o‘?ﬁ“

MAX 2 COMPUTER SYSTEM

REFERENCE ‘MANUAL
| - and
MICROPROGRAMMING GUIDE

.International Meta Systems, Inc.
3655 Torrance Blvd. Torrance, CA 90503

MCS - 02 September 1987

MCS - Ola February 1987

MCS - 01 January 1987

Copyright International Meta Systems Inc., 1987, 1988

TABLE OF CONTENTS

SUMMARY . . ¢ « ¢ ¢« ¢ o o« o « &+ @ . . e o e s
INTRODUCTION . . ¢« ¢ « o« o « o« o o e e e e e e
I SYSTEM ARCHITECTURE o e e e e s
II PC/3230 CPU EXECUTIVE SYSTEM . e e e e e e
FUNCTION KEY DEFINITIONS . . e e e e e e s
FUNCTION KEY SUMMARY« . . .
PROGRAM OPERATION . . + + « « « o e s e e e
IITI MICROPROGRAMMING « e e e e o e
INSTRUCTION PIPELINE P T T
LEFT HAND SIDE FORMAT e e v e e e e
RIGHT HAND SIDE FORMAT . . . e e e e e e e
OFF-CHIP INTERFACES« . e e e e e e
1.0 SPECIAL-PURPOSE REGISTERS . . v e s e e e
1.1 X REGISTER . « « .« = o e e e e e
1.2 MEMORY ADDRESS REGISTER (MAR) e e e e e e
1.3 MEMORY INPUT REGISTER (MIR) « . .
1.4 MEMORY OUTPUT REGISTER (MOR) . « « .« « . .
1.5 K REGISTER . « « « e e e e e e e e s
1.6 LINK STACK REGISTER (LSR) o e e e e e e s
1.7 DATA REGISTER (DR) . « « ¢« « ¢« « ¢ « « «
1.8 INTERRUPT REGISTER (IR) . . « « « « « .« o
1.9 INTERRUPT MASK REGISTER (IMR) . . .
1.10 EXTERNAL INPUT REGISTER (EIR) . . e
2.0 INSTRUCTION FORMAT o e o s e s
2.1 "T" (TARGET OPERAND) FIELD o e e e e e e .
2.2 "A" (PRIMARY INPUT OPERAND) FIELD . . .
2.3 OPERATOR FIELD ¢ ¢ ¢ « o ¢ o o o o o o o o
2.4 "B" (SECONDARY INPUT OPERAND) FIELD . .
2.5 OVERFLOW IN ARITHMETIC/LOGICAL/SHIFT
INSTRUCTIONS « ¢« o ¢ ¢ o o o o o o o o o o
2.6 "C" (RIGHT HAND SIDE) FIELD . .

2.6.1 CONDITIONAL TRANSFERS, TRA ([C] 8 .
LOAD K REGISTER, LDK ([C]=1) . . .
UNCONDITIONAL TRANSFER, TRA ([C]=7)

OV O) O\ OV OV Oh ¢

o o

LINK INSTRUCTIONS, LINK ([C]=4) .
LINK CONDITIONAL, LINKC ([C]=5) .
RETURN INSTRUCTION, RETURN ([C]=6)
SKIP CONDITIONAL INSTRUCTION, SKIP

([CI=0) v v v « v v v v v e e e w

qmm.&wm

N NN

o

e o o o o

.F

8
13
22

23

24
26
26
28
29

30
30
30
30
31
31
31
31
32
32
32

34
35
36
37
39

41
42
43
45
45
46
46
47

48

.8 EXTERNAL BUS INSTRUCTIONS, BUS ([C] 2 3)50

7.0

APPENDIX A: ASSEMBLER SYNTAX AND PSEUDO OPS

PIPELINE CONSTRAINTS .

3.1 PIPELINE PHASE I . « « &« & « «
3.2 PIPELINE PHASE ITI . . + « « =«
3.3 PIPELINE PHASE ITI . . . « . . &
3.4 PIPELINE PHASE IV
3.5 PROGRAMMING/TIMING RULES FOR REA

CACHE MEMORY . « « « .« . o« o e

3.5.1 WRITE CACHE SEQUENCE .«

3.5.2 READ CACHE SEQUENCE

SPECIAL PROGRAMMING TECHNIQUES . .

4.1 LOOPS & ¢ o ¢ o o o o o o o
4.1.1 BOTTOM TEST LOOPS . . .
4.1.2 TOP TEST LOOPS . . .
4.1.3 ARRAYS: MICROCACHE LOOPS

4.2 OUT OF SEQUENCE EXECUTION . .
4.3 TRANSFER VECTOR BRANCHING . .
4.4 REGISTER SHARING &
4.5 ACCESSING PRESTORED DATA FROM MICROSTOR
4.6 STACKING SUBROUTINE PARAMETERS
MEMORY INTERFACE . . . o o e
5.1 MEMORY CONTROLLER INTERFACE .

5.1.1 BUS EMIT OPERATIONS . .

5.1.2 BUS RECEIVE OPERATIONS
5.1.3 INDEXING « . .
5.1.4 TYPICAL PROGRAMMING . .

PC I/0O AND SUPPORT INTERFACES . . .

6.1 METAMICRO TO PC . . « « « « &
6.1.1 ACCESS . . « . o« o e
6.1.2 STATUS TO METAMICRO o« .
6.1.3 READ FUNCTIONS
6.1.4 WRITE FUNCTIONS

6.2 INTERFACE TO PC-AT . . . « . .
6.2.1 PC TO METAMICRO
6.2.2 ACCESS
6.2.3 READ STATUS FUNCTION .
6.2.4 STATUS TO PC-AT
6.2.5 WRITE COMMAND REGISTER
6.2.6 WRITE SELECTED REGISTER
6.2.7 READ SELECTED REGISTER
6.2.8

FLOATING POINT COPROCESSOR . . .
7.1 BUS EMIT AND RECEIVE FUNCTIONS
7.2 SAMPLE PROGRAMS

Al LANGUAGE ELEMENTS . . « « « « &
Al.1 COMMENTS . « ¢« « o o o &
Al.2 TIDENTIFIERS . « « « o &

.

¢« e o o

o« o o O e o o e o

e o e e o o

OTHER COMMAND REGISTER FUNCTIONS

E

.

. e lﬂ e e o o o

54
54
55
56
57

58
58
59

60
60
60
61
61
62
63
64
65
65

66
66
68
69
72
73

74
76
77
77
78
78
78
79
79
80
80
81l
82
82
83

85
85
87

89
90
90
90

A2

INDEX

A3

A4

Al.3 NUMBERS .+ « « « « o« « « « o « « « « « 90
Al.3.1 DECIMAL INTEGERS 90
Al.3.2 HEXADECIMAL INTEGERS 90
Al.3.3 CHARACTERS . « « « « & « « o . 091
Al.3.4 REAL NUMBERS . . « « « « « . . 91
Al.3.5 DOUBLE PRECISION NUMBERS . . . 91

Al.4 EXPRESSIONS .+ + + « « o o o « « « « . 91
Al.4.1 LOGICAL OPERATORS 92
Al.4.2 SHIFT OPERATORS 92

PSEUDO-OPERATIONS « « + + « « « o« « « « « « . 94

A2.1 ASSEMBLER ACTION COMMANDS 94
A2.1.1 LABEL (LONG LABEL DEFINITION) . 94
A2.1.2 CHANGE, UNCHANGE (KEYWORD

ALTERATION) « + & v « o o « « & 95
A2.1.3 INST, DATA (INSTRUCTION, DATA MODE

INITIATION) + « « « « « « « « « . 95
A2.1.4 ORG (SET ORIGIN OF ABSOLUTE CODE) 95
A2.1.5 DC (DEFINE CONSTANT) 96
A2.1.6 RS (RESERVE STORAGE) 96
A2.1.7 EQU (EQUATE SYMBOLS) 96

A2.2 ASSEMBLER LISTING COMMANDS 97
A2.2.1 HEADER (PAGE HEADINGS) 97
A2.2.2 EJECT (PAGE EJECTION) 97
A2.2.3 LIST, NOLIST (ASSEMBLY LISTING ON,

OFF) « v o o o o o o o o o o o 97
A2.2.4 LISTC, NOLISTC (LISTING COMMANDS
ON, OFF + « & v o o o o o o o 97
A2.2.5 BLOCKS, NOBLOCKS (BLOCK STRUCTURE
ANNOTATION CONTROL) .+ . « « « . . 97
A2.2.6 FORMAT, NOFORMAT (FORMATTED LISTING
CONTROL) « & o « o o o o o o « « . 98
A2.2.7 COMWIDTH (COMMENT WIDTH FOR
JUSTIFICATION) « « « o « « « « « . 98
A2.2.8 ILIST, NOLIST (INCLUDE FILE
PRINTING ON, OFF) . « « « 98
A2.2.9 WARN, NOWARN (WARNING MESSAGE
PRINTING ON, OFF) 98
A2.2.10 END (END OF ASSEMBLY) 98
A2.2.11 CODELEN . + + v « & « « « « . 99
A2.2.12 IFON, IFOFF . « « « v « « « « 99
A2.3 DEFAULT OPTIONS . + & « « « o « « « . 99
PRE-PROCESSOR COMMANDS 100

A.3.1 #IF #ELSE #END . . . « « 100

A.3.2 #INCLUDE . +« « « « o « « « o o « . . 100

A.3.3 HDEFINE . &« « « « « o « « o o o « « . 100

STANDARD ASSEMBLER MNEMONICS 101

3

.

111

SUMMARY

This manual provides an architectural overview of the
MAX 2 hardware for the PC-AT. Within that system it
describes the instruction set and the symbolic assembly
language used to create microprograms and explains the
operating characteristics of the hardware. An
Executive System, resident on the PC controls loading
programs, debugging 3230 CPU programs, and the I/O
between the MAX 2 and the PC. Appendix A describes
assembler features and use. The descriptions of the
assembly formats of the instructions are interleaved in
the description of the hardware instruction set.

Italics are used in assembly-language descriptions, and
tables of equivalence between assembly mnemonics and
binary microcode are provided.

Assembly language descriptions employ BNF (Backus-Naur Form)
to define language syntax. The BNF structure is as follows:

a. All names appearing in angle brackets, <...>, are
names of syntactic types.

b. The symbol "::=" means "is defined as".
c. The symbol "1 " indicates a choice.
d. Items appearing within square brackets, [...],

are optional.

e. Items appearing within set braces, {...}, may
be repeated zero or more times.

MCS - 02 -1 - SUMMARY

INTRODUCTION

The 3230 CPU is the processor element (VSLI
microprocessor chip) of the MAX 2 expansion board for
the IBM PC-AT and compatible personal computers. This
document is a combination reference manual and
microprogramming guide for the MAX 2/MetaMicro computer
system. Throughout this document, micro-programming
examples, used to describe the operation of the

hardware, are presented in the assembly-language of the
3230 CPU.

I SYSTEM ARCHITECTURE

In recent years, two fundamental categories of computer
design have been widely discussed: the conventional
microcoded complex-instruction-set computer (CISC)
architecture and the non-microcoded reduced-instruc-
tion-set computer (RISC) architecture, both of which
rely heavily on compilers to transform application
software to run on the computer. The IMS "Meta"
architecture is a third category, a minimal-
instruction-set computer (MISC) that is substantially
different in software architecture. Meta architecture
supports the execution of application programmin

languages without the need for conventional compilers.

IMS Meta architecture resolves a bottom-up problem of
VLSI performance and a top-down problem of software
functionality. Both problems constrain future data
processing technology, but are not resolved by either
CISC or RISC approaches. Both problems can be resolved
in the MISC architecture by concentration of the object
program encoding, which relieves the off-chip/on-chip
traffic in the so-called "von Neumann bottleneck."

Encoding concentration is facilitated by language
interpretation: the direct execution of the most
abstract form of a program -- a compressed image of its
high-level language statements. Simple encoding
algorithms compress the semantic information content of
a high-level source program into a binary image that
averages less than half its original size. This
reduces the object program size compared to a compiled
program by an order of magnitude.

VLST Performance - The bottom-up problem of VLSI per-
formance relates to the increasing disparity between
VLSI chip speeds and the speed of off-chip circuitry
such as large dynamic memories and external busses.
Reducing silicon circuit feature size allows enormous
gains in clock speeds of processing that takes place
on-chip, roughly proportional to the reduction in VLSI
feature si:ze. Going from two-micron to one-micron
feature size results in a two to threefold gain in on-
chip clock speed. This magnifies the problem of the
von-Neumann bottleneck, because of the large number of

1 This eliminates a conventional compiler's
primary function: transforming high-level language
programs into expanded low-level machine code.

MCS - 02 -3 - SYSTEM ARCHITECTURE

cycles that a processor may have to wait for
information transmitted from large offchip memories.The
on-chip/off-chip performance disparity can be relieved
by reducing the size of the program code (instructions)
and the frequency with which data must be transmitted
between the very large and relatively slow dynamic
memories and the faster on-chip processors and static
memories. Executing a program in its most abstract
(concentrated) form minimizes the instruction traffic.
Using small, high-speed memory for data memorying of
data structures minimizes the data traffic. The net
effect is an order-of-magnitude gain in effective
memory bandwidth as compared to the expanded machine-
language image produced by a conventional compiler.

Software Functionality - The major top-down problem
removed by the Meta approach is the complexity of high-
order language implementation. Languages which have
shown the highest level of programmer productivity have
dynamic characteristics such as dynamic binding and
data type redefinition that do not lend themselves to
systems with compilers and static loaders. Application
language interpretation eliminates the assembly
language software interface and uses the 3230 CPU
hardware instruction set to directly execute the
high-level language, making the hardware into a
microprogrammed igh-level language machine.

MCS - 02 -4 - SYSTEM ARCHITECTURE

MCS - 02

fl

Floating
Point Instruction
Processor Memory
16-256KB
32
Cctrl
User -
Memory - CpPU
- 32
= 20-40 MIPS
4-64MB
32
PC
Interface Context
Memory
16-256KB

16

16

FIGURE 1 MAX 2/MetaMicro Architecture

SYSTEM ARCHITECTURE

The MAX 2/MetaMicro architecture executes compressed-
source images of high-level languages via micro-
programming. Functionally, it consists of the
following subsystems:

A. METASYSTEM:

1. Microsystem: Minimal Instruction Set
Computer (MISC) ‘

(a) 3230 CPU Processor: a user -
microprogrammable processor consisting
of a single very-high-speed integrated
circuit (VHSIC) chip,

(b) Instruction memory: a register-speed
static memory of up to 64K 32-bit
words, used as a read-only instruction
memory to the 3230 CPU processor,
containing interpreter loaded from the
supporting PC-AT,

(c) Data memory: a register-speed static
memory of up to 64K 32-bit words, used
as a local read/write storage by micro-
programs,

2. User memory: a large dynamic main memory
external to the microsystem, used to store
high-level language code and data,

3. PC-Channel: interface channel logic con-
necting to the computer bus of the PC-AT,

B. METACOMPUTER (Virtual Machine): a micro-program,
resident in the instruction memory, that Ioads
and encodes an application source language
program into a compressed binary image in the
user memory, then interprets the application
language by executing the binary image. When
boot-loaded from the PC, the metacomputer
converts the general-purpose metasystem into a
special-purpose application language machine,
masking the features of the metasystem like a
high-order language masks hardware features.3230
CPU's microprogramming features are optimized for
the implementation of metacomputer code for any
type of high-order language. Because each
language has its own compressed source-executable
image (instruction set architecture) that is

MCS - 02 -6 - SYSTEM ARCHITECTURE

independent of the metasystem, the design of the
metacomputer is not constrained by the design of
the hardware. This offers complete freedom in
the development of high-order-language machines.
Since the metacomputer code resides in a separate
high-speed memory (instruction memory) which is
externally loadable, the hardware can change its
language merely by loading a new metacomputer.

Application-language interpretation sharply reduces
software complexity and leverages the performance of
application languages. The computer is substantially
more user-friendly because the language that it
executes directly corresponds to the one in which the
program was written, i.e.,the program is executed as
written, not as a highly transformed machine-language
program generated by a compiler.

In addition to its use as a high-level language
interpretation engine, the MetaMicro is designed to
function as the control element of systems such as disk
controllers, telemetry processors, parallel
architecture building blocks, and in other digital
processing environments that use general-purpose
microprogrammed logic.

The 3230 CPU performs arithmetic and logical operations
on 32-bit-wide parallel data and is controlled by a
microprogram employing 32-bit-wide parallel
instructions. The 3230 CPU employs eight 32-bit-wide
general-purpose registers and ten special-purpose
registers. The 32-bitwide data memory memory of up to
64K words is directly accessible by the 3230 CPU to use
as a large register file or to implement software
structures such as push-down stacks and hash-addressed
heap-storage. The MetaMicro may be configured to
communicate with other MetaMicros or peripheral

hardware via a 32-bit-wide bidirectional asynchronous
external bus.

MCS - 02 -7 - SYSTEM ARCHITECTURE

II PC/METAMICRO EXECUTIVE SYSTEM

This section describes the operation of the
PC/MetaMicro development system. The system has two
versions: one which runs a MetaMicro computer and a
second which simulates MetaMicro execution.

The system is controlled by the user through the use of
function keys. Functions are provided which:

Load microprograms

Start programs and control execution

Display I/O

Display instruction execution

Breakpoint at instruction location or data ref.
Change interpreter instruction

Display registers, stacks, and the external bus
Dump memory, data memory, registers, and stacks

. Control the form and format of the display
screen.

WVWoOoONOTd wh -

Information from the execution is displayed in two
windows on the screen :

Upper screen window: Lines of terminal-directed
input/output to and from the MetaMicro are displayed in
the upper window of the PC screen. Lines of data
received from the MetaMicro are scrolled upward in this
window and up to 99 lines overflowing the screen are
retained for subsequent browsing.

Lower screen window: A trace of the code being executed
in the 3230 CPU under control of the PC is displayed in
the lower window on the PC screen. Lines of data
displayed are scrolled upward in this window and up to
99 lines overflowing the screen are retained for
subsequent browsing.

There are two formats for the display. The normal
form, shown in Figure 1, is organized into three
fields: (1) The assembler -symbolic form of the

executing instructions, (2) the contents of the X
register in hexidecimal, and (3) the contents of the X

register diplayed as characters (values <X'20' are
displayed as ~).

MCS - 02 -8 - EXECUTIVE

In an alternate mode, controlled by SHIFT-F9, the lower
window display is organized into three columns, from
left to right:

(a) The 3230 CPU location counter - four hexadecimal
characters.

(b) The 32 bit instruction of the 3230 CPU, organized
left to right as the T, A, oP, F, B, C and
Address fields, displayed in hexadecimal format.

(c) The X-register of the 3230 cCPU organized high
order (bit 31) to low order (bit 0) in binary
format.

A sample of this screen display is shown in Figure 2.

MCS - 02 -9 - EXECUTIVE

PC/MetaMicro Development System
\

R1: R2: R3: R4: R5: R6: R7:

00000002 00000003 00000004 00000005 00000000 00000000 00000000

X: MAR: KR:

00000AA9 0000 0AAA

STACK: TOP -> BOTTOM

0048 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
—_—-

loc instruction X register

C6D: MAR := 0 = 0007F 0000007F ~~~~
C6E: R7 := R6 SRL 2 LDK 000 00000000 ~~~~
C6F: R6 := R6 AND 3 00000000 ~~~~
C70: MAR := 0 = 0007E 0000007E ~~~~
C71: R7 := MOR - R7 TRA C95 00000000 ~~~~
C72: X = X =0TRA C73 ON NZ 00000000 ~~~~
C95: LSR := RC AND 3 00000000 ~~~~
C96: KR := R6 SRL 2 00000000 ~~~~
C97: R7 := 0 = 00OFF 000000FF ~~~~
C98: NOP RETURN C9B 00000000 ~~~~
C99: X := MOR SRL 8 TRA C9A 00000000 ~~~~
C9B:

R e EEE—————.

waiting:

FIGURE 2

The instructions shown in figure 2, above, are shown as
they move through the insfruction pipeline. At the
bottom of the screen the location indicates the next
instructions in phase 1 and phase 2 of the execution

pPipeline. Phased execution is covered in Section III
and shown in figure 6.

MCS - 02 - 10 - EXECUTIVE

(C) Int'l Meta Systems Inc., 1986,1987
__———__—‘——————__;____—_———————_—““*_

R1: R2: R3: R4: R5: R6: R7:
00000002 00000003 00000004 00000005 00000000 00000000 00000000
X: MAR: KR: IR:

00000006 0000 0000 00

—_———————
loc instruction X register
_

0: 103010000 0000 0000 0000 0000 0000 0000 0000 0001
1: 813010000 0000 0000 0000 0000 0000 0000 0000 0010
2: 913010000 0000 0000 0000 0000 0000 0000 0000 0011
3: A13010000 0000 0000 0000 0000 0000 0000 0000 0100
4: B13010000 0000 0000 0000 0000 0000 0000 0000 0101
5: C13010000 0000 0000 0000 0000 0000 0000 0000 0110
6: D130100O00O0

7: E13010000

8:

2
waiting:

FIGURE 3

MCS - 02 - 11 - EXECUTIVE

(C) Int'l Meta Systems Inc., 1986, 1987

__——_———____.
—_———-—z—__“'—_z—’——__—_—’_

Bus Registers : Stack
bus # 00 X: 00000006 RO: 00000002|| ||0000 0000
status 0000 AR: 00000006 R1: 00000003|| |[0000 0000
inbus 000000|| ||BR: 00000001 R2: 00000004| |l0000 QOO0
outbus 000000|| [[MAR: 0000 R3: 00GO0005{| [|0000 0000
RO: R1: R2 : KR: 0000 R4: 00000000(|| {/0000 0000
00000002 00000003 00%==—===—oo—orne=l |[EIR: 00000000 R5: 00000000 /0000 0000
X: MAR: KR: IR: IR: 0000 R6: 00000000|| {(0000 0000
00000006 0000 0000 00 IMR: 0000 R7: 00000000{| {|0000 0000
—_— T | ER——tht | B |
loc instruction X register
—_— — -
C99: X := MOR SRL 8 TRA C9A 00000000 ~~~-~
C9B: X := MOR + 0 RETURN 000 00000000 ~~~~
C9A: R7 := X AND R7 LDK 000 00000000 ~~~~
76B: R6 := X - 00022 FFFFFFDE = ~~~~
76C: R6 := X - 0 TRA 77F ON NZ FFFFFFDE ~~~~
76D: RO :=R0O + 2 v FFFFFFDE = ~~~~
76E: Rl :=X-1
76F: R1 := RO - R3 TRA 772 ON HB
76F: R6
77F:

B e R I EEEE—E——E—E—————————
waiting:

FIGURE 4

MCS - 02 - 12 - EXECUTIVE

The development system is invoked by a call for the
program MMX and the interpreter by the program MMXS.

The functions supported are controlled by function keys
F1 through F10 as well as the ctrl-, alt- and shift-
versions of these keys. Many of the keys respond with
queries for parameters. In these cases an escape or an
empty line will back out of the query. :

FUNCTION KEY DEFINITIONS

Fl: Output Scroll up

Fl1 scrolls up the MetaMicro input/output display (upper
window). The last 99 lines of MetaMicro input/output
are retained for display. Scrolling past the end of
the saved lines yields a "no more data" message.

F2: Instruction Scroll up .

F2 scrolls up the 3230 CPU instruction display (lower
window). The last 99 lines of 3230 CPU instruction
execution are retained for display.

F3: Output Scroll Down

F3 scrolls down the MetaMicro input/output display
(upper window).

F4: Instruction Scroll Down

F4 scrolls down the 3230 CPU instruction display (lower
window).

FS: Interpreter Run Mode Toggle

F5 toggles the "run" mode. The first F5 puts the 3230
CPU into the running state. The 3230 CPU executes
instructions until the next F5 terminates the "run"
mode. The "run" mode permits the 3230 CPU to execute
instructions independent of the controlling PC.

MCS - 02 - 13 - EXECUTIVE

F6: Instruction Step Execution

F6 steps the 3230 CPU (causes the 3230 CPU to execute
one cycle) and displays the results in the lower
window.

F7: Clear 3230 CPU

F7 initiates a clear cycle for the 3230 CPU. The 3230
CPU's location counted is set to zero, the interrupts
are reset and the pipe-line is "flushed".

F8: Set Instruction Location

Sets the location counter of the 3230 CPU. The user is
prompted for a hexadecimal entry for the location
counter value.

F9: Load Interpreter'

F9 loads selected portions of the interpreter into the
instruction memory of the 3230 CPU. The user is
prompted for a starting and ending address
(hexadecimal) for the portion of the memory to be
loaded.

F10: Display/Edit Interpreter

F1l0 initiates the display and edit sequence for the
interpreter of the 3230 CPU. The location of the first
instruction to be displayed or edited is prompted for.
The requested 3230 CPU instruction is displayed in
either symbolic form or in hexadecimal format in the
sequence T, A, OP, F, B, C and Address depending on the
display format selected. [ENTER] moves to the next
3230 CPU instruction. Right arrow [->] moves to the
first field for editing, re-displaying the fields in
symbolic. Editing is accomplished by over-typing the
field ([->] or [<-] leaveing it intact). An escape in
any field discards any changes made to the instruction
and moves to the next instruction. The cursor returns
to the left of the instruction when an [ENTER] is
pressed for any input field. Right arrow [->] selects
a field for rediting; [ENTER] moves to the next
instruction. The instruction 1is re-displayed in

MCS - 02 - 14 - EXECUTIVE

symbolic form for correctness verification. Another
F10 prompts for another location.

Modified instructions are both retained in a memory

image in the PC and also written into the memory of the
MetaMicro.

LOGGING AND COPYING QUTPUT TO FILES OR PRINTER

I/0 to the two display windows may be directed to files
or the the printer using the function keys below. When
one of the function keys is pressed the system prompts
the user for the name of a file to be used. Any valid
DOS file name may be used or 'PRN' outputs directly to
the printer. The displayed file name can be accepted
with CR. Space CR selects the printer. ESC turns off
logging.

ALT-Fl: PC I/0 Print Log Toggle

ALT-F1 toggles logging to the printer of the PC input/-
output as it is displayed in the upper window.
Normally, this is I/O directed to the terminal by the
executing MetaMicro program, but may also include Debug
output. (See shift Fl). The "L" indicator at the top
of the window shows the on/off status of this switch.

ALT-F2: Interpreter Print Log Toggle

ALT-F2 toggles logging to the printer of the MetaMicro
output as it is displayed in the lower window. The "L"
indicator at the top of the window shows the on/off
status of this switch.

ALT-F3: Print Input/Output Display Lines

ALT-F3 prints the last "n" lines of the MetaMicro
input/output display (upper window). "n" is prompted
for. '

ALT-F4: Print Interpreter Display Lines

ALT-F4: prints the last "n" lines of the 3230 CPU
instruction display (lower window). "n" is prompted
for.

MCS - 02 - 15 - EXECUTIVE

ALT-F5: Run-Until Address Toggle

ALT-F5 toggles the "run-until" option for the 3230 CPU.
This option allows the user to specify up to three
values that will halt the 3230 CPU when they are
encountered as a location counter value or a memory
reference address value. A menu is displayed which
allows setting of values and marking (with an asterisk)
of their use as location value, memory reference, or
both (See figure 2). Field-to-field movement is
accomplished with the arrow keys. Placing the cursor
on "go" in the menu initiates execution. ALT-F5 with
the menu displayed exits the address setting mode
without establishing any addresses and removes the
menu. An ALT-F5 while running until a stop terminates
the mode.

ALT-F6: Step Until Address Toggle

ALT-F6 toggles the "step-until" option for the 3230
CPU. This option allows the user to specify up to
three values that will halt the 3230 CPU when they are
encountered as a location counter value or a memory
reference address value. A menu is displayed which
allows setting of values and marking (with an asterisk)
of their use as location value, memory reference, or
both (See figure 2). Field-to-field movement is ac-
complished with the arrow keys. Placing the cursor on
"go" in the menu initiates execution. ALT-F6 with the
menu displayed exits the address setting mode without
establishing any addresses and removes the menu. An
ALT-F6 while running until a stop terminates the mode.

ALT-F7: Write Interpreter to Disk

ALT-F7 permits the user to write (edited) interpreter
to disk. The user may specify a new file name or use
the file name from which the original MetaMicro image
was read. Files are written with the extension .PCH.

ALT-F8: Unused

Unused.

MCS - 02 - 16 - EXECUTIVE

ALT-F9: Interpreter Load File

ALT-F9 makes it possible to specify a new interpreter
file for the MetaMicro. The user is prompted for the
file name and the MetaMicro memory image is read for
subsequent loading into the MetaMicro. There follows a
set of questions to complete interpreter loading. (See
"Program Operation" for a full description.) :

ALT F10 - DOS SHELL

Alt F10 invokes a second copy of the command
interpreter (usually command.com) and allows you to run
any program or batch job that can normally be run from
the command line. To return to MMX you type EXIT (CR)
at the prompt.

The command processor used is determined by the COMSPEC
variable in the environment. When DOS is started it
sets this variable to command.com.To use another
command processor instead of command.com set COMSPEC
correctly (see your DOS manual for directions for using
the SET command).

The program on the metamicro will continue to run
uninterrupted as long as neither screen nor disk I/O0 is
requested. If I/0 is needed the metamicro waits until
control is returned to MMX to continue.

There are some precautions that should be taken while
you are in a shell process. Never alter or delete any
file that is being used by the metamicro, the results
are unpredictable. Run only proven programs in the
shell. If a program hangs the machine, work in
progress in the MMX will probably be lost. Do not run

another copy of MMX as it will not be initialized
correctly.

SHIFT-Fl: Debug Mode Toggle

SHIFT-F1 toggles the "debug mode". This mode causes
the PC/MetaMicro I/0 interface logic to display status
information in the MetaMicro output portion (upper
window) of the screen as they are executed. Status
information about each transfer between the MetaMicro
and the development system is displayed in the form
shown in Figure 5 below. Debug mode output is dis-
tinguished by 'DEBUG:' at the beginning of each output

MCS - 02 - 17 - EXECUTIVE

line. The "D" indicator at the top of the screen shows
the on/off status of this switch.DEBUG: command = 9,
unit = 10, flags = 0, ucb = -1

DEBUG: ctrlword = 31

DEBUG: DATA

DEBUG: 128 bytes read B
DEBUG: 59 bytes returned

DEBUG: EOM

DEBUG: command = 9, unit = 10, flags = 0, ucb = 3
DEBUG: ctrlword = 31

DEBUG: DATA

DEBUG: STAT

DEBUG: error # 41

DEBUG: 0 bytes returned

DEBUG: EOM

DEBUG: command = 2, unit = 10, flags = 0, ucb = 3
DEBUG: ctrlword = 31

DEBUG: ACK

DEBUG: command = 4, unit = 6, flags = 0, ucb = -1
DEBUG: message # 41

DEBUG: crtlword = 31

41: "BEGIN TEST" PAUSE (}:

DEBUG: ACK

DEBUG: command = 18, unit = 0, flags = 0, ucb = 0

DEBUG: ctrlword = 31
DEBUG: ACK

DEBUG: command = 4, unit = 6, flags = 0, ucb = 3
DEBUG: message # 11

DEBUG: crtlword = 31

1l1: End of rule execution.

DEBUG: ACK

DEBUG: crtlword = 31

DEBUG: 2 bytes written

DEBUG: ACK

DEBUG: command = 2, unit = 6, flags = 0, ucb = 3

DEBUG: crtlword = 31
DEBUG: ACK

FIGURE 5 - Sample Debug Mode Output

MCS - 02 - 18 - EXECUTIVE

SHIFT-F2: Register Display Toggle

SHIFT-F2 toggles the register display in the upper
window of the screen. 1Interpreter only. Note that AR
and BR are not user accessible registers. The
interpreter knows them as inputs to the ALU.

SHIFT-F3: Stack Display Toggle

SHIFT-F3 toggles the stack display in the upper window
of the screen. Interpreter only.

SHIFT-F4: External Bus Display Toggle

SHIFT-F4 toggles the external bus display in the upper
window of the screen. Interpreter only.

SHIFT-F6: DUMP Memory, Data memory, Registers, Stacks

SHIFT-F6 prompts for requests to display the memory,
data memory, registers, or stack. They are displayed
in the upper window. For memory dumps, prompts request
the starting location and the number of words to dump.
ESC interrupts a long dump.

SHIFT-F8: Change Screen Display Mode

SHIFT-F8 cycles the screen display through three
display modes: 1) full screen for the upper I/0 window,
2) full screen for the lower instruction display
window, and 3) half I/O window, half instruction
window. The default is half-and-half.

SHIFT-F9: Toggle Programming Rule Checker

SHIFT-F9 toggles the rule checker in the interpreter
and when the executive is running the 3230 CPU in step
mode. This mode, which is normally on, checks for
violations of progamming rules imposed by hardware
timing, considerations. The user is told of
programming constructs which do not allow sufficient
time for register contents to be available before use
and other rules discussed in section 3.

MCS - 02 - 19 - EXECUTIVE

SHIFT-F10: SET

This function key allows the setting of several
. executive modes of operation. A prompt requests a
single letter input:

Interrupt Register contents for interpreter
- Rule checking mode)

- Disassembly mode

Bell mode

Wwo"H

Interrrupt Register prompts for the value to be placed
in the Interrupt Register and is only available in the
interpreter.

Rule checking controls whether programming rule
checking is done during stepping and stepping-until
modes. In stepping mode errors are displayed in the
lower screen window. In stepping-until mode the error
is displayed in the upper window where it can be
logged. Default is on.

Disassembly mode controls the instruction display:
numeric or symbolic. The default is symbolic.

Bell mode lets you turn the error bell on or off.
Default is on.

CTRL-F1: RUN - Start Interpreter

CTRL-F2: HALT - Stop Interpreter

CTRL-F3: Attention - Interrupt Interpreter

The three keys CTRL-F1 through F3 send status signals
to the interpreter via setting status values and rasing
a flag. Meanings of these unsolicited signals are
determined by the interpreter for a particular high-
level language. The meanings above are used by FORTRAN
and other IMS products.

MCS - 02 - 20 - EXECUTIVE

CTRL-F9: Assign I/0 Units

This function allows the assignment and display of the
correspondence between I/O unit number and DOS
filename. Existing assignments are displayed, changes
or new assignments can be made. New and changed
assignments are filed permanently on prompted request.
At the prompt for a unit assignment number entering
'tab' displays all the current files assigned to units.
Entering a unit number shows the current assignment
which may be replaced with any valid DOS file name or
accepted as is. The assignment is not checked until
the file is opened.

CTRL-F10: Exit Development System

CTRL-F10 terminates execution of the PC/MetaMicro
Development System, returning control to DOS. The user
is prompted for a final yes/no confirmation for exit.

MCS - 02 - 21 - EXECUTIVE

FUNCTION KEY SUMMARY

ALT ALT
PC I/0 1 |Interpreter 2
Printer Log Printer Log
ON/OFF ON/OFF
2 Print 4
Print PC 1/0 Interpreter

Last n Lines

Last n Lines

1 2
Output Display |Mic. Instruc.
Scroll1-Up Scroll-Up
3 4
Output Mic. Instruc.
Down Down
5 6
Interpreter Interpreter
Run/Stop Single Step
7 8
Clear Set
Location
9 10
Load Display/Edit
Interpreter |Interpreter
SHIFT SHIFT
1| * 2
DEBUG Register
I/0 Display
* 3| * 4
Stack External Bus
Display Display
5 6
-—— DUMP
7 8
-——— Screen
Toggle
9 10
Rule Check SET

* interpreter only

MCS - 02

Run Until 5 | Step Until 6
Data or Data or ‘
Instruction Instruction
7 8
Write -—--
Interpreter
Supply 9 Second 10
Interpreter DOS
File Name
CONTROL CONTROL
1 2
RUN HALT
3 4
Attention -——
5 6
7 8
9 10
Assign EXIT
I/0 Unit

EXECUTIVE

PROGRAM OPERATION

To execute an already prepared MetaMicro program the
following steps are required.

l.

Load MMX by typing MMX at the DOS prompt or if
already in MMX, use ALT-F9 to supply interpreter
file name. .

At the request for interpreter file name supply
the full name of the file. A file extension of
.MMC will bes assumed.

At the request for the file assignment file, the
default, if any, will be displayed.

a) CR will use the default
b) a named file plus CR will use that file
(.ASN will be assigned if no extension is

given.)
c) blank CR or ESC means no assign file
The next prompt provides for selective
interpreter loading. There are three
possibilities: :

a) CR to load the full interpreter. This is
the normal case.

b) P for partial loading. You will be prompted
for beginning and ending addresses.

c) N or ESC to not load interpreter.

The next prompt asks if you are ready to run. CR
or Y begins execution, any other key takes you to
the MMX "waiting" state for function key
commands.

MCS - 02 - 23 - . PROGRAM OPERATION

IIT MICROPROGRAMMING

The 3230 CPU processor includes twenty-four hardware
operations that are combined into a two instruction per
word format. There are eight op codes in the left hand
side (LHS) and sixteen op codes in the right hand side
(RHS). A typical composite instruction consists of:

LHS Portion: an arithmetic, logic, or shift operation
between two operands with the result assigned to a
third operand; and

RHS Portion: an external bus (unidirectional or
bidirectional) operation, a conditional/ unconditional
transfer/skip operation, a subroutine link/return
operation, an interrupt handling operation, or a
memory indexing operation.

A typical composite instruction, including a shift and
a bidirectional bus operation, is the following:

LHS RHS
R5 := RO SIR 4 BUS EMIT MEMWORD REC MEMSTATUS

This composite instruction performs a left rotational
shift of general register RO by four bits, stores the
result in general register R5 as well as the X (result)
register, then emits the contents of the X register to
the external bus address "MEMWORD" (an assembley-
parameter) and initiates the receipt of the status
information from bus address "MEMSTATUS". The bus
operations are executed as the next instruction
executions take place. The result of the bus REC
operation ultimately appears in the external input
register (EIR). See 2.6.8 for details.

MCS - 02 - 24 - MICRO-PROGRAMMING

L— K 4 MEM EIR
REG + ADDR |~
e MOR REG
INST Context = External f~e—
REG = Decode Memory Bus [
Instruction Legic = OP MIR
Memory i REG
\ ' !
ADDR !
REG
Location = A —= Arithmetic Conditional
Counter i 1 REG Logical 1 X —— Transfer
I Unconditional & Shift REG & Skip
A A t 1 | Transfer ! Operations Operations
‘ Link
i Return B
H REG
-——l :
LSR 16 x 16{==LSR
STACK ADDR ADDR
I REG REG
i General !
H Registers
H RO - R7 !
i I |
I]]
]
1]
Phase I { Phase II { Phase III Phase IV
I 1

FIGURE 6 - Four-Phase Pipeline Operation

MCS - 02 - 25 - MICRO-PROCGRAMMING

INSTRUCTION PIPELINE

To achieve the high instruction throughput rate of 30
to 50 million instructions per second, the 3230 CPU is
implemented as a "pipelined" computer with the

following four phases. (Phases are shown in Figure 6).
1. Composite instruction fetch 5
2. Composite instruction decode and operand fetch,

execution of RHS unconditional transfer, link,
return, interrupt conditional 1link or memory
indexing operations

3. Arithmetic/Logic/Shift execution

4. Conditional transfer/skip or external bus I/O
initiation

Complete execution of a composite instruction requires
that it pass through the four phases listed above.
Each phase requires that one clock cycle and four
composite instruction words are in the process of
execution (one in each phase) at any point in time. A
composite instruction is completed each clock cycle.
Most composite instruction words are the equivalent of

two complete instructions of a typical CISC or RISC
architecture.

In Figure 6 the register positioning on a phase
boundary indicates that the information is provided for

that register by the preceding phase and is available
to the succeeding phrase.

LEFT HAND SIDE FORMAT

The LHS of the composite instruction usually has the
form:

<T> := <A> op
where <T> is a register, := denotes "assign", <A> is a

register or the literal zero, and is a register or

a literal. The op token is one of eight arithmetic,
logic, or shift operators.

MCS - 02 - 26 - MICRO~-PROGRAMMING

MCS

The LHS instructions in assembly format are described briefly
below. Arithmetic and logical operation apply to either short

or long operands.

Operators

SLR, SLL
SRR. SRL

Function

Add

Subtract
Reverse Subtract
Exclusive OR
Logical OR
Logical AND

- b

Left Shift: rotational and logical
Right Shift: rotational and logical

Examples: (leading period denotes start of comment)

RS

RO := X XOR RS
= R3 + KR
MIR := R5 AND X'7FFFF'

X

= RO SLL 6

.shift RO left

-logical 6 bits,

.assign to R5 and X

.XOR X with R5
‘.add KR to R3,

data memory

, assign to RO

assign to X

.R5 and hex literal, store in

The registers used in these instructions are described briefly

below:

Register(s)

Name

RO ..

X
MAR
MIR
MOR
KR
LSR
IR
IMR
EIR
DATA

- 02

R7

General Registers
Result Register

Memory Address Register
Memory Input Register
Memory Output Register
K Register

Link Stack Register File
Interrupt Register
Interrupt Mask Register
External Input Register
Next instruction used as
32-bit literal

Size (bits)

32
32

16

32

32

16

16 x 16

8

8
32

32

MICRO-PROGRAMMING

RIGHT HAND SIDE FORMAT
The RHS of the composite instruction has the form:
{code> <phrase>

where <code> is one of sixteen operations, including
external bus read/write/control, subrcutine
link/return, conditional interrupt handling,
conditional and unconditional transfers and skips and
memory indexing. The <phrase> is a structure of one or
more operands and keywords. '

The RHS instructions are summarized below:

Operator Function
TRA Transfer unconditionally
TRA ... ON Transfer conditionally on Overflow

or not overflow

X reg low bit 0 or 1
X reg high bit 0 or 1
X reg zero or non-zero

SKIP Skip conditionally

LINK Subroutine link

LINK C Link conditional on interrupt

RETURN Subroutine link

LDK Load K register

BUS FROM...TO Initiate bus source to des tination
transfer

BUS EMIT Recieve X register to bus destination and
bus source to EIR

Examel es:

<+« LINK PROC! .call microsubroutine PROC1, push return
address on Link Stack Register (LSR) File

... SKIP 3 IF STATUS HAS NLB .skip 3 instructions on
condition "not low bit"”

««. BUS EMIT MEMC .emit X register to bus
.address MEMC

--. TRA LOOP3 ON Z .transfer to LOOP3 if X register is
zZero

MCS - 02 - 28 - MTCRO-PROGRAMMING

..« RETURN DELTA .Subroutine return to top LSR value
plus DELTA value, pop LSRThe LHS and
the RHS are combined into an

v instruction that executes in a single
: 3230 CPU clock cycle. A4 clock cycle
delay can be introduced by the use of
the no-operation, NOP. Also the NOP
command is used for a null IHS where
only an RHS is desired in a composite
instruction. NOP is an assembler
pseudo op that generates the LHS
institution X:= 0 SLR 1.

Composite Examples:

X:=R5 SLR 6 TRA PROC3 ON HB .shift, assign,
.transfer if negative

MIR:=X+2 SKIP 2 IF STATUS HAS NHB .add, assign,
.Skip conditional

X:=R2+R3 BUS EMIT DES! REC DES4 .add, assign,
.bus emit
.bus receive

R3:=X-R4 TRA L30 ON Z .subtract, assign,
.transfer on zero

NOP TRA LOC16 .unconditional transfer with LHS negated

R4:=X SRR 4 RETURN 6 .shift, assign, subroutine
: return plus 6

OFF-CHIP INTERFACES

Interfaces between the 3230 cpU processor and other
subsystems are through the special registers and the
external bus operations. The data memory is accessed
using the MIR, MAR, MOR, and the K register in LHS
operations. The user memory and the PC-channel are
accessed via the RHS external bus operations. The BUS
EMIT operation sends the contents of the X register to
a specified bus destination. The BUS REC operation
receives an input into the external input register
(EIR) from a specified bus source.

MCS - 02 - 29 - MICRO-PROGRAMMING

1.0 SPECIAL-PURPOSE REGISTERS

In addition to the eight general-purpose 32-bit-wide
registers provided for the temporary storage of
intermediate results, a set of special-purpose
registers provide program interfaces to special
hardware logic. The term "source" is used to designate
registers used as sources of input operands <A> and
<{B>; the term "result" is used to designate registers
used as the object of the assign operation. Certain
registers may be used both as source and result.

1.1 X REGISTER

All instructions, including NOP, produce a 32-bit-wide
result as a consequence of an Arithmetic/Logical/shift
operation. This result can be directed to one of the
general-purpose registers, to one of the special-
purpose registers, or neither. However, the result
will always reside in the X register as well as in any
general- or special-purpose register specified. 1In the
symbolic assembly language, the X register is often
specified as the result register and classed as a
special-purpose register. When so specified, it has
the meaning "the X register and no other register”.

1.2 MEMORY ADDRESS REGISTER (MAR)

The MAR is 16 bits wide and is used to hold an address
which, summed together with the contents of the "X
Register" (see 1.5 below), selects a memory location in
the Data memory memory.

1.3 MEMORY INPUT REGISTER (MIR)

The MIR can be used only as a result register, not as
an operand source. A result directed to the MIR will
be stored in the memory location within the data memory

memory as specified by the sum of the MAR and the K
Register.

MCS - 02 - 30 - REGISTERS

1.4 MEMORY OUTPUT REGISTER (MOR)

The MOR can be used only as an operand source, not as a
result register. It specifies that the contents of the
memory location of the Data memory memory as addressed
by the sum of the K Register and the MAR is selected as
an operand source.

4,
>

1.5 K REGISTER

The K register is a multi-function, 16-bit-wide
register that exhibits many of the characteristics of
an index register in a conventional single-address
computer. As specified in 1.3 above, the X register,
in summation with the MAR, forms the memory address
used to reference the data memory memory. It can also
be used like a general register. See 2.6.2 for more
details.

1.6 LINK STACK REGISTER (LSR)

The LSR is a 16-bit-wide, 16 element last-in-first-out-
(LIFO) register stack whose primary function is to
implement the subroutine "LINK" and "RETURN"
instructions of the 3230 CPU. However, it can also be
used as a source or result register. 1Its use as a
source 1is equivalent to a POP, while its use as a
result is equivalent to a PUSH. When conflicts arise
(as when the LSR appears in the "T" field preceding a
Link or Return instruction), the use of the LSR for
"LINK" and "RETURN" takes precedence over the use as a
source or result register. Another way to view LSR is
as a window onto the 16 element stack. PUSH moves the
window up and stores; POP fetches and moves the window
down. The stack is circularly connected: 16 POPs leave
the stack unchanged. There are no fill or empty stack
conditions.

1.7 DATA REGISTER (DR)

The DR can be used only as an operand source, not as a
result register. The DR is not a specific hardware
register; when specified it means that the next
instruction is to be considered a 32-bit data value.
The assembler directive DC is often used to define the
value for the data registers.

MCS - 02 - 31 - REGISTERS

1.8 INTERRUPT REGISTER (IR)

The IR can be specified both as a source and result
register. It is 8 bits wide and represents 8 boolean
flags that can be set (=1) by events and conditions
external to the scope of the 3230 CPU. The bits can be
reset (=0) by the 3230 CPU. When used as a source
register, the IR represents an 8-bit-wide value, each
bit of which is the state or condition of an
independent variable in a set of boolean variables.
When used as a result register, writing a value into
the register will reset those boolean variables for
which a corresponding "one" bit exists in the value.The
IR and the IMR work in conjunction with the Link
Conditional instruction (See 2.64 and 3.2)

Assignments of the bits in the interrupt register are :

Bit ‘Set Condition

0 External bus parity error
1 I/0 Timeout, IOTMO

2 Data memory parity error
3-7 Unused

1.9 INTERRUPT MASK REGISTER (IMR)

The IMR can be used only as a result register, not as
an operand source. It is 8 bits wide and represents a
mask for the 8 boolean flags of the Interrupt Register
(IR). The IMR and the IR operate in conjunction with
the Link Conditional instruction (see 2.6.4 and 3.2).

1.10 EXTERNAL INPUT REGISTER (EIR)

The EIR is the input termination of the MetaMicro
External Bus (EB). This register can be used as a
source operand only and is loaded by action on the EB.
As the EB operates asynchronously from the operation of
the 3230 CPU, special consideration must be given to
its use. When an EB operation that results in data
input to the 3230 cPU (the EIR) is initiated, the EIR
contents are undefined until the bus operation is
completed. If the EIR is referenced by the 3230 cpru
before the bus operation is complete, the 3230 CPU will
stop and wait for completion, thus synchronizing the
3230 CPU and the EB. However, if synchronization does
~not take place within 16 3230 CpPyU clock cycles,

MCS - 02 - 32 - REGISTERS

operation will proceed unconditionally and a positive
pulse will be generated on the external pin labeled
IOTMO (input/output timeout). This signal sets bit 1
of the Interrupt Register, IR. The value of the EIR
under forced continuation circumstances is the previous
EIR value.

MCS - 02 - 33 - REGISTERS

2.0 INSTRUCTION FORMAT

The 3230 CPU employs two forms of instruction encoding

as shown below, designated composite (F=0) and LHS-only
(F=1).

-

31 2827 24 23 20 19 16 15 12 11 0

fl 0 Il
F=0 T A op| B C addr
F

F=1 T A op literal

In assembler format, instructions consist of two statements:

LHS: arithmetic, logical, or shift statement (or a NOP),
followed by

RHS: optional statement, broviding a second instruction of up
to 16 alternative operations, including external bus
instructions, subroutine link/return (both conditional
and unconditional), conditional skips, secondary loading

of the K register, and conditional/unconditional
transfers.

<instruction> :: = <LHS stmt> [<RHS stmt>]

For LHS Arithmetic/Logical/shift operations the 3230
CPU employs a three-address instruction format that can

be represented symbolically as a simple assignment
statement of the form:

<T>:=<A>0p

wherein a register specified by the "T" field takes on
the value of some binary operation (op) performed on
the contents of the register specified by the "aA" field
and the contents of the register specified by the "B"
field. In the case of literal or immediate data

MCS - 02 - 34 - INSTRUCTION FORMAT

representation of magnitude < 8, the "B" field may
represent the data directly.

In assembler format, these. statements have the following
8eneral form:

<LHS_stmt> ::=)
<T_field>:= [-] <A _field> <op> <B_field> | NoP

Examples:
X ¢s= X SLL 4

IMR := RO XOR R4
NOP

2.1 "T" (TARGET OPERAND) FIELD

The "T" field (bits 31-28) is four bits wide and
references the registers as shown in the table below.

In assembler format, the "T" field is defined as follows:

<T _field> ::=
<gen_reg> | MAR | MIR | X | KR | LSR | IR | MR

where

<gen_reg>::=RO | R1 | R2 | R3 | R4 | R5 | R6 | r7

MCS - 02 - 35 - INSTRUCTION FORMAT

The "I" field assembler mnemonics and equivalences are given
in the following table:

T FIELD

HEX| BINARY | MNEMONIC MEANING

0 0000 (not used) -—-

1 0001 X X REGISTER

2 0010 MAR MEMORY ADDRESS REGISTER
3 0011 MIR MEMORY INPUT REGISTER

4 0100 KR K REGISTER

5 0101 LSR LINK STACK REGISTER (push
6 0110 IR INTERRUPT REGISTER

7 0111 IMR INTERRUPT MASK REGISTER
8 1000 RO GENERAL REGISTER 0

9 1001 R1 " " 1

A 1010 R2 " " 2

B 1011 R3 " " 3

(¥ 1100 R4 " " 4

D 1101 RS " " 5

E 1110 R6 " " 6

F 1111 R7 " " 7

2.2 "A" (PRIMARY INPUT OPERAND) FIELD

The "A" field (bits 27-24) is four bits wide and
references the registers in the table below.

In assembler format, the "A" field is defined as follows:

<4_field> ::=
<gen reg> | 0| X | EIR | MOR | kR | LSR |IR | DATA

MCS - 02 - 36 - INSTRUCTION FORMAT

The "A" field assembler mnemonics and equivalences are given
in the following table:

A FIELD

HEX| BINARY | MNEMONIC MEANING

0 0000 0 THE LITERAL ZERO

1 0001 X X REGISTER

2 0010 EIR EXTERNAL INPUT REGISTER
3 0011 MOR MEMORY OUTPUT REGISTER
4 0100 KR K REGISTER

5 0101 LSR LINK STACK REGISTER (POP)
6 0110 IR INTERRUPT REGISTER

7 0111 DATA DATA REGISTER

8 1000 RO GENERAL REGISTER 0

9 1001 R1 " " 1

A 1010 R2 " " 2

B 1011 R3 " " 3

c 1100 R4 " " 4

D 1101 R5 " " 5

E 1110 R6 " " 6

F 1111 R7 " " 7

2.3 OPERATOR FIELD

The "op" field (bits 23-20) is four bits wide2 and
specifies the Arithmetic/Logical/shift operation that
is to be performed on the data sources specified by the
"A" and "B" fields. The encoding of the "op" field is
Shown in the table below.

In assembler format, the "op” field takes the form:

<op>:: = <A_op> | <L_op> | <S_op> | <No_op>

2 Bit 20 (the "F" field) is used as a suboperation
qualifier and format modifier to distinguish between
rotational and logical shifts and to specify whether
the "B" field is "short" (register operand or 3-bit

literal) or "long" (a 20-bit literal in the "C" and
address fields).

MCS - 02 ' - 37 - INSTRUCTION FORMAT

The arithmetic operators include addition, subtraction, and
reverse subtraction (indicated by using a + with a - before
the A field):

<A _op>::= + | -
The logical operators are OR, AND, and XOR:

<L_op>:: = OR | AND | XOR

The shift operators are logical shift left or right and
rotational shift left or right.

<S_op>::=SLL | SRL | SLR | SRR

The <No_op> (empty operation) statement,
<No_op> ::= NOP

will generate the code:
X := 0 SLR !

The "op" field assembler mnemonics and equivalences are given
in the following table:

OP FIELD

HEX|BINARY| MNEMONIC | MEANING

0 | 0000 SLR SHIFT LEFT ROTATIONAL

1 | o001 SLL SHIFT LEFT LOGICAL

2 | 0010 -+ REVERSE SUBTRACT

3 | 0011 -+ REVERSE SUB. 20-BIT LITERAL
4 | 0100 - SUBTRACT

5 | 0101 - SUBTRACT 20-BIT LITERAL

6 [0110 + ADD

7 | 0111 + ADD 20-BIT LITERAL

8 | 1000 XOR EXCLUSIVE OR

9 [1001 XOR EXCLUSIVE OR 20-BIT LITERAL
A | 1010 OR LOGICAL OR

B | 1011 OR LOGICAL OR 20-BIT LITERAL

C | 1100 AND LOGICAL AND

D | 1101 AND LOGICAL AND 20-BIT LITERAL

E | 1110 SRR SHIFT RIGHT ROTATIONAL

F [1111 SRL SHIFT RIGHT LOGICAL

MCS - 02 - 38 - INSTRUCTION FORMAT

NOP

X := RO + R2
IMR := -X + RO

RO := 0-1

R7 := R5 AND I

X := Rl OR X'7FFF'
R5 := MOR AND 1

X := MOR XOR NAME T

X := RO SLL 6

SR := R5 SRL 6

X := R7 SRR 2

2.4 "B" (SECONDARY INPUT OPERAND) FIELD

The "B" field (bits 19-16) is four bits wide in its
short form (F bit = 0). For short form operations
involving arithmetic/logical manipulation
(op=2,4,6,8,A,C), the "B" field references the
registers and or literals as shown in the table below:

In assembler format, the short form "B" field may be either a

8general register or an expression representing the literals
(0-7).

<B_field>::=<gen_reg> | <expr>

MCS - 02 - 39 - INSTRUCTION FORMAT

The assembler mnemonic equivalences for arithmetic and logical
operations are given in the following table:

B FIELD - Arithmetic & Logical

HEX|BINARY MNEMONIC MEANING .
0 | 0000 EXPRESSION 3 BIT-LITERAL = 0

1 | 0001 " " =1

2 | 0010 " " = 2

3 | 0011 " " = 3

4 | 0100 " " =4

5 | 0101 " " =5

6 | 0110 " " = 6

7 | 0111 " " = 7

8 | 1000 RO GENERAL REGISTER 0
9 | 1001 R1 " " 1
A | 1010 R2 " " 2
B | 1011 R3 " " 3
C | 1100 R4 " " 4
D | 1101 R5 " " 5
E | 1110 R6 " " 6
F | 1111 R7 " " 7

For operations involving shifting (op=0,2,E,F), the "B"
field specifies the shift values as listed in the table

below.

For shift operations,

the

"B" field must be an

expression whose value is between 1 and 8, inclusive,
which are converted by the assembler to the values 0-7.

MCS - 02

- 40 - INSTRUCTION FORMAT

The assembler mnemonic equivalences are given in the following
table:

- B FIELD - Shifts

HEX| BINARY MNEMONIC MEANING

0000 EXPRESSION SHIFT 1
0001 " "2
0010 " "3
0011 " "4
0100 " "5
0101 " "6
0110 " v 7
0111 " “ 8

NOOTE~WN-O

2.5 OVERFLOW IN ARITHMETIC/LOGICAL/SHIFT INSTRUCTIONS

The arithmetic operations, Add, Subtract, and Reverse
Subtract may generate an arithmetic overflow if the
result generated by the operation extends beyond bit 31
into a bit known as the overflow bit. The overflow bit
is also used for left, right, logical, and rotational
shifts.

Caution on subtract overflow: Subtraction is
accomplished by forming the 1's complement of the
subtrahend and adding it, plus 1, to the minuend. If
this addition overflows, the overflow bit is set. The
result is that the overflow bit is set if underflow
does not occur (6-5 overflows, 6-0 overflows, 5-6
does not overflow).

For logical shifts, data leaving either the high order
bit (bit 31) or the low-order bit (bit 0) for left and
right shifts, respectively, reside in the overflow bit
position. Thus, following a right or left logical
shift, if the last bit to be shifted out of the result
was a one, then the overflow bit will be a one. Con-
versely, if the last bit to be shifted out of the
result was zero, then the overflow bit will be a zero.

For rotational shifts, bits shifted out of bit position
31 reenter the result in bit position zero (left rotat-
ional) or bits shifted out of bit position 0 reenter
the result in bit position 31 (right rotational).In

MCS - 02 _ - 41 - INSTRUCTION FORMAT

either case, if a one bit traverses from position 31 to
0 or from 0 to 31, then the overflow bit will be set.
If no one bits traverse through, the overflow bit will
not be set. For example, during a right rotational
shift of eight bits, if any of the 8 bits of the input
in positions 7 through 0 were a one, then the overflow
bit would be set in the result. Conversely, if all of
the 8 bits of the input in positions 7 through '0 were

zeros, then the overflow bit would not be set in the
result.

2.6 "C" (RIGHT HAND SIDE) FIELD

When the "B" field has short form, the "C" and Address
fields constitute the right-hand-side RHS instruction
in which the "C" field is an operation code and the
Address field is a memory address reference or a

literal field. The encoding of the "C" field is shown
in the table below.

An assembler "RHS statement” may be included with a shift
statement, with any arithmetic or logic statement not using a
20-bit literal, or with a NOP. If an RHS statement is allowed

but not used, then the assembler will generate code for a skip
statement that has no effect.

<RHS statment> ::=

<link_return_stmt> | <1 oad_k_stmt> | <transfer_stmt>|
<bus_stmt> | <ski_stmt>

Note: When a shift operator is used, the B field must be an
expression whose value is between one and eight, inclusive.
If an arithmetic or logic operator is used and the B field
is an expression with value between 0 and 7, inclusive, then
a 3-bit literal will generated. If the B_field is an ex-
Dression with value outside this range, then a 20-bit
literal will be generated and any RHS_statement will be

ignored. In this case, the assembler will generate an
appropriate error message.

MCS - 02 - 42 - INSTRUCTION FORMAT

The assembler mnemonic equivalences for RHS_statements are
given in the following table:

C FIELD

HEX| BINARY| MNEMONIC| MEANING

0 0000 SKIP SKIP CONDITIONAL

1 0001 LDK LOAD K REGISTER

2 0010 BUS BUS (FROM/TO)

3 0011 | BUS BUS (EMIT/REC/EMIT-REC)

4 0100 LINK LINK TO SUBROUTINE

5 0101 LINKC LINK COND. ON INTERRUPT

6 0110 RETURN SUBROUTINE RETURN

7 0111 TRA TRANSFER UNCONDITIONAL

8 1000 TRA CONDITIONAL TRANSFER ON NOV
9 1001 TRA " " ON oV
A 1010 TRA " " ON NLB
B 1011 TRA " " ON LB

c 1100 TRA " " ON 2

D 1101 TRA " " ON Nz

E 1110 TRA " " ON NHB
F 1111 TRA " " ON HB

2.6.1 CONDITIONAL TRANSFERS, TRA ([C]=8...F)

Conditional transfer instructions examine the result of
the arithmetic/logical/shift portion of the instruction
(<T>:=<A>0p) and cause control to be transferred to
the memory address in the Instruction memory specified
by the Address field if the associated condition is
true. Because the 3230 CPU is a "pipeline" machine,
the consequences of this action are more complex than
that of a "non-pipeline" machine.

As stated earlier, the conditional transfer portion of
the instruction is executed in the fourth phase of the
pipeline. Therefore, the three instructions
immediately following the conditional transfer

instruction are already in the pipeline and partially
executed.

Specifically, as Figure 6 shows, the first instruction
is in the arithmetic/logical/shift Circuitry (Phase
III); the second is undergoing decoding (Phase II) and
right-hand-side execution: and the third is being
fetched (Phase I). Since the transfer condition is not

MCS - 02 - 43 - INSTRUCTION FORMAT

determined until Phase IV, an additional effect of the
conditional transfer instruction is to flush these
instructions if the condition is true and the transfer
is taken.An exception is the next instruction, which
has already completed Phase II and is in Phase IIT.
The Left hand side has not completed execution, but the
A and B registers have been loaded (possibly popping
the stack). If it includes in its RHS, a transfer,
link, return, or load K operation (which execute in
Phase II), it will already have been executed, and the
location counter changed. This location counter change
will be superseded, since the conditional transfer will
reset the location counter to the desired transfer
location when the transfer condition is met. The load
K instruction will be executed, altering the K
register. Also, the push or pop by the link or return
RHS instruction will take place. Three cycles are lost
in flushing the pipeline following the true execution
of a conditional transfer.

In assembler format, the conditional transfer instructions
have the following form:

<transfer_stmt>::= TRA <expr> ON <tra cond>
<tra_cond>::=z | Nz | ov | Nov | L8 T NLB | uB | NuB

Examples:

. TRA @-3 ON NZ (@ ::= this instruction address)
. TRA ERROR_.I 6 ON ov

Composite Examples:

R7 :
X

MOR+0 TRA INTERPT IB ON Z
R2 SLL 1 TRA NOMORE ON Z

The transfer conditions have the following meanings:

V4 ::= ZERO

NZ ::= NON-ZERO

ov := OVERFLOW
NOV ::= NO OVERFLOW
LB ::= LOW BIT = 1
NLB ::= LOW BIT = 0
HB s= HIGH BIT = |
NHB ::= HIGH BIT = 0

MCS - 02 : - 44 - INSTRUCTION FORMAT

2.6.2 LOAD K REGISTER, LDK ([C]=1)

The K register is a special-purpose register used in
conjunction with the Memory Address Register (MAR) to
reference the Data memory memory. The K register can
be used as a conventional source or result operand in
an instruction and can also be loaded directly with a
12- bit value (the address field) under control “of the
"C" field.The K register is 16 bits wide; consequently,
when the K register is loaded under "C" field control,
the upper four bits (bits 15-12) of the K register are
cleared to zeros. The loading of the K register takes
place at the end of Phase II of the pipeline (see 3.2).
Consequently, the value loaded will appear in the
register one instruction cycle after the instruction
used to load it.

In assembler format, the LDK statement is used to load the K
register with the value of the expression.

<load k_stmt>:: = LDK <expr>
Examples:
... LDK X'FFF'
LDK 536
LDK (1-X)*Y

Composite Examples:

Rl := R2 SLL 8 LDK 3
MAR := MIR-1 LDK HEAP OFFSET-2

2.6.3 UNCONDITIONAL TRANSFER, TRA ([C]=7)

As the name implies, unconditional transfer always
causes a transfer of control in the Instruction memory
program. Since there are no dependencies on various
machine conditions for the transfer to take place, the
unconditional transfer is implemented within the
pipeline at the earliest possible position which is in
Phase 1II. When the transfer is recognized, the
subsequent instruction in Phase I has already been
fetched from Instruction memory and executes normally.
Consequently no clock cycle is lost. This facility,
while somewhat unique, can be put to very good use in
the programming for the 3230 CPU.

MCS - 02 - 45 - INSTRUCTION FORMAT

In assembler format, -the unconditional transfer statement has
the following form:

<unconditional_transfer> ::= TRA <expr>

Examples:

... TRA CHANNEL3
... TR4 @-3

Composite Examples:

R2 :=MOR+0 TRA INTERPT I
NOP TRA INTRUPT IK

2.6.4 LINK INSTRUCTIONS, LINK ([C]=4)

The Link instruction ([C]=4) not only produces an
unconditional transfer, but also causes the value of
the address plus two of the 1link instruction to be
"pushed" onto a sixteen-element LIFO stack register
file (the Link-Stack Register). This saves the address
of the Link instruction for subroutine return.

In assembler format, the link instruction has the following
form:

<link_stmt> ::= LINK <expr>

Examples:

... LINK SUBROUTI
... LINK @+6

Composite Examples:

Rl := MOR-2 LINK EXT BLK
NOP LINK INTERPT 15B

2.6.5 LINK CONDITIONAL, LINKC ([C]=5)

The Link Conditional instruction ([C]=5) 1is a
Specialized instruction that is dependent upon
interrupt conditions. It is similar in function to the
Link instruction but is executed only if the special
interrupt test conditions are true.

MCS - 02 - 46 - INSTRUCTION FORMAT

The test consists of examining the individual bits of
the Interrupt Register (IR) for which a corresponding
bit position in the Interrupt Mask Register (IMR) is a
"1". The test is false if there is not at least one
matching bit pair; no transfer or Link Stack "push"
takes place. If one or more matching bit pairs exist,
then a value equal to the position of the highest-

priority bit pair is formed. Position "0" +#is the
highest-priority bit position and position "7" is the
lowest-priority bit position. The value formed is

doubled and added to the address field of the instruc-
tion to form a transfer address. 1In addition, the bit
position within the IR corresponding to the highest
priority bit position is reset or cleared.

In summary, a subroutine linkage is conditionally made
to an address which is the value of the Address field
plus twice the value of the highest priority masked bit

position in the IR. The bit position within the IR is
reset.

In assembler format, the link conditional statement has the
following form:

<link conditional_stmt> ::= LINKC <expr>

Examples:

LINKC INTRUPT A6
LINKC @+4

Composite Examples:

IMR := EIR AND RO LINKC INP_INTR
NOP LINKC RESET FLAG

2.6.6 RETURN INSTRUCTION, RETURN ([C]=6)

The Return instruction ([C]=6) causes an unconditional
transfer to the address formed by summing the Address
portion of the Return instruction and the "top" element
of the Link-Stack Register File. The top stack element
is "popped" (deleted). _

In assembly format, the Return instruction has the form:

<return_ stmt> ::= RETURN [<expr>]

PRV

MCS - 02 - 47 - INSTRUCTION FORMAT

Examples:

RETURN 2
RETURN OFFSET4

Composite Examples: ‘

RO := 0-1 RETURN INTERPT 34
NOP RETURN 0

2.6.7 SKIP CONDITIONAL INSTRUCTION, SKIP ([C]=0)

A Skip Conditional instruction, like the Conditional
Transfer instruction, tests the result of the arithmet-
ic/logical/shift portion of the instruction (<T>:=<A>0p
). However, multiple and more complex tests can be
performed and the result, if true, is to cause from one
to four subsequent instructions to be skipped. For each
instruction skipped, one clock cycle is lost. Because
the test associated with the skip instruction is made
in Phase IV of the pipeline, the instruction im-
mediately following the skip instruction is already in
Phase III when the test is made. Further, this
instruction has already passed through Phase II and
with regard to the RHS (transfer, link, return or load
K) portion of the instruction, hasalready been
executed. Therefore, while the assignment portion of
the instruction which immediately follows a skip
instruction can be negated, if the following
instruction has a RHS portion, that portion of the
instruction will execute normally. If a transfer,
link, return, or load K is present in any subsequent
instruction which is to be skipped, it will be skipped
entirely (see examples below).

For skips of three or four instructions and where the
instruction immediately following the skip instruction
contains a transfer, link or return sub-function, the
instructions skipped are (1) the two instructions
immediately following the skip instruction and (2) one
or two subsequent instructions beginning at the point
of the transfer address.

The address field of the skip instruction does not
contain a memory address; rather, it is used to specify
the type of skip, the extent of the skip, and a mask
which defines the conditions of the test. The type of
skip is encoded into bits 9-8 of the address field as
listed below.

MCS - 02 - 48 - INSTRUCTION FORMAT

Type = 0 If the Exclusive OR of the STATUS and the
MASK are all zeros, then skip.

'Type =1 If the Logical AND of the STATUS and the -
MASK is anywhere non-zero, then skip.

Type = 2 If the Exclusive OR of the X Register (7-0)
and the MASK are all zeros, then skip.

Type = 3 If the Logical AND of the X Register (7-0)
and the MASK is anywhere non-zero, then
skip.

The MASK is an eight-bit field specified by bits 7-0 of
the address field.® The STATUS is an eight-bit value
formed by the hardware in Phase IV from the overflow
bit and the X Register contents as follows.

Status Bit 0: Set if Overflow bit is not set

Status Bit 1: Set if Overflow bit is set

Status Bit 2: Set if X Register bit 0 is not set
Status Bit 3: Set if X Register bit 0 is set

Status Bit 4: Set if all X Register bits are zero
Status Bit 5: Set if any X Register bit is non-zero
Status Bit 6: Set if X Register bit 31 is not set
Status Bit 7: Set if X Register bit 31 is set

Thus, skip types 0 and 1 allow multiple status
conditions to be tested in combination whereas skip
types 2 and 3 allow the result of the T:= A op B to be
tested in the low order (bits 7-0) eight bit
positions.The extent of the skip, if taken, is encoded
in bits 11-10 of the address field as listed below.

Extent = 0: - Skip 1 instruction
Extent = 1: Skip 2 instructions
Extent = 2: Skip 3 instructions
Extent = 3: Skip 4 instructions

In assembly format, the skip statement has the form:

<skip stmt> ::= SKIP <extent_expr>
[[IF] (STATUS | RESULT)
(IS | HAS) <mask_expr>]

This statement uses the keyword IS to represent XOR, since the
purpose of the XOR is to test for bitwise equivalence of the
STATUS or RESULT fields and the mask expression. HAS is used
to represent AND, since the purpose of the test is to detect
common bits in the STATUS or RESULT fields and the mask

MCS - 02 - 49 - INSTRUCTION FORMAT

expression. The assembler will generate an unconditional skip
if the IF clause is not present.

Examples:

SKIP 1 IF STATUS IS X'11'
SKIP 4 IF RESULT HAS X'FC'
SKIP 3

Composite Examples:

RO := R4 SLL 4 SKIP 2 IF RESULT HAS LB
R6 := X+R4 SKIP 3 IF STATUS HAS OV

2.6.8 EXTERNAL BUS INSTRUCTIONS, BUS ([C]=2,3)

Bus From-To Instruction ([C]=2)

The external bus 'FROM-TO' Instruction (C=2) causes a
subsystem on the external bus to act as a source
(transmitter) and to place information on the 32 data
lines of the external bus. A second subsystem
activated by the command acts as a destination
(receiver). The 3230 CPU thus acts as an initiator and
monitor of the bus activity but does not itself
participate as source or destination.

The address field of the instruction initiating the
external bus operation is formatted to contain two
six-bit addresses. Bits 11-6 contain the bus source
subsystem address, and bits 5-0 contain the bus
destination subsystem address. Once issued, the bus
operation can proceed independently of the initiating
3230 CPU. However, the bus itself becomes active and
cannot be used forsubsequent operations until the
current activity is completed. If the initiating 3230
CPU should subsequently issue a second bus operation
before the current operation has completed, the 3230
CPU will stop and wait for completion. Should the
operation not complete within an additional 16 3230 CPU
clock cycles, the 3230 CPU will unconditionally
terminate it by removing the source and destination
addresses from the external bus control logic. In this
event, a positive pulse will be generated on the
external pin labeled IOTMO (input/output timeout).
This signal is used to set interrupt register bit 1.

MCS - 02 - 50 - INSTRUCTION FORMAT

In assembly format, the external bus FROM-TO statement has the
following form:

<bus_from to_stmt> ::= BUS FROM <source>
TO0 <destination>

where <source> and <destination> are expressions.

Examples:

... BUS FROM DRAM TO FPINPUT
... BUS FROM NODEIl TO NODE2

Composite Examples:

X := RO SLL 4 BUS FROM FPOUTPUT TO DRAM
NOP BUS FROM NODE2 TO NODE4
Fivira g

Bus Emit-Receive Instruction ([C]=3)

The external bus 'EMIT-RECEIVE' Instruction (C=3)
operates like that described above except that the
initiating 3230 CPU is always involved directly as a
bus source, destination or both. Three modes of
operation are possible, designated EMIT, RECEIVE and
EMIT-RECEIVE. Bits 11-10 of the address field of the
initiating instruction specifies one of the three modes
of operation as follows;

EMIT bit 11=0, bit 10=1

RECEIVE bit 11=1, bit 10=0

EMIT-RECEIVE bit 11=1, bit 10=1If both bits (11 and
10) are zero, the operation is a
'No-Operation' and initiates no bus

activity.
11 109 5 4 -0
Emit{ 0 1 Destination
Recieve| 1 0
Emit/Rec| 1 1 SOURCE
low order high
Emit - Receive Addressing
m——*

For the EMIT (from 3230 CPU to subsystem) mode of
operation, bits 5-0 of the address field contain a 6-
bit bus destination subsystem address. The source is

MCS - 02 . - 51 - INSTRUCTION FORMAT

the 3230 CPU itself, and the source data (32 bits) is
the value of the X register produced by the initiating
instruction.

For the RECEIVE (from subsystem to 3230 CPU) mode of
operation, bits 5-4 and bits 9-6 of the address field
contain a 6-bit bus source subsystem address. The
destination is the 3230 CPU itself and the receiving
register is the EIR.

For the EMIT-RECEIVE mode of operation, the two oper-
ations, EMIT and RECEIVE, are initiated in sequence.
The RECEIVE operation is delayed until the completion
of the EMIT operation has been detected by the 3230
CPU's External Bus logic. The EMIT and RECEIVE
subsystem addresses are encoded as described for the
individual bus operation modes. As bits 5-4 are common
to both bus addresses, there are restrictions as to
which subsystems can be involved in an EMIT-RECEIVE bus
operation. Obviously, only subsystems which have bit
values for bits 5-4 in common can be involved. Subsys-
tem addresses are normally established by strappings or
switch settings within the subsystems themselves and
thus the restriction relative to bits 5-4 is relatively
easy to accommodate.

For all three modes described above, if the initiating
3230 CPU should subsequently issue a second bus
operation before the current operation has completed,
the 3230 CPU will stop and wait for completion. Should
the operation not complete within an additional 16 3230
CPU clock cycles, the 3230 CPU will unconditionally
terminate it by removing the source and/or destination
addresses from the bus control logic. 1In this event, a
positive pulse will be generated on the external pin
labeled IOTMO (input/output timeout). This signal sets
interrupt register bit 1.Standard MAX 2 bus addresses
(and included comments) and status values are given in

the assembler definition files and listed in Appendix
A, Section A3.

In assembler format, external bus EMIT RECEIVE statements have
the following form:

<bus_emit_rec_stmt> ::= BUS {<emit_stmt> | <rec_stmt>|
<emit_stmt> | <rec_stmt>}
<emit_stmt> =~ ::= EMIT <destination_expr>
<rec_stmt> ::= REC <source_expr>

MCS - 02 - 52 - INSTRUCTION FORMAT

Examples:

... BUS EMIT BIGMEM
... BUS REC MEMUNITI
... BUS EMIT MEMI REC MEMI STATUS

Composite Examples:

X := R3+0 BUS EMIT MEMI_CNTL REC MEMI_STATUS
NOP BUS REC MEM2_STATUS

MCS - 02 - 53 - INSTRUCTION FORMAT

3.0 PIPELINE CONSTRAINTS

As stated earlier, the 3230 CPU uses a four-phase
pipeline structure. The word "pipeline" refers to the
fact that instruction execution is implemented in
phases and the fact that subsequent instructions are
concurrently being executed in each of the phases. 1In
the case of the 3230 CPU, four instructions are being
executed concurrently, one in each of the four phases.
A phase is one clock cycle long. During each clock
cycle one instruction completes and exits the pipeline
while an additional instruction begins or enters the
pipeline. The three intermediate instructions advance
within the pipeline. The four phases of the pipeline
are:

Phase Function
I Instruction Fetch and Location Counter
Selection
II Instruction Interpretation and Operands
- Fetch
IIT Arithmetic/Logical/shift Execution
Iv Conditional Transfer/Skip Execution/Bus
Initiate

The 3230 CPU composite instruction has two major sub-
instructions, namely, the LHS portion (T:= A op B) and
the RHS portion (C,Address). The following description
of the various phases traces the effects of the two
subinstructions as they pass through the pipeline. As

a general rule, the LHS portion exhibits less
variability than the RHS portion.

3.1 PIPELINE PHASE I

During Phase I, the location counter is used to address
the Instruction memory and the instruction referenced
is fetched. A clock transition terminates each
pipeline phase. For Phase I the clock transition
captures and holds the instruction (and its location
counter value) for subsequent use in Phase II and
simultaneously selects the new value for the location
counter. Possible sources of new values for the
location counter are:

(1) the current location counter value incremented by
one,

(2) a transfer address from Phase II,
(3) a return address computed in Phase II,

MCS - 02 - 54 - PIPELINE CONTRAINTS

(4) a conditional transfer address set by Phase
IV.Note that the operation of Phase I cannot in
any way affect its successor instruction. Only
conditions in earlier phases (Phase II or IV) can
affect the selection of the instruction
subsequent to that in Phase I. The significance
of this last statement can be more clearly
appreciated after reading 3.2 and 3.4 below.

3.2 PIPELINE PHASE II

With regard to the assignment portion of the
instruction, Phase II decodes the OP, A, and B fields
and based upon the values of A and B reads out the
values of the referenced registers or literals. At the
terminating clock transition of Phase II, a decoded OP
code is captured and passed to Phase III along with two
32-bit-wide values as selected by A and B. The T field
is not decoded by Phase II but is merely passed along
unaltered to Phase III.

The RHS instruction (C field) is decoded in Phase II,
and the Unconditional Transfer, the Link, the Link
Conditional, the Return, and the Load K Register are
acted upon. All other instructions are simply passed
along to Phase III.

For the Unconditional Transfer instruction, the address
field is selected as the new value of the location
counter (unless a selection is concurrently being made
in Phase IV which takes precedence). This affects not
the instruction in Phase I but rather the choice of the
instruction which will follow it. Thus the
Unconditional Transfer does not select its immediate
successor instruction but rather the instruction
following that.

The Link and Link Conditional instructions are like.the
Unconditional Transfer instruction but also "push" the
accompanying location counter value onto the Link Stack
Register (LSR) for subsequent use by the Return
instruction. Like the Unconditional Transfer-
instruction, the Link instructions select the
instruction following their immediate successor.

The Return instruction "pops" a value from the Link
Stack Register (LSR) and adds the value of the address
field to it. This sum then becomes the new value of
the location counter (unless a selection is

MCS - 02 - 55 - PIPELINE CONTRATINTS

concurrently being made in Phase IV which takes
precedence). The Unconditional Transfer instruction,
the Return instruction selects the instruction
following its immediate successor.

The Load K Register instruction loads the 12-bit
address field into bits 11-0 of the K register and sets
bits 15-12 to zeros. This action takes precedence over
a concurrent store into the K register from Phase IV
(see 3.4).

3.3 PIPELINE PHASE III

Phase III acts exclusively on the LHS portion of the
instruction and the transfer/skip portion (C field) is
simply passed along to Phase IV. The 32-bit values
selected in Phase II are combined or modified as
specified by the OP field and the result is captured by
the terminating clock transition (unless inhibited by
Phase IV) in the X register.

The result of Phase III is not stored back into a
general or special register immediately in Phase III
but rather subsequently during Phase IV. Thus the
assignment instruction R4:=R3+R2 followed by R5:=R4+R1l
does not form the sum of R1+R2+R3 in R5 but rather
forms the the sum of R1+R4 in R5, R4 contributing
whatever original value it held when the two

instruction sequence started. However, if a one
instruction delay is imposed between the two
instructions, the result is as expected. To achieve

the desired result in two instructions, they should be
written as R4:=R3+R2 followed by R5:=X+R1 in which case
the sum R1+R2+R3 will appear in RS.

In summary, when the X register is specified, it
contains the result of the preceeding instruction.
However, a general register (RO through R7) is always
one cycle behind. If properly applied, this behavior
can be used to advantage in programming the machine.

MCS - 02 ' - 56 - PIPELINE CONTRAINTS

3.4 PIPELINE PHASE IV

During Phase IV, the result of the assignment statement
formed in Phase III and held in the X register is
stored in a general-purpose or special-purpose register
if specified by the T field. The storage takes place
in effect during the cycle rather than at its end.

Therefore, the result is available to the Phase II
decode and operand fetch as if the storage had taken
place at the transition of the clock of Phase III.

The store operation into the Interrupt Mask Register
(IMR) requires special consideration. While storage
into the IMR takes place during Phase IV, an additional
clock cycle delay is required to develop the interrupt
priority value (if any). Therefore, a minimum of two
instructions must be imposed between storing into the
IMR and the execution of a subsequent Link Conditional
Instruction.

" The result held in the X register at the end of Phase
III is used during Phase IV for conditional transfer or
skip testing. If the result of the test is true, then
the address portion of the instruction is selected as
the new value of the location counter and takes
precedence over apotential unconditional transfer being
concurrently executed in Phase II. It is also
necessary to inhibit the instruction operation in Phase
I. The instructions in Phase II and III must also be -
aborted. This inhibiting of the Phase I, II, and III
instructions is referred to as "flushing the pipeline"
and causes a loss of three instruction cycles. This
loss only occurs for conditional instructions that
actually transfer control. Thus good programming
practice dictates that the conditional transfer be used
to transfer on the least frequent or least probable

logical path in order to reduce lost instruction
cycles.

The Skip instructions operate like the conditional
transfer instructions. The effect is to skip from one
to four instructions immediately following the Skip
instruction. Since the inhibited instructions actually
pass through the pipeline (without effect), there is a
one cycle loss for each instruction skipped. It takes
as long to skip the instructions as to execute them, or
to transfer past them.

MCS - 02 - 57 - PIPELINE CONTRAINTS

3.5 PROGRAMMING/TIMING RULES FOR READING OR WRITING
Data memory MEMORY

Proper reading and writing of data memory memory
depends on assuring that addresses supplied via MAR and
K have stabilized before supplying input for data
memory writing via MIR. The following examples
illustrate valid and invalid instruction sequences.

— MAR (16)
~=— 16 Bit Addr
—
Load in Phase IV Data memory Memory
X - Register ' +
MAR := or KR := Address Lines
become stable
——- late in the
cycle in which
—— K - Register the MAR or KR
is loaded

Load in Phase III
Instruction

Bits 11-0
"3.5.1 WRITE Data memory SEQUENCE
Valid

MAR := (value) ‘
MIR := (value) - LDK (value)

In this example the MAR and KR are loaded in the same clock
cycle. The memory address lines are stable for the following

Write (MIR) to the data memory memory.

The MAR and /or KR may be loaded any number of instruction
earlier.

MCS - 02 _ - 58 - PIPELINE CONTRAINTS

Invalid

MAR := (value)-

a s

MIR := (value)
NOP LDK (value)

The memory address lines will not be stable during this write
operation and a mis-write may occur since the LDK and MIR are
occuring during the same clock cycle.

3.5.2 READ Data memory SEQUENCE

Valid

MAR := (value)
NOP := LDK (value)
NoOP

X := MOR + ()

In this example the MAR and KR are loaded in the same clock
cycle and become stable within that cycle. The subsequent MOR
reads the memory output which takes time (15-25ns) to appear
following the address lines becoming stable.

The MAR and/or KR may be loaded any number of instructions
earlier.

Invalid
MAR := (value)
NOP := LDK (value)
X := MOR + ()

The memory address lines will not be stable during operation
and a mis-read may occur. '

MCS - 02 - 59 PIPELINE CONTRAINTS

4.0 SPECIAL PROGRAMMING TECHNIQUES

This chapter describes special ways to exploit the 3230
CPU instruction set in performing operations common to
procedural logic. 1In most cases the special techniques
exploit the subtle features of the pipeline to achieve
highest efficiency. Not all instruction effects are
discussed in each example, only those effects pertinent
to the example. Section 3 describes fully the phrasing
of instructions.

4.1 LOOPS

To avoid cycle loss, unconditional transfers from the
bottom to the top of a loop should be used for loop
cycling, where the transfer is the next-to-last
instruction in the loop, as illustrated below:

LOOP <first instruction>

<LHS> TRA LOOP
<last instruction>

Since the unconditional transfer occurs in phase II of
the pipeline, the <last instruction> is already in
phase I. Thus it proceeds to completion while the

transfer is taking place and no machine cycles are
lost.

4.1.1 BOTTOM TEST LOOPS

A bottom-test loop may be implemented using a decrement
and conditional transfer as the last loop instruction:

LoopP <first instruction>

<LHS> TRA LOOP
KR:=KR-1 TRA @+1 ON Z

Whenever the transfer condition is satisfied, the
transfer to @+1 executes after unconditional transfer
to LOOP and supersedes at exiting the loop. Three

cycles are lost upon the ex1t but no cycles are lost
during looping.

MCS - 02 - 60 - PROGRAMMING TECHNIQUES

4.1.2 TOP TEST LOOPS

A top-test loop may be implemented by using the
decrement and conditional transfer as the first
statement of the loop as follows:

LOOP RO:=R0-1 TRA LOOPEND ON Z
<LHS> TRA LOOP

<last instruction>

LOOPEND <instruction>

Again, the conditional transfer loses cycles only if
the transfer is made. Three cycles are lost upon loop
exit, but no cycles are lost during looping.

4.1.3 ARRAYS: Data memory LOOPS

The use of the K register as a loop counter is
particularly efficient for accessing arrays in the Data
memory memory. The following example moves an array of
length (RO} from location {R1} to location (R2}.

MOVE KR := KR-1 TRA ENDMOVE ON HB .decrement KR and test
for finished

MAR := RI+0 . base address for
v fetch
MAR := R2=0 TRA MOVE .base address for
o store and loop
MIR := MOR=0 .copy data

Since the memory address referenced by the MOR and MIR
is defined by the sum of the MAR and the KR, the KR is
used as the common index of both fetch and store, and
the MAR is used as a base register to alternate between
the base address for fetching and the base address for
storing.

MCS - 02 - 61 - PROGRAMMING TECHNIQUES

4.2 OUT OF SEQUENCE EXECUTION

Often it is useful to select and execute a single
instruction from an out-of-line table. The following
table might represent alternative instructions to be
selected based upon a computed value:

TABLE X:=RO SLL 5
X:=RO SLR 3
X:=RO SLL 7
NOP TRA ERROR4
X:=RO SRL 2

The code for selecting and executing one of these
instructions could be the following:

LSR:=R6+R1 .compute TABLE index
<instruction> .wait for LSR value
<instruction> .wait for LSR value

<LHS> RETURN TABLE .execute selected instruction
<LHS> TRA @+l .continue in sequence

By pushing the TABLE index into the LSR, the RETURN
statement, with the TABLE address as argument, may be
used to transfer into the TABLE. But since the TRA @+1
statement, following the RETURN, is already in the
pipeline when the RETURN is executed, it will execute
immediately after the selected table instruction enters
the pipeline. Likewise, the selected TABLE instruction
will execute in sequence behind the unconditional
transfer actually overlapping the transfer in the
manner that the transfer overlapped the return.

Note that at least two instructions must appear between
the LSR stacking instruction and the RETURN. Otherwise
the index value will not yet be available in the LSR
when the RETURN pops the LSR for addition to the TABLE
address.

MCS - 02 - 62 - PROGRAMMING TECHNIQUES

4.3 TRANSFER VECTOR BRANCHING

An efficient transfer vector may have the following
form. ‘

Both the transfer and the instruction following are
executed when this form of vector is used.

TRAVEC <LHS> TRA BRANCHI .transfer 1
<instruction> .overlap transfer 1
<LHS> TRA BRANCH2 .transfer 2
<instruction> .overlap transfer 2
<LHS> TRA BRANCH3 .transfer 3
<instruction> .overlap transfer 3

The computed transfer corresponding to this vector is
the following:

LSR:= RO SLL 1 .multiply RO by 2
<instruction> .wait for LSR value
<instruction> .wait for LSR value
<LHS> RETURN TRAVEC .execute transfer

A more efficient transfer vector in space but less
efficient in time is the following:

TRAVEC X:=0+0 TRA BRANCHIl ON 2

:=0+0 TRA BRANCH2 ON Z

X:=0+0 TRA BRANCH3 ON Z
<instruction>

Its corresponding computer transfer is the following:

LSR:=R0

<instruction> .wait for LSR value
<instruction> .wait for LSR value
<LHS> RETURN TRAVEC .execute transfer

Note that the instruction following the TRA BRANCH3 is
executed when that branch is taken.

MCS - 02 - 63 - PROGRAMMING TECHNIQUES

4.4 REGISTER SHARING

The following sequence of code illustrates register
- sharing between instructions in the pipeline:

R5 := KR + 1

R5 := 0 + X'FFF'

X := R5 AND 3

R4 := R2 XOR R5 TRA ERR ON NZ
The arrows indicate the availability of the particular
values of R5, and that two successive instructions
access different values from RS. This same
availability of data from the micro data memory applies
to use of MIR and MOR.

MAR := 0 X'100"'

MIR := 0 + 100

MIR := 0 + 101 LDK 0

MIR := MOR + 2 LK 1

NOP LDK 2
On occasion it is desirable to "borrow" a register for
computation. This can be done by taking advantage of
the storage time cycle as illustrated in the following

example:

R5 := R6 SLL 2 <RHS> .borrow R5
R5 := R5 + 0 .restore R5 to previous

X := MOR + R5

In this example R5 is altered temporarily as a value to
apply in the third instruction, and restored to its
previous value by the second instruction. 1In other
situations X might have been used, but both X and MOR
are A field-only addresses.

MCS - 02 - 64 - PROGRAMMING TECHNIQUES

4.5 ACCESSING PRESTORED DATA FROM Instruction memory3

A table of constants may be prestored in a microprogram
using the DC pseudo instruction as follows:

TABLE DC <value;>
DC <valueyp>
DC <valuez> B

Values may be fetched from this table as follows:

LSR:=R5 OR 7 .set index into TABLE
<instruction> .wait for LSR value
<instruction> .wait for LSR value

<LHS> RETURN TABLE .jump to "instruction"
X:=DATA+R3 TRA @+ .add R3 to value
R3:=X+R2 .add R2 to value from X

Since the normal use of the DATA register is to access
the subsequent instruction as a constant, e.g.,

X:=DATA+R3
DC <value>

the effect of the RETURN TABLE places the selected DC
instruction from TABLE immediately following the

C:=DATA+R3 TRA @+1
and the TRA @+1 reinstates the normal execution
sequence.
4.6 STACKING SUBROUTINE PARAMETERS

The LSR may be used to store one or two sixteen-bit

parameters for use by a called subroutine. The
sequence:

LSR:=0+VALUEl LINK SUBROUTINE
LSR:=0+VALUE2

puts VALUEl and VALUE2 on the stack after the return
address, so the subroutine can pop them.

MCS - 02 - 65 - PROGRAMMING TECHNIQUES

5.0 MEMORY INTERFACE

This section describes the interface from the 3230 CPU
to the large user memory on the MAX 2. Data and
control information are moved using the BUS EMIT and
BUS RECEIVE instructions with appropriately coded
information in the address field. Four independent
channels for memory transfer are provided. .

5.1 MEMORY CONTROLLER INTERFACE

The MAX 2 memory controller provides comprehensive
controls over the flow of information to and from the
3230 CPU CPU. Overall structure is shown in Figure 7,
below.

There are four independent channels to memory each with
independent address registers and modes controlling
access to memory. These channels continue to supply
information information according to the modes and
address specified until reset with new parameters. The
channels are well adapted to applications in language
interpretation and vector processing. For example, in
vector processing one channel can carry the instruction
stream while two carry vector source data and the
fourth carries the result of the vector operation.

Memory addressing is to a single continuous linear
address space. Memory size ranges from 1 to 64
megabytes. Two and four way interleaving is provided.
The board uses 256K-bit chips in the 1-4 megabyte
range, 1 mbit chips in the 4-16 megabyte range, and
4mbit chips in the 16-64 megabyte range.

Addressing modes are provided for bytes, halfwords, or
words. Byte ordering is controllable in either the
0123 or 3210 order and halfword ordering may be 01 or
10. Addresses are incremented or decremented following
each fetch according to a control mode. There are two
elements of address incrementing: stride value and
tiptoe value. Stride value is the major increment
between element fetches. Tiptoe counts subelements,
for example the two words for a double precision real
or the four elements of a double complex element.
Values of stride may be set to provide for row element
access to a column stored array.

MCS - 02 - 66 - MEMORY INTERFACE

As shown in the figure below, the memory controller
includes four identical channels each of which contains
four registers which interface the user memory to the
3230 CPU. Information passes from the 3230 CPU X
register through the controller to user memory, and
data is fetched from user memory into the controller
and from there read into EIR. (The term "fetched" is
used for data movement from user memory to controller
and the term "read" is used for data movement from
controller to 3230 CPU.)

Memory Channel 0

—] MAR —
———— CONTROL
CUR TIPTOE
3230 CPU
Bus - MOR ——
Interface
. - MC 1
MC 2 — -
MC 3 Memory
Interface
(1-64-mb)
M M M
- I I I T
R R R

FIGURE 7 - Memory Controller Architecture

MCS - 02 - 67 - MEMORY INTERFACE

In each channel the four registers are:

1. MAR - memory address register

2. Control register with contents detailed in
figure 8

3. Current Tiptoe register which counts sub-
element fetches

4. MOR - memory output register whicii holds

data fetched from memory until it is read by
the 3230 CPU

A three deep memory input stack holds data waiting to
be written to memory. These data may have come from
any channel and are queued in the order written. If
the queue fills, the 3230 CPU waits on the BUS
instruction.

31 98 4 3 2 1 0
STRIDE TIPTOE I 0 H B
23 5 / R A Y
D D L T
E F E
R
BYTE - Byte Indexing
HALF - Byte/Half Indexing
ORDER - Byte/Half Ordering: 0123 or 3210
I1/D - Increment or Decrement

TIPTOE - Tiptoe Element Size
STRIDE - Twos Complement Index to Next Element

FIGURE 8 - Channel Control word

Controller instructions are encoded into the address of
the BUS EMIT/RECEIVE instruction described in section
2.6.8. The values for these operations are given in the
standard definitions file, and listed in Appendix A.

5.1.1 BUS EMIT OPERATIONS
MEM_LDA - Load Address

This operation loads the controller address
register from the X register.

MCS - 02 - 68 - MEMORY INTERFACE

MEM LDF - Load Address and Fetch
~ This operation loads the address register and
causes that addressed word to be fetched from
extended memory into the controllers register.

MEM_LDFI - Load Address, Fetch and Increment
Same as MEM_LADRF except that in addition the
address register is indexed according to the

control register specification following the
fetch.

MEM_WRT - Write Data
This operation transfers data from the X register
into the controller's Write register and from

there into the memory location indicated by the
address register.

MEM-WRTI - Write Data and Increment
Same as MEM WRT except that, in addition, the

address register is indexed by one following the
write. » :

MEM_SET - Set

Sets the control register of the channel with the
contents of the X register.

5.1.2 BUS RECEIVE OPERATIONS

MEM_RD - Read
Data from the channel's MOR is moved to the EIR.

MEM _RDF - Read and Fetch
Data from the channel's MOR is moved to the FEIR.

In addition a fetch of information from memory is
initiated.

MEM_RDFI - Read Data, Fetch, and Index
Data from the channels MOR is moved to the EIR.
In addition, a fetch of data from user memory is
initiated, and then the address register is

indexed according to the control register
specifications. ‘

MCS - 02 - 69 - MEMORY INTERFACE

MEM_STAT1 - Read Memory Statusl
Data from the controller's Statusl register is
moved to the EIR. (See Figure 9)

MEM_STAT2 - Read Memory Status2

Data from the controller's Status2 register is
moved to the EIR. (See Figure 9.)

MCS - 02 S - 70 - MEMORY INTERFACE

31

STATUS1

24 23

Zero

current address

STATUS2

WRP WRA

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 BE1 BEO CP1 CPO ILV CYC EMT 0 IDX WRT CH1 CHO

15 14 13 12 11 10 9
CHG RFG ERY MST BB3 BB2 BB1 BBO VAL RPD BY1 RESIDUAL TIP TOE

8

7 6 5 fecemmeeeeeeo 0

CONTROLLER STATUS

WRP = THREE MEMORY WRITES PENDING

WRA
BE1,BEOQ
CP1,CPO

ILV

cYc

EMT

IDX

WRT

CH1,CHO
CHG
RFG
ERY
MST
BB(3-0)

ANY WRITE PENDING

1 BANK(0), 2 BANKS(1), 4 BANKS(3) INSTALLED
256K RAMS(0), 1 MEGABIT RAMS(1), 4 MEGABIT RAMS(2)

INTERLEAVE ENABLE

D

MEMORY CYCLE IN PROGRESS

FIFO IS EMPTY
INDEX THIS CYCLE
WRITE CYCLE

CHANNEL FOR CURRENT CYCLE

CHANNEL CYCLE,
REFRESH CYCLE
EARLY REFRESH
MUST REFRESH

BANK 3,2,1,0 BUSY

CHANNEL SPECIFIC STATUS

VAL = Data memory VALID

RPD
BY1

MCS - 02

READ PENDING
INDEX BY ONE

FIGURE 9 - STATUS WORDS

- 71 - MEMORY INTERFACE

5.1.3 INDEXING

Indexing is carried out using the stride value, the
tiptoe value and increment/decrement flag. The index
addresses a byte address, a half-word address, or a
word address depending on the settings of the byte and
half-word flags of the control register. If the
command given the controller requires indexing then it
is carried out counting the tiptoe value to zero first
and then indexing by the stride value.

Indexing means either add or subtract depending on the
increment/decrement flag. Note also that the stride
value is a twos-complement number which may have a plus
or minus value. The flow chart below shows how stride
and tiptoe control indexing.

IT --> CTT

Index?

No
+Yes

Yes
TT = 0? ——1 Index by
Stride

+ No

T = TT-1

!

Index by 1

MCS - 02 - 72 - MEMORY INTERFACE

5.1.4 TYPICAL PROGRAMMING
To read user memory into the 3230 CPU:

X := 0 + MEM BYTE MD+MEM_HL+MEM UP+l*MEM_ STRD+1*MEM_ TT.
.Setup control word for byte mode, high-to-low byte
ordering, stride of one and tiptoe of one.
X := X + 0 BUS EMIT MEM SET + MEM CHO .set control for
"channel zero

LOOP <LHS> BUS REC MEM RDFI .pick up next word, fetch and

index
NoP
NOP .delay for pipeline
R7 := EIR + 0 .memory word to R7

<LHS> TRA Loop .loop back for more

MCS - 02 - 73 - MEMORY INTERFACE

6.0 PC I/0 AND SUPPORT INTERFACES

The MetaMicro Support Chip provides a l6-bit-wide data
path between the 3230 CPU and the bus of an IBM PC-AT
or one of its clones. 1In addition, the support chip
provides for loading of the writeable control store,
processing data from the scan-out logic, and cont-
rolling various logical functions such as sinule-step
mode and RUN mode, breakpoint detection, and reset
functions.

The support chip has two interfaces, one directed to
the MetaMicro and one directed to the PC-AT bus. In
addition, discrete logic on a MAX 2 board is present to

provide features not directly incorporated into the
support chip.

MCS - 02 - 74 - PC I/0 INTERFACE

MetaMicro Support Chip PC-AT

Data memory [———— Compare A |<—
Memory

Compare B |<

Instruction
Memory Compare C |<—
Write
Selected
Address <
Read Instr Addr
>
Read Memory Addr
>
Write Command
Command <
Write Selected
Data < -
Data, Control,
Memory
WDATA Read Data
WCTRL X ——————> Data >
Read Status
Status >
RDATA
RSTATUS EIR < Status

FIGURE 7 - Support Chip Overview

MCS - 02 - 75 - PC I/0 INTERFACE

- From the perspective of the 3230 CPU, the support chip
- resides on the external bus (Figure 1) and responds to
BUS EMIT/REC commands under control of the

microprogram. There are two read and two write
commands. Data to be read or written are transmitted
on bits 15-0 and associated parity bits. Data

transferred via bus bits 31-16 are ignored and data
received via bus bits 31-16 will have a zero value.

Information is transferred between MetaMicro and PC via
two data registers in the support chip, one register
for each direction of transfer. Transfer is
syncronized through status bits which are set when
information is deposited in the data register and reset
when the information is picked up. Four bits are
involved: a pair for each direction of transfer
between MetaMicro and PC, a bit of each pair indicates
whether the information is data or control. They are
set when the register is loaded and reset when
information is picked up on the other side. Operation
of these status bits depends on the direction of
transfer.

6.1 METAMICRO TO PC

If a write is given before previously written data is
picked up from the data register, or if a read is given
before the data register has been loaded from the PC
side the BUS instruction waits. After 16 cycles I/0
timeout (ITMO) 1is initiated setting the timeout
interrupt status bit.

A normal programming technique for transfers to and
from the PC is to examine status before issuing the
read or write instruction in a "spin" loop waiting for
the proper setting of the status bits.

MCS - 02 - 76 - PC I/0O INTERFACE

6.1.1 ACCESS

The Support Interface is accessed using standard
externalbus addressing rules as described in the table
below:

INPUTS FROM THE EXTERNAL BUS

Mnemonic Address* Function

PC WDATA PC-ADDR+1 Write Data
PC WCTRL PC-ADDR+0 Write Control

OUTPUTS TO THE EXTERNAL BUS

Mnemonic Address* Function

PC RDATA PC-ADDR+1 Read Data Register
PC RSTATUS PC-ADDR+0 Read Status

* "PC-ADDR" refers to subsystem address on the MAX 2
bus, bits 5-1 of the six-bit bus address. The value of
"PC-ADDR" on the MAX 2 is binary X'20'.

6.1.2 STATUS TO METAMICRO

The format and meaning of the status bits from the per-
spective of MetaMicro is given below:

Position " Meaning

Bit O Data Available from PC/AT to MetaMicro

Bit 1 Control Available from PC/AT to MetaMicro

Bit 2-7 Not Used (Received as Zero)

Bit 8 Data Available from MetaMicro to PC/AT

Bit 9 Control Available from MetaMicro to PC/AT

Bit 10 Valid Parity on Data/Control from 3230 CPU
to support chip (both byte 0 and byte 1)

Bit 11 Not Used (Received as Zero)

Bit 12 Valid Parity on Data/Control from 3230 CPU
to support chip (byte 0)

Bit 13 'Valid Parity on Data/Control from 3230 CPU
to support chip (byte 1)

Bits 14-15 Not Used (Received as Zero)

6.1.3 READ FUNCTIONS

MCS - 02 N 1 PC I/O INTERFACE

The "Read Data Register" function causes the interface
to send to the 3230 CPU the contents of a 1l6-bit Data
Register previously loaded by actions of the associated
PC-AT. The data in the "Data Register" were loaded by
the PC-AT as either "data" or "control" information as
recorded in the status register. The PC-AT MetaMicro
data/control bit is reset as a result of the "kead Data
Register" function. If neither the "data" nor the
"control" bit is set, the function is deferred until
timeout.

The "Read Status" function caused the support chip to
send to the 3230 CPU the contents of the status
register formatted as described below. The "Read
Status" function is never deferred.

6.1.4 WRITE FUNCTIONS

The "Write Data" function transmits 16 bits from the X
register to the interface and sets the "data" bit in
the status register if neither the "data" nor "control"
bit were previously set. If either bit was set, the
operation is deferred until timeout.

The "Write Control" function transmits 16 bits from the
EIR to the interface and sets the "control" bit in the
status register if neither the "data" or "control" bit
were previously set. If either bit were set, the
operation is deferred.

The presence of the "data" or the "control" bit in the
status register initiates an interrupt to the PC-AT.
PC-AT interrupt 10, 11 or 12 or none is used depending
on jumper wiring on the Metaframe board.

6.2 INTERFACE TO PC-AT

From the perspective of the PC-AT, the support chip
contains several 16-bit registers which can be written
to and several 16-bit registers which can be read. It
is addressed from the PC-AT as a "prototype"

input/output device with the following address
structure:

MCS - 02 - 78 - PC I/O INTERFACE

Address Bits

9 8 7 6 5 4 3 2 1 0 (Address bit position)
1 1 00 0 S;Sp 0 F 0 (Bit Value)

Where:
S; and Sp are established by jumper wiring on the MAX 2
board and permits up to 4 MAX 2 boards to be placed in a
PC-AT.

F is a function bit (0 or 1) and is used to address the
various read/write operations of the support chip.

6.2.1 PC TO METAMICRO

For this side of the transfer there is no automatic
waiting on the status bits as is the case for the 3230
CPU to Support interface. When the PC writes,
information enters the data register regardless of the
setting of the status bits and a read information is
always transferred. Thus the program on the PC side
must syncronize by examining the status bits before
issuing a read or write.

6.2.2 ACCESS

Accessing the PC-AT-SUP Interface is accomplished using
standard PC-AT Input/Output commands, the basic I/0
address described above, and the F bit of the I/O
address. The available functions are described in
table format below. The letters "BA" refer to the
basic PC-AT I/0 address above.

MCS - 02 - 79 - PC I/0O INTERFACE

Address Function

BA+(F=0) Write Command Register
BA+(F=1) Write Selected Register

INPUTS FROM PC-AT BUS

" QUTPUTS TO PC-AT BUS

Address Function

BA+(F=0) Read Status
BA+(F=1) Read Selected Register

6.2.3 READ STATUS FUNCTION

The "Read Status"”

BA+(F=0) transmits the contents of the

status register from the support chip to the PC-AT formatted

as described bclow.

6.2.4 STATUS TO PC-AT

The format of the status bits from ihe perspective of
the PC-AT is:

Position

Bit
Bit
Bit

Bit
Bit
Bit
Bit
Bit
Bit

Bit

MCS - 02

0

~

n

O N

Meaning

Data Available from MetaMicro to PC-AT
Control Available from MetaMicro to PC-AT
Valid Parity cn Data/Control from 3230 CPU
to support chip (both byte 0 and byte 1)
Not Used (Received as Zero)

‘Valid Parity on Data/Control from 3230 CPU
to support chip (byte 0)

Valid Parity on Data/Control from 3230 CPU
to support chip (byte 1)

Data Available from PC-AT to MetaMicro
Control Available from PC-AT to MetaMicro
Instruction Address Compare with Compare

. Registers C,B,A

Not Used (Received as Zero)

- 80 - PC I/0O INTERFACE

Bits 14-12 Memory Address Compare with Compare
Registers C,B,A
Bit 15 Not Used (Recieved as Zero)

6.2.5 WRITE COMMAND REGISTER

The "Write Command Register" BA + (F=0) transmits a 16
bit word from the PC-AT to a "Command Register" (CR) in
the support chip. The contents of the CR establish
various conditions such as clear for the support chip
and for the MAX 2 or ProtoFrame PC board. In par-
ticular, the CR contains a 3-bit function field which
serves as a register select address for the Write or
Read Selected Register functions BA+(F+l). The format

and meaning of the Command Register are described
below:

Command Register Format

Position Meaning

Bit 0 Clear (=0), don't clear (=1)

Bit 1 Stop (=0), Run (=1)

Bit 2 Inst. Addr. Disable (=0), Enable(=1)

Bit 3 Scan-out Disable (=0), Enable (=1)

Bit 4 No Clock (=0), Clock Cycle (=1)

Bits 5-7 Function Select Field (FSF)

Bits 8-10 Instruction Compare Disable (=0),
Enable(=1)

Bit 11 Not Used

Bits 14-12 Memory Compare w/C,B,A Disable(=0),
Enable(=1)

Bit 15 Compare Interrupt Disable (=0), Enable
(=1)

Function Select Field: The Function Select Field (FSF)
operates in conjunction with "Write Selected Register",
"Read Selected Register" and bit 4 of the Command
Register, the No Clock/Clock Cycle bit. In effect, the
FSF specifies which register to write, which register
to read or which clock pulse to generate. The FSF
value and register/clock assignments are described in
the table below.

MCS - 02 - 81 - PC I/O INTERFACE

FUNCTION SELECT FIELD ASSIGNMENTS

FSF Write "~ Read Clock Pulse

0 Data Data Register Scan Clock

1 Control Memory Address Memory Write Clock 1

2 Memory Inst. Address Memory Write Clock 2

3 Inst. Addr. Not Used Step Clock

4 Compare A " Not Used

5 Compare B " "

6 Compare C " "

7 Not Assigned " " ~

6.2.6 WRITE SELECTED REGISTER

"Write Selected Register" with FSF=0 transmits a 1l6-bit
word from the PC-AT to the data buffer in the support
chip and sets the "Data available from PC-AT to 3230
CPU" bit in the status register.

"Write Selected Register" with FSF=1 transmits a l6-bit
word from the PC-AT to the data buffer in the support
chip and sets the "Control Available from PC-AT to 3230
CPU" bit in the status register.

"Write Selected Register" with FSF=2 transmits a 16-bit
word from the PC-AT to the data buffer in the support
chip. The status register is not affected.

"Write Selected Register" with FSF=2-6 each transmit a
16-bit word from the PC-AT to the instruction address
and the three compare registers A,B, and C, as shown in
the table above. The status register is not affected.

6.2.7 READ SELECTED REGISTER

"Read selected Register" with FSF=0 transmits a 16-bit
word from the Data Register to the PC-AT. Similarly
FSF=1 and 2 respectively transmit the 16-bit contents
of the Memory Address (3230 CPU MAR+K) and Instruction
address registers to the PC-AT.

MCS - 02 - 82 - PC I/O INTERFACE

6.2.8 OTHER COMMAND REGISTER FUNCTIONS

Bit 0, clear (=0)/don't clear (=1). This function
resets the data and control flags of the support chip
and issues a clear signal to the 3230 CPU which resets
interrupts, sets the instruction address to zero, and
clears the pipeline. .

Bit 2, Instruction Address Disable (=0)/Enable (=1).
The 3230 CPU has an input signal IAEMB, which causes it
to deliver a 16-bit instruction address to its in-
struction memory. 1In order to permit loading the in-
struction memory by the PC-AT, the address from the
3230 CPU must be turned off (disabled, bit 2=0) and an
instruction address register in the support chip must
be turned on. Thus, with Bit 2=0 the 3230 CPU address
is turned off and the support chip address is turned
on; with Bit 2=1 the 3230 CPU address is turned on and
the support chip address is turned off.

Bit 3, Scan-out Disable (=0)/Enable (=1). The 3230 CPU
has internal logic to gain serial (bit-by-bit) access
to the value of certain 3230 CPU registers for
diagnostic (hardware/software) purposes. They are the
X register and the instruction in Phase II of the
pipeline. Two input signals, SCLD (Scan-Load) and
SCCLK (Scan Clock) and one output signal SCDATA (Scan
Data) are present on the 3230 CPU processor. Matching
signals of the same name are also present on the
support chip. : ' v

The 3230 CPU Scan-Out functions as follows: Bit 3 of
the Command Register is Enabled (=1). A Scan-clock
(SCCLK) is generated (see below). This sequence of
events causes registers of the 3230 CPU to be parallel
loaded into an extended shift register (the Scan-Out
Register) within the 3230 CPU. Bit 3 of the Command
Register is then disabled (=0); the high-order bit of
the Scan-Out Register is made available on the SCDATA
output pin of the 3230 CPU for each subsequent Scan-
Clock (SCCLK) that is generated the Scan-Out Register
of the 3230 CPU shifts left one position. Thus, each
succeeding bit of the Scan-Out Register becomes
available on the SCDATA output pin with each Scan-
Clock.

The mode of operation of the support chip and the 3230
CPU assumes that the SCLD, SCCLK, and SCDATA of the
3230 CPU are connected to the like named pins of the
support chip. Within the support chip is a 16- bit

MCS - 02 - 83 - PC I/O INTERFACE

shift register designed to receive serial data from the
3230 CPU SCDATA output. With SCLD Low (disabled) each
SCCLK pulse captures one bit of the 3230 CPU Scan-Out
Register. After 16 SCCLK pulses the upper 16 bits of
the 3230 CPU's Scan-Out Register have now been
transferred to the support chip data register and can
be read out, in parallel, by the PC-AT. The PC-AT thus
gains access to the internal registers of the 3230 CPU.

Bit 4, No Clock (=0)/Clock Cycle (=1) A one bit written
into bit 4 of the Command Register causes one clock
pulse to be generated depending upon the value of the
Function Select Field (Bits 7-5). Bit 4 of the Command
Register is reset as a result of the clock pulse
generation. For each clock cycle desired the PC-AT
must rewrite command register bit 4.

MCS - 02 - 84 - PC I/0 INTERFACE

7.0 FLOATING POINT COPROCESSOR

The floating point coprocessor (FPC) is an optional
daughter board for the MAX 2 that provides single and
double precision IEEE format floating point arithmetic,
integer multiply and divide, conversion of integers,
single and double floating point into one-another, and
the functions SIN, COS, A**B, TAN, ATAN, and LOG.

The board includes ALU and MPY units, 4096 words of 48-
bit memory for microcoding of the functions carried out
by the FPC, and control and interface logic.

The 3230 CPU communicates with the FPC over the 32-bit
external bus of the MAX 2 using BUS EMIT and BUS
RECEIVE instructions. The FPC responds to bus address
X'38'.

7.1 BUS EMIT AND RECEIVE FUNCTIONS

There are two levels of functions carried out by the
FPC: 7 primary functions and an arbitrary number of
secondary functions.

Primary functions are given in the address field of the
BUS EMIT instruction which also transmits the first
operand to the FPC. Primary functions are therefore
faster than secondary functions.

The seven primary functions are:

Integer multiply

Single precision floating addition
Single precision floating subtraction
Single precision floating multiply
Double precision floating addition
Double precision floating subtraction
Double precision floating multiply

NoN e W

The eighth code causes the word transmitted over the
bus to be used as a function initiation word rather
than the first argument. This function initiation word
provides the specific interpreter address to be
executed on the FPC.

-MCS - 02 - 85 - FLOATING POINT

The function initiation word layout is:

31 16 15 14 13 12 11 : 0
R IL {D |S ‘
unused Uuilo {u T execution
N |A M [E address
D |P |P

The four control bits are set to mean:

RUN - execute the program at the address
given

LOAD - write FPC interpreter memory

DUMP - read PPC interpreter memory

STEP - single step execute interpreter at
address

The secondary function provided are:

l.
2.

3.

MCS - 02

Integer to single precision floating
conversion

Single precision floating to integer
conversion

Integer to double precision floating
conversion

Double precision floating to integer
conversion

Single to double precision floating
conversion

Double to single precision floating
conversion

Single precision floating division

Double precicion floating division

- 86 - FLOATING POINT

Current status of the coprocessor is determined using a
BUS RECEIVE operation with address X'3A'. The status
word returned has the following format:

31 30 29 28 22 1615 10 9 8 7 6 5 4 3 2 1 0O
R {W [W {H 0 |U I (I |D|O IU I|I IR
Uil {0]A address V IN IN [N [E |V iN [N IN |C
N L -—- -—- |R |D |X|{V [N IR ID X |V |0
T
ALU Multiply Unit

Meaning of the various bits are:

RUN = running
WI = waiting for input
WO = waiting for output
HALT = halted
OVR = overflow
UNO = underflow
INX = inexact
INV = invalid
DEN = denormalized
RCO = round carry out

7.2 SAMPLE PROGRAMS

This program multiplies the 32-bit real in R7 by that
in R6.

X := 0+ R7 BUS EMIT CP _FMPY .Send Ist
argument and

command
X := 0 + R6 BUS EMIT CP_OPER .Send 2nd
argument
<LHS> BUS REC CP_RSLT .Read result
from FPC
NOP
NOP .Pipeline wait
R3 := EIR + 0 .Result to R3

MCS - 02 - 87 - FLOATING POINT

The code below divides the first double precision
floating point argument by the second. A completion
interrupt is used to wait for the result.

Double precision divide R = A/B

Input order: B(LSW),A(LSW),B(MSW),A(MSW)
Output order: R(LSW),R(MSW)

Completion interrupt: Yes

Error interrupt: Underflow, Overflow, Invalid,

Inexact

Example:
X:=0+CP_FPODIV .Setup routine address
X:=X=0 BUS EMIT CP_INIT -Initiate function
X:=R1+0 BUS EMIT CP_OPER .Send S(LSW)
X:=R2+0 BUS EMIT CP_OPER .Send A(LSW)
X:=R3+0 BUS EMIT CP_OPER .Send B(MSW)
X:=R4+0 BUS EMIT CP_OPER .Send A(MSW)

WAIT IR:=IR AND CP_CMPINT .Check interrupt
X:=X+0 TRA WAIT ON Z .Wait for interrupt
Nop
NOP BUS REC SP_RSLT .Get result (LSW)
NoOP
NoP
R2:=EIR+0 .Store result (LSW)
NOP BUS REC CP_RSLT .Get result (MSW)
NoP
NOP
R3:=EIR+0 .Store result (MSW)

MCS - 02 - 88 - FLOATING POINT

APPENDIX A: ASSEMBLER SYNTAX AND PSEUDO OPS

This appendix defines the syntax of the assembly
language and describes the assembler pseudo operations.
The assembler runs on the IBM PC-AT or compatible
personal computers.

Syntax for the instructions is given in Secticn 2 of
this manual. The language is designed to reflect the
3230 CPU architecture as closely as possible while
maintaining readability and legibility. For example,
expressions much like those found in higher level
languages are allowed.

Finally, there is a command which may be used to change
the keywords to accommodate individual programmer's
style.

The assembler is called from the DOS prompt. There are
three parameters on the call given the file names for
1) assembler source, 2) listing output, 3) run-time
output. No linker is required; a directly loadable
image is produced for the instruction memory. A
typical assembler call is:

MMASM MYSOURCE, MYLIST, MYRUN [/ OPTION]

Parameters are separated by commas. If list and/or run
unit files are not given, then no output of that kind
is produced. Three options control EPSON or compatible
print control: /C+ for compressed, /E+ for elite, /P+
for pica. The default is no printer control. For
convenience several batch files are provided to produce
often used assemblies.

MCS - 02 - 89 - ASSEMBLER

A1 LANGUAGE ELEMENTS

Al.1l COMMENTS

A period causes the rest of the line to be treated as a
comment. If the first nonblank character on the line
is a period, or if the entire line is blank, %*hen the
whole line is assumed to be a comment.

{comment> ::= . <char_string>

Al.2 TIDENTIFIERS

Identifiers are used as labels and names. An
identifier is a string of up to eleven characters, the
first of which is a letter. Underscore characters may
be included and all characters are significant,
including underscores.

<identifier> ::= <letter)|
{[underscore] (<letter> <digit>))}

Examples:
X . . NAME ENTRY_TO_Al
X1 ~ LAB_X LABEL___ 33

Al.3 NUMBERS

There are three classes of numbers: decimal
integers,hexadecimal integers, and character strings.
They can be represented as follows:

<number)> ::= <dec_integer>|<hex integer>|<char_string>

Al.3.1 DECIMAL INTEGERS
<dec_integer> ::= <dec_digit> ({<dec _digit>)

<dec_digit> ::= 1234567890
Al.3.2 HEXADECIMAL INTEGERS

<hex_ integer> = X'<hex_digit> (<hex digit>}’'
<hex digit> ::= 12345678 9ABCDETFDO

MCS - 02 - 90 - ASSEMBLER

Al.3.3 CHARACTERS

{char_string> ::= C'<char> (<char>}'
{char> ::= any ASCII character

Examples:
0) 37801 i6
X'o' X'FF031A" X'10'
C'ABCD' c'i2’ X'A D"

Notes: A negative hex integer is indicated by -X'FF';
not by X'-FF'. The maximum allowable magnitude is
231-1. Hence, X'7FFFFFFF' is the largest representable
hex integer and 2147483647 is the largest representable

decimal integer. The longest character string is four
characters.

Al.3.4 REAL NUMBERS

{real_number> ::= R'<real number or integer><E
integer>' '

Examples:

R'3.5"
R'-3E12'
R'1.223E05"'

Al.3.5 DOUBLE PRECISION NUMBERS

{double precision #>::= D'<real number or integer><D
integer>'

Example:

D'3.5'
D'-1D12'
D'1.223E05"

Al.4 EXPRESSIONS

An expression is any well-formed algebraic expression
involving identifiers, numbers, left and right
parentheses, the operators +, -, *, /, &, |, ~, <, and

> and the special symbol, @, which indicates the
current value of the present location counter.

MCS - 02 - 91 - ASSEMBLER

The usual rules of precedence found in FORTRAN and most
other higher level languages apply. It is permissible
to mix hexadecimal integers and decimal integers in the
same expression. The exact definition follows.

<expr> ::= [-] <term> {(+|-)<term>}
{term> ::= <factor>{(*i/)<factor>}
<factor> ::= <primary> (<expr>)
<primary> ::= <number> | <identifier>| @
Examples:
0 Al5*X'FF01'
X'o! (-B*3/X) + (X'A3' - Z_AB)
15-X'A"' (((2%A) *3) - 2 + X'27)
@ @ + 256
R'3.5" D'3.5'
R'3E12' D'1D12!
R'1.223E05" D'1.22E05"'
Notes: Except for expressions used in EQU, RS, ORG,
and COMWIDTH statements, the identifiers in an
expression need not be defined before. The division

used is integer division, and the result will be
truncated without warning.

Al.4.1 LOGICAL OPERATORS

Four operators are used to perform logical functions on
expressions. They are:

& AND
| OR

! XOR
~ NOT

The & and | and ! operators have the same precedence as
the * and / operators. The ~ operator has the same
precedence as the + and - operators.

Al.4.2 SHIFT OPERATORS

Two shift operators shift an expression right or left a
specified number of places.

MCS - 02 - 92 - ASSEMBLER

Syntax:
expr > expr for right shift

or
expr < expr for left shift

Examples:

243 has the value 16
16>3 has the value 2

Shift operators have the same precedence as * and /.

MCS - 02 , - 93 -

ASSEMBLER

A2 PSEUDO-OPERATIONS

The pseudo ops are divided into two classes: assembler
listing commands (or those which do not affect object
code) and assembler action commands (or those which
affect object code).

{pseudo_op> ::= <action_pseudo_op>|<listing_psaudo_op>

A2.1 ASSEMBLER ACTION COMMANDS

The following pseudo operations are those that have a
possible effect on the generated code.

<action_pseudo op> ::=

<label_stmt>| <change_stmt> | <mode stmt> |

<org_stmtd> | <define const>| <reserve store>

<equate_stmt>| <insert_access> | <insert stmt)>|
- <end_stmt>

A2.1.1 LABEL (LONG LABEL DEFINITION)

Generally, any character string starting in column one
is assumed to be a label. Occasionally, a statement
containing one or more long expressions may require a
label for which there is no space on the line. 1In this

case, the statement may be preceded by a label
statement.

<label_stmt> ::= LABEL <identifier>
Example:
LABEL CONSTANT_10
DC 10
Notes: Avoid using the LABEL statement to give a
statement two or more labels, because an error will
result. If it is necessary to give a statement a

second label, an EQU statement should be used.

MCS - 02 - 94 - ASSEMBLER

A2.1.2 CHANGE, UNCHANGE (KEYWORD ALTERATION)

On occasion, the user may find it convenient to change
one of the built-in keywords by means of a change
statement.

<change_stmt> ::= CHANGE <keyword> [TO] <char string>|
UNCHANGE

Examples:

CHANGE HB TO HIGH_BIT=1
CHANGE := =
UNCHANGE

Notes: "TO" is optional unless it is the keyword "TO"
which is being changed. UNCHANGE causes all keywords
to revert to their original forms. Avoid using the
change statement to introduce ambiguities into the
language. The operators +, -, *, and / as used in
~expressions may not be changed. Keywords are limited
to eight characters.

A2.1.3 INST, DATA (INSTRUCTION, DATA MODE INITIATION)

INST changes the mode of the location counter to
"instruction", while DATA changes it to "data".

<mode_stmt> ::= INST | DATA

A2.1.4 ORG (SET ORIGIN OF ABSOLUTE CODE)

ORG assigns the value of the expression following ORG
to the current location counter.

{org_stmt> ::= ORG <expr>
Examples:

DATA
ORG 256

INST
ORG @ + X'F'

MCS - 02 - 95 - ASSEMBLER

A2.1.5 DC (DEFINE CONSTANT)

DC evaluates an expression and generates code
containing its value.

<define const> ::= DC <expr>
Examples:

TEN DC 10

AB DC X'l5' - AC

A2.1.6 RS (RESERVE STORAGE)

RS causes the current instruction counter to be incre-
mented by the value of the expression following the RS.

{reserve_store> ::= RS <expr)
Example:
LAB RS 15
Note: An error message is given for the first use of

an RS statement while in INST mode.

A2.1.7 EQU (EQUATE SYMBOLS)

This statement must be used with a label. The expres-
sion following the EQU is evaluated and the label is
entered in the symbol table with the resultant value.

<{equate_stmt> ::= EQU <expr>
Examples:
LABEL LAB_ONE

EQU 15 + X'78' * L5
HERE _PLUS 5 EQU @+5

Notes: The equate statement generates no code and has
no effect on the location counters. Any identifier
appearing in the expression of an EQU, RS, ORG, or
COMWIDTH statement must be defined prior to use.

MCS - 02 - 96 - ASSEMBLER

A2.2 ASSEMBLER LISTING COMMANDS

The following commands affect the program listing
provided by the assembler but have no affect on the
code generated.

<listing_pseudo_op> ::=

HEADER <char_string> | FORMAT | NOFORMAT |
COMWIDTH <expr> | BLOCKS | NOBLOCKS | EJECT |
LISTC | NOLISTC | ILIST | NOILIST | WARN | NOWARN

A2.2.1 HEADER (PAGE HEADINGS)

HEADER prints the character string appearing on the
remainder of the card at the top of each page of the

listing until another header instruction is
encountered.

A2.2.2 EJECT (PAGE EJECTION)

EJECT causes the printer to sklp to the top of the next
page.

A2.2.3 LIST, NOLIST (ASSEMBLY LISTING ON, OFF)

LIST causes the assembler to begin listing subsequent
statements. NOLIST supresses listing. The default is
LIST.

A2.2.4 LISTC, NOLISTC (LISTING COMMANDS ON, OFF

LISTC causes the assembler listing commands to be

listed. NOLISTC supresses listing them. The default
is NOLISTC.

A2.2.5 BLOCKS, NOBLOCKS (BLOCK STRUCTURE ANNOTATION
CONTROL)

BLOCKS causes the assembler to indicate the structure
of the logical blocks of the source program. Right
arrows are provided in the listing for each labeled
instruction and left arrows for each transfer, link, or
return instruction. The default option is BLOCKS;
NOBLOCKS turns off this feature.

MCS - 02 - 97 - ASSEMBLER

A2.2.6 FORMAT, NOFORMAT (FORMATTED LISTING CONTROL)

The formatter will line up the labels and various
fields of the source statements before printing them.
Also, labels defined by the label pseudo_op are printed
on the correct lines. FORMAT turns on the formatter,
while NOFORMAT turns it off. The default is FORMAT.

Note: Be careful when using CHANGE and FORMAT at the
same time. In the format mode, it is assumed that the
following maximum field widths are used:

T field - 4 characters
A field - 4 characters
:=(assign) - 2 characters
op_field - 3 characters

If any of these fields use more than the allotted
length, the excess will be ignored, resulting in
possible syntax errors. (This will never happen if the
change operation is not applied to any of the involved
fields.)

A2.2.7 COMWIDTH (COMMENT WIDTH FOR JUSTIFICATION)
Comment width. The formatter attempts to right justify
comments while lining up their left hand sides. COM-

WIDTH is used to specify the expected length of
comments; the default value is 45.

A2.2.8 ILIST, NOLIST (INCLUDE FILE PRINTING ON, OFF)
ILIST causes printing of statements from include files.
NOILIST suppresses printing. The default is NOILIST.
A2.2.9 WARN, NOWARN (WARNING MESSAGE PRINTING ON, OFF)

WARN causes warning message to be printed, NOWARN sup-
presses printing. The default is WARN.

A2.2.10 END (END OF ASSEMBLY)

END signals the end of the assembly source. END

terminates the assembly. All input beyond the END
command is ignored.

MCS - 02 - 98 - ASSEMBLER

A2.2.11 CODELEN

CODELEN specifies the largest number of 32-bit words of
code the program can create. The default is 4096
words. The maximum is 16384.

Syntax:

CODELEN {expr>

Example:
CODELEN 4096 The default.
CODELEN 200 The maximum code length is

200 words.

A2.2.12 TIFON, IFOFF

IFON causes all conditional code in the #IF #ELSE #END
blocks to be printed in the listing. IFOFF causes only
the code that is to be assembled to be printed. The
default is IFON.

A2.3 DEFAULT OPTIONS

The status of the assembler upon initialization of
execution is the same as if it had just read the
following sequence of instructions.

LIST
NOLISTC
EJECT
HEADER
FORMAT
CODELEN 4096
COMWIDTH 50
DATA

ORG 0

INST

IFON
NOILIST
WARN
NOBLOCKS

MCS - 02 - 99 - ASSEMBLER

A3 PRE—-PROCESSOR COMMANDS

There are several PREPROCESSOR COMMANDS that change the
stream of code to be assembled. All of these commands
start with a '#' character in column 1.
A.3.1 #IF #ELSE #END
Syntax:

#IF <expr>

Eééy of code

#ELSE

Bééy of code

#END
The body of code located between the #IF statement and
the #ELSE statement is assembled if the value of
expression is non-zero. Otherwise the code between the
#ELSE and the #END statement is assembled. The #ELSE
statement is optional.
A.3.2 #INCLUDE
Syntax:

#INCLUDE filename
The code contained in the file specified is compiled in
line with the rest of the code. The filename may be
any DOS filename including the path, if needed.
A.3.3 #DEFINE
Syntax:

#DEFINE label <expr>
The #DEFINE command assigns the value of the expression
to the label. The #DEFINE is similar to the EQU, only

the #DEFINE command may redefine the value assigned to
a label as often as needed.

MCS - 02 - 100 - ASSEMBLER

A4 STANDARD ASSEMBLER MNEMONICS

Standard mnemonics and bit assignments used in IMS code

are given in the table on the next page.

These values

are also provided as a file on the assembler release

diskette.

CODE STATEMENT
00000001 NOV
00000002 OV
00000004 NLB
00000008 LB
00000010 Z

00000020 Nz
00000040 NHB
00000080 HB
00000020 META PC
00000001 EXT_BUS
00000002 IO TIMEOUT
00000004 Data memory PE
00000008 ATTENTION
00000010 CP_EXCP
00000020 CP_COMP
00000008 INTR MASK
00000020 META_CNTL
00000020 META WRITE
00000020 META STATUS
00000021 META_READ
000000C8 MMX ERR BS
MCS - 02

STANDARD SKIP MNEMONICS AND BIT ASSIGNMENTS

X'oL
X'02!
X104
X'08'
X'10
X'20'
X'40'
X'80'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

.NO-OVERFLOW
.OVERFLOW
.NO-LOW-BIT
.LOW-BIT
.ALL~-ZERO-RESULT
+NON-ZERO-RESULT
.NO-HIGH-BIT
+HIGH-BIT

HARDWARE ADDRESSES

EQU X'20'

.META_MICRO/EC INTERFACE

INTERRUET MASKS

EQU 1

EQU 2
EQU 4

EQU 8

X'10'
X'20!

EQU
EQU

EQU

ATTENTION

.PRIORITY O, EXTERNAL BUS PARITY
ERROR
.PRIORITY 1, I/O TIME OUT
.PRICRITY 2, Data memory MEMORY
PARITY
ERRCR
.PRICRITY 3, SUPPORT SYSTEM
ATTENTION
.PRICRITY 4, CP EXCEPTION
.PRIORITY 5, CP COMPLETION

. INTERRUPT MASK

META/PC INTERFACE OPERATIONS

EQU
EQU
EQU
EQU

META_PC+0
META_PC+1
META_PC+0
META_PC+1

EQU 200

PC/META STATUS

- 101 -

.WRITE CONTROL
.WRITE DATA
.READ STATUS
.READ DATA

.MMX IO ERROR MESSAGE BIAS IN
VE77 .MIX
CODES

ASSEMBLER

............. EXTENDED MEMORY CHANNEL ASSIGNMENTS

............. CHANNEL 0 = CODE-BODY CURRENT WORD + 1, WORD MODE

cetesearaenes CHANNEL 1,2 = SCRATCH CHANNELS, NO POST USAGE
ASSUMPTIONS

tessessreess. CHANNEL 3 = SCRATCH, BUT ASSUMED TO BE LEFT IN
WORD MODE

Ceeeenann ««.. WITH STRIDE = 1 AND TIPTCE = 0O

............. META/EXTENDED MEMORY OPERATIONS

....... vese.. 'SET' OPERATIONS-CONTROLLER INITIALIZATION

............. 'LOAD' OPERATIONS-ESTABLISH LOCATION COUNTER

VALUES

............. 'READ' OPERATIONS-MEMORY TO PROCESSOR TRANSFERS

............. 'WRITE' OPERATIONS-PROCESSOR TO MEMORY TRANSFERS

............. 'STATUS' OPERATIONS-CONTROLLER TO PROCESSOR

TRANSFERS

.......... «+s 'SET' CONTROL WORD FORMAT

............. 31 98 4 3 2 1l-=——-0

cteeeccscanns STRIDE, 2's COMP. TIP TOE UP/DOWN ORDER FORMAT

ceeeeeanna .. 'LOAD' WORD FORMAT

............. 31---24 23 0

............. : RFU BYTE, HLFWRD OR WRD ADDR

Ceeeesecnanas RFU = RESERVED FOR FUTURE USE, CURRENTLY RECEIVED AS
ZEROS

............. 'STATUS' WORD FORMATS

..... «eeseses (STATUS 1)

............. 31 24 23 0

............. » ZERO CURRENT ADDRESS

............. (STATUS 2)

ceesectccnanse 31 30 29 28 27 26 25 24 2322 21 2019 18
17 16

............. WRE WRA O 0 BEl BEO CPl CPO ILV CYC EMT O IDX
WRT CH1 CHO

MCS - 02 - 103 - ASSEMBLER

ooooooooooooo

.............

.............

00000000 MEM SET
00000001 MEM_WRT
00000002 MEM_WRTI
00000004 MEM LD
00000005 MEM_LDF
00000006 MEM_LDFI
00000007 MEM F
00000000 MEM_STAT1
00000001 MEM_STAT2
00000003 MEM RD
00000004 MEM RDF
00000005 MEM RDFI
00000000 MEM CHO
00000008 MEM CH!
MCS - 02

15

A

14 13 12 11

10
0

9 8 7 6 5

CHG RFG ERY MST BB3 BB2 BBl BBO VAL RPD BYl RESIDUAL

TIP TOE

CONTROLLER STATUS

WRP = THREE WRITES PENDING
ANY WRITE PENDING

WRA

BEl,BEO
Cp1,CPO

ILV
CYc
EMT
IDX

1 BANK(0), 2 BANKS(1l), 4 BANKS(3)

256K RAMS(0),

1 MEGABIT RAMS(1), 4

MEGABIT RAMS(2)
INTERLEAVE ENABLED
MEMORY CYCLE IN PROGRESS
FIFO IS EMPTY

INDEX THIS CYCLE

WRITE CYCLE

CHANNEL FOR CURRENT CYCLE
CHANNEL CYCLE,

REFRESH CYCLE

EARLY REFRESH

MUST REFRESH

BANK 3,2,

CHANNEL SPECIFIC STATUS

1,0 BUSY

VAL = Data memory VALID
RPD = READ PENDING
BYl = INDEX BY ONE

GENERIC MEMORY OPERATIONS

EQU
EQU
EQU
EQU
EQU
EQU
EQU

No U N O

EQU
EQU
EQU
EQU
EQU

v wr- 0

.GENERIC

SET

.GENERIC WRITE
.GENERIC WRITE AND INDEX

.GENERIC
.GENERIC
.GENERIC
.GENERIC

.GENERIC
.GENERIC
.GENERIC
.GENERIC
.GENERIC

MEMORY INTERFACE VALUES

EQU O

EQU X'8!

- 104 -

. CHANNEL
. CHANNEL

LOAD

LOAD AND FETCH

LOAD, FEICH AND INDEX
FETCH

STATUS 1 READ

STATUS 2 READ

READ

READ AND FETCH

READ, FETCH AND INDEX

0 BASE ADDRESS
1 BASE ADDRESS

ASSEMBLER

00000010
00000018

00000000
00000001

00000002

00000003

00000000
00000004

00000000
00000008

00000009
00000004

00000000
00000001
00000002
00000004
00000005
00000006

00000007

00000000
00000001
00000003
00000004
00000005

00000008
00000009
0000000A
0000000C
0000000D
0000000E

0000000F

MCS - 02

MEM _WD_MD
MEM_BYTE MD
MEM_HWD_MD

MEM_HBT MD

MEM_STAT1 0
MEM_STAT2 0
MEM_RD 0
MEM_RDF 0
MEM_RDFI_0

.............

.CHANNEL 2 BASE ADDRESS
.CHANNEL 3 BASE ADDRESS

.WORD MODE FORMAT (32 BIT)
.BYTE MODE FORMAT (8 BIT FROM 32 BIT

N

.HALF WORD MODE FORMAT (16 BIT FROM

.BYTE MODE FORMAT (8 BIT FROM 16

.HIGH TO LOW BYTE OR HALFWORD ORDER
.LOW TO HIGH BYTE OR HALFWORD ORDER

.INDEX ASCENDING (UP)
. INDEX DESCENDING (DOWN)

EQU X'l10°
EQU X'18'
MEMORY 'SET' SUB-OPERATIONS
EQU 0
EQU 1

WORD)
EQU 2

32 BIT WORD)
EQU 3

BIT WORD)
EQU 0
EQU 4
EQU 0
EQU 8
EQU 9 .STRIDE OFFSET
EQU 4 .TIP TOE OFFSET

CHANNEL O MEMORY OPERATIONS

EQU MEM SET + MEM CHO
EQU MEM_WRT + MEM CHO
EQU MEM WRTI + MEM CHO
EQU MEM LD + MEM CHO
EQU MEM LDF + MEM CHO
EQU MEM LDFI + MEM CHO

EQU MEM F + MEM CHO

EQU MEM STAT1 + MEM CHO
EQU MEM_STAT2 + MEM CHO
EQU MEM RD + MEM CHO
EQU MEM RDF + MEM CHO
EQU MEM RDFI + MEM CHO

.CHANNEL O SET
.CHANNEL 0 WRITE

.CHANNEL

.CHANNEL
. CHANNEL
.CHANNEL

INDEX

- CHANNEL

.CHANNEL
.CHANNEL
.CHANNEL

.CHANNEL
.CHANNEL
INDEX

CHANNEL 1 MEMORY OPERATIONS

EQU
EQU
EQU
EQU
EQU
EQU

EQU

MEM_SET+MEM CH1
MEM WRT+MEM CH1
MEM WRTI+MEM CH1
MEM LD+MEM CH1
MEM LDF+MEM CH1
MEM_LDFI+MEM CH1

MEM_F+MEM CH1

105 -

. CHANNEL
.CHANNEL
.CHANNEL
. CHANNEL
.CHANNEL
.CHANNEL
INDEX

.CHANNEL

o [oNeNeNa)

[eNeleNeNe]

b b

WRITE AND INDEX
LOAD

LOAD AND FETCH
LOAD, FETCH AND

FETCH

STATUS 1 READ
STATUS 2 READ
READ

READ AND FETCH
READ, FETCH AND

SET
WRITE
WRITE AND INDEX
LOAD
LOAD AND FETCH
LOAD, FEICH AND

FETCH

ASSEMBLER

00000008
00000009
0000000B
0000000C
0000000D

00000010
00000011
00000012
00000014
00000015
00000016

00000017

00000010
00000011
00000013
00000014
00000015

00000018
00000019
0000001A
0000001C
0000001D
00000Q01E

0000001F

00000018
00000019
0000001B
0000001C
00C0001D

MCS - 02

MEM_STAT1 1
MEM_STAT2_l
MEM RD_1
MEM_RDF_1
MEM_RDFI_l

MEM F 2
MEM_STAT! 2
MEM_STAT2_2
MEM_RD_2
MEM_RDF 2
MEM_RDFI_2

MEM_STAT1 3
MEM_STAT2_3
MEM RD 3
MEM RDF_3
MEM _RDFI_3

EQU
EQU
EQU
EQU
EQU

MEM STAT1+MEM CH1 .CHANNEL

MEM_STAT2+MEM_CH1

MEM_RD+MEM_CHL
MEM_RDF+MEM CH1
MEM_RDFI+MEM CHL

.CHANNEL
.CHANNEL
.CHANNEL
.CHANNEL
INDEX

CHANNEL 2 MEMORY OPERATIONS

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU

MEM_SET+MEM CH2
MEM WRT+MEM CH2
MEM WRTI+MEM CH2
MEM | [LD + MEM (| CH2

MEM LDF + MEM CH2

MEM_LDFI+MEM CH2

MEM F + MEM CH2

MEM STAT1+MEM CH2
MEM | STAT2+MEM CH2

MEM | { RD + MEM (CH2

MEM RDF + MEM CH2

MEM_RDFI+MEM_CH2

.CHANNEL
.CHANNEL
. CHANNEL
. CHANNEL
.CHANNEL
-CHANNEL
INDEX

. CHANNEL

. CHANNEL
.CHANNEL
.CHANNEL
.CHANNEL
.CHANNEL
INDEX

CHANNEL 3 MEMORY OPERATIONS

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU

MEM SET+MEM CH3
MEM WRT+MEM CH3
MEM WRTI+MEM CH3
MEM LD + MEM ¢ | CH3

MEM LDF + MEM CH3 .

MEM LDFI+MEM (CH3

MEM F + MEM CH3

MEM STAT1+MEM CH3 .
MEM STAT2+MEM CH3 .

MEM_RD+MEM CH3
MEM _RDF+MEM_CH3
MEM RDFI+MEM CH3

106 -

.CHANNEL
.CHANNEL

.CHANNEL
.CHANNEL
INDEX

WWwWwwWwww NN NN YD Ll e i ol o

w

wWwwww

STATUS 1 READ
STATUS 2 READ
READ

READ AND FEICH
READ, FETCH AND

SET

WRITE

WRITE AND INDEX
LOAD

LOAD AND FEICH
LOAD, FETCH AND

FEICH

STATUS 1 READ
STATUS 2 READ
READ

READ AND FETCH
READ, FETCH AND

SET

WRITE

WRITE AND INDEX
LOAD

LOAD AND FETCH
LOAD, FETCH AND

FETCH

STATUS 1 READ
STATUS 2 READ
READ

READ AND FETCH
READ, FETCH AND

ASSEMBLER

............. MATH COPROCESSOR OFPERATIONS

............. 'FUNCTION' OPERATIONS - ESTABLISH FUNCTION AND
TRANSMIT FIRST ARGUMENT

............. 'WRITE' OPERATIONS - PROCESSOR TO COPROCESSOR
TRANSFERS ;

....... ve.... 'READ' OPERATIONS - COPROCESSOR TO PROCESSOR
TRANSFERS

............. 'FUNCTION' WORD FORMAT (EXCEPT INITIATE)

............. 31-==———-0

............. ARGUMENT

cseascessnnes 'FUNCTION' WORD FORMAT (INITIATE)
seesesanaenses 31--16 15 14 13 12 1ll-—————- 0

............. NU RUN LOAD DUMP STEP ADDRESS

............. *STATUS' WORD FORMAT

............. 31 30 29 28 29--23 22-~~~=--16 15--10 9 87 6
5 4 3 2 1 0 :
eteceaaeaans RUN WI WO HALT NU ADDRESS NU OVR UND INX

INV DEN OVR UND INX INV RCO
............. RUN = RUNNING
tesessseeeses WI = WAITING FOR INPUT
............. WO = WAITING FOR OUTFPUT
............. HALT = HALTED
Cetereaeaaenn OVR = OVERFLCW
............. UND = UNDERFLOW
tessessseeess INX = INEXACT
............. INV = INVALID
............. DEN = DENORMALIZED

Cerieeeeenan . RCO = ROUND CARRY OUT

O00003FF CP_EXCEMSK EQU X'3FF! . MASK FOR ALL EXCEPTION BITS
00000001 CP MLU RCO EQU 1 . MLU ROUND CARRY OUT MASK
00000002 CP MLU INV EQU 2 . MLU INVALID MASK
00000004 CP MLU INX EQU 4 . MLU INEXACT MASK
00000008 CP MLU UND EQU 8 . MLU UNDERFLOW MASK
00000010 CP MLU OVR EQU X'l10° . MLU OVERFLOW MASK
00000020 CP_MLU DEN EQU X'20' . MLU DENORMALIZED MASK
00000040 CP_ALU INV EQU X'40° . ALU INVALID MASK
00000080 CP_ALU INX = EQU X'80' . ALU INEXACT MASK
00000100 CP_ALU UND EQU X'100' . ALU UNDERFLOW MASK
00000200 CP_ALU OVR EQU X'200' . ALU OVERLFOW MASK

MCS - 02 - 107 - ASSEMBLER

COPROCESSOR 'FUNCTION' OPERATIONS (EXCEPT IF 'LOAD'
OR 'DUMP' ACTIVE)

.............

00000038 CP_ADDR EQU X'38' . COPROCESSOR BASE ADDRESS
00000038 CP_INTMPY EQU CP_ADDR+0 . INTEGER*32 MULTIPLY (I*J),
TRANSMIT ‘I
00000039 CP_FPADD EQU CP_ADDR+1 . REAL*32 ADDITION (A+B),
TRANSMIT 'A'
0000003A CP_FPSUB EQU CP_ADDR+2 . REAL*32 SUBTRACTION (A-B),
TRANSMIT ‘A
0000003B CP_FEMPY EQU CE_ADDR+3 . REAL*32 MULTIPLY (A*B),
TRANSMIT 'A'
0000003C CP_FPDADD EQU CP_ADDR+4 . REAL*64 ADD (Al,A2+B1,B2),
TRANSMIT 'Al'
0000003D CP_FPDSUB EQU CP_ADDR+5 . REAL*64 SUB, (Al,A2-Bl,B2),
TRANSMIT ‘'Al'
0000003E CP_FEDMPY EQU CP_ADDR+6 . REAL*64 MULT, (AL,A2*B1,B2),
TRANSMIT 'Al'
0000003F CP_INIT EQU CPB_ADDR+7 . INITIATE OPERATION (X),
‘ TRANSMIT ‘X'
00008000 CP_RUN EQU X'8000' . 'RUN' BIT (NORMAL EXECUTION
MODE)
00004000 CP_LOAD EQU X'4000' . 'LOAD' BIT (Interpreter WRITE
MODE)
00002000 CP_DUMP EQU X'2000° . 'DUMP' BIT (Interpreter READ
, , MODE)
00001000 CP_STP EQU X'1000' . 'STER' BIT (SINGLE STEP MODE)
............. INITIATE OPERATION - ADDRESS CROSS-REFERENCE
00000008 CP_HALTADD EQU 8 . ADDRESS TO SETUP FOR NEXT
FUNCTION
00000000 CP_INTDIV EQU 0 . INTEGER DIVISION (INVALID)
000000EO CP_I2R EQU X'EO' . INTEGER TO REAL*32 CONVERSION
000000FO CP_R2I EQU X'FO' . REAL*32 TO INTEGER CONVERSION
00000100 CP_I2RD EQU X'100° . INTEGER TO REAL*64 CONVERSION
00000110 CP_RD2I EQU X'110° . REAL*64 TO INTEGER CONVERSION
00000120 CP_R2RD EQU X'120° . REAL*32 TO REAL*64 CONVERSION
100000130 CP_RD2R EQU X'130' . REAL*64 TO REAL*32 CONVERSION
00000140 CP_FEDIV EQU X'140° . REAL*32 DIVISION
00000170 CP_FEDDIV EQU X'170° . REAL*64 DIVISION
........... -« COPROCESSOR 'FUNCTION' OPERATIONS (WHEN 'LOAD'
ACTIVE)
00000038 CP_HDATA EQU CP_ADDR+0 . TRANSMIT MOST SIGNIFICANT
MICRO-WORD (47-32)
MCS - 02 - 108 - ASSEMBLER

00000039

00000038
00000039

0000003A

00000038
00000039
0000003A

00000038

00000039

MCS - 02

CP_LDATA

CP_RSLT
CB_BUS
CP_STAT

EQU CP_ADDR+1
COPROCESSOR 'WRITE'
EXECUTION

EQU CP_ADDR+0 .
EQU CP_ADDR+l .
EQU CP_ADDR+2
COPROCESSOR 'READ'
EXECUTION

EQU CP_ADDR+0 .

EQU CE_ADDR+l .
EQU CP_ADDR+ 2

. TRANSMIT LEAST SIGNIFICANT

MICRO-WORD (31-0)

OPERATIONS DURING 'FUNCTION'

WRITE NEXT OPERAND, TRANSMIT
OPERAND :

STEP COPROCESSOR (STEP MODE
ONLY)

. TERMINATE FUNCTION AND RESET

OPERATION

OPERATIONS DURING 'FUNCTION'

ARITHMETIC RESULT*32
COPROCESSOR INTERNAL BUS*32

. STATUS

COPROCESSOR 'READ' OPERATIONS (WHEN 'DUMP' ACTIVE)

EQU CP_ADDR+0 .

EQU CP_ADDR+l .

- 109 -

RECEIVE MOST SIGNIFICANT
MICRO-WORD (47-32)
RECEIVE LEAST SIGNIFICANT
MICRO-WORD (31-0)

ASSEMBLER

CODE STATEMENT

............. PCAT INTERFACE

00000020 ECAT_ADDR EQU X'20'
....... «ev... READ ADDRESSES
00000020 BCAT_RSTAT EQU PCAT_ADDR+0

00000020 BCAT WCTRL ~ EQU ECAT_ADDR+0
00000021 ECAT WDATA EQU PCAT ADDR+l

............. STATUS BITS
00000100 ECST_DATATO EQU X'l00' . DATA WORD AVAILABLE TO PCAT
00000200 PCST_CTRLTO EQU X'200' . CONTROL WORD AVAILABLE TO PCAT
00000400 PCST_PARTO EQU X'400' . VALID PARITY TO PCAT
00000001 PCST_DATAFR EQU X'I' . DATA WORD FROM ECAT
00000002 PCST_CTRLFR EQU X'2! . CTRL WORD FROM ECAT

............. ERROR MESSAGES

00000064 MMIOMSGBIAS EQU 100

00000037 ERR BAD ST EQU 55 . ERROR IN STATUS PROTOCOL

00000038 ERR_NO_DTA EQU 56 . MISSING DTA WORD

00000039 ERR_NO_EOM EQU 57 . MISSING EOM WORD
e .. ERROR MESSAGE #S

00000029 RD_EOF EQU 4l . END OF FILE ON READ

00000050 MSG_NOPEN EQU 80 . MESSAGE FILE DID NOT OPEN

00000002 CMD_CL EQU 2 . CLOSE

00000008 CMD OP EQU 8 . OPEN

00000004 CMD_WM EQU 4 . WRITE MESSAGE

00000009 CMD_RD EQU 9 . READ

0000000C CMD_ST EQU 12 . STOP

0000000E CMD_WR EQU 14 . WRITE

00000010 CMD_LD EQU 16 . LOAD

00000001 SCMD_PRG EQU 1 . LOAD PROGRAM

00000013 CMD_TD EQU 19 . TIME-DATE

0000001E CMD_RESET EQU 30 . RESET

0000001F CMD_EOM EQU 31 . END OF MESSAGE

00000001 EXEC_CMD EQU 1 . EXECUTE (IGNORED)

00000002 HALT CMD EQU 2 . HALT (IGNORED)

00000003 ACK_CMD EQU 3 . ACKNOWLEDGE

00000004 STAT CMD EQU 4 . STATUS FOLLOWS

00000005 DTA_CMD EQU 5 . DATA FOLLOWS

00000006 ATTIN CMD EQU 6 . ATTENTION (IGNORED)

0000001E RESET CMD EQU 30 . RESET

MCS - 02 - 110 - ASSEMBLER

00C000LF EOM CMD EQU 31 . END OF MESSAGE

00004000 ORMATTED EQU X'4000'
00008000 UNFORMATTED EQU X'8000'

MCS - 02 - 111 - ASSEMBLER

INDEX

“A H"

"A" field e e e e e e e e e
"“B" e o e 4 4 e e e s+ 4 e s e e e o o
"B" field ¢ i v v v e e . .
"C" field 0 o e e e e e .
"K Register" ¢« ¢ ¢ ¢ ¢« v o . .
"LINK" o ¢ ¢ o o o o o o o o o o o o o
"op" field e e e e e e e e e e e e e
"pipeline" e e e e e e e e e e e e e
"RETURN" .« . ¢ ¢ ¢ v ¢ ¢ ¢ v v o o o o &
"T" field . . e+ e e e e e e e e e .
"von-Neumann bottl eck"
(<T>:=<A%0D) « v ¢ v & ¢« o o o o o«
(KT>:=<A%P) + v v v v v o 0 o o« o .
SAY v i i i e e e e e e e e e e e e e
B> i e e e e e e e e e e e e e e e e
ST o e e e e 6 et e e e e e e e e e
ST> 2= <A> 0D . . v v v v v o o o .
<T>:=<A%P .+ v v v v v v v v w o . .
#DEFINE . ¢ ¢ ¢ ¢ v ¢ e o« o o o o o o
#IF #ELSE #END . . + 5 v ¢ &« o o o o o .
#INCLUDE . . ¢ ¢ 4 ¢ ¢ o o o o o o o o
Address field ¢ . . W . .
Assembler ¢ 4 v e e e e . .
Assembly formats
Backus-Naur FOrm ¢ « & & o o . .
BLOCKS, NOBLOCKS (BLOCK STRUCTURE ANNOTAT
BNE ¢ ¢ ¢ 6 4 e e o e v e e e e e e e
BUS e o & 4 s e e e e e e 4 e o o e o
BUS EMIT ¢ ¢ v v v v v v v o o
BUS REC « & & ¢ ¢ ¢ v v v o o o o o o
Caching « o . . o o v
CHANGE, UNCHANGE (KEYWORD ALTERATION) .
CISC ¢ v v ¢ v e e e e e e e e e e e e
Clock cycle v v v v v v v W .
CODELEN & v v v v v v o o o o o o . .

Complex-instruction-set computer (CISC)
Composite instruction . . . « o .
COMWIDTH (COMMENT WIDTH FOR JUSTIFICATION
Conditional transfer
Conditional transfer instructions

DATA . ¢ ¢ ¢ v v e v 4 e e e e e e e e
Data Register (DR) v v
DC (DEFINE CONSTANT) e e e e e e
Decoding + v v v v 40w W ..
EB ¢ ¢ o o v v et e e e e e e e e e e
EIR ¢ ¢ ¢ ¢ v i e e e e e e e e e e e

MCS - 02 - 112 -

w
>

~

S

e e e o o e o ¢ & e e~ . e & o e o o e+ o e o o e o e o & e N

'Y
(@]

~

S
[\8)

. . 0 . . W e .]
.

S

[e)}
® e & N N

w

e e o o & ¢ o o & o & N e o e & o o o e e o o o o e o o e o N

O ® & o o o o o e o . e o o * o e o o o o e o ¢ o o
e o o o o o+ o e o e e N

e o e o o o+ s o o o o e e o o o & e s e o e

N
[¢)}
~

(&

c.&.-o.oooocoo.bo-ooooN[\)-.owoogo

[e)]
N .
(o]

e o o e o o e o o o o o o
o e N

S e
w

ooao'-.ovuao-QOQQQOOHQotoo..oooqoo..oaoooo.ooo'_

o e o e o o » o e Ne e o s+ o o6 s o o e e e o o W e ¢ o o o ¢ o o o ¢ o o o

® e o o & o s+ s &6 N & o o
e o s e e e s e e N o

. o o e o o .

W
N

37
36
37
42
45
30
31
37
43
31
35

~

48
43
30
30
26
26
34
100
100
100

e o o N
w

0 >
N

L * e N
N &> WOVUN O » N NN O
NWOOWWWOLWOOUTLd OWO

N e e e o s o~
WWwikVW
WhwoH+

EIR External Input Register

EJECT (PAGE EJECTION) . v & v o o o . .
Encoding ¢ v e e e e e e e
END (END OF ASSEMBLY c e e e e s e 4.4
EQU (EQUATE SYMBOLS) . . + & v o o o . .
External bus
External input register
External input register (EIR)
FIGURE 1 . v ¢ ¢ v v v v v 4 v v o v .
FIGURE 2 . . v v v v v v v v v o o v .
FIGURE 3 « v v v v v 4 v v v v v o v o
FIGURE 4 v v v v v v v v o o o
FIGURE 5 . . . v v ¢ v v v v v o o v .
FIGURE 6 . « « v v ¢ v v v v « o o v .
FIGURE 7 « v v v v v v v v v v o o o« .
FIGURE 8 . v v v v v v v v 4 0 o o o .
FIGURE 9 « v v v v v v v v v v o o v .
Flush . e e e e e e e e e e e e e
FORMAT, NOFORMAT (FORMATTED LISTING CONT
HEADER (PAGE HEADINGS) . « &« & o « . . .
IBM PC-AT . . & v v v v 4 e e v o 0.
IFON, IFOFF . ¢ v + « . . e e s e e W
ILIST, NOLIST (INCLUDE FILE PRINTING ON,
1
IMR Interrup Mask Register
INST, DATA (INSTRUCTION, DATA MODE INITI
Instructlon Pipeline . . . e e e e e W
Instruction set archltecture e e e e e e
Interrupt . . C e e e e e e e e e e
Interrupt Mask Reglster e e e e e e e
Interrupt Mask Register (IMR)
Interrupt Register
Interrupt Register (IR)
IOTMO (input/output timeout
IR © & v v e v e e e e e e e e .
IR Interrupt Register
S
KRegister
KR KRegister
LABEL o s e e e e e e
Language 1nterpretat10n o v e e e e e
ILDK . . . e e e e e e e e .
Left Hand Side Format C e e e e e e e
LHS . . . ¢ o v v v v v v v .. o e e .
Link e e e e e e e e e e e
Link Condltlonal .. . e e e e
Link Stack Register (LSR) Flle .« e e e .
LINKC

LIST, NOLIST (ASSEMBLY LISTING ON OFF)
LISTC, NOLISTC (LISTING COMMANDS ON, OFF

MCS - 02 - 113 -

A

) e e o o e o ® o e o o e o o o e o o o e o e o

~J

o. e 8 e o ¢ o o o o e o

(o

He o Oe¢ o o
|

H

. ® e e o o o o o Oo .

~ e o o o o

~ s e o e e o o e o o o o

".‘go o o

® & o e o o o o s e e s s e e o o o N)e o s o @

2z

~ .

® o e e o o DN)e e e e s e o s+ s e 6 6 e e e .

® o e o o N e o o o o

e o o ® ¢ o o ¢ e+ e & e o o ® & e o o & e o e o o o o e o .

. e o o o o N

® * & s s s e s s e e B e e e o 6 &6 5 e e ® e s e 6 s e e Ne o o o o

e & o s .0 N)e o e s e e o

. * o o o e o e & o o @ e o o o o . o ~

e o o e ® o o o o+ o o

e o & e N

Logical shift

LSR Link Stack Reglster Flle .
MAR . . . ¢« ¢« & ¢« o« . e e e
MAR Memory Address Register .
Memory Address Register (MAR) .
Memory Input Register (MIR) . .
Memory Output Register (MOR) . .
Meta architecture
Metacomputer
MetaMicro
MnetaMicro Processor
User memory .« « « o« « o o « o .
METASYSTEM . . . ¢« v ¢« « « « « .
Data memory . . . « « ¢ « ¢ .+ &
Instruction set
Instruction memory . . .

Microsystem: Minimal Instructlon
Minimal-instruction-set-computer
MIR ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o ¢ o o &
MIR Memory Input Register

MOR ¢ ¢ ¢ ¢ ¢« ¢ o ¢ o o o @
MOR Memory Output Register
NOP e v e e .
Off-Chlp Interfaces . e
OP ¢ ¢ ¢ ¢ ¢ ¢« o o o ¢ o« @
OP FIELD . . « & o o «

ORG (SET ORIGIN OF ABSOLUTE C
Overflow . . .

D

PC-Channel
Pipeline

e o o o On e o o o o o

E
Priority bit
RO ... R7 General Reglsters .
Reduced-instruction set computer
Return
RHS . . . o o e .
RHS external bus .« o . .
Right Hand Side Format .
RISC « . ¢« ¢ ¢« v o o .
Rotational
Rotational Shlft . . .
RS (RESERVE STORAGE) .
shift
Shift operations .

. e e o o o

Shifting
Shifts
SKIP
Skip Conditlonal .
Skips
Subroutine llnk/return .
Subroutine linkage . . .

e o o e o o o ¢ o

MCS - 02

o o o o o o o o A~ o o o o o

ooooo’\o“oo

e e o e o o e o .

- 114 -

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

o OVe ¢ o ~

)

o o o o o o o o o o o o Hchoe o o o o o~
n
L] L] L] L] L] L] L] L L] L] L] [()O. . L] L]

ISC)

e o o e o o o o o * & e e o . o .
e o o e o e e o o« o o e o o o o o

e e o e o & e e o o o e e o o

¢ o o o o o o o o

e o o N

~J
~

e 6 & o o e e & o e+ e o 2 o e e o o o & o e o o o e o o o e o

e o o e« o e e o o @ e o o

* ¢+ o e e o

.
3
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
.

o e ¢ o (e o o o e e N)e o

omputer (MIS

.

* e o o o e o o e o o . o e e Nl e o s o e e e e o o o o o * e o

O
- . . L] -

>
o N

o e

o

e e e o e e o o 8 e e e & o e & 8 NN o N

7
cC

® & e o o o o o & o o e o s o N

31,
43,

w
[

’

. .

’

e oo o
(Vo] w
~ L] L]

LI
0

> e o o o o
(o) o

o @ e & N N & e o o e e N

e o o o
1=

34,

3 .

40,

e o & ¢ o e »
e s e e o e o o

> > N > WWWwN N
UFUOONOVOAUIANWHOONUUINHE

NDNWDWN W
WONHFHNO WO

> OVWN
N U OOy

Nd DN
NN

w

47
44
29
28
26
42
41
96
42
40
40
41
48
48
28
28
47

Subroutine return . .
TRA ¢ ¢ o o o o
Transfer
Transfer address .
Transfers
Unconditional transfer
VLSI feature size . .
Von-Neumann bottleneck
WARN, NOWARN
X Result Register .
X Register

MCS - 02

o o & o e o o & o & o

e @ o o e o o & o o o

e o & o e o

. . .
. . .
. . .
- e e
. . 0
3 . .
. . .
. . .
. . .
. 3 3
- . .

- 115 -

e o o o o o .

e o e o o s o o+ o

e e o e o o o ¢ s o

e o ©® & e o o o o & o

46
43
44
47
28
45

98
27
30

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115

