

REFERENCE MANUAL

ADM-1

CRT DATA DISPLAY TERMINAL

by
Dr. B. C. Edmondson

LEAR SIEGLER, INC.
ELECTRONIC INSTRUMENTATION DIVISION
DATA PRODUCTS

714 NORTH BROOKHURST STREET

ANAHEIM, CALIFORNIA 92803

PREFACE

This reference manual is published as an aid to users of the ADM-1 CRT Data Display Terminal. Included are specifications, theory of operations, operational logic description and diagrams, description of CRT, monitor, keyboard, main logic board and power supply, and a section on trouble shooting or failure analysis. Options available with the ADM-1, complete parts lists and schematic drawings are included in the Appendix.

TABLE OF CONTENTS
Section Page
I. ADM-1 SPECIFICATIONS I-1
II. THEORY OF OPERATIONS |I-1
CRT Display with TV Monitor |I-1
Keyboard II-3
III. LOGIC DESCRIPTION III-1
IV. TV MONITOR IV-1
V. INSTALLATION, MAINTENANCE AND FAILURE ANALYSIS V-1
Appendix A FACTORY SUPPLIED OPTIONS
Appendix B PARTS LISTS
Appendix C SCHEMATIC DRAWINGS

LIST OF TABLES

Number Page
I. 1 ADM-1 Specifications I-1
II. 1 ADM-1 Keyboard Operations II-5
II. 2 ADM-1 Binary Code II-6
II. 3 Absolute Cursor Positionery II-10
11.4 ADM-1 ESC Sequences II-13
III. 1 Table of Register Usage III-7
III. 2 Table of Condition Sequence III-8
III. 3 Random Access Memory Control III-9
III. 4 ROM Instruction Execution Sequence Control III-10
III. 5 Table of Conditions III-10
11.6 RAM Address Control III-11
111.7 Table of Flags III-12
III:8 Asynchronous Receiver (Transmitter Control) III-13
III. 9 Tri State Bus Control III-13
III. 10 ADM-1 Instruction Set III-19
IV:1 Monitor Electrical Specifications IV-1
IV. 2 CRT Display Specifications IV-2
V. 1 Interface Connector Signal/Pin List V-1
V. 2 Failure Analysis Guide V-9
V. 3 Main Logic Board Terminal Identification Chart V-14
LIST OF FIGURES
Number Page
II. 1 ADM-1 Functional Layout II-2
11.2 ADM-1 Display Format II-3
11.3 ADM-1 Keyboard II-4
III. 1 Data Flow Block Diagram III-1
III. 2 Asynchronous Transmitter/Receiver Interface III-4
IV. 1 Synchronization and Blanking Generator Waveforms IV-4
V. 1 ADM-1 Back Panel View V-2
2 Monitor Voltage Waveforms V-10
V. 3 Main Logic Board Terminal Connections V-3
V. 4 Monitor Circuit Board Component Location V-12
V. 5 Main Logic Printed Circuit Board Assembly V-13
V. 6 Tri State Bus Signal Locations V-15
V. 7 Main Logic Printed Circuit Board Connections V-18

I. ADM-1 SPECIFICATIONS

Standard
 Optional

Display
Lines 12 24
Character Positions 960 1920
Character Set 64 USASCII
Screen Phosphor P4P31
Face Plate Plain
Refresh Rate 60 Hz
Protected Fields Reduced Intensity
Cursor
Format
Controls
Reverse Image Block
Forespace, Backspace,Upline, Downline, NewLine, Return Home, Tab,Absolute Cursor Addressing,Read Cursor Addressing
Data Transmission
Codes
Circuit
Interface
Parity
Modes
Rates
Seven Channel USASCII
Full or Half Duplex
RS-232-C or 20ma Loop Serial Printer or RS-232 Extension
Even
Odd or Fixed Parity Bit
Conversational
Page Roll
Polling
Block Text
Block Text or Text OnlyLine and PagePartial PageTwo baud rates selectedfrom following: 110, 300,600, 1200, 1800, 2400,4800 and 9600
Keyboard
Keys 5360
Construction Solid State Circuitry
Repeat Key15 CPS

Etched
Odd or Fixed Parity Bit

I. ADM-1 SPECIFICATIONS (Continued)

	Standard	Optional
Data Editing		
Character	Type Over	Insert, Delete
Line		Insert, Delete
		Back Tab
		Erase to End of Line
Unprotected Fields	Clear to Spaces	Erase to End of Field
Screen	Clear to Nulls	Erase to End of Page
		Send Partial Page
Physical Characteristics		
Dimensions	$12^{\prime \prime}$ high, $16^{\prime \prime}$ wide, 21" deep	
Weight	45 lbs	
A-C Power Requirements	$115 \mathrm{~V}, 60 \mathrm{~Hz}, 130$ watts	230 V , or 50 Hz
Environment	$5-50^{\circ} \mathrm{C}$ or $41-122^{\circ} \mathrm{F}$ 5-95\% Relative Humidity without condensation	

II. THEORY OF OPERATION

The ADM-1 Data Display Terminal is designed to provide input/output access to an electronic computer. The terminal consists of three principal functional modules:
(1) Cathode Ray Tube (CRT)
(2) Keyboard
(3) Main Circuit Board and Power Supply assembled in an attractive lightweight housing, together with necessary hardware, cabling, switches, etc., needed to complete the ADM-1 terminal system. A functional block diagram of the system is shown in Figure II.1, and each of the modules is discussed in the following sections.

CRT DISPLAY

The ADM-1 uses a cathode ray tube (CRT) and solid state circuitry with raster scan for converting alphanumeric data from a remote computer or its own memory into a screen display format.

Displayed characters are represented with a 5×7 dot matrix on the screen of the CRT. An example of the display format used is shown in Figure II.2. Note that each character row is allocated nine raster lines, seven for the character and two for vertical interline spacing. Horizontal intercharacter spacing is assured by the ADM-1 reserving two dot rows between characters. Reverse image display is used to indicate cursor position superimposed over data. Protected fields on the display are distinguished by reduced luminance.

A complete field of characters in the standard ADM-1 consists of 960 Character patterns organized of 12 rows of 80 characters each. Display fields are refreshed at a rate set by a stable crystal oscillator approximately synchronously with input power, or at 60 Hz in the standard terminal. This rapid field refresh rate generates flicker-free luminance levels and high contrast display even in bright ambient illumination.

Botn vertical and horizontal beam deflections are generated directly by trigger signals derived from the system clock and input to the TV monitor. The TV monitor is a solidstate unit designed for reliability and high quality video reproduction in industrial and

Figure II-1. ADM-1 Functional Layout

Figure 11.2 - ADM-1 Display Format
commercial installations. Theory of Operation of the TV monitor is covered in Section IV of this manual.

KEYBOARD

An ADM-1 Terminal is equipped with either a standard (53 key) or optional (60 key) extended keyboard. Both keyboards provide all ADM-1 functions, with the extended keyboard offering additional cursor control keys. A facsimile of the ADM-1 keyboard is shown in Figure II.3.

Keys are positioned on $3 / 4^{\prime \prime}$ centers, with 2 oz. operating force, and two key rollover interlocking.

The keyboard is used by depressing any of the keys individually, in combination with other keys simultaneously, or in sequences of keystrokes.

Figure 11.3 - ADM-1 Keyboard with Optional Keys

RESET

To reset the ADM-1 to $\underset{C L R}{\text { idle clear state, depress the following keys simultaneously: }}$ CTRL, SHIFT, REPT, HOME. This operation forces the control program to begin execuBRK
tion at location zero and clears all of the program control flags. The entire display screen is cleared to "spaces", the protect mode is reset, and the cursor is positioned at the "home" position. In the event RESET doesn't operate, refer to keyboard Enable/Disable below.

NORMAL KEYBOARD OPERATION

Single or simultaneous multiple keystrokes are translated into USASCII seven channel binary codes which are stored in memory, stored and transmitted, or transmitted only, depending on the ADM-1's mode.

Operation of the standard and optional extended keyboard is given in the following listing in Table II.1 and Table II.2.

TABLE II. 2 - ADM-1 BINARY CODES

,	CONTROL FUNCTIONS			DISPLAYABLE CHARACTERS					
BITS	BITS	0	1	2	3	4	5	6*	7*
4321	765	000	001	010	011	100	101	110	111
0000		NUL	DLE	SP	\emptyset	@	P	\backslash	P
0001		SOH	DC1	1	1	A	0	a	9
0010		STX	DC2	"	2	B	R	b	r
0011		ETX	DC3	\#	3	C	s	c	s
0100		EOT	DC4	\$	4	D	T	d	t
0101		ENQ	NAK	\%	5	E	u	e	u
0110		ACK	SYN	\&	6	F	v	f	v
0111		BEEP	ETB	.	7	G	w	g	w
1000		$\stackrel{\leftarrow}{\overleftarrow{B S}}$	CAN	1	8	H	X	h	x
1001		$\begin{aligned} & \text { SKIP } \\ & \mathrm{HT} \end{aligned}$	EM)	9	1	Y	i	v
1010		${ }_{\text {LF }} \downarrow$	SUB	*	:	J	z	j	z
1011		VT \uparrow	$\begin{aligned} & \text { ESCAPE } \\ & \text { ESC } \end{aligned}$	+	;	K	[k	\{
1100		FF \rightarrow	FS	,	<	L	1	1	-
1101		RETURN CR	GS	-	$=$	M	1	m	\}
1110		SO	HOME RS	.)	N	\wedge	n	\sim
1111		SI	NEW LINE US	1	?	0	-	\bigcirc	DEL

*DISPLAYED as UPPER CASE characters as given in columns 4 and 5, respectively. Exception is DEL which is not received by ADM-1. Lower case codes are stored in ADM-1 memory and displayed as upper case.

In addition to using single keys or combinations of keys to provide functions described above, keys may be used in sequence to cause operations as follows:

ESCAPE SEQUENCES

ESCAPE sequences are initiated by using the ESC key to transmit a USASCII ESC code which enables the ADM-1 under program control to interpret the next character or string of characters as special control instructions. These sequences are used for:
(1) Keyboard enabling/disabling
(2) Display Clearing
(3) Field Protection Control
(4) Message Transmissions Control
(5) Absolute Cursor Addressing/Cursor Address Read
(6) Data Editing (optional)

Details of specific sequences follow:

ENABLE/DISABLE KEYBOARD

These functions are normally used when the ADM-1 is connected on-line to a computer which transmits the following sequences:

ESC \#	disables all keyboard functions except KEYBOARD UNLOCK
ESC "	restores keyboard control

Since ESC \# sequence may be accidentally initiated manually, the keyboard will need to be unlocked by simultaneously depressing:
CLR
CTRL/SHIFT/HOME unlocks keyboard BRK

CLEAR DISPLAY

The ADM-1 screen may be cleared in several ways:
Locally the operator can clear the foreground (unprotected characters) to "space" codes CLR
by use of the CTRL and HOME keys (or the CTRL and CLEAR key on the 60 key BRK
keyboard).

By operator or computer control, the entire display may be cleared or only the foreground may be cleared to either "spaces" or to NULS by the use of the following escape sequences:

ESC ; clear foreground to spaces
ESC $+\quad$ clear all to spaces
ESC : clear foreground to NUL
ESC * clear all to NUL
Upon completion, the cursor will be in the first unprotected position on the screen.

FIELD PROTECTION CONTROL

Writing of protected characters is accomplished by sending or typing various ESC sequences.

ESC) set WRITE PROTECT mode
ESC 1 reset WRITE PROTECT mode
ESC \& set PROTECT mode
ESC , reset PROTECT mode
When in PROTECT MODE, characters that have been written with the WRITE PROTECT set cannot be overwritten. The PROTECT MODE is also reset by the CLEAR operations.

ESC * clear all to NUL
ESC + clear all to spaces
The WRITE PROTECT mode is also reset by the following CLEAR operations:
ESC ; clear foreground to spaces
ESC + clear all to spaces
ESC : clear foreground to NUL
ESC * clear all to NUL
or by initiation of a SEND operation:
SHIFT/SEND Send line unprotected
SHIFT/CTRL/SEND Send page unprotected
When the EDIT and PRINT options are provided, the WRITE PROTECT mode will terminate when any of the following operations are performed:

ESC Q character insert
ESQ W character delete
ESC E line insert
ESC R line delete
ESC T line erase
ESC Y page erase
ESC P print
The cursor will not reside in a protected position. Following any cursor motion operation, the content of the position indicated by the cursor is tested for protected status. If that position is protected, the cursor moves forward (or backward in the event of an original backward motion) until an unprotected location is reached.

CAUTION:

If the entire display area is protected, the cursor will have no place to stop, causing the terminal to "lock up" in a search for an unprotected position. This search may be "broken" by CLR the operator depressing the HOME key. BRK

MESSAGE TRANSMISSION CONTROL

ESC 4 SEND line unprotected
In block mode, an ESC 4 (or Send Key) sequence causes the unprotected character positions from the beginning of the current line through the cursor position to be transmitted to the remote computer. The last character position transmitted is followed by transmission of a RETURN code.

ESC 5 SEND page unprotected
In block mode an ESC 5 (or Shift Send Key) sequence causes the unprotected character positions from the beginning of the page through the cursor to be transmitted to the remote computer. The last character position transmitted is followed by transmission of a RETURN code.

ESC 6 SEND line protected
In block mode, an ESC 6 sequence causes all character positions (protected and unprotected) from the beginning of the line through the cursor to be transmitted to the remote computer. During transmission, ESC) and ESC (sequences for setting and resetting WRITE PROTECT are executed as protected fields are entered and exited.

ESC 7 SEND page protected
In block mode, an ESC 7 sequence causes all character positions (protected or unprotected) from the beginning of the page through the cursor to be transmitted to the remote computer. During transmission, ESC) and ESC (sequences are executed as protected fields are entered and exited.

ESC S partial SEND
In block mode, an ESC S sequence causes an USASCII FS code to be stored in display
memory at the cursor location. The cursor backspaces until a previously stored FS code is encountered, then advances to the first unprotected character position and transmits through the next FS code. (If there are no previous FS codes, the transmission begins at home position, or the first unprotected position.) (Optional)

CURSOR ADDRESSING

The computer can position the ADM-1 cursor to any position by a 4 character sequence:

$$
\text { ESC }=\mathrm{YX} \quad \text { position cursor }
$$

where Y and X represent the row and column coordinates of the cursor position desired. The HOME position (top row, leftmost column) is addressed by ESC + SPACE SPACE, and successive positions (down for Y or to the right for X) use codes ascending in the ASCII character set as in Table II.3.

TABLE II. 3 - ABSOLUTE CURSOR POSITIONING

\mathbf{X} or Y	ASCII CODE	X	ASCII CODE	X	ASCII CODE
1	SPACE	28	;	55	V
2	!	29	<	56	W
3	"	30	$=$	57	X
4	\#	31	>	58	Y
5	\$	32	?	59	Z
6	\%	33	@	60	[
7	\&	34	A	61	1
8	,	35	B	62]
9	1	36	C	63	\wedge
10)	37	D	64	-
11	*	38	E	65	\backslash
12	+	39	F	66	a
13	,	40	G	67	b
14	-	41	H	68	c
15	-	42	1	69	d
16	1	43	J	70	e
17	0	44	K	71	f
18	1	45	L	72	g
19	2	46	M	73	h
20	3	47	N	74	i
21	4	48	0	75	j
22	5	49	P	76	k
23	6	50	Q	77	1
24	7	51	R	78	m
25	8	52	S	79	n
26	9	53	T	80	-
27	:	54	U		

After the ' X ' coordinate is loaded, the position of the cursor is tested for protected status. If that position is protected, the cursor automatically skips to the first unprotected location in the direction it previously moved. An ESC ? sequence causes the Y and X coordinates of the cursor followed by a CR code (expressed as three USASCII characters) to be transmitted to the computer.

ESC ? read cursor position ($\mathrm{Y} \times \mathrm{CR}$)

EDIT OPERATION (OPTION)

ESC O character insert

a) Resets WRITE PROTECT mode.
b) Moves the character under the cursor and all following characters on that line (or field) one space to the right.
c) Write a space at the original position of the cursor and leaves the cursor at that position.

ESC W character delete
a) Resets WRITE PROTECT mode.
b) Deletes the character under the cursor by moving all following characters on that line or field one space to the left.
c) Writes a 'space' in the last position of the line or field.
d) Cursor does not move.

ESC E line insert
a) Is not executed if PROTECT MODE is set.
b) Resets WRITE PROTECT mode.
c) Inserts a line of unprotected spaces at the line occupied by the cursor by moving the contents of that line and all lines below down one line.
d) Bottom line is lost.
e) At completion cursor is at first character position of inserted line.

ESC R line delete
a) Is not executed if PROTECT MODE set.
b) Resets WRITE PROTECT mode.
c) Deletes line of data occupied by cursor.
d) Moves following lines up one line.
e) Bottom line becomes unprotected spaces.
f) Cursor is at first position of original line count.

ESC T line erase
a) Replaces contents of unprotected positions with space beginning at cursor position and ending at last character of line or field.
b) If WRITE PROTECT mode is true, the spaces will be protected.
c) Cursor will remain at original position, except when WRITE PROTECT mode=true and PROTECT mode=true, then the cursor will move to the first unprotected position following.

ESC Y page erase
a) Resets WRITE PROTECT mode.
b) Writes SPACE in all unprotected positions beginning with position of cursor to the end of the screen.
c) Cursor does not move.

ESC I back tab cursor
Moves cursor to first position of current unprotected field. If at first position, move to first position of previous unprotected field. If backward motion passes through HOME, the cursor stops at last unprotected position on the screen.

PRINT OPERATION - (OPTION)

When received in text or entered from keyboard, an ESC P sequence causes an EM code to be written at the cursor position. Then the cursor is moved to the HOME position. If the ESC P command originated from the ADM-1 keyboard, the print operation begins
immediately; if the command is from the computer, the print operation begins following the termination of the message procedure.

ESC P print
Printing takes place in the following manner:

1. CR LF NUL
2. Each line of text followed by CR LF NUL

Transmission of trailing spaces is suppressed in order to reduce printing time.
The PRINT operation terminates when the cursor reaches the EM code at which time a final CR LF NUL is sent to the printer.

A summary of ESC sequences is given in Table II.4.

TABLE II. 4 - ADM-1 DATA DISPLAY ESC SEQUENCES

						P	PRINT
!				A		0	CHARACTER INSERT
"	KEYBOARD ENABLE			B		R	LINE DELETE
\#	KEYBOARD DISABLE			C		S	PARTIAL SEND
\$		4	SEND LINE (FOREGROUND)	D		T	LINE ERASE
\%		5	SEND PAGE (FOREGROUND)	E	LINE INSERT	U	FREE FORM ENTRY
\&	SET PROTECT MODE	6	SEND LINE (ALL)	F		V	
1	RESET PROTECT MODE	7	SEND PAGE (ALL)	G		W	CHARACTER DELETE
1	END WRITE PROTECT			H		X	
1	$\begin{aligned} & \text { START } \\ & \text { WRITE PROTECT } \end{aligned}$			1	$\begin{aligned} & \hline \text { BACK } \\ & \text { TAB } \end{aligned}$	Y	PAGE ERASE
*	CLEAR ALL TO NULL		CLR FOREGROUND TO NULL	J		Z	
+	CLEAR ALL TO SPACES	;	$\begin{aligned} & \text { CLR FOREGROUNDD } \\ & \text { TO SPACES } \end{aligned}$	K		[
				L	SPECIAL PRINT	1	
		$=$	LOAD CURSOR	M]	
				N		\wedge	
		?	$\begin{aligned} & \text { READ } \\ & \text { CURSOR } \end{aligned}$	0		-	

III. MICROPROGRAMING CONTROL

The organization of data transmission and control for the ADM-1 interactive data display terminal is given in general fashion in the block diagram of Figure III.1. A detailed description of logic for the ADM-1 follows. Specific reference should be made to schematic drawing 129311, sheets 1 through 16, in Appendix C.1. In particular, Drawing 129311, sheet 2, contains a detailed functional block diagram of the ADM-1 logic.

Figure 1 II. 1 - ADM-1 Data Flow Block Diagram

The basic concept of the ADM-1 data organization is memory timesharing, with highest priority assigned to the display section (about $20-30 \%$ utilization) and second priority given to the control section which has approximately 70-80\% utilization.

The memory sharing organization provides greater reliability of display and control operations by using fewer components to provide both functions.

Data information and control commands are transferred to the different components over a tri-state (memory, control, timing) bus.

The display section is comprised of four sub-sections as follows:
(1) Parallel-Serial Converter
(2) Character Generator
(3) Row Refresh Logic
(4) Timing Control

The memory section is a standard RAM memory of 8 bit words and can store 960 words (12 lines of 80 characters) in the standard ADM-1 display. A factory option is provision of 1920 words to give 24 lines of 80 character display.

The memory section includes the conversion logic necessary for maintaining knowledge of display cursor position. Binary codes for cursor position are given as USASCII equivalents in Table II. 2 above.

Included with the keyboard assembly are the electronics for encoding key strokes to 8 bit parallel data codes, as well as strobe and repeat signals.

The transmitter/receiver is a standard 1402 or 1602 LSI chip serial asynchronous device which accepts serial 9, 10 or 11 bit patterns (depending upon word structure option) from an RS232C or 20ma current loop interface and transmits 8 bit parallel words to the control section. Likewise, the transmitter receiver can receive 8 bit parallel words from the control section and transmit the appropriate serial bit pattern to a computer over the data signal interface. See Figure III. 2 below and Drawing 129311, sheet 13 in Appendix C for further information on the 1402/1602 transmitter/receiver.

Information transfer is controlled in the ADM-1 by the read only memory, ROM. The standard functions are provided by two pages of 2568 bit words each. These functions may be extended by adding up to six additional pages. This section describes the microprogram language and the structure of the extendable microprogrammed control.

Information is transferred between functional units by way of the tri-state bus, TSB, under microprogram control. This information transfer consists of eight bit characters

Figure III. 2 - ADM-1 Asynchronous Transmitter/Receiver Interface
character has no valid STOP bit. i.e. the bit following the parity bit is not a high level input voltage, $\mathrm{V}_{1 \mathrm{H}}$. The status is updated each tume a character is transferred from the RECEIVER REGISTER to the RECEIVER HOLDING REGISTER.

The status of the DATA RECEIVED cir cuit appears on this line if a low-level input voltage, V_{IL}, is applied to the STA TUS FLAG DISCONNECT (pin 16) con trol line. Wired-OR capability is provided on this line allowing OE lines from other arrays to be OR-tied. A high-level output voltage, VOH , indicates that the previous ly received character was not read (DR line not reset) before the present charac ter was transferred to the RECEIVER HOLDING REGISTER.

A high-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, applied to this pin disconnects the PE, FE, OE, DR and THRE circuit outputs.

This clock is sixteen (16) times faster than the desired receiver shift rate.

A low-level input voltage, $\mathrm{V}_{\text {IL }}$, applied to this line resets the DR line.

A high-level output voltage, $\mathrm{VOH}_{\mathrm{OH}}$, indı cates that an enture character has been received and transferred to the RECEIVER HOLDING REGISTER.

Serial input data received on this line enters the RECEIVER REGISTER at a point determined by the character length parity, and the number of stop bits. A high-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, must be present when data is not being received.

This line is strobed to a high-level input voltage, $\mathrm{V}_{\mathbf{I H}}$, to clear the logic after power turn-on. It resets all registers and sets the serial output line to a high-leve output voltage, V_{OH}.

A high-level output Voltage, V_{OH}, on this line indicates the TRANSMITTER HOLDING REGISTER has transferred its contents to the TRANSMITTER REGISTER and may be loaded with a new character.

A low-level input voltage, $\mathrm{V}_{\text {IL }}$, applied to this line enters a character into the TRANSMITTER HOLDING REGISTER. A transition from a low-level input volt age, $V_{I L}$, to a high-level input voltage, $V_{1 H}$, transfers the character into the TRANSMITTER REGISTER if it is not in the process of transmitting a charac ter. If a character is being transmitted the transfer is delayed untll its trans mission is completed Upon completion the new character is transferred simul taneously with the initiation of the seria transmission of the new character.

A high-level output voltage, V_{OH}, on this line indicates that the TRANSMIT

TER REGISTER has completed serial transmission of a full character includ ing STOP bit(s). It remains at this level until the start of transmission of the next character.

The contents of the TRANSMITTER REGISTER (START bit DATA bits, PARITY bit, and STOP bit), are serially shifted out on this line. This line will re main at a high-level output voltage, V_{OH} when no data is being transmitted. A star of transmission is defined as the transi tion from a high-level output voltage, V_{OH}, to a low-level output voltage, V_{OL} of the START bit.

Parallel 8 bit characters are input on these ines into the TRANSMITTER HOLDING REGISTER with THRL Strobe. If a char acter of less than 8 bits has been selected (by $W L S_{1}$ and $W L S_{\mathbf{2}}$), the least significant bits only are accepted The character is right justified into the least significant bit. A high level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, will cause a high-level output voltage, V_{OH} to be transmitted

A high-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, on this line loads the CONTROL REGISTER with the control bits WLS $_{1}$, WLS $_{2}$ EPE, PI, SBS). This line may be strobed or hard wired to a high-level input volt age, V_{IH}.

A high-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, on this line inhibits the parity generation and verification circuits. The STOP bit(s) will immediately follow the last data bit on transmission if parity is inhibited A low level input voltage, $V_{I L}$, enables the pari y generation and verification circuits. PI will, when a high-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$, is applied, also clamp the PE line (pin 13) to a low-level output voltage v_{OL}

This line selects the number of STOP bits generated after the PARITY bit during transmission A high level input voltage $V_{1 H}$, on this line selects two STOP bits, and a low-level input voltage, $V_{1 L}$, se lects a single STOP bit

These two lines select the character length to be 5, 6, 7 or 8 bits

$w i^{7}$	Wis	WORD LENGTH
$V_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	5 bits
$V_{1 L}$	$V_{1 H}$	6 bits
$V_{\text {IH }}$	$V_{\text {IL }}$	bits
$V_{1 H}$	$V_{1 H}$	8 bits

This line selects either even or odd PARI TV to be generated by the transmitter and checked by the receiver A high level nput voltage, $V_{I H}$. selects even PARITY and a low level input voltage. $V_{\text {IL }}$. selects odd PARITY

This CLOCK is sixteen (16) times faster han the desired transmitter shift rate

Figure III. 2 - ADM-1 Asynchronous Transmitter/Receiver Interface (Continued)

SWITCHING WAVEFORMS

FIGURE 1. DATA INPUT LOAD CYCLE

FIGURE 2. CONTROL REGISTER LOAD CYCLE

OUTPUTS PE FF OE DR THRE IRRB RA, ARE DISCONNECTED
at thansition of sfo irrdifrom $V_{I L}$ to $V_{i h}$
FIGURE 3. OUTPUT DELAYS

TIL-MOS INTERNAL INTERFACE

Figure III. 2 - ADM-1 Asynchronous Transmitter/Receiver Interface (Continued)
transmitted in parallel between the following units:

MNEMONIC	
RCV	External source via Receiver and serial to parallel converter
KEY	Keyboard
CPR	Cursor position row register
CPC	Cursor position character register
LIT	Eight bit literal register
RDR	Random access page buffer via the Read Data Register
WDR	Random access page buffer via the Write Data Register
LRC	Modulo 2 adder and accumulator * 7 bits)
XRS	UART and interface status
ADD	Switch (8 bits) internal, manually set
STB	8 flip flops set and cleared by program
MACR	Random access page buffer row counter (address register high order five bits)
MACC	Random access page buffer character counter (address register low order seven

Character transfer between the tri-state bus and sources or destinations is enabled by the BUS CONTROL microprogram commands (see instruction repertory) and are initiated by the INPUT/OUTPUT microprogram commands.

Status of hardware functional units is indicated by the setting of conditions and determines the execution sequence of the microprogram by use of the CONDITIONAL JUMP instructions (see instructions repertory and TABLE OF CONDITIONS).

TABLE III. 1 - TABLE OF REGISTER USAGE

Register Symbol	Register Name	Description
WDR	Write Data Register	Eight bit character register contains characters to be written into the RAM from tri-state bus.
RDR	Read Data Register	Eight bit register to contain characters read from the RAM for transfer to tri-state bus
MACC	Memory Address Counter Character	Contains low order 7 bits of the RAM address accessible to the tri-state bus.
MACR	Memory Address Counter Row	Contains high order 5 bits of the RAM address accessible to the tri-state bus.
ARTO	Communications Interface UART	
ART1	Auxiliary Interface UART (Printer, etc.)	
LIT	Literal (8 bit) Register	Used to transfer constants from ROM to tristate bus.
CPR	Cursor Row Position Register	
CPC	Cursor Character Position Register	
KEY	Keyboard Register	
LRC	Longitudinal Transmissions Check Register	For modulo 2 sum check of transmission characters.
REV		
ADD	Address Register	Switches set manually inside cabinet
XRS	Transmit-Receive Status	
STB	Status bits 1 through 8	Global status for Microprograming

TABLE III. 2 -- TABLE OF CONDITION SIGNIFICANCE

Name of Condition	Use or Action Resulting
WPROT	Write Protect bit copies into RAM each Write.
PROTM	Write Protect mode, disallows overwriting protected characters
BEEP	Causes beep and clears automatically (optional)
STB 1	Status Bits set by microprogram for global control
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	
4	
5	
6	
7	
8	
RTSO	Request to send (Main ART)
RTS1	Request to send (Auxiliary ART)
TSB 1	Tri-State Bus Bits
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	
4	
5	
6	
7	
8	
KEYSTR	Keyboard Strobe
KEYBRK	Keyboard Break Key
KEYHIS	Keyboard Send Key

INSTRUCTION SET

Instructions may be partitioned into two classes, those which occupy two eight bit bytes and those which occupy one eight bit byte. We shall represent these as six or three octal digits, respectively, and assume the high order bit in each word to be zero. This high order or ninth bit is, of course, not actually present in the eight bit hardware.

high order

$D_{1,2}$
$D_{1,1}$
$\mathrm{D}_{1,0}$
low order word (if required)

$D_{2,2}$
$D_{2,1}$
$D_{2,0}$

Where $D_{i, j}$ is the j th octal digit for the ith 8 bit word.

Subfields of instructions will be indicated by only the high order and low order octal digits in parentheses, for example:

TABLE III. 3 - RANDOM ACCESS MEMORY CONTROL

Mnemonic	$\left(D_{1,2} \mathrm{D}_{1,0}\right)$	Description
READ	001	Transfers the contents of the RAM location indicated by the contents of MACR, MACC into the RDR
WRITE	003	Transfers the contents of the WDR into the RAM location indicated by the contents of MACR, MACC
LOA WDR	005	Replaces the contents of the WDR with the contents currently on the TRB
CLR WDR	004	Clears the WDR
TSB=RDR	160	Sets the contents on the TSB equal to the contents of the RDR
SET WPROT	006	Sets the write protect bit on all words subsequently written into the RAM
CLR WPROT	007	Clears the write protect bit on all words subsequently written into the RAM
SET PROTM	016	Set the PROTM. This status bit is used as a global condition by the program to disable the overwriting of any characters in the RAM for which the WPROT bit is set.
CLR PROTM	017	Clear the PROTM. This global condition enables the overwriting of write protected characters.

TABLE III. 4 - ROM INSTRUCTION EXECUTION SEQUENCE CONTROL

Mnemonic	$\left(D_{1,2}\right.$	$\left.D_{2,0}\right)$	Description
JMP	$10 P$	LLL	Causes next instructions to be taken from the location indicated by LLL on page P.
JTC	3CC	LLL	Causes next instructions to be taken from the location indicated by LLL on the local page if the condition indicated by CC is true. Instructions are taken in normal sequence otherwise. (See table of conditions for values of CC.)
JFC	2CC LLL	Causes next instructions to be taken from the location indicated by LLL on the local page if the condition indicated by CC is false. Instructions are taken in nor- mal sequence otherwise. (See table of conditions for values of CC.)	

TABLE III. 5 - TABLE OF CONDITIONS

Mnemonic	Condition Identifier	Description
TSB 1	00	Character in RDR
2	01	RDR Parity error
3	02	Framing Error (stop bit missing)
4	03	Receives overflow (unread character overwritten)
5	04	Transmitter holding register empty
6	05	Clear to send (from data set)
7	06	Main transmitter register clear (for request to send)
8	07	Auxiliary transmitter register clear (for request to send)
KEYSTR	10	Keyboard strobe
KEYBRK	11	Break key
KEYHIS	12	Send key
KEYSTR2	13	Keyboard strobe (optional 2nd keyboard)
OFLO	20	MACC/MACR overflow or underflow
MAC=CPR	21	Set if (MACR/MACC) equals (CPR/CPC)
OPT1	22	Wire straps on main logic board
OPT2	23	Wire straps on main logic board
OPT3	24	Wire straps on main logic board
PROTM	40	Set if in character protection mode
PROT	41	Character protect bit in RAM
KEYCTRL	42	Keyboard Control Test
KEYSHFT	43	Keyboard Shift Test
ONLINE	44	On line switch setting
CONV	45	Conversation mode
FULLDX	46	Full duplex
OPT4	47	Wire straps on main logic board

TABLE III. 6 - RAM ADDRESS CONTROL

Mnemonic	$\left(D_{1,2} D_{1,0}\right)$	Description	
CLR	MACC	020	Set character counter to left margin
CLR	MACR	030	Set row counter to top row
LOA	MACC	021	Set character counter to value on tri-state bus
LOA	MACR	031	Set row counter to value on tri-state bus
LOA	CPR	027	Sets contents of CPC and CPR equal to current contents of MACC and MACR respectively
SET	MACC	022	Set character counter to right margin
SET	MACR	032	Set row counter to bottom row
INC	MACC	023	Move character counter right one positiont
INC	MACR	033	Move row counter down one linet
DEC	MACC	024	Move character counter left one position \dagger
DEC	MACR	034	Move row counter up one line \dagger

\dagger These operations will set OFLO if they cause character address to run off either margin or if they cause row address to run off top or bottom of page.

FLAG CONTROL

Flags are set or cleared by the microprogram to either control certain hardware functions or set global conditions controlling the microprogram actions (see of table of flags below). General instructions for flags are as follows:

Mnemonic	$\left(\mathrm{D}_{1,2} \mathrm{D}_{1,0}\right)$	Action
CLR	CAA	Clears the indicated flag. (See table flags for values of CAA)
SET	CAA	Sets the indicated flag. (See table flags for value of CAA)

TABLE III. 7 - TABLE OF FLAGS

Mnemonic	Set	CLR	Description
WPROT	006	007	Write Protect
PROTM	016	017	Protect Mode
STB1	061	060	Program Global
STB2	063	062	Program Global
STB3	065	064	Program Global
STB4	067	066	Program Global
STB5	071	070	Program Global
STB6	073	072	Program Global
STB7	075	074	Program Global
STB8	077	076	Program Global
BEEP	037	1 Clears	Causes one BEEP
		automatically)	
RTS0	121	122	
RTS1	131	132	

LITERAL CONTROL

The literal register provides a means of entering a constant from the ROM onto the tri-state bus (TSB). This command is:

Mnemonic	$\left(\mathrm{D}_{1,2} \mathrm{D}_{1,0}\right)$	$\left(\mathrm{D}_{2,2} \mathrm{D}_{2,0}\right)$
LOA LIT	150	XXX

and causes the contents of LIT to be replaced by XXX .

ASYNCHRONOUS RECEIVER/TRANSMITTER CONTROL

In addition to the main transmitter/receiver interface normally associated with the computer, an additional transmitter/receiver interface is accommodated by the following instructions. This facilitates such optional devices as an auxiliary printer.

TABLE III. 8 - ASYNCHRONOUS RECEIVER/TRANSMITTER CONTROL

Mnemonic	$\left(\mathrm{D}_{1,2} \mathrm{D}_{1,0}\right)$	Description
SEL ARTO	120	Selects main receiver transmitter interface
SEL ART1	130	Selects auxiliary receiver transmitter interface
LOA ART0	123	Loads main transmitter from TSB
LOA ART1	133	Loads auxiliary transmitter from TSB
CLR ART0	124	Clear main data ready flag
CLR ART1	134	Clear auxiliary data ready flag

TRANSMISSION LONGITUDINAL CHECKING

A 7 bit modulo 2 adder, LRC, is provided for transmission checking as follows:
Mnemonic
CLR LRC
($\mathrm{D}_{1,2} \mathrm{D}_{1,0}$)
CLR LRC
156 157

Clear LRC

Replace each bit of the LRC with the Modulo 2 sum of its prior setting and the corresponding bit of the TSB.

TRI STATE BUS CONTROL

The tri state bus contents are set equal to any one of the following registers by the indicated command. (See Table of Register Usage, Table III.1).

TABLE III. 9 - TRI STATE BUS CONTROL

Mnemonic	$\left(\mathrm{D}_{\mathbf{1 , 2}} \mathrm{D}_{\mathbf{1 , 0}}\right)$	Description
TSB=RDR	160	Set the TSB contents equal to RDR
TSB=KEY	161	Set the TSB contents equal to KEY
TSB=REV	162	Set the TSB contents equal to REV
TSB=LIT	163	Set the TSB contents equal to LIT
TSB=CPC	164	Set the TSB contents equal to CPC
TSB=CPR	165	Set the TSB contents equal to CPR
TSB=LRC	166	Set the TSB contents equal to LRC
TSB=XRS	167	Set the TSB contents equal to XRS
TSB=ADD	170	Set the TSB contents equal to ADD
TSB=STB	171	Set the TSB contents equal to STB

To illustrate actual program control of the ADM-1, five examples of programs for basic display functions are included as follows:
(1) RESET
(2) DATA from Keyboard
(3) Receive DATA
(4) DATA from Memory
(5) IDLE

RESET

0	124	RESET	CLR ARTO	
1	17		CLR PROTM	
2	320		JTC OFLO	RESET1
3	4			
4	100	RESET1	JMP	CLEAR
73	163	CLEAR	TSB=LIT	
74	150		LOA LIT	
75	40			
76	5		LOA WDR	
77	7	CLEAR1	CLR WPROT	
100	30	.	CLRMACR	
101	20		CLR MACC	
102	1	CLEAR3	READ	
103	341		JTC PROT	CLEAR4
104	106			
105	3		WRITE	
106	23	CLEAR4	INC MACC	
107	220		JFC OFLO	CLEAR3
110	102			
111	20		CLR MACC	
112	33	.	INC MACR	
113	220	.	JFC OFLO	CLEAR3
114	102			
115	30	.	CLR MACR	
116	101	.	JMP	SKIP21
27	1	SKIP21	READ	
30	341		JTC PROT	SKIP2
31	15			
32	100	IDLE1	JMP	IDLE
33	21			

DATA FROM KEYBOARD

127	161	KEYST	TSB=KEY	
130	245	.	JFC CONV	KEYST3
131	144	.		
132	167		TSB=XRS	
133	121	KEYST1	SET RTSO	
134	205	.	JFC TSB6	KEYST1
135	133			
136	204	KEYST2	JFC TSB5	KEYST2
137	136			
140	161	.	TSB=KEY	
141	123	.	LOA ARTO	
142	146	.	JTC FULLDX	IDLE
143	21			
144	62	KEYST3	CLR STB2	
145	100		JMP	CSD
160	306	CSD	JTC TSB7	CD7
161	207			
162	205	x	JFC TSB6	CD
163	6			
164	304	.	JTC TSB5	CHAR
165	230			
166	303	.	JTC TSB4	CHAR
167	230			
170	302	.	JTC TSB3	CHAR
171	230			
172	301	-	JTC TSB2	CHAR
173	230			
174	300	.	JTC TSB1	CHAR
175	230			
230	5	CHAR	LOA WDR	
231	3	CHARO	WRITE	
232	64		CLR STB3	
233	23	FORSP	INC MACC	
234	220		JFC OFLO	HOME1
235	67			
236	20	NEWLIN	CLR MACC	
237	64	DNLIN	CLR STB3	
240	33	.	INC MACR	
241	220	.	JFC OFLO	HOME1
242	67			
67	101		CLR MACC	
70	27	HOME1	JMP	SKIP21

RECEIVE DATA

147	124	RCVDAT	CLR ARTO	
150	302	.	JTC TSB3	IDLE
151	21			
152	303	.		
153	21			
154	301	.		
155	225		STC TSB4	
156	63	.	TSB 5 =RCV	
157	162			

DATA FROM MEMORY

34	171	ESC	TSB=STB	
35	301		JTC TSB2	ESCRCV
36	44			
37	210	ESCKEY	JFC KEYSTR	ESCKEY
40	37			
41	161	.	TSB=KEY	
42	101		JMP	DESC
43	51			
44	167	ESCRCV	TSB $=\times$ RS	
45	200		JFC TSB1	ESCRCV
46	44			
47	124		CLR ARTO	
50	162		TSB=RCV	
51	306	DESC	JTC TSB7	DESC7
52	126			
53	205		JFC TSB6	IDLE 1
54	32			
55	304		JTC TSB5	DESC65
56	132			
132	303	DESC65	JTC TSB4	DESC654
133	150			
134	202		JFC TSB3	DESC7
135	126			
136	27	ESCSEND	LOA CPR	
137	64	.	CLR STB3	
140	62	x	CLR STB2	
141	201		JFC TSB2	ESCSEND1
142	144			
143	65		SET STB3	
144	300	ESCSEND1	JTC TSB1	SEND1
145	233			
146	101		JMP	SEND2
234	20	SEND2	CLR MACC	
235	121		SET RTSO	
236	171	SEND2	TSB=STB	
237	1		READ	
240	341		JTC PROT	SEND4

DATA FROM MEMORY (Continued)

241	333			
242	202	.	JFC TSB3	SEND3
243	271			
244	201	.	JFC TSB2	SEND3
245	271			
271	167	SEND3	TSB $=\times$ RS	
272	205	.	JFC TSB6	SEND3
273	271			
274	204	.	JFC TSB5	SEND3
275	271			
276	160	.	TSB=RDR	
277	123		LOA ARTO	
300	321	SEND30	JTC MAC=CPR	SEND31
301	312			
302	23	.	INC MACC	
303	220	.	JFC OFLO	SEND2
304	236			
305	20	.	CLR MACC	
306	33	.	INC MACR	
307	220	.	JFC OFLO	SEND2
310	236			
311	30		CLR MACR	
312	167	SEND31	TSB=XRS	
313	204	.	JFC TSB5	SEND31
314	312			
315	163	.	TSB+LIT	
316	150	.	LOA LIT	
317	15			
320	123		LOA ARTO	
321	167	SEND32	TSB=XRS	
322	204	.	JFC TSB5	SEND32
323	321			
324	206	.	JFC TSB7	SEND32
325	321			
326	122	.	CLR RTSO	
327	340	.	JTC PROTM	IDLE1
330	32			
331	100	.	JMP	NEWLIN
332	236			
333	202	SEND4	JFC TSB3	SEND30
334	300			
335	301	.	JTC TSB2	SEND3
336	271			
337	167	SEND41	TSB=XRS	
340	205	.	JFC TSB6	SEND41
341	337			
344	163	.	TSB=LIT	
345	150	.	LOA LIT	
346	33			
347	123		LOA ARTO	

DATA FROM MEMORY (Continued)

350	167	SEND42	TSB=XRS	
351	205	\cdot	JFC TSB6	SEND42
352	350			
353	204	.		
354	350		TSB = LIT	
355	163	.		
356	150	\cdot	LOA ARTO	
357	51		SET STB2	
360	123	.	JMP	
361	63	.		SEND3
362	101	.		

IDLE

21	317	IDLE	JTC KEYRES	RESET
22	0			
23	120	.	SEL ARTO	
24	167	.	TSB=XRS	
25	300	.	JTC TSB 1	RCVDAT
26	147			
27	204	.	JFC TSB5	IDLEO
30	34			
31	206	.	JFC TSB7	IDLEO
32	34			
33	122		CLR RTSO	
34	171	IDLEO	TSB=STB	
35	311		JTC KEYBRK	KBRK
36	57			
37	300		JTC TSB1	IDLE
40	21			
41	310		JTC KEYSTR	KEYST
42	127			
43	212		JFC KEYHIS	IDLE
44	21			

001	READ		123	LOA	ARTO	223	JFC	OPT2
003	WRIT		124	CLR	ARTO	224	JFC	OPT3
004	CLR	WDR	130	SEL	ART1	240	JFC	PROTM
005	LOA	WDR	131	SET	RTS1	241	JFC	PROT
006	SET	WPROT	132	CLR	RTS1	242	JFC	KEYCTRL
007	CLR	WPROT	133	LOA	ART1	243	JFC	KEYSHFT
016	SET	PROTM	134	CLR	ART1	244	JFC	ONLINE
017	CLR	PROTM	150	LOA	LIT	245	JFC	CONV
020	CLR	MACC	156	CLR	LRC	246	JFC	FULLDX
021	LOA	MACC	157	CLK	LRC	247	JFC	OPT4
022	SET	MACC	160	TSB	RDR	300	JTC	TSB1
023	INC	MACC	161	TSB	KEY	301	JTC	TSB2
024	DEC	MACC	162	TSB	RCV	302	JTC	TSB3
027	LOA	CPR	163	TSB	LIT	303	JTC	TSB4
030	CLR	MACR	164	TSB	CPC	304	JTC	TSB5
031	LOA	MACR	165	TSB	CPR	305	JTC	TSB6
032	SET	MACR	166	TSB	LRC	306	JTC	TSB7
033	INC	MACR	167	TSB	XRS	307	JTC	TSB8
034	DEC	MACR	170	TSB	ADD	310	JTC	KEYSTR
037	SET	BEEP	171	TSB	STB	311	JTC	KEYBRK
060	CLR	STB1	177	ERR		312	JTC	KEYHIS
061	SET	STB1	200	JFC	TSB1	313	JTC	KEYSTR2
062	CLR	STB2	201	JFC	TSB2	314	JTC	KEYLCL
063	SET	STB2	202	JFC	TSB3	315	JTC	KEYRCV
064	CLR	STB3	203	JFC	TSB4	316	JTC	KEYPRT
065	SET	STB3	204	JFC	TSB5	317	JTC	KEYRES
066	CLR	STB4	205	JFC	TSB6	320	JTC	OFLO
067	SET	STB4	206	JFC	TSB7	321	JTC	$M A C=C P R$
070	CLR	STB5	207	JFC	TSB8	322	JTC	OPT1
071	SET	STB5	210	JFC	KEYSTR	323	JTC	OPT2
072	CLR	STB6	211	JFC	KEYBRK	324	JTC	OPT3
073	SET	STB6	212	JFC	KEYHIS	340	JTC	PROTM
074	CLR	STB7	213	JFC	KEYSTR2	341	JTC	PROT
075	SET	STB7	214	JFC	KEYLCL	342	JTC	KEYCTRL
076	CLR	STB8	215	JFC	KEYRCV	343	JTC	KEYSHFT
077	SET	STB8	216	JFC	KEYPRT	344	JTC	ONLINE
100	JMP		217	JFC	KEYRES	345	JTC	CONV
120	SEL	ARTO	220	JFC	OFLO	346	JTC	FULLDX
121	SET	RTSO	221	JFC	MAC=CPR	347	JTC	OPT4
122	CLR	RTSO	222	JFC	OPT1			

IV. MONITOR DESCRIPTION

The TV monitor is a solid-state unit for use in industrial and commercial installations where reliability and high quality video reproduction are desired.

The monitor features printed circuit board construction for reliability and uniformity. All circuits of the TV monitor are transistorized. The synchronization circuits have been custom designed to accept vertical and horizontal drive signals thus enabling the interfacing of this monitor with industrial or simple sync sources. This feature simplifies the user's sync processing and mixing and allows the unit to operate without requiring composite sync. The electronic packaging has been miniatured for compatibility with small volume requirements.

MONITOR ELECTRICAL SPECIFICATIONS

TABLE IV. 1 - INPUT DATA SPECIFICATIONS

	Video	Vertical Drive Signal	Horizontal Drive Signal
Input Connector	(Necessary Accessory - Available) Printed circuit board card edge connector - Viking No. 2VK10S/1-2 or Amphenol No. 225-21031-101		
Pulse Rate or Width	Pulse Width: 100 nsec or greater	Pulse Rate: 47 to 63 pulses/sec	Pulse Rate: 15,000 to 16,500 pulses/ sec
Amplitude			
Signal Rise and Fall Times (10\% to 90\% amplitude)	Less than 20 nsec	Less than 100 nsec	Less than 50 nsec
Input Signal Format	See Figure 1		

DATA DISPLAY SPECIFICATIONS

Input Impedance

(a) Video Input:
(b) Vertical Drive Input:
(c) Horizontal Drive Input:

Minimum Shunt Resistance	Maximum Shunt Capacitance
3.3 k ohms	40 pF
3.3 k ohms	40 pF
470 ohms	40 pF

Video Amplifier

(a) Bandwidth:
(b) Rise and Fall Times
(10\% to 90\% amplitude):
(c) Storage Time:
$12 \mathrm{MHz}(-3 \mathrm{~dB})$
Less than 35 nsec
(linear mode)
15 nsec, maximum (linear mode)

Retrace and Delay Times

(a) Vertical:
(b) Horizontal:
$900 \mu \mathrm{sec}$ retrace, maximum
$7 \mu \mathrm{sec}$ retrace plus $4 \mu \mathrm{sec}$ delay, maximum

TABLE IV. 2 - CATHODE RAY TUBE DISPLAY SPECIFICATIONS

Nominal Diagonal Measurement (inches)	Phosphor	Center	Corner
12	P4	900 at 40 fL	800 at 40 fL
12	P31	900 at 20 fL	800 at 20 fL

[^0]Geometric DistortionThe perimeter of a full field of characters shall approach an ideal rectangle to within$\pm 1.5 \%$ of the rectangle height.
Power RequirementsInput Connector Receptacle, Molex No. 03-06-1041 Supplied withUnit Mating Plug, Molex No. 03-06-2041 -Necessary Accessory (Available)
105 V to 130 V rms (120 V nominal);$50 / 60 \mathrm{~Hz}$
Input Power 24W (Nominal)
Output Voltages +15 V DC (short circuit protected)+12 kV DC; 12.6 V rms
ENVIRONMENTAL SPECIFICATIONS
Temperature (Chassis or Custom Unit)

Operating Range:
Storage Range:
$5^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Ambient
$-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Humidity5 to 80 percent (Noncondensing)
Altitude
Operating Range: Up to 10,000 feet
HUMAN FACTORS SPECIFICATIONS
X-Ray Radiation
These units comply with DHEW Rules-42-CFR-Part 78

CONTROLS

(1) Contrast, 500 ohm potentiometer carbon composition $\geq 1 / 8$ Watt
(2) Brightness, 100 kilohm potentiometer $\geq 1 / 8$ Watt

Optional: The Brightness Control can be mounted on the printed circuit board as an internal set up control.

Internal Set Up Controls

(1) Height
(2) Vertical Linearity
(3) Vertical Hold
(4) Focus
(5) Width
(6) Low Voltage Adjust

Figure IV. 1 - Synchronization and Blanking Generator Waveforms

NOTES:

1. The leading edges of Drive and Blanking waveforms must start at time t_{1}. Nominal Blanking times should be observed.
2. $H=$ time from start of one line to start of next line.
3. $\quad V=$ time from start of one field to start of next field.
4. Video pulse width should be equal to or greater than 100 nsec .

THEORY OF OPERATION

VIDEO AMPLIFIER

The video amplifier consists of 0101 and its associated circuitry.

The incoming video signal is applied to the monitor through the contrast control through R109 to the base of transistor Q101.

Transistor Q101 and its components comprise the video output driver with a gain of about 17. Q104, operating as a class B amplifier, remains cutoff until a DC-coupled, positivegoing signal arrives at its base and turns on the transistor. R111 adds series feedback which makes the terminal-to-terminal voltage gain relatively independent of transistor variations as well as stabilizes the device against voltage and current changes caused by ambient temperature variations.

The negative going signal at the collector of Q101 is DC-coupled to the cathode of the CRT. The class B biasing of the video driver allows a larger video output signal to modulate the CRT's cathode and results in a maximum available contrast ratio.

The overall brightness at the screen of the CRT is determined by the negative potential at the grid and is varied by the brightness control.

VERTICAL DEFLECTION

Transistor Q102 is a programmable unijunction transistor, and together with its external circuitry, forms a relaxation oscillator operating at the vertical rate. Resistor R115, variable resistor R116 and Capacitors C105 and C106 form an RC network providing proper timing.

When power is applied, C105 and C106 charge exponentially through R115 and R116 until the voltage at the junction of R116 and C105 equals the anode " A " firing voltage. At this time, one of the unijunction's diodes that is connected between the anode and anode gage " G " becomes forward biased allowing the capacitors to discharge through another diode junction between the anode gate and the cathode " K " and on through R120.

R117 and R118 control the voltage at which the diode (anode-to-anode gate) becomes forward biased. This feature "programs" the firing of Q102 and prevents the unijunction from controlling this parameter. Therefore, the changing of firing points from one device to another, together with the temperature dependency of this parameter, is no longer a problem as it can be with conventional unijunction transistors.

The vertical oscillator is synchronized externally to the vertical interval from the vertical drive pulse at R113. At the time of the vertical interval, an external negative pulse is applied through R113, C104, and CR101 to the gate of Q102, causing the firing level of the unijunction to decrease.

The sawtooth voltage at the anode of Q 102 is directly coupled to the base of Q103. Q103 is a driver amplifier and has two transistors wired as a Darlington pair; their input and output leads exit as a three-terminal device. This device exhibits a high input impedance to Q102, and thereby maintains excellent impedance isolation between Q102 and Q104.

The output waveform from the unijunction oscillator is not suitable, as yet, to produce a satisfactory vertical sweep. Such a waveform would produce severe stretching at the top of the picture and compression at the bottom. C105 and C106 modify the output waveform to produce satisfactory linearity. The sawtooth waveform output at Q103 is coupled through R122, the vertical linearity control R121, and on to C106 where the waveform is shaped into a parabola. This parabolic waveform is then added to the oscillator's waveform and changes its slope. Slope change rate is determined by the position of the variable resistor R121.

Q103 supplies base current through R123 and R124 to the vertical output transistor, Q104. Height control R124 varies the amplitude of the sawtooth voltage present at the base of Q104 and, therefore, varies the size of the vertical raster on the CRT.

The vertical output stage, Q104, uses a power type transistor which operates as a class A amplifier. No output transformer is required since the output impedance of the transistor permits a proper impedance match with the yoke connected directly to the collector. C107 is a DC-blocking capacitor which allows only AC voltages to produce yoke current. L1 is a relative high impedance compared to the yoke inductance. During re-
trace time, a large positive pulse is developed by L1 which reverses the current through the yoke and moves the beam from the bottom of the screen to the top. Resistor R126 prevents oscillations by providing damping across the vertical deflection coils.

HORIZONTAL DEFLECTION

To obtain a signal appropriate for driving Q106, the horizontal output transistor, a driver stage consisting of Q105 and T101, is used. The circuitry associated with Q105 and Q106 has been designed to optimize the efficiency and reliability of the horizontal deflection circuits.

A positive going pulse is coupled through R127 to the base of Q105. The amplitude and duty cycle of this waveform must be as indicated in the electrical specifications (Section 1.2) for proper circuit operation.

The driver stage is either cut off or driven into saturation by the base signal. The output signal appears as a rectangular waveform and is transformer-coupled to the base of the horizontal output stage. The polarity of the voltage at the secondary of the driver transformer is chosen such that Q106 is cut off when Q105 conducts and vice versa.

During conduction of the driver transistor, energy is stored in the coupling transformer. The voltage at the secondary is then positive and keeps Q106 cut off. As soon as the primary current of T101 is interrupted due to the base signal driving 0105 into cut off, the secondary voltage changes polarity. Q106 starts conducting, and its base current flows. This gradually decreases at a rate determined by the transformer inductance and circuit resistance.

The horizontal output stage has five main functions: to supply the yoke with the correct horizontal scanning currents; develop a " C " VDC supply voltage for use with the CRT; develop a "B" VDC supply voltage for the video output stage; and develop a "D" VDC for the CRT bias.

Q106 acts as a switch which is turned on or off by the rectangular waveform on the base. When Q106 is turned on, the supply voltage plus the charge on C113 causes yoke current to increase in a linear manner and moves the beam from near the center of the screen to the right side. At this time, the transistor is turned off by a positive voltage on
its base which causes the output circuit to oscillate. A high reactive voltage in the form of a half cycle negative voltage pulse is developed by the yoke's inductance and the primary of T2. The peak magnetic energy which was stored in the yoke during scan time is then transferred to C109 and the yoke's distributed capacity. During this cycle, the beam is returned to the center of the screen.

The distributed capacity now discharges into the yoke and induces a current in a direction opposite to the current of the previous part of the cycle. The magnetic field thus created around the yoke moves the scanning beam to the left of the screen.

After slightly more than half a cycle, the voltage across C109 biases the damper diode CR103 into conduction and prevents the flyback pulse from oscillating. The magnetic energy that was stored in the yoke from the discharge of the distributed capacity is released to provide sweep for the first half of scan and to charge C113 through the rectifying action of the damper diode. The beam is then at the center of the screen. The cycle will repeat as soon as the base voltage of 0106 becomes negative.

C113, in series with the yoke, also serves to block DC currents through the yoke and to provide " S^{\prime} shaping of the current waveform. " S " shaping compensates for stretching at the left and right sides of the picture tube because the curvature of the CRT face and the deflected beam do not describe the same arc.

L101 is an adjustable width control placed in series with the horizontal deflection coils. The variable inductive reactance allows a greater or lesser amount of the deflection current to flow through the horizontal yoke and, therefore, varies the width of the horizontal scan.

The negative flyback pulse developed during horizontal retrace time is rectified by CR104 and filtered by C110. This produces approximately "D" VDC which is coupled through the brightness control to the cathode of the CRT (V1).

This same pulse is transformer-coupled to the secondary of transformer T2 where it is rectified by CR2, CR106, and CR105 to produce rectified voltages of approximately 12 kV (9 and 12 inches) or 9 kV (5 inches), "C" VDC, and "B" VDC respectively. 12 kV or 9 kV is the anode voltage for the CRT, and "C" VDC serves as the source voltage for grids No. 2 and 4 (focus grid) of the CRT. The "B" VDC potential is the supply voltage for the video output amplifier, Q101.

LOW VOLTAGE REGULATED SUPPLY

All models use a series-pass, low voltage regulator designed to maintain a constant DC output for changes in input voltage, load impedance and temperature. Also included is a current limiting circuit designed to protect transistors connected to the " A " VDC output of the regulated supply from accidental output short circuits and load malfunctions.

The low voltage regulator consists of Q201, Q202, Q1, VR201, and their components. Q203 and its circuitry control the current limiting feature.

The 120 VAC primary voltage ($220 / 240 \mathrm{~V}$, optional) is stepped down at the secondary of T1 where it is rectified by a full wave bridge rectifier CR1. Capacitor C1 is used as a filter capacitor to smooth the rectified output of CR1. Transistor Q1 is used as a series regulator to drop the rectified voltage to " A " VDC and to provide a low output impedance and good regulation. Resistor network R207, R208 and R209 is used to divide down the " A " VDC voltage to approximately +6 VDC and apply this potential to the base of Q202. A reference voltage from zener diode VR201 is applied to the emitter of Q202. If the voltages applied to the base and emitter of Q202 are not in the proper relationship, an error current is generated through Q202. This error current develops a voltage across R202 which is applied to the base of emitter follower Q201 and then applied to the base of Q 1 to bring the output voltage back to its proper level. R201 and C201 provide additional filtering of the rectified DC voltage.

Operation of this regulator may be better understood by assuming a certain operation condition has caused the output voltage to increase above normal. This positive increase of voltage is transferred to the base of $\mathbf{Q 2 0 2}$ where it is compared to the zener voltage of VR201. The increase of forward bias of Q202 causes the collector voltage to drop as a result of the increased collector current through R202. This voltage is directly coupled to the base of 01 through Q201 where it causes Q 1 to conduct less and brings the regulated voltage back to its proper state.

The short circuit protection or current limiting action can be explained as follows. Assume the " A " VDC bus becomes shorted to ground. This reduced output voltage is sensed by the base of 0202 turning that transistor off because of the reverse bias across its emitter and base junction. Simultaneously, the increased current through R204 increases the forward voltage drop across the base and emitter junction of Q 203 and turns it on. Prior to the short circuit condition, O203 was cut off. The increased collector current through R202 decreases the collector
voltage of Q 203 which is detected by the base of O 201 and direct-coupled to the base of Q1 causing that conductor to conduct less. This closed loop operation maintains the current available to any transistor connected to the " A " VDC bus at a safe level during a short circuit condition. Circuit breakers and fuses are often used for this purpose; however, in the majority of cases, these devices are not fast enough to protect transistors.

V. INSTALLATION, MAINTENANCE AND FAILURE ANALYSIS

The ADM-1 Data Display Terminal is self-contained, suitable for desk or tabletop mounting in a normal office or commercial environment. It requires both power connection and data signal interface connection to the computer or optional printer.

INSTALLATION

Prior to installing the ADM-1, make sure the ON-OFF switch is in the OFF position.
(1) Connect the data interface cable to the terminal with a 25 -pin connector using the appropriate pins designated in Table V. 1 below, depending upon whether the installation is 20 ma current loop interface or RS-232-C standard.

NOTE:
If the data interface in use does not supply a clear-
to send (CB) signal on pin 5, then jumper pins 4-5.
(2) Plug in the ADM-1 into a grounded A.C. outlet of the proper voltage and frequency.
(3) Turn the ON-OFF rocker switch to ON.

TABLE V. 1 - DATA INTERFACE CONNECTOR J1 SIGNAL/PIN LIST (AMPHENOL Part No. 17-304-01)

Pin No.	Signal Function	Code
1	Equipment Ground	AA
2	Transmit Data	BA
3	Receive Data	BB
4	Request to Send	CA
5	Clear to Send	CB
6	Data Set Ready	
7	Signal Ground	AB
8	Received Line Signal Detector	
9	Current Loop Power	
$* 10$	Current Loop OUTPUT +	
$* 11$	Current Loop RETURN -	
$* 12$	Current Loop INPUT +	
$* 13$	Current Loop RETURN	
15	Transmitter Signal Element Timing	
17	Receiver Signal Element Timing	
20	Data Terminal Ready	

[^1]
CARE OF THE ADM-1

Your ADM-1 Terminal with its solid state and modular electronics is easier to care for than an electric typewriter. Just give it a light cleaning from time to time, and it will remain as attractive as it is functional.

Lightly dust the unit using a brush or soft damp lint-free cloth. Paper towels are fine. Conventional spray cleaners work great for stubborn smudges and fingerprints. Do not use petroleumbase cleaners such as lighter fluids. These could harm the plastic or painted surfaces. Avoid wiping dust or lint into the keyboard area. If using a spray cleaner, prevent excessive spraying which could run down between the keys.

Figure V. 1 - ADM-1 Back Panel View

ADJUSTMENTS

External controls on the rear of the ADM-1 assembly include the following which are illustrated in Figure V.1.

On/Off Switch

This two position switch controls the A.C. power to the unit and certain power-up and powerdown sequences. Setting the switch to the ON position resets the circuitry within the ADM-1, positions the cursor to home and clears the display memory to unprotected nulls.

Baud Rate

The baud rate selector switch selects the desired baud rate as specified on equipment purchase. The "High" position is normally set for 1200 unless specified to the contrary. The "Low" position selects the lower of two specified rates. Baud rates can be changed replacing a plug-in piggy back terminal trip containing necessary resistors and diodes. (See Options, Appendix A).

Mode Selector Switch

This three position switch selects the mode of operation. The Block position sets the "Block" mode. The Full and Half positions select the appropriate full or half-duplex conversational mode.

Brightness Control

This potentiometer controls the overall brightness of the CRT display. Brightness is usually adjusted so the display raster (background) is barely visible or just below the point of visibility.

Contrast Control

The contrast adjustment potentiometer controls the character brightness relative to the background. Contrast is usually adjusted after the brightness control.

KEYBOARD MAINTENANCE

The keyboard is considered a single replacement part except for the keys and mounting hardware. The standard keyboard assembly has 53 keys which operate switches and provide pulses to the logic board which generates the ASCII characters for transmission or display.

The keyboard assembly may be replaced as a complete unit or by replacing integrated key rows. To remove the keyboard for trouble-shooting or replacement, first disconnect the connector at the rear of the keyboard. Then remove the two screws on each end and lift the keyboard out. When a keyboard is replaced, re-install the cover and check to see if any keys are binding against the case.

The ASCII code generated by each key is shown in Table 11.2 and the electrical input-output identifications are shown in Table V.3.below.

TV MONITOR ADJUSTMENTS

SYNCHRONIZATION AND DRIVE SIGNALS

Apply horizontal and vertical drive signals to the horizontal and vertical drive terminals as indicated on your schematic. Adjust their levels to a nominal +4 V peak-to-peak. The duty cycle of each signal must be adjusted as described above.

The horizontal drive signal is required to initiate horizontal scan and high voltage, and should be connected before applying power to the monitor.

LOW VOLTAGE SUPPLY

Set the DC voltage by variable resistor R208 as indicated on the schematic. This voltage can be monitored at the junction of R114 and R130.

BRIGHTNESS

Normally, the monitor will be used to display alphanumeric or other black and white information. Moreover, the usual video polarity produces white characters on a black background.

The brightness control should be adjusted at a point where the white raster is just extinguished. The CRT will then be at its cutoff point, and a maximum contrast ratio can be obtained when a video signal is applied.

VIDEO CONTRAST

Q101 is designed to operate linearly when a +2.5 V signal is applied to its base. The ADM-1 incorporates a 500 ohm external contrast control to maintain this level. This control should be adjusted for a typical signal level of +2.5 V peak-to-peak when measured at the video input terminal of the printed circuit board edge connector. (Refer to the schematic.)

In all cases, the output DC impedance of the video signal source must be 500 ohms, or less.

VERTICAL ADJUSTMENTS

There is a slight interaction among the vertical frequency, height, and linearity controls. A change in the height of the picture may affect linearity.
(1) Apply video and synchronization signals to the monitor.
(2) Set the vertical frequency control, R116, near the mechanical center of its rotation.
(3) Adjust the vertical height control, R124, for desired height.
(4) Adjust the vertical linearity control, R121, for best vertical linearity.
(5) Remove the vertical drive signal from the unit. Or, alternatively, use a short jumper lead, and short the vertical drive input terminal of the printed circuit card edge connector to ground.
(6) Readjust the vertical frequency control, R116, until the picture rolls up slowly.
(7) Restore vertical drive to the monitor.
(8) Recheck height and linearity.

HORIZONTAL ADJUSTMENTS

Raster width is affected by a combination of the low voltage supply, width coil L101, and the horizontal linearity sleeve located on the neck of the CRT beneath the yoke.
(1) Apply video and synchronization signals to the monitor. Inser the horizontal linearity sleeve about $2 / 3$ of its length under the yoke. (If you received a monitor from the factory in which the placement of the linearity sleeve has been determined, make a mark on the sleeve and reinsert the sleeve to this mark when removal of the yoke and linearity sleeve are required.) If the linearity sleeve is inserted farther than necessary, excessive power will be consumed, and the horizontal output circuitry could be overstressed.
(2) Adjust the horizontal width coil, L101, for the desired width.
(3) Insert the linearity sleeve farther under the yoke to obtain the best linearity. Although this adjustment will affect the raster width, it should not be used solely for that purpose. The placement of the linearity sleeve should be optimized for the best linearity.
(4) Readjust L101 for proper width.
(5) Observe final horizontal linearity and width, and touch up either adjustment if needed.

No horizontal hold control is used in this monitor. The raster should be properly locked and centered when the horizontal drive signals as described above are used.

FOCUS ADJUSTMENT

The focus control, R107, provides an adjustment for maintaining best overall display focus. However, because of the construction of the gun assembly in the CRT, this control does not have a large effect on focus.

CENTERING

If the raster is not properly centered, it may be repositioned by rotating the ring magnets behind the deflection yoke.

The ring magnets should not be used to offset the raster from its nominal center position because it would degrade the resolution of the display.

If the picture is tilted, rotate the entire yoke.

PHILOSOPHY OF FAILURE ANALYSIS

Effective trouble shooting is accomplished in a minimum of time by following a series of logical steps. The ultimate aim is to effectively pinpoint the actual problems using all the information available.

Locating the malfunction is then the first logical step. The following is a suggested plan for effective casualty analysis.
(1) Investigate - record the state of the machine when the error occurred. Look for obvious symptoms including operator error, loose plugs or connectors, data set error, blown fuses or computer error.
(2) Isolation - Modular replacement is the quickest method of isolation where the replacement is available. Isolation to one of the following: circuit board, keyboard module, video monitor, power supply or inter-connecting wires should be the first step in isolation.
(3) Component Isolation - Isolation to a smaller component may be accomplished in some cases with the use of oscilloscope and multimeter.
(4) Replace the faulty module or component and retest by running the same operation in the same state the error occurred.
(5) Record for future reference the symptoms, cause and module or component isolation method used.

FAILURE ISOLATION

This section will explain briefly the approach to failure isolation and then describe a simple checkout procedure upon power turn-on.

The display terminal consists of a monitor assembly, power supply, keyboard and logic board. All assemblies are replaceable by simply disconnecting cables and removing attaching screws. To remove the cover for inspection or assembly replacement, remove the five screws on the side and back of the terminal.

The following will give you some helpful things to look and listen for what might indicate the problem area. Each assembly is described as to the function it performs along with a brief procedure to replace the assembly. At the end of this section is Table V.2, describing problems or symptoms and the most likely assembly to be at fault.
(1) Ensure the ADM-1 power cord is plugged into a grounded A.C. outlet of the proper voltage and frequency.
(2) Set the ON/OFF Switch on the rear of the ADM-1 to the "ON" position.
(3) Check to see if the fan starts when power is turned on. If it does not, check the power switch and push red circuit reset button.
(4) At turn on, listen for an audible 1 to 2 KHz tone that lasts approximately one second (only in units with beeper). This tone is caused by the horizontal oscillator starting and may not be heard where there is high ambient noise. If no tone is heard, look for cursor as in (5) below.
(5) If the cursor does not appear after a normal warm-up period, type the HOME key. If this fails to produce the cursor, reset the display by simultaneously pressing

CLR
the CTRL, SHIFT, REPT and HOME keys. If still no cursor, it is possible the BRK
brightness and/or contrast controls are misadjusted. They are adjusted as follows:
(a) Set the contrast control to the middle of its range.
(b) Turn the brightness control clockwise until the screen is bright, then reduce brightness slowly until the background is barely visible. The cursor should be present.
(c) Adjust brightness and contrast for desired presentation.
(d) If the cursor does not appear, check the power supply voltage; replace the monitor if necessary.
(6) If the problem is associated with transmitting and receiving of data to and from the computer, use the following procedure: Place the full-half duplex switch in full position. Remove the cable from the terminal output connector and jumper pins 2 and 3 and jumper pins 4 and 5 on the terminal connector together. Now, whatever is typed on the keyboard should appear on the screen. This test checks the transmission of characters from the keyboard and display of those characters in nonBLOCK mode. To test the function of character storage in memory, run the cursor to the bottom of display and test page ROLL functioning of displayed characters roll upward as expected, memory storage of characters is functional.

TROUBLESHOOTING THE MONITOR

The monitor receives video and sync signals from the control board and performs normal TV functions. The high voltage for the monitor is generated from its own self-contained power supply. In addition, the monitor assembly includes its own low voltage (15V D.C.) power supply.

CAUTION

DISCHARGE HIGH VOLTAGE BEFORE ATTEMPTING TO REMOVE MONITOR ASSEMBLY.

TABLE V. 2 - ADM-1 FAILURE ANALYSIS GUIDE

Type of Failure	Probable Location of Failure			
	Logic Board	Keyboard	Power Supply	Monitor
Audio Signal	1	2		
Clear Memory	1	2		
Clear Memory (Power Up)	1			
Cursor Control	1	2		
EDIT Control Option	1	2		
Parity Error	1			
Receive Data*	1	2		1
Transmit Data*	1			
Video:	1		1	2
Character/No Cursor	1		1	
No Character/Cursor	3			
No Character/No Cursor	2			
Data/No Sync				
Data Wavy				
Randomly Generated,				
Wrong Characters**				

*Check word structure specification and baud rate.
**Insure good connection of cable from keyboard to logic board.

MONITOR TROUBLESHOOTING GUIDE

Symptom

1. Screen is dark
2. Loss of video
3. Power consumption is too high
4. Low voltage bus incorrect (for units with a low voltage supply)

Possible Remedy

Check "A" bus Q106, Q105, CR2
CR105, Q101
Check horizontal drive waveform; Check proper placement of horizontal linearity sleeve; Q105, Q106

Q202, Q203, Q1 (Note: Low voltage supply will indicate low or " 0 " volts due to its current limiting action if a short is evident in the " A " volt line.

The voltage waveforms are shown in Figure V.2. Refer to Appendix C for interconnecting cabling diagrams, circuit board component locations and monitor schematic.

WAVEFORMS

Figure V. 2 - Voltage Waveforms for Monitor

Figure V. 3 - Monitor Interconnecting Cabling Diagram

NOTE:
FIOI AND RIOB ARE USED ONLY WHEN LOW VOLTAGE POWER SUPPLY IS NOT SUPPLIED

Figure V. 4 - Monitor Circuit Board Components Location

MAINTENANCE OF MAIN LOGIC BOARD AND POWER SUPPLY

The main logic board is essentially a self-contained functional unit with one exception: D-C logic level +5 Volts is obtained from a separate POWERTEC power supply.

For maintenance and trouble shooting, refer to Table V. 3 for identification of connectors and terminals external to the main logic board and normal input-output signals.

Connector J1 is used for Data Signal interface connection to the main logic board. Connectors J2 and J3 are used for the same purpose with RS232C Extension Option and Serial Printer Option, respectively.

Figure V. 5 - Main Logic Printed Circuit Board Assembly

TABLE V. 3 - MAIN LOGIC BOARD TERMINAL IDENTIFICATION CHART

Connector	Symbol	Pins	Function
RS232C Interface	$J 1$	1-25	See Table V. 1
RS232C Extension	J2	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 15 \\ 17 \\ 20 \end{array}$	Equipment Ground Transmit Data Receive Data Request to Send Clear to Send Data Set Ready Signal Ground Received Line Signal Transmitter Signal Element Timing Receiver Signal Element Timing Data Terminal Ready
Serial Printer (Option)		$\begin{array}{r} 1 \\ 2 \\ 3 \\ 6 \\ 7 \\ 8 \\ 20 \end{array}$	Equipment Ground Receive Data Printer Ready Signal Ground Receiver Line Signal Printer Ready
Monitor I/O	J4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Brightness Brightness Brightness Contrast Chassis Ground Video \& Video Ground Horizontal Ground Horizontal Drive Vertical Drive
Logic Board Power	J5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	AC Feed AC Feed Equipment Ground Speaker Speaker D-C Feed Power
Keyboard I/O	J6	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	SHIFT CTRL BRK SEND STROBE REPEAT SIGNAL COMMON BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 LINE16

							$S B$			
			1	2	3	4	5	6	7	8
	RDR	क 12	M1．3	M1． 4	M1．5	M1．6	M2．3	M2．4	M2．5	M2－6
	KEY	sh 16	C1．8	c1．6	61.11	C1．3	B1．8	B1－6	B1．11	81.3
	RCV	$\operatorname{sh} 13$	55.8	C5－6	C5．11	c5． 3	B7． 8	37－6	37－11	B7． 3
INPUTS	LIT	sh 22	C14－8	C14．6	C14－11	C14．3	B148	13146	B14．11	B14．3
	CPC	s6． 23	C6－8	C6．6	C6－11	C6． 3	B5－8	B5．6	B5． 11	B5． 3
	CPR	sh 23	C4－8	C4． 6	C4． 11	C4． 3	B4．8	B4．6	B4．11	B4．3
	LRC	sh 23	c3．b	48	co－x	（23）	bx－8	昭6	byty	683
	XRS	sh 13	c7－8	c7－6	c7．11	c7． 3	B6．8	B6． 6	B6－11	B6． 3
	ADD	Sh 26	C128	c12．6	cex.	623	80	$\text { ond } 6$	But－x	ringo
	STB	sh． 26	C11－8	C11－6	c11．11	C11．13	B11－8	B11．6	B1－11	B11－3

JUTPUTS	COND	sh 24	813.4	B13．3	B13－2	313－1	B13．15	B13．14	B13．13	B13．12
	MACC	sh7	F7A． 1	F7A． 12	F7A－4	F7A． 9	H6． 1		F2． 1	
	MACR	sh7	H6．$\%$	E3－4	E3－9	E3－1	E3．12			
of	WDR	$\operatorname{sh} 12$	4.4	4.5	4.12	4.13	L2． 4	L2－5	L2．12	L2．13
	NULLO	sh 12	C14－9	C14．5	c14．4	C14 3	C14．11	C14．2	c14．16	
	XMTR	shis	B8． 26	B8－27	138.28	B8－29	138．36	B8．31	B8． 32	E8－33
	$\begin{gathered} \text { Option } \\ \text { Si } \end{gathered}$	shis	Bictor 0_{6}	81627．	8460\％	化电				700．08\％
	LRC	sh23	82	cris	cor ${ }^{\text {c }}$	C2． 2	829	days	Benco.	
	$\begin{aligned} & \text { COND } \\ & \text { INHIBIT } \end{aligned}$	sh24	Ens	$80 . \pi$		A15 ${ }^{2}$	$\text { ars } 4$			

OPTIONS＝

Figure V． 6 －Tri－State Bus Signal Locations

Connector J 4 is used to supply output signals from the main logic board to the CRT monitor. If proper signals are present at terminals of connectors J 5 and J 6 , examine the integrity of connector pins on P4. Examine for obvious faults on main logic board. It is strongly recommended that no involved repairs be attempted on this board. Instead, contact the factory or authorized service representative.

Connector J5 primarily handles inputs to main logic. Therefore, the absence of proper inputs at terminals 1, 2, and 3 indicates failure in AC power feed. Likewise, lack of proper voltage at terminal 6 indicates problem with chassis mounted power supply or connector cable. Improper signals on terminals 4 and 5 indicate trouble with main logic board.

If noted signal levels are not present at terminals of connector J 6 as keyboard is operated, examine keyboard assembly for obvious faults. Either repair or replace keyboard assembly.

Keyboard output levels are compatible with TTL circuits with logic "1" greater than +2.6 V at .10 ma and logic " 0 " less than 0.6 V . The outputs are bounce free so that only one signal will be generated for each key depression. Two-key rollover interlocking is provided for all encoded keys. If a key is depressed before a previous operated key is released, the second key code is transmitted after the first key is released. A strobe pulse is provided with each encoded key output.

POWER SUPPLY

D.C. Voltages of $-5,+12$ and -12 volts utilized within the main logic board are generated by regulator IC chips on that board. A separate +5 volt power supply for logic level voltage is mounted above the main circuit board on the chassis.

Recommended adjustment procedure for the separate power supply is as follows:
(1) Adjust current limit potentiometer to maximum current output (this should correspond to normal operating position).

CAUTION:

DISCONNECT OUTPUT LOAD BEFORE PROCEEDING THROUGH THE FOLLOWING STEPS.
(2) Adjust overvoltage protection potentiometer to the maximum position.
(3) Adjust output voltage to 6 volts D.C.
(4) Adjust the overvoltage protection potentiometer down to the point where output voltage shuts off.
(5) Turn down output voltage to overvoltage protection control or lowest setting, then bring the output voltage back up again and adjust the output (watching the output meter) until it gets to 6 volts D.C., then the output should go back to overvoltage D.C.
(6) If the overvoltage protection adjustment is correct, then adjust the output voltage control up to 5.2 volts D.C., which is the normal operating voltage.

Maintenance and trouble shooting of the separate power supply are included in the following pages.

Figure V. 7 - Main Logic Printed Circuit Board Connections

COMPONENT REPLACEMENT

The replacement of a component on any printed circuit board requires care to prevent damage to circuit board etch. Clipping a component from the circuit board rather than unsoldering is the preferred method. Excessive heat from a soldering iron may result in damage to the component being replaced. The use of a soldering iron with an isolation transformer, a small copper alligator clip as a heat sink, and a delay between the soldering of individual pins of a chip are recommended.

In accordance with good maintenance practices, Lear Siegler does not recommend individual component replacement on any printed circuit board. Instead, it is recommended the factory be contacted relative to availability of special test equipment or factory rebuilt and tested replacement assemblies.

WARRANTY

Lear Siegler, Incorporated, Electronic Instrumentation Division certifies that each ADM-1 data display terminal will be free from defective materials and workmanship for a period of 90 days from date of shipment to the original customer. Lear Siegler agrees to correct any defects within warranty when the ADM-1 is returned, freight prepaid, to the factory at Anaheim, California. Written authorization must be obtained and confirmed in writing by Lear Siegler.

MALFUNCTION REPORT

Dear Customer:

We are trying to manufacture the most reliable product possible. You would do us a great courtesy by completing this form should you experience any failures.

1. Type Unit \qquad Serial No. \qquad
Module (if applicable)
2. Part failed (Name and Number) \qquad
3. Cause of failure (if readily available) \qquad
\qquad
\qquad
\qquad
4. Approximate hours/days of operation to failure \qquad
5. Failure occurred during:
\square Final Inspection
\square Customer Installation
\square Field Use
6. Personal Comment:
\qquad
\qquad
\qquad

Customer \qquad
Address \qquad
Signed
Date
Mail to: DATA PRODUCTS CUSTOMER SERVICE

APPENDIX A

Section Contents Option No. Page
A. 1 ADM-1 CONFIGURATION CONTROL
Etched Face Plate 1 A-1
Etched Face Plate and P31 Phosphor 2 A-1
Extended Keyboard 4 A-1
Current Loop Interface 10
RS232C Extension 11
Polling 12
Baud Rate 20
Word Structure 30
Serial Printer Interface 51
Numeric Keyboard 60
RS232C Cable 61 A-11
A. 2 ADM-1 POLLING 12 A-12
A. 3 SERIAL PRINTER INTERFACE 51A-22

APPENDIX A

ADM-1 CONFIGURATION CONTROL
MONITOR - OPTION 1, 2
The standard monitor with P4 Phosphor is replaced by one of the following:

1. P4 Phosphor, Etched Face Plate:
Instructions - Remove 129302-1 Monitor
Install F/N 1 Monitor Etched Face Plate 129302-3
2. P31 Phosphor, Etched Face Plate
Instructions - Remove 129302-1 Monitor
Install F/N 1 Monitor 129302-4
KEYBOARD - OPTION 4
The standard keyboard and case are replaced by the following:
60 Key Option
Instructions - Remove 129304-1 Housing
Remove 129301-1 Keyboard
Install F/N 1 Keyboard and F/N 2 Case
CURRENT LOOP, 20 MA OPTION 10
Current Loop, 20 MA
Instructions - At location D7 install components:
F/N 2 Transistor Q1, 02 2N3904
F/N 3 Diode CR19 1N914
F/N 4 Resistor, 39 1W R40
F/N 5 Resistor, 3K R39
F/N 6 Resistor 1K R41
F/N 7 Resistor 470 R42

Remove Jumpers
Add Jumpers
(See Figure 1)

Figure 1

Figure 2

At location A5 install optical couplers F/N 1 (See Figure 2) MCT2 (Motorola)

RS 232 EXTENSION - OPTION 11

RS 232 Extensions

Instructions - Install Connector at J2
F/N 3 Bracket (Mount to Board with 1/8 pop-rivet or equivalent)
F/N 4 Conn. Body
F/N 7 Jack Screw
F/N 5 Pin, Short (at 15, 17, 20)
F/N 6 Pin, Long (at 1, 2, 3, 4, 5, 6, 7, 8)
Install Components
F/N 1 I.C.-1488 (at location A8, A9)
F/N 2 I.C.-1489 (at location A7.5, A11)

POLLING - OPTION 12

Parts List - I.C. (128578-XX)
Instructions - Install Components:
F/N 1 I.C. -30 at Location E2
F/N 2 I.C. -86 at Location B2, C2
F/N 3 I.C. -103 at Location D12, E12
F/N 4 I.C. -125 at Location B3, C3, B11, B12, C12
F/N 5 I.C. - 175 at Location D2, D3
F/N 6 Switch at Location A12

BAUD RATE - OPTION 20

(If no baud rate is selected, see attached sheet)
Parts List - Diode 1N914
Instructions - Install a diode (F/N 1) at each location indicated in the table below. The quantity of diodes to be installed will vary according to the baud rate. If highest rate is not 1200, see Note below.

	BAUD RATE							$($ Diode $=0)$					
tion	110	150	300	600	1000	1800	2000	2400	3600	4800	7200	9600	1200
K	d												
J		d											
1	D	D	D										
H		D	-	D	\triangle								
G			D	d		D	\						d
F		d		D				D	®				\triangle
E	-	-	D					d		D	®		\triangle
D	d	D	d	D	d	d		d		d		\	
C	-	-	-	D	d	d	N		D	d		\triangle	\triangle
B		d	D	d	d	d	வ	d	®		D	d	\triangle
A		D	-	-	\triangle	-	\wedge	d	\wedge	-	\triangle		\triangle
(5	9	8	7	5	5	4	5	4	4	3	3	6

NOTE: 1200 baud is installed in the " H " position. If another rate is required, remove and add diodes as needed for the new rate.

BAUD RATE - OPTION 20 (Continued)

If no baud rate is selected, remove R21 and jumper as shown below. Baud rate will be 1200 in either switch position.

Diodes shown are 1200 baud per assy 129310.

Install baud rate module to select baud rates desired.

P/N 129307-XXXX

Where XXXX = baud rate

TO SELECT SPECIAL BAUD RATES

$$
\text { Baud Rate }=\frac{4608000}{32 \cdot N}
$$

Where $7 \leqslant N \leqslant \quad 2048$
the limits are $\quad N=7$, Baud Rate $=20,571.5$

$$
N=2048, \text { Baud Rate }=70.3
$$

To select the diodes required after N is known

1. Convert N to a 4 digit octal number called $N_{3} N_{2} N_{1} N_{0}$
2. Determine the 2 's complement of N called R, i.e.

$$
\begin{array}{r}
7777 \\
-\quad \begin{array}{l}
77 N_{2} N_{1} N_{0} \\
\hline M_{3} M_{2} M_{1} M_{0} \\
+
\end{array} \frac{1}{R_{3} R_{2} R_{1} R_{0}}
\end{array}
$$

3. Convert R to binary

B

K J
I H G
FED
C B A

Circuit
Locations
4. Install diodes for all zero's in the binary number B
5. Example:

$$
\text { Baud Rate }=75=\frac{4608000}{32 \cdot N}, N=1920
$$

240
$8 \longdiv { 1 9 2 0 }$
30
$8 \longdiv { 2 4 0 }$
$8 \longdiv { 3 0 }$

0
$\begin{array}{c}3 \\ 0\end{array}$

$\frac{11}{320}$
320
000
Remainder 0
Remainder 6
Rema
Remainder 0

$$
\mathrm{N} \text { Octal }=3600_{8}
$$

7777
3600

$R=\quad+\quad 4177$

\quad| 1 |
| ---: |

Diodes Needed
KJ

I-G
FED
CBA

WORD STRUCTURE - OPTION 30, 31, 32, 33, 34
Instruction - At location B9 remove or add jumpers as indicated below:

-30
66 66
Parity Odd
1 Stop
(10 Bit)

-31
0 ob o 0
Parity Even
2 Stop
(11 Bit)

-32

Parity Odd
2 Stop
(11 Bit)

At Location F14 jumper as follows:

PRINTER OUTPUT - OPTION 51

Parts List:

1.	CA-40S-10SD	Socket, 40 Pin C	Circuit Assy Corp.
2.	CA-24S-10SD	Socket, 24 Pin	Circuit Assy Corp.
3.	$128534-3$	Bracket, Conn.	
4.	$17-305-01$	Connector Body	Amphenol
5.	$17-1207$	Pin, Long, P.C.	Amphenol
6.	$17-893$	Jack Socket	Amphenol
7.	$129314-020$	ROM	
8.	$128348-1602$	I. C.	
9.	$128578-10$	I. C.	
10.	$128348-103$	I. C.	
11.	$128348-02$	I. C.	
12.	$128348-161$	I. C.	
13.	$128348-1489$	I. C.	
14.	$128348-123$	I. C.	
15.	$128348-1488$	I. C.	
16.	TE-1059.5	Capacitor, 100 uF, 3 V	Sprague
17.	$79 P R 20 K$	Pot., 20 K	Helipot
18.	$1 N 914$	Diode	
19.	$128533-512$	Res, $5.1 K$	
20.	$128533-102$	Res, 1 K	

Instructions -	Install Connector at J3:	
	F/N 3 Bracket (Mount to Bd. with 1/8 Pop-Rivets or equivalent)	
	F/N 4 Connector Body	
	F/N 6 Pin, Long (Installed at 2, 3, 4, 5)	
	F/N 7 Jack Screw	
	Install Sockets and I.C.'s:	
	F/N 1 Socket, 40 Pin	Locate at B10
	F/N 2 Socket, 24 Pin	Locate at K15*
	F/N 8 I. C. ROM	Locate at K15*
	F/N 9 I. C. -1602	Locate at B10
	F/N 10 I.C. -10	Locate at D10
	F/N 11 I.C. -103	Locate at E8
	F/N 12 I. C. -02	Locate at E9
	F/N 13 I. C. -161	Locate at S6, S7, S8
	F/N 14 I. C. -1489	Locate at A11
	F/N 15 I. C. 123	Locate at A10
	F/N 16 I. C. -1488	Locate at A9

(*NOTE - If option No. 50 is also installed, locate ROM at K14).

At Location F14 jumper as follows:
(Jumper for -51 Option Only)
(Jumper for -50 and -51 Options)
 0
(B)

0

(C)

F14

0
(A)

At location T6 and T7, install 11 jumpers to select baud rate. (See following table).
At location B10 jumper to select word structure. (See following table).
Install components at Location A10:

F/N 17 Capacitor
F/N 18 Pot
F/N 20 Resistor
F/N 21 Resistor
F/N 19 Diode

Install Jumper at each location to either the " 1 " side or the " 0 " side as tabulated below for the baud rate required:

$\left\lvert\, \begin{aligned} & \text { Loca- } \\ & \text { tion } \end{aligned}\right.$	BAUD RATE												
	110	150	300	600	1000	1200	1800	2000	2400	3600	4800	7200	9600
K	0	1	1	1	1	1	1	1	1	1	1	1	1
J	1	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	1	1
H	1	0	0	0	0	1	1	1	1	1	1	1	1
G	1	1	0	0	1	0	0	0	1	1	1	1	1
F	1	0	1	0	1	0	1	1	0	0	1	1	1
E	0	0	0	1	1	0	1	1	0	1	0	0	1
D	0	0	0	0	0	1	0	1	0	1	0	1	0
C	0	0	0	0	0	0	0	0	1	0	0	1	0
B	1	0	0	0	0	0	0	0	0	0	1	0	0
A	1	0	0	0	0	0	0	0	0	0	0	0	1

If "0" shows in table, Jumper to this side

Install Jumpers as required at Location B10:

| 1602 | 0 | Install Jumper
 If: | No Jumper
 If: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B 10 | 0 | Parity Odd | Parity Even or No
 Parity |
| | 0 | 8-Bit | |

```
NUMERIC KEYBOARD - OPTION 60
Instructions - Plug F/N 1 60 Key Keyboard into ADM-1 Keyboard.
OUTPUT CABLE, RS 232 - OPTION 61
Parts List - 128557-91
Instructions - Install cable on Output Connectors
```


APPENDIX A

SECTION 2 - ADM-1 POLLING

POLLING/ADDRESSING DIALOG (PROTOCOL)

The control sends a four or five character sequence to initiate operations. This sequence consists of an EOT followed by two address characters, followed by a function character, and depending upon the function character, an ENQ.

For the ADM-1 the two address characters are the same character transmitted twice. The set of characters usable for ADM-1 addresses are from space thru DEL inclusive, providing 96 unique addresses.

Detection of a parity error in any of the header sequence will cause the header to be ignored.

The function codes are the lower case graphic characters p, q, r, s, t, and u.

p	$=$	POL
q	$=$	SELECT
r	$=$	SEQUENTIAL SELECT
s	$=$	FAST SELECT
t	$=$	BROADCAST SELECT
u	$=$	SEND

$p-P O L$ is a function code that must be followed by an ENQ.

When a terminal is properly addressed in a POL sequence (EOT $A_{1} A_{1} p$ ENQ), it will respond in one of two ways.

1. No message waiting to be sent:

The terminal sends an EOT.
2. Message waiting to be sent:

The terminal sends the message (see "SENDING DATA").
q - SELECT (Must be followed by ENQ)
When a terminal is properly addressed in a SEL sequence (EOT A.A. 2 q ENQ), it will respond in one of two ways.

1. Busy - Transmit a NAK.
2. Not Busy - Transmit an ACK.

The BUSY condition will exist if any one of the following conditions exist:

1. Waiting to be polled.
2. Operator is entering data.
3. The terminal is transmitting to the printer.

After transmitting the NAK, the terminal will disconnect.

In the NOT BUSY condition, the terminal transmits ACK then waits for the start of text transmission STX. (Any characters received prior to the STX will be ignored.)

Upon receipt of the STX, the LRC accumulator is cleared. As the text characters are received, the LRC check character is accumulated and the character written in the display memory or acted upon in accordance to the nature of the character.

When the ETX character is received, the operation is ended and the LRC character is expected to follow.

After the LRC character is received, the LRC accumulator and the parity error flag are tested for the occurrence of an error.

If no errors had been detected, the ADM-1 will send an ACK and disconnect in the idle state.

If a parity or LRC error was detected, the ADM-1 sends NAK, and remains connected waiting for retransmission of the message.

The message retransmission begins with the STX. If the computer wishes to terminate the operation offer receiving a NAK from the terminal an EOT in place of the STX text sequence will place the terminal in the idle state.

r - SEQUENTIAL SELECT

The SEQUENTIAL SELECT function provides a method of sequentially addressing a number of terminals with a single header so that they will all prepare (if not busy) to receive the same message.

Example 1:

E													
O	A_{1}	$\mathrm{~A}_{1}$	r	A_{2}	$\mathrm{~A}_{2}$	r	A_{3}	A_{3}	s	T	TEXT	T	R
T										X			X
C	C												

In the example terminals with address character A_{1} and A_{2} will connect and wait for the STX if they were idle when their respective ' r ' function was received. The terminal whose address is A_{3} will connect unconditionally (see "s - FAST SELECT).

Following the ETX LRC terminals A_{1} and A_{2} will disconnect without responding. Terminal A_{3} will send ACK or NAK depending upon whether a parity or LRC error had been detected and then it will disconnect.

Upon receiving an ' r ' in the function position of an addressing sequence, the ADM-1 tests to see if its address code had been received in the address positions. If the address had not been for that terminal, the ADM-1 will look at the next two characters for its address. If the ADM determines that its address had preceded the SEQ function (r) it will test its busy status. If not busy, it will wait for an STX indicating the start of a message text block. If busy, it will disconnect without responding.
s - FAST SELECT
FAST SELECT provides a method of fast selection of a terminal. In this mode of selection the function ' s ' is immediately followed by the STX - Text ETX, LRC.

There is no response from the terminal until after the LRC character. This mode will also override the 'Busy' status. That is to say, the terminal will unconditionally connect and prepare for the STX.

t - BROADCAST SELECT

BROADCAST SELECT is similar to FAST SELECT in that a 'Busy' condition is overridden. In this case all terminals receiving the ' t ' in the proper position of a header will immediately connect and wait for STX.

At the end of the message following ETX - LRC, the terminal whose address preceded the function will respond with ACK/NAK and disconnect. All other terminals will disconnect.
u - SEND
EOT $A_{1} A_{1} u$
The SEND function (u) will cause the terminal whose address preceded the function code to perform the "SEND" operation.

The GS code will be written at the cursor position; then the cursor will move back to the position following the first previous GS code or to the Home position. At this point the ADM will wait for a poll operation.

The Sequence

EOT $A_{1} A_{1} u, p, E N Q$
will perform the above operation with the addition of an immediate poll.

SENDING DATA

When the SEND key is operated, a 'GS' code is written into t he cursor location, the cursor position is saved and then the cursor is moved backwards to the position following the first detected 'GS' or to the Home position if no 'GS' is located. The keyboard becomes locked at this time and remains so until the poll operation is completed.

NOTE: The operator can remove the terminal from the 'waiting for poll' state and recover control by depressing the CTRL, SHIFT and BREAK Keys.

Upon receiving a valid (error free) Poll sequence (EOT $A_{i} A_{i} p E N Q$), the terminal then sends ETX followed by the text, and ETX and the LRC character. The LRC character is the modulo 2 sum of the text characters and the ETX character.

The text is transmitted in one of two forms depending upon the state of the protect mode:

1. Protect mode off:

All characters (except 'NUL') are transmitted. When the cursor moves from the end of one line to the beginning of the next line a 'US' code is inserted in the character string.
2. Protect mode on:

All foreground (unprotected) characters are transmitted. As the protected fields are encountered, an 'FS' code is transmitted.

After the LRC character is sent, the terminal waits for acknowledgment from control. There are four actions that the terminal will take depending upon the response.

Response
ACK
NAK

EOT

None of
the above
or parity error

Terminal Action
Send EOT and disconnect.
Retransmit the message and wait for response.
Position the cursor to the start of the message and go to the 'wait for poll' state. The next character may be an address character. (Terminal does not respond.)

No response from terminal. Terminal repositions cursor to the beginning of the message and waits to be polled again.

MISCELLANEOUS

Reset

To reset the ADM-1 to an idle clear state, depress the following keys simultaneously in any order: CTRL, SHIFT, REPEAT, BREAK. This operation forces the control program to begin execution at location zero and clears all of the program control flags. The entire display screen is cleared to 'spaces', the protect mode is reset, and the cursor is positioned at the 'home' position.

Clear

The ADM-1 screen may be cleared in several ways:
Locally the operator can clear the foreground (unprotected) character spaces to 'space' codes by use of the CTRL and BREAK keys (or the CLEAR key on the 60 key keyboard).

By operator or computer control, the entire display may be cleared or only the foreground may be cleared to either 'spaces' or to NULS by the use of the following escape sequences:

ESC	$;$	clear FG to space
ESC	+	clear all to spaces (resets protect mode)
ESC	$:$	clear FG to NUL
ESC	$*$	clear all to NUL (resets protect mode)

Upon completion, the cursor will be in the first unprotected position on the screen.

Load Cursor

The computer can position the ADM-1 cursor to any position for a 4 character sequence. $\mathrm{ESC}=\mathrm{YX}$
where Y and X represent the row and column coordinates of the cursor position desired. The HOME position (top row, leftmost column) is addressed by 'space' codes, successive positions (down and to the right) use codes ascending in the ASCII character set.
'sp', !, " . . . etc.

After the ' X ' coordinate is loaded, the position of the cursor is tested for protected status. If that position is protected, the cursor automatically skips forward to the first unprotected location.

Protect Control

Writing of protected characters is accomplished by sending or typing an ESC) sequence. This sequence sets the WRITE PROTECT mode.

The WRITE PROTECT mode is reset by an ESC (sequence.

The PROTECT MODE is set by an ESC \& sequence and cleared by an ESC ' sequence.

When in PROTECT MODE, characters that have been written with the WRITE PROTECT set cannot be overwritten.

The PROTECT MODE is also cleared by the CLEAR operations.
ESC *
ESC +

The WRITE PROTECT mode is cleared:
By the clear operations:
ESC +
ESC *
ESC :
ESC ;
By initiation of a SEND operation,
After selection, before the STX is received.
At the end of a receiving text operation, either a normal (ETX) or an EOT termination.

When the EDIT and PRINT OPTIONS are provided, the WRITE PROTECT mode will terminate when any of the following operations are performed:

LINE INSERT
CHARACTER INSERT
Line delete
CHARACTER DELETE
pAGE ERASE
PRINT

The cursor will not reside in a protected position. Following any cursor motion operation, the content of the position indicated by the cursor is tested for protected status. If that position is protected, the cursor moves forward (or backward) in the event of an original backward motion) until an unprotected location is reached.

CAUTION

If the entire display area is protected, the cursor will have no place to stop, causing the terminal to 'lock up' in a search for and unprotected position. This search may be 'broken' by the operator depressing the BREAK key.

EDIT OPERATION (OPTION)

Character Insert - ESC Q
a) Resets WRITE PROTECT mode.
b) Moves the character under the cursor and all following characters on that line (orfield) one space to the right.
c) Writes a space at the original position of the cursor and leaves the cursor at that position.
Character Delete - ESC W
a) Resets WRITE PROTECT mode.
b) Deletes the character under the cursor by moving all following characters on that line or field one space to the left.
c) Writes a 'space' in the last position of the line or field.
d) Cursor does not move.

Line Insert - ESC W

a) Is not executed in PROTECT MODE is set.
b) Resets WRITE PROTECT mode.
c) Inserts a line of unprotected spaces at the line occupied by the cursor by moving the contents of that line and all lines below down one line.
d) Bottom line is lost.
e) At completion cursor is at first character position of inserted line.

Line Delete - ESC E

a) Is not executed if PROTECT MODE set.
b) Resets WRITE PROTECT mode.
c) Deletes line of data occupied by cursor.
d) Moves following lines up one line.
e) Bottom line becomes unprotected spaces.
f) Cursor is at first position of original line count.
Line Erase - ESC T
a) Replaces contents of unprotected positions with space beginning at cursor position and ending at last character of line or field.
b) If WRITE PROTECT mode is true, the spaces will be protected.
c) Cursor will remain at original position, except when WRITE PROTECT mode $=$ true and PROTECT MODE = true, then the cursor will move to the first unprotectec position following.

Page Erase - ESC Y

a) Resets WRITE PROTECT mode.
b) Writes SPACE in all unprotected positions beginning with position of cursor to the end of the screen.
c) Cursor does not move.

Backtab - ESC I

Moves cursor to first position of current unprotected field. If at first position, move to first position of previous unprotected field. If backward motion passes through HOME, the cursor stops at last unprotected position on the screen.

PRINT OPERATION - ESC P

When received in text or entered from keyboard, the ESC P sequence will cause an EM code to be written at the cursor position. The cursor is then moved to the HOME position. If the command originated from the keyboard, the print operation will begin immediately; if from the computer, it will begin following the termination of the message procedure (i.e. following the ETX LRC and acknowledge response if required).

Printing takes place in the following manner:

1. CR LF NUL
2. Each line of text followed by CR LF NUL

Trailing spaces will not be printed in order to reduce printing time.

The PRINT operation will terminate when the cursor reaches the EM code at which time a final CR LF NUL will be sent to the printer.

POLLING ADDRESS SELECTION

The AMP switch on the logic card at A12 sets the address character for the terminal. Character Space thru DEL is selected in ASCII where TRUE=OFF

Test Address is "?"

APPENDIX A

SECTION 3 - SERIAL PRINTER INTERFACE OPTION

INTRODUCTION

This interface option will allow ADM-1 Inquiry Display Terminals to control an RS232C compatible printer.

Operation of the printer may be initiated from the terminal keyboard or remotely from the computer. In addition, a vareity of baud rates may be selected to accommodate various types of printers.

OPERATING MODES

The Printer Interface will allow the printer to receive data in either the Page Mode or Free Form Entry Mode.

Page Mode

In the Page Mode characters are transmitted from the terminal to the printer in formatted form at a printer compatible baud rate. Printing can be initiated either from the terminal keyboard, or remotely, by computer command. Data is first entered on the screen from either the keyboard or computer. The cursor is placed at the location the print operation is to stop and ESC P is entered from either the keyboard or computer.

The ADM-1 then moves the cursor to the Home position and begins output to the printer. Transmission to the printer continues until the location when the ESC P was entered is reached and the print operation is terminated.

Free Form Entry Mode

In this mode formatting of the printed page on the printer is not automatically generated by the ADM-1. That is the Carriage Return and Line Feed must be imbedded in the text on the screen. This gives the operator the ability to format many (up to 640) lines of print on a single screen of the ADM-1.
Operation:
From the keyboard or computer the Free Form Entry mode is started with ESC U sequence. This allows the control codes normally associated with ADM-1 control to be
written into the buffer.
ESC L initiates the special print operation.
In this mode printing begins at the cursor position and continues to the end of the screen or to detecting a GS code on the screen which terminates the print operation.

Depressing the break key or transmission of ESC X from the computer will take the ADM-1 out of the Free Form Entry Mode.

INTERFACE CONNECTOR

The Interface Connector is a $\mathbf{2 5}$-pin connector utilizing the following pins for printer operation:
1 Chassis ground
3 Serial data to printer
7 Signal common
8 ADM READY (to PRINTER)
20 PRINTER READY (to ADM)
Signal levels at the connector must conform to RS232.
ON, SPACE, " 0 " $>+3 V$
OFF, MARK, ' 1 " < -3V

PROGRAMMING PRINTER OPERATION

There are two print modes of operation. These modes are envoked by escape sequences ESC P and ESC L.

1. ESC P: provides the basic page print operation.

When ESC P is executed GS code \square is written into the ADM-1 page buffer. This code is used to terminate the print operation.

The ADM-1 moves the cursor to the Home position and prepares to output to the printer. The ADM raises the ADM-READY line (8) in preparation for sending to the printer. If the printer is "ready" to receive data it must provide a high signal on the printer ready line (10). The ADM-1 then outputs a CR, LF, NUL sequence to the printer to initialize the printer.

Following the output of LF the ADM-1 drops the ADM Ready line and raises it again before proceeding to output the data.

Data is output to the printer in an asynchronous character bit serial format with a parity bit preceding the stop bit. The standard format provides a 10 unit code (single stop bit) with an even parity bit.

Characters are read from the ADM-1 display buffer beginning at the home position and output to the printer. As each character is accessed it is tested to see if it is a space or if it is the GS code. If it is space, the remaining characters on the line are tested for space. If there are no non-space characters remaining on that line, the ADM outputs a CR, LF, NUL to the printer and drops the "ADM ready" line for a short time.

When the end of a line is reached a CR, LF, NUL is output, and the ADM ready line drops.

When the GS code is detected signaling the end of the print operation, the ADM prints a CR LF NUL sequence, replaces the GS code with a space and returns to the Idle state.

If the print command was issued by the computer, the ADM will send a single CR character to the computer to indicate completion of the print operation.

While printing, the ADM is "blind" to all other activity.

Use of ADM-Ready and Printer Ready

If the attached printer provides a Ready/Busy status while printing, such as from a Centronics printer, the ADM Ready will have no effect on the operation, and the Printer Ready/Busy will effectively "interlock" the ADM/Printer interface to inhibit the ADM from transferring data to the printer while the printer is busy.
2. ESC L: provides a special print operation

In this mode format, control (CR, LF etc.) of the printer is not generated by ADM but must be imbedded in the text on the ADM screen. (See (3) below for method of writing control characters on screen.)

In this print mode printing begins at the cursor position and continues to the end of the screen or to sensing a GS code.

The ADM ready line is not pulsed - it is raised at the beginning and remains raised until the end of the print operation.
3. In order to write the control codes for a "Free Form Entry" print, the ADM-1 must be put into a mode where the control codes normally associated with ADM- control (CR, LF, FF, VT, BEL, ESC, BS, RS, US) will be written into the buffer. This is accomplished by executing an ESC U sequence.

Having done this, all control codes normally acted upon by the ADM will be stored in the buffer. In order to remove the ADM from this mode, the computer should execute an ESC X sequence, or the operator depress the Break key.

APPENDIX B

Page
RENEWAL PARTS INFORMATION B-1
ADM-1 ASSEMBLY PARTS LIST B-2
MAIN LOGIC BOARD PARTS LIST B-3
INTEGRATED CIRCUIT IDENTIFICATION B-5
MONITOR PARTS LIST B-8
MONITOR VENDOR CODES B-10

RENEWAL PARTS INFORMATION

If it becomes necessary to order spare or renewal parts for your ADM-1 terminal from Lear Siegler/Electronic Instrumentation Division, include the following:
(1) Part Description
(2) Part Number
(3) ADM-1 Serial Number

Routine parts orders should be sent to:

Lear Siegler, Inc.
Electronic Instrumentation Division
Data Products Customer Service
714 North Brookhurst Street
Anaheim, California 92803

Emergency parts information and/or order placement can be made by telephoning:

Data Products Customer Service
Telephone: (714) 774-1010

ADM-1 ASSEMBLY PARTS LIST

REF DES	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	QTY	NOTE
1	ADM-1 Assembly	129300-1				
2	Keyboard	129301-1			1	
3	Monitor	129302			1	
4	Housing	129304			1	
5	Top Plate	129305-3			1	
6	Chassis Base	129305-5			1	
7	Keyboard Bracket	129305-7			2	
8	Blower Bracket	129305-9			1	
9	Printed Circuit Board Assembly	129310-1			1	
10	Power Supply - Reg. \& Transformer	129312			1	
11	Wiring	129319-1			1	
12	Blower		3-15-2450	Howard	1	
13	Cable, Keyboard		5142-024	Spc-Str	1	
14	Capacitor		5HK-S 10	Sprague	2	
15	Circuit Breaker		81504.5	Ltlefuse	1	
16	Terminal Block		$\begin{aligned} & 912-2-K T 79-K T 74-K T- \\ & 75 \end{aligned}$	Kulka	1	
17	Pop Rivet		AD56ABS	USM	6	
18	Circuit Board Support		CBS-3N	Richco	6	
19	Sponge Rubber, Black Neoprene			Richco	4	
20	Pad			3M	6	
21	Speaker		S2-200	Calectro	1	
22	Strain Relief		SR-6P3-4	Heyco	1	
23	Switch, Rocker (Imprinted On-Off)		TA101-TWB	Carling	1	

LOGIC BOARD PARTS LIST

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	QTY	NOTE
1	P11, N8	128348-00			2	
2	C13, F14	128348-01			2	
3	$\begin{aligned} & \text { F9, F13, H7, H10, J9, J11, J12, K8, } \\ & \text { K10, K11, N7, L12, N12 } \end{aligned}$	128348-02			13	
4	K1, M9, N10	128348-04			3	
5	M5	128348-06			1	
6	E3, F2, F7B, H6, M6, M8, H2	128348-08			7	
7	K3	128348-20			1	
8	D13, F11, M10, P12, C14	128348-27			5	
9	D8, F3, H5, M3, F7A	128348-32			5	
10	A14, J13, K13, L13, P10	128348-42			5	
11	D14, J7, M12, N6	128348-74			4	
12	L3, L5, L6	128348-83			3	
13	E4, E5, E6, J4, J5, J6	128348-85			6	
14	N5	128348-86			1	
15	D11, E11, F10, K2,L10,N9,M7, P13,R12	128348-103			10	
16	E7	128348-106			1	
17	R1, R3, R5, R7	128348-107			4	
18	R13	128348-123			1	
19	B1,4,5,6,7,14, C1,4,5,6,7,11,14	128348-125			13	
20	A13, B13, E13	128348-151			3	
21	K4, K5, K6	128348-157			3	
22	$\begin{aligned} & \text { H14,H15,J1,J2,J3,R8,R9,R10,S11,S12 } \\ & \text { S13 } \end{aligned}$	128348-161			11	
23	M4	128348-166			1	
24	M1, M2	128348-173			2	
25	$\begin{aligned} & \text { A15, B15, C15, D4, D5, D6, E15, L1, } \\ & \text { L2, P1, P2 } \end{aligned}$	128348-175			11	
26	F4, 5, 6	128348-193			3	
27	A6	128348-1488			1	
28	A7	128348-1489			1	
29	B8	128348-1602			1	
30	P3	128348-2513			1	
31	N1, N2	128348-2532			2	
32	S1,2,3,4A,4B,5,6A,6B	128348-4008 (-21)			8	
33	T1, 2, 3, 4A, 4B, 5, 6A, 6B	128348-4008 (-31)			16	
34	S15	128348-4024			1	
35	T15	128348-7805			1	
36	A5	128348-7812			1	
37	T7	128348-7905			1	
38	A5	128348-7912			1	
39	Capacitor,.1uf, C41-48, 55, 56	128349-104			10	
40	Capacitor, 50uf, C5	128349-506			1	
41	Capacitor, .1uf, C2, 8-18, 32, 33, 49-52	128518-104			18	
42	Capacitor, 100uf, C30, C31	128518-108			2	
43	Capacitor, 2.2uf, C6	128518-225			1	
44	Capacitor, 270 pf, C3	128518-271			1	

LOGIC BOARD PARTS LIST (Continued)

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	QTY	NOTE
45	Resistor, 1 K (R1-4, 6, 8-14, 17, 18, 20, 22, 23, 25, 26, 31-34, 88-90, 36, 62	128533-102			28	
46	Resistor, 10K, R29	128533-103			1	
47	Resistor, 1.2K, R91	128533-122			1	
48	Resistor, 12K R54-61	128533-123			8	
49	Resistor, 150K R 15	128533-151			1	
50	Resistor, 18K R27	128533-183			1	
51	Resistor, 220 , , R46-53	128533-221			8	
52	Resistor, 270K, R16	128533-271			1	
53	Resistor, 390K, R24	128533-391			1	
54	Resistor, 39K, R30	128533-393			1	
55	Resistor, 470, R8-14	128533-471			7	
56	Resistor, $6.8 \mathrm{~K}, \mathrm{R} 92$	128533-682			1	
57	Bracket, Connector	128536-3			2	
58	$\begin{aligned} & \text { D1, D15, F8, F15, H12, H4, H9, J8, K9 } \\ & \text { K12, L11 } \end{aligned}$	128578-00			13	
59	E1, 10, F12, H8, H13, J10, N11, R 11	128578-04			8	
60	D9, H1, M11, B14A, P8	128578-10			5	
61	E14, H3, R9	128578-20			3	
62	K7, P5, P1A	128578-30			3	
63	L4	129303-01			1	
64	Baud Rate Module	129310-13			1	
65	Printed Circuit Board Assy, 12 Lines	129310-21				
66	Printed Circuit Board Assy, 24 lines	129310-31				
67	L15	129313-01			1	
68	Wafercon, 9 Pin J4		09-18-5094	Molex	1	
69	Wafercon, 6 Pin J5		09-18-5061	Molex	1	
70	Socket, Short		17-1208	Amph	3	
71	Socket, Long		17-1209	Amph	12	
72	Connector, Socket J1		17-304-01	Amph	1	
73	Jack Socket		17-893	Amph	1	
74	Capacitor, . 33 uf		196D334X0035HA1	Sprague	2	
75	Crystal (with $1 \frac{1}{2}{ }^{\prime \prime}$ ' Wire Leads)		816D-4608.0Khz	S.C.	1	
76	Crystal (with $11 / 2^{\prime \prime}$ Wire Leads)		816D-1096.0Khz	S.C.	1	
77	Pop Rivet		AD32BS	USM	2	
78	Pop Rivet		AD42ABS	USM	6	
79	Socket, 24 Pin Dip 6		CA24S-105D	C.A.	4	
80	Socket, 40 Pin Dip 6		CA40S-105D	C.A.	1	
81	Socket, 16 Pin Dip		CSA-2900-16B	SAE	1	
82	Diode		1N914		3	
83	Switch		MSS-2250R	Alco	1	
84	Switch		MSS-4350R	Alco	1	
85	Bridge		W005	G. I.	1	
86	Potentiometer, 100K, Linear Taper		Y08383	CTS	1	
87	Potentiometer, 500K, Linear Taper		YQ8384-1	CTS	1	

INTEGRATED CIRCUIT IDENTIFICATION
REF. P/N 128348

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE QTY } \\ & \hline \end{aligned}$	NOTE
. 00	Quad 2 NAND		SN74H00N		1
-01	Quad 2 NAND (O.C.)		SN74H01N		1
-02	Quad 2 NOR		SN7402N		1
-04	Hex 1 NAND		SN74H04N		1
-05	Hex 1 NAND (O.C.)		SN74H05N		1
-06	Hex 1 NAND (O.C.) Buffer/Driver		SN7406N		1
-08	Quad 2 AND		SN7408N		1
-10	Triple 3 NAND		SN74H10N		1
-12	Triple 3 NAND (0.C.)		SN7412N		1
-17	Hex Buffer, H. V.		SN7417N		1
-20	Dual 4 NAND		SN74H20N		1
-22	Dual 4 NAND (O.C.)		SN74H22N		1
-25	Dual 4 NOR		SN7425N		1
-26	Quad 2 NAND (H. V.)		SN7426N		1
-27	Triple 3 NOR (Same as -875)		SN7427N		1
	(Same as -875)		N8875A	Signetics	
-30	Single 8 NAND		SN74H30N		1
-32	Quad 2 OR		SN7432N		1
-37	Quad 2 NAND Buffer		SN7437N		1
-38	Quad 2 NAND Buffer (0.C.)		SN7438N		1
-40	Dual 4 NAND Buffer		SN74H40N		1
. 42	1 of 10 Decoder		SN7442N		1
. 51	Dual 2 AND/OR		SN74H51N		1
. 74	Dual D Flip-Flop		SN7474N		1
. 75	Quad Bistable Latch		SN7475N		1
-83	4 Bit Binary Adder		SN7483N		1
. 85	5 Bit Comparator		SN7485N		1
. 86	Quad 2 Exclusive OR		SN7486N		1
-96	5 Bit Shift Register		SN7496N		1
-103	Dual J-K Flip-Flop		SN74H103N		1
-106	Dual J-K Flip-Flop		SN74H106N		1
-107	Dual Line Receiver		SN75107AN		т.I.
-108A	Line Receiver		SN75108AN		T.I.
-110	Line Driver		SN75110N		T.I.
-121	One-Shot		SN74121N		1
-123	Dual One-Shot		SN74123N		1
-125	Quad 1 Buffer 3-State		SN74125N		1
-150	Data Selector/Multiplexer (16 to 1 Line)		SN74150N		1
-151	Data Selector/Multiplexer (8 to 1 Line)		SN74151N		1
-153	Data Selector/Multiplexer (Quad 4 to 1 Line)		SN74153N		1
-154	4 to 16 Decoder		SN74154N		1
-157	Quad 2 Line to 1 Line Multiplexer		SN74157N		1
-161	4 Bit Binary Counter		SN74161N		1
-164	8 Bit Shift Register		SN74164N		1

NOTE 1: Part Numbers are Texas Instrument. Direct Replacement Parts may be ordered from National, Signetics or Motorola.

INTEGRATED CIRCUIT IDENTIFICATION (Continued) REF P/N 128348

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	QTY	NOTE
-166	8 Bit Shift Register Quad D Flip-Flop, 3-State		SN74166N			1
-173			SN74173N	T. I.		
			8T10	Signetics		
			DM8551	National		
-175	Quad D Flip-Flop		SN74175N	T.I.		
			N74175B	Signetics		
			DM74175			
-193	4 Bit Binary Counter		SN74193N			1
-199	8 Bit Shift Register		SN74199N			1
-328	Dual 8 Bit Shift Register		9328PC	Fairchild		
			N8277B	Signetics		
			U6M932859X	Advanced Micro ITT		
			ITT9328-5D			
-416	Dual 4 NAND (Exp.)		N8416A	Signetics		
			SN15832N	T.I.		
			DM832N	National		
			M832P	Motorola		
			UCA993259	Fairchild		
-450A	Line Driver		SN75450AN	T.I.		
-533	T. V. Jungle		SN76533N	T.I.		
-723	Voltage Regulator		U6A7723393	Fairchild		
. 741	Operational Amp		U6A7741393	Fairchild		
			SN72741N	T.I.		
-835	Hex Inv, (O. Base Input) DTL		SN15835N	T.I.		
-875	Triple 3 NOR		N8875A	Signetics		
	(Same as -27)		SN7427N			
-1402	Quad 256 Bit Shift Reg.		1402	Intel		
			2502B	Signetics		
			MF 1402A	Microsystem,Int		
-1488	Quad Line Driver		MC1488L	Motorola		
-1489	Quad Line Receiver		MC1489AL	Motorola		
-1602	Asynchronous Receiver/Transmitter		TR1602B	West. Digital		
-2257	Terminal Transmitter		MC2257L	Motorola		
-2259	Terminal Receiver		MC2259L	Motorola		
-2403	Read Only Memory		TMS2403	T.I.		
-2501	Read Only Memory		TMS2501	T.I.		
-2513	Character Generator		2513N/I CM2140	Signetics		
-2519	Hex 40 Bit Shift Reg.		2519B	Signetics		
-2532	Quad 80 Bit Shift Reg.		2532B	Signetics		
-2602	Static Random Access Memory		2602-1B	Signetics		
			S236	Intel		
-4024	Voltage Controlled Multivibrator(VCM)		MC4024P	Motorola		
-4044			MC4044P	Motorola		
-7805	Positive Voltage Reg. (+5)		MC7805CP	Motorola		
			UGH7805393 LM340T-5	Fairchild		

NOTE 1: Part Numbers are Texas Instrument. Direct Replacement Parts may be ordered from National, Signetics or Motorola.

INTEGRATED CIRCUIT IDENTIFICATION (Continued) REF P/N 128348

| REF
 DES | DESCRIPTION |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MONITOR PARTS LIST

Symbol	Description	Mfg.	Mfg. Part Number	BBRC Part Number
	Capacitor, Fixed: $\mu \mathrm{F}$ Unless Otherwise Stated			
C1	3300; 60V, Electrolytic	BBRC		1-012-2156
C101	0.01; 1000V, Ceramic Arc Gap	CRL	Type DG-63	1-012-0112
C102	0.01; 1000V, Ceramic Arc Gap	CRL	Type DG-63	1-012-0112
C103	0.01; 1000V, Ceramic Arc Gap	CRL	Type DG-63	1-012-0112
C104	$0.001 \pm 10 \%$; 1000V, Ceramic Disc	ERIE	Type 801	1-012-0540
C105	$0.47 \pm 10 \%, 100 \mathrm{~V}$, Mylar	PAK	MF830	1-012-1005
C106	$0.47 \pm 10 \%$; 100V, Mylar	PAK	MF830	1-012-1005
C107	500; 6V, Electrolytic	BBRC		1-012-2158
C108	100; 6V, Electrolytic	BBRC		1-012-2160
C109	$0.022 \pm 10 \%, 400 \mathrm{~V}$, Mylar	SPRA	Type 225P	1-012-0800
C110	. $1 \pm 10 \%$; 200V, Mylar	PAK	MF580	1-012-0870
C111	$0.02 \pm 20 \%$; 1000V, Ceramic Disc	ERIE	Type 841	1-012-0780
C112	50; 50V, Electrolytic	BBRC		1-012-2157
C113	$10 \pm 10 \%, 63 \mathrm{~V}$, Mylar	BBRC		1-012-1130
C114	200; 25V, Electrolytic	BBRC		1-012-2159
C115	50; 25V, Electrolytic	BBRC		1-012-2165
C116	20; 150V, Electrolytic	BBRC		1-012-1260
C117	$6 \mu \mathrm{f} ; 25 \mathrm{~V}$, Electrolytic	SPRA	TE1203	1-012-2066
C118	820pf $\pm 5 \%$; 500V, Dipped Mica	ARCO	Type DM	1-012-0482
C119	25; 50V, Electrolytic	BBRC		1-012-2193
C120	. $01 \pm 20 \%$; 1000 Ceramic Disc	ERIE	Type 811	1-012-0740
C201	50; 50V, Electrolytic	BBRC		1-012-2157
C202	$0.01 \pm 20 \%$; 1000V, Ceramic Disc	ERIE	Type 841	1-012-0780
C203	50; 50V, Electrolytic	BBRC		1-012-2157
CR1	VS148, Bridge Rectifier	VARO	VS148	1-021-0413
CR2	H510, High Voltage Rectifier	VARO	H510	1-021-0424
CR101	1N3605	SYL	1N3605	1-021-0410
CR102	1N3605	SYL	1N3605	1-021-0410
CR103	1N4785	RCA	1N4785	1-021-0360
CR104	1N3279	DI	1N3279	1-021-0380
CR105	1N3279	DI	1N3279	1-021-0380
CR106	1N3279	DI	1N3279	1-021-0380
CR107	1N3279	DI	1N3279	1-021-0380
CR108	1N3605	SYL	1N3605	1-021-0410
F1	Fuse, 0.6A-250V, $1 / 4 \times 11 / 4$, Slo-Blo	LF	Type AGC	1-028-0244
or	Fuse, 0.6A-250V, $9 / 32 \times 11 / 4$, Slo-Blo (TV-B12)	BUSS	Type MDM	1-028-0245
F101	Fuse, 2A-125V, Picofuse	LF	276002	1-028-0247
L1	Vertical Choke	BBRC		6-003-0321
L101	Coil, Width	BBRC		1-016-0303
	TRANSISTOR			
Q1	2N3055	RCA	2N3055	1-015-1134
Q101	2N5830	MOT	2N5830	1-015-1172
Q102	D13T1	GE	D13T1	1-015-1157

MONITOR PARTS LIST (Continued)

Symbol	Description	Mfg.	Mfg. Part Number	BBRC Part Number
	Resistor, Film: $1 / 2 \mathrm{~W} \pm 5 \%$ Unless otherwise stated			
R133	4.7K; 1/4W			70-16-0472
R134	Not Used			
R135	22K			70-16-0223
R136	22K			70-16-0223
R137	33K; 1W Composition			1-011-2448
R201	1K			1-011-2270
R202	1K			1-011-2270
R203	10K			1-011-2294
R204	$0.68 \Omega \pm 10 \% ; 2 W$, Wirewound	IRC	Type BHW	1-011-2217
R205	1.5K			1-011-2274
R206	470Ω			1-011-2262
R207	470			1-011-2262
R208	Var; $500 \Omega \pm 20 \% ; 1 / 5 \mathrm{~W}$, Composition	CTS	Type 201	1-011-5604
R209	470			1-011-2262
	TRANSFORMER			
T1	Power	BBRC		1-017-5390
T2	High Voltage (TV-12C, TV-A12, \& TV-E12)	BBRC		6-003-0320
or	High Voltage (TV-B12, TV-TC12, \& TV-C12)	BBRC		6-003-0325
or	High Voltage (TV-T12)	BBRC		6-003-0326
or	High Voltage (TV-D12)	BBRC		6-003-0333
T101	Horizontal Driver	BBRC		1-017-5338
VR101	1N758	T1	1N758	1-021-0180
VR102	VR56	ST	VR56	1-021-0420
	MISCELLANEOUS			
	Socket, CRT (TV12)	BBRC		1-022-0427
	Fuseholder, Extractor Post, Fuse Size: $1 / 4 \times 11 / 4$ Fuseholder, Extrator Post, Fuse Size: $9 / 32 \times 11 / 4$	LF	342012	1-028-0210
	(TV-B12 Only)	BUSS	Type HCM	1-028-0246
	Low Voltage Circuit Board Assembly	- BBRC		6-003-0459
	Main Chassis Circuit Board Assembly	BBRC		6-003-0500
	Main Chassis Circuit Board Assembly (TV-T12)	BBRC		6-002-0476
	Main Chassis Circuit Board Assembly (TV-TC12)	BBRC		6-002-0502
	Main Chassis Circuit Board Assembly (TV-C12)	BBRC		6-002-0504
	Main Chassis Circuit Board Assembly (TV12, Tektronics)	BBRC		6-002-0506
	Cable Assembly; 8 Inch	BBRC		6-004-0630
	Cable Assembly; 5 Inch	BBRC		6-004-0631
	Power Supply Module (TV-12, 120VAC)	BBRC		6-003-0371
	Power Supply Module (TV-12, 220VAC)	BBRC		6-003-0372
	Power Supply Module (TV-B12, 120VAC)	BBRC		6-003-0368
	Power Supply Module (TV-B12, 220VAC)	BBRC		6-002-0370
	Deflection Coil Assembly	BBRC		6-004-0314
	Deflection Coil Assembly (TV-B12)	BBRC		6-004-0321
V1	CRT, 12 Inch, P4 Phosphor	BBRC		1-014-0737
or	CRT, 12 Inch, P39 Phosphor	BBRC		1-014-0738
	Power Cable Assembly, 120VAC	BBRC		6-003-0645
	Power Cable Assembly, 220VAC	BBRC		6-003-0652

MONITOR VENDOR CODES AND LOCATIONS

Code	Manufacturer	Location
BBRC	Ball Brothers Research Corporation Miratel Division	Roseville, Minnesota
BUSS	Bussman Manufacturing	St. Louis, Missouri
CRL	Centralab	Milwaukee, Wisconsin
CTS	CTS Corporation	Elkhart, Indiana
DI	Diode, Inc.	Chatsworth, California
ERIE	Erie Technological Products, Inc.	Erie, Pennsylvania
GE	General Electric	Syracuse, New, York
IRC	IRC Corporation	Philadelphia, Pennsylvania
LF	Littelfuse Company, Inc.	Des Plaines, Illinois
MALL	P. R. Mallory Company, Inc.	Indianapolis, Indiana
MOT	Motorola Semiconductor Products	Phoenix, Arizona
NPC	Neucleonics Products	Los Angeles, California
PAK	Paktron	Alexandria, Virginia
RCA	RCA Semiconductor Division	Harrison, New Jersey
SPRA	Sprague Electric Co.	North Adams, Massachusetts
ST	Sarkes Tarzian, Inc.	Bloomington, Indiana
SYL	Sylvania Electric Products	Seneca Falls, New York
TI	Texas Instrument	Dallas, Texas
VARO	Varo Corporation	Garland, Texas

APPENDIX C

Page

INTEGRATED CIRCUIT IDENTIFICATION C-1
ADM-1 LOGIC DIAGRAM C-2
POWER SUPPLY PARTS LIST C-28
ADM-1 CABLE SPECIFICATION C-30
ADM-1 WIRE LIST C-31
KEYBOARD SCHEMATIC C-35
MONITOR SCHEMATIC DIAGRAM C-36
POWER SUPPLY SCHEMATIC C-37

INTEGRATED CIRCUIT IDENTIFICATION
REF P/N 128578

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	LSI PART NO.	MFG PART NO./ MIL TYPE DES	$\begin{aligned} & \text { MFG } \\ & \text { CODE } \end{aligned}$	QTY	NOTE
-00	Quad 2 NAND		SN7400N	т.ı.		
			SN74H00N	T.I.		
-03	Quad 2 NAND (0.C.)		SN7403N	T.I.		
			SN74H01N	T.I.		
-04	Hex 1 NAND		SN7404N	т.I.		
			SN74H04N	T.I.		
-05	Hex 1 NAND O.C.		SN7405N	T.I.		
			SN74H05N	T.I.		
-10	Triple 3 NAND		SN7410N	T.I.		
			SN74H10N	T.I.		
-20	Dual 4 NAND		SN7420N	T.I.		
			SN74H20N	T.I.		
-30	Single 8 NAND		SN7430N	T.I.		
			SN74H30N	T.I.		
-40	Dual 4 NAND Buffer		SN7440N	T.I.		
			SN74H40N	T.I.		
-50	Dual 2 AND/OR		SN7451N	T.I.		

PAGE \varnothing

PAGE 1

2

SIZE	CODE IDENT	DWG NO.
C	98438	

-

REF DES	DESCRIPTION	VALUE	POWERTEC PART NO.
R10	RES, 5W	. 05Ω	22-13049-001
R12	RES	-	
R13	RES, 1/2W, 5\%	510Ω	20-13004-066
R15	RES	JUMPER	
R16	RES, RN60C	$1.5 \mathrm{~K} \Omega$	21-13050-210
R17	RES, 1/2W, 5\%	100S	20-13004-049
R18	RES, $1 / 2 \mathrm{~W}, 5 \%$	$1 \mathrm{~K} \Omega$	20-13004-073
R19	RES, 1/2W, 5\%	$1 \mathrm{~K} \Omega$	20-13004-073
R20	RES, RN60C	$1 \mathrm{~K} \Omega$	21-13050-193
R21	RES	JUMPER	
R23	RES, 1/2W, 5\%	10Ω	20-13004-025
R24	RES, 1/2W, 5\%	10Ω	20-13004-025
R11	POT	100Ω	23-13016-004
R14	POT	$1.5 \mathrm{~K} \Omega$	23-13032-006
R22	POT	500Ω	23-13016-007
Q1	TSTR	2N2222A	10-13019-001
Q2	TSTR	13159-2	10-13159-002
Q3	TSTR	13002-3	10-13002-003
Q4	TSTR	2N2907A	10-13020-001
SCR 1	SCR	2N4441	13-13015-001
U1	I.C.	723CE	14-13034-001
F1.	FUSE.	15A	63-16045-013

Input fuse blows	(1) check fuse rating (2) possible overload (3) Ovp triggering with Q2, O3, CR8 shorted (4) CR1, CR2, CR3, CR4, CR5, CR7, C1, C2, C3, C4 shorted
Low output voltage, poor regulation, high ripple, loaded	(1) possible overload or current limit adj. R11 improperly adjusted (should be set for 120% of full load current prior to foldback) (2) possible Ovp triggering check settıng of R22 (3) $\cup 1$ defective (4) CR7, C1, R4, C5, R14, C8, CR10, R11, Q1, R 15 shorted (5) R1, R2, R3, R13, R 16 open
High output voltage, poor regulation, high ripple, loaded	(1) U1 defective (2) Q2, Q3, CR8, R3, R 16 shorted (3) R4, R14, R15 open
High output voltage unloaded. OK loaded	(1) U1 defective (2) Q3, Q3 high leakage
Output noise	(1) U1 defective (2) C5, C8, C9 open
Output oscillation	(1) $\cup 1$ defective (2) C6, R8, C8, C9 open
OVP triggers under normal operation	(1) check Ovp setting (2) SCR1, Q4, CR9, R21, R22 shorted (3) C7, R20 open
OVP fails to trigger	(1) SCR 1, R17, Q4, CR9, R21, R22 open (2) C7, R19, R 18 shorted
Inhibit does not function	(1) Q1, R5, R6 open
Excessive unit heating	(1) possible overload (2) inadequate heat sinking or heat sink bolted to uneven surface, no thermal compound used in heat sinking (3) input voltage too high

SCHEMATIC DIAGRAM:

CABLE ASSEMBLIES

WIRE LIST

LINE NO.	TERMINATION INFORMATION					
	CABLE NO.	WIRE NO. OR COLOR	FROM		TO	
			REF DES	PIN	REF DES	PIN
1	129318	BRN	P4	1	MONP1	3
2	-1	RED		2		4
3		ORG		3		2
4		YEL		4		8
5		WHT		5		5
6		WHT		6		10
7		WHT		7		1
8		GRN		8		6
9		BLK		9		9
10					NOT USED	7
11	$\begin{array}{r} 129318 \\ -11 \end{array}$	RED	P5	1	T1	7
12		RED		2	T1	8
13		WHT		3	T1	9
14		WHT		3	REG-V	
15		BRN		4	SPKR	
16		YEL		5	SPKR	
17		BLK		6	REG+V	
18						

ASSEMBLY WIRE LIST

LINE NO.	TERMINATION INFORMATION					
	SEE FIG. NO.	$\begin{aligned} & \text { WIRE NO. } \\ & \text { OR } \\ & \text { COLOR } \\ & \hline \end{aligned}$	FROM		TO	
			REF DES	PIN	REF DES	PIN
1	2		P4		MON P1	
2	2		P5		A	
3	1	BLK			S1	2
4		WHT			TB1	2A
5		GRN			A	
6	1	BLK	FAN	1	TB1	1B
7	1	WHT	FAN	2	TB1	2B
8	1	BLK	S1	1	CB1	1
9	1 A	BLK	CB1	2	TB1	1A
10	2 A	BLK	T1	1	TB1	1C
11	2 边	WHT	T1	2	TB1	2C
12	2	BLK	MON ${ }^{\text {a }}$		TB1	1D
13		WHT	MON A		TB1	2D
14	2	BRN	T1	11	REG	3
15	2	WHT	T1	12	REG	2
16	2	YEL	T T1	10	REG	1
17	2 a	BLK	T1	1	T1	3
18	28	WHT	T1	2	T1	4

CODE NOTES:
4 See 129318-11 for terminations.
2
Terminate at Grd Stud.
A
Reterminate existing wires from monitor power supply with .250 tab receptacles, $F / N 17$, flush sleeve
(3) Fro 230V - replace BIk CB1-2 to TB1-1A with CB1-2 to T1-1. See Detail A of Figure 2 for T1 term.

[^0]: * Resolution is measured in accordance with EIA RS-375 except Burst Modulation (or Depth of Modulation) is adjusted for 100 percent.

[^1]: * Current Loop Interface Only

