begin{aligned} & S / S=2, A C C=0 \\ & S / S=2, A C C=0 \end{aligned}$ 2.5\% AQL, Level S1 $S / S=1, A C C=0$ Each Bach	\% LAR Trend Chart and \% Defective Trend Chart
		Chemicals	Requirements Plus yearly		Each Bath	
		Gases	Gas Analysis			
	Wafer Sort	100\% Die Level Electrical Test Rejects Are Red Inked		Wafer Prober		
	Wafer Sort Monitor	Monitor Probing and 2nd Optical Quality	Probe Defects 2nd Optical Defects	3 X to 75 X Microscope	Minimum of 3 Times/Shift $S / S=1, A C C=0$	\% Defective Trend Chart
\bigcirc	Kit for Overseas Assembly	Wafers Are Kitted with LTC Bonding Diagram and LTC Assembly Traveler				

QUALITY ASSURANCE PROGRAM

FLOWCHART INCOMING ASSY REWORK	PROCESS STEP	Final Visual	VESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN
	Mark, Correct Mark, Marking Permanency Test (If Ink Marked) Visual: Bent Leads Mold Flash, Solder Quality, Etc.	Unaided Eye TECHNIQUE				

QUALITY ASSURANCE PROGRAM

EOL (END-OF-LINE) FLOWCHART

Generic CMOS or Bipolar Process

Vendor:	Linear Technology Corporation	∇ incoming
Package:	Plastic SOIC	D auality inspection and gate
Location of Wafer Fab:	Linear Technology Corporation, Milpitas, CA	
Assembly:	Carsem/Unisem/Penang-Malaysia, ASAT-Hong Kong	duality monitor/Surveillance
Final Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	QUALITY MONTTOR/SURVEILLANCE
Q.C. Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	\square Rework
Source Accept Test:	Linear Technology Corporation, Milpitas, CA, or Singapore	
Quality Contact:	QA Manager, LTC, Milpitas, CA (408) 432-1900	

FLOWCHART	$\begin{gathered} \text { PROCESS } \\ \text { STEP } \end{gathered}$	DESCRIPTION	INSPECTION/ TEST CRITERIA	METHOD AND EQUIPMENT	SAMPLING PLAN	SPC TECHNIQUE
8	LTC Incoming Inspection	Check Quality of Incoming Assembled Material	Package Dimension	Optical Comparator and Calipers	$S / S=2, A_{C C}=0$	\% LAR Trend Chart
			External Visual	$3 X$ to 30 X Microscope	$S / S=76, A_{C C}=0$	
			Mark Permanency (If Ink-Marked)	MIL-STD-883 Method 2015	$S / S=4, A_{C C}=0$	
			Solderability	MIL-STD-883 Method 2003	$S / S=3, A_{C C}=0$	
			Die Attach Quality	Pliers	$S / S=5, A_{C C}=0$	
			Lead Fatigue Test	Lead Fatigue Tester	$S / S=10, A_{C C}=0$	
	Class Test	Electrical Test	Test to GuardBanded Data Sheet Test Limits	LTX Integrated Circuit Test System	100\%	
	QA Electrical Test at $25^{\circ} \mathrm{C}$	Electrical Quality	Test to GuardBanded Data Sheet Test Limits	LTX Integrated Circuit Test System	$S / S=125, A_{C C}=0$	PPM Chart
	QA Electrical Test at $70^{\circ} \mathrm{C}$ and at $0^{\circ} \mathrm{C}$	Electrical Quality	Test to GuardBanded Data Sheet Test Limits	LTX Integrated Circuit Test System	$S / S=125, A_{C C}=3$	PPM Chart
	External Visual Inspection	Check for Package Quality	Visual: Bent Leads, Lead Form Criteria, Mold Voids/Cracks, etc.	3X Eyepiece	100\%	Yield Chart
	QA Post Pack Inspection	Package/ Pack Quality Inspection	Verify Correct Top Mark, Correct Pack Method, Correct Labeling, External Visual Inspection	3 X to 10X Microscope Inspection	$S / S=125, A_{C C}=0$	\% LAR and PPM P.A. Chart
	QA Shipbench Inspection	Plant Clearance Inspection	Paperwork Check, Verify Correct Part Number and Correct PAR Count	Unaided Eye Inspection	$\begin{aligned} & \mathrm{LTPD}=2 \% \\ & S / S=116, A_{C C}=0 \end{aligned}$	
0	Ship to Customer					

Linear Technology Corporation R-Flow

Reliability has been a key focal point at Linear Technology Corporation (LTC) since its inception in 1981. Our standard product reliability is monitored closely and we have generated an extensive reliability database for both hermetic and plastic devices. This data is published on a quarterly basis and we are seeing very low reliability failure rates in the under 1 FIT range at $55^{\circ} \mathrm{C}$. *
In response to customer requests, we have added an even higher level of reliability screening for commercial

* $1 \mathrm{FIT}=1$ failure in 10^{9} device hours.
hermetic and plastic components. LTC's R-Flow adds a burn-in equivalent to 160 hours at $125^{\circ} \mathrm{C}$ to the standard commercial process flow. Following burn-in, a 100% room temperature test is performed and a 10\% PDA (Percent Defective Allowed) is applied. This PDA limit affords an additional level of insurance on a lot-by-lot basis and prevents the occasional disparate lot from being shipped for critical applications. The additional room temperature insertion also decreases the probability of any electrical defectives in the R-Flow lot.

R-Flow for TO-5 and CERDIP Packages

R-Flow for Plastic Dual-In-Line Packages

Introduction

As integrated circuit technologies achieve higher speed, smaller geometries, lower power and lower voltage, there is a trend toward greater ESD (Electrostatic Discharge Damage) susceptibility. State-of-the-art CMOS ICs can be susceptible to as little as 50 V , a static level that is way below the 500 V to $15,000 \mathrm{~V}$ commonly found in an ESD unprotected work environment. As these state-of-the-art ICs get designed into systems, the ESD susceptibility of system hardware also increases proportionately. Industry estimates of losses due to ESD are in the range of a few billion dollars annually.

It has now become increasingly more important for all semiconductor manufacturers and users of semiconductors and other electronic components to fully understand the nature of ESD, the sources of ESD, and its impact on quality and reliability, to effectively deal with this silent chip killer.
Linear Technology Corporation (LTC) has successfully undertaken a simple but effective ESD Protection Program as part of an overall program designed to enhance product quality and reliability. Described in this section are the key points of this program.
This objective is to provide increased ESD awareness by showing the sources of ESD in the work environment, and to recommend key points for the successful implementation of an ESD program on a company-wide basis.
The end result of a successful ESD program would be the reduction of line failures, final inspection failures and field failures, improved manufacturing yields, improved product quality and reliability and lower warranty costs. We hope that this will help to convince the reader that an ESD Protection Program must be an integral part of every electronic company's product quality and reliability program.

Key Elements of a Successful ESD Protection Program

Recent improvements in failure analysis techniques to correctly identify ESD failures together with an increase in ESD related information from technical publications, EOS/

ESD symposiums and vendors have significantly helped to increase ESD awareness.

The ESD Protection Program at LTC was successfully launched in 1983 when production of ICs was first started. A constant upgrading of the program is still underway. During the ongoing efforts to improve product quality and reliability, previously unrecognized ESD related problems have been brought to light and corrected.

An effective ESD Protection Program must start at product design, and encompass all manufacturing and handling steps up to and including field service and repair. Our design goal is to achieve an ESD susceptibility level of $2,000 \mathrm{~V}$ or greater.
Since the sources of static in any work environment are similar, key elements of the program successfully implemented at LTC can also be applied to all users of electronic components. Where these key elements apply, static controls generic to an electronic systems manufacturer are included.

The key elements of a successful ESD Protection Program include:

1. Understanding static electricity.
2. Understanding ESD related failure mechanisms.
3. ESD sensitivity testing.
4. Establishing an ESD task force to outline the requirements of the program, sell the program to management, implement the program, review progress against milestones, and follow up to ensure the program is continuously improved and upgraded. Selecting an ESD coordinator to interface with all departments affected.
5. Conducting a facility evaluation to help identify the sources of ESD and establish static control measures.
6. Setting up an audit program.
7. Selecting ESD protective materials and equipment.
8. Establishing a training and ESD awareness program.

ESD PROTECTION PROGRAM

What is Static Electricity?

Lightning and sparks from a metallic doorknob during a dry month are examples of static electricity. The magnitude of static charge is dependent on many variables, among them the size, shape, material composition, surface characteristics and humidity. There are basically three primary static generators: triboelectric, inductive and capacitive charging.

Triboelectric Charging

The most common static generator is triboelectric charging. It is caused when two materials (one or both of which are insulators) come in contact and are suddenly separated or rubbed together, creating an imbalance of electrons on the materials and thus static charge.

Some materials readily give up electrons whereas others tend to accumulate excess electrons. The Triboelectric Series lists materials in descending order from positive to negative charging due to this triboelectric effect. A sample triboelectric series is shown here. A material that is higher on the list, e.g., a human body, will become positively charged when rubbed with a material, e.g., polyester, that is lower on the list, due to the transfer of electrons from the human body to the polyester material.

Triboelectric Series

Inductive Charging

Static can also be caused by induction, where a charged surface induces polarization on a nearby material. If there is a path to ground for the induced charge, an ESD event may take place immediately. An example of an induced charge is when the plastic portion of a molded IC package acquires a charge either through triboelectric charging or other means, produces an electrostatic field and induces a charge on the conductive leads of the device. When the device leads are grounded, a short duration damaging static pulse can take place.

Capacitive Charging

The capacitance of a charged body relative in position to another body also has an effect on the static field. To see that this is true, one need only look at the equation $Q=C V$ (charge equals capacitance times voltage). If the charge is constant, voltage increases as capacitance decreases to maintain equilibrium. As capacitance decreases the voltage will increase until discharge occurs via an arc. A low voltage on a body with a high capacitance to ground can become a damaging voltage when the body moves away from the ground plane. For example, a 100 V charge on a common plastic bag lying on a bench may increase to a few thousand volts when picked up by an operator, due to a decrease in capacitance.
These sources of static can be found almost anywhere in an unprotected work environment, on personnel wearing synthetic clothing and smocks, on equipment with painted or anodized surfaces, and on materials such as carpets, waxed vinyl floors, and ungrounded work surfaces.

Understanding the Failure Mechanisms

In the past, analysis of electrical failures to pinpoint ESD as a cause was often difficult. But with a better understanding of failure mechanisms and their causes, and the use of more sophisticated techniques like scanning electron microscopy (SEM), pinpointing ESD failures can now be part of a routine failure analysis.
arametric or functional failure of bipolar and MOS ICs an occur as a result of ESD.
he primary ESD failure mechanisms include:
. Dielectric Breakdown: This is a predominant failure mechanism on MOS devices when the voltage across the oxide exceeds the dielectric breakdown strength. This failure mechanism is basically voltage dependent where the voltage must be high enough to cause dielectric breakdown. As such, the thinner the oxide, the higher the susceptibility to ESD. MOS device failures are characterized by resistive shorts from the input to $V_{D D}$ or $V_{S S}$.

MOS Transistor Structure Showing ESD Included Pinholes at Gate Oxide

This failure mechanism can also be found on bipolar ICs which have metallization runs over active semiconductor regions separated by a thin oxide. Device failures are characterized by resistive or high leakage paths.
. Thermal Runaway (Second Breakdown): This failure mechanism results in junction melting when the melting temperature of silicon $\left(1415^{\circ} \mathrm{C}\right)$ is reached. This is basically a power dependent failure mechanism; the ESD pulse shape, duration and energy can produce power levels resulting in localized heating and eventually junction melting, even though the voltage level is below that required to cause dielectric breakdown. Breakdown of the emitter-base junction of a NPN transistor is a common ESD related failure mode on bipolar ICs, since the highest current density occurs on the smallest current carrying area which is typically the emitter-base junction. Low current gain (h_{FE}) is very sensitive indicator of emitter-base junction damage on bipolar linear ICs.
3. Parametric Degradation: On precision, high speed ICs (e.g., bipolar operational amplifiers with a typical input bias current of 10pA and low input offset voltage of typically $50 \mu \mathrm{~V}$) ESD can cause device degradation, besides functional failures. This can impact electrical performance and adversely affect device reliability.

This degradation in device parametric performance is far more difficult to pinpoint as an ESD related failure mode. It is also the least understood among the failure modes. The extent of this degradation is dependent on the number of ESD pulses and the level of damage sustained. The first ESD pulse may not cause an IC to fail the electrical data sheet limits but with each subsequent ESD pulse, the parametric performance can degrade to the point where the device no longer meets the data sheet limits.
There is a great deal of current research focused on ESD induced latent failures, and there now appears to be more evidence of this type of failure mechanism.

ESD Failure Analysis Program

ESD defect identification must be an integral part of a failure analysis program. The key objectives are to help identify the ESD failure mechanism, isolate the cause for failure, and implement corrective action to prevent recurrence. All devices suspected of being damaged by ESD after initial electrical verification, should be failure analyzed.

An ESD failure analysis program is outlined below.

1. Initial electrical test verification.
2. Review device history to determine if there are any similar failures in the past. Review ESD sensitivity data if available.
3. Investigate conditions in any area that can potentially cause ESD damage.Common potential problem areas include:

- Proper grounding procedures not being followed (e.g., conductive table/floor mats not grounded, personnel not wearing wrist strap, etc.)
- Improper handling (e.g., handling devices at nonESD protected station)
- Transporting devices in unapproved containers (e.g., in common plastic bags/tubes/tote boxes)
- Changes in procedures or operation
- Changes in equipment
- Design deficiencies

4. Failure analysis sequence:

- Bench testing and curve tracer analysis
- Pin-to-pin analysis
- Internal visual ($10 \times$ to $1000 \times$)
- Liquid crystal hot spot detection
- Scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), energy dispersive X-ray analysis (EDX), scanning auger microprobe (SAM), radiography, voltage contrast, electron beam induced current (EBIC)
- Plasma/chemical etching
- Special fault decoration
- Micro-sectioning
- Documentation

An excellent failure analysis manual is published by the Rome Air Development Center titled Failure Analysis Techniques - A Procedural Guide.
5. Duplication of failure by stressing identical devices. The same or similar electrical failure mode is a good indicator of an ESD induced failure mode.
6. Implement corrective action to prevent recurrence. Corrective action may include:

- Component, board, sub-system or system level redesign
- Improve ESD controls
- Improve part handling
- Improve ESD awareness
- Improve compliance with ESD protection procedures
- Increase audit frequencies
- Improve packaging materials and procedures

Corrective action taken by the end user should include a thorough review of electrical and mechanical packaging designs. In addition the end users should consult with the IC manufacturer on their findings, request failure analysis of suspected ESD failures if needed and require the IC manufacturer to take appropriate corrective action on any confirmed ESD failure.

ESD Sensitivity (ESDS) Testing

ESDS testing is crucial in helping the IC designer and the end user evaluate the ESD susceptibility of a particular device. At LTC, ESDS testing is incorporated into the failure analysis program and is performed on each device as part of the product characterization program. The ESDS testing is also part of new product qualification. LTC performs this ESDS testing according to MIL-STD-883 Method 3015.
The ESDS testing provides immediate feedback to the IC designer on any weakness found in the design and permits design correction before product release. The ESDS data collected is also used as baseline data to evaluate the effect of any future design changes on the ESDS testing performance, and to help ensure that the final packaging methods meet MIL-M-38510 requirements. Devices are categorized as either Class One, Class two or Class Three, each with a susceptibility range from 0 V to 2000 V , above 2000 V but below 4000 V , and above 4000 V respectively. Topside marking with equilateral triangles is specified by MIL-M-38510.

Since people are considered to be a prime source of ESD, the ESDS test circuit is based on a human ESD model. A 1500Ω resistor and a 100 pF capacitor are used in the test circuit. Human capacitance is typically 50 pF to 250 pF , with the majority of people at 100 pF or less, and human
resistance ranges from 1000Ω to 5000Ω. An ESD failure is defined as a voltage level which causes sufficient damage to the device such that it no longer meets the electrical data sheet limits.
After initial ESDS testing, it is important that ESDS test monitoring be performed periodically on devices from various lots to determine lot-to-lot variation. The VZAP-2 report titled "Electrostatic Discharge (ESD) Susceptibility of Electronic Devices" published by the Reliability Analysis Center, Rome Air Development Center, contains a wealth of information on ESDS testing data on devices of different process technologies from many manufactures. The data in this report clearly indicates a large lot-to-lot variation relating to ESD susceptibility on the same device.

Design for ESD Protection

ESD protection designs employed on LTC devices include:

1. Input clamp diodes
2. Input series resistors to limit ESD current in conjunction with clamp diodes
3. New ESD structures
4. Eliminating metallization runs over thin oxide regions when they are tied directly to external pins

ESD Task Force

An ESD task force should consist of members from each effected department to do the foundation work, sell the program to management, and implement the program with the following objective:

1. Develop, approve and implement an ESD control specification covering all aspects of design, ESD protected materials and equipment, and manufacturing
2. Raise the level of ESD awareness
3. Develop a training and certification program
4. Work with all departments on any ESD questions or problems
5. Develop a program to educate and assist sales personnel, distributors and customers to minimize ESD
6. Review and qualify new ESD protective materials and equipment, and keep specification and training program upgraded
7. Measure the cost-to-benefit ratio of the program

Facilities Evaluation

The ESD task force should be responsible for facility evaluation. This evaluation should be guided by the ESD coordinator. The ESD coordinator should be chosen for strong knowledge of ESD controls and for the ability to effectively interface with all effected departments. The primary objective of the task force is to pinpoint areas that represent the source of static electricity and potential yield losses due to ESD.

A representative, preferably the engineering or production manager, from each of the key manufacturing areas should be represented on this task force. At LTC this effort is headed by the Quality Assurance Manager and the Package Engineering Manager. The balance of the ESD task force members are the Test Engineering, Product Engineering and Production Managers.
The only equipment needed for this survey is a field static meter which measures static up to a level of 50 kV . Both nuclear and electronic type static meters are available from manufactures like 3M, Simco, Wescorp, Scientific Enterprises, Voyager Technologies and ACL.
Regardless of area classification, all manufacturing areas can be broken down into the following categories for evaluation purposes.

1. Personnel: Personnel represents one of the largest source of static, form the type of clothing, smocks and shoes that they wear (for example, polyester or nylon smocks).
2. The Environment: The environment includes the room humidity and floors. Relative humidity plays a major part in determining the level of static generated. For example, at 10% to $20 \% \mathrm{RH}$ a person walking across a carpeted floor can develop 35 kV versus 1.5 kV when the relative humidity is increased to 70% to 80%. Therefore the humidity level must be controlled and should not be allowed to fluctuate over a broad range.
Floors also represent one of the greatest contributors of static generation on personnel, moving carts or equipment because of movement across its surface. Carpeted and waxed vinyl floors are prime static generators.
3. Work Surfaces: Painted or vinyl-covered table tops, vinyl-covered chairs, conveyor belts, racks, carts and shelving are also static generators.
4. Equipment: Anodized surfaces, plexiglass covers, ungrounded solder guns, plastic solder suckers, heat guns and blowers are also static generators.
5. Materials: Look out for common plastic work holders, foam, common plastic tote boxes and packaging containers.
Examples of typical static levels are shown in the table below.

	RELATIVE HUMIDITY	
	$\mathbf{1 0 \%} \sim \mathbf{2 0 \%}$	$\mathbf{7 0} \% \sim \mathbf{8 0} \%$
ESD SOURCE	35 kV	1.5 kV
Walking across a carpeted floor	12 kV	0.3 kV
Walking across a vinyl floor	15 kV	0.5 kV
Picking up a common plastic bag	15 kV	2.0 kV
Sliding plastic box over bench/conveyor	8 kV	1.0 kV
Ungrounded solder sucker	8 kV	1.0 kV
Plastic cabinets		

This ESD survey should include all direct and support manufacturing areas where semiconductor and other electronic components are handled and should be extended to cover distribution offices. Once the facility evaluation is completed, the results are reviewed by the ESD task force, and controls are selected to combat each potential ESD problem area.

The ESD Protection Program

The degree of static control should be determined by the most static sensitive device or assembly in the operation. Top management support and implementing the same basic controls in all areas with no double standards will help to ensure success.
The basic concept of complete static protection is the prevention of static buildup, the removal of any already existing charges, and the protection of electronic components from induced fields. The first and foremost line of defense is the personnel wriststrap together with grounded conductive or static dissipative table tops, and conductive heel straps and grounded conductive or static dissipative floor mats.

To increase ESD awareness at LTC, all ESD Protection Areas are marked by an identifying label (for example, label shown below). This label alerts all personnel that ESD protection procedures are enforced in the area.

ESD Protected Workstation

Example of ESD Protected Workstations are shown in Figures 1 and 2.
Option 1 (Figure 1): All electronic components, subassemblies and assemblies must be handled at an ESD protected workstation only. The figure illustrates an ESD protected workstation consisting of a static dissipative table mat grounded to earth or electrical ground through a $1 \mathrm{M} \Omega$ series resistor, with the requirement that the operator wears a grounded insulated conductive wrist strap with a $1 \mathrm{M} \Omega$ series resistor. This $1 \mathrm{M} \Omega$ series resistor protects the operator from electrical shock, should the operator come in contact with a potentially lethal voltage. Option 1 should be used where the operator does not require a large degree of freedom, e.g., during product inspection, etc.
Option 2 (Figure 2): Shows an alternate installation method for an ESD protected workstation. It consists of a conductive or static dissipative floor mat grounded to earth or electrical ground through a $1 \mathrm{M} \Omega$ series resistor with the operator wearing a conductive shoe strap. This installation is typically used where the operator needs freedom of movement over a large area, e.g., environmental chamber loading and unloading, electrical testing, etc. To be effective the conductive shoe strap must make contact with the wearer's foot or thin sock and be attached to the wearer's shoe to maximize contact between the strap and the conductive or static dissipative floor.

Iption 3: Utilizes the same conductive or static dissipative oor mat installation as Option 2 with the exception that le operator is grounded via a wrist strap through the quipment ground instead of a conductive shoe strap. It is
utilized where an operator is working with a piece of freestanding equipment and does not require a great deal of freedom of movement.

MATERIALS: $1.1 / 16^{\prime \prime}$ THICK CONDUCTIVE OR STATIC DISSIPATIVE TABLE MAT WITH SURFACE RESISTIVITY OF $\leq 10^{8} \Omega$ PER SQUARE.
2. INSULATED CONDUCTIVE GROUND CORD WITH A SERIES RESISTOR OF $1 / 2 \mathrm{~W}$ MINIMUM, $1 \mathrm{M} \Omega \pm 10 \%$, AND 18AWG OR LARGER INSULATED WIRE.
3. INSULATED CONDUCTIVE WRIST STRAP WITH $1 / 4$ W MINIMUM, $1 \mathrm{M} \Omega \pm 10 \%$ AND 20AWG OR LARGER INSULATED WIRE. THE CURRENT LIMITING 1 M Ω RESISTOR MUST BE LOCATED RIGHT NEXT TO THE WRIST TO PREVENT THE POSSIBILITY OF SHUNTING THE RESISTOR.
4. POWER TEST EQUIPMENT MUST BE CHASSIS GROUNDED VIA A 3-PRONG PLUG, AND PLACED ON AN INSULATION PAD MADE OF FORMICA, FIBERGLASS OR EQUIVALENT MATERIAL.

ESD F01
Figure 1

MATERIALS: 1. OPTIONAL $1 / 8^{\prime \prime}$ THICK CONDUCTIVE OR STATIC DISSIPATIVE MAT OR CONDUCTIVE FLOORING (e.g., CONDUCTIVE FLOOR TILES) WITH A SURFACE RESISTIVITY OF $\leq 10^{8} \Omega$ PER SQUARE.
2. CONDUCTIVE SHOE STRAP WITH A SURFACE RESISTIVITY OF $\leq 10^{8} \Omega$ PER SQUARE.
3. INSULATED CONDUCTIVE GROUND CORD WITH A SERIES RESISTOR OF $1 / 2 \mathrm{~W}$ MINIMUM, $1 \mathrm{M} \Omega \pm 10 \%$, AND 18AWG OR LARGER INSULATED WIRE.

Figure 2

ESD PROTECTION PROGRAM

Handling

At LTC all products are handled, transported and staged in volume conductive tote boxes. This offers maximum protection to the components from triboelectrically generated and inductive static charges. The rule is - under no circumstances should components be removed from their approved containers except at an ESD protected workstation.

Final Packaging

Only antistatic, static dissipative and conductive final packaging containers (for example, antistatic or conductive dip tubes, volume conductive carbon loaded plastic bags or metallic film laminate bags, foil lined boxes) are used. Filler (dunnage) material used should be antistatic, noncorrosive, and should not crumble, flake, powder, shred or be of fibrous construction. Conductive packing materials are preferred since they not only prevent buildup of triboelectric charge, but also provide shielding from external fields.

Other ESD Preventative Measures

- Where possible, ban all static bearing materials, e.g., common plastics, styrofoam from the work environment.
- Use only synthetic material smocks with 1% to 2% interwoven steel.
- Ensure all electronic and electromechanical equipment is chassis grounded, including conveyor belts, vapor degreasers and baskets, solder pots, etc.
- Tips of hand soldering irons are to be grounded.
- All parts of hand tools (e.g., pliers, etc.) which can be expected to come in contact with electronic components are to be made of conductive material and grounded.
- Conductive shorting bars are to be installed on all terminations for PC boards with electronic components during assembly, loading, inspecting, repairing, soldering, storing and transporting.
- All PC boards with electronic components are not to be handled by their circuitry, connector points or connector pins.
- High velocity air movement is to be delivered through a static neutralizer.
- Air ionizers are to be employed in neutralizing static buildup on insulators if they have to be used or as an extra precautionary measure for extremely sensitive devices.
- Do not slide electronic components over a surface.

Air ionizers come in three basic types: nuclear, AC and pulsed $D C$. These ionizers can neutralize static charges on nonconductive materials by supplying the materials with a stream of both positive and negative ions.
The advantage of the AC or pulsed DC type a ir ionizer is that there is no recurring annual replacement cost. The disadvantages are: it emits ozone which can damage rubber in equipment; EMI (Elector Magnetic Interference); and an imbalance in the stream of ions if not properly maintained, therefore necessitating frequent preventive maintenance.
The advantages of the nuclear type air ionizer are low maintenance, no ozone, no EMI and no imbalance problems. The disadvantages are that it requires careful handling because of the radioactive source and the annual recurring cost to replace the radioactive source.

The selection of air ionizers must be done with care and with awareness of the above limitations. The squirrel cage ionized air blower has been proven to produce a significantly more even distribution of ion patterns than does a conventional fan blower design.

Maintenance

ESD protective floor and table coverings must be properly maintained. Do not wax them. Cleaners must not degrade their electrical properties. Vacuum to remove loose particles, followed by a wet mop with a solution of mild detergent and hot water.

Periodic Audits

At LTC periodic audits are conducted to check on the following at least quarterly unless otherwise noted.

- Compliance with ESD control procedures.
- Ensure that the conductive ground cord connection is intact by measuring the series resistance to ground with an ohmmeter.

ESD PROTECTION PROGRAM

Ensure that wrist straps are still functional by measuring the resistance from the person to ground. The ground lead of the ohmmeter is connected to the ground connection of the wrist strap, and the positve lead is connected to a stainless steel electrode (one inch in diameter and three inches long \#304 stainless steel) which is held by the person. This test method not only checks the resistance of the series resistor, but also resistance through the ground cord and any contact resistance between the wrist strap and the person's skin. This test procedure is required when wrist straps with an elastic nylon band with interwoven metallic strands are used, since the metallic strands break down with prolonged use. This monitor frequency may be shortened depending on audit results.

Wrist Strap Resistance Test Setup

- Measure the surface resistivity of conductive or static dissipative table tops once every quarter using ASTM-F-150-72, ASTM-D-257 or ASTM-D-991 test methods as appropriate.

Materials Selection and Specification

Based on the tremendous amount of ESD protective materials available, it is important that materials are selected based on a stringent qualification. Once the materials have been selected and specifications defined, a material procurement specification needs to be initiated that defines the materials and quality requirements to the vendor. One of the major pitfalls is to procure material in haste, e.g., a wrist strap, only to find out it does not perform reliably.

The SOAR-1 report titled "ESD Protective Material and Equipment: A Critical Review" published by the Rome Air Development Center is an excellent reference on the various types of ESD protective materials available.

At LTC a minimum of three manufacturing lots from a potential vendor are subjected to qualification testing per the requirements of the material procurement specification for ESD protective materials. The vendor is considered qualified only when all three lots are found to be acceptable. Once vendors have been qualified, all incoming ESD protective materials are subjected to a stringent incoming inspection.
The following table summarizes a sample material and test specification for ESD protective materials.

MATERIAL	PROPERTIES/DESCRIPTION	TEST METHODS
Wrist Strap	- Insulated coil cord with a $1 \mathrm{M} \Omega \pm 10 \%, 1 / 4 \mathrm{~W}$ minimum series resistor molded into snap fastener (at wrist end), and an elastic wrist band with inner metallic filaments and insulative exterior	Measure series resistance with ohmmeter. Apply normal tug to both ends of strap and remeasure series resistance. Resistance must be between $0.8 \mathrm{M} \Omega$ to $1.2 \mathrm{M} \Omega$.
Conductive or Static Dissipative Table and Floor Coverings, Conductive Tote Boxes, Conductive Shoe Straps	- Must not shed particles - Must not support bacterial or fungal growth - Conductive: surface resistivity $<10^{5} \Omega /$ square, Static Dissipative: surface resistivity $>10^{5}<109 \Omega /$ square	Test per ASTM-F-150-72, ASTM-D-257, ASTM-D-991 (for surface resistivity $<10^{6} \Omega /$ square).
Conductive Foam	- Shall not contain more than $30 \mathrm{ppm} \mathrm{CI}, \mathrm{K}$, Na when a quantitative chemical analysis is performed - Must not support bacterial or fungal growth	With devices inserted into the foam, the foam must not cause lead corrosion after a 24 -hour $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ temperature/humidity storage.
Antistatic and Conductive Dip Tubes	- Must not exhibit an oily film	Must meet an Electrostatic Decay test per Federal Test Method Standard 101 Test Method 4046. Material charged to 5000 V must be discharged to 1% of its initial value (50 V) in 2 seconds after a 24 -hour conditioning at 15% relative humidity.
Antistatic and Conductive Bags	- Antistatic bags must meet MIL-B-81705 type . - Conductive bags must meet MIL-B-117 and sealing requirements of MIL-B-81705 - Must not support bacterial or fungal growth	Test method for antistatic bags same as for antistatic/ conductive dip tubes. Test method for conductive bags same as for conductive table/floor coverings.
Static Eliminators/Ionized Air Blowers	- Ozone level: 0.1 ppm maximum for 8 -hour exposure - Noise: 60dB maximum - EMI: nondetectable when measured 6 inches away	Voltage Decay test: A nonconductive sheet of material charged to 5 kV must be discharged to 1% of its initial value $(50 \mathrm{~V}$) in 2 seconds at a distance of 2 feet from the ionizer or larger distance if application calls for a larger distance.

Training and Certification Program

The training program should be developed to increase ESD awareness and to assist all personnel in complying with the ESD control specification. The program should include:

1. A discussion on "What is Static Electricity?"

2. How ESD affects ICs

3. Estimated cost of ESD related losses

4. Materials and equipment for controlling static
5. The importance of wearing the wrist strap
6. The importance of an audit program
7. Encourage floor personnel to alert the ESD task force to any ESD potential areas
ESD training should be incorporated into the personnel training and certification program. ALLTC only fully trained and certified personnei are allowed to do actual production work. To help increase ESD awareness, it is often a good
idea to show ESD awareness films and video tapes which are available from a variety of sources (Reference 3 provides a list of films and video tapes). Personnel are retrained and recertified at a minimum frequency of once per year.

Measuring the Benefits

Where possible, the benefits of an ESD Protection Program should be tracked and quantified. The two yardsticks used at LTC are final test yields and QA electrical average outgoing quality (AOQ). Since the implementation of this program, there has been a significant improvement in final test yields especially on static sensitive CMOS devices. With the elimination of ESD as a potential failure cause, the electrical AOQ has averaged well under 100ppm for all products combined. Improvements such as this help to provide positive feedback to manufacturing and support personnel on the importance of an ESD Protection Program, and also help to ensure its continuing success.
leferences

1. DOD-STD-1686	Electrostatic Discharge Control Program for Electrical and	6. MIL-STD-883	Test Methods and Procedures For Microelectronics
	Electronic Parts, Assemblies and Equipment	7. MIL-I-38534	General Specification for Integrated Circuits (Microcircuits)
2. DOD-HDBK-263	Electrostatic Discharge Control Handbook for Electrical and		Manufacturing
		8. MIL-M-55565	Microcircuits, Packaging of
	Equipment	9. MIL-M-81705	Barrier Materials, Flexible,
3. SOAR-1	State-of-the-Art Report ESD Protective Materials and Equip-		Electrostatic - Free, Heat Sealable
	ment: A Critical Review, published by the Rome Air Development Center	10. FED-STD-101	Preservation, Packaging and Packing Materials Test Procedures; Test Methods, 4046:
4. VZAP-2	Electrostatic Discharge (ESD)		Electrostatic Properties of
	Susceptibility Data, published by the Rome Air Development Center	11. EIA-625	Requirements for Handling Electrostatic Discharge-Sensitive (EDSS) Devices
$\begin{aligned} & \text { 5. EOS-1, EOS-2, } \\ & \text { etc. } \end{aligned}$	Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 1979 to Current Year		

Q7 INEAR

Linear Technology Corporation (LTC) has an active Statistical Process Control (SPC) system. It operates via the interrelated mechanisms of: a structure, control charts with built-in contingency action plans, operational area documentation (flowcharts and control plan details), an SPC training program, each of which is defined in the Company's officially controlled SPC specification.

Structure

At the core of the SPC system are the Process (or Preventive) Action Teams (PATs). These cross-functional teams are comprised of individuals directly involved with a process element or problem. In a production operation, they typically involve production operators, lead operators, maintenance, engineering and/or supervision. In a nonproduction operation, the PATs are comprised of operating employees and representatives of related functions.

Each operating group (e.g., Wafer Fab) has a formal SPC presence in the form of an SPC Quality Control Team (QCT). These SPC QCTs are comprised mostly of the manager and staff of that particular operating unit bearing the responsibility to implement and maintain SPC within their respective areas.

This QCT structure is the leadership of that operating unit, and as such, sanctions the various PATs within its jurisdiction as they implement and maintain SPC and/or solve specific problems in their respective areas. In addition, the QCT conducts monthly reviews of SPC charts, action items and new programs.

The QCTs, in turn, report to the SPC Steering Committee. This body consists of the President, Chief Operating Officer, Vice President of Operations, Vice President of Quality \& Reliability and the SPC Manager. Thus, it has the corporate leadership responsibility for SPC at Linear Technology.

Figure 1. Linear Technology Corporation SPC Quality Control Teams

Control Charts

The control charts at LTC are manually charted by the operators to ensure that they are the custodians of the process, its trends, and defined corrective measures (as opposed to computerized SPC charting).

The contingency action plan, known as the Out-of-Control Action Plan (OCAP), defines the specific corrective actions when the process experiences out-of-control situations. No control chart is put in place without an OCAP. This strategy has in effect empowered the work force, while freeing the engineering staff for systematic and continuous improvement.

Flowcharts and Control Plan Details

The flowcharts serve to graphically display the flow of products in each operational area, as well as define and communicate the critical nodes of that operation. The details of each critical node are defined in the Control Plan Detail, which serves as a planning, reporting and communication tool.

STATISTICAL PROCESS CONTROL

n example of a flowchart and the related Control Plan etail for one operational area (e.g., The Wafer Fabrication rea) Figure 2 and Table 1 follow:

Figure 2. General Bipolar Wafer Fabrication Flowchart

Training Program

In order to pursue and continue the smooth operation of the SPC system within LTC, an all-encompassing instructional program for employees was initiated according to the following plan.

Each employee designated for SPC training is classified into one of three groups, and attends the specific classroom instruction for that classification. The courses and length of training (hours) for each group are designated in Table 2.

The content of the training courses is as follows:
BASIC SPC: Philosophy of SPC, concepts of variation, control, capability; tools and techniques for control and capability, including histograms, capability studies, control charting; 8D problem solving, including normality, brainstorming, cause and effect diagramming, Pareto analysis, capability index/ratio.
ADVANCED SPC: Review of basic concepts, fundamentals of Measurement System Evaluation (Gauge R\&R), process capability studies, determination and use of control charts, i.e., $\bar{X} \& R$, Median \& R, X \& Moving R, p, np, u, and c chart techniques. Chart interpretation and the basics of attributes sampling system.
able 1. Linear Technology Corporation Process Control Plan Detail for Bipolar Wafer Fab

;PC Node Id Process	Critical Features	Measurement Method	Sample Size	Sample Frequency	SPC Control System	MSE(Gauge R\&R)	Process Capability		Status
							Cp	Cpk	
$\begin{gathered} \hline \text { SPC-1) } \\ \text { Epi } \\ \text { Growth } \end{gathered}$	Resistivity	4-Point Probe	2	Batch	X \& Moving R Chart with Adaptive Control	Acceptable	1.59 ~ 1.89	1.12 ~ 1.41	On Line
$(\overline{S P C}-2)$ ase Mask	CDs	OSI-VLS1	1 Site/ 3 Wafers	Batch	$\begin{gathered} \overline{\mathrm{X}} \& \mathrm{R} \text { Chart } \\ \text { with } \\ \text { Adaptive Control } \\ \hline \end{gathered}$	Acceptable	1.54	1.54	Out of Control*
$\begin{gathered} \text { (SPC-3) } \\ \text { Base } \\ \text { leposition } \end{gathered}$	Sheet Resistance	4-Point Probe	3 Sites/ 3 Wafers	Batch	\bar{X} \& R Chart	Acceptable	$1.87 \sim 2.0$	$1.70 \sim 1.95$	On Line
$\begin{aligned} & \text { (SPC-4) } \\ & \text { LPOM } \end{aligned}$	Thickness	Nanospec	5 Sites/ 3 Wafers	Batch	\bar{X} \& R Chart	Acceptable	$1.82 \sim 2.31$	$1.74 \sim 1.94$	On Line

[^60]Table 2.

Group \#	Trainee Audience	Basic SPC	Advanced SPC	DOE	Team Org.	Total
1	Engineering (Technical)	15	20	24	4	63
2	Management/Supervision Technicians	15	20	-	4	39
3	Operators	15	-	-	-	15

DESIGN OF EXPERIMENTS (DOE): Philosophy and need of experimental design, experimental methodologies utilizing Fisher \& Taguchi concepts. Response Surface Methodology for parameters and tolerance designs, including ANOVA and analysis of co-variance.
TEAM ORGANIZATION: An outline of the SPC organization within LTC, the concepts of the SPC Quality Control Teams (SPC QCTs) and Preventive/Process Action Teams (PATs). Strategies for Detailed Control Plans and Out-of-Control Action Plans (OCAPs). Concepts of team effectiveness.

Manuiacturing Excellence

One of the LTC goals is manufacturing excellence. The traditional SPC techniques seek to produce processes that are capable and in control. To improve those processes and to determine rational parameters and specification tolerance of new products and processes requires the Design of Experiments (DOEs) methodology.

LTC actively pursues the screening techniques described by Fisher as well as the optimization techniques of Box and Taguchi. These latter techniques, known as Response Surface Methodology and Taguchi Methods, are particularly useful in developing robust products and processes, with a minimum of sensitivity to process variation.

Contribution to Quality

Contribution to quality improvement has evolved from one dominated by ATTRIBUTE INSPECTION (pass/fail) to one involving a mixture of SPC and attribute inspection. As we progress further, the contribution of Design of Experi-
ments will become significant. Products and processe developed using the DOE tools will have the quality bui in. The consequence of this built-in quality is predictabl performance at the lowest possible cost.

Figure 3. The Semiconductor Quality Evolution

The concepts of SPC and DOE have already been institu tionalized within LTC and will provide the methodology ti ensure a process of continuing improvement.

NTRODUCTION

_inear Technology Corporation (LTC) offers a wide variety Jf precision linear ICs in die form. It is our intent to offer dice electrically tested to levels which can be expected to field the best possible performance in hybrid circuits. Jomplicating this task is the fact that many specifications jiven for our standard packaged products cannot be ested at the wafer level. Further, parameters which are 100% tested at wafer probe testing may shift during the die attach/assembly process.
Jata sheets are available that contain ordering information or obtaining dice products. They are available from your ocal LTC Sales Rep, or from LTC Marketing.

àneral information

:lectrical Testing

Jice are 100% tested in wafer form at $25^{\circ} \mathrm{C}$ to the DC limits ;hown on the dice data sheet for a given device type. Many _TC packaged products have multiple electrical grades Issociated with a basic die type. A cross reference appears mn each dice data sheet indicating which die product grade ;hould be ordered to optimize candidates to meet the ;pecifications of the desired finished product grade. This nformation should be used as a guideline only since LTC loes not guarantee electrical specifications after assemsly. Since electrical testing is done only at $25^{\circ} \mathrm{C}$, no ibsolute guarantee can be made regarding performance at sther temperatures. Some LTC products require postlackage trimming to overcome certain assembly-related larameter shifts. Details on this trimming may be obained by contacting the factory.

lisual Inspection

Jice are 100% visually inspected in accordance with MIL-;TD-883, Method 2010 Condition B.

Chip Dimensions

Chip dimensions are as indicated on individual dice data sheets. Tolerance is ± 1 mil. Chip thickness ranges from 12 mils to 20 mils, depending on product type. Bond pad dimensions are 4.5 mils $\times 4.5$ mils minimum.

Topside Passivation

LTC products are passivated with a 2- layer system: a proprietary deposited oxide gives a crack-free conformal coverage of metal and oxide steps. A plasma nitride overcoat protects the die from ionic contamination and scratches during handling, testing and assembly. Note that LTC uses fuse link, laser and zener zap trimming techniques which may require windows in the passivation over the trim points. This passivation system is a major contributor to the extremely high reliability demonstrated throughout millions of device hours of accelerated testing of LTC devices in plastic and hermetic packages.

Topside Metallization

The metallization is a minimum of $11,000 \AA$ thick unless otherwise specified. The quality of the metallization step coverage is monitored via a weekly SEM inspection per MIL-STD-883, Method 2018.

Backside Metal

Dice products are normally provided without backside metallization. Contact LTC for details about availability of LTC products with a particular backside metallization.

Backside Potential

LTC products are junction isolated. For proper operation the backside must be electrically connected to either the most negative potential seen by the IC or the most positive potential. This information is given in the individual dice data sheets.

Packaging

Dice are packaged in compartmentalized waffle packs for ease of handling and storage. Each waffle pack contains 100 dice. Special packaging methods are also available by contacting the factory.

Quality Levels of Dice Shipped

Each dice lot is guaranteed to meet the following requirements:

- Internal visual per MIL-STD-883, Method 2010, Condition B: 1.0\% AQL Level II.
- Electrical: Due to variations in assembly methods and packaging techniques LTC does not guarantee electrical specifications after assembly. When a determination as to the finished products assembly yield is needed, the lot acceptance testing available at extra cost should be pursued.

Reliability Assurance

In addition to the more conventional reliability audits performed on finished products, LTC has innovated a unique periodic wafer fab reliability audit using a specially designed reliability structure that is stepped into all wafers. The test structure is optimized to accelerate the two primary failure mechanisms in linear circuits: mobile positive ions and surface charge-induced inversions. This provides a continuous monitor on the reliability performance of LTC's wafer fab processes and provides immediate feedback to wafer fab typically within one week.

Electrostatic Discharge (ESD) Precautions

Precision linear devices, especially those with very low (pA) input bias current levels and low ($<50 \mu \mathrm{~V}$) input offset voltages are susceptible to shifts in electrical performance and ESD damage as a result of improper handling. LTC recommends that ESD precautions, such as grounded conductive work stations, grounded conductive wrist straps and grounded equipment, be taken to prevent ESD damage.

ORDERING INFORMATION

Dice may be ordered by the part number defined in the dice data sheet. Minimum direct dice order per delivery is 1,000 pieces or $\$ 5,000$, whichever is greater. Other minimums and conditions may also apply. Smaller quantities are available from authorized dice processing companies. In some cases, tighter parameter selections than indicated on the dice data sheets can be obtained by special order. Please contact the factory for details.

Lot Acceptance Testing

Lot acceptance testing (LAT) based on sample assembly and testing is available at extra cost. Sample sizes and acceptable electrical test limits vary from device to device and must be negotiated at the time of quoting. Contact the factory for details.

Application Notes

AN1 Understanding and Applying the LT1005 Multifunction Regulator
This application note describes the unique operating characteristics of the LT1005 and describes a number of useful applications which take advantage of the regulator's ability to control the output with a logic control signal.
AN2 Performance Enhancement Techniques for 3-Terminal Regulators
This application note describes a number of enhancement circuit techniques used with existing 3 -terminal regulators which extend current capability, limit power dissipation, provide high voltage output, operate from 110VAC or 220VAC without the need to switch transformer windings, and many other useful application ideas.
AN3 Applications for a Switched-Capacitor Instrumentation Building Block
This application note describes a wide range of useful applications for the LTC1043 dual precision instrumentation switched-capacitor building block. Some of the applications described are ultra high performance instrumentation amplifier, lock-in amplifier, wide range digitally controlled variable gain amplifier, relative humidity sensor signal conditioner, LVDT signal conditioner, charge pump FN and V/F converters, 12-bit A/D converter and more.

AN4 Application for a New Power Buffer

The LT1010 150mA power buffer is described in a number of useful applications such as boosted op amp, a feed-forward, wideband DC stabilized buffer, a video line driver amplifier, a fast sample-hold with hold step compensation, an overload protected motor speed controller, and a piezoelectric fan servo.
AN5 Thermal Techniques in Measurement and Control Circuitry
Six applications utilizing thermally based circuits are detailed. Included are a 50 MHz RMS to DC converter, and anemometer, a liquid flowmeter and others. A general discussion of thermodynamic considerations involved in circuitry is also presented.
AN6 Applications of New Precision Op Amps
Application considerations and circuits for the LT1001 and LT1002 single and dual precision amplifiers are illustrated in a number of circuits, including strain gauge signal conditioners, linearized platinum RTD circuits, an ultra precision dead zone circuit for motor servos and other examples.
AN7 Some Techniques for Direct Digitization of Transducer Outputs Analog-to-digital conversion circuits which directly digitize low level transducer outputs, without DC preamplification, are presented. Covered are circuits which operate with thermocouples, strain gauges, humidity sensors, level transducers and other sensors.
AN8 Power Conditioning Techniques for Batteries
A variety of approaches for power conditioning batteries is given. Switching and linear regulators and converters are shown, with attention to efficiency and low power operation. 14 circuits are presented with performance data.
AN9 Application Considerations and Circuits for a New Chopper-Stabilized Op Amp
A discussion of circuit, layout and construction considerations for low level DC circuits includes error analysis of solder, wire and connector junctions. Applications include sub-microvolt instru-
mentation and isolation amplifiers, stabilized buffers and comparators and precision data converters.
AN10 Methods for Measuring Op Amp Settling Time
The AN10 begins with a survey of methods for measuring op amp settling time. This commentary develops into circuits for measuring settling time to 0.0005%. Construction details and results are presented. Appended sections cover oscilloscope overload limitations and amplifier frequency compensation.
AN11 Designing Linear Circuits for 5V Operation
This note covers the considerations for designing precision linear circuits which must operate from a single 5 V supply. Applications include various transducer signal conditioners, instrumentation amplifiers, controllers and isolated data converters.
AN12 Circuit Techniques for Clock Sources
Circuits for clock sources are presented. Special attention is given to crystal-based designs including TXCOs and VXCOs.
AN13 High Speed Comparator Techniques
The AN13 is an extensive discussion of the causes and cures of problems in very high speed comparator circuits. A separate applications section presents circuits, including a 0.025% accurate 1 Hz to $30 \mathrm{MHz} \mathrm{V} / \mathrm{F}$ converter, a $200 \mathrm{~ns} 0.01 \%$ sample-hold and a 10 MHz fiber-optic receiver. Five appendices covering related topics complete this note.
AN14 Designs for High Frequency Voltage-to-Frequency Converters
A variety of high performance V/Fcircuits is presented. Included are a 1 Hz to 100 MHz design, a quartz-stabilized type and a 0.0007% linear unit. Other circuits feature 1.5 V operation, sine wave output an nonlinear transfer functions. A separate section examines the trade-offs and advantages of various approaches to V/F conversion.
AN15 Circuitry for Single Cell Operation
1.5V powered circuits for complex linear functions are detailed. Designs include a V/F converter, a 10-bit A/D, sample-hold amplifiers, a switching regulator and other circuits. Also included is a section of component considerations for 1.5 V powered linear circuits.
AN16 Unique IC Buffer Enhances Op Amp Designs, Tames Fast Amplifiers
This note describes some of the unique IC design techniques incorporated into a fast, monolithic power buffer, the LT1010. Also, some application ideas are described such as capacitive load driving, boosting fast op amp output current and power supply circuits.
AN17 Consideration for Successive Approximation A/D Converters
A tutorial on SAR type A/D converters, this note contains detailed information on several 12-bit circuits. Comparator, clocking, and preamplifier designs are discussed. A final circuit gives a 12-bit conversion in $1.8 \mu \mathrm{~s}$. Appended sections explain the basic SAR technique and explore D/A considerations.
AN18 Power Gain Stages for Monolithic Amplifiers
This note presents output state circuits which provide power gain for monolithic amplifiers. The circuits feature voltage gain, current gain, or both. Eleven designs are shown, and performance is summarized. A generalized method for frequency compensation appears in a separate section.

AN19 LT1070 Design Manual

This design manual is an extensive discussion of all standard switching configurations for the LT1070; including buck, boost, flyback, forward, inverting and "Cuk." The manual includes comprehensive information on the LT1070, the external components used with it, and complete formulas for calculating component values.
AN2O Applications for a DC Accurate Lowpass
Switched-Capacitor Filter
Discusses the principles of operation of the LTC1062 and helpful hints for its application. Various application circuits are explained in detail with focus on how to cascade two LTC1062s and how to obtain notches. Noise and distortion performance are fully illustrated.

AN21 Composite Amplifiers

Applications often require an amplifier that has extremely high performance in several areas. For example, high speed and DC precision are often needed. If a single device cannot simultaneously achieve the desired characteristics, a composite amplifier made up of two (or more) devices can be configured to do the job. AN21 shows examples of composite approaches in designs combining speed, precision, low noise and high power.
AN22 A Monolithic IC for 100MHz RMS/DC Conversion
AN22 details the theoretical and application aspects of the LT1088 thermal RMS/DC converter. The basic theory behind thermal RMS/ DC conversion is discussed and design details of the LT1088 are presented. Circuitry for RMS/DC converters, wideband input buffers and heater protection is shown.
AN23 Micropower Circuits for Signal Conditioning
Low power operation of electronic apparatus has become increasingly desirable. AN23 describes a variety of low power circuits for transducer signal conditioning. Also included are designs for data converters and switching regulators. Three appended sections discuss guidelines for micropower design, strobed power operation and effects of test equipment on micropower circuits.
AN24 Unique Applications for the LTC1062 Lowpass Filter
Highlights the LTC1062 as a lowpass filter in a phase lock loop. Describes how the loop's bandwidth can be increased and the VCO output jitter reduced when the LTC1062 is the loop filter. Compares it with a passive RC loop filter.
Also discussed is the use of LTC1062 as simple bandpass and bandstop filter.
AN25 Switching Regulators for Poets
Subtitled "A Gentle Guide for the Trepidatious," this is a tutorial on switching regulator design. The text assumes no switching regulator design experience, contains no equations, and requires no inductor construction to build the circuits described.
Designs detailed include flyback, isolated telecom, off-line, and others. Appended sections cover component considerations, measurement techniques and steps involved in developing a working circuit.
AN26 Acollection of interface applications between various microprocessors/controllers and the LTC1090 family of data acquisition systems. The note is divided into sections specific to each interface. The following sections are available:

Number	A/D	Microprocessor/ Microcontroller
AN26A	LTC1090	8051
AN26B	LTC1090	$68 H C 05$
AN26C	LTC1090	63705
AN26D	LTC1090	COP820
AN26E	LTC1090	TMS7742
AN26F	LTC1090	COP402N
AN26G	LTC1091	8051
AN26H	LTC1091	$68 H C 05$
AN26I	LTC1091	COP820
AN26J	LTC1091	TMS7742
AN26K	LTC1091	COP402N
AN26L	LTC1091	HD63705V0
AN26M	LTC1090	TMS320C25
AN26N	LTC1091/92	TMS320C25
AN260	LTC1090	Z-80
AN26P	LTC1090	HD64180
AN26Q	LTC1091	HD64180
AN26R	LTC1094	TMS320C25

These interface notes demonstrate the ease with which the LTC1090 family can be interfaced to microprocessors/controllers having either parallel or serial ports. A complete hardware and software description of the interface is included.

AN27A A Simple Method of Designing Multiple Order All Pole Bandpass Filters by Cascading 2nd Order Sections

Presents two methods of designing high quality switched-capacitor bandpass filters. Both methods are intended to vastly simplify the mathematics involved in filter design by using tabular methods. The text assumed no filter design experience but allows high quality filters to be implemented by techniques not presented before in the literature. The designs are implemented by numerous examples using devices from LTC's Switched-Capacitor filter family:LTC1060, LTC1061, and LTC1064. Butterworth and Chebyshev bandpass filters are discussed.

AN28 Thermocouple Measurement

Considerations for thermocouple-based temperature measurement are discussed. A tutorial on temperature sensors summarizes performance of various types, establishing a perspective on thermocouples. Thermocouples are then focused on. Included are sections covering cold-junction compensation, amplifier selection, differential/isolationtechniques, protection, and linearization. Complete schematics are given for all circuits. Processor-based linearization is also presented with the necessary software detailed.

AN29 Some Thoughts on DC/DC Converters

This note examines a wide range of $D C / D C$ converter applications. Single inductor, transformer, and switched-capacitor converter designs are shown. Special topics like low noise, high efficiency, low quiescent current, high voltage, and wide-input voltage range converters are covered. Appended sections explain some fundamental properties of different types of converters.

AN30 Switching Regulator Circuit Collection

Switching regulators are of universal interest. Linear Technology has made a major effort to address this topic. A catalog of circuits has been compiled so that a design engineer can swiftly determine which converter type is best. This catalog serves as a visual index to be browsed through for a specific or general interest.

IN31 Linear Circuits for Digital Systems

Subtitled "Some Affable Analogs for Digital Devotees," discusses a number of analog circuits useful in predominantly digital systems. $V_{\text {PP }}$ generators for flash memories receive extensive treatment. Other examples include a current loop transmitter, dropout detectors, power management circuits, and clocks.

IN32 High Efficiency Linear Regulators

Presents circuit techniques permitting high efficiency to be obtained with linear regulation. Particular attention is given to the problem of maintaining high efficiency with widely varying inputs, outputs and loading. Appendix sections review component characteristics and measurement methods.

IN33 Converting Light to Digits: LTC1099 Half-Flash 8-Bit A/D Converter Digitizes Photodiode Array
This application note describes a Linear Technology "Half-Flash" A/D converter, the LTC1099, being connected to a 256 element line scan photodiode array. This technology adapts itself to handheld (i.e., low power) bar code readers, as well as high resolution automated machine inspection applications.
IN34 LTC1099 Enables PC-Based Data Acquisition Board to Operate DC-20kHz
A complete design for a data acquisition card for the IBM PC is detailed in this application note. Additionally, C language code is provided to allow sampling of data at speed of more than 20 kHz . The speed limitation is strictly based on the execution speed of the "C" data acquisition loop. A "Turbo" XT can acquire data at speeds greater than 20 kHz . Machines with 80286 and 80386 processors can go faster than 20 kHz . The computer that was used as a test bed in this application was an XT running at 4.77 MHz and therefore all system timing and acquisition time measurements are based on a 4.77MHz clock speed.

IN35 Step-Down Switching Regulators

Discusses the LT1074, an easily applied step-down regulator IC. Basic concepts and circuits are described along with more sophisticated applications. Six appended sections cover LT1074 circuitry detail, inductor and discrete component selection, current measuring techniques, efficiency considerations and other topics.
IN36 A collection of interface applications between various microprocessors/controllers and the LTC1290 family of data acquisition systems. The note is divided into sections specific to each interface. The following sections are available:

Number	A/D	Microprocessor/ Microcontroller
AN36A	LTC1290	8051
AN36B	LTC1290	MC68HC05
AN36C	LTC1290/LTC1090	TMS370
AN36D	LTC1290	COP820C
AN36E	LTC1290	TMS7742
AN36F	LTC1290	COP402N
AN360	LTC1290	Z-80
AN36P	LTC1290	HD64180

These interface notes demonstrate the ease with which the LTC1290 can be interfaced to microprocessors/controllers having either parallel or serial ports. A complete hardware and software description of the interface is included.

Fast Charge Circuits for NiCad Batteries

Safe, fast charging of NiCad batteries is attractive in many applications. This note details simple, thermally-based fast charge circuitry for NiCads. Performance data is summarized and compared to other charging methods.

FilterCAD User's Manual, Version 1.00

This note is the manual for FCAD, a computer-aided design program for designing filters with LTC's switched-capacitor filter family. FCAD helps users design good filters with a minimum amount of effort. The experienced filter designer can use the program to achieve better results by providing the ability to play "what if" with the values and configuration of various components.

AN39 Parasitic Capacitance Effects in Step-Up Transformer Design
This note explores the causes of the large resonating current spikes on the leading edge of the switch current waveform. These anomalies are exacerbated in very high voltage designs.
AN40 Take the Mystery Out of the Switched-Capacitor Filter: The System Designer's Filter Compendium
This note presents guidelines for circuits utilizing LTC's switchedcapacitor filters. The discussion focuses on how to optimize filter performance by optimizing the printed wiring board, the power supply, and the output buffering of the filter. Many additional topics are discussed such as how to select the proper filter response for the application and how to characterize a filter's THD for DSP applications.

AN41 Questions and Answers on the SPICE Macromodel Library

This note provides answers to some of the more common questions concerning LTC's Macromodel Library. Topics include hardware and software requirements, model characteristics, and limitations and interpretation of results.

AN42 Voltage Reference Circuit Collection

A wide variety of voltage reference circuits are detailed in this extensive guidebook of circuits. The detailed schematics cover simple and precision approaches at a variety of power levels. Included are 2 and 3 terminal devices in series and shunt modes for positive and negative polarities. Appended sections cover resistor and capacitor selection and trimming techniques.
Bridge Circuits
Subtitled "Marrying Gain and Balance," this note covers signal conditioning circuits for various types of bridges. Included are transducer bridges, AC bridges, Wien bridge oscillators, Schottky bridges, and others. Special attention is given to amplifier selection criteria. Appended sections cover strain gauge transducers, understanding distortion measurements, and historical perspectives on bridge readout mechanisms and Wein bridge oscillators.

AN44 LT1074/LT1076 Design Manual

This note discusses the use of the LT1074 and LT1076 high efficiency switching regulators. These regulators are specifically designed for ease of use. This application note is intended to eliminate the most common errors that customers make when using switching regulators as well as offering insight into the inner workings of switching designs. There is an entirely new treatment of inductor design based upon simple mathematical formulas that yield direct results. There are extensive tutorial sections devoted to the care and feeding of the Positive Step-Down (Buck) Converter, the Tapped Inductor Buck Converter, the Positive-to-Negative Converter and the Negative Boost Converter. Additionally, many troubleshooting hints are included as well as oscilloscope techniques,
soft-start architectures, and micropower shutdown and EMI suppression methods.

AN45 Measurement and Control Circuit Collection

A variety of measurement and control circuits are included in this application note. Eighteen circuits, including ultra-low noise amplifiers, current sources, transducer signal conditioners, oscillators, data converters and power supplies are presented. The circuits emphasize precision specifications with relatively simple configurations.
AN46 Efficiency Characteristics of Switching Regulator Circuits
Efficiency varies for different DC/DC converters. This application note compares the efficiency characteristics of some of the more popular types. Step-up, step-down, flyback, negative-to- positive, and positive-to-negative are shown. Appended sections discuss how to select the proper aluminum electrolytic capacitor and explain power switch and output diode loss calculations.
AN47 High Speed Amplifier Techniques
This application note, subtitled "A Designer's Companion for Wideband Circuitry," is intended as a reference source for designing with fast amplifiers. Approximately 150 pages and 300 figures cover frequently encountered problems and their possible causes. Circuits include a wide range of amplifiers, filters, oscillators, data converters and signal conditioners. Eleven appended sections discuss related topics including oscilloscopes, probe selection, measurement and equipment considerations, and breadboarding techniques.

AN48 Using the LTC Op Amp Macromodels

LTC's op amp macromodels are described in detail, along with the theory behind each model and complete schematics of each topology. Extended modeling topics are discussed, such as phase/ frequency response modifications and asymmetric slew rate for JFET op amp models. LTC's macromodels are optimized for accuracy and fast simulation times. Simulation times can be further reduced by using streamlining techniques found throughout AN48.

AN49 Illumination Circuitry for Liquid Crystal Displays

Current generation portable computers and instruments utilize backlit liquid crystal displays. The back light requires a highly efficient, high voltage AC source as well as other supply circuitry. AN49 details these circuits and also includes sections on efficiency measurements and instrumentation considerations. A separate section discusses physical and layout considerations for the display.
AN50 Interfacing to Microprocessor Based 5V Systems
This application note discusses a variety of approaches for interfacing analog signals to 5 V powered systems. Synthesizing a "rail-torail" op amp and scaling techniques for A / D converters are covered. A voltage-to-frequency converter, applicable where high resolution is required, is also presented.

AN51 Power Conditioning for Notebook and Palmtop Systems

Notebook and palmtop systems need a number of voltages developed from a battery. Competitive solutions require small size, high efficiency and light weight. This publication includes circuits for high efficiency 5 V and 3.3 V switching and linear regulators, back light display drivers and battery chargers. All the circuits are specifically tailored for the requirements outlined above.
AN52 Linear Technology Magazine Circuit Collection, Vol 1
This application note consolidates the circuits from the first few years of Linear Technology Magazine into one publication. Pre-
sented in the note are a variety of circuits ranging from a 50 W high efficiency ($>90 \%$) switching regulator to steep roll-off filter circuits with low distortion to 12-bit differential temperature measurement systems.

AN53 Micropower High-Side MOSFET Drivers

This application note describes the operation of high-side N channel MOSFET switch drivers designed specifically for operation in battery-powered equipment, such as notebook and palmtop computers and portable medical instruments. A selection guide simplifies the proper choice of MOSFET and driver for a particular high-side switch application. Circuits to drive and protect load impedances ranging from large inductors to large capacitors are described and a section on surface mount and copper clad shunts is included.
AN54 Power Conversion from Milliamps to Amps at Ultra High Efficiency (Up to 95\%)
This application note discusses the use of the LTC1147, LTC1148, and LTC1149 ultra high efficiency switching regulators in a wide variety of applications. These controllers feature a current-mode architecture which includes an automatic low current operating mode called Burst Mode ${ }^{T M}$ operation, making greater than 90% efficiencies possible at output currents as low as 10 mA . This feature maximizes battery life while a product is in sleep or standby modes. In addition, the LTC1148 and LTC1149 are synchronous switching regulators which achieve high efficiency conversion from 10 mA to 10 A .
AN55 Techniques for 92\% Efficient LCD Illumination
This publication details several LCD backlight circuits which feature 92% efficiency. Other benefits include low voltage operation, synchronizing capability, higher output power for color displays, and extended dimming range. Extensive coverage of practical issues includes lay out problems, multi-lamp displays, safety and reliability concerns and efficiency and photometric measurements. Also included is a review of circuits which did not work along with appropriate commentary.
AN56 "Better Than Bessel" Linear Phase Filters for Data Communications
The pace of the world of digital communications is increasing at a tremendous rate. Each day the engineer is requested to compact more data in the same channel bandwidth with closer channel spacing. This application note discusses some of the requirements and techniques for using the new LTC1064/1164 and LTC1264-7 filters which were designed specifically for digital communications. The terms "channel bandwidth," "eye diagrams" and "linear phase" filtering are discussed without the need for the "engineering speak" which permeates many textbook explanations of the same subjects.
AN57 Video Circuit Collection
AN57, the Video Circuit Collection, features a variety of video circuits designed at LTC. The LT1204 70MHz multiplexer is featured in a number of circuits which require excellent video isolation from channel to channel. High speed voltage and current feedback amplifiers are highlighted throughout the section on video processing circuits. There is a section on applying Current Feedback Amplifiers (CFAs) and a number of articles taken from the Linear Technology Magazine.

5V to 3.3V Converters for Microprocessor Systems
Many popular microprocessors operate from 3.3 V supplies, yet they are used in systems where the predominate source of power is 5 V . AN58 presents a collection of both linear and switching regulator solutions for conversion of 5 V to 3.3 V at currents ranging from 100 mA to 20A. Applications information and a comparison of various bypass capacitor types is included. Most of the designs can be easily modified for other intermediate voltages such as 3.45 V , 3.7 V , and 4.1V.

AN59 Applications of the LT1300 and LT1301 Micropower DC/DC Converters
This note covers operation and applications of the LT1300 and LT1301 high efficiency micropower step-up DC/DC converter ICs. Internal operation of the ICs is described in detail. A variety of applications are presented, ranging from straightforward 2-cell to 5 V converters and 5 V to 12 V converters to exotic transducer-based circuits such as flame detectors and CCFL drivers. Converters from both 2 -cell and 4 -cell inputs are included. Operating hours at various load currents are presented and relative merits of different battery types are discussed.
AN60 PCMCIA Card and Card Socket Power Management
Most portable systems have expansion sockets conforming to the standards set by the Personal Computer Memory Card International Association (PCMCIA). This standard requires the host to perform an unusual amount of switching on both the $V_{C C}$ and VPP voltage lines. Card designers face difficult power management and DC/DC conversion issues of their own. Board real estate and component height are at a premium making design difficult and component selection critical. This application note discusses in detail both the host and card designer issues and highlights several new products designed specifically for these applications.

AN61 Practical Circuitry for Measurement and Control Problems
This collection of circuits was worked out between June 1991 and July of 1994. Most were designed at customer request or are derivatives of such efforts. Types of circuits include power converters, transducer signal conditioners, amplifiers and signal generators. Specific circuits include low noise amplifiers, high power single cell $\mathrm{DC} / \mathrm{DC}$ converters, portable high accuracy barometers, a $10 \mathrm{mHz} 1 \%$ accuracy RMS/DC converter, and random noise generators. Appended sections cover noise theory and present a historical perspective of wideband amplifiers.

AN62 Data Acquisition Circuit Collection

This application note presents a wide variety of data acquisition circuits. The detailed circuit schematics cover $8-, 10$-, and 12 -bit ADC and DAC applications, serial and parallel digital interfaces, battery monitoring, temperature sensing, isolated interfaces, and connections to various popular microprocessors and microcontrollers. An appendix covers suggested voltage references.

AN63 Power Supply Modules for the P54C-VR Pentium ${ }^{\text {® }}$ Microprocessor

This application note describes the design of both linear and switching regulators which provide power for 90 MHz Pentium processors. The circuits are intended to comply with Intel's modular power supply specification and provide sufficient power for cache RAM and chip sets in addition to the CPU. They are also capable of providing the additional power required by an upgrade "overdrive" processor.

[^61]
Jesign Notes

DESIGN NOTE 1

New Data Acquisition Systems Communicate With Microprocessors Over Four Wires

DESIGN NOTE 2

Sampling Of Signals For Digital Filtering And Gate Measurements DESIGN NOTE 3
Operational Amplifier Selection Guide For Optimum Noise Performance

DESIGN NOTE 4

New Developments In RS232 Interfaces

DESIGN NOTE 5

Temperature Measurement Using The LTC1090/91/92 Series Of Data Acquisition Systems
DESIGN NOTE 6
Operational Amplifier Selection Guide For Optimum Noise Performance
DESIGN NOTE 7
JC Accurate Filter Eases PLL Design
JESIGN NOTE 8
Inductor Selection For LT1070 Switching Regulators
JESIGN NOTE 9
כhopper Amplifiers Complement a DC Accurate Lowpass Filter
JESIGN NOTE 10
Electrically Isolating Data Acquisition Systems

DESIGN NOTE 11
Achieving Microamp Quiescent Current In Switching Regulators
DESIGN NOTE 12
An LT1013 And LT1014 Op Amp SPICE MacroModel
DESIGN NOTE 13
Closed-Loop Control With The LTC1090 Series Of Data Acquisition Systems
DESIGN NOTE 14
Extending The Applications Of 5V Powered RS232 Transceivers
DESIGN NOTE 15
Noise Calculations In Op Amp Circuits
DESIGN NOTE 16
Switched-Capacitor Lowpass Filters For Anti-Aliasing Applications
DESIGN NOTE 17
Programming Pulse Generators For Flash EPROMs
DESIGN NOTE 18
A Battery-Powered Laptop Computer Power Supply
DESIGN NOTE 19
A Two-Wire Isolated And Powered 10-Bit Data Acquisition System
DESIGN NOTE 20
Hex Level Shift Shrinks Board Space
DESIGN NOTE 21
Floating Input Extends Regulator Capabilities

15-87

DESIGN TOOLS

DESIGN NOTE 22

New 12-Bit Data Acquisition Systems Communicate With Microprocessors Over Four Wires
DESIGN NOTE 23
Micropower, Single Supply Applications:
(1) A Self-Biased, Buffered Reference
(2) Megaohm Input Impedance Difference Amplifier

DESIGN NOTE 24
Complex Data Acquisition System Uses Few Components
DESIGN NOTE 25
A Single Amplifier, Precision High Voltage Instrument Amp
DESIGN NOTE 26
Auto-Zeroing A/D Offset Voltage
DESIGN NOTE 27
Design Considerations For RS232 Interfaces
DESIGN NOTE 28
A SPICE Op Amp Macromodel For The LT1012
DESIGN NOTE 29
A Single Supply RS232 Interface For Bipolar A/D Converters
DESIGN NOTE 30
RS232 Transceiver With Automatic Power Shutdown Control
DESIGN NOTE 31
Isolated Power Supplies For Local Area Networks
DESIGN NOTE 32
A Simple Ultra Low Dropout Regulator
DESIGN NOTE 33
Powering 3.3V Digital Systems
DESIGN NOTE 34
Active Termination For SCSI-2 Bus
DESIGN NOTE 35
12-Bit 8-Channel Data Acquisition System Interface To IBM PC Serial Port
DESIGN NOTE 36
Ultra Low Noise Op Amp Combines Chopper And Bipolar Op Amps
DESIGN NOTE 37
High Dynamic Range Bandpass Filters For Communication
DESIGN NOTE 38
Applications For A New Micropower, Low Charge Injection Analog Switch
DESIGN NOTE 39
Low Power CMOS RS485 Transceiver

DESIGN NOTE 40

Designing With A New Family Of Instrumentation Amplifiers

DESIGN NOTE 41

Switching Regulator Allows Alkalines To Replace NiCads
DESIGN NOTE 42
Chopper vs Bipolar Op Amps - An Unbiased Comparison
DESIGN NOTE 43
LT1056 Improved JFET Op Amp Macromodel Slews Asymmetrically
DESIGN NOTE 44
A Single Ultra Low Dropout Regulator

DESIGN NOTE 45

Signal Conditioning For Platinum Temperature Transducers
DESIGN NOTE 46
Current Feedback Amplifier "Do's and Don't's"

DESIGN NOTE 47

Switching Regulator Generates Both Positive and Negative Supply with a Single Inductor

DESIGN NOTE 48

No Design Switching Regulator 5V, 5A Buck (Step Down) Regulator DESIGN NOTE 49
No Design Switching Regulator 5V Buck-Boost (Positive-to-Negative)
Regulator
DESIGN NOTE 50
High Frequency Amplifier Evaluation Board
DESIGN NOTE 51
Gain Trimming in Instrumentation Amplifier Based Systems

DESIGN NOTE 52

DC-DC Converters for Portable Computers
DESIGN NOTE 53
High Performance Frequency Compensation Gives DC-to-DC Converter $75 \mu \mathrm{~s}$ Response With High Stability
DESIGN NOTE 54
A 4-Cell Ni-Cad Regulator/Charger for Notebook Computers
DESIGN NOTE 55
New Low Cost Differential Input Video Amplifiers Simplify Designs and Improve Performance

DESIGN NOTE 56

3V Operation of Linear Technology Op Amps
DESIGN NOTE 57
Video Circuits Collection
DESIGN NOTE 58
A Simple, Surface Mount Flash Memory Vpp Generator
DESIGN NOTE 59
5V High Current Step-Down Switchers
DESIGN NOTE 60
The LTC1096 and 1097:Micropower, S0-8, 8-Bit A/Ds Sample at 1 kHz on $3 \mu \mathrm{~A}$ of Supply Current
DESIGN NOTE 61
Peak Detectors Gain in Speed and Performance

DESIGN NOTE 62

No Design Offline Power Supply
DESIGN NOTE 63
2 AA Cells Replace 9V Battery, Extend Operating Life
DESIGN NOTE 64
RS232 Transceivers for Hand-Held Computers Withstand 10kV ESD
DESIGN NOTE 65
Send Color Video 1000 Feet Over Low Cost Twisted-Pair
DESIGN NOTE 66
New 5 V and $3 \mathrm{~V}, 12$-Bit ADCs Sample at 300 kHz on 75 mW and 140 kHz on 12 mW
DESIGN NOTE 67
A 1mV Offset, Clock-Tunable, Monolithic 5-Pole Lowpass Filter
DESIGN NOTE 68
New Synchronous Stepdown Switching Regulators Achieve 95\% Efficiency
DESIGN NOTE 69
Low Parts Count DC/DC Converter Circuit with 3.3V and 5V Outputs

DESIGN NOTE 70

A Broadband Random Noise Generator
DESIGN NOTE 71
Regulator Circuit Generates Both 3.3V and 5V Outputs from 3.3 V or 5 V to Run Computers and RS232
DESIGN NOTE 72
Single LTC1149 Delivers 3.3V and 5V at 17W

DESIGN NOTE 73

A Simple High Efficiency, Step-Down Switching Regulator
DESIGN NOTE 74
Techniques for Deriving 3.3V from 5V Supplies
DESIGN NOTE 75
RS232 Interface Circuits for 3.3V Systems
DESIGN NOTE 76
PC Card Power Management Techniques
DESIGN NOTE 77
Single LTC1149 Provides 3.3V and 5V in Surface Mount

DESIGN NOTE 78

Triple Output 3.3V, 5V, and 12V High Efficiency Notebook Power Supply DESIGN NOTE 79
Single 4-Input IC Gives Over 90dB Crosstalk Rejection at 10 MHz and is Expandable
DESIGN NOTE 80
ESD Testing for RS232 Interface Circuits
DESIGN NOTE 81
4×4 Video Crosspoint Has 100 MHz Bandwidth and 85 dB Rejection at 10 MHz
DESIGN NOTE 82
5V to 3.3V Regulator with Fail-Safe Switchover
DESIGN NOTE 83
C-Load ${ }^{\text {TM }}$ Op Amps Tame Instabilities
DESIGN NOTE 84
Source Resistance Induced Distortion in Op Amps
DESIGN NOTE 85
Interfacing to Apple LocalTalk ${ }^{(1)}$ Networks
DESIGN NOTE 86
Ultra-Low Power, High Efficiency DC/DC Converter Operates Outside the Audio Band

DESIGN NOTE 87

Fast Regulator Paces High Performance Processors
DESIGN NOTE 88
New 500ksps and 600ksps ADCs Match Needs of High Speed Applications DESIGN NOTE 89
Applications of the LT1366 Rail-to-Rail Amplifier
DESIGN NOTE 90
High Efficiency Power Sources for Pentium ${ }^{\text {TM }}$ Processors
DESIGN NOTE 91
5 V to 3.3V Circuit Collection

DESIGN NOTE 92

An Adjustable Video Cable Equalizer Using the LT1256
DESIGN NOTE 93
PCMCIA Socket Voltage Switching (Why Your Portable System Needs SafeSlot ${ }^{\text {TM }}$ Protection)
DESIGN NOTE 94
Interfacing to V. 35 Networks

DESIGN NOTE 95
Capacitor and EMI Considerations for New High Frequency Switching
Regulators
DESIGN NOTE 96
LTC1451/52/53: 12-Bit Rail-to-Rail Micropower DACs in an S0-8
DESIGN NOTE 97
Flash Memory VPP Generator Reference Designs
DESIGN NOTE 98
Highly Integrated High Efficiency DC/DC Conversion
DESIGN NOTE 99
LT1182 Floating CCFL with Dual Polarity Contrast
DESIGN NOTE 100
Dual Output Regulator Uses Only One Inductor

DESIGN NOTE 101

A Precision Wideband Current Probe for LCD Backlight Measurement
DESIGN NOTE 102
RS485 Transceivers Reduce Power and EMI
DESIGN NOTE 103
New LTC1266 Switching Regulator Provides High Efficiency at 10A Loads DESIGN NOTE 104
LTC1410: 1.25Msps 12-Bit A/D Converter Cuts Power Dissipation and Size DESIGN NOTE 105
LTC1265: A New, High Efficiency Monolithic Buck Converter

DESIGN NOTE 106

The LTC1392: Temperature and Voltage Measurement in a Single Chip

DESIGN NOTE 107

C-Load ${ }^{\text {TM }}$ Op Amps Conquer Instabilities
DESIGN NOTE 108
250kHz, 1mA IQ Constant Frequency Switcher Tames Portable Systems Power
DESIGN NOTE 109
Micropower Buck/Boost Circuits, Part 1: Converting Three Cells to 3.3 V
DESIGN NOTE 110
Micropower Buck/Boost Circuits, Part 2: Converting Four Cells to 5 V
DESIGN NOTE 111
LT1510 High Efficiency Lithium-Ion Battery Charger
DESIGN NOTE 112
LTC1390: A Versatile 8-Channel Multiplexer
DESIGN NOTE 113
Big Power for Big Processors: The LTC1430 Synchronous Regulator
DESIGN NOTE 114
The LTC1267 Dual Switching Regulator Controller Operates from High Input Voltages
DESIGN NOTE 115
Create a Virtual Ground with the LT1118-2.5 Sink/Source Voltage Regulator
C-Load and SafeSlot are trademarks of Linear Technology Corporation.
LocalTalk is a registered trademark of Apple Computer, Inc.

DESIGN TOOLS

Applications on Disk

NOISE DISK

This IBM-PC (or compatible) program allows the user to calculate circuit noise using LTC op amps, determine the best LTC op amp for a low noise application, display the noise data for LTC op amps, calculate resistor noise, and calculate noise using specs for any op amp.

SPICE MACROMODEL DISK

This IBM-PC (or compatible) high density diskette contains the library of LTC op amp SPICE macromodels. The models can be used with any version of SPICE for general analog circuit simulations. The diskette also contains working circuit examples using the models, and a demonstration copy of PSpice ${ }^{\text {TM }}$ by MircoSim. Also included are Application Notes 41 and 48 which describe the macromodels.

PSpice is a trademark of MicroSim Corporation.

Technical Publications

$\$ 10.00$

1990 Linear Databook, Vol I-
This 1440 page collection of data sheets covers op amps, voltage regulators, references, comparators, filters, PWMs, data conversion and interface products (bipolar and CMOS), in both commercial and military grades. The catalog features well over 300 devices. $\$ 10.00$

1994 Linear Databook, Vol III This 1826 page supplement to the 1990 and 1992 Linear Databooks is a collection of all products introduced since 1992. A total of 152 product data sheets are included with updated selection guides. The 1994 Lin ear Databook Vol III is a companion to the 1990 and 1992 Linear Databooks, which should not be discarded. $\$ 10.00$

$\$ 10.00$

1992 Linear Databook Supplement (will become the 1992 Linear Databook, Vol II) - This 1248 page supplement to the 1990 Linear Databook is a collection of all products introduced in 1991 and 1992 The catalog contains full data sheets for over 140 devices. The 1992 Linear Databook Supplement is a companion to the 1990 Linear Databook, which should not be discarded. $\$ 10.00$

Technical Publications

Power Solutions Brochure This 64 page collection of circuits contains real-life solutions for common power supply design problems. There are over 45 circuits, including descriptions, graphs and performance specifications. Topics covered include PCMCIA power management, microprocessor power supplies, portable equipment power supplies, micropower DC/DC, step-up and stepdown switching regulators, off-line switching regulators, linear regulators and switched capacitor conversion.

\$20.00
1990 Linear Applications Handbook • Volume I928 pages full of application ideas covered in depth by 40 Application Notes and 33 Design Notes. This catalog covers a broad range of "real world" linear circuitry. In addition to detailed, systems-oriented circuits, this handbook contains broad tutorial content together with liberal use of schematics and scope photography. A special feature in this edition includes a 22-page section on SPICE macromodels. $\$ 20.00$

SwitcherCAD Handbook-

This 144 page manual, including disk, guides the user through SwitcherCAD - a powerful PC software tool which aids in the design and optimization of switching regulators. The program can cut days off the design cycle by selecting topologies, calculating operating points and specifying component values and manufacturer's part numbers. $\$ 20.00$

Interface Product Handbook This 424 page handbook features LTC's complete line of line driver and receiver products for RS232, RS485, RS423, RS422, V. 35 and AppleTalk applications. Linear's particular expertise in this area involves low power consumption, high numbers of drivers and receivers in one package, mixed RS232 and RS485 devices, 10kV ESD protection of RS232 devices and surface mount packages.

\$20.00

1993 Linear Applications Handbook • Volume II Continues the stream of "real world" linear circuitry initiated by the 1990 Handbook. Similar in scope to the 1990 edition, the new book covers Application Notes 40 through 54 and Design Notes 33 through 69. Additionally, references and articles from non-LTC publications that we have found useful are also included. $\$ 20.00$

To Order These Publications Call Toll Free 1-800-4-LINEAR

PUICK REFEREOCE IODEX

LT1381 '94DB 5-120	LT1527A '900B	5-97
LTC1382 '94DB 5-127	LT1528	4-91
LTC1383 '94DB 5-133	LT1529	4-101
LTC1384 '94DB 5-139	LT1529-3.3	4-101
LTC1385 '94DB 5-145	LT1529-5	4-101
LTC1386 '94DB 5-151	LT1537	5-18
LT1389 13-73	LTC1550.	13-142
LTC1390 6-86	LTC1551.	13-142
LTC1392 13-77	LT1572	4-374
LTC1400 13-86	LTC1574.	4-385
LTC141013-97	LTC1574-3.3	4-385
LT1413 '94DB 2-68	LTC1574-5	4-385
LTC1429 4-41	LT1580	13-148
LTC1430 4-360	LT1580-2.5	13-148
LT1431 '92DB 7-13	LT1584	4-112
LT1432 '92DB 4-145	LT1585	4-112
LT1432-3.34-137	LT1587	4-112
LTC1443.................. 13-108	LT1846 '90DB	5-113
LTC1444.................. 13-108	LT1847 '90DB	5-113
LTC1445 13-108	LT3524 '90DB	5-85
LTC1451..................... 6-58	LT3525A '90DB	5-97
LTC1452 6-58	LT3526 '90DB	5-105
LTC1453 6-58	LT3527A '90DB	5-97
LT1457 '94DB 2-76	LT3846 '90DB	5-113
LTC1470 4-426	LT3847 '90DB	5-113
LTC1471.................... 4-426	LTC7541A	6-69
LTC1472 4-437	LTC7543	6-73
LTC1477 13-112	LTC7652 '90DB	2-197
LTC1478.................. 13-112	LTC7660 '90DB	5-9
LTC1480 5-26	LTC8043	. 6-80
LTC1481..................... 5-34	LTC8143	6-73
LTC1483 5-41	LTK001 '90DB	11-3
LTC1485 '94DB 5-166	LTZ1000 '90DB	3-9
LTC1487 5-49	LTZ1000A '90DB	3-9
LT1510 13-120	OP-05 '90DB	2-321
LT1512 13-130	OP-07 '90DB	2-329
LT1521 4-79	0P-07CS8 '90DB	2-337
LT1521-3 4-79	OP-15 '90DB	2-341
LT1521-3.3 4-79	OP-16 '90DB	2-341
LT1521-5 4-79	OP-27 '90DB	2-345
LTC1522 13-134	OP-37 '90DB	2-345
LT1524 '90DB 5-85	OP-215 '90DB	2-275
LT1525A '90DB 5-97	OP-227 '90DB	2-357
LT1526 '90DB 5-105	0P-237 '90DB	2-357

| OP-270 '92DB | $2-120$ |
| :--- | :--- | ---: |
| OP-470'92DB | $2-120$ |
| REF-01.............. '90DB | $3-125$ |
| REF-02 '90DB | $3-125$ |
| SG1524 '90DB | $5-85$ |
| SG1525A '90DB | $5-97$ |
| SG1527A '90DB | $5-97$ |
| SG3524 '90DB | $5-85$ |
| SG3524S '90DB | $5-93$ |
| SG3525A '90DB | $5-97$ |
| SG3527A '90DB | $5-97$ |

[^62]
LT Linen

LINEAR TECHNOLOGY CORPORATION

1630 McCarthy Blvd., Milpitas, CA 95035-7417
Phone: (408) 432-1900
FAX: (408) 434-0507
Telex: 499-3977

[^0]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook). Quick Reference Index continued on inside back pages.

[^1]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).

[^2]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).

[^3]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement

[^4]: ote: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' $92 D B=$ LTC's 1992 Databook Supplement

[^5]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement

[^6]: ote: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' 92 DB = LTC's 1992 Databook Supplement

[^7]: ote: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement nd '94DB = LTC's 1994 Databook).

[^8]: Bits-to-Nits is a trademark of Linear Technology Corporation.
 AppleTalk and LocalTalk are registered trademarks of Apple Computer, Inc.

[^9]: ote: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks (' $90 \mathrm{DB}=$ LTC's 1990 Databook, ' 92 DB $=$ LTC's 1992 Databook Supplement nd '94DB = LTC's 1994 Databook).

[^10]: ote: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB $=$ LTC's 1990 Databook, '92DB $=$ LTC's 1992 Databook Supplement 1d '94DB = LTC's 1994 Databook).

[^11]: : All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' $92 D B=$ LTC's 1992 Databook Supplement '94DB = LTC's 1994 Databook).

[^12]: ite: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement d '94DB = LTC's 1994 Databook).

[^13]: Vote: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, ' $92 D B=$ LTC's 1992 Databook Supplement ind '94DB = LTC's 1994 Databook).

[^14]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).

[^15]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).

[^16]: vote: All products in BOLD are in this Databook, others appear in LTC's 1990,1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement ind '94DB = LTC's 1994 Databook).

[^17]: *LTC Improved Replacement: 100\% Pin-for-pin compatible with better electrical specifications.
 **Similar Device: Please consult the data sheet to determine the suitability of the replacement for specific applications.

[^18]: ${ }^{\dagger}$ Typical value ${ }^{*} 10 \mathrm{~V}$ step, to 1 mV at sum node. ${ }^{* *}$ Maximum value, 10 V step, to 1 mV at sum node. ${ }^{* * * 3 V}$ Step

[^19]: $\boldsymbol{\mathcal { F }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^20]: $\overline{\boldsymbol{\sigma}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^21]: **For low-battery detection use LT1303 or LT1304

[^22]: SafeSlot is a trademark of Linear Technology Corporation

[^23]: ©T, LTC and LT are registered trademarks of Linear Technology Corporation.

[^24]: $\mathbf{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^25]: $\overline{\mathbf{Q Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^26]: onsult factory for Industrial and Military grade parts

[^27]: ©T, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

[^28]: Kool $\mathrm{M} \mu$ is a registered trademark of Magnetics, Inc.

[^29]: G, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

[^30]: Jonsult factory for Industrial and Military grade parts.
 The LTC1267 demo circuit board is now available. Consult factory.

[^31]: $\overline{\boldsymbol{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$ Burst Mode is a trademark of Linear Technology Corporation.

[^32]: * SUMIDA CD54-220MC

[^33]: ${ }^{1}$ Normally, Jamoca Almond

[^34]: $\overline{\mathbf{Q}, ~ L T C ~ a n d ~ L T ~ a r e ~ r e g i s t e r e d ~ t r a d e m a r k s ~ o f ~ L i n e a r ~ T e c h n o l o g y ~ C o r p o r a t i o n . ~}$
 Pentium is a registered trademark of Intel Corporation.
 P6 is a trademark of Intel Corporation.

[^35]: 'See note under block diagram.

[^36]: Burst Mode is a trademark of Linear Technology Corporation.

[^37]: $\overline{\mathbf{L T}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^38]: MICROWIRE/PLUS is a trademark of National Semiconductor Corp.

[^39]: $X=$ DON'T CARE

[^40]: $\overline{\boldsymbol{\Omega}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

[^41]: $\overline{\boldsymbol{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

[^42]: $\overline{\boldsymbol{\Sigma},}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^43]: $\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^44]: *Low power shutdown with instant wake up

[^45]: $\overline{\boldsymbol{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^46]: ©, LTC and LT are registered trademarks of Linear Technology Corporation.

[^47]: $\mathbf{\mathcal { O }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^48]: $\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^49]: $\boldsymbol{\mathcal { C F }}, \mathrm{LTC}$ and LT are registered trademarks of Linear Technology Corporation.

[^50]: *LTZ1000 requires external control and biasing circuits.

[^51]: $\overline{\mathbf{C Y}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

[^52]: $\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^53]: $\overline{\boldsymbol{M}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

[^54]: $\overline{\mathbf{Q}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^55]: *See Note 5

[^56]: $\overline{\mathbf{Q}, \text { LTC and LT are registered trademarks of Linear Technology Corporation．}}$

[^57]: $\boldsymbol{\mathcal { O }}$, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corp.

[^58]: * NC for fixed output versions.
 ** SHDN for LTC1550, SHDN for LTC1551

[^59]: * Terminology: SO = Small Outline, SOT = Small Outline Transistor, SSOP = Shrink Small Outline Package, TSSOP = Thin Shrink Small Outline Package.
 LTC package code designators for SMT products are:
 F = TSSOP, G = SSOP, GN = Narrow Body SSOP, GW = Wide Body SSOP, M, Q and R = DD Pak, S = Narrow Body SO, SW = Wide Body SO, ST = SOT-223.

[^60]: 4 Process Action Team (PAT) has been initiated to bring process under control.

[^61]: Burst Mode is a trademark of Linear Technology Corporation.
 Pentium is a registered trademark of Intel Corporation.

[^62]: Note: All products in BOLD are in this Databook, others appear in LTC's 1990, 1992 and 1994 Databooks ('90DB = LTC's 1990 Databook, '92DB = LTC's 1992 Databook Supplement and '94DB = LTC's 1994 Databook).

